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INTRODUCTION

I TKUST that the student of Optics who casually scans the pages of

this work for the first time, will not be alarmed by the complicated

appearance of some of the formulae employed in the course of working
out the conclusions, and therefore infer that it is necessary to be highly
trained in mathematics in order to follow the lines of reasoning

employed. For such is not the case
;

all that is really necessary in the

mathematical equipment of the student being an easy acquaintance
with the ordinary manipulations of Algebra, together with a clear grasp
of the Binomial Theorem, the chief propositions of Euclid, and the

rudiments of the Differential Calculus. That granted, and given some

instinct for the practical application of what he knows, then he will

have no insuperable difficulty in following this work from cover to cover.

The greater part is easy compared to the numerous problems and

theorems which the average university student is called upon to solve,

and which in so many cases are treated as of purely theoretical

interest. After all, is not that the truest and most fruitful teaching
of mathematics which fully recognises the mutual support between

theory and practice ? Otherwise it is but natural if the student

cleaves to the one and despises the other.

I do not wish to imply that there is no scope for the employment
of the highest mathematical skill in optical science; for, on the contrary,

there are numerous problems in connection with the corrections of the

third order of approximation, merely glanced at in Section XL of this

work, which pre-eminently call for the elucidating and marshalling
influence of some clear-headed mathematician who shall be thoroughly
familiar with the properties of lenses from practical acquaintance, and

not only from the theoretical point of view. The closer approach to

perfection in the optical combinations of the future will lie in the

more thorough elimination of the corrections of the third order, and
in some cases of the fourth order, and the most highly trained

mathematical skill, if it should ever deign to busy itself in this

B
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country with the higher practical requirements of optical science,

would doubtless be able to evolve corollaries of the greatest importance

bearing upon this question.

My chief object in working out the scheme of Applied Optics
herein explained, has been to arrive at a complete system of algebraic

formulae of the second order which can be applied to any optical system

likely to occur in practice with results which in general very closely

approach to accuracy. I have therefore confined myself for the most

part to the attainment of those practical conditions which have to be

fulfilled by the best optical constructions conditions which include,

and run closely parallel to, Von Seidel's five well-recognised conditions.

As far as I know, there is only one work in the English language

professing to give a sketch of Von Seidel's methods, and that is

Professor Silvanus Thompson's Contributions to Photographic Optics?

after Otto Lummer, while there are numerous accounts of his

methods published in German works, and several treatises built

upon them, such as Steinheil and Voit's Handbuch der Angewandten

Optik? 1891, and Von Rohr's Theorie und Geschichte des photo-

graphischen Objective,
3 the latter a most instructive and valuable work

;

and last, but not least, Dr. Siegfried Czapski's new edition of Der

Theorie des optischen Instrumenten,
4 1904. This last work is a philo-

sophical, broad, and general survey of the various problems which

have to be faced, and if possible solved, by the optical designer who
would rise superior to mere rule of thumb. But its perusal requires

in many respects a higher level of mathematical training than is

necessary for the understanding of this treatise.

In the German language there exists quite a mine of optical

literature written by men who are practical opticians as well as

mathematical experts, while we have scarcely anything of a corre-

sponding nature in the English tongue.

The fact that such works as I have just mentioned have been

published in Germany (as first editions, at any rate) for so many
years, and yet no demand has ever arisen for English translations,

is only too painful evidence of the apathy with which the Science of

Optics has been regarded in this country.

There are, of course, various works on geometrical optics which

have more or less recently emanated from our universities, such as

Heath's Geometrical Optics,
5 Parkinson's Optics,

6

Pendlebury's Lenses and

1 Macraillan and Co., 1900. 2
Teubner, Leipzig.

3 Julius Springer, Berlin, 1899. 4
Earth, Leipzig.

5
Cambridge University Press, 1895. 6 Macmillan and Co., 1900.
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Systems of Lenses? Perceval's Optics, etc., which are excellent as

furnishing material for purely mathematical students working up for

examinations
;

but the manner in which the various problems are

dealt with is in many cases ill adapted for application in practice,

while certain matters of the highest importance are ignored altogether.

As a matter of fact there is not an English work on geometrical

optics extant by whose guidance an ordinary photographic lens could be

worked out in all particulars. Professor Silvanus Thompson's account

of Von Seidel's system does not, however, give the impression that

the latter's methods and notation are at all easy to comprehend, but

certain it is that his system has been successfully employed for very

many years by numerous mathematicians and opticians of the highest
rank on the Continent, while the foundation-stone of English optical

science has been left unbuilt upon.
I here allude to the all-important work which was done about

thirty years before that of Von Seidel by Sir George Airy, and still

more by Henry Coddington. Sir G. Airy published some highly

important papers in 1827 in the Cambridge Philosophical Transactions

on " The Spherical Aberration of Eye-pieces of Telescopes," and another

paper on the Achromatism of the same.

Then Henry Coddington took up the work, and by the aid of

some very ingenious devices of his own contrivance greatly added to

the simplicity and universality of the formulae arrived at by Airy.
In 1829 he published his labours under the title, A Treatise on the

Reflection and Refraction of Light, which, although still the best work
on geometrical optics from the practical optician's point of view,

nevertheless contains many shortcomings, which I attribute chiefly to

the fact that he had not had very much practical acquaintance with

lenses and their properties. It is therefore with much diffidence

that I venture to criticise and to supplement many of his methods
and formulae, especially when I feel sure that had it not been for his

labours this treatise would never have been undertaken.

Another very important work on geometrical optics, now very
little known, was Eichard Potter's Elementary Treatise on Optics,
Part II. of which, published in 1851, contains certain formulas for

spherical aberration of the third approximation.
I may here state that the invention of the " Cooke

"
lenses for

photography was not of a haphazard nature, but occurred in this

way. I had been studying Coddington's work very carefully and did

not feel quite satisfied with his method of working out the curvature

1

Deighton, Bell and Co., Cambridge, 1884.
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of the image formed by a lens, in the cases of both central and

eccentric oblique refractions. He assumed the aperture of the pencil
of rays in question to be infinitely narrow, and got at his results by
the employment of the differential calculus. I saw that while this

would be quite valid for such infinitely narrow pencils, still, as con-

siderably broad pencils generally occur in practice, it struck me it

might 'be worth while trying to devise a method not dependent upon
the calculus, whereby the foci of broad oblique and eccentric pencils

could be elucidated, when possibly some new results of practical

importance might be forthcoming. About the year 1890 I undertook

that task, and after meeting with many difficulties which almost com-

pelled me to give up the investigation as hopeless, I at last succeeded

in arriving at the results embodied in Sections V., VI., and VII. of

this volume, and in so doing was fortunate enough to bring to light

the formula relating to coma, a phenomenon that appears, strange as

the fact may seem, never to have been noticed by Coddington. I then

saw that the formula I thus arrived at implied corollaries of the

greatest practical importance, and I was led almost directly to the

conception of the Cooke lens, that is, of the older complex Cooke lens

built up of two achromatic positive lenses and one achromatic negative
lens. The simple Cooke lens was of later conception. Thus the

theory preceded the practice, although I should say that there are

certain other features of the Cooke lens, such as distortion and oblique

achromatism more especially, whose theory I did not arrive at until a

few years later, so that in that respect the practice preceded the theory.

Having subsequently worked out a complete system of formula?,

which I have proved and tested and found reliable in all manner of

ways, and recognising the great importance of theory and practice

working loyally together for future improvements, I thought that as

soon as I had time enough at my disposal I would gather together

and arrange what has been the interrupted labour of many years, with

a view to publication, if by so doing I could, even in a humble degree,

forward the development of optical science in this country, wherein

it has lain so long neglected, or perhaps furnish some raw material

on which some far abler heads than mine should at some future time

found important corollaries not yet dreamed of.

Considerations of space have compelled me to confine myself to

theorems and formulae that I consider to be of the greatest practical

value, and to leave out many corollaries of minor importance that

might be dealt with in a future edition, were it ever called for.

There are also many problems and theorems untouched upon,
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which are only of theoretical importance or of interest from a

mathematical point of view, and of little value to the practical

optician, such as, for instance, the theory of caustics, planes of unit

magnification, etc., about which the more mathematical student can

obtain full information from various contemporary works of well-

known repute, such as those mentioned above, as well as Coddington's

work, which, however, is now out of print and often difficult to procure.

It will be observed that I have not given the lines of reasoning

by which the formulae of the first approximation are arrived at
;

for I

have assumed that the student will bring with him to the study of

this work a knowledge of such elementary optical formulae. For those

who wish to enter upon it without that knowledge I do not know a

better book to recommend as a clearly written first guide to the

formulae of the first approximation than Todhunter's Optics (in Part IT.

of his Natural Philosophy for Beginners, 1877, which I believe is

also out of print) or Lardner's Optics, and the series of articles on
"
Applied Optics

"
by Dr. Drysdale in the British Optical Journal,

I think it must be conceded that, while the method of in-

vestigating the foci of oblique and eccentric pencils of finite or large

aperture explained in this work leads to novel and highly important
formulae of the second approximation, and some others which are novel

in many respects, it also opens out possibilities of working out formulae

of the third and in some cases the fourth approximations, which in the

hands of a skilful mathematician may lead to new and useful results

of great importance ;
while the application of the differential method

of Coddington and other workers to infinitely narrow pencils is exceed-

ingly limited in its scope and results, as I shall show.

At first sight it seems a remarkable thing that a system of surfaces

bound by the simplest of all known curves, namely, the circle, with

their centres on a common axis, should give rise to problems which,

if solved to a high degree of exactitude, are of such extraordinary

complexity.
I gladly take the present opportunity of expressing my thanks to

Sir W. de W. Abney and Professor Silvanus P. Thompson for much
kind encouragement and valuable help; and also to Dr. Moritz von Eohr
for allowing me to reproduce some of his diagrams on Plate XXIV.

In conclusion, I shall be only too glad if any technical errors or

obscurities, which must, in spite of all care, exist in a work of this

kind, are pointed out to me.

H. DENNIS TAYLOR



SECTION I

A KECAP1TULATION

WE will first of all recapitulate those well-known formulae of the first

approximation relating to ultimate axial rays constituting direct or

axial pencils, or, in other words, extremely narrow pencils whose central

or principal ray coincides with the axis or straight line joining the

origin or apex of the pencil to the centre of curvature of the spherical
surface. Spherical aberration is in such cases a vanishing quantity
and is therefore not regarded. Throughout this work it is assumed

that all reflecting and refracting surfaces are either plane or spherical.

Law connecting con-

jugate focal dis-

tances for plane
reflector.

Formula connect-

ing conjugate
focal distances for

spherical reflec-

tor.

Case of a Plane or Curved Reflector

Throughout the diagrams in this book light is supposed to be

travelling from left to right.

Plane reflector. Here if Q (Plate I.) be the origin and Q . . A, the

principal ray, be perpendicular to the reflecting surface B . . R, then

after reflection the rays will proceed backwards as if originating from a

virtual point q situated on Q . . A projected and at a distance A . . q
from the surface equal to A . . Q. On the contrary, if the incident

pencil is of rays converging to the apex q, then they will be reflected

back to a real point Q such that A . . Q = A . . q and Q. . . q is normal

to K . . R
If the reflecting surface be curved spherically as r . . r, Figs. 2a, 2b,

2c, and 2d, c being the centre of curvature and Q the origin or

apex of the incident pencil, then the formula

1 1

A..g A..C A..Q
~~ I

universally applies and interprets itself in all cases if the following
conventions are strictly adhered to, viz.

6
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The radius of curvature A..C is to be considered as an intrinsically

positive quantity whether the surface be convex or concave; and then

For concave reflector

If rays of the incident pencil are divergent, then Q . . A is positive. Reflector Conven-

If rays of incident pencil are convergent, then A . . Q is negative.

If rays of reflected pencil are convergent, then A . . q is positive.

If rays of reflected pencil are divergent, then q . . A is negative.
And for convex reflector

If rays of incident pencil are convergent, then A . . Q is positive.

If rays of incident pencil are divergent, then Q . . A is negative.
If rays of reflected pencil are divergent, then q . . A is positive.

If rays of reflected pencil are convergent, then A . . q is negative.

For instance, in the case of Fig. 2d we have T = -
-r

^r,
but Instances of appii-A ? A . . (^ cations of signs to

by convention A . . Q is a negative quantity, therefore the formula is reflected pencils.

T = -
7\ or ^ + T ~, therefore A . . Q comes out diver -A q

" A . .
1^5

-C A . .
v^j

gent and positive.

Should Q . . A or A . . Q be infinite or the rays of the incident

pencil be parallel, then of course becomes zero, and be-

2 i
A. . Q A. .q

comes -r p or
,
and the rays converge to or diverge from the prin-

cipal focus of the mirror.

The dotted lines in the figures indicate negative distances, and
the full lines the positive distances.

Plane Refracting Surfaces

In the case of normal or perpendicular incidence of small pencils

at a plane refracting surface bounding a transparent substance whosf

refractive index =
//,,

while that of the left-hand medium =^, the /* = refractive index,

simple relationship A . . q = fi(A . . Q) holds good. See Figs. 3a and 3b.

Spherical Refracting Surfaces

In the case of direct refraction of normal pencils by spherical

surfaces, as in Figs. 4a, b, c, d, e,f, g, and li, the formula

or

fJL _ [L-

Aj
=
A77C"A..Q Formula connect-

ing focal distances

in case of refrac-

tion at single
surface.
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holds good if we put u for A . . Q, r for the radius A . . 0, and u for

A . . q, and this formula interprets itself for all cases, provided the

following conventions are strictly adhered to, viz. :

Convention as to The radii of all surfaces, whether convex or concave, to be con-

tances
f fOCal ^ sidered intrinsically positive with respect to the conjugate distances

whose signs are to be assessed.

Then for convex surfaces

Eays of incident pencil diverging, then Q . . A or u is positive.

Figs. 4a and 4e.

Eays of incident pencil converging, then A . . Q or u is negative.

Figs. 4c and 4#.

Eays of refracted pencil converging, then A . . q or it is positive.

Figs. 4 a, 4c, and 4g.

Eays of refracted pencil diverging, then q . . A or u is negative.

Fig. 4e.

And for concave surfaces

Eays of incident pencil converging, then A . . Q or u is positive.

Figs. 4& and 4/.

Eays of incident pencil diverging, then Q . . A or u is negative.

Figs. 4:d and 47i.

Eays of refracted pencil diverging, then q . . A or u is positive.

Figs. 4&, 4d, and 4A.

Eays of refracted pencil converging, then A . . q or u is negative.

Thus, in the case of Fig. 4c, A . . Q is convergent and therefore u

is negative, and

becomes

gent.
it r u

Rays entering con- u - 1
vex surface conver- --

r

And, again, in a case where Q. .A in Fig. 4 becomes less than -
,
then

Rays leaving convex of course
" = -

gives a negative result, and the refracted pencil
surface divergent.

is shown to be divergent, as in Fig. 4e.

If the rays of the incident pencil are parallel and therefore

;=-
T- = zero,

Q. .A
therefore
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and

Focal distance when
entering rays are

parallel.

