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PREFACE.

It has long been acknowledged that the course

of Physics appointed for the Undergraduates is

by no means commensurate with the present en-

larged state of that department of science : of

late years, however, Stack's Treatise on Optics,

and Brinkley's System of Astronomy, have in

part obviated this complaint. The first of these

works, though the theoretic parts are not suffici-

ently diffuse, may serve for the purpose of in-

struction for several years to come ; by which

time the science of Optics will have assumed a

new face. The latter contains a great mass of

information, conveyed in a pleasing form, and

has already contributed much to the improvement
of the students; in particular it has familiarised

them with certain parts of trigonometry which

had been little attended to. The department of

Mechanics is alone neglected, arid left in the

same state as it was a hundred years ago, tho^igb

it is of more practical utility than any other part
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of the course. The treatise of H elsham was,

when published, an excellent book ;
but it is

manifestly obsolete, and in several places erro-

neous ; it only considers the equilibrium of ma-

chines, which is deduced in an unsatisfactory

manner from the principle of Virtual Velocities,

and the theory of motion on the inclined plane,

and of the circular pendulum, is almost dis-

graceful.

Hamilton's four Lectures are little better than

Helsham : the composition of motion is placed at

the end of them instead of the beginning : the

third Lecture is a group of unconnected topics

thrown together without order
; and the second

deceives the student by the easy manner in which

it disposes of the subject of Capillary attraction.

Under these circumstances, the better class of

students had recourse to the treatises of Wood
and Vince ; but these are imperfect, being defi-

cient in practical information ;
it has therefore

been long desired that a treatise should be pre-

pared, adapted to the method of instruction pur-

sued in the University.

It may require some explanation why one so

little known, and so imperfectly qualified for the

task, as the Author of this treatise, should have

ventured on this undertaking, to the exclusion of

many, his superiors in academical rank and in

talents. Under the system pursued afr present in
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Trinity College, its Fellows can scarcely be ex-

pected to devote themselves to any work of re-

search, or even of compilation ; constantly em-

ployed in the duties of tuition, which harass the

mind more than the most abstract studies, they

can have but little inclination, at the close of the

day, to commence a new career of labour. How
different is this from the state of the English

Universities, where the tutors constitute a very

small part of the body, and the remainder have

both leisure and incitement to pursue their pecu-

liar studies, and increase the literary fame of their

Alma Mater by their publications. In the pre-

sent case the author happened to be less occupied

than most of his brethren, yet he was engaged

from seven to eight hours daily in academical

duties for, the year during which he composed

this work.

This may in part account for its defects ; but

a considerable difficulty was presented by its be-

ing necessary to provide for the instruction of

three different classes of students, and he is not

certain that he has succeeded in the attempt.

The first of these classes is composed of those

who, from defective intellect, or from idleness,

want the capacity or inclination to acquire abstract

knowledge : such persons can make no use of

principles, but they may learn results; algebraic, or

even geometric proofs are beyond their acquire-
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ment, but they possess memory, and it may be

stored with useful information. They are therefore

to be loaded with as little theory as possible : but

the composition of Motion and Forces, its simpler

applications, the construction of machines, and

many similar topics, should be required of them at

examinations, altogether making a considerable

portion of the text.

The second class, which fortunately predomi-
nates in point of number, have faculties of a higher

order, and require a wider field ; of them may
be required a knowledge of Elementary Algebra,

Trigonometry, and the simple analytic properties of

the Conic Sections. These will read the entire ofthe

text, except perhaps the properties of the Logarith-

mic, and the entire of it may be expected from the

candidates for honors at the quarterlyexaminations.

Still this is not sufficient, and there remains a

third class which is entitled to some notice ; it con-

sists of those who wish to pursue the course of Ma-

thematical study which has lately been opened here,

and are disposed to acquire the Transcendental

Analysis. For them notes are added to each chapter,

containing such propositions as seem too compli-

cated to be admitted into the text, or by including

applications of the Differential and Integral cal-

culus, become inadmissible into the general course

of instruction. This part the Author fears will

be found most defective ;
in particular unity of
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plan is wanting; but he hopes for some indulgence.

When he began the work, which was necessarily

printed as it was written, he did not contemplate

any extensive introduction of the Calculus : sensi-

ble of the absurdity of treating Dynamical en-

quiries without some Fluxional process, he intended

to lay down the elementary principles of the Dif-

ferential method, (which are in fact as easy as

common Algebra) and refer to them as oc-

casion offered, rather than use Prime and Ultimate

Ratios, Indivisibles, or any other disguisedFluxions.

This is partially effected in the Notes to the third

chapter, which, with a little developement, and the

addition of Taylor's Theorem, would be sufficient ;

but he then feared to go so far. Since that chapter

*was printed, his views have been extended, partly

by the extension given to the courses of the Gold

Medal, and Bishop Law's Premium, and partly

by his own experience : he has found, with sur-

prise and pleasure, that several Undergra(hiates in

the Senior Classes, possess a knowledge of the Cal-

culus much surpassing that which he had hesitated

to require, and he determined to use it more freely

in the subsequent parts, without confining himself

to the differential theorems above mentioned
;

more particularly as they must be superseded by the

elementary work on this subject, which Mr. Lard-

ner is publishing for the use of Undergraduates.
In one respect, its free introduction is im-
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peratively demanded
; it is necessary for the cha-

racter of the nation, that the higher branches of

Mathematics should be more widely cultivated.

The erroneous notions on this head, which pre-

vail on the Continent, can scarcely be credited :

as an example it may be mentioned, that a foreign

adventurer lately ventured to assert of an eminent

English Mathematician, that he could not integrate

an easy differential equation of the second order !

It is certainly true^ that for a long time the pro-

gress of this science was slow in these countries
;

this arose from the example of Newton, though
it might have been expected to produce a con-

trary effect. That great man, while he felt all

the advantages of the method of Fluxions, was

led by his unfortunate preference of the ancient

geometry to publish under a geometric form, the

results which he obtained by his newly invented

analysis. This gave the bias to his followers ;

and while the inventions of Taylor, Maclaurin,

and others, were caught and used on the Con-

tinent, it may be said that none of the scholars

of Newton were capable of going beyond him
; a

sure evidence of the impropriety of the methods

adopted by them. Since the beginning of this

century, the prejudice in favour of geometry has

declined ; many both here and in England have

devoted themselves to analysis, and with success

more than proportionate to the duration of their
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application, and it will soon appear that the

natives of our islands possess the requisites for

these pursuits as highly as either the countrymen of

Lagrange or Euler.

It is evidently desirable that an early impulse

should be given to the Students : the Lectures and

Examinations of Dr. Lloyd effectually provide for

the diffusion of very high mathematical knowledge

among the candidates for Fellowships ; but it

seems advisable to begin lower on the scale,

and with this view, the Author has composed
the -Notes on the second part, so that they contain

a sketch, though very elementary, of the appli-

cation of analysis to Dynamics. It is not intend-

ed that the solutions there given should be used

to compare the new methods with the old ;

for the problems solved are of the simplest kind,

and evidently beneath the power of the means

employed: in particular, they are sometimes de-

ficient in brevity, but they are always attainable

by an uniform route, and to a certain degree in-

dependent of any peculiar talent in the investi-

gator. Among the examples may be mentioned

the attraction of a sphere, Parabolic projectiles,

the orbit described by a force in the inverse dupli-

cate ratio ofthe distance, which Newton solved only

indirectly and the circular pendulum : in particular

the doctrine of Moments of Inertia, and the theory

of the Centre of Oscillation, will be found



XU PREFACE.

worthy of notice, and the principle of D'Alem-

bert, which has scarcely found its way into

the English treatises on this subject, notwithstand-

ing its immense power in Dynamical enquiries.

By the perusal of these the Student will acquire

the habits of analysis, and be prepared for more

difficult problems. This triple division of the

treatise is indicated by the Table of Contents placed

at the end of the volume : those Articles before

which no mark appears are to be read by all the

Students ; those to which an Asterisk *
is prefixed

may be omitted by those who are satisfied with

inferior judgments. Of the Notes, those which

have no mark prefixed involve the Calculus, and

are not to be required of Undergraduates under a

penalty in case of failure ; those marked t may be

classed with the Asterisks of the Chapters.

It remains to apologize for the Typographical

errors, which it is feared are numerous
; the em-

ployment of the Author prevented him from at-

tending to the correction of the Press, and the

printing of formulae requires a certain familiarity

with symbols, which is not commonly possessed by

Compositors. It will however be found, that the

latter parts are much less incorrect than the com-

mencement.

TRIN. COLL.

October, 1820.
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A SYSTEM

OF

MECHANICS, &c.

THE Science of Mechanics includes the notions of

Matter, Motion and Force ; the first of these possesses

the attributes of Solidity and Inertia ; it is divisible as

far as our senses or even our imagination can go, but

we are certain that its ultimate particles must be indi-

visible, or at least, that they are never divided in the

operations of nature. In the strict sense of the term

no mass of Matter is *solid, for no mass is destitute of

pores which are capable of containing other substances*

thus wood contains air between its fibres ; and air water,

diffused in it in the state of vapour ; whether the atoms

of which sensible masses are composed be solid or not

it is impossible to determine, for the arguments com-

monly used are, some doubtful, and some false* This

much is certain, that these particles act on each other

without being in actual contact (a), by means of powers

connected with them by the Author of all things, and that

hardness, strength and toughness, arise from the balatice

of two antagonist forces, one resisting the approach of

the molecules composing a body, the other their sepa-

ration : the first of these may be named the Repulsive,

the other the Cohesive forces of the atoms. Where the

B
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forces act with great intensity, the body presents the

quality of Hardness, resisting any attempt to separate

the particles ; where their sphere of action is of some

extent, it is termed Elastic, and possesses the power of

resuming its original dimension, when the power which

compressed or extended it ceases to act. If the repul-

sive force be diminished, or the cohesive increased, the

bulk of the body must diminish, as when it is com-

pressed by an external force, or when its temperature is

reduced. H; at being always an antagonist to cohesion,

by its action solids become fluid, and liquids are changed
into vapours, the intermediate steps being marked and

measured by their expansion.

Inertia is a term invented to express that quality of mat-

ter by which it is indifferent as to rest or motion, that pas-

siveness to every impulsewhich is so decidedly its attribute.

Were there no other being in the universe it nmst be for

ever unmoved and dead, were it once put in motion it must

move for ever j and they who dreamed that the universe

was caused by the fortuitous concourse of atoms, shewed

their absolute want of observation. That matter has

no power to put itself in motion every one will readily

admit, but it is thought by some hard to conceive liow

it can be indifferent to rest j at the first view it appearis

that all motions decay, and that as some cause is rie-

quired for their beginning, so it is necessary to main-

tain them: but if we examine more minutely, we find that

there exist powers, capable of producing this loss of

motion, and to which therefore it must be attributed,

such as the resistance of the air, friction, stiffness of

cordage : if these be diminished, for they can never be

removed, the motion is prolonged, and to such a degree,
as decidedly shews, that if they were removed, the mo-
tion would be perpetual. The quality of absolute
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Inertia belongs only to matter in tlie abstract, for every

atom of it with which we aie acquainted acts on others,

being the vehicle of the energies, by which the Governor

of the Universe has ordered his work to be swayed :

Gravitation resides in every particle of the solar system,

Electricity and Magnetism and Heat, are in this globe

almost omnipresent, and the actions of bodies on light,

and the play of Chemical affinities, indicate the existence

of countless forces resident in matter. But the effects

of these are obviously distinct from matter, and cannot

ultimately be explained by any material agency : besides

we see that, they cannot affect our conclusions, for

in our inquiries we are aware of their influence, and

allow for it, consideriug them as unconnected with

matter; as instances, we reason as if rods were inflexible,

cords pliable, and machinery void of weight, but merely

conveyers of forces, and we obtain conclusions, true

only in the abstract, but capable of being corrected for

particular circumstances.

Motion is hard to be defined, but the mathematical

conception of it is abundantly simple, if the distance of

any point in space from another be supposed to change,

or more accurately, if its distances from 3 perpendicular

planes suffer any change, it must have moved, and the

motion is translated into analytical language, by expres-

sing the 3 perpendiculars as functions of the time, and

supposing them to vary [b). The direction of a point's

motion is found by drawing a right line through two

successive places of it, and its quantity is expressed by

comparing the space described with the time, the ratio

of these being the velocity : for example, if a body move

over 2 feet in one second, and another over 6 feet in two

seconds, their velocities are said to be 2 and 3. If the

velocity continue the same for the whole time of the
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motion, this is called Uniform: if it increase, the motion

is said to be Accelerated, if it decrease. Retarded. In

Uniform motion the Space described is as the product

of the Velocity and Time : for V ^c ^ therefore S ^

V X T ; and if the time of motion be the same, S o^ V,
or ifthe velocity be given, S *^ T. Numerical examples
of these facts can be easily supplied by the reader, (c)

As a consequence of Inertia, it follows, that no motion

can begin without a cause, and we are therefore led

to investigate its origin when it occurs ; but if the con-

ception of motion be not without its difficulty, this more

metaphysical research is enveloped in obscurity, so that

Locke declared himself unable to conceive any clear

idea of active power, but from the consideration of

immaterial agents. The nature of the causes of motion

which we call Forces, is ofno consequence in Mechanics,

as they are measured by the motions which they pro-

duce, or are capable of producing in a given time, ifnot

counteracted. If they act uniformly, the Force is mea-

sured by the ratio of the Velocity to the Time in which

V
it has been generated, or in symbols F oc ~-j and even

ifthe Force and Velocity vary with the Space gone over,

this proposition is still true, taking an indefinitely small

moment of time, for during it the variation of force

may be considered as insensible. The sources of mo-

tion with which ^ve are acquainted are, the Energy of

animated beings, the forces to which we have already
alluded as implanted in matter, and the impulsion of a

body which communicates its motion to another, this

last being scarcely entitled to the name of force.

AVhere one body communicates motion to another, the

Quantities of motion lost and gained are equal, and

they are measured by the Quantities ofmatter multiplied
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into the Velocities ; thus if the striking body be doubled,

its quantity of motion must be doubled, and if its ve-

locity also be doubled, its motion is fourfold, and in the

same way when a force generates motion its energy is

as the product of the mass moved into the velocity pro-

duced. The strength of animals is more manageable
than most other movers, but the employment of it is

narrowed by the limited velocity which they can produce,
and by the variable nature of their exertions ; and it is

too often attended with circumstances revolting to

humanity. The most powerful forces which man has

subjected to his industry are those of gravitation and ex-

pansion ; a mass of solid matter descending from a height,

a stream of water or a current of air afford potent movers,

which are made useful by means of Machinery. Still

more energetic are the forces causing Expansion, the

Elastic force of Steam and the yet more formidable

agency of Gunpowder give the means of exciting almost

unlimited velocity. To devise the means of applying

these to use in the most advantageous manner is the

object of Practical Mechanics, and for the perfection of

this art, both theory and experiment must lend their aid,

as it^is etjually absurd to despise the investigations of the

analyst without understanding them, and to found ela-

borate researches on false data.

The Science may be divided into two branches, the

first and simplest treats of forces, not as producing

motion, but as causing Equilibrium by their mutual op-

position ; in this part of the subject time is not an ele-

ment of the calculus, and little more than the first

principles of mathematical science are required to deve-

lope its results. But when we proceed to investigate

the motions of a system of bodies acting on each other,

we find ourselves beset with difficulties, some insur-
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mountable by all the resources of Analysis, and many

scarcely mastered by the exertions of the most sublime

Geometry, while to reward our labour we meet at every

step results the most striking and useful. It is our

wish to give in this treatise a brief sketch of these two

departments, sufficient to prepare the way for a complete

course of study, and if any one approach non invita

Minerva, to shew a glimpse of the acquirements which

will crown his exertion.

Notes on Chap. T. (a) That no particles are in con-

tact is evident from the fact that every body is compres-
sible into less bulk : it is made manifest to the senses, by

sending an electric discharge through a chain even

when stretched by weights, a spark being seen at every
link ; and also by the rings of colours seen between two

convex lenses, shewing that there is always space be-

tween them.

{b) According to this method the distance from the

origin of the co-ordinates is ^ ~x^ + y^ + z^ \

and from another point marked by the co-ordinates

fl, 6and c, ^ (^^ZZa)'^~'\^~(y >^^^^^ If

z and c are = o the motibn is performed in the same

plane, and if y and b, the motion is rectilineal in the

axis of ^ .

(c) If the velocity be not uniform, yet as it varies

indefinitely little in an instant of time, we may still say
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that V = r?S ~ rfT, denoting by </ prefixed to a quantity,

what Newton calls the ultimate value of its increment,

or in other words taking the increment indefinitely

small.

CHAP. 11.

1. The object in all enquiries of Statics being the

conditions of equilibrium, we proceed to examine its

simplest case, namely, where two forces acting in op-

position keep a particle at rest : in this case it may be

taken as an axiom that they must be equal, and act in

the same line, so that if they acted separately they would

produce equal and opposite velocities.

2. Wh6ri three forces in the same plane, acting on a

particle, keep it at rest, one of them must be equal and

opposite to the united action of the other two; there-

fore to determine the condition of equilibrium, we must

know how to find the quantity and direction of the force

resulting from the action of two or more. This pro-

blem is known by the name of the Composition of

Forces, and is analogous to, but not identical with, the

Composition of motion or impulse, with which, as sim-

plest, we begin. If a moving body receive an impulse

in the direction of its motion, its velocity will be in-

creased ;
if in the opposite direction it will be retarded,

and move with less velocity, but in either case it will

continue in the same line; if the impulse make an angle
with its direction, the velocity and direction are both

changed, and it deviates from the line of its original
motion. Let a body move in the line AE, fig. 1, per-

pendicular to AB, if it receive an impulse in the

direction CE parallel to AB, it is indeed driven side-
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ways, but the rate at which its distance from AB va-

ries, or its velocity ifi that direction remains the

same. If this be denied, let the impulse change this

velocity, and it cannot be denied that the application of

an equal impulse in the opposite direction must double

the change, the impulse DE makes the same angle

with AE that CD does, and therefore has the same

effect in accelerating the particle E. But this is absurd,

for GE and DE are equal and opposite, and therefore

their united effect is nothing. Let now a body move

so that in a time T it would describe the line AC fig.

2, at A let it receive an impulse such that if previously

at rest it would describe the perpendicular AB in the

time T, then it will move in the diagonal of the paral-

lelogram CB so as to arrive at D in the time T. For

the impulse AB does not change the velocity of departure

from AB ; therefore after the time T is expired the

body's distance from that line must be = AC, as if i;he

impulse had not acted ; or it must be somewhere in CD.

By similar reasoning it appears that at the end of T the

body must be in BD, and therefore it must be in their

intersection. If the motions AC, AB were proportionally

lessened, T would be lessened in thesame proportion,and

as the body would be still found at the extremity of the

diagonal of the new parallelogram, which must be some

where in AD, the space described by the body with this

compound motion oc the time, and therefore its velocity

is uniform. From the composition of motions at right

angles, the general case may be derived, for, fig. 5,

the motion AD is the result of AF and AE ; AE =s

AH+HE, HE=:BD=AC; now AF, AH compound
AB and the result of AE and AH together with AC=
Result of AB, and AC.
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In general, therefore, the result of two impulses is the

diagonal of the parallelogram, whose sides represent

them in quantity and direction.

Instances of the composition of Velocities or Impulses

are frequent, and it is easily comprehended, but in re-

spect of pressures the demonstration is not so satisfac-

tory. In fact the preceding proof supposes the body

actually to move, whereas in all cases of equilibrio, the

body remains at rest. We may perhaps fairly measure

a pressure by the velocity which it would produce, if

not opposed by another force ;
but if this should not be

deemed satisfactory, we have given another in our notes,

whose principles are stated thus : Ifthree equal forces act

on a point, making angles of 120 with each other, they

keep it at rest, for no cause can be assigned why one

should prevail over another. Here one of them'EA
fig. 3, must be equal to the result of the other two; the

result of equal forces must bisect the angle under them,

for no cause of its inclination to one rather . than the

other can be assigned, and hence AD is their result,

bearing to one of them a ratio of 2 cos ^ 120 : 1. Se-

condly, if two equal forces act at an angle , and if the

result equal one x 2 cos ^ , then if the same forces act

at half that angle, the law holds, or the result equals one

X 2 cos J a. (a). If the law be true of forces acting at

the angles and b, and at their difference, then it is still

true when the forces act at an angle equal to their sum (6).

Hence being true of 120 it holds with respect to all the

angles obtained by a binary division of this angle, and of

all sums of these ; which ultimately extends to all angles

whatsoever. The law thus proved of equal forces can be

extended to all others, fig, 4, BA is equivalent to GA,
AE; AC is equivalent to AE, AF, but GA, AF are

equal and opposite, therefore 2 AE or AD is equivalent

to AB, AC. (c) .
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S. The result of two forces makes, with their direc-

tions, angles whose sines are inversely as them, for fig. 6,

AB : AD : : sin BCA or CAD : sin BAG.

The result oftwo forces is the base of a triangle whose

sides are the forces, and vertical angle the supplement

of that at which they act, and therefore calling the three

- _ , _, -4 B C
-4 5 and C, . ,

,

= -^n\ = T~7T-s
sin [a) sin (6) sin (-j-6.)

In all composition of forces there must be a loss of

power, for one side of a triangle must always be less than

the other two.

If a force act on a body in motion at right angles to

its course, its velocity estimated in that direction remains

unchanged ; and if it be required to estimate its action

in any given angle with its direction, it is to be multi-

plied into the cosine of the angle, thus, fig. 7? if it be

required to know the effect of the force AC in a direc-

tion parallel to BC9 let fall the _[. AB, and the forces

AB,BC are equivalent toAC, but BC : AC : : cosine C : 1 ,

therefore BC = AC X cos C; and if a body at C be

prevented from leaving the line BC, it will be urged

along it by a force BC. (d).

4. We can now determine the equilibrium of our

three forces, for we have seen that two of them com-

pound a result expressed by the side of the triangle

ABC fig. 6 ; the third must be equal and opposite to

this ; if therefore the three be as the sides of the triangle

under their directions, a body on which they act will

remain at rest.

If several forces act on a point in the same plane, it

will be at rest if they be as the sides of the Polygon
under their directions, for PA and AB fig. 8, compound
PB, this with BC compounds PC, which with CD give
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PD opposite in direction to the last force, and equal to

it. {.)

NOTES TO CHAP. II.

{a) Let the angle EAG fig.
2= a and thefor^e EA, F,

from this and an equal force in the direction of AD
results AB, and bears to it a relation dei)ending on the

angle BAG = i a
',
now the result of AB and AC

must = result of EA and AH together with 2 AI=2
AE; but result of EA and AH by hypothesis =2 Fxcos

{a) therefore result of AB and AC = 2 F (cos {a) + 1),

but it has to AB the same relation that AB has to F,

let AB = F X / AT, J'a denoting a function of a ex-

pressing the relation between F and ^B, then Y y^ f a

y.f a= AQX f a=-2 F(cos (a) + 1) = F x 4^ cos.

(i a) orfa = 2 cos. (i a,)

{h) Call the angles DAB and DAF, a and h^ the result

of EA and AE', is F x f{a\b)ixMd AD = 2 FX cos ib),

theresultof ADand AD' is therefore 4 F X cos (A)X cog

{a) = result ofEA and AE' ^ result of AB and AB' ==

F x/( + ^) 4- 2 F X cos {a b), therefore /( + 6) +
2 cos(a! b) = 4} cos {a) cos {b)

= 2 cos ( + ^) -f- 2 cos

(a ^ b) or,/( a rf Z,)
=. 2 cos {a + b).

(c) The direct solution of the composition of forces is

given by Lagrange, in his Mecanique, but on a principle

which is by no means self-evident, Laplace's rccjuires too

much knowledge of the integral calculus for a treatise

so elementary as this : where the forces are at riglit

angles perhaps the following may be satisfactory, in
fig.

4 call AB jc, AC^/, and their result 2 2;, and angle BAD9
Let the action of x in the direction of ;:; = xf^^ then
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considering the forces GA, AF = z; x = 2 zf(9) and

3^
= 2 2/(90< tf)

therefore 2 z = xf{) -f-j//(90

e) = 2 ;s /2 (0) + 2 zf^ (90
'

6) or = /2 (S) +/^
(90

o
0) hence/0 is the sine or cosine of 9, to deter-

mine which it is, supposej/= in which case 0=0, and

2 z = X therefore /(9) = cos (fi)
and x = 2z cos. (9).

{d) Let the force be referred to 3 rectangular axes, let y

be the angle which its direction makes with the axis of2,

and that of its projection with the axis of x^ then F is

composed of a force parallel to z and another in the di-

rection AC f]g9, and thislatter again is resolvable into two

in the directions of 3/ and x\ denoting them by Z, Y and

X, Z = F X cos y, X = F, cos t sin y and Y = F
sin y, cos g. It is often more convenient to refer them

to the angles, wliich the direction of F makes with the

three axes ; if a sphere were described round the centre

A^abc its intersection with the planes of the solid

angle is a right-angled spherical triangle, and therefore

cos a ^ BAD = cos s sin y, and coi C = sin y sin

therefore Z F cos y, X = F cos <*, and Y = cos C;

If the values of cos and cos C be sfjuared and added

to cos
^
y , we obtain 1 = cos

" + cos
^ 6 + cos

*

y
and therefore F2== Z2-j_Y2+X2or the result of 3

perpendicular forces is equal to the square root of the

sum of their squares.

2. Ifmany forces act on the same point, each may be

resolved in the direction of the three axes, and as the

component forces are all in the same line, their sums or

differences are the forces which compound the total re-

sult, thus let R be the result of the forces F, F" &c. R
cos = V cos

'
-H F" cos u' 4. &c. R cos = I' cos

C'+ F^cosC''H-&c. consideringthoseforcespositive which

tend io increaj.e the distance of the puint from the origin

of the coordinates. Where the forces and their direc-
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tions are given, we as before call their components in the

direction oi x y z^ X, Y, Z and the direction of their

total result R can be found as above.

{e) In order that any number of forces meeting at the

same point may be in equilibrio, we must have separately

X = 0, Y = 0, Z = 0, for otherwise their result cannot

vanish. Hence if 4 forces be in Equilibrio, they must

be as the diagonal and sides of the parallelopiped under

their directions.

2. If the forces act in the same plane, Z necessarily

vanishes and the equations X = 0, Y = 0, are suf-

ficient, we will apply them to determine the equilibrium

of 3 forces. For simplicity we will take the direction

of F' for the axis of x^ and X = F cos -j- F' cos a'

IB" = 0, andY =F sin a F' sin a'=0, this last equa-
F F'

tion eives _ = and multiplying the terms of^
sin d sin a

v ^ ^

each equation by the coefficient of F' in the other F

(cos a sin a' j^ %\n a cos a!) = F" sin a' hence

F" F' F , ^ .= or each force must be
sin [a 4. a!) sin a sin a'

as the sine of the angle made by the other two.

3. If any number of forces act in the same plane, we

have seen that R cos a = F' cos a! + &c. and R sin

a = F' sin q! &c. let there be taken a point in the plane
and connected with the point of application of the forces,

call the angle which it makes with the axis of .r, m, then

R cos a sin m = F cos a' sin m + F" cos n' sin m +
&c. and R sin a cos m = F' sin a^ cos 7n + F' sin c'

cos 7n &c. or R sin ? = F' sin (a' m)-{- F" sin

(a'' 7n) |-
&c. but these sines are as the perpendiculars

on the directions of the forces from the point assumed,
and if these be denoted by the symbol j9, Rp = F*2)\ +
F''p'\ +&C. and in case of equilibrium Rjp = 0. These
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products are called momentSy and as i$ easily seen express

tbe effort of the forces to produce motion oiiiid ihat

point, their consideration will be resumed in the next

chapter.

CHAP. III.

5. We have hitherto supposed the forces to be applied

at the same point, but this is seldom the case nor is it

necessary : if a force act on a point, connected with

another by a line incapable of extension, that other must

be influenced as by a direct application of it
;
if tlie con-

necting line be inflexible and the action transverse, it not

merely transmits the force, but also sometimes modifies

it in a remarkable manner. When several forces act on

a cord, which may be supposed in theory incapable of

transmitting lateral force from its flexibihty, two must

act in the direction of its axis, and the rest will strain it

into a polygon. Fig. 10 represents such a system, we
will not determine its conditions of equilibrium at pre-

sent, but merely remark, that there must be equilibrium
at every angle ; at B the forces A' and B' are opposed by
the tension of BC, this is the result of C and the tension

of CD, and so on. It follows from this, that the action

on the cord is the same as if all the forces were applied at

each point, and from these data the angles of the Polj^gon
can be determined.

6. If tvNo parallel forces act at the extremities of an

inflexible line, it may be kept in equilibrip by a third
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applied to sonle intermediate point. Fig 11 Let AH
betaken to represent the force A' on its direction, and

BI for B', we introduce no change in the system, by

adding two equal and opposite forces in the direction of

AB, let them be represented by FH and IE, then the

result of the compound forces AF and BE, must be the

same as that of A' and B', it must also be equal to their

sum and must be parallel to them as there exists no cause

to make it incline to either of them. Let it be DC then

the triangles FAH and ADC, are similar, as also EBI
and BDC, therefore FH : AH :: AC : DC and AH x
AC = FH X DC, and BI x BC = DC x IE, there-

fore the intercepts of AB between the forces and their

result, are inversely as the forces. If then a force op-

posite and equal to their sum act at the point found by
this proportion, the line AB will remain at rest.

7. If two forces F and F be applied at the points A
and C, and their result R' at B, draw through these

points jiny parallel lines; F: F' :: AB: BC, or calling

the intercepts between the parallels and P, a' i^ and d
F : F' ::r' d '. a r' and Fa Fr'= Pr-^Fa't^^

Fdz -f T'a' = F + ^X r' =B X r' or the sum of the

Moments of the two forces is equal to the Moment of

their result, calling F a the moment of that force with

respect to P. If there be a third force F'\ substituting for

the twofirsttheir result R', F" X a" + Br=z {B! +F^)Xr,
and substilutinij: for R' and /, we have a 4. FV -|-/^' a''

=: (F + F' -|- F") r, and the proposition is true of any
number of forces. The proposition is true even though
the a s are not drawn from the same point : let A itnd

C be as before the points of application, and let a de-

note the ordinate CF, then F: F':: BH: CI or as r'

a': a 7^andF^a -h F' X a'-= i2' / and as before F
-fJPa'+i^V &c. - /(F i-F +F^' &c.). If the point P
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should lie between the lines of direction of the forces,

or if the line F^ F should have forces on each side of it,

those which fall below it should be affected with different

signs from the rest.

8. What has been delivered respecting parallel forces

is capable of extensive practical application, as every

body with which we are acquainted is a system of such

forces acting on the particles of which it is composed ;

the descent of heavy bodies and their pressure on any

thing which prevents it are matter of constant observa-

tion, and lead us to infer that there exists in the earth a

force capable of producing these effects, which is there-

fore termed the force of Gravity. As the path of falling

bodies isevery where perpendicular to the earth's surface,

it must act in the direction of its radu. and therefore

over a small portion of space its lines of direction must

be nearly parallel. But it does not emanate from the

earth's centre only, for the vicinity of a mountain draws

the Astronomer's plummet from the vertical line, and

the attraction of a metallic mass is sufficient to affect a

balance of Torsion
j (a) we may therefore infer with

great probability, that every particle of matter in this

planet gravitates, and it will afterwards appear that

this conclusion may be extended to the solar system. At

any height to which we can ascend above the surface of

the earth, it may be considered unvaried, for though it

decreases, its decrement is inappreciable in our experi-

ments. Its measure is the weight of a body, and this is

as the quantity of matter which it contains, for the effect

ofa force is as the matter moved, multiplied by the velo-

city excited, but all bodies fall with equal velocities, and

therefore, every particle is urged equally, {b).

From this it is evident, that the gravitation of each

particle of a body is one of a system of parallel forces,
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acting on points connected by their cohesion, as we have

supposed the points of application to be bylines, the result

of the whole is the weight, and it passes through a point

which can be determined, at which, if an opposite force

beappiied, thebody must be supported. Thispoint is often

called the centre of Gravity, but it should in strictness be

called by another name, as its properties have no pecu-

liar connexion with gravity, but refer to any parallel

forces. It possesses some remarkable properties; in con-

sidering the action of a bodies weight, we may suppose

it without magnitude, and all its mass condensed in that

centre ; if it be the point of support, the body will re-

main at rest in any position, for however the direction

of parallel forces be changed, the result passes through
the same point ; thirdly a body suspended freely cannot

remain at rest, unless this point be in the vertical passing

through the point ofsuspension. Fig 13, let S be the sus-

pension; ifG be not in the vertical let GI be the action of

its weight applied at G, this may be resolved into two forces

at right angles, one drawing G from S which is resisted

by the cohesion of the body = GI X cosine of S, as SL
is parallel to GI, the other GI x sin S, which being un-

opposed, will produce a rotatory motion round S. If

the sine of S be = that is if S be = or == 180<,

it is in equilibrium but with this difference between the

two cases, that in the former if removed a little from the

position of rest it will return to it, in the latter the

equilibrium will be still more disturbed and the body
will upset. From this property we derive a practical

method of finding the centre, let the body be suspended

from two points in succession, and it must be in the in-

tersection of the vertical planes drawn through them,

9. From the theory of parallel forces it follows that if

perpendiculars be let fall from every particle of a body
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on any plane, the sum of all their moments _ the

weight X the perpendicular of the centre of gravity ; or

denoting the sum byS {pa),G the ordinate ofthecentre=

a being the perpendicular from each particle, and

p its mass, and by computing three ofthese ordinatesfor 3

axes at right angles we determine its place, but this pro-

cess can seldom be performed without the aid of the in-

tegral calculus: we will determine its position in a few

of the mest obvious cases. If the body were a plane

iurface its CG must be in the plane, for its moment with

respect to that must be = ; if the particles of the body
taken by pairs be equidistant on each side from an axis,

in which case the body is called symmetrical with re-

spect to that axis, the CG must be in it ; for sinc there

are as many positive as negative ordinates, S (p a)
-

S (2? c)
=. moment of the body, and = 0, therefore G

vanishes, (c)

11), The CG of two equal particles is midway be-

tween them ; that of two unequal divides their distance

inversely as their weights, these follow from the equa-

tions of Art. 7. That of a right line is its point of bi-

section, for let AB be divided into a number of equal

and indefinitely small parts, there are an equal number

of them on each side of G, and the moment of A a, or

A a -^ a G, 3 a' ^ a. G, but as they are on different

sides of G one must be positive and the othe other nega-

tive, their sum is therefore =0 ; similarly the sum of the

moments of a b and a' h' are = and therefore that of

the whole line ; and hence the distance of the CG from

G -= 0. The CG of a parallelogram is the intersection

of its diagonals, for fig 15, bisecting the opposite sides,

BC bisects, every line parallel to EF,andAD those paral-

lel to EH, the figure is therefore symmetrical with res-

pect to both BC and AD therefore the CG must be found
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in each of them and therefore it is their intersection.

The Circle or Ellipse is symmetrical to any diameter,

its centre is therefore its CG. A Cylinder or Rectangular
beam is symmeti'ical to any two planes passing through
the axis and also to a plane J_ to it passing through its

middle point, that therefore is the required centre. The

Triangle is symmetrical to the bisector ofits base, for this

bisects every line parallel to it, the CG therefore is the

intersection of two bisectors which is | ofthe whole dis-

tant from the vertex. This result may be also obtained by

computing the moment of the triangle and dividing it by
the area ; draw any two parallels to the base at the indefi-

nitely small distance dx^ then yXdxh the area oftheele-

nientar} trapeziuin (fig \6)abc d and ?/ x x d x h^ mo-

ment, the sum of all these moments is that of the triangle.

^ow y X d X is obviously the increment of a pyramid
whose height is EB, fig 17, and base the rectangle under

and BE, at the distance x from the vertex, the moment
of the triangle is therefore equal to the pyramid =ss

1 ACX BE *
but the area = BE x i AC therefore

G = ^ BE. {d)

11. The CG of any system may be found where those

of the bodies which compose it are known : connect any
two, and divide the distance between them in the inverse

proportion of their weights; if we suppose their weights
concentrated in the point thus found, by comparing them
with a third we can find the centre of three and so of all,

or still better by multiplying each weight into its distance

from a given plane and dividing by their sum. Thus let it

be required to find the centre of six equal weights placed
at the angles and middle points of the sides of a triangle,

fig 18 find their moments with respect toAE, those of AF,
and E, are nothing, those of B and D are W x CF and

2 ^V X CF
that ofC the same, therefore G F = -r-Trr

6 vV
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NOTES TO CHAP .111.

(a) The balance of Torsion is an instrument

used to measure very minute attractive or repulsive

forces, it consists of a horizontal rod, suspended at its

centre by a wire which is twisted by its revolution ; the

elastic force of the wire tends to bring it back to its first

position, and as this is found to be proportional to the

angle of torsion, the angle measures the force which

twists it. In the experiments alluded to, leaden balls

two inches in diameter were fixed at the extremities of

the rods, and on bringing near them leaden masses

weighing 100 pounds they were attracted through an arch

of 15 degrees, the force required to produce this torsion

was ascertained by a method which shall be afterwards

explained, and the result was that the attraction of the

earth is about I of what would be observed were its mean

density equal to that of lead,

(b) When a body presents much surface, the resistance

of the air which is proportional to this diminishes the

Telocity of descent, but when this source of error ig re-

moved all bodies fall with the same rapidity ; thus if a

lip of paper and a coin fall separately, they descend at a

very unequal rate, but if the paper be laid on the upper
surface of the coin they will not separate in their

fall: the true proof however is derived from the Pen-

dulum and shall be given whenwe treat of that instru-

ment.

fcj Before we proceed to find the sums of moment!
it may be useful to explain the principle of the method

of finding them. Let X be any function of x, then if

X be augmented by a quantity D ^, the function must

receive ;i ( oriespi.nding change DX, D being the cha-

racteristic of the successive incrtments of a quantity.
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DX will often be a series ascending by the powers of

Da; but it may be reduced to its first term if Djc be

taken less than any assignable quantity, which is deno-
-' I XT-

ted by the characteristic d, or differential, then -

ax

= X' this being another function of x different from

the other but depending on it by a certain relation. P>om
that relation therefore if X' be given we can determine

X and we must therefore investigate this relation in

some of the ordinary cases. The differential of ax is

adx. for if two successive values of x differ by dx, those

of the product must differ by adx.

The differential of xi/ where both x and i/ vary is

found in the same manner, for [x + dxj (y + dy)

xy = ydx + xdy _|. dydx, this latter term may be

neglected and d (xy) == ydx + xdy.

The differential of -* is
'

for - x w
y y

^
y ^

3= :c; by the preceding paragraph.

j/ + 't y. dy
-

dx.

xdy ydx xyd.

y
n n 1 n

The differential oi x ^= nx dx, for x x'

X X
n 1 n 2 2 n S n 1

zet X -^ x' X + x' X .. + .r' now if we take

the ultimate value of .r x which is when they are equal,
the second member of the equation which consists of n

terms becomes nx = d\ x J or d fitJ = nx x dx,
V d X

Thirdly if an arch vary, the differential of the sine of

K = dzX cos. z and that of its cosine ^-^ dz X sin. .

To find these we must observe that the first is the ulti-
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mate difference between sin [z + Dz)^ and sin z, but sih

fz + Dz) = ?in z. cos Dz + cos z sin Dz but if the wZ-

iimate value of Dz be taken, cos dz =. \ and sin dz

fc f/z, for a very small arch coincides with its sine, hence

rf (sin z) = dz. cos z, and the differential of the cosine

may be found in the same manner ; the logarithmic

differential is explained further on, and these are suffi-

cient for our use.

2. If a differential be given which corresponds to

any of those described we can find its primitive func-

tion or Integral; this process is denoted by the sign T;// n 1 n

adx must be !, Jnx dx must be*', and to

integrate we must undo what is done in taking the di^

ferential, thus in the la^t case we must increase the

exponent of the variable by unity and divide by the ex-

ponent thus increased and by the differential of the

variable.

3. The integral must be taken within certain limits

for it may not begin with x^ and its true value is ^e
difference of two values corresponding to the extreme

values of x.

This may be more easily understood by considering

that a quantity may consist of a constant and variable

part ; in taking the differential the constant quantity

disappears, and in integrating does not reappear : thus

the differential of / X ft'^ + C is X dx, and C may be thus

removed from an equation. The correction may be

determined where any value of the integral is known,
with the corresponding value of x ; for instance if it be

known that both vanish together, let W be the value of

J* X dx w hen * == then C + W == and C

= W.
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The method of integration by parts may be mentioned

here as we shall use it often, it is this, d (x Y. X)=X dx

xd X, therefore integrating, x X=j Xdx
-\-Jxd X

C or^ X dx = xX-'J^ xd X + C, the advan-

tage of this is that J xdX is often much simpler

than f X dx.

4. Let it be required to find the Moment of the

urface ADC with respect to PD,fig 19 this while x in-

creases by dx increases by 2yxdx therefore M =zJ2i/xdx

and if this be divided by A the area of the cur^e or by

f^ ydx we obtain G the distance of the CG from D.

From what has been said these integrals must be cor-

rected by subtracting from their values when x = BD
those when it is = 0. If the body be a solid of Revo-

/'V'U
* xdx

p being the ratio of the cir-

py* dxf^
cumference of a circleto the diameter, [d) Let it be re-

tofind

f .T* dx

quired to find the G of a triangle, here 7/
= J^ and ~

^/-- .
dx j-x

2 a^

- these when x = a are

and asM begins with x the other values are 9

therefore G =
|

a. In the cone

J x^dx ^ 3^*^
4>x^

or when a; = a, G = f . Ifwe did not wish for the

CG of the whole triangle but for that of a trapezium
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whose height is h we should take the integrals from ^

= a h to X = a and the distance of that point from

the occurse of tlie sides would be

^3 a^ ^ ah J^ h^ \

Its distance from the base is 3 A'!^!^ )

The distance of the CG of a conical frustum from its

base isif its diametersDand<ibenearlvequaL-^ v -~^
r^ ^ *

6 2D rf

To find that of a circular arc let AB = z and CB
unity, then 2 dz x cos z is the differential of the mo-

ment, and G = /2
cos z dz ^ 2_sin_z
2z 2z

or G : radiui as BD : BAD.

To find that of the segment BAD, M = ^
2 sin z. cos %, d cos a = J 2 sin * 2 cos z, dz = J 2 sin* z

X <i sin = f sin3. z while the area = J^-2s[n x X c?cos z

= r 2 sin* i.d%=j^{\ cos 2
)

? X = z + i sin 2

therefore

Q __ % sin^ %

% \ sin 2z

The distance of the CG of a spherical surface from

J ^P' sin 2. cosz. dz
^ gj^z g

its centre ==

f2p,smz.dz 2p(l cosz)

= i (1 + cos 2) and of course it is at the middle point
of the versesine.

That of II spherical segment is

fp sin
*

z cos 2 X d cosz J p sin^ z d x sin

f p. sin 2
;2; X ^- COS. z

j*p (cos 1
)
d cos.

_ iillLf . If the segment be a hemia-~~
^ (COS3 2;_ 3 cos 2 +

phere itis | of radius.
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In the Conical Paraboloid it k^(hfl!!l ^ i^' = |^.

J'yaxdx \ oa

These examples are sufficient to explain this me-

thod, and we shall have occasion to refer to many of

their results again ; I have therefore introduced them

though they might have been found in the ordinary

works on Fluxions, to exercise the student in the me-

thod of integration.

CHAP. IV.

12. We have already enumerated the various moving

powers which are at our command, and have stated that

they are applied to use by the intervention of Machinery;

This, besides applying them to the resistances to be over-

come by them, serves also to change their direction,

energy, and velocity. Without such instruments it

would rarely be possible to use any force except human

strength, and the employment even of this would be

very limited : in the least complicated of all efforts, that

of raising a weight, as soon as it surpassed the strength

of one labourer great difficulty would be experienced, for

it would scarcely be possible to unite that of many, and

they would produce an effect proportionably less as their

number increased ; but if it be made possible for one man
to act against a resistance tenfold his unaided strength,

and at the same time it be easy to combine the efforts of

many with undiminished effect, there can be no limits

to the tasks which they may, perform. But the work to

be done is often much more complicated than the mere

raising a weight, and often requires a degree of velocity
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much greater than that of the mover ; for example in

grinding corn it is found that this is done best when the

upper millstone has a velocity of 20 feet in a second,

and this could not be given by the exertion of men, for

it would require them to move at the rate of 12 miles in

the hour, which much surpasses their power even if

unloaded. In general there is a certain velocity at

which an animal's strength is entirely expended in mov-

ing its body, and some is always expended thus, but this

loss is found to increase as the square ofthe velocity, and

therefore it is useful to give the speed by machi-

nery and make the animal move slowly. Thus if the

work done by a man walking at 2i miles an hour for a

day be 1, if he double his rate of walking it will be 0, for

Smiles is his maximum velocity, but if the speed be

doubled by machinery the energy is f , The more

minute detail of these principles belongs to Dynamics.
For the other movers which have a velocity not variable

at our pleasure, and which move only in right lines, it is

evident that machinery must be used both to collect and

to regulate their power. It has been shewn that motive

forces are as their energies, measured by the masses

they can move, multiplied into the velocities : if then we

excite motion at the beginning of a train of machinery,
the force which we apply must be communicated to its

working point or termination, except what may be lost

by friction in its passage, therefore the energy of the

working point must be, to that of the power applied, in-

versely as their velocities. Therefore no force is gene-
rated in Machines, all that is effected by them, is to

move a light body with speed, or a great weight slowly ;

and therefore they who have sought for a perpetual

Motion have displayed their ignorance of the Elements of

Mechanics. In the ordinary employment of Machines
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Time is not considered, and the question to be resolved

is what mechanical advantage is gained, or what weight

will make equilibrium to a given power. This we will

now examine, the consideration of Machines in motion

must be deferred till we treat of Dynamics.
13. The Cord is the simplest possible of Machines not

merely as a conveyer of force but as affording by par-

ticular application great mechanical advantage, fig 21,

Let a cord BCA be attached at B to a firm support and

a force P act at C, it is required to find the energy W
excited in the direction CA. Supposing W in equilibrio

with P, and the tension produced on CB, these three

forces must be as the sides of the triangle under their

directions, therefore W: P :: AC: CD, but when the

angle BCA is very obtuse, the advantage is great, for CD
is small in comparison of AC. In this arrangement the

effect must be a maximum when CD is perpendicular to

CB. If the point C be permitted to move along the

Cord the angle C must be bisected by the line CD, for in

that case the tensions of AC and CB must be equal and

therefore the triangle CAD Isosceles, hence ACD =
DCB. In this case W : P :: sin i C : sin C, or as sin

i C : 2 sin i C x cos i C, or as 1 : 2 cosine of i C. (a)

14<. The next in point of simplicity is the Lever, with-

out which man would be unable to execute any work

of art and which enters into almost every mechanical

combination : this Machine is a bar, supposed inflexible,

and devoid of weight, which is used to produce equili-

brium between two powers. Let P and W acting in

the directions AD and BD (fig 22 and 23) be applied

to two points of the Lever AB, their result must clearly

pass through it, and if a support be placed when thf

result intersects it, the Lever must be kept at rest. There

is no difficulty in finding this point, for by Art. 3. P :

W:: sin CDB : sin CDA, or if we take on AD and
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DB lines in the proportion of P : W and complete the

parallelogram, its diagonal intersects the Lever at the

point wheretlie prop or fulcrum should be placed. If the

result be not perpendicular to the Lever, it may make it

slide on the fulcrum. The ratio of the forces is most easily

represented by the inverse ratio of the perpendiculars on

their directions from thefulcrumthusdetennined, forthey

are as the sines of the angles made by the result DC vk^ith

directions of the forces, and the condition of equilibrium

is expressed by saying that the forces must be inversely as

the perpendiculars on their directions from the fulcrum

Ifthe forces be represented by the inverse perpendiculars,

the line EF is the pressure on the fulcrum. The equi-

librium does not depend on the figure of the Lever, and

P and W will keep at rest any one whose fulcrum is in

thfe line DC, and points of application of the forces in

AD and BD : if ECF were taken, its arms would be the

leastpossible and the forces acting perpendicularly tothem

would tend solely to produce rotation round C. In this case

the products of the forces and arms are equal, and express
what have been already described as Moments of forces,

being clearly their powers of producing rotation, and
we might have derived the equihbrium of the Lever at

once from what has been demonstrated in note(af)chap. 2,

that the sum of the Moments must be =
; for the sake

of clearness we have preferred a separate demonstration.

If the forces act in parallel lines the point D is at

an infinite distance, and if the Lever be straight

since EC: CF:: AC: CB fig 24, the power and weight
are inversely as the arms, a conclusion which might have
been drawn from the consideration that the result of

parallel forces divides the distance between them in their

inverse proportion ; and we see that if they be weights
at the extremities of the arms, the fulcrum must be at
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their CG. If the distance of the power from the fulcrum

be greater than that of the weight to be raised, it
m?j \-_

less in the same proportion,and if it be increased ^I^ ^
_, - ... as IS neces-/

librium must be broken. But though it be
\ ,/o

. , ,,
than cou/ "^

raise a great weight with a small power, y^,
. /^

raised through a less space than the power dt" -^r . , /for

the perpendicular ascent and descent are EA and FB,
which are as the arms, or inversely as thepower and we' ght.

There are reckoned 3 kinds of Lever, distin-

guished by the place of the fulcrum ; in those of the

first order, the fulcrum is between the power and weight,

in the second, the weight is between the power und ful-

crum, and in the third, the power between the fulcrum

and weight. In the three the mechanical advantage de-

pends on superior distance from the fulcrum, and there-

fore in the third kind is always on'the side of the weight :

this kind therefore is never used except from necessity

or where it is desired to augment velocity. The second

is most useful, as in it the pressure on the fulcrum is only

the difference of the weights instead of the sum, and its

length is that of the longer arm of an equivalent Lever of

the first order.

Examples of a Lever of the first kind are afforded

by shears, pincers, and instruments of the same

kind, brakes of pumps, the crow used in quarries

whose point is introduced under a fragment of rock, the

edge of that below it being the fulcrum. A Pyrometer
or instrument adapted to measure the minute expan-

sions of bodies by heat, is sometimes constructed on thii

principle, fig 25, It consists of a light Lever, turning

on a centre and provided with a graduated arch ;
a rod of

the substance to be examined is placed with one end

resisting on a firm support, and the other bearing by a

point on A which is pressed against it by a spring : heat

of known inteiisity is then applied, and the motion of iti
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extremity is pointed out on the arch, being magnified in

*ii/?:nroporti Jf AC : CD. Sometimes a succession of

point w J v/-v^ ^ lelong arm ofeach bearing on the short

'Result be na0*^^ Wd it is obvious that the motion is in-

cite on the
^X.

^^ ^portion of the product of the short

arnlfi^ented ^s^Sduct of the long. The Gunlock is a com-

bination of l^evers of this kind and is mentioned for the

ingenious method by which a variable mover is made to

prcdil?e a uniform power : the flint is carried by a bent

Lever, urged bya strong spring which must actmore pow-

erfully
the more it is bent, but the arm of the Lever on

which it acts is curved, so that as it is bent it approaches

to the centHe of motion, greater energy being compen-
sated by shoHer Leverage.

As specimens of Levers of the second kind we

may present the Oar, where the water by its re-

sistance against the blade is the fulcrum, and the

weight is applied at the contact of the oar with

the side of the vessel
;

here from the advantageous

method in which a man's strength is applied, great effect

is produced, and when machinery is moved by human

strength the motion of Rowing should be used. The

treddle of the turning lathe and the chipping knife, one

of whose extremities is fixed to a bench, while the other

is a long lever producing powerful pressure on any body

placed under its edge, even doors are of this order; the

hinges being the fulcrum, the strength of the bolt the

power, and a force attempting to break it open the

weight. In general, the first kind* is used where the

power and resistance act in the same direction, the

second where they are opposite.

The most remarkable example of the third kind occurs

in the structure ofanimals, where the bones are levers of

this order, the joints being fulcra, and the attachment of

the muscles the application of the power, this is mostlj
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ery near thejoint, and as the direct pull ofmuscular con-

raction is immensely great, notw'ithstandingthe mechani-

cal disadvantage we possess as much strength as is neces-

sary, with much greater rapidity of motion than could

otherwise have been obtained without prodigiously aug-

menting the bulk of our bodies.

It is sometimes required to produce an immense

pressure at a given point, and at the same time to

bring the Lever rapidly into that position, as in the

Stanhope Press, where the part which presses on the

Types must descend through a considerable height and

exert a severe pressure only at its contact with the paper;
for this the arrangement of fig 26 is used, the Lever ACB
is connected with ED by a piece jointed at B and D ; in

the position shewn by the figure a power acting at right

angles to the lever ACB has almost irresistible energy to

turn ED round E ; at a distance from this position it

loses its mechanical advantage, but turns the other with

much greater rapidity.

The Lever is sometimes used to distribute a

load proportionally to the strength of the bearers ;

and from the preceding demonstrations there is no

difficulty in conceiving that if a load be put in the

place of a fulcrum, it will produce pressures inversely as

the perpendiculars from it on the directions of the sus-

taining forces, or if these be parallel, as the arms.

Horses are commonly harnessed in this manner, and it

has the advantage of equalizing their draught, as if one

presses forward he acts at a disadvantage; the dotted

lines in fig 27 shew this, as the distances from B the

point to which the load is attached are AB and BC,
while in the ordinary position of the bar they are equal,

being both EL {b)

We have hitherto supposed the Lever void of weight,

f)ut it always is heavy, and it is necessary to allow for its
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weight ; if its CG be in the fulcrum or in the vertical

passing through it at the position of equilibrium, it re-

quires no correction as its moment = 0. In any other

case, let the weight of the instrument beW and GI the

distance of its CG from the vertical passing through the

fulcrum, then in equilibrio P X AE + W X GI =
W X BF. If the Lever be straight GI is as half the dif-

ference of the arms.

15, The Lever is used to ascertain the Weights of

bodies by comparing them with others that are known,
it then is called a Balance, some of the most useful of

which we will describe. The simplest and best is a Lever

of the first order with its arms equal in length and

weight, its fulcrum is an axis of hard steel whose ex-

tremities are formed into knife edges on which it turns,

the arms have at their ends similar knife edges from

which dishes are suspended to hold the weights, and an

index or tongue rises perpendicularly over the axis. It

is evident that if equal Weights be placed in the dishes

the Balance will be in equilibrio, as its arms are equal ;

and by the position of the CG of the Beam or Lever

below the axis, it must be horizontal when in equilibrio

and the index perpendicular. If the weights be unequal,
the Beam will incline and then indicate a difference.

Simpleasthis machine is, it requires many adjustments,
and it is very rare to meet one perfect. In the first

place the arms must be of equal length, this is ascertained

by counterpoising any body by Weights and then trans-

posing them, if the arms be equal there will still be

equilibrium, but ifnot, that which inclines is the longer.
Balances designedly unequal are sometimes used for the

purposes of fraud, as by putting the weight on the

shorter arm it will be balanced by less than an equal

weight of the commodity sold ; however, even with

snch an instrument the true weight can be ascertained,
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for let W and w be the apparent weights of .r, A and a

the lengths of the arms, then W : x :: A: a ml ri

W :: A : a therefore W : :r :: a; : w and :c ==
-y/

vV^ w
A buyer would suffer no loss it' he made the seller weigh
hahin one dish and holf in tlie other, as if the balance

be deceitful he would get more than his due. Even

where the most rigorous attention has been paid to the

construction of the beam, this requisite may not be at-

tained, and therefore in nice weighing, the method given
above should be used , or still better, the body to be

weighed should be counterpoised with fine sand or some

similar substance, it should then be removed and weights

put in its place to balance the counterpoise, they must

be its true weight.

In the second place, the CG must be in a

line passing through the axis perpendicular to the

beam; this is examined by placing a mark against one of

the ends of the beam and reversing it, if the other arm

point to the mark, the beam must be horizontal. 3cily,

the index must be in the line passing tlirotigh the axis

and CG, this is known by reversing the beam. 4thly,

the points of suspension ought to be in the plane passing

through the edges of the axis as otherwise the ratio of the

arms varies with the inclination of the beam, fig '29, let

AB be the line joining the points of suspension and C
the axis, then the moments of the weight are as AF and

FL whose difference is 2 CD X sine of inclination, 5thly,

the line joining them, should be horizontal when the

balance is unloaded, for otherwise the arms may become

unequal when weights are put into it, by the
flexibility of

the beam. Fig 30, let ACB be the line coimeciing the

points of suspension and the axis, let it become a curve

by the flexure of the beam, and B will recedi^ from C
while A approaches it ; the first of these may be

examined by trying whether a given difference of weights
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on cither side produces the same inclination, and the

second by trying the equality of tlie arms with different

loads. A balance thus adjusted will have no tendency to

upset whatever be its load, which if the line joining the

points ofsuspension passed above the axis, might happen;

for by the third property of the CG, a body cannot

be in a state of stable equilibrium unless the CG be

below the support, and conceiving the mass ofthe dishes

and weights collected in the points of suspension, their

CG would be in the line joining them, and that of the

whole, between that line and the CG of the beam un-

loaded ; but it is obvious that as the load is increased the

common CG must approach nearer to the line joining

the points of suspension, till it rises above the axis. In

that case the beam nnght remain atrcst with equal weights

in the dishes but on the least oscillation it would descend,

that arm which was inclined preponderating ; balances

are sometimes made thus intentionally, that they may be

unable to weigh any body above a certain weight, but

this is a bad practice as we have already proved.

The balances used in commerce are seldom so carefully

constructed as to be perfectly adjusted in all or any of

these points, but the instruments which are used in Phi-

losophical researches, particularly Chemical, must be of

the utmost truth and sensibility, and we will briefly

mention their peculiarities of construction. The beam

is in these made inflexible by means which shall be af-

terwards explained ; one of its points of suspension is

carried by a screw towards and from the axis, by moving
which the arms can be made equal ; the other has a si-

milar motion up anl down by which the three points of

support are brought into the same right line i
in the ver-

tical passing through the axis is a weight adjustable by
a screw to bring the CG into any required distance from
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it, as on this depends the sensibility of the balance or the

ratio of the least sensible difference to the load. In fact

the balance may be considered as a lever bent at right

angles, the difference of weights being applied at the ex-

tremity of the arm, and their sum together with the

weight of the beam and dishes acting at the centre of

gravity, the less therefore thi- latter distance is, the less

will be the difference of weights required to counterpoise

the energy acting at it. Opposite to one of the extre-

mities of the beam is a graduated arch shewing its incli-

nation to the horizon, the index being liable to interfere

with the adjustments ; (c) the knife edges bear on planes

of agate or hard steel which are set level by a plumb-line,

and there is a contrivance to bear the beam when not in

use and relieve the edges of its weight ; the whole is in-

cluded in a glass case to secure it from the agitations of

the air. A good balance will easily turn with the ten

thousandth part of the load, but some are mentioned

which possessed a sensibility ten times as great, one made

by Troughton weighed six pounds and turned with i^^ of

a grain, that belonging to the Royal Society of London

shews the ^^^^^^^^ of the weight.

16. The Steelyard or Statera, is a lever of the first

order but its arms are unequal ; the shorter is made

thick and massive, so that with a scale dish attached to it

as in the balance to hold the body wcigh'd,the instrument

may be in equilibrio ; the axis resembles that already

described, and its edge, that of the suspension, and the

upper surface of the longer arm must be in the same

right line. The upper surface is divided into equal

parts, each division being a certain submultiple of the

distance between the axis and point of suspension, and

a sliding weight is suspended on it by a ring of hard

steel formed on its inner circumference to a sharp edge.
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tbehorizoiital position ofthebeam is marked by an index

at right angles In w.Jgliing with this instrument the

body is placed in the dish and the weight is slided along

the divided arm till it is in equilibrio, and the division at

"which it rests shews the weight ; the theory of it is evi-

dent, for the moment of the weight is as its distance,

theitfore at any other distance it will be proportionally

incroaseil or diminished, let it weigh a pound and let the

shorter arm be four inches, then if the counterpeise be

placed four inches from the axis it balances a pound, if

its distance be 8, the body in the scale is 2 pounds, on

this supposition every inch of distance would be four

ounces, and the machine might determine any weight

under 10 pounds: if now the counterpoise were removed,

and another sub^-tituted weighing 4 pounds, then every

inch corresponds to a pound and the indication of the

divisions must be multiplied by 4, and thus by a very few

weights we possess an extensive scale.

This instrument cannot determine weight with the same

accuracy as the balance, yet if carefully made it would be

of great use to the Philosopher, from the facility of its use

where the utmost precision is not required; such have been

made and found extremely convenient, they carry several

weights at once, the largest is placed near the position of

equilibrium and it is perfected by moving one much

smaller, which of course indicates a minute fraction of

the other; where great delicacy is necessary it is carried

by a micrometer screw : with one counterpoise, the in-

strument gives a scale of specific gravities of fluids, with

another of gases and with a third it corresponds to a

series of weights in decimal progression. As commonly
made it is but a rude instrument, and from the prepon-

derance of the longer arm there is no ready method of

verifying it: it has in general two axes one nearer to the
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point of suspension than the other, the counterpoise

therefore answers to two different scales which are

marked on two sides of the beam : in these the di-

visions ought not to commence from the axis, but

from the point where the counterpoise should be

placed to keep the beam horizontal without any load.

The steelyard on a large scale is used to weigh wag-

gons and other great weights, it is commonly called a

weighing machine. Its mechanism is exhibited in fig

31, it consists of two levers ABA, each of these bears

at A, on steel points, and the lower surfaces of B are

formed int6 edges which rest on a pin projecting

from the lever CD whose fulcrum is at C, Four

steel points shewn at E in the upper surface of the

levers ABA support a platform on whcih the wag-

gon is driven, and the counterpoise is placed on a

dish at D. A weight placed on the platform is to

its energy at B as A B : EB, and this again to the

energy which it ^produces at D as CD : CG, the

weight therefore is to its counterpoise as CD X AB :

CG X EB. The levers ABA should be so bent

that the bearings A and B on their lower surface and

E on their upper may be in the same horizontal

plane, they should also be precisely equal and

similar.

17 A variety of the Steelyard in which the weight is

fixed and the point of suspension moveable deserves

notice, it is called by some the Da?iish balance ; it is a

rod, terminated at one end by a heavy knob and at the

other by a hook to which any body may be appended ;

for an axis it has a sharp edged ring or even a loop of

cord, which is shifted till equilibrium is produced ; a

scale of divisions is marked on the rod and that at which
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it stands is the weight of the body examined ;
if the

series of weights be in arithmetical progression, that of

divisions is in harmonical fd.) The instrument is not

adapted to give vevy accurate results but it is extremely

portable and simple.

18. A balance whose arms are not in directum is

sometimes used as it gives the weight without any ma-

nipulation, fig 32, ACB is such a beam with a fixed

weight P at A and an axis at C ; if a body be appended
at B, supposing the beam void of weight, W x CB X
sin FCB = P + AC X sin ACF, but the angle ACB is

usually right, therefore W = P x AC X tangent ACF :

CB
the weight is therefore shewn by an index CI on a gra-
duated quadrant divided so that the tangents of the angles

are in an arithmetical progression, and placed so that

the index points to zero when the balance is unloaded.

The sensibility of the instrument being inversely as the

weight required to move it through a small angle is

inversely as the square of the secant or directly as the

square of the cosine of ACF. (e).

NOTES TO CHAP. IV.

CaJ If the point C move along the cord, it describes

an ellipse Avhose transverse axis is the length of the cord

and foci are the points A and B, hence if the direction

ofC be given we can find the point at which C will rest

supposing the cord firmly attached at A and B, for let

the ellipse be described, draw a tangent to it at right

angles to the direction of the force and suppose it repre-

sented by a weight sustained by the cord, this will rest
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at the point ofcontact ; the point of contact is easily de-

termined, ibv CD is parallel to the perpendicular liom

the focus, therefore draw through A a line parallel to CD
and with B as centre and the length of the cord as ra-

dius describe an arch cutting it, connect the intersection

with B and from the middle point of AF draw the per-

pendicular EC which gives tho point C.

{b.J If a load be carried by a lever of this kind and

firmly attached to it so that it cannot swing, the ratio

of the arms varies with the inclination ; for in fig 35

let G be the centre of gravity of the load, it must be

considered as acting at V, and the effective arms are AD
GD X tangent of inclination and BD -f GD x tan-

gent of inclination, therefore A's share of the burthen is

increased by the inclination ; if GD had beep negative,

that is if G fell below AB the reverse would have been

the case.

fcj Let W and w be two weights nearly equal aod

D their difference, G the CG of the beam and them

supposed concentrated in the points of suspension, then

considering the balance as a bent lever ACG, the dif-

ference acting at A tends to incline it, and the weights

"W -f- TO -j- OT (the weight of the balance and its appen-

dages) applied at G, tend to make it horizontal, therefore

D X AC = (2 W D + w) X CG X tang inclina-

tion or neglecting D in the second member, D == r^
X tang I X (^ W -H ^)> ^ therefore is as the tangent

of inclination and if the arch be divided to an arithme-

tical scale of tangents, it will serve to measure small

differences where minute fractional weights are not at

hand.

(dj Let AB be a Danish balance whose CG is C
and weight W, the loop is at R it is required to deter-
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mine the weight applied at B, let RB be x and CB a

then y^ the weight at B, x oc = W X a a:, if then

there be erected perpendiculars proporlional to the

weights at the f xtreridties of the ^s the curve obtained

will shew the relation between the weights and distances,

now (y + W) X = W is the equation of an equila-

teral hyperbola one of whose asymptotes is CD and the

other a parallel to GR drawn at ihe distance BC = W,
take CI: CB as the largest weight required is to W,
let CI be divided according to the scale required, and

through the points thus found drawing parallels and

dropping perpendiculars from their intersections with

the curve, we obtain the requisite graduation.

