1916

$$
\begin{aligned}
& \text { TAntibs }
\end{aligned}
$$

 $0 \mathrm{l}, \mathrm{b}$

$$
25
$$

TABLES

FOR

AZIMUTHS, GREAT-CIRCLE SAILING,

AND

REDUCTION TO THE MERIDIAN,

with A
NEW AND IMPROVED "SUMNER" METHOD:

$$
\begin{array}{llllll}
\text { LATITUDES } & - & - & - & - & 90^{\circ} \mathrm{N} . \text { то } 90^{\circ} \mathrm{S} . \\
\text { DECLINATIONS } & - & - & - & - & 90^{\circ} \mathrm{N} . \text { то } 90^{\circ} \mathrm{S} .
\end{array}
$$

Azimuths through Tables A, B, and C (or separately through Table D) for all the Heavenly Bodies at any Time the Body is above the Horizon; and Great-circle Sailing-courses for all Latitudes.

Also other Useful Navigational Tables, with Numerous Examples of Double Altitudes, Equal Altitudes, Azimuths, Ec.

BY
H. S. BLACKBURNE (Extra Master),

Principal Exaniner of Masters and Mates in New Zealand, and Nautical Adviser to the Government.

PUBLISHED BY DIRECTION OF THE HON. THE MINISTER OF MARINE.

WELLINGTON, N.Z.
BY AUTHORITY: MARCUS F. MARKS, GOVERNMENT PRINTER.

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

PREFACE.

The tables and problems here published are a reprint, for the most part of the azimuth tables which have been published in the first three years' issues of the " New Zealand Nautical Almanac."

Tables D and G are now reprinted and brought up to date from the writer's original tables published in 1883, and Tables A, C, and D have been extended from 60° to 85° of latitude. This will meet the needs of Arctic and Antarctic explorers, as well as the traders to such places as Archangel. Some years ago the writer promised Captain Liddle, who was then trading to Archangel, that he would extend his tables to latitude 72° to meet the needs of those trading in these high latitudes, outside the limits of the ordinary azimuth tables. With this extension they now constitute the most complete and comprehensive azimuth tables yet submitted to the seafaring community, giving with great simplicity sufficient accuracy to meet even the requirements of the extra-masters' examination. By the aid of Tables A, B, and C (when the hour-angle is known) the true bearing of the sun, moon, planets, and fifty-one of the brightest stars may be found in a couple of minutes at any hour of the day or night by the use of only about half a dozen figures.

As requests have been made from candidates for examination for permission to use these A, B, and C tables for solving some of the problems in the examination for masters and mates, and recommendations have been made for their use in the local examinations in New Zealand, these tables are now published separately, and, for the sake of giving the azimuth with greater precision for examination purposes, the factors are given in Tables A and B to three places of decimals when hour-angles are between four and eight hours, except in the very high latitudes, where so many decimals are unnecessary.

The comprehensiveness of the A, B, and C tables for azimuth purposes is simply marvellous. They cover only forty-two pages, and give not only all the azimuths of the above-mentioned heavenly bodies comprised in the four large tables of inspection (which cover several hundred pages), but also a considerable number of azimuths which are outside the limits of the larger tables. They are therefore especially valuable for use in the "Sumner" and " double altitude" problems, where the large azimuth tables omit to give the azimuth when the body is near either the upper or lower meridian. It was this omission (which is especially felt in low latitudes) which first led the writer to calculate and publish his original A and B azimuth tables. When the price of the large azimuth tables is taken into consideration (Burdwood's and Davis's for the sun, and Davis's and Goodwin's for the higher-declination stars), amounting altogether to $f_{,} \mathrm{I}$ I3s, the boon to navigators in the
price only, apart from the much greater extent of limit comprised in these small tables, must, I think, be recognized and appreciated by those who have only moderate means.

In the writer's old A and B tables the factors throughout were given to three places of decimals for the sake of being able to show that these tables would give the azimuth as accurately as the large tables of inspection. He has, however, often regretted having given the three places of decimals in the smaller hour-angles, as it makes interpolation at sight more difficult, and the azimuth is obtained with sufficient accuracy for practical purposes without it. In this edition three places of decimals have been given wherever necessary to give sufficient accuracy for examination purposes. Even in the Board of Trade extra-masters' examination any azimuth tables which give the azimuth correctly within half a degree may be used in the time-azimuth problem. These tables will nearly always give the azimuth correctly within $0 \cdot I^{\circ}$ of the truth. To insure the most rigid accuracy in the second place of decimals, whenever the third place of decimals in the writer's old table came to 5 a fresh calculation has been made. In the parts where three places of decimals have been given, new calculations have been made and compared with the old tables.

In Table B all the stars not less bright than $\mathrm{r} \cdot 0^{\circ}$ magnitude have been computed separately for their actual declinations for the epoch igio; and, as their annual change of declination is so small, these factors will be sufficiently accurate for all practical purposes for the next thirty or forty years, and no interpolation for declination will be needed.

The whole of Table C has been newly calculated on the lines of the late Mr. W. H. Rosser's table published in "Norie's Epitome," but this table (including latitudes to 85°) contains more than eight times the number of his computations, for the sake of giving greater accuraay and less interpolation. This plan will, I believe, be more popular with most navigators than that previously given in the writer's old table, as the azimuth is taken out more directly, and quite accurately enough for all practical purposes.

Tables A and B have been worked to five places of decimals where necessary, and Tables C and C^{2}, though only given to the nearest decimal of a degree, have been calculated throughout to the nearest decimal of a minute for the sake of accurate checking by differences.

Table D has also been checked from the writer's old calculations, and, where necessary, seven-figure logarithms have been used to determine fine points ; otherwise, with the exception of changed heading and the addition of two pages, giving latitudes from $6 I^{\circ}$ to 85°, it remains the same as when first published in 1883.

Table A, from latitude $6 I^{\circ}$ to 82°, was calculated with great care by Captain Thomas Liddle, who very kindly sent to the writer the whole of his work. This was carefully compared by the writer with his own calculations. Throughout the compilation of the whole of these tables such minute care has been taken and rigid accuracy aimed at that the writer has good reason for believing that not one factor in a thousand will be found in the slightest degree in error.

An important feature in this work, which the writer believes he was the first to introduce, and which should prove a boon to navigators,
is the method here presented of working the "Sumner" problem on a plane chart in connection with these tables. This method is much shorter than that usually taught in the navigation schools in preparation for the Board of Trade examinations, and at the same time it gives greater accuracy, especially when the plan which is here advocated is adopted, of combining the ex-meridian and chronometer observations when one of the bodies observed is near the meridian; and it has the great advantage of only requiring one chart, instead of having to carry about " Sumner " charts for every change of latitude N. and S. of the Equator. The Marine Department of the New Zealand Government has published some very accurate charts on a convenient scale for this purpose.

As the request from the New Zealand Government to the Board of Trade to allow the use of these tables, and improved " Sumner " method for solving the " Sumner" and " double altitude" problems, in the New Zealand examination for masters and mates was not granted, two examples have been clearly worked and plotted on the chart (see pages 104 and IIO)-one of two observations of the sun as given in the masters' and mates' examinations, and the other of observations of two different stars as given in the extra-masters' examination. These examples illustrate the possible errors that may arise from the old method. This error is especially aggravated in low latitudes, where in the summer months one of the altitudes must always be great, and often within half an hour of the meridian. The error in such cases would sometimes amount to 6 or 7 minutes of latitude. The summer months, too, in these latitudes are generally the rainy season, when double altitudes are most needed. We trust that after further perusal and trial of these tables and the methods here advocated the Board of Trade may see fit to alter their decision, especially as the tables are now printed separately from the " New Zealand Nautical Almanac."

Although the examples above mentioned are purposely exceptional ones, for the sake of better illustration, smaller errors will often arise if the method at present used by the Board of Trade for the masters' and mates' examinations is always adopted. Many an opportunity of determining the ship's position is lost owing to the impression among many navigators that the "Sumner" method is not of value when one of the observations is within, or a little outside of, the ordinary ex-meridian limits. At other times a false confidence is encouraged about the accuracy of the ship's position by trusting too implicity to the latitude by ex-meridian following a chronometer observation for longitude, without due regard to the bearing when the first observation was taken.

An example from " Norie's Navigation" (the best-known epitome of navigation in the world) will illustrate both these contentions. On pages 368 and 369 of the Igoo edition an example is given of a longitude by chronometer at 8 h .45 m . a.m., and an ex-meridian at II h. 30 m . a.m. At the close of the work the editor says, "Since by reference to the table, page 309, the hour-angle of the second observation is within the limits of the reduction to the meridian, it follows that the latitude found will be the correct latitude, unless the latitude and longitude used in the calculation are both very erroneous." He seems to have ignored the fact that when the first observation was taken the sun was not on, or even near, the prime vertical (and never is in the winter months in high
latitudes), and therefore the time resulting from this observation was more than I minute in error ; and, although the sun was only $8 \frac{1}{2}^{\circ}$ from the meridian when the second observation was taken, the resulting position was over 2^{\prime} in error in the latitude and about $2 \frac{1}{2}^{\prime}$ in error in the longitude from the position given, and which the reader might naturally infer was correct. The editor afterwards goes on to say that " if the second observation had not been within the limits of the table on page 309, and the azimuth had been small, or if the estimated latitude and longitude had been very erroneous, neither the latitude nor the longitude could have been found with any degree of accuracy by the ordinary methods. Now what is termed the 'new navigation' may prove useful." As this closes the chapter in "Norie" on the "Sumner" method, in which is included the above-mentioned example of finding position by chronometer longitude and an ex-meridian, it is presumed that these are what are referred to as the " ordinary methods."

Now, the author maintains that if the "Sumner" method is dealt with in a practical way, either as advocated in these pages by numerous examples, or as given in the " American Practical Navigator," by Bowditch, revised by Lieut. G. W. Logan, U.S. Navy, the "Sumner" position will give quite as accurate results as by the method which is termed the " new navigation," and he ventures to believe that this method, too, will be easier for most men to grasp. He guarantees that he will take any of the double-altitude or simultaneous-altitude problems out of the numerous examples given in Captain Thompson's "Navigation Simplified " (which we may presume are fair specimens of the problems given at the Board of Trade examinations) and by the methods here presented, by the aid of these tables, either with or without the aid of chart, will find the position of ship with similar accuracy to that obtained by the most rigorous methods of trigonometry, and well within the limit of accuracy required in the extra-masters' examination. His contention is that the papers set in the examination-room should above all things tend to make men better practical navigators, and he believes that any impartial judge must admit that the methods advocated in these pages for the "Sumner" problem are superior in many points to that which is at present encouraged by the Board of Trade examinations. The advantages may be thus summarized: (I) Greater accuracy; (2) fewer figures, and consequently less time required for the work; (3) one chart does for any navigable latitude; and (4) many observations which would be considered useless for the ordinary "Sumner" give excellent results with even fewer figures by combining ex-meridian and chronometer observations together, as illustrated in this work by various examples. Most officers pass the examination for master many years before they get command, and it is hardly to be expected that they will keep a supply of "Sumner" charts for the various latitudes that they trade in ; consequently the practice of this method, which they have learnt for their examination, is sure to be neglected. The writer, speaking for himself, can testify that he never used it at sea, though, much to his regret, for more than ten years he has had to teach it or examine candidates in their knowledge of it.

Very shortly after the publication of the writer's first edition of the A and B azimuth tables the late Mr. W. H. Rosser published abridged $\bar{A}, \mathrm{~B}$, and C tables for the same purpose, and afterwards slightly ex-
tended them for publication in "Norie's Epitome." They are excellent tables, and very concise, but even as enlarged in " Norie" require in most places considerable interpolation, the time-interval being sometimes 20 minutes and 30 minutes apart, which naturally could not admit of as much accuracy as a fuller table. A few years later Captain Lecky asked and obtained the writer's permission to publish the A and B azimuth tables in his famous "Wrinkles." Captain Lecky then extended and improved them, and later on published them in a separate book with further extensions and improvements, showing how the tables can be used for quite a number of navigational problems.

In closing, the author has much pleasure in acknowledging the kind help voluntarily tendered to him by Captain Thomas Liddle, and in thanking him for his disinterested labours in the calculation of much of the extension of these tables. But for his perseverance in continuing to urge the writer to extend his tables it is very improbable that they would ever have been published in their present revised form. He would also like to thank the Hon. Mr. Hall-Jones, Minister of Marine, and the New Zealand Government for valuable clerical assistance in the compilation of a portion of these tables, for the confidence they have reposed in him. and for their liberality and public spirit in the interest of navigation all over the world in thus publishing an extension of navigational tables far beyond the limits of New Zealand's own trade.

H. S. BLACKBURNE.

April, 1905.

PREFACE TO FOURTH EDITION.

Since the publication of the first edition of these tables in New Zealand by the New Zealand Marine Department the work has more than doubled in size, and the additional pages have no doubt increased the value and usefulness of the work.

At the request of the Commander and Navigating Lieutenant of the British Antarctic Expedition s.s. "Terra Nova," the limits of the A and B Tables have been further extended so as to include all latitudes and declinations between the terrestial and the celestial North and South Poles. The tables are thus made available for azimuth, greatcircle sailing, and reduction to the meridian for every part of the globe, and for every star in the heavens.

A Traverse Table and Table C^{1} have been added giving the azimuth to the nearest minute of arc up to 45° from the meridian for use when special accuracy is required in conjunction with the Ex-meridian Table. ${ }^{5}$

This table, given to the decimal of a degree, was used in the author's original A and B Azimuth Tables published in 1883.

Table D has been extended to comprise all latitudes between $85^{\circ} \mathrm{N}$. and $85^{\circ} \mathrm{S}$.

Mr. H. B. Goodwin, R.N., formerly Examiner at the Royal Naval College, Greenwich, has drawn the writer's attention to the value of this table as an azimuth table, when both altitude and time are given, and he has in this edition given Mr. Goodwin's rule, and an example for using it in this direction, as well as explaining the purposes for which it was first calculated.

The possessor of the book can make his own choice as to whether he uses Table D or Tables A, B, and C in the calculation of azimuths. Probably he will find D the handiest when the body is near the meridian, and (as its accuracy depends principally on the altitude) it will give a more accurate azimuth than the time-azimuth tables when the D.R. latitude used in the calculation of the time azimuth is incorrect, while the other tables will certainly give greater accuracy, without any uncertainty as to the naming of the azimuth, when the body is near the prime vertical.

It is not, therefore, recommended that Table D should be used for azimuth purposes when the object of observation is too near the prime vertical, as close accuracy cannot then be expected, and there will then be uncertainty as to the naming of the bearing.

A further extension and improvement on the Ex-meridian Table No. I has been made giving the reduction to the meridian with high altitudes up to 45° from the meridian.

This table, as well as Ex-meridian Table No. 2, were published in I908 for use in conjunction with the A and B Tables. Although the tables only comprise a few pages they cover wider limits of use than most other ex-meridian tables, being available for every degree of latitude and declination from Pole to Pole, and they are equally available for below-Pole, as for above-Pole observations.

The table for correction of sun's and star's altitude has been extended for heights from 6 ft . to 80 ft .

The table giving the apparent times of the meridian passages of the principal fixed stars has been calculated with great care for the year 1910 (midway between two leap years), so that for any year for some time to come the error will not amount to more than about two minutes, with the single exception of Star Polaris, which has an increasing change in R.A. of nearly 29 sec .

In this table the times of inferior as well as the superior transits of no less than forty-five of the circumpolar stars are given.

This should be a great boon to navigators, as (so far as the author knows) no other navigational works give the times of star's meridian passages at the inferior transit, notwithstanding the special value of the below-Pole star for determining latitudes, on account of its slow motion in altitude and azimuth.

A small table comprising two pages has been added after the ex-meridian table showing the error in latitude by ex-meridian due to 4 seconds of error in the time. This table is especially useful in facilitating work in connection with the problem of finding the position of ship from two ex-meridians or one ex-meridian and a chronometer observation, and quite dispenses with any need of a chart.

A year or two ago the Board of Trade sanctioned the use of these tables for the time-azimuth problem in the New Zealand examinationrooms for candidates for foreign-going certificates for masters and mates, and already the great majority of the New Zealand candidates use them in preference to Burdwood's and Davis's Tables.

Even naval officers after a very short trial of our tables have written to the author expressing their preference for them to the larger tables which are in general use in the Navy, quite apart from the fact of their far greater limits of use.

I would again respectfully urge the Board of Trade to allow the use of our tables to candidates in the examinations for masters and mates in other countries, at least in Canada, where much of the Canadian coast-line is outside the latitude limits of the tables which they are obliged to use in the examinations.

It is a matter of regret, and has been much commented on, that, owing to New Zealand having to comply with Board of Trade Regulations in respect to certificates for foreign-going vessels, we are still
unable to use in our examinations the methods and navigational tables which we have compiled, at much labour and cost, for facilitating various problems in navigation, notwithstanding that the methods advocated in this work and assisted by the tables published herein give proof of much greater accuracy in the problem of determining the ship's position from two observations of the sun out of the meridian than by the method which we are obliged to use in our examinations to comply with the Board of Trade Regulations.

The use, too, of the plane chart in the Sumner problem, which has been such a boon to the few who know about it, is still precluded from use in the examinations, and consequently it will take many years before the bulk of navigators know the advantages of it.

HAROLD S. BLACKBURNE.

Wellington, New Zealand, June, 1916.

TABLE OF CONTENTS.

Pages
Examples to find Stars suitable for determining Position by Double Altitudes I 16
Examples of finding Ship's Position by Simultaneous Observations of Sun and Moon 117-118
Examples of finding the True Bearings of Sun, Moon, and Stars; also the Error and Deviation of the Compass, and the Great-circle Courses of the Globe - $119-122$
Illustrations to show how Lives and Ships may be saved by the Careful Observer, and, conversely, how Lives may be lost 122-I24
Example of finding the Error of Chronometer by Observations in Artificial Horizon, showing the Use of Table D in working out several Observations separately I 25
Remarks on the Value of Equal Altitudes at Sea, with Examples 126-128
Remarks on Ex-meridian and Meridian Altitudes 129-1 3 I
A few Navigational Notes and Cautions I3I-I 34
Some Simple Methods (including Diagram and Table H) for finding the Ship's Distance from a Point by Two Bearings and the Run in Interval between them 135-139
Explanation of the Diagonal Scale and Protractor, and Remarks on the Pelorus I 39-r 40
SUPPLEMENTARY EX-MERIDIAN TABLES.
Explanation of Tables 142-143
Table showing Limits of Ex-meridian Table No. I 144
Ex-meridian Table No. I I45-I5I
Table showing Limits of Ex-meridian Table No. 2 152
Ex-meridian Table No. 2 I $53-155$
Table M : Showing the Error in Latitude due to an Error of Four Seconds in Time or I^{\prime} of Longitude I 56-I 57
Examples of finding the Position of Ship from Two Sun Ex-meridian Observa- tions, using Ex-meridian Tables, and Accuracy of Position also proved. $158-162$
Example of finding Ship's Position from Ex-meridian and Chronometer Observations of Sun and Moon I63
Example of finding Ship's Position from Combined Ex-meridian Observations of Two Stars, and same Example worked from Two Calculated Longitudes 164-165
Example of finding Shıp's Position from Two Observations of Sun and Planet Venus, Longitude and Ex-meridian Observations 166
Position of Ship from Two Stellar Observations combining Chronometer Longitude Observation with an Ex-meridian below the Pole 167
Example to find Approximate Altitudes and Bearings of suitable Stars for Observation to quickly obtain Position of Ship 168
Example of finding Ship's Position from Two Calculated Ex-meridian Latitudes Four Hours from Meridian below the Pole 169
Example of finding Ship's Position from Ex-meridian, Position-line, and Soundings 170
Formula for Calculation of Latitude and Altitude I7I
Advertisements 173-181

EXPLANATION OF TABLES.

The A, B, and C Azimuth Tables.

Tables A and B are used in combination-(1) for finding the error of the longitude due to an error of one minute (r^{\prime}) of latitude, and (2) by the aid of Table C to find the azimuth or true bearing of celestial objects.

Enter Table A with the hour-angle and latitude, and Table B with the hour-angle and declination, naming the factors taken from these tables according to the following rule:-

For Table A-When hour-angle is less than 6 hours, name the factors taken from this table contrary to name of latitude.

When hour-angle is greater than 6 hours, name the factors taken from Table A the same as the name of the latitude.

For Table B-Always name the factors taken from Table B the same as the name of declination.

Add like and subtract unlike names. The sum or difference then of the factors from A and B will be the difference of longitude correction due to I^{\prime} of error in the latitude. The correction must be named according to the name of the greater factor.

The direction of this longitude correction (or the position-line, as it may be termed) is found by keeping the name thus obtained, and reversing the name of the object's bearing E . or W . of meridian.

For the Azimuth-With the A and B cor. thus found and named, enter Table C with the latitude and this cor.; the corresponding azimuth is then taken out direct, and is given to the nearest decimal of a degree. It is named N. or S. according to the name of the cor., and East or West as the hour-angle is east or west of the meridian. The azimuth with these tables never exceeds 90°. This saves the trouble (which also confuses some when using the large azimuth tables) of having to subtract the azimuth taken out from 180°, and change the name of azimuth.

For examples in use of the table see pages 119 and 120, and for great-circle sailing page 121.

Traverse Table and Table $\mathbf{C l}^{\mathbf{1}}$.

For the Azimuth when greater accuracy is required.-When using the azimuth table to assist in the reduction to the meridian it is important to take out the azimuth with greater precision than is necessary under ordinary circumstances for compasscorrection or position-lines. For this purpose a traverse-table (pages 58-67) and Table C^{1} (pages 68-74 are used as follows:-

Rule.-Turn the $\mathrm{A} \pm \mathrm{B}$ (= difference of longitude correction) into departure by the traverse table, and take out the azimuth corresponding to the factor from the azimuth Table C ${ }^{\mathbf{1}}$. The azimuth in this table is given to the nearest minute of arc for 45° from the meridian.

Examples: To find the Azimuth.
(土.) Lat. $\quad 4^{\circ} \cdot 3 \mathrm{~S}$. (p. 20) A $2 \frac{1}{274} \mathrm{~S}$.

H.A. 4h. 18m. D. long. 1.503 Dep. rogo

For further examples see pages $119-120$, and on page 121 for great-circle sailingcourses.

Formule used in the Calculation of the Tables.

$\mathrm{A}=$ tang of latitude \times cotang of hour-angle.
$B=$ tang of declination \times cosec of hour-angle.
For C "Azimuths," cot azim. $=$ cor. $\times \cos$ latitude, where cor. is the result of the sum or diff. of A and B.

For C1 "Azimuths," cotan azim. = correction.
For C^{2} " Position-lines," \tan position-line $=$ correction.

Interpolation.

When it is deemed necessary to interpolate, this can usually be done at sight, except for the hour-angles up to the first hour from the meridian, and in a high latitude up to the second hour from the meridian.

For Table A, when both time and latitude are nearly midway between that given in the table, interpolate diagonally ; for example, lat. $40^{\circ} 30^{\prime}$, hour-angle 2 h .22 m ., it will be seen at a glance that $\mathrm{I} \cdot 20$ is the correct factor. For Table B there is no appreciable difference in 4 m . of time (except in the very small hour-angles), and it is therefore only necessary to interpolate vertically for the fraction of the degrees of declination. For the bright stars no interpolation is necessary even for the declination, as the declination of a star does not appreciably change for many years, and the factors are here calculated for the stars' declination corresponding to the year 1910. For both Tables A and B the interpolation of the small hour-angles up to 1 hour should be effected by dividing the quantity given at I m . by the number of minutes that the body observed is from the meridian. The variation to I^{\prime} of latitude at $o \mathrm{~h} . \mathrm{Im}$. is given to assist in the interpolation for the odd minutes of latitude, in case surveyors or others should require a very accurate azimuth.

The following example will illustrate how the interpolation may here be effected:-

Lat. $40^{\circ} 36^{\prime}$, H.A. o h. Io m. : required the azimuth.
Lat. 40° at o h. I m. A. $=192.3^{\prime}$ var. to I^{\prime} of lat. $=6.82^{\prime \prime}$ or 6.82^{\prime} to I° of lat.

$$
\text { Lat. } 40^{\circ} 36^{\prime}=\quad 19 \cdot 64=\text { from Table C Az. } 3 \cdot 8^{\circ}
$$

If greater accuracy is required, $19.64^{\prime} \times \cos$ lat. $40^{\circ} 36^{\prime}$ gives \cot az. $3^{\circ} 50^{\prime}:-$

$$
\begin{aligned}
& 19.64^{\prime} \log \quad 1.2931 \\
& 40^{\circ} 36^{\prime} \cos \quad 9 \cdot 8804 \\
& 3^{\circ} 50^{\prime} \cot \text { II. } 1735
\end{aligned}
$$

Example to find the Difference of Longitude due to Error in the Latitude.
In lat. by D.R. $16^{\circ} 30^{\prime}$ N.; hour-angle 2 h .44 m . E. and \odot^{\prime} 's declination $1 \mathrm{I}^{\circ}$ S., the longitude was found to be $40^{\circ} 50^{\prime} \mathrm{E}$. Required the longitude, in latitude $16^{\circ} 38 \mathrm{~N}$., the latitude previously worked with having been found to be 8^{\prime} in error.

$\mathrm{A}=\cdot 34^{\prime} \mathrm{S}$.
 $B=\cdot 30^{\prime} \mathrm{S}$.
 Sum ${ }^{\cdot} 64^{\prime}$ S. to $\mathrm{W} .=$ cor. or error in the longitude due to
 Lat. found to be 8^{\prime} N. of D.R.
 Cor. to 8^{\prime} of lat. $5^{\prime} 12^{\prime}$ or $5^{\prime} 7 \cdot 2^{\prime \prime}$ S. to W. or N. to E.

Knowing the error of longitude due to an error of I^{\prime} of latitude, we have the means ready at hand of quickly determining both the latitude and longitude when two suitable observations have been taken of celestial objects.

This may be effected either by plotting the two positions and position-lines on the chart, which is the ordinary "Sumner" problem (worked with only two instead of the usual four hour-angles), or the position may be found even more expeditiously by simple proportion.

The actual trend of the position-line for plotting on the plane chart may be found from Table C^{2}, attending to the rule there given; or, by subtracting the azimuth as found from Table C from 90°, and reversing the name of the object's bearing, the true position-line will be found for plotting on a Mercator chart.

Any single observation, whether on or near the meridian, or prime vertical, or any other bearing, simply gives a position as being somewhere on a line of bearing at right angles to the bearing of object. If a second observation is taken after the body has changed its bearing, or another body is observed at the same time having a different bearing, we get another line of position, and the intersection of the two position-lines will give the latitude and longitude of the observer. Without the trouble of putting the position on the chart, the same principle may be worked out by a little proportion sum.

The three elements used in finding the time or longitude are latitude, altitude, and declination. If these three elements are correctly known, the same time or the same longitude will be found by every celestial body observed, whatever the bearing may be. If, therefore, the declination and altitude are correctly known, any difference of longitude found, resulting from the observation of different bodies (or the same body after an interval of time between the observations), must be due to error in the latitude.

The error in longitude due to I^{\prime} error of latitude is given by the A and B Tables. It becomes, therefore, a simple matter of proportion to find the correction to apply to the latitude used in finding the longitude. Say the longitudes resulting from the observation of two different stars are 15^{\prime} apart, and with star No. I every I^{\prime} north of latitude throws the longitude $0 \cdot 8^{\prime}$ more to the east, with star No. 2 every I^{\prime} north of latitude throws the longitude $I^{\prime} \cdot 2^{\prime}$ more to the west; then every I^{\prime} of error in the latitude will throw the longitudes 2^{\prime} apart, and the error of latitude will be found by the proportion 2^{\prime} d. long. : $15^{\prime} \mathrm{d}$. long. : : I^{\prime} lat. : $7 \frac{1}{2}{ }^{\prime}$ lat.

This would be represented on the chart by the accompanying figure.
The writer has found the ship's position b this method many hundreds of times, and find that he gets a more accurate latitude in this wa than even by the meridian altitude, experience having shown that although an altitude may often be slightly in error, yet a correct difference in altitude is generally measured, or the same amount of error will generally be thrown into both observations, and when this is the case (if the observations are suitably chosen) small errors
 in altitude practically make no difference in the latitude. Observations which have been taken in the quicksilver of two stars not near the meridian, or of two sun observations with a suitable interval of time between them, have generally given the latitude within $0^{\cdot} I^{\prime}$ of the truth, when taken where the position of places has been accurately known.

Table \mathbf{C}^{2}.-Position-lines.

Table C^{2} gives the position-lines corresponding to the A and B correction at any time for plotting on a plane scale chart. By the aid of this small table any one possessing a protractor rule with the ordinary diagonal, or any other scale of inches, can plot the "Sumner" position in his sight-book with even greater accuracy than he could obtain it from the ordinary "Sumner" Mercator charts. The table does not give the true geographical lines of position, but lines of position which will give the same result as to latitude and longitude on a plane chart as the true lines of position would give on a Mercator chart. See instruction at foot of page under the table (p. 75).

Table D.-Altitude and Time-azimuth Table, showing the Error produced in the time or Longitude by an Error of 1^{\prime} in the Altitude.

This table gives best results for azimuth when body is near the meridan. It will not give accurate results when body is near the prime vertical, and there is then uncertainty as to naming the azimuth N . or S . of the prime vertical.

Rule for finding the Azimuth.

With H.A. as Az. and decl. as lat., go to Table D.
Take out coefficient ; call it M.
With alt. as lat. and M., take out Az. at top or side.

Example.

Lat. 41° S. $*$ Canopus (decl. $52^{\circ} 39^{\prime}$ S.) H.A. 3 h. ıom. $40 \mathrm{~S},=47^{\circ} 40^{\prime}$. Alt. $56^{\circ} 5^{\prime}$.

Required the Azimuth.

$\left.\begin{array}{l}\text { Lat. (decl.) } 52^{\circ} 39^{\prime} \\ \mathrm{Az} \text {. (H.A.) } 47^{\circ} 40^{\prime}\end{array}\right\}$ gives $\mathrm{M} .=8.92$. Lat. (alt.) $56^{\circ} 5^{\prime}$, and M. 8.92 gives Az. $532^{\frac{1}{\circ}}$.
Table D will be found very useful in working out separately a set of observations, both with artificial horizon and at sea; or for working out another person's observations, taken within a few minutes of the same time. It also shows at sight the degree of dependence of any observation. And if at any time it is found that an erroneous altitude has been worked with, the longitude will readily be corrected by this table, a greater altitude giving a smaller hour-angle, or with A.m. sights a greater altitude making the longitude more to the eastward, and a lesser altitude making the longitude more to the westward-vice versa with P.m. sights.

It will also be found useful when taking time azimuths by the sun or stars (when altitude is low) for readily obtaining the correct hour-angle, as in the following example: Lat. $20^{\circ} \mathrm{N}$. , * Arcturus bearing N. $7 \mathrm{I}^{\circ} \mathrm{E}$. (true), altitude 5°. Table D at lat. 20° and azimuth 71° gives 4.5 m . of time to I° change of alt. Table 26 (Raper), lat. $20^{\circ} \mathrm{N}$., decl. $20^{\circ} \mathrm{N}$., gives *'s hour-angle at rising or setting 6 h .30 m .

$$
\begin{aligned}
4.5 \mathrm{~m} . \times 5^{\circ} & =\frac{-22 \frac{1}{2}}{6} \quad 7 \frac{1}{2} \\
* \text { 's H.A. at } 5^{\circ} & =\frac{1}{}
\end{aligned}
$$

The results of the table can be easily found by inspection from the traverse table. At the Equator, when the sun or any other heavenly body is on the prime vertical, it moves at the rate of I° in 4 m ., or I^{\prime} in 4 s . of time; and, in any other latitude, when the sun is on the prime vertical, the ratio of its movement will be dep.: diff. long. Having, then, the rate of movement in any latitude on the prime vertical, the rate of movement on any other bearing may be found by the traverse table.

Example.-In latitude 30°, and \odot^{\prime} s bearing N. $63^{\circ} \mathrm{E}$., required the rate at which it moves. In latitude 30°, against 4 in D. lat. column, is 4.62 in dist. column; with \odot 's bearing 63°, and $4^{\circ} 62$ in dep. column, we have 5.18 in distance column $=5 \cdot 18 \mathrm{~s}$. to I^{\prime} of altitude.

The following formula was used in the calculation of the table: $D=$ secant of latitude \times cosecant of azimuth $\times 4$.

Further examples in the use of the table are given on pages 105 and 125.

Table E.-Altitude Corrections of Sun and Stars.

This table (the upper half for the sun, and the lower half for the stars) gives the lump correction to apply to their observed altitudes, involving for the sun dip, refraction, semidiameter, and parallax, and for the stars dip and refraction.

As the correction for very small altitudes changes rapidly, a supplementary table is given on page 87 for the correction of both sun and stars, at a height of 40 ft . above sea-level, for altitudes between 3° and 11°, for every few minutes of altitude, and for other heights greater or less than 40 ft . a second correction is given in same table.

Heights are given from 6 ft . to 80 ft . so as to meet the need of navigators in every class of vessel, from the smallest to the largest. As standard authorities still slightly differ in their dip and refraction tables, a mean of the dip and refraction given in the three standard works (Raper, Inman, and Norie) has been used in the calculation of the table here given, and great care has been taken to insure accuracy.

Table F.-Acceleration Table.

This table is used for converting intervals of mean solar time into equivalent intervals of sidereal time. The seconds column which is given in most navigational tabular works has here been omitted for the sake of space, and because it is considered quite unnecessary in ordinary practical navigation. In practical navigation it becomes necessary in nearly all the problems where stars are used to convert mean solar time into sidereal time, as, for instance, in the time azimuth, longitude by chronometer, and the ex-meridian problems. In these problems the time is generally taken by a chronometer keeping mean solar time, and to compare this with the sidereal time found by the stellar observation it must be reduced to sidereal time.

Examples will be found among some of the worked-out problems which follow the tables in this book.

Table G.-Star Polaris Azimuth Table.

This table is useful especially in latitudes between $15^{\circ} \mathrm{N}$. and $30^{\circ} \mathrm{N}$., as, for instance, in the Red Sea. In a high latitude the altitude will be too high for compasscorrection work, and it is not therefore given beyond 60° of latitude.

Examples in the use of table are given later on in this book.
The table has been calculated for stars' declination in 1910-viz., $88^{\circ} 49^{\prime}$ $33^{\circ} 57^{\prime \prime} \mathrm{N}$.

The Mean Places of 108 of the Brightest Stars, in order of Right Ascension, for 1st January, 1917.

On pages 7-8 the mean places of 108 of the brightest stars are given, in the order of their right ascension, for the ist January, r917. In the column headed " Mag." the adopted unit of brightness is designated $r \circ 0$. The magnitudes of stars are determined to tenths of a magnitude with reference to this adopted unit. The magnitudes of the ten stars brighter than the unit are indicated by figures less than $1 \circ 0$: thus, the value $0 \cdot 3$ for Arcturus indicates that that star is seven-tenths of a magnitude brighter than the unit; the value -r 4 for Sirius that it is 2.4 magnitudes brighter than the unit. As the right ascensions and declinations of the stars do not change uniformly throughout the year, the correction for intermediate months cannot be made accurately by multiplying the annual change by a fraction of the year; but the change is so small that for navigational purposes at sea the right ascensions and declinations here given may be used without appreciable error for azimuths and latitudes, and even for longitude the error due to using these elements would seldom exceed a mile. When accuracy is required the navigator should use the "Admiralty Nautical Almanac," where the right ascensions and declinations of these and many other stars are given very minutely for every ten days throughout the year.

Approximate Apparent, Times of the Meridian Passages of the Principal Fixed Stars.

The times are given in this table for the rst of each month, and the meridian of Greenwich. To find the time for any other day subtract the portion of time corresponding to the day of the month in the day-correction table. Add I min. for every 90° of east longitude and subtract 1 min . for every 90° of west longitude.

The time of the meridian passage of each star has been carefully calculated to the nearest second of time, and is given in the table to the nearest minute.

For the circumpolar stars which never set in higher latitudes than $50^{\circ} \mathrm{N}$. or S . the times of the meridian passages of the inferior as well as the superior transit has been given.

Example and Caution in using this Table.

Required the meridian passage of $* \beta$ Centauri on 3 rst October, in longitude $10^{\circ} \mathrm{W}$.
H. M.

Mer. pass. of $* \boldsymbol{\beta}$ Centauri on ist Oct. is i 30 p.m.
Cor. for 3ist day
Approx. time
2nd cor. required

- 152
D.

31. $233^{8}=1138$ a.m. on ist Nov.
D. -4

Approx. mer. pass. * $\boldsymbol{\beta}$ Centauri
312334 or II 34 a.m. on ist. Nov.
The interval in this case is within 2 hours of 31 days instead of 30 days, therefore nearly 4 minutes more correction is required to be subtracted. The correction for longitude would be less than io seconds.

The table is calculated for the year 1910, but will be within 2 min . for many years, with the single exception of the $*$ Polaris which has an annual and increasing change in R.A. of over 27 s ., and will therefore be about 5 min . later in passing the meridian in ro years' time.

Supplementary Ex-meridian Tables, \&c.

Explanations given on pages 142 and 143.

THE MEAN PLACES OF 108 OF THE BRIGHTEST STARS
IN ORDER OF RIGHT ASCENSION,
FOR 1st JANUARY, 1917.

	Name.	Mag.	$\begin{gathered} \text { Right } \\ \text { Ascension. } \end{gathered}$		Declination.	
			H. M. S.	s.		- "
a Andromedæ	.. (Alpheratz)	2.2	- 4 5.6	$+3.09$	N. 283756	$+20.0$
β Cassiopeiæ		2.4	$\bigcirc \quad 444.4$	3.12	N. 584131	$+20^{\circ}$
a Phœnicis .		$\stackrel{24}{ }$	O 22 II'O	$2 \cdot 95$	S. 424525	-20.0
a Cassiopeiæ	.. (Schedar)	Var.	- $35+7^{\circ} 2$	$3 \cdot 38$	N. 56456	+19.8
β Ceti	.. (Deneb Kartos)	$2 \cdot 2$	c 39254	$3 \cdot 00$	S. 182631	- 19.8
γ Cassiopeiæ		$2 \cdot 3$	- 5141.2	$+3.60$	N. 60163	+19.5
β Andromedæ	.. (Mirach)	2.4	I 54.8	$3 \cdot 34$	N. 35 10 51	+19.2
δ Cassiopeiæ		$2 \cdot 8$	I 2022.4	$3 \cdot 86$	N. 594816	+18.8
a Ursæ Minoris	.. (Polaris)	$2 \cdot 1$	I 3013.2	28.99	N. 885144	+18.5
a Eridani (Achernar)	0.6	13437.5	$2 \cdot 23$	S. 573929	-18:4
β Arietis		$2 \cdot 7$	1503.1	$+3.30$	N. 2024 10	$+17.8$
γ^{1} Andromedæ	.. (Almach)	$2 \cdot 3$	I 5847×8	$3 \cdot 67$	N. 415555	+17.4
a Arietis	.. (Hamel)	$2 \cdot 2$	$2 \quad 2 \quad 29.4$	$3 \cdot 36$	N. 23	+17.3
a Ceti	. (Menkar)	2.8	$25756 \cdot 3$	$3 \cdot 13$	N. 34553	+14.3
a Persei	. (Mirfak)	1.9	318230	$4 \cdot 27$	N. 4934 o	+13.0
a Tauri	.. (Aldebaran)	$1 \cdot 1$	43190	$+3.44$	N. 162036	+ 7.6
β Orionis	. (Rigel)	$0 \cdot 3$	5 го $32 \cdot 9$	2.88	S. 817848	-4.3
a Aurigæ	. (Capella)	$\cdot 2$	5 10 33.3	$4 \cdot 42$	N. 455454	+ 43
γ Orionis	.. (Bellatrix)	$1 \cdot 7$	$52040 \cdot 7$	$3 \cdot 22$	N. 61631	+34
β Tauri	.. (Nath)	$1 \cdot 8$	$\begin{array}{lll}521 & 2.6\end{array}$	379	N. 283218	+ 3.4
a Leporis		$2 \cdot 7$	52941	$+2.65$	S. 175^{21}	- 2.7
ϵ Orionis	- (Alnilam)	$1 \cdot 7$	532 O ¢ 1	3.04	S. 11515	-2.4
ζ Orionis	.. (1st *)	$2 \cdot 0$	$53634 \cdot 2$	3.03	S. 1599	-2.0
a Columbx	.. (Phact)	$2 \cdot 7$	$53638 \cdot 5$	2.17	S. 3474	- 2.0
κ Orionis	.. (Suiph)	2.2	$54349{ }^{\circ}$	$2 \cdot 84$	S. $94^{1} 54$	- r 4
a Orionis	.. (Betelguese)	Var.	$55040 \cdot 7$	$+3.25$	N. 72333	+ 0.8
β Aurigæ	. (Menkalinan)	$2 \cdot 1$	$55^{5} 3264$	4.41	N. 445625	+ 0.6
θ Aurigæ	. . .	$2 \cdot 7$	55437	$4 \cdot 09$	N. 371229	+ 0.5
β Canis Majoris		$2 \cdot 0$	$\begin{array}{lll}6 & 19 & 2 \cdot 7\end{array}$	2.64	S. 175450	+ 177
a Argûs (Canopus)	-o 9	62265	1.33	S. 52390	+ I'9
γ Geminorum	.. (Alhena)	1.9	$63255 \cdot 1$	$+3.46$	N. 162816	-2.9
a Canis Majoris	.. (Sirius)	- 1.6	64129.3	2.68	S. $1636 \quad 6$	+ 3.6
τ Argûs		$2 \cdot 8$	64752.6	I 49	S. $50 \quad 30 \quad 56$	+ 4.2
ϵ Canis Majoris	.. (Adara)	1.6	$655 \quad 2 \mathrm{I} \cdot 8$	$2 \cdot 36$	S. 285130	+ 4.8
δ Canis Majoris		2.0	$7 \quad 510$	2.44	S. $26 \leq 539$	+ $5 \cdot 6$
π Argûs	.. \quad.	$2 \cdot 7$	$\begin{array}{lllll}7 & 14126\end{array}$	$+2.12$	S. 365652	$+6.4$
η Canis Majoris	-	$2 \cdot 4$	$72048 \cdot 8$	$2 \cdot 37$	S. 29826	+ $6 \cdot 9$
a^{2} Geminorum	. (Castor)	2.0	$7 \quad 2918.3$	$3 \cdot 85$	N. 32419	$-7 \cdot 6$
a Canis Minoris	. (Procyon)	$0 \cdot 5$	73457.4	$3 \cdot 19$	N. 52619	- 8.1
β Geminorum	.. (Pollux)	$1 \cdot 2$	74014.4	372	N. 28134^{0}	-8.5
ζ Argûs	.. .	$2 \cdot 3$	8 ○ $40^{\circ} 0$	$+2.11$	S. 39468	+10. 1
γ Argûs		2.2	$8 \quad 6 \quad 58 \cdot 4$	1.85	S. 47529	+10. 5
ϵ Argûs		17	82048%	$1 \cdot 24$	S. 59 I4 3 r	+11.6
δ Argûs	\cdots	2.0	84224.7	1.66	S. 5424 I 5	$+13^{\circ}$
β Argûs	\cdots	1.8	912177	$0 \cdot 70$	S. 692231	+14.9
C Argûs	. (Tureis)	$2 \cdot 3$	$9145^{\circ} \mathrm{O}$	+r.6I	S. 585536	$+15.1$
κ Argûs		2.6	91932.5	I•86	S. 543921	+153
a Hydræ	.. (Alphard)	$2 \cdot 2$	$92330 \cdot 6$	2.95	S. 81754	+15.5
a Leonis	. (Regulus)	$1 \cdot 3$	10 $357 \% 2$	3.21	N. 122224	-17.5
γ^{1} Leonis	.. (Algeiba)	2.6	101523.9	3.29	N. 201543	- 18.0
μ Argûs	.	2.8	104311.7	+2.57	S. 485853	+18.9
β Ursæ Majoris		2.4	10 $5650 \cdot 6$	3.63	N. 564939	-19.3
a Ursæ Majoris	. (Dubhe)	2.0	10 $5837 \cdot 1$	3.74	N. 62 Ir 58	-19.3
δ Leonis	. (Zosma)	$2 \cdot 6$	$\begin{array}{lllllllllll}11 & 9 & 4\end{array}$	3.18	N. 205843	-19.6
β Leonis	. (Denebola)	$2 \cdot 2$	114449.6	$3 \cdot 10$	N. 15210	-20.0

THE MEAN PLACES OF 108 OF THE BRIGHTEST STARS-continued.

[Note.-In this table + means add, and - means subtract.]
In the column headed "Mag." the adopted unit of brightness is designated ro. The magnitudes of stars are determined to tenths of a magnitude with reference to this adopted unit: thus the value - 1.6 for Sirius indicates that that star is 2.6 magnitudes brighter than the unit; the value 0.3 for Arcturus indicates that that star is seven-tenths of a magnitude brighter than the unit. Greenwich on the First Day of each Month, 1910.

Approximate Apparent Times of the Meridian Passages of the Principal Fixed Stars at Greenwich on the First Day of each Month, 1910-continued.

Approximate Apparent Times of the Meridian Passages of the Principal Fixed Stars at Greenwich on the First Day of each Month, 1910-continued.

$\dagger \mathrm{N}$ or $\dagger \mathrm{S}$. - These times relate to the Meridian Passages of Circumpolar Stars at the Inferior Transit, N. or S. denoting the Declination of the Star.

Correction of the Times in the preceding Table for the Day of the Month (to be subtracted).

Days.	Jan.	Feb.	Mar.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
	H.	H.	H	H. M.	H		H. M.					
I	00	00	0	00	00	0	00	00	0 O	00	0	00
2	- 4	- 4	- 4	O 4	- 4	O 4	O 4	O 4	O 4	04	O 4	04
3	- 9	- 8	- 7	- 7	- 8	- 8	- 8	- 8	- 7	O 7	- 8	- 9
4	- 13	- 12	0 II	0 II	0 II	012	012	0 I2	0 II	0 II	012	O 13
5	- 18	- 16	- 15	- 15	O I5	- 16	- I6	- I5	- I 4	- 15	O 16	- 17
6	022	O 20	- 19	- 18	- 19	O 21	021	- 19	- İ8	- I8	O 20	O 22
7	- 26	- 24	O 22	O 22	- 23	- 25	- 25	O 23	O 22	O 22	- 24	- 26
8	- 30	- 28	- 26	O 26	- 27	- 29	- 29	- 27	- 25	- 25	- 28	- 30
9	- 35	- 32	- 30	- 29	- 30	- 33	- 33	- 31	- 29	- 29	- 32	- 35
10	- 39	- 36	- 33	- 33	- 35	- 37	- 37	- 35	- 32	- 33	- 36	- 39
II	O 43	040	037	- 36	- 39	O 41	O 41	o 38	- 36	- 37	- 40	- 44
12	- 48	- 44	- 4 I	- 40	- 42	- 45	- 45	O 42	- 40	O 40	044	O 48
13	- 52	- 48	- 44	- 44	- 46	- 49	- 49	- 46	- 43	O 44	- 48	- 52
14	- 56	- 52	- 48	- 48	- 50	- 54	- 53	- 50	- 47	- 48	- 52	- 57
15	I I	- 56	- 52	- 51	- 54	- 58	- 57	- 53	- 50	- 5I	- 56	1 I
16	I 5	I 0	- 55	- 55	- 5^{8}	12	1 I	- 57	- 54	- 55	I 0	I 6
I7	I 9	I 3	- 59	- 59	I 2	I 6	I 5	I I	- 58	- 59	I 4	I 10
18	1 I 3	I 7	I 2	I 2	I 6	I 10	I 9	I 5	I I	I 3	I 9	15
19	I 18	1 II	I 6	I 6	110	I I4	I 13	I 8	I 5		I 13	I 19
20	122	1 I 5	110	110	1 I 4	I 19	I 17	I 12		I 10	117	I 24
2 I	I 26	1 I 9	I I4	13	I I 8	I 23	I 21	I 16	I 12	I 14	I 21	I 28
22	I 31	I 23	I 17	17	I 22	I 27	I 25	I 19	I 16	I 18	I 25	I 32 3
23	I 35	I 26	I 21	121	I 26	I 31	I 29	11 23	I 19	1 I	I 30	Ј 37
24	I 39	I 30	$1 \begin{array}{ll}1 & 24 \\ \text { I }\end{array}$	125	I 30	I 35	I 33	I 27	I 23	I 25	$\begin{array}{ll}\text { I } & 34 \\ \text { I }\end{array}$	I 4I
25	I 43	I 34	I 28	I 28	I 34	I 39	I 37	131	I 26	I 29 I	I 38	I 46
26	I 47	I 3^{8}	132	I 32	I 38	I 44	I 4I	I 34	I 30	$\begin{array}{ll}\text { I } & 33 \\ \text { I }\end{array}$	I 42	I 50
27	I 51	I 42	I 35	I 36	I 42	I 48	I 45	138	I 34	I 37	I 47	I 55
28	I 56	I 45	$\begin{array}{ll}\text { I } & 39 \\ \text { I }\end{array}$	I 40	I 46	$\begin{array}{ll}\text { I } 52 \\ \text { I } & 56\end{array}$	I 49	$\begin{array}{ll}\text { I } & 42 \\ \text { I }\end{array}$	I 37	I 41	I 51	I 59
29	20		I 43	I 44	I 50	I 56	I 53	I 45	I 41	I 44	I 55	23
30	24	.	I 46	I 47	I 55	20	$\begin{array}{ll}\text { I } & 57 \\ 2\end{array}$	I 49 I 42	I 44	14 I r r 2	I 59	$\begin{array}{rr}2 & 8 \\ 2 & 12\end{array}$
3 I	28	.	1 50	. .	I 59		2	152	.	I 52		

Table A.
When hour angle is less than 6 hours, name the factors taken from Table A contrary to name of lat.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{苂} \& \multicolumn{16}{|c|}{0 HOURS.} \& \multirow[t]{2}{*}{$$
\frac{1 \mathrm{Hr} .}{\mathrm{m}_{00} .}
$$}

\hline \& m_{01} \& $$
\begin{aligned}
& \text { Var, } \\
& \text { to }{ }^{\prime} \\
& \text { of } \\
& \text { Lat. } \\
& \hline
\end{aligned}
$$ \& m . \& ${ }_{8}^{\mathrm{m}}$. \& ${ }_{12}$ \& ${ }_{18} \mathbf{1 8}$ \& m_{20} \& ${ }_{24}{ }^{\text {m }}$ \& m_{28} \& m_{32} \& m_{36}. \& m_{40} \& ${ }_{4} \mathrm{~m}$ \& ${ }_{48}$ \& ${ }_{52}{ }^{2}$. \& ${ }_{56} \mathrm{~m}$. \&

\hline \& \& \& \& \& \& \& \& \& \& \& \bigcirc \& \& \& \& \& \&

\hline \& \& 0 \& 1.00 \& \& -33 \& -25 \& \& 7 \& \& \& II \& 0 \& 9 \& 08 \& 08 \& 07 \& 7

\hline \& 8.0 \& 4.01 \& $2 \cdot 00$ \& roo \& -67 \& \& -40 \& 33 \& $\cdot 28$ \& 25 \& $\cdot 22$ \& 20 \& 18 \& 16 \& 15 \& 14 \& ${ }^{1} 3$

\hline \& 12.0 \& 4.01 \& $3 \cdot$ \& 150 \& -0 \& 75 \& -60 \& 50 \& 43 \& 37 \& 33 \& 30 \& 27 \& 25 \& $\cdot 23$ \& 21 \& 20

\hline \& 16.0 \& 4.02 \& $4^{\circ} \mathrm{OI}$ \& $2 \cdot 00$ \& 1.33 \& 1.00 \& -80 \& -66 \& 57 \& 50 \& 44 \& 40 \& 36 \& 33 \& 30 \& 28 \& 26

\hline 5 \& $20 \cdot 1$ \& $4 \cdot 03$ \& $5^{\circ} \mathrm{OI}$ \& 2.51 \& r 67 \& $1 \cdot 25$ \& 100 \& 83 \& 71 \& 62 \& 55 \& 50 \& 45 \& 4 4 \& 38 \& 35 \& 33

\hline 6 \& $24^{\circ} \mathrm{I}$ \& 4.05 \& \& 3.01 \& \& 1.50 \& 20 \& 1.00 \& 6 \& 75 \& -66 \& 60 \& 54 \& 49 \& 46 \& 42 \& 39

\hline \& $28 \cdot 1$ \& 4.06 \& 7.03 \& 3.52 \& $2 \cdot 34$ \& 76 \& 40 \& $1 \cdot 17$ \& I•00 \& 87 \& 78 \& O \& 3 \& 5 \& 53 \& 49 \& 46

\hline \& $32 \cdot 2$ \& 8 \& \& $4^{\circ} \mathrm{O}$ \& 2 \& or \& 6 \& r 34 \& $1 \cdot 14$ \& - 00 \& 89 \& \& 72 \& 66 \& 61 \& 56 \& 52

\hline 9 \& $36 \cdot 3$ \& 4.10 \& 9.07 \& 4.54 \& $3{ }^{\circ}$ \& $2 \cdot 27$ \& \& 151 \& $1 \cdot 29$ \& I'13 \& 1.00 \& -90 \& 8 I \& 75 \& -69 \& 64 \& 59

\hline 10 \& $40 \cdot 4$ \& $4 \cdot 12$ \& ro'I \& 5.05 \& 3.36 \& 2.52 \& 02 \& I.68 \& 1.44 \& 125 \& I'II \& 1 00 \& 9r \& 83 \& 76 \& 71 \& 66

\hline II \& 44.5 \& \& II'I \& \& \& \& 22 \& 5 \& I'58 \& -38 \& 1.23 \& I'IO \& 1.00 \& 91 \& 4 \& 78 \& 3

\hline 12 \& $48 \cdot 7$ \& $4 \cdot 18$ \& 12 \& \& 4.06 \& 3.04 \& $2 \cdot 43$ \& 02 \& 1.73 \& $1 \cdot 51$ \& 134 \& I \& 9 \& 1.00 \& 2 \& 85 \& 9

\hline 13 \& 52.9 \& 21 \& 13.2 \& $6 \cdot 61$ \& $4{ }^{-1}$ \& 3 \& $2 \cdot 64$ \& $2 \cdot 20$ \& \& I. 64 \& $1 \cdot 46$ \& 1.31 \& $1 \cdot 19$ \& -09 \& I 00 \& 93 \& 86

\hline 14 \& $57^{\circ} \mathrm{I}$ \& $4 \cdot 25$ \& 14.3 \& 714 \& 4.76 \& 3.57 \& 2.85 \& $2 \cdot 37$ \& $2 \cdot 03$ \& ${ }^{1} 77$ \& 1.57 \& $\mathrm{r}^{4} \mathrm{4}$ \& I \& $1 \cdot 17$ \& I.08 \& 1.00 \& 3

\hline 15 \& \& 29 \& 15.4 \& $7 \cdot 67$ \& $5 \cdot 11$ \& 3.83 \& 3.06 \& $2 \cdot 55$ \& $2 \cdot 18$ \& 1.91 \& I 69 \& I• 52 \& 13 \& I-26 \& -16 \& r-07 \& roo

\hline 16 \& \& $4 \cdot 33$ \& 16. \& $8 \cdot 21$ \& 547 \& 4.10 \& 3.28 \& 73 \& 34 \& 2.04 \& -81 \& 3 \& \& I 35 \& 124 \& $1 \cdot 15$ \& . 07

\hline 17 \& $70 \cdot 1$ \& $4 \cdot 37$ \& 17.5 \& $8 \cdot 75$ \& $5 \cdot 83$ \& $4 \cdot 37$ \& $3 \cdot 49$ \& 2.91 \& 2.49 \& $2 \cdot 18$ \& 1.93 \& 1×73 \& 1.57 \& 1.44 \& I 32 \& I 23 \& 1 14

\hline 18 \& 74.5 \& 42 \& $18 \cdot 6$ \& 9.30 \& $6 \cdot 20$ \& $4 \cdot 65$ \& $3 \cdot 71$ \& 3.09 \& $2 \cdot 65$ \& 1 \& $2 \cdot 05$ \& I-84 \& - 67 \& I 53 \& r 4 \& 130 \& r 21

\hline 19 \& 78.9 \& 47 \& $19 \cdot 7$ \& $9 \cdot 86$ \& $6 \cdot 57$ \& 4.92 \& 3.94 \& $3 \cdot 28$ \& $2 \cdot 80$ \& $2 \cdot 45$ \& $2 \cdot 17$ \& I 95 \& r 77 \& I 62 \& 1.49 \& 38 \& I•29

\hline 20 \& 83.4 \& 4.53 \& $20 \cdot 9$ \& 10.4 \& $6 \cdot 94$ \& 5.21 \& 4•16 \& 3.46 \& $2 \cdot 96$ \& $2 \cdot 59$ \& $2 \cdot 30$ \& \& \& 171 \& - 5 \& $1{ }^{4} 4$ \& 1.36

\hline 21 \& $88 \cdot 0$ \& 4.59 \& 22.0 \& 1 \& $7 \cdot 32$ \& \& 4.39 \& $3 \cdot 65$ \& $3 \cdot 13$ \& 3 \& $2 \cdot 42$ \& \& \& -81 \& 1.66 \& 54 \& r 43

\hline 22 \& $92 \cdot 6$ \& $4 \cdot 65$ \& $23^{\prime} 1$ \& It•6 \& 7.71 \& $5 \cdot 78$ \& 4.62 \& $3 \cdot 8$ \& 3.29 \& $2 \cdot 87$ \& $2 \cdot 55$ \& $2 \cdot 29$ \& $2 \cdot 08$ \& 90 \& r 75 \& - 62 \& 1.51

\hline 23 \& 973 \& 4.72 \& $24^{\circ} 3$ \& 12 \& $8 \cdot 10$ \& $6 \cdot 07$ \& $4 \cdot 85$ \& 4.04 \& 3.46 \& 3.02 \& $2 \cdot 68$ \& 2.41 \& $2 \cdot 18$ \& -0 \& I-84 \& 1.70 \& r.58

\hline 24 \& r02 \& 4.79 \& $25^{\circ} 5$ \& $12 \cdot 7$ \& $8 \cdot 50$ \& $6 \cdot 37$ \& 5.09 \& 4 \& 3.63 \& $3 \cdot 17$ \& 2.81 \& 2.53 \& 2.29 \& -09 \& r 93 \& I'79 \& r.66

\hline 25 \& IO \& 4:87 \& 26.7 \& 13.4 \& $8 \cdot 90$ \& $6 \cdot 67$ \& 5.33 \& 44 \& 3.80 \& $3 \cdot 32$ \& 2.94 \& 2.64 \& 2.40 \& 2.19 \& 02 \& I•87 \& r'74

\hline 26 \& \& \& 27×9 \& 14.0 \& $9 \cdot 31$ \& $6 \cdot 97$ \& 557 \& \& 3. \& 3.47 \& 3.08 \& 7 \& \& $2 \cdot 29$ \& $2 \cdot 11$ \& 1 96 \& I-82

\hline 27 \& 116.8 \& $5 \cdot 04$ \& 29.2 \& 14.6 \& $9 \cdot 72$ \& $7 \cdot 29$ \& 5.82 \& 4.85 \& 4.15 \& $3 \cdot 63$ \& 3.22 \& 2.89 \& 62 \& $2 \cdot 40$ \& $2 \cdot 2$ \& 2.04 \& r90

\hline 28 \& 1219 \& $5 \cdot 13$ \& $30 \cdot 5$ \& 15.2 \& 10'1 \& $7 \cdot$ \& 6.08 \& 5.06 \& 4.33 \& 3.78 \& 3.36 \& 3.02 \& 2.74 \& 2.50 \& $2 \cdot 30$ \& 13 \& r.98

\hline 29 \& 127° \& 5.23 \& 31 \& 15.9 \& 10.6 \& 7. \& 6.34 \& 27 \& 4.51 \& 3.94 \& 3.50 \& 4 \& 2.85 \& 2.61 \& 2.4 \& 22 \& 2.07

\hline 30 \& $132 \cdot 3$ \& 5.33 \& 33^{1} \& $16 \cdot 5$ \& Iro \& \& \& 49 \& 70 \& 4.11 \& 3.65 \& 3.27 \& 2.97 \& $2 \cdot 72$ \& 2.50 \& 32 \& $2 \cdot 15$

\hline 3 I \& 137% \& 5 \& 34° \& 17.2 \& Ir 5 \& \& 6.87 \& 2 \& 4 \& 4.28 \& $3 \cdot 79$ \& 1 \& 3.09 \& 2.83 \& $2 \cdot 6$ \& 4 \& $2 \cdot 24$

\hline 3 \& 143.2 \& $5 \cdot 55$ \& $35^{\circ} 8$ \& 179 \& Ir 9 \& \& 7.14 \& 5.95 \& 5.09 \& $4 \cdot 45$ \& $3 \cdot 95$ \& 3.54 \& 3.21 \& $2 \cdot 94$ \& 2.71 \& 2.51 \& $2 \cdot 33$

\hline \& 148.8 \& 69 \& 37^{2} \& $18 \cdot 6$ \& 12.4 \& 929 \& $7 \cdot 42$ \& $6 \cdot 18$ \& 5.29 \& $4 \cdot 62$ \& 4.10 \& 3.68 \& 34 \& 3.06 \& $2 \cdot 81$ \& 2.60 \& 2.42

\hline 34 \& ${ }^{1} 54.6$ \& 2 \& 38 \& 19 \& 12.9 \& $9 \cdot 65$ \& 771 \& $6 \cdot 42$ \& 5.49 \& 4.80 \& $4 \cdot 26$ \& 3.83 \& 47 \& $3 \cdot 17$ \& $2 \cdot 92$ \& 71 \& 2.52

\hline 35 \& $160 \cdot 5$ \& $5 \cdot 96$ \& 40'1 \& 20'1 \& 13 \& 10*0 \& -00 \& \& 570 \& 4.98 \& $4 \cdot 42$ \& 3.97 \& \& 3.29 \& $3^{\circ} \mathrm{O}$ \& \& 2.6I

\hline 36 \& 16 \& $6 \cdot 11$ \& 4 ${ }^{6}$ \& $20 \cdot 8$ \& 13 \& \& 8.30 \& 6.91 \& 5.92 \& 517 \& 459 \& 4.12 \& \& $3 \cdot 42$ \& \& 291 \& 71

\hline 37 \& ${ }^{1} 72 \cdot 7$ \& $6 \cdot 27$ \& $43^{\circ} 2$ \& 21.6 \& 14.4 \& 10.8 \& 8. \& $7 \cdot 17$ \& $6 \cdot 14$ \& 5.36 \& 4776 \& $4 \cdot 27$ \& 3 \& 3.55 \& $3 \cdot 26$ \& O2 \& $2 \cdot 81$

\hline 38 \& 179'I \& 6.44 \& 44 \& 22.4 \& $14^{\circ} 9$ \& I12 \& 8.93 \& $7 \cdot 43$ \& $6 \cdot 36$ \& $5 \cdot 56$ \& 4.93 \& 4.43 \& 02 \& 3.68 \& $3 \cdot 3$ \& -13 \& $2 \cdot 92$

\hline 39 \& 185.6 \& 62 \& 46.4 \& 23.2 \& 15.5 \& Ir 6 \& 9.26 \& $7 \cdot 70$ \& $6 \cdot 60$ \& $5 \cdot 76$ \& 5.11 \& 4.59 \& $4^{\circ} 77$ \& 3.81 \& 3.51 \& 3.25 \& 3.02

\hline 40 \& $192 \cdot 3$ \& $6 \cdot 82$ \& $4^{\circ} \mathrm{I}$ \& 24° \& 16.0 \& 12.0 \& 59 \& $7 \cdot 98$ \& $6 \cdot 83$ \& 5.97 \& $5 \cdot 30$ \& 476 \& $4 \cdot 32$ \& 3.95 \& \& 3.37 \& 3'13

\hline 41 \& 199\%2 \& 7.03 \& \& $24^{\circ} 9$ \& 16.6 \& 12.4 \& 9.94 \& $8 \cdot 27$ \& 7.08 \& $6 \cdot 19$ \& 5.49 \& 4.93 \& 4.47 \& 4.09 \& 3 \& 3.49 \& 3.24

\hline 42 \& $206 \cdot 4$ \& $7 \cdot 25$ \& 51.6 \& $25^{\circ} 8$ \& 17 \& 12.9

13.3 \& 10.3 \& 8.57 \& 7.33 \& $6 \cdot 4 \mathrm{~T}$ \& 5.68 \& 5.11 \& 4.63 \& 4.24 \& 3.90 \& 3.61 \& 3.36

\hline 43 \& 213.7 \& $7 \cdot 48$ \& $53^{\circ} 4$ \& $25^{27} 7$ \& I7 \& 13 \& $10 \cdot 7$ \& $8 \cdot 87$ \& 7.59 \& $6 \cdot 64$ \& $5 \cdot 89$ \& 5.29 \& 4.80 \& 4.39 \& $4{ }^{\circ} \mathrm{O}$ \& 3.74 \& 3.48

\hline 44 \& 221.3 \& 773 \& 55 \& 27 \& 18 \& 13.8 \& \& 9.19 \& 8.1 \& $6 \cdot 87$ \& 6.10 \& $5 \cdot 48$ \& 4.97 \& 4 \& \& $3 \cdot 87$ \& 3.60

\hline 45 \& 229:2 \& 8.00 \& 57 \& 28 \& 19 \& 14 \& II4 \& \& 8 \& $7 \cdot 1$ \& $6 \cdot 31$ \& 5.67 \& 5 \& 4770 \& \& $4^{\circ} \mathrm{O}$ \& 3.73

\hline 46 \& \& $8 \cdot 29$ \& 59 \& $29^{\prime} 7$ \& 19*8 \& 148 \& 8 \& $9 \cdot 85$ \& 8.43 \& 7.37 \& $6 \cdot 54$ \& 5.7 \& 5.33 \& 4.87 \& \& $4 \cdot 15$ \& $3 \cdot 86$

\hline 47 \& 245.8 \& $8 \cdot 60$ \& 6r.4 \& 30 \& 20.5 \& 15.3 \& $12 \cdot 3$ \& $10 \cdot 2$ \& 8.73 \& 7.63 \& $6 \cdot 77$ \& 6.08 \& 5.52 \& 5.05 \& \& - 30 \& 4.00

\hline 48 \& \& $8 \cdot 93$ \& 63.6 \& 3 \& 12 \& 10 \& 12.7 \& $10 \cdot 6$ \& 9.05 \& 7.90 \& $7 \cdot 01$ \& $6 \cdot 30$ \& 5.71 \& $5 \cdot 23$ \& \& 45 \& $4 \cdot 14$

\hline 49 \& $263 \cdot 6$ \& $9 \cdot 30$ \& 65 \& $32 \cdot 9$ \& \& $1{ }^{1}$ \& 13'1 \& 10'9 \& 9.37 \& $8 \cdot 19$ \& $7 \cdot 26$ \& $6 \cdot 52$ \& 5.92 \& 5.4 I \& \& 8 \& 4.29

\hline 50 \& 273 \& $9 \cdot 69$ \& 68 \& 34 \& $22 \cdot 7$ \& \& 13.6 \& 113 \& $9 \times$ \& $8 \cdot 48$ \& 7.52 \& $6 \cdot 76$ \& $6 \cdot 13$ \& 5.61 \& \& \& 4.45

\hline 51 \& 283. \& $10 \cdot 1$ \& $70 \cdot 7$ \& 35 \& 23 \& 177 \& 14.1 \& Ir7 \& 101 \& $8 \cdot 79$ \& 780 \& 7.00 \& $6 \cdot 35$ \& 5.81 \& \& 495 \& $4 \cdot 61$

\hline 52 \& 293.3 \& $10 \cdot 6$ \& 73.3 \& $35^{\circ} 7$ \& 24 \& 18.3 \& 14.6 \& 12.2 \& $10 \cdot 4$ \& 9'II \& 8.08 \& 7.26 \& $6 \cdot 58$ \& $6 \cdot 02$ \& \& $5^{1} 13$ \& $4 \cdot 78$

\hline 53 \& $304^{\circ} \mathrm{I}$ \& 11 \& \& $38 \cdot$ \& $25^{\circ} 3$ \& 19° \& 15.2 \& 12.6 \& $10 \cdot 8$ \& 944 \& 8.38 \& 753 \& 6.83 \& 6 \& \& $5{ }^{5}$ \& 4.95

\hline 54 \& 315.4 \& 11.6 \& 78 \& 39.4 \& $26 \cdot 3$ \& 19.7 \& ${ }^{15} 7$ \& $13^{\prime} 1$ \& 112 \& 9779 \& $8 \cdot 69$ \& 7.81 \& $7 \cdot 3$ \& $6 \cdot 48$ \& \& 5.52 \& $5 \cdot 14$

\hline 55 \& 327.3 \& $12 \cdot 3$ \& 8r.8 \& $40 \cdot 9$ \& $27^{\circ} 3$ \& $20 \cdot 4$ \& 16.3 \& 13 \& II'6 \& 10.2 \& 9.02 \& 8.10 \& 7.35 \& 6.72 \& \& 73 \& 5.33

\hline 56 \& 33 \& $12 \cdot 8$ \& $84^{\circ} 9$ \& $42 \cdot 5$ \& $28 \cdot 3$ \& 2 \& $16 \cdot 9$ \& $14 \cdot 1$ \& 12.1 \& 10.5 \& $9 \cdot 36$ \& 8.41 \& 7.63 \& $6 \cdot 97$ \& \& \&

\hline 57 \& 35 \& $13 \cdot 5$ \& 88 \& 44. \& 29.4 \& 22° \& $17^{\circ} 6$ \& $1{ }^{17} 7$ \& 12.5 \& II\% \& $9 \cdot 72$ \& 8.73 \& $7 \cdot 92$ \& 7.24 \& $6 \cdot 67$ \& \& 5.75

\hline 58 \& \& 14.3 \& $9{ }^{1} 7$ \& $45^{\circ} 8$ \& $30 \cdot 5$ \& \& $18 \cdot 3$ \& 15 \& 13.0 \& 4 \& . 5 \& 9.0 \& 8.23 \& 753 \& $6 \cdot 93$ \& 42 \& 5.97

\hline 59 \& 381.4 \& $15 \cdot 1$ \& $95^{\circ} 3$ \& 47.7 \& $3{ }^{1} 8$ \& $23^{\circ} 8$ \& 19. \& 15.5 \& ${ }^{1} 3.6$ \& $1 \mathrm{I} \cdot 8$ \& 10.5 \& 9 \& $8 \cdot 56$ \& 783 \& 7.21 \& $6 \cdot 68$ \& $6 \cdot 21$

\hline 60 \& $397^{\circ} \mathrm{O}$ \& 16.0 \& $99^{\circ} 2$ \& $49 \cdot 6$ \& 33° \& 24.8 \& 198 \& 16.5 \& $14^{1} 1$ \& 12.3 \& $10 \cdot 9$ \& 9.82 \& $8 \cdot 91$ \& $8 \cdot 15$ \& $7 \cdot 501$ \& 95 \& $6 \cdot 46$

\hline \& $$
59
$$ \& \& \[

56

\] \& \[

52

\] \& \[

$$
\begin{array}{r}
\mathrm{m} . \\
48 \\
\hline
\end{array}
$$

\] \& \[

44

\] \& \[

$$
\begin{aligned}
& \mathrm{m} . \\
& 40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{m} . \\
& 36
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{m} . \\
& 32 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline \mathrm{m} . \\
& 28 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{m} . \\
& 24 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{m} . \\
& 20 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{m} \\
\mathrm{I} 6 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \hline \mathrm{m} . \\
& 12
\end{aligned}
$$

\] \& \[

\frac{\mathrm{m}}{8}

\] \& \[

$$
\begin{array}{r}
\mathrm{m} . \\
4
\end{array}
$$
\] \& m.

\hline \& \& \& \& \& \& \& \& \& H \& \& \& \& \& \& \& \&

\hline
\end{tabular}

When hour angle is more than 6 hours, name the factors taken from Table A the same as the name of the latitude.

Table B.
Always name the factors taken from Table B the same as the name of declination.

Table A.
When hour angle is less than 6 hours, name the factors taken from Table A contrary to name of lat.

Lat.	1 HOUR.															$\frac{2 \mathrm{Hr}}{\substack{\mathrm{~m} . \\ 00}}$
	m_{0}	$\underset{4}{4}$	$\underset{8}{\mathrm{~m}}$.	${ }_{12}$.	m_{10}	${ }_{20} \mathrm{~m}$.	m_{24}	m_{28}	m_{32}	m_{36}.	$\operatorname{m}_{\& 0}$	m_{44}	m_{48}	m_{52}	m_{56}.	
\bigcirc					. 00											
0	$\cdot 07$.06	. 06	.00	. 05			. 00	. 00	. 00	O	. 00	'00	00	00	00
I	\bigcirc	-06	-06	$\cdot 05$	- 0	05	-05	$\cdot 04$	'04	-04	04	-04	-03	-03	-03	-03
2	'I3	-12	'II	I	10	0	-09	-09	-08	-08	-07	-07	$\cdot 07$	$\cdot 07$	-06	-06
3	$\cdot 20$	18	17	-16	15	14	${ }^{1} 14$	- 13	-12	12	II	- II	-10	-10	-09	-09
4	-26	24	$\cdot 23$	$\cdot 22$	-20	- 19	-18	17	16	-16	15	14	14	- 13	-13	'12
5	-33	-3I	-29	$\cdot 27$	-25	$\cdot 24$	-23	-22	21	-20	-19	-18	'17	-16	-16	-15
6	-39	37	34	32	31	- 29	-27	26	-25	'24	-23	-22	-2I	$\cdot 20$	'19	'I8
7	-46	-43	-40	$\cdot 38$	36	$\cdot 34$	-32	30	-29	28	-26	-25	-24	-23	-22	-2I
8	-52	-49	$\cdot 46$	-43	41	-39	$\cdot 37$	-35	-33	32	30	-29	28	-26	$\cdot 25$	$\cdot 24$
9	59	- 55	$\cdot 52$	-49	-46	$\cdot 44$	4 4	39	37	36	34	$\cdot 32$	3 I	30	-29	$\cdot 27$
10	66	$\cdot 6 \mathrm{I}$	- 58	54	51	$\cdot 48$	-46	44	'42	-40	38	$\cdot 36$	35	$\cdot 33$	-32	-31
II	73	-68	,	. 60	-56	- 53	5 I	48	46	44	42	40	38	37	35	34
12	-79	74	70	$\cdot 65$	62	-58	-55	-53	50	48	-46	44	'42	40	-38	37
13	-86	-81	$\cdot 76$	$\cdot 71$	$\cdot 67$	$\cdot 63$	-60	-57	-54	52	-50	47	-45	43	42	$\cdot 40$
14	-93	$\cdot 87$	$\cdot 82$	77	72	$\cdot 69$	$\cdot 65$	- 62	-59	56	53	-51	-49	-47	$\cdot 45$	43
15	1•00	$\cdot 93$. 88	-82	78	74	70	66	63	60	57	55	-53	50	48	$\cdot 46$
r6	I'07	I'00	9	-88	83	79	75	71	-68	64	-6I	9	56	54	52	50
17	I'14	r 07	I'00	'94	-89	84	80	76	72	69	. 66	-63'	$\cdot 60$	571	. 55	53
18	I•2I	I.13	I'O	I'00	94	-89	85	80	77	73	70	-67	-64	6 I	59	56
19	I 29	I 20	I'13	I'06	I 00	95	90	85	-81	77	74	$\cdot 71$	-68	65	62	60
20	I'36	I. 27	I'19	I•12	I'06	1.00	95	90	86	-2	78	75	7 I	-68	-66	63
2 I	I*43	I•34	I'26	I'18	I'II	r 05	100	95	90	86	821	'79	75	721	$\cdot 69$	66
22	I'5I	I. 4 I	I. 32	I'24	I'17	I'II	I'05	$1{ }^{\circ} \mathrm{OO}$	'95	'91	-87	-83	79	76	73	70
23	I.58	1.48	I•39	I'3I	I 23	I'17	I'II	I.05	1.00	'95	91	-87	-83	-80	77	74
24	I. 66	I. 55	I.46	I•37	I'29	122	x'16	I'IO	I'05	I'00	'95	-91	-87	-84	-80	77
25	I'74	I. 63	I•53	I* 44	I.35	I•28	I 21	I'15	I'IO	105	1.00	'96	'92	-88	84	81
26	I 82	I'70	I'60	I'50	I*42	I'34	I'27	I.2I	I'15	I'IO	I'05	1×0	'96	92	88	8
27	I'90	I.78	I 67	I. 57	I. 48	1.40	1 33	I 26	I 20	I'I4	I.09	I'04	I 00	96	'92	-88
28	I•98	I.8	1.74	I.64	I 54	I. 46	I 39	I•32	I'25	I'19	I'14	I'09	I'04	1.00	-96	92
29	2.07	I.93	I.8I	1.71	6I	I•52	I 44	I•37	I•3I	I'24	I'I9	I'14	I'09	I'04	I'00	'96
30	2.15	$2 \cdot 01$	I 8	1.78	I•68	I.59	I 50	I. 43	r 36	1.30	I 24	I'18	I'13	I'09	I'04	I'00
31	$2 \cdot 24$		197	I.85	1'75	I'65	I 57	I*49	I*42	I•35	I'29	I'23	I'I8	1'13	I'08	I'04
32	$2 \cdot 33$	$2 \cdot 1$	2.04	I'92	I-81	I'72	I.63	I 55	I 47	I*40	I 34	I'28	I. 23	I'18	1'13	I 08
33	2.42	$2 \cdot 26$	$2 \cdot$	2.00	r-89	I'78	I-69	1.61	I•53	I 46	1-39	I 33	I'27	I. 22	I'17	I'12
34	2.52	2.35	$2 \cdot 21$	2.08	1.96	I.85	1.76	I 67	I. 59	I. 51	I. 45	I.38	I 32	1.27	I-22	r'17
35	$2 \cdot 61$	2.44	$2 \cdot 29$	$2 \cdot 16$	$2 \cdot 03$	I'92	I-82	I 73	I'65	I*57	I. 50	I*44	I.37	I 32	I•26	I•2I
36	2.7	2.53	$2 \cdot 3$	$2 \cdot 24$	2'II	2.00	I-89	I 80	1'71	I•63	I.56	I*49	I*43	1 37	I'3I	I. 26
37	$2 \cdot 81$	2.63	2.46	$2 \cdot 32$	2.19	$2 \cdot 07$	I'96	I.87	I'78	I•69	I 62	I 55	I.48	I. 42	I•36	I•3I
38	2.92	2.72	2.56	2.40	$2 \cdot 27$	$2 \cdot 15$	$2 \cdot 04$	I'93	I-84	1'75	I.68	I 60	I 53	I'47	I-4I	I•35
39	3.02	2.82	2.65	2.49	$2 \cdot 35$	2.22	2.11	2.00	1.91	r.82	1.74	I 66	I. 59	I. 52	I.46	I. 40
40	$3 \cdot 13$	2.93	2.74	2.58	$2 \cdot 44$	$2 \cdot 3 \mathrm{I}$	2'19	2.08	I.98	I•88	I.80	I'72	I•65	I. 58	I.51	1.45
41	3.24	3.03	2.84	$2 \cdot 68$	$2 \cdot 52$	$2 \cdot 39$	2	2115	2.05	I'95	I.86	1.78	1'71	I.63	I 57	I•51
42	$3 \cdot 36$	3.14	2.95	2.77	$2 \cdot 61$	2.47	$2 \cdot 35$	$2 \cdot 23$	$2 \cdot 12$	2.02	I.93	I.85	I'77	I•69	I. 62	I. 56
43	3.48	$3 \cdot 25$	3.05	$2 \cdot 87$	$2 \cdot 71$	2.56	2.43	$2 \cdot 31$	$2 \cdot 20$	2.09	2.00	I'91	I-83	1 75	I•68	x 62
44	3.60	3.37	$3 \cdot 16$	2.97	$2 \cdot 80$	2.65	2.52	2.39	$2 \cdot 28$	$2 \cdot 17$	2.07	I.98	I'90	I.82	I•74	I. 67
45	3773	$3 \cdot 49$	$3 \cdot 27$	3.08	2.90	2.75	2.61	2.48	$2 \cdot 36$	$2 \cdot 25$	$2 \cdot 14$	$2 \cdot 05$	I'96	r ${ }^{\text {8 }} 88$	I-80	I'73
46	3.86	3.61	3*39	3.19	3.01	2.85	$2 \cdot 70$	2.56	2.44	233	$2 \cdot 22$	$2 \cdot 12$	2.03	I'95	1.87	I'79
47	4.00	3.74	3.51	$3 \cdot 30$	$3 \cdot 11$	2.95	$2 \cdot 79$	$2 \cdot 65$	2.53	$2 \cdot 41$	$2 \cdot 30$	$2 \cdot 20$	$2 \cdot 10$	2.02	I.93	I•86
48	$4^{\circ} \mathrm{I} 4$	$3 \cdot 87$	$3 \cdot 63$	$3 \cdot 42$	3.23	3.05	$2 \cdot 89$	2.75	2.62	2.49	$2 \cdot 38$	$2 \cdot 28$	$2 \cdot 18$	2.09	$2 \cdot 00$	I.92
49	$4 \cdot 29$	4.01	3.76	3.54	$3 \cdot 34$	$3 \cdot 16$	3.00	$2 \cdot 85$	2.71	2.58	2.47	$2 \cdot 36$	$2 \cdot 26$	2.16	2.08	1.99
50	4.45	$4^{\circ} 16$	3.90	$3 \cdot 67$	$3 \cdot 46$	$3 \cdot 27$	3'10	$2 \cdot 95$	2.8 I	$2 \cdot 68$	2.56	2.44	$2 \cdot 34$	$2 \cdot 24$	2'15	$2 \cdot 06$
5 I	4.61	$4{ }^{\circ} 31$	4'04	3.80	$3 \cdot 59$	3.39	3.22	3.06	2.91	$2 \cdot 77$	2.65	$2 \cdot 53$	2.42	$2 \cdot 32$	$2 \cdot 23$	$2 \cdot 14$
52	478	4.46	$4 \cdot 19$	3.94	$3 \cdot 72$	3.52	$3 \cdot 33$	$3 \cdot 17$	$3 \cdot 02$	$2 \cdot 87$	2.74	$2 \cdot 62$	2.51	2.41	$2 \cdot 31$	$2 \cdot 22$
53	495	4.63	4.34	4.08	$3 \cdot 85$	$3 \cdot 65$	3.46	3.28	$3 \cdot 13$	2.98	2.85	2.72	$2 \cdot 60$	2.50	$2 \cdot 39$	$2 \cdot 30$
54	$5 \cdot 14$	4.80	4.50	4.24	4.00	3.78	3.59	3.4 I	3.24	3.09	2.95	2.82	$2 \cdot 70$	2.59	2.48	$2 \cdot 38$
55	$5 \cdot 33$	498	$4 \cdot 67$	4.40	4^{15}	3.92	$3 \cdot 72$	3.53	$3 \cdot 36$	$3 \cdot 21$	3.06	$2 \cdot 93$	2.80	2.69	2.53	$2 \cdot 47$
56	5.53	5'17	$4 \cdot 85$	4.56	431	4.07	3.86	$3 \cdot 67$	3.49	3.33	3.18	$3 \cdot 04$	2.91	$2 \cdot 79$	2.67	2.57
57	5.75	5.37	$5 \cdot 04$	4.74	4.47	4.23	$4^{\circ} \mathrm{OI}$	$3 \cdot 8 \mathrm{I}$	$3 \cdot 63$	$3 \cdot 46$	$3 \cdot 30$	$3 \cdot 16$	$3 \cdot 02$	2.90	2.78	$2 \cdot 67$
58	$5 \cdot 97$	5.58	$5 \cdot 23$	$4{ }^{\circ} 93$	$4 \cdot 65$	4.40	4.17	3.96	3.77	3.59	3.43	3.28	$3 \cdot 14$	3.01	2.89	2.77
59	$6 \cdot 21$	$5 \cdot 80$	5.44	5•12	$4 \cdot 83$	4.57	$4 \cdot 34$	4•12	3.92	$3 \cdot 74$	$3 \cdot 57$	3.41	$3 \cdot 27$	$3 \cdot 13$	3.00	2.88
60	6.46	6.04	$5 \cdot 67$	$5 \cdot 33$	5.03	4.76	4.51	$4 \cdot 29$	4.08	$3 \cdot 89$	$3 \cdot 71$	3.55	3.40	$3 \cdot 26$	$3 \cdot 12$	$3 \cdot 00$
	m	$\begin{aligned} & \mathrm{m} . \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 52 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 48 \end{aligned}$	$\begin{gathered} \mathrm{m} \\ 44 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 36 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 32 \end{aligned}$	$\mathrm{m} .$	$\begin{aligned} & \mathrm{m} \\ & 24 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 20 \end{aligned}$	$\begin{gathered} \mathrm{m} . \\ \mathrm{I} 6 \end{gathered}$	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{I} 2 \end{aligned}$	$\frac{\mathrm{m}}{8}$	$\begin{gathered} \mathrm{m} \\ 4 \end{gathered}$	m 00

When hour angle is more than 6 hours, name the factors taken from Table \mathbf{A} the same as the name of latitude.

Table B.
Always name the factors taken from Table B the same as the name of declination.

Docination																m.								
						${ }_{20}{ }^{2}$	${ }^{10} 9$	${ }_{24}{ }_{24}{ }_{\text {m }}$	${ }_{28}$		${ }_{40}$	${ }^{\circ} \mathrm{m}$	${ }_{48}$	${ }_{58}{ }_{5}$	${ }_{86}{ }^{\text {m }}$									
		\%oo	:oo					\%od					¢od											
									-14															
				${ }_{30}^{24}$	${ }^{238}{ }^{23} \cdot \underline{27}$			24	${ }_{23} 2$	${ }^{128}$														
												${ }_{25}^{25}$												
- ${ }^{9}$								-																
12 13 1																								
14										${ }_{69} 6$		边												
${ }^{16}$																								
+18																								
${ }_{20}^{19}$										${ }_{93}$														
${ }_{2}^{2}$			1 13									${ }_{96}^{96}$												
29 30																								
${ }_{\text {Stare }}$						${ }^{169} 9$		${ }^{1.54}$																
			-35 - 35					(24. 23																
			${ }^{2} 3$	corex																				
			(ex ${ }^{4.25}$					-																
																	Sid							
								ander																
											${ }_{2}^{1.749} 1$		5 5^{237}											
	$\begin{gathered} 420 \\ 5: 506 \\ 5: 506 \end{gathered}$		ceise 3										$8{ }^{2} 248$											
			6 600 574																					
												69												
						48																		

Table A.

When hour angle is less than 6 hours, name the factors taken from Table A contrary to name of lat.