If, on the other hand, QA = r,thenT = 0, and the rays of the
fJL

~~~ 1 il

refracted pencil are parallel.

We are now in a position to consider the cases of two spherical

surfaces in succession enclosing glass between them and forming a lens.

We will assume the axial thicknesses of such lenses to be negligible,

the two spherical surfaces being brought to a sharp edge in the case

of collective lenses and the diameter or aperture being very small

compared to the principal focal length, while in the case of dispersive

lenses the two spherical surfaces may be supposed to touch one another

on the lens axis, the axial thickness being zero. Let us take a case

like Fig. 4 a, wherein the rays after refraction at the first surface are

convergent and it, is positive. Let these convergent rays proceed

through a second convex surface, as shown in Fig. 5 a.

We saw that in the case of Fig. 4a the distance A . . q or u was

/* .

-, from which we get - =
u u

given by the equation =
u r u u r u

We can apply this equation to the refraction, taken in the reverse

direction, at the second surface, as shown in Fig. 5a, Plate II., wherein

A
2

. . Q2 corresponds to u, and Az ..q
=

ii; only in this case A
2

. . Q2 may
be better expressed as = v, and the radius of curvature as s, so that we get

/*_/*-! 1

U S V

and
!_/*-! /*

v s it'

But as the rays of the pencil are converging (left to right) into the

second surface, and the distance it becomes, relatively to the second

surface, negative, therefore the above equation becomes

!_/*- 1

v

But ~ by the refraction at the first surface was shown to be
u

Substituting this value in the above equation we get

s it

Refracted
parallel.

rays

Two closely follow-

ing surfaces consti-

tute a lens.

So far, lenses
assumed to have
no central thickness.

Course of rays at

second surface con-

sidered reversed.
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Formula connect- or

ing conjugate
focal distances in

the case of a lens.

/ i-=
(fj.- !)(- + -)

- - III.

which well-known formula applies to all thin lenses whatsoever

under the following conventions.

Conventions as to

signs of radii.

Conventions as to

signs of conjugate
focal distances.

Conventions as to

signs of radii.

Conventions as to

signs of conjugate
focal distances.

Collective Lenses

The focal length of a collective lens must be considered a positive

quantity with respect to the conjugate focal distances. The radii of

all convex surfaces are considered intrinsically positive, while the

radii of all concave surfaces are considered intrinsically negative, their

radii, of course, being always numerically greater than the radii of the

convex surfaces in the same lenses, so that the deeper curved surface

determines the character of the lens.

If rays of incident pencil are diverging, u is real and + Figs. Qa

and Qe.

If rays of incident pencil are converging, u is virtual and .

Fig. 6c.

If rays of emergent pencil are converging, v is real and + . Figs.

6a and Qc.

If rays of emergent pencil are diverging, v is virtual and .

Fig. 6e.

Dispersive Lenses

The focal length of a dispersive lens is also to be considered a posi-

tive quantity with respect to the conjugate focal distances. The radii

of all concave surfaces are considered intrinsically positive, while the

radii of all convex surfaces are considered intrinsically negative, their

radii, of course, being always numerically greater than the radii of

the concave surfaces in the same lenses, the deeper curved surface

again determining the character of the lens.

If rays of incident pencil are converging, u is virtual and + .

Figs. 6& and 6/.

If rays of incident pencil are diverging, u is real and . Fig. Qd.

If rays of emergent pencil are diverging, v is virtual and + .

Figs. 66 and Qd.

If rays of emergent pencil are converging, v is real and .

Illustrations. Mean- Figs. Qa, b, c, d, e, and / are illustrations of these conventions.

dotted lines.

11 and As in Fig- 4
>
and generally throughout this book, all intrinsically

positive distances are drawn in full lines, drawn thinner where
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u +

v+ q q

Fi^.G.a

w*

u-

Fi^.G.d.

u -t-

V- -Q

Fi^.G.e.

V

i. 6.f.
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Fi^.4.h

v+ q q

i. 6.a

u-

_._S5Sr~q-^

Fi^.S.c.

Fi^.T.a.

Fi^.T.b
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virtual
;
and all intrinsically negative distances are drawn in dotted

lines, with their virtual extensions drawn lighter.

Theorem of Central Projection

Having now the formulae relating to axial pencils of rays, we may
next consider the case like that shown in Figs. 7a and b.

Besides the conjugate axial pencils Q^.^, let another point of origin
'

Q2 ,
in the case of the collective lens, or another apex of convergence Q2 ,

in the case of the dispersive lens, be taken at some small but appreci-

able distance away from the axis, such that Qx
and Q2

are on a plane

perpendicular to the axis. It is evident that a ray drawn from Q2

through the centre of the lens will pass straight on, as it is crossing

two elements of surfaces which are parallel and practically touching.

If a straight line from Q is therefore drawn through the centre of

the lens and produced until it cuts the other so-called conjugate focal

plane q . . q (which is perpendicular to the axis and passes through q l}

the conjugate focus to Q x),
then the point of intersection qz

is where

the conjugate image of the point Q2
is formed. That is, the centre

of the lens is always in a straight line between any point Q2
or Q3

of

a plane object and its conjugate image q2
or

q^.
This theorem is

capable of a further extension, as shown in Figs. 8a and b, Plate III.

Here are two cases in which the pencil of rays from Q2 (here

drawn in solid lines) is eccentric
;
that is, none of the rays of the

eccentric pencil actually pass through the centre of the lens owing to

the stop s being interposed. But it is assumed that the rays constitut-

ing such an eccentric pencil are but a part of a larger pencil of rays

filling the whole lens
;
and since the lens is assumed so small that all

the rays refracted through it from any one point are caused to converge
to or diverge from one and the same image point, therefore these

eccentric rays may be regarded as coming under the same law, and the

conjugate points Q, and q2 may be considered to be strictly on a

straight line of projection drawn through the centre of the lens. Thus

the pencils of rays are assumed to be homocentric that is, all the

rays constituting each pencil are assumed to diverge from or con-

verge to one point. From this it follows that the distance ql
. . q2

v= (Q a Q)-J an(l the scale of any conjugate image formed of the

v

plane Q 1
. . Q2

is - times the scale of the original. The scales of image

and object are in direct ratio to their axial distances from the lens

centre.

The optic axis de-

parted from.

Oblique conjugate
focal distances.

Whenoblique pencils
are also eccentric

Definition of homo-
centric pencils.

Relative scales of

object and its image.
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Limitations. Although this theorem, which is a part of the larger Gauss theory,
is in its nature only true for minute angles of obliquity and for

exceedingly narrow pencils, which never have more than a very small

degree of eccentricity, yet it is of the highest importance when we

proceed to ascertain that very important function of a more or less

complex combination of lenses, known as the equivalent focal length.
Corrected lens While the theorem is of little practical worth when applied to

untrue for the parts

1
simple uncorrected lenses of substantial aperture, yet, for a combination

but true for the of lenses yielding a flat and rectilinear image, it becomes absolutely

true in the sum for the series, since the departures from its truth in

any one lens are in that case neutralised by contrary departures from

its truth in the other lenses.

Gauss and Listing.

... ..
Principal points or
nodal points.

Thick Lenses

We may now proceed to deal with the case of lenses of consider-

able thickness as measured along the axis. This subject was long ago
worked out by Gauss (about 1838) and Listing (about 1868), and it

will suffice to recapitulate here the most important results, although

perhaps arriving at them by methods differing from theirs, but more
convenient for our purpose. Let Figs. 9a, I, c, d, e,f, and g represent
various forms of lenses, of central thicknesses A

I
, . A

2 ,
and radius c

1
. . ^

for first spherical surface, and c
2

. . r
2
for second surface. It is obvious

that if any two radii
Cj

. . r
x
and c

2
. . r

2
are drawn parallel to one another

and joined by the straight line r
:

. .

r^,
then the latter will cut the axis

at the point C, so that we have two similar triangles c^Crl
and e

2
O

2 ,

and two similar mixtilinear triangles GA
l
r

l
and CA

9
r
2 ,

and the

distance . . A. : C . . A_ r
2 ,
and moreover the straight line

i i "2

'j
. . r9 cuts the first surface or its tangent at rv at exactly the same

angle as it cuts the second surface or its tangent at
r^. If, therefore,

r . . r
2 represents a ray of light, it will obviously, if refracted out of the

surface at r^ be deviated from the direction r
2

. . r
l by exactly the same

angle as it would be deviated from the direction T
I

. . r if refracted out-

wards at the point r
2 , only the deviation will be in opposite directions.

Hence the ray after refraction at ^ will pursue a course r . . tv and after

refraction at ?'
2
will pursue a course r

2
. .

t^,
and these refracted rays are

parallel to one another. If, then, r
l

. . t
l
and r

2
. . t.}

are produced back-

wards (if necessary) to cut the axis at two points pl
and pz ,

we then

get again two similar mixtilinear triangles r
l
A

}p 1
and r A

2p ,
and

again have A
I

. . pl
: A . . pz

: :

c^
. .

r^
: c

2
. . rf These two points pl

and p2

are the two principal points of the lens or nodal points (sometimes
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also called Gauss points), and, as we have seen, have this important

property, that any ray which, while outside the lens, passes through the

first principal or nodal point, will, after passage through the lens,

emerge on the other side in a direction parallel to its first direction,

and radiating from the second principal point ; moreover, the same ray,

while traversing the interior substance of the lens, passes ex hypothesi

through the geometric centre of the lens or the point C.

As a corollary from the above principle, it follows that if we wish to

know the relative sizes or scales of conjugate images formed by thick

lenses, we must then measure the focal distances of such images from the

principal points of the lens. The focal distance of the first image or

object,virtual or otherwise, formed by the entering rays must be measured

from the first principal point p l}
and the distance of the second image

formed by the emergent rays must be measured from the second prin-

cipal point p2 ,
when the sizes of the images will be in direct ratio to

those focal distances. Our theorem of central projection still holds good,
with this modification, viz. that the centre of the lens presents two

aspects, or two different positions, according to whether the lens is

viewed from one side or the other. Eegarded from the left hand the

centre of the lens is practically the first principal point p l}
but regarded

from the right hand the centre of the lens is practically the second

principal point p^, and these two points are but the refracted images of

the geometric centre C of the lens. That is, pl
is the conjugate image

of C by refraction at the first surface, and p^ is the conjugate image of C

by refraction at the second surface. Therefore the distances A
lp l

and

A
2p2 may be derived from the Formula II.,

p. //.
1 1

it r u'

in its more special application to Figs. 4/ and 4#. At the first surface

we have u = A
l ..pl (Fig. 9), which by convention is a minus quantity,

while A
1

. . C = it, and is a plus quantity, and A
l
c
l

= r. Let r and
s = first and second radii of curvature respectively, and let the thick-

ness be denoted by t, therefore

/A [A
1 1

Ar.C i-Pi

-1

but
Aj.,0 r

r

Conjugate focal
distances to be
measured from the

principal points.

A thick lens exists

virtually in two
positions.

Method of locating
the principal points.

r + s
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principal point
from first vertex.
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therefore

and
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tr tr

Thickness of a col-

lective lens positive,
and that of a disper-
sive lens negative.

Case of collective

meniscus, first p. p.

Case of dispersive
meniscus, first p. p.

Case of collective

meniscus, second p. p.

Case of dispersive
meniscus, second p. p.

S)
-

t(fJL
- 1

)'

Similarly, at the second refraction we have

1
yU, fJi

1

A
2

. . p.2

=
A777C s~

'

in which

IV.

AQ . . C = t-

r + s

therefore

Distance ofsecond and

principal point
from second ver-

tex.

ts

V.PS--T-

t

ts

s)
-

t(p
-

I)'

These two formulas thus give the distances from the vertices A
:
and

A
2

of the two principal points of a lens. They obviously give a

positive result in the case of any double convex lens, which is as it

should be, since these distances are really additions to the conjugate
focal distances when both, as in Fig. 6 a, are positive. But in order to

make the formulse apply to the case of the double concave lens whose

normal object and image distances are virtual,'but positive, we must

consider t, the thickness, to be intrinsically a negative .quantity, thus

making A l
. .p 1

and A
2

. .p2 negative quantities. For they are obviously
deductions from the conjugate focal distances when both are positive,

as in Fig. 66. That having been settled, then the formulse will interpret

themselves correctly in all cases. In the case of the collective meniscus

(Fig. Qe~) s must be entered as a negative quantity in the Formula IV.,

and being necessarily greater than r, then r + s comes out negative,
and we get a negative denominator in the formula. Obviously in this

case Aj . . pl
is measured outside the lens and is a deduction from the

value of u, if plus. In the corresponding case of a dispersive meniscus

(Fig. 9/) Aj . .pl
comes out positive, both numerator and denominator

being negative. At the second surface in Fig. 9e the Formula V. gives
both numerator and denominator negative and the result is positive,

for A
2 ..^?2

is an addition to the back focal distance v, if plus. In

the corresponding case of the dispersive meniscus (Fig. 9/) Formula V.
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yields a product of two negatives for numerator and a negative

denominator, and A
2

. . p9
comes out negative, being a deduction from

a positive focal distance v. Fig. 9# represents a special case worthy
of note, a case in which the two radii of curvature are equal, but

of opposite signs. Here the distance of c, the centre of the lens,

/ T T\
from either A

X
or A

2
comes out infinity (or t-~- =

t-j.
The straight

line joining the two points r
l
and r

z
,
where the two parallel radii cut

the surfaces, is parallel to the axis, and obviously after refraction by
either surface will intersect the axis at a distance from the vertex of

T S

either surface equal to , and r or A, . . p. and A_ . . p, in the first

fj.
i

[A
i

case negative and in the second positive. We shall also see later on

that such a lens, of watch-glass form, really possesses collective power
and can form a real image. But it is easy to see that if a real object

is placed at the first principal point pv then, after passage through the

lens, a virtual image will be formed at p^ of the same size as the

original. In such case both u and v = o.

We have, then, here an actual and realisable example of the

theorem dwelt upon by various writers on optics, Dr. Drysdale for

instance, in the British Optical Journal, to the effect that the two

planes passing through the two principal points are planes of unit

magnification, or, in other words, if an original object or an image
lies in the first principal plane, then an equal-sized image of it, real

or virtual, will be formed in the second principal plane. We shall

have occasion to refer again to this theorem in the next section.

Figs. 10 and 11 are peculiarly interesting cases, since we have the

radii and thickness so related that the ray r^
. . ?*

2
within the glass is,

after refraction outwards, either way parallel to the axis. This con-

dition is seen to be fulfilled when t = i ~, + s _ ,, r in Fig. 10 being

a negative quantity and in Fig. 11 a positive quantity. Such thick

lenses as these may be said to have no principal points at all, and

therefore no focal length, and their analogy to the Galilean and

astronomical telescope respectively will be more fully realised later on.

In Fig. 12 we have the simplest case of all, that is, the sphere,
wherein the two principal points merge in the geometric centre.

In Fig. 13 the case is extended to one in which the two radii of

curvature are different, yet struck from a common centre. Here again
the two principal points merge in the geometric centre.

Figs. 14a and 14& show, for a collective lens and for a dispersive

Two radii equal, but
of opposite signs.

Theorem as to prin-

cipal planes.

Lenses without any
principal points and
without focal length.

A sphere has only
one principal point.

Other lenses with

only one principal
point.
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Course of oblique
pencils with respect
to the principal

planes.

Influence of thick-

ness upon the prin-

cipal focal length of

a lens.

Back focal length to

be ascertained.

lens respectively, the course of a complete oblique pencil of rays

through the lens with respect to the principal points pl
and p^ and

the principal planes passing through the latter.

Having now settled the positions of the two principal points of

any lens, we may proceed to ascertain what influence the axial thick-

ness t of a lens exercises upon its equivalent principal focal length.

Fig. 14a represents a double convex lens forming a real image/, in its

principal focal plane F, of an object situated at an infinite distance

away on the left; Fig. 14& the corresponding case of a dispersive lens.

Here the principal focal length required is the distance p^ . . F measured

from the second principal point p9 to the principal focal plane F. It

consists of two parts : first, the back focal distance A
2
F measured from

the vertex of the second surface
;
and second, the distance A

2
. ,p2

from

the same vertex to the second principal point. The latter we have

already got an expression for
;
the former, or the back focal length, we

must now proceed to formulate. After the first refraction, in the

case of a collective lens, the axial pencil of parallel rays is converged to

/, ;
let A. . ./ = it. Then

v 1
"

1 v 1

_zl_!
u r u

'

of which

therefore

Next

Ult lilt 1 tU'

, T-= -, and u=~ .

u r u p.r ji
-

1

r-0*-l)l

/*
- 1

At the second refraction we have

yu.
M 1

A

therefore

= <LZJ
A

2 ../!
s A.2 ..F'

_
A

2
..F

but in this case A
2

. ./ is by convention intrinsically a negative

quantity with respect to the second surface, which we have seen to be

equal to
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so that

therefore

I

A ..F

1 > s

therefore

and

-(/A- IX}
VA. Formula for the

back focal length.

Add A
2

. . p2
to this from V., and we get

A
2
..F + A

2 ..^2
= -- s{/Ar-(/A- IX}

+
)
-

(A*
-

s{/>tr
-

(/A
- 1 X} + (/A

-

_ . . T
ts

VI.

This, then, is the formula for the equivalent principal focal length
E of a thick positive lens. If a small infinitely thin positive lens of

principal focal length p . . F were placed at pz ,
it would form an

image at F of distant objects of the same dimensions as that formed

by the thick lens, of which latter it is the equivalent.

In the case of the double concave lens, Fig. 106, we have

Formula for the

equivalent focal

length of a thick

positive lens.

.p2
also

{/*r
-

(/A
- 1 )/}

ts

(/A
- + s)

-
(/A

- i X)
-

i)'

in which case, of course, the latter expression for A
%2

. . p9 comes out

minus and as a deduction from the back focal length A9F, since t in

this case must be entered as a negative quantity ;
so that, just as in

the case of the collective lens, we get the same expression for the

equivalent principal focal length, viz.

fJLTS .=E. VII.

Formula for the

equivalent focal

length of thick

dispersive lens.
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Formula giving
modification due
to thickness, as a

percentage.

Effect of thickness

upon power in
various cases.

Now if the lens were infinitely thin, the reciprocal of its principal

focal length would be simply (//, 1)(_ + _Y Calling this - and sub-

tracting it from , we get

rs

_
E F'

therefore

so that

therefore

1
_

1.

E~F

r s F /*rs

therefore

F (/*-!)(

E F
VIII.

This is perhaps the most convenient and significant mode of ex-

pressing the modification of the power of any lens whatsoever which

is due to thickness
;

it expresses it in the form of a percentage of

gain or loss as compared with the power which the lens would have

if it were infinitely thin. It shows a loss of power in the case of

double convex lenses, a gain in power in the case of double concave

lenses, no alteration in power in the case of plano-convex, plano-

concave, convexo-plane, concavo- plane lenses, for in all four cases

r + s becomes infinity ;
while in the case of a collective meniscus, when

r + s becomes negative, a greater and greater relative gain in power,

consequent in thickness, is attained as the radius of the concave

surface approaches to equality with the radius of curvature of the

convex surface
; while, lastly, in the case of the dispersive meniscus a

loss of power ensues on an increase of thickness, since both numerator

and denominator of the function of t become negative.

We have now arrived at the formula for the equivalent principal

focal length E of any lens whatsoever, and also have located the

geometric centre C and the two principal points p-^ and
p^,

from the

latter of which the equivalent principal focal length is- measured.
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We have next to inquire whether, in cases wherein the entering inquiry, is the

rays are more or less divergent or convergent that is, when the

entering rays are either diverging from a near object on the left of

the lens or converging towards a real image to the right of the lens

the thick lens still maintains the same principal focal length, or departs

from it. Fig. 14a or 14& illustrates such a case. It is of the highest

practical importance to know whether the law of conjugate foci for

a thin lens - = ^ or = = - + - still holds good. In short, does
v F u F u v

- =
:p,

-
pr

; that is, is - -^= + ^
- a constant. We shall

be in a better position to answer this question when we have dealt with

the problem by means of a device or theorem which is more general
in its applications than any method which has been hitherto devised.

This we will deal with in the next section.



SECTION II

Power of a single
surface is a highly
inconstant entity.

The power of a thin

lens is a constant

quantity.

Thick lenses com-

pounded of infinitely
thin elements and a

parallel plane plate.

THE THEOREM OF ELEMENTS

WE have seen in the last section that the Formula II. relating to

refraction of an axial pencil of rays at a single surface is by no means

such a simple formula as the Formula III., which applies to the

corresponding case of refraction of an axial pencil of rays by a lens

bounded by two surfaces. In the case of the single surface, Fig. 4 a,

for instance, if the rays are strongly divergent, then a large amount

of positive refraction takes place ;
but supposing the entering rays

are converging to the centre of curvature C, then no refraction takes

place ;
while if the rays are converging still more to any point

between C and A, then there ensues refraction of a negative character.

Thus, from the practical point of view of refractive effect, we may
disregard the so-called

"
optical invariant

"
of the late Professor Abbe

as applied to a single refracting surface. Clearly a single surface is a

somewhat puzzling and inconstant entity, which varies in its effects

enormously according to circumstances. But not so the lens bounded

by two refracting surfaces
;

for whatever conditions of divergence or

convergence may characterise the entering pencil of rays, the lens

always adds or subtracts a constant refractive effect of its own which

i\
is expressed by (ft !)[- + -) or =.

Let us see, then, whether we cannot express any thick lens in

terms of two complete lenses. Let Figs. 15 a, b, c, and d be four

various thick lenses. Each one of these may be considered to be

built up of plano-convex, plano-concave, convexo-plane, or concavo-

plane lenses of infinite thinness, each lens consisting of any two of

the above and containing between them a piece of plane parallel glass

of a thickness equal to the axial thickness of the whole lens. For

instance, the collective meniscus, Fig. 15a, may be considered to be

built up of a convexo-plane infinitely thin lens e
l
at the left-hand

20
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vertex of the whole lens, and a plano-concave lens <?

2
of infinite thin-

ness at the right-hand vertex, the two enclosing between them a

plate of parallel plane glass of thickness = t. These two infinitely

thin lenses we will call elements. They are indicated in black in Elements defined

Figs. 15. In Fig. 156 we have a convexo-plane element at ev and and exPlamed -

a plano-convex element at e
2

. In Fig. 15c we have a concavo-plane
element at e^ and a plano-concave element at ey both dispersive,

while in Fig. 15^ we have a concavo-plane lens at e^ and a plano-
convex lens at

2 ,
the latter being negative with respect to the

more powerful first element, and the whole lens a dispersive

meniscus. Now the reciprocal value of the principal focal length Power of an element
/i

|
\ defined.

of any element or the power is (u, 1 )(- + -) ;
but as one surface is

\r s/

always plane, therefore either - or - becomes zero, and the power

then resolves itself into either or . The principal focal

length of e
l being called

I a- I u.- 1 Jl '

l

e., T - - or - - if we call all radii r,*
Ta s ra *

then 7-
=

/i

and for the second element

r
,
r

,
etc.

But before proceeding further, we must ascertain what is the effect

of the plate of plane parallel glass upon the pencils of rays traversing
it in passing from one element to the other.

Fig. 16 represents a parallel plane plate of glass of thickness

Aj . . A
2 ,
and Q x

is a point from which a pencil of rays diverges and

passes perpendicularly through the plate ;
that is, the central or

principal ray Q 1
. . P of the pencil is normal to the plate. Let Q . . A

x
= u

and A
l

. . A
2
= t. After refraction at the first surface the rays diverge

from the point q, such that q . . A
l
=

ftu (//, being the refractive index).

Therefore when striking the second surface they are diverging from

a point q at a distance from A equal to ^u + 1. Then after refraction

from the second surface they diverge again from a new point Q2 ,
such

Effect of the plane
parallel plate.

that Q9 A
2
= fJLU

-. That is, on emerging at A ,
after passage Transference of

radiant point formu-
lated.through the plate, the rays are diverging just as if they had passed

without any refraction through an air space equal to -.

Let Fig. 1 Qb represent a corresponding pencil of rays converging into Case of slightly ob-

the parallel plate. In both cases any small oblique pencil may be regarded
as part of a larger pencil whose central ray P . . Q l

is perpendicular to

the plane surfaces, so that any displacements are along this perpendicular
central ray as before. The entering rays are converging to Qr Let
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Aj . . Q x
be u. These rays, after refraction, converge in lesser degree to

,
such that Aj . . q = /-t(A 1

. . Q
x )

or
JJLU.

Then when striking the second

surface they are obviously converging to a point at a distance to the

right of A
2 equal to /&(A1

. . Q
: )

t or
/JLU t, and after refraction con-

verge more strongly to a point at a distance to the right of A
2 equal to

- = u = A
2

. . Q2
. Here again the rays on emerging at A

2
are

P- P-

converging, just as if they had passed without any refraction through

an air-space equal to .

P-

In Fig. 16 the distance

In Fig. 166 the distance

u--

Displacement of Q Hence by passage through the plate the origin or apex Q
x

of the
a constant function /u 1\
of the thickness of pencil is simply displaced a distance equal to t(- ) along a per-
parallel plate. V

p.
.

pendicular from Q 1
to the plate, and in the same direction as the

light is travelling.

If the point Qx
is anywhere in the interior of the plate, we still

arrive at the same result. Therefore, so far as our present purposes
are concerned, we may consider the elements e

l
and e in Figs. 15 to

be separated by an air-space equal to - instead of glass of thickness t.

Hence if Fig. 17 represents any lens whatsoever (except convexo-

plane and the reverse), then we may consider it, for our present purposes,

to consist of two small infinitely thin convexo-plane and plano-convex

elements e and e separated by an air-space equal to -
;
that is, Fig. 1 8

P-

is the equivalent of Fig. 17. Thus we consider the two elements to

be brought nearer together by an amount equal to t or (

P ^ P
while all conjugate distances, such as that from e

l
to an object Q on the

left, or that from e
2
to its image q on the right, remain exactly as before.

Also the distances from
e^

to the first principal point p l}
and e

z
to the

second principal pointp2 , remain undisturbed, as we will see later. There-

fore the total distance Q . . q between conjugate focal planes is altered by

+ or 1(-
J according to circumstances, as shown on comparing

\ fJi /
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Fig. 1 8 with Fig. 1 7. But so long as all the distances, whether of Conjugate focal dis-

conjugate focal planes or of principal points, measured from e
l
and

2 of^rlaSp^points
respectively, remain exactly as when treating the lens as a solid entity, undisturbed by

we need then have nothing to do with the fact that the distance from

the first principal point p:
to the second element e

2
and the distance

from the second principal point p9
to the first element e

l
are altered by

we can ignore it altogether, for those distances never come

into account in any formulae whatever that are of practical importance.
The cases of convexo-plane, plano-convex, concavo-plane, and piano- Cases of thick lenses

concave lenses, as in Figs. 1 8 a, 6, c, and d, call for special remark.
pTane

g ^ surface

We must bear in mind that, in all such cases, the geometric centre

of the lens is at the vertex or point where the curved surface cuts the

axis, and therefore that point (e1
in 18a, e in 18&, e

i
in 18c, and

<?

2
in 18rf) is an element as well as the first principal point in 18 a,

the second principal point and element in 1.8 b, the first principal point
and element in 18c, and the second principal point and element in

ISd, while the other principal point, whether it be the first or the

second, is always at an apparent distance from the other one (at the

a- 1 t

vertex of curvature) equal to t and -- from the plane surface.
/* /*

For e^..p2
in I8a, pl

..e in 185, e
l ..p2

in 18c, and pv -e^ in 18d, each

/>- 1\
"

t= t(- I,
their distances from the plane surfaces being -. And we

\' ft
/

/i

have already seen that the principal equivalent focal length of all

lenses having one surface plane is in no way altered by thickness,

however great.

Therefore in treating such lenses we may take any focal distances u Focal J distances

or v that may be measured from the central or axial point of the plane J

neasured from
J
er -

tex of plane surface

surface, add + - in the case of collective lenses, and add - in the
I'- P

case of dispersive lenses. Then u or v, as the case may be, will be

referred to the principal point.

Of course the addition of - is algebraical, for if the rays of a

pencil emerging from the plane surface of Fig. 18 are converging,

then v is positive, and -f
- is an extension of that distance

;
but if the

f*

rays of the pencil after emerging from the plane surface are diverging,

then v is negative, and - becomes a deduction from its numerical

value.
^
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Case where collec-

tive and dispersive
lenses are ranged
on a common axis.

An apparent (incon-

sistency explained.

Conventions to be
observed in case of

mixed lenses having
plane surfaces.

But the same rule of adding
- will not quite apply to the
P"

measurements of axial distances between neighbouring lenses of collec-

tive and dispersive types mixed. For instance, the distance between

the two lenses ISa and I8b, which have their plane sides towards one

another, is indicated by the line s
l ;

that is, to the original air-space

en . . e, the distances - and - have to be added at each end.
/* /*

The distance between 18& and 18c is simply e.,
. . ^ as the two lenses

are presenting their curved sides and two elements to one another,

while the distance between 18c and I8d is e^..e. with - and - added
H p.

on at each end. It might here be urged that these latter are two

dispersive lenses, and therefore - and - are negative quantities, so that

they become deductions from the numerical value of the distance e
2

. . e
l

if the latter is positive. Here is a seeming inconsistency. But we

must remember that if we are dealing with the two dispersive lenses

18c and ISd alone, then we treat them as positive entities, in which

case both their thicknesses and any separation between them would

be treated as negative quantities, so that s
3
would be the sum of

-(P.2 -- e
J>

-
( 2

. .

gj),
and -(e^.pj.

But if we are tracing pencils through a series of collective and

dispersive lenses ranged on a common axis, we can then treat all axial

distances between such lenses as positive, provided the principal focal

lengths of all dispersive lenses are considered negative relatively to the

said distances and to the principal focal lengths of the collective lenses.

Therefore in Figs. I8a, b, c, and d, if, as usual, we consider the distances s
l

and s positive, then s, would also be positive besides - and -, while the
f- /"

powers of 18c and I8d would be negative, and the powers of 18a and

18& positive. And this is the most reasonable convention to follow

in the case of a series of mixed lenses. Such matters constantly

demand the exercise of careful discrimination.



SECTION III

THEORY OF EQUIVALENT FOCAL LENGTHS AND PRINCIPAL POINTS

OF LENS COMBINATIONS

IN Section I. we have already worked out formulae for the equivalent

principal focal lengths of thick lenses and for the distances of the

two principal points from the two vertices. We will now prove the Previous formulae to

identity of the formulae obtained from the theory of elements with
6

the above formulae already worked out for single thick lenses, and

then prove that the sum of the reciprocals of the conjugate foci, as Constancy of equiva-

measured from the principal points, is invariably constant and equal tTproved
length to

to the equivalent principal focal length.

Fig. 19 represents two elements, exaggerated in diameter for

clearness, separated by an axial air-space or distance sr Let -- be

1 f\
the reciprocal of the principal focal length of e

,
and j that of c.,, or

/a
the respective powers of the two elements. Let C be the geometric

centre, such that

l ..C:v.Cii/l :/r

It is then plain that any slightly oblique ray passing through C will

impinge upon e
l
and e

2
under exactly similar conditions, and will meet

with exactly equal deviations when refracted through the elements,

and therefore the rays after refraction both ways, Q . . p and p . . q
will be parallel to one another, and if produced backwards will cut

the axis at p1
and pz , which two points are the principal points of the

combination.

Let the distance e
1
to pl

be Pp and
e^

to p2
be P

2
.

We then have

C f -
<!

-^1I/. . 6. i>--
,

/1+/2

and if we are to make P
I positive we have

25
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I i i
=/i+/_j _/!+/-*

P
l C..^ /, sf, f, sj\

and
Distance of first sf
principal point from P

l
= -,

' l
.

first element. ./i
+ /2 "" s

Also we have

and if we are to make P
2 positive we have

and
Distance of second sf

principal point from P
2
=

^
-

^r
--

-. IX?..

second element. /]
+Jz~ g

Now if r be the radius of the curved surface of ev and s that of e
9 ,

then == - and , =^ Also, if e. and e, were the elements of

/! r /a
f

lid thick lens of thickness t, we have by our theorem s = - and
u

/iS.

Substituting these values in Formula IXA. we get

Identity of Formulae p
" "

IV. and IXA. r s t p.(r + a)
-

t(/j.
-

1 ) p.(r + s)
-

t(p.
-

1 )'

M -i
+
/t-i ,, x/-i)

which is identical with Formula IV. arrived at in Section I.

Next we will work out the back focal length e^,

. . q, supposing the

rays entering e
l
to be parallel, in which case q is on the principal

focal plane. The image formed by e
l
in this case is at a distance fl

from e
l
and a negative distance equal to /j s behind e

,
therefore we

have 11/1
Calling 2

. . ^
= B, we have

Formula for back and
focal length for y2(yi

_
,<,)

two separated B = . _ .

elements. /] /2
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Then to get the equivalent principal focal length, or E, we have

T? - Ti j- P - fjhfl
~ s

/
,

s/2
JCi Jo + r

,7 7 1- -7 ? ,

and

AA
Formula for the

equivalent focal

X. length of two
separated ele-

ments.

Putting
; I

for /x
,

-
^j for /2 ,

and - for s, as before, we then

have

rs

E =

- 1 - 1

_

/*(/*
-

1[)

1)}'

which is identical with the Formula VI. for the equivalent focal length
of a solid lens of thickness fj,s

or t which we obtained in Section I.

It will be found that Formula X. is universally true for couples of

elements, provided our former conventions as to lenses are adhered to.

If one of the elements is collective and the other dispersive, the

stronger element should give the character to the lens, while the / for

the weaker element should be entered in the formula as a negative

quantity. For instance, if e^ is the stronger, having f = 9 and

dispersive, while /x
is 10 and collective, then, as in the case of the

lens, we should consider the character of the combination, "by first

intention as it were, to be dispersive, and the separation s, which say
= 2, to be relatively a minus quantity, just as t was in the case of a

dispersive lens
;

so that E becomes, since fl
is negative,

(-10)( + 9)_
-10 + 9 + 2"

Now as we assume the lens, by first intention, to be a dispersive lens,

but with a positive sign, it is clear that E, being minus relatively,

indicates that a real image is formed, and the combination, owing to

the separation, acts as a collective lens, although by first intention it

was dispersive. Thus the separation has reversed the character of the

couple.

If, on the other hand, we insert fl
as a positive quantity in the

Formula X., and /2 as a negative quantity, and therefore s as a positive

quantity, we shall then in the same case get E= +90, which comes
to the same thing, E being + or of the same sign as flt which is

collective, and so indicating a collective resultant lens or combination.

Concrete example of

the use of signs and
of the highly im-

portant influence of

separation on the
character of a pair
of elements or lenses.
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Inquiry. Is the

^constant*
1

This variance between the character of a lens or combination of

elements by first intention and in actual result should be clearly borne

in mind.

Having now got the equivalent principal focal length E of the

combination on the supposition that the entering pencils consist of

parallel rays, we may now profitably return to our inquiry, whether,

supposing the entering pencils to consist of either divergent or con-

vergent rays, the sum of the reciprocals of the conjugate focal distances

Q . . p and >
9 . . q will always be equal to the reciprocal of the equiva-

lent principal focal length, and therefore constant. It is of the highest

importance to know this.

The first thing we want is the formula for the back focal length

e
2

. . q, supposing the rays entering e
l
are not parallel. Let Q . . e

l
= HV

and the conjugate focal distance after refraction through e be vv and

the amended distance from the focus so formed by e
l
to the element e

2

be
2

,
and the conjugate focal distance after refraction through e.

2
be v

z
.

Then v
2

is the back focal distance required, and we have

Back conjugate focal

distance for first

element.

Front conjugate
focal distance for

second element.

and

Then

:- =
V
l fl U

l

f u
-71 *

v =

= v*-S= ,

x -/j

- S = .

u^ -/j

Then, since the rays are converging into e
z ,

w2 becomes a minus

quantity, therefore

l = i_ J_ -l + _ _!izA_
2 /2

~ U
2 /2 Al-Xl-/l)

i -A) M-(g-

Back conjugate focal and
distance for second
element.

2{i - s
(
u
i -A)}

'

/// ?{ /V
= /2(/iMi

~ s
(
lt
i ~/i//

.

Add e
2

. . p2
or P9 to this in order to obtain the distance of the focus q

from the second principal point p.2 ,
and we have

,

2 2

i +/.
-

i -/i)'
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and

29

1 (A
11 V S' V 1 J \' t \v\ 2 // 2 1 1/ 1 1 \1 /!/-'

After multiplying out denominator and cancelling we get

i (fiui
~~ su

i
+ SA +AM

i ~AAXA +A "" s )

P
2
+ ^

2

"
~7iA(AM

i
+ SA +M -

*i)

Then the other conjugate focal distance = Q . . 2\ or w
x
+ 1^

SA wi(A +A ~ s
)
+ SA

Therefore

Reciprocal of back

conjugate focal

length measured
from second princi-

pal point.

therefore

1

/. )

A

A/2 (A

which

/2
-v +AgXA

As
)

/g ~A/2)(A

A/2(%A + wi/2
-v + SA)

-
1 ' =
A/2

or = = constant.

Thus the mutually dependent variables u
l
and t?

2 ,
the front and

back focal distances respectively, have eliminated themselves, and we

find that the sum of the reciprocals of the conjugate focal distances as

measured from their respective principal points pl
and p2

is constantly

equal to . If the reader will apply the same processes to a com-

bination of three separated elements, he will arrive at just the same

result, although the process is much more lengthy. Therefore the

combination of two thin lenses or elements, however widely separated

they may be, behaves like a simple thin lens of principal focal length

E, such that = -

if we put U for
?^ + P

x
and V for P

2
-f vy

It only differs from a simple thin lens in that the two principal

points are widely separated instead of both merging in the lens centre.

Fig. 19 presents the case of two dispersive elements.

It is commonly remarked that a thing cannot be in two places at

once, but here we have an optical combination of equivalent focal

Reciprocal of front

conjugate focal

length measured
from first principal

point.

Sum of above two

reciprocals = .
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A compound lens

exists practically in

two positions at
once.

Above curious fea-

ture illustrated.

A real pupil at the

geometric centre
implies two equal
virtual pupils at the
two principal planes.

The principal planes
are planes of unit

magnification.

length E (that is, it forms an image of infinitely distant objects on

exactly the same scale as would be formed by a simple thin lens of

principal focal length E) ;
but from the point of view of Q, or the left

hand, this equivalent simple lens is supposed to be placed at p ,
while

from the point of view of q, or the right hand, it is supposed to be

placed at pf It thus presents a dual aspect.

Fig. 196 illustrates this curious feature. It represents the

essentials of Fig. 19, p1
and p^ being the first and second principal

points, and Q . . Qx
and q . . ql

the two conjugate focal planes in which lie

either an object or its image. The planes drawn through the two

principal points perpendicular to the optic axis Q . . q are generally
known as the principal planes, and can be shown to have the curious

property that if any direct or oblique pencils of rays, such as Q . . pl

and Q l
. . pv strike centrally upon the first principal plane pl

at certain

points at certain distances from the optic axis, then the same rays will

start from the second principal plane at similar points at the same

distances from the axis (and on the same side of it). For instance,

the principal ray Q . . pv together with two outer rays;Q . . c
x
and Q . . br

constitute the axial pencil striking the first principal plane at c^ pv
and bv Also let the principal ray Qx

. . pv together with Q t
. .

c^
and

Q
x

. .

&j,
constitute an oblique pencil also striking the first principal plane

at cr pv and br Draw straight lines from these points parallel to the

optic axis to intersect the second principal plane at c
z , p9 ,

and &
2 ;

then

these become the starting-points for the rays of the corresponding

conjugate pencils p . . q and p . . q in such manner that the principal

emergent ray p2
. . ql

is parallel to the principal entering ray Q
l

. .pr
The proof of this theorem is really a simple one, for we have already

seen that if we take two infinitely thin lenses L
x
and L of focal lengths

/j
and /2 separated by a distance s, then the first principal point is

the image of the geometrie centre C as formed by L
X ,
and the second

principal point is the image of the geometric centre as formed by L
2

.

But the geometric centre is symmetrically disposed to the two lenses,

and if /a
= 3/2 , then the geometric centre is three times as far from L

X

as from L9 . Therefore the image of C formed by L
x

is magnified or

diminished in exactly the same degree as the image of C formed by L .

Consequently, if we imagine a circular aperture or pupil to be placed
at C, then the image of it formed in the first principal plane by L^
will be exactly equal to the other image of it formed in the second

principal plane by L
2

. The two principal planes are in this way
shown to be planes of unit magnification relatively to one another.

Therefore if the bounding rays of any pencil whatever strike the first
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principal plane at distances d and df
from the axis, they will start

from the second principal plane also at points distant by d and df
from

the axis, although when actually passing through the plane of the

geometric centre the distances d and d' may be more or less reduced or

increased. Moreover, these distances d and d' invariably keep to the

same side of the axis
;

for since the images of the imaginary aperture

placed at the geometric centre are formed by L
x
and L

2
in the two

principal planes under similar conditions, therefore if the image of our

pupil at C formed by L
t
at pl

is the same way up as the original, then The two principal

the other image of C formed by L
2
at p_2

is also the same way up, or PuPlls the same way

if one image at p is reversed, then so is the other image at p2
.

It is interesting to note how the pencils of rays are set back in

their course, as it were, by the distance pl p,2
between the focal

centres, which therefore constitutes in this case an overlapping of the

conjugate focal distances, and corresponding shortening of the distance

Q . . q. This theorem, that any two separated lenses on a common axis

act as a simple thin lens of equivalent principal focal length E, is

highly significant, and the important corollary follows from it, that all All

optical systems, however complex, exhibit two final principal points,

and that the sum of the reciprocals of the conjugate focal distances

measured from those points is constant.

For, supposing we have three thin lenses
e^

e
2 , e^,

of principal focal Proof of above

lengths f^fyfy arranged on a common axis, as in Fig. 20, Plate V.
theorem-

Then the couple e
l
and e

2
have their geometric centre at c

,
and their

two principal points at pl
and ^?9 ,

and have an equivalent principal
focal length = E. Then, from the point of view of e

,
the combination

e
l
+ e

2
is tantamount to a simple lens of principal focal length = E

placed at p^. It therefore follows that we have a new geometric centre

C such that" (p2
. . C) : (C . . e

s)
: : E :/3. Then the point C refracted by the

equivalent lens at pz
will be apparently transferred to Pr pl

. . P
l being

in this case conjugate to p2
. . C, and C is also transferred to P

2 by the

refraction of e.
A ,
and we have two new principal points P

X
and P

2
for

the whole combination of three lenses, which latter possesses a new

equivalent principal focal length which we may call E
g ,
which is also a

constant with respect to the three lenses (so long as the separations are

constant). It will be seen that

lens systems
tw

i

<

nf
nal prin "

and

!

P
2

. . e
3

~
C. . e

3
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Therefore, from the left hand, or from the point of view of rays entering
the combination, P

a
is the first principal point ;

while from the right

hand, or from the point of view of rays leaving the combination, P
2

is

the second principal point.

Principal points of a We now require formulae giving the distances e
l

. . P
I
and P

2
. . ey

three-lens combina- or p ail(j p respectively.
tion investigated.

Let e, . ,ea
=

s., and ea . .ea
= sa .

1 i 1 O Z

First of all, from Formula IXA. we have by analogy

SE

^^-E+yj-S'
in which

2 a
.. 22

Jl ' /2
~ S

l

and

fl+fZ
" S

l

Therefore after substituting these values we get

/f I -f {'

- 1
+ JZ

- V/l + /2
~ 5

1

Pi ' A
1
~

f

//. */ 3
1+/2~ S

1
x Jl^JZ

therefore

_
^' l

(A+/S -

But we must add the distance ^..^ to this in order to obtain the

required distance e
l

. . P, : and

(see Formula IXA.); and on adding this to the above formula for pl
. . P

X

we get

W/X +/8
-

i)
+ *iftfJ9 i/i{/i/ +/8(/l +/2

- S
l)
- S2(/l +/2

- S
l)
- Sl/2

},

(A +/2
-

i){/l/
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which reduces down to

33

MA - s
i)
+ (A - S

2)(A
XlA.

Next we require a formula for the distance P
2

. . ey measured from

the second principal point P
2
of the triple combination to the element e .

From Formula IXfi. we have by analogy

S
,
in which S, as above, = s, + - ip

and
S
l/2

/
/. ~f" / o ~~

I Sn ~f" / / /

*

!+/*-*!
3 V 2 A+A-Sj/

which reduces down to

+/lg2
~ g

l
S
2) XlB.

It is plainly evident that the Formula Xle. is the symmetrical com-

plement of Formula XlA. For, if we trace the light backwards through
the combination, then /3

becomes fv s.
2
becomes sr while / remains fz ,

and thus the one formula may be turned into the other. Next, we

require a formula for the equivalent principal focal length E3
of such

a combination of three lenses or elements.

By analogy from Formula X. we derive

EQ
=

in which, as in last two cases,

.. .e9 ,
or s9 + -, -*r

and

E-~

A/2/3

therefore

A/2

A

Formula locating
first principal point
for three elements.

Formula locating
second principal
point for three ele-

ments.
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Formula for
equivalent focal

length for three

elements.

which reduces down to

/1/2/3
~~2 \72

- s
i)

XII.

We may now pass on to the consideration of a combination of

four separated lenses or elements. Let Fig. 21 represent four elements

er e
z ,

e
a ,

and e
4 , separated by the three distances s^ s

2 ,
and s

3
. Our

line of procedure is to consider this as a combination of two couples,

viz. e
l
and

2
, having their two principal points at pl

and p^ ;
and e

3
and

4 , having their principal points at ps
and

p^.
Then the distance

p2
. .p3

or S is obviously the real separation between these two couples,

whose respective equivalent principal focal lengths we will denote by
E and E

2
. Then the separation between them is obviously equal to

p2
. . e

2
+ s.2 + e

3
. .p3

= S, so that generally the equivalent principal

focal length E4
of the whole combination

E E*V3

which

Formula for

equivalent focal

length for four

elements.
It is obvious that the two couples have between them a new

centre of symmetry, C, or the optical centre of the whole combination,

so located that it divides the distance p2
. ,p3

between the second and

third principal points into two parts such that p2
. . C : C . .ps

: : E
I

: E
2

.

Then the point C, refracted by EI}
is transferred to P

I
such that pl

. . l*
l

is conjugate to p2
. . C. In the same way the point C, refracted by E

9 ,

is transferred to P
2
such that p4

. . P
2

is conjugate to C . . ps
. We now

want formulse for the distances of the two principal points P
X
and P

2

from the outside elements e
l
and e

4
. In working out the principal

points for two collective elements we found that if the first principal

point fell to the right hand of e
l
then the distance e

l
. .pl

was positive,

and if it fell to the left hand, it was negative ;
while if the second

principal point fell to the left of e, then the distance p2
. , e

2
was positive,
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and if it fell to the right hand it was negative. Bearing this in

mind, it will be seen that in this case the required distance e
l

. . P
x

=
(e1 ..pl)-\-(p l

..'P
l)> the latter being negative in Fig. 21, and also

that
e^

. . P
2
= (>4

. . e
4) + (p4

. . P
2),

the latter also being negative in

Fig. 21. So we have e
l

. . P
I

=
(el

. . pj + (p 1
-- Pj) (algebraically)

A+/2-i E
1
+ E

2
-S

in which S or p,2
. . e

s
= (p2

. .

2 )
+ s

2
+ ( 8

. . ^3),
which

-F -P 2 / -f

/1
+ /2

~ S
l /3 + /4

~ S
3

On substituting this value of S in the above, we get

P
1 A +/-! A/2

"

,

/3/

/l+/2- S
l /3+/4

which reduces down to

-.? or P_ _ _XIVA
(/i +/2

~ si)(/3/4 -/3ss) + (fa + /4
- S

3)(/2(A
- s

i)
- S

2(/1 +/2
~ s

i)) first principal point.

The distance of the second principal point P
9
from

e^
is obviously

4
. . p4 +PI . - P

2
, analogously to the last case, and is expressed by

/3+/4 - S3
E

1
+ E2

-S'

in which S\ as before, is the distance p2
. . p3 ,

and E
2

is

/8 + /4
- S

3

Therefore

f
gl/l

,

,

Vl +/2
-

^l
2

"T io T
33

S3/3 1/3/4f~l ! /

~r 9 ~*~ f\tA-1- f ^ T -L

e, . . P
2
or P

2
= , , -xx -T / / ^4 i T4,T O TT T T for O T

f Q ' / A "Q /1/*> / Q I A ^1/1 WR-f Iv o / 4 o * I*' _ i */ ,w 4 I*/ 1 in i o*/

^i
+A - s

i

which reduces down to

4 ..P2
orP

2

////.,/ \/ / / \-flf f \\
Four elements. For-

/4l\/3s3 + /3S2
~
Va/V/i +/2

~ g
i^
+ /2(/3si + /1S3

~ S
1
S
3^I YTV-o mula for position of

(A +/2
- a/3/4 '/A) + (/3 +/4

-
%){/2(/!

-
l)
- %(A +/2

~
l)
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Symmetry of For-

mulae XIVA. and
XIVB.

Formulae relating to

more than four ele-

ments undesirably
complex.

Case of five elements.

On comparing Formulae XIVA. and XIVB. it will again be noticed

that they are symmetrical to one another : fl
in the first corresponds to

/4
in the second, /2 corresponds to /3 , /3

to /2 ,
and /4

to
/j,

while s
l

corresponds to s
3
and s

2
to sf Hence one formula may be converted

into the other by supposing the light to traverse the system in the

reverse direction.

We have now got general formulae for the equivalent focal lengths,

and the positions of the two principal points for any combinations of

two to four separated elements or thin lenses, stated in terms of the

principal focal lengths of the several elements or lenses concerned and

the separations between them
;
and we have found these formulae relat-

ing to a four-lens system to be sufficiently complex to deter us from

proceeding any further on the same lines
;
that is, were we to work

out formulae for a five-lens, six-lens, and eight-lens systems, all likewise

expressed in terms of the principal focal lengths of the several elements

or lenses involved and their respective separations, we should arrive at

undesirably bulky formulae. In such cases the results are perhaps
best arrived at by the building up or cumulative process, yielding-

formulae in which equivalent principal focal lengths of two or four lenses

together constitute the terms. In this way we may deal with the case

of five lenses as follows :

Let e , e^, ea , e,, and e,. Fig. 22, be the five elements involved. Let E,
1' 2' 3 4' 5' _ 4

be the equivalent principal focal length of the first four elements, P
T
be

the distance from first element
e^

to first principal point P
x
of the same,

and P
2
be the distance from second principal point P, to the fourth

element e
4

. Then we may treat the whole as a combination of a simple

lens of E.F.L. = E
4 placed at P

2
with another simple lens of E.F.L.

=/5 placed at <?

5 ,
the distance between them being P

2
. . e.

g
or P

2 + s
4

.

Therefore the equivalent principal focal length of the whole combina-

tion will be (see Formula X.)

Equivalent focal

length for five

elements.

Five elements. Posi-

tion of first principal

point.

E- = XV.

The distance of the new first principal point P a

'
of the five-lens combina-

tion from
j

will then be (P x
. . P/) + (P t

. . e^ or (P x
. . P/) + P

l

= say P/,
for which the formula will be (see IXA.)

XVA.

and the formula for the distance of the second new principal point P./

from #
5
will be (see IXB.)
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=
, (s4

+ P,)/5 VAr Five elements. Posi-
A V B. tion of second prin-

E
4
+ /5 - (S4 + P

2 ) cipal point.

Formulae for Six Thin Lenses or Elements

We may treat this as a combination of four lenses of E.F.L. = E
4

with another combination of two lenses of E.F.L. = E
2

. (See Fig. 23.)

Then if P
:

= first principal point of the four-lens combination, and P
a

its distance e
l

. . Pj from e
lt

and P = the second principal point of the four-lens combination,

and P.,
= distance

4
. . P

2
from e

4 ,

P
3
= the first principal point of the two-lens combination,

and P = distance P . . e., then we have
it O U

P
4
= the second principal point of the two-lens combination,

and P, its distance from e..
4 o

n T? Equivalent focal

E
6
=- 4 2 _-=-. XVI. length for six
E

4 + E
2
-

(s4
+ P

2
+ P

3) elements.

Then if P^ is the new first principal point and P
2

'
the second one for

the whole combination, then putting P^ for the distance e
l

. . P ', and

P/ for P
2

;
. . e

fi
, we have

(s + R, + P )E Six elements. Posi-

P/ =-* * 2
*! *- + P, XVIA. tion of first principal

E
4
+ E

8 -(*4
+ P

8
+ P8) point.

(s + P -f P )E Six elements. Posi-

and P ' = - - + P4. XVlB. tion of second prin-
E

4
+ E

2
-

(s4
+ P

2
+ P

3) cipal point.

Another way is to treat a six-lens combination as a combination of

three couples of E.F.L.s respectively = Ep E
2 ,

and E
3 ,

then apply
Formula XlA., XIs., and XII.

Formulae for Eight Thin Lenses or Elements

This consists of two four-lens combinations, whose respective E.F.L.S

we may call E/ and E/. (See Fig. 24.)

Let P
X
be the first principal point of first four-lens combination, and

P
X

its distance from
e^

Let P
2
be the second principal point of first four-lens combination, and

P its distance from e
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Let P
3
be the first principal point of second four-lens combination, and

P. its distance from e,.
o o

Let P
4
be the second principal point of the second four-lens combina-

tion, and P. its distance from ea .

i

Let PI
= the first principal point of the eight-lens combination, and

Pj'
= the distance e

1
. . P^.

Let P ' = the second principal point of the eight-lens combination, and

P
2

' = the distance P/ . . e
s

.

Equivalent focal

length for eight Then
elements.

Eight elements.
Position of first prin-

cipal point.

P' =
'

+ p

Eight elements.
Position of second

principal point.

and 34 -

XVII.

XVIlA.

XVIlB.

Various methods of

treatment.

Cemented
etc.

While combinations of eight separate lenses may seldom occur, yet

combinations of four thick lenses are frequently employed, and we have

seen that such cases may be treated as cases of eight elements, the

elements .appertaining to each solid lens being considered to be

t

lenses, separated by a distance s equal to -
;
while if any lenses are cemented

together or in contact, then, in the above formulae, the separation s
,

s
4 ,
or s

6 (or whichever it may be, in its natural order) should be entered

as equal to 0, while the principal focal lengths of the elements in

contact may be entered as usual, even when of equal refractive

indices, iii which case they exactly neutralise one another and may be

treated as non-existent. Or if of different refractive indices and in

contact or cemented, then, as one is necessarily a collective element and

the other a dispersive element, the difference of their powers may be

taken as the power of one resultant element, and thus the calculations,

which are inevitably tedious in complicated cases, be considerably

simplified. Or the E.F.L. and principal points of each thick lens

may be worked out separately, resulting in a combination of four

equivalent lenses, whose effective separations of course depend upon
the relative positions of their principal points ;

then any of the above

formulae suitable to the case may be employed.

Having once obtained the principal equivalent focal length of any
one more or less complicated combination of lenses, and the position of

the two principal points (sometimes called nodal points) with reference
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to the first element or first vertex of the combination, and the last

element or last vertex of the combination respectively, then, as all

conjugate focal lengths are to be measured from those principal points,

the positions of all images or original plane objects and their images
can always be correctly assigned with reference to the first and last

vertices of the combination, if so desired, provided that the optical

corrections of the system are at least approximately well carried out.

For it must be borne in mind that the above lines of reasoning and

the consequent formulas are based upon the theorems of Gauss, which

are abstractions in the sense that they would be of no practical value

whatever if applied to lens combinations thrown haphazard together in

such manner that no approach to flat, distinct, and rectilinear images
were made at all. The more perfect the images formed by complex lens

systems, so much the nearer to absolute accuracy become the deduc-

tions from the Gauss theory as embodied in the formulae which we
have arrived at in this section.

A few illustrative examples of the application of the formulae to Examples,

known combinations may now be given.

Let a sphere of glass of refractive index = 1/5 and of radius r be

treated by the method of elements. Then

Good optical correc-

tions assumed.

The above theorems

acknowledge no op-
tical aberrations.

Case of refracting
sphere.

and

and
/i=/2

=2r

/ 9r A.I At rr

and the E.F.L. by Formula X.

) ^ 3 3

'4r~12r-4r~ 8r~2 ' E.F.L. of sphere.

while either the first or second positions of principal points are given

by Formula IXA. or IXs., so that

4

P, = Po = -
2r+2r- -r -r

o o

Centre and principal

points coincide.

Thus if the lens is a solid sphere, then the distances of the two
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principal points are both + and coincide with the centre of the

sphere, but if the combination is of two elements separated by an air-

space equal to -, then the two principal points would overlap by a dis-

P

tance equal to t^ = -; but the performance of the spherical solid

/x
3

lens and its equivalent combination of elements are exactly identical

from the exterior point of view, so far as the E.F.L. and conjugate
focal distances and relative scale of images are concerned.

Huygenian Eye-pieces

The usual and older form of the Huygeniau eye-piece (Fig. 25,

Plate VI.) consisted of two lenses of principal focal lengths 3 and 1,

placed at a distance apart equal to half the sum of their focal lengths,

that being the necessary condition for the variously coloured images
Two cases of Huy- being of equal size. In many cases, however, the ratio of 2 to 1 for

geman eye-pieces. ^Q principal focal lengths is adopted, the same rule for separation of

course prevailing. Treating the case generally we have E.F.L., or

ff _ .'1-'2 - J_\J_2 = O (
ft-fl \

f .f h */2 /I +/2 Vl+/2''
-'i

"
t

"-'2 2 2

--M -

/ +f
/I + /2

and

so that the power of the combination is the mean of the powers of the

two lenses. For instance

if /j
= 3 and/2

=
1> we et E.F.L. =

1|, and = =
|(J + 1)

=
|,

and if f^
= 2 and/2

=
1, we get E.F.L. = 1|, and ^

= |(| + 1)
=

f .

The position of the first principal point p^ is given by

f -fi
+

-'z /-A
+ ^2

Principal points of - 2 /ju_ 2
/

Huygenian eye- "i
=

/ /
= + / p and r

2 7~T~f
~ + Jy

pieces. f + f. f + f - -^

Thus Figs. 25 and 26 represent the essential features of any such

combination having s =' l 2 -

2t
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It is clear that since, as in all previous cases, the distance from the

first vertex to the principal focal plane /= E P
1

,
and P

X
is in this

case the larger, therefore E P is a minus quantity and indicates that

the image formed by the eye-piece at / of distant objects on the right

is a virtual one. On the other hand, E P
2

is a positive quantity, as

P is the lesser, and indicates that a real image is formed at F
2
of a

distant object on the left. It is well known that a real image of the

relatively distant object glass to the left is formed at F
2

. Thus either

of the distances pl
. . F

I
or p2

. . F
2 represents the principal equivalent

focal length of the combination.

It is clear also that when used with a telescope whose objective is

to the left hand, the eye-piece must be so placed that the primary

image formed by the objective must be made to fall upon the first

principal focal plane /, in order that the rays emerging from the eye-

piece may be parallel and fit for normal vision.

For it is clear that the rays converging to the image in the first

principal focal plane /will, after refraction by the first lens, be con-

verged to a real image in F
I

. . F
I(

in which plane also is the second

principal point p9 ,
where it is also in the principal focal plane of the

second lens. This coincidence of the position of the real image
formed between the lenses with the position of the second principal

point is characteristic of combinations wherein s = 1

Q
2
,

but it is a

matter concerning the internal economy of the combination as it

were
;

and we must remember that the formulae we have worked

out for equivalent focal lengths and positions of the principal points,

in themselves deal with resultants and take no explicit notice of

what goes on between the lenses, but only deal with the positions

of objects or images from or to which the rays are proceeding
before they enter the system and after they emerge from it. Thus

in Fig. 26, with regard to the rays entering the combination, a simple
thin lens (having a principal focal length equal to the E.F.L. of the

combination) may be imagined to be placed at the first principal point

pv so that the entering rays converging to a real image at / and

f..p1
are about equal to the E.F.L. of the system; while, after

emergence from the eye -
piece, the rays of pencils are either

parallel, as if coming from a distant virtual image on the left hand,

slightly divergent from a nearer virtual image, or else slightly con-

vergent to a real image on the right hand
;
but in all cases the focal

distance of such image, which is conjugate to the distance /. ,pr is

Image in first prin

cipal focal plane is

a virtual one.

Image formed in

second principal
focal plane is a real

one.

Condition of use with
a telescope.

Formulae of this

section deal with re-

sultant effects only.

An elementary lens

equivalent to the

eye-piece.
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Another aspect of

the question.

Principal rays do
not pass through
geometric centre.

The exit pupil of an
eye-piece.

Definition of pupil;
in the case of an

image of a real stop.

The entrance pupil.

Case where stop and

pupil are one.

Pupil not necessarily

placed at geometric
centre of a combina-
tion.

measured from the second principal point p^. Therefore, supposing I

is a particular point in the first image at /, and we join I by a

straight line I . ,pl
to the first principal point p ,

then if we draw

another straight line through p2 parallel to I .

.p^,
it will cut the plane

of the second conjugate image at the point where the image of the

point I is formed therein (assuming distortion to be eliminated).

While we are dwelling on the case of the Huygenian eye-piece,

Fig. .26, we may, with much advantage, discuss an aspect of this

question of equivalent focal lengths of lens combination which may
well appear puzzling to those studying the question for the first time.

In our treatment of thick lenses and combinations of two thin

lenses or elements we have assumed the centre or principal rays of

oblique pencils of rays to pass through the geometric centre of the said

lens or pair of elements, but in Figs. 2 5 and 2 6 this does not take place

at all, and, in fact, the principal rays of oblique pencils are shown to

cross the optic axis, not at the geometric centre C, but at or near F
2 ,

the second principal focal plane. Now it is the size of the distant

object glass to the left that defines the sizes of the pencils of light

entering the eye-piece, and we have seen that an image of the object

glass is formed very near to F
?J through which image pass all the more

'or less oblique pencils of light emerging from the eye-piece. This

image is the exit pupil of the eye-piece, and its centre or the point on

the axis where it occurs is the exit pupil point of the eye-piece.

The pupil point or points of an optical combination may then be

defined as the point or points where the principal rays traversing the

combination, or their projections, cross the axis. In this case the pupil

point is where an image of the object glass would be formed by L
1%

If the object glass on the left is brought nearer to the eye-piece, then

the pupil point will, of course, move towards the right. The aperture

of the object glass may then be regarded as the entrance pupil of the

eye-piece, the pupil being an image of it formed by L
I}
and the exit

pupil is an image of that image formed by L
2 .

But cases of other optical combinations may be imagined, such as

photographic lenses, wherein the stop or diaphragm may be somewhere

in the middle of the combination, and be an actual stop and not merely
an image of another stop. In some cases the diaphragm or stop

forming the pupil may be placed exactly at the geometric centre of

the combination, as for simplicity has been assumed in working out

the formuke in this section, but in very many cases it is not so placed.

In fact, the position of the pupil point of any combination is totally

independent of the position of the geometric centre, and therefore of
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the two principal points. But it might be thought that if the pupil

point is widely removed from the geometric centre, as is the case in

the Huygenian eye -piece, then the equivalent focal length of the

combination might be quite different, and that our formula for the

same would no longer hold good. This matter is certainly worth

inquiring into. In the first place, the theorem of homogeneous pencils

as explained on page 11, may be applied here. For although we are

considering the oblique pencils traversing the Huygenian eye-piece as

avoiding the geometric centre (and therefore the principal points) of

the combination, yet if we imagine such pencils to be homogeneous, but

very much enlarged in angular aperture, then we arrive at a state of

things in which, although the principal or central rays of all such

pencils still avoid the geometric centre, yet there is sure to be some

one ray in each pencil which does actually pass through the geometric
centre and the two principal points, and since such centre-traversing

rays are proceeding to or from the same image points as the principal

rays of the same pencils (ex hypothesi\ we therefore clearly see that

the relative sizes and positions of the conjugate images should not be

disturbed by the fact that the real pupil point in an optical system
does not coincide with the geometric centre, or that the apparent pupil

points do not coincide with the principal points, if we assume that the

final image approximates to perfection in all respects.

Assuming that the theorem of the homogeneous pencil holds good
we may prove the case algebraically thus :

Let e
1
and ey Fig. 27, be two thin lenses or elements, and let P

be the position of the stop where the principal rays of oblique pencils

are constrained to cross the optic axis Q . . q, and let P be placed any-
where not necessarily coincident with the geometric centre, which may be

at C for instance. Let Q x
. . b

l
. . P . . . . ql

be one of the oblique principal

rays proceeding from an infinitely distant point Q t
on the left hand to

the image point of it at q1
in the principal focal plane q . . qv Before

entering e
l
this principal ray is proceeding to p ,

the first pupil point,

which is the apparent position of P as refracted by ev and on

emerging from e
2
it proceeds apparently from p , the second pupil point,

which is the apparent position of P as refracted by 2
. Let the separa-

tion
x

. .
2
= S, and let e

1 ..p1
= e

1
. . P = P . . e

z
= S - D

a

= C
2 ,

and p2
. . e

z
= D

9 ;
so that we have C

1
and D

I conjugates as well as C-
2

and D9.

Then we have

The geometric centre
traversed by one ray
of each oblique
pencil.

Proof that the E.F.L.

is independent of

position of the pupil.

A
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and
c = VJi_

and

Dg =
/.(S-D,)

^

Let angle Q x
. . pl

. . Q = -v/rp angle &
2

. . P . .

2
=

^r2 ,
and angle

?i ^9 ? = ^3 '
^nen

C,
tan ^2

= tan ^ =r*

and

C9
tan ^3

= tan pa ^=r;
2

therefore

and

tan

Now the back focal distance e
g

. .
<?

or B (from Formula IXc.)

therefore in order to get the distance pz
. . q we must add D

g
and B

together, when we have

which, after multiplying out and cancelling, reduces to

Now, it is evident that if we draw a straight line from q1 parallel to

the incident principal ray Q x
. . p ,

and therefore making the same angle

O/TJ
with the axis, it will cut the axis at the point K, where a simple

thin lens of equivalent focal length E of the combination would have

to be placed in order to project on q . . ql
an image of identical size, and

therefore the distance K . . q will be the equivalent focal length of the

combination
;
but obviously
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tan i^o v tan \L*

Thus the question of the position of the pupil point as measured by
D has eliminated itself, and the equivalent focal length is shown to

be a function of the principal focal lengths of the lenses and their

separations, and quite independent of the position of the pupil point

within or without the system.

There is still another method of working out the equivalent focal Another method of

lengths of any combinations, which treats all images by projection
'

from the several lens centres or the points on the axis where the

elements occur, by which the back focal length is arrived at. The

back focal length is then multiplied by
-

j-
1
,
wherein n is the number

Kill u/-,

of elements, tyn+i tne angle made with the optic axis by a straight line

joining the last lens centre or element to the particular image point

qv and ^ being the angle made with the optic axis by a ray from the

infinitely distant object point Q x striking the first element or lens

centre. It is thus based upon the theorem of central projection, and

leads directly to precisely the same formulae for equivalent focal lengths

and indirectly to the same formulae for principal points.

The Ramsden Eye-piece

This well-known form of eye-piece is supposed to consist of two

lenses of equal focal length separated by the focal length of either.

Under these conditions it is clear that the geometric centre is half way
between them, and therefore the first principal point coincides with the

second lens and first principal focal plane, while the second principal

point coincides with the first lens and the second principal focal plane.
In practice, however, the two lenses are fixed rather closer together
than this, even at the sacrifice of perfect oblique achromatism.

Three-Lens Huygenian Eye-piece

A few more concrete examples may now be examined. For

instance, Fig. 28 represents a form of three-lens Huygenian eye-piece
which is often used by Continental opticians.

A = 6-2 /s
= 5-7 /3

= 2'2

s = 2'6 S=1'2
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From these figures Formula XII. gives E
3
= + 2'6, Formula X!A.

gives P
1
= + 5*04, and Formula XlB. gives P

2
= +T92. Thus Pv

the first principal point, is a long way back, even behind the last lens
;

and if pencils of parallel rays enter the lens from the left, then

a real image is formed in the principal focal plane F F
2 ;

and if

pencils of parallel rays enter from the right hand, then a virtual image
is formed in the other principal focal plane F

1
-F

1
from the point of

view of an observer to the left hand. Therefore, if an object glass

away to the left forms a real image at F
I

. . F
I?

in such a manner that

it would be actually formed at F
x

. . F were L^ not there, then the

pencils emerging from L
3
will consist of parallel rays in proper con-

dition to be received by a normal eye with its pupil placed in or near

F . . F
,
near which an image of the distant object glass will be formed.

In this case a real image will be formed between L
2
and L

3
in the

plane/../.

The Three-Lens Erecting Eye-piece

This is an old and discarded device which may be compared to a

Huygenian eye-piece with a supplementary collective lens placed a

long way in front of it, whose office it is to throw into the Huygenian

eye-piece an inverted image of the primary telescopic image. Although
this combination can be made into an achromatic eye-piece, yet the

impossibility of obtaining a well-corrected large field of view has led to

its disuse. Such a three-lens eye-piece may also be regarded as practic-

ally a four-lens eye-piece in which the power of the second lens has

become zero.

The Four-Lens Erecting Eye-piece

Let us now turn our attention to the well-known four-lens or

erecting eye-piece. This is a construction subject to much variety

consistently with good performance, but Fig. 29 may be taken as a

fair sample of the construction. Here

/,= ! /2
=1'25 /,= 1'25 /4

=-80

s1= l-3 s
2
= 4'0 83

= 1-2

Here from Formula XIII. we get E, = '31, from Formula XIVA.04
we get P

1
= '605, and from Formula XIVB. we get P

2
= '635.

We thus find that the E.F.L. of such a combination is negative,

while the negative values for P
X
and P

2
indicate that the two principal

points are both outside the system, as shown.
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One of the most striking points about the four-lens eye-piece is its

clumsiness. In the present case it is seen that the length over all the

lenses is about thirteen times the E.F.L., and it is almost impossible to

compress such an eye-piece into less than seven times the E.F.L. with-

out sacrificing flatness of field and other good qualities.

If pencils of parallel rays enter from the left, then a real image Positions of the two

(upside down) is first formed at F/ . . F/ at a distance /x
behind Lp and

JjJJgJ on
f **.

then another real and upright image is formed at F
2

'
. . F

2',
the second and with distant ob-

principal focal plane of the system, and at a distance P = E
4

to the ject on the right

left of the second principal point P
2

. If, on the other hand, we

suppose pencils of parallel rays to enter the system from the right,

then a real image (upside down) is formed at F
2

. . F
2
at a distance =/4

to left of L
4 ,
and another, upright, image is formed in Y

l
. . F

I(
the first

principal focal plane, situated at a distance = E
4

to the right of the

first principal point Pr Conversely, if an object glass to the left Use with a telescope,

forms an upside-down real image at F
X

. . F
I?
then after passage through

the first three lenses an erect real image is formed at F . . F in the

principal focus of L
4 ,

and the rays emerge from L
4 parallel and in

condition to be received by a normal eye with its pupil placed some-

where near F
2

'
. . F

2

'

(where an image of the distant object glass is

formed).

To all intents and purposes, and regarded from the left hand,
the combination is equal to a thin dispersive lens of principal focal

length = E4 placed at ~P
l

at its principal focal length inside of the

primary image F
x

. . Fr while from the point of view of the right hand
the combination is equivalent to a thin dispersive lens of principal focal

length = E4 placed at P
2 ,
with the rays emerging from it in parallel

condition, but with the principal rays of the pencils diverging from an

exit pupil point in or slightly to the right of F
2

. . F
2

,
where an image

of the object glass is formed. But since such equivalent dispersive lens

placed at P
2

is an abstraction, there is nothing to prevent the pupil
of the observer's eye being advanced to the plane F/ F

2',
where it is

obviously in a position to take in the whole field of view, instead of

a small portion of it, which it would be restricted to were a real

equivalent dispersive lens placed at P
2

.

The Cooke Process Lens

We will now take, as a further example of the application of

these formulae, a form of photographic lens designed for copying
diagrams, of which Fig. 30 gives a section.
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Lj and L2 are of the same glass having /XD
= 1-6103.

L
3 is made of glass having //,D

= 1/524 (
=MD ).

The radii counting from left to right are as follows :

Curves of process r
x
= + 1'264 r

2
= - 1'48 r

3
- - 2'09 r

4
= +'553

r
5
= --5325 r

6
= + 2 -8

The thicknesses of the lenses Lj, L
2 ,
L3 , are respectively

t = + -105 *

Air-space Ax
= 2 3 2 . Air-space A2

= '

5 3 .

Three pairs of ele- We will now treat this combination as one of six elements arranged
ments -

in three pairs. Fig. 30a shows it rendered into six elements separated

by five air-spaces s
l}

s.2 ,
s3 ,

s4 ,
and s5 ,

of which

O Q - A o _Ji_ & f\ o '

S
l
~ S

2
- A

l
S
3
- S

4
- A

2 5
~
M

The first step is to take the elements in three consecutive pairs

corresponding to the three lenses, and find their equivalent focal lengths

by Formula X., and the positions of their principal points by Formulae

IXA and IXB.

E.F.L. of each lens The second step is to obtain the equivalent focal length of the

principal joints re*
combination of three lenses (or sets of two elements) and the positions

quired of their respective principal points, by Formulae XII. and XlA. and

XlB.

Calling the principal focal lengths of the several elements f and

/2 , etc., we find

/\= +2-0711 /2
= -2-4251i/3

= - 3-4246 |/4
= + '90611

||

/5
= -1-01622.78

= +5-3435,
and

5, = -^ = -0652k, = A, = -232 ', = -^ = '2223 s. = A9
= '0053 s,=

~ = '0722.
1 r 1

it IVT

We then get

Lj. Equivalent focal F _ (2-Q711)(
-
2'425) +11-984

len&th - 1- 2-0711- 2-425- -0652"

L!. Position of first -
f (-0652)(2-Q711) _ go

principal point. P } ~2-0711 - 2'425 - "0652
~

(to left of and outside of lens),
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-,_ (-0652X- 2-425) + ^^

49

2-0711 -2-425- -0652

(to left of and within second vertex).

L . Position of
second principal
point.

Pi
=

P-2
=

(-3-4246X-9Q611)
-3-4246 + -90611 -'2223

(-2223X- 3-4246)

-3-4246 + -90611 -'2223

(to right of and within first vertex),

(2223)090611)
-3-4246 + -90611 --2223

(to right of and outside second vertex).

L2. Equivalent focal

length.

L . Position of first

principal point.

L2 . Position of
second principal
point.

(treated as a positive entity)

(+1-01622X- 5-3435)
3 +1-01622 -5-3435 + -0722

-,_ (--0722X1-01622) -01-94Pl "1-01622 -5-3435 + -0722"

(to left of and outside first vertex),

-
, _ (--0722)(- 5-3435)

Pz
~
1-01622 -5-3435 +^0722

~

(to left of and within second vertex).

Fig. 30a shows on an enlarged scale the positions of the six

elements with their virtual separations and the principal points for

the three combinations of two elements representing the three lenses.

Thus pi and p% are the principal points for the first lens, consisting
of e

: + 2 5 Pi" and P" are the principal points for the second lens,

consisting of ez + e4 ;
and p/" and p%" are the principal points for

the third lens, consisting of e,. + e
ff

We now want the separations
between these equivalent lenses. First we want s

' which obviously

-2777 = <887 -
=
Pz + s

z
+ Pi" = + '3772

Then we want s
z

f

,
which obviously

/

+ Pi"= + '0053- -07349 - -01724= -'08543.

L. Equivalent focal

length.

L3. Position of first

principal point.

L
:;

. Position of
second principal
point.

We must bear hi mind that we have, according to our usual

E
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E.F.L. of the Process
lens.

procedure, treated the dispersive lens in itself as a positive entity, but

that in adding up a series of collective and dispersive lenses, we must

then prefix the minus sign before the E.F.L. of a dispersive lens or any

of its functions yet dealt with. Hence p"', which is a plus quantity

relatively to the dispersive lens, becomes a minus quantity in the above

expression for s
2
'.

Having now got the values of the three E.F.L.'s and the two separa-

tions, we may then work out the E.F.L. of the whole combination

from Formula XII., thus stated

E.F.L. =

(
+ ll-984)( + 1-1322)(

-
1-27617)

(M322)(ll-984
-

'887) +
(
- 1-27617 + -08543)(ll-984 + 1-1322 -

-887)

(11-984)(1-1322)(- 1-27617)
-1-9975

= +8-6685.

The next important matter is the determination of the two principal

points of the combination. By analogy with Formula XlA. we have

E

(11-984)(1-00426
- -Q96724 - M3196 + -Q75776)

- 1-9975

E
1(--U865) _
-1-9975

Also by analogy with Formula XI B. we have

Further factors to

be allowed for.

(
-
1-27617)(

~ '09672 + 1-Q0426 - 1-Q238 + -Q7577)
-1-9975

It should here be pointed out that our Formulae XlA. and X!B. gave

the distances Pj and P of the two principal points from the two outer

lenses or elements, on the supposition that the three members of the

system were simple or infinitely thin lenses, in which case their two

principal points would be merged together in the centre of each such

lens or element. But in the case before us each of the three lenses is
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a compounded lens, having its two principal points more or less widely

separated ;
and it is obvious that the distance Pr which we have just

worked out, is measured, not from ev but from pf, the first principal

point of the first lens Lr Hence p' has to be algebraically added to

it in order to obtain the corrected distance e
l

- P
X
or Pr

Likewise the distance P
2 ,
which we have worked out, is measured

from PZ", the second principal point of the third lens L
3 ,

so that p^"
must be algebraically added to P

2
in order to obtain the corrected

distance e, . . P or P
2 ,

so that

and

p
i
= p

i

P
2
= P

2

= + '8918 - '3222 = + >57

'" = - -0259 -
(
-
-0906) = + -0647.

Final principal
points of the process
lens.

(Here the sign of p" for the dispersive lens has to be reversed.) This

particular combination will be seen to afford a capital illustration of the

application of our formula?, as it embodies certain features characteristic

of meniscus lenses, which may easily lead astray a student taking up
investigations of this sort for the first time. There cannot be too much Pitfalls as to signs.

care bestowed upon the matter of signs ;
for in prolonged and intricate

optical calculations errors in signs are more likely to occur, and are

often more difficult to detect, than errors in mere arithmetic.

There is a very common term used in connection with the focal Back focal length,

lengths of lens combinations, and that is the Back Focal Length, or

the distance from the outer vertex of the last lens to the image
formed by the lens of infinitely distant objects.

It is obvious that the back focal length is simply the algebraic
difference between the equivalent focal length and the distance of the

second principal point from the outer apex of the last lens, or

B.F.L. = E-P
2 .

The principal points of lens combinations are also often termed Nodal points and

nodal points and focal centres. These terms more fully emphasise
focal centres -

the fact that a straight line drawn from a certain point Q :
in the first