(d) Let the weight ofthebentLeverbeVthe distance of its

CG from the axis D the angle AC F0, T its value when the

balance is unloaded, and t when the weight P is detached

then W X CB (= ^) X cos e = P X AC (= ) X sin

e + V D X sin (d t) or W 6 = (Pa + VD X cos t)

tang 6 VD X sin t, but if W = o, VD sin r

= (Pa + VD cos t) tangent T therefore W = 7 x

(Prz + VD cos T)(tang tang T.) If P be very heavy

in comparison of V, T may be neglected, and W
r> X * rt r T-k

P sin T ^= - X P X tangent 9 for D =
^ x

^j (^^t)
^ ^

or T may be made to vanish by a sliding weight on the

index.

CHAPTER V.

19. If a body be placed on a horiEontal plane it re-

mains at rest, for the force of gravity acts perpendicularly

on the plane and is opposed by its reaction, but if the
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plane be incliiied,as its surface is oblique to the direction

of gravity, this may be resolved into two, one parallel

and one perpendicular to it; the latter of these is coun-

teracted by its reaction, being its pressure on the plane,

the former produces motion. If a second force be applied

to the body and be resolved in directions parallel and

perpendicular to the plane, the sum of the perpendicular

forces is the pressure, and that of the parallel, the ten-

dency to move along the plane. It may happen that

the action of the second force parallel to the plane is

equal and opposite to that of gravity, and in that case the

body must be supported, (a) It is perhaps simpler, to

consider the two forces as producing a result perpendi-
cular to the plane, as in that case they cannot generate
motion. Let, fig 39, the body B be acted on by gravity

in the direction BV and a force P in that of BF, their

result must be perpendicular to IH, therefore in BE,
draw EV and EL parallel to the directions of the forces

and they must be as the sides of the parallelogram,

therefore P : W :: sin LEB or angle I: sin LBE, but

the sine of LBE is the cosine of LBH, therefore if

any power sustain a body on an inclined plane it is to

the weight as the sine of inclination of the plane: co-

sine of the angle made by the power and plane.

If the power act in the direction of the plane, the

cosine of LBH is unity, and P = W X sin I, or is to

W :: HD : HI ;
if it act parallel to the base of the plane

LBH = I, and P = W X tangent I, or is to the

weight as the height to the base.

20. The result of P and W is the pressure on the

plane, call it R, it is to W : : BE : LE or as sin L : cos

LBH; the pressure then is to the weight as cosine of

the angle which the power makes with the horizon to

cosine of the angle which it makes with the plane. If
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LBH is = 0, R : W : : cos 1 : 1, and if it be = I,

or the force be parallel to the base, R : W : : 1 : cos I.

From these principles it follows that the inclined plane

is a mechanical power as the Power may^be less than

the Weight raised in any ratio ; but here as in all other

machines we lose in time what we gain in power, for, to

raise the Weight through the height the Power must

traverse the length of it, these spaces being inversely as

their energies.

21. The relation between the power and weight does

not depend on the magnitude of the plane but merely on

its inclination ; but a curve surface and its tangent plane

have the same inclination, therefore the formulas of Art.

19 and 20 determine the force required to sustain a body
on a curved surface. We will give an instance or two of

the method. Let AF, fig 39, be the section of a cylin-

drical surface, draw FE a tangent, the force required to

sustain a body at F is to its weight as sine of E or cosine

of C : radius, and the pressure on the cylinder is as the

sine of the same angle, (b)

Another example may be given m the Cycloid, a curve

remarkable in the annals of Mechanics, but it is necessary
first to describe its nature and properties. If a circle AB,

fig 40 called the Generating Circle carrying a pencil in its

circumference, were rolled along the line AL, the pencil

would trace the curve LBM, in which BA is the axis and

LM the base. Its first property is that the intercept of

any ordinate FV between the curve and the circle BVA
is equal to the arch BV, for E is the place where the ge-

nerating circle touches LM when the pencil is at P, and

LE - PE the arch which has rolled off it, and PE =
VA, for their verse sines are equal being the distance be-

tween the parallels PV, LA, therefore LEP = VAE
being equal to the angles in the alternate segments, which
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stand on the equal arches PE, VA, or PE is parallel to

VA, and PA is a parallelogram, so that PV = EA, but

LA AVB and LE == VA, therefore EA = PV =
arch VB. It follows from this that the Cycloid is de-

scribed by a compound of two equal motions, one paral-

lel, to the base and the other the rotation of the circle,

for MN = PV and M^ =; PV wN = MP, but the

compound of equal motions bisects the angle made by
their direction, and if MP be extremely small so as to be

coincident with the tangent, MP and Mn are the sides of

a parallelo gram whose diagonal is the tangent of the

Cycloid ; but the angle NVX is bisected by the chord

BV, anditisequal toMPX, therefore 7i PX = BVX
and n P is parallel toBV, the tangent ofthe curve to the

chord of the generating circle. Thirdy, let the Cycloid
LFK be described by the same generating circle,

describe EFI and draw PE, EF, the arch PE = LE
= DI = IFE IF = EF, therefore arch LH=
arch VA, and their chords are equal and parallel, but

they are parallel to PE and E F respectively,and PE, EF
are in directum and are equal, therefore if in the tangent
of the Cycloid there be taken a portion equal to twice

the^chord, its extremity is in a curve equal and similar to

that given ; If a flexible thread were unwound off the

semicycloid LFK, it would evidently trace the semicy-
cloid LPB, for PF the straight part of it must be equal
to the cycloid^ arch LF, as it has been wound off it,

but this is double the chord for P w : V 5 : : PF : VA : :

2 : 1 but P n and V s are the simultaneous increments

of the cycloidal arch PB and the chord BN, these there-

fore are as their increments, (c)

Having proved these properties which we shall find

useful hereafter, we can find the power required to sup-

port a body on a cycloidal surface ; its inclination is the
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same as that of the tangent or chord, therefore P : W : :

BX : BV, or as BV : BA by similar triangles, or as

PB : 2 BA, the power is therefore as the distance from

the vertex, the pressure on the cycloid being as PF.

22. If two bodies connected by a cord be supported
on two inclined planes disposed as in fig 41 , their weights

must be inversely as the sines of the inclinations, or di-

rectly as the lengths of the planes, for the power re-

quired to sustain a body on AB = W X sine A is equal

to the power on BC = w x sin C, but sin A: sin C : :

BC : BA. The equilibrium is manifestly independent
of the position of the bodies on the planes : this pro-

position may also be proved from the consideration that

the common CG of the two weights must neither ascend

nor descend, {d
23. We have hitherto supposed bodies to touch the

planes on which they rested at a single point, but this is

seldom the case, and the pressure on the plane must be

divided among the points of contact ; if the body touch

only in two points as when a beam is sustained on two

props, its under surface being the plane, the pressure

on each of them is if they be equidistant from the ver-

tical passing through the CG 4 W X cos inclination of

the beam, the remainder of the weight tending to make

it slide on the props, {e) The magnitude of the sur-

face of contact with the plane, makes a considerable

change in the motion of the body: it slides, if the vertical

through its CG, commonly called the Line of Direction,

falls within its base, and otherwise it rolls. Thus a cube

will roll if the inclination exceed 45" and a hexagon at

SO" while a cylinder cannot be made to slide, but rolls

with the least inclination.

24* If a beam or other body be laid on two inclined

planes, in order that it may be in equilibrio the prci*
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sures must compound a force perpendicular to the hori-

zon and parsing through the CG ofthe beam. That the

first of these conditions may be fulfilled, the pressures
must be reciprocally as the sines of the inclinations of

the planes, and that the second may have place, those

sines must be as the cosines of the angles which the

beam makes with the planes, (f)

NOTES TO CHAP. V.

{a) Call the angle LBH ^, then as the body is acted on

by three forces P,W and R the reaction of the plane, we

have, making IH the axis of the abscissae, W. cos I +
P sin ^ + R= 0, and W sin I + P cos ^= 0, hence

p W X sin I , T3 txr / T . T .\^ = ^ and R = W (cos I sin I sm
cos 6

cos i

^^W. cos (I 4- tf).

cos ^

If the weight be sustained by two forces, the

equations are

W. cos I + P sin a + jD sin 5-+ R=; o, andW sin 1+ P cos ^ + p cos 5 = o, hence

p = W sin I P cos d

cos. 9*

and R = W. cos (I + ^) P sin (<>.)

cos 3-

Q)) This formula is easily extended to the other conic

sections, let DE fig 42 be an Ellipse or Hyperbola,
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CD is parallel to the tangent, therefore P = W x DV

DC

butDV'- b'-^^r -^ and DC^ = a' rKv\

whence P = W X 6 a:
^ If e vanish as in the circle

it is = W X X

a

And if we substitute for b ^ ap and for j:, S, and

2

suppose infinite, we obtain for the parabola.

V/^ + ^r
(c) The inclination of the tangent and length of the

arch may be obtained from the general principle, that if

the points of section coalesce, the secant coincides with

the tangent, or that the curve is traced by two motions

parallel to the axes of coordinates, see fig 42, where the

motions may be considered uniform through the dif-

ferentials d X and di/f therefore the diagonal is the cor-

responding diflferential motion of the tracing point, and

ds= y/dx^-d7^ ^xand^Jjr _ t^g j^

d X

*, In the Cycloid calling y the ordinate PX, and BX
fig 40, X, and z the arch VNB, y =i z J^ sin z, and
^ = 1 cos z, AB =

2, therefore </^ ,. ^the tan-

dy
gent of ?i PV ^ dz sin

z^
sin z

dz(l -\- cosz)
~

1 + cos s"~

t z, but the angle BVX = A = i z, therefore n P is

parallel to BV.
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If we square and add the differentials, d s ^ dz

v/(l +2 cosz+cos^z-\>sm^z) = dz ^2X1 + cos2:\^2dzX cos iz=:4^d (sin i z) but 2 sin f z = BV,

andy 4 d/ (sin i 2;) = 4 sin f ;s == 2 BV.

{d) Let G be the CG of the two weights, draw paral-
lels to the planes, then W : w:: x: WE : F "w:vy hence

FW =
W_^xy

and WE ^^ but these with ,,

and X are 5 the length of the cord, therefore

s = W + te; X 3/ + W 4. w X ar. /

w W
Hence j/

and a- are the coordinates of a right line,

and to find where it meets the planes put j/
= 0, and

Ws .
,

y = AliTj^ ^Sain put a; = and

IS) s

y =
^Tjn ;

therefore xf \ y* \\ W : w, but that the
vv X ^

line connecting them may be horizontal ^' : y : : L : Z,

the lengths therefore are as the weights : this principle is

sometimes useful in determining equilibrium.

(^) A body is supported on an inclined plane by n points

to determine which we have three equations

R + R' + R''&c.= W X cos I,

and as the result must pass through the CG, their

moment with respect to x and y must be null, let

the parallel to the intersection of the plane with

the horizon at the projection ofthe CGbetheaxis ofj:, and

the perpendicular to it passing along the plane be that

of 2/, then

R r 4. R' / 4- R" x" &c. =
and

Rj/ 4. R'y -f R'y &c. = 0.

If the body be a beam resting on two props,

the X s vanish and the x' s are equal and opposite,

therefore the pressures are equal and each=l W X coa I.
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(f) Let a body whose CG is G rest on two planes at
A and B, then sin ;: sin a-. DG : QA, and sin b : sin
w : : BG : DG, or sin m, sin b: sin w sin : : BG : AG,
let AG

'jgQ
= ^and sin n sina = r sin m sin b^ but w +

=s= G {a-\- b) =zSf therefore sin a X sin (5 m)
sin a (sin s cos w cos s sin m) = r sin w sin ^, and

tanff m sin a sin 5 jc kr* r> n
rsin + sni a cos s

directum sin s^^ sin (a + b) and we s hould have tang

m = rcotang a (r + 1) cotangfa + bj, and if r were

= 1, and a + ^ = 90, tang m = cotang a.

CHAPTER VL

25. We have proved that a force, applied to a cord

by any means which permit lateral motion, must bisect

the angle under the parts of it and produce a ten-

sion = beinghalf their mutual inclination. If
2 cos a

a cord passing through a ring attached to some fixed

point be connected with a weight, the reaction of the

ring may be considered as such a force, it therefore must^
be to the weight as 2 cos a : 1 and as the tension; at the

extremities of the cord are equal, the power which sup-

ports a weight must be equal to it : in general the angle

a =0, and the pressure on the ring is twice the weight ;

a fixed ring therefore serves only to change the direction

of a force without changing its energy. But if the ring

were attached to the weight the case would be different ;
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as before the tension is uniform throughout the cord,

one end of which is attached to a fixed point and the

other held by the hand or by any other power, this ten-

*^" ^^
. and is equal to the power exerted in

2 cos a

sustaining it, therefore P : W : : 1 : 2 cos ^, or when the

cords are vertical, as 1 : 2.

We have supposed that the cord is inflected by

means of a ring, but friction and the rigidity of cord-

age would in that case interfere very materially with

the results, and it is usual to bend them on the

circumference of a wheel grooved at its circumference

to receive them and turning on an axis or pin:

it will subsequently be shewn that the impediments of

the cord's motion are thus much diminished, and the in-

troduction of the wheel does not change in any respect

the theory ; for fig 46 the cord TG being a tangent to

the circle acts as if continued to I, and the result of its

tensions passes through C so that in theory it is the same

whether a weight be hung on at I or at C ; The Wheel

or Sheave is placed in a cavity mortised in a Block, which

prevents the rope from slipping out of the groove, and

affords a ready mode of attaching the machine to any

point ; the Sheave and Block are named a Pulley, and

any assemblage of them is a Tackle.

What has been said of the fixed ring applies to the

fixed Pulley, fig 47 ; for equilibrium Pand W are equal,

and this even when the parts of the cord are not parallel.

Fig48 represents a tackle consisting of a single moveable

pulley B and a fixed one A to change the direction of

the power, the end of the cord is attached to a fixed point

C ; here the cords are parallel and cos i = 1 there-

fore W : tension of either part of the cord as 2 : 1, but

the tension of BC is resisted by the fixed point C, and

H
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that ofBA is communicated by A to P, if P then be

i W it will support it. Had the cords not been parallel

the power must have been to the weight :: 1:2 cos i a.

Fig 49 shews another containing a single moveable Pul-

ley, here the cord instead of passing from C to a fixed

point is directed by a second fixed pulley B back to C
and is fastened to its block at E, the tension must be

equal through the system, call it P ; that of CB is em-

ployed to diminish the weight which is to supply the

place of the fixed point C in fig 48, therefore the weight

which remains to produce the tension is W P, which

must = 2 P if the cords are parallel, or 2 P x cos \ a in

any other case, 3 P is therefore in common = W.
26. These combinations are the elements of all other

Tackles, fig 50 is one more complex ; as before the ten-

sions are all equal to P, two of these act against the

weight at F, two at E and two at D, the sum of the whole

being equal to W, therefore W = 6 P. If the cord in-

stead of being attached to the fixed part of the system
had passed over a fourth fixed pulley and been fastened

at D, it will be easily understood that W = 7 P : in ge-

neral, where there are n pullies there are 2 ?i or (2 w
-|- 1)

tensions according as the terminiition of the cord is at

the fixed or moveable part of the system, and the power
is to the weight w \ :2 n ov 2 7i-\- I. In these systems
to raise the weight 1 foot, 1 foot must pass the pulley
furthest from the power which in this figure is D, 2 feet

must pass C, 3 E and in general the quantities which

pass the pullies of any tackle are in arithmetical pro-

gression, the first term and common difference being the

height to which the weight is raised, the coefficient of

those belonging to that part to which the weight is fas-

tened being the even numbers, and of the others i h e odd :

if then the diameters of the sheaves be in a similar
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arithmetical series, they will all make the same number

of revolutions, thereby wearing equally and if they be

ranged side by side diminishing friction. In this ar-

rangement, however, the actual diameters of the sheaves

must not be in this proportion, for as the power of a

rope is applied at its axis, i its thickness must be added

to the radius of the sheave to obtain the virtual diameter,

in fact the first term of the series of diameters is d and

the common difference d -{
2 t the thickness of the rope ;

if the grooves fit the rope the diameters of the outer

edges should be as 1 2 3, &c.

27. Where a tackle is required to exert a great power

through a small space, the arrangements fig 51 or 62 may
be used ; in ,51 half the weight is sustained by a, and half

by the axis of B, half of this again is communicated to

C and balanced by the power P ; P therefore : W : : 1 :

2 X 2 X 2 or 8
; in general if the power be unity its

energy at the axis of the ?i
^^

pulley is 2 "
. The Power

produces an energy at d 2 P and at c = F, that at

6 = 2 P, and that at a = 4 P, the sum of these is 9 P,

therefore if the tackle were inverted and abed were a

weight it would be more powerful, fig 52 is on this prin-

ciple.

The tension P is communicated toW by the pulley A,
B communicates 2 P, and C 4 P, and D 8 P

; the energy

acting against W is therefore Px(l -1-2 + 4 + 8j

/ w + 1

= P X 15. Ingeneral W = PxV2 17
n being the number of moveable pullies in the tackle, for

this coefficient is the sum of a geometrical series whose
first term is unity, its ratio 2 and the number of its

terms n-\- 1. Analogous to this are the systems called

Spanish Burtons shewn in fig 53 and 54, in the first of
which the Power : to the Weight as 1: 4, and in the

second as 1 : 5.
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In the ordinary tackles there is a loss of power from

the obliquity of the ropes, which when the fixed and

moveable blocks approach becomes considerable : Mr.

Smeaton has proposed to dinriinish this by the following

arrangement, the blocks contain two sets of sheaves of

unequal size, the rope to which the power is applied

enters in the middle of the larger set and proceeds

to its extremity, it is then conducted through the whole

of the smaller and at the other- extremity returns to the

larger arid is finally attached in its middle, in this way
the application of the power causes no obhquity in the

blocks.

It has been proposed to unite the sheaves anu let

them turn on pivots or axles, proportioning them to

turn in the same time, which would certainly diminish

the friction j but in general f of the power is thus lost.

Very great mechanical advantage cannot therefore be

gained by this machine, but from its portable nature

and cheapness it is highly useful in ordinary cases,

particularly in ships where its application is most

extensive.

CHAPTER VII.

28. It is the defect of the Lever that the space

through which it can raise a weight is very limited, but

the Wheel-and-Axle is free from this defect. Let, fig 55,

BE be the section of the axle projected on the plane of

the wheel, the power if applied by a cord coil'd on the

wheel acts perpendicularly, and its moment is P X AC,
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and this must be equal to the moment of W = W
X BC, the Power and weight are therefore inversely as

the diameters of the cyh'nders at which they act.

If the direction of the power be not a tangent to the

wheel its moment is
^^

P' x ^^* The axis of the

wheel and the axle, or the line drawn through C perpen-

dicular to the plane of the wheel, must pass through the

centre of gravity of the Power and weight, as also of

the machine itself; if therefore we compound the weight,

power, and weight of the machine, the one applied at the

CG, and the others at the intersection of a line joining

A and B with the axis, this result decomposed into two

parallel to it will give the pressures on the pivots or

Gudgeons of the machine. If the actions of the power
and weight be not parallel, their directions must be pro-

duced till they meet, and the line drawn from their oc-

curse to the axis is in the direction of their pressure.

The power is applied to the circumference in various

ways, but the weight is generally attached by a cord to

the axle, which coils on it as the machine is turned ; the

thickness of the rope is therefore to be added to the

diameter of the axle, and even more if the rope make

two turns, a correction is also req uired for the obliquity

of its turns, and may be made if t is inconsiderable in

respect of d by diminishing D by that part of it whose

coefficient is / 2 divided by twice the square of the cir-

cumference of the axle (aJ. The Power is sometimes

applied by pins projecting from the circumference as in

the wheel used in steering ships, sometimes tiie exterior

or interior are formed into steps up which men or other

animals walk, and turn it by their weight.

In water mills the weight or impulse of water acts

at the circumference,and in wind-mills the oblique action

ofthe wind is diffused over several radii; on the whole the

entire circumference is used but rarely. Most frequently
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one radius only is used carrying at its extremity a handle

perpendicular to the plane which it describes in a revo-

lution ; it is then called a winch and as is evident supplies

the place of the complete wheel with the inconvenience

of producing a greater variation of the moving force, for

a man exerts a very variable strength in different parts

of the revolution, in two parts nearly opposite he exerts

an action of 70 pounds, and at the intermediate points

only of 25 ; if, however, two workmen are employed by

disposing these winches at right angles to each other, the

two can work for a day against 70. The Capstan and

Windlass are other modifications of the wheel and axle,

here the axle is pierced with holes into which levers are

introduced, which are shifted from one to another as the

machine is turned ; in the capstan the axle is vertical

and the levers are pushed horizontally, the other is hori-

zontal and is wrought by the men throwing their weight

on the bars ; both are provided with catches which drop
into notches and prevent the weight from receding on

any intermission of the power. The wheel-and-axle is

used to raise ore &c. out of mines ; the rope makes a

few turns round an axle of considerable diameter, and

as one end with its basket is drawn up the shaft, an

empty one is lowered by the other. Considerable me-

chanical advantage may be gained by making the axle

of unequal diameters and attaching the rope so that as i^

coils on one it unwinds from the other; fig 56, neglecting

the inclination of the cords each of them bears i W, and

the moments of their tension with respect to C are i W
X AC and i W x DC, but as the cord is coiled in op-

posite directions on the two cylinders, the difference of

the moments ^ ^AC DC^ is the energy of the weight

to turn the axle, but this is the same as if it acted on a

cylinder whose diameter was the difference of the radii.
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If the diameters be twelve and ten inches moved by
a winch of 18, the condition of equilibrium will be the

same as in a wheel of 36 and an axle of 1, this would

enable two men to raise about 3000 pounds which would

require a rope three inches in circumference, and it

would be impossible to wind it on an axle of an inch

diameter, or to find materials sufficiently strong to make

the axle of such small dimensions ; but by this con-

trivance the axle is virtually diminished at pleasure, the

necessary strength and diameter being retained,

29. Where the resistance is variable its energy may be

made uniform by varying the diameter of the axle so

that it may act by a less Lever as it is more powerful, and

by this means the power is not overcome by the resis-

tance when great, and when the latter diminishes it works

with greater velocity ; contrivances of this kind are used

in cranes which vary the diameter of the axle at plea-

sure; the same principle has been used in an instrument

to measure the intensity of the wind by windmill sails

raising a weight on a conical axle which turn until the

cord arrives at a place where the moment of the weight
balances the impulse. Were the resistance a weight

which increased or decreased uniformly in its ascent, it

might be counterpoised by another whose cord coils on

a spiral of such a nature that its radii are as the angles
which they make with a given line, this is used in Gaso-

meters (b.) But the most ingenious mode of equalizing
a varying action is that used in the fusee of a watch ; the

mover is a spiral spring, coiled in a box to which its outer

extremity is fastened, the other is secured to an axle on

which the box turns, a chain is fastened to the box and

coiled round it so that by pulling it the spring is coiled

into smaller spires : as it is unwound from the box it is

wound on the Fusee or axle ofthe first wheel of the watch,
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and the force which it exerts to return to its first posi-

tion moves the wheel work ; now this force is nearly as

the number of turns which the spring has made, or the

length of chain unwound, and by making the fusee de-

crease as the quantity of chain wound on it increases the

motive force is nearly constant, the outline of the fusee

should be the Hyperbola, (c,)

NOTES TO CHAPTER VII.

(a,) The rope forms a helix on the axle making with

the plane perpendicular to its axis an angle whose cosine :

sine :: circumference of a cylinder whose diameter is d

-{ t :ty hence cosine of it

now the power acts in the plane of rotation and must be

reduced to the direciidn of the rope, or

X c? + /, develope the radical and we have

VD=^W (d + t))( {I +i ^,f .2 -&c.)and
p^ ( +

as t is small in comparison of d we may stop at the se-

cond turn. If d be 10 inches and M, the effect of this

obliquity is about -7^ of W.

(b.) This spiral which is called by the name of Archi-

medes is generated by the motion of a point moving

uniformly along a line which revolves round one extre-

mity with a uniform angular velocity and can easily be
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traced by points ; its application to counterpoise a re-

sistance which varies uniformly is easily understood, and

it is generally used, to change circular into uniform reci-

procating motion. For the purpose mentioned in the

text it is merely an approximation: and the proper

spiral is the involute of the circle, continued through

several turns. See note (a) of the next chapter, from

which it can be easily understood that as the involute

turns uniformly round its centre, the vertical tangent
recedes uniformly from it : the diameter ofthe generating
circle is known by comparing the weight of the rope
with the load ; this gives the ratio of the greatest distance

to the radius of the shaft, and as it is diminished in each

revolution by a circumference of the circle, the latter can

be determined when the number of revolutions is known.

A similar correction might be made by properly shaping
the drum on which the rope is wound, as in the Fusee ;

but the curve is known by a differential equation, whose

integral cannot be given in a finite shape,

(c) In fig 57, B is the box containing the spring, F
the fusee ; the chain when the spring is unbent is coiled

regularly on the box, and as it is wound on the fusee it

ascends up with a uniform motion ; its distance there*

fore from the bottom of the box is as the number of turns

made, or as the restitutive force of the spring:- but the

diameter of the fusee where the force is applied must be

inversely as it, or as the distance from the base of the

fusee, supposing it continued downwards so far that the

spring would be inactive when the chain is wound off

it ; its shape is therefore a portion of the solid described

by the revolution of an Hyperbola round its asymptote.
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CHAP. viir.

30. In the wheel and axle the weight is raised by a

cord fastened to the axle, but this is not the sole appli-

cation of the machine, by far the most extensive use of

it is on a different principle. If the circumference of the

axle revolved in contact with that of a second wheel, so

connected that they could not slide, on turning tlie first

wheel the second must turn with it : in fig. 5S AB is the

radius of the first wheel, CB of its axle, CD of the second

wheel, ED of the second axle ; let the machine be turned

by any power applied at A , its moment to turn the wheel

is P X AB, and the energy which it exerts at C = P X

. r-
'
but as the axle is connected with the second wheel,

any force impressed on the one is communicated to the

other 5 therefore P X x ^ is the energy exerted

at E, and if there be any number of wheels and axles,

it may be shewn in the same way thiat in equilibrium

P X D X D XD,'^ &c. = W X d xdf X d", &c.

The velocity of the point A : that ofC :: AB : BC, and

velocity of C to that of E : : CD : DE, therefore vel. A :

vel. E : : AB x CD : BC X I>E, but this is the inverse

ratio of the power and weight; therefore in wheel-work,

as in other machinery, what is gained in energy is lost in

time. The Angular Velocities of any two working to-

gether are inversely as their diameters, and they turn in

opposite directions. The connection which we have sup-

posed to exist between the circumferences in contact,

may be produced in various ways ; if the touching sur-

faces be rough, as if they are faced with leather or wood
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cut acres'? the grain, the action of friction is found suf-

ficient when the resistance is not considerable. Wheels

are often driven by a band, strap, or chain, as in the

Turning Lathe, in which motion is communicated to a

large heavy wheel which turns one much smaller by a

band with a speed of from 1 to 10 revolutions in a second

or even more ; the axle of this latter is provided with

means of holding the substance to be worked, and as it

revolves, by the application of cutting instruments it is

fashioned into any shape whose cross section is a circle.

Machinery is often driven by straps descending from

horizontal shafts running along the buildings of great

manufactories and turned by water wheels or .-^team en-

gines, the wheels round which they pass are loose on

their axles, with which they can be connected at pleasure,

enabling each workman to stop or move the machine

which he superintends, independent of the rest.

3 1 . But the most usual form of wheel-work is where

the circumferences are indented into teeth locking into

each other, and it ensures their action unless the strain

be so great as to fracture the teeth ; but minute attention

is required to their figure, that they may communicate

the motion uniformly and steadily. Supposing that the

teeth have plane surfaces as shewn in fig 59, when the

tooth D comes into contact with C it acts on it in a di-

rection oblique to the radius, and as it moves, on the angle

of C slides on the plane surface of D producing much

friction and grinding itself away, till they come to the

position marked A and B, when the surfaces separate

again and the point of B slides on the face of A for the rest

of the time of their contact ; when they pass the line of

the centres the point of application of the force which

an instant before was at i, suddenly changes to a, pro-

ducing a jolt in the action. Without going more mi-
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nutely into the investigation, it may suffice to mention

that the teeth should be curved so as to roll on each other,

as much as possible w^ithout sliding, and to bear on each

other perpendicularly. T and S in the same figure re-

present teeth possessing these properties, formed by

evolving a thread off a circle equal to the diameter of the

wheel, and as MN the perpendicular passing through

their contact is a tangent to both wheels, therefore the

force is communicated in the direction perpendicular to

the radius of each wheel, and at a distance from the

centre equal to it. (a.)

32. In the estimation of the power of machinery act-

ing by teeth, it is not usual to introduce the diameters of

the wheels and axles, and their place is supplied by the

number of teeth ;
if/ be the thickness of each tooth and

n their number, ni is the periphery of the wheel, but as

wheels which work together must have their teeth of the

same size, 91 is as D, and we may say that w _ n.n'

p n,n'

&c. or that the power is to the weight as the product of

the numbers of the pinions : product of the numbers of

the wheels; a pinion being an axle cut into teeth. Where
it is desired to communicate a given angular motion with

the least possible number of teeth, the numbers of thepini-

ons should be about
^^
the numbers ofthe wheels; where the

weight and friction are required a minimum they should

be about } {b) : 1 to 5 is probably a good proportion.

The numbers of a wheel and pinion should be prime to

each other, as in this case every tooth of one comes into

contact with every one of the other, and the wear is dis-

tributed uniformly, and as the pinion revolves more fre-

quently than the wheel its teeth should be a little stronger.

The wheel is not always in the same plane with its

pinion, when ihey are at right angles it is named a Crown
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wheel, when in any intermediate direction, the wheel-

work is named Bevil Gear. To comprehend its action

we must suppose two right cones, of equal length, and

the diameters of their bases inversely as the angular ve-

locities required, applied so that their vertices may co-

incide,and that they may touch in a side of the cones, if

then one be turned on its axis, it will drive the other ;

^g 60, at any distance from the vertex draw parallel

planes to the bases, their intersections with the conical

surfaces are circles, and the velocities of their circum-

ferences are as the velocities of the bases, therefore the

angular velocity of each surface is the same throughout,

and any frusta equidistant from the vertices will supply
the place of entire cones, the teeth of these wheels are

cut not parallel as in the common kind, but converging

to the vertex of the cone ; the angles of the cones may
easily be found, for the motion is communicated at the

angle BAC, and this is tt) be divided so that sin BAD:
sin DAC, inversely as the angular velocities of the wheels.

(c.)

38. -As examples of wheel-work we may mention the

Crane and the Watch, the one augmenting the power,
the other increasing the velocity. The first of these

machines is essentially a combination of wheels and pini-

ons fixed in a frame which can be turned to any part

of the horizon, with a projecting arm over which a rope
or chain passes from the last axle; it is furnished with

a Ratchet Wheel and Brake to sustain the weight at any

height or regulate its descent, the latter is an arch

pressed by a Lever on the circumference of a wheel and

retarding its motion by friction, the other is a wheel

whose teeth are inclined in one direction, so when it

turns in the opposite a catch is raised by each tooth and

passes over it, but drops into the intervals and pre-
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vents any return, see fig 61. The proportion of the

wheel-work is easily determined by the power required ;

for example, if it be required that two men shall be able

to raise ten tons, this may be done by various combina-

tions so that the problem is indeterminate except as far

as it is limited by other considerations: it has been shewn

that w _ R X N X N' &c. R and r being the radii

p r 71 w
of the winch by which the machine is turned and the axle

on which the rope is wound, and as two men can work

against 70 pounds w _ 320. r is in practice 1 8 there-

~v, T ~6~

fore 106 = n X n' x &c. the first member is to be re-

n n'

solved into factors which are the fractions n &c.but these

n
should be about 5 or 6, and if we take the three factors

6, 6 and 4 we shull obtain a machine which shall have the

power required, and an overplus of i for friction, it will

therefore consist of 3 pinions of 6 leaves and three wheels

of 36, 86 and 24 teeth.

The Watch is moved by a spring connected with a

fusee as already described ; the fusee is on the axle of a

wheel which drives a pinion whose axle carries the mi-

nnte hand, its wheel drives a second pinion and wheel

which moves the last of the series called the Crown

Wheel. In general the numbers of the wheel-work are

T> j T^ therefore while the fusee wheel makes

one turn, the crown wheel makes 300 ; but by a con-

trivance which shall be afterwards described this is

constrained to revolve once in a minute, an index carried

by it points seconds on a circle divided into 60 parts,

the axle of the second wheel drives by a pinion of 6 a

wheel of 72 which moves another turning on the first
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axle with the same speed carrying the hour index which

makes ~- of a revolution while the minute hand turns

once ; the spring is wound up by a ratchet on the fusee

which permits motion in one direction but not in the

other.

34. The combinations of Wheel-work are endless,there

is scarcely a motion even of the hand which cannot be

performed by it. The study of this part of Machinery
is highly interesting, but our limits do not permit us to

go further into the subject, we will therefore conclude

with describing some contrivances appertaining to this

species of machines which are very useful. Where an

engine is driven by a power acting constantly in the

same direction, it is often necessary to reverse the mo-

tion ; this may be effected by a shaft having two pinions

at such a distance that they cannot both act on the teeth

of the crown wheel A, fig 62, the shaft moves in its

Bushes so that one or other may be brought to act, and

as the opposite points of the circumference move in op-

posite directions the wheel must turn different ways as

the motion is applied at B or C.

35. It is often required in machines to convert a rota-

tory motion into a reciprocating one, and vice versa; this

is most easily done by a crank or axle twice bent at right

angles, fig 63, as it makes a revolution, the rod B which

is connected with it at A so that it can turn freely, is

raised and lowered through twice AD. If on the other

hand a reciprocating force act by B, it will make the

crank revolve if the machinery connected with it have

inertia sufficient to continue the motion past the points

above and below the centre of the circle described by

it, as the force pulls directly to and from that point in

those two places and therefore does not produce rotation.

The resistance acts very variably against a crank, sup-
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posing it to act in vertical lines the enwgy which turns

it is P X AC, while the moment of the resistance is W
X BA, its energy is therefore as the sine of the angular
distance from the vertical, and is nothing at E and F,

increasing to a maximum at G and H. This irregularity

of action is often beneficial ; where a great mass of mat-

ter is put in motion and suddenly urged in a contrary

direction, the shock on the machinery is prodigious, but

the crank changes the motion gradually and acts with a

mechanical advantage which at the commencement of

the action as in the Lever of the Stanhope Press is

almost infinite ; as an example we may refer to machines

which raise water from a great depth with pumps and are

wrought by cranks. In the descending stroke the engine

acquires a considerable velocity, till the crank passes the

vertical and is opposed by the weight ofa column of water

many hundred feet in length, if this acted by the whole

radius of the crank, it would stop the engine or tear it to

pieces, but at that instant the moment of the power ex-

ceeds its moment beyond all calculation, and it is slowly

put in motion ; as it acquires velocity the energy of the

power decreases, and its velocity augments until it has

attained its maximum. Where a reciprocating power

acts, this is a very defective mode of producing rotation,

as much force is expended in pressing on the axle of the

crank, fd)
The change of reciprocating into rotatory motion is

also effected by an invention of Mr. Watt, commonly
called the Sun^^and Planet Wheel, fig fiS ; the rod which

conveys the power is fixed to a toothed wheel of the

radius AB so that it cannot turn, the centre of this is

connected with the centre of the wheel to be driven by

the brace AC, and on moving the rod the wheel BC
revolves; every point of the area of BD describes an



A SYSTEM OF MECHANICS, &C. 65

equal circle, and therefore mov:es with the velocity ofA,
therefore tlie periphery of BE, which is connected with

that of BD by its teeth, must also have the same velocity

as A, therefore the angular velocities of a point in BE
and of A must be inversely as their radii or as AE : BE.
In general the wheels are equal and the axle makes two

revolutions for one reciprocation.

Circular motion may be changed into rectilineal uni-

form motion by Rack-work ; a straight bar is cut on one

of its surfaces into teeth which work in those of a wheel,

and as this is turned on its axis the rack moves through
a space equal to its circumference ; by this means the

adjustments of Philosophical instruments are in general

moved, though its motion is by no means so smooth as

that of the screw ; it is also used in the machine called a

Jack to raise great weights, being urged by a powerful
train of wheel work.

If a circle roll on the concave circumference of another

twice its diameter, a point in its periphery describes a

right line ; fig 66, the arches PE PA are equal, for the

parts of one have been successively applied in the rolling

to those of the other, therefore since angles on equal
arches are inversely as the radii, ADE = i PCE = PDE,
the point P is therefore always in the line DA. Hence

if the circles act by teeth and are kept in contact, a rod

attached at P will reciprocate through AR, if a circular

motion be applied at D.

In one important machine a rectilineal motion is used

to move the extremity of a Lever, which as it de-

scribes its arch, approaches and recedes from the ver-

tical through its fulcrum, this lateral motion is ob-

viated by a system of Levers known by the name of

Parallel Motion; fig 67, as the Lever AC turns round

C a perpendicular from A continually approaches C,
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but in the same way a perpendicular from F recedes from

C and the motion of F is communicated by the jointed

frameAEBE, all whose angles move on centres, toE; this

point therefore is at once moved by two circular motions

curved opposite ways, and it is possible by a proper pro-

portion of the radii, to make the curvatures compensate

each other through a certain space. In reality the path
of L is not a right line but a curve with a point of con-

trary flexure.

In some operations pestles or stampers are raised by

pins or Wipers projecting from a revolving shaft which

elevate them to a certain height, and passing them allow

them to descend on the materials subjected to their action:

they are often straight pins, but the objections which

apply to straight teeth of wheels are equally powerful

liere and are obviated by forming the wipers into curves

of such a nature that they may act uniformly; one easy

method is shewn in fig 68, where the curve is a spiral of

Archimedes and the arm A is raised through equal spaces

with equal angles of rotation. If the wiper be straight

the arm on which it acts must be curved into a cycloidal

arch, and if the body to be raised move not in a vertical

line but in a circle, it is still possible to produce uniform

motion by a uniform power, {e.)

NOTES TO CHAR VIII.

fa.J There are two modes of shaping the teeth of

wheels, in one they are formed into Epicycloids or curves

formed by a point in the circumference of one circle
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while it rolls on another, in the other they are Invo-

lutes of circles; the latter of these seems the best as the

curves are more easily described and it admits of more

teeth acting at once. It is unnecessary to enter mi-

nutely into the details of this investigation, we will shew

that an equable motion can be procured by either of

them, referring those desirous of further information to

Brewster's Notes on Ferguson, or Hachette Traitc des

Machines.

In fig 69, EPI is part of an epicycloid whose base is

the circle EABand generating circle IVB; the arch EA
= arch PA = arch VB, but EAB = BVI therefore

AB = VI, but AB or VI : OX :: AC : OC ; or VI :

PV :: radius of base to distance of P from its centre.

The Epicycloid is described by a motion compounded
of two, one round the centre V the other round C,

which are in the above proportion of AC to PC, for

they are represented by the differential increments of

BV and PV ; their directions make, with the tangent

of the curve, angles whose sines are in their inverse pro-

portion, but their directions are perpendicular to NP,
PC, if therefore we divide the angle NPC so that the

sines of its parts may be inversely as the motions, we

obtain a line perpendicular to the tangent ; draw PA,
sin NPA or PAN: sin A.PC :: PC : PN : motion in

arch PA : motion in PO, therefore PA is perpendicular

to the tangent.

Let B and C be the centres of two wheels, fig 70,

the teeth of the one are formed by planes in the direc-

tion of its radii, and those of the other are Epicycloids

generated by a circle i the diameter of the wheel B,

the motion will be communicated uniformly from C to

B; for let DB be the face of a tooth, it touches the
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Epicycloid at D, therefore DA is perpendicular to DB,
or the line in which motion is communicated from the

tooth ED to the tooth DB passes through A the con-

tact of the two wheels, and their angular velocities must

be inversely as CH : DB, or CA : AB. This is per-

haps more distinctly seen by considering EB as an in-

terior Epicycloid (we have already shewn that when the

generating circle is half the base, the Epicycloid is a

right line) ; for as the teeth begin to act at the line of

the centres, FA, EA are described by their wheels in

the same time and are equal, but the angles standing on

equal arches are inversely as the radii. The right

Jine is not the only interior Epicycloid which can be

used, but this is obviously more simple than where

both sets of teeth are to be adjusted to a curve. It is

evident that the tooth ED cannot act on the other before

they -come to the line CB; if this be required tW teeth

of both wheels must be in part plane and in part epi-

cycloidal as in fig 71. Before they arrive at CB, the

plane surfaces of the teeth of C press on the curved

parts of those belonging to B, afterwards the curved

parts of the former act on the planes of the latter.

The Involute of a circle is the limit of the Epicycloid,

being described by a right line rolling on a circle, and

therefore if the teeth be made according to it they will

act uniformly ; fig 72, AC and DB are parts of the

effective circumferences of the wheels, suppose the thread

AB wound off A and on B, it will always be perpen-

dicular to the involutes EC and ED, and a tangent to

both circles; but the teeth communicate motion in the

perpendicular to their surfaces, therefore force is com-

municated in the tangent to the two circles, and their

peripheries being connected by the thread or by the

action of the involutes which acts similarly, move with
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equal velocity, their angular velocities are inversely as

their radii.

The teeth of Racks may be constructed on the same

principles, for as a right line is a circle of infinite ra-

dius, if the teeth of the wheel be epicycloids, its teeth

must be Cycloidal; if involutes, right lines: fig 3, EC
and CD are generated by the same circle, AC is per-

pendicular to the epicycloid and as they have a common

tangent, to the cycloid, hut as they must always be in

contact the arches of the generating circles intercepted

between the contact and the points A and H must be

equal, but these are as the motions of tlu' wheel and

rack. In fig 74, BE is an involute, therefoje always a

tangent to CB the tooth of the rack, and BA the dis-

tance from the line of the centre = the arch evolved,

therefore the motions of the wheel and rack are equal.

(6.) (I.) If there be two numbers so related that

^ = j/,
^ is the Logarithm of

j/ , Logarithms measure

the ratio of their numbers for

w
""

T^^ " ^ '

The logarithm of any power of
3/

is its logarithm x ex-

ponent of the power.

The differential of a logarithm is as the differential

of the number divided by the number, for

X -{- da: oj dx dy
a a ^ y ^ dy 3/,

and a = 1 + y

let = 1 + ^> and raise this by the binomial theorem

to the power dx and

1 + Jz/ = 1 + 6 X ^^ +_^ X dx. dx^ 1 -f 53 X

dxM 1. ^^ 2 &c. but all the powers of dx but the

first vanish, and the equation becomes
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or if the sum of the series be called ^

dy dx

y m
There are many kinds of logarithms depending- on the

magnitude of a which is called the base, for on this

depends the quantity m called the Modulus of the system.

lim ;=. 1, the logarithms are called Napier's from their

discoverer or Hyperbolic, and the integral of -^ z= ^d.y
y

If these logarithms be multiplied by the modulus of a

system they give its logarithms for

hLy = hl,a x ^

but hl.a = m and x == hl.y x m. These propositions

relative to logarithms are indispensable, and they are in-

troduced here to save the trouble of a reference to other

works.

(2.) If in a machine the number of teeth in the wheels

be to that in their pinions as 3/ : 1, if there be'x wheels

the angular velocity at the end of the train is as 3/*, for

it is as

,

? X ^ ^ &c.
n n ^

but these factors are all = y and the product is that

power ofj/ whose index is x j hence log. y X' .r =s log a

calling a the ratio of the angular velocities of the first

and last axles: if it be required that the number of teeth

should be a minimum, this is as
( ?/ -|-

^
) * t>r substituting

for^, as(3/+ 1)
^^.

When any function is at a maximum or minimum, its

differential = 0, in this instance

dyxly (.y+ 1) d, ly
=

or ly
~ y -\-

I =1^1 and y is 3.59 nearly.

y
'

y
But there are reasons for doubting whether this is the
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best ratio of the numbers, it might be preferable to use

that which would give the least number of teeth and of

wheels or {j/ + \) x^ a minimum which gives /j/
== 2 + |

and 1/
is 9.2 nearly. If the weight of wheel-work and

number of wheels be a minimum Z.^/
= 1 + p andj/ =

3.02.

(c) The semiangles of the cones may be determined

by the common formulas of trigonometry, or may be

derived from a very simple construction; for take, fig 75,

the angle A = to that required for the communication

of the motion, and AB to AC as the angular velocities

bisect BC, and the sines of the angles are inversely as the

adjacent sides. For the proper shape of the teeth of

Bevelled wheels, see Hachette.

{d) Though a Crank is a useful mode of changing

rotatory motion into reciprocating, yet it does not per-

form the converse of the problem so well, for much of a

reciprocating power is lost in pressing on the axis ; it has

been shewn that the energy of any force to turn the

crank is as the sine of the angle which its direction makes

with the radius, and its total effect in a revolution must

be as sum of all the sines or the integral of the product

sine of angle z X dz. In the simplest case where the force

acts in parallel lines, E the effect = /^sin z.dz = cos

z, but this integral must be taken from z to 2; =
180** and is therefore =1 2, but ifthe same force had acted

perpendicularly at the extremity of the radius, its action

would have been 1 X ^ =3.14, the effect is therefore

to the force applied in half a revolution :: 2: 3.14;

more than t is therefore lost.

Let us now suppose the force to act in the line AB
and be connected with the crank by a rod CB = /, AC
= 1 and angle B = u, then the force acting at C a

cos M X sin C = u ^ z, or as sin z. cos^ u
_j_

sin u cos n

cos , but sin M = and cos 2< = ^'JEJ^^H}
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hence

d E =s
f^isin zif sin^ z) + cos. z sin z X ^/^ gj^^ jj,)

C

or putting for /2, ;,2
_|_ j^

dE== / I
^. cos z X (>^^+

cos^ z^ + cos 2; X d. cos r X

or integrating

^^if {3
X%0S :2 + C0S3 ^ + (;^2 _^ cos')

'

}

when 2 = 180^ this is
^j^ (3 X + 1^ (X^+

At
and when z = o it is

and the diflPerence of these is the complete integral

=
57, (6

X + 2
)
=
-^_.

If Z were 10 times AC, E = 1.9 nearly, and the loss

would be greater if it were shorter.

{e) It is evident that the spiral described in the text

will raise the stamper with a uniform motion since the

increment of the angle a increment of radius, and the

same thing may be effected by attaching a curved arm

to the stamper which is acted on by a radius CA. in fig

76, while the radius revolves from A to B through the

arch dz, the arm is raised through DB, =: d^ + dz y^

cos Zf but the height encreases uniformly or as the angle

C = z and we may suppose dh = dz^ hence dj/ ^ dz cos z

= dzy and integrating z/
= z sin z but when 2 =r

let?/ = 180 therefore the integral from to 180 is 3/

= 180*^ z + sin z or z + sin z' which is the equation

of the cycloid whose generating circle has a radius == 1

= AC.

By a similar process the figure of a Cam or Heart

wheel to depress or raise a lever with a uniform mo-
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tion in an arch of a circle may be investigated, and we

obtain the differentials of the radius of the required

spiral, and the angle which it makes with a given line

in functions of the inclination of the lever to the horizon

which on integration give their contemporaneous values ;

as the results are complicated we should not givd them,

but in their place assign a method of tracing the proper

curve by points. Let it be proposed to raise the lever

AD through the arch A while the shaft BC revolves

through AB ; if the lever is required to move with a given

angular velocity, divide AZ into any number of equal

parts, divide AB into the same number, take from AH
an arch eH = that subtending the angle EGA and

describes an arch with the radius EC, its intersection

with the radius through e is in the spiral. In the same

way the angle IC / = ACF, and CP = CF, as also

angle KC^ = ACG, and NC to CG. In this way any

required number of points may be found, and connecting
them we obtain, if their number be considerable, a close

approximation to the proper curve. If it were required

to raise the lever with a motion according to any other

law, it would be necessary to vary the divisions of the

arch according to that law, but the rest of the process

would be the same.

CHAP. IX.

37. If a right angled triangle whose base = the cir-

cumference of a cylinder be wrapped on its surface so that

its altitude is parallel to the axis, the hypothenuse be-

comes a line named a Helix ; and ifother similar trianirles
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be applied in the same way, tlie curve may be continued

at j)leasure. Let another Helix be traced between the

spires of the first and parallel to it, and let the materials

of the cylinder be cut away in the space above the first

and below the second, we obtain a convex screw, which

consists of a Helical thread or ridge running on a

cylinder. In general the generating Helices bisect the

distance between each others spires, and therefore the

projecting threads are of equal thickness with the hollows

between them. The Helices may be traced on the sur-

face of a Concave Cylinder, and we obtain a Concave

Screw. If several Helices be traced between the spires

of the first, the result is a many threaded screw.

From the equation of a right line, it may be traced by
two uniform motions at right angles, and the helix may
be traced by carrying a point uniformly along a cylinder

while it revolves ; we are thus enabled to cut screws

with rapidity, the cylinder is made to revolve in the

Lathe, and a tool applied whose edge is composed of a

number of teeth, either squares or equilateral triangles ;

this is moved steadily from right to left with such a

motion that in one revolution it moves through the

thickness of a tooth, and it cuts a single screw j if it be

moved with double speed, a double screw.

38. From the Genesis of the screw it is obvious that

every part of the surface of the thread is equally inclined

to the base ol the cylinder, it may therefore be reduced

to the inclined plane, fig 78. Let AB be a small portion
of it, considering this as an inclined plane, the force

parallel to AC which will support a weight laid on it

is = W X ta"g A, but tang A is the quotient of the

perpendicular by the base of the right angled triangle
which traced the helix, and its base is the circumference

of the cylinder, its perpendicular the interval between
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two spires or threads ; the power therefore applied at

the surface of the cylinder : to the weight which it can

sustain on the thread : : I the interval ; pil the circum-

ference. The weight is made to rest on the thread by a

concave screw exactly fitting the convex, for as the

threads of the latter are lodged in the hollow thread of

the former, they bear any pressure which may be apphed
to it, and if the convex screw be turned on its axis while

the concave or nut as it is commonly termed, is pre-

vented from revolvinof, this will rise through the interval

of two threads in every revolution of the screw. This

instrument is commonly turned by a lever or wheel, to

which if any power P be applied its moment at the sur-

ftice of the cylinder
= P x D, but this must equal the

energy of the weight in producing motion round the axis

= W X T
,
and P X p D = W X I or

pd
P : W :*. I : circumference described by the power.

The screw is sometimes used to raise a weight through
a small space though other machines perform this more

effectually, but its chief mechanical use is to produce

pressure, which it performs effectually as the friction of

the screw and nut keeps it in its place and maintains the

pressure when produced; it is therefore the agent in

most Presses. The thread should be square in large

screws, as this form is stronger than the equilateral under

less surface and of course friction, and the frame of the

press should be of cast iron as otherwi.se it will yield and

diminish the pressure ; but if the materials pressed be

yielding so that they contract under it, then the elasticity

of the frame is useful, or the screw ma}' be made to con-

tinue to press through the medium of a strong spring.
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39. The screw may be used to measure minute dis^

tances, for its point advances through I while the radius

by which it is turned describes 360*'. Instruments for

this purpose are named Micrometers, their principal

part is a fine and accurate screw which carries a frame,

across which a fine wire is stretched at right angles to

the axis of a telescope or microscope and in the plane of

its principal image; by turning the screw the wire moves

parallel to itself and its distance from a parallel fixed wire

is the magnitude of the portion of the image included

between them, and from this by the principles of Optics

we draw ihe magnitude of the object. This distance is

indicated by a circular head on the screw which is gra-

duated; thus if the interval be ^^^ of an inch, and the

circumference of the head 3 inches divided into 60 parts,

for every one of these which passes an index, the wire

moves through -^^^-g
of an inch. Smeaton asserts that

he had used a screw which agreed with itself to ^^^5.
40. The power of the screw in producing pressure de-

pends on the fineness of its thread, and this is limited by
the strength of materials as if too fine it would be broken

from the cylinder, and on the other hand Micrometer

screws cannot be made beyond a certain interval ; the

screw of Mr. Hunter is therefore worthy of attention.

Its convex screw is hollow and contains a second screw

of a finer thread which can rise or descend but is pre-

vented from turning, and it is evident that in a revolu-

tion the second screw advances through the difference

of the intervals, the instrument being equivalent to a

screw of that fineness of thread.

41. The Endless Screw is supposed to be the engine
with which the Geometer of Syracuse launched by his

single strength one of Hiero's gallies when challenged

by that sovereign to give a specimen of the use of Me-
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chanics. It is a screw whose nut is supplied by a wheel

cut with teeth equal to the threads and with the same

obliquity ; every revolution of the screw moves on the

wheel one tooth, and F X p D^
^^ energy of the power

I

at the circumference of the wheel, and this X diameter

of wheel (= V) == W X d the diameter of the axle,

hence P X D x P V = W x ^/, but I X number of

"T
teeth = jp V, and P X D X w = Wrf, or P : W :: dia-

meter of axle : number of teeth X twice the radius of

the winch which turns the screw.

CHAPTER X.

42. The Wedge is sufficiently simple in its operation,

but there is some difficulty about its theory, iov the

power by which it is urged is commonly an impulse,

while the resistance to be overcome is a pressure whose

quantity cannot easily be appreciated, and who^e directi-

on is not certainly known. If the pressure to bo overcome

act perpendicularly on the sides of the wedge, and the

power be a pressure perpendicular to the back, iiie power

must be to the resistance as the back of the w edge to its

side, for it is kept in equilibrio by the pressures on its

three sides, they therefore must be as the sides of a tri-

angle parallel to their directions, or as the sides of a

triangle perpendicular to them, that is, as the si: is of

the Wedge ; this is in general 'i^osceles, therefore the

pressures on AC and BC are equal, and liiat on AB :

that on AC :: AB : AC. If the pressure on AC act

in lines parallel to AD, then AC may be considered as
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an inclined plane whose base is CD to which the di-

rection of the power is parallel, but it has been demon-

strated, that a power parallel to the base : W the

pressure which it can counteract : : AD : DC; an equal

power is required to counteract the pressure. on CB,
the power is therefore to the resistance as AB : CD.
The direction of the pressure is in practice included be-

tween these limits, and therefore the ratio of the power
and weight is intermediate between these ratio:*.

The Wedge is almost always urged by percussion, and

this makes it extremely powerful, insomuch that some

paradoxes have been maintained as to the incomparable

nature of percussion and pressure ; this is not the proper

place for entering into the subject, and at present we

will observe that a blow can be compared to a pressure

acting for the instant of time during which the motion

of the striking body is destroyed j this nmst be many
times its weight and much exceeds the resistance opposed
to it during that instant.

43. The Wedge is sometimes employed to raise weights

which no other machine could move, by its means large

vessels of war weighing at least 3000 tons are lifted from

their supports by the strength of a few men driving them

with a Battering-ram. It is the agent in the press of

the Oil-mill J the crushed seeds of certain plailts are in-

troduced into hair bags and placed in a row separated

by partitions of hard wood, wedges are inserted between

them and driven by heavy beams raised by Wipers on a

revolving shaft ; the oil is thus so completely expressed

that the cake which remains is almost of the consistance of

wood. But the chief use of the wedge is in penetrating

and dividing bodies, all cutting instruments being varieties

of it, and its power is greater the sharper its angle, with

this restriction that if it be too acute the edge may be de-
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ficient in strength and, instead of dividing the body on

which it acts, niay itself be crushed. The edge of tools

for wood is formed by planes at an angle of about 30 ,

that of iron is about BO'' or 60*' , and that for brass about

so" or 90"
; and all tools which act by pressure are sharper

than those driven by a blow. They are made of steel,

which has the property of becoming hard by immersion

in cold water when ignited, but the hardness thus ac-

quired must be reduced by tempering or exposure to

a certain degree of heat different according to the use for

which the tool is intended. The wedge is also used as

well as the screw, to unite the parts of machines; pins,

bolts and nails being wedges retained in their place by

the action of friction.

CHAPTER XI.

44. We have hitherto supposed the parts of machi-

nery capable of relative motion without any loss of pow-

er, but this is true only in theory ;
if the surfaces in

contact were perfectly smooth and had no adhesion they

might slide on each other with perfect freedom, but even

after the most careful polishing they rcmaJin studded with

asperities which must lock into each other and be broken

bent or compressed in the motion ; any of these requires

force to effect it, and the expenditure of power in over-

coming this resistance, is considered as counteracting a

forceopposing themotion, which is denominated Friction.

The action of this modifies extremely the theoretical

conclusions which have been deduced concerning the
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mechanical powers, insomuch that machines often re-

quire many times the calculated power to perform their

work : it is therefore of the utmost importance to be

able to make the requisite allowance for its action, and

diminish its influence as much as possible; with this view

we shall state the leading facts known about it.

Friction may for the most part be considered a uni-

form force independent of the velocity; when the rubbing
surfaces are rough it increases with the rapidity of mo-

tion, but by a continuance of the motion they become

smooth and this irregularity disappears. Where the sur-

faces are given in magnitude and nature, friction is as

the pressure, being to it in a ratio which is constant for

the same body, thus the forces required to draw equal

weights on a horizontal plane are with dry wood from 3 to 4

tenths of the weight, with stone one half, and with metals

about one fifth. These ratios are nearly independant of

the magnitude of the surfaces; strictly speaking, the fric-

tion is the sum of two forces, one varying as the pressure

alone, the other proportional to the surface and inde-

pendant of pressure, which being constant, is less sen-

sible when the latter is increased than in experiments on

a small scale, and unless the surfaces are soft is never

considerable. Wlien the surfaces remain in contact for

some time, the force required to begin motion is much

greater tlian that which is sufficient to maintain it, some-

times 4 times as much ; this increase of friction is caused

by their adhesion, and the augmentation of it is much

greater when they are highly polished, (this enabling

them to come into closer contact) particularly in meials

where if oil, which prevents this effect, be not used, they

adhere to such a degree that they are cut up and de-

stroyed. Oil, grease or plumbago should be supplied
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in every case, as they reduce the friction to about , ^ of

the pressure,

45. The simplest case of friction is when a load is

drawn along a horizontal plane; and here it is to be ob-

served that since the friction is as the pressure, less force

will be required for-the draught if it act obliquely so as

to diminish the pressure. Let the force act at the angle

A, fig 80, the part of it which draws the body along the

plane is = F X AC = F. cos A, and that which acts

AB
perpendicularly to the plane and diminishes the pressure

is F X sin A, and denoting by J' the ratio of friction to

pressure,/^ Fsin A is the diminution of friction, which

is the same as an addition to the moving force, this

therefore= F X (cos A + /. sin A), and supposing it

just equal to the friction, F is inversely as cos A +ysin
A, and when this latter is a maximum, the force required

to draw a jjiven weight is a minimum. To determine

the value of A, fig 81, on BC describe a segment of a

circle capable of containing the angle whose cotangent

is /, draw from B a diameter, and B is the angle re-

quired, for letting fall the perpendicular CE, BE is the

cosine of B, and ED =, EC X cotang D = sin B x J^

BDis therefore = cos B +ysin B, and it is a maximum,

for the diameter is the greatest chord ;
the angle B is the

complement of D and therefore its tangent J". If the

road be wood this angle is 1 8 degrees, if sand stone ^O*^',

if iron ll^.

On the inclined plane friction assists the power in

sustaining the weight, but opposes it if the weight is to

be raised ; its effect is found by multiplying the pressure

on the plane intoy, but it is seldom that bodies slide on

planes, as if of a form approaching to the cylinder they
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move by rolling, which changes the nature of the friction.

fa.J

46. The friction of the teeth of w}ieel-work is not

considerable if they be properly shaped, though with

either epicycloidal teeth or those which are involutes

some always remains; that of the gudgeons on which they
turn is more considerable, it varies as the pressure, and

as the diameter of the gudgeon, for it opposes motion

acting at the arm of a lever equal to its radius. The
bushes in which the axle turns should be of a different

material, as friction is always less when the surfaces are

heterogeneous ; iron turning in bell metal is commonly
used, which gives/ == ~, but where the strain is slight,

iron axles turning in Lignum vitae may be employed as

these give J'= _*_

Where the wheel can be placed horizontally it may
turn on pivots, which are conical points bearing on a

surface hollowed to receive them ; this permits us to di-

minish the diameter of the bearing surface, and concent

trates the friction at | of its base from the axis : the se-

miangle of a pivot bearing a considerable strain should

not be less than 45 ; some mechanics have made their

pivots rest on oil, but the stuffing required to prevent its

escape round the axle is perhaps equivalent to the bearing
surface in producing friction. (b.J

47. The friction of the screw is very great, being about

i of the power ; it may be investigated by supposing
the thread to be an inclined plane, on which a body is

sustained by a force parallel to its base. fc.J

48. If a cylinder roll along a horizontal plane, sup-

posing both perfectly hard there would be no resistance

to its motion, for the line of contact of its surface with

the plane does not slide on it but is lifted off* it by the

rotation, but in practice it always compresses the plane,
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and by sinking in the hollow occasions a resistance ana-

logous to friction ; if the road be tolerably firm this is

very trifling, and heavy Aveights are often removed in

this manner, which however has the inconvenience of re-

quiring frequent alteration of the position of the rollers

on which the load rests. The resistance to the motion

of a wooden roller on a wooden road is according to

Coulomb i >< P in pounds, P being in pounds and D
""

15
in inches

;
were they iron it would be about

^1^
of this.

49. The inconvenience of shifting the rollers is obvi-

ated by making the load rest on axles passing through
their centres, for as it is drawn along the rollers revolve,

and the friction is transferred from their circumferences

to those of their axles ; but it must be much less sensible

than if a lojjd were made to slide* for its resistance to the

fol'ce of draught is the same as would act against a power

applied at the circumference of the roller to turn it, and

therefore is equal to its movement there, or =yW X ^,

~b
or it is lessened in the ratio of the diameter of the roller

to that of the axle, even supposing the load to slide on a

road of polished iron. The friction of the axle dimi-

nishes very little the power of the roller, and this latter

is accordingly but ssldom used in its simple state, being
much less convenient than the ordinary form of wheels.

These are narrow cylinders of considerable diameter^
formed of a circular rini connected with a Nave by the

spokes; this contains a box which turns on its axle. The
axle is made slightly conical that it may not wear loose,

and as if the axis of the cone were horizontal the obliqui-

ty of the pressure would force the box along it, it is bent

downward so that the plane touching its lower surface

is horizontal; hence the bearing surface of the wheel

must also be conical, but this deviation from the cylin-
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ders hould be as minute as possible, for such wheels have

a tendency to move in circles, which requires additional

power to draw them in right lines, and augments the

friction of the axles and the desti-uction of the roads.

In order that the wheels may wear equally they should

be equidistant from the centre of gravity, and as the

resistance is increased by their sinking in the road their

diameter should be as large as possible j for we have seen

that this retardation is inversely as the diameter. The

large wheel has also an advantage in passing over any

obstacle; let O, fig 81, be an irregularity in the road, CB
the line of draught, making with the horizon an angle of

l^*' degrees, which is found by experiment to be the

most advantageous for the exertion of a horse ; the wheel

is a lever whose fulcrum is at O, and C B and CA are

the directions of the weight and power; these are to each

other inversely as the perpendiculars on their directions,

but it is obvious that if the height of O be given, the

ratio of EO to OD, or of the power to the weight is

greater the less the radius, for EA is the versine of AO,
CA

and therefore sin i AO a *^ CA inversely, therefore it is

increased by diminishing AC; but AO is less than a qua-

drant, tlierefore its sine increases with the sine of its

half, therefore ACQ increases and OCB decreases, and

therefore sin OCB decreases or increases less than sin

ACO. (d.)

The weight which can be drawn on a road by a

given power depends on its hardness and smoothness,

and these requisites are obtained in the highest degree

by Rail-roads of Iron on which the wheels run. On
one of these a good horse can draw as much as 15 tons

without injury on a level.
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50. The application of wheels to carriages suggest the

means of diminishing the friction of axles, tor if the

bush in which one of them turns be larger than it, so as

to admit a number of rollers arranged round it, the mo-

tion will be changed from sliding to rolling ; this method

is, however, much inferior to the use of fricticm wheels,

fig 83, the Gudgeon D rests on the circumferences of

the wheels CE and BF, and as it revolves turns them,,

the friction of their axles acts in retarding D widi an

energy = Wyx CH, while if they were fixed it would

CA
be W^ and as CH may be much less than CA we may
reduce the friction in almost any degree, limited only

by the increase of friction which their weight produces.

(c.)

Half of the load is borne by each axle and is equal to

W and therefore where the radii of the wheels and

FsmC
axles are given, the friction is inversely as sin C, this

angle should be as great as possible or the distance CB
as little, it is therefore probable that if the gudgeon rest

on a single friction wheel and be k*>|>t in its place by

pivots, the friction will be more diminished than by the

use of two,

51. Friction, besides decreasing the work to be done

by a machine, is injurious by destroying the surfacei

which move in contact ; this effect takes place with ex-

treme rapidity unless they be lubrioated with some fluid

or unctuous matter, for they adhere and are torn away ;

if the velocity be considerable much heat is evolved, and

this still further increases the friction; the pivots and

axles expand, and by their pressure still further augment
the friction, till they sometimes become actually ignited.

In some great works a small pump supplies a stream of
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water to the bearings which are exposed to great pres-

sure, and there is often contrived in the box or bush

of an axle, a reservoir of oil which obviates these dan-

gers. These and all other means of lessening friction '

should be employed, and it must be kept in mind that

the great beauty of a machine consists in its simplicity,

as the less complicated it is the nearer its effects approach

to theory.

NOTES TO CHAP. IX.

