

TABLES AND DIAGRAMS

Estimates for Sewerage Work

By S. M. SWAAB, C.E.

NEW YORK:

TABLES AND DIAGRAMS

for facilitating the making of

Estimates for Sewerage Work

By S. M. SWAAB, C.E.

NEW YORK:
THE ENGINEERING NEWS PUBLISHING COMPANY. 1902.

COPYRIGHT, 8896 , by S. M. SwaAB

GENERAL

CONTENTS.

Page.
General explanation 1
Method of using tables and diagrams 2
Examples worked out $2,3,4$
Plate I.-Circular sewers, 2 ft . to 5 ft .9 ins. diam 5
Plate II.-Circular sewers, 6 ft . to 12 ft . diam 6
Plate III.-Circular sewers, 12 ft . to 15 ft . diam 7
Plate IV.-Egg-shape sewers, 1 ft .6 ins. by 2 ft .3 ins. to 3 ft .4 ins. by 5 ft 8
Plate V.-Excavation for one-ring brick circular sewers, 2 ft . to 5 ft . diam 9
Plate VI.-Excavation for two-ring brick circular sewers, 2 ft . to 5 ft . diam 10
Plate VII.-Excavation for clrcular sewers, 2 ft . to 4 ft .9 Ins., In full cradle. 11
Plate VIII.-Excavation for circular sewers, 5 ft . to 8 ft ., in full cradle. 12
Plate IX.-Excavation for circular sewers, 8 ft . to 11 ft ., in full cradle 13
Plate X.-Excavation for clrcular sewers, 11 ft . to 13 ft ., In full cradle 14
Plate XI.-Excavation for circular sewers, 13 ft . to 15 ft ., In full cradle 15
Plate XII.-Excavation for clrcular sewers, $\overline{0} \mathrm{ft}$. to 10 ft ., in partial cradle 16
Plate XIII.-Excavation for cIrcular sewers, 10 ft . to 15 ft ., In partlal aradle 17
Plate XIV.-Excavation for one-rlng brick egg-shape sewers, 1 ft .6 ins. by 2 ft .3 ins . to 3 ft .4 lns . by 5 ft. 18
Plate XV.-Excavation for two-ring brick egg-shape sewers, 1 ft .6 lns, by 2 ft . 3 lns. to 3 ft .4 ins . by 5 ft 19
Plate XVI.-Excavation for egg-shape sewers, 1 ft .6 lns . by 2 ft .3 ins . to 3 ft .4 lns . by 3 ft ., in full cradle. 20

- +2

TABLES AND DIAGRAMS FOR FACILITATING THE COMPUTATION OF ESTIMATES FOR SEWERAGE WORK.

By S. M. SWAAB, Civil Engineer, Philadelphia, Pa.

The object of the accompanying tables and diagrams, as the title suggests, is to facilitate the computation of estimates for sewerage work. The figures represent in the case of masonry the gross amount of brick and mortar and stone and mortar which comprise the brick masonry and stone masonry indicated by the tables.

The quantity of mortar in brick masonry amounts to about 25 to 30% of the total bulk, and the quantity of mortar in stone masonry amounts to about 32 to 35%. Flve hundred bricks, more or less, of standard size are required to lay a cubic yard of brick masonry where the joints are from $1 / 4$ to $3 / 8-i n$. thick. About 2% should be allowed for breakage and cutting.

The quantities of excavation indicated by the diagrams are the minimum quantities which will allow the trench to be as wide from top to bottom as the greatest external width of the "cradle." The quantities of excavation for sewers not in "masonry cradle" refer to a trench equal in width at the top to the greatest external width of the sewer, and at the bottom to conform to the shape of the section.

Allowance has been made in all the diagrams so that the quantities indicated thereon represent the total amount of excavation to the "outside bottom" of the sewer; but as the figures representing the depth of the sewer below grade are invariably given on the "inside bottom" of the
sewer, the depth, in these diagrams, for convenience, is also given to the "inside bottom."

Method of Using the Diagrams.

