

TABLES AND DIAGRAMS

RELATING TO

NON-CONDENSING

ENGINES & BOILERS

W. P. TROWBRIDGE.

NEW YORK: JOHN WILEY & SON, 15 ASTOR PLACE.

1872.

ENTERED ACCORDING TO ACT OF CONGRESS, IN THE YEAR 1872, BY JOHN WILEY & SON,

AVANDAR (177

M. S.

1,5475

IN THE OFFICE OF THE LIBRARIAN OF CONGRESS, AT WASHINGTON.

INTRODUCTORY NOTE.

This collection of tables for non-condensing engines and boilers, and also the explanations relating to them, including those which refer to Horse Power of Engines, and the Diagrams showing the quantity of water required per horse power per hour for different degrees of expansion, was originally prepared at the Novelty Iron Works, New York, as a basis for the manufacture and sale of engines.

The explanatory note relating to the Horse Power of Engines was prepared by Mr. Horatio Allen, President of the Novelty Iron Works.

The explanations in regard to the tables of engines and boilers were prepared by Mr. C. E. Emery, who made, for the Novelty Iron Works, the valuable experiments which formed the basis of the tables.

The description of the manner in which the experiments were conducted is given by Mr. Emery, in a note accompanying the diagrams; and the computations of the tables were also made by him.

It was intended to publish the results of the experiments and the resulting tables in connection with the sale of engines, but the resolution of the proprietors of the Novelty Iron Works to close the works, made it necessary to withhold the matter from publication, notwithstanding it had been put into printed form.

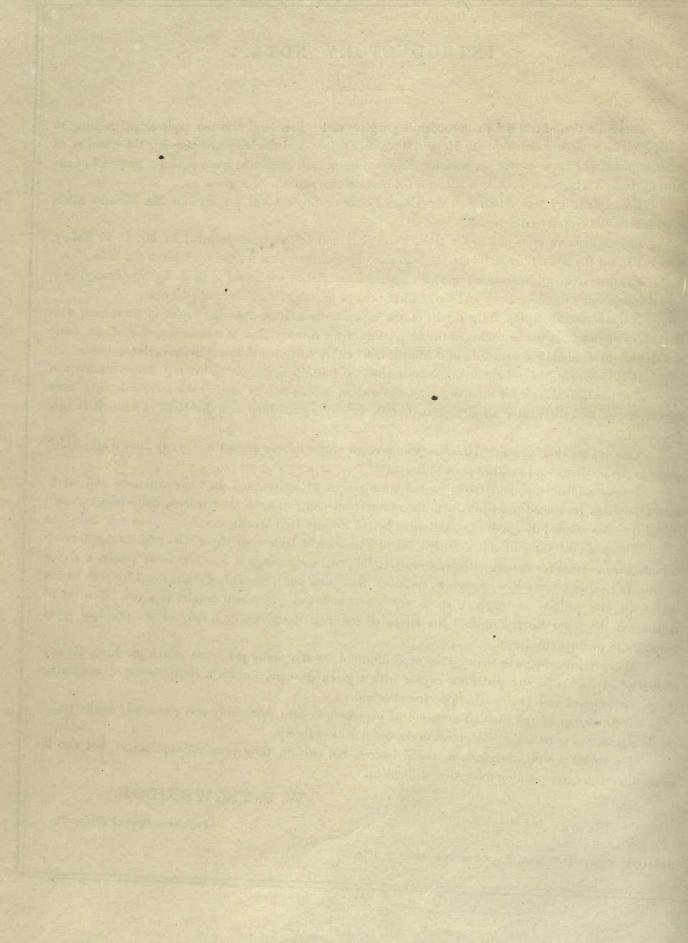
Believing that the information obtained and set forth in a manner so readily comprehended and applicable, may be valuable for reference to all who wish to manufacture or employ the non-condensing steam engine, I procured the matter already printed, with a view of publishing it in the form in which it is here presented.

This explanation is rendered necessary on account of the references to the Novelty Iron Works which occur in the headings, and in other parts of the text.

I have added notes and tables on the horse powers of boilers, and on boiler-explosions and safety valves, subjects connected practically with the manufacture and management of boilers, but which were not included in the original design of the publication by the Novelty Iron Works.

The practical value of this extended list of engines and boilers to those who wish to purchase or manufacture engines for special purposes consists in this, that for a range of 5 to 300 horse power, a choice is offered of various dimensions of engines, speeds of revolution and pressures of steam; and for each engine in the list, the quantity of water, or steam, per hour which this engine will require is given. The list of boilers, on the other hand, furnishes the means of selecting the boiler or boilers of the principal types necessary to produce this steam.

Moreover, the diagrams showing the expenditure of steam or water per horse power per hour, for any degree of expansion in any particular engine with a given pressure, furnish a ready means of comparing the performance of such engine with a perfect standard.


The question of the limit of economy of expansion is here thoroughly and practically settled; and the results, as was to be anticipated, confirm the deductions of theory.

The tables possess, therefore, a special interest, not only in their practical applications, but also in connection with corresponding theoretical deductions.

W. P. TROWBRIDGE,

Professor of Dynamic Engineering.

SHEFIELD SCIENTIFIC SCHOOL, YALE COLLEGE, APRIL 5, 1872.

Horse Power of Steam Engines.

HE power which a Steam Engine can furnish is generally expressed in "Horse Power." It will therefore be of interest to most purchasers, and of special value to many, to have briefly stated, what is meant by a "Horse Power," and how it has happened that the power of a Steam Engine is thus expressed in reference to that of Horses.

Prior to the introduction of the Steam Engine, horses were very generally used to furnish power to perform various kinds of work, and especially the work of pumping water out of mines, raising coal, etc. For such purposes several horses working together were required. Thus, to work the pumps of a certain mine, five, six, seven or some other number of horses were found necessary. When it was proposed to substitute the new power of steam, the proposal naturally took the form of furnishing a Steam Engine capable of doing the work of the number of horses used at the same time. Hence, naturally followed the usage of stating the number of horses which a particular engine was equal to, that is, its "Horse Power."

But as the two powers were only alike in their equal capacity to do the same work it became necessary to refer in both powers to some work of a similar character which could be made the basis of comparison. Of this character was the work of raising a weight perpendicularly.

A certain number of horses could raise a certain weight, as of coal, out of a coal mine, at a certain speed; a Steam Engine, of certain dimensions and supply of steam, could raise the same weight at the same speed. Thus, the weight raised at a known speed could be made the common measure of the two powers. To use this common measure it was necessary to know what was the power of one horse in raising a weight at a known speed.

By observation and experiment it was ascertained that, referring to the average of horses, the most advantageous speed for work was at the rate of two-and-a-half miles per hour—that, at that rate, he could work eight hours per day raising, perpendicularly, from 100 to 150 fbs. The higher of these weights was taken by Watt, that is, 150 fbs. at $2\frac{1}{2}$ miles per hour. But this fact can be expressed in another form: $2\frac{1}{2}$ miles per hour is 220 feet per minute $\left(\frac{2\frac{5}{4}\times5280}{60}-220\right)$. So, the power of a horse was taken at 150 fbs., raised perpendicularly, at the rate of 220 feet per minute. This also can be expressed in another form: The same power which will raise 150 fbs. 220 feet high each minute, will raise

 300 lbs.
 110 feet high each minute.

 3,000 lbs.
 11
 "

 33,000 lbs.
 1
 "

For in each case the total work done is the same, viz.: same number of pounds raised one foot in one minute.

If it is clearly perceived that 33,000 fbs., raised at the rate of one foot high in a minute, is the equivalent of 150 fbs., at the rate of 220 feet per minute (or $2\frac{1}{2}$ miles per hour), it will be fully understood how it is that 33,000 fbs., raised at the rate of one foot per minute expresses the power of one horse, and has been taken as the standard measure of power.

Horse Power of Steam Engines.

It has thus happened that the mode of designating the power of a Steam Engine has been by "Horse Power," and that one horse power, expressed in pounds raised, is a power that raises 33,000 lbs. one foot each minute. This unit of power is now universally received. Having a Horse Power expressed in pounds raised, it was easy to state the power of a Steam Engine in Horse Power, which was done in the following manner:

The force with which steam acts is usually expressed in its pressure in pounds on each square inch. The Piston of a High Pressure Steam Engine is under the action of the pressure of steam from the boiler, on one side of the piston, and of the back action of the pressure due to the discharging steam, on the other side. The difference between the two pressures is the effective pressure on the piston, and the power developed by the motion of the piston, under this pressure, will be according to the number of square inches acted on, and the speed per minute with which the piston is assumed to move. Thus, let the number of square inches in surface of piston of a steam engine be 100, and the *effective* pressure on each square inch be 33 fbs., and the movement of piston be at the rate of 200 feet per minute, then the total effective pressure on the piston will be $100 \times 33 = 3,300$ fbs., and the movement being 200 feet per minute, the piston will move with a power equal to raising 660,000 fbs., one foot high each minute (as $3,300 \times 200$ is 660,000), and as each 33,000 fbs., raised one foot high, is one horse power and $\frac{660000}{330000}$ is 20, then the power of this Engine is 20 Horse Power. If this power is used to do work, a part of it will be expended in overcoming the friction of the parts of the engine and of the machinery through which the power is transmitted to perform the work. The calculation made refers to the total power developed by the movement of the piston under the pressure of steam.

The number of feet moved by the piston each minute is known from the length of stroke of piston in feet, and number of revolutions of engine per minute, there being two strokes of the piston for each revolution of the engine. When these three facts are known the power of an engine can be readily and accurately ascertained, and it is evident that, without the knowledge of each of the facts, viz.: square inches of piston, effective pressure on each square inch, and movement of piston per minute, the power cannot be known.

But circumstances, especially those existing when the Condensing Engine was introduced by Watt, led to assumptions as to pressure per square inch and speed of piston, which, though true at the time, have long since ceased to be true, and consequently the rules based on such assumptions are entirely inapplicable, and when used must of necessity give false statements. As, however, such rules are still in use, although with the precautionary and unsatisfactory designation of *nominal* power, it is necessary to state what Nominal Horse Power is. In the United States the designation of Nominal Horse Power for Condensing Engines is seldom used, but in England the usage still prevails.

After Watt had introduced the Condensing Engine, he gave convenient rules for determining the power of his engines, and as, at that time, the steam pressure and piston speed in general use were very low, his rule was based on the assumption that, in all steam engines, the effective pressure was 7 ibs. per square inch, and that the speed of the piston-varied with the length of stroke from 160 feet per minute for 2 feet stroke to 256 feet per minute for 8 feet stroke. The only facts necessary to obtain were the diameter of cylinder and length of stroke. The nominal power was then determined by Watts' rule, which is as follows:

RULE.—Multiply the square of the diameter of the cylinder in inches by the cube root of the stroke in feet, and divide the product by 47. The quotient is the nominal horse power of the Engine.

For many years, and especially in the United States, this rule has ceased to be of any value. This becomes plainly the case when, instead of 7 lbs. per square inch, the pressure actually used greatly exceeds 7, being from 20 to 50 and over, while the speed of piston is often from 400 to 700 feet per minute.

4

Horse Power of Steam Engines, etc.

Some modifications of this rule have been made, but it is plain that when the pressure of steam and speed of piston are so various as at present it is simply not possible to have a general rule. If it becomes necessary to state the power of an engine, then the three facts named above, viz. : number of square inches of piston, effective pressure per square inch per stroke of piston, and speed of piston must be known or assumed, and when known or assumed the Horse Power can in that case be ascertained, as explained above.

In the United States, it is still usual to assign a certain Horse Power, often called "Rated Horse Power," for High Pressure Engines of certain dimensions, thus a cylinder of 12 inches diameter, 3 feet stroke is often called 20 horse power, and so of other dimensions.

The considerations already presented show that it is plainly impossible to say what horse power a 12 inch diameter, 3 feet stroke cylinder is, unless there is also stated what effective pressure on the piston, and speed of piston are to be used.

At what steam pressure that Engine will be used, and with what speed of piston run, remains to be decided, and until they are decided nothing can be said as to the power of the Engine. As it would not be safe to subject the Engine to higher steam than that for which it was built, nor to run it at higher speed than it is known its moving surface, in contact will bear, the *maximum* capacity of an Engine can be stated, within which the power of that Engine will be determined by the pressure and speed actually used.

Explanation of the Tables.

The tables commencing at page 7 show "The sizes of the Non-Condensing, Stationary Steam Engines, built at the Novelty Iron Works, New York; and the Revolutions, Steam Pressures and Points of Cut-off which will produce the several Horse Powers named; also the Amount of Water used per Hour and Cost of the Power per Year, for each case."

Non-Condensing Engines, or, as they are often incorrectly called, High Pressure Engines, are those in which the steam, after its action on the piston, is permitted to escape into the atmosphere, and in which, therefore, the pressure of the outgoing steam must exceed the atmospheric pressure of fifteen pounds to the square inch.

There are two kinds of Horse Power referred to in the tables, viz.: The Indicated Horse Power and the Net Horse Power. The Indicated Horse Power is obtained by multiplying together the mean effective pressure in the cylinder, in pounds per square inch, the area of the piston in square inches, and the speed of piston, in feet per minute, and dividing the product by 33,000; and as the effective pressure on the piston is measured by an instrument called the Indicator, the power calculated therefrom is called the Indicated Horse Power. The Net Horse Power is the power available for useful work, and may be determined by subtracting, from the Indicated Horse Power, the power required to overcome the friction of the engine, when in the performance of its regular duty. For instance, if a

Explanation of the Tables.

person desires an engine to drive ten machines, each requiring ten Horse Power, the engine should be of sufficient size to furnish one hundred *Net* Horse Power; but to produce this would require about one hundred and fifteen *Indicated* Horse Power.

We manufacture two classes of engines, designated in the tables as "Long Stroke Engines" and "Short Stroke Engines." These engines, as suggested by their names, have different proportions of stroke to diameter, and the shorter strokes are made with increased size of brasses and other modifications of detail which fit them for high speeds.

Column A of the tables shows the "Net Horse Power," which has been calculated for the various powers usually required between 5 and 350 Horse Power. Each Horse Power can be obtained in a variety of ways, shown by the adjacent columns. The Net Horse Powers shown in the tables were obtained from the estimated Indicated Horse Powers, by deducting liberal allowances for friction. In the calculations, it was assumed that the short stroke engines have more friction than the long stroke.

Column B shows the "Steam Pressures" above the atmosphere assumed for each case. The calculations have been made for pressures of 60, 80 and 100 lbs., as being those in most general use, in non-condensing engines.

Column c shows the "*Point of Cut-off*" for each case. The table gives the results when the steam is cut off at $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{3}{4}$ of the stroke from the beginning, which means that the full pressure of the steam has been allowed to act on the piston during $\frac{1}{4}$, $\frac{1}{2}$ or $\frac{3}{4}$ of the stroke, and that the remainder of the stroke, in each case, has been completed by the expansion of the steam.

Column D, in each class of engine, shows the "Size and Designation" of the engine. For instance, the expression 5×12 means that the piston is five inches in diameter and twelve inches stroke, and that the engine is designated or called a "5 by 12 Engine," instead of a five Horse Power Engine, for reasons before stated.

Column E shows, for each class of engine, the "*Revolutions per Minute*" at which the several engines must be run, in order to produce the Net Horse Powers named, at the steam pressures and points of cut-off shown.

Columns F and F show the number of pounds of "Water," evaporated into steam, required "per Indicated Horse Power per hour," for each case. The facts were obtained from experiments which are hereinafter explained and illustrated. This column shows the comparative economy of the different methods of producing the power, and from it may readily be calculated the amount of coal required per Indicated Horse Power per hour.

Columns G and G show the "Total Amount of Water per hour," in pounds, necessary to be evaporated to produce the Net Horse Power named. The results are calculated from the quantities in line F, due allowance being made for the difference between the Indicated and Net Horse Power. This column shows the evaporative power of the boiler required for each case.

Columns H and I show, for each class of engine, the "Cost per Year of the Net Horse Power named." Column II shows the cost of the coal for one year, on the supposition that the engine runs ten hours per day, for 300 days in the year; that the coal, including cost of handling, etc., costs \$8.00 per ton of 2,000 lbs., and that each pound of coal evaporates eight pounds of water. Variations may be made, by simple calculations, when the price of coal or the evaporation differs from the assumption. The quantities in column I were obtained by adding to the cost of the coal, in each case, the interest at ten per cent, on the estimated cost of the engine. This column shows, then, the total cost of the power per year for fuel and interest.

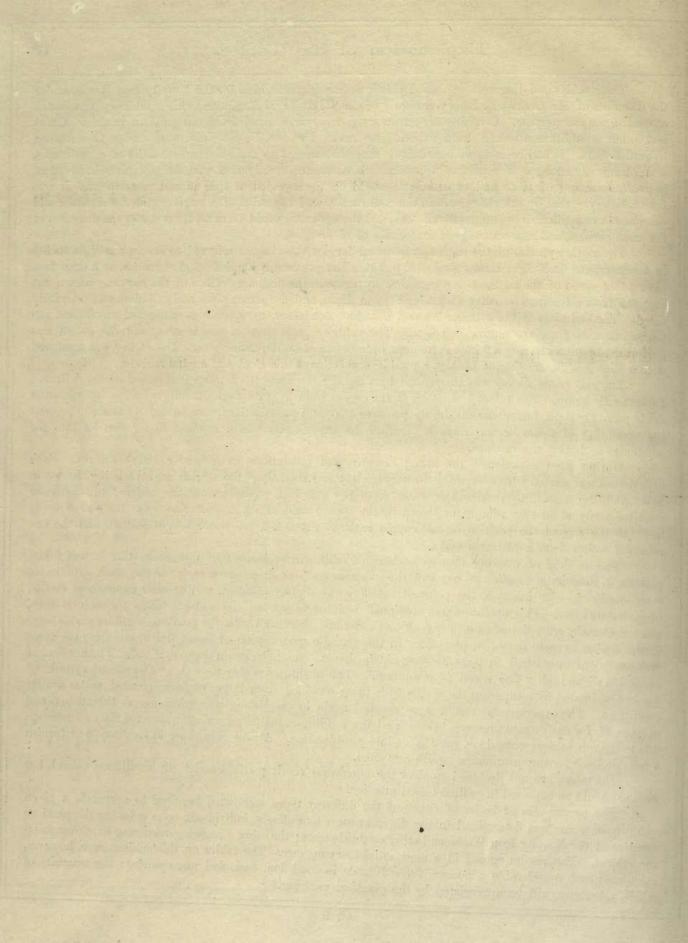
6

Explanation of the Tables.

These tables and diagrams are based chiefly on experiments made for the Novelty Iron Works, under the direction of Mr. Charles E. Emery, formerly of the U. S. Naval Engineers, with machinery constructed especially for the purpose. Confirmatory results were, however, derived from the previous practice of that and other establishments, and from experiments made for the U. S. Navy, and under Government Commissioners. It had been shown conclusively that the attempt to make a complete series of experiments, under the many changes of condition necessary to a complete investigation, with *large* engines involved an incredible amount of labor and expense, and would occupy a period of time almost proscriptive. It was found, however, that by exercising eare in the construction and operation of a *small* engine the results would show the laws applicable to engines of all sizes, and the apparatus could be at all times under the direction of the same persons, and thus secure great uniformity of observation.

The steam cylinder of the engine constructed for the experiments referred to herein was eight inches in diameter, and had eight inches stroke of piston. The power was applied to give motion to a large fanblower, the speed of the engine being regulated by a gate in the discharge orifice of the blower. Steam was supplied from a locomotive boiler with a high steam drum, and the steam pipes and cylinders were carefully fitted. The bed plate of the cylinder formed a surface condenser, to which was connected an efficient airpunp operated from the engine crosshead. The cylinder ports were of ample area, and the cut-off was performed by plates having a 9-inch movement over the back of the main valve. The *Power* was measured with a Richards' Steam Engine Indicator, used in connection with a clock and engine register.

The cost of the Power was ascertained by weighing the amount of water (condensed steam) delivered from the air pump. The valves and piston of the engine were by good workmanship and extended operation made perfectly tight, under the maximum pressure used, and examinations were frequently made to prevent the possibility of steam or water leaks. During the experiments herein referred to air was let into the condenser to destroy the vacuum.


During each experiment the steam pressure and revolutions were kept exactly uniform. Each experiment was started with everything in average working condition—the engine register being thrown in gear, and the vessel, to receive the water from the hot well, pushed under the delivery of the latter simultaneously, at an even minute, as shown by the second-hand of the clock. Exactly at the end of every hour, to the second, the position of the engine register was noted, the water vessels shifted, and the one removed weighed on a platform scale.

This method of working insured such remarkable correspondence in the results that it was found possible to reduce the duration of many of the experiments to a single hour each. After each experiment some condition,—for instance, the point of cut-off,—was slightly changed, and another experiment started immediately after. This operation was continued, and the power and its cost calculated for each instance, when the results were dotted in proper position on a ruled sheet, and with the points as a guide, curves were drawn similar to those shown on page 23. In this way the modification of result due to changing the three first conditions mentioned on page 24 were obtained, viz., 1st, "The steam pressure;" 2d, "The amount of expansion;" and 3d, "The speed of revolution." The modification due to—4th—"The size of cylinders," was approximated by comparing the results with those obtained from larger engines operated under similar conditions. The experimental results were checked again by calculating theoretical curves similar to G and H, page 23, for each steam pressure, in which all the conditions, including an allowance for the condensation due to the mechanical work done, were taken into consideration. All the results are in harmony, and furnish a reliable basis for the information herein contained.

The tables are not designed to show the maximum result possible under the conditions named, but such as should be expected in ordinary good practice.

The proper size of boiler of either of the different types mentioned required to evaporate a given quantity of water was determined in the different ways by different individuals—one collating the previous practice of the Novelty Iron Works and other establishments; the other comparing numerous experiments on the subject. The results agreed in a most satisfactory manner. The tables on this subject were, however, calculated with considerable allowance for difference in condition, fuel, and management; the necessity of which allowance will be appreciated by the practical engineer.

6*.

TABLES

SHOWING THE SIZES OF THE NON-CONDENSING

BUILT AT

THE NOVELTY IRON WORKS,

NEW YORK;

AND THE

Revolutions, Steam Pressures and Points of Cut-off,

WHICH WILL PRODUCE THE

SEVERAL HORSE POWERS NAMED;

ALSO THE

AMOUNT OF WATER USED PER HOUR AND COST OF THE POWER PER YEAR, FOR EACH CASE.

	15		P												
	ST	EAM		LONG	STR	OKE	ENGINE	I REPORT		SI	HORT	STI	ROKE	ENGINI	S
			ENGI	NE	WA	ATER		R YEAR	I	ENGI	NE	W	TER	COST PI OF THE PO	ER YEAR WER NAMED
A	B	C	D	E	F	G	н	I	D)	E	F	G	н	I
NET HORSE	Pressure above At- mosphere in pounds per square inch	Point of	Size and Designa- tion	Revolutions per Minute	Per I. II. P. per	TOTAL Per Hour for Net Horse	For Coal at \$8.00	TOTAL, (Interest on cost of	Size Desig tio	gna- n	Revolutions per Minute	Per I. H. P. per	TOTAL Per Hour for Net Horse	For Coal at \$8.00	TOTAL, (Interest
POWER	ssur	Cut-off	Diam. Stroke	evol	Hour	Power named	per Ton	Engine	Diam.	Stroke	M	Hour	Power named	non Man	on cost of Engine
	Pre mos	124.5	In. In.	B	Lbs.		per ron	Included)			R			per Ton	included)
			<u>In. In.</u>		Los.	Lbs.			In.	In.		Lbs.	Lbs.		
5	100 100	1 stroke 1 ((5×12 6×16	95 50	$\begin{array}{c} 30.4\\32.9\end{array}$	$\begin{array}{c} 190\\ 206\end{array}$	\$285 309		$5 \times 6 \times$		129 90	28.9 30.3	$\begin{array}{c} 183\\192 \end{array}$	\$275 288	\$343 · 363
Н. Р.	80 80	1 " 4 " 1 "	$\begin{array}{c} 5 \times 12 \\ 6 \times 16 \end{array}$	$\begin{array}{c} 123 \\ 64 \end{array}$	$\begin{array}{c} 31.4\\ 34.4 \end{array}$	$\begin{array}{r}196\\215\end{array}$	$\begin{array}{c} 294\\ 323 \end{array}$	$\begin{array}{c} 384\\ 423 \end{array}$	$5 \times 6 \times$		$\frac{167}{116}$	$30.0 \\ 31.5$	190 199	$\begin{array}{c} 285\\ 299 \end{array}$	$\begin{array}{c} 353\\ 374\end{array}$
STATISTICS.	60	1 "	5×12	173	33.3	209	314	404	$5 \times$		235	31.6	200	300	368
	60	1 "	6×16	91	36.6	216	324	424	6x		163	33.2	210	315	390
	60	1 "	7×20	53	39.3	243	365	475	$7 \times$		89	36.2	226	339	422
	100	1/2 stroke	5×12	65	37.6	235	\$353	\$443	$5 \times$	9	87	35.9	227	\$341	\$409
	80	1	5×12	81	39.0	244	366	456	$5 \times$	9	110	37.0	234	351	419
Continued on next page.	60	12 "	5×12	111	40.9	256	383	473	$5 \times$	9	149	38.9	245	367	435
•															

			Т	ONG	STR	OKE E	NGINE	s	S	HORJ	STI	ROKE	ENGINE	s
	ST	EAM	ENGIN		1	ATER	COST PE		ENGIN	TE	W	TER	COST PE OF THE POY	R YEAR WER NAMED
A	B	C	D	E	F	G	H	I	D	E	F	G	H	I
NET HORSE POWER	Pressure above At- mosphere in pounds per square inch	Point of Cut-off	Size and Designa- tion	. Revolutious per . Minute .	Per I. H. P. per Hour Lbs.	TOTAL Per Hour for Net Horse Power named Lbs.	For Coal at \$8 00 per Ton	TOTAL, (Interest on cost of Engine included)	Size and Designa- tion	Revolutions per Minute	Per I. II. P. per Hour Lbs.	TOTAL Per Hour for Net Horse Power named Lbs.	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)
5	60	1/2 stroke	6×16	88	41.5	259	\$389	\$489	6× 9	104	40.7	258	\$386	\$461
H. P.	80	34 stroke	5×12	71	45.4	284	\$426	\$511	5×9	95	43.7	264	\$396	$\begin{array}{c}\$460\\496\end{array}$
Concluded.	60 60	8 (6 4 (6 4 (6 4	$\begin{array}{c} 5 \times 12 \\ 6 \times 16 \end{array}$	$\begin{vmatrix} 101 \\ 50 \end{vmatrix}$	$\begin{array}{c} 46.9 \\ 51.4 \end{array}$	$\begin{array}{c} 297\\ 321 \end{array}$	$\begin{array}{c c} 445\\ 482 \end{array}$	530 577	$5 \times 9 \\ 6 \times 9$	$\begin{array}{ c c }128\\90\end{array}$	$ 45.5 \\ 47.7 $	$\begin{array}{c} 288 \\ 302 \end{array}$	$\begin{vmatrix} 432 \\ 453 \end{vmatrix}$	490 524
10 н. р.	100 80 80 80 80 60	1 stroke 1 · · · · · · · · · · · · · · · · · · ·	6×16 6×16 7×20 8×20 7×20	100 128 75 58 105	29.0 30.2 32.4 33.0 34.4	$362 \\ 377 \\ 400 \\ 408 \\ 425$	\$544 566 600 612 637	\$644 666 710 745 747	6×9 6×9 7×12 8×12 7×12	179 231 126 97 178	26.7 28.5 29.1 30.9 31.7	338 361 364 388 396		\$582 616 629 682 677
1.500	60 60 100	14 "	8×20 9×24 5×19	81 53 129	35.6 37.4 33.4	439 460	659 690	792 850	8×12 9×15 5×0	138 85	32.7 35.0	409 432	613 648	713 768
	100 100 80	1 stroke 1 '' 1 ''	$5 \times 12 \\ 6 \times 16 \\ 5 \times 12$	$ \begin{array}{c} 129\\ 68\\ 162 \end{array} $	35.8 34.4	417 448 430	\$626 672	\$716 772	$ \begin{array}{c} 5 \times 9 \\ 6 \times 9 \\ 5 \cdots 0 \end{array} $	$174 \\ 121 \\ 220$	31.7 33.2	$ 401 \\ 420 \\ 410 $	\$602 630	\$670 705
	80	1 1 2 1 2 1	6×16	85	37.2	465	645 698	735 798	$5 \times 9 \\ 6 \times 9$	153	32.9 34.3	$\begin{array}{c} 416\\ 434\end{array}$	$\begin{array}{c} 625\\ 651 \end{array}$	693 726
	60 60		$\begin{array}{c} 6 \times 16 \\ 7 \times 20 \end{array}$	$\begin{array}{c} 116\\ 67\end{array}$	39.4 42.2	$\begin{array}{c} 492 \\ 520 \end{array}$	739 780	839 890	$\begin{array}{c c} 6 \times & 9 \\ 7 \times 12 \end{array}$	$\begin{array}{c} 207\\113\end{array}$	35.8 39.1	453 489	680 733	755 816
	100 100	3 stroke 3 '' 4	$\begin{array}{c} 5 \times 12 \\ 6 \times 16 \end{array}$	$\begin{array}{c} 113\\ 59 \end{array}$	$39.7 \\ 42.2$	$\begin{array}{c} 496\\ 528\end{array}$	\$744 792	\$829 887	$ \begin{array}{c} 5 \times 9 \\ 6 \times 9 \end{array} $	$\begin{array}{c} 152\\ 106 \end{array}$	$38.2 \\ 39.5$	484 500	\$726 750	\$790 821
2.1 /12	80 80	<u>8</u> ((<u>3</u> ((<u>4</u>	5×12 6×16	$\frac{142}{74}$	$ \begin{array}{c c} 40.9 \\ 43.7 \end{array} $	$511 \\ 546$	767 819	852 914	$ \begin{array}{cccc} 5 \times & 9 \\ 6 \times & 9 \end{array} $	$\begin{array}{c} 190 \\ 132 \end{array}$	$\begin{array}{c c} 39.4\\ 40.8 \end{array}$	$\begin{array}{c} 500\\516\end{array}$	750 775	$\begin{array}{c} 814\\ 846\end{array}$
	60	3 (6	6×16	100	45.9	574	860	955	6× 9	179	42.6	539	809	880
15 н. р.	100 100 80 80 80 80	1 stroke 14 ··· 14 ··· 14 ··· 14 ··· 14 ··· 14 ···	$7 \times 20 \\ 8 \times 20 \\ 7 \times 20 \\ 8 \times 20 \\ 9 \times 24$	$87 \\ 66 \\ 112 \\ 86 \\ 56 \\ 56 \\ $	29.0 29.6 30.2 31.0 32.4	$537 \\ 548 \\ 559 \\ 574 \\ 592$	\$806 822 839 861 888	\$916 955 949 994 1048	$7 \times 12 \\ 8 \times 12 \\ 7 \times 12 \\ 8 \times 12 \\ 9 \times 15$	$145 \\ 112 \\ 189 \\ 145 \\ 90$	27.1 27.6 28.1 29.0 30.6	$508 \\ 518 \\ 527 \\ 544 \\ 567$	\$762 776 790 816 851	\$845 876 873 916 971
	60 60 60 60	14141414	7×20 8×20 9×24 10×24	$ 158 \\ 122 \\ 79 \\ 64 $	32,1 33.1 34.9 35.6	$594 \\ 613 \\ 638 \\ 652$	891 920 958 979	$ \begin{array}{r} 1000 \\ 1053 \\ 1118 \\ 1159 \end{array} $	$7 \times 12 \\ 8 \times 12 \\ 9 \times 15 \\ 10 \times 15$	266 207 127 104	29.8 30.6 32.6 33.3	$559 \\ 574 \\ 603 \\ 616$	838 861 905 924	$921 \\ 961 \\ 1025 \\ 1104$
	100 100 80	1 stroke	$\begin{array}{c} 6 \times 16 \\ 7 \times 20 \\ 6 \times 16 \end{array}$	$ \begin{array}{r} 101 \\ 58 \\ 197 \end{array} $	33.7 35.7	631 660	\$948 990	\$1048 1100	$\begin{array}{c} 6 \times 9 \\ 7 \times 12 \end{array}$	181 98	31.2 33.6	592 630	\$8889945	\$ 963 1028
	80	1	$\begin{array}{c} 6 \times 16 \\ 7 \times 20 \\ \hline \end{array}$	$\begin{array}{c} 127 \\ 74 \end{array}$	34.9 37.1	$\begin{array}{c} 654 \\ 687 \end{array}$	981- 1031	$\begin{array}{c} 1081\\1141\end{array}$	$\begin{array}{c} 6 \times 9 \\ 7 \times 12 \end{array}$	$\begin{array}{c} 229 \\ 129 \end{array}$	$\begin{array}{c} 32.3\\ 34.4\end{array}$	$\begin{array}{c} 613\\ 645\end{array}$	920 968	$\begin{array}{c} 995\\ 1051 \end{array}$
Continued on next page.	60 60	121	$\begin{array}{c} 7 \times 20 \\ 8 \times 20 \end{array}$	$\frac{100}{77}$	39.3 40.4	$\begin{array}{c} 728 \\ 747 \end{array}$	$\begin{array}{c c}1092\\1121\\\end{array}$	$\begin{array}{c} 1202\\ 1254 \end{array}$	$\begin{array}{c} 7 \times 12 \\ 8 \times 12 \end{array}$	$\begin{array}{c} 169 \\ 129 \end{array}$	$ \begin{array}{c} 36.3 \\ 37.5 \end{array} $	$\begin{array}{c} 681\\703\end{array}$	$\begin{array}{c} 1021\\ 1055 \end{array}$	$\begin{array}{c} 1104\\1155\end{array}$