conjugate image or object to the first nodal point is always parallel
to a straight line drawn from the second nodal point to the point ql

in the final conjugate image where the image of the aforesaid point Q :

is formed.

Certain defects in lens systems which may more or less disguise
this normal law of projection, will be dealt with in subsequent
.Sections.
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What constitutes a

telescope.

E.F.L. of telescope
= infinity.

A telescope has no

principal points.

Judged by the formulae we have been dealing with in the present

inquiry, the combination of lenses forming a telescope is of peculiar

theoretical interest. For the condition of clear vision through a

telescope for normal eyesight demands that the primary image of

distant objects formed in the principal focal plane of the object glass

shall also be in the principal focal plane of the eye-piece. Therefore

the separation s between the object glass and the eye-piece
= F +/ or

the sum of their principal equivalent focal lengths. Then in the

formula for the E.F.L. of the combination

F+/-

we have F+/ s=0 and E = infinity

P
x
and P

2 ,
or

= : and ^ 4

Also our formulae for

severally
=

infinity. Thus the image is formed at the geometric

centre of the combination forming the telescope, but it has no focal

power and no principal points, although it may possess immense

magnifying power. The subject of magnifying power will be best

dealt with in a subsequent Section (IX.) relating to distortion.



SECTION IV

SPHERICAL ABERRATION OF SIMPLE AND COMBINED LENSES AND CON-

DITIONS OF ITS ELIMINATION VON SEIDEL'S FIRST CONDITION

Spherical Aberration of Direct or Axial Pencils

Aberration not
hitherto considered.

Method pursued by
Coddington.

So far we have assumed that, in all cases of refraction of axial pencils

of rays by a spherical surface or their reflection from any spherical

surface, the rays so refracted or reflected will still diverge from or

converge to definite points situated in the conjugate focal planes.

It requires, however, a very slight practical or theoretical acquaint-

ance with optics to convince one of the existence of what is known

as Spherical Aberration, or the aberration or wandering of the outer

rays of direct pencil from the theoretical conjugate focal point which

we have hitherto assumed. In our investigation of this phenomenon
we shall find it most convenient to deal with the case of spherical

refracting surfaces and lenses first, and with the case of spherical

reflecting surfaces afterwards. We will first follow the method

pursued by Henry Coddington in his Treatise on the Reflection and

Refraction of Light, Part I., pp. 56 et seq., also 90 et seq.

Let Fig. 31, Plate VII., be a typical case of a convex refracting Diagrams explained

surface EAR' of radius r, on which is impinging a cone or pencil of

rays diverging from the point Q I}
the axis of the pencil or the principal

ray passing through the centre of curvature 0. After refraction the

rays converge again, the rays ultimately near the axis focusing at Q^
and the marginal rays Q . . R and Q . . R' at the point Q2

r
.

From R drop R . . P perpendicular to Qx
. . Q^. It must of course be Construction,

understood that in the diagrams the distance R . . P or y, which measures

the semi-aperture of the pencil, is much exaggerated relatively to the

radius of curvature, in order to make it easier to follow the diagram.
Let A be the vertex of the surface and let be the centre of its curva-

ture. Then it is evident that ,/QjRO is the supplement to the angle

53
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of incidence, while ,,/Q/RO is the angle of refraction. Hence sin

QjRO = p sin Q/RO, also we have

Qa
. . _ sin QX

RO _ sin /_ Incidence -\

Q! . . R sin QX
OR sin QX

OR

Q2

'

. . O _ sin Q2
'RO _ sin /_ Refraction I

Qa'TTR
=

sin Q2
'OR

=
sin QX

OR J

in which p = the refractive index
;
therefore

The fundamental ^2 ^ _ ^i *-*
/ i \

equation. ^Q2

'

. . R Qj . . R'

Let Q 1
. . A = u, . . R = r, A . . Q^ = uv and A . . Q2

' = u.
2 ;

and let

R . . P = y, Q2

'
. .

= w
2 r, and Ql

. .
= u + r. Then we have

Q2

'

. . R = Q2

'

. . A - vers (A . . P) + vers (a . . P)

?/

2

,
f

therefore
2V'

- _-~---.
Q2

'

. . R u
2

2w
2
2 \r M

2
/ %

2\ Mj.Vr
u
2
J 2 /

We have also

Qx
. . R = Qx

. . A + vers (A . . P) + vers (P . . b)

1

therefore

1 1 y
2- f\

Q...B u 2u"2 \r uJ u{^ u\r

Therefore Equation (1) expands to

u
2
\r w

2
/2 w I tt\r it/2

_ 1(1 +

By dividing both sides by r and reducing we get

/I 1\ M/I l\ 2 y
2

/I 1\ l/l

therefore

I 4. _( I i_ = l
|

I I 1 I

- -- ; -- v -- - '
2 \r u/ u\r uJ 2

'

u
2

r u r u\r u/ 2 u
2
\r u

2
/ 2'

or

__ ,_ ^_ ^ _.
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We may now insert approximate values of u in the above coefficient First approximate
,,..., ,. values to be inserted

of /, treating it as equal to uv so that in the corrections we may in formulaj

assume that

fj. fj. p,
1

M
2

~
%!

~
r u

and

-
(see Formula II., Section I.),

/I 1\ 2 1/1 1\ 2

and therefore (- -J becomes -*(- + -), and the above equation
\F Ibf)'

tt \f w/

becomes

= zi - 1 + r

MO r u \

VI + IV + (V-
1 _ IV!

u\r u/ \ r u/\r

which further reduces to the more convenient form

First refraction. Re-

_ r i _ - +
"

i i _ + A
) (

i + '

)
,,2 XVIII. (R.) ciprocal of corrected

U9 r u
2/j.

2 \r uJ \r u J second focal dis-

tance.

As before, we will number all important formula, such as the

above, with Roman numerals, and all of minor importance, but useful

as steps in the investigation, with ordinary numerals.

The function of y
z in XVIII. is the correction to be applied to the

reciprocal value -^ or ___! expressing the reciprocal of the length
1

'
1 u,

of the ultimate or paraxial rays, in order to convert it into -

^r-, ;

A. * . v^o

and the distance Q^ . . Q2',
or the longitudinal aberration within the

glass, is therefore

XVIII. (L.). .

Lmear value of

2//,
2 \r u/ \r u J

//,
above aberration.

It is desirable to call all corrections to the reciprocal values of

distances R corrections, and all corrections to the linear values of such

distances L corrections.

Formula XVIII. will be found to interpret itself in all cases if due

regard is paid to the conventions which we laid down on page 10.

If the entering rays are converging, and u therefore minus, there is

u

obviously no aberration if either ? = u or = --
^

.

Let it now be supposed that the pencil of light is refracted a The second refrac-

second time by a second spherical surface closely following the first, as
tion-

shown in Fig. 32, wherein Q2

'
is the point on the axis to which the
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ray R..Q2
'is converging in Fig. 31. Supposing the collective lens

which is formed by these two spherical surfaces to be very thin, and
of a sharp edge at R or R\ then we have R . . P in Fig. 3 1 = R . . P

2
in

Fig. 32, or
y^
= yf Supposing in Fig. 32 that the ray Q2

.". R
is travelling right to left, originating from Q2 ,

and entering the convex
surface R . . A

2 ,
then putting Q2

. . A
2
=

v, and A
2

. . Q2

' = vv and radius

2
. . R = s, we have by application of Formula XVIII. (R.)

therefore

Second refraction. 1 _ 1 u-l/l 1W1 u+lN
Reciprocal of last - = ---- "

+ ~r-f[- + -
) (

- +
"- W2

. (2)
focal distance. v v

i */a? \s 9/ \t v J
y

But v
l

in Fig. 32 is identical with
2

in Fig. 31, if the axial

thickness of the lens is zero, only we must remember that the ray
R . . Q2

'
is converging into the second surface

;
and while the distance

A . . Q2

'
or A

2
. . Q2

'
is positive relatively to the first surface, it is nega-

tive relatively to the second surface, by convention. So that in the

last Formula (2) we have

and

_ = + t of Formula XVIII. (R.).
i

u
z

We may now insert the full expression for from Formula
XVIII. (R.) in Formula (2), and thus obtain

u
*

u-1/1 1N 2 /1
+ c--^ - + - (-

2/x
2 \s v) \s v

In the last function of - and - we must of course assume v to be
s v

its first approximate value as the focal distance conjugate to u. On

adding together we then get

Spherical aberration
of complete lens.

IN 2 / 1

+ I- + -) l-T i fy
^.S V/ \S V /) J

^XIX. (R.)
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Thus we arrive at the formula of the second approximation, which

contains also the old formula of the first approximation, viz.

1 , VI 1\ 1 111
- = (/*- 1)1- + -)

-- or - = ---,
v \r s/ u v F u

which states the relationship between the conjugate focal distances u

and v, which we previously obtained as Formula III., but we have gone
further than in that case and arrived at a formula for the deviation from

the strict conjugate relationship, a correction which has to be applied

to the value of v obtained from Formula III. This correction is the

spherical aberration, and is seen to vary as y
z or the square of the

distance from the axis of the point in the lens where the particular ray
dealt with traverses the lens.

If, in Fig. 32, / is the point where rays ultimately close to the

axis come to focus after refraction at both surfaces, such that

1 111
A../ F u v'

then the distance / Q2
will be the longitudinal value of the spherical

aberration, which will be expressed by the formula

ii-lr/1 1\ 2 /1 iA+l\ /I 1\ 2 /1 u + 1\ 1
Linear value of

~ - -- - - - 22 above sherical ab-
1\ 2 /1 iA+l\ /I 1\ 2 /1 u + 1\ 1

near vaue o

-)(- +
)
+ (- + -) (

- +
) <y

2v2
,

XIX. (L.)
above spherical ab-

u/ Vr u / \s vJ \s v / r erration.

provided that the longitudinal aberration is small compared with the

distance v, not exceeding 10 per cent or so. Should the aberration

from Formula XIX. (E.) exceed 1 per cent of -, then its longitudinal

value is best obtained by the formula v ;
,
wherein ay^ is the

_ i /TfT/2

aberration as given in Formula XIX. (E.). v

Later on we will put the Formula XIX. into a much more con-

venient and general shape. It will be seen that owing to the essenti-

ally approximate nature of the statement of such quantities as versines

of the curves, which necessarily form the foundation on which this

formula is built, no very great accuracy can be expected from it when

y becomes large compared with the radii of curvature of the lens in

question, and it is strongly advisable to pursue the investigation
further and arrive at some idea of the modifications to the formula

rendered necessary, if we are to approach still more closely to accuracy.
But as the working out of the formula of the third approximation is

very long and much more difficult, the reader is quite at liberty to
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omit it during the first perusal of this book, especially as the formulse

of the second approximation will be found to form a complete system
quite independently of the formulae of the third approximation. He
may then resume his perusal at page 64.

Versines according
to second approxi-
mation.

The Investigation pursued to the Third Approximation

The diagram, Fig. 33, represents a case in which R . . P or y is

considerably increased relatively to the radius of curvature . . R or ?-.

About Q, as a centre and Q, . . R as radius, draw the arc R . . b, b beine1 1
7 O

its intersection with the axis, and about Q2

'
as a centre and with

Q2

'
. . R as radius draw the arc R . . a, a being the intersection with

the axis. Then A . . a is the difference in length between Q
'

. . R and

Q 2

'
. . A, and is the difference between the versines A . . P and a . . P.

For the purpose of a more accurate third approximation it is not

sufficiently exact to write

y'
2 2 9

vers. A . . P = ^- , vers. a. . P = ---.-.- ~ ., ,
and vers. P. . b =

9.r >. \ . O'l 2(A..Q1X

It is evident that as a second step in accuracy, though not a final one,

we may write

Versines according
to third approxima- vers. A. .P =
tion. Jr -p. ,

vers. a . . P =
--^r,

~.~ -.

prr

p , if-

.and

in which expressions we may enter approximate values of the terms in

the denominators.

In the statement of vers. a . . P, the distance P . . Q2

'

occurs, which

differs from P . . Q/ by the longitudinal aberration Q/ . . Q2',
which is a

function of the quantity x which we want to arrive at. In stating a

value for the versine a . . P we cannot afford to neglect this aberration

Q/ . . Q2

'
as a deduction from the radius of curvature of the arc R . . a.

Let Q l
..A = u and A . . Q^ = u/ (the first approximate value for

paraxial rays) and A . . Q
' = u as before. Then let

1 1

A V f\ f T5
* 7T~>

~ -

,A . . Q2
A . . Qj M/

so that the longitudinal aberration Q/..Q2
/=

xuf. As the basis of

our inquiry we still have the strictly true relationship



iv SPHEEICAL ABERRATION TO THE THIRD OKDER 59

Then

The fundamental

equation.

therefore

also we have

Then

Q2

'

. .
=

u/
-

xu/
2 - r

;

Q! . . O = u + r.

/o\ Formula for

Q2'..o.

(4)
Formula for

=
(u/

- xu 2
}
-

=
(u/

-
xu/

2
)
-

=
(u,

- xu 2
}

2r-

2r or 2(P . . Q2')
+ (a . . P)

2 \r

therefore

y
z
fl y

2
y
2 f \

^( + x + -/
-
-f.

-
-f

x
) ;

2\u/ 2ru/
2

4-w/
3

4M/
2 /

! 1

r u/ 4 rw
/ /

We now want the reciprocal value of Q2
'. . R, and as we wish to pre-

serve all functions of 7/

4
,
the term (a) must be developed to two terms

. . 1 I a a2

in the sense that - - - = - + -, + -.
u - a u U* w

Therefore we get

1 1

Q2
'..R

f_
2u,

2
'

rf _L / /I 1\ y
4 /I 1\ 2

\^
I ___ 1 J. ^

( ___ I V

2uf\r V *4i^\f u/J
f
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and

1 1 / f f \ y
z /I 1

L rf _ I
y _ y

I rf 4.
^ IT t/ . I ^ T

Formula f o r Q2

' R
**/

\ 2w/
2

8w/
4/ 2w/

2 V r

*

f
J x 3 3 \--

1
---- +_ I

/

2
\2?'

3 TZU/ ftty
8

2U/
3/'

-

4M 2

Next we have

yZ
/ y2 ^.2\ ^2

-i (**)-

2r

therefore

f(\ 1\ y
4
/ 1 1 1

Q1
..R= M + ^-(- + -) + -r(-^- -5-5-2 \r / 4 \2r3 rw2 2w

Here again we want the reciprocal value of Qr .R, which, analogously
to our procedure in arriving at Formulae (5), may be stated thus

Q! . . R u (2u2 \r uJ 4w3 \r u/ I 4^x2^ ru2 2u3

1 ?/
2

/ 1 1 \ 2/

4
/ 1 2 1 \ 1 y* i 1 1 1

and
Formula for

i
ru

The insertion of On substituting Formulae (3), (4), (5), and (6) in our basis equation
Formula (3), (4), (6),

and (6) in the funda-
7 1 1

mental equation. ^(^2 0/rT7 r?
=

(^i ' '
/'Q T?'

I

. . XV m^ . . JA>

we then get
1 / w2 ?

+ _^fJ_ +
! .A.^M

^^i 2 \ O-j*3 't''n yii >" tytt ^ / I
rr t* / \^ / / t* / / w- 1 & (Jb i / _t

A --- - - V* ( 1 _3_ _+ r
' 2

+ 23 2 3
'
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In expanding this equation we may legitimately omit functions of

or Xs
,, as x is a relatively small quantity, and also omit functions of

^. Then we get, after cancelling out a few terms,

f f ^ (\ \\
{u,- Msf + Mi (

---
)

\T 2ti/
r
2ui\r u//

~9 9 "R
r2

u/ ruf 2M/
3 /

u/

for the first side of the equation, which then becomes

y'
2 f f /-^ + p - p-x +

which

?/

2 f r ( f f-& -
^~-x + /-#*+ [ /*- -

^r-
2w/ 2r

y
V 2u/ %uf/\r u/

3

So that the whole equation now takes the form

_ _
*

2r3
+

r2

Tl f (\ 1\ w4 / 1 1 3 3_ /. i A.\I ___ _ j __i__ \ _ y
( _ __ __

>Lu 2u?\r u) 4&\W r*u ru2 2u

By dividing both sides by pr, and keeping functions of x on the left- Both sides divided

hand side we then get by ^r.

2 \uf r2 __
f &l 2u/\r u/ 4:U/\r u/ \2r3

3 3
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from which

ell
f

(
l l

V 2\^~^

A A
r

u/

'

2u/\r u//

'

4w/\r M
/
/\2r3 r2u/ ru/

2

u + r u + r (/I l\y
2

f/
4 / 1 1 3 3 \}

fj.ru fj.ru \\r u/2u 4:U\2r^ r2u ru2 2usJ j

u/ to be expressed it is now desirable to express u. or A . . Q/ in terms of u and r, for
in terms of u and r.

1

also

1 1 _ yu/w
-

(/z
- 1 )M + r u + r

r
u/ pru /j.ru

'

After substituting these values in the equation and cancelling we
then get

- r

( yVtt(l-2,0-2w<,*-l) + f*n
I 2V pW )}

_ y
2
/(/A- l)M-r\ /M + r\ 2

y
4/^" I)M-^ \/_+ A / 1

2\ yurM J\ fj.ru J 4\ /mt A/rtt/\2r
8

r\ fj.ru J 2\

from which

'X,{\
-
-( 2~s~2

~
) f

fj,

2rzu* /)

f //*
- 1 ivi i\

2
y
2
/i i

***(- K-+-) + o (-+-V . .O \ n / / \ ^ /}/ / V /*fl* \ ** //^j/x \ / U'/ \ i Ui/ ALLU/ \i a

^/-i.iYiTlv.1_
r u/\r w/\2f

8

_ __ A A A
-3 2 2 3 '



iv SPHERICAL ABERRATION TO THE THIRD ORDER 63

from which we derive

f f(u*(l-2p)'"

On multiplying both sides of the equation by Elimination of func-

tion of x.

(the function of 7/
2
being supposed to amount to less than T̂ th), we

then get, if we neglect functions of y
6

,

M -i/i r\Vi
x = r~-

T (- + -) (- + - jr
LL \T It/ \? It

1\ 2
/1 /* + 1V 2

(l
-

2u)
- 2w(u -

1) + r2
if i '_ \ I

^ \r /

/Jl / \ fl /!/W/ \l IV

(a)

We may now add together all the functions of y
and (c), (b) being expressed in the form

contained in (6) Functions of

sorted out.

After multiplying out the factors contained in the large brackets

and adding them to the terms in (a), we get, after much reducing and

cancelling out,

r _ /i_lV! + IVf
1
+ /*

+ 1N
\ 2 = /aberration by second approximation \

2/*
3 \r uJ\r u )

y ~
\ as per Formula XVIII. (R.) -^ )

y*fl 1\/ 1 1 4 6 4

w,V2M2
6

/A
4

1 1

/xru
6

[jiru

2 6
____ _ __
2w2

rw.
3

XX.

First refraction.

Fonnula for tne

spherical aberration
of the third approxi-
mation.
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Aberrations of as-

cending orders
theoretically inter-

minable.

Formulae of the

fourth approxima-
tion generally un-
desirable.

Distinction between
air value and glass
value of the aberra-

tion.

Thus we again arrive at Formula XVIII. (E.) of the second approxi-
mation (but divided by /A), while in Formula XX. (E.) we have the correc-

tive formula of the third approximation. This generally is a correction of

very much smaller value than the correction of the second approxima-
tion. If we were to pursue the investigation still further, that is,

were we to develop the fundamental equation given on page 59 to

higher and higher degrees of accuracy, then we should obtain a series

of formulae for the spherical aberration, first to the second and third

approximations, being the above functions of y
2- and y

4
,
and the

following approximations, being functions of y
&
, y

8
, etc., or rising even

powers of y, and also increasing in complexity.
The Formula XX. is not too complex, especially after it has been

transformed into a more convenient and general form, to be sometimes

useful in the higher problems which have frequently to be dealt with
;

but approximations of still higher orders are for practical purposes
undesirable.

We have now got in Formulae XVI II. (E.) -f/i and XX. (E.) taken

together a fairly exact corrective x to the reciprocal value of the distance

Awhile -= ----
. It mustA..Q/ or ui, such that - +x =

Lens. Formula of the

second approxima-
tion again emerges.

A . . yx

'

MI fJiT

be borne in mind that we are dealing with the distance u
f
as measured

within the substance of the glass or other refracting medium. It is

easily seen, therefore, that if the pencil of rays we are dealing with is

refracted into air again at a second surface closely following the first,

then, quite apart from any further spherical aberration imparted
at the second surface, the spherical aberration imparted at the first

surface may be looked upon as an angular deviation from the true

direction, which will be multiplied by the refractive index on being
refracted through the second surface. An aberration correction of

value a inside of the glass becomes fj,a
on being refracted out of the

glass. Therefore our value of x, the aberration correction, must be

multiplied by /j,
to bring it outside the lens, when we may add the

formula to the analogous formula appertaining to the refraction at

the second surface, just as we did before when we took Formula XVIII.

of the second approximation for the first surface, and then added to

it the corresponding formula for the second surface, thus obtaining the

Formula XIX. for the complete lens. Adapting that method to our

present case, our formula for the spherical aberration to the third

approximation for the whole lens is expressed thus

v /*-lr/l 1\V1 /B+1N /I IN 2
/ 1 /*

+1Ua VYT/-RNx =
o 2 il

- + -
) I

- + -
)
+

(

- + -
) (-+ ) \y XXI -

(
R->

2/i- I \r u/ \r u / \s v/ \s v / )
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+
8

1

+ -:

I

s v

/jiTir fjiT

6
+ T--. +
/*V

I 1

-r + -5-

//2s
4

^
1 1

1

pS* S
3
? .sr'

Formula of the third

XXII. (R.) approximation com-

plete.

These two corrections are to be added to the value of -, when - =

11 v v

simply. So that if in any given case we work out the value

of - + X, then we may take its reciprocal for the longitudinal value of

the corrected conjugate focal distance of the two rays which are

refracted through the lens at the height y from the optic axis. Or if

the aberration is small relatively to -, then we may take the linear

or longitudinal value of the aberration as v
2
X, so that, since for a

collective lens X is nearly always positive, the longitudinal aberration

is a deduction from v when v is positive, and an increase to v when
v is negative or the emergent rays diverging.

It is clear that the formulae we have now arrived at for the Present

spherical aberration of a thin lens do not easily lend themselves to

analytical problems, such as finding the form of a lens requisite to give

or to counteract a certain known amount of spherical aberration, and

the next desirable step is to put the formulae into a shape that is

better adapted to manipulation, as well as more elegant and simple.

formulae

Introduction of a more Scientific Notation

Here we cannot conceivably do better than adopt the beautiful Coddington's device

device apparently invented by Coddingtou and explained on page 110 exPlained -

of his work before referred to. He shows how the reciprocal values

of the radii r and s, and of the conjugate focal distances n and v, may
be expressed by the use of two terms x and a. It may shortly be

explained thus. Since - + - for the ultimate axial pencils = ^ and

11_ i _ -

r s

111
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Let

tt 2F

and let

so that

1 -fa 1 -a._l
2F 2F ~F'

let

1 1 + g

and let

K^IJF-H". ,

< 10)

so that

1 +x 1 -x 1 1_1 I

a. The characteris- Therefore a becomes the characteristic of the state of convergence or
tic of the conditions Jivergence of the rays constituting the axial pencil traversing the lens,
of V6r'611CV

in relation to the power of the lens. For instance, if the rays of the

entering axial pencil are parallel, or - = 0, then a 1
;
while if the

1 i

conjugate foci are equal, or - = -, then a =
;
while if the rays of the

u V
1 1 1

emergent pencil are parallel, and - = -s and - = 0, then a= + 1. In

short, we may style the term a the characteristic of the vergency
of the pencil traversing the lens.

x. The~characteris- Also x becomes the characteristic of the shape of the lens. If the
tic of the shape of a 11
lens lens is equiconvex and - = -, then x =

;
if convexo-plane, then

r s

x= + 1
;

if plano-convex, x= 1. If meniscus, such that r= 1 and

s = 3, then is + 2
;
and if the same meniscus is reversed, then

# is 2. Fig. 34, Plate VII., gives numerous self-explanatory illus-

trations of the application of the two terms x and a to different cases.

This device of numerical characteristics represented by a and x is

invaluable in practical analytical calculations.

After substituting the above expressions for -, -, -, and - in the

Formulae XXI. and XXII., and arranging the terms in descending

powers of x and ascending powers of a, we get
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Lens. Codding-

8/
3

.

?^ + 4(u + l)ox + (3/a + 2)0*
-

1)
2 + ^-

JXXIII. (R.)
ton'

s formula for

-l tt-lJ spherical aberra-

+ 3(/*
-

1)
2
(
-

8/*
3 -

13/*
2 -

2/4
-
10)a%

2

+ (^
_ 1 )4(

_ 1 5^3
_

9/A
2 _

3/4
_ 5y ') XXIV. (R.)

+ 20*
-

1)( 18/*
5 +

4r/*
4 -

p?
-

5pJ
2
)ax

+ 0*
-

1)
2
(
-

30/*
5 + 6/*

4 -
4/*

3 -
5/*

2
)o

2

+
( 3/*' + 3/*

6
/,

In Formula XXIII. we again have in a more convenient form

Ooddington's Formula XIX. for the spherical aberration to the second

degree of approximation, while. XXIV. is a further correction to it

worked out on the same lines to the third degree of approximation ;

both of them being corrections to -, the latter being ascertained by the

simple law of conjugate focal lengths,
- =

=, . The first is a function
J '

v F u

spherical
tion.

Formula for the

spherical aberra-

tion by third

approximation, in

terms of a and x.

of , the second is a function of
j-

.

J J
We shall find, on further investi- other corrections of

gation of cases of axial pencils traversing combinations of lenses, and

especially separated lenses, that many other corrections arise which are

also functions of y
4
,
and which it will be desirable to work out, where

possible, and add to the same category of corrections as XXIV.
It is easily seen that these formulae will interpret themselves

correctly in all conceivable cases.

It will be as well to call the Formula XXIV. the Intrinsic

Aberration Function of the order y*. For we shall find that although
certain other aberration functions of the same order y* will have to be

considered, yet they will turn out to be functions of Formula XXIII.

that is, they will be products of the latter formula into another

function of y
2
,
and are therefore functions of y^ in that sense only.

It will be found that corrections involving higher powers of y than

2/

4 involve degrees of cumbrousness and complexity which are out of all

proportion to their importance or utility.

If the reader will apply the reasoning of this Section to the corre-

sponding case of a dispersive lens, in which preferably u, u
t
, and v, as

well as r and s, are all positive for convenience in reasoning, he will

the order if.
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arrive at precisely the same formulae. That is, it is best to assume the

rays to be converging into the first concave surface of the dispersive

lens, to be diverging after first refraction, and more strongly diverging
after the refraction at the second surface, which is also concave.

Conditions under It is clear that there is only one term in Coddington's formula
which the aberration 2

may be o or nega- (which may be conveniently referred to as l^sA.', while the Formula
tive.

4
*

8/
3

XXIV. may be termed ^ A'
x

) which can ever be negative, and that
1 Joy

is the second term, involving ax, so that the only possible way of

approaching to freedom from aberration in a simple lens is to make a

and x of opposite signs ;
therefore if rays are strongly diverging into a

positive lens and a is positive, then x must be negative, and vice versd.

For instance, if p = 1/5, then we have

O %^x2 + 40* + l)ax + (3p. + 2)0*
-

l)a
2 + -

T
= 7a;

2 + Wax + 3-25a2 + 675,

Formula XXIII.
differentiated
with respect to x.

Condition of mini-

mum aberration.

and this will equate to if a = at least + 4 '4 5, when x will be about

3'15, implying a strong meniscus form with its hollow side turned

to receive the divergent rays. With a still higher plus value for a, a

value for x may be found to give a certain amount of negative aberra-

tion. This fact is utilised in many systems of condenser lenses whereof

the member nearest the source of light is made of a pronounced
meniscus type.

On differentiating the Formula XXIII. with respect to x we have

which will equate to when

^a: (12)

so that if p = 1/5, then x, for minimum possible spherical aberration,

5
must be -a.

5
If the entering rays are parallel and a= 1, then x +-, so

that the radii of curvature will be as 2 : 1 2 or 1:6; while if
//,

is about

1/67, then x= + 1, or the lens of minimum aberration is convexo-plane.

It will be meniscus if the refractive index is still higher.

If we suppose p.
= 1/5, then the Formulae XXIII. and XXIV. work

out to



iv SPHERICAL ABERRATION TO THE THIRD ORDER 69

?
,2 f

^
Values of the two

-r
-j^jj-j

7x2 + lOca1 + 3'25or + 6 '75
[

orders of aberration

when
fj.
- 1-5.

- 4-625z4 - 33-625az3 - 60'1875a:2 - 51'94aV - 55'55a2
\

-28-19a3z- 131-06aa;-5a4 -24-7j
<

From this it appears that the corrections of the order ?/
4 must be

always of a negative character when a and x are of the same sign, as

when parallel rays fall upon a plano-convex lens, i.e. when a = 1

and x = 1
;
but it will be found that if parallel rays fall upon a

convexo-plane lens, in which case a = 1 and x= + t, then the

functions of ax?, a?x, and ax come out positive and nearly neutralise

the negative terms.

For instance, if/= 1, y = '25, and
//,
= l

-

5, a = 1, x = + 1, then

y
2

^sA' gives

llr 1 71 Convexo-plane lens

6 Tsl
'
~ 10 + 3

' 25 + 6 '75
I

= + OK 7s' refracting parallelyo / ' yo / rays.

and ^A" gives

/ - 4-625 + 33-625 - 60-1875 - 51'94 - 55-55 + 28-19 )

+ 131-06-5-24-7/

(16)(16)(27)/
5\ 768/5 '

or only g^th part of the correction to the second approximation. But
if x also = 1, then the first formula gives

1 I/ \ 27 1 Plano-convex lens

Qfi TsV /
F +

Qfi /3' refracting parallel

rays.

and the second formula gives

1 If M5\- -li?I. ^?1
(16)(16)(27)/H j 256 /

5
~

96 /5 '

or nearly a quarter of the aberration of the order y
1

. But if / is

2

doubled while y keeps constant, then the aberration ^A' is reduced

y
4 J

to th part, while the aberration
-

^A" is reduced to ^nd part.

These conclusions apply with equal truth to the corresponding

concavo-plane and plano-concave dispersive lenses when refracting

parallel rays.
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A thick lens requires

special treatment.

However, we must not treat tins formula as if it represented the

only aberration correction of the order y* which has to be dealt with.

For in the case of thick lenses of large relative apertures, or a system
of separated lenses, the formulae, before alluded to, which are functions

of y*- into the aberrations of the second approximation, may often

exceed in importance the intrinsic formulae of the third approximation.
We have hitherto assumed that the thickness of the lens to which

this Formula XXIII. refers is too small to sensibly affect its accuracy,
but in general practice cases very often occur in which the thicknesses

of the lenses concerned are so considerable that no approach to accuracy
could be made without making proper allowance for it. Here we shall

again find that the Theorem of Elements will enable us to effectually

get over the difficulty.

Application of the Theorem of Elements to Thick Lenses

Let Figs. 35a and 35b, Plate VIII., represent two thick lenses, one

a collective lens and one a dispersive lens, the conjugate focal distances

Ql
. . A

I
and A

9
. . Q 9 being also positive in each of the two cases.

Let tangents to the two vertices A
1
and A

2
of the lenses be drawn.

These then represent planes perpendicular to the optic axis, and as we

Element planes. imagine two elements to be located at the two vertices, these planes

may appropriately be called Element Planes.

Moreover, if we are treating these thick lenses in accordance with

the Theorem of Elements, it is obvious that the two element planes

are also the bounding planes or surfaces of the imaginary plate of

parallel glass which is supposed to lie between the two elements.

Let b
l
..A

l
and &

2
..A2

= Y
1
and Y., respectively, and let &/'-,

and &
2

'
. . c

g
= yl

and y2 respectively.

Now so far, in working out the formula for spherical aberration for

a curved surface like A
1

. .

b^,
we have assumed y (or b^ . . c^ to express

the perpendicular distance of b^ (the point on the curved surface where

the ray in question is refracted) from the optic axis.

But we might have assumed y to mean not b^ . .

c^,
but A

I
. . b^

that is the height Y
X

of the point where the same ray cuts the

element plane, instead of the height where the ray cuts the curved

Simplicity gained by surface; and it is obvious that the plan of measuring our y's along
assuming the y's to the two element planes of any lens presents the advantage of great
lie in che element ,. ., , , ,, ,. ,,

planes simplicity, and renders it perfectly easy to assign the values of the

successive Y's for a ray traversing a series of thick or widely separated

lenses.
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That once granted, then of what nature will be the corrections to

the spherical aberration following upon the nonconformity between the

Y's measured in the element planes and the y's measured up to the

points where the same rays strike the curved surfaces ? We shall soon

see that these corrections are comprised under the order of functions

of Y4
,
and of higher even powers of Y. Of course, if the entering rays

are parallel, there is
' then no disparity between Y

X
and yv and no

disparity between Y
2
and y^ if the emergent rays are parallel. If we

treat the whole lens as a self-contained entity, then if Qx
. . A

I

= u, and

A., . . Q.,
= v, as before, and = =

(//, !)(- + -), we find that

-Y -i-i'7iJ-
1 + \"iv l

- VJ-
1

2\Y Y 3 / Y 2\
1 1_1 Y 4- ! - V (1 4-

l
\

^. ; *i ~*~ ^ * i\ * + ~n ;'

2rJ u l 2ru l n ;

2ruJ

so that

Similarly
Y 2\

^
2 -

.

2sv/

The above two formula1 serve to indicate the general nature of the

corrections involved, and we will return to a more exact investigation

of this matter at a later stage.

After this we will assume our ?/'s to lie in the element planes

except where otherwise stated
;
therefore we will retain the symbol y

in place of the symbol Y which we employed in the above inquiry.

We will first consider the thick lenses in Figs. 35a and 355, in

terms of the aberrations of the two surfaces. The rays radiating from

Q
1

are supposed, after refraction at the first surface, to converge to a

point q situated at a distance u (
= A

I
. . q) from Ar that distance

being an intra-glass measurement. In the case of Fig. 355 they are

supposed to be diverging from q after first refraction, a condition

analogous to that of Fig. 35a. Now, the spherical aberration of the first

surface as yielded by Formula XVIII. (R.) is a correction to the first

approximate value of or v, and the longitudinal aberration is

obtained by multiplying XVIII. by u2
,
as in Formula XVIII. (L.).

We will call the longitudinal aberration so obtained y*ajP.
Now, we wish to transfer the value of the aberration of the first

surface to a new reference point A
, so that we can add it to the

aberration of the second surface. Therefore we have an aberration

Thick lens. Form
of the aberrations
of the two surfaces.

How aberration of

first surface is trans-
ferred to second
vertex.
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from the first surface denoted by y
z

a^, implying a linear aberration

equal to y~a^, which, regarded from the new point A9 ,
or the vertex

c -11 i f
" ?AM2

\ 2
?*
2

of the second surface, will be equal to . / /. 9
= 2 -- ^ in

V (u- t)
2
J

" l l
(ti- ty-

&
the case of the collective lens, and y l x

/,-
--

.

2
in the case of the dis-

\Jlv
T" v/

persive lens, as an R correction. If we now add in the aberration of

the second surface we have the joint aberration, referred to the point

A
2

, expressed by

\ \77>. Tw"
Sum of the aberra-

tion of the two for the collective lens, and
surfaces. ,

for the dispersive lens, as R corrections. Furthermore, if the ?/s are

so small that the versines of the curves are small and negligible

quantities, we then have

(u
t\

"IT*/
and

Relationship be-
for couective lens and

tween the two y's.

for dispersive lens, which is a very simple relationship.

Let us now treat the same lens by the method of elements.

We may then denote the conjugate focal distances for the first

element by u
l
and vr and those for the second element by w.

2
and v

z
, so

111 .111
that + =

TT, and + --.
U
l i /l W

2 ^2 /2

Same thick lens Then at A^ we must imagine a convexo-plane element, and at A
2
a

of

e

eiements
metbod

plano-convex element in the case of the collective lens
;
and a concavo-

plane and plano-concave element at A
X
and A

2 respectively in the case

of the dispersive lens. The rays which converge to or diverge from q

after refraction by the first surface of the first element will, after

refraction at the second or plane surface of the element, converge to

a5

or diverge from a new point distant from A
l by

-
(
=

vj. Then, since

the separation between the two elements is -, we shall have a

spherical aberration for the first element, which may be called

#i
2

(a i
+ PI)> PI being the aberrative function for the second 'or plane

surface. This aberration becomes
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when referred to the second element at A., for the collective lens, and

for the dispersive lens
;
while y2

2
will be

11 t
2

/---\ / r
2/ A1

!" \ 81 V
lM Vv-*v J- / v % >

for the collective lens, and y2

2
will be

?/ /
2

/-A / r
<?/ /* f* 1 91 V

l
+ ~

y*\^r)=y\^
\ - / \ *. ,

for the dispersive lens
;
but

ri i

P
,
or *

M / >,=*=-
-4=- /*

/* /*

?/

is obviously equal to -7 -, which we got before for the solid lens,
It T f

and the same applies to their reciprocals ; only, in the case of the

imaginary elements separated by
- we have supposed to exist the inner
f*

plane surfaces of the said elements, which do not exist in the solid lens.

But it is clear that we can legitimately imagine the two inner interpretation of a

plane surfaces of the two elements to exist in the solid lens, provided
thick lens by theorem.'.,', *

. _ Cf elements,
that we also imagine to exist a solid parallel plate of glass of thickness

t lying between and touching the said two elements.

There would then be four plane surfaces to be imagined, two

bounding the elements and two bounding the parallel plate. At each

one of such plane surfaces, provided that the rays traversing the
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The six constituents

of the whole aberra
tion.

interior of the lens are not parallel, a certain amount of aberration

takes place. We may call the spherical aberration for the first

element, as before, y^(a^ +p l ), x being the spherical aberration of

the curved surface and pl
the aberration of the second or plane surface

of the element. Then the spherical aberration of the first surface of

the parallel plate may be written y*(p^) ;
the spherical aberration

of the second surface of the parallel plate written 2/2

2

(/>./) ;
and the

spherical aberration of the second element may be y^(p^ + a^),
in

which p is the spherical aberration of the first or plane surface of the

second element, and
2
that of the curved surface. So that the whole

series of aberrations, referred to the point A2 , may be expressed by

Now it is plain that if a pencil of rays passes, however obliquely,

from one piece of glass bounded by a plane surface into another piece

of glass of the same refractive index and bounded by another plane

surface in close contact with the plane surface of the first piece of

glass, then no refraction and therefore no aberration whatsoever can

take place. In other words, the refraction or aberration which takes

place when the pencil of rays emerges from the first piece of glass

into air is exactly neutralised by the opposite refraction or aberration

ensuing on the same pencil being refracted again immediately into the

second piece of glass, so that the two plane surfaces might be absent

and the glass be solid and homogeneous so far as any optical effect

upon the pencil of rays is concerned.

Therefore in our series of aberrations it is clear that y*pl
+ y*p^

=

and yp<! + 2/2V2
= 0, and therefore the whole series is equivalent to

"

<i (for a collective lens), whicli is what we arrived at
li
- 1

when treating the lens by surfaces.

But we can put another interpretation upon the above series of

aberrations. We wish to retain the elements as actual entities, and

they necessarily imply two surfaces. The aberration of the first

element necessarily includes the aberration of its plane second surface,

likewise the aberration of the second element necessarily includes the

aberration of its plane first surface. Hence we may group the series

of aberrations in the following manner consistently with the same total

result

Another interpreta
tion of the sum of

the six aberrations.
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As we are making a point of retaining the aberrations of the two

plane surfaces of the elements, we must therefore retain, in order to

balance the former, the aberrations of the two plane surfaces of the

parallel glass plate separating the elements. The latter aberrations

are gathered together within the centre brackets, and represent the

aberration (of the same nature as spherical aberration) produced by the

parallel glass plate of thickness t. Also we have seen that the term

used in case of the two elements separated by a distance = - comes to

H P

exactly the same thing as the -r-- in the formulre strictly applyingU -^r t

to the solid lens.

Therefore our general conclusion is (1st) that the spherical aberra- Aberrations of the

tion of a solid thick lens, when referred to its second vertex A,,, is tcTtlmt o^the pafai*

equal to the sum of the spherical aberration of its two elements, lei plane plate.

separated by -, referred to the position of the second element, plus
/*

the aberration of a parallel glass plate of the same thickness as the

solid lens, also referred to its second surface
;
and (2nd) that

?/.
for the

second element

ti t t

if we measure the two ?/'s in the two element planes respectively, while The ifs to be meas
u ured in the element

- is obviously equal to v
l
tor the first element or the focal distance planes.

/z 1111
conjugate to uv such that = 7

---
, wherein

-j
is the power of the

v
i J\ u

i J\

first element or --
, and = ^ T-.

Aberration of a Parallel Plane Plate

Our next step, therefore, is to find an expression for the aberration

of a parallel glass plate of any thickness.

Let Fig. 36 represent a case of a divergent pencil traversing a
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Refraction of a nor- thick parallel plane plate of thickness Aj . . A
2,
and Fig. 36& a case of

a convergent pencil of rays traversing a similar plate. The principal

ray in each case, q . . A
2
and A

l
. . q, passes perpendicularly through

both surfaces and therefore suffers no refraction. Q l
is the origin or

apex of the pencil.

Let Q :
. . Aj

= uv and be considered positive in the case of Fig. 36

and negative in the case of Fig. 366. Let the semi-diameter R . . A of

the pencil be called ar Let q be the conjugate focus to Qx by first

approximation that is, let q . . A
I
=

/z%1
= vv and let ql

. . A
I
= a?r For

the ray Q1
. . R after refraction at R proceeds in a direction which (if

it has to be produced backwards) cuts the principal ray at qv further

from A
l
than q, so that q . . ql

is the longitudinal aberration to which

the ray Q
x

. . R is subject.

Let the angle R
1
Q

1
A

1

= < and the angle R^Aj = <'. These are

obviously the angles of incidence and refraction respectively. Then

we have, as on page 49 of Coddington's work,

R! di
'

Rj . . Qj : : sin

: : sin

that is,

But
x
l i r> r\

u
\K, ..<?,=

-,
and R, . . O, =

,

cos
<f>

cos
c/>

therefore

The exact form- x
l ^ cos <'

lllfl j ' P" 7
^^^ *^i

==
P" "^l

COS cp COS (b COS cp

exactly.

This can be reduced into an approximately accurate algebraic

form, thus

Since ,/ q-,..A, , 1 QT . . R,
cos (h = -^ and

ql . . Rj cos
(f>

therefore above equation becomes

which
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in which we may insert the approximate values of q^ . . A 1;
=

fjn^, and

for Q! . . A
a
write u

lt making

n 2

( ^ \
(
uM, + jr*

-

I W-i

\ 2uU-,/

/*
L'M,

,
2

1 =
~ l

1

2

therefore we get

and therefore

and

2,

1 1

2W1

9 1 9
t- - 1 a^

{j?

'

2uf'

First plane surface.

(15) Formula of second

approximation.

It is clear that this formula applies to both cases, 36a and 36&,

and that the aberration is of a minus character, implying an extension

of the first approximate distance A
}

. . q. We can also derive Formula

(15) from the Formula XVIII. expressing the spherical aberration of a

single spherical surface. For the plane surface is but a spherical surface

of infinite radius, so that - in XVIII. becomes zero, and the result is
r

Formula (15) (with a conventional difference of sign), which confirms

our result. Further, it will be readily seen that the case of the con-

vergent rays entering left to right into the plane surface is but the

reversal, as it were, of the case of divergent rays passing out of the

glass from right to left, and the same formula can be applied. Therefore

the same formula which applies to the converging rays entering in Fig.

366 will apply also to the diverging rays leaving the glass in Fig. 36a.

Turning our attention to this case, then let

A
2

. . Q2
= - = v

2
and A

2
. . Q2

' =

Course of rays con-

sidered reversed.
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A
2

. . q
= u

2
and A

2
. . It, = a,.

Then we also have the relations

and therefore the following identities hold good

Cl-t dn = Qjf\
~

Cln
,

t t

u
l
= v

2
and v>

2
=

u^ + -
.

Then we have at the second surface

therefore

* _ P ,P ~ 1 <y /ig\
I ^9 Q V

A V
/

v
2

u
2 2fi- v

2
A

This expresses the aberration of the pencil of divergent rays emerg-

ing from the second surface, on the condition, of course, that the
'

rays are diverging from a fixed point at a distance = u
t)
within the

substance of the glass. After being refracted outwards they are

subject to the aberration given in above Formula (16); and this

aberration is of the opposite tendency to that which the rays met with

on entering the glass, and implies a shortening of the first approximate

value -2.

But we have now to add the aberration produced at the first

surface to that produced at the second.

Aberration of first Iii order to transfer the aberration produced at the first surface to

surface transferred / utt \
to second surface. the new reference point A , we must multiply (15) by (

L
)

2
,
thus

VuM, + tJ

getting

P1 P1
1 t ~n i /i e\\ I

1" f^~
~

^1~ I /^l 1

i
=

(of Formula (16))=
- ~"

9~i~
*

~8\ //

independently of the second refraction. On adding the aberration of

the second surface from (16) to the above, we then get

1 _ p +/
/2

+ 1 2fj? v/ 2fji
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This should, for the sake of practical convenience, be expressed in

terms of v
9
and ay so that

/*

> i (do
2

therefore

i i //'
2 - l n -

A-j1 ^^ _ Z2_/ YYV m ^

parallel plane plate.

1 _ 1
,
A1

"
* *2~j YYV /R ^ Aberration of a~ ~ ~ + oa ~il- ^VAv.^rv.;

If the same line of reasoning is applied to Fig. 366 the same

result will be obtained, provided that u and v9 are considered negative ;

but if they are also considered positive then the spherical aberration

will work out with a minus sign before it. In fact, we find that the

aberration given by a parallel plate of glass is always of a negative

character, if we compare its influence with that of a collective lens

under normal conditions. If a pencil of divergent rays traverses a

parallel plate, then the outer rays of the pencil on emergence are

diverging from a point nearer to the second surface than the point
indicated by the first approximation ;

while in the case of a convergent

pencil of rays the outer rays after emergence are converging to a point
farther from the second surface than the point indicated by the first

approximation. In short, the aberration is of the character of that

yielded by a dispersive lens, and we shall afterwards find that this

analogy holds good in other respects also.

We also find from XXV. that the amount of the aberration

increases inversely as the fourth power of the distance of that point
from the second surface from which or to which the emergent rays
are diverging or converging, and therefore there is no aberration in the

case of
Wj or v2 being infinite or the rays parallel.

We also find from our formula that
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Linear value of the
above aberration.

p -

and therefore the latter term is the linear aberration, which thus varies

inversely as v, directly as a
2

2
,
and directly as t.

Therefore it is plain that when the pencils of rays traversing the

interior of thick lenses are strongly convergent or divergent, and the

pencils are of wide aperture, the parallel plate aberration may be very
considerable.

The notation.

A Detailed Confirmation of the Theorem of Elements

Having worked out the Formula XXV. for the aberration pro-

duced by a parallel plate, we are now in a position to give the

general confirmation of the theorem of elements as applied to thick

lenses. This proof can best be presented in the form of a balance-

sheet (see p. 81), on one side of which we insert the successive aberra-

tions of the six surfaces in their order, two belonging to the first

element, two to the parallel plate, and two to the second element
;
while

on the other side we gather together the aberrations of the first pair of

surfaces and express them as the aberration for the first element, the

aberrations of the third and fourth plane surfaces and express them as

the aberration of the parallel plate, and the aberrations of the two last

surfaces and express them as the aberration of the second element.

Then in comparing the one side with the other the identity of the two

sums is clearly established, while at the same time it is also clearly

seen on looking down the left-hand side that the whole sum for the

six surfaces is identical with the sum of the aberrations of the first

and sixth surfaces only, the intervening aberrations neutralising one

another.

The notation is as follows : yl
is the height of the ray where it

cuts the first element plane, yz
is the height of the ray where it cuts

the second element plane, % and v
1
are the conjugate focal distances

for the first element, w
x

is the distance from first vertex to the point

to which the rays are converging after refraction by the first surface,

and w2 and vz are the first and second conjugate focal distances for

the second element, so that % and ti2 are within glass measurements,

so that ?
2
= il

l
t (t being the thickness), and therefore
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o

H

- + ^
*" -*
^> 3.

-
a.,

+ If
a i a.

+

~
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On both sides of this balance-sheet all the aberrations are referred

to the second vertex of the lens or to the second element, and y.2 is

(u
\

t
j

;
also the aberrations of

%2 +
/*/ / V \

the parallel plate are similarly treated, so that ?/2
becomes yl

( t

j
,

X A^*^

while ?'
x and r2 are radii of the first element, and s

x
and s2 those of the

second element.

In the above formulas it has been the more convenient for our

purpose to consider u2 as a positive quantity, and the sign prefixed to

the formula for each surface shows whether the aberration is + or

with respect to the final results. But after gathering together the two

last formulae into one formula for the second element, the con-

vention of u2 being is resumed.

A Practical Illustration

As a further confirmation of the above theorem, and as an

arithmetical illustration of the practical application of Coddington's

Formula XXIII. and the above Formula XXV. to a thick lens,

Treatment by ele- treated by the method of elements, we will take the case of a
merits.

f /I 1\ 1

lens of principal focal length =1 '5, such that
(^-

+
~)(f

J-~ 1)
=

[Tg>

yu,
= 1-50, r = 1, and r2 or s = 3, while the central thickness t = '75.

We will suppose u^
to be infinite and the entering rays parallel.

The power of the first element = = -, therefore /x
= 2.

Powers of the two r
i

elements. u - 1 '5

The power of the second element = 1 =
, therefore/2

= 6.

Let us suppose yl
to be '40

;
then since 2

= v
1

and

_t_
Relation between

Uc>

V
~*-~~n. 2 - '50 3

thetwov's. y9
= y\-^-y\ ~-y\ *

=
^i'1 V

1 ^
therefore

Values of the two Then we have a = 1 and x = 4-1, while at the second element
a '

B - we have

nf
~ ~

i .K >
' ' a

2
~

1 .K
~
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and
<x
2
= -

9, while x
2
= - 1.

For the first element Formula XXIII. gives for the spherical

aberration

(-4V2 -16

vr4{7
- 10 + 3-25 + 6-75}

= -^{U -
If + -5416 + 1-125}

"/ 1

= {1-1666} = '02333, Aberration of the
50 first element.

which quantity we must transfer to the second element by multiplying
16

=

IT'

Then the aberration of the second element

=
-^{7

+ 10(9) + 3-25(9)2 +6-75}

-^(P
~21G {L

~
6

'09 Aberration of the=
2l(P '

=
second element-

Add "04148 brought forward from first element.

Total (2 elements) = + '06698

From this must be deducted the parallel plate aberration Aberration of the

given by
parallel plate '

Here &
2

is the same as yy which in this case = '30, and v
z

is the

same as w
2 ,
which in this case = 1*5, so that we have

2-25 - 1

(
(-3)

Yx.75
v = L25 ^09 1-25 -09

x3-375 V1'5V V '
6'75 5'0625 V ;

9 5'0622x3-375 (1'5)V
'

6'75 5'0625 9 5'0625

0125
= -^i^ = '00247.

,So that we have 5*0625

Aberration of the two elements = + '06698

Aberration of the parallel plate
= - '00247

Corrected aberration of lens = +^0645T T tal f the three
aberrations.

Alternative Treatment of the same Case

We will now treat the aberration of this lens as simply the sum
of the spherical aberrations of the two surfaces, for which purpose we
.must employ Formula XVIII. (II.), which is
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^- - -I
(

+
) (

+ -
) \y^ for the first surface,

Alternative treat- 2/z
2

I \)\ %/ \f, u
t

/ J

ment by two sur- and
faces. M-lf/1 1\V1 M+1M , , ., .

,- for the second surface.

2/*
2 lVr2

In this case, after the parallel entering rays have been refracted

by the first surface, they will converge to a point (by first approxima-

tion) behind the first vertex by a distance = u = r = 3r
,
and will

l
/JL

- 1

then be converging into the second surface to a point = 3?^
t = 3 '75

= 2-25 behind the second vertex (which is a negative distance), and

then by the formula

lu-lu-5/ 1-5\1151
Value of v

z
ascer- = c

"
( _) = _ + -_ =

tained. v
2

?'
2

P8 3 V 2'25/ 6 1 '5 6 1'2

we get v
2
= 1'2.

2-25 3
Then we also have yc,

= y,^~ = ^7, Ju t as when we treated the
i o i i

Relation between lens by the method of elements. So we again have y1

= '40 and

the two y's. ,y -30

Then the aberration at the first surface

Aberration of the = _l_r/ 1 + Q\Z/I + Q)}(-40)
2 = ^(1)('16) - '01777.

first surface.
2(2'25)

v 9

This aberration has now to be transferred to the vertex of the

second surface by multiplying it by

/u \ 2
/ 3 \ 2 /4\ 2 16

Above transferred to / Jl \ or /
) =1-1 =

second vertex. \y'J \2-25/ V3/ 9'

just as when we treated the lens by the method of elements, so that

1 (*

we have '01777 X -^-
=

7

second surface, which is

1 (*

we have '01777 X -- = '0316 to add in to the aberration of the

Aberration of the
'5 j/\ , i.Wl + \

second surface.
2(2'25)\\3 1'2/ \3 \"2

\
1421 _

Add aberration from first surface = '0316
Total of the 4,two
aberrations identi-

cal with the last

result.
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Thus the aberration for the whole lens referred to the second

vertex, obtained by treating the lens as a solid entity of thickness = t

bounded by two spherical surfaces, gives exactly the same result as

we got by supposing the lens to consist of two infinitely thin elements

with a parallel plate of glass of thickness t lying between them. If

so, then why should we not always compute the spherical aberration

of such thick lenses by the formulae applying to surfaces, and not

trouble ourselves with the method of elements ? To which question The principal ad-

it may be replied that while the student is perfectly at liberty to th^orem^f elements

apply the formulae for surfaces when computing spherical aberrations, yet to be explained,

yet when it comes to working out various other corrections of great

importance, to be dealt with in subsequent Sections, it will be found

that the method of elements simplifies and renders quite feasible

problems which mere surface formulae would be quite inadequate to

deal with, at any rate without risk of hopeless confusion arising.

Moreover, we have already seen at the beginning of Section II. that

a refracting surface is not a constant entity. That being so, it may
be conceded that it is as well, for many obvious reasons, to adopt the

same general method throughout all optical computations.

Investigation of certain other Aberrations of the Third Order
4

We have yet to apply Formula XXIV. or ^A" to this lens, but

before doing so it will be as well to work out the other aberrations of

the order y
4 to which the lens is subject. We will return to Figs. 35a

and 35&, representing a biconvex and a biconcave lens touched at

each vertex by the element plane A
l

. . b
l
and A

2
. . &

2 respectively.

Let Q :
be the origin of the pencil, and Q 1

. . b
l
a ray impinging on First the versine

the lens surface at b^ but cutting the first element plane at bv while corrections.

Q
1

. .
bj_'

. . b_2

f
. . Q2

'is the actual course of the ray dealt with, which finally

cuts the optic axis at Q2

'

considerably short of Q2 ,
where it would cut

the axis were there no aberration. Now we have assumed so far

that the first refraction takes place in the first element plane, so that

the straight line &i . . &
2 represents the course of the ray within the

glass, if it were refracted by a small portion of glass surface really

placed at &
x

. It is obvious enough that this is practically the case for

any ray from QT passing through the lens much nearer the axis. Now
supposing the ray after the first refraction at the curved surface (sup-

posed to be placed at &j) converges to a point q within the glass, then

it is obvious that the refracted ray b
l

. . q will cut the second element

plane at a point &
2
such that A

2
. . b

2
or Y

2
will be equal to
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(Aj . .
ij

orY^2-^
;

that is, Y9 will be Y/
Al ' ' ^

,A
l

. . q A
i ?

or, what is the same thing,

A (7

But 1
"

!f
is the distance -y, from the first element to the point on the

P
axis to which the ray Q :

. . ^ would be refracted by passage through
the second or plane surface of the first element in addition to the first

or curved surface
;
so that our equation

/ \ f r\
Y

2
=Yi( ? )

is the equivalent of Yg-YJ
^

/* ).

\ ^ / \-,\-J

That point being settled, we may return to the determination of the

actual or corrected heights &/.-0J and &
2
'..c

2 ,
at which the ray is

refracted by the two surfaces of the lens. Let these two heights be

called
T/J

and yz respectively. We have to find a formula expressing

yl
in terms of Yj, and

y^
in terms of Y

g ,
when

_T
Vl

~u. T YY
2
= Yj , or, what is the same thing, when Y

2
= Yj

Lens considered to We may now consider the lens to be composed of three portions
be divided into three i fj-i-i T t i--.ii p

portions.
a convexo-plane lens of thickness A

x
. . cv o* . . c

l being its plane surface
;

a parallel plate of glass of thickness c
t

. . c
2 (
=

t) ;
and another plano-

convex lens of thickness c
2

. . A
2 ,

of which &
2

;
. . c

g
is the plane surface.

Thus the ray is refracted at the two sharp edges b^ and Z>
2

'
of these

two lenses. It may then be assumed that the distance t becomes

an air-space of thickness -, so far as our present purposes are

concerned. ^

It is clear that the vertical difference between y^ and Y
x

is the

Y Y
horizontal distance ^ . . &/ multiplied by

1
. or *.

But b b
f

is the versine of the curve of radius r
l

for the semi-

chord &/ . . cr It is sufficiently accurate to suppose that
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Then we have
V 2 V V 3

w Y + x = Y + * (18} Expression for yi\in.

2^ u^
l 2r

1
w

1

*

terms of YI, etc.

We next proceed to find the value of y2
in terms of yr It is

plain that

t X i .
i i

' 1
I m X

1
^ 9 l

y y i jjj winch I L *
I

so that

_ _ 1/rp _ Yi
2

_ Y2
2
\ Xl Expression for y2 in

2
~

* u\ 2r.. 2r
2
/ v

l

' terms of y,, etc.

in which we may insert for yl
the value given above in (18), so that

Y 3
1 / Y 2 Y 2\ Y

y = Y + l - -IT -
)

or

^Y Y 3 Y 3 Y 2Y Expression for t/2 in

1/2
= Yj

- - T
^-^-

+
^ ^

- + ^ ;
terms of Yj and Y2 ,

i l XI i 11 *21 CuC.

in which, as we have already seen,

Y 3 Y 3 Y 2Y
Y _l = Y

2,
so that y2

= Y
2

/A
v

t

As the last three terms are small quantities compared to Y
2
we

may say that
V 3V V 3V V 3V

,,2_V2, 1
1 2, ^JL_2 ,

X
2
X

l .

y9 x
<j

-T j

r
i
u

i

therefore

-2

In this formula we can express Yx
in terms of Y

2
, so that

v.

2

remembering that if v
l

is positive (the rays converging) relatively

to the first element, then the reduced distance u
2 (
= (v

l J)
is

negative relatively to the second element. Therefore we get

3

or

V zf y
i
3 v

\
2 1 \ ~\ f\a\ Expression for yf in

2 \
~
7'jW^

3
~
j^uf

~
pfM*/ )' te 8 of Y2

2
> etc -
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If the rays are converging into the second element, as in the

diagram, then, as u
2
in this case would be negative, all the above terms

would arithmetically work out positive. We saw from Formula (18)
that

Expression for y? in

terms of Yj, etc.

Aberration of first

element corrected
for versine.

Aberration of second
element corrected

for versine.

therefore V 4 / V 2
a =21+

So that, having now obtained expressions for y
2 and y* in terms

of Y
x

2 and Y
2

2

,
we may state the aberration of the first element to be

(20)

(21)

and the aberration of the second element to be

V 2

-.A.') 1 + Y 2 -
/ 11 2 l\~v
(
-
JV-i

- -S -----
) IV ru u ruJ j

These formulae, however, are open to objection in their present
form. In the application of (20), for instance, to the first element

of a thick positive lens in which the first surface is concave and

therefore r
l

is negative, and still supposing that the entering rays are

diverging into the first element, as in Fig. 35, it is plain that yl
will

Y 2

be less than Y., instead of greater, so that -1- should turn out negative
fjttj

if the formula is quite self-interpreting. But obviously r
l
should be

entered as a negative quantity ; moreover, by our conventions previ-

ously laid down, u should also be entered as a negative quantity, and

Y 2

therefore would remain positive, which is obviously wrong.
T-.U

In order to render Formulae (20) and (21) quite self-interpreting,

we may leave u and

for

j
2
intact, while putting

1 1

for
,

for etc.

Then becomes 1+04
,
and therefore Formula (20) becomes

Formula (20) in self-

interpreting form.

Obviously if r and /a
become negative, then by convention becomes

tt,
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negative with respect to /^ and (1 + a
; )

is therefore negative,

like manner Formula (21) becomes

In

2^(/t-

XXVII. Formula (21) in self-

interpreting form.

Since / in the denominators of the first two functions in the inside

brackets may be expressed as n/2 ,
it is evident that the corrections in the

inside brackets in both Formulas XXVI. and XXVII. are aberrations

Y4

of the order -= similarly to the intrinsic aberration functions of the

third approximation. It is clear that these formulas may be applied
to any pair of elements constituting a thick lens.

Thus the corrections that have to be added to the first values of

the aberration to the order Y 2

,
as ascertained from Y

I
and Y

2
in the

element planes, are functions of Y4 and of the -aberration of the second

approximation as expressed in Formula XXIII. Precisely the same

formula will be obtained by the same course of reasoning in the case

of the negative lens, Fig. 35&, although in the intermediate processes
the signs of T and t are different.

As these corrections are consequent upon the curved surfaces Above versinecorrec-

retreating from the element planes, we may fitly call them the

versine corrections of the order Y4
,

in distinction from the intrinsic

aberrative corrections of the order Y4
as expressed in Formula XXIV.

tions distinguished
from intrinsic cor-

rections of the same
order.

Practical Application of the Intrinsic Aberration of the

Order Y4 to the same Lens as before

As an instance of the arithmetical application of these aberration

formulas of the order Y4 we will take the same lens of radii 1 and 3,

thickness '75, Yx
= -40, and Y

2
= -30, with entering rays parallel, for

which we worked out an aberration of the order Y2

equal to + '0645.

Applying the Intrinsic Aberration Formula XXIV. we get for

the first element, since x
l
= +1, and a

x
=

1,

Q40)
4

f
- 4-625 + 33-625 - 60-1875 - 51'94 - 55'55 + 28-19 + 131'06-j

27(2)H _5_24-7/

(27)(32)
l 32

Intrinsic aberration
of the third order
for first element.

or about of the aberration of the order Y 2
,
which was +'02 33 3.
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Above aberration 111 order to transfer this to the second element, we must, as before,
transfei

vertex.

transferredtosecond
multiply by^ = \, thus getting

- "00048.

For the second element, with #
2
= 1, and a

2
= 9, as before,

we get

(-30)
4

}

- 4-625 - 302-625 - 60-1875 - 4206'9 - 4499'3 - 20548'7-\

27(6)~H
- 1179-6 -32958-7 -24-7 /

Intrinsic aberration '0081
of the third order =

/97w fl
N 5 (~ 63785} = '00246,

for second element.

or about j^th of the aberration of the order Y2
,
which was + '0255.

So that we have

- -00048 for first element

and - -00246 for second element.

Total of above. Total. . -'00294

for the intrinsic aberration corrections of the order Y4
.

Aberration of the To work out a formula for the aberration of the parallel glass

ailei plate no^im- plate also to the order Y4 would scarcely be of any importance, for, as

portant. a rui 6) even the parallel plate aberrations of the order Y2 are small

compared to the aberrations of the elements.

Application of the Versine Corrections to the same Lens

We will now turn to the versine corrections of the order Y4
for

the above lens. At the first element we have

Y 2 /Y 2N

Versine correction wnich = 0, since u. = infinity,
for first element = 0. *

At the second element we have, as applying to this case,

8/2
2

in which, since
u^
=

infinity, the first term vanishes. In the remain -

/ T\
ing two terms v

l
= 2, yu-=l"5, ?' = 1, r

9
= 3, and u9

=
( *, )

/ -75\ .

'

P
=

(
2 -

)
= 1'5, so that the formula becomes

\ 1 *o/

<- aM)t-
(1-5)(1)(- 3-375) (

Versine corrections / 4 1 \ / 1 \
for second element. = '0255 - n^ + <r~?)('09)

= ('0255) )(-09)
= + '0021,

\O \/ 1) ^j O I / \ L \) t s
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an amount which goes a long way towards neutralising the intrinsic

aberration of the order Y4
,
which was '0029. We could here have

employed Formula XXVII. for the second element with a like result.

The possibility of the intrinsic functions being neutralised com-

pletely by the versine corrections in the case of thick lenses at once

suggests itself, but space does not permit of a full inquiry into the

conditions under which this may take place, although it is a question
of much interest.

Further Aberration Corrections of the Third Order, due to

Aberrations of preceding Lenses

Our next task is to consider the nature of further aberration

corrections of the order Y4 which arise in a system of two or more

lenses separated by substantial intervals.

Let Fig. 36 represent two collective lenses or elements L
:
and L

2

separated by an interval Sj, and Q x
. . C . . Q/ be a ray refracted by L

x

at C. Let Q2
be the point by first approximation to which the ray

would be refracted by L
X
were there no aberration, but Q/ the point

to which it is actually refracted. Thus Q2
. . Q2

'
is the longitudinal

aberration. It is plain that at L
2 ,
Y

2 ,
or the height up to the point

D = Y^
1 l

simply ;
but the height y^ up to the point E, where the

i

ray actually cuts the plane of L
2 ,

is less than Y by an amount that is

a function of the aberration of L~r Let

L! . . Q2

' =
w/, L

t
. . Q2

= vv
and let

L
2

. . Q2

' = uy L
2

. . Q2
= u

2
.

Then we have

in which v
l

S
l obviously = w

, so that
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Y2

and since the correction is generally small compared to 1, then we

may assume that
Formula for y as

2 V2 \
modified by aberra- 2_v z(

uz\
(

i , 90 ^i 2_A' ) /99\
tion of first lens or & -

*i \*) \^
+ ^i

8/3
A

I/
i ^ > i

element.

This formula is open to the objection that if L
2
were dispersive, then

V- would be positive instead of negative, and the correction to Y would
u
2

come out as an increment instead of the decrement, which it so

obviously is. But we can make the formula universally self-

interpreting by adopting the same device as in the case of the versine

corrections, thus arriving at

Above formula in
/,.

\ 2 c y 2 / i , \ / ^

self-interpreting y
2 m Y p) {

1 + fr^\(r^)&l \
XXVIII.

form. \V 4/a

3 1
\l-.a1//j

Now, if / is dispersive, it is negative relatively to /1?
so that j is

/2

negative, while 1 + a,2
and 1 a

t
are both positive, therefore the

correction to Y
1
comes out negative.

The spherical aberration of L
2 may now be written in the form

or, if we express Y2
in terms of Y

ls
in the form

Whole expression
for the aberration of

Lo, including that of

the third order.

V 2/M 1 /A'N/I^^I A' /ii?iVla \ .Y
i (-) c/ 3 (

A
2)i

l + 773A 1 1 iT
~

) 7Si pU
i
7 8/2 Vi

- ai//2

so that the aberration of the order Y x

4
,
when separated out, is

berration o the / \ 2 1 1 /l-t-nX/"
third order for L2 Y (Sl) ^.(A

/

fV-ii<A'1)(f ^>>%. (23)
isolated. \V 8/2

3V
''i/^ M-V/f

Aberration of the

The Y's modified by In this case we may say that the modification of Y at the second

ceding lenses.
^ens an(^ ^ne consequent modification of its aberration is due to

borrowed aberration. Let it now be supposed that another lens is

added to the right hand of L
2
and at a distance = s

2
from it. Then it

is evident that the aberration of L
t
will not only affect Y

2 ,
but will

generally affect Y
3
in still greater degree, since L

3
is further removed

from L
I

. The aberration of L
X
will be transferred right through L

2
on

to L
g

. Not only so, but L
2
will add (if it is a collective lens) its own

aberration to the aberration of L
: passing through it, and therefore Y

will be affected by the two aberrations borrowed from L
X
and L

2
.
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We will here refer forward to Fig. 96, Plate XX., which represents

a case of four collective lenses or elements in succession, so arranged

that all the w's and v's are equal and positive. The first lens only is

supposed to give an aberration whose linear amount is Q t . . qlt while

the other three lenses are supposed to be free from aberration and to

simply copy through from focus to focus the aberration given by L^ ;

yet the cumulative effect upon the successive Y's is most marked, and The cumulative

they grow larger and larger as we proceed from left to right.

Of course, if L
2 ,

for instance, is a dispersive lens, then the effect of Y*'s.

its aberration on Y
3

will more or less neutralise the effect of the

aberration of Lr
The formulae giving the modifications of the aberrations of the

third and fourth lenses due to aberrations borrowed from the preceding
lenses are naturally more complex and unwieldy than XXVIII., and

it will suffice to give the complete expressions for the spherical

aberrations of the third and fourth lenses of a series of four widely

separated elements or thin lenses, without detailing their working
out. The student may easily verify the formulae for himself. We
have already obtained the expression for the second lens or element

in Formula XXVIIlA., and we will adhere to the highly convenient All the Y's to be ex-

expedient of expressing all the Y's of the succeeding lenses in terms ^
es

of Y,.

Then the formula for the corrected spherical aberration of the

third lens is, in self-interpreting form,

^ 1 ~1~ CCo / n / JL -i . t %n I

Whole expression for
1 ' XXVIIlB. tne aberration of L3 ,

including that of the
third order.

4/,
15 0l

z*
2
V J J

and the formula for the fourth lens is

1

2 ,u* Y/

. ., .,

?',''

V 2 /v v \2>
*1 A' WM I

xxvnic.
Whole expression for

the aberration of L4 ,

including that of the
third order.

The formula for the fifth lens would evidently contain ten terms,

and that for the sixth lens fifteen terms. In the case of large
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Vergency variation

for L.2 due to aberra-

tionofLj.

Vergency variation

for L3 due to aberra-

turns of 1.,+Ls.

Vergency variation

for L4 due to aberra-

tion80fL
1 ,L8,andL3

.

apertures and separations, the corrections of the order Y4

may form a

large percentage of the spherical aberrations of the order Y2
.

Vergency Variations consequent upon the Aberrations of

one or more preceding Lenses

There is now a further modification of the aberration of L in
2

Fig. 36 to be considered, which, strictly speaking, applies even when
L

2
is in contact with L

I}
but applies with much greater force if S is

large compared with
v^.

Hitherto in assessing the value of the vergency characteristic a

for any lens or element, we have assumed that there is a fixed

point Q from which or to which the rays are diverging or converging
before entering. But in Fig. 36 it is clear that in the case of L

2
the

entering rays are converging to a varying point Q2', which recedes

farther and farther from Q2
in proportion to Y

x

2
,
the recession being a

function of the spherical aberration of L^
We may regard Q2

. . Q2

'
as a variation of either v

}

or %
2

,
and since

in Fig. 36 u
2

is minus, we have

therefore

so that we have

in which

therefore

and

JL. -XiVV.A -
3 ! 11 2

2

a
2
+ Aa

2
1

2/2

1+a

V2

_

2/2

Y/2
, ^

In the same way we find that

and

2 V2
' 2 + AI A'

4/;
3 l

\^ 4/2
3

, V2 /wvw.N 2 Y, 2
A/ /W

2 2
i;s\

2

Y/
2

A/ / 2 8t'
8\

2

)- . / J -J.A
(
J
JO.] + -} A' I-2-2

-^) +--LA 3
(- -*)

[ (26)\W X*W 4A "VWV ' >^%V '
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Now if we differentiate the formula for spherical aberration of the Differentiation of

second lens with respect to
2
we get

th
"P^ricai

aber-

ration formula with

respect to a.

in which we may substitute Formula (26) for da,2 ,
and

and then get

for Y
2

2
,

XXIX-

/
2\ 2

In this formula Y 2 has been expressed as Y, 2
! -^ ), which has
\V/

V
cancelled out the -\ of (24), and as /x can be expressed as nfy we see

^2 V 4

that the correction is of the order -^ and is the expression for the
/2

variation in the spherical aberration of L
2 consequent upon the varia-

tion in a due to the aberration of L
r

In the same way the complete

expressions for the functions of da
3
and da^ can be worked out.

In these two cases of the effects of the aberration of one lens upon
another we have assumed that the rays entering the first or left-hand

lens are either diverging from or converging to a definite point on

the axis:

But if we have to look upon these rays as principal rays, each such

ray being the central ray of a pencil, then it often happens that such

principal rays are constrained to pass through a definite point on the

axis after passage through one, two, or perhaps all of the lenses of a

series, owing to a diaphragm with a circular aperture being placed at

the desired crossing point.

In such a case, of course, it is the more simple and convenient to

regard the rays as travelling from right to left, and the formulae ex-

pressing the corrections to the aberrations consequent on borrowed

aberrations may then be worked in inverse order.

However, these considerations do not strictly apply in the present

section, but only when we come to deal with the optical characteristics

of lenses other than spherical aberration, and especially distortion.

Complete formula

for variation in a2

consequent from

aberration of Lj.

Summary of the Spherical Aberrations of the Order Y4

On summing up these spherical aberrations of the order Y
,
we

have for each element or thin lens

First, as applying to all single lenses, and in the case of all
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First, the intrinsic

aberration functions.

Second, the versine

corrections to the

aberration.

Third, the correc-

tions to the Y's due
to aberrations of

preceding lenses.

Fourth, the correc-

tions to the n's due
to aberrations of

preceding lenses.

Y 4

elements, the intrinsic aberration function of the order -^ as expressed

by Formula XXIY.

Second, as applying to all single lenses, and in all cases, the versine

Y4

corrections to the aberration of the order -^ as expressed in Formula
/ y4

XXVI. for the first element of a thick lens, and also of the order *

/
as in Formula XXVII. for the second lens element. Thus in a series

of lenses, Formula XXVI. applies to the first, third, fifth, seventh

elements, etc., and Formula XXVII. to the second, fourth, sixth

elements, etc.

Third, but only where separations exist between lenses or elements,

the corrections to the aberration of a lens or element due to the

Y4

variation in its Y caused by borrowed aberration of the order -^ as

expressed in Formulae XXVIIlA., B, and c.

Fourth, but only in the case of one lens being preceded by others,

and especially if widely separated, the corrections to the aberration of

a lens or element due to the variation of its vergency characteristic,

Y4

and caused by borrowed aberration of the order
-j-&

as expressed in

Formula XXIX.

Hybrid Spherical Aberrations

Let it now be supposed that in a system of lenses the above

aberrations of the order Y4 do not neutralise one another, but that there

is a perceptible balance left over
;

then the question arises, can they
be neutralised by a contrary overplus of .aberration of the order Y2

?

We shall soon see that they cannot.

Let it be supposed that Y represents the extreme semi-aperture of
second order cannot

system of lenses iii which we are seeking to eradicate all the
be properly neutral- * ....
ised by a contrary spherical aberration, and that there is a residue of minus aberration of

f ***
the order Y* Then

>
of course >

ifc is quite possible and practicable to

counteract this residue by leaving in the system a residue of plus

aberration of the order Y 2
,
so that we have

An aberration of the

/,* +//,* =
0, (27)

in which // represents a certain coefficient of Y2
,
and

/// represents a

certain coefficient of Y4
. Then it is obvious that the relationship of

these two coefficients is given by

///- "//a" (28)
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Let us now take another measure of the semi-aperture, smaller

than Y, and call it y. Then since the coefficients and their relation-

ship are constant, tho only variable being y, then we have fjif +f//y*
to express the aberration for the smaller semi-aperture y, and if we

differentiate this expression with respect to y we get

(2//y+ 4///y )Jy. (29)

Then it is plain that we can equate this differential coefficient to 0,

thus :

2f/y + 4/^y
3 = 0, in which (from 28) f//

=
//^; so that we then

have

and

(30)

tion.

Evidently, then, at a distance from the axis- such that y=-j=> mum hybrid aberra-
** "

there is a maximum deviation from a true balance of the two orders of

aberration, and the amount of this maximum deviation may be easily

determined as follows :

Since

Y2 Y4

v '-=
,

therefore at the height j=
from the axis the state of the aberration is

v 2

given by an expression exactly analogous to (27), viz. //2T+///y
4 becomes

Y2 Y4
1

// +///, in which
//y^

mav be substituted for fn (from (28), so

that we then have

,Y2 .Y2
, . , /,Y

2

//-r--//^-,
which = +-//

, (31)

or exactly one-fourth part of the + aberration of the order Y 2
to which

the ray passing through at the extreme semi-aperture Y is subject.

This theorem is illustrated in a striking and convincing manner by
the diagram, Fig. 37.

Let L . . D be the optic axis of a system of lenses of semi-aperture
= D . . P, placed somewhere towards the left hand, and let A

2
. . P

represent the longitudinal value of a residual amount of negative

spherical aberration of the order Y"4 to which the edge ray is subject.

Then let there be introduced such an amount of positive spherical

Maximum hybrid
aberration is one-
fourth of the aber-
ration of the second
order and of thesame
sign.
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Zone of aberration

explained.

aberration of the order Y2
as will neutralise the negative aberration

of the order Y4
.

That is, A l
. . P = P . . A

2 ,
and represents the longitudinal value of

the positive spherical aberration of the order Y2
. Then, as these two

aberrations for the edge ray are equal and opposite, the said ray will,

of course, focus at P in the same plane as D, the focus for ultimate

centre rays as given by formulae of first approximation.
But if the abscissae of the curve D A

I
are made to vary, as y

2"
or

the square of the height from L . . D of any point in the curve, and the

abscissas of the curve D . . A
2

are made to vary, as y* or the fourth

power of the height from L . . D, then it is easy to see that the

resultant curve joining loci of actual focal points for rays traversing

the system at different heights from the axis will be the curve D . .m . . P,

Y2

having its maximum abscissa at m, where y
2 =

,
and that m . . b will

2i

be exactly a quarter of P . . A
x
or P . . A

2
.

Here we have the explanation of a phenomenon familiar to many
opticians who have attempted optical systems of large relative aperture,

and found it impossible to obtain a well-defined axial image of a point

owing to the presence of what we may fitly call
"
a zone of aberration,"

which exhibits itself in the form of a bright diffuse zone or annulus

within the cone of rays, which is visible through an eye-piece placed

either inside of the focus or beyond it.

While the edge rays at the height Y from the axis and ultimate

centre rays may be brought to the same focus, yet the rays traversing
Y

the system at a height equal to r=- intersect the optic axis at perhaps

a considerable distance either short of or beyond the focal point for axial

and edge rays. The reason why, when the eye-piece is placed well

Phenomena at the within or beyond the focus, the phenomenon gives rise to a bright

zone, is rendered plain by means of the diagram, Fig. 38, which

accurately represents the rays coming to focus in a case where there

is hybrid aberration, brought about as in Fig 37. If the eye-piece is

made to focus upon a plane somewhere about a . . a, it is evident that

a condensation of rays occurs about half-way between centre and

periphery of the circular penumbra or section of the cone of rays.

On approaching the focus, as at position b . . b, the condensation of

rays is still more marked, but it occurs now relatively nearer to the

centre, while at b
f

. . b
f
the zone of aberration is at its most distinct

phase and has a radius of about one-fourth of the radius of the whole

penumbra. The extreme edge ray focuses or cuts the optic axis at P,

focus.
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which is supposed to be the focal point also for the rays ultimately close

to the axis, as given by the formulae of first approximation. The whole

distance m . . P along the axis over which the hybrid aberration spreads

itself of course corresponds to the maximum distance m . . b in Fig. 3 7.

If the eye-piece is made to focus upon planes beyond the focus in

this case, then a ring of rarefaction or a comparatively dark ring will

show itself, corresponding to the bright ring visible inside focus. In

the plane c . . c the central bright nucleus is very marked.

It is clear from Fig. 37 that the bright zone of aberration will

always show itself on the same side of the focus as the aberration of

the order Y2
,
while a corresponding dark zone will show itself on the

same side of the focus as the opposing aberration of the order Y4
.

It is the existence of outstanding aberration of the third approxi-

mation or of the order Y4
,
as represented by P . . A., in Fig. 37, which

is supposed to have necessitated our having in the system an equal and

opposite aberration of the second approximation or of the order Y2
,
as

represented by A I
. . P

;
and we have seen that the incongruity between

the two orders of aberration gives rise to a maximum amount of hybrid
aberration whose amount m . . b is always one-fourth of the amount

of the aberration A
I

. . P of the order y
2
to which this extreme ray is

subject.

We have also seen that all the aberrations of the order Y4 which
Y4

arise in a lens or system of lenses are functions of --. From this it

follows that if in place of each lens of a combination we substitute

two lenses, each being of half the power or double the focal length
Y4

of the original, then, instead of an aberration represented by -j-5 ,
we

/ Y4
\ 1 Y4

*

have an aberration represented by 2 ( .

r-g
1 or

75

Tims, supposing we are troubled with a zone of aberration at the

focus of any given system, and it cannot be eliminated by opposing

plus aberrations of the order Y4
against minus aberrations of the same

order, then we can at once reduce the zone to one-sixteenth part (as

a general proposition) by the expedient of splitting up the lenses, or

at any rate the most violently curved one, into two lenses each of

half the power of the original.

It is also evident that the linear amount of hybrid aberration

in any given case and the consequent intensity of the zone will be

multiplied 16 times on doubling the aperture.
It is also worth while to glance at the case of the hybrid

aberration which arises when we correct a certain amount of aberration

Opposite effects at
the two sides of the
focus.

Favourable effect of

dividing up powers
of lenses upon a zone
of aberration.

The next higher
order of a zone of

aberration.
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of the fourth approximation, or of the order Y6 for the extreme ray by
an equal and opposite amount of aberration of the second approxima-
tion, or of the order Y'2. Eig. 39 illustrates this case.

We then have //Y
2

+////Y
6 = 0, from which

Y 2
1

Where the hybrid
aberration is at its

maximum.

Aberration of the
order YH

generally
small compared to

that of the order Y4
.

therefore, substituting, we have //y
2

-// yi^
8

to represent the hybrid

aberration for any other height of ray = y.

On differentiatin this we have

=
0, /. l - Sy*rfy = 0;

and on equating this expression to we get

3|J
= 1 and y*

= -*, .% y = -~ = '7598Y.

Then it is for this height of ray y that the maximum amount of

hybrid aberration occurs, and its amount will be given by

=/1
Y2

(-577
-

-192) =/1
Y 2

(-385).

Hence the maximum amount of the hybrid aberration occurs for a

ray which traverses the system at a distance from the axis equal to

about three-fourths of the extreme semi-aperture, and the amount of it

is about three-eighths of the outstanding aberration of the order Y2 to

which the extreme ray is subject.

But of course the amount of aberrations of the order Y6
will,

generally speaking, be but a small fraction of the aberrations of the

order Y4
. Hence we may regard the hybrid aberration curve as a

combination of the curve of Fig. 37 with a much flatter curve of the

character of Fig. 39. The latter will have the effect of raising an

elevation or wave on the curve of Fig. 3V at about h.

An Important Corollary

One very obvious corollary from all the preceding investigation is

That if for any optical system the aberrations of the two higher
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orders Y4 and Y6
are eliminated or of an imperceptible and negligible

amount, then our formulae of the order Y2
,
as applied to elements, etc.,

will be strictly accurate.

The best possible test case for this proposition is provided by an

optical system whose curves are strictly spherical, which is known not

to show any perceptible zone of aberration at the focus, and whose focal

distance for the ray traversing the extreme edge of the aperture has

been proved by the most rigorous possible trigonometrical calculation

to be exactly equal to the focal distance for rays ultimately close to

the axis, as determined by the formulae of the first approximation.

Conditions under
which formulae of

the second approxi-
mation are accurate

A suitable test case.

Application of the Method of Elements to a large

Telescope Object Glass

The following astronomical objective of 12-inches aperture and

focal length of 176'13 inches measured from the vertex of the fourth

surface serves as a capital example of the application of the formulae

for spherical aberration of the order Y2 which we have worked out.

Radii of Curves, etc.

Collective Lens

t\= + 59'8" r
z
= + 90-15".

Centre thickness = 1".

Refractive index of the crown glass
for C ray= 1'5146

=
/*

Dispersive Lens

r
4
= -410".

Centre thickness = 1".

r.= -84-7"

Specification of 12-

Refractive index of the flint glass for PC
J
6B aperture ob-

IOPT.IVA

the C ray = 1-6121
= M.

jective.

The focal length for parallel rays measured from the vertex of the

fourth surface, as trigonometrically calculated for the C rays, is

for the ultimate centre rays = 176*1306"
and for the ray 6 inches from the axis = 176 '127 2

Aberration under-corrected by - -0034"

