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INTRODUCTION

I TrUST that the student of Optics who casually scans the pages of
this work for the first time, will not be alarmed by the complicated
appearance of some of the formule employed in the course of working
out the conclusions, and therefore infer that it is necessary to be highly
trained in mathematics in order to follow the lines of reasoning
employed. For such is not the case; all that is really necessary in the
mathematical equipment of the student being an easy acquaintance
with the ordinary manipulations of Algebra, together with a clear grasp
of the Binomial Theorem, the chief propositions of Euclid, and the
rudiments of the Differential Calculus. That granted, and given some
instinet for the practical application of what he knows, then he will
have no insuperable difficulty in following this work from cover to cover.

The greater part is easy compared to the numerous préblems and
theorems which the average university student is called upon to solve,
and which in so many cases are treated as of purely theoretical
interest. After all, is not that the truest and most fruitful teaching
of mathematics which fully recognises the mutual support between
theory and practice? Otherwise it is but natural if the student
cleaves to the one and despises the other.

I do not wish to imply that there is no scope for the employment
of the highest mathematical skill in optical science; for, on the contrary,
there are numerous problems in connection with the corrections of the
third order of approximation, merely glanced at in Section XI. of this
work, which pre-eminently call for the elucidating and marshalling
influence of some clear-headed mathematician who shall be thoroughly
familiar with the properties of lenses from practical acquaintance, and
not only from the theoretical point of view. The closer approach to
perfection in the optical combinations of the future will lie in the
more thorough elimination of the corrections of the third order, and
in some cases of the fourth order, and the most highly trained
mathematical skill, if it should ever deign to busy itself in this

B



2 A SYSTEM OF APPLIED OPTICS

country with the higher practical requirements of optical science,
would doubtless be able to evolve corollaries of the greatest importance
bearing upon this question.

My chief object in working out the scheme of Applied Optics
herein explained, has been to arrive at a complete system of algebraic
formulee of the second order which can be applied to any optical system
likely to occur in practice with results which in general very closely
approach to accuracy. I have therefore confined myself for the most
part to the attainment of those practical conditions which have to be
fulfilled by the best optical constructions—conditions which include,
and run closely parallel to, Von Seidel’s five well-recognised conditions.

As far as I know, there is only one work in the English language
professing to give a sketch of Von Seidel’s methods, and that is
Professor Silvanus Thompson’s Contributions to Photographic Optics,!
after Otto Lummer, while there are numerous accounts of his
methods published in German works, and several treatises built
upon them, such as Steinheil and Voit’s Handbuch der Angewandten
Optik? 1891, and Von Rohr’s Zheorie und Geschichte des photo-
graphischen Objectivs? the latter a most instructive and valuable work ;
and last, but not least, Dr. Siegfried Czapski’s new edition of Der
Theorie des optischen Instrumenten,® 1904. This last work is a philo-
sophical, broad, and general survey of the various problems which
have to be faced, and if possible solved, by the optical designer who
would rise superior to mere rule of thumb. But its perusal requires
in many respects a higher level of mathematical training than is
necessary for the understanding of this treatise.

In the German language there exists quite a mine of optical
literature written by men who are practical opticians as well as
mathematical experts, while we have scarcely anything of a corre-
sponding nature in the English tongue.

The fact that such works as I have just mentioned have been
published in Germany (as first editions, at any.rate) for so many
years, and yet no demand has ever arisen for KEnglish translations,
is ouly too painful evidence of the apathy with which the Science of
Optics has been regarded in this country.

There are, of course, various works on geometrical optics which
have more or less recently emanated from our universities, such as
Heath’s Geometrical Optics,” Parkinson’s Optics,” Pendlebury’s Lenses and

I Macmillan and Co., 1900. 2 Teubner, Leipzig.
3 Julius Springer, Berlin, 1899. 4 Barth, Leipzig,
® Cambridge University Press, 1895. 6 Macmillan and Co., 1900.
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Systems of Lenses,' Perceval’s Optics, etc., which are excellent as
turnishing material for purely mathematical students working up for
examinations; but the manner in which the various problems are
dealt with is in many cases ill adapted for application in practice,
while certain matters of the highest importance are ignored altogether.

As a matter of fact there is not an English work on geometrical
optics extant by whose guidance an ordinary photographic lens could be
worked out in all particulars. Professor Silvanus Thompson’s account
of Von Seidel’s system does not, however, give the impression that
the latter’'s methods and notation are at all easy to comprehend, but
certain it is that his system has been successfully employed for very
many years by numerous mathematicians and opticians of the highest
rank on the Continent, while the foundation-stone of English optical
science has been left unbuilt upon.

I here allude to the all-important work which was done about
thirty years before that of Von Seidel by Sir George Airy, and still
more by Henry Coddington. Sir G. Airy published some highly
important papers in 1827 in the Cambridge Philosophical Transactions
on “The Spherical Aberration of Eye-pieces of Telescopes,” and another
paper on the Achromatism of the same.

Then Henry Coddington took up the work, and by the aid of
some very ingenious devices of his own contrivance greatly added to
the simplicity and universality of the formule arrived at by Airy.
In 1829 he published his labours under the title, 4 Treatise on the
Reflection and Refraction of Light, which, although still the best work
on geometrical optics from the practical optician’s point of view,
nevertheless contains many shortcomings, which I attribute chiefly to
the fact that he had not had very much practical acquaintance with
lenses and their properties. It is therefore with much diffidence
that I venture to criticise and to supplement many of his methods
and formule, especially when I feel sure that had it not been for his
labours this treatise would never have been undertaken.

Another very important work on geometrical opties, now very
little known, was Richard Potter’s Elementary Treatise on Optics,
Part II. of which, published in 1851, contains certain formule for
spherical aberration of the third approximation.

I may here state that the invention of the “ Cooke ” lenses for
photography was not of a haphazard nature, but occurred in this
way. I had been studying Coddington’s work very carefully and did
not feel quite satisfied with his method of working out the curvature

! Deighton, Bell and Co., Cambridge, 1884.
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of the image formed by a lens, in the cases of both central and
eccentric oblique refractions. He assumed the aperture of the pencil
of rays in question to be infinitely narrow, and got at his results by
the employment of the differential calculus. I saw that while this
would be quite valid for such infinitely narrow pencils, still, as con-
siderably broad pencils generally occur in practice, it struck me it
might ‘be worth while trying to devise a method not dependent upon
the calculus, whereby the foci of broad oblique and eccentric pencils
could be elucidated, when possibly some new results of practical
importance might be forthcoming. About the year 1890 I undertook
that task, and after meeting with many difficulties which almost com-
pelled me to give up the investigation as hopeless, I at last succeeded
in arriving at the results embodied in Sections V., VL, and VII. of
this volume, and in so doing was fortunate enough to bring to light
the formula relating to coma, a phenomenon that appears, strange as
the fact may seem, never to have been noticed by Coddington. I then
saw that the formulee I thus arrived at implied corollaries of the
greatest practical importance, and I was led almost directly to the
conception of the Cooke lens, that is, of the older complex Cooke lens
built up of two achromatic positive lenses and one achromatic negative
lens. The simple Cooke lens was of later conception. Thus the
theory preceded the practice, although I should say that there are
certain other features of the Cooke lens, such as distortion and oblique
achromatism more especially, whose theory I did not arrive at until a
few years later, so that in that respect the practice preceded the theory.

Having subsequently worked out a complete system of formule,
which T have proved and tested and found reliable in all manner of
ways, and recognising the great importance of theory and practice
working loyally together for future improvements, I thought that as
soon as I had time enough at my disposal I would gather together
and arrange what has been the interrupted labour of many years, with
a view to publication, if by so doing I could, even in a hunble degree,
forward the development of optical science in this country, wherein
it has lain so long neglected, or perhaps furnish some raw material
on which some far abler heads than mine should at some future time
found important corollaries not yet dreamed of.

Considerations of space have compelled me to confine myself to
theorems and formulee that I consider to be of the greatest practical
value, and to leave out many corollaries of minor importance that
might be dealt with in a future edition, were it ever called for.

There are also many problems and theorems untouched upon,
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which are only of theoretical importance or of interest from a
mathematical point of view, and of little value to the practical
optician, such as, for instance, the theory of caustics, planes of unit
magnification, etc., about which the more mathematical student can
obtain full information from various contemporary works of well-
known repute, such as those mentioned above, as well as Coddington’s
work, which, however, is now out of print and often difficult to procure.

It will be observed that I have not given the lines of reasoning
by which the formulee of the first approximation are arrived at; for I
have assumed that the student will bring with him to the study of
this work a knowledge of such elementary optical formule. For those
who wish to enter upon it without that knowledge I do not know a
better book to recommend as a clearly written first guide to the
formulee of the first approximation than Todhunter’s Optics (in Part IT.
of his Nutural Philosophy for Beginners, 1877, which I believe is
also out of print) or Lardner’s Optfics, and the series of articles on
“ Applied Optics” by Dr. Drysdale in the British Optical Journal.

I think it must be conceded that, while the method of in-
vestigating the foci of oblique and eccentric pencils of finite or large
aperture explained in this-work leads to novel and highly important
formulee of the second approximation, and some others which are novel
in many respects, it also opens out possibilities of working out formulee
of the third and in some cases the fourth approximations, which in the
hands of a skilful mathematician may lead to new and useful results
of great importance; while the application of the differential method
of Coddington and other workers to infinitely narrow pencils is exceed-
ingly limited in its scope and results, as I shall show.

At first sight it seems a remarkable thing that a system of surfaces
bound by the simplest of all known curves, namely, the circle, with
their centres on a common axis, should give rise to problems which,
of solved to a high degree of exactitude, are of such extraordinary
complexity. :

I gladly take the present opportunity of expressing my thanks to
Sir W. de W. Abney and Professor Silvanus P. Thompson for much
kind encouragement and valuable help; and also to Dr. Moritz von Rohr
for allowing me to reproduce some of his diagrams on Plate XXIV.

In conclusion, I shall be only too glad if any technical errors or
obscurities, which must, in spite of all care, exist in a work of this
kind, are pointed out to me.

H. DENNIS TAYLOR.



Law connecting con-
jugate focal dis-
tances for plane
reflector.

Formula connect-
ing conjugate
focal distances for
spherical refiec-
tor.

SECTION I
A RECAPITULATION

WE will first of all recapitulate those well-known formule of the first
approximation relating to ultimate axial rays constituting direct or
axial pencils, or, in other words, extremely narrow pencils whose central
or principal ray coincides with the axis or straight line joining the
origin or apex of the pencil to the centre of curvature of the spherical
surface. Spherical aberration is in such cases a vanishing quantity
and is therefore not regarded. Throughout this work it is assumed
that all reflecting and refracting surfaces arve either plane or spherical.

Case of a Plane or Curved Reflector

Throughout the diagrams in this book light is supposed to be
travelling from left to right.

Plane reflector—Here if Q (Plate 1.) be the origin and Q.. A, the
principal ray, be perpendicular to the reflecting surface R..R, then
after reflection the rays will proceed backwards as if originating from a
virtual point ¢ situated on Q..A projected and at a distance A..q
from the surface equal to A..Q. On the contrary, if the incident
peucil is of rays converging to the apex ¢, then they will be reflected
back to a real point Q such that A..Q=A..¢ and Q..¢ is normal
to R..R. :

If the reflecting surface be curved spherically as r..», Figs. 2a, 25,
2¢, and 2d, ¢ being the centre of curvature and Q the origin or
apex of the incident pencil, then the formula

15 RPN T PR =" b
AT A V6 ALK - P ARy ]
universally applies and interprets itself in all cases if the following

conventions are strictly adhered to, viz—
6
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SECT. 1 A RECAPITULATION 7

The radius of curvature A..C is to be considered as an intrinsically
positive quantity whether the surface be convex or concave; and then—
For concave reflector—
If rays of the incident pencil are divergent, then Q.. A is positive.
If rays of incident pencil are convergent, then A .. Q is negative.
If rays of reflected pencil are convergent, then A ..g¢ is positive.
If rays of reflected pencil are divergent, then ¢.. A is negative.
And for convex reflector—
If rays of incident pencil are convergent, then A ..Q is positive.
If rays of incident pencil are divergent, then Q.. A is negative.
If rays of reflected pencil are divergent, then ¢.. A is positive.

If rays of reflected pencil are convergent, then A ..q¢ is negative.

1 1 1
s . g Q 2 - = e -
For instance, in the case of Fig. 2d we have A.g F A.Q but

by convention A..Q is a negative quantity, therefore the formula is
1 1 1 1
L. F A QT F
gent and positive.
Should Q.. A or A..Q be infinite or the rays of the incident

1
+m, therefore A..Q comes out diver-

pencil be parallel, then of course

1 1
becomes zero, and —— be-
A..q coomes A..g

= T d th y diverge fr I i
comes y——g Or f, an the rays converge to or diverge from the prin-

cipal focus of the mirror.
The dotted lines in the figures indicate negative distances, and

the full lines the positive distances.

Plane Refracting Surfaces

In the case of normal or perpendicular incidence of small pencils
at a plane refracting surface bounding a transparent substance whos

Reflector

Conven-

tions as to signs.

Instances of appli-
cations of signs to -
reflected pencils.

refractive index =y, while that of the left-hand medium ={, the w=refractive index.

simple relationship A..¢=u(A .. Q) holds good. See Figs. 3c¢ and 3b.

Spherical Refracting Surfaces

In the case of direct refraction of normal pencils by spherical
surfaces, as in Figs. 4a, b, ¢, d, ¢, f, g, and %, the formula

@ _p=1 1

GRS C AN )
or
g IL
u

Formula connect-
ing focal distances
in case of refrac-

tion at
surface.

single .



Convention , as to
gigns of focal dis-
tances.

Rays entering con-
vex surface conver-
gent.

Rays leaving convex
surface divergent.

of course g=
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holds good if we put u for A..Q, » for the radius A..C, and @ for
A..¢, and this formula interprets itself for all cases, provided the
following conventions are strictly adhered to, viz. :—

The radii of all surfaces, whether convex or concave, to be con-

sidered intrinsically positive with respect to the conjugate distances
whose signs are to be assessed.

Then for convex surfaces—
Rays of incident pencil diverging, then Q.. A or u is positive.
Figs. 4a and 4e.
Rays of incident pencil converging, then A .. Q or  is negative.
Figs. 4c and 4g.
Rays of refracted pencil converging, then A..¢ or % is positive.
Figs. 4a, 4c, and 4g.
Rays of refracted pencil diverging, then g.. A or i is negative.
Fig. 4e.
And for concave surfaces—
Rays of incident pencil converging, then A ..Q or w is positive.
Figs. 40 and 4f.
Rays of incident pencil diverging, then Q.. A or u is negative.
Figs. 4d and 4h2.
Rays of refracted pencil diverging, then ¢..A or % is positive.
Figs. 4b, 4d, and 4h.
Rays of refracted pencil converging, then A .. ¢ or % is negative.
Fig. 4f.
Thus, in the case of Fig. 4¢, A .. Q is convergent and therefore u

is negative, and

becomes

p_p-1_1
% r

Pl
(1 0y u

”
And, again, in a case where Q.. A in Fig. 4a becomes less than e then

= 1

1 . .
—~ gives a negative result, and the refracted pencil
T % 2

is shown to be divergent, as in Fig. 4e.

If the rays of the incident pencil are parallel and therefore

= zero,

1
Q..A

therefore
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and b

If, on the other hand, QA =IL i—l,thengz 0, and the rays of the

refracted pencil are parallel.

We are now in a position to consider the cases of two spherical
surfaces in succession enclosing glass between them and forming a lens.
We will assume the axial thicknesses of such lenses to be negligible,
the two spherical surfaces being brought to a sharp edge in the case
of collective lenses and the diameter or aperture being very small
compared to the principal focal length, while in the case of dispersive
lenses the two spherical surfaces may be supposed to touch one another
on the lens axis, the axial thickness being zero. Let us take a case
like Fig. 4, wherein the rays after refraction at the first surface are
convergent and % is positive. Let these convergent rays proceed
through a second convex surface, as shown in Fig. 5a.

. We saw that in the case of Fig. 4« the distance A ..¢ or @ was
given by the equation E=H;l —1, from which we get l=”;1 Sl
o u w7 o

We can apply this equation to the refraction, taken in the reverse
direction, at the second surface, as shown in Fig. 5a, Plate I1., wherein
A, .. Q, corresponds to #, and A,..g=1%; only in this case A, .. Q, may
be better expressed as = v, and the radius of curvature as s, so that we get

Lkl
4 s ?
and 1 p-1 p
vooosa

But as the rays of the pencil are converging (left to right) into the
second surface, and the distance % becomes, relatively to the second
surface, negative, therefore the above equation becomes

i N
Bl I
v s @
But ‘:T: by the refraction at the first surface was shown to be
-1 o q " 2
- et Substituting this value in the above equation we get

L _p-l p=1 1

S % u

Focal distance when
entering rays are
parallel.

Refracted
parallel.

rays

Two closely follow-
ing surfaces consti-
tute a lens.

So far, lenses
assumed to have
no central thickness.

Course of rays at
second surface con-
sidered reversed.
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which well-known formula applies to all thin lenses whatsoever
under the following conventions.

Collective Lenses

The focal length of a collective lens must be considered a positive
quantity with respect to the conjugate focal distances. The radii of
all convex surfaces are considered intrinsically positive, while the
radii of all concave surfaces are considered intrinsically negative, their
radii, of course, being always numerically greater than the radii of the
convex surfaces in the same lenses, so that the deeper curved surface
determines the character of the lens.

If rays of incident pencil are diverging,  is real and +. Figs. 6«
and Ge.

If rays of incident pencil are converging, w is virtnal and —.
Fig. 6ec.

If rays of emergent pencil are converging, v is real and +. Figs.
6a and 6c.

If rays of emergent pencil are diverging, v is virtual and —.
Fig. 6Ge.

Dispersive Lenses

The focal length of a dispersive lens is also to be considered a posi-
tive quantity with respect to the conjugate focal distances. The radii
of all concave surfaces are considered intrinsically positive, while the
radii of all convex surfaces are considered intrinsically negative, their
radii, of course, being always numerically greater than the radii of
the concave surfaces in the same lenses, the deeper curved surface
again determining the character of the lens.

If rays of incident pencil are converging, « is virtual and 4.
Figs. 6b and 6f. .

If rays of incident pencil are diverging, » is real and —. Fig. 6d.

If rays of emergent pencil are diverging, v is virtual and +.
Figs. 6b and 6d.

If rays of emergent pencil are converging, v is real and —.
Fig. 6f.

Figs. 6a, b, ¢, d, ¢, and f are illustrations of these conventions.
As in Fig. 4, and generally throughout this book, all intrinsically
positive distances are drawn in full lines, drawn thinner where



PLATE .I1.
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virtual ; and all intrinsically negative distances are drawn in dotted
lines, with their virtual extensions drawn lighter.

Theorem of Central Projection

Having now the formule relating to axial pencils of rays, we may
next consider the case like that shown in Figs. 7a and b.

Besides the conjugate axial pencils Q,..¢,, let another point of origin
" Q, in the case of the collective lens, or another apex of convergence Q,,
in the case of the dispersive lens, be taken at some small but appreci-
able distance away from the axis, such that Q, and Q, are on a plane
perpendicular to the axis. It is evident that a ray drawn from Q,
through the centre of the lens will pass straight on, as it is crossing
two elements of surfaces which are parallel and practically touching.
If a straight line from Q, is therefore drawn through the centre of
the lens and produced until it cuts the other so-called conjugate focal
plane ¢, .. ¢, (which is perpendicular to the axis and passes through ¢,
the conjugate focus to Q)), then the point of intersection ¢, is where
the conjugate image of the point @, is formed. That is, the centre
of the lens is always in a straight line between any point Q, or Q, of
a plane object and its conjugate image ¢, or ¢, This theorem is
capable of a further extension, as shown in Figs. 8« and b, Plate II1I.

Here are two cases in which the pencil of rays from Q, (here
drawn in solid lines) is eccentric; that is, none of the rays of the
eccentric pencil actually pass through the centre of the lens owing to
the stop s being interposed. But it is assumed that the rays constitut-
ing such an eccentric pencil are but a part of a larger pencil of rays
filling the whole lens; and since the lens is assumed so small that all
the rays refracted through it from any one point are caused to converge
to or diverge from one and the same image point, therefore these

eccentric rays may be regarded as coming under the same law, and the

conjugate points (, and g, may be considered to be strictly on a
straight line of projection drawn through the centre of the lens. Thus
the pencils of rays are assumed to be homocentric——that is, all the
rays constituting each pencil are assumed to diverge from or con-
verge to one point. From this it follows that the distance ¢, ..q,

=(Q1..Qz)£, and the scale of any conjugate image-formed of the

plane Q,..Q, is 5 times the scale of the original. The scales of image

and object are in direct ratio to their axial distances from the lens
centre.

The optic axis de-
parted from.

Oblique conjugate
focal distances.

Whenoblique pencils
are also eccentric.

Definition of homo-
centric pencils.

Relative scales of
object and its image.



Limitations.

Corrected lens
system. Theorem
untrue for the parts,
but true for the
whole.

Gauss and Listing.

Principal points or
nodal points.
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Although this theorem, which is a part of the larger Gauss theory,
is in its nature only true for minute angles of obliquity and for
exceedingly narrow pencils, which never have more than a very small
degree of eccentricity, yet it is of the highest importance when we
proceed to ascertain that very important function of a more or less
complex combination of lenses, known as the equivalent focal length.

While the theorem is of little practical worth when applied to
simple uncorrected lenses of substantial aperture, yet, for a combination
of lenses yielding a flat and rectilinear image, it becomes absolutely
true in the sum for the series, since the departures from its truth in
any one lens are in that case neutralised by contrary departures from
its truth in the other lenses.

Thick Lenses

We may now proceed to deal with the case of lenses of consider-
able thickness as measured along the axis. This subject was long ago
worked out by Gauss (about 1838) and Listing (about 1868), and it
will suffice to recapitulate here the most important results, although
perhaps arriving at them by methods differing from theirs, but more
convenient for our purpose. Let Figs. 9a, b, ¢, d, ¢, f, and g represent
various forms of lenses, of central thicknesses A .. A2, and radius e, .. 7,
for first spherical surface, and ¢, .., for second surface. It is obvious
that if any two radii ¢;..» and ¢, .., are drawn parallel to one another
and joined by the straight line 7, .., then the latter will cut the axis
at the point C, so that we have two similar triangles ¢ Cr, and ¢,Cr,,
and two similar mixtilinear triangles CA;», and CA,r, and the
distance C. s uf. Am .7y :¢,..7,, and moreover the straight line

.7, cuts the first surfaee or 1ts bangent at 7, at exactly the same
angle as it cuts the second surface or its tangent at r, If, therefore,
7, .. T, represents a ray of light, it will 0bv10usly, if reiracted out of the
surface at r,, be deviated from the direction 7,..7 by exactly the same
angle as it would be deviated from the direction 7, .., if refracted out-
wards at the point 7, only the deviation will be in opposite directions.
Hence the ray after refraction at », will pursue a course 7, .. ¢, and after
refraction at s will pursue a course . lls and these refracted rays are
parallel to one another. If, then, »,..¢ and r,..¢, are produced back-
wards (if necessary) to cut the axis at two points p, and p,, we then
get again two similar mixtilinear triangles » A p and r,A,p, and
again have A,..p 1 A,..p,:ie;..7 ic,. .7, These two points p, and p,

1 2 2
are the two principal points of the lens or nodal points (sometimes
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also called Gauss points), and, as we have seen, have this important
property, that any ray which, while outside the lens, passes through the
first principal or nodal point, will, after passage through the lens,
emerge on the other side in a direction parallel to its first direction,
and radiating from the second principal point; moreover, the same ray,
while traversing the interior substance of the lens, passes ex lypothesi
through the geometric centre of the lens or the point C.

As a corollary from the above principle, it follows that if we wish to
know the relative sizes or scales of conjugate images formed by thick
lenses, we must then measure the focal distances of such images from the
principal points of the lens. The focal distance of the first image or
object, virtual or otherwise, formed by the entering rays must be measured
from the first principal point p , and the distance of the second image
formed by the emergent rays must be measured from the second prin-
cipal point p,, when the sizes of the images will be in direct ratio to
those focal distances. Our theorem of central projection still holds good,
with this modification, viz. that the centre of the lens presents two
aspects, or two different positions, according to whether the lens is
viewed from one side or the other. Regarded from the left hand the
centre of the lens is practically the first principal point p,, but regarded
from the right hand the centre of the lens is practically the second
principal point p,, and these two points are but the refracted images of
the geometric centre C of the lens. That is, p, is the conjugate image
of C by refraction at the first surface, and p, is the conjugate image of C
by refraction at the second surface. Therefore the distances A p, and
A,p, may be derived from the Formula II.,

p_p-1_1

v r w

in its more special application to Figs. 4/ and 4g. At the first surface
we have u = A, ..p, (Fig. 9a), which by convention is a minus quantity,
while A ..C=4, and is a plus quantity, and 4 =7 Let » and
s = first and second radii of curvature respectively, and let the thick-

ness be denoted by ¢, therefore
poo_p=1 1

= +
AL.C r ALp/

and
1 _p p-1
A..p, A.C r
”

A.C=t—2,
7T+ 8

but

Conjugate focal
distances to be
measured from the
principal points.

A thick lens exists
virtually in two
positions.

Method of locating
the principal points.



Distance of first
principal  point
from first vertex.

Distanceofsecond
principal  point
from second ver-
tex.

Thickness of a col-
lective lens positive,
and that of a disper-
sive lens negative.

Case of collective
meniscus, first p. p.

Case of dispersive
meniscus, first p. p.

Case of collective
meniscus, second p. p.

Case of dispersive
meniscus, second p. p.
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therefore
1 pr+s) p-1 pr+s)-tp-1)
A.p T tr J
and
ir .
Al..pl—m). 1V.
Similarly, at the second refraction we have
1 p el
Ay..py A,..C s
in which
A,..C=t2
- TREEES
therefore
1 plr+s) p-1_ p(r+s)-Hu-1)
A,.p, s e is ’
and
is .
A e V.

2 BT L S 1)

These two formul® thus give the distances from the vertices A  and
A, of the two principal points of a lens. They obviously give a
positive result in the case of any double convex lens, which is as it
should be, since these distances are really additions to the conjugate
focal distances when both, as in Fig. 6a, are positive. But in order to
make the formulee apply to the case of the double concave lens whose
normal object and image distances are virtual,but positive, we must
consider ¢, the thickness, to be intrinsically a negative quantity, thus
making A, ..p, and A, .. p, negative quantities. For they are obviously
deductions from the conjugate focal distances when both are positive,
as in Fig. 6b. That having been settled, then the formulee will interpret
themselves correctly in all cases. In the case of the collective meniscus
(Fig. 9¢) s must be entered as a negative quantity in the Formula IV,
and being necessarily greater than 7, then »+s comes out negative,
and we get a negative denominator in the formula. Obviously in this
case A ..p, is measured outside the lens and is a deduction from the
value of w, if plus. In the corresponding case of a dispersive meniscus
(Fig. 9f) A,..p, comes out positive, both numerator and denominator
being negative. At the second surface in Fig. 9¢ the Formula V. gives
both numerator and denominator negative and the result is positive,
for A,..p, is an addition to the back focal distance v, if plus. In
the corresponding case of the dispersive meniscus (Fig. 9f) Formula V.
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yields a product of two negatives for numerator and a negative
denominator, and A,..p, comes oub negative, being a deduction from
a positive focal distance ». Fig. Og represents a special case worthy
of note, a case in which the two radii of curvature are equal, but
of opposite signs. Here the distance of ¢, the centre of the lens,

i i .
from either A, or A, comes out infinity <or BT t5>. The straight

line joining the two points » and r,, where the two parallel radii cut
the surfaces, is parallel to the axis, and obviously after refraction by
either surface will intersect the axis at a distance from the vertex of

r $ .
either surface equal to oy and | or A ..p and A,..p,, in the first

case negative and in the second positive. We shall also see later on
that such a lens, of watch-glass form, really possesses collective power
and can form a real image. DBut it is easy to see that if a real object
is placed at the first principal point p,, then, after passage through the
lens, a virtual image will be formed at p, of the same size as the
original.  In such case both % and v =o.

We have, then, here an actual and realisable example of the
theorem dwelt upon by various writers on optics, Dr. Drysdale for
instance, in the British Optical Journal, to the effect that the two
planes passing through the two principal points are planes of unit
magnification, or, in other words, if an original object or an image
lies in the first principal plane, then an equal-sized image of it, real
or virtnal, will be formed in the second principal plane. We shall
have ocecasion to refer again to this theorem in the next section.

Figs. 10 and 11 are peculiarly interesting cases, since we have the
radii and thickness so related that the ray » ..», within the glass is,
after refraction outwards, either way parallel to the axis. This con-

dition is seen to be fulfilled when = »—- -+ s-—”—, r in Fig. 10 being
p—1 p—1 =

a negative quantity and in F¥ig. 11 a positive quantity. Such thick
lenses as these may be said to have no principal points at all, and
therefore no focal length, and their analogy to the Galilean and
astronomical telescope respectively will be more fully realised later on.

In Fig. 12 we have the simplest case of all, that is, the sphere,
wherein the two principal points merge in the geometric centre.

In Fig. 13 the case is extended to one in which the two radii of
curvature are different, yet struck from a common centre. Here again
the two principal points merge in the geometric centre.

Figs. 14a and 14b show, for a collective lens and for a dispersive

Two radii equal, but
of opposite signs.

Theorem as to prin-
cipal planes.

Lenses without any
principal points and
without focal length.

A sphere has only
one principal point.

Other lenses with
only one principal
point.
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Now if the lens were infinitely thin, the reciprocal of its principal
focal length would be simply (u— 1)(1 +l> Calling this ;‘ and sub-
e

tracting it from § we get

(p=-Dipr+s) - (p-1)f} (p-1)(r+s) 1 1

HTS s “E ¥’
therefore
1 1 #p-1)
}L F TS 4
so that
g L) ety L ey,
(- 15+5) - ol
therefore
LT A
g F
_Ify e
T FL (,u.—l).(?:?)' prs )’
therefore
i(,u,—l) 1 -
= = VIII.
L F{ p(r + 5) OrF S 1

This is perhaps the most convenient and significant mode of ex-
pressing the modification of the power of any lens whatsoever which
is due to thickness; it expresses it in the form of a percentage of
gain or loss as compared with the power which the lens would have
if it were infinitely thin. It shows a loss of power in the case of
double convex lenses, a gain in power in the case of double concave
lenses, no alteration in power in the case of plano-convex, plano-
concave, convexo-plane, concavo-plane lenses, for in all four cases
7+ s becomes infinity ; while in the case of a collective meniscus, when
r+s becomes negative, a greater and greater relafive gain in power,
consequent in thickness, is attained as the radius of the concave
surface approaches to equality with the radius of curvature of the
convex surface; while, lastly, in the case of the dispersive meniscus a
loss of power ensues on an increase of thickness, since both numerator
and denominator of the function of ¢ become negative.

We have now arrived at the formula for the equivalent principal
focal length E of any lens whatsoever, and also have located the
geometric centre C and the two principal points p; and p,, from the
latter of which the equivalent principal focal length is- measured.






Power of a single
surface is a highly
inconstant entity.

The power of a thin
lens is a constant
quantity.

Thick lenses com-
pounded of infinitely
thin elements and a
parallel plane plate.

SECTION 1II
THE THEOREM OF ELEMENTS

WE have seen in the last section that the Formula II. relating to
refraction of an axial pencil of rays at a single surface is by no means
such a simple formula as the Formula III., which applies to the
corresponding case of refraction of an axial pencil of rays by a lens
bounded by two surfaces. In the case of the single surface, Fig. 4a,
for instance, if the rays are strongly divergent, then a large amount
of positive refraction takes place; but supposing the entering rays
are converging to the centre of curvature C, then no refraction takes
place; while if the rays are converging still more to any point
between C and A, then there ensues refraction of a negative character.
Thus, from the practical point of view of refractive effect, we may
disregard the so-called “optical invariant ” of the late Professor Abbe
as applied to a single refracting surface. Clearly a single surface is a
somewhat puzzling and inconstant entity, which varies in its effects
enormously according to circumstances. But not so the lens bounded
by two refracting surfaces; for whatever conditions of divergence or
convergence may characterise the entering pencil of rays, the lens
always adds or subtracts a constant refractive effect of its own which
g 1 1 1
is expressed by (u — 1)<;+E> or &

Let us see, then, whether we cannot express any thick lens in
terms of two complete lenses. Let Figs. 15a, b, ¢, and d be four
various thick lenses. Each one of these may be considered to be
built up of plano-convex, plano-concave, convexo-plane, or concavo-
plane lenses of infinite thinness, each lens consisting of any two of
the above and containing between them a piece of plane parallel glass
of a thickness equal to the axial thickness of the whole lens. For
instance, the collective meniscus, Fig. 152, may be considered to be
built up of a convexo-plane infinitely thin lens e at the left-hand

20
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vertex of the whole lens, and a plano-concave lens e, of infinite thin-
ness at the right-hand vertex, the two enclosing between them a
plate of parallel plane glass of thickness=¢ These two infinitely
thin lenses we will call elements. They are indicated in black in
Figs. 15. In Fig. 156 we have a convexo-plane element at e, and
a plano-convex element at ¢, In Fig. 15¢ we have a concavo-plane
clement at e, and a plano-concave elemeub at e, both dispersive,
while in Fig. 154 we have a concavo-plane lens at e, and a plano-
convex lens at e, the latter being negative with respect to the
more powerful first element, and the whole lens a dispersive
meniscus. Now the reciprocal value of the principal focal length

of any element or the power is (u— 1)(; + %) ; but as one surface is

always plane, therefore either S o becomes zero, and the power

then resolves itself into either 'u?;l or £ ;1 The principal focal

length of e, being called f,, then L ‘u%l, and for the second element

o _ fl 1

e, }:”—s Dor #7 1 if we call all adii r,, 7,, 7., ete.

2 2

But before proceeding further, we must ascertain what is the effect
of the plate of plane parallel glass upon the pencils of rays traversing
it in passing from one element to the other.

Fig. 16a represents a parallel plane plate of glass of thickness
A ..A, and Q is a point from which a pencil of rays diverges and
passes perpendicularly through the plate; that is, the central or
principal ray Q, .. P of the pencil is normal to the plate. Let Q .. A;=u
and A ..A, =¢  After refraction at the first surface the rays diverge
from the point ¢, such that ¢.. A, = uu (u being the refractive index).
Therefore when striking the second surface they are diverging from
a point ¢ at a distance from A, equal to w4 ¢  Then after refraction
from the second surface they diverge again from a new point Q,, such
that Q,.. A, = “u 2L P E That is, on emerging at A,, after passage
through the plate the 1ays are diverging just as if they had passed
without any refraction through an air space equal to f

I

Let Fig. 165 represent a corresponding pencil of rays converging into
the parallel plate. In both cases any small oblique pencil may be regarded
as part of a larger pencil whose central ray P..Q, is perpendicular to
the plane surfaces, so that any displacements are along this perpendicular
central ray as before. The entering rays are converging to Q,. Let

Elements defined
and explained.

Power of an element
defined.

Effect of the plane
parallel plate.

Transference of
radiant point formu-
lated.

Case of slightly ob-
lique pencils.



Displacement of Q
a constant function
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parallel plate.
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A, ..Q, be w. These rays, after refraction, converge in lesser degree to
¢,such that A ..¢=pu(A ..Q) or yu. Then when striking the second
surface they are obviously converging to a point at a distance to the
right of A, equal to w(A ..Q)—¢ or uu—¢, and after refraction con-
verge more strongly to a point at a distance to the right of A, equal to

= ¢ : ]
= u;;t u—;=A2..Q2. Here again the rays on emerging at A, are

converging, just as if they had passed without any refraction through
an air-space equal to 4

In Fig. 16a the distance

Q- Qe=u+1-(Qy.Ap)= u+t—(u+— —t—lé: <1—,14>—t< ;.1)

In Fig. 165 the distance
Q.. Qu=4,.. Q+t—(4,..Q)= (u_l> pe 0y _t<1_%>_,;(__1)_

p, /
Hence by passage through the plate the origin or apex Q, of the
pencil is simply displaced a distance equal to t<‘li—;—1 ) along a per-

pendicular from Q, to the plate, and in the same direction as the
light is travelling.

If the point Q, is anywhere in the interior of the plate, we still
arrive at the same result. Therefore, so far as our present purposes
are concerned, we may consider the elements ¢, and ¢, in Figs. 15 to

be separated by an air-space equal t:ot— instead of glass of thickness ¢
}L

Hence if Fig. 17 represents any lens whatsoever (except convexo-
plane and the reverse), then we may consider it, for our present purposes,
to consist of two small infinitely thin convexo-plane and plano-convex

elements ¢, and ¢, separated by an air-space equal to —; that is, Fig. 18
is the equivalent of Fig. 17. Thus we consider the two elements to

t -

be brought nearer together by an amount equal to ¢—— or t<’iﬁ_1>’
[.L

while all conjugate distances, such as that from e, to an object Q on the

left, or that from ¢, to its image ¢ on the right, remain exactly as before.
Also the distances from e, to the first principal point p , and e, to the
second principal point p,, remain undisturbed, as we will see later. There-
fore the total distance Q .. ¢ between conjugate focal planes is altered by

-1 : p .
+or—l<”———-> according to circumstances, as shown on comparing
o .
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Fig. 18 with ¥ig. 17. But so long as all the distances, whether of
conjugate focal planes or of principal points, measured from ¢, and e,
respectively, remain exactly as when treating the lens as a solid entity,
we need then have nothing to do with the fact that the distance from

the first principal point p, to the second element ¢, and the distance

2
from the second principal point p, to the first element ¢, are altered by

-1 . : g
t(’i—>; we can ignore it altogether, for those distances never come
%

into account in any formule whatever that are of practical importance.
The cases of convexo-plane, plano-convex, concavo-plane, and plano-
concave lenses, as in Figs. 18a, b, ¢, and d, call for special remark.
‘We must bear in mind that, in all such cases, the geometric centre
of the lens is at the vertex or point where the curved surface cuts the
axis, and therefore that point (¢, in 18a, ¢, in 180, ¢ in 18¢, and
e, in 18d) is an element as well as the first principal point in 18q,
the second principal point and element in 185, the first principal point
and element in 18¢, and the second principal point and element in
18d, while the other principal point, whether it be the first or the
second, is always at an apparent distance from the other one (at the

-1 ¢
vertex of curvature) equal to t#{ﬂ and ~ from the plane surface.
i A
For e, ..2172 in 18«, p,..e, in 18b,¢,..p, in 18¢,and p,..e, in 184, each
= t
— t(%), their distances from the plane surfaces being = And we

have already seen that the principal equivalent focal length of all
lenses having one surface plane is in no way altered by thickness,
however great. :

Therefore in treating such lenses we may take any focal distances «
or v that may be measured from the central or axial point of the plane

¢, . i,
surface, add +— in the case of collective lenses, and add —— in the
p p

case of dispersive lenses. Then w or v, as the case may be, will be
referred to the principal point.

Of course the addition of £ is algebréical, for if the rays of a
pencil emerging from the plane surface of Fig. 18« are converging,
then » is positive, and +z is an extension of that distance; but if the
rays of the pencil after emerging from the plane surface are diverging,

. : 4 . . . .
then v is negative, and — becomes a deduction from its numerical
value. o

Conjugate focal dis-
tances and positions
of principal points
undisturbed by
theorem of elements.

Cases of thick lenses
having one surface
plane.

Focal {distances
measured from ver-
tex of plane surface
to be corrected.



Case where collec-
tive and dispersive
lenses are ranged
on a common axis.

An’apparent |incon-
sistency explained.

Conventions to be
observed in case of
mixed lenses having
plane surfaces,
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But the same rule of adding :1::: will not guite apply to the

nieasurements of axial distances between neighbouring lenses of collec-
tive and dispersive types mixed. For instance, the distance between
the two lenses 18« and 180, which have their plane sides towards one
another, is indicated by the line s ; that is, to the original air-space

: 13 t ‘
¢, .. ¢ the distances ! and ﬁ have to be added at each end.

The distance between 185 and 18c¢ is simply ¢, .. ¢, as the two lenses
are presenting their curved sides and two elements to one another,

while the distance between 18¢ and 18d is ¢,.. ¢ w1th = and ¢ added
143
on at each end. It might here be urged that these lattel are two
ly t,
dispersive lenses, and therefore -2 and -* are negative quantities, so that

they become deductions from the numerical value of the distance e, .. ¢
if the latter is positive. Here is a seeming inconsistency. DBut we
must remember that if we are dealing with the two dispersive lenses
18c and 184 alone, then we treat them as positive entities, in which
case both their thicknesses and any separation between them would
be treated as negative quantities, so that s, would be the sum of
~(Py.-8) —(e,..¢) and (e ..p)).

But if we are tracing pencils through a series of collective and
dispersive lenses ranged on a common axis, we can then treat a// axial
distances between such lenses as positive, provided the principal focal
lengths of all dispersive lenses are considered negative relatively to the
said distances and to the principal focal lengths of the collective lenses.
Therefore in Figs. 18a, b, ¢, and d, if, as usual, we consider the distances s,

oyl R i ¢ .
and s, positive, then s, would also be positive besides i and I_j’ while the

powers of 18¢ and 18d would be negative, and the powers of 18« and
185 positive. And this is the most reasonable convention to follow
in the case of a series of mixed lenses. Such matters constantly
demand the exercise of careful diserimination.
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Then to get the equivalent principal focal length, or E, we have

ph _flfi-9) T
E—B+P2—f1+f2:——s+fl+f2_s,

and
E=—-f1f2—. N
i fl +f2—S
a r S i
Putting i for 7, | for f, and 2 for s, as before, we then
have
L S &
Ez__"___ii;l_= LNy = (B2
v s topr+s)-Up-1) (p- Dip(r+s) - e - DY
p-1 p-1 p - 1)

which is identical with the Formula VI. for the equivalent focal length
of a solid lens of thickness us or ¢ which we obtained in Section I.
It will be found that Formula X. is universally true for couples of
elements, provided our former conventions as to lenses are adhered to.
If one of the elements is collective and the other dispersive, the
stronger element should give the character to the lens, while the f for
the weaker element should be entered in the formula as a negative
~ quantity. For instance, if e, is the stronger, having f,=9 and
dispersive, while £, is 10 and collective, then, as in the case of the
lens, we should consider the character of the combination, by first
intention as it were, to be dispersive, and the separation s, which say
=2, to be relatively a minus quantity, just as ¢ was in the case of a
dispersive lens ; so that K becomes, since f, is negative,

(=10)(+9) Lt
0RO oo

Now as we assume the lens, by first intention, to be a dispersive lens,
but with a positive sign, it is clear that E, being minus relatively,
indicates that a real image is formed, and the combination, owing to
the separation, acts as a collective lens, although by first intention it
was dispersive. Thus the separation has reversed the character of the
couple.

If, on the other hand, we insert f, as a positive quantity in the
Formula X., and f, as a negative quantity, and therefore s as a positive
quantity, we shall then in the same case get E= + 90, which comes
to the same thing, E being + or of the same sign as f;, which is
collective, and so indicating a collective resultant lens or combination.

Formula for the
equivalent focal
length of two
separated ele-
ments.

Concrete example of
the use of signs and
of the highly im-
portant influence of
separation on the
character of a pair
of elements orlenses.

g
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and
1

P, +v,

(f1 +f2_3){f1“ (

= oy iy = (5= Fo)ng

After multiplying out denominator and cancelling we get

1 (f]u1 = suy + 8fy +fouy A (S + Jo- s)

P, +u,

-+ (A +

f1f2(f1“1 +8f) + fouy - 3”1)

= fo)(uy fl)}
f i~ 8)f2{f1ul = s(u _f1))

Then the other conjugate focal distance =Q..p, or u, + I’

s u](fl +f2 +5f1'

f1+f2_3 fitfy-s
Therefore

Lo fHtfo-s

u, + Py fy g fy—wgs + of)
therefore
1 1 (u1 fitufy—

u + Py v2 , + P flf,(ulf1 + Uy fo — U8 +fls)
which

(u1 Jr+u fo—ws+18)(fy +fo—

Thus the mutually dependent variables «, and v,, the front and

Sifolu fi + ulf,, UyS + 8f7)
fl ; ffz ~or E = constant.
1/e

u 3+f15 f1f2)(f1 f2f3)+f1f2(f1 +fy "5)

)+ (fife— flf")(fl +fp—9)

back focal distances respectively, have eliminated themselves, and we
find that the sum of the reciprocals of the conjugate focal distances as
measured from their respective principal points p, and p, is constantly

1to -
equa (0) =3
4 E

If the reader will apply the same processes to a com-

bination of three separated elements, he will arrive at just the same

result, although the process is much more lengthy.

Therefore the

combination of two thin lenses or elements, however widely separated
they may be, behaves like a simple thin lens of principal focal length

1 1
E, such that -—=E—[1~I if we put U for » + P, and V for P,+uv,

'\T

It only differs from a simple thin lens in that the two prinecipal
points are widely separated instead of both merging in the lens centre.

Fig. 19¢ presents the case of two dispersive elements.

It is commonly remarked that a thing cannot be in two places at
once, but here we have an optical combination of equivalent focal

Reciprocal of back
conjugate focal
length measured
from second princi-
pal point.

Reciprocal of front
conjugate focal
length measured
from first principal
point.

Sum of above two
. 1
reciprocals = B



A compound lens
exists practically in
two positions at
once.

Above curious fea-
ture illustrated.

A real pupil at the
geometric centre
implies two equal
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length X (that is, it forms an image of infinitely distant objects on
exactly the same scale as would be formed by a simple thin lens of
principal focal length E); but from the point of view of Q, or the left
hand, this equivalent simple lens is supposed to be placed at p,, while
from the point of view of ¢, or the right hand, it is supposed to be
placed at p,. It thus presents a dual aspect.

Tig. 19b illustrates this curious feature. It represents the
essentials of Fig. 19, p and p, being the first and second principal
points, and Q.. Q, and ¢ .. ¢, the two conjugate focal planes in which lie
either an object or its image. The planes drawn through the two
principal points perpendicular to the optic axis Q..q¢ are generally
known as the principal planes, and can be shown to have the curious
property that if any direct or oblique pencils of rays, such as Q..p,
and Q, .. p,, strike centrally npon the first principal plane p, at certain
points at certain distances from the optic axis, then the same rays will
start from the second principal plane at similar points at the same
distances from the axis (and on the same side of it). For instance,
the principal ray Q.. p,, together with two outer rays:Q..c, and Q..b,,
constitute the axial pencil striking the first principal plane at ¢, p,,
and b;. Also let the principal ray Q,..p,, together with Q,..¢ and
Q, . . b, constitute an oblique pencil also striking the first principal plane
at ¢, p,, and b. Draw straight lines from these points parallel to the
optic axis to intersect the second principal plane at ¢,, p,, and b,; then
these become the starting-points for the rays of the corresponding
conjugate pencils p,..q and p,..g, in such manner that the principal
emergent ray p,..q, is parallel to the principal entering ray Q,..p,

The proof of this theorem is really a simple one, for we have already
seen that if we take two infinitely thin lenses L, and L, of focal lengths

virtual pupils atthe f and f, separated by a distance s, then the ﬁrsb prlnmpal point is

two principal planes.

The principal planes
are planes of unit
magnification.

the image of the geometrie centre C as formed by L,, and the second
principal point is the image of the geometric centre as formed by L,
But the geometric centre is symmetrically disposed to the two lenses,
and if f, = 3f,, then the geometric centre is three times as far from L1
as from L, Therefore the image of C formed by L, is magnified or
diminished in exactly the same degree as the image of C formed by L,
Consequently, if we imagine a circular aperture or pupil to be placed
at C, then the image of it formed in the first principal plane by L,
will be exactly equal to the other image of it formed in the second
principal plane by L, The two principal planes are in this way
shown to be planes of unit magnification relatively to one another.
Therefore if the bounding rays of any pencil whatever strike the first
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principal plane at distances d and d’ from the axis, they will start
from the second principal plane also at points distant by  and d’ from
the axis, although when actually passing through the plane of the
geometric centre the distances d and d’ may be more or less reduced or
increased. Moreover, these distances d and d’ invariably keep to the
same side of the axis; for since the images of the imaginary aperture
placed at the geometric centre are formed by I, and L, in the two

principal planes under similar conditions, therefore if the image of our -

pupil at C formed by L, at p, is the same way up as the original, then
the other image of C formed by L, at p, is also the same way up, or
if one image at p, is reversed, then so is the other image at p,.

It is interesting to note how the pencils of rays are set back in
their course, as it were, by the distance p —p, between the focal
centres, which therefore constitutes in this case an overlapping of the
conjugate focal distances, and corresponding shortening of the distance
Q..q. This theorem, that any two separated lenses on a common axis
act as a simple thin lens of equivalent principal focal length E, is
highly significant, and the important corollary follows from it, that all
optical systems, however complex, exhibit two final principal points,
and that the sum of the reciprocals of the conjugate focal distances
measured from those points is constant.

For, supposing we have three thin lenses ¢, ¢,, ¢, of principal focal
lengths f,, f,, f,, arranged on a common axis, as in Fig. 20, Plate V.
Then the couple ¢, and ¢, have their geometric centre at ¢, and their
two principal points at p, and p,, and have an equivalent principal
focal length =E. Then, from the point of view of ¢,, the combination
£, +¢, 1s tantamount to a simple lens of principal focal length =E
placed at p,. It therefore follows that we have a new geometric centre
C such that (p,..C):(C..¢)::E:f,. Then the point C refracted by the
equivalent lens at p, will be apparently transferred to P, p, .. P, being
in this case conjugate to p,..C, and C is also transferred to I’, by the
refraction of ¢, and we have two new principal points P, and P, for
the whole combination of three lenses, which latter possesses a new
equivalent principal focal length which we may call E,, which is also a
constant with respect to the three lenses (so long as the separations are
constant). It will be seen that

ey gligiies . I
TP 00 1B a0 o (OF 4T
and

The two principal
pupils the same way
up.

All lens systems
have two final prin-
cipal points.

Proof of above
theorem.
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which reduces down to

Ji(fosy + Jos + fs8) = 8185) Formala _ locating
2 =6..P =P, X1a. first principal point
Sl fi—s)+ (fs—s )N fr+ /o= 81) for three ell;ments.

Next we require a formula for the distance P,.. ¢, measured from
the second principal point P, of the triple combination to the element e,
From Formula IX8. we have by analogy

. S
B Z‘L g in which 8, as above, =s, + "1 }:"_

TE+ +f3— SH+fe-

(s ahis)s "'

i f}f_ 5 o s ( f1 +.}f )

which reduces down to

and

P,..e=

Formula  locating

fs(fzsz +f231 +_f152 3150) =P I second principal
=P,..,=P,. XIs. h
folf o1 =8) + (fa— )y + o= 81) po;;x:sfor Lk

It is plainly evident that the Formula XIB. is the symmetrical coni-
plement of Formula XIA. For, if we trace the light backwards through
the combination, then f; becomes f,, s, becomes s,, while f, remains f,,
and thus the one formula may be turned into the other. Next, we
require a formula for the equivalent principal focal length E, of such
a combination of three lenses or elements.

By analogy from Formula X. we derive

Ffs
B=fr7,—8
in which, as in last two cases, i
S=8,+p,..e 0r s+ e }52
and
flfa
E_
fi+h—8
__flfzfa_
therefore E,= 7 fitfe=8 o
_ Nl el
h+fe—s J3- ( frtfo 1>



Formula for
equivalent focal
length for three
elements.

Formula for
equivalent focal
length for four
elements.
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which reduces down to

__hhf: N
fz(fl s) + (fs— 332)(f1 +fo— 31) &IL

We may now pass on to the consideration of a combination of
four separated lenses or elements. Let Fig. 21 represent four elements
€y, €, ¢, and ¢, separated Dy the three distances 8, 8p and s, Our
line of procedure is to consider this as a combination of two couples,
viz. e, and e, having their two principal points at p, and p,; and e, and
¢,, having their principal points at p, and p,, Then the distance
Py P OF S is obviously the real separation between these two couples,
whose respective equivalent principal focal lengths we will denote by
E and E, Then the separation between them is obviously equal to
Py--C+Sy+e..p,=S8, so that generally the equivalent principal
focal length E, of the whole combination

.y E1E2
“E+E,-8

- N Jafs
= f1+fo 5 fs+f4_ss
Sife Jafs syfe s
St f—sl+f3+f4 53 {f1+f2‘sl+s f3+j’4 __}

SiSaSs s

which

=f1f7f3+f4‘ sg) Hfa fs it~ 81) — Sif(fatfi— 89) — s it fa— 1) e +/s - 89) — 8sSol Fit S —81)

and finally

= N loSsts
E,= (fy+fo=s)fafy = fose) + (fs + 14 _333){f2(f1 AN § AT AT XIIL

It is obvious that the two couples have between them a new
centre of symmetry, C, or the optical centre of the whole combination,
so located that it divides the distance p,..p, between the second and
third principal points into two parts such that p,..C:C..p,:: E :E,
Then the point C, refracted by E , is transferred to P, such that p .. DI
is conjugate to p,..C. In the same way the point C, refracted by E,,
is transferred to P, such that p,..P, is conjugate to C..p, We now
want formule for the distances of the two principal points P, and P,
from the outside elements ¢ and ¢, In working out the principal
points for two collective elements we found that if the first principal
point fell to the right hand of ¢, then the distance e, ..p, was positive,
and if it fell to the left hand, it was negative; while if the second

principal point fell to the left of ¢, then the distance p, .. ¢, was positive,
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and if it fell to the right hand it was negative. Bearing this in
mind, it will be seen that in this case the required distance e .. P,
=(¢,..p)+(p, .. P), the latter being negative in Fig. 21, and also
that e,..P,=(p,..¢)+(p,.:P,), the latter also being pegative in
Fig. 21. So we have ¢,.. P =(¢,..p)+(p, .. P)) (algebraically)

— slfl + SEI_._,
f1+f2_ +E2_S
in which S or p,..e,=(p,..¢,)+8,+ (¢ .. p,), Which

1f2 e Squ
f1+f9—sl f3+f4—s3

On substituting this value of S in the above, we get

AT, 4_8'3/_13__} hfs
oA} orP 8,1 -+ f1 +f2'31 g f3+f4 f] +f2 5
Thtfhes f1f2 __a f3f4 _{_31f2_+ 45 _Safy }
f1+fz , fa+fi-8 \fi+f,-5 fatfi=—ss
which reduces down to
e,..P or P
f; 1{(f 281+ S8 = 88)(fs + 4 — 85) + o fo85 + fd1 — 818)} Fomn b e
I 2700 S XIVA. mula for position of
(fl Hipgles 31)(f3f4 f:;sa) +(fa+fi- 33){f0(f1 31) " sz(fl +fo~8)} first principal point.
The distance of the second principal point P, from . e, is obviously
¢,..p,+p,.. P, analogously to the last case, and is expressed by
S o 2 SE, \
Jatfi—s E +E,-8
in which S', as before, is the distance p,..p,, and E, is
fals
Js+fo— 8
Therefore
_sh o 3f3 fof
..P,or Pz sS4 o f1+f2'31 i f3+f4 f3+f4_33
f3+f4_33 il _‘*__faf‘;___{ s/ +% S3fs 1
Nitho—8 fatfi—35 \fitfo-5 7 f3+f4
which reduces down to
eattet By
F 1 ts. For-
JallfoSs + a8y = Su3)(fy + 5= 8)) +fo fsy +fiSa 8:85)} XIVE. mt:;;ef:;n ;lgfs?tiqnozf
(f1 +fo= 80 fsSs—fs38) + (fs + Fy = s{folfy — 8) — so(f1 + fa = )} Sogned, pTISREWS

point.



Symmetry of For-
mule XIVA. and
XIVB.

Formule relating to
more than four ele-
ments undesirably
complex.

Case of fiveelements.

Equivalent focal
length for five
elements.

Five elements. Posi-
tion of first principal
point.
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On comparing Formule XIVa. and XIVB. it will again be noticed
that they are symmetrical to one another: f in the first corresponds to
J, in the second, f, corresponds to f,, f; to f,, and f, to f,, while s
corresponds to s, and s, to s, Hence one formula may be converted
into the other by supposing the light to traverse the system in the
reverse direction.

We have now got general formule for the equivalent focal lengths,
and the positions of the two principal points for any combinations of
two to four separated elements or thin lenses, stated in terms of the
principal focal lengths of the several elements or lenses concerned and
the separations between them ; and we have found these formule relat-
ing to a four-lens system to be sufficiently complex to deter us from
proceeding any further on the same lines; that is, were we to work
out formule for a five-lens, six-lens, and elght -lens systems, all likewise
expressed in terms of the prineipal focal lengths of the several elements
or lenses involved and their respective separations, we should arrive at
undesirably bulky formule. In such cases the results are perhaps
best arrived at by the building up or cumulative process, yielding
formulee in which equivalent principal focal lengths of two or four lenses
together constitute the terms. In this way we may deal with the case
of five lenses as follows :—

Let e, ¢, ¢, ¢, and e , Fig. 22, be the five elements involved. Let E,
be the eqmvalent prlnclpal focal length of the first four elements, l be
the distance from first element e, to first principal point P, of the same
and ?2 be the distance from second principal point P, to the fourth
element ¢, Then we may treat the whole as a combination of a simple
lens of EFL =E, placed at P, with another simple lens of EF.L.
=/, placed at e, the distance between them being P,..e, or P +s,
Therefore the equivalent principal focal length of the whole comblna-
tion will be (see Formula X.)

- 4f5 X_‘T'
PR, +fy— (Py+ )

The distance of the new first prlnmpal point P” of the five-lens combina-
tion from ¢, will then be (P,.. B/)+ (P, ..¢),or (P,.. P/)+ P =say P/,
for which the formula will be (see IXa.)

Pr-— &tP)B 5 XVa.
E, +fs—(s,+ Py
and the formula for the distance of the second new principal point P
from ¢, will be (see IXB.)
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B, - GutPalfs XV
E, +fs—(ss+ By)

Formulz for Six Thin Lenses or Elements

We may treat this as a combination of four lenses of EF.L.=E,
with another combination of two lenses of EF.L.=E, (See Fig. 23.)
Then if P, = first principal point of the four-lens combination, and ]31

its distance ¢ .. P, from e,
and P, = the second principal point of the four-lens combination,
and E: distance e, . . ]?2 from e,
P, = the first principal point of the two-lens combination,

and F3 = distance P,.. ¢, then we have
P, =the second principal point of the two-lens combination,

and f’4 its distance from e,
> EE,

.= NS XVI.
E, + E,-(s,+ P, + Py)

Then if P,’ is the new first principal point and P, the second one for
the whole combination, then putting P]’ for the distance e, .. Pl’, and

P, for P..e, we have

oo ) el B Ry XVIa.

P'= ke
VB 4B (5, + P+ P
e, (s, + Py + P)E,

and BA=

? B+ By - (5P, +P)

+P, XVIs.

Another way is to treat a six-lens combination as a combination of
three couples of EF.Ls respectively=E, E, and E, then apply
Formule XIa., XIB., and XII.