		100	Tables	showing	g Pow	er, &	o., of N	Ion-Cond	ensing S	Stationar	y Ste	am Er	ngines.		9
		ST	EAM	L	ONG	STR	OKE E	NGINES		SI	IORT	STR	OKE H	INGINE	s
		51.	EAM	ENGIN	E	WA	TER	COST PER OF THE POW		ENGIN	Е		TER	COST PE. OF THE POV	VER NAMED
-	A	<u>B</u>	C	D	E	F	G	<u>H</u>	I	D		F	G Total	H	I
	NET HORSE POWER	Pressure above At- mosphere in pounds per square inch	Point of Cut off	Size and Designa- tion	Revolutions per Minute	Per I. II. P. per Hour Lbs.	TOTAL Per Hour for Net Horse Power named Lbs.	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)	Size and Designa- tion u and C Size and Designa- tion U and Size and Designa- tion U and C Size and Lasigna- tion	Revolutions per Minute	Per I. H. P. per Hour Lbs.	Per Hour for Net Horse Power named Lbs.	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)
	15	100 100	8 stroke 8 () 8 ()	5×12 6×16 6×16	170 88	$37.3 \\ 40.1 \\ 41.3$		\$1049 1128 1161	$\$1130 \\ 1223 \\ 1256$	$5 \times 9 \\ 6 \times 9 \\ 6 \times 9$	$228 \\ 159 \\ 199$	35.9 38.7 38.7	682 735 735	$\$1022 \\ 1102 \\$	\$1086 1173 1173
	H. P. Concluded.	80 80 60 60	<u>8</u> 4 <u>8</u> 4 <u>8</u> 4 <u>8</u> 4 <u>8</u> 4 <u>8</u> 4 <u>8</u> 4 <u>8</u> 4	$ \begin{array}{c} 6 \times 16 \\ 7 \times 20 \\ 7 \times 20 \\ 8 \times 20 \end{array} $	$ \begin{array}{r} 111 \\ 65 \\ 86 \\ 66 \end{array} $	43.4 45.9	803 850 873	$ \begin{array}{c c} 1101 \\ 1205 \\ 1275 \\ 1310 \end{array} $	$ 1309 \\ 1379 \\ 1438 $	$ \begin{array}{c} 0 \times 0 \\ 7 \times 12 \\ 7 \times 12 \\ 8 \times 12 \end{array} $	$ \begin{array}{r} 100 \\ 108 \\ 146 \\ 112 \end{array} $	41.0 42.9 44.0	769 804 825	$ \begin{array}{c c} 1153 \\ 1206 \\ 1238 \end{array} $	$ 1231 \\ 1284 \\ 1334 $
=	20	100 100	1 stroke 1 '' 4	7×20 8 × 20	115 88	$\begin{array}{ c c c } 27.6\\ 28.3 \end{array}$	681 699	\$1022 1048	\$1132 1181 1233	7×12 8×12 8×12	$ \begin{array}{r} 194 \\ 149 \\ 193 \end{array} $	$ \begin{array}{ } 25.8 \\ 26.7 \\ 27.8 \end{array} $	$\begin{array}{c} 645\\ 668\\ 695\end{array}$	\$968 1001 1043	$\$1051 \\ 1101 \\ 1143$
	Н. Р.	80 80 80	141414	$8 \times 20 \\ 9 \times 24 \\ 10 \times 24$	$ \begin{array}{c} 114\\ 74\\ 60 \end{array} $	$ \begin{array}{c c} 29.7 \\ 31.1 \\ 31.6 \\ \hline \end{array} $	733 759 771	$ \begin{array}{c c} 1100 \\ 1138 \\ 1156 \end{array} $	$\begin{array}{c} 1298 \\ 1336 \end{array}$	$\begin{array}{c}9\times15\\10\times15\end{array}$	120 98	$\begin{array}{ c c } 29.2\\ 29.9\end{array}$	$\begin{array}{c} 721 \\ 748 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 1110 \\ 1201 \\ 1257 \\ 1272 \end{array} $
		60 60 60	1414 1414 14 14	9×24 10×24 11×30	$\begin{array}{c}105\\85\\56\end{array}$	$\begin{array}{c c} 33.1 \\ 34.0 \\ 35.8 \end{array}$	807 829 863	$ \begin{array}{r} 1211 \\ 1244 \\ 1295 \end{array} $	$1371 \\ 1424 \\ 1495$	$ \begin{array}{c c} 9 \times 15 \\ 10 \times 15 \\ 11 \times 18 \end{array} $	169 138 94	31.1 31.8 33.4	768 785 815	$ \begin{array}{c c} 1152 \\ 1178 \\ 1222 \end{array} $	$ 1272 \\ 1313 \\ 1372 $
		100 100	1/2 stroke 1/2 "	$7 \times 20 \\ 8 \times 20$	78 60	34.3 36.3	847 896	\$1270 1344	\$1380 1477	$\begin{array}{ c c }\hline 7 \times 12 \\ 8 \times 12 \\ \hline 7 \times 19 \\ \hline \end{array}$	101	31.8 32.8	795 820	\$1193 1230 1241	\$1276 1330 1324
		80 80	1 · · · · · · · · · · · · · · · · · · ·	$\begin{array}{ c c }\hline 7\times20\\ 8\times20\\ \end{array}$	98 75	$\begin{array}{c c} 35.6\\ 36.3 \end{array}$	880 896	$\begin{array}{c c} 1319\\ 1344 \end{array}$	$\begin{array}{c} 1429\\1477\end{array}$	$\begin{array}{ c c }\hline 7 \times 12 \\ 8 \times 12 \\\hline \end{array}$	1	$33.1 \\ 33.9$	828 848	1271	1371
		60 60 60	12 ··· 12 ··· 12 ··· 12 ···	$\begin{vmatrix} 7 \times 20 \\ 8 \times 20 \\ 9 \times 24 \end{vmatrix}$	$\left \begin{array}{c}134\\102\\67\end{array}\right $	$\begin{array}{c c} 37.4 \\ 38.5 \\ 40.4 \end{array}$	923 951 985	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 1495 \\ 1559 \\ 1641 \end{array} $	$\begin{array}{c c} 7 \times 12 \\ 8 \times 12 \\ 9 \times 15 \end{array}$		$ \begin{array}{c c} 34.8 \\ 35.7 \\ 37.1 \end{array} $	870 893 916	$ \begin{array}{r} 1305 \\ 1339 \\ 1374 \end{array} $	$ \begin{array}{c c} 1388 \\ 1439 \\ 1494 \end{array} $
		100 100	⁸ / ₄ stroke ³ / ₄ "			38.4 40.5	1000		\$1535 1604	7×12	116	38.2	955	1433	\$1430 1511 · 1563
		80 80	1 -	$\begin{array}{ c c }\hline 7 \times 20 \\ 8 \times 20 \\\hline \end{array}$	66			1578	1656 1733	8×12	111	40.4	1010	1515	1611
	Ele-fa	60 60		$\begin{array}{c c} 7 \times 20 \\ 8 \times 20 \end{array}$					$ \begin{array}{r}1734\\1797\end{array}$						
	25	100		8×20 9 × 24			869	1304		9×15	116	27.0	833	1260	1380
	Н. Р.	80 80	1 "	$\begin{array}{c c} 9 \times 24 \\ 10 \times 24 \end{array}$	75	30.6	933	1399		10×15	122	2 28.9	891	1336	1471
		60 60 60 60	$1 \frac{1}{4}$	$ \begin{array}{c c} 9 \times 24 \\ 10 \times 24 \\ 11 \times 30 \\ 12 \times 30 \end{array} $		32.7 34.6	$\begin{array}{c c} 997\\ 997\\ 1048\end{array}$	$\begin{array}{c c}1496\\1572\end{array}$	1676	$ \begin{array}{c c} 10 \times 15 \\ 11 \times 18 \end{array} $	$ \begin{bmatrix} 5 & 172 \\ 8 & 117 \end{bmatrix} $	2 30.8 32.2	8 951 9 982	$ \begin{array}{c c} 1427 \\ 1473 \\ \end{array} $	$ 1562 \\ 1623 $
	Continued on	100	$) \frac{1}{2} $	8×20) 75	33.7	7 1041	1560	1693	3 8×12	2 120	31.6	3 988	1481	1581
	next page.	80	$) \frac{1}{2} "$	8×20	94	35.1	1083		1138			102.0	1020	1	1

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	Ta	Cables showi	ng Por	wer, &	ce., of :	Non-Con	densing	Stationa	ry St	eam H	Ingines.		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				LONG	STR	OKE 1	ENGINE	s	s	HOR	r sti	ROKE	ENGINE	S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	The sea	STEAM		INE	w.	TER			ENGI	NE	w	ATER		
$\begin{array}{c ccccc} 25\\ 80\\ H, P, \\ \hline 00 & \frac{1}{2} \mbox{ mole} & \frac{9 \times 24}{10} & 61 & 36.6 & 1116 & \$1674 & \$1834 & 9 \times 15 & 99 & 34.6 & 1068 & \$1602 & \$1 \\ \hline 00 & \frac{1}{2} \mbox{ mole} & 10 \times 24 & 67 & 39.8 & 1213 & 1820 & 2000 & 10 \times 15 & 109 & 37.4 & 1154 & 1731 & 1.5 \\ \hline 100 & \frac{3}{2} \mbox{ mole} & 1 & 7 \times 20 & 85 & 39.4 & 1216 & \$1824 & \$1928 & 7 \times 12 & 145 & 37.1 & 1159 & \$1739 & \$11 \\ \hline 100 & \frac{3}{2} \mbox{ mole} & 1 & 7 \times 20 & 85 & 39.4 & 1211 & 1847 & 1975 & 8 \times 12 & 11 & 37.9 & 1184 & 1777 & 118 \\ \hline 100 & \frac{3}{2} \mbox{ mole} & \frac{7}{2} \mbox{ mole} & \frac{1}{2} \mbox{ mole} & \frac{3}{2} \mbox$	A				F		H	I		E	F		H	I
$\begin{array}{c cccc} 25\\ H, P, \\ \hline 00 & \frac{1}{2} & \frac{1}{10} & \frac{1}{10} & \frac{1}{2} & \frac{1}{10} & \frac{1}{$	HORSE	ssure above At sphere in pound square inch to for	Point Designa tion	per	I. II. P. per	Per Hour for Net Horse Power	at \$8.00	(Interest on cost of Engine	Designa- tion		I. H. P. per	Per Hour for Net Horse Power	at \$8.00	TOTAL, (Interest on cost of Engine
$ \begin{array}{c} 20\\ H, P, \\ \hline \text{Concluded.} \\ \hline \begin{array}{c} 60 & \frac{1}{2} & u \\ 60 & \frac{1}{2} & u \\ 10 \times 24 & 67 \\ 39.8 & 1213 \\ 1820 \\ 100 \times 15 \\ 100 & \frac{1}{2} & \text{troke} \\ 11 \times 30 & 59 & 31.1 \\ 1159 & 1127 \\ 1825 & 1025 \\ 11 \times 18 & 1015 \\ 1148 & 104 \\ 13.2 & 118 & 1041 \\ 1561 & 114 \\ 118 \times 20 & 59 & 32.8 \\ 1261 & 1891 \\ 2144 \\ 13 \times 21 & 85 & 33.0 \\ 1193 & 1789 \\ 118 \\ 100 & \frac{1}{2} & \text{troke} \\ 112 \times 30 & 70 & 34.0 \\ 1229 & 1843 \\ 2063 & 12 \times 18 \\ 115 & 31.9 & 1167 \\ 1751 \\ 118 \\ 118 & 321 \\ 1890 \\ 214 & 13 \times 31 \\ 1189 \\ 214 \\ 13 \times 21 \\ 85 & 33.0 \\ 1193 \\ 1789 \\ 1167 \\ 1751 \\ 119 \\ 33.8 \\ 1252 \\ 1878 \\ 119 \\ 100 \\ \frac{1}{2} & \text{troke} \\ 10 \times 24 & 100 \\ 37.9 & 1387 \\ 2006 \\ 38 \times 12 \\ 199 \\ 9 \times 15 \\ 119 \\ 33.8 \\ 1252 \\ 1955 \\ 119 \\ 33.8 \\ 1252 \\ 175 \\ 39.08 \\ 120 \\ 10 \times 15 \\ 131 \\ 36.4$		Pre			Lbs.	· · · · · · · · · · · · · · · · · · ·	P	included)		R	Lbs.			included)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				83	39.2	1195	1793	1953	9×15	135	36.6	1130	1694	\$1722 1814 1866
$ \begin{array}{c} \begin{array}{c} 80 & \frac{3}{4} & {}^{\prime \prime} & 8 \times 20 & 82 & 41.4 & 1278 & 1917 & 2045 & 8 \times 12 & 138 & 39.3 & 1228 & 1842 & 1488$	Concluded.	$100 \frac{3}{4}$.	" 8×20	65	39.9	1231	1847	1975	8×12	111	37.9	1184	1777	\$1817 1873
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} " & 8 \times 20 \\ " & 9 \times 24 \end{array}$	82 53	$\begin{array}{c} 41.4\\ 42.9\end{array}$	$\begin{array}{c} 1278\\ 1308 \end{array}$	$\begin{array}{c}1917\\1962\end{array}$	$\begin{array}{c} 2045\\ 2117 \end{array}$	$\begin{array}{c} 8\times12\\ 9\times15 \end{array}$	$\begin{array}{c} 138\\87\end{array}$	$ \begin{array}{r} 39.3 \\ 40.9 \end{array} $	$\begin{array}{c} 1228\\ 1262 \end{array}$	$\begin{array}{c} 1842 \\ 1893 \end{array}$	1883 1938 2009
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												2032 2116
H. P. $\begin{bmatrix} 303 & \frac{1}{4} & \\ 80 & \frac{1}{4} & \\ 11 \times 30 & 59 & 31.1 & 1159 & 1739 & 1939 & 11 \times 18 & 99 & 29.3 & 1065 & 1597 & 17 & 1739 & 110 & 1739 & 11 \times 18 & 99 & 29.3 & 1065 & 1597 & 17 & 1739 & 1100 & 110 & 110 & 110 & 1100 & 110 & 110 & 1100 & 110 & 1100$	30	100 1 .	" 10×24	70	28.2	1032	1548	1728	10×15					
$ \begin{array}{c} 60 & \frac{1}{4} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Н. Р.		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											$\begin{array}{c}1696\\1747\end{array}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4		70	34.0	1229	1843	2063	12×18	115	31.9	$\begin{array}{c}1145\\1167\end{array}$	$1718 \\ 1751$	$\begin{array}{c} 1768 \\ 1916 \\ 1979 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ 100 \frac{1}{2}$ "	" 9×24	89	32.8	$\begin{array}{c} 1215 \\ 1246 \end{array}$	1822	1955	8×12	151	30.5	1144	1716	$\$1737 \\ 1816 \\ 1926$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} `` & 9 \times 24 \\ `` & 10 \times 24 \end{array}$	$\begin{array}{c} 74 \\ 60 \end{array}$	$\begin{array}{c} 35.7\\ 36.2 \end{array}$	$\begin{array}{c} 1306\\ 1324 \end{array}$	1959 1986	$\begin{array}{c} 2119\\ 2166 \end{array}$	$\begin{array}{c} 9\times15\\ 10\times15 \end{array}$	$\frac{119}{97}$	$\begin{array}{c} 33.8\\ 35.4 \end{array}$	$\begin{array}{c} 1252\\ 1311 \end{array}$	$\begin{array}{c}1878\\1967\end{array}$	1906 1998 2102
		1 1 1 1	" 10×24		38.8	1420								$\begin{array}{c} 2098\\ 2157 \end{array}$
				78	39.2	1452	2178	2306	8×12	132	37.0	1388	2081	\$2097 2177
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			" 9×24	63 86	42.0 44.4	$\begin{array}{c} 1537\\ 1624 \end{array}$	$\begin{array}{c} 2305 \\ 2436 \end{array}$	$\begin{array}{c} 2460 \\ 2591 \end{array}$	9×15					$\begin{array}{c c} 2262 \\ 2338 \\ 2449 \end{array}$
	• 1		10×24		45.0		2469	2642	$\frac{10 \times 15}{10}$	114				2513
TO 100 $\frac{1}{4}$ 11 × 30 61 28.4 1369 2053 2253 11 × 18 103 26.7 1302 1954 21	40 H P	100 1 "	" 11×30	61	28.4	1369	2053	2253	11×18	103	26.7	1302	1954	
80 $\frac{1}{4}$ " 12×30 66 30.3 1460 2190 2410 12×18 111 98.6 1305 2002 902	11. 1.	80 1 "	" 12×30	66	30.3	1460	2190	2410	12×18	111	28.6			$\begin{array}{c} 2207 \\ 2258 \end{array}$
$ \begin{array}{c} 60 & \frac{1}{4} & (12 \times 30 & 93 & 32.6 & 1571 & 2357 & 2528 & 11 \times 18 & 187 & 29.9 & 1459 & 2189 & 2387 & 2577 & 12 \times 18 & 153 & 30.6 & 1493 & 2240 & 2487 & 2414 & 2414 & 2414 & 2414 & 2414 & 31.7 & 1528 & 2292 & 2487 & 2414 & 2$		60 1 "	" 13×36	93 65	32.6 33.8	1571 1610	$\begin{array}{c} 2357\\ 2414 \end{array}$	$\begin{array}{c} 2577\\ 2667\end{array}$	12×18 13×21	153 114	30.6 31.7	$\begin{array}{c c}1493\\1528\end{array}$	$\begin{array}{c} 2240 \\ 2292 \end{array}$	$\begin{array}{r} 2339 \\ 2405 \\ 2482 \\ 2535 \end{array}$

		Tables	showing	g Pow	ver, &	c., of N	Ion-Cond	ensing	Stationar	y Ste	am Ei	ngines.		11
	ST	EAM	L	ONG	STR	OKE E	NGINE	S	S 1	HORI	STR	OKE	ENGINE	S
Cara de la			ENGIN			TER	COST PEL OF THE POW	ER NAMED	ENGIN		WA F	G	COST PE OF THE POV	
A NET HORSE POWER	Pressure above At- mosphere in pounds a per square inch	C Point of Cut-off	D Size and Designa- tion	Revolutions per Mnute	F Per I. H. P. per Hour Lbs.	G TOTAL Per Hour for Net Horse Power named Lbs.	H For Coal at \$8.00 per Ton	I TOTAL, (Interest on cost of Engine included)	D Size and Designa- tion ii G S In. In.	Revolutions per Minute	Per I. H. P. per Hour Lbs.	TOTAL Per Hour for Net Horse Power named Lbs.	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)
40	60	1 stroke	15 × 36	49	34.7	1652	\$2478	\$2803	15 imes24	74	33.1	1595	\$ 2393	\$2637
H. P. Concluded.	100 100 100	12 stroke 12 ··· 12 ··· 12 ··· 22 ···	8×20 9×24 10×24	$ \begin{array}{r} 119 \\ 78 \\ 63 \\ 00 \end{array} $	31.5 33.0 33.4	$ \begin{array}{r} 1556 \\ 1610 \\ 1622 \\ 1659 \end{array} $	\$2333 2415 2433	\$2466 2575 2613	8×12 9×15 10×15 0×15	$ \begin{array}{c} 201 \\ 126 \\ 102 \\ 150 \end{array} $	29.2 30.9 31.6	$ 1460 \\ 1526 \\ 1560 \\ 1505 $	\$2190 2289 2341 2393	\$2290 2409 2476 2513
	80 80 60 7- 60	102-102 102 102 102	9×24 10×24 11×30 12×30	98 79 70 59	34.3 34.9 39.0 39.4	1673 1702 1880 1899	$\begin{array}{r} 2510 \\ 2554 \\ 2819 \\ 2848 \end{array}$	$2670 \\ 2734 \\ 3019 \\ 3068$	$ \begin{array}{c} 9 \times 15 \\ 10 \times 15 \\ 11 \times 18 \\ 12 \times 18 \end{array} $	159 129 119 100	32.3 33.0 36.2 37.0	1595 1630 1766 1817	$\begin{array}{c c} 2393 \\ 2444 \\ 2649 \\ 2726 \\ \end{array}$	2513 2579 2799 2891
	100 100 80	84 stroke 84 stroke 84 st 84 st 84 st 84 st 84 st 84 st 84 st 84 st 85 st 86 s	8×20 9×24 9×24	104 68 85	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1857 1907 1980	\$2786 2861 2971	$\$2914\ 3016\ 3126$	$\begin{vmatrix} 8 \times 12 \\ 9 \times 15 \\ 9 \times 15 \end{vmatrix}$	176 110 138	35.6 37.2 38.8	1780 1837 1916	\$2670 2756 2874	\$2766 2871 2990
	80 60 60	34 34 34 34 34 34 34 34 34 34	$ \begin{array}{c} 0 \times 21 \\ 10 \times 24 \\ 10 \times 24 \\ 11 \times 30 \end{array} $	69 93	41.1 43.5	2005 2122 2188	3007 3183	$\begin{array}{c c} 3180 \\ 3356 \\ 3475 \end{array}$	$ \begin{array}{r} 10 \times 15 \\ 10 \times 15 \\ 11 \times 18 \end{array} $	112 151	39.4 41.2	2034	2956 3051 3132	3086 3181 3277
<u>50</u> н. р.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14 14 14 14 14 14	$\begin{array}{c} 11 \times 30 \\ 12 \times 30 \\ 11 \times 30 \\ 12 \times 30 \\ 13 \times 36 \\ 14 \times 36 \\ 12 \times 30 \\ 13 \times 36 \\ 14 \times 36 \\ 15 \times 36 \\ 15 \times 36 \\ 16 \times 42 \\ 17 \times 42 \end{array}$	$ \begin{array}{c c} 98\\83\\58\\50\\116\\82\\70\\61\\46\end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2732 2856 2929 2955 3009 3044	\$2694 2741 2820 2877 2949 3008 3076 3182 3231 3334 3389 3464	$\begin{array}{c c} 12 \times 18 \\ 11 \times 18 \\ 12 \times 18 \\ 13 \times 21 \\ 14 \times 21 \\ 12 \times 18 \\ 13 \times 21 \\ 14 \times 21 \\ 15 \times 24 \\ 15 \times 24 \\ 16 \times 24 \end{array}$	139 100 86 191 142 122 93 80	$\begin{array}{c} 26.3\\ 27.3\\ 27.7\\ 28.6\\ 29.1\\ 29.7\\ 30.7\\ 31.1\\ 32.0\\ 32.5\\ 33.6\\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} 2698\\ 2774\\ 2810\\ 2882\\ \cdot 2965\\ 3017\\ 3136\\ 3177\\ 3276\\ \end{array}$
·	$ \begin{array}{c c} 100\\ 100\\ 80\\ 80\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 6$		$9 \times 24 \\ 10 \times 24 \\ 10 \times 24 \\ 11 \times 30 \\ 12 \times 30 \\ 11 \times 30 \\ 12 \times 30 \\ 13 \times 30 \\ 13 \times 30 \\ 12 \times 30 \\ 13 \times 30 \\ 12 \times 30 \\ 13 \times 30 \\ 12 \times 30 \\ 13 \times 30 \\ 10 \times $	79 999 65 54 88 74	32.3 33.9 35.2 35.8 35.8 37.8 37.8 38.8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 2954 \\ 3101 \\ 3181 \\ 3236 \\ 3416 \\ 3472 \end{array}$	$\begin{array}{c c} 3134\\ 3281\\ 3381\\ 3456\\ 3616\\ 3692\end{array}$	$\begin{array}{c c} 10 \times 15 \\ 10 \times 15 \\ 11 \times 18 \\ 12 \times 18 \\ 3 \\ 11 \times 18 \\ 12 \times 18 \\ 12 \times 18 \\ 12 \times 18 \end{array}$	$ \begin{array}{c c} 127 \\ 161 \\ 109 \\ 92 \\ 149 \\ 125 \\ \end{array} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c } & 2724 \\ & 2944 \\ & 3037 \\ & 3101 \\ & 3210 \\ & 3265 \end{array}$	2859 3079 3187 3260 3360 3430
Continued on next page.	100		$\begin{array}{c c} 9 \times 24 \\ 10 \times 24 \end{array}$						$\begin{array}{c c} 9 \times 15 \\ 3 & 10 \times 15 \end{array}$		11			

				0										<u></u>
	S	TEAM		LONG	STR	OKE :	ENGINE	S	S	HOR	r sti	ROKE	ENGINE	
			ENG	NE	W.	ATER		ER YEAR WER NAMED	ENGI	NE		ATER		WER NAMED
A	B	C	D	E	F	G	H	1	D	E	F	G	H	I
NET HORSE POWER	Pressure above At- mosphere in pounds per square inch	Point of Cut-off	Size and Designa- tion 	Revolutions per Minute	Per I. II. P. per Hour	TOTAL Per Hour for Net Horse Power named	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)	Size and Designa- tion	Revolutions per Minute	Per I. II. P. per Hour	TOTAL Per Hour for Net Horse Power named	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)
			In. In.		Lbs	Lbs.			In. In.		Lbs.	Lbs.		E.C.
50	80 80	8 stroke 8 ··	10×24 11×30	86 56	40.2 41.6	$\begin{array}{c} 2451 \\ 2506 \\ 0000 \end{array}$	\$3677 3759	\$3850 3952	10×15 11×18	140 95	38.3 39.6	2364 2415	\$3546 3622	\$3676 3767
H. P. Concluded.	60 60 60	34 37 4 37 4 37 4 37 4 37 4 37 4 37 4	$\begin{array}{c} 11 \times 30 \\ 12 \times 30 \\ 13 \times 36 \end{array}$	$\begin{array}{c c} 76\\64\\45\end{array}$	$\begin{array}{c} 44.2 \\ 44.5 \\ 45.8 \end{array}$	$2663 \\ 2681 \\ 2727$	$ \begin{array}{r} 3994 \\ 4021 \\ 4091 \end{array} $	$\begin{array}{r} 4187\\ 4233\\ 4336\\ \hline \end{array}$	11×18 12×18 13×21	128 108 78	$ \begin{array}{c c} 41.4 \\ 42.2 \\ 43.6 \end{array} $	$\begin{array}{r} 2524 \\ 2573 \\ 2626 \end{array}$	3787 3859 3939	$ \begin{array}{r} 3932 \\ 4018 \\ 4123 \end{array} $
<u>60</u> н. р.	100 100 100	1 stroke 1 " 1 "	11×30 12×30 13×36	91 77 54	$26.9 \\ 27.2 \\ 28.0$	$1945 \\ 1966 \\ 2000$		$\$3117\ 3169\ 3253$	$11 \times 18 \\ 12 \times 18 \\ 13 \times 21$	$154 \\ 129 \\ 93$	$25.4 \\ 25.7 \\ 26.6$	$1550 \\ 1880 \\ 1923$	$\$2324 \\ 2821 \\ 2885$	
	80 80 80 80	141414	$\begin{array}{c} 12\times 30\\ 13\times 36\\ 14\times 36\\ 15\times 36\end{array}$	99 69 60 52	$\begin{array}{c} 28.7 \\ 29.6 \\ 29.9 \\ 30.2 \end{array}$	$\begin{array}{c} 2075 \\ 2114 \\ 2136 \\ 2157 \end{array}$	$\begin{array}{r} 3112 \\ 3171 \\ 3204 \\ 3236 \end{array}$	$3332 \\ 3424 \\ 3480 \\ 3561$	$\begin{array}{c} 12 \times 18 \\ 13 \times 21 \\ 14 \times 21 \\ 15 \times 24 \end{array}$	$ \begin{array}{r} 167 \\ 121 \\ 104 \\ 79 \end{array} $	$\begin{array}{c} 27.0 \\ 27.9 \\ 28.1 \\ 29.0 \end{array}$	$ \begin{array}{r} 1976 \\ 2017 \\ 2031 \\ 2096 \end{array} $	$\begin{array}{r} 2964 \\ 3025 \\ 3047 \\ 3144 \end{array}$	$3129 \\ 3215 \\ 3254 \\ 3388$
	60 60 60 60	14 · · · · · · · · · · · · · · · · · · ·	$14 \times 36 \\ 15 \times 36 \\ 16 \times 42 \\ 17 \times 42$	84 74 55 49	$\begin{array}{c} 32.3 \\ 32.7 \\ 33.7 \\ 33.9 \end{array}$	$\begin{array}{c} 2307 \\ 2336 \\ 2379 \\ 2392 \end{array}$	$3461 \\ 3504 \\ 3568 \\ 3588 $	$3737 \\ 3829 \\ 3913 \\ 3963$	$\begin{array}{c} 14 \times 21 \\ 15 \times 24 \\ 16 \times 24 \\ 17 \times 30 \end{array}$	$ \begin{array}{r} 146 \\ 112 \\ 97 \\ 68 \end{array} $	$30.3 \\ 31.1 \\ 31.7 \\ 32.8$	$\begin{array}{r} 2190 \\ 2248 \\ 2264 \\ 2315 \end{array}$	$3285 \\ 3372 \\ 3396 \\ 3473$	$3492 \\ 3616 \\ 3656 \\ 3749$
	100 100	1 stroke 1 ''	$10 \times 24 \\ 11 \times 30$	94 62	31.6 33.0	$\begin{array}{c} 2312\\ 2386 \end{array}$	$3468 \\ 3578$	$3648 \\ 3778$	$\begin{array}{c} 10 \times 15 \\ 11 \times 18 \end{array}$	$\begin{array}{c} 153\\104 \end{array}$	$\begin{array}{c} 29.7\\ 30.9 \end{array}$	$\begin{array}{c} 2200\\ 2261 \end{array}$	$\$3300\ 3391$	$\$3435\ 3541$
	80 80	12 " 12 "	$\begin{array}{c} 11\times 30\\ 12\times 30 \end{array}$	78 65	$\begin{array}{c} 34.5\\ 34.8 \end{array}$	$\begin{array}{c c} 2494 \\ 2516 \end{array}$	$\begin{array}{c} 3741\\ 3773\end{array}$	$\begin{array}{c} 3941\\ 3993 \end{array}$	$\begin{array}{c} 11 \times 18 \\ 12 \times 18 \end{array}$	131 111	$\begin{array}{c} 32.5\\ 33.0 \end{array}$	$\begin{array}{c} 2378\\ 2415 \end{array}$	$\begin{array}{c} 3567\\ 3622 \end{array}$	$3717 \\ 3787$
	$\begin{array}{c} 60\\ 60\\ 60\\ 60\end{array}$	1 11	$\begin{array}{c} 12\times 30\\ 13\times 36\\ 14\times 36\end{array}$	89 62 55	$37.2 \\ 38.6 \\ 38.8$	$\begin{array}{c} 2689 \\ 2757 \\ 2795 \end{array}$	$\begin{array}{c} 4034 \\ 4136 \\ 4193 \end{array}$	$\begin{array}{c} 4254 \\ 4389 \\ 4469 \end{array}$	$\begin{array}{c} 12 \times 18 \\ 13 \times 21 \\ 14 \times 21 \end{array}$	$\begin{array}{c} 150\\ 108\\ 93 \end{array}$	$34.8 \\ 36.2 \\ 36.8$	$2546 \\ 2617 \\ 2662$	3820 3925 3993	$3985 \\ 4115 \\ 4200$
		8 "	$\begin{array}{c} 9 \times 24 \\ 10 \times 24 \\ 11 \times 30 \end{array}$	$\begin{array}{c}102\\83\\54\end{array}$	37.1 37.8 39.1	$\begin{array}{c} 2715 \\ 2766 \\ 2827 \end{array}$	$\$4072 \\ 4149 \\ 4241$		9×15 10 × 15 11 × 18	$165 \\ 134 \\ 91$	$35.3 \\ 35.8 \\ 37.2$	$2615 \\ 2652 \\ 2722$	$\$3922 \\ 3978 \\ 4083$	$\$4038\\4108\\4228$
	80 80 80 60	8 (C 4 8 (C 4 8 4	10×24 11×30 12×30 $11 - 20$	$ \begin{array}{c} 104 \\ 68 \\ 57 \\ 01 \end{array} $	39.3 40.7 41.1	$\begin{array}{c} 2876 \\ 2942 \\ 2971 \\ \end{array}$	$\begin{array}{r} 4313 \\ 4413 \\ 4457 \end{array}$	$\begin{array}{c} 4486 \\ 4606 \\ 4669 \end{array}$	${ \begin{array}{c} 10 \times 15 \\ 11 \times 18 \\ 12 \times 18 \end{array} } \\$	$\begin{array}{c} 168\\114\\96\end{array}$	37.6 38.9 39.4	$2785 \\ 2846 \\ 2883$	$ \begin{array}{r} 4178 \\ 4270 \\ 4324 \end{array} $	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 3 4 4	$\begin{array}{c} 11 \times 30 \\ 12 \times 30 \\ 13 \times 36 \end{array}$	91 77 54	43.2 43.5 44.8	$\begin{array}{c} 3123 \\ 3145 \\ 3200 \end{array}$	$\frac{4684}{4717}\\ 4800$	$\begin{array}{r} 4877 \\ 4929 \\ 5045 \\ \hline \end{array}$	$\begin{array}{c} 11 \times 18 \\ 12 \times 18 \\ 13 \times 21 \end{array}$	$ \begin{array}{r} 154 \\ 129 \\ 93 \end{array} $	$\begin{array}{c} 40.6 \\ 41.2 \\ 42.7 \end{array}$	$\begin{array}{c} 2971 \\ 3015 \\ 3087 \end{array}$	$\begin{array}{r} 4457 \\ 4522 \\ 4631 \end{array}$	$\begin{array}{r} 4602 \\ 4681 \\ 4815 \end{array}$
70 н. р.	100		12×30 13×36 14×36 12×96	89 63 54	26.7 27.5 27.7	2252 2292 2308	$\$3378\ 3437\ 3462$	3738	12×18 13×21 14×21	150 109 94	$\begin{array}{c} 25.3 \\ 26.0 \\ 26.3 \end{array}$	$2160 \\ 2193 \\ 2218$	\$3240 3290 3327	$\$3405 \\ 3480 \\ 3534$
Continued on next page.	80	414 "	13×36 14×36 15×36 16×42	81 70 61 45	29.0 29.3 29.6 30.4	$2417 \\ 2442 \\ 2467 \\ 2504$	$\begin{array}{c} 3625 \\ 3662 \\ 3700 \\ 3755 \end{array}$	$\begin{array}{c} 3938\\ 4025 \end{array}$	$\begin{array}{c} 13 \times 21 \\ 14 \times 21 \\ 15 \times 24 \\ 16 \times 24 \end{array}$	$\begin{array}{c} 141 \\ 121 \\ 92 \\ 80 \end{array}$	$\begin{array}{c} 27.4 \\ 27.7 \\ 28.5 \\ 28.8 \end{array}$	$\begin{array}{c} 2311 \\ 2336 \\ 2404 \\ 2400 \end{array}$	$\begin{array}{c} 3466 \\ 3504 \\ 3606 \\ 3600 \end{array}$	$\begin{array}{c} 3656 \\ 3711 \\ 3850 \\ 3860 \end{array}$