The internal dimensions in feet and inches of the egg shape and circular sewers will be found on the left of the diagrams in every case. Run over this line foward the right until the curve is found representing the depth to the inside bottom of the sewer below the surface; then follow down the vertical line which intersects the curve at this point to the bottom of the diagram, on which may be read off at once the quantity of excavation.

All the quantities given in the tabies and diagrams are in cubic yards and decimais of a cubic yard per linear foot of sewer. The quantities given in the tables have merely to be multiplied by the length of the sewer to find the
total amount of brick or stone masonry, excavation, etc., in any given piece of work.
The following examples will iilustrate the method of using the tables and diagrams:
Example 1.-Given a 3 -ft. diameter circular sewer in "fuil cradle,' $1,000 \mathrm{ft}$. long, 12 ft . deep to inside bottom: From Plate I.:

Quantity of brickwork $=-0.292_{1,000}$ cu.yds. per lin.ft.
Total " " 292 cu . yds. per $1,000 \mathrm{ft}$.

From Piate I.:
Quantity of masonry $=-0.481_{1,000}^{\text {cu.yds. per lin.ft. }}$
Total "،

From Plate VII.:
Quantity of excavation $=-3.54 \quad$ cu.yds. per lin.ft. 1,000
Total " "، $3,540 \mathrm{cu}$. yds. per $1,000 \mathrm{ft}$.
Example 2.-Given an 8 - ft . diameter circular sewer in "partial cradie" $1,000 \mathrm{ft}$. long, 18 ft . deep to inside bottom:

```
From Plate II.:
    Quantity of brickwork \(=-1.14\) cu.yds. per lin.ft.
                        1,000
    Total " " 1,140 cu. yds. per \(1,000 \mathrm{ft}\).
```

From Plate II.:
Quantity of masonry $=-1.414{ }_{1,000}$ cu.yds. per lin.ft.

Total " " $1,414 \mathrm{cu} . \mathrm{yds}$. per $1,000 \mathrm{ft}$.
From Plate XII.:
Quantity of excavation $=-9.4 \quad$ cu.yds. per lin.ft. 1,000
Total " " 9,400 cu. yds. per $1,000 \mathrm{ft}$.
Example 3.-Given a 2 -ft. 2 -in. x 3 -ft. 3 -in. egg-shape sewer in "full cradle," $1,000 \mathrm{ft}$. long, 10 ft . deep to inside bottom:
From Plate IV.:
Quantity of brickwork $=-0.25$ 1,000 cu.yds. per lin.ft. Total " ". $250 \quad$ cu. yds. per $1,000 \mathrm{ft}$.

From Plate IV.:
Quantity of masonry $=-0.50{ }_{1,000}$ cu.yds. per lin.ft. 1,000

Total " " $500 \mathrm{cu} . \mathrm{yds}$ per 1,000 ft.

From Plate XVI.:

Quantity of excavation $=$	-2.58 1,000	cu.yds. per lin.ft.
Total "	"	$2,580 \mathrm{cu}$. yds. per $1,000 \mathrm{ft}$.

Example 4.-Given a 4 -ft. 6 -in. diameter circular sewer, $9-\mathrm{in}$. brickwork (double ring of brick all around), 1,000 ft. long, 9 ft .6 ins . deep to inside bottom.

From Plate I.:

Quantity of brickwork $=-0.458$ cu.yds. per lin.ft. Total "
"
$458 \mathrm{cu} . \mathrm{yds}$. per $1,000 \mathrm{ft}$.
From Plate VI.:
Quantity of excavation $=-2.15_{1,000}$ cu.yds. per lin.ft.
Total " " 2,150 cu. yds. per 1,000 ft.

For quantity of excavation in rock, where the arch, haunch and counterarch are used without masonry cradle, read the quantity of excavation for the given size and depth from the diagram showing the quantity of excavation for circular sewer in partial cradle in cubic yards; next find the quantity of masonry required for the sewer in partial cradle in cubic yards; subtract the latter from the former, and the result is the total amount of rock excavation.

Example 5.-Given a $10-\mathrm{ft}$. diameter sewer in "rock excavation'’ 17 ft . to inside bottom.