Formule for Eight Thin Lenses or Elements

This consists of two four-lens combinations, whose respective E.F.L.s
we may call E/ and E". (See Fig. 24.)
Let P, be the first principal point of first four-lens combination, and
?l its distance from e,.
Let P, be the second principal point of first four-lens combination, and
?2 its distance from e,

Five elements. Posi-
tion of second prin-
cipal point.

Equivalent focal
length for six
elements. 2

Six elements. Posi-
tion of first principal
point.

Six elements. Posi-
tion of second prin-
cipal point.



Equivalent focal
length for eight
elements.

Eight elements.
Position of first prin-
cipal point.

Eight elements.
Position of second
principal point.

Various methods of
treatment.

Cemented
ete.

lenses,
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Let P, be the first principal point of second four-lens combination, and
P, its distance from e
Let P, be the second principal point of the second four-lens combina-

tion, and P, its distance from e,
Let P/ =the first prmmpal point of the eight-lens comblnatlon and

P,/ = the distance ¢, ..P/.
Let P,/ = the second prmmpal pomt of the eight-lens combination, and

D/ . /
P/ = the distance P, .. ¢, |
E4l ‘4//

Then E,= Ay VAL
E/ +E/~(s,+Py+ Py

B (5 -+_P-+£3)E +P, XVIIa.
L BB )

and P,/ =— 2 +~ By Ps)—E R XVIIE.
E/ +E - (s,+Py+Py)

While combinations of eight separate lenses may seldom occur, yet
combinations of four thick lenses are frequently employed, and we have
seen that.such cases may be treated as cases of eight elements, the
élements .appertaining to each solid lens being considered to be

/4
separated by a distance s equal to W while if any lenses are cemented

together or in contact, then, in the above formule, the separation s,
8,, or 8, (or whichever it may be, in its natural order) should be entered
as equal to O, while the principal focal lengths of the elements in
contact  may be entered as usual, even When of equal refractive
indices, in which case they exactly neutralise one another and may be
treated as non-existent. Or if of different refractive indices and in
contact or cemented, then, as one is necessarily a collective element and
the other a dispersive element, the difference of their powers may be
taken as the power of one resultant element, and thus the calculations,
which are inevitably tedious in complicated cases, be considerably
simplified. =~ Or the EF.L. and principal points of each thick lens
may be worked out separately, resulting in a combination of four
equivalent lenses, whose effective separations of course depend upon
the relative positions of their principal points; then any of the above
formule suitable to the case may be employed.

Having once obtained the principal equivalent focal length of any
one more or less complicated combination of lenses, and the position of
the two principal points (sometimes called nodal points) with reference
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to the first element or first vertex of the combination, and the last
element or last vertex of the combination respectively, then, as all
conjugate focal lengths are to be measured from those principal points,
the positions of all images or original plane objects and their images
can always be correctly assigned with reference to the first and last
vertices of the combination, if so desired, provided that the optical
corrections of the system are at least approximately well carried out.

For it must be borne in mind that the above lines of reasoning and
the consequent formule are based upon the theorems of Gauss, which
are abstractions in the sense that they would be of no practical value
whatever if applied to lens combinations thrown haphazard together in
" such manner that no approach to flat, distinet, and rectilinear images
were made at all. The more perfect the images formed by complex lens
systems, so much the nearer to absolute accuracy become the deduc-
tions from the Gauss' theory as embodied in the formule which we
have arrived at in this section.

A few illustrative examples of the application of the formule to
known combinations may now be given.

Let a sphere of glass of refractive index = 15 and of radius # be

treated by the method of elements. Then
L N
oy S 2%
and
fH=f=2 -
and :
LG et
SRS I
and the EF.L. by Formula X.
(@8 =f Db = e S8
%W + ‘Jr—l4_r— 12r - 47._4T g7 57,
T S, 3

while either the first or second positions of principal points are given
by Formula IXa. or IXB, so that

2r+ 2r — %r gr

Thus if the lens is a solid sphere, then the distances of the two

Good optical correc-
tions assumed.

The above theorems
acknowledge no op-
tical aberrations,

Examples.

Case of refracting
sphere.

E.F.L. of sphere.

Centre and principal
points coincide.
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It is clear that since, as in all previous cases, the distance from the
first vertex to the principal focal plane f=E — f’l, and P, is in this
case the larger, therefore E — I_’1 is a minus quantity and indicates that
the image formed by the eye-piece at f of distant objects on the right
is a virtual one. On the other hand, E—i’; is a positive quantity, as
l—’2 is the lesser, and indicates that a real image is formed at F, of a
distant object on the left. It is well known that a real image of the
relatively distant object glass to the left is formed at ¥,. Thus either
of the distances p, ..F, or p,..F, represents the principal equivalent
focal length of the combination.

It is clear also that when used with a telescope whose objective is
to the left hand, the eye-piece must be so placed that the primary
image formed by the objective must be made to fall upon the first
principal focal plane f, in order that the rays emerging from the eye-
piece may be parallel and fit for normal vision.

For it is clear that the rays converging to the image in the first
principal focal plane f will, after refraction by the first lens, be con-
verged to a real image in F .. F, in which plane also is the second
principal point p,, where it is also in the principal focal plane of the
second lens. This coincidence of the position of the real image
formed between the lenses with the position of the second principal

point is characteristic of combinations wherein s=f1—0f2, but it is a

matter concerning the internal economy of the combination as it
were; and we must remember that the formule we have worked
out for equivalent focal lengths and positions of the principal points,
in themselves deal with resultants and take no explicit notice of
what goes on between the lenses, but only deal with the positions
of objects or images from or to which the rays are proceeding
before they enter the system and after they emerge from it. Thus
in Fig. 26, with regard to the rays entering the combination, a simple
thin lens (having a prineipal focal length equal to the EF.L. of the
combination) may be imagined to be placed at the first principal point
Py 80 that the entering rays converging to a real image at f and
f..p, are about equal to the E.F.L. of the system; while, after
emergence from the eye-piece, the rays of pencils are either
parallel, as if coming from a distant virtual image on the left hand,
slightly divergent from a nearer virtual image, or else slightly con-
vergent to a real image on the right hand; but in all cases the focal
distance of such image, which is conjugate to the distance f..p,, is

Image in first prin-
cipal focal plane is
a virtual one.

Image formed in
second principal
focal plane is a real
one.

Condition of use with
a telescope.

Formule of this
section deal with re-
sultant effects only.

An elementary lens

equivalent to the -

eye-piece.



Another aspect of
the question.

Principal rays do
not pass through
geometric centre.

The exit pupil of an
eye-piece.

Definition of pupil;
in the case of an
image of a real stop.

The entrance pupil.

Case where stop and
pupil are one.

Pupilnot necessarily
placed at geometric
centre of a combina-
tion.
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measured from the second principal point p,. Therefore, supposing I
is a particular point in the first image at f, and we join I by a
straight line I..p to the first principal point p, then if we draw
another straight line through p, parallel to I..p,, it will cut the plane
of the second conjugate image at the point where the image of the
point I is formed therein (assuming distortion to be eliminated).
While we are dwelling on the case of the Huygenian eye-piece,
Fig. 26, we may, with much advantage, discuss an aspect of this
question of equivalent focal lengths of lens combination which may
well appear puzzling to those studying the question for the first time.
In our treatment of thick lenses and combinations of two thin
lenses or elements we have assumed the centre or principal rays of
oblique pencils of rays to pass through the geometric centre of the said
lens or pair of elements, but in Figs. 25 and 26 this does not take place
at all, and, in fact, the principal rays of oblique pencils are shown to
cross the optic axis, not at the geometric centre C, but at or near F,,
the second principal focal plane. Now it is the size of the distant
object glass to the left that defines the sizes of the pencils of light
entering the eye-piece, and we have seen that an image of the object
glass is formed very near to F,, through which image pass all the more

‘or less oblique pencils of light emerging from the eye-piece. This

image is the exit pupil of the eye-piece, and its centre or the point on
the axis where it occurs is the exit pupil point of the eye-piece.

The pupil point or points of an optical combination may then be
defined as the point or points where the principal rays traversing the
combination, or their projections, cross the axis. In this case the pupil
point is where an image of the object glass would be formed by L.
If the object glass on the left is brought nearer to the eye-piece, then
the pupil point will, of course, move towards the right. The aperture
of the object glass may then be regarded as the entrance pupil of the
eye-piece, the pupil being an image of it formed by L, and the exit
pupil is an image of that image formed by L,

But cases of other optical combinations may be imagined, such as
photographic lenses, wherein the stop or diaphragm may be somewhere
in the middle of the combination, and be an actual stop and not merely
an image of another stop. In some cases the diaphragm or stop
forming the pupil may be placed exactly at the geometric centre of
the combination, as for simplicity has been assumed in working out
the formule in this section, but in very many cases it is not so placed.

In fact, the position of the pupil point of any combination is totally
independent of the position of the geometric centre, and therefore of
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the two principal points. But it might be thought that if the pupil
point is widely removed from the geometric centre, as is the case in
the Huygenian eye-piece, then the equivalent focal length of the
combination might be quite different, and that our formula for the
same would no longer hold good. This matter is certainly worth
inquiring into. In the first place, the theorem of homogeneous pencils
as explained on page 11, may be applied here. For although we are
considering the oblique pencils traversing the Huygenian eye-piece as
avoiding the geometric centre (and therefore the principal points) of
the combination, yet if we imagine such pencils to be homogeneous, but
very much enlarged in angular aperture, then we airive at a state of
things in which, although the principal or central rays of all such
pencils still avoid the geometric centre, yet there is sure to be some
one ray in each pencil which does actually pass through the geometric
centre and the two principal points, and since such centre-traversing
rays are proceeding to or from the same image points as the principal
rays of the same pencils (ex hypothesi), we therefore clearly see that
the relative sizes and positions of the conjugate images should not be
disturbed by the fact that the real pupil point in an optical system
does not coincide with the geometric centre, or that the apparent pupil
points do not coincide with the principal points, if we assume that the
Jinal tmage approximates to perfection vn all respects.

Assuming that the theorem of the homogeneous pencil holds good
we may prove the case algebraically thus:—

Let ¢, and ¢, Fig. 27, be two thin lenses or elements, and let P
be the position of the stop where the prineipal rays of oblique pencils
are constrained to cross the optic axis Q.. ¢, and let P be placed any-
where not necessarily coincident with the geometric centre, which may be
at C for instance. LetQ,..5,..P..5,..¢, be one of the oblique principal
rays proceeding from an infinitely distant point Q, on the left hand to
the image point of it at ¢, in the principal focal plane ¢..¢,. Before
entering e, this principal ray is proceeding to p,, the first pupil point,
which is the apparent position of P as refracted by ¢, and on
emerging from e, it proceeds apparently from p,, the second pupil point,
which is the apparent position of P as refracted by ¢, Let the separa-
tion ¢ ..¢,=8, and let ¢,..p,=C,, ¢,..P=D, P..¢,=8=D, =C,
and p,..¢,=D,; so that we have C, and D, conjugates as well as C,
and D,

Then we have

The geometriccentre
traversed by one ray
of each oblique
pencil.

Proof that the E.F.L.
is independent of
position of the pupil.
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tan
tan x‘bl

fX(fi—Dy) fl(fo+D -S)_ f1f2
(f1+f2 S)(f2+D -S) Ll =Dy) f1+f2

Thus the question of the position of the pupil point as measured by
D, has eliminated itself, and the equivalent focal length is shown to
be a function of the principal focal lengths of the lenses and their
‘separations, and quite independent of the position of the pupil point
within or without the system.

There is still another method of working out the equivalent focal
lengths of any combinations, which treats all images by projection
from the several lens centres or the points on the axis where the
elements occur, by which the back focal length is arrived at. The

an Yoty

back focal length is then multiplied by tan y, ’ wherein » is the number

tan 8
Eor I(..q:(pg..g)mnlp3 or (B +D,)

=E.

of elements, 4, ,; the angle made with the optic axis by a straight line
joining the last lens centre or element to the particular image point
g,» and 4 being the angle made with the optic axis by a ray from the
infinitely distant object point Q, striking the first element or lens
centre. It is thus based upon the theorem of central projection, and
leads directly to precisely the same formule for equivalent focal lengths
and indirectly to the same formule for principal points.

The Ramsden Eye-piece

This well-known form of eye-piece is supposed to consist of two
lenses of equal focal length separated by the focal length of either.
Under these conditions it is clear that the geometric centre is half way
between them, and therefore the first prineipal point coincides with the
second lens and first principal focal plane, while the second principal
point coincides with the first lens and the second principal focal plane.
In practice, however, the two lenses are fixed rather closer together
than this, even at the sacrifice of perfect oblique achromatism.

Three-Lens Huygenian Eye-piece

A few more concrete examples may now be examined. For
instance, Fig. 28 represents a form of three-lens Huygenian eye-picce
which is often used by Continental opticians.

fi=62 fi=5T  fi=22
5=26  s,=12

Another method of
deriving the E.F.L.
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From these figures Formula XII. gives E,= + 26, Formula XIa.
gives 1’1= 4 5'04, and Formula XIsB. gives T’2= +192. Thus P,
the first prineipal point, is a long way back, even behind the last lens ;
and if pencils of parallel rays enter the lens from the left, then
a real image is formed in the principal focal plane F-F,; and if
pencils of parallel rays enter from the right hand, then a virtual image
is formed in the other principal focal plane F —F, from the point of
view of an observer to the left hand. Therefore, if an object glass
away to the left forms a real image at ¥ .. F,, in such a manner that
it would be actually formed at F,..F, were L not there, then the
pencils emerging from L, will consist of parallel rays in proper con-
dition to be received by a normal eye with its pupil placed in or near
F,..F,, near which an image of the distant object glass will be formed.
In this case a real image will be formed between I, and I, in the

plane f.. 1.
The Three-Lens Erecting Eye-piece

This is an old and discarded device which may be compared to a
Huygenian eye-piece with a supplementary collective lens placed a
long way in front of it, whose office it is to throw into the Huygenian
eye-piece an inverted image of the primary telescopic image. Although
this combination can be made into an achromatic eye-piece, yet the
Impossibility of obtaining a well-corrected large field of view has led to
its disuse. Such a three-lens eye-piece may also be regarded as practic-
ally a four-lens eye-piece in which the power of the second lens has
become zero.

The Four-Lens Erecting Eye-piece

Let us now turn onr attention to the well-known four-lens or
erecting eye-piece. This is a construction subject to much variety
consistently with good performance, but Fig. 29 may be taken as a
fair sample of the construction. Here

fi=1 Jo=1-25 S3=125 Sfi=80
s, =13 $,=40 sy=12

Here from Formula XIII. we get E, = —-31, from Formula XIVa.
we get P = —-605, and from Formula XIVB. we get P,= —'635.

We thus find that the EF.L. of such a combination is negative,
while the negative values for P, and P, indicate that the two principal
points are both outside the system, as shown.
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One of the most striking points about the four-lens eye-piece is its
clumsiness. In the present case it is seen that the length over all the
lenses is about thirteen times the E.F.L., and it is almest impossible to
compress such an eye-piece into less than seven times the E.F.L. with-
out sacrificing flatness of field and other good qualities.

If pencils of parallel rays enter from the left, then a real image
(upside down) is first formed at F,.. F// at a distance f, behind L;, and
then another real and upright image is formed at ¥,/..F/, the second
principal focal plane of the system, and at a distance P =E, to the
left of the second principal point P,. 1If, on the other hand, we
suppose pencils of parallel rays to enter the system from the right,
then a real image (upside down) is formed at F,.. F, at a distance =,
to left of L,, and another, upright, image is formed in F,..F, the first
principal focal plane, situated at a distance =E, to the right of the
first principal point P. Conversely, if an object glass to the left
forms an upside-down real image at ¥, .. ¥, then after passage through
the first three lenses an erect real image is formed at F,..F, in the
principal focus of L, and the rays emerge from 1, parallel and in
condition to be received by a normal eye with its pupil placed some-
where near F,..F,’ (where an image of the distant object glass is
formed).

To all intents and purposes, and regarded from the left hand,
the combination is equal to a thin dispersive lens of principal focal
length = E, placed at P, at its principal focal length inside of the
primary image F,..F,, while from the point of view of the right hand
the combination is equivalent to a thin dispersive lens of principal focal
length = K, placed at P, with the rays emerging from it in parallel
condition, but with the principal rays of the pencils diverging from an
exit pupil point in or slightly to the right of F,..F, where an image
of the object glass is formed. But since such equivalent dispersive lens
placed at P, is an abstraction, there is nothing to prevent the pupil
of the observer’s eye being advanced to the plane ¥,/-F,/, where it is
obviously in a position to take in the whole field of view, instead of
a small portion of it, which it would be restricted to were a real
equivalent dispersive lens placed at P,

The Cooke Process Lens

We will now take, as a further example of the application of
these formule, a form of photographic lens designed for copying
diagrams, of which Fig. 30 gives a section.

Positions of the two
images of distant
objects on the left
and with distant ob-
ject on the right.

Use with a telescope.
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L,. Equivalent focal
length.

L,. Position of first
principal point.
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L, and L, are of the same glass having u, =1:6103.
L; is made of glass having x, =1'524 (=M,).
The radii counting from left to right are as follows :—

r= +1264  ry= —148 1= —2:09 71,= +553
ry= —'5325  rg= +28

The thicknesses of the lenses L, Ly, L, are respectively—
ty= +°105  #,=-358  {;=-110

Air-space A, =-232. Air-space A,="0053.

We will now treat this combination as one of six elements arranged
in three pairs. Fig. 30a shows it rendered into six elements separated
by five air-spaces s, S, S5, S, and s;, of which

sl:;%» e 83=f:; 3= A, 35=1:ﬁ.

The first step is to take the elements in three consecutive pairs
corresponding to the three lenses, and find their equivalent focal lengths
by Formula X., and the positions of their principal points by Formule
IXA and IXB.

The second step is to obtain the equivalent focal length of the
combination of three lenses (or sets of two elements) and the positions
of their respective principal points, by Formule XII. and XIA. and
XIs.

Calling the principal focal lengths of the several elements f; and
Ja, ete., we find

fi= + 20711 [f,= - 2:425 | fy= — 34246 | f, = +-90611 |
fo= - 101622 | fy= + 53435,
and
tl . 9l 999! t2 HOD) A . 53 5. = t‘i =-0722
sl=;D= 0652(s, = A, =232 33=M—D= 22235, = A, =005 B=3 5

We then get
L1

O (200711)(-2425)
B = 0711 - o435 —0e52 ~ T 11984

5o (0652)20711)

=

= -+3222
20711 - 2'425 - 0652

(to left of and outside of lens),




m THEORY OF EQUIVALENT FOCAL LENGTHS 49
—,  (0652)( - 2:425)

= 13772 L;. Position of
by = 2-0711 — 2°425 — 0652 Sl se.cotnd principal
. o1nv.
(to left of and within second vertex). P
L,
= _,(;3_4246)(3021_9___ = +1°1329 L, Equivalent focal
27 -3:4246 + 90611 — 2223 7 length.
VD ('2223)( = 3'4246) = + 9777 L, Position of first
P = 734946+ -90611 - 2223~ principal point.
(to right of and within first vertex),
= (-2223)(-90611) . L, Position of
Ps == 34946 + ‘90611 — 2223 = —-°07349 sgcond principal
oint.
(to right of and outside second vertex). 1
L,
(treated as a positive entity)
(+1°01622)( - 5:3435) A T A
e =12 .. Equivalent focal
By = T01622 53435+ 072 ~ 1 27617, length.
oo (= 0722)(101622) _ ..., L, Position of first
Pr T 10162253435 + 0722 elTs principal point.
(to left of and outside first vertex),
= (-0722)( - 53435 L, Position of
Pot = 101622 — 5(3435 T .07)9:) = —-°09064 sécond principal
oy point.

(to left of and within second vertex).

Fig. 302 shows on an enlarged scale the positions of the six
elements with their virtual separations and the principal points for
the three combinations of two elements representing the three lenses.
Thus p,’ and p,’ are the principal points for the first lens, consisting
of e, +¢,; p" and p,” are the principal points for the second lens,
cousisting of ¢;+e¢,; and p,”” and p,”’ are the principal points for
the third lens, consisting of ¢, +¢, We now want the separations
between these equivalent lenses. First we want s which obviously

=Py + 8+ = + 3772 + 232 + 2777 = -887.
Then we want s,/, which obviously
=8, +p," +p" = +0053 — 07349 — 01724 = — 08543,

We must bear in mind that we have, according to our usual
E



E.F.L. of the Process
lens.

Further factors to
be allowed for.
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procedure, treated the dispersive lens in itself as a positive entity, but
that in adding up a series of collective and dispersive lenses, we must
then prefix the minus sign before the E.F.L. of a dispersive lens or any
of its functions yet dealt with. Hence ]—71'” , which is a plus quantity
relatively to the dispersive lens, becomes a minus quantity in the above
expression for s,

Having now got the values of the three E.IF.L.’s and the two separa-
tions, we may then work out the E.F.L. of the whole combination
from Formula XII., thus stated

EE,E,
Ey(E; - 5y) + (B, - 8,))(E, + B, - 5,)
(+11°984)( + 11322)( — 1-27617)

= (171322)(11-984 — '887) + (- 127617 + -08543)(11-984 + 1-1322 — -887)

_(11984)(1'1322)( - 1.27617)
- ~ 19975 -

EFL.=

+ 8:6685.

The next important matter is the determination of the two principal
points of the combination. By analogy with Formula XIa. we have
BBy, + Epsy’ + Egs)” — 55

Ey(By = 5,) + (By — 8, )E; + By~ 5,)

_ (11-984)(1-00426 — 096724 — 1:13196 + -075776)

- - 1:9975 i
 E(--14865)
- -1-9975

P, -

= +:8918=DP,.

Also by analogy with Formula XIB. we have

P _ BBy + Hys) + Bysy — 58y
2 By, - 5)) + (B — s, )(E; + By — /)
(= 127617)( - 09672 + 100426 — 110238 + 07577)
B - 19975
(- 1:27617)( - “0405)

= s = —0259=F,

It should here be pointed out that our Formule XIA. and XIB. gave
the distances T)l and T’g of the two principal points from the two outer
lenses or elements, on the supposition that the three members of the
system were simple or infinitely thin lenses, in which case their two
principal points would be merged together in the centre of each such
lens or element. But in the case before us each of the three lenses is
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a compounded lens, having its two principal points more or less widely
separated ; and it is obvious that the distance E, which we have just
worked out, is measured, not from e,, but from p/, the first principal
point of the first lens L,. Hence 2;1’ has to be algebraically added to
it in order to obtain the corrected distance ¢ --P or P,

- Likewise the distance P,, which we have worked out, is measured
from p,"”, the second principal point of the third lens L, so that p,”
must be algebraically added to P, in order to obtain the corrected
distance ¢;.. P, or I—’z, so that

P, =P +p’'= +'8918 - 3222 = + ‘57
and
P,=P,+p,” = — 0259 — (- 0906) = + -0647.

(Here the sign of }—72’ " for the dispersive lens has to be reversed.) This
particular combination will be seen to afford a capital illustration of the
application of our formule, as it embodies certain features characteristic
of meniscus lenses, which may easily lead astray a student taking up
investigations of this sort for the first time. There cannot be too much
care bestowed upon the matter of signs; for in prolonged and intricate
optical calculations errors in signs are more likely to occur, and are
often more difficult to detect, than errors in mere arithmetic.

There is a very common term used in connection with the focal
lengths of lens combinations, and that is the Back Focal Length, or
the distance from the outer vertex of the last lens to the image
formed by the lens of infinitely distant objects.

It is obvious that the back focal length is simply the algebraic
difference between the equivalent focal length and the distance of the
second principal point from the outer apex of the last lens, or

BFL =E-P,

The principal points of lens combinations are also often termed
nodal points and focal centres. These terms more fully emphasise
the fact that a straight line drawn from a certain point Q, in the first
conjugate image or object to the first nodal point is always parallel
to a straight line drawn from the second nodal point to the point ¢,
in the final conjugate image where the image of the aforesaid point
is formed.

Certain defects in lens systems which may more or less disguise
this normal law of projection, will be dealt with in subsequent
Sections.

Final principal
points of the process
lens.

Pitfalls as to signs.

Back focal length.

Nodal points and
focal centres.






SECTION 1V

SPHERICAL ABERRATION OF SIMPLE AND COMBINED LENSES AND CON-
DITIONS OF ITS ELIMINATION—VON SEIDEL'S FIRST CONDITION

Spherical Aberration of Direct orIAxia,l Pencils

So far we have assumed that, in all cases of refraction of axial pencils
of rays by a spherical surface or their reflection from any spherical
surface, the rays so refracted or reflected will still diverge from or
converge to definite points situated in the conjugate focal planes.

It requires, however, a very slight practical or theoretical acquaint-
ance with optics to convince one of the existence of what is known
as Spherical Aberration, or the aberration or wandering of the outer
rays of direct pencil from the theoretical conjugate focal point which
we have hitherto assumed. In our'investigation of this phenomenon
we shall find it most convenient to deal with the case of spherical
refracting surfaces and lenses first, and with the case of spherical
reflecting surfaces afterwards. We will first follow the method
pursued by Henry Coddington in his Treatise on the Reflection and
Refraction of Light, Part 1., pp. 56 et seq., also 90 et seq.

Let Fig. 31, Plate VIIL, be a typical case of a convex refracting
surface RAR' of radius », on which is impinging a cone or pencil of
rays diverging from the point Q, the axis of the pencil or the principal
ray passing through the centre of curvature O. After refraction the
rays converge again, the rays ultimately near the axis focusing at Q,
and the marginal rays Q.. R and Q.. R' at the point Q,.

From R drop R.. P perpendicular to Q,..Q,". It must of course be
understood that in the diagrams the distance R.. P or ¥, which measures
the semi-aperture of the pencil, is much exaggerated relatively to the
radius of curvature, in order to make it easier to follow the diagram.
Let A be the vertex of the surface and let O be the centre of its curva-
ture. Then it is evident that £Q,RO is the supplement to the angle
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We may now insert approximate values of w, in the above coefficient
of 37, treating it as equal to u, so that in the corrections we may
assume that

e LIS g (see Formula II., Section I.),
Uy Uy r u
and
1SS 1 1
&

RSN 1/1 1)\? .
and therefore (1—_—u—> becomes f7<—+5>’ and the above equation

7
2
becomes

Lo 2 -
e 1_l+{}<l+l +(l‘ 1_l><l+ )l}%
w r w \u\wr o ow r uw/\r pul2

-

=

which further reduces to the more convenient form

BT sl e SN ol
Lorloteisd() u)( £ 1)p XVIIL (R)

As hefore, we will number all important formule, such as the
above, with Roman numerals, and all of minor importance, but useful
as steps in the investigation, with ordinary numerals.

The function of %2 in XVIII. is the correction to be applied to the
reciprocal value SRR Q » expressing the reciprocal of the lenfrth

1
of the ulmmate or paraxial rays, in order to convert it into e Q ’5
2

and the distance Ql Q2 or the longitudinal aberration within the

glass, is therefore
e L l)2<1 #+1)ff 2 v
) G ) X VIIL (L.)

It is desirable to call all corrections to the reciprocal values of
distances R corrections, and all corrections to the linear values of such
distances L corrections.

Formula XVIII will be found to interpret itself in all cases if due
regard is paid to the conventions which we laid down on page 10.
If the entering rays are converging, and = therefore minus, there is

u
pr L

Let it now be supposed that the pencil of light is refracted a
second time by a second spherical surface closely following the first, as
shown in Fig. 32, wherein Q/ is the point on the axis to which the

obviously no aberration if either r= —u or= —

First approximate
values to be inserted
in formulze.

First refraction. Re-
ciprocal of corrected
second focal dis-
tance.

Linear value of
above aberration.

The second refrac-
tion.
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Thus we arrive at the formula of the second approximation, which
contains also the old formula of the first approximation, viz.—

o EREU T T
’L_’—('U‘—l) ;+; 7 or =F s

which states the relationship between the conjugate focal distances u
and », which we previously obtained as Formula IIL, but we have gone
further than in that case and arrived at a formula for the deviation from
the strict conjugate relationship, a correction which has to be applied
to the value of » obtained from Formula III. This correction is the
spherical aberration, and is seen to vary as #® or the square of the
distance from the axis of the point in the lens where the particular ray
dealt with traverses the lens.

If, in Fig. 32, f is the point where rays ultimately close to the
axis come to focus after refraction at both surfaces, such that

|3 e Lo L
AfF w o

then the distance f~Q, will be the longitudinal value of the spherical
aberration, which will be expressed by the formula

e A ) ) e xx

provided that the longitudinal aberration is small compared with the
distance v, not exceeding 10 per cent or so. Should the aberration

from1 Formula XIX. (R.) exceed 10 per cent of %, then its longitudinal

value is best obtained by the formula v — #, wherein ay, is the
aberration as given in Formula XIX.(R). » % :

Later on we will put the Formula XIX. into a much more con-
venient and general shape. It will be seen that owing to the essenti-
ally approximate nature of the statement of such quantities as versines
of the curves, which necessarily form the foundation on which this
formula is built, no very great accuracy can be expected from it when
y becomes large compared with the radii of curvature of the lens in
question, and it is strongly advisable to pursue the investigation
further and arrive at some idea of the modifications to the formula
rendered necessary, if we are to dpproach still more closely to accuracy.
But as the working out of the formula of the third approximation is
very long and much more difficult, the reader is quite at liberty to

Linear value of
above spherical ab-
erration.
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omit it during the first perusal of this book, especially as the formulwe
of the second approximation will be found to form a complete system
quite independently of the formulee of the third approximation. He
may then resume his perusal at page 64.

The Investigation pursued to the Third Approximation

The diagram, Fig. 33, represents a case in which R..P or y is
considerably increased relatively to the radius of curvature O..R or 7.
About Q, as a centre and Q,.. R as radius, draw the arc R..0, b being
its intersection with the axis, and about Qzl as a centre and with
QZ’ .. R as radius draw the arc R..a, « being the intersection with
the axis. Then A..a is the difference in length between Q.. R and
Q2’..A, and is the difference between the versines A..P and «..D.
For the purpose of a more accurate third approximation it is not
sufficiently exact to write

y? d Pob »
: —-,and vers. P..0=—-"——.
2(A..Q,) 2(A..Q)
It is evident that as a second step in accuracy, though not a final one,
we may write

2
vers. A..P=-;1)/—r,vers. = ¥

2 y2
. L= V LA, = R ’ ' Py d
vers. A..P 21._(A“P),\ers eel? 2P - Q)+ (a..P)} — (a..P) -
vers. P..b = r

2{(Q.-A)+(A..P)+(P..0)} - (P..0)

in which expressions we may enter approximate values of the terms in
the denominators.

In the statement of vers. «..P, the distance P .. QZ’ occurs, which
differs from P..Q/ by the longitudinal aberration Q,’.. QQ’ , which is a
function of the quantity z which we want to arrive at. In stating a
value for the versine a..P we cannot afford to neglect this aberration
G811 Qz’ as a deduction from the radius of curvature of the arc R .. a.

Let Q,..A=wu and A..Q/ =u, (the first approximate value for

paraxial rays) and A .. Q/=u, as before. Then let

et R
R B
so that the longitudinal aberration Q/..Q,= —au’ As the basis of

our inquiry we still have the strictly true relationship
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Q2 ,(_) =5 Q- 0 The fundamental
F'Q2 FPRIN O R’ equation,
Then
Q.. 0)=(Q .- 4)-(A..0)=(Q/ .. 4) - (Q/.. Q) - (A.. 0);
therefore

(3) Formula for

75 ) S B —irs
Q) ..0=uy—2uf-r; Q,..0

also we have

Q..0=u+r (4 Formula for
Then Q,..0
Q.. R=(A..Q;)~(A..P)+(a..P)
- e o y2 ?/2
Rt o U 2P Q)+ (. P-(..P)
2r or 2(P..Q))+(e..P)
2 2
I e 2 "’> =
g A -5)
2 ?/2

= (w - 2u?) - z 5+

2 1 yz .
=(u/‘m12)—%' ) +'§ 3 571
- u—xu2—y—+l<——+m>
4r f "o T4 w

?/2 (1 ?/2) _7/2 (1 ?/2 yz ?/2 )
= pt PR AN (ST L A8 = EAPOR S DA SN AV .
===\t 1) e\ T o T T ")

therefore
a
2 & A7 N1 1 1 !
oy E0 D) 2o i)
S8 = oni +2'U 8u,2£c 2\r w3 'ru/ 2u,3'

We now want the reciprocal value of Q... R, and as we wish to pre-
serve all functions of »* the term () must be developed to two terms
1 1 a o
in the sense that . — =-+ -5+ 3.
-a w u u
Therefore we get

PLh By Y { (1 ¢<1_1>2}
QZ, LBV 7 u, 2u/ Su, 2“/ 411'/ L7

+l“‘..<1 _1_+L>
4u2\2r%  ru?  2up/’
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In expanding this equation we may legitimately omit functions of
x? or 2%, as z is a relatively small quantity, and also omit functions of
zy*. Then we get, after cancelling out a few terms,

)

*f‘(l 1y, E(i L_i+_3_)_ LA
{’u ’L2 L +'u9u, 'U‘4u, 273+r2u/ ru?  2ub ”u/ a
. ol (l-l) ’/"(1 2. 2k i)_ yf(Ll)}
+M2u/2x M u Qui\r Fiup 273+r2u, m/2+ up) ~Fa\s u ‘
for the first side of the equation, which then becomes

YT+ ryza; y2x+ .yi(l_l)_ r U <l 1)
{'u > #211'/2 Foy "LQM, ooy ”u, “Qu/ E/

gl (MO 3)' )
#4’“/ 23 Tz’lt/ ’l' 2%/ ”4“/ 27'3 2y 1"u/2 2“/3 ’
which

nlE L B : (b Xl )(E-1
{ ,mm+m2 P S ’u2u, ’”2%&,2 oo

) e )
#42&/ K 111—/2 27’3 t 2, T2u/ ’I'U/ 2“/

So that the whole equation now takes the form

: f(ﬂ_f_*> ) ’/2( P L><l_l>
{ ”Tw+2 ER IES ’L 2u/p' Fu, roow
Z"( L><L+L_i+_§_)}
4u S 2r8 2w ru? o 2up
-2 w1
—(“““’)[u 256G+ -B-m

By dividing both sides by ur, and keeping functions of # on the left- Both sides divided
hand side we then get by pr.

_“f(,l__l)x
2 2\u? 12
1l —IE o AT N YA 1 1 3 3
e e el S e = “+T_-2+—3>
roow 2u\r oy du\e  w/ \203 22w, rup o 2u

Lurr(l 2<1+l> y‘*(_l__i_i 3)
pr lu 202 /A 28 2 T B }’
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from which we derive

e J“('IL 21 - 2p) — 2ur(pn — 1) +7 >}=%_;31G+1>2<1 5 u)ﬁ

) poriu? P

30t — 3ptrt + 120%u — 6ptr%u — 6puru + 1812u?

iy (l g l) = 2% + 2p%r2u® — 18pw2u? + 12rud + pdrud )
4p\r  w/ |+ ptrud + 4p2rud — 18prud + 3ut — 6put + plut + 2ulul
2utriut
On multiplying both sides of the equation by Elimination of func-
tion of 7.
| P~ 2p) = uru— 1) 492
{ B por2u? ) }
(the function of y? being supposed to amount to less than f4;th), we
then get, if we neglect functions of 3°
B 1(} 1>2<1 Bt 1)
A 23 \r T \r w )
p—1/1 1>2<1 pt 1)(_1:2(1 = 2p) ~ 2wr(u- 1) + r?)
g 4p? (r AR pirhu? ®)
(a)
T T
E(l 1){31‘% S ot }
T\ T ittt J° ()
We may now add together all the functions of y* contained in (b) Functions of 7
and (c), (b) being expressed in the form sorted out.

DG e ) im0 )

After multiplying out the factors contained in the large brackets

and adding them to the terms in (a), we get, after much reducing and
cancelling out,

e 1(1 3 1) (1 Mt 1>j (aberration by second approximation
22 \r u as per Formula XVIIL (R.)) +p )

+1/4<1+1><1+71_+ 4 +6 4
8u\T A T ) pirud

First fraction.
4 9 9 6 9 3 3 irs refraction

Formula for the
R o e P ST XX (R.) i 5
OED 2.4 2 20/3 24 3. 9 9f <« (I} gpherical aberration
720 9
l‘4 ll‘ "5” i ptnt e of the third approxi-
1 2 6 S mation.
o + prt T T T 17‘) )
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Thus we again arrive at Formnla XVIIL (R.) of the second approxi-
mation (but divided by w), while in Formula XX. (R.) we have the correc-
tive formula of the third approximation. This generally is a correction of
very much smaller value than the correction of the second approxima-
tion. If we were to pursue the investigation still further, that is,
were we to develop the fundamental equation given on page 59 to
higher and higher degrees of accuracy, then we should obtain a series
of formulee for the spherical aberration, first to the second and third
approximations, being the above functions of g% and y* and the
following approximations, being functions of %% #® etc., or rising even
powers of ¥, and also increasing in complexity.

The Formula XX. is not too complex, especially after it has been
transformed into a more convenient and general form, to be sometimes
useful in the higher problems which have frequently to be dealt with ;
but approximations of still higher orders are for practical purposes
undesirable.

We have now got in Formule XVIIL (R.) +x and XX. (R.) taken
together a fairly exact corrective = to the reciprocal value of the distance

A..Q/ or u, such that } ! 1l

+z= while ~=~—~ - —. It must

Y ETQ° wooopr

be borne in mind that we are dealing with the distance w, as measured
within the substance of the glass or other refracting medium. It is
easily seen, therefore, that if the pencil of rays we are dealing with is
refracted into air again at a second surface closely following the first,
then, quite apart from any further spherical aberration imparted
at the second surface, the spherical aberration imparted at the first
surface may be looked upon as an angular deviation from the true
direction, which will be multiplied by the refractive index on being
refracted through the second surface. An aberration correction of
value ¢ inside of the glass becomes ue on being refracted out of the
glass. Therefore our value of z, the aberration correction, must be
multiplied by u to bring it outside the lens, when we may add the
formula to the analogous formula appertaining to the refraction at
the second surface, just as we did before when we took Formula X VIII.
of the second approximation for the first surface, and then added to
it the corresponding formula for the second surface, thus obtaining the
Formula XIX. for the complete lens. Adapting that method to our
present case, our formula for the spherical aberration to the third
approximation for the whole lens is expressed thus—

= 2 2
2=t {3 G+5)+ G+ G5l

XX (R.)
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<1+1><1 L s S ) N T S A Ml
{ T ;47_.4‘*' #4u4 M473u H4,.2u2 #4,“3 /Lz,.zu‘z #2,4 'u‘z,.su
6 2 3 8 4 1 1 2 6 3>

o b . e b — o — oy —
pirud ottty ot opre et dw 0% orud ol

1 l><1 1 4 6 4 4 2 2
=

> XXIL (R.)

+_.‘_._w_+__._ ».—.‘._—.—-—-—
404 4,4 4 402,02 40003 202992 2.4 243
YA P ,1.53’0 BT S PSSV o8 P

These two corrections are to be added to the value of %, when % =

%‘ql", simply. So that if in any given case we work out the value

of %+ X, then we may take its reciprocal for the longitudinal value of

the corrected conjugate focal distance of the two rays which are
refracted through the lens at the height y from the optic axis. Or if

. . 1 .
the aberration is small relatively to o then we may take the linear

or longitudinal value of the aberration as — *X, so that, since for a
collective lens X is nearly always positive, the longitudinal aberration
is a deduction from v when v is positive, and an increase to » when
v is negative or the emergent rays diverging.

It is clear that the formule we have now arrived at for the
spherical aberration of a thin lens do not easily lend themselves to
analytical problems, such as finding the form of a lens requisite to give
or to counteract a certain known amount of spherical aberration, and
the next desirable step is to put the formule into a shape that is
better adapted to manipulation, as well as more elegant and simple.

Introduction of a more Scientific Notation

Here we cannot conceivably do better than adopt the beautiful
device apparently invented by Coddington and explained on page 110
of his work before referred to. He shows how the reciprocal values
of the radii » and s, and of the conjugate focal distances » and v, may
be expressed by the use of two terms x and a. It may shortly be

explained thus. Since 1oL for the ultimate axial peneils = }, and
v ow B

Formula of the third
approximation 'com-
plete.

Present formulae
clumgy and incon-
venient in form.
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24 4+ Doz + (3 + Yp— 1) +.- —}mn (R.)

- 10)a2?

) XXIV. (R.)

In Formula XXIII. we again have in a more convenient form
Coddington’s Formula XIX. for the spherical aberration to the second
degree of approximation, while . XXIV. is a further correction to it
worked out on the same lines to the third degree of approximation ;

both of them being corrections to l, the latter being ascertained by the

SImple law of conjugate focal 1eu0bhs

of » the second is a funection of}/ '

~

L dvond

The first is a function

\Ve shall find, on further investi-

gation of cases of axial pencils traversing combinations of lenses, and
especially separated lenses, that many other corrections arise which are
also functions of #* and which it will be desirable to work out, where
possible, and add to the same category of corrections as XXIV.

It is easily seen that these formule will interpret themselves
correctly in all conceivable cases.

It will be as well to call the Formula

Aberration Function of the order #*
certain other aberration functions of the same order »* will have to be
censidered, yet they will turn out to be functions of Formula XXI1II.
—that is, they will be products of the latter formula into another
function of % and are therefore functions of #* in that sense only.

It will be found that corrections involving higher powers of y than
»* involve degrees of cumbrousness and complexity which are out of all
proportion to their importance or utility.

If the reader will apply the reasoning of this Section to the corre-
sponding case of a dispersive lens, in which preferably w, v, and », as
well as 7 and s, are all positive for convenience in reasoning, he will

XXIV. the Intrinsic
For we shall find that although

Lens. Codding-
ton’s formula for
spherical aberra-
tion.

Formula for the
spherical aberra-
tion by third
approximation, in
terms of « and .

Other corrections of
the order y*.
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arrive at precisely the same formule. That is, it is best to assume the
rays to be converging into the first concave surface of the dispersive
lens, to be diverging after first refraction, and more strongly diverging
after the refraction at the second surface, which is also concave.

It is clear that there is only one term in Coddington’s formula

2
(which may be conveniently referred to as 81;’_3A” while the Formula
4
XXIV. may be termed 121J 3 fsA") which can ever be negative, and that

is the second term, involving aw, so that the only possible way of
approaching to freedom from aberration in a simple lens is to make a
and 2 of opposite signs; therefore if rays are strongly diverging into a
positive lens and a is positive, then z must be negative, and vice versd.
For instance, if u =15, then we have

l’j:’ ?:c? + 4(p+ D)az + (3p + 2)(u — 1)a? + ,TM'?T =722 + 10uz + 325> + 675,
and this will equate to 0 if @ =at least + 4'45, when « will be about.
— 315, implying a strong menisens form with its hollow side turned
to receive the divergent rays. With a still higher plus value for a, a
value for # may be found to give a certain amount of negative aberra-
tion. This fact is utilised in many systems of condenser lenses whereof
the member nearest the source of light is made of a pronounced
meniscus type.
On differentiating the Formula XXIII. with respect to # we have

A (PN Y 2(p+ 2)x + 4(p —})(/L+1)a
A’”(ssfaA> i 8f3{ wlp - 17 }Ax’ (a1
which will equate to 0 when
_ _2p-p+l) 9
3 (n+2) * (12)

so that if w=1'5, then #, for minimum possible spherical aberration,
must be —;a.
: 5
If the entering rays are parallel and a= —1, then z= + =, so.

that the radii of curvature will be as 2:12 or 1:6; while if x is about
167, then z = + 1, or the lens of minimum aberration is convexo-plane.
It will be meniscus if the refractive index is still higher.

If we suppose p = 15, then the Formule XXIII. and XXIV. work
out to
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y? ( Values of the two
i _'-:‘117'”2 + 10az + 3:250% + 6'75} orders of aberration
6f ’ when p = 1'5.
?,{4 5{ — 46252 — 33:62502® - 60°18752% — 51°94a22? ~ 555542 }
27f — 2819a% — 131060z - 5a* - 247 J°
From this it appears that the corrections of the order z* must be
always of a negative character when a and z are of the same sign, as
when paralle] rays fall upon a plano-convex lens, .. when a= —1
and z= —1; but it will be found that if parallel rays fall upon a
convexo-plane lens, in which case a= —1 and 2= + 1, then the
functions of az? a’¢, and ar come out positive and nearly neutralise
the negative terms.
For instance, if f=1, y="25, and u=15,a= —1,z= + 1, then
faA gives
WS = 10 + 395 + 675 71 Convexo - plane lens
96]75{‘ = 29 + }— Sr %}—(—3, :‘:t;:ctmg parallel
and f5A" gives
1 ]{ 469 4 4 0 i 9K
(16)(16)(@r) o - 4620 +33:625 - 60'1875 ~ 5194 - 5555 + 2819 )
( +131:06 - 5 — 247
1 1 1L
5 (ﬁ;i('rs)(’z‘r)fﬁ( SRR 7
or only flth part of the correction to the second approximation. But
if z also= —1, then the first formula gives
L ily7 AR Plano - convex lens
96 ]73(2 t> + 96 f_a’ ::?‘:cting parallel

and the second formula gives

Lo S0 SR PV 4 T L A Sy
(16)(16)("7)f a0 T i T

or nearly a quarter of the aberration of the order y% Butif f is
2

doubled while y keeps constant, then the aberration ;%A’ is reduced
4
to ith part, while the aberration %A” is reduced to 4%;nd part.

These eonclusions apply with equal truth to the corresponding
concavo-plane and plano-concave dispersive lenses when refracting
parallel rays,
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However, we must not treat this formula as if it represented the
only aberration correction of the order y* which has to be dealt with.
For in the case of thick lenses of large relative apertures, or a system
of separated lenses, the formule, before alluded to, which are functions
of y* into the aberrations of the second approximation, may often
exceed in importance the intrinsic formula of the third approximation.

‘We have hitherto assumed that the thickness of the lens to which
this Formula XXIII. refers is too small to sensibly affect its accuracy,
but in general practice cases very often occur in which the thicknesses
of the lenses concerned are so considerable that no approach to accuracy
could be made without making proper allowance for it. Here we shall
again find that the Theorem of Elements will enable us to effectually
get over the difficulty.

Application of the Theorem of Elements to Thick Lenses

Let Figs. 35a and 350, Plate VIIL., represent two thick lenses, one
a collective lens and one a dispersive lens, the conjugate focal distances
Q,--A, and A,..Q, being also positive in each of the two cases.
Let tangents to the two vertices A and A, of the lenses be drawn.
These then represent planes perpendicular to the optic axis, and as we
imagine two elements to be located at the two vertices, these planes
may appropriately be called Element Planes.

Moreover, if we are treating these thick lenses in accordance with
the Theorem of Elements, it is obvious that the two element planes
are also the bounding planes or surfaces of the imaginary plate of
parallel glass which is supposed to lie between the two elements.

Let b..A and b,..A,=Y and Y, respectively, and let »'..¢
and b, ..¢, =y, and 7, respectively.

Now so far, in working out the formula for spherical aberration for
a curved surface like A,..5/, we have assumed y (or b, ..¢,) to express
the perpendicular distance of b, (the point on the curved surface where
the ray in question is refracted) from the optic axis.

But we might have assumed y to mean not bl’ e but Al..bl,
that is the height Y, of the point where the same ray cuts the
element plane, instead of the height where the ray cuts the curved
surface ; and it is obvious that the plan of measuring our y’s along
the two element planes of any lens presents the advantage of great
simplicity, and renders it perfectly easy to assign the values of the
successive Y’s for a ray traversing a series of thick or widely separated
Ienses.
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That once granted, then of what nature will be the corrections to
the spherical aberration following upon the nonconformity between the
Y’s measured in the element planes and the #’s measured up to the
points where the same rays strike the curved surfaces? We shall soon
see that these corrections are comprised under the order of functions
of Y4 and of higher even powers of Y. Of course, if the entering rays
are parallel, there is'then no disparity between Y, and y,, and no
disparity between Y, and y,, if the emergent rays are parallel. If we
treat the whole lens as a self-contained entity, then if Q .. A =%, and

A,..Q, =, as before, and Il—?= (n— 1)(—17- + %), we find that

PR« A S e L
91=11+(b1"b1)21=11+<2:>W'_1 Tu-—Y1(1+2‘_rlu>’

so that
2 oL (13)
—— 3 ‘)
iy (1 = m)
Similarly
e v
p2=Y2(1+2,7). (14)

The above two formula serve to indicate the general nature of the
corrections involved, and we will return to a more exact inv estlrratlon
of this matter at a later stage.
After this we will assume our z’s to lie in the element planes
except where otherwise stated; therefore we will retain the symbol y
in place of the symbol Y which we employed in the above inquiry.
We will first consider the thick lenses in Figs. 35« and 350, in Thick lens. Form
terms of the aberrations of the two surfaces. The rays radiating from gi tﬁsiw%b:"ati'ms
urfaces.
Q, are supposed, after refraction at the first surface, to converge to a
point ¢ ‘situated at a distance % (=A, ..q) from A, that distance
being an intra-glass measurement. In the case of Fig. 350 they are
supposed to be diverging from ¢ after first refraction, a condition
analogous to that of Fig. 35a. Now, the spherical aberration of the first
surface as yielded by Formula XVIII. (R.) is a correction to the first

approximate value of or %, and the longitudinal aberration is

1
AR
obtained by multiplying XVIIL by — % as in Formula XVIIL (L.).

We will call the longitudinal aberration so obtained —y e,#’. How aberration of .
Now, we wish to transfer the value of the aberration of the first ;ﬁ:::ezuﬂﬁ“s::;'fé
surface to a new reference point A, so that we can add it to the vertex.

aberration of the second surface. Therefore we have an aberration



Sum of the aberra-
tion of the two
surfaces.

Relationship be-
tween the two ¥’s.

Same thick lens
treated by method
of elements.
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from the first surface denoted by #’a , implying a linear aberration
equal to — ygalu“’, which, regarded from the new point A,, or the vertex

y2a,u? @
> =y % - in
t)2 La # (12 - t)2

the case of the collective lens, and y *a, (i + 2 in the case of the dis-

of the second surface, will be equal to —( .

persive lens, as an R correction. If we now add in the aberration of
the second surface we have the joint aberration, referred to the point
A, expressed by

2a L +ya
l(u Yo'y
for the collective lens, and

2 Qj’2 2
) “1’(;2 1) + Yy g

for the dispersive lens, as R corrections. Furthermwore, if the #’s are
so small that the versines of the curves are small and negligible
quantities, we then have

%—t %1
w5 ") and ve=()

for collective lens, and

4+ -+t
n=n(T5) amd ve=n(7)

for dispersive lens, which is a very simple relationship.

Let us now treat the same lens by the method of elements.

We may then denote the conjugate focal distances for the first
element by u and v and those for the second element by %, and v,, so
bhat iy ; an d 1 .

f1 h

Then at A, we must lmaome a convexo-plane element, and at A, a
plano-convex element in the case of the collective lens; and a concavo-
plane and plano-concave element at A and A, respectively in the case
of the dispersive lens. The rays which converge to or diverge from ¢
after refraction by the first surface of the first element will, after
refraction at the second or plane surface of the element, converge to

or diverge from a new point distant from A, by % (=w,). Then,since

c B
the separation between the two elements is > we shall have a

spherical aberration for the first element, which may be called
y,%(a,+p,), p, being the aberrative function for the second or plane
surface. This aberration becomes






The six constituents
of the whole aberra-
tion.

Another interpreta-
tion of the sum of
the six aberrations.
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interior of the lens are not parallel, a certain amount of aberration
takes place. We may call the spherical aberration for the first
clement, as before, %@, +p,), @, being the spherical aberration of
the curved surface and p, the aberration of the second or plane surface
of the element. Then the spherical aberration of the first surface of
the parallel plate may be written 7,%(p,); the spherical aberration
of the second surface of the parallel plate written y*(p,); and the
spherical aberration of the second element may be y,’(p,+a,), in
which p, is the spherical aberration of the first or plane surface of the
second element, and a, that of the curved surface. So that the whole
series of aberrations, referred to the point A, may be expressed by

AN 0
{?/12(“1 +p) + 9,70 }(m) +Y52Py + Y (Py + )

Now it is plain that if a pencil of rays passes, however obliquely,
from one piece of glass bounded by a plane surface into another piece
of glass of the same refractive index and bounded by another plane
surface in close contact with the plane surface of the first piece of
glass, then no refraction and therefore no aberration whatsoever can
take place. In other words, the refraction or aberration which takes
place when the pencil of rays emerges from the first piece of glass
into air is exactly neutralised by the opposite refraction or aberration
ensuing on the same pencil being refracted again immediately into the
second piece of glass, so that the two plane surfaces might be absent
and the glass be solid and homogeneous so far as any optical effect
upon the pencil of rays is concerned.

Therefore in our series of aberrations it is clear that y *p, +1,°p, = 0
and y:]')g’ -i; ¥ p, =0, and therefore the whole series is equivalent to

3/12‘11<du t> + 952, (for a collective lens), which is what we arrived at

when treating the lens by surfaces.

But we can put another interpretation upon the above series of
aberrations. We wish to retain the elements as actual entities, and
they necessarily imply two surfaces. The aberration of the first
element necessarily includes the aberration of its plane second surface,
likewise the aberration of the second element necessarily includes the
aberration of its plane first surface. Hence we may group the series
of aberrations in the following manner consistently with the same total
result— <

w2+ (5" Y o {min (2 Y ey } o, v ).
12 R\ oo \“zi—t 2 L2 GepVelty 3 U
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As we are making a point of retaining the aberrations of the two
plane surfaces of the elements, we must therefore retain, in order to
balance the former, the aberrations of the two plane surfaces of the
parallel glass plate separating the elements. The latter aberrations
are gathered together within the centre brackets, and represent the
aberration (of the same nature as spherical aberration) produced by the
parallel glass plate of thickness £. Also we have seen that the term

used in case of the two elements separated by a distance L comes to

2]
exactly the same thing as the Zz—i—t in the formulee strictly applying

to the solid lens.

Therefore our general conclusion is (1st) that the spherical aberra-
tion of a solid thick lens, when referred to its second vertex 4, is
equal to the sum of the spherical aberration of its two elements,

¢ ong
separated by w referred to the position of the second element, plus

the aberration of a parallel glass plate of the same thickness as the
solid lens, also referred to its second surface; and (2nd) that y, for the
second element

1’0:!=t U*t
Lo BT e
oy T, T
IU.

if we measure the two y’s in the two element planes respectively, while

2 s obviously equal to v, for the first element or the focal distance

I 1
conjugate to u, such that 7=l—— 1 wherein L is the power of the
p ltl 1 1“1 VA
first element or “——, and — = -
¢ u QA

Aberration of a Parallel Plane Plate

Our next step, therefore, is to find an expression for the aberration
of a parallel glass plate of any thickness.
Let Fig. 36a represent a case of a divergent pencil traversing a

Aberrations of the
two elements added
to that of the paral-
lel plane plate.

The ¥'s to be meas-
ured in the element
planes.



Refraction of a nor-
mal pencil through
parallel plane plate.

The exact form-
ula.
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thick parallel plane plate of thickness A, .. A, and Fig. 360 a case of
a convergent pencil of rays traversing a similar plate. The principal
ray in each case, ¢..4A, and A ..g, passes perpendicularly through
both surfaces and therefore suffers no refraction. Q, is the origin or
apex of the pencil.

Let Q,.. A, =w,, and be considered positive in the case of Fig. 36a
and necratlve 1n the case of Fig. 360. Let the semi-diameter R .. A  of
the pencil be called «,. ILet ¢ be the conjugate focus to Q,l by ﬁrst
approximation—that is, let ¢.. A = pw, =v,and let ¢ .. A, =2. For
the ray Q, .. R after refraction at R proceeds in a direction which (if
it has to be produced backwards) cuts the principal ray at ¢, further
from A, than g, so that ¢.. ¢, is the longitudinal aberration to which
the ray Q, .. R is subject.

Let the angle R Q A =¢ and the angle R g,A, =¢". These are
obviously the angles of incidence and refraction respectively. Then
we have, as on page 49 of Coddington’s work,

R,..q;:R;..Q,::sin R,Qq, :sin R¢g,Q,
::sin RyQ A, :sin Rjg A,

® : il
that is,
¢ =R, Q)
But
2

. T cos4> and B, 5 Q, = cos¢>

therefore
2y cos ¢>
cos ¢ Fcos <1> o “Heos e "

exactly.

This can be reduced into an approximately accurate algebraic
form, thus—
Since y ql..Al 1 _Ql"Rl
)

cos ¢’ = 1 and .=
¢ (b adity cosp Q.. A

therefore above equation becomes

A Q.
4= l"q R Ql “"“1’

- which

@A) (@ ) + g A1)>
(@0 A0+ 5 )@ A

= pay
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in which we may insert the approximate values of ¢,..A;, = pu,, and
for Q.. A, write »;, making

% ( + alg) U, + i
W+ =L 1
FA\ ™ 2u, e ”21&1
Xy = pty —————( I P J/"ul
1 5\
U, + — —>u pty +
P g, /™ D

R
( 2,2 pla® 2pay i 2H3Nl%
= \pUtt+ - ) =

2 /2pul+al?  2pful+a?
1 a,2 2N 2
= (2pu® + pdu,a? (— —--’—) = puy + pt— 1
(2phuy® + piuya?) 2ptu? dphut ! ”2111 2py
2,2 _ 2 2
a2 —a a
= puy + LTy o B o2
2paky 12 Uy
therefore we get
2 2
p-1 a
.l‘l =i ‘U.ul + /L — . 2—’“1
and therefore
i A <,u.2 -1la 2) 1
¥y puy 1 ® 2ul /.L2u12
and
il s 71 e First plane surface.
e Bl s 0_1_3. (15) Formula of second
Ty ® 2uy approximation.

It is clear that this formula applies to both cases, 36a and 360,
and that the aberration is of a minus character, implying an extension
of the first approximate distance A,..q. We can also derive Formula
(15) from the Formula XVIII. expressing the spherical aberration of a
single spherical surface. For the plane surface is but a spherical surface

of infinite radius, so that 1 in XVIII becomes zero, and the result is
7

Formula (15) (with a conventional difference of sign), which confirms

our result. Further, it will be readily seen that the case of the con- Course of rays con-
vergent rays entering left to right into the plane surface is but the Sdered reversed.
reversal, as it were, of the case of divergent rays passing out of the

glass from right to left, and the same formula can be applied. Therefore

the same formula which applies to the eonverging rays entering in Fig.

360 will apply also to the diverging rays leaving the glass in Fig. 36a.

Turning our attention to this case, then let

¢
Ao . Q=u +—=u, and A,..Q, =z,
[
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This should, for the sake of practical convenience, be expressed in
terms of v, and a,, so that

g — ¢
b e ( By ) :
el 2 :,;Ja_zz_ S A

Ty t 2p? 1 3 3 2
U, + ,—L 0, uy (puy + 1)

RN al__(,w?_g)‘z P
E2 v wg \ pry / (uvp)?

uy +
02}

therefore

ISR IR 2 =] a2 -7 Aberration of a
i —5t XXV. (R.) parallel plane plate.