Townsee and														
		Tables	showing	g Pov	ver, &	c., of l	Non-Cond	lensing	Stationar	y Ste	am E	ngines.		13
	ST	EAM	1	LONG	STR	OKE F	ENGINE		SI	HORT	STR	OKE	ENGINE	S
	1.20		ENGIN			TER	COST PE	TER NAMED	ENGIN		1 10 10 10	TER	COST PE OF THE POV	VER NAMED
A	B		D Size and			G TOTAL	H	1	D Size and	<u> </u>	F	G Total	<u> </u>	I
NET HORSE POWER	Pressure above At- mosphere in pounds per square inch	Point of Cut-off	Designa- tion Un. In.	Revolutions per Minute	Per I. H. P. per Hour Lbs.	Per Hour for Net Horse Power named Lbs.	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)	Designa- tion <u>Heid</u> S In. In.	Revolutions per Minute	Per I. H. P. per Hour Lbs.	Per Hour for Net Horse Power named Lbs.	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)
70 H. P. Concluded.	60 60 60 60	1 stroke 1 ··· 1 ··· 1 ··· 1 ··· 1 ··· 1 ···	$\begin{array}{c} 15 \times 36 \\ 16 \times 42 \\ 17 \times 42 \\ 19 \times 48 \end{array}$	86 64 57 35	$\begin{array}{c} 32.1 \\ 33.0 \\ 33.2 \\ 34.8 \end{array}$	$2675 \\ 2717 \\ 2734 \\ 2832$			$\begin{array}{c} 15 \times 24 \\ 16 \times 24 \\ 17 \times 30 \\ 19 \times 30 \end{array}$	$ 130 \\ 114 \\ 79 \\ 64 $	$ \begin{array}{r} 30.5 \\ 31.0 \\ 32.2 \\ 32.7 \end{array} $	$2572 \\ 2583 \\ 2683 \\ 2706$	3858 3875 4025 4059	
	100 100 80	12 stroke 12 '' 12 ''	$\begin{array}{c} 11\times 30\\ 12\times 30\\ 11\times 30\end{array}$	72 60 91	32.1 32.7 33.8	$2707 \\ 2758 \\ 2851$			11×18 12×18 11×18	$121 \\ 102 \\ 153$	30.3 30.7 31.8	$\begin{array}{c c} 2587 \\ 2621 \\ 2714 \\ 2522 \end{array}$	\$3880 3931 4071	\$4030 4096 4221
	80 80 - 60	122122122122 122122 122122 122122	12×30 13×36 13×36	76 53 73	$ \begin{array}{c c} 34.3 \\ 35.1 \\ 37.7 \\ 20.0 \\ \end{array} $	2893 2925 3142	$ \begin{array}{r} 4339 \\ 4388 \\ 4712 \\ 4750 \end{array} $	4559 4641 4965	12×18 13×21 13×21 14×21	129 93 126	32.4 33.3 35.2	$ \begin{array}{c c} 2766 \\ 2808 \\ 2970 \\ 2026 \\ \end{array} $	$ \begin{array}{r} 4149 \\ 4213 \\ 4455 \\ 4554 \end{array} $	$ \begin{array}{r} 4314 \\ 4403 \\ 4645 \\ 4761 \end{array} $
	60 60 60	12 · · · · · · · · · · · · · · · · · · ·	$\begin{array}{c} 14 \times 36 \\ 15 \times 36 \\ 16 \times 42 \end{array}$	$\begin{array}{c} 63\\ 55\\ 40\end{array}$	38.0 38.6 39.7	$3167 \\ 3217 \\ 3269$	$4750 \\ 4825 \\ 4904$	$5026 \\ 5150 \\ 5249$	$14 \times 21 \\ 15 \times 24 \\ 16 \times 24$	108 83 72	36.0 37.0 37.4	$ \begin{array}{c c} 3036 \\ 3120 \\ 3140 \end{array} $	$ \begin{array}{r} 4554 \\ 4680 \\ 4710 \end{array} $	$ \begin{array}{r} 4761 \\ 4924 \\ 4970 \end{array} $
	100 100	8 stroke 3 ··· 4 ···	10×24 11 × 30 11 × 30	96 63 79	$ \begin{array}{c c} 37.1 \\ 38.4 \\ 40.1 \end{array} $	$3167 \\ 3239 \\ 3382$			10×15 11 × 18 11 × 18	156 106 133	35.3 36.5 38.3	$ \begin{array}{c c} 3051 \\ 3116 \\ 3270 \end{array} $	\$4576 4674 4904	\$4706 4819 5049
	80 80 80	4 3 4 8 4 4 4	$\begin{array}{c} 12\times 30 \\ 13\times 36 \end{array}$	66 46	$\begin{array}{c c} 40.5\\ 41.4 \end{array}$	$\begin{array}{c} 3416\\ 3450 \end{array}$	$5123 \\ 5175$	5200 5335 5420 5626	$ \begin{array}{c} 11 \times 18 \\ 12 \times 18 \\ 13 \times 21 \\ 12 \times 18 \end{array} $	135 112 81 150	$ \begin{array}{c c} 38.8 \\ 39.7 \\ 40.4 \end{array} $	$\begin{array}{ c c }\hline 3312\\ 3342 \end{array}$	4968 5013 5173	5043 5127 5197 5332
	60 60 60	$\frac{\underline{3}}{\underline{4}}$	12×30 13×36 14×36	89 63 54	42.8 44.0 44.4	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5020 5745 5817	$\begin{array}{c c} 12 \times 18 \\ 13 \times 21 \\ 14 \times 21 \end{array}$	150 109 93	$\begin{array}{c c} 40.4 \\ 41.7 \\ 42.4 \\ \end{array}$	3517	$ \begin{array}{c c} 5175 \\ 5276 \\ 5364 \\ \hline \end{array} $	5352 5460 5564
80 H. P.	100 100 100	1 stroke 1 '' 1 ''	$\begin{vmatrix} 13 \times 36 \\ 14 \times 36 \\ 15 \times 36 \end{vmatrix}$	$72\\62\\54$	$27.0 \\ 27.2 \\ 27.5$	$2571 \\ 2590 \\ 2619$	\$3857 3886 3929		$\begin{array}{c c} 13 \times 21 \\ 14 \times 21 \\ 15 \times 24 \end{array}$	124 107 82	$ \begin{array}{c} 25.8 \\ 26.5 \end{array} $	$\begin{array}{c c} 2488 \\ 2554 \end{array}$		\$3906 3939 4075
	80 80 80 80	14141414	$\begin{array}{c} 14 \times 36 \\ 15 \times 36 \\ 16 \times 42 \\ 17 \times 42 \end{array}$	$ \begin{array}{r} 80 \\ 70 \\ 52 \\ 46 \end{array} $	28.8 29.1 29.8 30.0	$\begin{array}{c c} 2743 \\ 2771 \\ 2805 \\ 2824 \end{array}$	$\begin{array}{c c} 4114 \\ 4157 \\ 4207 \\ 4235 \end{array}$	$\begin{array}{r} 4390 \\ 4482 \\ 4552 \\ 4610 \end{array}$	$\begin{array}{c c} 14 \times 21 \\ 15 \times 24 \\ 16 \times 24 \\ 17 \times 30 \end{array}$	138 106 92 64		$ \begin{array}{c c} 2689 \\ 2705 \end{array} $	$ \begin{array}{r} 3933 \\ 4034 \\ 4058 \\ 4143 \end{array} $	$\begin{array}{r} . \ 4140 \\ 4278 \\ 4318 \\ 4419 \end{array}$
	60 60 60	4 14 14 14 14 14	$ \begin{array}{r} 16 \times 42 \\ 17 \times 42 \\ 19 \times 48 \end{array} $	73 65 45	$\begin{array}{c c} 32.5 \\ 32.6 \\ 33.8 \end{array}$	3058 3068 3181	$\begin{array}{c c} 4588 \\ 4602 \\ 4772 \end{array}$	$\begin{array}{c} 4933 \\ 4977 \\ 5198 \end{array}$		$ \begin{array}{c} 130 \\ 90 \\ 73 \end{array} $	31.6	3009	$\begin{array}{c c} 4329 \\ 4519 \\ 4545 \end{array}$	$\begin{array}{r} 4589 \\ 4795 \\ 4865 \end{array}$
	100 100 100	1 stroke 1 ··· 1 ··· 1 ···	$\begin{array}{c} 11\times 30\\ 12\times 30\\ 13\times 36\end{array}$	82 69 48	$\begin{array}{c} 31.7 \\ 32.1 \\ 33.1 \end{array}$	$3055 \\ 3094 \\ 3152$	\$4583 4641 4728	4861 4981	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	138 116 84	$\begin{array}{c c} 30.2\\ 31.3 \end{array}$	2946 3017	\$4346 4420 4525	\$4496 4584 4715
-	80 80 80	1 ····································	$\begin{array}{c} 12\times 30\\ 13\times 36\\ 14\times 36\end{array}$	53	$\begin{array}{c c} 33.7 \\ 34.6 \\ 34.9 \\ \end{array}$	3248 3295 3324	4872 4943 4986	5092 5196 5262	$\begin{array}{c c} 13 \times 21 \\ 14 \times 21 \end{array}$	148 106 91	33.1	3152 3190	$ \begin{array}{r} 4639 \\ 4728 \\ 4785 \\ 5016 \end{array} $	4804 4918 4992 5206
Continued on next page.	$\begin{vmatrix} 60\\60\\60 \end{vmatrix}$	1 16	$\begin{array}{c} 13 \times 36 \\ 14 \times 36 \\ 15 \times 36 \end{array}$		$\begin{array}{ c c c } 37.2 \\ 37.5 \\ 38.0 \end{array}$	$ \begin{array}{ c c c c c } 3543 \\ 3571 \\ 3619 \\ \hline \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5633	$\begin{vmatrix} 13 \times 21 \\ 14 \times 21 \\ 15 \times 24 \end{vmatrix}$	$\begin{array}{ c c } 144 \\ 124 \\ 95 \\ \end{array}$	35.2	3393	5090 5234	5297 5478

•

	11		1		-			_	1					
	ST	EAM	1	LONG	STR	OKE 1	ENGINE	S	S	HORT	STE	ROKE	ENGINI	E S
			ENGI			ATER	OF THE PO	CR YEAR WER NAMED	ENGI			ATER	OF THE PO	ER YEAR WER NAMED
A NET HORSE POWER	Pressure above At- mosphere in pounds the per square inch	C Point of Cut-off	D Size and Designa- tion ii a of the second ii a of the second iii a of the second ii a of the second ii a of the second ii a o	* Revolutions per Minute	F Per I. H. P. per Hour Lbs.	G TOTAL Per Hour for Net Horse Power named Lbs.	н For Coal at \$8.00 per Ton	· I TOTAL, (Interest on cost of Engine included)	D Size and Designa- tion	Revolutions per Minute	F Per I. II. P. per Hour Lbs.	G TOTAL Per Hour for Net Horse Power named Lbs.	H For Coal at \$8.00 per Ton	I TOTAL, (Interest on cost of Engine included)
80	60 60	1 stroke 1 ''	$\begin{array}{c} 16 \times 42 \\ 17 \times 42 \end{array}$	46 41	39.0 39.2	$\begin{array}{c} 3671\\ 3689 \end{array}$	\$5506 5534	\$5851 5909	$\begin{array}{c} 16\times24\\ 17\times30 \end{array}$	$\begin{array}{c} 82\\ 65\end{array}$	$36.8 \\ 37.4$	$\begin{array}{c} 3505\\ 3657 \end{array}$		555175761
H. P. Concluded.	100 100	-	$\begin{array}{c} 11\times 30\\ 12\times 30\end{array}$	$\begin{array}{c} 72 \\ 60 \end{array}$	37.8 38.3	$\begin{array}{c} 3643\\ 3692 \end{array}$	\$5465 5537	\$5658 5749	$11 \times 18 \\ 12 \times 18$	$\begin{array}{c} 121 \\ 102 \end{array}$	35.9 36.3	$\begin{array}{c} 3502\\ 3541 \end{array}$		\$5399 5471
	80 80 60 60	왕석 왕석 왕석 왕석 왕석	12×30 13×36 13×36 14×36	$76 \\ 53 \\ 72 \\ 62$	$ \begin{array}{r} 40.0 \\ 40.8 \\ 43.3 \\ 43.7 \end{array} $	$3855 \\ 3885 \\ 4124 \\ 4162$	5783 5829 6186 6243	5995607464316510	$ \begin{array}{r} 12 \times 18 \\ 13 \times 21 \\ 13 \times 21 \\ 14 \times 21 \end{array} $	$ 128 \\ 92 \\ 124 \\ 107 $	$\begin{array}{c} 37.9 \\ 39.2 \\ 41.1 \\ 41.6 \end{array}$	$3698 \\ 3774 \\ 3962 \\ 4009$	5546 5660 5943 6019	$5705 \\ 5844 \\ 6127 \\ 6219$
<u>90</u> н. р.	60 100 100 100 100 80 80 80 60 60 60 100 100 100 100 100 100 100	B4 14<	$\begin{array}{c} 15 \times 36 \\ \hline \\ 13 \times 36 \\ 14 \times 36 \\ 15 \times 36 \\ 15 \times 36 \\ 16 \times 42 \\ 17 \times 42 \\ 17 \times 42 \\ 17 \times 42 \\ 19 \times 48 \\ 21 \times 48 \\ 11 \times 30 \\ 12 \times $	54 81 69 61 45 78 52 82 73 50 44 92 78	26.7 26.8 27.1 27.7 28.8 29.4 29.6 31.9 32.2 33.4 33.4 31.3 31.6	4210 2861 2871 2904 2933 3086 3113 3134 3378 3409 3495 3495 3394 3427	6314 \$4291 4307 4355 4399 4629 4670 4701 5067 5114 5243 5243 \$5091 5140	6630 \$4544 4583 4680 4744 4954 5015 5076 5412 5489 5669 5731 \$5291 5360	$\begin{array}{r} \underline{15 \times 24} \\ \hline 13 \times 21 \\ 14 \times 21 \\ 15 \times 24 \\ 16 \times 24 \\ 15 \times 24 \\ 16 \times 24 \\ 17 \times 30 \\ 16 \times 24 \\ 17 \times 30 \\ 19 \times 30 \\ 21 \times 30 \\ \underline{11 \times 18} \\ 12 \times 18 \end{array}$	82 140 120 92 80 119 103 71 145 101 82 67 155 131	42.6 25.3 25.5 26.2 26.4 27.6 28.9 30.0 31.1 31.7 32.3 29.2 29.7	4106 2743 2765 2841 2829 2993 2989 3097 3214 3334 3354 3420 3205 3260	6159 \$4115 4147 4262 4244 4489 4484 4645 4821 5001 5031 5130 \$4809 4890	6396 \$4305 4354 4506 4504 4733 4744 4921 5081 5277 5351 5496 \$4959 5055
	$\begin{array}{c} 100\\ 80\\ 80\\ 80\\ 80\\ 60\\ 60\\ 60\\ 60\\ 100\\ 100\\ 100\\ 80\\ 80\\ 80\\ 80\\ 80\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 6$	$\frac{12}{12} + \frac{12}{12} + 12$	$\begin{array}{c} .13\times 36\\ 12\times 30\\ 13\times 36\\ 14\times 36\\ 15\times 36\\ 15\times 36\\ 15\times 36\\ 16\times 42\\ 17\times 42\\ 17\times 42\\ 11\times 30\\ 12\times 30\\ 13\times 36\\ 12\times 30\\ 13\times 36\\ 14\times 36\\ 13\times 36\\ 14\times 36\\ 15\times 36\\ 16\times 42\\ \end{array}$	$\begin{array}{c} 54\\ 98\\ 69\\ 59\\ 52\\ 80\\ 70\\ 52\\ 46\\ 81\\ 68\\ 48\\ 85\\ 60\\ 53\\ 81\\ 69\\ 60\\ 45\\ \end{array}$	$\begin{array}{c} 32.6\\ 33.2\\ 34.1\\ 34.4\\ 34.7\\ 36.9\\ 37.3\\ 38.4\\ 38.7\\ 37.3\\ 37.8\\ 38.7\\ 37.3\\ 37.8\\ 38.7\\ 39.5\\ 40.3\\ 40.6\\ 42.9\\ 43.1\\ 43.7\\ 44.7\\ \end{array}$	$\begin{array}{r} 3493\\ 3600\\ 3654\\ 3686\\ 3718\\ 3954\\ 3996\\ 4066\\ 4098\\ 4045\\ 4099\\ 4146\\ 4283\\ 4318\\ 4350\\ 4596\\ 4618\\ 4682\\ \end{array}$	$\begin{array}{c} 5239\\ 5400\\ 5480\\ 5529\\ 5577\\ 5930\\ 5995\\ 6109\\ 6146\\ \$6067\\ 6148\\ 6219\\ 6425\\ 6477\\ 6525\\ 6895\\ 6927\\ 7023\\ \end{array}$	$\begin{array}{c} 5492\\ 5620\\ 5733\\ 5805\\ 5902\\ 6206\\ 6320\\ 6454\\ 6521\\ \$6260\\ 6360\\ 6464\\ 6637\\ 6722\\ 6792\\ 7140\\ 7194\\ \end{array}$	13×21 12×18 13×21 14×21 15×24 14×21 15×24 16×24 17×30 11×18 12×18 13×21 12×18 13×21 14×21 13×21 14×21 13×21 14×21 15×24	$\begin{array}{c} 94\\ 94\\ 166\\ 119\\ 103\\ 78\\ 139\\ 106\\ 93\\ 64\\ 136\\ 114\\ 83\\ 144\\ 104\\ 89\\ 140\\ 120\\ 92\\ \end{array}$	$\begin{array}{c} 30.9\\ 31.3\\ 32.4\\ 32.7\\ 33.7\\ 34.7\\ 35.6\\ 36.1\\ 37.5\\ 35.5\\ 35.9\\ 37.0\\ 37.7\\ 38.6\\ 39.0\\ 40.4\\ 41.0\\ 42.0\\ \end{array}$	$\begin{array}{c} 3351\\ 3435\\ 3513\\ 3513\\ 3546\\ 3654\\ 3763\\ 3860\\ 3868\\ 4018\\ 3896\\ 3940\\ 4012\\ 4162\\ 4162\\ 4186\\ 4230\\ 4381\\ 4446\\ 4554\\ \end{array}$	5026 5026 5153 5270 5319 5481 5644 5790 5802 6027 \$5845 5910 6018 6243 6278 6345 6572 6669 6831	5216 5216 5318 5460 5526 5725 5851 6034 6062 6303 \$5990 6069 6202 6402 6402 6402 6462 6545 6756 6869 7068

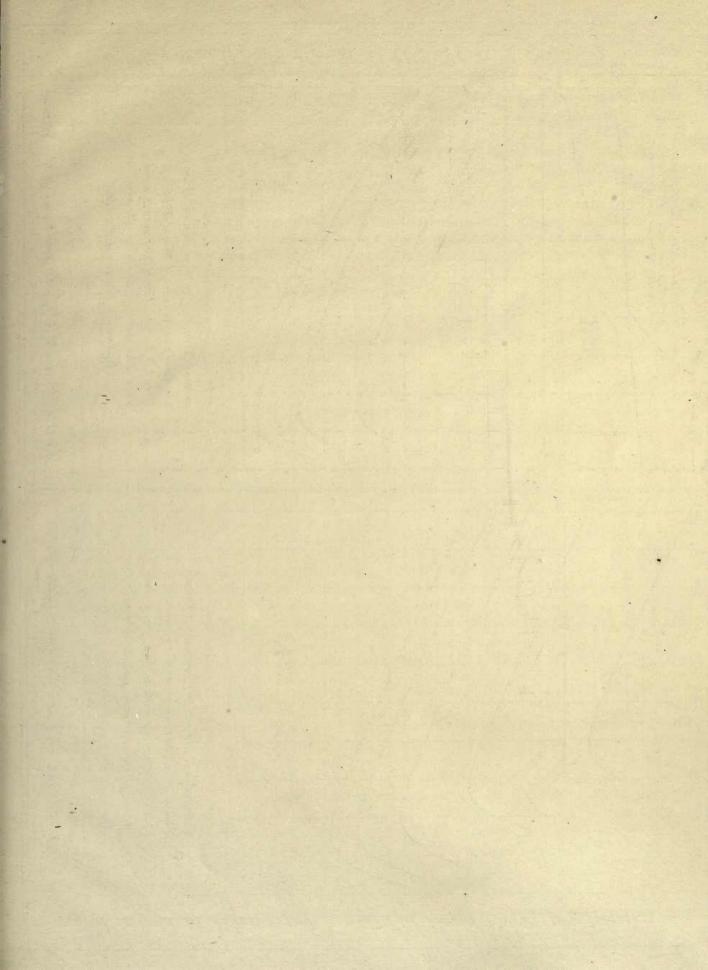
		Tables	showing	g Pov	ver, &	c., of]	Non-Cond	lensing f	Stationar	y Ste	am E	ngines.		15
	STI	EAM			1		NGINES COST PE	1.00					ENGINE COST PEI	
	B	C	ENGIN D		F	G	OF THE POV		ENGIN D	E	F	G	OF THE POW	TER NAMED
A NET HORSE POWER	re above At- ere in pounds lare inch	Point of Cut-off	Size and Designa- tion United States In. In.	Revolutions per t	Per I. II. P. per Hour Lbs.	TOTAL Per Hour for Net Horse Power named Lbs.	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)	Size and Designa- tion	Revolutions per t	Per J. H. P. per Hour Lbs.	TOTAL Per Hour for Net Horse Power named Lbs.	H For Coal at \$8.00 per Ton	I TOTAL, (Interest on cost of Engine included)
<u>100</u> н. р.	100 100 100 100 80 80 80 80	14 stroke 14 14 14 14 14 14 14 14 14 14 14 14	$\begin{array}{c} 14 \times 36 \\ 15 \times 36 \\ 16 \times 42 \\ 17 \times 42 \\ 15 \times 36 \\ 16 \times 42 \\ 17 \times 42 \end{array}$	77 67 50 45 87 65 57	$26.5 \\ 26.8 \\ 27.4 \\ 27.5 \\ 28.3 \\ 29.0 \\ 29.3$	3014 3190 3224 3235 3370 3424 3488	\$4521 4786 4835 4853 5055 5135 5232	\$4797 5111 5180 5228 5380 5480 5607	$\begin{array}{c} 14 \times 21 \\ 15 \times 24 \\ 16 \times 24 \\ 17 \times 30 \\ 15 \times 24 \\ 16 \times 24 \\ 16 \times 24 \\ 17 \times 30 \end{array}$	$ \begin{array}{r} 134 \\ 102 \\ 88 \\ 61 \\ 132 \\ 115 \\ 79 \\ \end{array} $	25.2 25.8 26.1 26.9 27.2 27.5 28.5	3036 3109 3107 3203 3277 3274 3393		$\begin{array}{r} \$4761 \\ 4907 \\ 4920 \\ 5080 \\ 5160 \\ 5171 \\ 5365 \end{array}$
	80 80 60 60 60 60	1414 14141414	$\begin{array}{c} 19\times 48\\ 17\times 42\\ 19\times 48\\ 21\times 48\\ 23\times 54\end{array}$	40 81 56 49 34	30.1 31.8 32.9 32.9 33.9	3500 3741 3826 3826 3897	5250 5612 5738 5738 5846	$5676 \\ 5987 \\ 6164 \\ 6226 \\ 6396$	$ \begin{array}{r} 19 \times 30 \\ 17 \times 30 \\ 19 \times 30 \\ 21 \times 30 \\ 23 \times 36 \end{array} $	$ \begin{array}{r} 64 \\ 112 \\ 91 \\ 74 \\ 51 \end{array} $	28.9 30.7 31.2 31.9 32.8	3400 3655 3671 3752 3814	5100 5482 5506 5628 5721	$5420 \\ 5758 \\ 5826 \\ 5994 \\ 6133$
	$ \begin{array}{r} 100 \\ 100 \\ 80 \\ 80 \\ 80 \\ 80 \\ 80 \\ 80 \\ 60 \\ 60 \\ 60 \end{array} $	12121212121212121212	$\begin{array}{c} 12\times 36\\ 13\times 36\\ 14\times 36\\ 13\times 36\\ 14\times 36\\ 15\times 36\\ 16\times 42\\ 15\times 36\\ 16\times 42 \end{array}$	$\begin{array}{c c} 86 \\ 60 \\ 52 \\ 76 \\ 66 \\ 56 \\ 48 \\ 78 \\ 58 \\ 58 \end{array}$	$\begin{array}{c} 31.3\\ 32.1\\ 32.2\\ 33.7\\ 34.1\\ 34.4\\ 34.6\\ 37.0\\ 37.8\\ \end{array}$	$\begin{array}{r} 3783\\ 3822\\ 3833\\ 4012\\ 4060\\ 4095\\ 4071\\ 4405\\ 4447\\ \end{array}$	\$5659 5732 5750 6017 6080 6143 6107 6607 6607	\$5879 5985 6026 6270 6356 6468 6452 6932 7016	$\begin{array}{c} 12 \times 18 \\ 13 \times 21 \\ 14 \times 21 \\ 13 \times 21 \\ 14 \times 21 \\ 15 \times 24 \\ 16 \times 24 \\ 15 \times 24 \\ 16 \times 24 \end{array}$	$\begin{array}{c} 146 \\ 105 \\ 90 \\ 132 \\ 114 \\ 87 \\ 75 \\ 118 \\ 103 \end{array}$	$\begin{array}{c} 29.2 \\ 30.2 \\ 30.7 \\ 32.0 \\ 32.3 \\ 33.1 \\ 33.4 \\ 35.1 \\ 35.6 \\ \end{array}$	3561 3639 3700 3855 3892 3988 3979 4229 4238	\$5342 5458 5550 5783 5838 5982 5968 6343 6357	\$5507 5648 5757 5973 6045 6226 6228 6587 6617
	60 100 100 100 80 80 80 80 60 60		$\begin{array}{c} 17 \times 42 \\ 11 \times 30 \\ 12 \times 30 \\ 13 \times 36 \\ 12 \times 30 \\ 13 \times 36 \\ 14 \times 36 \\ 15 \times 36 \\ 14 \times 36 \\ 15 \times 36 \end{array}$	51 90 75 53 95 67 59 50 77 67	38.2 37.0 37.3 38.3 39.0 39.9 40.1 40.6 42.7 43.2	4494 4458 4494 4560 4699 4750 4774 4883 5083 5142	$\begin{array}{c} 6741\\ \$6687\\ 6741\\ 6839\\ 7048\\ 7125\\ 7161\\ 7325\\ 7625\\ 7625\\ 7714\end{array}$		$\begin{array}{c} 17 \times 30 \\ 11 \times 18 \\ 12 \times 18 \\ 13 \times 21 \\ 12 \times 18 \\ 13 \times 21 \\ 14 \times 21 \\ 15 \times 24 \\ 14 \times 21 \\ 15 \times 24 \end{array}$	$\begin{array}{c} 71 \\ 151 \\ 127 \\ 92 \\ 160 \\ 115 \\ 97 \\ 76 \\ 134 \\ 102 \end{array}$	$\begin{array}{c} 35.5 \\ 36.5 \\ 37.3 \\ 38.3 \\ 38.7 \\ 39.4 \\ 40.4 \\ 41.3 \end{array}$	$\begin{array}{c c} 4417 \\ 4268 \\ 4329 \\ 4398 \\ 4549 \\ 4614 \\ 4663 \\ 4747 \\ 4865 \\ 4976 \end{array}$	6625 \$6402 6494 6596 6824 6922 6994 7120 7297 7464	6901 \$6547 6653 6780 . 6983 7106 7194 7357 7497 7701
<u>125</u> н. р.	60 60 100 100 100 80 80 80 80 60	48 ((48 () 48 () 48 troke 14 stroke 14	$\begin{array}{c} 16 \times 42 \\ 17 \times 42 \\ \hline \\ 15 \times 36 \\ 16 \times 42 \\ 17 \times 42 \\ 17 \times 42 \\ 19 \times 48 \\ 21 \times 48 \\ 19 \times 48 \\ 19 \times 48 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	44.1 44.4 26.1 26.7 26.8 28.4 29.4 29.4 31.9	5188 5224 3908 3926 3941 4176 4273 4273 4273 4637	7782 7836 \$5862 5890 5912 6165 6410 6410 6955	6235 6287 6540 6836 6898 7381	$\begin{array}{c} 16 \times 24 \\ 17 \times 30 \\ \hline \\ 15 \times 24 \\ 16 \times 24 \\ 17 \times 30 \\ 17 \times 30 \\ 19 \times 30 \\ 21 \times 30 \\ 19 \times 30 \end{array}$	128 111 77 99 80 66 113	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5000 5143 3780 3779 3900 4121 4132 4266 4471	7500 7715 \$5670 5668 5850 6182 6198 6309 6706	7751 7981 \$5914 5928 6126 6458 6518 6675 7026
Continued on next page.	60		21×48		32.1	4666	6999		21×30	93	30.9	4545	6818	7184

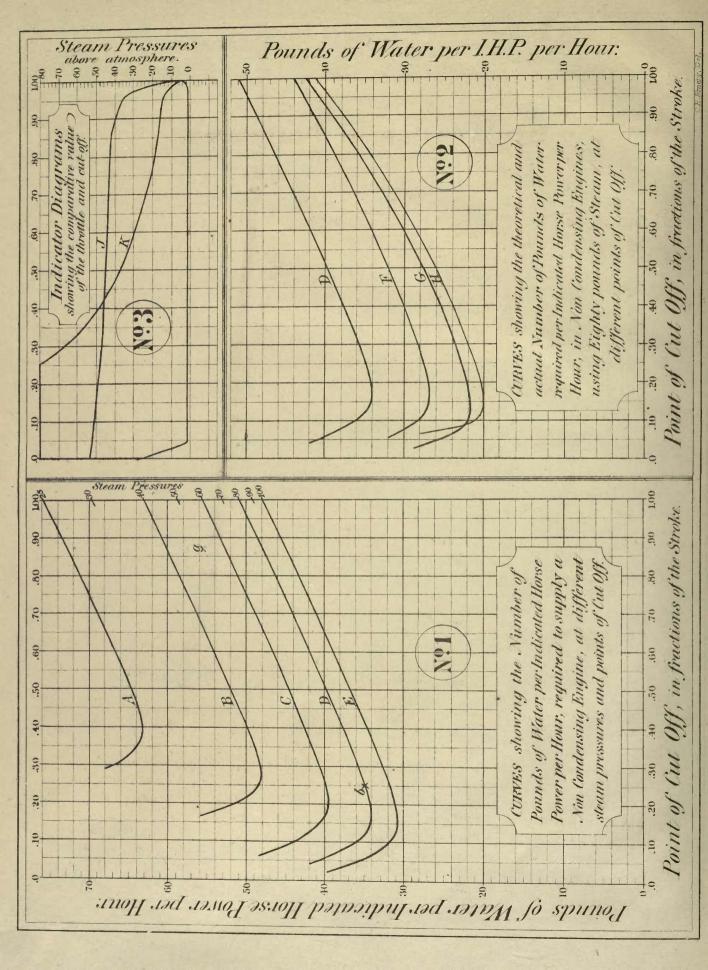
Tables showing Power, &c., of Non-Condensing Stationary Steam Engines.

10		10010		8 - 01		.,								
	S.	EAM	I	ONG	STR	OKE E	NGINE		SI	HORI	STE	ROKE	ENGINE	
	51	IIIII	ENGIN	NE	W	ATER	COST PE OF THE POV	R YEAR VER NAMED	ENGIN			TER	OF THE POT	R YEAR WER NAMED
A	B	C	D	E	F	G	Н	I				G	H	I
NET HORSE POWER	Pressure above At- mospherein pounds per square inch	Point of Cut-off	Size and Designa- tion	* Revolutions per Minute	Per I. II. P. per Hour Lbs.	Total Per Hour for Net Horse Power named Lbs.	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)	Size and Designa- tion	Revolutions per Minute	Per I. H. P. per Hour Lbs.	TOTAL Per Hour for Net Horse Power named Lbs.	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)
125	60 60	1 stroke 1 '' 4	$\begin{array}{c} 23\times54\\ 24\times54 \end{array}$	42 39	$33.2 \\ 33.2$	$\begin{array}{c} 4770\\ 4770\end{array}$	\$7155 7155	\$7705 7770	$\begin{array}{c} 23\times 36\\ 24\times 36\end{array}$	64 59	31.9 32.0	$\begin{array}{c} 4637\\ 4651 \end{array}$	\$6955 6977	\$ 7367 7438
H. P. Concluded.	100 100 100 100 80 80 80 80 80	12 stroke 12 12 13 12 13 12 13 12 13 12 13 12 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13 1	$\begin{array}{c} 13 \times 36 \\ 14 \times 36 \\ 15 \times 36 \\ 16 \times 42 \\ 14 \times 36 \\ 15 \times 36 \\ 16 \times 42 \\ 17 \times 42 \end{array}$	$76 \\ 65 \\ 57 \\ 43 \\ 82 \\ 71 \\ 53 \\ 47$	$\begin{array}{c} 31.3\\ 31.4\\ 31.7\\ 32.3\\ 33.1\\ 33.6\\ 34.3\\ 34.4\\ \end{array}$	$\begin{array}{r} 4658\\ 4673\\ 4717\\ 4739\\ 4925\\ 5000\\ 5044\\ 5059\\ \end{array}$	\$6987 7009 7076 7109 7388 7500 7566 7588	\$7240 7285 7401 7454 7664 7825 7911 7963	$\begin{array}{c} 13 \times 21 \\ 14 \times 21 \\ 15 \times 24 \\ 16 \times 24 \\ 14 \times 21 \\ 15 \times 24 \\ 16 \times 24 \\ 16 \times 24 \\ 17 \times 30 \end{array}$	$ \begin{array}{r} 131 \\ 113 \\ 86 \\ 77 \\ 125 \\ 109 \\ 95 \\ 65 \\ \end{array} $	29.2 29.7 30.5 30.7 31.8 32.3 32.6 33.6	$\begin{array}{r} 4398\\ 4472\\ 4593\\ 4569\\ 4789\\ 4864\\ 4851\\ 5000\\ \end{array}$	\$6596 6708 6889 6853 7183 7296 7277 7500	\$6786 6915 7133 7113 7390 7540 7537 7776
	60 60 60		16×42 16×42 17×42 19×48	47 73 64 45	36.9 37.1 38.3	5053 5426 5456 5567	8140 8184 8350	8485 8559 8776	16×24 17×30 19×30	128 89 72	34.5 36.0 36.5	5169 5357 5368	7753 8036 8052	8013 8312 8372
	100 100 100 100	8 stroke 8 (4 stroke 8 (4 (8 (8 (4 (8 (4 (8 (4 (8 (1	$\begin{array}{c} 12 \times 30 \\ 13 \times 36 \\ 14 \times 36 \\ 15 \times 36 \end{array}$	$94 \\ 66 \\ 57 \\ 50$	36.5 37.3 37.6 37.8	$5497 \\ 5551 \\ 5595 \\ 5625$	\$8245 8326 8393 8438	$\$8457\ 8571\ 8660\ 8754$	$\begin{array}{c} 12 \times 18 \\ 13 \times 21 \\ 14 \times 21 \\ 15 \times 24 \end{array}$	$159 \\ 115 \\ 99 \\ 75$	$\begin{array}{c} 34.6 \\ 35.5 \\ 35.8 \\ 36.7 \end{array}$	$5274 \\ 5346 \\ 5392 \\ 5525$	\$7911 8020 8088 8288	$\$8070\ 8204\ 8288\ 8525$
	80 80 80 80 80 80	्र 	$\begin{array}{c} 13 \times 36 \\ 14 \times 36 \\ 15 \times 36 \\ 16 \times 42 \\ 17 \times 42 \end{array}$	84 73 62 47 41	$\begin{array}{c} 39.1 \\ 39.4 \\ 39.8 \\ 40.4 \\ 40.6 \end{array}$	5819 5863 5923 5941 5971	8729 8795 8884 8912 8957	8974 9040 9200 9247 9322	$\begin{array}{c} 13 \times 21 \\ 14 \times 21 \\ 15 \times 24 \\ 16 \times 24 \\ 17 \times 30 \end{array}$	$ \begin{array}{r} 144 \\ 124 \\ 95 \\ 82 \\ 57 \end{array} $	37.5 37.7 38.6 38.9 39.8	$\begin{array}{c c} 5648 \\ 5677 \\ 5813 \\ 5790 \\ 5923 \end{array}$	8472 8515 8720 8685 8884	$8656 \\ 8715 \\ 8957 \\ 8936 \\ 9150$
	$ \begin{array}{c c} 60 \\ 60 \\ 60 \end{array} $	8 · · · · · · · · · · · · · · · · · · ·	15×36 16×42 17×42	84 63 55	$\begin{array}{c c} 42.1 \\ 43.1 \\ 43.4 \end{array}$	$\begin{array}{c} 6265 \\ 6338 \\ 6382 \end{array}$	9397 9507 9574	9713 9842 9939	$\begin{array}{c} 15 \times 24 \\ 16 \times 24 \\ 17 \times 30 \end{array}$	$ \begin{array}{r} 127 \\ 111 \\ 77 \end{array} $	$ \begin{array}{c c} 40.4 \\ 40.8 \\ 42.2 \end{array} $	6080 6072 6280	$\begin{array}{c c} 9120 \\ 9108 \\ 9420 \end{array}$	9357 9359 9686
150 н. р.	100 100 100 100 80 80 80 80 60	14 stroke 14 14 14 14 14 14 14 14 14	$\begin{array}{c} 16 \times 42 \\ 17 \times 42 \\ 19 \times 48 \\ 21 \times 48 \\ 19 \times 48 \\ 21 \times 48 \\ 23 \times 54 \\ 23 \times 54 \\ 21 \times 48 \end{array}$	$75 \\ 67 \\ 46 \\ 40 \\ 60 \\ 52 \\ 36 \\ 73$	26.2 26.3 26.9 27.1 28.7 28.9 29.6 31.4	$\begin{array}{r} 4624\\ 4641\\ 4692\\ 4704\\ 5006\\ 5041\\ 5103\\ 5477\\ \end{array}$	\$6935 6962 7038 7055 7509 7561 7655 8216	\$7280 7337 7464 7543 7935 8049 8205 8704	$\begin{array}{c} 16 \times 24 \\ 17 \times 30 \\ 19 \times 30 \\ 21 \times 30 \\ 19 \times 30 \\ 21 \times 30 \\ 23 \times 36 \\ 21 \times 30 \end{array}$	$ \begin{array}{r} 133 \\ 92 \\ 75 \\ 61 \\ 96 \\ 79 \\ 54 \\ 112 \end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4446 4590 4571 4659 4871 4941 5006 5330	\$6670 6885 6856 6988 7306 7413 7509 7005	\$6930 7161 7176 7354 7626 7779 7921 8261
	60 60 60 60 60		23×54 24×54 26×54 27×60 28×60	50 46 40 33 30	32.6 32.7 32.7 33.1 33.3	5621 5638 5638 5642 5619	$\begin{array}{c} 8431 \\ 8431 \\ 8457 \\ 8457 \\ 8463 \\ 8429 \\ \end{array}$	8981 9072 9112 9178 9205	$21 \times 30 \\ 23 \times 36 \\ 24 \times 36 \\ 26 \times 42 \\ 27 \times 42 \\ 28 \times 48$	$ \begin{array}{r} 112 \\ 76 \\ 70 \\ 51 \\ 49 \\ 39 \\ \end{array} $	$\begin{array}{c} 30.2 \\ 31.3 \\ 31.4 \\ 32.0 \\ 32.2 \\ 32.6 \end{array}$	$\begin{array}{c} 5330\\ 5469\\ 5477\\ 5581\\ 5552\\ 5621\end{array}$	7995 8188 8215 8372 8328 8432	$\begin{array}{c} 8361 \\ 8600 \\ 8676 \\ 8863 \\ 8864 \\ 9014 \end{array}$
Continued on next page.	100 100	12 stroke 12 ···	$14 \times 36 \\ 15 \times 36$	78 68	30.7 31.0	5482 5536	\$8223 8304	\$8499 8629	$\begin{vmatrix} 14 \times 21 \\ 15 \times 24 \end{vmatrix}$	135 103	28.9 29.8	5223 5409	\$7834 8119	\$8041 8363

.