We will now apply the algebraic formulae of the second approxima-
tion to this objective, by the method of elements. We have

7
=

59T8 ' " ^ = 1 16 '2068 = vv from which subtract -*, which = '66024
./i /i

66024

M
2
= -115-54656'
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First element.

Second element.

r^p'-v/.-
1"-'8*8 '

_i_ i_i
V
2 JZ U

'<

1
+

1

175-1846 115-54656
. ,

.'. v,= +69-6244".

The axial separation between vertices of second and third surfaces

is '013"
;
and subtracting this from v

2
we get

u
s
= +69-6114",

1
=
-6121

ft*u-r

i_i_i i _^
^'3~/3 138-3761 69-6114

and/3
= 138-3761

;

, .'. ?
8
= - 140-08,

the rays being convergent.
From ?; subtract

t.
2

M
and we get

then

M
4
= +139-4597".

-, .-./,= 669-835,

1 i

_! _ _! _ J

^~/4 w
4

~
669-825 139-4597

1

1764806'

Therefore v
t
= 176-1306. as stated above, and the distance is

4

minus only with respect to. the dispersive lens, since the rays are

convergent. So we now have

1= 116-2068
(
+ )

= -115-54656 /2
= 175-1846

(
+

)

u
3
= +69-6114 /= 138-3761 (-)

4
= 669-825 (-

!= +116-2068

,= +69-6244
v3
= -140-08

v
4
= -176-1306M

4
=+ 139-4597

We may now assess the values of the characteristics a and x.

1 + a,

--^=0, .-. a
x
= -

1; x^ +1.

1 + a

2/2

so that

'

350-3692

1

115-54656
,
from which 1 + a

2
= - 3'03228,

o-= -4-03228;
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Third element.

a
4
= + 8'606

; 4
= - 1. Fourth element.

We have next to express the y's or heights of the ray from the

axis where it cuts each element plane in terms of the corresponding yl

at the first element plane.

We have

. 2_2/M2\
2

.
The y's expressed in~
terms of yr

Next we must transfer the spherical aberrations of all four

elements to one common reference point, which is, of course, the

vertex of the fourth surface or the locus of the fourth element.

Calling the aberration function

by the symbol fff^-Jfi
f r the first element, R-j-s A'^y* for the second

y/2 8/i

element, etc., then the aberration of the first element transferred to

the fourth will be expressed by

1 /\ 2 /\2/ai\2 i / a. \ 2 Aberration of first

_L_A' ( -M I-2
-) f^l v 2 = Ax

I

^ 2 3
) V 2 element transferred

S/!
3 I\l4/ \M

3
/ W4

/ l
8/t

3
A^WgM/

3
to fourth.

The aberration of the second element transferred to the fourth is

2 /, \ 2 Aberration of second
1 /w\ 2 /tf\ 2 1 /vr\ 2 /u\* erraon o secon

LA'( 2
) l-*l V 2 = -AM-^-1 ) I-2 ) w 2 element transferredW 2W \V 8/2

3 2
V% 4

/ V
Vl
/ yi '

to fourth.

The aberration of the third element transferred to the fourth is

1 / \ 2
1 /?; \ 2 A/ w \2 Aberration of third

A // t'!J\ O ^ * I \ / "'O *9 \ 9

-yr.A' (
-2-

) y
2 = Z-T-.A , (

-^ -J-J?

/i

2
5

element transferred
8/3 W '

8/3
3Vw

4
/ ^ v

i
?!2^ to fourth.
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and the aberration of the fourth element is

Aberration of fourth 1
A ' 2 _ JL A ' (

u
*
u
s
u
*\

~

v 2

element.
s/4

3 ^4 ~8/4
*

At^vfe/
s

It is interesting to note in the above functions of the u's and the

vs that, after we have corrected the aberrations to one reference point,

and also expressed the ?/'s in terms of yl ,
we then always get a function

containing n 1 terms in both numerator and denominator when the

number of elements = n, and that as we pass from one element to the

next the first term in the numerator disappears, and appears again as

the last term in the new denominator
;
and the first term of the

denominator disappears, and appears again as the last term of the new

numerator.

The full statement of the aberration of the first element is

Aberration of first 1 / v,v
z
v
s
\ 1 f/x + 2 . v . 9 p?

element fully stated. ^(^^^{^T^ 1) A + (3,* + 2)0*- )<V +^
which

= ^(+0000057005
- -0000083952 + -00000281063\ 2

+ 00000563544/'
1

= + 1 (-000005751 37^) altogether.
8

The full statement of the aberration of the second element is

Aberration of second 1
(
V
2
V3U'2\ J /*

+ ^
2 , / -, \ /o , 9w _ -i \ 2 ,

/*

element fully stated. 8tf*Wi' M^OJ^ -"l
2 ^^/.-

which

=i(+ -00000162637 + -00000965812 + -0000130381 + 00000160782)y1

2

8

or 1

+ -(0000259304?/1

2
) altogether.

8

The full statement of the aberration of the third element is

2

_JL
_,
/
M + 2^ + 4(M3

Aberration of third StfViV M(M -
1) IM - 1

* '*
M*

) ,

element fully stated. + (3M + 2) (M - 1 )a3
2 + ^j-j j^

2
,

which

=
i( + -00000225053 + '0000118572 + -00000261036 + -0000141306)^2
8

or i

- (-0000308487^) altogether ;

8



iv SPHERICAL ABERRATION 105

but as /3
is minus, the element being dispersive, therefore /3

3

gives a

minus sign to above total.

The full statement of the aberration of the fourth element is

1 rM + 2
2

,M . ,

M7M~^n 1 M^l **" "*
'
a
*
X
* Aberration of fourth

+ (3M + 2)(M- 1) 4
2 + -M U 2 element fully stated,

which M - 1 /

:

~( + -00000001949 - -00000029702 + -00000102371 + '0000000226)y1

2

or
-
g-(-00000076881y1

2
) altogether ;

and again, as this is a dispersive element, and /4

3
is minus, the above is

minus aberration.

Summing up, we have

for e
l

+ 00000575137y1

2 for e
3

-
-0000308487^ Aberrations of col-

for e
2

+ -0000259304?/
2 for e. -

'0000007688y
2 Active and disper-

; , sive elements respec-

i( + -00003168177y1

2
) -(

-
-0000316175^)

tively-

for collective lens for dispersive lens

So the total aberration for the four elements or two lenses is

1
[
+ '00003 16818^ Sum of the aberra-

81 --0000316175^ *uKl
1 lenses.

-(+ 0000000643^)
8

v2

If now we take y at its full value of 6 inches, then -~ = 4'5, so the

1

full correction to - for the ed^e ray is +'0000002894, and this
#
4

x -v
4

2
or (176'13)

2 = - -00896", which is the longitudinal value

of the spherical aberration at the focus. But there are the parallel

plate corrections "to be added in yet, and although in this particular

case their amount is small and does not seriously affect the result,

yet the case serves as an example of their application.

It is obvious that in applying the Formula XXV. to the case of

the first parallel plate of thickness 1", the for its second surface is

?/

the same as y_2 ,
which = y^, and the #

2
of the plate is the same thing as the

u
2
in the present case. l

Therefore, the first parallel plate correction is, in the first place,

lij^. l^~ 1
., 2/M2

' Aberration of

Mo
41 ~2u3

yi \vju*' parallel plate.
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But this has to be referred to the fourth element. It is now a

correction to
;
so that we must multiply by ( )( ) , and then our

U \U/ \u

formula becomes

Value of above. -S ** = -
(-000000004 15)^,V 1 't

.,
" > 't

,

which is a correction to - - or .

The second parallel plate correction is already a correction to or

1

-, viz.

^ M2 -l v
2 /%

2M3 'if*'2
'
m whlch y* Vl \v

so that we have

Aberration of second , M2 - 1 y^ / U
2
U
3

parallel plate. 2 ^2M^ u^2 \v~v^v
which works out to

Value of above. -
("0000000004 9),^

2
,

which added to the previous amount gives

-
(00000000464)t/ 1

2
,

and since

3^
=

6, this = - -000000 167,

which must be deducted from the total we found for the spherical

aberration

= + -000000289
- -000000167

Final total aberra- +'000000122
tions of objective.

which is the final correction to -
, so that the final longitudinal error at

v

the focus is obtained by multiplying the above final result by v* or

(176'13)
2

, giving a final spherical aberration at the focus of

0038 inches, which scarcely perceptibly differs from the '0034

which was arrived at by a rigorous trigonometrical calculation of the

course of the same edge ray through the objective.

Aberration of the It is theoretically true that for this objective there exists an

imperceptible.

q
aberration of the order Y4

,
but it is an imperceptibly small amount of

about +'0004 longitudinally, resulting in a zone of rays focusing

'0001 short of the focus for edge and centre rays. The aperture

of such an objective would have to be at least 24 inches, giving a
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zone of aberration of -'0001 x(2)
4 = -'0016 in., before it would

become perceptible at the focus by the most refined optical tests.

The chief value of the above example is illustrative, arid there is

no necessity in practice for being accurate to so many decimal places

or for adopting the device of elements in a case of an ordinary double

objective whose aperture is only y^th of its focal length ;
for were it

the case that there existed at the focus a longitudinal aberration of

-|- or YQ-th of an inch, it would be possible to correct it by

departing from true spherical curves, either by parabolising the

figures of the surfaces or the reverse, thus bringing about a slight

deviation for the rays which increases as y
2

approximately. There-

fore it by no means follows that, because a given optical combina-

tion yields an axial image of a point of light which shows no trace of

outstanding spherical aberration, therefore a calculation of the course

of an edge ray, either algebraic or trigonometric, will also show no

aberration. Hence the desirability of comparing the results of an

algebraic calculation with the results of a rigid trigonometric calculation

if we wish to thoroughly test the accuracy of the former.

Many optical designers would prefer to employ trigonometric
calculations of spherical aberration rather than any other, even in the

case we have just dealt with. Indeed, it is doubtful whether in the

case of some of the highly complex constructions of five or more thick

lenses forming modern microscope objectives, any method can be as

easily applied as the trigonometrical one, provided that not only the

focus for the extreme edge rays relatively to the ultimate centre rays
is calculated, but also the focus for the rays passing the aperture at a

height y equal to about |-ths
of the full semi-aperture. Thus any

discrepancy between the focus for the intermediate zone of rays and

the joint focus for the central and edge rays would at once indicate the

presence of an aberration of the order y* and perhaps y
6

. Or, suppos-

ing the focus for the edge rays not to coincide with the focus for

ultimate centre rays as calculated by the formulae of the first approxi-

mation, then the calculated relative position of the focus for the zone

of radius ^ths would at once show any departure from the law of the

aberration varying as y- simply, and thus reveal the presence of an

aberration of the next higher order.

It is certainly true that the trigonometrical method is very much
more applicable to broad axial pencils than to any other case of

refraction that can arise.

Although trigonometrical calculations of the course of a ray through
an optical system are often highly desirable, yet these are merely

How a small aber-
ration may be neu-
tralised by depart-
ing from spherical

Trigonometrical
methods often pre-
ferred for axial

pencils.
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mechanical processes which, more especially when applied to oblique

and eccentric pencils, do not lend themselves at all to analysis. They

Empirical nature are empirical and uuinstructive, or at any rate barren of enlighten-
of tri&onometrical rnent unless a larc;e number of calculations are carried out in which
methods.

certain factors, such as radii or separations, are varied, and the results

of such variations carefully noted. All tin's involves much empirical

work
;
whereas by the aid of algebraic formulae, although they may

be not quite so exact, leading principles can be established, and the

tendencies of the corrections consequent upon the variation of any

one term can always be worked out with very little trouble, and it is

by the intelligent grasp of the general tendencies that an optical con-

struction may be varied in its parts until the utmost possible perfection

is realised.

The designing of a

An Example of the Practical Analytical Application of

Formula XXIII.

Before dealing with the spherical reflector, we will give another

useful example of the practical analytical application of Formula XXIII.,

or Coddington's formula for spherical aberration.

While we have seen that if we wish to arrive at a correct estimate

of the total aberrations of the second approximation for thick lenses,

we must treat them by the method of elements, still we must not

lose sight of the fact that for analytical purposes, when planning out

new combinations of lenses whose thicknesses are not great compared
with, their focal lengths, we may with approximate accuracy treat such

lenses as wholes, and then, if we desire greater accuracy, check the

aberrations by the application of the method of elements.

For instance, we may wish to design an object glass for telescopes

with the interior surfaces of the two lenses of equal but opposite radii

of curvatures, so that the two lenses will touch all over, and can be

cemented together by Canada balsam. Let the crown glass lens be

outermost and have a refractive index = ^ = 1'5, and the flint glass

have a refractive index = /i.2
= 1'6, and let the ratio of focal lengths for

crown and flint be 3 : 5, so that F
I

= + 3, and F.,
= 5.

Then, since the rays entering the first or crown glass lens are

parallel, we have a
l

= 1
;
then u_

2
for the second lens = F

l
= 3

;
and

we have

1 + a.I _ +
3'

1 + a = 3i and a, = + 2-L

Now we can express x for the second or negative lens in terms of
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x^ ; for, as the two contiguous radii of curvature have to be equal and

will be of the same sign (as the lenses are of opposite sign), we have

2(^-1)5 20*!- 1)3'
~

=(1 -*
t)2

= 2 - 2xv and ^ = 1 - 2xv

so that the spherical aberration for the combination is

pressed m terms of

1 -
2.',)

2 + 10'4(2J)(1
-

2*,) + 4'08(2i) + 6'83
,

which we must then equate to 0, getting

i)(l
-
2^)-+ (5A)(4-08) + 6'83 = 0,

12o (6
' ^ 4Tl + 24a^S) + (24

'266 - 4

+ 22-21 + 6-83
j
-=0,

345^ -
-493^ + -493 -

('05
-
-20^ + ^Oa-;

2 + '2022 -
-4044^
+ -185 + -057) = 0,

14.
f
ia:

1

2 + '111^ -'001 =
0,

a.-
x

2 + -765^ = -007,

^2 + -76^ + (-3S)
2 - -007 + -145 = -152

;

.-. Xl + '38 = * vxT52 - * '39,

aj1= --38 4= '39= 4 -01, or -'77.

Hence the crown lens, if placed outermost, must be practically TWO solutions of the

equiconvex, or else have its radii in the ratio, 177 to 23, or nearly
eciuatlon -

8 : 1.

It can be shown that if we have the two lenses with principal

focal lengths in the ratio 1 : 1'875, and the refractive indices 1'5

and 1*62 respectively, then in the same manner we get the equation
in final form

xf + -486*!
= -

'025,

x* + '486^ + (-243)
2 = - -025 + -059,

^ + 243= * V7034= *-18,
and

x
l
= -'243 4= '18;
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therefore finally

!= -'063 or --423.

A very slight increase in the focal ratio over the above 1'875 : 1 will

render the equation insoluble, the nearest approach to freedom from

spherical aberration being made when x = about "2.

Limits of focal ratio The ratio 1'9 : 1 for the principal focal lengths with the refractive

cemented
60868 t0 be

ibices l'^ 2 and 1'62 is just about the limit, a higher ratio of focal

lengths producing undercorrected spherical aberration.

Two often useful formulas are the differentials of the spherical

aberration with respect to the two characteristics a and x, which we

will here give.

First, the differential with respect to a :

Differential of

XXX.

Second, the differential with respect to x is

Differential of . . 2 g
/ 9 ,, ./

,
i\,

A'J/- TiritV va dv \ > A. V I
= n;.

~ ~rs^ H ; r cCLx. XA.X1.

s/
3 y V8/

3
' y J S/'IX/*-!)

8 ^-1))
spect to~K.

gy means Of these formulae the effect of any contemplated change
in a or x for any lens is easily ascertained

; or, on the other hand, the

value of dx or da required to effect a given small change in the spherical

aberration is soon arrived at.

It will be as well to repeat here the formula for the least circle

of confusion that is, the smallest section or circular aperture through

which the rays of a pencil subject to spherical aberration will pass.

It is practically the best possible approach to a focus that the pencil

is capable of, and its linear diameter is worked out by Coddiugton on

page 1 2 of his work.

Thus the linear diameter of the least circle of confusion is

Linear diameter of av / ^z \

least circle of con-
(

. A '

), XXXII.
fusion. 2V 8/

3
/'

and its angular diameter subtended at the lens centre is thereforeo

Angular diameter of a/ a2

least circle of con- _( A' ) XXXIII.
fusion. 2V8/3

wherein a is the semi-aperture of the pencil at the lens, v is the second

conjugate focal distance, and Y^A'J represents the spherical aberra-

1

tion, as a correction to -, as usual. Thus the angular value of the
v

least circle of confusion varies inversely as the cube of the focal length
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when a is constant, and as the cube of the aperture when v is constant.

For simple lenses of relatively small aperture, however, the circle of

confusion consequent upon the differently coloured rays being refracted

to different foci far exceeds the least circle of confusion consequent

upon the spherical aberration, a matter which we may have occasion

to refer to again in Section X., on Achromatism.

The Aberration of a Spherical Reflector

We will conclude this Section by working out the formula for the

spherical aberration for an axial pencil of rays directly reflected from

a spherical reflector, either of concave or convex form. In this case

we cannot do better than follow Coddington's method as explained on

page 1 8 of his work.

Let Fig. 40 represent a divergent pencil impinging on a concave

mirror, and Fig. 41 a convergent pencil impinging on a convex mirror.

Let the radius r in both cases be considered intrinsically positive, in

which case the distance Q . . a or u will be positive by the conventions

laid down on page 7.

Let Q' be the focal point by first approximation.
Let the circular curve a R have its centre at 0, so that

r = . . a = . . R.

Then it is clear that the ray Q . . R or R . . Q makes an angle QRO
with the radius or perpendicular . . R, which is equal to the angle

ORg* made with it by the reflected ray ;
therefore sin QRO = sin OP\.q,

and we also have sin ROq = sin ROQ, so that we have the strict

relationship

O..j O..Q
q . . R Q . . R'

(32)

About q as a centre draw through R the arc R . . b cutting the axis

at I
;
about Q as a centre draw through R the arc R . . c cutting the axis

at c, and from R drop R . . d perpendicular to the axis; and let R . . d = y,

let a . . q^ the required corrected focal distance =
v', and let a . . Q'

the focal distance by first approximation = v as usual.

Now in the above equation (32) the distance O..q evidently
= r (v xv2

) if we denote the linear aberration Q' . . q by xv2

; also, if

the angle RQ', is not large, we may say that q. . R = Q' . . R xv2
.

But it will be found that the introduction of xv2
into both the

numerator and denominator of the ratio
q.. R

will not affect the

Coddington s pro-
cedure followed.

The fundamental

equation.

result as regards the formula of the second order of approximation,
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1

unnecessary.

which we are proceeding to work out, and therefore its introduction is

only required if a formula of the third order, involving y*, is wanted.

The introduction of This was clearly shown in the course of working out the aberration of

the aberration itself the third order for a spherical refracting surface on page 54, wherein

the introduction of the required aberration x into the more exact

statement of the fundamental equation did not lead to any modification

of the formula of the second approximation itself, but only to modifica-

tions of the formula of the third approximation. Since, however, the

aberration of a spherical reflector is already much smaller than in the

case of a lens of the same relative aperture, even in the most favour-

Formula of the third able case, it is scarcely worth while working out a formula of the third
UQ "

order of approximation.
Therefore we may assume that

v r

Then we have

then

Q . . R = (Q . . a)
-

(a . . c)
= u -

{(a . . d)
-

(c . . d)}

if f\_ ?/YI i\ H _j _i i!/!_ i
x

\

\2r~2/
=

2W J'
a d

Q..R~ tt

+
2tt

2\r u)'

Therefore, on putting the whole equation together, we get

or

r-vf f(l l\} =
v \ 2v\v r// 2u\r

On dividing both sides by r we then get

_.
2u\r )

\v r 2v\v r r u 2u\r u

Now by first approximation

111 21 1111
at or =

,
.'. =

v J u r u v r r u
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therefore the equation becomes

1111 f(\ 1\/1 IV2 . ,112 1- - - = ?r \
- + - ) ( ) i

m which - + - = - or -p :

v r r u 2 \u vJ \r u/ u v r /

therefore finally we get

111 1/1 1\
2

, Spherical aberra-

J
=
f
~
u
+

r \7
~

/
r '

tion of reflector.

Hence if u is infinite and the impinging rays are parallel, the
9 o

y y
aberration becomes ^ simply or ^ ;

whereas in the case of a lens of

principal focus/, of glass of refractive index = 1'5, and of the shape to

give the minimum possible aberration for parallel rays (when x would
5 ?/2

/ 4\
be +- and a be 1), the aberration would be ',-

3
( 8^1. So that the Aberration of spheri-

t of \ i / cal reflector much
reflector shows to very great advantage compared to a lens of the same smaller than that of

aperture and focal length, even when most favourably shaped.

It will be remembered that the Formula XVIII. that we arrived

at for the aberration in the case of a single spherical surface of radius

r was

1W1 4

Now in the case of reflection it is legitimate to consider the refractive Reflection assumes

or reflective index to be - 1
;

that is, the sine of the angle of SV^Jf**
8 index

incidence = 1 (the sine of the angle of reflection).

If, then, we put /i
= 1 in the above formula for the refracting

surface, we then get

-2 /I 1W1

,1(1.1)r \r u/

which is identical with Formula XXXIV. This analogy will be

found in later Sections to apply in all corresponding cases between a

reflecting and a refracting surface of the same radius, so that we have

only to stipulate p,
= 1 in order to convert the refraction formula

into the corresponding reflection formula.



SECTION V

Angle of obliquity

Flat images required
of optical systems.

Conjugate focal

planes assumed.

CENTRAL OBLIQUE KEFRACTION OF PENCILS THROUGH THIN

LENSES OR ELEMENTS

WE have now investigated the spherical aberrations to which a direct

pencil of rays is subject whose central or principal ray coincides with

the optic axis of the lens or lens system, and our next task is to trace

out what happens to those pencils of rays which are refracted centrally

but more or less obliquely through a thin lens or element that is, in

such manner that -the principal ray of each pencil traverses the centre

of the lens or element.

It is obvious that we here have to do with a new variable in the

shape of the angle <f>
formed by the principal ray of each pencil with

the optic axis. The extended images which it is sought to obtain by
means of optical systems such as the telescope, microscope, and the

photographic or lantern projection lens, are always flat images of

plane objects. In the case of the telescope or the photographic lens

when used on distant objects, the oblique pencils of rays entering

them consist of practically parallel rays, which may be considered as

originating from points in an infinitely distant plane. The image in

the case of the telescope has to be presented to the eye in that state

best adapted to simultaneously distinct vision over a considerable

angular extent of field
;
that is, the image presented to the eye must be

approximately flat. This condition of flatness of image applies with

still greater force to the camera and lantern projection lens
;
and as

often as not they have to form flat and well-defined images of strictly

plane objects.

Therefore, throughout our investigations of oblique pencils we shall

treat all such pencils of rays as diverging
' from points which lie in a

plane normal to the optic axis, or else as converging to points in a

plane normal to the optic axis, and all such planes that pass through

points on the optic axis which are conjugate to one another, we will

114
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call conjugate focal planes. We will also assume the existence of The element planes

planes tangent to the vertices of curvature of any lens, or, in other
asam assumed,

words, the same element planes which we assumed in the last Section,

reserving the consideration of any corrections to our formulae depending

upon the versines or departure of the spherical surfaces from such

.element planes for Section XI.

We shall then find that the position of the focus or mutual crossing

point for the two extreme rays of an oblique pencil, as defined by its

distance from the lens centre, measured parallel to the optic axis, is

essentially a matter of the spherical aberrations which take place at

each surface of the lens as well as of other corrections of a some-

what different character. Let Figs. 42 and 42a represent the case of

oblique refraction of a pencil through the first surface of a double

convex and double concave lens whose optic axis is P . . p.

Let r
f
be the centre of curvature,

x
the vertex of the surface, and Notation, etc., ex-

r' . .

a^
the radius of curvature, or shortly r, and let P . . Q be the

p a

original plane object, and Q a radiant point in it. Let the angle of

obliquity P . . a
a

. . Q be called
<j),

and the angle P . .?'.. Q be called 6.

Let P . . a = U, Q . .

d^
= u, and d^ . . q = it,.

Let points e
l
and

/^
mark the limits of the aperture with which we

are dealing, reckoned in the element plane. Then the two extreme

rays of our pencil lying in the plane of the diagram, or in what we
term the primary plane, will be the two rays from Q which strike the

element plane at e
1
and h

l ;
but it is clear at the outset that besides

these extreme rays in the primary plane there are also the two extreme

rays to be considered which radiate from Q and strike the top and the

bottom of the aperture, perpendicularly above and below the plane of

the diagram, such that the perpendicular joining their points of

incidence on the element plane passes through the point a . Now we Primary and second-

shall always call the plane of the diagram, or the plane containing the axy planes defined -

optic axis and the oblique principal ray Q . . av the Primary Plane,
and the plane perpendicular to the primary plane, but containing the

oblique principal ray Q . . av the Secondary Plane. These terms

correspond respectively to what German optical writers generally term

the Meridional Plane and the Sagittal Plane.

Thus our two extreme rays Q . . e
l
and Q . . h

l lying in the plane
of the diagram are the primary or meridional rays of the oblique

pencil, while the two extreme rays in the secondary plane are the

secondary or sagittal rays.
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Investigation of the Focal Point for the Two Extreme

Rays contained in the Secondary Plane

Rays in secondary
plane dealt with
first.

The height from the
normal ray at which
refraction takes
place.

Now, as the focus for the two. secondary rays is much more easily

investigated and located than the focus for the primary rays, we will

deal with the former first.

It is clear that the distance from
a^

to either of the points where

the two secondary rays impinge on the element plane is equal to

1
. . e

1
or a

x
. . hv that is, to the radius of the circular aperture, which

we will call A. Then the distance from cv where the oblique normal

ray Q . . / passing through the centre of curvature cuts the element

plane, to the point where either of the two secondary rays cuts it,

is obviously equal to *J {(a^ c^f + A
2

},
and this expression then gives

us the value of yl
or the height of the secondary ray, where refracted,

Normal ray defined, from the normal ray Q..r
r

passing through the centre of curvature, which

latter is clearly the axial ray with reference to the pencil under con-

sideration. Here it may be objected that a
1

. .

c^
as measured in the

element plane is incorrect, inasmuch as it should be measured perpen-
dicular to Q . . /. This is quite true, but it will be shown in

Section XL that the corrections which have to be added in order to

make up for this and other analogous departures from strict truth

are corrections of a higher order. While the formulae which we shall

arrive at in this Section are functions of tan2
<, the formulae of

higher orders are functions of tan4
< or of Az tan

2
<, and generally not

nearly so important in a quantitative sense. We have, then, at the

first surface,

or, shortly,
= B* + A 2

(if we put a
l
..c

l (la)

We may then make the dotted line Q . . gl
. . q

f

represent one of

these secondary rays, so that c
l

. . gl
is equal to

y^.

Turning now to the refraction at the second surface as shown in

Figs. 43 and 4'3a, let q and q' be the same points as in Figs. 42 and

42a, q
1

being the point to which the rays in the secondary plane are

converging after the first refraction. Let q . . s' be drawn from q to the

second centre of curvature s', cutting the second surface at d and the

element plane at c
9

. Then with reference to the second surface and

the emergent pencil s' . . q is the axial or normal ray. Then our two

secondary rays cutting the element plane above and below a
2
will be

refracted through the surface at a height from s' . . q equal to

J(a . . c )

2 + A2

;
that is,
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y* =
(az ..ctf + A\

or, shortly,
, 2

. 9 Secondary plane.
y*= Bf + Af. Value of y2

2
.

Let c
>2

. . #2 represent y, and <?2
. ./ one of the two secondary rays.

Let the radius s . .
=

s, and the second conjugate focal distance

a . . P' as measured along the axis be V, and let
d^

. ./ be v and d
2

. . q
r

be v\

We may then state the values of y* and y* as follows :

y* = B* +A 2 =(U tan ^- V + ^ 2
; (2)

Detailed value ofyf.

=
(
V tan <i

)
+ A 2

. (3) Detailed value ofy2
2

.

\ V + s/

Also

TT /TT t . X9 1 Value of % in terms
Q . . ^ or u = U + (U tan <)

2

0/TT approx. ; (4) L.
Qf n

(5)R.

Value of - in terms

U r
2(U + r) of U and r.

Neglecting aberration ^ = -, and substituting from (5),we get
i.

1 i
ii r u'

Value of r in terms

/*_/A- 1 1
2 /\T?

^
~^ u + #

2(U + r)'

'
' of U and r ^itnout

aberration.

Next, as a basis for converting u (
= d

1
. . q') for the first surface

into tf (
= c

2
. . q') for the second surface we have the equation, putting

t for the axial thickness,

(a'. . ')
2

(Q'- p'Y Equation connecting
^V

^ J- ' 4 = / /7)^:7J ^ j v

2t\Vb 7*) (V *t* S)

in which we have supposed a thickness t to exist, which afterwards

eliminates itself so far as our purposes are concerned. Therefore

wherein

therefore

i_i /

~ + + U 1
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and ' 1 ' U
(it-r) <y + s) J2'

Substituting in above the value of T from (6) we get

Value of ^excluding /* _ /*-]|_ 1 .. 1
^_ ./* ^ /4 TT .

,

. A-rWJ_ 1 H
t/ \

~
f^ + tan ^> /TT r + r-^5 + -r<n U tan -^ TT i > \

"
n

the aberration.
v r

r
2(U + r) ii-

\
+ r/\*-f i;+5/2

Now to above we must add the spherical aberration due to the

first surface, taking y^ from (2), so that we then get the complete
M

value of as follows :

9 ,

tan2
<^X TT ' """ V^/TT \

' 'Xfl ' ^9I^/ ul*li Y* TT [ \ \r r 2(U + r) u2
u*\ J + r\ \ii-r

Value of -N including
V

the aberration of

first surface. _ } _!

v
v

+ s |2

)1 /*-lfl 1
)

2

(1 /x+l|f/T_ r \ 2 ,J
te + ^rr\- + TTt i- + (-fr-n( u tan ^fr +4*1
)2 2{j? [r UJ \r U

J [V ^U + r/
J

(7)R.

Turning now to the refraction at the second surface we have v'

negative as the rays are converging ; therefore, including its spherical

aberration, we have
Value of -

including -i n / x i (-, 1^2/1 , -n ( / \2

surface.

Length v to be re- Then, after having got the value of T; (
= d

2
. ./), we have to reduce

duced to the axis. ^^ distance to the axis. Drop the perpendicular /. .x' to the lens

axis, then evidently

tan

")

1 1

'

. . a, = <L . . / - ^77 f, wherein x = corrected distance x' . . an :

8 ' '

in which small correction we can put V for x, and say

Reciprocal value -
1 1 1 V2 tan2

d> 1 1 1<Y A X I T Until U^ J.I O ,
*-

/ f\\ T>" = ~ + \n ~^rv F or ~ = ~ + ten ^7wTT \ (9) K.
when a; is measured * V2

2(V + s) x v
^
2(V + s)

which last expression is symmetrical to the other end correction in

Formula (6). After adding (9) to Formula (8), while substituting

Formula (7) for -^ therein, we then get the complete formula
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1 ./I 1\ 1 u 1- = (/- 1) I
- + -J -= + #rj + tan2 -

ff
- -

a* \r s / U w 2
2(U + ?)

= first end correction,

U tan

= first surface spherical aberration,
2 f 1 1 11

U + r| (u-r tf + *J2
= correction for converting it into v\

_ J) 2
J^O

s V
V tan $ =V + s

+ tan2
<

= second surface spherical aberration,

1

2(V + s)

= second end correction.

Complete formula

(or i.

X

As in general the middle correction of the above is small relatively Approximate values
J to be inserted in the

to ~, ^> -, and -, we may again insert approximate values of u and tf
;

(

and since

Li U. 1 1

V -
ff y st aPProximatlon )

u ]/U(/*-l)-r\
2

Vs reduces to -I -

r^ ,a
/x,\

rU

r(U + r) 1 U(/*-l)-r^ - r reduces to fr^ -,T
J^

,
and

-^
to -

r= .

;

U(/x
- 1

)
- r u-r r(U + r)

also since

ulu-1 ulu-1 1 S- V(w,
- I )

; = ~ or ,
;

= cr - - -
,

. '. -7 reduces to p,,^ . -.- v V s v V s ?/ + s s(V + s)

After separating out from Formula (10) the products of the two

spherical aberrations into A* and also substituting the above values of

-
5 it - r, -, and . we then get

it? it-r' v + s'

1 U
/A

.T

=
F~U ^~2+ V _ j - 4-

r
+ UAr + U

- ~
,S V

Includes the aberra-
tion of all pencils of

semi-aperture A.

=
spherical aberration of all pencils of semi-aperature A,
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Aberration of first

surface.

Corrections convert-

ing it into v".

Aberration of second
surface.

The two end correc-

tions.

I. (R.)

vU + r V + s/2

= the two end corrections from
(
1 0).

The expressions (11), (12), (13), and (14) together constitute what

we will call the normal curvature errors, as corrections to the reciprocal

of the conjugate focal distance of the axial pencil of rays of semi-

aperture A.

Complex as these expressions are, they nevertheless simplify down,
without any further compromise, to the simple expression

tan2
(i u+ 1

Includes the aberra-

tion common to all

pencils of semi-aper-
ture k.

The normal
curvature error in

secondary plane.

tan2
</> fj,

+ I

~2F w
'

II, (B.)

III. (R.)

The reader is strongly recommended to verify these reductions for

himself.

Thus in III. we arrive at the same result as did Coddington by a

considerably different method, in which he neglected the spherical

aberration of the pencil, as expressed in II.

The Rays in the Primary Plane

We will now trace through the lens the two rays which are

refracted at the extreme ends of that diameter of the lens lying in the

plane of the paper in other words, symmetrical pairs of rays in the

primary plane.
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Let the two rays Q . . e
l
and Q . . h

l impinge upon the element

plane at e
l
and h

l
at equal perpendicular distances = A (the semi-

aperture) from the lens axis P . . r' (Figs. 44 and 44a).

Then, correctly, the distances or ys of these two rays from the The two y'a to be

normal ray Q . . r' . . q are respectively m1
. . o

l
and n

1
..t

l ;
but for our

present purposes we will assume yl
to be e

l
. . q in the element plane,

and y to be h^ . . cv also in the element plane. Then, approximately,

if
a^

. .

Cj
= B

l
as before,

= (A+r tan
U

U + r

U

= (A(\ tt

A -r tan <

y- J
= (A -

B^f.

It is evident that the ray Q . . e
l
meets with more spherical aberration

than the ray Q . . h
,
so that while the former is refracted to f^ the

latter is refracted to /2
on the normal or axial ray Q . . r' . ./2 ,

and

therefore the point q
f where they intersect will be slightly to one side

of the oblique axial ray Q . . / . ./2.

Let x
l
denote the required distance d

l
. . q'. Let fl

denote the

distance d
l

. .f and let/2 denote the distance d^. ./2 .

Draw q'. . p' perpendicular to the oblique axis Q . . / . ./2 . Then we
have the equation

xi~fi _ ii >\ _ /2
~ x

z
2

/2

or

from which

But f l
and /2

involve y* and y* respectively, since they are affected

by the spherical aberration.

Now that part of the expressions for - and j which is common to

a l 2

both of them is the term ", and denoting the spherical aberration by

the term o^y
2

,
we then have

fJ- p

1 1 w, 9 1 1 w,
7-
= - + ?/9 and = - + -i

A ^
v-

2
/2

^
A*

Expression

Expression for y2
2

The fundamental

equation.
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then

becomes

i-{j

and
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l

corrected for the

*i

compounded aberra-

tion of first surface.

(15) R.

2 j. ,, 2

u ( U \
2

A* + 2Ar tan <6= + I r tan $ )U + r \ U + r/

+ ^4 2 - 2^4r tan d>== h ( r tan d>^ )U -t- r V U 4 r/

-^ - u v2

which in skeleton form is equivalent to

+ (A'
2 + 2AB

y?

and

Value of the function

of
t/j

and y2
.

= ^ 2 + 3 tan2

therefore in full

p p-l 1
2

1

^
= ^^"U + '

^2(U-fr)

Value of the com-

pounded aberration
of first surface.

+ **o (~ + ff ) (- + ^TT" ) f
^ 2 + 3 tan 2

^>( f2u2 \r U/ \r U / 1 U + r

= w
i

=
(!/i

2 +
?/2

2 -

Turning now to the refraction of the same two rays at the second

surface, Figs. 45 and 45a, we have the upper ray Q . . ^ . . q after

both refractions cutting the normal or axial ray s
f

. . q' at the point f t

while the lower ray Q . . h . . q meets with more spherical aberration

and cuts the oblique axis s' . . q
f
at /2

'.

Therefore the two rays intersect or come to a focus at q" a little
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to one aide of s'. .

<?/.
From q" draw q". . p" perpendicular to s

f
. .

<//.
Let

1 1 ,1 1 ,1 1 ,,
:
= -r. and T. - T T> and = -.

--
,. Then as in the previous

/I <*
2 '-/l /2 d2--/2 X

-2
d2--h

case, supposing e.2
. . c

g
= Y

x
and c

2
. . h.2

= Y
2 ,
we have

-
|

-
If /"Vl 7l

and, as before,

and

1 1 ., , r T7.
x

2
2 - Y

1
Y

2 )

corrected for com-
a-
2

pounded aberration

of second surface

= A 2 -

/ sV \
2

+ tan'2 &{==- -
}^\V + s/

sVV / sV \
2As tan <f> TT + tan2

d>
(
=- -

)V + s ^\V + s/

.-. Y,
2

xa v

4 2 + 3 tan2
<

3 tan2

or, more fully,

1 u-1 -1/1 1\2/i i

:

/<_-(- + -} (-
^

'

_-- - -
-v' 2/z

2 \s V/ \s X/ gy x2\ Value of the com-

A 2 + 3 tan2
<f>( ) / (17) E. pounded aberrationW + s/ J of second surface.

Drop ^''..X perpendicular from q" to the axis s..<?, then, as in the previous

case, a, . . X or X = v -^7^
-

c, and, approximately.

' '>

1 _ 1 1 ^V
2 tan2

<j>\ _ 1~~ + ~~

On summing up all corrections in their order we then get

1 1 1
,

ii 1
_!_/' _L_ton^*-/v_

XT7 - T^
-

TT1 * T"0 Udll
X F U tf

Involves expressed
)/U

in terms of U and r
= first end correction,

= A 2 + 3

/x
?-

--TT f
-

f U / I
r \U -r ?7 j

=
spherical aberration of first surface,

spheri-
cal aberration of

first surface.
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ing u into v.
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u/TT ii-r\
2 / 1 1 \1

,

+ -fsl U tan < == ( ^
- -

(conversion of u into v )
uz \ \J +rJ \u- r v + /2

Compounded spheri- ^
cal aberration of + ~n~z \ v
second surface. .

P xs v

=
spherical aberration of second surface,

Correction convert- j1.1 + tan2 ^
me - into ^ .

V
= second end correction.

Then after selecting out the product of A* into the sum of the

two aberrations and substituting approximate values of T2> u r, -,

u'
' u - r

and -^
,
as we did in the case of the analogous formulee for rays in

the secondary plane, we then get

Includes the aberra- 111 u, u + 1 f/1 1 \
2/l u+l\ /I 1\

2
/1 M +

tion of all pencils of =^
= ^-^+7-9+ n 9 \ (

~~ + TT ) (
~

~* TT~ )
+ (~ + TT: )(~ + ir

semi-aperture^.
u 2p? {\r U/ \r Vs V/ Vs V

Aberration of first +^- (1 + _LWI + ^1) ( 3 tan2
*f-^L-V [ (18) R.

surface. 2/x
2 \r U/ Vr U /I ^VU + r/ j

Aberration of second
,

r~ -i * ~
l I

"
j t"

' '
17 Q .-^,2 JL(

' "
1 t /i o\ T?

surface.
h

l^Va
+
V/ Vs

+
"T"/\

l

^VVTs/ /

! U^, KU + r) 1
;

)TCorrections convert- ^ ^ ^U(^-l)-r U + r J I r(U + r)

ing M into v\ VC,/ - n - *1 1
'

'

(21) R.

s(V + s) J 2

The two end correc- T mu T
tions.

rVU + r V + s/2

The above expressions (18), (19), (20), and (21) therefore together

constitute the normal curvature errors to which the rays in the primary

plane are subjected when refracted centrally as well as obliquely by
the lens. Analogously to the last case, all these expressions simplify

tan2
<t> 3u + 1

down to the simple expression ~v so tnat the complete
formula becomes

Includes the aberra- 1 1 1 ^ /*-lf/I 1\ 2
/1

tion of all pencils of v =
tr

~
TT + ^

"^ + ~K~
semi-aperture A. ^ "P

IV. (R.)The normal tan2<^ g j

curvature error in + .

primary plane. ^
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As regards the correction for obliquity we have again arrived at

the same result as did Coddington, only we have in Formula IV. added

the spherical aberration which is common to all the pencils, whether

direct or oblique. We have recapitulated these processes chiefly in

order to form an introduction to more important results yet to be

arrived at, also bearing in mind the principle that complex investiga-

tions of this sort are understood in less time and with less effort

when all processes (except perhaps reductions) are given in full.

The differential process as applied to infinitely narrow oblique

pencils by Coddington and other writers, resulting in Formulae VI. and

VII., also leads to Formulae III. and V. with less trouble, it is true
;

but the developments dealt with in subsequent Sections of this work
and the corrections of the third order of Section XI. could not be

derived from them.

If the reader takes the trouble to pursue the same lines of

reasoning in the case of a negative lens with the entering rays con-

verging and the emergent rays diverging, or the cases of

Result is the same
as for infinitely thin

pencil.

The formulae

versally true.

uni-

or
Entering rays converging into a positive lens

Entering rays diverging into a negative lens,

he will again arrive at the same formulae, if due regard is paid to the

conventions already laid down.

The further convention with regard to meniscus lenses must be also

observed, viz. that the radius of the deeper curve shall be considered

positive and characteristic of the lens and the radius of the shallower

curve negative relatively, so that the spherical aberration corrections

and curvature errors for the shallower surface will come out negative
with respect to the same corrections for the deeper surface, and the

result for the whole lens be the algebraic difference. Then the final

formulas emerge just as before.

ii .,

As to the expression t^, it will be found to be but another way The term t-^ does

of expressing the correction, due to thickness, to be applied to the not affect the pre-

l
sent formulae.

reciprocal value of -
(by first approximation), and it has no further

significance in the present investigations.

Having now got the corrections for curvature of image formed by

pencils traversing the lens obliquely but centrally,

tan2
e

2F



126 A SYSTEM OF APPLIED OPTICS SECT.

in secondary planes and primary planes respectively, and these being

small corrections relatively to the values of ^ or y if the angle of

obliquity </>
is not more than a few degrees, therefore the linear or

longitudinal (L.) corrections are expressed by

Secondary plane. tan2
<f> p, + I tan2

</>
+ 1 .

Linear value. ~2F
T ~

~*>F"
m secondary planes,

and

Primary plane.. tan2
(f> 3//,

+ 1
2
tan2

<
3/x,

+ 1 .

Linear value. ~2F~
ft

r "
~2F~ ^~ m Pnmary Planes >

and we may therefore treat these quantities as the versines of the

curved images formed by rays in the two planes, and calling the

required radii of curvature of the two images E and Ev

we have

and

2R =
3^ + 1

'

2 p 2F
p.

therefore
Radius of curva-

ture of image, E = F ^
(22)

secondary plane. t
j- + ^

and
Radius of curva-

ture of image, R =F ^
(23)

primary plane. / + 1

Curvature of image whether V = F or whatever its value may be. Thus the curvature of

consta^i
PrOXimately "na e ^or some distance from the optic axis is independent of the

distance V of the image from the lens, and depends solely upon F
and upon the refractive index

/j,
of the glass, and is independent of

the shape of the lens. Supposing p = 1*5, then the radii of curvatures

3 3
are respectively -F and F.

o 11

If we take the difference between the E corrections

tan2
(f> 3/x + 1 tan2

//,
+ 1

Expression for the we then get
astigmatism of a tan 2

</>/3/>i + 1 /*+l\ tan2
</>

central oblique 2F \ u~ ~M~"/
r

F
pencil.

\
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as the E correction expressing the astigmatism at the oblique focus

for any degree of obliquity <.

The same simple expression also applies in the case of a spherical

reflecting surface. Clearly no variations in the refractive index can

affect the astigmatism, nor do they in any substantial sense affect the

curvature errors. For, supposing the refractive index is 1'6 instead

of 1'5, we then get radii of curvatures of F - =F(
-

6154) instead of Small effect of A/z
i .f- upon normal curva-

F(-6), when /*= 1-5; and F^ = F('276) instead of F(-2727), when ture errors.

So that it would require a refractive index of a very
abnormal character to much affect the results

;
for even if

/j,
were oc

,

But when we
F

then F and would become the radii of curvatures.
o ,

come to deal with combinations of collective and dispersive lenses, we
shall find variations in refractive indices of one unit of the first

decimal place of the highest importance.
We' may here with advantage compare our results with the exact

formulae for oblique central pencils worked out by Coddington, and

given on page 120 of his work. He adopted the course of supposing
the pencil of rays to be an infinitely narrow one, and therefore the

effective aperture and thickness of the lens to be vanishing quantities ;

he then worked out the oblique focal distances by a strictly differential-

method, arriving at the formula

1 / cos- z
l/ cos

</>

in the secondary plane, and

COS
(f)

COS
--~
cos

1 1
- + -
r s

COS

u

VI.

VII.

Secondary plane.
Exact formula for

thin pencil.

Primary plane.
Exact formula for

thin pencil.

in the primary plane, in which

u is the oblique distance from the radiant point Q to the lens centre.

v is the oblique distance from the lens centre to the corresponding

conjugate focal point.

<j)
is the angle of obliquity as before.

'

(f)'
is the angle of obliquity of the principal ray after refraction,

such that sin < = p sin <'.

r is the radius of the first surface, and
s is the radius of the second surface.

This formula is by its nature accurate for all angles of obliquity,
and Fig. 46, Plate X., represents the primary and secondary curves
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Comparison of the

exact curves ofimage
with those of the

second approxima-
tion III. and V.

Normal curvature
corrections involving
the aperture of the

oblique pencil.

deduced from it when the incident rays are parallel or u is infinite,

while the two curves indicated by dots are those obtained by the

application of Formulae III. and V. as herein worked out.

The lens is supposed to be located at L in each case. The curve

for rays in secondary planes is drawn as a full line, and that for rays
in the primary plane as a closely dotted line.

Fig. 46o. shows the primary and secondary curves obtained when
u (axial value) = 1, and the two widely dotted curves are obtained

from Formulae III. and V.

Fig. 47 represents the case when u = v = 2/, when the focal

distance is double what it is in the case of Fig. 46.

Thus it will be seen that our Formulae III. and V. fall off in

accuracy when the angle of obliquity becomes large ;
but they are

exceedingly useful formulae, lending themselves easily to analytical

processes, while the accurate Formulae VI. and VII. involve the use

of trigonometric tables in their application.

It will be shown algebraically in Section XI. that the differences

between the approximate dotted curves and the accurate solid curves

are made up of corrections of the higher orders, involving functions

of tan4
<f>,

tan
6

<f>,
etc. We shall also find that when the aperture of

the oblique pencil becomes large enough to show perceptible spherical

aberration, then among the corrections of such higher orders we find

corrections involving the square and higher powers of the aperture, so

that the curve traced out by the foci of the two extreme rays of a

pencil of large aperture will not be exactly of the same character as

the curve traced out by the foci of two rays infinitely close to the

principal ray. This means that the amount of the spherical aberration

of a very oblique pencil of semi-aperture A will not be the same as

the spherical aberration of the axial pencil of semi-aperture A.

It is, however, obvious that while in any system of separated lenses

or elements the principal rays of the pencils may cross the axis just

where one lens or element occurs, and thus be refracted obliquely but

centrally through the same, yet such principal rays must traverse most

of the lenses eccentrically as well as obliquely. In the next Section

we will deal with such cases' of eccentric oblique refraction
;
but before

proceeding to that it will be as well to deal with a few very useful

formulae in connection with the curvature errors which we have arrived

at in the shape of Formulae III. and V., or

tan2
<f> u,+ I" _ secondary planes,
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NORMAL CURVATURE OF IMAGES

in primary planes.
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+ tan 2

- - -

It is often very desirable to know the effect of a change in the

refractive index upon these curvature corrections.

We "will first deal with the case of the curvature being constant
;

that is,
- + - or - is constant, so that -. or ^ is variable as LL

r s P f P

varies.

In secondary planes we have

</L
- tan2

<

2p

VIII.

so that if the curvature of the lens is constant, then the curvature of

image increases with p.

In primary planes we have

- 1

tan2

Secondary plane.
Variation in curva-

ture error due to dp

when - is constant.

IX.

and again the curvature of image increases with p.

But if /is kept a constant, then we find in secondary planes that

, tan2
<

p.
+ 1 tan2

<
p.

-
(p. + 1

)
rt

A* o/~~
'

?r? 2 */*
2/ /a 2/ ua

tan2
</>

X.

so that for a constant focal length the higher refractive index, imply-

ing shallower curves for the lens, yields a flatter image.

Primary plane.
Variation in curva-

ture error due to dp,

when -
is constant.

Secondary plane.

Variation in curva-

ture error due to dp,

when - is constant.

K
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Primary plane.
Variation.! in curva-

ture error due to dp.

when - is constant.

/

In primary planes we have

tan2
c 3^+1 tan2

'

2/

tan 2
<

~w XL

So we get the same differential as in the case of the secondary

plane.

This we should, of course, expect, since the astigmatism as

measured by
tan2

<f> 3/A + 1 tan2
</> //,+ !_ tan2

= constant,

whatever may be the value of
/A,

and therefore the changes in curva-

ture consequent upon d/j, must be identical in the two planes.

The Spherical Reflector

We have yet to consider the case of a spherical reflecting surface

and its effect upon pencils of rays reflected obliquely but centrally.

Let Fig. 47 a, Plate X., represent a spherical reflector of semi-aperture

C. . Ej or C . . E9
= A. Let Q . . Q' be a finitely distant flat object per-

pendicular to the axis C . . Q. Let be the centre of curvature, the

radius being . . C = r.

Primary Plane

We will deal with rays in the primary plane first.

Draw a straight line Q' . . . . S from Q' through the centre of

curvature
;
this then becomes the theoretical axis of the oblique pencil,

so that S . . E and S . . E
2
are the two heights for the two extreme rays,

which heights we will call yl
and

?/2
. It is clear that if/* is the ulti-

mate focal point for rays close to the oblique axis Q' . . S, then the ray

Q' . . E
2 ,

after reflection, will cut Q' . . S at a point /2
,
the ray Q' . . E

1

from the upper edge will, after reflection, cut Q' . . S at/x
, and/. ./2

and / . . /! will be the linear spherical aberrations proportional to

y
2 and y^, and these two rays reflected from the extreme edges of the

mirror will cut one another at a point q slightly outside of the oblique

normal ray Q' . . S. Draw q . . p perpendicular to C . . Q. Then, as

in the case of oblique refraction at a spherical surface, we may put

Q' . . S = u, f..S = v\ and q . . S = x, and let the angle of obliquity

Q'CQ = <j).
Then we have the fundamental equation

* The ultimate focal point/ has been omitted, but should be shown a little to the right
hand of/2.
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// p\^ ^i__ = /p n\ (f f)\
- -J-2 The fundamental

f/
fl . . S /2

. . S' equation.

in which, if we put /j for S . . fv and /2
for S . ./9 ,

we have fl -.p
=

x -fv and f,..p=fz -x; therefore

/I /2

from which

Value of - deduced

from above.

But jf and /9 involve spherical aberration corrections which are

functions of y* and
?/2

2

respectively. That part of the expressions for

- and -r which are common to both of them is of course - or
/2

V
V

/..S'
then if we put A' for the aberration function, which, as we have seen

1/1 1\
2

in Section IV.. is - ---
. then we have

r\r u/

and Equation (24A) becomes

(y1 + 7/2)
+ A'(y1

3 + i/2

3
)

x
+ w 2 -

2/1
+

2/2

so that we get finally

j j
Value of - when cor-

- = + A.'(y^ + y? -
y^y^). (24fi)x v rected for com-

1 2 pounded aberration.

Now if =, the reciprocal of the principal focal length or -
,
we

have

L I 1

and

fy (Q Q/)
2

(M tan
</))

2

u or Q . . S obviously = Q . . C or u + V;^ '. =u + v -
-^- ;

2(0 . . Q) 2(
-

r)

1 1 tan2
4> 111 1

and -
v
= = h tan-- --^7 -\

-
v
= --- r,u u 2(M

--
r) v F u 2(

-
r)
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so that Equation (24B) becomes

Abbreviated value

of
1

-

Expression for yv

- = =3 + tan2
<i . . + A.'(u,

2 +
y.-

2 -
x Y u ^2u-r

Now

and similarly

. . yl
= A + (u tan

Expression for ?/2
.

Therefore we have

A* + 2A(u tan A) + (u
z tan2 <),

^'u - r '(u
-

r)
2

2

+ A* - 2A(u tan A)- + (w
2 tan2 <A)^' - 7

Value of the function

of /x
and yz

.

Full value of - .

X

3 tan2

tan

2

- = !
a; F

A2>

tan2
<^> 57-^-r + A' A* + 3 tan2

# . (24c)r
2(

-
r) [

\w - r/
J

Distance x to be re- . We must next reduce the oblique distance q . . S or x to the
duced to the axis. ax^s Q . . Q Of the mirror. From q draw q . . X perpendicular to the

mirror axis, so that C . . X, or X for short, becomes the required

corrected distance. It is clear that X=#+-<^-- v-, in which v
\ /

may be put as its first approximate value such that - =
.^

-
-. Then we

have
( _ wl 2 ( r -

-'/ u-r

and

-
rj 2(r

-
v)

Value of
1 1 ( r -

v]
2

1 1
= 1 u tan d>

- V
;

. 9 ,X a; 1 ^u-r\ 2(r-v) x2

in which we may put
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1

so that

1 1
=

X x

r-v\ z

tan -
1

F /'

1
x i -r, /u-r/ 2(r

-
v)\F u) (24D)

Value of = ampli-

fied.

On inserting the previously worked out value of - from 24c

we then get

1 1 1
,= = = --X F u 2(u

-
r)

3 t

- u tan

ur

i vT^^ ~
-)

2

- (2*E)u - rJ 2(r
-
v)\F u/

Value of ^. with allA
corrections.

Now A',4
2

is obviously the spherical aberration for the direct or

axial pencil originating from Q on the axis and of semi-aperture a

(which was y in our investigation of the direct spheriqal aberration in

Section IV.), and should be kept separate ;
so that after inserting

1/1 1\
2

.. /. I I u-r ur \
-( ) for A . we then get since = - - and w= 5

~
1

r \r u/ \ r u ru 2% -
r)

1 111/1 1\ 2

v =^-~+ (- -)A I1 u r\r u/

+ 3 tan2 d>-
r

-r\ z

. (24F)ur /

Full value of = after
JK

separating out the

common aberration.

Then the last line of the above simplifies down thus

= 3 tan2
d> - + tan2

rf> . r - tan2
d> -^

f 2(u
-

r) 2r(u
-

r)

1 3 2u-r } ,{r+Q(u-r)-(2u-r)
r + - - -

-7 'r
= tan2 64 ^-^^ \= tan

2(w
-

r) r 2r(u
-
r)j 2r(u

-
r)

= tan2
4> ^A

-r)

so that finally we get

2 1
- = tan2

d>
;

r F

_
X
~
F

tan 2
<i - .

F
XII.

Includes the aberra-
tion common to all

pencils.

The normal curva-

ture error in prim-

ary plane.

From this it appears that the radius of curvature of the image
formed by rays in primary planes is
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The radius of curva- 1
ture of the primary ., v2 r = ^
image.

"
I
tan <

-^ J

Secondary Plane

Here it is clear that the y is equal to the distance from the point S,

where the ray through the centre of curvature strikes the plane of the

mirror, obliquely up to the top edge of the aperture, perpendicularly
above C, so that

Expression for f. f =
(S . . C)

2 + A'2 or = {(Q . . Q') ( } \* + A'2 = { u tan d> }* + A*
\u r/ J \ u - r)

so that the spherical aberration to which the two extreme rays in the

secondary plane are subject is expressed by
The spherical aber- ,

ration of the second- A' -I A 2 + tan2

ary rays. I

while the other corrections for reducing the distances concerned to the

axis are the same as before, so that following the analogy of

Formula (24E) we have

-

X F u r
2(-r) \

I 1_ i-i
; (24o)u-rj 2 (r -v)\F u

so that after insertion of the term A' in full we get

j
X F u r \r u

Full value of = after^ / \ aX 1,9. 2 ,
1 2 , 9 ./r\l /2u - r\- /n . .

separating out the + - tan- < + tan2
<j>

---- - %2 tan2
I
- .

)-
--

-(
- -

) , (24H)
common aberration.

r 2
(
u ~ r

) \2n - rJ 2(u
-
r)\ ur

the last line of which

1 1 2% T= tan2
<t>
- + tan2

<i ~.----.
- tan2

<t> ~ r
^r ^2u-r ^2ru-r

2
1

fl

econary pane.
,/2(-r) + r - (2w- r)) nThe normal curva- = tan2
d> {

-

>
= 0.

+ Maw r._n I 2ru-r )

So that there is no curvature error for rays in secondary planes and

the image is flat.
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From these results it follows that the curvature error tan
2

<j>
= in

primary planes represents also the astigmatism of oblique pencils, and

it is thus seen that it is exactly the same as for a lens of the same

principal focal length. For a lens we have the formulae for curvature

of oblique pencils

tan2
</> /A

+ I .

2F
in secondary planes,

and
tan2

<f)
3

fj,
+ 1 .

2F
in primary planes,

their difference, or the astigmatism, being tan2

<^.

If in the above two formulae we insert p= 1, we then get

tan2
e

- 1 + 1

and

2F - 1

tan2
<f>

- 3 + 1

= in secondary planes,

2F - 1

= tan2
< = in primary planes,

which agree with the curvature errors which we have already worked out.

This last formula, however, can be shown to be inexact, for there

are corrections of higher orders, functions of tan
4

0, tan
6

<f), etc., but of

little practical importance in this case, wherein the spherical aberrations

involved are generally very small.

The curvature corrections for a spherical mirror as worked out by

Coddington by the application of the differential process to infinitely

narrow oblique pencils are given on pages 22 to 24 of his work in the

form

cos 1 cos <t> . ,

= - - -- ^ in primary planes,

and

cos<

F
in secondary planes,

u

(241)

(24J)

Curvature error in

primary plane and
astigmatism identi-

cal.

Normal curvature
errors for lenses.

Result of assuming
refractive index in

above = -1.

Exact formulae for

normal curvature
errors for spherical
mirror.

in which formulae u is the oblique distance Q'.. C of our Fig. 47a, and

v is the oblique distance (
= C . . q) of q, the focus, from C, the centre of

the mirror surface. These formulas are exact for infinitely narrow

pencils, and practically accurate for cases in which the aperture of the

mirror does not amount to one-tenth part of the principal focal length.

If in the above two formulae we suppose - to vanish, we then get impinging rays par-
u allel.
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in primary planes y = Fcos<. Fig. 47& shows a spherical mirror of

principal focal length = C . . F, and of radius of curvature = 2 (C . . F).

A pencil of parallel rays whose principal ray is Q l
. . C is incident

upon the mirror at an angle Q
:
CF =

<f>,
and of course reflected off

F
at the same angle. Let a circle of radius -- be drawn touching the

a

mirror centre at C, and the principal focal point or plane at F. Here,

then, C . . ^ is Coddington's v. But in order to compare his formulae

with those we have worked out we must first reduce his oblique
distance v to the axis by drawing ql

. ,pl perpendicular to the axis

C . . F. Let C . . p1
= V. Then it is clear that

V = (C . . qj cos $ = v cos <,

v = F cos
<f>,

therefore

Primary image is It is clear that the formula worked out by Coddington differentially
*

implies tna^ the locus of curvature for the oblique foci is a circle of

radius -, for the triangle CF# is always a right-angled triangle having

always flat.

its right angle at qr so that v or C . . ql invariably = F cos <.

Secondary image is In secondary planes we have by Coddington's formula

F
v = - F sec (t>,

cos
</>

which, of course, requires a plane image to satisfy that condition, the

focus for secondary rays falling at q^ when the focus for primary rays

falls at <?,.



SECTION VI

ECCENTEIC OBLIQUE REFRACTION OF PENCILS THROUGH THIN

LENSES OR ELEMENTS

IN the last Section we have assumed the central or principal ray The new factor in-

of every oblique pencil to pass through the centre A
l
of the lens or ^uced into the

element. We have now to consider the case wherein the point where

the principal rays cross the optic axis is removed from A
a
or the lens

centre to another point on the optic axis, under which condition the

principal rays of oblique pencils will strike the element plane at

distances from the lens centre A
1 varying in proportion to the tangent

of the angle of obliquity. It is clear, then, that the distance C from

A
x

to the point O
T

,
where a principal ray of an eccentric oblique

pencil cuts the element plane, is the new factor which has to be intro-

duced into the investigation. It will be best to deal with the rays in

secondary planes first.

Secondary Plane

In Fig. 48, Plate XI., D\ . D' is a stop or diaphragm having a circular

aperture of diameter = 2 S, placed axially in front of a spherical lens

surface, compelling the principal rays, such as Q . .
1 ,

to cross the lens

axis at G. As before, P. . r
f
is the axis of the lens, and Q is the point Notation,

in plane P . . Q from which the oblique and eccentric pencil of rays

radiates. Let U = P . . a
1?

u' = d
l

. . q', and u = Q . . dr c
l being where

Q . . /cuts the element plane; r = radius of curvature, r' being the centre

of same, and q' the point where the two extreme rays in the secondary

plane come to focus. It is evident that q
f
is strictly upon the normal

ray Q . . / projected. Let $ = angle of obliquity Pa
t
Q, 6 = angle

P/Q, and D = distance of diaphragm from av the vertex and centre

of the lens, or from the element plane. Let the two extreme rays

Q . . n
1
and Q . . u^ passing the diaphragm in the primary plane cut

137
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the element plane at points n^ and w^ Let the central ray or principal

ray of the eccentric oblique pencil, which goes through the centre G
of the diaphragm, cut the element plane at Or Then a . . is the

linear eccentricity of the pencil, and, as we have seen, is the new
factor in the case. As before, we will reserve the consideration of

the higher corrections arising from the departure of the curve from
The two rays in the the element plane for a subsequent Section, XI. Now the two rays in

e ^e secondary plane, or the plane perpendicular to the paper (and

containing the oblique principal ray Q . . 0^, whose focus c[ we wish to

locate, are evidently the two rays just grazing the upper and lower

limits of the aperture in D\ . D\ and striking the element plane at two

points, say n\ and w\, immediately above and below the point O x ;
and

it is obvious that the square of the distance from c to either of

the said points n^ or w^ is equal to

fined"**
17

Value of the two y's. (0 1
.. w\)

2 = f. (25A)

Now, calling the semi-diameter of the aperture in the diaphragm S
we have

which is the semi-aperture of the pencil where it cuts the element

plane. Also we have

The eccentricity C
defined.

Value of the y'a in

detail.

of which

0, . . a,
= (P . .

D D
= U tan < (25u)

which is our new factor C; and

, . . c, = r tan 6 = r tan TTU +r
as before

;
therefore

(c,
. . O,)

2 =
(U

tan

and since

r tan

therefore

UD
tan

= (C

and this value for if must be entered as a coefficient in the formula

for the spherical aberration at the first refraction.
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The Refraction at the Second Surface

Turning now to the refraction at the second surface (see Fig. 49)
we have the same two rays, n^ . . q

f and w^ . . q', converging towards the

point q
f

before entering the second surface.

Join q
f
of our last Fig. 48 to s', the centre of curvature of the second

surface, cutting the second element plane at c
g

. Then s
f

. . c-

2
. . q' is the

second oblique axis. Adopting the same construction as in Fig. 48, we
have the points n

2
and w^ where the two extreme rays in the primary

plane cut the element plane, and the point 2
where the centre or

principal ray cuts the element plane. Then supposing the upper ray
in the secondary plane to ^strike the element plane at n'

2
,
we have,

as before, since the lens is thin,

and since
U-D

.-. (C2
. . n\Y =

( 2 2)
-

(a (02

Now we may take the eccentricity 2
. . O

2
to be the same as a

1
. .

:

for the first surface, for it is the distance from the lens axis of the point
where the principal ray of the pencil cuts the lens, and we are suppos-

ing the lens so thin as to admit of 110 variation in a . . O
t

as the

pencil traverses the lens. Therefore we may assume that

(26A)

as in the case of the first surface, while 9 . . c
2

or _Z?
2 (analogous to

a
x

. .

Cj
of the first surface) is approximately equal to

V tan

= tan
UD - tan

(f>
+S TJ

The eccentricity C.

Value of the Y's in

detail,U-D
and this is the coefficient of the aberration at the second refraction.

Reverting to Formula I., page 120, Section V., giving the complete All the corrections

statement of corrections applicable to the secondary rays of the central

oblique pencil, it will easily be seen that the R correction (see Formula present case.

(14)) expressing the differences between the oblique
- and - and the

axial
Y?

and ^ respectively will apply just the same in our present
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case of the eccentric oblique pencil. Also the expression (12), which

gives the E correction necessary for converting the - of the first

refraction into the - of the second refraction, will equally be required,

while expressions (11) and (13) for the two spherical aberrations will

be replaced by corresponding expressions with those values of y and

Y given above in (25c) and (26s) substituted therein. Hence we get

the following formula, after selecting out the joint spherical aberrations

for the semi-aperture S
Ty which constitute a correction common to

all the pencils, whether axial or otherwise

i_i i
j* /A-im iy/i

X~F~U iY
2
+

2/,
2 lVr

+
U/ \r

+

(27)

LW_iL_VI
V7 Vs

' V

from (25c)

(28)

VU(/.-l)-rWUtan ^ _KT -MO V/UO^
" -' ' - - - - - -

,gg\

from (26fi)

UP Vs_
J-D~ n * V + ;

(31)
8/'Z'

in which formula X = the horizontal distance a
2

. . X'.

Then (28) becomes

/t-1/1 iy/1 p+l\(( UD \ 2 UD Ur

2a \r
+ UAr + U 7\\U-D/

+ " U - D
'

U + r

(28A)

and (30) becomes

^-1/1 iy/i
U +
_I\J/UD y

^2"V 5
+ VA5 V /IVU-D/

(30A)
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from which we can again select out from (2 8A) and (30A) the function

of the two aberrations

so we then get for the whole formula, after somewhat simplifying down
Formuk (29),

1 1 1
+^ + '

9 2 u
7.

+ uA 7-

+
'~irV

(27)

ur>

TTr
/from (28)\

UD

^tan
2
^ (2 9A)

1 1 \1
+
VuT7-

+ TTJ2 tan *
(31 >

Before simplifying down the above complex formula it is expedient Adoption of the

to adopt Coddington's device which was explained on pages 65 and 66. shaPe and ver&eQcy
TI 1 characteristics r and

Eecapitulating, we have since ^rr
+

^r for the ultimate axial pencils1,11 11

r-ir
and

V
=

"2F~'

so that

lj-a 1 -a
~2F~ ^F~

then

^ +x

~20*-l)F



142

and

so that
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1 1 - x

1 +x l-x 1 1

After substituting the above values of -, -. - -. and = in the above
r s U v

Formulae (27), (32), (33), (34), (29A), and (31), excepting in those

expressions involving D, which for the present it is desirable to keep
Secondary Plane, intact, the above formulae simplify down to the following :

1 - 1 _ i _ !/ \*
*

x F u~zr a> IP
Reciprocal of back
focal distance cor-

rected for thickness.

Eccentricity correc-

tion dependent on
coma.

Formulae (39) and I.

apply to all pencils.

Formula (40) applies
to all oblique pencils,
whether central or

not.

Formula II. applies

only to eccentric

pencils.

Spherical aberration
for all pencils.

Normal curvature
error. +

Eccentricity correc-

tion dependent on

spherical aberration.

40* 2 )0*
- iX2

.
from (29A) and (31)

u3
^|
/ DU \

_ f H"[J - D/

tan2 2(u+l) 1 DU
4/m + -

(x
-

a) }~ =r
j
from (33) and (34).

.

i.

from (27)

(40)

III.
^7

- -

4r
(fj, l)\.

^n (39) and I. we have the complete formulae for the reciprocal

of the distance from the back apex a of the focus of the axial pencil

whose semi-aperture at the element plane is S^ f:
or A, correspond-U JL/

ing to Formula XXIII., page 67, for a pencil of semi-aperture =
y.

These Formulae (39) and I. apply to all pencils, whether axial, oblique,

or eccentric.

Formula (40) is the same again as Formula III., page 120, which

we Defore worked out for the full lens aperture and for oblique but
. ... ,,.

central pencils. It is now seen that it applies to all oblique pencils

whether central or eccentric.

Formula II. is a further function of the spherical aberration of

^he lens applying onlii to eccentric pencils. Since the sphericalrr J
i ,

aberration is almost invariably positive or or the same sign as the

power of the lens, this correction is also almost invariably positive.
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We may call II. the diaphragm correction or stop correction dependent

upon the spherical aberration of the lens and the degree of eccentricity.

In III. we have a further correction applying only to eccentric Formula III. applies

pencils. It is a second stop correction due to the presence of coma

in the lens or eccentric oblique refraction. It is as well, before

entering more closely into the nature of these stop corrections II.

and III. and their causes, to first investigate the case of the rays of

the same eccentric oblique pencils contained in the primary plane.

Rays of Eccentric Oblique Pencils contained in the Primary Plane

In this case we may follow much the same lines of construction

as we did in tracing rays in the primary planes of central oblique

pencils, Figs. 44 and 45. In Figs. 50 and 50a let % and w
l
be the

two points where the two extreme rays in the primary plane passed by
the stop D\ . D (

strike the first element plane of the lens. Join the

radiant point Q to ?', the centre of curvature, and produce it to the

ultimate focus of the pencil at q. Obviously ray Q . . 7i
x meets with

more spherical aberration than does ray Q . . w
lt
and therefore intersects

the normal oblique ray Q . . / . . q at /x nearer to the lens than the

point / where ray Q . . wl
intersects Q . . r

1
. . q.

Let c
l

. ,nl
= yl

and cx . . wl
=

T/O . Let O
x

be the point where the

principal or central ray of the pencil cuts the element plane. Let

aperture of stop
= 2$ as before. Let <?/' be the point to be found

where rays Q . . % . . /i and Q . . u\ . . /2
intersect one another. It

evidently lies somewhat to one side of the oblique axis Q . . /. . q by
the small distance q_" . . p" measured perpendicular to the lens axis

P . . /. Let #! stand for the desired distance of q_" from the vertex d
l ;

that is, x
l
=

d-L . . <?/'. Let d
l . . /j =fv and d

1
. . /2 =/2

. Then pursuing
a process analogous to that pursued in the case of Fig. 44, page 121,
with the difference that in this case the two y's are on the same

side of the normal ray Q . . r' . . q, we have

The fundamental

equation.

from which
-
yi/2

Then adopting the same device as before we get

1
r f l w

i=
{ y I

- + -1
x
l V 2 \u

IJL

-_+
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"

When the y'& are on

opposite sides of the
. ...

normal oblique ray.

When the y's are on
the same side.

Here it may be remarked that we now get <\{y\ -\-y

instead of the Vid/-? + y* y\yz) which we arrived at in Section V.,

dealing with central oblique refraction (Fig. 44). But this difference

is simply due to the fact that in Fig. 44 we had the two extreme

primary rays refracted on opposite sides of the normal oblique ray

Q . . /, so that the two y's were also on opposite sides
;
whereas in this

case of Fig. 50 we have both the extreme primary rays refracted on

the same side of the normal oblique ray Q . . r
f

, so that the two y's are

now on the same side. This leads to a difference in the statement of

our fundamental equation, for in the earlier case of Fig. 44 it was

(x f } f - x
y

^ l
.

^ l
' = (n'

. , p') = vjtl-
J\ 4 \JL JT /

f\
-f

/2

but in this case of Fi. 50 it is

/j
- x _ _ /2

x
"l ~7

~ Wi Pi )
=

^2

But if we put

/
/2

C a^ . .
1
- tan

</>
= =-

,
.

c^
= r tan 6 or tan

<f>
==

,
and

we shall then find that

2/i

2 + VZ
2 + 9M (of Fig. 50) = A*

since in Fig. 50

yl
= A + (Bl

+ C) and yz
= -A

while in Fig. 44 we may consider that

y^A + (B + C) and y2
= A - (Bl

+ C)

(of Fig. 44),

C),

Identity of the final wherein (7=0 as the refraction is central, so that in all cases we
arrive at the same result when y* + y + yjjz

or y^ + y^ y^y^ are

expressed in terms of A (the semi-aperture of the pencil in the element

plane) and B
l
and C.
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Now approximately

or

145

U - D U + r VU + r,

Full value of the

function of^ and yz
.

The Refraction at the Second Surface

At the second refraction, illustrated in Figs. 51 and 5 la, after

adopting the same construction and putting x
>2

for the required distance

of the focus
<z2

"
from the second vertex ^,/j for the distance from d

2

of the intersection of ray Q . . n
2

. . f^ with the normal oblique ray
s'. . q, /2

for the distance from d
2

of the intersection of ray Q . . w^ . .//
with the same normal oblique ray, YX

for c
g

. . n
, and Y

2
for c . . w

z ,

we then have, as in the cases of Figs. 44 and 45,

The fundamental

equation.
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from which
(44)

as iu Fig. 45, wherein the two Y's were, as in Fig. 51, on opposite sides

of the oblique axis s'. . q. It is clear that the eccentricity C or a
9

. .

2

of Fig. 51 is equal to the
a^

. . O
l
of Fig. 50. Also A is the same at

both surfaces
; only Bl

and B
z
are different. In this case

2 = U tan 4>
- tan

U

= c2 . . n

Y
2
2 = -(Utan

^"~MS)'
UD Vs / Vs

(45)

therefore the sum of the compounded aberrations at the two surfaces is

wl(/l
+

2/2
+ ^1%) + W

2(
Y

1

2 + Y
2
2 - Y

1
Y

2)
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We have then to add to the above the two end corrections for

obliquity (31), and also the correction (29) or (29A) for converting
-

1
U

into
v ;

and then after gathering together all corrections and putting

^ for the corrected reciprocal of the final axial or horizontal distance
j\.

a.2 . . X' of the final focus q" fr m the back vertex of the lens, we get,

after cancelling out in (49) and (50), the following complete formulae:



Eccentricity correc-

tion dependent on

Ratio between the

Eccentricity Correc-
tions in the two
planes.

Conventions under
which the formulae

are universally true.
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3tan2
< r

, 2(,*+l), ^ DU
V.

The Formula (54) is the spherical aberration common to all pencils

of light passing through the stop. Formula (55) is the normal curva-

ture error for all oblique pencils, central or eccentric. Formula IV.

gives the stop correction for all eccentric oblique pencils due to the

spherical aberration of the lens
;

while Formula V. gives the

stop correction for the same pencils due to coma in the lens.

All these are R corrections to be applied to the first approximate
. 1 I ,/l 1\ 1 1 1

value of
-ry,

as obtained from ^ = u - 11 - + - -
TT ,

or ^-^.V v \t s/ U

Thus the R corrections due to the presence of the stop, viz. IV.

and V., for rays in primary planes come out just three times the

corresponding stop corrections for rays in secondary planes, viz. II.

and III.

The student may with advantage pursue the same processes in the

case of positive and negative lenses and meniscus lenses with the

entering rays both divergent and convergent, the stop being real, and

either in front of or behind the lens, or else virtual only, adhering

always to the following conventions, consistently with those already

laid down on page 10.

Collective Lenses.

Bays constituting
the pencils.

Principal rays.

COLLECTIVE LENSES OR MENISCI

Entering rays diverging, U is + intrinsically.

converging, U is -

Emergent rays converging, V is + ,,

diverging, V is -

Stop in front of lens and real, or entering principal rays),.,. . . .

diverging

y

JD
1S + mtnnsically.

Stop behind lens and virtual, or entering principal rays) , .

converging J
"

Stop behind lens and real, or emergent principal rays) .

converging /
"

Stop in front of lens and virtual, or emergent principal) .

rays diverging /
"

Thus we may write D' for the distance from lens to where the

principal rays cross the optic axis before entering the lens, and D" for

the refracted distance, conjugate to the former, between- the lens and

the point where the principal rays cross the optic axis after refraction.
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DISPERSIVE LENSES AND MENISCI
Dispersive Lenses.

Entering rays converging, U is + intrinsically Rays constituting

diverging, U is - the pencils.

Emergent rays diverging, V is +

converging, V is -

Stop behind lens and virtual, or entering principal rays \ , . . . .
,.* >D is + intrinsically. Principal rays,

converging J

Stop in front of lens and real, or entering principal rays') _, .

i (^ IS ,,

diverging J

Stop in front of lens and virtual, or emergent principal \
.

i *
t -LJ IS T i*

rays diverging J

Stop behind lens and real, or emergent principal rays }
.

/ J-' IS 11

converging J

Seeing that such principal rays are compelled to cross the axis of

the lens at the centre of the stop, or at any image of such stop, there-

fore that centre has to be regarded as an axial point from which such

principal rays are diverging or to which they are converging, and since

these principal rays are refracted by the lens in precisely the same

manner a=5 any other rays, therefore it is universally true that D' and

D", in relation to any one lens in any particular case, are conjugate

focal distances, such that

I- 1 1 (56)D"~F" D"

Therefore we can carry Coddington's device one step further and let introduction of the

B stand as the characteristic of the state of divergence or convergence
new ver&en y cnar -

actenstic p for the
of the principal rays with respect to the lens, so that

principal rays.

1+/3 1 1-0 1 ,, 7
,

^F =v and TF
=
D-

ft is thus closely analogous to a, and may be called the vergency

characteristic for the, principal rays. Then (^ ^J converts into

4F2 DU 2F
77; ^ and = ^r into ^ ,

since the D we have so far been dealing
(p

-
a.y U - D p - a

with was the front conjugate distance D', relating to the entering

principal rays.

Therefore Formula IV. becomes

3tan 2
< 1 |>+2 , /

8
1 ITT

The s P herical

2Fu(u - 1) (a - fl)
2U - \

X ^ +
^
aX +

^ * + ^ ~ ^ t^l I

' aberration Eccen-

j
tricity Correction.

and Formula V. becomes, after multiplying by -(//,),
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"a

The comatic Ec-

centricity Correc-

tion.

The above two
corrections com-
bined.

Abbreviated form
for the Eccentricity
Corrections.

Comparison of above
results with Cod
dington's formulae.

or more conveniently

l)a + (/* + l)z[.
VII.

So that these two stop corrections may be bracketed together thus

1 FM + 2 a'~ /2 i //... i \ ..~ , /o ,n\/ i \ '? . r*

- 2 2

VIII.

We may often have occasion to write this formula in the abbreviated

form

(58)

For rays in secondary planes the 3 tan
2

</>
is replaced by tan

2
<.

Subject to the conventions as to the intrinsic signs of U, V, D',

and D", these formulae are universally true of all lenses, provided their

axial thicknesses are very small. Calling the inevitable curvature errors

tan2
d> u, + 1 , tan2

d> 3 a + 1
=- .

- -- ana --.,-- , which are incidental to central oblique2f P 2r
fj,

pencils, the normal curvature corrections, then Formula VI. expresses
what is nearly always a plus stop correction due to the joint effect of

the spherical aberration and the selective action of the stop upon
eccentric pencils, while Formula VII. expresses what is a very variable

stop correction, sometimes plus and sometimes minus, due to the joint
effect of coma, or eccentric oblique refraction, and the selective action

of the stop.

Thus diaphragm or stop corrections may be defined broadly as

corrections applicable to oblique pencils refracted eccentrically through
a lens, causing more or less serious departures from its normal curvature

corrections. It is more convenient to call these diaphragm corrections

eccentricity corrections, or E.C.s for brevity.

Turning now to the comparison of these results with those worked

out by Coddington, more especially in his Prop. 123, p. 132, it might
be thought on first inspection that they are quite at variance.

In secondary planes he arrived at the formula for an infinitely

thin pencil refracted eccentrically through a lens

= -
k
~
F h 2F

' (59)
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wherein h'is

A
v > 7

= OUI> TT'
an"

72
A. /i U A

while his term V;

-r -; , ^a;2 + 2(u + l)(a
-
B)x + 2(u + !)(/*

-
l)a/?

u(u- 1) (-/3)
2V-l V^

IvTTTA Coddmgton's For
3 v j-viiiA. mula.

(1
\ 1

" 2

V + -
)f2 4 in secondary

p./
K~

planes and (3V + -fe 5^ in primary planes are inclusive formulae,

embracing not only the corrections due to eccentric refraction of

oblique pencils, but also the corrections due to their central refraction.

If, however, we take the normal curvature corrections

7
in the form

1--
2F I

and add them to our corresponding Formula VIII. we get

1 or 3 (//x+2 , , w .
2+

(" + }ax + ( * + }("
'

}

-
l)a(a

-
VIIlB.

This will be found to reduce exactly to Coddington's

,- / i\ / i\~v Formula VIII. con-
J

( V + - or 3V + -
) \ . firmed by Codding-T-. \ 1 W / ^A \ *-* * > It* J

fj./ (J./J ton's results.

Hence it is evident that in his formula he got the normal curvature Mixed-up nature of

corrections, the E.C.S due to spherical aberration and the E.C.s due to ^^instons

coma all mixed up together in a manner unfortunately most incon-

venient for practical purposes.

It is a most curious fact that throughout Coddington's work there Coddington appar-

is no allusion to such a well-recognised thing as
" coma

"
;
indeed it is coma,

doubtful whether he could have been aware of its existence without

at least attempting to work out a formula for it and its effects. On
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page 159, in the course of discussing aplanatic combinations of lenses

in contact, he says :

" The next question that offers itself is the advan-

tage to be derived from a combination of lenses when a pencil passes

through it centrically but obliquely. It will, however, easily be seen

that as the effects of obliquity in this case are totally independent of

the form of a single lens, so they cannot be removed or diminished by

any combination." While this statement is quite true in regard to

the normal curvature of image, yet the possibility of coma being either

Coma met with in present or absent is entirely overlooked. Every practical optician is

practice

1*7 ptical aware that some objectives for telescopes are extremely sensitive to

being thrown out of square, while others are not ; the former show

strong coma at the foci of even slightly oblique pencils, while the

latter show little or none, but only pure astigmatism, while simple
lenses show the same differences, only there is spherical aberration

superadded. Such objectives without coma give better definition for a

considerable angular distance from the axis than do those whose oblique

images are marred by coma or eccentric oblique refraction
; although

the normal curvature of image and astigmatism can be shown to vaiy

only slightly in different cases. We will revert to this subject again

with greater advantage at the end of Section VIII. The phenomenon
of coma is not only deeply interesting, but of great practical importance,

and we will reserve a more thorough investigation into its properties

for Section VIII.

Before concluding this Section, we may with advantage consider

a question that may already have occurred to the reader with regard

to Formula VIII. for the Eccentricity Corrections.

incongruous nature Since the E.C.s consequent upon the spherical aberration of the
of the two Eccen- }

tricity Corrections, lens vary as -.

-^, and the E.C.s consequent upon coma in the lens

vary as ,
and since the value of ( } increases more rapidly

a - p \u- p/

than does ~x when the stop is removed farther from the lens,
a p

therefore the plus E.C.s consequent upon the spherical aberration must

rapidly overtake in value the comatic E.C.s, therefore we should expect

that there should be a limit to the distance of the stop, beyond which

it will be impossible to obtain an excess of minus comatic E.C.s.

or even a neutral balance of minus comatic E.C.s against plus

aberration E.C.S.

Limits to the useful In other words, if we want to modify the normal curvature of

position of the stop. jmages in the direction of flattening them, we must take care that our

stop is not placed too far from the lens, or else the plus aberration
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E.C.s will inevitably prevail and the images be more curved than

before.

Now, if we have eccentric refraction of oblique pencils through a

simple thin lens, and we wish to preserve the normal curvature of the

images, then we must equate the E.C.s to
;
that is, we must have

- 1
40* + l)ax +

(3ft + 2)0*
-

l)a
2 + -

VIIIc.

-
2(

-
/3){(2/x + !)(,*

-
1) + 0* + 1M = 0,

This formula yields the following quadratic equation :

VIIlD.

In order that E.C.s may be js possibly eliminated, it is obvious

that we must have the right-hand side of the equation equal to 0, from

which, since a is a known quantity, we may derive the limiting value

of /3, and then obtain the necessary correlative value of x from the

left-hand side.

In this way we may derive the following limiting values for

/3 and x :

If p = 1*5, and a = 1, then

f +1-45
p \or-3-93

and x=
{ , -
lor + 1'7G

If = + 1-45, then the stop is -817F in front of the lens.

If y8= 3'93, then the stop is at a distance = '40 5F behind

the lens. In either case x indicates the meniscus form of collective

lens with the concave side facing the stop.

If /A
= 1*6 and a again

= 1, then

i +1-523
\or- 2-757

and .r =
I or +1-6 2

If = +1-523, then the stop is 79F in front of the lens.

If j3= - 2-757, then the stop is -53F behind the lens.

So that the above stop distances are the maximum permissible if

we wish to get our images natter than the normal"by means of E.C.s.

Condition for equat-
ing E.C.s to 0.

Quadratic equation
derived from above.

When A =1-5.

When /*
= 1-6.
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Hence we cannot expect to obtain a flat final image from such a

combination as a Cooke portrait or astro -photographic lens if the

separations between the simple lenses composing it exceed the limits

implied in the above Formula VIIlD.

It is often useful to know the effect upon the Eccentricity
Corrections of a lens (as expressed in Formula VIII. of this Section)
of slight alterations in the value of a, /3, or x, and we will here give
the differentials of the E.G. formula with respect to these three

characteristics for rays in primary planes.

1st, with respect to a

Differential of the

Eccentricity Correc-

tions when a varies.

from which we see that the effect of a change in the divergency of the

entering rays is somewhat complex.

2nd, with respect to /3

3 tan2
<f>

1
f

., .

Differential of the 3 tan^ T__\ i
\

1 ( r
E.C.s when (3 varies.

f L(a
-
#)

3
l .! (a -~B)'

2
\(a

-
#)

3
l .! (a -~B)'

2

which is necessarily an expression of a much simpler nature than the