(a.) Retaining the notation of note (a) Chap. 5. the

pressure on the plane is = W cos I -^*- P sin ^, this

produces a friction =: y (W cos I P sin 6) and the

forces parallel to the plane, which must be equal in equi-

librium, are W X sin I = P cos 6 f W cos 1 hP/^P
sin d

;
or W (sin I ^i y cos I) = P (cos ^ qi / sin d),

and
P = W (sin I + / cos I

^
cos tf q: y sin 6

the upper sign being taken where the weight is barely

sustained, the lower when it is on the point of being
raised. If = I or the power act parallel to the

base

P = W tanrr I zp /
'

1 / tang 'I

If the power be parallel to the plane

P = W (sin I ip / cos I,

and if the friction be sufficient to support the body on

the plane, sin I =/ cos I, or tang I = y, its inclina-
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nation being the angle which was found for the best di-

rection of draught.

{b.) If the power and weight in the lever be not in-

versely as the perpendiculars on their lines of action,

their result cannot pass through the fulcrum, fig 84-, let

ED be its direction; it is equivalent to the two forces CF
and FE, the first of which presses on the fulcrum, and

the second tends to make the lever revolve round C ; but

the force DF produces friction on the gudgeon oraxleC,

and if the angle FDE have its tangent =yi this friction

which = JX PF = FE being equal and opposite to

the force which tends to move the lever, it will remain at

rest. The result of P and W is obviously a given

quantity, for it is the base of a triangle of which they
are the sides and whose vertical angle is the supplement

of D, therefore = to V (P2+W, + 2lPWx cos D}&nd
this multiplied by sin FDE gives the friction which op-

poses the power with the moment F X r the radius of

the axle, and therefore the effect of it is as was stated in

the text as the diameter. If P = n + /?,
n being a

force which would equilibrate with W if there were no

friction, pa must equal the moment of the friction,

but n =.
"^^

therefore v/p* -f Ws + 2 PW cos DU

ybH^^'t-^^^o^'D)
XW^-|-2j^W X {b+a cos D)+ ^*

but as r is very small in comparison of or b, p is small

.n comparison of W, and as sine FDE _

^ X y+*^ + 2JcosDI X yf^= pa;

and adding to both sides of the equation Wb,
a

P=W X
I ^ +( Jlx yT^^^

X ^b'^+^2abco7o}
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If the directions of the forces be parallel D = o and

(^c.^ The force required to raise a weight by a scre\

js the same as that required to raise it on an inclined

plane of the same inclination as the thread when acting

parallel to its base : therefore

PX ^= W X
*^"^^ + ^

d I / X tang I

, ^ T Interval of thread .
, ^

'

but tang I = and therefore

(d.) ln.% 82, the angle ACQ = <p and ACB
T + 90, therefore P x (cos t. cos <p -f sin t. sin

(p)= W sin ^ and P X (sin t + cos T)=W;but 1+tang*

tang <p

^~
co.'^ (Z>

~
n ^'^

^ ^' being the height of the obstacle

and r the radius of the wheel, and developing, tang^ ^

= -^ + -^ but in practice we may stop at the second
r ^2

term and P (sin t + cos t X V 7^) = W : but it is ob-

vious that P is less as its coefficient is greater, and this

increases with r. This expression shews also that while

r is below a certain magnitude an advantage is obtained

by obliquity of draught, for let t increase, its sine in-

creases and its cosine decreases, and the coefficient is a

maximum when tang
= VTaN = tang <p. Large

wheels are also useful in rapid motion because they cause

the CG of the load to describe a path of less curvature

in surmounting an obstacle, but there is a limit to their

use, for as has been stated a horse draws best iit an angle

of about 14) degrees with, the horizon, and therefore

on an average the height of the axle cannot exceed four

feet.
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(e.) Let W be the load which a friction wheel bears,

and let its weight be as the square of its diameter = sD^

this must be added to the load, and the friction at its

axle is/(W + s\y~), but the diameter of its axle S

d X (W -h 5D^)t, d being the diameter of that which

would barely support the load, and the strength of cy-

linders being as the cubes of their diameters; the moment

of the friction is therefore as (W + 5 D^) ^, and this is a

minimum when sD- the weight of this friction wheel

= f of the pressure produced by the load on the axl

of it.

CHAPTER XII.

52. The strength of cordage is a subject which is by
no means to be omitted in a treatise of Mechanics,
for in almost every instance it is the instrument by
which the action of a machine is applied to raise heavy
bodies. They are composed of the fibres which consti-

tute therind of certain vegetables ; these are obtained se-

parately from the other parts, by exposing the plants to

putrefaction, which acts less rapidly on them than on the

ligneous matter ; this becomes brittle, and is removed

from the fibres, which still retain much of their original

strength, by percussion with a proper instrument. This

process, which is very hazardous to the strength of the

material, is not necessary except for the finer quality of

work ; as where the matter is
sufficiently resisting it may

be prepared without previous maceration.

N
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A number of these fibres united form a cord, but as

their length is not great it is necessary to be able to con-

nect many lengths of them, and this is effected by the

same means which makes them act with united strength.

This is extremely simple, a number of them are twisted

together, and when the spinner comes near the end of

an}^ parcel he twists in among them the beginning of a

new one ; thus every fibre acts, for the twisting presses

them together, and produces a friction which makes every

one partake of the strain applied to the cord, and pre-

vents them from slipping out of their place. A cord

may thus be extended to any length ; in this state it has

no permanence, as if its extremities were released it

would untwist by its elasticity, and return to the state

of unwrought fibres. It is however far stronger than

any other kind of cord, and is sometimes, where great

strength is required, in a small bulk, made permanent

by smearing its surface with glue or tar.

Yarns are imited by a process, extremely simple and

effective. If two yarns twisted in the same direction be

connected at their extremities, each of them tends to un-

twist, therefore the parts of their peripheries in contact

would move in opposite directions ; those points there-

fore will be a centre round which the rest of the yarns
will be carried by the remaining forces, and the two

must be twisted together: see fig 85, where the two

circles are sections of the yarns ; the point of contact

must remain at rest, the point A is urged in the direc-

tion AB, and C in the direction CD. The cord thus

formed will not lose its twist, and each fibre is less

twisted than in the original yarn. Many yarns thus

united are called a Strand ; three or four strands, twist-

ed so as to untwist their fibres, will unite in the same
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way, and form a Hawser or Shroud ; and these, by
similar treatment, afford a Cable.

All these ropes derive their strength from their twist,

which must be such that the friction on each fibre is

equal to its strength, and therefore they are shorter than

the yarns of which they are composed, in the proportion
of 2 : 3 : but the torsion of the fibres, though necessary,

weakens them extremely, it is obvious that a fibre may
be twisted till it breaks, and though it be not carried so

far, yet the strain on it must employ part of its strength;
and it also is made to act obliquely against the load.

Hawsers are half as strong as the yarns of which they
are made; cables |, being ultimately less twisted; shrouds

are nearly as strong, but cannot be bent without injury.

Ropes are lately invented, in which the lengths of the

strands are proportioned to their place in it, and these

are ^ of the original strength. In round numbers a

good Hawser will bear j as many tons as there are

inches in the square of its circumference.

Chains are sometimes used instead of cords; they are

more flexible and stronger, but their weight is much

greater; they are about 10 times stronger, and 7 heavier

than ropes of the same section as their links.

53. We have already mentioned what allowance is to

be made for the thickness of cordage ; it remains to in-

dicate the effect of its inflexibility when bent round a

pulley or axle : the theory which we shall give is col-

lected from experiments by induction, and its application

in any particular instance should be regulated by actual

trial. According to the observations of its inventor, when
a cord not very rigid i-s drawn over a fixed pulley to raise

a weight, that part of it which is on the side of the

power is nearly vertical, while the other forms a curve, so

that a vertical drawn through the weight passes at a
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distance from the centre greater than radius; the weight
therefore acts by a longer lever than the power, and the

difference is the effect of the rigidity. Now this must

be inversely as the radius of the pulley, or directly as

the curvature given to it, and as some determinate though
unknown power of the thickness of the cord ; it may
be represented by cf"

, but it consists of two parts, one

r

the force required to bend the cord without any load on

it, the other arising from its tension, the expression

therefore assumes the form of/* X (j/ + wW), therefore

P = W+_x (j/+ wW.)
r

This equation contains three unknown quantities, which

are thus determined : Take any specimen of cord, pass

it over a pulley whose friction on its axle has been pre-

viously ascertained, and annex to its ends equal weights ;

add weights to one of these till it begins to preponderate ;

this addition is the amount of the friction : repeat the

experiment with different weights and pullies, take any
3 of these results and equal them to the quantity t' x

r

(y + wW) putting for r and W their values in that ex-

periment. The three equations thus obtained determine

the three quantities, and the other results serve to verify

the formula. This method of constructing a formula

from observations is often used, and gives results of high

practical utility in cases where analysis is utterly at fault.

It is thus shewn that within certain limits the value of oc

is nearly 1.5, or that the stiffness varies in the sesqui-

plicate ratio of the thickness, (a.) The quantity t' {y)\&

in cords of 1,1 ^, and 2 } inches circumference, respec-

tively 0.2, 1 .2 and 4.2, r being 2 inches and /"^ x w W
= 2.2, 5, and 9, W being 100 in pounds. r
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54. The friction of ropes is used in lowering weights ;

a cord is coiled once or twice round a cylinder, and very

little force is required to suitain a weight. If^ be ^'^fbr

rope on metal, any power will sustain 2.7 times itself if

the rope make 1| turn, and if the number of turns in-

crease in arithmetical, the weight which can be sustained

increases in geometrical progression. (6.)

NOTES TO CHAP. XII.

(a.) Since ropes bear weights as the squares of their

diameters, and the rigidity is as the diameter raised to the

power ly the axles on which ropes are wound should be

as |th power of the greatest weight to be raised.

(6.) In the circumference while an arch z increases by
dz, the pressure on the cylinder increases by the pressure
on dz ; this by art 25. is the tension of the rope t, multi-

plied into twice the cosine of half the angle made by
the tangents drawn through the extremities of dzy or

into twice the sine of dz. By the series for the sine of

an arch, 2r
sin dz z= dz dz^ &c.

2r 2r~ 8.2S,r^

and stopping at the first term of it, we have calling p
the pressure

dp ^s t y^
dz

r

The tension is equal to the power applied to sustain

the weight -|-
the friction of the rope on Zy the portion

of the circumference between dz and the beginning of

its contact, or

t = p + /p and dt = fdp =ftdz.
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and dt = fdz. The integral of the first member is h. log
t r

(/), and therefore Kl (^) C = fz but when z ~ 0,

r

^ = P, hence h.l {t) fi^^ -|- lil. (P), and passing from
'

r

Logarithms to numbers,

2f
= Px^

but ^ = W, and if the rope make n turns

z = Inp and therefore

W= P X

CHAPTER XIII.

tiS, The strength of the materials used in Mecha-

nical combinations is exerted in five different ways ;

they are exposed to a direct pull, to compression,

transverse strain or flexure, torsion, and percussion.

The strength which resists extension is the result of a

quality of matter named cohesion, to which we have

referred as in conjunction with a force of repulsion,

causing the appearances which are usually considered

results of solidity. To conceive properly the action of

these forces, we must keep in mind that each particle of

a body is at a distance from the rest ; if they be forced

to approach within this limit, repulsion is exerted j if

they be withdrawn beyond it, cohesion opposes the ex-

tension ; both act according to the same law, being as

the extension or compression while they are small, and

if the body be homogeneous, probably in every case;
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but they differ in this, that there is a certain limit be-

yond which cohesion does not act, and if it be exceeded

a total separation takes place ; while there seems to be

no limit to the compressibility of a body.

Cohesive strength is proportional to the surface of

fracture in bodies of uniform texture, and is measured

by the weight required to tear them asunder : in those

substances, however, which possess ductility, the surface

of fracture is not the true surface whose cohesion is

overcome by the weight ; these stretch considerabl}- on

its first application, and their diameter is gradually con-

tracted until they yield ; the force therefore required to

tear them suddenly, is much greater than that which

they can bear for a length of time, even iron which sus.

pends 27 tons for every square inch of its section, can-

not be trusted in any structure with more than 15. Hard

steel which cannot be thus stretched is far stronger,

bearing nearly 80. Experiments on wood are much
more irregular than those on raetals, from the irregula-

rity of its fibres ; there is also a considerable variety in

specimens from the different parts of the same tree. Oak
bears about four tons per inch, and fir about two and a

half. Where a rod used to suspend a body is of

considerable length, its weight must be added to the

load, and therefore its diameter should be greater above

than below j in theory its outline should be a logarithmic

curve, (a.)

56* The strength of bodies to resist compression is

far more difficult of investigation, and the greatest

geometers have made mistakes in their analysis of its

action ; if a force be applied to a rectangular beam in

the direction of and at its axis, it will compress it, di-

minishing its length by a quantity proportional to the

compressing force : if the force be increased, the beam, if
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of friable materials, splits off in two pieces, leaving a

wedge whose angle depends on the ratio between the

pressure and that mode of cohesion which presents the

particles of the pillar from sliding off on each side, called

by some the lateral adhesion ; in cast iron the angle is

nearly 90<>. If it be like wood of a fibrous texture, its

fibres bulge out in the middle, being forced asunder by
the repulsion excited in them, and thus give warning of

their weakness , if they be hooped so as to prevent this,

their strength is much increased. While exposed to a

longitudinal stress, the slightest transverse strain is suf-

ficient to break a pillar, which would have carried its load

with perfect safety. There is no relation between the

cohesive and repulsive forces ; fir, which suspends little

more than half as much as oak, will carry twice as much ;

and it is said that cast iron resists compression with a

force six times greater than its cohesion.

If the compressing force be not applied exactly in the

axis, it will bend the column ; for the -

repulsive forces

acting against it on each side of a line drawn through
its point of application must be equal, but the number

of particles between it and the surface nearest to it, is

less than that of the rest of the section j and if they were

equally compressed throughout, their action could not

be equal to that of the others ; they mjist therefore be

more compressed, which augments tlieir repulsion, and

compensates for inferiority of number; the column there-

fore must bend, as one of its surfaces becomes shorter

than the other. If the point of application be removed

still further from the axis, the particles between it and

the near surface are still more compressed, until when

its distance is J of the depth of the column (supposed

rectangular); the r^r;-;ote surface is in its natural state,

if it exceed ^ the state of compression ceases before we
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arrive at the remote surface, and there is a longitudinal

section of the column neither compressed nor extended;

this is called the Neutral section or line. The portion of

the column between Ihis and the remote surface is in a

state of extension, being lengthened by the general flex-

ure (b). It is obvious that a similar flexure would be

produced by a force applied obliquely to the axis, or by
a transverse strain even when it acted directly, and that

the strength is much increased if it be prevented from

bending by lateral braces applied at its middle.

57. The transverse strength is derived from the cohe-

sion, but their relation is not easily ascertained. If the

particles resisted equally, so that they all gave way at

once, the Transverse strength of a rectangular beam

would be half its Absolute ^UeugXh, for let AC be its sec-

tion, fig 86, if this be torn asunder by a strain, the two

parts turn on the line DC as a fulcrum, and every par-

ticle resists the separation by its cohesion multiplied into

its perpendicular distance from DCj but the sum of the

particles multiplied into tiieir distance from any line is

the moment of tlie area with respect to that line = area '

AC X GE, this in a rectangle is ^ AD, therefore calling

jfthe cohesion of a square inch, the transverse strength is

i AD X AB X f^ or the absolute strength acting by \

leverage.

This hypothesis concerning the manner in which a

transverse strain is resisted, is due to Galileo, and it

may easily be applied to every body j according fto it

the cohesion of tlie section acts in the same manner as

if it were concentrated in the CG, the fulcrum of the

lever by whicli a force is supposed to act against it is the

line touching its lower surface, and the arm by which

the force acts is the distance of its application from the
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place of fracture : calling tliis Z, W the weight which

produces fracture : the absolute strength :: d' : I, ^' being

the distance of the CG from the line of fracture. Ac-

cording to this a triangular bar is twice as strong when

its base is uppermost as when its vertex. The principle

on which Galileo's theorem rests is quite gratuitous, for

the particles do not yield at once, but are exposed to

very different degrees of strain ; those at the top are

previous to t,he fracture separated to the limit of their

cohesion, and resisting with their utmost energy, while

those nearer the fulcrum are not acting with their whole

force ; at length the uppermost stratum yields, and that

below it must withstand the same strain with less leverage,

it also is torn, and the whole beam is broken without

the entire of its strength being called into action ;

Galileo's hypothesis therefore overrates the transverse

strength.

58. Mariotte's hypothesis is more near the truth ; ac-

cording to it the fulcrum is in the lower surface, and

the resistance of each particle is as its extension ; this

latter supposition is strictly true, and its results are more

conformable to facts. To examine its application in the

case of the rectangular beam, conceive parallel lines

drawn as near as possible, the area of one of these ele-

mentary parallelograms is ilB X B^ the cohesion of the

particles in it is as their extension, or as their distance

from the centre of motion = FE, and this cohesion is

also acting by the leverage FE, the energy of the paral-

lelogram AB X F/in resisting fracture is AB X FE^ x

f, but the sum of all the FE^ X r/is (see art 10,) a py-

ramid whose base is FE* and altitude FE, but this is

FE3 which when FE is the entire depth = d\ The

cohesion of a particle at AB is exerted to the utmost,
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call ity] and, / x FE is the cohesion of the parallelo^

~d

gram b x F/i therefore the total transverse strength is

y X bd'^^ or the tranverse strength : absolute strength ::

3~
d : /. For some other applications of this method see

the note (c.)

59. Even Mariotte's hypothesis overrates the trans-

verse strength, for the fulcrum ,is not in the lower sur-

face, but much nearer the upper, and when beams are

broken a great part of their substance contributes no-

thing to the strength. If a beam of willow be sawed
*
across, and the cut filled by a wedge of hard wood,

it will bear a strain which would have broken it without

this preparation ;
here it is obvious that only f of the

wood was acting, and that the rest injured its strength.

In fact the upper surface and the parts adjoining it are

in a state of extension, but below them is a neutral line^

and all the rest is in a state of compression. Suppose
the total effect of the repulsive forces collected in a point,

that will be the fulcrum of the lever of fracture, and

the extremity of its short arm is at the centre of effort

of the cohesion ; this arjn is therefore less than in Mari-

otte's hypothesis, but we know too little of the interior

mechanism of bodies to assign its magnitude.
If the body be perfectly elastic, that is if it resist

compression and extension equally, we can determine

the strength of the beam. Let AB, fig 87, be the plane

of fracture, since the material is equally compressible

and extensible, the same number of particles will be

compressed and extended, the neutral line is therefore

at the middle of the depth ; take AC as the extension oi

a particle at the surface which is as its cohesion, that of
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any other particle is as its distance from NE, the sum
of all the cohesions is therefore as the triangle AHC,
and their centre of effort is at the same distance from

NE as its CG, or its distance is AH. In the same

way it may be shewn that the repulsive forces arenas the

triangle IHB, and their centre of efforts at the same

distance below NE, the distance between these centres

=
jd the depth of the beam is the leverage by which

the cohesion acts ; but were the beam torn asunder by a

direct pull, its cohesion would be represented by AC
X AB which is four times the triangle ACH, but the

direct cohesion i^fbd, therefore \f x bd X |d or ^fhd"^

is the energy which opposes fracture, hence the trans-

verse : absolute strength :: d '. I. {d.)~
60. These three hypotheses differ in the quantity of

the strength which they assign, but all give the result

that the strength of a beam is as its breadth X the square

of its depth and inversely as its length, and we can thus

draw some important practical conclusions.

The strength of the same beam according as its dif-

ferent sides are uppermost, is as the vertical sides, and

therefore where strength is required, the beams should

be narrow and deep.

Similar beams are strong as the square of their length,

if we do not consider their weight ; but if we take it into

account, their power to bear their own weight is in-

versely as their length, for their weight is as Z^, and their

strength ct bd^ ^ i Hence it is evident that the

"wT T"

proper dimensions of a machine cannot be deduced from

trials on a small scale, without an increase of bulk more

than proportional ; a beam of oak 1 foot square would

break by its own weight if it projected beyond its support

7o feet.
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If it be required to cut out of a horizontal plank, a

beam of uniform strength to bear a weight at its extre-

mity, bd- must be as /. and b as Z, its outline will there-

fore be an Isosceles triangle {e,)

61. If a beam be supported at its extremities, it is

twice as strong as a beam of half the length fixed at

one end and bearing a weight at the other, call the dis-

tances of the weight from the extremities D and J, then

its power to break the beam is the same as that of a

weight equal to the pressure on one of the props acting

at the distance of it from the point of application : but

the pressure on one of the props = W x ^, multiply

D + d

this by D its leverage, and we obtain the stress

= W X D ^. The stress produced by the weight at

E
its point of application is therefore as the rectangle un-

der its distances from the props, and a maximum when

it is applied in the middle : in this case it is W X L,

but the stress on a beam of I L fixed at one extremity,

the point of application being the other, is WL.
2

If a beam be not merely supported, but secured at its

extremities so that they cannot rise, as if they are built

in a wall, the strength of it is doubled ; for if it were cut

through in the middle, each of its halves would bear

half the weight, and the stress on their extremities would

be i W X i L equal to the stress on the beam in the

preceding case; if then it bear a given stress when loosely

supported, and an equal stress when cut across, if its

cohesion be added to this latter strength, it will bear

twice as much. It is seldom, however, that we can se-
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cure the extremities sufficiently to derive the full in-

crease which might be obtained.

Tlie stress on any point of a beam loosely supported,

produced by a weight applied at another, is as the

rectangle under the distance of the point from one prop,

and the weight from the other, for, fig 88, supposing the

beam fixed in a wall at W, and the part WC projecting

from it, the stress produced by the weight at W is the

same as that occasioned by a weight equal to the pres-

sure at C applied there, or it is W X AWC, but the

~AC~"
stress at W : stress at X :: WC : CX, therefore stress

at X = W X AW X CX. Hence if the weight be

AC
applied in the middle, the stress which it produces at

any point is as its distance from the prop, and a beam of

uniform depth should be a Rhombus, to be equally

strong throughout when thus loaded, (f)
62. A square beam of given length resists tranverse

strain in proportion to the cube of its diameter, while

the quantity of materials in it is as the square of Uie di-

ameter. If therefore the central part were cut out, and

it were thus made a square pipe, its weight would be

more diminished than its strength ; for example, if its

external diameter were double its internal, its strength

would be y of a solid beam of the diameter, and its

weight \. By this means we can build hollow masts

and beams much stronger than the timber of which they

are composed, for instance, a beam 8, inches square may
be sawn into planks 1 inch thick, they may be formed

into two tubes of 10 by 8, whose united strength is to

that of the original beam as 8S2 : 512. This contri-

vance is widely used in the structure of organized bodies,

where strength is not more necessary than lightness: the
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quills of birds, which are astonishingly stifFin proportion
to their weight, the bones of animals, and the stems of

grasses, and canes, are familiar examples of the wisdom

of Him who lookecLon creation, and behold it was very

good ; to develope part of the skill with which He formed

the meanest of his creatures, overtasks the mightiest in-

tellect ; but that which we can fathom is enough to reveal

to any reflecting mind, the unspeakable glory of its Au-

thor,
(g.)

63. Stiffness or the power of resisting flexure is

analogous to transverse strength, but follows different

laws, it is inversely as the flexure produced by a given
force. If the beam be fixed at one end, and bear a

weight at the other, the stiffness is as bd^. (hj

64. In Torsion as in other strains the cohesion appears

proportional to the space through which the particles

are separated. In bodies which are homogeneous, it is

as the cube of the diameter supposing them cylinders,

as in the case of axles, &c. The force thus exerted, as

measured by the weight which when applied at the cir-

cumference is able to twist it asunder, is about | the ab-

solute strength, and it is evident that in this case, as well

as the two last, a tube is much stronger than a solid

cylinder of equal weight and length. When a wire is

twisted, it returns to its original position with a force

proportional to the angle through which it has been

twisted, this principle is used in the balance of torsion

already described
;
in different wires, this force is as the

4th power of the diameter, and inverselv as the length.
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NOTES TO CHAP. XIII.

{a.) A weight is attached at B, fig 89, to a rod formed

by the revolution of the curve DC round its axis, and it

is required that it should be equally strong throughout ;

the section whose radius is y, bears along with the

weight W, the weight of that portion of the rod inter-

cepted between
7/ and BC = a; while jc increases by da:,

the area of the section which is as the cohesive strength
must increase, as the portion of the rod between

7/
and

a increases. The area of the section isjjt/^, and its co-

hesion ^3/% its differential is ^fpydy = differential of

the rod's weight = s X J'py^ dx, s being the weight of a

cubic unit of the material of which it is composed, hence

2/" X ^^ = dx, and integrating 2f X h.ly = x, but

s y
'

s

when oe = 0, y = a, the complete integral is therefore

JLx hi. () = ^ and passing from logarithms to

numbers y = A' and the curve is a logarithmic whose

subtangent is 2f.

s

{b.) AB, fig 90, is the summit of a rectangular pillar

whose depth AC is = D, NL is the neutral line, a force

is applied at F which compresses the rectangle NB, let

EB = u, and ac the compression produced at CB, then

drawing two parallels to CB indefinitely near ^j,dx is the

magnitude of the differential rectangle, and bdx = 2cs

u
its repulsive force, for this is as the space through which

it has been compressed, or as a?; to find the effect of all
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these forces we must take their moment with respect to

NE, and divide it by their sum, which will give the dis-

tance of the centre of their effort from the neutral line.

The moment == Tb x ^ cx"-(lx = j bcx*. and the sum

is c X hx, for it is as the repulsive force of NEBC, sup-

posing the compression equal throughout, but the com-

pression decreases uniformly from BC to NE, and in a

mean quantity it is \ 2c; the distance of the centre of

repulsive force is therefore J
cbx 3 and when x = w, it

uXcbx

U J u : but the centre of repulsion must be at the point

of application of the force which produced it. If NE
be in asurfaceof the pillar, calling ^ the depth , ?^ = 2a,

and the distance of F from NE =
^ a and deducting a

its distance from the axis is
|. In this demonstration

we suppose the part AE to have no action. If the neu-

tral lines fell outside of AD, we should integrate from

x = u 2a to X =z u, and we would find that the dis-

tance of F from the axis must be less thj^y ^.
But in

general part of the column is compressed, and part ex-

tended, and the results depend on the ratio between the

cohesive and repulsive forces ;
if they be equal, that is

if the column be perfectly elastic, we can determine the

position of the neutral line.

In this case the repulsive and cohesive forces are as

the squares of their distance from the neutral line, fig

91, let AB be a line drawn parallel to the depth of the

pillar N, its intersection with the neutral line, call NCo;,

and CF
?y,

then the compression is as fa _^
a j*, and the

extension as (a x)' ;
but the force applied tends to

tear asunder the extended part by a lever whose fulcrum

is at the centre of compression, and whose extremities

are one at F and the other at the centre of cohesion, but

p
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one force acting on a lever must be the difference be-

tween the other and the pressure on the fulcrum, there-

fore the force at F a (a + xf (
--

x)'^
= 4r, and

its moment is 4a^ x (3/ + j .r j a) because its leverage

is NF I NB, and this is equal to the cohesion x i ^

the distance between the centres = | a {a a:)', and

we obtain

S yx == a*

As before if x =
, 3/
= ^ </, if .j? = 03/ is infinite.

fi. Let CL, fig 92, be a portion of a column bent by

an external force, producing its top and bottom till they

meet, RL is ultimately the radius of curvature, but IIL

: LC '.'. ac : an, and LC : an as the compressing force

to the space through which the column is compressed,

or where the material of the pillar is given in a given

ratio 772 : 1, RL : an = a^ :: m : 1, the radius ofcurva-

ture is therefore at any part a^?n. m is called the Modulus

of Elasticity, a term which will be explained when we

treat of the elasticity of air.

(c) The differential of the section of the beam is

h X Jjf, and its cohesion ,/ x ^^^i but as it acts by
"IT

the leverage x, its moment with respect to DC ex-

presses the opposition to fracture arising from it ; the

integral of^ X bx*dx is therefore the transverse strength,

5
equal when * is D to /Z* D X D, or to the absolute

strength, acting at the distance of ^ the depth.
2 To find the strength of a triangle with its vertex

downwards, call b its base, a its altitude, x the distance

from the vertex, and
j/ the parallel to the base. If the

beam be loaded till it^yield, a particle in b exerts a co-
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L'esion yj and therefore the cohesion of a particle in y
is Z^, the element of the triangle is ydx, and the mo-

a

nient of cohesion of ydx is the differential of the trans-

verse strength, but j/
= 6 x j? therefore

a

ds ^ Jb X x^dx

a"-

(the differential of the cohesion being multiplied by i- to

obtain its moment). Integrating

which is complete, for 5 is o when x is o,

if ^ = or, s =
:*: fha^, but the absolute strength is f

X ba, therefore the transverse = absolute acting by

the leverage i a. The strength of a triangular beam

is therefore I of a circumscribing rectangular, and its

weight only one half.

3. If it be required to obtain the strength of the

trapezium between b and B, it may be done by integra-

ting from X = fl ^ to ^ = a, observing that the co-

hesion of a particle is no longer fx but J (k H^ and

a h
its moment is taken with respect to B ; this gives

s =/& X {Zh + 4'H)X/i^
12a

for the trapezium with its broader side uppermost. Th
section of the beam is

bhx (Ji -f- 2H)
2a

and dividing s by its absolute cohesion, we find the dis-

tance of the centre of effort

h X / 3/^ + 4H\
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4. When the vertex of the triangle is uppermost, the

origin of x is in b and
2/

=. h X a jc, hence

a

d s = fh X {a x) a^ dx

or

and
s = fb X ax^ X4.

which when x = a \s fba^y and dividing this by the

"li

cohesion we obtain a for the leverage by which the

absolute strength acts ; in this position the beam is only

^ as strong as when its base is up. To determine the

strength of a trapezium with its smaller side up, we put

the cohesion of a particle fx , and integrate from x =

io X = hf this gives

s == fb^X h* {h + 4H)
12a

and we obtain for the distance of the centre of effort

from b,

h_x ^ + 4 H.

6 k +2U.
5. To find the strength of a cylinder, call the distance

from its bottom r ^, the cohesion of the differential

of the area 2 ydx is

/ X 21/ X r xX dx

and its moment or

ds~ fjX {r x)* ydx
r

in which y is to be replaced by its value derived from
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the equation of the circle. To integrate this easily we

may express these quantities as circular functions and

ds =fr^ X (1 cos z)^ X sin z x dz

= fr^ {dz X (sin* ;s 2 sin cos z + sin cos z)

= fr^ X dz (1 cos 2 z)

2

+ 1(1 cos 4
;s)

2 sin* cos z.

s is = 2 + z and other quantities of the form

frT 2 T"
m sin nz, these are = o when z is o and 180, and there-

fore may be neglected, s is therefore //' x f X p,r)

being the circumference whose diameter is unity, or

fr^p X ^r, hut fr^'p is the absolute cohesion, which

therefore acts by a leverage of ^^ of the diameter.

6^ If the beam be a semicylinder with the plane of

section downwards,

ds == fr^ X 2 sin cos * x d cos z

= -^fr^ X sin' 2 z x 4t dz
_

8

^ ^ fr X (1 .cos4>;s) X 4 /;?

4 4
and

s = /r3 X s I sin 4 2r.

4

this integral is to be taken from 2 = 90 to = 0, and

therefore

S = ft* X Py

"4 2

the absolute strength is fr^ v and therefore it acts in

It

resisting a transvere strain by the lever ^ r, these appli-:

cations of this method may sufiice.



110 A SYSTEM OF MECHANICS, kc,

{d,) 1. In the third hypothesis where tiie lower

part of the beam is compressed, and the upper ex-

tended, the moment of the cohesive forces with res-

pect to the neutral hne must be equal to that of

the repulsive, as if either of these were greater than

the other, it would bend the beam till they balanced each

other, hence if the cohesion and repulsion of a particle

be equal at equal distances, the neutral lihe of a rectan-

gular beam bisects its depth : the action of the beam

under these circumstances is the same as if the cohesion

of NABE, fig 95, were applied at a point in 7^, and the

repulsive force of CNEO at another in H ; this latter

being the fulcrum of the lever, by which a weight acting

at the distance /, breaks the beam. By the preceding
note it appears that the energy of the cohesion of the

rectangle AE, to prevent motion round NE, is the same

as if its absolute strength were collected in a point distant

from NE J h, the centre of repulsion is also distant from

it J H J these are equal, and their sumisy a = i(H+h),
The moment of the cohesion of AE with respect to the

centre ofrepulsion, is thereforey^/i X a =Jba*y for it is

double the moment with respect to NE.

2. Let the section be a triangle, and let the trapezium

cut off by the NL be extended, the moment of its co-

hesion with respect to NL = that of the repulsion of

NAL, fig 96, but (note c, No. 3,) the first of these

quantities is /b X
k^ (3 ^ + 4? H) and the second is

12a

fh X H^ and as A -f H = a, we obtain by substituting

lia
h -f- 3 ^a = a*

which gives

2
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and
K = a. X 5 v"lg^

2

shewing that NL quam proxime bisects the area of the

section.

The moment of cohesion of the trapezium with res-

pect to NL X distance between the centres of cohesion

and repulsion, and divided by that of the centre of co-

hesion from NL, or what is simpler, the distance of the

centres X the absolute strength of the trapezium is the

transverse strength : the absolute strength is fbh x
2a

(2 a h); and the distance between the centres is

a h -|-
h (4 h therefore

6 6 2 a -^ k

s = fba X h X 2a + h

~2 6a
but fba is the absolute strength of the whole triangle,

2

and the lever by which it acts is, substituting for k its

value, a X 5 .^/U).

~12
If the distance between the centres be multiplied by

the absolute strengh of the triangular part of the area,

we obtain the strength of the beam with its vertex up
=i= fba X a X 7 ylF)

23.

2 "~6 7 "Vl?^

In the first of these positions, the absolute strength of

the beam acts by a leverage = a x 0. 1 1 62, in the se-

cond by a x 0.1099. The strength of the beam is

therefore nearly equal in eitliPr position, and is only
of what it should have been were its materials incom-

pressible.

By considering the beam as composed of two trapezia,

whose height = a ?;, if we investigate its strength
on the supposition that v is small, the term into which
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V enters is positive, and therefore the strength of a tri-

angle is increased by cutting off its edge.

3. If the beam be cylindric, its neutral line will pass

through its centre ; by note {c) No. 6. the distance of

the centre of cohesion is r, the distance between the

T'
centres of cohesion and repulsion is therefore r, but

2

the absolute strength of a semicircle is fpr^, therefore

2

the strength of the cylinder is fpr^ X r or it acts by
4.

the leverage of \ the diameter^

If we knew the ratio between the compressibility and

extensibility, we could determine the position of the NL,
and ascertain the ratio of the transverse to the absolute

strength a priori, but at present we are ignorant of this

in almost every instance.

(e.) On any of these hypotheses, the strength of a

beam a ha*^ if therefore it be required to cut the

strongest beam out of a given cylinder, we must find

the right angled triangle on its diameter, the square of

one of whose sides X into the other is a maximum.

When fig 97, AB*, X BC is a maximum, the square of

this product must also be a maximum
;
but the squares of

the sides are as AE and EC, call AC a, and EA,x;

{^a x) x"^ is a maximum, therefore its differential

{2 xa 3 X*) dx =0
hence ^ =

| : from this it is obvious that AB*=2BC*
~ *

AC^. This maximum is of considerable use, it

may be presented under the form, sin'^ X cos. C ^ max-

imum, and the value of C is then 54?*=*. 4-4.' an angle as

we shall subsequently find, possessing many remarkable

properties.
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2. If the strongest rectangular beam of a given girt

be required, p = a + ^ and a^p a^ = maximum,

and as before a = ^p and b = 2 a, the depth there-

3

fore should be f the depth.

3. If a beam project horizontally from a wall l>ca]ing

a weight at its extremity, it has been shewn that the

stress at any part is as ba'^, and therefore it may be

r
made of uniform strength by properly varying these

quantities.

If ^ be constant, as if the beam,be cut out of a vertical

slab or plank,
^ oc /, and the outline of the bt^am is a

common parabola, whose parameter p is such that the

absolute strength ofpb = Wii, W being the weight sup-

ported, and n the ratio of the leverage by which the co-

hesion acts to a.

If the section be always similar, ba'^ oc a^ oc I, and

the outline is a cubical parabola.

If the beam be loaded by a weight equally distri-

buted along it, the stress at any sectiiH! is as the weight

which it bears, and the leverage by whicii it acts; but the

weight is as /, and the leverage as /, hence the strength
2

Avhich is as ba^ oc /*, therefore if b be constant, a oc I,

and the outline is straight, if a is unvaried b oc Z*, the

curve being a parabola referred to the tangent at its

vertex, if b oc a the curve is called a Semicubic Pa-

rabola.

The strength of a beam to bear its own weight is of

more complicated investigation, for the weight depends
on the shape which we wish to find. The stress at ^,

fig 99, is the moment of tLe portion of the l)eara la, or

it is G xj badl, G being the distance of the CG from

2
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: if ^ increase by rfi, the moment is increased by the

moment ofa^d/ x d,l + J'bad.l
x dJ, for riG may be

taken equal to dl. The first of these terms is indefi-

nitely less than the second, for they are as abdl: Jabdl,
or in a ratio less than any assignable one, and we may
say that while I increases by d.i, the stress increases by

d.lxjbad.l,
but the strength must increase as the stress,

and therefore calling tn a coefficient depending on the

transverse strength and weight of a square unit of the

material, we have

md fba*J = dl X fbad.l,

from this we can deduce the rplation between b or a,

and /. the section being as above supposed rectangular,

and one of its sides constant. Let b be constant, then

taking the differentials, and assuming dd constant

md'* (a^J = dl^ X a,

multiply both sides of the equation by d (a^J,

md(a*)
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but / must vanish with , and this cannot be unless C
and C' are both = o, in which case the equation is

the equation of the parabola referred to its tangent at

the vertex.

Where a is constant we have

ma.d b = dlz x b,

Ma.dbd^b = bdb, and ma X db-^ = b^ + C,
dl^ "dlf

hence dl = db

mid by Lacroix. Cal, Int. Art 162.

but as / and b vanish together,

C' =
h.log v/IJ] so that

C may be determined from the condition, that the beam

is of a given length and section.

ff.J If a beam be loosely supported at its ends, in

order that it be equally strorfg to bear a given weight at

any part, a^b must beasD x (L ^t) hence if b be

constant the outline is an Ellipsis, if a be given, it is a

Parabola whose axis is a perpendicular at the middle of

the beam. If a w^eight be uniformly distributed along

the beam, fig 88, call CX, x, W the total weight aloijg

the beam, and AW D : the differential of the stress at

W is W X D X a;d^, integrating, the stress arising__.

from WC = W X D* * or making a; = d = W X
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jyd X d, to this we must add for the stress arising from

AW _W^ X Del X D and the stim is W X D^ being
2L^ 2 L

exactly half the stress which the weight would have pro-
duced if concentrated at that point.

fg.) The strength of a cylinder is as r^, that of the

tube is therefore as R^ r^R, or as t the thickness X
R X /r 4- R^, which when t is small and constant is

nearly as R^. The quantity of matter in the tube is as

R* r^, or as 2 R^, t is therefore as 1 and the strength

"R
of the tube where the quantity of matter is given as the

diameter.

This is calculated on the first hypothesis, supposing
all the parts of a cylinder to resist fracture with equal

energies, but on the other suppositions which have been

noticed, the portion which we imagine removed, is not

exerting its full cohesive force, and therefore the tube is

stronger than in the above proportion of R* r^ : R*.

On the hypothesis of equal compression and extension,

the NL passes through the centre, and the extreme ex-

tension of each cylindric portion which has been denoted

by the symbol /"is as its radius: the J" of the inner

cylinder is therefore r X
J^,

and its strength as/X r X r*

R RT
the streugth of the tube is therefore to that of the solid

cylinder
:: R^ ~_ll.' 1^^ i' as R4 _ ; 4 : R4. If

"IT
the quantity of matter zz that of a cylinder of equal

length, and of the radius r', as R* r- == r'\ the

strength of the tube is to that of this cylinder when t is

evanescent as 2 R : r\

Tubes, though stronger and stiffer than solid beams,

are much less capable of resisting a blow, and therefore

cannot be used indiscriminately; they are much steugth-
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ened by introducing transverse partitions, which prevent

their shapes from being changed, as is exemplified in the

joints of reeds.

(h.) Let NL, fig 100, be the neutral line of a beam-

bent by a transverse strain, let the part A be extended,

and B be compressed, take EG a small portion of the

length of the beam, draw the perpendiculars to NL, IK
and MR, let IM be lengthened in the flexure to MH,
draw HE, meeting MR at R ; MR is ultimately the

radius of the circle equicurve to the beam, call KI a,

and EI a, n being a quantity depending on the ratio of

71

the extensibility, to the compressibility of the body, then

R or RE : 1 :: MI : IH, but MI : IH in a given

ratio 1 :f'y for MI the natural length of that portion is

increased to MH by the stress 5, and the extension is as

the extending force and the length,f is therefore its

extensibility by a stress 5, but the extensibility ofa given

length is as the stress, therefere/' : f the extension at

the instant of fractute :: s : S the stress which breaks

the beam ; this on any ratio of the cohesive and repulsive

strength is asy^^a'', therefore^ = ys and R = a

fvba
*

nf'
= rt X vba^. If the stress arise from the action of a

ns

weight hung at the extremity of the beam, s = wl and R
= V X bai but the deflection of a curve from its tan-

n "ivl

gent is as the square of the differential arch divided by

the RC. If the flexure be minute, so that R is very

great, the length is a differential arch of the curve, and

the deflection oc /* ex: Z3. The stiffness is inversely

"r" IJ^
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as the deflection produced by a given weight, and there-

fore is as the reciprocal of this fraction.

(i.) Suppose the section of the axle or wire divided

into a number cf concentric rings of evanescent breadth ;

let one of the parts into which it is divided by this sec-

tion, receive a motion of torsion while the other is held

fast, there must ensue a separation of the }:>articles of the

two axles in contact, which is to a certain extent resisted

by their cohesion. The effect of the cohesion of any

ring is as the numberof particles in it, as the leverage

by which they act, and the distance to which they are

separated ; the effect of these three causes is at the dis-

tance X ftom the centre f x X, x X 2 jpxdx, and inte-

y

grating, T the -resistance to torsion = f fx^p which

r

when a: ~ r becomes | r x fpf^^ or equal to the abso-

lute strength acting at the distance f r. and therefore

it is double the transverse ssrength on the hypothesis of

equal cohesive and repulsive forces. Conceive now the

axle divided by an indefinite number of such sections,

and let a torsion be applied to one of the differential

cylinders into which it is thus resolved, this would turn

through a given angle were those above and below it

fixed immoveably till its cohesion yielded or was in equi-

librium with the torsion : but if those contiguous to it

be permitted to move, since they exj^erience the same

force, they will also move through the same angle, there-

fore each section on to the extremities is equally twisted

relative to that contiguous: hence the angle of torsion

required to excite a given resistance is as the length of

the axle or wire, and where the angle is given the force

of torsion is inversely as the length. Where the length

is given the force is as shewn above, proportional tq^
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the separation of the particles of two contiguous sections

at the circumference of the cylinder, but this ,i ifa^i

angle of torsion. Lastly, if wires of equal leij^th hv

equally twisted, the forces are as the squares of f'fir;i#

sections, for they are as^r', and y is as r. Tbh pro--

portionality of the force to the angle has beeu j i id

noticed, and it obtains even in those bodies whti IC

might least be expected, such as lead and clay. Their

within certain limits obey these laws, and wheii th'

twisting force is removed return to their original posi-^

tion, but if twisted too far, they take a Set, or in other

words their particles assume a new arrangement ; and

resist any displacement from it as they did at first, if

still further strained, fracture is of course the result.

CHAPTER XIV.

65. From the principles delivered in the last Chapter,
it may be inferred that the transverse strength of any
material is much inferior to the resistance which it offers

to a direct thrust or pull, and experience shews that the

difference is even greater than that indicated by theory ;

it is therefore essential, that the practical mechanic should

know how to dispose the bodies of which his machinery
are constructed, so that their strength may be exerted

with the least possible exposure to this dangerous strain,

and to contrive that every piece may resist in the direc-

tion of its length. In this consists the science of Car-

pentry, which in its most important department, teaches

the mode of conltrucling trussed framing of evei'y kind,
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as levers, roofs, centres, and wooden or iron bridges ;

in its minor details it shews the methods of uniting

firmly the compound parts of any of the above menti-

Ijnpd structures. These we cannot touch on, though

they are replete with curious information and of the

utmost practical importance, and we can only glance on

the leading principles of its theory.

One of the simplest cases of the change of transverse

into direct strain is shewn in fig 101, the beam AB
projecting from a wall, bears a weight at its extremity ;

the strain of this tends to break the beam across at B,
but if another beam AD be added, its extremity at A
mortised into the other, so that it cannot slip, and D
abutting firmly against the wall, ihe action is quite dif-

ferent, and absolutely independent of the transverse

strength, we might even suppose the beams connected

with the wall by hinges ; in that case if AD were re-

moved, the weight would descend, describing an arch

of a circle round B, in doing this it must approach to

D, therefore the strain on AD tends to make A approach

D, or to compress the beam, on the other hand if the

cohesion of AB were desti oyed, the point A describing

a circle round D, would recede from B, AB is therefore

pulled. The supposition that the joints at B and D are

flexible, is in all great works scarcely different from

the truth, for it is absolutely impossible that they could

resist for an instant, if the load acted transversely on

them, and the strength must be entirely derived from the

framing. The stresses on AB and AD are easily ascer-

tained, for the two are equivalent to the weight ; we are

given the directions of the three forces, and can thence

construct the parallelogram of forces, making the ver-

tical AW the diagonal. The triangle ABD is similar
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to the triangle abc, therefore the stress on AB : stress

on AD :: AB : AD, and this again : W :: AB : BD.

These stresses are each greater than W, from theaciue-

ness of the angle A, the figure is therefore defective,

but it is not offered as an advantageous arrangement.

Since AB is pulled, its place may be supplied by a cord

or an iron rod, and this substitute is oflen used in roofs

for those parts which are pulled, technically named Ties,

as they can thus be made far lighter with the same

degree of strength. Instead of AD, a tie AE may be

employed, and in that case AB is compressed or is a

Strut.

For a second example, let us take the beam AB, fig

102, bearing a weight at its middle point; if it be suffi-

ciently great the beam must bend, and at last yield, but

let there be fixed at its centre an upright piece KP, and

let its extremities be connected with A and B by Ties,

then till KP be crushed, or AK torn, AB cannot fail.

To compute the stress on each part, suppose the beam

inverted, a prop at P, the beam divided there, and a

weight = 2 W hung at each extremity ; their stress on

AK : t W :: AK : KP, and the stress on KP = W
or is as 2 KP ; AB is compressed. Such a truss, but in

an inverted position with respect to the figure, is often

contained in the beams or girders which support floors,

when it is necessary to make them of considerable length,

and no support can be obtained for their middle points;

it is made of iron, and adds greatly to the stiffness, as

well as strength. A still stronger lever is shewn in fig

103, where the stress on each part is obviously propor-
tional to its length, the weight acting at A or B being

represented by CP ; its superiority in strength to fig

102 is manifest.

R
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66, It has been stated, art 15, that the beam of a ba-

lance should be nearly inflexible, and we now see how

this requisite may be obtained ; one very simple mode of

stiffening it, is the connecting the extremities ofthe arms

by steel wires, with the top of the tongue or index ; by
this it becomes a framed lever which cannot bend as

long as the index resists, but as it must be made very

slender, this contrivance does not completely remove the

imperfection. A more effectual method is to make the

beam a light parallelogram, ABCD, fig 104-, the axis

is fixed in BD, and this piece is tubular below it to

hold a sliding weight for the purpose of raising or low-

ering the C.G ; to prevent the sides of the parallelogram

from bending, light braces as BE,EF are ,sometime$

added, and sometimes the space is filled by a number of

rings touching each other and the sides, but these are

very'weak. Some of the finest balances ever made were

formed of tv.o hollow cones united at their bases ; one of

them whose sensibility is mentioned under that heady

sustained 6 pounds in each scale, though the brass of

which it was made was little more than ^^^ of an inch

in thickness, and it gave no signs of bending.

Wheels are in general sufficiently strong by their fi-

gure without any framing ; the circular rim throws the

strain on the radii, its tendency is to twist them off the

axle, and it unavoidably acts transversely. Where the

circumference is large, as in water wheels, its weight re-

quires some support to keep it in shape, and the same

remark applies to the large astronomical circles now

used in observatories, where stiffness is absolutely essen-

tial ; but it would lead us too far to dwell more on this

subject.

67. Roofs are systems of frames used to support the

lead, slates, or other materials employed to cover houses;
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these are ranged in parallel rows, and are crossed by

bearers on which the covering immediately rests, and

which transfer its weight to the frames. Each of these

is similar to the rest, and it is therefore sufficient to

consider one of them. In warm climates, Roofs are

nearly flat, but in these countries they must have a cer-

tain pitch or inclination to throw off rain or snow, and

this has the additional advantage of increasing the

strength by a judicious disrtribution of the materials.

Suppose the rafters AB, BC, fig 105, bearing on the

walls W W, and resting against each other at B, such

a frame could scarcely bear any weight, for when loaded

B would sink, and A and C receding horizontally, would

thrust against the walls with a force which their cohesion

could not resist. Supposing the covering of uniform

weight, the load on each of the rafters may be conceived

to be collected in its CG, call it W, and its vertical

pressure at A and B are i W, the pressure at A is sup-

ported by the wall, and therefore that at B is alone to

be considered, add to it an equal pressure from the other

rafter, and the pressure acting at B = W; but this is

resolvable into pressures in the direction of AB and BC,
draw AE and EC parallel to them, and BE the diagonal

representing W, AB is the thrust on that rafter, and

this being resolved in the direction AC, gives the^hori-

zontal thrust which tends to push away the walls. The

relation between these quantities is easily expressed in

terms of the inclination of the roof, for W the load on

one rafter : to thrust on that rafter :: BE : BA : : 2 sin

inclination to 1. It is therefore = W, and the hori-

2 sin 1

zontal thrust : W : : ^ AC : BE : 1 : tang I, and

= W . Hence as we dimininisb the inclination we

2 tang I
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increase both thrusts, and as we increase it we increase

the size and weight of the roof; the most advantageous

pitch is probably an inclination of 4-5. ("a.J

As the horizontal thrust endangers the stability of the

edifice, its action must be withstood, which is effectually

done by connecting A and C by the Tie beam AC ; for

this prevents those points from receding, and no pressure

is exerted on the walls but in a vertical direction. The

frame is now a triangle, and is the simplest of all,

being the element of which more complicated framing is

composed, for it is the only figure which keeps its shape

if its angles are flexible, as they cannot be altered with-

out lengthening or shortening one of its sides.

In small roofs the triangle is sufficiently strong, but

the Tie beam has often to support a floor and ceiling, it is

also liable to bend by its own weight; its middle is there-

fore suspended from the summit of the roof by a King-

post fig 106, KP. A further addition is sometimes made,

as the rafters are in a state of compression, while at the

same time the weight of the covering presses them trans-

versely, a strain which has already been referred to as

very dangerous ; the Struts KE, KF are therefore used,

which throw the weight on the King-post.

Every part of this roof is compressed or stretched,

and we can easily determine the strain which each beam

suffers, and proportion our dimensions accordingly. The

weight of the covering being uniformly diflnsed, pro-

duces a stress at E = t W, (see note/' preceding chap.)

the thrust on EK is therefore i (W -|- weight of AR)
sin I

= W, the stress on KP = i weight of AC -|- W
X 2 sin I = W", that on AP =z ^ weight of KP + W^^

2 sin 1

nearly. If we neglect the weight of the beams, KP is
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pulled by a strain = W, and that on EK is half that

on AP.

68. Roofs cannot always consist of two rafters, and

their outline is frequently a polygon ; in this case the

beams of which it is composed should be in equilibrio

with each other, as thus they are disposed in 'the form

most advantageous for the complete^ exertion of their

strength ;
the method of determining the form which

possess this requisite, depends on a principle developed
in the note (b): it may be easily ascertained mechanically

in any given case by this method; compute the weight

which must be borne on each rafter, construct a model

of the required number of rafters, and load their extre-

mities with weights equal to half the load which they

must carry, let the extremities of it be fixed in a hori-

zontal line, and it will arrange itself in the inverted form

required for the roof. If the frame be constructed ac-

cording to this figure, it will sustain the load laid on it

although in a tottering equilibrium, but if it be trussed

so that it must preserve its shape, we obtain the strongest

possible roof with rafters in that proportion. Fig 107,

shews a roof of four rafters, called a Kirb or Mansard,

from the architect who invented it; the rafters AB,CD
bear against the ends of a Straining piece BD; BH, DI,

are called Queen-posts, they serve to prevent the Tie

beam from sinking by its own weight, and stiffen the tra-

pezium ABCD 5 suppose them taken away, and a force

applied at B, that angle would sink down, and D would

rise, but we see that it is tied down by DI j the King-

post supports BD, and the braces FH, EI prevent AB
and DC from bending : the chief advantage of this roof

is the quantity of room afforded by the parallelogram

BI, but it is not so strong as it might be made with a

very small increase of timber, fcj
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69. One of the most difficult problems in this depart-
ment of mechanics, is the construction of the Centre^

or scaffolding which supports an arch while building.
The load to be sustained is enormous, and in the course

of the work it is distributed in the most unequal manner,
so that any thing like equilibration is out of the question.

Centres differ from roofs in being polygons of a far

greater number of sides, and in the ultimate points of

resistance : in roofs the thrust is withstood by the Tie

beam, but centres rest on piers sufficiently strong to

bear it without injur^^ : a polygon of beams is therefore

inscribed in the arch, and one interior to it is used to

keep it in shape, the sides of the former being struts,

those of the latter ties. See fig 108, where a very sim-

ple one is exhibited ; fig 109 shews one more compli-

cated : in both the spaces between the Polygon and the,

curve must be supposed filled with blocks or framing, so

that the arch may rest on them.

70. Frames of wood or iron resembling Centres, are

often used as bridges, some of the latter indeed on a most

stupendous scale, but the principle continues the same,

being the combiriation of systems of trusses ; an iron

bridge in general consists of several ribs of cast iron

springing at unequal heights, the lowest are most curved,

and like the various polygons of a centre, the strength

of the whole is united by transverse framing. Fig 1 10

is a simple construction of a wooden bridge, AB is one

of the beams of the road way, its middle hangs from C

by CP, which is supported by CD, CE, the smaller

truss AEP supports AP, and forms a railing at the

same time. Sometimes they are made as in fig 11 1.
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NOTES TO CHAP. XIV.

(a,) Call half the span of a roof ^, then the length
of a rafter is h which is proportional to the quantity

cos I

f materials in the roof; h or h is as the thrust in

cos sin I sin 2 I

the direction of AB, and the horizontal thrust is as

h ; when the thrust in the direction of AB is a mi-

sin 1

nimum, the sine of 2 I is a maximum, or 2 I = 90,
and I 45*^, the same gives the expence of the roof and

its horizontal thrust, a minimum.

(h.) Let the Polygonal frame dbc^ fig 112, bear

weights at its angles which we suppose perfectly flexible;

there must be equilibrium among the forces which act

at each angle, for otherwise the angle where the forces

are not equivalent to each other must move. The

forces at the angle where W is applied, are W, the

thrust along Pa, and that along lib' which we call t j

but the reaction of W against cc' = its pressure on P;
and by Art 3, W = t

sin
{ b) sin a

hence W. sin = / ; by the same argument W" sin d

sin (a b) sin {c d

=
t', but t = t' therefore

sin c sin b

W sm <?, sin 5 = W" sin c sin d,

sin {a b) sin (c d)

or the weights sustained at the angles of a polygon in

equilibrium, are as the sines of the angles directly and
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inversely as the products of the cosines of the inclinations

of the rafters meeting at each angle. In this equation

if we substitute for W andW their values in / and t',

we obtain
t X s'm b = t* X sin d

or the thrusts are reciprocally as the cosines of incli-

nation, and hence it follows that the horizontal thrust

of each rafter is the same.

fc.) Let it be proposed to determine the form of an

equilibrated roof of four equal rafters, bisect AI, fig 1 13>

and erect a perpendicular ; the middle angle of the roof

will be in it, and from the equality of AC, CI, that of

angle A and angle I may be inferred, as also of F and B;

and sin ABE = sin HOB, or retaining the notation

sin ABC sin FCB
of the last note

sin a = sin & = I

sin(6 a) sin 2 6 2 cos 6

hence sin b. cos a = 3 cos b sin a, or tang 6 = 3 tang a.

Call the angle CAH which is known from the given

span and height of the roof m, then cotang. m + x

= tang a, x being the angle BAD, and cotang. m x

= tang ^, therefore

3 tang, m jr = tang, m -{- x

and since

tang {m <-|- ^) == sin. 2 m + sin 2 ^

tan {m x) sin. 2 m sin 2 a?

it follows that

2 sin 2 J? a= sin 2 m
from which the length of AB can easily be found.
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CHAPTER XV.

71. The principles on which the stability of an arch

depends, are different from those of the combinations

which we have hitherto considered: in these the load is

resisted by cohesive or repulsive strength of the materials,

and the frame is made to keep its shape by bracing the

angles ; but in those arches which are constructed of

stone, weight is resisted by weight, and the stability

depends on this, that no part can sink down without

raising some other which may be made sufficiently heavy

to withstand its action.

72. An Arch consists of Piers on which it rests, of

Voussoirs or Arch-stones, which are truncated wedges,

and of a Roadway which is in theory supposed to be a

prolongation of the Voussoirs ; the interior curve of the

arch is called the Intrados, the exterior the Extrados.

The most obvious mode of investigating the theory of

arches is to suppose the Voussoirs in equilibrio, and from

this to determine the distribution of pressure ; we can

thus determine either the Intrados or Extrados where

the other is given. The arch thus constructed will

stand by the mutual action of its parts, and if an addi-

tional load be laid on it, its figure will be slightly

changed, but will still, unless the disturbance exceed

certain limits, stand firmly. This is by no means a

complete solution of the problem, but it is all which can

be attained in the present state of Mechanical analysis.

73. In fig 114, P,P' are the Piers, the Voussoirs V,

are supposed of equal length, and the inequality of pres-

sure required for their equilibrium may be obtained by

s
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laying earth, &c., on their upper surface; their faces are

also supposed polished, and capable of sliding on each

other without friction; this is not actually the case, but we

cannot introduce into our calculations such a complicated

element as the friction of two surfaces separated by a

layer of mortar, and it shall be shewn that this omission

cannot lead to any dangerous error. Were the structure

of the arch attempted by piling the Voussoirs at P suc-

cessively on each other, we should find that at a certain

inclination they would slide by their own weight on

those below them, the angle depending on the friction

of the surfaces; call its complement a, the joint which

makes this angle with the vertical is called a Joint of

Fracture, and this is properly the origin of the arch, all

below it being a part of the Pier. Produce these joints

li and Pi' till they meet, then the portion IC Pacts as a

wedge to thrust aside the piers, and by sect 42, in the

wedge the impelling force is to the parallel pressure on

the side as the back to the length, or as 2 sin lEG or ofa ;

1 ; but the impelling force is the weight of ICP, call this

A, and the pressure on a pier z= ^ A . From the same

sin a

section it follows that A : horizontal thrust : : tang c. : 1.

2~

Let us now suppose the arch ICP to be divided

at M by a joint making with the vertical an angle s ; the

surfaces of that joint are pressed together by a force

compounded of the horizontal thrust, and the tendency

of the parts IM and MCP to fall in, turning round on

the piers as fulcra : let the mass of IM be named m^ its

tendency to slide on the inclined plane I i produces a

thrust at the point Mm = m which, as the arch is

tang a

equilibrated
= thrust of MCI, or A m^ half the sum

tang a
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of these is therefore = one of them, or the horizontal

pressure at Mw = A X i . This force is perpendi*
2 tang a

cular to the other force which is compounded with it,

and therefore is to their result the perpendicular pressure

on the surface of the joint :: cos v. 1, for the perpendi-

cular to the joint and horizontal line make the same

angle as the joint and vertical ; it is therefore

== A X 1

2 tang a x cos s

Conceive now that there is inserted at this joint an

indefinitely thiu Voussoir whose weight is 7w', this is a

wedge impelled by a power tw', and resisted by A x
2 tang a

1 but as the vertical in whose direction m' acts makes

cos

with the axis of the wedge (or with the joint, which co-

incides with it) an angle = , resolving it in the direc-

tion of this latter we obtain by the property of the wedge
mf X cos 8 X MP = A X 1 ^ ^^y but P being

2 tang a cos

the intersection of two perpendiculars indefinitely near

is the centre of the circle which has the same curvature

as the Intrados at that point, and therefore MP = Ra-

dius of Curvature; hence in an equilibrated arch m! the

load at any point X cos^ x R A X Mra and there-

2 tang a
fore is inversely as R X cos* g. (.)

74. From this proposition we can easily deduce the

construction of an equilibrated arch, for the shape of the

Intrados along with the Specific Gravity of the materials

used in filling up the roadway, afford the data which are

required to determilie the Extrados. The practice how-

ever requires the use of the differential calculus ; and we
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can only exhibit its application in the case of a circular

Intrados. The Voussoirs being supposed of a given

depth, the load which they carry is the weight of the

column of earth which stands on them, and this is as

MH X Mw X cos s. fig 115. Hence taking PL for

the axis of the abscissaMH X cos^ b = constant quan-

tity
= CV, for at C cos = 1, if therefore we take

MH : CV :: CP^ : MN^, the point H is in the Ex-

trados, and thus the entire curve may be traced. It is

of a very unpromising aspect, for it has a point of con-

trary flexure, and if the arch spring at right angles to

the horizon a vertical asymptote, requiring an infinite

load at its origin, but for other curves the Extrados

does not deviate so much from a practicable shape, see

note {b.)

V5. The inverse of this Problem, namely, to find the

Intrados when the Extrados is given is yet more difficult,

it requires in general two successive integrations, and

cannot be attempted here, {c.) but in its stead the me*

chanical method proposed by Hooke and afterwards by
Robison may be given. It depends on the fact, that

a flexible cord loaded according to any law will dispose

itself in equiiibrio, and that if it were inverted keeping
the same shape, it would stand as an arch, if therefore

pieces of chain be appended along it, and trimmed

till their lower extremities are in a line which is the re-

quired Extrados, then the polygon formed by the chainf;

from which they hang, is an approximation to the In-

trados required for the state of equilibrium.

76. In the construction ofan arch, two considerations

are of the utmost importance to the stability of the arches,

the first of these is the resistance of the piers on which

the entire strain ultimately bears, and the second the

strength of the Voussoirs. A pier may yield either by
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being upset or by sliding horizontally, the thrust sepa-

rating the strata of its masonry ; the first of these can

never happen in large arches, for the direction of the

tangential pressure falls within the base of the pier, and

therefore tend* rather to keep it firm than overthrow it.

The thrust cannot be withstood by any adhesion of the

cement used in the construction, for this is utterly in-

significant when compared to the immense force exerted

against the piers ; but as the friction of stone is very

considerable, it is possible to load the pier so that the

strata against which the thrust is exerted cannot be dis-

placed. It varies as we have shewn inversely as the

tangent of the inclination of the arch at its spring, low

pitched arches have therefore much more of it than such

as rise at a greater angle, those which spring perpendi-

cularly would have none, but as such cannot be equili-

brated from the infinite height of the Extrados at that

point, we must be content to diminish it as much as

possible. Some of the large iron bridges are made very

flat, but only where the abutments are rock ; and where

a pier is intermediate between two arches, the thrust is

a matter of indifference as the opposite pressures coun-

terbalance each other.

77. The requisite magnitude of the Voussoirs may
be derived from the known strength of the stone used

in building, the dimensions of the arch are given, and

therefoie its weight, but the pressure on the Voussoirs

at the crown, is A X^ 1 and that at the spring

2 tang a

AX 1 the depths of the Voussoirs at these two

2 sin a

places must therefore be in the proportion of cos a ; 1,

in order that they^ may be equally strong.

78. The theory of equilibrated arches is very beau-

tiful, and therefore entitled to a place in an elementary
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work, but it must be confessed that it is not of great

practical utility; this the reader must have surmised from

the notorious fact that semicircular arches have been

often constructed, which have stood well though their

Extrados is nearly horizontal: but the hypothesis on

which our calculation is founded, is widely different from

the actual conditions of the problem, the Voussoirs in-

stead of being polished and frictionless, as we suppose,

are rough, and no pressure which they can bear wiihout

being crushed, is able to force them back ; therefore they

cannot be considered as wedges, and the arch must be

supposed continuous and flexible. If it be overloaded

at the crown, this sinks, and the haunches rise, the cur-

vature increases at some points and decreases at others ;

at the former the Voussoirs continue in contact at their

upper angles separating below, at the latter the points

open above, and the arch resolves itself into a polygon,

whose angles are at these separations. This brings the

action of an overloaded arch to the operation of a frame

of carpentry; but as we cannot secure the angles by Ties,

we must depend on the weight and friction of the super-

incumbent materials, and fortunately these are in general

sufficient. In iron bridges where there are no joints,

the stress of a load applied at any part tends to depress

that part below the curve of equilibration, and raise

others above it ; and if the piers be firm, the arch can-

pot fail but by a transverse fracture.

It is unnecessary to go further into this subject, and

we will conclude with this one remark, that when a

weight is laid on the crown of an arch, its aetion is not

confined to the part immediately below it, but is propa-

gated laterally, and produces the same effect as if the

curve of the Extrados were raised at its vertex, this

therefore requires a new Intrados ; if this fall within the
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Voussoirs, the arch will be firm, but if they be so small

that it passes outside, the sttucture will probably falj,

and thus the magnitude of the arch-stones may be de-

termined.