		Tables	s showing	g Pov	ver, &	c., of]	Non-Con	lensing	Stationar	y Ste	am E	ngines.	•	17
	57	EAM		LONG	STR	OKE :	ENGINE	S	S S	HOR	r sti	ROKE	ENGINI	ES
	51	LIAM	ENGI	NE	w	ATER		R YEAR WER NAMED	ENGIN	VE	W	ATER		ER YEAR
A	B	C	D	<u> </u>	F	G	H	1	D	E	F	G	Н	I
NET HORSE POWER	Pressure above At- mosphere in pounds per square inch	Point of Cut-off	Size and Designa- tion 	Revolutions per Mynute	Per I. II. P. per Hour Lbs.	TOTAL Per Hour for Net Horse Power named Lbs.	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)	Size and Designa- tion	Revolutions per Minute	Per ¶. H. P. per Hour Lbs.	TOTAL Per Hour for Net Horse Power named Lbs.	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)
150 H. P. Concluded.	100 100 80 80 80 80 60 60 60 60 60 100 100 100 100 80 80 80	1212 12 12 12 12 12 12 12 12 12 12 12 12	$\begin{array}{c} 16 \times 42 \\ 17 \times 42 \\ 15 \times 36 \\ 16 \times 42 \\ 17 \times 42 \\ 19 \times 48 \\ 17 \times 42 \\ 19 \times 48 \\ 21 \times 48 \\ 13 \times 36 \\ 14 \times 36 \\ 15 \times 36 \\ 16 \times 42 \\ 14 \times 36 \\ 15 \times 36 \\ 16 \times 42 \\ 14 \times 36 \\ 15 \times 36 \\ 16 \times 42 \\ 14 \times 36 \\ 15 \times 36 \\ 16 \times 42 \\ 17 \times 48 \\ 10 \times 36 \\ 10 \times 42 \\ 10 \times 36 \\$	$51 \\ 45 \\ 85 \\ 64 \\ 57 \\ 40 \\ 77 \\ 53 \\ 46 \\ 79 \\ 68 \\ 60 \\ 54 \\ 88 \\ 75 \\ 56 \\ 80 \\ 80 \\ 80 \\ 80 \\ 80 \\ 80 \\ 80 \\ 8$	31.7 32.0 32.8 33.6 33.8 34.6 36.1 37.5 37.8 36.7 37.8 36.7 37.1 37.1 38.7 39.0 39.8	$\begin{array}{c} 5594\\ 5647\\ 5857\\ 5929\\ 5964\\ 6035\\ 6371\\ 6541\\ 6594\\ 6594\\ 6554\\ 6589\\ 6625\\ 6547\\ 6911\\ 6964\\ 7107\\ \end{array}$	\$8391 8471 8786 8894 9053 9556 9811 9891 \$9830 9884 9938 9821 10367 10446 10661	\$8736 8846 9111 9239 9323 9479 9931 10237 10237 10379 10075 10151 10254 10156 10634 10762 10996	$\begin{array}{c} 16 \times 24 \\ 17 \times 30 \\ 15 \times 24 \\ 16 \times 24 \\ 17 \times 30 \\ 19 \times 30 \\ 17 \times 30 \\ 19 \times 30 \\ 21 \times 30 \\ 21 \times 30 \\ 13 \times 21 \\ 14 \times 21 \\ 15 \times 24 \\ 16 \times 24 \\ 14 \times 21 \\ 15 \times 24 \\ 16 \times 24 \\ 10 \times 24 \\$	$\begin{array}{c} 92\\68\\131\\114\\78\\63\\107\\75\\71\\138\\118\\91\\78\\149\\114\\\cdot98\end{array}$	$\begin{array}{c} 30.0\\ 30.7\\ 31.4\\ 32.0\\ 33.0\\ 33.3\\ 35.0\\ 36.3\\ 36.3\\ 36.3\\ 34.9\\ 35.3\\ 35.9\\ 36.3\\ 37.9\\ 36.3\\ 37.9\\ 38.3\\ 37.9\\ 38.3\\ \end{array}$	$\begin{array}{c} 5357\\ 5480\\ 5675\\ 5714\\ 5893\\ 5877\\ 6250\\ 6406\\ 6406\\ 6406\\ 6406\\ 6406\\ 6406\\ 6482\\ 6687\\ 6849\\ 6849\\ 6840\\ \end{array}$	\$8035 8220 8512 8571 8839 8815 9370 9609 9609 9609 9609 9609 9568 9732 9723 10030 10273 10260	\$8295 8496 8756 8831 9115 9135 9646 9929 9975 \$9645 9768 9969 9974 10230 10510 10510
175	80 60 60 60 60 100	B (4 (3 (4 (3 (4 (4 ($ \begin{array}{r} 17 \times 42 \\ 16 \times 42 \\ 17 \times 42 \\ 19 \times 48 \\ 21 \times 48 \\ \end{array} $ $ \begin{array}{r} 17 \times 42 \\ 17 \times 42 \\ 17 \times 42 \\ \end{array} $	49 75 66 46 40 78	$ \begin{array}{r} 40.0 \\ 42.2 \\ 42.6 \\ 43.7 \\ 44.0 \\ \hline 25.9 \\ \end{array} $	7143 7536 7607 7712 7765 5332	10714 11304 11411 11568 11647 \$7999		$ \begin{array}{r} 17 \times 30 \\ 16 \times 24 \\ 17 \times 30 \\ 19 \times 30 \\ 21 \times 30 \\ \hline 17 \times 30 \\ \hline \end{array} $	$ \begin{array}{r} 68 \\ 133 \\ 92 \\ 75 \\ 61 \\ 107 \\ \end{array} $		7000 7143 7393 7394 7553 5250		10766 11065 11355 11401 11686 \$8151
Н. Р.	$ 100 \\ 100 \\ 80 \\ 80 \\ 80 \\ 80 \\ 80 \\ 80 \\ 60 $	· · · · · · · · · · · · · · · · · · ·	$\begin{array}{c} 19 \times 48 \\ 21 \times 48 \\ 19 \times 48 \\ 23 \times 54 \\ 24 \times 54 \\ 23 \times 54 \\ 24 \times 54 \\ 26 \times 54 \\ 27 \times 60 \\ 28 \times 60 \\ 30 \times 60 \end{array}$	$54 \\ 47 \\ 70 \\ 60 \\ 42 \\ 38 \\ 58 \\ 54 \\ 46 \\ 38 \\ 35 \\ 31 \\ 31$	26.5 26.6 28.2 28.4 29.2 29.4 32.1 32.1 32.2 32.7 32.8 33.0	$\begin{array}{c} 5392 \\ 5413 \\ 5738 \\ 5779 \\ 5874 \\ 5914 \\ 6457 \\ 6457 \\ 6457 \\ 6477 \\ 6503 \\ 6523 \\ 6563 \\ \end{array}$	8089 8119 8608 8669 8810 8871 9686 9686 9686 9716 9754 9754 9784	$\begin{array}{c} 8515\\ 8607\\ 9034\\ 9157\\ 9360\\ 9486\\ 10236\\ 10301\\ 10371\\ 10469\\ 10560\\ 10684 \end{array}$	$\begin{array}{c} 19 \times 30 \\ 21 \times 30 \\ 19 \times 30 \\ 23 \times 36 \\ 24 \times 36 \\ 23 \times 36 \\ 24 \times 36 \\ 26 \times 42 \\ 27 \times 42 \\ 28 \times 48 \\ 30 \times 48 \end{array}$	$87 \\ 71 \\ 113 \\ 92 \\ 63 \\ 58 \\ 89 \\ 82 \\ 60 \\ 55 \\ 45 \\ 40 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$\begin{array}{c} 25.6\\ 26.0\\ 27.1\\ 27.8\\ 28.2\\ 28.4\\ 30.7\\ 30.9\\ 31.4\\ 31.7\\ 32.2\\ 32.4\\ \end{array}$	$\begin{array}{c} 5270\\ 5353\\ 5577\\ 5723\\ 5730\\ 5780\\ 6256\\ 6291\\ 6387\\ 6376\\ 6477\\ 6517\\ \end{array}$	7905 8029 8365 8584 8595 8670 9384 9436 9581 9565 9716 9776	8225 8395 8685 8950 9007 9131 9796 9897 10072 10101 10298 10406
Continued on next page.	$ \begin{array}{r} 100 \\ 100 \\ 100 \\ 8$	12 stroke 12 12 12 12 12 12 12 12	$\begin{array}{c} 15 \times 36 \\ 16 \times 42 \\ 17 \times 42 \\ 16 \times 42 \\ 17 \times 42 \\ 19 \times 48 \\ 21 \times 48 \end{array}$	$79 \\ 59 \\ 52 \\ 75 \\ 66 \\ 46 \\ 40$	$\begin{array}{c} 30.4\\ 31.2\\ 31.4\\ 32.9\\ 33.2\\ 34.1\\ 34.2 \end{array}$	$\begin{array}{c} 6333\\ 6424\\ 6465\\ 6774\\ 6835\\ 6939\\ 6959\\ \end{array}$	\$9500 9635 9697 10160 10253 10408 10439		$\begin{array}{c} 15 \times 24 \\ 16 \times 24 \\ 17 \times 30 \\ 16 \times 24 \\ 17 \times 30 \\ 19 \times 30 \\ 21 \times 30 \end{array}$	$ \begin{array}{r} 121 \\ 108 \\ 80 \\ 132 \\ 92 \\ 74 \\ 61 \end{array} $	$\begin{array}{c} 29.1 \\ 29.4 \\ 30.0 \\ 31.3 \\ 32.4 \\ 32.8 \\ 33.2 \end{array}$	$\begin{array}{c} 6135\\ 6125\\ 6250\\ 6512\\ 6750\\ 6753\\ 6835 \end{array}$	\$9203 9187 9375 9768 10125 10129 10252	\$9447 9447 9651 10028 10401 10449 10618


18		Table	S SHOWIN	Ig. 101	ver, o	00., 01	1011-001	uonoing				8-3-		1.1.5.2
		FAM		LONG	STR	OKE	ENGINE	S	S	HORI	STI	ROKE	ENGINE	IS
	ST	EAM	ENGI	NE	W	ATER		ER YEAR WER NAMED	ENGI	vе	WA	TER		ER YEAR WER NAMED
A	В	C	D	E	F	G	H	I	D	E	F	G	H	I
NET	bove At- n pounds inch	Point	Size and Designa- tion	Revolutions per Minute .	Per I. II. P.	TOTAL Per Hour for Net Horse	For Coal at \$8.00	TOTAL, (Interest	Size and Designa- tion	olutions per Minute	Per I. II. P. per	TOTAL Per Hour for Net Horse	For Coal at \$8.00	TOTAL, (Interest
HORSE POWER	Pressure above At- mosphere in pounds per square inch	of Cut-off	UI Diam.	• Revolut Min	per Hour	Power named Lbs.	per Ton	on cost of Engine included)	ul Diam.	Revolutions Minute	Hour Lbs.	Power named Lbs.	per Ton	on cost of Engine included)
175 H. P. Concluded.	60 60 60 60	12 stroke 12 ··· 12 ··· 12 ··· 12 ···	19×48 21×48 23×54 24×54	$62 \\ 54 \\ 37 \\ 34$	36.9 37.0 38.2 38.3	7509 7529 7684 7704	\$11263 11294 11526 11556	\$11689 11782 12076 12171	$ \begin{array}{r} 19 \times 30 \\ 21 \times 30 \\ 23 \times 36 \\ 24 \times 36 \end{array} $	142 83 56 52	33.7 35.6 36.8 36.9	6938 7330 7489 7509	\$10407 10995 11233 11263	\$10727 11361 11645 11724
	$100 \\ 100 \\ 100 \\ 100 \\ 100$	8 stroke 8 ··· 8 ··· 8 ··· 8 ··· 8 ··· 8 ··· 8 ··· 8 ··· 8 ···	$\begin{array}{c} 14 \times 36 \\ 15 \times 36 \\ 16 \times 42 \\ 17 \times 42 \end{array}$		$36.2 \\ 36.5 \\ 36.7 \\ 37.4$	7542,760475567782	$ \begin{array}{r} 11406 \\ 11334 \\ 11674 \end{array} $		$\begin{array}{c} 14 \times 21 \\ 15 \times 24 \\ 16 \times 24 \\ 17 \times 30 \end{array}$	$ 138 \\ 105 \\ 92 \\ 64 \\ 100 $	34.6 35.3 35.7 36.7	$7271 \\ 7442 \\ 7437 \\ 7646 \\ 5004$	\$10906 11163 11158 11469	\$11106 11400 11409 11735
	80 80 80 80	34343434 (() ()	15×36 16×42 17×42 19×48	87 65 58 40	38.5 39.2 39.4 40.3	8021 8071 8112 8201	$\begin{array}{c} 12031 \\ 12106 \\ 12168 \\ 12301 \\ \end{array}$	$12347 \\ 12441 \\ 12533 \\ 12715 \\ 12074$	15×24 16×24 17×30 19×30	$ 133 \\ 115 \\ 80 \\ 65 \\ 105 $	37.3 37.6 38.6 39.0	7864 7833 8042 8030	$ \begin{array}{c} 11796\\ 11750\\ 12063\\ 12045\\ 10200 \end{array} $	$12033 \\ 12001 \\ 12329 \\ 12355 \\ 10052$
	60 60 60	<u>8</u> ((<u>8</u> ((<u>8</u> ((<u>8</u> ((<u>8</u> ()	17×42 19×48 21×48	78 54 47	41.8 43.0 43.1	8606 8750 8770	$\begin{array}{c c} 12909 \\ 13125 \\ 13156 \end{array}$	$13274 \\ 13539 \\ 13631$	$ \begin{array}{r} 17 \times 30 \\ 19 \times 30 \\ 21 \times 30 \\ \hline \end{array} $	$\begin{array}{c}107\\87\\71\end{array}$	40.6 41.2 41.9		$ \begin{array}{r} 12690 \\ 12724 \\ 12940 \end{array} $	$12956 \\ 13034 \\ 13296$
200	100 100 100	1 stroke 1 '' 1 ''	$19 \times 48 \\ 21 \times 48 \\ 23 \times 54$	$61 \\ 53 \\ 37$	$26.2 \\ 26.3 \\ 27.0$	$\begin{array}{c} 6070 \\ 6116 \\ 6207 \end{array}$	\$9104 9174 9310	\$ 9530 9662 9860	$\begin{array}{c} 19\times 30\\ 21\times 30\\ 23\times 36\end{array}$	$\begin{array}{c} 100\\ 81\\ 56 \end{array}$	$25.2 \\ 25.6 \\ 26.2$	$5930 \\ 6024 \\ 6093$	\$8895 9036 9139	$\$9215 \\ 9402 \\ 9551$
	80 80 80 80 80 80	1414141414	$\begin{array}{c} 21\times48\\ 23\times54\\ 24\times54\\ 26\times54\\ 27\times60 \end{array}$	$69 \\ 48 \\ 44 \\ 37 \\ 31$	28.0 28.8 29.0 29.0 29.3	$\begin{array}{c} 6512 \\ 6621 \\ 6667 \\ 6667 \\ 6667 \\ 6667 \end{array}$	$\begin{array}{r} 9767 \\ 9931 \\ 10000 \\ 10000 \\ 10000 \end{array}$	$10255 \\ 10481 \\ 10615 \\ 10655 \\ 10715$	$\begin{array}{c} 21 \times 30 \\ 23 \times 36 \\ 24 \times 36 \\ 26 \times 42 \\ 27 \times 42 \end{array}$	$ \begin{array}{r} 105 \\ 72 \\ 66 \\ 48 \\ 45 \end{array} $	$\begin{array}{r} 27.0 \\ 27.8 \\ 28.0 \\ 28.4 \\ 28.7 \end{array}$	$\begin{array}{r} 6353 \\ 6465 \\ 6512 \\ 6605 \\ 6598 \end{array}$	9529 9697 9768 9907 9897	$\begin{array}{r} 9895 \\ 10109 \\ 10229 \\ 10398 \\ 10433 \end{array}$
	60 60 60 60	14141414	26×54 27×60 28×60 30×60	$53 \\ 43 \\ 40 \\ 35$	31.7 32.3 32.4 32.6	$7287 \\7341 \\7364 \\7409$	$\begin{array}{c} 10931 \\ 11011 \\ 11045 \\ 11114 \end{array}$	$11586 \\ 11726 \\ 11821 \\ 11954$	26×42 27×42 28×48 30×48	$69 \\ 63 \\ 51 \\ 45$	30.9 31.3 31.3 32.0	$7186 \\ 7195 \\ 7195 \\ 7356$	$ \begin{array}{r} 10779 \\ 10793 \\ 10793 \\ 11034 \end{array} $	$\begin{array}{c} 11270 \\ 11329 \\ 11375 \\ 11664 \end{array}$
	100 100 100 100	1 stroke 1 ··· 1 ··· 1 ··· 1 ··· 1 ··· 1 ···	15×36 16×42 17×42 19×48	$90 \\ 68 \\ 60 \\ 41 \\ 52$	29.9 30.5 30.9 31.6	7119 7176 7271 7349		$ \begin{array}{r} 11110 \\ 11281 \\ 11449 \end{array} $	$\begin{array}{c} 15 \times 24 \\ 16 \times 24 \\ 17 \times 30 \\ 19 \times 30 \end{array}$	$138 \\ 123 \\ 91 \\ 67$	$28.6 \\ 28.8 \\ 29.7 \\ 30.4$	6892 6857 7072 7153	\$10338 10285 10608 10729	$\$10582 \\ 10545 \\ .10884 \\ 11049$
	80 80 80 60		17×42 19×48 21×48 19×48	$76 \\ 52 \\ 46 \\ 71$	32.7 33.7 33.7 36.2	7694 7837 7837 8419	$ \begin{array}{r} 11541 \\ 11756 \\ 11756 \\ 12629 \end{array} $	$11916 \\12182 \\12244 \\13043$	17×30 19×30 21×30 19×30	$ \begin{array}{r} 105 \\ 85 \\ 69 \\ 115 \end{array} $	31.7 32.3 32.8 34.4	$7547 \\ 7600 \\ 7718 \\ 8094$	$ \begin{array}{r} 11320 \\ 11400 \\ 11677 \\ 12141 \end{array} $	$11596 \\ 11720 \\ 12043 \\ 12461$
Continued on next page.	60 60 60 60	12121 12121 12121 12121 12121 12121	$\begin{array}{c} 21\times 48\\ 23\times 54\\ 24\times 54\\ 26\times 54\end{array}$	$62 \\ 43 \\ 39 \\ 34$	$36.3 \\ 37.5 \\ 37.7 \\ 37.7 \\ 37.7$	$8442 \\ 8621 \\ 8667 \\ 8667 \\ 8667 \\ $	$\begin{array}{c} 12663 \\ 12931 \\ 13000 \\ 13000 \end{array}$	$ \begin{array}{r} 13151 \\ 13481 \\ 13615 \\ 13655 \end{array} $	$\begin{array}{c} 21\times 30\\ 23\times 36\\ 24\times 36\end{array}$	$ \begin{array}{r} 94 \\ 65 \\ 59 \\ 45 \end{array} $	35.0 36.1 36.3 36.9	8235 8395 8442 8581	$ \begin{array}{r} 12141 \\ 12352 \\ 12592 \\ 12663 \\ 12872 \end{array} $	$12401 \\ 12718 \\ 13004 \\ 13124 \\ 13363$


1																		
Tables showing Power, &c., of Non-Condensing Stationary Steam Engines. 19																		
	STEAM LONG						STROKE ENGINES					SHORT STROKE ENGINES						
			ENGINE			WATER		COST PER YEAR OF THE POWER NAMED		1	ENGIN	E	WATER		COST PER YEAR OF THE POWER NAMED			
A	B	<u> </u>			E	F	G	H	I	D)		F	G	H	I		
NET HORSE POWER	Pressure above At- mosphere in pounds per square inch	Point of Cut-off	Size Desig tic "meio In.	gna-	Revolutions per Minute	Per I. H. P. per Hour	TOTAL Per Hour for Net Horse Power named Lbs.	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)	Size Desig tic	gna-	Revolutions per Minute	Per L. H. P. per Hour	TOTAL Per Hour for Net Horse Power named	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)		
						105		-		1n.	<u>In.</u>		Los.	Lbs.				
2000 H. P. Concluded.	$ \begin{array}{r} 100\\ 100\\ 100\\ 80\\ 80\\ 80\\ 60\\ 60\\ 60 \end{array} $	23 stroke 84 stroke 84 st 84 s	$15 \times 16 \times 17 \times 16 \times 17 \times 19 \times 19 \times 21 \times 23 \times 23 \times 23 \times 23 \times 23 \times 23 \times 23$	 < 42 < 42 < 42 < 42 < 42 < 42 < 48 < 48 < 48 < 48 	$80 \\ 59 \\ 52 \\ 74 \\ 66 \\ 46 \\ 61 \\ 53 \\ 37 \\ 8 \\ 37 \\ 8 \\ 8 \\ 8 \\ 7 \\ 8 \\ 8 \\ 8 \\ 7 \\ 8 \\ 8$	35.9 36.8 37.0 38.8 39.0 39.8 42.5 42.7 43.7	8548 8659 8706 9129 9176 9256 9884 9930 10046	\$12821 12988 13059 13694 13765 13884 14826 14895 15069	\$13137 13323 13424 14029 14130 14298 15240 15370 15604	$15 \times 16 \times 17 \times 16 \times 17 \times 19 \times 19 \times 21 \times 23 \times 23 \times 23 \times 23 \times 23 \times 23 \times 23$	< 24 < 30 < 24 < 30 < 30 < 30 < 30 < 30	$121 \\ 105 \\ 73 \\ 131 \\ 91 \\ 74 \\ 99 \\ 81 \\ 56$	$\begin{array}{c} 34.9\\ 35.2\\ 36.1\\ 37.2\\ 38.2\\ 38.6\\ 40.6\\ 41.3\\ 42.4\end{array}$	8410 8381 8595 8857 9095 9083 9553 9718 9861	\$12615 12572 12892 13285 13642 13624 14329 14577 14791	\$12852 12823 13158 13536 13908 13934 14639 14933 15192		
225 н. р.	$ \begin{array}{r} 100 \\ 100 \\ 100 \\ 100 \\ 80 \\ 80 \\ 80 \\ 80 \\ 80 \\ 80 \\ 60 \\ 60 \\ 100 \\ 100 \\ 100 \\ 80 \\ $		$\begin{array}{c} 19 \times \\ 21 \times \\ 23 \times \\ 24 \times \\ 24 \times \\ 26 \times \\ 27 \times \\ 28 \times \\ 27 \times \\ 28 \times \\ 30 \times \\ 16 \times \\ 19 \times \\ 21 \times \\ 23 \times \\ 21 \times \\ 23 \times \\ 24 \times \\ 26 \times \\ 27 \times \\ 27 \times \end{array}$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	$\begin{array}{c} 69\\ 53\\ 41\\ 38\\ 54\\ 49\\ 42\\ 35\\ 32\\ 48\\ 45\\ 40\\ 76\\ 67\\ 47\\ 59\\ 51\\ 35\\ 70\\ 48\\ 44\\ 38\\ 31\\ \end{array}$	$\begin{array}{c} 25.8\\ 26.3\\ 26.7\\ 26.7\\ 28.5\\ 28.6\\ 28.7\\ 29.0\\ 29.0\\ 31.9\\ 32.0\\ 32.2\\ 30.4\\ 31.3\\ 33.2\\ 33.3\\ 34.2\\ 35.7\\ 37.1\\ 37.3\\ 37.8\\ 37.8\\ \end{array}$	$\begin{array}{c} 6750\\ 6881\\ 6905\\ 6905\\ 7371\\ 7397\\ 7422\\ 7415\\ 7415\\ 8156\\ 8181\\ 8233\\ 8021\\ 8047\\ 8189\\ 8688\\ 8724\\ 8845\\ 9340\\ 9595\\ 9658\\ 9658\\ 9665\\ \end{array}$	\$10125 10321 10358 10358 11057 11095 11134 11122 12234 12273 12349 \$12031 12071 12283 13029 13086 13267 14010 14392 14487 14497	\$10551 10809 10908 10973 11607 11720 11789 11837 11898 12949 13049 13049 13189 \$12376 12446 12709 13455 13574 13817 14498 14942 15102 15142 15212	$\begin{array}{c} 19 \times \\ 21 \times \\ 23 \times \\ 24 \times \\ 24 \times \\ 26 \times \\ 27 \times \\ 28 \times \\ 27 \times \\ 28 \times \\ 17 \times \\ 19 \times \\ 21 \times \\ 23 \times \\ 24 \times \\ 26 \times \\ 27 \times \\ 27 \times \end{array}$	(30) (36) (36) (36) (42) (30) (30) (30) (30) (36)	$112 \\92 \\63 \\58 \\81 \\75 \\55 \\50 \\41 \\70 \\57 \\50 \\138 \\103 \\75 \\95 \\78 \\54 \\106 \\73 \\67 \\50 \\41 \\$	$\begin{array}{c} 24.9\\ 25.3\\ 25.9\\ 26.0\\ 27.5\\ 27.6\\ 28.0\\ 28.3\\ 28.6\\ 30.8\\ 31.3\\ 31.6\\ 28.5\\ 28.9\\ 29.9\\ 32.1\\ 32.5\\ 33.1\\ 34.5\\ 35.6\\ 35.8\\ 36.2\\ 37.2\\ \end{array}$	$\begin{array}{c} 6588\\ 6706\\ 6779\\ 6803\\ 7198\\ 7221\\ 7326\\ 7318\\ 7386\\ 7966\\ 8095\\ 8172\\ \\ 7631\\ 7738\\ 7917\\ 8494\\ 8600\\ 8663\\ 9129\\ 9314\\ 9360\\ 9471\\ 9621\\ \end{array}$	\$9882 10059 10168 10204 10797 10831 10988 10978 11078 11948 12142 12259 \$11446 11607 11875 12741 12900 12994 13693 13971 14040 14196 14431	\$10202 10425 10580 10665 11209 11292 11479 11514 11660 12484 12724 12889 \$11706 11883 12195 13061 13266 13406 14059 14383 14501 14687 14967		
Continued on next page.	$ \begin{array}{r} 100 \\ 100 \\ 100 \\ 100 \\ 80 \\ 80 \\ 80 \end{array} $	2 84 stroke 84 strok	$15 \times 16 \times 17 \times 19 \times 17 \times 19 \times 17 \times 19 \times 19 \times 19$	36 42 42 42 48 48	$90 \\ 67 \\ 59 \\ 41 \\ 74 \\ 51$	35.6 36.3 36.5 37.2 38.6	$9536 \\ .9609 \\ 9662 \\ 9733 \\ 10218 \\ 10334$	14413 14413 14493 14699 15326 15501	\$14620 14748 14858 15113 15691 15915	$15 \times 16 \times 17 \times 19 \times 17 \times 17 \times 17 \times 17 \times 17 \times 17$	24 24 30 30 30	136 118 81 66 103 83	34.5 34.6 35.7 36.1 37.7	$9349 \\9262 \\9559 \\9553 \\10095 \\10141$	\$14023 13893 14338 14329 15142 15212	\$14260 14144 14604 14639 15408 15522		

LONG STROKE ENGINES SHORT STROKE ENGINES														
	SI	STEAM LONG			WATER COST PER YEAR							ENGINES COST PER YEAR		
	_							OWER NAMED	ENGI			ATER	OF THE P	OWER NAMED
A NET	ove At- pounds a	C Point	D Size and Designa- tion	ns per	F Per I. II. P.	G TOTAL Per Hour for Net	For Coal		D Size and Designa- tion	as per E	F Per I. II. P.	G TOTAL Per Hour for Net	H For Coal	I Total,
HORSE POWER	Pressure above At- mosphere in pounds per square inch	of Cut off	ul Diam.	Revolutions Minute	per Hour Lbs.	Horse Power named Lbs.	per Ton	(Interest on cost of Engine included)	UI Diam.	Revolutions Minute	per Hour	Horse Power named Lbs,	at \$8.00 per Ton	(Interest on cost of Engine included)
225	80	8 stroke	21×48	45	39.5	10334		\$15976	21×30	68	38.6	10212	\$15318	\$15674
H. P. Concluded.	$ \begin{array}{c c} 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ \end{array} $	ः :: :: :: :: :: :: :: :: :: :	$\begin{array}{c} 19 \times 48 \\ 21 \times 48 \\ 23 \times 54 \\ 24 \times 54 \end{array}$	$ \begin{array}{r} 69 \\ 60 \\ 41 \\ 38 \end{array} $		$\begin{array}{c} 10962 \\ 10988 \\ 11198 \\ 11224 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17332	19×30 21×30 23×36 24×26	$ \begin{array}{c c} 112 \\ 91 \\ 63 \\ 58 \end{array} $	$\begin{array}{c c} 40.1 \\ 40.7 \\ 41.8 \\ 42.0 \end{array}$	$\begin{array}{c c} 10776 \\ 10930 \end{array}$	$ \begin{array}{r} 15918 \\ 16164 \\ 16396 \\ 16489 \end{array} $	16797
250	100	1 stroke	21×48	67	25.7	7465	\$11198	\$11686	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	102	25.0	7353	16482 \$11029	16932 \$11395
200 Н. Р.	$ 100 \\ 100 \\ 100 \\ 100 100 $	14 14 14 14 14	23×54 24×54 26×54 27×60	46 42 36 30	$\begin{array}{c} 26.5 \\ 26.5 \\ 26.4 \\ 26.7 \end{array}$	$\begin{array}{c c} 7615 \\ 7615 \\ 7586 \\ 7586 \end{array}$	$\begin{array}{c c} 11422 \\ 11422 \\ 11379 \\ 11379 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c} 70 \\ 64 \\ 47 \\ 43 \end{array} $	$\begin{array}{c} 25.6 \\ 25.7 \\ 25.9 \\ 26.2 \end{array}$	$\begin{array}{c c} 7442 \\ 7465 \\ 7529 \\ 7529 \end{array}$	$\begin{array}{c c} 11163 \\ 11198 \\ 11294 \\ 11294 \\ 11294 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	80 80 80	4 · · · · · · · · · · · · · · · · · · ·	23×54 24×54 26×54		28.2 28.3 28.4	\$102 \$131 \$161	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 21 \times 42 \\ 23 \times 36 \\ 24 \times 36 \\ 26 \times 42 \end{array} $	90 83	$27.2 \\ 27.4$	7907 7965	$\begin{array}{c c} 11860 \\ 11947 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	80 80 80	4 · · · · · · · · · · · · · · · · · · ·	27×60 28×60 30×60	$ \begin{array}{r} 38 \\ 36 \\ 31 \end{array} $	$28.8 \\ 28.8 \\ 29.0 $	8182 8182 8239	$\begin{array}{c c} 12241 \\ 12273 \\ 12273 \\ 12358 \end{array}$	12890 12988 13049 13198	26×42 27×42 28×48 30×48	$ \begin{array}{r} 61 \\ 56 \\ 45 \\ 39 \end{array} $	$\begin{array}{c} 27.8 \\ 28.0 \\ 28.4 \\ 28.6 \end{array}$	8081 8023 8148 8218	$ \begin{array}{r} 12122\\12034\\12222\\12327\end{array} $	$\begin{array}{r} 12613 \\ 12570 \\ 12804 \\ 12957 \end{array}$
	60 60	1 " 4 " 1 "	$\begin{array}{c} 28\times 60\\ 30\times 60 \end{array}$	50 44	51.6 31.9	8979 9063	$ \begin{array}{r} 13469 \\ 13594 \end{array} $	$ 14245 \\ 14434 $	28×48 30×48	63 - 56	31.0 31.2	8908 8966	$ \begin{array}{r} 12324 \\ 13362 \\ 13448 \end{array} $	12557 13944 14078
	100 100 100	12 stroke 12 ··· 12 ··· 12 ···	$\begin{array}{c} 17\times42\\ 19\times48\\ 21\times48\end{array}$	$\begin{array}{c} 75\\52\\43\end{array}$	$30.0 \\ 30.9 \\ 31.3$	8824 8983 9099	$\$13235 \\ 13474 \\ 13648$	$\$13610 \\ 13910 \\ 14136$	$17 \times 30 \\ 19 \times 30 \\ 21 \times 30$	$\begin{array}{c} 114\\ 84\\ 73 \end{array}$	$28.8 \\ 28.8 \\ 29.9$	8571 8471 8788	\$12857 12706 13182	$\$13133 \\ 13026 \\ -13548$
	80 80 80 80		19×48 21×48 23×54 24×54	66 57 39 36	32.9 33.0 33.0 33.0	9564 9593 9483 0482	$14346 \\ 14390 \\ 14224 \\ 14994$	$\begin{array}{r} 14772 \\ 14878 \\ 14774 \\ 14000 \end{array}$	$\begin{array}{c} 19 \times 30 \\ 21 \times 30 \\ 23 \times 36 \\ 24 \end{array}$	$ \begin{array}{r} 106 \\ 87 \\ 60 \\ \hline \end{array} $	$31.4 \\ 32.1 \\ 32.9 \\ 0.0 \\ 0$	$9235 \\ 9435 \\ 9560$	$\begin{array}{r} 13852 \\ 14125 \\ 14340 \end{array}$	$\begin{array}{c} 14172 \\ 14491 \\ 14752 \end{array}$
	$\begin{array}{c} 60\\ 60 \end{array}$	$\frac{1}{2}$ " $\frac{1}{2}$ "	23×54 24×54 26×54	$50 \\ 53 \\ 49 \\ 42$	$\begin{array}{c} 36.6\\ 36.9 \end{array}$	$\begin{array}{c c} 9483 \\ 10515 \\ 10613 \\ 10613 \\ \end{array}$	$\begin{array}{r} 14224 \\ 15773 \\ 15920 \\ 15920 \end{array}$	$14839 \\ 16323 \\ 16535 \\ 16575$	$\begin{array}{c} 24 \times 36 \\ 23 \times 36 \\ 24 \times 36 \\ 26 \times 10 \end{array}$	55 81 74	35.4	9560 10197 10291	$\begin{array}{r} 14340 \\ 15295 \\ 15436 \end{array}$	$ 14801 \\ 15707 \\ 15897 $
	60 60	12 ··· 12 ···	$\begin{array}{c} 27 \times 60 \\ 28 \times 60 \end{array}$	34 32	37.4	$ \begin{array}{r} 10613 \\ 10625 \\ 10625 \end{array} $	$ 15938 \\ 15938 \\ 15938 $	$\frac{16575}{16653}\\16714$	$\begin{array}{c} 26 \times 42 \\ 27 \times 42 \\ 28 \times 48 \end{array}$	$56\\50\\41$	36.4	$ \begin{array}{r} 10465 \\ 10460 \\ 10563 \end{array} $	$\begin{array}{c} 15698 \\ 15690 \\ 15845 \end{array}$	$\begin{array}{c} 16189 \\ 16226 \\ 16427 \end{array}$
	100 100	8 (6 8 (6 8 (6	$16 \times 42 \\ 17 \times 42 \\ 19 \times 48$	$\begin{array}{c} 74\\ 66\\ 45 \end{array}$	$\begin{array}{c} 36.2\\ 37.0 \end{array}$	$ \begin{array}{r} 10559 \\ 10647 \\ 10756 \end{array} $		\$16173 16336 16548	$\begin{array}{c} 16\times24\\ 17\times30\\ 19\times30 \end{array}$	$131 \\ 91 \\ 74$	35.4	$\begin{array}{c} 10\bar{2}38 \\ 10536 \\ 10494 \end{array}$	\$15357 15804 15741	
	80 80	84 (6 84 (6 84 (6	$ \begin{array}{c} 19 \times 48 \\ 21 \times 48 \\ 23 \times 54 \end{array} $	57 50 35	$\begin{array}{c} 39.2\\ 39.9 \end{array}$	$\frac{11366}{11395}\\11463$	$\begin{array}{r} 17049 \\ 17093 \\ 17195 \end{array}$	$\begin{array}{c} 17463 \\ 17568 \\ 17730 \end{array}$	$\begin{array}{c} 19\times30\\ 21\times30\\ 23\times36 \end{array}$	93 75 52	37.8 38.3	$\frac{11113}{11259}\\11337$	$ 16669 \\ 16888 \\ 17005 $	$ 16979 \\ 17244 \\ 17406 $
	$\begin{array}{c c} 60\\ 60 \end{array}$	8 66 8 66 4	21×48 23×54 24×54 26×54	42	42.9 43.1	12093 12328 12385	$\frac{18140}{18491}\\18578$	19178	$\begin{array}{c} 21 \times 30 \\ 23 \times 36 \\ 24 \times 36 \end{array}$	64	$\begin{array}{c} 39.1 \\ 41.3 \\ 41.6 \end{array}$	$\frac{11360}{12000}\\12093$	$ 17040 \\ 18000 \\ 18139 $	$ 17396 \\ 18401 \\ 18589 $
	60		20×54 27×60		43.0	12356 12330	$\begin{array}{c}18534\\18494\end{array}$		$\begin{array}{c} 26 \times 42 \\ 27 \times 42 \end{array}$	47	42.1	$\frac{12238}{12241}$	18357 18362 18362	$ 18835 \\ 18885 $