If the same line of reasoning is applied to Fig. 364 the same
result will be obtained, provided that «, and v, are con51dered negative ;
but if they are also considered p0s1t1ve then the spherical qberratlon
will work out with a minus sign before it. In fact, we find that the
aberration given by a parallel plate of glass is always of a negative
character, if we compare its influence with that of a collective lens
under normal conditions. If a pencil of divergent rays traverses a
parallel plate, then the outer rays of the pencil on emergence are
diverging from a point nearer to the second surface than the point
indicated by the first approximation ; while in the case of a convergent
pencil of rays the outer rays after emergence are converging to a point
farther from the second surface than the point indicated by the first
approximation. In short, the aberration is of the character of that
yielded by a dispersive lens, and we shall afterwards find that this
analogy holds good in other respects also.

We also find from XXV. that the amount of the aberration
increases inversely as the fourth power of the distance of that point
from the second surface from which or to which the emergent rays
are diverging or converging, and therefore there is no aberration in the
case of u, or v, being infinite or the rays parallel.

il
We also find from our formula that



Linear value of the
above aberration.

The notation.
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ol a2 o
s L (17)

T g2
2t vt op

Ty =Ty~

and therefore the latter term is the linear aberration, which thus varies
inversely as v,%, directly as %, and directly as ¢.

Therefore it is plain that when the pencils of rays traversing the
interior of thick lenses are strongly convergent or divergent, and the
pencils are of wide aperture, the parallel plate aberration may be very
considerable.

A Detailed Confirmation of the Theorem of Elements

Having worked out the Formula XXYV. for the aberration pro-
duced by a parallel plate, we are now in a position to give the
general confirmation of the theorem of elements as applied to thick
lenses. This proof can best be presented in the form of a balance-
sheet (see p. 81), on one side of which we insert the successive aberra-
tions of the six surfaces in their order, two belonging to the first
element, two to the parallel plate, and two to the second element ; while
on the other side we gather together the aberrations of the first pair of
surfaces and express them as the aberration for the first element, the
aberrations of the third and fourth plane surfaces and express them as
the aberration of the parallel plate, and the aberrations of the two last
surfaces and express them as the aberration of the second element.
Then in comparing the one side with the other the identity of the two
sums is clearly established, while at the same time it is also clearly
seen on looking down the left-hand side that the whole sum for the
six surfaces is identical with the sum of the aberrations of the first
and sixth surfaces only, the intervening aberrations neutralising one
another.

The notation is as follows:—y, is the height of the ray where it
cuts the first element plane, y, is the height of the ray where it cuts
the second element plane, , and », are the conjugate focal distances
for the first element, #; is the distance from first vertex to the point
to which the rays are converging after refraction by the first sunface,
and 2, and v, are the first and second conjugate focal distances for
the second element, so that 1%, and %, are within glass measurements,
so that 4, =1, —¢ (¢ being the thickness), and therefore

4, —t Uy,

7 MR ]
61 1(2 7
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and ay= —9, while 2, = - 1.

For the first element Formula XXIII. gives for the spherical
aberration

(4)U—10+325+67§— ﬂ%—12+5uﬁ+110m

613
{1 1666} ='02333, Aberration of the
first element.

which quantity we must transfer to the second element by multiplying
2 RN RILG
it by () =({%) = g» which makes it 04148, Above transferred
2

1<B) to second vertex.
Then the aberration of the second element

=6wyﬁ+lww+325@Y+67@

216{114-12(9)+ “5416(81) + 1125}

Aberration of the
"16(61 16)= 0255 second element.

Add ‘04148 brought forward from first element.
Total (2 elements)= + ‘06698

From this must be deducted the parallel plate aberration Abverration of the
given by parallel plate.
.8 | )

—71 “2

2//. ?/'24
Here a, is the same as y,, which in this case =30, and v, is the
same as u,, which in this case = 1'5, so that we have

225 - 1 <(3)Y' 125 _125 09
2 x 3375 (1'5)4 (75) BGatORDE 0625( 5) 50625
0128 _ 0947
So that we have T 50625
Aberration of the two elements = + 06698
Aberration of the parallel plate = I _OO_QE
Corrected aberration of lens= + ‘06451 Total of the three

aberrations.

Alternative Treatment of the same Case

We will now treat the aberration of this lens as simply the sum
of the spherical aberrations of the two surfaces, for which purpose we
must employ Formula XVIII. (R.), which is
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Thus the aberration for the whole lens referred to the second
vertex, obtained by treating the lens as a solid entity of thickness =¢
bounded by two spherical surfaces, gives exactly the same result as
we got by supposing the lens to consist of two infinitely thin elements
with a parallel plate of glass of thickness ¢ lying between them. If
so0, then why should we not always compute the spherical aberration
of such thick lenses by the formule applying to surfaces, and not
trouble ourselves with the method of elements? To which question
it may be replied that while the student is perfectly at liberty to
apply the formule for surfaces when computing spherical aberrations,
yet when it comes to working out various other corrections of great
importance, to be dealt with in subsequent Sections, it will be found
that the method of elements simplifies and renders quite feasible
problems which mere surface formule would be quite inadequate to
deal with, at any rate without risk of hopeless confusion arising.
Moreover, we have already seen at the beginning of Section II. that
a refracting surface is not a constant entity. That being so, it may
be conceded that it is as well, for many obvious reasons, to adopt the
same general method throughout all optical computations.

Investigation of certain other Aberrations of the Third Order

4 g
We have yet to apply Formula XXIV. or jy,-sA" to this lens, but

before doing so it will be as well to work out the other aberrations of
the order * to which the lens is subject. We will return to Figs. 35a
and 355, representing a biconvex and a biconcave lens touched at
each vertex by the element plane A ..b and A,..b, respectively.

Let Q, be the origin of the pencil, and Q,..%, a ray impinging on
the lens surface at b but cutting the first element plane at b, while
Q,..0/..0/..Q)is the actual course of the ray dealt with, which finally
cuts the optic axis at Q. considerably short of Q, where it would cut
the axis were there no aberration. Now we have assumed so far
that the first refraction takes place in the first element plane, so that
the straight line b,..5, represents the course of the ray within the
glass, if it were refracted by a small portion of glass surface really
placed at 5. It is obvious enough that this is practically the case for
any ray from Q, passing through the lens much nearer the axis. Now
supposing the ray after the first refraction at the curved surface (sup-
posed to be placed at ;) converges to a point ¢ within the glass, then
it is obvious that the refracted ray &,..¢ will cut the second element
plane at a point b, such that A} .., or Y, will be equal to

The principal ad-
vantages of the
theorem of elements
yet to be explained.

First the versine
corrections.



Lens considered to
be divided into three
portions.
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A, g : : AT
(A,..00r YI)AiTq; that is, Y, will be Ylg—k??-{ =4
or, what is the same thing,

But £l is the distance v, from the first element to the point on the

IU.
axis to which the ray Q,..b would be refracted by passage through
the second or plane surface of the first element in addition to the first
or curved surface; so that our equation

Ay..q T

Al
Y, =Y, % is the equivalent of Y, =Y, <z’1 i ;)
v

1--4

That point being settled, we may return to the determination of the
actual or corrected heights b..¢, and 3,..c,, at which the ray is
refracted by the two surfaces of the lens. Let these two heights be
called y, and y, respectively. We have to find a formula expressing

%, in terms of Y,, and y, in terms of Y,, when

A
17 ) . TRV
Y,=Y, , or, what is the same thing, when Y,=Y, - = =L
L1 B
We may now consider the lens to be composed of three portions—
a convexo-plane lens of thickness A, .. ¢, b..¢, being its plane surface ;
a parallel plate of glass of thickness ¢,..¢, (=) ; and another plano-
convex lens of thickness ¢,..A,, of which 8,..¢, is the plane surface.
Thus the ray is refracted at the two sharp edges b/ and b, of these

two lenses. It may then be assumed that the distance ¢ becomes

an air-space of thickness E, so far as our present purposes are
concerned. i
It is clear that the vertical difference between y, and Y, is the

horizontal distance b, ..% ' multiplied by 4 or &
Q.- A, u

But bl—bl’ is the versine of the curve of radius », for the semi-
chord 5/..¢,. Tt is sufficiently accurate to suppose that

b o 5
o

«0 0 27‘1‘
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Then we have

v, =Y, + Y_ J; X_ Y Xli_ (18) Expression for %,iin

L 1 o’ terms of Y3, ete.

We next proceed to find the value of y, in terms of y. Tt is
plain that

s . t 2 2
1/2=y1‘£ ¥—1; in which —=1<T—£ —Xl),
M 7)1 1 I 27‘1 27'2
so that
A L <T - Y_2 - _X__2> e Expression for ¢, in
=% b 2r, /v ; terms of 7, etc.

in which we may insert for y, the value given above in (18), so that
NS 1<T e Y22>¥_1

‘)rlul o 2r;  2ry/ v
or
Y IR i X2 Y22Y1 . Expression for %, in
L _;_ iy g i T terms of Y, and Y,
(I i = G S Y, ete.
in which, as we have already seen,
eYe VE pves Y o 1
Y, -==1=Y, sothat ,=Y,+ ‘)717 + -1
T2 2ru, 2 yrl'v 2 ,u,’l‘zl

As the last three terms are small quantities compared to Y, we

may say that
YY, Tt Y2, L Y'Y,

2_Yy.2
%o =Y, +
L A T T2 U

therefore
L YY}

p=Y2{1+ ()P
riy - pryey/ Yo o prety

In this formula we can express Y in terms of Y,, so that

.
Y13=Y23<-_ L‘) and Y, =Y2<T!u—>,

2 2

remembering that if », is positive (the rays converging) relatively
to the first element, then the reduced distance w, (= — <vl—r£>) is

negative relatively to the second element. Therefore we get
3 -
2—Y2{1+< Sl )Yzz__’i___s+_Yi__@1_}
Ty prT (—up)® gty —uy

L Yf{l " Y22< . 03 o i > } (19) Expression for ¥, in

: 3 3 terms of Y,? ete.
Zint LonB 10 o N T Yy LK

or



Expression for %% in
terms of Y, ete.

Aberration of first
element corrected
for versine.

Aberration of second
element corrected
for versine.

Formula (20) in self-
interpreting form.
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If the rays are converging into the second element, as in the
diagram, then, as «, in this case would be negative, all the above terms
would arithmetically work out positive. We saw from Formula (18)
that

3
ST L)
27‘1u1
therefore .
y12=Y12+Y Y2< _Y_>
3%y yUy

So that, having now obtained expressions for y,* and y,? in terms
of Y,* and Y,?, we may state the aberration of the first element to be

2
9
Tia(ie ) o
and the aberration of the second element to be
[ 2( N i -_f'ﬁk___ 1 )
f (A )\1 gt rugud s g, } (21)

These formule, however, are open to objection in their present
form. In the application of (20), for instance, to the first element
of a thick positive lens in which the first surface is concave and
therefore 7, is negative, and still supposing that the entering rays are
diverging 1nto the first element, as in Fig. 3%, it is plain that 7, will

WA
be less than Y, instead of greater, so that ﬂf should turn out negative
1l
if the formula is quite self-interpreting. But obviously » should be
entered as a negative quantity ; moreover, by our conventions previ-
ously laid down, », should also be entered as a negative quantity, and

ViH . e o5 . .
therefore —1- would remain positive, which is obviously wrong.

In order to render Formule (20) and (21) quite self-interpreting,
we may leave u,* and v,® intact, while putting

1 il 1 1 1+a 1
—— for -, ——— for —, —* for —, ete.
" (- 1A ry (= 1), Ty 24 %
1 1 l+a
Then — becomes — . -1, and therefore Formula (20) becomes
7yt (.“_ D, 24 (20)
o T, )l s 1)f2(1 + al)} XXV

. gL g 5 1
Obviously if » and f, become negative, then by convention . becomes
) 1
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negative with respect to f,, and (1+a,) is therefore negative. In
like manner Formula (21) becomes

M (1 +a))(1 + ay) v,2
———-A’){1+Y2<— W7 2/ ]
(Ay 2 L . 2
8f, 2p - IXL —a)fify U, : L XXVII Formula (21) in self-
(1 - _“2) _ 7’_12 B 1+ ay ) ’ interpreting form.
2p(p = DSy ' 2p(p— 1Y S

Since f, in the denominators of the first two functions in the inside
brackets may be expressed as nf,, it is evident that the corrections in the
inside brackets in both Formule XXVI. and XXVII. are aberrations
of the order j—]g similarly to the intrinsic aberration functions of the
third approximation. It is clear that these formule may be applied
to any pair of elements constituting a thick lens.

Thus the corrections that have to be added to the first values of
the aberration to the order Y2, as ascertained from Y, and Y, in the
element planes, are functions of Y* and of the-aberration of the second
approximation as expressed in Formula XXIII. Precisely the same
formula will be obtained by the same course of reasoning in the case
of the negative lens, Fig. 355, although in the intermediate processes
the signs of T and ¢ are different.

As these corrections are consequent upon the curved surfaces Aboveversinecorrec:
retreating from the element planes, we may fitly call them the fom Sisunguished
versine corrections of the order Y* in distinction from the intrinsic rections of the same
aberrative corrections of the order Y* as expressed in Formula XXIV, e ¥

Practical Application of the Intrinsic Aberration of the
Order Y* to the same Lens as before

As an instance of the arithmetical application of these aberration
formulae of the order Y* we will take the same lens of radii 1 and 3,
thickness 75, Y, =40, and Y,="30, with entering rays parallel, for
which we worked out an aberration of the order Y? equal to+4-0645.

Applying the Intrinsic Aberration Formula XXIV. we get for
the first element, since z = +1,and a; = —1,

_('40)4{ ~ 4625 + 33625 — 60°1875 — 51°94 — 55°55 + 28°19 + 13106

27(2)° -5-247

‘0086 Intrinsic aberration
= - 00027, of the third order

32 for first element.

'

0256

“Eney =

or about gl5th of the aberration of the order Y? which was +-02333.
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an amount which goes a long way towards neutralising the intrinsic
aberration of the order Y* which was—-0029. We could here have
employed Formula XXVIIL for the second element with a like result.

The possibility of the intrinsic functions being neutralised com-
Pletely by the versine corrections in the case of thick lenses at once
suggests itself, but space does not permit of a full inquiry into the
conditions under which this may take place, although it is a question
of much interest.

Further Aberration Corrections of the Third Order, due to
Aberrations of preceding Lenses

Our next task is to consider the nature of further aberration
corrections of the order Y* which arise in a system of two or more
lenses separated by substantial intervals.

Let Fig. 36 represent two collective lenses or elements L, and I,
separated by an interval S, and Q,.. C..Q, be a ray refracted by L
at C. Let Q, be the point by ﬁrst approximation to which the ray
would be refracted by L, were there no aberration, but Q, the point
to which it is actually refracted. Thus Q,..Q, is the longitudinal
aberration. It is plain that at I, Y, or the height up to the point

D=Y, 48 S’ simply ; but the height y, up to the point E, where the

ray actually cuts the plane of L,, is less than Y, by an amount that is
a function of the aberration of L. Let

Ty - Q=% W Ay =

LZ..Q2’=722, L2.,Q2 =u2_

and let

Then we have

d 1 /5.2
7~ - Aw

g ’ gr 31t
Yo=Y, v_%=\1_‘_—‘Y_f
1 bj 5A1
IRARYA2
f e, s Lo el
3Ll('ll 5, gﬁAl G ) <”1 it 8f13A1)
- [U, S Yl " T ¥12_ ’
Yll ” stAl v+ (7 Sl)gflsAl}
(=8 X2 v, — 8, M
_Yl{ » 18f3A11 o Ty " Slsf 34y

in which », — 8, obviously = —w,, so that



Formula for #,? as
modified by aberra-
tion of first lens or
element.

Above formula in
self-interpreting
form.

Whole  expression
for the aberration of
L,, including that of
the third order.

Aberration of the
third order for L.
isolated.

Tke Y’s modified by
aberration of pre-
ceding lenses.
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?2=Y1(-_-1;?2> 1;;:, =-Y “2< + 83 SYflsA’>

and since the correction is generally small compared to 1, then we

may assume that ,
el o

1}

This formula is open to the objection that if L, were dispersive, then

v g .
u*l would be positive instead of negative, and the correction to Y, would
2

come out as an increment instead of the decrement, which it so
obviously is. But we can make the formula universally self-
interpreting by adopting the same device as in the case of the versine
corrections, thus arriving at

5t = Yf(jff) 4] }} A4 (] J_“Z?)f,;s } xxvim

Now, if £, is dispersive, it is negative relatively to f, so thatj,il is

2
negative, while 1+a, and 1 —a, are both positive, therefore the
correction to Y; comes out negative.

The spherical aberration of L, may now be written in the form

, (1 + a)\ f \
4 l 2\/1
8f3(A o){ 4f3A (1 —al>f2slj’
or, if we express Y, in terms of Y,, in the form

v (" ) fJ(A'g){l i 2;131&’ (1 iZf)j;lS } xxvima,

so that the aberration of the order Y%, when separated out, is

V(5) g (T2 2, (23)

In this case we may say that the modification of Y, at the second
lens and the consequent modification of its aberration is due to
borrowed aberration. Let it now be supposed that another lens is
added to the right hand of L, and at a distance = s, from it. Then it
is evident that the aberration of L, will not only affect Y,, but will
generally affect Y, in still greater degree, since L, is further removed
from L. The aberration of L, will be transferred right through L, on
to L. Not only so, but L, will add (if it is a collective lens) its own
aberration to the aberration of L, passing through it, and therefore Y,
will be affected by the two aberrations borrowed from L, and L,
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v

We will Lere refer forward to Fig. 96, Plate XX., which represents
a case of four collective lenses or elements in succession, so arranged
that all the »’s and v's are equal and positive. The first lens only is
supposed to give an aberration whose linear amount is Q, . . ¢;, while
the other three lenses are supposed to be free from aberration and to
simply copy through from focus to focus the aberration given by L, ;
yet the cumulative effect upon the successive Y’s is most marked, and
they grow larger and larger as we proceed from left to right.

Of course, if L,, for instance, is a dispersive lens, then the effect of
its aberration on Y, will more or less neutralise the effect of the
aberration of L.

The formule giving the modifications of the aberrations of the
third and fourth lenses due to aberrations borrowed from the preceding
lenses are naturally more complex and unwieldy than XXVIIL, and
it will suffice to give the complete expressions for the spherical
aberrations of the third and fourth lenses of a series of four widely
separated elements or thin lenses, without detailing their working
out. The student may easily verify the formule for himself. We
have already obtained the expression for the second -lens or element
in Formula XXVIII4., and we will adhere to the highly convenient

expedient of expressing all the Y’s of the succeeding 1enses in terms v

of Y,
Then the formula for the corrected spherical aberration of the
third lens is, in self-interpreting form,

1 2“3){ /5 /1+“2f1 1+a3f2< "22
ot () e st T2 2 s T2 2t  XXVITIn.
il 2>
+ i)
and the formula for the fourth lens is
1oy ottt Y2 o l+af )
Sf43A e <v1v21'3> ay glzlf sA 1 -qf,
qltagfy p uzz Y2 ., v
+ 8 A
Fomn 3<4f g % 2> L XXVIIIc

1+4a,f. wu\2 Y2 UV \ 2

= S 4./2 A ( 2 i) a8 A < 2 3>
= “3f4{4f3 it 455 F\eyuy
NG 1'112> \

+ G | |

The formula for the fifth lens would evidently contain ten terms,
and that for the sixth lens fifteen terms. In the case of large

The cumulative
effect of aberration
upon the succeeding
Y’s.

All the ¥’s to be ex-
pressed in terms of
1

Whole expression for
the aberration of L;,
including that of the
third order.

Whole expression for
the aberration of L,,
including that of the
third order.
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Now if we differentiate the formula for spherical aberration of the
second lens with respect to a, we get
oB s il
8f, 23/"2(:”'2 ~¥)
2

in which we may substitute Formula (26) for da,, and le(’_:'_z) for Y%

and then get :

2

{4 + D+ 2(3pa+ 2ot - l)a2}da2,

1
f24f3 18f2 m{‘l(% + 1)y + 2(3pg + 2)(py - 1)(12! XXIX.

In this formula, Y,> has been expressed as Y2< ) which has

cancelled out the —2 of (24), and as f, can be expressed as nf, we see
2

that the correction is of the order ll and is the expression for the

variation in the spherical aberration of L, consequent upon the varia-
tion in a, due to the aberration of L. In the same way the complete
expressions for the functions of da, and da, can be worked out.

In these two cases of the effects of the aberration of one lens upon
another we have assumed that the rays entering the first or left-hand
lens are either diverging from or converging to a definite point on
the axis:

But if we have to look upon these rays as principal rays, each such
ray being the central ray of a pencil, then it often happens that such
principal rays are constrained to pass through a definite point on the
axis after passage through one, two, or perhaps all of the lenses of a
series, owing to a diaphragm with a circular aperture being placed at
the desired crossing point.

In such a case, of course, it is the more simple and convenient to
regard the rays as travelling from right to left, and the formulae ex-
pressing the corrections to the aberrations consequent on borrowed
aberrations may then be worked in inverse order.

However, these considerations do not strictly apply in the present
section, but only when we come to deal with the optical characteristics
of lenses other than spherical aberration, and especially distortion.

Summary of the Spherical Aberrations of the Order Y*

On summing up these spherical aberrations of the order Y,, we
have for each element or thin lens—

First, as applying to all single lenses, and in the case of all

Differentiation of
the spherical aber-
ration formula with
respect to a.

Complete formula
for variation in a
consequent from
aberration of L;.



First, the intrinsic
aberrationfunctions.

Second, the versine
corrections to the
aberration.

Third, the correc-
tions to the Y's due
to aberrations of
preceding lenses.

Fourth, the correc-
tions to the a's due
to aberrations of
preceding lenses.

An aberration of the
second order cannot
be properly neutral-
ised by a contrary
aberration of the
third order.
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elements, the intrinsic aberration function of the 01der 75
by Formula XXIV.
Second, as applying to all single lenses, and in all cases, the versine

as expressed

. . Y+ A

corrections to the aberration of the order 7 as expressed in Formula

4

XXVI. for the first element of a thick lens, and also of the orde1 j5

as in Formula XXVII. for the second lens element. Thus in a series

of lenses, Formula XXVI. applies to the first, third, fifth, seventh

elements, etc., and Formula XXVIIL. to the second, fourth, sixth
elements, ete.

Third, but only where separations exist between lenses or elements,

the corrections to the aberration of a lens or element due to the

variation in its Y caused by borrowed aberration of the order —f—5 as
expressed in Formulee XXVIIIA, B, and ¢.

Fourth, but only in the case of one lens being preceded by others,
and especially if widely separated, the corrections to the aberration of

a lens or element due to the variation of its vergency characteristic,

and caused by borrowed aberration of the 0rde1 7 as expressed in
Formula XXIX.

Hybrid Spherical Aberrations

Let it now be supposed that in a system of lenses the above
aberrations of the order Y* do not neutralise one another, but that there
is a perceptible balance left over; then the question arises, can they
be neutralised by a contrary overplus of .aberration of the order Y??
We shall soon see that they cannot.

Let it be supposed that Y represents the extreme semi-aperture of
a system of lenses in which we are seeking to eradicate all the
spherical aberration, and that there is a residue of minus aberration of
the order Y4 Then, of course, it is quite possible and practicable to
counteract this residue by leaving in the system a residue of plus
aberration of the order Y2 so that we have

Y+ fYe=0, (27)

in which f) represents a certain coefticient of Y? and f) represents a
certain coefficient of Y4 Then it is obvious that the relationship of
these two coefficients is given by

fi=-Fige (28)
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Let ns now take another measure of the semi-aperture, smaller
than Y, and call it . Then since the coefficients and their relation-
ship are constant, the only variable being y, then we have fj*+f,y*
to express the aberration for the smaller semi-aperture , and if we
differentiate this expression with respect to y we get

&1y + 4yy°)dy. (29)
Then it is plain that we can equate this differenbial coefficient to 0,

thus: 2fy 4+ 4f,y* =0, in which (from 28) f, = f/Yz’ so that we then
have

2f1y - 4f/?2—0 or 1- J—2=0,
and

"5 (30)

Evidently, then, at a distance from the axis such that y= o
N 4

there is a maximum deviation from a true balance of the two orders of
aberration, and the amount of this maximum deviation may be easily
determined as follows :—

Since
l"l Y-l
2 = —_ .t 4= —
y 3’ Y 1
therefore at the helght —= flOIn the axis the state of the aberration is

given by an expression exactly analogous to (27), viz. fg* + f,y* becomes
72 AES

f/&2 +f/, 1 in which f/YZ may be substituted for f), (from (28), so

that we then have

W oY L aon . INE
f/j"f/ff which = + e (31)

or exactly one-fourth part of the + aberration of the order Y? to which
the ray passing through at the extreme semi-aperture Y is subject.

This theorem is illustrated in a striking and convincing manner by
the diagram, Fig. 37.

Let L..D be the optic axis of a system of lenses of semi-aperture
=D..P, placed somewhere towards the left hand, and let A,..P
represent the longitudinal value of a residual amount of negative
spherical aberration of the order Y* to which the edge ray is subject.
Then let there be introduced such an amount of positive spherical

H

The point of maxi-
mum hybrid aberra-
tion.

Maximum  hybrid
aberration is one-
fourth of the aber-
ration of the second
order and of thesame
sign.



Zone of aberration
explained.

Phenomena at the
focus.
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aberration of the order Y? as will neutralise the negative aberration
of the order Y*

That is, A|..P=P.. A , and represents the longitudinal value of
the positive spherical aberration of the order Y. Then, as these two
aberrations for the edge ray are equal and opposite, the said ray will,
of course, focus at P in the same plane as D, the focus for ultimate
centre rays as given by formule of first approximation.

But if the abscissee of the curve D—A, are made to vary, as y° or
the square of the height from L..D of any point in the curve, and the
abscisse of the curve D.. A, are made to vary, as y* or the fourth
power of the height from L..D, then it is easy to see that the
resultant curve joining loci of actual focal points for rays traversing
the system at different heights from the axis will be the curve D..m..D,

2
having its maximum abscissa at m, where y2=Y7, and that m .. 5 will

be exactly a quarter of P.. A, or P.. A,.

Here we have the explanation of a phenomenon familiar to many
opticians who have attempted optical systems of large relative aperture,
and found it impossible to obtain a well-defined axial image of a point
owing to the presence of what we may fitly call “a zone of aberration,”
which exhibits itself in the form of a bright diffuse zone or annulus
within the cone of rays, which is visible through an eye-piece placed
either inside of the focus or beyond it.

While the edge rays at the height Y from the axis and ultimate

centre rays may be brought to the same focus, yet the rays traversing
oL

. ¥y L
the system at a height equal to /5 intersect the optic axis at perhaps
, NE

a considerable distance either short of or beyond the focal point for axial
and edge rays. The reason why, when the eye-piece is placed well
within or beyond the focus, the phenomenon gives rise to a bright
zone, is rendered plain by means of the diagram, Tig. 38, which
accurately represents the rays coming to focus in a case where there
is hybrid aberration, brought about as in Fig 37. If the eye-piece is
made to focus upon a plane somewhere about «..e, it is evident that
a condensation of rays occurs about half-way between centre and
periphery of the circular penumnbra or section of the cone of rays.
On approaching the focus, as at position 4..54, the condensation of
rays is still more marked, but it occurs now relatively nearer to the
centre, while at ¥ ..% the zone of aberration is at its most distinct
phase and has a radius of about one-fourth of the radius of the whole
penumbra. The extreme edge ray focuses or cuts the optic axis at P,
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which is supposed to be the focal point also for the rays ultimately close
to the axis, as given by the formule of first approximation. The whole
distance m .. P along the axis over which the hybrid aberration spreads
itself of course corresponds to the maximum distance m..b in Fig. 37.

If the eye-piece is made to focus upon planes beyond the focus in
this case, then a ring of rarefaction or a comparatively dark ring will
show itself, corresponding to the bright ring visible inside focus. In
the plane ¢..c the central bright nucleus is very marked.

It is clear from Fig. 37 that the bright zone of aberration will
always show itself on the same side of the focus as the aberration of
the order Y?, while a corresponding dark zone will show itself on the
same side of the focus as the opposing aberration of the order Y%

It is the existence of outstanding aberration of the third approxi-
mation or of the order Y% as represented by P.. A, in Fig. 37, which
is supposed to have necessitated our having in the system an equal and
opposite aberration of the second approximation or of the order Y2, as
represented by A ..P; and we have seen that the incongruity between
the two orders of aberration gives rise to a maximum amount of hybrid
aberration whose amount m . . b is always one-fourth of the amount
of the aberration A .. P of the order y* to which this extreme ray is
subject.

We have also seen that all the aberrations of the order Y* which

S IS : NG e T
arise in a lens or system of lenses are functions of 7. From this it

follows that if in place of each lens of a combination we substitute

two lenses, each being of half the power or double the focal length
4

of the original, then, instead of an aberration represented by 5

1l A%

Thus, supposmg we are troubled with a zone of aberration at the
focus of any given system, and it cannot be eliminated by opposing
plus aberrations of the order Y* against minus aberrations of the same
order, then we can at once reduce the zone to one-sixteenth part (as
a general proposition) by the expedient of splitting up the lenses, or
at any rate the most violently curved one, into two lenses each of
half the power of the original.

It is also evident that the linear amount of hybrid aberration
in any given case and the consequent intensity of the zone will be
multiplied 16 times on doubling the aperture.

It is also worth while to glance at the case of the hybrid
aberration which arises when we correct a certain amount of aberration

have an abeuamon represented by 2(

Opposite effects at
the two sides of the
focus.

Favourable effect of
dividing up powers
of lenses upon a zone
of aberration.

The next higher
order of a zone of
aberration.



Where the hybrid
aberration is at its
maximum.

Aberration of the
order Y® generally
small compared to
that of the order ¥3,
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of the fourth approximation, or of the order Y® for the extreme ray by
an equal and opposite amount of aberration of the second approxima-
tion, or of the order Y2 TFig. 39 illustrates this case.

We then have /)Y?+f,,Y°= 0, from which

Y2 1
Jn=~Ffigs= - Jryis

_ 3 1. "
therefore, substituting, we have f;9*>—f &—,.ly" to represent the hybrid

aberration for any other height of ray =y.
On differentiating this we have

1 1
<2f,y - 6y5f,Y4>dy = Uy <l - 31/41,4)@/ =0;

and on equating this expression to 0 we get

39 _ TR S B0 4
3Y“_1 and y*= g Y= 73" 7598Y.

Then it is for this height of ray y that the maximum amount of
hybrid aberration occurs, and its amount will be given by

f1<2/{3>2 _f1;4(_\}/%)6

-1(3) ~a2(35) =wr{(zs) - (5) )
= Y2577 - *192) = f,YX(-385).

Hence the maximum amount of the hybrid aberration occurs for a
ray which traverses the system at a distance from the axis equal to
about three-fourths of the extreme semi-aperture, and the amount of it
is about three-eighths of the outstanding aberration of the order Y2 to
which the extreme ray is subject.

But of course the amount of aberrations of the order Y¢ will,
generally speaking, be but a small fraction of the aberrations of the
order Y*. Hence we may regard the hybrid aberration curve as a
combination of the curve of Fig. 37 with a much flatter curve of the
character of Fig. 39. The latter will have the effect of raising an
elevation or wave on the curve of Fig. 37 at about 2.

An Important Corollary

One very obvious corollary from all the preceding investigation is—
That if for any optical system the aberrations of the two higher
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orders Y* and Y° are eliminated or of an imperceptible and negligible
amount, then our formule of the order Y2 as applied to elements, etc.,
will be strictly accurate.

The best possible test case for this proposition is provided by an
optical system whose curves are strictly spherical, which is known not
to show any perceptible zone of aberration at the focus, and whose focal
distance for the ray traversing the extreme edge of the aperture has
been proved by the most rigorous possible trigonometrical calculation
" to be exactly equal to the focal distance for rays ultimately close to
the axis, as determined by the formule of the first approximation.

Application of the Method of Elements to a large
Telescope Object Glass

The following astronomical objective of 12-inches aperture and
focal length of 17613 inches measured from the vertex of the fourth
surface serves as a capital example of the application of the formule
for spherical aberration of the order Y2 which we have worked out.

Radii of Curves, etc.

Collective Lens Dispersive Lens
ry= + 59-8” ry= + 90°15". ry= — 8477 ry= —410".
Centre thickness = 1”. Centre thickness =1".
Refractive index of the crown glass | Refractive index of the flint glass for
for C ray = 1'5146 the C ray = 16121
= =M.

The focal length for parallel rays measured from the vertex of the
fourth surface, as trigonometrically calculated for the C rays, is—

for the unltimate centre rays=176-1306"
and for the ray 6 inches from the axis=176-1272

Aberration undercorrected by ~ —-:0034"

We will now apply the algebraic formulw of the second approxima-
tion to this objective, by the method of elements. We have

1_ 5146 , G
£ =%a.qr +- J1=116:2068 =v,, from which subtract -1, which = 66024
IS ‘ \

66024
uy= - 11554656

Conditions under
which formule of
the second approxi-
mation are accurate

A suitable test case.

Specification of 12-
inches aperture ob-
jective.
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lenns 1+q, . s ¢
o -173 " 376 7502 T 6114.,from which 1 +a3— + 3975617,
so that
ag= +2°97567; ;= +1.
1 S i 1Sl 1 p i ¢
o, " 1339650 " 1394597’ from which 1 + a, = + 960605,
so that
a,= +8606; z,=-1.

We have next to express the #’s or heights of the ray from the
axis where it cuts each element plane in terms of the corresponding ¥,
at the first element plane.

‘We have
2
U {12
P Yy il e N
Y2 =Y175 ore T S RTINS
51 %
u R U
3 _, Uslly 2 _, of Yol
Yo = Yoo = Y~ 9,2 2
Ys ?/21,2 (51 v, Ys"=Y, (1,11,) H
2
gt ey e, of Yallglly
Yo=Yy =¥y 0 R vy B
3 1%23 Vsl

Next we must transfer the spherical aberrations of all four
‘elements to one common reference point, which is, of course, the
vertex of the fourth surface or the locus of the fourth element.

Calling the aberration function

3 2
1}-’/

1 it
83 u(p— 1)
% for the first element .. for the second

1 'y
by the symbol —f—A : 8f3

element, etc., then the aberration of the first element transferred to
the fourth will be expressed by
”1”2”3)2 2
1<u2u3u4 .

782 (2) (2) - gt
8f13A1 ;;2 ;3 iy T _8f13A
The aberration of the second element transferred to the fourth is

4
1 PONE AN E v, s
a7atie) () = ganl() () e
8f° Nuy/ \u, Ry 8f3A U/ 2%

The aberration of the third element transferred to the fourth is

i) =) Ci) o
8f33A3(§L: Y3 gfaA 1711,—2 s

Uy

{’“+ 2x2+ 4(p + Doz + (3p + 2)

Third element.

Fourth element.

The %’s expressed in
terms of ¥/,.

Aberration of first
element transferred
to fourth.

Aberration of second
element transferred
to fourth.

Aberration of third
element transferred
to fourth.
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but as f, is minus, the element being dispersive, therefore £’ gives a
minus sign to above total.
The full statement of the aberration of the fourth element is

2 M+ 9
: <u2u3u4> ) N “22+4(M+ 1)agp,

83\ w0,/ M(M - DM -1 : 3
Jornngy/ MM 1) FEM+ M- a2+ MY, s
which M-1/J

1

= §( +°00000001949 - -00000029702 + -00000102371 + -0000000226)y,>

! 1
o ~ 5(100000076881y,?) altogether ;

and again, as this is a dispersive element, and f,* is minus, the above is
minus aberration.
Summing up, we have

for e +°00000575137y,2 for e —-0000308487,2
1 U 3 ¥

for e,  +°0000259304y,> fore, - "0000007688y,?
%(+'00003168177yl2) 4 (= 100003161755,
for collective lens for dispersive lens

So the total aberration for the four elements or two lenses is

1 +-0000316818y,”
8\ - "0000316175y,?

%( +.0000000643,2)

2
If now we take y at its full value of 6 inches, then %: 4-5, so the
full correction to vl for the edge ray is 40000002894, and this

X —v? or —(1746'13)2= —+00896”, which is the longitudinal value
of the spherical aberration at the focus. But there are the parallel
plate corrections *to be added in yet, and although in this particular
case their amount is small and does not seriously affect the result,
yet the case serves as an example of their application.

It is obvious that in applying the Formula XXV. to the case of
the first parallel plate of thickness 17, the a, for its second surface is

the same as y,, which = yl?ﬁ, and the v, of the plate is the same thing as the
u, in the present case. !
Therefore, the first parallel plate correction is, in the first place,

2 2 2 2
;/.-13/2t pi-1 2(u2>t
S et @ e EEE R e

2.“'3 u24 1 2/‘3 1 v u24

Aberration of fourth
element fully stated.

Aberrations of col-
lective and disper-
sive elements respec-
tively.

Sum of the aberra-
tions of collective
and dispersive
lenses.

Aberration of first
parallel plate.
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zone of aberration of —:0001 X (2)*= —-0016 in., before it would
become perceptible at the focus by the most refined optical tests.

The chief value of the above example is illustrative, and there is
no necessity in practice for being accurate to so many decimal places
or for adopting the device of elements in a case of an ordinary double
objective whose aperture is only i;th of its focal length; for were it
the case that there existed at the focus a longitudinal aberration of
+ or —45th of an inch, it would be possible to correct it by
departing from true spherical curves, either by parabolising the
figures of the surfaces or the reverse, thus bringing about a slight
deviation for the rays which increases as y® approximately. There-
fore it by no means follows that, because a given optical combina-
tion yields an axial image of a point of light which shows no trace of
outstanding spherical aberration, therefore a calculation of the course
of an edge ray, either algebraic or trigonometric, will also show no
aberration. Hence the desirability of comparing the results of an
algebraic calculation with the results of a rigid trigonometric calculation
if we wish to thoroughly test the accuracy of the former.

Many optical designers would prefer to employ trigonometric
calculations of spherical aberration rather than any other, even in the
case we have just dealt with. Indeed, it is doubtful whether in the
case of some of the highly complex constructions of five or more thick
lenses forming modern microscope objectives, any method can be as
easily applied as the trigonometrical one, provided that not only the
focus for the extreme edge rays relatively to the ultimate ceutre rays
is calculated, but also the focus for the rays passing the aperture at a
height 7 equal to about $ths of the full semi-aperture. Thus any
discrepancy between the focus for the intermediate zone of rays and
the joint focus for the central and edge rays would at once indicate the
presence of an aberration of the order #* and perhaps 4%  Or, suppos-
ing the focus for the edge rays not to coincide with the focus for
ultimate centre rays as calculated by the formulee of the first approxi-
mation, then the calculated relative position of the focus for the zone
of radius $ths would at once show any departure from the law of the
aberration varying as 3 simply, and thus reveal the presence of an
aberration of the next higher order.

It is certainly true that the trigonometrical method is very much
more applicable to broad axial pencils than to any other case of
refraction that can arise.

Although trigonometrical calculations of the course of a ray through
an optical system are often highly desirable, yet these are merely

How a small aber-
ration may be neu-
tralised by depart-
ing from spherical

curves.

Trigonometrical
methods often pre-

ferred
pencils.

for

axial



-

Empirical nature
of trigonometrical
methods.

The designing of a
cemented objective
of two lenses.
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mechanical processes which, more especially when applied to oblique
and eccentric peucils, do not lend themselves at all to analysis. They
are empirical and uninstructive, or at any rate barren of enlighten-
ment unless a large number of calculations are carried out in which
certain factors, such as radii or separations, are varied, and the results
of such variations carefully noted. All this involves much empirical
work ; whereas by the aid of algebraic formulwe, although they may
be not quite so exact, leading principles can be established, and the
tendencies of the corrections consequent upon the variation of any
one term can always be worked out with very little trouble, and it is
by the intelligent grasp of the general tendencies that an optical con-
struction may be varied in its parts until the utmost possible perfection
is realised.

An Example of the Practical Analytical Application of
Formula XXIII,

Jefore dealing with the spherical reflector, we will give another
useful example of the practical analytical application of Formula XXIIT.,
or Coddington’s formula for spherical aberration.

While we have seen that if we wish to arrive at a correct estimate
of the total aberrations of the second approximation for thick lenses,
we must treat them by the method of elements, still we must not
lose sight of the fact that for analytical purposes, when planning out
new combinations of lenses whose thicknesses are not great compared
with their focal lengths, we may with approximate accuracy treat such
lenses as wholes, and then, if we desire greater accuracy, check the
aberrations by the application of the method of elements.

For instance, we may wish to design an object glass for telescopes
with the interior surfaces of the two lenses of equal but opposite radii
of curvatures, so that the two lenses will touch all over, and can be
cemented together by Canada balsam. TLet the crown glass lens be
outermost and have a refractive index=u =15, and the flint glass
have a refractive index = u,= 16, and let the ratio of focal lengths for
crown and flint be 3 : 5, so that F, = + 3, and ¥,= — 5.

Then, since the rays entering the first or crown glass lens are

parallel, we have a, = — 1; then u, for the second lens=F, =3; and
we have

1 1

{O“'Z: 45 1+ay=3} and ay= +2}.

Now we can express z, for the second or negative lens in terms of
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x,; for, as the two contiguous radii of curvature have to be equal and
will be of the same sign (as the lenses are of opposite sign), we have

) nr 5 1-2 How 7, may be ex-
0 pressed in terms of
2y - 1)5 2y - 1)3 7.
iy = (1—.1:1) (—)-(1—7’) — 22, and 7, =1 - 2,

so that the spherical aberration for the combination is

S ,,5{1.11 - 102, +10}

T 8(5)F 96{6<1

which we must then equate to 0, getting

207 + 10-4(23)(1 - 25) + 408(2)* + 683 ),

1
{792~ 102, + 10} - (IQT(_%—){s(l — 4o, + 42?)

+ (10-4)(23)(1 = 22,)+ (54)(4:08) + 6- 83} L)

947, + 24a,%) + (24°266 - 48:532z))

+2291 + 6-83}

1
(27)(75)

50,25{7%2—1095,“0} 100\(6

=0,
34522 - 493z, + "493 ~ ("05 - 202, + 20x,2 + *2022 — *4044x,
+°185 +°057) =0,
‘14522 + 111, — 001 = 0,

x12 + 7652, = -007,

24762 + (0 38)2— 007 +°145="152 ;

&+ 382 + 152 = +39,

2= —-38+39= 4 01, or —"77.

Hence the crown lens, if placed outermost, must be practically Two solutions of the
equiconvex, or else have its radii in the ratio, 177 to 23, or nearly eauation.
SRRl
It can be shown that if we have the two lenses with principal
focal lengths in the ratio 1: — 1875, and the refractive indices 15
and 1-62 respectively, then in the same manner we get the equation
in final form
2% + *486x, = — 025,
2,2 + 486z, + (243)? = — 025 + 059,
T, + 243 = + 034 = +18,
and
7= — 243 +°18;
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therefore finally
= — 063 or - 423,

A very slight increase in the focal ratio over the above 1-875:1 will
render the equation insoluble, the nearest approach to freedom from
spherical aberration being made when 2 =about —-2.

The ratio 19 : 1 for the principal focal lengths with the refractive
indices 1'52 and 162 is just about the limit, a higher ratio of focal
lengths producing undercorrected spherical aberration.

Two often useful formule are the differentials of the spherical
aberration with respect to the two characteristics a and x, which we
will here give.

First, the differential with respect to a : —

<8f3A/ ') = z:/jﬁ{LlE# E 1§9« + 202 = Vda XXX

Second, the differential with respect to z is

na) B 2e+2) e+ 1), »-

. <8f3A ) o e e L e e

By means of these formulae the effect of any contemplated change
in a or « for any lens is easily ascertained ; or, on the other hand, the
value of dz or da required to effect a given small change in the spherical
aberration is soon arrived at.

It will be as well to repeat here the formula for the least circle
of confusion—that is, the smallest section or circular aperture through
which the rays of a pencil subject to spherical aberration will pass.
It is practically the best possible approach to a focus that the pencil
is capable of, and its linear diameter is worked out by Coddington on
page 12 of his work.

Thus the linear diameter of the least circle of confusion is

7 2
2 gng'), XXXIL

and its angular diameter subtended at the lens centre is therefore
), XXXIII
&3 ) .
wherein o is the semi-aperture of the pencil at the lens, » is the second

conjugate focal distance, and( represents the spherical aberra-

)

tion, as a correction to -, as usual. Thus the angular value of the
v

least circle of confusion varies inversely as the cube of the focal length
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when « is constant, and as the cube of the aperture when v is constant.
For simple lenses of relatively small aperture, however, the circle of
confusion consequent upon the differently coloured rays being refracted
to different foci far exceeds the least circle of confusion consequent
upon the spherical aberration, a matter which we may have occasion
to refer to again in Section X., on Achromatism.

The Aberration of a Spherical Reflector

We will conclude this Section by working out the formula for the
spherical aberration for an axial pencil of rays directly reflected from
a spherical reflector, either of concave or convex form. In this case
we cannot do better than follow Coddington’s method as explained on
page 18 of his work.

Let Fig. 40 represent a divergent pemncil impinging on a concave
mirror, and Fig. 41 a convergent pencil impinging on a convex mirror.
Let the radius » in both cases be considered intrinsically positive, in
which case the distance Q.. or » will be positive by the conventions
laid down on page 7.

Let @ be the focal point by first approximation.

Let the circular curve a—R have its centre at O, so that
=108 o =108

Then it is clear that the ray Q.. R or R.. Q makes an angle QRO
with the radius or perpendicular O..R, which is equal to the angle
ORg made with it by the reflected ray; therefore sin QRO = sin ORg,
and we also have sin ROg=sin ROQ, so that we have the strict
relationship

’ Qs ot G @)
d.-Rr Q.0R" 35

About ¢ as a centre draw through R the arc R.. % cutting the axis
at b; about Q as a centre draw through R the arc R.. ¢ cutting the axis
ab ¢, and from R drop R.. d perpendicular to the axis; and let R..d =y,
let a..q, the required corrected focal distance = ¢/, and let a..Q’
the focal distance by first approximation = » as usual.

Now in the above equation (32) the distance O..q evidently
=r—(v—av’) if we denote the linear aberration Q’..g¢ by x2*; also, if
the angle RQ'a is not large, we may say that ¢..R=Q’ ..R—um?
But it will be found that the introduction of xv* into both the

numerator and denominator of the ratio AL will not affect the

g..R
result as regards the formula of the second order of approximation,

Coddington’s  pro-
cedure followed.

The fundamental
equation.
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which we are proceeding to work out, and therefore its introduction is
only required if a formula of the third order, involving #*, is wanted.
This was clearly shown in the course of working out the aberration of
the third order for a spherical refracting surface on page 54, wherein
the introduction of the required aberration z into the more exact
statement of the fundamental equation did not lead to any modification
of the formula of the second approximation itself, but only to modifica-
tions of the formula of the third approximation. Sinee, however, the
aberration of a spherical reflector is already much smaller than in the
case of a lens of the same relative aperture, even in the most favour-
able case, it is scarcely worth while working out a formula of the third
order of approximation. :
Therefore we may assume that

0..¢9)=0..a)-(a..Q)=r—r, :
@--Ry=(.. Q+(..b)=(@..Q)+{(d..d)-(a..d)};

: A S f;f)_ _y_z(l_l) _l_v_l_yi(l_l)
o q..R—(a..Q)+<20 2/ e\e T o .R v 2®\0v ¢/’

Then we have
0..Q=u~-7;
then

Q..R=(Q..q) -(a..0)=u~-{(a..d) - (c..d)}

Ryl ﬂf-ﬂi)_ Jf(l-l) T Py ,-’i(l_l\
o (27- 2u) "" T 2\F 11’andQ..I{_u+2u2 r u)

Therefore, on putting the whole equation together, we get

ol £0-Y)~eoft£50-D)

. _£(1_1>1_u—fr ﬁLl)
» ! o /S u \1+2u<1' u}

On dividing both sides by » we then get
A0 £0-9)-C-Dp-£C-D)
s

Now by first approximation

or
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therefore the equation becomes

2 2 9
<Y <1+l>(l—l> , in which — ) +l=— or L
7 Sk 0 R

W 12 L 1)2 ?
J—E—E‘F;(;—a Y. XXXIV. (R.)
Hence if v is infinite and the impinging rays are parallel, the

2 2
aberration becomes y3 simply or —gy}—,s; whereas in the case of a lens of

principal focus f, of glass of refractive index = 15, and of the shape to
give the minimum possible aberration for parallel rays (when 2 would

be +~ and a be — 1), the aberration would be 8 f3 (84>. So that the

reﬂector shows to very great advantage compared to a lens of the same
aperture and focal length, even when most favourably shaped.

It will be remembered that the Formula XVIII. that we arrived
at for the aberration in the case of a single spherical surface of radius

SR (W

Now in the case of reflection it is legitimate to consider the refractive
or reflective index to be —1; that is, the sine of the angle of
incidence = — 1 (the sine of the angle of reflection).

If, then, we put u= —1 in the above formula for the refracting
surface, we then get

22 (11, iy,
2(-D\r u/\r w )

which is identical with Formula XXXIV. This analogy will be
found in later Sections to apply in all corresponding cases between a
reflecting and a refracting surface of the same radius, so that we have
only to stipulate 4= —1 in order to convert the refraction formula
into the corresponding reflection formula.

Spherical aberra-
tion of reflector.

Aberration of spheri-
cal reflector much
smaller than that of
corresponding lens.

Reflection assumes
the refractive index
to be —1.
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SECTION V

CENTRAL OBLIQUE REFRACTION OF PENCILS THROUGH THIN
LENSES OR ELEMENTS

WE have now investigated the spherical aberrations to which a direct
pencil of rays is subject whose central or principal ray coincides with
the optic axis of the lens or lens system, and our next task is to trace
out what happens to those pencils of rays which are refracted centrally
but more or less obliquely through a thin lens or element—that is, in
such manner that-the principal ray of each pencil traverses the centre
of the lens or element.

It is obvious that we here have to do with a new variable in the
shape of the angle ¢ formed by the principal ray of each pencil with
the optic axis. The extended images which it is sought to obtain hy
means of optical systems such as the telescope, microscope, and the
photographic or lantern projection lens, are always flat images of
plane objects. In the case of the telescope or the photographic lens
when used on distant objects, the oblique pencils of rays entering
them consist of practically parallel rays, which may be considered as
originating from points in an infinitely distant plane. The image in
the case of the telescope has to be presented to the eye in that state
best adapted to simultaneously distinct vision over a considerable
angular extent of field ; that is, the image presented to the eye must be
approximately flat. This condition of flatness of image applies with
still greater force to the camera and lantern projection lens; and as
often as not they have to form flat and well-defined images of strictly
plane objects.

Therefore, throughout our investigations of oblique pencils we shall
treat all such pencils of rays as diverging' from points which lie in a
plane normal to the optic axis, or else as converging to points in a
plane normal to the optic axis, and all such planes that pass through
points on the optic axis which are conjugate to one another, we will

114
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call conjugate focal planes. We will also assume the existence of
planes tangent to the vertices of curvature of any lens, or, in other
words, the same element planes which we assumed in the last Section,
reserving the consideration of any corrections to our formule depending
upon the versines or departure of the spherical surfaces from such
element planes for Section XI.

We shall then find that the position of the focus or mutual crossing
point for the two extreme rays of an oblique pencil, as defined by its
distance from the lens centre, measured parallel to the optic axis, is
essentially a matter of the spherical aberrations which take place at
each surface of the lens as well as of other corrections of a some-
what different character. Let Figs. 42 and 42« represent the case of
oblique refraction of a pencil through the first surface of a double
convex and double concave lens whose optic axis is I . . p.

Let 7/ be the centre of curvature, e, the vertex of the surface, and
.. @ the radius of curvature, or shortly =, and let P..Q be the
original plane object, and Q a radiant point in it. Let the angle of
obliquity P..a,..Q be called ¢, and the angle P..+" .. Q be called 6.

Let P..a=U,Q..d =u and d,..g =1

Let points ¢, and %, mark the limits of the aperture with which we
are dealing, reckoned in the element plane. Then the two extreme
rays of our pencil lying in the plane of the diagram, or in what we
term the primary plane, will be the two rays from Q which strike the
element plane at ¢ and A, ; but it is clear at the outset that besides
these extreme rays in the primary plane there are also the two extreme
rays to be considered which radiate from Q and strike the top and the
bottom of the aperture, perpendicularly above and below the plane of
the diagram, such that the perpendicular joining their points of
incidence on the element plane passes through the point a,. - Now we
shall always call the plane of the diagram, or the plane containing the
optic axis and the oblique principal ray Q..a,, the Primary Plane,
and the plane perpendicular to the primary plane, but containing the
oblique principal ray Q..a,, the Secondary Plane. These terms
correspond respectively to what German optical writers generally term
the Meridional Plane and the Sagittal Plane. .

Thus our two extreme rays Q..e¢ and Q.. 7%, lying in the plane
of the diagram are the primary or meridional rays of the oblique
pencil, while the two extreme rays in the secondary plane are the
secondary or sagittal rays.

The element planes
again assumed.

Notation, etc., ex-
plained.

Primary and second-
ary planes defined.
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Investigation of the Focal Point for the Two Extreme
Rays contained in the Secondary Plane

Now, as the focus for the two. secondary rays is much more easily
investigated and located than the focus for the primary rays, we will
deal with the former first.

It is clear that the distance from e, to either of the points where
the two secondary rays impinge on the element plane is equal to
a,..e or a ..k, that is, to the radius of the circular aperture, which
we will call 4. Then the distance from ¢, where the oblique normal
ray Q..7 passing through the centre of curvature cuts the element
plane, to the point where either of the two secondary rays cuts it,
is obviously equal to &/{(z,..¢,)* + A%}, and this expression then gives
us the value of y or the height of the secondary ray, where refracted,
from the normal ray Q.. passing through the centre of curvature, which
latter is clearly the axial ray with reference to the pencil under con-
sideration. Here it may be objected that a,..c;, as measured in the
element plane is incorrect, inasmuch as it should be measured perpen-
dicular to Q..7. This is quite true, but it will be shown in
Section XI. that the corrections which have to be added in order to
make up for this and other analogous departures from strict truth
are corrections of a higher order. While the formule which we shall
arrive at in this Section are functions of tan? ¢, the formule of
higher orders are functions of tan* ¢ or of A* tan® ¢, and generally not
nearly so important in a quantitative sense. We have, then, at the
first surface,

hi=(a.. )%+ A%

or, shortly,
v y,2= B>+ 4% (if we put @, ..¢, = B)) (1a)

We may then make the dotted line Q..g,..¢ represent one of
these secondary rays, so that ¢ ..g, is equal to y,.

Turning now to the refraction at the second surface as shown in
Figs. 43 and 43a, let ¢ and ¢’ be the same points as in Figs. 42 and
42a, ¢’ being the point to which the rays in the secondary plane are
converging after the first refraction. Let ¢..s" be drawn from ¢ to the
second centre of curvature s, cutting the second surface at d, and the
element plane at ¢, Then with reference to the second surface and
the emergent pencil s'..¢ is the axial or normal ray. Then our two
secondary rays cutting the element plane above and below a, will be
refracted through the swrface at a height from ¢..g¢ equal to

N(a,. e+ A%; that is,
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A TR RO e
or, shortly,
Y2 =B, + 4,2 (1d)
Let ¢,..g, represent % and g,..f one of the two secondary rays.
Let the radius s..a,=s, and the second conjugate focal distance
a,.. P’ as measured along the axis be V, and let d,..f be v and d,.. ¢’
be v'.
We may then state the values of y,* and ,” as follows :—

p=Br s dt=(Utang T Y v a2, (2)
wi=bpedr=(Ving t Y s 4 (3)
Also
Q..d, or u=TU + (U tan ¢)? 2(U1+ " approx. ; (4) L.
U gy 2(%7);
i %:%— tan9¢2(U%). (5) R.

Neglecting aberration ’ZT:= ”’—;1 - é , and substituting from (5), we get

T=~——1-+tan2 (6) R.

AN
{25 % U # 2(U +r)
Next, as a basis for converting & (=d, ..¢) for the first surface
into v' (=¢,.. ¢') for the second surface we have the equation, putting
¢t for the axial thickness,
e G RN (205 0
e P B S
in which we have supposed a thickness ¢ to exist, which afterwards
eliminates itself so far as our purposes are concerned. Therefore

\ \ ’ ’ 1 1
7)=u—-t—-(g..p)2{2( };

u—1) 20 +5)

wherein

(¢ 2= @ Q) = (U tam g 270V

¥
therefore

PSS 8 1{ a-r}zf 1 1
DB R b \2(u-r)‘2(v*+s)}

Secondary plane.
Value of y22.

Detailed value of 7, 2.

Detailed value of y,%.

Value of % in terms
of U and 7.

Value of :—t in terms

of U and 7.

Value of :‘f in terms

of U and 7 without
aberration.

Equation connecting
% and 0.

-



Value of 5 excluding

the aberration.

Value of 5 including

the aberration of
first surface.

Value of % including

aberration of second
surface.

Length v to be re-
duced to the axis.

q 1
Reciprocal value A

when ¥ is measured
parallel to axis.
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and ® i M -1 2! 1 1 \l
hefe the B{u o5} \G=h T g lE

Substituting in above the value of % from (6) we get
_ il 1 Mmoo w—-r|2f 1 T8 Rl
v r U ¢2(U+r)+tu2+u {U tam¢U+r} {a—7~_5‘_:s}§'

Now to above we must add the spherical aberration due to the
first surface, taking y,® from (2), so that we then get the complete

value of ;‘lfas follows :—

bt Bl B oL ey F W
2 OTRrma TRt AUt by l
=y’ (T R.
11#—1[1121;”1( )2 ;]
_v_—‘+s}'2+—2p21?+U}{r+_—U } Utan i) + 4
Turning now to the refraction at the second surface we have o'

negative as the rays are converging; therefore, including its spherical
aberration, we have

Doopewl (040 i Tl @ ASIG piiiel SV, g
o ‘(_v‘>+2,ﬂ R S Y (V ten oo ) + LR
1]

(TR.
Then, after having got the value of v (=d,..f), we have to reduce
that distance to the axis. Drop the perpendicular f..2’ to the lens
axis, then evidently

v

Il
' (z tan ¢)?
=4y f - e
.1 1 1 (ztan ¢)2

zTo 2z +5)

wherein z = corrected distance ’. . a,;

in which small correction we can put V for z, and say
11,1 Veantg 1 1
2 0 TV Vs ¥ oV +s)
which last expression is symmetrlcal to the other end correction in
Formula (6). After adding (9) to Formula (8), while substituting

= rtantg o (9 R.

Formula (7) for g therein, we then get the complete formula—
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By <1 l> s ® 7 e
= U+t272+tan¢2(U+'r)
= first end correction,

= B2

I(1 1)2f1 1 z
= ol e e g A
+~M Jl +U}{r+ 0] }{(Dtan¢U+T> +A}»

~
mirh

1
= ﬁrst surface spherical aberration,

7 10 S T
e by ' lete formul
{Uta ¢>U l»{ it @+s}2 (10)R. Comlpee ormula,
= correction for converting ¥ into o', for
,___._“
polf1 1)2(1 p+1 < ) ,
+ 52 SEREA TS Vtandu +4
= / 2
= second surface spherical aberration,
1
+ gt bgrrr

=second end correction.