Lat.	2 HOURS.															$\frac{3 \mathrm{Hr} .}{\mathrm{m}_{00} .}$
	m_{00}	$\underset{4}{\text { m. }}$	${ }_{8}{ }_{8}$.	${ }_{12} 12$	${ }_{16} \mathrm{~m}$	${ }_{20} \mathrm{~m}$.	m_{24}	m_{28}	m_{32}	$\mathrm{m}_{36} .$	$\mathrm{m}_{40} .$	m_{44}	$\mathrm{m}_{48} .$	${ }_{52}{ }_{5}$	${ }_{56} \mathrm{~m}$.	
1	- 03	-03	- 03	-03	$\bigcirc 3$	02	02	02	- 02	02	02	02	02	02	02	02
2	.06	-06	-06	-05	-05	-05	05	$\bigcirc 5$	- 04	-04	04	-04	- 04	${ }^{\circ} \mathrm{O}$	-04	-03
3	09	-9	-08	-08	-08	$\bigcirc 7$	07	07	-07	.06	-06	-06	-06	.06	. 05	-05
4	$\cdot 12$	2	$\cdot \mathrm{II}$	11	0	10	-10	$\cdot 09$	-09	$\cdot 09$	-08	-08	-08	07	$\bigcirc 7$	\bigcirc
5	'15	'15	14	13	13	12	12	12	II	II	10	'10	'10	$\stackrel{\circ}{ }$	-09	-99
6	-18	'17	'17	6	-16	15	14	14	13	-13	13	12	2	II	II	11
7	$\cdot 21$	$\cdot 20$	- 20	-19	-18	18	17	16	-16	- 15	15	14	14	13	-13	12
8	$\cdot 24$	3	$\cdot 22$	$\cdot 22$	-21	0	19	19	-18	-17	17	-16	16	- 15	- 15	14
9	$\cdot 27$	$\cdot 26$	$\cdot 25$	- 24	23	23	22.	21	20	20	-19	- 18	18	${ }^{1} 7$	- 16	16
10	$\cdot 31$	$\cdot 29$	- 28	$\cdot 27$	-26	25	24	23	23	22	2 I	20	20	19	$\cdot 18$	-18
II	$\cdot 34$	'32	$\cdot 31$	30	-29	-28	27	- 26	25	$\cdot 24$	23	$\cdot 22$	22	- 21	'20	19
12	$\cdot 37$	35	-34	-33	32	30	$\cdot 29$	- 28	- 27	-26	25	- 24	24	23	- 22	$\cdot 21$
13	$\cdot 40$	38	- 37	36	-34	33	32	3 I	30	-29	28	- 27	26	-25	- 24	$\cdot 23$
14	$\cdot 43$	4 4	$\cdot 40$	$\cdot 38$	$\cdot 37$	36	34	33	32	$\cdot 31$	30	$\cdot 29$	28	${ }^{2} 27$	$\cdot 26$	$\cdot 25$
15	46	-45	$\cdot 43$	4 I	40	38	37	36	34	33	32	31	30	-29	28	$\cdot 27$
16	-50	$\cdot 48$	$\cdot 46$	-44	43	4 I	39	$\cdot 38$	37	35	34	33	32	-31	'30	29
17	- 53	-51	$\cdot 49$	47	-45	44	42	4 4	39	38	36	35	34	33	32	$\cdot 31$
18	-56	$\cdot 54$	-52	50	48	46	45	43	42	40	39	37	36	35	34	32
19	. 60	- 57	- 55	53	-51	49	47	46	44	43	41	40	38	37	36	34
20	$\cdot 63$	$\cdot 61$	58	56	54	52	50	48	47	45	43	42	40	39	38	36
21	$\cdot 66$	$\cdot 64$	- 6	59	57	55	53	-5I	49	47	$\cdot 46$	44	43	4 4	40	38
22	70	$\cdot 67$	-65	-62	-60	58	- 56	-54	-52	-50	48	46	45	43	$\cdot 42$	40
23	$\cdot 74$	77	. 68	-65	$\cdot 63$	61	-58	. 56	54	$\cdot 52$	51	49	47	46	44	$\cdot 42$
24	77	74	71	$\cdot 69$	$\cdot 66$	$\cdot 64$	$\cdot 6 \mathrm{I}$	-59	57	. 55	53	51	49	48	-46	$\cdot 45$
25	8 I	78	75	72	69	$\cdot 67$	64	62	60	58	-56	54	52	-50	-48	$\cdot 47$
26	84	.8I	78	75	72	70	$\cdot 67$	65	-62	60	- 58	56	54	52	5 I	49
27	88	-85	-82	78	$\cdot 76$	73	70	$\cdot 68$	65	$\cdot 63$	$\cdot 61$	59	57	55	53	5 I
28	'92	-88	-85	. 82	-79	76	73	71	-68	$\cdot 66$	63	6 r	59	57	55	53
29	-96	-92	-89	85	-82	79	76	74	71	$\cdot 68$	-66	64	62	59	-57	55
30	1.00	'96	92	-89	$\cdot 86$	82	79	77	74	71	$\cdot 69$	66	64	62	60	58
3 I	r 04	r 00	$\cdot 96$	-93	89	-86	. 83	80	77	74	72	69	67	${ }^{6} 4$	$\cdot 62$	-60
32	1.	I.	I.00	'96	-93	-89	-86	-83	80	77	74	72	69	67	$\cdot 65$	$\cdot 62$
33	$1 \cdot$	I.08	$\mathrm{I}^{\circ} \mathrm{O} 4$	I 00	-96	'93	89	86	83	80	77	75	72	70	$\cdot 67$	65
34	1'17	I•12	I 08	1.04	I.00	-96	93	-90	86	83	80	78	75	72	70	$\cdot 67$
35	I.2I	$1 \cdot 17$	I•12	08	I•04	roo	96	93	90	86	83	1	78	75	'73	70
36	1.26	I-2I	I 16	I'12	08	04	1.00	$\cdot 96$	'93	'90	87	84	8 I	$\cdot 78$	75	73
37	1.31	I. 25	$1 \cdot 21$	-16	12	108	$\mathrm{I}^{\circ} \mathrm{O} 4$	I 00	-96	'93	90	87	84	-81	78	75
38	I.35	I-30	I. 25	20	$\cdot 16$	I'12	I•08	1.04	$\mathrm{I}^{\circ} \mathrm{OO}$	$\cdot 96$	93	'90	87	. 84	-81	$\cdot 78$
39	1.40	I 35	1-30	1.25	1.20	I.16	I•II	1.07	1.04	I.00	97	93	90	-87	$\cdot 84$	-81
40	1.45	1.40	I 34	I-29	'24	I'20	1-15	I'II	1.07	I'04	1.00	97	'93	-90	-87	$\cdot 84$
4 I	1.51	r 45	1'39	I•34	I•29	124	20	I•15	I-II	ro7	I.04	1.00	97	-93	90	87
42	I 56	155	I. 44	- 39	1-33	I 29	I. 24	I'19	I-15	I'II	r.07	I.04	I 00	'97	93	-90
43	1.62	I 55	I.49	I. 44	I-38	- 33	I.28	I 24	I'19	I'15	I'II	r.07	$\mathrm{I}^{\circ} \mathrm{O}$	$1{ }^{\circ}$	'97	'93
44	1.67	I.61	I 55	I.49	I. 43	r 38	1.33	I 28	1.24	r'19	I. 15	$1 \cdot 11$	I 07	I. O_{4}	I.00	-97
45	1.73	I•66	I•60	1-54	1.48	I 43	- 38	I.33	I.28	I 23	I. 9	$1 \cdot 15$	I 11	1.07	I•04	1.00
46	1•79	${ }^{1} 72$	I•66	I 59	I 54	I 48	1.43	$1 \cdot 37$	I•33	I-28	1.23	I•19	$1{ }^{1} 5$	I'II	1.07	I'04
47	I•86	1.78	1.72	I•65	- 59	I 53	I. 48	1.42	- 37	I•32	1.28	123	I'19	I-15	I'II	I•07
48	1.92	1.85	1.78	1.71	I•65	I 59	${ }^{-5} 53$	1-47	1.42	1.37	I•32	I 28	1.23	I•19	I• 15	I•II
49	r.99	1.91	I.84	${ }^{1} \cdot 77$		${ }^{1} \cdot 64$	I. 58	$\begin{array}{r}1.53 \\ \\ \hline\end{array}$	1-47	I 42	1-37	1.32	1.28	1.23	I•19	I'15
50	2.06	1.98	I-91	I-84	1'77	1'70	I 64	1.58	I 53	1-47	1'42	1-37	I'32	1.28	I'23	I•19
51	2.14	2	I'98		I-83	1.76	1.70	I'64	I•58	1.52	$1 \cdot 47$	$1 \cdot 42$	1•37	1-32	I 28	I. 23
52	$2 \cdot 22$	2.13	2.05	1.97	I.90	I.83	I.76	I'70	I 64	I. 58	I-53	1.47	I 42	1-37	I•33	I. 28
53	$2 \cdot 30$	2.21	$2 \cdot 12$	$2 \cdot 04$	1.97	I 90	I.83	I'76	I 70	I•64	I.58	I 53	1.47	1.42	1-37	I.33
54	$2 \cdot 38$	2.29	$2 \cdot 20$	-12	$2 \cdot 04$	I'97	r-89	I.83	- ${ }^{7} 6$	I'70	I•64	I. 58	I 53	I.48	I 43	I.38
55	2.47	$2 \cdot 38$	$2 \cdot 29$	20	$2 \cdot 12$	2.04	r.97	I 90	I.83	I•76		I 64	I-59	-53	1.48	1.43
56	2.57	2.47	$2 \cdot 37$	$2 \cdot 28$	2.20	$2 \cdot 12$	$2 \cdot 04$	I 97	1.90	I.83	1 77	171	I. 65	1-59	1.54	I. 48
57	2.67	2.56	2.46	$2 \cdot 37$	$2 \cdot 28$	2.20	2.12	2.04	r.97	I.90	I-84	- 77	-71	I'65	I•59	I 54
58	2.77 2	$2 \cdot 66$	2.56	2.46	2.37	2.29	2.20	2.12	2.05	I 98	I.91	I.84	- 78	${ }^{1} 72$	I 66	I. 60
59	$2 \cdot 88$	2.77	$2 \cdot 66$	2.56	2.47	2.38	2.29	2.21	2.13	2.06	I.98	1.91	I.85		1.72	1.66
60	3.00	$2 \cdot 88$	$2 \cdot 77$	$2 \cdot 67$	$2 \cdot 57$	$2 \cdot 47$	2.38	$2 \cdot 30$	$2 \cdot 22$	2.14	$2 \cdot 06$	1.99	1.92	+ 86	1'79	1.73
	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{oo} \end{aligned}$	$\begin{gathered} \mathrm{m} \\ 56 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & 52 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 48 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 44 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 36 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & \mathbf{2 8} \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{I} 6 \end{aligned}$	$\underset{\mathrm{m} 2}{\mathrm{~m}}$	$\frac{\mathrm{m}}{8}$	$\begin{gathered} \mathrm{m} . \\ 4 \end{gathered}$	$\begin{gathered} \mathrm{m} . \\ \mathrm{oo} \end{gathered}$
	10 Hr .								HOU							

When hour angle is more than 6 hours, name the factors taken from Table A the same as the name of the latitude.

Table B.
Always name the factors taken from Table B the same as the name of declination.

Table A.
When hour angle is less than 6 hours, name the factors taken from Table A contrary to name of iat.

When hour angle is more than 6 hours, name the factors taken from Table A the same as the

Table B.
Always name the factors taken from Table B the same as the name of declination.

Declination.	3 Hours.															$\int_{\substack{4 \mathrm{Hr} . \\ \mathrm{m} . \\ 00}}$
	${ }_{00}$.	${ }_{4}^{\text {m. }}$	${ }_{8} \mathrm{~m}$.	${ }_{12}{ }^{\text {m }}$	${ }_{16} 1$.	${ }_{20} \mathrm{~m}$	${ }_{24}$	${ }_{28}^{\text {m. }}$	${ }_{32}$	${ }_{36} 1$.	m_{40}.	${ }_{44}$	${ }_{48}{ }_{4}$	${ }_{5}^{\text {m }}$	${ }_{56}$.	
\bigcirc																
s	$\cdot 02$	- 02	- 02	02	. 02	-2	-2	-22	-2	-2	-22	- 02	-2	-2	-2	$\bigcirc 2$
2	$\cdot{ }^{\circ} 5$	$\cdot 5$	- 05	$\bigcirc 5$	-05	- 05	${ }^{-}+$	$\cdot{ }^{-} 4$	${ }^{-04}$	- 04	${ }^{\circ}{ }^{4}$	${ }^{\circ} \mathrm{O}$	${ }^{-}$	$\cdot 04$	${ }^{\circ}$	${ }^{-1} 4$
3	$\begin{array}{r} .07 \\ .10 \end{array}$	- 07	- $\cdot 10$	$\stackrel{7}{\circ}$	-07	\bigcirc	-07	\bigcirc	-07	-06	-06	-06	-06	.06	-06	-06
4	$\cdot 10$	-12	-10	- 12	${ }^{-1} 12$.$^{-11}$	${ }^{\circ} \mathrm{C}$-1	$\cdot_{-1}{ }^{-1}$		-11	- $\cdot 1$	- -1	\bigcirc	- 08	\bigcirc	- 0
5	-12	$\cdot 12$	-12	$\cdot 12$	'12	-11	'II	-II	'II	'11	- 11	'II	-	'io,	\cdots	'ı
6	${ }^{-15}$	${ }^{15}$	${ }^{-14}$	-14	${ }^{14}$	${ }^{-14}$	${ }^{-1} 4$	$\stackrel{+}{+1}$	${ }^{1} 13$	'13	. 13	${ }^{13}$	- 3		- 12	$\cdot 12$
7	${ }^{1} 17$	$\cdot 17$	$\cdot 17$	- 17	-16	-16	${ }^{-16}$	-16	. 15	${ }^{15}$	$\cdot{ }^{-15}$	-15	-15			$\cdot 14$
8	$\cdot 20$	$\cdot 2$	-19	-19	$\cdot 19$	-	- 18	-181	- 18	- 17	- 17	- 17	- 17	${ }^{17}$	-16	-16
	$\cdot 22$	$\stackrel{-25}{ }$	${ }^{2} 2$	$\cdot 21$	$\cdot 21$	${ }^{2} \cdot 2$	-20	-20	- 20	-20	${ }^{-19}$	-19	-19	-19	- 18	$\cdot 18$
10	-25	$\cdot 25$. 24	24	-23	$\cdot 23$	$\cdot 23$	22	'22	'22	$\cdot 22$	- 21	-21	-21	-21	$\cdot 20$
11	$\cdot 27$	$\cdot 27$	27	-26	$\cdot 26$	$\cdot 25$	$\cdot 25$	- 25	${ }^{2} 4$	24	$\cdot 24$	23	$\cdot 23$	23	$\cdot 23$	$\cdot 22$
12	$\cdot 30$	-30	29	29	-28	-28	27	27	$\cdot 27$	-26	$\cdot 26$	- 26	- 25	-25	. 25	$\cdot 25$
13	$\cdot 33$	$\cdot 32$	$\cdot 32$	${ }^{1}$	31	30	- 30	-29	'29	-29	$\cdot 28$	-28	-28	$\cdot 27$. 27	$\cdot 27$
14	$\cdot 35$	$\cdot 35$	-34	34	. 33	33	. 32	32	31	${ }^{31}$	30	$\cdot 30$	-30	-29	-29	$\cdot 29$
15	-38	$\cdot 37$	$\cdot 37$	- 36	36	35	34	34	34	-33	$\cdot 33$	${ }^{32}$	$\cdot 32$	-32	3^{1}	$\cdot 31$
16	41	40	39	-39	3^{8}	37	$\cdot 37$	$\cdot 36$	36	35	35	35	$\cdot 34$	34	-33	$\cdot 33$
17	43	43	4^{4}	41	41	40	39	39	38	38	37	-37	$\cdot 36$	-36	-36	$\cdot 35$
18	46	45	$\cdot 44$	44	43	42	42	41	41	40	40	$\cdot 39$	39	38	-38	38
19	-49	48	47	46	46	45	44	44	43	43	$\cdot 42$	42	41	41	40	40
20	${ }_{51}$	-51	$\cdot 50$	-49	48	48	47	4^{6}	46	45	44	$\stackrel{4}{4}$	43	43	${ }^{42}$	$\cdot 42$
21	54	-53	$\cdot 52$	-52	51	50	49	49	48	47	47	46	46	45	$\cdot 45$	44
22	-57	$\cdot 56$. 55	$\cdot 54$. 54	53	$\cdot 52$	$\cdot 51$	51	. 50	49	49	48	48	- 47	$\cdot 47$
23	$\cdot 60$	-59	$\cdot 58$	-57	- 56	'55	$\cdot 55$	-54	-53	. 52	$\cdot 52$	$\cdot 51$	$\cdot 51$	-50	. 50	$\cdot 49$
$23^{\circ} 28^{\prime}$	-61	-60	-59	. 58	58	$\cdot 57$	-56	$\cdot 55$	54	. 54	-53	$\cdot 52$	$\cdot 52$	51	$\cdot 51$	$\cdot 50$
	. 63	$\cdot 62$	-6I	. 60	59	$\cdot 58$	-57	57	'56	'55	54	54	$\cdot 53$	-53	${ }^{52}$	$\cdot 51$
	$\cdot 66$	- 6	${ }^{6} 4$	-63	-62	\cdot^{61}	-60	- 59	-58	. 58	57	$\cdot 56$	'56	. 55	54	$\cdot 54$
26	$\cdot 69$	-68	$\cdot 67$. 66	. 68	${ }^{-6} 4$. 63	-62	-61	-60	-60	- 59	. 58			. 56
27	72	71	70	$\cdot 69$	-68	$\cdot 67$. 66	$\cdot 65$	-64	. 63	$\cdot 52$	-61	. 61	-60	. 59	$\cdot 59$
28				72	70	$\cdot 69$	-68	$\cdot 67$								-61
29	$\begin{aligned} 78 \\ .78 \\ 82 \end{aligned}$		$\begin{aligned} & .75 \\ & .79 \end{aligned}$	75.787	73.76	$\begin{aligned} & 7^{2} \\ & \cdot 75 \end{aligned}$	$\begin{aligned} & 71 \\ & .74 \end{aligned}$	$\begin{array}{r} 70 \\ .70 \\ .73 \end{array}$	$\begin{array}{r} 69 \\ \cdot 72 \end{array}$	$\begin{array}{r} 69 \\ \cdot 69 \\ \cdot 7 \end{array}$	$\begin{aligned} & .68 \\ & .70 \end{aligned}$	$\begin{gathered} .64 \\ . \\ .70 \end{gathered}$	$\begin{array}{r} .66 \\ .69 \\ .69 \end{array}$.65	-65	$\cdot$$\cdot 64$-67
30																
$N . \frac{\text { stars. }}{\text { Decln. }}$																
Procyon	${ }^{1} 1$	${ }^{13}$	13	13	13	- 12	12	$\cdot 12$	$\cdot 12$. 12	- 12	- 12	- II	$\cdot 11$	-11	II
Altair ..	$\cdot 21$	$\cdot 21$	21	- 20	20	$\cdot 20$	-20	-19	-19		-19	-18	-18	'18	-18	- 18
Aldebar'n	41	$\cdot 41$	40	-39	-39	$\cdot 38$	$\cdot 38$	$\cdot 37$	$\cdot 37$	$\cdot 36$	$\cdot 36$	$\cdot 35$	35	35	$\cdot 34$	34
Arcturus	51	50	49	48	47	47	46	45	45	44	44	$\cdot 43$	43	42	4^{2}	41
Castor	-89	87	. 86	$\cdot 84$. 83	82	-81	-80	79	77	77	76	$\cdot 75$	74	73	72
Vega	$1 \cdot 13$	$1 \cdot 11$	1.10	1.08	ro6	1.05	1.03	1.02	r.00	99	98	-97	96	94	$\cdot 93$	-93
Deneb..	1.41	1-39	1.37	I.34	r 32	1.30	1.28	$1 \cdot 27$			1.22	1.20	I'19	1.18\|		$1 \cdot 15$
Capella	$1 \cdot 46$	${ }^{\circ} 43$	1.41	$1 \cdot 391$	137	1.35	I.33	1.31	1.29		1.26	I 25	1.23	1.221	'20	$1 \because 9$
a Persei	I. 66	I. 63	1.60	$1 \cdot 58$	1.55	1.53	1.51	1.49			1.43	141	140	1.38		
η Ursæ Maj.	r. 67	I 64	I.62	I. 59	157	$1 \cdot 54$	1.52	I. 50	$1 \cdot 48$			1.43	141			I-36
ϵ UrsæMaj.	$2 \cdot 13$	$2 \cdot 10$	2.06	$2 \cdot 03$	2.00	1.97	194	1.91	1-89	1.86	r.84	TO2	180	r.781	${ }^{7} 76$	174
a Ursæ Maj.	2.69	$2 \cdot 64$	$2 \cdot 60$	$2 \cdot 56$	$2 \cdot 52$	$2 \cdot 48$	2.44	2.41	$2 \cdot 38$	2.35	2.32	2.29	2.27		22	$2 \cdot 19$
S. Decln. Rigel																
${ }_{\text {Ririus }}$	42	$\stackrel{.20}{41}$	- 20	$\stackrel{20}{ }$	- 19	-19	-19				${ }^{-18}$	${ }^{-18}$	$\cdot 3$	${ }^{1} 7$	${ }^{17}$	17
ϵ Sagittarii	.97	$\cdot 95$	$\cdot 94$.92	.91	. 89	. 88	-87	. 86	. 85	. 84	- 83	-82	. 85	. 80	34 79 7
λ Scorpii	$1 \cdot 07$	r.05	1.03	$1 \cdot 2$	1.00	$\cdot 99$	$\cdot 97$	-96	$\cdot 94$	-93	-92	$\cdot 91$	$\cdot 90$	-89	. 88	. 87
γ Argûs ..	1×52	149	1.47	$1 \cdot 45$	42	1.40	$1 \cdot 38$	$1 \cdot 36$	I•35		1.31	1.30	1.28	$1 \cdot 27{ }^{1}$. 25	1.24
a Gruis ..	1.54	1.51	$1 \cdot 49$	$1 \cdot 461$	$1 \cdot 44$	$1 \cdot 42$	$1 \cdot 40$	1.38	r.361	r 34	1.33	$1 \cdot 3 \mathrm{I}$	1.30	1-281	. 27	I•26
Canopus	$1 \cdot 85$	1.82	1-79	1761	174	1.71	$1 \cdot 69$	$1 \cdot 66$	T. 64	r.62	I.60	1.58	1.56	154		$1 \cdot 51$
γ Crucis.	$2 \cdot 15$	$2 \cdot 11$	2.07	2.04		I.98	r 05	$1 \cdot 93$	r.901		1.85	1.83	$1 \cdot 81$			175
a Pavonis	2.18	2.14	2.11	$2 \cdot 07$	$2 \cdot 04$	2.01	1.98	1.96	$1 \cdot 93$	r91	I.88	1.86	$1 \cdot 84$	1.821	-80	
Achernar	2.24	2	$2 \cdot 16$	$2 \cdot 13$	Io	2.06	2.03	2.01		r95	1.93	$1 \cdot 91$	1.89		. 84	I.83
β Crucis ϵ Argûs β Centauri a^{2} Centauri a^{1} Crucis.. a Tri. Aus. β Argûs ..		2.33	2.29				2.16	$2 \cdot 13$		2.07	2.05	2.02	2.00	I.981		
	44	2.40	2.36			26	2.22	$2 \cdot 19$	$2 \cdot 16$		2.11	2.08	$2 \cdot 06$	$2 \cdot{ }^{2} 12$		2.00
	$2 \cdot 50$	$2 \cdot 45$	2.41	$2 \cdot 37$. 34	$2 \cdot 30$	$2 \cdot 27$	2.24	$2 \cdot 12$		$2 \cdot 15$	$2 \cdot 13$,	$2 \cdot 08$		$2 \cdot 04$
	$2 \cdot 73$	2.68	$2 \cdot 64$	$2 \cdot 60$	2.56	$2 \cdot 52$	2.48	$2 \cdot 45$	$2 \cdot 42$		$2 \cdot 36$	2.33	$2 \cdot 30$	2.272		2.23
	3.66	3.60	3.54	3.48	3.43	3.38	3.33	3.28	3.24		$3 \cdot 16$	$3^{1} 12$	3.08	$3 \cdot 053$	${ }^{\circ} \mathrm{O}$	2.99
	3.75	3.69	3.63	$3 \cdot 573$	3.52	3.46	3.41	3.371	3.323		3.24	3.20	$3 \cdot 16$	3.1313		$3 \cdot 06$
	m_{m}	$\begin{aligned} & \mathrm{m} . \\ & 56 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 52 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 48 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 44 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 40 \end{aligned}$	${ }_{36}$	${ }_{32}$	$\begin{aligned} & \mathrm{m} . \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 24 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 16 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{I} 2 \end{aligned}$	$\underset{8}{\mathrm{~m} .}$	$\mathrm{m} .$ 4	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{oo} \end{aligned}$
	Hr	8 HOURS.														

Table A.

宮	4 HOURS.															$\int_{\substack{5 \mathrm{Hr} \\ \mathrm{~m} . \\ 00}}$
	\%	${ }_{4}^{\mathrm{m}}$	${ }_{8}^{\text {m. }}$	${ }_{12}^{\mathrm{m}}$	${ }_{16}^{\mathrm{m}}$.	mm_{20}	${ }_{24}$	${ }_{28}^{\mathrm{m} .}$	${ }_{32}^{\mathrm{m}} .$	${ }_{36}{ }^{\text {m }}$	${ }_{40}^{\mathrm{m}}$	${ }_{44}$	${ }_{48}^{\mathrm{m}}$.	${ }_{52} \mathrm{~m}$.	${ }_{56}$.	
	- 000	-000	-000	O	$\bigcirc 00$	-00	000	000	-00	-00	oo	-00	-0	00		
	I	-0,	-000	-009	-009	-008	-00	$\stackrel{0}{0}$	\bigcirc	-007	-006	-006	-006	-00		
	$2{ }^{1}$	-19	-19	-018	-17	-16	-16	-15	-014	-13	-or3	-12	Ori	-11	-10	-009
	3 -030	-029	-028	$\cdot 027$	$\bigcirc 26$	-24	023	-022	-221	-20	-199	-18	-17	-16	-15	- ${ }^{-1}$
	$4{ }^{\circ} \mathrm{O} 0$	-039	- 037	-036	034	-033	-31	-30	-028	-27	025	024	023	021		
	$5 \cdot 051$	-048	-047	- 045	043	-041	-039	-037	-035	-034	-032	-030	028	. 027	025	23
	6 -06I	-058	-056	-054	-	-049	-47	- 045	- 042	- 040	-038	-036	034	-032	030	-028
	7 -071	-068	-065	-063	-06	- 057	-055	-052	- 05	- 047	- 045	-042	040	-38	-35	33
	8 -081	-078	-075	- 72	-069	-066	-063	-060	-057	-054	-051	-048	-046	-043	040	038
	${ }^{9}$ - ${ }^{-091}$	$\stackrel{088}{-088}$	${ }^{-} \cdot 084$	-081	.077	-074	$\stackrel{71}{\square}$	-067	$\cdot{ }^{-064}$	-061	-058	-055	-051	${ }^{-048}$	${ }^{0} 045$	-042
	-102	-098	.094	-090	.086	-082	-079	- 075	-071	-068	-064	-06I	-05	-05	051	047
II	I 112	-108	ro3	-099	-095	-091	-087	-083	- 79	\bigcirc	-71	-067	-063	-059	056	052
	-123	18	-113	-108	-104	-099	-095	-990	-086	-082	-077	$\cdot 073$	-069	-065		057
13	133	' 128	-123	-118	-113	- 108	-103	-998	-093	-089	-084	-079	-075	$\cdot 071$	66	5
	144	-138	- 133	'127	-	16	-III	-106	- 101	-096	-091	-086	-081	-076	071	-067
15	${ }^{1} 55$	-149	-142	'137	${ }^{131}$	25	119	${ }^{11} 4$	-108	- 103	-098	-9	-087	-082	$\bigcirc 77$	${ }^{\circ} 72$
16	r66	- 59	-152	${ }^{1} 46$	${ }^{1} 40$	I 34	'128	122	116	110	104	-099	-99	08	82	
	. 77	-169	-163	-156	-149	143	-136	'130	-124	[117	III	'105	-099	-093	-88	-082
18	- 88	-180	-173	-166	-158	-152	-145	- 38	-131	${ }^{12}$	18	12	-106	-099	093	-087
9	199	1	-183	- 175	-16	61	- 153	${ }^{1} 146$	-139	-132	125	-119		-105	99	
	210	02	-194	-185	-178	170	162	154	-147	I 40	132	'125	-118	II	104	8
21	-222	213	204	96	-187		171	-163	- 155	${ }^{1}$	140	132	12	117		
22	233	-224	-21		-197		-180	-171	-163	- 55	-147	- 139	-13I	$\cdot 124$	16	\cdots
23	245	-235	- 2	-216	-207	'198	-189	-180	-17	-163	154	- 146	-138	-130	122	114
	257	247	-237	-227	$\cdot 217$	-208	-198	-189	-180	${ }^{171}$	62	-153	- 145	${ }^{13}{ }^{6}$		119
5	269	-258	- 248	238	-227	217	208	'198	- 188	179	-170	-16	152	143	I 34	'125
26	28	$\cdot 270$. 259	- 249	-238	27	217	207	197	187	178	'168	-158	149	140	-131
	294	-282	$\cdot 271$	260	$\cdot 249$	238	-227	216	206	-196	-185	175	-166	-156	- 146	137
28	307	-295	$\cdot 283$	-271	- 259	-248	-237	-226	215	204	'194	-183	:173	163	152	142
9	320	- 307	-295	-282	- 270	258	-247	235	-224	-213	202	-191	180	. 169	T59	149
30	333	$\cdot 320$	-307	-294	282	269	-257	245	233	-	210	-199	188	- 177		155
31	347	- 333	-319	-306	-293	-280	-268	-255	-243	231	219	'207	'195	${ }^{184}$	172	- 161
32	361	-346	-332	318	-305	291	-278		-252	240	- 227	-215	-203	191	'179	-167
	375	- 360	$\cdot 3+5$. 331	$\cdot 317$	303	-289	$\stackrel{.276}{ } \cdot 286$	-262	249	-236	-224	-211	-199		-174
	389	$\stackrel{374}{\cdot 388}$	$\stackrel{359}{\cdot 372}$	345	$\cdot 329$	315	$\cdot 300$	286	.273 .283	259	$\xrightarrow{246}$	-232	219 $\cdot 228$	212	- 201	181
	404	$\cdot 388$	-372	357	342	327	312	297	283	269	255	241	228	214		
36	419	4	- 386	370	354	339	. 323	308	294	279	-264	$\stackrel{250}{ }$	${ }^{2} 23$	222	208	195
	435	-	401	$\bigcirc 384$	368	351	. 336	320	-304	砣	274	- 259	- 245	230		
38 39	$4 \begin{aligned} & 451 \\ & 468 \\ & 4\end{aligned}$	-433	$\stackrel{415}{ }$	$\stackrel{398}{-41}$	${ }_{\cdot} \cdot 381$	-364	348	-332	-326	330	-284	-269	254 .263 2	239	22	-209
49	-468	4449	$\stackrel{431}{ }$	$\stackrel{413}{428}$	- 305	378	-36	344	. 327		295 305	-279	273	-248	24I	217 -225
		-482	-462	443	424	405	. 387	369	351	33	316	299	28	266		23
42		499	$\cdot 479$	459	-439	420	401	-382	$\cdot 364$	346	328	310	-293	275	258	24 I
43	538	- 517	-496	-475	-455	435	415	-396	- 377	358	339	-321	-303	-285	-267	250
44	558	- 535	-513	-492	-471	450	430	410	390	371	351	- 33	-314	-295	$\cdot 277$	59
45	577	- 554	$\cdot 532$	510	-488	466	445	424	404	-384	364	-344	325	-306	-287	268
46	. 598	-574	-551	$\cdot 528$	- 505	483	461	440	418	-398	377	357	336	317	-297	
47	.619	. 594	-570	. 546	523	. 500	477	455	433						-307	
	-641	-616	-591	-566	-542	518	494	471	449	$\cdot 426$	404	$\cdot 382$	361	340	$\cdot 318$	298
50	66	. 638	-612	. 586	-561	-536	512	488	465	442	419	-396	374	352	330	308
50	68	-61	-634	-607	-581	$\cdot 556$	531	-506	48 I	457	434	410	387	364	34	319
5	713	-685	-657	-629	-602	$\cdot 576$	550	524	499	474	449	-425	40	-378	. 354	${ }^{1}$
52		709	-681	$\cdot 652$	-624	597	570	- 543	517	491	466	-441	416	391	- 367	343
53	766	736	$\cdot 706$	-676	$\cdot 6$	-619	591	-563	536	-509	483	457	43 I	406	. 381	356
54	925	$\cdot 763$	-732	701	67	-642	-613	- 58	-556	-528	501	474	447	421	395	69
55	825	'792	$\cdot 759$	'728	-697	-66	. 636	606	. 577	- 548	520	492	464	43	410	383
56	856	- 822	788	755	723	-691	-660	-629	- 599	$\cdot 569$	540	510	482	453	425	97
	889	-854	-819	785	$\cdot 751$	718	-686	-54	. 622	. 591	560	. 530	- 50	47 I	44^{2}	413
58	924	-887	-851	-815	$\cdot 781$	746	713	-679	-647	-614	. 582	551	520	489	459	429
59	961	-923	. 885	-848	. 812	776	741	706	-672	-639	606	573	541	509	477	
60	1.00	. 960	. 921	. 883	$\cdot 845$	808	771	735	700	$\cdot 665$	$\cdot 630$	596	. 563	. 530	497	464
	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{oo} \end{aligned}$	${ }_{56}$	${ }_{5} \mathrm{~m}$.	$\underset{48}{\mathrm{~m} .}$	$\mathrm{m} .$ 44	m. 40	$\begin{aligned} & \mathrm{m} . \\ & 36 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 32 \end{aligned}$	${ }_{28}$	$\begin{aligned} & \mathrm{m} \\ & 24 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 20 \end{aligned}$	m_{16}	${ }_{12}$	m_{8}	m_{4}	m.

When hour angle is more than 6 hours, name the factors taken from Table A the same as the name of the latitude.

Table B.
Always name the factors taken from Table B the same as the name of dechnation.

Declination.	4 Hours															$\frac{\mathrm{Hr}_{2}}{\mathrm{~m}_{0} .}$
	m_{00}.	${ }_{4} \mathrm{~m}$.	${ }_{8}^{\mathrm{m}}$.	${ }_{12}$.	${ }_{16}^{\text {m. }}$	${ }_{20}^{\text {m. }}$	m_{24}	$\underset{28}{\mathrm{~m} .}$	${ }_{32}^{m}$	${ }_{36} \mathrm{~m}$	${ }_{40} \mathrm{~m}$	${ }_{44} \mathrm{~m}$.	${ }_{48}^{\text {m. }}$	m_{52}	${ }_{5 B}$.	
$\stackrel{\circ}{\circ}$	-000	-000	-000	-000	-000	-000	000	-000	000	000	000	-000	000	-000	-000	-00
I	$\cdot 020$	-	. 020	-020	-ors	-019	-019	-or9	-19	-19	-19	-18	-18	-18	OI8	\bigcirc
2	- 040	-040	- 040	-039	- 039	- 039	-038	-038	038	-037	037	037	-037	-03	-36	-36
3	-061	-060	-059	- 59	- 058	- 078	-057	-057	057	-56		-055	- 55	- 05	055	-054
4	-08	- 080	-079	- 78	$\cdot 778$	-077	-077	- 76	-975	-75	-74	-074	- 074	\bigcirc	-73	$\bigcirc{ }^{\circ}$
5	'10	${ }^{100}$	-099	-098	-097	-097	-096	-095	094	094	093	-093	-092	-991	091	${ }^{\circ} \mathrm{9}$
6	-121	-120	II9	-118	-117	-116	'115	-II4	-113	$1{ }^{1} 3$	II2	III	III	10	-109	109
7			-139	- 138	${ }_{-137}{ }^{1} 56$	'135	134	-133	-132	-132	131	130	-129	- 128	-128	127
8	-162	- 181	-159	-158	-156	-155	-154	-153	-152	-151	150	- 149	${ }^{1} 48$	-147	146	145
10	$\left\|\begin{array}{c} \cdot 183 \\ \cdot 204 \end{array}\right\|$	$\begin{aligned} & \cdot 181 \\ & \cdot 202 \end{aligned}$	$\begin{aligned} & 179 \\ & \therefore 200 \end{aligned}$	-178	${ }^{\text {- } 176}$	-175	-173	-172	${ }^{\text {- } 171}$	-170	189	${ }_{1} 188$	-167	${ }^{-1664}$	${ }^{165}$	164 183 184
10	$\left\|\begin{array}{l} 204 \\ \cdot 224 \end{array}\right\|$			'198	- 216	‘195	-193	-192	- 210	. 208	$\text { - } 188$	T86	- 204	184	183	[183
12	$\left\|\begin{array}{l} 224 \\ 245 \end{array}\right\|$	$\begin{aligned} & { }_{22} \\ & 2_{4}^{4} \end{aligned}$	241	. 218	-216		. 213	211	- 212	228	226	206	. 224	203	222	220
13	'26	-264	-261	-259	-257	255	253	-251	249	247	246	244	243	241	240	239
14	-28	-285	-282	-280	-277	-275	-273	-271	-269	-267	25	264	262	-26	259	258
15	-309	- 306	303	'301	-298	-296	293	-291	-289	287	285	283	28	-280	279	277
16	331	328	. 325	322	319	316	314	312	-309	307	305	303	302	-300	-298	297
17	. 353	350	346	343	340	337	335	332	330	327	325	32	321	32	318	317
18	. 37	37	368			359	356	353	-350	348			342	340	338	356 350
19	-39	394	390		. 383	38	377	374	-371						350	350
20	42	416	412	408	405	402	398	395	393	390	387	38	383	38	379	377
21		439	43	431	42	42	420	417	414	41	40	406	404	40	- 399	397
22		462		453	450					433	43	427	425	42		418
23.	490	- 485	48 I	. 476	. 472	468	465	46 I	456	65	46	449	446	44		439
23°	-501	-496	492	-487	. 483	479	475	$4{ }^{2}$		65	46	459	456	. 456		449
24	514	. 53	$\begin{array}{r} 504 \\ 528 \\ \hline \end{array}$. 519	491	- 518			477	474	47		${ }_{48}$	85	
25	538	. 533	${ }^{\circ} 528$	547	'519	. 515	. 510	507	503	492	519	516	490			483 505
26	- 5	. 58	$\begin{array}{r} 552 \\ 5 \\ 57 \end{array}$	47		. 538	55	55	550	. 522	519	539	5	515		505 527
27 28	- 5	$\stackrel{.583}{.608}$. 577	. 572	-567	-582	. 558	$\begin{aligned} & \\ & \cdot 574 \\ & \hline \end{aligned}$	550	. 576	56	562	55	55	533	527 550 50
29	-640	-634	628	5	617	- 61	$\cdot 607$			594	590		583			574
30	-667	-660	654	648	'64	-637	632	627	623	61	614	61	607	604	601	598
Stars.																
$\underset{\text { Pro }}{N . \bar{D}}$					'106											
Altair	17	'17	172	'170	' 169	-167	- 166	-165	-164	${ }^{1} 63$	161	- 160	'160	15	15	157
Aldebar'n	338	. 335	332	- 329	研	323	-325	38	$3{ }^{16}$	314	312		- 308	30	305	303
Arcturus	412	40	405	401		394	391	388	385	383	380	378	-376	37		370
Casto	724	717	70	$\cdot 704$	698	-692	-686	-68I	- 776	$\cdot 672$	66	. 66	- 69	65	65	649
Vega	925	-916	907	- 899	891	- 884	$\cdot 877$	870	864	. 858	85	84	$\cdot 842$. 83		829
Deneb	15	r. 14	$1 \cdot 13$	r'12	-	-10	I.09		-08	I.07	r-06		-5			03
Capella	r.19	r18	$1 \cdot 17$		I'15	14	$\mathrm{I}^{1} \mathrm{I}$	I'12	I 11	I•II	I'Io	I-09	1.09		r 07	r.07
${ }^{\text {a Persei }}$	35	1.34	I.33	${ }^{1} 32$	r 30	29	I.28	㐌	r 26	I. 26	r ${ }^{1}$	24	r23	r 23	I 22	121
η Ursx 1	+	r 35	-3	¢. 33	1.31	-	I29	- 28	1.27	I 27	I-26	I.25	I. 24	I. 24		
Ursx M	${ }^{1}$	I'72	1.71	r.69			r.65	I. ${ }^{1} 64$	r. 63 2.05	2		59	59	r.99		
sæ M	19	$2 \cdot 17$														
S. Decln. Rigel			'165	'164	162	- 161	-160	159	157	156	15	154	153	'153		51
Sirius	34	. 34	337	334	33	- 329	-326	-324	32 L	319	31	315	3 33	3 T	310	308
ϵ Sagittar	- 8	. 7	. 785	. 769	. 763	75	. 750	745	-739	. 738	. 729	7	721	717		710
λ Scorpii	- 771	-863	855													
γ Argûs a Gruis	1.24	I.23		I				I 1								
${ }^{\text {a Gruis }}$ Canopu	I.5I	1.24 1.50	1.23	1.47		[.20	I.19	I-18	1.17	I-16 T 40	r-16 r.39 -	I'15	I-38	r 37		$1 \cdot 36$
Canopu γ Crucis	I 5	1.50	- ${ }^{4} 8$	1.47	I $\begin{array}{r}\text { 1. } 46 \\ \mathrm{~T} .69\end{array}$	[.45	I.43		1.47	[.40	r'39	I 39	I. 1.6	r	I. 58	-57
a Pavonis	1.78	r 76	r 75	- 73	${ }^{1} 7 \mathrm{~F}$	I.70	1.69	- 67	I 66	I.65	r. 64	I. 63	I. 62	I.61		
Achernar	r.83	r.81	-79	r'77	1.76	r 74	r.73	$\mathrm{I}^{1} 72$	I•1	I.69	I 68	1.67	- 66	r. 65		- 64
β			. 90	. 88	1.8	-85	. 84	-82	. 81	.80	-79	77	1.76	75	75	-74
${ }_{\beta}{ }^{\text {A Centauri }}$	2.00	r 98	-96	- 94	- 9	91	I.89	I.88	. 86	I•8	I 84	I.83	I•82	1.81	I.80	79
α^{2} Centaur	$2 \cdot 04$	2.02	$2 \cdot 0$	I. 98	I.96	-95	ז.93	I.92	. 90	I-89	I•88	I.87	${ }^{-86}$	I.85	I•84	3
ucis	$2 \cdot 23$	2.21	18	$2 \cdot 17$	2.	213	2.11	2.10	-08	2.07	2.05	2.04	2.03			
α Tri. Au β Argûs	1.99	$\begin{aligned} & 2.96 \\ & 3.96 \end{aligned}$	2.93	$2 \cdot 98$	$2 \cdot 8$	2.85	2.83 2.90	2.81	-79	2.77 2.84		$\begin{aligned} & 2.74 \\ & 2.81 \end{aligned}$	79	2.77	$2 \cdot 76$	
	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{m} . \end{aligned}$	${ }_{56}^{\mathrm{m}}$	$\begin{gathered} \mathrm{m} \\ 52 \end{gathered}$	$\begin{aligned} & \mathrm{m} . \\ & 48 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 44 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 36 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 32 \end{aligned}$	$\underset{28}{\mathrm{~m}}$	$\begin{aligned} & \mathrm{m} . \\ & 24 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{I} 2 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 8 \end{aligned}$	$\mathrm{m} .$ 4	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{oo} \end{aligned}$

$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\circ}{\square}}$	5 HOUiAS.															6 Hr .
		m_{4}.	${ }_{8} \mathrm{~m}$.	11.	$\underset{16}{\mathrm{~m} .}$	$\underset{20}{\mathrm{~m}}$	m_{24}	m_{28}	m_{32}	mu_{30}	m_{40}	mis_{44}	m_{48}	$\underset{52}{\mathrm{~m}} .$	${ }_{56}$	$\begin{gathered} \mathrm{ma} \\ 00 \end{gathered}$
\bigcirc	-0'0	- 0												- 0	- 0	
0	- 000	-000	$\cdot 000$	'000	-000	000	-000	-000	${ }^{\circ} \mathrm{OOO}$	- 000	-000	'000	-000	000	$\cdot 000$	00
1	-005	-	- 0	-004	-003	-	-003	- 0	-002	-002	-002	- OOI	- 001	- 001	-000	000
2	-009	-009	-008	- 007	-007	- 0 -0́	-006	-005	-004	-004	.003	-002	-002	- OOI	- 001	000
3	- ${ }^{\text {O }} 4$	-013	-012	- OII	- 010	-009	-008	$\cdot 007$	-006	-006	-005	-004	-003	-002	$\cdot 001$	000
4	-19	-017	- 016	-015	-014	- 012	- OI	- 010	-009	$\cdot 007$	-006	-005	-004	-002	$\cdot 001$	00
5	-023	. 022	-020	- 019	-017	'OI5	-014	-012	- OII	-009	-008	-006	-005	-003	-002	0
6	$\cdot \mathrm{O}$	'0	- 0	-	-020	-	-017	-OI 5	-O13	-OII	-009	7	-006	-004	-002	-000
7	-033	-03	-028	-026	-024	2	-019	-017	-OI 5	-OI 3	- 011	-009	-006	$\cdot 004$	002	000
8	.038	-035	-03	-03	-027	-025	-022	-020	- or 7	-015	-12	-010	-007	-005	-003	00
9	-0.	-039	-037	-034	-03I	. 028	-025	022	-019	017	- 014	- OII	-008	-006	-003	-000
Io	-0.47	- 044	- $\mathrm{O}_{4} \mathrm{I}$	-037	-034	-03I	-028	-025	-022	-019	-015	- 012	-009	-006	-003	0
II	\bigcirc	-	\bigcirc	-	,	.034	-	-027	-024	-020	7	- OI	- 010	7	-003	O
12	-057	. 05	'049	-04	\cdot^{-041}	-037	-034	.030	-026	- 022	-oi9	-or 5	-OII		-004	-000
13	. 062	-058	.053	-049	-045	.041	-037	-032	-028	- 024	-020	-or6	-OI2	-008	-004	-000
14	. 067	-062	-058	-053	$\cdot 048$	-044	-039	-035	.03I	. 026	-022	017	-or 3	09	04	-000
15	$\cdot 072$	$\cdot 067$	-062	-057	-052	-047	-042	-038	-033	-028	-023	- 019	- 014	$\cdot 009$	-005	-0
16	'077	- 0	- 066	-061	-056	- 0		-040		-30	-025	-		-oro	-005	0
17	.082	-076	. 07	-065	-059	-054	-04S	-043	-038	-032	$\cdot 027$	-02I	-or6	-OII	-005	00
I8	-o87	-081	. 075	-069	-063	-057	-051	$\cdot 046$	-040	-034	-028	-023	-017	-OII	06	oo
19	-092	-086	-079	-073	-067	-06I	-055	.048	. 042	-036	-030	-024	-018	12	-006	00
20	-098	'09	-08	-077	-071	-064	-058	-051	-045	-038	-032	-025	-019	-013	-006	0
2 I	-103	- og	-089	-082	-075	-068	-061	-054	-047	-	-034	-027	20	3	-007	0
2	- 108	-101	-093	-086	-079	$\cdot 071$	-064	-057	- 050	$\cdot 042$	-035	-028	$\cdot \mathrm{O} 21$	-or4	$\cdot 007$	-
23	- 114	-106	-098	-	-083	-075	-067	-060	-052	-045	. 037	-030	-022	15	7	\bigcirc
24	-119	'I	${ }^{\prime} 1$	-095	-087	. 079	-071	-063	-055	-047	.039	-031	-023	-or6	8	OO
25	-125	- II 6	-10	-099	-091	$\cdot \mathrm{0} 82$	\cdot	- 066	-057	-049	-04I	-033	-024	- 016	8	0
26	-131	$\cdot 122$	-113	-104	-095	-086	-077	-069	-060	-051	-043	-034	-026	-017	9	0
27	- 137	-127	-118	-108	-099	-090	-08I	-072	-063	-054	-045	-036	-027	-018	-009	0
28	-1 42	-133	'12	${ }^{+1}$	-103	-094	-084	-075	-065	-056	- 047	-037	-028	-019	-009	0
29	- 149	- 138	-128	-118	- 108	-098	-088	-078	-068	-058	-048	-039	29	-019	10	0
30	- 155	-144	- 133	-123	-112	-102	-	-081	.071	-061	-051	$\cdot 040$	-030	-020	- 010	-000
31	$\cdot 161$	${ }^{1} 50$	-139	-128	-117	-106	-095	-084	-074	-063	-053	-042	-03I	-021	10	00
32	-167	-156	$\cdot 144$	${ }^{1} 33$	I	- 110	-099	-088	-077	-066	-055	-044	-033	$\cdot 022$	I	0
33	-174	-162	- 150	- 138	-126	-115	-103	-091	-080	- 068	-057	-045	-034	$\cdot 023$	'OII	0
34	-181	-168	- 156	- 143	-131	II9	- 07	-095	-083	$\cdot 071$	-059	-047	-035	-024	12	Ooo
35	-	-175	${ }^{1} 16$	-149	- 136	-123	-III	$\cdot 098$	-086	-074	-061	-049	-037	$\cdot 024$	-012	0
36	-195	${ }^{-181}$	-168	-154	${ }^{-1} 41$	128	-II5	-102	-089	-076	064	-051	-038	-025	-013	0
37	-202	-18	-174	-160	- I46	-133	-119	-106	-093	-079	-066	-053	-039	-026	-013	0
38	- 209	-195	-180	-166	- 152	- 138	-124	110	-096	-082	-068	-055	-04I	$\cdot 027$	-or 4	0
39	- 217	$\cdot 202$	$\cdot 187$	-172	-157	-143	-128	- II4	-099	-085	-071	-05.	$\cdot 042$	-028	-O14	000
40	-225	$\cdot 209$	$\cdot 194$	-178	-163	-148	-133	-118	$\cdot 103$	-088	-073	-059	$\cdot 044$	-029	- 15	O
4 I	- 233	- 217	-	$\cdot 185$	-169	-153	-138	122	${ }^{1} 107$	-091	$\cdot 076$	-061	$\cdot 046$	-030	- 015	0
42	-24I	- 224	- 208	-191	- 75	- 159	-143	-127	-III	-095	-079	-063	. 047	-031	-016	00
43	- 250	$\cdot 233$	- 215	-198	-181	-164	${ }^{-148}$	-131	-114	-098	-082	-065	-049	-033	6	0
44	- 259	- 241	$\cdot 223$	$\cdot 205$	-188	-170	-153	$\cdot 136$	-119	- 101	-084	-068	.051	-034	$\cdot \mathrm{OI} 7$,000
45	$\cdot 268$	- 249	$\cdot 231$	$\cdot 213$	-194	-176	${ }^{1} 158$	-14 1	-123	$\bullet 105$	$\cdot 087$	$\cdot 070$	-052	-035	-017	0
46	$\cdot 277$	- 258	- 239	- 220	- 201	-183	- 164	$\cdot 146$	-127	-109	-09r	-072	-054	-036	-018	00
47	$\cdot 287$	$\cdot 267$	- 248	- 228	- 208	$\cdot 189$	- 170	- 151	- 132	- I 13	-094	-075	-056	-037	-019	0
48	- 298	$\cdot 277$	-256	$\cdot 236$	-215	-196	-176	- 566	- 136	-117	-097	-078	-058	-039	- 019	0
49	- 308	$\cdot 287$	- 266	- 245	- 224	- 203	-182	-162	-14 1	-121	- 101	-080	-060	-040	-020	00
50	-319	-297	$\cdot 275$	$\cdot 253$	$\cdot 232$	- 210	${ }^{1} 89$	$\cdot 167$	-146	-125	-104	-083	-062	-042	2	00
51	-331	- 308	-285	- 262	- 240	- 218	- 196	-174	-152	$\cdot 130$	-108	-086	065	-043	-022	0
52	- 343	-319	- 295	$\cdot 272$	- 249	- 226	- 203	:180	-157	-135	-112	'090	-067	-045	- 022	0
53	- 356	-331	-306	-282	- 258	- 234	- 210	$\cdot 187$	-163	-139	-I16	-093	-070	-046	-023	000
54	- 369	- 343	$\cdot 3^{18}$	- 293	- 268	- 243	- 218	$\cdot 193$	- 169	-145	- 120	-096	-072	-048	-024	0
55	$\cdot 383$	- 356	- 330	-304	$\cdot 278$	- 252	- 226	-201	$\cdot 175$	- 150	-125	$\cdot 100$	-075	-050	-025	-000
56	-397	- 370	- 342	-315	-288	- 261	-235	- 208	$\cdot 182$	$\cdot 156$	- 130	$\cdot 104$	-078	-052	-026	000
57	$\cdot 413$	- 384	$\cdot 356$	$\cdot 327$	- 299	$\cdot 272$	- 244	$\cdot 216$	-189	-162	- 135	-108	-081	-054	-027	000
58	$\cdot 429$	- 399	$\cdot 369$	- 340	$3 \mathrm{3I}$	- 282	$\cdot 253$	- 225	-196	- 168	-140	II2	-084	-056	-028	-00
59	$\cdot 446$	-415	$\cdot 384$	- 354	- 324	-293	-264	- 234	- 204	- 75	-146	116	-087	-058	-029	000
60	$\cdot 464$	432	400	368	337	- 305	$\cdot 274$	$\cdot 243$. 213	- 18	- 152	121	$\cdot 091$	-060	-030	-00
	m.	$\begin{array}{r} \mathrm{m} \\ 56 \end{array}$	$\begin{gathered} \mathrm{m} \\ 52 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{m} . \\ 48 \end{gathered}$	$\begin{gathered} \mathrm{m} \\ 44 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 36 \end{aligned}$	$\begin{array}{r} \mathrm{m} \\ 32 \end{array}$	m	$\begin{aligned} & \mathrm{m} \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 20 \end{aligned}$	$\begin{gathered} \mathrm{m} \\ \mathrm{I} 6 \end{gathered}$	$\begin{gathered} \mathrm{m} \\ \mathrm{I} 2 \end{gathered}$	m.	m. 4	m.
	7 Hr							6 H	RS.							

When hour angle is more than σ hours, name the factors taken from Table A the same as the name of the latitude.

Table 8.

Always name the factors taken from Table B the same as the name of declination.

Declination.	5 Hours.															$-\frac{6 \text { Hr. }}{\frac{m}{m}}$
	00	${ }_{4}^{\mathrm{m}}$.	${ }_{8}^{\text {m }}$.	${ }_{12}^{m}$	${ }_{16}^{m}$	${ }_{20} 0$	${ }_{24}{ }_{2}$	${ }_{88} 8$	32	${ }_{36}{ }^{\text {m }}$		m	${ }_{48}$	${ }_{52}$.		
:	\therefore	-óo		-ooo	-000		000	000	000	000		¢00	-00	000		
${ }^{\circ}$	-008	Or	or 8	-36			\%oo	or8	-18	Or8	-18	- 7	-17	-00		-000
2	$\begin{aligned} & 0.036 \\ & .054 \end{aligned}$	${ }^{0} 05$	$\stackrel{3}{0}{ }^{3}$	${ }^{-36}$	36		035 053	-035	-3, ${ }^{-315}$	035 053	035	035	-035	- ${ }^{-035}$	- 035	35
3 4	$\begin{aligned} & .054 \\ & \because 072 \end{aligned}$	-074	${ }^{0} \mathrm{O} 54$	-1	4	253	${ }^{\text {O53 }}$	${ }^{-053}$		053	-0.93	070	-052	2 ${ }^{0.52}$		70
5		-90		-089	-080	-89	-88	-088	-088	088	088	o88	-088	-088	-088	7
6	-192	-108	. 172	. 127	-127	7.107	106	106	- 106	106	106	105	ros		105	05
8		${ }_{145}^{127}$.126	-126	'125	(125	${ }^{1} 124$	I24	-124	123	123	23	${ }_{141}{ }^{123}$			${ }_{4}^{23}$
8	-145	145	+144	- 1142		(143	160		- 142	141	159	- ${ }^{\text {'141 }} 1$	141			$4{ }^{4}$
10	-83	-182	'181	'180	'180	-179	179	178	'178	177	177	T77	177	-176	6 -176	176
1 I	${ }_{2}^{201}$	${ }^{2} 200$	-199	${ }^{2199}$	${ }^{1} 218$		${ }_{215}$	196	. 196	125	195	125	195	${ }^{5} 194$	194	94
12 13		${ }_{238}^{212}$		${ }_{236}^{217}$				215		14		213				
14	25	${ }^{257}$	${ }_{2}^{2} 25$	255	[254	$4{ }^{2} 25$	221	研	25	260	260	20	268			249
15		276	275	${ }^{2} 27$	-273	272	271	271		269	269	269	-268	-26	8	268
${ }^{16}$	'22	296	294	-293	292	91	290	.290	${ }^{280}$	288	288	-287	287	,	7	287
178		315 335	. 314	. 3132			(320					326	306			
19	-35	355	353	. 352	35	1.350					. 346					
20	377	375	374	. 372	-371	30	-369	368	-367	366	365	,	364	4		364
$2{ }^{21}$	- 397	- 396	. 394	- 392	-3912	390	. 389	388	. 38	386	385	385	384	-	4	${ }^{88}$
${ }_{23}^{22}$					432		. 430	${ }_{429}^{408}$		${ }_{427} 4$		${ }_{4}^{405}$				
23 23 20		43	${ }_{4} 446$		432			429		${ }^{4} 437$	${ }_{436}$	43	${ }_{43}^{42}$			
		4	457	453			4	4	449	. 448	. 4478	. 446		${ }^{6} .445$	5 445	445
25	48	${ }^{4} 481$. 479	477	475	74				-469						
${ }^{26}$		-503	.502	499	49	-	494	493	491	490	490		-488	8.488	8	88
27 28							${ }_{5}^{58}$					453	3532	. 53		
29	. 57	.571	. 569		. 588							55				
30		595	593				585	58	5^{58}			579			577	'577
Stars.																
Pr			-098	. 09	-		硅			-096		-096	-096	-096		
${ }^{\text {Alda }}$	157	. 156	${ }^{156}$	-155	. 15	154	${ }^{154}$. 15	. 153	15		15				
${ }_{\text {Aldeba }}^{\text {Ald }}$	$\begin{aligned} & .303 \\ & .370 \end{aligned}$. 368	-	. 300	${ }^{2} 298$	36	362	.367	.360	. 295	294	35	(203	(${ }^{2} \cdot 293$		93
Casto	${ }^{649}$	646	643	$\cdot 641$	${ }^{6}$. 635	633			62	. 628				
	. 829	826			81	813	8 II			. 806	80	803				Sor
Deneb Capella	-03	-03		T.06			ror	$\mathrm{I}^{\circ} \mathrm{O}$	1.01	\bigcirc	-oo					
Capella	-7	. 06	I 06	1.06	1.05	${ }^{-}$	T.05	1.04	1.04	-4	- 04	- 03	${ }^{\circ} \mathrm{O}$	1.03		${ }^{0}$
$\underset{\sim}{a}$ Persei		-2I	120	20	19	I'9	r 19	- 18	I 18	-18	-	17	17	17		
$\underset{\substack{\eta \\ \epsilon \\ \text { Urse } \\ \text { Urse }}}{ }$	-22	. 22	121	121			-	-19	-19							
¢ Urse Maj U Urse Maj	97	-	I.	re94	+ 94	. 93	${ }_{\text {r }}$. 92	91	${ }^{1}$	91	.90	. 9	. 90	I.90	${ }_{90}$
S. Decln																
		. 15		$\begin{array}{r} 149 \\ .395 \end{array}$	$\begin{array}{r} 149 \\ .30= \\ .30 \end{array}$											${ }^{146}$
${ }_{\text {E Sagita }}$	7	. 7	7	. 701	69	5	. 69	${ }^{301}$. 69	. 688	$\begin{array}{l\|l} 0.298 \\ \hline 688 \end{array}$	${ }^{298}$	${ }^{29}$	$\begin{aligned} & 2088 \\ & .886 \end{aligned}$	688	${ }^{2985}$
λ Scorpii	78	77	774	. 771	76	966		762			75					${ }^{7} 85$
γ Ar	-11		${ }^{1} \mathrm{I} 10$													
${ }_{\text {a }}{ }^{\text {Gruis }}$	${ }_{\text {r }}^{1}$	1 12	-12	rir	-11	C-ro	${ }_{\text {r }} \times 10$	${ }_{4}$	I	$\left\lvert\, \begin{aligned} & \mathrm{r} \cdot \mathrm{og} \\ & \mathrm{r}^{-} 2 \end{aligned}\right.$	r.3	-35				$\stackrel{09}{ }$
${ }^{\text {C Cranopus }}$	${ }^{1} 57$		cre				54	. 5	5	-53	52	52		. 52		
${ }_{a}$ Pavonis	r. 60	. 59	r. 5	r. 58	57					. 55	55	55				
Achernar	6_{4}	63	1.62	1. 62	-61	r r \%	r. 60	I.60	- 59	T.59	${ }_{1} 59$	+59	5	-58		5^{8}
$\underset{\substack{\beta \\ \text { A Aruais }}}{\text { Crucis }}$	74		$\cdot 72$			70			- 6	$1 \cdot 69$	-68	-68	68	. 6		:68
	$\left\lvert\, \begin{gathered} 1.79 \\ 1.82 \end{gathered}\right.$	$\begin{aligned} & 1.78 \\ & 1.82 \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{r} \cdot 77 \\ & \mathrm{r} \cdot 87 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & x_{1}^{\prime} 77 \\ & x+80 \end{aligned}\right.$	$\left.\right\|_{\mathrm{r}} ^{\mathrm{r} \cdot 76}$	\% 7	75	7	7	74	73	73	7	73		
${ }_{\text {a }}^{\substack{a^{2} \text { Centau } \\ a^{1} \text { Crucis }}}$	$\begin{aligned} & \mathrm{r} .83 \\ & 2.80 \end{aligned}$	$\begin{aligned} \mathrm{r} \cdot 8_{2} \\ \pi \end{aligned}$		$\left\lvert\, \begin{aligned} & 180 \\ & 197 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{r} \cdot 80 \\ & \mathrm{r} 97 \end{aligned}\right.$											
${ }_{a}$ Tri. A		99	2. 65	2.67	${ }_{2}$. 64	6\%						
β Argâs	2.75	2:73	$2 \cdot 72$	2.71	2.70	2.69			$2 \cdot 67$	2:67		. 66	2.66	65	-65	
	m.	${ }_{56}^{\text {m. }}$	${ }_{52}$	${ }_{48}^{\text {m. }}$	$\left.\right\|_{44} ^{\mathrm{m}}$	${ }_{40}^{\mathrm{m}}$	$\left.\right\|_{36} ^{n}$	m_{32}	${ }_{28}^{\mathrm{m}}$.	$\mathrm{m}_{24} 1$	${ }_{20}^{\mathrm{m} .}$	${ }_{\text {m. }}^{\substack{\text { m } \\ \hline \\ \hline}}$	${ }_{12}{ }_{1}$	$\stackrel{1}{8}_{\text {m. }}$	$\left.\begin{gathered} \mathrm{m} . \mid \\ 4 \end{gathered} \right\rvert\,$	${ }_{\text {mo }}^{\text {m. }}$

Table A．
When hour angle is less than 6 hours，name the factors taken from Table A contrary to name of lat．

岗	0 HOUR．																$\frac{1 \mathrm{Hr}}{\frac{\mathrm{~m}}{\mathrm{oj}}}$
	${ }_{1} \mathrm{~m}$.	$\begin{aligned} & \text { Var } \\ & \text { to } 1 \\ & \text { of } \mathrm{L} . \end{aligned}$	${ }_{4}$.	$\underset{8}{\text { m．}}$	${ }_{12} \mathrm{~m}$	${ }_{16}^{\text {m．}}$	ma_{20}	$\frac{\mathrm{m}}{34}$	$\frac{\mathrm{m}}{28}$	m_{32}	m_{36}.	${ }_{40}$.	${ }_{44}$.	$\stackrel{1}{18}$	${ }_{52} \mathrm{~m}$.	${ }_{56} \mathrm{~m}$ ．	
${ }_{\circ}^{\circ} \mathrm{O}$	$4{ }^{1} 3$	$17 \cdot 0$	103	52	34	26	21	17.2	14．7	12.8	11.4	10． 2	$9 \cdot 3$	$8 \cdot 5$	$7 \cdot 8$	$7 \cdot 2$	\cdots
62	431	18.2	108	54	36	27	21	17.9	15.3	13.4	II ${ }^{\circ} 9$	$10 \cdot 7$	9.7	$8 \cdot 8$	${ }_{8 \cdot 1}$	77.5	$7 \cdot 0$
63	450	$19 \cdot 4$	112	56	37	28	22	18.7	16.0	$14^{\circ} \mathrm{O}$	12.4	II＇I	10＇1	9.2	$8 \cdot 5$	7.9	$7 \cdot 3$
64	470	$20 \cdot 8$	117	59	39	29	23	19.5	16.7	$14^{\circ} 7$	12．9	11．6	10.5	$9 \cdot 6$	$8 \cdot 9$	$8 \cdot 2$	7%
65	491	$22 \cdot 4$	123	61	41	31	25	20.4	17.5	15.3	13.5	12.2	11.0	10＇1	$9 \cdot 3$	$8 \cdot 6$	$8 \cdot 0$
66	515	$24 \cdot 2$	129	64	43	32	26	21.4	$18 \cdot 3$	16＊0	$14^{\circ} 2$	12.7	11．6	10.6	9.7	9＊0	$8 \cdot 4$
67	540	26^{2}	135	67	45	34	27	22.4	19.2	16.8	14.9	13.4	12．1	II＇I	$10 \cdot 2$	9.4	$8 \cdot 8$
68	567	28.6	142	71	47	35	28	23.5	$20 \cdot 2$	17.6	15.6	I 4.0	12.7	11．6	$10 \cdot 7$	9.9	9.2
69	597	$31 \cdot 2$	149	75	50	37	30	$24^{\circ} 8$	21.2	18.5	16.4	14.8	13.4	12.3	11．3	$10 \cdot 4$	9＊7
70	630	$34 \cdot 3$	157	79	52	39	3 I	$26 \cdot 1$	22.4	19.5	$17 \cdot 3$	15.6	$14^{\circ} \mathrm{I}$	12.9	II＇9	11＊0	$10 \cdot 3$
71	666	$37 \cdot 8$	166	83	55	42	33	27.6	$23^{\prime} 7$	$20 \cdot 7$	$18 \cdot 3$	$16 \cdot 5$	$14^{\circ} 9$	13.7	12.6	11．6	$10 \cdot 8$
72	705	42.0	176	88	59	44	35	29.3	$25^{\text {．}}$	21．9	19.4	17.5	15.8	14.6	13.3	12.3	11．5
	$\begin{gathered} \mathrm{m} . \\ 59 \end{gathered}$	．	$\begin{gathered} \mathrm{m} . \\ 56 \end{gathered}$	$\begin{gathered} \mathrm{m} . \\ 52 \end{gathered}$	$\begin{aligned} & \mathrm{m} . \\ & 48 \\ & \hline \end{aligned}$	m． 44	$\begin{aligned} & \mathrm{m} . \\ & 40 \end{aligned}$	$\begin{gathered} \mathrm{m} . \\ 36 \end{gathered}$	$\begin{aligned} & \mathrm{m} . \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 20 \end{aligned}$	$\begin{gathered} \mathrm{m} . \\ \mathrm{I} 6 \end{gathered}$	$\begin{gathered} \mathrm{m} . \\ \mathrm{I} 2 \end{gathered}$	$\underset{8}{\mathrm{~m} .}$	$\begin{gathered} \mathrm{m} . \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{oo} \end{aligned}$
11 HOURS．																	

号	1 HOUR．															$\begin{gathered} 2 \mathrm{Hr} . \\ \mathrm{m}_{\mathrm{oo}} \\ \hline \end{gathered}$
	$\mathrm{m}_{0} \mathrm{O}$	$\underset{4}{4}$	$\underset{8}{\mathrm{~m}}$ ．	${ }_{12}^{\mathrm{m}}$ ．	${ }_{16}$.	m_{20}.	m_{34}	$\mathrm{m}_{2 \mathrm{~s}}$.	${ }_{32}$	m_{36}.	m_{40}	m_{4}.	m_{48}	${ }_{52} \mathrm{~m}$.	m_{56}.	
$6{ }^{\circ}$	$6 \cdot 7$	$6 \cdot 3$	$5 \cdot 9$	$5 \cdot 55$	5．24	4.96	$4 \cdot 70$	4.47	4.25	4.05	3.87	$3 \cdot 70$	3.54	$3 \cdot 39$	3.25	． 12
62	$7{ }^{\circ}$	6.6	$6 \cdot 2$	$5 \cdot 79$	$5 \cdot 46$	5^{\prime} I7	$4 \cdot 90$	4.65	4.43	4.22	4.03	$3 \cdot 86$	$3 \cdot 69$	3.54	$3 \cdot 39$	3•26
63	$7 \cdot 3$	$6 \cdot 8$	$6 \cdot 4$	$6 \cdot 04$	$5 \cdot 70$	$5 \cdot 39$	$5 \cdot 11$	4.86	4.62	$4{ }^{4} 4$	4.21	4.02	3.85	$3 \cdot 69$	3.54	3.40
64	77	$7 \cdot 2$	$6 \cdot 7$	$6 \cdot 31$	5．95	$5 \cdot 63$	$5 \cdot 34$	$5 \cdot 07$	$4 \cdot 83$	$4 \cdot 61$	44°	4.20	$4 \cdot 02$	$3 \cdot 86$	$3 \cdot 70$	$3 \cdot 55$
65	$8 \cdot 0$	7.5	7.0	$6 \cdot 60$	6.23	5．89	$5 \cdot 59$	$5 \cdot 31$	5．05	4.82	4.60	4.40	4.21	4.03	3.87	3.71
66	$8 \cdot 4$	$7 \cdot 8$	$7 \cdot 3$	6.91	$6 \cdot 52$	6．17	$5 \cdot 8$	5．56	5．29	5.04	$4 \cdot 82$	$4 \cdot 6 \mathrm{r}$	4.41	4.22	4.05	$3 \cdot 89$
67	$8 \cdot 8$	$8 \cdot 2$	77	$7 \cdot 25$	$6 \cdot 84$	$6 \cdot 47$	$6 \cdot 14$	5.83	$5 \cdot 55$	$5 \cdot 29$	5.05	$4 \cdot 83$	4.62	4.43	4.25	4．08
68	$9 \cdot 2$	$8 \cdot 6$	$8 \cdot 1$	$7 \cdot 62$	$7 \cdot 19$	6．80	$6 \cdot 45$	6．13	$5 \cdot 83$	$5 \cdot 56$	$5 \cdot 31$	$5 \cdot 07$	$4 \cdot 86$	$4 \cdot 65$	$4 \cdot 47$	$4 \cdot 29$
69	9.7	$9^{\cdot 1}$	$8 \cdot 5$	$8 \cdot 02$	$7 \cdot 57$	$7 \cdot 16$	$6 \cdot 79$	6.45	6.14	$5 \cdot 85$	5．59	$5 \cdot 34$	$5 \cdot 11$	4.90	4．70	4．51
70	$10 \cdot 3$	9.6	$9{ }^{\circ}$	$8 \cdot 46$	7.98	$7 \cdot 55$	$7 \cdot 16$	$6 \cdot 80$	6.47	$6 \cdot 17$	5．89	$5 \cdot 63$	$5 \cdot 39$	$5 \cdot 17$	4.96	4.76
71	$10 \cdot 8$	$10 \cdot 1$	9.5	$8 \cdot 94$	8.43	$7 \cdot 98$	$7 \cdot 57$	$7 \cdot 19$	$6 \cdot 84$	$6 \cdot 52$	$6 \cdot 23$	5.95	5.70	5.46	5．24	5．03
72	II•5	$10 \cdot 7$	$10 \cdot 1$	9.47	$8 \cdot 94$	$8 \cdot 46$	$8 \cdot 02$	$7 \cdot 62$	$7 \cdot 25$	$6 \cdot 91$	$6 \cdot 60$	$6 \cdot 31$	$6 \cdot 04$	5.79	$5 \cdot 55$	5．33
	m．	$\begin{gathered} \hline \mathrm{m} . \\ 56 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{m} \\ 52 \end{gathered}$	$\begin{gathered} \mathrm{m} . \\ 48 \end{gathered}$	$\begin{aligned} & \mathrm{m} . \\ & 44 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 36 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 20 \end{aligned}$	$\begin{gathered} \mathrm{m} . \\ \mathrm{r} 6 \end{gathered}$	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{I} 2 \end{aligned}$	m． 8	m． 4	m．

岗	2 HOURS．															$\frac{3 \mathrm{Hr} .}{\frac{\mathrm{m}}{\mathrm{mo}}}$
	m_{0}.	$\underset{4}{\mathrm{~m}}$ ．	${ }_{8}^{\text {m．}}$	${ }_{12}{ }_{12}$	${ }_{15}{ }_{15}$	m_{20}	${ }_{24}{ }_{24}$	${ }_{28}{ }_{28}$	${ }_{32}{ }^{\text {m }}$	m_{36}	${ }_{40}{ }_{4}$	m_{44}	${ }_{48}{ }_{4}$	m_{52}.	m_{56}.	
${ }_{6}^{\circ} \mathrm{I}$	3．12	$3 \cdot 00$	$2 \cdot 89$	$2 \cdot 78$	2.67	$2 \cdot 58$	$2 \cdot 48$	$2 \cdot 39$	$2 \cdot 31$	2.23	2－15	2.08	$2 \cdot 60$	1．93	1．87	I－80
62	$3 \cdot 26$	$3 \cdot 13$	$3 \cdot 01$	$2 \cdot 90$	$2 \cdot 79$	$2 \cdot 69$	$2 \cdot 59$	$2 \cdot 50$	2.41	$2 \cdot 32$	$2 \cdot 24$	$2 \cdot 16$	2.09	$2 \cdot 02$	I•95	I－88
63	3.40	3.27	$3 \cdot 14$	$3 \cdot 02$	2.91	2.80	$2 \cdot 70$	$2 \cdot 60$	2.51	$2 \cdot 42$	$2 \cdot 34$	$2 \cdot 26$	2.18	$2 \cdot 10$	2.03	I．96
64	3.55	3.41	$3 \cdot 28$	$3 \cdot 16$	$3 \cdot 04$	$2 \cdot 93$	$2 \cdot 82$	2.72	$2 \cdot 62$	2.53	2.44	$2 \cdot 36$	$2 \cdot 28$	$2 \cdot 20$	$2 \cdot 12$	$2 \cdot 05$
65	3×71	$3 \cdot 57$	3.43	$3 \cdot 30$	3．18	3.06	$2 \cdot 95$	2．85	$2 \cdot 74$	$2 \cdot 65$	$2 \cdot 56$	2.47	$2 \cdot 38$	$2 \cdot 30$	2.22	2.14
66	$3 \cdot 89$	3．74	$3 \cdot 59$	$3 \cdot 46$	3.33	$3 \cdot 21$	$3 \cdot 09$	2.98	$2 \cdot 87$	$2 \cdot 77$	$2 \cdot 68$	$2 \cdot 58$	$2 \cdot 49$	$2 \cdot 41$	$2 \cdot 33$	$2 \cdot 25$
67	4.08	3.92	$3 \cdot 77$	3.63	3.49	$3 \cdot 36$	$3 \cdot 24$	$3 \cdot 13$	$3 \cdot 02$	2.91	$2 \cdot 81$	2.71	2.62	2.53	2.44	$2 \cdot 36$
68	$4 \cdot 29$	$4^{1} 12$	3.96	$3 \cdot 81$	$3 \cdot 67$	3.53	$3 \cdot 41$	$3 \cdot 28$	$3 \cdot 17$	3．06	2.95	$2 \cdot 85$	$2 \cdot 75$	$2 \cdot 65$	$2 \cdot 56$	$2 \cdot 48$
69	4.51	4.34	4．17	4.01	$3 \cdot 86$	3.72	$3 \cdot 59$	3.46	3.33	3.22	$3 \cdot 10$	$3 \cdot 00$	$2 \cdot 89$	$2 \cdot 79$	$2 \cdot 70$	2.61
70	4.76	4.57	4.40	4.23	4.07	$3 \cdot 92$	$3 \cdot 78$	$3 \cdot 65$	$3 \cdot 52$	3.39	3.27	$3 \cdot 16$	3.05	$2 \cdot 95$	$2 \cdot 85$	$2 \cdot 75$
71	5.03	$4 \cdot 83$	$4 \cdot 65$	4.47	$4 \cdot 31$	$4 \cdot 15$	4.00	$3 \cdot 85$	$3 \cdot 72$	$3 \cdot 59$	3.46	3．34	3.23	$3 \cdot 11$	$3 \cdot 01$	$2 \cdot 90$
72	5.33	$5 \cdot 12$	$4 \cdot 93$	$4 \cdot 74$	$4 \cdot 56$	4.40	$4 \cdot 24$	4.08	3.94	$3 \cdot 80$	$3 \cdot 67$	3.54	3.42	$3 \cdot 30$	$3 \cdot 19$	3.08
	m．	$\begin{aligned} & \mathrm{m} . \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 52 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 48 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 44 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 40 \end{aligned}$	$\begin{aligned} & \hline \mathrm{m} . \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 32 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 28 \end{aligned}$	$\begin{aligned} & \hline \mathrm{m} . \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 16 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 12 \\ & \hline \end{aligned}$	$\frac{\mathrm{m}}{8}$	$\begin{gathered} \mathrm{m} . \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{oo} \end{aligned}$
	10 Hr ．	9 HOURS．														

When hour angle is more than 6 hours，name the factors taken from Table A the same as the name of the latitude．

Table A.

When hour angle is less than 6 hours, name the factors taken from Table A contrary to name of lat.

$\stackrel{+}{\text { + }}$	3 HOURS.															$\frac{4 \mathrm{Hr} .}{\mathrm{m}_{00}}$
	m_{00}	m_{4}.	m_{8}.	${ }_{12}$.	m_{16}	m_{20}	m_{24}	$\mathrm{m}_{\mathbf{2 8}}$	$\underset{32}{\mathrm{~m}} .$	m_{36}	m_{10}	m_{44}	m_{48}	m_{52}	$\underset{56}{\mathrm{~m}}$	
${ }_{61}$	1.80	I'74	I. 68	I•62			I* 6									
62	I.88	I.82		1	5	I. 51		1.41	I. 36	31			I•17	I'I3	$1 \cdot 08$	$\mathrm{I}^{\circ} \mathrm{O} 4$
63	I•96	I.90					I-5	1.47	8	r 37	I. 32	7	I•22	I'18	I*13	I.09
64	$2 \cdot 05$	I.98	I'9I	1.85	1.78	1'72	- 66	I. 60	I'55	r. 43 r. 49	I•37 I'44	$1 \cdot 32$ I.38	I-27 I-33	I•23 I 28	I.18 I. 23	I-13 I-18
65	2.14	$2 \cdot 07$	$2 \cdot 00$	I*93	I•86	I*80	I*74	I ${ }^{68}$	$1 \cdot 62$	I. 56	I*50	I.45	1•39	I'34	1-29	I*24
66	$2 \cdot 25$	2.17	$2 \cdot 09$	$2 \cdot 02$	I•95	I•88	I-82	I'75	I•69	r. 63	I•57	I•5I	I.46	I. 40	- 35	I•30
67	$2 \cdot 36$	$2 \cdot 28$	$2 \cdot 20$	$2 \cdot 12$	2.05	I•98	1.91	I. 84	1.78	1.71	I. 65	I-59	I. 53	I. 47	I. 42	I•36
68	$2 \cdot 48$	$2 \cdot 39$	2.3I	$2 \cdot 23$	$2 \cdot 15$	$2 \cdot 08$	$2 \cdot 00$	I'93	I.87	I-80	I'73	I. 67	I. 61	I. 55	I. 49	I 43
69	$2 \cdot 61$	2.52	2.43	$2 \cdot 35$	$2 \cdot 26$	$2 \cdot 19$	$2 \cdot 11$	$2 \cdot 04$	I.96	I-89	I-82	1.76	I-69	I. 63	I•57	I*50
70	$2 \cdot 75$	$2 \cdot 65$	$2 \cdot 56$	2.47	$2 \cdot 39$	$2 \cdot 31$	$2 \cdot 22$	$2 \cdot 15$	$2 \cdot 07$	2.00	I. 92	I.85	1•78	I'72	I. 65	I-59
71	2.90	$2 \cdot 80$	$2 \cdot 71$	$2 \cdot 61$	2.52	2.44	$2 \cdot 35$	2.27	2.19	2.11	2.03	I.96	I. 89	I.8I	I'75	1.68
72	$3 \cdot 08$	$2 \cdot 97$	$2 \cdot 87$	$2 \cdot 77$	$2 \cdot 68$	$2 \cdot 58$	$2 \cdot 49$	2.40	$2 \cdot 32$	$2 \cdot 24$	$2 \cdot 16$	2.08	$2 \cdot 00$	I'92	I. 85	I.78
	m.	$\begin{aligned} & \mathrm{m} . \\ & 56 \end{aligned}$	$\begin{gathered} \mathrm{m} \\ 52 \end{gathered}$	$\begin{aligned} & \mathrm{m} . \\ & 48 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 44 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 36 \end{aligned}$	$\begin{gathered} \mathrm{m} \\ 32 \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 24 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 20 \end{aligned}$	$\mathrm{m} .$	m	m.	m.	m
	9 Hr .	8 HOURS.														

+ + ¢	4 HOURS.															$\frac{5 \mathrm{Hr}}{\mathrm{~m} .}$
	$\mathrm{m}_{\mathbf{0 0}}$	$\underset{4}{\mathrm{~m}}$	$\underset{8}{\mathrm{~m}}$	$\underset{12}{\mathrm{~m}}$	m_{16}	$\underset{20}{\mathrm{~m}} .$	$\underset{24}{\mathrm{~m}}$	$\underset{\mathbf{2 8}}{\mathrm{m}}$	$\underset{32}{\mathrm{~m}} .$	${\underset{36}{ }}_{m_{6}}$	m_{40}	m_{44}	m_{48}	m_{52}	$\mathrm{m}_{56} .$	
${ }_{61}$	I*O4	I'00	-96	$\cdot 92$	-88	-84	-80	77	73	-69	- 66	. 62	59	55	52	8
62	I.09	I'04	I 00	$\cdot 96$	$\cdot 92$	-88	-84	-80	$\cdot 76$	$\cdot 72$	-68	. 65	.61	-57	- 54	+50
63	I.13	I.09	I'04	I'00	$\cdot 96$	-92	-87	-83	-79	$\cdot 75$	-71	-68	-64	-60	- 56	. 53
64	I'I8	I'I4	I'09	I.04	I ${ }^{\circ} \mathrm{OO}$	-96	-91	$\cdot 87$	-83	-79	75	-71	$\cdot 67$	-63	- 59	-55
65	I.24	I'19	I'14	I'09	I'05	I'00	-95	'91	$\cdot 87$	-82	$\cdot 78$	$\cdots 7$	-70	-66	-61	- 57
66	I-30	I. 34	I•19	I-14	I'Io	I 05	I'00	-95	$\cdot 91$	-86	-82	$\bullet 77$	73	-69	-64	-60
67	I. 36	I•3I	I-25	I-20	I'I5	I-IO	I*05	I 00	$\cdot 95$	-90	-86	-81	$\bullet 77$	$\cdot 72$	-68	-63
68	I. 43	I•37	I. 32	I 26	I*2I	I-15	I*IO	I.05	I 00	-95	$\cdot 90$	-85	-80	$\cdot 76$	$\cdot 71$	- 66
69	I•50	I*44	I•39	I•33	I*27	I*2I	I'16	I'II	I'05	I'00	-95	-90	-85	-80	-75	$\cdot 70$
70	I•59	I. 52	I. 46	I. 40	I. 34	1.28	I $\cdot 22$	I•7	I•II	I.05	I'00	-95	-89	$\cdot 84$	$\cdot 79$	$\cdot 74$
71	I•68	I•6I	I-54	I. 48	I. 42	I•35	I•29	I. 23	I•17	I•II	I•06	1-00	$\cdot 94$	$\cdot 89$	-83	$\cdots 8$
72	1•78	1•71	I. 64	I 57	I. 50	I. 44	1-37	I.3I	I 24	I'I8	I•I2	I.06	I 00	-94	-88	$\cdot 82$
	$\begin{gathered} \mathrm{m} \\ \mathrm{oo} \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & 56 \end{aligned}$	$\begin{gathered} \mathrm{m} \\ 52 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{m} \\ 48 \end{gathered}$	m.	$\begin{aligned} & \mathrm{m} \\ & 40 \end{aligned}$	$\begin{gathered} \mathrm{m} . \\ 36 \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & 32 \end{aligned}$	$\begin{gathered} \mathrm{m} . \\ 28 \end{gathered}$	m. 24	m.	m. 16	$\mathrm{m} .$	m. 8	m. 4	mi.
$8 \mathrm{Hr} . \square 7 \mathrm{HOURS}$.																

+	5 HOURS.															$\frac{6 \mathrm{Hr} .}{\frac{\mathrm{m}_{3} .}{00}}$
	m_{00}	${ }_{4}^{\mathrm{m}}$.	$\underset{8}{\mathrm{~m}}$.	${ }_{12} 1$	${ }_{16}$	m_{20}	$\underset{24}{ } \mathrm{~m}$	$\frac{\mathrm{m}}{28}$	m_{32}	${ }_{36}$	m_{40}	nm_{44}	$\mathrm{m}_{48} .$	$\frac{\mathrm{m}}{52}$	$\underset{56}{m} .$	
6		- 45			-351			- 25	- 222	-190		-126	-095		-03I	-000
61	$\cdot 483$	-450	-416	-383	-351	-318	- 286	-254	- 222	-190	- 15	-126	-095	-063	-031	-000
62	- 504	-469	- 434	- 400	- 366	-332	-298	-264	-23I	- 198	-165	-132	-099	-066	-033	-000
63	-526	$\cdot 489$	- 453	- 417	-381	- 346	-311	- 276	- 24 I	- 206	-172	-137	- 103	-069	-034	-000
64	- 549	-511	- 473	-436	$\cdot 399$	$\cdot 362$	- 325	- 288	$\cdot 252$	- 215	-179	-143	$\cdot 107$	$\cdot 072$	-036	-000
65	- 575	- 535	-495	-456	-417	- 378	- 340	-301	$\cdot 263$	$\cdot 225$	-188	- 150	- I 12	-075	-037	-000
66	-602	- 560	-519	- 477	- 437	- 396	- 356	-316	-276	$\cdot 236$	-197	- 157	- II 8	-078	-039	-000
67	-63I	$\cdot 587$	-544	- 501	- 458	-415	- 373	-331	- 289	- 248	- 206	-165	- 123	-082	-04I	-000
68	- 663	-617	- 571	- 526	$\cdot 481$	- 436	- 392	$\cdot 348$	- 304	- 260	$\cdot 217$	-173	-130	-086	-043	-000
69	-698	- 650	-601	- 554	- 506	-459	-413	-366	- 320	$\cdot 274$	- 228	-182	-137	-091	-045	-000
70	$\cdot 736$	-685	-634	-584	- 534	- 484	- 435	-386	- 337	$\cdot 289$	- 240	-192	-144	-096	-048	-000
71	$\cdot 778$	$\cdot 724$	- 670	-617	$\cdot 565$	$\cdot 512$	- 460	- 408	- 357	- 305	- 254	- 203	-152	- IOI	-051	-000
72	. 825	$\cdot 767$	-711	-654	- 598	- 543	- 487	- 433	- 378	$\cdot 323$	- 269	-215	-161	-107	-054	000
	m.	m. 56	m.	m. 48	m. 44	$\begin{aligned} & \mathrm{m} \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 36 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 2 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 24 \end{aligned}$	$\mathrm{m} .$	$\begin{gathered} \mathrm{m} . \\ \mathrm{I} 6 \end{gathered}$	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{I} 2 \end{aligned}$	$\frac{\mathrm{m}}{8}$	$\begin{gathered} \mathrm{m} . \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & \mathbf{\infty} \end{aligned}$
	7 Hr	6 HOUPS.														

When hour angle is more than 6 hours, name the factors taken from Table A the same as the name of the latitude.

Table A.
When hour angle is less chan 6 hours, name the factors taken from Table A contrary to name of lat.

$\stackrel{+}{\stackrel{+}{\circ}}$	0 HOUR.																$\frac{1 \mathrm{Hr}}{\substack{\mathrm{~m} \\ 00}}$
	1 m	Var. to ${ }^{\prime}$ of L.	$\underline{4}$	mm_{8}	m_{12}	m_{16}	m_{20}	m_{24}	$\frac{\mathrm{m}}{28}$	m_{32}	m_{36}	$\mathrm{m}_{40} .$	m_{44}	${ }_{4 \mathrm{ln}}^{13}$	m_{52}	m_{56}	
73	750	47	187	94	62	47	37	31	$26^{\prime} \cdot 6$	$23 \cdot 3$	20.7	I $8 \cdot 5$	16.8	15.4	14.2	$13^{\circ} \mathrm{I}$	$12 \cdot 2$
74	799	53	200	100	67	50	40	33	$28 \cdot 4$	$24 \cdot 8$	22.0	19.8	17×9	16.4	15 $5^{\circ} \mathrm{I}$	14°	$13^{\circ} \mathrm{O}$
75	855	60	214	107	71	53	43	36	$30 \cdot 4$	$26 \cdot 6$	23.6	$21^{\circ} 2$	$19 \cdot 2$	$17 \cdot 6$	16.2	I5 ${ }^{\circ}$	13.9
76	919	69	230	115	77	57	46	38	$32^{\circ} 7$	$28 \cdot 5$	$25^{\prime} 3$	22.7	$20 \cdot 6$	$18 \cdot 9$	17.4	16.1	I $5^{\circ} \mathrm{O}$
77	993	80	248	124	83	62	50	4 I	$35^{\circ} 3$	$30 \cdot 8$	$27 * 3$	$24^{\circ} 6$	$22 \cdot 3$	$20 \cdot 4$	18•8	I7**	16.2
78	1078	93	270	I 35	90	67	54	45	$38 \cdot 3$	$33 \cdot 5$	$29 \cdot 7$	26.7	$24^{\cdot 2}$	$22^{1} 1$	$20^{\circ} 4$	I8.9	17.6
79	1179	111	295	147	98	74	59	49	4I'9	$36 \cdot 6$	$32 \cdot 5$	$29^{\circ} 2$	$26 \cdot 5$	$24^{\circ} 2$	$22 \cdot 3$	$20 \cdot 6$	19*2
80	1300	134	325	162	108	8 r	65	54	$46 \cdot 2$	$40 \cdot 4$	$35^{\circ} 8$	$32 \cdot 2$	$29^{\cdot 2}$	26.7	$24^{\circ} 6$	$22^{\circ} 7$	$2 \mathrm{I} \cdot 2$
81	1447	165	362	181	120	90	72	60	51*4	$44^{\circ} 9$	$39^{\circ} 9$	$35^{\circ} 8$	32.5	29*7	$27^{\circ} 3$	$25^{\circ} 3$	23.6
82	1631	210	408	204	136	102	8 I	68	$58 \cdot 0$	$50 \cdot 6$	$44^{\circ} 9$	$40 \cdot 4$	$36 \cdot 6$	33.5	$30 \cdot 8$	$28 \cdot 5$	$26 \cdot 6$
83	I867	275	467	233	155	I 16	93	77	$66 \cdot 3$	$58^{\circ} \mathrm{O}$	$5 \mathrm{I} \cdot 4$	$46 \cdot 2$	4 $1 \cdot 9$	$3^{8 \cdot} 3$	$35^{\circ} 3$	$32 \cdot 7$	30.4
84	2181	377	545	272	181	136	109	91	$77 \cdot 5$	$67 \cdot 7$	60.1	54°	$48 \cdot 9$	$44^{\circ} 8$	$4^{1 \cdot 2}$	$38 \cdot 2$	35.5
85	2620	548	655	327	218	163	131	109	$93^{\circ} 1$	81.3	$72 \cdot 2$	$64 \cdot 8$	$58 \cdot 8$	$53 \cdot 8$	49.5	$45^{\circ} 8$	$42 \cdot 7$
	m. 59	\ldots	m. 56	m.	m.	m. 44	m 40	m. 36	m.	m.	m. 24	10. 20	m.	m.	m.	m.	m.
11 HOURS.																	