E																
	Tables showing Power, &c., of Non-Condensing Stationary Steam Engines. 21															
		ST	EAM	L	ONG	STROKE ENGINES				SHORT STROKE ENGINES						
		1.16		ENGIN	E WATER		TER	COST PER YEAR OF THE POWER NAMED		ENGINE		WATER		COST PER YEAR of the power named		
	Α	B	<u> </u>	D	E	F	G	н	I	D		F	G	н	1	
	NET HORSE POWER	Pressure above At- mosphere in pounds per square inch	Point of Cut-off	Size and Designa- tion <u>i</u> <u>e</u> <u>i</u> <u>i</u> <u>i</u> <u>i</u> <u>i</u> <u>i</u> <u>i</u> <u>i</u> <u>i</u> <u>i</u>	Revolutions per Minute	Per I. H. P. per Hour Lbs,	TOTAL Per Hour for Net Horse Power named Lbs,	For Coal at \$8 00 per Ton	TOTAL, (Interest on cost of Engine included)	Size and Designa- tion une and exposi- tion In. In.	Revolutions per Minute	Per I. H. P. per Hour Lbs.	TOTAL Per Hour for Net Horse Power named Lbs.	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)	
				<u> </u>												
	275 н. р.	100 100 100 100 100 100	1 stroke 14 ((14 ((14 ((14 ((14 ((14 (($\begin{array}{c} 21 \times 48 \\ 23 \times 54 \\ 24 \times 54 \\ 26 \times 54 \\ 27 \times 60 \\ 28 \times 60 \end{array}$	$74 \\ 51 \\ 46 \\ 40 \\ 33 \\ 30$	25.526.226.226.226.226.426.4	8154 8295 8282 8282 8250 8250 8281	\$12231 12443 12422 12422 12422 12375 12422	\$12719 12993 13037 13077 13090 13198	$\begin{array}{c} 21 \times 30 \\ 23 \times 36 \\ 24 \times 36 \\ 26 \times 42 \\ 27 \times 42 \\ 28 \times 48 \end{array}$	$112 \\ 77 \\ 71 \\ 52 \\ 47 \\ 39$	$24.8 \\ 25.4 \\ 25.5 \\ 25.7 \\ 25.9 \\ 26.1$	8023 8116 8163 8218 8187 8250	\$12034 12174 12244 12327 12280 12375	\$12400 12586 12705 12818 12816 12957	
		80 80 80 80 80		$\begin{array}{c} 24\times54\\ 26\times54\\ 27\times60\\ 28\times60\\ 30\times60 \end{array}$	$ \begin{array}{c} 61 \\ 51 \\ 42 \\ 39 \\ 35 \end{array} $	28.0 28.2 28.5 28.6 28.7	8851 8914 8906 8937 9084	$\begin{array}{r} 13277 \\ 13371 \\ 13359 \\ 13406 \\ 13625 \end{array}$	$\begin{array}{r} 13892 \\ 14026 \\ 14074 \\ 14182 \\ 14465 \end{array}$	$\begin{array}{c} 24 \times 36 \\ 26 \times 42 \\ 27 \times 42 \\ 28 \times 48 \\ 30 \times 48 \end{array}$	88 67 61 50 43	$\begin{array}{c c} 27.2 \\ 27.5 \\ 27.8 \\ 28.1 \\ 28.4 \end{array}$	8651 8794 8787 8882 8988	$\begin{array}{r} 12977 \\ 13190 \\ 13181 \\ 13323 \\ 13483 \end{array}$	$\begin{array}{c} 13438 \\ 13681 \\ 13717 \\ 13905 \\ 14113 \end{array}$	
		60	1	30×60	48	31.6	9875	14813	15653	30×48	62	30.9	9767	14651	15281	
		100 100 100 80 80 80 80 80	12 stroke 12 ··· 12 ··· 12 ··· 12 ··· 12 ··· 12 ··· 12 ··· 12 ··· 12 ··· 12 ···	$\begin{array}{c} 19 \times 48 \\ 21 \times 48 \\ 23 \times 54 \\ 19 \times 48 \\ 21 \times 48 \\ 23 \times 54 \\ 23 \times 54 \\ 24 \times 54 \end{array}$	$57 \\ 47 \\ 34 \\ 73 \\ 63 \\ 43 \\ 40 \\$	30.4 30.9 31.6 32.6 32.7 33.7 33.8	9721 9881 9989 10424 10456 10652 10684	\$14581 14821 14984 15636 *15685 15978 16026	\$15007 15309 15534 16062 16173 16528 16641	$\begin{array}{c} 19 \times 30 \\ 21 \times 30 \\ 23 \times 36 \\ 19 \times 30 \\ 21 \times 30 \\ 23 \times 36 \\ 24 \times 36 \end{array}$	92 80 52 117 96 66 60	$\begin{array}{c} 29.4 \\ 29.5 \\ 30.5 \\ 31.2 \\ 31.7 \\ 32.5 \\ 32.7 \end{array}$	9472 9553 9744 10094 10240 10384 10465	\$14208 14329 14616 15141 15360 15576 15697	\$14528 14695 15028 15461 15726 15988 16158	
		60 60 60 60 60 60 60		$\begin{array}{c} 23 \times 54 \\ 24 \times 54 \\ 26 \times 54 \\ 27 \times 60 \\ 28 \times 60 \\ 30 \times 60 \end{array}$	35	36.5 37.1 37.2	$\begin{array}{c} 11502 \\ 11537 \\ 11594 \end{array}$	$\begin{array}{r} 17211 \\ 17253 \\ 17306 \\ 17391 \\ 17438 \\ 17531 \end{array}$		$\begin{array}{c} 23 \times 36 \\ 24 \times 36 \\ 26 \times 42 \\ 27 \times 42 \\ 28 \times 48 \\ 30 \times 48 \end{array}$	89 82 61 55 45 39	$\begin{array}{ c c c c } 36.0\\ 36.4 \end{array}$	$\begin{array}{c} 11130\\ 11151\\ 11384\\ 11379\\ 11506\\ 11664\end{array}$	$\begin{array}{r} 16695\\ 16726\\ 17076\\ 17069\\ 17259\\ 17496\end{array}$	$\begin{array}{c} 17107 \\ 17187 \\ 17567 \\ 17605 \\ 17841 \\ \cdot 18126 \end{array}$	
	<u>300</u> н. р	100 100 100 100 100 80 80 80 80	14141414 1414 1414 1414	$\begin{array}{c} 23 \times 54 \\ 24 \times 54 \\ 26 \times 54 \\ 27 \times 60 \\ 28 \times 60 \\ 27 \times 60 \\ 28 \times 60 \\ 30 \times 60 \end{array}$	$ \begin{array}{c c} 50 \\ 43 \\ 36 \\ 33 \\ 46 \\ 43 \\ \end{array} $	26.0 26.0 26.1 26.3 26.3 28.3 28.4 28.4 28.5	8965 9000 8966 8966 9648 9648 9625	\$13448 13448 13500 13449 13449 14472 14438 14574	$\begin{array}{c} 14063\\ 14155\\ 14164\\ 14225\\ 15187\\ 15214 \end{array}$	$\begin{array}{c} 24 \times 36 \\ 26 \times 42 \\ 27 \times 42 \\ 28 \times 48 \\ 27 \times 42 \\ 28 \times 48 \end{array}$	$ \begin{array}{c} 84\\ 77\\ 56\\ 52\\ 42\\ 67\\ 54\\ 47\\ \end{array} $	$\begin{array}{c} 25.3 \\ 25.5 \\ 25.7 \\ 25.9 \\ 27.5 \\ 27.9 \end{array}$	8791 8825 8895 8839 8931 9483 9621 9724	\$13186 13238 13343 13259 13397 14224 14431 14586	\$13598 13699 13834 13795 13979 14760 15013 15216	
	Continued on next page.	100 100 100 100	1 stroke 1 · · · · · · · · · · · · · · · · · · ·		$62 \\ 51 \\ 37$	30.5 31.3	$ \begin{array}{ } 10535 \\ 10640 \\ 10793 \\ 10793 \end{array} $	15959 16190	$\begin{array}{c c} 16447 \\ 16740 \end{array}$	$\begin{array}{c} 21\times 30\\ 23\times 36\end{array}$	86 56	$ \begin{array}{c} 29.4 \\ 30.3 \end{array} $	$ \begin{array}{ } 10200 \\ 10377 \\ 10570 \\ 10605 \end{array} $	\$15300 15565 15855 15907	\$15620 15931 16267 16368	

	STEAM		. 1	LONG	STR	OKE I	ENGINE	S	SHORT STROKE ENGINES						
CT III	51	EAM	ENGINE		WATER		COST PER YEAR OF THE POWER NAMED		ENGINE		WATER		COST PE OF THE POV		
A	B	C	D	E	F	G	Н	I	D	E	F	G	H	I	
NET HORSE POWER	Pressure above At- mosphere in pounds per square inch	Point of Cut-off	Size and Designa- tion	Revolutions per Minute	Per I. II. P. per Hour	TOTAL Per Hour for Net Horse Power named	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)	Size and Designa- tion	Revolutions per Minute	Per I. II. P. per Hour	TOTAL Per Hour for Net Horse Power named	For Coal at \$8.00 per Ton	TOTAL, (Interest on cost of Engine included)	
	Pr me		In. In.		Lbs.	Lbs.			In. In.		Lbs.	Lbs.			
300 н. р.	80 80 80 80	1 stroke 12 ** 12 ** 12 ** 12 **	21×48 23×54 24×54 26×54	$68 \\ 47 \\ 43 \\ 37$	32.4 33.3 33.4 33.4	$11302 \\11483 \\11517 \\11517$	\$16953 17224 17276 17276	\$17441 17774 17891 17931	$21 \times 30 \\ 23 \times 36 \\ 24 \times 36 \\ 26 \times 42$	$104 \\ 72 \\ 66 \\ 48$	$\begin{array}{c} 32.2 \\ 32.4 \\ 32.8 \end{array}$	$11047 \\ 11163 \\ 11303 \\ 11442$	\$16570 16744 16954 17163		
Concluded.	80 60 60 60 60	1-1-22	$\begin{array}{c} 27\times60\\ 26\times54\\ 27\times60\\ 28\times60\\ 30\times60\end{array}$	30 50 41 38 34	33.9 36.2 36.8 36.9 37.1	$11557 \\ 12437 \\ 12545 \\ 12580 \\ 12648 \\ 1264$	17335 18655 18818 18869 18972	$18050 \\ 19310 \\ 19533 \\ 19645 \\ 19812$	$27 \times 42 \\ 26 \times 42 \\ 27 \times 42 \\ 28 \times 48 \\ 30 \times 48 \\ \hline$	$ \begin{array}{r} 44 \\ 67 \\ 60 \\ 49 \\ 42 \\ \end{array} $		$11414 \\ 12244 \\ 12278 \\ 12448 \\ 12586 \\ 1$	$\begin{array}{c} 17121 \\ 18366 \\ 18417 \\ 18672 \\ 18879 \end{array}$	$17657 \\18857 \\18953 \\19254 \\19509$	
350 н. р.	$ \begin{array}{r} 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 80 \end{array} $	1 stroke 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	$\begin{array}{c} 24\times54\\ 26\times54\\ 27\times60\\ 28\times60\\ 30\times60\\ 30\times60\\ 30\times60 \end{array}$	$58 \\ 50 \\ 42 \\ 39 \\ 34 \\ 44$	$25.7 \\ 25.7 \\ 25.9 \\ 25.9 \\ 26.1 \\ 28.2$	10340 10339 10301 10301 10381 11216	\$15510 15509 15452 15452 15571 16824		$24 \times 36 \\ 26 \times 42 \\ 27 \times 42 \\ 28 \times 48 \\ 30 \times 48 \\ 30 \times 48 \\ 30 \times 48 \\$	$90 \\ 66 \\ 60 \\ 49 \\ 43 \\ 55$	$25.0 \\ 25.2 \\ 25.4 \\ 25.6 \\ 25.8 \\ 27.7$	$10174 \\ 10256 \\ 10218 \\ 10298 \\ 10494 \\ 11144$	\$15261 15384 15328 15447 15740 16716	\$15722 15875 15864 16029 16370 17346	
	$ \begin{array}{r} 100 \\ 100 \\ 100 \\ 100 \\ \cdot $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	אריביבי גריביבי גריביביביביביביבי גריביביביביביביביבי גריביביביביביביביביביביביבי גריביביביביביביביביביביביביביביביביביביב	$\begin{array}{c} 19 \times 48 \\ 21 \times 48 \\ 23 \times 54 \\ 24 \times 54 \\ 23 \times 54 \\ 24 \times 54 \\ 26 \times 54 \\ 27 \times 60 \\ 28 \times 60 \\ 27 \times 60 \\ 28 \times 60 \\ 30 \times 60 \end{array}$	$\begin{array}{c} 72 \\ 60 \\ 44 \\ 40 \\ 55 \\ 50 \\ 43 \\ 36 \\ 33 \\ 48 \\ 45 \\ 39 \end{array}$	$\begin{array}{c} 36.2\\ 36.3 \end{array}$	12087 12209 12431 12431 13195 13276 13276 13245 13245 13245 14398 14438 14438	\$18131 18314 18647 18647 19793 19914 19914 19867 19867 21597 21656 22006	\$18557 18802 19197 19262 20343 20529 20569 20582 20643 22312 22432 22846	$\begin{array}{c} 19 \times 30 \\ 21 \times 30 \\ 23 \times 36 \\ 24 \times 36 \\ 23 \times 36 \\ 24 \times 36 \\ 26 \times 42 \\ 27 \times 42 \\ 28 \times 48 \\ 27 \times 42 \\ 28 \times 48 \\ 30 \times 48 \end{array}$	$117 \\ 100 \\ 66 \\ 61 \\ 83 \\ 76 \\ 56 \\ 51 \\ 42 \\ 70 \\ 57 \\ 49$	$\begin{array}{c} 28.5\\ 28.7\\ 29.8\\ 29.9\\ 31.8\\ 32.0\\ 32.4\\ 32.7\\ 32.9\\ 34.9\\ 35.5\\ 36.0\\ \end{array}$	$\begin{array}{c} 11730\\ 11812\\ 12130\\ 12163\\ 12942\\ 13023\\ 13186\\ 13155\\ 13236\\ 14040\\ 14201\\ 14483\\ \end{array}$	\$17595 17718 18195 18244 19413 19534 19779 19733 19853 21060 21302 21725	\$17915 18084 18607 18705 19825 19995 20270 20269 20435 21596 21884 22355	

Explanation of Diagrams.

IAGRAM No. 1 is intended to show, by inspection, the number of pounds of water required per hour for one Indicated Horse Power, at different steam pressures and points of cut-off.

In this Diagram the vertical lines drawn through .0, .20, .30, etc., show the proportion of stroke at which it is assumed that the steam is cut-off, in various cases—the figures expressing decimally that proportion.

The horizontal lines drawn through 70, 60, 50, etc., show the number of pounds of water required per hour for one Indicated Horse Power.

The curved lines A, B, C, D and E refer respectively to the steam pressures named :

The curve A being the line for pressure of 25 lbs.

66	В	66	66	66	40 "
"	С	"	"	"	60 "
"	D	"	"	"	80 "
"	E	"	"	"	100 "

To find from Diagram No. 1 the number of pounds of water per Indicated Horse Power per hour at a pressure of steam and proportion of cut-off named, suppose the pressure to be 60 lbs. and proportion of cut-off .30:

Find the intersection of the vertical line passing through .30 with the curved line C representing 60 fbs. steam pressure. It will be seen that a horizontal line drawn through this intersecting point will pass through 41, in the vertical line showing pounds of water, showing that, for a steam pressure of 60 fbs., with proportion of cut-off .30, the pounds of water per Indicated Horse Power per hour is 41.

It will be seen, on examination, that the point of cut-off, most economical in water, varies with the pressure of steam.

When the cylinder exceeds one cubic foot capacity, the pounds of water will be somewhat less than is shown by the Diagram.

The lowest point of each curve shows the least number of pounds of water and the most economical point of cut-off for each steam pressure.

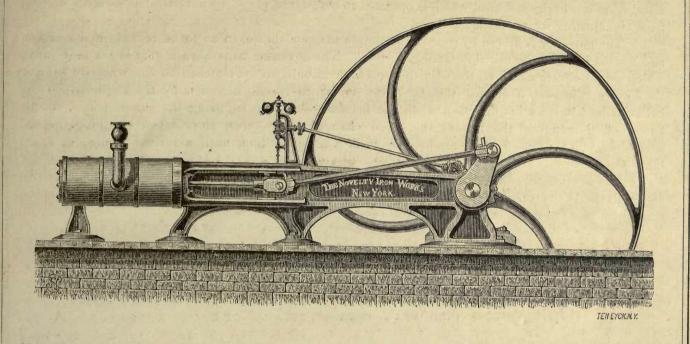
The curves A, B, C, D and E have been obtained from a large number of experiments made with a small engine, the experiments with each pressure furnishing a series of points through which a curve was drawn.

In Diagram No. 2 the curves D and F are presented to show the difference in pounds of water when the cylinder is less than one cubic foot capacity, and when the cylinder is greater than ten cubic feet capacity; a steam pressure of 80 lbs. being used in both cases. The curves H and G are presented to show the number of pounds of water which would be required by calculation according to Mariotte's law and the well-known tables of specific volumes. Curve H being the theoretical curve where there are no clearances and the curve G the corresponding curve when the capacity of clearances and ports equals one-twentieth of the piston development.

Explanation of Diagrams.

There are four conditions which influence the economy of a non-condensing steam engine, viz: 1st—The steam pressure; 2d—The amount of expansion; 3d—The speed of revolution, and 4th—The size of the cylinder. The relative and actual value of each of these has been determined by careful experiment. By combining together the facts thus obtained, the cost of the Indicated Horse Power has been ascertained in pounds of water per hour for any desired steam pressure, point of cut-off, speed of revolution or size of engine. Such results, for the regular sizes of the engines manufactured at The Novelty Iron Works, are presented in the tables on page 7 et scq., in columns F and F, headed "Water per Indicated Horse Power per hour." The tables are particularly useful in showing the exact value of several of the methods of producing economy of steam.

The economy, due to an increase in the size of the engine, is shown in the tables by comparing different horse powers, produced under like conditions, and necessarily, therefore, in different sized engines. It will be found, however, by selecting any *particular* horse power, that the *highest steam pressures* and *revolutions* and *shortest points of cut-off* mentioned are those which show the *greatest ceonomy* of steam. When these three conditions are all favorable, at the same time, the maximum economy is obtained, but when one or more only is favorable, the results are so modified as often to appear contradictory. For instance, the short stroke engines are, in all cases, a little more economical than the corresponding long strokes, and the small engines of each class are more economical than the large ones, in all cases where the steam pressures, points of cut-off and power developed are the same; for, although the smaller engine, at the same speed, would be less economical, at the higher speeds, necessary to produce the same power, the gain, due to the high speed, overbalances the loss due to the smaller size of cylinder, as is shown all through the tables.


Selecting for more particular comparison, 60 Horse Power, on page 12, we find that using a steam pressure of 60 lbs. cut-off at *one-quarter* of the stroke, in a 17×42 engine, running 49 revolutions, the cost of the Indicated Horse Power is 33.9 lbs. of water per hour; while, by using 100 lbs: steam pressure, cut off at *one-half* of the stroke, in a 10×24 engine, running 94 revolutions, the cost is only 31.6 lbs. of water per hour. So likewise, the same power can be obtained in a 9×24 engine, at 102 revolutions, using 100 lbs. steam pressure, cut off at *three-quarters* of the stroke, more economically than it can in a 14×36 engine at 55 revolutions, using 60 lbs. steam pressure, cut off at *one-half* of the stroke. In these cases, the higher steam pressure and revolutions overbalance greatly the losses due to the less expansion and smaller engine.

J and K (No. 3) are Indicator Diagrams, which are intended to show the comparative value of regulating speed by the throttle or by the cut-off. The diagrams are of the same area and were taken from the same engine. The pressure in the steam pipe was 80 fbs. above the atmosphere, in both cases.

Diagram J was taken with the throttle partially closed and the steam cut off in the cylinder by the lap of the main valve, at seven-eighths of the stroke.

Diagram K was taken with the steam cut off at one-fourth of the stroke, by an independent valve. It has been usual to compare such diagrams by assuming that there is used, in each case, only a cylinder full of steam of the terminal pressure. This assumption has been found to be incorrect in practice. We may, however, compare the two systems of working by referring to the curves on Diagram No. 1. The initial pressure of Indicator Diagram J is 53 fbs., and as the point of cut-off is seven-eighths of the stroke, by referring to No. 1 we find, at the point a, that an engine, working under these conditions, requires 56 fbs. of water per indicated horse power per hour. The initial pressure of diagram K is 80 fbs., and the point of cut-off being one-fourth of the stroke, we find at b, in like manner as before, that the water required is only 35 fbs. per hour.

Non-Condensing Stationary Steam Engine.

HE engraving represents one of the Non-Condensing Stationary Steam Engines built at The Novelty Iron Works, New York.

The bed-plate of the engine is of the style introduced many years ago by The Novelty Iron Works, and has since been extensively copied by other manufacturers. It may be described as a strong cast-iron box, one end of which is so constructed as to form a cylinder head and the other a pillow block for the main shaft. The main slides also form part of the same casting as do also the strong legs and broad feet upon which the frame is supported. This bed-plate has the advantages that the metal is disposed directly in the line of the strains, and neither the cylinder, main slides or pillow block can work loose or get out of proper adjustment. The legs upon which the frame rests are put under the slides and under the shaft, which is an additional security against any springing of the frame from the oblique strains brought to bear at these points by the connecting rod and crank. The cylinder being attached at only one end to the bed-plate is free to expand when heated without any alteration of shape—the outer end simply sliding over a small stationary standard which carries part of the weight.

The steam is admitted to and from the cylinder by a plain slide valve, so arranged that the cylinder ports are very short and direct, and the amount of steam required to fill the clearance and port is much less than in any other arrangement in use.

Non-Condensing Stationary Steam Engine.

The cut-off consists of two plates sliding on the back of the main valve and operated by a separate eccentric. This cut-off is either set at a fixed point, in the usual way, or made so that it can be adjusted by hand, from zero to seven-eighths stroke, by simply turning the cut-off valve stem: Preferably, however, the adjustment is made by the governor through a simple arrangement which we will try and make understood without illustrations. The cut-off is varied by drawing together or spreading apart the cut-off plates. To accomplish this by the governor, the plates are operated by separate rods which pass outside the chest and connect to the ends of a small double-ended vertical lever, the center of which receives motion from the cut-off eccentric. The double-ended lever has attached to it a horizontal arm, which is operated to adjust the plates by a vertical movement derived from an adjusting screw on the governor.

The governor is driven by gear in the simple manner shown, so as to be reliable in its action, and is what is ordinarily called a "mill governor." The governor balls have a very slight movement, which simply causes a disk on the adjusting screw mentioned to be clutched to the wheels operating the governor in such a manner that the screw is turned in one direction by the engine when the balls rise, and in the other direction when the balls fall—thereby adjusting the cut-off plates, by the power of the engine, the instant the speed changes. The screw stops when the proper speed is restored, and the cut-off plates are held by it, in a fixed position, until a further change of speed takes place.

The advantages of this form of governor cut-off are, that it is simple in construction, positive and reliable in its operation, and, unlike any common governor, gives exactly the same speed throughout the full range of power and steam pressure.

Sizes of Engines Recommended for Given Powers.

HE tables on page 7 et seq., show conclusively that any particular horse power can be obtained in a variety of ways in either of a large number of engines of different sizes. All the cases are entirely practical if the engines are especially designed to operate under the conditions stated, but there are few instances in which it would be desirable to use the extremes mentioned. The proper size of an engine, and the conditions under which it is to be run, must be determined by the requirements of each particular case.

One great difficulty in fixing the proper size of an engine is to know what power is actually required by the purchaser. Too often this is underrated, whence for safety manufacturers have been in the habit of furnishing an engine large enough for all contingencies, and therefore, in many cases, too large to do the work economically. We believe that, with the complete guide as to power furnished by our tables, it is safe to select engines properly proportioned for the work they are expected to perform. For ordinary practice we recommend that the selection be made by the following table:

TABLE

SHOWING

RECOMMENDED SIZES OF ENGINES FOR GIVEN HORSE POWERS.

SIZES OF LONG STROKE ENGINES		NET HORSE	SIZES OF SHORT STROKE ENGL	SIZES OF LONG STROKE ENGINES	NET HORSE	SIZES OF SHORT STROKE ENGINES	
DIAMETER	STROKE	POWER	DIAMETER STRO	ke Diameter Stroke	POWER	DIAMETER	STROKE
Inches	Inches		Inches Incl	es Inches Inches		Inches	Inches
5	×12	5	5×9	16 imes 42	90	16×	24
6 :	×16	10	6×9	17×42	1.00	17×	30
7:	× 20	15	7×12	19×48	125	19×	30
8 :	×20	20	8×12	21×48	150	21×	30
9 :	×24	25	9×15	23×54	175	$23 \times$	36
10:	×24	30	10×15	24×54	200	$24 \times$	36
- 11 :	× 30	40	11×18	26×54	225	$26 \times$	42
12:	× 30	50	12×18	27×60	250	27×	42
13	× 36	60	13×21	28×60	275	$28 \times$	48
14×36		70	14×21	30×60	300	30×	48
15 :	×36	80	15×24				

28 Sizes of Engines Recommended for Given Powers.

The engines in the foregoing table are of sufficient size to furnish the net horse powers named when using 80 lbs. of steam, cut off at one-fourth of the stroke; and the same power may be obtained in the same engine, with greater economy, by increasing the steam pressure and shortening the point of cut-off, and with less economy by reducing the steam pressure and following farther in the stroke. In cases when there is any uncertainty as to the amount of power that will be required, or when it is desired to have an engine that will do its work with very little attention, it is best to select for the given power an engine one size larger than is set opposite that power in the above table.

Boilers.

HE tables on page 7, et seq., giving dimensions, &c., of the engines which will furnish a desired horse power, state in columns G and G the number of pounds of water required to be evaporated to produce that horse power. That evaporation can be provided by boilers of various kinds and proportion of parts. Local and other considerations often decide the kind of boiler. In order, therefore, to afford the opportunity of selecting the boiler that shall be of adequate evaporative power, and be of the kind preferred, a table is given at the close of this article, of the four kinds of boilers most generally in use; giving, for various dimensions of each kind, the evaporative capacity of each boiler.

In this table the proportion of parts are those most generally in use, which are not always those that will give the greatest evaporation per pound of coal. Thus a cylinder boiler 18 inches in diameter and 18 feet long will evaporate about 7 fbs. of water per pound of coal, but if made 36 feet long it will evaporate fully 8 fbs. per pound of coal.

The amount of water evaporated per pound of coal under favorable conditions by each of the three kinds of boilers when proportioned as in our table, has been ascertained by careful experiment and is given below:

NAME OF BOILER.	Water evaporated per pound of Coal, at 80 lbs. pressure, from temperature of 160°. Lbs.	RELATIVE EVAPORATION.
Plain Cylinder Boiler, Cylinder Flue " " Tubular "	6.91 7.91 9.15	$1.00 \\ 1.14 \\ 1.32$

The performance of a locomotive or marine tubular boiler is substantially the same as that of the cylinder tubular, when similarly proportioned.

In preparing the table of evaporative capacities of boilers, an allowance of over 25 per cent. has been made to provide for differences of management, draft and fuel which may be met with.

The headings of the columns in the table show what are the particulars stated.

It will be seen that columns 10 and 11 show the number of pounds of water evaporated, in one case from 60° temperature, and in the other from 160°.


In cases where a single boiler of dimensions stated will not furnish the evaporation required, modifications in number and length will be necessary to produce the required evaporation.

Boilers.

For example, if a person select for 100 horse power, an engine 17 inches diameter, 42 inches stroke, to run at 57 revolutions per minute, and use 80 pounds of steam cut off at $\frac{1}{4}$, the total quantity of water required per hour would equal 3,488 lbs. No single boiler in the list will evaporate this quantity, but it may be obtained by using

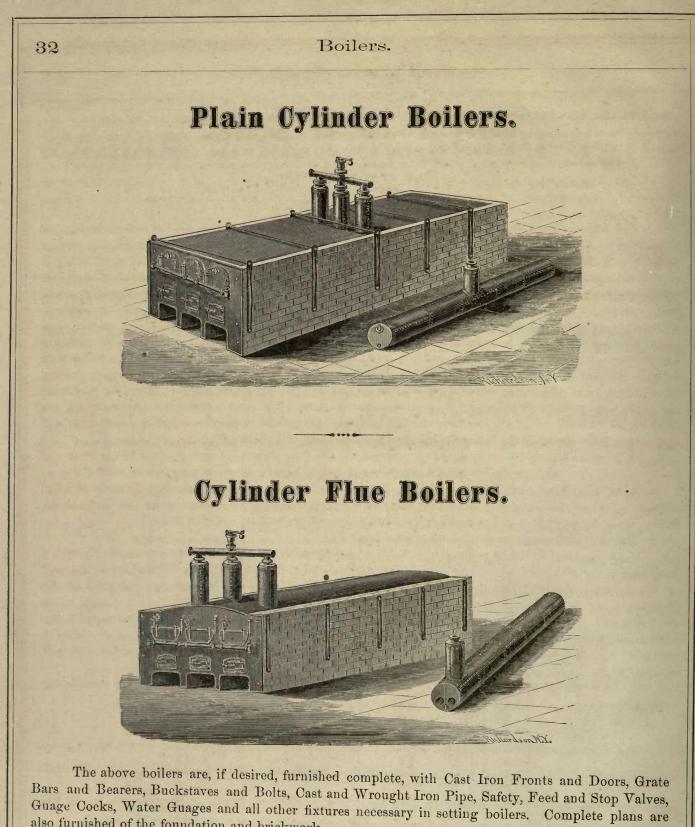
2 Cylinder	Tubular	Boilers	of 55	inches	diameter,	or
3 "	"	66	47	66	"	"
2 "	Flue	"	56	"	"	"
3 • "	"	"	44	"	"	"
4 Plain Cy	linder		36	"	"	. "
5 "	"	"	33	44	"	

As a general rule it is true economy to select a boiler a little larger than is required. The variations from the table in either direction should not amount to more than 10 per cent. The amount of water evaporated by either of the plain cylinder boilers may be varied, within large limits, by altering the length of the boiler. If the grate surface and height of bridge walls be proportionately altered the economy will not be sensibly influenced. The cylinder flue and cylinder tubular boilers may be shortened to reduce the heating surface, and will evaporate a quantity of water fully proportioned to the reduced length, but at a small sacrifice of economy.

TABLES

SHOWING THE PRINCIPAL DIMENSIONS OF THE

High Pressure Steam Boilers


BUILT AT

THE NOVELTY IRON WORKS, NEW YORK,

AND THE

Water Evaporated per Hour by the same from the Temperatures of 60° and 160° Fahrenheit.

KIND	DIMENSIONS							WATER Evaporated per Hour at		
OF BOILER	SHELL O	OF BOILER Length	FLUES NUMBER	OR TUBES Diameter	STEAM Diameter	HEIGHT	GRATE SURFACE	HEATING SURFACE	80 lbs. Pre Temper 60°	ssure from ature of 160°
PLAIN CYLINDER	Inches 18 21 24	Feet 18.0 21.0 24.0		Inches	Inches 12 14 15	Inches 24 28 30	Square Feet 3.8 5.3 6.8	Square Feet 42 58 75	Lbs. 202 280 363	Lbs. 221 306 395
BOILERS.	$ \begin{array}{r} 24 \\ 27 \\ 30 \\ 33 \\ 36 \end{array} $	$24.0 \\ 27.0 \\ 30.0 \\ 33.0 \\ 36.0$			$ \begin{array}{c} 16 \\ 16 \\ 18 \\ 20 \\ 20 \end{array} $	$32 \\ 36 \\ 36 \\ 40$	$ \begin{array}{c c} 8.6 \\ 10.7 \\ 13.0 \\ 15.4 \end{array} $	$95 \\ 118 \\ 143 \\ 170$	$ \begin{array}{r} 458 \\ 569 \\ 689 \\ 819 \end{array} $	$501 \\ 622 \\ 754 \\ 896$
CYLINDER FLUE BOILERS.	$ \begin{array}{ c c c c c } 24 \\ 30 \\ 36 \\ 38 \\ 40 \\ 42 \\ 44 \\ 48 \\ 52 \\ 56 \\ 60 \\ 66 \\ 66 \\ \end{array} $	$\begin{array}{r} 8.5\\ 13.0\\ 16.0\\ 18.0\\ 20.5\\ 22.0\\ 23.0\\ 24.5\\ 26.5\\ 29.0\\ 31.5\\ 36.0\\ \end{array}$	$ \begin{array}{c c} 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ $	$\begin{array}{c} 6.5\\ 9.0\\ 11.0\\ 12.5\\ 13.5\\ 14.5\\ 15.0\\ 16.0\\ 17.5\\ 19.0\\ 20.5\\ 23.0\\ \end{array}$	12 15 18 22 24 26 26 26 27 28 30 32 36	$\begin{array}{r} 24\\ 30\\ 30\\ 36\\ 42\\ 42\\ 42\\ 42\\ 48\\ 48\\ 54\\ 54\\ 54\\ 60\\ \end{array}$	$\begin{array}{c} 3.3\\ 6.6\\ 9.9\\ 12.2\\ 14.8\\ 16.9\\ 18.4\\ 21.1\\ 24.9\\ 29.5\\ 34.5\\ 43.8\end{array}$	$\begin{array}{c} 56\\112\\168\\207\\252\\288\\313\\359\\423\\501\\586\\745\end{array}$	$\begin{array}{c} 200\\ 400\\ 600\\ 739\\ 900\\ 1028\\ 1117\\ 1282\\ 1500\\ 1789\\ 2291\\ 2660\\ \end{array}$	$\begin{array}{c} 219\\ 438\\ 657\\ 809\\ 985\\ 1126\\ 1224\\ 1404\\ 1654\\ 1959\\ 2092\\ 2913 \end{array}$
CYLINDER TUBULAR BOILERS.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 6.5 \\ 7.0 \\ 8.5 \\ 9.0 \\ 11.0 \\ 12.5 \\ 14.0 \\ 14.5 \\ 15.0 \\ 15.0 \end{array}$	$ \begin{array}{c} 18\\22\\34\\42\\40\\34\\34\\42\\52\\60\\\end{array} $	$\begin{array}{c} 2.0\\ 2.5\\ 2.5\\ 2.5\\ 3.0\\ 3.5\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$24 \\ 30 \\ 30 \\ 36 \\ 42 \\ 42 \\ 48 \\ 54 \\ 54 \\ 60$	$\begin{array}{c} 2.9 \\ 5.6 \\ 8.2 \\ 10.5 \\ 14.7 \\ 16.6 \\ 21.1 \\ 26.5 \\ 33.2 \\ 38.3 \end{array}$	$\begin{array}{r} 80\\ 157\\ 229\\ 294\\ 409\\ 466\\ 592\\ 742\\ 931\\ 1072\\ \end{array}$	$ 187 \\ 367 \\ 536 \\ 688 \\ 957 \\ 1090 \\ 1385 \\ 1736 \\ 2178 \\ 2508 \\ $	$\begin{array}{r} 205 \\ 402 \\ 586 \\ 753 \\ 1047 \\ 1193 \\ 1516 \\ 1900 \\ 2383 \\ 2744 \end{array}$
LOCOMOTIVE BOILERS.							$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} 85\\ 165\\ 245\\ 320\\ 400\\ 480\\ 630\\ 775\end{array}$	$ \begin{array}{r} 199\\386\\573\\749\\936\\1123\\1474\\1814\end{array} $	$\begin{array}{r} 218 \\ 422 \\ 627 \\ 819 \\ 1024 \\ 1229 \\ 1613 \\ 1984 \end{array}$

also furnished of the foundation and brickwork.