79. Domes differ from arches, in that the thrust which

so much endangers the latter, augments the stability of

the former by forcing inwards their joints: they are much

stronger, and may even be open at the summit, but the

investigation of their properties is too difficult to find a

place here; it is enough to mention that the Equilibrated
dome is the weakest of all. (d)

NOTES TO CHAP. XV.

(a). Conceive an arch divided by a joint into the por-
tion m and A m,' and suppose them urged by vertical

forces proportional to their mass, they may be considered

as wedges; drawing the vertical ab and raising per-

pendiculars at A and B, fig 116, the weight of the wedge
m : pressure at B : : a6 : c : sin acb : sin abcy but angle
acb = angle D and angle abc = comp bdA, = comp ,

and therefore pressure at B : w : : cos a : sin D == sin

[a i) : it is therefore = m. cos a. The pressure at

sin (a i)

B produced by the remainder of the arch BF is in the

same way proved = (A m) x cos a and as these

sin {a + i)

are eqiial in case of equilibrium,

A w = sin (a -|- ) = tang a -f- tang f

m sin (a ) tang a tang i
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hence

A 2 7W = tangi (l).

A tang a

An equation which must be satisfied in order that the

pressures may be equal and opposite at each joint.

For the weight of the Voussoirs we may substitute

any other vertical force, and for tang s, its value (as b is

the inclination of the tangent of the Intrados if the

joints be perpendicular to the curve) di/, and taking the

da:,

differentials

dm = A X d^y (2)

2 tang a dx

an expression of the force acting on ^5, the differential

of the Intrados. This may be otherwise expressed for

ds^ = Radius of Curvature,

dxd*ij
and therefore

dm = A X ds^ (3.)

2 tang a t/^" X R
but dx = cos g, and therefore the second member

becomes
A

Js^ (4)

2tangtf R x cos*e

a formula which may be useful where the radius of cur-

vature is known.

This latter formula may also be derived from the

theorem of note {b\ Chap. 14: for considering the

Intrados as a Polygon of an indefinite number of sides,

the load at any point oc

sin of angle of contact

sin* of angle made by curve with vertical

but \^ds be taken constant, the sine of the angle of con-

tact is as the Sagitta, or inversely as R, hence
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oc 1 .In general the vertical force m' is the

R X cos^

weight of materials resting on the Intrados, and where

they press only in a vertical direction, it is as h their

height at that point y^ dx X cos i, and hence

h = A X d\y = C (5.)

2tang. dx^ R X cos^

If the force be as h, and act perpendicularly to the

Intrados, a formula may be deduced from the theory of

the wedge to express the law of its variation ; but the

process would be rather difficult, and we may use another

principle, namely, that the pressures of two contiguous

Voussoirs on each other must be equal and opposite: call

y the force at any point, J : the pressure which it pro-

duces perpendicularly to the side : : the back : the length,

but when a Voussoir is indefinitely thin, its back is ds^

and its side R ; hencey x I^ is the pressure produced
'~ds

by such a Voussoir, and this is constant, therefore = C,

but y oc luds, therefore

h = C. (6)

R
This formula is probably more conformable to the natu-

ral state of the case than the former, as earth or sand

exercise a considerable lateral pressure, and when mixed

with water act nearly as actual fluids.

(b.) We shall give one or two instances of the applica-
tion of these formulas. In the first place Jet the pro-

posed Intrados be a conic section, take its axis, supposed
to pass through the crown, for the axis of ?/, and the tan-

gent through its extremity for that of j:, and the equation
of the curve is

. x^ =
wj/* mi/,

T
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the upper signs relating to the Hyperbola^ the lower to

the Elh'pse; resolving,

hence
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^ = a, h is infinite. At the crown, the Extrados is

concave towards the curve, but it has a point of contrary

flexure unless H be too great, whose place is determined

by referring the Extrados to the transverse axis of the

Ellipse, in which case its equation is

taking d-y^ and putting it we obtain the equation

x'^ = a^ -^ m \/ 7W* + 10 a^ml

m being = 9 a2 x H, for the abscissa of tlie point of

contrary flexure. This expression is impossible, if H
be greater than ^ b, the Extrados being then totally

convex towards the Intrados;and as the roadway cannot

readily be extended beyond the point of contrary flexure,

we can thu^ determine the thickness of the crown where

the span is given. But as has been already observed,

this hypothesis respecting the pressure of the materials,

does not strictly agree with' the actual state of things,

the second formula is nearest the truth, and they are

both limits between which the actual curve of the Extra-

dos lies.

Cycloidal arches are sometimes used, and we may
give the investigation for them. R as has been shewn

= 2 CO, and f = angle COA, and its cosine is CO,

"ao
h therefore = C x AO^ : call AO 2 r, and CO "- = 2 n/,

2 C04
therefore k = C X r but at the vertex H = Cr and

henee h = 4r^H
r
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In the second formula ^ = C to apply this to the

"R"
Conic Sections we must know the expression for the Ra-

dius of Curvature. The general value for this is ds^

d^y dx

when dx is constant ; and using the values found above

for dy and
?^j/, ds'^ = dx^ ^ dy^
= da:"" (wz + 4 .r' (1 rfc: )
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Cycloid h C and we obtain, finding for C its value,

a/ 2ry\

^ =
_vA27AH.

vyv~
(c.) Where the law according to which the pressure

varies, is given in terms of the co-ordinates of the In-

trados, or where the equation ofthe Extrados is known,
the Intrados may be determined, for the differential

equation which is obtained can in general be integrated,

although the results are not of a very simple form ; we
select the simplest cases as examples. Let it be given
that the arch is of uniform thickness, and dm is as ds^

therefore ds = ^ d^y and multiplying both members

dx

by dy^ we obtain

dy = Qdy d^y = C dy d^y
'

dx ds dx X V dy -P^
and integrating

3^ + C = C X k/ dy'^ + dx^
dx

squaring and transposing

dy = y ( y + c'Y =nc^
dx C

and to determine C, ifwe observe that dy is the tangent

dx
of the angle which the tangent makes with the horizon,

and that it = , when 3/
= we have ^c^a CM = 0,

and the equation becomes

dx = C*dy

^y^ -\'2Cy\
the differential equation of the Catenary, as might have
been inferred from the consideration that the equilibrium
ofa cord fixed at its extremities would not be disturbed

if the force of Gravity became negative ; the integration
of this equation gives x in terms of y, but it is unneces-



142 A SYSTEM OP MECHANICS, &C.

sary to give it. The most useful case of this problem is

to determine the Intrados being given the Extrados a

right line ; we n)ay take it for the axis of ^r, and the

quantity which we have denominated ^, is the ordinate

of the Intrados, and therefore

C d^y y.
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whose transverse breath is not as in ordinary arches,

uniform, hut it decreases from the spring to the vertex.

Let PRSTV, fig 118, be such a portion ; supposing the

Dome a surface of revolution, 7vxst (the differential

which was called dm) is as tz the thickness at that part

X zx or ^5 X rz which is as x, therefore by formula (3)

dm or t X x X ds = C x ds^
or t = ^- C ds*

RX dx* R^rf^*

an expression which determines the thickness of the dome

where the Intrados is given. In a Spherical surface

ds = da: and therefore t = C At the vertex ^

'~J' Rj/j:
is = 0, and therefore i = infinite as also when a; = R,
and it might thence be inferred that such a dome could

not be constructed : but it must be observed that this

proposition supposes the parts of the vaulting perfectly

equilibrated, so that ^they have no tendency to fall in,

and there is no pressure in the vertical joints ; suppose
the crown of such a dome to be lightened, or even re-

moved entirely, the lower parts immediately tend to fall

in, but this is impossible, for each horizontal course is

an arch, and its Voussoirs being equally pressed inwards,

must uphold each other. It is therefore evident that

the only requisite for the stability of a dome is that no

part should have any tendency to yield outward, and
therefore any curve of the same height and span which

lies within the curve of equilibration, will stand firmly,

provided that its support be able to withstand its hori-

zontal thrust, and this may be always ensured by sur-

rounding the lowest course with an iron hoop. To
return to the Sphere, / must be susceptible of a minimum
when ^^ J? is a maximum, or when j/* = |, this point is

therefore 36 from the vertex ; and the thickness of the

dome must be increased below it, for as we have shewn
all above it may be reduced to the minimum thickness.
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A spherical dome may stand although of uniform thick-

ness, provided too large a segment be not taken, the

limit is where the pressure of the incumbent mass is in

equilibrio with the weight of a course supposed to act

as a wedge, to find it take the quotient of Equation (4)

by Equation (1) or

dm =m ds = ds

A m R X tang X cos c^ R X sin X cos

_
dm we know ~ fxds, and we can easily express A m,

T
it being a spherical surface whose sine is x, and cosine

j/.

The differential of this is as xds in the circle to rdy,

but this is the differential of a cylindric surface of the

radius r, and height 3/,
therefore the surfaces of a sphere

and circumscribed cylinder cut off by planes parallel to

their contact, are equal, A w, is therefore as r (r-^y)

therefore a: = 1 = r

r ?7/
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died with great advantage by those who are anxious to

know this department of architecture practically.

NOTES TO CFIAP. XVI.

80. The propositions which have been delivered

hitherto, apply chiefly to coherent masses of matter

which are denominated Solids, but there exists a nume-

rous class possessed of peculiar properties, which there-

fore require a separate consideration ; these are the

forms of matter in which the ratio of the cohesive to the

repulsive force is very much diminished, so that the

particles of which they are composed are perfectly move-

able in any direction with respect to each other. Of
these again there are two kinds: the first are denomi-

nated Liquids, and though their particles are thus move-

able, yet they cannot easily be made to approach nearer

than their original position, and therefore these bodies

are scarcely compressible, but the other class of Fluids

have no cohesion, or at least it is exceeded by the repul-

sive force, which is alone obvious to our research, and

tends to disperse the atoms, if not counteracted by ex-

ternal force. If that pressure be increased or diminished,

the bulk of the body varies with it, and the repulsive

force follows the same law. These are called Elastic

Fluids, and their Equilibrium is a particular case of that

of Fluids in general, we shall therefore give the theory
of liquids first, and afterwards shew how far it is modi-

fied by supposing the Fluid of variable density.

u
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81. Before we proceed to this investigation, it may
be expedient to remark, that these three states of matter

do not arise from any ultimate difference in the nature

of the atoms of which the^ are composed ; for any of

them may be rednced to either of the others by varying

the action of heat. For example, a piece of Copper is

hard and cohesive ; let its bulk be measured, and its

temperature be increased, it is found to expand in all

its dimensions : at a certain heat, its cohesion is percep-

tibly diminished, and at length it melts, becoming liquid,

and as long as the required temperature is maintained,

it continues so ; but the effect of heat is not limited here,

for if it be very much increased the melted copper boils,

and is changed into vapour which assumes the appear-

ance of flame. Mercury is another example of this

truth, if the temperature be augmented it boils and rises

in vapour; if reduced, it congeals, becoming a malleable

metal. This may seem to belong to Chemistry rather

than Mechanics, but we shall hereafter find it useful,

and we will proceed to investigate the conditions of the

equilibrium of fluids.

82. The principle commonly used is that any pressure is

uniformly propagated through a fluid ; this expresses its

peculiar nature with sufficient distinctness, and is easily

applicable to the problem. To use it let us conceive a

vessel filled with a fluid, which for the present We sup-

pose void of weight; let the orifice of the vessel be closed

by a piston capable of sliding in it freely, a force F ap-

plied to this will press on the fluid, and this pressure

will be diffused through its whole mass equally : the

result is a pressure on the sides of the vessel uniform

throughout, and every portion of them equal in area to

the piston, sustains a force = F, call the bulk of the

piston unity, and Fs is the pressure on any surface s.
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From this the Equation of Equilibrium may be de-

duced, but it is unnecessary to investigate it as we shall

obtain all that we require by a more easy though indirect

method, (aj
83. If we now suppose the fluid to gravitate, each

portion of it is pressed by the weight of those incum-

bent on it, and the "pressure is unequal at different

depths, but still that arising from the action of the pis-

ton is uniformly diffused. If the thickness of the stra-

tum of fluid be inconsiderable its weight may be neg-

lected, and S being the surface of the piston AB, fig

I]9, the pressure on it is FS; let there be imagined a

circular aperture in CD, also closed by a piston ab^ and the

pressure on it is Fsyii vvill therefore be balanced by a weight

equal to P'^laid on abj this weight may be that ofa column

ofthe fluid which is represented by Hs, H being its height

F therefore = H, and if the vessel be continued up to E
and filled with fluid to that height, the piston ah which

serves only to transmit external force may be suppressed,

and AB is pressed by a force H X S If another aper-

ture s' were made in CD the pressure against it would

be H/, and for equilibrium it must be covered by a

column of the depth H, but it is obvious that the upper
surfaces of these columns are equidistant from CD. The
entire of CD may thus be removed, and if it be replaced

by a column H X CD, the pressure on AB is the same
as before, and we thence infer that the pressure on a

horizontal surface covered by a fluid, is the weight of a

column of which it is the base, and whose height is its

depth below the surface, without reference to the quan-

tity of fluid. For AB we may substitute the reaction of

an inferior stratum of a fluid, and it follows that the

pressure on any portion of it is as its depth below the

surface.
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As the pressure is uniform over a horizontal surface,

the height of the incumbent fluid must be equal in every

part, and therefore the upper surface is horizontal, (h.)

Before we proceed to develope further, the conse-

quences of this remarkable proposition which is the

basis of Hydrostatics, it may not be amiss to describe

the experimental mode of exhibiting it to view ; for some

are staggered by the position that the Hydrostatic pres-

sure is not as the quantity of fluid, and a particular case

of this law is honoured by the appellation of the Hy-
drostatic Paradox. Therefore let figures 120.1,2,3 be

three vessels in which the apertures AB are of the same

diameter, these are closed by similar brass plates which

are at first held against them by cords. The three

vessels are then immersed to the line CD in a cistern,

and on loosening the cords, the plates do not fall from

the vessels being pressed against them by the surround-

ing water ; let water be cautiously poured into them,

and when it attains a certain height over the brass, which

is the same in the three, the plates fall off; here it is visible

that the pressure on the upper surfaces of them must be

equal, and that the quantity of water employed is very

unequal. Again let the vessels, fig 121, be set in a

bason of Mercury so that their edge is one inch below

the surface, the metal rises in them to the external level,

now pour water into them, the Mercury sinks in them

below that outside, and when the water is 13 inches deep
the mercury is completely expelled from each vessel, and

as the part of each immersed in the metal is equal and

similar, it contained the same weight of Mercury, but

this is the measure of the pressure of the water.

84. As a consequence of the proportionality of the

pressure to the height, it follows that a fluid stands at

the same level in communicating vessels however curved
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or winding the communication may be ; and therefore

tubes connected with a reservoir of water, deliver it at

any height not exceeding that of the supply, a fact, the

importance of which can scarcely be estimated when we

consider what stupendous works the ancients executed

to supply their cities with this necessary fluid, and

apparently without knowing that it would find its level.

85. The same property enables us to determine a

horizontal plane at any time with facility by means of a

Spirit Level ; this instrument is a glass tube closed at

the ends, and nearly full of alcohol ; it is secured in a

metallic box which is in most instances connected with

a telescope adjusted so that its line of collimation is

parallel to the surface of the alcohol. It is obvious that

any point visible at the intersection of the wires of the

telescope must be in the horizontal plane passing through
the observers eye, and by raising perpendiculars from

the ground at various points, and knowing the intercepts

of them between it and the plane of collimation, we
know the vertical ordinates of its surface. Thus in fig

122, let L be the instrument, LH is horizontal, a gradu-
ated rod is held upright at a, and a moveable disk

slided along it till it appears at the cross wires, t|ie gra-
duation gives cOy the rod is then removed to ^ and J'k

ascertained in the same way, jthe difference of these is

the difference of level of a and Jl Thus the perpendi-
culars of all points whose distance from LH does not

exceed ba, the length of the levelling staff is ascertained,

the level is then transported to a higher station, and the

observations pursued. fc.J

In levelling it must be remembered that LH is paral-
lel to the tangent of the earth at L, but not at H, and

that H is therefore above the level of L, let LB, fig

123, represent a portion of the meridian, EB is this
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difference of level, and it is ncsrly equal to the vcrsine

FB =_LB^ but 2 R is nearly 8,000 miles, and there-

fore ^5^^ of the square of the distance in miles gives

the difference of true and apparent level.

86. The principle that pressure is uniformly diffused

has lately been applied in the Hydrostatic Press, an

instrument which has nearly superseded the Screw Press,

where rapid action is not necessary. Without entering

into detail, the machine consists of two hollow cylinders

fitted with pistons, and the smaller is provided with the

valves of a forcing pump ; call the diameters of the

pistons D and dy and if the space between them be filled

with water, the pistons will be in equilibrio
if loaded

with weights in the proportion of their areas. If there-

fore the small pump be worked vviih a force P, as it

forces water into the large cylinder AB, it will lift the

piston of it with an energy P X T)*
, and without any

IF"
friction except that occasioned by the two pistons, which

is very small in comparison of the common cases of

friction. The action of the press is relaxed by a stop-

cock in the pipe of communication which permits the

water to escape, and in favourable situations the pres-

sure of a head of water of sufficient altitude may be

substituted for the little pump, the press being then

merely a modification of the Hydrostatic Bellows. To

compute the power of the Press, suppose the great Cy-
linder 12 inches wide, and the Pump i the areas are as

576 : 1, but a man can easily apply downwards, a force

of 56 pounds which may be augmented tenfold by a lever,

the energy of this on the body to be pressed is there-

fore Hi- Tons, and nearly all this is actually exerted.
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87. The pressure of an immersed surface is easily

computed where every part of it is equally distant from

the upper surface of the fluid ; but if it be oblique tb

the horizon or curved, it is necessary to find the sum

of all the unequal columns incumbent on its parts. To
this end suppose the surface divided into a number of

indefinitely small portions, let ah be the profile of one

of them, fig 125, and SH the upper surface, the pressure

on ah is various in its different parts, for the pressure at

a is as ae, and that at b as hf, but the difference of these

is, if ah be very small, evanescent in comparison of ae ;

therefore denoting the element ah by ds^ ds X pc is the

pressure on that small portion, and the sum of all these

is the pressure on the surface ; but from what is deli-

vered in art 9, the sum of these is the moment of the

surface with respect to SFI, and this is = S x Grl,

G being the Centre of Gravity of the surface S ; so that

the pressure on any surface is the weight of a column of

the fluid whose base is the surface and altitude the

depth of the Centre of Gravity.

88. Let us apply this to a rectangular surface whose

profile is AB, fig 126, its centre of Gravity is at the

point of bisecticm of AB; GI is therefore i BD, and the

pressure on the rectangle AB is AB X DB. This

2

theorem enables us to determine a limit to the requisite

thickness of floodgates and dykes, and to proportion
their strength according to the stress on them ; thus the

stress on AG : stress on AB :: AG* : AB% and there-

fore the thicktiess should be as the square of the depth,
and should decrease from the bottom to the surface, (d.)
The locus of the pressure is a right line, for the pressure
at G is as GI, erect a perpendicular Gi = GI, and
draw AiW^ any perpendicular Be? represents the pressure
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at B, and the sum of the pressures oc triaujgle
ABD ;

such a triangle would be kept in equilibrio by a force

Mm passing through its CG, or the surface AB will

be in equilibrio if supported against the pressure by a

force applied at | of its depth. This point is called the

centre of pressure, (e.)

89. The structure of Dykes depends on these same

principles, but they must be combined with the resistance

of earth to determine rules for this department of build-

ing. The pressure of water produces three different

effects on an embankment ; it tends to overturn it ronnd

the outer edge of its base, if resolved in the horizontal

and vertical directions the horizontal result tends to

make it slide horizontally in strata, and the vertical

presses it down and opposes the other by increasing the

friction and adhesion.

The first of these effects is nullified by making the

inclination of the slopes of the embankment not less

than 90**, for if AD', fig 127, be the exterior face, and

the angle D'AB be acute draw D'E perpendicular to

AB, this is the direction of the pressure on it, and ii

is evident that the portion D'AE will be torn off, but

when DA is the face making an obtuse angle, the direc-

tion of the pressure falls within the base, and therefore

augments its stability.

The horizontal thrust is constant wliere the depth is

given, being as its square, but the friction is as the weight

ofMLA, ex: areaMLA, gg 128, and this must be as AL*,
iherefore AMD is a right line, and the bank should be

terminated by planes. In works of this kind it must be

remembered that the stability of it depends in a great

measure on the closeness of its workmanship, for if there

be any fissure into which the water can penetrate, it
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produces a Hydrostatic pressure which tends to float up
the parts of the bank over it.

NOTES TO CHAP. XVI.

(a). To iind the differential equation which determines

the equilibrium of a fluid acted on by any forces, let

us consider an elementary parallellopid in it, and taking
the axes of the co-ordinates parallel to its sides, these

will be dx, dy^ and dz^ fig 129. The powers acting on

the particles must be resolved in the directions of the

axis, call the results f^f and/"', let the density of the

Parallellopiped be 5, then fs^ dv dij dz is the energy by
which it is urged in the direction of x ; f's. dx di) dzy

that in the direction of
3/,

But the result of the forces

which act on the particles of the fluid must be a pres-

sure P, which varies in different parts of the fluid, and

therefore is a function of the co-ordinates. In order to

Equilibrium, the effect of this pressure on two opposite

j^urfaces must be unequal, and the difference must be

equivalent and opposite to 'the effect of the forces on

dx dy dz. Since P is a function of i, j/, z, take its dif-

ferential on the hypothesis of x variable, and it is rfP X
dx

dx according to the common notation (Lacroix. CaL

Diff. Abr. Art 126) ; and this multiplied into the surface

dy X dz on which it acts, gives the difference of pressure
on the surfaces of the parallellopiped which pass through
the extremities of dx. This is equal to d^ X dx

dx

dy dz = yfdxdydzf therefore dV =
sf, and in the

same way dV =
sf' and_^ =: &f". but (see Lacroix

dy dz
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art 123)'^ /

^P =J? X ^^ + d^ X ^j/ + dVjxdz,
dx di)

dz

and substituting for the partial differential co-efficients

dVy c?P, 6^?, their values .9^ sj\ and sj'\ we obtain

dx dy dz

dV-s{fdx^J'dy^f" dz)

for the equation determining the pressure. If the se-

cond member be not an exact differential, as no value

of P can be assigned, the equilibrium is impossible,

which is ascertained bj the values of d [sf), d {sf'\ &c.

dy dx

for these should be equal (Lacroix Cal. Int. Abr. art. 126).

Where the fluid is acted on by a single constant force

as that of gravity, f and f vanish and cfP = sF cfe,

and4ntegrating P = s'Fz + C, and if we suppose the

origin at the surface of the fluid

P = s F;^,

or the pressure is as the density ofthe fluid and its depth.

{b.) If the force acting on the fluid emanate from the

origin of the co-ordinates, and be as a function of the

distance, the strata of equal pressure are' spherical sur-

faces ; for calling the force at a distance r F (r), tliis

multiplied by the cosine of the angle which r makes with

:r or by^
^ f, J' F (r) x yj-ridf

= F (r) x_f
r r r

but as the pressure is to be constant in the stratum,

cfP = 0, and therefore

^ sF (rj X xdx -f ydy -f- zdz^

r
= xdx + ydy -j- zdz,

and integrating

C = X* 4- 3/* + *

the equation of a Sphere. At the surface the pressure

=: 0, and therefore this surface is also Spherical.
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fc.J The tube of the level is ground on the interior

so as to be a portion of a circle^ and it is evident that

the action of the level is the same as that of a plumb-
line whose length is the radius of its curvature; but in

practice it is found that from the cohesion of the fluid,

and other causes, its accuracy is only equal to a plumb-
line

^'3.
of its Radius, which is easily found from the

motion of the bubble corresponding to a given inclina-

tion. In levelling, besides the correction for the curva-

ture of the earth, a correction must be made for the

refraction of the air; as the point where the line of col-

limation cuts the distant vertical is higher than the ob-

server, the air there is rarer, and therefore the light

proceeding from that point does not come in a right

line. Without giving the investigation here, as it pro-

perly belongs to optics, the efiect of this source of error

is to make the correction for the earths curvature
-J
too

great in a mean state of the barometer and thermometer,

in this climate.

fd.J Let SA fig 130, be the projection of any surface

on the plane of z and y, and let udz be the element of

the surface corresponding to dz, an expression suffici-

ently general for our present purpose, then the perpen-
dicular pressure on udz is, calling the density of the fluid

unity, equal to uzdz, and its integral corrected to vanish

with z, is the total pressure on the whole surface; u

being a function of z is given by the equation of the

curve. (1).

This equation is not very useful, for the use of know-

ing the pressure is that we may apportion the resistance

to it, but the whole of the perpendicular pressure is not

efficacious in bursting the vessel containing the fluid ;

and it is therefore necessary to know, 1st, the,horizontal,

2dly. the vertical pressure, and Sdly the direction of

their result, and the distance of it from the surface of
the fluid.
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If the element of the surface be vds, ds being that of

the curve SAjw?5 is the perpendicular pressure, and

resolving it in the horizontal direction, the horizontal

pressure is

Hor. P. = fvzds X i or
fvzdz

(^)

ds

and the vertical is

Yert.V. =
Jvzdi/

(3)

and therefore the tang, of the angle made by the result

with the horizon is

Jvzdij W
Jvzdz

and the value of the result is

^/{Jvzdyy-^if^^-^^)^

Let us now suppose the horizontal forces to tend to turn

SA round S
ihenjlz'^dz

is their total effort, and ifZbe

the z of their result, Z x fvzdz =fvzHz

and Z =>2! ^^^

fvzdz

By a similar process the place of the result of the verti-

cal pressures may be found, and if required, that of

their compound may be determined.

Let the projection SA, (fig. 131) be a right line, and

let V be constant, the horizontal action =fvzdz = ^to%

and the vertical action =jv tang, azdz v tang, a

X i *> and their result makes with the horizon an an-

gle whose tangent

= ^ vz"^ tang, a

Vvz^

or the result is perirendicidar to SA, a conclusion which

is obvious a priori. The integral of vz^dz is \vz^i and

therefore Z = f s;. It is evident that this value of Z
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and that of the horizontal pressure are the same, what-

ever be the nature of the curve SA.

The pressure on a rectangular surface as a Dock Gate,

is uniform in any horizontal section, and increases uni-

formly as we descend in the vertical section ; it must,

therefore, be made stronger at the bottom than at the

top. Suppose it constructed of materials to which the

reasoning of chap. 13, is applicable, we can ascertain its

construction by a similar mode "of reasoning to that used

in note (f) chap. 13t Call a the total depth of the gate,

the pressure at j:* is, supposing !:; = 1, xdx* and the stress

which it produces at {z) is by art. 61. a z x x^dx whose

a

integral gives a ^x^^^* for the stress at {z) produced,

by the fluid above it. For that below it, the pressure is xdx

and the stress it produces ^Xa xY^xdx whose integral is

a

which taken from x = zio x = gives

z'^ + za^ z^

Ta 6 2

The sum of this and the preceding integral is the total

stress at {z)
=* z (a z^) but the strength of the tim-

6
ber of which the gate is constructed is as the square of

its thickness therefore

t'X C = z X a'z"";
f^ is a maximum when ;5? = or .578^.

The law according to which its thicknes should vary
in a horizontal section has been already determined ;

but the strength of it is much increased by making it in

two parts abutting on each other like the rafters of a

roof, a construction which is necessary to give a passage
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to shipping. The angle of inclination is susceptible of

a minimum ; for, on the one hand the stress on AC,

fig. 1 33, being as AC* is excessive, if angle C be not

sufficiently obtuse, and on the other, the thrust on AC
in the direction of its length, augments with that angle.

The pressures on the gates are perpendicular to them,

let them be represented by CD and CF ; these com-

pound a result = 2CE, but this is also the result of the

thrusts, and therefore the thrust is to the pressure

: : CB : CD : 1 ; tang angle B. If it be required that

the thrust X stress be a minimum AC^ y- AC = min,

tang. B
but AC = AE and this product will be a min. when

cos B
cos 3 B X tang B is a maximum, or where cos* B X
sin B is a max. B is then 36.16 and the angle C is 190**

nearly, but this is only a limit, for it must be remem-

bered that transve/se strains diminish the longitudinal

strength.

We will conclude this note with an application of

the theory to a surface of revolution, and take the

simplest, namely, the cone. Call AB, fig. 134, /, and

CAB , j/
=

(/ z) tang , and v = 2 j5 tang a X {I z)^

Z is therefore

fi p tang a (Jz* z^
)
dz

~~

J^2p tang a X (Jzz^) dz

^T jt_ __
1

(4./g >-3g';
fi! ^ 2~l~2z
2 's

If the integrals be taken between o and /, or if we con-

sider the wholesurface, Z =J /, or*^*we supposes small

in comparison of /, as is the case in large vats which are

mostly frusta ofcones, we maydevelope the fraction, which
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becomes

31
or

r 1 -{-^g 4- 4^ + &c. >

I SI 91* >

iz a 1 2 1 ^*
.

si 18 ^ 27 /*

shewing the place at which the strongest hooping must

be placed : other examples will readily occur to the

/Student, and are so easily managed, that we conceive it

unnecessary to go into more detail.

CHAP. XVII.

90. It has been stated that the pressure on a horizon-

tal surface, is the weight of a column of the incumbent

fluid, whose base is the surface, and height the depth to

which it is immersed. Is the pressure on a given surface

the same with different fluids ? This is easily tried, let a

quantity of water be poured into the Siphon AB, fig.

135, it will stand at the same level in each leg; pour into

B, olive, oil which not being miscible with water is se-

parated from it by a visible surface at O, as if i.; poured,
the surface O sinks, and the other surface of the water

rises in the other leg: draw a horizontal line HO, and as

the water in the space HO of the tube would be at rest if

the legs were empty above it, we may neglect it, and

consider the surface O as pressed upwards by the column
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of water HW, and downwards by one of oil OL, these

are equal, and therefore the weight of any bulk of oil is

as much less than that of the same bulk of water, as OL
is greater than WH.

This is confirmed by weighing a bottle filled with

water, and afterwards with oil, when the weights are

found to differ in this ratio.

This fact is expressed by saying, that the Specific

Gravity of oil is less than that of water, meaning by this

term the proportional weights of equal bulks, which are

sa called, as being peculiar to each different body, and

the result of the above experiment is thus expressed,

when two immiscible fluids have a common surface, their

altitudes above it are reciprocally as their Specific Gra-

vity. The theorem for the pressure on a surface, is there-

fore, P=GX Zx S, G being the weight of a unit of

bulk, and Z the depth of the surface.

91. Specific Gravities are of such importance in every

branch of experimental enquiry, that it is necessary to

enter into some detail of the methods by which they are

found. In the first place it is obvious that the numbers

denoting them are not restricted to any magnitude, ex-

pressing merely proportionals ; some one must therefore

be assumed as an origin of the series which will deter-

mine that of the rest. All Philosophers have agreed in

chusing water as the standard to which other bodies are

referred, it is every where procurable in abundance, and

when purified by distillation from the saline materials

which it contains, or even in the state of rain water, it

is at a given temperature identical in its properties. It

is next to be determined what number shall represent its

specific gravity ; unity is the most obvious, but there is a

particular motive which causes many to assume 1000 ; a

cubic foot ofrain water weighs 1000 avoirdupois ounces,
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the Specific Gravity of any other substance will therefore

on this scale express in ounces the weight of a cubic

foot, and if its dimensions be given in feet, multiplying

its bulk by its Specific Gravity we obtain its weight, a

process highly useful to the Architect and Engineer.

Denoting the bulk ofa body by the symbol M, its weight

by W and its Specific Gravity by S, it is evident that SM
=W, for S is the weight of the unit of bulk, and re-

peated as often as M contains units, it is the weight

of the body. From this expression it follows that

'^

, W being in ounces and M in feet.

M
This expression is apparently not homogeneous, for it

requires us to divide a weight by bulk, but we may sup-

pose M to be the weight of a mass of water equal to the

bulk of the body, and the process for finding Specific

Gravities comes to this ; find the weight of a body, find

that of an equal bulk of water, their quotient is the Spe-

cific Gravity on the hypothesis of water = 1, or if it be

1000, the decimal point is to be moved three places to the

right.

92. This process gives much accuracy to our opera-

tions, for we can weigh with much greater exactness

than we can measure ; and it only remains to shew how

M is determined. In the case of fluids the most obvious

method is the best ; provide a bottle furnished with a

stopper accurately fitted to it, for the sake of diminishing

calculation, its capacity may be 1000 grains ofrain water,

counterpoise the empty bottle, and then fill it with the fluid

to be examined; its increase of weight, is that of the con-

tained fluid, andthisobviously is its Specific Gravity, water

being 1000. To perform the experiment accurately, the

stopper should be tubular or have a notch cut along it

Y
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that the fluid may not be compressed on introducing it;

or a stopper may be dispensed with by having a cylindric

neck to the bottle with a mark at a certain height, up to

which it is to be filled.

93. If the specific gravity of a fluid be taken at dif-

ferent times in this manner, it will scarcely ever be

found the same in two successive trials. This discre-

pancy arises from the effects of the variation of tempe-
rature on the bulk of the glass bottle and its contents.

If the bottle is adjusted to hold 1000 grs. of water, at

40<> of Fahrenheit's thermometer, and the air is at 70,

by this increase of heat the bottle is enlarged, so as to

be capable of holding 1000.4 grs. of water as dense as

it is at 40, but water expands much more than glass;

and if the bottle preserved its original capacity it would

only hold 998 grains of water at 70, These two errors

counteract each other in some degree, but it is neces-

sary to use a correction, for which see the note (a),

94. The expansion of liquids by heat affords a ready
means of estimating the temperature ; for this purpose
a bulb is blown on a glass tube of small diameter, into

which any liquid is introduced mercury being that

commonly employed, till the bulb and a portion of the

tube arc filled. If the fluid be heated it expands more

than the bulb, and must therefore rise in the tube; but

from the minute capacity of this, in comparison of the

quantity of liquid in the bulb, a minute fraction of the

latter occupies a considerable length of the former. But

that it may perfectly satisfy the wants of the philosopher
its indications must be definite and referred to a certain

standard. Two determinate temperatures are sufficient

to groduate the instrument, and these are attained by
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plunging it in melting ice, marking the place of the li-

quid in the tube on a scale attached to it, and perform-

ing the same experiment with boiling water. The first

of these points is hivariable, and the other nearly so;

and thus limits of the graduation are obtained, the in-

terval between which is divided into any number of

equal parts. In this country, the point at which ice

melts is marked 32, and that of boiling water 212,

the interval being 180, and the or Zero is below the

most intense cold of this climate : this graduation is

named after its inventor Fahrenheit. On the Conti-

nent the Centesimal thermometer is used, in which the

freezing point is Zero, and the boiling point 100, To
make the instrument complete the top of the stem must

be closed, and as the air contained in the part of it

which is not occupied by the liquid would be condensed

by the expansion of the latter, before it is closed the

bulb is heated till the liquid rises to the top of the

tube; at that moment the point of the tube is melted

and sealed, and on cooling the liquid sinks, leaving a

vacuum above it.

95. The importance of the thermometer may apolo-

gize for this digression ; and to return to our subject,

the specific gravity of a solid may, like that of a liquid,

be taken by the weighing bottle. Weigh it, then in-

troduce it into the bottle, and fill this with water, its

weight W = W + 1000 M; for the weight of

water is 1000 M, the solid occupying, the place

ofM grains of water. M therefore = 1000 + W W
and hence S can be found. This method, where the

solid is in small fragments, is the best which can be

practised, and in the case of fine powders, the only one
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admissible ; but it cannot be applied to large masses

of matter, and we must determine M by other means.

96. We have seen that a fluid remains at rest if its

surface be horizontal; in this state every part of it must

be pressed upwards by a force equal to the action of

gravity on it- This upward pressure must be equally
exerted on any body immersed in the fluid as on that

portion of the fluid which it displaces, and therefore we
can ascertain the quantity displaced by weighing the

solid in air and weighing it in water ; the difference

ofthese weights is the weight of a quantity ofwater equal
in bulk to tha solid, as is shewn by a pretty experiment.

Let a cylinder of brass be turned so as exactly to fill a

small bucket, let the cylinder and bucket be suspended
from thfr scale of a balance and counterpoised ; if then

the cylinder be immersed in water, the other scale will

preponderate; but on filling the bucket with water, the

equilibrium is restored. This principle is the source of

a multitude of facts which we cannot afford time to de-

veiope; among them we may however remark, that if

the weight of the immersed solid exceed that of an equal

bulk of water, it will be urged downwards by a force

which is equal to its weight multiplied into the difference

between its Specific Gravity and unity : if its Specific

Gravity be the same as that of water, it will remain

at rest in any part of the fluid, and if less it will

rise to the surface and remain at rest when the part im-

mersed is to the whole body as specific gravity of the

body to that of water ;
for in that case MS ms but

these products are equal, the first to the weight of the

body, the latter to that of the quantity of water dis-

placed by it ; these conclusions are, as is obvious, not

confined to water only, but apply to every fluid, {b)

97. By the assistance of the theorem just mentioned,
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the Specific Gravity of a solid may easily be found ; sus-

pend it from a balance by fine wire, or, still better, by a

horse hair, which being nearly of the Specific Gravity of

water, cannot affect the result : weigh it exactly, and

placing under it a vessel of water, raise this till it is im-

mersed, it will float on the surface till weights are put
into its scale equal to the weight of the displaced fluid;

this addition is therefore the Loss of Weight which it ex-

periences when weighed in water, so called although the

weight is not lost, but only transferred to the fluid ; the

weight divided by the loss is therefore the specific gra-

vity at that temperature, which must be determined by
a thermometer immersed in the fluid at the moment of

observation ; or the result may be reduced to any fixed

temperature by the principles delivered in note ^a.)

98. If the body be lighter than water*, as it will always

float on it, we must have a cage of such a weight, that

it may sink even when it contains the body in question,

immerse the empty cage in water and counterpoise it,

introduce the body into the scale from which it hangs
and determine its weight in air, then introduce it into the

cage, and the weight which must be put into the empty
scale to restore the equilibrium is its loss. Bodies of this

description owe their small Specific Gravity for the most

part to the presence of air in their cavities or pores and

therefore we may err in determining it, as some of this

air always escapes on immersion. All woods are heavier

than water, even Cork if long exposed under the air

pump sinks in it, and in this way we can determine its

real density j but if we desire to obtain the minimum

Specific Gravity of any of these substances, their pores
must be closed by a coat of varnish.

99. Saline substances and many vegetable and animal

products are soluble in water, so that this fluid cannot



1^ A SYSTEM or MECHANICS, ^C.

be used, but many of them are not affected by alcohol,
and none by mercury ; this latter however can only be

used in the weighing bottle, as nothing except gold or

platina can sink in it. The equation S =^ W shew*W
that where the bulk is given Soc W, theroforeS: s the SG
of alcohol : : W: M' the loss ofweight in it, therefore S=
s W or take the Specific. Gravity, as if the fluid were

M'
water and multiply the result by the Specific Gravity of

the fluid.

100. If a solid be weighed in diiferent fluids, the losses

are as the Specific Gravities, and thus we can determine

the Specific Gravity of any fluid ; for 1 : s : : w : m', and
therefore, S = m ov m X 1 > and 1 may be inscribed

m mm
on the solid which is generally a ball of glass. The use

of a balance is made unnecessary, by having a series of

glass bubbles, whose Specific Gravity increases in arith-

metical progression ; several of these are thrown into the

fluid to be tried, and that which neither sinks nor floats is

of its Specific Gravity (c)

This method is liable to some sources of inaccuracy

from which the weighing bottle is free. The want of

perfect fluidity, or the viscidity of the liquid impedes the

accurate determination of the loss of weight : and the

temperature of the solid produces an error if it differ

from that of the water or other fluid used ; not by its

expansion, for that of solids is inappreciable in such ex-

periments, but if it be hotter than the water, the particles

of this in contact with it become heated, and therefore

specifically lighter than the rest of the fluid ; they there-

fore ascend and their place is taken by others, which in

their turn ascend producing an upward current as long
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as the solid is hotter than the fluid ; were it colder there

would be a descending current, and in either case its

influence would be a source of error in the determination

ofthe loss. It is also said, that the Specific Gravity of a

solid is diminished by reducing it to powder when it is

tried by this method, and the effect is attributed to the

adhesion of the liquid to the surface of the solid, which

is supposed capable of augmenting its density at the

surface of contact.

lOl. We have seen that the part of a floating body
immersed is to its whole bulk : : Specific Gravity of the

fluid on which it floats : its own Specific Gravity: it will

therefore sink to different depths in different liquids, for

calling the part immersed I, I = Mxs but as M s is

S

constant, I oc 1 and therefore S oc 1 This principle is

s^ T
employed to determine the Specicc Gravity of fluids

by means of the Hydrometer, which in its simplest
form consists of a ball A, fig 136, to which is attached

beneath a bulb B filled with mercury to balance it and

keepit upright, and a slender cylindrical stem graduated

according to a scale of equal parts. The mode of using
it is obvious, for if made to float on any liquor the de-

gree of its stem intersected by the surface of the fluid

shews its Specific Gravity after the necessary corrections

for temperature have been made.

We have said that the stem should be cylindrical,

because it is the only shape of whose accuracy we can be

certain, at least with common workmen, and for the same
reason have divided it into equal parts j but this gives
a series of values of I in Arithmetical Progression, and
therefore the corresponding values of S are in Harmoni-

cal, Harmonicals being the reciprocals of Arithmeticals.
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If then the stem be cylindrical it should be divided in

Harmonical progression, or if the Arithmetical be pre-

ferred, the diameter of the stem must increase upwards

for S S' oc 1 1 or as I' I or when Vl is very

T ~ TF
small as I' I if therefore S S' is constant which is

thecase when the graduation isequal,!' locl^ but V I

being the portion of the stem included between two suc-

cessive divisions is nearlya cylinder, whose height is given

and whose base is the thickness of the stem at that

place, the thickness is therefore as I. An approximation

to the proper shape is made by making the stem a frus-

tum of a cone with its base uppermost, but it is perhaps

better to use the cylindrical stem and equal division,

ascertaining the Specific Gravity by reference to a

table, (d).

102. An instrument constructed on these principles

cannot unite delicacy and extent of scale, and is much

inferior as a philosophical instrument to that which

we proceed to describe. In this the stem carries a cup
to receive additional weights, by means of which it is

sunk to the same depth in every experiment, and as

SI = s M or W, S oc W, but W=i=W the weight of

the instrument -f w the additional weight, and there-

fore by a suitable series of weights we can ascertain S.

If the weight required to bring the instrument to the

mark on its stem in any fluid be w, and that of the

instrument when floating in the same manner on water

be W, then S = W ::p w but when S= 1, tiy
= there-

J

fore 1= W and S 1 q: ty; the upper sign being used

W
when the fluid is lighter than water.



A SYSTEM OF MECHANICS, &C. l69

This insfrument may be used to weigh any body

lighter than the additional weight necessary to sinli it

in water, for if this be 1000 grs. it is obvious that the

weight is 1000 the weight added to the cup ; and its

Specific Gravity can be easily determined, for the weight

which ballasts the Hydrometer is also in theformof a cup,

and if the body be placed in this it is equally evident, that

we obtain its weight in water. The Hydrometer requires

a correction for the action of the air on that part which

is not immersed, and also for the adhesion of the fluid,

which is variable at different temperatures ; (e) This

force gives rise to the phaenomena of capillary attraction,

some of which are detailed in the note ; but they are far

too difficult to be discussed minutely in a work like

this.r/;.

103. To complete the theory of the Hydrometer, we

should give the conditions of stable equilibrium for

bodies floating on a fluid, but here also we must content

ourselves with very general notions referring those anx-

ious for more extensive information to the treatises of

Prony, Bouguer, and Atwood. In the first place, S must

be less than 5, and this may be effected even with the

heaviest materials by making the body hollow, thus

buoys and even ships are constructed of Iron. 2dly,

the centres of Gravity of the immersed part, and of the

whole must be in the same vertical, for the action of the

fluid, on the part immersed passes vertically through its

CG, and that it may counteract the weight of the whole

body, it must pass through its CG also.

104. The equilibrium thus obtained may be either

stable or unstable ; supposing the body moved from the

position of equilibrium, the action of the fluid may
tend to bring it back or to remove it further from that

state, and this takes place according as the point where

z
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the result of the pressure of the fluid meets the line

passing through the centres in the state of equilibrium,

which is called the Metacentre, is situated above or

below the centre of gravity of the body- An example
of these two states is afforded by an elliptic cylinder,

whose profile is AC B, fig 137, floating on a fluid of

twice its density in which case the surface of the fluid

FL(caHedthe plane offlotation) passes through its centre.

If either AB or CD be vertical the cylinder is obviously

ih equilibrio, but in any intermediate position, the action

of the fluid tends to bring it to the position in which

CD is vertical, for E is its CG, and that of the part im-

mersed is in EF the line which bisects all parallels to

FL, a vertical drawn through it must therefore meet

AB below E, and therefore AB will ascend till it is hori-

zontal ; the equilibrium is therefore stable only when

AB is horizontal. If the metacentre coincided with E,

the equilibrium would be neutral as in the case of a

sphere, for whatever its position may be, the two centresof

gravity are always in the same vertical. The stability of

ships depends on the^e principles, and much curious

matter is connected with this branch of Hydrostatics

which we are constrained to pass by for want of

room. fgj.

NOTES TO CHAP. XVH.

{aj Let the capacity of the bottle be = mno and \ete

be the xpansion of the unit of length for 1" of Fahren-
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heit, tiien each of those factors being increased by a heat

of ^ thecapacity becomes m + ?netX n -^ nej X o-\-oef

or mno (1 +ei)^, subtract from this mno and the increase

of capacity isobtained = miw (3 ei+ 2e^t^-\-e'-ii)butas

et is always a very small fraction, the correction is suf-

ficiently accurate if the capacity of the bottle be multi-

plied by three times the linear expaasion of glass
mul-

tiplied into the temperature, e for flint glass is about

0.0000045.

The expansion of solids is sensibly proportional
to

the temperature ; that of fluids follows a continually in-

creasing progression whose law is not known a priori,

but it is possible to construct from observation a formula

which shall represent the expaftsion within certain

limits. The quantity e is still a function of /, and there-

fore may be represented by a scries of the form E 4" ^ ^

+ ^ + ct^ &c. The coefficients abc kc. being con-

stant quantities and all very small fractions. As the

expansion is nothing when / = 0, E = 0, and tlie

formula is sufficiently accurate, if we put e = a t {

t^ -j~c t^ ; to determine the coefficients, a thermometer

is filled with water and exposed along with a mercurial

one to various temperatures, thus the expansion of it is

known by correcting for that of glass ; any three of

these values of e give three equations from which a b

and c may be found. Biot gives formulas for the true

and apparent expansions of water expressing t in de-

grees of Reaumur's thermometer, which begins at the

freezing point and indicates boiling water by 80. See

his Physique. The first of these altered to Fahrenheit's

graduation is this,

^=0.0000 24S9 T+ 0.OOO002OG29 T-
0.000000005^6 T^

whtjre T is th temperature according to Fahrenheit
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32. In ordinary cases the term affected with T^ is ob-

viously insignificant.

In this formula it is remarkable that the coefficient of

T is negative, and as the sign of e depends on this while

T is small, it is evident that for some degrees above the

freezing point, water contracts instead of expanding ;

there must then be a temperature at which the density

of water is a maximum: when this is the case dez=: or

Hi
= 0.00002439+ 0.0000020029X2T

> 000000002S6X3T
of which the root that gives e a minimum is T = 6. 15,

the maximum density of water is therefore at 38. 15 of F.

4 This determination agrees sufficiently well with ob-

servation, if we consider that a quantity near a maximum
is little changed by a considerable alteration in its

variable.

It may seem irrelevant to my subject, but I cannot

refrain from remarking on this property which is found

in water only of all the fluids with which we are ac-

quainted, that it affords a striking proof of the wisdom

displaced in the arrangement of our globe, for had

water contracted down to its freezing point and below it,

(for fluids can be cooled many degrees below it, the

temperature suddenly rising at the instant ofcongelation)

then the temperature of a lake or sea would have con-
^

tinually decreased, for as the surface cooled that portion

becoming heavier than the rest would sink, and thus the

whole mass would at last be cooled to the freezing point ;

"after that it is possible that it might be frozen solid, and

would probably never melt.. But as water becomes of

less'^pecific Gravity, by being cooled below 38 or 40,

when the whole mass has cooled down to this tempera-

ture, any subsequent cooling can affect only its surface,

and therefore that alone is congealed.
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In the adjustment of the weighing bottle, it must be

observed that when first weighed it is full of air : at a

mean pressure and temperature the Specific Gravity of

air is 0.0013, and therefore if the capacity of the bottle

be 1000 grs. of water, as the water displaces the air, the

apparent weight of the water should be 1000 1.3 or

998.7 grs. ; it is needless to give a formula for the

various circumstances of pressure and temperature. A
correction might also be applied for the varying pressure

ofthe atmosphere, which diminishes unequally the weight
of the bottle and of the brass weights which counter-

poise it. Suppose two bodies whose weights are W,
and w, their Specific Gravities S and s to be balanced in

a fluid whose Specific Gravity is X, the weight of each

is diminished by the weight of an equal bulk of the

fluid, and thereforeW W xx==tc7 w X2, orW tt?,

"S , T
the difference of weight = (W s w S) 2 or as W = to

s7

very nearly = W (S s) X x. If therefore the weights

^7
be equal at any value of X, they will be unequal at all

others. This correction is however in the present
instance scarcely appreciable.

fbj It may happen that a body of intermediate Spe-
cific Gravity floats between two immiscible fluids. Let

its Specific Gravity be X, those of the fluids S and 5,

M and m the portions of the body immersed in them,

then its weight = (M+7) S = MS + ms, the sum of

the weights of the fluids displaced or M (S 3) = m

(c) It is a problem of frequent occurrence to de-

termine the Specific Gravity of a mixture of known

composition, let the weights of the components and
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compound be W, w, their bulks M, m, jt*, their Specific

Gravities S, s, , we have the equations,

MS-{-?7Z5=(M+ w) <r=|t6-, and W + 110= W+tt; = v

S S 0- r

Hence
tr = MS + ms == (VZ-^w) S s

M + 7n W s +wS.
If equal weights be mixed, t = 2Ss, if equal weights,

S+ s

0-= S+ s

2

being in the first case a Harmonic, in the second an

Arithmetic mean between S and s.

These formulas are of no use in the case of mixtures

of liquids, or of solids united by fusion, as alloys of me-

tals ; for in such compounds the equation ft =M + m
does not hold, there being what is called a Penetration

of dimensions. Thus if two measures of water be mixed

withl ofsulphuric acid, the compound instead of being of

the bulk 3 will occupy only the bulk 2.8, at the same time

giving out much heat ; this alteration of dimensions takes

place in every case of chemical union, and we may

safely conclude that wiiere it is not observed, the com-

pound is merely a mechanical mixture.

fdj. In the common Hydrometer S = W ; if it be

T
required that Soc r the part of the stem above the sur-

face of the fluid, let a be the value of tr, when S = 1,

then S = ^ = W and da: = Wr/I, but I = M the

whole bulk of the hydrometer minus the part of the stem

which is not immersed, suppose the stem a solid of re-

volution, and this = Jpy^dx
ox dx = Wpi/d.v M ^fpy-'dx = ^/apW\ J/,

a"" {U-Jpy'^dx)^
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taking the difFerentials y_. jdl

/ 1 y""

~1 y

which is of this form, ^jc \- dij
= b"^ the equation of the

hyperbola referred to its asymptote.

(e) By note (b) when a body floats between two fluids

with a part in each, M3+?W5 = (M+tw) 2, this is the

case with the hydrometer ; suppose that it sinks to the

same degree in a fluid of specific gravity S+S', inde-

pendent of the air, then S' is the quantity to be de-

ducted from the indication of the instrument to attain

the true result ; and M(S+S') = M-\-m) 2 = MS+w,
MS' = mSf S^ = m s ; now this instrument is chiefly

,"M
used to ascertain the strength of sj)iriluous liquors, sup-

pose, as an extreme case, that it is immersed in alcohol

specific gravity 0.8, thep m : M :: 1:4, and S'

= 0.0013 = 0.0003, making the result inaccurate in~
the fourth place of decimals : Nicholson's hydrometer
is even less affected by this correction,

f/J It is not our intention to give a general theory
of capillary phenomena, for this would lead us rather

too far ; it is sufficient to give a slight notice of their

existence, and explain some of the simplest of the ap-

pearances. When a glass tube of small bore is dipped
in water or alcohol, this fluid rises in it above its level,

and to a height greater as the tube is narrower ; what is

the cause of this ? obviously the reciprocal attraction

of the glass and fluid. These forces being of the nature

of cohesion act only at insensible distances, and are pro-

bably similar functions of the distance, differing only in
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the coefficient. To investigate their nature, suppose
HT a cylindrical tube (%. 138) plunged in the liquor

HV, suppose a portion of the fluid solidified in conti-

nuation with TV, so as to form a similar tube; this

imaginary tube will attract the fluid film Vi; downwards

with a force equal to the attraction of the fluid towards

itself, which call -A' as it is opposite to the ascent of

the fluid, but the glass tube attracts the same film Vv

upwards with a force A ; that portion of it at F ex-

erts an equal action, and the intermediate parts of

the tube produce no effect, as each raises the fluid below

it, and depresses that above it. The whole force is

therefore 2A A' and as that is positive, null, or nega-

tive, the fluid will rise, keep its level, or be depressed.

The forces A and A' are in all probability as the sur-

faces exerting them, and therefore the forces of ascent,

as 2 pr f2a a J a and '

denoting the coefficients

which give the forces A and A' when multiplied into

the surface. This ascensional force is opposed by

hydrostatic pressure of the elevated column FH, = to

S XP^'/"^ + r \ h being the height and r the radius

of the tube, for it is observed that the upper surface

of the column is, if the tube be capillary, a concave Iie-

misphere ;
the bulk of the hemisphere is | pr*, and

therefore that of the Meniscus contained between its

surface and a tangent plane perpendicular to the tube is

^ pr*, which must be added to pr*h in order to obtain

the total weight of the elevated column, hence

2 X / Qa^a \ =+ A X ?' = V

putting
V = 2 X (

2 a '

)
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V is constant where the nature of the fluid and the tube

is unchanged, and this formula is found to represent

very precisely the elevations ; where^ may be neglected

3

in respect of h we have ^ oc 1 the common theorem.

r

Iftwo parallel planes be dipped in a fluid it will rise be-

tween them, but the formula is not exactly the same

here the upper surface is curved only in one direction*

and instead of a liemisphere it is a semicylinder ; let

their distance be r the half diameter of the tube, and

their length Z, then the attractive force is as 2 / X

(a a') ; the weight of the prismatic column raised is

Sxlr/i, and that of the fluid included between its summit

and the cylindric surface is SI ^ r^ pt"^ ^

therefore

y =:r{h + f^r i^p_\
2 ^

4 ^

here, as in the preceding instance, r is nearly oc 1, and

P
the equation shews that the ascent of a fluid between

planes is | that in tubes whose diameter is equal to their

interval. If the pla nes meet at one of their perpendicular

edges, the distance between them is as the distance from

the point of occurse, and the ascent being inversely as this

distance, the surface of the elevated fluid is an hyper-
bola, of which the occurse is one asymptote, and the

level of the fluid the other.

These attractions are the agents in many curious phe-
nomena, which it is impossible for us to pursue ; indeed

any thing beyond the notice which we have given v\ould

involve us in the most complicated geometry: and we
are compelled to omit the most curious part of the en-

A A
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quiry, namely, the effects of the curvature of the upper
surface

; this differs with different fluids, depending ul-

timately on the angle of contact with the tube, which

itself is a function of the forces A and A': and the as-

cent varies with it, where it is concave the fluid ascends,

where it is convex the fluid is depressed, as in the case

of mercury. It may also be remarked that it follows

from the minute analysis of the question, that the ca-

pillary attractions are incomparably greater than that of

gravity, insomuch that the film of fluid, in contact with

a solid body, may be so compressed as to exceed many
times its ordinary density, a fact which has been al-

ready referred to in this chapter. See on this subject

Dr. T. Young, Laplace Sup. Mec Cel. and Count

Rumford on the cohesion of the surface of fluids.

Cg). The finding the positions of equilibrium of a

floating body is reducible to this problem, to cut from a

body a portion in a given ratio to the whole by a plane

perpendicular to the line joining the CGs of the whole

and the part cut off; for the part immersed is always in

a given ratio to the whole, and the action of the fluid

to support it may be reduced to a force passing through
the CG of the immersed part, and at right angles to

the surface of the fluid. This problem is not always

very simple, we will give two of the simplest examples
of it.

Let there be a beam, whose section is the Isosceles

ABC 139, whose CG is at G, it will obviously be

in equilibrio when BD is perpendicular to the fluid j

to ascertain whether it have any other points, suppose

it inclined till FL represent the surface of the fluid,

the triangle FBL is of a given magnitude, and therefore

FL is always a tangent to the hyperbola HCT, BT bi-

sectsFL, and therefore the CG of the triangle FBL is at
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g and Bg- = I BT, draw the normal TV, and parallel

to it g S, this is the direction of the pressure of the

fluid; if 5 be at G the body is in equillibrium, if above

it, it tends to diminish the inclination of the body, if

below it, to augment it.

As BT : B^:: BV : BS : 3 ; 2 . BS iz | BV.
Draw the ordinate TI and BV = BI + IV = ab-

scissa + subnornal = (see Anal. Geon. Art. 58)
;r + Z) ^,

therefore

BS = I f b^ + a^x.\

When .r = BC or a the expression is

or

cos* (angle ABD).
and if a be less than

BD X cos (angle ABD)
the vertical position of equilibrium is unstable. The
value of

BSor of X

cos* m
obviously increases with .r, and this with the inclination

so, that if s were originally below G, it will coincide

with it when

jr = BD X cos* m.

If then the vertical position be unstable, there are two
others stable; if it be stable there are no others.

Let the section be rectangular with two angles im-

mersed, its centre of gravity is in the perpendicular
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raised at the point of bisection of AD, fig. 140, and the

plane of flotation must cut off a trapezium of a given

magnitude ABL, therefore the plane of flotation must

always pass through E ; call D h^ BD ^, and tang

angle F. wz, bisect LD, draw MF, it bisects h at I, and

the central gravity of the trapezium is in it at g.

BS =* BI + IH -f HS
which we must calculate. By the process used in the

note fd) of Chap. 3, we find the distance of the centre of

gravity of a trapezium from its base

= 7 (FD X4^ i.^^)
2 "i

"

and FD = 6 ^r ^ hence

m
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BS I At 4-^.7.^6* t ;Z>*

h

3 A X cos^F

which must be greater than BG in the case of stability.

If angle F be evanescent, its cosine = 1 and the height

of the Metacentre is

hh { h^
%h

If we take the differential of this, and put it = o, we
obtain for its minimum height

h b X V^ ;

3 1

and if it be required to find the depth of immersion at

which the equilibrium is neutral, calling BG, H, we

have

2 2k

which gives

A *
.2 HA =

2_iS
5"

3

which is impossible if G* is less than | 6*, shewing that

a beam whose breadth is to its depth in a greater ratio

than 5 : 4? can have no neutral equilibrium j and it is

also obvious thai there are two values of A, at which the

stability is equal, one greater and the other less than G.

Those who wish for more information on this subject

may consult Bossut's Hydroynaniics.
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CHAPTER XVIII.

Q/" the Mechanical properties of Gases,

lOS. The class of fluids which now claims our con-

sideration is widely different from liquids in its phy-
sical properties ; water is many hundred times denser

than the heaviest of them, they are nearly all invisi-

ble, all perfectly elastic, all expansible by heat ; and

what could scarcely have been expected, all equally di-

lated by a given augmentation of temperature. They
differ however in their elasticity, at least in appearance,

for some of them, if their particles be approximated

beyond a certain limit, condense into fluids or solids,

evolving much heat ; and this, whether the condensa-

tion is occasioned by reducing their temperature, or by
mechanical pressure ;

while other elastic fluids continue

unchanged by any cold which we can produce, or any

pressure we can apply. From this difference arises a

distinction : those which preserve their elasticity are

named Gases, the others are termed Vapours, and we

.will treat of them in this order.

106. As the mechanical properties of Gases are the

same, we may confine ourselves to that one which is of

most importance to mankind, the Air in which we

breathe, as our conclusions respecting it may be ex-

tended if necessary to others. This fluid is not ele-

mentary, being composed of several ingredients, differ-

ing most remarkably in their chemical properties, four-

fifths of its gaseous part is a gas irrespirable and extin-

guishing flame ; the remaining fifth, on the other hand, if
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breathed powerfully excites the vital energies, and if ap-

plied to a burning body augments combustion to a de-

gree far beyond its usual intensity. With these are

mixed a variable proportion of the vapour of water, and,

at times, certain subtle agents arising from the putre-

faction oforganized matter, which are detected only by
their effects on animals, determining the peculiar insa-

lubrity of certain seasons and situations. But though
thus compound its mechanical habitudes are the same as

if it were a Homogeneous gas.

107. The invisibility of air may at first seem to make

the investigation of its properties difficult ; but this has

been obviated by a contrivance afterwards tobe described,

and we can measure air and pour it from one vessel to

another with the utmost facility. That it possesses the

property of filling space is shewn by a very simple expe-

riment; in the cistern AB
(fig. 141,) immerse a bell

glass provided with a stop-cock at its summit, and the

water does not rise within the jar to a greater height

than CE, but the surface of the water C is forced up-

wards by the pressure of a column = CD, and there

must be a body in the jar which resists this : this can be

nothing but air, and as it is elastic, it is compressed by
the column of water ; and hence the water rises a little

in the jar. Let a bladder, previously moistened to make
it flexible, be attached to the stop-cock, and let it be

turned ; the water immediately rises in the jar to the

external level, and the bladder is distended by the air

which had previously occupied the jar; if pressure be

made on it, the air is forced hack, and the water in the

jar descends ; and if the jar be raised up in the cisrern,

the water in it keeps its level, and the bladder collapses,

the air returning into the jar.
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108. If the jar be immersed down to the stop cock

and the air permitted to escape, closing the stop cock,

and raising it again, we find that the water does not

sink as it would if the stop cock were open, but remains

suspended. See fig. 14?2. This cannot arise from an

adhesion of the water to the glass ; such an adhesioa

does indeed exist, but cannot sustain a column more

than-rV of an inch high, whereas DX may be many
feet, and the sustaining force is obviously destroyed by

admitting air at the top of the jar. The appearance is

completely explained by supposing that air has weight ;

and as the earth is encompassed by an ocean of it, this

produces a pressure on the bodies which support it ac-

cording to the laws of other fluids, which have been ex-

plained in the two preceding chapters. Let the pres-

sure of the Atmosphere (by which term is understood

that total mass of air attached to our globe) on the

unit of surface be P, then the surface CE of the

fluid, supposing the plane AB continued through the

jar, is urged upwards by a force = surface CE x P
while on the other hand it is urged downwards by the

pressure ofthe elevated water, equal to surface CE XED :

this latter force is in general less than the other, and

therefore the water is supported. If the preceding sec-

tions have been well understood, this is easily^ appre-

hended, and experiment shews that the reasoning is cor-

rect ; for if the cistern and jar in this state be inclosed

in a vessel connected with an air-pump, an instrument

which shall be described hereafter, at first no change is

produced, for the sides of the vessel maintain on the

included air, the pressure which the atmosphere had

previously exerted j and even on exhausting, the water

does not immediately sink, until the elasticity of the air
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in the vessel is diminished beyond a certain degree. At

length the water sinks, and if the air pump be good it

descends almost to the external level, and on readmit-

ting the air, it ascends to its original station.

109. This simple experiment is fraught with remark-

able results, and was sufficient when rightly understood

to change the whole state of physical science : a modi-

fication of it is familiar to every one; if a tube open at

both ends be dipped in a fluid, and the air partially ex-

hausted, the pressure on its surface in the tube being

diminished, the fluid rises in it. This is vulgarly

ascribed to a power of suction, but such a power is not

very clear, and they who followed the guidance of Aris-

totle in Physics were in no small degree embarrassed

about it; their conclusion was that nature abhorred a va-

cuum, which would be inevitably produced if the wa-

ter did not rise. This passed current for some time, but

new observations were made, and Galileo, who had learn-

ed prudence under the discipline of the Inquisition

taught that nature's abhorrence of a Vacuum w^as li-

mited, not exceeding 34; feet of water; for in fact if the

jar in our experiment were more than 34 feet high,

when it is raised above the water in the cistern, the wa-

ter would be supported in it till it exceeded that height,

at which it would stand, leaving above it a Vacuum, or

at least a space void of air.

110. From this fact we can determine the value of P
in an approximate manner, and can devise a much more

accurate mode ofobserving it: ajar 34 feet high is rather

unmanageable, but if we use a fluid heavier than waler it

is evident that it will be sustained at a height as much less

than 34 feet, as its Specific Gravity is greater than that

of water. Mercury is such a fluid, and the experiment

made with it is called, from him who first made it, the

BB
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Torricellian experiment. To perform it, choose a glass

tube of about half an inch bore, seal it hermetically at

one end, or in other words close it by melting the glass ;

fill it with mercury previously heated and close it with

the finger, invert the tube and plunge its orifice, still

closed by the finger, in a vessel of mercury; on with-

drawing the finger, the metal sinks in the tube and

stands at the average height of 29.5 inches, leaving
above it a space void of air, which is spoken of by the

name of the Torricellian vacuum. The height of the

mercury is not always the same, but varies within cer-

tain limits, from causes at present unknown ; it some-

times rises in this country as high as 30.5 and very rarely

descends to 28, and from the connection of these

changes with meteorological pha3nomena, the Torricel

Han tube is vulgarly called^ the weather-glass ; its scien-

tific appellation. Barometer, shews the real nature of its

indications.