+	1 HOUR.															$\frac{2 \mathrm{Hr}}{\substack{2 \\ 00}}$
	${ }_{00} \mathrm{~m}$.	m_{4}	m_{8}	${ }_{12}$	m_{16}	$\mathrm{m}_{20} .$	m_{24}	min_{28}	m_{32}	m_{36}	m_{40}	m_{4}	m_{48}	$\frac{\mathrm{m}}{52}$	$\underset{56}{\mathrm{~m}} .$	
	$12 \cdot 2$	11.4	10.7	10* 1	$9 \cdot 5$	$9^{\circ} 0$	$8 \cdot 5$	8•I			$7^{\circ} 0$	$6 \cdot 7$	$6 \cdot 4$	$6 \cdot 2$		
73	12.2	11.4	$10 \cdot 7$	$10 \cdot 1$	95	9.0	$8 \cdot 5$	$8 \cdot 1$	7.7	7.3	$7{ }^{7} 0$	67	6.4 6.8	$6 \cdot 2$	$5 \cdot 9$	$5 \cdot 7$
74	$13^{\circ} \mathrm{O}$	12.2	II ${ }^{\text {c }} 4$	10.7	10'I	$9 \cdot 6$	$9^{\circ} \mathrm{I}$	$8 \cdot 6$	$8 \cdot 2$	$7 \cdot 8$	$7{ }^{\circ} 5$	$7{ }^{\circ} 2$	$6 \cdot 8$	$6 \cdot 6$	$6 \cdot 3$	$6 \cdot 0$
75	$13^{\circ} 9$	$13^{\circ} \mathrm{O}$	12.2	11.5	$10 \cdot 8$	$10 \cdot 3$	$9^{\circ} 7$	$9^{\cdot 2}$	$8 \cdot 8$	$8 \cdot 4$	$8 \cdot 0$	$7 \cdot 7$	$7 \cdot 3$	$7{ }^{\circ}$	$6 \cdot 7$	$6 \cdot 5$
76	$15^{\circ} \mathrm{O}$	$14^{\circ} \mathrm{O}$	$13^{\circ} \mathrm{I}$	$12 \cdot 3$	II 6	II'O	10.4	$9^{\circ} 9$	$9 \cdot 4$	9°	$8 \cdot 6$	$8 \cdot 2$	$7 \bullet 9$	$7 \cdot 5$	$7 \cdot 2$	$6 \cdot 9$
77	16.2	$15^{\circ} \mathrm{I}$	14.2	13.3	12.6	II*9	II*3	10.7	$10^{\circ} 2$	$9^{*} 7$	$9^{\circ} 3$	$8 \cdot 9$	$8 \cdot 5$	$8 \cdot 1$	$7 \cdot 8$	7.5
78	17*6	16.4	15.4	14.5	13.7	12.9	$12 \cdot 3$	11.6	II'I	$10 \cdot 6$	10'1	$9 \cdot 6$	$9 \cdot 2$	$8 \cdot 8$	$8 \cdot 5$	$8 \cdot 2$
79	$19^{\circ} 2$	17.9	16.8	$15^{\circ} 8$	14.9	$14^{\circ} \mathrm{I}$	13.4	12.7	$12^{\circ} 1$	II•6	II'O	10.5	$10^{\circ} \mathrm{I}$	$9 \cdot 7$	$9 \cdot 3$	$9{ }^{\circ}$
80	21.2	$19 \cdot 8$	$18 \cdot 5$	17.5	16.5	$15^{\circ} 6$	14.8	$14^{\circ} \mathrm{O}$	13.4	12.7	12.2	II* 6	I I ${ }^{\circ}$ I	10.7	10*2	$9 \cdot 8$
8.	23.6	$22^{\circ} 0$	20\%7	$19 * 4$	18*3	17*3	16.4	15.6	14.9	14.2	13.5	12.9	12.4	11*9	II.4	10.9
82	$26 \cdot 6$	$24^{\circ} \mathrm{S}$	23.3	21•9	20.7	19.5	$18 \cdot 5$	17.6	16.8	16.0	15.3	$14^{\circ} 6$	$14^{\circ} \mathrm{O}$	13.4	12.8	$12 \cdot 3$
83	$30^{\circ} 4$	$28^{\circ} 4$	$26 \cdot 6$	$25^{\circ} \mathrm{I}$	23.7	22.4	$21^{\prime} 7$	$20 \cdot 2$	19.2	$18 \cdot 3$	17.5	16.7	16.0	$15 * 3$	14.7	$14^{\circ} \mathrm{I}$
84	$35^{\circ} 5$	33°	31*1	$29^{\circ} 3$	$27^{\circ} 6$	$26^{1} 1$	24^{-8}	$23 \cdot 5$	22.4	$21^{*} 4$	20.4	19.5	$18 \cdot 7$	17.9	$17^{\circ} 2$	16.5
85	$42 \cdot 7$	$39^{\circ} 9$	$37^{\circ} 4$	$35^{\circ} 2$	$33^{\circ} 2$	$3{ }^{\circ} 4$	$29^{\circ} 8$	$28 \cdot 3$	$26 \cdot 9$	$25^{\circ} 7$	$24^{\circ} 5$	23.4	22.4	21.5	$20 \cdot 6$	19.8
	m.	m. 56	$\begin{gathered} \mathrm{m} \\ 52 \end{gathered}$	$\begin{gathered} \mathrm{m} . \\ 4^{8} \end{gathered}$	m. 44		$\begin{gathered} \mathrm{m} . \\ 36 \end{gathered}$	$\begin{gathered} \mathrm{m} . \\ 32 \end{gathered}$	$\begin{gathered} \mathrm{m} . \\ 28 \end{gathered}$	m.	m 20	$\begin{gathered} \mathrm{m} . \\ \mathrm{I} 6 \end{gathered}$	m	$\frac{\mathrm{m}}{8}$	m. 4	m. 00
10 HOURS.																

苂	2 HOURS.															3 Hr .
	$\underset{00}{\mathrm{~m}}$.	$\underset{4}{\mathrm{~m}}$	$\mathrm{m}_{8} \mathrm{~m}$	$\underset{12}{\mathrm{~m}}$.	m_{16}.	m_{20}	mm_{24}	${ }_{28} \mathrm{~m}$.	m_{32}.	m_{36}	m_{40}	m_{44}	$\mathrm{m} .$	m_{52}	$\underset{56}{\mathrm{~m}} .$	ma_{0}
\bigcirc					$4 \cdot 8$				$4 \cdot 2$. 8		1.5		$1 \cdot$
73	5*7	$5 \cdot 4$	$5 \cdot 2$	$5^{\circ} 0$	4^{-8}	4.7	$4 \cdot 5$	$4^{\circ} 3$	$4 \cdot 2$	$4^{\circ} \mathrm{O}$	3.9	$3 \cdot 8$	$3 \cdot 6$	$3 \cdot 5$	3.4	$3 \cdot 3$
74	$6 \cdot 0$	$5 \cdot 8$	$5^{\cdot 6}$	$5 \cdot 4$	$5 \cdot 2$	$5^{\circ} 0$	$4 \cdot 8$	$4 \cdot 6$	$4 \cdot 5$	$4^{*} 3$	$4^{\circ} 2$	$4^{\circ} \mathrm{O}$	3.9	3.7	$3 \cdot 6$	$3 \cdot 5$
75	$6 \cdot 5$	$6 \cdot 2$	$6 \cdot 0$	$5 \cdot 7$	$5 \cdot 5$	$5 \cdot 3$	$5^{\circ} \mathrm{I}$	$5^{\circ} 0$	$4^{\circ 8}$	$4 \cdot 6$	4.4	$4 \cdot 3$	$4^{\circ} \mathrm{I}$	$4^{\circ} \mathrm{O}$	3.9	3.7
76	$6 \cdot 9$	$6 \cdot 7$	$6 \cdot 4$	$6 \cdot 2$	$5 \cdot 9$	$5 \cdot 7$	$5 \cdot 5$	$5 \cdot 3$	$5^{\circ} \mathrm{I}$	$5^{\circ} 0$	$4 \cdot 8$	$4 \cdot 6$	4.5	$4 \cdot 3$	$4^{\circ} 2$	$4^{\circ} 0$
77	7×5	$7{ }^{\circ}$	$6 \cdot 9$	$6 \cdot 7$	$6 \cdot 4$	$6 \cdot 2$	$6 \cdot 0$	$5 \cdot 7$	$5 \cdot 5$	$5 \cdot 3$	$5^{\cdot 2}$	$5^{\circ} 0$	$4^{\cdot 8}$	$4^{\cdot 6}$	4.5	$4 * 3$
78	8.1	$7 \cdot 8$	$7 \cdot 5$	$7{ }^{\circ}$	$7{ }^{\circ}$	$6 \cdot 7$	$6 \cdot 5$	$6 \cdot 2$	$6 \cdot 0$	$5 \cdot 8$	$5 \cdot 6$	$5 \cdot 4$	$5^{\cdot 2}$	$5^{\circ} \mathrm{O}$	$4 \cdot 9$	$4 \cdot 7$
79	$8 \cdot 9$	$8 \cdot 6$	$8 \cdot 2$	$7{ }^{\circ} 9$	$7 \cdot 6$	$7 \cdot 3$	$7{ }^{\circ} \mathrm{I}$	$6 \cdot 8$	$6 \cdot 6$	$6 \cdot 4$	$6 \cdot 1$	$5 \cdot 9$	$5 \cdot 7$	$5 \cdot 5$	$5 \cdot 3$	$5^{\prime} 1$
80	$9 \cdot 8$	$9{ }^{\circ} 4$	$9 \cdot 1$	$8 \cdot 7$	$8 \cdot 4$	8.1	$7 \cdot 8$	$7 \cdot 5$	$7 \cdot 3$	$7 \cdot 0$	$6 \cdot 8$	$6 \cdot 5$	$6 \cdot 3$	$6 \cdot 1$	$5 \cdot 9$	$5 \cdot 7$
8 I	10.9	$10 * 5$	10'I	$9 * 7$	$9 \cdot 4$	$9^{\circ} 0$	$8 \cdot 7$	$8 \cdot 4$	8•1	$7 \cdot 8$	7×5	$7 * 3$	$7{ }^{\circ}$	$6 \cdot 8$	$6 \cdot 5$	$6 \cdot 3$
82	$12 \cdot 3$	11.8	11.4	II'O	10.5	10.2	$9 \cdot 8$	$9 \cdot 4$	$9^{\cdot 1}$	$8 \cdot 8$	$8 \cdot 5$	$8 \cdot 2$	$7{ }^{\circ} 9$	$7 \cdot 6$	$7 \cdot 4$	$7^{\bullet 1}$
83	$14^{\circ} 1$	13.6	13.0	12.5	12.1	II•6	II'2	10.8	10.4	10.1	$9 \cdot 7$	$9 \cdot 4$	$9^{\circ} \mathrm{O}$	$8 \cdot 7$	$8 \cdot 4$	$8 \cdot 1$
84	16.5	15.8	15.2	14.7	$14^{\circ} \mathrm{I}$	13.6	$13^{\circ} 1$	12.6	12.2	11'7	II•3	10.9	$10 \cdot 6$	$10 \cdot 2$	$9 \cdot 9$	9.5
85	19.8	19.0	$18 \cdot 3$	17.6	$16 \cdot 9$	$16 \cdot 3$	$15^{\circ} 7$	$15^{\circ} 2$	$14^{\circ} 6$	14* 1	13.6	$13^{\circ} 1$	12.7	$12 \cdot 3$	II•8	I1.4
	m.	m.	m.	m. 48	m. 44	m. 40	m. 36	m. 32	m.	m. 24	$\begin{aligned} & \mathrm{m} \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{I} 6 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{I} 2 \end{aligned}$	$\frac{\mathrm{m}}{8}$	$\begin{gathered} \mathrm{m} \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{oo} \end{aligned}$

When hour angle is more than 6 hours, name the factors taken from Table A the same as the same of the latitude.

Table A.

When hour angle is less than 6 hours, name the factors taken from Table A contrary to name of lat.

+ + +	3 HOURS.															$\frac{4 \mathrm{Hr} .}{\substack{\mathrm{m} . \\ 00}}$
	m_{00}	m_{4}	${ }_{8} 8$	m_{12}	${ }_{18}^{\text {m. }}$	m_{20}	${ }_{24}{ }_{2}$	$\mathrm{m}_{23} .$	m_{32}	$\underset{35}{\mathrm{~m}}$	m_{40}	m_{44}	m_{19}	m_{52}	${ }_{5}^{1 m} 5$	
73	$3 \cdot 3$	$3 \cdot 2$	$3 \cdot 1$	$2 \cdot 9$									${ }^{6}$			
73	$3 \cdot 3$	$3 \cdot 2$	$3^{* 1}$	$2 \cdot 9$	$2 \cdot 84$	$2 \cdot 74$	$2 \cdot 65$	$2 \cdot 56$	$2 \cdot 46$	$2 \cdot 38$	$2 \cdot 29$	$2 \cdot 21$	2.12	$2 \cdot 04$	1.97	I-89
74	$3 \cdot 5$	$3 \cdot 4$	$3 \cdot 3$	$3^{*} 1$	$3 \cdot 03$	$2 \cdot 93$	$2 \cdot 82$	$2 \cdot 72$	$2 \cdot 63$	2.53	2.44	$2 \cdot 35$	$2 \cdot 26$	$2 \cdot 18$	$2 \cdot 10$	$2 \cdot 01$
75	$3 \cdot 7$	$3 \cdot 6$	$3 \cdot 5$	$3 \cdot 4$	$3 \cdot 24$	3.13	3.02	$2 \cdot 92$	2.81	2.71	$2 \cdot 61$	$2 \cdot 52$	2.42	$2 \cdot 33$	$2 \cdot 24$	$2 \cdot 15$
76	$4^{\circ} 0$	$3 \cdot 9$	$3 \cdot 7$	$3 \cdot 6$	$3 \cdot 49$	$3 \cdot 37$	$3 \cdot 25$	$3 \cdot 13$	$3 \cdot 02$	$2{ }^{\circ} 91$	$2 \cdot 81$	$2 \cdot 71$	2.60	2.51	2.41	$2 \cdot 32$
77	$4 * 3$	$4 \cdot 2$	$4^{\circ} 0$	3.9	$3 \cdot 77$	$3 \cdot 63$	3.51	$3 \cdot 38$	$3 \cdot 26$	3'15	$3 \cdot 03$	2.92	$2 \cdot 81$	2.71	$2 \cdot 60$	$2 \cdot 50$
78	$4^{*} 7$	$4 \cdot 5$	$4 \cdot 4$	$4^{\bullet} 2$	$4^{\circ} 09$	$3 \cdot 95$	$3 \cdot 81$	$3 \cdot 68$	3.55	$3 \cdot 42$	$3 \cdot 29$	3.17	3.06	$2 \cdot 94$	$2 \cdot 83$	$2 \cdot 72$
79	$5^{\cdot 1}$	$5^{\circ} \mathrm{O}$	$4 \cdot 8$	$4^{\circ} 6$	4.47	$4 \cdot 32$	$4 \cdot 17$	$4^{\circ} 02$	$3 \cdot 88$	3.74	$3 \cdot 60$	3.47	$3 \cdot 34$	$3 \cdot 21$	3.09	2.97
80	$5 \cdot 7$	$5 \cdot 5$	$5 \cdot 3$	$5^{\circ 1}$	4.93	$4 \cdot 76$	4*59	$4{ }^{\circ} 43$	$4 \cdot 27$	$4^{\circ} \mathrm{I} 2$	3.97	$3 \cdot 83$	$3 \cdot 68$	$3 \cdot 54$	$3 \cdot 41$	$3 \cdot 27$
81	$6 \cdot 3$	$6 \cdot 1$	$5 \cdot 9$	5.7	5.49	5*30	5.11	$4 * 93$	4.76	4059	$4{ }^{\circ} 42$	4.26	4*10	$3 \cdot 95$	3'79	$3 \cdot 65$
82	$7{ }^{\circ} \mathrm{I}$	$6 \cdot 9$	$6 \cdot 6$	$6 \cdot 4$	$6 \cdot 19$	$5 \cdot 97$	$5 \cdot 76$	$5 \cdot 56$	$5 \cdot 36$	5.17	4.98	$4 \cdot 80$	$4^{\circ} 62$	$4 \cdot 45$	$4 \cdot 28$	$4^{\circ} 11$
83	$8 \cdot 1$	$7 \cdot 9$	$7 \cdot 6$	$7 \cdot 3$	7.08	$6 \cdot 83$	$6 \cdot 60$	$6 \cdot 36$	6.14	$5 \cdot 92$	$5 \cdot 70$	$5 \cdot 49$	$5 \cdot 29$	5.09	$4 \cdot 89$	470
84	9.5	$9 \cdot 2$	$8 \cdot 9$	$8 \cdot 6$	$8 \cdot 27$	$7 \cdot 98$	$7{ }^{\circ} 70$	$7 \cdot 43$	$7 \cdot 17$	$6 \cdot 91$	$6 \cdot 66$	$6 \cdot 42$	6.18	5.95	$5 \cdot 72$	$5 \cdot 49$
85	I1.4	$11^{\circ} \mathrm{O}$	$10 \cdot 7$	$10 \cdot 3$	$9{ }^{\circ} 94$	$9 \cdot 59$	$9 \cdot 26$	$8 \cdot 93$	$8 \cdot 61$	$8 \cdot 30$	$8 \cdot 00$	7*71	7.42	$7 \cdot 14$	$6 \cdot 87$	$6 \cdot 60$
	m.	m. 56	in. 52	m. 48	m. 44	m. 40	m.	m. 32	m. 28	m. 24	m. 20	$\begin{gathered} \mathrm{m} \\ \mathrm{I} 6 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{m} \\ \mathrm{I} 2 \end{gathered}$	m.	m. 4	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{oo} \end{aligned}$
	9 Hr								UR							

䔍	4 HOURS.															$\int_{0}^{5 \mathrm{Hr}}$
	m_{00}.	$\underset{4}{\mathrm{~m}}$	$\mathrm{m} .$	${ }_{10} \mathrm{~m}$	m_{16}	${\underset{20}{20}}$	$\underset{24}{\mathrm{~m}}$	$\underset{28}{\mathrm{~m}_{28}}$	$\frac{\mathrm{m}}{32}$	$\underset{36}{\mathrm{~m}}$	$\underset{40}{\mathrm{~m}}$	$\begin{aligned} & \mathrm{ma} \\ & 44 . \end{aligned}$	m	$\frac{\mathrm{m}}{52} .$	m_{56}	
73	I-89	I-81	I'74	1.67	$1 \cdot 60$	I•53	I'46	1.39	1.32	I•26	I'19	I•13	I'06	I'00	4	88
74	2.01	1.93	I.85	$1 \cdot 78$	1•70	I•63	I•55	1.48	1.41	I•34	I. 27	$1 \cdot 20$	113	I.07	$1 \cdot 00$	93
75	$2 \cdot 15$	$2 \cdot 07$	1.98	1.90	I $\cdot 82$	1.74	1.66	I. 58	1.51	1.43	I 36	I•29	$1 \cdot 21$	I'14	$1 \cdot 07$	1'00
76	$2 \cdot 32$	$2 \cdot 22$	2:13	$2 \cdot 04$	I'96	I.87	1•79	1.70	$1 \cdot 62$	1.54	$1 \cdot 46$	$1 \cdot 38$	$1 \cdot 30$	$1 \cdot 23$	I'15	I'07
77	2.50	2.40	2. 30	$2 \cdot 21$	$2 \cdot 11$	$2 \cdot 02$	1.93	I. 84	1•75	I $\cdot 66$	1.58	I.49	1.41	$1 \cdot 32$	1.24	I•16
78	$2 \cdot 72$	2.61	2.50	2.40	$2 \cdot 29$	2'19	$2 \cdot 09$	$2 \cdot 00$	1.90	I•8I	1.71	I'62	$1 \cdot 53$	1.44	$1 \cdot 35$	$1 \cdot 26$
79	$2 \cdot 97$	$2 \cdot 85$	$2 \cdot 74$	2.62	$2 \cdot 51$	2.40	$2 \cdot 29$	2.18	$2 \cdot 08$	1.97	I-87	1.77	I'67	1.57	$1{ }^{1} 48$	I•38
80	$3 \cdot 27$	3.14	$3 \cdot 02$	$2 \cdot 89$	$2 \cdot 77$	$2 \cdot 64$	2.53	2.41	$2 \cdot 29$	$2 \cdot 18$	$2 \cdot 06$	I'95	I•84	$1 \cdot 73$	1.63	1. 52
81	$3 \cdot 65$	3.50	$3 \cdot 36$	$3 \cdot 22$	3.08	2'94	$2 \cdot 81$	$2 \cdot 68$	$2 \cdot 55$	$2 \cdot 42$	$2 \cdot 30$	$2 \cdot 17$	2.05	I'93	1.81	1.69
82	4.11	$3 \cdot 94$	$3 \cdot 78$	$3 \cdot 63$	$3 \cdot 47$	$3 \cdot 32$	3.17	3'02	$2 \cdot 87$	$2 \cdot 73$	2.59	2.45	$2 \cdot 31$	$2 \cdot 18$	$2 \cdot 04$	I•9I
83	$4^{\prime} 70$	4.51	$4 \cdot 33$	4.15	$3 \cdot 97$	$3 \cdot 80$	$3 \cdot 63$	$3 \cdot 46$	$3 \cdot 29$	3.13	$2 \cdot 96$	$2 \cdot 80$	$2 \cdot 65$	2.49	$2 \cdot 34$	2.18
84	5.49	$5 \cdot 27$	$5 \cdot 06$	$4 \cdot 85$	$4^{\circ} 64$	4.44	$4 \cdot 24$	$4^{-0} 4$	$3 \cdot 84$	$3 \cdot 65$	$3 \cdot 46$	$3 \cdot 28$	$3 \cdot 09$	$2 \cdot 91$	$2 \cdot 73$	$2 \cdot 55$
85	6.60	$6 \cdot 34$	$6 \cdot 08$	$5 \cdot 82$	$5 \cdot 57$	$5 \cdot 33$	5.09	$4 \cdot 85$	$4 \cdot 62$	4.39	$4^{\circ} 16$	3.94	3.71	3.49	3.28	3.06
	\%o	56	m.	48	44.	m 40	36	m.	m.	m. 24	m. 20	$\begin{gathered} \mathrm{m} \\ \mathrm{l} \end{gathered}$	m.	m.	$\frac{m}{4}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{o} \end{aligned}$
7 HOURS.																

-	5 HOURS															$\frac{6 \mathrm{Hr}}{\underset{00}{\mathrm{~m}} .}$
	m_{00}	m_{4}	m_{8}	$\underset{12}{\mathrm{~m}}$	$\underset{16}{\mathrm{~mm}}$	$\underset{\mathbf{2 0}}{\mathbf{m}}$	$\underset{24}{\mathrm{~m}}$	m_{28}	$\frac{\mathrm{m}}{32}$	$\underset{86}{\mathbf{m}}$	m_{40}	$\mathrm{m}_{4 \mathrm{t}}$	m_{48}	m_{52}	m_{56}	
73	-88	. 82	$\cdot 76$	-70	'64	- 58	- 52	-46	${ }^{4} 40$	- 34	- 29	- 23	-17	- '1 I	-06	- 0 O
74	93	. 87	81	74	-68	-61	- 55	-49	-43	-37	-31	- 24	$\cdot 18$	$\cdot 12$	-06	$\cdot 00$
75	1.00	- 93	86	-79	73	$\cdot 66$	- 59	- 52	$\cdot 46$	- 39	- 33	$\cdot 26$	$\cdot 20$	${ }^{\text {I }} 3$	-07	$\cdot 00$
76	1.07	I'00	93	-85	-78	-71	-64	-56	-49	${ }^{4} 42$	- 35	-28	$\cdot 2 \mathrm{I}$	${ }^{1} 14$	$\cdot 07$	$\cdot 00$
77	I'16	1.08	1×00	'92	-84	-76	-69	-61	-53	${ }^{4} 46$	- 38	-30	$\bullet 23$	${ }^{1} 15$	-08	-00
78	t.26	I'17	I'09	I 00	$\cdot 91$	$\cdot 83$	$\cdot 75$	-66	-58	-49	$\cdot 4 \mathrm{I}$	-33	-25	-16	-08	$\cdot 00$
79	$1 \cdot 38$	I•28	I•19	I'09	$1 \cdot 00$	$\cdot 91$	-81	$\cdot 72$	-63	- 54	-45	-36	-27	-18	-09	-00
80	I'52	$1{ }^{1} 4$	I-31	1.21	I•10	1-00	-90	-80	-70	-60	-50	$\bullet 40$	$\cdot 30$	$\cdot 20$	$\cdot 10$	$\cdot 00$
8 I	I.69	1•57	I 46	I*34	1.23	I'II	1.00	-89	$\cdot 78$	- 66	- 55	-44	$\cdot 33$	$\bullet 22$	${ }^{-11}$	-00
82	1.91	1.77	$1 \cdot 64$	I-5I	1-38	I-25	1-13	I'00	$\cdot 87$	-75	-62	- 50	$\cdot 37$	-25	-12	-00
83	2.18	$2 \cdot 03$	I.88	1*73	1.58	1.44	$1 \cdot 29$	I'14	1.00	-86	-71	- 57	- 43	$\cdot 28$	${ }^{-1} 4$	-00
84	$2 \cdot 55$	$2 \cdot 37$	$2 \cdot 20$	2.02	I.85	1.68	1.51	I•34	I'17	I'00	-83	-67	- 50	$\cdot 33$	${ }^{1} 17$	$\cdot 00$
85	$3 \cdot 06$	$2 \cdot 85$	$2 \cdot 64$	2.43	$2 \cdot 22$	$2 \cdot 02$	1-81	1.61	1.40	I 20	I Q°	-80	-60	$\cdot 40$	$\cdot 20$	00
	1.2 00	m. 56	m.	m.	m.	m.	m. 36	m. 32	m_{28}	m.	$\begin{aligned} & \mathrm{m} . \\ & 20 \end{aligned}$	$\begin{gathered} \mathrm{m} \\ \mathrm{I} 6 \end{gathered}$	12	m. 8	$\begin{gathered} \mathrm{m} \\ 4 \end{gathered}$	$\mathrm{m} .$
	7 Hr .	6 HOURS.														

When hour angle is more than 6 hours, name the factors taken from Table A the same as the same of the latitude.

Table B．
Always name the factors taken from Table B the same as the name of declination．

$\begin{aligned} & \text { 烒 } \\ & \text { 荡 } \\ & \text { 品 } \end{aligned}$	0 HOUR．																1 Hr
	$\stackrel{\mathrm{m}}{1} \mathrm{~L}$	$\left\lvert\, \begin{gathered} \text { Var } \\ \text { to } 1^{\prime} \\ \text { of } \\ \text { Decl. } \end{gathered}\right.$	$\stackrel{1}{4}$	${ }_{8}^{\text {m }}$	${ }_{12}$	${ }_{16}{ }^{\text {m }}$	${ }_{20}$	ma_{24}	${ }_{23}{ }_{2}$	${ }_{32}$	${ }_{36}{ }^{\text {m }}$	${ }_{40}$	m_{44}	${ }_{48}$	${ }_{52} \mathrm{~m}$.	${ }_{56}$.	${ }_{0} \mathrm{~m}$
30	132	5．33	$33^{\prime} \mathrm{I}$	${ }_{16}{ }^{\prime} 5$	Ir ${ }^{\text {¢ }}$	$8 \cdot 28$	$6 \cdot 62$	5.52	4.74	$4^{1} 15$	$3 \cdot 69$	32	3.03	$2 \cdot 78$	$2 \cdot 57$	$2 \cdot 39$	223
31	138	$5 \cdot 44$	$34^{\circ} 4$	17.2	II．5	$8 \cdot 61$	$6 \cdot 89$	$5 \cdot 75$	$4 \cdot 93$	$4 \cdot 32$	$3 \cdot 84$	3.46	$3 \cdot 15$	$2 \cdot 89$	$2 \cdot 67$	$2 \cdot 48$	$2 \cdot 32$
32	143	$5 \cdot 56$	$35^{\circ} 8$	17.9	II•9	$8 \cdot 96$	$7 \cdot 17$	5.98	$5 \cdot 13$	4.49	3.99	3.60	3.27	$3 \cdot 01$	2.78	2.58	$2 \cdot 41$
33	149	$5 \cdot 69$	$37^{\circ} 2$	18.6	12．4	$9 \cdot 31$	7.45	$6 \cdot 21$	5.33	4.67	4^{-15}	3.74	3.40	$3 \cdot 12$	$2 \cdot 89$	$2 \cdot 68$	$2 \cdot 51$
34	155	$5 \cdot 82$	38.6	19.3	12.9	$9 \cdot 67$	7×74	$6 \cdot 45$	5.53	$4 \cdot 85$	$4 \cdot 31$	3.88	3.53	3.24	$3 \cdot 00$	2.79	$2 \cdot 61$
35	160	$5 \cdot 96$	$40 \cdot 1$	20＇I	13.4	10	8.03	$6 \cdot 70$	5｀75	5.03	4.48	4.03	$3 \cdot 67$	3.37	3 II	$2 \cdot 89$	2.71
36	167	$6 \cdot 11$	41．6	$20 \cdot 8$	13.9	10	$8 \cdot 34$	$6 \cdot 95$	$5 \cdot 96$	5.22	$4 \cdot 64$	4.18	$3 \cdot 81$	3.49	3.23	3.00	2.81
37	173	6.27	$43 \cdot 2$	$2 \mathrm{I} \cdot 6$	14.4	10．8	$8 \cdot 65$	7.21	$6 \cdot 18$	5.4 r	$4 \cdot 82$	4.34	3.95	$3 \cdot 62$	$3 \cdot 35$	$3 \cdot 11$	2.91
38	179	$6 \cdot 44$	44^{-8}	22.4	14.9	Ir 12	$8 \cdot 96$	7.47	6.41	5.61	4.99	4.50	4.09	3.76	3.47	$3 \cdot 23$	3.02
39	186	$6 \cdot 62$	$46 \cdot 4$	23.2	15.5	II•6	$9 \cdot 29$	775	$6 \cdot 64$	$5 \cdot 82$	5．18	$4 \cdot 66$	$4 \cdot 24$	$3 \cdot 89$	3.60	$3 \cdot 35$	$3 \cdot 13$
40	192	6.82	4^{-1}	$24^{\circ} 0$	16．0	O	9.63	8.03	6．89	6.03	5．36	4.83	4.40	4.04	3.73	3.47	3.24
4 I	199	7.03	$49 \cdot 8$	24.9	16．6	12.5	9.97	$8 \cdot 32$	$7 \cdot 13$	$6 \cdot 25$	5.56	$5 \cdot 1$	$4 \cdot 56$	4.18	3.86	3.59	3.36
42	206	$7 \cdot 25$	5I．6	$25 \cdot 8$	17.2	12.9	$10 \cdot 3$	$8 \cdot 61$	$7 \cdot 39$	6.47	5.76	$5 \cdot 19$	4.72	4.33	4.00	3.72	3.48
43	214	$7 \cdot 48$	53.4	26.7	17.8	13.4	10•7	$8 \cdot 92$	$7 \cdot 65$	6.70	5．96	$5 \cdot 37$	4.89	4.49	$4 \cdot 15$	$3 \cdot 85$	3.60
44	221	7.73	$55^{\circ} 3$	$27 \cdot 7$	18.5	13.8	Ir＇I	$9 \cdot 24$	7.92	$6 \cdot 94$	$6 \cdot 17$	$5 \cdot 56$	$5 \cdot 06$	$4 \cdot 64$	4.29	3.99	3.73
45	229	8.00	$57 * 3$	$28 \cdot 7$	${ }^{19}{ }^{1}$	14.3	II＇5	$9^{\circ} 57$	8	719	$6 \cdot 39$	$5 \cdot 76$	5.24	4.81	4.45	4.13	3.86
46	237	8.29	59.3	29＊7	19.8	14.8	ri 9	9.91	$8 \cdot 50$	$7 \cdot 44$	$6 \cdot 62$	5.96	5.43	4.98	4.60	4.28	$4^{\circ} \mathrm{O}$
47	246	$8 \cdot 60$	$6 \mathrm{r} \cdot 4$	$30 \cdot 7$	20.5	15.4	12.3	$10 \cdot 3$	$8 \cdot 80$	771	$6 \cdot 86$	${ }^{6} 18$	5.62	$5 \cdot 16$	4.77	4.43	$4^{\prime} 14$
48	255	8.93	$63 \cdot 6$	$3 \mathrm{I} \cdot 8$	21.2	I5．9	12.7	$10 \cdot 6$	$9 \cdot 11$	7.98	$7 \cdot 10$	6.40	$5 \cdot 82$	$5 \cdot 34$	4.94	$4 \cdot 59$	4.29
49	264	$9 \cdot 30$	65.9	33°	22.0	$16 \cdot 5$	13.2	II．O	9.44	$8 \cdot 27$	$7 \cdot 35$	6．62	6.03	5.53	5^{\prime} II	4.76	4.44
50	27	$9 \cdot 69$	68	34	$22 \cdot 8$	17．1	13.7	11	9.78	$8 \cdot 56$	7.62	6.86	6.25	5．73	5.30	4.93	4.60
5 I	283	10.1	$70 \cdot 8$	35.4	$23 \cdot 6$	17.7	14^{-2}	II•8	$10 \cdot 1$	$8 \cdot 87$	$7 \cdot 89$	$7 \cdot 11$	$6 \cdot 47$	5.94	5.49	5.10	477
52	293	10.6	73.3	$36 \cdot 7$	24.5	18．3	14.7	$12 \cdot 2$	10． 5	9.20	$8 \cdot 18$	7.37	$6 \cdot 71$	6．16	$5 \cdot 69$	$5 \cdot 29$	4.95
53	304	$11 \cdot 1$	$77^{\circ} \mathrm{O}$	$38 \cdot 0$	25.4	19＊0	r 5.2	r2．7	10．9	9.54	8.48	$7 \cdot 64$	$6 \cdot 95$	$6 \cdot 38$	5.90	5.49	5＇13
54	315	$11 \cdot 6$	78.9	39.4	$26 \cdot 3$	19.7	15.8	13.2	II•3	9.89	$8 \cdot 80$	7.93	7.21	$6 \cdot 62$	$6 \cdot 12$	$5 \cdot 69$	$5 \cdot 32$
55	327	$12 \cdot 2$	8r $\cdot 8$	$40^{\prime} 9$	$27 \cdot 3$	20.5	16.4	13.7	I＇7	10．3	9.13	$8 \cdot 22$	$7 \cdot 48$	$6 \cdot 87$	$6 \cdot 35$	$5 \cdot 90$	$5 \cdot 52$
56	340	12.8	$84^{8.9}$	$42 \cdot 5$	$28 \cdot 3$	$2 \mathrm{I} \cdot 3$	$17^{\circ} 0$	I4．2	12.2	10．7	9.48	$8 \cdot 54$	7.77	$7{ }^{7} 13$	$6 \cdot 59$	$6 \cdot 13$	5．73
57	353	$13 \cdot 5$	$88 \cdot 2$	44．${ }^{\text {I }}$	29.4	$22 \cdot 1$	17.7	$14^{\circ} 7$	12.6	Ir 1	$9 \cdot 84$	$8 \cdot 87$	8.07	7.41	$6 \cdot 85$	$6 \cdot 37$	5.95
58	367	$14 \cdot 3$	$9{ }^{\prime} 7$	$45^{\circ} 9$	$30 \cdot 6$	$22 \cdot 9$	18.4	15.3	13＇1	II 5	10． 2	9.22	$8 \cdot 39$	770	$7 \cdot 11$	$6 \cdot 62$	$6 \cdot 18$
59	38 I	15.1	$95 \cdot 4$	$47 \cdot 7$	$3 \mathrm{I} \cdot 8$	$23 \cdot 9$	19＇I	15．9	13.7	12.0	$10 \cdot 6$	9.58	$8 \cdot 72$	8.00	$7 \cdot 40$	$6 \cdot 88$	6.43
60	397	16.0	99．2	$49 \cdot 6$	33^{\prime} 1	24.8	19.9	$16 \cdot 6$	14.2	12.4	II	9＊97	9.08	$8 \cdot 33$	7．70	$7 \cdot 16$	$6 \cdot 69$
61	413	17.0	103	51.7	$34^{\circ} 5$	25.9	$20 \cdot 7$	17.3	14.8	13．0	II• 5	10.4	9.45	$8 \cdot 68$	$8 \cdot 02$	7.46	$6 \cdot 97$
62	431	18.2	108	$53^{\circ} 9$	35.9	27°	$2 \mathrm{I} \cdot 6$	18.0	15.4	13.5	12.0	I0•8	$9 \cdot 86$	$9 \cdot 05$	$8 \cdot 36$	7.77	$7 \cdot 27$
63	450	$19 \cdot 4$	II2	56.2	$37 \cdot 5$	$28 \cdot 1$	22.5	18.8	16.1	I $4^{\circ} \mathrm{I}$	ז2．5	II•3	10．3	$9 \cdot 44$	$8 \cdot 72$	$8 \cdot 11$	7.58
64	470	20．1	117	$58 \cdot 7$	$39^{\circ} 2$	$29^{\circ} 4$	23.5	19．6	${ }_{16} 6$	14.7	13.1	ri•8	$10 \cdot 7$	$9 \cdot 86$	$9^{\circ} \mathrm{II}$	8.48	$7 \cdot 92$
65	491	$22 \cdot 4$	123	$6 \mathrm{~F} \cdot 4$	$4{ }^{1} \cdot 0$	$30 \cdot 7$	24.6	$20 \cdot 5$	17.6	15.4	13.7	12.3	II•2	103	9.53	8－86	8.29 8.68
66	5 5 5	24.2	129	64.4	42.9	$32 \cdot 2$	$25^{\circ} 8$	2 C 5	18.4	16． 1	I 4.4	12.9	II• 8	10．8	9.98	9.28	$8 \cdot 68$
67	540	26.2	135	67.5	$45^{\circ} \mathrm{O}$	$33 \cdot 8$	27°	22.5	19.3	16．9	I5＇1	13.6	12.3	II．3	$10 \cdot 5$	974	9．10
68	567	$28 \cdot 6$	142	$70 \cdot 9$	47.3	35．5	28.4	23.7	$20 \cdot 3$	17.8	15．8	14.3	$13^{\circ} \mathrm{O}$	II．9	II＇O	$10 \cdot 2$	9．56
69	597	31.2	149	$74 \cdot 6$	$49 \cdot 8$	$37 \cdot 3$	29.9	$24^{\circ} 9$	21.4	18.7	16.7	I5 ${ }^{\circ}$	13．7	I2． 5	II• 6	10．8	ro＇I
70	630	34＊3	157	$78 \cdot 7$	52.5	$39^{*} 4$	3I•5	$26 \cdot 3$	22.5	19＊7	17.6	15.8	14.4	13.2	12．2	11.4	$10 \cdot 6$
71	666	$37 \cdot 8$	166	83.2	55.5	4 $1 \cdot 6$	$33 \cdot 3$	27.8	$23 \cdot 8$	$20 \cdot 9$	18.6	I6．7	15.2	$14^{\circ} \mathrm{O}$	12.9	12.0	Ir 2
72	705	42.0	176	S8．2	$58 \cdot 8$	$44^{\circ} \mathrm{I}$	$35^{\circ} 3$	29.4	25.3	$22 \cdot 1$	19.7	17.7	－1	$14^{\circ} 8$	13.7	12．7	Ir．9
73	750	47	187	93.7	62.5	$46 \cdot 9$	$37^{\circ} 5$	$3 \mathrm{r} \cdot 3$	$26 \cdot 8$	23.5	$20 \cdot 9$	18.8	17．1	15.7	I4．5	13.5	12.6
74	799	53	200	99.9	66.6	50°	$40 \cdot 0$	33.4	$28 \cdot 6$	$25^{\text {I }}$	$22 \cdot 3$	$20 \cdot 1$	$18 \cdot 3$	16.8	15.5	14.4	13.5
75	855	60	214	107	$7{ }^{\circ} 3$	53.5	$42 \cdot 8$	$35^{\prime} 7$	$30 \cdot 6$	$26 \cdot 8$	23.9	2r＇5	$19 \cdot 6$	18.0	16.6	${ }^{15}{ }^{\circ} 4$	14.4
76	919	69	230	Ir 5	$76 \cdot 6$	57.5	$46 \cdot 0$	38.4	32.9	$28 \cdot 8$	$25^{\circ} 6$	$23 \cdot 1$	$21^{\circ} \mathrm{O}$	19.3	17.8	I6． 6	$15 \cdot 5$
77	993	80	248	124	82.8	62.1	19.7	$41^{\circ} 4$	35.5	${ }^{31} 1$	27.7	$24^{\circ} 9$	22.7	$20 \cdot 8$	19.3	17．9	$16 \cdot 7$
78	1078	93	270	135	$89^{\circ} 9$	67.4	54°	$45^{\circ} \mathrm{O}$	$38 \cdot 6$	$33 \cdot 8$	30^{1}	27.1	$24^{\circ} 7$	$22 \cdot 6$	$20 \cdot 9$	19.4	$18 \cdot 2$
79	II79	111	295	147	$98 \cdot 3$	$73 \cdot 8$	59°	49^{2}	$42 \cdot 2$	37°	32.9	29.6	$27^{\circ} \mathrm{O}$	$24^{7} 7$	22.9	2r＇3	19.9
80	1300	134	325	163	108	8r＇3	65 1	54.3	$46 \cdot 5$	$40 \cdot 7$	$36 \cdot 3$	32.7	$29^{\circ} 7$	27.3	$25^{\circ} 2$	23.4	$2 \mathrm{C} \cdot 9$
8 I	1447	165	362	181	121	90＇5	72.4	$60 \cdot 4$	$51 \cdot 8$	$45^{\circ} 4$	$40 \cdot 4$	$36 \cdot 4$	$33^{\circ} \mathrm{I}$	$30 \cdot 4$	28.0	$26 \cdot 1$	24.4
82	1631	210	408	20.4	136	102	$3 \mathrm{r} \cdot 6$	68•1	58.4	51.1	$45^{\circ} 5$	$41^{\circ} \mathrm{O}$	37.3	34^{2}	$3 \mathrm{r} \cdot 6$	29.4	27.5
83	1867	275	467	233	156	117	93.4	77.9	$66 \cdot 8$	$58 \cdot 5$	$52^{\circ} \mathrm{I}$	$46 \cdot 9$	42.7	$39^{2} 2$	$36 \cdot 2$	33.7	$3 \mathrm{~B} \cdot 5$
84	2180	377	545	273	182	136	109	$91^{\circ} \mathrm{O}$	$78 \cdot 1$	68.4	$60 \cdot 8$	54．8	$49^{\circ} 9$	$45^{\circ} 8$	42.3	39．3	$36 \cdot 8$
85	2620	548	655	328	218	I64	131	109	93.8	$82 \cdot 1$	$73 \cdot 1$	65.8	59＊9	55°	$50 \cdot 8$	47.2	$44^{\circ} 2$
	$\begin{aligned} & \mathrm{m} . \\ & 59 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{m} . \\ & 56 \\ & \hline \end{aligned}$	$\begin{array}{r}\text { m．} \\ 52 \\ \hline\end{array}$	m． 48	$\begin{aligned} & \mathrm{m} . \\ & 44 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 32 \\ & \hline \end{aligned}$	${ }_{28}$	$\begin{aligned} & \mathrm{m} . \\ & 2 \mathrm{t} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 20 \\ & \hline \end{aligned}$	$\mathrm{m} .$	$\begin{gathered} \mathrm{m} . \\ \mathrm{I} 2 \end{gathered}$	$\frac{\mathrm{m}_{1}}{8}$	$\begin{gathered} \mathrm{m} . \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{oo} \end{aligned}$
11 HOURS．																	

Table B.

Always name the factors taken from Table B the same as the name of declination.

잉	1 HOUR.															2 Hrs .
$\begin{aligned} & \overline{\mathrm{O}} \\ & \text { ه́ } \end{aligned}$	m_{00}	${ }_{4}^{\mathrm{m}}$.	${ }_{8}^{\mathrm{m}}$.	${ }_{12}$.	${ }_{16}$.	m_{20}.	m_{24}.	$\begin{aligned} & \mathrm{m} \\ & 28 \end{aligned}$	${ }_{32} .$	m_{36}	m_{40}	m_{44}	m_{48}	$\frac{\mathrm{m}}{52}$	m_{58}	m_{00}
0		$2 \cdot$									I					
30	2.23	2.09	I•97	I.87	ェ・77	I $\cdot 69$	I'6I	I 54	I'48	I 42	1.37	I 32	I•27	I. 23	I'19	I'15
31	$2 \cdot 32$	$2 \cdot 18$	2.06	I'94	I.85	1.76	I 68	I 60	I'54	I. 48	1.42	I 37	I. 32	I.28	I. 24	I. 20
32	2.4 I	$2 \cdot 27$	$2 \cdot 14$	$2 \cdot 02$	I.92	1.83	1.74	I.67	I. 60	I 54	1.48	I 43	I.38	I.33	I•29	I.25
33	2.51	$2 \cdot 36$	$2 \cdot 22$	$2 \cdot 10$	I•99	I.90	I.81	1.73	I. 66	1.60	I. 54	I. 48	I 43	I. 38	I 34	1.30
34	2.61	$2 \cdot 45$	$2 \cdot 31$	2.18	2.07	I•97	I.88	I.80	1'73	I. 66	I. 60	I. 54	I.49	I 44	r 39	I•35
35	2.7	2.54	$2 \cdot 39$	2.27	$2 \cdot 15$	2.05	I.95	I.87	I'79	I'72	I.66	I 60	I'54	I*49	I.44	I'40
36	$2 \cdot 8 \mathrm{I}$	$2 \cdot 64$	2.48	$2 \cdot 35$	$2 \cdot 23$	$2 \cdot 12$	$2 \cdot 03$	I ${ }^{\prime} 94$	I-86	1 79	I'72	I. 66	I. 60	I. 55	I. 50	I*45
37	2.91	2.73	2.58	2.44	$2 \cdot 31$	$2 \cdot 20$	$2 \cdot 10$	2.01	I'93	I $\cdot 85$	1.78	1.72	I. 66	I. 61	I 55	I. 51
38	3.02	$2 \cdot 83$	$2 \cdot 67$	2.53	2.40	2.28	$2 \cdot 18$	2.09	2.00	I•92	I.85	I.78	I 72	I. 66	I.61	I. 56
39	$3 \cdot 13$	2.94	2.77	$2 \cdot 62$	2.49	$2 \cdot 37$	$2 \cdot 26$	$2 \cdot 16$	2.07	I•99	I'92	I 85	1.78	I.72	I. 67	I. 62
40	3	3.04	$2 \cdot 87$	2.72	2.58	2.45	$2 \cdot 34$	2.24	$2 \cdot 15$	2.06	['99	I'91	I.85	1 79	I'73	I.68
41	$3 \cdot 36$	$3 \cdot 15$	2.97	2.81	$2 \cdot 67$	2.54	2.43	$2 \cdot 32$	$2 \cdot 22$	$2 \cdot 14$	$2 \cdot 06$	I'98	I'91	I-85	I•79	I.74
42	3.48	$3 \cdot 27$	3.08	2.91	2.77	$2 \cdot 63$	2.51	2.40	$2 \cdot 30$	$2 \cdot 21$	$2 \cdot 13$	$2 \cdot 05$	I•98	I 92	I.86	I-80
43	$3 \cdot 60$	$3 \cdot 38$	$3 \cdot 19$	$3 \cdot 02$	$2 \cdot 86$	2.73	$2 \cdot 60$	$2 \cdot 49$	2.39	$2 \cdot 29$	$2 \cdot 21$	$2 \cdot 13$	$2 \cdot 05$	I•99	I'92	I.87
44	$3 \cdot 73$	3.50	3.30	$3 \cdot 13$	2.97	$2 \cdot 82$	$2 \cdot 69$	$2 \cdot 58$	$2 \cdot 47$	$2 \cdot 37$	$2 \cdot 29$	$2 \cdot 20$	$2 \cdot 13$	$2 \cdot 06$	x'99	I'93
45	$3 \cdot 86$	$3 \cdot 63$	3.42	3.24	3.07	2'92	$2 \cdot 79$	$2 \cdot 67$	$2 \cdot 56$	2.46	$2 \cdot 37$	$2 \cdot 28$	$2 \cdot 20$	$2 \cdot 13$	2.06	2.00
46	4	3.76	3.54	$3 \cdot 35$	$3 \cdot 18$	3.03	$2 \cdot 89$	$2 \cdot 76$	$2 \cdot 65$	$2 \cdot 55$	2.45	$2 \cdot 36$	$2 \cdot 28$	2.21	$2 \cdot 14$	2.07
47	$4^{\circ} 14$	$3 \cdot 89$	3.67	$3 \cdot 47$	$3 \cdot 29$	3.14	$2 \cdot 99$	$2 \cdot 86$	$2 \cdot 74$	$2 \cdot 64$	$2 \cdot 54$	2.45	$2 \cdot 36$	$2 \cdot 28$	$2 \cdot 21$	$2 \cdot 14$
48	$4 \cdot 29$	$4 \cdot 03$	$3 \cdot 80$	$3 \cdot 59$	3.41	$3 \cdot 25$	$3 \cdot 10$	$2 \cdot 96$	$2 \cdot 84$	2.73	2.63	2.53	2.45	$2 \cdot 37$	$2 \cdot 29$	$2 \cdot 22$
49	4.44	$4 \cdot 17$	3.93	$3 \cdot 72$	3.53	$3 \cdot 36$	$3 \cdot 21$	3.07	2.94	$2 \cdot 83$	2.72	$2 \cdot 62$	$2 \cdot 53$	2.45	$2 \cdot 37$	$2 \cdot 30$
50	4.60	4.32	4.08	$3 \cdot 86$	$3 \cdot 66$	3.48	$3 \cdot 33$	$3^{\circ} 18$	3.05	2.93	$2 \cdot 82$	2.72	$2 \cdot 63$	$2 \cdot 54$	2.46	$2 \cdot 38$
51	4.77	$4 \cdot 48$	$4 \cdot 22$	$4^{\circ} 00$	3'79	$3 \cdot 61$	$3 \cdot 45$	$3 \cdot 30$	$3 \cdot 16$	$3 \cdot 04$	2.92	$2 \cdot 82$	$2 \cdot 72$	$2 \cdot 63$	$2 \cdot 55$	2.47
52	4.95	$4 \cdot 64$	$4 \cdot 38$	$4 \cdot 14$	$3 \cdot 93$	3.74	$3 \cdot 57$	3.42	3.28	$3 \cdot 15$	3.03	2.92	$2 \cdot 82$	2.73	2.64	2.56
53	5'13	$4 \cdot 8 \mathrm{I}$	4.54	$4 \cdot 29$	$4 \cdot 08$	$3 \cdot 88$	$3 \cdot 70$	$3 \cdot 54$	3.40	$3 \cdot 26$	3.14	$3 \cdot 03$	2.92	$2 \cdot 83$	2.74	$2 \cdot 65$
54	$5 \cdot 32$	4.99	4.71	4.54	$4 \cdot 23$	4.02	$3 \cdot 84$	$3 \cdot 67$	3.52	$3 \cdot 38$	$3 \cdot 26$	$3 \cdot 14$	3.03	2.93	$2 \cdot 84$	$2 \cdot 75$
55	5.52	$5 \cdot 18$	4.88	4.62	4*39	$4 \cdot 18$	$3 \cdot 99$	3.81	3.66	3.51	$3 \cdot 38$	$3 \cdot 26$	$3 \cdot 15$	3.04	$2 \cdot 95$	2.86
56	$5 \cdot 73$	$5 \cdot 38$	5.07	$4 \cdot 80$	4.55	$4 \cdot 33$	$4 \cdot 14$	3.96	$3 \cdot 79$	$3 \cdot 65$	3.51	$3 \cdot 38$	$3 \cdot 27$	$3 \cdot 16$	3.06	2.97
57	5.95	$5 \cdot 59$	$5 \cdot 27$	4.98	473	4.50	4.39	$4^{\circ} 11$	3.94	$3 \cdot 79$	3.64	$3 \cdot 5 \mathrm{I}$	$3 \cdot 39$	$3 \cdot 28$	$3 \cdot 18$	3.08
58	$6 \cdot 18$	$5 \cdot 81$	$5 \cdot 47$	$5 \cdot 18$	4.92	$4 \cdot 68$	$4 \cdot 47$	$4 \cdot 27$	$4^{\circ 10}$	3'93	$3 \cdot 79$	$3 \cdot 65$	$3 \cdot 53$	3.41	$3 \cdot 30$	$3 \cdot 20$
59	6.43	$6 \cdot 04$	$5 \cdot 69$	$5 \cdot 39$	$5^{\prime} 11$	$4 \cdot 87$	$4 \cdot 64$	4.44	$4 \cdot 26$	4.09	3.94	3.80	$3 \cdot 67$	$3 \cdot 55$	$3 \cdot 43$	$3 \cdot 33$
60	$6 \cdot 69$	$6 \cdot 28$	$5{ }^{\circ} 92$	$5 \cdot 61$	$5 \cdot 32$	5.06	4.83	$4^{\prime 6}$	4.43	$4 \cdot 26$	$4^{\circ 10}$	$3 \cdot 95$	$3 \cdot 82$	$3 \cdot 69$	3.57	3.46
61	$6 \cdot 97$	$6 \cdot 55$	6.17	$5 \cdot 84$	5.54	$5 \cdot 27$	$5 \cdot 03$	$4 \cdot 82$	$4 \cdot 62$	4.44	$4 \cdot 27$	$4 \cdot 12$	3.97	$3 \cdot 84$	$3 \cdot 72$	$3 \cdot 61$
62	$7 \cdot 27$	$6 \cdot 82$	$6 \cdot 43$	6.09	5.78	$5 \cdot 50$	$5 \cdot 25$	5.02	$4^{\circ} \mathrm{8I}$	$4 \cdot 62$	4.45	$4 \cdot 29$	$4 \cdot 14$	$4 . \mathrm{OI}$	$3 \cdot 88$	3.76
63	7.58	7×12	$6 \cdot 71$	$6 \cdot 35$	$6 \cdot 03$	5.74	$5 \cdot 48$	$5 \cdot 24$	$5 \cdot 02$	$4 \cdot 83$	$4 \cdot 64$	4.48	432	$4 \cdot 18$	$4 \cdot 05$	$3 \cdot 93$
64	$7 \cdot 92$	7.44	$7 \cdot 01$	$6 \cdot 63$	$6 \cdot 30$	5*99	$5 \cdot 72$	$5 \cdot 47$	$5 \cdot 25$	5.04	$4 \cdot 85$	$4 \cdot 68$	$4 \cdot 52$	4.37	$4 \cdot 23$	$4 \cdot 10$
65	$8 \cdot 29$	$7 \cdot 78$	7×33	$6 \cdot 94$	$6 \cdot 59$	$6 \cdot 27$	5.98	$5 \cdot 72$	$5 \cdot 49$	$5 \cdot 27$	5.07	$4 \cdot 89$	4.72	4.57	4.42	$4 \cdot 29$
66	$8 \cdot 68$	$8 \cdot 15$	$7 \cdot 68$	$7 \cdot 27$	$6 \cdot 90$	$6 \cdot 57$	$6 \cdot 27$	$6 \cdot 00$	$5 \cdot 75$	$5 \cdot 52$	$5 \cdot 3 \mathrm{I}$	5'12	$4 \cdot 95$	4.78	$4 \cdot 63$	$4 \cdot 49$
67	9×1	$8 \cdot 55$	$8 \cdot 06$	$7 \cdot 62$	$7 \cdot 24$	$6 \cdot 89$	$6 \cdot 57$	$6 \cdot 29$	$6 \cdot 03$	5.79	5.57	$5 \cdot 37$	5.19	5.02	4.86	4.71
68	9.56	$8 \cdot 98$	$8 \cdot 47$	8.01	$7 \cdot 60$	$7 \cdot 24$	$6 \cdot 91$	$6 \cdot 61$	$6 \cdot 33$	$6 \cdot 09$	$5 \cdot 86$	$5 \cdot 65$	5.45	5.27	5.11	4.95
69	10. 1	9.45	8.91	$8 \cdot 43$	$8 \cdot 00$	$7 \cdot 62$	$7 \cdot 27$	$6 \cdot 95$	$6 \cdot 67$	6.40	$6 \cdot 16$	5.94	$5 \cdot 74$	$5 \cdot 55$	$5 \cdot 37$	$5 \cdot 21$
70	$10 \cdot 6$	9*97	9.40	$8 \cdot 89$	$8 \cdot 44$	8.03	$7 \cdot 67$	7×33	7.03	$6 \cdot 75$	$6 \cdot 50$	$6 \cdot 27$	$6 \cdot 05$	5.85	5.67	5.49
71	II'2	$10 \cdot 5$	$9 \cdot 93$	9.40	$8 \cdot 92$	$8 \cdot 49$	8.10	775	7.43	$7 \cdot 14$	$6 \cdot 87$	$6 \cdot 63$	$6 \cdot 40$	6•19	5.99	$5 \cdot 8 \mathrm{I}$
72	II.9	II*2	10. 5	9.96	$9 \cdot 45$	9.00	8. 59	$8 \cdot 22$	7.88	$7 \cdot 57$	$7 \cdot 28$	7.02	$6 \cdot 78$	$6 \cdot 56$	$6 \cdot 35$	6.16
73	12.6	II'9	II'2	10.6	10.0	9.56	$9 \cdot 13$	8.73	$8 \cdot 37$	$8 \cdot 04$	$7 \cdot 74$	$7 \cdot 46$	$7 \cdot 20$	$6 \cdot 97$	$6 \cdot 75$	$6 \cdot 54$
74	13.5	12.7	11*9	II.3	10*7	10.2	$9{ }^{\prime} 73$	$9 \cdot 3 \mathrm{I}$	8.93	$8 \cdot 57$	$8 \cdot 25$	$7 \cdot 96$	$7 \cdot 68$	$7 \cdot 43$	7 79	$6 \cdot 97$
75	14.4	13.5	12.8	12.1	11.5	10'9	$10 \cdot 4$	9.96	9*55	9.18	8.83	8.51	$8 \cdot 22$	$7 \cdot 95$	$7 \cdot 70$	7.46
76	15.5	14.6	13.7	13.0	12.3	11.7	II.2	10.7	IO. 3	$9 \cdot 86$	$9 \cdot 49$	$9^{\circ} \mathrm{I} 5$	$8 \cdot 83$	$8 \cdot 54$	8.27	8.02
77	16.7	15.7	14^{-8}	$14^{\circ} 0$	I $3 \cdot 3$	12.7	12	II• 6	II'I	$10 \cdot 6$	$10 \cdot 2$	9.88	9.54	$9 \cdot 23$	$8 \cdot 93$	$8 \cdot 66$
78	$18 \cdot 2$	17*1	16.1	15.2	14.5	13.8	I3.1	12.6	12.0	11.6	II'1	10'7	10.4	$10 \cdot 0$	9.70	9.41
79	19.9	$18 \cdot 7$	17.6	16.6	15.8	$15^{\circ} \mathrm{O}$	14.4	$13^{\circ} 7$	13.2	12.6	12.2	II'7	II'3	II'O	10.6	$10 \cdot 3$
80	21'9	$20 \cdot 6$	$19 * 4$	18.4	I7.4	16.6	15.8	I5. 1	14.5	13.9	13.4	12.9	12.5	I2.1	I 1 7	11'3
81	$24^{\circ} 4$	$22 \cdot 9$	21.6	$20 \cdot 4$	19.4	18.5	17.6	16.9	16.2	15.5	$14^{\circ} 9$	14.4	13.9	I 3.4	13.0	12.6
82	$27^{\circ} 5$	$25^{\circ} 8$	$24 \cdot 3$	23°	21.9	$20^{\circ} 8$	19.9	19.0	$18 \cdot 2$	17.5	16.8	$16 \cdot 2$	15.7	I5.2	14.7	14.2
83	$3 \mathrm{I} \cdot 5$	29.5	$27 \cdot 9$	26.4	$25^{\circ} 0$	$23 \cdot 8$	$22 \cdot 7$	21'7	$20 \cdot 8$	20.0	19.3	$18 \cdot 6$	17.9	17.3	$16 \cdot 8$	16.3
84	$36 \cdot 8$	$34^{\circ} 5$	$32 \cdot 5$	$30 \cdot 8$	29^{2}	$27 \cdot 8$	$26 \cdot 5$	$25^{\prime} 4$	$24^{\circ} 4$	23.4	22.5	21.7	21'0	20.3	19.6	19.0
85	$44^{\circ} 2$	4I'5	39*I	37°	$35^{\circ} \mathrm{I}$	33.4	3'9	$30 \cdot 5$	29.3	28.1	$27^{\circ} 0$	$26 \cdot 1$	$25^{\circ} 2$	$24^{\prime} 3$	$23 \cdot 6$	22.9
	m.	$\begin{aligned} & \mathrm{m} . \\ & 56 \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{m} \\ .52 \\ \hline \end{array}$	m.	$\begin{aligned} & \mathrm{m} \\ & 44 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 40 \end{aligned}$	m. 36	$\begin{aligned} & \mathrm{m} \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 24 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 20 \\ & \hline \end{aligned}$	$\mathrm{m} .$	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{I} 2 \end{aligned}$	$\begin{gathered} \mathrm{m} . \\ 8 \end{gathered}$	$\begin{gathered} \mathrm{m} \\ 4 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{oo} \end{aligned}$

Table B.

Always name the factors taken from Table B the same as the name of declination.

.	2 HOURS.															3 Hrs .
$\begin{aligned} & \text { 炀 } \\ & \text { a } \end{aligned}$	m_{00}	m_{4}	m_{8}	m_{12}	$\mathrm{m}_{16} .$	$\underset{20}{\mathrm{~m}} .$	m_{24}.	$\underset{28}{\mathrm{~m}} .$	${ }_{32} .$	m_{36}	m_{40}	$\mathrm{m} .$	$\mathrm{m}_{43} .$	$\begin{aligned} & \mathrm{m} . \\ & 52 \end{aligned}$	m_{56}	m_{00}
0		I•1				$1 \cdot$										
30	I'15	1-12	I.09	I.06	I.03	I'OI	98	96	94	$\bullet 92$	90	88	86	-85	83	82
31	1.20	I'17	I'13	I'IO	1.07	I'05	I'02	1 00	$\cdot 98$	$\cdot 95$	-93	-92	-90	-88	-86	-85
32	$1 \cdot 25$	I'21	I'18	I'15	I•12	r.09	I'06	I. O_{4}	I'OI	-99	-97	-95	'93	'92	'90	-88
33	$1 \cdot 30$	I.26	I. 23	I'19	I•16	I'13	I•10	I.08	$1 \cdot 05$	I•03	I.OI	-99	$\cdot 97$	'95	'93	-92
34	1*35	1.312	I 27	I 24	I•2I	1.18	I'15	I'12	I•10	I•07	I.05	1.03	$1 \cdot \mathrm{O}$	-99	-97	$\cdot 95$
35	1.40	1.36	I. 32	I-29	I 25	$1 \cdot 22$	I'19	1.16	I'14	I'II	I.09	1.07	I'05	I'03	I'OI	99
36	1.45	1.41	I•37	1.33	I 30	I•27	I-24	I-2I	I'18	I'15	I'13	I•II	I'99	1.07	I.05	1.03
37	I•5I	I. 46	I 42	I. ${ }^{8}$	I•35	I.3I	I•28	I. 25	I. 22	I. 20	I•17	I•15	I•30	I-10	I.08	$1 \cdot 07$
38	r.56	I. 52	I. 47	I 43	I 40	1.36	I 33	I. 30	I. 27	I•24	I. 22	I•19	I'17	I'15	I•12	I'10
39	1.62	I•57	I 53	I*49	1.45	1.41	I-38	I•35	I•32	I-29	I.26	I. 23	1.2I	I'19	I'17	c15
40	r.68	I.63	I. 58	I'54	I 50	1.46	1*43	I'39	I. 36	I•33	I.3I	1-28	I 25	I.23	I'21	I'19
4 I	1.74	I.69	I•64	I. 60	I 55	I•52	I.48	I 44	$1 \cdot 4 \mathrm{I}$	I•38	I 35	1.33	1.30	I. 27	I. 25	I. 23
42	I.80	I•75	I 70	I 65	I•6I	1.57	I 53	I. 50	I 46	I. 43	I. 40	1-37	I•35	I•32	I. 30	I.27
43	$1 \cdot 87$	I.8I	I.76	I'71	I.67	1.63	I•59	I. 55	I. 51	I. 48	I. 45	I. 42	I•39	I•37	I•34	I•32
44	1.93	I-87	I.82	1'77	1'73	I.68	I•64	I-60	1.57	I 53	1.50	$1 \cdot 47$	I* 44	I. 42	I•39	1•37
45	$2 \cdot 00$	1.94	I.89	I. 84	I•79	1'74	1-70	I.66	I-62	I•59	I. 56	I. 52	I'49	I*47	I'44	1.41
46	$2 \cdot 07$	2.01	I.95	r 90	I.85	I.8I	I 76	1.72	I 68	I•65	I.6I	I. 58	I. 55	I. 52	I•49	I. 46
47	$2 \cdot 14$	2.08	2.02	I.97	I'92	1.87	I.82	I.78	1.74	I•70	I.67	I.63	I. 60	I•57	1.54	1.52
48	$2 \cdot 22$	$2 \cdot 16$	$2 \cdot 1$	$2 \cdot 04$	I•99	I.94	I-89	I.85	I.80	I•76	1.73	I.69	I. 66	I. 53	I 60	1.57
49	$2 \cdot 30$	$2 \cdot 23$	$2 \cdot 17$	2.11	2.06	2.01	I 96	I'91	I•87	I•83	I'79	1•75	$1 \cdot 72$	I. 69	I•66	1.63
50	$2 \cdot 38$	$2 \cdot 31$	$2 \cdot 25$	2'19	2.13	8	$2 \cdot 03$	1.98	I'94	I.89	I.85	I-82	1.78	I'75	1'72	1.69
51	2.47	$2 \cdot 40$	$2 \cdot 33$	$2 \cdot 27$	2.21	$2 \cdot 15$	$2 \cdot 10$	$2 \cdot 05$	$2 \cdot \mathrm{OI}$	I.96	I'92	I.88	I.85	I-8I	I•78	1•75
52	2.56	$2 \cdot 49$	2.42	$2 \cdot 35$	$2 \cdot 29$	2.23	$2 \cdot 18$	$2 \cdot 13$	2.08	$2 \cdot 03$	I'99	I'95	I.91	I.88	I•84	I.8I
53	$2 \cdot 65$	2.58	2.50	2.44	$2 \cdot 37$	$2 \cdot 31$	$2 \cdot 26$	2.21	$2 \cdot 16$	$2 \cdot 11$	2.06	$2 \cdot 02$	r 98	I•95	I'91	- 88
54	$2 \cdot 75$	$2 \cdot 67$	$2 \cdot 60$	$2 \cdot 53$	$2 \cdot 46$	2.40	$2 \cdot 34$	$2 \cdot 29$	$2 \cdot 24$	2.19	2.14	$2 \cdot 10$	2.06	2.02	I.98	I 95
55	$2 \cdot$	2.77	2.70	$2 \cdot 62$	2.55	2.49	2.43	2.37	$2 \cdot 32$	$2 \cdot 27$	2.22	2.18	2*13	2*09	$2 \cdot 06$	2.02
56	2.97	$2 \cdot 88$	$2 \cdot 80$	2.72	$2 \cdot 65$	2.58	2.52	2.46	2.41	$2 \cdot 36$	$2 \cdot 3 \mathrm{I}$	$2 \cdot 26$	$2 \cdot 22$	$2 \cdot 17$	$2 \cdot 13$	$2 \cdot 10$
57	3.08	$2 \cdot 99$	2.91	$2 \cdot 83$	$2 \cdot 75$	$2 \cdot 68$	2.62	$2 \cdot 56$	2.50	$2 \cdot 45$	2.40	$2 \cdot 35$	$2 \cdot 30$	2.26	$2 \cdot 22$	2.18
58	3.20	3.11	$3 \cdot 02$	$2 \cdot 94$	$2 \cdot 86$	$2 \cdot 79$	$2 \cdot 72$	$2 \cdot 66$	2.60	$2 \cdot 54$	$2 \cdot 49$	2.44	$2 \cdot 39$	$2 \cdot 35$	$2 \cdot 30$	$2 \cdot 26$
59	$3 \cdot 33$	3.23	$3^{\cdot 14}$	3.06	$2 \cdot 98$	2.90	$2 \cdot 83$	$2 \cdot 77$	$2 \cdot 70$	$2 \cdot 64$	2.59	2.54	2.49	2.44	$2 \cdot 40$	$2 \cdot 35$
60	3.46	$3 \cdot 36$	3.27	$3 \cdot 18$	3'10	3.02	2.95	2.88	2.81	$2 \cdot 75$	$2 \cdot 69$	$2 \cdot 64$	$2 \cdot 59$	2.54	2.49	$2 \cdot 45$
61	3.61	3.50	3.40	$3 \cdot 3 \mathrm{I}$	$3 \cdot 23$	$3 \cdot 15$	3.07	$3 \cdot 00$	2.93	$2 \cdot 87$	$2 \cdot 81$	2.75	$2 \cdot 70$	2.65	$2 \cdot 60$	2.55
62	3.76	$3 \cdot 65$	3.55	$3 \cdot 45$	$3 \cdot 36$	3.28	$3 \cdot 20$	$3 \cdot 13$	3.05	2.99	$2 \cdot 93$	$2 \cdot 87$	2.81	2.76	$2 \cdot 71$	2.66
63	3.93	$3 \cdot 8 \mathrm{I}$	3.70	3.60	3.51	3.42	$3 \cdot 34$	3.26	$3 \cdot 19$	$3 \cdot 12$	3.05	2.99	2.93	2.88	2.83	2.78
64	$4 \cdot 10$	3.98	$3 \cdot 87$	3.76	$3 \cdot 67$	3.57	3.49	3.41	$3 \cdot 33$	$3 \cdot 26$	$3 \cdot 19$	$3 \cdot 13$	3.06	$3 \cdot 01$	2.95	$2 \cdot 90$
65	$4 \cdot 29$	4'16	4.05	3.94	$3 \cdot 84$	$3 \cdot 74$	$3 \cdot 65$	$3 \cdot 56$	3.48	3.41	3.34	$3 \cdot 27$	$3 \cdot 20$	$3 \cdot 14$	3.09	3.03
66	4.49	$4 \cdot 36$	$4 \cdot 24$	$4 \cdot 12$	4.02	3.92	$3 \cdot 82$	$3 \cdot 73$	3.65	$3 \cdot 57$	3.49	$3 \cdot 42$	$3 \cdot 36$	$3 \cdot 29$	3.23	3.18
67	4.71	4.57	4.45	$4 \cdot 33$	4.21	4.111	4.01	3.91	3.83	3.74	$3 \cdot 67$	$3 \cdot 58$	3.52	3.45	$3 \cdot 39$	$3 \cdot 33$
68	4.95	$4 \cdot 81$	$4 \cdot 67$	$4 \cdot 54$	4.43	$4 \cdot 32$	$4 \cdot 21$	$4^{.11}$	4.02	3.93	$3 \cdot 85$	3.77	3.70	3.63	3.56	$3 \cdot 50$
69	$5 \cdot 21$	$5 \cdot 06$	4.92	4.78	$4 \cdot 66$	4.54	$4 \cdot 43$	4.33	4.23	$4^{1} 14$	4.05	3.97	$3 \cdot 89$	$3 \cdot 82$	$3 \cdot 75$	$3 \cdot 68$
70	5.49	$5 \cdot 33$	5.18	5'04	4.91	4.79	4^{-67}	4.57	$4 \cdot 46$	$4 \cdot 37$	4.27	4.19	$4^{\circ} 11$	4.03	3.96	$3 \cdot 89$
71	$5 \cdot 8 \mathrm{I}$	$5 \cdot 64$	5.48	$5 \cdot 33$	5'19	5.06	4.94	$4 \cdot 83$	472	$4 \cdot 6 \mathrm{I}$	4.52	$4 \cdot 43$	$4 \cdot 34$	4.26	$4 \cdot 18$	$4 \cdot 11$
72	6.16	5.98	$5 \cdot 81$	5.65	5.50	$5 \cdot 37$	$5 \cdot 24$	$5 \cdot 11$	5.00	$4 \cdot 89$	4.79	4.69	4.60	4.51	4.43	$4 \cdot 35$
73	6.54	$6 \cdot 35$	6.17 6.58	$6 \cdot 01$	$5 \cdot 85$	$5 \cdot 70$	$5 \cdot 56$	5.43 5	$5 \cdot 31$	$5 \cdot 20$	5.09	4.99	$4 \cdot 89$	4^{*} 80	4.71	$4 \cdot 63$
74	$6 \cdot 97$	6•77	$6 \cdot 58$	6.40	$6 \cdot 24$	6.08	$5 \cdot 93$	5'79	$5 \cdot 66$	$5 \cdot 54$	5.43	$5 \cdot 32$	$5 \cdot 21$	$5^{\circ} \mathrm{II}$	$5 \cdot 02$	4.93
75	$7{ }^{\circ} 46$	$7 \cdot 25$	7.04	$6 \cdot 85$	$6 \cdot 67$	6.51	6.35	$6 \cdot 20$	$6 \cdot 06$	5*93	$5 \cdot 8 \mathrm{r}$	5.69	$5 \cdot 5^{8}$	5.47	$5 \cdot 37$	$5 \cdot 28$
76	$8 \cdot 02$	$7 \cdot 79$	$7 \cdot 57$	$7 \cdot 36$	$7{ }^{17}$	$6 \cdot 99$	$6 \cdot 82$	$6 \cdot 66$	$6 \cdot 51$	$6 \cdot 37$	$6 \cdot 24$	$6 \cdot 11$	$5 \cdot 99$	$5 \cdot 88$	$5 \cdot 77$	$5 \cdot 67$
77	8.66	$8 \cdot 41$	$8 \cdot 17$ 8.88	7.95	7.75	$7 \cdot 55$	$7 \cdot 37$	$7 \cdot 20$	$7 \cdot 04$	$6 \cdot 88$	$6 \cdot 74$	$6 \cdot 60$	$6 \cdot 47$	$6 \cdot 35$	$6 \cdot 24$	$6 \cdot 13$
78	$9 \cdot 4 \mathrm{I}$	$9^{\circ} 13$	8.88	$8 \cdot 64$	8.41	$8 \cdot 20$	8.00	7.82	$7 \cdot 64$	7.48	$7 \cdot 32$	$7 \cdot 17$	7.03	$6 \cdot 90$	$6 \cdot 77$	$6 \cdot 65$
79	$10 * 3$	9*99	9*71	9.45	$9^{\circ} 20$	8.97	$8 \cdot 75$	$8 \cdot 55$	8.36	8•17	$8 \cdot 00$	$7 \cdot 84$	$7 \cdot 69$	7.54	$7{ }^{\circ} \mathrm{I}$	$7 \cdot 28$
80	11*3	11*O	10*7	$10 \cdot 4$	$10 \cdot 1$	9*89	$9 \cdot 65$	$9{ }^{\circ} 42$	9.2I	9\%1	$8 \cdot 82$	$8 \cdot 64$	$8 \cdot 48$	$8 \cdot 32$	$8 \cdot 16$	$8 \cdot 02$
81	$12 \cdot 6$	12.3	II'9	II'6	II•3	II'0	$10 \cdot 7$	10. 5	$10 \cdot 3$	10'0	$9 \cdot 82$	$9 \cdot 62$	$9 \cdot 44$	$9 \cdot 26$	$9 \cdot 09$	$8 \cdot 93$
82	$14^{\circ} 2$	13.8	13.4	$13^{\circ} \mathrm{I}$	$12 \cdot 7$	12.4	12.1	II•8	II•6	II•3	II'I	10.8	$10 \cdot 6$	10.4	$10 \cdot 2$	10'1
83	$16 \cdot 3$	$15^{\circ} 8$	15.4	$15^{\circ} 0$	$14^{\circ} 6$	$14^{\circ} 2$	13.9	13.5	13.2	12.9	12.7	12.4	12.2	II•9	II'7	II'5
84	19.0	18.5	$18 \cdot 0$	17.5	17.0	16.6	16.2	15.8	15.5	15.1	14.8	14.5	$14^{\circ} 2$	$14^{\circ} \mathrm{O}$	13.7	13.5
85	22.9	22.2	21.6	21*0	20.4	19.9	19%	$19^{\circ} 0$	$18 \cdot 6$	$18 \cdot 2$	17.8	17.4	$17^{\circ} \mathrm{I}$	16.8	16.5	16.2
	$\begin{aligned} & \mathrm{m} \\ & \text { oo } \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 56 \end{aligned}$	$\begin{gathered} \mathrm{m} \\ 52 \end{gathered}$	m.	$\begin{aligned} & \mathrm{m} \\ & 44 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 32 \end{aligned}$	$\frac{m}{28}$	$\begin{aligned} & \mathrm{m} \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 20 \end{aligned}$	m6	m.	m.	m.	m.
	10 Hrs							HO								

Table B.
Always name the factors taken from Table B the same as the name of declination.

Table B.

Always name the factors taken from Table B the same as the name of declination.

Table B.

Always name the factors taken from Table B the same as the name of declination.

	5 Hours.															6 Hrs .
	m_{00}.	${ }_{4}^{\mathrm{m}}$.	${ }_{8}^{\mathrm{m}}$.	${ }_{12}^{\mathrm{m}}$.	${ }_{16}^{\mathrm{m} .}$	${ }_{20}^{\text {m. }}$	$\underset{24}{\text { m }}$	${ }_{28}^{2 m}$	${ }_{32}{ }_{3}$	${ }_{36}{ }_{36}$	${ }_{40} \mathrm{~m}$.	${ }_{44}^{\text {m. }}$	${ }_{48} \mathrm{~m}$.	${ }_{52}^{\text {m. }}$	${ }_{56}^{\text {m. }}$	${ }_{00}^{\text {m. }}$
30	. 60	60	59	59	59	59	58		58	58	58	58	58		58	
3 3	62	62	62	61	. 69	61	. 61	61	6	60	6	5	6	60	. 60	60
32	65	64	64	64	64	63	$\cdot 63$	63	63	${ }^{6} 3$	63	63	63	63	62	$\cdot 62$
33	67	67	67	. 66	$\cdot 66$. 66	. 66	66	65	65	65	65	-65	65	65	65
34	70	70	69	'69	69	68	68	68	68	68	68	68	68	67	67	67
35	72	72	72	72	71	71	71	71	71	70	70	'70	'70	70	70	
36	$\bigcirc 75$	75	75	74	74	74	74	73	73	73	73	73	73	73	73	73
37	. 78	. 78	. 77	. 77	. 77	77	776	76	76	78	78	76	75	75	75	75
38 39	. 84	.83	83	. 83	. 82	88	. 82	. 82	82	. 89	81	. 81	8	78	-781818	$\begin{array}{r}78 \\ .81 \\ \hline 1\end{array}$
40	-87	. 86	86	86	85	85	85	85	85	84	84	84	84		84	84
4 I	'90	'90	-89	89	89	88	. 88	88	88	. 87	87	87	87	87	87	87
42	-93	93	92	-92	'92	91	91	-91	91	-91	90	'90	90	90	90	90
43	-97	-96	'96	'95	'95	95	'94	'94	94	94	94	'93	93	93	'93	93
44	$1 \cdot 0$	r 00	-99	99	'98	98	98	98	97	97	97	97	97	7	97	97
45	r. 04	$1 \cdot 03$	I'03	$1 \cdot 02$	I.02	1.02	$1{ }^{\circ}$	ror	I ${ }^{\text {or }}$	I.or	1.00	1.00	-o	I.	I-0	roo
46	r.07	1.07	I 06	1×06	$1 \cdot 05$	r.05	r.05	I.05	$\mathrm{I}^{\circ} \mathrm{O} 4$	I. 04	$\mathrm{r}^{1} \mathrm{O} 4$	$\mathrm{r}^{\circ} \mathrm{O}$	${ }_{1}{ }^{\circ} 4$	$\mathrm{r}^{\circ} \mathrm{O}$	I'04	${ }^{-} \cdot 0.4$
47	I'11	I'II	$1 \cdot 10$	I'10	I'09	${ }_{1}^{1 \cdot 09}$	I-09	${ }_{1}^{1} 1.12$	I.08	I. 08	I'OS	I.07	I•07	${ }^{1} \mathrm{O}$	I'07	I.07
48	r.15	I-19	1.14	- $1 \cdot 18$	$1 \cdot 13$	${ }_{1}^{1 \cdot 17}$	${ }_{1} 112$	${ }^{1} 1.16$	I•16	r-12	${ }_{1}^{1 \cdot 11}$	I.11	I.11	I'11	I•II	I.11 1.15
				I 22	1.21	1.21	I2I	1.20	1.20	1.20	r 20	I-19	I'10	$1 \cdot 19$	$1 \cdot 19$	$1 \cdot 19$
51	1.28	1.27	1.27	1-26	126	$1 \cdot 25$	I 25	125	124	I 24	I'24	$1 \cdot 24$	I 24	1	1.24	I-23
52	1.33	1.32	1.31	1.31	1.30	1.30	1.30	I'29	1.29	1.29	1.28	1.28	1.28	$1 \cdot 2$	128	I-28
53	1.37	$1 \cdot 37$	I. 36	I. 36	I•35	I 35	r 34	$1 \cdot 34$	I 34	1•33	I 3	1.33	I 3	$1 \cdot$	1.33	$1 \cdot 33$
54	1.42	$1{ }^{1}{ }^{2}$	1.41	41	$1 \cdot 40$	140	I•39	I 39	I 39	$1 \cdot 38$	1.38	- 38	r.38	1.38	1.38	r.38
	$1 \cdot 48$	1.47	1.47	$1 \cdot 46$	1.45	1.45	145	1.44	I'44	1.44	1.43	1.43	1.43	$1 \cdot 4$	1.43	I.43
56	${ }^{1} 53$	${ }^{1} \cdot 53$	$1 \cdot 5$	${ }^{1} 52$	${ }^{1} 51$		1.5	1. 50	$1 \cdot 49$	I'49	I 49	I 49	${ }^{1} 48$		$1{ }^{1} 48$	${ }^{1} 48$
57 58 58	$\stackrel{1}{1} 5$	1.59	1.58	1.57	I.57	1.56		${ }_{1}^{1.55}$	${ }^{\text {' }}$. 65	I. 55	I. 55	I. 54	I. 54	I. 54	I. 54	r.54
58 59	r r - 72	1.72	1.71	1.7	${ }_{1} 170$	1.69	I.69	1.68	1.68	I.67	- ${ }_{\text {r }} \cdot 61$	1.60 1.67	r 1.67	r 60 1	I.66	1.66
60			1.78		I.76	$1 \cdot 76$										
6 I	$1 \cdot 87$	1.86	I. 8	$1 \cdot 84$	$1 \cdot 84$	$1 \cdot 83$	1.83	r-82	1.82	1.81	1.81	I.81	1.81	1.81	I.80	r.80
62	r.95	$1 \cdot 94$	193	1.92	I'92	$1 \cdot 91$	1.90	1.90	1.89	I•89	r.89	I-89	I•88	r.88	1.88	I.88
63	2.03	2.02	2.01	$2 \cdot 01$	2.00	- 99	1.99	I. 98	1.98	r.97	1.97	I-97	I'97	I.96	r.96	- 96
64	${ }^{2} 12$	11	$2 \cdot 10$	$2 \cdot 10$	2.09	2.08	2.08	2.07	2.07	2.06	2.06	2.06	$2 \cdot 05$	2.05	2.05	$2 \cdot 05$
65	2.22	2.21	2.20	$2 \cdot 19$	2. 18	2. 18	$2 \cdot 17$	$2 \cdot 17$	$2 \cdot 16$	2. 16	2.15	$2 \cdot 15$	$2 \cdot 15$	$2 \cdot 15$	$2 \cdot 14$	2.14
66	$2 \cdot 33$	$2 \cdot 31$	2.31	2.30	$2 \cdot 29$	2.8	$2 \cdot 27$	2.27	$2 \cdot 26$	2.26	2.25	2.	$2 \cdot 25$	2.25	2.25	2.25
67	2.44 2.56	2.43 2.5 2	2.42 2.54	2.41 2.53	2.40 2.52	2.39 2.51 2	2.39 2.51 2	2.38 2.50	2.37	2.37 2.49	2.36	2.36 2.48	2.36	2.36 2.48	2.36	2.36 2.48 2.8
68 69	2.56 2.70	2.55	2.54 2.67	2.53	2.52 2.65	2.51 2.65	2.51 2.64	2.50	2.49	2.49 2.62	2.48	2.48	2.61	2.48	2.61	2.48 2.61
69	2.70		2.67													
70	$2 \cdot 84$	2.83	2.82	2.8I	$2 \cdot 80$	$2 \cdot 79$	2.78	2.77	$2 \cdot 77$	$2 \cdot 76$	$2 \cdot 76$	$2 \cdot 75$	$2 \cdot 75$	$2 \cdot 75$	2.75	2.75
$7{ }^{1}$	3.01	$2 \cdot 99$	$2 \cdot 98$	$2 \cdot 97$	2.96	2.95	$2 \cdot 94$	2.93	2.93	2.92	2.92	2.91	2.91	2.91	2.90	2.90 3.08
72	3.19	3.17 3.37	3.1 3.36	3.15 3.34 3	3.14 3.33	3.13 3.32 3	3.12 3.3 3	3.11 3.30	3.10	3.09 3.29	3.99 3.28	3.09 3.28 3	3.08 3.28	3.08	3.08 3.27	3.08 3.27
73	3.39	3.37 3.5	3.36	3.34 3.54	3.33	3.32 3.54	3.31 3.53	3.30 3.52	3.30				3.28 3	3.27 3.49		
74	3.61	3.59	3.58	3.57	$3 \cdot 55$	3.54	3.53	3.52	3.51	3.51	3.50	3.50	349	349	349	349
75	3.86	3.85	3.83	3.82	3.80	3×79	$3 \cdot 78$	3.77	3.76	3.75	3.75	3.74	3.74	$3 \cdot 7$	3.73	3.73 4.01 4
76	4.15	$4 \cdot 13$	4^{+12}	4.10	$4^{\circ} \mathrm{O} 9$	4.07	4.06	4.05	4.04	4.03	4.03	${ }^{\circ} \mathrm{O} 2$	$4^{\circ} \cdot 02$	4.01	4.01	4.01
77	4.48	4.46	4.45	4.43	$4^{4} 1{ }^{1}$	$4{ }^{4} 48$	4.39	4.37	4.36	4.36 4.73	4.35 4	4.34	4.34 4.71	4.33	4.33	4.33 4.70
78	4.87 5	4.85 5.30	4.83 5.28	4.81 5.26	4.79 5.24									4.15		
79	5.33	5.30	5.28	5^{26}	5.24	5	5.21	5	5	517	5 16	$5 \cdot 16$	5 '15	5 '15	$5 \cdot 15$	514
80	5.87	$5 \cdot 84$	5.82	5.80	$5 \cdot 78$	5.76	574	5.73	5.71	5.70	5.69	$5 \cdot 69$	5.68	$5 \cdot 67$	$5 \cdot 67$	$5 \cdot 67$
8 I	6.54	6.51	6.48	6.45	6.43	6.41	6.39	6.38	6.36	6.35	6.34	$6 \cdot 33$	6.32	6.32	6.31	${ }^{6.31}$
82 83	7.37 8.43	7.33 8.39	7.30 8.36	7.27 8.33	7.25 8.30	7.23 8.27	7.20 8.25	7.19 8.22	7.17 8.21	7.15	7.1	7.13 8.16	7.1 8.1	7.12 8.15	7.12 8.15	7.12
83	8.43	8. 39	8.36	8.33	8.30	9.66́	825 9.63		9.59	- 97	${ }^{9} \cdot 55$	9.54	$9 \cdot 53$	9.52	9.52	9.51
85	${ }_{11} 831$	1178	$1{ }_{1} 773$	$1{ }^{1} 69$	$1{ }^{1} 64$	${ }_{\text {If }} 61$	$1{ }^{1} 57$	$1{ }^{1} 54$	II 52	I'49	1147	1146	1.45	II 44	3	$1{ }^{1} 43$
	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{oo} \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 56 \\ & 5 \end{aligned}$	m_{52}	$\begin{aligned} & \mathrm{m} . \\ & 48 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 44 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 36 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{m}_{1} \\ & 24 \\ & \hline \end{aligned}$	m_{20}	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{r} 6 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 12 \\ & \hline \end{aligned}$	$\underset{8}{\mathrm{~m} .}$	$\begin{gathered} \mathrm{m} . \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{m} . \\ & \mathrm{oo} \end{aligned}$
	7 Hrs							H	urs.							