For sizes and evaporating power of the above boilers, see previous page.

See also the article headed "Boilers," on page 29.

Horse Power of Boilers.

(The following remarks on Horse Power of Boilers, Boiler Explosions, &c., are from a paper read before the Connecticut Academy of Sciences, by W. P. TROWBRIDGE.)

The term "Horse Power," in its application to boilers, has heretofore been no less indefinite than the same term in its application to the engine. It has been customary to fix upon some unit of heating surface as the unit of the horse power of the boiler. The boiler is supposed to furnish a definite amount of steam at the working pressure employed, this amount depending on the heating surface; and the utilization of all this steam, under the most favorable conditions, would thus furnish, through the medium of an engine, a certain rate of work, or a certain Horse Power. An inspection of the preceding tables of engines is sufficient, however, to show that the same quantity of water evaporated by a boiler will effect different quantities of work in the same engine, or in different engines, under various conditions of working ; these conditions being the pressure, the degree of expansion, and the speed of the piston. The rate of work of the boiler thus depends entirely on the engine; and the term "Horse Power," as usually applied, has no very definite signification. The effective power of a given boiler-apparatus, including the chimney, or power for producing the draft, may, perhaps, be estimated by supposing all the steam which such a boiler can produce at a given pressure, to be utilized under the most favorable circumstances conceivable in practice. But it is still apparent that the power of the boiler is dependent upon the most favorable utilization of the steam.

A more definite and positive mode of determining the true theoretical or disposable Horse Power of boilers may be derived from the investigations of Prof. Zeuner, Director of the Mining School at Freiberg, in his work on "The Mechanical Theory of Heat." This new method gives the maximum disposable rate of work, without reference to the engine; and hence, when an engine is using all the steam a boiler can produce, the boiler Horse Power may furnish a standard for the economy of the engine.

The method depends on the following considerations:

If we suppose the whole work of the boiler to be expended in producing a flow of steam through a small orifice, the velocity of the issuing steam is independent of the diameter of the orifice, and dependent only on the pressure; but the quantity of steam which flows through in pounds, will, of course, depend on the diameter of the orifice; and if the size of the orifice be just sufficient to allow all the steam to escape which the boiler can produce, the quantity which flows through in pounds, in each second, will be just equal to the amount which the boiler will produce in a second. The work of the boiler each second will be expended in imparting to this quantity of water, or steam, the velocity with which it issues from the orifice, and will be equal to the LIVING FORCE of the mass in motion with the issuing velocity.

If M be the quantity of water evaporated in pounds, V the issuing velocity in feet per second, this living force will be

$$M \frac{V^2}{2 g.}$$

The work expended to produce the velocity V, in the mass M, may be represented by a constant force acting through a given height, P h = $M \frac{V^2}{2 g}$; P. h. being represented in foot pounds. For the work performed by the boiler in one minute we have $60 \times P$. h. = $60 \text{ M} \cdot \frac{V^2}{2 \text{ g}}$ and if we represent by M¹ the weight of water, in pounds, evaporated and forced out of the orifice in one minute, we have $M^1 = 60$ M. 60 and

), P. h. =
$$M^{1} \frac{1}{2 \text{ g.}}$$

If we suppose h to be one foot, and divide by 33.000, we have $\frac{60. P}{33.000} = \frac{M^1 V^2}{2.g. 33.000} = N$, = the number of horse power of the boiler.

Horse Powers of Boilers.

Prof. Zeuner furnishes a table of values of the velocity ∇ , in metres per second, for different pressures, from 2 atmospheres, to 14 atmospheres, which is given below.

The velocities V, for different pressures, taken from Zeuner's table, are as follows :

For	2	atmospheres	$\dots \nabla = 481.71 \text{ metres}$	per second.
	3			"
	4	"		"
	5	"	734.32 "	"
	6	"		
	7	"	807.57 "	"
	8	"		"
	9	"		"
1	0	"		"
1	1	"		"
1	2	"		"
1	.3	"		"
1	4	"		"

From this table the corresponding values of $\frac{\nabla^2}{2. \text{ g. } 33.000}$ in English units, have been deduced, and we have the very simple results in the following table for finding the total theoretical horse power of any boiler.

Pressure in Boiler, in Lbs. per Square Inch.	Horse Power = the numbers of this table multiplied by M ¹ water evaporated per minute, in lbs.	Pressure in Boiler, in Lbs. per Square Inch.	Horse Power = the numbers of this table multiplied by M ¹ water evaporated per minute.
14.7	$0.0 \times M^{1}$	110	$3.43 \times M^{1}$
20	0.5	115	3.52
.25	0.9	120	3.59
30	1.60	125	3.65
35	1.45	130	3.72
40	1.65	135	3.79
45	1.85	140	3.85
50	2.05	145	3.92
55	2.23	150	3.97
60	2.35	155	4.02
65	2.52	160	4.06
70	2.65	165	4.12
75	2.82	170	4.18
80	2.87	175	4.23
85	3.00	180	4.27
90	3.09	185	4.32
95	3.19	190	4.36
100	3.28	195	4.39
105	$3.37 \times M^{1}$	200	$4.40 \times M^{1}$

TABLE FOR FINDING THE HORSE POWERS OF BOILERS.

To use this table, find the weight of water evaporated in each *minute* by the boiler, in pounds, and multiply the number expressing this weight by the number in the table corresponding to the pressure in the boiler; the product will be the total disposable power of the boiler.

Horse Powers of Boilers.

This new expression for the disposable power of boilers was deduced incidentally by Prof. Zeuner as the disposable power of the steam after it enters the cylinder of the engine, and he found its equivalent in an expression previously determined for the living force of the steam issuing at a high velocity into the atmosphere through a small orifice.

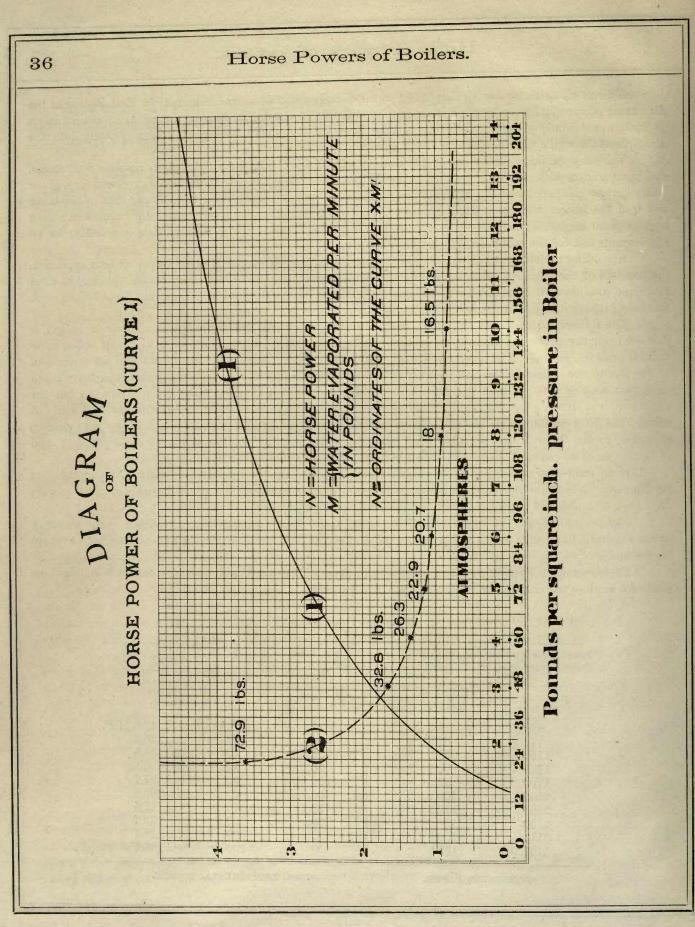
The value of this rule consists in the facility with which it may be employed, its absolute correctness, and the readiness with which the performance of an engine which utilizes all the steam produced by a given boiler may be compared with a perfect working engine, the standard being from 50 to 60 per cent. of the horse power of the boiler. A higher efficiency than 60 per cent. cannot probably be looked for in practice with a high-pressure engine, as at present constructed. A perfect working engine may also, conversely, be an approximate test for the economic performance of a given boiler.

According to determinations of Prof. Zeuner, based exclusively on the dynamic theory of heat applied to the problem of the efficiency of ordinary high-pressure engines, the utmost efficiency possible, under the most favorable conditions of expansion, is from 50 to 60 per cent. of this theoretical power; the 40 to 50 per cent. loss being inherent in the nature of the engine, which no improvement can greatly alter.

The following test of this theoretical law, and of the new rule for the disposable power of boilers, is derived from the preceding tables of engines. Taking, for comparison, engines working under steam at 80 pounds pressure, cutting off at $\frac{1}{4}$ of the stroke, and making 60 revolutions a minute, we find for engines of 10, 20, 30, 40, &c., horse powers the quantity of water required per minute from the tables, which are based on actual experiments. These quantities are introduced in the following table in the first column; the second column showing the disposable horse powers of the boilers which produce exactly those quantities of steam; the third column shows the actual horse powers corresponding for the steam which enters the cylinder, according to Mr. Emery's experiments. The efficiency of the smaller engines is placed at 53 per cent., and of the larger at 60 per cent., the intermediate powers ranging from 53 to 60.

If in each case we have a boiler which will evaporate just the quantity of water given in the first column, we may find the theoretical disposable power of these boilers by the preceding rule of horse powers of boilers, which should correspond with the results of experiments.

The results are given in column four of the table, showing a remarkable coincidence. The accuracy of the experimental results in the steam engine tables, and the correctness of the theoretical laws, thus confirm each other.


These examples have been taken at random. A more extended and thorough comparison might be made for engines working under various degrees of expansion.

Pounds of water which passes through cylinder of Engine = Pounds of water evaporated by Boiler per hour.	of Steam at 80 lbs. pressure. N = horse power from Table = Disposable	Actual H. Power by in- dicator, from Tables of Engines Using amounts of water in first column with 80 lbs. p. cutting off at $\frac{1}{2}$.	disposable power of the same steam after it enters the cylinder.
400	19.3 H. P.	10	=10 Div'd by ,53= 19.0 H.P.
771	37.3 "	20	20 " $,53 = 36.4$
1159	56.0 "	30	30 " ,53= 54.5
1460	70.1 "	40	40 " $,53 = 70.8$
1790	86.5 "	50	50 ", $56 = 87.7$
2136	103.2 "	60	60 " ,56=102.5
	119.3 "	70	70 " ,56=117.4
2469	110.0	80	80 " ,56=133.7
2790	104.0		
3113	150.5 "	90	90 ", $56=148.7$
3424	165.5 "	100	100 " ,60=166.6

TABLE OF COMPARISON.

FROM BOILER POWER.

FROM EXPERIMENTAL ENGINE.

Horse Powers of Boilers.

EXPLANATION OF THE DIAGRAM OF HORSE POWER OF BOILERS.

This diagram is constructed from the table for finding the horse powers of boilers, or from the formula $N = \frac{V^{2}}{2.g. 33,000}$ the velocities being taken from Zeuner's table and reduced to English units.

The formula shows that the curve which indicates the powers of the same boiler with increasing pressures of steam, is a common parabola. In the diagram the same boiler may be supposed to be used with steam pressure increased according to the numbers along the line of abscissas; and supposing the same quantity of steam M^1 to be evaporated each minute, which will be approximately true, the ordinates of the curve show the increase of disposable power of the boiler, as the pressure is increased.

The curve of boiler horse-power, curve (1), supposes the evaporation constant, under different pressures, and exhibits the law of increase of disposal power as the pressure rises. An increase of power would also attend increased evaporation.

The quantity of water or steam in pounds required for a theoretically perfect engine, that is, an engine which, for instance, would utilize *all* the disposable work of a boiler, is given by Prof. Zeuner in the following table, taken from his work, the numbers being reduced to English units.

QUANTITY OF VAPOR EXPRESSED IN POUNDS REQUIRED IN A THEORETICALLY PERFECT ENGINE TO PRODUCE ONE HORSE Power per Hour.

Tension of the Vapor in Atmosphere.	Pounds of Water for One horse power per hour.
$1\frac{1}{2}$ 3 4	$72.9 \\ 32.8 \\ 26.3$
5	22.9 20.7
8 10	18.0 16.5
10	10.0

Putting these numbers in the form of a curve, they are represented by curve (2) of the preceding diagram. This curve exhibits to the eye the rate of diminution of the quantity of steam required in a *perfect* engine to produce one horse power per hour under the different pressures given on the line of abscissas.

The lower curve (2) may be taken to represent, in a general way, the diminution of the size of the boiler required for a *perfect* engine, as the pressure rises. And the two curves taken together show the fallacy of estimating the horse power of the boiler by heating surface alone, or without reference to quantity of water evaporated, pressure, &c.

The efficiency of real engines may be found, in a general way, from curve (2), or by the table from which it is derived, by taking double the quantities of water as the amount required for any given pressure, when the steam is utilized under the most favorable conditions.

THE EVAPORATIVE POWER OF BOILERS.

The quantity of water evaporated by a given boiler in an hour, depends not only on the heating-surface and the proportions of the grate-surface, heating-surface, and draft area, but also upon the quantity of air which passes through the furnace in a given time. A locomotive boiler, for instance, burning ten pounds of coal on each square foot of grate-surface in an hour, will evaporate about nine pounds of water for each pound of coal, under the most favorable conditions. The same boiler, running at high speed and burning seventyfive pounds of coal on each square foot of grate-surface, will evaporate seven pounds of water for each pound of coal burned. The total quantity evaporated in an hour in the first case will be $10 \times 9=90$ pounds of water for each square foot of grate surface; and in the second case, the same boiler, under a forced draft, will evaporate $75 \times 7=525$ of water in one hour. Here there is a vast difference in the total amount of evapora-

tion; but each pound of coal, under the forced draft, produces less steam, in the proportion of 7 to 9 pounds; so that while the economy of fuel in one sense is less, the total amount of work done by the same boiler in the same time is very much greater with the higher rate of combustion.

The same differences occur in stationary boilers having the same general proportions, but different heights of chimneys. The chimney is the machine or agency which produces the flow of air through the furnace, and which, by its height, determines the quantity which passes through in a given time. It is, therefore, the principal element in the determination of the total evaporation of a boiler in a given time.

There are probably no phenomena connected with the generation and utilization of steam so imperfectly defined, either theoretically or practically, at present, as those connected with the quantity of air which passes through the furnaces of boilers, under varying conditions of draft, and the *temperatures* of the furnace and flues which depend on this quantity. And hence, for greatly varying heights of chimneys, the quantity of coal consumed per hour can only be determined in advance by the most uncertain estimates. It has been generally assumed from the experiments of Prof. Johnston, Mr. Hunt, and others, that in ordinary practice double the amount of air necessary for complete combustion passes through the furnace. It is contended, on the other hand, by Rankine and Clarke, that for high rates of combustion this law is not true; and experiments made at the Paris Exposition, in which the quantity of air was *measured*, in different cases, show that in ordinary practice this law of double the quantity is by no means to be relied on. Hence all attempts to reduce the laws of evaporation of boilers to fixed and definite rules of practice for all conditions of draft, have thus far been based on assumptions which have no definite and precise foundation in practice.

For stationary and steamship boilers the chimneys are generally of a uniform height, arising from the nature of the structures with which they are connected, and hence the approximate amount of combustion on a square foot of grate-surface, and the resulting evaporation of water per hour, are pretty well known from practical observations. The tables of evaporation given on page 31 have been determined from such considerations, and are not intended to represent what the boilers there given might accomplish, under various rates of combustion arising from greatly varying heights of chimneys.

Experiments are greatly needed to determine the rates of combustion for varying dimensions of chimneys, as well as the quantities of air actually drawn through the furnaces under these varying rates of combustion. Such determinations are necessary in order to establish the corresponding temperatures of the furnaces and the gaseous products of combustion, and from these, the laws of transfer of heat by radiation and contact in the furnaces and flues respectively.

Boiler Explosions.

The risk of life and property involved in the use of the Steam Boiler is still, as it has always been, a source of constant anxiety to the Engineer and to the public. Explosions continually take place under circumstances of the utmost apparent security. Occurring without warning, and occupying but an instant of time, it is generally difficult, if not impossible, except in rare instances, to ascertain with certainty their true cause. There is seldom a unanimous opinion on the part of experts who examine into the causes after the event.

The following remarks on the subject are intended, therefore, to point out, as far as possible, some of the obvious sources of danger, which are clearly indicated by the developments of the Dynamic theory of heat, and confirmed by actual experiments. The results will serve, perhaps, to indicate more clearly the direction in which further experiments are needed.

Explosion can occur from two causes only—first, from deficiency of strength in the shell or other parts of a boiler. This deficiency of strength may be an original defect arising in the material or workmanship at the time of construction; or it may be due to deterioration from use, from ordinary wear, or from injuries occurring from mismanagement, want of attention and repairs, etc. Manufacturers and Engineers are supposed to comprehend fully these causes of danger, and ought to be able to avoid them.

The other source of danger arises from an accumulation of pressure within the boiler, to a dangerous degree above that which the structure is designed to resist. This accumulation of pressure may be *gradual*, and due simply to the increase of pressure which attends a continued evaporation when there is not sufficient outlet for the steam constantly formed. This source of danger will first be discussed.

One question to be solved is at what rate, in time, will the pressure in any given boiler in active use increase if there is no outlet for the steam. In other words, how long a time must elapse before the pressure under such circumstances will rise from an ordinary working pressure to a dangerous or prohibited pressure.

This is a practical question, and its solution ought to point out the degree of watchfulness necessary on the part of an engineer. It has been solved in a very thorough and practical manner by Mr. Zeuner, in the work to which reference has been made.

The formula which is given below is Prof. Zeuner's formula derived, not from experiments, but in an incidental manner from a mathematical discussion of the laws of temperature, pressure, and volumes of vapors, based on Regnault's experiments.

Let

- T be the time in minutes which must elapse from the instant that all egress of steam is prevented in a boiler (by the stopping of the engine and closing of the safety-valve) to the instant when a dangerous or bursting pressure must follow in the boiler.
- W Represent the weight of water in the boiler.
 - t. The temperature of the water due to the dangerous pressure.
 - t. The temperature due to the working pressure.

Q The quantity of heat in units of heat transferred to the water per minute.

Then

$$T = \frac{W (t_i - t)}{Q}$$

the mean specific heat of water being taken as unity.

This formula shows that the time, T, is greater the greater the amount of water in the boiler, and it diminishes as Q increases. T is less also as $(t_1 - t)$ is less. At high pressures a greater change of pressure accompanies a small change of $(t_1 - t)$, and T will fluctuate more rapidly at high pressures than at low pressures.

The following examples, as illustrations, will exhibit the applications of the formula :--

EXAMPLE 1.

A Marine Tubular Boiler of the Largest Size.

W = 79,000 lbs. of water.

Suppose the working pressure to be $2\frac{1}{2}$ atmospheres, and the dangerous pressure 4. atmospheres,

$$(t_1 - t) = 29^{\circ}$$
 Fahr.

The boiler contains 5,000 square feet of heating surface, and supposing the evaporation to be 2.5 lbs. per hour for each square foot of heating surface, we have,

Q in pounds of water per minute =
$$\frac{5,000 \times .2.5}{60}$$

And taking as a sufficient approximation 1,000 units of heat as the equivalent of the evaporation of 1 lb. of water, we have,

Q in units of heat =
$$\frac{5,000 \times .2.5 \times 1,000}{60}$$

These numbers introduced into the formula give,

$$T = \frac{79,000 \times 29^{\circ}}{5,000 \times .2.5. \times 1,000} = 11 \text{ minutes.}$$

Hence the steam would reach a dangerous pressure in 11 minutes.

EXAMPLE 2.

A Return Tubular Boiler, containing 3,000 lbs. of water, and having 500 square feet of heating surface, each square foot evaporating, as before, $2\frac{1}{2}$ lbs. of water.

Suppose the ordinary working pressure to be 75 lbs., and the dangerous pressure to be 150 lbs. per square inch.

The formula gives,

T=7 minutes.

EXAMPLE 3.

A Locomotive Boiler, containing 5,000 lbs. of water, and having 11 square feet of grate surface, and burning 100 lbs. of coal on each square foot of grate an hour. Each pound of coal will, under such conditions, evaporate about 7 lbs. of water.

Suppose the working pressure to be 100 lbs., and the dangerous pressure to be 200 lbs. per square inch. The transition from the working to the dangerous pressure will occur in

T=2 minutes.

This example is, of course, an impossible case, because no locomotive standing still can burn 100 lbs. of coal on a square foot of grate in an hour. It illustrates, nevertheless, the degree of danger under circumstances which may occur. For if we suppose this locomotive standing still to burn only 10 lbs. of coal per hour on each square foot of grate, the time T will be increased ten times, and we will have,

T=20 minutes.

EXAMPLE 4.

The Steam Fire Engine. Taking an actual case. The boiler contains 338 pounds of water, and it has 157 square fect of heating surface.

Supposing each square foot of heating surface to generate 1 pound of steam in one hour, the pressure will rise from 100 to 200 pounds in

T=7 minutes.

EXAMPLE 5.

To find in the same boiler how long a time will be required to get up steam. That is to run the pressure from 0 to 100 lbs.

If we suppose only 12 cubic feet of water to be introduced into the boiler at first, we shall have

$$T = \frac{\frac{93 \times 117}{157 \times 1000}}{\frac{60}{60}} = 4.1 \text{ minutes.}$$

This result is realized in practice, and exhibits the truth of the formula.

The formula shows generally that boilers which contain large quantities of water and burn coal slowly, have less rapid fluctuations of pressure. And also that the lowering of the water in the boiler from failure of the feed apparatus, by diminishing W, diminishes also T in the same proportion.

Low water increases the danger of explosions, therefore, not only by exposing plates to overheating, followed by a sudden evolution of steam, but by diminishing the ratio $\frac{W}{Q}$. It is even probable that Q is largely increased in such cases by internal radiation of heat from the plates to the water.

SAFETY VALVES.

It is supposed that a *gradually increasing* pressure can never take place if the safety value is in good working order, and if it have proper proportions. Upon this assumption, universally acquiesced in, when there is no accountable cause, explosions are attributed to the "sticking" of the values, or to "bent value stems," or "inoperative" value springs. As the safety value is the sole reliance in case of neglect or inattention on the part of the engine driver, it is important to examine its mode of working closely.

It is designed on the assumption that it will rise from its seat under the statical pressure in the boiler, when this pressure exceeds the exterior pressure on the valve, and that it will remain off its seat sufficiently far to permit all the steam which the boiler can produce to escape around the edges of the valve.

The problem to be solved is, then, to find first what amount of free orifice is necessary for the flow of steam from a given boiler under a given pressure, and then to ascertain whether ordinary valves will rise far enough to give this amount of free orifice.

The ordinary safety valve, as at present constructed, consists of a disc which closes the outlet of a short pipe leading from the boiler. The area of the disc or diameter of the valve is usually determined from theoretical considerations based on the velocity of the flow, or upon the results of experiments made to ascertain the area of orifice necessary for the flow of all the steam a boiler can produce under a given pressure. The fact is recognized by engineers and constructors, that the real diameters of safety valves must be greater than the theoretical orifices, because common observation shows that the valves do not rise appreciably from their seats; and to make the outlet around the edges of the valve equal in area to the pipe, the valve should rise $\frac{1}{4}$ of its diameter.

The uncertainty begins when it is attempted to fix upon a diameter. The difficulties of the problem become evident in the light of late experiments.

In regard to the area of orifice necessary, this question is solved by Prof. Zeuner in a very simple manner theoretically; the following table gives the results of his determinations reduced to English units.

Let d be the diameter of the orifice in inches, and w the weight of steam which flows through the orifice in a second (equal to the weight of water evaparated in a second) in the problem under consideration; then the diameters d for different pressures are found from the following table.

For	2	atmospheres	$d = 1.72 \sqrt{w}.$	4234 34	For	9 :	atmospheres	d = 1.2	$2\sqrt{v}$.
	3	ũ	$d = 1.51 \sqrt{w}.$	1. B. B. B. B. B.		10	"	d = 1.2	$1\sqrt{w}$.
	4	"	$d=1.41\sqrt{w}.$			11	"	d = 1.1	$9\sqrt{\overline{v}}$.
	5	**	$d=1.35\sqrt{\omega}.$		2.26	12	۰۵ .	d = 1.1	8 10.
	6	66	$d=1.30\sqrt{w}.$	16.50 0.00		13		d = 1.1	
	7	"	$d=1.28\sqrt{w}.$			19			
	8	"	$d = 1.22 \sqrt{w}$.			14	"	d = 1.1	6 1/20.

The following Table gives the results of experiments made at the Novelty Iron Works in New York City, several years before Prof. Zeuner's work was published. These experimental results have never before been published. The observations were made with great care, with a tubular boiler adapted to the experiments.

The first column gives the pressure in pounds per square inch in the boiler, and the second the area of orifice in square inches for each square foot of heating surface of the boiler.

Pressure in the Boiler in pounds above the at- mosphere.	Area of Orifice in square inches for each square foot of heating surface.
$\begin{array}{c} 0.25\\ 0.5\\ 1.\\ 2.\\ 3.\\ 4.\\ 5.\\ 10.\\ 20.\\ 30.\\ 40.\\ 50.\\ \end{array}$	$\begin{array}{c} .022794\\ .021164\\ .018515\\ .014814\\ .012345\\ .010582\\ .009259\\ .005698\\ .003221\\ .002244\\ .001723\\ .001398\\ \end{array}$
60. 70. 80. 90. 100. 150. 200.	$\begin{array}{r} .001176\\ .001015\\ .000892\\ .000796\\ .000719\\ .000481\\ .000364\end{array}$

To compare the results of Zeuner's formula, which is entirely theoretical, with the results of these experiments, we may assume that each square foot of heating surface of a tubular boiler will evaporate 2.5 pounds of water per hour with ordinary chimney draft. Taking a series of boilers of the different heating surfaces named below, the comparison is given for two pressures, 3 and 5 atmospheres.

	3 ATMOSPHERES.		5 ATMOSPHERES.				
HEATING SURFACE, SQUARE FEET.	AREA OF ORIFICE BY EXPERIMENT.	AREA OF ORIFICE BY FORMULA.	HEATING SURFACES IN FEET.	AREA OF ORIFICE BY EXPERIMENT.	AREA OF ORIFICE BY FORMULA.		
	SQUARE INCHES.	SQUARE INCHES.		SQUARE INCHES.	SQUARE INCHES.		
100	.089	.09	100	.12	.12		
200	.180	.19	200	.24	.24		
500	.45	.48	500	.59	.59		
1000	.89	.94	1000	1.20	1.18		
2000	1.78	1.90	2000	2.40	2.37		
5000	4.46	4.75	5000	6.00	5.95		

At five atmospheres pressure the results from the two sources are almost identical, and at 3 atmospheres sufficiently near to make a remarkable coincidence. The formula of Mr. Zeuner is, however, preferable in practice, as it takes account of the *weight of water evaporated*, which depends on the *amount of fuel burned* (*height of chimney*, &c.) and is therefore more comprehensive.

The mode of determining the area of free orifice necessary for the flow of steam may thus be considered theoretically and practically settled.

The next question for consideration is, how High will any safety valve rise under the influence of a given pressure? This question cannot be determined theoretically, except that it has been demonstrated by Zeuner, Weisbach, and others, that as soon as the flow of steam begins the pressure in the plane of the orifice rapidly diminishes, and in fact ceases at a minute distance from the orifice, and is also diminished within the orifice, in the pipe. It has been supposed that the force of the issuing steam striking against the lower face of the valve may act to keep it off its seat.

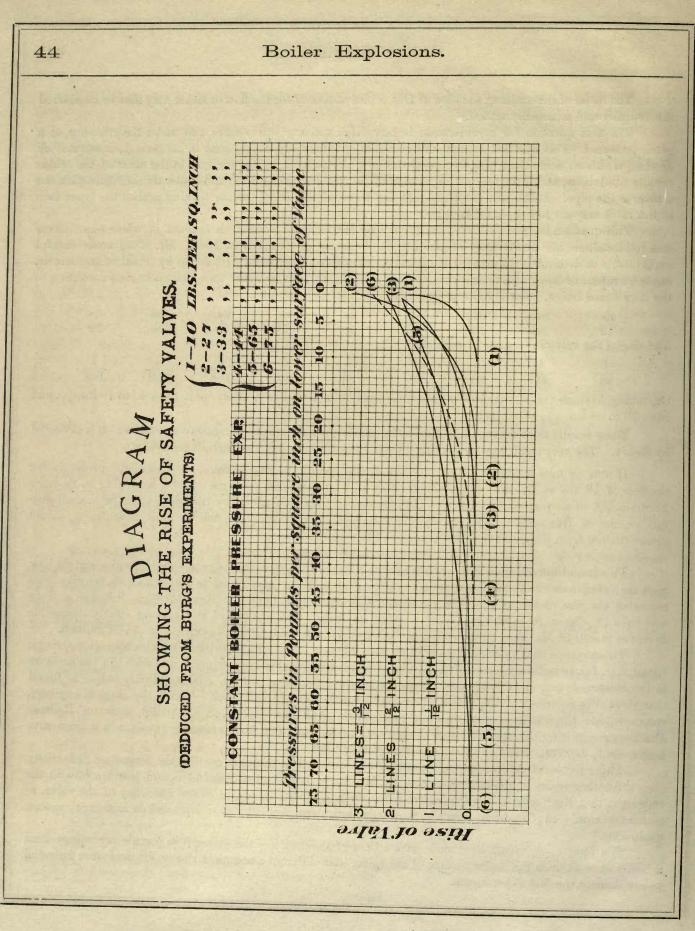
This question has been settled conclusively by Mr. Burg, of Vienna, an account of whose experiments was published in the proceedings of the Vienna Academy of Sciences in 1862. Mr. Burg made careful experiments to determine the actual rise of safety valves above their seats. He found by actual measurements, made by means of apparatus constructed for the purpose, that an ordinary four-inch valve rises according to the laws stated below. For a boiler pressure of

lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
12	20	35	45	50	60	70	80	90
The rise of the v	alve is, in p	parts of an	inch,			ALC: C	2. Bar 18	
1	1	1	`1	1	1	1	1	1
36	48	54	65 .	86	86	168	132	168

Or, taking average values, the rise for pressures from 10 to 40 lbs. is $\frac{1}{40}$ of an inch, from 40 to 70 lbs. $\frac{1}{80}$, and from 70 to 90 lbs. $\frac{1}{120}$ of an inch.

These results show that the rise *diminishes* rapidly, as the pressure increases—a result which is indicated by theory. The very small rise for pressures from 70 to 90 lbs., $\frac{1}{120}$ of an inch, is remarkable.

If now we take a tubular boiler with 500 square feet of heating surface, the free orifice necessary for the flow of all the steam the boiler can produce at 5 atmospheres pressure will be, according to Zeuner's Formula, $\frac{59}{100}$ of a square inch. Let x be the diameter of the valve, which, by rising $\frac{1}{120}$ of an inch, shall give this amount of free orifice. The circumference will be approximately 3x, and we must have 3x. $\frac{1}{120} = .59$ square inches, from which we find the diameter of the required valve,


x = 23.6 inches.

This is an impracticable size. If we assume a size of six inches diameter as suitable, and ascertain how high the valve must rise to make an annular opening around the edge equal to .59 of an inch, we may let x represent the rise of the valve. The circumference will be, in round numbers, $3 \times 6 = 18$ inches, and we will have $18 \times x = .59$ square inches; $x = \frac{1}{33}$ of an inch. This amount of rise appears clearly impossible from the results of Mr. Burg given above, as the valve will rise under 5 atmospheres only $\frac{1}{120}$ of an inch.

These results have been confirmed in another manner. *Baily*, in experimenting with his volute springs, found that, for an ordinary locomotive, a value of 13 inches diameter was required, and with this the pressure in the boiler rose considerably above the pressure at which the value was set. With ordinary values he found that there was no relief of the boiler when the fires were kept in full blast. Gooch, the English engineer, recommended three safety values to each locomotive. And Mr. Holley, in his recent work on Railway Practice, recognizing the inefficiency of the ordinary value, states that he has seen the pressure in a locomotive boiler rise to 140 lbs., with two values blowing off at 100 lbs.

These facts and expressions from practical engineers are sufficient to confirm the foregoing deductions. Another series of experiments, made by Mr. Burg, is still more conclusive, and justifies him in the statement that the "most *incomprehensible delusion* has existed in regard to the efficiency of the valve, as commonly employed;" and that it acts at most only as an alarm, but cannot be depended on as security against explosions.

His final experiments were made with a view of determining the pressure in pounds per square inch actually exerted upon the under surface of the valve, with different amounts of rise or lift, and were intended to supplement the first experiments.

He constructed an apparatus by which he was enabled to remove weights from the exterior load on the valve at the same time that he measured, by the revolutions of a screw, very accurately, the corresponding rise.

The results are given in the following diagrams, which have been made from his published records. Six experiments were made, in which the pressure of steam in the boiler was first taken at 10 English lbs.; then at 27; again at 33, 44, 65, and 75 lbs. The results correspond to the numbers 1, 2, 3, 4, 5, 6, in the diagrams.

At the beginning of each experiment the valve was loaded to resist the required pressure in the boiler. The curves 1, 2, 3, 4, 5, 6, represent the rising of the valves, during each series, as weights were taken off the the valve. The horizontal line of numbers, 0, 5, 10, 15, &c., gives the actual pressures on the lower surfaces of the valve in pounds per square inch for the rise of valve, as shown by projecting the number down to the corresponding curve.

Thus, in the first experiment, beginning with ten lbs. constant pressure per square inch in the boiler, the rise (curve (1)) was zero; by removing weights, $\frac{1}{2}$ lb. at a time, the value rose according to curve (1), the height from the base line, 0, 0, 0, being in lines, or $\frac{1}{12}$ of an inch. With a rise of $1\frac{1}{2}$ lines, for instance, the pressure on the lower surface of the value was only 5 lbs., and with a rise of 1.9 lines (about 2 lines, or $\frac{1}{2}$ of an inch), the pressure on the lower surface of the value was less than 1 lb. per square inch.

Taking the fifth series of experiments, with a constant boiler pressure of 65 lbs., it is seen by curve 5 that a reduction of pressure to 35 lbs. (by unloading the valve), was necessary, in order that the valve might rise $\frac{14}{10}$ lines, or $\frac{1}{30}$ of an inch.

In all the experiments a rise of two lines, $\frac{1}{2}$ of an inch, as shown by the curves, was only accomplished by diminishing the load on the valves, until the pressure on the under surface was reduced to *less than 7 lbs.* per square inch.

These remarkable results show that when a valve stands from its seat the very small distance of $\frac{1}{4}$ of an inch, there is practically very little sustaining force in the current of outflowing steam. They confirm the former results that, to obtain a rise of valve above the minimum height of $\frac{1}{120}$ of an inch for high pressures, an increasing pressure within the boiler is not sufficient. On the contrary, a diminution of exterior load on the valve is indispensable.

These results show conclusively that the ordinary safety valve presents no real security. If the fires are kept up, and no other relief afforded than the self-action of the valve, the pressure on the boiler must continue to rise,* and a few minutes inattention on the part of an engineer may result in an explosion. It is not necessary to such a result that the valve should "stick," or that the stem should "be bent," for it is proved beyond a doubt that the higher the pressure, the less will the valve rise; and in not rising it simply obeys the action of the forces exerted upon it.

Explosions arising from Sudden Evolutions of Steam.

A gradually increasing pressure to a dangerous degree would be impossible in any boiler, if the safety valve were what it is supposed to be, viz., a perfect automatic means for liberating all the steam which a boiler may produce with the fires in full blast, and all other orifices for the escape of steam closed. Until such a safety valve shall have been devised and adopted into general use, safety from gradually-increasing pressure must depend on the attention and watchfulness of the engineer alone.

There are supposed to be, however, occasional instances of sudden or violent evolution of steam, in such quantities that no relief is possible through the medium of safety valves, however perfect they may be in their functions.

^{*} The formula for diameter of orifice shows that the free orifice necessary for the issue of steam diminishes but slowly as the pressure rises.

That such occurrence may take place from natural causes, which do not require for their explanation any extraordinary hypotheses, such as chemical decomposition or electrical action, may perhaps be demonstrated. But there is reason to believe that they are exceedingly rare.