111. That the observations made with this instrument

may be valuable to the Philosopher, several precautions

must be used in its construction. A scale of inches and

tenths is always annexed to the tube, that the altitude

may be observed, and it is evident that the division

marked should be level with the mercury in the

cistern in which the tube is plunged, but this is often

otherwise, for supposing it accurate at one time, yet

when the state of the atmosphere changes, and the

mercury e.g. sinks in the tube, it must rise in the cistern

above the Zero or of the scale, and in that case the

observer registers an altitude greater than the true by

the rise in the cistern. This is obviated by having the

cistern moveable, so that its surface may be brought to

the Zero. In the second place the tube should be not

less than halfan inch internal diameter, for in narrower
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tubes, an action of the nature of those called Capillary

takes place, by which the mercury is held below the

height at which it would be in equilibrio, and this error

is inversely as the diameter of the tube. Thirdly, the

tube as well as the mercury must be freed from adhering
air and moisture, which as will be seen immediately
would materially interfere with the accuracy of the

instrument ; this can only be effected by boiling the

metal in the tube.

Many contrivances for enlarging the scale of the

Barometer are described by various authors, as the

Rectangular, the Diagonal, the Wheel Barometer the

invention of Dr. Hooke, and the only one which still

keeps its ground, and the Conical, which for its ingenuity

is described in the note (a): but the friction in them is

so great that it more than compensates the encreased

extent of the scale, and as 0.01 or even 0.001 of an inch

is perfectly visible on the vernier of the common baro-

meter, this seems fully adecjuate to meteorological pur-

poses. One of the best modes of extending its scale is

given in Nicholson's Journal by Dr. Wilson.

112. For certain purposes the barometer must be

made portable, a quality which it is far from possessing

in its common construction, as independent of the hazard

of introducing air into it, the tube is often fractured by
the percussion of the mercury against its top. It is

rendered secure in two ways : the bottom of the cistern

is in some made of leather, which is pressed upwards
till the mercury is forced to the top of the tube, when

the instrument may be inverted and carried in that

position : when an observation is to be made, the in-

strument is hung on Jimmals, which permit it to assume

a perpendicular position ; these are two rings, the in-

strument rests on the inner, this is supported on the
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outer by pivots at the extremities of its diameter, and

the outer rests on a support by other pivots at right

angles to the former, see fig 143, for a section of them.

When the barometer is thus suspended, the bottom of

the cistern is lowered till the surface of the mercury in

it is/at a given height, and the instrument is adjusted.

A much simpler instrument was invented by Dr. Ha-

milton, and described in the Irish Transactions j the

cistern is a cylinder of Ivory or box, closed at top by a

cork through which the tube passes, so that its orifice is

at the centre of the cylinder, and it is filled with mer-

cury fig.
144. It is obvious that we can invert such an

instrument without the orifice ever rising above the

surface, and that it is therefore portable ; but it could

scarcely have been expected that the pressure of the

atmosphere, or even its minute variations could act so

rapidly through the pores of cork as it is found to do.

Sir H. Englefield afterwards discovered that the air

acted even through the pores of box, and therefore

omitted the cork. As the mercury in the cistern of

these instruments rises and falls, a correction to the ob-

served altitude is necessary.

113. From considering the weight of air we proceed
to its elasticity, which quality it possesses in the highest

degree, being capable of indefinite compression and

expansion ; it is said that some gases have been com-

pressed to twice the density of water, and in the re-

ceiver of an excellent air pump it expands into 3000

times its volume under the pressure of the atmosphere.
From its elasticity, we may always infer the existence

of a force which confines it and prevents its particles

from receding; this must be in equilibrium with the

elasticity, and if it be augmented the elasticity must

increase equally. Under such an augmentation of com-
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pression, the volume of the air diminishes, and it

becomes an important object of enquiry to determine

the relation subsisting between the density and the

compressing force. For this purpose, a portion of mer-

cury is introduced into the bend of the recurved tube

ABfig lis, whose shorter branch contains a portion of

air, freed from aqueous vapour by means to be described

when we treat of the air pump : the short branch must

be provided with a graduation expressing equal parts of

its capacity. Observe the bulk of the included air, when

the surfaces of the mercury are on a level ; in this state

the air sustains the pressure of the atmosphere, or that

of a column of mercury equal to the height of the

Barometer at .the time of experiment, which for the

future we will call the standard altitude, and denote by
the symbol A. Call its volume M, then if mercury
be poured into the branch A it will be found that it also

rises in B though less remarkably. Now the confined

air is pressed by A, and also by a column equal to the

difference of level between C and D, or callhig this

latter a, the pressure on it is A-^a, and if we observe its

bulk M' by means of the graduation, we find that

M' X {^'\-a) =: MA or as this latter is constant that

M' oc . The density of a given quantity of air

is inversely as the bulk which it occupies, and therefore

is directly as A'\- a. This law is therefore when ex-

pressed in words, that the density of air at a given tem-

perature is to the force compressing it in a constant

ratio.

For pressures less than A the same law is proved by
an apparatus even more simple, the tube AB fig 146,

contains a portion of mercury CD, which unless the tube

be too wide, cannot fall out even when the open end B
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is downwards, as the air and mercury are unable to

change places J if this be laid in a horizontal position,

the air AC supports no pressure except A ; calling DC a,

in the position shewn in the figure, the pressure is A a

as the weight of mercury acts against the pressure ol the

atmosphere ; on inverting the tube, the two pressures
act in the same direction and it is found that MA, M'

{A a) and M^' ('i^4"^) are all equal; more mercury

may then be introduced and we thus have a new value

of a.

The same may be otherwise shewn : in filling the

Torricellian tube with mercury, leave a part unfilled,

we thus introduce on inverting the tube, a bulk M of

air under the pressure A above the mercury, which by
its elasticity depresses it below the standard altitude ;

that depression must therefore measure the compressing

force, as is evident ifwe consider that the column which

is supported acts in opposition to the atmosphere pres-

sure and therefore the included air is pressed only by
their difference or A , If the tube be graduated, we

can observe M' and as in the preceding experiments

M' X [A a) = MA. Hence we may infer that in every

instance the density is as the compressing force, and

from this law it has been shewn by Newton, that the

particles of air must repel each other with forces in-

versely as the distance between them, and that the

repulsion is in liquids probably inversely as some very

high negative power of it. fbj.

114. Since the density of air is as its compressing

force, D : C : : 1 : H, (calling the density of the air at

its ordinary state 1 and the pressure ofthe atmosphere H)
therefore C =H, H is therefore the Ratio of D to C,

Ij
or it is the force in equilibrio with the elasticity of air
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at the density represented by unity. This force we haviB

hitherto measured by A the weight of the column of

mercury sustained by it, but it is desirable to have

another measure of it derived from the air itself; in

fact, if the atmosphere were of uniform density, its
^

height above any place would measure the pressure

exerted by it there, and though this is not the case, yet

we may compute its height if it were uniform and the

number thus obtained is H. fcj.

115. Since a Homogeneous Atmosphere of the height
H is in equilibrio with a column of mercury Ay HX 1=
A X S', S' being the Specific Gravity of mercury,
taken on the supposition of air unity, = S ; when A is

s

29.9 the Specific Gravity of air is 0.001299, and that

of mercury J 3.588, the temperature being at the freezing

point; therefore H = 26000 feet nearly.

It has been said that H is the ratio of D to C, and it

remains the same however they vary ; this is evident

from the formula H =* ^ X S for if^ becomes A' s

s

becomes s', and the Specific Gravities being as the den-

sities, and these as the compressing forces, A : A' : : s : s',

and A = A' or it is always of the same value, and

* s'

therefore H is an invariable quantity.

116. Though H does not depend on the density of

the air, it does on its temperature, for heat increas6i

its elasticity and therefore augments the ratio ofD to C.

To ascertain the amount of this change let the tube dfr-

scribedin sect llSbeplact^ horizontally in a vessel filled

with water which may be heated to any required degree
between 32 and 212: thu*- the air contaivied in AC is

heated and expands, and its expansion E is observed ^s
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well as the elevation of temperature. The air is of the

bulk M at the beginning of the experiment and is in

equilibrio with the pressure of the atmosphere ;
after it

is heated its volume becomes M + E, and the compress-

ing force is the same as before, therefore since the bulks

are inversely as the densities, and H : H' : : C : C,

D 'D'

H: H' :: C x M: C x (M + B) :: 1:1 +' E
"M

therefore H'=Hx / 1 + E\ This formula shews

V M ^^

that H is increased by heat in the same proportion as

M ; and as it is found that E is proportional to the

M
increase of temperature, if we set out from 32% and call

the expansion produced by one degree e, and the excess

of temperature above 22 t, E = et and H' = H x

'M
(1 ^et). The coefficient e is 1 nearly or as a

480

decimal, 0,0021, where the centesimal Thermometer is

used it is 1 nearly.

"i50~

117. The density of the air depending on the pres-

sure must diminish as we ascend in the atmosphere, for

the density at any height is as the force there, that is

as the weight of the superincumbent portion of the

Atmosphere. It is not possible to express this pressure

by any very simple function of the height, for the density

varies through the incumbent column, and we must have

recourse to aid a little beyond the limits of common

geometry.
Let fig. 147 be the profile of a column of air resting

n the earth, and supposed to extend upwards to the
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boundary of the atmosphere: conceive it divided by

parallel planes into strata of evanescent thickness, as at

CD : as CE the thickness of one of them is very small,

the density may be supposed not to vary from C to E.

Let AB be assumed to represent the density at A, and

take RD : CD or AB:: density at C : density at A ; do

the same for every other stratum, and the line passing

through all these points is a curve of such a nature,

that the density at any height BI is denoted by the

perpendicular to it SI. From the evanescent magnitude
of CE the figure RF is quam proxime a rectangle, and

therefore is to CF:: RD : CD ; but if the air which fills

the space CF were condensed into the space RF, its

density would be increased in the reciprocal proportion

of tJie spaces, or as RD : CD:: density at C : density at

A, and therefore the air when condensed into RF would

ba of the same density as at A. In the same way it

may be shown, that if the other strata were compressed

horizontally till they were included between the curve

and its axis, that the curvelinear column thus formed

would be throughout of uniform density ; and as it is

evident that the weight of the air diffused through any

space CI is equal to that of the condensed column RI,
which is proportional to the area RI, it follows that the

pressure on any section CD is represented by the area

above it, supposing the curve indefinitely extended.

This will no doubt appear difficult to those who are not

familiar with the Infinitesimal Calculus, but an atten-

tive reader will easily comprehend it, and it is worth

some labour ; but to proceed, since the compressing
force is as the area, and the density as the ordinate RD,
it is evident that the Area is as the ordinate, which de-

determines the nature of the curve to be that which is

named the Logarithmic.

c c
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118. The nature of this curve is, that if in its axis

A I there be taken segments BP BR, &c. in arithmetical

progression, the corresponding ordinates or perpendi-

culars BA, PV and RD are in geometrical progression.

From this follow two others : since equidistant ordinates

are in geometrical progression, their differences must be

in like manner continually proportional, and in the same

ratio ;and it is easily inferred, that if PO be equal to

CE the thickness of a stratum, VX : VP in a constant

ratio. The chord VN coincides with the evanescent

arch and the line VT is ultimately the tangent of the

curve, and VX : VP::XN or PO : PT; VX : VP is a

(Constant ratio, therefore PO : PT and as PO is always

supposed of the same magnitude, PT is the same in

every part of the curve. Snch a line is called a subtangent.

The space VO is quam prox. = VP x PO, the space

RF = RDDF= X RDx PO, and therefore the sum of

all the elementary spaces, of which the Area above PV
is made up = POXsnm of all the equidistant ordinates^

Their sum may be found by the note ou the llth Prop,

of the 6th Book of Euclid ; for they are in a decreasing

geometrical series, and their sum is therefore a 3d pro-

portional to

VX and VP J VX = VPxPO
therefore the sura of ordinates PT

= VP^xPT
VPXPO

and sum of ordinates X PO = VPxPT. The /ndefi-

nite Area above an ordinate is therefore equal to the

rectangle under it and the subtangent.

110. If a Logarithmic were constructed, in which the

distance between ordinates in the proportion of 10: 1 is

a= 1 ,
and the subtangent is 0.43429, &c. it is possible,

if we know any ordinate in numbers, to compute its

distance from the point B, which is said to Measure its
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ratio to AB ; thus if BP were -^ 2, PV would be 75^ of

AB, for bisecting BP, this would be a mean propor-

tional between AB and PV, but as its distance from B
= I it is -/^ -^Bj therefore PV = -r^ AB. The natu-

ral numbers from 1 to 10,000 have been assumed as or-

dinates, and the corresponding distances from B have

been computed; tbey are called Logarithms, and are of

the utmost use in arithmetical operations, for in the

curve if BP = DI, AB : PV::RD : SI, therefore

ABXSI = RDXPV. AB is in the case of numbers

numbers always = 1, and therefore SI = RD PV,
but BI the distance of SI from B = ID-f-DB = BP-j-

BD, or if we take a number whose Logarithm is the

sum of the Logarithms of two other numbers, that num-

ber is equal to their product.

110. This may appear digression, but it will, I hope,

be admitted, that the importance of Logarithms merits

some notice, more particularly as some idea of their na-

ture is indispensible in what follows, and we may n^w
proceed in our investigation of the density of the atmos-

phere. From the nature of the Logarithmic, it is evi-

dent, that if the heights above the eartb be taken in

Arithmetical, the densities are in Geometrical progre^

sion, or that the heights are as the logarithms of the den-

sities, considering the density at the surface = unity.

The height may therefore be obtained by multiplying
the Logarithm of the density into a given quantity, and

this co-efficient is easily found : for since the ordinate

of the Atmospheric curve is the density, and ft multi-

plied into the subtangent gives the area, or compressing

force, and since C = HxD, it follows that the subtan-^

gent of the atmospheric curve is the height of the atmos-

phere supposed homogeneous. If then the Common
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Logarithms of the densities be multiplied by H, and

divided by their own subtangent, we obtain others

whicli are the heights corresponding to the densities :

for in different curves the intercepts between two ordi-

nates in a given ratio are as the subtangents. (d)
120. The variation of density is obviously propor-

tioned to the fall of the mercury in the barometer, and

hence we have a ready method of measuring the differ-

ence of elevation of any two places to which a barome-

ter can be transported, for it must be equal to the dif-

ference of the Logarithms of the altitudes of the baro-

meter at the places multiplied by a coefficient which is

in this climate 60148, in feet or nearly 10000 in fathom.

This conclusion is however true, only where the tem-

perature at both stations is near the freezing point, if it

be different, the coefficient whose numerator is H,

changes, H becoming HX [\-\-et'). We may assume

the temperature ^ = to the arithmetical mean of the

observed temperatures T and t, and as H becomes on

this hypothesis

H(14-gX(T+0

we obtain the difference of elevation in latitude 53

With good instruments this method of levelling gives a

degree of precision which can scarcely be exceeded by

Trigonometrical observations; and its readiness, toge-

ther with the short time which it requires, have ena-

bled philosophic travellers to add much to our stock of

geographical knowledge. For this reason we have

dwelt at some length on the developcment of those prin-

ciples on which it rests, and hope that it has been suf-
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ficiently explained to make it intelligible to all but those

of the meanest capacity.

NOTES.

(a). The Conical Barometer is a tube slightly coni-

cal, sealed at its narrowest end, and filled with mercury ;

on inverting it, as the tube is of small diameter, the

metal does not fall out, though its orifice is not plunged
in mercury, but it is suspended at a certain height by
the pressure of the atmosphere. Suppose this to vary,

and become less, the column must descend 5 but in de-

scending it comes to a wider part of the tube, and as

its bulk is given, it must become shorter, at last it be-

comes equal to the pressure, and is again supported, but

it has descended through a much greater space than the

mere change of A, Let a be the tangent of the half angle
of the cone, M the quantity of mercury, and x the dis-

tance of the upper surface from the vertex of the cone,

then

by the ordinary value ofa conical frustum, hence,

3M =^ 3 + 3 ^* ^-1- 3 ^^2

p a*

or taking the differentials as we are considering only
minute variations,

= (S A^-k-QAx) dx + (3 ^' + 6Ax + 3 x') dA
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or

A'^'\'2Ax 2AxX(l-\- A\

As A is small, developing the denominator by the

2x
Binomial theorem and rejecting all terms affected with

negative powers of x we obtain the motion of the upper
surface or

-^(Ix = dAr sA-\-2a:\
'

4^A J
(h) Let the repulsion of two particles vary as 1

d being the distance between them
; M the volume of

any bulk of air, is the product of three linear factors

and is therefore = d'J x V, V being the product of the

numbers of times that d is contained in those factors :

when a given quantity of air occupies different bulks,

D oc 1 and therefore in this case oc I , V being constant

M "^
while the quantity of air remains the same, D |- oc I

n

and D 3 oc
^J^

or as the repulsive force of two parti-

d^

tides. The pressure on any surface oc numbers of par-
ticles pressing it and oc the force of each, but the sur-

face = c?" X number of particles, if the surface be given
the number of particles oc 1 oc Dj and therefore

^
n + 2

the pressure on it is as D j- but this pressure being
the elasticity of the air is obviously equal to the com*

pressing force. If C be as D, w 4. 2 = l and therefore
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w = 1 or the repulsive is as 1

J"

(c) The quantity H is the height of a column of air

capable of compressing a given bulk of it into half its

volume ; it is also the Modulus of Atmospheric Lo-

garithms; from analogy, a similar symbol is used to

represent the elasticity of other substances and is called

the Modulus of Elasticity. It is the height of a column

of the substance whose weight would compress a portion

of it into half its bulk, supposing that its elasticity were

in every state as its density. The modulus is to the

length of the body, if it be a solid as any experimental

pressure is to the condensation produced by it ; bnt it is

more easily deduced from the theory of sonorous

bodies.

(d) From the equation HD = C we derive H X <i

D = rf C and dTi == d C, but <i C is obviously the

weight of a column of air whose height is the differential

of the distance from tlie earths centre .r, call the force of

gravity at that distance g,

dC _ gJ) dx; and dC = gD da: ~ gda:

c TTd "TT
and supposing gravity to be as the n^ power of the dis*-

tancefrom the centre, g = Gx^" hence,
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- H X h. log{D) =_G_X :v'l\^r^\

Ifthe Hyperbolic Logarithms of the tables be multi-

plied by H, we obtain a table of Atmospherical Lo-

garithms which may be used for finding the densities ;

or as the common, or Briggs's Logarithms are equal to

the Hyperbolic Logarithms of the same number x

0.434.29 &c. we may put N = H and write

0.434.28 &c.
the equation

^N X L (D) = JG X ^ "-3 R "+ ^

Rn W-^-1

denoting by L the tabular logarithm.

In nature = 2 and the second number of the

equation is =
GR X 2.

1 = GR X ^ R (1.)

-r R X

Ifwe call A = ^ R the elevation above the surface,

and G unity, it becomes R ^ h and developing the
*

R+A
denominator, it is F/^ x 1 /z + &c. or ^ A x

"la R "^

&c<, shewing that the logarithm of the density is nearly

as the elevation, the error being J of a yard in the first

mile.

If the densities be taken in geometrical progression the

distances from the centre are in harmonic : for in this'

case, log (D) log (DO is constant, and therefore so is

1 R 1 R or 1 1 The reciprocals of the

3C Mr dT 3C

values o{ X are therefore in Arithmetic progression.

If the force be as the distance, w =b 1 and the general

equation becomes
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N X L (D) =_G X >r^-~Rg (2.)

R 2

This law of force obtains below the surface of the

earth and we may enquire what density air would have

at the earth's centre, if a column of it reached there; put
a: = Oand L (D) = R =

180, so tliat the number

2N

expressing its density with respect to common air would

consist of 1 80 places of figures, that of Platina the heaviest

solid being under 5. Even water though so far less com-

pressible than air, would ifa column of it reached to the

centre, be more than a million of times denser than it is at

present,for its modulusof elasticity isabout28 times H,and
therefore L (D)= 6 . 5 nearly ; and it is easily computed
that at the depth of 0.165 of the earth's radius it would

be denser than lead. This may perhaps account for the

high Specific Gravity of the earth.

Lastly, if we suppose gravity constant, ?i = and

Nx L(D) = GX"(^ R) and this is sufficient for prac-
tice as we have already shewn the amount of its eiTor.

(3).

{(}). If the temperature were constant, the formula

(3) would suffice for barometrical measurement, but as

this is not the case we must introduce its variation into

our formula. It has been shown by Laplace that the hypo-
thesis of a decrease of temperature in arithmetical pro-

gression, while the height increases in arithmetical pro-

gression, represents observations with sufficient accuracy.
If then we observe the temperature at any height, and
ascend through an elevation z^ the temperature is lower,
and by a certain submultiple of ;3; hence dt ~ ndz. If

now we resume the theorem rfD= ^dx and put g con-

DD
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stant, and dz for dx^
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This formula is not yet sufficiently precise, for it is ne-

cessary to allow for the effect of the difference of tem-

perature on the Specific Gravity of the mercury itself,

this becoming more dense by the cold ;
its contraction is

uniforn), and, denoting its expansion and temperatures

at the two stations by tiie Greek letters, a the height

observed at the upper : a the height if it were at the

temperature 0: : I : I +t -6), a =a / (i+i ( -&) the

forrauhi becomes then, putting A and a' for A and D

This formula admits of two corrections on account of

the variation of gravity ; from equ-ition (1 )
it is evident

that our value of 2 is in reality the value of ;2 (1 -2;)
at

least if we omit the powers of z liigher than the first,

and therefore we must subtract from the value given by
our formula, its square divided by 21 million, which is in

round numbers the value of r in feet. 'J'he niercury
stands higher than it ouglit to do in the upper baro-

meter lor the same reason, and it may be corrected in

the logarithmic formulas by adding to log (A) 2 Log.

{l+z), but neither of tiiese are of much importance.
The value of N as determined by Ramond is 60148,
which in latitude 53 becomes60076, that ofs= 1 , that

of ^ = 1 : the formula becomes with these values

480

;2=:6007G|l4-I:lxlL(A)~-L(a,-L(l+?Zl^|
I 960 J I

^

^9741 J
As 6 k very small, its //. /. is quam prox. the first term
of its developement, and its L= 0.43429, &c. X

tf, or

9741
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(0 tf) y^ 0.000044.58. As the computation must be

made by Logarithms, we give a logarithmic formula

L(z) = 1.7964298+L(896+T+0

+ L |l (A L ()-,- (00) X 0.00004458
|

in which the temperatures are the distances from Fah-

renheit's Zero. T and / must be observed by a ther-

mometer separate from the barometer, and by one

inclosed in the mounting of the instrument.

As a specimen of the mode of making the compu-
tation we give the measurement of one of the highest

hills in Wicklow, made by Mr. Griffith in 1812 ; the

lower station was known to be 590 feet above the sea.

Lower Bar. 29.075. 58 63.5

Upper Bar. 26.53. 44.5 44.5

13.5IZ0 Q 108.0=T-|-^
896

1004

Log A = 1.4635197

Log a = 1.4237372

0.0397825

0.0006021 = Log (13.5X.00004558)

.0391804 Approx. H. in fathoms = 392.

Its Log = 2.5930644 -j-

Log(1004)= 3.0017337 +
1.7964298 Constant Log.

3.3912279 whose number is

2461.7 feet, and adding
590.

3051,7 above the sea.
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CHAPTER XIX.

On Pneumatic Instruments*

121. The variety of instruments which act by means

of the pressure of the Atmosphere, or the elasticity of it

is very great, and therefore we can only describe those

which are most familiar, and those which from their im-

portant practical applications should be universally

known.

In the first place may be mentioned what is empha-

tically called the Pneumatic Apparatus, by means of

which Chemists are able to measure, divide, and transfer

elastic fluids. If a glass jar be filled with water, and

covered by a plate, of any material it may be inverted

and placed with its mouth downwards in a cistern of

water where it rests on a shelf about an inch below the

surface ; the water continues suspended in the jar by

Atmospheric pressure after the plate is removed. If now

a tube conveying air or any other Gas be brought with

its extremity under the orifice of the jar, the Gas must

rise in bubbles through the water, which are collected in

the jar ;
when it is filled with Gas, it may be shifted to

another part of the shelf, taking care never to raise its

mouth above the water, and a fresh one may be substi-

tuted in its place, until the requisite quantity of Gas is

obtained or the materials which generate it are ex-

hausted. Gases may also be transferred from one jar to

another ; placing the mouth of that which contains the

Gas below the other and inclining it, the water enters

and displaces the Gas, which is caught in its ascent.
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This apparatus can only be used where the Gases are

not dissolved by water, or where the presence of its

vapour is not injurious ; in other cases, the cistern is filled

with Mercury and the whole apparatus is constructed on

a much smaller scale. Where a Gas is to be obtained

free from water, it is confined over mercury in contact

with some body whose attraction for moisture is power-

ful, as quicklime, Potash, &c. which after a short time

absorbs the vapour. When the volume of any Gas is

to be measured, it is received in a
j;ir previously gra-

duated to cubic inches and their fractions, and the true

bulk is obtained by a correction for the difference of

level of the water or mercury, in the jar and cistern.

In fact the case is precisely the same as in sect. 113

and M the true bulk = M' X ^1a, A being for

T~

mercury the standard altitude, and for water the same

multiplied by 13,6.

122. Where large quantities of Gases are to be used

the Pneumatic Cistern becomes insufficient and Gaso-

meters are employed ; they difl'er in form, but are for

the most part the same as that shewn in fig 14-8, AB is

the section of a Tank or vessel filled with water, a bell

CHI which nearly fills it is inverted in it, and a tube

D rises through its bottom connected underneath with

E and F. The Gas is introduced through F and it

rises through D ; as the bell is counterpoised by means

which are not in the figure as they can easily be imagined,

it is forced upwards by the Gas until it is filled. The tube

F is then closed, and the Gas is preserved for use ; when

wanted, it is forced through the pipe E by the application

of a slight pressure to the bell.

123. We have seen that a vessel full of air may be

plunged in water with its mouth downwards without that



A SYSTEM OF MECHANICS, &C. 207

fluid rising in it; this principle is made practically usefulon

a large scale in iheDivwg Bell, which has become of the

highest importance in Hydraulic Architecture. This is

a large iron vessel capable of holding about 150 cubic

feet, strong glass windows are framed in its top, and seats

disposed round it on which three or more workmen can

sit ; the machine is suspended by a strong chain attached

to its summit, and is gradually lowered into the deep.

As the bell descends the water condenses the interior air,

so that at the depth of 34- feet the bell would be half full

of water, but a flexible tube is connected with an open-

. ing on its top through which fresh air is forced by any

adequate means, so that it is kept full of it. The divers

might be expected to suffer much from the augmented

pressure, for at 34 feet, an additional pressure equal to

that of the atmosphere is applied ; at double the depth
twice as much, and as the pressure of the atmosphere
on a square foot is about a ton, it follows that a middle

sized man is loaded with 15 additional tons at that depth
which might be expected to crush him to pieces. But

no such effect is observed, and in fact as the whole body
is penetrated by fluids to which the external pressure is

communicated by the lungs, there is exerted from

within outwards an equal pressure, and the diver

suffers only when he descends with too great ra-

pidity.

124. As air is heavy, a body immersed in it has its

weight diminished by the weight of the air which it

displaces; and if this exceed the weight of the body,
it must ascend. Such is the principle of air balloons,

an invention which at first excited the utmost en-

thusiasm, and is never seen without admiration though
it has produced no practical results : it consists of a thin

bag, as light as is consistent with the retaining the m-
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cluded gases which being rarer than air escape yet more

easily; the aerial voyager, is suspended from this, and

possesses the power of regulating his elevation, by either

throwing out ballast, or by permitting some of the Gas

to escape through a valve in the balloon, which dimi-

nishes its bulk and of course its specific levity. The
first balloons were filled with air expanded by passing

through a fire placed beside the car, but this perilous

mode was soon abandoned ; a species of Gas named by
Chemists Hydrogene is now commonly used, its Specific

Gravity is only ^^ that of air when pure, and as com-

monly obtained ^V which but for the expense of the pro-

cess is far the best substance for this species of navi-

gation. The gas obtained by distilling some vegetables

at a red heat is of f the Specific Gravity of air, and

may be substituted for Hydrogene in many cases. This

art has been chiefly cultivated by the French, who have

applied it to Military Reconnoitring, to Surveying and

in a few instances to Physical Researches : Gay Lussac,

one of their most accomplished Philosophers, has

shewn that the air retains the chemical constitution

which it has below at the height of 24000 feet, the

greatest elevation which man has ever attained.

125. Most of the machines used in elevating water act

by atmospheric pressure ; we can only mention one or

two, as the proper consideration of them includes a

reference to Hydrodynamics. The Siphon or Crane

is well known, it is merely a bent tube ABC fig 149,

which is filled with water and inverted in the cistern D :

in this state the weight of the column EB counteracts

that of BC, that of the column below C is in equi-

librium with the water in the cistern, and the por-
tion AE remains unopposed, the fluid in BA will there-

fore preponderate and descend ; but it cannot do this
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unless the column separates at B, or the fluid in the

shorter leg follows it
;
and as the separation of the column

is prevented by atmospheric pressure, a continual current

must be maintained in the siphon as long as the surface

of the fluid in the cistern is above A. It is obvious that

the instrument is of no use where its bend is more than

34' feet above the reservoir, for in that case the column

would separate ; and it may be observed that it cannot

be effectual even near this height, for all water contains

air dissolved, which escapes from it when the pressure
of the atmosphere is removed, and therefore the bend

of the Siphon would soon be occupied by air only.

126. The sucking pump consists of a working barrel

AB fig. 150, to which is attached the suction pipe C
of narrower bore, at the top of this is placed the fixed

valve V opening upwards, but preventing any return ;

the working barrel is fitted with a Piston or cylinder

accurately fitted to its capacity so that no fluid can pass

betNveen them ; in the Piston is another valve U similar to

V. To understand the action of the pump, suppose the

Piston at the bottom of the barrel, and the suction pipe
full of air, on drawing up the Piston by the pump-rod,
the capacity of the barrel below it, is enlarged, and there-

fore the air in it rarified, but as the air in C is as dense

as the external air, its pressure on the lower surface of

V must exceed that exerted on the upper surface of it

by the rarified air ; the valve will therefore be opened
and the air in C also rarified. In this state its pressure

on the surface of the water in it is less than that of the

atmosphere, which latter will therefore force the water

up in the suction pipe, to some Iieight : now let the Pis-

ton be thrust down again, it condenses the air below it,

and as the valve V prevents it from escaping into the

suction pipe, it opens the valve U and escapes into the

EE
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atmosphere. On raising the piston again the same

process is repeated, and the water rises higher in the

suction pipe, till after a few strokes it rises above V so

that the piston dips into it in its descent ;
on its next

ascent the water follows it and fills all the barrel below

it, and when it is again thrust down, the water forces U
open and gets above the piston ; it may thus be raised to

any height required.

]27. The forcing pump is shewn in fig. 151. AB is

the barrel, C the suction pipe, V the valve ; the piston

is solid, but the valve U is placed at the side in a tube

S ; the play of the pump is the same as in that already

described, with this exception, that when the piston is

forced down, the air or water below it passes through
the tube S, which may be carried to any height and

deliver the water there. The stream of water is obvi-

ously intermitting, for there is no force impelling it

during the return of the piston, but this is remedied by
an ingenious contrivance : there is an interruption in

the tube X which is surrunded by an air vessel T, and

in working the pump as soon as the water has risen

above Z it compresses the air above it, and this, by its

elasticity, forces the water up through Z. The orifice

of Z is narrower than that of X, and therefore the

quantity of water introduced during the descent of the

piston will supply its discharge for the whole time of

the stroke, producing a constant stream: the utility of

this will be more fully appreciated when we treat of

Dynamics, (a)

128. The mechanism of the sucking pump is little

different from that of the air pump ; this instrument

consists of a brass barrel, fitted with a piston provided

with a valve opening upwards ;
at its bottom is another

valve also opening upwards, called the Receiver valve.
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as from it a tube proceeds to the vessel to be exhausted.

These are in general glass vessels, whose orifice is

ground perfectly flat, so that when smeared with oily

matter, and laid on the pump plate, over the opening

of the tube already described, they apply exactly: the

piston rod is formed into a rack which is moved by a

toothed wheel and winch. Suppose that of the com-

mencement of its action the piston is at the bottom of

the barrel ; on drawing it up, the air belovy it is rari-

fied, and therefore presses on the upper surface of the

receiver-valve with less force than that exerted against

"its lower surface by the air in the tube and receiver,

which is of its natural density j the valve therefore

opens, and the air of the receiver diffuses itself beneath

the piston. On the descent of the piston the receiver-

valve closes and prevents the air from returning to the

receiver; it is therefore condensed beneath the piston,

and when its density exceeds that of the external air, it

opens the piston-valve and passes off to the atmosphere.

In the second stroke, the barrel is again filled with di-

lated air from the receiver, and this is again expelled

through the piston-valve ; and thus we may continue

abstracting air till its density is as much less than that

of the external air, as the space between the piston and

receiver valve when it is down, is to the space between

them when it is up ;
as in that case, when the piston is

down, the air below it not being denser than the exter-

nal air cannot open the piston valve, and the exhaustion

must stop.

It is very laborious to work such a pump, for there is

a pressure acting downwards on the piston equal to the

difference of the atmospheric pressure,, and the elasti-

city of the air in the receiver, which latter, towards the

end of an exhaustion, may be neglected. Suppose the
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barrel two inches bore, and as the mean pressure of the

atmosphere is 1 1 pounds on every circular inch, the ex-

perimenter must work against 44 pounds. . To obviate

this Dr. Hook added another barrel similar to the first,

whose piston had a reciprocal motion to that of the

other J in this arrangement, the pressure on the two

pistons act in opposition to each other, and little re-

mains unbalanced except just at the end of the stroke:

it is obvious that this also doubles the rapidity of ex-

haustion.

129. To know the density of the air in the receiver

the pump is provided with Gages. The barometer gage
is a tube of glass 30 inches long, whose lower extremity

dips in a cup of mercury, and its upper communicates

with the receiver. If the pump be worked the mercury
will rise in the tube, and its deficiency from the standard

altitude is to this latter as the density of the included ^ir

is to that of the external ; and if the pump could make
a perfect vacuum, it would stand as high as in the ba-

rometer. In small pumps the length of this gage is an

inconvenience, and it is replaced by another which is

merely a Torricellian tube, placed under a second re-

ceiver connected with the first; as the density of the air

is diminished, its pressure on the mercury in the cis-

tern is lessened, and therefore the column supported is

less than the standard altitude, and its height measures

the density. This gage seldom exceeds a few inches in

length, for its indications are seldom required till to-

wards the end of the exhaustion ; and it does not bemn
to fall until the density of the air is less than that which

is equivalent to a column of the length of the gage.
The sum of the heights in these two gages is equal to

the standard altitude, and the heights in either, after

successive strokes, are in a geometrical progression. (6)
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130. Many entertaining and instructive experiments

are performed by means of the air-pump, of which we

will enumerate a few, serving to exemplify the proposi-

tions which have been proved concernino the weight and

elasticity of the air. If a piston fitted to a barrel, whose

bottom is closed, be drawn up, a resistance is felt, and

if the rod be let go, the piston descends to the bottom ;

this experiment, as we shall see leads to important

practical results, and, in the mean time, it is evident,

that as the piston is drawn up against the pressure of

the atmosphere, this must be the cause of the resistance ;

and if the instrument be hung by the piston rod in the

receiver of an air-pump, on exhausting, the barrel de-

scends by its own weight, and on admitting the air, it is

forced back on the piston. Another experiment, which

makes the pressure of the air manifest, is known by the

name of the Magdeburg Hemispheres, from the resi-

dence of Guericke the inventor of the air-pump : two

hemispheres are ground so as to fit accurately at their

edges, and being applied together are exhausted ; in

this state they are kept united by the atmospheric pres-

sure, and resist great efforts to separate them, but fall

asunder on admitting the air into them.

131. But the experiment which most decisively

proves the weight of air, is the actual determination of

its specific gravity : for this purpose a flask of thin glass

is provided, whose orihte is fitted with an accurate stop-

cock ; it is counterpoised in a good balance, noting the

altitude of tlie barometer and thermometer ; the stop-

cock is then screwed on the plate of an air-pump, and

when the exhaustion is efttcted it is closed, and the

flask replaced in the balance, the difference of weight is

the weight of the air which has been abstracted ; now

immersing the stop-cock in pure water, open it, and
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the external pressure will force the water into the flask,

so as nearly to fill it ; close the stop-cock, having im-

mersed the flask till the internal and external surfaces

of the water are on a level, and weigh the flask a se-

cond time, the quotient of the first difference of weight

by the second is the specific gravity of air. If after

exhausting the air the flask be screwed on a receiver

containing any other gas, on opening the stop-cock it

filled with that gas, and by weighing it again we obtain

the relative weight of the air gas and air.

1S2. In this experiment many precautions must be

used to obtain a correct result, which cannot be intro-

duced here j see Biot. Traite de Physique : in particular,

as the specific gravity of air varies with the barometer's

height, this should be registered, and if it varies during

the experiment, a due correction should be made ac-

cording to the rule given in art. 113: the thermometer

is of equal importance ; and above all, care must be

taken that the air or gas examined be perfectly dry. It

is difficult to obtain a balance strong enough to bear the

weight of the flask, which must be large and heavy in

order to bear the exhaustion ; but this is obviated by

weighing the flask in watery allowing it to be very little

heavier than this fluid ; thus its weight is taken off* the

balance.

1 32. Another remarkable experiment shews the com-

pressibility of water; a thermometer filled with this

fluid, and open at the top, is placed under the receiver,

and on exhausting the fluid rises, augmenting in bulk

,^^^^ by removing the pressure of the atmosphere; si-

milar results are obtained with other fluids.

133. As the air pump resembles the sucking pump,
the condenser is analogous to the forcing pump ; in its

simplest form it is a barrel filled with a solid piston and
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a valve at the bottom opening outwards ; when the pis-

ton is drawn up, it leaves a vacuum behind it till it passes

a hole in the barrel through which the air rushes in, it

is then forced down and when it passes the hole all the

air below it must be forced through the valve into any

vessel communicating with it. The degree of conden-

sation is measured by a gage consisting of a tube closed

at one end and containing air confined by a drop of

mercury ; this must be condensed equally with the air

of the vessel, andsince its bulk is inversely as its density,

the mercury must move towards the closed end. An

equal quantity of air being thrown in at every stroke

of the condenser, the densities after each stroke are a

series of arithmetical progressionals, and therefore the

distances ofthe mercury in the gage from its extremity

are Harmonicals.

134. If the piston Oi* tile condenser be furnished with

a valve opening downwards, the barrel is filled with air

during the ascent of the piston, and it is not as in the

common construction drawn up against the pressure of

the atmosphere : condensers of this kind are used on a

very large scale indeed to blow air into the large iron

furnaces, where they are called Blowing Cylinders; but

as the blast would be interrupted during the ascent of

the piston, some contrivance to equalize it is necessary.

Sometimes the cylinder delivers its air into another

similar one called the regulator, whose piston is loaded

with weights which force it into the furnace ; in this case

the piston of the regulator rises during the descent of

that of the blower, for it affords more air than can escape

through the orifice of the blast pipe, and the overplus
maintains the blast during its return. The air is some-

times thrown into a large vessel inverted in water which

it displaces, it therefore is pressed by a column of water

equal to the difference between the internal and external
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surfaces, and as, if the vessel is of much greater bulk

than the blowing cylinder, the internal surface is not

much depressed during the stroke, the blast will be

abundantly uniform. In the third mode the air is con-

densed into a very large air vessel from which it is

urged by its own elasticity: this on a small scale is used

to supply a blow pipe, and is found very conve-

nient.

135. We shall describe two instruments acting by

condensed air, the fountain of Heron, and the Air-gun :

the first of these has been applied to the draining of

mines and in particular situations may be extremely

useful. Its action may be easily understood by a re-

ference to fig.
152 ; supposing B nearly filled with water,

and A containing air condensed by the pressure of a

column of water in F, on opening the cock E, its elas-

ticity presses on the water in B and if the height of F
be sufficient forces it through D to the surface of the

earth where it is discharged : in this state B is full of

air and A of water ;
now let cocks in their bottoms be

opened and the cock I closed, the water of the mine will

again fill B and drive the air out of it into A, on open-

ing I and closing the others, water flows into A and

condenses the air in it and the engine is ready for a

second stroke. If the height of the tube D were 34 feet,

A must be twice the capacity of B, and the height of F

about 40 feet. Apparatus for opening the cocks without

the attendance of a workman may easily be devised,

and it is far superior to any pump work.

l3b". The air gun is well known, a strong vessel into

which 40 or 50 atmospheres are condensed, is connected

with a tube containing a bullet and furnished with a

gunlock ; this acts on a lever which opens for an instant

the valve of the air vessel and permits a portion of con-
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densedairto escape; it expands in the barrel, and press-

ing on the bullet drives it before it with considerable

velocity : the same charge of condensed air is sufficient

for discharging several balls. It is merely a toy, for its

report is sufficient to disturb game, and its range is much

less than that of fire-arms.

137. The operations of gunpowder are reducible to

the action of condensed gases: this substance on in-

flammation is almost totally changed into gnses occupying
300 times its bulk, and their elasticity is still further in-

creased by the intense heat attending the combustion.

The flame of gunpowder is at least as hot as melted iron,

as it fuses fragments of this metal, or its tc.nperature is

at least 3000 of Fahrenheit ; and as every degree of

Fahrenheit augments the elasticity of a gas ^j^, the

pressure exerted when a quantity of gunpowder is

fired in a space which it fills exactly is at least =: 300 x 7

times the pressure of the atmosphere, or about 2000

times. It is unnecessary to enlarge on its application to

war, or its more useful employment in rending the

firmest rocks, without which, some of the greatest

labours of modern times could not have been ex-

ecuted.

NOTES ON CHAP. XIX.

(a) In pumps where the lower valve is elevated

above the surface of the water in the reservoir, the in-

strument cannot deliver any unless it can be raised above

F F
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the valve; this is npt always the case, and it may be well

to investigate the circumstances of its failure. In the

first place suppose the fixed valve at the top of the

suction pipe, and call the space between it and the piston

at the bottom of its stroke s, that between them when it

,is at the top of the stroke S, a the height of the suction

pipe, and x the distance of the water, supposed to have

been elevated in the suction pipe, from the vajve. The

space 5 is full of air at the ordinary density whoso elastic

force is therefore' A the column of water equivalent to

atmospheric pressure ; this air when the piston is raised

expands from the bulk s to S, and its pressure on tlie

upper surface of the valve is as AX^, but the pressure

on its under surface is the force of the air in the

suction pipe, or A minus the elevated column of water:

if this latter force exceed the former by a difference equal

to that required to open the valve, which we call V, it

will open, and the air in the suction pipe being rarified

the water will rise higher. When this is barely the case

we have the equation

Y=x +A Axs = X a-j-A f^^\

If jrirO, or if the water barely rise to the upper valve,

V+a= A
{5f--}

and supposing V=0, or that no force is required to open
the valve, we have for the limit,

or the height of the suction pipe : 34 feet :: the length

of stroke: distance of piston, at its greatest elevation,

from the valve. If a be greater than this the valve

cannot open, and the water will never rise above it : and
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the same thing may happen if s be too great, for sup-

posing V = we have

a: = a A( Ss \

and the seqond member cannot become =0 if 5 be

greater than C A a \ (S s) ;
or in other words the

water cannot get above the valve. If the fixed valve be

at the bottom of the suction pipe, then there is below the

piston at the end of the stroke the bulk s+ex of air of

the external density, e being the area of the suction

pipe ;
this is expanded into the bulk S-]-ex and its elas-

ticity becomes A Cs-i-6'jr 1 to this must be added the

pressure of the elevated column of water a x, in op-

position to these forces is the pressure of the atmosphere
A and the difference of these pressures opens the valve j

call it ^ and we have the equation

1/
= A ( s-x-ej:^ \ -\- a or^ A or

"= A (^^- S) + ^ S + jaeS) a:ejc^

This is the equation of a conic section which may cut

the axis of x in two points, between which the value ofy
is negative ; to find them put j/

== and solve the quadra-
tic which gives

^ = ae-'S v/(gg+8)
^ 4gA rSs'^

2 e

when therefore the water has reached a distance from the

top of the suction pipe equal to the greater of these

values it can rise no higher by working the pump, but

if water be poured into the punpp till it rise above the

less value it will again rise.

fbj Supposing the resistance of the receiver valve of
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the Airpump insignificant, let it be proposed to deter-

mine the law of the successive diminution of density at

each stroke of the pump. As before let S be the capa-

city of the Barrel when the Piston is raised, and s when

it is thrust down. In this last case there remains in

the barrel the bulk s of air of the density d, d being the

elasticity required to open the Piston valve which is

about -^^i then if D be the density of the air in the re-

ceiver at the beginning of the stroke, RD is the quan-

tity contained in the receiver, and sd that in the barrel ;

this air is at the end of the stroke diffused through the

space R -j- S and hence

D' = RD + ds and therefore
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R4-SI R+S ii 5(R+S)

~
{K+sri s r

Subtracting this from unity we have

\ S /(R-t-Sr s

and if

s = 0, D = R" .

(R+S)
It is obvious that D" can never be less than ds, and

"s

this is evident from other principles, for the ex-

haustion must stop whenever the bulk S of the dilated

air being condensed into the space s does not exceed

the density d

CHAPTER XX.

138. The elasticity of vapours differs from that of

gases in its relations to pressure and heat, and from the

numerous practical applications of this part of Mecha-
nical Philosophy which have been made of late years,
it merits considerable attention. The vapour of water

is best known, and as we took air as an example of

gas, so we will study steam to learn the habitudes of

vapours.

If a Torricellian tube be nearly filled with mercury,
and then entirely with pure v^rater, on inverting it



222 A SrSTEM OF MECHANICS, c^C.

in mercury we obtain a barometer differing from the

common one in this, that the water which floats on

the surface of the mercury fills the upper part of the

tube with its vapour, whose elasticity deprjesses the mer-

cury below the standard altitude, as in the third expe-
riment of art. il3. When the thermometer is at 65^

the depression is about 0,6 of an inch, or nearly ^\y
of

the elastic force of air.

If the vessel containing the stagnant mercury be a

deep and narrow jar, we can without further apparatus

investigate the effects of a variation of pressures : let

the tube, remaining vertical, be immersed as deep as

possible, then on raising it, as the internal surface of

the mercury remains at a given height above the ex-

ternal, the space above it must be enlarged -,
were it

occupied by air, the elasticity of that fluid would be

diminished by this operation, and the depression below

the standard altitude would be less than before, but

with vapour this is not observed. On the contrary, the

depression remains unchanged, and the reason is ob-

vious, more of the water is converted into vapour of the

same force, or as it is sometimes called. Tension ; and as

long as any water remains, this is invariable: when all

the water is vaporized, then any further enlargement of

the bulk of the vapour diminishes its elasticity according
to the law observed by gases.

Similar results are obtained by augmenting the pres-

sure; if under the above circumstances of temperature
we introduce into a Torricellian vacuum a portion of

water, not sufficient to fill it with vapour of the tension

0,6, it is completely volatilized, producing a depression

less than 0,6. On condensing the vapour by plunging
the tube deeper in the cistern, the depression augments;
but when it becomes 0,6, it is stationary ; and on fur-
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ther condensing the vapour, part of it returns to the

state of water, until at length the water comes in contact

with the top of the tube.

If this experiment be well understood, it is evident

from it that the elastic force of vapour can never exceed

its tension, and that if a space saturated with it be di-

minished, it is not condensed, part becoming liquid, and
the remainder continuing of the same density as before ;

and on the other hand, the tension of the vapour is in-

dependant of the quantity of the liquid forming it, pro-
vided that there be enough to saturate the space.

139. From this it follows that at 65, a pressure of

. 6 exerted by its vapour on the surface of water pre-
vents any further evaporation ; and it might be,expected
that the same effect would be produced by air of the same

elasticity, but it is found that the same quantities of va-

pour can exist in a space filled with dry air as in a

vacuum, and that it does not return to the state of water

even though more air be condensed into the vessel.

This fact, though not to be inferred a priori, is, however,

conformable to what we know of the nature of vapori-
zation

; the particles of water have a strong mutual

attraction of cohesion, and when vaporized they arc

kept by some other force just beyond its limit : if more

vapour be added to a space already saturated, the aque-
ous particles being nearer to each other, come within

the limits of their cohesion ; but as there is no analogous
action between the particles of vapour and air, they are

not approximated by the addition of air.

Though the quantity of vapour in a given space is not

affected by the presence of air, the rate of evaporation is

much retarded by it : when water is introduced into a

Torricellian vacuum, the quantity of vapour required
to produce the tension . 6 is developed in an instant.
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but in an equal space filled with air, although the va-

pour does at last add its tension to the Elasticity of the

air, yet several minutes elapse before the space is satu-

rated with it. The Evaporation is much accelerated by

bringing successive portions of the air in contact with

the fluid, for the stratum of air resting on it becomes

saturated and the vapour in it prevents the developement

of more; but by agitation the vapour is readily conveyed

through the whole space. Facts illustrating this are

numerous ; in furnaces where a rapid current of air

passes over the surface of a melted metal it is seen to

smoke, and much of it is thus dispersed ; even silver,

though absolutely jlr^'t:/
when heated in a close vessel, is

o volatile under these circumstances that great loss may
be sustained in the process of refining ; Sulphur, which

cannot be distilled in tlie ordinary apparatus, sublimes

readily during the roasting of ores for the same reason ;

and the vapour of water itself carries with it other sub-

stances less volatile.

140. The tension of Water is diminished by dissolv-

ing in it other substances having a strong attraction for

it ; and these bodies also diminish the tension of its va-

pour when brought in contact with it in their solid state.

Thus, if the inside of the receiver of an air pump be

moistened with water, on exhausting it, the barometer

gage will not come nearer the Standard altitude than

. 6 as the vapour cannot be pumped out, being con-

densed in the Barrel at each return of the Piston : let

it now be made to communicate with a vessel previously
exhausted lo the same degree containing dry Potash,

Muriate of Lime, or strong Sulphuric Acid, this instantly

absorbs the vapour, and in a few seconds the capacity of

the receiver is dried, and the Gage rises, if the pump be

good within, perhaps . 01 of the barometer ; we shall

soon see the use which has been made of this.
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141. The effects of a change of temperature on the

tension of vapour are also different from those observed

in Gases ; they may be observed by the Torricellian tube,

surrounding it with a vessel whose bottom is perforated

to allow it a passage, and which is filled with water of

the requisite temperature. By this means it is found that

at 32*^ the tension is . 2 and at 212, 30 . being equal

to the pressure of the atmosphere ; if the temperature

of the earth were 212 it is obvious that water could not

exist as a liquid, and that the pressure of the atmosphere

would be increased, by its evaporation until either it

were all dissipated or the augmented pressure became

sufficient to prevent any further formation of vapour, in

which case it wonld be doubled. The phasnomena of

boiling are occasioned by the rapid developement of va-

pour, which having the same elasticity as air appears

as a gas and rises in bubbles through the water, and

since this tension is less when the barometer is low, it

follows that water boils at a lower temperature then

than when the atmospheric pressure is considerable.

The difference is very sensible, so that the thermometer

has been proposed by some as a means of measuring the

heights of mountains, but it can scarcely give any thing

but a rude approximation; in graduating these instru-

ments, however, attention should be paid to the state of

the barometer, and if it be not at a mean state, a cor-

rection should be applied which is can easily be investi-

gated from the principle here laid down, or may be made

immediately by reference to a table of the tension of va-

pour.

142. By the observations of Dalton it appears that

. if the temperatures be in arithmetical progression, the

Tensions are in Geometrical nearly, the multipher by
which each term is formed from the preceding becoming

GG
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constantly less ; the deviation from this law, is not, how-

ever, very considerable. The change of elasticity pro-
duced in Watery vapour by ]80<^ is 150 times its ten-

sion at S2, while that of a Gas becomes 1 . 37 from I

by tha same change of temperature : this enormous dif-

ference is, however, only found where there is unvapo-
rised water present, which assumes the elastic state as

the heat is raised ; the vapour itself follows the law of

Gasses as is evident from the fact that moist and dry air

expand equally by heat.

143, Dalton's law applies to the vapours of other

fluids as far as they have been tried, and he has disco-

vered a curious circumstance about them which enables

us to determine their tension at a given temperature from

knowifig thatof water J it is this, that the vapours of dif-

ferent fluids have the same tension at equal distances of

the thermometric scale from their boiling points. For ex-

ample, ether boils at i02*>, let it be required to find its

tension at 62*'*, or 40 below its boiling point ;
it is the

same as that of water at 212 40 = 172 "and by re-

ferring to a table we find that the tension of water at

172 is 12 . 5 which agrees with the observed tension

of either at that temperature.

144. If a vessel containing water be placed on the

fire, a thermometer immersed in it shews that it is re-

ceiving heat ; the tension of its vapour increases, and it

slowly evaporates, till its temperature arrives at 212^;

it then boils, forming steam, which, if the orifice of the

vessel be narrow, rushes out with a forcible blast ; after

this the thermometer continues stationary till the water

is vaporized. During this time the vessel continues

to receive heat from the fire, yet the water does not be-

come hotter; the heat must therefore be carried off by
the steam : if the thermometer be held in the current of

steam, it still indicates 212 as when in the water, there-
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fore, the steam tliough at the same temperature as the

water of which it is formed, contains much more heat.

Dr. Black placed a vessel containing water at the tem-

perature of the atmosphere on a plate of red hot iron ;

in five minutes the water boiled, and in twenty-five mi-

nutes more it was all evaporated ; during that time it

received heat uniformly, and since it was heated 180^

in the first five minutes, during the rest of the time it

received 5 X 180 none of which vvas apparent. If the

steam from a pint of water be passed into five pints o*

water at 32 , in which case it returns into the state of

water, it should heat it to 212 according to the experi-

ment; and this is found to be the case if allowance be

made for the cooling action of the atmosphere ; we may
therefore conclude that in the formation of steam a quan-

tity of heat disappears or becomes Latent, making its

appearance again when the steam is condensed ; and if

it be true of steam, it must hold with respect to ail other

vapours.

145. Since Heat disappears by Evaporation, we may
cool any substance by placing it in contact with a fluid

undergoing that process; thus, if the bulb of a thermo-

meter be covered with lint and moistened with Ether,

this volatile liquid will make it sink 50 below the tem-

perature of the atmosphere, and if a small tube filled

with water be used instead of the thermometer, the

water may be frozen. In hot climates the principle is

applied to cool water ; it is exposed to the wind in porous
earthen vessels, part of it evaporates from the external

surface and the rest is cooled 10 or i2 degrees. This

process succeeds much better in the receiver of the air

pump, for it has already been shewn that a fluid evapo-
rates faster in vacuo, but it ceases to act as soon as the

capacity of the receiver is saturated with vapour : its

activity may be very much increased by including with
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it some body strongly attractive of moisture. As the Ex-

periment is usually performed, a shallow dish containing

strong sulphuric acid is placed on the Pump-plate, above

it is fixed a cup of unglazed porcelain filled with water,

they are covered with a receiver, and on exhausting the

Water congeals in a few minutes into solid ice. This

mode of evaporation at the atmospheric temperature is

susceptible of many important applications in the arts,

and the vacuum can easily be obtained without the Air-

pump by the action of steam: thus if it be required to

distil a fluid which cannot be heated to 212 without

alteration, let a strong current ofsteam be passed through
the distillatory apparatus till it has expelled all the air,

and its aperture be then closed; on applying heat to

the vessel containing the fluid, and surrounding the Re-

ceiver with cold water or snow, the distillation proceeds

as rapidly at 70*^ as at 212 under common circum-

stances.

146. The application of steam to produce a vacuum

leads us to consider the construction of the Steam En-

gine, that splendid result, of inventive talent and sci-

entific attainment, the discovery of which is an ^ra
in the History of mankind. It is not within the limits

of this treatise to give a complete developement of its

construction : but without entering into details, we will

give a concise description of its action, which will

enable any person who examines an Engine to under-

stand its operation.

The most important part of the Steam Engine in its

common form, is the Cylinder which is accurately bored,

and fitted with a Piston packed so as to be Steam tight,

though it slides freely ; the Piston-rod is turned truly

cylindrical and passes through a Stuffing box in the

cover of the Cylinder : this is a tube surrounding the

Rod in which a quantity of soft rope soaked in oil is
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compressed by screws, so that neither air nor steam can

pass round it. From the cover of the cj'linder a tube

passes to the Boiler so that the steam constantly presses

on the upper surface of the piston ; another steam pipe
communicates with the bottom of the cylinder, furnished

with a valve by which the steam can be shut off when

necessary. Another tube leads from the bottom of the

cylinder to the Condenser, also furnished with a valve;

this is a vessel completely immersed in a cistern of cold

water and provided with apertures and valves, which

shall be described irinnediateiy. The Piston Rod is at-

tached liy the Parallel motion of Art. 35, to one extremity

of the Working- Beam, a massive Lever, whose other

Arm moves a system of Pumps, for which work this

form of the Engine is generally used, or any other Ma-

chinery.

To understand the action of the Engine, suppose the

Piston at the top of the Cylinder, and the valve leading
to the Condenser, called the Eduction valve, open ; on

opening the Steam valve, the steam rushes into the

cylinder, and from it into the Condenser, driving before

it the air contained in these vessels through a valve in

the condenser which opens outwards. When all the air

is expelled, shut the steam valve and open acock in the

bottom of the condenser, a small portiun of water en-

ters and condenses the steam with which it comes in

contact, the atmospheric pressure forces more water in,

and in a few seconds, all the steam in the Condenser is

reduced to a Tension of less than 3.0: the steam now
rushes into the Condenser from the Cylinder, and it also

is condensed. But the steam above the Piston, which

we suppose equal to the Elasticity of air, presses it down-

wards, with a force of 10 pounds on every circular inch of

its area ; all this while the steam was pressing below, pro-
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duced no effect as it exerted an equal upward pressure;

but this is destroyed by the condensation, and the

Piston descends by the downward Pressure, dragging
down that arm of the working beam to which it is at-

tached, and of course lifting the pump-rod. When
the Piston has arrived at the bottom of the cyhnder, a

pin projecting from some of the moving parts, strikes

the levers of the valves, shutting the Eduction and

opening the steam valve; the Steam fills the space

below the piston, and the equilibrium of pressure being

thus re-established, the Piston is drawn up by the pre-

ponderance of the Pump- rods. When it arrives at the

top of the Cylinder, a second Pin opens the Eduction

valve and closes the other, which occasions the steam

below the piston to be again condensed, and produces a

second stroke. Thus the machine works itself, being

active only in the descent of the Piston, and inert dur-

ing its ascent.

Tiie water arising from the condensed steam, and

the Air evolved from the Injection water (for all water

contains air which escapes from it when atmospheric

pressure is removed) would soon fill the Condenser : to

obviate this, a large Pump called the Airpump, is con-

nected with the condenser and wrought by the Working
beam ; this removes both the air and the water at every

stroke : the latter being heated by the steam is taken by
a feeding pump and a portion of it forced into the boiler

to supply the j)lace of the water which is converted into

steam. The Double Stroke Engine differs from that

just described in this, that both the ascent and descent

of the Piston are effective ; in it the top and bottom

are alternately made to communicate with the boiler

and Condenser, so that when the steam presses on the

upper surface of the Piston, there is a vacuum below it,

and vice versa.
,
This is never used for pumping, and
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when employed to produce Rotatory motion it is neces-

sary to equalize its action by a Fly : this is a Massive

Wheel of large dimensions fixed on the axis of the

Crank, which is driven by a rod from the Working
Beam ; it revolves with great velocity and has such a

quantity of motion that its rotation is scarcely affected

by a slight intermission in the action of the Piston.

147. The quantity of work performed by a steam en-

gine, and the value of its action, belong to Dynamicsj
and we will at present only mention some of the con-

trivances and adjustments which are remarkable in it.

Its action is nearly independent of the attention of the

workmen employed about it, and it contains in itself a

provision for almost every accident which can occur.

The Boiler requires several of these ; in order that the

water in it may be always at the proper height, it is fur-

nished with a valve connected with a float, whose weight,

as long as the water is sufficiently deep, is supported by
it ; but as its surface sinks, the float draws down the

valve, and allows a supply to enter. A similar contriv-

ance regulates the vehemence of the fire, by raising or

lowering a damper in the flue of the furnace ; but the

most important appendage of the boiler is the Safety-

valve : this is a frustum of a cone, ground to fit a ring

let into the iron of the boiler, and loaded with a weight

proportional to the density of steam required j if the

steam should attain a greater elastic force, the valve is

raised, and the steam escapes. The lesser degrees of

density are indicated by a Siphon-gage, the steam

pressing on the mercury in one leg, and that in the

other carrying a float which shews on a scale of inches

the excess of pressure above the atmosphere : another

gage, like the Barometer ^age of the air-pump, is con-

nected with the condenser, and the sum of the heights



^32 A SYSTEM OF MECHANICS, &C.

of the two gages is the effective pressure on the piston,

for the elastic force of tlie steam which acts on one side

is A-{-h, A being the atmospheric pressure, and h the

height of the boiler-gage; the pressure on the other

side of the piston is A H, and the effective pressure is

their difference A-f,H. By augmenting the fire, and

nc reasing the load on the safety valve, we increase h,

and therefore the quantity of work which the engine
can perform ; but this is very hazardous, and there are

recorded many fatal accidents occasioned by the bursting

of boilers when their valves are overloaded. Where a

considerable portion of the resistance is suddenly re-

moved, the effect must be, that the engine will work

with increased velocity, to the great detriment of the

machinery, and the unnecessary waste of steam ; for

this reason it has a Governor, consisting of two heavy

balls, attached to rods hinged together at their upper ex-

tremities ; when the engine is at rest the balls are in

contact, but when it moves, they are whirled round a

vertical axis and separated by their centrifugal force.

The increase of the angle under the rods moves a lever

connected with a valve in the steam tube so as to di-

minish the opening left by it; this lessens the quan-

tity of steam admitted into the cylinder, and with it

the velocity of the engine ; ifon the other hand the en-

gine is overloaded, the velocity is diminished, and the

balls approaching each other, admit more steam.

HS. This kind of steam engine is named after its

inventors, Watt and Boulton, but it is limited in its

application by the large quantity of cold water required

for its condenser, which cannot in every situation be

obtained : in that case, another kind is employed

though with some risk. In it the cylinder is much
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smaller, so as to be inclosed in the boiler ; and the

steam used is far denser than the atmosphere, some-

times so strong as to lift a safety valve loaded with 150

pounds on the square inch : the top and bottom of the

cylinder alternately communicate with the boiler and

with the atmosphere, and thus the piston is moved by
the difference between the pressures of the steam and at-

mosphere, or the quantity which we have called h. The

obvious objection to this mode of using steam, is the

danger of explosion ; and every boiler for producing

High Pressure steam should be carefully and frequently

proved by filling it with water, and producing pressure

by a small pump till the safety valve is raised, though

loaded with a weight considerably greater than the ut-

most required pressure of the steam
;

if it yield, it breaks

without explosion, and if it be proof it may be depended

on for some time.

149. It is found in practice, that the engine last de-

scribed performs, with a given quantity of coals, as much

work as one of Watt and Boulton's nearly, although

as much of the force of the steam as is equal to the

pressure of the atmosphere is lost ; from this has arisen

an improvement, which consists in combining the two

engines together. In Wolfe's engine there are two cy-

linders, one like that of the High Pressure or Treve-

thick's, ihe other larger and provided with a condenser:

the steam is first admitted into the smaller cylinder, and

when it has done its office there, instead of escaping
into the atmosphere, it passes into the larger cylinder,

where it expands so as to be little denser than the at-

mosphere. Suppose the steam of four times the atmos-

pheric pressure, or = 4- A, and conceive it acting above

the piston of the small cylinder, the effective pressure

HH
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may be stated as 3 A on the small piston, supposing the

steam below it to expand into four times its bulk in the

large cylinder. The expanded steam also presses on the

large piston with an elasticity
= A, for the vacuum be-

low it, made by the condenser, is nearly perfect; and

since these two parts of the force are nearly equal, it

follows that Wolfe's engine performs twice the work of

the other; but a more full discussion belongs to the head

of Hydrodynamics.
150. The advantage of the steam engine over the

other agents employed to drive machinery, is enor-

mous ; there is scarcely any limit to the power which

it is capable of producing, and it is perfectly under our

controul. By its aid, we are enabled to choose for our

manufacturing establishments the most advantageous si-

tuations, without being restricted by the want of movers,

and can undertake tasks, in appearance insurmountable

by human eiforts. But for the steam engine, many of

our most valuable mines must have been abandoned,

from the impossibility of drawing off the water which

inundates them ; no depth is beyond its reach ; and in

some instances, a mass of water like a river is raised

through a space greater than 1200 feet. It draws the

heaviest carriages; it impels the vessel with speed inde-

pendent of the wind ; and it excavates the bottom of the

sea to create harbours. It is the most powerful, the

most sublime of Mechanical inventions; and is alone

sufficient to transmit to posterity the fame ofour country,

had it no other claim on the gratitude of mankind.
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PART II.

DYNAMICS,

The Investigations of Dynamics are attended with

more difficulty than those in which we have hitherto

been engaged ; in Statics our conclusions can always be

derived by a simple analysis, whereas many Dynamical

problems can only be solved by approximation. In

addition to this, its Metaphysics are much more obscure,

and therefore more liable to objections ; and it is remark-

able that at the very origi^ of the science there arose

a dispute relative to the measure of moving force, in

which the science of Mathematics seemed to have lost

the chaiacter of certainty which had always till then been

deemed its essence. Even when we avoid such danger-

ous ground we are often embarrassed when it is neces-

sary to apply our reasoning to a Dynamical problem,

and a degree of subtlety and of analytical artifice is re-

quired, which is not readily acquired or comprehended.
Under these circumstances we are precluded from en-

tering into this part of our subject, even so fully as we
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did in the preceding, and must confine ourselves to

such theorems as are either very elementary, or from

their practical utility are worth remembering without

demonstrations.