From Plate XIII. 10.7 cu. yds. excav. per lin. ft. From Plate II............... 1.9 " " masonry.
8.8 " " rock excavation.

An infinite number of combinations of the various tables and diagrams will suggest themselves as occasion demands. The tables and diagrams are applicable to all combinations where the general "dimensions and design" of the sewer sections compare favorably with the dimensions of the sections on which these tables were based, as shown by the headings of the different tables.

Circular Sewers					
Size				BrichMasonry	
				4sime Brian	
Ft. In.	Quar	tryincu	yards	pr. linear	foot
20	0. 227	0.3		0.103	0.24
3	. 235	. 33		. $1 / 14$	261
6	. 244	35		. 125	. 284
9	. 270	43		. 136	3
3.0	. 292	48		147	. 327
3	. 320	54		. 158	. 35
6	. 348	. 59		. 169	. 37
9	. 360	. 65		18	. 39
4.0	38	. 7		19	(4)
3	40	74		. 20	.486
6	42	78		. 21	458
	45	85		. 223	. 40
5.0	49	90	0.74	0. 234	0.50
	. 54	0.96	0.80		
6	. 57	1.03	0.87		
9	0.60	1.07	0.93		

			0	$\begin{aligned} & 0 \\ & 0 \\ & 9 \end{aligned}$	\pm	$\frac{0}{2}$	$\stackrel{\sim}{\sim}$	$\stackrel{a}{v}$	$\sqrt[3]{2}$	$\begin{aligned} & 6 \\ & \sqrt[3]{2} \end{aligned}$	$\stackrel{y}{k}$	$\stackrel{N}{v}$	$\begin{aligned} & y \\ & y \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \\ & 9 \end{aligned}$	$\left\lvert\, \begin{aligned} & 3 \\ & 0 \\ & 8 \end{aligned}\right.$	$\stackrel{N}{N}$	N	$\stackrel{*}{\infty}$	$\begin{aligned} & 0 \\ & 9 \end{aligned}$	へ	ง	$\left\|\begin{array}{l} 0 \\ \tilde{\sim} \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{aligned} & 3 \\ & m \\ & \mathrm{u} \end{aligned}$	$\begin{aligned} & 8 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & b \\ & \text { in } \end{aligned}$	0 0 \sim	0 0 0 0
$\begin{aligned} & y \\ & 0 \\ & 3 \\ & 0 \end{aligned}$		$\begin{gathered} 1 \\ 2 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & m \\ & m \\ & n^{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\stackrel{y}{5}$	$\begin{aligned} & \hat{y} \\ & \cline { 1 - 1 } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 8 \\ & 8 \end{aligned}$	$\stackrel{\infty}{8}$	${ }_{2}^{x}$	$\left.\begin{gathered} 2 \\ 2 \\ \end{gathered} \right\rvert\,$	$\begin{gathered} 0 \\ n_{2} \end{gathered}$	$\grave{~ ২}$	$\left\lvert\, \begin{aligned} & v \\ & \sim \end{aligned}\right.$	$\begin{gathered} \hat{M} \\ \underset{\sim}{u} \end{gathered}$	$\left\|\begin{array}{l} w \\ m \\ \dot{q} \end{array}\right\|$	$\begin{aligned} & n \\ & \text { y } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \dot{y} \\ & \dot{v} \end{aligned}$	$\left.\begin{aligned} & n \\ & 0 \\ & \end{aligned} \right\rvert\,$	$\stackrel{\mathrm{N}}{\underset{\sim}{\mathrm{~N}}}$	$\begin{aligned} & 0 \\ & \infty \\ & \mathrm{n}^{2} \end{aligned}$	$\left\|\begin{array}{l} 0 \\ \dot{n} \end{array}\right\|$	¢	N	5 5 5	年
			$\begin{aligned} & 6 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & a \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{1} \\ & \hat{a}_{2} \\ & 0 \end{aligned}$	$\begin{gathered} 2 \\ 2 \\ 0 \\ 0 \end{gathered}$	0	$\begin{aligned} & y \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$>$	5	$\stackrel{k}{2}$	پે	$\begin{aligned} & y \\ & v \\ & v \end{aligned}$	$\left\|\begin{array}{l} \infty \\ n \\ 2 \\ 1 \end{array}\right\|$	$\begin{gathered} v \\ v \\ v \end{gathered}$	$\left\|\begin{array}{l} 9 \\ 7 \\ \hline \end{array}\right\|$	$\begin{aligned} & a \\ & 2 \\ & - \end{aligned}$	$\stackrel{m}{2}$	5	$\begin{aligned} & 0 \\ & 5 \\ & \hline \end{aligned}$	$\stackrel{3}{5}$	$\left\lvert\, \begin{aligned} & \hat{y} \\ & 2 \end{aligned}\right.$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	n	6	$\stackrel{0}{2}$
1	$\begin{aligned} & 0 \\ & N \\ & v \end{aligned}$	ミ	O	3	\checkmark	9	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	9	\bigcirc	a	$\begin{gathered} 0 \\ \infty \\ 0 \end{gathered}$	3	ω	a		\cdots	\checkmark	a	$\left.\begin{gathered} 0 \\ \vdots \\ 0 \\ 0 \end{gathered} \right\rvert\,$	\cdots	ω	a	$\left\|\begin{array}{c} 0 \\ i \\ \\ i \end{array}\right\|$	3	\checkmark	9	\％