Table A.
When hour angle is less than 6 hours, name the factors taken from Table A contrary to name of lat.

~ٌ	0 HOUR.															
	m.	$\underset{4}{4}$	1 8 8	12	${ }_{16}$	m. 20	$\underset{24}{\mathrm{~m}}$	$\underset{28}{\mathrm{~m}}$	$\begin{aligned} & \mathrm{m} . \\ & 32 \end{aligned}$	$\underset{36}{\mathrm{~m}}$	m_{40}	m.	m.	m.	m_{56}	m_{60}
$8{ }_{5}$	26 20	655			163	131	109	93.I	$8 \mathrm{I} \cdot 3$	$72 \cdot 2$	64.8	58.8	$53 \cdot 8$	49• 5	45.8	$4^{\prime 2} \cdot 7$
$85 \frac{1}{2}$	2912	728	364	243	182	145	121	104	$90 \cdot 4$	$80 \cdot 2$	$72 \cdot 1$	65.4	$59 \cdot 8$	55°	$5 \mathrm{I} \cdot \mathrm{O}$	$47 \cdot 4$
86	3277	819	410		205	164	136	117	102	90.3	$8 \mathrm{I} \cdot \mathrm{I}$	73.6	67.3	62.0	57.4	53.4
861	3747	937	468	312	234	187	${ }_{5} 56$	133	II6	103	$92 \cdot 7$	$84 \cdot 1$	76.9	$70 \cdot 8$	$65 \cdot 6$	$61 \cdot 0$
87	4373	1093	546	364	273	218	182	155	136	121	108	$98 \cdot 2$	$89 \cdot 8$	$82 \cdot 6$	$76 \cdot 5$	$7 \mathrm{~F} \cdot 2$
$87 \frac{1}{2}$ 88	5259	1312	656	437	328	262	218	187	163	145	130	118	108	99.2	91.9	85.5
88	6563	1641	820	546	410	327	273	233	204	181	162	147	135	124	115	107
881 $\frac{1}{2}$	8752	2188		729	546	436	363	311	272	241	217	196	180	165	153	143
89	13129	3282	1641	1093	819	655	545	467	408	362	325	295	270	248	230	214
S92 ${ }^{\frac{1}{2}}$	26261	6565	3281	2186	1639	I310	I090	933	8_{15}	723	650	590	539	496	460	428
	$\begin{gathered} \mathrm{m} . \\ 59 \end{gathered}$	$\begin{gathered} \mathrm{m} . \\ 56 \end{gathered}$	$\begin{gathered} \mathrm{m} \\ 52 \end{gathered}$	$\frac{\mathrm{m}}{48}$	$\begin{aligned} & \mathrm{m} \\ & 44 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 40 \end{aligned}$	$\begin{gathered} \mathrm{m} . \\ 36 \end{gathered}$	$\frac{\mathrm{m}}{32}$	$\underset{28}{\mathrm{~m}}$	m. 24	m. 20	m.	$\begin{gathered} \mathrm{m} . \\ 12 \end{gathered}$	m.	m.	m.
	11 HOURS.															

+	1 HOUR.															
	$\underset{0}{\mathrm{~m}}$	$\underset{4}{\mathrm{~m}}$	$\underset{8}{\mathrm{~m}}$	$\begin{gathered} \mathrm{m} . \\ 12 \end{gathered}$	$\underset{16}{\mathrm{~m}}$	$\underset{20}{\mathrm{~m}}$	$\underset{24}{\mathrm{~m}}$	$\begin{aligned} & \mathrm{m} \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 32 \end{aligned}$	$\underset{36}{\mathrm{~m}_{2}}$	m_{40}	m_{44}	$\mathrm{m} .$	$\underset{52}{\mathrm{~m}}$	$\underset{56}{\mathrm{~m}}$	m_{60}
$8{ }_{5}$	$42 \cdot 7$	$39 \cdot 9$	$37 \cdot 4$		$3{ }^{\prime} \cdot 2$	$3 \mathrm{I} \cdot 4$	$29 \cdot 8$	$28 \cdot 3$	26.9	$25 \cdot 7$	24.5	23.4	22.4	$2 \mathrm{I} \cdot 5$	$20 \cdot 6$	19.8
$85 \frac{1}{2}$	47.4	$44 \cdot 3$	$4 \mathrm{I} \cdot 6$	$39 \cdot 1$	$36 \cdot 9$	34.9	$33 \cdot 1$	1-4	29.9	$28 \cdot 5$	27.2	$26 \cdot 1$	$24 \cdot 9$	23.9	$22 \cdot 9$	22.0
86	53.4	49.9	$46 \cdot 8$	$44^{\circ} \mathrm{O}$	4.5	$39 \cdot 3$	$37 \cdot 3$	$35 \cdot 4$	33.7	$32 \cdot \mathrm{I}$	30.7	29.3	$28 \cdot 1$	$26 \cdot 9$	$25 \cdot 8$	$24 \cdot 8$
$86 \frac{1}{2}$	$6 \mathrm{I} \cdot \mathrm{O}$	57°	53.5	$50 \cdot 3$	$47 \cdot 5$	44.9	$42 \cdot 6$	$40 \cdot 5$	$38 \cdot 5$	$36 \cdot 7$	$35 \cdot 1$	$33 \cdot 5$	$32 \cdot 1$	$30 \cdot 7$	29.5	$28 \cdot 3$
87	$7 \mathrm{I} \cdot 2$	$66 \cdot 5$	62.4	58.7	$55 \cdot 4$	$52 \cdot 4$	$49 \cdot 7$	$47 \cdot 2$	$45^{\circ} \mathrm{O}$	$42 \cdot 9$	$40 \cdot 9$	$39 \cdot 1$	$37 \cdot 4$	$35 \cdot 9$	34.4	. 33.0
871 $\frac{1}{2}$	85.5	$79 \cdot 9$	74.9	$70 \cdot 5$	$66 \cdot 5$	$62 \cdot 9$	59.7	$56 \cdot 7$	54.0	$5 \mathrm{x} \cdot 4$	$49 \cdot 1$	47.0	$45^{\circ} \mathrm{O}$	43.1	4I•3	39.7
88	107	99.9	93.7	88.1	83.2	$78 \cdot 7$	$74 \cdot 6$	$70 \cdot 9$	$67 \cdot 5$	$64 \cdot 3$	61.4	$58 \cdot 7$	$56 \cdot 2$	53.9	$5 \mathrm{I} \cdot 7$	$49 \cdot 6$
$88 \frac{1}{2}$	143	133	125	II8	III	105	99.5	94.5	90.0	$85 \cdot 8$	$8 \mathrm{I} \cdot 9$	$78 \cdot 3$	74.9	71.8	$68 \cdot 9$	$66 \cdot 1$
89	214	200	187		166	157	149	142	I35	129	123	117	112	108	103	$99 \cdot 2$
- $89 \frac{1}{2}$	428	400	375	353	333	315	299	284	270	257	246	235	225	216	207	198
	$\begin{aligned} & \mathrm{m} . \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 56 \end{aligned}$	$\begin{gathered} m \\ 52 \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & 48 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 44 \end{aligned}$	$\frac{\mathrm{m}}{4^{\circ}}$	$\begin{gathered} \mathrm{m} . \\ 36 \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & 3^{2} \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 28 \end{aligned}$	m.	$\begin{aligned} & \mathrm{m} . \\ & 2 \mathrm{o} \end{aligned}$	$\underset{\mathrm{m} 6}{\mathrm{~m}}$	m \%	m.	m.	m,
10 HOURS.																

ゼ	2 HOURS.															
	m.	m.	m. 8	12	${ }_{16}$	${ }_{20}$	${ }_{24} \mathrm{~m}$.	m.	m.	$\mathrm{m}_{£ 6}$	40	m.	m.	m.	${ }_{56}$	m_{60}
85	19.8	19.0	$18 \cdot 3$	17.6	16.9	16.3	15.7	15.2	14.6	I_{4}^{\prime} - 1	I 3.6	13.1	12.7	12.3	II 18	11.4
85 ${ }^{\frac{1}{2}}$	22.0	$2 \mathrm{I} \cdot \mathrm{I}$	$20 \cdot 3$	19.6	18.8	18.2	17.5	169	16.3	15.7	15.1	14.6	14.1	13.6	13.2	12.7
86	$24 \cdot 8$	$23 \cdot 8$	22.9	22.0	$2 \mathrm{I} \cdot 2$	$20 \cdot 4$	19.7	19.0	$18 \cdot 3$	17.7	17.0	16.5	15.9	15.3	14.8	14.3
$86 \frac{1}{2}$	$28 \cdot 3$	27.2	$26 \cdot 2$	$25 \cdot 2$				$2 \mathrm{I} \cdot 7$	$20 \cdot 9$	$20 \cdot 2$	19.5	18.8	18.2	17.5	$16 \cdot 9$	$16 \cdot 3$
87	33.0	$31 \cdot 8$	30.5	29.4	28.3	$27 \cdot 3$	$26 \cdot 3$	25.3	24.4	23.6	$22 \cdot 7$	$22 \cdot 0$	$2 \mathrm{I} \cdot 2$	$20 \cdot 5$	$19 \cdot 8$	19•1
$87 \frac{1}{3}$	39.7	$38 \cdot 1$	$36 \cdot 7$	$35 \cdot 3$	34°	$32 \cdot 7$	$3 \mathrm{I} \cdot 5$	$30 \cdot 4$	$29 \cdot 3$	$28 \cdot 3$	$27 \cdot 3$	$26 \cdot 3$	$25 \cdot 4$	$24 \cdot 6$	23.7	22.9
88	$49 \cdot 6$	$47 \cdot 7$	$45 \cdot 8$	44^{1}	$42 \cdot 5$	$40 \cdot 9$	$39 \cdot 4$	$38 \cdot 0$	$36 \cdot 7$	$35 \cdot 4$	34. 1	32.9	3I-8	$30 \cdot 7$	$29 \cdot 7$	28.6
882	66. I	$63 \cdot 6$	6i. 1	$58 \cdot 8$	$56 \cdot 6$	54.5	$52 \cdot 6$	$50 \cdot 7$	$4^{8 \cdot 9}$	47•2	$45 \cdot 5$	43.9	$42 \cdot 4$	$4 \mathrm{I} \cdot \mathrm{O}$	$39 \cdot 5$	$38 \cdot 2$
89	$99 \cdot 2$	$95 \cdot 3$	9 I 7	$88 \cdot 2$	84.9	$8 \mathrm{I} \cdot 8$	78.9	$76 \cdot 0$	$73 \cdot 3$	$70 \cdot 7$	68.3	65.9	63.6	61.4	$59 \cdot 3$	$57 \cdot 3$
891 ${ }^{\frac{1}{2}}$	198	191	183	176	170	164	158	152	147	142	137	132	127	123	119	II5
	$\begin{aligned} & \mathrm{m} . \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{m} . \\ 56 \end{gathered}$	$\begin{gathered} \mathrm{m} . \\ 52 \end{gathered}$	m 48	m. 44	m.	m. 36	m. 32	m. 28	m. 24	m.	$\underset{\mathrm{x} 6}{\mathrm{~m}}$	$\begin{gathered} \mathrm{m} . \\ \mathrm{I} 2 \end{gathered}$	m. 8	m. 4	
	9 HOURS.															

When hour angle is more than 6 hours, name the factors taken from Table A the same as the name of the latitude.

Table B.

Always name the factors taken from Table B the same as the name of declination.

	0 HOURS.															
	m_{1}	m.	m. 8	12	16	m.	$\begin{aligned} & \mathrm{m} \\ & 24 \end{aligned}$	${ }_{28}$	$\begin{gathered} \mathrm{m} . \\ \hline \end{gathered}$	$\underset{36}{\mathrm{~m}}$	m_{40}	m	$\underset{48}{\mathrm{~m}}$	$\frac{\mathrm{m}}{52}$	$\underset{56}{\mathrm{~m}}$	m.
$8{ }^{8}$	2620	655	328	218	164	131	109	93.8	$82 \cdot 1$	$73 \cdot 1$	$65 \cdot 8$	59.9	55°	50.8	$47 \cdot 2$	44^{-2}
$85 \frac{1}{2}$	2912	728	364		182	146	122	1	91.3	81.2	$73 \cdot 2$	$66 \cdot 6$	$6 \mathrm{I} \cdot \mathrm{I}$	$56 \cdot 5$	52.5	$49 \cdot 1$
86	3277	819	410		205	164	137	117	103	91.4	82.4	74.9	$68 \cdot 8$	$63 \cdot 6$	59•I	$55 \cdot 3$
$86 \frac{1}{2}$	3747	937	468	312	234		156	134	117	105	94.2	$85 \cdot 7$		$72 \cdot 7$	$67 \cdot 6$	$63 \cdot 2$
87	4373			365	274	219	183	157	137	122	110	100	91.8	$84 \cdot 8$	$78 \cdot 9$	$73 \cdot 7$
$87 \frac{1}{2}$ 88	5259	1312	656	438	328	263	219	188	165	146	132	120			94.7	88.5
88	6563	1641	82 I	547	411	329		235	206	183	165	150	138	127	118	III
$88 \frac{1}{2}$	8752	2188	1094	730	547	438	365	313	274	244	220	200	184	170	158	148
89	13129	3283	1642	1095	821	657	548	470	412	366	330	300	276	255	237	221
--892	26261	6566	3283	2190	1643	1315	1096	940	823	733	660	601	551	509	474	443
	$\begin{gathered} \mathrm{m} . \\ 59 \end{gathered}$	$\frac{\mathrm{m}}{56}$	$\begin{aligned} & \mathrm{m} \\ & 52 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 48 \end{aligned}$	m.	$\begin{gathered} \mathrm{m} \\ 4^{\circ} \end{gathered}$	$\frac{\mathrm{m}}{36}$	$\begin{aligned} & \mathrm{m} . \\ & 32 \end{aligned}$	$\underset{28}{\mathrm{~m}}$	m.	$\underset{20}{\mathrm{~m}}$	$\underset{\mathrm{I} 6}{\mathrm{~m}}$	12	m_{8}	m.	m.
	11 HOURS.															

	$\mathrm{m} .$	$\frac{\mathrm{m}}{4}$	$\begin{gathered} \mathrm{m} . \\ 8 \end{gathered}$	${ }_{12}$	10	1 HOUR.					$\frac{\mathrm{m}}{40}$	m_{44}	m.	m.	${ }_{56} \mathrm{~m}$	m_{60}
						$\frac{\mathrm{m}}{2 \mathrm{j}}$	m_{2}	$\begin{aligned} & \mathrm{m} . \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 32 \end{aligned}$	${ }_{36}$						
$8{ }^{\circ}$	$44 \cdot 2$	41.5	39•I	37.0	35. 1	33.4	31.9	$30 \cdot 5$	$29 \cdot 3$	$28 \cdot 1$	27.0	$26 \cdot 1$	$25 \cdot 2$	24.3	23.6	$2 \cdot 9$
$85 \frac{1}{2}$	$49 \cdot 1$	$46 \cdot 1$	$43 \cdot 5$	$41 \cdot \mathrm{I}$	39.0	$37 \cdot 2$	$35 \cdot 5$	33.9	$32 \cdot 5$	$31 \cdot 2$	$30 \cdot 1$	29.0	28.0	$27 \cdot 1$	$26 \cdot 2$	25.4
86	$55 \cdot 3$	$51 \cdot 9$	$48 \cdot 9$	$46 \cdot 3$	$43 \cdot 9$	$4 \mathrm{I} \cdot 8$	$39 \cdot 9$	$38 \cdot 2$	$36 \cdot 6$	$35 \cdot 2$	$33 \cdot 8$	$32 \cdot 6$	31.5	30.5	29.5	$28 \cdot 6$
861	63.2	$59 \cdot 3$	$55 \cdot 9$	$52 \cdot 9$	$50 \cdot 2$	$47 \cdot 8$	$45 \cdot 6$	$43 \cdot 6$	$4 \mathrm{I} \cdot 8$	$40 \cdot 2$	$38 \cdot 7$	$37 \cdot 3$	36.0	34.8	$33 \cdot 7$	$32 \cdot 7$
87	73.7	$69 \cdot 2$	$65 \cdot 3$	$6 \mathrm{I} \cdot 7$	58.6	55.8	53.2	$50 \cdot 9$	$48 \cdot 8$	$46 \cdot 9$	45•1	43.5	$42 \cdot 0$	$40 \cdot 6$	$39 \cdot 4$	$38 \cdot 2$
$87 \frac{1}{2}$	88.5	$83 \cdot 1$	$78 \cdot 3$	74.1	$70 \cdot 4$	67.0	63.9	6r-I	$58 \cdot 6$	$56 \cdot 3$	54.2	$52 \cdot 2$	$50 \cdot 4$	$48 \cdot 8$	$47 \cdot 2$	$45 \cdot 8$
88	III	104	$97 \cdot 9$	92.7	88.0	83.7	79.9	$76 \cdot 4$	$73 \cdot 3$	$70 \cdot 4$	$67 \cdot 8$	$65 \cdot 3$	$63 \cdot 1$	$6 \mathrm{I} \cdot \mathrm{O}$	59-1	$57 \cdot 3$
881	148	139	131	124	117	112	107	102	97.7	93.9	$90 \cdot 4$	$87 \cdot 1$	84.I	8r.3	$78 \cdot 8$	$76 \cdot 4$
89	221	208	196	I85	176	168	160	153	147	141	136	131	126	122	II8	II5
89 ${ }^{\frac{1}{2}}$	443	416	392	371	352	335	320	306	293	282	271	261	252	244	236	229
	$\begin{aligned} & \mathrm{m} . \\ & 60 \end{aligned}$	$\begin{gathered} \mathrm{m} . \\ 56 \end{gathered}$	$\begin{gathered} \mathrm{m} . \\ 52 \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & 48 \end{aligned}$	m.		$\begin{gathered} \mathrm{m} \\ 36 \end{gathered}$	$\underset{32}{ }$	$\begin{aligned} & \mathrm{m} . \\ & 28 \end{aligned}$	m.	$\underset{20}{\mathrm{~m} .}$	$\underset{\mathrm{m} 6}{\mathrm{~m} .}$	12	m_{8}.	m. 4	\%.
	10 HOURS.															

	2 HOURS.															
	m_{0}	$\frac{\mathrm{m}}{4}$	$\underset{8}{\mathrm{~m}}$	m.	m_{16}	m.	m.	m_{28}	m.	m_{36}	${ }_{40} 4$	$\mathrm{m}_{4 .}$	m.	m_{52}	m_{56}	m_{60}
$8{ }_{5}$	22.9	$22 \cdot 2$	21.6	21.0	20.4	19.9	19.4	19.0	18.6	$18 \cdot 2$	17.8	17.4	17.1	16.8	$16 \cdot 5$	${ }^{\prime} 6.2$
85 ${ }^{\frac{1}{2}}$	25.4	24.7	24°	23.3		$22 \cdot 2$	21.6	21.1	$20 \cdot 6$	$20 \cdot 2$	19.8	19.4	19.0	18.6	$18 \cdot 3$	18.0
86	28.6	$27 \cdot 8$	27.0	$26 \cdot 3$	$25 \cdot 6$	24.9	24.3	23.8	23.2	$22 \cdot 7$	22.2	$2 \mathrm{I} \cdot 8$	$2 \mathrm{I} \cdot 4$	$2 \mathrm{I} \cdot \mathrm{O}$	$20 \cdot 6$	$20 \cdot 2$
$86 \frac{1}{2}$	32.7	3 I 7	$30 \cdot 9$	$30 \cdot 0$	29.2	$28 \cdot 5$	$27 \cdot 8$	27.2	$26 \cdot 6$	$26 \cdot 0$	25.4	24.9	24.4	24.0	23.5	23.1
87	$38 \cdot 2$	37°	$36 \cdot 0$	$35 \cdot 0$	34. 1	$33 \cdot 3$			31.0	$30 \cdot 3$	29.7	29-1	$28 \cdot 5$	$28 \cdot 0$	$27 \cdot 5$	27.0
$87 \frac{1}{2}$	$45 \cdot 8$	44.5	43.2	$42 \cdot 1$	41.0	$39 \cdot 9$	39°	$38 \cdot 1$	$37 \cdot 2$	$36 \cdot 4$	35.6	34.9	34.2	$33 \cdot 6$	33.0	$32 \cdot 4$
88	$57 \cdot 3$	55.6	54.0	$52 \cdot 6$	$5 \mathrm{I} \cdot 2$	$49 \cdot 9$	$48 \cdot 7$	47.6	$46 \cdot 5$	$45 \cdot 5$	44.6	$43 \cdot 6$	$42 \cdot 8$	42.0	41.2	$40 \cdot 5$
$88 \frac{1}{2}$	$76 \cdot 4$		$72 \cdot 1$	$70 \cdot 1$	$68 \cdot 3$	$66 \cdot 6$	65.0	63.5	62.0	60.7	59.4	$58 \cdot 2$	57. 1	$56 \cdot 0$	55.0	54°
89	115	III	108	105	102	$99 \cdot 9$	$97 \cdot 5$	$95 \cdot 2$	93.1	91.0	89.1	87.3	$85 \cdot 6$	84.0	82.5	$8 \mathrm{I} \cdot \mathrm{O}$
892 ${ }^{\frac{1}{2}}$	229	222	216	210	205	200	195	190	186	182	178	175	171	168	165	162
	$\frac{\mathrm{m}}{60}$	$\begin{gathered} \mathrm{m} . \\ 56 \end{gathered}$	$\begin{gathered} \mathrm{m} \\ 5^{2} \end{gathered}$	$\begin{aligned} & \mathrm{m} . \\ & 48 \end{aligned}$	m.	m.	$\underset{36}{\mathrm{~m}}$	$\begin{aligned} & \mathrm{m} \\ & 32 \end{aligned}$	${ }_{28}$	m. 24	$\underset{20}{\mathrm{~m} .}$	$\underset{\mathrm{r}}{\mathrm{~m}}$	$\underset{12}{\mathrm{~m}}$	m 8	$\begin{gathered} \mathrm{m} . \\ 4 \end{gathered}$	m.
9 HOURS.																

When hour angle is less than 6 hours，name the factors taken from Table A contrary to name of lat．

＋¢	3 HOURS．															
	m_{0}	m．	m．	m．	16	m． 20	$\begin{aligned} & \mathrm{m} \\ & 24 \end{aligned}$	$\underset{28}{\mathrm{~m}}$	$\begin{aligned} & \mathrm{m} . \\ & 32 \end{aligned}$	$\underset{36}{\mathrm{~m}}$	$\underset{40}{\mathrm{~m}}$	$\mathrm{m} .$	$\begin{aligned} & \mathrm{m} . \\ & 48 \end{aligned}$	$\begin{gathered} \mathrm{m} \\ 52 \end{gathered}$	$\underset{56}{\mathrm{~m}}$	m_{60}
$8{ }_{5}$	11.4	II． 0	$10 \cdot 7$	$10 \cdot 3$	$9 \cdot 9$	$9 \cdot 6$	$9 \cdot 3$	$8 \cdot 9$	8.6	8.3	$8 \cdot 0$	$7 \cdot 7$	$7 \cdot 4$	$7 \cdot 1$	$6 \cdot 9$	6.6
$85 \frac{1}{2}$	12.7	12.3	II． 8	II－4	II•I	$10 \cdot 7$	IO． 3	9.9	$9 \cdot 6$	$9 \cdot 2$	8.9	$8 \cdot 6$	$8 \cdot 3$	7.9	$7 \cdot 6$	$7 \cdot 3$
86	14.3	13.8	13.3	12.9	12.4	12.0	II 6	II $\cdot 2$	10.8	$10 \cdot 4$	10.0	$9 \cdot 7$	$9 \cdot 3$	8.9	8.6	$8 \cdot 3$
$86 \frac{1}{2}$	$\pm 6 \cdot 3$	15.8	15.2	14.7	14.2	${ }^{1} 3.7$	13.2	12.8	12.3	II•9	11.4	11.0	$10 \cdot 6$		9.8	9.4
87	19•1	18.4	$17 \cdot 8$	$17 \cdot 2$	$16 \cdot 6$	16.0	15.5	14.9	14.4	13.9	13.4	12.9	12.4	II 9	II． 5	II．O
$87 \frac{1}{2}$	22.9	$22 \cdot 1$	21.4	$20 \cdot 6$	19.9	19.2	18.5	17.9	17.3	$16 \cdot 6$	$16 \cdot 0$	15.4	14.9	14.3	13.8	13.2
88	28.6	27.7	$26 \cdot 7$	$25 \cdot 8$	24.9	24.0	23.2	22.4	21.6	$20 \cdot 8$	$20 \cdot 1$	$19 \cdot 3$	18.6	17.9	$17 \cdot 2$	16.5
$88 \frac{1}{2}$	$38 \cdot 2$	$36 \cdot 9$	35.6	34.4	$33 \cdot 2$	$32 \cdot 0$	$30 \cdot 9$	$29 \cdot 8$	28.8	$27 \cdot 7$	$26 \cdot 7$	$25 \cdot 8$	24.8	23.9	23.0	$22 \cdot 1$
89	$57 \cdot 3$	$55 \cdot 3$	53.4	51．6	$49 \cdot 8$	$48 \cdot 1$	$46 \cdot 4$	$44 \cdot 8$	43.2	$4 \mathrm{I} \cdot 6$	$40 \cdot 1$	$38 \cdot 6$	$37 \cdot 2$	$35 \cdot 8$	$34 \cdot 4$	
$89 \frac{1}{2}$	II5	III	107	103	$99 \cdot 6$	96－2	$92 \cdot 8$	89.5	$86 \cdot 3$	$83 \cdot 3$	80.2	$77 \cdot 3$	74.4	71．6	68.9	$66 \cdot 2$
	$\frac{\mathrm{m}}{60}$	$\underset{56}{\mathrm{~m} .}$	$\begin{aligned} & \mathrm{m} . \\ & 5^{2} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 48 \end{aligned}$	$\begin{gathered} \mathrm{m} \\ 44 \end{gathered}$	$\begin{aligned} & \mathrm{m} . \\ & 40 \end{aligned}$	$\frac{\mathrm{m}}{36}$	$\begin{aligned} & \mathrm{m} . \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & 24 \end{aligned}$	20	$\underset{\mathrm{m} 6}{\mathrm{~m}}$	$\mathrm{m} .$	m_{8}	m．	m．
	8 HOURS．															

＋ّ山゙	4 HOURS．															
	m．	m_{4}	m 8	m．	16	m． 20	m． 24	12.	m．	m． 36	4.	m．	m_{48}	${ }_{5} \mathrm{~m}$.	${ }_{5} \mathrm{~m}$ ．	m_{60}
$8{ }_{5}$	$6 \cdot 60$	$6 \cdot 34$	$6 \cdot 08$	$5 \cdot 82$	$5 \cdot 57$	$5 \cdot 33$	5.09	$4 \cdot 85$	$4 \cdot 62$	$4 \cdot 39$	$4 \cdot 16$	3.94	3.71	3.49	$3 \cdot 28$	3．06
$85 \frac{1}{2}$	$7 \cdot 34$	$7 \cdot 04$	$6 \cdot 76$	$6 \cdot 47$	$6 \cdot 20$	5.93	5.66	$5 \cdot 39$	$5 \cdot 13$	4.88	4.62	$4 \cdot 38$	$4 \cdot 13$	3.88	$3 \cdot 64$	3.40
86	$8 \cdot 26$	7.93	$7 \cdot 60$	$7 \cdot 29$	$6 \cdot 97$	$6 \cdot 67$	6．37	$6 \cdot 07$	$5 \cdot 78$	5.49	5.21	4.92	4.65	4.37	$4 \cdot 10$	$3 \cdot 83$
861	9.44	$9 \cdot 06$	$8 \cdot 69$	$8 \cdot 33$	$7 \cdot 97$	$7 \cdot 62$	$7 \cdot 28$	$6 \cdot 94$	$6 \cdot 6 \mathrm{I}$	$6 \cdot 28$	$5 \cdot 95$	$5 \cdot 63$	$5 \cdot 31$	$5 \cdot 00$	$4 \cdot 69$	$4 \cdot 3^{8}$
87	II． 0	$10 \cdot 6$	IO． 1	9.72	$9 \cdot 31$	8.90	$8 \cdot 50$	$8 \cdot 10$	7．71	$7 \cdot 32$	$6 \cdot 94$	$6 \cdot 57$	$6 \cdot 20$	$5 \cdot 83$	$5 \cdot 47$	5．11
$87 \frac{1}{2}$	13.2	$12 \cdot 7$	$12 \cdot 2$	11.7	II 2	10.7	10.2	$9 \cdot 72$	9.25	8.79	$8 \cdot 34$	7.89	$7 \cdot 44$	7.00	$6 \cdot 57$	6．14
88	16.5	15.9	$15 \cdot 2$	14.6	14.0	13.4	12.7	12.2	11.6	II．O	$10 \cdot 4$	$9 \cdot 86$	9.30	$8 \cdot 76$	$8 \cdot 21$	$7 \cdot 67$
$88 \frac{1}{2}$	$22 \cdot 1$	21.2	$20 \cdot 3$	19.5	18.6	17.8	17.0	16.2	15.4	14.7	13.9	13.1	12.4	I1．7	11.0	$10 \cdot 2$
89	33．1	$3 \mathrm{I} \cdot 8$	$30 \cdot 5$	29.2	27.9	26.7	25.5	$24 \cdot 3$	23.2	$22 \cdot 0$	$20 \cdot 9$	19.7	18.6	17.5	$16 \cdot 4$	15.4
$89 \frac{1}{2}$	$66 \cdot 2$	63.5	$60 \cdot 9$	58.4	$55 \cdot 9$	53.4	51．0	$48 \cdot 6$	$46 \cdot 3$	44°	41．7	$39 \cdot 5$	$37 \cdot 2$	$35^{\circ} \mathrm{O}$	$32 \cdot 9$	$30 \cdot 7$
	$\begin{aligned} & \mathrm{m} . \\ & 60 \end{aligned}$	m_{56}	$\begin{gathered} \mathrm{m} . \\ 52 \end{gathered}$	$\frac{\mathrm{m}}{48}$	$\begin{gathered} \mathrm{m} . \\ 44 \end{gathered}$	$\frac{\mathrm{m}}{40}$	$\begin{gathered} \mathrm{m} . \\ 36 \end{gathered}$	$\begin{aligned} & \mathrm{m} . \\ & 32 \end{aligned}$	$\underset{28}{\mathrm{~m}}$	$\begin{gathered} \mathrm{m} . \\ 24 \end{gathered}$	$\begin{aligned} & \mathrm{m} . \\ & 20 \end{aligned}$	$\underset{\mathrm{m} 6}{\mathrm{~m}}$	$\underset{\mathrm{I} 2}{\mathrm{~m} .}$	m_{8}	m．	m．
7 HOURS．																

＋゙べِ	5 HOURS．															
	$\underset{0}{\mathrm{~m}}$	m	$\underset{8}{\mathrm{~m}}$	12	m．			$\begin{aligned} & \mathrm{m} . \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 32 \end{aligned}$	$\underset{36}{\mathrm{~m}}$	$\begin{aligned} & \mathrm{m} . \\ & 40 \end{aligned}$	m_{44}	$\mathrm{m} .$	$\frac{\mathrm{m}}{52}$	$\underset{56}{\mathrm{~m}}$	$\begin{gathered} \mathrm{m} \\ 60 \end{gathered}$
$\stackrel{\circ}{8}_{5}$	3.06	${ }^{2} \cdot 85$	$2 \cdot 6$	$2 \cdot 43$	$2 \cdot 22$	$2 \cdot 02$	$\underline{1} 81$	1．61	I． 40	I＇20	I． 00	0．80	0．60	$0 \cdot 40$	$0 \cdot 20$	．óo
$85 \frac{1}{2}$	3.40	3．17	2.93	$2 \cdot 70$	$2 \cdot 47$	2.24	$2 \cdot 01$	1－79	I． 56	1－34	I•II	－ 89	0.67	－$\cdot 44$	$0 \cdot 22$	0
86	3.83	3.57	$3 \cdot 30$	$3 \cdot 04$	$2 \cdot 78$	$2 \cdot 52$	$2 \cdot 27$	$2 \cdot 01$	I． 76	I－50	1.25	I 100	－ 75	－ 50	$0 \cdot 25$	－00
$86 \frac{1}{2}$	4.38	4.08	3.77	$3 \cdot 48$	3．18	2.88	$2 \cdot 59$	$2 \cdot 30$	2.01	1．78	I 43	I－14	0.86	－ 57	0.29	－00
87	5．II	4.76	4.41	4.06	3.71	$3 \cdot 36$	3.02	$2 \cdot 68$	$2 \cdot 34$	$2 \cdot \mathrm{OI}$	I． 67	1．33	I． 00	0． 67	0.33	－00
$87 \frac{1}{2}$	6.14	5.71	$5 \cdot 29$	4.87	4.45	4.04	3.63	3.22	$2 \cdot 81$	$2 \cdot 41$	2.00	I 60	I 20	0．80	0.40	． 00
88	$7 \cdot 67$	7－14	6．6I	6.09	$5 \cdot 57$	$5 \cdot 05$	$4 \cdot 54$	4.05	3.52	3.01	2.51	$2 \cdot 00$	I． 50	I． 00	－ 50	－00
$88 \frac{1}{2}$	$10 \cdot 2$	$9 \cdot 52$	8.82	$8 \cdot 12$	$7 \cdot 42$	$6 \cdot 73$	$6 \cdot 05$	$5 \cdot 37$	$4 \cdot 69$	4.01	$3 \cdot 34$	$2 \cdot 67$	2.00	1．33	－ 67	． 00
89	15.4	14.3	13.2	12.2	II•I	$10 \cdot 1$	9.07	8.05	7.03	6.02	$5 \cdot \mathrm{Or}$	4.01	3.00	2.00	I． 00	－00
89 ${ }^{\frac{1}{2}}$	30.7	28.6	26.5	24.4	$22 \cdot 3$	$20 \cdot 2$	I8．I	16． 1	14.1	12.0	10.0	$8 \cdot 01$	$6 \cdot \mathrm{OI}$	4.00	$2 \cdot 00$	． 00
	$\mathrm{m} .$	$\begin{gathered} \mathrm{m} . \\ 56 \end{gathered}$	$\begin{gathered} \mathrm{m} . \\ 5_{2} \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & 48 \end{aligned}$	m．	40	$\begin{gathered} \mathrm{m} . \\ 36 \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & 3^{2} \end{aligned}$	$\mathrm{m} .$	m．	$\begin{aligned} & \mathrm{m} . \\ & 20 \end{aligned}$	$\begin{gathered} \mathrm{m} . \\ \mathrm{r} 6 \end{gathered}$	$\underset{\mathrm{I} 2}{\mathrm{~m}}$	m_{8}.	m．	m．
	6 HOURS．															

When hour angle is more than 6 hours，name the factors taken from Table A the same as the name of the latitude．

Table B.
Always name the factors taken from Table B the same as the name of declination.

	3 HOURS.															
	m_{0}	$\stackrel{m}{4}$	m. 8 8	$\frac{\mathrm{m}}{12}$	${ }_{16} .$	${ }_{20}^{\mathrm{m}}$	m_{24}	$\frac{\mathrm{m}}{28}$	$\underset{32}{\mathrm{~m}} .$	m_{26}	${ }_{40}$	$\begin{aligned} & \mathrm{m} .4 \\ & \hline \end{aligned}$	$\underset{\leftrightarrows}{\mathrm{m}} .$	$\begin{aligned} & \mathrm{m} . \\ & 52 \end{aligned}$	$\underset{56}{\mathrm{~m}} .$	${ }_{60} \mathrm{~m}$.
85	16.2	15.9	$15 \cdot 6$	15.4	15.1	14.9	$14: 7$	145	14.3	14.1	14.0	13.8	13.6	13.5	13.3	13.2
$85 \frac{1}{2}$	18.0	$17 \cdot 7$	$17 \cdot 4$	$17 \cdot 1$	$16 \cdot 8$	16.6	16.3	16 I	15.9	15.7	15.5	15.3	15.2	15.0	14.8	14.7
86	20.2	19.9	19.6	$19 \cdot 2$	18.9	18.7	18.4	18 -1	$17 \cdot 9$	17.7	17.5	17.2	17 -I	16.9	16.7	16.5
$86 \frac{1}{2}$	$23 \cdot 1$	22.7	$22 \cdot 4$	$22 \cdot 0$	21.7	$2 \mathrm{I} \cdot 3$	21.0	$20 \cdot 7$	$20 \cdot 5$	20.2	20.0	19.7	19.5	$19 \cdot 3$	19.1	18.9
87	27.0	$26 \cdot 5$	$26 \cdot 1$	$25 \cdot 7$	$25 \cdot 3$	24.9	24.6	24.2	23.9	23.6	23.3	23.0	22.8	$22 \cdot 5$	22.3	22.0
$87 \frac{1}{2}$	32.4	$3 \mathrm{I} \cdot 8$	$3 \mathrm{I} \cdot 3$	$30 \cdot 8$	$30 \cdot 3$	29.9	29.5	$29 \cdot 1$	28.7	28.3	28.0	$27 \cdot 6$	$27 \cdot 3$	27.0	$26 \cdot 7$	$26 \cdot 4$
88	$40 \cdot 5$	$39 \cdot 8$	$39 \cdot 2$	$38 \cdot 5$	37.9	$37 \cdot 4$	$36 \cdot 8$	$36 \cdot 3$	$35 \cdot 9$	$35 \cdot 4$	35.0	34.5	$34 \cdot \mathrm{r}$	$33 \cdot 8$	33.4	$33 \cdot 1$
$88 \frac{1}{2}$		53•I		51•4	$50 \cdot 6$	$49 \cdot 9$		48.5	$47 \cdot 8$	47.2	$46 \cdot 6$	46-1				
89	81.0	$79 \cdot 6$	$78 \cdot 3$	77-1	75.9	74.8			7 I 7	$70 \cdot 8$	69.9	69-I	68.3		66.8	66.2
$89 \frac{1}{2}$	162	159	157	154	152	150	147	145	143	142	140	138	137	135	134	132
	m. 60	$\mathrm{m} .$	$\begin{gathered} \mathrm{m} . \\ 52 \end{gathered}$	$\mathrm{m}_{4^{8}}$	$\begin{aligned} & \mathrm{m} \\ & 44 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 4_{0} \end{aligned}$	$\begin{gathered} \mathrm{m} . \\ 36 \end{gathered}$	$\begin{aligned} & \mathrm{m} . \\ & 32 \end{aligned}$	$\underset{28}{\mathrm{~m}} .$	$\frac{\mathrm{m}}{24}$	$\underset{20}{\mathrm{~m} .}$	$\underset{\mathrm{m}}{\mathrm{~m}} .$	$\underset{\mathrm{I} 2}{\mathrm{~m}}$	$\underset{8}{\mathrm{~m} .}$	m. 4	m.
	8 HOURS.															

	4 HOURS.															
	$\underset{0}{\mathrm{~m}} .$	$\underset{4}{\mathrm{~m}} \mathrm{4}$	$\underset{8}{\mathrm{~m} .}$	$\frac{\mathrm{m}}{12}$	$\underset{16}{\mathrm{~m} .}$	$\frac{\mathrm{m}}{20}$	$\begin{aligned} & \mathrm{m} . \\ & 24 \end{aligned}$	$\frac{\mathrm{m}}{28}$	$\begin{aligned} & \mathrm{m} \\ & 32 \end{aligned}$	$\mathrm{m}_{3 \mathrm{~B}}$	$\begin{aligned} & \mathrm{m} . \\ & 40 \end{aligned}$	${ }_{44}$	$\frac{\mathrm{m}}{48}$	$\frac{\mathrm{m}}{52}$	$\begin{aligned} & \mathrm{m} . \\ & 56 \end{aligned}$	${ }_{60}$
$8{ }^{\circ} 5$	13.2	$13 \cdot 1$	12.9		$2 \cdot 7$	12.6	12.5	12.4	$12 \cdot 3$	12.2	12.2	12.I	12.0	12.0	11.9	H.8
$85 \frac{1}{2}$	14.7	14.5	14.4	14.3	$14 \cdot 1$	14.0	13.9	13.8	13.7	13.6	13.5	13.4	13.4	13.3	13.2	13.2
86	16.5	16.4	16.2	$16 \cdot 1$	15.9	15.8	15.7	15.5	15.4	$15 \cdot 3$	15.2	$15 \cdot 1$	15.0	15.	14.9	14.8
$86 \frac{1}{2}$	18.0	18.7	18.5	18.3	18.2	18.0	17.9	17.8	17.6	17.5	17.4	17.3	17°	17.1	17.0	16.9
87	$22 \cdot \mathrm{C}$	21.8	$2 \mathrm{I} \cdot 6$	$21 \cdot 4$	21.2	21-1	$20 \cdot 9$	$20 \cdot 7$	$20 \cdot 6$	$20 \cdot 4$	$20 \cdot 3$	$20 \cdot 2$	$20 \cdot 1$	20.0	19.9	19.8
$88^{\frac{1}{2}}$	$26 \cdot 4$	$26 \cdot 2$	$25 \cdot 9$	$25 \cdot 7$	25.5	$25 \cdot 3$	$25 \cdot 1$	24.9	24.7	$24 \cdot 5$	24.4	24^{2}	$24 \cdot \mathrm{I}$	24.0	23.8	23.7
88	$33 \cdot 1$	32.7	$32 \cdot 4$	32-I	31.9	$3 \mathrm{r} \cdot 6$	$3 \mathrm{I} \cdot 3$	31-I	$30 \cdot 9$	$30 \cdot 7$	30.5	$30 \cdot 3$	$30 \cdot 1$	29.9	$29 \cdot 8$	$29 \cdot 6$
$88 \frac{1}{2}$						$42 \cdot \mathrm{I}$				$40 \cdot 9$	$40 \cdot 6$					$39 \cdot 5$
89	$66 \cdot 2$	$65 \cdot 5$	64.9	$64 \cdot 3$	63.7	63.2	62.7	62.2	$6 \mathrm{I} \cdot 8$	$6 \mathrm{I} \cdot 4$	$6 \mathrm{I} \cdot \mathrm{O}$	$60 \cdot 6$	$60 \cdot 2$	$59 \cdot 9$	$59 \cdot 6$	$59 \cdot 3$
$89 \frac{1}{2}$	132	131	130	,	127	126	125	124	124	123	122	121	120	120	119	119
	$\stackrel{\mathrm{m}}{\mathrm{m}} \mathrm{O}$	$\begin{gathered} \mathrm{m} . \\ 4 \end{gathered}$	$\mathrm{m} .$	$\frac{\mathrm{m}}{\mathrm{~m} 2}$	$\underset{16}{\mathrm{~m}}$	$\underset{20}{\mathrm{~m} .}$	$\begin{gathered} \mathrm{m} . \\ 24 \end{gathered}$	$\underset{28}{\mathrm{~m}}$	$\begin{aligned} & \mathrm{m} . \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 36 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 44 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 4^{8} \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 52 \end{aligned}$	m. 56	m.
7 HOURS.																

	5 HOURS.															
	$\underset{0}{\mathrm{~m}}$	$\frac{\mathrm{m}}{4}$	$\left.\begin{gathered} \mathrm{m} . \\ 8 \end{gathered} \right\rvert\,$	12	m.	$\underset{20}{\mathrm{~m} .}$	m_{24}	$\begin{aligned} & \mathrm{m} . \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 36 \end{aligned}$	m_{40}	$\underset{4}{\mathrm{~m}} .$	m_{48}	m_{52}	$\underset{56}{\mathrm{~m}}$	m_{60}
85	${ }^{\prime} \mathrm{I} .8$	II. 8	1 r		11.6	II. 6	II 6	II. 5	II. 5	11.5	11.5	II	I'1. 5	II 4	Iİ4	Iİ4
$85 \frac{1}{2}$	13.2	13.1	13.0	13.0	13.0	12.9	12.9	12.8	12.8	12.8	12.8	12.7	12.7	12.7	$12 \cdot 7$	$12 \cdot 7$
86	14.8	14.7	14.7	14.6	14.6	14.5	14.5	14.4	14.4	14.4	14.4		14.3	14.3	14.3	14.3
861	16.9	16.8	16.8	16.7	16.7	16.6	16.6	16.5	16.5	16.4	16.4	$16 \cdot 4$	$16 \cdot 4$	16.4	$16 \cdot 4$	$16 \cdot 3$
87	19.8	$19 \cdot 7$	19.6	19.5	19.4	19.4	$19 \cdot 3$	19.3	19.2	19.2	$19 \cdot 2$	19. 1	$19 \cdot 1$	19. 1	19.1	$19 \cdot 1$
$87 \frac{1}{2}$	23.7	$23 \cdot 6$	23.5	23.4	$23 \cdot 3$	$23 \cdot 3$	23.2	$23 \cdot 1$	$23 \cdot 1$	23.0	23.0	23.0	22.9	22.9	22.9	$22 \cdot 9$
88	29.6	$29 \cdot 5$	29.4	$29 \cdot 3$	$29 \cdot 2$	$29 \cdot 1$	29.0	28.9	28.9	$28 \cdot 8$	28.7	$28 \cdot 7$	$28 \cdot 7$	28.7	$28 \cdot 6$	28.6
$88 \frac{1}{2}$	$39 \cdot 5$	$39 \cdot 4$	$39 \cdot 2$	$39 \cdot 0$	$38 \cdot 9$	38.8	$38 \cdot 7$	$38 \cdot 6$	$38 \cdot 5$	$38 \cdot 4$	$38 \cdot 3$	$38 \cdot 3$	$38 \cdot 2$	$38 \cdot 2$	$38 \cdot 2$	$38 \cdot 2$
89	$59 \cdot 3$	$59 \cdot$	$58 \cdot 8$	58.6	$58 \cdot 4$	$58 \cdot 2$	$58 \cdot 0$	57.9	57.7	$57 \cdot 6$	$57 \cdot 5$	57-4	$57 \cdot 4$	$57 \cdot 3$	$57 \cdot 3$	$57 \cdot 3$
89 ${ }^{\frac{1}{2}}$	II9	118	118	117	117	116	II6	II6	115	II5	II5	115	I15	II5	II5	115
	m.	m. 4	m.	12.	${ }_{1} \mathrm{~m}$.	$\underset{20}{\mathrm{~m}}$	$\begin{aligned} & \mathrm{m} . \\ & 24 \end{aligned}$	${ }_{28}$	$\begin{aligned} & \mathrm{m} \\ & 32 \end{aligned}$	m. 36	$\frac{\mathrm{m}}{40}$	$\begin{aligned} & \mathrm{m} \\ & 44 \end{aligned}$	$\begin{gathered} \mathrm{m} . \\ 48 \end{gathered}$	m. 52	m. 56	$\begin{aligned} & \mathrm{m} . \\ & 60 \end{aligned}$
	6 HOURS.															

Table \mathbf{C}.

AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.

Azimuth is named N or S according to the name of the A and B correction.

A and B Correction.	LATITUDES.														
	00°	5°	10°	13°	16°	18°	20°	22°	24°	25°	26°	278	28°	29°	30°
Azimuthe.															
															\bigcirc
-000	$90 \cdot 0$	90°	90°	$90 \cdot 0$	90°	$90 \cdot 0$	$90 \cdot$	90°	90°	90°	$90 \cdot 0$	$90 \cdot$	90°	-	$90 \cdot$
10	89.4	$89 \cdot 4$	894	89.4	$89 \cdot 4$	89.5	89'5	89.5	89.5	89.5	89.5	89.5	89.5	$89 \cdot 5$	89.5
- 20	88.9	88.9	88.9	88.9	88.9	88.9	88.9	$83 \cdot 9$	89.0	89*0	89°	89°	$89 \cdot$	$89 \cdot$	89.
	$88 \cdot 3$	$88 \cdot 3$	$88 \cdot 3$	88.3 8.3	88.3	88.4 87.8	88.4 87.8	88.4	88.4	88.4	88.5	88.5	88.5	$88 \cdot 5$	88.5
$\cdot 0.40$	87.7	87%	87.7	87.8	$87 \cdot 8$	87.8	87.8	87.9	87.9	87.9	87.9	88.0	88.0	88°	88.0
-050	$87^{\prime} 1$	87'1	$87^{\circ} 2$	87.2	87.2	87.3	87.3	$87 \cdot 3$	87.4	87.4	87.4	87.4	87.5	87.5	87.5
- 060	86.6	86.6	86.5	86.7	86.7	86.7	$86 \cdot 8$	86.8	86.9	86.9	86.9	$86^{\circ} 9$	87°	87°	87°
- 070	86.0	86.0	86.1	86. 1	86.2	$86 \cdot 2$	$86 \cdot 2$	$85 \cdot 3$	86.3	86.4	$86 \cdot 4$	$86 \cdot 4$	86.5	$86 \cdot 5$	86.5
- 080	85.4	85.4	$85^{\circ} 5$	85.5	85.6	85.6	85.7	$85 \cdot 8$	$85^{\circ} 8$	$85^{\circ} 9$	$85^{\circ} 9$	$85^{\circ} 9$	86.0	$86 \cdot$	$86 \cdot$
-990	8.9	$84^{\circ} 9$	$8+9$	35°	$85^{\prime} 1$	$85^{\circ} \mathrm{I}$	85.2	$85^{\circ} 2$	$85^{\prime} 3$	85.3	85.4	85.4	85.5	85.5	$85^{\circ} 5$
${ }^{1} 100$	84	84.3	S4.4	84.4	84.5	84.5	$84^{\cdot 6}$	$84^{\circ} 7$	84.8	84.8	84.9	84.9		85°	$85^{\circ} \mathrm{I}$
'r	83.7	83.7	$83 \cdot 8$	83.9	$84^{\circ} \mathrm{O}$	$84^{\circ} \mathrm{O}$	$84 \cdot 1$	84.2	84.3	$84^{\circ} 3$	84.4	84.4	$84^{\circ} 5$	84.5	$84 \cdot 6$
- 120	$83^{\prime 2}$	83.2	$33 \cdot 3$	83.3	83.4	83.5	$83 \cdot 6$	83.7	$83^{\prime} 7$	83.8	$83 \cdot 8$	$83^{\circ} 9$	$84^{\circ} \mathrm{O}$	84°	84^{1}
130	82.6	$82 \cdot 6$	82.7	$82 \cdot 8$	82.9	83.0	$83^{\circ} \mathrm{O}$	$83 \cdot 1$	83.2	83.3	83.3	83.4	83.5	83.5	$83 \cdot 6$
-140	82.0	$82 \cdot 1$	$82 \cdot 1$	$82 \cdot 2$	$82 \cdot 3$	82.4	$82 \cdot 5$	$82 \cdot 6$	$82^{\prime} 7$	$82 \cdot 8$	82.8	S2.9	83.	83°	$83 \cdot 1$
-150	$8 \mathrm{I}^{5}$	81.5	$8 \mathrm{r} \cdot 6$	81'7	$8 \mathrm{r} \cdot 8$	8I'9	82.0	82'1	$82 \cdot 2$	82.3	$82 \cdot 3$	82.4	82.5	82.5	$82 \cdot 6$
160	80.9	80.9	$8 \mathrm{I} \cdot \mathrm{O}$	$8 \mathrm{I} \cdot \mathrm{I}$	$8 \mathrm{r} \cdot 3$	81.3	8 r 4	$8 \mathrm{I} \cdot 6$	$8{ }^{\prime} 7$	$81 \cdot 7$	81-8	8 r 9	82.	82.	$82 \cdot 1$
$\cdot 170$	80^{4}	$80 \cdot 4$	$80^{\prime} 5$	$80 \cdot 6$	$80 \cdot 7$	$80 \cdot 8$	$80^{\circ} 9$	8 r -	SI-2	$8 \mathrm{I} \cdot 2$	81.	8 I 4	81	81°	$8 \mathrm{I} \cdot 6$
- 180	79.8	79.8	$79^{\circ} 9$	$80 \cdot 1$	$8 \mathrm{c} \cdot 2$	So' 3	$80 \cdot 4$	$80 \cdot 5$	So'7	80.7	80	80.9	81.	81	$8 \mathrm{I} \cdot 1$
'190	$79 \cdot 2$	79.3	79.4	79.5	$79 \cdot 6$	$79 \cdot 8$	79.9	80.0	So'2	$80 \cdot 2$	$80 \cdot 3$	$80 \cdot 4$	$80 \cdot 5$	80.6	$80 \cdot 7$
-200	$78 \cdot 7$	$78 \cdot 7$	$78 \cdot 9$	79°	79×1	79°	79	79.5	$79 \cdot 6$	79*7		$79^{\circ} 9$	80°	$80 \cdot 1$	$80 \cdot 2$
-210	$78 \cdot 1$	$78 \cdot 2$	78.3	78.4	$78 \cdot 6$	$78 \cdot 7$	78.8	79°	$79^{\circ} \mathrm{I}$	$79 \cdot 2$	79	$79 \cdot 4$	79.5	$79 \cdot 6$	797
-22	77.6	$77^{\circ} 6$	$77 \cdot 8$	77.9	$78 \cdot 1$	78.2	$78 \cdot 3$	$78 \cdot 5$	$78 \cdot 6$	$78 \cdot 7$	78	$78 \cdot 9$	79.	$79 \cdot 1$	$79 \cdot 2$
- 230	77°	$77^{1} \mathrm{I}$	77^{2}	$77^{\circ} 4$	77.5	77.7	$77 \cdot 8$	$78 \cdot$	$78 \cdot 1$	$78 \cdot 2$	78	$78 \cdot 4$	$78 \cdot 5$	$78 \cdot 6$	$78 \cdot 7$
- 240	76.5	$76 \cdot 6$	$76 \cdot 7$	$76 \cdot 8$	77°	$77^{1} 1$	$77 \cdot 3$	77.5	$77 \cdot 6$	777	$77 \cdot 8$	77.9	78.0	$78 \cdot 1$	$78 \cdot 3$
- 250	76.0	76.0	76	$76 \cdot 3$	76.5	$76 \cdot 6$	$76 \cdot 8$	$76 \cdot 9$	77^{1}	77°	77	77^{4}	$77 \cdot 6$	77.7	77.8
- 260	75.4	75.5	$75 \cdot 6$	$75 \cdot 8$	$76 \cdot 0$	$76 \cdot 1$	$76 \cdot 3$	$76 \cdot 4$	76.6	$76 \cdot 7$	$76 \cdot 8$	77°	$77^{1} \mathrm{I}$	77^{-2}	$77 \cdot 3$
- 270	$74^{\circ} 9$	74.9	$75^{\text { }}$ I	$75 \cdot 3$	$75 \cdot 5$	$75 \cdot 6$	$75 \cdot 8$	$75^{\circ} 9$	$76 \cdot 1$	$76 \cdot 2$	$76 \cdot 4$	$76 \cdot 5$	$76 \cdot 6$	$76 \cdot 7$	$76 \cdot 8$
-280	74.4	74.4	$74 \cdot 6$	74.7	$74^{\circ} 9$	$75^{\circ} \mathrm{I}$	$75 \cdot 3$	$75^{\circ} 4$	$75^{\prime} 7$	75^{8}	75%	$76 \cdot$	$76 \cdot 1$	$76 \cdot 2$	76.4
'290	$73 \cdot 8$	$73^{\circ} 9$	$74 \cdot \mathrm{I}$	74.2	74.4	$74 \cdot 6$	$74 \cdot 8$	$75^{\circ} \mathrm{O}$	75^{2}	75.3	$75 \cdot 4$	$75 \cdot 5$	$75^{\circ} 6$	$75 \cdot 8$	$75^{\circ} 9$
- 300	73.3	73.4	$73 \cdot 5$	$73 \cdot 7$	73.9	74*	74.3	74.5	74.7	$74 \cdot 8$	$74 * 9$	75°	75×2	75×3	75.4
-310	$72 \cdot 8$	$72 \cdot 8$	73°	$73 \cdot 2$	73.4	$73 \cdot 6$	$73 \cdot 8$	74°	$74^{\circ} 2$	74.3	$74 * 4$	$74^{\circ} 6$	74.7	$74 \cdot 8$	75°
- 320	$72 \cdot 3$	$72 \cdot 3$	72.5	$72 \cdot 7$	$72 \cdot 9$	$73^{\circ} \mathrm{I}$	$73 \cdot 3$	$73 \cdot 5$	737	$73 \cdot 8$	$74^{\circ} \mathrm{O}$	741	74	74	74.5
'330	71×7	71.8	$72 \cdot$	$72 \cdot 2$	72.4	$72 \cdot 6$	$72 \cdot 8$	73°	732	$73 \cdot 3$	73.5	$73 \cdot 6$	$73 \cdot 8$	73.9	74.1
- 340	71.2	71.3	71.5	717	71.9	72.1	$72 \cdot 3$	72.5	$72 \cdot 7$	$72 \cdot 9$	73°	$73^{1} 1$	$73 \cdot 3$	73.4	$73 \cdot 6$
350	$70 \cdot 7$	$70 \cdot 8$	71.0	71.2	71*4	71.6	7 F 8	$72 \cdot$	$72 \cdot 3$	72.4	$72 \cdot 5$	$72 \cdot 7$	72	73.0	73^{1}
360	$70 \cdot 2$		70.5	$70 \cdot 7$	$70 \cdot 9$	$71 \cdot 1$	$71 \cdot 3$	71.5	$71 \cdot 8$	$7{ }^{1} 9$	$72 \cdot \mathrm{I}$	$72 \cdot 2$	$72 \cdot 4$	$72 \cdot 5$	$72 \cdot 7$
370	69.7	69*	$70 \cdot$	$70 \cdot 2$	$70 \cdot 4$	$70 \cdot 6$	$70 \cdot 8$	$71 \cdot \mathrm{I}$	$71 \cdot 3$	71.5	$7 \mathrm{r} \cdot 6$	7 r 8	$71 \cdot 9$	$72 \cdot 1$	$72 \cdot 2$
380	$69 \cdot 2$	693	69.5	697	$69^{\circ} 9$	$70 \cdot 1$	$70 \cdot 3$	$70 \cdot 6$	$70 \cdot 9$	$71^{\circ} \mathrm{O}$	711	713	$7{ }^{1} 5$	$71 \cdot 6$	71.8
390	$68 \cdot 7$	$68 \cdot 8$	69.0	$69 \cdot 2$	69.4	$69 \cdot 6$	69.9	$70 \cdot 1$	$70 \cdot 4$	$70 \cdot 5$	$70 \cdot 7$	$70 \cdot 8$	$71^{\circ} \mathrm{O}$	$71 \cdot 2$	71.3
400	68.2	65	$65 \cdot 5$	$68 \cdot 7$	69°	69.2	$69^{\circ} 4$	69*7	69.9	$70 \cdot 1$		$70 \cdot 4$	705	$70 \cdot 7$	$70 \cdot 9$
410	$67^{\circ} 7$	$67 \cdot 8$	$68 \cdot$	$68 \cdot 2$	$68 \cdot 5$	68.7	68.9	69°	$69 \cdot 5$	$69 \cdot 6$	$69 \cdot 8$	$69^{\circ} 9$	$70 \cdot 1$	$70 \cdot 3$	$70 \cdot 5$
${ }^{4} 420$	67.2	67.3	$67 \cdot 5$	677	$68 \cdot$	$68 \cdot 2$	$68 \cdot 5$	68.7	69°	69.2	$69 \cdot 3$	69.5	$69^{\prime} 7$	$69 \cdot 8$	$70 \cdot$
-430	$66^{7} 7$	$66 \cdot 8$	67°	67.3	$67 \cdot 5$	67.8	68.0	$68 \cdot 3$	$68 \cdot 6$	$68 \cdot 7$	$68 \cdot 9$	69°	69^{2}	69.4	$69 \cdot 6$
'440	$66 \cdot 3$	$66 \cdot 3$	$66 \cdot 6$	$66 \cdot 8$	$67 \cdot 1$	67.3	$67 \cdot 5$	$67 \cdot 8$	68• 1	$68 \cdot 3$	68.4	$68 \cdot 6$	$68 \cdot 8$	69.0	69.1
-450	$65^{\circ} 8$	$65^{\circ} 9$	$66 \cdot 1$	$66 \cdot 3$	$66 \cdot 6$	$66 \cdot 8$	$67 \cdot 1$	67.4	677	$67 \cdot 8$	68.0	$68 \cdot 2$	68.3	68.5	$68 \cdot 7$
-460	65	$65^{\circ} 4$	$65 \cdot 6$	$65^{\circ} 9$	$66 \cdot 1$	66.4	$66 \cdot 6$	66.9	67.2	67.4	$67 \cdot 5$	67.7	67.9	$68 \cdot 1$	$68 \cdot 3$
-470	64.8	$64^{\circ} 9$	$65^{\circ} 2$	65.4	65%	$65^{\circ} 9$	$66 \cdot 2$	$66 \cdot 5$	66.8	$66^{9} 9$	$67 \cdot 1$	$67 \cdot 3$	67.5	$67 \cdot 7$	67.9
$\cdot 480$	$64^{\circ} 4$	64.4	64.7	$64^{\circ} 9$	$65^{\circ} 2$	$65 \cdot 5$	$65 \cdot 7$	$66 \cdot$	66^{3}	$66^{\circ} 5$	$66^{7} 7$	$66 \cdot 8$	67°	67.2	$67^{\circ} 4$
'490	$63^{\circ} 9$	$64^{\circ} \mathrm{O}$	64.2	$64 \cdot 5$	64.8	$65^{\circ} \mathrm{O}$	$65 \cdot 3$	$65 \cdot 6$	$65^{\circ} 9$	66^{1}	$66 \cdot 2$	66.4	$66 \cdot 6$	$66 \cdot 8$	67°

Table C.

AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.

Azimuth is named N or S according to the name of the A and B correction.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{A and B rection.} \& \multicolumn{14}{|c|}{Latitudes.} \& \\
\hline \& \(00^{\circ}\) \& \(5^{\circ}\) \& \(10^{\circ}\) \& \({ }^{13}{ }^{\circ}\) \& \(10^{\circ}\) \& \(18^{\circ}\) \& \(20^{\circ}\) \& \(22^{\circ}\) \& \(24^{\circ}\) \& \(25^{\circ}\) \& \(25^{\circ}\) \& \(27^{\circ}\) \& \(28^{\circ}\) \& \(29^{\circ}\) \& \(30^{\circ}\) \\
\hline \& \multicolumn{15}{|c|}{Azmuth} \\
\hline . 50 \& 63.4 \& \(63 \cdot 5\) \& 63.8 \& \(64^{\circ}\) \& \(64 \cdot 3\) \& 64.6 \& \(64 \cdot 8\) \& \(65^{\prime}\) \& \(65 \cdot 5\) \& \(65^{\circ} 6\) \& 65.8 \& 66. \& \(66 \cdot 2\) \& \(66 \cdot 4\) \& \(66 \cdot 6\) \\
\hline 510 \& 63.0 \& \(63 \cdot \mathrm{I}\) \& 63.3 \& \(63 \cdot 6\) \& \(63 \cdot 9\) \& \(64^{+1}\) \& 64.4 \& 64.7 \& \(65^{\circ}\) \& \(65^{2}\) \& 65.4 \& \(65^{\circ} 6\) \& \(65 \cdot 8\) \& 66.0 \& \(66^{2}\) \\
\hline 520 \& 62.5 \& \(62 \cdot 6\) \& 62.9 \& \(63^{\prime}\) I \& 63.4 \& \(63^{\prime} 7\) \& \(64^{\circ}\) \& 64 \& \(64 \cdot 6\) \& 64.8 \& 64.9 \& \(65^{\prime} \mathrm{I}\) \& \(65 \cdot 3\) \& \(65 \cdot 5\) \& 65.8 \\
\hline . 530 \& \(62 \cdot 1\) \& \(62 \cdot 2\) \& 62.4 \& \(62 \cdot 7\) \& \(63^{\circ}\) \& 63.2 \& 63.5 \& 63.8 \& 64.2 \& \(64^{4} 3\) \& 64.5 \& 64.7 \& 64.9 \& 65.1 \& \(65^{3}\) \\
\hline -540 \& \(6 \mathrm{r} \cdot 6\) \& \(6{ }^{1} 7\) \& 62. \& 62.2 \& \(62 \cdot 6\) \& 62:8 \& \(63 \cdot 1\) \& 63.4 \& 63.7 \& \(63^{9}\) \& \(64 \cdot \mathrm{I}\) \& \(64 \cdot 3\) \& \(64 \cdot 5\) \& 647 \& 64.9 \\
\hline 550 \& 61 \& \(6{ }^{\prime}\) \& бr'6 \& \(6 \mathrm{r} \cdot 8\) \& 62.1 \& 2.4 \& \(62 \cdot 7\) \& 63. \& \(63 \cdot 3\) \& 63.5 \& 63.7 \& \(63^{\prime} 9\) \& 64'I \& 64.3 \& \(64 \cdot 5\) \\
\hline 560 \& \(60 \cdot 8\) \& 60.8 \& \(6{ }^{-1}\) \& \(6 \mathrm{I}^{4}\) \& \(6 \mathrm{r}^{7}\) \& \(2 \cdot\) \& \(62 \cdot 2\) \& \(62 \cdot 6\) \& 62.9 \& \(63^{\prime 2}\) \& 63.3 \& \(63 \cdot 5\) \& \(63 \cdot 7\) \& 63.9 \& \(64^{\text {' }}\) \\
\hline 570 \& \(60 \cdot 3\) \& \(60 \cdot 4\) \& \(60 \cdot 7\) \& \(6^{\circ}{ }^{\circ}\) \& 61.3 \& 6r. 5 \& \(6 \mathrm{r} \cdot 8\) \& \({ }_{62 \cdot}\) \& 62.5 \& 62.7 \& 62.9 \& 63.1 \& \(63 \cdot 3\) \& \(63 \cdot 5\) \& 63.7 \\
\hline 580 \& 59.9 \& \(60^{\circ}\) \& \(60 \cdot 3\) \& 60. 5 \& 60.9 \& \(\mathrm{6r}^{-1}\) \& \(6{ }^{6} \cdot 4\) \& \({ }_{61}{ }^{7}\) \& \(52 \cdot\) \& \(62 \cdot 3\) \& \(62 \cdot 5\) \& \(62 \cdot 7\) \& 62.9 \& 63.1 \& 63.3 \\
\hline 590 \& 59.5 \& \(59 \cdot 6\) \& \(59 \cdot 8\) \& \(60 \cdot 1\) \& \(60 \cdot 4\) \& \(60 \cdot 7\) \& 6 r \% \& \(6 r^{3} 3\) \& \(6{ }^{\prime} 7\) \& 61.9 \& \(62 \cdot 1\) \& \(62 \cdot 3\) \& \(62 \cdot 5\) \& 62.7 \& 62.9 \\
\hline . 600 \& \(59^{\circ}\) \& \(59^{1}\) \& 59.4 \& \(59 *\) \& \(60^{\circ}\) \& \(60 \cdot 3\) \& \(60 \cdot 6\) \& \(60 \cdot 9\) \& \(6{ }^{1} 3\) \& 6r 5 \& 617 \& \(6 \mathrm{r} \cdot 9\) \& \(62 \cdot 1\) \& 6. 3 \& 62.5 \\
\hline 6ro \& 58 \& 58.7 \& 59. \& \(59 \cdot 3\) \& \(59 \cdot 6\) \& 59.9 \& 60'2 \& \(60 \cdot 5\) \& 60.9 \& \({ }^{6 \cdot 1} \cdot\) \& \(6 \mathrm{r} \cdot 3\) \& \(6 \mathrm{r} \cdot 5\) \& \({ }^{6} 17\) \& \(6{ }^{6} 9\) \& \(62 \cdot 2\) \\
\hline -620 \& 58.2 \& 58.3 \& 58.6 \& 58.9 \& 59.2 \& \[
59 \cdot 5
\] \& \[
\begin{gathered}
59: 8 \\
50 \cdot 4
\end{gathered}
\] \& \(60 \cdot 1\)
59 \& \begin{tabular}{l}
\(60 \cdot 5\) \\
\(60 \cdot 1\) \\
\hline
\end{tabular} \& \(60 \cdot 7\)
60.3 \& \[
\begin{aligned}
\& 60.9 \\
\& 60.5
\end{aligned}
\] \& \({ }_{60 \cdot 7}^{61}\) \& 61.3
\(60 \%\) \& \({ }^{61} 5\) \& 61.8
61.4 \\
\hline . 630 \& \(57 \cdot 8\)
57 \& 57.9
575 \& \(58 \cdot 2\)
57.8 \& \({ }_{58}^{58 \cdot 5}\) \& \(58 \cdot 8\)
58.4 \& 59.1
58.7 \& 59.4 \& 59.7
59 \& \begin{tabular}{l}
\(60 \cdot 1\) \\
59 \\
\hline 9
\end{tabular} \& \(60 \cdot 3\)
59 \& \(60 \cdot 5\)
\(60 \cdot 1\) \& \(60 \cdot 7\)
\(60 \cdot 3\) \& \(60 \cdot 9\)
\(60 \cdot 5\) \& \(61 \cdot 1\) \& 61.4
\(61 \%\) \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& 60. \& \& - 6 \\
\hline '660 \& 56.6 \& 56. \& \(57^{\circ}\) \& \(57 \cdot 3\) \& \(57 \cdot 6\) \& 57.9 \& \(58 \cdot 2\) \& \(58 \cdot 5\) \& 58.9 \& 59.1 \& 59 \& \(59 \cdot 5\) \& \(59 \cdot 8\) \& 60. \& \(60 \cdot 2\) \\
\hline \(\cdot 670\) \& 56.2 \& \(56 \cdot 3\) \& \(56 \cdot 6\) \& \(56 \cdot 9\) \& 57.2 \& 57.5 \& 57.8 \& 58.2 \& 58.5 \& 58.7 \& \(58^{\circ} 9\) \& 59.2 \& 59.4 \& 59 \& 59.9 \\
\hline -680 \& \(55 \cdot 8\) \& \(55^{\circ} 9\) \& \(55^{2}\) \& \(56 \cdot 5\) \& 56.8 \& \(57 \cdot 1\) \& \(57^{\circ} 4\) \& 57.8 \& 58.2 \& 58.4 \& \(58 \cdot 6\) \& 58.8 \& 59.0. \& 59.3 \& 59.5 \\
\hline '690. \& \(55^{\circ} 4\) \& \(55 \cdot 5\) \& 55-8 \& 56.1 \& 56.4 \& 56.7 \& \(57^{\circ}\) \& 57.4 \& 57.8 \& 58.0 \& \(58 \cdot 2\) \& \(58 \cdot 4\) \& \(58 \cdot 6\) \& 58.9 \& 59.1 \\
\hline '700 \& 55* \& 55'1 \& \(55^{\circ} 4\) \& \(55 \cdot 7\) \& 56.1 \& \(56 \cdot 3\) \& \(56 \cdot 7\) \& 57 \& \(57^{4}\) \& \(57 \cdot 6\) \& 57.8 \& 58. \& \(58 \cdot 3\) \& \(58 \cdot 5\) \& 58.8 \\
\hline \({ }^{710}\) \& 54.6 \& 54:7 \& 55 \({ }^{\circ}\) \& 55.3 \& \(55 \cdot 7\) \& 56.0 \& \(56 \cdot 3\) \& 56 \& 57\% \& \(57^{\circ}\) \& 57.5 \& \(57 \%\) \& 57.9 \& \& - 4 \\
\hline \(\stackrel{720}{7}\) \& 5442 \& \(54: 3\) \& \(54 / 7\)
54 \& \& 55.3
54.9 \& \(55 \cdot 6\)
\(55^{\prime} 2\) \& 55.9
55.6 \& 56.3 \& \(56 \cdot 7\)
\(56 \cdot 3\) \& \& \& 57.3 \& \(57^{\circ} 6\)
572 \& \& \(58 \cdot 1\)
57
57 \\
\hline 7730
.740 \& 53.9
53.5 \& \[
\begin{aligned}
\& 54.0 \\
\& 53.6
\end{aligned}
\] \& \begin{tabular}{l}
54 \\
53 \\
\hline
\end{tabular} \& \(54 \cdot 6\)
54 \& 54.9 \& 55.2
54.9 \& \(55^{\circ} 6\)
\(55^{\circ}\) \& 55.9 \& 56.3
\(55 \%\) \& 56.5 \& \(56 \cdot 7\)
56 \& \(57^{\circ}\)
56.6 \& \(57^{\circ}\)
56.8 \& \& 577
57 \\
\hline 7
.740
.750 \& 53.5
53.1 \& \(53 \cdot 6\)
53.2 \& \(53 \cdot 9\)
\(53 \cdot 6\) \& 54.2
53.8 \& 54.6
54.2 \& 54.9
54.5 \& \(55^{2}\)
54 \& \(55 \cdot 5\)
\(55 \cdot 2\) \& 559
\(55 \cdot 6\) \& \(56 \cdot 2\)
558 \& 56
56 \& 56.2 \& 56.5 \& 571
56 \& 573
57 \\
\hline 750
760 \& \(53 \cdot 1\)
52.8 \& \(53^{\circ}\)
\(52^{\circ}\) \& \(53 \cdot 6\)
53 \& 53.8 \& 54.2 \& 54 \& 54:8 \& \(55^{5} 2\) \& 55'2 \& 55.4 \& 55\% \& \(55^{\circ}\) \& \({ }_{56}{ }^{\text {c/ }}\) \& 56.4 \& 56.6 \\
\hline \(\checkmark 770\) \& 52.4 \& \(52 \cdot 5\) \& 52.8 \& 53.1 \& 53.5 \& 53:8 \& 54.I \& \(54 \cdot 5\) \& 54.9 \& 55.1 \& 55.3 \& \(55 \cdot 5\) \& \(55^{8}\) \& 56 \& 56.3 \\
\hline 780 \& 52.0 \& 52.2 \& \(52 \cdot 5\) \& \(52 \cdot 8\) \& 53. \& 53.4 \& 53.8 \& 54.1. \& \(54 \cdot 5\) \& 54.7 \& \(55^{\circ} \mathrm{O}\) \& 55\% \& 55.4 \& \(55^{\circ} 7\) \& 56.0 \\
\hline 790 \& \(55^{\prime} 7\) \& 518 \& 52'r \& \(52 \cdot 4\) \& 52.8 \& \(53^{-1}\) \& \(53 \cdot 4\) \& \(53 \cdot 8\) \& \(54^{2}\) \& 54.4 \& \(54^{6}\) \& 54 \& 55 \& \& \(55^{6}\) \\
\hline \(\cdot 800\) \& \(51 \cdot 3\) \& 51.4 \& 51.8 \& 52.I \& 52.4 \& 52.7 \& 53.1 \& 53.4 \& 53.8 \& 54'I \& 54.3 \& 54.5 \& 54.8 \& \(55^{\circ}\) \& \(55^{\circ} 3\) \\
\hline .810 \& 51. \& \({ }_{51}{ }_{5}\) \& \(55^{\circ} \cdot\) \& 51.7 \& 52.1 \& 52. \& \begin{tabular}{l}
\(52 \cdot 7\) \\
52. \\
\hline
\end{tabular} \& 53.1 \& 53.5
53 \& 53.7
53 \& 53.9
53.6 \& 54.2
53 \& 54.4 \& \(54 \cdot 7\) \& \\
\hline . 820 \& 50.6 \& 50.8 \& \& \& \& \& 52.4
52.0 \& \& 53.2
52.8 \& 53.4
53 \& 53
53 \& 53:8 \& 54.1 \& 54.4 \& 54.6
54.3 \\
\hline .830 \& \(50^{\circ} 3\) \& \(50 \cdot 4\) \& \(50 \cdot 7\) \& 51.0
50 \& \({ }_{51}{ }_{51}{ }^{\circ} \mathrm{A}\) \& \begin{tabular}{l}
51 \\
51 \\
\hline 1
\end{tabular} \& \(52 \cdot\)
\(51 \%\) \& 52.4 \& \(52 \cdot 8\)
\(52 \cdot 5\) \& 53.0
52.7 \& 53.3
52.9 \& 53.5 \& 53.8 \& \(54^{\circ}\)
53 \& 54.3 \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline . 850 \& \(49 \cdot 6\) \& 49.7 \& \(50^{\circ} \mathrm{I}\) \& \(5{ }^{50} 4\) \& 50.7 \& \& \& \& \& 52.4 \& 52. 5 \& 52.9 \& \& 53.1 \& \(53 \cdot 3\) \\
\hline . 860 \& \(49 \cdot 3\) \& 49.4 \& \(49 \cdot 7\) \& 50.0 \& 50.4 \& 50.7 \& 51'1 \& \({ }_{51}{ }_{51}\) \& 51.8 \& 52'1 \& \(52 \cdot 3\)
52.0 \& 52.5 \& 52. 5 \& \(52 \cdot 7\) \& 53.0 \\
\hline .870 \& \[
490
\] \& \({ }_{4}^{49} 1\) \& \({ }_{49}^{49.4}\) \& \(49^{4.7}\) \& 50'1 \& 50.4 \& \begin{tabular}{l}
50 \\
\(50 \cdot 4\) \\
\hline
\end{tabular} \& 51. \& 5 \& 51 \& 5 \& \(5{ }^{5}\) \& 52 \& 52 \& \(52 \cdot 7\) \\
\hline \(\cdot 890\) \& \(48 \cdot 3\) \& 48.4 \& 48.8 \& \(49 \cdot 1\) \& 49.5 \& \(49 \cdot 8\) \& \(50 \cdot 1\) \& \(50 \cdot 5\) \& \(50 \cdot 9\) \& 51-1 \& 50.3 \& \(50 \cdot 6\) \& 50 \& \(52 \cdot 1\) \& 52.4 \\
\hline '900 \& \(48 \cdot 0\) \& 48.1 \& 48.4 \& 48.8 \& \(49 \cdot 1\) \& \(49 \cdot 4\) \& 49.8 \& \& \(50 \cdot 6\) \& 50.8 \& \(55^{\circ} \mathrm{O}\) \& \(51 \cdot 3\) \& \(5{ }^{\circ} 5\) \& \(5{ }^{5}\) \& 52.1 \\
\hline -910 \& \(47 \cdot 7\) \& 478 \& \(4{ }^{8 .}\) \& 48.4 \& 48.8 \& \(49 \cdot 1\) \& \(49 \cdot 5\) \& 49.5 \& 50 \& 50.5 \& 50.7 \& \(51^{\circ}\) \& 5 \& 5 \& 51.8
5.5

I

\hline -920 \& ${ }^{47} 4$ \& 47.5
47.2 \& 47.8
47.5 \& \& 48.5
48.2 \& 48.8 \& 49.2
48.8 \& 49.5
49.2 \& \& \& 50\%4 \& 50 \& $5{ }_{50}$ \& \& 51.5
51.2

\hline -930 \& 47.1
46.8 \& 47°
46.9 \& 47.5
47.2 \& $47{ }^{47} 8$ \& 48.2
479 \& $48 \cdot 5$
48 \& 48.5 \& 48.9 \& $49 \cdot 3$ \& 49.6 \& 49.8 \& 50 \& 50 \& $50 \cdot 6$ \& $50 \cdot 9$

\hline \& \& \& \& \& 47.6 \& \& $48 \cdot 2$ \& \& \& \& \& \& 50° \& \& $50 \cdot 6$

\hline .960 \& $46 \cdot 2$ \& $46 \cdot 3$ \& 46.6 \& $46 \cdot 9$ \& $47^{\circ} 3$ \& $47 \cdot 6$ \& 47° \& $48 \cdot 3$ \& 48.7 \& 49° \& 49° \& $49^{\circ} 5$ \& 49. \& 50.0 \& $50 \cdot 3$

\hline -970 \& $45^{\circ} 9$ \& 46.0 \& $46 \cdot 3$ \& $46 \cdot 6$ \& 47° \& 47.3 \& 47° \& 48. \& 88 \& 48.7 \& 48.9 \& 49^{-2} \& 49° \& $49^{\circ} 7$ \& 50.0

\hline $\cdot 980$ \& $45 \cdot 6$ \& $45^{\circ} 7$ \& 46. \& $46 \cdot 3$ \& $46 \cdot 7$ \& 47° \& $47^{\circ} 4$ \& $47^{\prime} 7$ \& | $48 \cdot 2$ |
| :--- |
| 47 | \& ${ }^{48.4}$ \& 48.6

48.3 \& 48.6 \& 48.8 \& $49^{\text {'I }}$ \& 49.7
49

\hline -990 \& 453 \& 454 \& $45^{\circ} 7$ \& 46.0 \& $46 \cdot 4$ \& $46^{\circ} 7$ \& 47^{1} \& 47 \& 47.9 \& \& \& 48.6 \& 48 \& I \& 494

\hline
\end{tabular}

40

Table C.

AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.