One of these causes which has received the most general acceptance, both in theory and practice, is the sudden flow of water upon plates which have become overheated by the accidental lowering of the water level in the boiler. It is, in fact, considered almost an axiom that very low water will cause an explosion.

There is no doubt that exposure of the upper surfaces of flues, or the crown of a furnace, to the intense action of heat, when there is no water upon their surfaces to absorb or transfer this heat, is highly injurious and destructive to the boiler; and on this ground alone all the devices for regulating or observing the water level are necessary and advisable. It is not certain, however, that even in such an extreme case of accident or neglect as overheated plates, an explosion must ensue if there be an efficient safety valve.

If we suppose ten square feet of the furnace or flues to become heated to redness, say 1,000 degrees (a very extreme case), the quantity of heat in units of heat which would be transferred quite suddenly but not necessarily instantaneously, to water coming in contract with them at the ordinary boiler temperature, would be found thus: 10 square feet of iron, $\frac{1}{4}$ of an inch thick, would weigh about 100 lbs. The specific heat of iron is .11; and if we take 300° as the temperature of the steam of the boiler, the lowering of temperature of the plates would be 1,000°—300°=700°, and $100 \times 700 \times .11 = 7.700$ units of heat. This amount is sufficient to evaporate about 7.7 lbs. of water.

If we refer to any of the examples of the application of the formula,

$$\mathbf{T} = \frac{\mathbf{M} (\mathbf{t}_1 - \mathbf{t}_2)}{\mathbf{Q}}$$

we will find that to raise the pressure from an ordinary working pressure to a dangerous pressure, a much greater number of units of heat was required, 6. The quantity of heat transferred to the boiler in each *minute* was, in the examples given, as follows, respectively:

	1,	
	2, 20,830	
	3,123,300	

From these examples it is seen that the addition of only 7.700 units of heat, either gradually or suddenly, would not cause a dangerous elevation of pressure in the boiler, under the conditions assumed.

Nothwithstanding, therefore, the overheating of plates is highly detrimental, and no doubt dangerous, yet it seems probable that this source of danger of explosions belongs to the dangers from gradually-increased pressure, and may be avoided by perfectly efficient safety valves.

The occurrence of this cause of danger can only happen from the most culpable neglect or inattention, and cannot be regarded as an unforseen danger, since the means of warning are abundant.

The principal cause of *sudden evolution* of steam, which finds an explanation in the known properties of water, and its action under changes of temperature, is probably what is called *concussive ebullition*. This is doubtless a real danger, and the more so because it is hidden, and gives no warning. How far this phenomenon takes place in steam boilers, and produces explosions, there are no means of knowing. But that it is a *possible* cause, there seems to be good reasons for believing.

It is known from the investigations on the boiling points of water, and other fluids, by Dufour, Kopp, Donny, and others, that the conversion of water into vapor at a certain temperature due to the pressure is dependent on other conditions besides the temperature; that water may become heated, under certain conditions, to temperatures many degrees above the temperature due to its boiling point.

The phenomenon called "concussive ebullition" arises, according to Dufour, from the principle that in order that a liquid may be transformed to vapor at any temperature, some portion of the surface must be freely exposed to a space into which the vapor may expand. This was demonstrated by suspending drops of water in heated oil. The temperature of the water was raised considerably above the boiling-point without the formation of vapor; but if a bubble of air or a piece of porous substance was placed in contact with the water, a

burst of vapor occurred. Professor Donny, of Ghent, observed that water thoroughly *deprived of air*, and sealed up in thin glass tubes, free from air, and heated at one end of the tube, could be heated to 280° F., under atmospheric pressure. The burst of vapor, when it took place, threw the whole mass of water suddenly to the other end of the tube.

This phenomenon of concussive ebullition may be produced in a variety of ways in the chemical laboratory, and accompanies the processes for the rectification of sulphuric acid to such an extent that special means are required to avoid its evil effects.

The practical conclusion to be derived from these facts in connection with the generation of steam in steam boilers, is that the water in a boiler may, under some circumstances—such as slow-continued evaporation when a boiler is at rest, or doing no work—be nearly deprived of air, and the circulation being then feeble, portions of the water in contact with the plates may become heated to a higher temperature than that of the mass of water above.

Under such circumstances the sudden starting of an engine, or other cause of agitation, producing an increased circulation and an agitation of the water, might cause a sudden evolution of steam in such quantities and with such force as not only to produce a dangerous and sudden elevation of pressure, but a violent concussion, by throwing large masses of water against the sides of the boiler.

It was demonstrated by Dufour and others, that the presence of air in minute bubbles prevented this overheating of portions of the water, and caused evaporation to go on continuously. When a boiler is at work, circulation is rapid and continuous, and in most cases feed water fully charged with air continually enters the boiler; and hence the conditions necessary to cause a retarded ebullition are rare.

On this subject, however, further experiments and investigations are especially needed.

The general conclusions which may be regarded as established from experiments, observations, and practice, thus far seem to be:

1. That the laws of resistance of the parts of boilers to the internal pressure are sufficiently well established.

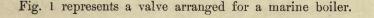
2. It is of the utmost importance that the materials employed should be of the best quality as regards strength and durability; and as there are but few manufactures of boiler plates, the inspection of materials especially boiler plate, should be made by the government at the place of manufacture, and the inspection should extend to the qualities of ores and the process of manufacture; the required stamps, brands, or certificates being put on or authorized by the inspector in person. There is much greater certainty of securing the best materials by an inspection of the process of working and the raw materials employed, than by an inspection of plates after they have been sent to market, when, to all external appearances, good and bad plates are not easily distinguished.

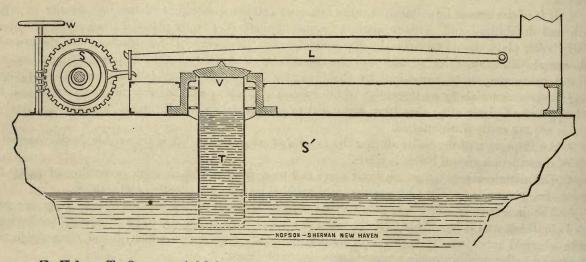
3. An inspection of the boiler during the process of construction. It is impossible to discover all the defects of construction after a boiler is made.

4. The deterioration of strength from wear and tear, from sudden heating or cooling of parts, from oxidation, &c., gives rise to evils which can only be avoided by constant attention and repairs.

5. The danger from *sudden* generation of steam in large quantities arises probably from one cause, retarded ebullition, and is less likely to occur when the boiler is at work, receiving constantly fresh supplies of water charged mechanically with air in minute bubbles. Any device which should force air in small bubbles into a boiler, would probably prevent this source of danger.

6. The ordinary construction of the safety value is fundamentally defective, being based on ideas in regard to its action which are unsound and delusive. A safety value should be adopted which is not dependent for its action on the pressure of the steam at the orifice opened by the value, and through which the steam flows, since it is demonstrated that the pressure at this point practically ceases with any considerable opening of the orifice.

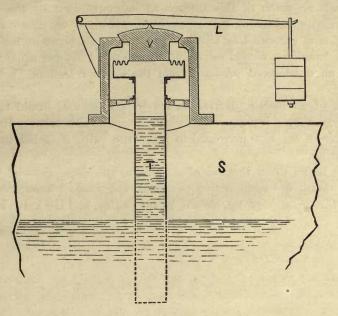

A new construction for safety-valves, suggested by the foregoing discussion, is exhibited in the following cuts.


To enable a value to rise from its seat an appreciable distance, it appears, from that discussion, that either a portion of the exterior load must be removed from the value the moment it begins to rise, or that a continuous sustaining force must act on the value from beneath, which shall not be diminished by the flow of steam through the orifice.

The latter expedient is adopted, and the end accomplished, by simply carrying down a stem from the valve into the water of the boiler. The total pressure of steam upon the lower end of this stem (or if it be hollow, as in the figure, upon the upper interior end surface) will be continuously exerted upon the valve. In the use of the ordinary disc or conical face valve, it has been shown that when the valve stands one-sixth of an inch from its seat the total force (or statical pressure and impulse combined) on the lower surface of the valve amounts in no case to more than five or six pounds per square inch.

If a four-inch stem be carried down below the water surface, with a pressure of 60 lbs. per square inch in the boiler, the total pressure on the lower end of the stem, transmitted to the valve, will be over 750 lbs.

This is equivalent to removing over 45 lbs. per square inch from the exterior load. With this pressure on the main surface the valve will rise from its seat, and will continue to rise as the pressure increases.



V. Valve. T. Stem carried below the water. L. Valve lever extended into escape pipe.

The force applied to keep the valve down is produced by a number of spiral flat springs within a barrel, adjusted by a worm and wheel. This valve can be locked, by locking the hand-wheel which turns the worm, and the worm and wheel furnishes a simple means of adjustment; all other parts are inaccessible, and the force acting on the valve cannot easily be altered by unauthorized persons.

In Fig. 2, an ordinary lever is applied with weights, and a diaphragm is acted upon by the pressure of the water in the tube or stem, the diaphragm being simply a metal plate with circular corrugations.

To calculate the size of valve for a given boiler, it is to be recollected that the circumference determines the annular opening for the efflux of steam.

Having found the area of orifice necessary by Zeuner's formula, a diameter is to be chosen, which will give this opening for a given rise; for instance one-sixth of an inch. The diameter of the stem should be less than this by one-half an inch (one-fourth all around).

The statical pressure to be applied to hold the valve down, may be calculated in the ordinary manner. The valve seat should be spherical, and the radius lever as long as convenient, in order that the valve stem may rise and fall in a true vertical line. The above described construction is simple, inexpensive, practical, and applicable to many boilers by simply putting a stem to the valves already in place.

Where the values already in place are too far from the water, or in such a position that a stem cannot be readily extended to the water, a short value pipe may be bolted to the boiler.

The slight agitation of the valve stem, by the currents in the boiler, will tend to keep the valve well fitted to its seat, and will prevent sticking, if there be any such tendency.

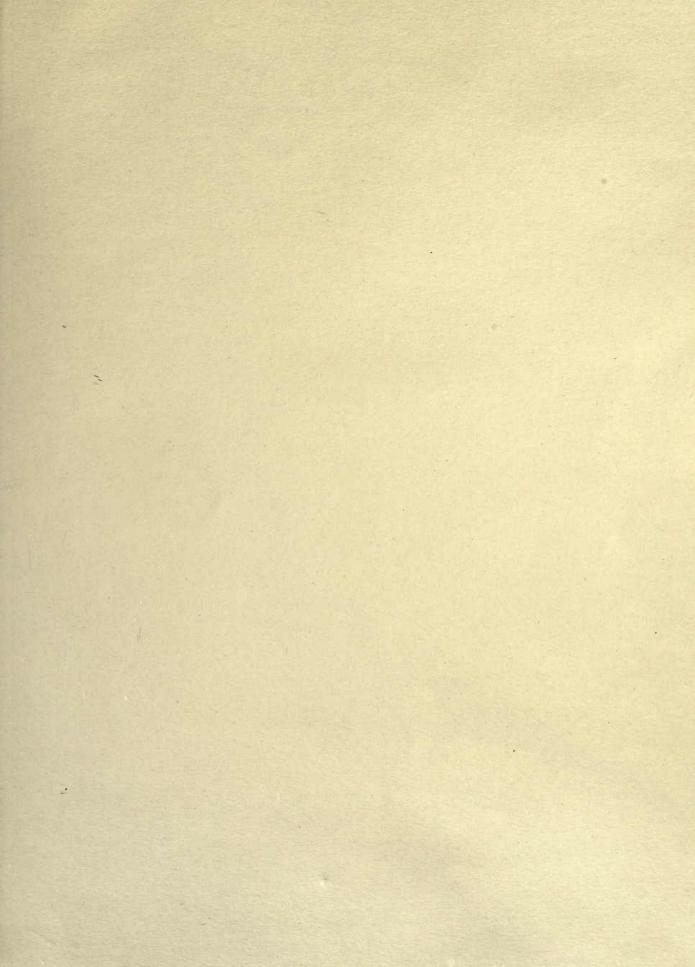
To illustrate the mode of finding the dimensions of a valve, according to this construction, let it be required to find a safety valve which shall furnish relief for all the steam which a tubular boiler of 2,000 square feet of fire surface can generate, with all other orifices closed and the fires kept in full blast. Let the pressure of steam in such a boiler be taken at 5 atmospheres.

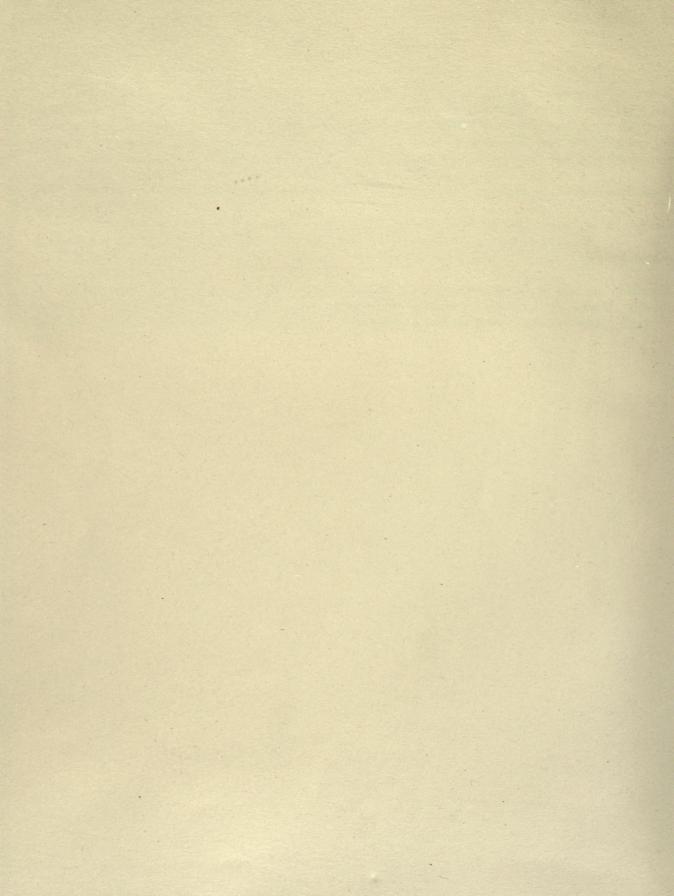
By the table, page 42, the free orifice necessary will be 2.4 square inches.

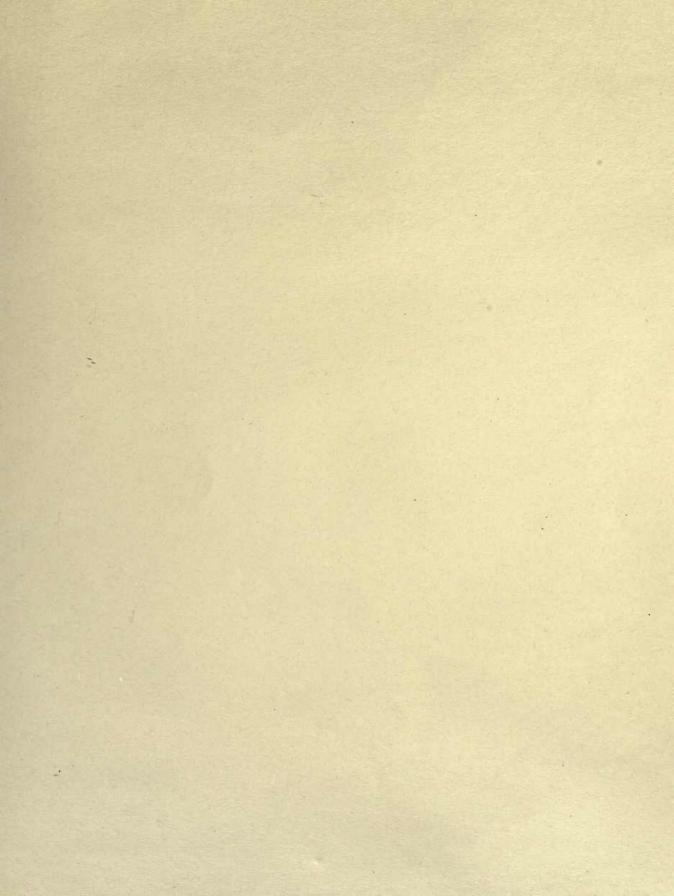
If a value, $4\frac{1}{2}$ inches diameter, be chosen, the circumference will be approximately 14. inches, and it will be necessary for the value to rise $\frac{1}{6}$ of an inch. 14. $\times X = 2.4$ inch, $X = \frac{2.4}{14} = \frac{1}{6}$ of an inch approximately, X being the rise.

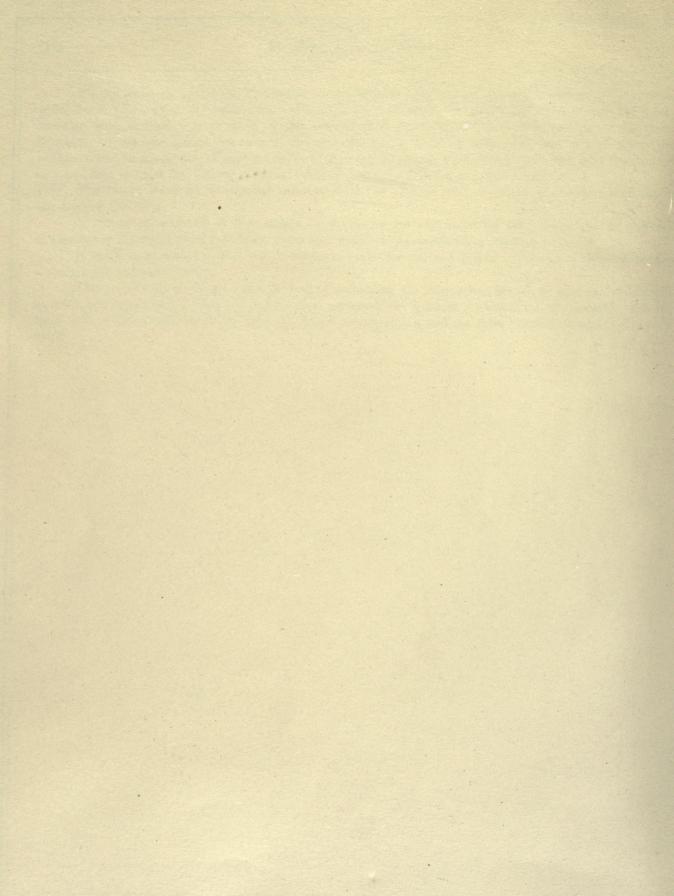
The area of the valve disc being $4\frac{1}{2}$ inches, suppose a stem 4 inches diameter to be carried down below the water. The pressure on the lower part of the stem will be found by multiplying its area in square inches by the boiler pressure, or 4. \times 3.1416. \times 75. = 939 lbs.

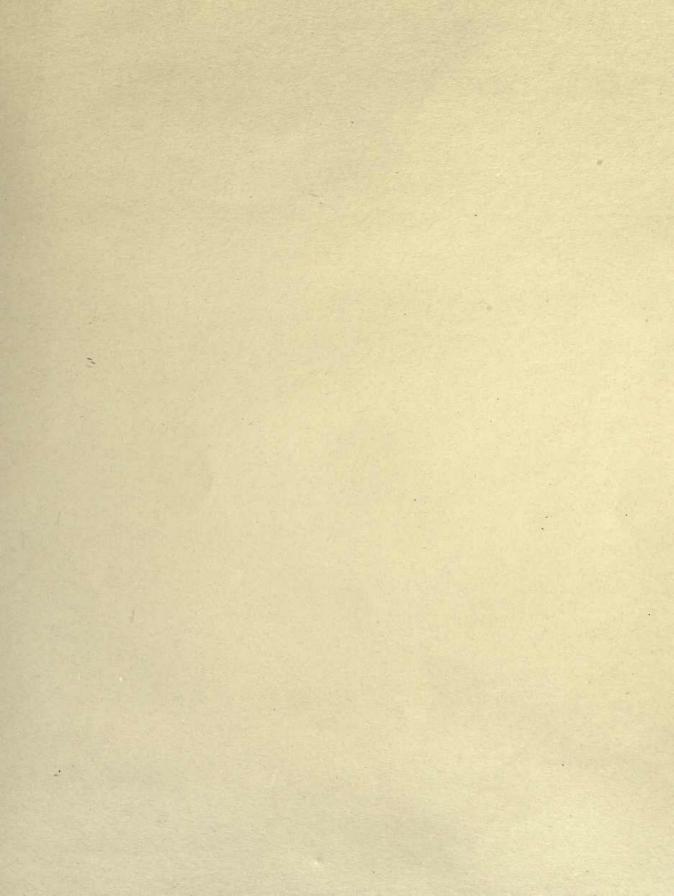
This would be equivalent to removing 939 lbs. from the exterior load, if the valve were of the ordinary kind, such as that used in Burg's experiments.

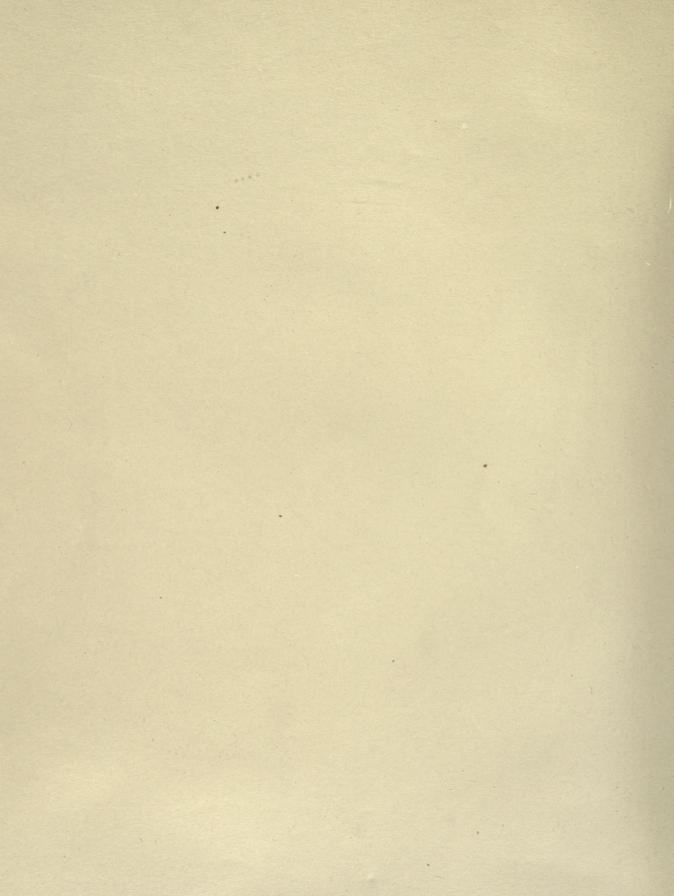

To this must be added the diminution of atmospheric pressure on the upper surface of the valve, which takes place when the valve rises. When the valve is seated, the atmosphere presses upon the whole surface; when it rises, only so much of this surface as is represented by the cross section of the stem, is subject to the unbalanced pressure of the atmosphere. With a $4\frac{1}{2}$ inch valve and 4 inch stem, the additional virtual diminution of exterior load will be, from this cause, about 90 lbs., and the total diminution may be taken at 1,029 lbs., making a virtual relief of pressure of 64 lbs. per square inch.

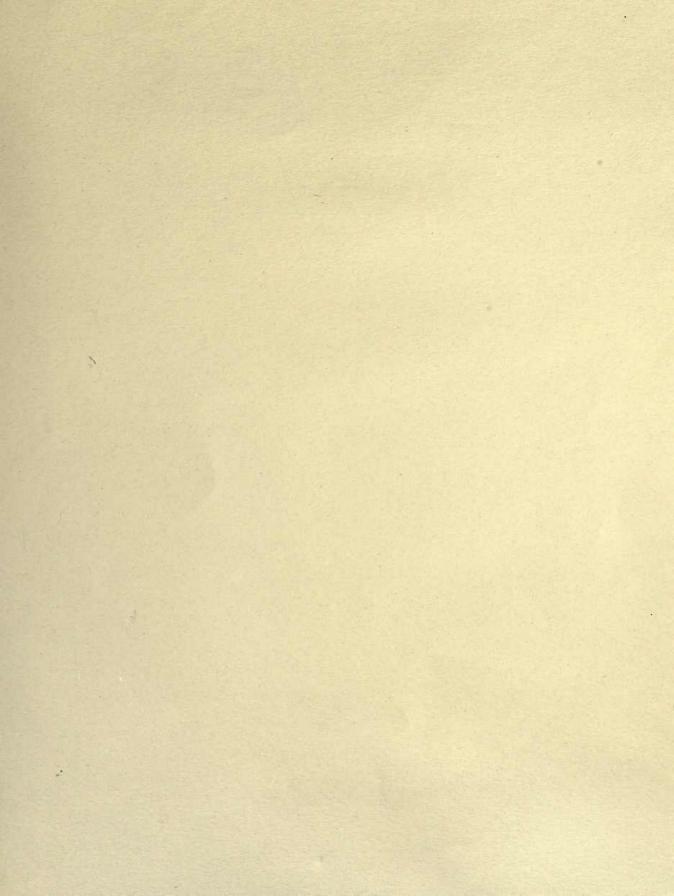

This would leave an unbalanced pressure from the exterior load of 11 lbs. per square inch, upon the area of the valve.

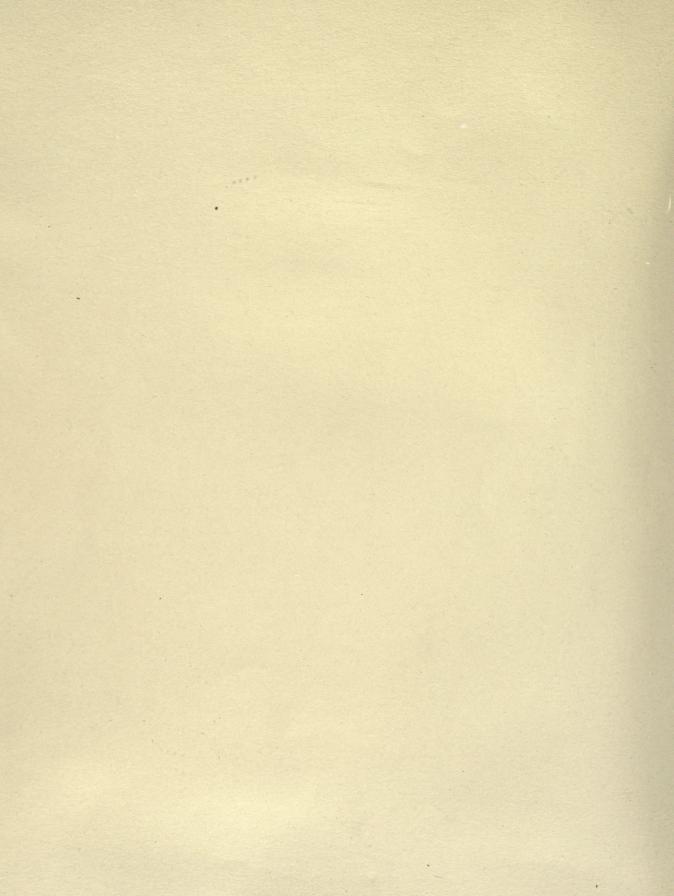

A rise of one-sixth of an inch nearly, as shown by the curves, would take place, and an increase of pressure in the boiler more than 5 lbs. above this would be impossible from ordinary causes.

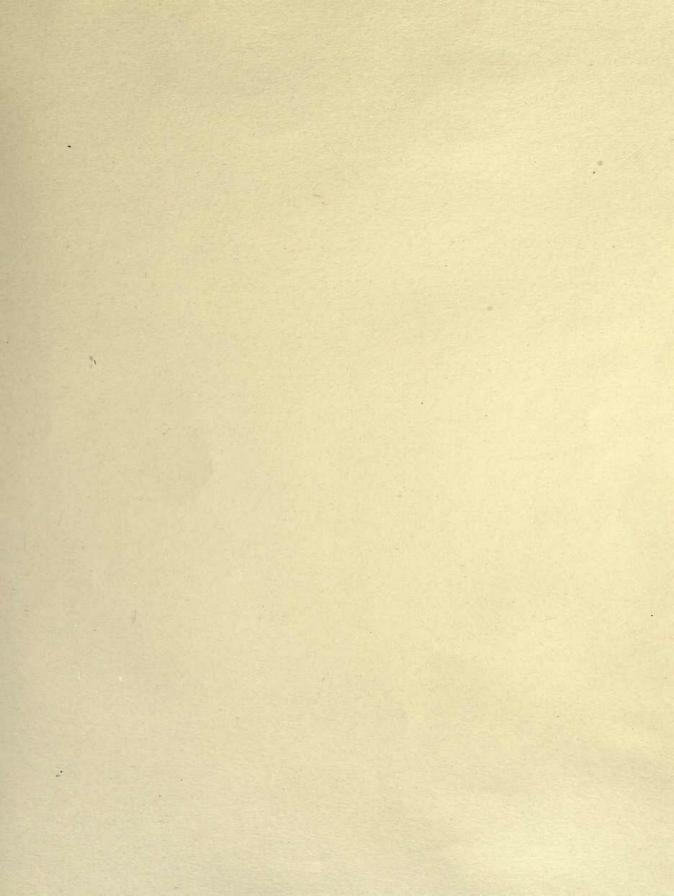

It would be advisable in the case presented to make the valve 5 inches in diameter, and thus secure a margin for excessive firing.

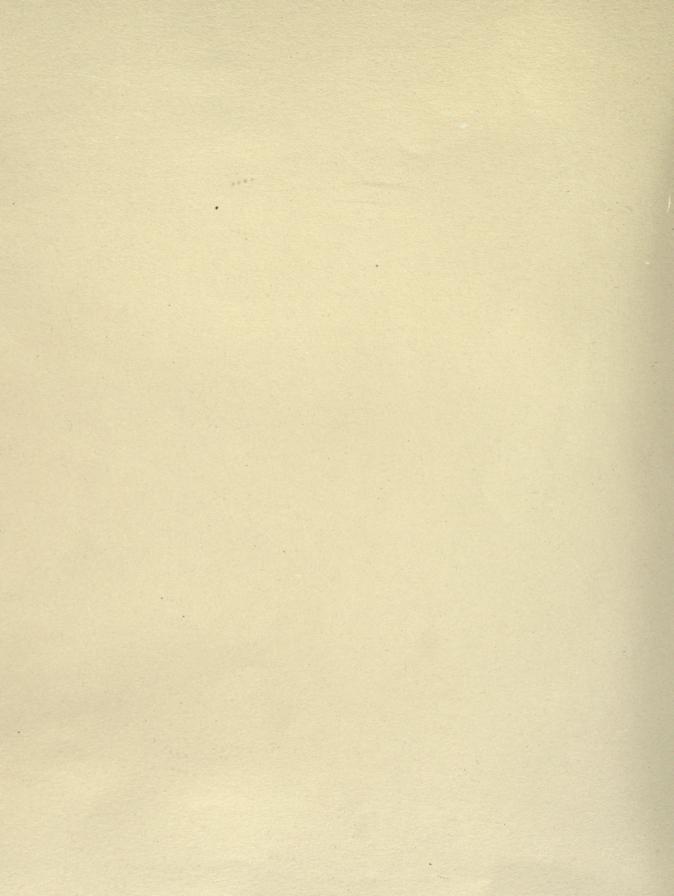

This is believed to be an exact method of estimating the dimensions of valves, and one which will be borne out in practice. With the construction proposed, the gradual accumulation of pressure, with all other orifices closed and the firing kept up, should be impossible, and the valve becomes in reality a SAFETY valve.