last.

3rd, with respect to x

Differential of the = F/ (p. + 2) 2fr + 1)
| _ _ /.

+ 1 1
j^W - 1-T

_ _
E.C.s when x varies. / (

- P? l^ ~
I)

2 ^ -
1)

which is perhaps the most useful of the above three differentials.



SECTION VII

ON SYSTEMS OF LENSES AND THE APPLICATION OF THE THEOREM

OF ELEMENTS TO THICK LENSES

SOME consequences of the greatest practical importance follow from

the various formulae arrived at in the last Section.

First of all, since and -
represent the relative normal

u, u,

curvature corrections of any simple lens, and as these functions stand

generally in the ratio of 1 to 2 '2, while the Eccentricity Corrections

in primary planes are always three times the corresponding E.C.s in

secondary planes, it follows that the two normal curvature errors of

a simple lens cannot possibly be simultaneously neutralised by E.C.s,

due to the presence of a stop placed anywhere on the optic axis. If

the normal curvature errors in primary planes are neutralised by

E.C.s, so that the image formed by rays in primary planes is got

quite flat, in which case

. tan2
^ S/J.-T 1

KC.s (in pr. plane)
=

^
-L

tan2 ei/u + 1 1 3a+ IN M1then =M ~ - -

)
will represent the remaining curvature

-p. 3
fj.

/
tan 2

(f>
/<? 1"

error for rays in secondary planes. This is equivalent to -

(q*~

so that the radius of curvature of the image formed

secondary planes will be

by rays in

o

F ^ when the primary image is flat. XII.

If
/* =1-5, then

Single Lenses.

Why normal curva-
ture errors cannot
be neutralised by
E.C.s in both planes
at once.

Curvature of second-

ary image when
primary image is

flat.

Or the E.C.s due to an axial stop may be of such value that the Conditions of the

curvature of image in primary and secondary planes is equalised, ast^ma^c'image*
11"

and there is therefore no oblique astigmatism.

155
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If we put x for the curvature error of such anastigmatic image,

then the conditions are sucli that

from which it is evident that

Curvature of the so that the versine'of the curve = - and the radius of curvature
anastigmatic image. 2/z

of the anastigmatic image = /^F, or the principal focal length x the

refractive index.

This condition of the anastigmatic image is also attained when,

in Coddington's formulae ^(V + -) in secondary planes and
f - A*/ 1\ tie \ ft/

1

(3V +
-j

in primary planes, the value of V is 0. Obviously

these results also apply to two or more collective lenses or two or more

dispersive lenses on the same axis.

Combined Lenses in Contact

But by far the most important practical corollaries follow from

the applications of these formulas to combinations of collective with

dispersive lenses, and we will first suppose that such lenses have no

appreciable axial thicknesses and are in actual contact.

An important in- Problem. Is it possible, by any combination of collective and

dispersive lenses, to get the joint normal curvature errors in primary

planes just three times the corresponding errors in secondary planes,

and thus be in the right relation for being simultaneously neutralised

by E.C.S ?

Let P = principal focal length of the collective lens, and

N = of dispersive lens,

fjip
= refractive index of the glass of the collective lens.

p,n
= refractive index, for the same ray, of the glass of the

dispersive lens.

Then, if we write N negative, we must stipulate that

Condition which 2tan

3pp + 1 _ 1 3/% + 1
)

rtan2
^/"! p.p + 1 _ _1 l

tn + 1
)

2 IP to N pn'f L 2 IP & N ^ /

from which
2 , , 9

renders a flat and tan ^f 1 2 _ 1 _\ = nr ^ _ Y TIT
anastigmatic image 2 \P ap N'i*J Pap Ni

'

possible.
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or the powers of the lenses must be in direct ratio to the respective

refractive indices of the glasses of which they are composed, or their

principal focal lengths be in inverse ratio to the same.

Thus we arrive at a result which is one form of what of late years

has been known as the Petzval condition. Fifty years ago or more it

was laid down by Joseph Petzval that the radius of curvature of an

anastigmatic image close to the optic axis, formed by two or more

collective or dispersive lenses, was given by the following formula

1

or
1 1

+ etc., XIIlA.
The Petzval Theo-
rem.

in which r is the radius of the anastigmatic image ;
and that if one

lens of a double combination is collective and the other dispersive,

and the powers such that

(which is the same as the above Formula XIII.), then the radius of

curvature of the anastigmatic image becomes infinity and the image
flat. It is strange that no optical writers seem to have come across

Petzval's proof of this theorem, which up to very recent years has been

regarded as of merely academic interest, not capable of practical realisa-

tion. It is easy to prove that Petzval was quite justified in giving

the former formula for the reciprocal of the radius of curvature of the

anastigmatic image.

For let x tan
2

<f>
be the R correction to the reciprocal value of the Confirmation of the

combined focal length F of two lenses in contact
; then, if the final

Petzval Tneorem -

image is free from astigmatism, F2
(# tan

2

<) is the versine of such

anastigmatic curved image. Therefore we have the equation

fly
N J J M_IP

which condition follows from the fact that the primary E.C.s (due to

the presence of an axial stop) required for throwing back the curved

image formed by central oblique rays in primary planes on to the

curve of the anastigmatic image are always three times the secondary

E.C.s required for throwing the image formed by central oblique rays

in secondary planes on to the same anastigmatic image. From this

equation we get 11 1/11
or x

J\>P

Value of the curva-

ture correction for

anastigmatic image.
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and the versine of the curve of the anastimatic image

(62)

Then if r = the required radius of curvature, then

(Ftan<)
2 1/1 1 \_= s ( ~-- F 2 tan 2

</,2r 2\P
/
*p HpJ

Reciprocal of the
' 111

radius of the ana- A - J___i_ . XIV.
stigmatic image. r

P/j.p N/^
'

and in this equation, which represents the Petzval theorem, the mean-

ing of XIII. is much extended.

Impossibility of ob- Although it can be proved to be absolutely impossible to get a real

astigmatic "Image
image ^ree from astigmatism from a contact combination of thin lenses

without E.G. s. without having a stop placed somewhere on the axis to compel the

oblique pencils to traverse the lenses eccentrically, and thus become

subject to E.C.s of the proper amount, yet Petzval made no mention

of such a condition.

For if a pair of lenses fulfils the condition XIIL, and consequently

=
,
then the simple sum of their normal curvature errors, quite

f^p

apart from E.C.s,

= tan2 <M -- ^ -=-
^n

------- tin secondary planes, (63)
fj.p JJN

/J.H }

and

(
1 3^+1 1 3up + n .

tan^<{
r,

- - -==
[in primary planes, (64)

1 2 r
ftp

2JN
/j.n j

and, after writing p for
^.,

the above formulae
r

p.p JN

tan'2 (> i--n A
tan2

(/>"~
2P LIf If

respectively. Hence the radius of curvature of the secondary image ,

|_ p ft>
^
an(j Of t ],ie primary image =f^^ v Then, if - is the

M) -T

power of the combination when there is no separation between the

lenses, it follows that

I - 1 _ f^1 1 - 1 PP
~^

F"P ^P P"P' ~fr
from which

l = -^ and P = F^^^1

. (65)^ * >
~

- *
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On substituting this value of P in the previous two formulae for the

radii of curvatures of the two images we get

= F simply. (66)

=r -
simply. (67)

Radius of secondary image -
( F '

Radius of primary image = ( F '

Radii of the two
normal images when
Formula XIII. is ful-

filled.

It is interesting to observe, then, that the normal curvatures of the

two images yielded by a compound lens fulfilling the condition XIII.

are the same as if the lens were a simple lens of the same focal length,

but made of glass having an infinitely high refractive index.

So that we may regard the particular case of the Petzval Formula

XIIlA. being equated to 0, as in Formula XIII., as a device for

making a lens whose refractive index is virtually infinity, with regard

to its influence on the compound normal curvature errors.

Therefore it is quite clear, from what has preceded, that E.C.s

must perform a part in this compound lens, if the two images are to be

simultaneously thrown back into a plane image. That is, eccentric

oblique refraction is absolutely necessary to the attainment of the

desired flat and anastigmatic image, in the case of contact combinations

fulfilling Formula XIII.

It is plain that the Petzval condition XIII. demands that if the

combination is to have a positive focus, the collective lens must, in

order to possess the preponderating power, be made of a glass of higher
refractive index than that of which the dispersive lens is made (so that

Pfip
=

N/i^, or the principal focal lengths are in inverse ratio to their

refractive indices), a condition which was impossible to fulfil consistently

with achromatism until the era of the new optical glasses was inaugur-

ated at Jena.

The new dense barium crown glasses combining a refractive index

as high as 1*61 with a dispersive power as low as -^ for rays C to F,

and the new crown or very light flint glasses having a refractive index

of 1'52 to 1*54 with a dispersive power as high as ^, were the crea-

tions of the celebrated firm of Herren Schott & Gen., of Jena, who
thus rendered it possible to embody the Petzval condition in combina-

tions of two or more lenses in contact. Dr. Hugo Schroeder's con-

centric lens was apparently the first photographic lens in which Petzval's

sum 2j was equated to with any degree of success
;
but not only

does the far too small difference of refractive indices yet available

render it impossible to get much focal power from such combinations,

Above combination

equal to a simple
lens of infinite re-

fractive index.

Further necessity
for E.C.s to get a
flat image.

The new Jena
glasses.

The Concentric Lens.

The first contact
combination equat-
ing the Petzval
Formula to 0.

The small balance
of power available.
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Imperfect correction

against spherical
aberration.

Dr. Rudolph's ana-

stigmat.

Dr. Rudolph's and
Dr. Eniile von
Hoegh's improved
anastigmat.

Petzval condition
not quite fulfilled.

but the fact that Schroeder made it a condition in his concentric lens

that the plano-convex collective lens of high refractive index should be

cemented to the plano-concave dispersive lens of low refractive index,

precluded him from the advantage of freedom from spherical aberration.

A reference to Fig. 52 renders it evident that any ray entering the

dispersive lens parallel to the axis is refracted away from the axis, so

that its distance from the axis when traversing the collective lens is

greater than its distance from the axis when traversing the dispersive

lens. This variation in
?/2

would have little significance if the glass of

the collective lens were of lower refractive index than that of the

dispersive lens, but in the case of this abnormal pair of glasses the

variation in y introduces an aberration of the third order which is

fatal to the elimination of spherical aberration, so that, as a matter of

fact, sharp definition, even on the axis, could not be secured with any
F F

larger aperture than about , or in larger-sized lenses. After-

wards Dr. Rudolph of Jena, in Germany, got over this difficulty with

considerable success by adopting the expedient of opposing two

cemented combinations A and B, A comprising an abnormal pair of a

collective and a dispersive lens, of which the collective lens had the

higher refractive index, while B was a normal pair in which the

collective lens had the lower refractive index.

Combination A was undercorrected for spherical aberration, but

this defect was counteracted by the opposite fault in B
;
also a rough

approximation to the Petzval condition was secured by a suitable

division of the powers of the lenses relatively to their refractive

indices. In this way much larger relative apertures were obtained.

Later Dr. Rudolph, closely followed by Emile von Hoegh, devised a

still better symmetrical construction for each half of the lens, which

was made to consist of a double concave dispersive lens cemented

between an inner meniscus collective lens and an outer double

convex collective lens, the refractive index of the dispersive lens being

approximately a mean between the high refractive index of the double

convex collective lens on the one side and the low refractive index of

the meniscus collective lens on the other side. Dr. von Hoegh's lens

is generally known as the Goerz lens.

In each half lens the so-called Petzval condition,

(68)

was almost but not quite fulfilled. In order to fulfil it exactly, either
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the power of the dispersive lens would have to be increased, or its

refractive index decreased, but the exigencies of cemented combinations

preclude the simultaneous fulfilment of other conditions, consistently

with sufficient power being obtained. As the extreme differences of

refractive indices between the new abnormal pairs of glasses are as 1'6

to To, it is evident that any contact combination of thin lenses

fulfilling the Petzval condition must have the power of the collective

lens or lenses equal to 16, as against 15 for the power of the dispersive

lens or lenses, the resulting power of the combination being 1- or

only -j^th of the power of the collective lens or lenses. This is a

limitation implying the use of very powerful or strongly curved lenses

in order to gain a comparatively long focused combination, whose

normal curvature errors in primary planes are three times the normal

curvature errors in secondary planes, and therefore in the proper

relation for being simultaneously neutralised by E.C.s left in the

system for that purpose.

Powerful constituent
lenses result in rela-

tively small power.

The Case of Separated Lenses or Elements

So far, then, we have considered the application of the formulse

arrived at to combinations of very thin lenses in contact. We have

yet to consider their application to either thin lenses more or less

widely separated, or to thick lenses considered either singly or in

combination. Some twelve years ago, in the course of thinking over

the general results arrived at in the last two Sections, especially in

relation to the normal curvatures of image characteristic of simple or

achromatic lenses, it suddenly occurred to the author that since the

normal curvatures of image due to any lens, whether simple or com-

pound, are fixed by its refractive indices and power alone, and are

independent of the state of the rays entering the lens, whether con-

vergent, divergent, or parallel, then it should follow that the normal

curvature errors of an achromatic and aberration-free collective lens

should be neutralised by the normal curvature errors of an achromatic

and aberration-free dispersive lens of the same power (and made of the

same glasses) placed at a considerable distance behind the collective

lens
;
while the combination would, as a result of the separation, have

considerable power or yield a positive focus, so long as the rays from

the collective lens are convergent to a distance behind the dispersive lens

less than the principal focal length of the latter, or more especially

when the rays entering the first or collective lens are parallel. But

such complete neutralisation of normal curvature errors could obviously
M

How collective and
dispersive lenses of

equal powers may
neutralise each
other's normal cur-

vature errors even
when separated.
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The above two lenses

must be free from
coma.

Effect of separations
on the formulae.

The
, power gained

by separation be-

tween collective and

dispersive lenses is

an unqualified net

gain.

not ensue if any E.C.s were allowed to interfere, therefore both these

achromatic and aberration-free lenses must be free from coma or give

symmetrical oblique refraction
;
otherwise pencils of rays traversing one

of the lenses centrally, but the other necessarily eccentrically, would

be subject to E.C.s, and their final foci be either shortened or extended,

and thus the desired result be prevented. This idea led to further

.experiments and calculations, which we will now deal with.

We must first ascertain how the formulae which have been arrived

at, are to be applied to combinations of thin lenses on a common

axis, but having considerable separations between them. In Fig. 53

let Lj represent such a compound collective lens free from coma
and aberration, of principal focal length =/1

,
and L

2
a compound

dispersive lens also free from coma and aberration, and made
of the same glasses, and having the same principal focal length /
(
= /1 ).

Let the rays entering L
I
be parallel. Then at the distance

/j behind L
x

is formed the curved image s . . s due to rays in secondary
sections of oblique pencils, and the still more curved image p . . p due

to rays in primary sections of the same oblique pencils. The dispersive

lens L
2
will project an enlarged image of these to a distance b behind

it, such that T =
-r, where a plane anastigmatic image will be

I) / S f
Jl J%

formed. Or treating the said plane as an origin for the pencils in

the reverse direction, it is evident that after such direct and oblique

divergent pencils (such as that from q) have been refracted by L
9 , they

will then virtually radiate from points in the curved surfaces, s . . s in

secondary planes and p..p in primary planes, which are exactly

the same curved images as are yielded by the positive lens L
1;

so

that all the pencils will emerge strictly parallel leftwards from L
:

.

The theorem that the normal curvature errors of two equal collective

and dispersive lenses will neutralise one another, even when the

lenses are widely separated, is thus almost self-evident when once

pointed out; but the more general theorem that the curvature errors

and E.C.s of a system of separated lenses are the simple sum of the

curvature errors and E.C.S of the individual lenses, and that the power

gained by separation is a net gain and carries with it no curvature

corrections whatever, requires further demonstration. It might at first

be thought that the fact that the centre of each lens of a separated

system views the same point of the original object or its image under

different angles of obliquity, and views the same curvature error from

different distances, would lead to unavoidable complications, but this is

not so.
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In Fig. 53 let $ = the original angle of obliquity of a central Demonstration of the

or eccentric pencil impinging on L
a

. As throughout the foregoing
above theorem.

processes, the angle </>
is always the angle contained between the optic

axis and that ray to or from the real or virtual radiant or focal point

Q which passes through the centre of the lens. The corresponding

oblique focal point about Q, to which the rays converge after refraction

by Lj, subtends a new angle 6 at the centre of L
2

. Let us assume that

the linear aberrations of Q' from the focal plane P..P..P do not exceed

Y(jth part of yi, as is the case if the angle < does not exceed 14

degrees. Let ^ any E corrections, including normal curvature errors

,and E.C.s, for the first lens
;

let S = the similar R corrections for
2

L
2

in neither case amounting to more than 10 per cent of j or

respectively.
l

1

Then j +
A

the reciprocal value of the corrected focal

length of the oblique pencil we are dealing with, and if the same

pencil traversed L
2
under the same angle of obliquity <, then the

corrected reciprocal value of the back focus would be

Sol,* I
' (69)

.supposing

4- 2

The two angles </>

and 6 assumed to

be equal.

^or the first lens is for the moment neglected.
i

But the second lens L
2

views Q under the angle 6, and it is

evident that

Tan

tancj

in terms of

Also the R corrections for the oblique pencil tra\trsing L
a ,

expressed by B
l
will from the point of view of the second lens The same R correc-

4/1 tion as viewed from

become
. , . ,. ,1

L
i and

i,
or increased in inverse proportion to the

tiveiy.

respec-

square of the distance
;

for generally if v = the linear amount of the General argument,

curvature error in question (referred to the axis) and is a small

quantity compared to /a
or /x s, then

1 1 v

and then if/x becomes /x s, then

1 1
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so that the R correction from the point of view of L is 7
^-

5 , as

v (fi
~ sr

against ^ for the same R correction from the point of view of L^ ;
but

(A-*)
2

and moreover is only another way of expressing
an

-$S
lt therefore

Ji 2/i

with reference to L, the R correction from L, is (-~L-] 5-ftj,. as
Vi ~ / a/;

above.

Next, the R correction to which the same pencil is subjected on

traversing L
2
under the new angle of obliquity 6 is evidently

tan* 0-, which = *-- tan'

2

Therefore the sum of the R corrections for both lenses from the

point of view of L
2
becomes

/, tan" * / /,

or
Sum of the R cor-

rections for the two ']
)

""" ri i* , Lx \ (7ft\
lenses.

V/j
- sJ 2 Vj

l /t V

And if this last expression is multiplied by B2
,

or the back focal

length squared, we shall then get the linear value, reduced to the axis,

of the sum of the R corrections of the two lenses. As we have seen

before, == - +-, and B = /2

'{
1 ~^ so that (70) x B2 becomes

/i
~~ s h /2 + (/i

"
*)

Linear value of the ^ f /2(/i
~

) Y( /i \
2 tan2 ^l !J 1,

above.

Next, in order to reduce this to an R correction of the reciprocal
of the equivalent focal length of the whole combination, we must
divide (71) by (E.F.L.)

2 or the square of the equivalent focal length
of the whole combination. Now the E.F.L. is the axial distance of

the back principal point from the final image plane, at which point a

pin-hole would have to be placed in order to throw an image of the

same dimensions as that yielded by the combined lenses
;
on which

supposition the E.F.L. is equal to B 71
,
which~ s

A/2 /79\
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from Formula X., Section III. Therefore (71) H- (E.F.L.)
2

165

which

*

/,

tan2 </ 1
_l~

2 V/r*X
(73)

simply.

The same line of reasoning pursued in the case of separated

combinations of three or more lenses leads to the same important result.

That is, the R corrections of a series of separated lenses sum up as a

correction to the reciprocal value of the E.F.L., and no notice need be

taken of the successive modifications of tan
</>

at each lens. We need

only take the sum of the R corrections appertaining to the several

lenses and multiply them by (E.F.L.)
2
tan

2

<j)
in order to convert

them into their linear value at the final image, taking care to insert

for tan < the tangent of the angle contained between the optic axis

and a principal ray proceeding from any selected point in the original

object or image to the first principal point of the combination. That

is, the two principal points are the points to which the angles of

obliquity </>
should be referred. Then it is clear that, if the original

object is infinitely distant and the rays of pencils parallel, it be-

comes quite a matter of indifference whether the angle </>
is referred

to the outer vertex of the first lens or to the first principal point.

Clearly there is no difference in such a case. With regard to the

second conjugate focal distance, it is obvious that tan
</>

must also be

measured from the second principal point.

The Gain in Power due to Separation

Now the reciprocal of the E.F.L., or = for brevity, or the equiva-

lent power of the combination (73),
= 1

E.F.L. A/
^ ,

as we have

1 1
seen above, and this is made up of

:

two parts, viz. 7 H-
7,

or the
/I /2
c

simple difference of the powers of the two lenses, and 7-7-, which is the
'1/2

gain of power due entirely to separation, so that while 7 + 7 may be
A

_

/2

zero if the powers of the two lenses are equal, one collective and the

other dispersive, yet there remains a considerable surplus power, repre-
~ s

sented by j-?,
in the case of the same two lenses separated.

/1/2

Sum of the R correc-

tions assessed upon
the E.F.L.

Same important
theorem applies to

three or more separ-
ate lenses.

Tan
-/> should always

be referred to the

two principal points.
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The gain in power
due to separation is

a net gain.

A practical illustra-

tion.

The Petzval condi-

tion also applies to

separated lenses.

The radius of the

anastigmatic image
independent of the

separation.

When the Petzval
condition may be

largely ignored.

An instance.

But as we have seen from Formula (73) the curvature errors or E.C.s

appertain solely to j +
j,

therefore the great gain in power repre-
- s A /2

sented by ^r is an unqualified net gain and carries with it no normal
A/2

curvature aberrations whatsoever.
- s 1

Supposing we have/! - l,/2 = -
1, and s = '25, then -7* = + '25 = -,

A/2
or the equivalent power of the combination, entirely due to separation,

is one-quarter of the power of the collective lens a very considerable

amount, especially if we compare it with the case of two lenses in

contact fulfilling the so-called Petzval condition
;
the collective lens

being of power 16 and the dispersive lens of power 15, and the

resulting power of the combination being only 1, or T̂ th part of the

power of the collective lens. Now it obviously remains perfectly true,

that even in the case of a separated pair of a collective and

dispersive lens such as we have been dealing with, the condition XIII.

must be fulfilled if a flat final image, free from astigmatism, is to be

secured
;
and it still remains true that

'

^ = -
(see XIV.) if that

P/KP N^ r

condition is not fulfilled
;

but since the radius of curvature r of

the anastigmatic image is the same whether the two lenses be in

contact or separated, it is obvious that the shortening of the E.F.L.

due to separation means virtually a flattening of the anastigmatic
f

image, for becomes much greater than if there were no separa-

tion. Therefore it follows that a departure from the so-called Petzval

condition, which would lead to serious astigmatism in the final image
of mean flatness thrown by a contact combination, would lead to a

much less serious astigmatism in the final image of mean flatness

thrown by the same two lenses when separated. For instance, let us

take two lenses, one collective, of focal length 1 5 and refractive index

1'5, and the other dispersive, of focal length 16 and refractive index

also 1'5, thus not fulfilling the Petzval condition at all. The radius

of curvature of the anastigmatic image thrown by these two lenses in

contact is given by

Reciprocal of the
radius of the ana-

stigmatic image.

Power when in con-
tact.

1 1 1

while

r 15(1-5) 16(1-5) 22-5 24 360'

1_J_ JL _L
F~l5~T6~240'
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so that r = (l'5)F.

tauce = 4, we find

1

Then if the two lenses be separated by a dis-

E.F.L.

15-16 -4
-16 xTsT

1

240
_! 5

60~240
_

48'

Thus we have ?= 360 as before, while the E.F.L. is reduced to 48, so

that r is now (7'5)F instead of (1'5)F. Thus the effect of a

departure from the Petzval condition is reduced to a vanishing quantity,

so that if we construct photographic lenses on the principle of gaining

a considerable proportion or all of their power by separation, then we
need no longer be restricted to carrying out the Petzval condition

;
we

can ignore it to some extent in favour of a more general and elastic

rule, viz. that the power of the dispersive lens must be approximately

equal to the power of the collective lens, or the sum of the powers of

the collective lenses if there are more than one.

This is one of the two supplementary principles which underlie

the Cooke photographic lenses, and many others which have been

introduced since they were first made public.

And now it will be easily seen that a true anastigrnat might have

been made long before the advent of the new Jena glasses. For

instance, we will take a crown glass collective lens of refractive index

= 1'5, and whose 7=Y, and a dense flint glass dispersive lens of
Ji i i

refractive index = 1'6 whose 7
=
^, the two being separated by s= 7.

/2 15

Here the Petzval condition is fulfilled, but if the lenses are in contact

the power is -
^-^ and the system is dispersive, but the power when

= + . When put into theseparated by 7 is
16-15-7 -6

(
_

15)(16) -3^

triplet form, like a Cooke lens, a very fair rectilinear ariastigmat lens

could be and has been produced, but not so good as when the newer
F

Jena glasses are employed. The Cooke lens of aperture ,
known

as Series la, for astronomical photography, is practically an ana-

stigrnat in which the refractive index of the dispersive lens is consider-

ably higher than that of the two collective lenses, and the Petzval

condition is very considerably departed from, yet the final image is

quite flat and shows only a trace of astigmatism within an angle of

20 degrees.

Before proceeding to the question of thick lenses it is desirable to

arrive at two more very useful formulae relating to contact or separated

combinations. If the final image yielded by a photographic lens has

Power when separ-
ated.

Anas tigmat s

could have been

produced by the

aid of the old

crown and flint

glasses only.

A practical instance.

The Cooke lens for

astronomical photo-
graphy.



168 A SYSTEM OF APPLIED OPTICS SECT.

When ^the primary
imagejs made flat.

a little residual astigmatism away from the axis, it yet remains desirable

to attain an approximately flat image, and two useful compromises

suggest themselves.

1. The image formed by rays in primary planes may be got flat,

leaving the image formed by rays in secondary planes still somewhat

curved concave to the lens. In such case what will be the radius of

curvature (r) of such secondary image ?

It is evident that the primary E.C.S which throw the primary

image back on to the focal plane must be equal to

If p
= the power of the collective and ^ that of the dispersive lens, the

simultaneous secondary EC.s will then be

tan2 </ 1
3/jy +1 1

3fjin + 1 \

~3\2P ~7^ 2N /% 71

which latter must then be subtracted from the normal curvature

errors in secondary planes, so that we have

tan2 _
2N

tan 2 </ 1

3 \2P 2N
-
1

(74)

to express the E curvature correction for the final image, which

reduces to

N̂
so that

(Ftan<)
2

XV.

P 3/ip N 3

Reciprocal of the and finally
radius of secondary 12/1 1

image when the = I
-

primary image is ?' 3 \P/zp N/%
flat.

2. Perhaps the best possible compromise is attained when the

primary image is as much overcorrected as the secondary image is

undercorrected, the focal plane lying midway between the two curves,

the primary curve convex to the lens and the secondary curve concave

to the lens. Thus the circles of least confusion are made to fall upon
the focal plane. The formula for the normal curvature errors of the

combination, with respect to circles of least confusion, obviously

When the mean
image is flat.

Mean normal curva-
ture errors.

= tan2
<*! _L

2N /'
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and therefore the E.C.s for circles of least confusion, or the mean

KC.s, must be supposed equal to the above
;
therefore it follows that

the E.C.s in secondary planes will be equal to one-half of the mean

E.C.s and equal to

2
1

1
l Vj>+ 1 J_ Vrt +

-tan
$2\2P u~ 2N ^

and in primary planes the E.C.s will be equal to

Value of the E.C.s

in secondary planes.

Value of the E.C.s

in primary planes.

Therefore the final curvature R correction in secondary planes will be

1 2^ +

2N u2N

1 ( 1 9 / -t-

2\2P~7^

Curvature errors

> (75) minus E.C.s in

secondary planes.

which reduces to

2 ,|J_ J_

so that the versine of the image curve

and

21P
,/,,

XVI.

The three Formulae XIV., XV., and XVI. give at a glance, as

it were, the degree of approximation to "an anastigmatic focal plane

attainable in any suggested combination of lenses of known powers
and refractive indices, whose combined equivalent focal length, if

separations exist, can also be derived from Formula (72) if only two

lenses are employed, or from the more complex formulae given in

Section II. if there are more than two. No photographic lens of

separated lenses can be made to give achromatic and rectilinear images
with less than three constituent lenses, and if Pa is the P.F.L. of the

first collective lens L
x ,
N the P.F.L. of the dispersive middle lens L

2 ,

and P
2

the P.F.L. of the back collective lens L
8,

s
x the separation

between L
x
and L

2 ,
and s

2
the separation between L and L

3
,
then

the E.F.L. of the combination for parallel rays is given by the formula

Reciprocal of the

radius of either

secondary or prim-

ary image.

The minimum num-
ber of lensesrequired
for a photographic
lens.

1 1 1

XVII.
Triplet lens. The
increment to power
due to separations.

The first part of the above formula is the simple sum of the powers,
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or the E.F.L. of the three lenses if thin and placed in contact, while

the latter part of the formula gives the further increment to power
due entirely to the separations.

Cases where separa-
tions lead to loss of

power.

Huygenian
pieces.

A Significant Corollary relating to Eye-pieces

We have just alluded to the increment to power accruing to a

combination of two collective and one dispersive lens, consequent upon

separation. Eeferring back to Section III., p. 46, we found that a

certain four-lens erecting eye-piece whose lenses were of focal lengths

1, 1'25, 1'25, and '80, only gave an equivalent focal length of '31.

Here is a case wherein the separations have led to a noticeable

decrement to power ;
for while the sum of the powers of the four

lenses is -^ we have ^ ^, T = Therefore while the normal

curvature

26

errors will

E.F.L. -31'

be proportional to --
,
and consequently the

radius of curvature of the anastigmatic image be proportional to '26,

yet the E.F.L. is "3 1 only. That is, the radius of curvature of the

26\
anastigmatic image, if formed, will be smaller (in the ratio ^y] than

the radius of the same image if a simple equivalent lens of E.F.L. = '31

were used.

The above eye-piece is a comparatively favourable case, having s.2

or the second separation greater than usual, which leads to increment

to power. In most cases shortness is aimed at, when the ^ vrr- of
E.F.L.

course grows smaller compared to the sum of the powers of the four

lenses, and therefore the curvature errors of the final image are bound

to increase. A flat or nearly flat image for rays in primary planes is

generally aimed at, and therefore it will be seen that the less is the

power realised in the combination, the more relatively violent will be

the curvature of the same final image as formed by rays in secondary

planes. The shorter is such an eye-piece, the more difficult it becomes

to attain a satisfactorily flat field of view.

eye- We also saw that in the case of the Huygenian eye-piece with

lenses of focal lengths 3 and 1, we got

12 114
OH =

3*'
e

A
4
/2

=
3-

Hence the curvature of image will be twice as strong as that for

the equivalent lens.
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In the case where the two lenses were of the focal lengths 2 and

\, then

E.F.L.

3 ,.,11 3.= -, while -j + T = -
4 /I /2 2

Ramsden eye-piece.

The ideal eye-piece.

Erection of the in-

verted image by
reflecting prisms.

The eye-piece used
in prismatic tele-

scopes.

and here again we have the same disadvantage.

In the case of the Ramsden eye-piece of lenses of focal lengths

1 and 1 and separation 1, the same argument again applies, but as the

separation is generally about % or
, leading to a gain in power, the

construction comes out about on a par with an ordinary four-lens erecting

eye-piece.

The practical conclusion of these arguments is. that the ideal eye-

piece is one which consists of a single lens, self corrected for spherical

and chromatic aberration by being built up of a dispersive lens, and

one, or better still, two collective lenses. If it consists of a dispersive

lens between two collective lenses, then any effective separation

between the components (in the form of thickness perhaps) counts for

gain in power and not loss as in the eye-pieces just considered. Then

if the image has to be erected, crossed doubly reflecting prisms can be

resorted to.

The modified form of Kellner eye -piece now so commonly

employed in prismatic telescopes does not fall far short of this ideal,

and it must be conceded that the images that it yields are not only

superior to those yielded by four-lens erecting eye-pieces in regard to

angular extent and flatness of field and freedom from astigmatism, but

also as regards freedom from certain other curvature errors and E.C.s

of a higher order which we shall glance at in Section XL
It will also be seen that the use of a pair of double total reflecting

prisms between the eye-piece and the objective rather helps to flatten

the image formed by the latter. For they are equivalent to placing

a pair of thick plane parallel plates in the path of the pencils of con-

verging rays whose principal rays radiate from the centre of the

objective, so that the oblique foci are subject to parallel plate correc-

tions tending to throw them back relatively to the axial focus. This

relieves the eye-piece of a certain amount of eccentricity corrections.

It will, however, be seen that the position of the prisms relatively to

the primary image will make no difference to their flattening effect

upon the same.

Application of the Theorem of Elements

So far as we have yet proceeded, it has been assumed that the Thicknesses cannot

'axial thicknesses of the lenses we have been dealing with have been aways

The favourable effect

of the reflecting

prisms.
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How the theorem of

elements is to be

applied.

quite negligible quantities, very small compared with the radii or

focal lengths of the lenses in question. While excessive axial thick-

nesses in the lenses building up optical systems are objectionable for

obvious reasons, and as much as possible to be avoided, yet thicknesses

far too great to be neglected in our computations arise in most cases.

Now the formuke of the order tan2

<f>
arrived at are in their very

nature and origin more and more exact in their results in inverse

proportion to the fourth power of the angles of obliquity (0) dealt

with
; and, if a pencil of rays crossing the axis of a lens system at a

given diaphragm point is traced through all the other lenses at a

small enough degree of obliquity, it may obviously traverse all the

lenses very closely to their centres, even if the lens system is of

considerable length. In Sections II. and III., etc., we have already
dealt with the theorem of elements as applied to thick lenses, and

we will now see how the same theorem may be applied in the

computation of normal curvature errors and E.C.s. Let Fig. 54

be a double convex lens and Fig. 55 a meniscus collective lens,

Fig. 54 a double concave lens and Fig. 55a a meniscus dispersive

lens.

Eecapitulating, it is obvious that close to the axis the double

convex lens may be considered to be built up of two infinitely

thin elementary lenses e
l
and

e^
e
1 being convexo-plane, and e

2 plano-

convex, the two enclosing between them a parallel plate of glass of a

thickness equal to t, the axial thickness of the lens.

It is not quite so obvious, but nevertheless is demonstrable, that

any departures from exactness in the formulae of this Section, due to

the refraction of the pencils through outer parts of the lenses where

the thicknesses are widely different to the central thicknesses, take the

The corrections of form of corrections of the higher orders tan 4
<f> and tan6

<f>, etc. These
the third order, etc. ... , , ...

,
. -, \. VT

higher developments will be dealt with in Section XI.

In the same way the collective meniscus lens may be considered

built up of a convexo-plane elementary lens ev and a plano-concave

elementary lens
2 , enclosing between them a parallel plate of glass of a

thickness equal to t, the axial thickness of the lens. If r and s are, as

before, the two radii of curvatures, then the power of e is simply
- 1

and the power of e simply + or while x, the

characteristic of the shape of each elementary lens, is + 1 simply for ev
and 1 simply for ef Then in assessing the consecutive values u^

and

o,j
with respect to ev and u

2
and

2
with respect to e

2 ,
or the respective

axial distances from which or to which the axial pencils diverge before
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refraction, we must look upon e
l
and e

2
as two distinct lenses separated

by an air-space equal to -.

Also in the case of slightly oblique and eccentric pencils, the prin-

cipal rays of which cross the optic axis at any known diaphragm point at

a known distance D/ or D" in front of or behind e
l (according to which

/3j
is assessed), we can always assess the value of D

2

' and /32
with respect

to
2 consistently with the same supposition, viz. that ^ and

2
are two

separate lenses separated by an air-space equal to -. In this way the

values of a and ft for each element may be arrived at in a very simple way.

The Effects of a Parallel Plane Plate upon Obliquely
Refracted Pencils

We have next to consider whether, besides the influence exerted

by the parallel plate on the spherical aberration of the axial pencil,

it has any influence upon the corrections of the oblique pencils

that should be taken into account. It is obvious enough that

if the rays constituting pencils emerge in a condition of parallelism No effectuponpencils

from e
l}
and consequently traverse the parallel glass plate in a condition para e

of parallelism, then the plate cannot possibly exert any influence upon

them, and they will emerge from the plate and enter e still in a

parallel condition. But if the rays of pencils are converging to or

diverging from points at a distance from the plate, not very large com-

pared with t, then the plate exerts an influence on oblique pencils

which it is necessary to investigate before we are in a position to

properly bring the theorem of elements into practical application. We
already have the complete Formula XXV., Section IV., for the spherical

aberration (to use an expression which is here rather a misnomer) of a

direct pencil refracted through a flat parallel plate, but for our present

purpose we shall first require Formula (15), Section IV., which gives the

spherical aberration occurring at the first flat surface, which formula

was of the form

V1 _ *
A*

~ 1 a 1 _ n 2 /7fi\ Aberration at first

I
~
u
~

it 1uA u l '

Plane surface.

in which a is the semi-aperture of the pencil at the first surface.

We can now bring this formula into requisition when investigating

the case of oblique pencils.

Let Fig. 56 represent the case of a divergent oblique pencil Notation.

?&!
. . Q . . WY Let Q..A 1

= w, and let /j.u
= u. Then let Fig. 56 be
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The fundamental

equation.

the corresponding case of a convergent oblique pencil, both entering
into a plane glass surface. In the first case % and &

:
should be con-

sidered positive, and in the second case negative.

Let semi-aperture of pencil B
a

. .

n^ or B
X

. . w
1
= a, as before. Let

A
1
..w

1
= y1

and A
1 . . w

a
= y2 ,

and A
l

. . B
x
= H! ;

and let the angle
between the principal ray B

x . Q and the perpendicular A
l

. . Q be

called %. Since ray Q . . % is the most oblique, it therefore meets

with more aberration than ray Q . . .wlf
and after refraction cuts the

perpendicular Q . . A
a

at /2
farther away from the surface than /x

for

the refracted ray q1
. . wv Let ql

be the desired point where the two

extreme rays Q . . n-^ and Q . . wl intersect in the primary plane after

refraction. Draw ^i Pi at right angles to the axis or perpendicular

Q..AJ.
Then if we put x

l
for ql . . A

l or the corrected value of &, /i for

L and /2
for /2

. . then

(A, . . =
(A, . .

from which

Adopting our device used on former occasions, let

then
A /2

Talue of the com-

pounded aberration.

Primary plane.

Primary plane. Ob-

liquity correction +
aberration.

Now

and

= (Hx
-

ftj)

2 =
(u tan x

-
f^)

2 = 2 tan2
x
- 2aw tan

=
(Hj^ + dj)

2 =
(u tan x +

i)
2 = w2 tan2

x + 2ait tan

y2
= (H,

2 -
a,

2
)
=

(
W2 tan2

x
-

a,
2
)
= u tan2

x

l
= J__/*

2 -l
x
l fM 2/x

3
ii
3

l 21
_ _ ^Z.1

tan2
x

,.2

(77)
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In the secondary plane we have

y
2 = H2 + a

x

2 = w2 tan2
x + a

i

2
>

1 1 u'2 -
tan2 v + a 2

),

l

and
u. 1 u2 -! u'

2 -l ,_ s Secondary plane.
- '-

2
tan4

x
-

2 3
a
i

' / Obliquity correction

#1 w ^ w -^ M
plus aberration.

Hence, as in the case of eccentricity corrections, the correction for Ratio between the
, ,. , , P . o . ., ,. i ,1 corrections in the

obliquity or the function of tan ^ is three times as much in the two pianes .

primary plane as in the secondary plane.

Second Surface

We will pursue the investigation in the primary plane. At second

surface of Fig. 56 we have the same state of things as is represented

in Fig. 56a at the first surface, only that in the latter figure we must

imagine the light to be passing from right to left, instead of from left

to right, and under either supposition the Formula (77) equally applies,

so that we have

i
2 _ i u2 - 1f* * f* oj.9 r^ 9=

g
3 tarr \

-
2 3 a% ,

V V Alb V _//,"/'

and therefore

1 luu2
1 M2 ~l Second surface.

- corrected or = ^ +
,

3 tan2 v + ~-
t a<? (79) Oblique correction

/]. /y ,7. Vj^'Jl '* /..jil.O ' \ f _ _ ..
C
2 afirv A

p.
v and aberration.

wherein v = corrected value of Q' . . A
2

of Fig. 5 6 (corresponding to

Q..AX
of Fig. 56a),

and v = first approximate value of q l
. . A

2
of Fig. 56 (corresponding

to ql
. . Aj of Fig. 5 6 a).

But in order to express v and v' for the second refraction in

terms of u and u at the first refraction, we must put u + 1 for v, and

or u + - for v, also if
2 ,
the semi-aperture of the pencil at the second

.surface, is to be expressed in terms of a
l}
we then have

|
it + 1 u.u + 1 n v

fj /7
'

ft I ft
o tv-i \ w-i t*| &..

On inserting the above values of v\ v, and a in (79) we then have



176 A SYSTEM OF APPLIED OPTICS SECT.

i
/* p?-i fj-i f tt + _V

x
=
^Tt

+
t A 3tan x+

/ T\A A*0 * T f v */ f \ 9/ I \ \ di /

2/*^
+
-j 2/z

2

(^
+
-j V1 M /

Formula(79) in terms = J_ ^~ 1
3 tan2 + /*2

2 ~ 1 <| /go \

of wand a. t ,/ A ,/ A w2

+ - 2u2 u + -
)

2u2 u + -
)

ft \ -
ft/ \ pJ

Addition of the To these aberrations at the second refraction we have yet to add the
formula for the two

corresponding aberrations due to the first refraction. First, in order
surfaces.

to refer the R corrections to ~ to the new reference point A we must
U / II \ 2

/ u \ 2 f-\
multiply them by ( ;

-

)
or by t I before adding them in to

\lt ~h t/ \ U ~i~
~

I

Equation (80).
p

Thus summing.up the aberrations at both surfaces we get

(from first refraction, Formula (77)),

(from second refraction, Formula (80)),

and the sum of these aberrations
r \ C

1 1

tf

U + -
I \

'

I
'

1

ft/

w2 1

u V f ^-l /I 1
\]

7 \ox-_9 . ! ~~7^l
~~

]
\ U2

+
~pj)

t

t

ft/ \ It
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therefore finally
t t

i i VA1
~
1)~ (/*

~
1)~

,.
-2

The oblique correc-

+ . - 3tan2
xH . -V) XVIIlA. tion and aberration

x
-2 . o..*l . 1 o 2/,, , Y M in terms of M and ft, .+ -

2/1 ^M
+
-j -/* (II

+
-)

or, as we shall find it more convenient to deal with the pencil as an

emergent one, we may therefore express these corrections in terms of
9 9

aa and v. Then, since -% obviously = ~, we arrive at the formula
v2 UL

t ^
Parallel plate.

')- (p-- !)((* + 1)- 2 The oblique cor-
**
3 tan2

x + - s-n ~ *

"2"' XVIII. (R.)
rection and aber-

"P v ration in terms of

v and a.
2

.

If the rays are convergent and v negative, these corrections become

negative relatively to v.

In the secondary plane tan2

^ replaces 3 tan
2

^. This formula can

be applied, as regards the correction for obliquity, to any thicknesses

of lenses with which we have to deal, the axial part of the lens being

supposed to be occupied by a parallel glass plate of the same thickness

as that of the lens, only with this difference. We have seen that we
need take no notice of the modifications in tan < in a system of

separated lenses when computing E.C.s, because the effects of such

variations are neutralised by corresponding inverse variations in the

distances
;
but in the case of our parallel plates the nature of the case

is in one sense different, the angle ^ being the angle made between the How the angle x is

optic axis and the principal ray of the oblique pencil entering or
* be denved>

leaving the plate, whereas the angle <f>
is the angle included between

the optic axis and a ray drawn from the oblique image point Q to the

principal point of any lens system.
Therefore in computing our parallel plate corrections we must

always insert the actual angle of obliquity under which the principal

ray of the pencil enters or leaves the plate, and this angle ^ may be

considerably different from the original angle </>,
which is always

assessed in relation to the first principal point of the system ;
but ^ is

easily calculated from 0.

Let Fig. 5 7 represent the essentials of Fig. 5 8 that is, a collective

lens Lj, a dispersive lens L
2 ,
and a collective lens L

3
in succession

;
and

let P be the point on the axis where the principal rays of all pencils

traversing the system are made to cross that is, P is the pupil point,
where a stop of variable aperture is placed.

N
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Let it be carefully noted that the axial glass thicknesses in this

diagram (57) are supposed to be drawn equal to -th of their real

P
amounts, as shown in Fig. 58, and also that the refractions, shown

apparently as" surface refractions, are really the refractions due to the

passage of the principal ray through the successive infinitely thin

elements elt e
2 ,

e
3 , etc., e

l being convexo- plane, e
z plano-convex,

e^ concavo-plane, etc. The principal ray is traced through the system
as a solid line. Every refraction of the principal ray at an element

plane leads to an apparent shifting of the diaphragm point P. For

Successive pupil rays first entering the system the apparent diaphragm point is at plt

P mts- and that is what is known as the entrance pupil point of the system ;

while the axial point p6
f

,
from which the principal rays apparently

diverge on emerging from the system, is the exit pupil point of the lens.

For e
l
the front pupil or diaphragm point, or the point to which

the principal rays are converging before entering, is pl} and the

corresponding diaphragm point to which the principal ray converges

after refraction by el is p^ ;
that is, pl

and pi are conjugate foci with

respect to the element e
t . We will denote the distance e

1 ..pl by

D/, and the distance e
l

. .p^ by D/', so that D/ and D/' are conjugate
focal distances. Either of these distances D/ or D/' determines the

characteristic quantity 131
for the element el} and we can either write

or
2fl D/' 2/i -D/'

(wherein /x stands for the principal focal length of e^), and so deter-

mine $! For
e^

the front diaphragm point is p^ or ^>2 ,
and the back

diaphragm point is p^ or pa
. Distance

2
. . p,2

= D
2',

and
c^

. . p.'
= D ",

either giving /32 ,
and so on.

As it is scarcely possible to exhibit clearly all the various

refractions to which the principal ray is subject in Fig. 57, unless it

were on a much larger scale, therefore the minor refractions exerted by
e
s
and

e^
are not represented therein.

Now it is evident that if ty is the first angle between the

incident principal ray and the axis before refraction by e
1}

then

fa, representing the angle between the principal ray and the axis after

refraction by e-
t
will also be the required angle of either incidence or

emergence under which the principal ray enters or leaves the parallel

glass plate of thickness t
lt

and it will be greater than ty, since e
l

is

collective. If the lens L
t
had been drawn in its actual thickness,

it is evident that the principal ray would have had to be shown
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traversing it at a smaller angle = ,
or the angle of obliquity in the The expression of

^ tan
ij/l ,

tan \L, etc.
,

interior of the glass plate. But by considering e
1 and e^

not as mere m terms of tan ik

surfaces, but as complete though infinitely thin lenses, and also sub-

stituting an air-space equal to in place of t
lt then

i/ra
becomes the

f*i

.angle of incidence or emergence into and out of the first glass plate,

which is what we really want. Moreover, all the diaphragm distances

D/, D
2',

and D/', D2", etc., etc., for the principal rays, and the image
distances uv u

2
,
and ^ and v

2, etc., etc., for rays constituting the pencils,

.all come out to their proper values by means of this simple device.

Now it is evident that

tan ^ - tan ^ f ,
tan ^ = tan ^ \ 7n tan ^3

= tan ^ V,
1 1 2i

. D/D/D/D; , D/D/D.'D/D;tan ^ = tan f J ,
tan ^ = tan ^

.and finally

tan ,A
- i2,tan n -
D "D "D "D "D "D *
l/j

J^
2
U<A U^ U^ J_7g

Hence in applying the oblique correction of Formula XVIII. (E.) the

original tan ^r must be multiplied by the corresponding factor *
? or

D 'D 'D
' l

T\

I

"T\
Z

"T)">
as ^e case may ^e - 1^ ig clear that if the rays of pencilsD

l L>2 i^
3

entering L
x
are parallel as if coming from an infinitely distant object,

then angle ty is the same as 0.

All these diaphragm stop or pupil distances have, in the first place,

to be worked out in any given lens system, as a necessary step to

deriving the characteristics ftv /32 , etc., for each element.

The Transference of the Parallel Plate Corrections to the

Final Focus

But we have yet to carry these parallel plate corrections through

to the final focus and convert them into corrections to ^,-^f of the
L.r .L.

system. Eeferring to Formula XVIII. we have two corrections to

the reciprocal value of the perpendicular distance v from the second

plate surface of the point from which or to which the pencil diverges
or converges. The second formula is a function of the aperture of the

pencil, and is of the same nature as spherical aberration, and we have
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already dealt with it in Section IV. It applies to all pencils,

whether axial or oblique, and may for our present purposes be left out

of consideration, leaving us only the oblique correction to -
expressed

as

Parallel plate.
Linear value of

oblique correc-

tion.

(81)

For our purposes we must now convert this into a correction to the

linear value of v by multiplying it by v2
,
and then we get

V -i 3 tan2
x . XIX. (L.)

This is the absolute linear value of the oblique correction due to a

parallel plate of thickness tv It is thus seen to be independent of

the amount of u or of v, and is merely a function of the thickness,

angle of obliquity <j>,
and refractive index

/A. Referring to Fig. 57,

it will be readily seen that after we have got the linear oblique

correction due to passage through the parallel plate t
l
from Formula

XIX. (L.), we can then express it as a correction to by multiplying it

/
1
\ 2

by ( /^
we transform it back aain to its linear value at the con-

jugate focal distance v
2 by multiplying by v*, so that the linear

correction to v
z
after refraction through e,2

is expressed by

- 1 t- 3 tan* (82)

It must be borne in mind that all parallel plate corrections,

reduced to linear value, are essentially of positive value with respect

to the final focal distance of a collective system ;
there is, therefore,

no question of signs to trouble us. They all take the form of linear

transferences of oblique foci from left to right, or in the direction in

The oblique plate which the light travels through the system. For the same reasons

same sign ultimately,
these corrections considered as reciprocal corrections, as in Formula (81),

are all of negative import with respect to the final focal power, if the

latter is positive ;
and since their value in the primary plane is three

times their value in the secondary plane, they amount for all practical

purposes to the same thing as minus eccentricity corrections.

Having now got Formula (82) expressing the linear correction to

%, we then express it as a correction to by multiplying by |,
and
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then reduce to its value as a linear correction to #
3 by multiplying by

v^, when we get
" 1

3 tan2
^-2^4, (83)PlV%2

and so on, until after refraction through e
6
we get, as the linear

correction to the oblique final conjugate focal distance v
& ,

the amount

(84)

Then to convert this into a correction to the reciprocal of the equivalent

focal length of the combination we must multiply (84) by

Also tan2 ^ = tan2

fa = tan 2

i|rf ^J ,
as we have seen before. After

inserting these values we therefore get, for the case before us,

i / /nv-nvn \ 2 /T)
'

13(?&& 3 tan2
^(^i

/ / 1\yi^tt4f^t%/
T
VDj

rVE.F.L.
(85) R.

In the same way the final oblique plate correction due to the

second parallel plate of thickness t
2

is expressed as

/ / r r \ 2 / D'T)
-?

(

-***-

fji2\u^5
u
&

'
3 tan2

1 ^2 ^3

and, finally, the third glass plate of thickness
t^ gives us

M,
2 -l

J <86 ) R -
' v

As the quantities D' and D" and u and v have always to be

worked out for each element at the outset for the purpose of arriving

at the characteristics a and /3 for each element, the application of the

above formulae entails very little extra work. There is another way
of working in these parallel plate corrections, but the above method

is the simplest and most straightforward.

Having now explained the nature of the method of calculating the

normal curvature errors and eccentricity corrections, etc., of any ptical

system, so as to define the state of the final image with regard to flat-

ness, curvature, or astigmatism, we will conclude with three series of

carefully checked calculations as applied to three different optical

constructions of which the curves, thicknesses, separations, and refractive

indices were all known with reasonable accuracy, and whose final

images were also carefully observed and accurately measured.

First oblique plate
correction trans-

ferred to final focus.

Second oblique plate
Correction t?an8 -

ferred to final focus.

Third oblique plate
correction trans-
ferred to final focus.
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Instances of the Practical Application of the Formulae of this

Section to actual Lens Constructions

1st. A Series Ic Cooke Lens for Stellar Photography of 6'5 inches

aperture and 43'05 inches measured equivalent focal length (Fig. 58).

As the foci for the D ray lend themselves best to visual measurement,

we will take the heads of the calculations for that ray

v
s
- - 28'723 (convergent and minus) = + 2*677

x
s
= + 1
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E
4

} M
4
= 28-723 - -203 = + 28'52 (convergent and plus)

1 1
'

1 5

t;
4
= 43-018 (divergent and plus) a

4
= + '203

*4= -1
Erj

5

u
5
= 43-018 -f 6-85 = 49'868 (divergent and plus)

v. = 80-895 (divergent and minus) a
5
= + 4'214

f i oo -o i y

u, = 80-895 + -494 = 81 '389 (divergent and plus)
/e 25 '096

#
6
= +36-285 (convergent and plus and = back focal length)

a
6
= "383

6
= -1

We have now to assess the value of /3 for each element. Starting

from the pupil point or the intercrossing point of the principal rays

placed at "40 inch behind the fourth element, we have

for E
4 D/' = - -40 behind, and D

4

' = + '391 (conjugate to D
4")

Values of D', D", and

R = + 8 6 "7 5 /3 for the successive

for E
3

D
8
"= -

(-391 4 -203)=
-

-594, and D
s

' = + -58 .'. /3*= + 82'12
elements -

for E
2 D/ = -58 + 4'39 = + 4'97, and D

2

' = - 5-153 .-. /39
= - 55'284

forEj D
x

" = 5-153 + -547 = + 5'70, and D/ = - 7'89 .-.^--6'207

for E
5

D
5

' = 6'85--40 =+ 6'45, and D
6

" =- 6'786 .-. /35
=+ 39'316

for E D
6
'= 6-786 + -494 = + 7"28, and D

6

" = - 10-25 .;, /36
= + 5'894

Then the E.C.s in secondary planes, as ascertained from Formula

VIIL, Section VI. (substituting tan2

(/>
for 3 tan

2

^>), may be expressed

shortly as

tan2
< 1

i ,

-w-^wr f
1

and come out as follows :

for E
x
E.C.s = + -00276 tan2

^> Eccentricity Correc-

for E
2

= +-01 02389

AA-QIQ^ (These two being dispersive elements, the
*or

8 " J
signs of the E.C.s have to be reversed

forE4
- -0014101

^ before summing up.

for E
5

= + -0036 181

for E6
= - -015281 2

E.C.s for E
3
and E

6
= - '020594 tan2

$
EC.s for Ep E

2 ,
E

4 ,
and E

5
= + '018027

Total of above,
Total for system

- '002567 tan2
(f> secondary plane.
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Total normal curva-
ture errors, second-

ary plane.

Total normal curva-
ture errors, primary
plane.

First plate oblique
corrections, second-

ary plane.

Second plate oblique
corrections, second-

ary plane.

Third plate oblique
corrections, second-

ary plane.

Total of same.

Final total, second-

ary plane.

Final linear error.

Observed error.

The normal curvature errors in secondary planes of the four collective

elements as ascertained by

**.ti?(I
1 '

>)
= + -085734 un*

/ 1 */ 2 *^5 ^ 6

and the same for the two dispersive elements - '081032 ,,

therefore the total normal curvature errors in

secondary planes = + '004702 tan2
<

The normal curvature errors in primary planes of the four collective elements

as ascertained by
tan2

<f> 3p+ 1/1 I I

9 VT +
7~
+
7~^& LI \r. r9 /,I J 1 J A J o

and the same for the two dispersive elements = - '180847 ,,

therefore the total normal curvature errors in

primary planes = + '008258 tan2

Parallel plate corrections in secondary planes for
Lj^

as ascertained by

= + '189105 tan 2

tan2
*J

"'
'

1

vD/7 \u
2
u
3
u
4
u
5
u
&
/ VE.F.L.

and for L
2
as ascertained by

2 _ i\*2^"2 '
,, / r /-n '"n ' \ 2 / , \ 2

tan2
4,
-

456UMMJ VE.F.L.

= - -00070028 tan2

1 \
2

r-1 = - -000078

and for L
3
as ascertained by

. .

1

FL.
= -'00002537

Total = - -00080366 tan2
<

and three times that quantity in primary planes.

Summary.

On summing up in secondary planes we have

+ "004702 tan2
< for normal curvature errors,

- '002567 tan 2
< for eccentricity corrections (E.C.s),

- '000804 tan2
< for parallel plate corrections,

+ '001331 tan2
< being the final error, which it is now desirable to express

as a linear deviation from the focal plane. To that end it must

be multiplied by -
(E.F.L.)

2
.

Let < be 7 degrees, for which the tangent = '132.

Then the linear deviation, in the secondary plane, from the

focal plane at that angle is + '00133 x -
(-132 x 43'05)

2 - - '043 inch,

while the actually measured deviation was - '040 inch.
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Primary Plane

On summing up in the primary plane we have

+ '008258 tan2
< for normal curvature errors,

- '007701 tan2
< for eccentricity corrections (E.C.s),

- '002412 tan2
(f>

for parallel plate corrections,

- "001855 tan2
</> being the final error, from which the linear error at 7| Final total, primary

degrees from the axis plane.

=
(
-
-001858) x -

(-132 x 43-05)
2 = + '059 inch, Final linear error,

while the actually measured deviation was + "030 inch. Observed error.

Thus the measured deviation in the secondary plane agrees more

exactly with the calculated result than the deviation in the primary

plane. The whole field of this lens did not extend to much more

than 10 degrees from the axis. We shall have occasion to refer to

these residual discrepancies in Section XI.

Process Lens

The next example is shown in section in Eig. 59. It is a leos

specially designed for copying or process work, also composed of only

three lenses. The following curves, etc., are for an E.F.L. of 8"55 inches.

^ = 105 1 = '0652 *
2
=-358 2 ='222 <

3
=-110 -^='0722 Thicknesses.

= -232 A
2
= -0053

/!= +2-0711

/,- -2-425

/,. -3-4246

a,= -l &=- 16-796 SB.=

Separations.

Focal lengths and
characteristics.

a
2
= + 1-4179 j82

= +27"945

E
3

a
3
= --3978 &= - 132-711

E
4

/4
=+ -90611 a

4 =--6462 /?4
= +5-626

/6 = -1-01622 a
s
=+-8552 /85

=- 6-1186

/6
-+5-3432 o

e
= -'2423 ^6

=+28'877
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E.C.s, Secondary Plane

Eccentricity Correc-

tions, secondary
plane.

Total.

Total normal curva-
ture errors, second-

ary plane.

Oblique plate cor-

rections, secondary
plane.

Final totals.

Calculated error.

Observed error.

Calculated error.

Observed error.

Discrepancies.

for E
1
= + "0053 128 tan2

for E
3
= + -0034821

for E
5
= + -4544450

for E = - -0183698 tan2

forE^ = --462 1330
for Er = - -0222200

+ "4^32399 tan2 -5027228 tan2

+ 4632399

Total E.C.s = - -0394829 tan2
<

Normal Curvature Errors

tan2
<

~2~
tan2

< + 1 / 1 1
= --659896

+ -055024 tan2
<f>

Normal curvature errors in primary plane + "14020 tan2
<

Parallel plate corrections for L
t
= - '0060907 tan 2

<f>

L
2
= - -0029855

L
3
= - -0001 118

Total - -009 1880 tan2

Summary
Secondary Plane.

Total normal curvature errors + "055024 tan2
<

Total KC.s . . .
- -039483

Total parallel plate corrections - '009188

Primary Plane.

+ -140200 taii
2

</>

- -118449
- -027564

Final error + "006353 tan2
<j>

- "005813 tan2
<

Taking the angle of obliquity < to be 14 2
;

,
whose tangent is

"25, and multiplying above results by (E.F.L.)
2

,
we get

-
(
+ "006353)("25)

2
(8"55)

2 = - "029 inch in secondary plane,

while actual measurement gave
- "005 inch in secondary plane,

-
(
-
"005813)("25)

2
(8"55)

2 = + "0265 inch in primary plane,
while actual measurement gave + "05 inch in primary plane.

Owing to the difficulty in accurately measuring the radii in such

deep curved combinations, such discrepancies as the above may be

partly due to statements of radii being inexact.

But the principal cause of the discrepancy is due to the unmistak-

able presence of minus corrections of the order tan
4

</>,
which will be

better understood after reading Section XI.



VII PRACTICAL EXAMPLES 187

Series III. Cooke Lens

This is composed of four lenses, the dispersive lens being compound ;

see Fig. 60.

E.F.L. = 10 inches.

Total = - -025 34 tan2
< Total.
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Normal curvature

errors, secondary
plane.

Total oblique plate
corrections, second-

ary plane.

Final totals.

Normal Curvature Errors

i 1 1 1 1 i

tan2
<

+_1/_1 _ ^
u^ \f

~
fro V5 J 6

+ -393624 tan2
<

- -512616

= + -171320

Total = +-05 2 3 20 tan 2
<

Normal curvature errors in primary plane
= + '11631 tan2 <.

Parallel plate corrections for L
:
-- - -0108010 tan2

<

L
2
= - -0005574

L
3
- - -0048564

L
4
= - -0000536

Total - '0162684 tan'2 < in secondary plane.

Nor. curv. errors

E.C.S

Par. plate corr. .

Summary

Secondary Plane.

+ 05232 tan2
<

- -02534
- -01627

+ 01071 tan2
<

Primary Plane.

+ 11 631 tan2
<^

- -07602
- -04881

- -00852 tan2 <

Supposing the angle of obliquity to be 14 2' as before, then after

multiplying above final errors by
-

(tan
2

<)(E.F.L.)
2
or by-('25)

2
(10)

2

we get linear deviations from the plane image of '067 in secondary

planes and +'053 in primary planes. The actually observed errors

were '04 in secondary planes and no perceptible error in primary
F

planes, with the lens stopped down to .

In the three concrete instances given it will be observed that the

thickness of a lens exerts influence in two ways upon the oblique

pencils refracted through it : first and most important, the separation

between the two elements very largely alters the relationship between

the several D's, and consequently the /3's, for the two elements
;
and

secondly, by introducing a parallel glass plate. This last generally

gives rise to much smaller effects than the first, and yet in the three

instances given it is too large to be neglected. There is no manage-
able formula whereby a thick lens can be treated as a whole.
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Eccentric Oblique Reflection from a Spherical Reflector

It would scarcely be worth the necessary space to work out fully

and independently the formulae applying to eccentric oblique reflec-

tion for a spherical mirror, as their practical applications do not

compare in importance with the corresponding formulae relating to

lenses. However, there is a short cut to the formulae relating to a

spherical reflector which may be followed with advantage. We have

already noted, in connection with the formulae for spherical aberration

and central oblique refraction, that the refraction formulae may be

transformed into the corresponding reflection formulae by the simple

device of substituting the value 1 for
//,.

Let us take the formula

for E.C.s in the secondary plane, which is

1 M n
2/ (a-pJVG"'- l)Ll/*- 1

-
2(a

-

[j? ~\

~T I-
J

and make the substitution therein of 1 for
/JL,

and we then get

If the power of a lens is concentrated into one surface only, then the

other surface is plane and x is + or 1 . In the case of a spherical

reflecting surface the power is also concentrated into one surface, and

x = 4- or 1
;

it does not matter which. Therefore the term con-

taining x2 cancels out and there remains simply

while in the primary plane tan2

<j>
becomes 3 tan

2
<, and the correction

.

j,

is of course extra to the normal curvature error =-
r

Here, just as in the case of the lens,

1 +a 1
,

1 + B I

ir^ ~^T
=
i>"

D' being the distance of the stop from the mirror vertex. Thus a is

the vergency characteristic for the rays constituting pencils, and /?

the vergency characteristic for the principal rays. If the reader will

pursue the investigation in detail and ab initio for a mirror with a
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stop placed in front, he will arrive at precisely the same formula as

that which we have just derived by substituting 1 for /* and 1

for x.

We have in the Gregorian and Cassegrain forms of reflecting

telescope two cases to which the above formula applies, for it is clear

that while there is central oblique reflection from the large concave

mirror, yet there is eccentric oblique reflection from the small concave

or convex mirror as the case may be. But, as the angular extent of

field taken in by even the lowest power eye-piece rarely exceeds a

degree, the question as to which form of reflecting telescope gives the

flattest final image is of little practical consequence. Such telescopes

are essentially very ill adapted, owing to their construction, for taking

photographic views covering an angle of view at all comparable to

what can be embraced by refracting instruments.



SECTION VIII

COMA AND THE SINE CONDITION -VON SEIDEL/S SECOND CONDITION

CENTRAL OBLIQUE EEFRACTION

IT is now our object to investigate much more closely than we have

yet done the nature of that phenomenon known to practical opticians

as coma, and sometimes as side-flare. We shall find that many of its

manifestations are of an exceedingly interesting nature, of great

theoretical interest as well as of great practical importance. For a small

amount of coma at the oblique focus of a point in a distant object Great importance of

formed by a lens system may cause much more mischief to the defini-
coma"

tion than either astigmatism or spherical aberration, or both combined,

so that it is eminently desirable to arrive at reliable formula of the

second approximation by the employment of which it shall be possible

to eliminate coma from any desired lens system.

In Section VI. we arrived at Formulae VI. and VII., which to-

gether give the Eccentricity Correction or modification to the normal

curvature of image due to the presence of an axial stop or diaphragm

causing the pencils to traverse the lens eccentrically instead of centrally.

Formulae VI. will be seen at once to be a function of the spherical

aberration of the lens.

Now it is obvious that if we have two thin lenses in contact so

arranged as to give equal and opposite spherical aberrations, as is

the case in the object glass of a telescope, then as the compound lens

gives no axial spherical aberration, and Formula I., Section VI.,

proves that the spherical aberration for the oblique eccentric pencil is

the same as for the axial pencil of the same aperture, therefore there

should not ensue any eccentricity correction due to pencils traversing

the compound lens eccentrically. This is certainly the case, and

Formula VI., if applied to the two lenses, will be found to be zero.

For the formula for the spherical aberration for the axial pencil is,

written shortly,

191
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Spherical aberration 1_ , , / v 2
1 , . , v 2 _

ft (
, .

for a pair of lenses 0/3^1^1 +a7ikA9m ~ u
> W

in contact.
8/i 8/2

and the formula for E.C.s in the primary plane, also abbreviated, is as

follows

Spherical aberration 3 tan2 $ 1 3 tail
2

^ 1 , .

E.C.s for same pair ^7 T~
~'~

a \2
A

l
+

of Tn R~\2
A

2 (*)
of lenses. "l \ 1 F*V *J* (a^"Pz)

which should also be expected to = 0. That this is really the case is

evident from the following relations, which obviously exist in the case

of two thin lenses in contact. For supposing both to be collective

we have

Relations between ,

the characteristics u v D ' D "

for a pair of lenses ,

in contact. tnat IS,

L?s = i-i ,
-

2/2

and
/i

**-&= -(1 -i)/
/I

Relations between n \ /2~ '
-

3. and O -
/Q\

/

From the above Equation (1) obviously A'
2
= A'/yV, so that

\/i/

if we take Equation (2) and substitute therein this value for A
2
and

the value of (a2 /3 ) from Formula (3) we then get

No axial spherical 2 ,

aberration implies wVnVVi - *** f ' A' -
i "it- W 111L/11

"

"X ro ~"~"
i* i r\ \c* *"**- I

"
no sphencal aberra- 2 v / (a

- B )
2

/ (a p ) J
tion E.C.s.

Hence in the case of a combination of thin lenses in contact from

which the spherical aberration is eliminated for an axial pencil, there

are therefore no E.C.s consequent on spherical aberration. But it by
no means follows that the combination is free from coma or side-flare

for pencils refracted through it obliquely. That is, if we imagine a

diaphragm to be placed in front of or behind such a compound lens,



via INVESTIGATION OF COMA 193

then the application of Formula VII. to the two lenses will not

necessarily give a zero result
;
in other words, coma may be strongly

in evidence.

For this formula gives us the modification to the normal curvature of

image consequent upon the selective action of the stop upon the rays

of oblique pencils which are characterised by corna, so that we may call

VII. the formula for comatic E.C.s, just as we may conveniently call

VI. the formula for aberration E.C.s.

The Formulation of Coma

The question now arises, whether from the comatic E.C., Formula

VII., we can derive other formulae which will give us not only the

actual size of the comatic flare at the focus when the whole aperture is

in use and the refraction oblique and central, but also the size of the

comatic flare when the pencils are not only oblique but eccentric,

owing to the presence of a stop. These formulae are of such vital

importance as to justify a thorough investigation for central oblique

pencils, while we may leave the case of the coma at the foci of

eccentric pencils to the neTt Section. In the course of working out

such formulae we are also helped to a much clearer understanding of the

phenomenon, and the course of the rays which produce it.

Let L..L
1( Fig. 61, represent a lens, Q the oblique radiant

point in the plane P . . Q, p the conjugate focal point or image of P, and

q the conjugate focal point or image of Q as formed by the ultimate

oblique centre rays close to Q . . C
;
and let it be supposed that the lens

is free from every defect excepting coma, which in this case is inward

coma, that is, having the flare eccentric towards the optic axis P . . C . .p,

the brightest and most condensed end being at q on the oblique axis

Q . . C . . q, and the most diffused end at e. Then as our Formula VII. Line of argument,

for comatic E.C.s is absolutely independent of the aperture of the lens,

and obviously equates to when oblique pencils are centrally
refracted (since in that case ft becomes infinity), and as we have seen

that the normal curvature errors are also independent of aperture,

therefore, since spherical aberration is supposed absent, the conclusion

is that any pairs of rays refracted through the lens at equal distances

from and on opposite sides of the oblique axis Q . . C . . q come to a

focus in the same plane as q, the focus for the ultimate rays close to

Q . . C . . q. But if such pairs of oblique rays focussed at the same

point as the ultimate central oblique rays, that is, if the oblique pencils
were homocentric, then evidently there could be no comatic E.C.s
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under Formula VII. Therefore, since they focus or intersect in the

same plane as do the ultimate central oblique rays, but not at the

same point as the latter, the only other possible explanation is that

they focus in the same plane, but at a different distance from the

lens axis. For instance, in the case of Fig. 61, if the ultimate

central oblique rays focus at q, then the extreme pair of rays Q . . L
and Q . . L

:
focus at e, and other pairs of rays refracted by the lens at

points nearer to its centre will focus at intermediate points in the line

q . . e. We have now to find how these focal points are distributed

along the line q . . e in the focal plane. It is obvious from the fore-

going that the primary section of the cone of rays is at a minimum at

q . . e, in the plane wherein symmetrical pairs of rays such as Q . . L
and Q . . Lj intersect after refraction. If now we can find the point /
where the ray Q . . L after refraction crosses the centre ray Q . . C . . q,

C L
then clearly the distance (/. . g)

' '

will give q . . e, the length of the
O . ./

A device for obtain- comatic flare. In order to get at this we must imagine a stop S
:

. . Sj

flu-e
enS omatlc

to be so placed centrally on the lens axis as to just let pass simul-

taneously the centre ray Q . . C . . q and the extreme ray Q . . L . ./;

then it is obvious that/. . e will be the longitudinal value of the stop

correction or E.G. as a variation of V or C . . p, the back conjugate focal

distance, which is due to that particular position of the stop and

degree of obliquity </>.

Let S= semi-aperture of stop, and A semi-aperture of lens.

Let d . . C as usual = D, P . . C = U, and C . .p = V. Then

2*+l . DU

by comatic E.G. Formula V. (This form of the formula is the most

convenient for our present purpose.) We then have the relations

./

- ~ - -
r..C r..C

U

^"^, wherein P.. Q = U tan <;

. . DU tan
<f>
= A\J - DA - DU tan <,

so that our condition that the stop just allows the extreme ray Q . . L

and centre ray Q . . C to pass demands that





r-i. ^- 1.5.

A. - -.S X. * +.+

U = -2
Fi^.68.a.
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2 TJ tan <i + A
'

Substituting this value of D in the factor

expressing the E.C.s due to the coma, we then get

^ormula

DU 2Utan<-^4 A
U - D 2U2 tan

<f>
+ AU - 2 tan

2U tan ( + A

so that Formula V. becomes

or, more conveniently,

tan

which is the correction to ~= required to convert it into
V

There-

fore the required linear stop correction 7t . . > or / . . e is obtained by

multiplying (4) by V 2

,
unless V is very large compared to F, and

then q . . e or the length of the comatic flare will be obtained by
A A

multiplying /. . e or h . .p by ,
or approximately by ;

so that

V

tan

in which, resorting to our former device, we may substitute

V, thus arriving at

,

l(2/*+ !)(/*- IJa + Oi+l)*, -,

2F
for

T^-
1)

This, then, is the formula for the length of the comatic flare, sup-

posing that the other aberrations are absent. It is evident that it is not

affected by the stop S
x . . S

: ,
which we have used as a stepping-stone

in the line of reasoning, being taken away, thus bringing the full

aperture into use. The formula therefore applies to the full aperture
2A of the lens. It is now seen that the length of the coma increases

The correction to .

Formula for the

length of the
comatic flare.
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Distribution of the

rays in the primary
plane.

A corollary.

The distribution of

the brightness.

Variation in focal

lengths for different

lens zones.

Zonal aberration.
'

as the square of the aperture, other factors being constant, and there-

fore the lateral displacement (like q..e) of the foci for symmetrical

pairs of rays increases as the square of the distance from the oblique
axis or ray Q . . C . . q of the points where they impinge on the lens.

We are now in a position to construct a diagram of the course

of the rays in the primary plane, which gives rise to coma, in more

detail. Fig. 62 illustrates the same case as Fig. 61, only with the

coma farther exaggerated for the sake of clearness, and with more rays
filled in.

Here the pair of rays Q . . b
t
and Q . . b refracted at distance = 1 from

the oblique axis Q . . A come to focus at point b
l + &

2
at 1 unit from q,

the focal point for central rays ;
the rays Q . . c

x
and Q . . c.2 refracted at

distance = 2 from the oblique axis Q . . A come to focus at point c
l + c

2

at 4 units from q ;
while the pair of rays Q . .d

l
and Q . . d refracted at

distance = 3 from the oblique axis Q . . A come to focus at point d
1 + d

9

situated 9 units from q, and so on as the square of the aperture.

It follows, as an obvious corollary from the law of the length of the

coma increasing as the square of the aperture, that, provided the

length of the coma is very small compared to its distance from the

lens, as is usually the case, then the distances q . . b, q . . c, and q . . d

from the focus to the points where the rays Q . . blt Q, l
..c

l ,
and Q . . d

l

intersect the central oblique ray Q . . A . . q must vary as the aperture,

or as the respective distances A . . b
l}
A . . c

l}
and A . . d^ The coma

in Fig. 62 is too much exaggerated to permit of this relationship being

properly shown.

In the primary plane it is clear that the rays are most crowded

together at the end q of the coma, and most diffused at the other end e

where d
l -f- rf2 intersect. Hence the former is the bright end, and the

latter the diffused end of the flare.

Supposing that the lens were divided into concentric rings or

zones, and each zone in turn allowed to throw an image of the point Q
on to the plane p . . q, it is very evident that as the image of Q formed

by the two extreme rays in primary planes falls at d
l + d,

2
nearer to

the optic axis than the foci for smaller zones of the lens, therefore the

equivalent focal length may be said to vary for different zones
;

the

larger the zones of the lens the smaller the equivalent focus of such

zones. In other words, the equivalent focal length differs from that

of the ultimate central portion by amounts varying as tan
(f>

and as

the square of the aperture. This property of a lens subject to coma

has been well emphasised by Professor Silvanus Thompson, who has

applied the term " zonal aberration
"

to the phenomenon.
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It is clearly of the greatest practical importance, when estimating

or eliminating coma in a combination of lenses, to have an expression

for the angular value of the comatic flare, that is
?-^--

Of course this

is obtained by multiplying the Formula I. by ~ or
-^FT, by which

we get

q..e II.

The angular value

of the coma, as

subtended at lens

centre.

It is clear that in the case of Fig. 61 we have both a and x positive,

while at the same time the coma q . . e is inwards or towards the optic

axis P . . p. It is very important to adopt a convention with regard to conventions as to

the sign of coma. In Formula II. the angular cOma comes out negative, signs of coma.

We will consider any such comatic flare to be negative which is

inward, or whose diffused end lies towards the optic axis (or whose

bright end C (Fig. 66) lies away from the optic axis); and this rule

must apply whether the coma is real or whether it is merely virtual,

and irrespective of whether the lens in question is collective or

dispersive. For instance, Fig. 61 gives, on a smaller scale, the case

of a dispersive lens corresponding exactly to the case of the collective

lens in Fig. 61. Here, also, it will be easily seen that the coma e . . q

is likewise inward or towards the optic axis. Also both a and x are

positive. Therefore it is clear that the minus sign must still prefix

Formulae I. and II. with respect to the dispersive lens
;
and then, as

we shall see farther on, the comatic functions of a series of lenses can all

be simply added together, and there will be no need for reversing the

signs of the functions for dispersive lenses before summing up. The

case is intrinsically quite different to that of the eccentricity corrections.

In short, the fact that the formula for coma is a function of ^
shows that the sign of f may be ignored,

lens is implied in the sign of a.

Moreover, the sign of the

The Part Played by the Secondary Rays in Coma Formation

We may now turn our attention to the consideration of sym-
metrical pairs of rays contained in the secondary plane, any two rays
refracted through the lens at equal distances above and below A.

Since we are assuming the existence of coma without astigmatism (a

condition which is hypothetical in the case of a simple lens except
under very special cases of eccentric refraction, but quite possible and

quite common in the case of certain compound lenses), we have, of
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Difficult nature
the inquiry.

of

course, to assume that a pair of rays in the secondary plane intercross

or focus in the same focal plane q..p as do the pair of rays in the

primary plane, and it is obvious that they will focus somewhere in

the straight line p . . q lying in the primary plane and passing through

the optic axis.

The line of reasoning whereby the position of this focal point for

two rays refracted at the distance A from the lens centre in the

secondary plane is determined is long and difficult, and perhaps it is

unnecessary for our purpose to do more than give a brief sketch of

it by the help of Fig. 63.

This method consists in assuming the two rays Q . . T' and Q . . T"

in the secondary plane to be refracted through the sharp edge of the

lens immediately above and below the point T, aud finding by spherical

trigonometry how much the vertical plane containing these two rays

after refraction is angularly deviated (in the primary plane) from the

plane containing the same two rays before refraction
;

for it can be

shown that such a deviation always takes place. In Fig. 63 the two

incident rays Q . . T7 and Q . . T" respectively have to be repre-

sented by one straight line Q . . T, and the two emergent rays Tr
. . q

f

and T" . . q
f

by another straight line T . . q' ;
but those two straight

lines are not one
; they form a small angle with one another at T, and

the angular displacement of T . . q' witli respect to Q . . T is outwards

or away from the optic axis.

Having got a general expression for this deviation (which depends

upon the shape of the lens, etc.), we next compare it with the lateral

parallel displacement which occurs to the central my which passes

through the two principal points, 2h and p2 ,
of the lens and its

geometric centre, as shown by the solid lines. We then arrive at the

formula, III., for the angular displacement of the focus q l
for two rays

in the secondary plane from the focus q for the ray passing through

the geometric centre of the lens that is, the angular value of q . . q
f

subtended at T
Angular value of

interval between

oblique central ray
and secondary focus.

tan</> III.

Thus we obtain a value which is just one-third of Formula II.

So that if, in Fig. 63, q is the point where the central ray strikes the

focal plane, and q
f

is the point where the two rays Q . . T' and Q . . T"

in the secondary plane come to focus, then if we make q . . q"
= 3(^ . . q'),

q" will be the point where the two rays Q . . E' and Q . . E" in the

primary plane come to focus, the two sets of rays belonging to the
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same zone or circle of the lens, which we have assumed to coincide

with its sharp edge.

The Diameter of the Coma in the Secondary Plane

The following line of reasoning for obtaining the diameter of the

comatic Hare in the secondary plane may be pursued consistently with

the theorem of coma which we have just explained.

We have supposed that the four rays which, two by two, impinge

upon the two extremities of the secondary axis of the comatic circle