Azimuth is named N or S according to the name of the A and B correction.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{A and B Correction.} \& \multicolumn{15}{|c|}{LATITUDES.}

\hline \& 00° \& $5{ }^{\circ}$ \& 10° \& 13° \& 16° \& 18° \& 30° \& 22° \& 24° \& 25° \& 26° \& 270 \& 28° \& 29° \& 30°

\hline \multicolumn{16}{|c|}{Azimutes.}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 。

\hline 1.00 \& 45° \& 45^{-1} \& $45^{\circ} 4$ \& $45^{\prime} 7$ \& $46 \cdot 1$ \& $46 \cdot 4$ \& $46 \cdot 8$ \& 47^{2} \& $47 \cdot 6$ \& $47 \cdot 8$ \& $48 \cdot 1$ \& $48 \cdot 3$ \& $48 \cdot 6$ \& $48 \cdot 8$ \& 49^{1}

\hline 1.02 \& $44^{\circ} 4$ \& $44^{\circ} 5$ \& $44^{\circ} 9$ \& $45^{\circ} 2$ \& $45^{\circ} 6$ \& 45% \& 46^{2} \& $46 \cdot 6$ \& 47° \& 47^{2} \& $47 \cdot 5$ \& $47^{\circ} 7$ \& 480 \& $48 \cdot 3$ \& $48 \cdot 5$

\hline ${ }^{1} \mathrm{O} 4$ \& 43.9 \& $44^{\circ} \mathrm{O}$ \& 44.3 \& $44^{\circ} 6$ \& 45° \& $45 \cdot 3$ \& $45^{\circ} 7$ \& $46 \cdot 0$ \& $46 \cdot 5$ \& $46 \cdot 7$ \& 46.9 \& $47^{\circ} 2$ \& $47^{\circ} 4$ \& $47^{\circ} 7$ \& $48 \cdot 0$

\hline r 06 \& $43 \cdot 3$ \& $43^{\circ} 4$ \& $43 \cdot 8$ \& $44^{\text {. }}$ \& 44.5 \& $44^{\circ} 8$ \& $45^{\circ} \mathrm{I}$ \& $45^{\circ} 5$ \& $45^{\circ} 9$ \& $46 \cdot 1$ \& $46^{\circ} 4$ \& $46 \cdot 6$ \& $46 \cdot 9$ \& 47° \& 47.4

\hline I.08 \& $42 \cdot 8$ \& $42 \cdot 9$ \& $43^{\circ} 2$ \& 43.5 \& $43^{\circ} 9$ \& $44^{.2}$ \& 44^{6} \& 45° \& $45^{\circ} 4$ \& 45^{6} \& $45^{\circ} 9$ \& $4{ }^{1} 1$ \& $46 \cdot 4$ \& $46 \cdot 6$ \& $46 \cdot 9$

\hline 1'10 \& 42 \& 42 \& 427 \& 43° \& 43.4 \& $43^{\prime} 7$ \& 44^{1} \& $44^{\circ} 4$ \& 449 \& 45^{1} I \& $45 \cdot 3$ \& 45^{6} \& $45^{\circ} 8$ \& 46.1 \& $46 \cdot 4$

\hline $1 \cdot 12$ \& $4 \mathrm{I} \cdot 8$ \& 419 \& $42 \cdot 2$ \& 42.5 \& $42^{\circ} 9$ \& $43^{\circ} 2$ \& 43.5 \& 43.9 \& 44.3 \& 44^{6} \& 44^{8} \& $45^{\circ} \mathrm{I}$ \& $45 \cdot 3$ \& $45^{\circ} 6$ \& $45^{\circ} 9$

\hline $1 \cdot 14$ \& 4 I \& $4{ }^{1} 4$ \& 4'7 \& 42° \& 42.4 \& $42^{\prime} 7$ \& 43° \& $43^{\circ} 4$ \& $43^{\circ} 8$ \& $44^{\circ} \mathrm{I}$ \& 44.3 \& $44^{\circ} 6$ \& 44^{-8} \& $45^{\circ} 1$ \& $45^{\circ} 4$

\hline 1.16 \& 40 \& 409 \& $4 \mathrm{I} \cdot 2$ \& 415 \& $4{ }^{1} 9$ \& $42 \cdot 2$ \& $42 \cdot 5$ \& 42.9 \& $43 \cdot 3$ \& $43^{\circ} 6$ \& 43^{8} \& $44^{\circ} \mathrm{I}$ \& $44 \cdot 3$ \& $44^{\circ} 6$ \& $44^{\circ} 9$

\hline I'18 \& $40 \cdot 3$ \& $40^{\circ} 4$ \& $40 \cdot 7$ \& $41^{\circ} \mathrm{O}$ \& 41.4 \& 4 ${ }^{\prime} 7$ \& 42.0 \& 42.4 \& 42.9 \& 43^{\prime} I \& $43 \cdot 3$ \& $43 \cdot 6$ \& $43 \cdot 8$ \& $44^{\circ} \mathrm{I}$ \& $44^{\circ} 4$

\hline 1.20 \& $39^{\circ} 8$ \& 39 \& $40 \cdot 2$ \& 40 \& 40 \& 4 \& 6 \& 4 \& \& $42 \cdot 6$ \& $42 \cdot 8$ \& $43^{\prime} 1$ \& $43^{\prime} 3$ \& $43^{\circ} 6$ \& 43.9

\hline 22 \& 39.3 \& 39.4 \& $39 \cdot 8$ \& $40^{\circ} \mathrm{I}$ \& $40 \cdot 5$ \& 40 \& 41 \& $4{ }^{1} 5$ \& 41.9 \& 42.1 \& $42 \cdot 4$ \& $42 \cdot 6$ \& $42 \cdot 9$ \& $43^{1} 1$ \& $43 \cdot 4$

\hline I-24 \& 38.9 \& 39° \& $39^{\circ} 3$ \& $39 \cdot 6$ \& $40 \cdot 0$ \& $40 \cdot 3$ \& $40 \cdot 6$ \& $4{ }^{1} \mathrm{O}$ \& 41.4 \& 417 7 \& $41 \cdot 9$ \& 42.1 \& $42 \cdot 4$ \& $42 \cdot 7$ \& 43°

\hline $1 \cdot 26$ \& 38.4 \& $38 \cdot 5$ \& $38 \cdot 9$ \& $39^{\circ} 2$ \& 39.5 \& $39^{\circ} 8$ \& $40 \cdot 2$ \& $40 \cdot 6$ \& $4{ }^{\circ} \mathrm{O}$ \& $4 \mathrm{I} \cdot 2$ \& $41^{\circ} 4$ \& 4 ${ }^{\prime} 7$ \& $42 \cdot$ \& $42 \cdot 2$ \& 42.5

\hline I 28 \& $38 \cdot 0$ \& $38 \cdot 1$ \& 38.4 \& $38 \cdot 7$ \& $39^{\prime} \mathrm{I}$ \& 39.4 \& 39\%7 \& 40 I \& $40 \cdot 5$ \& $40 \cdot 8$ \& 4 ${ }^{\circ} \mathrm{O}$ \& $41 \cdot 2$ \& 415 \& 41.8 \& 42.1

\hline $1 \cdot 30$ \& 37 \& 37 \& $38 \cdot$ \& $38 \cdot 3$ \& $38 \cdot 7$ \& $39^{\circ} \mathrm{O}$ \& $39^{\prime} 3$ \& 397 \& $40^{\prime} \mathrm{I}$ \& $40 \cdot 3$ \& $40 \cdot 6$ \& $40 \cdot 8$ \& 41'1 \& 413 \& $41 \cdot 6$

\hline $1 \cdot 32$ \& $37{ }^{\circ} \mathrm{I}$ \& 37.3 \& $37 \cdot 6$ \& $37 \cdot 9$ \& 38.2 \& $38 \cdot 5$ \& $38 \cdot 9$ \& $39 \cdot 3$ \& 39*7 \& $39^{\circ} 9$ \& $40 \cdot 1$ \& $40^{\circ} 4$ \& $40 \cdot 6$ \& $40 \cdot 9$ \& $4 \mathrm{I} \cdot 2$

\hline 34 \& 36.7 \& 36.8 \& $37^{\circ} 2$ \& $37 \cdot 4$ \& $37 \cdot 8$ \& $38 \cdot 1$ \& $38 \cdot 5$ \& $38 \cdot 8$ \& 39^{-2} \& $39 \cdot 5$ \& 39•7 \& $39^{\circ} 9$ \& $40 \cdot 2$ \& $40 \cdot 5$ \& $40 \cdot 8$

\hline I.36 \& $36 \cdot 3$ \& $36 \cdot 4$ \& $36 \cdot 7$ \& 37° \& 37.4 \& $37 \cdot 7$ \& $38 \cdot 0$ \& 38.4 \& $38 \cdot 8$ \& 39.1 \& $39^{\circ} 3$ \& $39^{\circ} 5$ \& $39^{\circ} 8$ \& $40^{\circ} 1$ \& $40^{\circ} 3$

\hline r 38 \& 35.9 \& 36.0 \& $36 \cdot 3$ \& 36.6 \& 37° \& $37 * 3$ \& $37 \cdot 6$ \& 38.0 \& $38 \cdot 4$ \& 38 \& $38 \cdot 9$ \& 39^{-1} \& $39^{\circ} 4$ \& $39 \cdot 6$ \& $39 \cdot 9$

\hline 140 \& 35.5 \& $35 \cdot 6$ \& 36.0 \& 36.2 \& 36.6 \& $36 \cdot 9$ \& 37.2 \& $37 \cdot 6$ \& $38 \cdot 0$ \& $38 \cdot 2$ \& $38 \cdot 5$ \& $38 \cdot 7$ \& 39° \& $39 \cdot 2$ \& 39.5

\hline $1 \cdot 42$ \& 35.2 \& $35 \cdot 3$ \& $35 \cdot 6$ \& $35 \cdot 9$ \& $36 \cdot 2$ \& $36 \cdot 5$ \& 36.8 \& 37° \& $37 \cdot 6$ \& $37 \cdot 8$ \& 38-1 \& $38 \cdot 3$ \& $38 \cdot 6$ \& 38.8 \& 39.1

\hline $1 \cdot 44$ \& 34.8 \& 34.9 \& $35^{\circ} 2$ \& $35 \cdot 5$ \& $35^{\circ} 8$ \& $36 \cdot 1$ \& 36.5 \& $36 \cdot 8$ \& $37^{\circ} 2$ \& $37 \cdot 5$ \& 37.7 \& $37 \cdot 9$ \& $38 \cdot 2$ \& 38.4 \& $38 \cdot 7$

\hline I. 46 \& 34.4 \& 34.5 \& 34.8 \& $35^{\circ} \mathrm{I}$ \& 35° \& $35 \cdot 8$ \& $36 \cdot 1$ \& $36 \cdot 5$ \& $36 \cdot 9$ \& 37.1 \& $37 \cdot 3$ \& $37^{\circ} 6$ \& 37.8 \& $38 \cdot 1$ \& $38 \cdot 3$

\hline $1 \cdot 48$ \& 34.0 \& $34^{\circ} \mathrm{I}$ \& 34.5 \& 34.7 \& $35^{\circ} \mathrm{I}$ \& $35 \cdot 4$ \& $35^{\prime} 7$ \& $36 \cdot 1$ \& $36 \cdot 5$ \& 36.7 \& $36 \cdot 9$ \& $37^{\circ} 2$ \& 37.4 \& 37% \& 38°

\hline 1.50 \& $33^{\prime} 7$ \& 33.8 \& 34^{1} \& 34° \& $34^{\circ} 7$ \& $35^{\circ} \mathrm{O}$ \& 35 \& $35^{\prime} 7$ \& $36 \cdot 1$ \& $36 \cdot 3$ \& $36 \cdot 6$ \& $36 \cdot 8$ \& $37^{\circ} \mathrm{I}$ \& $37 \cdot 3$ \& $37 \cdot 6$

\hline r 52 \& 33.3 \& $33^{\circ} 4$ \& $33 \cdot 7$ \& 34° \& 34.4 \& 34.7 \& 35° \& $35 \cdot 4$ \& $35 \cdot 8$ \& $36 \cdot 0$ \& $36 \cdot 2$ \& $36 \cdot 4$ \& 36.7 \& $36 \cdot 9$ \& $37^{\circ} 2$

\hline I•54 \& 33° \& $33^{\cdot 1}$ \& $33^{\circ} 4$ \& $33^{\prime} 7$ \& $34^{\circ} \mathrm{O}$ \& $34 \cdot 3$ \& $34 \cdot 6$ \& $35^{\circ} \mathrm{O}$ \& $35 \cdot 4$ \& $35^{\circ} 6$ \& $35 \cdot 8$ \& $36 \cdot 1$ \& $36 \cdot 3$ \& $36 \cdot 6$ \& 36.9

\hline 1. 56 \& $32 \cdot 7$ \& $32 \cdot 8$ \& $33^{\circ} \mathrm{I}$ \& $33 \cdot 3$ \& $33^{\circ} 7$ \& 34° \& 34.3 \& $34^{\circ} 7$ \& $35^{\circ} \mathrm{I}$ \& $35 \cdot 3$ \& 35.5 \& 35.7 \& $36 \cdot$ \& $36 \cdot 2$ \& $35 \cdot 5$

\hline 1.58 \& $32 \cdot 3$ \& 32.4 \& $32 \cdot 7$ \& $33^{\circ} \mathrm{O}$ \& $33^{\circ} 4$ \& $33 \cdot 6$ \& 34° \& $34 \cdot 3$ \& 34.7 \& 34.9 \& $35^{\circ} \mathrm{I}$ \& $35^{\circ} 4$ \& $35 \cdot 6$ \& $35^{\circ} 9$ \& $36 \cdot 2$

\hline 1.60 \& 32° \& $32^{\prime} 1$ \& $32 \cdot 4$ \& $32 \cdot 7$ \& 33° \& $33^{\circ} 3$ \& $33 \cdot 6$ \& $34^{\circ} \mathrm{O}$ \& $34^{\circ} 4$ \& $34^{\circ} 6$ \& $34^{\circ} 8$ \& 35° \& $35 \cdot 3$ \& $35^{\circ} 5$ \& $35 \cdot 8$

\hline I. 62 \& $3{ }^{1} 7$ \& $3 \mathrm{I} \cdot 8$ \& $32 \cdot 1$ \& 32.4 \& $32 \cdot 7$ \& 33° \& $33 \cdot 3$ \& $33 \cdot 7$ \& $34^{\circ} \mathrm{O}$ \& $34^{\prime} 3$ \& 34.5 \& 34.7 \& 35° \& $35^{\circ} 2$ \& $35^{\circ} 5$

\hline 1.64 \& 3 t \& 31.5 \& 31.8 \& $32 \cdot$ \& 32.4 \& 32.7 \& 33.0 \& $33 \cdot 3$ \& $33 \cdot 7$ \& $33^{\circ} 9$ \& 34.2 \& 34.4 \& $34^{\circ} 6$ \& 34.9 \& $35^{\text { }}$ I

\hline 1.66 \& $3 \mathrm{I} \cdot \mathrm{I}$ \& $31^{\circ} 2$ \& $3 \mathrm{I} \cdot 5$ \& 3 I 7 \& 32.1 \& 32.4 \& 32.7 \& 33° \& 33.4 \& $33 \cdot 6$ \& $33^{\circ} 8$ \& $34^{\cdot 1}$ \& 34.3 \& 34.6 \& 34.8

\hline I•68 \& 30•8 \& 30 \& $3{ }^{1} \mathrm{I}$ \& 31.4 \& 31.8 \& $32^{\circ} \mathrm{O}$ \& 32.4 \& $32 \cdot 7$ \& $33^{\prime} \mathrm{I}$ \& 33.3 \& $33 \cdot 5$ \& $33 \cdot 7$ \& 34 \& $34^{\circ} 2$ \& $34^{\circ} 5$

\hline 1.70 \& $30 \cdot 5$ \& $30 \cdot 6$ \& $30^{\circ} 9$ \& 3I'I \& 31.5 \& 3 I \& 32.0 \& $32 \cdot 4$ \& $32 \cdot 8$ \& 33° \& $33^{\circ} 2$ \& $33^{\circ} 4$ \& 33.7 \& $33^{\circ} 9$ \& $34^{\circ} 2$

\hline $1 \cdot 72$ \& $30 \cdot 2$ \& $30 \cdot 3$ \& $30 \cdot 6$ \& $30 \cdot 8$ \& 31.2 \& 31.4 \& $3{ }^{\circ} 7$ \& 32.1 \& 32.5 \& $32 \cdot 7$ \& 32.9 \& $33^{\cdot 1}$ \& 33° \& 33° \& 33.9

\hline $1 \cdot 74$ \& 29.9 \& $30 \cdot$ \& $30 \cdot 3$ \& $30 \cdot 5$ \& $30 \cdot 9$ \& 31.1 \& 31.4 \& 31-8 \& $32 \cdot 2$ \& 32.4 \& $32 \cdot 6$ \& $32 \cdot 8$ \& $33^{\circ} \mathrm{I}$ \& 33° \& $33 \cdot 6$

\hline 1
7
1 \& 29.6 \& 29.7 \& $30 \cdot$ \& $30 \cdot 2$ \& $30 \cdot 6$ \& 30% \& $3 \mathrm{I} \cdot 2$ \& 31.5 \& $3 \mathrm{r}^{\circ} 9$ \& $32 \cdot 1$ \& $32 \cdot 3$ \& $32 \cdot 5$ \& $32 \cdot 8$ \& $33^{\circ} \mathrm{O}$ \& $33^{\circ} 3$

\hline 1'78 \& 29.3 \& 29.4 \& 29.7 \& $30 \cdot$ \& $30 \cdot 3$ \& $30 \cdot 6$ \& $30 \cdot 9$ \& $3 \mathrm{I} \cdot 2$ \& $3 \mathrm{~F} \cdot 6$ \& 31.8 \& 32.0 \& $32 \cdot 2$ \& 32.5 \& 32.7 \& 33°

\hline 1.80 \& $29 \cdot 1$ \& $29 \cdot 1$ \& 29.4 \& 297 \& $30 \cdot 0$ \& $30 \cdot 3$ \& $30 \cdot 6$ \& $30 \cdot 9$ \& 3'3 \& 315 \& 317 \& $31 \cdot 9$ \& $32 \cdot 2$ \& $32 \cdot 4$ \& $32 \cdot 7$

\hline 1.82 \& 28.8 \& $28 \cdot 9$ \& 29° \& 29.4 \& 29.8 \& $30 \cdot$ \& $30 \cdot 3$ \& $30 \cdot 7$ \& 3 r - \& 31.2 \& 31.4 \& $31^{\circ} 7$ \& 3 \& $32 \cdot 1$ \& $32 \cdot 4$

\hline 1.84

1.86 \& 28.5 \& $28 \cdot 6$ \& 28.9 \& $29 \cdot 2$ \& 29.5 \& 29.7 \& $30 \cdot$ \& $30 \cdot 4$ \& $30 \cdot 7$ \& $30 \cdot 9$ \& $31 \cdot 2$ \& 31.4 \& 31. \& 31 \& $32 \cdot 1$

\hline I.86 \& 28.3 \& 28.4 \& 28.6 \& 28.9 \& $29^{\circ} 2$ \& 29.5 \& $29 \cdot 8$ \& $30 \cdot 1$ \& $30 \cdot 5$ \& $30 \cdot 7$ \& $30 \cdot 9$ \& $31 \cdot 1$ \& $3 \mathrm{I} \cdot 3$ \& 3 I \& $3 \mathrm{I} \cdot 8$

\hline I•88 \& 28. \& 28 \& 28.4 \& $28 \cdot 6$ \& 29° \& 29.2 \& 29.5 \& $29 \cdot 8$ \& $30 \cdot 2$ \& $30 \cdot 4$ \& $30 \cdot 6$ \& $30 \cdot 8$ \& $3 \mathrm{I} \cdot \mathrm{I}$ \& 31.3 \& $3{ }^{1} 6$

\hline 1×90 \& 27.8 \& $27 \cdot 8$ \& 28.1 \& 28.4 \& $28 \cdot 7$ \& 29.0 \& 29.3 \& $29 \cdot 6$ \& 29.9 \& $30 \cdot 1$ \& $30 \cdot 4$ \& $30 \cdot 6$ \& $30 \cdot 8$ \& $3{ }^{\circ} \mathrm{O}$ \& 31*3

\hline $1 \cdot 92$ \& 27.5 \& $27 \cdot 6$ \& 27.9 \& $28 \cdot 1$ \& 28.4 \& $28 \cdot 7$ \& 29° \& $29 \cdot 3$ \& $29^{\prime} 7$ \& 29.9 \& $30 \cdot 1$ \& $30 \cdot 3$ \& $30 \cdot 5$ \& $30 \cdot 8$ \& $31 \cdot 0$

\hline $1 \cdot 94$ \& 27.3 \& $27^{\circ} 4$ \& $27 \cdot 6$ \& 27.9 \& $28 \cdot 2$ \& $28 \cdot 5$ \& $28 \cdot 7$ \& $29^{\circ} \mathrm{I}$ \& 29.4 \& $29 \cdot 6$ \& 29.8 \& $30 \cdot 1$ \& $30 \cdot 3$ \& $30 \cdot 5$ \& $30 \cdot 8$

\hline 1.96 \& 27° \& $27^{1} 1$ \& $27^{\circ} 4$ \& $27 \cdot 6$ \& 28.0 \& 28.2 \& $28 \cdot 5$ \& 28.8 \& 29.2 \& 29.4 \& $29 \cdot 6$ \& 29.8 \& 30° \& $30 \cdot 3$ \& $30 \cdot 5$

\hline $1 \cdot 98$ \& 26.8 \& 26.9 \& $27 \cdot 2$ \& 27.4 \& 27.7 \& 28.0 \& $28 \cdot 3$ \& $28 \cdot 6$ \& 29° \& 29.1 \& 29.3 \& 29.5 \& 29.8 \& $30 \cdot 0$ \& $30 \cdot 2$

\hline
\end{tabular}

Table 0.

AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.

Azimuth is named N or S according to the name of the A and B correction.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { A and B } \\
& \text { Cor- } \\
& \text { rection. }
\end{aligned}
$$} \& \multicolumn{15}{|c|}{Latitudes.}

\hline \& 00° \& 5° \& 10° \& 13° \& 18° \& 18° \& 20° \& 22° \& 24° \& 25° \& 28° \& 27° \& 28° \& 29° \& 80°

\hline \multicolumn{16}{|c|}{Azimuths.}

\hline , \& \bigcirc \& - \& \& \& \& - \& \& \& - \& \& \& \& \& \& \bigcirc

\hline $2 \cdot 00$ \& $26 \cdot 6$ \& $26 \cdot 7$ \& 26.9 \& 27.2 \& 27.5 \& 27.7 \& 28.0 \& 28.3 \& $28 \cdot 7$ \& $28 \cdot 9$ \& 29.1 \& 29.3 \& 29.5 \& 29`8 \& 30\%

\hline 2.05 \& $26 \cdot 0$ \& $26 \cdot 1$ \& 26.4 \& 26.6 \& 26.9 \& 27.2 \& $27^{\circ} 4$ \& 27% \& $28 \cdot 1$ \& $28 \cdot 3$ \& 28.5 \& $28 \cdot 7$ \& 28.9 \& 29^{-1} \& 29.4

\hline $2 \cdot 10$ \& 25.5 \& 25.5 \& $25^{\circ} 8$ \& $26 \cdot 0$ \& 26.4 \& $26 \cdot 6$ \& 26.9 \& 27^{2} \& 275 \& 277 \& 27.9 \& $28 \cdot 1$ \& $28 \cdot 3$ \& 28.6 \& 28.8

\hline 2.15 \& $24^{\circ} 9$ \& 25° \& 25.3 \& 25.5 \& 25.8 \& $26 \cdot 1$ \& $26 \cdot 3$ \& $26 \cdot 6$ \& 27° \& $27^{2} 2$ \& 27.4 \& 27.6 \& $27 \cdot 8$ \& 28.0 \& 28.2

\hline 2.20 \& $24^{\circ} 4$ \& 24.5 \& $24^{\circ} 8$ \& $25^{\circ} \mathrm{O}$ \& 25.3 \& $25^{\circ} 5$ \& 25.8 \& $26^{1} 1$ \& 26.5 \& $26 \cdot 6$ \& $26 \cdot 8$ \& $27^{\circ} \mathrm{O}$ \& $27^{\circ} 2$ \& 27.5 \& 277

\hline 2.25 \& $24^{\circ} \mathrm{O}$ \& $24^{\circ} \mathrm{O}$ \& 24.3 \& 24.5 \& 24.8 \& $25^{\circ} \mathrm{O}$ \& $25^{\circ} 3$ \& 25^{6} \& $25^{\circ} 9$ \& 26.1 \& $26 \cdot 3$ \& 26.5 \& 26.7 \& $26 \cdot 9$ \& $27^{\circ} 2$

\hline 2.30 \& 23.5 \& $23 \cdot 6$ \& $23 \cdot 8$ \& $24^{\circ} \mathrm{O}$ \& $24^{\circ} 3$ \& $24^{6} 6$ \& 24° \& 25^{-1} \& $25^{\circ} 5$ \& $25 \cdot 6$ \& $25 \cdot 8$ \& $26 \cdot$ \& $26 \cdot 2$ \& 26.4 \& $26 \cdot 7$

\hline 2.40 \& $22 \cdot 6$ \& 22.7 \& 22.9 \& 23^{2} \& 23.4 \& 23.7 \& 23.9 \& 24^{-2} \& 24.5 \& $24^{\circ} 7$ \& $24^{\circ} 9$ \& $25^{\circ} \mathrm{I}$ \& $25^{\circ} 3$ \& 25.5 \& $25^{\circ} 7$

\hline 2.50 \& 21.8 \& 21.9 \& $22 \cdot 1$ \& $22 \cdot 3$ \& 22.6 \& 22.8 \& $23 \cdot 1$ \& 23.3 \& $23 \cdot 6$ \& $23 \cdot 8$ \& $24^{\circ} \mathrm{O}$ \& 24^{-2} \& $24^{\circ} 4$ \& $24^{\circ} 6$ \& $24^{\circ} 8$

\hline $2 \cdot 60$ \& $21 \cdot 0$ \& 2I'I \& 21.3 \& 215 \& 21•8 \& 22.0 \& $22 \cdot 3$ \& 22.5 \& 22.8 \& $23^{\circ} \mathrm{O}$ \& $23^{\circ} 2$ \& 23.3 \& 23.5 \& 23.7 \& 23.9

\hline \& \& \& 20 \& 20•8 \& I'I \& $21 \cdot 3$ \& 5 \& $21 \cdot 8$ \& $22 \cdot 1$ \& 22.2 \& 22 \& $22 \cdot 6$ \& $22 \cdot 8$ \& 23° \& 23^{2}

\hline 2.80 \& 19.7 \& 19*7 \& 19.9 \& $20 \cdot 1$ \& 20.4 \& $20 \cdot 6$ \& $20 \cdot 8$ \& $2 \mathrm{I} \cdot \mathrm{I}$ \& 21.4 \& 21.5 \& 21.7 \& 21.8 \& 22.0 \& $22 \cdot 2$ \& 22.4

\hline $2 \cdot 90$ \& 19.0 \& 19•1 \& $19 \cdot 3$ \& 19.5 \& $19 \cdot 7$ \& 19.9 \& $20 \cdot 2$ \& $20 \cdot 4$ \& $20 \% 7$ \& 20.8 \& $21^{\circ} \mathrm{O}$ \& 21.2 \& 21.3 \& 21.5 \& 21.7

\hline $3 \cdot 00$ \& 18 \& 18.5 \& 18.7 \& 18.9 \& 19 I \& 193 \& 19.5 \& 19.8 \& $20 \cdot 0$ \& 20.2 \& $20 \cdot 3$ \& $20 \cdot 5$ \& $20 \cdot 7$ \& $20 \cdot 9$ \& 21.1

\hline $3 \cdot 10$ \& $17^{\circ} 9$ \& 17% \& $18 \cdot 1$ \& $18 \cdot 3$ \& $18 \cdot 6$ \& 18.7 \& 18.9 \& 19.2 \& 19.4 \& 19.6 \& 19.7 \& 19.9 \& $20 \cdot 1$ \& $20 \cdot 2$ \& $20 \cdot 4$

\hline $3 \cdot 20$ \& 17.4 \& 174 \& 17.6 \& 17.8 \& 18.0 \& 18.2 \& 18.4 \& $18 \cdot 6$ \& $18 \cdot 9$ \& $19^{\circ} 0$ \& 19*2 \& 19.3 \& 19.5 \& 197 \& 19.8

\hline 3.30 \& 16.9 \& 16.9 \& $17^{\circ} 1$ \& 17.3 \& 17.5 \& 177 \& 179 \& $18 \cdot 1$ \& 18.4 \& $18 \cdot 5$ \& $18 \cdot 6$ \& 18.8 \& 18.9 \& 19 I \& 19.3

\hline 3.40 \& 16.4 \& 16.4 \& $16 \cdot 6$ \& 16.8 \& 17° \& 17.2 \& 17.4 \& 17.6 \& 17.8 \& 18.0 \& 18.1 \& $18 \cdot 3$ \& $18 \cdot 4$ \& $18 \cdot 6$ \& 18.8

\hline 3.60 \& 15.5 \& 15.6 \& 15.8 \& 15.9 \& 16.1 \& $16 \cdot 3$ \& 16.5 \& 16.7 \& 16.9 \& $17{ }^{\circ}$ \& 17.2 \& 173 \& 17.5 \& 17.6 \& 17.8

\hline $3 \cdot 80$ \& 14.7 \& 14.8 \& 15% \& 15^{\prime} I \& 15.3 \& 15.5 \& $15 \cdot 6$ \& 15.8 \& 16. 1 \& 16.2 \& 16.3 \& $16 \cdot 5$ \& 16.6 \& $16 \cdot 7$ \& 16.9

\hline 4.00 \& \& 14.1 \& 14.2 \& $14^{\circ} 4$ \& 14.6 \& 14.7 \& 14.9 \& 15* \& 15.3 \& 15.4 \& 15.5 \& $15^{\prime} 7$ \& $15 \cdot 8$ \& 16.0 \& 16.1

\hline $4 \cdot 20$ \& 13 \& 13.4 \& 13.6 \& 13.7 \& 13.9 \& $14^{\circ} \mathrm{I}$ \& $14^{\circ} 2$ \& 14.4 \& 14.6 \& $14^{*} 7$ \& 14.8 \& 15° \& $15^{\circ} \mathrm{I}$ \& 15.2 \& 15.4

\hline 4.40 \& 12.8 \& 12.9 \& $13^{\circ} \mathrm{O}$ \& 13.1 \& 13.3 \& 13.4 \& 13.6 \& 13.8 \& $14^{\circ} \mathrm{O}$ \& I4.I \& 14.2 \& 14.3 \& 14.4 \& 14.6 \& $14^{\circ} 7$

\hline $4 \cdot 60$ \& 12 \& 12.3 \& 12.4 \& 12.6 \& 12.7 \& 12.9 \& 13.0 \& 13.2 \& 13.4 \& 13.5 \& 13.6 \& 13.7 \& $13 \cdot 8$ \& $14^{\circ} \mathrm{O}$ \& $14^{\circ} 1$

\hline $4 \cdot 80$ \& II.8 \& Ir 8 \& II9 \& 12.1 \& 12.2 \& 12.4 \& 12.5 \& 12.7 \& 12.8 \& 12.9 \& $13^{1} 1$ \& 13.2 \& 13.3 \& 13.4 \& 13.5

\hline 5.00 \& II'3 \& 1 \& II'5 \& II•6 \& II• \& II'9 \& - \& 12.2 \& $12 \cdot 3$ \& 12.4 \& 12.5 \& 12.7 \& 12.8 \& 12.9 \& 13.0

\hline $5 \cdot 50$ \& $10 \cdot 3$ \& $10 \cdot 3$ \& $10 \cdot 5$ \& $10 \cdot 6$ \& 10.7 \& 10.8 \& 10 \& $1 \cdot 1$ \& II* 3 \& II• 3 \& 11.4 \& Ir 5 \& r \& II'7 \& II'9

\hline 6.00 \& 9.5 \& 9.5 \& $9 \cdot 6$ \& 9.7 \& $9 \cdot 8$ \& 9.9 \& $0 \cdot 1$ \& $10 \cdot 2$ \& $10 \cdot 3$ \& 10.4 \& $10 \cdot 5$ \& 10.6 \& $10 \cdot 7$ \& $10 \cdot 8$ \& $10 \cdot 9$

\hline $6 \cdot 50$ \& $8 \cdot 7$ \& $8 \cdot 8$ \& $8 \cdot 9$ \& $9 \cdot 0$ \& $9^{8} 1$ \& $9 \cdot 2$ \& $9 \cdot 3$ \& 9.4 \& 9.6 \& 9.6 \& 97 \& $9 \cdot 8$ \& $9 \cdot 9$ \& $10 \cdot 0$ \& $10 \cdot 1$

\hline 7.00 \& $8 \cdot \mathrm{I}$ \& $8 \cdot 2$ \& $8 \cdot 3$ \& $8 \cdot 3$ \& $8 \cdot 5$ \& $8 \cdot 5$ \& $8 \cdot 6$ \& $8 \cdot 8$ \& 8.9 \& $9 \cdot 0$ \& 9.0 \& $9 \cdot 1$ \& $9 \cdot 2$ \& 93 \& 9.4

\hline 8.0 \& $7 \cdot 1$ \& $7{ }^{\circ} 2$ \& $7 \cdot 2$ \& 7.3 \& 7.4 \& 7.5 \& $7 \cdot 6$ \& 77 \& 7.8 \& 779 \& $7{ }^{79}$ \& $8 \cdot 0$ \& $8 \cdot 1$ \& $8 \cdot \mathrm{I}$ \& $8 \cdot 2$

\hline 90 \& $6 \cdot 3$ \& 6.4 \& 6.4 \& $6 \cdot 5$ \& 6.6 \& 6.7 \& $6 \cdot 7$ \& $6 \cdot 8$ \& 6.9 \& $7{ }^{\circ}$ \& 7.0 \& $7 \cdot 1$ \& $7 \cdot 2$ \& $7 \cdot 2$ \& 73

\hline 100 \& 5.7 \& 57 \& $5 \cdot 8$ \& 5.9 \& $5 \cdot 9$ \& 6.0 \& 6.I \& 6.2 \& $6 \cdot 2$ \& $6 \cdot 3$ \& $6 \cdot 3$ \& $6 \cdot 4$ \& $6 \cdot 5$ \& 6.5 \& $6 \cdot 6$

\hline Ir ${ }^{1}$ \& $5 \cdot 2$ \& $5 \cdot 2$ \& 5.3 \& $5 \cdot 3$ \& $5 \cdot 4$ \& 5.5 \& 5.5 \& $5 \cdot 6$ \& 5.7 \& 5.7 \& $5 \cdot 8$ \& $5 \cdot 8$ \& 5.9 \& 5.9 \& 6.0

\hline 12.0 \& $4 \cdot 8$ \& 4.8 \& $4 \cdot 8$ \& 4.9 \& $5 \cdot 0$ \& 5.0 \& 5.1 \& $5 \cdot 1$ \& 5.2 \& $5 \cdot 3$ \& $5 \cdot 3$ \& $5 \cdot 3$ \& 5.4 \& 5.5 \& 5.5

\hline $13^{\circ} 0$ \& 4.4 \& 4.4 \& 4.5 \& 4.5 \& $4 \cdot 6$ \& $4 \cdot 6$ \& 4.7 \& $4 \cdot 7$ \& $4 \cdot 8$ \& $4{ }^{\circ} 9$ \& 4.9 \& 4.9 \& $5 \cdot 0$ \& $5 \cdot 0$ \& $5 \cdot 1$

\hline 15° \& $3 \cdot 8$ \& $3 \cdot 8$ \& 3.9 \& 3.9 \& $4^{\circ} 0$ \& $4^{\circ} \mathrm{O}$ \& 4.1 \& $4 \cdot 1$ \& 4.2 \& 4.2 \& 4.2 \& 4.3 \& 4.3 \& 4.4 \& 4.4

\hline 17.0 \& 3.4 \& 3.4 \& 3.4 \& 3.5 \& 3.5 \& 3.5 \& 3.6 \& 3.6 \& 3.7 \& 3.7 \& 3.7 \& $3 \cdot 8$ \& 3.8 \& $3 \cdot 8$ \& 3.9

\hline $20 \cdot 0$ \& 2.9 \& 2.9 \& 2.9 \& 2.9 \& 3.0 \& 3.0 \& 3.0 \& 3.1
2.5 \& 3.1
2.5 \& 3.2
2.5 \& 3.2
2.5 \& 3.2 \& 3.2
2.6 \& 3.3
2.6 \& 3.3
2.6

\hline 25° \& $2 \cdot 3$ \& $2 \cdot 3$ \& $2 \cdot 3$ \& 2.4 \& 2.4 \& 2.4 \& 2.4 \& 2.5 \& 2.5 \& 2.5 \& 2.5 \& 6 \& 2.6 \& 2.6 \& 2.6

\hline $30 \cdot 0$ \& 1 \& - \& 19 \& 2.0 \& $2 \cdot$ \& $2 \cdot$ \& $2 \cdot$ \& $2 \cdot 1$ \& $2 \cdot 1$ \& $2 \cdot 1$ \& $2 \cdot 1$ \& $2 \cdot 1$ \& 2.2 \& 2.2 \& 2.2

\hline $40 \cdot 0$ \& 14 \& 1.4 \& 1.5 \& 15 \& 1.5 \& 1.5 \& $1 \cdot 5$ \& 1.5 \& - 6 \& 1.6 \& I. 6 \& 1 \& - 6 \& r 6 \& 1.7

\hline $50 \cdot 0$ \& I-1 \& 1.2 \& 1.2 \& 1.2 \& \& 1.2 \& 1.2 \& $1 \cdot 2$ \& $1 \cdot 3$ \& r 3 \& $1 \cdot 3$ \& 1 \& $1 \cdot 3$ \& $1 \cdot 3$ \& $1 \cdot 3$

\hline $70 \cdot$ \& $0 \cdot 8$ \& 0.8 \& 0.8 \& 8 \& \bigcirc \& 09 \& \bigcirc \& - 6 \& - 9 \& - 9 \& - 6 \& - 9 \& $0 \cdot 9$ \& $0 \cdot 9$ \& $0 \cdot 9$

\hline 100 0 \& 0.6 \& $0 \cdot 6$ \& $0 \cdot 6$ \& 0.6 \& 0.6 \& 0.6 \& 0.6 \& 0.6 \& 0.6 \& 0.6 \& 0.6 \& 0.6 \& $0 \cdot 6$ \& 0.7 \& 0.7

\hline $150 \cdot 0$ \& 0.4 \& $0 \cdot 4$ \& $0 \cdot 4$ \& 0.4 \& 0.4 \& $0 \cdot 4$ \& 0.4 \& 0.4 \& 0.4 \& ${ }^{\circ} \cdot 4$ \& 0.4 \& 0.4 \& 0.4 \& 4 \& $0 \cdot 4$

\hline 2000 \& 0.3 \& $0 \cdot 3$ \& 0.3 \& 0.3 \& \bigcirc \& $0 \cdot 3$ \& $0 \cdot 3$ \& $\bigcirc \cdot 3$ \& $0 \cdot 3$ \& \bigcirc \& $0 \cdot 3$ \& $0 \cdot 3$ \& $0 \cdot 3$ \& $0 \cdot 3$ \& \bigcirc

\hline 3000 \& $0 \cdot 2$ \& $0 \cdot 2$ \& $0 \cdot 2$ \& $0 \cdot 2$ \& $0 \cdot 2$ \& $0 \cdot 2$ \& $0 \cdot 2$ \& $0 \cdot 2$ \& $0 \cdot 2$ \& 0.2 \& $0 \cdot 2$ \& 0.2 \& O.2 \& $0 \cdot 2$ \& 0.2

\hline $400 \cdot 0$ \& ${ }^{\circ} 1$ \& -1 \& $\bigcirc \cdot 1$ \& $0 \cdot 1$ \& $0 \cdot 1$ \& $0 \cdot 2$ \& $\cdot 2$ \& $0 \cdot 2$ \& 0.2 \& O.2 \& $0 \cdot 2$ \& O. 2 \& 0.2 \& | 0.2 |
| :--- |
| 0.1 | \& $O2$

\hline 800° \& $0 \cdot 1$ \& $0 \cdot 1$ \& $0 \cdot 1$ \& $0 \cdot 1$ \& $0 \cdot 1$ \& $0 \cdot 1$ \& $0 \cdot 1$ \& $0 \cdot 1$ \& $0 \cdot 1$ \& $0 \cdot 1$ \& 01 \& $\bigcirc 1$ \& 01 \& 0 \&

\hline
\end{tabular}

Table C.

AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.

Azimuth is named N or S according to the name of the A and B correction.

	LATITUDES.														
	31°	32°	33°	34°	35°	36°	37°	38°	39°	40°	41°	42°	43°	44°	45°
Azmoths.															
															\bigcirc
-000	90.0	$90 \cdot$	90*	90*	90.0	90.0	90°	\bigcirc	$90^{\circ} 0$	$90 \cdot 0$	$90 \cdot 0$	90\%	90*	$90 \cdot 0$	$90 \cdot 0$
-010	89.5	89.5	89.5	89.5	89.5	$89 \cdot 5$	$89^{\circ} 5$	89.5	$89 \cdot 6$	$89 \cdot 6$	$89 \cdot 6$	$89 \cdot 6$	$89 \cdot 6$	89.6	$89 \cdot 6$
- 020	$89 \cdot 0$	89°	89.0	$89 \cdot 1$	$89 \cdot 1$	$89^{\circ} \mathrm{I}$	89'I	89 1	$89 \cdot 1$	89 I	$89 \cdot 1$	89•1	89.2	$89 \cdot 2$	89.2
. 030	88.5	88.5	$88 \cdot 6$	$88 \cdot 6$	$88 \cdot 6$	88.6	$88 \cdot 6$	$88 \cdot 6$	88.7	88.7	88.7	88.7	88.7	88.8	88.8
. 040	88.0	$88 \cdot 1$	88-1	$88 \cdot 1$	88.1	$88 \cdot 1$	$88 \cdot 2$	88.2	88.2	$88 \cdot 2$	$88 \cdot 3$	$88 \cdot 3$	$88 \cdot 3$	88.4	88.4
-050	87.5	$87 \cdot 6$	$87 \cdot 6$	$87 \cdot 6$	877	877 7	877	877	$87 \cdot 8$	87.8	$87 \cdot 8$	87.9	87.9	87.9	88.0
-060	$87 \cdot 1$	$87^{\circ} \mathrm{I}$	87 I	87°	87.2	87.2	87.3	87.3	87.3	87.4	87.4	87.4	87.5	87.5	$87 \cdot 6$
-070	86.6	$86 \cdot 6$	86.6	86.7	86.7	$86 \cdot 8$	$86 \cdot 8$	$86 \cdot 8$	$86 \cdot 9$	$86 \cdot 9$	87°	87°	87^{-1}	$87 \cdot 1$	87.2
-080	$86 \cdot 1$	$86 \cdot 1$	86.2	$86 \cdot 2$	$86 \cdot 3$	86.3	$86 \cdot 3$	86.4	86.4	$86 \cdot 5$	86.5	$86 \cdot 6$	86.7	86.7	86.8
-090	$85 \cdot 6$	$85 \cdot 6$	85.7	$85 \cdot 7$	$85 \cdot 8$	$85 \cdot 8$	85.9	85.9	86\%	86.I	$86 \cdot \mathrm{I}$	86.2	$86 \cdot 2$	$86 \cdot 3$	$86 \cdot 4$
-100					85				$85 \cdot 6$						86*0
- 10	$84^{\circ} 6$	$84^{\prime} 7$	84.7	84.8	84.9	$84^{\circ} 9$	85°	85.0	$85 \cdot 1$	$85^{\prime} 2$	$85 \cdot 3$	$85 \cdot 3$	$85^{\circ} 4$	$85^{\circ} 5$	$85^{\cdot 6}$
'120	$84^{\circ} \mathrm{I}$	84°	84.3	84.3	84^{4}	84.5	84.5	84.6	84.7	84.7	84.8	$84^{\circ} 9$	85°	$85 \cdot 1$	$85^{\prime} \mathrm{I}$
- 130	$83 \cdot 6$	83.7	83.8	$83 \cdot 8$	83.9	$84^{\circ} \mathrm{O}$	84.1	84°	$84^{\circ} 2$	$84^{*} 3$	84°	$84^{\circ} 5$	$84^{\circ} 6$	84.7	$84^{\circ} 7$
- 140	$83 \cdot 2$	$83 \cdot 2$	83.3	83^{\prime}	83.5	83.5	$83^{\prime} 6$	83.7	83.8	83.9	84°	$84^{\text {- }}$	84°	84^{-2}	$84^{\circ} 3$
${ }^{1} 5$	82	$82 \cdot 8$	82.8	$82 \cdot 9$	83°	$83 \cdot 1$	83.2	83.3	83.4	83.4	83.5	$83 \cdot 6$	$83 \cdot 7$	83.8	83.9
-160	$82 \cdot 2$	82	8	82	$82 \cdot 5$	$82 \cdot 6$	82.7	$82 \cdot 8$	82.9	83°	$83 \cdot 1$	$83^{\circ} 2$	83.3	83.4	83.5
$\cdot 170$	8 r 7	$8 \mathrm{I} \cdot 8$	$8 \mathrm{r} \cdot 9$	$82 \cdot$	$82 \cdot 1$	$82 \cdot 2$	$82 \cdot 3$	82.4	$82 \cdot 5$	$82 \cdot 6$	$82^{\prime} 7$	82.8	82	83°	$83 \cdot 1$
-180	$8 \mathrm{r} \cdot 2$	81	8 r 4	$8 \mathrm{I} \cdot 5$	$8 \mathrm{I} \cdot 6$	8 r 7	$8 \mathrm{r} \cdot 8$	8r'9	82.	$82 \cdot 1$	$82 \cdot 3$	82.4	82.	$82 \cdot 6$	$82 \cdot 7$
-190	$80 \cdot 7$	80.8	$80 \cdot 9$	8r.0	$8 \mathrm{r} \cdot 2$	81.3	8 I 4	$8 \mathrm{r} \cdot 5$	$8 \mathrm{r} \cdot 6$	8r'7	$8 \mathrm{r} \cdot 8$	82.0	$82 \cdot \mathrm{I}$	82.2	$82 \cdot 3$
-200	80	80	$80 \cdot 5$	$80 \cdot 6$	$80 \cdot 7$	80•8	$80 \cdot 9$		$8 \mathrm{I} \cdot 2$	8r ${ }^{\text {3 }}$		$8 \mathrm{I} \cdot 5$	8 I 7	$8 \mathrm{I} \cdot 8$	-
$\cdot 210$	79	$79 \times$	$80 \cdot 0$	$80 \cdot 1$	$80 \cdot 2$	$80 \cdot 4$	$80 \cdot 5$	$80 \cdot 6$	$80 \cdot 7$	$80 \cdot 9$	8 r -	$8 \mathrm{r} \cdot \mathrm{I}$	$8 \mathrm{I} \cdot 3$	$8 \mathrm{I} \cdot 4$	$8 \mathrm{I} \cdot 6$
- 220	79	79.4	79.5	79.7	$79 \cdot 8$	$79 \cdot 9$	8 c -	$80 \cdot 2$	$80 \cdot 3$	$80 \cdot 4$	$80 \cdot 6$	$80 \cdot 7$	$80 \cdot 9$	8 I .	$8 \mathrm{I} \cdot 2$
$\cdot 230$	$78 \cdot 8$	79°	$79 \cdot 1$	79^{-2}	$79 \cdot 3$	$79 \cdot 5$	$79 \cdot 6$	79.7	79.9	80°	$80 \cdot 2$	$80 \cdot 3$	$80 \cdot 5$	$80 \cdot 6$	$80 \cdot 8$
240	78.4	$78 \cdot 5$	$78 \cdot 6$	$78 \cdot 7$	$78 \cdot 9$	79°	79 I	$79 \cdot 3$	$79^{\circ} 4$	$79 \cdot 6$	$79 \cdot 7$	$79^{\circ} 9$	80°	$80 \cdot 2$	$80 \cdot 4$
- 250	77.9	$78 \cdot 0$	$78 \cdot 2$	$78 \cdot 3$	78.4	$78 \cdot 6$	$78 \cdot 7$	$78 \cdot 9$	79°	$79^{\circ} 2$	$79 * 3$	79.5	$79 \cdot 6$	$79 \cdot 8$	$80 \cdot 0$
-260	77.4	$77 \cdot 6$	77×7	$77 \cdot 8$	78.0	$78 \cdot 1$	$78 \cdot 3$	78.4	$78 \cdot 6$	$78 \cdot 7$	$78 \cdot 9$	$79 \cdot 1$	$79 \cdot 2$	$79 \cdot 4$	$79 \cdot 6$
$\cdot 270$	$77^{\circ} \mathrm{O}$	$77^{\circ} \mathrm{I}$	$77 \cdot 2$	77.4	77.5	$77 \cdot 7$	$77 \cdot 8$	$78 \cdot 0$	$78 \cdot 1$	$78 \cdot 3$	$78 \cdot 5$	$78 \cdot 7$	$78 \cdot 8$	79°	79.2
- 280	$76 \cdot 5$	$76 \cdot 6$	$76 \cdot 8$	$76 \cdot 9$	$77^{\circ} \mathrm{I}$	77.2	$77 \cdot 4$	$77 \cdot 6$	77.7	77.9	$78 \cdot 1$	$78 \cdot 2$	$78 \cdot 4$	$78 \cdot 6$	78.8
- 290	76.0	$76 \cdot 2$	76.3	$76 \cdot 5$	$76 \cdot 6$	$76 \cdot 8$	77°	77^{1}	$77 \cdot 3$	77.5	$77 \cdot 7$	$77 \cdot 8$	$78 \cdot 0$	$78 \cdot 2$	78.4
'300	$75 \cdot 6$	$75^{\prime} 7$	$75 * 9$	$76 \cdot$	$76 \cdot 2$	$76 \cdot 4$	76.5	$76 \cdot 7$	$76 \cdot 9$	77^{1}	$77^{\circ} 2$	$77^{\circ} 4$	$77^{\circ} 6$	$77 \cdot 8$	$78 \cdot 0$
310	75.1	$75 \cdot 3$	$75 \cdot 4$	$75 \cdot 6$	75^{8}	$75^{\circ} 9$	$76 \cdot 1$	$76 \cdot 3$	$76 \cdot 5$	$76 \cdot 6$	$76 \cdot 8$	$77^{\circ} \mathrm{O}$	$77^{\circ} 2$	77.4	$77 \cdot 6$
-320	$74^{\circ} 7$	$74 \cdot 8$	75°	$75^{\prime} \mathrm{I}$	$75 \cdot 3$	$75^{\circ} 5$	$75^{\prime} 7$	$75 \cdot 8$	$76 \cdot$	$76 \cdot 2$	$76 \cdot 4$	$76 \cdot 6$	$76 \cdot 8$	77°	$78 \cdot 3$
-330	$74 \cdot 2$	74.4	74.5	74.7	74.9	$75^{\prime} \mathrm{I}$	$75^{\circ} 2$	75*	75°	$75^{\circ} 8$	$76 \cdot$	$76 \cdot 2$	$76^{\circ} 4$	$76 \cdot 6$	$76 \cdot 9$
-340	73.8	$73^{\circ} 9$	74.1	$74 \cdot 3$	74.4	$74 \cdot 6$	$74 \cdot 8$	75°	75^{2}	75.4	75^{6}	$75 \cdot 8$	$76 \cdot 0$	$76 \cdot 3$	$76 \cdot 5$
-350	$73 \cdot 3$	$73 \cdot 5$	$73 \cdot 6$	$73 \cdot 8$	74°	$74^{\circ} 2$	74.4	$74 \cdot 6$	$74 \cdot 8$	75°	$75^{\circ} 2$	$75^{\circ} 4$	$75 \cdot 6$	$75 \cdot 9$	$76 \cdot 1$
- 360	72.9	$73^{\circ} \mathrm{O}$	73.2	73.4	$73^{\circ} 6$	$73 \cdot 8$	74°	74.2	74.4	74.6	74.8	75°	75°	$75^{\circ} 5$	75.7
-370	72.4	$72 \cdot 6$	$72 \cdot 8$	$72 \cdot 9$	73.1	73.3	$73 \cdot 5$	73.7	74°	74.2	74.4	74°	74.9	$75^{\circ} \mathrm{I}$	$75^{\circ} 3$
-380	$72 \cdot$	$72 \cdot 1$	$72 \cdot 3$	$72 \cdot 5$	72.7	72.	73^{\prime} I	73.3	$73 \cdot 5$	$73 \cdot 8$	74.	74.2	745	74.	75°
-390	71.5	71×7	71.9	72.I	$72 \cdot 3$	$72 \cdot 5$	$72 \cdot 7$	$72 \cdot 9$	$73 \cdot 1$	73.4	$73 \cdot 6$	$73 \cdot 8$	$74^{\text {- }}$	$74 * 3$	74.6
'400	71×1	$71 \cdot 3$	71.5	717	7r*9	72'I	$72 \cdot 3$	$72 \cdot 5$	$72 \cdot 7$	73°	$73^{\circ} 2$	$73^{\circ} 4$	$73^{\prime} 7$	73×9	$74^{\circ} 2$
450	$70 \cdot 6$	$70 \cdot 8$	71.0	$7 \mathrm{I} \cdot 2$	71.4	7×6	$71 \cdot 9$	72-1	$72 \cdot 3$	72.6	$72 \cdot 8$	$73 \cdot 1$	73.3	$73 \cdot 6$	$73 \cdot 8$
- 420	$70 \cdot 2$	$70 \cdot 4$	$70 \cdot 6$	70*8	$7{ }^{\circ} \mathrm{O}$	71.2	$71 \cdot 5$	71.7	$7 \mathrm{I}^{\circ} 9$	$72 \cdot 2$	72.4	$72^{\prime} 7$	$72 \cdot 9$	$73^{\circ} 2$	73.5
-430	69.8	70°	$70 \cdot 2$	$70 \cdot 4$	$70 \cdot 6$	$70 \cdot 8$	71.0	71.3	$7{ }^{1} 5$	71.8	72.0	$72 \cdot 3$	$72 \cdot 5$	$72 \cdot 8$	$73^{\circ} \mathrm{I}$
- 440	$69 \cdot 3$	69.5	697	$70 \cdot 0$	$70 \cdot 2$	$70 \cdot 4$	$70 \cdot 6$	$70 \cdot 9$	71-1	71.4	71.6	759	$72 \cdot 2$	72.4	$72 \cdot 7$
-450	68.9	69 1	$69 * 3$	69*5	698	70°	$70^{\circ} 2$	$70 \cdot 5$	70'7	$7 \mathrm{r}^{\circ}$	$7{ }^{1} \cdot 2$	$71 \cdot 5$	71.	$72 \cdot 1$	72.3
-460	$68 \cdot 5$	$68 \cdot 7$	68.9	$69 \cdot 1$	69.4	$69 \cdot 6$	$69 \cdot 8$	$70 \cdot 1$	$70 \cdot 3$	$70 \cdot 6$	$70 \cdot 9$	$7 \mathrm{7} \cdot 1$	$7{ }^{\circ} 4$	$71 \cdot 7$	72°
$\cdot 470$	68. 5	$68 \cdot 3$	$68 \cdot 5$	$68 \cdot 7$	68.9	69.2	69.4	69.7	69.9	$70 \cdot 2$	$70 \cdot 5$	$70 \cdot 7$	$71 \cdot 0$	71.3	71.6
. 480	$67 \cdot 6$	67.9	68.1	$68 \cdot 3$	68.5	68.8	69.0	69.3	69.5 69.2	69.8 69.4	$70 \cdot 1$ 69.7	70.4	$70 \cdot 7$	71° $70 \cdot 6$	$71 \cdot 3$ $70 \cdot 9$
$\cdot 490$	67.2	67.4	67×7	$67 \% 9$	$68 \cdot 1$	68.4	$68 \cdot 6$	$68 \cdot 9$	69.2	69.4	697	70°	$70 \cdot 3$	$70 \cdot 6$	$70^{\circ} 9$

Table C.

AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.

Azimuth is named N or S according to the name of the A and B correction.

A and B rection.	Lati'tudes.														
	31^{ν}	32°	33°	24°	35°	36°			39°	40°		43°	43°	44°	45°
Azmmotas.															
															-
-500	$66 \cdot 8$	67.0	$67 \cdot 2$	67.5	67.7	68.0	68.2	$68 \cdot 5$	68.8	69°	$69 \cdot 3$	$69 \cdot 6$	$69^{\circ} 9$	$70 \cdot 2$	$70 \cdot 5$
-510	$66^{4} 4$	$66 \cdot 6$	$65 \cdot 8$	67.1	67.3	$67 \cdot 6$	67.8	$68 \cdot 1$	$68 \cdot 4$	$68 \cdot 7$	68.9	$69 \cdot 2$	$69 \cdot 5$	69.9	$70 \cdot 2$
-520	$66 \cdot$	$66 \cdot 2$	$66 \cdot 4$	66^{7}	66.9	67.2	67.4	677	68.0	$68 \cdot 3$	$68 \cdot 6$	68.9	69.2	$69 \cdot 5$	69•8
-530	65.6	$65^{\circ} 8$	66°	$66 \cdot 3$	$66 \cdot 5$	$66 \cdot 8$	$67 \cdot 1$	$67 \cdot 3$	$67 \cdot 6$	67.9	68.2	$68 \cdot 5$	68.8	69•I	69.5
-540	65.2	$65^{\circ} 4$	$65 \cdot 6$	$65 \cdot 9$	$66 \cdot 1$	66.4	$66^{7} 7$	66.9	67.2	67.5	$67 \cdot 8$	68. 1	68.4	$68 \cdot 8$	69•I
-	64	65°	5	$65^{\circ} 5$	65%	-	66	$66 \cdot 6$	$66^{*} 9$	67.2	67.5	8	$68 \cdot 1$	68.4	$68 \cdot 7$
. 560	64	64.5	64.8	$65^{\circ} \mathrm{I}$	$65^{\circ} 4$	$65 \cdot 6$	$65^{\circ} 9$	$66 \cdot 2$	$66 \cdot 5$	$66 \cdot 8$	$67 \cdot 1$	67.4	67%	68	68.4
-570	54°	$64^{\circ} 2$	64.5	$64^{\circ} 7$	65°	$65^{\circ} 2$	$65^{\circ} 5$	$65 \cdot 8$	66^{1}	66.4	66.7	67°	67.4	67%	$68 \cdot$
-50	63.6	$63 \cdot 8$	$64^{\circ} \mathrm{I}$	64.3	$64^{\circ} 6$	64.9	$65^{\circ} \mathrm{I}$	$65^{\circ} 4$	$65^{\prime} 7$	66°	66.4	66.7	67.0	67.4	67.7
-590	63.2	$63^{\circ} 4$	$63^{\circ} 7$.63.9	64.2	64.5	$64 \cdot 8$	$65^{\prime} \mathrm{I}$	$65^{\circ} 4$	$65 * 7$	66.	$66 \cdot 3$	66.7	67°	67.4
- 600		63°		$63 \cdot 6$	$63 \cdot 8$	$64^{\circ} \mathrm{I}$		$64 * 7$	65°	65.3	$65^{\circ} 6$	-	6	$66 \cdot 7$	\%
-610	62	$62 \cdot 6$	$62 \cdot 9$	63.2	63.4	63.7	64°	$64 \cdot 3$	$64 \cdot 6$	65°	$65 \cdot 3$	$65 \cdot 6$	66.0	$66 \cdot 3$	66.7
-620	62.0	$62 \cdot 3$	62.5	$62 \cdot 8$	$63 \cdot 1$	$63^{\circ} 4$	637	64°	$64 \cdot 3$	$64 \cdot 6$	$64^{\circ} 9$	$65 \cdot 3$	$65 \cdot 6$	66	$66 \cdot 3$
. 630	61.6	61.9	$62 \cdot 1$	62.4	$62 \cdot 7$	63°	$63 \cdot 3$	63.6	63.9	64.2	$64 \cdot 6$	64.9	$65 \cdot 3$	$65 \cdot 6$	$66 \cdot$
-640	6r*3	61.5	6I.8	$62 \cdot \mathrm{I}$	$62 \cdot 3$	$62 \cdot 6$	62.9	б3.2	$63 \cdot 6$	63.9	$64^{\circ} 2$	$64 \cdot 6$	64.9	65.3	65%
- 650			61	6r.7	62.0	$62 \cdot 3$	$62 \cdot 6$	62.9	$63^{2} 2$	63.5	63.9	64.2	6		6.53
-660	$60 \cdot 5$	$60 \cdot 8$	$6 \mathrm{I}^{\circ} \mathrm{O}$	$6 \mathrm{I} \cdot 3$	6r* 6	61.9	62.2	62.5	$62 \cdot 8$	63.2	$63^{\circ} 5$	63.9	64^{2}	$64 \cdot 6$	65°
-670	60. 1	$60 \cdot 4$	60%	$60 \cdot 9$	6r ${ }^{2}$	6r 5	6I.8	$62 \cdot 2$	62.5	$62 \cdot 8$	$63^{\circ} 2$	63.5	63.9	$64 \cdot 3$	64.7
-680	59.8	$60 \cdot 0$	$60 \cdot 3$	$60 \cdot 6$	$60 \cdot 9$	$6 \mathrm{I} \cdot 2$	61.5	$6 \mathrm{I} \cdot 8$	$62 \cdot 1$	62.5	$62 \cdot 8$	63.2	63.6	63.9	64.3
- 690	59	59.7	$59 * 9$	$60 \cdot 2$	$60 \cdot 5$	$60 \cdot 8$	$6 \mathrm{I} \cdot \mathrm{I}$	61.5	$61 \cdot 8$	$62 \cdot 1$	62.5	62.9	$63^{\circ} 2$	$63 \cdot 6$	64°
700	59	59	59	59*9	$60 \cdot 2$	5	$60 \cdot 8$	61×1	61.5	$6 \mathrm{r} \cdot 8$	62.2	62.5	62	63.3	63.7
710	58.7	58.9	$59^{\circ} 2$	59.5	59.8	$60^{\circ} \mathrm{I}$	$60 \cdot 4$	$60 \cdot 8$	$6 \mathrm{I} \cdot \mathrm{I}$	$61 \cdot 5$	6	$62 \cdot 2$	62.	62.9	63.3
720	$58 \cdot 3$	$58 \cdot 6$	58.9	59.2	59.5	59•8	$60 \cdot 1$	$60 \cdot 4$	$60 \cdot 8$	6I•I	$6 \mathrm{I}^{\circ}$	6I•9	62.	$62 \cdot 6$	63°
'730	$58 \cdot 0$	$58 \cdot 2$	$58 \cdot 5$	58.8	59.1	59.4	$59 \cdot 8$	$60 \cdot 1$	$60 \cdot 4$	$60 \cdot 8$	$1 \cdot 1$	${ }^{61} \cdot 5$	$6 \mathrm{I}^{\circ} 9$	62	62.7
'740	57.6	57%	$58 \cdot 2$	58.5	$58 \cdot 8$	$59^{\circ} \mathrm{I}$	59.4	$59 \cdot 8$	$60 \cdot 1$	$60 \cdot 5$	$60 \cdot 8$	$6 \mathrm{I}^{2} 2$	$6 \mathrm{r} \cdot 6$	62.	62.4
				$58 \cdot 1$		$58 \cdot 8$	$59^{\circ} 1$	$59^{\circ} 4$	$59 \cdot 8$	60'1	$60 \cdot 5$	$60 \cdot 9$	61.	617	62.1
$\cdot 760$	56	$57^{\circ} 2$	57.5	$57 \cdot 8$	$58 \cdot 1$	58.4	$58 \cdot 7$	59.1	59.4	59.8	$60 \cdot 2$	$60 \cdot 5$	60	$6 \mathrm{r} \cdot 3$	6 I 7
$\cdot 770$	$56 \cdot 6$	56.9	$57 \cdot 1$	57.4	57.8	$58 \cdot 1$	58.4	58.8	59'1	59.5	$59 \cdot 8$	$60 \cdot 2$	60		$6 \mathrm{I} \cdot 4$
780	56.2	$56 \cdot 5$	$56 \cdot 8$	$57^{\circ} \mathrm{I}$	57.4	57.7	$58 \cdot 1$	58.4	58.8	59.1	59.5	$59^{\circ} 9$	$60 \cdot 3$	$60 \cdot 7$	$61 \cdot 1$ 60.8
'790	$55^{\circ} 9$	$56 \cdot 2$	56.5	$56 \cdot 8$	57^{1}	57.4	57.8	$58^{\circ} \mathrm{I}$	58.5	$58 \cdot 8$	$59^{\circ} 2$	$59^{\circ} 6$	$60 \cdot$	$60^{\circ} 4$	-
-800	55	$55^{\circ} 8$	$56 \cdot 1$	$56 \cdot 4$	56.8	57*1	57.4	$57 \cdot 8$	$58 \cdot \mathrm{I}$	$58 \cdot 5$	$58 \cdot 9$	$59^{*} 3$	59*7	60. 1	$60 \cdot 5$
-810	$55^{\circ} 2$	55.5	$55 \cdot 8$	$56 \cdot \mathrm{I}$	$56 \cdot 4$	$56 \cdot 8$	57^{1}	57.4	$57 \cdot 8$	$58 \cdot 2$	$58 \cdot 6$	59°	59.4	$59 \cdot 8$	$60 \cdot 2$
-820	$54^{\circ} 9$	55°	55:5	$55 \cdot 8$	$56 \cdot 1$	$56 \cdot 4$	$56 \cdot 8$	$57 \cdot 1$	57.5	$57 * 9$	$58 \cdot 2$	$58 \cdot 6$	$59^{\circ} \mathrm{O}$	59	$59^{\circ} 9$
. 830	54.6	54°	$55^{\circ} 2$	$55^{\circ} 5$	$55^{\circ} 8$	$56 \cdot 1$	56.5	$56 \cdot 8$	57.2	$57^{\circ} 6$	57.9	$58 \cdot 3$	$58 \cdot 7$	59°	$59 \cdot 6$
-840	54°	$54^{\circ} 5$	$54 * 8$	$55^{\circ} \mathrm{I}$	$55^{\circ} 5$	55^{8}	$56 \cdot 1$	$56 \cdot 5$	56.9	$57^{\circ} 2$	$57 \cdot 6$	58.0	$58 \cdot 4$	$58 \cdot 9$	59.3
-850	53	54	54.5	54.8	$55^{\circ} 2$	$55 \cdot 5$	55^{8}	$56 \cdot 2$	$56 \cdot 6$	$56 \cdot 9$	57.3	57^7	$58 \cdot 1$	5	59°
-860	$53 \cdot 6$	53.9	54°	$54^{\circ} 5$	$54^{\circ} 8$	$55 \cdot 2$	$55 \cdot 5$	$55^{\circ} 9$	$56 \cdot 2$	$56 \cdot 6$	$57^{\circ} \mathrm{O}$	$57^{\circ} 4$	57°	58	$58 \cdot 7$
-870	53.3	$53^{\circ} 6$	53.9	$54 \cdot 2$	54.5	54.9	55^{2}	$55^{\circ} 6$	$55^{\circ} 9$	$56 \cdot 3$	$56 \cdot 7$	$57 \cdot 1$	57.5	58	$58 \cdot 4$
-880	53°	$53^{\circ} 3$	$53 \cdot 6$	$53^{\circ} 9$	$54^{\circ} 2$	$54 \cdot 6$	$54^{\circ} 9$	$55^{\circ} 3$	$55^{\circ} 6$	$56 \cdot 0$	$56^{\circ} 4$	$56 \cdot 8$ $56 \cdot 5$	57.2	57% 57	$58 \cdot 1$ 57
-890	$52 \cdot 7$	53°	53.3	$53 \cdot 6$	53.9	$54^{\circ} \mathrm{C}$	$54 \cdot 6$	$55^{\circ} \mathrm{O}$	55.3	55.7	$56 \cdot 1$	56.5	56.9	57.4	$57 \cdot 8$
-900	52.4	$52 \cdot 6$	53°	53.3	53.6	53.9	54.3	$54^{\circ} 7$	55°	$55^{\circ} 4$	$55 \cdot 8$	$56 \cdot 2$	$56 \cdot 6$	57^{\prime}	57.5
-910	$52 \cdot$	$52 \cdot 3$	$52 \cdot 6$	53°	53.3	$53 \cdot 6$	$54^{\circ} \mathrm{O}$	54.4	54.7	$55^{\circ} \mathrm{I}$	55.5	$55^{\circ} 9$	$56 \cdot 4$	56	$57^{\circ} 2$
-920	51.7	52.0	$52 \cdot 3$	$52 \cdot 7$	$53^{\circ} \mathrm{O}$	53.3	$53^{\circ} 7$	$54^{\circ} \mathrm{I}$	54.	$54^{\circ} 8$	55°	55	$56 \cdot 1$	$56 \cdot 5$	$57^{\circ} \mathrm{O}$
'930	$5 \mathrm{I} \cdot 4$	$51^{\prime} 7$	52°	52.4	$52 \cdot 7$	53°	53.4	$53 \cdot 8$	$54^{\circ} \mathrm{I}$	54.5	$54^{\circ} 9$	$55^{\circ} 4$	$55^{\circ} 8$	56°	$56 \cdot 7$
'940	51•1	$51 \cdot 4$	51'7	$52 \cdot 1$	52.4	52.7	$53 \cdot 1$	$53 \cdot 5$	$53^{\circ} 9$	54°	$54 \cdot 6$	$55^{\circ} \mathrm{I}$	55	$55^{\circ} 9$	56.4
	$50 \cdot 8$	$51 \cdot 1$	51.5	51-8	52.1	52.5	52.8	53.2	$53 \cdot 6$	54°	54.4	54*8	55°	55.7	$56 \cdot 1$
-960	$50 \cdot 5$	50\%9	$51 \cdot 2$	$51 \cdot 5$	51.8	$52 \cdot 2$	$52 \cdot 5$	52.9	$53 \cdot 3$	53.7	54.1	54.5	54.	55°	$55 \cdot 8$ 55.6
-970	$50 \cdot 3$	$50 \cdot 6$	$50^{\prime} 9$	$51 \cdot 2$	51.5	$5{ }^{1} 9$	$52 \cdot 2$	$52 \cdot 6$	$53^{\circ} \cdot$	53.4	$53 \cdot 8$	$54^{\circ} 2$	$54^{\circ} 6$	$55^{\circ} \mathrm{I}$	$55^{\prime} 6$ 55^{\prime}
'980	$50 \cdot 0$	$50 \cdot 3$	$50 \cdot 6$	$50 \cdot 9$	$5 I^{\circ}$	$5 \mathrm{I}^{\circ} 6$	52°	$52 \cdot 3$	$52 \cdot 7$	53.1	53.5	$53^{\circ} 9$	54.4 54.1	54.8 54.5	$55^{\circ} 3$ 55°
'990	49.7	$50 \cdot 0$	53.3	$50 \cdot 6$	$51^{\circ} \mathrm{O}$	51'2	51'7	52°	52.4	52.8	$53^{\circ} 2$	53\%7	$54^{\circ} \mathrm{I}$	54.5	55°

Table C.
AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.
Azimuth is named N or S according to the name of the A and B correction.

A and B Correition.	IAATITUDES.														
	31°	32°	33°	34°	35°	36°	370	38°	39°	40°	41°	42°	43°	44°	45°
- Azimuths.															
,	-	\bigcirc													
1.00	$49^{\circ} 4$	49'7	50°	$50 \cdot 3$	$50 \cdot 7$	51.0			$52 \cdot 1$	52.5	$53^{\circ} \mathrm{O}$	$53^{\circ} 4$	$53 \cdot 8$	54.3	54.7
1.02	$48 \cdot 8$	49 I	49.5	49*	$50 \cdot 1$	50'5	50'8	51.2	$51 \cdot 6$	52.0	52.4	$52 \cdot 8$	$53 \cdot 3$	53.7	$54^{\circ} 2$
1.04	$48 \cdot 3$	$48 \cdot 6$	48.9	$49^{\circ} 2$	$49 \cdot 6$	49.9	$50 \cdot 3$	$50 \cdot 7$	51'1	$51^{\prime} 5$	5I•9	$52 \cdot 3$ 51	$52 \cdot 7$ 52	53.2	53.7
1.06	47%	$48 \cdot 0$	$48 \cdot 4$	$48 \cdot 7$	49.0	49.4	$49 \cdot 8$	$50 \cdot 1$	$50 \cdot 5$	50.9	$5 \mathrm{I} \cdot 3$	51-8	$52 \cdot 2$	52.7	$53^{1} 1$
r.08	$47^{\circ} 2$	47.5	$47^{\circ} 8$	$48 \cdot 2$	$48 \cdot 5$	$48 \cdot 9$	49^{2}	$49 \cdot 6$	50%	$50 \cdot 4$	50•8	$51 \cdot 2$	$51^{\prime} 7$	52.2	52.6
$1 \cdot 10$	46’7	$47^{\circ} \mathrm{O}$	473	476	48.0	$48 \cdot 3$	$48 \cdot 7$	$49^{\text { }}$ I	49.5	$49 * 9$	$50 \cdot 3$	50\%7	51.2	51.6	52'1
I'12	$46 \cdot 2$	46.5	$46 \cdot 8$	$47 \cdot 1$	47.5	$47 \cdot 8$	$48 \cdot 2$	$48 \cdot 6$	49°	49.4	$49 \cdot 8$	$50 \cdot 2$	$50 \cdot 7$	$5 \mathrm{I} \cdot \mathrm{x}$	51.6
${ }^{1} 114$	$45^{\circ} 7$	$46 \cdot 0$	$46 \cdot 3$	$46 \cdot 6$	$47^{\circ} \mathrm{O}$	47.3	47%	$48 \cdot 1$	$48 \cdot 5$	$48 \cdot 9$	49.3	497	$50^{\prime} 2$	$50 \cdot 6$	$51 \cdot 1$
1'16	$45^{\circ} 2$	$45 \cdot 5$	$45^{\circ} 8$	$46 \cdot 1$	$46 \cdot 5$	$46 \cdot 8$	47^{2}	$47 \cdot 6$	48.0	$48 \cdot 4$	$48 \cdot 8$	$49 \cdot 2$	$49 \cdot 7$	50%	$50 \cdot 6$
1•18	$44^{7} 7$	45°	$45^{\prime} 3$	$45^{\cdot 6}$	$46 \cdot 0$	$46 \cdot 3$	$46 \cdot 7$	$47^{1} 1$	47.5	47.9	$48 \cdot 3$	$48 \cdot 8$	$49^{\circ} 2$	$49^{\prime} 7$	$50 \cdot 2$
$1 \cdot 20$	44.2	44.5	$44 \cdot 8$	45 1	45.5	$45 \cdot 8$	$46 \cdot 2$	$46 \cdot 6$	47°	47.4	$47 \cdot 8$	$48 \cdot 3$	$48 \cdot 7$	$49 \cdot 2$	497
$1 \cdot 22$	$43 \cdot 7$	44°	$44 \cdot 3$	$44^{\prime} 7$	45°	$45 \cdot 4$	$45^{\circ} 7$	$46 \cdot 1$	$46 \cdot 5$	$46 \cdot 9$	$47 \cdot 4$	$47 \cdot 8$	$48 \cdot 3$	48.7	49^{2}
$1 \cdot 24$	$43 \cdot 3$	$43 \cdot 6$	43.9	$44^{\circ} 2$	$44^{\circ} 6$	$44^{\circ} 9$	$45 \cdot 3$	457	$46 \cdot 1$	$46 \cdot 5$	$46 \cdot 9$	47.3	$47 \cdot 8$	$48 \cdot 3$	$48 \cdot 8$
1.26	$42 \cdot 8$	$43^{\prime} 1$	$43^{\circ} 4$	$43 \cdot 8$	$44^{\circ} \mathrm{I}$	44.5	$44^{\circ} 8$	$45^{\circ} 2$	$45 \cdot 6$	$46^{\circ} \mathrm{O}$	$46 \cdot 4$	$46 \cdot 9$	47.3	$47 \cdot 8$	$48 \cdot 3$
1-28	$42 \cdot 3$	42.7	43°	$43 \cdot 3$	43^{6}	$44^{\circ} \mathrm{O}$	$44^{\circ} 4$	$44 \cdot 8$	$45^{\circ} 2$	45^{6}	$46 \cdot 0$	$46 \cdot 4$	$46 \cdot 9$	47%	47.9
$1 \cdot 30$	$4{ }^{\prime} 9$	42^{2}	42.5	$42 \cdot 9$	$43^{\circ} 2$	$43^{\circ} 6$	$43^{\circ} 9$	$44^{\circ} 3$	$44^{\prime 7}$	$45^{\prime} 1$	45:5	$46 \cdot$	$46 \cdot 4$	$46 \cdot 9$	47.4
1.32	415	$41 \cdot 8$	$42 \cdot 1$	$42 \cdot 4$	$42 \cdot 8$	$43^{\prime} \mathrm{I}$	$43 \cdot 5$	$43 \cdot 9$	$44 \cdot 3$	$44^{7} 7$	$45^{\prime} \mathrm{I}$	45^{6}	$46 \cdot$	$46 \cdot 5$	47°
I•34	$41^{\circ} \mathrm{O}$	$41 \cdot 3$	$41 \cdot 7$	42.0	423	$42 \cdot 7$	$43^{\circ} 1$	$43 \cdot 4$	$43 \cdot 8$	44.3	44.7	$45^{1} 1$	$45 \cdot 6$	$46 \cdot 1$	$46 \cdot 5$
1.36	$40 \cdot 6$	$40 \cdot 9$	$41 \cdot 2$	$4{ }^{16}$	41.9	$42 \cdot 3$	$42 \cdot 6$	$43^{\circ} \mathrm{O}$	$43^{\circ} 4$	43^{8}	$44 \cdot 3$	44.7	$45^{\circ} 2$	$45 \cdot 6$	$46 \cdot 1$
- 38	$40 \cdot 2$	$40 \cdot 5$	$40 \cdot 8$	$41 \cdot 2$	41'5	419	$42 \cdot 2$	$42 \cdot 6$	43°	43.4	$43 \cdot 8$	$44 \cdot 3$	44.7	$45^{\circ} 2$	45%
1.40	$39 \cdot 8$	$40 \cdot 1$	$40^{\prime} 4$	$40 \cdot 7$	41'1	41.4	41-8	$42 \cdot 2$	$42 \cdot 6$	$43^{\circ} \mathrm{O}$	$43 \cdot 4$	439	$44 \cdot 3$	44:8	453
$1 \cdot 42$	39.4	39'7	$40^{\circ} \mathrm{O}$	$40 \cdot 3$	$40 \cdot 7$	41.0	41.4	41.8	$42 \cdot 2$	$42 \cdot 6$	43°	43.5	43.9	44.4	44.9
I.44	39°	393	$39 \cdot 6$	$39 \cdot 9$	$40 \cdot 3$	$40 \cdot 6$	$41^{\circ} \mathrm{O}$	41.4	$4{ }^{1} 8$	42.2	$42 \cdot 6$	$43^{\cdot} 1$	43.5	$44^{\circ} \mathrm{O}$	$44^{\circ} 5$
I 46	$38 \cdot 6$	38.9	39^{2}	$39 \cdot 6$	$39 \cdot 9$	$40 \cdot 3$	$40 \cdot 6$	410	41.4	41.8	$42 \cdot 2$	$42 \cdot 7$	$43 \cdot 1$	$43 \cdot 6$	$44^{\circ} \mathrm{I}$
1.48	$38 \cdot 2$	$38 \cdot 5$	$38 \cdot 9$	$39^{\circ} 2$	$39^{\circ} 5$	$39^{\circ} 9$	$40 \cdot 2$	$40 \cdot 6$	$41^{\circ} \mathrm{O}$	41.4	41×8	42.3	$42^{\prime} 7$	43.2	$43^{\prime} 7$
1.50	37.9	$38 \cdot 2$	$38 \cdot 5$	$38 \cdot 8$	$39 \cdot 1$	$39 \cdot 5$	$39 \cdot 9$	$40 \cdot 2$	$40 \cdot 6$	$4{ }^{\circ} \mathrm{O}$	415	419	42.4	$42 \cdot 8$	$43 \cdot 3$
I. 52	$37 \cdot 5$	$37 \cdot 8$	$38 \cdot 1$	$38 \cdot 4$	38.8	39'I	39.5	$39^{\circ} 9$	$40^{\prime} 2$	$40 \cdot 7$	$4 \mathrm{I} \cdot \mathrm{I}$	$4{ }^{\circ} 5$	42.0	42.4	42.9
I'54	$37^{1} 1$	37.4	377	$38 \cdot 1$	$38 \cdot 4$	$38 \cdot 8$	39^{\prime}	$39 \cdot 5$	$39 \cdot 9$	$40 \cdot 3$	40'7	41-1	$41 \cdot 6$	$42 \cdot 1$	$42 \cdot 6$
1.56	$36 \cdot 8$	37^{1}	$37 \cdot 4$	377	38.0	$38 \cdot 4$	$38 \cdot 8$	$39 \cdot 1$	$39 \cdot 5$	39.9	$40 \cdot 3$	$40 \cdot 8$	41.2	$4{ }^{1} 7$	42.2
I'58	36.4	36.7	37.0	37.4	$37 \cdot 7$	$38 \cdot 0$	38.4	$38 \cdot 8$	39^{2}	39^{6}	$40 \cdot 0$	$40^{\circ} 4$	$40 \cdot 9$	$41 \cdot 3$	41.8
I. 60	$36 \cdot 1$	$36 \cdot 4$	36.7	$37^{\circ} \mathrm{O}$	37.3	37×7	38.0	38.4	$38 \cdot 8$	39^{2}	$39^{\circ} 6$	$40^{\circ} 1$	$40 \cdot 5$	$4{ }^{\circ} \mathrm{O}$	415
1.62	35.8	$36 \cdot 1$	36.4	$36 \cdot 7$	37°	$37 \cdot 3$	377	$38 \cdot 1$	$38 \cdot 5$	$38 \cdot 9$	$39 \cdot 3$	39.7	$40 \cdot 2$	$40 \cdot 6$	$41 \cdot 1$
I. 64	$35^{\circ} 4$	$35^{\circ} 7$	$36 \cdot$	$36 \cdot 3$	$36 \cdot 7$	$37^{\circ} \mathrm{O}$	37.4	$37 \cdot 7$	$38 \cdot 1$	38.5	38.9	39°	$39 \cdot 8$	$40^{\prime} 3$	$40 \cdot 8$
1.66	$35^{\circ} \mathrm{I}$	$35^{\circ} 4$	$35^{\circ} 7$	$36 \cdot$	$36 \cdot 3$	$36 \cdot 7$	37°	$37^{\circ} 4$	$37 \cdot 8$	$38 \cdot 2$	$38 \cdot 6$	39°	$39 \cdot 5$	$39^{\circ} 9$	$40^{\circ} 4$
I•68	34.8	$35^{\circ} \mathrm{I}$	$35^{\circ} 4$	$35^{\prime} 7$	$36 \cdot$	$36 \cdot 3$	36.7	$37 \cdot 1$	37.4	37.8	$38 \cdot 3$	38.7	$39^{1} 1$	$39 \cdot 6$	$40 \cdot 1$
1.70	34.5	34.7	35°	$35^{\circ} 4$	35%	$36 \cdot 0$	36.4	$36 \cdot 7$	$37^{\prime} \mathrm{I}$	37.5	$37^{\circ} 9$	$38 \cdot 4$	$38 \cdot 8$	$39 \cdot 3$	39.8
1'72	34.1	$34^{\circ} 4$	34.7	35°	$35^{\circ} 4$	$35^{\circ} 7$	$36 \cdot 1$	$36 \cdot 4$	$36 \cdot 8$	$37 \cdot 2$	$37 \cdot 6$	$38 \cdot$	$38 \cdot 5$	$38 \cdot 9$	$39^{\circ} 4$
1'74	$33^{\circ} 8$	$34^{\circ} \mathrm{I}$	$34^{\circ} 4$	$34^{\circ} 7$	$35^{\circ} 1$	$35^{\circ} 4$	35%	$36 \cdot 1$	36.5	36.9	$37 \cdot 3$	$37 \cdot 7$	$38 \cdot 2$	$38 \cdot 6$	$39^{1} 1$
r 76	33.5	$33 \cdot 8$	$34^{\circ} \mathrm{I}$	34.4	34%	35^{\prime} I	35.4	$35 \cdot 8$	$36 \cdot 2$	$36 \cdot 6$	37°	37.4	$37 \cdot 8$	$38 \cdot 3$	$38 \cdot 8$
r'78	33^{2}	33.5	$33 \cdot 8$	$34^{\circ} \mathrm{I}$	$34^{\circ} 4$	34.8	$35^{\circ} \mathrm{I}$	35.5	$35^{\prime} 9$	$36 \cdot 3$	36.7	37^{1}	37.5	$38 \cdot 0$	$38 \cdot 5$
1.80	32'9	$33^{\circ} 2$	$33 \cdot 5$	$33 \cdot 8$	34.1	34.5	34.8	35^{2}	35^{6}	36.0	36.4	$36 \cdot 8$	37^{2}	377	$38 \cdot 2$
1.82	$32 \cdot 7$	32.9	33°	$33 \cdot 5$	$33^{\circ} 9$	$34^{\circ} 2$	34.5	34.9	$35 \cdot 3$	$35^{\prime} 7$	$36 \cdot 1$	$36 \cdot 5$	36.9	$37 \cdot 4$	$37 \cdot 8$
I-84	32.4	$32 \cdot 7$	$32 \cdot 9$	$33^{\circ} 2$	$33 \cdot 6$	33.9	$34 \cdot 2$	$34 \cdot 6$	35°	35.4	$35 \cdot 8$	$36 \cdot 2$	$36 \cdot 6$	$37^{\circ} \mathrm{I}$	37.5
1.86	$32 \cdot 1$	32.4	$32 \cdot 7$	33°	$33 \cdot 3$	$33^{\circ} 6$	$33^{\circ} 9$	34.3	$34^{\circ} 7$	$35^{\circ} \mathrm{I}$	$35 \cdot 5$	$35^{\circ} 9$	$36 \cdot 3$	$36 \cdot 8$	37°
I 88	$3 \mathrm{I} \cdot 8$	$32^{\circ} \mathrm{I}$	32.4	$32 \cdot 7$	33°	$33 \cdot 3$	$33^{\prime} 7$	$34^{\circ} \mathrm{O}$	$34 * 4$	34.8	$35^{2} 2$	$35 \cdot 6$	$36 \cdot 0$	$36 \cdot 5$	37°
1×90	$3 \mathrm{I} \cdot 6$	31.8	32'I	32.4	$32 \cdot 7$	$33^{\circ} \mathrm{O}$	33.4	33*7	$34^{\circ} \mathrm{x}$	34.5	34.9	$35 \cdot 3$	$35^{\prime} 7$	$36 \cdot 2$	36.7
1-92	$3 \mathrm{I} \cdot 3$	31.6	31.8	$32 \cdot 1$	32.4	$32 \cdot 8$	$33^{\prime} \mathrm{I}$	33.5	$33 \cdot 8$	$34^{\circ} 2$	$34 \cdot 6$	$35^{\circ} \mathrm{O}$	$35 \cdot 5$	$35^{\circ} 9$	$36 \cdot 4$
1.94	$31^{\circ} \mathrm{O}$	$3 \mathrm{I} \cdot 3$	$3 \mathrm{I} \cdot 6$	$3{ }^{\circ} \cdot 9$	$32 \cdot 2$	32.5	$32 \cdot 8$	$33^{\circ} 2$	$33 \cdot 6$	$33^{\circ} 9$	$34 \cdot 3$	34.7	$35^{2} 2$	$35^{\circ} 6$	$3{ }^{36 \cdot 1}$
1.96	$30 \cdot 8$	31.0	$31 \cdot 3$	31.6	31.9	$32 \cdot 2$	$32 \cdot 6$	32.9	$33^{\circ} 3$	$33^{\circ} 7$	34^{1} I	$34^{\circ} 5$	$34^{\circ} 9$	$35^{\circ} 3$	$35^{\circ} 8$
I'98	30.5	$30 \cdot 8$	31.1	$31^{\circ} 3$	317	$32 \cdot 0$	$32 \cdot 3$	$32^{\prime} 7$	33°	33.4	$33 \cdot 8$	34.2	34.6	$35^{\circ} \mathrm{I}$	$35^{\circ} 5$

Table C.

AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.

Azimuth is named N or S according to the name of the A and B correction.

A and B rection.	LATITUDES.														
	31°	32°	33°	34°	35°	36°	37°	38°	39°	40°	41°	42°	430	44°	45°
Azimuths.															
$2 \cdot 00$	30.3	$30^{\prime} 5$	$30 \cdot 8$	3 I 'I	31.4	31×7	32.0	32.4	$32 \cdot 8$	$33 \cdot 1$	33.5	$33 * 9$	$34^{\circ} 4$	$34 \cdot 8$	35.3
2.05	$29 \cdot 6$	29.9	$30 \cdot 2$	30.5	$30 \cdot 8$	$31 \cdot 1$	31.4	31.8	$32 \cdot 1$	32.5	32.9	$33 \cdot 3$	$33^{\circ} 7$	$34^{\circ} \mathrm{I}$	$34 \cdot 6$
$2 \cdot 10$	$29 \cdot 1$	29.3	$29 \cdot 6$	29.9	30.2	$30 \cdot 5$	$30 \cdot 8$	31.1	31.5	31.9	32.3	$32 \cdot 7$	$33^{\circ} \mathrm{I}$	33.5	$34^{\circ} \mathrm{O}$
$2 \cdot 15$	28.5	$28 \cdot 7$	29°	29.3	$29^{\circ} 6$	29.9	$30 \cdot 2$	$30 \cdot 6$	$30 \cdot 9$	31.3	31.6	$32 \cdot 0$	32.5	$32 \cdot 9$	$33 \cdot 3$
$2 \cdot 20$	27.9	$28 \cdot 2$	28.5	28.7	29°	29.3	29.6	30%	$30 \cdot 3$	30%	$31 \cdot 1$	31.5	31.9	$32 \cdot 3$	$32 \cdot 7$
$2 \cdot 25$	27	277	27.9	$28 \cdot 2$	28.5	28.8	29'I	$29^{\circ} 4$	29.8	$30 \cdot 1$	30'5	$30 \cdot 9$	31.3	317	$32 \cdot 2$
2.30	26.9	27^{-1}	$27^{\circ} 4$	27.7	28.0	28.3	$28 \cdot 6$	28.9	29.2	$29^{\circ} 6$	29.9	$30 \cdot 3$	$30 \cdot 7$	$31 \cdot 1$	31.6
2.40	$25^{\circ} 9$	$26 \cdot 2$	26.4	26.7	27°	27.2	$27 \cdot 6$	$27^{\circ} 9$	$28 \cdot 2$	28.5	28.9	29.3	29.7	$30 \cdot 1$	30.5
2.50	25°	$25^{\prime} 3$	$25 \cdot 5$	$25^{\circ} 8$	26°	26.3	$26 \cdot 6$	$26^{\circ} 9$	27.2	27.6	27.9	$28 \cdot 3$	28.7	29'I	29.5
2.60	$24^{\circ} 2$	$24^{\circ} 4$	24.6	$24^{\circ} \mathrm{O}$	25.2	$25 \cdot 4$	$25^{\circ} 7$	26.	$26 \cdot 3$	26.7	27.0	27.4	27.7	28.1	28.5
0	23	$23 \cdot 6$	$23 \cdot 8$	$24^{\circ} \mathrm{I}$	24.3	$24^{\circ} 6$	24.9	$25^{\circ} 2$	25.5	$25^{\circ} 8$	$26 \cdot 1$	$26 \cdot 5$	$26 \cdot 9$	$27^{\circ} 2$	27.6
2.80	$22 \cdot 6$	$22 \cdot 8$	23^{\prime} I	23.3	$23 \cdot 6$	23.8	$24 \cdot \mathrm{I}$	24°	$24^{\circ} 7$	25°	25.3	$25^{\prime} 7$	26.0	26.4	$26 \cdot 8$
2.90	21.9	$22 \cdot 1$	22.4	$22 \cdot 6$	22.8	$23 \cdot 1$	$23^{\circ} 4$	$23 \cdot 6$	23.9	24°	24.6	$24^{\circ} 9$	$25^{2} 2$	$25 \cdot 6$	26.0
3.00	$21 \cdot 2$	21.5	21.7	2 I 9	$22 \cdot 1$	22.4	22.7	22.9	$23 \cdot 2$	23.5	$23 \cdot 8$	24^{-2}	24.5	24.9	25^{2}
$3 \cdot 10$	$20 \cdot 6$	20.8	$21^{\circ} \mathrm{O}$	21.3	21.5	21.7	22.0	$22 \cdot 3$	22.5	22.8	23.1	23.5	$23 \cdot 8$	24°	24.5
$3 \cdot 20$	$20^{\circ} 0$	20.2	$20^{\circ} 4$	20.7	20.9	21	21.4	21.6	21.9	22.2	22.5	8	$23^{\prime} \mathrm{I}$	23.5	23.8
3.30	19.5	197	$10 \cdot 9$	20.1	$20 \cdot 3$	20.5	20.8	21.0	$21 \cdot 3$	21.6	21.9	22°	22.5	$22 \cdot 8$	23.2
3.40	18.9	$19 \cdot 1$	$19 \cdot 3$	19.5	$19 \cdot 8$	20°	$20 \cdot 2$	$20 \cdot 5$	$20 \cdot 7$	21°	21.3	21.6	21.9	22	22.6
3.60	18.0	$18 \cdot 1$	$18 \cdot 3$	18.5	18.7	19%	19.2	19.4	$19^{\circ} 7$	19.9	$20 \cdot 2$	$20 \cdot 5$	$20 \cdot 8$	21.1	21.4
3.80	17.1	$17^{\circ} 2$	174	17.6	${ }^{17} 8$	18.0	18.2	18.5	18.7	190	$19^{\circ} 2$	19.5	19.8	20'I	$20 \cdot 4$
4.00	$16 \cdot 3$	16.4	$16 \cdot 6$	16.8	17×0	17.2	17.4	17.6	17.8	18.1	$18 \cdot 3$	$18 \cdot 6$	$18 \cdot 9$	19.2	19.5
$4 \cdot 20$	15.5	15.7	15.8	16.0	16.2	16.4	16.6	16.8	17°	17.3	17.5	178	18.0	$18 \cdot 3$	18.6
440	14.9	15.0	15.2	15.3	15.5	15.7	159	$16 \cdot 1$	16.3	16.5	16.8	17°	173	17.5	17.8
$4 \cdot 60$	$14^{\circ} 2$	14.4	14.5	14.7	14.9	$15^{\circ} \mathrm{O}$	$15^{\circ} 2$	154	$15^{\circ} 6$	$15^{\circ} 8$	$16 \cdot 1$	16.3	$16 \cdot 6$	$16 \cdot 8$	17.1
$4 \cdot 80$	13.7	13.8	$14^{\circ} \mathrm{O}$	14.I	14.3	14.4	$14^{6} 6$	148	$15^{\circ} \mathrm{O}$	15.2	15.4	157	$15^{\circ} 9$	16.	16.4
$5 \cdot 00$	$13^{\prime} \mathrm{I}$	13.3	13.4	13.6	13×7	I3*9	$14^{\prime} 1$	$14^{\circ} 2$	$14^{\circ} 4$	$14^{\circ} 6$	14.8	$15^{\circ} 1$	15.3	15.5	15.8
5.50	12.0	$12 \cdot 1$	12.2	12.4	12.5	12.7	12.8	$13^{\circ} \mathrm{O}$	$13^{\circ} 2$	13.4	13.5	13.7	14°	14.2	14.4
$6 \cdot 00$	$1{ }^{1} \mathrm{O}$	11	$11 \cdot 2$	II.4	II 5	II 6	II•8	$1{ }^{\circ} 9$	$12 \cdot 1$	12.3	12.5	12.6	12.8	13.0	13.3
6.50	$10 \cdot 2$	$10 \cdot 3$	$10 \cdot 4$	$10 \cdot 5$	10.6	10.8	109	II'O	11.2	1154	11.5	119	159	12.	12.3
$7 \cdot 00$	9.5	$9 \cdot 6$	97	9.8	$9 \cdot 9$	$10 \cdot 0$	$10 \cdot 1$	$10 \cdot 3$	$10 \cdot 4$	10.6	$10 \cdot 7$	109	11.1	11'2	114
8.0	$8 \cdot 3$	$8 \cdot 4$	8.5	$8 \cdot 6$	$8 \cdot 7$	$8 \cdot 8$	$8 \cdot 9$	$9 \cdot 0$	$9 \cdot 1$	$9 \cdot 3$	$9 \cdot 4$	9.5	97	$9 \cdot 9$	$10 \cdot 0$
$9{ }^{\circ}$	74	$7 \cdot 5$	7.5	$7 \cdot 6$	7%	$7 \cdot 8$	79	$8 \cdot 0$	$8 \cdot 1$	$8 \cdot 3$	8	$8 \cdot 5$	$8 \cdot 6$	$8 \cdot 8$	$8 \cdot 9$
100	$6 \cdot 7$	6.7	$6 \cdot 8$	$6 \cdot 9$	$7{ }^{\circ}$	7.0	$7 \cdot 1$	7.2	$7 \cdot 3$	7.4	7.5	77	$7 \cdot 8$	7.9	$8 \cdot$
$11^{\circ} \mathrm{O}$	$6 \cdot 1$	$6 \cdot 1$	$6 \cdot 2$	$6 \cdot 3$	6.3	6.4	6.5	$6 \cdot 6$	$6 \cdot 7$	$6 \cdot 8$	6.9	7.0	7.1	$7 \cdot 2$	7.3
12.0	$5 \cdot 6$	$5 \cdot 6$	57	577	$5 \cdot 8$	5%	6.0	6.0	$6 \cdot 1$	6.2	$6 \cdot 3$	6.	6.5	$6 \cdot 6$	6.7
$13^{\circ} 0$	$5 \cdot 1$	$5 ` 2$	$5 \cdot 2$	$5 \cdot 3$	$5 \cdot 4$	$5 \cdot 4$	5.5	$5 \cdot 6$	$5 \cdot 7$	57	$5 \cdot 8$	$5{ }^{\circ} 9$	$6 \cdot 0$	$6 \cdot 1$	$6 \cdot 2$
150	4.4	4.5	4.5	$4 \cdot 6$	47	4.7	$4 \cdot 8$	$4 \cdot 8$	4.9	$5^{\circ} 0$	$5 \cdot 0$	$5 \cdot 1$	$5 \cdot 2$	$5 \cdot 3$	5.4
17°	3.9	4°	4.0	4.1	$4 \cdot 1$	4.2	$4 \cdot 2$	4.3	4.3	4.4	45	4.5	4.6	47	4*8
20.0	$3 \cdot 3$	3.4	3.4	3.5	3.5	3.5	$3 \cdot 6$	3.6	3.7	3.7	$3 \cdot 8$	3.8	3.9	4°	$4{ }^{\circ} \mathrm{O}$
25°	2.7	2.7	2.7	2.8	2.8	2.8	$2 \cdot 9$	2.9	$2 \cdot 9$	$3{ }^{\circ}$	3.0	$3 \cdot$	$3 \cdot 1$	3.	3.2
$30 \cdot 0$	$2 \cdot 2$	$2 \cdot 3$	$2 \cdot 3$	$2 \cdot 3$	$2 \cdot 3$	2.4	. 4	2.4	2.5	2.5	2.5	$2 \cdot 6$	2	$2 \cdot 7$	$2 \cdot 7$
$40 \cdot 0$	17	17	17	1.7	17	1.8	1.8	I.8	1.8	$1 \cdot 9$	$1 \cdot 9$	19	2.	2.	$2 \cdot 0$
$50 \cdot$	13	1.4	1.4	4	I.4	1.4	$1 \cdot 4$	15	1.5	1.5	1.5	15	$1 \cdot 6$	1.	1.6
$70 \cdot 0$	10	1.	1.0	,	$1 \cdot 0$	1.0	1.0	$1 \cdot 0$	$1 \cdot \mathrm{I}$	I•I	$1 \cdot 1$	1.1	1.1	1.	1.2
1000	$0 \cdot 7$	$0 \cdot 7$	$0 \cdot 7$	0.7	$0 \cdot 7$	\bigcirc	$0 \cdot 7$	$0 \cdot 7$	$0 \cdot 7$	0.7	0.8	0.8	0.8	0	$0 \cdot$
$150{ }^{\circ}$	0.4	$0 \cdot 5$	0.5	0.5	$0 \cdot 5$	0.5	$0 \cdot 5$	0.5	0.5	0.5	0.5	$0 \cdot 5$	0.5	0.5	0.5
2000	0.3	0.3	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 4$	4	. 4	$0 \cdot 4$	$0 \cdot 4$	$0 \cdot 4$	- 4	$0 \cdot 4$	$0 \cdot 4$
$300 \cdot 0$	$0 \cdot 2$	$0 \cdot 2$	0.2	0.2	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	0.2	0.2	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$
$400 \cdot$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	0.2	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot$	$0 \cdot$	0.2	O. 2
$800 \cdot 0$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	O. 1	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	O.I	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 2$	$0 \cdot 1$

Table \mathbf{C}.

AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.

Azimuth is named N or S according to the name of the A and B correction.

A and B rection.	LATITTUDES.														
	46°	47°	48°	49°	50°	51°	52°	53°	54°	55°	56°	57°	58°	59°	60°
Azimuthe.															
															-
-000	90°	90°	90'0	90*	90.0	$90 \cdot$	$90 \cdot$	90°	90°	90'0	90°	90*	90°	90.0	$90 \cdot 0$
'010	$89 \cdot 6$	$89 \cdot 6$	$89 \cdot 6$	$89 \cdot 6$	$89 \cdot 6$	$89 \cdot 6$	$89 \cdot 6$	89.7	$89 \cdot 7$	897	89.7	$89 \cdot 7$	$89^{\circ} 7$	89'7	89%
-020	89.2	$89^{\cdot} 2$	89°	89^{-2}	89.3	$89 \cdot 3$	$89 \cdot 3$	$89^{\prime} 3$	$89 \cdot 3$	$89 \cdot 3$	$89 \cdot 4$	$89^{\circ} 4$	$89 \cdot 4$	$89 \cdot 4$	$89^{\circ} 4$
-030	88.8	88.8	88.9	88.9	88.9	88.9	88.9	89°	$89 \cdot$	$89{ }^{\circ}$	89**	$89 \cdot 1$	89.1	$89 \cdot 1$	$89 \cdot 1$
- 040	88.4	$88 \cdot 4$	$88 \cdot 5$	$88 \cdot 5$	$88 \cdot 5$	$88 \cdot 6$	$88 \cdot 6$	$88 \cdot 6$	$88 \cdot 7$	$88 \cdot 7$	$88 \cdot 7$	$88 \cdot 8$	88.8	88.8	88.9
-050	88.0	$88 \cdot$	88. 1	88.1	88.2	88.2	$88 \cdot 2$	$88 \cdot 3$	$88 \cdot 3$	88.4	88.4	88.4	88	$88 \cdot 5$	88.6
-060	$87 \cdot 6$	87.7	$87 \cdot 7$	877	87.8	87.8	87.9	$87^{\circ} 9$	$88 \cdot$	$88 \cdot$	$88 \cdot \mathrm{I}$	$88 \cdot \mathrm{I}$	88.2	88.2	88.3
- 070	87.2	87.3	87.3	87.4	87.4	87.5	87.5	$87 \cdot 6$	$87 \cdot 6$	877	$87 \cdot 8$	87.8	87.9	87.9	88.0
-080	86.8	86.9	86.9	87°	$87 \cdot 1$	$87^{\circ} \mathrm{I}$	87.2	$87^{\circ} 2$	87.3	87.4	87.4	87.5	$87 \cdot 6$	$87 \cdot 6$	87.7
-090	86.4	86.5	$86 \cdot 6$	$86 \cdot 6$	$86 \cdot 7$	$86 \cdot 8$	86.8	86.9	$87^{\circ} \mathrm{O}$	$87^{\circ} 0$	$87^{\circ} \mathrm{I}$	$87 \cdot 2$	87.3	87.3	87.4
'100	$86 \cdot 0$	86. 1	$86 \cdot 2$	$86 \cdot 2$	$86 \cdot 3$	$86 \cdot 4$	$86 \cdot 5$	$86 \cdot 6$	$86 \cdot 6$	86.7	$86 \cdot 8$	$86 \cdot 9$	87°	87.1	87.1
- 110	$85 \cdot 6$	$85 \cdot 7$	85.8	85%	$86 \cdot$	$86 \cdot 0$	$86 \cdot 1$	$86 \cdot 2$	$86 \cdot 3$	86.4	$86 \cdot 5$	$86 \cdot 6$	86.7	$86 \cdot 8$	86.9
'120	85.2	$85^{\circ} 3$	$85^{\circ} 4$	85.5	$85 \cdot 6$	$85^{\circ} 7$	$85 \cdot 8$	85.9	$86 \cdot$	86•1	$86 \cdot 2$	$86 \cdot 3$	$86 \cdot 4$	$86 \cdot 5$	$86 \cdot 6$
- 130	8.8	$84^{\circ} 9$	85°	$85^{\circ} \mathrm{I}$	85.2	$85 \cdot 3$	85.4	$85^{\circ} 5$	$85 \cdot 6$	85.7	$85 \cdot 8$	$86 \cdot 0$	$86 \cdot 1$	$86 \cdot 2$	$86 \cdot 3$
-140	84.4	84.5	84.6	84.8	84.9	$85^{\circ} \mathrm{O}$	$85^{\circ} \mathrm{I}$	$85^{\circ} 2$	$85^{\circ} 3$	$85^{\prime} 4$	85.5	$85 \cdot 6$	85.8	$85^{\circ} 9$	$86 \cdot$
- 150	$84^{\circ} \mathrm{I}$	84.2	84.3	84.4	84.5	84.6	84.7	84.8	85°	$85^{\circ} \mathrm{I}$	$85^{\circ} 2$	$85^{\prime} 3$	$85 \cdot 5$	$85 \cdot 6$	$85 \cdot 7$
-160	83.7	$83^{\circ} 8$	$83^{\circ} 9$	$84^{\circ} \mathrm{D}$	$84^{\circ} \mathrm{I}$	$84^{\circ} 3$	84.4	84.5	$84^{\circ} 6$	$84^{\circ} 8$	84.9	85°	85°	$85^{\circ} 3$	$85^{\circ} 4$
${ }^{-170}$	83.3	$83^{\circ} 4$	83.5	$83 \cdot 6$	83.8	83.9	$84^{\circ} \mathrm{O}$	84.2	$84^{\circ} 3$	$84^{\circ} 4$	84.6	$84^{\circ} 7$	$84^{\circ} 9$	85°	$85 \cdot 1$
-180	$82 \cdot 9$	$83^{\circ} \mathrm{O}$	$83 \cdot 1$	$83 \cdot 3$	83.4	83.5	$83 \cdot 7$	83.8	84°	$84^{\text {. }}$ I	84.3	84.4	84.6	$84^{\circ} 7$	84.9
'190	82.5	$82 \cdot 6$	82.8	82.9	83°	$83^{\circ} 2$	83.3	83.5	$83 \cdot 6$	$83 \cdot 8$	83.9	$84^{\circ} \mathrm{I}$	84.3	84.4	$84 \cdot 6$
-200	82	82	82	82.5	$82^{\prime} 7$	$82 \cdot 8$	83°	83^{\prime} I	83.3	83.5	$83 \cdot 6$	$83 \cdot 8$	$84^{\circ} \mathrm{O}$	$84^{\circ} \mathrm{I}$	84.3
-210	8 I 7	8I.8	82.	$82 \cdot 2$	$82 \cdot 3$	82.5	$82 \cdot 6$	$82 \cdot 8$	83°	$83 \cdot 1$	$83 \cdot 3$	83.5	83.7	83.8	84°
22	$8 \mathrm{r} \cdot 3$	8 I 5	$8 \mathrm{I} \cdot 6$	$8 \mathrm{r} \cdot 8$	82.0	$82 \cdot 1$	$82 \cdot 3$	82.5	$82 \cdot 6$	$82 \cdot 8$	83°	83.2	83.4	$83 \cdot 5$	83.7
. 230	80.9	$8 \mathrm{I} \cdot \mathrm{I}$	8 r 3	8 r 4	$8 \mathrm{I} \cdot 6$	$8 \mathrm{I} \cdot 8$	$8 \mathrm{I}^{\circ} 9$	$82 \cdot 1$	$82 \cdot 3$	82.5	82.7	82.9	$83^{\cdot 1}$	83.2	$83^{\circ} 4$
$\cdot 240$	$80 \cdot 5$	$80 \cdot 7$	$80 \cdot 9$	$8 \mathrm{r} \cdot \mathrm{I}$	$8 \mathrm{I} \cdot 2$	$8 \mathrm{I} \cdot 4$	$8 \mathrm{r} \cdot 6$	8I•8	$82^{\circ} \mathrm{O}$	82.2	82.4	$82 \cdot 6$	82.8	$83^{\circ} \mathrm{O}$	83°
- 250	80	$80 \cdot 3$	80	80	$80 \cdot 9$	$8 \mathrm{I} \cdot \mathrm{I}$	8I'2	$8 \mathrm{I} \cdot 4$	$8 \mathrm{I} \cdot 6$	8I-8	82.0	82.2	82.5	$82 \cdot 7$	82.9
-260	$79 \cdot 8$	$79^{\circ} 9$	$80 \cdot 1$	$80 \cdot 3$	$80 \cdot 5$	$80 \cdot 7$	$80^{\circ} 9$	$8 \mathrm{I} \cdot \mathrm{I}$	8 I 3	8r'5	8 r 7	$8 \mathrm{I}^{\circ} 9$	$82 \cdot 2$	82.4	$82 \cdot 6$
'270	79.4	$79 \cdot 6$	79.8	$80 \cdot 0$	$80 \cdot 2$	$80 \cdot 4$	$80 \cdot 6$	$80 \cdot 8$	$8 \mathrm{r} \cdot \mathrm{O}$	$8 \mathrm{r} \cdot 2$	8 r 4	$8 \mathrm{I} \cdot 6$	8 I 9	82.1	$82 \cdot 3$
-280	$79^{\circ} \mathrm{O}$	79.2	79.4	$79 \cdot 6$	79.8	80°	$80 \cdot 2$	$80 \cdot 4$	$80 \cdot 7$	$80 \cdot 9$	$8 \mathrm{r} \cdot \mathrm{I}$	8 I 3	8I'6	$8 \mathrm{I} \cdot 8$	82°
-290	$78 \cdot 6$	78.8	$79^{\circ} \mathrm{O}$	79.2	79.4	$79 \cdot 7$	$79^{\circ} 9$	$80 \cdot 1$	$80 \cdot 3$	$80 \cdot 6$	$80 \cdot 8$	$8 \mathrm{I} \cdot \mathrm{C}$	$8 \mathrm{I} \cdot 3$	$8 r^{\circ} 5$	8 I 7
-300	$78 \cdot 2$	78.4	$78 \cdot 6$	$78 \cdot 9$	79^{1}	$79^{\circ} 3$	79×5	$79 \cdot 8$	$80 \cdot 0$	$80 \cdot 2$	So' 5	$80^{\prime} 7$	$8 \mathrm{I}^{\circ} \mathrm{O}$	$8 \mathrm{I} \cdot 2$	8 I 5
-310	$77 \cdot 8$	$78 \cdot 1$	$78 \cdot 3$	$78 \cdot 5$	$78 \cdot 7$	79°	$79 \cdot 2$	$79^{\circ} 4$	797	79.9	$80 \cdot 2$	$80 \cdot 4$	$80 \cdot 7$	80.9	$8 \mathrm{I} \cdot 2$
- 320	77.5	77%	779	$78 \cdot 1$	$78 \cdot 4$	$78 \cdot 6$	78.9	$79^{\text { }}$ I	$79^{\circ} 3$	$79 \cdot 6$	$79^{\circ} 9$	80.1	$80^{\circ} 4$	$80 \cdot 6$	$80 \cdot 9$
-330	$77^{\text {I }}$	77.3	77.5	77.8	78.0	$78 \cdot 3$	78.5	78.8	79°	$79 \cdot 3$	$79 \cdot 5$	79.8	$80^{\circ} 1$	$80^{\circ} 4$	$80 \cdot 6$
-340	76.7	$76 \cdot 9$	$77 \cdot 2$	774	77×7	77.9	$78 \cdot 2$	78.4	$78 \cdot 7$	79°	79°	79.5	79.8	80	$80 \cdot 4$
-350	$76 \cdot 3$	$76 \cdot 6$	$76 \cdot 8$	771	77’3	$77^{\circ} 6$	$77 \cdot 8$	$78 \cdot 1$	$78 \cdot 4$	78.6	$78 \cdot 9$	79^{2}	79.5	$79 \cdot 8$	$80 \cdot 1$
360	76.0	$76 \cdot 2$	$76 \cdot 5$	76.7	77°	$77^{\circ} 2$	77.5	$77 \cdot 8$	$78 \cdot 1$	$78 \cdot 3$	$78 \cdot 6$	$78 \cdot 9$	$79 \cdot 2$	79.5	$79 \cdot 8$
'370	$75 \cdot 6$	$75 \cdot 8$	$76 \cdot 1$	$76 \cdot 4$	$76 \cdot 6$	76.9	77°	77.4	77.7	78.0	$78 \cdot 3$	$78 \cdot 6$	78.9	$79 \cdot 2$	79.5
-380	$75^{\circ} 2$	$75 \cdot 5$	$75^{\circ} 7$	$76 \cdot 0$	$76 \cdot 3$	$76 \cdot 6$	$76 \cdot 8$	$77 \cdot 1$	77.4	77.7	$78 \cdot$	$78 \cdot 3$	$78 \cdot 6$	78.9	$79^{\circ} 2$
- 390	74.8	$75^{\circ} \mathrm{I}$	$75^{\circ} 4$	$75^{\circ} 6$	$75^{\circ} 9$	$76 \cdot 2$	$76 \cdot 5$	$76 \cdot 8$	$77^{\circ} \mathrm{I}$	77.4	77%	$78 \cdot$	$78 \cdot 3$	$78 \cdot 6$	79°
$\cdot 400$	74.5	$74 *$	75°	$75 \cdot 3$	$75 \cdot 6$	$75^{\circ} 9$	$76 \cdot 2$	$76 \cdot 5$	$76 \cdot 8$	77.1	$77 \cdot 4$	777	$78 \cdot 0$	$78 \cdot 4$	$78 \cdot 7$
410	74^{-1}	74°	74.7	$74^{\circ} 9$	$75^{\circ} 2$	$75^{\circ} 5$	$75 \cdot 8$	$76 \cdot 1$	$76 \cdot 5$	$76 \cdot 8$	77^{-1}	$77 \cdot 4$	77%	$78 \cdot 1$	$78 \cdot 4$
${ }^{4} 420$	73%	74°	$74 \cdot 3$	$74 \cdot 6$	$74^{\circ} 9$	75°	75.5	$75 \cdot 8$	$76 \cdot 1$	$76 \cdot 5$	$76 \cdot 8$	77^{1}	77.5	$77 \cdot 8$	$78 \cdot 1$
-430	73.4	$73 \cdot 7$	73.9	$74^{\circ} 2$	74.5	74.9	75°	$75 \cdot 5$	75^{8}	$76 \cdot 1$	$76 \cdot 5$	$76 \cdot 8$	77^{2}	$77 \cdot 5$	$77 \cdot 9$
$\cdot 440$	73°	$73 \cdot 3$	$73 \cdot 6$	73.9	$74^{\circ} 2$	74.5	74.8	$75^{\circ} 2$	75.5	75^{8}	$76 \cdot 2$	$76 \cdot 5$	76.9	$77 \cdot 2$	$77 \cdot 6$
	$72 \cdot 6$	$72 \cdot 9$	$73^{\circ} 2$	$73 \cdot 6$	73.9	$74^{\circ} 2$	74.5	$74 \cdot 8$	75^{2}	75.5	75.9	$76 \cdot 2$	$76 \cdot 6$	77°	77×3
$\cdot 460$	$72 \cdot 3$	$72 \cdot 6$	72.9	73°	73.5	73.9	74°	74.5	74	75^{2}	75°	75.9	$76 \cdot 3$	$76 \cdot 7$	$77^{\circ} \mathrm{O}$
-470	71.9	$72 \cdot 2$	72.5	$72 \cdot 9$	$73 \cdot 2$	73.5	73.9 73.5	74^{2}	74°	74.9	$75^{\circ} 3$	$75^{\circ} \cdot$	$76 \cdot$	$76{ }^{4}$	$76 \cdot 8$
$\cdot 480$.490	$71 \cdot 6$	71.9	72.2	$72 \cdot 5$	72.9 72.5	73.2	73.5	$73{ }^{\circ} 9$ 73	$74^{\circ} \mathrm{C}$	74.6 74.3	75.0 74.7	$75^{\circ} 3$	$75 \cdot 7$ 75	$76 \cdot 1$ $75 \cdot 8$	76.5
* 490	71.2	71'5	71.8	$72 \cdot 2$	72.5	$72^{\circ} 9$	73°	73°	$73^{\circ} 9$	74.3	74.7	$75^{\circ} \mathrm{I}$	$75^{\circ} 4$	75°	76.2

Table C.

AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.

Azimuth is named N or S according to the name of the A and B correction.

A and B Correction.	LATITUDES.														
	40°	47°	48°	49°	50°	51°	52°	53°	54°	55°	55°	57°	58°	59°	${ }^{60}$
Azimuths.															
															。
-500	$70 \cdot 8$	71.2	71.5	7 P -8	$72 \cdot 2$	$72 \cdot 5$	729	$73^{*} 3$	$73^{\circ} 6$	$74^{\circ} \mathrm{O}$	$74^{\circ} 4$	$74 \cdot 8$	$75^{\circ} 2$	$75^{\circ} 6$	76.0
10	$70 \cdot 5$	$70 \cdot 8$	71.2	71.5	71.8	$72 \cdot 2$	$72 \cdot 6$	72.9	$73^{\circ} 3$	$73^{\circ} 7$	74^{\prime} I	$74^{\circ} 5$	$74^{\circ} 9$	$75^{\circ} 3$	75.7
-520	$70 \cdot 1$	$70 \cdot 5$	$70 \cdot 8$	71.2	$7{ }^{1} 5$	$7{ }^{7} \cdot 9$	$72 \cdot 2$	$72 \cdot 6$	73.	$73^{\circ} 4$	73.8	74°	74.6	75°	$75^{\circ} 4$
-530	$69 \cdot 8$	$70 \cdot 1$	$70 \cdot 5$	$70 \cdot 8$	71.2	$7 \mathrm{~F} \cdot 6$	$7{ }^{\circ} 9$	$72 \cdot 3$	$72 \cdot 7$	$73^{\circ} \mathrm{I}$	73.5	$73^{\circ} 9$	74.3	74.7	$75^{\circ} 2$
- 540	69.4	$69 \cdot 8$	$70 \cdot 1$	$70 \cdot 5$	$70 \cdot 9$	71.2	$71 \cdot 6$	72.0	$72 \cdot 4$	$72 \cdot 8$	73°	$73^{\circ} 6$	$74{ }^{\circ}$	$74^{\circ} 5$	74.9
-550	69.1	$69 \cdot 4$	$69 \cdot 8$	$70^{\circ} 2$	$70 \cdot 5$	$70 \cdot 9$	71.3	717	$72 \cdot 1$	72.5	72.9	73'3	$73^{\circ} 8$	74.2	74.6
- 560	68.7	$69 \cdot 1$	$69 \cdot 5$	$69 \cdot 8$	$70^{\circ} 2$	$70 \cdot 6$	71°	$7 \mathrm{r} \cdot 4$	$7 \mathrm{I} \cdot 8$	$72 \cdot 2$	$72 \cdot 6$	73°	73.5	73°	74.4
- 570	68.4	$68 \cdot 8$	$69 \cdot 1$	69.5	69.9	$70 \cdot 3$	$70 \cdot 7$	$7 \mathrm{I} \cdot \mathrm{I}$	$7{ }^{\circ} 5$	$7{ }^{\circ} 9$	$72 \cdot 3$	72.8	73°	$73 \cdot 6$	$74 \cdot \mathrm{I}$
$\cdot 580$	$68 \cdot 1$	68.4	68.8	69°	$69 \cdot 6$	$69 \cdot 9$	$70 \cdot 3$	$70 \cdot 8$	$7 \mathrm{I} \cdot 2$	71.6	72.0	72.5	72.	73.	$73^{\circ} 8$
- 590	67.7	$68 \cdot 1$	$68 \cdot 5$	$68 \cdot 8$	69.2	$69 \cdot 6$	$70 \cdot 0$	$70 \cdot 5$	$70 \cdot 9$	71.3	71.7	$72 \cdot 2$	$72 \cdot 6$	73^{-1}	$73 \cdot 6$
-600		67	$68 \cdot 1$	$68 \cdot 5$	68.9	9	69'7	$70 \cdot 1$	$70 \cdot 6$	71*0	71×5	71*9	72.4	$72 \cdot 8$	$73 \cdot 3$
-610	67°	67.4	67.8	$68 \cdot 2$	$68 \cdot 6$	$69^{\circ} \mathrm{O}$	69.4	$69 \cdot 8$	$70 \cdot 3$	$70 \cdot 7$	71.2	$7 \mathrm{I} \cdot 6$	$72 \cdot 1$	$72 \cdot 6$	73°
- 620	66.7	$67 \cdot 1$	67.5	$67 \cdot 9$	$68 \cdot 3$	$68 \cdot 7$	$69 \cdot 1$	69.5	$70^{\circ} 0$	$70 \cdot 4$	$70 \cdot 9$	7 F 3	71.8	$72 \cdot 3$	$72 \cdot 8$
-630	66.4	66.7	67.1	67.5	$68 \cdot$	68.4	68.8	$69^{\circ} 2$	69.7	$70^{\circ} \mathrm{I}$	$70 \cdot 6$	$71 \cdot 1$	71.5	$72 \cdot$	72.5
-640	66°	$66 \cdot 4$	$66 \cdot 8$	$67^{\circ} 2$	$67 \cdot 6$	$68 \cdot 1$	$68 \cdot 5$	68.9	$69 \cdot 4$	$69 \cdot 8$	$70 \cdot 3$	$70 \cdot 8$	$71 \cdot 3$	71.8	$72 \cdot 3$
-650	$65^{\prime 7}$	66•I	$66 \cdot 5$	66.9	67×3	67×8	$68 \cdot 2$	$68 \cdot 6$	69.1	69.6	70°	$70 \cdot 5$	71*0	71.5	72°
-660	$65^{\circ} 4$	$65 \cdot 8$	$66 \cdot 2$	$66 \cdot 6$	67°	67.4	67.9	$68 \cdot 3$	$68 \cdot 8$	$69 \cdot 3$	697	$70 \cdot 2$	$70 \cdot 7$	$71 \cdot 2$	7 I 7
- 670	65°	65°	$65^{\circ} 9$	66.3	66.7	67.1	$67 \cdot 6$	$68 \cdot$	$68 \cdot 5$	69.0	$69 \cdot 5$	$70 \cdot$	$70 \cdot 5$	71°	$71 \cdot 5$
-680	64.7	$65^{\circ} \mathrm{I}$	$65^{\circ} 5$	66.0	$66^{\circ} 4$	$66 \cdot 8$	$67 \cdot 3$	67%	$68 \cdot 2$	68.7	$69 \cdot 2$	69.7	$70^{\circ} 2$	70\%7	$7 \mathrm{I} \cdot 2$
-690	64.4	$64 \cdot 8$	65°	$65 \cdot 6$	$66 \cdot 1$	$66 \cdot 5$	67°	67.4	$67 \cdot 9$	$68 \cdot 4$	$68 \cdot 9$	$69 \cdot 4$	69.9	$70 \cdot 4$	71.0
-700	64	64.5	64.9	$65^{\circ} 3$	$65^{\circ} 8$	66.2	66.7	67^{2}	$67 \cdot 6$	68.1	$68 \cdot 6$	$69 \cdot 1$	$69 \cdot 6$	70	$70 \cdot 7$
-710	63.7	64.2	$64^{\circ} 6$	65°	$65 \cdot 5$	$65^{\circ} 9$	66^{4}	$66^{\circ} 9$	$67 \cdot 3$	67.8	$68 \cdot 3$	68.9	$69 \cdot 4$	69.9	$70 \cdot 5$
$\checkmark 720$	63.4	63.8	$64 \cdot 3$	64.7	65°	$65 \cdot 6$	$66 \cdot 1$	$66 \cdot 6$	$67^{1} 1$	$67 \cdot 6$	$68 \cdot 1$	$68 \cdot 6$	69^{\prime}	69.7	$70 \cdot 2$
730	$63 \cdot 1$	$63 \cdot 5$	64°	$64^{4} 4$	64.9	65:3	65^{8}	66^{3}	$66 \cdot 8$	67.3	$67 \cdot 8$	68.3	68.9	69.4	69.9
740	$62 \cdot 8$	$63 \cdot 2$	$63 \cdot 7$	$64^{1} 1$	$64 \cdot 6$	65°	65.5	$66^{\circ} \mathrm{O}$	$66 \cdot 5$	67.0	67.5	68.0	$68 \cdot 6$	$69^{\circ} \mathrm{I}$	69%
-		$62 \cdot 9$	63.4	$63 \cdot 8$	$64^{\circ} 3$	64%	$65^{\circ} 2$	$65^{\circ} 7$	$66 \cdot 2$	$66 \cdot 7$	$67^{\circ} 2$	$67 \cdot 8$	$68 \cdot 3$	68.9	69.4
$\cdot 760$	62	$62 \cdot 6$	63°	63.5	$64^{\circ} \mathrm{O}$	$64^{\circ} 4$	$64^{\circ} 9$	$65 \cdot 4$	$65^{\circ} 9$	$66^{4} 4$	67°	67.5	$68 \cdot 1$	$68 \cdot 6$	69*2
7	6I'9	$62 \cdot 3$	$62 \cdot 7$	$63 \cdot 2$	63.7	$64 \cdot 1$	$64^{\circ} 6$	$65^{\circ} \mathrm{I}$	$65 \cdot 6$	$66 \cdot 2$	66.7	67×2	$67 \cdot 8$	68.4	68.9
780	61.5	62.0	62.4	62.9	$63^{\circ} 4$	$63^{\circ} 9$	$64^{\circ} 3$	$64^{\circ} 9$	$65^{\circ} 4$	65.9	$66^{\circ} 4$	67°	67.5	$68 \cdot 1$	$68 \cdot 7$
790	$6 \mathrm{I} \cdot 2$	6 I 7	$62 \cdot 1$	$62 \cdot 6$	$63 \cdot 1$	$63 \cdot 6$	$64^{\circ} \mathrm{I}$	$64 \cdot 6$	$65^{\prime} \mathrm{I}$	$65 \cdot 6$	$66 \cdot 2$	$66 \cdot 7$	67.3	67.9	68.4
- 800	60	6I* 4	6I•8	$62 \cdot 3$	$62 \cdot 8$	63.3	$63 \cdot 8$	64.3	$64 \cdot 8$	65.4	$65^{\circ} 9$	$66 \cdot 5$		$67 \cdot 6$	68.2
: 810	$60 \cdot 6$	6I•I	6I•5	62.0	62.5	63°	$63 \cdot 5$	$64^{\circ} \mathrm{O}$	64.5	65^{\prime}	$65 \cdot 6$	$66 \cdot 2$	$66 \cdot 8$	67.4	68:0
- 820	$60 \cdot 3$	$60 \cdot 8$	61.2	6I•7	62.2	$62 \cdot 7$	63.2	$63^{\circ} 7$	$64^{\circ} 3$	$64 \cdot 8$	65.4	$65^{\circ} 9$	$66 \cdot 5$	$67 \cdot 1$	67.7
-830	$60 \cdot 0$	$60 \cdot 5$	61°	61.4	61.9	62.4	$62 \cdot 9$	$63 \cdot 5$	$64^{\circ} \mathrm{O}$	64.5	$65^{\circ} \mathrm{I}$	$65^{\circ} 7$	$66 \cdot 3$	$6{ }^{\circ} 9$	67.5
- 840	59\%7	$60 \cdot 2$	$60 \cdot 7$	6I'r	6I•6	$62 \cdot 1$	62.7	63.2	$63 \cdot 7$	$64 \cdot 3$	64.9	$65^{\circ} 4$	$66 \cdot$	$66 \cdot 6$	67.2
. 8		59*9	$60 \cdot 4$		6I•3	619	624	$62 \cdot 9$	63.5	$64^{\circ} \mathrm{O}$	64.6	$65^{\circ} 2$	$65^{\circ} 8$	$66 \cdot 4$	$67^{\circ} \mathrm{O}$
. 868	59•I	$59 \cdot 6$	60.I	$60 \cdot 6$	6I•I	6I• 6	$62 \cdot 1$	$62 \cdot 6$	$63^{\circ} 2$	63.7	64.3	$64^{\circ} 9$	$65^{\circ} 5$	$66 \cdot 1$	66.7
- 870	58.9	$59 \cdot 3$	$59 \cdot 8$	$60 \cdot 3$	$60 \cdot 8$	6I•3	6I•8	62.4	62.9	63.5	$64^{\circ} \mathrm{I}$	$64^{\circ} 6$	$65^{\circ} 2$	$65^{\circ} 9$	$66 \cdot 5$
-880	$58 \cdot 6$	$59 \cdot$	59°	$60 \cdot 0$	$60 \cdot 5$	$6{ }^{\circ} \mathrm{O}$	$6 \mathrm{x} \cdot 6$	$62 \cdot 1$	$62 \cdot 6$	$63 \cdot 2$	$63 \cdot 8$	64.4	65°	$65^{\circ} 6$	$66 \cdot 3$
-890	$58 \cdot 3$	58.7	59°	$59^{\circ} 7$	$60 \cdot 2$	60%	$61 \cdot 3$	6I•8	62°	$63^{\circ} 0$	63.5	$64 \cdot \mathrm{I}$	$64 \cdot 8$	$65^{\circ} 4$	66°
-900	$58 \cdot 0$	$58 \cdot 5$	$58 \cdot 9$	$59^{\circ} 4$	$60 \cdot 0$	$60 \cdot 5$	$6 \mathrm{I}^{\circ} \mathrm{O}$	61.6	62. 1	62.7	63.3	$63^{\circ} 9$	$64 \cdot 5$	$65^{\circ} 1$	$65 \cdot 8$
\bigcirc	57.7	$58 \cdot 2$	$58 \cdot 7$	$59 \cdot 2$	59.7	$60 \cdot 2$	$60^{\circ} 7$	61.3	6I•9	62.4	63°	$63^{\circ} 6$	64.3	$64^{\circ} 9$	$65 \cdot 5$
-920	57.4	57.9	58.4	$58 \cdot 9$	$59^{\circ} 4$	$59^{\circ} 9$	$60 \cdot 5$	6I*	$6 \mathrm{I} \cdot 6$	62.2	$62 \cdot 8$	$63^{\circ} 4$	64°	$64 \cdot 6$	$65^{\circ} 3$
-930	$57^{\circ} \mathrm{I}$	$57 \cdot 6$	$58 \cdot 1$	58.6	59*1	59×7	60	60	6 I 3	$6 \mathrm{I}^{\circ} 9$	62.5	$63^{\circ} \mathrm{I}$	$63 \cdot 8$	64.4	$65^{\circ} \mathrm{I}$
-940	56.9	57.3	$57 \cdot 8$	$58 \cdot 3$	58.9	$59^{\circ} 4$	59.9	$60 \cdot 5$	6 r	61.7	$62 \cdot 3$	62.9	$63 \cdot 5$	64^{2}	$64 \cdot 8$
-950	$56 \cdot 6$	57×1	$57^{\circ} 6$	$58 \cdot 1$	58.6	$59^{\circ} \mathrm{I}$	59.7	$60 \cdot 2$	$60 \cdot 8$	$61 \cdot 4$	$62 \cdot 0$	$62 \cdot 6$	$63 \cdot 3$	63.9	$64 \cdot 6$
-960	$56 \cdot 3$	$56 \cdot 8$	57.3	57.8	$58 \cdot 3$	$58 \cdot 9$	$59^{\circ} 4$	60\%	$60 \cdot 6$	$61 \cdot 2$	$6 \mathrm{r} \cdot 8$	62.4	63°	$63^{\prime} 7$	64.4
-970	$56^{\circ} \mathrm{O}$	$56 \cdot 5$	57°	57.5	$58 \cdot 1$	$58 \cdot 6$	59.2	59 59	$60 \cdot 3$	$60 \cdot 9$	$6 \mathrm{I} \cdot 5$	62.2	62.8	63.5 63.2	$64 \cdot 1$ $63 \cdot 9$
-980	$55^{\circ} 8$	$56 \cdot 2$	$56 \cdot 7$	$57 \cdot 3$	$57 \cdot 8$ 57.5	58.3	58.9 58.6	59 59	$60 \cdot 1$ 50	$60 \cdot 7$ $60 \cdot 4$	$6 I \cdot 3$ $6 I \cdot$	61.9 61.7	62.6 62.3	63° 63.0	$63 \cdot 9$ $63 \cdot 7$
-990	$55^{\circ} 5$	$56 \cdot 0$	56.5	57°	$57^{\circ} 5$	$58 \cdot 1$	$58 \cdot 6$	59°	59.8	$60 \cdot 4$	6I	61	62	63°	$63^{\prime} 7$

Table C.

AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION

Azimuth is named N or S according to the name of the A and B correction.

$A \operatorname{and} B$ rection.	Latitudes.														
	45°	47°	48°	49°	50°	51°	52°	53°	54°	55°	56°	57°	58°	59°	60°
Azimuths.															
															-
1.00	55^{2}	55\%	$56 \cdot 2$	56.7	57.3	57*8	$58^{\circ} 4$		$59 \cdot 6$	$60 \cdot 2$	$60 \cdot 8$	61.4	$62 \cdot 1$	$62 \cdot 7$	63.4
$1 \cdot 02$	54.7	55^{2}	55\%	$56 \cdot 2$	56.7	$57^{\circ} 3$	$57^{\circ} 9$	$58^{\prime} 5$	$59 \cdot 1$	59.7	$60 \cdot 3$	$60 \cdot 9$	61.6	$62 \cdot 3$	63°
r.04	54.2	$54^{7} 7$	$55^{\circ} 2$	55\%	$56 \cdot 2$	$56 \cdot 8$	57.4	$58 \cdot$	$58 \cdot 6$	59°	$59 \cdot 8$	$60 \cdot 5$	$6 \mathrm{r} \cdot \mathrm{I}$	6x.8	62.5
r.06	$53 \cdot 6$	54^{1} I	$54^{\circ} 7$	$55^{\circ} 2$	55%	$56 \cdot 3$	56.9	$57^{\circ} 5$	$58 \cdot 1$	58.7	$59 \cdot 3$	$60 \cdot$	60.7	61.4	$62 \cdot 1$
r.08	$53^{\circ} \mathrm{I}$	$53 \cdot 6$	$54 \cdot 1$	54%	$55^{\prime 2}$	55°	$56 \cdot 4$	$57^{\circ} \mathrm{O}$	$57 \cdot 6$	$58 \cdot 2$	58.9	$59^{\circ} 5$	$60 \cdot 2$	$60 \cdot 9$	$6 \mathrm{I} \cdot 6$
$1 \cdot 10$	52	53	$53 \cdot 6$	$54^{\circ} 2$	54*7	55	55.9	$56 \cdot 5$	57	57.8		59	$59 \cdot 8$	$60 \cdot 5$	2
I•12	$52 \cdot 1$	$52 \cdot 6$	53.2	53'7	54.2	54:8	$55^{\circ} 4$	56.0	56.6	57.3	57.9	$58 \cdot 6$	$59 \cdot 3$	$60 \cdot 0$	$60 \cdot 8$
${ }^{1} \cdot 14$	$5 \mathrm{~F} \cdot 6$	$52 \cdot 1$	52.7	53°	53.8	$54^{\circ} 3$	54%	55.5	$56 \cdot 2$	56.8	57.5	$58 \cdot 2$	58.9	59.6	$60 \cdot 3$
I. 16 - 18	$51 \cdot 1$ 50	51.7	52.2	$52 \cdot 7$ 52	53.3 52.8	$53^{\circ} 9$	54.5	55.	$55 \cdot 7$ 55	56.4	$57^{\circ} \mathrm{O}$	57.7	58.4	59.1	59.9
I•8	50\%7	$51 \cdot 2$	51.7	$52 \cdot 3$	$52 \cdot 8$	53.4	54°	54.6	$55 \cdot 3$	55\%	56.6	57.3	58.0	$58 \cdot 7$	59.5
$1 \cdot 20$	$50^{\circ} 2$	$50 \cdot 7$	$5 \mathrm{I}^{\prime} 2$	51	52.4	52.9	53'5	54.2	$54 \cdot 8$	$55^{\circ} 5$	$56^{\prime} 1$	$56 \cdot 8$	57.5	$58 \cdot 3$	59°
I 22	497	$50 \cdot 2$	50*8	$51 \cdot 3$	519 9	$52 \cdot 5$	$53^{\circ} \mathrm{I}$	53.7	54.4	55°	$55^{\circ} 7$	$56 \cdot 4$	57^{-1}	57.9	$58 \cdot 6$
$1 \cdot 24$	$49 \cdot 3$	$49^{\circ} 8$	$50 \cdot 3$	$50^{\circ} 9$	$5 \mathrm{I}^{\circ} 4$	$52 \cdot 0$	$52 \cdot 6$	$53 \cdot 3$	$53^{\circ} 9$	$54^{\circ} 6$	55*3	$56 \cdot 0$	$56^{\circ} 7$	57.4	58.2
$\begin{array}{r}1.26 \\ \hline\end{array}$	$48 \cdot 8$	49.3	$49 * 9$	$50^{\circ} 4$	$55^{\circ} \mathrm{O}$	$5 \mathrm{I} \cdot 6$	$52 \cdot 2$	$52 \cdot 8$	53.5	$54^{\circ} \mathrm{I}$	$54 \cdot 8$	$55^{\circ} 5$	$56 \cdot 3$	57°	$57 \cdot 8$
1-28	$48 \cdot 4$	48.9	49.4	50\%	$50 \cdot 6$	51-1	51.8	52.4	53°	53.7	$54^{\circ} 4$	$55^{\circ} \mathrm{I}$	$55^{\circ} 9$	$56 \cdot 6$	57.4
$1 \cdot 30$	479	$48 \cdot 4$	49°	$49^{\circ} 5$	$50 \cdot 1$	50'7	$51 \cdot 3$	52°	$52 \cdot 6$	53.3	$54^{\circ} \mathrm{O}$	54.7	55.4	$56 \cdot 2$	57°
1.32	47.5	$48 \cdot 0$	$48 \cdot 5$	$49 \cdot 1$	497	$50 \cdot 3$	50.9	$5 \mathrm{I}^{\circ} 5$	52.2	52.9	$53^{\circ} 6$	$54^{\circ} 3$	55°	$55 \cdot 8$	$56 \cdot 6$
I 34	$47^{\circ} \mathrm{I}$	$47 \cdot 6$	$48 \cdot 1$	$48 \cdot 7$	$49 \cdot 3$	$49^{\circ} \mathrm{O}$	$50 \cdot 5$	51-1	51-8	$52 \cdot 5$	$53^{\prime 2}$	$53^{\circ} 9$	$54 \cdot 6$	$55^{\circ} 4$	$56 \cdot 2$
1.36	$46 \cdot 6$	$47^{\circ} 2$	$47 \cdot 7$	$48 \cdot 3$	$48 \cdot 8$	$49^{\circ} 4$	$50^{\circ} \mathrm{I}$	50'7	$5 \mathrm{I} \cdot 4$	52.0	$52 \cdot 7$	$53^{\circ} 5$	$54^{\circ} 2$	$55^{\circ} \mathrm{O}$	55.8
$1 \cdot 38$	$46 \cdot 2$	$46 \cdot 7$	$47 \cdot 3$	$47 \cdot 8$	$48 \cdot 4$	49°	49^{6}	$50 \cdot 3$	$51^{\circ} \mathrm{O}$	51.6	$52 \cdot 3$	$53^{\circ} \mathrm{I}$	$53 \cdot 8$	$54 \cdot 6$	$55^{\circ} 4$
140	45	$46 \cdot 3$	$46 \cdot 9$	$47^{\circ} 4$	48.0	$48 \cdot 6$	49.2	$49^{\circ} 9$	$50 \cdot 5$	51.2	51*9	52'7	53.4	54.2	$55^{\circ} \mathrm{O}$
$1 \cdot 42$	45°	$45^{\circ} 9$	$46 \cdot 5$	$47^{\circ} \mathrm{O}$	$47^{\circ} 6$	$48 \cdot 2$	$48 \cdot 8$	$49 \cdot 5$	$50 \cdot 1$	$50 \cdot 8$	51-5	$52 \cdot 3$	$53^{\circ} \mathrm{O}$	$53^{\circ} 8$	54.6
1.44	$45^{\circ} \mathrm{O}$	$45^{\circ} 5$	$46^{\prime} \mathrm{I}$	$46 \cdot 6$	47.2	47.8	48.4	$49^{\prime} \mathrm{I}$	$49^{\circ} 8$	$50^{\circ} 4$	$5 \mathrm{I}^{\circ} 2$	$51^{\circ} 9$	$52 \cdot 7$	$53^{\circ} 4$	$54^{\circ} 2$
$1 \cdot 46$	44^{6}	$45^{\circ} \mathrm{I}$	$45^{\prime} 7$	$46 \cdot 2$	$46 \cdot 8$	$47^{\circ} 4$	$48 \cdot$	$48 \cdot 7$	$49^{\circ} 4$	$50 \cdot 1$	$50 \cdot 8$	51.5	52.3	$53^{\circ} \mathrm{I}$	53.9
$1 \cdot 48$	$44^{\circ} 2$	$44^{\circ} 7$	$45^{\circ} 3$	$45 \cdot 8$	$46 \cdot 4$	47.0	$47^{7} 7$	$48 \cdot 3$	$49^{\circ} \mathrm{O}$	497	$50 \cdot 4$	$51 \cdot 1$	$51^{\circ} 9$	52.7	53.5
1.50	$43^{\circ} 8$	44.3	$44^{\circ} 9$	$45 \cdot 5$	$46 \cdot 0$	467	473	479	$48 \cdot 6$	$49 \cdot 3$	50'0	$50 \cdot 8$	51.5	$52 \cdot 3$	$53^{\circ} \mathrm{I}$
1.52	$43^{\circ} 4$	44°	$44^{\circ} 5$	$45^{\circ} \mathrm{I}$	$45^{\circ} 7$	$46 \cdot 3$	46.9	47.5	$48 \cdot 2$	$48 \cdot 9$	$49 \cdot 6$	$50 \cdot 4$	$5{ }^{\text {P }}$	51.9	52.8
1.54	$43^{\cdot} \cdot 1$	$43^{\circ} 6$	$44^{\circ} \mathrm{I}$	44.7	$45^{\circ} 3$	$45^{\circ} 9$	$46 \cdot 5$	47.2	47.8	$48 \cdot 5$	$49^{\circ} 3$	50°	$50 \cdot 8$	$5 \mathrm{I}^{\circ} \cdot 6$	52.4
1.56	$42 \cdot 7$	43°	$43 \cdot 8$	$44 \cdot 3$	44.9	$45^{\circ} 5$	$46 \cdot 2$	$46 \cdot 8$	47.5	$48 \cdot 2$	$48 \cdot 9$	$49 \cdot 6$	$50 \cdot 4$	51°	52.0
1-58	$42 \cdot 3$	$42^{\prime} 9$	$43^{\circ} 4$	$44^{\circ} \mathrm{O}$	$44^{\circ} 6$	$45^{\circ} 2$	$45^{\circ} 8$	$46 \cdot 4$	47^{1}	47.8	$48 \cdot 5$	$49 \cdot 3$	$50^{\circ} \mathrm{I}$	50'9	5×7
1.60	42.0	425	43°	$43^{\circ} 6$	$44^{\circ} 2$	$44 \cdot 8$	$45^{\circ} 4$	$46^{\prime} 1$	$46 \cdot 8$	47.5	$48 \cdot 2$	$48 \cdot 9$	$49^{\prime} 7$	$50 \cdot 5$	51•3
162	$4 \mathrm{I}^{\circ} 6$	$42 \cdot 1$	$42 \cdot 7$	$43 \cdot 3$	$43 \cdot 8$	$44^{\circ} 4$	$45^{\circ} \mathrm{I}$	$45^{\circ} 7$	$46 \cdot 4$	$47^{\circ} \mathrm{I}$	$47 \cdot 8$	$48 \cdot 6$	49°	$50 \cdot 2$	$5 r^{\circ} \mathrm{O}$
I•64	$41 \cdot 3$	41.8	$42 \cdot 3$	429	$43^{\circ} 5$	$44^{\circ} \mathrm{I}$	44.7	$45^{\circ} 4$	$46 \cdot 1$	$46 \cdot 8$	47.5	$48 \cdot 2$	49°	$49^{\circ} 8$	$50 \cdot 6$
$1 \cdot 66$	$40^{\circ} 9$	$4{ }^{\circ} 5$	$42^{\circ} \mathrm{O}$	$42 \cdot 6$	43^{\prime} I	$43^{\circ} 7$	$44^{\circ} 4$	45°	$45^{\circ} 7$	$46 \cdot 4$	47.1	479	$48 \cdot 7$	$49^{\circ} 5$	$50 \cdot 3$
1.68	$40 \cdot 6$	$4{ }^{-1}$	$4{ }^{\prime} 7$	42.2	$42 \cdot 8$	43.4	$44^{\circ} \mathrm{O}$	$44^{\circ} 7$	$45 \cdot 4$	$4^{6} 1$	$46 \cdot 8$	47.5	$48 \cdot 3$	$49^{\circ} \mathrm{I}$	50°
170	$40 \cdot 3$	$40 \cdot 8$	413	419	$42 \cdot 5$	$43^{1} 1$	$43^{\prime} 7$	443	45°	$45 \% 7$	$46 \cdot 4$	$47^{\circ} 2$	$48 \cdot 0$	$48 \cdot 8$	$49 \cdot 6$
1'72	39.9	$40 \cdot$	41°	$41 \cdot 5$	$42 \cdot 1$	$42 \cdot 7$	$43^{\circ} 4$	44°	$44^{\circ} 7$	$45^{\circ} 4$	$46 \cdot 1$	$46 \cdot 9$	$47 \cdot 7$	$48 \cdot 5$	$49^{\circ} 3$
1'74	$39 \cdot 6$	$40^{\circ} \mathrm{I}$	$40 \cdot 7$	$4 \mathrm{r} \cdot 2$	41.8	42.4	$43^{\circ} \mathrm{O}$	$43^{\circ} 7$	$44^{\circ} 4$	$45^{\circ} \mathrm{I}$	45.8	$46 \cdot 5$	$47 \cdot 3$	$48 \cdot 1$	49°
I'76	$39^{\circ} 3$	$39 \cdot 8$	$40 \cdot 3$	409	$4{ }^{\circ} 5$	$42 \cdot 1$	42.7	$43 \cdot 4$	44°	44.7	$45^{\circ} 5$	$46 \cdot 2$	47°	$47 \cdot 8$	$48 \cdot 7$
1.78	$39^{\circ} \mathrm{O}$	$39^{\circ} 5$	40%	$40 \cdot 6$	41.2	41.8	42.4	$43^{\circ} \mathrm{O}$	$43^{\circ} 7$	$44^{\circ} 4$	$45^{\circ} \mathrm{I}$. $45^{\circ} 9$	$46 \cdot 7$	47×5	$48 \cdot 3$
1.80	$38 \cdot 7$	$39^{\circ} 2$	$39^{\circ} 7$	$40^{\circ} 3$	$40 \cdot 8$	$4 \mathrm{r}^{\circ} 4$	$42 \cdot 1$	$42 \cdot 7$	$43^{\circ} 4$	44^{17}	$44^{\circ} 8$	$45^{\circ} 6$	46.4	47°	$48 \cdot 0$
1.82	$38 \cdot 3$	38.9	$39^{\circ} 4$	$39 \cdot 9$	$40 \cdot 5$	$4 \mathrm{r} \cdot \mathrm{I}$	$4{ }^{1} 7$	$42 \cdot 4$	$43 \cdot 1$	$43 \cdot 8$	44.5	$45 \cdot 3$	$46 \cdot 0$	$46 \cdot 9$	$47 \cdot 7$
I.84	$38 \cdot$	$38 \cdot 6$	$39 \cdot 1$	$39 \cdot 6$	$40 \cdot 2$	$40 \cdot 8$	41.4	42.1	$42 \cdot 8$	43.5	$44^{\circ} 2$	$44^{\circ} 9$	$45^{\circ} 7$	$46 \cdot 5$	$47^{\circ} 4$
1.86	$37^{\circ} 7$	38.2	38.8	$39^{\circ} 3$	$39^{\circ} 9$	$40 \cdot 5$	$4 \mathrm{I} \cdot 1$	$4 \mathrm{I} \cdot 8$	42.4	$43^{\circ} \mathrm{I}$	$43^{\circ} 9$	$44^{\cdot 6}$	$45^{\circ} \cdot$	$46 \cdot 2$	47.1
1-88	37.4	$38 \cdot 0$	$38 \cdot 5$	39°	$39^{\circ} 6$	$40 \cdot 2$	$40 \cdot 8$	41.5	$42 \cdot 1$	42.	$43 \cdot 6$	44.3	$45^{\circ} \mathrm{I}$	$45^{\prime} 9$	$46 \cdot 8$
1×90	$37^{\circ} \mathrm{I}$	37^7	38.2	$38 \cdot 7$	$39^{\circ} 3$	$39^{\circ} 9$	$40 \cdot 5$	41.2	41.8	$42 \cdot 5$	$43^{*} 3$	$44^{\circ} \mathrm{O}$	44°	$45 \cdot 6$	$46 \cdot 5$
I.92	$36 \cdot 9$	$37 \cdot 4$	37.9	$38 \cdot 4$	39°	$39 \cdot 6$	$40 \cdot 2$	$40 \cdot 9$	41.5	$42 \cdot 2$	$43^{\circ} \mathrm{O}$	43.7	44.5	$45^{\circ} 3$	$46 \cdot 2$
$1 \cdot 94$	$36 \cdot 6$	37°	$37 \cdot 6$	$38 \cdot 2$	$38 \cdot 7$	$39 \cdot 3$	$39^{\circ} 9$	$40 \cdot 6$	$4 \mathrm{I} \cdot 2$	$41^{\circ} 9$	$42 \cdot 7$	$43^{\circ} 4$	$44^{\circ} 2$	45°	$45^{\circ} 9$
I.96	$36 \cdot 3$	$36 \cdot 8$	$37 \cdot 3$	37.9	38.4	39°	$39 \cdot 6$	$40^{\circ} 3$	41°	41'7	$42 \cdot 4$	$43^{1} 1$	$43^{\circ} 9$	$44^{\prime} 7$	$45^{\circ} 6$
I-98	$36 \cdot 0$	$36 \cdot 5$	37°	$37 \cdot 6$	$38 \cdot 2$	$38 \cdot 7$	$39^{\circ} 4$	$40^{\circ} \mathrm{O}$	$40^{\circ} 7$	414	$42 \cdot \mathrm{I}$	42.8	$43 \cdot 6$	$44^{\prime} 4$	$45^{\circ} 3$

Table C.

AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.

Azimuth is named N or S according to the name of the A and B correction.

A and B Correction.	LATITUDES.														
	46°	47°	48°	49°	50°	51°	$52^{\text {c }}$	53°	54°	55°	56°	57°	58°	59°	60°
Azimuths.															
$2 \cdot 00$	$35^{\circ} 7$	$36 \cdot 2$	$36 \cdot 8$	$37^{\circ} 3$	37.9	$38 \cdot 5$	$39^{\circ} \mathrm{I}$	$39^{\prime} 7$	$40^{\circ} 4$	4 1 1	41-8	42.6	$43^{\circ} 3$	$44^{\circ} 2$	45°
2.05	$35^{\circ} \mathrm{I}$	$35 \cdot 6$	$36 \cdot 1$	$36 \cdot 6$	$37^{\circ} 2$	$37 \cdot 8$	$38 \cdot 4$	$39^{\circ} \mathrm{O}$	39*7	$40 \cdot 4$	41'1	41.8	$42 \cdot 6$	$43^{\circ} 4$	$44^{\circ} 3$
$2 \cdot 10$	$34^{\circ} 4$	34.9	$35^{\circ} 4$	$36 \cdot 0$	$36 \cdot 5$	$37^{\circ} \mathrm{I}$	$37 \cdot 7$	$38 \cdot 4$	39°	$39^{\prime} 7$	$40 \cdot 4$	41.2	41.9	$42 \cdot 8$	$43 \cdot 6$
2.15	$33^{\circ} 8$	$34 \cdot 3$	$34^{\circ} 8$	$35^{\circ} 3$	$35^{\circ} 9$	$36 \cdot 5$	$37^{\circ} \mathrm{I}$	$37^{\prime} 7$	$38 \cdot 4$	39°	$39^{\circ} 8$	$40 \cdot 5$	4I•3	$42 \cdot 1$	$42 \cdot 9$
$2 \cdot 20$	$33^{\circ} 2$	$33 \cdot 7$	$34 \cdot 2$	$34^{\circ} 7$	$35^{\circ} 3$	$35 \cdot 8$	$36 \cdot 4$	$37^{\circ} \mathrm{I}$	37%	$38 \cdot 4$	$39^{1} 1$	$39^{\circ} 8$	$40 \cdot 6$	41.4	$42 \cdot 3$
2.25	$32 \cdot 6$	$33^{\circ} \mathrm{I}$	$33^{\circ} 6$	$34^{\circ} \mathrm{I}$	$34 * 7$	$35^{\circ} 2$	$35^{\circ} 8$	$36 \cdot 4$	$37^{\circ} \mathrm{I}$	37^{-8}	$38 \cdot 5$	39'2	$40 \cdot 0$	$40 \cdot 8$	41.6
2.30	$32 \cdot 0$	$32 \cdot 5$	$33^{\circ} \mathrm{O}$	$33^{\circ} 5$	$34^{\circ} \mathrm{I}$	$34^{\circ} 6$	$35^{\circ} 2$	$35^{\circ} 8$	36.5	$37^{\circ} 2$	$37 \cdot 9$	$38 \cdot 6$	$39 * 4$	$40 \cdot 2$	410
2.40	$3 \mathrm{I}^{\circ} \mathrm{O}$	$3 \mathrm{I} \cdot 4$	31.9	32.4	$33^{\circ} 0$	$33^{\circ} 5$	$34^{\circ} \mathrm{I}$	34.7	$35^{\circ} 3$	$36 \cdot 0$	$36 \cdot 7$	$37^{\circ} 4$	$38 \cdot 2$	39°	$39 \cdot 8$
2.50	$29^{\circ} 9$	$30 \cdot 4$	$30 \cdot 9$	31.4	31'9	32.4	$33^{\circ} \mathrm{O}$	$33^{\cdot 6}$	$34^{\circ} 2$	$34^{\circ} 9$	$35^{\circ} 6$	$36 \cdot 3$	37°	$37^{\circ} 8$	$38 \cdot 7$
$2 \cdot 60$	$29^{\circ} \mathrm{O}$	29.4	$29^{\circ} 9$	$30 \cdot 4$	$30 \cdot 9$	31.4	$32 \cdot 0$	$32 \cdot 6$	$33^{\circ} 2$	$33^{\circ} 8$	$34^{\circ} 5$	$35^{\circ} 2$	36.0	36.8	$37 \cdot 6$
2.70	28.1	$28 \cdot 5$	29.0	29.4	$30 \cdot 0$	$30^{\circ} 5$	31°	31.6	$32 \cdot 2$	$32 \cdot 9$	$33^{\circ} 5$	$34^{\circ} \mathrm{T}$	35°	35*7	$36 \cdot 5$
$2 \cdot 80$	$27^{\circ} 2$	$27^{\circ} 6$	$28^{1} 1$	$28 \cdot 6$	29'1	$29^{\circ} 6$	$30^{\prime} 1$	30.7	3I'3	$31 \cdot 9$	$32 \cdot 6$	$33 \cdot 3$	34°	$34^{\circ} 7$	$35 \cdot 5$
2.90	$26^{\circ} 4$	$26 \cdot 8$	27.3	27.7	$28 \cdot 2$	$28 \cdot 7$	$29^{\circ} 3$	29.8	30'4	$31^{\circ} 0$	31.7	$32 \cdot 3$	33^{\prime} I	33^{-8}	$34^{\circ} 6$
$3 \cdot 00$	$25^{\circ} 6$	$26 \cdot 0$	$26 \cdot 5$	$26 \cdot 9$	$27^{\circ} 4$	27.9	$28 \cdot 4$	$29^{\circ} \mathrm{O}$	29.6	$30 \cdot 2$	$30 \cdot 8$	31.5	$32 \cdot 2$	32.9	$33^{\circ} 7$
$3 \cdot 10$	$24^{\circ} 9$	$25^{\circ} 3$	25'7	$26^{\circ} 2$	$26 \cdot 6$	$27^{1} \mathrm{I}$	$27^{\circ} 7$	$28 \cdot 2$	$28 \cdot 8$	$29^{\circ} 4$	$30 \cdot 0$	$30 \cdot 6$	3I•3	$32 \cdot 1$	$32 \cdot 8$
$3 \cdot 20$	$24^{\circ} 2$	$24^{\circ} 6$	$25^{\circ} \mathrm{O}$	$25^{\circ} 5$	$25^{\circ} 9$	26.4	$26 \cdot 9$	27.4	28*	$28 \cdot 6$	$29^{\prime} 2$	29.8	$30 \cdot 5$	31'2	$32^{\circ} 0$
$3 \cdot 30$	$23 \cdot 6$	$24^{\circ} \mathrm{O}$	$24^{\circ} 4$	$24^{\circ} 8$	$25^{\circ} 2$	25.7	$26 \cdot 2$	26.7	$27 \cdot 3$	$27 \cdot 8$	$28 \cdot 5$	29'1	29.8	30.5	$31 \cdot 2$
3.40	22.9	$23^{\circ} 3$	$23^{\prime} 7$	$24^{\circ} \mathrm{I}$	$24^{\circ} 6$	$25^{\circ} \mathrm{O}$	$25^{\circ} 5$	26°	$26 \cdot 6$	$27^{\prime} 1$	$27^{\circ} 7$	$28 \cdot 4$	29°	297	$30 \cdot 5$
$3 \cdot 60$	$21 \cdot 8$	$22 \cdot 2$	$22 \cdot 5$	22.9	23.4	23.8	$24^{\circ} 3$	$24^{\circ} 8$	$25^{\circ} 3$	$25^{\circ} 8$	$26 \cdot 4$	$27^{\circ} \mathrm{O}$	$27^{\circ} 7$	$28 \cdot 3$	$29^{\circ} \mathrm{I}$
$3 \cdot 80$	20*7	21'1	2I•5	21.9	$22 \cdot 3$	22.7	$23^{\prime} \mathrm{I}$	$23^{\circ} 6$	$24^{\circ} \mathrm{I}$	$24^{\circ} 6$	$25^{\circ} 2$	$25^{\circ} 8$	$26 \cdot 4$	$27^{\circ} \mathrm{I}$	$27 \cdot 8$
400	19.8	20'1	20'5	20'9	21•3	$21^{\prime} 7$	$22 \cdot 1$	22.6	23°	23.6	$24^{\circ} \mathrm{I}$	$24^{\circ} 7$	$25^{\circ} 3$	25.9	$26 \cdot 6$
$4 \cdot 20$	$18 \cdot 9$	$19^{\circ} 2$	$19 \cdot 6$	19.9	$20 \cdot 3$	20\%7	21.1	21.6	22.1	22.5	$23^{1} 1$	23.6	$24^{\circ} 2$	24^{-8}	$24^{\circ} 5$
4.40	$18 \cdot 1$	$18 \cdot 4$	$18 \cdot 8$	19.1	19.5	19.9	203	207	21. 1	21.6	$22^{1} 1$	22.7	23.2	$23 \cdot 8$	$24^{\circ} 4$
4.60	$17^{\circ} 4$	17.7	$18 \cdot 0$	18.3	$18 \cdot 7$	19.1	19.4	199	203	20.8	$2 \mathrm{I}^{\prime} 2$	2I•8	$22 \cdot 3$	22.9	23.5
$4 \cdot 80$	$16 \cdot 7$	$17^{\circ} \mathrm{O}$	17.3	$17^{\circ} 6$	18.0	$18 \cdot 3$	$18 \cdot 7$	19* 1	19.5	$20 \cdot 0$	$20 \cdot 4$	20'9	215	$22 \cdot 0$	22.6
$5^{\circ} 00$	16	16.3	16.6	$17^{\circ} 0$	17.3	17.6	$18 \cdot 0$	18.4	18.8	$19^{\circ} 2$	19.7	20*2	$20 \cdot 7$	$21^{\circ} 2$	21.8
$5 \cdot 50$	14.7	14.9	$15^{\circ} 2$	15.5	15.8	$16 \cdot 1$	16.5	16.8	$17^{\circ} 2$	$17^{\circ} 6$	$18 \cdot 0$	$18 \cdot 5$	18.9	19.4	20°
6.00	13.5	13.7	$14^{\circ} \mathrm{O}$	14.3	14.5	14.8	$15^{\circ} \mathrm{I}$	${ }^{15} 5$	15.8	16.2	16.6	$17{ }^{\circ}$	$17{ }^{\circ} 5$	17.9	$18 \cdot 4$
$6 \cdot 50$	12.5	12.7	12.9	$13^{\circ} 2$	$13^{\circ} 5$	13.7	$14^{\circ} \mathrm{O}$	14.3	14.7	$15^{\circ} 0$	15.4	15.8	16.2	$16 \cdot 6$	$17 \cdot 1$
700	I $1 \cdot 6$	II•8	12.1	12.3	12.5	12.8	$13^{1} 1$	$13^{\circ} 4$	$13^{\prime} 7$	$14^{\circ} 0$	14.3	14.7	I $5^{\circ} \mathrm{I}$	15.5	15.9
$8 \cdot 0$	10\%2	$10 \cdot 4$	10	10.8	II'O	II'2	II•5	I 1'7	12.0	12.3	12.6	12.9	13.3	13.6	$14^{\circ} \mathrm{O}$
$9{ }^{\circ}$		$9 \cdot 3$	94		$9 \cdot 8$	$10{ }^{\circ}$	$10 \cdot 2$	10.5	10.7	II'O	II'2	II 5	I I•8	12.2	12.5
$10 \cdot 0$		$8 \cdot 3$	$8 \cdot 5$	$8 \cdot 7$	$8 \cdot 8$		$9 \cdot 2$	$9 \cdot 4$	$9 \cdot 7$	$9 \% 9$	$10^{\prime} 1$	$10 \cdot 4$	10.7	II'O	II'3
II'O	7.5	$7 \cdot 6$	$7 \% 7$	$7 \cdot 9$	8•0	$8 \cdot 2$	$8 \cdot 4$	$8 \cdot 6$	$8 \cdot 8$	$9 \cdot 0$		8	9*7	$10 \cdot 0$	$10 \cdot 3$
12.0	$6 \cdot 8$	$7{ }^{\circ} 0$	$7 \cdot 1$	$7 \cdot 2$	$7 \cdot 4$	$7 \cdot 5$	77	7.9	8•1	$8 \cdot 3$	$8 \cdot 5$	8•7	$8 \cdot 9$	$9 \cdot 2$	$9 \cdot 5$
$13^{\circ} \mathrm{O}$	$6 \cdot 3$	$6 \cdot 4$	$6 \cdot 6$	$6 \cdot 7$	$6 \cdot 8$	7.	$7{ }^{11}$	$7 \cdot 3$	7.5	$7 \cdot 6$	7	$8 \cdot 0$	$8 \cdot 3$	$8 \cdot 5$	$8 \cdot 7$
15°	$5 \cdot 5$	$5 \cdot 6$	$5 \cdot 7$	$5 \cdot 8$	$5 \cdot 9$	$6 \cdot 0$	$6 \cdot 2$	$6 \cdot 3$	$6 \cdot 5$	$6 \cdot 6$	$6 \cdot 8$	$7 \cdot 0$	$7 \cdot 2$	$7 \cdot 4$	$7 \cdot 6$
$17^{\circ} \mathrm{O}$	$4 \cdot 8$	4.9	$5 \cdot 0$	$5 \cdot 1$	$5 \cdot 2$	$5 \cdot 3$	$5 \cdot 5$	$5 \cdot 6$	$5 \cdot 7$	$5 \cdot 9$	6.0	$6 \cdot 2$	$6 \cdot 3$	$6 \cdot 5$	$6 \cdot 7$
20°	$4^{\circ} \mathrm{I}$	$4^{\cdot 2}$	$4 \cdot 3$	$4 \cdot 4$	$4 \cdot 4$	4.5	$4 \cdot 6$	$4 \cdot 7$	4.9	$5^{\circ} 0$	$5^{\circ} 1$	5	$5 \cdot 4$	$5 \cdot 5$	$5 \cdot 7$
25°	$3 \cdot 3$	$3 \cdot 4$	$3 \cdot 4$	$3 \cdot 5$	$3 \cdot 6$	$3 \cdot 6$	$3 \cdot 7$	$3 \cdot 8$	$3 \cdot 9$	$4^{\circ} 0$	$4^{\circ} \mathrm{I}$	$4^{\circ} 2$	$4^{*} 3$	44	4.6
$30 \cdot 0$	2.7	$2 \cdot 8$	9	2.9	$3 \cdot 0$	$3{ }^{\circ} 0$	$3 \cdot 1$	$3 \cdot 2$	$3 \cdot 2$	$3 \cdot 3$	3.4	3.5	$3 \cdot 6$	$3 \cdot 7$	$3 \cdot 8$
40°	21	$2 \cdot 1$	1	$2 \cdot 2$	$2 \cdot 2$	2	$2 \cdot 3$	$2 \cdot 4$	$2 \cdot 4$	$2 \cdot 5$	2.6	$2 \cdot 6$	$2 \cdot 7$	$2 \cdot 8$	2.9
50%	I. 6	$1 \cdot 7$	I'7	I'7	I•8	I•8	I-9	1.9	I'9	2.0	2	$2 \cdot 1$	$2 \cdot 2$	$2 \cdot 2$	$2 \cdot 3$
$70 \cdot 0$	12	I-2	I-2	$1 \cdot 2$	I•3	I•3	1-3	1.4	$1 \cdot 4$	$1 \cdot 4$	$1 \cdot 5$	I•5	I'5	I'6	I•6
1000	0.8	$0 \cdot 8$	$0 \cdot 9$	$0 \cdot 9$	$0 \cdot 9$	$0 \cdot 9$	$0 \cdot 9$	I'0	$1 \cdot$	I'0	1	I'I	I'I	I'I	I'I
${ }^{1} 500$	$0 \cdot 5$	0.6	6	0.6	0.6	0.6	. 6	. 6		0.7	$0 \cdot 7$	0.7	$0 \cdot 7$	0.7	0.8
2000	04	0.4	04	$0 \cdot 4$	0.4	0.5	0.5	0.5	$0 \cdot 5$	0.5	0.5	0.5	$0 \cdot 5$	0.6	0.6
$300{ }^{\circ}$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	0.3	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	0.4	$0 \cdot 4$	0.4	0.4
$400{ }^{\circ}$	$0 \cdot 2$	0.2	0.2	$0 \cdot 2$	0.2	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$
$800 \cdot 0$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	O. 1	$0 \cdot 1$	O. I	O. I	O.I	$0 \cdot 1$	0.3	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	O'I

Table C.
AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.
Azimuth is named N or S according to the name of the A and B correction.

$\left\|\begin{array}{c} A \operatorname{sind} B \\ \text { Cor- } \\ \text { rection. } \end{array}\right\|$	LATITUDES.														
	61°	62°	63°	64°	65°	66°	67°	68°	69°	6912 ${ }^{\circ}$	$70{ }^{\circ}$	7012 ${ }^{\circ}$	71°	712	72°
Azimuths															
,															
-00	90'0	90'0	90°	$90^{\circ} 0$	90.0	90.0	90\%	90°	90.0	90*0	90*	90'0	90*0	90*0	90•0
-or	89.7	89×7	89.7	$89^{\circ} 7$	$89 \cdot 8$	89.8	$89 \cdot 8$	89.8	89*8	89.8	89.8	89.8	$89 \cdot 8$	89.8	$89 \cdot 8$
-02	$89^{\circ} 4$	89.5	$89^{\circ} 5$	89.5	89.5	89.5	$89 \cdot 6$	$89 \cdot 6$	89.6	89.6	$89 \cdot 6$	89.6	$89 \cdot 6$	89.6	$89 \cdot 6$
'03	$89^{\circ} 2$	89°	$89^{\circ} 2$	$89 \cdot 2$	$89^{\circ} 3$	$89^{\circ} 3$	$89 \cdot 3$	89.4	$89^{\circ} 4$	$89^{\circ} 4$	$89^{\circ} 4$	$89^{\circ} 4$	89.4	89.5	89.5
-04	88.9	88.9	89*0	89°	89*	89'I	89'I	89.1	$89^{\circ} 2$	$89^{\circ} 2$	89^{-2}	$89^{\circ} 2$	89.3	89.3	89.3
-05	88.6	$88 \cdot 7$	$88 \cdot 7$	$88 \cdot 7$	88.8	88.8	88.9	88.9	89°	89°	89°	89°	$89^{\circ} \mathrm{I}$	89^{-1}	89.1
-06	$88 \cdot 3$	88.4	88.4	88.5	$88 \cdot 5$	$88 \cdot 6$	$88 \cdot 7$	$88 \cdot 7$	88.8	$88 \cdot 8$	88.8	88.9	$88 \cdot 9$	88.9	$88 \cdot 9$
-07	88.1	$88 \cdot 1$	$88 \cdot 2$	88.2	$88 \cdot 3$	88.4	88.4	88.5	88.6	88.6	88.6	88.7	$88 \cdot 7$	$88 \cdot 7$	$88 \cdot 8$
-08	87.8	87.8	87.9	88.0	88.1	88•I	88.2	88.3	88.4	88.4	88.4	88.5	$88 \cdot 5$	$88 \cdot 5$	$88 \cdot 6$
-09	87.5	87.6	87.7	87.7	87.8	87.9	88.0	88' 1	$88 \cdot 2$	88.2	$88 \cdot 2$	88.3	$88 \cdot 3$	88.4	88.4
'10	87.2	87.3	87.4	87.5	87.6	87.7	87.8	87.9	87.9	$88 \cdot 0$	88.0	88.1	88. 1	88.2	$88 \cdot 2$
'II	86.9	87°	$87^{\prime} 1$	87.2	87.3	87.4	87.5	87.6	87.7	87.8	87.8	87.9	$87 \cdot 9$	88.0	$88 \cdot 1$
-12	$86 \cdot 7$	$86 \cdot 8$	86.9	87°	$87 \cdot 1$	87.2	$87 \cdot 3$	87.4	87.5	$87^{\circ} 6$	87.6	87.7	87.8	87.8	$87 \cdot 9$
- 13	86.4	$86 \cdot 5$	$86 \cdot 6$	86.7	86^{-9}	87°	87.1	87.2	87.3	87.4	87.5	87.5	$87^{\circ} 6$	87.6	87.7
$\cdot 14$	86. 1	$86 \cdot 2$	86.4	$86 \cdot 5$	$86 \cdot 6$	$86 \cdot 7$	86.9	87.0	$87 \cdot 1$	87°	87.3	87.3	87.4	87.5	87.5
15	85.8	$86 \cdot 0$	86	86.2	86.4	$86 \cdot 5$	$86 \cdot 6$	$86 \cdot 8$	$86 \cdot 9$	87°	87.1	87.1	$87^{\circ} 2$	87.3	87.3
-16	$85 \cdot 6$	85.7	$85 \cdot 8$	86.0	86^{1}	86.3	86.4	$86 \cdot 6$	$86 \cdot 7$	$86 \cdot 8$	$86 \cdot 9$	86.9	$87^{\circ} 0$	87.1	87.2
- 17	85.3	85.4	85.6	$85^{\prime} 7$	$85^{\circ} 9$	86°	$86 \cdot 2$	86.4	$86 \cdot 5$	$86 \cdot 6$	$86 \cdot 7$	$86 \cdot 3$	$86 \cdot 8$	$86 \cdot 9$	87°
-18	85°	85.2	85.3	85.5	85.6	85.8	86.0	$86 \cdot 1$	$86 \cdot 3$	86.4	$86 \cdot 5$	$86 \cdot 6$	$86 \cdot 6$	$86 \cdot 7$	$86 \cdot 8$
-19	$84^{\circ} 7$	84.9	$85^{\text {. }}$	$85^{\circ} 2$	85.4	85.6	85.8	$85^{\circ} 9$	$86 \cdot 1$	$86 \cdot 2$	$86 \cdot 3$	86.4	$86 \cdot 5$	$86 \cdot 5$	$86 \cdot 6$
-20	84.5	84.6	84.8	85°	$85^{\prime 2}$	85.3	85.5	85.7	85.9	86.0	$86 \cdot 1$	$86 \cdot 2$	$86 \cdot 3$	86.4	86.5
21	$84^{\circ} 2$	$84^{\circ} 4$	$84^{\circ} 6$	84.7	$84^{\circ} 9$	$85^{\circ} \mathrm{I}$	$85 \cdot 3$	85.5	85%	85.8	$85^{\circ} 9$	86.0	86. 1	$86 \cdot 2$	$86 \cdot 3$
- 22	83	$84^{\circ} \mathrm{I}$	84.3	$84^{\circ} 5$	$84^{\circ} 7$	$84^{\circ} 9$	85.1	$85 \cdot 3$	85.5	$85^{\circ} 6$	$85^{\circ} 7$	85.8	85.9	86.0	$86 \cdot 1$
-23	83.6	83.8	$84^{\circ} \mathrm{O}$	$84^{\circ} 2$	$84^{\circ} 4$	$84^{\prime} 7$	$84^{\circ} 9$	$85^{\circ} \mathrm{I}$	85.3	$85^{\circ} 4$	85.5	85.6	$85^{\circ} 7$	$85^{\circ} 8$	$85^{\circ} 9$
- 24	83.4	83.6	83.8	$84^{\circ} \mathrm{O}$	84^{-2}	84.4	84.6	$84^{\circ} 9$	$85^{\cdot 1}$	85°	$85 \cdot 3$	85.4	$85^{\circ} 5$	$85^{\circ} 6$	$85 \cdot 8$
-25	83.1	83.3	83.5	83.7	$84^{\circ} \mathrm{O}$	84.2	84.4	84.6	84.9	85°	$85^{1} 1$	85.2	$85^{\circ} 3$	$85^{\circ} 5$	85.6
$\cdot 26$	82.8	$83^{\circ} \mathrm{O}$	83.3	83.5	83.7	$84^{\circ} \mathrm{O}$	$84^{\circ} 2$	$84^{\circ} 4$	$84^{\circ} 7$	$84^{\circ} 8$	$84^{\circ} 9$	85°	$85^{\circ} 2$	$85^{\circ} 3$	$85^{\circ} 4$
$\cdot 27$	82.5	82.8	83°	$83^{\circ} 2$	83.5	83.7	$84^{\circ} \mathrm{O}$	$84^{\circ} 2$	$84^{\circ} 5$	84.6	$84^{\circ} 7$	$84^{\circ} 8$	85°	$85^{\text {I }}$	$85^{\circ} 2$
-28	$82 \cdot 3$	82.5	82.8	$83^{\circ} \mathrm{O}$	83.3	83.5	$83 \cdot 8$	$84^{\circ} \mathrm{O}$	$84^{\circ} 3$	$84^{\circ} 4$	$84^{\circ} 5$	$84^{\circ} 7$	84^{-8}	$84^{.9}$	$85^{\circ} \mathrm{I}$
- 29	82.0	$82 \cdot 2$	82.5	82.8	83.0	83.3	83.5	$83 \cdot 8$	84^{-1}	$84^{\circ} 2$	84.3	84.5	$84^{\circ} 6$	$84^{\circ} 7$	84.9
-30	8 x 7	82.0	$82 \cdot 2$	82.5	$82 \cdot 8$	83.0	83.3	$83 \cdot 6$	83.9	$84^{\circ} \mathrm{O}$	$84^{\text { }}$ I	$84^{\circ} 3$	$84^{*} 4$	$84^{\circ} 6$	$84^{7} 7$
$\cdot 31$	$8 \mathrm{I} \cdot 5$	81.7	82°	$82 \cdot 3$	82.5	$82 \cdot 8$	$83^{\prime} 1$	83.4	$83^{\circ} 7$	83.8	83.9	$84^{\circ} \mathrm{I}$	$84^{\circ} 2$	$84^{\circ} 4$	$84^{\circ} 5$
$\cdot 32$	$8 \mathrm{I} \cdot 2$	$8 \mathrm{I} \cdot 5$	$8 \mathrm{I} \cdot 7$	82.0	$82 \cdot 3$	$82 \cdot 6$	82.9	$83 \cdot 2$	$83 \cdot 5$	83.6	$83 \cdot 8$	$83^{\circ} 9$	$84^{\text { }}$ I	$84^{\circ} 2$	$84^{\circ} 4$
$\cdot 33$	$80 \cdot 9$	$8 \mathrm{r} \cdot 2$	$8 \mathrm{I}^{5} 5$	81.8	$82 \cdot 1$	82.4	82.7	$83^{\circ} \mathrm{O}$	83.3	$83^{\circ} 4$	83.6	$83 \cdot 7$	$83^{\circ} 9$	84°	84°
- 34	80.6	80.9	81.2	$8{ }^{\prime} 5$	8I• 8	82	82.4	82.7	83^{\prime} I	$83^{\circ} 2$	83.4	83.5	83.7	83.8	$84^{\circ} \mathrm{O}$
- 35	$80 \cdot 4$	80.7	$8 \mathrm{I} \cdot 0$	$8 \mathrm{I} \cdot 3$	$8 \mathrm{I} \cdot 6$	$8 \mathrm{I} \cdot 9$	82.2	82.5	82.9	83.0	83.2	83.3	83.5	83.7	83.8
$\cdot 36$	$80 \cdot 1$	$80^{\circ} 4$	$80 \cdot 7$	$8 \mathrm{I} \cdot 0$	$8 \mathrm{I} \cdot 3$	$8 \mathrm{r} \cdot 7$	82.0	82.3	$82 \cdot 6$	$82 \cdot 8$	83.0	$83 \cdot 1$	83.3	83.5	$83 \cdot 7$
$\cdot 37$	$79 \cdot 8$	80	$80 \cdot 5$	$80 \cdot 8$	$8 \mathrm{I} \cdot \mathrm{I}$	$8 \mathrm{r} \cdot 4$	$8 \mathrm{I} \cdot 8$	82.1	82.4	$82 \cdot 6$	82.8	83°	$83^{\prime} 1$	$83^{\circ} 3$	83.5
-38	79.6	79.9	$80 \cdot 2$	$80 \cdot 5$	$80 \cdot 9$	$8 \mathrm{I} \cdot 2$	$8 \mathrm{I} \cdot 6$	$8 \mathrm{I} \cdot 9$	$82 \cdot 2$	82.4	82.6	82.8	82.9	$83^{\circ} \mathrm{I}$	83.3
- 39	$79 \cdot 3$	$79 \cdot 6$	$80 \cdot 0$	$80 \cdot 3$	$80 \cdot 6$	81.0	$8 \mathrm{I} \cdot 3$	$8 \mathrm{I} \cdot 7$	82.0	82.2	82.4	82.6	82.8	82.9	$83^{\prime} \mathrm{I}$
-40	79.0	79.4	79×7	80.1	$80 \cdot 4$	80.8	81'1	$8 \mathrm{I} \cdot 5$	81.8	82.0	82.2	82.4	82.6	82.8	83°
4 4	$78 \cdot 8$	79^{1}	$79 \cdot 5$	79.8	$80 \cdot 2$	$80 \cdot 5$	$80 \cdot 9$	$8 \mathrm{I} \cdot 3$	$8 \mathrm{I} \cdot 6$	$8 \mathrm{I} \cdot 8$	82.0	$82 \cdot 2$	82.4	$82 \cdot 6$	$82 \cdot 8$
42	$78 \cdot 5$	$78 \cdot 8$	79^{2}	$79 \cdot 6$	$79 \cdot 9$	$80 \cdot 3$	$80 \cdot 7$	$8 \mathrm{I} \cdot \mathrm{I}$	$8 \mathrm{I} \cdot 4$	$8 \mathrm{r} \cdot 6$	$8 \mathrm{I} \cdot 8$	82.0	$82 \cdot 2$	82.4	$82 \cdot 6$
-43	78.2	$78 \cdot 6$	79°	79.3	79.7	$80 \cdot 1$	$80 \cdot 5$	$80 \cdot 8$	$8 \mathrm{r} \cdot 2$	$8 \mathrm{r} \cdot 4$	$8 \mathrm{I} \cdot 6$	$8 \mathrm{I} \cdot 8$	82.0	$82 \cdot 2$	$82 \cdot 4$
-44	78.0	$78 \cdot 3$	$78 \cdot 7$	70.	79.5	79.9	$80 \cdot 2$	$80 \cdot 6$	81.0	$8 \mathrm{I} \cdot 2$	$8 \mathrm{I} \cdot 4$	$8 \mathrm{I} \cdot 6$	8I• 8	82	$82 \cdot 3$
45	$77 \cdot 7$	$78 \cdot 1$	$78 \cdot 5$	78.8	$79^{\circ} 2$	$79 \cdot 6$	80°	$80 \cdot 4$	$80 \cdot 8$	8I.0	$8 \mathrm{I} \cdot 3$	8 I 5	$8 \mathrm{I} \cdot 7$	$8 \mathrm{I} \cdot 9$	$82 \cdot 1$
$\cdot 46$	77×4	$77 \cdot 8$	$78 \cdot 2$	$78 \cdot 6$	79°	79.4	79.8	$80 \cdot 2$	$80 \cdot 6$	$80 \cdot 8$	$8 \mathrm{I} \cdot 1$	$8 \mathrm{I} \cdot 3$	8 I 5	8 I 7	$8 \mathrm{I} \cdot 9$
- 47	77.2	$77 \cdot 6$	$78 \cdot 0$	78.4	$78 \cdot 8$	79*2	79.6	$80^{\circ} 0$	$80 \cdot 4$	$80 \cdot 7$	$80 \cdot 9$	$8 \mathrm{I} \cdot 1$	$8 \mathrm{I} \cdot 3$	$8 \mathrm{I} \cdot 5$	$8 \mathrm{I} \cdot 7$
${ }^{4} 8$	$76 \cdot 9$	77.3	$77 \cdot 7$	$78 \cdot 1$	$78 \cdot 5$	79°	79.4	79.8	$80 \cdot 2$	$80 \cdot 5$	$80 \cdot 7$	$80 \cdot 9$	$8 \mathrm{I} \cdot 1$	$8 \mathrm{I} \cdot 3$	$8 \mathrm{r} \cdot 6$
-49	$76 \cdot 6$	$77^{\circ} \mathrm{O}$	77.5	$77 \cdot 9$	$78 \cdot 3$	$78 \cdot 7$	$79 \cdot 2$	$79 \cdot 6$	80.	$80 \cdot 3$	$80 \cdot 5$	$80 \cdot 7$	$80 \cdot 9$	81	$8 \mathrm{E} \cdot 4$
-50	76.4	$76 \cdot 8$	$77 \cdot 2$	$77 \cdot 6$	$78 \cdot 1$	78.5	$78 \cdot 9$	$79 \cdot 4$	$79 \cdot 8$	$80 \cdot 1$	$80 \cdot 3$	$80 \cdot 5$	$80 \cdot 8$	$8 \mathrm{I}^{\circ} \mathrm{O}$	$8 \mathrm{I} \cdot 2$
${ }^{51}$	$76 \cdot 1$	$76 \cdot 5$	$77^{\circ} \mathrm{O}$	$77^{\circ} 4$	77.8	$78 \cdot 3$	$78 \cdot 7$	79.2	$79 \cdot 6$	$79^{\circ} 9$	$80 \cdot 1$	$80 \cdot 3$. $80 \cdot 6$	$80 \cdot 8$	$8 \mathrm{I}^{\circ} \mathrm{O}$
$\cdot 52$	75.9	$76 \cdot 3$	$76 \cdot 7$	$77^{\circ} 2$	$77 \cdot 6$	78.1	$78 \cdot 5$	79°	$79^{\circ} 4$	79.7	$79^{\circ} 9$	$80 \cdot 2$ 80.0	$80 \cdot 4$ $80 \cdot 2$	80.6 80.5	$80 \cdot 9$ $80 \cdot 7$
$\cdot 53$	75°	76.0	$76 \cdot 5$	$76 \cdot 9$	77.4	$77 \cdot 8$	78.3	78.8	$79^{\circ} 2$	$79^{\circ} 5$	79.7	$80 \cdot 0$ 79	$80 \cdot 2$ $80 \cdot 0$	$80 \cdot 5$ 80.3	$80 \cdot 7$ $80 \cdot 5$
54	$75^{\circ} 3$	75.8	$76 \cdot 2$	$76 \cdot 7$	77^{1}	77.6	$78 \cdot 1$	78.6	$79 \cdot$	$79 \cdot 3$	$79^{\circ} 5$	$79 \cdot 8$	$80 \cdot 0$	$80 \cdot 3$	$80 \cdot 5$

Table C.

AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.

Azimuth is named N or S according to the name of the A and B correction.

	LATITUDES.														
rection.	61°	62°	63°	64°	65°	66°	67°	68°	690	6912 ${ }^{\circ}$	70°	702 ${ }^{\circ}$	$7{ }^{\circ}$	711°	72°
							AzI								
,															
- 55	$75^{\circ} \mathrm{I}$	75.5	$76 \cdot 0$	$76 \cdot 4$	$76 \cdot 9$	77.4	77×9	$78 \cdot 4$	$78 \cdot 8$	$79^{1} 1$	$79^{\circ} 3$	$79^{\circ} 6$	79.8	$80 \cdot 1$	$80^{\circ} 4$
$\cdot 56$	$74 \cdot 8$	$75 \cdot 3$	$75 \cdot 7$	$76 \cdot 2$	$76 \cdot 7$	$77^{\circ} 2$	77×7	$78 \cdot 2$	$78 \cdot 7$	$78 \cdot 9$	$79^{\circ} 2$	79.4	$79 \cdot 7$	$79 \cdot 9$	$80^{\circ} 2$
- 57	$74^{\circ} 6$	75°	$75^{\circ} 5$	76°	$76 \cdot 5$	$76 \cdot 9$	$77^{\circ} 4$	$77^{\circ} 9$	$78 \cdot 5$	$78 \cdot 7$	79°	$79^{\circ} 2$	79.5	$79^{\circ} 7$	80°
-58	74.3	$74^{\circ} 8$	$75^{\circ} 2$	$75^{\circ} 7$	$76 \cdot 2$	$76 \cdot 7$	$77^{\circ} 2$	$77^{\circ} 7$	$78 \cdot 3$	$78 \cdot 5$	$78 \cdot 8$	79°	$79 \cdot 3$	$79^{\circ} 6$	$79 \cdot 8$
-59	$74^{\circ} \mathrm{O}$	74.5	$75^{\circ} \mathrm{O}$	$75^{\circ} 5$	$76 \cdot 0$	$76 \cdot 5$	$77^{\circ} \mathrm{O}$	$77^{\circ} 5$	78.1	$78 \cdot 3$	$78 \cdot 6$	$78 \cdot 9$	79'1	$79^{\circ} 4$	79.7
-60	73.8	74.3	74.8	$75^{\circ} 3$	$75 \cdot 8$	$76 \cdot 3$	$76 \cdot 8$	$77^{\circ} 3$	77.9	$78 \cdot 1$	$78 \cdot 4$	$78 \cdot 7$	78.9	$79^{\circ} 2$	$79^{\circ} 5$
-61	$73^{\circ} 5$	74°	74.5	75°	$75^{\circ} 5$	$76 \cdot 1$	$76 \cdot 6$	$77^{\circ} \mathrm{I}$	77×7	77×9	$78 \cdot 2$	$78 \cdot 5$	$78 \cdot 8$	79°	$79^{\circ} 3$
$\cdot 62$	$73^{\circ} 3$	$73^{\circ} 8$	$74^{\circ} 3$	$74^{\circ} 8$	$75^{\circ} 3$	$75^{\circ} 8$	$76 \cdot 4$	76.9	$77 \cdot 5$	$77^{\circ} 7$	$78 \cdot 0$	$78 \cdot 3$	78.6	$78 \cdot 9$	$79 \cdot 2$
$\cdot 63$	$73^{\circ} \mathrm{O}$	73.5	74°	$74^{\circ} 6$	$75^{\circ} \mathrm{I}$	$75^{\circ} 6$	$76 \cdot 2$	$76 \cdot 7$	$77 \cdot 3$	$77^{\circ} 6$	$77 \cdot 8$	$78 \cdot 1$	$78 \cdot 4$	77×7	79°
-64	$72 \cdot 8$	$73^{\circ} 3$	$73^{\circ} 8$	$74^{\circ} 3$	$74^{\circ} 9$	$75^{\circ} 4$	76.0	$76 \cdot 5$	77^{-1}	$77^{\circ} 4$	77×7	77.9	$78 \cdot 2$	$78 \cdot 5$	78.8
- 65	72.5	$73^{\circ} \mathrm{O}$	$73 \cdot 6$	74. 1	$74^{\circ} 6$	$75^{2} 2$	75×7	$76 \cdot 3$	$76 \cdot 9$	$77^{\circ} 2$	77.5	77.8	$78 \cdot 1$	$78 \cdot 3$	$78 \cdot 6$
-66	$72 \cdot 3$	$72 \cdot 8$	$73^{\circ} 3$	$73^{\circ} 9$	$74^{\circ} 4$	75°	$75 \cdot 5$	$76 \cdot 1$	$76 \cdot 7$	$77^{\circ} \mathrm{O}$	$77 \cdot 3$	$77^{\circ} 6$	$77 * 9$	$78 \cdot 2$	$78 \cdot 5$
$\cdot 67$	72.0	72.5	$73^{\circ} \mathrm{I}$	$73^{\circ} 6$	$74^{\circ} 2$	$74^{\circ} 8$	$75^{\circ} 3$	$75^{\circ} 9$	$76 \cdot 5$	$76 \cdot 8$	$77^{1} \mathrm{I}$	$77 \cdot 4$	$77^{\circ} 7$	78•0	$78 \cdot 3$
-68	71.8	$72 \cdot 3$	$72 \cdot 8$	$73^{\circ} 4$	$74^{\circ} \mathrm{O}$	74.5	$75^{\circ} \mathrm{I}$	$75^{\circ} 7$	$76 \cdot 3$	$76 \cdot 6$	76.9	$77^{\circ} 2$	77×5	$77^{\circ} 8$	$78 \cdot 1$
-69	75.5	72.1	72.6	$73^{\circ} 2$	$73^{\circ} 7$	74.3	74.9	$75^{\circ} 5$	$76 \cdot 1$	$76 \cdot 4$	$76 \cdot 7$	$77^{\circ} \mathrm{O}$	$77 \cdot 3$	77.7	$78 \cdot 0$
70	7-3	71.8	72.4	$72 \cdot 9$	73.5	$74^{\circ} \mathrm{I}$	74.7	$75 \cdot 3$	$75^{\circ} 9$	$76 \cdot 2$	$76 \cdot 5$	$76 \cdot 8$	77×2	77×5	$77 \cdot 8$
71	$7 \mathrm{I} \cdot 0$	7r•6	$72 \cdot 1$	$72 \cdot 7$	$73 \cdot 3$	$73^{\circ} 9$	74.5	$75^{\circ} \mathrm{I}$	$75^{\circ} 7$	$76 \cdot 0$	$76 \cdot 4$	$76 \cdot 7$	77°	$77 * 3$	$77^{\circ} 6$
$\cdot 72$	$70 \cdot 8$	$71 \cdot 3$		$72 \cdot 5$	$73 \cdot 1$	73.7	$74 \cdot 3$	74.9	$75^{\circ} 5$	$75^{\circ} 8$	$76 \cdot 2$	$76 \cdot 5$	76.8	$77^{\text {I }}$	$77 \cdot 5$
$\cdot 73$	$70 \cdot 5$	$7 \mathrm{I} \cdot \mathrm{I}$	$7{ }^{\text {- }} 7$	$72 \cdot 3$	$72 \cdot 9$	73.5	$74^{\circ} \mathrm{I}$	$74^{\circ} 7$	$75^{\circ} 3$	$75^{\circ} 7$	$76^{\circ} \mathrm{O}$	$76 \cdot 3$	$76 \cdot 6$	$77^{\circ} \mathrm{O}$	$77^{\circ} 3$
$\cdot 74$	$70 \cdot 3$	$70 \cdot 8$	7×4	$72 \cdot$	$72 \cdot 6$	$73^{\circ} 2$	$73^{\circ} 9$	74.5	$75^{\circ} \mathrm{I}$	$75^{\circ} 5$	$75^{\circ} 8$	$76 \cdot 1$	$76 \cdot 5$	$76 \cdot 8$	$77^{\circ} \mathrm{I}$
75	70	$70 \cdot 6$	$7{ }^{\circ} 2$	$7 \mathrm{I} \cdot 8$	72.4	73°	$73 \cdot 7$	74.3	75°	$75^{\circ} 3$	$75 \cdot 6$	$75 \cdot 9$	$76 \cdot 3$	$76 \cdot 6$	\bigcirc
$\cdot 76$	$69^{\circ} 8$	$70 \cdot 4$	$7{ }^{\circ} \mathrm{O}$	7x•6	$72 \cdot 2$	$72 \cdot 8$	$73 \cdot 5$	$74^{\circ} \mathrm{I}$	$74 \cdot 8$	$75^{\circ} \mathrm{I}$	$75^{\circ} 4$	$75^{\circ} 8$	$76 \cdot 1$	$76 \cdot 4$	$76 \cdot 8$
$\cdot 77$	$69^{\circ} 5$	$70 \cdot 1$	$70 \cdot 7$	$71 \cdot 3$	$72 \cdot 0$	$72 \cdot 6$	73.3	73.9	$74^{\circ} 6$	$74^{\circ} 9$	$75^{\circ} 2$	$75^{\circ} 6$	$75^{\circ} 9$	$76 \cdot 3$	$76 \cdot 6$
$\cdot 78$	$69^{\circ} 3$	$69 \cdot 9$	$70 \cdot 5$	7 I -	$7 \mathrm{~F} \cdot 8$	$72 \cdot 4$	$73^{\circ} \mathrm{I}$	$73^{\circ} 7$	74.4	$74^{\circ} 7$	$75^{\circ} \mathrm{I}$	$75^{\circ} 4$	$75^{\circ} 8$	$76 \cdot 1$	$76 \cdot 4$
$\cdot 79$	$69^{\circ} \mathrm{O}$	69.7	$70 \cdot 3$	$70^{\circ} 9$	71.5	$72 \cdot 2$	$72 \cdot 8$	$73 \cdot 5$	$74^{\circ} 2$	74.5	74.9	$75^{\circ} 2$	$75^{\circ} 6$	$75^{\circ} 9$	$76 \cdot 3$
-80	68.8	69.4	70°	70^7	71.3	$72 \cdot$	$72 \cdot 6$	$73 \cdot 3$	$74^{\circ} \mathrm{O}$	74.3	$74 * 7$	$75^{\circ} \mathrm{O}$	$75^{\circ} 4$	75*8	$76 \cdot 1$
-81	$68 \cdot 6$	$69 \cdot 2$	69*8	$70 \cdot 5$	7 I I	71.8	72.4	$73^{\circ} \mathrm{I}$	$73 \cdot 8$	74°	$74^{\circ} 5$	74.9	75°	$75^{\circ} 6$	$75^{\circ} 9$
-82	$68 \cdot 3$	68.9	$69^{*} 6$	$70 \cdot 2$	$70 \cdot 9$	71•6	$72 \cdot 2$	$72 \cdot 9$	$73 \cdot 6$	74°	74.3	$74^{\circ} 7$	$75^{\text { }}$ 1	$75^{\circ} 4$	$75^{\circ} 8$
.83	$68 \cdot 1$	$68 \cdot 7$	$69^{\circ} 4$	70	$70 \cdot 7$	71.3	72°	$72 \cdot 7$	73.4	$73^{\circ} 8$	$74^{\circ} 2$	$74^{\circ} 5$	74.9	$75^{\circ} 2$	$75^{\circ} 6$
- 8	$67 \cdot 8$	$68 \cdot 5$	69^{-1}	63	$70 \cdot 5$	$71 \cdot \mathrm{I}$	$7 \mathrm{P} \cdot 8$	72.5	$73^{\circ} 2$	$73^{\circ} 6$	$74^{\circ} \mathrm{O}$	$74^{\circ} 3$	$74^{\circ} 7$	$75^{\circ} \mathrm{I}$	$75^{\circ} 4$
-85	67.6	$68 \cdot 2$	$68 \cdot 9$	$69^{\circ} 6$	$70 \cdot 2$	$70 \cdot 9$	$7{ }^{1 \cdot 6}$	$72 \cdot 3$	$73^{\circ} \mathrm{I}$	$73^{\circ} 4$	$73 \cdot 8$	$74^{\circ} 2$	$74^{\circ} 5$	74.9	$75^{\circ} 3$
$\cdot 86$	67.4	$68 \cdot 0$	$68 \cdot 7$	$69^{\circ} 3$	$70^{\circ} 0$	$70 \cdot 7$	$7 \mathrm{~F} \cdot 4$	$72 \cdot 1$	72.9	$73^{\circ} 2$	$73^{\circ} 6$	74.0 73	$74^{\circ} 4$	$74^{\circ} 7$	$75^{\circ} \mathrm{I}$
-8	67	$67 \cdot 8$	$68 \cdot 4$	$69^{\circ} \mathrm{I}$	$69^{\circ} 8$	$70 \cdot 5$	71.2	$7 \mathrm{~F} \cdot 9$	$72 \cdot 7$	$73^{\circ} \mathrm{I}$	$73^{\circ} 4$	$73^{\circ} 8$	$74^{\circ} 2$	74.6	$75^{\circ} \mathrm{O}$
-88	$66 \cdot 9$	$67 \cdot 6$	$68 \cdot 2$	68.9	$69 \cdot 6$	$70 \cdot 3$	$7 \mathrm{I}^{\circ}$	$7 \mathrm{~F} \cdot 8$	$72 \cdot 5$	$72 \cdot 9$	$73^{\circ} 2$	$73^{\circ} 6$	$74^{\circ} \mathrm{O}$	$74^{\circ} 4$	$74 \cdot 8$
-89	$66^{7} 7$	$67 \cdot 3$	68	$68 \cdot 7$	69.4	$70 \cdot 1$	$70 \cdot 8$	71.6	$72 \cdot 3$	$72 \cdot 7$	$73^{\prime} \mathrm{I}$	$73^{\circ} 5$	$73^{\circ} 8$	74°	$74^{\circ} 6$
0	66.4	67	67.8	68.5	69.2	69.9	$70 \cdot 6$	$7{ }^{\text {² }} 4$	$72^{\circ} \mathrm{I}$	$72 \cdot 5$	72.9	$73^{\circ} 3$	$73^{\circ} 7$	74° I	74.5
91	$66^{2} 2$	$66 \cdot 9$	$67 \cdot 6$	$68 \cdot 3$	69°	$69^{\prime} 7$	$70 \cdot 4$	71.2	$71 \cdot 9$	$72 \cdot 3$	$72 \cdot 7$	$73^{\circ} \mathrm{I}$	$73^{\circ} 5$	$73^{\circ} 9$	$74^{\circ} 3$
$\cdot 92$	$66^{\circ} \mathrm{O}$	$66 \cdot 6$	$67 \cdot 3$	$68^{\circ} \mathrm{O}$	$68 \cdot 8$	$69^{\circ} 5$	$70 \cdot 2$	$71^{\circ} 0$	$7 \mathrm{~F} \cdot 8$	$72^{\cdot 1}$	$72 \cdot 5$	$72 \cdot 9$	$73^{\circ} 3$	$73^{\circ} 7$	$74^{\circ} \mathrm{I}$
-93	$65^{\prime} 7$	$66 \cdot 4$	67.1	$67 \cdot 8$	$68 \cdot 5$	$69^{\circ} 3$	70°	$70 \cdot 8$	71.6	$72 \cdot$	72.4	$72 \cdot 8$	$73^{\circ} 2$	$73^{\circ} 6$	$74^{\circ} \mathrm{O}$
-94	$65^{\circ} 5$	$66 \cdot 2$	$66 \cdot 9$	67.6	$68 \cdot 3$	69• 1	69.8	$70 \cdot 6$	71.4	$7 \mathrm{x} \cdot 8$	$72 \cdot 2$	$72 \cdot 6$	73°	73.4	$73^{\circ} 8$
-95	$65 \cdot 3$	$66 \cdot 0$	$66 \cdot 7$	67.4	68. I	68.9	$69 \cdot 6$	$70^{\circ} 4$	71.2	$7{ }^{\circ} 6$	$72 \cdot 0$	72.4	$72 \cdot 8$	$73^{\circ} 2$	$73 \cdot 6$
$\cdot 96$	65°	65.7	$66 \cdot 5$	67.2	67.9	$68 \cdot 7$	$69 \cdot 4$	$70 \cdot 2$	$7{ }^{\circ} \mathrm{O}$	71.4	$7 \mathrm{~F} \cdot 8$	$72 \cdot 2$	$72 \cdot 6$	$73^{\circ} \mathrm{I}$	$73^{\circ} 5$
-97	$64 \cdot 8$	$65 \cdot 5$	$66^{\circ} 2$	67°	67.7	$68 \cdot 5$	$69^{\circ} 2$	70°	$70 \cdot 8$	$7 \mathrm{I}^{\circ} \mathrm{2}$	$71 \cdot 6$	$72^{\circ} \mathrm{I}$	$72 \cdot 5$	72.9	$73^{\circ} 3$
$\cdot 98$	64.6	$65^{\circ} 3$	66°	$66 \cdot 8$	67.5	$68 \cdot 3$	69°	69.8	$70 \cdot 6$	$7{ }^{\text {P }}$ I	$7{ }^{\circ} 5$	7×9	$72 \cdot 3$	$72 \cdot 7$	73°
-99	$64^{\circ} 4$	65^{\prime} I	$65^{\circ} 8$	$66 \cdot 5$	67.3	68. 1	$68 \cdot 9$	$69^{\prime 7}$	$70 \cdot 5$	$70^{\circ} 9$	71	71'7	$72^{\circ} \mathrm{I}$	72	73
1.00	$64^{\circ} \mathrm{I}$	64.9	$65^{\circ} 6$	$66 \cdot 3$	$67^{\circ} \mathrm{I}$	$67 \cdot 9$				$70^{\circ} 7$		7 I 5	$72^{\circ} \mathrm{O}$	$72^{\circ} 4$	72.8
02	$63^{\prime} 7$	$64^{\circ} 4$	$65^{\circ} 2$	$65^{\circ} 9$	66.7	67.5	$68 \cdot 3$	$69^{\circ} \mathrm{I}$	$69 \cdot 9$	$70 \cdot 3$	$70 \cdot 8$	71.2	$71^{\circ} 6$	$72 \cdot 1$	72.5
I ${ }^{0} 4$	$63^{\circ} 2$	$64^{\circ} \mathrm{O}$	64.7	$65^{\circ} 5$	$66^{*} 3$	$67^{\circ} \mathrm{I}$	$67 \cdot 9$	$68 \cdot 7$	$69 \cdot 6$	70°	$70^{\circ} 4$	$70 \cdot 9$	$71^{\circ} 3$	$7{ }^{\text {7 }} 7$	$72 \cdot 2$
I.06	62.8	63.5	$64^{*} 3$	$65^{\circ} \mathrm{I}$	$65^{\circ} 9$	$66 \cdot 7$	67.5	$68 \cdot 3$	$69^{\circ} 2$	$69^{\circ} 6$	$70^{\circ} \mathrm{I}$	$70 \cdot 5$	71°	$7{ }^{\text {r }} 4$	71.9
r 008	62.4	$63 \cdot 1$	$63^{\circ} 9$	$64^{\circ} 7$	$65^{\circ} 5$	$66^{\circ} 3$	$67^{\circ} \mathrm{I}$	68	68	$69^{\circ} 3$	69.7	$70 \cdot 2$	$70 \cdot 6$	$7{ }^{1}$	$7{ }^{1} 5$
I•10	6I.9	62.7	63.5	64.3	$65^{\circ} \mathrm{I}$	$65^{\circ} 9$	$66^{\circ} 7$	$67 \cdot 6$	$68 \cdot 5$	$68 \cdot 9$	69.4	$69 \cdot 8$	$70 \cdot 3$	$70 \cdot 8$	$71 \cdot 2$
I•12	61.5	$62 \cdot 3$	63°	$63^{\circ} 9$	$64^{\circ} 7$	$65^{\circ} 5$	$66^{\circ} \mathrm{A}$	67.2	$68 \cdot 1$	$68 \cdot 6$	69°	69.5	$70^{\circ} \mathrm{O}$	$70^{\circ} 4$	$70^{\circ} 9$
I-14	$6 \mathrm{r} \cdot \mathrm{I}$	$6 \mathrm{r} \cdot 8$	$62 \cdot 6$	$63^{\circ} 4$	$64 \cdot 3$	$65^{\circ} \mathrm{I}$	66°	$66 \cdot 9$	$67^{\circ} 8$	$68^{\circ} \mathrm{F}$	$68 \cdot 7$	69.2 68.8	$69^{\circ} 6$	$70^{\circ} \mathrm{I}$	$70 \cdot 6$ $70 \cdot 3$
I•16	$60 \cdot 6$	$6 \mathrm{r} \cdot 4$	$62 \cdot 2$	$63^{\circ} \mathrm{O}$	63.9	$64^{\circ} 7$	$65^{\circ} 6$	$66 \cdot 5$ 66.2	67.4 67.1	67.9 67.5	68.4	$68 \cdot 8$ 68.5	69.3 69°	$69 \cdot 8$ 69.5	$70 \cdot 3$ $70 \cdot 0$
I'18	$60 \cdot 2$	61.0	6I•8	62.6	63.5	$64 * 4$	$65 \cdot 2$	$66 \cdot 2$	$67 \cdot 1$	67.5	68.0	$68 \cdot 5$	69°	69.5	70°

Table C.

AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.
Azimuth is named N or S according to the name of the A and B correction.

	Latitudis														
	${ }^{61}$	${ }^{62}$	63°	64°	85°	${ }^{88^{\circ}}$	67	68	59	69\% ${ }^{\circ}$	70°	7012	71°	711°	
Azimuths.															
$1 \cdot 20$	59.8	$60 \cdot 6$	6 r 4	$62 \cdot 3$	63.1	64°	$64^{\circ} 9$	$65 \cdot 8$	$66 \cdot 7$	$67 \cdot 2$	67×7	68.2	. 7	69.2	$9{ }^{\circ} 7$
r 2	$59 \cdot 4$	$60 \cdot 2$	$6 \mathrm{r}^{\circ} \mathrm{O}$	6 r 9	$62^{\circ} 7$	$63 \cdot 6$	64.5	$65^{\circ} 4$	$66^{\circ} 4$	$66 \cdot 9$	67.4	$67 \cdot 8$	68.3	$68 \cdot 8$	
12	59.0	$59^{\circ} 8$	$60 \cdot 6$	$6 \mathrm{r}^{5} 5$	62.3	$63^{\circ} 2$	${ }^{6.1}{ }^{\text {F }}$	${ }^{65}{ }^{\text {² }}$	$66^{\circ} \mathrm{O}$	$66^{6} 5$	${ }^{67}{ }^{\circ} \mathrm{O}$	67.5	$68 \cdot$	5	
1.2	58	$59^{\circ} 4$	$60 \cdot 2$	${ }^{61 \cdot 1}$	62	62.9	63.8	${ }^{6} 47$	$65^{\circ} 7$	66^{2}	${ }^{66 \cdot 7}$	67.2	${ }^{67} 7$		
$1 \cdot 28$		59\%	59.8	60’7	6r	$62 \cdot 5$	63.4	$64 \cdot 4$	65.4	$65^{\circ} 9$	$66^{\circ} 4$	$66 \cdot 9$	$67^{\circ} 4$	$67 \cdot 9$	68.4
1.30	57*8	58.6	59	$60 \cdot 3$	$6 \mathrm{r} \cdot 2$	${ }^{62 \cdot 1}$	63.1	64°	65°	$65 \cdot 5$	$66^{\circ} \mathrm{O}$	$66 \cdot 5$	$67 \cdot 1$	67.6	
r.32	$57^{\circ} 4$	$58 \cdot 2$ 57.8 5	59	$59^{\circ} 9$	$60 \cdot 8$	6 r	62.7	$63 \cdot 7$	64.7	65^{2}	$65^{\circ} 7$		66.7	67.3	-8
r.	57	$57^{5} 8$	58 58 58 5	59.6	60	${ }^{61.4}$	${ }^{62.4}$	${ }^{63.3}$	${ }^{64} 4$	${ }^{64.9}$	${ }^{65 \cdot 4}$	65.9	$\left\lvert\, \begin{aligned} & 66 \cdot 4 \\ & 66 \cdot 4 \end{aligned}\right.$	67.0	${ }^{67 \cdot 5}$
	56	57*4	58.3	59°	60	61	62.0 61.7	${ }^{63} 3^{\circ}$	${ }^{64}{ }^{\circ} \mathrm{O}$	$64 \cdot 5$ 64.2	${ }^{65^{\prime} \mathrm{I}}$	$65^{\circ} 6$ $65 \cdot 3$	$\begin{aligned} & 66 \cdot I \\ & 65 \cdot 8 \end{aligned}$	$66 \cdot 7$ 66.4	. 2
$1 \cdot 38$		$57^{\circ} \mathrm{r}$	$57 \cdot 9$	58.8	59×7	60	6 r 7	62'7	$63^{\prime} 7$	64^{2}	$64 \cdot 7$	$65^{\circ} 3$	65.8	$66^{*} 4$	
1.40	$55^{\circ} 8$	56	57.6	58	59.4		6r•3	$62 \cdot 3$			64.4	65°	5		$\cdot 6$
1.4	$55^{\circ} 5$	$56 \cdot 3$	57.2	$58 \cdot 1$	-	60	$6 \mathrm{r} \cdot \mathrm{O}$	62.0	63°	$63^{\circ} 6$	64	$64 \cdot 6$	- 2	$65^{\prime} 7$	
1.4	$55^{\text {I }}$	$55^{\circ} 9$	56.8	57'7	$58 \cdot 7$	59*6	$60 \cdot 6$	6r	62.7	63°	63:8	64°	64.9	$65^{\circ} 4$	$66 \cdot 0$
1.46	54.7	55^{6}	$56 \cdot 5$	$57^{\circ} 4$	$58 \cdot 3$	$59^{\circ} 3$	$60 \cdot 3$	$6 \mathrm{r} \cdot 3$	62.4	62.9	$63 \cdot 5$	64°	$6_{4}{ }^{6}$	${ }^{65 \cdot}$	${ }^{65} \cdot 7$
1.48	54	$55^{\prime 2}$	$56^{\circ} \mathrm{I}$	57*		59**			$62 \cdot 1$		$63^{\prime 2}$	$63^{\prime} 7$	$64^{\circ} 3$	64*8	$65^{\circ} 4$
r 50	54°	54.8	$55 \cdot 7$	56.7	$57 \cdot 6$	$58 \cdot 6$	$59 \cdot 6$	$60 \cdot 7$	$\cdot 7$	62.3	62.8	63.4	$64^{\circ} \mathrm{O}$. 5	.
$1 \cdot 52$	53.6	54.5	$55 \cdot 4$	$56 \cdot 3$	57	58.3	59°	$60 \cdot 3$	61		$62 \cdot 5$	$63^{\circ} \mathrm{I}$	$63^{\prime} 7$	64.3	
r.	53.3	54.1	55°	56.0		57.9	59°	60°		$6 \mathrm{r} \cdot 7$	62	$62 \cdot 8$	$63^{3} 4$		$\cdot 6$
1.56	52.9	$53 \cdot 8$	54.7	$55^{\circ} 6$		57*6	$58 \cdot 6$	$59^{\circ} 7$	$60 \cdot 8$	${ }^{61} \cdot 4$	${ }^{61 \cdot 9}$	62	. 8	${ }^{63}{ }^{\circ} 7$	$\cdot 3$
$1 \cdot 58$	52.5	53.4	$54 \cdot 3$	$55^{\circ} 3$	56	$57^{\circ} 3$	$58 \cdot 3$	$59^{\circ} 4$	$60 \cdot 5$				8		
r.60	52.2	53'1	54°	55°	$55^{\circ} 9$	56.9	58.0	59.1	60.2	60	$61 \cdot 3$	$6 \mathrm{r} \cdot 9$	62.5	$63^{\circ} \mathrm{I}$	
1.62	5	52.7	53'7	54*6	$55^{\circ} 6$		57\%	58.7	59*9	$60 \cdot 4$		61.6			
1.64	5	52.4	53.3	$54^{\circ} 3$	$55^{\circ} 3$	56.3	$57 \cdot 3$	58.4	59.6	$60 \cdot 1$	60.7	6r•3	$6{ }^{\circ} 9$	62.5	
		${ }^{52 \cdot 1}$	$53^{\circ}{ }^{\circ}$	54.6	54.9	$55^{\circ} \mathrm{O}$	57.0	$58 \cdot 1$ 57 5 S	59\%3	${ }_{59} 59$		$6 \mathrm{r} \cdot$	$61 \cdot 6$ 61.3	62.2 61.9	
I 68		51.7	52	53.6		55'7	$56 \cdot 7$	57*8	-9	59.5			3		
1.70	$50^{\circ} 5$	$51^{\circ} 4$	52.3	$53 \cdot 3$	54.3	${ }^{\circ} 3$	$56 \cdot 4$	57.5	58.6	$\cdot 2$	$59 \cdot 8$	$60 \cdot 4$	$61^{\circ} \mathrm{O}$	${ }^{61} 7$	
1		55°	52	53		5°	56.1	$57^{\circ} 2$	58.4.		59*5		-8		
r.7	$49 \cdot 9$	50.8	${ }_{51} 5^{\circ} 7$	52.7	53.7	$54^{\circ} 7$	$55^{\circ} 8$	56.9	58.1	58.6	59.2		$60 \cdot 5$		
${ }^{1} \times 76$	49	50	${ }^{51.4}$	52.3	53	54	55.5	$56 \cdot 6$ 56	578 57.5	58.4	${ }_{59}{ }^{\circ} \mathrm{O}$	$59 \cdot 6$ 59	$60 \cdot 2$ 59	60:8	
${ }^{1} 78$	49	50	5 L				55	$56 \cdot 3$	$57 \cdot 5$	$58 \cdot 1$	$58 \cdot 7$		9		
		49.5	50'4	51.4	52	53.5	$54 \cdot 3$	55'4	56	57. ${ }^{5}$	55*8	${ }^{58}{ }^{5} 4$		59.7	
I.86	48	48	$49 \cdot 8$	50.8	${ }_{51}$	52.9	54*	55.1	56.3	56.9	57.5	58.2	58.8	59.5	$60 \cdot 1$
I.88	47	$48 \cdot 6$	$49^{\circ} 5$	50.5	51.5	52	53.7	54*8	$56 \cdot$	$56 \cdot 6$	57.3	57.9	$58 \cdot 5$	59	59.8
1.9	47	48.3	$49^{\circ} 2$	$50^{\prime} 2$	$51 \cdot 2$	$52 \cdot 3$	$53^{\circ} 4$	54^{6}	$55^{\circ} 7$	$56^{\circ} 4$	57*	57.6	$58 \cdot 3$		59.6
	47	$48 \cdot$	$48 \cdot 9$	$49^{\circ} 9$											
r.	$46 \cdot 8$	$47^{\circ} 7$	$48 \cdot 6$	$49^{\circ} 6$	$50^{\circ} 7$	$55^{1} 7$	52.8	54*	55°	55*8	56*.4	57	$57 \cdot 7$ 57.5	58.4	
	$46 \cdot 5$	$47^{\prime} 4$	48.3	$49^{\circ} 3$		5	52.	$53^{\circ} 7$	54.9	$55{ }^{5}$	55.		$57 \cdot 5$ 57.2		
r 98	46	$47^{\text {' }}$	48.0	49°	50	51	$52 \cdot 3$	$53^{\prime} 4$	54.6	55*3	55*9	$56 \cdot 5$	57	$57^{\circ} 9$	$58 \cdot 5$
2.	$45^{\circ} 9$	$46 \cdot 8$	$47^{\circ} 8$	48.8	$49 \cdot 8$	50	52.0	53.2	54.4	55°	$55^{*} 6$	56.3	56.9	$57^{\circ} 6$	58.3
2.05	45	$46 \cdot 1$	$47^{1} \mathrm{I}$	$48 \cdot 1$	49.	50	51	52.5	53.7	54.3		$55^{\circ} 6$	$55^{\circ} 3$		$77^{\circ} 6$
2.	44.5	$45^{\circ} 4$	$46 \cdot 4$	47.4	$48 \cdot 4$	$49^{\circ} 5$	50'6	51.8	53°	53.7	54.3	55*	55°	$5{ }^{56} 3$	${ }^{\circ}{ }^{\circ}$
$2 \cdot 15$	$43^{\circ} 8$	44	$45^{\circ} 7$	$46 \cdot 7$	47°	+888	50°	52.	5	53	53.7	54*3	55°	$5^{55^{\circ} 7}$	56.4 55.8
2.20	43°	$44^{\text { }}$ I	45°	46	47°		$49^{\circ} 3$	50.5	51'7	52.4	53°	53'7	54	$55^{\circ} \mathrm{I}$	55°
25	42	4	44	45	$46 \cdot 4$		$48 \cdot 7$	$49 \cdot 9$	$5{ }^{1}$	51.8	52.4	$53^{\circ} \mathrm{I}$	53.8	54.5	55^{2}
2.30 2.40	$4{ }^{4}$	$4{ }^{2} \cdot 8$	$43^{\circ} 8$	44.8	$45^{8} 8$	$46^{\circ} 9$	48.1	49.3	$50 \cdot 5$	5^{51} I	51	52.5	$53^{\circ} 2$	53°	54.6
2.40 2.50	$40^{\circ} 7$	$4{ }^{1} 6$	42.5	$43 \cdot 5$	$44^{\circ} 6$	$45 \cdot 7$	$46 \cdot 8$	$48 \cdot$	49.3	48.8	50°	51.3	52.0	52.7 51	4
2.50	39.5 38.4	$40^{\circ} 4$ 39	41 40 4	${ }^{42}{ }^{4}{ }^{\circ} 4$	${ }_{42}{ }^{4}{ }^{\circ}{ }^{\circ}$	44.5 $43 \cdot 4$	$44^{4} \cdot 7$	$46 \cdot 9$ $45 \cdot 8$	$48 \cdot \mathrm{I}$ $47^{\circ} \mathrm{O}$	48*8	49 48 4	50 ${ }^{50}$	$49 \cdot 8$	51.5	5
		38.3	39	$40^{\circ} 2$	4	$4{ }^{2} \cdot 3$	$43 \cdot 5$	$44^{\circ} 7$	$45^{\circ} 9$	$46 \cdot 6$	47	48.0	48.7	$49 \cdot 4$	$50^{\circ} 2$
2.80	36	37	38	39.2	40°	$4{ }^{1} 3$	$42^{\circ} 4$	$43^{\circ} 6$	$44^{\circ} 9$	$45^{\circ} 6$	46	$46 \cdot 9$	47	48.4	49
2.	35	36.3	$37^{\circ} 2$	38	$39^{\circ} 2$	$40^{\circ} 3$	41.4	42	$43^{\circ} 9$	44	$45^{\circ} 2$		$46^{\circ} 6$	47.4	$4{ }^{4 \cdot 1}$
		$35^{\circ} 4$	3	寿	38		$40 \cdot 5$	$4{ }^{1} 7$	$42^{\circ} 9$	43	44^{4}		$45^{\circ} 7$	46	
3.10	$33^{\circ} 6$	34.5	35	$36 \cdot 3$	$37^{\circ} 4$	38.4	39.5	$40^{\circ} 7$	42°	$42 \cdot 6$	$43 \cdot 3$	44°	7	5	

Table C.

AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.

Azimuth is named N or S according to the name of the A and B correction.

$\left\|\begin{array}{c} \mathrm{A} \operatorname{sind} \mathrm{~B} \\ \text { rection. } \\ \text { Cod } \end{array}\right\|$	LATITUDES.														
	61°	62°	63°	64°	65°	66°	67°	68°	69°	6912	70°	702 ${ }^{\circ}$	71°	713°	72°
azimeths.															
3.20															
3.20	$32 \cdot 8$	33^{6}	$34 \cdot 5$	35.5	36.5 35.6	37.5	$38 \cdot 7$ 37.8	$39^{\circ} 8$	41.1 40.2	41.7 40.9	${ }^{42.4}$	$43^{\text {P }}$	43.8	$44^{6} 6$. 3
3.30	32.0.	$32 \cdot 8$ $32 \cdot$	33.7 32.9	34.7 $3{ }^{\circ} \mathrm{O}$	$35 \cdot 6$ 34.8	$36 \cdot 7$ 35.9	37.8 37.0		40.2	$4{ }^{40} 9$	41.5 40.7	$42 \cdot 2$	42.9 $42^{\circ} \mathrm{T}$	$43^{4.7}$	44.4 43.6
3.40 3.60 3	31.2 29.8	$32 \cdot$ $30 \cdot 6$ 2	$32 \cdot 9$ $3{ }^{\text {P }} 5$	33.9 32.4	$34 \cdot 8$ 33	35.9 34.3	$33^{37^{\circ}}$	$38 \cdot 1$ 36.6	39.4 37.8 3	40.0	$40 \cdot 7$ 39	$41^{\circ} 4$ 39 3	$42^{\prime} \mathrm{I}$ 40.5	${ }_{4}^{42 \cdot 8}$	$4{ }^{43.6}$
3.80	28.5	29.3	$30 \cdot 1$	31.0	$3{ }^{\circ} 9$	$32 \cdot 9$	34°	$35^{\prime} \mathrm{I}$	36.3	36.9	$37 \cdot 6$	38.3	38.9	$39^{\prime} 7$	$40 \cdot 4$
4.00	$27^{\circ} 3$	28.0	28.8	$29^{\circ} 7$	$30 \cdot 6$	31^{-6}	$32 \cdot 6$	$33^{\prime} 7$	9	$35^{\circ} 5$	36.2	$36 \cdot 8$	37.5	38.2	-
4.20	$26 \cdot 2$	26.9	27.7	$28 \cdot 5$	29.4	$30 \cdot 3$	$3{ }^{\circ} 4$	32.4	$33 \cdot 6$	$34^{\circ} 2$	34^{8}	$35 \cdot 5$	$36 \cdot 2$	36.9	$37 \cdot 6$
4.40	25^{1}	$25^{\circ} 8$	26.6	$27^{\circ} 4$	$28 \cdot 3$	29.2	$3{ }^{3 \cdot 2}$	$3{ }^{31}$	32.4	$33^{3}{ }^{\circ}$	$33^{\circ} 6$	33°	34.9	$35^{\circ} 6$	$3{ }^{36} 3$
4.60	24^{2}	24.8	25^{6}	$26^{\circ} 4$	27^{2}	${ }^{28 \cdot}{ }^{\text {I }}$	29°	$30^{\circ} 1$	$31^{\circ} 2$	$3{ }^{1} 8$	$32^{\circ} 4$	33^{\prime}	$33^{\circ} 7$	$34^{\circ} 4$	$35^{\circ} \mathrm{I}$
$4 \cdot 80$	23.3	23.9	$24^{6} 6$	$25^{\circ} 4$	$26 \cdot 2$	27^{1}	$28 \cdot 1$	29^{1}	30.2	30.7	$3{ }^{1} 3$	32°	32.6	$33^{\circ} 3$	34°
5.00	22	23.1	23.8	24.5	253	26.2	27.1	28.1	29.2	29.7	$30 \cdot 3$	30.9	$\cdot 6$	$32 \cdot 2$	32.9
5.20	21.6	$22 \cdot 3$	23°	23.7	24.5	25^{3}	$26 \cdot 2$	27.2	28.2	28.8	29.3	29.9	$30 \cdot 6$	$31 \cdot 2$	$3{ }^{1} \cdot 9$
5.40	20.9	21.5	22°	22.9	$23^{\circ} 7$	$24^{\circ} 5$	25.4	26.3	27.3	27.9	28.4	29°	29.6	$30 \cdot 3$	$30 \cdot 9$
5.60	$20 \cdot 2$	20.8	21.5	22.2	22.9	23.7	$24^{2} \cdot 6$	25.5	26.5	27.0 26.2	$27^{\circ} 6$ 26.8		28.7	29.4	30.0
5.80	19.6	$0 \cdot 2$	20.8	21.5	$22 \cdot 2$	23°	23.8	24.7	$25^{\circ} 7$	26.2	$26 \cdot 8$	27.3	27.9	$28 \cdot 5$	29.2
$6 \cdot 00$	19°	19	20^{2}	20.8	$2{ }^{2} 5$	22	23.1	24°	24.9	$25^{\circ} 4$	-	$26^{5} 5$	27^{27}	77.7	
6.20	18.4	19.0	$19 \cdot 6$	20.2	20.9	21.6	22.4	23.3 23.6	24.2	$24^{\circ} 7$	$25^{2 .}$	25.8			$27 \cdot 6$ 26.8
6.40	17.9	18.4	19.0	19.6	$20 \cdot 3$	21°	21.8	22.6	$23^{\circ} 6$	24°	24^{6}	25^{1}	$25^{\circ} 6$	$26^{\circ} 2$	$26 \cdot 8$ $26 \cdot 1$
6.60	17.4	17.9	18.5	19.1	19.7	20.4	21.2	-	$22 \cdot 9$	23.4	$23^{\circ} 9$	24^{4}	25°	$25^{\circ} 5$	${ }^{26 \cdot 1}$
$6 \cdot 80$	$16 \cdot 9$	174	179	18.5	19.2	19.9	20.6	21.4	22.3	22.8	23.3	23.8	$24^{\circ} 3$	$24^{\circ} 9$	4
7.0	16.4	16.9	17.5	-0	18.7	19.4	20.1	$20 \cdot 9$	21.7	$22^{2} 2$	22.7	23.2	23.7	$24^{\circ} 2$	24.8
7.20	$16 \cdot$	$16 \cdot 5$	$17{ }^{\circ}$	$17 \cdot 6$	18.2	18.9	$19 \cdot 6$	$20 \cdot 3$	21.2	21.6		$22 \cdot 6$	23.1	23.6	24^{2}
7.40	15^{6}	${ }^{16}{ }^{1} \mathrm{r}$	$16 \cdot 6$	17.1	177	18.4	19^{1}	19.8	20.7	${ }^{21.1}$	$2{ }^{2} \cdot 6$	$22^{\circ} \mathrm{O}$	22.5	$23^{1} 1$	$23^{23} 6$
7.60	$15^{2} 2$	$15^{\prime} 7$	$16 \cdot 2$	16.7	17.3	17.9	18.6	19.4	20.2	$20 \cdot 6$		21.5	- 5	22.5	$23 \cdot 1$ $22 \cdot 5$
7.80	14.8	15.3	15.8	16.3	16.9	17.5	18.2	18.9	19.7	$20^{\circ} 1$	5		5	-	22^{2}
8.00	14.5	$14^{\circ} 9$	154	159	16.5	17.1	177	18.5	19.2	$19 \cdot 6$	20^{1}	20.5	$21^{\circ} \mathrm{O}$	21.5	$\cdot{ }^{\circ}$
$8 \cdot 20$	14.1	14.6	15°	15.5	16	16.7	17.3	18.0	18	19.2 18.8 18	19.6	$20 \cdot 1$ 10.6	$20 \cdot 5$ 20.1	21.0 20.6	${ }_{21}^{21 \cdot 5}$
8.40	13.8	14.2	$14^{\circ} 7$	15°	$15^{\prime} 7$	16.3		$17 \cdot 6$	18.4			19.6	20.1 10.7	20. ${ }_{2}$	21.1 20.6
8.60	13.5	13.9	$14^{14} 4$	14.9	15.4	16.0 15.6	$16 \cdot 6$ $16 \cdot 2$	$\begin{aligned} & 172 \\ & 160 \end{aligned}$	18.0 17.6	18.4 18.0	18.8 18.4 18	19.2 18.8	19% 19.2	19.7	-6
8	$13^{\circ} 2$	13.6	$14^{1} 1$	14.5	15°	$15^{\circ} 6$	16	$16^{\circ} 9$	17.6	18	18.4	18.8	19.2 18.8 1	197	
9.00	12.9	13.3	$13^{8} 8$	14^{2}	14.7	$15^{\circ} 3$	15.9	16.5	17.2	17.6 17.2		18.4 18.0 18		19.3 18.9	
9.20 9.40	$12 \cdot 6$	$13^{\circ} \mathrm{O}$	13.5	13.9	$14^{\circ} 4$	$15^{\circ}{ }^{\circ}$				17.2 16.9	$17 \cdot 6$ 173	18.0	${ }_{18}^{18.5}$	18.9 18.5	19.4
9.40 9.60	${ }_{12} 2^{2} \cdot 4$	12.8	13.2	13.6 13.4	14.1 13.8 13	${ }^{14}{ }^{14}{ }^{\prime} 4$	15.2 14.9	15.9	16.5 16.2	16.9 16.6	17.3 16.9	17.7	17.7	18.2	18.6
9.80	II'9	12.3	12.7	13.1	13.6	14*	14.6	15.2	15.9	16	$16 \cdot 6$	$17{ }^{\circ}$	174	$1{ }_{17}{ }^{-8}$	3
10%	$1{ }^{1} 7$	12°	12.4	12.9	13.3	13.8	$14^{\circ} 4$	14.9	$15^{\circ} 6$	15.9	$16 \cdot 3$	16.7	17.1	17.5	17.9
11	10.6	11°	11.3	117	$12 \cdot 1$	12.6	$13^{1} 1$	13.6	$14^{\circ} 2$	$1{ }^{1}{ }^{6}$	$1{ }^{1} 49$	15°	15^{6}	$16^{\circ} \mathrm{O}$	
$2 \cdot 0$	9.8	10.	$10 \cdot 4$	$10 \cdot 8$	11.2	$1{ }^{16} 6$	12.0	12.5	${ }_{\text {I }}^{13.1}$	13.4	13.7 12.7	$14^{\circ}{ }^{\circ}$	14.4	14.7 13.6 12	15 ${ }^{1} 1$
$13^{\circ}{ }^{\circ}$	$9^{\circ} \mathrm{O}$	9.3	$8 \cdot 6$	${ }^{10} 0^{\circ}$	0.3	10\%	$11 \cdot 1$ 10.4	1	12	I2.4	12.7	$1{ }_{12}^{13} 1$	1	12.7	14.0
14°	$8 \cdot 4$	8.7	$8 \cdot 9$	3	$9 \cdot 6$	-0.0	$0 \cdot 4$		$1 \cdot 3$	IT 5	$1{ }^{1} 8$	12.6	12.4	$1{ }_{1} \cdot 1$	$1{ }^{1} 4$
16.0 18.0	7.3 6.5	$7 \cdot 6$ 6	7.8	$8 \cdot 1$ 7	8.4 7	8.7 7.8	9.1 8.1	9.5	9.9 8.8	$10 \cdot 1$ $9 \cdot 0$	$0 \cdot 4$ 9.2	0.6 9.4	10.9 9 9	r1.	${ }^{2}$
20.0	5.9	$6 \cdot 1$	6.3	6.5	6.7	7.0	7.3	$7 \cdot 6$	7.9	$8 \cdot 1$	8.3	$8 \cdot 5$	8.7	$9^{\circ} \mathrm{O}$.
22.0	5.4	$5 \cdot 5$	57	5.9	$6 \cdot 1$	6.4		$6 \cdot 9$	7.2	7.4	$7 \cdot 6$	$7 \cdot 8$	7.9	8.2	8 4
$24^{\circ} \mathrm{O}$	4.9	$5 \cdot$	$5 \cdot 2$	$5 \cdot 4$	5.6	5.8	$6 \cdot 1$	$6 \cdot 3$	$6 \cdot 6$	6.7	$6 \cdot 9$	$7 \cdot 1$	$7 \cdot 3$	75	7.7
26.0	4.5	$4 \cdot 7$	4.8	$5 \cdot$	5.2	5.4	5.6	5.9	$6 \cdot 1$	$6 \cdot 3$	$6 \cdot 4$	$6 \cdot 6$	$6 \cdot 7$	6.9	7.1 6.6 6
28.0	4.2	$4 \cdot 4$	$4 \cdot 5$	4.7	$4 \cdot 8$	5.0	5.2	5.4	5.7	5.8	6.0	$6 \cdot 1$ 5.7	6.3	6.4	$6 \cdot 6$
$30^{\circ} \mathrm{O}$	3.9	4.1	4.2	4.3	4.5 3.4	4.7	4.9	$5 \cdot 1$ $3 \cdot 8$	5.3	5.4 4.1	5.6 4.2	57\%	5.8	4.5	4.2
$40^{\circ} \mathrm{O}$	3.0	$3{ }^{3} \mathrm{O}$	3.2 2.5	3.3 2.6	3.4 2.7	3.5 2.8	3.7 2.9		4.0	${ }^{4} 1.1$	4.2 3	4.4	4.5	3.6	3.7
50.0	2.4	$2 \cdot 4$	2.5	$2 \cdot 6$	2.7	2.8	2.9	$3 \cdot 1$	32	3	2.4				
70.0 100%	1.7	-7	I. 8	r.9	r.9	2.0	$2 \cdot 1$	2. 2				2.5	I.8	2.6	2.6
$100 \cdot$ 200%	1.2	1.2		$1 \cdot 3$	1.4	4		1.5	+ 1.6	- 1	0.8	$\bigcirc \cdot 9$	$\bigcirc \cdot 9$	$\bigcirc \cdot 9$	- 0
200 400 0	0.6 0.3	$\stackrel{0}{0} \times$	$\stackrel{0}{0} 0$	0.7 0.3	$\stackrel{0}{0} 7$	0.7	- 0.4	$0 \cdot 4$	$0 \cdot 4$	O^{4}	${ }^{\circ} \cdot 4$	$0 \cdot 4$	$0 \cdot 4$	0.5	$\bigcirc \cdot 5$
4000° 80	\bigcirc	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	0.2	0.2	0.2	0.2	$0 \cdot 2$	0.2	0.2	0.2	2	0.2

Table C.

AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.

Azimuth is named N or S according to the name of the A and B correction.

$\left\|\begin{array}{c} A \text { and } B \\ \text { Coction. } \end{array}\right\|$	Latitudes.														
	73°	71°	75°	78°	77°	78°	79°	80°	81°	82°	83°	83 $\frac{1}{2}^{\circ}$	84°	84 $\frac{1}{2}^{\circ}$	85°
Azimuthes.															
-0	$90 \cdot 0$	$90 \cdot 0$	90.0	90*0	$90^{\circ} 0$	90.0	90.0	$90 \cdot 0$	90.0	$90 \cdot 0$	90'0	90*	90*0	90.0	90'0
-02	89.7	89.7	89.7	89.7	89.7	89.8	89.8	89.8	89.8	$89 \cdot 8$	89.9	89.9	$89^{\circ} 9$	89.9	89.9
-04	$89 \cdot 3$	$89 \cdot 4$	89.4	$89^{\circ} 4$	89.5	89.5	89.6	$89 \cdot 6$	89.6	89.7	89*7	89'7	$89 \cdot 8$	$89 \cdot 8$	$89 \cdot 8$
-06	$89^{\circ} \mathrm{O}$	89^{-1}	89^{\prime} I	89^{2}	89.2	$89 \cdot 3$	$89 \cdot 3$	89.4	89.5	89.5	89.6	89.6	$89 \cdot 6$	89.7	$89^{\circ} 7$
-08	88.7	88.7	88.8	88.9	89°	89*0	$89 \cdot 1$	89.2	$89 * 3$	89.4	89.4	89.5	$89^{\circ} 5$	$89 \cdot 6$	$89 \cdot 6$
$\cdot \mathrm{r}$	$88 \cdot 3$	$88 \cdot 4$	$88 \cdot 5$	88.6	88.7	88.8	88.9	89.0	89.1	89.2	$89^{\prime} 3$	$89 \cdot 4$	89.4	89.5	89.5
-12	88.0	88-1	$88 \cdot 2$	$88 \cdot 3$	$88 \cdot 5$	88.6	$88 \cdot 7$	$88 \cdot 8$	$88 \cdot 9$	89°	$89^{\circ} 2$	$89^{\prime} 2$	$89 \cdot 3$	$89^{\circ} 3$	$89 \cdot 4$
-14	87.7	87.8	87.9	$88 \cdot 1$	88.2	88.3	88.5	$88 \cdot 6$	$88 \cdot 7$	88.9	89°	89^{1}	$89 \cdot 2$	89.2	$89^{\circ} 3$
- 16	87.3	87.5	87.6	87.8	87.9	88.1	$88 \cdot 3$.88.4	$88 \cdot 6$	$88 \cdot 7$	88.9	89°	89°	89^{\prime} I	$89^{\circ} 2$
'18	87.0	87.2	87.3	87.5	87.7	87.9	$88 \cdot 0$	88.2	88.4	88.6	88.7	88.8	$88 \cdot 9$	89°	89'1
20	86.7	86.8	87°	87.2	87.4	87.6	87.8	$88^{\circ} \mathrm{O}$	88.2	88.4	88.6	88.7	$88 \cdot 8$	88.9	89°
$\cdot 22$	$86 \cdot 3$	$86 \cdot 5$	86.7	87°	$87^{\circ} 2$	87.4	87.6	$87 \cdot 8$	$88 \cdot 0$	88.2	$88 \cdot 5$	88.6	$88 \cdot 7$	$88 \cdot 8$	$88 \cdot 9$
-24	$86 \cdot 0$	$86 \cdot 2$	86.4	86.7	86.9	37.1	87.4	$87 \cdot 6$	87.8	88.1	$88 \cdot 3$	88.4	88.6	$88 \cdot 7$	$88 \cdot 8$
- 26	85.7	85.9	$86 \cdot 2$	86.4	$86 \cdot 7$	$86^{\circ} 9$	87.2	87.4	87.7	87.9	88.2	$88 \cdot 3$	88.4	88.6	88.7
-28	85.3	$85^{\circ} 6$	859	$86 \cdot 1$	86.4	86.7	86.9	$87 \cdot 2$	87.5	87.8	88	$88 \cdot 2$	$88 \cdot 3$	88.5	$88 \cdot 6$
30	85.0	85.3	85.6	85.8	$86 \cdot 1$	86.4	86.7	87.0	87.3	$87 \cdot 6$	87.9	88.1	88.2	88.4	$88 \cdot 5$
32	$84^{\circ} 7$	85°	$85^{\prime} 3$	$85 \cdot 6$	$85^{\circ} 9$	$86^{\circ} 2$	$86 \cdot 5$	$86 \cdot 8$	87.1	87.4	$87 \cdot 8$	87.9	88	88.2	$88 \cdot 4$
- 34	84.3	$84^{\circ} 6$	85°	85.3	$85 \cdot 6$	$86^{\circ} \mathrm{O}$	$86 \cdot 3$	$86 \cdot 6$	87°	87.3	87.6	87.8	88.0	$88 \cdot 1$	$88 \cdot 3$
$\cdot 36$	$84^{\circ} \mathrm{O}$	$84^{\circ} 3$	$84^{\circ} 7$	85°	85.4	85.7	$86^{1} \mathrm{I}$	86.4	$86 \cdot 8$	87^{1}	87.5	87.7	$87 \cdot 8$	88.0	$88 \cdot 2$
$\cdot 38$	83.7	84°	84.4	84.7	$85^{\circ} \mathrm{I}$	85.5	$85^{\circ} 9$	$86 \cdot 2$	$86 \cdot 6$	$87^{\circ} \mathrm{O}$	87.3	87.5	87.7	87.9	$88 \cdot 1$
40	83.3	83.7	$84^{\circ} \mathrm{I}$	84.5	84.9	$85^{\prime} 2$	$85 \cdot 6$	86.0	86.4	$86 \cdot 8$	87.2	$87 \cdot 4$	$87 \cdot 6$	87.8	88.0
-42	83.0	83.4	$83 \cdot 8$	$84^{\circ} 2$	$84^{.6}$	85°	85.4	$85 \cdot 8$	$86 \cdot 2$	$86 \cdot 7$	87.1	$87 \cdot 3$	87.5	87.7	87.9
-44	$8{ }^{1} 7$	83.1	83.5	$83^{\prime} 9$	84.3	$84^{*} 8$	$85^{\circ} 2$	$85^{\prime} 6$	$86 \cdot 1$	$86 \cdot 5$	$86 \cdot 9$	87^{-1}	87.4	$87 \cdot 6$	$87 \cdot 8$
$\cdot 46$	8. 3	82.8	83.2	$83 \cdot 7$	$84^{.1}$	84.5	85°	85.4	$85^{\prime} 9$	$86 \cdot 3$	$86 \cdot 8$	87°	$87 \cdot 2$	87.5	87.7
$\cdot 4$	82.0	$82 \cdot 5$	82.9	83.4	83.8	84.3	84.8	85°	$85^{\circ} 7$	$86 \cdot 2$	$86 \cdot 7$	86.9	$87 \cdot 1$	$87 \cdot 4$	$87 \cdot 6$
50	8 I 7	82.2	82.6	83.1	$83 \cdot 6$	$84^{\circ} \mathrm{I}$	84.6	$85^{\circ} \mathrm{O}$	85.5	$86 \cdot 0$	86.5	$86 \cdot 8$	87.0	87.3	87.5
$\cdot 52$	81.4	$8 \mathrm{I} \cdot 8$	82.3	$82 \cdot 8$	83.3	83.8	84.3	84.8	$85^{\circ} 3$	85.9	86.4	$86 \cdot 6$	86.9	$87 \cdot 1$	87.4
- 54	$8 \mathrm{I} \cdot 0$	$8 \mathrm{I} \cdot 5$	82.0	$82 \cdot 6$	83.1	83.6	$8{ }^{8} \cdot 1$	$84^{6} 6$	$85^{\circ} 2$	85.7	$86 \cdot 2$	86.5	$86 \cdot 8$	$87^{\circ} \mathrm{O}$	87.3
$\cdot 56$	80	$8 \mathrm{r} \cdot 2$	$8 \mathrm{r} \cdot 8$	$82 \cdot 3$	82.8	83.4	83.9	84.4	85°	$85^{\circ} 5$	$86 \cdot 1$	$86 \cdot 4$	86.6	86.9	$87^{\circ} 2$
$\cdot 58$	80	80	8r.5	$82 \cdot 0$	82.	83^{1} I	$83 \cdot 7$	$84^{\circ} 2$	84.8	85.4	86	$86 \cdot 2$	86.5	$86 \cdot 8$	$87^{\circ} \mathrm{I}$
-60	$80 \cdot 1$	$80 \cdot 6$	8I.2	8 r 7	82.3	82.9	83.5	84.1	84.6	85.2	85.8	$86 \cdot 1$	86.4	86.7	87°
$\cdot 62$	79×7	$80 \cdot 3$	$80 \cdot 9$	$8 \mathrm{I} \cdot 5$	82. 1	82.7	$83 \cdot 3$	83.9	8.5	$85^{\prime} \mathrm{I}$	85.7	86.0	$86 \cdot 3$	$86 \cdot 6$	$86 \cdot 9$
$\cdot 64$	79.4	$80 \cdot 0$	$80 \cdot 6$	$8 \mathrm{~J} \cdot 2$	$8 \mathrm{I} \cdot 8$	82.4	83°	83.7	84.3	$84^{\circ} 9$	$85^{\circ} 5$	$85^{\circ} 9$	86.2	$86 \cdot 5$	$86 \cdot 8$
-66	$79^{\circ} \mathrm{I}$	79.7	$80 \cdot 3$	$80 \cdot 9$	$8 \mathrm{I} \cdot 6$	$82 \cdot 2$	$82 \cdot 8$	83.5	$84^{\prime} 1$	$84^{\circ} 8$	$85^{\circ} 4$	$85^{\circ} 7$	$86 \cdot 1$	86.4	86.7
-68	78.8	79.4	80	$80 \cdot 7$	$8 \mathrm{I} \cdot 3$	82.0	82.6	83.3	83.9	$84 \cdot 6$	$85 \cdot 3$	$85^{\circ} 6$	85.9	$86 \cdot 3$	$86 \cdot 6$
70	78	79	79.7	$80 \cdot 4$	$8 \mathrm{I} \cdot \mathrm{I}$	$8{ }^{1} 7$	82.4	83.1	83.8	$84^{\circ} 4$	$85^{\text {I }}$	85.5	85.8	$86 \cdot 2$	86.5
$\cdot 72$	$78 \cdot 1$	$78 \cdot 8$	79.4	80.1	$80 \cdot 8$	$8{ }^{\circ} 5$	82.2	82.9	83.6	$84^{\prime} 3$	85°	$85^{\circ} 3$	85.7	$86 \cdot 1$	$86^{\circ} 4$
$\cdot 74$	$77 \cdot 8$	78.5	$79^{\circ} 2$	$79^{\circ} 9$	$80 \cdot 5$	$8 \mathrm{r} \cdot 3$	82.0	$82 \cdot 7$	$83^{\circ} 4$	$84^{\circ} \mathrm{I}$	84^{-8}	$85^{\circ} 2$	85.6	$85^{\circ} 9$	$86 \cdot 3$
$\cdot 76$	77.5	$78 \cdot 2$	78.9	$79 \cdot 6$	$80 \cdot 3$	$8 \mathrm{r} \cdot \mathrm{O}$	8 I 77	82.5	83.2	84°	$84^{\circ} 7$	$85^{\prime} 1$	$85^{\circ} 5$	$85 \cdot 8$	$86 \cdot 2$
$\cdot 78$	77.2	77.9	$78 \cdot 6$	$79 \cdot 3$	$80 \cdot 0$	$80 \cdot 8$	$8 \mathrm{I} \cdot 5$	$82 \cdot 3$	83°	$83 \cdot 8$	84.6	85°	$85 \cdot 3$	$85^{\prime} 7$	86.
-80	$76 \cdot 8$	$77 \cdot 6$	$78 \cdot 3$	79°	$79 \cdot 8$	$80 \cdot 6$	81.3	82.1	82.9	83.6	84.4	84.8	85.2	85.6	$86 \cdot 0$
-82	$76 \cdot 5$	77.3	$78 \cdot 0$	$78 \cdot 8$	$79^{\circ} 5$	$80 \cdot 3$	$8 \mathrm{I} \cdot \mathrm{I}$	$8 \mathrm{I} \cdot 9$	$82 \cdot 7$	83.5	$84^{\circ} 3$	$84^{.7}$	85^{\prime} I	$85^{\circ} 5$	85.9
$\cdot 84$	$76 \cdot 2$	$77^{\circ} \mathrm{O}$	$77 \cdot 7$	$78 \cdot 5$	$79 \cdot 3$	80	$80 \cdot 9$	$8 \mathrm{I} \cdot 7$	82.5	83.3	$84^{\circ} 2$	$84^{\circ} 6$	85°	$85^{\circ} 4$	$85^{\circ} 8$
-86	$75^{\circ} 9$	$76 \cdot 7$	77.5	78.2	$79 \cdot 1$	$79^{\circ} 9$	$80 \cdot 7$	$8{ }^{-5}$	$82 \cdot 3$	$83^{\circ} 2$	84°	84.4	$84^{\circ} 9$	$85^{\prime} 3$	85.7
-88	$75^{\circ} 6$	$76 \cdot 4$	77.2	$78 \cdot 0$	$78 \cdot 8$	$79 \cdot 6$	$80 \cdot 5$	$8 \mathrm{I} \cdot 3$	82	83°	83.9	84.3	84.7	85°	85.6
"90	$75 \cdot 3$	$76 \cdot 1$	$76 \cdot 9$	77×7	$78 \cdot 6$	79.4	$80 \cdot 3$	8I. 1	82.0	82.9	83.7	$84^{\circ} 2$	84.6	85^{\prime} I	85.5
-92	$74^{\circ} 9$	$75^{\circ} 8$	$76 \cdot 6$	$77^{\circ} 5$	$78 \cdot 3$	$79^{\circ} 2$	$80 \cdot 0$	$80^{\circ} 9$	$8 \mathrm{I} \cdot 8$	$82 \cdot 7$	83.6	$84^{\circ} \mathrm{I}$	$84^{\circ} 5$	85°	$85^{\circ} 4$
$\cdot 94$	$74 \cdot 6$	$75^{\circ} 5$	$76 \cdot 3$	$77^{\circ} 2$	78.1	$78 \cdot 9$	$79 \cdot 8$	$80 \cdot 7$	$8 \mathrm{I} \cdot 6$	82.5	83.5	83.9 83.8	84.4	84.9	$85^{8.3}$
$\cdot 96$	74.3	$75^{\circ} 2$	$7{ }^{7}{ }^{\circ} \mathrm{O}$	76.9	77.8	$78 \cdot$ 78 8	79.6	$80 \cdot 5$ 80.3	81.5	82.4	83.3 83.2	83.8 83.7	84.3 84.2	84.7 8.6	$85 \cdot 2$ $85 \cdot 1$
-98	74°	74.9	$75 \cdot 8$	76.7.	$77 \cdot 6$	$78 \cdot 5$	$79 \cdot 4$	$80 \cdot 3$	$8 \mathrm{I} \cdot 3$	$82 \cdot 2$	$83^{\prime 2}$	83.7	$84^{\circ} 2$	84.6	$85^{\circ} \mathrm{I}$
1.00	$73 \cdot 7$	$74^{\circ} 6$	75.5	$76 \cdot 4$	$77 \cdot 3$	$78 \cdot 3$	$79 \cdot 2$	$80 \cdot 1$	$8 \mathrm{I} \cdot \mathrm{I}$	$82 \cdot 1$	$83^{\circ} \mathrm{I}$	83.5	$84^{\circ} \mathrm{O}$	84.5	$85^{\circ} 0$
$1 \cdot 02$	$73^{\circ} 4$	74.3	$75^{\circ} 2$	$76 \cdot 1$	$77^{1} \mathrm{I}$	$78 \cdot$	79°	$80 \cdot 0$	$80 \cdot 9$	$8 \mathrm{I} \cdot 9$	82.9	$83^{\circ} 4$	$83^{\circ} 9$	$84^{\circ} 4$	$84^{\circ} 9$
I.04	$73^{\circ} \mathrm{I}$	$74^{\circ} \mathrm{O}$	74.9	$75^{\circ} 9$	$76 \cdot 8$	$77^{\circ} 8$	78.8	$79 \cdot 8$	$80 \cdot 8$	81.8	82.8	83.3	$83 \cdot 8$	84.3 8.	84.8
I.06	$72 \cdot 8$	73.7	$74^{\circ} 7$	$75^{\circ} 6$	$76 \cdot 6$	$77^{\circ} 6$	78.6	79.6	80.6	8I.6	82.6 82.5	83.2 83.0	83.7 83.6	84.2 84.1	84.7 84.6
1.08	72.5	$73^{\circ} 4$	$74^{\circ} 4$	$75^{\circ} 4$	76.3	77×3	78.4	79.4	$80 \cdot 4$	8 I 5	82.5	83°	83.6	84° I	84.6

Table C.

AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.
Azimuth is named N or S according to the name of the A and B correction.

$\left\|\begin{array}{c} A \text { and } B \\ \text { Cor- } \\ \text { rection. } \end{array}\right\|$	hatitudes.														
	73°	74°	75°	76°	77°	78°	79°	80°	81°	82°	83°	83年 ${ }^{\circ}$	84°	$84 \frac{1}{1}{ }^{\circ}$	85°
Azimuths.															
-08	72.5	73.4	74.4	$75^{\circ} 4$	$76 \cdot 3$	$77 \cdot 3$	78.4	79.4	$80 \cdot 4$	8I•5	5	83°	$83 \cdot 6$	I	$84^{\circ} 6$
I-10	$72 \cdot 2$	$73 \cdot 1$	$74^{1} 1$	75*	$76 \cdot 1$	$77^{1} \mathrm{I}$	$78 \cdot 1$	$79^{\circ} 2$	$80 \cdot 2$	$8 \mathrm{r} \cdot 3$	82.4	$82^{\circ} 9$	83.4	$84^{\circ} \mathrm{O}$	84.5
I 20	$70 \cdot 7$	$71 \cdot 7$	72.7	$73 \cdot 8$	74.9	$76 \cdot 0$	77^{1}	$78 \cdot 2$	79.4	$80 \cdot 5$	$8 \mathrm{I} \cdot 7$	82.3	$82^{\circ} 9$	83.4	$84^{\circ} \mathrm{O}$
r 30	69.2	$70 \cdot 3$	$7 \mathrm{I} \cdot 4$	$72 \cdot 5$	$73 \cdot 7$	74.9	$76 \cdot 1$	77.3	$78 \cdot 5$	79.7	$8 \mathrm{r} \cdot 0$	$8 \mathrm{I} \cdot 6$	$82 \cdot 3$	82.9	$83 \cdot 5$
1.40	67.7	68.9	70'1	71.3	72.5	$73 \cdot 8$	75°	$76 \cdot 3$	$77 \cdot 6$	$79^{\circ} \mathrm{O}$	$80 \cdot 3$	$8 \mathrm{r}^{\circ} \mathrm{O}$	8 C 7	82.4	83°
)	$66 \cdot 3$	67.5	$68 \cdot 8$	70	71	72	74°	$75^{\circ} 4$	$76 \cdot 8$	78.2	79.6	$80 \cdot 4$	81'1	$8 \mathrm{I} \cdot 8$	82.6
I-60	$64^{\circ} 9$	$66 \cdot 2$	67.5	$68 \cdot 8$	$70 \cdot 2$	71.6	73°	$74^{\circ} 5$	75.9	77.4	79°	79×7	$80 \cdot 5$	$8 \mathrm{I} \cdot 3$	$82 \cdot 1$
1.70	$63 \cdot 6$	64.9	$66 \cdot 3$	$67 \cdot 6$	69.1	$70 \cdot 5$	$72 \cdot$	$73 \cdot 6$	75^{\prime} I	$76 \cdot 7$	$78 \cdot 3$	$79 \cdot 1$	79.9	$80 \cdot 7$	$8 \mathrm{r} \cdot 6$
I.80	62.2	$63 \cdot 6$	65° -	$66 \cdot 5$	$68 \cdot 0$	69.5	$7{ }^{\circ} \mathrm{O}$	$72 \cdot 6$	74.3	$75 \cdot 9$	$77 \cdot 6$	$78 \cdot 5$	$79 \cdot 3$	$80 \cdot 2$	$8 \mathrm{I}^{-2}$
1.90	$60 \cdot 9$	62.4	$63 \cdot 8$	$65 \cdot 3$	66	$68 \cdot 4$	$70 \cdot 1$	71.7	73.4	75^{2}	77°	$77 \cdot 9$	78.8	797	$80 \cdot 6$
$2 \cdot 00$		$6 \mathrm{I} \cdot \mathrm{I}$	62.6	64.2	65.8	67.4	69	70.8	$72 \cdot 6$	$74{ }^{\circ} 4$	76	$77^{2} 2$	78.2	I	$80 \cdot 1$
$2 \cdot 10$	$58 \cdot 5$	59.9	61.5	$63^{\prime} \mathrm{I}$	$64^{\circ} 7$	$66^{4} 4$	$68 \cdot 2$	70.0	71.8	73.7	$75 \cdot 6$	$76 \cdot 6$	$77 \cdot 6$	$78 \cdot 6$	$79 \cdot 6$
$2 \cdot 20$	$57 \cdot 3$	$58 \cdot 8$	$60 \cdot 3$	62.0	63.7	$65 \cdot 4$	$67 \cdot 2$	$69^{\circ} \mathrm{I}$	71.0	$73^{\circ} \mathrm{O}$	$75^{\circ} \mathrm{O}$	76°	$77^{\circ} \mathrm{O}$	78.1	$79^{1} 1$
$2 \cdot 30$	56	57.6	59.2	$60 \cdot 9$	$62 \cdot 6$	$64^{*} 4$	$66 \cdot 3$	68.2	$70 \cdot 2$	$72 \cdot 2$	74.3	$75^{\circ} 4$	$76 \cdot 5$	$77 \cdot 6$	$78 \cdot 7$
$2 \cdot 40$	54.9	$56 \cdot 5$	$58 \cdot 2$	$59 \cdot 9$	$6 \mathrm{I} \cdot 6$	63.5	65.4	67°	69.4	71.5	$73^{\circ} 7$	$74 \cdot 8$	$75^{\circ} 9$	77°	$78 \cdot 2$
50	53.8	$55^{\circ} 4$	57.1	$58 \cdot 8$	$60 \cdot 6$	62.5	64.5	$66 \cdot 5$	$68 \cdot 6$	$70 \cdot 8$	$73^{\circ} \mathrm{I}$	$74^{\circ} 2$	$75^{\circ} 4$	$76 \cdot 5$	77.7
2.60	52	${ }^{\circ} 4$	56.I	57.8	59.7	61.6	$63 \cdot 6$	$65 \cdot 7$	67.9	$70 \cdot 1$	72.4	73^{6}	74^{-8}	76.0	77.2
70	51.7	$53^{\prime} 3$	$55^{1} \mathrm{I}$	$56 \cdot 8$	$58 \cdot 7$	$60 \cdot 7$	62.7	$64^{\circ} 9$	$67 \cdot 1$	$69^{*} 4$	71.8	73°	$74^{\circ} 2$	75.5	$76 \cdot 8$
80	$50 \cdot 7$	$52 \cdot 3$	$54^{1} \mathrm{I}$	$55^{\circ} 9$	57	$59 \cdot 8$	6r.9	$64 \cdot 1$	$66 \cdot 3$	68.7	71.2	72.4	$73^{\circ} 7$	$75^{\circ} \mathrm{O}$	$76 \cdot 3$
2.90	$49 \cdot 7$	51.4	53^{1} I	$54^{\circ} 9$	56	$58 \cdot 9$	6r.o	63.3	65.6	68	$70 \cdot 5$	71.8	$73^{\circ} \mathrm{I}$	$74^{\circ} 5$	$75 \cdot 8$
$3 \cdot 00$	48	50	52.2	$54^{\circ} \mathrm{O}$	56.0	$58 \cdot 0$	$60 \cdot 2$	62.5	$64^{\circ} 9$	67.3	$69^{\circ} 9$	$71^{\circ} 2$	$72 \cdot 6$	$74^{\circ} \mathrm{O}$	$75^{\prime} 3$
3	47	49.5	$5 \mathrm{I}^{\prime} 3$	53°	$55^{\circ} \mathrm{I}$	57.2	59.4	$6 \mathrm{r} \cdot 7$	$64^{\circ} \mathrm{I}$	$66^{\prime} 7$	$69 \cdot 3$	$70 \cdot 7$	72.0	73.5	74.9
$3 \cdot$	46	$48 \cdot 6$	$50 \cdot 4$	$52 \cdot 3$	$54 \cdot 3$	56.4	$58 \cdot 6$	$60 \cdot 9$	$63^{\circ} 4$	$66 \cdot$	$68 \cdot 7$	$70^{\prime} 1$	71.5	72.9	$74^{\circ} 4$
3.30	$46 \cdot 0$	47.7	49.5	51.4	53.4	$55^{\circ} 5$	$57 \cdot 8$	$60 \cdot 2$	$62^{\prime} 7$	$65 \cdot 3$	$68 \cdot 1$	69.5	$71^{\circ} 0$	72.4	$74^{\circ} \mathrm{O}$
3.40	45^{2}	$46 \cdot 9$	$48 \cdot 7$	$50 \cdot 6$	52.6	$54^{\circ} 7$	57.0	59.4	62°	$64^{\circ} 7$	67.5	$68 \cdot 9$	$70 \cdot 4$	72.	73.5
3.50	$44^{\circ} 3$	$46 \cdot 0$	$47^{\circ} 8$	49.7	51.8	$54^{\circ} \mathrm{O}$	$56 \cdot 3$	$58 \cdot 7$	$6 \mathrm{r} \cdot 3$	$64^{\circ} 0$	$66^{\cdot 9}$	68.4	$69^{\circ} 9$	71	73°
$3 \cdot 60$	$43 \cdot 5$	$45^{\circ} 2$	47°	$48 \cdot 9$	$51^{\circ} \mathrm{O}$	$53^{\circ} 2$	55.5	$58 \cdot 0$	6	$63^{\circ} 4$	$66^{\cdot} 3$		$69^{\circ} 4$	$7 r^{\circ}$	$72 \cdot 6$
3.70	$42 \cdot 8$	$44^{\circ} 4$	$46 \cdot 2$	$48 \cdot 2$	$50 \cdot 2$	52.4	$54 \cdot 8$	57	59.9	$62 \cdot 8$	$65^{\prime} 7$	67.3	$68 \cdot 9$	$70 \cdot 5$	$72 \cdot 1$
$3 \cdot 8$	42.0	43.7	$45 \cdot 5$	$47^{\circ} 4$	$49 \cdot 5$	$51 \cdot 7$	$54 \cdot \mathrm{I}$	$56 \cdot 6$	$59 \cdot 3$	$62^{\prime} 1$	$65^{\circ} 2$	66.7	$68 \cdot 3$	$70 \cdot 0$	717
3.90	41.3	$42 \cdot 9$	$44^{\circ} 7$	$46 \cdot 7$	$48 \cdot 7$	51.0	$53 \cdot 3$	55.9	$58 \cdot 6$	61.5	64.6	$66 \cdot 2$	$67 \cdot 8$	69.5	71.2
4*00	40	42.2	44°	$45^{\circ} 9$	$48 \cdot 0$	50	$52 \cdot 6$	55	58.0	$60 \cdot 9$	64°	$65 \cdot 6$	67.3	69°	$70 \cdot 8$
4^{11}	$39 \cdot 8$	$4{ }^{1} 5$	$43 \cdot 3$	$45^{\circ} 2$	$47^{\circ} 3$	$49 \cdot 6$	52.0	$54 \cdot 6$	57.3	$60 \cdot 3$	63.5	65'1	$66 \cdot 8$	68.5	$70 \cdot 3$
$4 \cdot 2$	39^{2}	$40 \cdot 8$	$42 \cdot 6$	$44^{\circ} 5$	$46 \cdot 6$	$48 \cdot 9$	$5 \mathrm{I} \cdot 3$	53.9	$56 \cdot 7$	59'7	62.9	$64^{\circ} 6$	$66 \cdot 3$	68.1	69.9
4.30	$38 \cdot 5$	$40 \cdot 2$	$4{ }^{\circ} 9$	$43^{\circ} 9$	$46 \cdot 0$	$48 \cdot 2$	$50 \cdot 6$	$53^{\circ} 3$	56.1	59.1	$62 \cdot 3$	$64^{\circ} \mathrm{O}$	$65^{\circ} 8$	$67 \cdot 6$	$69^{\circ} 5$
44°	$37 \cdot 9$	39.5	$45^{\circ} 3$	$43^{\circ} 2$	$45^{\circ} 3$	47.5	$50 \cdot 0$	$52 \cdot 6$	55.5	$58 \cdot 5$		63.5	$65^{\prime} 3$	$67 \cdot 1$	69°
4.50	37.2	38.9	$40 \cdot 6$	$42 \cdot 6$	$44^{\circ} 7$	$46^{\circ} 9$	$49 \cdot 3$	52.0	54.9	57.9	6I•3	63°	$64 \cdot 8$	$66 \cdot 7$	$68 \cdot 6$
4.60	36.6	$38 \cdot 3$	$40 \cdot 0$	$41 \cdot 9$	44°	$46 \cdot 3$	$48 \cdot 7$	51.4	$54^{\circ} 3$	57.4	$60 \cdot 7$	62.5	64.3	$66^{2} 2$	$68 \cdot 2$
4.70	36.0	$37 \cdot 7$	39.4	$4{ }^{\circ} 3$	43.4	$45^{\prime} 7$	$48 \cdot 1$	$50 \cdot 8$	53.7	$56 \cdot 8$	$60 \cdot 2$	$62 \cdot$	$63 \cdot 8$	$65 \cdot 7$	677
$4 \cdot 80$	$35^{\circ} 5$	$37^{\circ} \mathrm{I}$	$38 \cdot 8$	$40 \cdot 7$	$42 \cdot 8$	45. 1	47.5	$50 \cdot 2$	53'1	$56 \cdot 3$	59*7	6 r 5	63.4	65	67.3
4.90		36	$38 \cdot 3$	$40 \cdot 2$	$42 \cdot 2$	$44^{\circ} 5$	$46 \cdot 9$	$49 \cdot 6$	52.5	55\%	$59^{\circ} 2$		62.9	$64 \cdot 8$	$66 \cdot 9$
5.00	$34^{\circ} 4$	$36 \cdot 0$	37.7	$39 \cdot 6$	$4{ }^{\prime} 6$	43.9	$46 \cdot 3$	$49^{\circ} \mathrm{O}$	52.0	$55^{\circ} 2$	$58 \cdot 6$	$60 \cdot 5$	62.4	$64^{\circ} 4$	66.5
$5 \cdot 20$	$33 \cdot 3$	$34^{\circ} 9$	36.6	$38 \cdot 5$	$40 \cdot 5$	$42 \cdot 8$	$45^{\circ} 2$	$47 * 9$	$50 \cdot 9$	54^{-1}	$57 \cdot 6$	59.5	6 r 5	63.5	$65 \cdot 6$
	$32 \cdot 3$	$33^{\circ} 9$	$35 \cdot 6$	37.4	$39 \cdot 5$	41.7	$44^{\text {. }}$	$46 \cdot 8$	$49 \cdot 8$	53.1	56.7	58.6	$60 \cdot 6$	$62 \cdot 6$	$64 \cdot 8$
5.60	31.4	32.9	$34 \cdot 6$	36.4	$38 \cdot 4$	$40^{\circ} 7$	+	45^{-8}	$48 \cdot 8$ 47 8	$52 \cdot 1$ $5 \cdot 1$	55.7 54	$57 \cdot 6$ 56.7	59.7 58.8	61	64.0 63.2
5	$30 \cdot 5$	32.	337	35.5	37	$39^{\circ} 7$	42^{1} I	44	47.8	51'1	$54^{\prime} 7$	56.7			
6.00	29	31.2	$32 \cdot 8$	$34^{\circ} 6$	36.5	$38 \cdot 7$	$4^{1 \times 1}$	$43 \cdot 8$	$46 \cdot 8$	50'I	$53 \cdot 8$	$55^{\circ} 8$	57*9	$60 \cdot 1$	${ }^{4}$
6.20	28.9	$30 \cdot 3$	3 r 9	$33^{\circ} 7$	$35^{\circ} 6$	$37 \cdot 8$	$40 \cdot 2$	$42 \cdot 9$	$45^{\circ} 9$	49.2	52.9	$54^{\circ} 9$	57.1	59.3 58.5	$6 \mathrm{r} \cdot 6$ $60 \cdot 8$
6.4	$28 \cdot 1$	29.5	3	$32 \cdot 9$	$34^{\circ} 8$	$36 \cdot 9$	$39^{\circ} 3$	42.0	45°	$48 \cdot 3$	52°	$54^{\circ} 1$	$55^{\circ} 2$	58.5 57.7	I
$6 \cdot 60$	27.4	28.8	$30 \cdot 3$	$32 \cdot 1$	34°	361	$38 \cdot 5$	4	$44^{\text { }}$ I	47.4	51.2	53.2	55.4	57.7	. 3
6	26.7	28	29.6	$31 \cdot 3$	33^{2}	$35 \cdot 3$	$37^{\circ} 6$	$40 \cdot 3$	43°	$46 \cdot 6$	$50 \cdot 4$	52.4	54.6	56.9	$59^{\circ} 3$
-	26.0	27.4	28.9	$30 \cdot 6$	32.4	$34^{\circ} 5$	$36 \cdot 8$	$39 \cdot 4$	42.4	$45 \cdot 7$	49.5	51.6	53.8	56.1	$58 \cdot 6$
7.20	25.4	26.7	$28 \cdot 2$	29.9	$31^{\circ} 7$	$33^{\circ} 7$	$36 \cdot 1$	$38 \cdot 7$	$41 \cdot 6$	$44^{\circ} 9$	$48 \cdot 7$	$50 \cdot 8$	$53^{\circ} \mathrm{O}$	$55^{\circ} 4$	57.9 57.2
7.40	24.8	$26 \cdot 1$	27°	29.2	$31^{\circ} \mathrm{O}$	$33^{\circ} \mathrm{O}$	$35^{\circ} 3$	$37^{\circ} 9$	$40 \cdot 8$	$44^{\circ} 2$	$48 \cdot 0$	50°	$52 \cdot 3$	$54^{\circ} 7$	57.2 56.5
7.60	$24^{\circ} 2$	$25^{\circ} 5$	26.9	28.5	$30 \cdot 3$	$32 \cdot 3$	$34^{\circ} 6$	37.	$40 \cdot 1$ $30 \cdot 3$	$43^{\circ} 4$	47.5	49 48.6	$51 \cdot 5$ $50 \cdot 8$	53.2	
7.80	23.7	24.9	26.4	27.9	29.7	$3{ }^{\circ} 7$	33.9	36.4	$39 \cdot 3$	$42 \cdot 7$	$46 \cdot 5$	48.6	$50 \cdot 8$	53°	55°

Table C.
AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION.
Azimuth is named N or S according to the name of the A and B correction.