As in general the middle correction of the above is small relatively Approximate values

to U’ 1 7 1\, and l\, we may again insert approximate values of 4 and v'; °°rrections.
and since
Bieiead oy T imati
e T by first approximation,
% reduces to <M> -
0% o U
| (U +7) 1 Ulp-1)-r
% — r reduces toU(‘u_ -7 and = t° e
also since
Eeffithi & 18 o fiedy @51 0 oLy LR
oy ol =EIQaERC S i) ~rw- reduces to (V+s) .

After separating out from Formula (10) the products of the two
spherical aberrations into 42 and also substituting the above values of

F il 1
L % -r,—— and =, we then get
W -7 v +S ‘
Il Y i 1 (1 1)2(1 ,;,+1> <1 1>2(1 /L+1> ~ Includes the aberra-
= — b += ) =+ s —+=) (= J 42 4 i
roo e (Cro) o) () (A ) sttt

=spherical aberration of all pencils of semi-aperature A,



120 A SYSTEM OF APPLIED OPTICS SECT.

= B2

Aberration of first , #~1/1 1>2<1 Iz +l>< Ur )2 i
surface. + 22 <r i) i tan¢U 5 (11)R.

1<U(p—1)—r)2{ (U + 1) 1 V¥ Ulp-1)-7
Goroaptinain donverte W rU U Up-1)-r U+ 7'} \ (U +9) ] 9 R
ing % into ¥\ (=) l[(ld) !

+ } 1
s(V+sy J2l
. = B2
Aberration of second | #” 1(1 1>2<l gt 1) < AV_S~>2 .
surface. * 2u% \s Ll tan ¢ TRy (13)R.
1 1 \1

The two end correc- : 1 14) R.
tions. +tan ¢<U+7’+V+s>2 ( >R /

= the two end corrections from (10).

The expressions (11), (12), (13), and (14) together constitute what
we will call the normal curvature errors, as corrections to the reciprocal
of the conjugate focal distance of the axial pencil of rays of semi-
aperture 4.

Complex as these expressions are, they nevertheless simplify down,
without any further compromise, to the simple expression

tan’ g g+l
2F w
so that our complete formula becomes
Includes the aberra- 3
o common to a1 1L po L1 LR e 1y (L LY e T,
pencils of semi-aper- ¢ F U % 22 \\r U/\r U s V/\s v
ture 4.

1L (R.
The normal tan? ¢ p+ 1 &) :
curvature error in ) IIT. (R.)
secondary plane. = ®

The reader is strongly recommended to verify these reductions for
himself.

Thus in II1. we arrive at the same result as did Coddington by a
considerably different method, in which he neglected the spherical
aberration of the pencil, as expressed in II.

The Rays in the Primary Plane

We will now trace through the lens the two rays which are
refracted at the extreme ends of that diameter of the lens lying in the
plane of the paper—in other words, symmetrical pairs of rays in the
primary plane.

(R
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Let the two rays Q..e, and Q..7% impinge upon the element
plane at ¢ and %, at equal perpendicular distances=4 (the semi-
aperture) from the lens axis P..s" (Figs. 44 and 44a).

Then, correctly, the distances or y's of these two rays from the The two y's to be
normal ray Q..7 .. ¢ are respectively m, .. o, an'd n, .. ¢ ; but for our :f:;f;i?gm:: M
present purposes we will assume y, to be ¢ .. ¢, in the element plane,
and y, to be &, .. ¢, also in the element plane. Then, approximately,
ifa ..c, =B as before,

L0f AN :

e ( A +rtang g 1_) =(A4 + B,y Expression for ¥, y
U N

Y= (A —rtan¢ ¥ou 7‘) =(4 - B)% Expression for 3,7

It is evident that the ray Q . . ¢, meets with more spherieal aberration
than the ray Q..%, so that while the former is refracted to f, the
latter is refracted to f, on the normal or axial ray Q..+ ..f,, and
therefore the point ¢’ where they intersect will be slightly to one side
of the oblique axial ray Q..7"..f,

Let 2z, denote the required distance d,..q. Let f, denote the
distance d, ..f,, and let f, denote the distance d,..f,

Draw ¢..p perpendicular to the oblique axis Q..»"..f,. Then we
have the equation 3

v @ —fi _ . .7) =y fa—1y The fundamental
1 i 2 o equation.

(@~ f )= vfo — 21
v

But 7, and f, involve y,* and y,? respectively, since they are affected
by the spherical aberration.

or

from which

Now that part of the expressions for & and 2 which is common to
1 2
both of them is the term g, and denoting the spherical aberration by

the term w,% we then have

(ot 2 S
f;=-i;+ % and j;—a'i'w]y?Z’
1 S I3 St LS A
4 T+_1 2 L el o D)
o T e
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tlo one s glide o . gl’ F rom ¢” d;'aw g”.l. »" perpendicular to s'. . ¢/, Let
e and = d =-——, Then as in the previous
Roa i T f2 dy- -2, !
case, supposing e, ..c,= Y, 'md c .. hy=7Y,, we have
13 e oY 1
VA E g vl nd = (D :
h R £l [y Ty v f 2> +Y,
and, as before,
1] -
T O N Y o,
and
- 245, = + B2
A% - 24s tan qbV < )
Y2+ Y2-Y,Y,=4+ A%+ 24s tan ¢>V — + tan? ¢ )

— A2 + tan? (

YRV Y= At 3 tant ()

% + o, {A2 + 3 tan? 4’(%5)2} !

2
or, more fully,

l_‘u,—l_‘u, ‘u.—l_l_ 12<1 p-1 5 2<SV>2 =
5 ThOP R\ s Cig P <s+\7) §+T){A At } g
Drop ¢"..X perpendicular from g' to the axis s..¢, then, as in the previous
case, @, .. X or X =v (2q(X 8y , and, approximately,

1 1. 1/V2tan? ¢) Vo ireen:

X~ vz< v+ vt B sy

On summing up all corrections in their order we then get
1

1.1 1 .p whb 5 ik s
°F ot R 71
= first end correction,
=A%+ 3B
K e (5
( U)( {17]) i e s e B

= spherical aberration of first surface,

1
- corrected for com-

)
pounded aberration
of second suriace.

Value of the com-
pounded aberration
of second surface.

1
Involves * expressed

in terms of U and 7.

Compounded spheri-
cal aberration of
first surface.
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As regards the correction for obliquity we have again arrived at Result is the same
the same result as did Coddington, only we have in Formula IV. added ;:Ifgirl'inﬁnitely thin
the spherical aberration which is common to all the pencils, whether
direct or oblique. We have recapitulated these processes chiefly in
order to form an introduction to more important results yet to be
arrived at, also bearing in mind the prineiple that complex investiga-
tions of this sort are understood in less time and with less effort
when all processes (except perhaps reductions) are given in full.

The differential process as applied to infinitely narrow oblique
pencils by Coddington and other writers, resulting in Formule VI. and °
VIIL, also leads to Formulae III. and V. with less trouble, it is true;
but the developments dealt with in subsequent Sections of this work
and the corrections of the third order of Section XI. could not be
derived from them.

If the reader takes the trouble to pursue the same lines of The formule uni-
reasoning in the case of a negative lens with the entering rays con- b/ s
verging and the emergent rays diverging, or the cases of

Entering rays converging into a positive lens
or
Entering rays diverging into a negative lens,

he will again arrive at the same formule, if due regard is paid to the
conventions already laid down.

The further convention with regard to meniscus lenses must be also
observed, viz. that the radius of the deeper curve shall be considered
positive and characteristic of the lens and the radius of the shallower
curve negative relatively, so that the spherical aberration corrections
and curvature errors for the shallower surface will come out negative
with respect to the same corrections for the deeper surface, and the
result for the whole lens be the algebraic difference. Then the final
formulee emerge just as before.

As to the expression t%, it will be found to be but another way The term t&—’; does

of expressing the correction, due to thickness, to be applied to the not affect the pre-
| 1 . . sent formulze.
reciprocal value of = (by first approximation), and it has no further
significance in the present investigations. )
Having now got the corrections for curvature of image formed by
pencils traversing the lens obliquely but centrally,
tan’¢ p+1 tan?¢ 3p+ 1

T e s




Secondary
Linear value.

plane.

Primary
Linear value.

plane.,

Radius of curva-
ture of image,
secondary plane.

Radius of curva-
ture of image,
primary plane.

Curvature of image
is approximately
constant.

Expression for the
astigmatism of a
central oblique
pencil.
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in secondary planes and primary planes respectively, and these being
; ! 1 1% »

small corrections relatively to the values of F or  if the angle of

obliquity ¢ is not more than a few degrees, therefore the linear or

longitudinal (L.) corrections are expressed by

tan?¢ p+1 tan?¢p o+ 1
) e Pt -V 0
F oF or -V oF

in secondary planes,

and
Z@nqu. 3+ 1

=10 e

tan? 3 ] g
r _Vz_an_qb gt in primary planes,
2F
and we may therefore treat these quantities as the versines of the
curved images formed by rays in the two planes, and calling the
required radii of curvature of the two images R and R' we have

ope Ftang? o (Veangr _op
Ftan¢ p+1 Vztan2¢ pt 1 p+ 1’
2 I 9F M
and
5 (F tan ¢)? (V tan ¢)? M
2 = = — 5
S T e S TP Y S S PR
therefore
=F£_ 29
R_F“l (22)
and
. J 23
- F3,u.+1 ()

whether V =F or whatever its value may be. Thus the curvature of
image for some distance from the optic axis is independent of the
distance V of the image from the lens, and depends solely upon F
and upon the refractive index u of the glass, and is independent of
the shape of the lens. Supposing p = 1'5, then the radii of curvatures

are respectively gF and %F

If we take the difference between the R corrections

tan®¢ 3p + 1

tan®¢ p+1
2F 7

and oF oy 1

we then get :
tan? ¢
F

2
tan ¢<3,u+l_p,+ 1) oL

2F u "
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as the R correction expressing the astigmatism at the oblique focus
for any degree of obliquity ¢.

The same simple expression also applies in the case of a spherical
reflecting surface. Clearly no variations in the refractive index can
affect the astigmatism, nor do they in any substantial sense affect the
curvature errors. For, supposing the Iefractive index is 1'6 instead

of 1-5, we then get radii of curvatures of F — =F(6154) instead of Small effect of Ap
upon normal curva-

F(:6), when p=1'5; and F =F(-276) 1nstead of F(-2727), when ture errors.

u=15. So that it would require a refractive index of a very
abnormal character to much affect the results; for even if u were o ,

then ¥ and gwould become the radii of curvatures. But when we N

come to deal with combinations of collective and dispersive lenses, we
shall find variations in refractive indices of one unit of the first
decimal place of the highest importance.
We' may here with advantage compare our results with the exact
formulae for oblique central pencils worked out by Coddington, and
given on page 120 of his work. He adopted the course of supposing
the pencil of rays to be an infinitely narrow one, and therefore the
effective aperture and thickness of the lens to be vanishing quantities ;
he then worked out the oblique focal distances by a strictly differential-
method, arriving at the formula
. Secondary plane.
IR e AN T R
thin pencil.

in the secondary plane, and

cos cos ¢’ 1 ML €O Primary plane.
_,,j E </‘ (:Tsz K 1> (; i s") A zj‘) VII.  Exact formula for
thin pencil.

in the primary plane, in which
v is the oblique distance from the radlant point Q to the lens centre.
v s the oblique distance from the lens centre to the corresponding
conjugate focal point.
¢ is the angle of obliquity as before.
¢’ is the angle of obliquity of the principal ray after refraction,
such that sin ¢ = psin ¢'.
7 is the radius of the first surface, and
s i3 the radius of the second surface.
This formula is by its nature accurate for all angles of obliquity,
and Fig. 46, Plate X., represents the primary and secondary curves



Comparison of the
exact curvesofimage
with those of the
second approxima-
tion III. and V.

Normal curvature
correctionsinvolving
the aperture of the
oblique pencil.
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deduced from it when the incident rays are parallel or « is infinite,
while the two curves indicated by dots are those obtained by the
application of Formule III. and V. as herein worked out.

The lens is supposed to be located at L in each case. The curve
for rays in secondary planes is drawn as a full line, and that for rays
in the primary plane as a closely dotted line.

Fig. 46a shows the primary and secondary curves obtained when

- (axial valune)= —1, and the two widely dotted curves are obtained

from Formule III. and V.

Fig. 47 represents the case when w=v=2f, when the focal
distance is double what it is in the case of Fig. 46.

Thus it will be seen that our Formulee III. and V. fall off in
accuracy when the angle of obliquity becomes large; but they are
exceedingly useful formule, lending themselves easily to analytical
processes, while the accurate Formule VI. and VII. involve the use
of trigonometric tables in their application.

It will be shown algebraically in Section XI. that the differences
between the approximate dotted curves and the accurate solid curves
are made up of corrections of the higher orders, involving functions
of tan* ¢, tan® ¢, etc. 'We shall also find that when the aperture of
the oblique pencil becomes large enough to show perceptible spherical
aberration, then among the corrections of such higher orders we find
corrections involving the square and higher powers of the aperture, so
that the curve traced out by the foci of the two extreme rays of a
pencil of large aperture will not be exactly of the same character as
the curve traced out by the foci of two rays infinitely close to the
principal ray. This means that the amount of the spherical aberration
of a very oblique pencil of semi-aperture 4 will not be the same as
the spherical aberration of the axial pencil of semi-aperture 4.

It is, however, obvious that while in any system of separated lenses
or elements the principal rays of the pencils may cross the axis just
where one lens or element occurs, and thus be refracted obliquely but
centrally through the same, yet such prineipal rays must traverse most
of the lenses eccentrically as well as obliquely. In the next Section
we will deal with such cases of eccentric oblique refraction ; but before
proceeding to that it will be as well to deal with a few very useful
formulee in connection with the curvature errors which we have arrived
at in the shape of Formule III. and V., or

2
e L O secondary planes,

+
2f Iz
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and +tan®¢ Bp+1

2f 2
It is often very desirable to know the effect of a change in the
refractive index upon these curvature corrections.

We will first deal with the case of the curvature being constant ;

in primary planes.

that is, %+% or L i constant, so that } or = is variable as pu
P
varies.
In secondary planes we have
1 ot 1\
d tan?
ﬂ( BN ¢
_tan®¢ p{(n- 1)+(/t+ D - -1),
= . ) ‘U.
2p Iz
tan? ¢ /p? + 1)
5 2/)'_( i g
_tan’é <
2 H)dp, VIIL

so that if the curvature of the lens is constant, then the curvature of
image increases with p.
In primary planes we have

fp-1 3/.L+1 6
d = }an4>

I"\ h)P
_tantg pl(u-1)+ G 1) - (u-1)Bu+1),
=, 2 /.L
2p Iz

tan® ¢ 4p® — (3p® - 2 — 1)
= —2P . ——_—r _d:“'
_tan®¢/p+1
= 2p ( M )d’ll" IX.

and again the curvature of image increases with w.
But if f is kept a constant, then we find in secondary planes that

dtan2¢ pt1 t'm24>,u. (/1.+1)d
oA e o T o
tan® ¢/ 1
7, ("ﬁ)d’” o

so that for a constant focal length the higher refractive index, imply-
ing shallower curves for the lens, yields a flatter image.
: K

Secondary  plane.
Variation in curva-
ture error due to du

when f—l) is constant.

Primary plane.
Variation in curva-
ture error due to du

1
when ’-) is constant.

Secondary  plane.
Variation in curva-
ture error due to du

T
when = is constant.



Primary plane.
V_azj&ti_og\ in curva-

ture error due to dp

when = is constant.
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In primary planes we have
p tan®¢ 3u+1 tan®¢ p3dp— 3+ 1)dp

= w
tan? 4)( 1)
i e dp. XI.
So we get the same differential as in the case of the secondary
plane.
This we should, of course, expect, since the astigmatism as
measured by
tan?¢ 3u+1 tan’¢ u+1 tan’e
. = ==t - = —— = constant,
2f 2 2f I Vi
whatever may be the value of u, and therefore the changes in curva-
ture consequent upon du must be identical in the two planes.

The Spherical Reflector

We have yet to consider the case of a spherical reflecting surface
and its effect upon pencils of rays reflected obliquely but centrally.
Let Fig. 47a, Plate X., represent a spherical reflector of semi-aperture
C..E or C..E,=4. LetQ..Q be afinitely distant flat object per-
pendicular to the axis C..Q. Let O be the centre of curvature, the
radius being O..C =1

Primary Plane

We will deal with rays in the primary plane first.

Draw a straight line Q'..0..S from Q' through the centre of
curvature ; this then becomes the theoretical axis of the oblique pencil,
so that S..E and §.. E, are the two heights for the two extreme rays,
which heights we will call , and y,. It is clear that if /¥ is the ulti-
mate focal point for rays close to the oblique axis Q' . .S, then the ray
Q' .. E, after reflection, will cut Q'..S at a point f,, the ray Q' ..E,
from the upper edge will, after reflection, cut Q.. S at £, and f. .,
and f..f, will be the linear spherical aberrations proportional to
y,> and y.% and these two rays reflected from the extreme edges of the
mirror will cut one another at a point ¢ slightly outside of the oblique
normal ray Q'..S. Draw g¢..p perpendicular to C..Q. Then, as
in the case of oblique refraction at a spherical surface, we may put
Q..8S=u, f..8=7, and ¢..S=2z and let the angle of obliquity
QCQ= ¢. Then we have the fundamental equation—

* The ultimate focal point f has been omitted, but should be shown a little to the right
hand of f,.
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(f p),q,_ (20 q) (f2 p)f 'S The gundamenta,l

equation.

in which, if we put f, for S.. 7, and f, for S..f, we have f|..p=
x~—f,and f,..p=f,—x; therefore

@1 ==,
from which
1 ( % ) 1 Value of > deduced
g | Ay \1e 24A .
f feln + /2 = .

But f, and f‘) involve spherical aberration corrections which are
functlons of y,* and #,” respectively. That part of the expressions for

from above.

]T and ]7 which are common to both of them is of course lor 7 <t
1 2
then if we put A’ for the aberration function, which, as we have seen

] . 1 2
in Section IV, is ;(%—%) , then we have

ot 0 Ll 7.5
fl—v—\+Ay1 a.ndfz—v\+Ay2,

and Equation (244) becomes

{7/1( A/%g) gz Jz< A'/22>}y1 _}_—y;

1 , p
F(% + ) + A3 + 9,°) I
Yty v

so that we get finally

+ A% + 92 - 1),

1 1 Value of X when cor-
===+ A%+ 92 - yy,) 24B «
4 0+ 95" = ye) (%) rected for com-
ol L L. 9 pounded aberration.
Now if F:the reciprocal of the principal focal length or = we

have

@
It
x| —
|
2]

2

and

Q..Q)° (w tan ¢)*
930..Q) " Bu-r) ’
.1 1 tan?¢ 1

1 1 1
=—— " e S mrsiiie
v w 2u--r) e iy T ¢2(u—r)’

#or Q..S obviously =Q..C or u+

-,
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From these results it follows that the curvature error tan2¢%‘ in

primary planes represents also the astigmatism of oblique pencils, and
it is thus seen that it is exactly the same as for a lens of the same
principal focal length. For a lens we have the formule for curvature
of oblique pencils—
N in secondary planes,
2F ®

and

an2
i primary planes,

2F
, N1l . 1
their difference, or the astigmatism, being tan® ¢>F.
If in the above two formule we insert u= — 1, we then get
tan?¢ —1+1 .
=F -1 - 0 in secondary planes,
and
tan®¢p —3 +1

1
e ag Al oo
7T -1 tan ¢>F in primary planes,
which agree with the curvature errors which we have already worked out.

This last formula, however, can be shown to be inexact, for there
are corrections of higher orders, functions of tan* ¢, tan® ¢, etc., but of
little practical importance in this case, wherein the spherical aberrations
involved are generally very small.

The curvature corrections for a spherical mirror as worked out by
Coddington by the application of the differential process to infinitely
narrow oblique pencils are given on pages 22 to 24 of his work in the
form

(Bz—(f)= ;‘— oS¢ in primary planes, (241)
and

1 cos¢p 1 .

—= == d 1 245

TP a in secondary planes, (243)
in which formule w is the oblique distance Q’.. C of our Fig. 47«, and
v is the oblique distance (= C..q) of ¢, the focus, from C, the centre of
the mirror surface. These formule are exact for infinitely narrow
pencils, and practically accurate for cases in which the aperture of the
mirror does not amount to one-tenth part of the principal focal length.

If in the above two formule we suppose %L to vanish, we then get

Curvature error in
primary plane and
astigmatism identi-
cal.

Normal curvature
errors for lenses.

Result of assuming
refractive index in
above = —1.

Exact formule for
normal curvature
errors for spherical
mirror.

Impinging rays par-
allel.






SECTION VI

ECCENTRIC OBLIQUE REFRACTION OF PENCILS THROUGH THIN
LENSES OR ELEMENTS

In the last Section we have assumed the central or principal ray
of every oblique pencil to pass through the centre A, of the lens or
element. We have now to consider the case wherein the point where
the principal rays cross the optic axis is removed from A, or the lens
centre to another point on the optic axis, under which condition the
principal rays of oblique pencils will strike the element plane at
distances from the lens centre A, varying in proportion to the tangent
of the angle of obliquity. It is clear, then, that the distance €' from
A, to the point O,, where a principal ray of an eccentric oblique
pencil cuts the element plane, is the new factor which has to be intro-
duced into the investigation. It will be best to deal with the rays in
secondary planes first.

Secondary Plane

In Fig. 48, Plate XI., D'.. D'is a stop or diaphragm having a circular
aperture of diameter = 28, placed axially in front of a spherical lens
surface, compelling the principal rays, such as Q.. O,, to cross the lens
axis at G. As before, P. .7’ is the axis of the lens, and Q is the point
in plane P..Q from which the oblique and eccentric pencil of rays
radiates. Let U=P..a, u'=d,..¢, and u=Q..d,, ¢, being where
Q.. 7 cuts the element plane; » = radius of curvature, 7 being the centre
of same, and ¢’ the point where the two extreme rays in the secondary
plane come to focus. It is evident that ¢’ is strictly upon the normal
ray Q..7 projectéd. Let ¢ = angle of obliquity Pa,Q, 6 =angle
Pr'Q, and D = distance of diaphragm from «, the vertex and centre
of the lens, or from the element plane. Let the two extreme rays
Q..n, and Q..w, passing the diaphragm in the primary plane cut

137

The new factor in-
troduced into the
case.

Notation.



The two rays in the
secondary plane de-
fined.

Value of the two ¥’s.

The eccentricity C
defined.

Value of the #’s in
detail.
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the element plane at points #, and w,. Let the central ray or principal
ray of the eccentric oblique pencil, which goes through the centre G
of the diaphragm, cut the element plane at O. Then «,..0, is the
linear eccentricity of the pencil, and, as we have seen, is the new
factor in the case. As before, we will reserve the consideration of
the higher corrections arising from the departure of the curve from
the element plane for a subsequent Section, XI. Now the two rays in
the secondary plane, or the plane perpendicular to the paper (and
containing the oblique principal ray Q..O,), whose focus ¢’ we wish to
locate, are evidently the two rays just grazing the upper and lower
limits of the aperture in D'.. D", and striking the element plane at two
points, say =’ and w';, immediately above and below the point G, ; and
it is obvious that the square of the distance from ¢ to either of
the said points »', or ', is equal to

(er.. O+ (0, .. w2 =92 (254)

Now, calling the semi-diameter of the aperture in the diaphragm S
we have

(0,..w )= (SUI_IDY,

which is the semi-aperture of the pencil where it cuts the element
plane. Also we have

.. 0;=(0;..a) + (a;..¢),
of which

D D I
01..a1=(P..Q)U—_—D=Utan ¢m, (203)
which is our new factor C'; and
al..cl=rtan9=7‘tan<,{>U[iT=Bl,
as before ; therefore
(e ©) )2=<Utan¢L+rtan¢—U—~>2=(O+B)2-
B U-D U+r L

and since
Y2=(c.. 0%+ (0;..0)%
therefore

= (tan ¢ ﬁg_DT) + tan ¢I—,TU—I;>2 + <SU-EI D>2’ (250)

and this value for 3* must be entered as a coefficient in the formula
for the spherical aberration at the first refraction.



PLATE.XI.
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The Refraction at the Second Surface

Turning now to the refraction at the second surface (see Fig. 49)
we have the same two rays, n',..¢" and w', .. ¢/, converging towards the
point ¢’ before entering the second surface.

Join ¢/ of our last Fig. 48 to §, the centre of curvature of the second
surface, cutting the second element plane at ¢, Then 5'..¢,..4" is the
second oblique axis. Adopting the same construction as in Fig. 48, we
have the points 7, and w, where the two extreme rays in the primary
plane cut the element plane, and the point O, where the centre or
principal ray cuts the element plane. Then supposing the upper ray
in the secondary plane to strike the element plane at ', we have,
as before, since the lens is thin,

! AR
(02. . 7L2)2= (01 oo n1)2=SZ<U—_]5> ’
(Cy.. w2 or Y2=(Cy.. 0,)2 + (0. . n,),
v (G w? = { (ty. 0p) = (3. 02)}2 +(0,.. 0%y

Now we may take the eccentricity a,.. O, to be the same as ;.. O,
for the first surface, for it is the distance from the lens axis of the point
where the principal ray of the pencil cuts the lens, and we are suppos-
ing the lens so thin as to admit of no variation in @ ..0, as the
pencil traverses the lens. Therefore we may assume that

and since

C=a,..0,=tan ¢UU—_D1—), (264)

as in the case of the first surface, while a,..c, or B, (analogous to
a,..c of the first surface) is approximately equal to
S

Vtan<j>v+8;

UD Vs \? (B
* » 2 = -~ -— —_— - = /2 2
(G ) <tan¢U_D tan¢v+s> +(SU_D> Y? (268)
and this is the coefficient of the aberration at the second refraction.
-Reverting to Formula I., page 120, Section V., giving the complete
statement of corrections applicable to the secondary rays of the central
oblique pencil, it will easily be seen that the R correction (see Formula

(14)) expressing the differences between the oblique % and% and the

At il 1 b : : :
axial T and v respectively will apply just the same in our present

The eccentricity C.

Value of the Y's in
detail.

All the corrections
worked out in Sec-
tion V. also apply to
present case.
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from which we can again select out from (284) and (304) the function
of the two aberrations

(O (DN (AT AN s

so we then get for the whole formula, after somewhat simplifying down
Formula (29),

LAl e e .
NEROCDIOAN)
D) G ) s o

(i)

-
-D° V+s+<V+s> Jranto | (34)

{%U-D D UUfH(ﬁUf,) Jtan® ¢ 1(33)
[
\

1{Up-1)-r V(p-1)-s\1
*‘{ f(LUH-)' * S’Z"ij}

5 tan® (294)

1 Lo\l o o
+<(T+r V+s> 2 (31)

Before simplifying down the above complex formula it is expedient Adoption of the

to adopt Coddington’s device which was explained on pages 65 and 66. shape and vergency

. . . 1 1 b characteristics ” and

Recapitulating, we have—since & + = for the ultimate axial pencils o
1 .11 1 1 v'u

=gad o= a o pand
1 1+a
U= oF (35)
and
1 1-a
L (36)
so that
l+a 1-a 1
oF T oF T
then

7 3(p-1)F (37)
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We may call II. the diaphragm correction or stop correction dependent
upon the spherical aberration of the lens and the degree of eccentricity.

In ITI. we have a further correction applying only to eccentric
pencils. It is a second stop correction due to the presence of coma
in the lens or eccentric oblique refraction. It is as well, before
entering more closely into the nature of these stop corrections IL
and ITL and their causes, to first investigate the case of the rays of
the same eccentric oblique pencils contained in the primary plane.

Rays of Eccentric Oblique Pencils contained in the Primary Plane

In this case we may follow much the same lines of construction
as we did in tracing rays in the primary planes of central oblique
pencils, Figs. 44 and 45. In Figs. 50 and 50« let #; and w, be the
two points where the two extreme rays in the primary plane passed by
the stop D'.. D" strike the first element plane of the lens. Join the
radiant point Q to ¢/, the centre of curvature, and produce it to the
ultimate focus of the pencil at ¢. Obviously ray Q..n, meets with
more spherical aberration than does ray Q ..w,, and therefore intersects
the normal oblique ray Q..7"..¢ at f; nearer to the lens than the
point f, where ray Q.. intersects Q... q.

Let ¢..ny=9,and ¢ ..w; =y, Let O be the point where the
principal or central ray of the pencil cuts the element plane. Let
aperture of stop= 2S as before. Let ¢," be the point to be found
where rays Q..n,..f; and Q..w,.. [, intersect one another. It
evidently lies somewhat to one side of the oblique axis Q..7"..¢ by
the small distance ¢,"..p," measured perpendicular to the lens axis
P..7. Let x, stand for the desired distance of ¢," from the vertex d, ;
that is, 2, =d,..¢,". Let d,.. fi=/, and &,.. f,=/f, Then pursuing
a process analogous to that pursued in the case of Fig. 44, page 121,
with the difference that in this case the two z’s are on the same
side of the normal ray Q..7 ..g¢, we have

—Z " ” -
%flfl '=(q" )=y2f_2f2 L

from which

l_yzfl"ylfz_(?/z y]) 1

“’—1_Ef2(92‘y1) B .72_}: y2—-7/1.

Then adopting the same device as before we get

It 1 o 2> (1 o, 2)} 1
=t —+ -1 53 —+ L st
251 {?/2 <“ ® Y2 h o % Yo— %

Formula III. applies
only to eccentric
pencils.

The fundamental
equation.















Eccentricity correc-
tion dependent on
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Ratio between the
Eccentricity Correc-
tions in the two
planes.

Conventions under
which the formulz
are universally true.

Collective Lenses.

Rays constituting
the pencils.

Principal raye.
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)} V.

The Formula (54) is the spherical aberration common to all pencils
of light passing throuch the stop. Formula (55) is the normal curva-
ture error for all oblique pencils, central or eccentric. Formula 1V.
gives the stop correction for all eccentric oblique pencils due to the
spherical aberration of the lens; while Formula V. gives the
stop correction for the same pencils due to coma in the lens.
All these are R corrections to be applied to the first approximate
value of =, as obtained from

1l 1 1 1 1 1
v il e

Thus the IR corrections due to the presence of the stop, viz. IV.
and V., for rays in primary planes come out just three times the
corresponding stop corrections for rays in secondary planes, viz. IL
and III.

The student may with advantage pursue the same processes in tlie
case of positive and negative lenses and meniscus lenses with the
entering rays both divergent and convergent, the stop being real, and
either in front of or behind the lens, or else virtual only, adhering
always to the following conventions, consistently with those already
laid down on page 10.

SECT.

3ta'n2‘/> f4 "'(l"

T IF - L

COLLECTIVE LEXNSES OR MENISCI

Entering rays diverfring, U is + intrinsically.

’ convemmg, Uis - -
Lmergent rays conv elgmfr Viis+ ¥
' , diverging, V is-— )

Stop in front of lens and real, or entering principal rays) i
diverging

Stop behind lens and virtual, or entering prineipal rays\D, .
converging s

Stop behind lens and real, or emergent principal m)s\D,,.
converging »

Stop in front of lens and virtual, or emergent prmc1pa]‘|
rays diverging

is + intrinsically.

kR

18 —

Thus we may write D’ for the distance from lens to where the
principal rays cross the optic axis before entering the lens, and D” for
the refracted distance, conjugate to the former, between- the lens and
the point where the principal rays cross the optic axis after refraction.
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DisPERSIVE LENSES AND MENISCI . :
Dispersive Lenses.

Entering rays converging, U is + intrinsically Rays  constituting
. » divergi.ng, U i.s _ i\ the pencils.
Emergent rays diverging, V is+ A

" ,, converging, V is— 5

Stop behind lens and virtual, or entering principal rays’
converging }

Stop in front of lens and real, or entering principal rays) D s —
diverging

Stop in front of lens and virtual, or emergent principal\D,, !
rays diverging F i

Stop behind lens and real, or emergent principal TAYS\ 1y
converging

D’is + iutrinsically. Principal rays.
”»
1

(5]

Seeing that such principal rays are compelled to cross the axis of
the lens at the centre of the stop; or at any image of such stop, there-
fore that centre has to be regarded as an axial point from which such
principal rays are diverging or to which they are converging, and since
these principal rays are refracted by the lens in precisely the same
manner as any other rays, therefore it is universally true that D’ and
D", in relation to any one lens in any particular case, are conjugate

focal distances, such that

o
5 P T (56)

Therefore we can carry Coddington’s device one step further and let Introduction of the

8 stand as the characteristic of the state of divergence or convergence 2°W Versency char-
acteristic 3 for the

of the principal rays with respect to the lens, so that principal rays.
1+8 1 (=R
o = @ gp = (57)

B is thus closely analogous to a, and may be called the vergency
2

characteristic for the principal rays. Then <BP—~>~ converts into
U-D
Ls and BU fnto _*2, sinc the D we have so far been dealing
B=op T-D B_a,sme he D w n dealing
with was the front conmjugate distance I, relating to the entering
principal rays.
Therefore Formula IV. becomes

3 tan® ¢ 1 + 9 3 The spherical
2Fu(n—1) (a- 18)-2{# i 1902 +4(p+ 1)az + (Bp+ 2)(n — 1)a® + I’-!:—l} » VL aberration Eccen-
® tricity Correction.

and Formula V. becomes, after multiplying by l(,u),
P



The comatic Ec-
centricity Correc-
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corrections com-
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Corrections.
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dington’s formulz.
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3tan®¢ [ o R L
§FI;(~IU'*_—1)\4/J.2(1 +2(p+ 1)(z a)JB )

or more conveniently

3 tan ¢ 1 .
T 18)1(-‘//«**1)(;1 Dat(p+ Dz} VIL

So that these two stop corrections may be bracketed together thus—

3 tan? 1 :
OF”(M—¢1) R [/L+ 2%+ 4(p+ Dar + (3p + 2)(p — 1)a2 + _'“‘_l]

-2 {(2,; +1)(p-a+(p+ l)w}(a - /3):”

We may often have occasion to write this formula in the abbreviated

form
an2 -
swts o lksend, o
For rays in secondary planes the 3 tan®¢ is replaced by tan®¢.

Subject to the conventions as to the intrinsic signs of U, V, I,
and D”, these formule are universally true of all lenses, provided their
axial thicknesses are very small. Calling the inevitable curvature errors
ta:l2¢ pl and v ) 3;”;1’ which are incideutal to central oblique

F oo 2F

pencils, the normal curvature corrections, then Formula VI. expresses
what is nearly always a plus stop correction due to the joint effect of
the spherical aberration and the selective action of the stop upon
eccentric pencils, while Formula VII. expresses what is a very variable
stop correction, sometimes plus and sometimes minus, due to the joint
effect of coma, or eccentric oblique refraction, and the selective action
of the stop.

Thus diaphragm or stop corrections may be defined broadly as
corrections applicable to oblique pencils refracted eccentrically through
a lens, causing more or less serious departures from its normal curvature
corrections. It is more convenient to call these diaphragm corrections
eccentricity corrections, or E.Cs for brevity.

Turning now to the comparison of these results with those worked
out by Coddington, more especially in his Prop. 123, p. 132, it might
be thought on first inspection that they are quite at variance.

In secondary planes he arrived at the formula for an infinitely
thin pencil refracted eccentrically through a lens—

ihery 1 " 1)1
111 SR 59
PTF h+<\+,¢k22F’ 29)

VIIIL
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wherein his
1 11 1 22 ,
70U ¢, 7 =0Ur &, andl—c—g—our tan?¢ ;

while his term Vi

D) G AT 2 DB 20 D D8] st

mula.
+p(p-1)B+ 1}

It follows from his method that his V+,¢>L" G ?F in secondary

planes and (3V+ >Ic12 %,

embracing not only the corrections due to eccentric refraction of
oblique pencils, but also the corrections due to their central refraction.
If, however, we take the normal curvature corrections

in primary planes are inclusive formule,

tan® ¢ }L-{-Ior 3/1,+1>
2F < P Iz

tan® ¢ 1
() or (o))
and add them to our corresponding Formula VIIL we get
tan2¢ lor3 p+2 w3
[lﬁ(l/«—l)(a—ﬁ){< x +4(p+ Doz + (Bp + 2)(pu - 1)a® +I"_—1>
- 2((2/» + 1)~ Dufa = B) + (u+ 1)2)(a ~ B) v,
e 1)(a- g7} 1]
o

This will be found to reduce exactly to Coddington’s

in the form

2F

ton’s results.

For-

2 Formula VIII. con-
tan® ¢ (V - l) s <3V i 1)} firmed by Codding-
I I

Hence it is evident that in his formula he got the normal curvature Mixed-up nature of

Coddington’s

corrections, the E.C.s due to spherical aberration and the E.C.s due to 7"

coma all mixed up together in a manner unfortunately most incon-
venient for practical purposes.

for-

It is a most curious fact that throughout Coddmgt;ons work there Coddington appar-

is no allusion to such a well-recognised thing as “coma ”; indeed it is
doubtful whether he conld have been aware of its existence without
at least attempting to work out a formula for it and its effects. On

coma.

ently unaware of



Coma met with in
every - day optical
practice.

Incongruous nature
of the two Eccen-
tricity Corrections.

Limits to the useful
position of the stop.
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page 159, in the course of discussing aplanatic combinations of lenses
in contact, he says: “The next question that offers itself is the advan-
tage to be derived from a combination of lenses when a pencil passes
through it centrically but obliquely. It will, however, easily be seen
that as the effects of obliquity in this case are totally independent of
the form of a single lens, so they cannot be removed or diminished by
any combination.” While this statement is quite true in regard to
the normal curvature of image, yet the possibility of coma being either
present or absent is entirely overlooked. Every practical optician is
aware that some objectives for telescopes are extremely sensitive to
being thrown out of square, while others are not; the former show
strong coma at the foci of even slightly oblique pencils, while the
latter show little or none, but only pure astigmatism, while simple
lenses show the same differences, only there is spherical aberration
superadded. Such objectives without coma give better definition for a
considerable angular distance from the axis than do those whose oblique
images are marred by coma or eccentric oblique refraction; although
the normal curvature of image and astigmatism can be shown to vaiy
only slightly in different cases. We will revert to this subject again
with greater advantage at the end of Section VIII. The phenomenon
of coma is not only deeply interesting, but of great practical importance,
and we will reserve a more thorough investigation into its properties
for Section VIII.

Before concluding this Section, we may with advantage consider
a question that may already have occurred to the reader with regard
to Formula VIII. for the Eccentricity Corrections.

Since the E.C.s consequent upon the spherical aberration of the

lens vary as (—1—[3—)2, and the E.Cs consequent upon coma in the lens
—

. IR .
vary as ,,1_3’ and since the value of ((; Té) increases more rapidly
a = —

than does ; g when the stop is removed farther from the lens,
=

therefore the plus E.C.s consequent upon the spherical aberration must
rapidly overtake in value the comatic E.C.s, therefore we should expect
that there should be a limit to the distance of the stop, beyond which
it will be impossible to obtain an excess of minus comatic E.C.s,
or even a neutral balance of minus comatic E.C.s against plus
aberration E.C.s.

In other words, if we want to modify the normal curvature of
images in the direction of flattening them, we must take care that our
stop is not placed too far from the lens, or else the plus aberration
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E.Cs will inevitably prevail and the images be more curved than
before.

Now, if we have eccentric refraction of oblique pencils through a
simple thin lens, and we wish to preserve the normal curvature of the
images, then we must equate the E.C.s to 0 ; that is, we must have

w
-1 Villc.
— 2(a - B)(2p+ 1)(u= Da+ (u+ 1)} =0

This formula yields the following quadratic equation :—

2 ;
g 224 4(p+ Daz + Bp + 2)(p— 1)a? +
p-1 P

2, ol ~1 R >
T +H((#—+2)(a+[)’)7+((‘u‘ 7))2( +IB)

R e R

s +2
pr-1 I
* (p. + 2 > ﬂl 13 -:_"

In order that E.C.s may be just possibly eliminated, it is obvious
that we must have the right-hand side of the equation equal to 0, from
which, since a is a known quantity, we may derive the limiting value
of B, and then obtain the necessary correlative value of z from the
left-hand side.

In this way we may derive the following limiting values for
B and »:—

If u=15, and a= — 1, then

+ 145 - 15
B 1or 393 andz={0r+l_76

If 8= + 1'45, then the stop is "‘817F in front of the lens.

If B= — 393, then the stop is at a distance =-'405F behind
the lens. In either case x indicates the meniscus form of collective
lens with the concave side facing the stop.

If £=16 and a again = — 1, then

+ 1523 [ -

*225
o= \or—‘)457 and 7= 2

2
Lor + 162
If 8= + 1523, then the stop is *79F in front of the lens.
If B= — 2757, then the stop is ‘53F behind the lens.

So that the above stop distances are the maximum permissible if
we wish to get our images flatter than the normal 'by means of E.C.s.

Condition for equat-
ing E.C.s to 0.

Quadratic equation
derived from above.

When ;=15

When p=1°6.



Differential of the
Eccentricity Correc-
tions when « varies.

Differential of the
E.C.s when /3 varies.

Differential of the
E.C.s when 7 varies.
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Hence we cannot expect to obtain a flat final image from such a
combination as a Cooke portrait or astro-photographic lens if the
separations between the simple lenses composing it exceed the limits
implied in the above Formula VIIID,

It is often useful to know the effect upon the Keccentricity
Corrections of a lens (as expressed in Formula VIIL of this Section)
of slight alterations in the value of a, B, or z, and we will here give
the differentials of the E.C. formula with respect to these three
characteristies for rays in primary planes.

1st, with respect to a-—

a2 ta‘;c ¢ (J 5{A’ 2a-B)C)

i i R LY R e R

(@ BR\ule-1)" "
Lot IX.
a—/)’l " -

from which we see that the effect of a change in the divergency of the
entering rays is somewhat complex. ;
2nd, with respect to 3—

3 tan® ¢ 1 , 1 Al
T (a—ﬂ)2{A_2(a Py

L3 tan2 é [(a ! 3)3 18)2 }]dﬁ, %

which s necessarily an expression of a much simpler nature than the
last.
3rd, with respect to z—

3tanté 1 _f4 9 pye)
By @Rt AP

3tan’¢ 1 [ (n+2) 2(M+1)a i ptl
T L S D) e Pty L

which is perhaps the most useful of the above three differentials.
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If we put « for the curvature error of such anastigmatic image,
then the conditions are such that

tan? ¢>(3p. + l) o ftan® ¢<,u, + 1) R XTI
) S e By O e X114,
from whieh it is evident that
tan® ¢ 1
= = 60
Ftan?¢

Curvature of the $0 that the versine'of the curve =
anastigmatic image. 2n

of the anastigmatic image = uF, or the principal focal length x the
refractive index.

This condition of the anastigmatic image is also attained when,
g s g tan® ¢
in Coddington’s formule

: T
t—‘l_r)lb—,d)<3v+l> in primary planes, the vajue of V is 0. Obviously
2 1

and the radius of curvature

<V+l> in secondary planes and

these results also apply to two or more collective lenses or two or more
dispersive lenses on the same axis.

Combined Lenses in Contact

But by far the most important practical corollaries follow from
the applications of these formule to combinations of collective with
dispersive lenses, and we will first suppose that such lenses have no
appreciable axial thicknesses and are in actual contact.

An important in- Problem.—I1s it possible, by any combination of collective and

quiry- dispersive lenses, to get the joint normal curvature errors in primary
planes just three times the corresponding errors in secondary planes,
and thus be in the right relation for being simultaneously neutralised
by E.C.s?
Let P = principal focal length of the collective lens, and
N= » 5 ,» of dispersive leus,
4, = refractive index of the glass of the collective lens.
u, = refractive index, for the same ray, of the glass of the
dispersive lens.
Then, if we write N negative, we must stipulate that
tan2_d>{1 pp + 1 _ _1»3‘un-l:l | _ 3 tan2¢_>f>1_ pp + 1 _l Bt 1
2 \P p N,u.nf_[Q\P,upN,unj’
Condition whic caal
renders a flat and Mfl 2 _,l‘_2_1:0 or _..1___1_=() XII1
anastigmatic image 2 \P sy N,/ B BNpR )

possible.
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or the powers of the lenses must be in direct ratio to the respective
refractive indices of the glasses of which they are composed, or their
principal focal lengths be in inverse ratio to the same. '

Thus we arrive at a result which is one form of what of late years
has been known as the Petzval condition. Fifty years ago or more it
was laid down by Joseph Petzval that the radius of curvature of an
anastigmatic image close to the optic axis, formed by two or more
collective or dispersive lenses, was given by the following formula—

1:2 ! or -1—+ . + etc., XIIIA.
Sutin fim le‘2
in which 7 is the radius of the anastigmatic image; and that if one
lens of a double combination is collective and the other dispersive,
and the powers such that
1 it
fum Jops oL
(which is the same as the above Formula XIIL), then the radius of
curvature of the anastigmatic image becomes infinity and the image
flat. It is strange that no optical writers seem to have come across
Petzval’s proof of this theorem, which up to very recent years has been
regarded as of merely academic interest, not capable of practical realisa-
tion. It is easy to prove that Petzval was quite justified in giving
the former formula for the reciprocal of the radius of curvature of the
anastigmatic image.

For let « tan® ¢ be the R correction to the reciprocal value of the
combined focal length F of two lenses in contact; then, if the final
image is free from astigmatism, F*z tan® ¢) is the versine of such
anastigmatic curved image. Therefore we have the equation

tan2¢[{%3_f@+l 13#,171 ] P [;1ﬂp+1_l,i,,_+1l_m:|,
p

which condition follows from the fact that the primary E.C.s (due to
the presence of an axial stop) required for throwing back the curved
image formed by central oblique rays in primary planes on to the
curve of the anastigmatic image are always three times the secondary
E.Cs required for throwing the image formed by central oblique rays

in secondary planes on to the same anastigmatic image. From this
equation we get

The Petzval Theo-
rem.

Confirmation of the
Petzval Theorem.

Value of the curva-
ture correction for
anastigmatic image.
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On substituting this value of P in the previous two formule for the

radii of curvatures of the two images we get

Radius of secondary image = (F P”’——Ml’)ﬁ Pr  _F simply.  (66)
Lol Ak aaiiin
i s o (piasiarasion v B i 7
Radius of primary image = ( - > 3y — ) 3 simply. (67)

It is interesting to observe, then, that the normal curvatures of the
two images yielded by a compound lens fulfilling the condition XIIL
are the same as if the lens were a simple lens of the same focal length,
but made of glass having an infinitely high refractive index.

So that we may regard the particular case of the Petzval Formula
XIITA. being equated to 0, as in Formula XIIIL, as a device for
making a lens whose refractive index is virtually infinity, with regard
to its influence on the compound normal curvature errors.

Therefore it is quite clear, from what has preceded, that K.C.s
must perform a part in this compound lens, if the two images are to be
simultaneously thrown back into a plane image. That is, eccentric
oblique refraction is absolutely necessary to the attainment of the
desired flat and anastigmatic image, in the case of contact combinations
fulfilling Formula XIII.

It is plain that the Petzval condition XIII. demands that if the
combination is to have a positive focus, the collective lens must, in
order to possess the preponderating power, be made of a glass of higher
refractive index than that of which the dispersive lens is made (so that
Pu, = Nu,, or the principal focal lengths are in inverse ratio to their
refractive indices); a condition which was impossible to fulfil consistently
with achromatism until the era of the new optical glasses was inaugur-
ated at Jena,

The new dense barium crown glasses combining a refractive index
as high as 161 with a dispersive power as low as ;% for rays C to F,
and the new crown or very light flint glasses having a refractive index
of 152 to 1-54 with a dispersive power as high as L, were the crea-
tions of the celebrated firm of Herren Schott & Gen., of Jena, who
thus rendered it possible to embody the Petzval condition in combina-
tions of two or more lenses in countact. Dr. Hugo Schroeder’s con-
centric lens was apparently the first photographic lens in which Petzval’s
sum 3 !

fn/‘n
does the far too small difference of refractive indices yet available

render it impossible to get much focal power from such combinations,

was equated to 0 with any degree of success; but not only

Radii of the two
normal images when
Formula XIII. is ful-
filled.

Above combination
equal to a simple
lens of infinite re-
fractive index.

Further necessity
for E.C.s to get a
flat image.

The
glasses.

new Jena

The Concentric Lens.

The first contact
combination equat-
ing the Petzval
Formula to 0.

The small balance
of power available.



Imperfect correction
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but the fact that Schroeder made it a condition in his concentric lens
that the plano-convex collective lens of high refractive index should be
cemented to the plano-concave dispersive lens of low refractive index,
precluded him from the advantage of freedom from spherical aberration.
A reference to Fig. 52 renders it evident that any ray entering the
dispersive lens parallel to the axis is refracted away from the axis, so
that its distance from the axis when traversing the collective lens is
greater than its distance from the axis when traversing the dispersive
lens. This variation in 7, would have little significance if the glass of
the collective lens were of lower refractive index than that of the
dispersive lens, but in the case of this abnormal pair of glasses the
variation in y, introduces an aberration of the third order which is
fatal to the elimination of spherical aberration, so that, as a matter of
fact, sharp definition, even on the axis, could not be secured with any

F F . !
59> OF 35 in larger-sized lenses.  After-

wards Dr. Rudolph of Jena, in Germany, got over this difficulty with
considerable success by adopting the expedient of opposing two
cemented combinations A and B, A comprising an abnormal pair of a
collective and a dispersive lens, of which the collective lens had the
higher refractive index, while B was a normal pair in which the
collective lens had the lower refractive index.

Combination A was undercorrected for spherical aberration, but
this defect was counteracted by the opposite fault in B; also a rough
approximation to the Petzval condition was secured by a suitable
division of the powers of the lenses relatively to their refractive
indices. In this way much larger relative apertures were obtained.
TLater Dr. Rudolph, closely followed by Kmile von Hoegh, devised a
still better symmetrical construction for each half of the lens, which
was made to consist of a double concave dispersive lens cemented
between an iuner meniscus collective lens and an outer double
convex collective lens, the refractive index of the dispersive lens being
approximately a mean between the high refractive index of the double
convex collective lens on the one side and the low refractive index of
the meniscus collective lens on the other side. Dr. von Hoegl’s lens
is generally known as the Goerz lens.

In each half lens the so-called Petzval condition,

larger aperture than about

1 1 1

- =0 68)
Py Np, k Py 7 £

was almost but not quite fulfilled. In order to fulfil it exactly, either
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the power of the dispersive lens would have to be increased, or its
refractive index decreased, but the exigencies of cemented combinations
preclude the simultaneous fulfilment of other conditions, consistently
with sufficient power being obtained. As the extreme differences of
refractive indices between the new abnormal pairs of glasses are as 1°6
to 1-5, it is evident that any contact combination of thin lenses
fulfilling the Petzval condition must have the power of the collective
lens or lenses equal to 16, as against 15 for the power of the dispersive
lens or lenses, the resulting power of the combination being 1. or
only {%th of the power of the collective lens or lenses. This is a
limitation implying the use of very powerful or strongly curved lenses
in order to gain a comparatively long focused combination, whose
normal curvature errors in primary planes are three times the normal
curvature errors in secoundary planes, and therefore in the proper
relation for being simultaneously neutralised by E.C.s left in the
system for that purpose.

The Case of Separated Lenses or Elements

So far, then, we have considered the application of the formnulw
arrived at to combinations of very thin lenses in contact. We have
yet to consider their application to either thin lenses more or less
widely separated, or to thick lenses considered either singly or in
combination. Some twelve years ago, in the course of thinking over
the general results arrived at in the last two Sections, especially in
relation to the normal curvatures of image characteristic of simple or
achromatic lenses, it suddenly occurred to the author that since the
normal curvatures of image due to any lens, whether simple or com-
pound, are fixed by its refractive indices and power alone, and are
independent of the state of the rays entering the lens, whether con-
vergent, divergent, or parallel, then it should follow that the norinal
curvature errors of an achromatic and aberration-free collective lens
should be neutralised by the normal curvature errors of an achromatic
and aberration-free dispersive lens of the same power (and made of the
same glasses) placed at a considerable distance behind the collective
lens; while the combination would, as a result of the separation, have
considerable power or yield a positive focus, so long as the rays from
the collective lens are convergent to a distance behind the dispersive lens
less than the principal focal length of the latter, or more especially
when the rays entering the first or collective lens are parallel. But
such complete neuntralisation of normal curvature errors could obviously

M

Powerful constituent
lenses result in rela-
tively small power.

How collective and
dispersive lenses of
equal powers may
neutralise each
other’s normal cur-
vature errors even
when separated.
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not ensue if any E.Cs were allowed to interfere, theretore both these
achromatic and aberration-free lenses must be free from coma or give
symmetrical oblique refraction ; otherwise pencils of rays traversing one
of the lenses centrally, but the other necessarily eccentrically, would
be subject to E.C.s, and their final foci be either shortened or extended,
and thus the desired result be prevented. This idea led to further
experiments and caleculations, which we will now deal with.

We must first ascertain how the formule which have been arrived
at, are to be applied to combinations of thin lenses on a common
axis, but having considerable separations between them. In Fig. 53
let I, represent such a compound collective lens free from coma
and aberration, of principal focal length=f, and L, a compound
dispersive lens also free from coma and aberration, and made
of the same glasses, and having the same principal focal length f,
(= —/f))- Let the rays entering L, be parallel. Then at the distance
J1 behind L, is formed the curved image s..s due to rays in secondary
sections of oblique pencils, and the still more curved image p..p due
to rays in primary sections of the same oblique pencils. The dispersive
lens L, will project an enlarged image of these to a distance & behind

it, such that %: jl—s - }, where a plane anastigmatic image will be
i 2

formed. Or treating the said plane as an origin for the pencils in
the reverse direction, it is evident that after such direct and oblique-
divergent pencils (such as that from ¢) have been refracted by L, they
will then virtually radiate from points in the curved surfaces, s..s in
secondary planes and p..p in primary planes, which are exactly
the same curved images as are yielded by the positive lens L;, so
that all the pencils will emerge strictly parallel leftwards from L,
The theorem that the normal curvature errors of two equal collective
and dispersive lenses will neutralise omne another, even when the
lenses are widely separated, is thus almost self-evident when once
pointed out; but the more general theorem that the curvature errors
and E.Cs of a system of separated lenses are the simple sum of the
curvature errors and E.Cs of the individnal lenses, and that the power
gained by separation is a net gain and carries with it no curvature
corrections whatever, requires further demonstration. It might at first
be thought that the fact that the centre of each lens of a separated
system views the same point of the original object or its image under
different angles of obliquity, and views the same curvature error from
different distances, would lead to unavoidable complications, but this is
not so.
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In Fig. 53 let ¢ = the original angle of obliquity of a central
or eccentric pencil impinging on L,. As throughout the foregoing
processes, the angle ¢ is always the angle contained between the optic
axis and that ray to or from the real or virtual radiant or focal point
Q which passes through the centre of the lens. The corresponding
oblique focal point about ), to which the rays converge after refraction
by L,, subtends a new angle @ at the centre of L, Let us assume that
the linear aberrations of Q' from the focal plane P..P..P do not exceed
+oth part of f, as is the case if the angle ¢ does not exceed 14
degrees. Let 8, =any R corrections, including normal curvature errors
and E.Cs, for the first lens; let §,=the similar R corrections for

L,—in neither case amounting to more than 10 per cent of l or f
respectlvely 2

Then f ar; 57 ¢’81 is the reciprocal value of the corrected focal

o 1
length of the oblique pencil we are dealing with, and if the same
pencil traversed L, under the same angle of obliquity ¢, then the

corrected reciprocal value of the back focus would be

1 1 tan?
e 2

8, for the first lens is for the moment neglected.

12 b

But the second lens L, views Q under the angle 0, and it is
evident that

tan 0~ff1 tan ¢.

Also the R corrections for the oblique pencil traversing Ll,

¢8 will from the point of view of the second lens

2 tan?
become < A >
fi-$ 2/
square of the distance; for generally if v =the linear amount of the
curvature error in question (referred to the axis) and is a small
.quantity compared to f; or f; —s, then
1 1 N ‘ol
hH-v i /Y
and then if f; becomes f; —s, then )
1 21 oyt
(fi=9)-v fi-s (H-9%

expressed by

¢'81, or increased in inverse proportion to the

Demonstration of the
above theorem.

The two angles ¢
and 6 assumed to
be equal.

Tan 6 in terms of
tan ¢,

The same R correc-
tion as viewed from

L, and L, respec-
tively.

General argument.
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so that the R correction from the point of view of L, is T =9 f 5)2,
e
agalnst +5 for the same R correction from the point of view of L, ; but
1

— I
(f1 - ) f12<f1 = S) :
v . :
and moreover —; is only another way of expressmg
1

with reference to L, the R correction from L, is (

J1-5

¢81, therefore

2 tan? ¢ _
/ ) b

above. .
Next, the R correction to which the same pencil is subJected on
traversing L, under the new angle of obliquity @ is evidently
tan? OLS

eh e TE T ne AL
T which \< e s) tan ¢}2 f282.
Therefore the sum of the R corrections for both lenses from the
point of view of L, becomes

<f1fi S>2 ta;l;l ¢8 (ffl ) ta:/z ¢8

(f]fl_ s>2 E%j’(}_lal +}232>. (70)

And if this last expression is multiplied by B? or the back focal
length squared, we shall then get the linear value, reduced to the axis,
of the sum of the R corrections of the two lenses. As we have seen

or

“before, & fll e and B= fﬁf{lf )) so that (70) x B* becomes
S f1-8) Ztan? ¢/1 1
{f2+(f1_3)} ( 1_5> <:81 +17282>. (1)

Next, in order to reduce this to an R correction of the reciprocal
of the equivalent focal length of the whole combination, we must
divide (71) by (E.F.L)? or the square of the equivalent focal length
of the whole combination. Now the EF.L. is the axial distance of
the back principal point from the final image plane, at which point a
pin-hole would have to be placed in order to throw an image of the
same dimensions as that yielded by the combined lenses; on which

supposition the E.F.L. is equal to B ff !, which

O :
AT Y



Vi SEPARATED LENS SYSTEMS 165
from Formula X., Section III. Therefore (71) = (E.F.L.)?