	Circular Sewers \qquad		
Size	BrickMosonry 1sinArch, Hounct and 9 inch counterarch	Rubble 12 inchesthic atce InfullCradt	$r y$ counterana artial Crad
Ft. 1 ln .	Quantity in cubic yards pr. linear foot.		
12......... 0	1.75	3.45	2.66
3	1.82	3.50	2.72
6	1.9	3.58	2. 76
9	2.0	3.70	2.84
13........... 0	2.1	3.75	2.91
3	2.12	3.85	2.97
6	2.25	3.90	3.06
9	2.31	… 3.95	3.14
14....... 0	2.40	422	3.23
3	2.50	4.4	3.36
6	2.60	4.6	3.5
9	2.65	475	3.70
15....... 0	2.75	5.03	3.90

Plate IV.

Table showing Quantity of Excaration in cubicyo's. prelinear foot of Circular Sewer"ln Full Cradle".

Diometer	Deoth to		inside bottom.		of sewer, infeet		
Ft-in.	10°	111	12	13	14	15	16
2,	2.3	2.53	2.71	2.92	3.13	3.34	35.5
$2 .-3$	2.43,	2.65	2.76	3,13	3.27	13.5	372
2.-36	$2.56{ }^{\circ}$	2.78	3.01	3	3.5	3.71	3.94
2.-.... 9	2.8	3.06	3:25.		305	10	428
3..... 0	30	$3{ }^{3} 3$	3.5	38	4.4	4.46	462
3.....3	2.17:	0.51	375	4/2,	insk	462	49
3.1 .6	3.42	3.73		37	4.9	1497	5.3
3...... 9	$3.6{ }^{2}$	$3.9{ }^{\circ}$	$4.23{ }^{\circ}$	44.	4.9	5.2	5.52
4.-..0	3.78	4.12	4.46	4.8	G. 心	5.47	5.82
4-1.3	3.85	4.18	4.50	4.85	5.2	5.53	5.9
4-6	3.89	4.24	4.59	4.9	5.3	5.67	6.0
4-.... 9	3.96	4.32	4.68	5.0	5.4	5.76	6.11

Plate IX.

Plate X.

Plate XI.

Plate XII.

e

Plate XVI.

\qquad
Coy
Coy
Coy
Coy
$+75_{5}^{5}$

[^0]$x+2$

$x+\frac{2}{4}+5$
$\square+2$
$+$
\qquad

 \qquad $\begin{array}{ll}3 \\ 5 & 3 \\ 5\end{array}$
\qquad $\frac{4}{2}+$

[^1]5

\qquad ？
\square
\square
\square 8
38
-

> .

[^0]: $$
 5858
 $$

 $\rightarrow 2$

[^1]: 经