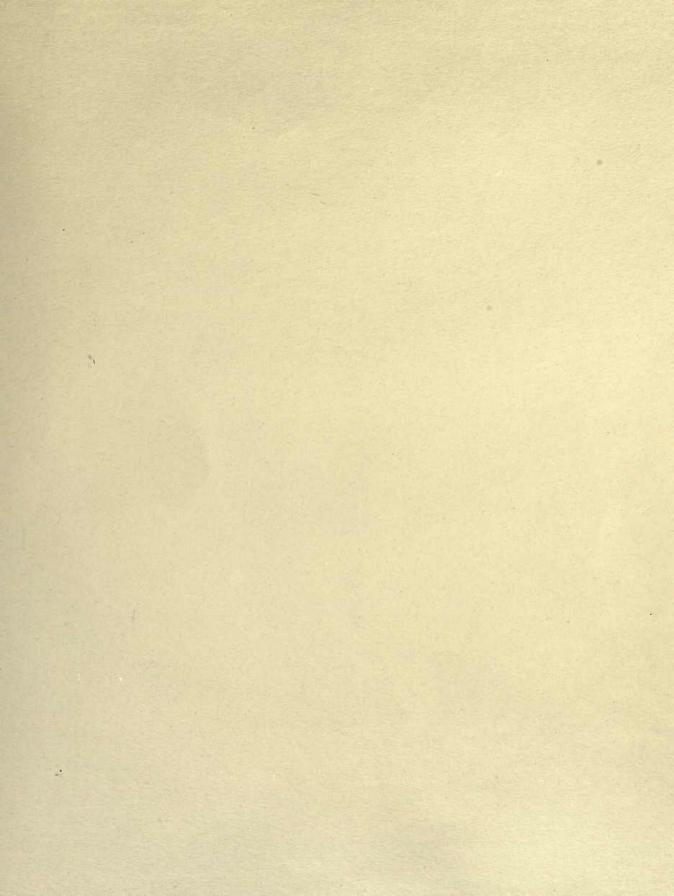


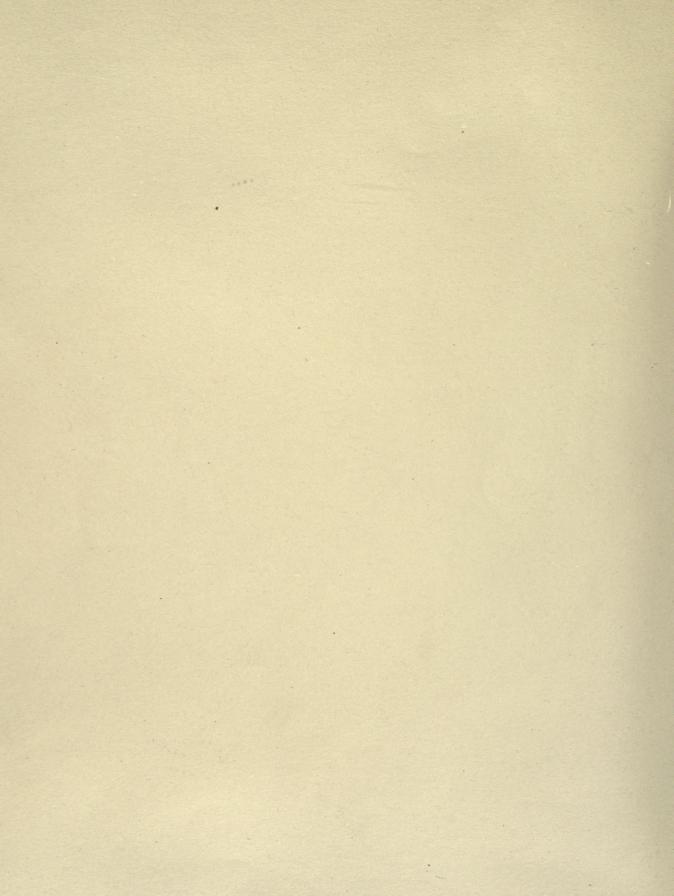


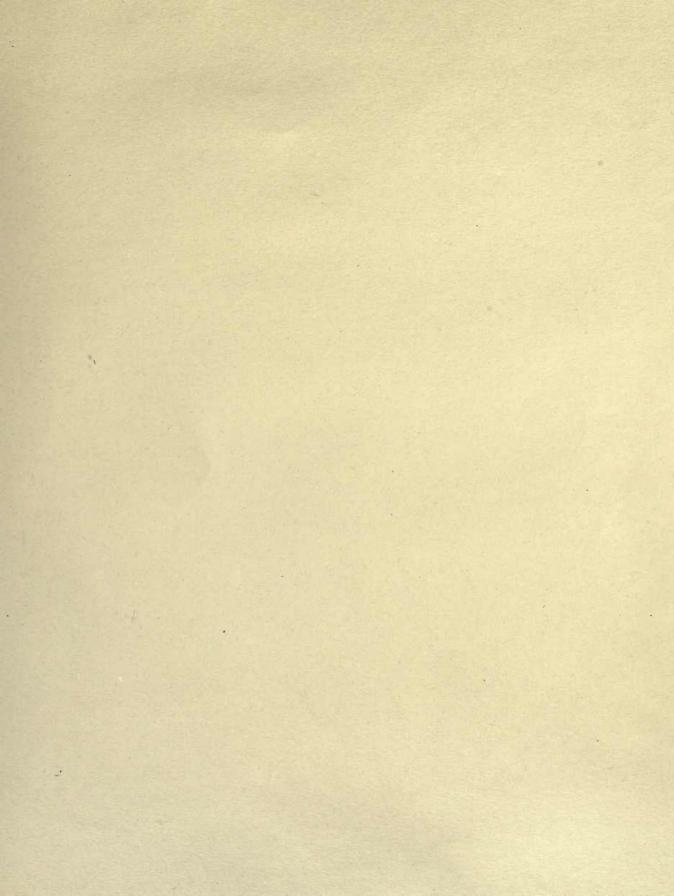


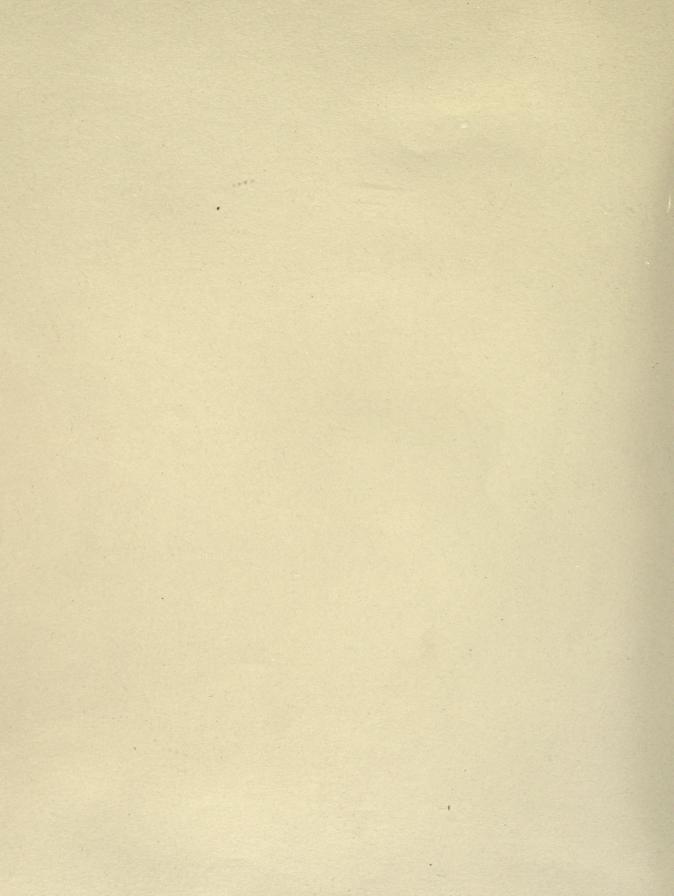


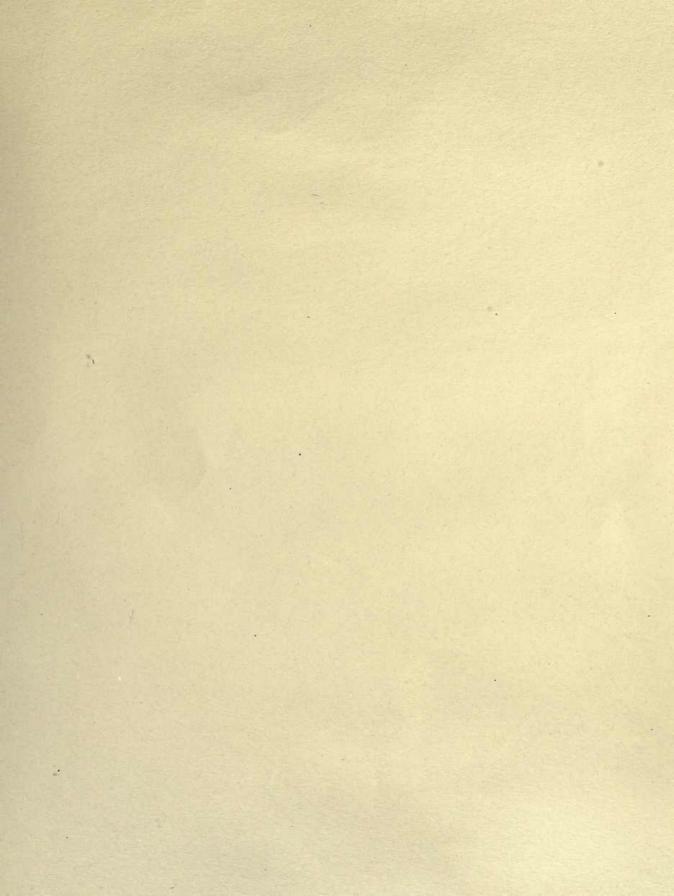


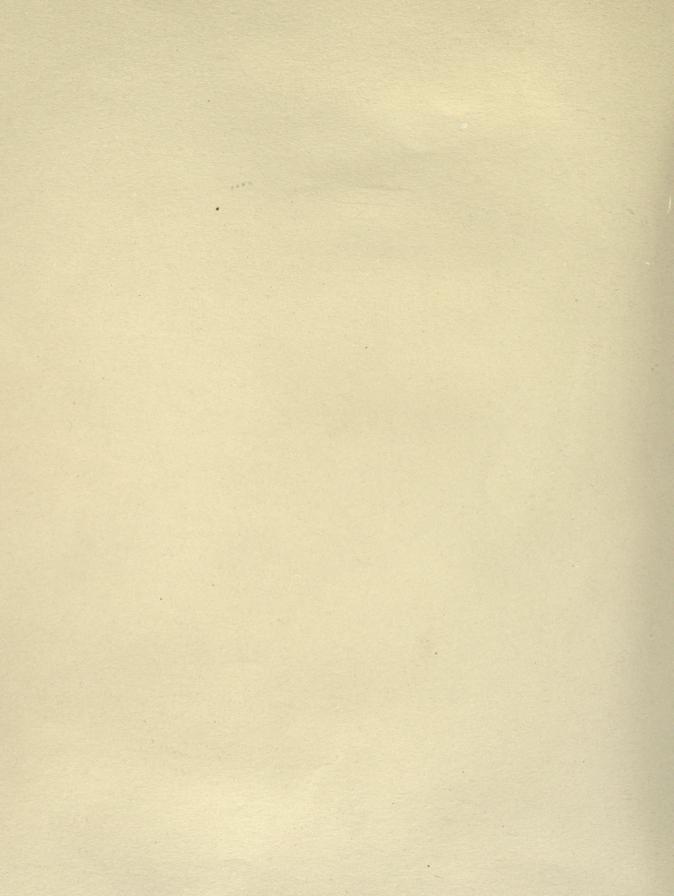


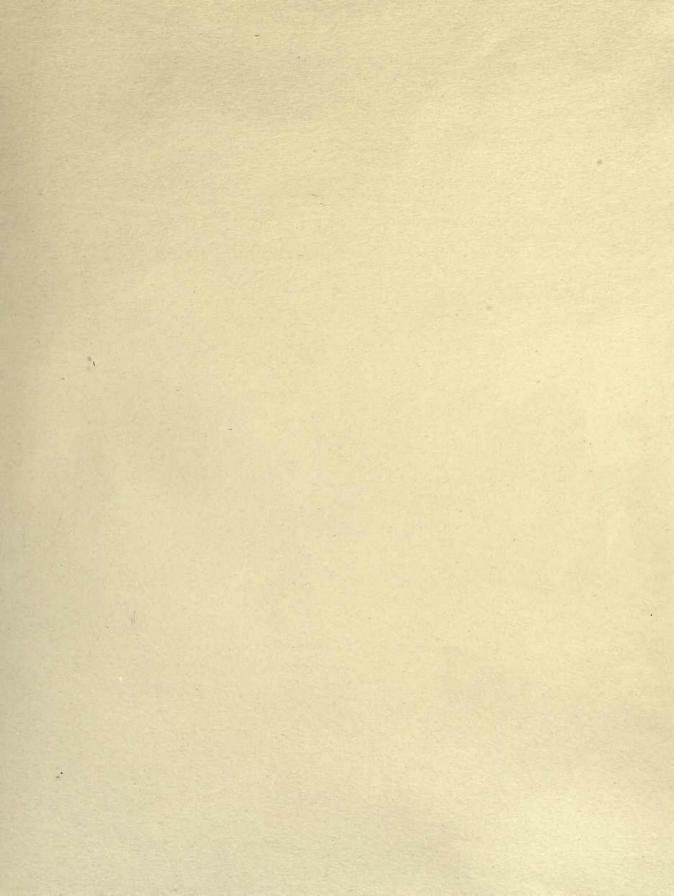


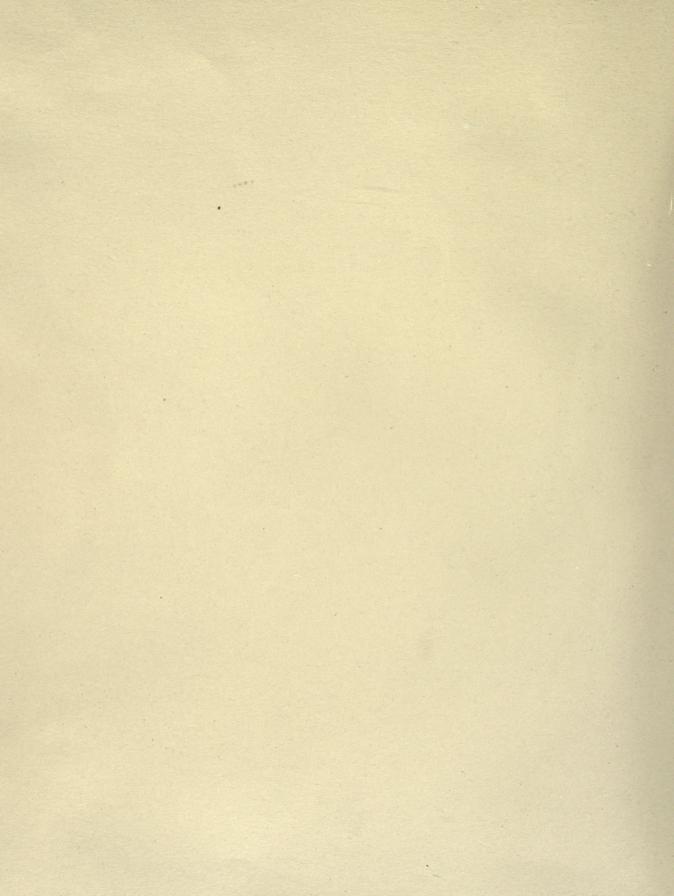


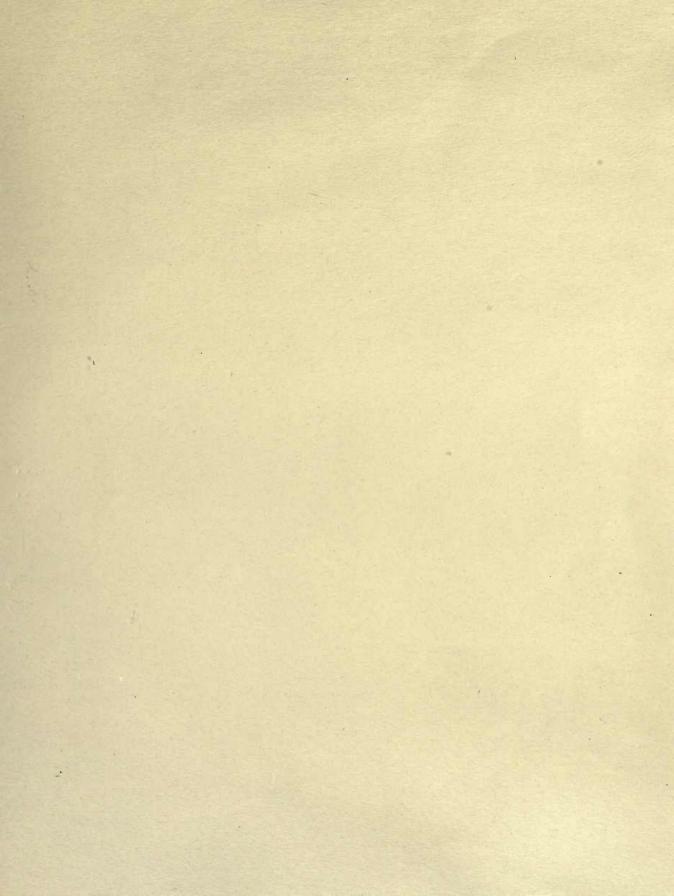


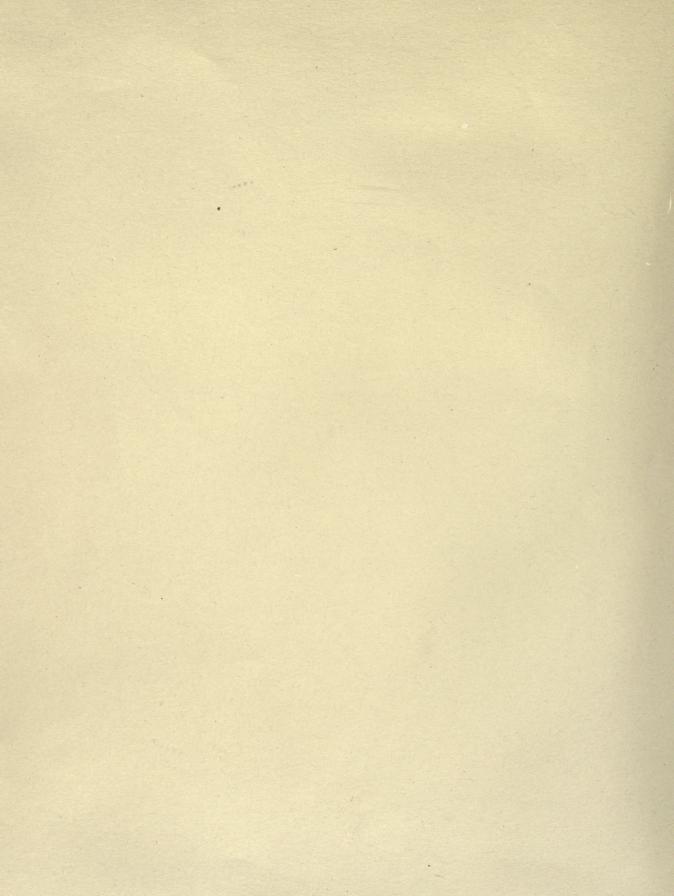


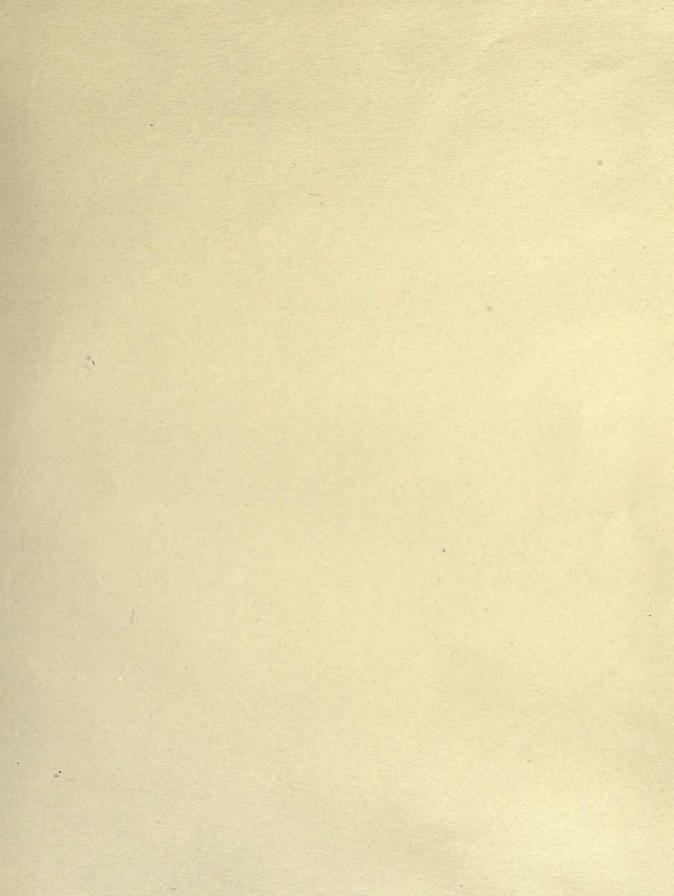


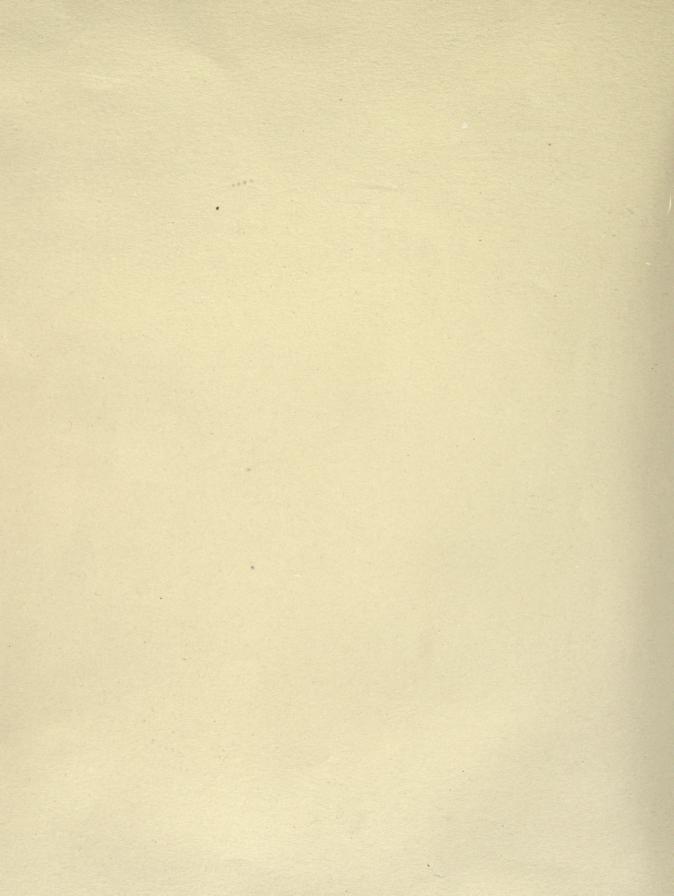


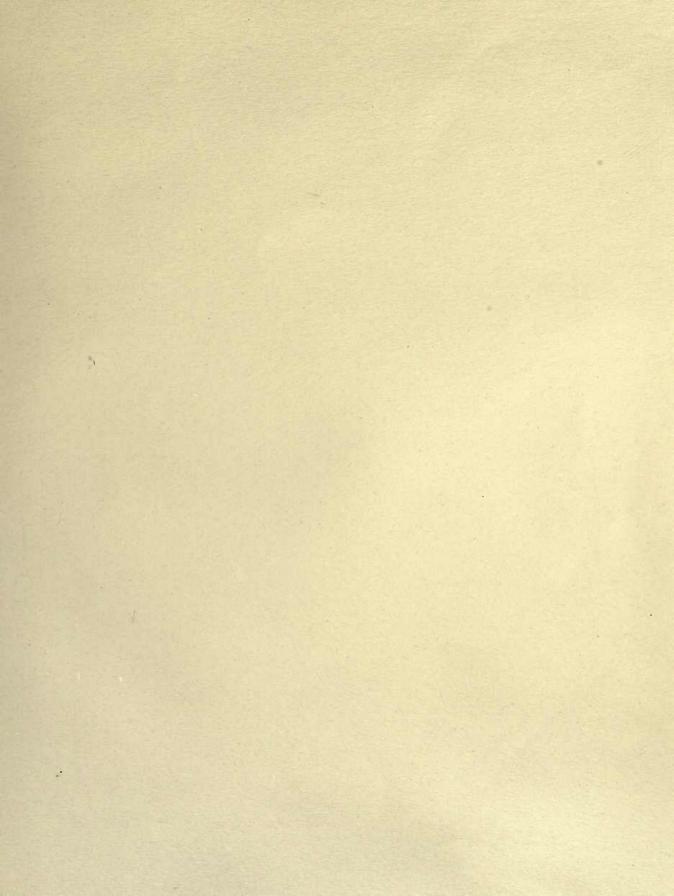


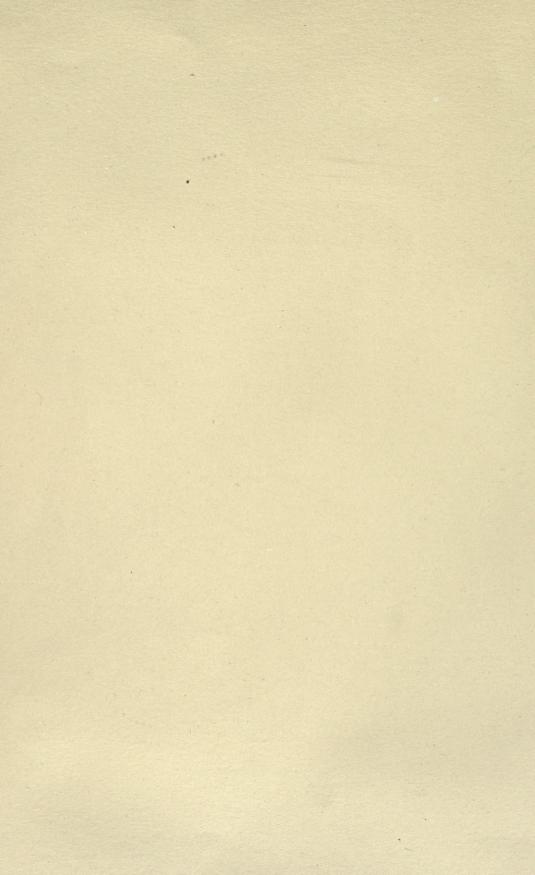


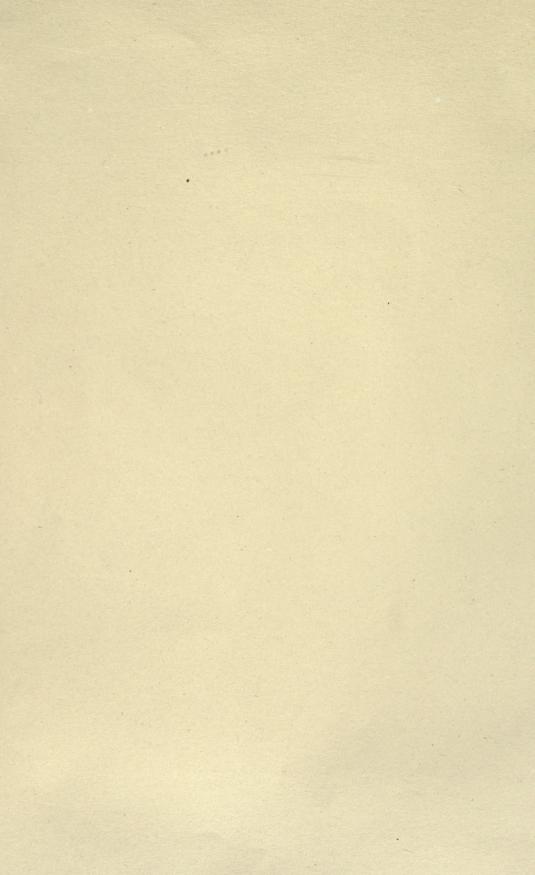


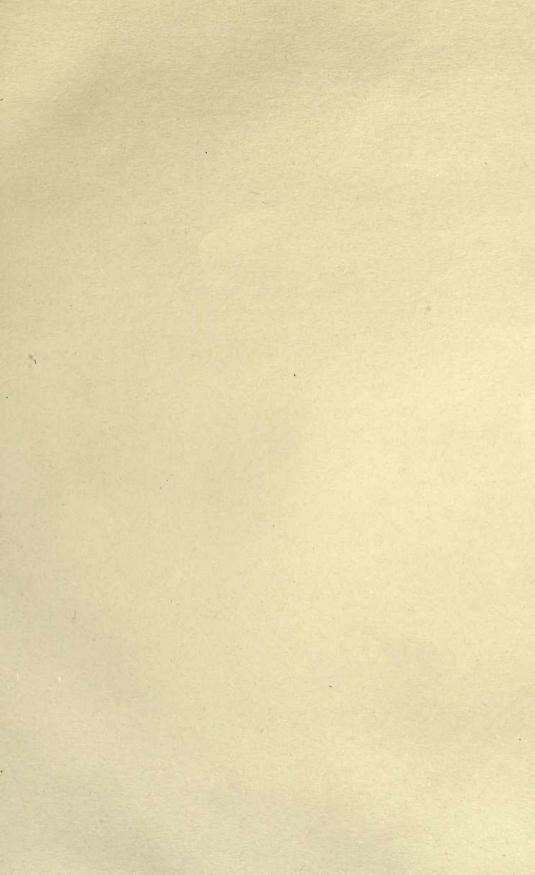


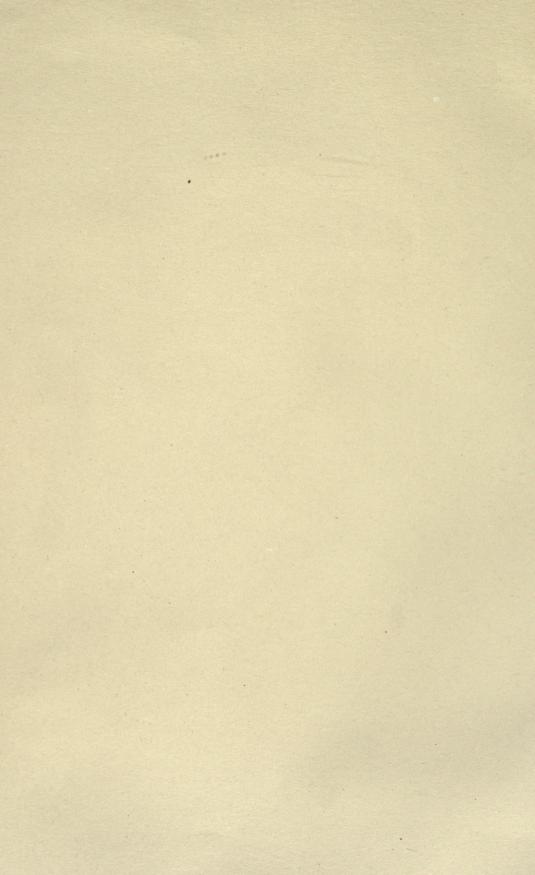


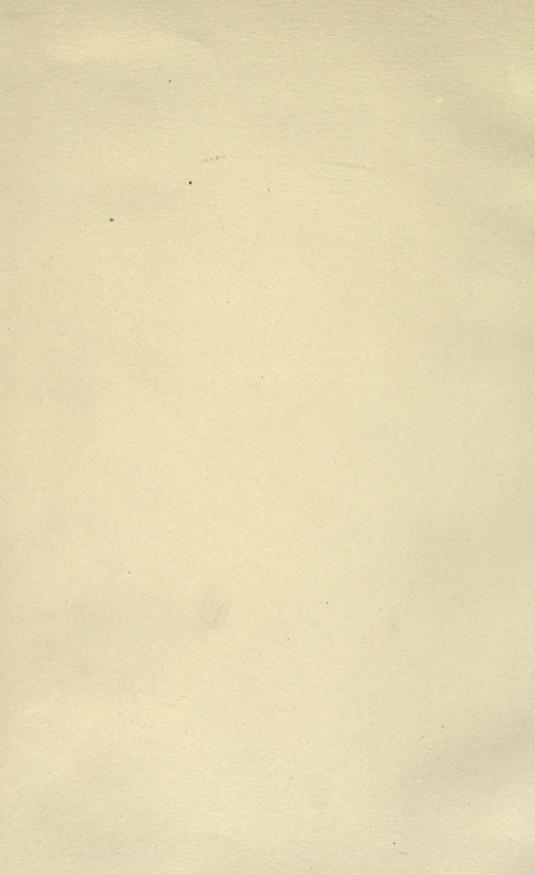


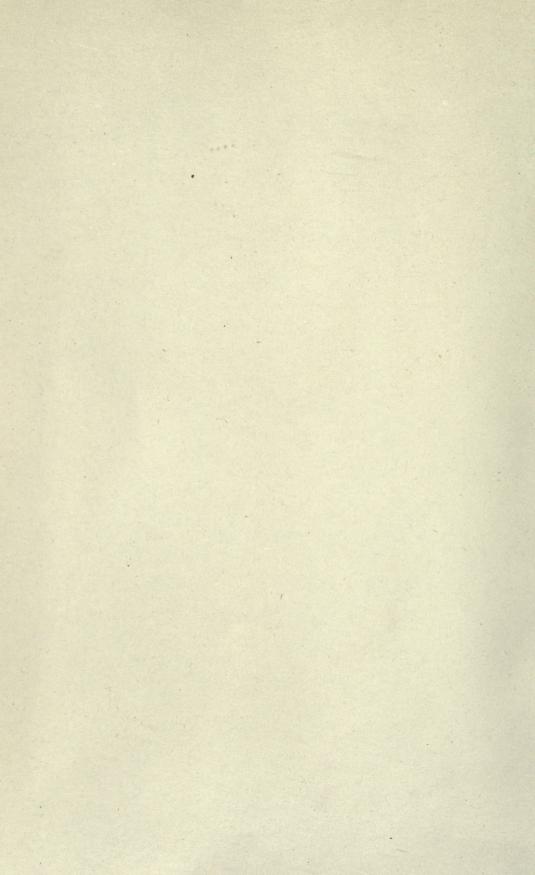


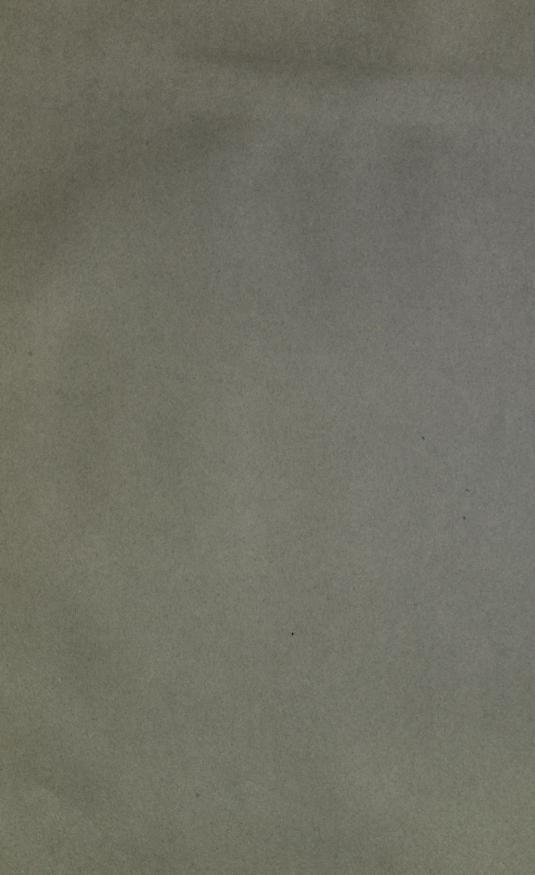


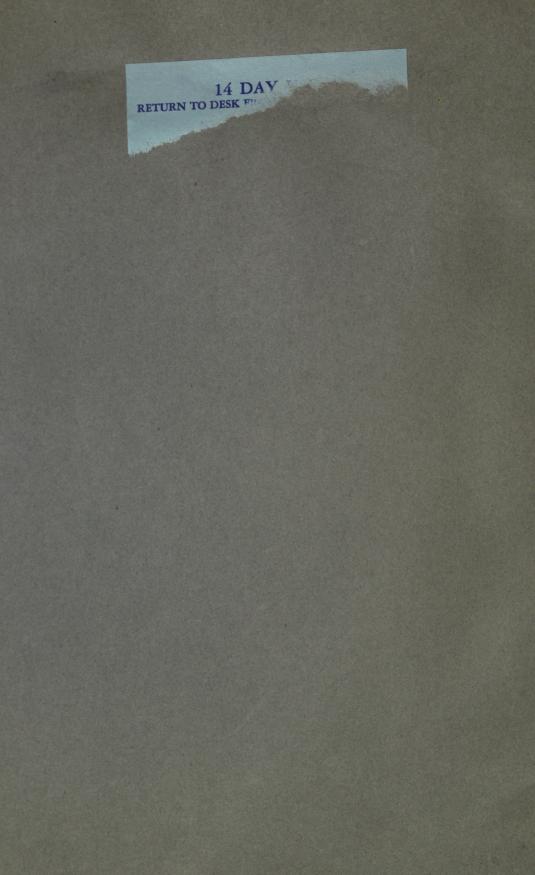


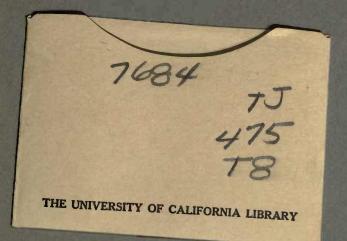


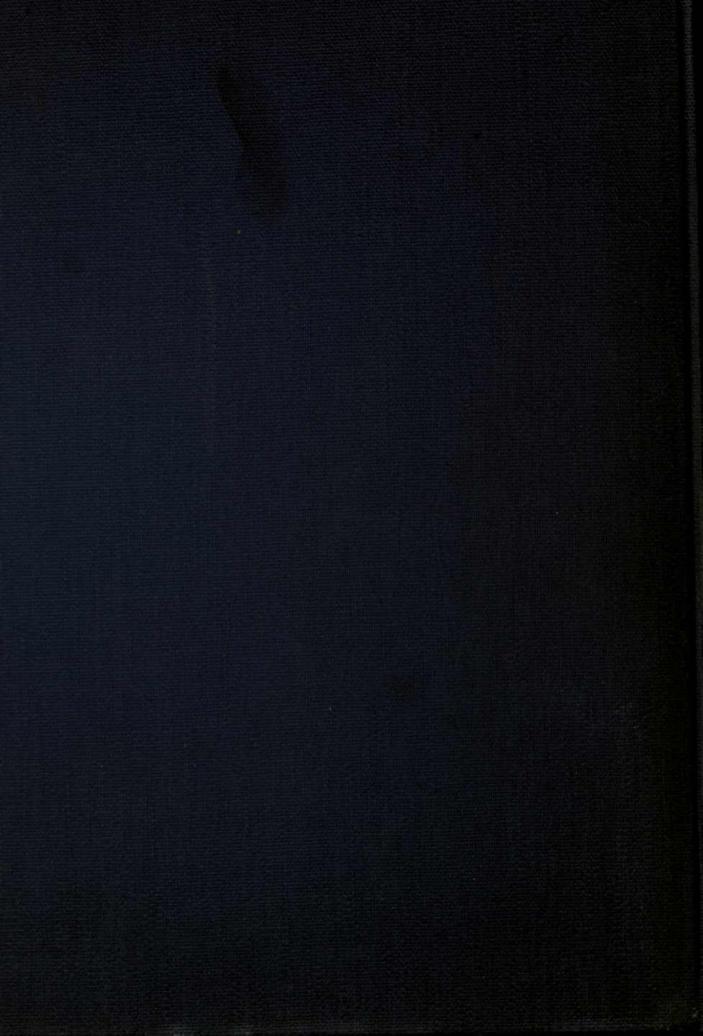












RETURN CIRCULATION DEPARTMENT 202 Main Library		
LOAN PERIOD 1 HOME USE	2	3
4	5	6
ALL BOOKS MAY BE RECALLED AFTER 7 DAYS 1-month loans may be renewed by calling 642-3405 6-month loans may be recharged by bringing books to Circulation Desk Renewals and recharges may be made 4 days prior to due date		
DUE AS STAMPED BELOW		
ICLF		dist of Sec. 1
REOCT TO 1980	N. Alexandra	
SEP ~~ 1980		Contra Contra a
RECEIVEDER	-	A Martin Street
SEP ~ 2 1980	2015-013	
CIRCULATION DEPT		
REC. SIR OF 5 '80		All the second
E Contraction of the		
Constant and the state	and the second second	
17. 3. 1. 2. 1. 1. S.	27 San 2 1 1 3 3	