- GEGo) GET = G it

L (73)
simply. 2 (f Fo? >

The same line of reasoning pursued in the case of separated
combinations of three or more lenses leads to the same important result.
That is, the R corrections of a series of separated lenses sum up as a
correction to the reciprocal value of the E.F.L., and no notice need be
taken of the successive modifications of tan ¢ at each lens. We need
only take the sum of the R corrections appertaining to the several
lenses and multiply them by (E.F.L) tan® ¢ in order to convert
them into their linear value at the final image, taking care to insert
for tan ¢ the tangent of the angle contained between the optic axis
and a principal ray proceeding from any selected point in the original
object or image to the first principal point of the combination. That
is, the two principal points are the points to which the angles of
obliquity ¢ should be referred. Then it is clear that, if the original
object is infinitely distant and the rays of pencils parallel, it be-
comes quite a matter of indifference whether the angle ¢ is referred
to the outer vertex of the first lens or to the first principal point.
Clearly there is no difference in such a case. With regard to the
second conjugate focal distance, it is obvious that tan ¢ must also be
measured from the second principal point.

which

The Gain in Power due to Separation

Now the reciprocal of the E.F.L., or % for brevity, or the equiva-

1 f2+f1_
EFL  fif,

o PO . 1
seen above, and this is made up of; two parts, viz. — 4 5, or the

ffg

simple difference of the powers of the two lenses, and which is the

ff‘)

LT . . 1
gain of power due entirely to separation, so that while 5 + A may be
2

1
zero if the powers of the two lenses are equal, one collective and the
ot-her dispersive yet there remains a considerable surplus power, repre-

fz

lent power of the combination (73), = ° as we have

sent;ed by 1B in the case of the same two lenses separated.
1
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But as we have seen from Formula (73) the curvature errors or E.C.s

appertain solely to :

1
_+_’
T

therefore the great gain in power repre-

sented by. 7 is an unqualified net gain and carries with it no'normal
curvature aberrations whatsoever.
c - 2.3
Supposing we have f,=1, f,= — 1, and s="25, t.henf—fs= +°25 =1
/2

or the equivalent power of the combination, entirely due to separation,
is one-quarter of the power of the collective lens—a very considerable
amount, especially if we compare it with the case of two lenses in
contact fulfilling the so-called Petzval condition ; the collective lens
being of power 16 and the dispersive lens of power 15, and the
resulting power of the combination being only 1, or };th part of the
power of the collective lens. Now it obviously remains perfectly true,
that even in the case of a separated pair of a collective and
dispersive lens such as we have been dealing with, the condition XIII.
must' be fulfilled if a flat final image, free from astigmatism, is to be
éecured; and it still remains true that L st L (see XIV.) if that
Ppp Ny 7
condition is not fulfilled; but since the radius of curvature » of
the anastigmatic image is the same whether the two lenses be in
contact or separated, it is obvious that the shortening of the L.F.L.
due to separation means virtually a flattening of the anastigmatic

image, for becomes much greater than if there were no separa-

A
tion. Therefore it follows that a departure from the so-called Petzval
condition, which would lead to serious astigmatism in the final image
of mean flatness thrown by a contact combination, would lead to a
much less serious astigmatism” in the final image of mean flatness
thrown by the same two lenses when separated. For instance, let us
take two lenses, one collective, of focal length 15 and refractive index
1'5, and the other dispersive, of focal length 16 and refractive index
also 1'5, thus not fulfilling the Petzval condition at all. The radius
of curvature of the anastigmatic image thrown by these two lenses in
contact is given by

while
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so that »=(1'5)F. Then if the two lenses be separated by a dis-
tance =4, we find
s L e L S s e |
EFL " -16x15 240" 60 240 48’

Thus we have » = 360 as before, while the E.F.L. is reduced to 48, so
that » is now (7'5)F instead of (1'5)F. Thus the effect of a
departure from the Petzval condition is reduced to a vanishing quantity,
so that if we construct photographic lenses on the principle of gaining
a considerable proportion or all of their power by separation, then we
need no longer be restricted to carrying out the Petzval condition; we
can ignore it to some extent in favour of a more general and elastic
rule, viz. that the power of the dispersive lens must be approximately
equal to the power of the collective lens, or the sumn of the powers of
the collective lenses if there are more than one.

This is one of the two supplementary principles which underlie
the Cooke photographic lenses, and many others which have been
introduced since they were first made public.

And now it will be easily seen that a true anastigmat might have
been made long before the advent of the new Jena glasses. For

instance, we will take a crown glass collective lens of refractive index
1

1_1
2 O
refractive index = 1'6 whose 7 =)

=15, and whose and a dense flint glass dispersive lens of

the two being separated by s= 1.

ﬁv
Here the Petzval condition is fulfilled, but if the lenses are in contact
the power is - "411-0 and the system is dispersive, but the power when
Ch16-15-7 -6 1 :
separated by 7 is (= 15)(16) =~ 240~ * io When put into the
triplet form, like a Cooke lens, a very fair rectilinear anastigmat lens
could be and has been produced, but not so good as when the newer

F
Jena glasses are employed. The Cooke lens of aperture X known

as Series la, for astronomical photography, is practically an ana-
stiginat in which the refractive index of the dispersive lens is consider-
ably higher than that of the two collective lenses, and the Petzval
condition is very considerably departed from, yet the final image is
quite flat and shows only a trace of astigmatism within an angle of
20 degrees.

Before proceeding to the question of thick lenses it is desirable to
arrive at two more very useful formulw relating to contact or separated
combinations. If the final iinage yielded by a photographic lens has

Power when separ-
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a little residual astigmatism away from the axis, it yet remains desirable
to attain an approximately flat image, and two useful compromises
suggest themselves.

1. The image formed by rays in primary planes may be got flat,
leaving the image formed by rays in secondary planes still somewhat
curved concave to the lens. In such case what will be the radius of
curvature () of such secondary image ?

It is evident that the primary E.C.s which throw the primary
image back on to the focal plane must be equal to
1 ?ﬂ?iﬂ)

1 3py+1
TON  p,

—tan? ¢ =,

(™,
If %: the power of the collective and % that of the dispersive lens, the
simultaneous secondary E C.s will then be

_tan2¢(i3pp+l_—l_3ﬁn+l>
3 \2P 5, 2N g,

which latter must then be subtracted from the normal ecurvature
errors in secondary planes, so that we have

1 g+l 1 p +1> tan2¢{ 1 3p,+1 1 3p +1) -
2 f L Hp b LN 1 _ L dp 4
L ¢<2P Mp 2N  pa 3 \2p Mp AN, e

to express the R curvature correction for the final image, which
reduces to

11 1
A5 (e
e ¢<P 3up N 3pn>3
so that
(Ftan¢)> <1 1 1 i) .
2r SR P 3pp, N 3p, &
and finally

1 271 1 o
73 (Ppp ' N,Tn) B

2. Perhaps the best possible compromise is attained when the
primary image is as much overcorrected as the secondary image is
undercorrected, the focal plane lying midway between the two curves,
the primary curve convex to the lens and the secondary curve concave
to the lens. Thus the circles of least confusion are made to fall upon
the focal plane. The formula for the normal curvature errors of the
combination, with respect to circles of least confusion, obviously

1%+l 1 Zu o+ 1y
2N, J*

= tan? ¢{:)P pr
" p
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VII

and therefore the E.C.s for circles of least confusion, or the mean
E.C.s, must be supposed equal to the above; therefore it follows that
the E.C.s in secondary planes will be equal to one-half of the mean
E.Cs and equal to
1 2p,+1 }

Hn ’
and in primary planes the E.C.s will be equal to

371 2pp+1 1 2p,+1y

Ztan? _
fan ¢91°P P aN wn )

Therefore the final curvature R correction in secondary planes will be

1! + 1 10 i l
tan? [I— tp o tfin ], (75)
¢ 2P  pp 9N Hn }

which reduces to

2,up+1
Fp

1 ,un+1\
2N Hn

1
219P

T 1
2 _N i
fan ¢{2_P?,Tp 9N 2,Ln}’

so that the versine of the image curve

_ (F tan ¢>)2 1 P
v 2r qbl 4P;Lp 4\,un}F2

1L/ at 1
e e
The three Formule XIV., XV, and XVI give at a glance, as
it were, the degree of approximation to an anastigmatic focal plane
attainable in any suggested combination of lenses of known powers
and refractive indices, whose combined equivalent focal leungth, if
separations exist, can also be derived from Formula (72) if only two
lenses are employed, or from the more complex formule given in
Section II. if there are more than two. No photographic lens of
separated lenses can be made to give achromatic and rectilinear images
with less than three constituent lenses, and if P; is the P.F.L. of the
first collective lens I,, N the P.F.L. of the dispersive middle lens | 0%
and P, the P.F.L. of the back collective lens L,, s; the separation
between L; and Lg, and 8, the separation between L2 and 1‘3* then
the E.F.L. of the combination for parallel rays is given by the formula

<[1 *1;“’” v) +{sl(P N) +s,(P; N)—slsz}

P,NP,
The first part of the above formula is the simple sum of the powers,

and

{ XVI.

XVIIL

Value of the E.C.s
in secondary planes.

Value of the E.C.s
in primary planes.

Curvature errors
minus E.C.s in
secondary planes.

Reciprocal of the
radius of either
secondary or prim-
ary image.

The minimum num-
ber of lensesrequired
for a photographic
lens.

Triplet lens. The
increment to power
due to separations.
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or the E.F.L. of the three lenses if thin and placed in contact, while
the latter part of the formula gives the further increment o power
due entirely to the separations.

L

A Significant Corollary relating to Eye-pieces

We have just alluded to the increment to power accruing to a
combination of two collective and one dispersive lens, consequent upon
separation. Referring back to Section IIL, p. 46, we found that a
certain four-lens erecting eye-piece whose lenses were of focal lengths

- 1,125, 125, and -80, only gave an equivalent focal length of —-31.

Here is a case wherein the separations have led to a noticeable

decrement to power; for while the sum of the powers of the four
1 1

26 EF.L~ -3I

curvature errors will be proportional to

lenses is we have Therefore while the normal

56 and consequently the
radius of curvature of the anastigmatic image be proportional to 26,
yet the K.F.L. is —-31 only. That is, the radius of curvature of the

anastigmatic image, if formed, will be smaller (in the ratio 3—9 than

the radius of the same image if a simple equivalent lens of E.F.L.=-31

were used. .
The above eye-piece is a comparatively favourable case, having s,

or the second separation greater than usual, which leads to increment

1
EFL
course grows smaller compared to the sum of the powers of the four
lenses, and therefore the curvature errors of the final image are bound
to increase. A flat or nearly flat image for rays in primary planes is
generally aimed at, and therefore it will be seen that the less is the
power realised in the combination, the more relatively violent will be
the curvature of the same final image as formed by rays in secondary
planes. The shorter is such an eye-piece, the more difficult it becomes
to attain a satisfactorily flat field of view.

We also saw that in the case of the Huygenian eye-piece with
lenses of focal lengths 3 and 1, we got

——l—~—g while £+1-—:1
EF.L 3 L fa 3

to power. In most cases shortness is aimed at, when the

Hence the curvature of image will be twice as strong as that for
the equivalent lens. ‘
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In the case where the two lenses were of the focal lengths 2 and

1, then 1 1 3
7 P f AR Y
and here again we have the same disadvantage.

In the case of the Ramsden eye-piece of lenses of focal lengths
1 and 1 and separation 1, the same argument again applies, but as the
separation is generally about % or £, leading to a gain in power, the

construction comes out about on a par with an ordinary four-lens erecting
eye-piece.

The practical conclusion of these arguments is.that the ideal eye-
piece is one which consists of a single lens, self corrected for spherical
and chromatic aberration by being built up of a dispersive lens, and
one, or better still, two collective lenses. If it consists of a dispersive
lens between two collective lenses, then any effective separation
between the components (in the form of thickness perhaps) counts for
gain in power and not loss as in the eye-pieces just considered. Then
if the image has to be erected, crossed doubly reflecting prisms can be
resorted to.

The modified form of Xellner eye-piece now so commonly
employed in prismatic telescopes does not fall far short of this ideal,
aud it must be conceded that the images that it yields are not only
superior to those yielded by four-lens erecting eye-pieces in regard to
angular extent and flatness of field and freedom from astigmatism, but
also as regards freedom from certain other curvature errors and E.C.s
of a higher order which we shall glance at in Section XI.

It will also be seen that the use of a pair of double total reflecting
prisms between the eye-piece and the objective rather helps to flatten
the image formed by the latter. For they are equivalent to placing
a pair of thick plane parallel plates in the path of the pencils of con-
verging rays whose principal rays radiate from the centre of the
objective, so that the oblique foci are subject to parallel plate correc-
tions tending to throw them back relatively to the axial focus. This
relieves the eye-piece of a certain amount of eccentricity corrections.
It will, however, be seen that the position of the prisms relatively to
the primary image will make no difference to their flattening effect
upon the same.

Z, while

Application of the Theorem of Elements

So far as we have yet proceeded, it has been assumed that the
‘axial thicknesses of the lenses we have been dealing with have been

Ramsden eye-piece.

The ideal eye-piece.

Erection of the in-
verted image by
reflecting prisms.

The eye-piece used
in prismatic tele-
scopes.

The favourable effect
of the reflecting
prisms.

Thicknesses cannot
always be neglected.
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quite negligible quantities, very small compared with the radii or
focal lengths of the lenses in question. While excessive axial thick-
nesses in the lenses building up optical systems are objectionable for
obvious reasons, and as much as possible to be avoided, yet thicknesses
far too great to be neglected in our computations arise in most cases.
Now the formule of the order tan® ¢ arrived at are in their very
nature and origin more and more exact in their results in inverse
proportion to the fourth power of the angles of obliquity (¢$) dealt
with ; and, if a pencil of rays crossing the axis of a lens system at a
given diaphragm point is traced through all the other lenses at a
small enough degree of obliguity, it may obviously traverse all the
lenses very closely to their centres, even if the lens system is of
considerable length. In Sections II. and TII, etc, we have already
dealt with the theorem of elements as applied to thick lenses, and
we will now see how the same theorem may be applied in the
computation of normal curvature errors and E.Cs. Let Fig. 54
be a double convex lens and Fig. 55 a meniscus collective lens,
Fig. 54a a double concave lens and Fig. 55¢ a meniscus dispersive
lens.

Recapitulating, it is obvious that close to the axis the double
convex lens may be considered to be built up of two infinitely
thin elementary lenses ¢, and ¢, ¢; being convexo-plane, and ¢, plano-
convex, the two enclosing between them a parallel plate of glass of a
thickness equal to ¢, the axial thickness of the lens.

It is not quite so obvious, but nevertheless is demonstrable, that
any departures from exactness in the formule of this Section, due to
the refraction of the pencils through outer parts of the lenses where
the thicknesses are widely different to the central thicknesses, take the
form of corrections of the higher orders tant¢ and tan®¢, etc. These
higher developments will be dealt with in Section XI.

In the same way the collective meniscus lens may be considered
built up of a convexo-plane elementary lens ¢, and a plano-concave
elementary lens ¢, enclosing between them a parallel plate of glass of a
thickness equal to ¢, the axial thickness of the lens. If » and s are, as
before, the two radii of curvatures, then the power of e is simply

+’u—; 1, and the power of ¢, simply + or —H;I, while x, the

characteristic of the shape of each elementary lens, is + 1 simply for e,,
and —1 simply for ¢, Then in assessing the consecutive values «, and
a, with respect to ¢, and , and a, with respect to ¢, or the respective
axial distances from which or to which the axial pencils diverge before
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refraction, we must look upon ¢, and ¢, as two distinct lenses separated
g ¢
by an air-space equal to —.

Also in the case of slightly oblique and eccentric pencils, the prin-
cipal rays of which cross the optic axis at any known diaphragm point at
a known distance D," or D,” in front of or behind ¢, (according to which
B, is assessed), we can always assess the value of D,” and 8, with respect
to ¢, consistently with the same supposition, viz. that ¢, and e, are two

: ¢ .
separate lenses separated by an air-space equal to e In this way the

values of @ and 3 for each element may be arrived at in a very simple way.

The Effects of a Parallel Plane Plate upon Obliquely
Refracted Pencils

We have next to consider whether, besides the influence exerted
by the parallel plate on the spherical aberration of the axial pencil,
it has any influence upon the corrections of the oblique pencils
that should be taken into account. It is obvious enough that
if the rays constituting pencils emerge in a condition of parallelism
from e, and consequently traverse the parallel glass plate in a condition
of parallelism, then the plate cannot possibly exert any influence upon
them, and they will emerge from the plate and enter e, still in a
parallel condition. But if the rays of pencils are converging to or
diverging from points at a distance from the plate, not very large com-
pared with ¢, then the plate exerts an influence on oblique pencils
which it is necessary to investigate before we are in a position to
properly bring the theorem of elements into practical application. We
already have the complete Formula XXV., Section IV, for the spherical
aberration (to use an expression which is here rather a misnomer) of a
direct pencil refracted through a flat parallel plate, but for our present
purpose we shall first require Formula (15), Section IV., which gives the
spherical aberration occurring at the first flat surface, which formula
was of the form

1
— or — — 0% (76)

in which @ is the semi-aperture of the pencil at the first surface.

We can now bring this formula into requisition when investigating
the case of oblique pencils. .

Let Fig. 56 represent the case of a divergent oblique pencil
ny..Q..w. Let Q..A =u, and let pp=% Then let Fig. 56a be

Noeffectuponpencils
of parallel rays.

Aberration at first
plane surface.

Notation.
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the corresponding case of a convergent oblique pencil, both entering
into a plane glass surface. In the first case u, and @, should be con-
sidered positive, and in the second case negative.

Let semi-aperture of pencil B, ..n or B, ..w, =a, as before. Let
A..w=y and A;..ny=y, and A;..B,=H,; and let the angle
between the principal ray B,..Q and the perpendicular A;..Q be
called . Since ray Q..7n, is the most oblique, it therefore meets
with more aberration than ray Q..w,, and after refraction cuts the
perpendicular Q.. A, at f, farther away from the swface than f; for
the refracted ray ¢,..w,. Let ¢, be the desired point where the two
extreme rays Q..n, and Q..w, intersect in the primary plane after
refraction. Draw ¢,..p, at right angles to the axis or perpendicular
Q.. A,

Then if we put x; for ¢;..A; or the corrected value of %, f; for
fi--Ay, and Jie forfg. . A, then

The  fundamental x, - f, z, - f,
equation. ‘ (4, ..n)-2 7 Z=p..q=(4,.. w) _lf_l ,
2 1

from which

flfz and f1?/2 fZ/l
Yo fz?/1 Zy flf‘l(u/Z J1)

Adopting our device used on former occasions, let

= (%~ %) I

1 1 o 1 o,
o= _ = y nd _____
N e T A
then
1 1 o y2-92 1 ), o
= L ===yl +y2+ ;
now p Y-y b (?/1 Yo' + 1Y) 5
1 1 p?-
b 3 'x(yl + Yok + Y1)
z, /Lu 2//. A
Now
y.2=(H, - a))* = (u tan x — a,)* = u® tan? x — 2au tan x + a,%
yo2 = (H; + @))% = (utan x + a))® = v? tan? x + 2au tan x + a,%
yye = (H 2 - a,2) = (utan? x - a,2) = u? tan® x =i s
iy 2 = “1/3,2 tan? 2.
;(?/1 + Yok + YY) = ( w? tan® x + a,%);
Value of the com- 1l p-1
pounded aberration. TS 7 ¢3 (3u2 tan® y) — ~—W%3a12,
Primary plane. 1 #
and
2 2
Primary plane. Ob- po_ 1 pf- - AL
liquity correction + e /Lzu 3 tan® x 9 ,u,2u3a1 . (77)

aberration. 1



PLATE. XII.

L
Fig.58.

Fig.59. Fig.60.
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In the secondary plane we have

P=H?2+a?=u?tan® y +a;

2 _
b, et l(u2 tan? x + a,?),
x,  pu 2ptud

and
1 p2-1 2 -1 . Secondary  plane.
Bl T tan? X BN (78) Obliquity correction
212 2 2u3 1 g
T, u po S plus aberration.

Hence, as in the case of ecceutricity corrections, the correction for Ratio t]oetwegn zlﬁe
5 . o o . . corrections 1n e
obliquity or the function of tan®y is three times as much in the

two planes.
primary plane as in the secondary plane.
Second Surface
We will pursue the investigation in the primary plane. At second
surface of Fig. 56 we have the same state of things as is represented
in Fig. 56« at the first surface, only that in the latter figure we must
imagine the light to be passing from right to left, instead of from left
to right, and under either supposition the Formula (77) equally applies,
so that we have
2. 2 _
{L? I % y I-L‘?—pi; B };‘u?p; o
and therefore
1 1 — 1l 2 1 - Second surface.
— corrected or — =< ! e 3 tan® + B 5.5 & @25 (79)  Oblique correction
v Ty ."u 13

and aberration.

wherein » = corrected value of Q.. A, of Fig. 56 (corresponding to
Q.. A, of Fig. 56a),
and ¢' = first approximate value of ¢;.. A, of Fig. 56 (corresponding
to ¢,.. A, of Fig. 56a).
But in order to express v and ¢' for the second refraction in

terms of u and % at the first refraction, we must put & +4¢ for ', and

t . .
il oru + for »; also if a,, the semi-aperture of the pencil at the second

surface, is to be expressed in terms of e,, we then have
t
w+d v+t e v
= E R T

Ao =0,——— = e —_— =,
2 Ly b Loy 1y

On inserting the above values of ¢, v, and @, in (79) we then have
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2 =
~17= ’u T Stan?y + ‘u 1 u+—
";L2u+ ) 2,u u+

Formula(79)in terms = 1 + pr-1 3 tan?y + pyt -1 ‘h%l. (80)
of % and a. t 3 t ; i\ u?
w+—  2pHu+— 2p*( u + —
p B B
Addition of the To these aberrations at the second refraction we have yet to add the

formula for the two

corresponding aberrations due to the first refraction. First, in order
surfaces.

to refer the R corrections to 5 o the new reference point A,, we must

multiply them by (u?i ) or by < > before adding them in "to
Equation (80).
Thus summing.up the aberrations at both surfaces we get

1 2
-2 R g

(from first refraction, Formula (77)),

21 2
+—’u‘—t—3tan2x+~ﬂ N ul
2;1,2<u+—> 2,;.2(u+—>

(K [

(from second refraction, Formula (80)),

and the sum of these aberrations
B ot R P G 3tan?yx + ,1._2—1' e Lyt
- ¢ t t X 2pPu t U
2u? ( —) 2p2(u + —) (u + ~> (u + —>
p p Iz P
LR B
N Lo
2/1.2u(u+ ) !
;L -1 /1. - l
= 2
21“2 ( > 3 tan? x + o 211 al

: (wl),L ’

N
2 2u2<u+~>
2 B

- el —’L43tan2x+

2o £) ()
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therefore finally
t t
(n? - 1)- et Sy Dis
1 1 ®o g7
LA __’_‘_2 3tan?y + — A El'l_’ XVIIIa.
2u? <u + —) -
IL,

or, as we shall find it more convenient to deal with the pencil as an
emergent one, we may therefore express these corrections in terms of

2

%2 u+£ 2u? u+—>
p P

2
4 a, 4 a b
@, and v. Then, since —5; obviously = ﬁ, we arrive at the formula

R R TP (= D+ 1)

2
L qu .F YAC PO i
gie SRR A Z+ XVIIL(R)

If the rays are convergent and v negative, these corrections become
negative relatively to v.

In the secondary plane tan®y replaces 3 tan”’y. This formula can
be applied, as regards the correction for obliquity, to any thicknesses
of lenses with which we have to deal, the axial part of the lens being
supposed to be occupied by a parallel glass plate of the same thickness
as that of the lens, only with this difference. We have seen that we
need take no notice of the modifications in tan¢ in a system of
separated lenses when computing E.Cs, because the effects of such
variations are neutralised by corresponding inverse variations in the
distances; but in the case of our parallel plates the nature of the case
Is in one sense different, the angle y being the angle made between the
optic axis and the principal ray of the oblique pencil entering or
leaving the plate, whereas the angle ¢ is the angle included between
the optic axis and a ray drawn from the oblique image point Q to the
principal point of any lens system.

Therefore in computing our parallel plate corrections we must
always insert the actual angle of obliquity under which the principal
ray of the pencil enters or leaves the plate, and this angle y may be
considerably different from the original angle ¢, which is always
assessed in relation to the first principal point of the system ; but y is
easily calculated from ¢.

Let Fig. 57 represent the essentials of Fig. 58—that is,a collective
lens I;, a dispersive lens L,, and a collective lens L, in succession ; and
let P be the point on the axis where the principal rays of all pencils
traversing the system are made to cross—that is, P is the pupil point,
where a stop of variable aperture is placed.

N

The oblique correc-
tion and aberration
in terms of % and a,.

Parallel plate.
The oblique cor-
rection and aber-
ration in terms of
v and a,.

How the angle X is
to be derived.



Successive pupil
points.
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Let it be carefully noted that the axial glass thicknesses in this
diagram (57) are supposed to be drawn equal to lt;h of their real
2

amounts, as shown in Fig. 58, and also that the refractions, shown
apparently as surface refractions, are really the refractions due to the
passage of the principal ray through the successive infinitely thin
elements ¢, ¢, ¢,, etc, ¢ being convexo-plane, e, plano-convex,
e, concavo-plane, etc. The principal ray is traced through the system
as a solid line. Every refraction of the principal ray at an element
plane leads to an apparent shifting of the diaphragin point P. For
rays first entering the system the apparent diaphragm point is at p,,
and that is what is known as the entrance pupil point of the system;
while the axial point p/, from which the principal rays apparently
diverge on emerging from the system, is the exit pupil point of the lens.
For ¢; the front pupil or diaphragm point, or the point to which
the principal rays are converging before entering, is p,, and the
corresponding diaphragm point to which the principal ray converges
after refraction by e, is p,’; that is, p, and p,” are conjugate foci with
respect to the element ¢,. 'We will denote the distance ¢,..p, by
D/, and the distance ¢, ..p,’ by D,”, so that D,” and D,” are conjugate
focal distances. Either of these distances D,’ or D,” determines the
characteristic quantity B, for the element ¢,, and we can either write

1+/31=_1_ or _l_fﬁlz_,l_
2f1 D1’ 2f1 Dl

(wherein f; stands for the principal focal length of e¢;), and so deter-
mine B, For ¢, the front diaphragm point is p,” or p,, and the back
diaphragm point is p, or p,. Distance ¢,..p, =D/, and ¢,..p/ =D,
either giving 83,, and so on.

As it is scarcely possible to exhibit clearly all the various
refractions to which the principal ray is subject in Fig. 57, unless it

- were on a much larger scale, therefore the minor refractions exerted by

e, and e, are not represented therein.

Now it is evident that if + is the first angle between the
incident principal ray and the axis before refraction by e;, then
+ry, representing the angle between the principal ray and the axis after
refraction by e, will also be the required angle of either incidence or
emergence under which the principal ray enters or leaves the parallel
glass plate of thickuness ¢, and it will be greater than 4, since ¢ is
collective. If the lens I, had been drawn in its actual thickness,
it is evident that the principal ray would have had to be shown
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traversing it at a smaller angle =ib—l, or the angle of obliquity in the
l.L

anterior of the glass plate. But by considering ¢; and ¢, not as mere

surfaces, but as complete though infinitely thin lenses, and also sub-
Qg ] & .
stituting an air-space equal to - in place of #, then 4, becomes the
*y

angle of incidence or emergence into and out of the first glass plate,
which is what we really want. Moreover, all the diaphragm distances
D/, D/, and D,", D, ete, ete., for the principal rays, and the image
dlstances Uy, Uy, and v; and v, ete., ete., for rays constituting the pencils,
all come out to their proper values by means of this simple device.
Now it is evident that
tan y; = tan 5//D 7> tan i, = tan ¢ II))”B 7y tan ¢, = tan ]]))”1]; ,,I]; s
tan ¢, = tan 1//D ’Il))”]I; "]I)) 7, tan ¢, = tan ¢DD”I?”II)) ,,]ID) ,,I;) =
and finally
D,/D,D,/D,/D,/D,/

DD, D, D, DDy o ¥+

tan , =

Hence in applying the oblique correction of Formula XVIII. (P) the

original tan +» must be multiplied by the corresponding factor
D,/D,/D,
entering L, are parallel as if coming from an infinitely distant object,
then angle +r is the same as ¢.

All these diaphragm stop or pupil distances have, in the first place,
to be worked out in any given lens system, as a necessary step to
deriving the characteristics 83, B, ete., for each element. '

Dl” or
as the case may be. 1t is clear that if the rays of penclls

The Transference of the Parallel Plate Corrections to the
Final Focus

But we have yet to carry these parallel plate corrections through

. . 1
to the final focus and convert them into corrections to EFL of the

system.  Referring to Formula XVIII. we have two corrections to
the reciprocal value of the perpendicular distance v from the second
plate surface of the point from which or to which the pencil diverges
or converges. The second formula is a function of the aperture of the
peucil, and is of the same nature as spherical aberration, and we have

The expression of
tan Yy, tan iy, etc.,
in terms of tan y.



Parallel plate.
Linear value of
oblique correc-
tion.

The oblique plate
corrections all of
same signultimately.
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already dealt with it in Section IV. It applies to all peneils,
whether axial or oblique, and may for our present purposes be left out

g c . : : 1
of consideration, leaving us only the oblique correction to ~ expressed
v
as

(B~ 1)E

l.L
T//.%z— 3 ta,n2 X-

(81)
For our purposes we must now convert this into a correction to the
linear value of » by multiplying it by —+° and then we get

2

pi-1 4 ¢
- . -1 3tan?y. XIX. (L.
21‘*‘2 P X ( )

This is the absolute linear value of the oblique correction due to a
parallel plate of thickness ¢, It is thus seen to be independent of
the amount of % or of v, and is merely a function of the thickness,
angle of obliquity ¢, and refractive index w. Referring to Fig. 57,
it will be readily seen that after we have got the linear oblique
correction due to passage through the parallel plate #, from Formula

XIX. (L.), we can then express it as a correction to ul by multiplying it
2 2
by (ul) ; we transform it back again to its linear value at the con-
2

jugate focal distance v, by multiplying by v so that the linear
correction to v, after refraction through e, is expressed by

2 2
pEi=-11 v
~ 3 tan2 X (—2—) (82)
2/"‘2 m Al u22

It must be borne in mind that ai/ parallel plate corrections,
reduced to linear value, are essentially of positive value with respect
to the final focal distance of a collective system ; there is, therefore,
no question of signs to trouble us. They all take the form of linear
transferences of oblique foci from left to right, or in the direction in
which the light travels through the system. For the same reasons
these corrections considered as reciprocal corrections, as in Formula (81),
are all of negative import with respect to the final focal power, if the
latter is positive; and since their value in the primary plane is three
times their value in the secondary plane, they amount for all practical
purposes to the same thing as minus eccentricity corrections.

Having now got Formula (82) expressing the linear correction to

v,, we then express it as a correction to 171 by multiplying by uiz, and
3 3
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then reduce to its value as a linear correction to v, by multiplying by
v,%, when we get
pr-1t

3 tan? ¢ G (83)
2w Ly

2, 27
g Ug

and so on, until after refraction through e, we get, as the linear
correction to the oblique final conjugate focal distance v,, the amount

2 _ 2
l"‘) 21 h t_( v2”3”4'”5”6) 3 tan? ¢,. (84)
B AP L LA

Then to convert this into a correction to the reciprocal of the equivalent

2
focal length of the combination we must multiply (84) by (—1—-—> .

EF.L.
NG F.
Also tan® y; = tan® 4, = tan? 11&(]1)21-,,) , as we have seen before. After
1

inserting these values we therefore get, for the case before us,

21t [ vgrav ., \2 DAY 1 \?
il B U 2(_1)(, )
2u, y1<u2u3u4zt5u6) 4 D,/ \EF.L./ " (85) R..
In the same way the final oblique plate correction due to the
second parallel plate of thickness #, is expressed as

Cplt-1 /v, \2( D/D,/D, \2 1\
_E'Z_*___._?<_:L5_ﬁ_>< 1 Dy 3) 9 ( )
2,2 po gty \D,"D, D, 3%anss F.L./’ (e

and, finally, the third glass plate of thickness ¢, gives us

2— 1t DDy DD (D N2 iy
_ ks . 3(__a> Teoleaalry 5> 2 (
2pg® g\ D;'Dg"D, "Dy’ B EF L) S

As the quantities D’ and D” and « and v have always to be
worked out for each element at the outset for the purpose of arriving
at the characteristics a and B for each element, the application of the
above formule entails very little extra work. There is another way
of working in these parallel plate corrections, but the above method
is the simplest and most straightforward.

Having now explained the nature of the method of calculating the
normal curvature errors and eccentricity corrections, etc., of any eptical
system, so as to define the state of the final image with regard to flat-
ness, curvature, or astigmatism, we will conclude with three series of
carefully checked calculations as applied to three different optical
constructions of which the curves, thicknesses, separations, and refractive
indices were all known with reasonable accuracy, and whose final
images were also carefully observed and accurately measured.

First oblique plate
correction trans-
ferred to final focus.

Second oblique plate
correction trans-
ferred to final focus.

Third oblique plate
correction trans-
ferred to final focus.






VII

e
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7, 130019
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£, 257096

PRACTICAL EXAMPLES

E

4

183

u, = 28723 — 203 = + 2852 (convergent and plus)

v, = 43018 (divergent and plus)

E

5

u; = 43018 + 6:85 = 49-868 (divergent and plus)

v, = 80895 (divergent and minus)

E

6

a,= +°203
z,= —1
a;= + 4214
Zs= +1

u; = 80895 + 494 = 81-389 (divergent and plus)

vy = + 36°285 (convergent and plus and = back focal length)

ag = - 383
Zg= —1

We have now to assess the value of B for each element. Starting
from the pupil point or the intercrossing point of the principal rays

placed at ‘40 inch behind the fourth element, we have

for E,

for E,
for E,
for E,

for E;
for E

Then the E.Cs in secondary planes, as

D,” = - 40 behind, and D,"= + ‘391 (conjugate to D,")

. By= + 8675
D, = - (391 + -203) = — 594,and Dy’ = + 58 .-, By = + 82112
D, =58 + 439 = +497, and D, = — 51563 .. §,= - 55284
D, =5153+547 = +570,and D/'= —7-89 .-. B;= - 6207
D/=685—40 = +645and D, = 6786 .. B;= +39'316
Dy = 6786 + 494 = + 728 and Dy’ = —1025.. ;= + 5894

ascertained from Formula

VIIL, Section VI. (substituting tan®¢ for 3 tan? ¢), may be expressed
shortly as

tan’¢p 1
2F (a- )L

(4= 2a-B)C),

and come out as follows :—
for E;, E.Cs =

for E,

for E,
for E,

for E;
for E,

2

I

o

+
+

+

+

00276
‘0102389

‘0053134
‘0014101

‘0036181
0152812

tan? ¢

Sl

22 ( before summing up.

»

E.C:s for E; and E, =

E.Cs for E, E,, E,, and E, = +-018027 ,

Total for system

These two being dispersive elements, the
- signs of the E.C.s have to be reversed

~ 020594 tan?

—-002567 tan® ¢

Values of D', D”, and
B for the successive
elements.

Eccentricity Correc-
tions.

Total of above,
secondary plane.



Total normal curva-
ture errors, second-

ary plane.

Total normal curva-
ture errors, primary
plane.

First plate oblique
corrections, second-
ary plane.

Second plate oblique
corrections, second-

ary plane.

Third plate oblique
corrections, second-
ary plane.

Total of same.

Final total, second-
ary plane.

Final linear error.
Observed error.
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The normal curvature errors in secondary planes of the four collective
elements as ascertained by

tan2ql> ptl

2

L

<f1 e f6>

and the same for the two dispersive elements

I

therefore the total normmal curvature errors in
secondary planes

+ 085734 tan? ¢

— 081032

bR}

+:004702 tan? ¢

The normal curvature errors in primary planes of the four collective elements
as ascertained by

tan? ¢ 3u + 1

2

14

1 1 1 1

<f} A +f;>

and the same for the two dispersive elements

= +°189105 tan? ¢

therefore the total normal curvature errors in
primary planes

- 180847

”

+ 008258 tan? ¢

Parallel plate corrections in secondary planes for L, as ascertained by

- tan?

(y?

7;“'1

_ph

and for L, as ascertained by

b

tan? ¢

(n*

Sl

2py

2

/DD,
HD III)

)

and for L, as ascertained by

(s -
tan® ¢ —

)

D,'D,/D,/D,/Dy

2y’

&

D ”D.”I) //I) //D 7

( 1 > <”2v3”4”o”6> (
Il
D, RIRIRIRTN
A "’5%) (
E.F.

W MU

) G

1
E.F.L

)2
II>2 N

2
LFL> -
Total = —

1

and three times that quantity in primary planes.

Summary.

On summing up in secondary planes we have

+

be multiplied by - (E.F.L.)%
Let ¢ be 74 degrees, for which the tangent
Then the liuear deviation, in the secondary plane, from the
focal plane at that angle is + 00133 x — (*132 x 4305)2 = — 043 inch,
while the actually measured deviation was

‘004702 tan? ¢ for normal curvature errors,
002567 tan? ¢ for eceentricity corrections (E.C.s),
‘000804 tan? ¢ for parallel plate corrections,

-+000078

~ 00070028 tan® ¢

’

— 00002537 ,,
100080366 tan? ¢

‘001331 tan? ¢ being the final error, which it is now desirable to express

as a linear deviation from the focal plane To that end it must

— 040 inch.












Normal curvature
errors, secondary
plane.

Total oblique plate
corrections, second-

ary plane.

Final totals.
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Normal Curvature Errors

tan2¢p.1+1 L e
o+, +, = +-393624 tan®
T R f
tanfp po+ 171 1
SN ek L s = -512616
2 Mo {fa f4
tan2¢p3+l 16 iy 4
12 Sl [ g = +°171320
2 M3 f5 fsf S | ML IS,
Total = +°'052320 tan? ¢

Normal curvature errors in primary plane = + 11631 tan? ¢.

it

Parallel plate corrections for L, = — "0108010 tan®¢

9 2 L2 = - 0005574 1)
% - L,= -0048564
» ., L, = - 0000536.
Total —+0162684 tan? ¢ in secondary plane.
Swmmary
Secondary Plane. Primary Plane.
Nor. curv. errors +°05232 tan® ¢ +°11631 tan® ¢
E.C.s .. —-02534 - 07602
Par. plate corr. . —--01627 —04881 ,,
+°01071 tan®¢ —-'00852 tan? ¢

Supposing the angle of obliquity to be 14° 2’ as before, then after
multiplying above final errors by — (tan® ¢)(E.F.L.)? or by — (25)%(10)?
we get linear deviations from the plane image of —-067 in secondary
planes and +°'053 in primary planes. The actually observed errors
were — '04 in secondary planes and no perceptible error in primary

planes, with the lens stopped down to 1%

In the three concrete instances given it will be observed that the
thickness of a lens exerts influence in two ways upon the oblique
pencils refracted through it: first and most important, the separation
between the two elements very largely alters the relationship between
the several D’s, and consequently the B’s, for the two elements; and
secondly, by introducing a parallel glass plate. This last generally
gives rise to much smaller effects than the first, and yet in the three
instances given it is too large to be neglected. There is no manage-
able formula whereby a thick lens can be treated as a whole,
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Eccentric Oblique Reflection from a Spflerica,l Reflector

It would scarcely be worth the necessary space to work out fully
and independently the formule applying to eccentric oblique reflec-
tion for a spherical mirror, as their practical applications do not
compare in importance with the corresponding formul® relating to
lenses. However, there is a short cut to the formule relating to a
spherical reflector which may be followed with advantage. We have
already noted, in connection with the formula for spherical aberration
and central oblique refraction, that the refraction formule may be
transformed into the corresponding reflection formulee by the simple
device of substituting the value — 1 for u. Let us take the formula
for K.Cs in the secondary plane, which is

tan2¢, 1 _—]_ .{___ . . ) 2 IU‘3 1
F (o B Hp - D a=10 F A Dae et Gpa D-Dade Ty

- 2(a )+ D= Do+ o+ 18} |

and make the substitution therein of — 1 for u, and we then get

ta;}¢(a—ﬁ)22[ __x2+0+oa i = }—2(a—ﬁ){2a+0}]

If the power of a lens is concentrated into one surface only, then the
other surface is plane and « is 4 or — 1. In the case of a spherical
reflecting surface the power is also concentrated into one surface, and
2= 4 or — 1; it does not matter which. Therefore the term con-
taining 2% cancels out and there remains simply

O (o et~ - A2, XX.

while in the primary plane tan®¢ becomes 3 tan® ¢, and the correction

an® ¢

2 : t
is of course extra to the normal curvature error T

Here, just as in the case of the lens,

1+a_ 1+,8 1
Tar = e T2f D

D’ being the distance of the stop from the mirror vertex. Thus a is
the vergency characteristic for the rays constituting pencils, and 3
the vergency characteristic for the principal rays. If the reader will
pursue the investigation in detail and ab nitio for a mirror with a






SECTION VIII

COMA AND THE SINE CONDITION—VON SEIDEL’S SECOND CONDITION—
CENTRAL OBLIQUE REFRACTION

IT is now our object to investigate much more closely than we have
yet done the nature of that phenomenon known to practical opticians
as coma, and sometimes as side-flare. We shall find that many of its
manifestations are of an exceedingly interesting nature, of great
theoretical interest as well as of great practical importance. For a small
amount of coma at the oblique focus of a point in a distant object
formed by a lens system may cause much more mischief to the defini-
tion than either astigmatism or spherical aberration, or both combined,
so that it is eminently desirable to arrive at reliable formule of the
second approximation by the employment of which it shall be possible
to eliminate coma from any desired lens system.

In Section VI. we arrived at Formule VI. and VII., which to-
gether give the Eccentricity Correction or modification to the normal
curvature of image due to the presence of an axial stop or diaphragm
causing the pencils to traverse the lens eccentrically instead of centrally.
Formule VI will be seen at once to be a function of the spherical
aberration of the lens.

Now it is obvious that if we have two thin lenses in contact so
arranged as to give equal and opposite spherical aberrations, as is
the case in the object glass of a telescope, then as the compound lens
gives no axial spherical aberration, and Formula I, Seetion VI,
proves that the spherical aberration for the oblique eccentric pencil is
the same as for the axial pencil of the same aperture, therefore there
should not ensue any eccentricity correction due to pencils traversing
the compound lens eccentrically. This is certainly the case, and
Formula VL, if applied to the two lenses, will be found to be zero.
For the formula for the spherical aberration for the axial pencil is,
written shortly,
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then the application of Formula VII. to the two lenses will not
necessarily give a zero result; in other words, coma may be strongly
in. evidence.

For this formula gives us the modification to the normal curvature of
image consequent upon the selective action of the stop upon the rays
of oblique pencils which are characterised by coma, so that we may call
VIL the formula for comatic E.C.s, just as we may conveniently call
V1. the formula for aberration E.C.s.

The Formulation of Coma

The question now arises, whether from the comatic E.C., Formula
VIL, we can derive other formulee which will give us not only the
actual size of the comatic flare at the focus when the whole aperture is
in use and the refraction oblique and central, but also the size of the
comatic flare when the peneils are not only oblique but eccentric,
owing to the presence of a stop. These formule are of such vital
importance as to justify a thorough investigation for central oblique
pencils, while we may leave the case of the coma at the foci of
eccentric pencils to the next Section. In the course of working out
such formule we are also helped to a much clearer understanding of the
phenomenon, and the course of the rays which produce it.

Let L..L,, Fig. 61, represent a lens, Q the oblique radiant
point in the plane P..Q, p the conjugate focal point or image of P, and
q the conjugate focal point or image of @ as formed by the ultimate
oblique centre rays cldse to Q.. C; and let it be supposed that the lens
is free from every defect excepting coma, which in this case is tnward
coma, that is, having the flare eccentric towards the optic axis P..C.. p,
the brightest and most condensed end being at ¢ on the oblique axis
Q..C..q, and the most diffused end at e. Then as our Formula VII.
for comatic E.C.s is absolutely independent of the aperture of the lens,
and obviously equates to 0 when oblique pencils are centrally
refracted (since in that case B becomes infinity), and as we have seen
that the normal curvature errors are also independent of aperture,
therefore, since spherical aberration is supposed absent, the conclusion
is that any pairs of rays refracted through the lens at equal distances
from and on opposite sides of the oblique axis Q..C..¢ come to a
focus in the same plane as g, the focus for the ultimate rays close to
Q..C..q. But if such pairs of oblique rays focussed at the same
point as-the ultimate central oblique rays, that is, if the oblique pencils
were homocentric, then evidently there could be no comatic E.C.s

0

Line of argument.
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under Formula VII.  Therefore, since they focus or intersect in the
same plane as do the ultimate central oblique rays, but not at the
same point as the latter, the only other possible explanation is that
they focus in the same plane, but at a different distance from the
lens axis. For instance, in the case of Fig. 61, if the ultimate
central oblique rays focus at ¢, then the extreme pair of rays Q..L
and Q..L, focus at ¢, and other pairs of rays refracted by the lens at
points nearer to its centre will focus at intermediate points in the line
g..e. 'We have now to find how these focal points are distributed
along the line ¢..¢ in the focal plane. It is obvious from the fore-
going that the primary section of the cone of rays is at a minimum at
g..e in the plane wherein symmetrical pairs of rays such as Q.. L
and Q.. L, intersect after refraction. If now we can find the poiut /
where the ray Q.. L after refraction crosses the centre ray Q..C..g¢,

then clearly the distance (f ..g)g(%; will give ¢..¢, the length of the

A device for obtain- comatic flare. In order to get at this we must imagine a stop S;..S,

ing length of comatic ¢, 1o 5o placed centrally on the lens axis as to just let pass simul-
taneously the centre ray Q..C..¢ and the extreme ray Q..L..f;
then it is obvious that f..e will be the longitudinal value of the stop
correction or E.C. as a variation of V or C.. p, the back conjugate focal
distance, which is due to that particular position of the stop and .
degree of obliquity ¢.

Let S=semi-aperture of stop, and A4 semi-aperture of lens.

Let d..Caswsual=D,P..C=U,and C..p=V. Then

| _ 3 tan® ¢ o 2p+1) \ DU
(/..h~V—V24F2(,L—_—1){4,La+ ==~ a) | 5= p

by comatic E.C. Formula V. (This form of the formula is the most
convenient for our present purpose.) We then have the relations

Geegon

r..d (r.C)-D_ \4+(P..Q)
Dt&n(ﬁ:S:Am:A"T*.C—' —A < »A )U 5
A+(P..Q
. D tan qb:AU_D{fi’;(P"Q)}, wherein P.. Q=T tan ¢;

.*. DU tan ¢ =AU - D4 - DU tan ¢,

so that our condition that the stop just allows the extreme ray Q..L
and centre ray Q..C to pass demands that :
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as the square of the aperture, other factors being constant, and there-
fore the lateral displacement (like ¢..e¢) of the foci for symmetrical
pairs of rays increases as the square of the distance from the oblique
axis or ray Q..C..q of the points where they impinge on the lens.

We are now in a position to construct a diagram of the course
of the rays in the primary plane, which gives rise to coma, in more
detail. TFig. 62 illustrates the same case as Fig. 61, only with the
coma farther exaggerated for the sake of clearness, and with more rays
filled in.

Here the pair of rays Q .. b, and Q .. b, refracted at distance = 1 from
the oblique axis Q.. A come to focus at point &, 45, at 1 unit from g,
the focal point for central rays; the rays Q..¢, and Q..¢, refracted at
distance = 2 from the oblique axis Q.. A come to focus at point ¢, + ¢,
at 4 units from ¢; while the pair of rays Q..d, and Q.. d, refracted at
distance = 3 from the oblique axis Q.. A come to focus at point d; + d,
situated 9 units from ¢, and so on as the square of the aperture.
It follows, as an obvious corollary from the law of the length of the
coma increasing as the square of the aperture, that, provided the
length of the coma is very small compared to its distance from the
lens, as is usually the case, then the distances ¢..0, ¢..¢, and ¢..d
from the focus to the points where the rays Q.. b5, Q,..¢;, and Q.. d,
intersect the central oblique ray Q.. A .. ¢ must vary as the aperture,
or as the respective distances A..b, A..¢, and A..d,. The coma
in Fig. 62 is too much exaggerated to permit of this relationship being
properly shown.

In the primary plane it is clear that the rays are most crowded
together at the end ¢ of the coma, and most diffused at the other end ¢
where d; + d, intersect. Hence the former is the bright end, and the
latter the diffused end of the flare.

Supposing that the lens were divided into concentric rings or
zones, and each zone in turn allowed to throw an image of the point Q
on to the plane p..g¢, it is very evident that as the image of Q formed
by the two extreme rays in primary planes falls at d, +d, nearer to
the optic axis than the foci for smaller zones of the lens, therefore the
equivalent focal length may be said to vary for different zoues; the
larger the zones of the lens the smaller the equivalent focus of such
zones. In other words, the equivalent focal length differs from that
of the ultimate central portion by amounts varying as tan ¢ and as
the square of the aperture. This property of a lens subject to coma
has been well emphasised by Professor Silvanus Thompson, who has.
applied the term “zonal aberration” to the phenomenon.
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It is clearly of the greatest practical importance, when estimating
or eliminating coma in a combination of lenses, to have an expression
q..e

<.

is obtained by multiplying the Formula L by \17 or }-%,

for the angular value of the comatic flare, that is Of course this

by which

we get
Lt - e L@ Y- Das e Do}t T

It is clear that in the case of ¥ig. 61 we have both a and z positive,
while at the same time the coma ¢..¢ is inwards or towards the optic
axis P..p. Tt is very important to adopt a convention with regard to
the sign of coma. In Formula II the angular coma comes out negative.
We will consider any such comatic flare to be negative which is
inward, or whose diffused end lies towards the optic axis (or whose
bright end C (Fig. 66) lies away from the optic axis); and this rule
must apply whether the coma is real or whether it is merely virtual,
and irrespective of whether the lens in question is collective or
dispersive. For instance, Fig. 61a gives, on a smaller scale, the case
of a dispersive lens corresponding exactly to the case of the collective
lens in Fig. 61. Here, also, it will be easily seen that the coma e..q
is likewise inward or towards the optic axis. Also both a and « are
positive.  Therefore it is clear that the minus sign must still prefix
Formule 1. and II. with respect to the dispersive lens; and then, as
we shall see farther on, the comatic functions of a series of lenses can all
be simply added together, and there will be no need for reversing the
signs of the functions for dispersive lenses before summing up. The
case is intrinsically quite different to that of the eccentricity corrections.

In short, the fact that the formula for coma is a function of ]—}2

shows that the sign of f may Dbe ignored. Moreover, the sign of the
lens is implied in the sign of a.

The Part Played by the Secondary Rays in Coma Formation

We may now turn our attention to the consideration of sym-
metrical pairs of rays contained in the secondary plane, any two rays
refracted through the lens at equal distances above and below A.
Since we are assuming the existence of coma without astigmatism (a
condition which is hypothetical in the case of a simple lens except
under very special cases of eccentric refraction, but quite possible and
quite common in the case of certain compound lenses), we have, of

The angular value
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centre.

Conventions as to
signs of coma.
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course, to assume that a pair of rays in the secondary plane intercross
or focus in the same focal plane ¢..p as do the pair of rays in the
primary plane, and it is obvions that they will focus somewhere in
the straight line p..q¢ lying in the primary plane and passing through
the optic axis.

The line of reasoning whereby the position of this focal point for
two rays refracted at the distance 4 from the lens centre in the
secondary plane is determined is long and difficult, and perhaps it is
unnecessary for our purpose to do more than give a brief sketch of
it by the help of Fig. 63.

This method consists in assuming the two rays Q..T and Q..T"
in the secondary plane to be refracted through the sharp edge of the
lens immediately above and below the point T, and finding by spherical
trigonometry how much the vertical plane containing these two rays
after refraction is angularly deviated (in the primary plane) from the
plane containing the same two rays before refraction; for it can be
shown that such a deviation always takes place. In Fig. 63 the two
incident rays Q..T and Q..T" respectively have to be repre-
sented by one straight line Q.. T, and the two emergent rays T'..¢
and T”..¢ by another straight line T..¢"; but those two straight
lines are not one; they form a small angle with one another at T, and
the angular displacement of T..¢" with respect to Q..T is outwards
or away from the optic axis.

Having got a general expression for this deviation (which depends
upon the shape of the lens, etc.), we next compare it with the lateral
parallel displacement which occurs to the central ray which passes
through the two principal points, p; and p, of the lens and its
geowetric centre, as shown by the solid lines. We then arrive at the
formula, II1., for the angular displacement of the focus ¢, for two rays
in the secondary plane from the focus ¢ for the ray passing through
the geometric centre of the lens—that is, the angular value of g..¢
subtended at T—

S _4F2:f(’;‘f 1){(2p+ i Do # (o 1)x}A‘=. IIL

Thus we obtain a value which is just one-third of Formula II
So that if, in Fig. 63, ¢ is the point where the central ray strikes the
focal plane, and ¢’ is the point where the two rays Q..T" and Q..T"
in the secondary plane come to focus, then if we make ¢..¢" =3(q..¢",
¢" will be the point where the two rays Q..F and Q..E" in the
primary plane come to focus, the two sets of rays belonging to the
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same zone or circle of the lens, which we have assumed to coincide
with its sharp edge.

The Diameter of the Coma in the Secondary Plane

The following line of reasoning for obtaining the diameter of the
comatic flare in the secondary plane may be pursued consistently with
the theorem of coma which we have just explained.

We have supposed that the four rays which, two by two, impinge
upon the two extremities of the secondary axis of the comatic circle
and define its size in the secondary plane, are refracted through the lens
zone at points 45 and 135 degrees in both directions from the neutral
point p’ (Fig. 64), that is, rays from j, j”, 7, and j,. Confining our
attention to the pair j” and j, immediately above and below the point
n, as shown in dotted lines in Fig. 61, we have C..n=(C.. L) cos 45°
= ATl/g (A being the semi-aperture of the lens). The dotted circle in
Fig. 64 then represents the eccentric zone limited by the stop §.. S/,
and its radius is obviously 75/45'
point f for the two rays C..f and L..f, which gave us the linear
E.C. in primary plane (=/..¢), from which we got ¢..e. We now
want the corresponding E.C. for the two rays n..s in the secondary
plane passing above and below #; and in order to find it we must
imagine the diaphragm moved back from d to &', such that Q..d’

produced passes through = ; then, calling the diaphragm distance
(@ ..C) D, for short, we have, if angle P..d'..Q =6,

We have already found the crossing

D‘—Al _ = 2,
- D

A&

SRR

5|

tan 6
and dividing by D' we get
1 1 U-D DU _ 4 1
Jatamg UD - L T-D U3 tan
Hence the required E.C. i§ expressed by Formula IIL, Section VI,

with the above value of U-D inserted ; that is,

tan? ¢ 2(p+ 1) 1 1
RS T G R R K et
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which is more conveniently expressed as

/thj;;? 1){(2/” D= D)a+ (u+ l)x}' ®)

Then the linear E.C. obtained by multiplying by — V?is

24 tan ¢ 1
2u+ 1)(p—-1)a+(p+ 1)z s, 6
e T D Dat (e e Y, (6)
Then the secondal y diameter of the comatic flare is obtained by multi-
24
. aperture in secondary plane 24 1-a
plying (6) by P v 7P , that is, by \<79 or 3 °F
So that we get
A?tan ¢ 1
2 D — ; o
e 1){< AT 1)a+<y+1>a}l_u Iv

for the secondary axis of the comatic flare, which is just two-thirds of
the value given by our previous Formula I. for the primary axis of
the flare.

To trace out mathematically what happens to the rays from Q
other than those we have dealt with, and which are refracted through
the sharp edge or belong to the same lens zone, is a much more
difficult task. It has, however, been undertaken by Professor Finster-
walder and others, and the results may be shortly explained by Fig. 64.

Structure of Pure Coma

We will now give a brief explanation of the comatic flare, while
reserving until later the general proof that this theorem of coma
necessarily implies the ratio of 3 to 1 for the E.Cs in primary and
secondary planes respectively.

Let the circle §.. p'.. s".. p” of Fig. 64 represent one of the concentric
zones of a lens, the optic axis of such lens being perpendicular to the
paper. Let C be the pointin the distant focal plane where the ray passing
through the geometric centre of the lens strikes ; let I be the point where
the two rays in the primary plane, »’..P and p”.. P, come to focus;
and S be the point where the two rays in the secondary plane, s’ .. S and
s".. 8, come to focus, C..S being } of C..P. About a point half-way
between S and P draw the circle S..K’.. P of diameter=S..P. This
circle we will call a comatic circle, on which strike all the rays
refracted through the zone §'..p"..s"..p" of the lens, only the way in
which the striking points are distributed around the comatie cirele is
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a peculiar one. Starting from p’ in the primary plane, the point
towards which P (the point of the comatic circle most remote from
the centre ray C) lies, we may reckon our rays by their angular distance
from p’ measured along the zone. The ray from j’, a point 45° from p/,
will strike the comatic circle at K’ at a point 90° from P; the ray from
s/, 90° from p/, strikes the comatic circle at S, 180° from P; the ray j”,
135° from p/, strikes the comatic circle at K”, 270° from P, and so on.
That is, every ray passing through the lens zone at an angle 6 from
the neutral point p’ strikes the comatic circle at a point situated by
260 from the corresponding neutral point P. Thus all the striking
points of rays are subjected to what may be termed a degree of torsional
displacement equal to 6.

In Fig. 64 the comatic circle, for clearness, is shown too large
in proportion to the size of the lens zone. Fig. 65 shows the
structure of the comatic circle far more traly, for it is constructed on
the supposition that the lens zone is infinitely large compared to the
comatic circle, so that the inclination of all the rays shown therein to
the primfry plane P..P’ is the true measure of their angular
distribution round the lens zone. Also it is supposed that the diagram
65 represents a view of the comatic circle as if looking along the
oblique central ray, so that the lens zone would, strictly speaking,
appear as an ellipse. DBut the angle of obliquity is assumed to be
small enough to allow us to treat the lens zone as a circle, of immense
size compared to the diagram. As a corollary from this torsional
effect on all rays (except the neutral pair striking the comatic circle
at I)), it follows that every point in the comatic circle is the mutual
striking point of two rays originating from two points in the corre-
sponding lens zone which are 180° apart or diametrically opposite
So that each straight line drawn across Fig. 65 represents two rays,
one from one point in the lens zone, and the other from the opposite
point. A marked feature of the case is that all the rays cut the
straight line drawn from the lens centre to the intersection S’ of the
two rays S..8 and S, .. 8 in the secondary plane; but let it be noted
that these intersections are at different distances from the plane of the
diagram or comatic circle, so that the seeming intersection of all the
rays at &' is apparent only.

Fig. 65a is designed to elucidate these points further. It is a
perspective view of the comatic circle and the same rays coming from
the lens zonme as those shown in Fig. 65, wherein the rays are
numbered —1, —2, 41, +2, ete.¢ The + sign means that the
ray in question, after intersecting the comatic circle, proceeds to cut
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the ray projected through S’ from the centre of the lems, at a point
beyond the plane of the comatic circle; while the — sign means that
the ray in question cuts the projected central line before it intersects
the comatic circle. Thus rays of the same sign and number cut the
axis of intersection at the same point, and those of equal numerical
values, but opposite signs, cut the axis of intersection at points
equidistant from, but on opposite sides of, the plane of the comatic
circle. The two rays marked s and s, in the secondary plane cut the
comatic circle at one point S/, also shown in Fig. 65a. For the sake of
clearness, each ray is drawn as a solid line up to its intersection with
the comatic circle, and as a dotted line after its intersection. Also
each ray is marked with the same numbers and signs as in Fig. 65, so
that each ray may be identified in both diagrams. The relative
aperture of the lens zone is assumed to be very large.