2. The science of Dynamics rests on the Inertia of

matter, and on the connexion between Velocity and

Force : these have been put by Newton under the form

of aphorisms or Laws of Motion, and they have the ad-

vantage of being easily remembered. The first of them

states that " A Body perseveres in a state of Rest or of

Uniform Rectilinear Motion, till compelled by some

Force to change its state." This is evidently an assertion

of the Inertness of matter, and it is susceptible of a two-

fold proof, Metaphysical and Experimental. The first

depends on our idea of matter, which however indistinct

includes no active power, and therefore it cannot of it-

self either generate or destroy motion. This is true,

but it cannot satisfy those, who conceive that a portion

of organized matter is capable, not merely of moving
but of thinking ; and though such bad reason^rs may
seem unworthy of notice, yet it is not advisable to in-

troduce Metaphysics into anotlier science where there is

no absolute necessity for it. That a body left to itself

will remain at rest is perfectly conformable to our ob-

servations. A ball placed on a horizontal plane will not

stir ; a wheel balanced on its pivots will not revolve; and,

in short, when we perceive a body in motion we instantly

conclude that it has been acted on by an external force.

In some cases the forces appear to reside in the bodies

themselves, as for instance Gravity and Magnetism, but

they are always considered as agents foreign to them, and

as no wise interfering with our law. The second part

of it, or their indifference to rest, is not so readily ad-

mitted by beginners, and it seems at first to be repug-
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iiant to observation : all motions which we witness soon

decay and cease, and to preserve them uniform requires

a continual application of power. This (jbjection va-

nishes if we consider that the motions which we observe

are not under the circumstances stated in the law; it

supposes the absence of all disturbing agents, while here

retarding forces are continually acting. If a ball be

rolled along a level surface, friction acts to diminish its

motion with considerable power, and being independant
ofthe velocity must ultimately stop it ; and as this friction

makes the body roll instead of sliding, a portion of its

motion is lost in the change from rectilinear to rotatory

movement. A wheel truly poised on its pivots should

revolve for ever when once put in motion, but here also

we can trace the causes of the retardation. The friction

of the pivots is one of them, and if this be diminished

by friction wheels, the duration of the motion ispropor-

tionably increased. If, while it is thus spinning, any

light body be brought near it, its agitation shows that

the air contiguous to it is dragged into motion by it ;

and the resistance of this fluid is also to be taken into

account. Accordingly the motion is yet further pro-

longed in the exhausted receiver ; and in general, by

diminishing the friction and removing the resistance of

the air as much as possible, we prolong a given motion

to such a degree that we are warranted in concluding
that could these conditions be perfectly accomplished,
our law would accurately represent the phenomena. In

the only analogous case presented to us by nature, it is

rigorously observed, for the planetory motions remain

absolutely undiminished, and coincide to the utmost

precision with our calculations, which are made on this

supposition.

3. The second Law states, that "
every Motion or
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Change of Motion, is proportional to, and in the direc-

tion of the force impressed." This is evident if we con-

sider that we know forces only as the causes of motion,

and that an elfFect is necessarily proportional to its cause ;

the motion produced is therefore the measure of a force.

That the Law may be applied to practice we must have

a measure of motion, and we have already stated that

when it is uniform the moving force is proportional to the

quantity of matter moved and to the velocity. Applying
this to the present case we assert that any force is pro-

portional to the quantity of matter to which it commu-

nicates Velocity, and to the Velocity which it commu-
nicates in a given time. The experimental proof of the

Law cannot be given here, as it involves things ^\hich

are to be explained hereafter : we may mention that a

double force will raise a double weight to the same

height in the same time, and that a double force will in

a given time generate in the same body a double velo-

city. In Hydrodynamics another measure of force is

sometimes used j water, when employed as a mover,

produces an effect proportional to its weight and to the

height through which it descends, or, which is the same

thing, to the square of its velocity : this is a consequence
of our measure, and it is of considerable use in that de-

partment ; but some in the infancy of Dynamics wished

to make it universal, and to assert that every force was

as the square of the velocity which it generated. The

controversy, to which I have already alluded, was con-

ducted with the utmost bitterness, and at last dropped

by common consent : in truth it was rather about words

than facts J for either measure may be used with due

caution; we may employ either the Velocity produced in

a given time, or the square of that produced in a given

space ; they belong, however, to different considerations

J
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of force, and the latter is known particularly by the ap-

pellation of Vis Viva; we shall resume it hereafter.

4. The equality of Action and Re-action is announced

in the third Law ; it is a consequence of Inertia and may
be readily comprehended from the following instances.

If a ball rolling along an horizontal plane meet another

at rest, it is said, though with some impropriety, to Act

on the latter, for it puts it in motion. The latter

is said to React on the former, for its motion is dimi-

nished, and the law asserts that it loses as much as the

pther gains. Again, if a man who is capable of walk-

ing with a certain speed draw a load, he is incapable

of moving with the same velocity ; the difference is at-

tributed to the reaction of the load. Also if a cannon

be discharged, its shot is projected with a great ve-

locity, but at the same time the gun recoils with a

speed as much less than that of the ball as its mass is

greater. A more complete illubtration shall be given
when we treat of Collision, and in the mean time the

law is hot of indispensable necessity.

5. Setting out from these laws ^ve proceed to inves-

tigate the formulas which express the action of uniform

forces on bodies ;
it is stated in the 2d law, that in a

given time the force is as the velocity which it produces,

multiplied into the mass of the body on which it acts:

if the time of its action varv the velocity which it gene-
rates must increase in the same ratio as the time; and

hence representing these magnitudes by their initials,

YT '.JtvMV :mv
or

FTocMV^
(1)

We may for the present omit the consideration of the

mass by supposing it unity, and since TVocS we may
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deduce from it by multiplying both sides by V and T,
FT^cxS (2)

and

FSocV^ (8)

which are the theorems relative to motions accelerated

by a constant force.

6. It most frequently happens that the force is not

constant during the time of a body's motion, and in

that case the formulas given above do not apply : the

time must therefore be resolved into indefinitely minute

portions, during each of which the force varies less than

by any assignable quantity, and may therefore be deemed

constant. The formula (1) therefore applies, substituting

forTan indefinitely small portion of it, and hence differ-

ential formulas, similar to (2) and (3) can be found (a).

These are expressed by two constructions given by New-

ton ;
take any line AB to represent the space S, divide it

into any number ofequal parts, and at ( ach of these erect

an ordinate proportional to the force acting on the body
at that point, the lines connecting the extremities of these

ordinates become, (fig.153) if the parts of AB be indefi-

nitely small, a curve whose nature depends on the varia-

tion of the force. The area of this curve is equal to halfa

square whose side is the velocity. To prove this, let uir

take a line MN to represent the velocity which the body

has at C, and suppose'that when the body arrives at D
the velocity has become MD ; then by the principle

stated in the first chapter of this work, the time of de-

scribing CD is the quotient of CD by MN j
for the

portion CD is indefinitely small, and therefore the dif-

ference between the values of this time arising from

using MN or MD as denominators is inappreciable, but

one of them is too little, and the other too great ; and

since they are ultimately equal either may be used.
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Now from C to D tlie force may be considered as con-

stant; and therefore ND, the increment of velocity

produced by it during the time of describing CD ~ CE
or DF the force, multiplied into the time, or CD

MN
hence MN x NO = CE x CD or the trapezium

ED = trapezium UO. Similarly FK = VP, and

so on. Now the sum of the former equals the area of

the curve, and that of the latter equals the right an-

gled Isosceles MNU, which is manifestly half the

square of MN. In this way when the area of the

curve can be found, which is always possible, at least

by approximation, the velocity can be determined.

The second construction determines the time
; pro-

duce the ordinate CD, so that CG=: -^r^^! Then theMN
area of the curve XG, which is the Locus of this line,

is the time. For that area is the sum of the trapezia

GD, HK, &c. and each of them = CD multiplied into

the reciprocal of the velocity; but CD =: time of de-

MN
scribing CD, and the sum of all these is the time of

describing the whole space ; this latter theorem is,

however, of no value since the use of the Int. Cal. (b)

One or two instances of the application of these tiiGi

orems shall be given in the next chapter.
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NOTES ON CHAP. I.

(a) According to the analytic method of considering

the nature of force, it is the ratio of the differential of

the time to that of the velocity, or

FdT-=dy
'

(4)

this may be readily proved from the consideration of li-

mits even when F varies with T. Let F become F+f^I*

during cfT, then it is manifest thatfiVis less than(F-f^F)

X^T, and greater than Fc?T; the difference between

the two is ^Fx^T, which is incomparably less than

FdT, and therefore dY differs from this latter by a

quantity less than any assignable. The value of dT
is dS-r-V and hence

F^S = \dY (5)

For ^V we may put its value 6?/ i .

J
and obtain

F^T* = JS (6)

(a) From equation (5) we can obtain the velocity

when the force is given a function of the space, for in-

tegrating it we obtain

V ^^2fFdS+C\ (7)

and from the equation dT = dSV we derive

^S
T=/. + a (8)

v/2/F^S+C
in which the constant quantities C and C are to be de-

termined by the beginning or end of the motion.
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CHAPTER II.

7. If we observe the phsenomena of nature we shall

find that bodies are made the seat of certain powers

by which they are capable of impressing motions on

others which are brought within the sphere of their in-

fluence
; injnany instances these forces emanate from

every particle of the body, but in some they appear to

be confined to particular parts ; thus Gravity seems to

reside in the centre of the earth, Magnetism to dwell in

the Poles of the Magnet, and hence arises the term

Centre of Force, by which we mean a point towards

which bodies are urged by a force, which is in general a

function of their distance. According to the law of its

variation, the velocity which they acquire or lose in

their motion is various, as well as the time of perform-

ing it; and we proceed to investigate the particular

cases of the formulas of the last chapter, as far as may
be done without entering too deeply into analysis.

8. The simplest law of force is where it is constant at

all distances ;
in this case the increment of the velocity

in each successive increment of time is constant, and

therefore the velocity is as the time ; this is evident

from formula (1), for Fis constant, therefore T is as V.

This enables us to represent the space described in a

given time by a simple construction, for if we take a

line representing the time for the base, and construct

on it a right angled triangle, whose altitude is the velo-

city acquired, its area shall be as the space. Let AB,

fig* 15*, be the time, divide it into equal indefinitely
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small portions, one of which is CD ; the velocity is as

the time, and BA : BV the velocity acquired in the

time BA : : CA : CE, which therefore is the velocity

acquired in the time CA ; now the space described dur-

ing the moment CD being as the rectangle under the

time, and a velocity intermediate between CE and DP\
is as the elementary trapezium ED, and the sum of all

the trapezia corresponding to successive instants, or the

triangle, is the total space. ()
This exhibits very completely the principal circum-

stances of the motion produced by an uniform force,

which from the uniform increment of the velocity is

called Uniformly accelerated : where the force is given,

the triangles belonging to different times are similar,

and therefore as the squares of their homologous sides
;

or the spaces described are as the squares of the velo-

cities acquired in falling through them, or as the squares

of the times of their description. If a body move with

a uniform velocity BV for the time BA, the space de_

scribed by it would be represented by the rectangle

under BV and BA, or twice the triangle VBA, there-

fore the space described by a body uniformly accele-

rated is half that described in the same time by a body

moving uniformly with the last acquired velocity.

9. Newton's Theorems give more elegantly the rela-

tion of the space to the time and velocity ; as the force

is constant, the line which is its locus is a parallel to

that indicating the space, and its area is the rectangle

under the force and space. This by the theorem is

equal to half the square of the velocity, therefore the

equation of uniformly accelerated motion is

V =^JFS\ (I)
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If this be combined with the equation V = FT we
obtain

T .-= s/^ (2)

F
;

and if we suppose a space S to be described with the

acquired velocity V in the time T, T = S and

T"
^ V vF __ >

T
""

s

substituting this value in equation (1) there results

V = 2Va X S or i
=_S

shewing that S is twice S.

10. These theorems apply with due alteration to the

action of retarding forces; for if a body be projected

with a certain velocity, in a right line from a centre of

force, its velocity will gradually be destroyed, being in

a given time diminished by a quantity equal to that

which the force can generate in the same time, so that

at last it will lose all its velocity, and will then fall

back towards the centre. The space which it describes

is evidently that through which it must fall by the action

of the force to acquire the velocity of projection ; and it

is easy to define the circumstances of its motion. Let H
be the total space through which it ascends, then H S

is that which remains to be described ; hence equation

(1) gives

V? ^V=2FS (3)

from this the relation between the space and time can be

ascertained without difficulty, {b)

11. We have occasion to make extensive application

of these theorems, for gravity affords at the surface of

the earth an example of such a force ; it in fact varies
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as the inverse square of the distance from the earth's

centre, but the change at any height which is accessi-

ble in our experiments is utterly insignificant. Tlie theo-

rems which are given above may therefore be applied

to falling bodies, and this without regard to their mag-

nitudes, for as gravity acts equally on every particle of

matter, any body falls with the same velocity as a single

atom. To make them useful some determinate expres-

sion of F must be employed, and we commonly adopt

the velocity which it generates in a body submitted to

its action during the unit of time : experiments shew

that a body falls through 16 feet ^t in a second in this

latitude, and as twice this space would be described with

the last acquired velocity, therefore it is 32 feet in a se-

cond ; substituting this for F we have

V = V2X32XS = 8 vs];r = i vs]
and V = 32XT which are sufficiently accurate for prac-

tice. A few examples will shew their application ; let us

seek the velocity and time when a body falls through 100

feet ; V S~] is equal to 10, so that V = 80 feet in a second,

and T = 2^ seconds. Again, an arrow shot perpendi-

cularly upwards remains 10 seconds in the air, half of

this is employed in its ascent, and half in its descent;

T = 5 and S =1X5 {^
= 400, V = 160.

Friction affords an example of an uniformly retard-

ing force, and experiments made vi'ith bodies sliding on

horizontal planes agree very well with theory, the times

being as the square root of the spaces. Other instances

are afforded by the penetration of b<alls into substances

of uniform texture, it being found that the depths of pe-

netration, or the spaces described are as the squares of
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the velocities. In the case of bodies falling freely, the

laws of their motion cannot be accurately examined by

experiment, but Atwood has invented an apparatus by
means of which we can diminish the acceleration pro-

duced by gravity in any required degree, and thus

verify by trial the theorems. His machine shall be

described, when we treat of the motions of a system of

bodies.

12. Another law of force which is of frequent oc-

currence is when it varies as the distance from the cen-

tre ; Let A, fig. 155, be the centre, erect BF to represent

the force at B and draw AF, then CE will be the force at

C, for it is to B F as AC : AB or as the forces at those dis-

tances ; but BV is one, therefore CE is the other. Hence

the square of the velocity acquired in falling through BC
=2CEFB : and as the area ofsuch a trapezium is equal

to the product of CB into half the sum of CEand BV,
the square of the velocity = tangent of the angle

A X CB X AB+AC = tang A X aF-TaCxAB+AC
x=tang. Ax(AB^-AC^).
This gives the following construction, fig 156, with A

as centre and AB as radius describe a circle, take AC
and erect at C a perpendicular, CV is as the velocity at

C ; and if we call the force at B g, and AB r, the velocity

in feet is CVX/^/ U ^ being the velocity which a

constant force equal to that at B would generate in a

second. From this construction it is evident, that the

motion of a body falling by this law of force, is accele-

rated, but not uniformly, and that its velocity is a

maximum at the centre ; when it passes this it decreases

as it had increased, and is totally destroyed when it

arrives at E. Tlie velocity at A is y/^'X r or ^"^^
KK
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but if the force g were to net constantly through r, it

would generate a velocity ^g <r H so that the former :

the latter as 1 : ^T^.
The indefinitely small space CD may be supposed to

be described with the uniform velocity C V, and there-

fore the time of describing it n CD X a/HT) ^ut

CV ' '

by a well known property of the circle CD = VX and

CV ^V
therefore the time of describing CD = VX x t^^^

r

In the same manner the time of describing DI

|g ^3?jX UX and in general the time of describing
r

any portion of AB intercepted between parallel ordi-

nates is represented by ^^lD multiplied into the quotient

of the intercepted arch by radius, or into the angle

which stands on it, represented by the proportional arch

of the circle whose radius is unity.

If the body fall down to the cent'-e, the /. HAB is 90,

therefore the time of the fall is ;? X j^^lT)
an ex-

s

pression which is independent of r ; for the force being
as the distance, r is constant, and hence whatever be the

1
distance of the body from the centre at the beginning of

its motion, it will fall down to it in a given time, which

depends solely on the intensity of the force at a given

distance.

This law is chiefly exemplified by the action of elastic

bodies ; thus the force of a spring is proportional to the

space through which it is bent, and therefore all its

oscillations are performed in the same time ; another
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instance of its application is in the balance of toi^sion,

to which we referred on a former occasion. In it the

force which is to be measured twists a wire fixed at one

extremity ; and as the force excited by torsion is pro-

portional to the angle through which it is twisted, or to

the space described by the extremity of the arm from its

position of rest, the theorems which we have demon-

strated apply to its motions, all its oscillations are per-

formed in the same time, and from observing that time,

we can determine the elasticity of the wire and thus as-

certain the amount of the force, (r)

The law which prevails most generally is that of the

inverse square of the distance ; but it cannot be ex*

amined without the use of the integral calculus, they

therefore, who are desirous of further information con-

cerning it must he referred to the notes, where also they

will find the demonstration of the law of attraction of a

sphere on an exterior and interior point, (d)

NOTES ON CHAP. II.

(a) The formulae relative to uniformly accelerated

motion flow with the utmost facility from the differential

equations of accelerated motion : callings the force, re-

presented by the velocity which it generates in a second,

the equation gdt = dv gives gt = r, which needs no

constant when the body falls from a state of rest. If it

has a velocity V at the beginning of t, then the equation
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becomes

/= v^Y (1)

The equsiiion gds = vdv gives by integrating

and determining the constant by supposing the body to

have a velocity V at the beginning of 5, it becomes

2gs = V V (2)

which when the body falls frm a state of rest, or when

V = becomes the equation given in the text.

Lastlv to find the relation between the time and space,

as>v^=2gs-\'V*y dt = ds whose corrected iu-

tegral is

which may be otherwise expressed by putting S for the

height due to the initial velocity V, V is then y^2^S^,and

We have mentioned in the text the applications of

these theorems to the action of gravity, and here it is

only necessary to add, that the value of^ which we have

given is exact only in our latitude; it varies on the

earths surface from the elliptic figure of the meridians,

and from the centrifugal^ force caused by its rotation.

Ifg be the force in lat. 45** that in any other latitude I is

found by the formula,

gf=:^gS 10.002837. cos 2 Z ?

and it is manifest that v and t are in the direct and in-

verse subduplicate ratio of g'*

[b) The integrals of the last note apply to the case of
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retarded motions by the simple artifice of making g

negative to shew that it acts in a direction opposite to

the motion. On this supposition equation (1) becomes

g

Equation (2) gives

from which and the preceding we deduce

s = tx y-}-v ^
.

2

or the space described in a given time is the arithmetical

mean between those described in the same time with the

initial and final velocities.

If we suppose two bodies, one projected from a centre

of constant force with a velocity V and another to fall

towards it by the foi'ce we have

t =: 1) = V V whence

g g

or the bodies recede from each other with an uniform

velocity V.

{c) It is easy to give an investigation for the velocity

acquired by the action of a force varying as any power
of the distance ;

but the time cannot be gerierally de-

termined for the same hypothesis, for it involves the

integration of a transcendental which can be effected

only in a few cases ; and therefore we prefer giving par-

ticular solutions. Where the force is as the distance, its

intensity at the distance ^ is gx , ds = da:, and the

r

integral of equation (2) of the last chapter is

u *
-|6 C = 2 pZK ^dx = g X*

r

and correcting so that v * when ^-^r, the expression
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becomes

V' = i.
^r-'x^ I

W
an expression which gives v '^gPl

^ sine of the arch

whose cosine = ^ ,

If we correct the integral, so that when ^ = r, i; = V,

we obtain the equation

corrcsponding to the case where a body is projected in

a right line to or from the centre offeree.

The expression of the time presents no difficulty, fqr

we have by the third equation of rectilineal motion

dt = dx

V ^ / 71 Z ^i and

<f/ = - ^jr

a/V^-^ [/*-^
"

r

If in this we substitute for V *
j? [S* r*]

or suppose

r

the iilitial velocity V to have been acquired in falling

through the space | r, we have

and integrating

^ T
and determining the constant so that t begins when
J? == r

V71 ^ = arc. (cos.
= f \ arc. (cos.

= r x (5)
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If V = 0, I = r and the constant vanishes, which gives

V T\t =arc. (cos.
= -^

"v (6)

\ "^

the time of describing r is therefore

V~g\ X arc. (cos.
= o

)
=

^"j^
X .

(6/) The force of gravity varies inversely as the square
of the distance from a single particle, but where many
of them are united into a solid of a given shape, it is

possible that the united attractions of them all may fol-

low a different law. In the case of the sphere,- which is

most important, as the sun and planets are of that form,

the attraction is exerted in the same manner as if the

matter of the sphere were concentrated in its centre. A
demonstration of this seems desirable before we pro-

ceed to the laws of the motion produced by such a force,

that thus the utility of the formulae which we investi-

gate may be apparent. We begin by seeking the at-

traction which a circular ring of evanescent thickness

exerts on a point situated any where in its axis. Let

ABC, fig 157, be such a ring, the attraction which a

particle at B, which we will call m exerts on another at

E is gm , this compounded with an equal attraction

ST*
from an equal particle at the opposite part of the circle

produces a result

= 2gm ^ DE
Bh. BE

and the attraction of the whole ring is

gx^2pxBDyDE ^^^^.^^ ^^^^^ ^.

BL
We now consider a spherical shell of evanescent thick-

ness, let it be cut by a plane CDF, ^g. 158, perpen-
dicular to AB, the line joining its centre with th
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point B, then the differential of the segment FEC i

a ring whose diameter is twice CD, or
2j/,

and its

thickness t that of the shell, it is therefore 2pyy>t>^ Qc

or dSf the differential of the circular arch EC. fcall

DB Xy then rdx = ds'Xy, and the differential becomes

^jptdxXr, and by the preceding {)aragraph the attraction

of this ring on a point at B is, putting CB = ti,

^ffplrjcdx

To integrate this we remark that

AC^ = CB*+ AB^ 2ABx BD
or in symbols

?'^ =r M*+a- 2ax

hence

X = +a* r* and dx = udu

2a a

which change our differential into

whose integral taken from u FB to ?< = AB gives

the attraction of the whole shell ; it is

gpir /, ?.' (g^ r' )\
a^ \ u S

and the definite integral is

= 4firptr*Xt,

But 4/?^r* is the mass of the shell, and therefore its ac-

tion on an exterior pohit
= ^ X mass, the same as if its
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mass were collected in the point A. If the integral be

taken from u = r a to u =z r+ a, or if the attracted

point be placed within the shell, we obtain the attraction

a"- 1 r'^a'^ )

The spherical shell has therefore no action on a point

placed within it.

- Let now a sphere be proposed of uniform density, or

at least composed of concentric strata each of which is

equally dense throughout, we may conceive it resolved

into a number of concentric shells of evanescent thick-

ness, and as each of these attracts as if its matter were

collected in the centre of the sphere, therefore so does

their sum or the whole sphere.
If the point be supposed placed in the interior of the

sphere, all the shells whose radii are greater than its dis-

tance from the centre exert no action on it, and it is

acted on only by the sphere in whose surface it is placed,

or of the radius a. The mass of a sphere of uniform

density 5 is ^ pr^Xs, and therefore the attraction is in

this case J gspa or directly as the distance from the cen*

tre. In nature the fact is otherwise ; for besides ihat

the earth and other planets are elliptic in a slight de-

gree, the density increases continually below the centre,

and therefore this conclusion is only valuable as a beau-

tiful theoretic result. We will dismiss this subject with

mentioning that taking the integral of the shell's attrac-

tion from ti = fl r to w = \^a^ r*~]
we obtain

, mass of shell

and therefore if we draw from B a conical surface tan-

gent to the sphere, the circle of contact divides the shell

into parts of equal attraction towards B, and hence a

L L
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spherical surface described through B and A, cuts the

solid sphere similarly.

From this proposition it is manifest that the force

which acts on falling bodies at or above the earth's sur-

face, varies inversely as the square of the distance from

its centre; for its difference from the spherical figure

is so small, that the deviation from this law produced

by its ellipticity may be neglected. We proceed to

investigate the laws of the motion produced by such a

force.

Let g be the force corresponding to r, the distance

from the centre at the beginning qf the motion, then

the force at any other distance x is ^r*, and hence we

have the equation
crr'X^dx

vdv = ^

whose integral is

V* -= 2gr^X l_+ C

and assigning to C such a value that v may vanish when

a: = r we have

u* = 2gr X r x

X

In this law it is manifest that if the body fall down to

the centre, the velocity is infinite. Ifr be infinite the

velocity is finite till x vanishes, for let y be the force at

Xy then g = V ^^ and substituting this value

?;* = 2yjr X r x

r

which when r is infinite becomes

t;* = 2y ^

the velocity which would be acquired by the action of a

constant force equal to y, through the space x.
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The time is investigated by the usual process.

To integrate this let^c = gl, and r ^=g+ l, then

1 f e^l l^l

=
Vi;^-^ tv^<^l v^p:=|^

and integrating

^X'^^2^ = Xarc. (cos. =
J_^

+ V^^_|^\ +C

M^hen ^ o, | = c>
and therefore C = cxa^c. (cos.

=z=
i)

=r
g Xi? and the complete integral gives

tX^V^gr^ = VxXr ^ + e, [p arc. (cos.
= ^^\

= s/xy.rx \ +_^ X arc. (verse sine = r^x \

2 i ^ /

The time of falling down to the centre is

1 X r X arc. {vs = 2).

n/2^ 2"

From these theorems we can readily derive the laws of

uniformly accelerated motion ; for if the space described

be indefinitely less than r or x, we may put r = ^, and

calling r x = svfe obtain

V* = 2gSy and tx^y2gr~]= '^'rT] + r X arc {vs 2s)

2 r

or as an arch whose verse-sine is small, nearly coincides

with its sine, and that sine is q.p ^V rs ,

r

t = 1 X 2 VTTl = \/2f7l
V

2gr S

Those who are desirous of further information on the

subject of rectilinear motion may refer to Lardner on
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Central Forces, where it is discussed at more length
than could be allowed to it here.

CHAPTER III.

1 4. From the motions which would be generated in

a particle of matter by the action of a single force, we

proceed to consider the combination of its acceleration

with a motion oblique to the direction in which it acts.

By the first law of motion, a body once impelled con-

tinues to move in the line of impulsion with an uniform

velocity. Let us suppose that the direction of its mo-

tion is at right angles to the line drawn from it to a centre

of force, then, as its motion does not suspend the action

of the force, it must be continually deflected from the

rectilinear course, which it would otherwise have pur-

sued, and describe a curve line round the centre. To
conceive this more readily, let us imagine the time of

the motion to be divided into a number of small and

equal parts, and moreover, let the force be supposed to

act per saltum, that is to communicate at the beginning

of each instant by an impulse, a velocity equal to that

which would have been produced by its continued ac-

tion through the whole of the instant. In fig. 159, let

AB be the space which would be thus described in the

first instant, and let the projectile motion be capable of

carrying the body to E in the same time, the real mo-

tion will be AF, the result of these two motions. If the
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force ceased to act, FH would be described in the next

instant, but it gives an impulse FI, and therefore FK is

described, and in the third instant KL. Now if the in-

stants be diminished indefinitely, the intermitting force

approaches without limit to one acting continually, and

the polygon AFKL becomes a curve. From this illus-

tration of the nature of curvilinear motion can be de-

rived a remarkable theorem, which merits our notice.

Drawing HC, ihe triangle FCAFCH, as they stand

on equal bases FA and FH, and FCH=FCK as they

are between the same parallels and stand on the same

base FC, therefore, ACF=FCK. In the same way

FCK=CCL, and so on; and therefore when a body
describes a curve by the action of a force proceeding

from a centre, the area described in an instant of time

by the line connecting the body with the centre is a

constant quantity. This theorem is well known in as-

tronomy as one of Kepler's laws ; equal areas being de-

scribed in equal times by a planet round the sun, or by
a satellite round its primary.

16. The species of the curve described depends in

general on the velocity impressed on the body which

is commonly named the velocity of projection, on the

intensity and law of the force, and on the angle which the

direction of the original impulse makes with the line

drawn to the centre from the original place of the body,

or radius vector. A beautiful specimen of these inves-

tigations is given by Newton in the first 17 propositions

of the Principia, but for obvious reasons we decline en-

tering into them, and confine ourselves to circular mo-

tion. In this particular case the law of force is of no

importance, as the distance must always remain the

same, and the angle of projection must be a right angle;
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it remains therefore to seek the relation between the

Velocity, Distance, ai^d Force. Let BA, fig. 160, be

the space which the body would describe in an instant

of time by the velocity of projection ; in that motion it

urould increase its distance from C by BD, and as the

force constrains it to move in the circle, the space DD
is that through which the force would make a body fall

in the instant of time, and therefore is proportional to

the force. BA^^BC* DC* or ultimately 2 BDXDC.
Call the force at the distance AC g, and the velocity of

niovcment in the circle V, then the velocity gene-

rated by the force g, in the space BD or s = V2gP^ ,

and it is to V:.2s:DA, for twice the space s would be

described with the last acquired velocity in the time of

falling through 5, or of describing AD. Hence

V* : 2gs::AD^' : 4s% and V* = 2sxAB*,
2s

but AD and AB are ultimately equal, and therefore

AD' =i AC or R, and we obtain V* = 2gx R, which

2s 2~

when compared with equation (1) of the 2d Chapter

shews that the force g would generate in half the radius

a velocity equal to that with which the body revolves

in the circle, supposing it to be constant.

17. This equation enables us' to determine a variety

ofquestions connected with circular motion : as the force

F == V% it follows that where different circles are

"R
described about the same centre, the forces must be as

the squares of the velocities directly, and the distances

inyericly. The velocities may be expressed in terms of

the distances and periodic times
;
the space described is
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2j9r an entire circumference, this divided by the time

of a revolution T gives V : by this substitution the force

measured by the velocity which it can give in a second,

F= 4'p'^Ki or it is as the distance directly and inversely

as the square of the time of revolution.

18. This latter equation gives the relation between

the time and the distance where the force is known. If

the force be constant, the fraction R must also be con-

stant, and therefore T
oc-v/Erj

. If the force be propor-

tional to the distance R oc R , and therefore T is con-

Stant, V being as R. Lastly if F exJ_, T* OcR^ and

R

VocJ_.
Vr]

19. An example of a force varying as the distan<ie is

exhibited in the conical pendulum, which we have al-

ready noticed when treating of the Steam Engine ; it

consists of two balls, supported by rods of equal length,
which are united by a hinge-joint: the apparatus is

whirled round a vertical axis, and whatever be the ve-

locity with which they move, the time of their revolution

is constant, unless the impelling force either vanish or

be indefinitely increased. The ball A, fig. 161, in its

revolution round VE, describes a circle whose radius is

AC : and by art. 8 of Statics, the force acting to bring
A back to the vertical is^, the force of gravity, multi-

plied into the sine of AIC or gX AC. If we substitute

1a'
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this for F in the second formula of Art. 17, we obtain

^ lA T'
'

g
which is evidently independent of AC, and varies solely

as the square root of the length of the rod.

20. The planetary motions afford a near approxima-
tion to circles described with a force varying inversely,

as the square of the distance. It is proved by obser-

vations, that their orbits are ellipses deviating very

little from circles, and therefore we may apply the

laws of Art. 18 to obtain them. This enquiry is inte-

resting, as it teaches the law of universal gravitation,

and shews the nature of that connexion which links to-

gether bodies, placed at distances far surpassing the mea-

sures of space with which the mind is familiar. If we

examine the sun and his planets, we observe that each

of these describes, in equal times, equal areas round the

sun J hence the sun is the centre of force to it. Se-

condly, the periodic times of the planets are in the ses-

quiplicate ratios ofthe distances, or T^ocR^, which gives

F= M . M being a constant quantity. Jupiter and

RT
Saturn have several satellites revolving round them in

orbits which to our observations are circular ; here also

T*ocR* and F= z, the value of m, which is proportio-

nal to the quantity of matter in the central body, being

different in each system. And lastly in the case of the

earth to which, as it has but one satellite, the harmonic

law cannot apply, we prove that its attractive force

diminishes according to the same law as that of the

other heavenly bodies. The radius of the moon's orbit

ig about 60 times the radius of the earth, its periodic
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time is 27j days nearly ; hence it is easy to compute the

length of the arch described by the moon in a minute,

and the square of this divided by the diameter of the or-

bit gives the deflection of the arch from its tangent, or

the space through which a body would fall by the action

of the central force in a minute: it is about sixteen feet,

the same that is described by gravity at the earth's

surface in a second. Where the space is given,

the forces are inversely as the squares of the times ;

therefore the force at the earth's surface : that at the

moon :: 60* : 1, or inversely as the square of the earths's

radius to the square of the moon's distance. This is but

a rude approximation ; the conclusions which the circu-

lar hypothesis gives are rigorously proved by more pre-

cise investigations; from the law of gravitation thus in-

dicated flow the most minute irregularities of the hea-

venly motions ; and so far from the occurrence of any
which Physical Astronomy (as this part of Dynamics is

named) cannot explain, it has pointed out many which

observation alone could never have detected. This,

however, is the Eleusis of Science, and few are the ini-

tiated who can explore its mysteries j
** Pauci quos ar-

dens evexit ad aethera virtus.'*

21. From the tendency of a body to move in a

straight line, it may be easily understood, that if the

central force which acts on a material point moving in a

circular orbit be suddenly removed, it will fly off" in the

direction of the tangent to the circle. This is illus-

trated by many facts which continually fall under our

observation; when a stone is whirled in a sling, on let-

ting go one of the cords, it flies off" with great velocity ;

and this was the principle of most of the warlike en-

M
IVf
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gines of the ancients. In the great manufactories of

cutlery the work is ground ou very large grindstones re-

volving with immense rapidity, and it not unfrequently

happens that they fly in pieces, and are scattered in

every direction ; even the massive iron wheels of steam-

engines yield in the same manner. The tendency to

move in the direction of the tangent is equivalent to a

force acting from the centre, as it cannot have such a

motion v^ittiont increasing the distance from the centre ;

and this force is called Centrifugal. The Centrifugal

force is equal to that central force which is capable of

making a body revolve v/ith the actual velocity in the

given orbit, and therefore can be determined from the

formulas of Art. 17. In many cases the central force

is the cohesion of matter, as when a ball is whirled round

by a string, and it is evidently a question of practical

value to know the tension of the string thus produced,

that the strength of the parts of machinery, in similar

circumstances, may be apportioned to the strain thus in-

duced on them. If the weight carried be supposed con-

centrated in a point, and be called W, then the effect

A 2 1)

of the centrifugal force isT^ X W, or where the velo-

city is given it is V X W. In general as the different

parts of the body are at different distances from the cen-

tre of motion, tlieir centrifugal forces are different, and

therefore other principles must be used to obtain the

strain thus produced: we shall return to them here-

after.

22. The rotation of the earth must excite a centrifu-

gal force in bodies at its surface, which will affect the

superficial gravity; it always acts in opposition to it,

and being unequal in different places will occasion the
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same body to weigh differently at different places, pro-

vided that its weight be measured by the flexure of a

spring, or any other means independent of gravi-

ty. In effect, any point on the earth's surface (sup-

posed spherical) describes a parallel whose radius is the

radius of the sphere multiplied into the cosine of lati-

tude. All these parallels are described in the same

time of 24 hours; therefore the centrifugal forces are as

the cosines of latitude : the centrifugal force acts in the

plane of the circle described, and therefore obUquely to

the radius, making with it angle = latitude; now its ef-

fect in the direction of the radius, or of gravity, is found

by multiplying it into the cosine of this angle ; and since

the force is as the cosine, and the action of it against

gravity also as the cosine, the diminution of weight pro-

duced by it is as the square of this function of the latitude.

The numerical value of it may be readily computed by
the foregoing formula, but the results do not precisely

agree with experiment, as the earth is not a Sphere but

a Spheroid- This elliptic form is a necessary conse-

quence of the centrifugal force ; for gravity must be most

diminished at the equator, and therefore supposing our

planet spherical and covered with sea, the equilibrium

of its surface could not be preserved, it would therefore

cease to be spherical ; the parts about the poles being

depressed below their original level, and those towards

the equator rising above it, till diminished gravity is

compensated by greater height. But in this new form

the result of the attraction of each particle is no longer

directed to the centre as in a sphere ; and this modifies

the effect of the centrifugal force. The actual shape of

the earth is a spheroid, whose equatorial diameter ex-
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ceeds its polar about 25 miles ; and from this accumula-

tion of matter arise several astronomical phenomena,

which are detailed in Brinkley's treatise, to which I

must refer my readers, as it is impossible to produce

any part of these difficult investigations which would be

intelligible, and a mere detail of the phenomena is all

that can be required.

NOTES ON CHAP. III.

(a) The motions depending on central forces are so

important, that it may not be superfluous to give some ad-

ditional information beside that contained in the text. In

the 17 first propositions of the Principia, many applica-

tions of the method used in the text for the circle are to

be found, it therefore is unnecessary to pursue it further.

Instead of it we will give a few of the principles used in

Analytical Mechanics, and deduce from the differential

equations of accelerated motion some of Newton's pro-

positions, that the two modes of investigation may be

compared. It is manifest from what has been stated in

the first part, that we may consider a particle moving in

space by the action of any accelerating force, as moved

by three forces parallel to axes ofrectangular coordinates.

We have denoted these components by the symbols

X, Y, and Z, in the Notes on Chap. IL of the first

part ; and as the motion of a point, when estimated in

a given direction, is not affected by forces at right an-
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gles to that direction ; therefore the velocity of the

motion parallel to x depends on X alone, without re-

gard to Y and Z ; the same thing is true of them, and

therefore the equations (6) of the Notes on Chapter I

apply, and we have

^ = X

l = Y (^)

These are the differential equations of motion, and they
contain all that is necessary to solve any proposed ques-

tion ofthis class. If we multiply each ofthem by dx, dy^

and dz respectively, and add them together we have

dxd'^xJrdyd^y-\-dzd'^zisz'ys.dx-\-YdyJ^ Zdz

dt-^

and integrating

dx^+ rIyZ+dzi=zC+2fXdx+Ydy-{-Zdz
dt*

but the uumerator ofthe first member =zds^ the element

of the curve described, and ds^dl = v the velocity,

therefore

f^ = v^^C-^fXdx+Ydy+Zdz (^0

If the quantity included within the sign of integration

be an exact differential, then the velocity gained in pass-

ing from one point of space to another is independent

of the form of the trajectory, and this is the case when

the forces which act are directed to fixed centres, and

are also functions of their distances from them. LetR be a
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force directed to a centre whose coordinates are , 6,

and r, and let the distance of the point from it be r, the

part of X, which arises from it is R x xa, the Y ii

r

Rx y b, and the Z is R xz c, hence

r r

r

now

r/r = {x a)dx-\'{y h)dy-^{zc)dz
r

and

X(/^+Yt/j/+Z(/2=Rrfr
therefore in this case we have

t, = C+2yR^r (nO

which is evidently true, though R be the result of seve-

ral other forces. This is a case of the law called the

Conservatio Virium Vivarum, and it contains Newton's

Prop. 40 for the value o^ jRdr is given between certain

limits without reference to any orbit : if therefore two

bodies, one moving in a curve, and another in a right

line to or from a centre of force, have equal velocities at

any equal distances, they will have equal velocities at

any other equal distances.

If there be but one force directed to a fixed centre,

the trajectory must be in a given plane, we may there-

fore take 2=0, and we obtain by multiplying the first

and second of equations {m) by y and x, and subtracting

xd'^yyd^x = Xj/ Yx
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but in this case Xy =:
Rxi/, Y =

Rj/j;, therefore the

r

second member vanishes, and

xd^y-^yd'^x = 0,

It

integrating

xdy ydx = cdt
(o)

To know what the first member is, let us transform x
and y into a radius vector r, and an angle u made with

the axis of.r, we have a? = ? cos. u^y^r sin w, dx = r

sin w rfw, dy = r cos m cfw, which being substituted in

equation (o) give

cdt = r* [sin.*+cos. w] du = r*d'M

but r du is the differential arch of a circle whose radius

is r subtending the angle du^ and r*du is twice the cor-

responding sector, or the differential of the area de-

scribed round the centre by the radius vector ; call it

A, and

dh ^ cdt,

integrating

A = | cxf

No constant is added, as the area is supposed to begin
with the time, and this shews, that when there is but

one centre of force, the area described is as the time.

By means of this integral we can eliminate dt from

equation (n) and thus obtain an equation between x, y,

and R which will determine the nature of the trajectory

where the law of force is known, or vice versa. We
proceed to give a few examples :

{b) Supposing the force of gravity constant, and act-

ing in parallel lines, let it be proposed to find the tra-

jectory of a projectile, omitting the consideration of the

air*s resistance. In this case there is no force acting in
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the direction of x, and that parallel to y is the force of

gravity g. Hence equation (w) becomes

d^x =0, d*y = -^

It^ 'dl*

and integrating we obtain

dx==:cdi, dyxzzgtJ^d
It

X = ct,y--^^gt*+c t,

no constants being added in the second integration
as X and y begin with t. To determine them we re-

mark that X = Cf c is therefore the uniform velocity

T
with which the abscissa is described. Now we know

this, for if V be the velocity of projection, and <

the angle made by its direction with the horizon,

the horizontal velocity = V cos. i, and hence

t = X
, Substitute this value in the second and

Vxcos.s

fourth equations and we obtain dy = velocity in the di-

1t
rection of y gx -{(/; at the commencement of

V cos.

the motion the vertical velocity is V sin. t and x=:0,

therefore c' =V sin. i, which makes the fourth equation

y = X tang. gx"^

2V* col.~'7~

which may be made more convenient by expressing V in

terms ofH the height due to it, V* e= 2g H, and

y = X tang x^

4 H X cos *

the well known equation of the parabola. If we put

j/=0, we obtain the abscissa of the summit of the para-
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bola, a''= H X sin 2 i, and its ordinatey=H sin. ^i, and

the latus rectum a/* = 4? H cos. *
i. The equation (n)

_ _

7
is in this case

V* = C^^Cgdy = Q^gy : but when
i/ =0,

z^ = V=^,or 2gH,
therefore t;- =2^ [H -j/].

If then we draw through
the origin of the coordinates a vertical HA, fig. 162, and

a parallel to the horizon AL, a body falling from AL
to the parabola will acquire the velocity in the curve.

LS=H H sin^=H cos.' , or one-fourth of the latus

rectum, and therefore AL is the directrix. The velocity

in the curve at any point would therefore be acquired in

falling through a space equal to the distance from the

focus. See Lardner, sect. 5.

(c) If the force be inversely as the square of the dis-

tance, the investigation of the trajectory is rather more

complicated; to facilitate it we will use polar coordi-

nates instead of rectangular. Let CA fig. 163. be a radius

vector, 7' the square of the differential of the curve; BA^
= BD*-f-DAS I)A is manifestly dr, and calling the

angle C du, BD = rdu, hence ds' = dr^-^-r-du^. The
force at the unity of distance being g, ,? is that at r,

and therefore equation (n) becomes ds^ = f2gdr

b = 2^ h: for di we substitute its value in equa-
r

tion (o) expressed in polar coordinates, and obtain

r*du^ r

N N
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Substituting for ri , and resolving for du

J dz
au =

which on integration gives the ecjuation of the trajeetory

in u and z.

The integration becomes more easy by substituting

for z, l-\-gi which gives

7 , -^l
du =

or putting m = g-.^bc^

du

whose integral is

u^u! = arc (cos.
= !iii'\ = arc.

(cos.
^ g\my ^ ^ ^ I

m ^

hence

COS. -') =i!- 1= - +^ X COS. (a-') (1)
rm ni r c^ c-

whose analogy with the polar equation of a conic section

is evident; it being \_= l+^cos. {u-^u).

r ^p

On coiiiparing the terms we obtain e = m^ a the

g

transverse semiaxis =
g^

and thus can determine the

b

species
of the section. When e = 1 or & = 0, it is a

parabola,
and an ellipse when &^ is, positive.

If the an-

gle
;/ begin at the vertex of the curve, u' is evidently

cypher.
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The integral {n') gives in this case

r a

therefore

={f4}-r-^'}
(2)

containing quantities which can be known from obser-

vation. It shall be shewn that the force bj which a

circle is described = V*, hence g = V% g zz VV,
r r^ r

and substituting

v^ ^ 2a r (3)

Y^ a .

'

giving the ratio between the velocity in the trajectory,

and that in a circle at the same distance. And lastly

e m gives 1 ^^ = bc/^^ a (I e^)
= bc'^y^a = c',

T
''

8" g
from which c^ =gX (l ^^}: by the equation 2A=cT
we have

c* = ^A*. If T be the periodic time in the ellipse, A

is p^a^ {le^), therefore c^ z= 4<p'^a* (le^) =z ga X
T^

(1 e^)f hence

T' = ^/^'g' (*)

g
or the periodic time is as a |, and the area describetl in

the unity of time
^s v' lTI the latus rectum.

The time may be found by integrating the equation
j^^du = cdt, but this is foreign to our subject, being in

fact Kepler's problem.

fd) As an example of the investigation of the force

where the trajectory is given, we will take the circle
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where the centre of force coincides with its centre. In

this case the equation (n) shews that V must be constant

as dr is cypher, di is therefore ds^ and d^i/
= Y be-

"T 'dt^

comes

Y^d^T/ = F>, di/
= xds, d^y = g^A-^Xy,

ds^ r r r*

and therefore V ^
r

~~

If the centre of force be different from the centre of

magnitude, call CE
fig. 164- e, EKa, CPr, PS, C, and

*
e^, y. On this supposition the equation of the cir-

cle is j/-f-(a: ^)=a% or as j/*+^^=r* ,r^ 2 ex=b^,
hence we derive ds = d^Xa, dy rfsx^e, dx

y ^

^dsXjf^
a

In the equation (n),

ds^ =v' = - -~2/F^r
{xdyydxY

which becomes with these substitutions

= =r v^=z iFdr,

differentiating

c'^a'^y^edx zz. 2Fdr, but ex :^r^ 5*, edx==rdr, and

(r* exY 2

r* e^ = r^-fZ>% so that

2

8cfi^Xr = F= i;*X2r

but SC = b^ . SP or C= r^+5*, and hence
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F = 8V_= 2u^

r^XC^ "IT
If we call X the space due to the velocity v, supposing

F constant, F = v^ = 2u% and therefore 4j:= C.

These theorems apply to all orbits ;
for the element

ds may be considered as a part of the equicurve circle,

and therefore F = 2v^-i- chord of curvature, and v is

the velocity which the force would generate in the fourth

part of the chord if it were constant, and thus the cir-

cumstances of the motion in a given orbit may be de-

termined.

CHAPTER IV.

2S. The consideration of that species of curvilinear

motion which is produced by a central force combined

with a motion of projection, naturally leads to the case

where the body is subjected to the action of accelerating

forces, but is constrained to move in a given curve or

surface. From the principles of statics it is evident ihat

it must exercise a pressure on the surface which 5'ip-

ports it, but this excites a reaction of the surface, \vl;ich

must be considered as an additional force, acting per-

pendicularly to the path of the body. The reaction be-

ing perpendicular to the direction of the motion has no

effect on the velocity, which is therefore independent of

the curve described, and as this principle is of great im-



^1S A SYSTEM OF MECHANICS, hc.

portance, we will prove it more in detail, which can

readily be effected by the theorem of Art. 6.

Let BD
fig. 165 be the curve in question, take in it an

indefinitely small part CD, and take GA and HA equal
to CA and CE. Let the force at C be F, a function of the

distance, then supposing CD coincident with the tan-

gent, the force F may be resolved into two, one coin-

cident with the direction of the tangent, and the other

perpendicular to it, which is destroyed by the reaction

of the curve, therefore the first alone need be consi-

dered : it is found by multiplying F into the cosine of

the angle DCE. Now cosine CDCE) = CE -^ CD,
therefore the action of the force along the curve which

we call F' = FxCE-~CD. If we take two lines to re-

present DB and BA, and describe on them as axes

curves which are the loci of the forces acting at each

part of them, it has been proved that twice the areas of

the curves are the squares of the velocities, and we are

to compare them. The increment of the first curve's

area is the space CDr/c, which is ultimately the rectan-

gle under Cc and CD; Cc F=FxCEh-CD, and

CcXCD=FxCE. In the second curve Gg=F for

GA=CA, and the force is equal at equal distances ;

therefore GgXGH.:FxGH=FxCE, or the same as

the increment of the other area. Since then the^ in-

crease equally and begin together, they are equal, and

therefore the squares of the velocities generated in de-

scending through BD and BH. This remarkable the-

orem is however only true where BD is of a continued

curvature, for if it were composed of segments making
finite angles with each other, there would be a loss of

Telocity at each angle proportioned to the square of the

sine of its half.

24, Besides the pressure on the curve produced by
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that part of the force which acts perpendicularly to it,

another arises from the velocity of the moving body,
as it tends to proceed in the direction of the tangent ;

which is manifestly identical with the centrifugal force

mentioned in the last chapter. It is well known

that curves are the limits of polygons, whose sides and

angles are indefinitely diminished. Now suppose a body

describing ABfig.l 66 with the velocity V, its impact on

BC is to its original motion as sin ABD: 1 ; let AEand
EB be perpendicular to^AB and BC, the angle E=ABD
and therefore the impact on BC oc V x sin E : but sin

E = AB-i-BE, let t be the time of describing AB, V:
AB oc 1": t, AB=V/, sin E = V^ ^ BE. We rtiay

substitute for this impact the pressure of a force ^ which

could 'destroy in the time / the perpendicular motion,
and we have by equation (1) of the first Chapter.

"be"

or puttingM unity and considering that BE is ultimately

the radius of a circle coinciding with the curve at that

point, and therefore of the same curvature with it

R
The formula alr^dy found for central forces in a

circle.

25. The simplest case of confined motion is when a

body moves on an inclined plane by the force of gravity.

It has been proved, Statics Art 19 that in this case gravity

is resolved into two forces, one perpendicular to the plane

which is not considered at present, the other parallel to it

which may be called g x si" of inclination. This is

constant, and therefore, the motion down an inclined

plane is uniformly accelerated, so that the equations

of art. 9 can be applied : they give
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V = -/% X sia. 1 X S) ,

V:
2 s J

v\

g xsiiil

If we consider that the length of n indined plane is

to its height as 1 : sin I, and that S a= L the length ofthe

plane, we may transform these equations into others of a

much more elegant form.

V = v/2^XHxL-.L)
= \^ 2 g H^ (1)

I5D = ^' ^ (2)

gXHl ^/Jl^Xv/ H ^ ^

26. The first of these equations coincides with the

contusionof Art 23 for-v/2^TP\ is the velocity acquired

by a body falling freely through H, and therefore the

velocity acquired in descending through any portion of

an inclined plane is the same as that acquired in falling

through its perpendicular height. The space described

is as the square of the velocity, and twice the length

would be described in the time of the fall with the last

acquired velocity.

27. The time is as L ; therefore the times of de-

scribing planes, whose heights are equal are as their

lengths, and ifthe lengths be given, the times are inversely

in the subduplicate ratio of the heights : if the planes be

similar L oc H and the times are as the square roots of

the lengths or heights.

28. Let it be proposed to findHM
fig. 167 the portion

of the inclined plane IH, which is described while a body

falls freely through HB, then

HM ^ HB and

i^Xsinl ig
HM = HB X sin I, or MB is a perpendicular
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to IH. Hence it follows that in the time of describing

the plane, a body falls freely through the intercept of

the vertical between H and a perpendicular to IH
drawn through I.

2.9. Let it be proposed to find the Locus of the in-

clined planes whose lower extremity is a given point,

and which are described in the same time. Lot EM be

oneofthem, fig]68, EM'' must be constant, and this is

h~
the case ifM be in a semi-circle described on VE, the

line described in the given time by a body falling freely ;

for EM' is always equal to EV, and therefore

"eh"

,,,, = ill. or Time (EM) = Time (EV)

Therefore all chords of a circle drawn throuMi the

extremities of a vertical diameter are described in the

time of falling through the diameter itself. The velocity

acquired in descending through EM = \/2g x HET or

^ /EM-, /g EM.

This principle was turned to account by Robins, in his

experiments on Gunnery, and it gave an easy means of

measuring the velocity of shot. The apparatus which

lie used was a block of elm, suspended by a rod from a

centre on which it turned freely, so that when swung it

described an arch of a circle ; the shot was fired against
the block, and if properly directed communicated to it a

velocity which was to its own in the reciprocal proportion
of their masses ; the chord of the arch which the block

described in consequence of this impulse was measured,
and as r was known the velocity could be computed.

g
o o
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For the modification which the theory of motion

on inch'ned planes, receives from the action of friction

see the note. (b)

NOTES ON CHAP. IV.

{a) When a material point placed on a surface is sub-

jected to the action of any accelerating forces, it has

been stated in the text, that the reaction of the surface

jmust be considered as a new force ; we will denote it by
the symbol N. Let us call the angles which it makes

with the axes of coordinates, , ,

'' then the equations

(m) of the note faj on the last chapter become

d*a: = X+ N cos , rf*^^
= Y + N cos *',

dr IP"
d'z =. Z + N cos ''

dt"'

with a due attention to the signs of the forces.

The equation fnj of the same note also holds in this

case; for multiplying each of the above by the differential

of its coordinate and adding them

dxdy + d
j/ d^y + dz d"-z = X dx-{-Ydi^+Zdz

dt*~

+ N
[
cos X f/^+ cos '

^+cos
'

dzJ^

The first member is half the differential of ds^ and

IF'
the coefficient of N in the second = 0, for N is normal

to the trajectory, it therefore makes with the tangent to
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it a riglit angle whose cosine = 0, but the cosine of the

angle made by any two lines is the sum of the products

of the cosines of the angles, which each of them make

with the three axes. The cosines of the angles made

by the tangent with them, are by the theory of curves

dXf dy dz

ds ds ds

therefore in this case

or cos (90*^)= dxX cos u^dy X cos <*' + dz X cos t^'

ds

Hence the equation becomes

(^) 2X dx + 2Y
</j/ + 2Z dz,

^ = C + 2y Xdx + Ydy + Zdz =W*
which when the part included under the sign of inte-

gration is an exact differential, shews that the velocity

is independent of the trajectory.

The force N is evidently the snm or difference of the

perpendicular result of the accelerating forces, and of

the centrifugal force.

The trigonometrical theorem to which we have re-

ferred may be thus proved, letAB and AC fig. 169, be two

lines, draw through their intersection three rectangular

axes : let AD and AF be their projections on the plane

of xy. Draw with the radius unity the arches BC =.r,

BD = comp. y, CF = comp. y', CD = u, and DF =
i

', the Greek letters denoting the same as in the notes

on the second chapter of Statics. Then we have by

Napier's Rulesj cos u = cos ( 'y).
sin y', sin (CDF) or

cos BDC = cos y and by spherical trigonometry,
sin u
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COS X = cos u sin y + sin u cos y cos BDC
= cos u sin y -f cos y cos y' X sin u

sin w

=sin y sin y' [
cos s cos e + sin sin

'

} + cos y cos y'

but by note
(i/) chapter 2d Statics, cos = sin y cos i,

&c. which gives
cos X = cos cos et -{- COS /8 COS ^' + COS y cos y'

^^,/ Wc will give an instance of the application of

the formula of the last note, to the descent down an

inclined plane, though in this particular case it could be

more easily solved by methods analogous to those used in

the text : let the origin of the coordinates be at the

point where the motion commences ; then on the hypo-

thesis of the proportionality of friction to pressure,/N
is the friction, which retards the descent, and therefore

is negative.

In the inclined plane N = g x ^r -j- /, but for gene-

rality we put it

g dx
; hence X = fg dx^^

IT ds*

Y = gJg dxdij and Z =

which give Xd^-I-Y^v = ^-} ^"^ J

hence i; == C -j- ^gy-^gfx (1)

an equation which is time*of all curves, and indicates

that if C = 0, the velocity acquired in descending

through an arch of a curve, is that acquired in falling

through the portion of its height, which is intercepted

between the horizontal line, and another making with it

angle whose tangent isy.

For the time we have in the plane
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dt ^ ds _ dx
""

v cos I X ^'igx (^Xtangl ^"l

= --X
V^~

^
'^'v/'^ \/ ^ (

sin, cos I ;/cos* f^

and integrating

/ = v/"iT) r= _L (2)

v/^r[sin.cosl-/cos I^ \^^gl 'XVUJ'Q
Let A be the space described on the plane, while a

body falls freely through H then we obtain

H = A or putting/"
=

tang. ^,

sin \J cos I

H =r A cos <p A cos ^
si n 1 cos f cos I sin ^ sin (I ^ )

If therefore we draw a line making with the perpen-
dicular let fall from the right angle an angle = ^ on the

side of the vertex, it will determine x.

Let it be required to find the locus of all planes de-

scribed in the same time, and having a common vertex,

take AB fig. 170, for the space described in a given time

by a body falling freely, call it v and let B be the origin ;

AE the height of any plane is v y, EC = x and the

length ACk/x^ -f- (v 3/)*^ , and equating the value

for the time dow n it, to that through v we find

x^ + {vy)* = V

which coincides with the equation of a circle which

passes through the origin, becoming ^*-f3/* vy'\-fvx^o^

comparing this with .x-^ +3/* 2ax 2by=^0 we find a

b the coordinates of the centre, respectively, ^fv and

^ V, therefore make the angle BAD -= ^, and draw a

parallel to BD through the point of bisection of v^ a

circle described with the the centre F and radius FA
gives the required locus, which is the segment ACB.
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And lastly to determine \^hich of all planes having a

given base is described in the least time, since the nu-

merator of the first expression of the time (2) is given,

the time is a minimum when its denominator sin. cos^

1f cos. *I is a maximum, this becomes

^ sin. 21 -f^ [1 +COS. 21] max.

and taking 2 I as the independent variable, and differen-

tiating

cos 21-4^ sin. 21=0,

tang 21= -cotang ^,

and therefore the supplement of 21 is together with p

equal to a right angle, or 1=45*'^. If the friction

vanish, the minimum plane is inclined at 45, and those

which make equal angles above and below it are de-

described in the same time.

CHAPTER HI.

SO. The circle being the line whose properties are

best known after the right line, we proceed to consider

a point constrained to move in it, while influenced by

gravity ; we will for simplicity suppose that tUo plane

of the motion is vertical. Let ; BL', fig. 171, be a por-

tion of the circle described, then it is evident from art.

23 that a body in descending from L to A acquire* the

same velocity as if it fell from M to N : the velocity ac-

quired in descending to the lowest part of the curve B is
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that generated in falling through its verse-sine MB,
and as any velocity must be destroyed in the same

space as that in which it is generated, the body, if per-

mitted to pass B, will ascend through an equal arch

BL', when all its motion being destroyed it will return

to L, and thus oscillate continually if we suppose all re-

sistance removed. The time of describing LB cannot

be accurately computed ; the integral calculus gives

expressions for it which are infinite series, and there-

fore useful only where the oscillations are of small ex-

tent. In this case by a construction similar to that em-

ployed in art. 12, we can obtain a correct result with-

out refering the circle to the cycloid as is done in most

elementary works. If an arch be very small, its excess

above its chord being incomparably less than itself, may
be neglected, and we may consider the square of the

arch as equal to the rectangle under the verse-sine and

diameter, as in Art. 16. Hence the verse-sine of LB
=LB H-2AC or 2R, and that of AB=AB*-r-2R, and

their difference is (LB* AB*)-f-2R. This is the height

through which a body must fall to acquire the velocity

at A, which is therefore equal to

\/2gx(LB* AC^)^2RVrto v^y^iX ^LB AB^Tj
R

Though B draw a horizontal line, and take B/=BL and

Ba=BA, describe a circle with the radius B/ j

sa =- s/LB= AB%\
and therefore V^g)X sa is the velocity at A: this may

r
be supposed uniform while the body describes the very

small arch AA' ; now the space aa' or AA' divided by

the velocity at A gives the time of its description, and it
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is aa^ v'lR^. By the nature of the circle aa^ ss^,

sa g sa CB
or to the angle standing on ss^ measured by an arch

whose radius is unity; hence the increment of this an-

gle, multiplied into the above radical, represents the in-

crement of the time, and the angle and time are pro-

portional.

31. When the body has descended from L to B, the

arch Is becomes a quadrant, and the corresponding arch

of the circle whose radius is unity becomes ^ p, the time

of descending from L to B is therefore in seconds

-t P X \/~^i and as an equal time is employed in as-

g
cending through BL', the entire time of an oscillation is

p xy Rl, in which the quantity LB does not appear :

T
this is half the periodic time of a body revolving by
the force g in an orbit of the radius R.

The time of an oscillation is then independent of its

magnitude, and is affected only by the intensity of

gravity, and by the length of the radius of the circle.

32. As this may appear rather abstruse to some of the

students, it may be expedient to explain the equality of

the times of describing small arches in a more popular

way. The accelerating force on a circle is as the sine

of its distance from the vertical, or since small arches

are proportional to their sines, as the distance itself:

now wherever two bodies move towards a given point by
the action of forces, which are as the distances from

that point, they arrive at it in the same time, though
the spaces through which they move be unequal. To

prove this, let us take two arches, AB and ab, fig. 172,
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and suppose that a body placed on either of them is af-

fected by a force which is as the distance from B or 5 ;

divide them into the same number of equal and inde-

finitely small parts, then we may suppose the forces

constant from A to B, and a to b. By art. 5, FSocV*
and FT^ocS. Thence it follows that AC and ac are

described in the same time ; for call the forces which

act through them, F and,^ F :/ AB : fl^'.'.AC : ac,

hence F -^ i>ocf^ s, and therefore T* is constant,

and fi)r the same reason the velocity acquired at C :

that at c
'' \C : ac, or in a given ratio. The second

portions CD and cd are described, partly by the velo-

cities acquired, and partly by the action of new forces

F' and y', the velocities are as AC : ac : : CD : cd,

and therefore that part of the times of describing

the second spaces which depends on them is the

same in both ; and since F' and /' are in the same

ratio as the spaces, if the bodies had no initial ve-

locity, their action would cause the times of describing

them to be equal, and therefore the combined action of

the two causes must produce the same effect. Thus it

can be shewn, that DE and de are described in the same

time, and so of all the rest, and therefore of the whole

curves. This applies immediaiely to the description of

a circular arch, and therefore as long as its radius is

the same, the descent through small arches will be per-

formed in the same time, however unequal they may be.

33. There is a very important case of this sort of

circular motion, in which the body is confined to move

in the curve, not by the reaction of a circular canal or

surface, but by a cord. If a heavy body be attached to

one end of a string or rod, which we suppose void of

p p
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weight, whose other extremity is fastened to a fixed

point, on drawing it aside from the vertical and releasing

it, it descends in a circle, and the velocity acquired car-

ries it to an equal height on the other side; thus it

would continue to oscillate for ever but for the resist-

ance of the air, and the want of perfect pliancy in the

string. It is evident that the tension of the string is

perfectly analogous to the reaction of the solid surface

in the preceding articles of this chapter, and therefore

the conclusions drawn in them apply to the motion of

such a body, which is called a Simple Pendulum.

34. This instrument is employed for the measure-

ment of small portions of time; a small leaden ball,

suspended by a thread of such a length, that the interval

between the centre of the ball and the pin on which it

hangs is about 39.1 inches, will perform an oscillation

every second, and as it continues to vibrate for several

minutes, by counting the number of its swings some ob-

servations can be made in the absence of a clock or

watch which shews seconds. By this apparatus, simple

as it is, the astronomers were wont to measure intervals

of right ascension previous to the discovery of the pen-

dulum-clock by Huygens. It is manifest that no suc-

cessive oscillations describe equal arches, as in each the

resistances destroy some of the motion of the pendulum ;

but provided the greatest angle which it makes with

the vertical be not more than two degrees, all oscilla-

tions are isochronous, that is are performed in the same

time: if the arch of vibration exceed this, a swing of the

pendulum will occupy more than a second, and a cor-

rection may be applied, which is given in the note (b).

35. This want of Isochronism led the geometers of

the 17th century to seek for a curve which possesses
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this quality, that a pendulum moving in it describes

all arcs, whether great or small, in the same time; and

they have found that in vacuo it is a Cycloid. The
com.mon proof of this is needlessly tedious, serving only
to give the time of describing an evanescent circular

arch, which we have already derived from other princi-

ples ; a concise demonstration may therefore suffice. In

Art. 21, Statics, it has been shewn that the power re-

quisite to sustain a body on a cycloid, whose axis is

vertical, is as the arch of the curve interrupted between

it and the vertex; this power is equal to the force

which accelerates a body down the curve, and therefore

the force at any point being as the distance which re-

mains to be described, arches however unequal must be

described in the same time.

36. Huygens, to whom Physics owe so much, was

not contented here, but he actually contrived to submit

.this theory to the test of practice ; in the article just

referred to, it appears that the evolute of the cycloid is

an equal cycloid, and therefore theextremity of athread,

unwrapped off a semi cycloid from its vertex to its base,

traces an equal one. Let ABE, CDE, fig. 173, be

two semicycloids placed with their bases in directum,

and let the length of the pendulum be twice their axis,

then on drawing it aside, the thread applies to one of

them, and on its return is compelled by the motion

of the ball P to pass the vertical, and lap on the other,

therefore the ball moves in a cycloid.