and define its size in the secondary plane, are refracted through the lens

zone at points 45 and 135 degrees in both directions from the neutral

point p
r

(Fig. 64), that is, rays from /, /", j\, and j2
. Confining our

attention to the pair j" and j2 immediately above and below the point

n, as shown in dotted lines in Fig. 61, we have C . . n = (C . . L) cos 45

=A= (A being the semi-aperture of the lens). The dotted circle in

Fig. 64 then represents the eccentric zone limited by the stop S' . . S',

and its radius is obviously . We have already found the crossing

point / for the two rays C . ./ and L . ./, which gave us the linear

E.G. in primary plane (=f..e), from which we got q . . e. We now
want the corresponding E.G. for the two rays n . . s in the secondary

plane passing above and below n
;
and in order to find it we must

imagine the diaphragm moved back from d to d', such that Q . . df

produced passes through n
; then, calling the diaphragm distance

(d
f

. . C) I)', for short, we have, if angle P . . df
. . Q = 6,

^4 1 U-D' 1.

-L' - */2 -4 ^
x/2 U tan<

tan 9

and dividing by D' we get

J_ 1 U-D' D'U A 1

tan UD'
' U - D v

^2 tan
</>.

Hence the required E.G. is expressed by Formula III., Section VI.,

with the above value of ^ vc, inserted ;
that is,U-D

/*+/ x)4ua + r---
'(x

-
a) \

* /

AA =



Diameter of the
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which is more conveniently expressed as

Then the linear E.C. obtained by multiplying by V 2
is

(6)

Then the secondary diameter of the comatic flare is obtained by multi-

2A
aperture in secondary plane 2A I - a

plying (6) by
- -

^ , that is, by v/2 or ~ ^r-
~y~ v*

So that we get

1

l-o
IV.

for the secondary axis of the comatic flare, which is just two-thirds of

the value given by our previous Formula I. for the primary axis of

the flare.

To trace out mathematically what happens to the rays from Q
other than those we have dealt with, and which are retracted through
the sharp edge or belong to the same lens zone, is a much more

difficult task. It has, however, been undertaken by Professor Finster-

walder and others, and the results may be shortly explained by Fig. 64.

The comatic circle.

Structure of Pure Coma

We will now give a brief explanation of the comatic flare, while

reserving until later the general proof that this theorem of coma

necessarily implies the ratio of 3 to 1 for the E.C.s in primary and

secondary planes respectively.

Let the circle s'. .p'. . s". .p" of Fig. 64 represent one of the concentric

zones of a lens, the optic axis of such lens being perpendicular to the

paper. Let C be the point in the distant focal plane where the ray passing

through the geometric centre of the lens strikes
;
let P be the point where

the two rays in the primary plane, p' , . P and p" . . P, come to focus
;

and S be the point where the two rays in the secondary plane, / . . S and

s" . . S, come to focus, C . . S being ^ of C . . P. About a point half-way
between S and P draw the circle S . . K' . . P of diameter = S . . P. This

circle we will call a comatic circle, on which strike all the rays

refracted through the zone s
f

. .p" . . s" . .p' of the lens, only the way in

which the striking points are distributed around the comatic circle is
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a peculiar one. Starting from p' in the primary plane, the point

towards which P (the point of the comatic circle most remote from

the centre ray C) lies, we may reckon our rays by their angular distance

from p' measured along the zone. The ray from j', a point 45 from^',
will strike the comatic circle at K7

at a point 90 from P
;
the ray from

s', 90 from p', strikes the comatic circle at S, 180 'from P
;
the ray j" ,

135 from jo
7

,
strikes the comatic circle at K", 270" from P, and so on.

That is, every ray passing through the lens zone at an angle from

the neutral point p' strikes the comatic circle at a point situated by
20 from the corresponding neutral point P. Thus all the striking-

points of rays are subjected to what may be termed a degree of torsional

displacement equal to 0.

In Fig. 64 the comatic circle, for clearness, is shown too large

in proportion to the size of the lens zone. Fig. 65 shows the

structure of the comatic circle far more truly, for it is constructed on

the supposition that the lens zone is infinitely large compared to the

comatic circle, so that the inclination of all the rays shown therein to

the primtry plane P . . P '
is the true measure of their angular

distribution round the lens zone. Also it is supposed that the diagram
65 represents a view of the comatic circle as if looking along the

oblique central ray, so that the lens zone would, strictly speaking,

appear as an ellipse. But the angle of obliquity is assumed to be

small enough to allow us to treat the lens zone as a circle, of immense
size compared to the diagram. As a corollary from this torsional

effect on all rays (except the neutral pair striking the comatic circle

at P
t ),

it follows that every point in the comatic circle is the mutual

striking point of two rays originating from two points in the corre-

sponding lens zone which are 180 apart or diametrically opposite
So that each straight line drawn across Fig. 65 represents two rays,

one from one point in the lens zone, and the other from the opposite

point. A marked feature of the case is that all the rays cut the

straight line drawn from the lens centre to the intersection S' of the

two rays S . . S' and S
x

. . S' in the secondary plane ;
but let it be noted

that these intersections are at different distances from the plane of the

diagram or comatic circle, so that the seeming intersection of all the

rays at S' is apparent only.

Fig. 65a is designed to elucidate these points further. It is a

perspective view of the comatic circle and the same rays coming from

the lens zone as those shown in Fig. 65, wherein the rays are

numbered I, -2, +1, +2, etc. The + sign means that the

ray in question, after intersecting the comatic circle, proceeds to cut

Distribution of the

rays round the
comatic circle.

The torsion im-

parted to the rays.

Every point in the
comatic circle re-

ceives two opposite
rays.

A common inter-

section axis for all

rays from each lens

zone.
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Distribution of the

commonlnt^fsection
axis -

the ray projected through S' from the centre of the lens, at a point

beyond the plane of the comatic circle; while the --
sign means that

the ray in question cuts the projected central line before it intersects

the comatic circle. Thus rays of the same sign and number cut the

ax^s ^ intersection at the same point, and those of equal numerical

values, but opposite signs, cut the axis of intersection at points

equidistant from, but on opposite sides of, the plane of the comatic

circle. The two rays marked s and s
l
in the secondary plane cut the

comatic circle at one point S', also shown in Fig. 65a. For the sake of

clearness, each ray is drawn as a solid line up to its intersection with

the comatic circle, and as a dotted line after its intersection. Also

each ray is marked with the same numbers and signs as in Fig. 65, so

that each ray may be identified in both diagrams. The relative

aperture of the lens zone is assumed to be very large.

Outline of the com-
atic flare denned.

The Distribution of the Gomatic Circles formed by Different

Lens Zones +

The next Figure, 66, shows a series of comatic circles and their

relative distribution for a series of lens zones of semi-apertures =

1, 2, and 3, from which it will be easily seen that the two tangents to

the series of comatic circles embrace an angle of 60, and intersect at

the point C where the .central ray cuts the focal plane. For we
have seen from Formula III. that the distance C . . B, from the central

ray C to the point B where the two rays in the secondary plane

intersect, is
-^

of C . . D. Therefore, assuming the comatic circle

t' . . B . . t" . . D. with its centre at e, to exist, we have - = i-
C..

= sin (t' . . C . . e)
= sin 30, therefore the angle between the two

tangents is 60. Such an expanding series of comatic circles makes
the well-known balloon-shaped side-Hare or coma instead of a point
of light at C. Then C is the end of the coma at which the greatest

intensity of light concentration occurs, while D, the opposite extremity,
is marked by the greatest diffusion of light. We will call C the root

of the coma, and D its extremity. If the extremity of a comatic

flare lies towards the optic axis of a lens, then the coma is negative
or

;
if it lies away from the optic axis, then the coma is positive

or + . The signs preceding Formulae I., II., and III. are arranged
to always give results in accordance with the above convention, bearing
in mind that no difference of sign is required to be made in applying
these formula? to dispersive lenses, of which instances will be given later.
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The student wishing to study the formation of coma corresponding HOW pure coma may

to any particular lens zone cannot do better than take one-half of a be exhibited -

Goerz Double Anastigmat, with the stop to the front to receive nearly

parallel rays from a distant bright point of light. The lens may be

rendered opaque except for a narrow zone near the edge of its aperture,

and then, on examining the focus with an eye-piece, while tilting the

lens to a certain degree of obliquity, a very fine example of pure coma

without much admixture of astigmatism may be obtained, and the

duplex circle of Fig. 70 may be watched as it closes up to focus. It A fcaif lens zone

is particularly instructive to cover up half the zone, when, at the focus,
jJjJJJJJJJJ

app
c

*r
matic

a complete ring of light will still be obtained. circle.

The Sine Condition

By many optical authorities, especially on the Continent, it has

been asserted that if a lens fulfils what is called
"
the Sine Condition,"

it will then show no coma. The late and much lamented Professor

Abbe, of Jena, was the first to prove that if a lens L . . L
X (see Fig. 67)

is so shaped relatively to the conjugate axial foci P and p that

LPS- = constant for all values of L . . S or y, then pencils refracted
sin Lj?S

obliquely but centrally through the lens, such as pencils LQLj and

L^I^, will be free from coma. It can be proved that if the lens fulfils

the sine condition, then, if we take a new point of origin Q to one side

of the axis, but in the same focal plane as P, the length of path

Q . . L -f L . . q = the length of path Q . . Lj + L
:

. . q, and therefore two

elements of a wave of light starting together from Q meet again at q

simultaneously upon a common point situated on the central oblique

ray, there being, therefore, no lateral displacement. But to plan a

lens that will fulfil the sine condition in any particular case by

trigonometric methods is far more laborious than arriving at a direct

result by a simple algebraic formula, and it may easily be proved that

our formula for eliminating coma, (2/i + !)(//, l)a + (//,+ 1) = 0, can

be deduced directly from Professor Abbe's sine condition, and is the

algebraic expression of that condition. Let us consider any pair of

conjugate rays such as P . . n and n . .p (Fig. 67), and suppose they are

each produced into the lens until they meet at n, then the per-

pendicular n . . S is common to the two triangles ftPS and npS, and

sine npS n . . P . ,-
KFT = simply,

sine nrb n. .p

Then let us consider a pair of conjugate rays refracted extremely

The sine condition

implies equal
"
opti-

cal lengths
"
for ex-

treme rays of an
oblique pencil.

The sine condition
made the basis for

our formula for no
coma.
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closely to the lens axis (see enlarged diagram of the centre of the lens,

Fig. 67a). If the two conjugate rays P . . b and p. . d are produced in-

wards and meet at h, then in the extremely narrow triangle libd the base

b . . d is the course of the ray within the lens, the angle hbd is the angle
of deviation at the first surface, and the angle hdb is the angle of

deviation at the second surface, but at such extremely small angles,

the angles of incidence or emergence and angles of deviation bear the

constant relation [j,:fj, l, and we may say that the angle of incidence

of the ray P . . b is to the angle of emergence of the ray d . . p as h . . d

is to h . . b
;

so that ultimately when h is brought down to the axis

it will be so placed as to divide the thickness t of the lens into two

parts A, corresponding to b . . h, and B corresponding to h . . d. Then

A angle of emergence of d .. p
B angle of incidence of P. . b

Let P..L and L..p in Fig. 67 be another pair of conjugate rays
refracted by the extreme thin edge of the lens

;
then it is obvious that

the sine condition demands that

P . . L
=
P . . n

Qr
P..h P.

L/*_(P..&) + (&../0 =U + A
L . . p n . . p h . . p

'

h . .p (d . . p) + (d
'

. . h) V + B '

therefore r> T TT A

P..L_U + A
( }

L..^> V+B'

Now let perpendicular L . . S = y, then

Keverting to Formula (7), giving the ratio between A and B, it is

obvious that the ultimate angle of emergence of ray d . .p is expressed by

(- + v)> and the ultimate angle of incidence of ray P. .b is similarly
/I i\

expressed by (
- + ~}. Therefore putting t for the central thickness

of the lens we have

7- TT
and B =

'1 J\ /I 1\ /I 1

therefore Formula (8) becomes
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u

2 VU 7 / \ 7 \J ' \ O * '
/ 1 1 \

W2/1 f
= '

-~5
" ~

'

V +
(-J

+ -
2 W s,

y +

U
in which we may put

f f _?//! 1
~

2r
+
2s~"2\r

+
s

so that (11) becomes

(12)

2 \r s/ 1 l \^.il l \

r
+
u)

+
Vl

+
vJ

1 + a; 1

On resorting to the former device of making .. _ n = - Reductions.

1 a; 1 1 + a 1 1-a 1 , Vi-.i-=
f^, and ->- =^, and substituting these in the

2/0*- 1) 8
1

2/ U' 2/
smaller terms, then (12) becomes

From (13) we derive

from which we get, on reducing to a common denominator and leaving

out the latter,

16UV/VO* -
I)

2 + 4y*V/G*
-

!){(!
-

x) + 0*
- 1)0

-
)}

-
!){(!

-
X) + 0*

-
1)(1

-
)} + ?/

4
{(l

-
X) + (/,

-
1)(1

-
a)}

2

-
I)

2 - WVMt* -
!){(! + *) + (A*

-
1)(1 +

))

-
!){(! + x) +

(p.
-

1)(1 + a)}
-
y
4
{(l + X) + 0*

-
1)(1 + a)}

2 = 0.

Neglecting functions of ?/
4

,
which belong to a higher order of approxi-

mation and are small compared to the other terms, we get
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Conclusion from ful-

filment of the sine

condition.

Reciprocal of the
radius of the sine

surface.

Two corollaries.

0.
-

a)}l

a/

2f -2f
Then on writin - lor U, and - for V, and multiplying all

terms by (1 a)(l + a), we get,

-
x)

-
a)}

+ x)

and this simplifies down to

(14)

which, as we have already seen in Formulas I., II., and III., etc., is the

condition of no coma,, which we previously worked out from quite
different premises.

It can also be shown that if, when the sine condition is fulfilled,

the incident and emergent rays are produced to intersect within the

lens, then the radius E of the circular curve L . . S. . Lj along which the

pairs of conjugate rays thus intersect is given by the formula

1

R
1 1

Thus, when U is infinite E = V
;
when U = V, E is infinite, and the

surface L . . S . . Lj is flat
;
but when V > U, then the curve of radius

E is reversed in sign and faces convex to the longer conjugate focus.
'

We may call this spherical surface of radius E the sine surface.

When a lens is free from coma, or fulfils the sine condition, two

important corollaries can be deduced from the conditions prevailing

and these are, firstly, that the point S, Fig. 67, where the sine surface

cuts the optic axis, is always exactly in a straight line between

any original radiant point Q and its image q ;
and secondly, this

point S is so situated with respect to the two principal points, pl

and >, of the lens as to divide pl
. . p2

into two parts, such that

(?1 ..S):(S..^2)::U:V.
Therefore S falls between the two principal points if both U

and V are positive, as in Fig. 68
;
but if U and V are of different signs

and the conjugate foci on the same side of the lens, as in Fig. Q8a,

then the point S falls outside the principal points, and in this case

behind them.
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Some Manifestations of Coma

Eeturning now to the consideration of the structure of coma, we

have seen that, in the absence of other aberrations, a lens manifesting

coma forms for each zone of the objective or lens a duplex circle in

the focal plane, whose actual diameter is given by Formula IV., and

its angular diameter, as viewed from the lens centre, by two-thirds of

Formula II. Thus for any given lens zone the diameter of the

comatic circle varies as the tangent of the angle of obliquity of the

incident pencil ;
and for any given angle of obliquity the diameters of

the comatic circles and the distances of their centres from the oblique
central or principal ray alike vary as the square of the diameters of

the corresponding lens zones.

It now becomes interesting to inquire what sort of figures will be When the focal plane

traced out by the rays going to form such comatic circles first,
is ^P8^^

when the focal plane is departed from either towards or away from

the lens
;
and. second, when that usual accompaniment of coma, viz.

astigmatism, is also present.

We will first of all deal with pure coma as projected upon planes In the case of pure

nearer to or farther from the lens than the focal plane in which the
'

duplex comatic circle is formed. Here Fig. 65 will at once help us to

form an idea of the figure traced out by the rays on a plane somewhat

nearer to the lens. This figure represents what would be seen by the

eye placed in and looking in a direction parallel to the straight line

joining the centre of the lens to the centre of the comatic circle.

Therefore, since the inclinations of all the converging rays to the plane
of the diagram are equal, if we mark off on each ray a point such as

w^,
w

, etc., such that the distances from all such points to the points
where the same rays cut the comatic circle are equal, then the curve

w
l

. . w
>2

and w{ . . w
2 , etc., through all these points will be one of the

out -of-focus comatic curves. The resemblance to a hypocycloid is Hypocycloidal
at once apparent. In fact, it has been proved by Finsterwalder (what

nature of the curves,

is in entire conformity with the formula we have worked out) that

the comatic curve traced out by the rays from any one lens zone is

such a curve as would be traced out by a point in a uniformly

rotating circle whose centre is simultaneously travelling at half the

rate and in the same direction around another fixed circle. Fig. 69,
Plate XIV., illustrates this.

In all the figures r..r is the rotating circle, and /../ the fixed

circle that the centre of the former travels round. While the centre

of r . . r travels once uniformly round /../ the circle r . . r has rotated
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Out - of - focus coma
for five concentric

lens zones.

The effect of adding
astigmatism.

uniformly on itself twice. Now r . . r is the same size as the comatic

circle in the focal plane, and thus represents the amount of torsion to

which the rays are subjected ;
while the fixed circle/. ./ may be zero or

of any size, for it simply represents the circle traced by the hollow coned

surface of rays upon the selected plane of projection (supposing that

the rays were all refracted accurately to a point at the centre of

the comatic circle). Thus the size of /. ./ simply depends upon the

distance of our plane of projection from the focal plane. If the plane
of projection coincides with the focal plane, then /. ./ vanishes to

a point, and in that case we have to imagine the rotating circle r . . r

rotating on itself twice while its centre remains stationary, which hypo-
thetical case explains the duplex comatic ring. It is really a double

loop in its ultimate closed-up form. Fig. 70 a and d show two phases
of the comatic curve at equal distances on each side of the focal plane
in which the comatic circle is formed, followed by three more out-of-

focus phases b, c, d. All these and the following figures have been

traced out by the employment of a geometric machine in accordance

with the above law of coma formation.

Next, let us take a lens giving pure coma, and consider the tracings

made near the focal plane by each of five concentric zones of the lens

of radii, 1, 2, 3, 4, and 5. Then at the focus we shall have a figure

like Fig. 66, a series of duplex comatic circles, but at a little distance

on either side of the focus we shall get Fig. 71.

Next we may consider the effect of the usual astigmatism being
added to the coma. The effect of astigmatism is, at the focus for rays

in the primary plane, to substitute a short and nearly straight focal

line for the point, and at the focus lor rays in the secondary plane to

substitute another straight focal line of the same length as the former

for the point, these two focal lines being at right angles to one another.

Consequently, the figure to be expected in the plane of each focal line

is the figure that will be traced by a point in the comatic circle

rotating on itself twice, while its centre travels with a harmonic

motion up and down the whole length of the focal line. Fig. 69a

illustrates this action, at within the primary focus, at P the primary

focus, at L the least circle, at S the secondary focus, and at 0' beyond
the latter; while in Fig. 72, P is the figure thus traced at the focus

for the two rays in the primary plane which mutually intersect at the

point p. Then, if the plane of projection is transferred to a position

half-way between the two focal lines or at the circle of least confusion,

we get the tracing L
;
and then, on transferring the plane of projection

to the secondary focal line where the two rays in the secondary plane
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intersect, we get the tracing S, s being the intersection point for the

two rays from the zone which lie in the secondary plane. Tracing a

is taken within the primary focus.

Fig. 73 is a series of phases of astigmatic coma, all for the same

lens zone, in a case where the degree of astigmatism bears a still

greater proportion to the comatic circle. a is within the primary

focus, P is at the primary focus, b half-way between the primary focus

and the least circle, L is at the least circle, c is half-way between the

latter and the secondary focus, s is at the secondary focus, and d

beyond it.

Fig. 74 is the complete series of tracings for five-lens zones in a

case of coma combined with very moderate astigmatism, taken in the

focus for primary rays for all zones, as the lens is supposed to be free

from spherical aberration.

Fig. 75 P, Plate XV., is the complete comatic formation for five-

lens zones at the primary focus, in a case where the astigmatism is

more pronounced than in Fig. 74.

Fig. 75 L is the phase of the same which occurs at the least

circle, and Fig. 75 S the phase of the same which occurs at the

secondary focus.

Figs. 76 P, L, and S show the phases, corresponding to the last,

of astigmatic coma in a case where the astigmatism is relatively still

more violent.

Throughout all cases of astigmatic coma it will be noticed that

the form of the loop is different for each lens zone. For it is obvious

that the length of the focal line increases as the diameter of the

corresponding lens zone, whereas the comatic circle, whose rotation and

travel produce the loop, increases as the square of the corresponding

lens zone. Hence for the smaller lens zones the straight line formation

predominates, and for the larger lens zones the circular element or loop-

like effect predominates. Figs. 7 5 P and 7 6 P both show this feature.

The phase of coma indicated in Fig. 76 S, when all the infinite

series of zones are filled in, as in the actual case of real coma formed

by an aberration-free object glass, is perhaps the most beautiful, being
a shell-like formation which at first sight looks complicated and puzzling.

The comatic formations yielded at the oblique foci produced by
uucorrected lenses are still further complicated by the fact that the

foci for each lens zone vary by spherical aberration, but by the kind

permission of Professor Silvanus Thompson
* we are enabled to here

reproduce some actual sketches taken by him at the oblique foci of a

* And also by permission of the Royal Photographic Societj
T
.

Phases of astigmatic
coma from the same
lens zone.

Astigmatic coma for

five concentric lens

zones, primary focus.

Astigmatism more
pronounced, primary
focus.

Same at least circle,
and at secondary
focus.

Same with astigma-
tism still stronger.

Form of the astig-
matic loop varies for

each lens zone.

Beautiful nature of

the effects.

Spherical aberration
adds a further com-

plication.

Prof. S. Thompson's
experiments.
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simple plano-convex lens whose face was divided up by annuli of

black varnish into a series of concentric transparent zones of finite

width. Of course a good deal of colour fringe which was actually

present does not show in these reproductions, which will be seen to

exhibit practically the same character as the curves we have just dealt

with. A full account of his experiments was given in a most

interesting arid instructive paper printed in the Photographic Journal

for December 1901
;

which should be carefully studied by all

interested in this branch of optics. Some of the paradoxical con-

sequences of coma therein described are exceedingly interesting.

If Fig. 78 E be carefully observed, it will be noticed that the

tracing of light for the outermost zone is at the focus for the rays in

the primary plane, and the curve is in the same phase as any one of

Varying phases for the curves in Fig. 76 P. But the curves in Fig. 78 E for the smaller
is zones.

jeng zoneg are more open loops, for, owing to the spherical aberration,

the two primary rays of such zones focus beyond the plane in which

the comatic curves were taken. In short, the effect of spherical

aberration upon the comatic curves is to cause the latter to assume

more or less different phases for the different lens zones.

The great broadening out of the outermost zone tracing so marked

in Fig. 77 F is of course due to the outer lens zone having a finite

and appreciable width, the loops for the outer edge and inner edge of

the zone being widely different, owing in large part to the spherical

aberration, while the zones between these two all contribute their light

to intermediate loops.

Our comatic loops Fig. 79a illustrates the figures obtained by Dr. Adolph Steinheil

neii'^^r^onometri ^y elaborate trigonometrical calculations applied to the case of the

cal calculations. 6 -inch refracting telescope at Konigsberg made by the celebrated

Frauenhofer. He selected four zones of the objective, as in Fig. K,

and calculated the oblique foci for eight rays equally distributed round

each of the said zones, and found where they impinged on the plane

passing through the axial focus (see G and H) on a second plane '35

of a millimetre nearer the objective (see I and J), and on a third plane

70 of a millimetre nearer the objective (see K and L). He thus

arrived at the comatic formations H, J, and L, whose identity with our

previous results is plainly evident. He then, after a few alterations

in the curves of the objective, got it to give symmetrical oblique

refraction, the sine condition being fulfilled, and the resulting oblique

foci shown in Fig. 796, N, P, and E, then showed pure astigmatism

only.
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General Proof of the Theorem of Coma

Having now given a certain explanation of the formation of coma

and shown many figures synthetically formed by way of illustration,

and others either drawn from actual experiment or trigonometrical

calculation, all of which confirm one another, it will now be as well

to give a general proof that our theorem of coma will necessarily lead

to all comatic eccentricity corrections in the primary- plane being three

times as much as the simultaneous eccentricity corrections in the

secondary plane.

In Fig. 79c let C be the centre of an aberration-free objective

yielding coma, and let the eccentric circle c
x

. . G . . c2 . . H represent

the outline of a pencil of rays where it impinges upon the plane of

the lens. Then . ./ is the eccentricity. Let the radius or semi-

aperture of the eccentric pencil /. . c
x
or /. . c

2 be r. About C describe

the circle R
3

. . R
3 , touching circle c

x
. . G . . H at G, another circle

R2 . . R2 passing through c
x
and c2 at the upper and lower extremities

of the secondary diameter of the pencil, and another circle R
x . . Rx

touching the circle c
x . . G . . c2 . . II at H. Then G and H are the

points where the two extreme rays in the primary plane are refracted

through the lens, while c
x
and c2 are the points where the two extreme

rays in the secondary plane are refracted. Turning our attention to

the oblique focus (Fig. 79d) formed by light filling the whole aperture

R! . . R
I}
we have the lens zone R

:
. . R

x forming the duplex ring R^,
the lens zone R

2
. . R

2 forming the duplex ring R^, and the lens zone

R
3

. . R
3 forming the duplex ring R

3
'. Here let it be borne in

mind that Fig. 79d is really very small compared with the lens

aperture RX
. . Rr

We will assume that the distance, such as C . . h, between the

central ray C and the outermost point of any duplex ring is N" times

the radius of the duplex ring. We have so far assumed this ratio to

be 3:1, but as it is desirable to make this proof quite general in its

bearing and be applicable also to comatic formations of a higher order,

we will assume the outermost point of each comatic circle to be

displaced from the central ray by a distance equal to N times the

radius of each comatic circle.

Secondary Plane

Here we may proceed as follows :

First we may express the radii R
2
and R

3
of the two-lens zones
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Radius of second lens

zone.

Radius of third lens

zone.

Ratio betweenradius
of second comatic
circle and path of

secondary rays pro-

jected on it.

E
2

. . E
2
and E

g
. . E

3
in terms of Rp the radius of the outermost zone,

and of r, the radius /. . c
{
of the eccentric pencil ;

thus

= (C . . (C .

- 2Er + 2r2
;

Along the lens zone E9

(15)

(16)

. b equal to d . . c
,^2

mark off the arc c
l

and join d to b by the chord d..b.. Also join a to b by straight line

a . . b, and then from the centre c draw c . . e perpendicular to a . . b, and

bisecting the latter at e.

Then for .the moment we will assume the circle E2 . . E
2 to represent

the comatic circle formed by lens zone E2 . . E2 ;
in which case we

have the ray refracted through the lens zone at c
: striking the

comatic circle at 5, c
: . . b being the torsion imparted to the ray in the

comatic circle. Then since c
l

. .b = c
l

. .d, therefore the chord b . . d
is bisected at n, and angle JCcj = c-fid. But angle bad = one-half of

angle bed, therefore angle bad = angle bCc^. But angle bad is also

equal to Cba. Therefore angle Cba angle bCc^ Therefore a . . b is

parallel to C . . c
x
and e . . b is equal to C . . n, which latter obviously

= C. . . /, so that we have

a . . b = 2(e . . b)
= 2(C . . n) = 2(C . ./)

= 2(E,
-

r),

from which we then derive

a . . b 2(E1 -r)
EQ

(17)- 2R/ + 2r2

Turning now to the real comatic circle E/ in Fig. 79d, which is

formed by lens zone E
2 . . E

2)
we have &

x as the point where the ray
from G! strikes the comatic circle, and A2 . . 7^ is obviously parallel to

a. . b of Fig. 79c. Now we have already seen, from Figs. 65 and 65a,
that the perpendicular to the diagram drawn through A2 is a sort of

axis through which pass all rays from E2 . . E2 which intersect the

comatic circle ^ . . A 2 . . &2 . Therefore the two rays in the secondary

plane from c
1
and c2 which strike the comatic circle at &

:
and kz

respectively, will intersect one another at a point somewhere on the

perpendicular through A2 ,
whose distance from the plane of the

diagram can be expressed in terms of A 2 . . &
x
or A2 . . Jc

2 .

Now clearly
a . . b

2r2
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R/ 2(R1 -r)

2r2
(18)

Length of secondary
ray as projected on
second comatic
circle.

If now A2
. . &2 is multiplied by

-
, #2 being the angle made with

tan
6*2

the central ray by any of the rays refracted through the lens zone

R2 . . R2 ,
we shall then arrive at the distance within or beyond the

plane of the diagram at which the two rays &
x

. . A2 and k
2 . . A 2

intersect, and this is the required linear E.G. in the secondary plane.
Now if we write

l
for the angle made with the central ray by the

rays refracted through the outer lens zone R
x

. . R
a , then we have, if

F = the focal length,

C..H
tan 6

l
=

F

and if we take tan #x as the unit we have

and

G..d C..d R
-pr-

= tan 0^ TT = tan ^J ,u..n
i$j

C G-
= tan

"R
= tan

(19)

(20)

Therefore the linear E.G. in the secondary plane (from 18)

1

Ri
2

N/R 2 -2R
1
r+2r2

', 7^2tan 6
l
~

_ K , R/ 2(R1
-

r) R
x

1

in which, as we have seen,

R
2

tan B
l

'

2r2
,

so that finally our linear E.C.

tan
V.

with which we have yet to compare the linear E.G. in the primary
plane, which we will now proceed to formulate.

Primary Plane

Here we have to deal with the two rays refracted through the
lens at G and H. The ray from G strikes the comatic circle R

3

r
at

Semi-angle of cone
of rays from outer
lens zone.

Semi-angle of cone
of rays from second
lens zone.

Semi-angle of cone
of rays from third

lens zone.

Linear E.G. in the

secondary plane.
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Distance between

points where the
two primary rays
strike the plane of

the coma.

Distance behind
comatic plane where
the two primary
rays intersect.

Linear E.G. in the

primary plane.

the point g, while the ray from H strikes the comatic circle

and we first require the linear distance g . . h.

Now g..h = NE/ - NE/= N(E/ - E./)

SECT.

j
at h,

!,/, E, 2 - 4E,r + 4r2\ |

. . 0. . h = N{ E, 1 - - p
* -

)
-. (21)

BI

Iii Fig. 79 let j?../i be the plane of the diagram Fig. 79d, and

g . . F and h . . F the two rays we are dealing with which intersect at

F beyond the plane of the coma p . . h.

We have just obtained a formula for the distance g . . h, and now

what we want is the linear E.G. correction F . . p measured parallel to

the ray through the centre c of the lens and perpendicular to the

plane p . . h of the comatic rings. Let x represent this required

distance F . . p.

First we have the ray H . . h . . F making the angle O
l
with the

centre ray or with F . .p ;
the other ray G . . g . . F makes the angle S

with F . . p (while each secondary ray c
x

. . d . . F makes the angle #2

with F . . p). Thus we have

x tan 6
1
-x tan

3
=

(g . . h) ;

. . #(tan $
l
- tan #3 ) (g . . h) ;

_ / ,\ / 9 rtv
x ~ (9 ' n) tan a _ tan <L

On substituting in this the values of g . . h and tan 3 already worked

out in Formulae (21) and (20) we have

x =

E,
2 2r

therefore, finally,

. AT (
x (or ^ . . 1

)
=
NJ

\

|.

VTVI.
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Thus we get a linear E.G. which is N times the corresponding E.G.

in the secondary plane, a result quite independent of the value of

N, which, in the comatic formations -of the second order that we have

been dealing with, is 3 to 1.

Let it be supposed that N = 5
;
then the sort of coma that would Form of coma that

be formed at the focus, supposing coma of the second order and other
JJ^JJ, ^^mary

aberrations to be absent, would partake of the character of Fig. 79/, and secondary B.C. s.

wherein the length G . . h = five times the radius of the outermost

comatic circle which touches at h, and so on.

When we come to deal with the curvature errors and E.C.s of the

third order in Section XI. we shall have occasion to revert to this

Fig. 79/.

The Elimination of Coma from Combinations of Thin Lenses

in Contact

Before leaving the subject of coma it is desirable to deal with a

problem relating to telescope objectives which often calls for solution.

In the first place, it is clear that since the lenses composing such

objectives are in contact, and generally thin compared to their focal

lengths, therefore it may be said that points in the image away from

the axis are formed by pencils of rays which are refracted obliquely

but centrally through the lenses, any diaphragm corrections due to

eccentric oblique refraction being so small compared to the normal

curvature errors as to be negligible ;
so that it cannot be supposed that

any one form of telescope objective presents any substantial advantage
over another form, as regards the flatness of its image, or the amount

of its astigmatism for oblique foci. It may be said that the radius of Curvature of image

curvature for the image formed by rays in primary planes is somewhat
eiescor> ^""T

in

less than j^-ths of the principal focal length, and that for the image
formed by rays in secondary planes somewhat less than ^ths of the

principal focal length. But since the extent of image utilised in such

cases seldom amounts to more than two degrees from the axis, these

curvature errors do not seriously matter, so we have the fact that the

principal factor which determines the superiority of one form of

objective over another as regards its definition away from the optic But coma at oblique

axis is simply the presence or absence of coma. For instance, a

double achromatic objective with the collective lens placed first and of

a meniscus or convexo- plane form will yield a very considerable

amount of inward coma at its oblique foci which, at even five minutes

of arc from the axis, is considerable enough to spoil definition; while if.
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Coma causes sensi-

trveness to squaring

Coma quite avoid-

Condition for elimi-

nation of coma from
a two-lens combina-
tion.

the collective lens is plano-convex and still placed first, the opposite sort

of coma will prevail, although it will not be quite so bad as in the

former case.

It is also obvious that forms of objectives characterised by strong
coma WQJ ^ verv sensjtive to being slightly thrown out of square,

a highly undesirable condition, for the mischief caused to definition

by such corna may far exceed the mischief caused by the inevitable

astigmatism.

We cannot get rid of the normal curvature of the images nor the

astigmatism in thin contact combinations, but we can get rid of the

coma, and therefore it is of the highest importance in the case of

telescope objectives, especially when designed for photographic purposes,

that they should be designed free from coma, and to that end we may
proceed as follows :

Formula II. of this Section gives us the angular value of the coma

yielded by any lens, so that in the case of the two lenses constituting
a telescope objective that is to be free from coma, we have

Stan <

. % / _ l \

1 /*lv/*l
~ l

/

> 9 ,

-A- J tan G)

l
AA*1

~ l
)
a
i

l
>
x
l

U. VII.

Let F! = +1 and F2
= -, a

:
= I, the collective lens being

placed first. Then

. .

2 =
1, so that a

2
= + 2J.

Relation between

the x't for no coma.

Let
fj,1

=l'5 and
/u,2 =l'6. Then, leaving out common factors,

we have

from which finally we derive

_ q-iq^ ~
^
+

We may now insert this value of #2 in our formula for spherical

aberration for the two lenses and equate them to 0, thus

8('

3-25 + 6
-75J
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~ 3
'43ai +

'474
)
2 + 10 '

4
(
- 3

'43*i +
-

from which we get

((70-592V
2 -

19-5^ +
1-35)]

1 *V - IK + If
-
-028^ (

-
83-23^ + 11-502) I = 0,

+ 22-21 + 6-83 j

which reduces to

-8Ix*+ 1-21^ + -493 = 0,

+ x
1
*-l-5x = +'608,

x* - 1-5* + (-75)
2 = -608 + -5625,

Xl
- -75 = N/l-1705 = 1-082

;

.-. a
1
= -75 1-082

= --332 or + 1-832.

The first result is the most convenient, as it implies radii in the ratio

4 2
to -= or 2 to 1, in which case we have

3 o

= -
3-43(

-
J) + -474 = + 1-617,

\ O/

or radii in about the ratio of ^ : ^7. or + 1 : 4^, which implies a

concavo-convex dispersive lens.

Among useful formulae is one for the spherical aberration of a

single lens free from coma.

In order to be free from coma we must have

+ DO- ) + 0-

from which

(2/i+ !)(/*- 1)
Relation between x

x = - --- r-a- VIII. and a in single lens

v* "*" * / free from coma.

Then, on substituting this value of x in the formula for spherical

aberration, we get

j^ 1
^+2(2^+1)^-1)2 (2^

8F J5^W^1
"

(/, + l)
2

' a "^ + 1}

p.
1

After adding together the three functions of a2 and reducing, we get
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Spherical aberration V2 , 2 -,

of simple lens free -^ FTT^1 ~ a*> ' IX "

from coma. olt I (/A
- I

)
4

which is a simple expression for the spherical aberration of a lens free

from coma. We have seen before that a simple lens gives the least

possible spherical aberration when

Condition of least \x _ _ (p + 1)0"-_ _
spherical aberration. u + 2

Then

X -VIII ..-*, _ .

Difference between /

1
>

conditions of least . "
._ ^ _ M/*

~ *
/ VT

spherical aberration in + !)( + 2)
and no coma.

If a = 1 and
yu,
= 1'5, then the above

75 -75 1

-(2'5)(3-5)
(

"

-^75
=
"lif

B6
'

so that the difference between the two values of x required to fulfil

the conditions of freedom from coma and minimum aberration is only
a small one.

Let us now consider the lens from another point of view. Suppose
we wish the lens to satisfy the condition that if a varies or the

vergency of the entering rays alters, then the spherical aberration

shall remain constant, or, at any rate, vary in the least possible

degree. We must then differentiate the spherical aberration formula

with respect to a, and we have

Differential ofspheri- -> 2 i c

cal aberration with da -(A')y^ =^---Ufa + l)x + 2(3,* + 2)fc.
-

l)a }da,
XII.

respect to a. of (J-(p-
- 1

)
^

which equates to when
Condition of con-

stancy of aberra- w _ (-V + 2)(/x
-

1)
tion when vergency 2(u + 1)

"' AJ.11.

varies. ^
Here again it is instructive to compare this formula with VIII.

and X. For instance, we find that

xni -vm - -(V
20* +1) 2(/ +1)

'

Difference between
condition ofvergency . \\\ _ \_ P-\P-

~ 1
) YTV

insensitiveness and ~2(u+l)
a -A.lv.

of no coma.

'75
If a = 1 and //,= 1'5, the above = - = '15; and again we
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find there is not a very great difference between the values of x for

fulfilling the two conditions of constancy of aberration when a varies,

and freedom from coma. Of course, the same methods may be ex- Discrepancybetween

tended to compound lenses such as telescope objectives, and it will be
very 'great;

1 '

found that the form of objective which we worked out as free from

coma with x
l
= '332 will also not differ very seriously from the form

of objective necessary to give the least possible change in the spherical

aberration when a varies, as, for instance, when the entering rays

become slightly divergent instead of parallel. To fulfil this condition x
l

would have to be about '40. Thus there is not such a large discrep-

ancy between the two conditions as has been asserted by some writers.

Spherical and Parabolic Reflectors at Open Aperture

We have already had several instances before us of the conversion

of any formula relating to refraction into the corresponding one

relating to reflection by simply inserting the value 1 for p. In

this case, also, it will be found that the formula for coma at the

oblique focus of a spherical reflector at open aperture may be obtained

from the Formula II. for the angular value of the coma for a lens of

open aperture. The latter formula was

3 tan
(f)

1 ( . ->

,
_v~

Trrio / Tvl \"IJ' + 'A/jt
~

i)o. + lfJ,+ 1 )X (A . \"")
4r '

fji^p, 1) v. i

Here there need be no ambiguity about the meaning of x in the

case of the above formula, since (//,+ 1) becomes = 0, while a is 1, as

in the case of the lens when the entering rays are parallel, while it is

if the rays are diverging from the centre of curvature, and + 1 if they
are diverging from the principal focus. Our formula therefore becomes

3 tan
</> XV.

Let it be supposed that the semi-aperture A is I foot, and the

principal focal length 20 feet, and entering rays parallel as usual, so

that a = 1
;
then the coma will be + and outward, and its angular
3 1

amount tan
</> 1flnn . If tan

</>
= -

, then at 2*4 inches from the axis
1 oUU 100

we shall have coma whose angular value at the mirror centre will be

160TOOO'
and ltS Hnear Value Wil1 be

160-000
=

261,6
th f a f 0t r^

part of an inch, a very small quantity.

Angular coma in

case of central ob-

lique reflection.



SECTION VIIlA

Central oblique
refraction excep-
tional.

Two sorts of coma.

COMA AT THE FOCI OF ECCENTRIC OBLIQUE PENCILS

So far we have got the universal Formula IT., giving the angular
diameter of the longer axis of the comatic flare (as subtended at the

centre of the lens) on the assumption that the principal ray of the

oblique pencil passes through the centre of the lens.

But in the numerous cases of systems of more or less separated
lenses it is the exception rather than the rule for central oblique

refraction to take place ;
in most cases the principal rays of such

pencils are refracted through the lenses at considerable distances from

their centres, and as it is highly important to be in a position to

eliminate coma at the oblique foci of such lens systems, we must

therefore work out the formulae appropriate to the eccentric oblique

pencils refracted through them.

In the first place, a very little consideration will show that there

are two sorts of coma, or rather coma caused in two different ways, to

be dealt with in the case under consideration. First, there is coma

which is simply part of the general coma already dealt with, which

may be present in the lens and show at full symmetrical aperture.

Second, there is coma resulting from the presence of spherical aberration

Direct axial pencil in the central oblique pencil. Indeed, this sort of coma may manifest

itself m the case of a direct axial pencil limited by an eccentrically

placed stop. For instance, let Figs. 80 and SOa represent an uncor-

rected lens with an axial pencil, refracted eccentrically through it, owing
to the presence of the circular but eccentrically placed stop. Then

let Figs. 81 and 8 la represent cases in which the pencil is obliquely

refracted by the lens, but the stop is central and of an aperture

allowing of the same aperture of the pencil where traversing the lens,

as in Figs. 80 and 80a. Then such oblique pencil is subject to

the same spherical aberration as the axial pencil of the same aperture ;

but we will suppose that there is no coma of the sort that we have yet

220
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dealt with
;

in other words, we will assume that the lens gives

symmetrical oblique refraction. Of course, it will also give con-

siderable astigmatism, but for the sake of simplicity we will assume

the astigmatism to be absent and the focus to be exactly the same as

for the axial pencil.

It is at once obvious from the Diagrams 80 and 81 that there will

ensue an eccentric formation at the focus whose structure in the

primary plane is perhaps more clearly shown in Figs. 805 and 816.

Suppose we arrange our stop s . . s so as to pass the central ray at

one extreme of its aperture, and the outer ray at the other extreme of

its aperture, as shown in Fig. 81, and that we place a ground glass screen

perpendicular to the optic axis at the point/ where the extreme outer

ray passed by the stop intersects the centre ray. Let Fig. 82

represent a view of this screen when looking towards the centre of the

lens, a . . & . . c the periphery of the lens, and d . . e . ./ the outline of the

eccentric pencil where it traverses the lens. We can then plot out the

figure thrown on the screen or plane of the diagram by the rays which are

refracted through the lens at points in the zone d . . e . ./ of the eccentric

pencil, in the following manner. From /, which is the point where

both the centre ray Q . ./ and the ray from g (the other extremity of

the eccentric pencil) strike the screen, radial lines may be drawn to as

many points in the circumference or zone d . . e . ./ as may be desired,

say points every ten degrees apart as measured from /. Then the

lengths of these lines from / to the points where they cut the eccentric

zone d . . e . ./. . g will give the values of the y's or the distances from the

lens centre of the points in the lens where ea-ch ray is refracted, from

which the relative longitudinal spherical aberrations of such rays may
be calculated, and from those the distances from the central ray / to

the points where each ray cuts the screen or the plane of the diagram.
It is obvious that all such displacements on the screen must take place

along the radial lines drawn from / ;
all rays, except the extreme one,

cut the central ray through / at points on the latter situated farther

from the lens in calculable degrees, that is, at points nearer to the

observer. Having worked out the point on each radial line where the

corresponding ray from the zone d..e..f..g cuts the plane of the diagram,
and joining all such points together, we obtain the curve shown, which

is exactly the same sort of curve as in Fig. 76 P, resulting from coma
combined with astigmatism. For it is evident that while we are at

the focus for the two extreme rays from the zone contained in the

primary plane, yet we should have to retreat farther from the lens

before we arrived at the focus for the two rays from w
l
and w^ on the

Symmetrical oblique
refraction assumed.

How the comatic

loop is derived.

The result is an
comatic
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The same loop de-

rivable from the
axial pencil with
eccentric stop.

zone which are contained in the secondary plane and strike the comatic

loop at w-l and iv2
f

. Hence there is astigmatism introduced by the

selective action of the stop. We have already seen from Formula

VI., Section VI., for E.C.s, that if we place a diaphragm in front of

a collective lens having positive spherical aberration, so as to cause a

pencil to traverse the lens eccentrically, then the E.C. consequent on

spherical aberration will always be positive ;
that is, the intersection

point for rays both in primary and secondary planes will be brought
much nearer to the lens, and by three times as much in primary planes
as in secondary planes, which last condition implies the existence of

the astigmatism which we have independently arrived at in Fig. 82.

It is obvious, also, that the comatic curve obtained in Fig. 82 may be

derived also from the case of Figs. 80 and 80a; but of course the

combination of an axial pencil limited by an eccentric stop does not

occur in practice. Now let be the point on the screen where the

principal ray Q . . h, or the ray through the centre of the stop or of the

eccentric zone or circle d . . e . ./, cuts the plane of the diagram ;
then the

line . ./ will be the length of the whole comatic formation in the

primary plane, for any comatic curves traced out by rays from smaller

zones than d..e..f..y will all be found to lie between and /, as

in Fig. 76 P.

Investigation of the Coma due to General Spherical Aberration

Construction. We may now proceed to work out a formula for the length of

such a comatic formation in the primary plane in the following manner.

Let Figs. 83 and 83a represent a case of an oblique and eccentric

pencil, limited by the stop s . . s, refracted through a lens at a. The

origin or focus of the oblique pencil is Q, and its focus for rays

ultimately close to the oblique axis Q . . a . .
j

is at av Let the ray

Q . . k grazing the lower edge of the stop focus at b on the oblique axis,

the principal ray Q . . c passing through the centre of the stop focus

at c
a ,
and the other extreme ray Q . . t focus at d, so that % . .b, % . . c

l}

and
!

. . d are the longitudinal spherical aberrations, being therefore

proportional to (a . . &)
2

, (a . . cf, and (a . . t)
2

respectively. Let the

angle of obliquity P . . a . . Q or < be measured at the lens or element

centre as usual.

Let / be the point where the two extreme rays Q . . t and Q . . k

passing the stop intersect, and through / draw e . ./ . . g perpendicular

to the optic axis P . . a. Then the size of the comatic formation is

evidently at a minimum in e.,f..g, where the two extreme rays in
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the primary plane focus, and the total length of the coma is obviously

given by e . ./.

Let P . . a = U, and a . . a-^ referred to the optic axis be V as usual.

Let the semi-aperture of the stop be S and the semi-aperture of

the pencil where it traverses the lens be A. Let the vertical distance

from a to c, where the principal ray cuts the lens, be L,* and let the

distance of the stop from the lens = D. Let the formula for spherical
2

aberration be stated shortly as |^ (A ), in which / is the principal focal

length of the lens. For y we shall have in turn to substitute various

other values. Then we have the following expressions for the

longitudinal spherical aberrations :

Then we have the following relations :

(24)

in which (d . . g) = (b . . e)
-

(b.. . d) = (b . . e)
-
{(^ ..d}- (% . . 6)}.

V2

V2

(25)V
Also from (24)

It is clear that L is the same thing as the eccentricity C of Section VI.
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(26)

Also

(e.. y)
= ..e)- (b . . cj= (/>.. e)-(a l

..c
1 )
+ (a l

..

9)
= (A'

(27)

Now

Formula for the

length of the aberra-
tion coma.

1^. '. (e . ./) = ^(A')(3^
2
)LV. (28)

Its length varies as Hence e . ./, or the length of the coma, varies directly as the

eccentricity L. Formula (28) may be put into more general and
9F1

T)
convenient form by substituting

- for V, and U tan <f> T ^ or~ a

Generalisation of the
formula.

tan
<f>

- for L, and then we get

(../) =
8f*

*) tan
f)Tji'

Now since the diaphragm is nearer the lens than Q, then /3 in the

above Formula (29) will be of positive value and numerically greater

than a
;
therefore /3 a will be positive. Also, since V is positive and

real, therefore 1 a will also be positive. Also A' is positive, there-

fore e . ./ will be positive also. But we shall find it convenient to treat

e . .f as a negative quantity, for the corna is obviously inward coma, a

flare lying towards the optic axis
;

e is the position of the centre or

principal ray of the eccentric pencil, and therefore e. ./is a diminution of

the distance from the optic axis. We must therefore reverse the

sign of e . ./ by writing
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or, in full,

(e . ./)
= tan

. ./)
= _

(A/) tan
<f>

Zf a

-i)Wr (3 /
,+ 2)(/.-l)a

2

1 1

Full formula for
XVI. length of the aber-

ration coma.

But the most convenient formula of all is one expressing the angular

value of e . ./ as viewed from the lens centre, which is of course obtained

1 1 - a

by multiplying the above formula by y or by ^r- t by which we

then get

e..f 1

s
^ i

i f 5-
j,
- U a -

YVTTXV il.

Universalformula

for the angular
vaiue Of the ab-

erration coma.

Fig. S'3a and c illustrates the analogous case of a dispersive lens in

which also ft is + and numerically greater than a, so that a ft is again

negative and therefore gives a minus value to Formula XVII. This is

as it should be, for it is plain from the diagram that the coma

produced is again inward or towards the optic axis. Since the formula

is a function of
7^,

it is evident that the sign of /has no influence on

the sign of the result
;
in fact, the sign of the lens is really implied in

the value of a /3. Thus it will be found that Formula XVII. is

universally true of all cases. We may now turn our attention to the

case of the coma of eccentric and oblique pencils consequent upon
coma proper.

Investigation of the Coma Proper at the Foci of Eccentric

Oblique Pencils

Fig. 84 represents a case of a collective lens giving pure inward

coma at the focus of a central oblique pencil, spherical aberration and

astigmatism being ,supposed to be absent, while Fig. 84a represents
the corresponding case of a dispersive lens. Fig. 846 shows on a

larger scale the structure of the focus for the collective lens. As
in the last case, A is the semi-aperture of the eccentric pencil where Construction.

it strikes the lens. /=the principal focal length of the lens; L =
the eccentricity or the height A . . C from the lens axis at which the

Q
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principal ray strikes the lens. Q . . A is the central oblique ray

passing through the lens centre at an angle of obliquity = <f> ;
& is the

point where the extreme ray Q . . k . . b passing the stop s, and nearest

the lens centre, intersects or focuses on the central oblique ray ;
c is

the point where the principal ray Q . . C . . c focuses on the central

oblique ray ;
and d is the point where the extreme ray Q . . t, passed

by the stop s . . s and most remote from the lens centre, intersects the

central oblique ray. Then the two extreme rays passed by the stop,

Q . . t and Q . . k, intersect one another at the point /. Through / draw

e..f..g perpendicular to the optic axis; then e..f is the length of

the coma at the focus of the eccentric oblique pencil as limited by the

stop s . . s.

Referring back to our method of finding the length of the coma

yielded by the open lens (not shielded by any stop), we obtained a

formula (4) having its application to Fig. 61. This formula expressed

the eccentricity correction to be applied to ^ in order to convert it

1
v

into
j-

for any given semi-aperture A of the lens, on the supposition
C . . it

that the hypothetical stop was always so placed as to just pass the

central oblique ray and the other ray cutting the lens at the semi-

aperture A from the lens centre. We may apply that formula again

in the present case of Fig. 83 or 84. It was

... ., , ., 3 tan <

which we may write shortly as
-p,2

In the present case it is obvious that the linear distance a . . b is

the above eccentricity correction - ~
2 (C

f

)A, with the semi-aperture

A . . k or ~LA substituted for the former A, and the whole multiplied

by V2
,
so that

(
. . b)

=
3

^^(C'XL
- ^)V

2
. (30)

Likewise

and

(32)

We may now proceed in a manner analogous to the last case.

We have
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/, \ J-J -^i / / \ i -i \ J-J "-

(b..e)-^-=(f..g)
= (d..g)-T-, (33)

in which (d. .g}
=

(6 . . e)
-

(b . . d) = (b . . e)
-

{(a ..d)-(a.. &)};

.-. (d..g) =
(b..e)-{(L

+
A)-(L-A)}^j(V)V*-, (33a)

. -. from (33) and (33), (b . . e^A V

=- 2A

(i.. 6
)
=
(L +

^)|(C')V
2

. (34)

Also, from (33)

V y/ v y y

// /\ " tail <p/r,/% /j 9 ../OX-lT- /OK\
v 9) 9\^ /v^"

~
-"-I *

(**"/

Also

(36)

Therefore e . ./, the required quantity, may now be arrived at from

(35) and (36), thus

3 "

or, in full,

IT VirTTT
f r the

V . -A. V 111. length of the coma
proper.

Now we have assumed the coma in our diagram to be inward or

towards the axis, the E.C.s being positive or an addition to the value
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Universalformula
for the angular
value of the coma
proper.

Formula for angu-
lar value of both
sorts of coma.

of v . This would certainly be the case if, for instance, x= + 1 and

a or '5
;
but as we have laid down the rule that inward coma is

to be considered negative and outward coma positive, we must prefix

the negative sign to the above formula as shown. Next, if we divide

by V we shall then obtain the angular value of the coma as viewed

from the lens centre, getting finally

XIX -

Q
jy

' W VLi
~ A ~

^.TT 7~

On comparing this result with Formula II., formerly arrived at

for the angular value of the coma for the lens at open aperture, we
find that the two formulae are identical, although A is now eccentric

;

that is, for a given pair of conjugate focal planes and a given degree
of obliquity the angular value of the coma is simply a function of the

square of the semi-aperture of the pencil where it is refracted, and is

quite independent of the degree of eccentricity of the pencil where it

traverses the lens, and therefore of the distance of the stop from the

latter. In this respect it differs from the aberration coma. Thus

the amount and character of the coma will not be affected if

the stop is moved across the optic axis in its own plane. Giveii

a fixed aperture of the stop, then the only way in which the distance

of the stop from the lens can affect the coma is by modifying the

semi-aperture of the pencil where it cuts the lens, since the latter

U V
is equal to the semi-aperture of the stop multiplied by U ^ _/

V L)

as the case may be. We may now combine Formulae XVII. and XIX.

for the spherical aberration coma and the coma proper respectively for

an eccentric oblique pencil into one, thus

f-7
V

= ^ 2
-

3 tan
<^>

Thus the interior functions in the formula are closely analogous
to those in the formula for E.C.s, VIII., Section VI., only 4F2

replaces

2F, and _ replaces . 7 >̂ ,
while the comatic function is reduced to

a-fi (a
-
p)

z

a half.

If the same processes are followed in the similar case of the

dispersive lens, exactly the same formula will be arrived at, provided
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that our convention is adhered to which makes inward coma or flare

towards the optic axis negative, and outward coma positive, irrespective

of whether the lens in question be collective or dispersive, for, as we

have seen, that matter really tells in the sign of a ft for the lens in

question.

A good test case for the correctness of signs in Formula XX. in

their application to collective and dispersive lenses is one in which a

plano-convex collective lens is placed in contact with a concavo-plane

dispersive lens of the same radius of curvature and of the same index of

refraction. Thus it is clear that, especially if cemented together, the

two lenses will merely form a parallel plate of glass, and act as such.

Then the Formulae XX. for the two lenses will in this case be found

to equate to in all circumstances, since a2
= a

i > A = & , and

x
2
= xv and therefore (a., /3.2)

= (a l &).

Coma in Relation to E.C.s and Normal Curvature Errors, etc.

Some Interesting Corollaries.

Many important deductions may be drawn from the formulas

arrived at in this and previous Sections.

1. Supposing that in the case of eccentric oblique refraction

through a simple lens the E.C.S are eliminated, leaving the normal

curvature errors of the lens intact, then what will be the result as to

the presence or absence of coma at the foci of oblique pencils ?

Such a condition has often to be fulfilled or closely approached in

Cooke lenses.

First of all we have for the elimination of E.C.S from a lens the

condition

if -2
a-f3)

C'\ =

from which we derive

XXA.

On the other hand we have for the elimination of coma from a lens

under the same circumstances the condition

tan

from which
4/

2
*/_ 1

A'

XXA.

XXB.

Condition of elimi-

nation of E.C.s.

Condition of elimi-

nation of coma.
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Formula for coma
when E.C.s are eli-

minated.

Condition of elimina-
tion of astigmatism.

Formula for angular
coma when there is

no astigmatism.

Case of a lens giving

Hence it is clear that when E.C.s are eliminated there will be a

preponderance of spherical aberration coma at the foci of eccentric

oblique pencils, for which the formula will be

fan A i

3A 2- --?- 0/ . .A.'.

4/
2

2(o
-
0)

XXc.

2. Let it be supposed that the E.C.s are so arranged as to

neutralise the normal oblique astigmatism of the lens, then what will

be the condition of the oblique foci as to coma ?

For the elimination of astimatism we have

from which we derive

and
A'-2(-0)C' = -<-#

p, _
A' + (a

-
/3)

2

2(a - #)
AAD.

as the condition of no astigmatism.
If now we insert this value of C' into the above formula for coma,

XXA., we get

'
/
\
a /3^'

>
^

P> \

4/
2

t 2 (a
-

ft) )

XXE

which expresses the angular value of the coma when there is no

astigmatism. Then it is clear that if A' = (a /3)
2
there will be no

coma at the foci of eccentric oblique pencils.

Fig. 85 illustrates an example of this case which will be

alrea(ty familiar to many readers. It is the case of a plano-convex
lens of crown glass receiving parallel rays passed through a stop

F
fixed at a distance D' = - in front of it. Here, the refractive index

O

being 1'5, it is clear that after refraction by the first plane surface

(P*\
=
-), whichz/

is then the centre of curvature of the second surface, and therefore

the principal rays will all impinge upon the second surface as if
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diverging from the centre of curvature, and will consequently meet

with perfectly symmetrical refraction, and there will be neither astig-

matism nor coma at the oblique focus/.

Here we have x= I, a = I, $=4-5, and (a /3)
= 6.

A' works out to

~(l + 10 + 3-25 + 6-75J
= -^(27) = 36.

'75 v ) t o

C' works out to

= -6.

Therefore if we insert these values of A' and C' in above Formula

XXE., we then have

tan 0J-36 -( -
6)

2

| Formula for coma

4P I 2(-6) "/ =

But it is evident that other conditions may be found, leading to

no astigmatism, which will yet permit of the presence of coma,

especially when u is less than F and v negative, and therefore a greater

than -f 1.

We may now inquire what will be the formula for E.C.s when
coma is eliminated. The formula for E.C.s in the primary plane is

3tan2
4>( 1 1

and if for C f we substitute its value from XXB., which holds good when
coma is eliminated, we then have

2/

and therefore the E.C.s

3tan2
</>r 1 ,\

Formula for E.C.s
. ( A > . X X T^_ 117 It a Tl //\YM Q Id AllTYlin _

..
TT -/-75v>- (

AXF. when coma is elimin-
/ (

- PY ated.

Lastly, we have the formula for astigmatism,

in which we may substitute the value of C' which holds good when
there is no coma, and we then have

f JL_
\a-

_ 1

(a-/?)
2

(a -fi
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Formula for astig- wnjcn finaHy tan2 , ,/ _ oy _ A/,

matism when there = _L_L J v "' "
I XXG

is no coma. / t (a
-

B)'
2

)

'

In the course of the preliminary planning out of optical systems,
such generalisations as the above are often useful.

Application of the Formulas to a Series of Separated Lenses

We saw that the formulae for eccentricity corrections were functions

of tan2

fa and had to be multiplied by V2
or F2

in order to reduce

them to their longitudinal value as corrections to the focal length,
and that in adding together the functions for a series of separated
lenses no notice need be taken of the successive modifications of the

angle <j>
for the different lenses, all that was required being the simple-

algebraic sum of the corrections for all the lenses
; so, in the case

of a series of separated lenses we may in the same way apply the

Formula XIX. for coma directly to each lens in turn, for the formula

is a function of tan < simply, and the linear amount of coma yielded by
each lens is obtained by multiplying by V. Fig. 85 shows a lens L

giving a certain length of coma e . ./. It obviously makes no difference

to the linear value of e . . f whether we assume it to be referred to the

point C at the centre of the lens and in terms of tan
fa,

or to the

point D and in terms of tan
</>9

. For supposing Formula XIX. gives
us a certain value M tan fa for the angular value of the coma as

viewed from C
; then, supposing C . . F = V, the linear value of the

coma is simply MV tan <^ . If, on the other hand, we assume that D
is the position of the back lens of the combination and that V or

y
C . . F = n(D . . F), or D..F=-, then obviously tan fa

= n tan fa,

and therefore the length L of the coma referred to the point D is

given by
y

L = (M tan <^)V = M(n tan ^)- = (M tan
</>2)(D . . F),

IV

which is the same result. But it is clear that the semi-aperture A
of the oblique eccentric pencil where, it traverses each lens in turn

must be carefully inserted.

For brevity let us write Formula XX. as simply

3 tan d> 1

then for two lenses or elements in succession, whether separated or

not, the formula will take the form
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3 tan

3 tan
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Formulae for coma

XXI ^or two lenses *n

and for three elements or lenses in succession, whether separated

or not,

3 tan d) 1 , . xn ,} . ,

l
-

(a,
-
ft)^ K2

and so on up to any number of lenses or elements in succession
;
the

semi-aperture of the pencil where it traverses each lens or element

plane being expressed in terms of the semi-aperture of the pencil at

the first lens or element plane of the series.

successon.

Formulae for coma
for three lenses in

succession.

Coma produced by Oblique Refraction through a Parallel

Plane Plate

However, our formula for coma is not yet quite complete, for in

the case of thick lenses we have to deal with two elements and a

parallel plate, and we must now work out a formula for the coma

produced when a pencil of converging or diverging rays is refracted

obliquely through a parallel plane plate. That spherical aberration

coma is produced in such a case is evident from the inspection of

Figs. 86a and 8Qb, and also from experiment.
Let A. . h be the second surface of a piece of parallel plane glass of Construction,

thickuess = t and refractive index = /i. Let b . . K and d . . H be the

two extreme rays of the oblique pencil, and c . . E the middle or

principal ray of the same. Let a be the focal point for the rays

ultimately close to the normal Q . . A, which, if the pencil were in-

definitely extended, would be a ray perpendicular to the plane surfaces.

Then we must imagine that the origin of the pencil or the point from

which all the rays originally start is at a point Q on A . .a produced

backwards and at a distance to the left of a equal to t- ,
and the

P

diagrams chiefly represent the course of the rays after emergence from

the second surface. Then, as we have seen in Section IV., page 79,
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the rays are subjected to a negative aberration which, as a correction to

- or T- ,
was found to be v, .' a?, in which a9 was the distance

v A. . a 2p
str

of each ray, where it cut the second surface, from the normal ray

A..Q.
On multiplying the above formula by v

2 we then get the longi-

tudinal aberration for any ray, so that we have

(A..&)=
(--<A..*)S

,
- (38)

Let the angle of obliquity enclosed between the principal ray
c . . R and the normal ray A . . Q be %, and let A . . R = L and R . . Ji

= E . . k A (the semi-aperture of the pencil).

It is evident that the length of the coma is e . ./,/ being the point

at the extremity of the coma where the two extreme rays of the

pencil intersect, which, as is always the case where there is coma, lies

to one side of the principal ray.

We may now follow a line of reasoning analogous to that we

pursued in the case of working out the spherical aberration coma

produced by a lens on an eccentric pencil ;
as follows :

(41)

in which

(d.. g)
=

(&.. g)
-

(L + A? -
(L

-

,.from(41) (^.

Also

(f..g)
= (b.. g) ^ = o 9V /rV
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Also

-(b. .c)}= {(b.
. g)

-
(a. .c) + (a

(44)

Then

in which formula L = v tan ,
so that

(45)

(46)

and then the angular value of the coma subtended at A is given by

^l.ito^L*. (47)

We have now got the numerical value of the coma
;
but its sign

demands very special consideration, chiefly for the reason that the

optic axis of the glass plate is indeterminate, or may be any straight

line perpendicular to the surfaces. But the optic axis of the lens

system, of which the plate is a part, is always definable.

In Fig. 86a let it be supposed that the optic axis of the system
is O

l l ,
then obviously the coma e. .f is inwards or towards the optic

axis
;

but if the optic axis is at 2 . . O
2
or

3
. .

3
the same corna

becomes outward or from the optic axis. In the same way if, in Fig. SQb,

the optic axis is at
1

. . O
l the coma is inward, and if at

3 3 ,
then it

is outward. We therefore require a sign determinant, and the following
convention will answer our purpose in all cases in which no element

occurs at the second surface of the plate. Let the distance A . . a or

v be considered a positive quantity when the rays emerging from the

glass plate are diverging, as in Fig. 86a, and a negative quantity when
the emergent rays are converging, as in Fig. 866. Also, if the principal

ray of the oblique pencil is diverging from the point where it crosses

the optic axis, then let the distance I)" from such point on the left to

How the sign of the
to be deter"

A parallel plane
Plate has n axis -

A sign determinant

reqm]
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the second surface be also considered a positive quantity. But if such

point, when the principal ray cuts the optic axis, is to the right hand

of the second surface, so that the principal ray emerges converging to

the optic axis, then let the distance D" in question be considered

negative.

On referring back to Formula (47) it will be seen that we

have - on the left-hand side of the equation and . on the other, so
v ir

that if v is negative, then both sides become negative. Therefore we
must regard the Formula (47) for the angular value of the coma as in

itself always a positive quantity, as is the case with Formula (46), and

the sign must be settled by a sign determinant in the form of (v D").
We will -now show how this device works out. In Fig. 86a let the

optic axis be
1

. . O
t ;

then the point where the principal ray a . . R
cuts the axis

:
. . 1 is away to the left at s

1
at a + distance D" from

the second surface, which is greater than A . . a or v
;
therefore v~D" is

negative, and gives a negative sign to the angular coma, which is inward.

Then let O
2

. . 9 be the optic axis
;
then s becomes the crossing point

for the principal rays, while v remains as before, and vD" is now

positive, while the coma is outward.

Next let the optic axis be considered to be at
8 3 ;

then s
3

becomes the crossing point for principal rays, and D" is now

minus, so that v D" is still positive, as is the coma, which is clearly

outward.

Turning to Fig. 86&, if the optic axis is at O
1
..0

l ,
then

,Sj
is the

crossing point for principal rays, and D" is positive, while v is negative,

so that v D r>

is negative and the coma is inward. But if the optic

axis is at
3

. . O
3 ,
then both v and D" are negative ;

but D" is greater

than v, so that v- D" is positive, and the coma has become positive.

This device covers the case of the parallel glass plate, supposing it

is either a detached and independent unit in a lens system with an air-

space on either side of it, or if it forms part of a convexo-plane or

concavo-plane lens, in which case no element occurs at the second

surface.

Case wherein an But if, as is usual, an element does occur at the second surface,

tlien we nave only to refer to those data wnich nave had to ^e worked

out for the various elements in order to find a simple sign determinant

in the form of (u D')/ for that element which occurs at the second

surface. If the element is a collective one, then/ is entered as positive,

but if a dispersive one, then / must be entered negative, while the u arid

the D' must be entered with those signs prefixed which have been
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already assigned in accordance with the conventions laid down on

pages 148 and 149, Section VI.

Thus, then, when no element occurs at the second plane surface we

have the formula

= 3 tan x with (r-D
xv

) as sign determinant : XXIIlA.

or if there is an element at the second plane surface, then

= 3 tan x 9 3 ./
A'2

,
with (u

-
D')/ as sign determinant. XXIIlB.

'

The aberrations in the diagram are much exaggerated, for clearness,

and the crossing points for principal rays are of course determined by
formula? of the first approximation only, all aberrations being ignored.

In this way the point where the principal rays of pencils entering

a lens system cross the axis (generally the stop centre or its image)
is determined in the first instance; and supposing, as usual, that

the angle made by the principal ray with the optic axis at the first

element is
i/r,

then the angle ^ which the same principal ray makes

with any particular parallel plane plate may be obtained in the way
described on page 179, Section VII., where it was shown that if n

elements precede any given parallel glass plate, then

tan x = tan ^ f^k^V
'

^ , etc.
;

*J
\

*J
y,

-L'n

while the semi-aperture A of the pencil where it cuts the second

surface of such parallel glass plate may be obtained in the manner
described on page 103, for it is the same thing as the semi-aperture

y for the axial pencil. Supposing there is an element at the second

surface of any given parallel glass plate, and it is the ?ith element of

the series, then

(A^=(
U
^--^A*. (48)

\VjV2 . . #_./

If there is no element at the second surface, then the focal distance v

of the emergent pencil may be specially assessed with respect to the

second surface of the parallel plate, as also the focal distance (or D")
for the principal rays in accordance with Formula XXIIlA.

Application of the Formulae for Coma to two Actual Lens Systems

We will now conclude this Section with two examples of the

actual application of the formulas for coma to two of the photographic
lenses that we dealt with in Section VII.

Parallel Plane
Plate.

Formula for angular
coma with no
element at second
surface.

Same when element
occurs at second
surface.
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Stellar Cooke lens First we will take the Series Ic Stellar Cooke Lens, whose curves

of 43-in. focus. an(j an other data were given on page 182, Section VII. Kecapitu-

lating, we have the formula for E.C.s in the abridged form (in

secondary planes)

while we have seen that the formula for coma is

(50)

from which it is seen that if we take the function 20' already worked

out for the E.O.s, and divide by two, and multiply the whole

formula by *, and substitute tan $ for tan'
2

<, then we shall

arrive at the angular comatic corrections for each lens or element in

turn. Proceeding in this way we get, taking each element in succes-

sion (the actual sign of a /3 being indicated over each)

First element. -00784 - tan <.

Second element.

Third element.

E

(
+ -002597 + -003820)

3^2 P**A
*(*-*}

= + -02775 tan
2/2 i'

-0002383

E,

,-
8 = ~ '07709 tan

2/8 ^^l

Fourth element.

Fifth element.

Sixth element.

(
+ 0000437- -0007269)

-00046152

-011511 -

3(a*

_ E5

2/5

EL

= + '02863 tan <.

= - -006145 tan

= + .00533 tan
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E
1

+ -02129 tan
(/>

E
3 -'07709 tan

<f>

E
2

+ -02775 E
5

- -00614

* " - '08323 tan
</>

,, .

+ '08300 tan <

- '00023 tan
</>
= total for all elements. Total angular coma

for six elements.

This result implies a minute amount of inward coma at the

oblique focus
;
but we have yet to work out and add in the parallel

plate comatic corrections.

First Plate

For the first parallel plate we have the angular coma

(/A
2 -

l)t, g= 3 tan Xi

with (w2 D./)/2 as sign determinant, which
"

wherein tan
-v/r
= tan

<f>,
as the original object plane is infinitely

distant. This formula gives
- '000076175^* tan 4>, (us

-
D/)/9 being

(-)( + )

Second Plate

For the second parallel plate we have the angular coma

0*
2
-lXa^a= 3 tan x2 ^ o s ^4

2/**t^

with (w4 U/)/4 as sign determinant, which

- 3 tan cA
D

l
/D

2
/D

3' (^ I !)^o tan ""-" ~-"

(which gives the result - '00 0005878^ tan <, O4 -D/)/4 being

Third Plate

For the third parallel plate we have the angular coma

with (u6 D6')/6 as sign determinant, which

D/D'D'D/D/ (u
2 -P= o tan <z> ~->* -

^, r^i~~77-^rv D
1

/
'D

a

'/D8"D4
//D8

"
2/,%(
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which gives the result + -000000 72 15A
1

2
, (MO

- D6')/ being ( + )( + ).

So .we have
-
-000076175^^ for L

x

- 000005878^
1

2 for L
2

2 for L + L
2

+ -000000722^^ for L

co^ecSons'for three Total - - '000081331^ tan c

Add previous total ) ,
. ,

,
i \~ - "00023^- tan d>

from the six elements
J

l r

Final total. - '000311^2 tan
<f>

Total angular value of the

coma at final focus.

On multiplying this result by (E.F.L.) tan
</> A? we shall get the

linear value of the inward coma at any angle </>
from the axis.

Let tan <
= for about 5 degrees, A l

= 3 inches (the full aperture

was 6^ inches), while the E.F.L. is 43 inches, then our multiplier is

Length of the coma (43)^(9) =
32J, and (

- -00031)(32) - - '01 inch. This is more
at 5 degrees from the

axis. than the coma which was sensibly inward actually measured
; indeed, at

about 7 degrees from the axis there was no coma at all. The existence

of just perceptible inward coma at from 1 to 6 degrees from the axis, its

absence at about 7 degrees, to be superseded by more and more out-

ward coma as 10 to 12 degrees was approached, was a characteristic

which manifests itself in the final image of many such combinations,

and is explained in exactly the same way as we explained the

Positive coma of a existence of zones of aberration. For besides the comatic corrections

of the order tan
</>,

for which we have worked out the formulae, there

exist comatic corrections of higher orders whose formulae will be more

complex in inverse ratio to their relative numerical importance. Hence,

if we refer back to Fig. 39 and let the curves represent two orders of

comatic corrections which are left over at the final focal plane and are

equal and opposite at any given distance from the axis, so as to bring-

about absence of coma at that point, then at a point somewhere

between that neutral point and the axis there will occur a maximum
of coma of the same character as the lower and most important order

of coma for which we have worked out the formulae, while outside of

the neutral point the coma of the higher order will more and more

prevail. In this case we have slight residual negative coma of the

order tan
</> pitted against residual positive coma of the higher order

tan3
</>,

so that inside the neutral point slight inward coma prevails, and
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outside of it outward coma prevails, and would show up much more

strongly were not the effective aperture of the combination for oblique

pencils largely reduced by the obliquity.

For our second illustration we will fall back upon the process The Cooke Pro-

lens, Fig. 59, whose radii, etc., and KC.s are all given on pp. 185 cess Lens.

and 186. Here again, in order to convert the eccentricity corrections

for each element into comatic corrections, we must first halve the inside

comatic E.C.s, and then multiply the whole aberration E.C.s plus half

3A 2
(a B)

the comatic E.C.s by
-

,
and substitute tan

<j>
for tan

2
<

;
we

*J

then obtain the following comatic corrections for each element

in turn :

(
+ '0063848 -

000536Q)
3

(ai T^1^
1
2 tan

<f>
= + -051125^ tan 0.

First element.

(
+ -0018885 +

2/2
1
2 tan

<f>
= - '1559QA* tan

</>.
Second element.

l

( + -0000786 - -001 7803)
"

A*(
2 3 tan < = - -088849^* tan <L Third element.

2/3 .

( + "3032244 -
2/t

^
1

2 -2 tan
c^>
= + "81219^2 tan d>. Fourth element.

( + -3120633 -
-383254)

3(as
"

2/5 \ViV<Pz

tan <j>
= - '71453J, 2 tan <i. Fifth element.

-0022287 -

+ -943804

1

2/6 > V
l
V
Z
V^V

E
x

+ -051125 E
2

- -15590
E

4
+ -81219 E

3
- -088849

E
6

+ -080489 E
5

- -71453

tan <> =

+ -080489^^ tan
^>.

Sixth element.

--95928
+'94380

-'95928 Total =- '01548^^ tan
<f>.

Total angular coma
for six elements.

We have yet to add the three parallel plate corrections. In this
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Total parallel plate
corrections for three

lenses.

Final total.

case we supposed the rays constituting the pencils entering the first

lens to be parallel ;
therefore tan

i/r
= tan <.

First Plate

The formula for the first parallel plate is therefore

(54)

with (u.2 D2')/2 as sign determinant, which gives us *007877-4.a tan <>.

Second Plate

f ntan (55)
^)

1
"D

2
"D

3

"
2/A

3M
4
2

with
( 4

D
4')/4

as sign determinant, which gives us + '0023 2 9^4^ tan
</>.

for,Uall

Third Plate

D/D/Dg'D/D/ 0**-!

/x 6

(56)

(with u
6

D
6')/e

as sign determinant = +'0000327^f tan 0.

Summing up we have

for second plate + '002329 for first plate . .
- '007877

for third plate + '000033 for second and third plate + "002362

+ '002362 Total plate corrections - '00551 5^
x

2 tan

Total from elements .
- '01548

Final total .
- '02100^

1
2 tan

<f>

Supposing A
1
the semi-aperture = ^th inch, and tan < = '25 (for

about 14 degrees), and the E.F.L. = 8'5 inches, then the linear amount

of the inward coma at 14 degrees from the optic axis will be given by

Length of the coma ( '021)(-)( )(8'5)
= '00178, a very minute amount of inward

at 14 degrees from
the axis. coma. As a matter of fact, there was a just perceptible inward coma at

that angle of obliquity visible with a high-power eye-piece, while the

lens showed unusually free from comatic aberration of higher orders.

It will be noticed that the parallel plate in the first lens gives a

comatic effect about 3 '5 times as strong as the much thicker

second plate, owing to the fact that the rays are converging more

strongly through the first plate than they are through the second plate.
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These particular instances do not show relatively very strong Coma for parallel

comatic corrections for the parallel plates, and these might legitimately

be neglected ;
but cases of much thicker lenses may sometimes occur,

or cases in which the divergence or convergence of the rays through
the plates is relatively very much stronger, leading to very serious

comatic corrections which cannot be neglected. Such cases are,

perhaps, the most likely to happen in microscope objectives ;
so that

our formulae for coma of the order tan
<f>

would be incomplete without

those applying to parallel plates.

Coma at the Foci of Eccentric Oblique Pencils Reflected from

a Spherical Mirror

In the case of the spherical reflector, we may occasionally have to

deal with the eccentric oblique refraction of pencils, as occurs off the

small concave or convex spherical mirror of the Gregorian or Cassegrain

reflecting telescopes. Here again if we take Formula XX. and

substitute 1 for
, we then arrive at the formula

e..f 3 tan
XXIV.

which is the universal expression for the angular value of the comatic

flare subtended at the vertex of the mirror
;
the vergency characteristics

a and /3 being assessed in accordance with the usual conventions, and
A being, as usual, the semi-aperture of the pencil where it impinges

upon the mirror.

Angular coma at
foci of eccentric

oblique reflected
pencils.



SECTION IX

DISTORTION AND RECTILINEAKITY OF IMAGES VON SEIDEL'S FIFTH

CONDITION

The simplest case of

image projection by
a pinhole.

The pinhole replaced
by a thin lens.

WE now have to consider another very important condition which

has to be fulfilled by any optical combinations that are designed
to project on to a plane surface images of exterior objects which

extend to many degrees from the optic axis, and are at the same

time required to resemble the original in the sense that the linear

distances of image points from the axis point shall be strictly pro-

portional to the tangents of the angles that the corresponding points

in the original subtend at the front apex of the lens or at any other

point on the axis of the same. Fig. 87, Plate XIX., illustrates the

ideally simple case of the projection of an image of the original flat

object B . . C on to a flat screen b . . c by means of a pinhole P.

Let A . . a be the straight line drawn through the pinhole P

perpendicular to both planes B . . C and b . . c, and we may regard it as

the optic axis
;

let C, D, and B be three points in the original whose

images are projected, in straight lines, to c, d, and b, their respective

image points ;
then we have

a..b A..B a..d A..D

b
~
Jt>

.d

and
c A..C

-^-p ,
and also the tangents

a..P A..Fa..p-A..P,..p-A..P' SOthatWen0t nlyhaVe

a constant ratio between all radial distances in the image and all radial

distances in the original, but also a constant equality between the

tangents of angles subtended by points in the original and the tangents

of angles subtended by the corresponding image points. And it is

clear that these relations will continue to hold good whatever may
be the ratio between what we may term the focal distances A . . P
and P . . a.

Next we may suppose the pinhole to be enlarged, and a small and

very thin collective lens to be inserted in it, after which we shall have

244
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the relationship ~ = ^