The Distribution of the Comatic Circles formed by Different
Lens Zones &

The next Figure, 66, shows a series of comatic cireles and their
relative distribution for a series of lens zomnes of semi-apertures =
1, 2, and 3, from which it will be easily seen that the two tangents to
the series of comatic circles embrace an angle of 60°, and intersect at
the point C where the .central ray cuts the focal plane. For we
have seen from Formula IIL. that the distance C.. B, from the central
ray C to the point B where the two rays in the secondary plane
intersect, is & of C..D. Therefore, assuming the comatic circle

e
C..e
=sin £(¢'..C..¢)=sin 30°, therefore the angle between the two
tangents is 60°.  Such an expanding series of comatic circles makes
the well-known balloon-shaped side-flare or coma instead of a point
of light at C. Then Cis the end of the coma at which the greatest
intensity of light concentration occurs, while D, the opposite extremity,
is marked by the greatest diffusion of light. We will call C the root
of the coma, and D its extremity. If the extremity of a comatic
flare lies towards the optic axis of a lens, then the coma is negative
or — ; if it lies away from the optic axis, then the coma is positive
or +. The signs preceding Formule I., II., and III. are arranged
to always give results in accordance with the above convention, bearing
in mind that no difference of sign is required to be made in applying
these formule to dispersive lenses, of which instances will be given later.

Y. B.."..D, with its centre at ¢, to exist, we have

—dL,
)
2
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VIII

The student wishing to study the formation of coma corresponding
to any particular lens zone cannot do better than take one-half of a
Goerz Double Anastigmat, with the stop to the front to receive nearly
parallel rays from a distant bright point of light. The lens may be
rendered opaque exceptl for a narrow zone near the edge of its aperture,
and then, on examining the focus with an eye-piece, while tilting the
lens to a certain degree of obliquity, a very fine example of pure coma
without much admixture of astigmatism may be obtained, and the
duplex circle of Fig. 70 may be watched as it closes up to focus. 1t
is particularly instructive to cover up half the zone, when, at the focus,
a complete ring of light will still be obtained.

The Sine Condition

By many optical authorities, especially on the Continent, it has
been asserted that if a lens fulfils what is called “ the Sine Condition,”
it will then show no coma. The late and much lamented Professor
Abbe, of Jena, was the first to prove that if a lens L.. L, (see Fig. 67)
is so shaped relatively to the conjugate axial foci P and p that
sin LPS
sin LpS -
obliquely but centrally through the lens, such as pencils LQL; and
LgL,, will be free from coma. It can be proved that if the lens fulfils
the sine condition, then, if we take a new point of origin Q to one side
of the axis, but in the same focal plane as P, the length of path
Q..L+L..g=the length of path Q..L,+ L,.. ¢, and therefore two
elements of a wave of light starting together from Q meet again at ¢
simultaneously upon a common point situated on the central oblique
ray, there being, therefore, no lateral displacement. But to plan a
lens that will fulfil the sine condition in any particular case by
trigonometric methods is far more laborious than arriving at a direct
result by a simple algebraic formula, and it may easily be proved that
our formula for eliminating coma, (2u+ 1)(p— 1)a+ (u+ 1) =10, can
be deduced directly from IProfessor Abbe’s sine condition, and is the
algebraic expression of that condition. Let us consider any pair of
conjugate rays such as P..»n and n..p (Fig. 67), and suppose they are
each produced into the lens until they meet at =, then the per-
pendicular n..S is common to the two triangles nI’S and npS, and
sine npS =’£L_.;P‘ siply
sine nPS  n..p '

Then let us consider a pair of conjugate rays refracted extremely

constant for all values of L..S or y, then pencils refracted

How pure coma may
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shows an apparently
complete  comatic
circle.

The sine condition
implies equal ‘‘ opti-
cal lengths” for ex-
treme rays of an
oblique pencil.

The sine condition
made the basis for
our formula for no
coma.
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closely to the lens axis (see enlarged diagram of the centre of the lens,
Fig. 67a). If the two conjugate rays I’.. % and p..d are produced in-
wards and meet at %, then in the extremely narrow triangle %bd the base
b..d is the course of the ray within the lens, the angle Abd is the angle
of deviation at the first surface, and the angle Adb is the angle of
deviation at the second surface, but at such extremely small angles,
the angles of incidence or emergence and angles of deviation bear the
constant relation u:u — 1, and we may say that the angle of incidence
of the ray P..5 is to the angle of emergence of the ray d..p as 2..d
is to &..b; so that ultimately when % is brought down to the axis
it will be so placed as to divide the thickness ¢ of the lens into two
parts—A, corresponding to b..%, and B co‘rresponding to ..d. Then

A _angle of emergence of d. . .
B ™ angle of incidence of P.. b (™)

Let P..L and L..p in Fig. 67 be another pair of conjugate rays
refracted by the extreme thin edge of the lens; then it is obvious that
the sine condition demands that

Dy I R M L. tP"h (P..o)+(}.. k) _U+A

Lop n.p . p W h.p @d . pp+@. . )" VB
therefore RARIL I o
L..p” V+B
Now let perpendicular L..S =y, then .
J“_ 1 1)
P.L= U+2U U+ 2<U+7, ) (9)
o
L. P"V+6V+” =V+ ( ) (10)

Reverting to Formula (7), giving the ratio between A and B, it is
obvious that the ultimate angle of emergence of ray d .. p is expressed by

(% +\lr>’ and the ultimate angle of incidence of ray P..d is similarly
expressed by <’l+%—}> Therefore putting ¢ for the central thickness

of the lens we have

Sy E R (P Y1)

therefore Formula (8) becomes
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Vil -2) + (p= 1)1 - a) + Up{(l —2) + (u - 1)(1 - a)}}
= V(1 +2) + (p = 11+ a)} = U{(L +2) + (u = 1X1 + )}

D .’) -
Then on writing 12+fa for U, and ~15_f-; for V, and multiplying all

terms by (1 —a)(1 + a), we get,

(L+a){(1-2)+ (- 1)1 =a)} + p(l —a)i(1 =) + (u - I)(1 —a)} |

—p(L+a)f(l+a)+(p- 1)1 +a)} - (1 —a){(1 +2) + (p= 1)1 +a)}J =0,
and this simplifies down to
Cp+){p-Da+(p+ )z=0, (14)

which, as we have already seen in Formulw 1., IT., and II1, ete., is the
condition of no coma, which we previously worked out from quite
different premises.

It can also be shown that if, when the sine condition is fulfilled,
the incident and emergent rays are produced to intersect within the
lens, then the radius I of the cireular curve L..S.. L, along which the
pairs of conjugate rays thus intersect is given by the formula—

1 1
R- UV
Thus, when U is infinite R=V; when U =V, R is infinite, and the
surface L..S..I; is flat; but when V > U, then the curve of radius
R is reversed in sign and faces convex to the longer conjugate focus. *

We may call this spherical surface of radius R the sine surface.
When a lens is free from coma, or fulfils the sine condition, two
important corollaries can be deduced from the conditions prevailing—
and these are, firstly, that the point S, Fig. 67, where the sine surface
cuts the optic axis, is always exactly in a straight line between
any original radiant point Q and its image ¢; and secondly, this
point S is so situated with respect to the two principal points, p,
and p,, of fhe lens as to divide Py - - P, into two parts, such that
(@, - - B) 25 pp) s IRV

Therefore S falls between the two principal points if both U
and V are positive, as in Fig. 68 ; but if U and V are of different signs
and the conjugate foci on the same side of the lens, as in Fig. 68a,
then the point S falls outside the principal points, and in this case
behind them.
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Some Manifestations of Coma

Returning now to the consideration of the structure of coma, we
have seen that, in the absence of other aberrations, a lens manifesting
coma forms for each zone of the objective or lens a duplex cirele in
the focal plane, whose actual diameter is given by Formula IV, and
its angular diameter, as viewed from the lens centre, by two-thirds of
Formula II. Thus for any given lens zone the diameter of the
comatic circle varies as the tangent of the angle of obliquity of the
incident pencil; and for any given angle of obliquity the diameters of
the comatic circles and the distances of their centres from the oblique
central or principal ray alike vary as the square of the diameters of
the corresponding lens zones.

It now becomes interesting to inquire what sort of figures will be
traced out by the rays going to formn such comatic circles—first,
when the focal plane is departed from either towards or away from
the lens; and, second, when that usual accompaniment of coma, viz.
astigmatism, is also present.

We will first of all deal with pure coma as projected upon planes
nearer to or farther from the lens than the focal plane in which the
duplex comatic circle is formed. Here Fig. 65 will at once help us to
form an idea of the figure traced out by the rays on a plane somewhat
nearer to the lens. This figure represents what would be seen by the
eye placed in and looking in a direction parallel to the straight line
joining the centre of the lens to the centre of the comatic circle.
Therefore, since the inclinations of all the converging rays to the plane
of the diagram are equal, if we mark off on each ray a point such as
w,, w,, ete., such that the distances from all such points to the points
where the same rays cut the comatic circle are equal, then the curve
w, .. w, and w/..w)/, ete., through all these points will be one of the
out-of-focus comatic curves. The resemblance to a hypoeycloid is
at once apparent. In fact, it has been proved by Finsterwalder (what
is in entire conformity with the formulee we have worked out) that
the comatic curve traced out by the rays from any one lens zone is
such a curve as would be traced out by a point in a uniformly
rotating circle whose centre is simultaneously travelling at half the
rate and in the same direction around another fixed circle. Fig. 69,
Plate XIV., illustrates this.

In all the figures ..7 is the rotating circle, and f..f the fixed
circle that the centre of the former travels round. While the centre
of 7..r travels once uniformly round f../ the circle .. r has rotated

‘When the focal plane
is departed from.

In the case of pure
coma.

Hypocycloidal
nature of the curves.
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uniformly on itself twice. Now 7..7 is the same size as the comatic
circle in the focal plane, and thus represents the amount of torsion to
which the rays are subjected ; while the fixed cirele f. ./ may be zero or
of any size, for it simply represents the cirele traced by the hollow coned
surface of rays upon the selected plane of projection (supposing that
the rays were all refracted accurately to a point at the centre of
the comatic circle). Thus the size of f../ simply depends upon the
distance of our plane of projection from the focal plane. 1f the plane
of projection coincides with the focal plane, then f..f vanishes to
a point, and in that case we have to imagine the rotating circle 7. .7
rotating on itself twice while its centre remains stationary, which hypo-
thetical case explains the duplex comatic ring. It is really a double
loop in its ultimate closed-np form. Fig. 70 @ and ¢ show two phases
of the comatic curve at equal distances on each side of the focal plane
in which the comatic cirele O is formed, followed by three more out-of-
focus phases 8, ¢, d. All these and the following figures have been
traced out by the employment of a geometric machine in accordance
with the above law of coma formation.

Next, let us take a lens giving pure coma, and consider the tracings
made near the focal plane by each of five concentric zones of the lens
of radii, 1, 2, 3, 4, and 5. Then at the focus we shall have a figure
like Fig. 66, a series of duplex comatic circles, but at a little distance
on either side of the focus we shall get Fig. T1.

Next we may consider the effect of the usual astigmatism being
added to the coma. The elfect of astigmatism is, at the focus for rays
in the primary plane, to substitute a short and nearly straight focal
line for the point, and at the focus for rays in the secondary plane to
substitute another straight focal line of the same length as the former
for the poiut, these two focal lines being at right angles to one another.
Consequently, the figure to be expected in the plane of each focal line
is the figure that will be traced by a point in the comatic circle

rotating on itself twice, while its centre travels with a harmonic

motion up and down the whole length of the focal line. Fig. 69«
illustrates this action, at O within the primary focus, at P the primary
focus, at L the least circle, at S the secondary focus, and at O’ beyond
the latter; while in Fig. 72, P> is the figure thus traced at the focus
for the two rays in the primary plane which mutually intersect at the
point p.  Then, if the plane of projection is transferred to a position
half-way between the two focal lines or at the circle of least confusion,
we get the tracing L; and then, on transferring the plane of projection
to the secondary focal line where the two rays in the secondary plane
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Viil

intersect, we get the tracing S, s being the intersection point for the
two rays from the zone which lie in the secondary plane. Tracing a
is taken within the primary focus.

Fig. 73 is a series of phases of astigmatic coma, all for the same
lens zone, in a case where the degree of astigmatism bears a still
greater proportion to the comatic circle. @ is within the primary
focus, P is at the primary focus, b half-way between the primary focus
and the least cirele, L. is at the least circle, ¢ is half-way between the
latter and the secondary focus, s is at the secondary focus, and d
beyond it.

Fig. 74 is the complete series of tracings for five-lens zones in a
case of coma combined with very moderate astigmatism, taken in the
focus for primary rays for all zones, as the lens is supposed to be free
from spherical aberration.

Fig. 75 P, Plate XV., is the complete comatic formation for five-
lens zones at the primary focus,in a case where the astigmatism is
more pronounced than in Fig. 74.

Fig. 75 L is the phase of the same which occurs at the least
circle, and Fig 75 S the phase of the same which occurs at the
secondary focus.

Figs. 76 P, L, and S show the phases, corresponding to the last,
of astigmatic coma in a case where the astigmatism is relatively still
more violent.

Throughout all cases of astigmatic coma it will be noticed that
the form of the loop is different for each lens zone. For it is obvious
that the length of the focal line increases as the diameter of the
corresponding léns zone, whereas the comatic circle, whose rotation and
travel produce the loop, increases as the square of the corresponding
lens zone. Hence for the smaller lens zones the straight line formation
predominates, and for the larger lens zones the circular element or loop-
like effect predominates. Figs. 75 P and 76 P both show this feature.

The phase of coma indicated in Fig. 76 S, when all the infinite
series of zones are filled in, as in the actual case of real coma formed
by an aberration-free object glass, is perhaps the most beautiful, being
a shell-like formation which at first sight looks complicated and puzzling.

The comatic formations yielded at the oblique foci produced by
uncorrected lenses are still further complicated by the fact that the
foci for each lens zone vary by spherical aberration, but by the kind
permission of Professor Silvanus Thompson * we are enabled to here
reproduce some actual sketches taken by him at the oblique foci of a

* And also by permission of the Royal Photographic Society,
: P
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simple plano-convex lens whose face was divided up by anmuli of
black varnish into a series of concentric transparent zones of finite
width. Of course a good deal of colour fringe which was actually
present does not show in these reproductions, which will be seen to
exhibit practically the same character as the curves we have just dealt
with. A full account of his experiments was given in a most
interesting and instructive paper printed in the Photographic Journal
for December 1901; which should be carefully studied by all
interested in this branch of optics. Some of the paradoxical con-
sequences of coma therein described are exceedingly interesting.

If Fig. 78 E be carefully observed, it will be noticed that the
tracing of light for the outermost zone is at the focus for the rays in
the primary plane, and the curve is in the same phase as any one of
the curves in Fig. 76 P. But the curves in Fig. 78 E for the smaller
lens zones are more open loops, for, owing to the spherical aberration,
the two primary rays of such zones focus beyond the plane in which
the comatic curves were taken. In short, the effect of spherical
aberration upon the comatic curves is to cause the latter to assume
more or less different phases for the different lens zones.

The great broadening out of the outermost zone tracing so marked
in Fig. 77 F is of course due to the outer lens zone having a finite
and appreciable width, the loops for the outer edge and inner edge of
the zone being widely different, owing in large part to the spherical
aberration, while the zones between these two all contribute their light
to intermediate loops.

Fig. 79a illustrates the figures obtained by Dr. Adolph Steinheil
by elaborate trigonometrical calculations applied to the case of the
6-inch refracting telescope at Konigsberg made by the celebrated
Frauenhofer. He selected four zones of the objective, as in Fig. K,
and calculated the oblique foci for eight rays equally distributed round
each of the said zones, and found where they impinged on the plane
passing through the axial focus (see G and II) on a second plane ‘35
of a millimetre nearer the objective (see I and J), and on a third plane
‘70 of a millimetre nearer the objective (see K and L). He thus
arrived at the comatic formations H, J, and L, whose identity with our
previous results is plainly evident. He then, after a few alterations
in the curves of the objective, got it to give symmetrical obligue
refraction, the sine condition being fulfilled, and the resulting oblique
foei shown in Fig. 795, N, P, and R, then showed pure astigmatism
only.
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General Proof of the Theorem of Coma

Having now given a certain explanation of the formation of coma
and shown many figures synthetically formed by way of illustration,
_and others either drawn from actual experiment or trigonometrical
caleulation, all of which confirm one another, it will now be as well
to give a general proof that our theorem of coma will necessarily lead
to all comatic eccentricity corrections in the primary- plane being three
times as much as the simultaneous eccentricity corrections in the
secondary plane.

In Fig. 79¢ let C be the centre of an aberration-free objective
yielding coma, and let the eccentric circle ¢,..G..¢,.. H represent
the outline of a pencil of rays where it impinges upon the plane of
the lens. Then C..f is the eccentricity. Let the radius or semi-
aperture of the eccentric pencil f..¢, or f..c, be 7. About C describe
the circle R3..R3, touching circle ¢;..G..H at G, another circle
R,.. R, passing through ¢, and ¢, at the upper and lower extremities
of the secondary diameter of the pencil, and another circle R,..R,
touching the circle ¢;..G..c,..H at H. Then G and H are the
points where the two extreme rays in the primary plane are refracted
through the lens, while ¢, and ¢, are the points where the two extreme
rays in the secondary plane are refracted. Turning our attention to
the oblique focus (Fig. 79d) formed by light filling the whole aperture
R,.. R, we have the lens zone R,..R, forming the duplex ring R/,
the lens zone R,..R, forming the duplex ring R, and the lens zone
R,.. R, forming the duplex ring RS. Here let it be borne in
mind that Fig. 79d is really very small compared with the lens
aperture R .. R

We will assume that the distance, such as C..7%, between the
central ray C and the outermost point of any duplex ring is N times
the radius of the duplex ring. We have so far assumed this ratio to
be 3:1, but as it is desirable to make this proof quite general in its
bearing and be applicable also to comatic formations of a higher order,
we will assume the outermost point of each comatic circle to be
displaced from the central ray by a distance equal to N times the
radius of each comatic circle.

Secondary Plane

:Here we may proceed as follows :—
First we may express the radii R, and R, of the two-lens zones
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R,.. R, and R,..R, in terms of R, the radius of the outermost zone,
and of 7, the radius f..¢, of the eccentric pencil; thus

R2=(C.. 01)é =(e- SO =12+ (R, -1 =Rz2- 2Ry + 2,

' Ry= VRZ-2Rr+ 2:2; (15)
then we have
Ry=R,-2rn (16)

Along the lens zone R,..R, mark off the arc ¢ ..b equal to d..¢,
and join d to b by the chord d..5.. Also join a to b by straight line
a..b, and then from the centre ¢ draw c..e perpendicular to @ .., and
bisecting the latter at e.

Then for.the moment we will assume the circle R, .. R, to represent
the comatic circle formed by lens zome R,..R,; in which case we
have the ray refracted through the lens zone at ¢ striking the
comatic circle at b, ¢,..b being the torsion imparted to the ray in the
comatic circle. Then since ¢;..b=¢,..d, therefore the chord &..d
is bisected at n, and angle 8Ce¢; =¢,Cd. DBut angle bad = one-half of
angle bed, therefore angle bad =angle 3Ce,. But angle bad is also
equal to Cba. Therefore angle Cba=angle 5Ce¢,. Therefore a..b is
parallel to C..¢; and ¢..b is equal to C..n, which latter obviously
= C..f, so that we have

a..b=2(..0)=2(C..n)=2(C..f)=2R,-7),
from which we then derive ‘ ‘
ab_i 2(R1.—'7')
R, W~VRZ-2Rr+ 22

(17)

Turning now to the real comatic circle R, in Fig. 794, which is
formed by lens zone R,..R,, we have %, as the point where the ray
from ¢, strikes the comatic circle, and A,..%; is obviously parallel to
a..bof Fig. T9¢. Now we have already seen, from Figs. 65 and 65a,
that the perpendicular to the diagram drawn through A, is a sort of
axis through which-pass all rays from R,..R, which intersect the
comatic circle k;..A,.. %, Therefore the two rays in the secondary
plane from ¢; and ¢, which strike the comatic circle at &, and 7%,
respectively, will intersect one another at a point somewhere on the
perpendicular through A, whose distance from the plane of the
diagram can be expressed in terms of A,..%; or A,. .k,

Now clearly

Rl Ry Tl i WG T
Ry s R2-2Ryr+ 202
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Thus we get a linear E.C. which is N times the corresponding E.C.
in the secondary plane, a result quite independent of the value of
N, which, in the comatic formations -of the second order that we have
been dealing with, is 3 to 1.

Let it be supposed that N =5 ; then the sort of coma that would
be formed at the focus, supposing coma of the second order and other
aberrations to be absent, would partake of the character of Fig. 797,
wherein the length C../Z = five times the radius of the outermost
comatic circle which touches at %, and so on.

When we come to deal with the curvature errors and E.C.s of the
third order in Section XI. we shall have occasion to revert to this
Fig. 797,

The Elimination of Coma from Combinations of Thin Lenses
in Contact

Before leaving the subject of coma it is desirable to deal with a
problem relating to telescope objectives which often calls for solution.
In the first place, it is clear that since the lenses composing such
objectives are in contact, and generally thin compared to their focal
lengths, therefore it may be said that points in the image away from
the axis are formed by pencils of rays which are refracted obliquely
but centrally through the lenses, any diaphragm corrections due to
eccentric oblique refraction being so small compared to the normal
curvature errors as to be negligible ; so that it cannot be supposed that
any one form of telescope objective presents any substantial advantage
over another form, as regards the flatness of its image, or the amount
of its astigmatism for oblique foci. It may be said that the radius of
curvature for the image formed by rays in primary planes is somewhat
less than ?rths of the principal focal length, and that for the image
formed by rays in secondary planes somewhat less than 2ths of the
principal focal length. But since the extent of image utilised in such
cases seldom amounts to more than two degrees from the axis, these
curvature errors do not seriously matter, so we have the fact that the
principal factor which determines the superiority of one form of
objective over another as regards its definition away from the optic
axis is simply the presence or absence of coma. For instance, a
double achromatic objective with the collective lens placed first and of
a meniscus or convexo-plane form will yield a very considerable
amount of inward coma at its oblique foci which, at even five minutes

of arc from the axis, is considerable enough to spoil definition; while if
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the collective lens is plano-convex and still placed first, the opposite sort
of coma will prevail, although it will not be quite so bad as in the
former case.

It is also obvious that forms of objectives characterised by strong
coma will be very sensitive to being slightly thrown out of square,
a highly undesirable condition, for the mischief caused to definition
by such coma may far exceed the mischief caused by the inevitable
astigmatism. .

We cannot get rid of the normal curvature of the images nor the
astigmatism in thin contact combinations, but we can get rid of the
coma, and therefore it is of the highest importance in the case of
telescope objectives, especially when designed for photographic purposes,
that they shonld be designed free from coma, and to that end we may

* proceed as follows :(—

Formula II. of this Section gives us the angular value of the coma
yielded by any lens, so that in the case of the two lenses constituting
a telescope objective that is to be free from coma, we have

A? 3 tan
- ¥ 2 (i _¢1){(2/‘1 + 1)y = Doy + (g + 1)‘”1}
Alz ; ! v =0. VIL
tan
" AF 1*){(2#2 + 1)y = V)ag + (pg + l)zz}’
Let ¥y=+1 and Fy= 7 a,= —1, the collective lens being

placed first. Then

1 +a,
=1, so that a, = + 2}.
ag) - Ot e v 2

Let ;=15 and p,=1'6. Then, leaving out common factors,
we have

4 25\ (3\2[42 26 ~
Iy {ﬁ( =D+ ey T <5> 1630+ (1-6)(?6)z2} =0
from which finally we derive
zy= — 343w, + 474,

We may now insert this value of x, in onr formule for spherical
aberration for the two lenses and equate them to 0, thus—

LS 95 .»}
8('75)[”1 - 10z, + 3°25 + 6°75
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find there is not a very great difference between the values of = for
fulfilling the two conditions of constancy of aberration when a varies,
and freedom from coma. Of course, the same methods may be ex-
tended to compound lenses such as telescope objectives, and it will be
found that the form of objective which we worked out as free from
coma with z; = —-332 will also not differ very seriously from the form
of objective necessary to give the least possible change in the spherical
aberration when @ varies, as, for instance, when the entering rays
become slightly divergent instead of parallel. To fulfil this condition
would have to be about —°40. Thus there is not such a large discrep-
ancy between the two couditions as has been asserted by some writers.

Spherical and Parabolic Reflectors at Open Aperture

We have already had several instances before us of the conversion
of any formula relating to refraction into the corresponding one
relating to reflection by simply inserting the value —1 for w. In
this case, also, it will be found that the formula for coma at the
oblique focus of a spherical reflector at open aperture may be obtained
from the Formula II. for the angular value of the coma for a lens of
open aperture. The latter formula was

S LR (IR V SR VORI
Here there need be no ambiguity about the meaning of x in the
case of the above formula, since (u + 1) becomes = 0, while a is — 1, as
in the case of the lens when the entering rays are parallel, while it is 0
if the rays are diverging from the centre of curvature, and + 1 if they
are diverging from the principal focus. Our formula therefore becomes

-9 ok %{ (= 1)(~2)a+0) 42
3tan ¢
i
Let it be supposed that the semi-aperture 4 is 1 foot, and the
principal focal length 20 feet, and entering rays parallel as usual. so
that @ = — 1; then the coma will be + and outward. and its angular

3 1 ; .
amount tan ¢ 1600° If tan ¢ = 100’ then at 2-4 inches from the axis
we shall have coma whose angular value at the mirror centre will be

3 g £ : 60 1 1
160,000” and its linear value will be 160,000 = 266 éth of a foot or 22—2nd
part of an inch, a very small quantity.

(a)42. XV,

Discrepancy between
above conditions not

very great.

Angular coma in
case of central ob-
lique reflection.
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SECTION VIIIa
COMA AT THE FOCI OF ECCENTRIC OBLIQUE PENCILS

So far we have got the universal Formula II, giving the angular
diameter of the longer axis of the comatic flare (as subtended at the
centre of the lens) on the assumption that the principal ray of the
oblique pencil passes through the centre of the lens.

But in the numerous cases of systems of more or less separated
lenses it is the exception rather than the rule for central oblique
refraction to take place; in most cases the principal rays of such
pencils are refracted through the lenses at considerable distances from
their centres, and as it is highly important to be in a position to
eliminate coma at the oblique foci of such lens systems, we must
therefore work out the formule appropriate to the eccentric oblique
pencils refracted through them.

In the first place, a very little consideration will show that there
are two sorts of coma, or rather coma caused in two different ways, to
be dealt with in the case under consideration. First, there is coma
which is simply part of the general coma already dealt with, which
may be present in the lens and show at full symmetrical aperture.
Second, there is coma resulting from the presence of spherical aberration
in the central oblique pencil. Indeed, this sort of coma may manifest
itself in the case of a direct axial pencil limited by an eccentrically
placed stop. For instance, let Figs. 80 and 80« represent an uncor-
rected lens with an axial pencil, refracted eccentrically through it, owing
to the presence of the circular but eccentrically placed stop. Then
let Figs. 81 and 81la represent cases in which the pencil is obliquely
refracted by the lens, but the stop is central and of an aperture
allowing of the same aperture of the pencil where traversing the lens,
as in Figs. 80 and 80a. Then such oblique pencil is subject to
the same spherical aberration as the axial pencil of the same aperture ;
but we will suppose that there is no coma of the sort that we have yet
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dealt with; in other words, we will assume that the lens gives
symmetrical oblique refraction. Of course, it will also give con-
siderable astigmatism, but for the sake of simplicity we will assume
the astigmatism to be absent and the focus to be exactly the same as
for the axial pencil.

It is at once obvious from the Diagrams 80 and 81 that there will
ensue an eccentric formation at the focus whose structure in the
primary plane is perhaps more clearly shown in Figs. 805 and 81b.

Suppose we arrange our stop s..s so as to pass the central ray at
one extreme of its aperture, and the outer ray at the other extreme of
its aperture, as shown in Fig. 81, and that we place a ground glass screen
perpendicular to the optic axis at the point £ where the extreme outer
ray passed by the stop intersects the centre ray. Let TFig. 82
represent a view of this screen when looking towards the centre of the
lens, @..b..c the periphery of the lens,and d..e..f the outline of the
eccentric pencil where it traverses the lens. We can then plot out the
figure thrown on the screen or plane of the diagram by the rays which are
refracted through the lens at points in the zone d..e..f of the eccentric
pencil, in the following manner. From f, which is the point where
both the centre ray Q..f and the ray from g (the other extremity of
the eccentric pencil) strike the screen, radial lines may be drawn to as
many points in the circumference or zone d..e..f as may be desired,
say points every ten degrees apart as measured from f. Then the
lengths of these lines from f to the points where they cut the eccentric
zone d..ce..f..q will give the values of the #’s or the distances from the
lens centre of the points in the lens where each ray is refracted, from
which the relative longitudinal spherical aberrations of such rays may
be calculated, and from those the distances from the central ray f to
the points where each ray cuts the screen or the plane of the diagram.
It is obvious that all such displacements on the screen must take place
along the radial lines drawn from f; all rays, except the extreme one,
cut the central ray through /f at points on the latter situated farther
from the lens in calculable degrees, that is, at points nearer to the
observer. Having worked out the point on each radial line where the
corresponding ray from the zone d..e..f..g cuts the plane of the diagram,
and joining all such points together, we obtain the curve shown, which
is exactly the same sort of curve as in Fig. 76 P, resulting from coma
combined with astigmatism. For it is evident that while we are at
the focus for the two extreme rays from the zone contained in the
primary plane, yet we should have to retreat farther from the lens
before we arrived at the focus for the two rays from w, and w, on the

Symmetrical oblique
refraction assumed.

How the comatic
loop is derived.

The result is an
astigmatic comatic
loop.
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zone which are contained in the secondary plane and strike the comatic
loop at w," and w,”. Hence there is astigmatism introduced by the
selective action of the stop. We have already seen from Formula
VI, Section VI, for E.Cs, that if we place a diaphragm in front of
a collective lens having positive spherical aberration, so as to cause a
pencil to traverse the lens eccentrically, then the E.C. consequent on
spherical aberration will always be positive; that is, the intersection
point for rays -both in primary and secondary planes will be brought
much nearer to the lens, and by three times as much in primary planes
as in secondary planes, which last condition implies the existence of
the astigmatism which we have independently arrived at in Fig. 82,
It is obvious, also, that the comatic curve obtained in Fig. 82 may be
derived also from the case of Figs. 80 and 80a; but of course the
combination of an axial pencil limited by an eccentric stop does not
occur in practice. Now let O be the point on the screen where the
principal ray Q..#%, or the ray through the centre of the stop or of the
eccentric zone or circle d .. e. . f, cuts the plane of the diagram ; then the
line O..f will be the length of the whole comatic formation in the
primary plane, for any comatic curves traced out by rays from smaller
zones than d..e..f..g will all be found to lie between O and f, as
in Fig. 76 P.

Investigation of the Coma due to General Spherical Aberration

We may now proceed to work out a formula for the length of
such a comatic formation in the primary plane in the following manner.
Let Figs. 83 and 83a represent a case of an oblique and eccentric
pencil, limited by the stop s..s, refracted through a lens at a. The
origin or focus of the oblique pencil is @Q, and its focus for rays
ultimately close to the oblique axis Q..a..a; is at a;. Let the ray
Q.. % grazing the lower edge of the stop focus at & on the oblique axis,
the principal ray Q..c¢ passing through the centre of the stop focus
at ¢;, and the other extreme ray Q..¢ focus at o, so that ¢,..d, a,..¢,
and a,..d are the longitudinal spherical aberrations, being therefore
proportional to (a..k)’, (a..c)’, and (a..?)* respectively. Let the
angle of obliquity P..a..Q or ¢ be ineasured at the lens or element
centre as usual.

Let f be the point where the two extreme rays Q..¢ and Q..Z%
passing the stop intersect, and through f draw e..f..g perpendicular
to the optic axis P..a. Then the size of the comatic formation is
evidently at a minimum in e..f..g, where the two extreme rays in
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SRl 1 1
(e..f)z—g—(A)tanqba_B- T
or, in full,
Bl | +2, y
(¢..f)=tan ¢ 9f 'lr_l)[;‘: o Hp+ Doz + (3p + )~ 1)a4+. Full formula for

5 1 1 XVI. ilength of the aber-
4 } % . . ration coma.
p—1 a-—f3 1-a

But the most convenient formula of all is one expressing the angular
value of ¢. . f as viewed from the lens centre, which is of course obtained

1 1-c .
by multiplying the above formula by 3 or by TR by which we
then get
3 34 1 + 2 Universal formula
‘LVI:mnqb o 1){Z T A Dozt (3p+ 2= D | N o i
3 1 XVIL value of the ab-
1) *1}——~ erration coma.
p=1Ja-B

Fig. 83a and ¢ illustrates the analogous case of a dispersive lens in
which also 8 is + and numerically greater than a, so that @ — 8 is again
negative and therefore gives a minus value to Formula XVII. This is
as it should be, for it is plain from the diagram that the coma
produced is again inward or towards the optic axis. Since the formula

is a function of j}—2, it is evident that the sign of f has no influence on

the sign of the result; in fact, the sign of the lens is really implied in
the value of @ —B3. Thus it will be found that Formwula XVII. is
universally true of all cases. We may now turn our attention to the

case of the coma of eccentric and oblique pencils consequent upon
coma proper.

Investigation of the Coma Proper at the Foci of Eccentric
Oblique Pencils

Fig. 84 represents a case of a collective lens giving pure inward
coma at the focus of a central oblique pencil, spherical aberration and
astigmatism being supposed to be absent, while Fig. 84a represents
the corresponding case of a dispersive lens. Fig. 845 shows on a
larger scale the structure of the focus for the collective lens. As
in the last case, 4 is the semi-aperture of the eccentric pencil where Construction.
it strikes the lens. f=the principal focal length of the lens; L=
the eccentricity or the height A..C from the lens axis at which the

Q
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principal ray strikes the lems. Q..A is the central oblique ray
passing through the lens centre at an angle of obliquity =¢; b is the
point where the extreme ray Q..%..b passing the stop s, and nearest
the lens centre, intersects or focuses on the central oblique ray; ¢ is
the point where the principal ray Q..C..c focuses on the central
oblique ray; and d is the point where the extreme ray Q.. ¢, passed
by the stop s..s and most remote from the lens centre, intersects the
central oblique ray. Then the two extreme rays passed by the stop,
Q..tand Q.. % intersect one another at the point . Through f draw
¢..f..g perpendicular to the optic axis; then e..f is the length of
the coma at the focus of the eccentric oblique pencil as limited by the
stop s..s

Referring back to our method of finding the length of the coma
yielded by the open lens (not shielded by any stop), we obtained a
formula (4) having its application to Fig. 61. This formula expressed

the eccentricity correction to be applied to \l,in order to convert it

into cl_h for any given semi-aperture 4 of the lens, on the supposition

that the hypothetical stop was always so placed as to just pass the
central oblique ray and the other ray cutting the lens at the semi-
aperture 4 from the lens centre. We may apply that formula again
in the present case of Fig. 83 or 84. It was

4F3,:?: - ){(?# + D(p—Da+ (p+ 1)1}/1
which we may write shortly as 5 mEI,;d)(C’)A !
In the present case it is obvious that the linear distance a..b is
the above eccentricity correction 2 Za;;b (C"A4, with the semi-aperture

A ..k or L-4 substituted for the former 4, and the whole multiplied
by V? so that

(.. )= 2S00 (L - V2 (30)
Likewise
(0..0)= 222y mve (31)
and
(@..d)y= 33{‘2“’(0)(“14 : (32)

We may now proceed in a manner analogous to the last case.
‘We have
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of ‘1r. This would certainly be the case if, for instance, 2= +1 and
a=0 or —5; but as we have laid down the rule that inward coma is
to be considered negative and outward coma positive, we must prefix
the negative sign to the above formula as shown. Next, if we divide
by V we shall then obtain the angular value of the coma as viewed
from the lens centre, getting finally

¥ 3 t4 v
¢l - e Ty @ D= Dt e e NI

On comparing this result with Formula IIL, formerly arrived at
for the angular value of the coma for the lens at open aperture, we
find that the two formule are identical, although A4 is now eccentric;
that is, for a given pair of conjugate focal planes and a given degree
of obliquity the angular value of the coma is simply a function of the
square of the semi-aperture of the pencil where it is refracted, and is
quite independent of the degree of eccentricity of the pencil where it
traverses the lens, and therefore of the distance of the stop from the
latter.  In this respect it differs from the aberration coma. Thus
the amount and character of the coma will not be affected if
the stop is moved across the optic axis in its own plane. Given
a fixed aperture of the stop, then the only way in which the distauce
of the stop from the lens can affect the coma is by modifying the
semi-aperture of the pencil where it cuts the lens, since the latter

‘4
is equal to the semi-aperture of the stop multiplied by UI—ID’ or i, —‘I =
as the case may be. We may now combine Formule XVII and XIX.
for the spherical aberration coma and the coma proper respectively for
an eccentric oblique pencil into one, thus—

e..f_AE.‘_?)ta,nqS%. 1
vV 4F%u(p - 1) a -

« ) e B - Ve (e 1)) |

B[{Zi %24 4 ar + (3p 4 2)(p - 1)
XX.

Thus the interior functions in the formula are closely analogous
to those in the formula for E.C.s, VIII, Section V1., only 4F* replaces
2F, and 1

oy

B
a half.
If the same processes are followed in the similar case of the
dispersive lens, exactly the same formula will be arrived at, provided

1 g : S
replaces ———-, while the comatic function is reduced to

(a =B
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that our convention is adhered to which makes inward coma or flare
towards the optic axis negative, and outward coma positive, irrespective
of whether the lens in question be collective or- dispersive, for, as we
‘have seen, that matter really tells in the sign of a — @3 for the lens in
question.

A good test case for the correctness of signs in Formula XX. in
their application to collective and dispersive lenses is one in which a
plano-convex collective lens is placed in contact with a concavo-plane
dispersive lens of the same radius of curvature and of the same index of
refraction. Thus it is clear that, especially if cemented together, the
two lenses will merely form a parallel plate of glass, and act as such.
Then the Formule XX. for the two lenses will in this case be found
to equate to 0 in all circumstances, since a,= —a;, B, = — B;, and
&y = —ax;, and therefore (a,—B;) = — (a; — B;)-

Coma in Relation to E.C.s and Normal Curvature Errors, etc.
Some Interesting Corollaries.

Many important deductions may be drawn from the formule
arrived at in this and previous Sections.

1. Supposing that in the case of eccentric oblique refraction
through a simple lens the E.Cs are eliminated, leaving the normal
curvature errors of the lens intact, then what will be the result as to
the presence or absence of coma at the foci of oblique pencils?
Such a condition has often to be fulfilled or closely approached in
Cooke lenses. -

First of all we have for the elimination of E.C.s from a lens the
condition

tan? ¢ 1 ’ WD
— A -2 ('} =0,
2f {(a—,@)2 («—P) }
from which we derive
AI
C'= - " XXA_.
2(a - B)

On the other hand we have for the elimination of coma from a lens
under the same circumstances the condition

ptangf 1 0 )
34 i l(a~,8)A CJ_O’ XXaA.
from which
’ A,

C= (E :I-g)- XXB.

Condition of elimi-
nation of E.C.s.

Condition of elimi-
nation of coma.
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XXe.

which finally _tan® (o - B)% - A’}
RN

In the course of the preliminary planning out of optical systems,
such generalisations as the above are often useful.

Application of the Formul® to a Series of Separated Lenses

We saw that the formuls for eccentricity corrections were functions
of tan® ¢, and had to be multiplied by V* or F? in order to reduce
them to their longitudinal value as corrections to the focal length,
and that in adding together the functions for a series of separated
lenses no notice need be taken of the successive modifications of the
angle ¢ for the different lenses, all that was required being the simple-
algebraic sum of the corrections for all the lenses; so, in the case
of a series of separated lenses we may in the same way apply the
Formula XIX. for coma directly to each lens in turn, for the formula
is a function of tan ¢ simply, and the linear amount of coma yielded by
each Iens is obtained by multiplying by V. Fig. 85 shows a lens L
giving a certain length of coma ¢..f. It obviously makes no difference
to the linear value of ¢..f whether we assume it to be referred to the
point C at the centre of the lens and in terms of tan ¢, or to the
point D and in terms of tan ¢, For supposing Formula XIX. gives
us a certain value M tan ¢, for the angular value of the coma as
viewed from C; then, supposing C..F=1V, the linear value of the
coma is simply MV tan ¢,. If, on the other hand, we assume that D)
is the position of the back lens of the combination and that V or

7 .
C..F=a(D..F), or D..F= ‘E’ then obviously tan ¢,=n tan ¢,

and therefore the length L of the coma referred to the point D is
given by

L = (Mtan ¢,)V = M(n tan ¢15j—: = (Mtan ¢,)(D .. F),

which is the same result. But it is clear that the semi-aperture 4
of the oblique eccentric pencil where, it traverses each lens in turn
must be carefully inserted.
For brevity let us write Formula XX. as simply
'3 tan ¢ 1 7
P | — (- — 4 A? .
4F° u—,B{A (@ 'B)C} ’
then for two lenses or elements in succession, whether separated or
not, the formula will take the form
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3 tan (_é 1 {All i (al _ BI)CII}A12

~ZFP T i81

o f XXI.

Stanp 1 ,, A 4 2%
R g e A0 ()

and for three elements or lenses in succession, whether separated

or not,
3tang 1 e N o
W &1 ":81{A 1~ (2= BY)Cy }A1 l
dtang 1 , . » 5 (U2 T
4F,2 grﬁz{Ae - (ag ~ BIC 4 <'vl> XXIL
Jtangp 1 /

’ 74F32 Cahe /33'l

and so on up to any number of lenses or elements in succession; the
semi-aperture of the pencil where it traverses each lens or element
plane being expressed in terms of the semi-aperture of the pencil at

Als iz (as - 183)01;}‘412 <%>d

V1Y,

the first lens or element plane of the series.

Coma produced by Oblique Refraction through a Parallel

Plane Plate

However, our formula for coma is not yet quite complete, for in
the case of thick lenses we have to deal with two elements and a
parallel plate, and we must now work out a formula for the coma
produced when a pencil of converging or diverging rays is refracted
obliquely through a parallel plane plate. ~ That spherical aberration

coma is produced in such a case is evident from the inspection of

Figs. 86« and 865, and also from experiment.

Let A..7% be the second surface of a piece of parallel plane glass of Construction.
thickuess =¢ and refractive index=p. Let b..K and ¢..H be the
two extreme rays of the oblique pencil, and ¢..R the middle or
principal ray of the same. Let ¢ be the focal point for the rays

ultimately close to

the normal Q.. A, which, if the pencil were in-

definitely extended, would be a ray perpendicular to the plane surfaces.
Then we must imagine that the origin of the pencil or the point from
which all the rays originally start is at a point Q on. A. .« produced

backwards and at a

distance to the left of a equal to ¢~ 1, and the
(B

diagrams chiefly represent the course of the rays after emergence from

the second surface.

Then, as we have seen in Section IV., page 79,

Formule for coma
for two lenses in
succession.

Formule for coma
for three lenses in
succession.
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the rays are subjected to a negative aberration which, as a correction to

11—, or X}—a was found to be (’f ;“_3;)
of each ray, where it cut the second surface, from the normal ray
A..Q :

On multiplying the above formula by »* we then get the longi-

tudinal aberration for any ray, so that we have

a.’, in which a, was the distance

9

(A..b)=(’* l)t(A B (38)
(A..o= (”T;;th(A ..RY, (39)
(A..d) = (9 31’12”(}\ R (40)

Let the angle of obliquity enclosed between the principal ray
¢..R and the normal ray A..Q be y,and let A..R=L and R..2%
=R..k =4 (the semi-aperture of the pencil).

It is evident that the length of the coma is e.. f, / being the point
at the extremity of the coma where the two extreme rays of the
pencil intersect, which, as is always the case where there is coma, lies
to one side of the principal ray.

We may now follow a line of reasoning analogous to that we
pursued in the case of working out the spherical aberration coma
produced by a lens on an eccentric pencil ; as follows :—

09" =G =V, (1)

in which
d..9)=0..9)-@..d)=0..9)-{(a..d)—(a..b)};
o (deg)= (e g) - (23;)’{(L+A)2—(L—A)2}=(b..g) ("oﬂgi)’(ug),

- from (41) (.. ) * =L ={(.. ) (23;)‘(4LA)\

L+4
v

g <b..g>{1i;—A~L—;i“ LI
L (be.g)= —3—)‘L(L 4). %
Also

5 A (k- l)tL(L e ayi=d

(fe.q)=(..0)——
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. (f..g):gf%;—;ltL(U—Aﬂ). (43)
Also
=)= {0 )00} o= {0 - @)+ @ WL

- (e 9= (/"2” vl)t

{OL(L +d)y-L+ (L- A)2}

o (o= o+ )L (44)
Then
@..0)=(..9)=(f..g) = ()3‘)(9[”[42)1‘ (#/13 Dior e 4

3(pr—1

SREOEE. ==L, W (45)

in which formula L= v tan y, so that

1 t

(e f)=3tanx = (46)
and then the angular value of the coma subtended at A is given by
Goc 1)¢ =
l—’f=3tan (‘)‘u33 A2 47)

-~

We have now got the numerical value of the coma; but its sign How the sign of the
demands very special consideration, chiefly for the reason that the COmais o be deter-
optic axis of the glass plate is indeterminate, or may be any straight A paranel plane
line perpendicular to the surfaces. But the optic axis of the lens plate has no axis.
system, of which the plate is a part, is always definable.

In Fig. 86a let it be supposed that the optic axis of the system
is 0,—0,, then obviously the coma e..f is inwards or towards the optic
axis; but if the optic axis is at O,.. 0, or O,.. O, the same coma
becomes outward or from the optic axis. In the same way if, in Fig. 860,
the optic axis is at O,.. O, the coma is inward, and if at O,~O,, then it
is outward. We therefore require a sign determinant; and the following A sign determinant
convention will answer our purpose in all cases in which no element Ted%red
occurs at the second surface of the plate. Iet the distance A..a or
v be considered a positive quantity when the rays emerging from the
glass plate are diverging, as in Fig. 86q, and a negative quantity when
the emergent rays are converging, as in IFig. 865.  Also, if the principal
ray of the obligue pencil is diverging from the point where it crosses
the optic axis, then let the distance D" from such point on the left to



Case wherein an
element occurs at
the second surface.
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the second surface be also considered a positive quantity. But if such
point, when the principal ray cuts the optic axis, is to the right hand
of the second surface, so that the principal ray emerges converging to
the optic axis, then let the distance D" in question be considered
negative.

On referring back to Formula (47) it will be seen that we
1
#
that if v is negative, then both sides become negative. Therefore we
must regard the Formula (47) for the angular value of the coma as in
itself always a positive quantity, as is the case with Formula (46), and
the sign must be settled by a sign determinant in the form of (v —D").
We will .now show how this device works out. In Fig. 86 let the
optic axis be O,.. 0O, ; then the point where the principal ray «..R
cuts the axis O,.. 0, is away to the left at s; at a + distance D" from
the second surface, which is greater than A ..a or »; therefore v—D" is
negative, and gives a negative sign to the angular coma, which is inward.
Then let O,.. 0, be the optic axis; then s, becomes the crossing point
for the principal rays, while » remains as before, and »—D" is now
positive, while the coma is outward.

Next let the optic axis be considered to be at O,-0,; then s,
becomes the crossing point for principal rays, and D" is now
minus, so that »—D" is still positive, as is the coma, which is clearly
outward.

Turning to Fig. 865, if the optic axis is at O,..0O,, then s; is the
crossing point for principal rays, and D" is positive, while v is negative,
so that »—D" is negative and the coma is inward. But if the optic
axis is at O,.. O, then both » and D" are negative; but D" is greater
than v, so that »- D" is positive, and the coma has become positive.

This device covers the case of the parallel glass plate, supposing it
is either a detached and independeut unit in a lens system with an air-
space on either side of it, or if it forms part of a convexo-plane or
concavo-plane lens, in which case no element occurs at the second
surface.

But if, as is usual, an elemeut does occur at the second surface,
then we have only to refer to those data which have had to be worked
out for the various elements in order to find a simple sign determinant
in the form of (u—D’)f for that element which occurs at the second
surface. If the element is a collective one, then f is entered as positive,
but if a dispersive one, then f must be entered negative, while the % and
the D’ must be entered with those signs prefixed which have been

1 . g
have 5 on the left-hand side of the equation and —; on the other, so
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already assigned in accordance with the conventions laid down on
pages 148 and 149, Section VI

Thus, then, when no element occurs at the second plane surface we
have the formula—

£ f =3 tan (—1’3)442 with (»—D") as sign determinant; XXIIIA.
‘U.

or 1f there is an element at the second plane surface, then
Ll =3 tan y “——53= ( ) 2 42 with (u — D')f as sign determinant. XXIIIB.
v

" The aberramons in the diagram are much exaggerated, for clearness,
and the crossing points for principal rays are of course determined by
formule of the first approximation only, all aberrations being ignored.
In this way the point where the principal rays of pencils entering
a lens system cross the axis (generally the stop centre or its image)
is determined in the first instance; and supposing, as usual, that
the angle made by the principal ray with the optic axis at the first
element is 4, then the angle y which the same principal ray makes
with any -particular parallel plane plate may be obtained in the way
described on page 179, Section VIL, where it was shown that if =
elements precede any given parallel glass plate, then

D ’
tan y = tan y D ”]) 2 D"’,,, ete. ;

while the semi-aperture 4 of the pencil where it cuts the second
surface of such parallel glass plate may be obtained in the mauner
described on page 103, for it is the same thing as the semi-aperture
y for the axial pencil. Supposing there is an element at the second
surface of any given parallel glass plate, and it is the nth element of
the series, then
(dap= (Mt ““) Az (48)
V0, .

If there is no element at the second surface, then the focal distance 2
of the emergent pencil may be specially assessed with respect to the
second surface of the parallel plate, as also the focal distance (or D)
for the prineipal rays in accordance with Formula XXIIIa.

Application of the Formule for Coma to two Actual Lens Systems

We will now conclude this Section with two examples of the
actual application of the formule for coma to two of the photographic
lenses that we dealt with in Section VII.

Parallel Plane
Plate.

Formula for angular
coma with no
element at second
sarface.

Same when element
occurs at second
surface.









Total parailel plate
corrections for three
lenses.

Final total.

Length of the coma
at 5 degrees from the
axis.

Positive coma of a
higherorder present.
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which gives the result +°00000072154,% (u; — Dy') /; being (+)(+).
So .we have

“000076175.4,2 for L,
“000005878.4,2 for L,

0000820534 % for L; + L,
00000072242 for L,

‘000081331.4,? tan ¢

|

+

Total =

Add previous total |
from the six elements | —

000234,* tan ¢

‘0003114 % tan ¢ Total angular value of the
. coma at final focus.

On mwltiplying this result by (EF.L.) tan ¢ 4,® we shall get the
linear value of the inward coma at any angle ¢ from the axis.

Let tan ¢ = 1—1,2 for about 5 degrees, 4, = 3 inches (the full aperture
was 64 inches), while the E.F.L. is 43 inches, then our multiplier is
(43)(112)(9) =321 and (—-00031)(321)= —-01 inch. This is more

than the coma which was sensibly inward actually measured ; indeed, at
about 7 degrees from the axis there was no coma at all. The existence
of just perceptible inward coma at from 1 to 6 degrees from the axis, its
absence at about 7 degrees, to be superseded by more and more out-
ward coma as 10 to 12 degrees was approached, was a characteristic
which manifests itself in the final image of many such combinations,
and is explained in exactly the same way as we explained the
existence of zones of aberration. For besides the comatic corrections
of the order tan ¢, for which we have worked out the formulee, there
exist comatic corrections of higher orders whose formule will be more
complex in inverse ratio to their relative numerical importance. Hence,
if we refer back to Fig. 39 and let the curves represent two orders of
comatic corrections which are left over at the final focal plane and are
equal and opposite at any given distance from the axis, so as to bring
about absence of coma at that point, then at a point somewhere
between that neutral point and the axis there will occur a maximum
of coma of the same character as the lower and most important order
of coma for which we have worked out the formule, while outside of
the neutral point the coma of the higher order will more and more
prevail. In this case we have slight residual negative coma of the
order tan ¢ pitted against residual positive coma of the higher order
tan® ¢, so that inside the neutral point slight inward coma prevails, and
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outside of it outward coma prevails, and would show up much more
strongly were not the effective aperture of the combination for oblique
pencils largely reduced by the obliquity.

For our second illustration we will fall back upon the process
lens, Fig. 59, whose radii, ete., and E.C:s are all given on pp. 185
and 186. Here again, in order to convert the eccentricity corrections
for each element into comatic corrections, we must first halve the inside
comatic E.C.s, and then multiply the whole aberration E.C.s plus half

26 —
the comatic E.C.s by 3‘4;;}/3), and substitute tan ¢ for tan® ¢b; we

then obtain the following comatic corrections for each element
in turn :—

+E1

3<“1f P 4 2tan = +°051125.4,2 tan ¢.
1

(+°0063848 — -0005360)
. E2
_ 2
(+-0018885 + '0082405)%&2}. »ﬁl)AIZC—tZ) tan ¢ = —'15590.4,% tan ¢.
2 1

+ E,

_ 2
(+ 0000786 — -0017803)3—<9‘ﬁ—ﬁ?)A12(“2”3> tan ¢ = — ‘0888494, tan ¢
2fs . G

E,

i u 2
(+°3032244 - -3826785) (% 54)A12<3‘2“3l1> tan ¢ = + 812194, tan 4.
2/, Y%V :

+ E;

(+-3120633 — 383954)3(a5fﬂﬁ)A 2<?02u31t4u5
5

V1Vas¥,

) tan ¢ = — “T1453.4,% tan ¢,

e

(+°0022287 - 0120244)3(“ﬁfﬁG)A12<
6

U gty Uslhe e ¢ _

1)11)21)31;4@5)
+'080489.4,2 tan ¢.

E, +-051125 E, -°15590
E, +'81219 E, --088849 - 95928
E;  +°080489 E, --71453 +-94380
| 4943804 - 95928 Total = — “015484,% tan ¢.

We have yet to add the three parallel plate corrections. In this
R

The Cooke Pro-
cess Lens.

First element.

Second element.

Third element.

Fourth element.

Fifth element.

Sixth element.

Total angular coma
for six elements.
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the relationship Pl ;‘ i . AP if the most distinet image is to be
projected on to b..c. But we are passing our narrow pencils of rays

through the centre of the lens in this case, and, as we have seen in
Section I., rectilinear projection ensues with reasonable accuracy
throughout a very large angle of view. But let us go further and
suppose that we have two separated lenses, as in Fig. 88, which we
will suppose to be plano-convex with their convexities turned towards
one another, and of equal powers.

Let there be a screen or stop placed half-way between them to
compel the effective pencils to cross the axis at S, the geometric centre of
the system, and let the two conjugate focal distances A..L, and L,..a
be equal, so that the image is equal to the original. LetB..C..S..D..E
be the course of an oblique principal ray from B. Let p;, be the first
principal point, being the image of the stop centre S as formed by
the lens L,, and presented to outward view; and let p, be the second
principal point or the image of the stop centre, similarly formed by
the lens L,. We are now going further than we did in Section I,
and must therefore take notice of the spherical aberration of the two

lenses, for we are supposing the angle of obhqulty A B to be consider-

able, so that the ray B..C traverses I, and L, at a substantlal distance
from their centres. Under these circumstances it is clear that the
image of S formed at p; or p, is subject to spherical aberration ; the ray
S..C (tracing it backwards) after refraction at C seems to proceed from
¢, and not from p, ; similarly, a ray S..D after refraction at D proceeds
from ¢,, and not from p,. Now, under the circumstances of perfect
symmetry prevailing in Fig. 88, this aberration obviously does not
interfere in the least with the perfect similarity and equality existing
between the image and the original ; we have the ray B.. C entering L,
as if proceeding to ¢, ; after refraction at C it then procéeds through
the stop centre S and cuts L, at D at a height from the axis equal to
that of C in L;; and after refraction there proceeds, as if from the
point g¢,, and strikes the screen at E, and E.. A is exactly equal to
B.. A, since the two triangles Ag;B and Eg,z are equal and similar.
But it is clear that the principal rays entering L; and the. principal
rays leaving L, are neither converging to nor diverging from the two
definite and fixed principal points p, and p,, although that may be
practically true for principal rays very little inclined to the axis.
Hence our first important inference is that the radiation of
principal rays from a definite principal point after passage, or their

Case of separated
lenses or elements.

Stop placed at geo-

metric centre.

How the problem

is

affected by spherical

aberration.

The condition
symmetry.

of
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sally correct projec-
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Discrepancybetween
ideal and real course
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Linear amount of the
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convergence to a definite principal point before passage, is not always
a necessary condition for rectilinear projection. But we shall soon see
that definite principal points are absolutely essential if we are to have
the condition of rectilinear projection for «/l ratios of conjugate focal
distances, and not merely for the one ratio which involves symmetly,
and which in Fig. 88 is also one of equality.

Let Fig. 89 reproduce in exaggerated degree the case of Fig. 88.
We have the original AB and its equal image ..E. p, and p, are
the two principal points as fixed by formulee of the first approxi-
mation, ¢, and ¢, the same as they appear by spherical aberration.
B..C..S5..D..E is the actual course of the principal ray, but
B..b..S..d..E is the course which the ray would take were there no
spherical aberration affecting the principal points, for before entering
L, it would, if produced, pass through p,, and after leaving L, would,
if produced backwards, pass through p,. This ideal course for the
principal ray is shown as a dotted line. Let the actual course of the
ray and the ideal course be produced away from the lenses beyond the
object and image planes. Then we have the two courses intercrossing
at B and at E, and there is no distortion with the conjugate focal
planes in that position. But let the original plane object be removed
farther back to F.. Q, when the image will be formed in a new and nearer
plane ¢.. 7, and we have not only unequal conjugate focal distances, but
it is plain that we shall also have distortion. For, supposing that G,
a point in the original, and its image point g, were both upon the
dotted line of the ideal ray, then we should have no distortion, for
G..b and d..g are by hypothesis paralle]l, they make equal angles
with the axis with equal tangents, and radiate to and from fixed
principal points. But the actual ray cuts the object plane at Q, inside
of G, while the actual ray after passage cuts the image plane at g,
outside of g. To a smaller original F..Q there corresponds a larger
image g../. Therefore if we suppose our original point Q to be
coincident with G instead of inside it, then its image point will be
transferred from ¢ to 7, still farther outside of g, and g..s will be the
linear distortion or the deviation from the position of correct projection.

If on the plane F.. G we have a series of true squares, like Fig. 90,
then the image will be distorted into the form shown in Fig. 90c.