37. This elegant device is of no practical utility, for

clocks, whose pendulums are thus fitted, go far worse

than such as have them circular
;
and it will hereafter

appear that the theory is true only when the mass of

the pendulum is of evanescent bulk; it is however well

entitled to a place here, both from its beauty and from
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the means which it gives of constructing the velocities,

times and spaces, when the force is as the distance. Re-

turning to the circular pendulum, the equation

T ^j)Xx/R\
g

instructs us that the times of the vibrations of differ-

ent pendulums are as the square roots of the lengths;

hence the half-second pendulum is I of 39.14-, or 9.78

inches, it is used in small time pieces; and one IS feet

^ inch long is of two seconds. Hence also if heat or

moisture produce a minute variation in the length of

the rod or string, it is accompanied by a corresponding

variation in the time of vibration.

38. We have stated that g varies with the latitude and

elevation above the level of the sea, and the rate of the

pendulum must vary in its inverse subduplicate ratio;

hence, from observing the times of a vibration in dif-

ferent places we can determine more accurately than

by any other method the values of^, or of the space de-

scribed in a second by a falling body ; for if we ascer-

tain the length of the pendulum which swings seconds,

the equation T=;?-v/ R~^becomes l^' ~ ^lO X p, or

~g g

g= p'^K. This quantity is twice the space described in

a second by a falling body, and hence we derive the

proportion, the space described in a second : half the

length of the pendulum :: the scjuare of the circumfer-

ence of a circle to the square of the diameter. In this

way the error of observation cannot be so much as ssItss

of the whole quantity.

39. Lastly, the pendulum is applied by astronomers to

determine the excentricity of the earth, which it can effect

with more precision than is afforded by the measurement

ofdegrees of the meridian. The superficial gravity at the
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surface of an elliptic spheroid, and therefore the length

of the second pendulum, is a given function of the ex-

centricity and the square of the sine of the latitude of the

place ol observation ; where, therefore, two of those quan-

tities are known the third can be found : this, however,

belongs to physical astronomy, and would lead too far

for an elementary treatise.

NOTES ON CHAP. V.

(a) The time of describing the circular arch is rea-

dily investigated, when it is so small that the fourth

power of its ratio to the radius may be neglected. Let

a be the extreme angle of oscillation, and u any other

angular distance from the vertical, rdu is the value of

ds, and the height through which the pendulum has

descended being r
[cos

u cos o] ,
we have

dt
duXV~7^

'^''Ig)yy COS u COS a \

The integral of this cannot be given in a finite form,
but it can be obtained for the particular case where a is

evanescent by means of the series cos. a=l a*+ a*

2" 2.3.4,

&c. for omitting the powers of a and u above the second,

the second member of our equation becomes

VT^ </m- X --

g V a* w^l

and integrating

/=^^
g

X arc (cos =s fi"^
a/
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which requires no constant. If the arch ?^=:0, or if the

pendulum describe the entire of a, u = 0, but is the

a

cosine of ^p, and as the ascent occupies an equal time

with the descent, the total time of an oscillation is T =^

P^"^ r\ Some have supposed that in this case the

g
time of describing the evanescent arch is the same as the

time of describing its chord, or of falling through 2r;

but the inaccuracy of this is manifest, as these times are

in the ratio of^ : 4.

If we suppose the length of the pendulum to receive a

minute variation dr, dT= pdr, or calling dr = E, dt

:=^27 V7^ xE=^TxE. The ordinary variation of r

i"
arises from the effect of heat on the rod which sustains

the pendulum, and in this case E is the product of the

change of temperature into the number expressing the

expansibility of the rod ; and thus the error which is

produced can be computed.

(b) The integral of di can be obtained by a scries,

for

Vcosw cos ^
=

-v/ sin^^- asm^^^t^ ^ '^2^ ;

du=i2d w, which give

d\u
<j(sin \ii)

cos \u
Call sin J , A, and sin \ u, AV ;

we have

g
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Devolope
^

by the Binomial theorem, and

each of whose terms is to be integrated between the li-

mits u=a and w=0, or V=l and V=0. The integral

fz
between those limits is (see Lacroix Calc. Art. 381)
^p : the

1/? C 1.3.5,2yf--l
I

C2.4.6,2;i i

and thus integrating we derive

g

/l_.3^5_\^AH-&c.7
V 2*6 / >

taking T to represent the time of ascent and descent.

In this expression A is the sine of half the swing from
the vertical or the square root of half its verse-sine, and
thus it is evidently seen, that the time increases with

the extent of this arch. If the arch be observed the

correction is easily found, by subtracting which the

time in an evanescent arch is obtained. Let 5 be the

sum of the terms of the above series

X =:
^^ PX^* but '/^l jp

= ^ the time of an
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evanescent arc, put t .-= T C, T = 5 (T C),

The fraction 1 may be expanded by the multinomial

s

theorem, and calling the coefficients of the powers of

A', ^, c, d^ &c. its developement is

\j=.\^hk'^ |6^ c|a* J5^
25^+ ^1

A6 + &C'

s

hence

C = T56A' (&^ c)A^+ (^)^ 26c+c7)A6 &C.J

If in the correction we neglect the powers above the

square, which in practice affects the value of C only in

the ninth place of decimals, the correction is

C-Tx A\
4

(c) In the cycloid, let S be the total arc of descent,

and s any distance from the vertex, a the axis, and H
and h the altitudes of the extremities of S and 5; a H
zi iS)^ by the third property of the curve, Statics Art.

21,

2a
Hence

t = ^ fj. xarc(cos=:= _- 1

g
which when s = gives

T= ^<B X p
fe

an equation which shews that the oscillation of a cy-

cloidal pendulum is performed in the same time as that
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in an evanescent circular arc, whose radius is ra, or the

length of the cycloidal pendulum.

The time in which a falling body describes a is V2a\;

g
call it t, T 1 1 -'p : I f or as circumference : diameter.

The cycloid possesses another remarkable property

besides Tautochronism ; the inverted semicycloid is the

curve by which a body falls from one point to another

not in the same vertical, in the least time, and where a

semicycloid cannot be described through them, that

cycloid, whose origin is at the upper point, fulfills the

condition: hence the cycloid is the curve of swiftest

descent. The proof of this is not giveji here, as when

perfect it depends on the Calculus of Variations, which

is not included in the under-graduate course, and it is

to be found in most works which touch on that branch

of analysis.

CHAPTER VI.

40. The theorems which were derived in the last

chapter relative to the simple pendulum, are of no

practical value without some modification, for the

connection of the particles of the pendulum acts in

.changing the ratio of the time of oscillation to the

length. In general the mass of a body is considered

as concentrated in its centre of gravity; and from

analogy we are led to seek for a similar centre in bodies

oscillating round a centre, so that if the whole mass

Q 2
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were collected in it, the time of oscillation would not

be altered. Each particle of the pendulum is equally

acted on by gravity, and would if detached from the

rest acquire a certain velocity; their union includes a

new condition, so that their velocities are as their dis-

tances from the centre of motion, and therefore are un-

equal ; hence the velocity of some is less, and of others

greater than that due to the force acting on them. It

follows from this that an intermediate })art is accele-

rated as much as if it were free from the rest.

41. Let us suppose that ni and /, fig. 174', are two

particles connected with each other, and with the point of

suspension A by a rigid line, call AB, r, A C, u, AD ?';

the effect of the inertia of the particles m and / in re-

sisting the communication of angular motion from a

force acting at C, is equal to the force which would be

required to destroy the same motion, being also applied
there. Calling the velocity of C, V, that of w is Yxru,
for the velocities are as the distances where the angular

velocity is constant ; therefore the moving force of m is

mVx^'-T-w. This force acts on C by the lever of the se-

cond order AC, hence its action there is 7n\X r^ ; si-

milarly that of m' is ;// V /*, and if there be more par-

ticles, the force which is equivalent to the effect of their

inertia at C is Yx{7nr^-h m^i-^'-^n/y +, &c. or it is as

the sum of the masses of each particle multiplied into

the squares of theic distances from the centre of motion.

These products are called Moments of Inertia, and

must be carefully distinguished from the moments of

forces, which we call Statical moments. For some of

their properties, and the methods of finding them in

several instances, see the note {a)
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42. If we suppose the point E such, that the force at

C would produce the same angular acceleration in the

whole mass supposed concentrated in it, and call its

distance i^^ we have V x Smr^-\-m'f'~ -{-hcX =
_V

yn+ m' 8cc.\- x ^^, for in this case each?- becomes

equal to k. The mass of the pendulum M=m-f?/-}-&.

so that the sum of (wr^ + ;7//*&c.) or the moment of

inertia = M^^. The point E is called the centre of

Gyration with respect to the axis of suspension A, and

its position varies according to the line which is as-

sumed as an axis. If we suppose the centre of gravity

to be assumed, the resulting centre of gyration is called

the principle centre, and when it is known, any other

can readily be found. Let A, fig. 175, be an axis of

rotation, G the centre of gravity, whose distance from

a particle at B is {, let AG=7,then BA== BG-+ AG*

=i=2AGI, or mr'=s wii+ma^=i=:2aX{mXGl). The

same equation is true for every other particle ; hence,

adding all the equations together, aud denoting the sum

by the symbol /* prefixed

The last quantity is the moment of the body with

respect to its centre of gravity, it therefore equals cy-

pher by Statics, Art. 9,J^ ma^ is M the mass, multiplied

into a^ ;Jrn^'^ is the moment of inertia with respect to

the centre of gravity, and calling the distance of the

principal centre of gyration from the centre of gravity

Cf we have
'

Hence, where c is known, the moment of inertia can be
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found for any parallel axis. Hence also, it is the least

possible when a =0.
(/^)

43. We can now express the resistance of the pendu-
lum to acceleration more simply, for the expression of

Art. 41 becomes VMA'2-i-% and therefore the inertia of

the body, or rather its quantity of motion when moving
with the velocity produced = thit of a body MA;- -f-w*

moving with the velocity V Lei ^ be the force which acts

on a particle ; supposing it to act in parallel lines, its total

result must be applied at the centre of gravity, andis ^M
at the distance a. The effect of this force at the distance

u fromthe axis, is found by augmenting it in the ratio of

fliw, oritib^MXrt. This force has to communicate

u

motion to a mass whose inertia is equal to that of M/t^ ap-

plied at w, and if we divide the moving force by the mass

moved, we obtain the accelerating force =:<PxM^^

If now we suppose the distance u to be such that a single

particle at that distance would experience the same acce-

lerating forci <p, we have the equation

F '

a

Such a point is called the Centre of Oscillation, and

it is evident tliat its distance from the axis, which

we will hencefirth denote by L, is the length of

an isochronous simple pendulum, for such a one will

in any instant be equally accelerated with the given

compound one, and therefore their times, of oscillation

will be the same, {c)

44. From this it appears that the length of the simple

pendulum is a third proportional to the distances of the

centres of gravity and gyration, and the mathematical
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investigation of it is reducible to the finding them. In

Statics, chap. 3, tle method of determining the first

has been sufficiently explained ; the latter research is far

too compHcated to find a place here ; there are, however,

some properties of the centre of oscillation which we

may mention. It has been shewn, that k^= c* + *,

hence L= fl:+ c*, and the distance between the centres

a

of oscillation and gravity
*

Where the form of
a

the pendulum is given, c is constant and therefore L, to

which the square of the time is proportional, varies with

ai when a = 0, or when the pendulum is suspended at

its centre of gravity the time is infinite, and it is a

minimum when a=c, or when the suspension is at the

principal centre of gyration.

If the centre of oscillation be made the point of sus-

pension, the pendulum will vibrate in the same time as

before, for we have L' = a' + ^*i in which of the dis-

af

tance between the centres of gravity and oscillation

= c^, substituting which we have

a

^a
*

a a

or the centres of oscillation and suspension are con-

vertible, a proposition which has lately been turned to

advantage.
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NOTES ON CHAP. VL

(a) The theory of the moment of inertia is of great

importance, not merely with respect to the compound

pendulum, but generally in all CHses of rotation round

an axis : the simpler theorems relating to it may be de-

livered here, but a complete discussion of the subject is

unnecessary.

1. If we refer a body to three rectangular axes, the

axis of rotation may be considered one of them, and sup-

posing the body resolved into elementary portions c?M,

drawing through each of them a plane perpendicular to

the axis of rotation, its moment of inertia is r/M, mul-

tiplied into the square of the line drawn from it to the

intersection of the axis with that plane. If the moment

be sought with respect to the axis of s, r^=^--|-j/^, and

therefore the moment hS {^^-^y^) dM, the integral

being extended to the whole extent of the body; the

moment with respect to the axis o^ xhj (i/'+z;*) (/M,

and that with respect to the axis of j/ hf(x^-\-z'^) dlsi.

Each of these integrals is the sum of two, thus Z', the

moment with respect to % isf dM)<,x^-\- fdMXy^, the

first being the sum of the products of each particle into

the square of its distance from the plane of yz, and the

second similar with respect to the plane of xz. These

sums are called moments with respect to the planes.

We will call/^Mxa:% A.fdMXy', B,fdMxz%C,
and it is evident that

Z' = A+B, X' =B4- C, Y = A+ C. (l)
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2. If we know the moment of inertia with respect to a

given axis, we can find that respecting an axis parallel

to the first ; for let its coordinates be /, m^ 6, then x c= x'

4./, J/
= y -fwz, and x^ -f3/^ =(^4- 1) + (jZ+w?)*, there-

fore 71 =f{x'^'\-yy dM ^fl ^+m^) c?M + 2 ifx'dU

+2 mj^y'd^l ; the first of these terms is the moment with

respect to the second axis, the second is the mass of the

body multiplied into thedistance ofthe axis, and the other

two are the products of the coordinates of the new axis

into the Statical moments of the body with respect to

the planes 3/% x'z.

This expression admits of considerable simplification;

for in the first place we may take the new axis passing

through the centre of gravity, and as the statical mo-

ment of a body, with respect to a line or plane passing

through that centre is null, the two last terms vanish,

therefore

Z' = Z"+Mx(/*+?w')
The moment of inertia being once known, with respect

to the axis passing through the centre of gravity, this

equation enables us to compute it for another parallel to

the first, and distant from it by a, for l^-\-m''
= a*, and

we must add Met* to the moment respecting the centre.

3. The last equation is often presented under another

form, for the quantityV('^^+i/^) d^l may be represented

by MX:', k being the distance of the centre of gyration ;

let c be what k becomes when 7J is Z" and we have

Mk^ = Mc^-|-Mrt% k'' = c^^a', (2)

4. The most important part of the theory of these mo-
ments is that which results from transforming the axi^

of rotation into others making with them determinate

angles, and the study of the principal axes ; but this



304 A SYSTEM OF MECHANICS, &C.

part of Dynamics is much too abstruse for the purposes

of the present treatise, and tliey who wish for move in-

formation respecting it will find it very welJ discussed in

the Lecons de Mecanique of Proiiy, or the second vo-

lume of Poisson's Treatise of Mtchanirs.

5. We proceed to explain the mode bv which the mo-

ment is computed for a given body. '1 i)e qiumtity r/M

is a rectangular paralielopiped, which results from con-

ceiving the body to be cut by a number oi' })lanes parallel

to those of the coordinates, it is therefore, if we suppose

the density of the body unity, djc dy dz and

'^' = ///(^ *+j/^) ^/^ (^y ^~.

the three successive integrations beiD<^ each made on the

suppositions of two of the variables constant, and oeiiig

extended to the limits of the body as in the cubature

of solids. One example of this method may sufhce.

Let a rectangular parallelepiped turn round its side AB,

fig. 176, which we will consider as the axis ofs;, the

origin being at A ; to find its moment.

fff {pC^-^-y^)
d^ (^y dz, .V being the variable is =

r f / f.
1_ j/^x \

dif dZf y being the variable=

J J
''LM. J^

J- I dZi % being variable =

J {x^ijz-^y^xx)

The mass of the body is xyz, and putting MA:* =

xy fili^yhemomentis Mx(^-!ii'') from which

the moment relative to an axis passing through the

centre of gravity can be derived ;

"*=i!+^' A:^-a^=xNK^=c% (3)

J 12
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whence Mc* is known. It may be remarked, that each

of" the three integrations has a definite meaning, the

first expresses the moment of a row of particles at CD,
the second of a slice ECDF, and the third of the whole

body.

If we suppose y and z indefinitely small, the paral'

lelopiped becomes what is sometimes called a physical

line, and its moment, with respect to one extremity,

becomes Mcc', and with respect to the centre of grai-

3

vity M:f*.

12

6. The same process might be applied to solids of re-

volution, but it may be superseded by one simpler, so as

to require only one or two integrations, when the mo-

ment is sought with respect to the axis of revolution,

or one at right angles to it. If we take the former

for the axis of z^ all sections perpendicular to it are

circles, and each of them being similarly posited with

respect to the axis of x and 3/, the moments with res-

pect to those axes must be equal ; these are respectively

B+C, A+ C, therefore A=B, Z' = A +Br:2A or 2B.

The function C is easily found, for taking a circular

section whose thickness is dz^ and calling its radius

it zz ^a,'^H-j/-,^ every point of this is at the same dis-

tance z from the plane of xi/ passing through the origin :

hence the moment of ihe section with respect to the

plane is pu'^z dz, and its integral taken in the limits of

.z gives C. The functions A and B are ^iven if we
have Z^j and to seek this let us suppose the sections

divided into rings, whose interior and exterior nuVii

differ by du, the mass of one of these is ^fiuhw'z, and

its moment with respect to the axis of z is 2p2i^dudz, as

R R
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u is its distance from it, and the integral of this or

^pu^dz is the moment of the section. The integral of

this is Z'.

7. The first example of this method shall be the cy-

linder: as M is constant, J ^ pu^dz is ^pu^z; and as

M=pu^z, Z'=^M X M, hence B=^u^M;

C=^fpu^z^dz^P^=.^^
S 3

The moment with respect to the axis of x, X' = B-f-C

The moment with respect to the centre of gravity

from which the problem can be solved relative to any
other avis parallel to z ov x.

8. In the cone mz= w, therefore Z' f ^ pm^z^dz ~

^^pm^z^i or putting SM for;?w=*sr, =^3- Mx*.
C= fpm^z*dt==:^pm^z^=i

Mz\ C+B, or X' =
y|M (w*+4-2;*) : in this case the origin is at the vertex,

and by taking the integral within the proper limits

the moments of a conical frustum can be found with

facility.

9. Lastly, for the solid formed by the revolution of a

circular arch round its verse sine, u* = 2rz z^,

hence

Z'=rii?X r 4> r^z^dz 4 rz^dz+ z*dz

which being extended to the whole sphere, by taking

the integral from = to 2 = 2r, gives
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These are sufficient for our purpose, more particularly

as they apply to the usual forms of the parts of pendu-
lums.

(b) For the ready investigation of the propositions

relating to motion round a fixed axis, which it seems

necessary to introduce here, it may be useful to men-

tion a dynamical theorem known by the name of

D'Alembert's Principle; it is nearly self evident, but

affords such facilities for reducing any problem to an

equation, that Lagrange has built the Dynamics of his

Mecanique Analytique on it, combined with the principle

of virtual velocities.

Let us consider the particles of bodies, m, ?)/, iri\ &rc.

as acted on by forces which would impress on them if

unconnected the velocities t?, v\ i", &c. Their con-

nection alters these velocities, so that the particles ac-

tually move with the velocities w, u'. iJ' ^ &c. now the

principle is, that there is equilibrium between the quanti-
ties of motion mv-^-m't'-^- &c., and mu-\-mu\ &c. the

latter velocities being supposed to have their signs

changed, or if we call the result of v and w, s, of i/

and?/, s\ ms-{-m's-\-, &c.=0. This is equivalent to

saying that there is no new moving force introduced by
the connection of the system, and, therefore, that the

sum of mv must be equal to thesum of fww.

Let us suppose a body fx, to impinge on a body move-

able on an axis at a distance from it =:^ and with a

velocity u, its quantity of motion is fiv ; if we suppose
the body f*. annihilated after the stroke to avoid consi-

dering its mass, we have by the principle, equilibrium be-

twee DftVf and the sum of the quantities of motion of

each particle m of the body struck. Let be the an-

gular velocity of the body struck, a particle w, at the
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distance r from the axis has the linear velocity ttr,

therefore the quantit;y of motion of m is w?ftr, and the

sum of these must be in equilibrio with uv. This equi-

librium is made is made by the cohesion of the body
which acts as a lever, therefore each force must be mul-

tiplied into its distance from the axis, and their sura

= 0, or

Vp/=X / mrXr+TrJ/Xr-\- m"i"Xr'f, &c.

or putting for J mr*'{-m r'2+&c. its value M^*

fivy^oMk^, (1)

from which <, the angular velocity is known. This last

equation shews that a given impulse would produce the

same angular velocity if the whole mass were concen-

trated in a point whose distance is k, which is therefore

called the centre of gyration : hence we can compute
what part of the impelling power is consumed in com-

municating rotatory motion, a problem of importance in

machinery.

If the equilibrium between the forces impressed and

the quantity of motion produced is produced around

the fixed axis, this must experience a percussion equal

to their sum or difference, at least in the case where

the impulse is made perpendicularly to the plane pass-

ing through the centre of gravity and axis. If it be re-

quired that it shall receive no percussion, we must have

fAV=off mr+mr^-i-Scc. =0Ma, (2)

a being the distance of the centre of gravity from the

axis: dividing eq. (1) by eq. (2) we have

P (3
^

a

If therefore an impulse be given at the distance/ from

the axis, it is entirely expended in communicating an-
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gular velocity j and conversely, if a body moving round

an axis strike another, it communicates ihe ^rtiitest

quantity of motion to it when the direction of the im-

pact passes through this point, which is therefore called

the centre of Percussion ; for the detailed theory of

which see Poisson, torn. 2, art. S45, or Gregory's

Mech. vol. 1.

(c) In the compound pendulum, each particle is

acted on by a force obtained by multiplying g into

the sine of the angular distance from the vertical, call

it y, then the quantity of motion Impressed in an instant

of time, which is to be substituted for ^t; in cq. 1 of the

last note, is ydiX f {m-^ni-^m'\ kc) The quantity

acquired in the same time is dttxf {mr~\-mJ-\-, &c.)

and expressing the equilibrium of the lever, as before,

we have

vdiXf mr = dmX f mr^

or substituting for the integrals

ydtXMa =dtX Mi% from which

dji_ =yX_ (1)

dt k^

which is the expression of the angular accelerating

force. We can compare this wiih the simple pendulum,
for we have by equat. 4, chap. 1, putting / for its length,

dv = y, hxitdv = lie*

dt

d^ = y, hence if we make 1= k^ the angular accelera.

ting force is the same in the simple and compound pendu-

lums. The point in the perpendicular to the axis which

passes through the centre of gravity, whose distance from

the axis is is therefore that into which, if the
a
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whole mass of the pendulum were collected, it would

vibrate in the same time as before ; it is called the centre

of oscillation.

2. We will call its distance from the axis L, and

remark, that the theorems of chap. V. apply to the

compound pendulum by substituting L for R, and we
will give some other general results before we examine

the particular values of L in solids of a determinate

figure. If we substitute for k^ its value a^+c*, we find .

L = a+c^ from which it is manifest that the time of

a

oscillation varies with a : when it is 0, or when the

axis passes through the centre of gravity, L is infinite,

the motion of oscillation being converted into one of

gyration. It is also infinite when a is infinite, and must

at some intermediate value, of it be susceptible of a mi-

nimum; dh da (I -"^^x the minimum of L is there-

a '

fore when a =-- c, or when the axis of suspension passes

through the principal centre of gyration. The value of

c varies with the plane of rotation, and therefore also

the time of vibration.

From the connection between L and a it is ma-

nifest that Huygens's cycloidal pendulum is of no

value, for let g be the part of the thread evolved

off the semicycloid, and terminating at the centre of

gravity of the pendulum ; we may neglect the threads

weight, and put L=g-l-c ; but that the centre of dscil-

lation should move in a cycloid, L should equal j; it

therefore is constrained to describe a curve very differ-

ent from the cycloid, and by no means possessing Tan-

tochronism.

3. To find the centre of oscillation we divide the m-
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ment of inertia by the statical moment with respect to

the axis, and obtain L ; our first example is when the

pendulum is a rectangular parallelepiped, vibrating

round an axis drawn through the centre of gravity of

one of its planes parallel to the axis of z,

Z'U=M(..+.)=M(tl!l+f!)
by par. 5, note (a), and because a=t x;

The Statical moment is M a = M jt, therefore L =
"i~

I '^+ ^* If the solid be of evanescent thickness, y*
6x X

vanishes, and the centre of oscillation is | of a: from the

axis : and if the axis be transported to the principal

centre of gyration L = ^

{^*4-v*). If we suppose the

solid to be connected by a rod void of inertia and

weight to an axis parallel to that of x or y, the values

of L in these two cases are different, and their difference

is 2* 5/.

12a^

4. In the cylinder, the moment round a diameter of a

\
\ and the Statical mo-

ment is ^M, therefore L = | z + J w^, which, as in

z

the last example, is | z, ^hen u vanishes in respect of

z. If the axis ofrotation be parallel to the axis of the cy-

linder or perpendicular to it, the values of L are a+ | m*,

a

, 3?^--^2;*, which are equal when * = 3m*.

12a
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5. For the cone, where the axis passes through the

vertex, the moment of inertia is by par, 8, note {a) MX S

20

(f/*+4), the Statical moment is, as a =f x, 3 Mx z,

therefore 4

5z

which when the cone is right-angled z &s z = u.

6. Lastly, for the sphere suspended by a thread whose

inertia is evanescent, c^jr^, therefore

5a

The bobs of pendulums are usually composed of

two spherical segments applied by their bases j here

7. When the figures and masses of the several parts of

a compound body are given, the centre of oscillation of

the whole may be found. The moments of inertia are

all positive, and denote them by M, M', &c. the Statical

moments ^, f*', &c. are to be taken with their proper

signs, and

L = M+W+W\ &c.

Let /, Z^ &s. be the values of L for each of the bodies

separately, and M = //, M' == ft'l\ &c. therefore the

equation becomes

L = i|*M^r+,_&c^

which suffices either for theoretic or practical determi-

nation of its value.
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CHAPTER Vn.

^5. Having touched on the simpler parts of the theory
of the compound pendulum, we are able to proceed with

the application of this instrument to the various pur-

poses for which it is used. In chap. 8, of Statics, the

wheel-work of the clock was desciibed, and it was stated

that the last wheel was constrained to make one revolu-

tion in a minute; this is effected by the application of a

pendulum, which is connected with it so, that a tooth of

the wheel escapes at every second oscillation of the pen-

dulum; the wheel has thirty teeth, and if the pendulum

swing seconds, the above condition must be fulfilled.

The pendulum consists of a rod, whose lower extremity
is connected with a heavy lenticular mass, called the

Bob, so that their connection is at the centre of gravity
of the latter; its upper end is suspended by a fine

spring, or by knife edges, so that it may vibrate with

the utmost freedom, and here the connection is made
between it and the wheel-work. The common method

of this is shewn at
fig. 177. A is the last wheel, its teeth

are sloped in the direction of its motion ; CBD is a piece

turning freely on an axis at B, and carrying the pallets

C and D : it is connected with the pendulum whose

rod passes behind it. Supposing the pendulum swing-

ing from right to left, the tooth E presses on the in-

terior face of the pallet C, which may be compared
to an inclined plane, and accelerates the pendulum
till its point drops off the edge ; but during this time

the pallet D has descended into the hollow between F
and the preceding tooth, and when E escapes, F falls

s s
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on the exterior face of D, and acts on the pendulum

through its return; when it escapes, I acts on C, and so

on. This arrangement answers two purposes ; it regis-

ters the number of vibrations, and at every oscillation

it gives the pendulum a new impulse, which continues

its motion notwithstanding the resistance of the air

and the friction of the suspension which tend to stop it.

46. The apparatus which we have described in the

last article is called a Scapement: this kind is in com-

mon use, but it cannot be considered an accurate re-

gulator, as the pendulum is continually urged by the

wheel A, except at the instant of the drop of a

tooth. The force which is thus added to it combines

with that of gravity, and disturbs the isochronism of

the vibrations; it is indeed insignificant in respect

of the moment of a heavy pendulum, but still has

a sensible effect. Thus, if the weight which im-

pels the clock be increased, the vibration becomes

quicker, and it is evident that its action may be variable

from several causes. To obviate this, other Scapements

have been invented, which permit the pendulum to vi-

brate, nearly as if detached from the clock, so that its

rate is not disturbed by the force necessary to continue

the motion. The Dead-beat is the most esteemed of

them: it is shewn at fig. 178. The surfaces C and D
of the pallets are formed into cylinders, whose centre

is at B ; when the tooth E escapes by the pallet C being

carried outwards by the pendulum, it gives the requisite

impulse as it slides over the inclined plane e, and F

drops on the surface D. It presses on this, but as it is

cylindncal, the pressure has no effect on its motion ex-

cept what arises from its friction, which between po-

lished surfaces of metal is insignificant, and therefore is
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insensible in comparison of the quantity of niotion of the

pendulum. The time of oscillation is therefore affected

by the power which impels the wheel work, (commonly
called the Maintaining Power), only so far as it may af-

fect the extent of the arch of vibration. Thus, if it be

increased, the arch becoming larger, the time is in-

creased, as large oscillations are performed in a longer

time than small ones. The name of this scapement

proceeds from this, that the second hand of the clock

drops from one division to another, and stops there;

while in the common scapement, after the drop it re-

coils, having an irregular and unsteady motion. The

Dead-beat is used in most astronomical clocks.

47. In fixing up a clock, great attention must be

paid to the solidity of its supports, as this circumstance

may affect its rate materially; a quantity of the pendu-

lum's motion being expended in bending or moving
them. It has been found that two clocks, attached to

the same rail, kept time for upwards of a year without

varying a single second, and that when one of them

was stopped, the action transmitted from tKe other soon

put it in motion : these phaenomena ceased when tlie

rail was sawn across. Astronomers are well aware of

this, and therefore suspend their clocks from large stone

pillars.

48. The Bob of the pendulum is made as massive,

and the rod as slender as is consistent with its stiffness,

that the moment of inertia may be as great as possible.

The rod must be stiff, as otherwise it will bend by the

inequality of the quantity of motion possessed by each

part of the pendulum; and the bob, besides its rotation

round the point of suspension will have another round



3l6 A SYSTEM OF MECHANICS, &C.

its centre of gravity, which may interfere with its vibra-

tions, {a) As the precise place of the centre of oscil-

lation is unknown at first, the pendulum requires to be

regulated so as to vibrate seconds ; this is performed by
a small weight, which is moveable by a screw, and can

be raised or lowered a minute quantity, so as to shift

the centre a little : it is commonly placed below the bob,

but as a small change of its place makes a considerable

alteration in the rate, it is better to have it moveable

along the rod. If its distance from the suspension be

half the interval between that and the centre of os-

cillation, a considerable motion of it produces but a

sm;d] alteration in the time of a vibration, (b)

49. But the most essential part of the adjustment

of the pendulum is the apparatus, by means of which

its length is preserved invariable at all temperatures.

The expansion of solids has been already noticed on se-

veral occasions ; this must affect the distances of the par-

ticles of the pendulum from the axis, and therefore the

value of L. Let e be the expansion which the unit of

length of any body experiences by an elevation of tem-

perature of one degree, ^ ^ is that corresponding to /

degrees, and this multiplied into any given length gives

the expansion of that length.

Now, if we suppose the pendulum composed of ho-

mogeneous materials, since its expansion in every direc-

tion is as its dimension in that direction, it continues

similar to itself, and therefore k, and a of Art. 43, are

augmented by the expansion in the proportions of their

lengths. We have L = A:* ; ifthe temperature be raised

a

t degrees, these quantities become
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L' =(i^l = ^ X ilf^= ^xl+el^
a-\-eta a 1+ ei a

LX (1+^/), and U L = L x ei

or the effect of expansion on L is found as if it were a

simple pendulum. We must now find what effect this

increment of L has on T, the time of oscillation. In

art. 37, putting L for R, we have T^ocL, therefore

T^ : T' ^ : L : L', and T^T^^ : T^ : L L': L. If we

substitute for T* T'% (T-f T') (TV) and consider

that the first of these factors is ultimately 2T, and that

L L' is et X L, we have

2TxT T^T^:f/xL:L, and

2

or the difference of the time of an oscillation produced

by t degrees, is to the time, as half the expansibility of the

substance multiplied into the variation of temperature, is

to unity. Let us suppose that it is made of brass,

whose expansibility is nearly .0000272 ;
if we divide

this by two, and multiply the quotient into the number

of seconds in a day, we obtain the increase of the

clock's rate, produced by one degree, 1.77 seconds: the

extreme difference of temperature in winter and summer

is often more than forty degrees, which would occasion

a difference of 47 seconds per day. The expansibility of

steel is about half that of brass.

50. The first contrivance to obviate this cause of er-

ror was invented by Graham, a celebrated instrument

maker, and it may still be considered as the best. The
rod is iron, and instead of a bob it supports a cylinder

of glass, which contains a quantity of mercury whose

weight exceeds considerably that of the other parts of

the pendulum j then the centre of oscillation will nearly
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coincide with that of gravity, on account of the chief

part of the mass being fluid. Let the height of the co-

lumn of mercury be h, and the length of the rod be H,
their expansibilities being E and e, then if the tempera-
ture increase one degree, the centre of gravity or of

oscillation is carried downwards from the axis by the

quantity EH ; at the same time the expansion of the

mercury raises the centre through eh, and if H and h

be reciprocally as E and e, these opposite changes
counteract each other, and the centre preserves the

same distance. The adjustment of the mercurial pen-

dulum is readily effected ; for if the clock gains in warm

weather, there is too much mercury, and vice versa;

therefore by removing or adding a liltla it may be

brought to an exact compensation. Besides this it is

much more easily procured than those which shall be

mentioned afterwards ; and it alone can be employed
when a cycloidal pendulum is desired, as the theorems

relative to the centre of oscillation do not apply to a

fluid mass revolving round an axis: see notes (c, 2) of

chap. 6, and {b) of the present.

51. There are a variety of solid compensations which

depend on the unequal expansion of metals ; we shall

only describe two. Harrison's Pendulum, commonly
called from its shape the Gridiron, is shewn, fig. 179,

as it is at present constructed ; B is the suspension, it

carries the bearer AC, to which are rivetted the similar

rods of steel AD, CE, whose expansion carries the

piece DE further from B. To DE are fixed FH, IG,

bars of an alloy of zinc and silver, whose ends pass

loosely through holes in AC; these carry HI, from

which the bob of the pendulum is suspended by KL,



A SYSTEM OF MECHANICS, &C. 319

'

which passes through DE. In this arrangement it is

easily understood that the expansion 'of the bars AD
and KL is downwards, while that of FH is upwards ;

and therefore if FH : AD + KL inversely as these ex-

pansibilities, the point L will remain stationary. The
bars IG, CE are not essential to the compensation, but

are added for symmetry and compactness.

52. The other solid compensation belongs to Biot ;

it is the application of a method, long used in the ba-

lances of watches, to the pendulum. If a bar of steel be

soldered to one of brass of equal length, as in fig. 180,

where AB, CD are tlie two metals, the compound will

not continue straight if the temperature vary : their ex-

pansions are unequal, and therefore by heat CD be-

comes longer than AB, which necessarily produces

flexure. The quantity of this, measured by the dis-

tance of D from a plane to which C is attached, is in-

versely as the thickness of the bar, and directly as the

square of its length; and it may be some hundred

times the direct expansion of the metals. The balance

of a watch (for the theory of which see note (c) has this

applied by a compound rim, shewn at fig. 181. CD is

its diameter, which bears the circular arcs DE, CF,

composed of brass and steel, (or rather of brass and

platina, to guard against magnetism) with the brass

outwards. To these brass weights M and M', on which

the momentum of the balance chiefly depends, are at-

tached. On an elevation of temperature, the arms CB
and BD lengthen and increase the diameter of the ba-

lance, while the curvature of the rims carries M and M'

nearer to the centre. By sliding the weights towards

the arms the effect of the curvature may be diminished.
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and thus we can correct not only the expansion of the

balance, but also the far more important influence of

the temperature on the spiral spring which regulates its

vibrations.

Biot's compensation is a compound bar, so attached

to the pendulum rod that its curvature carries upwards
a small weight fixed at its extremity, so as to counteract

the expansion of the rod ; it is made double for sym-

metry, and the adjustment is made either by sliding

the weights along the bars, or by placing the bars at

different points of the rod.

53. Having detailed the precautions to be used in

constructing an accurate pendulum, we will conclude

our account of it with a brief notice of the means by
which its length is measured. This process is useful,

not only for the purposes mentioned in Chap. V, but

also as it affords a ready and invariable standard of mea-

sure. The measures of different countries have hitherto

been referred to no common basis, and as they must be

compared with an arbitrary archetype, are liable to be-

come doubtful if it should perish or suffer by use : hence

it has long been an object with philosophers, that some

immutable pattern, derived from nature itself, should be

chosen, which might make the system founded also

immutable. In France the (juadrant of the terrestrial

meridian has been chosen as the standard, though it is

probably not uniform in different longitudes, and ofmost

difficult application ; while in this country the length of

the second pendulum has been prefixed as a means of

verifying the ordinary measures. Though it be easier

to measure the pendulum than the degree of the meri-

dian, yet it has its difficulties, of which the chief is
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thdt we have no means of knowing the precise position

of the centre of oscillation : the theory would give it if

the materials were of uniform density, but this is never

the case in practice. This, however, was the method

used by Newton, and the result which he obtained,

though not accurate, was the best which philosophers

had till lately. About forty years ago Mr, Whitehurst

discovered a new method ; his pendulum was a sphe-

rical ball suspended by a fine steel wire, and suspended

from an arm attached to a strong vertical plank. The

wire passed through a slit in a moveable clip, which

could be slided along the plank, and when fixed at any

height evidently determined the axis of rotation of the

pendulum. It is manifest that by fixing the clip in two

different positions, and observing the times of vibration

by connecting the apparatus with a clock, we determine

the ratio of the lengths of the equivalent simple pendu-

lums, and if we knew the difference of these lengths we

could determine them. Whitehurst conceived that the

distance between the two places of the clip is the differ-

ence of the length ; but he was mistaken, for it is the

difference of the distances of the centre of gravity of the

ball frx)m the axis of suspension. Let the lengths in

the two experiments be L and L', a and a^ the distances

of the centre of gravity, and let the times of oscillation

be as 1 : V^y then L : U:: 1 : n. By the theory of the

compound pendulum we have the equations

L =JLl-. U
a II

and observation gives a a = D, L' = nh. In these

four equations, L, L', c, a, and a' are five unknown

quantities, the problem is therefore indeterminate unless

T T
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c be known. In Whitchurst*s pendulum, where the

wire was evanescent in comparison of the ball, it is to

the radius of the ball as v/'2^: \/~K\ nearly. Ifwe eli-

minate a' from the second equation by means of the third,

and subtract the resulting equation from the first, we

obtain

instead ofD, as he supposed.

54, Prony saw the defect of this method, and cor-

rected it j his pendulum has three knife-edge suspen-

sions, placed in the same line passing through the cen-

tre of gravity ; the pendulum is made to vibrate on each

of them, and the times of oscillation observed, also

the distances between the adjacent points of suspension

measured ; and we have the following equations:

V:=znU L''=.7iL, fl' =D, a' a'^=D',

a a' a"

seven equations to determine the same number of un-

known quantities ; the problem is therefore solved.

55. But Kater has outdone his predecessors by apply-

ing the convertibility ofthe centre of oscillation and point

ofsuspension ; for if a pendulum be suspended successive-

ly by two points, and in both cases oscillates in the same

time, the distance between them is evidently the quan-

tity L ; the matter is therefore reduced to a single

measurement, and it is infinitely easier of execution

than the triple suspension of Prony. The instrument

is shewn in
fig. 182; A is the section of a knife-edge,

B is another fixed at 39 . 2 inches from the first ; C is a
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bob which gives the requisite mass to the pendulum, and

E a weight moveable by a micrometer screw, which

uerves to adjust the centre of oscillation to the edge B.

When the pendulum is U5;ed, it is placed wiih the edge
A resting on agate planes before the pendulum of a

good clock', so that when both are at rest the index b is

seen through a small telescope, placed at some distance

in front, to cover a small white circle painted on the

pendulum of the clock. If now both pendulums be

made to oscillate, and if they are synchronous, as they

arrive simultaneously at the position of rest, the white

disk cannot be seen in the telescope, as when it passes

through the field the index is before it. But if the ex-

perimental pendulum be a little shorter than tlie other,

then if they pass together at any instant, on their return

the index will precede the disk, so that a little of it will

be visible ; and this increases with each oscillation for a

certain time, and afterwards diminishes till the disk is

again covered. From observing the number of seconds

between two successive occultations = w, the time of the

experimental pendulum is known r= 1'^ X nl
,

n

Now invert the instrument so that the edge B may rest

on the planes, and make it vihrate as before ; if the in-

terval between the occultations be as l)efc>re 7/', the

centre of oscillation is at B ; if it be greater, B is between

the centre of oscillation and gravity, and E must be

moved towards A. Thus after several trials the centre

is brought to B. The interval between the edges is then

measured by an accurate scale at a determinate tem-

perature, which in this country is 60 of Fahrenheit, and

the measurement gives the length of the experimental

pendulum in parts of the divisions of the scale, from

which that of the second pendulum can be computed.
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This however requires a variety of corrections, as the

buoyancy of the air, its resistance, &c. for which see the

paper of the inventor in the Philosophical Transactions

for 1818. (dj.

NOTES ON CHAP. VII.

{aj The theorems relative to the moment of inertia

suppose that the parts of the revolving body are firmly

connected, and that some are constrained by this con-

nexion to move faster and others slower than they would

by the action of the forces applied to them, if detached.

Conceive two particles m, /fig. 182, connected by an in-

flexible line, and this attached at their centre of gravity

to a line r turning round an axis of rotation at s : ac-

cording to note 6. chap. 6, let a force /itV be applied at

the distance J', this generates at g a force t*-^^f-r- r.

Let the angular velocity of the system be
>, r is the

velocity of ^, the centre of gravity of m and tw', there-

fore each of those particles moves with the same velo

city, and D'Alembert's theorem gives for the equation
between the motions impressed and acquired

^V/=s/ X/w+7' + &c. == r^ X M
or in this case the moment of inertia is the mass x

square of the disstanceof the centre of gravity. If then

the bob of a pendulum were attached to its rod by

pivots passing through its centre of gravity on which it

could turn freely, L would be equal to a. The same is
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also true a fortiori where the chief part of its mass

is fluid, for every part of it must have an equal quan-

tity of motion.

If a sphere be connected by a rigid rod with an axis

of suspension, as the same point of its surface regards

the axis, it must while it oscillates through a given

angle have a motion of rotation through the same

angle round its own axis
; this is also evident from the

equation k^ = c* + a' ; now if the rod be flexible as a

thread, the vel(city of rotation round the axis of the

sphere is at the beginning of the oscillation less, and at

theend greater than the angular velocity of the pendulum;
but on the whole the moment of inertia is diminished.

The effect which this has on L, and the angle which the

thread makes at any part of the oscillation with the line

joining the centre of gravity with the suspension, can

easily be determined ; but we omit them for want of

room.

(b) Let M be the mass of a pendulum, K and A the

distances of its centres of gyration andgraviiy ; m^ k and

a, the same of a sliding weight, it is required to find the

effect of a minute change of place in the latter on L.

We have

L = MK ^
Ar mk''

^
a^-^-c"- = k\ada =kdk

MA+wa
dL = 2 mada x {Mk'\-7na)mda (MK^ -f- mk"^)

(MA -f may

< Ai A .
> y^ da

\ MA+ 7Aia j

which vanishes when = | L, and as rf* L is positive,

L is then a minimum and a given variation of a
j
in-

duces the least possible change in L. If be less than

^ L, dlu is negative, shewing that when the distance of
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th sliding weif^ht is less than that distance, L is di-

minished by njoving it from the point of suspension.

{c) The movement of the watch is regulated by the

balance, which depends on different principles from the

pendulum i it is a wheel poised on its axle, which is

provided w ith a spiral spring, one end of which is at-

tached to it, and the other to a fixed point : the axle or

verge has pallets which are impelled l)y the wheel-work

as in the scapements of the peifdulum. When a pallet

receives an impulse, the balance turns on its axle, con-

tracting the spires of the spring, a!id developing its elastic

force, which is found to be proportional to the angle of

revolution j at length the elasticity destroys the motion of

the balance, and accelerates it on its return; the velo-

city thus acquired brings it back to its original position.

If 9' be the angular accelerating force, retaining the

notation of notes {b) and (c) of the last chapter,

d0 = (p'dt = f

$ being the angle from the point of quiescence; the

force is as the angle, therefore ^'= (px9,(f> being the force

at the angular unity, hence

0j0;:z(f>X 9dty #* =^(pa^ + C
nd determining the constant, so that *~0, when #=d,

V 9\ '^Q'i^

whose integration gives

t^ i- Xarc(cos = 1-) j

making #=0, and doubling to obtain the whole time of

vibration, we obtain an expression which when ^ is dc-
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termined gives the time. Let ft be tlie weight which, when

applied at the c i reuinference of the balance, winds the

spring tlirough the angular unif, the action of the i^pring

on tlie weiglit is equal to tliat of gravity, it would there-

fore produce in the mass f*, n velocity^ in one second)

and it may be replaced by a nioving force; ^X^ applied

at r, the radius of the balance from the centre. Hence

(see note b of the last chapter) the angular acceleration

fi'yf.
in one second, or ^ ==

-^rr^
and our equation becomes

which is independent of , shewing that all the vibra-^

tions are isochronous. The quantity ftr is the weight

which would counterpoise the elasticity at the unit of

distance, and the time is directly as the square root of

the moment of inertia, and inversely as the square root

of the absolute force of the spring.

{d) Let L and 1/ be the distances of the centres of

oscillation from the two suspensions, then

a a

L-V=:a- a'+c(_ll.)=ra-a'Xl- - X ^ )aaf / a a' /

The second member vanishes when a=o', which can

never happen in the actual construction of the pendu-

lum, or when a* = c*, in which case the suspension it

a

c%
in the first centre of oscillation. If a' be less than

a

r if the second suspension be between the centres of
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gravity and oscillation, X -7- is greater than unity,

therefore 1 c^ is negative, and h' is greater than L,

which is known by the oscillations corresponding to it

being slower : when this is the case L must be lessened,

and vice versa.

CHAPTER VIIL

56. In the investigation of the action of a system of

bodies on each other we encounter difficulties which are

frequently insurmountable; and even where they yield

to our efforts, it is in consequence of the application of

resources which are not necessary for the enquiries

which have hitherto engaged us. Problems of this kind

formerly engaged much of the attention of philosophers,

but they have lost most of their interest since a gene-

ral method has been discovered, by which they can

certainly be reduced to an equation; after which Tie

whole labour is analytic. Among them the percussion

of elastic bodies held at first a preeminent place, and

was the object of many experiments and calculations,

8ome of which deserve to be preserved for their own

value, and some as an exercise of the intellect.

In the outset arose a difficulty as to the nature of

percussion ; it was manifestly more complex than pres-
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sure, and seemed at first sight incomparable with it.

With that measure of the quantity of motion which

is the mass muhiplied into the velocity, we are already

acquainted, and we have stated the difficulties which

introduced a new measure ; but the Percussive force is

less simple though similar. If a leaden ball be acted on

by gravity and allowed to descend, it acquires in one

second a velocity of thirty-two feet ; if with this velocity

it strike a mass of soft clay it will penetrate it to some

depth, while it may rest on it for a second or an hour

without making a perceptible impression. In the two

cases, the moving cause is the same, gravity acting for

a second, but the effects are utterly unlike. Thus also

a cube of cast iron which could bear several thousand

pounds is crushed by a blow from a small hammer.

These and other facts of the same kind are anoma-

lous, only because we have a confused idea of effects

What is the effect of a moving force proportional to ?

If we measure it by the product of the accelerating

force into the mass moved, which gives the pressure pro-

duced, we do not obtain a value which is of practical

utility. We may take gravity as an example ; any force

may be expended in sustaining a weight or in moving it,

but the latter is that which concerns us most, and it

requires a peculiar measure. Let us suppose a labourer

employed to sustain a load M
; he is paid not in pro-

portion to M, but to MX Tin all probability, for this

mode of exertion is seldom used. This product might
be taken as a measure of the work done in that case, but

in general the work performed is analogous to raising

a weight a certain height, and we may take MxS, the

mass multiplied into the space through which it is

u u
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raised as the efTect of the force. Since SocVS this

expression is equivalent to MV% which measure is

named Vis Viva. .'^v/ i>'

In the case of the ball impinging on the clay, it in

evident that the velocity is destroyed while it penetrates,

suppose 4 inches; the force which stops it is the re-

sistance of the c)ay, and the reaction of the ball must

be equal to this : call it y, and the depth of penetration

T, then

2^MS = MV^ = 2y^M,
as the clay is supposed uniformly resisting; or yXM
the force of percussion, considered as a pressure, : gM
the weight of the ball : : S : <r. The depth <r is in ge-
neral far smaller than S, and therefore the pressure
which is equivalent to the percussion is immense. As a

numericalexample we will take a musket ball fired with

a velocity of 1600 feet at a block of elm, into which it

penetrates 6 inches, the velocity 1600 is acquired in

falling through 40000 feet, therefore My : Mg : :

40000 : ^ : : 80000 : 1 . Mg is one ounce, and there-

fore My = 5000 pounds, the pressure which should

produce the same penetration when applied by a sphere |
of an inch in diameter.

(a).

57. This is mentioned though briefly, as it serves to

explain many remarkable facts; and we proceed to con-

sider the collision of bodies making abstraction of their

figHres, and considering them as material points though
of different masses ; the effects of their figures shall be

afterwards noticed. Let two particles whose masses are

7w, m', and their velocities V, V, positive when in the

same direction, one negative when in different directions,

move in the same right line and meet at any point of it;

by the inertia of matter no new force can be added, so

that the quantities of motion after collision must be
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equal tp those before it : let the velocities after the impact
be u, ui, the motion before it is mW-Ym' V, that after is

mu+n/ w', and therefore

m\-\-n/V' = mui-in' u, (1)

in which there are two unknown quantities ; therefore

the circumstances of the collision cannot be determined

without some further condition.

58. When the particles are supposed unelastic, as if

they are absolutely hard and incapable of changing

their figure, then after the collision they must proceed

together J this gives u = u\ and equation (1) becomes

my-\-n/\' = (m+wO x u. (2)

We can in this case find the quantity of motion of each

body, that of w is mu = w*V+ m' mV and that
I /

of m^ is jnm'Y+ m'^V'

Ifm'be at rest before the stroke, V^=(), and the quan-

tities of motion are w?*V mm'\ The first of

these is evidently less than jwV, therefore the striking

body loses part of its motion ; the part lost is

vi+ m mxm' ,u-^m'

or precisely the quantity of motion which the other

body has acquired. If the bodies be equal, the quan-

tities of motion which they receive are each ^ mV, and in

general they are as m : m'.

If V be negative, or if ??/ move in an opposite di-

rection to OT, equation (2) becomes mY w/V=^
(m-f-7rt') u

which when there is equilibrium, or when u = gives

mV = m'V or the velocities inversely as the quantities

of matter.
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59. Where the bodies are elastic, the case is somewhat

different; if the bodies be hard, the transference of

motion from one to another must be instantaneous, but

it must be gradual when they are elastic. When m im-

pinges on 77i' it compresses the part nearest to the point

of impact, and the pressure is communicated to the other

parts of m', not instantaneously but witli a finite velo-

city depending on the modulus of its elasticity ; the com-

pression must increase, and the motion of m^ augment till

'=w, when thetransferenceof motion is effected as before,

and the impulse of m on m' ceases. But both bodies

have been compressed, and they must resume their ori-

ginal figure, which cannot be done without communi-

cating motion to both : the elasticity of m tends to in-

crease the motion of n/, and that of m' produces a

similar effect on m ; moreover these forces must be

equal to the forces which had exerted them. While

they were yielding to the compression m lost the velocity

V u by the collision, and mf gained m V; they must

gain and lose as much more by the elasticity, so that

their velocities after they have returned to their original

form are V (2V .2) or 2 V, and V'+(2m 2V0 or

^u v. Call them U and U', and substituting for u the

value given by equation 2,

rrt-\-mf (S)

m'\-m'

From these we derive the quantities of motion,

mU {m*mm) V'\-'2mm V ^

m'\5' = {mm'm'^) \'J^2mm'\ (4)
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If m* be quiescent before the stroke, V = 0, and the

equations (3) give

U _ ijtim) V U^ =:2?7zV

If ?W3=m', U = 0, and U^ =- V, or the striking body
loses all its motion, and that struck acquires it ; and if ;?/

be infinite, as where an elastic body strikes a very

Jarge mass,

U = "^' X V, andU^^'^ X VnO;
m' m'

no motion is communicated to the mass struck, and the

other rebounds with an equal velocity. If we compare
U and U^ with V, we have

U: V:: m m' : w+ w',

U' is therefore greater than V, or the velocity is in-

creased whenever m exceeds w'. The value of tw' U' is

277?m' V
,
or the motion of the body struck is to that of

the striking body as 2m : m-\-mf i the quantity of motion

is therefore augmented when w' exceeds m.

If m moves in a contrary direction to m, equat. 3 be-

comes

U = {mm') \2m'V'
^
U = (fflmQ V^+2 wV ,

m+m' m-^m
which become cypher when V z: V x m m! and

2/rt'

y = 2m X V, which as V is supposed negative,

m m'

2m
requires m''> m, and may be written x V. If^ m m
V = V, and m' = 2m, the struck body will stop, and

the striking recoil with a velocity equal to 2V.
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60. In these theorems we have supposed the bodies

to move uniformly in the same right line ; but it is evi-

dently unnecessary to restrict our conclusions in con-

sequence of this supposition, as they refer only to the

velocity at the instant before and after the collision;

they are therefore true even though the velocities have

been acquired in descending through arches of curves f

and thus we have a ready means of verifying our com-

putations by experiment. Let two balls of soft clay as

unelastic, or of ivory as elastic bodies, be suspended by

cords of equal length, so as to be in contact when at

rest; on drawing them aside from the vertical, and al-

lowing them to descend, they meet with velocities

which are (art. 29) proportional to the chords of the

arches through which they have descended. The re-

sults can be observed, and are found to coincide with

our theory; they are therefore proofs of the third law

of motion, on which the theory rests.

61, It is a remarkable circumstance i*n the collision

of either of these sorts of bodies, that the motion of

their centre of gravity is not altered by it : this is a par-

ticular case of a mechanical principle, called the con-

servation of themotion of the centre of gravity, (b) but

we can prove it only in these instances. To find the

velocity of the centre of gravity before the impact, sup-

pose them to move from a given puint with the veloci-

ties V and V tpr the time T, their distances from it

are VT, V'T ; the distance of their centre of gravity is,

Statics (art. 11), ,~- X T, and dividing tlm

by T we ^obtain for the velocity of the centre of gra-
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vity mV+?'V' the same as the common velocity after

m+m
the collision, which may be that of the centre of gra-

vity itself, as the two bodies coincide. Where the

bodies are elastic, we find the velocity of the centre

after the stroke in the same way to be mV+m'U
'

^
the

values of mU ; mf\3' given in equat. 4, being added to-

gether, are

{m^-\-mm') V + (m' ^mm!) V = {inSf^mfN') m+m' ^

-\-m' m-^m'

and therefore

mV+m'V _ mY+m'V
m-^m' m-\-7n'

which is the motion of the centre before the stroke.

62. Another law is, that where the bodies are elastic

their Vis Viva remains unaltered, or in other words,

wU*+ 7wU'^ =r?V* + m'V' J to prove this we form

m U2+?'U'', from the equations 3 : its denominator is

(rw+w')* and classing together those terms of its nume-

rator, which contain V^, V'^, and V V, we have

'mV^
[m^-\-7n'*~2mm'+4!Tnm\

(mU*+w'U")(w+iO'= < -I-4.7WW/,

^+i,V \f[mmf)(m-^m^)-^mm
{m-^m') ;

now the third line = 0, and the first and second are

7V*[(y+70'] m'V'^[mJf.m'Y, therefore

mV'^-\-m'W'^ z=z m\]' + m'\]'\ {c)

This, which like the preceding is a case of a more ge-

neral theorem, called the Conservation of the Vis Viva,

was noticed by those who measured moving force by the
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square of the velocity, but it does not bold for 7mrd or

unelastic bodies; in these (w-|-m^)M* is the Vis Viva after

the stroke, and the loss is

wzVf+ ^/V' (wz-f-70 U'' =
wV-j-m'V' 2 (m+wz^ M*+ (w+wO M^ =

as {m-{-m')u = wV'+w'V,

W2V*+w'V'--2 tt (TwV-fw'V'l+z^* (w+^O =
;;j(V f^)^4-A//(V m)%

or the Vis Viva lost is that due to the differences of

the velocity before and after the stroke. The Vis

Viva which is lost when the bodies are soft and

unelastic is manifestly employed in changing their figure,

and the knowledge of this leads to many practical con-

clusions connected with the performance of machines:

for example, it teaches that great loss must be expe-

rienced in percussive engines where the framing yields,

or the working point is unelastic. This is easily ob-

served by those who cut stones ; they find that when

their tools are made throughout of hardened steel,

they work incomparably faster than when the edges only

are steeled j and in driving piles, one of straight-grained

fir, which is highly elastic, can be driven freely when

one of oak whose fibres are irregular resists all further

impulse of the rammer : but these considerations more

properly belong to the last chapter.

63. This may suffice where abstraction is made of

the figures of the striking bodies ; we must next ascer-

tain what often happens when they are not material

points. To effect this we must determine the motion of

a system of material points to each of which given forces

are applied, and though this cannot be perfectly done

without more elevated means of investigation, than it it
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allowed to use here, yet we easily obtain two important

conclusions. Let w, w', 7''^ fig. 183, represent such a

system to which equal velocities are communicated ;

let w A, / B, n^' C, be x^ a/, a:^, and let these distances

from AC be each increased by w^ = |, it being the

space described by each ofthe particles in a certain time ^;

then the distance of y the centre of gravity in this new

position has become rnXL^+D-j-m' (x'+^)-\-mf' (^^+1)

m-{- m' -\.m"
which is true whatever be the number of particles ; this is

mx-\-m! x'-^-T)!!' x^' + m-\-m'^m" X |. The first of

these expressions is the distance of the centre of gravity

at the beginning ofthe motion from AC, therefore the se-

cond, or $, is the motion of the centre. Hence in such a

system the centre moves with the given velocity in a line

parallel to the lines described by each particle. If now
%ve suppose the particles to be connected together as in a

solid, no alteration is produced, for the distances of

them when at /, ^', ^" are the same as at first, and

therefore no new forces are called into action. Con-

versely, if the direction of an impulse pass through the

centre of gravity it will excite an equal velocity in each

particle, and the body will have the same quantity of

motion as if its mass were collected in the centre to

receive the impulse.

64-. If the impulse do not pass through the centre of

gravity, the motion of this point will be the same as if it

had been applied there ; but besides this the body will

have a motion of rotation round this centre, or rather

round a line drawn through it perpendicular to that

connecting the point of impact with the centre of gravity.

To prove it, we suppose the impulse equal to the result
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of parallel impulses communicated to each particle ; if

the velocities of each were equal, then their result would

pass through the centre of gravity, contrary to our

hypothesis, therefore they are unequal and their quan-
tities can be assigned by the theory of parallel forces

given in chap. III. of Statics. Let m and tw' be two par-

ticles moving with unequal and parallel velocities, and

let nif*, m' iif fig 184, be the spaces described by them in

any portion of time
;
G is their centre of gravity at the

beginning, and y at the end of it ; and as these points

divide the lines mm' and ^^t*' in the same ratio, namely
the inverse of the masses m and w/, yG is parallel to w^,

therefore the centre of gravity moves in a direction

parallel to the motion of the plarticles. The velocities

of m and m' being as in
jia,

m' fxf, that of the centre of

gravity is Gy : draw no parallel to mm\ and let the three

velocities be V, V^, U ; by similar triangles w^ : Oftfii

ny: yo :im':m The first two of these proportionals

are as V U and U V, therefore (V U) X m =
(U V) X m' whence {m-\-m) U zn m\ -|- m'Y i from

which the sum of the motions equals that of the whole

mass concentrated in the centre of gravity. The sup-

position that the particles are connected so as to remain

at an invariable distance, makes no alteration, for the

inequality of velocity makes the distance fif^' vary, but

the connexion of the system keeps them at the distance

m m\ it is therefore equivalent to a force which could

move them in the given time through ^^' mm'. By
the equality of action and reaction, this force acts equally

on each particle, and as bodies describe by a given

force in a, given time, spaces which are inversely

as their masses, ^y and ^'y are diminished by quan-

tities in their own ratio: hence the remainders ty /y
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are also inversely as m and w', therefore y is the cen-

tre of gravity of the connected system, and its motion

is the same as in the preceding case. It is manifest

that while the centre moves from G to y, the line m m'

has revolved through an angle
=

/ttyw, and from this it

is evident, that the motion of any system of two or more

than two particles may be represented by a uniform rec-

tilinear motion of the centre of gravity, and a motion

of rotation round it. We must now determine the quan-

tities of the two which proceed from a given impulse.

Q^, If we suppose a connected system of particles to

have a common velocity V, and an angular velocity *,

round the centre of gravity ; the sum total of the quan-

tities of motion which all the particles acquire must

equal the impulse from which they were produced. A

particle w, whose distance from the centre is a^ ha? a

velocity of rotation a^ and also the common velocity

V, its motion is therefore w?V -J- 7WfliZ, and calling F the

quantity of motion of the striking body, we have

F =V (w+?w'+, &c.) -f (?a+ 7wV+, &e.)

The coefficient of is the sum of each particle multi-

plied into the distance from the centre of gravity,

which equals cypher: that of V is the mass of the body,

and therefore V = F -^ M.

To find oiy we consider the impulse, and the motion

of each particle, applied to a lever which is furnished

by the connexion of the system, and as they must make

equilibrium, each must be multiplied into its distance

from the centre, and the sum equated. tojthe moment of

the impulse; callingythe distance bf the application of F.

F/= V
(? +mV+, &c.) -^o {ma^ + m^a'^-t, &c.

the coefficient of V = 0, and that of a is the moment of
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inertia with respect to an axis passing through the

centre of gravity, equal (by art. 42) to Mc% therefore

M c^ c"-

66. The particles which are on the same side of the

centre, revolve in the direction of V, those on the

other in a different; it may therefore happen, that one

of the latter may have a velocity equal and opposite to

V, and may therefore for an instant remain at rest. This

point is called the Instantaneous Axis of Rotation, and

were the body held by a fixed axis passing through it,

the axis would experience no percussion. Let x be it

distance, the velocity of rotation is ^ = Yfic , this

= V, therefore 3 =
Jo:, x = c^, and x ^r f
~^ T

= /+c2 ^
or (art. 44, putting/ for a) the point of ap-

plication of the impulse is the centre of oscillation, the

point {x) being the axis of suspension.

67. Some have supposed that the rotatory and orbi~

tal motions of the planets arose from the projectile

impulse not passing through the centre of gravity,

and have determined the distance at which it should

pass to produce them ; let V be the velocity in the orbit,

aiul t: that of the equator, it is ArR, and in a sphere

c^ =
5 R*, hence the value of t in art. 65, = i) -^ R,

therefore

^ = y/ ,/=IXt; XR
R I R^ V

In the earthy = R
^

but as in all probability the

160
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Creator did not use the means supposed (the impact of

a comet), the theorem must be restricted to experiment*

on a smaller scale.

NOTES ON CHAP. VIII.

{a) The estimate given in the text is but an approxi-

mation, on the hypothesis that the ball is unchanged
in figure by the blow, and that the depth of penetra-

tion bears no assignable ratio to the height due to the

velocity; they who wish for more information may
consult Gregory's Mechanics, where they will find a

full account of Don George Juan's theory of percussion,

the most plausible with vvhich we are acquainted. He
has however omitted one material consideration,

namely, the fracture or penetration which takes place

when the impact is made with great velocity, in conse-

quence of the cohesive forces of the surrounding parti-

cles not being called into action. The velocity with

which any action of this kind is transmitted through a

substance, is that due to half the height of its Modulus

ofElasticity 5 it therefore can be found, as also the space

through which the body can be compressed without

fracture. If this velocity be not to the velocity of im-

pact in a greater ratio than the length to the compressi-

bility of the body, it will yield; for the space required

to destroy the motion of the striking body cannot be

obtained without compressing the remote particles, and

before the compression has travelled to them, the parts

struck have yielded. Thus, suppose a plank of wood,
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thrgugh which an impression travels with a velocity of

15000 feet in a second, while it cannot be compressed
more than ^^^ of its thickness without rupture of its

fibres; it will be pierced by a ball whose velocity

is T^gl, or 150, though a slower missile of greater

weight would not injure it.

(b.) Let a system of the bodies m,m\ m" &c. be sub-

jected to the action of accelerating forces; let x, y, z, be

the coordinates of m referred to three rectangular axes

passing through any point of space ; let x^y^ z, be the co-

ordinates of the centre of gravity of the system, and let

X, y, z, x-jr^, y+ t, z + ^ respectively, then |, % Z

are the coordinates of m when the origin is at that cen-

tre. Let the accelerating forces which act on each par-

ticle be resolved in the direction of the three axes, those

results for m are X,Y, Z, for m\ X',Y'Z', and so on. The

velocity of ni is
dx_

or d (^ + |), which during dt,

dt d t

becomes by the action of the forces and the connection

of the system, d {x + ) -f d / dx ^-dl X^ this latter,

dt \ dt J"
which if dt be constant is d"^ x -^ d^ % is therefore the

51
'

Telocity gained during dt by m. By D'Alembert's prin-

ciple, \^
the quantities of motion corresponding to these

quantities must be in equilibrio with those impressed

during the same line by the forces X, X' &c. which

are of the form TwXd//, ILdt being v:?r, we liave

therefore

m (rf^4-f? I) jwXx^^*

-f-7r/ (d *-|-rf eO ?w'X'x dt^

+ &c. }-
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or grouping those quantities which are similar together,

^^ m X i- m X' + m"X'' I = 0.