- T ~ if the most distinct image is to be

X . . (I _C J\. . . S?

projected on to b . . c. But we are passing our narrow pencils of rays

through the centre of the lens in this case, and, as we have seen in

Section L, rectilinear projection ensues with reasonable accuracy

throughout a very large angle of view. But let us go further and

suppose that we have two separated lenses, as in Fig. 88, which we

will suppose to be plano-convex with their convexities turned towards

one another, and of equal powers.

Let there be a screen or stop placed half-way between them to

compel the effective pencils to cross the axis at S, the geometric centre of

the system, and let the two conjugate focal distances A . . Lt and L2 . . a

be equal, so that the image is equal to the original. Let B..C..S..D..E
be the course of an oblique principal ray from B. Let pl

be the first

principal point, being the image of the stop centre S as formed by
the lens L

: ,
and presented to outward view

;
and let p2 be the second

principal point or the image of the stop centre, similarly formed by
the lens L

2 . We are now going further than we did in Section I.,

and must therefore take notice of the spherical aberration of the two

A. B
lenses, for we are supposing the angle of obliquity -r-1 to be consider-A . . pl

able, so that the ray B . . C traverses L x
and L2 at a substantial distance

from their centres. Under these circumstances it is clear that the

image of S formed at pl
or p2 is subject to spherical aberration

;
the ray

S . . C (tracing it backwards) after refraction at C seems to proceed from

<?! ,
and not from pl ; similarly, a ray S . . D after refraction at D proceeds

from g2 ,
and not from p2 . Now, under the circumstances of perfect

symmetry prevailing in Fig. 88, this aberration obviously does not

interfere in the least with the perfect similarity and equality existing

between the image and the original ;
we have the ray B . . C entering Lx

as if proceeding to ql ;
after refraction at C it then proceeds through

the stop centre S and cuts L
2 at D at a height from the axis equal to

that of C in L! ;
and after refraction there proceeds, as if from the

point qz ,
and strikes the screen at E, and E..A is exactly equal to

B . . A, since the two triangles Ag^B and ~Eq2a are equal and similar.

But it is clear that the principal rays entering Lt
and the principal

rays leaving L2 are neither converging to nor diverging from the two

definite and fixed principal points pl
and p2 , although that may be

practically true for principal rays very little inclined to the axis.

Hence our first important inference is that the radiation of

principal rays from a definite principal point after passage, or their

Case of separated
lenses or elements.

Stop placed at geo-
metric centre.

How the problem is

affected by spherical
aberration.

The condition of

symmetry.
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Condition of univer-

sally correct projec-
tion.

Discrepancybetween
ideal and real course
of principal rays.

Linear amount of the
distortion.

The tangent condi-
tion.

convergence to a definite principal point before passage, is not always
a necessary condition for rectilinear projection. But we shall soon see

that definite principal points are absolutely essential if we are to have

the condition of rectilinear projection for all ratios of conjugate focal

distances, and not merely for the one ratio which involves symmetry,
and which in Fig. 88 is also one of equality.

Let Fig. 89 reproduce in exaggerated degree the case of Fig. 88.

We have the original AB and its equal image a . . E. pl
aud p2 are

the two principal points as fixed by formulae of the first approxi-

mation, q }
and q2 the same as they appear by spherical aberration.

B..C..S..D..E is the actual course of the principal ray, but

B . . 5 . . S . . c . . E is the course which the ray would take were there no

spherical aberration affecting the principal points, for before entering

L! it would, if produced, pass through pl} and after leaving L
2 would,

if produced backwards, pass through pz
. This ideal course for the

principal ray is shown as a dotted line. Let the actual course of the

ray and the ideal course be produced away from the lenses beyond the

object and image planes. Then we have the two courses intercrossing

at B and at E, and there is no distortion with the conjugate focal

planes in that position. But let the original plane object be removed

farther back to F . . Q, when the image will be formed in a new and nearer

plane <?../, and we have not only unequal conjugate focal distances, but

it is plain that we shall also have distortion. For, supposing that G,

a point in the original, and its image point g, were both upon the

dotted line of the ideal ray, then we should have no distortion, for

G..5 and d..g are by hypothesis parallel, they make equal angles

with the axis with equal tangents, and radiate to and from fixed

principal points. But the actual ray cuts the object plane at Q, inside

of G, while the actual ray after passage cuts the image plane at q,

outside of g. To a smaller original F . . Q there corresponds a larger

image q..f. Therefore if we suppose our original point Q to be

coincident with G instead of inside it, then its image point will be

transferred from q to r, still farther outside of g, and g . . r will be the

linear distortion or the deviation from the position of correct projection.

If on the plane F . . G we have a series of true squares, like Fig. 90,

then the image will be distorted into the form shown in Fig. 90a.

So we clearly see that if any lens is to be universally free from

distortion, and not merely so under one condition of a certain ratio of

conjugate focal distances, then not merely must there be a constant

ratio (not necessarily equality) between the tangent of the angle made

with the axis by the incoming principal ray and the tangent of the
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angle made with the axis by the same outgoing principal ray, but the Condition that the

incoming and the outgoing principal rays must alike be converging to or
aberratio^free

"*

radiating from fixed points on the axis. And as such fixed points are

always either the centres of stops themselves or else images of stop

centres, as in Figs. 88 and 89, therefore we must have the images of

such stop centres formed free from spherical aberration. In Figs. 88

and 89 the stop actually coincides with the geometric centre of the

combination, and its two images pl
and p2 are therefore principal points ;

but as often as not the stop in a combination is not placed at the Pupil points not

geometric centre, and therefore its images are not principal points, but
points

311 7P

are usually by Continental optical writers spoken of as pupil points,

for they are points at the centres of apertures or their images to which

or from which the principal rays of the pencils converge or diverge.

But our above condition of freedom from distortion applies just as truly

to such pupil points as to principal points ;
we must have aberration-

free images of the stop, or pupil points, combined with a constant ratio

of tangents of the angles made with the axis by the entering principal

rays and the same principal rays when emergent. If the stop happens
to coincide with the geometric centre, as in Fig. 89, then we have not

merely a constant ratio of tangents, but equality of tangents and

parallelism between the incoming and outgoing principal rays, so long
as the two lenses, as in Fig. 89, are symmetrically shaped with respect

to the point S.

The ratio of the tangents of the angles made with the axis by the

entering principal rays to the tangents of the angles made with the axis

by the same outgoing principal rays, is a matter which can be

legitimately considered on the supposition that there is no spherical

aberration or that the formulae of first approximation only strictly

apply throughout the lens aperture.

Then the further effects of the spherical aberration may be

investigated afterwards and the formulae accordingly modified.

The Tangent Condition

Up to a certain stage we cannot here do better than follow the Coddington's
method and the notation employed by Coddington in his before-

mentioned work, pages 121 to 1451, although we shall find that it is

possible to carry the processes further than he did, thereby arriving at

results of greater simplicity and convenience in application. His

methods were really founded upon or suggested by a certain paper on
" The Spherical Aberration of Eye-pieces," published in the Cambridge

methods

ployed.

first em-
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Condition of equal
symmetry.

Consequence ofalter-

ing vergency.

The tangent surface.

Philosophical Transactions, by Sir George Airy, the leading pioneer of

British optical science. Let Fig. 91 represent an equiconvex lens

under the condition of equal conjugate foci, spherical aberration being

supposed absent. It is clear that, under these circumstances the rays

enter and leave the lens under precisely the same conditions, the

angles of incidence and emergence are equal, as are the angles of

refraction within the glass, so that the course of the rays within the

glass is parallel to the axis. Therefore it follows that if the entering

and emergent rays are produced inwards, they must intersect one

another exactly half-way between the two surfaces
;

that is, every
incident ray will cut the corresponding emergent ray on a straight line

passing through the sharp edge of the lens and perpendicular to the

axis, cutting the latter at d, the centre of the lens. Clearly, then, tan

aQd = tan aqd, tan bQ,d = tan bqd, and tan cQd = tan cqd, and a

constant ratio, here equal to unity, prevails between the tangent of the

angle made with the axis by the incoming ray and the angle made with

the axis by the corresponding outgoing ray. That the locus of the

intersection points of entering and emergent rays produced is a straight

line passing through the sharp edge of the lens and perpendicular to the

optic axis is clearly the necessary condition for this constancy of

tangent ratios. But it is by no means always fulfilled. For instance,

let it be supposed that the point Q is moved a very great distance away

along the axis to the left, so that the entering rays become practically

parallel, then we have the condition of things shown in Fig. 92. The

parallel entering rays after refraction at the first surface converge
within the glass to a point q

f
distant from the first vertex by three

times the radius (if /A
=

1'5), and then after refraction at the second

surface converge to q, the final focus. If now we produce these

exterior rays to intersect, we shall find they no longer intersect on a

straight line, but on a circular curve a . .b . . c . . d, convex towards the

focus q. Supposing the three entering rays strike the lens at heights

1, 2, and 3 from the axis, then we may regard the minute angles they
make with the axis to have their tangents in the proportions 1,2, and

3
;
but not so for the emergent rays, for we still have heights 1, 2, and

3 as the numerators in our tangents for angles cqd, bqd, and aqd, but the

denominators are respectively c' . . q, b' . . q,
and a' . . q, which vary con-

C C

siderably, so that tan cqd is '- : -
,
and considerably in excess of

one-third of tan aqd, which is
a. .a

We will now investigate the formulae expressing the relationship
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between the tangents of the angles of the rays entering and the same

rays leaving a lens. Fig. 9 3 illustrates the case of a collective lens and

Fig. 93 the corresponding case of a dispersive lens, both curves and

thicknesses being exaggerated for clearness. The same notation and

the same line of reasoning apply to both cases.

Let X . . A = 6 B . . Y = c H . . M =
y(

= K . . N approximately) Notation.

A . . B = i A . . x = b' Angle HXA= e Angle KYB =
77

Radius of first surface = r, Radius of second surface = s.

K..N H..M
jLhen we have tan 77

=
^ ^ >

anc^ ^an e = ^ v~ 5

tan 77 K..N M..X K..N M..X
The tangent ratio.'

tan e N . . Y H . . M H . . M N . . Y '

yZ y2
vers (A. . M) = vers N . . B =

2r 2s

Also
-i/2

2s /,, , f\fl ,
f

H . . M x . . M , _ y*_

2r

~b'
+

2sb''
+
2rb

7

in which we may neglect functions of the thickness t (which is The thickness may

independent of y), especially as we shall eventually apply our formulae

to elements of no thickness and parallel plates in the case of having
to deal with very thick lenses. Therefore we may write

H..M 2\r sJb"

next

,
y*

2brJ
'

N..Y = <M

1 1 / f \
'' NTTY^V 2es)

'

M..X
= 01 1 + -

1 i 1

2cs/

1/1 1\
9 \& ~

cJy I
>
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K -- N M..X_ f y/l I\
} bi y*(I_l\ }

'

H..M N..Y \ 2b\r sJjc( 2\br csJ )
'

tan bi f 1/1 1\ ft\ \'___M _ _( __1__ I 4. *L I _ ^

'tone cl 2 &'\r sJ 2\br cs

K..N M..X MV */
2 ri/i i\ 1/1 m~i

The tangent ratio. ,. Ĥ
.

s^=
-|_l ^-{-(^H- -)--(-__) }J.

(5)

Here it is desirable to express &' in terms of
yu,, r, and Z>. We

have

_/*-! _1. l_/i-l l_^-l)-r
ft' r b

'
'

b' pjr pb p,rb---- -_/*-l/l ,

1\
\

' T I \/i \
' T

p/ii) p.rb p \r b

Relatively to c and the second surface we also have

cs

COC p.CS fJ.CS //,
\C S

therefore on substituting we get
The tangent ratio in ^ ! fl /! jx 1 ^ ^ }

n
terms of u, r, s, b,

' = -M + * _(_+-__ + _
)
U2 I

and /. tan e cL 2u, lr\r &/ s\c s/J

Remembering that the so-called rays that we are dealing with are

principal rays, each of which is supposed to be the central ray of a

pencil or cone of rays which is limited by an aperture of which X is

the centre, we may now adopt the device described on page 149,

The characteristics Section VI., and use the characteristic /3, substituting 9
. for ^-, and

/? and x introduced. I - R 1
. for -, assessing the signs of I and c according to the conventions

there laid down, and we will also adopt the characteristic x for the

shape of the lens, so that

1+a; 1 I -x 1

;=- and
20.-1)/ r 2(/x-l)/ ,

On substituting these values we find that Formula (8) works

out to

The tangent ratio in tan
77

Z>T f _L_ ( ^
1

final form. ^ =
c [l

+
|J2 ^ZT)\^

+ 1)a; + ^ ~ J^
j J'

which we may briefly write -1 1 +
,y.2

T' /.
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When (/4-f !)#+ (fi l)a = 0, then the intersection points of rays

entering the lens and the same rays leaving the lens all lie on a plane

passing through the sharp edge of the lens, and the tangent condition

is fulfilled.

The Effect of Spherical Aberration upon the Distortion

We may now consider the further addition to our formulae

consequent upon the introduction of the spherical aberration of the lens.

Figs. 94 and 94a, Plate XX., illustrate the case. The principal rays

from or to X, instead of converging to or diverging from Z, as supposed

before, really converge to or diverge from z owing to spherical aberration.

Thus z . . Z is the linear spherical aberration whose value is expressed

shortly as ^ (A^e
2

,
if y = H . . M as before, and if, in the full value of

A', /3 is substituted for a. Therefore the true value of B . . z or c
f
is

c ~
3 (B')c

2
, writing B' instead of A', because we are dealing with the

question of the spherical aberration of principal rays ;
and so the true

value of -7 or - --is - + ,oB' which may be written in the form
c B . . z c 8/

3

c f ^A , , c 2/11+ --. f-fsB k in which -
, may be expressed as

,-

- . =
;

2/ 4/
z

) 2j 1 - p 2/ 1 - p

On substituting this value of -, corrected in accordance with the
c

spherical aberration in Formula L, we then get

tan
7j

tane cL 4/
2

which in full is

tan 77 &f, f 1 ft, 1 (n+2 , ^
Coddington's

if-- > i\~ /.. i\o\ . formula expressing
6f, f lit, 1 fM+2 ,= - 1 + T/2 -7

-
r\( (0* + ! )* + (/*

-
l)/8 \ + -, o\ ^4*?CL 4/V(/^-l)^ J l-\k-l/2 \ -, otane CL 4/V(/^-l)^ J l-ft\fk-l ratio between tan-

3
_ rli gents of emerging

+ 4(^ + 1)^ + (^ + 2)0*
-

I)/?
2

in which b and c are the conjugate focal distances by first approximation,

so that - + - = -
simply.

b c f
This is Coddington's formula for the relationships of tan

rj and
tan e for one lens. We shall, however, soon see that it is not an sal.
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When crossing point
of principal rays is

denned after pass-

age.

Formula varies ac-

cording to position
of the stop.

Two or more lenses

in succession.

Spherical aberration
must be carried for-

ward to following
lenses.

universal formula, and will not interpret itself in all circumstances.

In the case of Figs. 94 and 94a we have supposed X to be the point
where the principal rays cross the optic axis, and the spherical aber-

ration only affects the value of c by reducing it, therefore -
is

increased in value by the aberration.

But let us suppose that the point where the principal rays cross

the optic axis is defined after passage through the lens
;

let there be a

stop at Z in the case of the collective lens instead of at X
;
then it will

be A . . X or b that will be reduced by spherical aberration, and

- should obviously suffer a decrease from the normal - But it is
tan e c

clear that the value of ft, if the stop were at Z, might be anything

between 1 and -f 1, so that
^
would still be of positive value,

while we want a negative value in order to make - less by the
tan e

spherical aberration.

Coddington showed that in any case in which the crossing point

of the principal rays is defined after passage, then must be
1 l+p

substituted for -- - in Formula II., and this works out quite correctly.

He then proceeded to adapt the above Formula II. to the cases of two
or more lenses in succession. In Fig. 95 let L

x the first lens be

receiving principal rays diverging from a point X
x
on the axis to the

left, then after refraction they are subject to spherical aberration, and
the ray figured above crosses the axis at z

1 instead of at Z
l

the

ultimate focus, and passes on to the second lens L
g

. It is clear that

while Z
x

. . z
l

is a decrement to c
x

it is an increment to A
2

. . Z
l
or b

2
.

Therefore the statement of - for the second lens needs modification
tane

2

in order to cover the variation of &
2 consequent on the variation of c

:
.

Coddington made the necessary correction, and thereby obtained the

Formula HA. which is applicable to two lenses in succession, such as

a Huygenian or Eamsden eye-piece ;
but in extending the application

to the case of a four-lens or erecting eye-piece, which was one of

the main objects in view throughout his investigation of distortion, he

made a strange omission.

For in his series of formulae, while carrying the spherical aberration

of L! through to L
2 ,

that of L
2 through to L

3 ,
and that of L

g through
to L

4 ,
he omitted to carry the aberration of L

x through L
g
on to L

3

and L
4 ;

nor did he carry the aberration of L
2 through L

3
on to L

4
.
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But the omitted operations can be shown to be as important and

sometimes much more important than the processes which he retained.

Fig. 96 represents a case whicli furnishes a capital illustration of the

necessity for carrying the aberration of any one lens right through to

the following lenses. Let there be four lenses, L1}
L

2 ,
L

g ,
and L

4 ,
all of

equal focal lengths and equal separations, the latter being four times

the focal length of any one of the lenses. Let it be supposed that a

set of principal rays is radiating from a fixed point at a distance in

front of L! equal to twice its focal length. Let . . P
l
be one of these

principal rays forming an angle ex with the axis. Let it be supposed
that all four lenses are quite free from aberration, and also that the

tangent condition is fulfilled, so that the refractions all take place in

one plane perpendicular to the optic axis and passing through the

lens centres (equiconvex lenses are here implied). Then it is obvious

that the course of the principal ray through the series is . . P
:

. . Q a

. . P
2

. . Q2
. . P

3
. . Q3

. . P
4

. . Q4 ,
and what takes place at one lens is a

repetition of what takes place at any other, and the emergent ray
makes an angle y4 with the axis equal to e^ Next, let it be supposed
that a very slight spherical aberration is introduced in L

1?
so that the

principal ray . . P
1}

instead of being refracted accurately to Q 1?
is

refracted to q lt
so that Q l

. . q l
is the linear aberration. Supposing this

to be a small quantity, say 1 per cent of L
x

. . Q ls
then we have the

ray striking the second lens plane at a height L2 . . ^>2 which will be

2 per cent greater than L2 . . P2
. Then the image point of q^ thrown

by L2 will obviously be q2 ,
and Q 2 . . q2 will be very nearly equal to

q l
. . Q ls

as the conjugate focal distances are equal and the variation

very small. Let . . L
x
= u

lt Lj . . Qj = v
lt
L

1 ..q l
=

v\, q l ..L% = ii2 ,

~L.2 ..q2
=

v\, L, . . P2
=

?/2 ,
and L2 . ._p2

=
y\.

Then the increment to L
3

. . P
g

will be 4 per cent, and that of

L
4

. . P
4
will be 6 per cent. But it is not our purpose to take notice

of the variations in the y's in our functions of T' and B', because they
involve corrections of a higher order, namely, of the order yf. What
we are chiefly concerned with are the new functions of Br and y

2 which

have to be introduced in order to express the cumulative increment to

tan
77,

for evidently

tan
r?4 Ul 4j & it= -^.-^.-f.-^= -

'Git?/ \i>
2
- -Qlv

z
/ \v

s
- 'Oli

Four lenses in suc-

cession.

All four lenses first

supposed free from
aberration.

Effect of introducing
spherical aberration
in first lens.

Cumulative effect of

the aberration of

first lens.

and on writing u = v=l, the above becomes

-01)},
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tan
=

(1 + 07),

or we may say that

Hence Coddington's omission to transfer all the aberrations through
the series is fatal to the accuracy of his formulae for more than two

lenses in succession. It will be as well, however, to repeat here his

formula for two separated lenses in succession, which is quite correct

although very unwieldy

tan
Coddington's dis-

tortion formula for
] C

1
C
2

two lenses in suc-

cession.

1 +2

Formulae for three or

more lenses highly
complicated.

Application of
Formula IIA. to a

Huygenian eye-piece.

Emergent rays par-
allel.

The student will find his formulae for lenses in series dealt with

on pages 162 to 172 of his work, and, after perusing the same, will

be obliged to concede that, even as they stand, they are very complex
and ill adapted for practical purposes, especially when any variations

in the position of the limiting stop always render certain modifications

necessary. If, however, the omitted functions for the transferred

aberrations were also taken into account, then Coddington's formulae

for three or four lenses, when completed, would become unmanageably

complex, or at any rate full of pitfalls for the unwary. This is

essentially the case in a method which seeks to interpret distortion

only in terms of the relationship between the tangents for finally

emergent principal rays and the tangents for the same rays before

entering.

Let Fig. 97 represent a Huygenian eye -piece, for which

Coddington's two-lens formula is quite correct. Let it be supposed
that an objective away to the left is projecting a truly rectilinear

image on to the plane P . . P (if L
x
were not interposed). Let two

principal rays from the centre of the objective be considered,

one r
1

. . 1\ aiming for a point in the outskirts of the image,
and one r . . r aiming for a point in the image very near the

optic axis. After these two rays are refracted by Lj they proceed,

through a new and imperfect image formed at p . . p in the principal

focal plane of L
2 ,
on to L

2 , by which they are again refracted, r
x

. . r
a
to

cross the axis at /2 ,
and ?*

2
. . r

2 at/i ;
F . ./2 being the linear spherical

aberration. But the rays constituting the emergent pencils represented
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by these principal rays emerge in a very nearly parallel state, as if

coming from an infinitely distant object, that being the state of the

rays best adapted for distinct vision by the normal human eye.

Therefore so long as tan ^ bears the same ratio to tan el
as tangent

7/2
bears to tan e , the eye will notice no distortion, and straight lines in

the distant object will appear to the eye through the telescope as straight

lines wherever they may occur in the field of view. That is what

takes place when the functions of y
1
in Coddington's Formula HA. equate

to 0. But let us consider what will happen, supposing we no longer

confine ourselves to receiving the emergent rays into the eye, but draw

out the eye-piece with a view to throwing a real image of the object

(the sun for instance) onto a white screen S . . S at a little distance

behind the eye-piece. It is clear that such an image will no longer be

free from distortion. For the principal rays, although emerging in the Lateral displace
. ment of emergent

right direction, as implied in the constancy of
,
will be subject to principal rays.

a lateral displacement consequent on the aberration F . ./2 . If they
all radiated from F there would be no distortion on the screen S . . S, and

the ray i\ . . i\ would strike the screen at Q ;
but instead of that it

strikes the screen at q, and Q . . q is the linear distortion or displace-

ment of the image point q from the correct position Q. The linear

amount of this distortion Q . . q varies as the cube of the distance from

the axis. On an infinitely big image, either virtual or real, the

absolute displacement Q . . q is relatively a vanishing quantity ;
but

relatively to the image formed on S . . S it may be a very large

quantity.

Now the amount of linear spherical aberration of principal rays

taking place in the case of a four-lens eye-piece is very much greater
than in the case before us, and the student will find, what is well known
to many opticians, that if he takes an erecting telescope free from An experiment with

distortion and directs it to an object containing straight lines, and
a

then pulls out the eye-piece until it throws an image onto a ground

glass screen a few inches behind the eye lens, he will then see that

the positive distortion of the straight lines, or pincushion distortion as

it is often called, is very marked.

On the other hand, let an extremely short-sighted person use the

same telescope on the same object. He requires a virtual image a

few inches from his eye to be formed, and therefore pushes the eye-

piece nearer to the objective than its normal position ;
when he will

see all the straight lines distorted in the opposite sense, for there will

be strongly marked negative or barrel-shaped distortion.
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Formulae of greater It is quite plain, then, that Coddington's formulae are quite inade-

quate to deal with cases in which real or virtual images are formed at

finite distances, instead of at infinite distances. We therefore require

formulae of perfectly general application, and the following Hues of

reasoning will guide us to what we want, as well as lead to much

greater simplicity. So far, all that has been taken into account is, first,

that the rays constituting pencils finally emerging shall be parallel as

though emanating from an infinitely distant image, and, second, the

constancy or otherwise of ~ - for principal rays traversing the system

at varying heights from the optic axis, and therefore traversing the

several lenses at varying degrees of obliquity.

Extension of the Inquiry

As yet the positions of the planes where the various real or virtual

images are formed have not been properly considered. Let Fig. 98

represent a collective lens L, placed behind a real image . . 0', such

real image being projected without any distortion from X, which point

may perhaps mark the centre of a telescope objective, and is thus the

point on the optic axis from which the principal rays of the pencils

going to form the image . . 0' radiate. Let the distance from to

the lens be greater than the P.F.L. of the lens, so that it projects

another real image of . . 0' at I . . i'. Then as X . . N is greater than

. . N, therefore the focal point Z conjugate to X will be nearer

to the lens than I . . i'. Supposing Z is the ultimate point by first

approximation, then z is the real point where the principal ray XMz
crosses the axis before proceeding to i', and Z . . z is the linear

aberration.

Let Fig. 98a represent the corresponding case of a dispersive lens,

exactly the same notation applying. It is best always to choose for

our typical examples cases in which all the quantities are conventionally

Relationship be- positive. What we now want is a formula expressing the relationship
tween the sizes of between the size of the image I . . i' and the size of the original imagethe images.

. . 0' presented to the lens. That is, we want to find out by how

much the ratio between the radial dimensions of the two images as

painted by the eccentric principal ray X . . M . . i' departs from con-

v

stancy or from the ideal or normal relationship expressed by -.
u

Here we are assuming that the conjugate focal distances b and c

for principal rays are measured from the point 1ST, the axial point of
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the tangent surface M . . N. We must next inquire, from what point

must the conjugate focal distances u and v be measured, if aberration- Must u and v be

free refraction of the principal rays at M in the tangent surface is to
measured from N ?

lead to rectilinear projection or an image of . . 0' that is free from

distortion ? Is N the required centre of projection ?

The theorem that a lens through which are refracted a system of If Formulae I. and II.

eccentric pencils, which fulfils the tangent condition and is free from central projectJn

spherical aberration, also fulfils the condition of central projection implied?

through the point N, may be proved algebraically thus

In Fig. 995 let JST . . M be a lens fulfilling the tangent condition for

a system of principal rays radiating from Q. That being the case,

then all refractions of such principal rays will virtually take place

in the plane M . . N". Let the lens also be aberration free for all

distances, so that the law of conjugate focal distances by first approxi-

mation will strictly hold good.

Let F = the principal focal length of the lens L. Let Q . . N
=

6, and let q be the focus conjugate to Q, so that

i !_!_!
N.. q c ~F b

'

Let p . . d be a plane image or object placed anywhere between Q Construction,

and L, and perpendicular to the axis. Then let p be a point in such

plane image which also lies upon the principal ray Q . . M. From p
draw the straight line p . . N through the centre N of the tangent

surface, and produce it onwards until it intersects the refracted principal

ray M.. .q. .g at g. From g draw g . ./ perpendicular to the axis.

Let the distance N . ./ be v, and d . . N be u. Assuming N to be

the centre of projection, then the question is, what must be the

relationship between v and u ?

Since the point g is on the line of projection from the original p
through the centre N of the tangent surface,

/. f..g=(p..dF- or 0-, Xp..d=0;

Therefore we get

f..g also = (v
-

c)-, if Y = M . . N.

0- = (v
-

c) ,
in which Y =

5

u ^
c b-u

... o%(.-)-Z2u ^ '
c

(10)
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v v- c b v - c b
-

, and v = : u :

u b u c

v =
vbu

b -u c

cbu

v= -

c(b
-

u) c(b
-

u)
'

.-. v{c(b
-
u)

-
bu}

= -cbu,

cbu

(U)

c(b -u) -bu

in which expression we may put

. 1 c(b - u)
- bu

,
and - = - - ~-

v cbu

1

and then we have

bF

1_I~ 5 ~ F
F b

bF .

bF

N is proved to be the

common reference

point for conjugate

distances " and v as

well as b and c.

Effect of the separa-
tion between the

principal points.

1-1-1
v ~F u

' (12)

So that the simple law of conjugate focal distances, connecting

Q . . N and N . . q (or b and c) for the principal rays, co-operating with

rectilinear central projection through N for the corresponding image

points p and g, also satisfies the same simple law of conjugate focal

distances for the two image distances u and v
;
that is, a distortion-

free lens forms its image in strict conformity with the condition of

rectilinear projection through the centre of the tangent surface.

We have now to inquire whether the above line of reasoning will

apply to a lens having appreciable central thickness, that is, will the

above theorem apply when the lens thickness is such as to lead to very

appreciable separation between the two principal points ? In order to

answer this question we must know how the point N is situated with

respect to the principal points.

Fig. 99c represents a thick collective lens. The tangent surface is

of course the plane containing the sharp edge M of the lens, and N is

the axial point of the same. C is the geometric centre of the lens,

and p l
and p2

are the two principal points, while % and a
2
are the two

vertices, the radii being r and s as usual.
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Formulas IV. and V., page 14, fix the positions pl
and p^, or the

distances a
:

. .p1
and

,
. .p2 ,

as respectively

tr ts
n TiH

.

;
*

r . ~'^\ CILHJ. / v ., - \ .

Now as t(/j, 1) is generally a very small quantity compared to

p(r 4. s) } representing as it does the very small effect upon the positions

of p1
and p2

exercised by the refraction of the two curved surfaces as

compared to two plane surfaces, we may legitimately omit it and write

t r t s

r + s

A*

T
Then we have . . N obviously =

tf
, -therefore

r + s

i TkT\ / \ -.-r ' 99
or

/u,
r + s

and

N.. ^ r - s - 1

r + s p r + s

(13)

which expresses the proportion borne by N . . p2
to the separation

Pi- -Pz between the principal points.

This formula can be written in a more convenient form, in terms of x,

N (u,-l)-(u.+ l)x
Position of N with

____ __. (15) reference to the

^i -Pz ^0*
~

-0 principal points.

Now let it be supposed that the two conjugate focal distances for

principal rays b and c bear the same ratio to one another as pl . . N to

N . .p2 , and therefore that

so that

from this we get

fl _(/*-!) -(/*+!) 7
A-*
~

;



Point N distant from
the principal points

in proportion to b

and .

Above theorems
therefore apply to

the two principal

planes.

The thickness only
alters value of F.

Formula for tangent
condition fairly ac-

curate for thick
lenses.
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and therefore u + 1

P = ?*

SECT.

(16)

But we have seen that the tangent condition is fulfilled when

(yu, I)y8 + (/x + 1)& = 0, which is the same thing.

The conclusion is, then, that when the tangent condition is fulfilled

the tangent surface cuts the optic axis so as to divide the distance

between the principal points into two portions p1 . . N and N . . p2

respectively, proportional to b and c. Therefore if two principal planes
are drawn through the two principal points (Fig. 996) parallel to

M . . N they will obviously be cut by Q . . M and M . . g at equal

heights. Also, by the law of principal points, the ray p2

f
. . g' through

the second principal point is parallel to the ray p'. . p- through the first

principal point. Therefore the conjugate distances b and u on the one

hand and c and v on the other hand will be measured from the

principal planes. So that if we suppose the gap between the two

principal planes to be closed up by sliding the two halves of the

diagram into one another, as it were, we then arrive at the state of

things first assumed in our inquiry, for p and p2

f
will become merged

in N, while &/ and k
2

f
will be simultaneously merged in a common

point M. The only difference made by the thickness, if not excessive,

is in the value of =, but the equation T + - = - + ~ f course always
J. C w C/

holds good, and we still have the equivalent of central projection of

the image through the point K Thus in Fig. 996 the dotted lines

and accented letters indicate the state of things when the separation

between the two principal points is allowed for, and the full lines and

unaccented letters the state of things when the gap between the

principal planes is closed up.

It will now be seen that, with regard to the fulfilment of the

tangent condition or any departures from it, it is scarcely necessary to

the attainment of accuracy to treat a thick lens by elements, although

it becomes desirable to do so when the thickness becomes excessive, for

the refractive effect of the curved surfaces (as compared with flat

surfaces) upon the linear positions of the principal points grows as the

square of the thickness, and leads to the above theorems becoming

inapplicable.

Let us now revert to Figs. 98 and 98a; and, as usual, let

X . . N = b and N . . Z =
c,

M . . N = y, . . N =
u, and N . . I = v,

= e and /MzN = r,
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and let v r\ j T jX . . (J =
cfjj

and z. . L = d
2

.

Then we have

I . . i'= d.2
tan

77,
and . . 0' = d^ tan c

;

'

0. .0' ^
wherein

d
2
= fl

- e +
^TgB'e

2
,
and ^ = 6 - M

;

., r-c/l-lJB'tf)I . . ^ _ V 8/
3 / tan

77

. . 0' b - u tan e

b-u\ v\ l-(3 4/
2// tan e

'

in which we may next insert the value of already worked out, and
t 1 11 6

which was expressed shortly in Formula (9) as

tan 71 6 r f /,
,

1

so that Formula (18) amplifies to

* bv c
.

7T~~r\> ~7I
-

\"
--

T
-a 779 / I ir?9\ --

T
. . c(6

-
) I i \ 1 -

/? 4/vJ I 4/
2 \ 1 -

in which we may now, following Coddington's useful device, substitute

2f , 2/ 2/ , , 2/ . Jv
for w, r-^ - for TJ,

y
for o, and .

-- for c, on which
l+o '

1 - a
'

1 + l-p c(b-u)
(l+a)(l-p) , C 1-a

becomes ^--'A-~, and - becomes - =.

(l-a)(a-/?)' V 1-0

On substituting these values in Equation (19) we then get

0..0' (l-a)(a-0)l\ I-/?/ (1-0)
2

4/
2/l 4/

2
4/

2
l-/3

which, if we neglect functions of ^,

y
2

(l-0)^y
2

)

/3)
2

4/
2 /

4

-0 y
2
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in which
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1 +g_/l +a\/ 2/ \_v .

l-o \ 2/ Al-a/
J

so that the formula finally becomes

which in full is

Universal formula -I 1 + / _ 1 Jj 0* + 1) + (/*
-

l)/3
j

+ -
^|

~,

+ 4
(/A + l)/fo + (3fj. + 2)(/z

-
for distortion of

image.

Thus we find that the change required in the formula for -- in
tan e

order to convert it into a statement of the ratio between the radial

dimensions of the two conjugate images is an unexpectedly simple one,

involving the simple substitution of -- ~ for ^ in the spherical
v b

a ~P ~P
aberration function, and - for -. If the reader will pursue the same

u c

process in the case of X being nearer the lens than . . 0', the case of

the stop being placed behind the lens, or any other case he likes to

choose, he will arrive at the same formula
;
in fact, it is quite universal

and interprets itself in all cases.

Two

Applications of Formula III. to Combinations of Lenses

We will now show how this formula simplifies the problem of

arriving at the distortion produced by a series of separated or non-

separated lenses in succession, even when employed for projecting real

images on to plane surfaces at finite distances.

separated Let Fig. 99 represent two lenses in succession placed in alignment
behind either a real plane object . .

:
or an image projected by

another lens. Let it be supposed that the lenses are very thin, and

that the principal rays cross the axis somewhere about z, and then

proceed to intersect the conjugate focal plane I . . i' where an image

(in this case inverted) of . . O
l

is formed. From Oj draw Oj . . Lj . . i

straight through the lens centre, then i in the plane I..i
r

will be

the correct place for the image of the point O
l
to be formed if there

is no distortion
;
but owing to the operation of distortion the image

of the point 1
is really formed at i', and i . . i' is the linear

distortion
; which, for example, may be 1 per cent of the correct
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V
radial dimension I . . i, which latter, of course, = (0 . . 0^ . This

Ul

exaggerated radial dimension I . . i is then presented as an image to the

lens L
2 . It is clear that if L2 is so circumstanced as to form an

image of I . . i' without in itself exercising any distorting effect, ther>.

if we draw a straight line from the centre of L2 through i' to cut the

conjugate focal plane J ../' at j', then j
f becomes the image point of

the point i', whereas the image of the true point i would be thrown

to j ;
therefore j . . j' is the correct projection or image of the linear

distortion i , . i'
;
that is, the lens L

2 will simply form a correct image
of what is presented to it if it is free from distortion, while if it does

exercise any distortion itself, it is obvious that it will add its own

distortion, j'. .jv for instance, to that which is already presented to it.

If the two distortions are of opposite signs and equal, then the final

image will, of course, be a true image of the original.

Our Formula III. simply represents an increment or decrement to

the ideal radial distance from the optic axis of any image point located

or defined by a principal ray passing through the lens at a given height

y from the axis, and is therefore quite independent of the sign of the

lens
;
in fact, 7

is always positive, and the sign of the lens is really
** 1

always implied in the term ---~ in the spherical aberration function,

and in /3 in the function of the tangent condition. Therefore the Simple summation

distortion functions involving if for a series of lenses will be the formS

simple sum of the distortion functions for the individual lenses. In of lenses.

the case of two lenses, we have the image to object ratio for the first

lens

o..o'~ % i

'

^-jBfvvi1/
1

and the image to object ratio for the second lens is given by

Vl + (T2

'

+ !
]

On multiplying these two formulae together we get

T i' a v f / 1 \ 11
2 / 1 \ 11 2 [ 11

2 2 - Distortion
12/1 i / T '

_L "R ' \ "l i/ rT /
, "DM "2 i I "l "2 l/f)l\ for two !

-/
-

-{ I 4- I , 4- hS.. I -r I 1 -r- r>~ I
^ -r I / I A I 1

1UA uWU j

f\ f\ \ D ~^l /J^itlfi O "^9 /JJT9 /1/J* OJT 9jJ\/
(J . . U M^l ai~Pi 'Wi \ az~ Pz ' Va l^/i7 2

* succession.

from which the function of =nhr^Fi maY be left out, as it is a correction
ISA

2
/*,

2

of the order
^/

4
. Therefore the total distortion of the series is the

sum of the distortions of the individual lenses. But it is obvious

fonnul
2
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Distortion for-

mulae for three or

more lenses in

succession.

that y will have to be inserted at its proper value for each lens
;
and

all the y's may be expressed in terms of yl}
for

yn ~~
y-1 ) y q Vo Vl j

cLC*

So that the formulae for a series of n lenses or elements must be

written in abbreviated form,

1

IV.

An objection to the

validity of the above
formulae.

First case. E.C.s of

L.j assumed to neu-
tralise the normal
curvature errors.

T>

2 /472Vc~
z

' V2 X(l

In such cases y:
for the first lens may be taken to be ^ tan

</>,

which connects the functions with the angle of obliquity of the

pencil of rays in question.

It will be as well to now consider an objection that may be

raised to this series of formulae, and at first sight a very plausible

objection. It may be urged against it that it does not allow for

curvature of image.

Let Lj, Fig. 99a, be a collective lens which by central oblique pencils

forms an image ^i-Fi which for rays in primary planes is curved as usual

to a radius equal to about/!
OjJ*

+ 1
or If so, then will not

the primary focal point at q1}
and not its projection O

l
on the focal

plane, form an object, as it were, from the point of view of a second

lens placed at L
2
? Let L

2
be a dispersive lens of the same power and

material as L
1?

and let it project an enlarged image of Ol . . Fx or

ql
. . Fj on to another plane 2

. . F
2 , which image, if L

2
is free from

E.C.s, will be a flat one.

Now the primary focal line q1
is formed on the oblique principal

ray Lj . . O
x (unless there is coma, but that is dealt with by separate

formulas), and assuming L
2
free -from distortion and coma, and at the

same time to have no curvature of image, in the sense that the E.C.s

balance the normal curvature errors and therefore the lens projects

a flat primary image of a flat object, then the image of the point ql

will be projected to q on the refracted principal ray and on L
2

. . ^

produced, so that the versine or curvature error
q^

. . s
2
will be 2
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times ql
. . s^ Also the focal plane q,2

. ./2 will in this case be con-

jugate to q 1
. ./! in exactly the same sense that

2
. . F

2
is conjugate

to
1

. . Fj. The curvature of image would in this case be copied

through from one image to the other, without the point O
2 being

disturbed. For
2
would then be the centre of an out-of-focus oval,

being a section of the eccentric peucil of rays whose axis is I' . . q2
.

But now it may be urged that supposing the E.C.s of L
2

are

eliminated so that its normal curvature errors become equal and

opposite to those of L
15 then it will throw upon F

2
. .

2
a flat image,

and if we still assume the line of central projection L . . ql to be

produced to cut the focal plane F
2

. .

2
at

<?3 ,
then should not we

expect a focused image to be formed at q3 instead of the previous out-

of-focus image at
2

, so that we now have a distortion of linear value

. .
<?3 ,

where before we had none, due to a change in the curvature

corrections of L
2

?

Assuming that to be the case, yet there is nothing essentially

inconsistent with our distortion formulae, for we must remember that

the formulae for E.C.s and those for distortion have some functions of x

in common, and it cannot therefore be expected that changes can be

made in the curvature corrections of L
2
without changes also taking

place in the distortion corrections, unless perhaps L2
is a compound lens.

First, we have assumed L
2
to have its curvature errors neutralised

by E.C.S and to form an image q^
of the original q l} the image q9 being

projected to O2 in an out-of-focus condition
; and, secondly, we have

assumed E.C.s to be eliminated and the normal curvature errors to

have free play in L2 , counteracting those in L
I}

so that it must be

assumed to project an image of q l
at q3

or thereabouts. But the

change in the x or a?'s in the formulae for E.C.s for L2 ,
if it is a simple

lens, necessary to do this will also bring about plus increments in the

distortion corrections, which will now indicate a new path I' . . qs
for

the refracted principal ray, shown dotted in Fig. 99a; and this new

path will result, not only from a variation in the tangent condition in

L2 ,
but also from the increase in its spherical aberration.

But supposing we could assume variations in the curvature errors

of the different lenses to occur without at all affecting their distortion

corrections, then it is clear that such variations in the curvature errors

would simply cause the foci for rays in primary planes to slide to and
fro along the path of the principal ray, as, for instance, q2 might be

supposed to slide to and fro along q2 . . 2 . Thus q2
. .

2 may be

regarded as the image in two dimensions of ql
. . 0^

Thus our formula need not concern itself with anything but the

Second case. E.C.s

of L2 eliminated,

leaving the normal
curvature errors free

play.

Formulae for E.C.s

and for distortion

interconnected.

A plus increment to

the E.C.s in L2 im-

plies a plus incre-

ment to the distor-

tion.

If distortion is con-

stant, changes in

image curvature
cause image points
to slide along the

principal rays.
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conjugate focal planes, and it is the point O
x
on the first focal plane

O
x . . Fx which it is the business of the lens L2 to project correctly, for

although O
l may be somewhere inside an out-of-focus patch of light,

yet it is where the principal ray strikes the focal plane, and as long as

O
:

is correctly projected it cannot be said that there exists any
distortion, however bad the image may be in other respects.

Thus a system of formulae which only takes note of the paths of

the principal rays and of the points where they intersect the successive

conjugate image planes and formulates the deviation of those points
from their true and proper positions in such image planes, is none the

less accurate because some or all of the images may be more or less

curved. The interconnection between the distortion formula in such a

case as this and the formula for E.C.s, together with the formulae for

coma and spherical aberration, is highly interesting, but exceedingly
involved

;
and it can be shown that the last three formulae all have an

indirect bearing upon the course of the principal ray as prescribed

by the distortion formula.

Distortion correc- In the course of a previous discussion in Section IV. of the influence

order. upon spherical aberration of large separations between the lenses, we
found that their tendency was to set up relatively strong aberrations of

the higher orders y* and y
&

, etc., and it is clear that the spherical
aberration functions in our distortion formulae are liable to precisely
the same modifications, a matter to which we shall refer again when
we come to consider the case of the well-known four-lens erecting

eye-piece.

The Distortion produced by a Parallel Plane Plate

But before we are exactly in a position to apply our formulae to

very thick lenses by the method of elements, we must first work out

the formula for the distortion produced by a parallel plane plate of

glass, or other transparent substance.

That distortion is produced in such a case is rendered evident by

inspection of Fig. 100, representing an oblique converging pencil whose

principal ray is E . . B . . c emerging from the second surface of a

parallel glass plate, and Fig. lOOa, a divergent pencil emerging in the

same manner. As we are studying the effect of the plate only, we
must assume that before entering the plate the rays of the pencil are

converging to or diverging from a true point for instance, the point

Q!. Let straight lines Q . . P be drawn through Qj perpendicular to

the plane surfaces. Such perpendiculars will, of course, pass through
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the ultimate focus A after refraction, according to the first approxima-
tion. Through A draw the focal plane A . . F parallel to the surfaces.

It is obvious that if the focus were formed at A, as it would be by a

thin perpendicular pencil, there would be no distortion
;
but the oblique

rays are subject to aberration, the ray K . . b intersects the normal ray

P . . A at 6, the principal ray R . . c intersects it at c, and the ray
H . . d at d, and the longitudinal aberrations A . . 6, A . . c, and A . . d

are proportional respectively to (P . . K)
2

, (P . . R)
2

,
and (P . . H)

2
. But

the principal ray R . . c, when produced, cuts the focal plane A . . F
at B to one side of the true point A. A . . B is then the linear

or absolute value of the distortion, and our problem is to express it

in terms of the radial dimensions of the image, which, of course,

necessitates our knowing the whereabouts of the optic axis of the

system, of which the parallel plate forms a part.

In the first place, we are supposed to know the angle of obliquity

PAR or ^ ;
we required and ascertained it before for other parallel

plate corrections.

Then we also have the formula for the linear aberration c . . A
from page 80, Section IV., which was

wherein in this case a, the semi-aperture of the larger direct pencil, is

P . . R, which we will call h, while v = P . . A. It is clear that

h v tan

\r
~~ L r/ z \9

' ~
O 32 (* tan X) >

also

A . . B = (c . . A) tan x =
lljfv*

tan tan x.

(22)

(23)

But so far there is nothing to determine the sign of the distortion.

Let GJ..O!, 2 ..02 ,
and 3 . . 3 represent three possible and

different positions of the optic axis. Then A . . O/, A . . 2', and A . . 3
'

are the respective radial dimensions of the image, in terms of which we
want to express the displacement A . . B. Let D 1} D 2 , and D3 be the

points where the principal ray cuts the optic axes
1

. . 1; 2 . . 2 ,
and

3 ..03 .

Then, in pursuance of the conventions previously adopted, the

distance from T)
1 to the second surface is + in both cases, for the

principal ray is diverging from D
:
on emergence. The distance from

D2 to the second surface is in Fig. 100, as the principal ray is

Formula for the
linear distortion

yielded by parallel

plane plate.
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converging to D2 , but is shown to be + in Fig. 100ft, as the principal

ray is diverging from D
2 after emergence.

The distance from D3 to the second surface is shown in both cases,

as the principal ray is converging to D3 after emergence. Let these

distances be cl} c2 , and c3 respectively.
In Fig. 100 the distance A . . P or v is

, and in Fig. lOOa is + .

Then, if the above conventions are adhered to, we have

A . . O/ = (v
- c

x)
tan

A . .

2

' =
(
- c

2)
tan

A . .

3

'=
(v

- c
3)

tan

and is - in both cases
;

and is - in Fig. 100 and + in Fig. lOOa
;

and is + in both cases.

A B
Evidently, then, r~-

gives the distortion as a fraction of the
(v

-
c) tan x

radial dimension of the image. Then A . . B in the numerator, having
no sign, may always be considered + ,

but (v c) in the denominator

acts as a sign determinant.

In full, then, the fractional distortion is

tan2
x- (24)

Formula for the

fractional distor-

tion yielded by
parallel plane
plate.

Normally the ratio between the sizes of the two conjugate images
in the case of a parallel plate is simply unity, therefore we find the

corrected ratio to be

V.

In the case of an optical combination containing thick lenses the

quantities from which we can pick out v and c have to be assessed at

the outset, as we have seen before. But we must remember in this

case that while v and c may be known quantitatively, yet their signs
must not necessarily be taken in connection with or with respect to

the element following the parallel plate, but must be assessed with

respect to the parallel plate itself in strict conformity with the above

convention. Should any parallel plate not be followed by an element,

still the quantities v and c are easily inferred from the values v and c

or v and D" of the preceding element. Under these circumstances

Formula V. will be found to interpret itself in all cases, and give a

positive result when the displacement A . . B is from the optic axis, and
a minus result when it is towards the optic axis.
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Some Concrete Examples of the Application of the

Distortion Formulae

We will now take the process lens whose curves and other data Process lens,

were given on page 185, Section VII., and work out its total distortion

by the Formula IV. we have arrived at, taking the quantities a and ft,

x and /, etc., as before arrived at. Then we get the following quantities

for each element, the values of the function of T' and those of B' being

stated separately, or shortly as /T
7 and /B', and assuming yl

to be

05 inch :

/T/= - -001 13275 /B/= + -0095 122

Total - + -0083795

/T./= + -0008095 /B2
'= - -0062888

Total - -0054792

/T3

'= - -00018385 /B3

' = + -00127723
Total + -00109338

/T4
'= + -0007870 /B4

' = --01 309 17
Total --01 23047

/T5
'= - -0006549 /B5

' = + -0111008
Total + -0104459

/T6
'= + -0006872

Total for e
l

+ -0083795

+ -0010934

+ -0104459

+ 0199188

/Br;= - -0048547

Total - -004 1675

Total for e - -0054792
- -0123047
- -0041675

- -0219514

+ -0199188

Final total for six elements = - -0020326

But we haveindicating a slight negative or barrel-shaped distortion.

yet to add the parallel plate corrections.

For the first plate P
l

we have tan = ~ which

tan
<p
=

jp
= in this case

i
2622

= tan 10 47', and the formula for P
: is

Distortion
elements.

for six
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*r

while in the case before us v
1
and c

x
are the same quantitatively as u.

2

and &2 of the second elements
;
and as the rays of the pencils emerging

from the plate are converging, ^ must be put 2'0059; also the

principal rays are convergent, so that c
x
becomes ( '1676)

= +'1676 ;
so that v

l
c
l becomes 1*8383, and the distortion is .

It works out to - -01383 tan
2

*.

In this case tan x2
= tan *

3
,
and v

2
and c

2
are quantitatively the same

C
1
C
2
C
3

as
4
and &

4
of the fourth element. The rays of the emergent pencils are

divergent, and
t>
2
= + 5'122 = M

4,

and the principal rays also are divergent,

.-. v
2 -%= + 4-8485,

Distortion of second and the distortion is therefore positive, and it works out to

parallel plane plate.
+ '01596 tan2

*.

PS

In this case tan x3
= tan* 1,2 3 4

5^ an(j ^ an(j c
^
are quantitatively the

C
1
C
2
C
3
C
4
C
5

same as
c
and &

6
of the sixth element. The rays of the emergent pencils

are divergent, and
v
s
= + 14*1 046 = U

R,

and the principal rays are divergent,

.-. v
3
-c

2
= + 13-7469,

Distortion of third and the distortion is therefore positive, and works out to

parallel plane plate. +-Q15976 tan2
*.

We then get a distortion for P
2
= + "01596 tan2 *

P
3 +-01 598 tan2 *

+ -03 194 tan2 *
P

x
--01 383 tan2 *

Total distortion of Total for parallel plates
= + '01811 tan2

*
plates.

>05
.

2

On multiplying by tan2 *, which we saw was (
) ,

we then get
\ ^ ' _ _ o/

a total distortion for the three plates
= + '00498

to which we have to add the distortion

for six elements = - '00203

Final total for whole and our grand total is + "00295
lens.
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The E.F.L. was 8'55" and (E.F.L.) tan </>=l'63 inches, so that

at a distance from the optic axis =1*6 3 inches, corresponding to an

angle of 10'47', the linear distortion is ( + -00295)(1'63) = about

+ '005 inches, an amount barely perceptible by any but very delicate

tests. As a matter of fact, this lens was very carefully corrected

for rectilinearity, and at much greater angles from the axis very slight

negative distortion was just perceptible. Having now dealt with a

case in which the relative separations are not large, it will be as well

to apply the same formulas to the well-known cases of the Huygenian

eye-piece, and the four-lens erecting eye-piece, in which the separations

are very considerable.

Huygenian Eye-piece

Let this be the usual combination of two convexo-plane lenses of

focal lengths 3 inches and 1 inch separated by a distance s = 2 inches.

Then as the image is formed in the principal focal plane of L
2 ,

or

1 inch in front of it, it falls therefore half-way between the two

lenses. The E.F.L. of the eye-piece = 1'5 inches.

We may assume the principal rays entering L
x
to be parallel

if the focal length of the object glass forming the image
is relatively very long, so that /^

= - 1 .

Also the rays are converging into L
x
as if to form an image

1 '5 inch behind Lp therefore c^
= - 5.

The principal rays are converging into L
2

to a point 1 inch

behind it, therefore /32
- -

3,

also a
2
= + 1,

and a
2
-

/32
= +4.

Also
2/2
= ^-.

The distortion for L
x
works out to

and for L
2
works out to

Let /,= 1'5.

108
V'2y\ t

The characteristics

and other data.

Total or Final result.

which, if yl
=

'2, gives a distortion of +
1

--. This is at an angular
1 OU

distance from the centre of the apparent field of view, such that

_ -2
_

1
uctll (I) "1

~ = -_~~~

I'D 7'5 The distortion

Supposing we substituted a single convexo-plane lens of the same
yafenttonvexo-pSe

power for this eye-piece, it would have to be 1*5 in focal length, lens.
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while y would be the same as the y^ of the eye-piece = '2, and (3 would

then become 1. In that case the distortion would work out to

88
eye-piece.or five times as much as the The

Causes of the in- difference is partly due to the fact that in the eye-piece the principal

rays are strongly convergent into the eye lens instead of parallel,

which causes a much closer approach to the fulfilment of the

tangent condition (which requires /32 to be 5) than in the

case of the simple equivalent lens, but principally because of the

relative reduction in y^ For supposing an equivalent simple lens

is substituted for the eye-piece, then its y would necessarily be

equal to the yl
of the above eye-piece, and if y^

= -th of /x (and
IV

1 2
2/0 then = -th of /A it is clear that ?A would be -ths of / the

n n

focal length of the equivalent lens. Thus the principal rays are

caused to be refracted through the eye lens of a Huygenian eye-

piece three times as close to the axis as in the case of the equivalent
3

lens, while the power of the eye lens is - of the equivalent lens, so
2>

that the relative distortion of the eye lens, other things being equal,

/l\ 2/3\ 2

may be expected on that account alone to be reduced to
(-5) (-5)

i J.T
^*' \^'= lth.

The formula for distortion for the Huygenian eye-piece will be

found to work out to about a minimum, when x
l
= Q and x2 + 1, in

which case the field lens is equiconvex, and the eye lens convexo-

5

plane, when the total distortion is + -^$1- But such a combination

has certain other disadvantages.

Sometimes Huygenian eye-pieces are constructed with a ratio

of focal lengths between the field lens and eye lens of 2 to 1,

which enables a flatter field of view to be obtained than with the

ratio 3 to 1
;
but with the ratio 2 to 1 the approach to freedom from

distortion is not quite so good.

The Four-Lens Erecting Eye-piece

Its inventor. This well-known and useful optical device seems to have been

arrived at quite empirically by the monk De Eheita, who evidently

had been experimenting with various combinations of lenses in series in

conjunction with a telescopic objective. But the theory of it was not

worked out until very many years later, by Sir George Airy and Henry
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Coddington, and even then not in one sense completely. Fig. 101 The course of the

shows the course of a couple of pencils of rays through such an eye- [^eye-piece
*

piece, from their points of origin in the first object or aerial image
i . . i to their again concentrating into a second aerial inverted image
i2 . . i.2 in the principal focal plane of the eye lens L

4 ,
so that after

emergence from the latter the rays constituting the pencils are

parallel and fit for vision by the normal eye placed behind it

at P.

Since the objective of the telescope is supposed to be placed at a

considerable distance to the left hand, and the principal rays of the

various pencils or cones of rays are supposed to radiate from the

centre of the objective, therefore such principal rays are brought to a

focus at at a distance behind L
a equal to or a little more than its

principal focal length ;
not only so, but an image of the aperture of the

objective is formed at that position, where it is usual to place a stop Position and func-

with a circular aperture a little larger than such image of the objective,
tion of first stop-

whose office it is to screen off stray light reflected from the interior

of the tubes.

Then a second image of the objective or an inverted image of

is again formed behind the eye lens at P
;
that is, the principal rays

again come to a focus or cross the axis at P, where the pupil of the

eye is placed to receive them and the pencils of rays which they

represent. But, as we shall see later, this second image of the objective,

or exit pupil, is an exceedingly rough and imperfect one.

Fig. 101 is a correct drawing to scale of a four-lens eye-piece
which was specially adjusted with great care to show an apparently
rectilinear image when used as a magnifier on a set of straight lines

ruled on a flat surface placed at i . . i, the eyesight of the observer

being normal. The object was to see whether the sum of the formulae

for distortion for the four lenses would in that case work out to zero.

The stop at was at a distance =fl
behind L

x
. The data for this

combination were as follows, the refractive index being T53 for

all four lenses :

Separation Sl
= 2-24"

x
2
=-2
s =5-24"

76

b.
2
= -34

= + 3 '51

and 04
-

f3l
= +5

c
2
= - "40 /. /39 =+12'3

^
2
= +6-35 .-.03=+ -29

and a.2
-

/?2
= - 1 2

T
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/3 =2-03"
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=+5-64 c=+3-17

SECT.

.'. /38
=- '28

.'. a
3
= -4-64

and a
3 -/33

= - 4'36

/4
=1'41" /

3
=+l 6

4
=-l-04 c

4
= + -60 /. /34

=-3-7
U
4
= + 1-41 V= oc .'. a

4
= + 1

and a
4
-

4
= + 4'7

From which we get the following values of the distortion when

,= -1-115 i,
8
= + -72

-

The personal equa-
tion.

Parallel straight
lines viewed through
a circular aperture

may appear dis-

torted.

Distortion of the

third order.

=+ '00512

= -- 0190

= -- 0203

Total

= + '0235

The total result is a positive distortion of about
2-^- per cent, which,

although small in itself, is in excess of the distortion yielded by any
one of the four lenses. But 2-^ per cent of distortion could scarcely

go unperceived under a searching test. How is it that this apparent

discrepancy between theory and practice arises ? It is partly due to

the fact that a good deal of the personal equation arises in the case of

a series of straight lines or chords viewed through a circular aperture.

The real image formed in the principal focal plane of the eye lens is

bounded or limited by the field diaphragm within the circular aperture

of which it is formed.

Now, it can be shown that a series of parallel straight lines viewed,

without any lenses whatever, through a circular aperture do not appear

to be straight to all observers
;

to some, including the author, they

invariably appear somewhat barrel-shaped, as if by the presence of

negative distortion, while a square drawn with sides so curved inwards

as to represent a case of 2 per cent of positive distortion at the corners

(and therefore 1 per cent at the middle of the sides) appears to be

perfectly rectilinear when viewed through a circular aperture just well

clearing the corners. The reader should try this experiment for

himself, and will then become convinced of the difficulty there is in

saying whether an eye-piece is really free from distortion or not.

Furthermore, in the four-lens eye-piece, consisting as it does of four

widely separated lenses, the distortion corrections of the higher order
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7/

4
in some cases may form a very appreciable fraction of those which

we have formulated of the order
'^,

and this is chiefly true of the

corrections affecting the eye lens. To be sure Coddington, on

pages 168 to 170 of his work, in dealing with the four-lens eye-piece,

makes it appear that the distortion formula of the order
^~

for the four

lenses may be reduced to zero
;
but we have seen that he neglected in

working out his formulae to allow for the spherical aberration of the

first lens being carried through to the third and fourth lenses, and that

of the second to the fourth, operations which, as we have already seen,

are really as vitally important in his scheme as carrying forward the

aberrations of each lens to the next following lens, which he did allow

for. Hence his conclusions on page 170 were erroneous.

We have seen that the formula for distortion which we have

worked out is quite independent of such accumulated variations of

b and c in each lens, that is, so far as the formulae of the order -^ are
/

concerned. But Fig. 102 will help us to see that the aberrations

exerted by each lens upon the principal rays must necessarily have

an effect upon the distortions of the following lenses which we cannot

altogether neglect. In Fig. 102 the deviation of the principal ray Departure of the

from its theoretical course is a little exaggerated for the sake of JjXj^JjL fr m
clearness. The solid lines indicate the theoretical course of two the ideal path.

principal rays through the lenses according to the formulae of the first

approximation, by which the values of b and c, and therefore /3 for

each lens are assessed. But .the dotted lines indicate the actual

course of the same principal ray, which deviates largely from the

theoretical course, especially at the eye lens. It is clear that our

method of expressing the y for each lens in turn in terms of y v

deviates more and more from the truth as we work towards the eye
lens, and this fact is just as important whether we work out our

distortion completely by Coddington's scheme or by our own. After

allowing for these modifications of 7/2 , y^ and y^ and /32 , /33 ,
and /34 ,

it

can be shown that our principal ray, striking L
:
at a height ^ = '20

from the axis, is subject to a distortion of the order y2
4

, y3
4
,
and y*,

equal to ith part of the distortion of 2 ^ per cent previously arrived at

and of the opposite sign.

On page 91, Section IV. (Fig. 36), we showed how, when two
lenses are separated from one another on a common axis, the spherical
aberration of the first lens gave rise to a spherical aberration in the
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Hybrid distortion.

Above explained.

Hybrid distortion in-

creases as the fourth

power of the angular
field of view.

second lens of the order y.2
4
,
and similarly for any subsequent lenses

;

and the same influences operate in the case of the four -lens eye-

piece. Moreover, there exists for each lens the intrinsic aberrations

of the order y*, not only as regards the spherical aberration, but also

the aberrations from the tangent condition. So that the distortion

formulse for a four-lens erecting eye-piece, supposing we take all of

the order y
4 into account, as well as those of the order y

2
,
are of a highly

complex nature.

The fact that the corrections against distortion are generally of a

hybrid nature, involving the opposition of these two orders of

corrections, is made apparent by rigidly testing the rectilinearity of

an eye-piece which has an extra large field of view. It will then be

found that there exists a small amount of positive or pincushion
distortion of straight lines in the inner zones of the field of view,

while in the outermost zone there is quickly increasing negative or

barrel - shaped distortion of straight lines. This is illustrated in

exaggerated form in Fig. 103.

The case is exactly illustrated by means of Fig. 37, in which the

left-hand curve may be taken to represent + distortion of the order //

and the right-hand curve distortion of the order y*. These neutralise

each other at a certain distance D from the axis or centre of the field

D
of view

;
but at a distance equal to -j~ from the axis there occurs a

\'2

maximum of + distortion equal to ^th of the distortion that occurs at

D, and outside that a rapidly increasing distortion.

In the case of certain forms of four-lens erecting eye-pieces largely

favoured by Continental opticians, and consisting of four compound and

achromatic lenses, this compound curvature of straight lines, consequent

upon a still greater degree of distortion of the order ?/

4

opposed by
distortion of the opposite sign of the order y

2

,
is still more noticeable.

It is clear that since the distortion of the order y* increases as

tan 4

?/ or the fourth power of the semi-diameter of the apparent field

of view, therefore the size of the latter cannot be very much increased

without the hybrid distortion showing itself in an aggressive manner.

Doubling the size of the field of view will multiply the defect sixteen

times.

Cooke Photographic Lenses

These lenses, which are composed of two simple collective lenses

containing between them a simple dispersive lens, form good practical

examples of the embodiment of the formula
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{1Y
+ -

'

B B'}
-

0,
4 I

~

for the two collective lenses of focal lengths /j and fs
are separated

from the dispersive lens by separations s
r
and s.2 ,

which are proportional

to/! and/3 ;
and when the distances from the object to L

x and from

L
3
to the image are also proportional to /a

and /3 ,
and L

a
and L

3
are

symmetrically shaped with respect to one another, then clearly the

conditions of vergency as well as of shape of the lenses L
:

'

and L
3
are

all symmetrical if the principal rays are supposed to cross the optic

axis at the centre of the lens L, ;
so that = = 0, also aL & =

(a3 /Ss),
and a

:
= a.v /3l

=
/S3 , &\ #

3 ,
etc. Therefore the

system is free from distortion, and practically remains so under all

normal conditions.

Magnification

We have yet to consider the important question of the magnifying

powers of lens systems.

It is quite obvious that if the eye views a distant fiat object and

fixes itself upon some central point C, then various other points in the

object will seem to be distant from C by certain angles fa, fa, etc.;

and their apparent distances from C as measured in the plane of the

object will be proportional to tan^, tan< 2 ,
etc.

On approaching to a distance equal to -th of the first distance, the

apparent distances of the same points from C will be proportional to

n tan fa ,
n tan fa ,

etc.

If, instead of approaching n times nearer, an optical contrivance

causes principal rays to make angles equal to n tan <
x ,

n tan fa , etc.,

with the axial line through C, in place of tan fa and tan fa, etc., then

clearly the magnifying power = n.

So that if, in the case of the telescope, we write tan < for the

tangent of the angle included between the optic axis and the principal

ray from any point in the distant object, and tan <' for the angle
made with the optic axis by the same principal ray after emerging

from the instrument, then clearly
- - will express the magnifying

power.

This is of course equivalent to the ratio in Airy's and
tan*

Coddington's Formulae II. for the distortion of eye-pieces ;
in which
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Use of the dynamo-
meter.

tane = tan<, or the original visual angle subtended at the object glass,

and tan
77
= tan

<//,
the angle for the same principal ray on emergence.

Formula for the The simplest way, however, of expressing
' ~ is in its equivalent

magnification of a
jp

an
</>

telescope. form -, ,
in which F = the equivalent focal length of the object glass,

and / the E.F.L. of the eye-piece.

Supposing neither F nor / are exactly known, then the familiar

device of measuring the diameter of the image of the aperture of the

object glass formed just beyond the eye lens with a dynamometer,
when the telescope is focused for distant objects, and dividing the

same into the aperture of the object glass, may always be relied upon
to give fairly exact results. Theoretically the method is quite exact, as

the following reasoning will show.

When set for normal eyesight the first principal point of the

eye-piece is distant from the second principal point of the objective

by a distance equal to F +/. Now let F = mf, so that m is the

magnifying power. Then the two conjugate focal distances, with

respect to the eye-piece, of the object glass and its image will

Proof ofthe accuracy
of the dynamometer.

clearly be

(m + I)/ and

= (m + 1 )/ and

1 1 _
/

~~

(m+[)f
771+1

or (m+l)f and - -/;

1

m
(m+1)/

and consequently the image of the objective will be -th of the original

size
;
and therefore the ratio m expresses the magnifying power of the

telescope.

The only thing which militates against the accuracy of this method

is the violent spherical aberration to which the image of the object

glass is subject in many cases.

Also many cases arise in the case of three- or four-lens eye-pieces in

which the image formed behind the eye-piece is not really an image of

the objective at all, but is an image of the stop between the first and

second lens of the eye-piece, which is, either intentionally or not, made

too small to pass the full image of the object glass thrown into it by

the first lens.

In such cases the best plan is to place an artificial circular aperture

of smaller size over the object glass and divide its aperture by the

diameter of the image of the same formed by the eye-piece.
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The conventional
standard of distance.

The Simple Microscope

Here we have to deal with a somewhat different state of things,

for the apparent size of the original objects, which are close at hand in

the first instance, is evidently quite arbitrary ;
a short-sighted person

may view an object with his naked eye 6 inches away, and see it

magnified three times relatively to a person who can only see it clearly

with the naked eye at 18 inches away. Therefore the convention has

been adopted of accepting 1 inches as the standard distance at which

the normal naked eye can comfortably view small objects, and therefore

all microscope magnifying powers are estimated relatively to that

conventional standard.

First, it is clear that in the case of using lenses of low magnifying Advantage of being

power the short-sighted person will clearly have an advantage, as he

can place his magnifier nearer to the object and deal with more

divergent rays than the long-sighted ; and, again, the question is further

complicated by the variation occurring in the distance of the eye

behind the lens.

Let / be the E.F.L. of the lens, u its distance from the object, and

D the distance of the eye from the lens, all in inches. Then the

J_ =
fu

1

short-sighted.

conjugate focal distance v will be

image from the eye will be

and the distance of the

u ~f u ~f

If the eye were at the lens centre, then clearly the conventional

magnifying power would be quite independently of the position of
It

the second conjugate image, but the eye is at a distance from the

image which is reduced by D, therefore the magnifying power
becomes

10 v

u v- D
10

u fu- D(u -/)

10

fn-D(n-f) fa-D(u-f}'

Formula for themag
\

I

nification of a simple
'

microscope.

As a general rule v is a minus quantity, since the emergent rays

constituting the pencils are diverging. If they are converging, then of

course D gives a gain in magnifying power instead of a loss.
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The Compound Microscope

Here there is a real image of the original formed behind the

objective, and this image is viewed through an eye-piece, which yields
a further magnifying power.

Let F = the E.F.L. of the objective, and / that of the eye-piece,
and U and V the conjugate focal distances of the object and image

respectively, and let it be assumed that the rays emerge parallel from

the eye-piece.

If the eye were placed at the first principal point of the objective

it would see the object under a magnification equal to
-y ;

and if it

could turn to the second principal point and look the other way it

would see the conjugate image under exactly the same visual angle,

and the magnifying power would still be -==.

If the eye then views the conjugate image through the eye-piece,

the magnifying power will be obviously increased in the ratio
-^ ;

there-

fore the whole magnifying power will be

10 V

v'7
Now we may call V, or the distance from the second principal

point of the objective to the enlarged image, the effective length of

tube, which may also be written as nY, so that we have

1 - 1 -!- 1*- 1 m)U F F~ nY '

so that our formula becomes

Formula for the /is v
magnification of a in / 7

ljl__ 1
- i ft (

% ~~

\ VTT
compound micro- \ F / / \ f I
scope.

As in the compound microscope an image of the objective is formed

just behind the eye-piece, therefore the eye cannot be far removed from

the latter if the whole field of vision is to be seen
; nor, in the case

of high-power eye-pieces at any rate, will the state of divergence of the

emergent rays very appreciably affect the truth of the above simple

formula,



SECTION X

ACHROMATISM

So far as we have yet proceeded, we have generally treated the rays

refracted by any particular lens, element, or parallel plate as if the

refractive index p were a fixed quantity.

Our next task is to consider what follows from the refractive

index, varying, as it does, for the differently coloured rays usually

constituting the pencils of light refracted through lenses.

It may fairly be assumed that the reader will be quite familiar Elementary formulae.

with the simpler formulae relating to achromatism, yet for the sake of

completeness it is desirable to recapitulate the usual formulae, and

then pass on to the new theorems and formulae contained in this

Section.

First of all from our familiar formula for a thin lens

we deduce

and since

- + -( or - for brevity )
=

r s\ p
J
/ (p,-l)l

1 \ Au 1 Variation of the

power of a lens due
F/

fj,

- 1 F to colour variation.

So that the variation of the power of a lens consequent upon a

variation A//, in the refractive index is equal to the power of the lens

multiplied by ~, which is the well-known expression for the disper-
fj,

- 1

sive power of the glass for the range of rays dealt with.

281
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Then from the formula for conjugate foci ^ = ^
- == we derive, if

U is constant arid F varies, as in Formula I.,

Linear value of

chromatic aberra-
tion.

so that

-IF (1)

Thus the linear chromatic aberration, as measured along the optic axis,

varies directly as the square of V, the distance to which it is projected

by the lens, just as in the case of spherical aberration, only with this

difference, that the linear chromatic aberration is quite independent

(except in the higher orders) of the aperture or form of the lens and of

the state of divergence or otherwise of the entering rays. Thus the

characteristics a and x do not as yet enter into the case at all, and

the chromatic aberration depends only upon the power of the lens and
the dispersive power of its material.

But it is quite clear that the aperture of the lens must exert a

proportional effect upon the size of the least circle of chromatic

aberration through which the range of coloured rays will pass. This

least circle is obviously situated half-way between the focal points
for the two extreme colours concerned, and its diameter is equal
to half the linear chromatic aberration multiplied by the ratio of

2a
aperture to the conjugate focal distance V, or =r

, wherein a is the

semi-aperture of the pencil or lens. So that the diameter of the least

circle of chromatic aberration is expressed by

Diameter of least

circle of chromatic
confusion.

Angular value of

above subtended at

objective.
*

V 1.

y2\2a

2V- 1 F /V

A/* 1

- 1 F

and its angular diameter as subtended at the lens centre is

IA.

IB.

which shows that, supposing the aperture is constant, the angular
diameter of the least circle of chromatic aberration varies inversely as

F, a fact which was realised in a very practical manner by astronomers

and opticians such as Huygens and Hevelius in the early days of the
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simple objective, for they made a great point of having the focal lengths

of their telescopes as long as possible, 120 feet being nothing unusual.

We have also seen in Section IV., page 110, that the least circle

of confusion consequent upon spherical aberration has an angular

diameter which varies inversely as the cube of the focal length when

the aperture is constant.

If we put two thin lenses in contact, with a view to producing an

achromatic image in the conjugate focal plane of the compound lens,

then we must fulfil the equation

A .. 1 A .. 1

II.
-1 F IL - I Fr

l P-2
i r

2

in which A/AI
or A/u,2 refer to the respective differences in refractive

indices for any two coloured rays of the spectrum that may be fixed

upon. These are generally the orange-red . ray known as the C ray,

and the blue-green ray known as the F ray.

Since in all known glasses the refractive index increases as we
ascend the spectrum from red to violet, and A/i is always of the same

sign for different lenses when it refers to the same spectrum interval,

must be of opposite signs, andtherefore it is clear that
^-

and

that

/*2
~ l F (2)

Two lenses in con-

tact. Condition of

axial achromatism.

that is, the dispersive powers of the glasses forming the lenses must be

in inverse proportion to their powers or in direct proportion to their

focal lengths.

Also, since the resultant power of the contact combination is

simply =- +
,

it is clear that the fulfilment of Equation II.

*1 *2
demands that the lens of the greater power shall be made out of glass

of the least dispersive power, and then its power will prevail over the

other. So that if the combination is to have positive power, then the

collective lens must be made of the glass of the lower dispersive power ;

and if the combination is to have negative power, then the dispersive

lens must be made out of the glass of the lower dispersive power.
Thus if

Dispersive powers in

proportion to focal

lengths.

then =- will be 4ths =-
,
and the power of the combination will be
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_1 3 1 _2 _!_

"F! 5 "Fj

"
5 F/

The glasses usually This is the ratio of dispersive powers generally prevailing in the

glasses used f r ordinary telescope objectives, the collective lens

being generally made of a crown glass having a dispersive power

of for the spectrum interval C to F, and the dispersive lens out

of a dense flint glass having a dispersive power for the same spectrum

interval equal to . It is clear that any contact combinations of
ob

a collective with a dispersive lens may be achromatic for all degrees of

divergence or convergence of the entering rays.

Thin Lenses Separated by an Interval

Should an interval s exist between the two lenses, Formula II.

will no longer apply. Since ^ ^- is the chromatic aberration
/*i~ *i

of the first lens, and j ,V is the longitudinal chromatic ab-
/i Ih

~

erration as measured along the axis, or the chromatic variation of v
lt

therefore from the centre of the second lens as a reference point the

chromatic aberration of the first lens

which must be neutralised by the chromatic aberration of the second

lens. Therefore the formula for achromatism is

Two separated 1 A/^ v^ 1 A/*2
lenses. Condition of T

~

~~1 2
"*" T ZT =

axial achromatism. / 1 /*i
~~ % /2 /*2

~

/0 \ 2

So that the greater is the separation multiplier (-M the greater is the
\u2/

chromatic aberration which the second lens has to counteract.

/V \ 2

But, since ( M can be made practically equal to unity by

assuming v
l
to be a very large quantity compared to s, as when the

rays leaving Lx
are about parallel, the formula in such circumstances

becomes practically the same as Formula II.

Axial achromatism Hence it is clear that while Formula III. may be equated to for
of two separated

J

lenses not constant, any given value of u^ , yet if u^ varies considerably and thus causes
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7) \
-1

)
to vary, the condition of achromatism will no longer hold good.

ittg/

Hence no separated combination of a collective with a dispersive lens

can possibly be achromatic for all degrees of divergence or converg-

ence of the entering rays. While the equivalent focal length of the

combination is constant, as we saw in Section III., yet the chromatic

aberration varies according to the radiant distance %. But it can be Axial achromatism

shown that under certain circumstances a combination of three or more ^g*^
separated thin lenses may yield a practically constant chromatic tically constant,

aberration under all circumstances likely to occur in practice.

We may now extend Formula III. to a larger number of separated

lenses.

Supposing we have three lenses, then from the centre of the last

lens as a reference point the chromatic aberration of the first lens as

a variation of - is
Mo

A /*i
-

and that of the second lens is

and that of the third lens is

1

simply.

Proceeding in the same way for n number of lenses we get the

general formula A

_ 1 A/^ fv^)z 0>t
- iV 1 A/*2 (Vz

..vn -i
' / i] - 1 \_ 11 / f n - 1 W
/i A^i

v U
2
U
3 "'n /

J-2 ^2 k *8' * / u_ 1'
/ /*

which is strictly applicable also to a series of elements.

,.

Condition of axial

achromatism for a
series of separated
lenses.

The Linear Chromatic Aberration of a Parallel Glass Plate

But in order to apply the formulae to thick lenses by the method

of elements, we must next work out the formulae for the chromatic

aberration of a parallel plate of glass.

Let Fig. 104 represent a case of a divergent pencil of white light

originating from Q and passing perpendicularly through the parallel

plate of thickness A
l

. . A2 or t, and Fig. 104a the corresponding case
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of a perpendicular pencil of rays converging to Q. After refraction

at the first surface the less refrangible rays, such as the red, will be

divergent from or convergent to r
1}

such that r^ . . A
l
=

yu,r (Q . . Aj),