So we clearly see that if any lens is to be universally free from
distortion, and not merely so under one condition of a certain ratio of
conjugate focal distances, then not merely must there be a coustant
ratio (not necessarily equality) between the tangent of the angle made
with the axis by the incoming principal ray and the tangent of the
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angle made with the axis by the same outgoing principal ray, but the
incoming and the outgoing principal rays must alike be converging to or
radiating from fixed points on the axis. And as such fixed points are
always either the centres of stops themselves or else images of stop
centres, as in Figs. 88 and 89, therefore we must have the images of
such stop centres formed free from spherical aberration. In Figs. 88
and 89 the stop actually coincides with the geometric centre of the
combination, and its two images p, and p, are therefore principal points ;
but as often as not the stop in a combination is not placed at the
geometric centre, and therefore its images are not principal points, but
are usually by Continental optical writers spoken of as pupil points,
for they are points at the centres of apertures or their images to which
or from which the principal rays of the pencils converge or diverge.
But our above condition of freedom from distortion applies just as truly
to such pupil points as to principal points; we must have aberration-
free images of the stop, or pupil points, combined with a constant ratio
of tangents of the angles made with the axis by the entering principal
rays and the same principal rays when emergent. If the stop happens
to coincide with the geometric centre, as in Fig. 89, then we have not
merely a constant ratio of tangents, but equality of tangents and
parallelism between the incoming and outgoing principal rays, so long
as the two lenses, as in Fig. 89, are symmetrically shaped with respect
to the point S.

The ratio of the tangents of the angles made with the axis by the
eutering principal rays to the tangents of the angles made with the axis
by the same outgoing principal rays, is a matter which can be
legitimately considered on the supposition that there is no spherical
aberration or that the formule of first approximation only strictly
apply throughout the lens aperture. "

Then the further effects of the spherical aberration may be
investigated afterwards and the formule accordingly modified.

>
The Tangent Condition

Up to a certain stage we cannot here do better than follow the
method and the notation employed by Coddington in his before-
mentioned work, pages 121 to 131, although we shall find that it is
possible to carry the processes further than he did, thereby arriving at
results of greater simplicity and convenience in application. His
methods were really founded upon or suggested by a certain paper on
“The Spherical Aberration of Eye-pieces,” published in the Cambridge

Condition that the
pupil points are
aberration free.

Pupil points not
necessarily principal
points.

Coddington’s
methods first em-
ployed.



Condition of equal
symmetry.

Consequence of alter-
ing vergency.

The tangent surface.

248 A SYSTEM OF APPLIED OPTICS SECT.

Philosophical Transactions, by Sir George Airy, the leading pioneer of
British optical science. TLet Fig. 91 represent an equiconvex lens
under the condition of equal conjugate foci, spherical aberration being
supposed absent. It is clear that, under these circumstances the rays
enter and leave the lens under precisely the same conditions, the
angles of incidence and emergence are equal, as are the angles of
refraction within the glass, so that the course of the rays within the
glass is parallel to the axis. Therefore it follows that if the entering
and emergent rays are produced inwards, they must intersect one
another exactly half-way between the two surfaces; that is, every
incident ray will cut the corresponding emergent ray on a straight line
passing through the sharp edge of the lens and perpendicular to the
axis, cutting the latter at d, the centre of the lens. Clearly, then, tan
aQd =tan agqd, tan bQd =tan bgd, and tan cQd=tan cgd, and a
constant ratio, here equal to unity, prevails between the tangent of the
angle made with the axis by the incoming ray and the angle made with
the axis by the corresponding ontgoing ray. That the locus of the
intersection points of entering and emergent rays produced is a straight
line passing through the sharp edge of the lens and perpendicular to the
optic axis is clearly the necessary condition for this constancy of
tangent ratios. But it is by no means always fulfilled. For instance,
let it be supposed that the point Q is moved a very great distance away
along the axis to the left, so that the entering rays become practically
parallel, then we have the condition of things shown in Tig. 92. The
parallel entering rays after refraction at the first surface converge
within the glass to a point ¢’ distant from the first vertex by three
times the radius (if 4= 1-5), and then after refraction at the second
surface converge to ¢, the final focus. If now we produce these
exterior rays to intersect, we shall find they no longer intersect on a
straight line, but on a circular curve «..b..c..d, convex towards the
focus ¢. Supposing the three entering rays strike the lens at heights
1, 2, and 3 from the axis, then we may regard the minute angles they
make with the axis to have their tangents in the proportions 1, 2, and
3 ; but not so for the emergent rays, for we still have heights 1, 2, and
3 as the numerators in our tangents for angles cqd, bgd, and agd, but the
denominators are respectively ¢’.. ¢, % ..¢, and o’..¢, which vary con-

siderably, so that tan cgd is z,"cq, and considerably in excess of

’

one-third of tan agd, which is Z%lag.

We will now investigate the formule expressing the relationship
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When (u+ 1)z + (. — 1)a = 0, then the intersection poiuts of rays
entering the lens and the same rays leaving the lens all lie on a plane
passing through the sharp edge of the lens, and the tangent condition
is fulfilled.

The Effect of Spherical Aberration upon the Distortion

We may now consider the further addition to our formule
consequent upon the introduction of the spherical aberration of the lens.
Figs. 94 and 94a, Plate XX., illustrate the case. The principal rays
from or to X, instead of converging to or diverging from Z, as supposed
before, really converge to or diverge from z owing to spherical aberration.
Thus 2..Z is the linear spherical aberration whose value is expressed

2
shortly as ng"‘ (A" if y=H..M as before, and if, in the full value of
A B is substituted for a. Therefore the true value of B..z or ¢ is
¢ — —~(B’ )e?, writing B’ instead of A’, because we are dealing with the

quesmon of the spherical aberration of principal rays; and so the true

value of 7 or E_l..- is l SJ f3B’ which may be written in the form
i ¢ 9o ¢ e
{1 + oF 4f* ,B }, in which of may be expressed as - 27=T-p
1 ¢y
e {1+ B4f2B}

On substituting this value of Z’ corrected in accordance with the
spherical aberration in Formula I., we then get

tan n_

tan e b[ 4f2 T/ ,BB,}:I’ ©)

which in full is

tan 7y

tan e b[ 4f2 (g = 1)< <M+l)x+(ﬂ_l)ﬁ} {Hif
4o D Gs - D+ 1]

in which b and ¢ are the conjugate focal distances by first approximation,

1L

1IN 1
so that 3+ TR simply.

This is Coddington’s formula for the relationships of tan % and
tan e for one lens. We shall, however, soon see that it is not an

Coddington’s
formula expressing
ratio between tan-
gents of emerging
and entering princi-
pal rays.

Coddington’s
formula not univer-
sal.
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universal formula, and will not interpret itself in all circumstances.
In the case of Figs. 94 and 94a we have supposed X to be the point
where the principal rays cross the optic axis, and the spherical aber-

i 7 g q t. .
ration only affects the value of ¢ by reducing it, therefore taain is
€

increased in value by the aberration.

When crossing point But let us suppose that the point where the principal rays cross
giﬁﬁl’gﬁ"‘;’g‘ef”{,:sﬁ the optic axis is defined affer passage through the lens; let there e a

age. stop at Z in the case of the collective lens instead of at X ; then it will
be A..X or b that will be reduced by spherical aberration, and
tan 9

. b o
o should obviously suffer a decrease from the normal e But it is
€

clear that the value of 3, if the stop were at Z, might be anything

between — 1 and + 1, so that 7 : would still be of positive value,

— 18 ‘
g . g an
while we want a negative value in order to make - ' less by the

d

spherical aberration.

Formula varies ac- Coddington showed that in any case in which the crossing point
cording to position o . 1
of the stop. of the principal rays is defined after passage, then — T+ must be

. | . . .
substituted for - in Formula IT, and this works out quite correctly.

Two or more lenses e then proceeded to adapt the above Formula II. to the cases of two
A it or more lenses in succession. In Fig. 95 let L, the first lens be
receiving principal rays diverging from a point X, on the axis to the
left, then after refraction they are subject to spherical aberration, and
the ray figured above crosses the axis at 2, instead of at Z, the
ultimate focus, and passes on to the second lens L, It is clear that
while Z, ..z is a decrement to ¢, it is an increment to A,..Z orb,

t . .
Therefore the statement of %‘4 for the second lens needs modification
€,

in order to cover the variation of &, consequent on the variation of ¢;.
Coddington made the necessary correction, and thereby obtained the
Formula 1IA. which is applicable to two lenses in succession, such as
a Huygenian or Ramsden eye-piece; but in extending the application
to the case of a four-lens or erecting eye-piece, which was one of
the main objects in view throughout his investigation of distortion, he
made a strange omission.

Spherical aberration For in his series of formule, while carrying the spherical aberration

3::3 b:ocaﬁf:wfi‘:fg' of L, through to L, that of L, through. to L,, and that of L, through

_lenses. to L,, he omitted to carry the aberration of L, through L, on to L,
and L,; nor did he carry the aberration of I, through L, on to L,
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But the omitted operations can be shown to be as important and
sometimes much more important than the processes which he retained.
Fig. 96 represents a case which furnishes a capital illustration of the
necessity for carrying the aberration of any one lens right through to
the following lenses. Let there be four lenses, L, L,, L,, and L, all of
equal focal lengths and equal separations, the latter being four times
the focal length of any one of the lenses. Let it be supposed that a
set of principal rays is radiating from a fixed point O at a distance in
front of L; equal to twice its focal length. Let O..P, be one of these
principal rays forming an angle ¢ with the axis. Let it be supposed
that all four lenses are quite free from aberration, and also that the
tangent condition is fulfilled, so that the refractions all take place in
one plane perpendicular to the optic axis and passing through the
lens centres (equiconvex lenses are here implied). Then it is obvious
that the course of the principal ray through the series is O .. P;.. Q,

P Q. Pyl Q.. P, Q, and what takes place at one lens is a
repetition of what takes place at any other, and the emergent ray
makes an angle 5, with the axis equal to €. Next, let it be supposed
that a very slight spherical aberration is introduced in L,, so that the
principal ray O..DP,, instead of being refracted accurately to Q, is
refracted to ¢;, so that Q.. ¢, is the linear aberration. Supposing this
to be a small quantity, say 1 per cent of L;..Q,, then we have the
ray striking the second lens plane at a height L, .. p, which will be
2 per cent greater than L,.. P, Then the image point of ¢, thrown
by L, will obviously be ¢,, and Q,.. ¢, will be very nearly equal to
g; .. Q;, as the conjugate focal distances are equal and the variation
very small. Let O.. L=, L. .Q =9, L;..q; =%, ¢;..Lo=1,
Ly..gy=9,L,. . Py=y, and L,..p, ="

Then the increment to L,..T, will be 4 per cent, and that of
L,.. P, will be 6 per cent. But it is not our purpose to take notice
of the variations in the #’s in our functions of T” and B’, because they
involve corrections of a higher order, namely, of the order %t What
we are chiefly concerned with are the new functions of B’ and 72 which
have to be introduced in order to express the cumulative increment to
tan 7, for evidently '

tan Uy ity ' Uy Uy ( z¢1~_><u2 + -01@2) (qai'OhlZ) <u4 + -0171.4>
\ ’

tane oy ¥y, v ¢, \y —01v/\v, - 01,/ \v, - ‘0lv,/ \n, — 01lu,

and on writing w = v = 1, the above becomes

(1 +-01){(1 + 01)(1 + 01)}{(1 + -01)(1 + -01)}{(1 + -01)(1 + 01)},
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aberration.
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in first lens.

Cumulative effect of
the aberration of
first lens.
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. tan g,

“tane, (1+:07),
or we may say that
Yo _ Y1 +06) vy,
tan 9, =<2 = —— =251 + 07
=, T o= OL) )

Hence Coddington’s omission to transfer all the aberrations through
the series is fatal to the accuracy of his formule for more than two
lenses in succession. It will be as well, however, to repeat here his
formula for two separated lenses in succession, which is quite correct
although very unwieldy—

- Ic)lcbz[”{T +1—ﬁl(1+22 ﬁi@ﬁ% }4f1

(g By >f;2]

The student will find his formula for lenses in series dealt with
on pages 162 to 172 of his work, and, after perusing the same, will
be obliged to concede that, even as they stand, they are very complex
and ill adapted for practical purposes, especially when any variations
in the position of the limiting stop always render certain modifications
necessary. If, however, the omitted functions for the transferred
aberrations were also taken into account, then Coddington’s formulee
for three or four lenses, when completed, would become unmanageably
complex, or at any rate full of pitfalls for the unwary. This is
essentially the case in a method which seeks to interpret distortion
only in terms of the relationship between the tangents for finally
emergent principal rays and the tangents for the same rays before
entering.

Let Fig. 97 represent a Huygenian eye-piece, for which
Coddington’s two-lens formula is quite correct. Let it be supposed
that an objective away to the left is projecting a truly rectilinear
image on to the plane P..P (if I, were not interposed). ILet two
principal rays from the centre of the objective be considered,
one 7, ..7, aiming for a point in the outskirts of the image,
and one 7,..7, aiming for a point in the image very near the
optic axis. After these two rays are refracted by L, they proceed,
through a new and imperfect image formed at p..p in the principal
focal plane of L,, on to L,, by which they are again refracted, »,..7; to
cross the axis at fy, and 7,..7, at f;; F../; being the linear spherical
aberration. But the rays constituting the emergent pencils represented

I1A.
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by these principal rays emerge in a very nearly parallel state, as if
coming from an infinitely distant object, that being the state of the
rays best adapted for distinct vision by the normal human eye.
Therefore so long as tan 7, bears the same ratio to tan ¢ as tangent
n, bears to tan e, the eye will notice no distortion, and straight lines in
the distant object will appear to the eye through the telescope as straight
lines wherever they may occur in the field of view. That is what
takes place when the functions of »* in Coddington’s Formula IIA. equate
to 0. But let us consider what will happen, supposing we no longer
confine ourselves to receiving the emergent rays into the eye, but draw
out the eye-piece with a view to throwing a real image of the object
(the sun for instance) onto a white screen S..S at a little distance
behind the eye-piece. It is clear that such an image will no longer be
free from distortion. For the prinecipal rays, although emerging in the

right direction, as implied in the constancy of n 1 will be subject to
° tan e

a lateral displacement consequent on the aberration ¥..f, If they
all radiated from ¥ there would be no distortion on the screen S..S, and
the ray #,..7, would strike the screen at ); but instead of that it
strikes the screen at ¢, and Q..q is the linear distortion or displace-
ment of the image point ¢ from the correct position . The linear
amount of this distortion Q..¢ varies as the cube of the distance from
the axis. On an infinitely big image, either virtual or real, the
absolute displacement Q..¢ is relatively a vanishing quantity; but
relatively to the image formed on S..S it may be a very large
quantity.

Now the amount of linear spherical aberration of principal rays
taking place in the case of a four-lens eye-piece is very much greater
than in the case before us, and the student will find, what is well known
to many opticians, that if he takes an erecting telescope free from
distortion and directs it to an object containing straight lines, and
then pulls out the eye-piece until it throws an image onto a ground
glass screen a few inches behind the eye lens, he will then see that
the positive distortion of the straight lines, or pincushion distortion as
it 1s often called, is very marked.

On the other hand, let an extremely short-sighted person use the
same telescope on the same object. He requires a virtual image a
few inches from his eye to be formed, and therefore pushes the eye-
piece nearer to the objective than its normal position; when he will
see all the straight lines distorted in the opposite sense, for there will
be strongly marked negative or barrel-shaped distortion.

Lateral displace-
ment of emergent
principal rays.

An experiment with
a four-lens eye-piece.
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It is quite plain, then, that Coddington’s formule are quite inade-
quate to deal with cases in which real or virtual images are formed at
finite distances, instead of at infinite distances. We therefore require
formule of perfectly general application, and the following lines of
reasoning will guide us to what we want, as well as lead to much
greater simplicity. So far, all that has been taken into account is, first,
that the rays constituting pencils finally emerging shall be parallel as
though emanating from an infinitely distant image, and, second, the

. tan 9 3.3 g
constancy or otherwise of — for principal rays traversing the system
€

at varying heights from the optic axis, and therefore traversing the
several lenses at varying degrees of obliquity.

Extension of the Inquiry

As yet the positions of the planes where the various real or virtual
images are formed have not been properly considered. ILet Fig. 98
represent a collective lens L, placed behind a real image O.. 0/, such
real image being projected without any distortion from X, which point
may perhaps mark the centre of a telescope objective, and is thus the
point on the optic axis from which the principal rays of the pencils
going to form the image O..0’ radiate. Let the distance from O to
the lens be greater than the P.F.L. of the lens, so that it projects
another real image of O..0" at I..7. Then as X..N is greater than
O..N, therefore the focal point Z conjugate to X will be nearer
to the lens than 1..7. Supposing Z is the ultimate point by first
approximation, then z is the real point where the principal ray XMz
crosses the axis before proceeding to ¢, and Z..z is the linear
aberration.

Let Fig. 98a represent the corresponding case of a dispersive lens,
exactly the same notation applying. It is best always to choose for
our typical examples cases in which all the quantities are conventionally
positive. 'What we now want is a formula expressing the relationship
between the size of the image I..4 and the size of the original image
O..0’ presented to the lens. That is, we want to find out by how
much the ratio between the radial dimensions of the two images as
painted by the eccentric principal ray X..M.. departs from con-

stancy or from the ideal or normal relationship expressed by %

Here we are assuming that the conjugate focal distances & and ¢
for principal rays are measured from the point N, the axial point of
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the tangent surface M..N. We must next inquire, from what point
must the conjugate focal distances » and » be measured, if aberration-
free refraction of the principal rays at M in the tangent surface is to
lead to rectilinear projection or an image of O.. O’ that is free from
distortion ? Is N the required centre of projection ?

The theorem that a lens through which are refracted a system of
eccentric pencils, which fulfils the tangent condition and is free from
spherical aberration, also fulfils the condition of central projection
through the point N, may be proved algebraically thus—

In Fig. 990 let N ..M be a lens fulfilling the tangent condition for
a system of principal rays radiating from Q. That being the case,
then all refractions of such principal rays will virtually take place
in the plane M..N. Let the lens also be aberration free for all
distances, so that the law of conjugate focal distances by first approxi-
mation will strictly hold good.

Let F = the principal focal length of the lens L. Let Q..N
=p, and let ¢ be the focus conjugate to Q, so that

1 oL 1
N T "F %

Let p..d be a plane image or object placed anywhere between Q
and L, and perpendicular to the axis. Then let p be a point in such
plane image which also lies upon the principal ray Q..M. From p
draw the straight line p..N through the centre N of the tangent
surface, and produce it onwards until it intersects the refracted principal
ray M..¢..g at g From g draw g..f perpendicular to the axis.

Let the distance N..f be v, and d..N be ». Assuming N to be
the centre of projection, then the question is, what must be the
relationship between v and w ? ' '

Since the point g is on the line of projection from the original p
through the centre N of the tangent surface,

v v,
f..g:(p..d); or O&, ifp..d=0;

f..galso:(v—c)%, ifY=M..N.
Therefore we get
’ Y . - b
O?;=('0—0)—5, in which Y=Om)

b
Ob—u' (10)
2

c

o§=(@-c)

Must % and ¥ be
measured from N ?

If Formule I. and II.
equate to 0, then is
central projection
implied ?

Construction.









Point N distant from
the principal points
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and C.

Above theorems
therefore apply to
the two principal
planes.

The thickness only
alters value of F.

Formula for tangent
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and therefore e+l (16)

But we have seen that the tangent condition is fulfilled when
(u—1)B+ (u+ 1)z=0, which is the same thing.

The conclusion is, then, that when the tangent condition is fulfilled
the tangent surface cuts the optic axis so as to divide the distance
between the principal points into two portions p,..N and N..p,
respectively, proportional to & and ¢. Therefore if two principal planes
are drawn through the two principal points (Fig. 99%) parallel to
M..N they will obviously be cut by Q..M and M..g at equal
heights. ~ Also, by the law of principal points, the ray p,..¢" through
the second principal point is parallel to the ray p'..p, through the first
principal point. Therefore the conjugate distances b and » on the one
hand and ¢ and v on the other hand will be measured from the
principal planes. So that if we suppose the gap between the two
principal planes to be closed up by sliding the two halves of the
diagram into one another, as it were, we then arrive at the state of
things first assumed in our inquiry, for p," and p, will become merged
in N, while %" and %, will be simultaneously merged in a common

point M. The only difference made by the thickness, if not excessive,
is in the value of %, but the equation %+%=% +% of course always
holds good, and we still have the equivalent of central projection of
the image through the point N. Thus in Fig. 995 the dotted lines
and accented letters indicate the state of things when the separation
between the two principal points is allowed for, and the full lines and
unaccented letters the state of things when the gap between the
principal planes is closed up.

It will now be seen that, with regard to the fulfilment of the
tangent condition or any departures from it, it is scarcely necessary to
the attainment of accuracy to treat a thick lens by elements, although
it becomes desirable to do so when the thickness becomes excessive, for
the refractive effect of the curved surfaces (as compared with flat
surfaces) upon the linear positions of the principal points grows as the
square of the thickness, and leads to the above theorems becoming
inapplicable.

Let us now revert to Figs. 98 and 98a; and, as usual, let

X..N=p and N..Z =g,
M..N=y, O..N=w, and N..I=¢
ZLMXN =¢ and LMzN =,
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in which l1+a a\/ 2f v
1-a ( of >(1 — a> =u’
so that the formula ﬁnally becomes
e ,
e {1+(T’+ :BB) b (20)

which in full is

v 1 1 (p+2
Universal formula ~[1 (w+ D+ (u- 1)/3 | 2
for distortion of " = 1)< / ﬁ{ -1° \ I
i F i Do+ (s - Dt 1)
tan 7 .

Thus we find that the change required in the formula for tne P

order to convert it into a statement of the ratio between the radial
dimensions of the two conjugate images is an unexpectedly simple one,

involving the simple substlt;utlon of in the spherical

1
) = T g
aberration function, and ’t_t for - If the reader will pursue the same
process in the case of X being nearer the lens than O.. (0, the case of
the stop being placed behind the lens, or any other case he likes to
choose, he will arrive at the same formula ; in fact, it is quite universal
and interprets itself in all cases.

Applications of Formula III. to Combinations of Lenses

We will now show how this formula simplifies the problem of
arriving at the distortion produced by a series of separated or non-
separated lenses in succession, even when employed for projecting real
images on to plane surfaces at finite distances.

Two separated Let ¥ig. 99 represent two lenses in succession placed in alignment
jsnsey behind either a real plane object O..O; or an image projected by
another lens. Let it be supposed that the lenses are very thin, and
that the principal rays cross the axis somewhere about z, and then
proceed to intersect the conjugate focal plane I..7 where an image
(in this case inverted) of O .. O, is formed. From O, draw O, .. L;..7
straight through the lens centre, then 7 in the plane I..7 will be
the correct place for the image of the point O, to be formed if there
is no distortion ; but owing to the operation of distortion the image
of the point O, is really formed at ¢, and %..7 is the linear
distortion ; which, for example, may be 10 per cent of the correct
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radial dimension 1..4, which latter, of course, =(O.. 01)51. This

exaggerated radial dimension I..7 is then presented as an image to the
lens L,. It is clear that if L, is so circumstanced as to form an
image of I..4 without in itself exercising any distorting effect, then
if we draw a straight line from the centre of L, through ¢’ to cut the
conjugate focal plane J..j” at j/, then j/ becomes the image point of
the point ¢/, whereas the image of the true point 1 would be thrown
to j; therefore j..;’ is the correct projection or image of the linear
distortion .. ; that is, the lens L, will simply form a correct image
of what is presented to it if it is free from distortion, while if it does
exercise any distortion itself, it is obvious that it will add its own
distortion, j’..7,, for instance, to that which is already presented to it.
If the two distortions are of opposite signs and equal, then the final
image will, of course, be a true image of the original. .

Our Formula III. simply represents an increment or decrement to
the ideal radial distance from the optic axis of any image point located
or defined by a principal ray passing through the lens at a given height
y from the axis, and is therefore quite independent of the sign of the

;2 is always positive, and the sign of the lens is really

always implied in the term a.%ﬁ in the spherical aberration function,

lens ; in fact,

and in B in the function of the tangent condition. Therefore the
distortion functions involving #* for a series of lenses will be the
simple sum of the distortion functions for the individual lenses. In
the case of two lenses, we have the image to object ratio for the first

i Ll (e L))
0..0 a— By 1/ 4f2)°

and the image to object ratio for the second lens is given by

2l (v 2gm)in)

On' multiplying these two formule together we get

I..7 o, < 1 )_/ ( )y 2,2
A T 1 2 J1de
00 = e+ (W B s (e o) (e [ b
f y]. y2
16f 2f2
of the order y% Therefore the total distortion of the series is the
sum of the distortions of the individual lenses. But it is obvious

from which the function o may be left out, as it is a correction

Simple summation
of the distortion
formule for a series
of lenses.

Distortion formuls
)for two lenses in
succession.
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that y will have to be inserted at its prof;er value for each lens; and
all the y’s may be expressed in terms of y;, for

TR ) b— bebs ete.
yz—?hcl: Y= _ylclco’
So that the formule for a series of n lenses or elements must be
written in abbreviated form,

U { ( )fl/l "
Uyl - . Uy Rt Ta-B B1 47

1 (Tz' = /3232'>4??:2<gf>2 IV,

1 9 <b b\

(Tn + 5B >4fy. - cn-1> )

In such cases y; for the first lens may be taken to be b; tan ¢,

which connects the functions with the angle of obliquity of the
pencil of rays in question.

It will be as well to now consider an objection that may be
raised to this series of formule, and at first sight a very plausible
objection. It may be urged against it that it does not allow for
curvature of image. '

Let L,, Fig. 99, be a collective lens which by central oblique pencils
forms an image ¢,..F; which for rays in primary planes is curved as usual

to a radius equal to about flé—l:%—l or °ths /. If so, then will not

the primary focal point at ¢;, and not its projection O, on the focal
plane, form an object, as it were, from the point of view of a second
lens placed at L,? Let L, be a dispersive lens of the same power and
material as L;, and let it project an enlarged image of O,..F, or
9,-.F; on to another plane O,..F, which image, if L, is free from
E.C.s, will be a flat one.

Now the primary focal line ¢, is formed on the oblique prinecipal
ray L,.. 0O, (unless there is coma, but that is dealt with by separate
formule), and assuming L, free. from distortion and coma, and at the
same time to have no curvature of image, in the sense that the E.C.s
balance the mormal curvature errors and therefore the lens projects
a flat primary image of a flat object, then the image of the point ¢,
will be projected to g, on the refracted principal ray and on L,..q

2
produced, so that the versine or curvature error g,..s, will be (%)
2
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times ¢;..s,. Also the focal plane ¢,..f, will in this case be con-
jugate to ¢, ..f; in exactly the same sense that O,..F, is conjugate
to Oy..F,. The curvature of image would in this case be copied
through from one image to the other, without the point O, being
disturbed. For O, would then be the centre of an out-of-focus oval,
being a section of the eccentric pencil of rays whose axis is .. ¢,

But now it may be urged that supposing the E.C:s of L, are
eliminated so that its normal curvature errors become equal and
opposite to those of L, then it will throw upon F,..O, a flat image,
and if we still assume the line of central projection L,..¢; to be
produced to cut the focal plane F,..O, at g,, then should not we
expect a focused image to be formed at ¢, instead of the previous out-
of-focus image at O,, so that we now have a distortion of linear value
0O, . .q, where before we had none, due to a change in the curvature
corrections of L, ?

Assuming that to be the case, yet there is nothing essentially
inconsistent with our distortion formule, for we must remember that
the formulee for E.C.s and those for distortion have some functions of =
in common, and it cannot therefore be expected that changes can be
made in the curvature corrections of L, without changes also taking

place in the distortion corrections, unless perhaps L, is a compound lens. -

First, we have assumed I, to have its curvature errors neutralised
by E.C:s and to form an image g, of the original ¢,, the image ¢, being
projected to O, in an out-of-focus condition ; and, secondly, we have
assumed E.Cis to be eliminated and the normal curvature errors to
have free play in L, counteracting those in L;, so that it must be
assumed to project an image of ¢, at g, or thereabouts. But the
change in the # or #’s in the formule for E.C.s for L,, if it is a simple
lens, necessary to do this will also bring about plus increments in the
distortion corrections, which will now indicate a new path !'..g, for
the refracted principal ray, shown dotted in Fig. 99a; and this new
path will result, not only from a variation in the tangent condition in
L,, but also from the increase in its spherical aberration.

But supposing we could assume variations in the curvature errors
of the different lenses to occur without at all affecting their distortion
corrections, then it is clear that such variations in the curvature errors
would simply cause the foei for rays in primary planes to slide to and
fro along the path of the principal ray, as, for instance, ¢, might be
supposed to slide to and fro along ¢,..0, Thus ¢,..0, may be
regarded as the image in two dimensions of ¢, .. O,.

Thus our formula need not concern itself with anything but the

Second case. E.Cs
of L. eliminated,
leaving the normal
curvature errors free

play.

Formule for E.C.s
and for distortion
interconnected.

A plus increment to
the E.Cs in L, im-
plies a plus incre-
ment to the distor-
tion.

If distortion is con-
stant, changes in
image curvature
cause image points
to slide along the
principal rays.
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conjugate focal planes, and it is the point O, on the first focal plane
O;..F; which it is the business of the lens L, to project correctly, for
although O, may be somewhere inside an out-of-focus patch of light,
yet it is where the principal ray strikes the focal plane, and as long as
O, is correctly projected it cannot be said that there exists any
distortion, however bad the image may be in other respects.

Thus a system of formulae which only takes note of the paths of
the principal rays and of the points where they intersect the successive
conjugate image planes and formulates the deviation of those points
from their true and proper positions in such image planes, is none the
less accurate because some or all of the images may be more or less
curved. The interconnection between the distortion formula in such a
case as this and the formula for E.C.s, together with the formulse for
coma and spherical aberration, is highly interesting, but exceedingly
involved ; and it can be shown that the last three formula all have an
indirect bearing upon the course of the principal ray as prescribed
by the distortion formula,

In the course of a previous discussion in Section IV. of the influence
upon spherical aberration of large separations between the lenses, we
found that their tendency was to set up relatively strong aberrations of
the higher orders y* and #° ete., and it is clear that the spherical
aberration functions in our distortion formule are liable to precisely
the same modifications, a matter to which we shall refer again when
we come to consider the case of the well-known four-lens erecting
eye-piece.

The Distortion produced by a Parallel Plane Plate

But before we are exactly in a position to apply our formule to
very thick lenses by the method of elements, we must first work out
the formula for the distortion produced by a parallel plane plate of
glass, or other transparent substance.

That distortion is produced in such a case is rendered evident by
inspection of Fig. 100, representing an oblique converging pencil whose
principal ray is R..B..c¢ emerging from the second surface of a
parallel glass plate, and Fig. 100a, a divergent pencil emerging in the
same manner. As we are studying the effect of the plate only, we
must assumne that before entering the plate the rays of the pencil are
converging to or diverging from a true point—for instance, the point
Q). Let straight lines Q..P be drawn through Q, perpendicular to
the plane surfaces. Such perpendiculars will, of course, pass through
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the ultimate focus A after refraction, according to the first approxima-
tion. Through A draw the focal plane A..F parallel to the surfaces.
It is obvious that if the focus were formed at A, as it would be by a
thin perpendicular pencil, there would be no distortion ; but the oblique
rays are subject to aberration, the ray K..b intersects the normal ray
P.. A at b, the principal ray R..c intersects it at ¢, and the ray
H..d at d, and the longitudinal aberrations A..d, A..¢, and A..d
are proportional respectively to (P..K)%, (P..R)% and (P..H)>. But
the principal ray R..c¢, when produced, cuts the focal plane A..F
at B to one side of the true point A. A..B is then the linear
or absolute value of the distortion, and our problem is to express it
in terms of the radial dimensions of the image, which, of course,
necessitates our knowing the whereabouts of the optic axis of the
system, of which the parallel plate forms a part.

In the first place, we are supposed to know the angle of obliquity
PAR or y; we required and ascertained it before for other parallel
plate corrections.

Then we also have the formula for the linear aberration c¢.. A
from page 80, Section IV., which was

e,
wherein in this case @, the semi-aperture of the larger direct pencil, is
P..R, which we will call %4, while »=P..A. It is clear that
h=wvtan y;

e A= (e —;@lz)t< h)?= (/L ) (vtan x)% (22)
also
A..B=(c.. A) tan x = _6}"T2) (v tan x)? tan x. (23)

But so far there is nothing to determine the sign of the distortion.

Let O,..0;, 0,..0,, and O;..0; represent three possible and
different positions of the optic axis. Then A..O/, A..0O,,and A.. O,/
are the respective radial dimensions of the image, in terms of which we
want to express the displacement A..B. Let D;, D,, and D, be the
points where the principal ray cuts the optic axes O,..0,, O,..O,,and
0;.. 0.

Then, in pursuance of the conventions previously adopted, the
distance from D; to the second surface is + in both cases, for the
principal ray is diverging from D, on emergence. The distance from
D, to the second surface is — in Fig. 100, as the principal ray is

Formula. for the
linear distortion
yielded by parallel
plane plate.
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converging to Dy, but is shown to be + in Fig. 100e, as the principal
ray is diverging from D, after emergence.

The distance from Dj to the second surface is shown — in both cases,
as the principal ray is converging to D, after emergence. Let these
distances be ¢, ¢,, and ¢, respectively.

In Fig. 100 the distance A..P or v is —, and in Fig. 100a is +.
Then, if the above conventions are adhered to, we have

A..0/=(-¢)tanx and is — in both cases;
A..Oy)=(v-c,) tan x and is — in Fig. 100 and + in Fig. 100a ;
A..0 =(r-¢)tan x and is + in both cases.

Evidently, then, il gives the distortion as a fraction of the
(v-c)tany
radial dimension of the image. Then A..B in the numerator, having
no sign, may always be considered +, but (v —c¢) in the denominator
acts as a sign determinant.

In full, then, the fractional distortion is
t 2
tan® x. (24)

Normally the ratio between the sizes of the two conjugate images
in the case of a parallel plate is simply unity, therefore we find the
corrected ratio to be

(=1t o 7
{1+2ﬁ0_2)ta11 X}- W

In the case of an optical combination containing thick lenses the
quantities from which we can pick out » and ¢ have to be assessed at
the outset, as we have seen before. But we must remember in this
case that while » and ¢ may be known quantitatively, yet their ‘signs
must not necessarily be taken in connection with or with respect to
the element following the parallel plate, but must be assessed with
respect to the parallel plate itself in strict conformity with the above
convention. Should any parallel plate not be followed by an element,
still the quantities v and ¢ are easily inferred from the values » and ¢
or » and D" of the preceding element. Under these circumstances
Formula V. will be found to interpret itself in all cases, and give a
positive result when the displacement A ..B is from the optic axis, and
a minus result when it is towards the optic axis.
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The E.F.L. was 855" and (E.F.L) tan ¢ =163 inches, so that
at a distance from the optic axis=1'63 inches, corresponding to an
angle of 10°47/, the linear distortion is (+400295)(1'63)=about
+°005 inches, an amount barely perceptible by any but very delicate
tests. As a matter of fact, this lens was very carefully corrected
for rectilinearity, and at much greater angles from the axis very slight
negative distortion was just perceptible. Having now dealt with a
case in which the relative separations are not large, it will be as well
to apply the same formule to the well-known cases of the Huygenian
eye-piece, and the four-lens erecting eye-piece, in which the separations
are very considerable.

Huygenian Eye-piece

Let this be the usual combination of two convexo-plane lenses of
focal lengths 3 inches and 1 inch separated by a distance s= 2 inches.

Then as the image is formed in the principal focal plane of L, or
1 inch in front of it, it falls therefore half-way between the two
lenses. The E.F.L. of the eye-piece =15 inches.

We may assume the principal rays entering L, to be parallel
if the focal length of the object glass forming the image

is relatively very long, so that By = —1. The characteristics
Also the rays are converging into L, as if to form an image ENAISHaT IRt
1'5 inch behind L,, therefore a,= —b.
The principal rays are converging into L, to a point 1 inch
behind it, therefore By= -3,
also  ay= +1,
Soa - B = -4 and ay— B, = + 4.
1
Also Y2=Y%3 Let p=15.
The distortion for L, works out to + i—(l)gyl'z,
i
and for L, works out to +10 81/12’
18 1, ,
Total Tos o gl Final result.
which, if ¥, =2, gives a distortion of + 1;0. This is at an angular

distance from the centre of the apparent field of view, such that
.-l 1
tan ¢ =15 75 The distortion

2 q . yielded by an equi-
Supposing we substituted a single convexo-plane lens of the same < "% o

power for this eye-piece, it would have to be 1‘5 in focal length, Ilens.
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while ¥ would be the same as the y, of the eye-piece =2, and 8 would
then become — 1. In that case the distortion would work out to

+1§088y12 or nearly five times as much as the eye-piece. The

difference is partly due to the fact that in the eye-piece the principal
rays are strongly convergent into the eye lens instead of parallel,
which causes a much closer approach to the fulfilment of the
tangent condition (which requires B, to be —5) than in the
case of the simple equivalent lens, but principally because of the
relative reduction in y, For supposing an equivalent simple lens
is substituted for the eye-piece, then its y would necessarily be

equal to the 7, of the above eye-piece, and if -g/l=%th of /i (and

2
s then=71;th of f;), it is clear that z; would be ﬁths of 7 the

focal length of the equivalent lens. Thus the principal rays are
caused to be refracted through the eye lens of a Huygenian eye-
piece three times as close to the axis as in the case of the equivalent

lens, while the power of the eye lens is g of the equivalent lens, so
that the relative distortion of the eye lens, other things being equal,

2 2
may be expected on that account alone to be reduced to <—13) (g>
= 1th i

1th.

The formula for distortion for the Huygenian eye-piece will be
found to work out to about a minimum, when #; =0 and z,= + 1, in
which case the field lens is equiconvex, and the eye lens convexo-

" W - 5 o
plane, when the total distortion is + ——-7,% But such a combination
. . 108

has certain other disadvantages.

Sometimes Huygenian eye-pieces are constructed with a ratio
of focal lengths between the field lens and eye lens of 2 to 1,
which enables a flatter field of view to be obtained than with the
ratio 3 to 1; but with the ratio 2 to 1 the approach to freedom from
distortion is not quite so good.

The Four-Lens Erecting Eye-piece

This well-known and useful optical device seems to have been
arrived at quite empirically by the monk De Rheita, who evidently
had been experimenting with various combinations of lenses in series in
conjunction with a telescopic objective. But the theory of it was not
worked out until very many years later, by Sir George Airy and Henry
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Coddington, and even then not in one sense completely. Iig. 101
shows the course of a couple of pencils of rays through such an eye-
piece, from their points of origin in the first object or aerial image
1..1% to their again concentrating into a second aerial inverted image
iy..1, in the principal focal plane of the eye lens L, so that after
emergence from the latter the rays constituting the pencils are
parallel and fit for vision by the normal eye placed behind it
at .

Since the objective of the telescope is supposed to be placed at a
considerable distance to the left hand, and the principal rays of the
various pencils or cones of rays are supposed to radiate from the
centre of the objective, therefore such principal rays are brought to a
focus at O at a distance behind L, equal to or a little more than its
principal focal length ; not only so, but an image of the aperture of the
objective is formed at that position, where it is unsual to place a stop
with a circular aperture a little larger than such image of the objective,
whose office it is to screen off stray light reflected from the interior
of the tubes.

Then a second image of the objective or an inverted image of O
is again formed behind the eye lens at P; that is, the principal rays
again come to a focus or cross the axis at I, where the pupil of the
eye is placed to receive them and the pencils of rays which they
represent. But, as we shall see later, this second image of the objective,
or exit pupil, is an exceedingly rough and imperfect one.

Fig. 101 is a correct drawing to scale of a four-lens eye-piece
which was specially adjusted with great care to show an apparently
rectilinear image when used as a magnifier on a set of straight lines
ruled on a flat surface placed at 7.. <7, the eyesight of the observer
being normal. The object was to see whether the sum of the formulz
for distortion for the four lenses would in that case work out to zero.
The stop at O was at a distance =j; behind L,. The data for this
combination were as follows, the refractive index being 153 for
all four lenses :—-

” 1 ’”
fi=19 Z=-3 b = e 6g=+19 o By=—1
=+ 76 o =-127 Lo @S
and o, - 3, = +5

Separation s, = 2-24"

fa=226" Zy= —2 = = — ‘40 ol (S
_rugqr U= +351 V= + 635 S0y = o+

S and a, — B,= —

oY

The course of the
rays through four-
lens eye-piece.

Position and func-
tion of first stop.
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_onyqr Ug= = 1° vg= + 72 ag = 64

83=213 and a - = - 4'36

f=141" 2= +1 by=-104  ¢=+ 60 .. B,=-37
u, = + 141 vy = o a,= +1

and a, — B, = + 47

From which we get the following values of the distortion when
9 =-20":—

. ; 1 A\ = i ]
IJI 4f1_2{T1 t al—_BIBI }?/1 = + 00512

L 16 OO T TR s .
b Ifzé{Tz i —,3>B2 fyl? (f) E = Q0k0 Total

1 b2 = +°0235
A neEB\ T o e
L g {Ty B3B3}y1 (%> 00203
bbb\ 2

L [fap o ar—stl g ol a(SHEENT o - e

Ly 4f42{T4 " a4—,84B‘* }yl <clcgc3) 50223

/

The total result is a positive distortion of about 2% per cent, which,
although small in itself, is in excess of the distortion yielded by any
one of the four lenses. But 2} per cent of distortion could scarcely
go unperceived under a searching test. How is it that this apparent
discrepancy between theory and practice arises? It is partly due to
the fact that a good deal of the personal equation arises in the case of
a series of straight lines or chords viewed through a ecircular aperture.
The real image formed in the principal focal plane of the eye lens is
bounded or limited by the field diaphragm within the circular aperture
of which it is formed.

Now, it can be shown that a series of parallel straight lines viewed,
without any lenses whatever, through a circular aperture do not appear
to be straight to all observers; to some, including the author, they
invariably appear somewhat barrel-shaped, as if by the presence of
negative distortion, while a square drawn with sides so curved inwards
as to represent a case of 2 per cent of positive distortion at the corners
(and therefore 1 per cent at the middle of the sides) appears to be
perfectly rectilinear when viewed through a circular aperture just well
clearing the corners. The reader should try this experiment for
himself, and will then become convinced of the difficulty there is in
saying whether an eye-piece is really free from distortion or not.

Furthermore, in the four-lens eye-piece, consisting as it does of four
widely separated lenses, the distortion corrections of the higher order
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»* in some cases may form a very appreciable fraction of those which
272
we have formulated of the order }/—n, and this is chiefly true of the

corrections affecting the eye lens. To be sure Coddington, on
pages 168 to 170 of his work, in dealing with the four-lens eye-piece,

2
makes it appear that the distortion formule of the order ¥ for the four

lenses may be reduced to zero; but we have seen that he neglected in
working out his formule to allow for the spherical aberration of the
first lens being carried through to the third and fourth lenses, and that
of the second to the fourth, operations which, as we have already seen,
are really as vitally important in his scheme as carrying forward the
aberrations of each lens to the next following lens, which he did allow
for. Hence his conclusions on page 170 were erroneous.

We have seen that the formula for distortion which we have
worked out is quite independent of such accumulated variations of
b and ¢ in each lens, that is, so far as the formul®e of the order J?f—z are
concerned. But Fig. 102 will help us to see that the aberrations
exerted by each lens upon the prinecipal rays must necessarily have
an effect upon the distortions of the following lenses which we cannot
altogether neglect. In Fig. 102 the deviation of the principal ray
from its theoretical course is a little exagoerated for the sake of
clearness. The solid lines indicate the' theoretical course of two
principal rays through the lenses according to the formule of the first
approximation, by which the values of & and ¢, and therefore 8 for
each lens are assessed. But the dotted lines indicate the actual
course of the same principal ray, which deviates largely from the
theoretical course, especially at the eye lems. It is clear that our
method of expressing the y for each lens in turn in terms of ¥,
deviates more and more from the truth as we work towards the eye
lens, and this fact is just as important whether we work out our
distortion completely by Coddington’s scheme or by our own. After
allowing for these modifications of y,, »,, and y,, and B,, B,, and B,, it
can be shown that our principal ray, striking L, at a height g, =20
from the axis, is subject to a distortion of the order %, y,%, and y,*,
equal to 1th part of the distortion of 2} per cent previously arrived at
and of the opposite sign.

On page 91, Section IV. (Fig. 36), we showed how, when two
lenses are separated from one another on a common axis, the spherical
aberration of the first lens gave rise to a spherical aberration in the

Departure of the
actual path of a
principal ray from
the ideal path.
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second lens of the order #,%, and similarly for any subsequent lenses ;
and the same influences operate in the case of the four-lens eye-
piece. Moreover, there exists for each lens the intrinsic aberrations
of the order %%, not only as regards the spherical aberration, but also
the aberrations from the tangent condition. So that the distortion
formule for a four-lens erecting eye-piece, supposing we take all of
the order #* into account, as well as those of the order #? are of a highly
complex nature.

The fact that the corrections against distortion are generally of a
hybrid nature, involving the opposition of these two orders of
corrections, is made apparent by rigidly testing the rectilinearity of
an eye-piece which has an extra large field of view. It will then be
found that there exists a small amount of positive or pincushion
distortion of straight lines in the inner zones of the field of view,
while in the outermost zone there is quickly increasing negative or
barrel -shaped distortion of straight lines. This is illustrated in
exaggerated form in IFig. 103.

The case is exactly illustrated by means of Fig. 37, in which the
left-hand curve may be taken to represent -+ distortion of the order ]/2
and the right-hand curve — distortion of the order *.  These neutralise
each other at a certain distance D from the axis or centre of the field

D
of view; but at a distance equal to /5 from the axis there occurs a
N

maximum of + distortion equal to 1th of the distortion that occurs at
D, and outside that a rapidly increasing — distortion.

In the case of certain forms of four-lens erecting eye-pieces largely
favoured by Continental opticians, and consisting of four compound and
achromatic lenses, this compound curvature of straight lines, consequent
upon a still greater degree of distortion of the order y* opposed by
distortion of the opposite sign of the order 37 is still more noticeable.

It is clear that since the distortion of the order y* increases as
tan* » or the fourth power of the semi-diameter of the apparent field
of view, therefore the size of the latter cannot be very much increased
without the hybrid distortion showing itself in an aggressive manner.
Doubling the size of the field of view will multiply the defect sixteen
times.

Cooke Photographic Lenses

These lenses, which are composed of two simple collective lenses
containing between them a simple dispersive lens, form good practical
examples of the embodiment of the formula—
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N fmo Vg iy 0L Ut f 1 '}:
gl L g ) s (e LB -0
for the two colleetlve lenses of focal lengths f, and f; are separated
from the dispersive lens by separations s, and s,, which are proportional
to f; and f;; and when the distances from the object to I, and from
L, to the image are also proportional to f; and f;, and L, and L, are
symmetrically shaped with respect to one another, then clearly the
conditions of vergency as well as of shape of the lenses L; and L, are

all symmetrical it the principal rays are supposed to cross the optic
1

,; o that ; =—=0, also a; — B, =
ay=f; o=

—(a;—B,), and a;= —a, By = — s ;= —uy ete. Therefore the

system is free from distortion, and practically remains so under all

normal conditions.

axis at the centre of the lens L_;

Magnification

We have yet to consider the important question of the magnifying
powers of lens systems.

It is quite obvious that if the eye views a distant flat object and
- fixes itself upon some central point C, then various other points in the
object will seem to be distant from C by certain angles ¢,, ¢,, ete.;
and their apparent distances from C as measured in the plane of the
object will be proportional to tan ¢, tan ¢,, ete.

On approaching to a distance equal to %th of the first distance, the

apparent distances of the same points from C will be proportional to
ntan ¢, » tan ¢,, ete.

If, instead of approaching n times nearer, an optical contrivance
causes principal rays to make angles equal to ntan ¢, ntan ¢,, etc.,
with the axial line through C, in place of tan ¢, and tan ¢, ete., then
clearly the marrmfym power =n.

So that if, in the case of the telescope, we write tan¢ for the
tangent of the angle included between the optic axis and the principal
ray from any point in the distant object, and tan ¢’ for the angle
made with the optic axis by the same principal ray after emerging

from the instrument, then clearly ttin(ﬁ

an ¢

will express the magnifying
power.
o . ¢ 9 o 8 o o
This is of course equivalent to the ratio t%" in Airy’s and
€

Coddington’s Formule II. for the distortion of eye-pieces; in which .
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tan e=tan ¢, or the original visual angle subtended at the object glass,
and tan 9 = tan ¢’, the angle for the same principal ray on emergence.

o g t e .
The simplest way, however, of expressing t:Irlid; is in its equivalent
Hige . - . .
form -, in which F=the equivalent focal length of the object glass,

/’
and f the E.F.L. of the eye-piece.

Supposing neither F nor f are exactly known, then the familiar
device of measuring the diameter of the image of the aperture of the
object glass formed just beyond the eye lens with- a dynamometer,
when the telescope is focused for distant objects, and dividing the
same into the aperture of the object glass, may always be relied upon
to give fairly exact results. Theoretically the method is quite exact, as
the following reasoning will show.

When set for normal eyesight the first principal point of the
eye-piece is distant from the second principal point of the objective
by a distance equal to F+/  Now let F=mf, so that m is the
magnifying power. Then the two conjugate focal distances, with
respect to the eye-piece, of the object glass and its image will
clearly be

(m+1)f and T l

1
7 - (m+ L)f
~m+Df and — 1 or (m+1)f and " ik

(m+ 1)f
and consequently the image of the objective will be -;Lth of the original

size; and therefore the ratio m expresses the magnifying power of the
telescope.

The only thing which militates against the accuracy of this method
is the violent spherical aberration to which the image of the object
glass is subject in many cases.

Also many cases arise in the case of three- or four-lens eye-pieces in
which the image formed behind the eye-piece is not really an image of
the objective at all, but is an image of the stop between the first and
second lens of the eye-piece, which is, either intentionally or not, made
too small to pass the full image of the object glass thrown into it by
the first lens.

In such cases the best plan is to place an artificial circular aperture
of smaller size over the object glass and divide its aperture by the
diameter of the image of the same formed by the eye-piece.
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The Simple Microscope

Here we have to deal with a somewhat different state of things,
for the apparent size of the original objects, which are close at hand in
the first instance, is evidently quite arbitrary; a short-sighted person
may view an object with his naked eye 6 inches away, and see it
magnified three times relatively to a person who can only see it clearly
with the naked eye at 18 inches away. Therefore the convention has
been adopted of accepting 10 inches as the standard distance at which
the normal naked eye can comfortably view small objects, and thexefore
all microscope magnifying powers are estimated relatively to that
conventional standard.

First, it is clear that in the case of using lenses of low magnifying
power the short-sighted person will clearly have an advantage, as he
can place his magnifier nearer to the object and deal with more
divergent rays than the long-sighted ; and, again, the question is further
complicated by the variation occurring in the distance of the eye
behind the lens.

Let f be the E.F.L. of the lens, » its distance from the object, and
D the distance of the eye from the lens, all in inches. Then the

conjugate focal distance v will be L et and the distance of the

1 1 w-f’
w
image from the eye will be
e fu _szu—D(u-—f).

u—f u—f
If the eye were at the lens centre, then clearly the conventional
. s 10 . . .
magnifying power would be ~, quite independently of the position of

the second conjugate image, but the eye is at a distance from the
image which is reduced by D, therefore the magnifying power
becomes

fu
10 » 10 wu-f 10 Jfu . 1of VI
v v-D w fu-Du-f)" u fu-Du-f) fu-D@-f) ‘
u-f

As a general rule v is a minus quantity, since the emergent rays
constituting the pencils are diverging. If they are converging, then of
course D gives a gain in magnifying power instead of a loss.

The conventional
standard of distance.

Advantage of being
short-sighted.

Formula for themag-
nification of a simple
microscope.
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The Compound Microscope

Here there is a real image of the original formed behind the
objective, and this image is viewed through an eye-piece, which yields
a further magnifying power.

Let F=the EF.L of the objective, and f that of the eye-piece,
and U and V the conjugate focal distances of the object and image
respectively, and let it be assumed that the rays emerge parallel from
the eye-piece.

If the eye were placed at the first principal point of the objective

g ] : ’ 0 od ¢
it would see the object under a magnification equal to % ; and if it
could turn to the second principal point and look the other way it
would see the conjugate image under exactly the same visual angle,

and the magnifying power would still be %)

If the eye then views the conjugate image through the eye-piece,
the magnifying power will be obviously increased in the ratio ?; there-
fore the whole magnifying power will be

10 V
M. 25
77 (25)

Now we may call V, or the distance from the second principal
point of the objective to the enlarged image, the effective length of
tube, which may also be written as oI, so that we have

1 1 1 =n-1 3
= e :‘6
U F oF aF° (26)

so that our formula hecomes

0(’%3 "71'1= 10@; 1). VIL

As in the compound microscope an image of the objective is formed
just behind the eye-piece, therefore the eye cannot be far removed from
the latter if the whole field of vision is to be seen; nor, in the case
of high-power eye-pieces at any rate, will the state of divergence of the
emergent rays very appreciably affect the truth of the above simple
formula.
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Then from the formula for conjugate foci %,:11,—% we derive, if

U is constant and ¥ varies, as in Formula I.,

1 Ap )
ST
so that
AV= -l (1)
PR

Thus the linear chromatic aberration, as measured along the optic axis,
varies directly as the square of V, the distance to which it is projected
by the lens, just as in the case of spherical aberration, only with this
difference, that the linear chromatic aberration is quite independent
(except in the higher orders) of the aperture or form of the lens and of
the state of divergence or otherwise of the entering rays. Thus the
characteristics @ and 2 do not as yet enter into the case at all, and
the chromatic aberration depends only upon the power of the lens and
the dispersive power of its material.

But it is quite clear that the aperture of the lens must exert a
proportional effect upon the size of the least circle of chromatic
aberration through which the range of coloured rays will pass. This
least circle is obviously situated half-way between the focal points
for the two extreme colours concerned, and its’ diameter is equal
to half the linear chromatic aberration multiplied by the ratio of

: o 2a . )
aperture to the conjugate focal distance V, or v wherein o is the

semi-aperture of the pencil or lens. So that the diameter of the least
circle of chromatic aberration is expressed by

}< —r lvz)%

2\p~-1F \%
LT 1 >
—a<l1—_—l- FV b A%
and its angular diameter as subtended at the lens centre is
Ap 1)
= L . Is.
a(p, ~-1F7

which shows that, supposing the aperture is constant, the angular
diameter of the least circle of chromatic aberration varies inversely as
F, a fact which was realised in a very practical manner by astronomers
and opticians such as Huygens and Hevelius in the early days of the
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simple objective, for they made a great point of having the focal lengths
of their telescopes as long as possible, 120 feet being nothing unusual.

We have also seen in Section IV., page 110, that the least circle
of confusion consequent upon spherical aberration has an angular
diameter which varies inversely as the cube of the focal length when
the aperture is constant.

If we put two thin lenses in contact, with a view to producing an
achromatic image in the conjugate focal plane of the compound lens,
then we must fulfil the equation

— =0, II.

in which Ay, or Ap, refer to the respective differences in refractive
‘indices for any two coloured rays of the spectrum that may be fixed
upon. These are generally the orange-red ray known as the C ray,
and the blue-green ray known as the F ray.

Since in all known glasses the refractive index increases as we
ascend the spectrnm from red to violet, and Ap is always of the saine
sign for different lenses when it refers to the same spectrum interval,

therefore it is clear that 2 and = must be of opposite signs, and

F, F,

that
By _ Ay By @)
po— 1 IU‘l_lFl, : B

that is, the dispersive powers of the glasses forming the lenses must be
in inverse proportion to their powers or in direct proportion to their
focal lengths.

Also, since the resultant power of the contact combination is

simply _FlTl+FL2’ it is clear that the fulfilment of Equation II.

demands that the lens of the greater power shall be made out of glass

of the least dispersive power, and then its power will prevail over the

other. So that if the combination is to have positive power, then the

collective lens must be made of the glass of the lower dispersive power;

and if the combination is to have negative power, then the dispersive

lens must be made out of the glass of the lower dispersive power.
Thus if

Bps _ 5 Apy
pp—1 Bp—1°
then Fl,— will be 2ths FIT, and the power of the combination will be
2 1

Two lenses in con-
tact. Condition of
axial achromatism.

Dispersive powers in
proportion to focal
lengths.
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This is the ratio of dispersive powers generally prevailing in the
glasses used for ordinary telescope objectives, the collective lens
being generally made of a crown glass having a dispersive power

of % for the spectrum interval C to F, and the dispersive lens out
of a dense flint glass having a dispersive power for the same spectrun

interval equal to ?% It is clear that any contact combinations of

a collective with a dispersive lens may be achromatic for all degrees of
divergence or convergence of the entering rays.

Thin Lenses Separated by an Interval

Should an iuterval s exist between the two lenses, Formula 11.
. . A 1 . ) .

will no longer apply. Since —** ll s the chromatic aberration
M1~ 1
1 A,ul — . . .
e v,” 1s the longitudinal chromatic ab-
. fm—1 o
erration as measured along the axis, or the chromatic variation of v,
therefore from the centre of the second lens as a reference point the
chromatic aberration of the first lens

of the first lens, and

_1 Apoo? LoApy o

— — Or —_—— — g

Sim—1u? Jim—1(s=v)”
which must be neutralised by the chromatic aberration of the second
lens. Therefore the formula for achromatism is

) 2
1 Ay 3’12+l By _ g I11.
flﬂll—‘luz fZI‘LZ—l

2
So that the greater is the separation multiplier <§1> the greater is the
2

chromatic aberration which the second lens has to counteract.
N2
But, since (12) can be made practically equal to unity by

assuming v, to be a very large quantity compared to s, as when the
rays leaving L, are about parallel, the formula in such circumstances
becomes practically the same as Formula IT.

Hence it is clear that while Formula III. may be equated to 0 for
any given value of u,, yet if u, varies considerably and thus causes
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of a perpendicular pencil of rays converging to Q. After refraction
at the first surface the less refrangible rays, such as the red, will be
divergent from or convergent to 7, such that »..A;=u.(Q..A)),
while the more refrangible rays, such as the blue, will be divergent
from or convergent to &, such that &,.. A, = w,(Q..A,); so that the
distance between &, and » will be Q.. A, (u, — u,), or, shortly, u(Aw).
Then as a correction to the reciprocal value of the distance r,..A, in

the case of Fig. 104, the quantity «(Au) becomes ———— At that is,

(- AR
1 1 wdp 1 ubp
by Ay Ay ()2 g+t (£
After refraction at the second surface becomes —X or
+1 A+ ¢

S 1, which = al— 0 e becomes  FrOH

t v Py o A (s + ) (et + i)z
w+ —
Per

Now, supposing the other ray, or the blue ray, were also radiating
from the same point 7, as the red ray before refraction at the second
surface, then after refraction we should have the blue rays apparently
radiating from &,, such that the distance by .. A, would be equal to
2‘1..A A2 or A+

2 which = " —, 0 that
Iz P+ Bp et A,u
R L R Ap
o o Az o+t t/A,u + t pth + 8
1 A
== (3)
v o+t

1 .
so that —'2+— ; is the increment to - due to colour consequent upon the
o

second refraction only. But we have seen that the chromatic
aberration brought over from the first surface and referred to the

point A, was — (,{:gil;?’ so that the chromatic aberrations of both
, ,
surfaces are
Ap g ‘U.r’l,l/+t 1 t

= = 22 = —FAp,
pt+ 1 (e + 1) # (0 + t)2 (o + 2 1
But p,u +t = p,v, so that the chromatic aberration becomes

tA : 1
+ —2“ , as a correction to —, V.
v v

M
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and the linear value », . . b, of the aberration is simply
=3 VL
on

If Ap refers to a large interval of spectrum and the ULLSS is highly
dispersive, it is more correct to write

I ol '3 Via.
Porfep Prfrsy

t

The same line of reasoning applied to Fig. 104« leads to the same
result, provided we consider v negative, so that in the case of Fig. 104
we have

1 1 Ap
O
by. . A, v+p.,2v2’
and in the case of Fig. 104a we have
g e i
by .. A, v ou?