Since I, I', &c. are ordinates whose origin is in the cen-

tre of gravity, we have by the property of that centre,

ml + m' I' -{- &c. = 0, from which we derive m d^ X

-{-mfd^ I' + &c. = 0, and our equation becomes

Md^x == ^ {Xm-\-X! m' + &c. (1)

M being the sum of the bodies w, m! &c, and the sign

S (X m) denoting a sum of finite quantities, which

becomes an integral when m is the differential of a solid.

By similar reasoning we have

Ud-^y = S (Y 7w) , Ud^z = S(Zm) (l)

dt^ dt^

These expressions do.not contain |,iior ?, they therefore

relate solely to the centre ofgravity ; and in fact if the bo-

dies 7W, mf &c. were collected in their centre of gravity,

the second members of these equations would become

single forces, in which case the equations would become

^ -= X, d\v = Y, d^ = Z,

dt"- df" df"

the same as those found in note (a) chap. III. for the mo-

tion of a material point. Hence the centre of gravity

moves as ifthe mass of the system were collected in it, and

is not affected by^the mutual action of the bodies, but by
the external accelerating forces. If the system be not

acted on by such a force but merely by an impulse, the

equations become d'x =0, &c. whose integrals are

IF'

dx= A dtf dy= B dt^ dz=: C dt, the constants A, B and

C being the uniform velocities of the centre parallel to
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the three axes, so that it moves in a right line, whose

position can be assigned in any given instance.

(c) The conservation of the motion of the centre of

gravity is deduced from the sum of the forces parallel

to each axis being cypher; this alone is not sufficient

for equihbrium, unless their statical moment be also

cypher. The equation deduced from this gives a prin-

ciple called in transcendental mechanics the Conserva-

tion of areas, which has been demonstrated for a single

material point in the note last referred to, Eq.(o) ; it how-

ever belongs rather to physical astronomy, as the proper-

ties of rotatory motion which our purpose requires, have

been demonstrated without it. Another general princi-

ple which is noticed in the text, relative to the Vis Viva,

might be derived from these equations, but the principle

of Virtual velocities gives it much more easily. This

principle, which we have frequently noticed, is this, that

when any system is in equilibrio, if each body of it re-

ceives arbitrary displacements in the direction in' which

the forces acting on it would move it, the sum of each

force multiplied into the corresponding displacement

= 0. Applying this to express the equilibrium in

D'Alembert's principle, and denoting the arbitrary dis-

placement in the direction of or by ^o:*, to distinguish it

from dXf which depends on the time, we have

S{^ >.r-XJ^)
, = 0,

S{^^ h-^h)
"' = 0,

Sf^ iz-Zh\m = 0,

Which are the general equations of the motion of a
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system of bodies whose coordinates are ^ y z, x' y ^
^

&c. As the displacements denoted by ^ are arbitrary

we may suppose them equal to those denoted by ^, un-

less the form of the system depends on ^ ; in which case,

adding the three equations

the first of tliese is

therefore

S mv'^ = C-l-2 S wX/ Xdx Jf.Ydy-^Zdz.

The first member is the Vis Viva of the system ;
the

second is integrable when l!idxJ^Ydy-\-Zdz is an exact

differential for each body. This happens when the

forces acting on it tend to fixed centres or to bodies of

the system, and are functions of the distance ;
and by

comparing it with note {a) Chap. Ill, it is seen that

the Vis Viva is the same as if each body moved sepa-

rately in virtue of the accelerating forces which act on

it. If friction or the resistance of a fluid act, the func-

tion in question is not an exact differential, and there is

a loss of Vis Viva.

For a demonstration of the principle of virtual velo-

cities, see Poisson, tom. 1, Art. 172. In the case where

the forces are applied at the same point, the demon-

stration given in note (a) of Chap. III. is sufHcient, for

if R be negative it will keep X, Y, and Z, in equiii-

brio, and it is proved that

'Rdr-\-Xdx+Ydy J^Zdz = 0,

Y Y
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and X may be the sum of X', X", &c. the component*
of the forces P, Q, &c , tliercfore

CHAPTER IX.

67. Having stated the theorem* concerning the

motion and muiuul action of solid and connected

systems, it is necessary to complete this treatise that

we add some of the most elementary results of

Hydrodynamics. As the equilibrium of fluid* is

widely different in its principles from that of solids,

so the laws of their motions differ from ordinary Dy-

namics; their investigation is far more difficult, and

except in a very few instances, our theory is utterly at

fault. Newton himself ftiiled in this difficult task, and

the most valuable knowledge which we possess respect-

ing it is derived from experiment. Yet it is of high

practical importance to mankind ; the supply of water

through pipes, the course of rivers, the management of

ships, and the construction of Hydraulic engines, are

matters in which society is vitally interested, and

with which most individuals should have some ac-

quaintance. Therefore where theory leads us freely we

will follow ; where it deserts us, we must be content to

walk by the less certain light of experience. The prin-

cipal parts of tliis science which are noticed here, are
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the efHux of a li{jid through a small orifice, the flow

in pipes and rivers, the res.istance of fluids, and their

apj)h*cation to ur<^e machinery.

68, The fundamental proposition of Hydrodynamics
is that which states the velocity of efllux from a small

orifice in the bottom of, a vessel; but it is by no

means an easy matter to demonstrate it : it was first

ascertained as an experimental law by Torricelli. He
found that a rt*curved tube connected with the bottom

of a vessel threw a jet of the liquid used as high as the

level of its surface in the vessel; therefore each particle

issues with a velocity capable of carrying it through
the height of the incumbent column of fluid, and

therefore the velocity is such as a heavy body would

acquire in falling through that height Experiment
also shews that the direction of the orifice docs not

affect the velocity, as indeed might be anticipated

from the equality of pressure in liquids, A demon-

stration of this law is given in note {a) but as it is not

of the simplest nature, the generality of readers will

be satisfitil with the following, though less exact. If

the orifice be indtfinitely small, the quantity of fluid

which escapes from it in an in^tant of time bears no

assignable ratio to the mass of fluid in the vessel ; this

latter may therefore be considered quiescent, and we

may sup[)ose, that the effluent portion acquires its ve-

locity while it passes through the orifice itself. The

force which expels it is the weight of a quantity of

fluid wliose base is the orifice, and height H the depth

of the fluid ; this acts on a portion of it, whose base is

also the orifice, and height the space 5, through which

the accelerating force acts to generate the velocity of
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efflux. Hence the accelerating force, which is as the

moving force divided by the mass moved, is g X H .

s

This acts on a particle through the space s, and the

value of the velocity in Art. 9, equat. (1) becomes

"V =
v/2^x H_X s = v/i^iT^v

s

the same as that acquired in falling through H.

69. From this follow several corollaries. Orifices of

different sizes, provided that they are indefinitely les

than the area of the vessel, give in the same time quan-
tities of liquid proportional to their areas multiplied into

the square roots of their depths below the surface of

the reservoir; for the quantity delivered in the time t is

a column whose base is the orifice O, and height the

space described in, the time t with the velocity of efflux,

or tv, hence it is Ox tx \/ 2g H^ ,

Secondly if the reservoir be not kept full but be al-

lowed to empty itself through the orifice, its surface

descends with an uniformly retarded motion, supposing

the horizontal section of the vessel equal throughout ; for

it is manifest that the quantity of fluid intercepted be-

tween two successive positions of the surface, is equal

to that which has escaped from the orifice; let A be the

area of the surface, V the velocity with which it sinks,

AYi is the quantity contained between the positions of

the surface 'at the beginning and end of the instant t;

that discharged by the orifice is O Vt, therefore V : v in-

versely as A: O, or in a constant ratio: i;' oc H,
therefore V^, or the surface moves through FI with a

velocity whose square is as the space to be described,

or after the manner of a body uniformly retarded.
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Hence also a vessel kept constantly full delivers twice

as much through a given orifice, as another of the same

depth which is allowed to empty itself.

On these principles depends the clepsydra or water

clock to which the common hour-glass is analogous, in

which time is measured by the descent of the surface of

water along a scale, graduated so that the square roots

of the height above the orifice are in arithmetical pro-

gression. These instruments are however of no use

except for measuring minute intervals, as the variations

of temperature interfere with the rate of efflux by in-

creasing the fluidity of the water. For the time of em-

ploying vessels of a given shape, see note (bj,

70. When Newton, who was the first person that at-

tempted these investigations, tried his theory by experi-

ment, he found a remarkable difference which for a time

misled him ; but his sagacity soon discovered the cause.

We have shewn that the quantity discharged is O /

X \/i^H^ now if we receive and measure it, it is found

only 0.62 of the computed quantity. This does not differ

widely from 1 and Newton at first supposed that the

velocity is that due to ^a//'the depth instead of the whole.

But on a careful examination of the jet, it is seen that it

is not cylindrical, contracting to a certain distance from

the orifice, and if the area of its greatest contraction

be measured, it is found 0.62 of the orifice. Theory

therefore gives the velocity not at the orifice itself but at

the Vena Contracta, as this least section is named. The

reason of this anomaly is, that the central particles alone

receive the full velocity due to the height, those in con-

tact with the orifice being retarded by friction, and also
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because tlie- motion does not commence at the orifice

itself, but begi^as at some distance in the interior of the

fluid mass } the particles have a convergence toward the

orifice, and retain it for some time after their escape.

That this is. the true cause may be proved by a very

convincing experiment. Let the shadow of a jet be; pro-

jected on paper and its outline then traced, it is nearly

a frustum of a cone whose length is half its base, with its

sides a little convex towards the axis. If a tube of

this shape be fitted to an aperture in a vessel, the dis-

charge from it is more than . 9 of the quantity com-

puted from the area of the exterior orifice.

71. Where the orifice is not]of evanescent dimensions,

the different parts of it are at different depths, and

therefore the different parts of the eflSuent water have

unequal velocities. But there can be assigned a certain

average velocity, by supposing which uniform through

the whole orifice we obtain the tiiie discharge. One

example of the method may suffice, whick is also the

most useful, when the aperture is rectangular as a sluice

or Were j let AB-fig* 185 be its profile, the velocity from

C to D may be considered uniform, taking them indefi-

nitely near; draw an ordinate CE proportional to it,

and others proportional to the velocities at the other

points of AB. Since these ordinates are as the square

roots of the distances from A where the surface is sup-

posed to meet the aperture, the curve AEF is a parabola.

Its area is as the quantity of water discharged in a given

time, for that which escapes through the portion CD is

as CD X CE, and the sum of these trapezia is the

whole area: the area of the parabola is known to be

two-thirds of the circumscribing rectangle, and therefore

the product of the orifice into two-thirds of the ve-
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locity at its lowest point represents the quantity dis-

charged. Y^y^-

72. This supposes that the orifice reaches to the sur*

face; if it does not, we compute tliC discharges through
two such apertures whose depilis are those of tlie top
and bottom of the given one; the difference of theni is

the quantity required. '] lie multiplier of the orifice

which gives the theoretic discharge is 8 ^Z H^, H being
the depth of an indefinittlj small orifice below the sur-

face ; if allowance be made for the Vena Contracta it is

5 y/iJ 5 and in tlie case of a Were it is 1 5 x/TTj, or

3 . 3 x/TP., for it is found that the vena contracta is

formed even in f-uch apertures as sluices and the arclies

of bridges. For example, let it be proposed to find the

discharge in a second from a Were 10 feet broad and one

deep; the aperture is 1 X 10; and we have D = 10

X 3 . 3 X \/'~T^= 33 cubic feet.

73. If the orifice be not a simple aperture, but be

provided with a tube of the same diameter, the quantity

discharged is considerably increased till its length is so

great that this effect is counteracted by the friction.

This singular effect is connected with the pressure of the

atmosphere, for it is not observed under the air pump ;

and also on ca[)illary attraction, as it does not take ph4ce

when mercury issues through a tube of iron. To con-

ceive the mode of its production, fig. 1 86 if the fluid doeg

not adhere to the tube AB, by forming the Vena Con-

tracta the discharge is evidently the same as through a

simple oVifice, and a certain space is left vacant in the

tube; but as the capillary attraction of the tube makes

the water apply to it, the tendency of the vein to con-

tract causes the atmospheric pressure to act and accele-
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rate the efflux. The C3/Iindric tube produces no effect

unless its length exceed half its diameter j but the maxi-

mum discharge is produced by a compound tube in

which the part next the orifice is shaped as the Vena

Contracta, while the remainder is a conic frustum with

its base outwards, which gives 2^ times as much water

as the simple orifice.

74. If the cylindrical tube be prolonged downwards

to any depth, the velocity of efflux from its lower ex-

tremity is that due to its depth below the surface, for the

pressure of the atmosphere suspends the weight of the

liquid in the tube from the plate of fluid which fills the up-

per orifice ; it is therefore moved not only by the weight

of the column above, but by that beneath it. This is

more easily understood, by considering that the hquid

which descends through the tube is accelerated by gra-

vity, and therefore tends to separate from that above it ;

it would actually do so but for atmospheric pressure, as

is evident if we make apertures through any part of the

tube, for air enters through them, and the tube is not

filled with the liquid. This is applied sometimes to

blow furnaces ; water falls through a perforated tube

into a reservoir, the air which it drags with it is

condensed there and produces a steady and powerful

blast.

75. The motion of fluids in pipes of considerable

length diminishes with the length of the pipe, but

theory gives us here no assistance. The diminution of

velocity evidently depends on resistances, which may be

compared to friction, and are often called by that name

though they differ widely. Friction is independent of

the velocity, and varies with the pressure, while this

does not appear to be influenced by the pressure but
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to depend on the velocity. It consists of two parts,

one arising from the adhesion of the fluid to the sides

of the tube, which is probably as the velocity ; and

another caused by the eddies into which the particles are

thrown by that adhesion : in consequence of these many
of the particles move in curves, and the force which de-

flects them is lost. If we suppose the curves to be of

uniform curvature, these forces are as the squares of the

velocities ; and we may expect this part of the resistance

to follow the same ratio. From these considerations it

follows that the velocity with which the water is deli-

vered, must be a function of the difference of level

between the surface of the fluid in the reservoir and the

place of discharge, technically called the Head, and

of the resistance, which is probably inversely as the

diameter of the tube. Let V be the mean velocity of

efflux, D the diameter, and L the length of the pipe, it

has been found that the formula

V == 50 X V^ Ji-^
^ L+50D

in feet, represents with sufficient accuracy the result

of experiment. For the mode in which this expression
is formed, see Young's Nat. Phil. vol. 2, page 62, as also

for the correction due to the flexure of the pipe.

76. A river differs from a conduit-pipe only in

this that its velocity is nearly uniform throughout,
the inclination of its channel being equivalent to the

resistances. This must evidently be the case, tor if

a local contraction of the channel accelerate it, yet that

excess of velocity is lost by the eddies which are pro-

duced when it escapes into a wider part; and moreover

the action of the river itself tends to produce a uniform

velocity by excavating the narrower parts of its bed,

z z
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and depositing the substances which it removes in the

deeper. We may compare the river to the tube wliich

has the same surface, by substituting for D four times

d, the Hydraulic Mean Depth, or factor, which gives

the section of the river when multiplied into the peri-

meter of its bed, and for H, Lx sin inclination of the

river. As the velocity is uniform throughout we may

suppose L infinite, and the formula gives

Y = 50
\/4rfsiiif^ or 100 v'^^ sin

I.']

Experiment shews that this is rather too great, and that

we should use 92 instead of it.

77. In conveying water by tubes or canals, they

should be of uniform diameter or area throughout : all

contractions consume a portion of Vis Viva in accele-

rating the fluid, which must move with a velocity

inversely as the space through which it passes j and

enlargements are equally pernicious by occasioning ed-

dies which absorb, as has been stated, much power.

Flexures produce the same effect, and for the same

reason, and in canals or rivers are accompanied with a

tendency to destroy their banks ; but the detail of these

facts belongs to Hydraulic Architecture.

78. In the case of elastic fluids, the above theorems

hold good with certain modifications ; thus the velocity

with which air enters a vacuum through an orifice is that

acquired in falling through the height ofthe homogeneous

atmosi)here, for the weight ofa column of this heightand
of the density at the orifice is the pressure there : as H is

independent of the density, it follows that air enters a

vacuum with an uniform velocity. When the vessel

contains air of a less density, the influx through the
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orifice is that clue to a height which is to H as the ciif-

ference of the densities is to the external density. The

same principles apply to the escape of condensed air,

and constitute the theory of blowing machines, and of

the air-gun ;
for their developement see note fdJ. The

Vena Contracta is
forn^ed

in air as well as water, and

bears the same ratio to the orifice, and the discharge is

augmented by a cylindrical or diverging conical adju-

tage. These principles may be applied to the construc-

tion of chimnies for furnaces, the action of which de-

pends on the expansion of air by heat. The air which

has passed through the fuel is heated to redness, or

about 1000 degrees; and if we suppose this tempera-

ture gradually to diminish in the flue, so that half of it

may be taken as the average, the average specific gravi-

ty of the included air is ^ that of the exterior ; as the

weight of this column is less than one of the external air

of equal altitude, it must ascend, and its place be supplied

by a portion ofair which rushes in through the fuel. The

smokmg of chimnies arises from a deficient supply of ex-

ternal air, from eddy-winds disturbing the current at the

top of the funnel, and from the improper construction of

this latter, which according to the theory of Hydrau-

lics should be a tube of uniform diameter, with a con-

traction at the bottom, variable at pleasure, that the

draught may be adjusted to circumstances.
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NOTES ON CHAP. IX.

faj The theorem which assigns the velocity of a

spouting fluid is obtained by D'Alembert's principle on

the hypothesis of the parallelism of the elementary

plates of the fluid in their descent. Let the origin of

coordinates be placed at the initial level of the surface

with the 2? vertical, and let v be the vertical velocity of

an elementary plate of the fluid whose area is A, and

thickness dz. If it fell freely it would acquire in the

instant dt a velocity gdt, but it is accelerated by the

pressure of the incumbent fluid, and retarded by the

resistance of that below it, so that during the same

instant it acquires the velocity dv; there is therefore

equilibrium between g and the sum of the forces dv.

Tt

We apply to this the theorem note (a), chap. xvi. Sta-

tics, observing that f =0, J' = 0. and we have for

the plate (3), supposing s unity

dV = gdz dv dz

It

As the fluid is continuous, and incompressible, calling

O, the area of the orifice, and u the velocity of efflux,

Oxu = K y. V, for the velocities are inversely as the

areas of the sections ; hence v = Ow. It is clear that

X"
V i a function ofA, which is a function of z; and dif-

ferentiating

dv = Odu Ou dPi. X d%

IT lidi "A^'^T "di



A SYSTEM OF MECHANICS, &C. 357

See Lacroix, Elem. Cal, Diff. Art. 127. fh =z v = Om
dt A

and with these substitutions our equation is

dP ''^gdz-^O du X dz_+ O^u^ X dA^
Tt A dt "aT

the quantities du and ?<* are independent of z, and

It

therefore are considered constant in the integration,

dz depends on the form of the vessel, and calling its

integral N,

P = Qj^gz-^^XOXdu^ OUi*
^

dt 2 A*
The constant C, depending on the pressure at the sur-

face of the fluid, which is in general the pressure of the

atmosphere. We apply this equation to the orifice by

supposing z ==hy the depth of the orifice, and P= c the

pressure at it, which is either the atmospheric pressure
or that of a column oi fluid ; but unfortunately the re-

sulting equation cannot be integrated for du but in a

few cases. Let the pressure of the atmosphere be n,

then when 2=0

n = C
-y^

X u^9 hence eliminating C
2 A.

^^
dt
^

,

^2A'^ 2Ay
and as A becomes O, when z =h, putting the pressure

at the orifice ?r,

= n-^r +gA NO xjdu + O'm" -^u*

dt 2 A'* 2

which when O is evanescent becomes

w* = 2 gA + 2 (n r)
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Ifn fr, M= = 2gh, or it is the velocity acquired in

falling through / ; if t = n
-{- gh\ as when the orifice is

submerged,
^ = 2 g {h^h%

which agrees very well with experiment.

(b) Where a vessel empties itself through an orifice,

as the equation v = O^ holds, calling h as before the

A
distance of the orifice from the upper surface, we have

A V

1 X A dh

a/'^ X O ^T]
which is integrable as A is a function of ^.

Let us suppose that the vessel is a cylinder or prism
in which case A is constant,

^=__2_A__ x-^X)+G,

2 A v'H^
t = 0, when A = H, therefore C =-q X

'-^=^
and

^ ^ 2_A (VH]-VP)

the time of emptying the vessel completely is obtained

by putting h = 0, and is

2 A V^
or it is to the time in which a body would fall through

H as 2 A : O.

If the figure of the vessel be required such that the

descent of the surface may be proportional to the time,

dt is constant, therefore

dh C = A
O X v/2p^
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which gives, in the case of a solid of revolution,

C'X ,/T^+pr^ =0.

These theorems suppose that the strata descend paral-

lel, but when the depth of the orifice does not exceed

6 or 7 inches, a funnel-shaped cavity is formed by the

centrifugal force of the particles, which materially affects

the time of discharge.

fej The effect of the unequal depth of the parts of the

orifice is easily ascertained; lety be its horizontal dimen-

sions at the depth z, the velocity of efflux throughout this

section is V2 gz\ , the area of the elementary section is

1/dz, and therefore the quantity delivered by ti in the

unity of time is \/2^ X V y'z] dz ; integrating this

between the greatest and least limits of z, we obtain the

quantity discharged from the orifice. Two examples

may suffice : where the orifice is a horizontal rectangle,

and a circle. In the first, j/ is constant, therefore the

quantity discharged in a second, or

If the origin of 2: be at the upper orifice, that is, if it

extend to the surface, this shews that the discharge

is 5- of that which would be discharged through the

same orifice with the velocity due to its greatest depth ;

if the integral be taken between z = k and z = k\ it is

For tfce Circular aperture, let r be its radius, h the depth

of its centre, we have

^ dQ= \/ 2gX{ha;)^ X 2 \/ r' jp*
^
X dx,

in which h x is the distance of an elementary horizon-

tal section below the surface, 2 v'r^ x^ the value of
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^, and dx negative, as Q increases while x diminishes in

the upper quadrant, let | = a? and |
= r

7" h

Developing the radical 'V>'l
^ | \ , and multiplying the

terms by 11% we have, neglecting the powers of |,

which are odd, for the second number

2^^X v/2^X
/l +lO^N/l.l 1.1.3.5 \ 1

^^ ?ir^+^S-:4: 2:476:8Wxzii!^^

V2.4.6.8 2.4.6 8.10.12
^ ^ ' \

These are of the form dl^l^, and their definite in-

tegrals between the limits % = I and | = 1, are

easily found ; see note (Z), chap. V. Where m is odd, the

integral between these limits equals 0, for which reason we

omitted the odd powers of | in the developemeiit; where it

,1.3 1.3.5 a
IS even, they are m succession, p, ^p p, - - p &c.

therefore

Q = 2 rp X -/ TJT\ ? 1^ /^ 1 4- 1'1'C' ^

+

and arranging the terms according to the powers of {,

H rJiii-e'- H^ij* 1 + &c.
2.4 V 2.4 2.4.6.8 -/
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Q == r* J9 X V^h, S
^

i:. I1.I
2 ^' I'l'g-^

V

C 4. 2.4
*

4.6. 2.4.6.8^

1.3.5.. 1.1.3.5,7.9 '

&c.^4.6.8 2.46.8.10.12

r* p is the orifice, and ^2 g h' the velocity at its centre.

In general the three first terms of the series are suf-

ficient and

Q == r* ^ X s/^gh] r ^_ J_

-^
32 204

^

>

(d) The velocity with which an elastic fluid enters a

vacuum is that acquired in falling through the height of

t!ie homogenous atmosphere; for it is evidently as the

moving force divided by the quantity of matter moved ;

the moving force is the pressure at the orifice, or as

D X H, Statics Art. (114) and therefore the accele-

rating force as H. The velocity is therefore independent
of the density, as in incompressible fluids; but this is not

the case when air passes through an orifice into a space

containing air of less density : here the accelerating force

is to that which acts in the preceding case as D A : D,
and therefore V the velocity which it produces: V the

velocity with which air rushes into a vacuum : liy/D A /:

J'^ and

D
The quantity of air discharged in an instant of time

is V/ y, dt X O X D, being as the bulk and density : it

is also S J D, S being the capacity of the vessel ^con-

taining the condensed air ; therefore we obtain

3a
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V -D
dt =^ S X cZD _

whose integral is, see Lacroix, Calc. Int. Art. 162,

X ov
and determining C so that t =0 when D=D' the initial

density,

OV \ D-i A+ v/ D^~ aD> j
If D =r Aj the denominator of the fraction becomes

I A and the equation gives the time of the total efflux.

The quantity H is different in different gases, being

inversely as their specific gravities under a given pres-
sure.

CHAPTER X.

79. The application of a stream of fluid to impel

machinery is of common occurrence, and constitutes

a very important part of practical Mechanics : it

acts either by its weight while descending, or by com-

municating the velocity which it has acquired in its fall ;

and we are about to examine the nature of this latter

mode of action. The simplest case is where a jet im-

pinges perpendicularly on a plane surface of considerable

breadth, so as to communicate to it all its motion ; the
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velocity is that due to the height of the surface in the

reservoir, ov*/2g H ; and the quantity'of fluid which

falls on the unity of surface in the time T is Tx s/ 2^'H^.

This mass multiplied into its velocity or k/'^gti \ is the

quantity of motion communicated to the plane in the

time T. Had the head of water which produces the

\e\oc\iyi pressed on the plane for the same time, its effect

would be^H X T, the actual effect is 2^ Hx T, there-

fore the pressure on the plane produced by the jet is

twice the weight of a column whose base is the orifice,

and height that due to the velocity. Experiment con-

firms this very nearly in all cases where the fluid cannot

escape laterally, but where the plane is immerged in an

extensive stream, or where it does not exceed the area of

the jet, this pressure, which we distinguish by the term

Hydraulic Pressure, is only half the preceding, or the

weight of a column whose height is that due to the ve-

locity. It may seem strange that the pressure arising

from a column of the height H should produce a pres-

sure proportional to 2H, but in fact the additional pres-

sure is substracted from the pressure on the bottom of

the reservoir. Then if H be 16 feet, the pressure on

the unit of surface is 16, but if an aperture equal to it

be opened, the total pressure on the bottom is lessened

by 32. Each particle issues with a velocity 32, there-

fore in a second 32 feet escape: had it fallen out by its

Olson weight, as if the surrounding liquid were frozen,

only 16 would pass in the same time; but the force which

is employed in moving it cannot produce pressure on

the bottom, and as this is twice its own weight, we see

why 2H is the measurct
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80. The pressure is by no means uniformly distri-

buted over the plane, even when totally immersed in

the current; at the centre it is a maximum, it decreases

gradually to a certain distance, and vanishes ; beyond
this it becomes negative. We cannot give the theory of

the distribution, but we see that it ought to be so, for

the central particles cannot escape without gliding along

the plane, and diverting those which would impinge on

it with undiminished velocity. The escape of the cen-

tral portion produces an eddy, and it is evident that at

a certain place this eddy must tend to carry the parti-

cles from the plane. If the plane be the side of a close

rectangular vessel filled with water, from which a vertical

tube proceeds, on making apertures in the plane and im-

mersing it in a stream, the water will stand above the

level in the vertical tube; and thus the above results were

ascertained. When a single aperture is made at the

centre of the plane, the elevation in the tube is once and

a half H, when near the circumference, it is depressed

below the level, and when a number of apertures are

distributed over it so as to obtain the mean pressure, the

height is 1. 18 H. A modification of the instrument

is used to measure the velocity of water or wind.

81. If the plane be in motion, it is permitted to sup-

pose it at rest, and its velocity added to or subtracted

from that of the current, according as it moves in an

opposite or the same direction ; and since the head H is

as the square of the velocity, we say that the Hydraulic

Pressure is as the square of the relative velocity of the

current with respect U) the plane. This is however only

trut when the stream is unconfined ; for when it cannot

leavfc the impelled surface till it has acquired the velocity
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of the latter, the effect which it produces is rather as the

velocity simply.

82. Where the impulse of the stream is oblique to

the plane, we experience i^jpre difficulty in obtaining

theoretic results, and our conclusions are more at variance

with experiment. Let ABfig. 187 be the profile of the

plane, it seems probable that it intercepts a portion of

the current whose breadth is AC j
the plane does not re-

ceive the full impulse even of this portion, part being lost

by the obliquity of its action. It is probable that the

effective or perpendicular impulse may he obtained by

multiplying the Hydraulic Pressure on AC into the

cosine of the angle made by the direction of the stream

and the perpendicular to the plane, as in the impact of

solids ; then AC = AB X sin A, and the effective Hy-
draulic Pressure on AB is H x AB x sin. * A. This

does not differ widely from observation while A is large;

but in oblique, incidences, it is far less than the actual

pressures. An empirical formula gives for the multiplier

of H, AB Xcos B +B^ x OOOOOl, B being expressed

in degrees; which does not err much.

It has been thought that by conceiving a curved sur-

face as made up by elementary planes, and summing the

pressures which they experience, we could ascertain

those which operate on the curves, but the deductions

from this hypothesis are wide of the truth, being con-

siderably too great. It seems that the particles of the

stream glide off more easily than in the case of planes :

much also depends on the posterior shape of the body ;

thus a cylinder is less resisted in moving through the

water than a circle of equal diameter j and the fishes

which swim with great velocity, and are probably solid*
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of least resistance, have the anterior part of the body
much more obtuse than the remainder. When a body
moves rapidly through the water, a portion of this fluid

is heaped up before it ; and that behind it is depre>std

below the general level from the difficulty which it finds

in closing in behind the body. This causes the atmos-

pheric pressure to act in resisting, as well as the Hy.
draulic Pressure of the water ; and it is manifest that

accordijig to the shape of the surface, the quantity of

this negative pressure varies.

,83. On the practical application of these principles

depend the art of navigation ; which however has hi-

therto derived very little improvement from theory.

In this the moving power and resistance are both of

them Hydraulic pressures, of course varying as the

square of the relative velocity ; and when a vessel sails

before the wind, it seems only requisite to shape the

immersed part, so that it shall be as little resisted by
the wat^r as possible, and that the action of the rudder

shall be unimpeded. In this case the utmost velocity

which the vessel can acquire must be less than that of

the wind, as if they were equal no pressure could be

exerted on the sail. Where the course makes an

angle with the wind, the circumstances are more com-

plex ; the Hydraulic pressure on the sails tends to

impel the vessel perpendicularly to their plane, or in a

direction oblique to the keel. This impulse is resolved

into two, parallel and perpendicular to the keel ; and as

the vessel is so formed as to experience very great re-

sistance in the latter direction, its progressive motion

is almost entirely in the direction of its length. Let

EC fig.
188 be the keel and s s he the projections of
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its sails supposed seen from above, and AB the direc-

tion of the wind, then AD is its perpendicular action on

the sail AB x sin ABD ; this again must be resolved

in the direction of EC, by drawing BF parallel and

equal to AD, BI and CF are its components. BI =
BF X sin DBB, = AB X sin ABD x sin DBC for a

single thread of air ; and as the quantity of it which

falls on the sail is as sin ABD, we have, calling S the

surface of the sails,

BI == P X S X sin^ ABD x sin DBC,
P being the Hydraulic pressure of air on the unit of

surface which is found to be in pounds nearly V* H- 500.

This evidently admits of a maximum, for it vanishes

when ABD r= 0, [as when the sail turns its edge to the

wind, or when DBC ^ 0, the impulse being then to-

tally perpendicular to the keel ; there is therefore an

intermediate position where the impulse is greatest.

For the determination see the note (a) : if the angle

ABC be 90*^, in which case the vessel has the wind on

its beam, ABD is 54.44'.

It may be shewn that in vessels sailing before the v^ind

the velocities are inversely as the square roots of the re-

sistances where the impelling power is given, therefore

the vessel will in this case have two motions, one as

\/ IB -7- V~r, the resistance in the direction of its length,

the other as \/lF ^ y/'R), It is found that R is about

12 r; if therefore we form a rectangle, whose sides GR,
GB are as 1 : 12, the diagonal GL is nearly the actual

course. The angle BGL is called the angle f Leeway ;

and it is found, that under the most favourable cir-

cumstances its amount is about five degree when ABC
is 55 ; if the latter angle be less than this, the other
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increases rapidly, and the vessel loses its progressive

motion. Besides the Hydraulic pressure of the water,

other impediments to the motion of ships arise from

the agitation of the sea, which must be counteracted as

much as possible by their figure; and this modifies the

shape which theory would assign to them: it is also

requisite that they should be stable, to resist the action

of the force IF which tends to overset them ; this is

effected by making them as broad as is consistent with

an easy passage through the water, and disposing heavy

materials in them as much below the water line as pos-

sible.

84. The evolutions of a ship are governed by the

aails and rudder : if the sail ss be sloped towards the

wind, its unbalanced pressure on sV and s'V' will move

the vessel so as to diminish the angle ABC, and an op-

posite arrangement will produce the contrary effect.

But they mostly require to be assisted by the rudder ;

its action is nearly analogous to that of the sails. Fig.

189 let AR represent the course of a particle of water,

supposed in motion while the ship is quiescent, which

is identical with the motion of the ship through the

water. By art. 82, the perpendicular impulse on ER
is as ER X sin* E. Resolving this in a direction per-

pendicular to the keel, we obtain ER x sin* E x sin

L, or ER X sin* E X cos E for the effect of the rudder.

The ship in consequence of this receives an angular mo-

tion round its centre of gravity, which may be determined

by the principles laid down in Art. 65, As the water

does not in fact fall on the rudder in a direction parallel

to the keel, on account of the wedge-like shape of the

posterior part of the vessel, this theorem is but an ap-
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proxiniation, and we can merely conclude from it that

the effect is in the compound ratio of the square of the

velocity, and the surface of the rudder. The maximum

angle is about 30.

85. Analogous to the action of the rudder is that

of tlie Wind-mill-sails j the wind falls obliquely on

their surface, and its perpendicular pressure is resolved

in a direction perpendicular to the course of the wind,

in which alone the sails can turn. If the sails were at

rest, the angle which their plane should make with the

wind is 54^.44'', but when they are in motion they with-

draw themselves from its pressure, and the angle must

be increased. At the axis itself it may be of the theo-

retic value, but at the extremities of the sails it is about

85. In the best mills the area of the sails is variable

with the strength of the wind, so that the jiower bears

a constant ratio to the resistance ; this is performed by

the centrifugal force of weights which recede from the

axis when the motion is augmented, and are connected

with an apparatus for furling the canvas of the sails.

Much of the power is lost by the friction of the pivot of

the axis.

8G. The impulse of a current of water is sometimes

applied to float-boards placed obliquely like windmill-

sails, but it is more usually employed by means of the

Under-shot wheel. This has a number of planes dis-

posed round its circumference in the direction of its

radii, which dip into the stream, and are carried

round by it; the axle of the wheel of course turns the

machinery intended to be moved. Where the stream

is large and unconfined, the pressure on each float-

board is that corresponding to the head due to the rela-

tive velocity ; this is a maximum when the vvheel is at

rest; but the work performed is then nothiiig: the
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pressure is nothing when the velocity of the wheel equals

that of the stream, and therefore there is a certain in-

termediate velocity which gives the work performed a

maximum. The weight equal to the pressure is A X

(v^'H^ \/^)* ^^ being the height due to U the velo-

city of the wheel; considering this as a mass attached to

the wheel, we obtain its moving force by multiplying it

into U, and as VH "^li oc V U, this moving force

oc (V U)* X U, which is a maximum when U = j V.

In this case then the wheel moves with one-third the

velocity of the river, and the effect which it produces

= A X I VH* X I V =
4^
AV^ The total power

27

of the moving force is A V, the quantity of water dis-

charged multiplied into H, or as AV^, and on this

supposition the undershot wheel does 4 of the work

2?"

which the fall is capable of performing. (b)

Where the floats are not totally immersed, the water

is heaped up on them, and in this case the pressure is

that due to 2 H.

87. Where the floats move in a circular sweep close

fitted to them, or in general when the stream cannot

escape without acquiring the same velocity as the wheel,

the circumstances are rather different, being analogous

to what happens in the collision of unelastic bodies.

The stream has the velocity V before the sliock, which

is reduced to U, and the quantity of motion corres-

ponding to the difference or V U is transferred to the

wheel ; this turns with the velocity U, and therefore the

effect of the wheel is as

- JU which is a maximum when V = 2 U, being

then i of the moving power.

(
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88. The undershot wheel is used where a large quan-

tity of water can be obtained with a moderate fall ; for

where the fall is considerable, the Overshot is always

employed. Its circumference is formed into buckets,

into which the water is delivered with a velocity not

exceeding that of the wheel ; one half of the wheel is

therefore loaded with water, whose weight turns it. In

this case there is no velocity of maximum effect, for as

the water must be delivered on the wheel with its velo-

city, this is so much subtracted from the fall, and the

less it is consistently with steady motion the better.

The maximum performance of an overshot wheel is f of

the moving power, or it raises a quantity of water equal

to that by which it is driven through | of the fall, (c)

There are many other Hydraulic Engines well wor-

thy of notice, both from their utility and as their theory

exercises the mind : among them we may name the

Ram, the Spiral Pump, and Barkers Mill; but we

must refer the reader to the systems of practical Mecha-

nics in which they are described, as the investigations

which they require transcend our limits.

NOTES ON CHAP. X.

(a) The pressure on an oblique surface is the column

whose base is the surface, and height that due to the

perpendicular velocity ; let a be the angle made by the

wind and keel, x that made by the sail and keel, also let
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V be the velocity of the wind, and v that of the vessel,

then the perpendicular velocity of the wind is V X sin

{a x) ; but the sail recedes from the wind in the di-

rection perpendicular to its surface with the velocity

V sin J", hence the relative velocity of the two is

JV sin (a x) v sin x\

The square of this is as the Hydraulic pressure on the

sail, and resolving it in the direction of the keel, we

have the force of the wind in propelling the vessel =

^ V sin [U'x) w sin iT >
* X sin x.

A being the density of air. To find the value of x,

which gives this function a maximum, we differentiate

with respect to x, and obtain

0=2 sin ^( Vsin( x) vs'mx)x\y cos{a x) vcosxj'>^dx,

+ cos ^ X ^^ X (y sin {a x) v sin x) >

hence

0=2 sin X ( Yco^{ax) v cos* j -{-cos x(Ys\n{a^x) ^vsina;")
.

3 V sin X cos ^=V
|sin [a x) cos x 2 sin x cos (a x)l ,

dividing by cos x. cos {a x

3 V sin XV < tang {a x)--2 tang^ r

cos (o x)

3v tanjT -

cos a l-htanga;'tanga

and by the formula for the tangent of the difference of

two arcs we obtain

V {
sin a 3 cos a. tang x 2 sin a tang x^l = 3 tang x

Resolving the quadratic which is derived from this,
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This frWes the trim of the sails corresponding to a given

direction of the wind, but it must be confessed that it

differs from that which is found to produce the maxi-

mum effect in no small degree: this discrepancy arises

from the defect of our theory of oblique Hydraulic

pressure, and from our supposing the ship's motion to

be in the direction of the keel, while its true motion

makes with this a considerable angle; and ifwe attended

to these in our investigation it would become too com-

plex. If in the above equations we suppose w = 0, we

have

tang (a x) 2 tang jr,

and if = 90 ** this gives 1 =2 tang ^, tang x

tang X

=-=; therefore X = 35. 16'. The supposition of

a = QO*' applies to the case of windmill sails, and our

last equation gives

^ = V
9 ; 1 3 V

tang^ = V - '

16 V^' 4 V
This angle x is called the angle of Weather, and as v

in the windmill is as the distance from the axis, the

angle should decrease from the centre to the extremi-

ties, being at the former about 30 degrees, and at the

latter 5, so that the sail is not a plane. This gives U8

for the value of w, 3 V, and from this we infer that

a ship may sail faster than the wind, which is con-

formable to experience. For practical information,

Smeaton's Experiments on Windmills, and Ilobison'a
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Art. Seamanship Encycl. Brit, may be consulted by

those who wish to pnrsue the subject farther.

fb.J It is not our intention to enter deeply into this

branch of Hydraulics, but the action of water-wheels

merits more detail than it seems expedient to introduce

into the text. We will suppose, as is always the case in

actual practice, that the resistance is of such a nature as

to produce uniform motion after a few turns ; and for an

instant of time we will suppose it a weight raised by a

cord wound on the periphery of the wheel and therefore

moving with its velocity. The product of this weight

Jnto this velocity, we denominate the Effect of the wheel

and denote it by the symbols WU or E.

If a stream of water issuing from an aperture A im-

pinge on a float-board of the same dimensions, or if the

wheel be in an unconfined stream, its percussion is equal

to the weight of once AH; when the wheel moves with

a velocity U, this is diminished in the ratio of V* :

(V-^)* and the impelling force is AH x /V U\ .

A quantity of water equal to this and moving with the

velocity U would evidently be in equilibrio with it, and

therefore

To find the maximum we have the equation

(3U 4VU-hV) dV =

whenceU=|V ^-1
^'' = V (| J

The second differential cotfiicient of E is GU 4V

which is negative when U Z. | ; therefore at the maximum

U = ^ V. With this value the maxiraom E is AH
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X 4 X V = 4 A H X V or it is equivalent to a mass

of water AH moved with 4 of the velocity of the cur-

27

rent. The expression i5.more distinct if we call Q the

quantity of water afforded in a second ; this = AV,
and E = Q X 4 H or a quantity of water equal to

27"

that expended raised through 4 of the fall. This de-

27"

termination supposes that the stream acts perpendi-

cularly on the float-board ; but in practice when the float

first enters the water, it receives the impulse obliquely ;

this obliquity diminishes till it is vertical. Let % be the

interior arch of the wheel immersed and z the angle

made by the plane of the float-board with the vertical,

then the Hydraulic Pressure on its surface is AH
x/Vcosz -U\*. To find the value of its action

\-^ )
through % or its Vis Viva, we integrate the function

HA X / V cos g~U y X dzy between = and

X rs
; we put it in this form HA x (cos 2; g)* X dz

= HA
(

cos* zdz + 2 i cos zdz g* dz) whose de-

finite integral is

HA f I -f sin g X cos i g^sin^-fcH)

If we seek the velocity which gives E a maximum,
we multiply this function by 5 and differentiate, which

gives

= J (1 + sin I X cos I) 4 e sin ^-f-Sg H
which if we suppose I coincident with its sine gives g =|
M before.
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This hypothesis is still insufficient, for the float-boards

are not urged over their whole surface, the foremost

being screened from the water by those that follow them.

To introduce this into our theory is useless, as it gives

an unmanageable equation for the velocity of maximum

effect, and the result does not agree with experience.

We therefore proceed to the second case, where the

stream is confined on a channel so that it must acquire

the velocity of the wheel before it leaves it : here the

circumstances are different, for the stream, after it 'passes

one float, acts on the next ; and while in the preceding

case it left the wheel retaining | of its original velocity,

here this moving force is economized, and a considerable

portion of it communicated to the wheel. Its action is

therefore analogous to the collision of an unelastic body,

and scarcely differs from the impulse of a solid of equal

weight. We may therefore apply to it the principles of

Art. 58, and assume that the impelling power is as the

relative velocity simply : the original power of the stream

isAHxV, hence its action on the wheel is AH / V U \

and

E = AH X /V-U\ X U

To find the maximum we have dJJ x (V 2U) = and

U = ^ V, which gives E = AV x i H, or Q X i H
it is found 0.31, and U = f V.

(cj. The Overshot wheel acts by the weight of water

disposed round half its circumference in buckets ; each

of these acts by a leverage of the sine of its angular

distance from the vertical. To find their combined ef-

fect we may actually compute it thus, let m be the con-
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tents of each bucket and a: the angular distance between

them and U the velocity of the wheel, then "

E = U X m
j
sin ^ + sin 2 ^ 4- &c. V

till we come near the bottom of the wheel where the w^ter

is spilled out of the buckets. We obtain a more elegant

result by supposing the whole quantity of water con-

tained in the buckets distributed over an equal arch of

the circumference, as a ring whose section is A ; the

portion of this which lies on the element dz is A dz and

its statical moment is A sin z dz whose integral is A
cos z, and taking this between the limits where the water

is'poured on the wheel, and discharged from it, we obtain

for the weight in equilibrio with the effort of the wheel

AH. As the velocity of this is the same as that of the

wheel, E = AU X H: IfZbe the arch which is loaded,

the impelling quantity of water is AZ, and its Vis Viva,

AZU ; therefore the effect is H of the power, which if Z
Z

were the semicircle, would be 2 or 0. 62 : if it were

3.14

150 which is nearly the common practice, E ==0.71.

As AU = Q, if this latter be constant, E = QH ; if

therefore we wish to increase E where the su} ply of

water is. limited, we can do it only by augn.enting H:
now the fall F equals H the height through which ihe

water descends on the wheel, plus // the height thiough

which it must fall to acquire the velocity of the wheel;

if we increase H we diminish A, and therefore the velo-

city. Hence the overshot wheel produces the greater

effect, the slower it moves ; and the constancy of Q or

AU is obtained by enlarging A in the same proportion
3 e
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as V is diminished ; which is done by increasing the

breadth of the buckets. This has its limits however,

for a loaded wheel has friction on its pivots proportional

to the load.

Since Uoc i^ ^, E oc AHx\/ ^ \where no regard

is paid to Q; this is a maximum when H* x (F H
= max, or when SF SH = ; this may teach us how

to place a given wheel to the best advantage ; but cases

seldom occur where it is necessary. The best working

velocity is found to be three feet in a second, and h is

about two inches.

CHAPTER XL

9. In the preceding chapters we have discussed the

laws which regulate the motions of bodies, whether sub-

ject to the uncontrolled action of accelerating forces,

connected in systems, or constituting fluid masses: in so

extensive a field, to treat -e subject with the full detail

which it requires, is inconsistent with the design of this

treatise, which aims only at conveying some useful

knowledge to the ordinary reader, and facilitating

further progress to him who is not content with me-

diocrity of information. It is presumed that the prin-

ciples delivered in this and the preceding part, are suf-

ficient to enable the intelligent student, to understand

the writings of practical authors, and to develope the

Aaion, and estimate the performance of machinery, when
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lie sees it actually employed. When the mind, pre-

viously stored with the theory of mechanics, is applied to

that theory as exhibited in practice, few pursuits can

give equal pleasure to the individual ; none, except per-

haps chemistry, can afford equal benefit to mankind.

Without insisting further on this topic, we shall con-

clude with some general considerations relative to

machinery, which we place here as they could not pro-

perly find room in any of the preceding parts.

In Chap. IV. Statics, some notice was taken of the

object of machinery, which we can now explain much

more completely by means of the Vis Viva or that

consideration of force which includes the space

through which it acts : this mode of estimating it

is essentially different from that which is con-

sidered in cases of equilibrio, and its employment

is that which is expensive as well as useful to man-

kind. To understand the diiTerence let us suppose

a weight suspended to one arm of a lever ; if a force be

applied to the other, which is to the pressure of the

weight inversely as the arms, the weight will be sus-

tained in equilibrio. This is all that is generally con-

sidered, but it is of no practical use, for the weight could

be as well supported by a prop without the machine :

accordingly we find that workmen, when questioned as

to the use of the lever, state its power in raising weights,

and this requires a different view of the matter. In the

state of equilibrium, the statical moment of the power

is mr, in being the weight equivalent to the power, and

r its distance from ihe fulcrui?) : this measure of force is

of no value to the workman, /or it performs nothing for

him, and he therefore uses another ; he wishes to raise
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the weight m by tlie descent of ?w, and therefore esti-

maj;es his power and weight, not by the product of the

masses into the virtual velocities, but by the product of

those masses into the heights through which they are

moved. The analogy of this to the Vis Viva is evident,

but it is not a correct measure of the useful effect except
when the motion of the machine, as well as the resist-

ance, is uniform. In that case the Dynamic Effect of

the machine is fairly measured by this product, but

where any acceleration takes place, the additional velo-

city is lost, as it cannot always be converted to any prac-

tical purpose. It is therefore necessary to consider, not

merely the weight which a machine can raise, but also

the velocity with which it raises it.

90. A simple but excellent machine for raising water

may betaken as an illustration; it is a fixed pulley over

which passes a cord, each of whose extremities suspends a

bucket provided with a valve in its bottom. One of

these dips in the water of the well or pit from which it

is to be raised, which we suppose 16 ieet deep, we call

its weight when full m' ; the other is 16 feet above the

surface where it receives the water of a stream till it is

sufficiently filled, when it descends, drawing up the other

through an equal height. As both buckets have been

accelerated, they have acquired a considerable motion,

so that by striking against stops they upset and empty

themselves: m thougli larger than w' is lighter ; the lat-

ter therefore descends into the well, drawing up the

former to its original station ; they are again fillv^d, and

thus the process is continued. If the weight of /wand m'

when filled were equal, no work would be performed,

as there would be equilibrium : if the preponderance
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were little, a considerable quantity of water would be

raised slowly; if great, a little water raised rapidly.

Between these extremes there is a maximum, to find

which we must know the velocity acquired by the buckets

when connected together. This is done by the assistance

of the principle used in art. 65 : the quantity of motion

which gravity would produce in a second in m and 7n\ if

separate, must equal that actually produced, as their

connexion cannot produce or destroy it. The velocity

generated in a second is g^ hence the quantities of motion

impressed are g m, g m\ whose difference is to be taken

as they act in opposition to each other ; but they actually

move with a common velocity V, and the actual quan*
titles of motion arewV, w'V, whose sum is to be taken,

as by means of the cord they act in the same direction:

hence

{m-{-m') X V = g[mm'), V = g X mm

an equation which contains the theory of Atwood's

machine, already referred to. If this value of V be sub-

stituted for F in the formula V*=:2F S, we have m' V'

the Vis Viva = m^ X g X .
m m' x S, which is a

m-\-m'

maximum when ?* = 2m m' -\- w'"^, or when / =
m X ^/^2~1 1 = 772 X 0. 4-14, and the reader who is

ignorant of the differential calculus can easily satisfy

himself as to the result by assigning to m! values either

greater or less than 0.414 m, and computing vi V'^ (a),

91. Anotlier example of the maximum performance

of a machine is derived from the inclined plane: sup-

posing the power to be the perpendicular descent of a

weight, which draws another up the plane, it is evident
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that this latter will move more rapidly the less the incli-

nation of the plane ; but that its velocity, estimated in a

vertical direction, which is as its actual velocity multi-.

plied into the sine of inclination, does not necessarily

increase. When the plane is vertical, the mechanical

advantage is lost ; where it is horizontal there is no

ascent; therefore between those positions is one of

maximum effect. The tendency of the weight to

descend is m' sin I, therefore the quantity of motion

impressed in the unit of time is (^w m^ sin I)^: that

actually acquired in the same time is {m + m') X V
therefore the measure of the accelerating force is

g X / m mf sin 1) \ The vertical acceleration is as

I m-^-m J

this multiplied into sin I, therefore it is a maximum when

m sin I w' sin *I = max. The expression may be

written m' ({ sin I sin *I), ^ being tw, and the vari-

able part is a maximum when sin I = |c ^^^ ^^ ex-

presses the square of the ordinate of a semicircle whose

diameter is
5,

and abscissa, sin I, which is a maximum

when the diameter is bisected. If the power and weight

be equal g = 1, and I = SO'', This affords an exam-

ple of the accommodating a machine to a given resist-

ance, as the preceding shows how the resistance is ad-

justed to the machine , but the two cases must not be

confounded, for the maximum effect of a given inclined

plane has a different law, being when

w' = \/ 1 +cosec. I\ 1, which when I=30* is 0.732,

m
92. Formulae for the maximum effect of machinery

may be investigated, by supposing them reduced to
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equivalent levers, that is to levers vv'hose arms are in-

versely as the forces which make equilibrium when ap-

plied at the impelled and working pouits of the machine.

The friction of the parts being proportional to the pres-

sure, must ultimately be a function of the resistance;

and we may suppose the machine devbid of friction,

and the resistance augmented by a certain quantity : so

in like manner for the inertia of the machinery, which

is of little importance while the motion is uniform, and

is pernicious only when a reciprocating motion is ne-

cessary; where it is requisite this can be estimated

from the known figure and mass of the parts. The in-

ertia of the power and resistance, where they are

weights, must also be considered ; and by proceeding

as in the examples already given, we arrive at the ex-

pression of the accelerating force which acts on the re-

sistance, or of the velocity communicated to the work-

ing point. This multiplied into the resistance gives the

effect of the machine, and we may seek the maximum,

either supposing the forces given and the machine vari-

able, or vice versa. For some of these expressions see

note (b). One case only can be mentioned here, namely,

where the resistance has no inertia, as in sawing wood,

boring cannon, and other work where the mass moved

by the working point is inconsiderable. We suppose

the moving power to be a weight ?n, acting by the arm

of the lever r, the resistance to be m\ and its leverage

r': the moving force is g {mr m'r') Fr', F being the

friction supposed applied at the working point ; this

must be equal to mv, the quantity of motion of the im-

pelled point acting by the leverage r. The velocity of
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the working point xf \ u : : r' : r, therefore *o = ;'/, and

r

If we suppose F = 0, and muhiply by m' to obtain the

effect, we have

E = mm'r)' w^*/'

which is a maximum when TwwVr' 7?i'*/* is a max.

Gt w! {m X r mf \ and this is the case when nif = ^

w X r by the construction used in the preceding art.

V
m r is the force which would equilibrate with m if ap-

plied at the working point, and the maximum effect

is produced when the load of the machine is half this.

93. It is unnecessary to go into more minute details

on this subject, and we proceed to consider the action

of the moving powers which we can apply, and the laws

of their action.

On a former occasion we enumerated them, and have

already sufficiently noticed the Hydraulic forces;

we now have to consider the strength of animals, and

the energies developed by heat. The strength of ani-

mals is so variable in different individuals, and so much

under the influence of the will, that it might be sup-

posed impracticable to apply any general rules to it ;

however, experience shews that there is an average

quantity of exertion which may be expected, and which

will coincide with that actu:illy furnished on a large

scale. A certain portion of an animal's strength is ex-
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pended in moving its body, and the remainder is that

which we can dispose of as a moving force ; at least

when a load is to be drawn along a horizontal plane, or

any similar operation is to be performed. The useful

effect is measured by the load moved, multiplied into

the velocity of its motion : now observation shews, that

the load increases while the velocity decreases, so that

the effort of the animal is the greatest possible when the

velocity is a cypher, and on the other hand there is a

certain velocity at which it can carry no load.

Call this V, and the actual velocity U, experience

gives this formula for the effort exerted

F being the force which it can exert when at rest. This

vanishes when U == V, and becomes F when U = 0,

and by the reasoning used in the case of the undershot

wheel, whose power is represented by the same formula,

the effect produced h a maximum when U = V, and

then the animal can work against a resistance which is

J of its utmost effort. Another mode of considering the

subject has been used by the celebrated Coulomb ; he

found that a man ascending stairs produced an effect

which was in general three times his weight raised 1000

yards in the day, and that his workmen could make this

effort for a length of time without injury, working eight

hours in the day. When they carried loads nearly

equal to their weight the effect was only ^ the preced-

ing, and in general the loss of effect was sensibly pro-

porlional to the Ipad. Hence the quantity lost by bearing

8d
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any load P is found, for when P = W the effect is di-

minished from 3W to 1.5W, therefore

W: 1.5W :: P: 1.5 P,

the quantity lost P, being expressed in pounds ; the re-

maining action is therefore 1000 x |3 W 1.5 P?

This equals (W+P) X h, the first factor being the

total weight raised, the second the height through which

it is elevated in the day. Hence

which is a maximum when

P= W
^\/'3l~l ?or0.7XW,

and vanishes when P = 2W ; a man being unable to

ascend under twice his weight. The formula is accom-

modated to the case of motion on an horizontal plane

by multiplying the second member into 17.

94. Experiments have not yet been made with res-

pect to other animals ; however it is probable that

Coulomb's formula would apply to them, with a due

alteration of the coefficients. The most important re-

sult which follows from them is, that human strength

is most profitably applied to machinery when the work-

men ascend without a load, and act by their weight

while descending. The work done in the way of car-

rying, is at its max. WxO.8, or little more than a

fourth of the total effect which he can produce. This

had been long observed, and hence the utility of those

wheels, on or in which animals walk and turn them by

heir weight.
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95. The forces connected with heat are scarcely

more than two, the action of gunpowder, and that of

steam. The first of these is used for purposes which

scarcely admit of an estimation of its Dynamic effect ;

if the relation between the bulk and elasticity of the

the gases formed by its explosion were known, this

could be accurately assigned by theory ; but we can es-

timate it from the action of artillery. It is observed

that eight ounces of powder project a ball of twice that

weight with a velocity of 1640 feet, which would carry

it to the height of 14000 yards. If we compare this

with the formula for human action just given, and con-

Mder that the average value of W is 160, we see that

the effect produced by the powder is ^ of that of a man

carrying a load upon an ascent; while it costs us a

workman's wages for the day. It seems, however, that

when applied to blast rocks, its effect is twenty times as

great as in fire-arms : and it can be used where all other

movers would be inapplicable.

96. To value the power of Steam, we suppose it con-

tained in a cylinder, whose base is A*, and height H.

If then it be condensed, the piston is pressed with a

force nA^, n being the density of the steam, as mea-

sured by the pressure on a square foot : and this force

acts through a space H ; therefore the effect of a single

stroke of the steam engine is nA* pounds raised

through H feet. To know the cost of this effect, we

take Watt's determination that I pound of coal vapo-

rizes 8 of water under the most favourable circum-

stances. Steam, when of the elastricity of air, is about

1350 times the bulk of the water of which it is formed :
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now 8 pounds of water is 0.128 of a cubic foot, and

therefore the steam formed by burning one pound of

coal is 172.8 feet. The pressure of such steam on the

square inch is 14 pounds, therefore n 3= 144 x 14,

and nA*H is 172.8 x U4. X 11?, or 116 pounds

raised through 1000 yards, nearly equal to a man's

work for the day when he carries a load. It follows

from this that the fuel of a steam-engine costs scarcely

j^^ of the wages of the men who could perform the

equivalent work. If we multiply the above number by

84, the weight of a bushel, we obtain for the work done

by its consumption rather more than 29 millions raised

one foot 5 a result less than what is actually performed

by many steam-engines, notwithstanding friction and

other causes which tend to diminish the result. This

arises from the steam used being denser than the atmos-

phere, in which case n increases faster than A* H
diminishes, and therefore the eiFect is augmented,

though the theory of vaporization is too imperfect for

us to assign the precise quantities. For the augmen-

tation of power gained by shutting off the steam be-

fore the termination of the stroke, see note (c). In

applying the steam-engine to })roduce rotatory mo-

tion, the effect is reduced at least one half by the

crank, and no effectual substitute for it has yet been

discovered.
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NOTES ON CHAP. XI.

(a) This is a particular case of the motion of con-

nected bodies down two inclined planes, which is easily

derived from D'Alembert's principle : let m and m' be

the bodies, 1 and I' the inclinations of the planes, then

the quantities of motion impressed on the bodies in the

time dt are respectively mg sin I dty m'g sin I' dt, whose

difference is to be taken as they act in opposition : the

quantities actually acquired are mdv, m'dv^ and

dv __ ^
/? sin I vn! sin l')N

It ^V l^T^ ^*

or the accelerating force : gravity : : difference of the

powers which could sustain the bodies on the inclined

planes : sum of the bodies. Where the vertical velocity

of m is required a maximum, m and m' being given, we

multiply the numerator by sin I', and differentiating we

have

{m sin I 2w?' sin I') d (sin I') =0, sin I' = m
sin 1 2m'

which, when m descends perpendicularly, is the case of

art. 90. The square of the velocity is as the accelerating

force multiplied into the space, and where the height is

given this latter is h hence the Vis Viva of w! is

m' g y^k /w sin I m' sin I' \and this is a maximum,
sin V \ m-^mf J^

I and V being given, when

Ozzdm' J {m sin I 2i'sin V){m^rnf)'^mm' sin I+m' sin l'?
^
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= w* sin I 2mm' sin T m' * sin I',

m'- m { v^ sin 1 4- sin 1^ 1 1
<-

"
shTT ' y

This theorem applies immediately to the case of one

weight drawing up another by making both sines unity*

which gives m' '=- m (y^ 2
] 1).

If the friction on the planes be included the expres-

sion for the accelerating force is

Jtw sin I m sin I' mf. cos \mfQO^ V \
^

1 m-\-m' i

f being the ratio of friction to pressure. If we suppose

I=:t90* and seek the inclination which gives the vertical

velocity a maximum, we obtain

cos I^ _ m'

sin 2 r +/COS 2 r
""

771

and if we look for the value of m' which gives the maxi-

mum effect

m'=m J^V
l + ,inI' + /cosI' P '

5

Where an animal mover drmsos a body up an inclined

plane these formulae do not apply, for the power has no

inertia, and the quantity of action afforded by it varies

with the velocity. If we call 77* the motive energy, it

as stated in the text is F x /V U \'^, F being the

effort when U = 0. From this we derive

v-u = vx^, u =vji_y|^
m is the resistance, which In this case is m' sin V and
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l^j_ Y 5^ 1 J m' sin 1^7 and the maxima given

above become for the vertical velocity* and greatest eflfeot

sm r = -7
9 m'

In the case of a man F = 60 pounds on an average,

and a horse is five times as strong ; and on a slope of

one in thirty six, which is the utmost allowed in good

roads, sin I = , and m l^^O, bnt a large de-

duction must be made for the friction* &c. The reader

can easily extend these theorems.

(b) Applying D*Alembert*s principle to the lever, we

have gdtm, gdtm for the quantities of motion impressed ;

and mdv, m'dv' for those acquired in the instant dt.

These must equilibrate by means of the lever, &d
therefore

gdt [wir WiV} = mrdv-^wfj^dv

We have also, as the velocities are as the arms,

di/ : dv : : r' : r^ and the equation becomes

gdt ximr 7nr' |=|wr-f mV^j ^,
dv' = 5- X r X gd t

and integrating.

An expression which might have been derived from

the properties of the moment of inertia, the numerator

being the moving power and the denominator the mo-
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ment of inertia of i^ and m', to which, if necessary, the

moment of inertia of the lever may be added. If the

resistances be such that no acceleration takes place,

wi' t/ may be taken as a measure of the performance of

the lever, being the product of the resistance overcome

into the spaces described by the working point in a

given time. If the machine be accelerated, we take

the product of m^ into the space through which it is

moved as in the ordinary mode of estimating Vis Viva.

If we differentiate the value of v^ with respect to r'

we have

?w* r^ ^ m n/ r^ r^ mm'r r'^ -^ 0,

y.'+ 2 r / = fL r,

which gives one case of maximum effect, namely,

where the power and resistance are both determinate

and the machine alone can be varied, as then a given

weight is raised with the greatest velocity. If

^ r' -

m'=-m y z^ I,/ 2/ 1 as we found in the inclined
r

plane.

If we differentiate mV with respect to m', the

maximum effect produced by a given machiae is where
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If we suppose the mover m to be the action of an

animal, or a stream of water, the formula is different;

as in the last note,

=
v{

t/ = v/f therefore

r

ad.V = V ^!^_V|? Xv/?^ }

differentiating with respect to r', we have

r V ^^^Tpi 9 m 9 wV

or the load m* must be 4? of that which would equili-

brate with the maximum effort.

The case where the inertia of mf is nothing is consi-

dered in the text, that where its inertia is the sole re-

sistance is easily obtained j the mass of / must be sup-

posed collected in its centre of gyration, and

v' = kmr
^

m'xl = mm'rh

mr^^rr/k^ mr^ +m'k^

differentiating with respect to k, we have = mr^ mk',

or the moments of inertia of the power considered as a

weight, and of the resistance must be equal. This ap-

plies to mill-stones, fly wheels, &c.

fc) In the Steam engine, when steam acts above th

piston, during the entire descent, it is uniformly acce-

lerated ; this is in many instances contrary to the use of

the machine, which in general requires uniform mo-

S
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tion, and is always attended by a consumption of

steam greater than the proportional augmentation of

power. It is therefore found useful to admit it only for

a certain part of the descent, and cutting off the com-

munication, let it expand and press with a diminished

force. It is certain, that when steam is kept at a con-

stdht temperature a given quantity of it follows the same

law as air ; that its elasticity is as its density, or inversely

as the space which it occupies. If then we suppose

n the pressure on the unit of surface exerted by the

steam in the boiler, and suppose it admitted freely while

the piston descends through , the action during that

space is nA*i If then the communication be closed,

and the distance of the piston from the top of the cylin-

der become Xy the steam which filled the space A* ( is

diffused through A* .r, and therefore P its pressure:

n::i'.x,= n| and the Vis Viva in an instant of

time is PA* dx ox nk^ i I dx \ The integral of

(~)
this taken from I to 5' gives the expansive action of the

steam, and this added to nA^I gives the total effect

during a stroke

nA dx
1 r ""^ ^ C + nA I X h. l.x.

When X % this integral =: 0, C =r h.l.i therefore

E = nA 5
^ \^h,l.(^^

The steam expended in producing this effect is A^|.

The advantage of this may be shewn by a numerical

example: let us suppose 5'
= 45, and nA^ = 1 : the//. I.

(4)= 1.39 and E = { (2.39). If the steam acted through
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the whole stroke E = 4 but the steam employed is four

times as great; therefore in these two instances the quan-

tities of work done by a given quantity of steam are as

24: 10 nearly.

The complete theory of the steam engine involves

much curious discussion, but it cannot be given here ; the

reader may be referred to Prony Arch. Hydraulique,

Tom. 2. for it, and to Robison's Tracts, where he will

find the subject treated in an elementary manner with

much ability.

FINIS.
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