while the more refrangible rays, such as the blue, will be divergent
from or convergent to bl} such that ^ . . A

l =yu,b (Q. . Aj) ;
so that the

distance between &
a
and

r-^
will be Q . . A

l (//,6 yu,r), or, shortly, (A/z).

Then as a correction to the reciprocal value of the distance i\ . . A
2

in

the case of Fig. 104, the quantity w(A/^) becomes ^ ;
that is,

(rl
. . A

2)

1_
1 MA/A 1

ij
. . A

2
r
l
..A.2 (fr.u + t)

2
nru + t

(fj,ru + t)
2

'

After refraction at the second surface
(
becomes ^

or
.u + t ,u + t

- or -, which =- -
, and 7

-U **
vo becomes -

,

v ?-
2

. . A
2 (pr* + t)

z
(firu +

1)'
2

Now, supposing the other ray, or the blue ray, were also radiating
from the same point r

a
as the red ray before refraction at the second

surface, then after refraction we should have the blue rays apparently

radiating from &/, such that the distance &2
'

. . A
2 would be equal to

r, . . A, r, . . A, aru + t-2
,
which = ] -^ or -

, so that

t
(3)

so that ^. is the increment to - due to colour consequent upon the
fj.rU + t V

second refraction only. But we have seen that the chromatic

aberration brought over from the first surface and referred to the

point A9 was .
~-

,
so that the chromatic aberrations of both

OVK + if.

surfaces are

/j,ru + 1
/j,ru t

'

2 ^ 2 z
"'

Parallel plane plate.
But ^ru + 1 =

fj,rv, so that the chromatic aberration becomes
The chromatic vari-

ation of -
n s-. as a correction to - V.

V A,.V V
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and the linear value r
2 . . 62 of the aberration is simply

yj The linear chromatic

variation of v.

If Ayu, refers to a large interval of spectrum and the glass is highly

dispersive, it is more correct to write

t^- or <^-. VIA.
/M*6 Wb

The same line of reasoning applied to Fig. 104a leads to the same

result, provided we consider v negative, so that in the case of Fig. 104
we have

1 1 A/t~ + *

b
2

. . A
2

v
.

and in the case of Fig. 104 we have

l>2
. . A

2
V {Jifv

2

Iii both cases we find the linear chromatic aberration i\ . . &
2 ranges The dispersion al-

left to right ;
a plus increment to p implies a transference of the focal ^^

s

point in the same direction as the light is travelling, and in this sense

the effect of a parallel plate is similar to that of a dispersive lens only
with this difference, that while the chromatic aberration of a dispersive

lens is -. ^-r and thus independent of u or v, in the case of the

parallel plate the chromatic aberration - varies inversely as v
2

,
and

of course vanishes when v becomes infinite and the rays parallel.

We might have arrived at the same result more shortly in this way.
Since the linear transference of the focal point due to passage through

a parallel plate is, as we have seen in Section L, t , then in

differentiating with respect to
//,
we get y-~ ^ - = t ^, only we

P- P"
should have missed noting the effects taking place at each surface.

Chromatic Variation of the Spherical Aberration

So far we have studied the effects of
//, being a variable upon the

formulse of the first approximation, and it is now desirable to

investigate the effect of p being a variable upon the spherical

aberration of a lens. It is a subject of considerable importance in the
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theoretical designing of achromatic object glasses of larger aperture,
and especially when of relatively short focal length. For it is some-
what futile to take elaborate precautions to ensure any two colours

being refracted exactly to the same focal point by formulae applying
Importance of two to ultimate central rays, and also get the spherical aberration of the

from^phericaf aber* ra7s of tne one colour perfectly corrected and then allow the rays of
ration - the other colour to be subject to strong spherical aberration, thus to

a large extent discounting the advantages of achromatism.

If we take the formula for spherical aberration,

, , ,
-

and tor ^ put I
- + -

) (p If, or simply (
-

)
,
since ^ is a variable

/ P ' J

depending on
//,,
we may then write it in the form

1

/0*+2)fr- 1),.
2 + *(/* + !)(/- !)

2

^ + (V+ 2)0*- D3

a2Q o < *t- T U.*v T ~~~~
fX

8/>l /* /* /* I ,

^- l)

}i-.\P i }

On differentiating with respect to
//,
we shall then find that

Differential of the
~

5~q i (
1 5 )#

2 + 4( 2u
- 1 9 }aX + (

9u2 - 1 4u + 3 + -
op I \ it*/ uv us

sphencal aberration

with respect to
p.. + /3 ^2 _ 2 ,

Supposing /A
= 1 '5 this works out to

O, />
*^

, O.1O *'
i O. p

r + o-ao; + o 1 ocr 4- o /

VII.

If - = 1 (for a focal length of 2), x = + 1, and a = + 1, and y = ~r t
then

P 13
the formula works out to + r-^-^/i ;

and since '01 is a very liberal
1 ^O

allowance for dp for the brighter part of the spectrum in the case of

glasses of low refractive index, we then get

-A = = about -001.

But the spherical aberration in such a case would be
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1 1 , .. 1 27 1

l6
=
48<

27)
16

-
768

=
28

'

or 36 times the above variation due to dp.

Such a small quantity as this might almost be neutralised by

parabolising the curves of an object glass or the reverse if there were

only rays of one colour to be dealt with
;
but it is clear that if we have

perfect correction for spherical aberration for one colour, whether it

be by a perfect balance of curves or by figuring, then a very minute

amount of spherical aberration for another colour will be perceptible
under high magnifying powers, so that the correct balancing of

the spherical aberration for all colours as far as possible assumes a

great importance. This means that in the case of a double achromatic

object glass it is desirable to fulfil the condition

d
{gjp

A
>l}

-
^t{2 s

A
>l}

=
i (

6 >

or if it does not or cannot equate to 0, then we must introduce another

influence to effect it. In the case of an ordinary achromatic objective
with the collective lens at the front and double convex, and the

dispersive lens double concave or concavo-convex, but in close contact

with the collective lens, it will be found that the chromatic variation of

the spherical aberration as expressed shortly in (6), and in detail for

the collective lens in Formula VII., is negative ;
that is, the dispersive

lens exerts the greater influence, so that the more refrangible rays are

over-corrected for spherical aberration when the less refrangible rays
are accurately corrected.

Apparently Gauss was the first to point out that a separation The separation de-

between the two lenses could be made to neutralise this defect.
ce ad Pted by

,,.
Gauss.

Let Iig. 105 represent two lenses separated, Lj . . L2 being half the

collective lens and L' . . L" half the dispersive lens, and L2 . . F the optic
axis.

Let F be the focal point by first approximation for the red ray

(ray C) and / the focal point for the blue ray (ray F) for the collective

lens, so that F . ./ or shortly 8, is the linear chromatic aberration which

*i.lM-,i
.A ft-i.v

Let the semi-aperture of L
:
be Y and the semi-aperture of L2 or the

height L" ..r be
ijv We will assume the red ray L, . . F to be the

standard ray which gives the values j and
j.

fl /2



290 A SYSTEM OF APPLIED OPTICS SECT.

Two separated
lenses. Value of y,2

in terms of
//

,

.

Oblique images
formed by a separ-
ated double objective
cannot be achroma-
tic.

Let L2 . . F be v
1
and L" . . F be uz ,

and the separation L
2 . . L" be s.

Let the height L". . b to where the blue ray Lj . ./ cuts the second

lens be called yz. Then our object is to express yz in terms of y^

allowing for the dispersive effect of the first lens.

First we have

yi
= Y^, (7)

y*
=

1 "1 ^ ^ 1
'

VV
1 /1/*1~ /1/*1~

M
2 xr^o/V, Au, \ . , . Mo= Y - Y I

- L-L-s
),

in which Y y, ;

V, V, \Ua u,-,
- I / V,

(8)

so that

so that finally

.U
2 ft

- 1

2 _-

2/*l

U -

VIII.

So that for the second or dispersive lens the spherical aberration may
be written shortly

and since /2 is negative, therefore the aberration is negative, and the

variation

-2-1W -r

comes out a positive one, and may be made to neutralise the negative

result of Formula (6) as applied to the same combination.

Unfortunately, however, the separation between the two lenses of a

double objective exercises a most prejudicial effect on the images a

little removed from the axis
;

it is impossible to have the different

coloured oblique images of any given star depicted at the same point

on the focal plane, the blue images falling farther from the axis than

the red (if the collective lens is at the front), while there is also a large

amount of corna, so that the available field of good definition is very

much restricted.
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OBLIQUE ACHROMATISM AND CHROMATIC MAGNIFICATION

The foregoing remarks about the double separated objective brings
us to the question of the conditions which determine whether an

optical system forming an image of a real object, distant or otherwise,

shall paint the said image on a dimensional scale which shall be

independent of the colour or refrangibility of the various rays making
up the pencils of white or mixed light diverging from the original

object.

We have just noticed that an achromatic objective consisting of

two separated lenses with the collective lens to the front is only
achromatic for the axial image, and that the oblique image of a star

is not a true image, that it is drawn out into a minute spectrum, the

red end of which lies towards the optic axis. If the dispersive lens

were at the front, then the opposite state of things would result, and

the blue end of the spectrum would lie nearest to the optic axis.

It will be as well in the first instance to recapitulate the inquiry
made by Sir George Airy and Henry Coddington into the conditions

for securing oblique achromatism or equal magnification for the

different colours that have to be fulfilled in the case of two-lens

Huygenian or Eamsden eye-pieces or three- or four-lens erecting eye-

pieces.

It is assumed in all such cases that the oblique pencils of rays

emerging from such eye-pieces are made up of parallel rays, that is,

that they are proceeding from an apparently very distant or infinitely
distant virtual and magnified image.

Such being the case, then it is clear that if the oblique image of Coloured constitu-

any point of white light, such as a star, is to appear to the eye as
^ys em^rgiSgsepar-

one white image, then the variously coloured rays constituting the ated but parallel,

mixed oblique pencil must be emerging parallel to one another, and
whether or not there happens to be any lateral separation of such

variously coloured pencils of rays does not matter, provided that the

virtual image is infinitely distant.

We saw in Section IX., pages 247 to 254, that freedom from distor-

tion in such a case depended upon the ratio of the tangent of the angle
of emergence of the principal rays to the tangent of the angle of

incidence being a constant throughout the field of view, and that

Formula HA. was, for two lenses in succession

ten,
tane

-l
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Now if we differentiate the functions T' and Ef
for each lens with

respect to
//,,

we shall find that the variation in the functions corre-

sponding to d/j, comes out very small compared to the functions them-

selves
;
we worked out a case on pages 288 and 289, where the

1
chromatic variation in -^3A.y was only g^tfo part of the latter, and

in most cases likely to occur in practice it would amount to still less.

Now the function A' is almost exactly similar to B'. And since the

Chromatic variation distortion functions in eye-pieces rarely amount to more than 5 per
of the distortionvery cen j. Qf ^Q ra(jja} dimensions of the image, it is not to be expected

that -^g-th part of that, or less, would be at all noticeable.

So that we need not in ordinary practice trouble ourselves about

the chromatic variation of the distortion functions.

It is in the exterior magnification function -^ -
(for n number

of lenses) that we must look for the vastly more important chromatic

variation ;
for it is plain enough that all the terms with the exception

of &! are variables; they depend upon focal lengths, and the focal

lengths are different for the different colours.

Conditions of oblique Let Fig. 106 represent two thin lenses Lj and L
2
in succession, of

achromatism of eye: focai lengths /, and /, of the same glass, and separated by an interval
pieces for normal j\ ji-

. . ..

vision. s (less than /i). Let principal rays be diverging from an axial point

Q to the left, so that Q, . . L
x
= b^ If these two lenses are used as an

eye-piece for a telescope or microscope then Q will represent the

centre of the objective. Also, in order to suit normal vision, the rays

constituting the pencils of any one colour emerging from L2 must be

considered parallel, so that v
z
= oc. In such case it is clear that if

the variously coloured images are to appear all of the same size, then

a multi-coloured principal ray, which enters the eye-piece all as one,,

must, after being split up by the first lens into a fan of diversely coloured

rays, emerge from the second lens with such variously coloured

constituent rays parallel to one another, when they will all appear to

originate from one and the same point in the infinitely distant image.

Therefore for all eye-pieces the condition for achromatism for

oblique pencils is that tan 77
= constant for different values of /A; that

is, that dp tan 77
= 0.

Therefore we first want to express tan 77
in terms of 6

1; y^flf /2) ,

s, and y^.

We have

Tan
?;

not to vary

with /A.

tan T? = ^ ;
C
2

1

"A fA
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.'+. ,
=

C
2 *2 /2 C1~ S /2 /a(C

-/ fcvsr*
ta '-?-^'trW-,v&jy * o

T f O

,

fl 1 1 /I l\sl /11X Two-lens eye-piece.
tani?

=
yi{7-r + 7-l/-r//r Valueoftan7,.VI l /2 Vl V/2-

We now have to differentiate this expression with respect to /i.

Leaving out .
,
which is a constant, we have

mi TCP . i p 1 1 A/1' o 1 1 Au, , 1 . 2 Au,
The differential of - is - ^-, ,

of T is -r-
-

,
and of p is T--

A A /*
~ l /a /2 /*

~ * '1/2 A/2 /*
~

therefore we have

(1+ L..
2*

+-L.)
A^ =0

;

A/2 "1/2 /i /a i

and
, ,. Two-lens eye-piece.

s _ J\ +
./ 2 IXA. Separation neces-

/
'

sary to oblique
T achromatism.

If &j is large relatively to fl} then we arrive at the well-known

rule of the separation being half the sum of the focal lengths. If b is

relatively small, then the lenses must be more widely separated.

In order to secure better corrections for astigmatism, distortion,
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or coma, it is sometimes desirable that the two lenses of such an

eye-piece shall be made of glasses of different dispersive power.

Let
,-j --_-

-. = the dispersive power of the first lens or field lens, and

_
= the dispersive power of the second or eye lens, and let the dis-

persive ratio

AM
M-l

then it can be shown that

IXB.

6,

from which it appears that a stronger dispersive power in the field lens

leads to a smaller separation, and a stronger dispersive power in the

eye lens to a greater separation.

It will scarcely be necessary here to recapitulate the much more

complex and lengthy processes of the same nature which have to be

gone through in order to arrive at the condition for oblique achroma-

tism for eye-pieces consisting of three and four separated lenses.

Let it suffice to simply state the results. The reader will find the

investigation in full in Coddington's work, Part I., pages 259 to 268.

Condition of oblique
achromatism for a
three-lens eye-piece.

Condition of Oblique Achromatism for a Three-Lens Eye-piece

Let/u/2, and /s be the principal focal lengths of the three lenses,

all being made of the same sort of glass, and s^ and s2 the first and

second separations, and ^ for the first lens being assumed infinite or

relatively large. Then the achromatic condition is

A/2 +A/8 +AA - 2/is2
- 2/2si

- 2/2
*
2
- 2M + 3v2

= 0. IXc.

Condition of Oblique Achromatism for a Four-Lens Eye-piece

x, /2 , /3 ,
and /4 be the principal focal lengths of the four

lenses, all of the same sort of glass, and sl} s2 , and s3 the three

separations in order, and let \ be considered infinite or relatively

very large. Then the achromatic condition is
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/1/2/3 +/1/2/4 +/1/3/4 +A/3/4

2/1/2S3 -2/1/3
6-
3 -2/2/3S3

S/gS.^ + S/^Sg + S/^Sg + 3/38^3 + S/ Sg
+ 3/2s2s3

295

x
Condition of oblique
achromatism for a
four-lens eye-piece.

The condition for a five-lens eye-piece works out to a very much
more cumbersome formula.

Fig. 107 will help us to realise the very restricted usefulness of

all these formulae. It represents the last or eye lens of one of these

eye-pieces, preferably that of a four-lens eye-piece.

Since the lenses are all simple, therefore the chromatic aberrations

all sum up together, so that at the position about P, where the principal

rays cross the optic axis and where a rough image of the object glass

is formed, the crossing point p for the blue rays is very much nearer

the lens than the crossing point P for the red rays. We have

two oblique principal rays one red, Qx
. . . . P . . Q, and one blue,

ql
. . o . .p . . q which entered the eye-piece as one ray, finally emerging

separately but parallel to one another, and to the normal eye with its

pupil placed at P or p the two rays seem as one.

But supposing we wish to use the eye-piece for projecting a real

image of what is seen in the telescope or microscope on to a screen

Gr . . Q at a short distance to the right, and for that purpose draw out

the eye-piece. It is perfectly clear that such an image cannot be

achromatic, for the red ray will strike the screen at Q and the blue

ray at q ;
so that the blue image of any extended object will be painted

on a larger scale than the red image.
On the other hand, let it be supposed that a very short-sighted

person uses the eye-piece. He will have to push the eye-piece farther

in towards the objective, in order that the emergent rays of pencils

may be divergent as though proceeding from a virtual image Q
a

. . G
:

8 or 10 inches to the left hand. It is again clear that such an image
cannot appear achromatic, for the blue principal ray appears to be

coming from a point ql
nearer to the axis than the point Q l

for the

corresponding red ray ;
the red image is now painted on a larger scale

than the blue image.

Supposing we want to project real or virtual images to or from

finite distances, then what help or enlightenment can we possibly obtain

from formulae of the nature

Lateral displace-
ment of coloured
constituents of the

principal ray.

Real image larger
for the more re-

frangible rays.

Virtual image larger
for the less refran-

gible rays.

Constancy oftangent
ratios useless where
real images are
formed.

tan
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Such formulae, however useful they may be for eye-pieces, are absolutely
useless for working out the oblique achromatism of combinations, such

as photographic lenses, which are expected to form real images of real

objects at finite distances.

Formulae of Perfectly General Application

We must therefore seek for a formula of perfectly general applica-

tion, and in so doing may with advantage pursue the same method or

line of reasoning that we followed in arriving at our general formula

for distortion in the last Section.

In Fig. 108 let a principal ray radiate from Q and take the

eccentric course Q . . N . . P . . j through the lens M . . N. We are

supposing the lens free from spherical aberration and the tangent
condition fulfilled, since we are discussing solely the effects of variations

in the refractive index. Let there be an image formed at o . ,

whose, radial dimension is o. From o draw o . . M through the centre

of the lens, and produce it to cut the conjugate image plane I . . j at /.

Let it be assumed that the principal ray Q . . N . .j is of the

standard colour, for which the refractive index
yu, applies, and that the

conjugate images o . . and I . .j also apply to rays of the same standard

colour. It is clear that another more refrangible coloured ray coincident

with Q . . N before refraction will take a different course N . . p . . /T
after

refraction, and j..jl
will be the linear dispersion between the two

colours. Now what we want is an expression for j . . jl
in terms of

I . ./, or the radial dimension of the blue image in terms of the radial

dimension of the corresponding red image, supposing we fix upon those

two colours. Let I . .j be i, and I . ,jl
be i

l}
and o . . be o

; Q . . M
be b, O . . M be u, M . . P be c, M . . I be v, and M . . p be cv

Then we have i = o - ,

u

also o
,

= M . . N = i

o -u v - c

b v- c b v~c v

b-u c c b -u u
1

and
b v-c-. . 1 A//,

i,=0i--- . wherein c, - c- - - -r-c ;

b-u c
x / //,

- 1

so that

( 1 A
/*

b
v
-(

c

-J-~ }1=0 x J *

b-u i \,,
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A/1 1 A/*'- -^

- c 1 Au, . 1 Aw,

-+7 ,C + (*'- 6)7
--

C ///-! '/'/*-

i fv-c v A/i^= --
f-
_ --_ V

- M I C il)ffi

b v - c( cv A/A 1
^

-w c I v-c p-I f )'

in -which the outside function =0-, from Formula (13);
u

cv 1 ^/*j

On adopting Coddington's device we fiud that

2/ 2/

CV 1 - P 1 - a 2/

so that finally we get

2f_ 2/ -/T
I O

f. 2 A,

(14)

XI.

Single lens. Uni-
versal formula for

ratio between object
and coloured image
of same.

a very simple and convenient formula which can be applied with the

greatest ease to any number of lenses or elements in series. The

term /has disappeared, but its value is really implied in a /3, which

terms are, of course, assessed with regard to the ray of standard colour.

On applying the same line of reasoning to the corresponding case of a

dispersive lens, or any other cases whatever, exactly the same formula

will be arrived at.

An objection may be raised to the above formula on the ground An objection,

that a ft is in itself a variable, for it varies as /, which varies

inversely as /A 1
;
but if we insert the variation in a /3, we then

get for our formula

- = -^ l +
M
t

1

= -n + (A/.)
2

n\ i / T \9 / I
'

a. p \fi 1
(yu,

- 1
)
/ J

The correction involved is thus seen to be of the order ( "^ ) or the
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Universal formula
for ratio between

object and final

coloured image for a
series of lenses.

Series of lenses. Con-
dition of oblique
achromatism when
all of same disper-
sive power.

square of what is already a very small quantity. Hence it may be

legitimately neglected.

In applying Formula XL to a series of lenses in succession, it is

clear that a lens will copy or transfer forward any want of chromatic

conformity in the radial dimensions of any image presented to it by
the preceding lens or lenses, and at the same time add its own
chromatic error, and so on. Therefore the expression for a series of

n lenses is

Four - lens erecting

eye-piece.

1 +
2 A/*2 XII.

"1 r*i r"l 8 "2 r*2
x un A-'n. /*n

~
" '

Then, if all the lenses are made of the same sort of glass, the condition

of oblique achromatism is simply

1 1 1
= 0. XIII.

f) O
a
l
~
Pi a

2
~

P-2 an
~
Hn

Let us apply this formula to the ordinary Huygenian eye-piece

wherein /a
= 3, /2

= 1, and which we have seen is achromatic when
s = 2, provided that b

l
= <?-- . Then we have

b
l
= oc and ft

= - 1 b.2
= - 1 and /32

= - 3

a
1
-

ftl
= - 4 and a

2
-

(32
= +4

_i_ 1
'

04 -ft a
2 -ft

Axially, however, the Huygenian eye-piece is perceptibly under-

corrected for colour, for although the variously coloured images are of

the same size on an infinitely distant plane for the standard colour, yet

they are formed in greatest distinctness in different planes.

Next let us take the case of a four-lens erecting eye-piece given on

p. 266, Part L, of Coddington's work, which fulfilled the condition

tan

tan
= 0.

The focal lengths of the lenses were

Sl
=4

From these data we get

M1= +1-35
u
2
= +6-44

MS
= - 4-55

u. + 3

s = 6

- 2-44

+ 10'55

+ 2-13

s
s
=5-13

ttl
= + 3-46
_ , .94.

2

3
= -2-75
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e = +3 A = -1

6
4
=-3-67 c

4
=+l-65 .-.ft- -2-63

h4'46;(a2 -ft)= -6'76;(a3 -ft) = -
2'84; (a4

-
ft)

= + 3'63;

i _j_ _r j_
a
x
- a

2
-

2
a
3
-

3
a
4
-

1 1 _/ 1 1 \ _ 8-09 9-6

4-46 3-63 V6-76 2'84/ 16-18 19'20

So that the final images formed by rays in different colours are all of

the same size as thrown on the infinitely distant plane, although

formed in different planes, for parallel to the axis the eye-piece is very

far from being achromatic. But this imperfection is generally neutral-

ised by giving to the object glass with which such an eye-piece is

used an equal amount of over-corrected colour aberration.

Of course, the axial colour aberration of a four-lens eye -piece is Axial colour aberra-

inuch more serious than that of a Huygenian or Ramsden eye-piece.

Such eye-pieces are thus only achromatic in the sense that the variously

coloured images appear to be of the same size.

Oblique Chromatic Aberration of a Parallel Plane Plate

As very thick lenses must be treated by the method of elements

and parallel plane plates before we can accurately apply these formulae,

we must next work out the expression for the chromatic variation in

the size of an image viewed through or thrown through a parallel plane

plate.

Fig. 109 is a case of principal rays diverging through a parallel

plate and emanating from a real fiat object or image P . . P, and Fig. 109a

the case of rays converging through the plate towards a flat image
P . . P on the right hand.

Let Q be the point from which the rays are diverging or to which

they are converging, after passage through the plate. From Q draw

Q . . A perpendicular to the surfaces.

Then we have seen from Formula VI. that the linear dispersion

^
'

Now if % is the angle (as usual) made by the ray in question with

the perpendicular to the plate, then it is clear that the lateral

chromatic displacement in the plane of the image is simply
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which must then be expressed in terms of the radial dimensions of

Location of the optic the image. In order to express the radial dimension of the image we
must know where the optic axis of the system lies.

In Fig. 109, if the optic axis is Bj . . D
a

. . c
l}
then we have B! . . P

=
v, and Bj . . D

x
= C, and the distance from Q to Bj . . I)

1
or A . . B

x
is

the radial dimension of the image, which obviously equals (C v) tan ^,
and is + .

If B . . D
2

. . c
2

is the optic axis, then B
2

. . P = v, and B
2

. . D
2
= C,

and B
2

. . A is the radial dimension of the image, which = (C v) tan ^,
and is .

If D
3

. . B
3

. . c
3

is the optic axis, then B
g

. . P = v, and B
3

. . D
3
= C,

and A..B
3

is the radial dimension of the image, which = (C v) tan %,
and is .

Three successive positions for the optic axis are likewise shown in

Fig. 109a.

Conventions. By our convention for parallel plates we have

B
x

. . P or v is a plus quantity in Fig. 109,
and a minus quantity in Fig. 109a.

B! . . D
x
or C is plus in Fig. 109, and minus in Fig. 109a.

B
2

. . D
2
or C is plus in Fig. 109, and minus in Fig. 109a.

B
3

. . D
3
or C is minus in Fig. 109, and plus in Fig. 109rt.

With reference specially to the lowest optic axis B
x

. . D
t

. . c
lt

all

terms are of the same sign, and we have

=p..cv (15)

or the reduced radial dimension of image, due to the increment to

On dividing this expression by A . . B! we have

Parallel plane plate.
Ratio between differ -

ently coloured
images.

Illustrations of the
conventions.

fV( (C x .

v

A.
XIV.

This formula will be found to interpret itself correctly in all cases

if the signs of C and v are entered in strict accordance with our

conventions.

In Fig. 109, Case 1, C is + and largest, and v is +
;

. '. C - v is plus, and Q . .p, the radial dispersion, is relatively minus.

In Case 2, C is + and smallest, and v is plus ;

. '. C - v is minus, and Q . . p is relatively plus.
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In Case 3, C is minus, and v is plus ;

. '. C - v is minus, and Q . . p is relatively plus.

In Fig. 109a, Case 1, C is minus, and v is minus, but numerically smaller
;

. '. C - v is minus, and Q . . p plus.

Case 2, C is plus, and v is minus, but greater ;

. . C - v is plus, and Q . . p is relatively minus.

Case 3, C is plus, and v is minus, but smaller
;

. '. C - v is plus, and Q . .p is relatively minus.

As an actual instance of the practical application of the formula* Practical applica-

which we have arrived at for both axial and oblique achromatism, we can-

not do better than take the case of the process lens of 8^- in. E.F.L.,

Fig. 59, whose curves and other data were given on pages 185 and 186.

First we will deal with the axial achromatism by Formula? III. to

VI. of this Section.

The spectrum interval is C to F, and the data are

/*!
- 1-6103 for the D ray, and A/^ = "01080, C to F

/*2= 1-5240 .,
and A/z2 =-01028,

so that

The vs and u's are

_- and
56'5 j..

- 1 51

v
l
= +2-071 v9 = -11-6067

3
= + 4'90

4
=+ 1-1008 0g=+ 14-032 t-

6
= +8-603

M= +2-006 =' + 11-375

u
t
= +5-122 M.= +1-095 M

6
= +14-105

By Formula IV. we have for the sum of the chromatic aberrations Axial chromatic

of all the elements, all referred to the last element,

- ^L WWkV8

for the first element = + "008675, First element.

--fflJ
1W4V

5 \
for tj]e secon(j element = - '045520, Second element.

t /*i
- 1 V%M4

w
5
w
6
/

--,
1 v ,

for the third element = - '004726, Third element.

for the fourth element = + "01952, Fourth element.

1 AM (v \
2

T *-M J f r the fifth element = - '019098, Fifth element.

/5/*2- 1VV
and -

^- for the sixth element = + '003670. Sixth element.

/6 /*2
~
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Totals.

Chromatic errors of

the three parallel

plates.

First plate.

Second plate.

Third plate.

Final total.

Oblique colour errors
for the two collective

lenses.

On adding together the six colour aberrations we get

E
x
+ -008675 E

2
=- "0069497

E
4
+ -019521 E

3
=- -0047265

003670

+ -031866
- -030774

E
5
= - -019098

- -030774'

Total = + -001092

We have now to add the chromatic aberrations of the three parallel

plates. Formula V. gives us ^ ^ z
for the first plate, in which v is

the same quantity as w2 of the second element. In order to transfer

this chromatic correction to the sixth element we must obviously

multiply by just as we did for the second element : so that

the chromatic aberrations for the three parallel plates must be stated as

(a)

= -'0000568.

V
2iJ_)(^j

2

= _-0010349.

Aft 1 V.V,* W

= - -0000024.

So, finally, we have

Chromatic aberrations of the three plates
= -'001094

Chromatic aberrations of the six elements = + '001091

Total - '000003

On multiplying this final result by (v )
2
or the square of the

back focal length, we then get a small residue of over-corrected chro-

matic aberration equal to about '00022, which is a negligible quantity.

Taking next the oblique chromatic corrections, we have for the

six elements, by Formula XII., also for the spectrum interval C to F,

_Aft_
2

ft-1 u
x -/V

Aft 2

Aft

ft-1 C1
3
-

,

Aft 2

I 1

15-796 26-527 132-313
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2
__ _
16-974 29-1 19 J 51

Oblique colour error

+ -004277. for the dispersive
lens.

To these we must add the three parallel plate corrections by
Formula XIV.

For the first plate we have

so that

C = &
2
and is therefore convergent and minus,

v = u
2
and is therefore convergent and minus

;

C-v= --16756 + 2-006 = 1-838;

^ being -105, A//, being -0108, and p being 1-6103.

For the second plate we have

so that

and

C = 6
4
and is therefore divergent and plus,

v = u
4
and is therefore divergent and plus ;

C-v= +-2735-5-122= -4-8485,

A,, 1

= + -0003075,2

rfC-v
being -358.

For the third plate we have

so that

and

C = &
6
and is therefore divergent and plus,

v = u
6
and is therefore divergent and plus ;

C-v= +'3577-14-1046= -13-747,

-*
3 -^

2
n = + '000035417,

p*C-v

Oblique colour error

of first plate.

Oblique colour error

of second plate.

Oblique colour error

of third plate.

t
3 being -110, A/*2 being -01028, and ^ being 1-524.

So that, finally, we have

The chromatic errors for six elements = - -000193
The chromatic errors for the three plates

= + '000105

Final total . . = - -000088

If we take a point 4 inches from the axis we have a chromatic

difference in the radial dimension of the image equal to

Total oblique colour
error for whole

system.
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Linear value of
4(

-
'000088) = - '000352 inch,

above, four inches

which is an imperceptible amount, and as a matter of fact no oblique
colour aberration was noticeable in the image under the most careful

tests.

Cooke Photographic Lenses

Any of the wider-angled Cooke lenses of three simple lenses afford

capital illustrations of the practical embodiment of the condition

2 Au 2 AM 2 Au
. i * A

rt r\ -*- i T~
~

X" v,
a
i
-
Pi P-

- ! "2
~
Pz M ~ 1 3

- Ps P-
~ 1

for the normal arrangement of the combination implies two collective

lenses of the same glass and of focal lengths fl
and f , enclosing between

them a dispersive lens of focal length/,, the two separations s
l
and s.y

being proportional to /:
and /3 respectively, and also the distances from

the object to Lj and from L
3
to the image are proportional to

f^ and /3

respectively ;
therefore everything is symmetrical with respect to the

centre of L
2

,
where the principal rays are supposed to cross the optic

axis. Thus 77
= =0, and obviously -^ = ; so that

"2
~
Pz ^ ai~ Pi a

s
-
Ps

above equation is fulfilled, and the oblique image is achromatic, and

remains practically so under all conditions.

Oblique Chromatic Corrections of a Higher Order

On reverting to the effect of separation between two lenses upon
the spherical aberrations of the second lens for different colours, which

on page 289 we worked out with special reference to an object glass,

arriving at Formula VIII., we can easily see that if the separation

becomes large compared with the focal length of the first lens, then

the variation in the second y, consequent upon dp, may become very

serious, possibly reducing it by a quarter or a third
;
so that yz for the

blue rays may be, for instance, T
7
^tlis of the yz for the red rays, which

would mean that y% for blue would be but a half of y for red
;
and

therefore, roughly speaking, the spherical aberration of the second lens

for the blue (principal) rays falling upon it would be only half of the

spherical aberration for the red rays.

Distortion of each This means that that part of the distortion formula for the second

chromati^erro^of ^ens depending on its spherical aberration will be seriously modified

preceding lenses. in accordance with the colour variation of the preceding lens
;
that

is, ?/2 will be modified in accordance with Formula VIII., and
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/So in accordance with another, which we scarcely need work out, for

the main point is that these colour aberrations affecting the spherical

aberration distortions for each of several lenses in succession, excepting

the first, are corrections of the order ?/

2
,
and it is clear that they must

come into force in the familiar case of our four-lens eye-piece, and

especially when the second separation is largely increased for the

purpose of gaining magnifying power. But we have already seen that

the oblique chromatic errors of the second order of approximation are

of the form

V, . .V.
1 +

M
x

. . Un

so that the absolute radial colour aberrations, if any, are thus a constant

percentage of the radial dimensions of the final image.

But the variations in the distortions due to spherical aberration of

any lens in a separated series, caused by the colour aberrations of the

preceding lens or lenses, are of the order y* , as shown in Formula VIII.

Hybrid Oblique Colour Aberrations

It is then of importance to inquire what will happen if in a four-

lens eye-piece we have a residue of oblique colour aberration of the

second order, or of the order y, as we may conveniently term it, which

is either accidentally or intentionally corrected by aberrations of the

third order ?/

2
,
but of the opposite sign. Fig. 110 illustrates what we

should expect to be the result. Let B . . P be an axis of measurement

so that the horizontal distances from B . . P to the oblique straight line

B . . C shall represent the oblique colour aberrations of the second order

y, which thus increase directly as the vertical distances from B, which

latter represent y as well as the radial dimensions of the image. At

the other side of B . . P we have the curve B . . D, its abscissa increasing

as the square of the heights above the optic axis B . . E. It is thus

seen to be approximately a circular curve, and represents the oblique

chromatic errors of the third order y
1

.

At the height B . . A' we have the abscissae A' . . C' and A' . . D r

equal and opposite, so that the curve B . . A' . . A, which is the result-

ant of the two, will then cross B . . P at A'. It will easily be seen

that the resultant curve B . . A' . . A is also a circular one. While at

A' we have no colour aberration, yet at F, half-way between B and

A', we get a maximum of colour aberration of the same sign as the

original aberration of the second order
;
while at points in the image

X

Effect of correcting a

chromatic error of

the order y by an-

other of the order

f-
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Zones of oblique
chromatic error.

outside of A' we get a colour aberration of the opposite sign to that of

the original aberration of the second order, and increasing as the square
of the distance from A'. Thus we may get a final image which in a

,,, c ,-, ,, . . .

middle zone of the held of view is achromatic, but half-way between
that zone and the centre shows slight colour aberration, the blue

image being, for instance, the largest, while round the margin of the

field of view the red image is largest.

Such irrationalities between corrections of two different orders are

very liable to show themselves in very long eye-piece combinations,

presenting a large field of view, not only with respect to colour aber-

rations and distortion, but also with respect to the coma and corrections

for curvature of image.
It will now be seen that the optical theory of a four-lens eye-

piece is very much more complex than it appears to be at first sight.

The Secondary Spectrum

So far we have dealt with the different effects of lenses and systems
of lenses upon rays of only two colours whose refractive indices differ

from one another by A^ for one glass, and by Ayu,2 for another glass,

and so on
;
and if we have considered any rays intermediate between

such two selected rays, it has been on the tacit understanding that if

/M!
= the refractive index for one ray, and /^ + A/^ that for the other,

and again, if ^ + A'
'

^ = the refractive index for an intermediate ray
for one glass, and /^2 + A'/i2 the refractive index for the same inter-

mediate ray for the other glass, then we have assumed that

A constant ratio of

dispersions for dif-

ferent parts of the

spectrum between
two glasses hitherto
assumed.

Irrationality of dis-

persion.

or that the dispersive ratio between the two glasses for one part of the

spectrum interval chosen is equal to the dispersive ratio for the other

part of the spectrum interval.

Unfortunately, however, there are no two glasses differing in

dispersive power sufficiently to be combined into an achromatic object

glass which have a constant ratio of dispersive power for different

regions of the spectrum, and it is this irrationality of dispersion, as it

is called, which gives rise to that residual colour aberration at the

axial focus which is well known as the "
Secondary Spectrum."

The following table gives the difference of refractive indices A^,
A

9/A, Ag^i, A4/A, etc., etc., for ordinary crown glass and ordinary dense

flint glass respectively for the spectrum intervals D to A', F to D,
C to F, and F to G'.
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As experience has shown that about the best working achromatism

is secured when the two rays and F are brought to one focus, there-

fore a contact combination of the above two glasses is so arranged that

00860 -01709

Pi P2

=
0, (16)

where =
( + I for the crown glass lens, and =

( \ ) for the
/ V a 7 n \t' v /
Pi 1 1 r2 2 2

flint glass lens.

The dispersive interval C to F is generally taken as unity for

each glass ;
then clearly any other dispersive interval may be expressed

in terms of the former. Accordingly, the figures in the second column

for each dispersive interval express the latter in terms of the dispersive

interval C to F. In this way it is clearly shown that for the interval

D to A' the crown glass exercises a relatively higher dispersion than

the flint glass, for the region F to D .the flint has the relatively higher

dispersion, while for F to G' the flint has very decidedly the higher

dispersion.

It is clear that if Formula (16) is fulfilled, and the two rays
C and F are refracted to the same focus, then the linear secondary

spectrum at the principal focus yielded by the objective will be, as a

variation of F,

00553 -01034\
,- + -

1 for the interval D to A
,

Pi Pz '

00605 -01220X , , . . ^ _
+ ) for the interval F to D,

and
Pi Pz

T>,/-00487 -01041\ ,- F2
-) for the interval F to G :

\ /

and it is clear that there will be prevailing dispersion of the crown

lens along the axis from D to A', the A' ray focusing beyond
the D ray ;

from F to D the dispersion of the flint lens will predominate,
and the D ray will focus inside of C and F

;
while for the region

Proportional
sectional dispersions
for crown and flint

Condition for bring-

ing C and F rays to

one focus.

The interval C to F,

or Ayu,(Cto F), usually
taken as unity.

Formula for the
chromatic error D
to A'.

Formula for the
chromatic error F
toD.

Formula for the
chromatic error F
toG'.
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F to G' the flint glass dispersion will again prevail, and the G' ray
will focus considerably beyond the C and F rays.

As an example we will take the case of a double objective of

30 feet focal length composed of the crown and flint glasses whose

main characteristics have been given above, only the values of - and
1 Pl
- are so calculated as to cause a ray half-way between B and C of
Pz

the spectrum to focus to the same axial point as the ray F, which

arrangement is likely to give the best colour correction for an

objective of that size (upwards of 2 feet aperture).

VARIATION or F FOR THE DIFFERENT COLOURS (IN INCHES) FOR A
TELESCOPE OBJECTIVE 30 FEET E.F.L.

Table of chromatic
errors of a 30-foot

double objective.

It will be noticed that the total is 2'02 inches, and that the largest

minus variation occurs about half-way between D2 and E, where it is

'24. This is about the brightest part of the spectrum from a

visual point of view, and since the maximum light concentration

The minimum focus, obviously occurs at the minimum focus where a high value of A//, or

range of spectrum may coincide with a very small variation from the

minimum focal point, it is highly important that this light concen-

tration should coincide with the position in the spectrum of the

greatest visual intensity, unless the objective is specially designed
for photographic purposes, when the greatest effectiveness and best

definition is obtained by arranging for the minimum focal length and

Chromatic correc- maximum light concentration to occur for a ray a little on the less

refrangible side of the G' ray (the hydrogen blue ray), at which position

in the spectrum the usual photographic plate is most sensitive.

We will here give the variations in F for such a telescopic objective

for photographic purposes of the same focal length of 30 feet.

VARIATION OF F FOR THE DIFFERENT COLOURS (IN INCHES) FOR A
PHOTOGRAPHIC TELESCOPE OBJECTIVE 30 FEET FOCAL LENGTH

Table of chromatic
errors of a 30-foot

astro - photographic
objective.
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Here it will be seen that the brightest visual rays are scattered

along the axis for two inches or so beyond the photographic focus, and

the image of a star formed by the G' ray is therefore surrounded by
a large halo of wasted light, which imprints itself more and more on

the photographic plate as the exposure is extended
;
and that is why

the photographs of the brighter stars come out so abnormally large

when those of small magnitude have just imprinted themselves.

Triple Telescope Objectives

The only way known of getting rid of the secondary spectrum is by

resorting, if possible, to a combination of one dispersive lens enclosed

between two collective lenses, the two latter being made of two

different sorts of glass, so chosen that the mean of their partial relative

dispersion
l + 3

, etc., for various regions of the spectrum shall
Pi Ps

correspond as closely as possible with the corresponding relative partial
A /

dispersions -*, etc., etc., for the same spectrum regions for the glass
Pz

used for the dispersive lens.

In this way the glasses employed in the Cooke Photo -Visual

Objective were chosen
;
with the result that the linear secondary colour

aberrations for such an objective of 30 -foot focus are reduced to less

than one-tenth part of an inch for the whole range of spectrum A' to Secondary spectrum

H
T , which is only one-twentieth part of the 2'02 inches, the total twentieth,

axial chromatic error given above for the ordinary double objective of

the same focal length.

Why the Secondary Spectrum of Large Double Objectives
does not render Clear Vision impossible

Eeturning to the case of the visually corrected objective, it can be

shown that if the usually accepted theory of the formation of the

image by rays of any one colour is correct, then anything like distinct

vision through a 30-foot objective of 18-inch to 24-inch aperture
would be impossible.

Fig. llOa, Plate XXI L, shows a section of the usual conception
of the cone of rays converging to form the well-known spurious disc or

star image at the focus, and then diverging again, so that the beam of rays
takes the form of two straight-sided cones with both their points cut

away to the diameter of the spurious disc. If this really represented
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the case, then only a very small fraction (about 15 per cent) of the

light refracted through a 30 -foot objective would be utilised for

defining purposes, all the rest being wasted. Happily, however, the

real section near the focus of the converging and diverging beam of

The tapering-off of rays is as in Fig. 1 1 Qb
;
the angle between the two sides of each cone

thefocus
fraySliear decreases as the spurious disc is approached, or tails off into the

cylindrical shape. This can be proved by experiment, and it is a

strange fact that while mathematicians have spent a good deal of work

upon the conformation of the spurious disc and its surrounding
diffraction rings as they are formed in the focal plane, yet none have

entered upon an investigation of the conformation of the cone of rays

along the axis as it approaches the spurious disc. Such an investiga-

tion, based upon the wave theory of light, should be most instructive

and of the highest importance.
The tapering-off It can also be proved by experiment that the tailing off into the
most marked with ! j i v i i i

' TTI P

large relative aper- cylindrical shape takes place in a more marked degree in the case of

tures - cones of rays of large angular aperture than in the case of cones of

small angular aperture, which fact tells in favour of objectives
of relatively large aperture, and discounts their other disadvantages
in a substantial degree. However, we are here trenching on the

borderland between geometrical and physical optics, with the latter of

which this work does not profess to deal. For further information on

this subject the reader is referred to a paper entitled
" The Secondary

Colour Aberrations of the Eefracting Telescope in relation to Vision,"

in the Monthly Notices of the Royal Astronomical Society, vol. liv. No. 2,

also to
"
Description of a Perfectly Achromatic Eefractor," in the same

publication, vol. liv. No. 5
;
both by the author.



SECTION XI

A BKIEF SKETCH OF THE NORMAL AND OTHER CURVATURE ABERRATIONS

OF THE THIRD ORDER TAN4
(/>,

ETC.

PERHAPS the most important corrections that the optical designer has importance of a

to take into consideration in the course of working out photographic
Plane

lenses are those relating to the curvature of image or the deviations of

the image from an ideal flatness.

We found that the deviations from a plane image as calculated by
the formulae of Sections V. and VI. applied to the three lenses given
as examples in Section VII. differed appreciably from the actually

measured results.

These discrepancies are indeed scarcely too large to be accounted

for by inexactness in the measurement of the curvatures, especially in

the cases of the deep curves employed in the process lens and the

four-lens Cooke lens.

It can be shown, for instance, that an increment of plus value in

the convex curvature of a lens of low refractive index, together with

a rather smaller minus increment in the convex curvature of a lens of

high refractive index, may have the effect of quite reversing the

character of a small residual oblique astigmatism without affecting the

principal focal length of the combination
;

while the increments in

question may easily escape all but the most exact methods of

measurement.

But in the cases worked out the character of the image curvatures

at still greater distances from the optic axis proves that the discrepancies

are chiefly due to the presence of curvature aberrations of a higher
order than those we have yet dealt with.

CENTRAL OBLIQUE REFRACTION
t

The Three Corrections to the ?/s

First of all, for the purpose of calculating the y's, we have assumed

the refractions to take place in a plane tangent to the vertex of each

311
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be departed from.

surface or element, and we may first consider the nature of the

The element plane to corrections which would have to be applied in order to allow for the

2/'s being reduced to perpendicularity to the normal oblique ray passing

through the centre of curvature, since all the formulae for spherical
aberration assume the T/'S to be measured at right angles to the

aforesaid ray.

Primary Planes

Eeverting to Section V., page 121, dealing with the question of

oblique rays passing centrally through a lens, we had at the first

surface, Fig. 44a, the equation

*

The corrections for

obliquity defined.

The versine correc-

tions denned.

The corrections for

positions denned.

T7' leading to
r
=
l+

!/2
x
i

in which x
l
denoted the required oblique distance from d, the oblique

vertex, to q, the crossing point of the two extreme rays in the primary
plane.

These y's were the distances c . . e and c . . e
l reckoned in the element

plane, as shown in Figs. Ill and 112. Now it is clear from these

figures that the y's, so reckoned, become more and more incorrect as the

aperture and the angle of obliquity $ increase. The y's are subject to

three corrections: (1) the correction for obliquity; (2) the versine

correction, and (3) the correction for the positions of the T/'S or the

lateral separation generally existing between them.

(1) The corrections for obliquity consist in converting the distances

c . . e and c..e
l
in the element plane into the distances e . . g and e

l . . a
t

measured perpendicularly to the normal oblique ray Q . . r.

(2) The versine correction is due to the retreat of the spherical
surface from the element plane. Let the extreme ray Q . . e be pro-
duced to cut the spherical surface at k

;
from k draw k . . I perpen-

dicular to the normal ray Q . . r
;

then through e draw e . . h parallel
to Q . . r, and cutting k . . I at h

;
then the distance k . . h is the versine

correction applicable to e..g in order to convert it into k . . I, which
latter is the real y upon which the spherical aberration should

correctly be based.

(3) Still another species of correction has yet to be applied a

correction not of the values of the y's, but a correction for their posi-
tions. Fig. Ill explains this. We must bear in mind that the

Formula (1) gives the value of
^

or -, that is, the reciprocal value

of the focal distance d . . q measured along the normal oblique ray

Q. .c. .p, with absolute correctness, provided that
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1st. The spherical aberration function w is correctly formulated.

2nd. The values of the two y"'s, k . . I and n . . t, are correctly

given ;
and

3rd. The two y"'s are at equal distances from the focus q, that

is, that I . . q = t . . q, in which case the two y"'s would be in one straight

line. But it is plain that this can only happen when either the

radius r is infinite and the refracting surface is plane, or when it or

d . . q is infinite, when, of course, the separation t . .1 becomes a

relatively vanishing quantity.

It is clear in Fig. Ill that the lateral translation of k . . I or y"
towards the right hand, while assuming its length to remain constant,

must cause the crossing point q to move to the left hand, nearer the

lens
;
that is, the correction due to the separation of the ?/"s is in this

case of a plus nature, since it adds to the value of -.
x

It is also clear that this separation of the two y"'a gives rise to a Correction for posi-

correction to - which operates in the primary plane only. We shall
16

also find that it works out as a function of tan4
< and 2

tan
2
<, and

therefore comes under the head of the forruulse of the third

approximation. We will now treat these corrections more explicitly.

tions only applies in

primary planes.

The Correction for Obliquity

Primary Plane

It will be better to deal with the question in general terms, first

taking the obliquity correction.

Let a = the semi-aperture A . . e or A . . e
l
of the pencil where it Notation,

crosses the element plane. Let b = the distance A . . c from the lens

vertex to the point in the element plane where the normal oblique

ray Q . . r cuts it.* Then if the angle PAQ = <, and QrA 0,

as before, and P . . A = u, as usual, then b or A . . c = r tan 6

= rtan<^db' Let e --ff
=

yi
and e

i--ffi
=

1/2-

Then, as in our earlier inquiry, in Fig. Ill,

yi
2 =

(
a + j)2 and

ys
2 =

(
a _j)2 and yiy2

=
(
a2_j2) t

Then in the right-angled triangles c . . e . . g and c . . e^ . . gl
it is

clear that
'

(e . . gY or y/
2 = y* - y* sin2

ceg and (el . . gj* or y^ = y2

2 -
y2

2 sin2
ce$ ;

In this Section the terms a, b, and c will supersede the corresponding terms A, B, and
C of Sections V. to VIIlA., as they are more convenient for manipulation.
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similarly

a2
\

-J;

"

Primary plane.
Value of the func- (

. , 9 1
)

tions of
///', /2",

and
=

\
(
a" +^ ~ V ~ 35V + (* + 3^2)~

/
"i

w
i-

the two last terms being the new terms consequent on the versine

corrections.

Secondary Plane

Here we see from Fig. 113 that if the chord s . . s represents the

circular aperture of the lens surface seen edgeways of semi-aperture
= a, plus a correction shortly to be dealt with

;
then the right-angled

triangle, whose hypothenuse is the y required, consists of the side

h . . n, and a vertical side above h, perpendicular to the diagram,
so that y

2 = (h . . rif -f- (the vertical from A)
2

,
and clearly

ru

and the vertical side over h
a2 a ( a2 \

= vertical side over A (
= a) + - = a 1 + -

):
2r u \ 2ru/

/. (vertical side over h)
2 = a2

( 1 + -

so that
2\ / 2\\

u>,w
v2 =

\ &
2
(1 e'

2
)( 1 H

)
+ a2

! 1 H
) (W-.

\. \ ru/ \ ru/ J

Secondary plane. = j/a
2 + m _ tfe

z + /a4 + a2m
l

]
.

(5)
Value of y

'2ur \ ru)

the two last terms being consequent upon the versine corrections.

The term a4
--, which is independent of the angle of obliquity (f>,

is

thus seen to be common to primary and secondary planes, and is, in

fact, a function of the spherical aberration consequent upon the axial
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or oblique pencil expanding in diameter as it traverses the distance

between the element plane and the spherical surface.

We also see that the functions of a
2
^
2
or a2

tan
2

<j>
and of tan

4
< or

6V are three times as great in primary planes as in secondary planes.

ECCENTRIC OBLIQUE REFRACTION

We may now deal with the more complex y's involved in the case

of eccentric pencils on the same lines, taking as our basis equation

= (:r
- r) > leading to = ? + w^V,

2 + yf + y,y2) The basis equation.
rr \f i J II _ II f ifi

** * 6 *> 1<J &lx
i vi Jryz y\ X

\

(see page 143, Section VI.).

Let Q..e and Q . . ^ (Fig. 114) be the extreme rays in primary

planes of an eccentric pencil limited by a stop s, as in our earlier Fig. 50.

Let N" be the point where the principal ray through the centre of the

stop strikes the element plane, and let A be the vertex where the

curved surface cuts the optic axis P . . r and touches the element

plane. Let c . . e = yl
and c . . e

l

= yz
as before. Then c, the new

constituent in both y's due to the eccentricity of the pencil, is the

distance A . . N which = (P . . Q) = u tan <>
-y=i , when, as usual, <

A . . O Iff \-)

is the angle PAQ and D = S . . A. So that b and c are both

functions of tan <6. Let us then denote A. .N or tan <f> by theru- D J

symbol c, A . . c or r tan <
- -

being b, and the semi-aperture of the

pencil 1ST . . e or N . . e
l
where it cuts the element plane being a, as

before.

Obliquity Corrections to the y'&

Primary Plane

Here let e . . g = y and e
l

. . g l
=

y%.

In the right-angled triangle e . . c . . g we have as before

(e . . g)
2 or y^

2 =
(e . . c)'

2 -
(c . . g)* ;

w ^2 _ 7
, 2 _ w 2

y\ ~y\ y\

that is,

. . ^2 _
7/

2 1 _ tan 2 .A ____,, 2/
y\ ~y\\ l tan 9..

, / -y\\ W ~T I

and similarly
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ft
2 =

(b + c + of .-. y^ =
(b + c + a)

2
(l

- e
2
)

y =
(b + c- a)

2
. -. y^-

=
(b + c- a)

2
(l

- e
2
)

w* -< + c
)
2 - *2 ' vM =

{(
b + c)

2 - 8
}(i

- 2
)

and

=
{(a

2 + 362
)
+ Qbc + 3c2

}Wl plus

the new terms in the shape of functions of e
2

. which are
Primary plane.
Value of obliquity

(
- a2

e
2 - 3iV2 - 3cV - 6ke2W, (6)

functions in terms of

ylt yz ,
and wr which are clearly functions of a2

tan
2

<, 3 tan4

</>,
3 tan4

</>,
and

6 tan4
< respectively.

Secondary Plane

Turning to Fig, 115, it is clear that c. . N or b + c only is subject
to the obliquity correction, so that (b + c)

2 modified for the obliquity
'2 l-e2 and

y"2(ai
-

{(* + c
)
2
(i

~ g2
)
+ a

'2
}

ft)
i

=
{(J

2 + 2ic + c
2
)(l

- e
2
)
+ a2

}^
=

(ft

2 + 2Jc + c
2 + o2

)Wl

+ the new terms in the shape of functions of e
2

, which are
Secondary plane.
Value of obliquity / 7 2 2 >> > OA/. 2\ /T\
functions in terms of (

~ be ~ ~ ~ ^ce^v (7)
\A

^ Wr all minus functions of tan4
<, and, as usual, one-third of the corre-

sponding corrections in primary planes ;
but the function of az

e
2

or

a2
tan

2

</>
is again absent.

Versine Corrections to the ?/s

Primary Plane

Eeverting to Fig. 114, let k . . I = y^ and n , . t =
?/2".

Here the versines of the curved surface with respect to the element

plane measured parallel to P . . A are obviously proportional to (c -t- a)'
2

1 v
and (c of, and the increment to y' or e , . g = (c + a)

2

&T U

approximately,

and similarly
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and

=
(b + c +

)

2
(1

- e
2

){
1 + (c

2 + lac + a2
) \

+
(
C
2 _ 2ac + a2

)

and the new terms consequent upon the versine corrections are

(J2 + C
z + a2 + ^ab + 2ac + 2&c)(c

2 + 2ac + a2
)
'n*

+ (6
2 + c

2 + a2 - 2a6 - 2ac + 2&c)(c
2 - 2ac + a2

)
-

+ 2k + c
2 - a2

)(c
2 + a2

)
-

x ru

which, after multiplying out and cancelling, gives us

i Primary plane.

{ (3&
2
c
2 + 6k3 + 3c4) + 1 2a2

c
2 + 1 4a?bc + (3a?b

2 + a4
)
I a)

ls (8) Value of functions of

y", y^\ and wr

in which the terms 3a2
6
2 + a4

appertain to the central oblique pencil

also. So we have

(35
2
c2 + Qbc3 + 3c4) all functions of tan4

<f>,

Lboth functions of a2 tan2
<,

and the functions of a4 and 3
2
6
2
before worked out for central oblique

pencils.

Secondary Plane

Turning to Fig. 115, it will be seen that in the right-angled

triangle, whose two sides including the right angle are p . . g' and a",

the latter being perpendicular to the plane of the diagram and over

the point p ; evidently p . . g'
= N . . g subject to a double versine

correction approximately equal to

+
,2r 2r/ u

xi is also subject to a double versine correction approximately equal to
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(^L ^!v
V2r

+
2vV

so that we have

and

also

2ru

and

ru

so that the hypothenuse squared, after correction, or

and

so that the new terms consequent upon the versine corrections are

/jo m o o
(b

2 + 2bc + c
2 + a2

=
(a

>262 + 2a2ic + a2
c
2 + a4 + c

262 + 2&C3 + c
4 + a2

c
2
)
- w,

;' ru J

in which 2
6
2 + a4

appertain to the central oblique pencil.

Here it is instructive to notice that while the terms a2
b
2 + b

2
c
2

4- 2bc
3 + c

4
are one-third of the corresponding terms in the primary

plane, the term 2aV is only one-sixth part and 2a?bc only one-seventh

part of the corresponding term in the primary plane, while the term a4

is common to both planes.
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The Corrections for the Separation between the two y's

Central Oblique Refraction

So far we have been considering, in a qualitative sense, the nature

of the small corrections which have to be applied to the two y's in

order to convert them into the y"'s.

We will now deal with those corrections which are due to the

separation between the two y"'s to which we have previously alluded.

We may again legitimately express the necessary corrections in

terms of the uucorrected y's, since to express them in terms of the

corrected y'"s would lead to functions of the order tan6

<f>
which are

beyond the scope of this inquiry.

First we have our fundamental equation, with reference to Fig. Ill,

y
Zl = T) . . (7 = y &

,
The basis equation.

/I
'

/2

wherein /j so far has been held to mean the distance d . . ql} whereas it

should be the distance I . . q (Fig. Ill), the versine d . . I being deducted.

Similarly / has been held, so far, to mean the distance d . . q2 , whereas

it should be the distance t . . qy the versine d. .t being deducted. But

as regards the numerator x flt
it is clear that since xfi is simply

the distance ql
. . p, therefore if we deducted the versine c . . I from /J

we should also have to deduct it from x
;
that is, the terms (x /i) and

(/, #) are not affected by our corrections; but obviously/! and/2
in

the denominators must be corrected for the versines, so that the above

equation becomes

11

x ~f^ - y fi~ x
.

y\ 9 yv 9 )
-1- nt ** " ill &

f
7l

_ _

2r 2 2r

^ 1 %2

+fr&'

We may now express /:
and /2

in terms of d . . f or w and the

spherical aberration, so that we may put

11 <o 9

J-
= T + -^O 5

/2 M
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so we then get

I w A /I A y*(\ O w v
2
\ y 3/! nW&'M

r + -^i
2 + y2 r + - w2 + H -9 + 2 -

v
+ ^- -, + 2 - ^- H

p*
1 / y2

\ii
//

2 J 2rW /A
/ 2r\M2

//,
% / J

7/^/1 w A y2
3/l w A

=
#1 +

2/2
+ o I T + -

2/1 )
+ frl T + -

&> ;2rV /*
*
/ 2rU ///

2
/'

B + -
(y

3 + y 8) + (y
3 + y 3)__ + (y

5 + y 5)
1

A
/A

v^ J 2nt2
/A

x
r 7

r&J

=
2/1

+
2/2

+ 0V +
?/2

3)T + (^

rt

Since the ^'s are generally much smaller quantities than r and it,

we may treat the second and third terms of the denominator as

variants of (yl + 2/2),
so that - becomes

multiplied by

+ y2 yi + ^ n
/*

and after multiplying out we get

1 H
+ ^i

3 + y2
3

.

*> + /
5

x \ii +

_ _ etc _ etc<

Here we may neglect the last two terms, and also the two terms (the

seventh and tenth) involving -^, since they involve functions of the

order y* and y, which we are not dealing with. The second and fifth

terms cancel one another, while the third and ninth add together, so

that we get finally
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1 = 1 +
*

.
V* + y* +

w 3/i

5 + y* J_ _ ^ (^i
3 + ^g

3
)
2

l
_ } Primary plane.

P* Vi+Vz A* Vi + V*
'2rh

/* (h + y^ 2rit Value of -.corrected
( ' *

for separation be-

tween the ifa.

The last term in this formula need not be heeded, as it does not
involve the spherical aberration at all

;
for if, in our original equation,

we suppose that there is no aberration whatsoever, and therefore that

./i
= * =/.- and yet suppose that the two y's are at unequal distances

from q\ and then correct it for the versines as before, we then get

x -
it

which finally works out to

x u
(y\ + y^f 4r2^3

'

which means that the distance x is to be measured from a point very
slightly to the left of the vertex ^ by a minute amount varying
inversely as u.

This curious result doubtless follows upon our assuming the
versines to vary exactly as f, which is not strictly true. Anyway
this term has nothing to do with our present purposes and may be

ignored, so that we have, after dividing out the functions of yl and y ,

y-2*
-

Here the first line is the result of the second approximation, which we
have had to deal with before in Sections V. and VI. After adding
together the second and third lines we get finally

Primary plane.

x
=

&
+
fa +^ -

w*> +
fay*

- a^v + y^-h (12)
Reduced value of

'

corrected for separa-
We have in the process leading to this result dealt with Fig. Ill,

tion between tfle y's.
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Sensitiveness of x to

the separation be-

tween the y's in the

case of narrow pen-
cils.

in which the two y's are at opposite sides of the normal oblique ray,,

and we have treated both y's as positive quantities.

Under this assumption, then, y2
in the next Figure (112) would

have to be considered negative, so that the above yfy.-, 2^/1

2

y
2 + y^j

^

would become three negative quantities. Now it is clear that if a, the

aperture of the pencil, vanishes, then yl
and i/9 . become numerically

equal, and the above correction of the third order will not therefore

vanish, and a little consideration and a reference to Fig. 115a will

show that this correction to the oblique focal length x, due to a lateral

separation between the two y's, should not vanish when the aperture
of the pencil vanishes, for the smaller is the aperture the smaller is

the angle between the two rays bounding the pencil in the primary

plane ;
and assuming their two focal points q and ql

on the oblique
normal ray r . . Q' to remain fixed, it is clear that the position of their

intersection point q becomes highly sensitive to even a most minute

lateral separation between the y's. For instance, if the two rays

through k and n focus at fixed points q and ql} while n . . t is

transferred laterally to n' . . t' without changing its length, then the

point of intersection of the two rays will be transferred from f to f".

But the formula of course vanishes when either one of the ?/s
= 0, since

then one ray becomes the normal oblique ray Q . . /.

If the reader will carry out a similar investigation in the case of

Fig. 112, treating both y's as positive quantities, he will arrive at

the correction -(2/i
3
J/2 + %i2

2/2
2 + 2/i2/2

3
XrT ,

which when worked out
p.

2ru'

and expressed in terms of a and b for central oblique refraction, or

of a, b, and c for eccentric oblique refraction, will lead to exactly the

same formulae as ISTos. (13) and (14) below.

We may proceed to convert (12) of the third order as follows :

First, in the case of Fig. Ill for central oblique refraction we have

y = a + b and yz
= a b, so that - = - + -

(a
2 + 3b

2

x u p
^

dealt with before) plus the following new terms

1a
4 + 2a?b - 2abz - 4>

-(2a
4 -

(13)

been.

Primary plane, and the function of the third order is finally

Corrections to - for w
x ^

the separation be- A1

tween the ?/'s. for central oblique refraction.
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Eccentric Oblique Refraction

Turning now to the case of eccentric oblique refraction, Fig. 114,

wherein the two ijs are again on the same side of the central oblique

ray Q . . r, we have

y1
=

(I + c) + a and y2
-

(b + c)
- a.

This being the case, we shall find that the value of the consequent

function

expressed in terms of a, b, and c, works out to

(14)

The first two terms apply to the central oblique refraction which

we have just worked out, while the last six terms, all involving c,

follow from the eccentricity of the pencil. It is interesting to note

how the terms of Fnrmulie (13) and (14) equate to 0, when in (13) a = &,

or in (14) a = b + c, for, of course, when this is the case, yz becomes

zero, or, in other words, the lower ray coincides with the normal oblique

ray, so that the case is fully met by the usual spherical aberration

formula -y-?. It might at first be thought that Formulae (13) and

(14) should equate to when a vanishes, but this is not so, for we
have seen that the narrower is the pencil the greater is the sensitive-

ness of the position of the focus to a minute lateral separation between

the two y's.

These corrections of the third order consequent upon the relative

lateral displacement of the two y's, obviously come into force in the

primary plane only, and there is nothing corresponding to them in the

secondary plane.

It is clear that such corrections as (13) and (14) could not apply
to a parallel glass plate or a plane surface, since r would become

infinite and the value of the formulae vanish.

It is also clear that when we come to add to the functions of the

third order for the first surface the corresponding functions for the

second surface, then -1
,
which is the

"
inside glass

"
value of the spherical

/*

aberration, will become fo lt or the outside glass value for the same

aberration.

Primary plane.

Corrections to for
X

the separations be-

tween the y's.

The separation cor-

rection only valid in

the primary plane.
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We have now considered all the corrections of the third order

which have to be applied in order to convert the ys of the second

approximation into the y's of the third approximation, the correcting
formulae being functions of <w

1
and o>2 ,

or the spherical aberration

formulae of the second approximation for the two surfaces which
resulted in the formulae for curvature errors previously worked out

in Sections V. and VI., which, as applied to the single surface that

we have been considering, was

fj?
\r

(see Formula XVIII. (K.), Section IV.), and the corrections that we have

been dealing with in this Section are of course all products of the

corrections to yl
or y2 into the part of the above formula included in

the large brackets.

THE INTRINSIC SPHERICAL ABERRATION OF THE THIRD ORDER

But we have yet to consider the intrinsic spherical aberration of

the third order in its application to oblique rays ;
that is, we have to

find what are the modifications to the curvature corrections consequent

upon our taking into account Formula XX. (E.) of Section IV. (page 63),

which is a function of y*, and therefore, in its present application, of

tan
4

(f).
We will first deal with the case of

Central Oblique Refraction

Primary Plane

Here we must revert again to the fundamental equation dealt with

on page 121, Section V., applying also to Fig. Ill

in which we must now stipulate that

T =
l
+ "^i

2 + Mi and
^
= + Wl y2

2

J\ /2

the last terms expressing the intrinsic spherical aberration of the order

y
4

as given in Formula XX. (R). We are not now to consider any
corrections to the y's involved in ^_y

4
,
since such procedure would only

result in corrections of the order y
6
, etc., but have to find what is the
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result of the introduction of this new term on the curvature corrections

in the primary plane. We have then

4

1 '

so that the equation

7=T + -y2

2 +
/2

U
ft

"

//,

2
/

2/1
+

2/2

now becomes

+ + ) + y2 (* +V + ***)!
. . /

2 \w
/A

2
n sJyi + 9t

r(2/i + 2/2)
+ -(2/1

3 +
2/2

3
)
+

;;(yi

5 +
2/2

5
)

lb UL fA

y\ + y<i Primary plane.

. . ^
= v + w (y* + y2

2 -
yt y2) + x (^

4 +^ -
yfy*

~
2/2^i + yiV)- (

x 5
)

Value of ? i

*6 (& *

The functions of &> have been already worked out, and we may
confine our attention to the functions of %. We have, in Fig. Ill,

yl
=

(a + b)

gfy
- -

(a
4 -

iV = a*

a4 + 10a262 + 5i4

therefore Primary plane.

^ = ^ + w (a
2 + 362

) + v (a
4 + 1 Oa26

2 + 5&4
). (16) Value of ^ from (15)

. ^ ''

after reduction.

The functions coa and %a are, of course, the spherical aberrations

of the two orders to which all pencils of semi-aperture a are subject,

whether axial or oblique.

Secondary Plane

Here y
2 = simply a2 + 5

2
,
and

.-. f - a4 + 2a262 + 64
,

and we have therefore Secondary plane.

^ = + w(a
2 + ft

2
) + X(a

4 + 2a2
6'
2 + 6

4
). (17) Value of ^ after re-

*C I/- *^

duction.
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Here again aa2 and p^a
4

are the spherical aberrations of the two
orders common to all pencils, axial or oblique ; while it will be seen

that the correction ^(2
2
J
2
-f &

4

) is only one-fifth part of the correspond-

ing correction in primary planes.

Eccentric Oblique Refraction

Primary Plane

Here we have, in Fig. 114,

7/!

2 =
(b + c + a)'

2

The conditions are here the same as dealt with on page 143, Section

VI., Fig. 50, and we have

2

Value of

functions of \.

Primary plane.
Functions of X , yv
and I/, after reduc-

tion.

9i

* +^2)
+ x(^ + y^ + y*y* + y*yz

+ y^). (18)

The functions of w have already been dealt with.

On working out the functions of y in terms of a, b, and c, we get

x(a
4 + 10a2

c
2 + 30&2

c
2 + 20a2ic + 2063

c + 20k3 + 5+ 5c4

- x [a
4 + {I0a

2
(b-

+ 2k + c
2
)
+ 5(b* + 453c + 6#

order a2 tan2
< order tan4 $

in which the underlined terms
4 + 10a2

6
2 + 5Z>

4
relate, as we have

seen, to central oblique pencils also.

Secondary Plane

Here y
1 = simply (b + c)

2 + a2
,
and

y*
=

(b + c)
4 + 2az

(b + c)
2 + a4

,

and

Secondary plane.

Function of X after

reduction.

- 2bc + c
2
)
+ a2 + etc. >

i

+ x/a
4 + 2a2

(&
2 + 2k + c

2
)
+ (6

4 + 463
c + 662

c
2 + 4k3 + c

4
)
J,

(20)
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in which the terms a4 +2 2
&
2 + &

4

apply to central oblique pencils.

The functions of w have already been dealt with.

Thus we find that the corrections involving the intrinsic spherical

aberration of the order y* are five times as great in primary planes

as in secondary planes, and that all the terms are represented in both

planes.

It is advisable to now gather together our results in the form of a

table as follows :

Functions of &>!

Primary Plane

Terms to be added for 3rd Approximation

Add for Eccentric Pencils.

- 3c2e2 -

Obliquity
corrections.

Versineiwoc
j i Versine

+ 12 2
c
2
)

J
corrections.

r +(-246%2 -166c3 -16&3c -, ) Separation
- 4c4 + 8a2bc + 4a2c2

) ;

- -
f corrections.

Z.TU )

+ 2bc + c-

Secondary Plane

_ - We*- I

- c-e
2 - 2&ce2 / Obliquity

\ corrections.

+ 2a2
c
2
) ru corrections.

Functions of % l

Primary Plane

Central Oblique Pencils l: Add for Eccentric Pencils

4
) il (306V- + 20&C3+ 2063c + 5c4 + 20a?bc + 10aV).

Secondary Plane

The Functions of ^

Leaving the functions of -
,
out of present consideration it will be

2ru

seen that the functions of eoj under the head of second approximation
have already been fully worked out for both surfaces of a lens in

Sections V. and VI., wherein we found that the term 6bc or 2bc
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resulted in the formulae for comatic stop corrections or E.C.s, and 3c
2

and c
2
in the formulae for spherical aberration E.C.s.

Therefore the terms (14a
2
6c and 2ct?bc) for primary and secondary

planes in the third approximation are comatic functions involving the

semi-aperture squared, and the high ratio of 7 : 1 between primary and

secondary planes instead of the 3 : 1 for the second approximation is

significant of much that requires working out.

The two terms (12V and 2aV) imply spherical aberration stop

corrections dependent upon the aperture of the pencil, whose influence

is six times as powerful in primary planes as in secondary planes.

All the other terms with one exception imply the usual ratio of

3 : 1 in primary and secondary planes.

The exception alluded to is the term V in the obliquity

corrections which does not appear at all in the secondary plane. This

is also a highly significant term, and explains a phenomenon commonly
observable at the foci of oblique pencils passing through certain

Double side flare. photographic lenses, and that is a sort of double coma. For instance,

when a little way inside of the focus the section of the oblique cone of

rays shows over-correction for spherical aberration in the primary plane,

and the primary plane only, while in the secondary plane the spherical

aberration may be about correct. Thus there appears to be a side flare

both towards the optic axis and away from it.

The terms 12aV and 2aV may also tend either to aggravate or

to mitigate the above effect.

As regards the corrections, functions of =, ,
which follow from the

2ru

lateral separation between the two y's, although they apply only
in the primary plane, yet their quantitative value may usually be

regarded as by no means unimportant compared to the obliquity and

versine corrections.

The Functions of % :

Turning to the functions of % ly
or the intrinsic spherical aberration

of the third order, it is interesting to see that the corrections in the

primary plane are exactly five times as much as in the secondary

plane.

The significance of this discrepancy between the ratios 3 : 1 and

5 : 1 for the functions of wl
and ^x respectively, together with the

presence of the separation corrections in the primary plane only
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(supposing we leave all corrections involving a, or the aperture of the

pencil, out of consideration), will shortly become apparent in studying

the actually measured or calculated curvature of image corrections for

certain photographic lenses, figured on Plate XXIV.
The peculiar comatic formation which will satisfy the ratio of 5 : 1

between the E.C.s of the third order was shown on Plate XVI.,

Fig. 79/, as being formed of a series of duplex comatic circles distributed

over a length equal to five times the radius of the largest one
;
while

the size of the formation will vary as tan
3

< instead of as tan
<fr.

We have so far dealt with all the oblique curvature aberrations of

the second and third orders which are functions of the spherical

aberrations at the surface or surfaces
;
but the series of terms would not

be complete without also taking into account the end corrections, and

corrections for converting u into v\ carried to the third approximation.

These corrections are those marked first end correction for converting
u into v, and second end correction respectively, in the group of

Formulae (10) on page 119, Section V. It will be found that a third

approximation will lead to corrections of the order tan
4

<j) ;
which will

apply equally to both primary and secondary planes.

But the complete working out and reduction of all these aberrations

of the third order, and their expression in terms of a, /3, and x, as far

as may be, implying the addition of the terms for both surfaces of the

lens or element, would involve very much more space than we have at

our disposal ;
and their complete discussion would require a volume to

itself, although we should expect a much greater simplification in the

final results for one lens or element.

Not only would the aberrations of the third order which in-

trinsically appertain to each lens or element require discussion, but

also those which we may conveniently call the borrowed aberrations of

the third order which arise in the case of several lenses in succession.

For instance, a highly curved image thrown by a first lens will,

from the point of view of a second lens placed at some distance behind

it, lead to variations in tan < 2 and a2 , dependent upon the first angle
of obliquity </> ;

which may often be too considerable to be ignored.

Also the image of the stop centre thrown by the first lens may be

subject to a considerable spherical aberration leading to variations in

b2 , again dependent upon the first angle of obliquity <.

These aberrations of image curvature of the third approximation

present an ample field for the exercise of a higher order of mathe-

matical skill than has generally been called for in the present work.

The complete reduc-
tion of the formulae
of the third order

highly laborious.

Corrections of one
lens affected by pre-

ceding lenses.
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Dr. von Rohr's
graphs of curvature
errors for narrow

pencils.

Errors involving the

aperture not con-

sidered.

Dr. Steinheil's
lenses.

Some Practical Examples of Hybrid Curvature Errors

Before concluding this Section it will be instructive to reproduce
in Plate XXIV., by the kind permission of Dr. Moritz von Rohr, a few

diagrams from his most valuable and painstaking work, Theoric und

Geschichte des Photograpliisches Objectivs, which furnish illustrations of

certain of these curvature aberrations of the third order which we have

been dealing with. These graphic curves show the deviations from true

flatness, in primary planes by the dotted line, and in secondary planes

by a solid line, of the images of distant objects thrown by various

types of photographic lenses. They were worked out by careful

calculation, on the supposition that the stop of the lens was in its

usual working position, but reduced almost to a point ;
that is, the

curves traverse the fjoci of infinitely narrow oblique and eccentric

pencils. Thus all corrections of the third order involving a (the

aperture), such as we have lately been dealing with, are eliminated.

Therefore, if the stop of any of the lenses were opened out to

considerable working aperture, as in practical use, it would by no

means follow that the curves of aberrations from the flat image would

remain like these diagrams ; indeed, in many cases the curves

would become very substantially modified, in some cases favourably

and in other cases unfavourably, a fact which somewhat discounts the

value of these diagrams from the practical photographer's point of

view.

Each of the lenses here dealt with is supposed to be placed

on the left hand, and to be 3 -

5 inches equivalent focal length on the

scale of the plate ;
the ordinates represent angular distances from the

optic axis
;

the abscissae represent the aberrations from the plane

image, but for the sake of clearness these are four times exaggerated.

Every 5 degrees are marked off along the vertical, and every

millimetre of horizontal aberration along the horizontal base line, which

represents the optic axis.

Fig. 116 is the curve for Steinheil's Orthostigmat Lens, Fig. 118

for his Antiplanat, and Fig. 120 for his Rapid Antiplanat.

These three curves are substantially of the same character. The

broad features are the under -corrected field and over -corrected

astigmatism within 20 degrees of the axis. The image formed by

rays in primary planes (dotted) is more nearly flat than the image
formed by rays in the secondary plane (solid). This failure to come

up to a plane image simultaneously is due to the imperfect approach

to the fulfilment of the Petzval condition.
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XI HYBRID CURVATURE ERRORS

Old Boss
Lens.

Doublet

Here we have strongly marked plus curvature errors tending to

round images (concave to the lens) of the second order or varying as

tan
2
<, against which are working minus curvature errors of the third

order varying as tan
4

</>.
Hence the latter rapidly overtake and more

than neutralise the former as we get away beyond 25 degrees, but

the + curvature error for rays in primary planes is at a maximum
at 20 to 22 degrees, but apparently beyond 30 degrees for rays in

secondary planes. But the curve of errors is of the same general

character in the two planes, although the maxima and points of crossing

back over the focal plane do not coincide.

Fig. 122 for Dr. Rudolph's Wide-Angle Anastigmat furnishes a Dr. Rudolph's Wide-

capital example of the same general features as the last three, excepting
ng e

that the maxima much more nearly coincide, and the astigmatism is

reversed.

Fig. 123 for an old type Ross Doublet Lens is a case similar to

the preceding for rays in primary planes, but it is doubtful whether

the curve for rays in secondary planes shows any decided tendency
to a maximum followed by a curve back again ; indeed, aberrations of

the order tan
4

<jj appear to be only slight, while yet strong in the

primary plane. These curves may be taken as fairly typical of the

curvature errors exhibited by the old-fashioned Rapid Symmetrical
and Rectilinear Lenses, excepting that the curve for rays in primary

planes does not always retreat from the lens at the outskirts of

the field.

Fig. 121 for a Cooke Lens, Series V., indicates a very much closer Cooke Lens, Series V.

approximation to an ariastigmatic flat field
;
not only is the Petzval

condition more nearly fulfilled, but a good deal of anastigmatic flatness

is also gained by the separation between the lenses.

Here we have a residuum of + curvature errors of the order tan"
<f>

in both primary and secondary planes counteracted by curvature

errors of the order tan
4

</> ;
the latter at the outskirts of the field

asserting themselves so much as to throw the images back behind the

focal plane. The maximum for secondary rays is at about 22 degrees,

and that for primary rays at about 18 degrees from the optic axis.

Fig. 117 gives the curves of errors for an old form of Cooke Lens,

Series Ilia (the lens figured in Fig. 60, Plate XII.), and Fig. 119

gives the curves of errors for the well-known Goerz Double Anastigmat

(the older cemented doublet). These two cases are of the same general

character, excepting that in Fig. 117 the primary image is by first

intention curved back convex to the lens, and is slightly concave to

the lens in Fie;. 119. But the most remarkable characteristic lies in

Old Cooke Lens,
Series Ilia.
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Independence of the
curvature errors of

the third order in

the two planes.

The disturbing effect

of aperture upon the

curvature errors of

the third order.

Future progress de-

pends upon elimina-

tion of curvature
errors of third and
fourth orders.

the fact that the curvature errors of the order tan4
< are decidedly

negative for rays in secondary planes, but positive for rays in

primary planes. Hence the manner in which the two curves cross

one another at 27 and 30 degrees respectively, after which there follows

a rapid mutual separation.

Now it is clear that were the ratio between the aberrations of the

third order invariably 3 : 1 or any other fixed ratio between the primary
and secondary planes, then such graphs as these could never arise.

But since (leaving all terms containing a out of consideration, as we
are dealing here with pencils of infinitely small aperture) the third

order functions of - are in the ratio 3:1 in the primary and secondary

planes, while the third order functions of ^ are in the ratio 5 : 1 in

the primary and secondary rays, then we can clearly see that in the

case of the functions of -
being of the opposite sign to the functions

f*

of ^ we may easily have the total aberrations of the third order plus
in one plane while they are minus in the other.

The separation corrections to the y's, existing, as we have seen,

only in the primary plane, cause a still further degree of independence
between the curvature errors in the two planes.

And the scope for vagaries of this sort is still more enlarged when
we come to deal with the images thrown by pencils of relatively large

aperture, for we have seen that in the primary plane there are functions

of a that are seven and six times the corresponding functions in the

secondary plane.

Therefore it is that, if we take the lenses we have dealt .with and

open out their apertures and locate their oblique foci (by obtaining the

best possible distinctness of image), we may find the curvature errors

come out substantially different to those shown on Plate XXIV.
It is clear, then, that it is not always practicable to determine the

working character of a lens by calculating its curvature errors for

infinitely narrow pencils only. It will easily be seen that the future

progress of photographic lenses towards perfection depends chiefly upon
the successful elimination of the curvature errors of the order tan

4

</>,

and the doing of it with the simplestossible lens construction.

Printtrily R. & R. CLARK, LIMITED, Edinburgh.
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