In both cases we find the linear chromatic aberration 7, .. b, ranges
* left to right; a plus increment to u implies a transference of the focal
point in the same direction as the light is travelling, and in this sense
the effect of a parallel plate is similar to that of a dispersive lens—only
with this difference, that while the chromatic aberration of a dispersive
lens is =L e
fp-1
parallel plate the chromatic

and thus independent of « or v, in the case of the

of course vanishes when v becomes infinite and the rays parallel.
We might have arrived at the same result more shortly in this way.
Since the linear transference of the focal point due to passage through

. 1 : -1 .
a parallel plate is, as we have seen in Section I, =, then in

7
l)Ap, 8 tA,u.

differentiating with respect to u we get gHAH '1("—12 only we
I3

should have missed noting the effects taking place at each surface.

Chromatic Variation of the Spherical Aberration

So far we have studied the effects of x being a variable upon the
formulee of the first approximation, and it is now desirable to
investigate the effect of x being a variable upon the spherical
aberration of a lens. It is a subject of considerable importance in the

The linear chromatic
variation of 7.

The dispersion al-
ways in one direc-
tion.
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1

_ he 27 1
(2075

L 1
16 48( '7)16 768 28°

% {7+10+3'25+6'75}
or 36 times the above variation due to du.

Such a small quantity as this might almost be neutralised by
parabolising the curves of an object glass or the reverse if there were
only rays of one colour to be dealt with; but it is clear that if we have
perfect correction for spherical aberration for one colour, whether it
be by a perfect balance of curves or by figuring, then a very minute
amount of spherical aberration for another colour will be perceptible
under high magnifying powers, so that the correct balancing of
the spherical aberration for all colours as far as possible assumes a
great importance. This means that in the case of a double achromatic
object glass it is desirable to fulfil the condition

IR 1
d#l{é?zA 1?/1} = ‘lu2{8f23A 2?/1} =9; (6)

or if it does not or cannot equate to 0, then we must introduce another
influence to effect it. In the case of an ordinary achromatic objective
with the collective lens at the front and double convex, and the
dispersive lens double concave or concavo-convex, but in close contact
with the collective lens, it will be found that the chromatic variation of
the spherical aberration as expressed shortly in (6), and in detail for
the collective lens in Formula VII., is negative ; that is, the dispersive
lens exerts the greater influence, so that the more refrangible rays are
over-corrected for spherical aberration when the less refrangible rays
are accurately corrected.

Apparently Gauss was the first to point out that a separation
between the two lenses could be made to neutralise this defect.

Let Fig. 105 represent two lenses separated, L; .. L, being half the
collective lens and L. . L" half the dispersive lens, and L,.. F the optic
axis.

Let ¥ be the focal point by first approximation for the red ray
(ray C) and f the focal point for the blue ray (ray F) for the collective
lens, so that .. £, or shortly §, is the linear chromatic aberration which

L bSO Y
Jim -1

Let the semi-aperture of L; be Y and the semi-aperture of L, or the
height L"..7» be 3. We will assume the red ray L,..F to be the
standard ray which gives the values ¥ and l

AR

The separation de-

vice
Gauss.

adopted Dby






5 OBLIQUE ACHROMATISM 291

OBLIQUE ACHROMATISM AND CHROMATIC MAGNIFICATION

The foregoing remarks about the double separated objective brings
us to the question of the conditions which determine whether an
optical system forming an image of a real object, distant or otherwise,
shall paint the said image on a dimensional scale which shall be
independent of the colour or refrangibility of the various rays making
up the pencils of white or mixed light diverging from the original
object.

We have just noticed that an achromatic objective consisting of
two separated lenses with the collective lens to the fromt is only
achromatic for the axial image, and that the oblique image of a star
is not a true image, that it is drawn out into a minute spectrum, the
red end of which lies towards the optic axis. If the dispersive lens
were at the front, then the opposite state of things would result, and
the blue end of the spectrum would lie nearest to the optic axis,

It will be as well in the first instance to recapitulate the inquiry
made by Sir George Airy and Henry Coddington into the conditions
for securing oblique achromatism or equal magnification for the
different colours that have to be fulfilled in the case of two-lens
Huygenian or Ramsden eye-pieces or three- or four-lens erecting eye-
pieces.

It is assumed in all such cases that the oblique pencils of rays
emerging from such eye-pieces are made up of parallel rays, that is,
that they are proceeding from an apparently very distant or infinitely
distant virtual and magnified image.

Such being the case, then it is clear that if the oblique image of
any point of white light, such as a star, is to appear to the eye as
one white image, then the variously coloured rays constituting the
nixed oblique pencil must be emerging parallel to one another, and
whether or not there happens to be any lateral separation of such
variously coloured pencils of rays does not matter, provided that the
virtual image is infinitely distant.

We saw in Section IX., pages 247 to 254, that freedom from distor-
tion in such a case depended upon the ratio of the tangent of the angle
of emergence of the principal rays to the tangent of the angle of
incidence being a constant throughout the field of view, and that
Formula ITa. was, for two lenses in succession—

tan 5 bb[ frp y 1 y ]
T s (2f 4fl ]—/331}-‘- ete. |.

Coloured constitu-
ents of principal
rays emerging separ-
ated but parallel.
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Now if we differentiate the functions T and B’ for each lens with
respect to u, we shall find that the variation in the functions corre-
sponding to du comes out very small compared to the functions them-
selves; we worked out a case on pages 288 and 289, where the

chromatic variation in "s?BA’ y* was only 4lsth part of the latter, and
in most cases likely to occur in practice it would amount to still less.
Now the function A’ is alinost exactly similar to B’. And since the
distortion functions in eye-pieces rarely amount to more than 5 per
cent of the radial dimensions of the image, it is not to be expected
that L;th part of that, or less, would be at all noticeable.

So that we need not in ordinary practice trouble ourselves about
the chromatic variation of the distortion functions.

L . . . . bb
It is in the exterior magnification function -1-2-"= (for n number

102 -

‘of lenses) that we must look for the vastly more 1mportant chromatic

variation ; for it is plain enough that all the terms with the exception
of b, are variables; they depend upon focal lengths, and the focal
lengths are different for the different colours.

Let Fig. 106 represent two thin lenses L; and I, in succession, of’
focal lengths 7, and f;, of the same glass, and separated by an interval
s (less than f;). Let principal rays be diverging from an axial point
Q to the left, so that Q.. L, =b,. If these two lenses are used as an
eye-piece for a telescope or microscope then Q will represent the
centre of the objective. Also, in order to suit normal vision, the rays
constituting the pencils of any one colour emerging from L, must be-
considered parallel, so that v,= «. In such case it is clear that if
the vatiously coloured images are to appear all of the same size, then
a multi-coloured principal ray, which enters the eye-piece all as one,.
must, after being split up by the first lens into a fan of diversely coloured
rays, emerge from the second lens with such variously coloured
constituent rays parallel to one another, when they will all appear to-
originate from one and the same point in the infinitely distant image.

Therefore for all eye-pieces the condition for achromatism for
oblique pencils is that tan » = constant for different values of w; that
is, that d, tan 5 = 0.

Thelefore we first want to express tan % in terms of b, ¥, /i, /o
s, and ¥,

We have

5 -1 1 1 b -f

_Y%. PR SERLA ot
ta.nn—o2, Y Jl 0 6 Jfioh by






Condition of oblique
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Condition of oblique
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or coma, it is sometimes desirable that the two lenses of such an

eye-piece shall be made of glasses of different dispersive power.
AM 5 :
Let == the dispersive power of the first lens or field lens, and

,L—A_/L—l = the dispersive power of the second or eye lens, and let the dis-
persive ratio
AM
M-1
0
p-1

=’]‘;

then it can be shown that
fi+1fy
(1+7)~ };i

S

IXB.

from which it appears that a stronger dispersive power in the field lens
leads to a smaller separation, and a stronger dispersive power in the
eye lens to a greater separation.

It will scarcely be necessary here to recapitulate the much more
complex and lengthy processes of the same nature which have to be
gone through in order to arrive at the condition for oblique achroma-
tism for eye-pieces consisting of three and four separated lenses.
Let it suffice to simply state the results. The reader will find the
investigation in full in Coddington’s work, Part I., pages 259 to 268.

Condition of Oblique Achromatism for a Three-Lens Eye-piece

Let f1, /2, and f; be the principal focal lengths of the three lenses,
all being made of the same sort of glass, and s; and s, the first and
second separations, and &, for the first lens being assumed infinite or
relatively large. Then the achromatic condition is

Sifo + s + Fols = 2F18 = 2981 — 28y — 2f5s; + 38;5,=0.  IXc.

Condition of Oblique ‘Achromatism for a Four-Lens Eye-piece

Let fi, /3, /5, and f, be the principal focal lengths of the four
lenses, all of the same sort of glass, and s, s,, and s; the three
separations in order, and let &, be considered infinite or relatively
very large. Then the achromatic condition is
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Tifofs + Ffof st fol s+ Fofofs
— 2fofd — Ul sy — S
= 2f\f382 = 21182 — 2falfs82 — 2fof 48
= 2fifs83 = 211 S35 — 2ot 58,
+ 35818, + 315,55 + 335,85 + 358,85 + 3f18,85 + 35855,
— 48,558,

Il
e

X,

The condition for a five-lens eye-piece works out to a very much
more cumbersome formula.

Fig. 107 will help us to realise the very restricted usefulness of
all these formulee. It represents the last or eye lens of one of these
eye-pieces, preferably that of a four-lens eye-piece.

Since the lenses are all simple, therefore the chromatic aberrations
all sum up together, so that at the position about P, where the principal
rays cross the optic axis and where a rough image of the object glass
is formed, the crossing point p for the blue rays is very much nearer
the lens than the crossing point P for the red rays. We have
two oblique principal rays—one red, Q,..O..P..Q, and one blue,
q,--0..p..gq—which entered the eye-piece as one ray, finally emerging
separately but parallel to one another, and to the normal eye with its
pupil placed at I’ or p the two rays seem as one.

But supposing we wish to use the eye-piece for projecting a real
image of what is seen in the telescope or microscope on to a screen
G .. Q at a short distance to the right, and for that purpose draw out
the eye-piece. It is perfectly clear that such an image cannot be
achromatie, for the red ray will strike the screen at Q and the blue
ray at ¢ ; so that the blue image of any extended object will be painted
on a larger scale than the red image.

On the other hand, let it be supposed that a very short-sighted
person uses the eye-piece. He will have to push the eye-piece farther
in towards the objective, in order that the emergent rays of pencils
may be divergent as though proceeding from a virtual image Q, .. G,
8 or 10 inches to the left hand. It is again clear that such an image
cannot appear achromatic, for the blue principal ray appears to be
coming from a point ¢, nearer to the axis than the point Q, for the
corresponding red ray; the red image is now painted on a larger scale
than the blue image.

Supposing we want to project real or virtual images to or from
finite distances, then what help or enlightenment can we possibly obtain
from formule of the nature

d, tany=0"?

Condition of oblique
achromatism for a
four-lens eye-piece.

Lateral displace-
ment of coloured
constituents of the
principal ray.

Real image larger
for the more re-
frangible rays.

Virtual image larger
for the less refran-
gible rays.

Constancyof tangent
ratios useless where
real images are
formed.
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Such formulz, however useful they may be for eye-pieces, are absolutely
useless for working out the oblique achromatisimn of combinations, such
as photographic lenses, which are expected to form real images of real
objects at finite distances.

Formule of Perfectly General Application

We must therefore seek for a formula of perfectly general applica-

tion, and in so doing may with advantage pursue the same method or
- line of reasoning that we followed in arriving at our general formula
for distortion in the last Section.

In Fig. 108 let a principal ray radiate from Q and take the
eccentric course Q..N..P..;j through the lens M..N. We are
supposing the lens free from spherical aberration and the tangent
condition fulfilled, since we are discussing solely the effects of variations
in the refractive index. Let there be an image formed at o..O
whose radial dimension is 0. From o draw o..M through the centre
of the lens, and produce it to cut the conjugate image plane I..7 at J.

Let it be assumed that the principal ray Q..N..; is of the
standard colour, for which the refractive index u applies, and that the
conjugate images o.. O and I.. also apply to rays of the same standard
colour. It is clear that another more refrangible coloured ray coincident
with Q.. N before refraction will take a different course N .. p .. after
refraction, and j7..j, will be the linear dispersion between the two
colours. Now what we want is an expression for j..j, in terms of
I..j4 or the radial dimension of the blue image in terms of the radial
dimension of the corresponding red image, supposing we fix upon those
two colours. Let I..j be 7, and I..j,be 4,ando..0beo; Q.. M
be b, O..Mbew, M..Pbec, M..I be v, and M..p be c,.

. v
Then we have 7=o0 o

also o b 0 s S

b—u v—¢’
b -¢c b v-¢c w
= o e e 13
ok o 0 b—u” %W (%)
and : ®
. v—c . © s
Sl e 1 & 1,wheremcl=c—f i ers
so that -
nedllp s St 2)
zl=obb xZ < fl“'_lc :
c_l Bp_
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e — l(v c+l— A’U'c\< 5= )
o N )
‘U.

in-which the outside function = 05, from Formula (13);

0 cw 1 Ap )
i = 14
! oﬁ{l+v—cf,4 A=f )
On adopting Coddington’s device we find that
2f 2f
ol vl _—_,8;1_—_(1 2f
v—¢ o ¥  e«-f’ r
l-a 1-p8
so that finally we get Single lens.  Uni-
i v 2 Ap versal formula for
A= —{ . — }, XL ratio between object
o u a-B p-1 and coloured image

¥ L ) . of same.
a very simple and convenient formula which can be applied with the

greatest ease to any number of lenses or elements in series. The

term f has disappeared, but its value is really implied in a — 3, which

terms are, of course, assessed with regard to the ray of standard colour.

On applying the same line of reasoning to the corresponding case of a

dispersive lens, or any other cases whatever, exactly the same formula

will be arrived at.

An objection may be raised to the above formula on the ground An objection.

that a— @ is in itself a variable, for it varies as f, which varies

inversely as u— 1; but if we insert the variation in @ — /3, we then

get for our formula—

iy_vf _7—_%i}
: ull +(a—ﬁ)<1 —,;éﬂ)“._ :

il )

2
The correction involved is thus seen to be of the order </J«A"l%) or the
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b = e 6= +3 o B=-1
b= +1 = -1} o = =
by= + 7} = A o By=+ 09
by= — 367 c,= +165 SNBSS0
(- By)= + 4465 (ay - By) = —6:76; (03— B) = - 2:84; (ay— B,) = +363;
it 1 1 1

ek —— + e
a =By ag— Py az— B =B,

- A _(1 . i>_¥8'09_9'6

—4'46+3'G3 676 284/ 16°18 19-20

So that the final images formed by rays in different colonrs are all of
the same size as thrown on the infinitely distant plane, although
formed in different planes, for parallel to the axis the eye-piece is very
far from being achromatic. But this imperfection is generally neutral-
ised by giving to the object glass with which such an eye-piece is
used an equal amount of over-corrected colour aberration.

Of course, the axial colour aberration of a four-lens eye-piece is
much more serious than that of a Huygenian or Ramsden eye-piece.
Such eye-pieces are thus only achromatic in the sense that the variously
coloured images appear to be of the same size.

Oblique Chromatic Aberration of a Parallel Plane Plate

As very thick lenses must be treated by the method of elements
and parallel plane plates before we can accurately apply these formule,
we must next work out the expression for the chromatic variation in
the size of an image viewed through or thrown through a parallel plane
plate.

Fig. 109 is a case of principal rays diverging through a parallel
plate and emanating from a real flat object or image P .. P, and Fig. 109«
the case of rays converging through the plate towards a flat image
P..P on the right hand.

Let Q be the point from which the rays are diverging or to which
they are converging, affer passage through the plate. From Q draw
Q.. A perpendicular to the surfaces.

Then we have seen from Formula VI. that the linear dispersion

Q..qis t%‘;
Now if  is the angle (as usual) made by the ray in question with

the perpendicular to the plate, then it is clear that the lateral
chromatic displacement in the plane of the image is simply

Axial colour aberra-
tion strong.
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A
If:tanx=Q..p,

which must then be expressed in terms of the radial dimensions of
the image. In order to express the radial dimension of the image we
must know where the optic axis of the system lies.

In Fig. 109, if the optic axis is B;.. D, ..¢, then we have B;..D
=7, and B;.. D, =C, and the distance from Q to B,..D; or A..B, is
the radial dimension of the image, which obviously equals (C — v) tan y,
and is 4 . :

If B,..D,..c, is the optic axis, then B,..P=v,and B,..D,=C,
and B,.. A is the radial dimension of the image, which = (C— ) tan y,
and is —.

If D,..B,..c, is the optic axis, then B,.. =9, and B,.. D, =C,
and A. B is the radial dimension of the image, which = (C — ») tan X
and is —.

Three successive positions for the optic axis are likewise shown in
Fig. 109a.

By our convention for parallel plates we have

B,.. P or »is a plus quantity in Fig. 109,

and a minus quantity in Fig. 109a.

B,..D, or Cis plusin Fig. 109, and minus in Fig. 109a.
B,..D, or Cis plusin Fig. 109, and minus in Fig. 109a.
B,..D, or C is minus in Fig. 109, and plus in  Fig. 109a.

With reference specially to the lowest optic axis B,..D,;..¢, all
terms are of the same sign, and we have

A A
(A..Bl)n(Q..p)z(C—v)tanX—t-p‘;’tanx=<(0~@v)-t7/;>tanx

=p..¢, (15)
or the reduced radial dimension of image, due to the increment to u.
On dividing this expression by A..DB; we have

pa.g i é,u} ' 1 )

B S X (= Tanys
e %(L) XIV
& v el i '

This formula will be found to interpret itself correctly in all cases
if the signs of C and v are entered in strict accordance with our
conventions.

In Fig. 109, Case 1, C is + and largest, and v is + ;

. C-vis plus, and Q. .p, the radial dispersion, is relatively minus.

In Case 2, Cis + and smallest, and v is plus;

. C—vis minus, and Q.. p is relatively plus.
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4( - “000088) = — -000352 inch,

which is an imperceptible amount, and as a matter of fact no oblique
colour aberration was noticeable in the image under the most careful
tests.

Cooke Photographic Lenses

Any of the wider-angled Cooke lenses of three simple lenses afford
capital illnstrations of the practical embodiment of the condition
A A e T
B p-1 o 182 1\1_1 ﬁ3
for the normal arrangement of the combmamon 1mphes two collective
lenses of the same glass and of focal lengths £, and f,, enclosing between
them a dispersive lens of focal length f{,, the two separations s and s,
being proportional to f, and f, 1espect1vel) and also the dlstfmces from
the object to L, and from L, to the image are proportional to f, and f,
respectively ; therefore everything is symmetrical with respect to the

centre of L,, where the principal rays are supposed to cross the optic

1 1 .
=—=0, and obviously i =, ; so that
a= Py e o = /83

above equation is fulfilled, and the oblique image is achromatlc, and
remains practically so under all conditions.

=0,

axis. Thus

Oblique Chromatic Corrections of a Higher Order

On reverting to the effect of separation between two lenses upon
the spherical aberrations of the second lens for different colours, which
on page 289 we worked out with special reference to an object glass,
arriving at Formula VIII, we can easily see that if the separation
becomes large compared with the focal length of the first lens, then
the variation in the second y, consequent upon du, may become very
serious, possibly reducing it by a quarter or a third ; so that y, for the
blue rays may be, for instance, y%ths of the 7, for the red rays, which
would mean that y,” for blue would be but a half of #,? for red; and
therefore, roughly speaking, the spherical aberration of the second lens
for the blue (prinecipal) rays falling upon it would be only half of the
spherical aberration for the red rays.

This means that that part of the distortion formula for the second
lens depending on its spherical aberration will be seriously modified
in accordance with the colour variation of the preceding lens; that
is, 7, will be modified in accordance with Formula VIIL, and
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B, in accordance with another, which we scarcely need work out, for
the main point is that these colour aberrations affecting the spherical
aberration distortions for each of several lenses in succession, excepting
the first, are corrections of the order %, and it is clear that they must
come into force in the familiar case of our four-lens eye-piece, and
especially when the second separation is largely increased for the
purpose of gaining magnifying power. But we have already seen that
the oblique chromatic errors of the second order of approximation are
of the form

V.. Un < 2 Apy 2 App )
U + N 2 — e e ¢ 4 ——— —T 0
Uy oo Uy ay— By -1 ay = Bn pn — 1

so that the absolute radial colour aberrations, if any, are thus a constant
percentage of the radial dimensions of the final image.

But the variations in the distortions due to spherical aberration of
any lens in a separated series, caused by the colour aberrations of the
preceding lens or lenses, are of the order 3?, as shown in Formula VIII.

Hybrid Oblique Colour Aberrations

It is then of importance to inquire what will happen if in a four-
lens eye-piece we have a residue of oblique colour aberration of the
second order, or of the order y, as we may conveniently term it, which
is either accidentally or intentionally corrected by aberrations of the
third order #*, but of the opposite sign. Fig. 110 illustrates what we Effect of correcting a
should expect to be the result. Let B..DP be an axis of measurement ¢hromatic error of
so that the horizontal distances from B..P to the oblique straight line zi‘;efrg:r gleb%rzzli
B.. C shall represent the oblique colour aberrations of the second order 42
y, which thus inerease directly as the vertical distances from B, which
latter represent ¥ as well as the radial dimensions of the image. At
the other side of B.. P we have the curve B.. D, its abscisse® increasing
as the square of the heights above the optic axis B..E. It is thus
seen to be approximately a circular curve, and represents the oblique
chromatic errors of the third order 7

At the height B..A’ we have the abscisse A’..C’ and A’..D’
equal and opposite, so that the curve B..A’.. A, which is the result-
ant of the two, will then cross B..P at A’. It will easily be seen
that the resultant curve B..A’.. A is also a circular one. While at
A’ we have no colour aberration, yet at F, half-way between B and
A’, we get a maximum of colour aberration of the same sign as the
original aberration of the second order; while at points in the image

X



Zones of oblique
chromatic error.

A constant ratio of
dispersions for dif-
ferent parts of the
spectrum  between
two glasses hitherto
assumed.

Irrationality of dis-
persion.

306 A SYSTEM OF APPLIED OPTICS SECT.

outside of A’ we get a colour aberration of the opposite sign to that of
the original aberration of the second order, and increasing as the square
of the distance from A’. Thus we may get a final image which in a
middle zone of the field of view is achromatic, but half-way between
that zone and the centre shows slight colour aberration, the blue
Imnage being, for instance, the largest, while round the margin of the
field of view the red image is largest.

Such irrationalities between corrections of two different orders are
very liable to show themselves in very long eye-piece combinations,
presenting a large field of view, not only with respect to colour aber-
rations and distortion, but also with respect to the coma and corrections
for curvature of image.

It will now be seen that the optical theory of a four-lens eye-
piece is very much more complex than it appears to be at first sight.

The Secondary Spectrum

So far we have dealt with the different effects of lenses and systems
of lenses upon rays of only two colours whose refractive indices differ
from one another by Au, for one glass, and by Ap, for another glass,
and so on; and if we have considered any rays intermediate between
such two selected rays, it has been on the tacit understanding that if
M, = the refractive index for one ray, and u, + Ay, that for the other,
and again, if u; + A’w, = the refractive index for an intermediate ray
for one glass, and p,+ A’u, the refractive index for the same inter-
mediate ray for the other glass, then we have assumed that

Sipicia

Apg  Dpy’
or that the dispersive ratio between the two glasses for one part of the
spectrum interval chosen is equal to the dispersive ratio for the other
part of the spectrum interval.

Unfortunately, however, there are no two glasses differing in
dispersive power sufficiently to be combined into an achromatic object
glass which have a constant ratio of dispersive power for different
regions of the spectrum, and it is this vrrationality of dispersion, as it
is called, which gives rise to that residual colour aberration at the
axial focus which is well known as the “Secondary Spectrum.”

The following table gives the difference of refractive indices Ay,
A, Agp, A p, ete., ete., for ordinary crown glass and ordinary dense
flint glass respectively for the spectrum intervals D to A’, F to D,
C to ¥, and F to G".
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D toA’. F to D.
Red and Orange. | Yellow and Green.

CtoF.
Red to Green.

F to G'.
Green to Blue.

| |
‘703 +°00860| 1000

Crown  —°00553 643 | — 00605 | + 00487 | 566
‘ Apy |V Bpy |/ ! Apg 1 Apy A
{ Flint . —-01034/-605| —-01220 /714! +-01709|1-000| +-01041 | ‘609

i
|
1

As experience has shown that about the best working achromatism
is secured when the two rays C and F are brought to one focus, there-
fore a contact combination of the above two glasses is so arranged that

00860 01709 _
Py P2

for the crown glass lens, and %:
2

0, (16)

where e (l + l) (l + l) for the
NS Ty 5%
flint glass lens.

The dispersive interval C to F is generally taken as unity for
each glass; then clearly any other dispersive interval may be expressed
in terms of the former. Accordingly, the figures in the second column
for each dispersive interval express the latter in terms of the dispersive
interval C to F. In this way it is clearly shown that for the interval
D to A’ the crown glass exercises a relatively higher dispersion than
the flint glass, for the region F to D the flint has the relatively higher
dispersion, while for F to G’ the flint has very decidedly the higher
dispersion.

It is clear that if Formula (16) is fulfilled, and the two rays
C and I are refracted to the same focus, then the linear secondary
spectrum at the prineipal focus yielded by the objective will be, as a
variation of F,

2y F2< Q024 + '0—1034> for the interval D to A’,
[2% Pg
J 5 012

_ F2< 20060 + o1 20) for the interval F to D,
P P2

and
_F2<'OO487 01041

) for the interval ¥ to G';
Py Pa

and it is clear that there will be prevailing dispersion of the crown
lens along the axis-from D to A’, the A’ ray focusing beyond
the D ray; from I to D the dispersion of the flint lens will predominate,
and the D ray will focus inside of C and F; while for the region

' Proportional

sectional dispersions
for crown and flint
glasses.

Condition for bring-
ing C and F rays to
one focus.

The interval C to F,
or Ap(CtoF), usually
taken as unity.

Formula for the
chromatic error D
to A'.

Formula for the
chromatic error F
to D.

Formula for the
chromatic error F
to G'.
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¥ to G’ the flint glass dispersion will again prevail, and the G’ ray
will focus considerably beyond the C and F rays.

As an example we will take the case of a double objective of
30 feet focal length composed of the crown and flint glasses whose

g oxng . g 1
main characteristics have been given above, only the values of ~ and

P1
Y are so calculated as to cause a ray half-way between B and C of
P2 ”

the spectrum to focus to the same axial point as the ray F, which
arrangement is likely to give the best colour correction for an
objective of that size (upwards of 2 feet aperture).

VariatioN oF F ror THE DIFFERENT COLOURS (IN INCHES) FOR A
TerEscorE Opikcrive 30 FEer E.F.L.
|
B ; C D, E |F| G I 185
| Minimum '
Variation|+‘33i+‘05i—'04 ~20| —-24 =10 0| +80 + 140 +1:88
! | i
It will be noticed that the total is 2:02 inches, and that the largest
minus variation oceurs about half-way between D, and E, where it is
—24. This i1s about the brightest part of the spectrum from a
visnal point of view, and since the maximum light concentration
obviously occurs at the minimum focus where a high value of Ax or
range of spectrum may coincide with a very small variation from the
minimum focal point, it is highly important that this light concen-
tration should coincide with the position in the spectrumn of the
greatest visual intensity, unless the objective is specially designed
for photographic purposes, when the greatest effectiveness and best
definition is obtained by arranging for the minimum focal length and
maximum light concentration to occur for a ray a little on the less
refrangible side of the G’ ray (the hydrogen blue ray), at which position
in the spectrum the usual photographic plate is most sensitive.
We will here give the variations in I for such a telescopic objective
for photographic purposes of the same focal length of 30 feet.

VARIATION  OF F For THE DirrereNT COLOURS (IN INCHES) ¥OR A
ProrograruIc TELESCOPE OBJECTIVE 30 FEET FocAL LENGTH
‘ ’ | ‘ | l /!
Ray . . . A B C D, E F (G| & H
\ |
| Variation +2'16i+2"20_+1'38 +‘885+'4O +'16' 0 +-05|+-18]|

|
i !

1
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Here it will be seen that the brightest visual rays are scattered
along the axis for two inches or so beyond the photographic focus, and
the image of a star formed by the G’ ray is therefore surrounded by
a large halo of wasted light, which imprints itself more and more on
the photographic plate as the exposure is extended; and that is why
the photographs of the brighter stars come out so abnormally large
when those of small magnitude have just imprinted themselves.

Triple Telescope Objectives

The ouly way known of getting rid of the secondary spectrum is by
resorting, if possible, to a combination of one dispersiVe lens enclosed
between two collective lenses, the two latter being made of two
different sorts of glass, so chosen that the mean of their partial relative
A + X_f‘3

Py P3
correspond as closely as possible with the corresponding relative partial

Aﬂz

dispersion , ete, for various regions of the spectrum shall

dispersions

, ete., ete., for the same spectrum regions for the glass

used for the dlsperswe lens.

In this way the glasses employed in the Cooke Photo- Visual
Objective were chosen; with the result that the linear secondary colour
aberrations for such an objective of 30-foot focus are reduced to less
than one-tenth part of an inch for the whole range of spectrum A’ to
H,, which is only one-twentieth part of the 2:02 inches, the total
axial chromatic error given above for the ordinary double objective of
the same focal length.

Why the Secondary Spectrum of Large Double Objectives
does not render Clear Vision impossible

Returning to the case of the visually corrected objective, it can be
shown that if the usually accepted theory of the formation of the
image by rays of any oue colour is correct, then anything like distinct
vision through a 30-foot objective of 18-inch to 24-inch aperture
would be impossible.

Fig. 110a, Plate XXII., shows a section of the usual conception
of the cone of rays converging to form the well-known spurious disc or
star image at the focus, and then diverging again, so that the beam of rays
takes the form of two straight-sided cones with both their points cut
away to the diameter of the spurious disc. If this really represented

Secondary spectrum
reduced to one-
twentieth.



The tapering-off of
the cone of rays near
the focus.

The tapering-off
most marked with
large relative aper-
tures.
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the case, then only a very small fraction (about 15 per cent) of the

-light refracted through a 30-foot objective would be utilised for

defining purposes, all the rest being wasted. Happily, however, the
real section near the focus of the converging and diverging beam of
rays is as in Fig. 1105 ; the angle between the two sides of each cone
decreases as the spurious disc is approached, or tails off into the
cylindrical shape. This can be proved by experiment, and it is a
strange fact that while mathematicians have spent a good deal of work
upon the conformation of the spurious disc and its surrounding
diffraction rings as they are formed in the focal plane, yet none have
entered upon an investigation of the conformation of the cone of rays
along the axis as it approaches the spurious dise. Such an investiga-
tion, based upon the wave theory of light, should be most instructive
and of the highest importance.

It can also be proved by experiment that the tailing off into the
cylindrical shape takes place in a more marked degree in the case of
cones of rays of large angular aperture than in the case of cones of
small angular aperture, which fact tells in favour of objectives
of relatively large aperture, and discounts their other disadvantages
in a substantial degree. =~ However, we are here trenching on the
borderland between geometrical and physical optics, with the latter of
which this work does not profess to deal. For further information on
this subject the reader is referred to a paper entitled “The Secondary
Colour Aberrations of the Refracting Telescope in relation to Vision,”
in the Monthly Notices of the Royal Astronomical Society, vol. liv. No. 2,
also to “ Description of a Perfectly Achromatic Refractor,” in the same
publication, vol. liv. No. 5 ; both by the author.



SECTION XI

A BRIEF SKETCH OF THE NORMAL AND OTHER CURVATURE ABERRATIONS
OF THE THIRD ORDER TAN*¢, ETC.

Peruaps the most important corrections that the optical designer has
to take into consideration in the course of working out photographic
lenses are those relating to the curvature of image or the deviations of
the image from an ideal flatness.

‘We found that the deviations from a plane image as calculated by
the formule of Sections V. and VI. applied to the three lenses given
as examples in Section VII. differed appreciably from the actually
measured results.

These discrepancies are indeed scarcely too large to be accounted
for by inexactness in the measurement of the curvatures, especially in
the cases of the deep curves employed in the process lens and the
four-lens Cooke lens.

It can be shown, for instance, that an increment of plus value in
the convex curvature of a lens of low refractive index, together with
a rather smaller minus increment in the convex curvature of a lens of
high refractive index, may have the effect of quite reversing the
character of a small residual oblique astigmatism without affecting the
principal focal length of the combination; while the increments in
question may easily escape all but the most exact methods of
measurement.

But in the cases worked out the character of the image curvatures
at still greater distances from the optic¢ axis proves that the discrepancies
are chiefly due to the presence of curvature aberrations of a higher
order than those we have yet dealt with.

CENTRAL OBLIQUE REFRACTION

The Three Corrections to the s
First of all, for the purpose of calculating the #’s, we have assumed
the refractions to take place in a plane tangent to the vertex of each
311
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surface or element, and we may first consider the nature of the
corrections which would have to be applied in order to allow for the
y's being reduced to perpendicularity to the normal oblique ray passing
through the centre of curvature, since all the formule for spherical
aberration assume the y’s to be measured at right angles to the
aforesaid ray.

Primary Planes

Reverting to Section V., page 121, dealing with the question of
obliqgue rays passing centrally through a lens, we had at the first
surface, Fig. 44a, the equation

}1 = (y—; fi’zz)g;l I;y;, leading to f—1=§ +o(U” 9t~y (1)
in which 2, denoted the required oblique distance from d, the oblique
vertex, to ¢, the crossing point of the two extreme rays in the primary
plane.

These y’s were the distances ¢..¢ and ¢. . e, reckoned in the element
plane, as shown in Figs. 111 and 112. Now it is clear from these
figures that the #’s, so reckoned, become more and more incorrect as the
aperture and the angle of obliquity ¢ increase. The #’s are subject to
three corrections: (1) the correction for obliquity; (2) the versine
correction, and (3) the correction for the positions of the #’s or the
lateral separation generally existing between themn.

(1) The corrections for obliquity consist in converting the distances
¢..¢and c..¢ in the element plane into the distances ¢..g and ¢;..4,
measured perpendicularly to the normal oblique ray Q...

(2) The versine correction is due to the retreat of the spherical
surface from the element plane. Let the extreme ray Q..e be pro-
duced to cut the spherical surface at %; from % draw %../ perpen-
dicular to the normal ray Q..r»; then through ¢ draw e¢..% parallel
to Q..7, and cutting % ..7 at ; then the distance %.. % is the versine
correction applicable to ¢..g in order to convert it into %.. 7, which
latter is the real y upon which the spherical aberration should
correctly be based.

(3) Still another species of correction has yet to be applied—a
correction not of the values of the #’s, but a correction for their posi-
tions. Fig. 111 explains this. ~We must bear in mind that the

Formula (1) gives the value of J-l——q or %, that is, the reciprocal value

of the focal distance d..q measured along the normal oblique ray
Q..c..p, with absolute correctness, provided that
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1st. The spherical aberration function e is correctly formulated.

2nd. The values of the two %"s, k..l and =..¢ are correctly
given ; and

3rd. The two %”’s are at equal distances from the focus ¢, that
is, that [..¢=1¢..q, in which case the two »"’s would be in one straight
line. But it is plain that this can only happen when either the
radius 7 is infinite and the refracting surface is plane, or when @ or
d..q is infinite, when, of course, the separation ¢../ becomes a
relatively vanishing quantity. )

It is clear in Fig. 111 that the lateral translation of %..7 or v,"
towards the right hand, while assuming its length to remain constant,
must cause the crossing point ¢ to move to the left hand, nearer the
lens ; that is, the correction due to the separation of the s is in this

2 q 1
case of a plus nature, since it adds to the value of -
It is also clear that this separation of the two »™s gives rise to a
. 1 . ! g
correction to — which operates in the primary plane only. We shall

also find that it works out as a function of tan*¢ and o’ tan® ¢, and
therefore comes under the head of the formule of the third
approximation. We will now treat these corrections more explicitly.

The Correction for Obliquity
Primary Plane

It will be better to deal with the question in general terms, first
taking the obliquity correction. :

Let @ =the semi-aperture A..e or A..e of the pencil where it
crosses the element plane. Let b =the distance A..¢ from the lens
vertex to the point in the element plane where the normal oblique
ray Q..r cuts it.* Then if the angle PAQ = ¢, and QrA =4,
as before, and P..A=wu, as usual, then o or A..c=7r tan 6

u
=rtang ——. Let e..g=y and e ..g, =y,

Then, as in our earlier inquiry, in Fig. 111,

i=(a+0)? and y2=(a - 0)? and y,y,=(a® - b2).

Then in the right-angled triangles c¢..e..g and ¢..¢..g; it is
clear that

(¢..9)* or y?=y* - y2sinceg and (e;..g,)* or y,2=y,2 —yrsinceg;

* In this Section the terms @, 4, and ¢ will supersede the corresponding terms 4, B, and
C of Sections V. to VIII4., as they are more convenient for manipulation.

Correction for posi-
tions only applies in
primary planes.

Notation.
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or oblique pencil expanding in diameter as it traverses the distance
between the element plane and the spherical surface.

We also see that the functions of a’? or o® tan® ¢ and of tan* ¢ or
b%* are three times as great in primary planes as in secondary planes.

ECCENTRIC OBLIQUE REFRACTION

We may now deal with the more complex #’s involved in the case
of eccentric pencils on the same lines, taking as our basis equation

il = (;yfz al %>?Z}y1, leading to x_li:: g + (5% + Y + Y¥)
(see page 143, Section VL)

Let Q..e and Q..e (Fig. 114) be the extreme rays in primary
planes of an eccentric pencil limited by a stop s, as in our earlier Fig. 50.
Let N be the point where the principal ray through the centre of the
stop strikes the element plane, and let A be the vertex where the
curved surface cuts the optic axis P..» and touches the element
plane. Tet c..e=y and c..e =y, as before. Then ¢, the new
constituent in both z’s due to the eccentricity of the pencil, is the
distance A ..N which = (P.. Q)I%g =u tan ¢ u—_Dﬁ , when, as usual, ¢
is the angle PAQ and D=S.. A  So that b and ¢ are both

functions of tan ¢. Let us then denote A..N or tan ¢ulg£D by the
symbol ¢, A..c or » tan ¢ u—%; being b, and the semi-aperture of the
pencil N..e or N..¢ where it cuts the element plane being a, as
before.
Obliquity Corrections to the #’s
Primary Plone
Here let ¢..g=9," and ¢,.. g, = y,"

In the right-angled triangle ¢..c..g we have as before

(e..9%or y2=(e..c)2—(c..9)%;
that 1s,

A0S

ni=9t-9 tan® 6 ;

\ w o
o M 912(1 - tan® ¢m> =51 - ),
and similarly

e~ g1 0t 9,7 =y X(1 — ¢%)

The basis equation.
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The Corrections for the Separation between the two y’s
Central Oblique Refraction

So far we have been considering, in a qualitative sense, the nature
of the small corrections which have to be applied to the two #’s in
order to convert them into the »"’s.

We will now deal with those corrections which are due to the
separation between the two %”s to which we have previously alluded.

We may again legitimately express the necessary corrections in
terms of the uucorrected y’s, since to express them in terms of the
corrected 3”’s would lead to functions of the order tan® ¢ which are
beyond the scope of this inquiry.

First we have our fundamental equation, with reference to Fig. 111,

% fﬁ—p = hffx’

wherein f; so far has been held to mean the distance d .. ¢, whereas it
should be the distance /..¢ (Fig. 111), the versine d ../ being deducted.
Similarly f, has been held, so far, to mean the distance d.. g, whereas
it should be the distance ¢.. ¢, the versine d..¢ being deducted. But
as regards the numerator x—f7, it is clear that since z —f, is simply
the distance ¢,..p, therefore if we deducted the versine ¢..l from f
we should also have to deduct it from z; that is, the terms (z — f;) and
(f, — %) are not affected by our corrections; but obviously £, and f, in
the denominators must be corrected for the versines, so that the above
equation becomes

L fo-z
?/1'*:;’12"?/2 2yg)
= oy

S ACES M) (f 9 f> Y S - )<f2 gé)»

Vinleh _31121\ 1 ptaile 2 Dt 1
yl{f +a’)/,fl ‘),«fl 1+ % f2 f2 xg,.f2 )
y1+ >+ /3 yz 1 Tl

f),f2 =htYst 07], 97}.2
{<gci+f2>+,,r<f1 +jyc2>\—y1+ﬁ 5 (JJ} ii) (10)

We may now express f; and f, in terms of d../ or % and the
spherical aberration, so that we may put
T ¥

o 1 1 o
e Lodn Dy b = O MR
i) e, U B

The basis equation.
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! Lo NN g o Wy 1 _e@i+ l)? e 1 Prima.ry:l plane.
z I_L Yi+Ys B Yyt Ys 20 p (y +y)? 200 (11) Value of :;,corrected
. (y 13_+_y. 23)2 . } = for separation be-

(1 +9p) 4% tween the ¥'s.

The last term in this formula need not be heeded, as it does not
involve the spherical aberration at all ; for if, in our original equation,
= fo—2
Y—F— =p..¢g=y 2=
-/l fl y2 f2 ’
we suppose that there is no aberration whatsoever, and therefore that

Ji=u=f, and yet suppose that the two 3’s are at unequal distances
from ¢, and then correct % for the versines as before, we then get

- W -2
% 2= Y3,
\ y] A ?/2
n - o — 22

2r D

which finally works out to

1.1 @l+y®? 1

2o (g gy 4R
which means that the distance z is to be measured from a point very
slightly to the left of the vertex d, by a minute amount varying
inversely as .

This curious result doubtless follows upon our assuming the
versines. to vary exactly as y* which is not strictly true. Anyway
this term has nothing to do with our present purposes and may be
ignored, so that we have, after dividing out the functions of ¥, and ¥

1 1 o
S ,;(?/1" + Y’ = Y1)

Wk 4_,3 2 2 _ 3 1_
+‘M(.7/1 Y Y T Yy %yz)m.ﬁ

1

« 2, &
Rt = 200, 3y~ 2,

Here the first line is the result of the second approximation, which we
have had to deal with before in Sections V. and VI. After adding
together the second and third lines we get finally 1
Primary plane.

1 1 o o 3 1 Reduced value of -
A —(U1 + 137 ~ ;) + =2~ 20,%9,% + .7/1.1/23)%'7‘;; . (12) i arc ol

i f @ corrected for separa-
We have in the process leading to this result dealt with F g 1, WRESSeeR ey,
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the separation be-
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Primary plane.
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Corrections to % for

L
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in which the two #’s are at opposite sides of the normal oblique ray,
and we have treated both #'s as positive quantities.

Under this assumption, then, 7, in the next Figure (112) would
have to be considered negative, so that the above y,°y, — 25,%.% + y,3,*
would become three negative quantities. Now it is clear that if a, the
aperture of the pencil, vanishes, then g and y,.become numerically
equal, and the above correction of the third order will not therefore
vanish, and a little consideration and a reference to Fig. 115¢ will
show that this correction to the oblique focal length z, due to a lateral
separation between the two #’s, should not vanish when the aperture
of the pencil vanishes, for the smaller is the aperture the smaller is
the angle between the two rays bounding the pencil in the primary
plane; and assuming their two focal points ¢ and ¢, on the oblique
normal ray 7..Q’ to remain fixed, it is clear that the position of their
intersection point ¢ becomes highly sensitive to even a most minute
lateral separation between the #’s.  For instance, if the two rays
through 4 and = focus at fixed points ¢ and ¢, while n..¢ is
transferred laterally to «/..# without changing its length, then the
point of intersection of the two rays will be transferred from // to /”.
But the formula of course vanishes when either one of the #’s = 0, since
then one ray becomes the normal oblique ray Q.. f.

If the reader will carry out a similar investigation in the case of
Fig. 112, treating both i’s as positive quantities, he will arrive at
1
2r’
and expressed in terms of @ and b for central oblique refraction, or
of a, b, and ¢ for eccentric oblique refraction, will lead to exactly the
same formule as Nos. (13) and (14) below.

We may proceed to convert (12) of the third order as follows :—
First, in the case of Fig. 111 for central oblique refraction we have

the correction — 3(?/133/2 =+ 22,7 + 117°) which when worked out
PL

y1=a+band y,=a—"b, so that % = % + E (a*+ 3b*) (which has been

dealt with before) plus the following new terms—
at + 2a% — 2a0® - b

=20 (20% - 402 + 2)
+ at — 2a% + 2al® - b

i’
and the function of the third order is finally
e 1 252 — Apt 3
+ " 2m(ﬁxa b2 — 4b%), (13)

for central oblique refraction.
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Eccentric Oblique Refraction

Turning now to the case of eccentric oblique refraction, Fig. 114,
wherein the two y’s are again on the same side of the central oblique
ray Q..7, we have

yy=0+c)+aand y,= (b +¢) - a.

This being the case, we shall find that the value of the consequent

funetion
1

s Ol 3\&
‘.Zrz‘t( Y1°Y2 — 2Y1Y2 y1y2)#’

expressed in terms of «, b, and ¢, works out to
1
©Of (44282 — 414 + 8a2be + 40262 — 2417 — 168% — 16h6° — 464}, L (14)
,u,l dri

The first two terms apply to the central oblique refraction which
we have just worked out, while the last six terms, all involving ¢,
follow from the eccentricity of the pencil. It is interesting to note
how the terms of Formule (13) and (14) equate to 0, when in (13) a =5,
or in (14) « =0 +c¢, for, of course, when this is the case, ¥, becomes
zero, o1, in other words, the lower ray coincides with the normal oblique
ray, so that the case is fully met by the usual spherical aberration

formula ;i:yf. It might at first be thought that Formule (13) and

(14) should equate to 0 when @ vanishes, but this is not so, for we
have seen that the narrower is the pencil the greater is the sensitive-
ness of the position of the focus to a minute lateral separation between
the two #'s.

These corrections of the third order consequent upon the relative
lateral displacement of the two #’s, obviously come into force in the
primary plane only, and there is nothing corresponding to them in the
secondary plane.

It is clear that such corrections as (13) and (14) could not apply
to a parallel glass plate or a plane surface, since » would become
infinite and the value of the formule vanish,

It is also clear that when we come to add to the functions of the
third order for the first surface the corresponding functions for the

. . . B . .
second surface, then —*, which is the “ inside glass ” value of the spherical

aberration, will become w,;, or the outside glass value for the samé
aberration.

Primary plane.
1
Corrections to 5 for

the separations be-
tween the ¥'s.

The separation cor-
rection only valid in
the primary plane.
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We have now considered all the corrections of the third order
which have to be applied in order to couvert the y's of the second
approximation into the z’s of the third approximation, the correcting
formulee being functions of , and w,, or the spherical aberration
formule of the second approximation for the two surfaces which
resulted in the formule for curvature errors previously worked out
in Sections V. and VI, which, as applied to the single surface that
we have been considering, was

l*:l(l ] 2(1 l*_+_1>} 2
2pu? r+u> r y
(see Formula XVIII. (R.), Section I'V.), and the corrections that we have
been dealing with in this Section are of course all products of the

corrections to y; or ¥, into the part of the above formula included in
the large brackets.

THE INTRINSIC SPHERICAL ABERRATION OF THE THIRD ORDER

But we have yet to consider the intrinsic spherical aberration of
the third order in its application to oblique rays; that is, we have to
find what are the modifications to the curvature corrections consequent
upon our taking into account Formula XX. (R.) of Section IV, (page 63),
which is a function of y* and therefore, in its present application, of
tan* . We will first deal with the case of

Central Oblique Refraction

Primary Plane

Here we must revert again to the fundamental equation dealt with
on page 121, Section V., applying also to Fig. 111—

1 (s (3’1 +y_2> 1
o My
in which we must now stipulate that

e =

h
the last terms expressing the intrinsic spherical aberration of the order
y* as given in Formula XX.(R). We are not now to consider any
corrections to the y’s involved in yy* since such procedure would only
result in corrections of the order ¢°, etc., but have to find what is the

+ 0%+ x, %" and ;: =3 :T: + 0% + X1 Ya'
2

2R
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resulted in the formule for comatic stop corrections or E.C.s, and 3¢
and ¢* in the formule for spherical aberration E.C.s.

Therefore the terms (14a’bc and 2¢%c) ;}u— for primary and secoudary

planes in the third approximation are comatic functions involving the
semi-aperture squared, and the high ratio of 7:1 between primary and
secondary planes instead of the 3 :1 for the second approximation is
significant of much that requires working out.

The two terms (12a%”* and 2a202)7711~t imply spherical aberration stop

corrections dependent upon the aperture of the pencil, whose influence
is six times as powerful in primary planes as in secondary planes.

All the other terms with one exception imply the usual ratio of
3 :1 in primary and secondary planes.

The exception alluded to is the term —a®® in the obliquity
corrections which does not appear at all in the secondary plane. This
is also a highly significant term, and explains a phenomenon commonly
observable at the foci of oblique pencils passing through certain
photographic lenses, and that is a sort of double coma. For instance,
when a little way inside of the focus the section of the oblique cone of
rays shows over-correction for spherical aberration in the primary plane,
and the. primary plane only, while in the secondary plane the spherical
aberration may be about correct. Thus there appears to be a side flare
both towards the optic axis and away from it.

The terms 12a%* and 2a%* may also tend either to aggravate or
to mitigate the above effect.

As regards the corrections, functions of E’%&’ which follow from the
lateral separation between the two %’s, although they apply only
in the primary plane, yet their quantitative value may usually be
regarded as by no means nnimportant compared to the obliquity and
versine corrections.

The Functions of y,

Turning to the functions of x,, or the intrinsic spherical aberration
of the third order, it is interesting to see that the corrections in the
primary plane are exactly five times as much as in the secondary
plane.

The significance of this discrepancy between the ratios 3 :1 and
5:1 for the functions of w, and y, respectively, together with the
presence of the separation corrections in the primary plane only
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(supposing we leave all corrections involving @, or the aperture of the
pencil, out of consideration), will shortly become apparent in studying
the actually measured or calculated curvature of image corrections for
certain photographic lenses, figured on Plate XX1V.

The peculiar comatic formation which will satisfy the ratio of 5:1
between the E.C.s of the third order was shown on Plate XVI,
Fig. 797, as being formed of a series of duplex comatic circles distributed
over a length equal to five times the radius of the largest one; while
the size of the formation will vary as tan®¢ instead of as tan ¢.

We have so far dealt with all the oblique curvature aberrations of
the second and third orders which are functions of the spherical
aberrations at the surface or surfaces; but the series of terms would not
be complete without also taking into account the end corrections, and
corrections for converting  into #', carried to the third approximation.
These corrections are those marked first end correction for converting
% into ¢', and second end correction respectively, in the group of
Formule (10) on page 119, Section V. It will be found that a third
approximation will lead to corrections of the order tan*¢; which will
apply equally to both primary and secondary planes.

But the complete working out and reduction of all these aberrations
of the third order, and their expression in terms of a, 8, and z, as far
as may be, implying the addition of the terms for both surfaces of the
lens or element, would involve very much more space than we have at
our disposal; and their complete discussion would require a volume to
itself, although we should expect a much greater simplification in the
final results for one lens or element.

Not only would the aberrations of the third order which in-
trinsically appertain to each lens or element require discussion, but
also those which we may conveniently call the borrowed aberrations of
the third order which arise in the case of several lenses in succession.

For instance, a highly curved image thrown by a first lens will,
from the point of view of a second lens placed at some distance behind
it, lead to variations in tan ¢, and a,, dependent upon the first angle
of obliquity ¢; which may often be too considerable to be ignored.

Also the image of the stop centre thrown by the first lens may be
subject to a considerable spherical aberration leading to variations in
by, again dependent upon the first angle of obliquity ¢.

These aberrations of image curvature of the third approximation
present an ample field for the exercise of a higher order of mathe-
matical skill than has generally been called for in the present work.

The complete reduc-
tion of the formulae
of the third order
highly laborious.

Corrections of one
lens affected by pre-
ceding lenses.
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Some Practical Examples of Hybrid Curvature Errors

Before concluding this Section it will be instruetive to reproduce
in Plate XXIV., by the kind permission of Dr. Moritz von Robhr, a few
diagrams from his most valuable and painstaking work, Z%heoric und
Geschichte des Photographisches Objectivs, which furnish illustrations of
certain of these curvature aberrations of the third order which we have
been dealing with. These graphic curves show the deviations from true
flatness, in primary planes by the dotted line, and in secondary planes
by a solid line, of the images of distant objects thrown by various
types of photographic lenses. They were worked out by careful
calculation, on the supposition that the stop of the lens was in its
usual working position, but reduced almost to a point ; that is, the
curves traverse the foci of infinitely narrow oblique and eccentric
pencils.  Thus all corrections of the third order involving a (the
aperture), such as we have lately been dealing with, are eliminated.
Therefore, if the stop of any of the lenses were opened out to
considerable working aperture, as in practical use, it would by no
means follow that the curves of aberrations from the flat image would
remain like these diagrams; indeed, in many cases the ecurves
would become very substantially modified, in some cases favourably
and in other cases unfavourably, a fact which somewhat discounts the
value of these diagrams from the practical photographer’s point of
view.

Each of the lenses here dealt with is supposed to be placed
on the left hand, and to be 3-5 inches equivalent focal length on the
scale of the plate; the ordinates represent angular distances from the
optic axis ; the abscissee represent the aberrations from the plane
image, but for the sake of clearness these are four times exaggerated.

Every 5 degrees are marked off along the vertical, and every
millimetre of horizontal aberration along the horizontal base line, which
represents the optic axis.

Fig. 116 is the curve for Steinheil’s Orthostigmat Lens, Fig. 118
for his Antiplanat, and Fig. 120 for his Rapid Antiplanat.

These three curves are substantially of the same character. The
broad features are the under-corrected field and over-corrected
astigmatism within 20 degrees of the axis. The image formed by
rays in primary planes (dotted) is more nearly flat than the image
formed by rays in the secondary plane (solid). This failure to come
up to a plane image simultaneously is due to the imperfect approach
to the fulfilment of the Petzval condition.
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Here we bave strongly marked plus curvature errors tending to
round images (concave to the lens) of the second order or varying as
tan? ¢, against which are working minus curvature errors of the third
order varying as tan*¢. Hence the latter rapidly overtake and more
than neutralise the former as we get away beyond 25 degrees, but
the 4 curvature error for rays in primary planes is at a maximum
at 20 to 22 degrees, but apparently beyond 30 degrees for rays in
secondary planes. But the curve of errors is of the same general
character in the two planes, although the maxima and points of crossing
back over the focal plane do not coincide.

Fig. 122 for Dr. Rudolph’s Wide-Angle Anastigmat furnishes a
capital example of the same general features as the last three, excepting
that the maxima much more nearly coincide, and the astigmatism is
reversed.

Fig. 123 for an old type Ross Doublet Lens is a case similar to
the preceding for rays in primary planes, but it is doubtful whether
the curve for rays in secondary planes shows any decided tendency
to a maximum followed by a curve back again; indeed, aberrations of
the order tan*¢ appear to be only slight, while yet strong in the
primary plane. These curves may be taken as fairly typical of the
curvature errors exhibited by the old-fashioned Rapid Symmetrical
and Rectilinear Lenses, excepting that the curve for rays in primary
planes does not always retreat from the lens at the outskirts of
the field.

Fig. 121 for a Cooke Lens, Series V., indicates a very much closer
approximation to an anastigmatic flat field ; not only is the Petzval
condition more nearly fulfilled, but a good deal of anastigmatic flatness
is also gained by the separation between the lenses.

Here we have a residuum of 4 curvature errors of the order tan® ¢
in both primary and secondary planes counteracted by — curvature
errors of the order tan'¢; the latter at the outskirts of the field
asserting themselves so much as to throw the images back behind the
focal plane. The maximum for secondary rays is at about 22 degrees,
and that for primary rays at about 18 degrees from the optic axis.

Fig. 117 gives the curves of errors for an old form of Cooke Lens,
Series 111a (the lens figured in Fig. 60, Plate XIL), and Fig. 119
gives the curves of errors for the well-known Goerz Double Anastigmat
(the older cemented doublet). These two cases are of the same general
character, excepting that in Fig. 117 the primary image is by first
intention curved back convex to the lens, and is slightly concave to
the lens in Fig. 119. But the most remarkable characteristic lies in

Dr. Rudolph’s Wide-
Angle Anastigmat.

0ld Ross Doublet
Lens.

Cooke Lens, SeriesV.

0ld Cooke Lens,
Series 111a.
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the fact that the curvature errors of the order tan‘¢ are decidedly
negative for rays in secondary planes, but positive for rays in
primary planes. Hence the manner in which the two curves cross
one another at 27 and 30 degrees respectively, after which there follows
a rapid mutual separation,

Now it is clear that were the ratio between the aberrations of the
third order invariably 3 : 1 or any other fixed ratio between the primary
and secondary planes, then such graphs as these could never arise.
But since (leaving all terms containing « out of consideration, as we
are dealing here with pencils of infinitely small aperture) the third

order functions of ~ are in the ratio 3:1 in the primary and secondary

13
planes, while the third order functions of y are in the ratio 5:1 in
the primary and secondary rays, then we can clearly see that in the

case of the functions of = being of the opposite sign to the functions

of x we may easily have the total aberrations of the third order plus
in one plane while they are minus in the other.

The separation corrections to the y’s, existing, as we have seen,
only in the primary plane, cause a still further degree of independence
between the curvature errors in the two planes.

And the scope for vagaries of this sort is still more enlarged when
we come to dedl with the images thrown by pencils of relatively large
aperture, for we have seen that in the primary plane there are functions
of ¢ that are seven and six times the corresponding functions in the
secondary plane.

Therefore it is that, if we take the lenses we have dealt .with and
open out their apertures and locate their oblique foci (by obtaining the
best possible distinctness of image), we may find the curvature errors
come out substantially different to those shown on Plate XXIV.

It is clear, then, that it is not always practicable to determnine the
working character of a lens by calculating its curvature errors for
infinitely narrow pencils only. It will easily be seen that the future
progress of photographic lenses towards perfection depends chiefly upon
the successful elimination of the curvature errors of the order tan* ¢,
and the doing of it with the simplest possible lens construction.
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