	LATITUDES.														
	73°	74°	75°	76°	77°	78°	79°	80°	81°	82°	83°	$83 \frac{1}{2}^{\circ}$	84°		85°
Azimuths.															
,															
8.0	23^{1} I	24.4	25.8	27.3	29.1	31.0	33.2	35.7	$38 \cdot 6$	4 19	$45^{\prime} 7$	$47 \cdot 8$	50. 1	. 5	55^{1}
$8 \cdot 2$	$22 \cdot 6$	$23^{\circ} 9$	$25^{2} 2$	$26 \cdot 8$	28.5	$30 \cdot 4$	$32 \cdot 6$	$35^{\text {I }}$ I	$37 \cdot 9$	$41 \cdot 2$	$45^{\circ} \mathrm{O}$	$47^{1} 1$	49.4	51.8	$54^{\circ} 4$
8.4	22.2	23.4	24.7	$26 \cdot 2$	27.9	$29 \cdot 8$	32.0	34.4	$37 \cdot 3$	$40 \cdot 5$	44.3	$46 \cdot 4$	$48 \cdot 7$	51.2	$53 \cdot 8$
8.6	21.7	22.9	$24^{\prime 2}$	25.7	27.3	29.2	31.4	$33 \cdot 8$	$36 \cdot 6$	$39^{\circ} 9$	$43 \cdot 7$	$45 \cdot 8$	$48 \cdot 0$	50.5	$53^{\prime} 1$
8.	21.2	22.4	23.7	25.2	$26 \cdot 8$	28.7	$30 \cdot 8$	33^{2}	36•0	$39^{\prime} 2$	43°	$45^{\text {1 }}$	$47 \cdot 4$	$49 \cdot 9$	$52 \cdot 5$
$9 \times$	$20 \cdot 8$	22	23.2	24.7	26.3	28.1	$30 \cdot 2$	32.6	$35^{\circ} 4$	$38 \cdot 6$	$42 \cdot 4$	44.5	$46 \cdot 7$	$49^{\circ} 2$	51.9
$9 \cdot 2$	20.4	2I'5	$22 \cdot 8$	$24^{\circ} 2$	$25 \cdot 8$	$27^{\circ} 6$	29.7	32.0	34.8	$38 \cdot 0$	$4 \mathrm{I} \cdot 7$	$43 \cdot 8$	$46 \cdot 1$	$48 \cdot 6$	$5 \mathrm{I} \cdot 3$
9	$20 \cdot 0$	21.1	$22 \cdot 3$	23.7	25.3	27.1	$29 \cdot 1$	$3{ }^{\circ} 5$	$34^{\circ} 2$	37.4	4 $\mathrm{I} \cdot \mathrm{I}$	43.2	$45^{\circ} 5$	$48 \cdot 0$	$50 \cdot 7$
9.6	19.6	$20 \cdot 7$	21.9	23.3	24.8	$26 \cdot 6$	$28 \cdot 6$	31.0	$33^{\prime} 7$	$36 \cdot 8$	$40 \cdot 5$	$42 \cdot 6$	$44^{\circ} 9$	47.4	$50 \cdot 1$
9.8	19.2	$20 \cdot 3$	21.5	22.9	$24^{\circ} 4$	$26 \cdot 1$	28.1	$30 \cdot 4$	33^{\prime} I	$36 \cdot 2$	$39 \cdot 9$	42°	$44^{\circ} 3$	$46 \cdot 8$	49.5
10.	18.9		21'I	22.5	$24^{\circ} \mathrm{O}$	$25^{\prime} 7$	27.7	29.9	$32 \cdot 6$	$35^{\prime} 7$	$39^{\circ} 4$	415	$43^{\prime} 7$	$46 \cdot 2$	$48 \cdot 9$
10	$18 \cdot 5$	19.6	$20 \cdot 7$	22.1	23.5	$25^{\circ} 2$	27.2	29.4	$32 \cdot 1$	35^{2}	$38 \cdot 8$	$40 \cdot 9$	$43^{\circ} 2$	$45^{\circ} 6$	$48 \cdot 4$
ro	18.2	19.2	$20^{\circ} 4$	2 I 7	23.1	24.8	$26 \cdot 7$	29°	31.6	$34^{\circ} 6$	$38 \cdot 3$	$40 \cdot 3$	$42 \cdot 6$	$45^{\text {I }}$	$47 \cdot 8$
10.	17.9	18.9	20'I	21.3	22.8	24.4	$26 \cdot 3$	28.5	3I'I	34. I	$37 \cdot 7$	39•8	$4^{\cdot} \mathrm{I}$	44.5	$47 \cdot 3$
10.8	17.6	$18 \cdot 6$	19.7	$20 \cdot 9$	22.4	$24^{\circ} \mathrm{O}$	25.9	28.1	$30 \cdot 6$	$33 \cdot 6$	$37 \cdot 2$	$39 \cdot 3$	415	44°	$46 \cdot 7$
	17.3	$18 \cdot 3$	19.4	$20 \cdot 6$	22.0	23.6	25.5	27.6	$30 \cdot 2$	33^{2}	36.7	$38 \cdot 8$	41'0	43.5	$46 \cdot 2$
II'2	17.0	17.9	19°	$20 \cdot 3$	I 6	23.2	$25^{1} \mathrm{I}$	27.2	29.7	$32 \cdot 7$	$36 \cdot 2$	$38 \cdot 3$	$40 \cdot 5$	43°	$45^{\prime} 7$
11.4	$16 \cdot 7$	17.7	$18 \cdot 7$	19.9	21.3	22.9	$24^{\prime} 7$	$26 \cdot 8$	$29 \cdot 3$	$32 \cdot 2$	35.7	$37 \cdot 8$	40°	42.5	$45^{\prime} 2$
II• 6	16.4	17.4	18.4	19.6	21.0	22.5	$24^{\circ} 3$	26.4	28.9	$3 \mathrm{I} \cdot 8$	$35 \cdot 3$	$37 \cdot 3$	$39 \cdot 5$	$42 \cdot$	$44^{7} 7$
II•8	16.2	$17{ }^{1} 1$	I8	19.3	$20 \cdot 6$	22.2	23.9	$26 \cdot 0$	28.4	3r'3	34^{-8}	$36 \cdot 8$	39°	415	$44^{\circ} 2$
	15.9	16	17.8	19*0	$20 \cdot 3$	21.8	$23 \cdot 6$	25.6	$28 \cdot 0$	30.9	$34^{\circ} 4$	$36 \cdot 4$	$38 \cdot 6$	4 ${ }^{\circ} \mathrm{O}$	43.7
12	15.7	$16 \cdot 6$	17.6	$18 \cdot 7$	$20 \cdot 0$	21.5	$23 \cdot 2$	25.3	27.7	$30 \cdot 5$	33.9	$35 \cdot 9$	$38 \cdot 1$	$40 \cdot 5$	$43 \cdot 2$
12	15.4	$16 \cdot 3$	17.3	$18 \cdot 4$	19.7	$21 \cdot 2$	22.9	$24^{\circ} 9$	27.3	$30 \cdot 1$	33.5	$35^{\circ} 5$	$37 \cdot 7$	$40 \cdot 1$	$42 \cdot 8$
12.6	15.2	$16 \cdot 1$	17°	18.2	19.4	$20 \cdot 9$	22.6	24.6	26.9	29.7	$33 \cdot 1$	35°	37.2	$39 \cdot 6$	$42 \cdot 3$
12.8	$15^{\circ} \mathrm{O}$	15.8	16	17.9	$19 \cdot 2$	$20 \cdot 6$	22.3	$24^{\circ} 2$	$26 \cdot 5$	29.3	$32 \cdot 7$	$34^{\circ} 6$	$36 \cdot 8$	$39^{\circ} 2$	41.9
13.0	14.7	15.6	I6	17.6	18.9	$20 \cdot 3$	$22 \cdot 0$	23.9	26.2	28	$32 \cdot 3$	$34^{\circ} 2$	$36 \cdot 3$	$38 \cdot 7$	41.4
13.2	14.5	15.4	$16 \cdot 3$	17.4	18.6	20*	$21^{\prime} 7$	$23 \cdot 6$	25.8	$28 \cdot 6$	$31 \cdot 9$	$33^{\circ} 8$	$35^{\circ} 9$	$38 \cdot 3$	$4{ }^{\circ} \mathrm{O}$
13.4	14.3	$15^{\circ} \mathrm{I}$	$16 \cdot 1$	17.1	18.4	19.7	21.4	$23 \cdot 3$	$25^{\circ} 5$	28.2	3 F 5	33.4	35.5	37.9	$40 \cdot 6$
13.6	I4.1	14.9	15.9	$16 \cdot 9$	18.1	19.5	21.1	22.9	$25^{\circ} 2$	27.8	$3 \mathrm{I} \cdot \mathrm{I}$	33° o	$35^{\text {I }}$ I	$37 \cdot 5$	$40^{\prime} 2$
13.8	I3	14×7	15.6	$16 \cdot 7$	17.9	19.2	$20 \cdot 8$	22.7	$24^{\circ} 9$	27.5	$30 \cdot 7$	$32 \cdot 6$	34.7	$37^{\prime} \mathrm{I}$	397
-	13.7	14.5	15.4	${ }^{16} 5$	17.6	19°	$20 \cdot 5$	22.4	$24^{\circ} 5$	$27^{\circ} 2$	$30 \cdot 4$	$32 \cdot 3$	$34^{\circ} 3$	$36 \cdot 7$	$39 \cdot 3$
14	13.5	14.3	15.2	$16 \cdot 2$	17.4	$18 \cdot 7$	$20 \cdot 3$	22.1	24.2	26.8	$30 \cdot 0$	31.9	$34^{\circ} \mathrm{O}$	$36 \cdot 3$	$38 \cdot 9$
	13.4	$14^{\circ} \mathrm{I}$	15.0	16.0	17.2	18.5	20•0	$2 \mathrm{I} \cdot 8$	23.9	26.5	29.7	31.5	$33 \cdot 6$	35.9	$38 \cdot 5$
14.6	I3.2	$14^{\circ} \mathrm{O}$	14.8	15.8	16.9	18.2	19.7	$2 \mathrm{I}^{5}$	$23 \cdot 6$	$26 \cdot 2$	$29 \cdot 3$	31.2	33.2	$35 \cdot 6$	$38 \cdot 2$
$14^{\circ} 8$	13.0	13.8	14.6	15.6	16.7	18	19.5	21.3	23.4	$25^{\circ} 9$	$29 \cdot 0$	$30 \cdot 8$	$32 \cdot 9$	$35^{\prime} 2$	$37 \cdot 8$
$15^{\circ} \mathrm{O}$	12.8	13.6	14.4	15.4	16.5	17.8	19.3	$21^{\circ} \mathrm{O}$	23.1	$25 \cdot 6$	28.7	30.5	$32 \cdot 5$	$34 \cdot 8$	37.4
15°	127	13.4	14.3	$15^{\circ} 2$	$16 \cdot 3$	17.6	19°	$20 \cdot 8$	22.8	$25^{\circ} 3$	28.4	$30 \cdot 2$	$32 \cdot 2$	34.5	37°
15.4	12.5	13.3	$14^{*} 1$	15.0	$16 \cdot 1$	17.3	18.8	$20 \cdot 5$	22.5	$25^{\circ} \mathrm{O}$	28.0	$29 \cdot 8$	31.8	34^{\prime} I	$36 \cdot 7$
15.6	12.4	$13^{\circ} \mathrm{I}$	$13^{\circ} 9$	$14^{\circ} 8$	15.9	$17 \cdot 1$	18.6	$20 \cdot 3$	$22 \cdot 3$	24.7	27.7	29.5	31.5	$33 \cdot 8$	$36 \cdot 3$
15	12.2	12.9	$13^{\prime} 7$	$14^{7} 7$	15.7	16.9	18.4	20\%	22.0	24.5	27.4	29^{2}	31.2	33.4	$36 \cdot 0$
16.0	12.1	12.8	13.6	14.5	15.5	16.7	18.1	19.8	21.8	$24^{2} 2$	$27 \cdot 2$	28.9	$30 \cdot 9$	33' 1	$35^{6} 6$
$16 \cdot 2$	11.9	12.6	13.4	14.3	$15 \cdot 3$	$16 \cdot 5$	17.9	19.6	21.5	23.9	26.9	$28 \cdot 6$	$30 \cdot 6$	$32 \cdot 8$	$35 \cdot 3$
16.4	II• 8	12.5	13.3	$14^{\circ} \mathrm{I}$	$15 \cdot 2$	$16 \cdot 3$	17.7	19.3	$20 \cdot 3$	23.7	$26 \cdot 6$	$28 \cdot 3$	$30 \cdot 3$	$32 \cdot 5$	$35^{\circ} \mathrm{O}$
16.6	m•6	12.3	${ }^{13}{ }^{\text {I }}$	$14^{\circ} \mathrm{O}$	15.0	$16 \cdot 2$	17.5	19. 1	21.1	23.4	$26 \cdot 3$	28.0	30%	$32 \cdot 2$	34.7
16.8	II 5	12.2	13.0	13.8	14.8	16.0	17.3	18.9	20	$23^{\circ} 2$	$26 \cdot 0$	27.7	297	31.8	34.3
17.0	11.4	12.0	12.8	13.7	14.7	15.8	17.1	18.7	$20 \cdot 6$	22.9	25.8	27.5	29.4	315	$34^{\circ} \mathrm{O}$
17.2	II	II'9	12.7	13.5	I ${ }^{*} 5$	15.6	16.9	$18 \cdot 5$	$20 \cdot 4$	22.7	25.5	27^{2}	29.1	$3 \mathrm{I}^{\circ} 2$	$33^{\circ} 7$
17.4	II'I	II•8	12.5	13.4	14.3	15.5	$16 \cdot 8$	$18 \cdot 3$	$20 \cdot 2$	22.4	25^{2}	26.9	$28 \cdot 8$	$30 \cdot 9$	$33^{\circ} 4$
${ }^{17} 7^{6}$	II•O	II'6	12.4	13.2	14.2	15.3	16.6	$18 \cdot 1$	$20 \cdot 0$	22.2	$25^{\circ} \mathrm{O}$	$26 \cdot 7$	$28 \cdot 5$	$30 \cdot 7$	$33^{\circ} \mathrm{I}$
17.8	10.9	II'5	12	I3. 1	$14^{\circ} \mathrm{O}$	${ }^{1} 5^{\circ} \mathrm{I}$	16.4	17.9	19.8	22.0	$24^{\circ} 7$	26.4	$28 \cdot 3$	$30 \cdot 4$	$32 \cdot 8$
18.0	10.8	$1{ }^{1} 4$	12.1	12.9	13.9	$15^{\circ} \mathrm{O}$	16. 2	17.7	19.6	21.8	24.5	$26 \cdot 1$	28.0	$30 \cdot 1$	32.5
18.2	$10 \cdot 6$	II'3	12.0	12	13.7	14.8	16•1	17.6	19.4	21.5	$24^{\circ} 3$	$25^{\circ} 9$	$27 \cdot 7$	29.8	$32 \cdot 2$
18	10. 5	11.2	II.9	12.7	$13 \cdot 6$	$14^{\circ} 6$	15.9	17.4	19.2	$2 \mathrm{I}^{\circ} 3$	$24^{\circ} \mathrm{O}$	25.6	27.5	29.6	31.9
18.6	$10 \cdot 4$	110	II'7	12.5	13.4	14.5	15.7	17.2	19.0	2I'1	$23 \cdot 8$	25.4	$27 \cdot 2$	29.3	3 I 7
18.8	$10 \cdot 3$	$10 \cdot 9$	11.6	12.4	13.3	14.3	15.6	17.0	18.8	20.9	23.6	25°	$27^{\circ} 0$	29°	$3{ }^{1} 4$

Table C.

AZIMUTHS CORRESPONDING TO THE A AND B CORRECTION

Azimuth is named N or S according to the name of the A and B correction.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{$$
\begin{gathered}
\mathrm{A} \text { and } \mathrm{B} \\
\text { Cor- } \\
\text { rection. }
\end{gathered}
$$} \& \multicolumn{15}{|c|}{LATITUDES.}

\hline \& 73° \& 74° \& 75° \& 76° \& 77° \& 78° \& 79° \& 80° \& 81° \& 82° \& 83° \& 83 $\frac{1}{2}^{\circ}$ \& 84° \& 842° \& 85°

\hline \multicolumn{16}{|c|}{Azimuths.}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& -

\hline 19.0 \& 10.2 \& 10.8 \& 11.5 \& 12.3 \& 13.2 \& $14^{\circ} 2$ \& 15.4 \& 16.9 \& $18 \cdot 6$ \& $20 \cdot 7$ \& 23.4 \& $24^{\circ} 9$ \& $26 \cdot 7$ \& $28 \cdot 8$ \& $3{ }^{1 \cdot 1}$

\hline $19^{\circ} 2$ \& 10 \& 10.7 \& $1 \mathrm{IF}_{4}$ \& 12.1 \& $13^{\circ} \mathrm{O}$ \& $14^{\circ} \mathrm{I}$ \& $15^{\circ} 3$ \& $16 \cdot 7$ \& $18 \cdot 4$ \& $20 \cdot 5$ \& $23^{\circ} \mathrm{I}$ \& $24^{\circ} 7$ \& $26 \cdot 5$ \& 28.5 \& $30 \cdot 9$

\hline 19.4 \& $10 \cdot 0$ \& $10 \cdot 6$ \& 11.3 \& 12.0 \& 12.9 \& 13.9 \& $15^{\circ} \mathrm{I}$ \& $16 \cdot 5$ \& $18 \cdot 2$ \& $20 \cdot 3$ \& 22.9 \& $24^{\circ} 5$ \& $26 \cdot 2$ \& $28 \cdot 3$ \& $30 \cdot 6$

\hline $19 \cdot 6$ \& 9.9 \& $10 \cdot 5$ \& IIP2 \& II.9 \& $12 \cdot 8$ \& 13*8 \& 15.0 \& 16.4 \& $18 \cdot 1$ \& $20 \cdot 1$ \& $22 \cdot 7$ \& $24^{\circ} 3$ \& $26 \cdot 0$ \& 28° \& $30^{\circ} 3$

\hline 19.8 \& $9 \cdot 8$ \& $10 \cdot 4$ \& II'O \& [$1 \cdot 8$ \& 12.7 \& 13.7 \& 14.8 \& $16 \cdot 2$ \& 17×9 \& 19×9 \& 22.5 \& 24*0 \& 25^{-8} \& $27 \cdot 8$ \& $30 \cdot 1$

\hline 20.0 \& 9.7 \& $10 \cdot 3$ \& $10 * 9$ \& 117\% \& 12.5 \& 13.5 \& 14.7 \& $16 \cdot 1$ \& 177 \& $19 \cdot 8$ \& 22.3 \& 23.8 \& $25^{\circ} 6$ \& 27.5 \& $29 \cdot 8$

\hline $21^{\circ} \mathrm{O}$ \& 9.3 \& $9 \cdot 8$ \& $10 \cdot 4$ \& II'1 \& $12 \cdot 0$ \& 12.9 \& $14^{\circ} \mathrm{O}$ \& 15.3 \& 16.9 \& $18 \cdot 9$ \& $21 \cdot 3$ \& 22.8 \& 24.5 \& $26^{\circ} 4$ \& $28 \cdot 7$

\hline $22^{\circ} 0$ \& $8 \cdot 8$ \& $9 \cdot 4$ \& $10 \cdot 0$ \& $10 \cdot 6$ \& 11.4 \& $12 \cdot 3$ \& 13.4 \& 14.7 \& $16 \cdot 2$ \& 18.1 \& 20.5 \& $2 \mathrm{I}^{\circ} 9$ \& 23.5 \& $25^{\circ} 4$ \& $27^{\circ} 5$

\hline $23^{\circ} 0$ \& $8 \cdot 5$ \& $9 \cdot 0$ \& $9 \cdot 5$ \& 10.2 \& $10 \cdot 9$ \& 11.8 \& 12.8 \& $14^{\circ} \mathrm{I}$ \& 15.5 \& 17.3 \& 19.6 \& $21^{\circ} \mathrm{O}$ \& $22 \cdot 6$ \& $24^{\circ} 4$ \& 26.5

\hline $24^{\circ} \mathrm{O}$ \& $8 \cdot 1$ \& $8 \cdot 6$ \& 9.1 \& $9 \cdot 8$ \& $10 \cdot 5$ \& II.3 \& 12.3 \& 13.5 \& $14^{\circ} 9$ \& 16.7 \& 18.9 \& $20 \cdot 2$ \& 21.7 \& 23.5 \& $25 \cdot 6$

\hline 25° \& $7 \cdot 8$ \& $8 \cdot 3$ \& $8 \cdot 8$ \& 9.4 \& 10•1 \& 10.9 \& II.8 \& $13^{\circ} 0$ \& 14.3 \& 16.0 \& 18.2 \& 19.5 \& $20 * 9$ \& 22.6 \& $24^{\circ} 7$

\hline $26 \cdot 0$ \& 7.5 \& $7 \cdot 9$ \& $8 \cdot 5$ \& $9 \cdot 0$ \& 9.7 \& $10 \cdot 5$ \& II.4 \& 12.5 \& $13 \cdot 8$ \& 15.4 \& $17 \cdot 5$ \& 18.8 \& $20 \cdot 2$ \& 21.9 \& $23^{\circ} 8$

\hline 27° \& $7 \cdot 2$ \& $7 \cdot 7$ \& $8 \cdot 1$ \& $8 \cdot 7$ \& $9 \cdot 3$ \& 10'1 \& Ir*O \& 12.0 \& 13.3 \& $14^{\circ} 9$ \& 16.9 \& $18 \cdot 1$ \& 19.5 \& 21-I \& 23°

\hline 28.0 \& 7.0 \& 7.4 \& 7.9 \& $8 \cdot 4$ \& $9 \cdot 0$ \& 9.7 \& 10.6 \& 11.6 \& 12.9 \& 14.4 \& $16 \cdot 3$ \& 17.5 \& 18.9 \& 20.4 \& 22.3

\hline 29° \& 6.7 \& $7 \cdot 1$ \& $7 \cdot 6$ \& 8-1 \& $8 \cdot 7$ \& $9 \cdot 4$ \& 10.2 \& 11.2 \& 12.4 \& 13.9 \& 15.8 \& $16 \cdot 9$ \& $18 \cdot 3$ \& 19.8 \& $21 \cdot 6$

\hline $30^{\circ} 0$ \& 6.5 \& $6 \cdot 9$ \& $7 \cdot 3$ \& 7.8 \& $8 \cdot 4$ \& 9×1 \& 9`9 \& 10*9 \& 12.0 \& 13.5 \& 15.3 \& 16.4 \& 177 \& 19.2 \& 20.9

\hline 31.0 \& $6 \cdot 3$ \& $6 \cdot 7$ \& $7 \cdot 1$ \& $7 \cdot 6$ \& $8 \cdot 2$ \& $8 \cdot 8$ \& $9 \cdot 6$ \& $10 \cdot 5$ \& 11.7 \& $13^{\circ} \mathrm{O}$ \& 14.8 \& 15.9 \& 17.2 \& 18.6 \& $20 \cdot 3$

\hline $32 \cdot 0$ \& 6.1 \& $6 \cdot 5$ \& $6 \cdot 9$ \& $7 \cdot 4$ \& $7 \cdot 9$ \& $8 \cdot 5$ \& $9 \cdot 3$ \& $10 \cdot 2$ \& 11.3 \& 12.7 \& 14.4 \& 15.4 \& $16 \cdot 6$ \& 18.1 \& 19.7

\hline $33^{\circ} 0$ \& $5 \cdot 9$ \& $6 \cdot 3$ \& $6 \cdot 7$ \& $7 \cdot 1$ \& 7×7 \& $8 \cdot 3$ \& $9 \cdot 0$ \& $9{ }^{\circ} 9$ \& 1100 \& $12 \cdot 3$ \& 14.0 \& $15^{\circ} \mathrm{O}$ \& $16 \cdot 2$ \& 17.5 \& 19*2

\hline $34^{\circ} \mathrm{O}$ \& 5.7 \& $6 \cdot 1$ \& $6 \cdot 5$ \& $6 \cdot 9$ \& 7×4 \& $8 \cdot 1$ \& $8 \cdot 8$ \& $9 \cdot 6$ \& 10.6 \& II•9 \& 13.6 \& $14^{\circ} 6$ \& 15.7 \& 17. ${ }^{1}$ \& $18 \cdot 6$

\hline $35^{\circ} 0$ \& $5 \cdot 6$ \& $5 \cdot 9$ \& $6 \cdot 3$ \& $6 \cdot$ \& 7.2 \& $7 \cdot 8$ \& $8 \cdot 5$ \& $9 \cdot 3$ \& 10.4 \& II*6 \& 13.2 \& 14.2 \& 15.3 \& $16 \cdot 6$ \& 18.2

\hline 36° \& $5 \cdot 4$ \& $5 \cdot 8$ \& $6 \cdot 1$ \& $6 \cdot 6$ \& $7{ }^{\circ} 0$ \& 7×6 \& $8 \cdot 3$ \& $9 \cdot \mathrm{I}$ \& $10 \cdot 1$ \& II•3 \& $12 \cdot 8$ \& 13.8 \& $14^{*} 9$ \& 16.2 \& 17×7

\hline 37° \& $5 \cdot 3$ \& $5 \cdot 6$ \& $6 \cdot 0$ \& $6 \cdot 4$ \& $6 \cdot 9$ \& $7 \cdot 4$ \& $8 \cdot 1$ \& $8 \cdot 8$ \& 9.8 \& $1{ }^{\circ} \mathrm{O}$ \& 12.5 \& 13.4 \& 14.5 \& 15.7 \& 17.2

\hline $38 \cdot 0$ \& $5 \cdot \mathrm{I}$ \& 5.5 \& $5 \cdot 8$ \& $6 \cdot 2$ \& $6 \cdot 7$ \& $7 \cdot 2$ \& 7.9 \& $8 \cdot 6$ \& 9.5 \& 10.7 \& 12.2 \& $13^{\circ} 1$ \& $14^{\circ} \mathrm{I}$ \& 15.4 \& 16.8

\hline $40^{\circ} \mathrm{O}$ \& 4.9 \& $5 \cdot 2$ \& $5 \cdot 5$ \& $5 \cdot 9$ \& $6 \cdot 3$ \& $6 \cdot 9$ \& $7 \cdot 5$ \& $8 \cdot 2$ \& $9^{\circ} \mathrm{I}$ \& $10 \cdot 2$ \& Ir*6 \& 12.5 \& 13.5 \& $14^{\circ} 6$ \& 16•0

\hline $42^{\circ} \mathrm{O}$ \& 4.7 \& 4.9 \& $5 \cdot 3$ \& $5 \cdot 6$ \& $6 \cdot 0$ \& $6 \cdot 5$ \& $7 \cdot 1$ \& $7 \cdot 8$ \& 8.7 \& 9×7 \& II'I \& II*9 \& 12.8 \& $14^{\circ} \mathrm{O}$ \& 15.3

\hline $44^{\circ} \mathrm{O}$ \& 4.4 \& $4 \cdot 7$ \& $5{ }^{\circ} 0$ \& $5 \cdot 4$ \& $5 \cdot 8$ \& $6 \cdot 2$ \& $6 \cdot 8$ \& $7 \cdot 5$ \& $8 \cdot 3$ \& $9 \cdot 3$ \& $10 \cdot 6$ \& II* 4 \& 12.3 \& 13.3 \& $14^{\circ} 6$

\hline 46.0 \& $4 \cdot 3$ \& $4 \cdot 5$ \& $4 \cdot 8$ \& $5 \cdot 1$ \& $5 \cdot 5$ \& $6 \cdot 0$
$5 \cdot 7$ \& $6 \cdot 5$ \& $7 \cdot 1$
6.8 \& $7 \cdot 9$ \& 8.9
8.5 \& 10.1 \& 10.9 \& 117\% \& 12.8 \& 14.0

\hline $48^{\circ} \mathrm{O}$ \& $4^{\cdot} \mathrm{I}$ \& 4.3 \& 4.6 \& 4.9 \& $5 \cdot 3$ \& 5.7 \& $6 \cdot 2$ \& $6 \cdot 8$ \& $7 \cdot 6$ \& $8 \cdot 5$ \& 9.7 \& $10 \cdot 4$ \& 11.3 \& 12.3 \& $13^{\circ} 4$

\hline $50 \cdot 0$ \& 3.9 \& $4 \cdot 2$ \& $4 \cdot 4$ \& $4^{\circ} 7$ \& $5 \cdot \mathrm{I}$ \& $5 \cdot 5$ \& $6 \cdot 0$ \& $6 \cdot 6$ \& $7 \cdot 3$ \& $8 \cdot 2$ \& $9 \cdot 3$ \& $10 \cdot 0$ \& 10.8 \& I 18 \& 12.9

\hline 52° \& $3 \cdot 8$ \& $4^{\circ} \mathrm{O}$ \& 4.2 \& 4.5 \& 4.9 \& 5'3 \& $5 \cdot 8$ \& $6 \cdot 3$ \& $7 \cdot 0$ \& 7.9 \& $9^{\circ} \mathrm{O}$ \& 9.6 \& $10 \cdot 4$ \& 113 \& 12.4

\hline $54^{\circ} \mathrm{O}$ \& $3 \cdot 6$ \& $3 \cdot 8$ \& $4^{\cdot 1}$ \& $4{ }^{\circ} 4$ \& 4.7 \& $5 \cdot 1$ \& $5 \cdot 5$ \& $6 \cdot 1$ \& $6 \cdot 8$ \& $7 \cdot 6$ \& $8 \cdot 6$ \& $9 \cdot 3$ \& $10 \cdot 0$ \& 10.9 \& 12*O

\hline $56^{\circ} \mathrm{O}$ \& 35 \& 3.7 \& 3.9 \& 4.2 \& 4.5 \& 4.9 \& $5 \cdot 3$ \& 5.9 \& $6 \cdot 5$ \& $7 \cdot 3$ \& $8 \cdot 3$ \& $9 \cdot 0$ \& $9 \cdot 7$ \& $10 \cdot 6$ \& II•6

\hline 58° \& 3.4 \& 3.6 \& $3 \cdot 8$ \& $4 \cdot 1$ \& $4 \cdot 4$ \& 4.7 \& $5 \cdot 2$ \& $5 \cdot 7$ \& $6 \cdot 3$ \& $7 \cdot 1$ \& $8 \cdot \mathrm{I}$
7 \& $8 \cdot 7$ \& $9 \cdot 4$ \& 10.2 \& 11.2

\hline 60° \& 33 \& $3 \cdot 5$ \& $3 \cdot 7$ \& 3.9 \& $4 \cdot 2$ \& $4^{\cdot 6}$ \& $5 \cdot 0$ \& $5 \cdot 5$ \& $6 \cdot 1$ \& $6 \cdot 8$ \& $7 \cdot 8$ \& $8 \cdot 4$ \& $9^{\cdot 1}$ \& $9 * 9$ \& 10.8

\hline 62.0 \& $3 \cdot 2$ \& 3.3 \& $3 \cdot 6$ \& 3.8 \& $4^{\cdot 1}$ \& $4 * 4$ \& $4 \cdot 8$ \& $5 \cdot 3$ \& $5 * 9$ \& $6 \cdot 6$ \& 7.5 \& $8 \cdot 1$ \& $8 \cdot 8$ \& $9 \cdot 6$ \& $10{ }^{\circ} 5$

\hline 64° \& $3 \cdot 1$ \& $3 \cdot 2$ \& 3.5 \& $3 \cdot 7$ \& $4^{\circ} \mathrm{O}$ \& $4 \cdot 3$ \& 4.7 \& $5{ }^{\text {I }}$ \& $5 \cdot 7$ \& $6 \cdot 4$ \& $7 \cdot 3$ \& $7 \cdot 9$ \& $8 \cdot 5$ \& 9.3 \& $10 \cdot 2$

\hline $66^{\circ} \mathrm{O}$ \& $3^{\circ} \mathrm{O}$ \& $3 \cdot 1$ \& 3.4 \& $3 \cdot 6$ \& 3.9 \& 4.2 \& $4 \cdot 5$ \& $5 \cdot 0$ \& $5 \cdot 5$ \& $6 \cdot 2$ \& ${ }^{7} \cdot 1$ \& $7 \cdot 6$ \& $8 \cdot 2$ \& $9 \cdot 0$ \& 9.9

\hline $68 \cdot 0$ \& 2.9 \& $3 \cdot 1$ \& 3.3 \& 3.5 \& $3 \cdot 7$ \& $4^{\circ} \mathrm{O}$ \& 4.4 \& $4 \cdot 8$ \& $5 \cdot 4$ \& $6 \cdot 0$ \& $6 \cdot 9$ \& $7 \cdot 4$ \& $8 \cdot{ }^{8 \cdot}$ \& $8 \cdot 7$ \& $9 \cdot 6$

\hline $70 \cdot 0$ \& $2 \cdot 8$ \& $3 \cdot 0$ \& $3 \cdot 2$ \& $3 \cdot 4$ \& $3 \cdot 6$ \& 3.9 \& $4 \cdot 3$ \& 4.7 \& $5 \cdot 2$ \& 5.9 \& $6 \cdot 7$ \& $7 \cdot 2$ \& $7 \cdot 8$ \& $8 \cdot 5$ \& $9 \cdot 3$

\hline 80•0 \& 2.4 \& $2 \cdot 6$ \& $2 \cdot 8$ \& $3{ }^{\circ} \mathrm{O}$ \& 3.2 \& $3 \cdot 4$ \& 37 \& $4{ }^{1}$ \& $4 \cdot 6$ \& \& \& $6 \cdot 3$ \& $6 \cdot 8$ \& $7 \cdot 4$ \& $8 \cdot 2$

\hline 90* \& $2 \cdot 2$ \& $2 \cdot 3$ \& $2 \cdot 5$ \& $2 \cdot 6$ \& $2 \cdot 8$ \& 3•1 \& $3 \cdot 3$ \& $3 \cdot 7$ \& $4^{\cdot 1}$ \& $4 \cdot 6$ \& $5 \cdot 2$ \& $5 \cdot 6$ \& $6 \cdot 1$
$5 \cdot 5$ \& $6 \cdot 6$ \& $7 \cdot 3$

\hline 1000 \& $2 \cdot 0$ \& $2 \cdot 1$ \& $2 \cdot 2$ \& $2 \cdot 4$ \& $2 \cdot 5$ \& $2 \cdot 8$ \& 30 \& $3 \cdot 3$ \& 3.7 \& $4^{\cdot 1}$ \& 4.7 \& $5 \cdot 0$ \& $5 \cdot 5$ \& $6 \cdot 0$ \& $6 \cdot 5$

\hline 120° \& I•6 \& $1 \cdot 7$ \& - 8 \& 2.0 \& $2 \cdot 1$ \& $2 \cdot 3$ \& $2 \cdot 5$ \& $2 \cdot 7$ \& $3 \cdot 0$ \& 3.4 \& $3 \cdot 9$ \& $4 \cdot 2$ \& $4 \cdot 6$ \& $5{ }^{\circ}$ \& $5 \cdot 5$

\hline 140° \& $1 \cdot 4$ \& $1 \cdot 5$ \& 1.6 \& 1.7 \& - 8 \& $2 \cdot 0$ \& $2 \cdot 1$ \& 2.4 \& $2 \cdot 6$ \& $2 \cdot 9$ \& 3.4 \& 3.6 \& 3.9 \& $4 \cdot 3$ \& 4.7

\hline $160 \cdot 0$ \& 1.2 \& $1 \cdot 3$ \& $1 \cdot 4$ \& 1.5 \& 1.6 \& 1×7 \& 1.9 \& $2 \cdot 1$ \& $2 \cdot 3$ \& $2 \cdot 6$ \& $2 \cdot 9$ \& 3.2 \& 3.4 \& $3 \cdot 7$ \& $4^{\cdot 1}$

\hline $180 \cdot 0$ \& $1 \cdot \mathrm{I}$ \& $1 \cdot 2$ \& $1 \cdot 2$ \& I. 3 \& ${ }^{1} 4$ \& 15 \& - 7 \& I-8 \& $2 \cdot 0$ \& $2 \cdot 3$ \& $2 \cdot 6$ \& $2 \cdot 8$ \& $3 \cdot 0$ \& 3.3 \& $3 \cdot 6$

\hline 200\% \& 1.0 \& $1 \cdot 0$ \& r 1 \& 1.2 \& I•3 \& $1 \cdot 4$ \& I-5 \& $\cdot 6$ \& -8 \& $2 \cdot 1$ \& $2 \cdot 3$ \& $2 \cdot 5$ \& | 2.7 |
| :--- |
| |
| | \& 3.0 \& $3 \cdot 3$

\hline $300 \cdot$ \& 0.7 \& $0 \cdot 7$ \& 0.7 \& $0 \cdot 8$ \& $\bigcirc \cdot 8$ \& $\bigcirc \cdot 9$ \& I.0 \& I-1 \& 1. 2 \& 14 \& I.6 \& $1 \cdot 7$
-1 \& 1.8 \& $2 \cdot 0$
1.5 \& $2 \cdot 2$

\hline 400 \& 0.5 \& 0.5 \& 0.6 \& 0.6 \& 0.6 \& $0 \cdot 7$ \& 0.8 \& $0 \cdot 8$ \& $0 \cdot 9$ \& 1-0 \& $1 \cdot 2$ \& - 3 \& 1.4 \& I•5 \& r.6

\hline $500{ }^{\circ}$ \& $0 \cdot 4$ \& $0 \cdot 4$ \& $0 \cdot 4$ \& 0.5 \& 0.5 \& 0.6 \& $0 \cdot 6$ \& $0 \cdot 7$ \& $0 \cdot 7$ \& 0.8 \& 09 \& r-0 \& $1 \cdot 1$ \& I-2 \& 1.3

\hline $600 \cdot 0$ \& $0 \cdot 3$ \& $0 \cdot 3$ \& $0 \cdot 4$ \& $0 \cdot 4$ \& $0 \cdot 4$ \& 0.5 \& $0 \cdot 5$ \& $0 \cdot 5$ \& $0 \cdot 6$ \& 0.7 \& $0 \cdot 8$ \& $0 \cdot 7$ \& 0.9
0.8 \& $1 \cdot 0$ \& -

\hline $700 \cdot 0$ \& $0 \cdot 3$ \& $0 \cdot 3$ \& $0 \cdot 3$ \& $0 \cdot 3$ \& 0.4 \& 0.4 \& $0 \cdot 4$ \& $0 \cdot 5$ \& $0 \cdot 5$ \& 0.6 \& $0 \cdot 7$ \& $\bigcirc \cdot 7$ \& \bigcirc \& $0 \cdot 9$ \& $\stackrel{0}{ } 0$

\hline $800 \cdot$ \& $0 \cdot 2$ \& $\bigcirc \cdot 3$ \& $0 \cdot 3$ \& $0 \cdot 3$ \& $\bigcirc \cdot 3$ \& $0 \cdot 3$ \& 0.4 \& $0 \cdot 4$ \& $0 \cdot 5$ \& 0.5 \& 0.6 \& 0.6 \& 0.7
0.5 \& 0.7
0.6 \& 0.8

\hline 1000* \& 0.2 \& $0 \cdot 2$ \& 0.2 \& 0.2 \& $\bigcirc \cdot 3$ \& $0 \cdot 3$ \& $0 \cdot 3$ \& $0 \cdot 3$ \& $0 \cdot 4$ \& 0.4 \& 0.5 \& 0.5 \& 0.5 \& 0.6 \& $0 \% 7$

\hline
\end{tabular}

Showing Difference of Longitude and Corresponding Departure.

	DIFFERENCE OF LONGITUDE.															
	-10	$\cdot 11$		-13	-14	$\cdot 15$	-16	-17	-18	-19	-20	$\cdot 21$	-22	$\cdot 23$. 24	-25
$\stackrel{\circ}{2}$	-100	$\cdot \mathrm{I} 10$	-120	130	140	- 150	160				$\cdot 20$	210	220			
4	-100	110	$\cdot 120$	-130	-140	-150	-160	-170	- 180	-190	-200	209	-219	-229	-239	- 249
6	-099	- 109	-19	-129	- 139	- 149	- 159	-169	- 79	-189	-199	- 209	-219	-229	. 239	- 249
8	-099	- 109	-119	$\cdot 129$	- 139	- $14{ }^{8}$	- 58	-168	- 178	-188	-198	-208	-218	-228	- 238	$\cdot 248$
10	-098	- 108	18	-128	-138	-14 ${ }^{8}$	- 158	-167	- 77	-187	7	-207	217	$\cdot 227$. 236	$\cdot 246$
11	-098	-108	18	-128	-137	-147	- 157	-167		-187	-196	206	216	-226	. 236	-245
12	-098	- 108	-117	-127	-137	-147	- 57	-166	- 176	-186	-196	205	215	-225	. 235	$\cdot 245$
13	-097	-107	-17 7	-127	- 136	-146	- 56	- 166	- 75	- 185	-195	- 205	-214	-224	- 234	- 244
14	-097	-107	-116	26	-136	$\cdot 146$	- 155	-165	-175	-184	-194	-204	-213	-223	. 233	- 243
15	-097	- 106	16	-126	-135	-145		-164	-174	-184	-193	-203	-213	$\cdot 222$	$\cdot 232$	$\cdot 241$
16	-096	06	-II5	5	-135	-144	154	-163	-173	-183	-192	-20	1	-22I	-231	- 240
17	-096	-105	-115	-124	- 134	-143	- 153	-163	-172	-182	-191	-201	10	-220	$\cdot 230$	$\cdot 239$
18	-095	- 105	$\cdot{ }^{1} 14$	-124	-133	-143		-162	-171	-181	-190	20	09	- 219	- 228	$\cdot 238$
19	-095	$\cdot{ }^{10} 4$	- if 3	-123	-132	-142	- 51	$\cdot 161$	-170	-180	-189	-199	8	-217	. 227	$\cdot 236$
20	-094	O3	-113	22	-132	$\cdot 141$	-150	-160	-169	-179	${ }^{-188}$	-197	$\cdot 207$	-216	-226	- 235
21	-093	$\cdot \mathrm{I} 03$	-112	-121	-131	${ }^{1} 140$	-149	159	-168	-177	$\cdot 187$	-196	-205	-215	-224	-233
22	-093	-102	-III	-I2I	-130	-139	-148	- 158	-167	- 176	-185	-195	-204	-213	. 223	$\cdot 232$
23	$\cdot 092$	'Ioi	$\cdot \mathrm{I}$	-120	-129	-138	-147	- 156	-166	-175	-184	-193	-203	-212	-221	- 230
24	-091	- 100	- 110	9	-128	- 137	-146	${ }^{1} 55$	-164	-174	$\bullet 183$	-192	OI	$\cdot 2$	- 219	- 228
25	-091	- 100	9	-118	-127	-136	-145	- 154	-163	${ }^{1} 72$	-18I	-190	99	-208	-218	-227
26	-090	-099	108	7	6	- 135	-144	-153	-162	-171	-180	- 189	-198	-207		-225
27	-089	-098	-107	16	-125	-134	-143	- 151	-160	-169	$\cdot 178$	-187	-196	- 205	-214	$\cdot 223$
28	-088	-097	- 106	-115	-124	-132	-14 4	- 150	- 159	- 168	-177	-185	-194	- 203	-212	-221
29	-087	-096	$\cdot{ }^{10}{ }^{-1}$	-114	-122	-13I	-140	- 149	$\cdot^{1} 57$	-166	-I75	$\cdot \mathrm{I} 84$	-192	-201	-210	-219
30	-087	-095	$\cdot{ }^{1} 0_{4}$	-113	-121	- 130	-139	- 147	- 56	$\cdot 165$	${ }^{\text {- }} 73$	-182	-191	-199	-208	$\cdot 217$
31	-086	-094	$\cdot 103$	-III	1	-129	-137	- 146	- 154	-163	-171	180	-189	-197	06	$\cdot 214$
32	-085	-093	$\cdot \mathrm{IO}$	$\cdot 110$	-119	-127	-136	- I 44	- 153	-161	-170	- 178	$\cdot 187$	-195	-204	$\cdot 212$
33	-084	-092	OI	9	-117	-126	- 134	-143	-151	- 159	-168	$\cdot 176$	$\cdot 185$	-193	-201	-210
34	-083	-091	-099	- 108	-116	-124	- 33.	141	- 149	- 158	-166	$\cdot 174$	-182	-191	-199	-207
35	-082	-090	-098	- 106	-115	-123	-131	-139	-147	- 156	-164	-172	80	- 188	-197	$\cdot 205$
36	-081	-089	-097	-105	-113	-12I	29	-138	-146	-154	-162	-170	-178	-186	-194	-202
37	80	-088	-096	$\cdot 104$	-112	-120	-128	- 136	-144	- 152		-168	-176	-184	-192	$\cdot 200$
3^{8}	-079	-087	-095	2	$\cdot 1$	-118	26	- 34	-142	- 150	-158	- 165	-173	$\cdot 181$	-189	-197
39	-078	-085	-093	- IOI	-109	-117	-124	-132	-140	-148	- 155	-163	-171	- 179	-187	-194
40	-077	-084	$\cdot 092$		$\cdot 107$	-115	-123	-130	-138	-146	${ }^{-153}$	-161	-169	-176	$\cdot \mathrm{I} 84$	-192
41	-075	-083	-091	-098	-106	-113	21	-128	-136	-143	${ }^{1} 51$	-158	-166	-174	$\cdot \mathrm{I} 8 \mathrm{I}$	-189
42	-074	-082	-089	-097	- IO 4	11	119	- 126	- 134	-14I	-149	- 156	-163	-171	-178	-186
43	-073	-080	-088	-095	-102	- 110	-117	-124	-132	-139	$\cdot 146$	- 54	-161	-168	-176	-183
44	$\cdot 072$	- 079	-086	-094	- ioi	- 108	-115	-122	-129	- 137	${ }^{-1} 44$	- 51	-158	-165	-173	- 180
45	$\cdot 071$	-078	-085	-092	-099	$\cdot 106$	13	-120	-127	-134	${ }^{1} 41$	${ }^{1} 48$	-156	163	-170	-177
46	-069	-076	-083	-090	-097	${ }^{10} 0_{4}$	11		-125	-132	- 139	-146	-153	-160	-167	-174
47	-068	-075	-082	-089	-095	-102	-109	- i16	-123	-130	-136	- 143	- 50	- 157	-164	-170
48	-067	- 074	-080	-087	-094	-100	-107	114	-120	-127	-134	-14	-147	- 154	-161	- 67
49	-066	$\cdot \mathrm{O} 72$	-079	-085	-092	-098	-105	-112	-118	-125	${ }^{1} 31$	- 38	-14	${ }^{1} 51$	${ }^{1} 57$	-164
50	-064	-071	-077	-084	-090	-096	-103	-109	116	-122	-129	${ }^{1} 35$	-141	${ }^{1} 48$	- 154	-16I
51	-063	-069	-076	-082	-088	-094	-101	-107	-113	-120	$\cdot 126$	-132	-138	-145	$\cdot 151$	-157
52	-062	-068	-074	-080	-086	-092	-099	$\cdot \mathrm{I} 05$	-111	-117	-123	-129	- 135	-142	${ }^{1} 48$	- 154
53	-06	-066	-072	-078	-084	-090	-096	- 102	-108	-114	$\cdot 120$	-126	-132	- 138	${ }^{1} 44$	- 150
54	-059	-065	-071	-076	-082	-088	-094	-100	- 106	-112	$\cdot 1$	$\cdot 123$	- 129	- 135	-141	- 147
55	- 057	-063	. 069	-075	-08o	-086	-092	-098	-103	- 109	-115	-120	-126	-132	- 138	-143
56	-056	-062	-067	-073	-078	-084	-089	-095	-10I	-106	-112	-117	-123	-129	-134	${ }^{1} 40$
57	-054	-060	-065	-071	.076	-082	-087	-093	-098	-103	-109	-114	-120	- 125	-130	- 136
58	-053	-058	-064	-069	- 074	-079	-085	-090	-095	- raI	-106	- 111	-117	$\cdot 122$	-127	-132
59	$\cdot 052$. 057	-062	-067	-072	-077	-082	-088	-093	-098	$\cdot 103$	-108	-113	-118	-124	-129
60	$\cdot 050$	-055	-060	-065	-070	-075	-080	-085	-090	-095	-100	$\cdot 105$	- 110	- 115	-120	$\cdot 125$
61	$\cdot 048$	-053	058	.063	-068	-073	- 078	-082	-087	-092	-097	-102	-107	- 112	-116	-121
62	-047	-052	-056	-061	-066	-07c	- 075	-080	-085	-089	-094	-099	-103	- 108	-113	-117
63	- 045	- 050	-054	-059	. 064	-068	- 73	-077	-082	-086	-091	-095	-100	-104	-109	-113
64	$\cdot .044$. 048	.053	. 057	-061	-066	-070	- 075	.079	-083	-088	$\cdot 092$	-096	$\cdot \mathrm{IOI}$	-105	-110
65	$\cdot 042$	-046	-051	-055	-059	$\cdot 063$		-072	-076	-080	-085	-089	-093	-097	$\cdot \mathrm{IOI}$	-106

Traverse Table.
Showing Difference of Longitude and Corresponding Departure.

+	DIFFERENCE OF LONGITUDE.														
	$\cdot 26$	$\cdot 27$	$\cdot 28$	$\cdot 29$	$\cdot 30$	$\cdot 31$		$\cdot 33$	$\cdot 34$	$\cdot 35$	$\cdot 36$. 37	$\cdot 38$	-39	$\cdot 40$
2	-260	270	-280	-290	300	$\cdot 310$. 330	-340	350	$\cdot 360$	-370	-380	-390	400
4	- 259	. 269	. 279	-289	- 299	- 309	$\cdot 319$	-329	-339	-349	- 359			-389	-399
6	- 259	269	-278	-288	- 298	- 308	-318	- 328	-338	- 348	- 358			- 388	-398
8	$\cdot 257$	267			-297		$\cdot 317$	- 327	-337	-347	-356		-376	-386	396
10	-256	-266	-276	-286	-295	- 305	$\cdot 315$		-335	$\cdot 345$	-355		- 374	- 384	394
11	. 255	- 265	- 275	-285	. 294	. 304			-334	-344	-353	$\cdot 363$	-373	-383	-393
12	- 254	. 264	$\cdot 274$	-284	-293				$\cdot 333$	$\cdot 342$	-352	-362	-372	-381	-391
13	- 253	-263	- 273	-283	-292	- 302 .301 .3	-312		-331	- 341	-351		-370 .369	-380	- 398
14	- 252	-262	-272	-28I	-291	-301	$\cdot 310$	$\cdot 320$	-330	-340	-349		-369	- 378	- 388
15	-251	-261	-270	. 280	-290	299	$\cdot 309$	-319	-328	$\cdot 338$	$\cdot 348$	-357	$\cdot 367$	-377	-386
16	-25	- 260	-269	-279	. 288	- 298	- 308	-377	$\cdot 327$	$\cdot 336$	$\cdot 346$. 365	-375	385
17	$\cdot{ }^{2} 49$	- 258	-268	. 277	-287	- 296	-306	$\cdot 316$	$\cdot 325$	$\cdot 335$	- 344	$\cdot 354$	-363	$\cdot 373$	-383
18 19	$\cdot 247$ $\cdot 246$ \cdot	. 257	-266	- 276	-285	-295	$\cdot 304$	${ }_{\cdot} 314$	-323	-333	-342	$\cdot 352$	-361	-371	- 380
19	- 246	. 255	. 265	${ }^{\cdot} \cdot 274$	-284	. 293	. 303	-312	$\cdot 321$.319	-331	-340	-350	$\cdot 359$. 369	78
21	$\cdot 24$	252	261	271	-280	-289	-299	-	$\cdot 317$	$\cdot 327$	$\cdot 336$	$\cdot 345$	-355	-364	. 373
22	-24I	250	. 260	-269	278	. 287	-297	- 306	$\cdot 315$	-325	-334	-343	-352	-362	-375
23	- 239	-249	258	267	-276	-285		$\cdot 304$	$\cdot 313$	-322	-331	-34I	-350	-359	$\cdot 368$
24	238	- 247	$\cdot 256$	-265	. 274	-283	-292	- 209	-311	-320	-329	$\cdot 338$	$\cdot 347$	-356	-365
25	-236	. 245	-254	-263	. 272	-28I	-290	-299	-308	-317	-326	-335	344	-353	$\cdot 363$
26	. 234	. 243	252	26r	. 270	- 279	-288	. 297	-306	. 315	- 324	-333		-351	-360
27	$\cdot 232$	$\cdot 241$	249	258	267	$\cdot 276$	-285	-294	$\cdot 303$. 312	-321	- 330	339	$\cdot 347$	- 356
28	- 230	-238	247	256	265	- 274	$\cdot 283$	-291	-300	- 309	-318	-327	$\cdot 336$	$\cdot 344$	- 353
29	-227	. 236	245	. 254	. 262	-271	-280	-289	-297	-306	-315	$\cdot 324$	$\cdot 332$	$\cdot 341$	-350
30	-225	$\cdot 234$	242	251	.260	268	277	'286	-294	- 303	-312	-320	-329	-338	-346
3 I	-223	.231	240	249	. 257	66		-283	-291	-300	-309	$\cdot 317$		-334	-343
32	-220		237	246	254					- 297	- 305		-322		-339
33 34	-218	-226	. 235	. 243	-252	-260	. 268	-277		- 294	-302	-310	$\cdot 319$.315	. 327	-335
34 35	$\cdot 213$	$\left.\begin{aligned} & 224 \\ & 221 \end{aligned} \right\rvert\,$	-232	. 240	. 24.2	.257 .254	-265	- 274		- 298	- 298	$\cdot 307$.303	$\cdot 315$	$\cdot 323$.319	$\cdot \cdot 332$
35 36	$\mathrm{o}^{\top} \cdot$	$\left\|\begin{array}{l} 221 \\ .218 \end{array}\right\|$. 222	.238	. 246	. 254	.262 .259	.270			-295	-303	-311	.319	-328
37	-208	. 216	. 224	. 232	240	. 248	. 256	. 264	. 272	.280	-288	-295	$\cdot 303$	$\cdot 31 \mathrm{I}$	-319
38	- 205	. 213	.221	. 229	. 236	- 244	252	-260	-268	$\cdot 276$	-284	-292	-299	$\cdot 307$	-315
39	-202	. 210	218	. 225	. 233	-241	. 249	.256	$\cdot 264$	$\cdot 272$	-280	-288	-295	$\cdot 303$	311
40	99	-207	$2 \mathrm{~S}_{4}$	222	230	-237	- 245	-253	260	-268	-276	$\cdot 283$	-291	-299	-306
4 I	-196	. 204	. 211	219	. 226	. 234	-242	-249	$\cdot 257$	-264	-272	-279	-287	.294	-302
42	-193	201	. 208	216	223	. 230	. 238	. 245	. 233	. 260	-268	-275	-282	-290	. 297
43	-190	-197	205	12	. 219	$\cdot 227$	-234		- 249	-256	-263	.271 .266	-278		-283
44	-187	${ }^{\text {-194 }}$	-201	-209	. 21212	. 223			. 2445	. 252	.259 .255	${ }^{2} 262$. 273		
45	-184	191	-198	. 205	. 212	-219	226		. 240	. 247	-255	-262	-269	-276	
46	-181	188	-195	-20I	208	-215				. 243	.250 .246			.271 .266	
47	-177	-184	-191	-198	. 205	. 211			-228	. 239	-246	.252	.259	-266	
48 49	-174	-181	-187	-194	-201	.207 .203	. 214	.221	. 228	. 234	. 241	${ }^{2} 248$. 254	. 2256	.262
49 50	- $\cdot 171$	${ }^{1} 77$	-180	-186	-193	-199	. 206	.212	. 219	. 225	-231	238	$\cdot 244$. 251	. 257
51	.164	. 170	-176	-183	-189	- 195	201	. 208	$\cdot 214$	220	. 227	. 233	$\cdot 239$	-245	. 252
52	-160	-166	-172	-179	-185	-191	-197	. 203	-209	.215	. 222	. 228	. 234	$\cdot 240$. 246
53	$\cdot{ }^{156}$	-162	-169	- 75	-181	-187	- 193	-199	$\cdot 205$	$\cdot 211$	$\cdot 217$	$\cdot 223$	$\cdot 229$	- 235	.241
54	- 53	- 159	-165	-170	-176	- 182					$\cdot 212$		$\cdot 223$	-229	. 235
55	- 149	155	-161	-166	- 72	-178			- 195	-201	-206	. 212	18	-224	. 229
56	-145	. 151	- 157	-162.	$\cdot 168$	-173	- 179	-185	-190	- 196	-201	-207	212	.218	. 224
57	$\cdot{ }^{1} 42$	-147	-152	-158	-163	-169	-174		-185	-191	-196		. 207	-212	
58 59	$\cdot 138$ $\cdot 134$	-143	-148 ${ }^{\text {I }}$	-154	-159	-164				-185	-191	- 196	- 2196	. 207	-212
59 60	-134 $\cdot 130$ 1	-139	-140	${ }_{\cdot} \cdot 145$	-155	- ${ }^{-150}$		-165	$\cdot{ }^{175}$	- 175	- 180	-185	-190	-195	. 200
6 I	26	I31	-136	${ }^{1} 12$	-145	-150	-155	. 160	. 65	'170	-175		-184	- 89	
62	- 122	- 27	-131	-136	-141	- 146	. 150	. 55	-160	-164	-169	- 174	-178	-183	-188
63	-118	. 123	-127	-132	-136	- 141	- 45	. 50	- 154	-159	-163	-168	-173	-177	-182
64	${ }^{-114}$	-118	-123	-127	-132	- 136	- 140	- 145	- 149	-153	-158	-162	-167	-171	-751
65	- 110	-114	118	-123	-127	-131	-135	-139	-144	-148	-152	-156	-161	. 165	-169

Traverse Table.

Showing Difference of Longitude and Corresponding Departure.

蔦	DIFFERENCE OF LONGITUDE.														
	$\cdot 41$	$\cdot 42$	$\cdot 43$	-44	$\cdot 45$	$\cdot 46$	$4{ }^{4}$. 48	$\cdot 49$. 50	$\cdot 51$. 52 - 53		$\cdot 54$	$\cdot 55$
L. 4	$\cdot 409$	419	-429	439	-449	-459	. 469	-479	-489	499	$\cdot 509$	-519	. 529	. 539	-549
Le	-408	418	-428	$\cdot 438$	-448	457	$\cdot 467$	$\cdot 477$	$\cdot 487$	497	. 507			. 537	547
8	406	-416	-426	436	446	456	. 465	$\cdot 475$	$\cdot 485$	495	$\cdot 505$. 535	- 545
го	404	414	423	433	-443t	453	$\cdot 463$	-473	$\cdot 483$	492	$\cdot 502$	$\cdot 512$. 522	-532	$\cdot 542$
11	402	412	-422	-432	$\cdot 442$	452	-461	471.	48 I	491	-501			. 530	
13	-401	$\cdot 411$	$\cdot 421$	430	. 440	450	$\cdot 460$	470	479	489	-499	. 509	. 518	. 528	. 538
13	-399	-409	419	429	-438	448	-458	-468	-477	487	-497	-507	$\cdot 516$. 526	-536
14	398	$\cdot 408$	$\cdot 417$	427	4376	44	456	-466	475	485	-495			- 524	- 534
15	$\cdot 396$	406	415	425	-435	444	-454	-464	-473	483	-493	-502		. 522	.531
16	94	$\cdot 404$	413	423	-433	442	-452	- 461	-471	481	-490		. 509	-519	. 529
17	392		$\cdot 411$	42 I	$\cdot 430$	440	$\cdot 449$	-459	-469	-478					. 526
18	390	$\begin{array}{\|} -399 \\ \cdot 397 \end{array}$	${ }^{-409}$	4	. 428	$\begin{array}{r} 437 \\ -435 \end{array}$	4 44 4	457 4 4 4	${ }^{4} 466$	-476	-485	-495		- 514	-523
19 20	$\begin{array}{r} 388 \\ 3885 \end{array}$	- 397	${ }^{-407}$		${ }_{\cdot} 425$	4335	$\cdot 444$	${ }^{4} 454$. 463	. 473	- 488	. 492		- 515	-520
(10	$\cdot 385$	-395	-404	413 41	-423	432	442	-45	460	-470	479	489		-507	517
22	-380	- 389	399	408	. 417	427	${ }^{4} 436$	$\cdot 445$. 464	473	-482	-495	-504	513
23	377	-387	-396	405	-414	423	-433	$\cdot 442$	-45	-460	469	479	咗	-497	506
24	375	$\cdot 384$	393	-402	.411	-420	-429	-439	-448	'457	-466	-475	$\cdot 484$	-49	502
25	-372	381	390	-399	-408	$\cdot 417$	$\cdot 426$	- 435	- 444	-453	-462	471	-480	-489	498
26	. 369	-377	-386	-395	-404	413	$\cdot 422$	$\cdot 43 \mathrm{I}$	440	$\cdot 449$	-458	. 467		485	494
27	-365	$\cdot 374$	-383	.392	-401	410	$\cdot 419$	$\cdot 428$	$\cdot 437$	$\cdot 446$	454	463	$\cdot 472$	48I	490
28	-362	-371	-380	-388	-397	406	$\cdot 415$	$\cdot 424$	$\cdot 433$	$\cdot 441$	450	-459		477	486
29 30	-359	.367 .364	-376	${ }^{-385}$	-394	-402		${ }^{-420} 4$. 4337	446	-455		-472	481
3 r	$\cdot 351$	-360	-369	-377	-386	394		-411		. 429	$\cdot 437$			$\cdot 463$	471
32	$\cdot 348$	-356	- 365	-373	$\cdot 382$	390	-399	-407	416	. 424	$\cdot 433$	44 I	. 449	-458	466
33	-344	$\cdot 352$	-361	-369	$\cdot 377$	386	- 394			419	428	436	-444	-453	. 461
34	-340	-348	-356	-365	-373	381	-390			. 415	423	$\cdot 431$	$\cdot 439$	-448	$\cdot 456$
35	. 336	-344	-35		$\cdot 3$	377				410	418	$\cdot 426$	434	44	451
36	332	-340	- 348	-356	-364	372	-380	-388	-396	-405	413	42 I	. 429	-437	-445
37	327	$\cdot 335$	-343	-351	-359	-367	$\cdot 375$	-383	-391	-399	$\cdot 407$	415	-423	-431	-439
38	323	-331	-339	- 347	-355	-362	-370	-378		-394	402	$\cdot 410$. 418	,	-433
39	319	-326	- 334	-342	$\cdot 350$	-357				-389				420	. 427
40	314	-322	-329	- 337	-345	35		-368	375	-383	391	-398	-406	4^{1}	-421
4 I	-309	-317	. 325	-332	-340	347			. 370	- 377	-385	-392	-400	408	415
42	-305	. 312	- 320	-327	$\cdot 334$	342				. 372	-379	- 386		-401	-409
43	- 2005									. 366		-380			-402
44	-295	-302	-309	-317	-324	${ }^{331}$		-345		. 360	-367	-374		-388	-396
45		-297	-304		-318	325				-354	361			-382	-389
46	- 285	-292	- 299	-306	$\cdot 313$	-320	-326			347	354	-361	-368	-375	-382
47	-280	-286	-293	- 300	-307	-314	$\cdot 321$	$\cdot 327$		341	348	$\cdot 355$. 361	-375
48		${ }^{\cdot 281}$	-288	-284		-308				-335	-341	-348	-355	-361	-368
49 50	-269	- 278	- 288	. 288	-295	-302		$\cdot 315$ $\cdot 309$		$\begin{aligned} & \cdot 328 \\ & \cdot 321 \end{aligned}$	-3328	- 341 C		$\stackrel{.354}{\cdot 34}$	-361
51	$\cdot 258$	- 264	-271	-277	. 283	-289	. 296	-302	- 308	$\cdot 315$	32 I	-327		-340	-346
52	-252	-259	-265	-271	-277	-283	-289	-296	-302	-308	314	-320	- 326	332	-339
53	- 247	. 253	- 259	- 265	.271	${ }^{-277}$	-283	-289		-301	$\cdot 307$	-313	$\cdot 319$	-325	-331
54	- 241	-247	${ }^{-253}$	-259							- 300	- 298		-317	-323
55		-241	-247	${ }^{252}$.264	${ }^{270}$		-281	-287	-293	-298		-310	-315
56	-229	- 235	${ }^{2} 20$. 246	-252	-257	-263			280	-285	-291	. 296	-302	-308
57	-223	-229	. 234	- 240		251	. 256	-261	. 267	272	-278	-283	-289	- 294	$\cdot 300$
58	-217	-223	-228	. 233		-244	- 249	- 254	-260		-270	- 276	-28I	- 286	-291
59	-211	-216	-221	. 227	-232	-237	$\cdot 242$	- 247	-252	. 258	- 263	. 268	. 273	-278	. 283
60	-205	-210	- 215	-220	. 225	- 230	- 235	- 240		. 250	-255	- 260	. 265	-270	. 275
61		-204	-208	. 213	-218		- 228			- 242	-247	. 252	- 257	- 262	- 267
62	-192	-197	-202	-207	. 211	-216	. 221	-225	. 230	. 235	-239	- 244	- 249	- 254	-258
63	-186	-191	-195	- 200	- 204	-209	. 213	-218	-222	. 227	-232	- 236	-241	245	- 250
64	- 180	-184	-188	-193	-197		- 206	210		. 219	22	-228	$\cdot 232$	- 237	-241
65	73	-177	-182	186	-190		-199	. 203	207	211	.216	. 220	. 224	. 228	-232

Traverse Table.
Showing Difference of Longitude and Corresponding Departure.

$\xrightarrow{\text { H }}$	DIFFERENCE OF LONGITUDE.														
	$\cdot 55$. 57	. 58	-59	-60	$\cdot 61$	$\cdot 62$	-63	$\cdot 64$	$\cdot 65$	$\cdot 66$	-67	. 68	$\cdot 69$	$\cdot 70$
2	560	. 370	. 580	590	. 6		. 620	. 630		.650	. 660		. 680	. 690	
4	559	. 569	- 579	- 589	- 599	-609	. 618	. 628	. 638	. 648	. 658	. 668	. 678	. 688	. 698
${ }_{6}^{6}$	557	- 567	- 57	. 587	- 597					. 646	. 656	. 666	. 676	. 686	. 696
8	555				- 594					. 644	. 654		. 673	. 683	. 693
о	551	561	57 I	581	- 591	.6or			. 630	. 640	. 650		. 670	. 680	-689
II	5				-89	-599				. 638	. 648	. 658	. 668	-677	. 687
12	548	. 558	. 567	- 577	$\cdot 587$	- 597	. 606	. 616	. 626	. 636		-655	. 665	. 675	. 685
13	-546	-555	-565	- 575	.585 .582	- 594	${ }^{\cdot 604}$	${ }^{.615}$. 624	. 633	. 643		. 663	. 672	
14	543	-553	. 563	-572	-582				. 621	.631	-640		. 660	. 670	- 679
15	541	551	-560		580	- 589	599	609	.618		$\cdot 638$. 647	. 657	-666	- 676
16	-538	-548	-558	. 567	$\cdot 577$. 586	596		. 615	. 625	. 634		. 654	. 663	$\cdot 673$
17	. 336	-545	- 555	. 564	-574	-583					. 631	. 641	. 650	. 660	. 669
18	-533	$\cdot 542$	-552	. 561.	- 571	$\stackrel{.}{580}$	- 590	- 599	. 609	. 618	-628	. 637	. 647	. 656	. 666
19	529	. 539	-548	-558	- 567	$\cdot 577$	-586		$\cdot 605$. 615	. 624	. 633	. 643	. 652	. 662
20	526	- 336	-545	-54	$\cdot 564$	-573	. 583	592	.601	.61	. 620	. 630	. 639	. 648	. 658
21	523	-532	541	551.	$\cdot 560$	-569	-579	-588	-597	. 607	. 616	. 625	-635	-644	. 654
22	519	- 228	. 538	. 547	$\cdot 556$. 565	. 575	-584	-593	. 603	.612	. 621	. 630	. 640	. 649
23	515	-525	. 534	-543.	$\cdot 552$	562				- 598				. 635	. 644
24 25	512 508	-521	$\begin{aligned} -530 \\ -526 \end{aligned}$. 533 .	- 548	557	- 566	. 577	. 585	594 589	$\cdot 603$.508	. 612	. 621	. 635	. 639
25	508	-517	- 526	535	- 544	553	- 562	571	. 580	589	- 598	. 607	. 616	. 625	. 634
26	503	-512	-21	-530.	-539	548	-557	$\cdot 566$		584	-593	-602	.611		. 629
27	499	. 508	517	-526	- 535	-544	-552	561	. 570	579	- 588	-597	. 606	. 615	$\cdot 624$
28	494	. 503	512	- 521	. 530	-539	- 547	$\cdot 556$. 565	. 574	. 583	-592	. 600	. 609	.618
29	490	499	. 507	. 516	. 525	534	- 542	$\cdot 551$. 560	. 569	- 577	. 586	. 595	. 603	. 612
30	485	494	-502	. 511	. 520	528	-537	546	554	563	$\cdot 572$. 580	-589	-598	. 606
31	480	489	-497	-506	-514	523	531	-540	-549	557	-566		. 583	591	-600
32	475	483	-492	. 500	- 509	-517	- 526	534	-543	551	. 560	. 568	. 577	. 585	-594
33	470	478	-486	-495	- 503	-512	. 520	528	-537	545	- 554	. 562	.570	. 579	-587
34	464		48 I		-497	- 506	. 514	522	-531	539	$\cdot 547$	$\cdot 555$	-564	- 572	. 580
35		467	475	$\cdot 483$	491	-500	-508	516	- 524	532	-541	-549	-557	- 565	-573
36	453	461	-469	477	485	-494	. 502	. 510	. 518	-526	$\cdot 534$	-542	-550	- 558	- 566
37	447	455	-463	- 471	$\cdot 479$	$\cdot 487$. 503	. 511	. 519	-527	$\cdot 535$. 543	-551	- 559
38 39	$\begin{array}{r}\cdot \\ \cdot \\ \cdot \\ \hline\end{array} 431$	449	457	-465	-473	$\cdot{ }^{-481}$	-489			- 512	$\cdot 520$	-528			$\cdot 552$
39 40	$\cdot 435$ $\cdot 429$	443	${ }^{4} 445$	${ }_{-}^{459}$. 466	-474 -467	$\cdot 482$ $\cdot 45$	$4{ }_{4}^{49}$	497 49	. 505	. 513	-521	- 528	. 536	. 5434
41	-423	430	-444	-452	-460	- 467	+475 +68	475	.498 .483		. 506	.513	.521	-529	- 538
42	$\cdot 416$	424	431	-438	-446	- 453	-461	468	476	. 483	-490	-498	. 505	. 513	. 520
43	$\cdot 410$	417	4^{24}	$\cdot 43$	-439	446	-453	461	-468	$\cdot 475$	483	-490	-497	. 505	. 512
44	-403	410	-417	-424	. 432	439	-44	453	460	- 468	-475	-482	489	$\cdot 496$. 504
45	$\cdot 396$	403	-410	-417	-424	43 I	438	445	-453	460	$\cdot 467$	-474	481	-488	-495
46	- 389	396	403	410	-417	424	43 I	-438	$\cdot 445$	$\cdot 452$	458	$\cdot 465$	472	$\cdot 479$	${ }^{486}$
47	-382	389	- 396	- 402	-409	$\cdot 416$	423	430	-436	. 443	$\cdot 450$. 457	. 464	-471	-477
48		38 I			-401	-408	-45			$\cdot 435$	$\cdot 442$	-448	455	$\cdot 462$	-468
49	-367	374	-381	$\cdot 387$	- 394	400	-407	$\cdot 413$			-433	. 440	446	$\cdot 453$	-459
50	$\cdot 360$	366	-373	$\cdot 379$	-386	392	-399	- 405	411	$\cdot 418$	$\cdot 424$	43 I	-437	$\cdot 444$	-450
51	$\cdot 352$	359	. 365	-371	-378	${ }^{38} 4$	-390	-396	-403	-409	415	422	428	$\cdot 434$	$\cdot 441$
52	-345	351	$\cdot 357$	$\cdot 363$	-369	376	-382	-388	-394	-400	-406	412	419	425	$\cdot 431$
53	333	343	-349	-355	-361	336	-373	. 379	$\cdot 385$	-391	$\cdot 397$	403	-409	415	$\cdot 421$
54	329	335	341	-347	$\cdot 353$	-359	$\cdot 364$	-370		$\cdot 382$	-388	-394	400	- 406	-411
55	-321	327	$\cdot 333$	-338	- 344	350	-356	-361	$\cdot 367$	$\cdot 373$	-379	$\cdot 384$	-390	-396	-402
56	$\cdot 313$	319	-324	-330	-336	$\cdot 34 \mathrm{I}$	-347	$\cdot 352$	-358	$\cdot 363$	-369	-375	. 380	. 386	$\cdot 391$
57	- 305	310	316	-321	$\cdot 327$	$\cdot 332$			$\cdot 349$	-354	-359	$\cdot 365$	370	$\cdot 376$	-381
58	-297	302	$\cdot 307$	$\cdot 313$	$\cdot 318$	$\cdot 323$	-329	- 334	$\cdot 339$	-344	-350	-355	360	$\cdot 366$.371
59	- 288	-294	299	- 304	$\cdot 309$	$\cdot 314$	$\cdot 319$	-324	-330	-335	-340	$\cdot 345$	350	- 355	$\cdot 361$
60	280	-285	-290	- 295	$\cdot 300$	- 305	310	$\cdot 315$	$\cdot 320$	$\cdot 325$	$\cdot 330$	-335	340	-345	$\cdot 350$
61	. 271	$\cdot 276$	281	-286	-291	. 296		-305	$\cdot 310$	-315	$\cdot 320$. 325	.330	$\cdot 335$	-339
62	-263	-268	$\cdot 272$	-277	-282	-286	291	-296	$\cdot 300$	$\cdot 305$	$\cdot 3 \mathrm{ro}$	$\cdot 315$	319	$\cdot 324$	-329
63	- 254	-259	-263	-268	-272	- 277	-281	-286	-291	-295	-300	-304	-309	$\cdot 313$	$\cdot 318$
64	- 245	. 250	. 254	- 29.	$\cdot 263$	- 267	. 272	- 276	281	-285	-289	. 294	298	$\cdot 302$	- 307
65	$\cdot 237$	241	'245	249	$\cdot 254$	$\cdot 258$			$\cdot 270$	-275	$\cdot 279$. 296

Showing Difference of Longitude and Corresfonding Departure.

ゼ®	DIFFERENCE OF LONGITUDE.														
	$\cdot 71$	$\cdot 72$	$\cdot 73$	$\cdot 74$	$\cdot 75$	$\cdot 76$	$\cdot 77$	$\cdot 78$	$\cdot 79$	-80	-81	-82	$\cdot 83$	-84	$\cdot 85$
${ }_{2}$	$\cdot 710$	720	-730	-740 \cdot	750	$\cdot 760$	-770	$\cdot 780$	$\cdot 790$	-800	. 810	.819	. 829	. 839	-849
4	$\cdot 708$	$\cdot 718$	$\cdot 728$	$\cdot 738$	748	-758	- 768	-778	$\cdot 788$. 798	. 808	. 818	. 828	. 838	. 848
6	$\cdot 706$	$\cdot 716$. 726	$\cdot 736$	746	-756	$\cdot 766$	$\cdot 776$	-786	-796	- 806	-816	- 825	-835	. 845
8	$\cdot 703$	-713	$\cdot 723$	$\cdot 733$	-743	-753	$\cdot 763$	$\cdot 772$	$\cdot 782$	$\cdot 792$. 802	. 812	-822	. 832	. 842
10	-699	-709	$\cdot 719$	$\cdot 729$.	$\cdot 739$	-748	$\cdot 758$	-768	$\cdot 778$	$\cdot 788$	-798	. 808	-817	. 827	. 837
II	-697	$\cdot 707$	-717	$\cdot 726$	-736	$\cdot 746$	$\cdot 756$	-766	$\cdot 775$	$\cdot 785$	$\cdot 795$. 805	-815	. 825	. 834
12	-694	$\cdot 704$	$\cdot 714$	$\cdot 724$	-734	$\cdot 743$	$\cdot 753$	-763	-773	$\cdot 783$	-792	-802	-812	-822	.831
13	-692	-702	$\cdot 711$	$\cdot 721$	-731	-741	-750	$\cdot 760$	$\cdot 770$	-779	-789	799	. 809	-818	. 828
14	-689	. 699	-708	-718	'728	$\cdot 737$	$\cdot 747$	$\cdot 757$	$\cdot 767$	$\cdot 776$	$\cdot 786$	796	. 805	-815	. 825
15	-686	- 695	$\cdot 705$	$\cdot 715$:724	$\cdot 734$	$\cdot 744$	$\cdot 753$	$\cdot 763$	$\cdot 773$	$\cdot 782$	792	-802	.8II	.821
16	-682	-692	$\cdot 702$	- 711	- 721	$\cdot 731$	- 740	-750	759	- 769	$\cdot 779$	$\cdot 788$	-798	. 807	. 817
17	-679	-689	- 698	-708	717	-727	$\cdot 736$	$\cdot 746$	$\cdot 755$	$\cdot 765$	$\cdot 775$	$\cdot 784$	$\cdot 794$. 803	-813
18	-675	-685	-694	$\cdot 704$	-713	-723	$\cdot 732$	$\cdot 742$	$\cdot 751$	- 761	770	$\cdot 780$	$\cdot 789$	-799	-808
19	-671	-681	-690	- 700	$\cdot 709$	719	- 728	$\cdot 738$	-747	$\cdot 756$	766	775	$\cdot 785$	-794	-804
20	-667	-677	-686	- 695	$\cdot 705$	714	$\cdot 724$	$\cdot 733$	$\cdot 742$	- 752	761	$\cdot 771$	$\cdot 780$	$\cdot 789$	$\cdot 799$
2 I	-663	-672	-682	-691	- 700	710	719	$\cdot 728$	738	- 747	756	-766	$\cdot 775$	784	794
22	-658	-668	-677	-686	- 695	$\cdot 705$	- 714	$\cdot 723$	$\cdot 732$	$\cdot 742$	751	$\cdot 760$	$\cdot 770$	-779	$\cdot 788$
23	- 654	. 663	-672	-681	. 690	$\cdot 700$	$\cdot 709$	$\cdot 718$	$\cdot 727$	-736	746	$\cdot 755$	$\cdot 764$	$\cdot 773$	$\cdot 782$
24	-649	-658	-667	-676	. 685	-694	$\cdot 703$	$\cdot 713$	$\cdot 722$	-31	$\cdot 740$	$\cdot 749$	$\cdot 758$	$\cdot 767$	$\cdot 777$
25	-643	-653	-662	-671	.680	-689	-698	$\cdot 707$	$\cdot 716$	725	734	743	$\cdot 752$	$\cdot 761$	$\cdot 770$
26	. 638	- 647	- 656	. 665	. 674	. 683	- 692	701	710	. 719	$\cdot 728$	- 737	- 746	755	$\cdot 764$
27	-633	-642	- 650	. 659	- 668	- 677	. 686	. 695	704	- 713	-722	$\cdot 731$	-740	748	$\cdot 757$
28	-627	-636	- 645	. 653	-662	. 671	-680	. 689	. 698	$\cdot 706$	$\cdot 715$	$\cdot 724$	-733	$\cdot 742$	-75
29	-621	. 630	- 638	-647	- 656	- 665	. 673	-682	-691	$\cdot 700$	$\cdot 708$	-717	- 726	$\cdot 735$	-743
30	-6I5	-624	$\cdot 632$	-64I	-650	-658	. 667	-675	-684	-693	701	$\cdot 710$	$\cdot 719$	727	$\cdot 736$
31	-609	.617	. 626	- 634	. 643	. 651	-660	. 669	- 677	- 686	- 694	703	$\cdot 711$	$\cdot 720$	-729
32	-602	-611	. 619	. 628	. 636	- 645	. 653	-661	. 670	. 678	-687	- 695	- 704	$\cdot 712$	-721
33	- 595	. 604	. 612	. 621	. 629	. 637	. 646	- 654	. 663	. 671	- 679	. 688	. 696	$\cdot 704$	$\cdot 713$
34	-589	- 597	-605	.613	. 622	-630	. 638	-647	-655	- 663	- 672	. 680	- 688	-696	$\cdot 705$
35	-582	- 590	-598	-606	. 614	- 623	. 631	. 639	-647	. 655	-664	. 672	. 680	-688	-696
36	- 574	- 582	-591	-599	. 607	. 615	. 623	.63I	. 639	. 647	- 655	. 663	-671	. 680	. 688
37	$\cdot 567$	- 575	- 583	-591	- 599	. 607	.615	. 623	. 631	. 639	-647	. 655	-663	. 671	-679
38	-559	- 567	- 575	-583	- 591	$\cdot 599$. 607	. 615	. 623	. 630	. 638	-646	-654	- 662	-670
39	- 552	. 560	- 567	- 575	. 583	-591	- 598	-606	-614	. 622	- 629	. 637	- 645	- 653	-66I
40	- 544	$\cdot 552$	- 559	- 567	. 575	'582	- 590	- 598	-605	-6I3	-620	. 628	-636	-643	-651
4 I	- 536	-543	-551	-558	. 566	-574	581	-589	596	. 604	-6II	. 619	. 626	-634	-642
42	- 528	- 535	- 542	- 550	-557	- 565	. 572	. 580	$\cdot 587$. 595	-602	. 609	. 617	- 624	. 632
43	-519	. 527	- 534	- 541	. 549	- 556	. 563	- 570	- 578	- 585	-592	. 600	. 607	$\cdot^{6} \mathrm{rr}_{4}$	-622
44	$\cdot 511$	-518	- 525	- 532	- 540	- 547	- 554	- 561	. 568	. 575	. 583	. 590	- 597	-604	-611
45	$\cdot 502$. 509	. 516	- 523	- 530	- 537	544	$\cdot 552$	-559	. 566	- 573	580	$\cdot 587$	-594	-601
46	-493	-500	$\cdot 507$	514	-21	- 528	-535	-542	549	- 556	-563	-570	- 577	584	-590
47	-484	-491	-498	. 505	. 511	. 518	. 525	. 532	. 539	- 546	$\cdot 552$. 559	- 566	- 573	-580
48	-475	-482	-488	- 495	- 502	;509	. 515	-522	. 529	. 535	-542	- 549	$\cdot 555$	$\cdot 562$	- 569
49	-466	- 472	-479	- 485	-492	'499	$\cdot 505$	-512	. 518	. 525	. 531	. 538	- 545	551	-558
50	-456	$\cdot 463$	-469	-476	$\cdot 482$	-489	-495	. 501	- 508	-514	521	$\cdot 527$	-534	-540	- 546
51	-447	-453	'459	- 466	472	- 478	-485	491	-497	. 503	510	516	. 522	. 529	- 535
52	-437	- 443	- 449	- 456	-462	-468	-474	480	- 486	-493	-499	. 505	-511	. 517	- 523
53	$\cdot 427$	-433	-439	- 445	-451	- 457	$\cdot 463$	-469	475	-481	$\cdot 487$	493	- 500	. 506	- 512
54	$\cdot 417$	$\cdot 423$	-429	- 435	441	$\cdot 447$		-458	464	-470	476	482	488	$\cdot 494$	-500
55	$\cdot 407$	-413	419	- 424	-430	$\cdot 436$	$\cdot 442$	-447	$\cdot 453$	$\cdot 459$	465	470	476	-482	-488
56	-397	-403	-408	-414	419	$\cdot 425$		-436	-442	- 447	-453	-459	464	470	-475
57	-387	-392	- 398	-403	-408	-414	-419	$\cdot 425$	-430	- 436	-441	- 447	$\cdot 452$	457	- 463
58	$\cdot 376$	-382	- 387	-392	-397	$\cdot 403$	$\cdot 408$	-413	419	$\cdot 424$	-429	- 435	$\cdot 440$	445	-450
59	$\cdot 366$	-371	$\cdot 376$	$\cdot 38 \mathrm{r}$	-386	$\cdot 39 \mathrm{I}$		$\cdot 402$	407	- 412	-417	- 422	$\cdot 427$	$\cdot 433$	$\cdot 438$
60	-355	-360	- 365	-370	-375	- 380	$\cdot 385$	- 390	- 395	$\cdot 400$	-405	410	$\cdot 415$	- 420	- 425
61	-344	-349	-354	-359	- 364	- 368		- 378	- 383	- 388	-393	- 398	-402	407	-412
62	-333	-338	-343	-347	- 352	- 357	-361	- 366	- 371	- 376	- 380	-385	- 390	- 394	-399
63	$\cdot 322$	- 327	-331	-336	-340	- 345	-350	- 354	- 359	-363	- 368	- 372	- 377	- 381	$\cdot 386$
64	-311	-316	- 320	$\cdot 324$	- 329	- 333	-338	- 342	- 346	-35I	-355	$\cdot 359$	$\cdot 364$	-368	$\cdot 373$
65	$\cdot 300$	-304	$\cdot 309$	$\cdot 313$	$\cdot 317$	-321	-325	-330	-334	-338	$\cdot 342$	$\cdot 347$	-35I	-355	- 359

Traverse Table.

Showing Difference of Longitude and Corresponding Departune.

Traverse Table.
Showing Difference of Longitude and Corresponding Departure.

$\stackrel{\stackrel{\pi}{\dddot{H}}}{\substack{0}}$	DIFFERENCE OF LONGITUDE.															
	-10	-11	-12	-13	-14	-15	-16	17	-18	-19	$\cdot 20$	-21	-22	-23	$\cdot 24$	$\cdot 25$
$6{ }_{5}$	-042	-046	. 05 I	. 055	.059	-063	.068	.072	. 076	-080	.085	-08	. 093	. 097	-10	-106
66	. 041	. 045	-049	. 053	. 057	.06I	. 065	-069	. 073	-077	.08I	.08	. 089	.094	. 098	-102
67	-039	-043	-047	-051	. 055	-059	. 063	-066	- 070	-074	-078	-08	-086	-090	-094	-098
68	. 037	. 041	. 045	. 049	.052	. 056	. 060	. 064	. 067	-071	-075	-07	. 082	-086	. 090	. 094
69	. 036	.039	-043	. 047	. 050	. 054	. 057	. 061	-065	. 068	-072	. 07	. 079	-082	. 086	. 090
70	-034	-038	. 041	. 044	-0,48	. 051	-05.5	-058	-062	. 065	. 068	. 07	. 075	-079	. 082	-086
71	. 033	-036	. 039	. 042	. 046	-049	. 052	. 055	-059	. 062	. 065	-068	- 072	-075	. 078	.081
72	-031	-034	. 037	. 040	.043	-046	-049	-053	-056	. 059	-062	- 06	-068	-071	-074	- 077
73	-029	-032	.035	. 038	.04I	-044	. 047	. 050	-053	.056	. 058	-061	- 064	. 067	. 070	. 073
74	. 028	. 030	. 033	.036	.039	$\cdot{ }^{\circ} 41$	-044	. 047	-050	. 05	-055	-05	.06I	.063	. 066	. 069
75	-026	-028	.03I	. 034	. 036	-039	. 041	. 044	. 047	. 049	. 052	- 05	. 057	060	. 062	. 065
76	24	. 027	-029	.031	. 034	.036	-039	. 041	- 044	. 046	. 048	- 05	. 053	. 056	. 058	. 060
77	-022	. 025	-027	. 029	.031	-034	-036	. 038	. 040	. 043	-045	. 04	-049	. 052	. 054	. 056
78	. 021	. 023	. 025	. 027	. 029	. 031	-033	. 035	-037	. 040	-042	. 04	-046	. 048	. 050	. 052
79	19	-021	. 023	. 025	. 027	-029	.03I	.032	. 034	. 036	-038	-040	. 042	. 044	. 046	. 048
80	17	-019	. 021	. 023	. 024	- 026	. 028	-030	.031	. 033	. 035	036	. 038	. 040	. 042	. 043
81	6	-or 7	- 019	. 020	-022	. 023	. 025	. 027	-028	. 030	. 031	-033	-034	-036	. 038	. 039
82	- 01	- 15	-or 7	- 018	-oi9	. 021	-022	. 024	. 025	-026	. 028	. 029	. 031	. 032	. 033	. 035
83	- 012	- 013	-OI5	- 016	-017	- 018	- 019	- 021	- 022	.023	. 024	. 026	. 027	. 028	-029	. 030
84	- OIO	- OI	. 013	- ${ }^{\text {a } 4}$. OI 5	. I 6	. 017	-or 8	019	. 020	. 021	. 022	. 023	- 024	. 025	. 026
85	-009	-	-	- 11	. 012	- 013	- ${ }^{1} 4$	- 015	6	.or 7	- 017	- 018	-or9	20	-021	. 022
86	-007	-008	. 008	-009	- 0 ro	-oro	- OI	- O 2	. 013	- 13	- 014	- 015	- 015	-016	- 017	. O 7
87	-005	-006	-006	-007	. 007	-008	-008	-009	-009	-oro	-oio	-	- 12	- 012	-or 3	-or 3
88	$\cdot \mathrm{OO} 3$. 004	. 004	. 005	. 005	-005	-006	-006	. 006	.007	-007	-	-008	. 008	-008	.009
89	-002	. 002	. 002	-002	. 002	-003	. 003	. 003	. 003	.003	-003		. 004	-004	-004	.004
					IFF	NC	,	F	NC	U						
	-25	26	-27	. 28	-29	$\cdot 30$	$\cdot 31$	-32	-33	-34	-35	$\cdot 36$	-37	-38	-39	$\cdot 40$
${ }^{\circ} 5$	- 106	10	114	-118	123	-127	-13I	135	- 39	I 44	$\cdot 148$	$\cdot 152$. 156	-161	-165	-169
66	-102	06	-	-114	18	22	- 126	-130	- 134	-138	- 42	-146	I 50	- 55	- 59	-163
67	. 098	- 102	- 105	-109	- 113	-117	-121	-125	- 129	- 133	- 137	-141	- 145	-148	- 52	-156
68	-094	. 097	- 101	- 105	-109	-112	- 116	. 120	-124	-127	- 31	- 135	- 139	- 142	- 46	- 150
69	. 090	. 093	.097	- 100	-104	- 108	-II I	- 115	118	- 122	- 125	- 129	-133	- 36	140	-143
70	. 086	.089	. 092	-096	-099	-103	- 106	-109	-113	- 116	20	- 123	-127	-130	-133	- 137
71	-081	.085	-088	-091	-094	-098	- 101	-104	-107	- III	-114	-117	-120	-124	127	-130
72	-077	-080	-083	-087	-090	-093	-096	-099	-102	- 105	-108	- 111	-114	-17	121	-124
73	. 073	. 076	-079	-082	.085	-088	-091	-094	-096	. 099	102	- 105	- 108	- 111	114	-117
74	.069	. 072	. 074	-077	.080	-083	-085	-088	-091	. 094	. 096	- 099	-102	- 105	107	- 110
75	. 065	- 067	.070	. 072	. 075	-078	-080	. 083	-085	. 088	.091	-093	-096	-098	IOI	$\cdot 104$
76	. 060	.063	-065	. 068	.070	. 073	-075	. 077	.080	. 082	. 085	-087	-090	-092	-094	. 097
77	-057	-058	-061	. 063	.065	. 067	-070	-072	. 074	. 076	-079	-081	-083	.085	-88	-090
78	. 052	-054	. 056	-058	. 060	. 062	-064	-067	-069	.071	. 073	-075	-077	- 079	08r	.083
79	. 048	. 050	- 052	. 053	-055	. 057	. 059	.061	. 063	. 065	.067	-069	. 071	- 73	074	. 076
80	-043	. 045	. 047	- 049	. 050	. 052	. 054	-056	. 057	-059	. 061	.063	. 064	. 066	068	. 069
8 I	. 039	.041	. 042	- 04	-045	. 047	-048	- 050	-052	-053	. 055	-056	-058	059	06I	.063
82	- 035	. 036	. 038	. 039	-040	-042	-043	-045	-046	-047	- 049	050	-051	053	054	. 056
83	. 030	-032	. 033	-034	-035	. 037	-038	-039	. 040	. 041	-043	-044	. 045	046	048	. 049
84	. 026	.027.	. 028 .	-029	. 030	. 031	. 032	.033	-034	. 036	. 037	-38	. 039	040	041	. 042
85	. 022	. 023	. 024	. 024	. 025	. 026	. 027	-028	. 029	. 030	.03í	O31	. 032	033	034	. 035
86	. 017	- 018	- 19	. 020	. 020	. 021	. 022	. 022	. 023	. 024	. 024	025	-026	027	027	-028
87	-013	-OI 4	- 014	- 015	- 015	. 016	-016	. 017	. 017	. 018	. 018	-19	- 019	020	020	-021
88	-009	.009	. 009	- oro	-oro	. 010	OII	- OII	. 012	. 012	- 012	O13	- 13	-13	-1 4	-014
89	. 004	. 005	-005	. 005	. 005	. 005	. 005	. 006	. 006	-006	. 006	006	. 006	007	007	. 007

Traverse Table.

Showing Difference of Longitude and Corresponding Departure.

-	DIFFERENCE OF LONGITUDE.															
	$\cdot 40$	$\cdot 41$	$\cdot 42$	$\cdot 43$	$\cdot 44$	-45	$\cdot 46$	$\cdot 47$	$\cdot 48$	$\cdot 49$	$\cdot 50$. 51	$\cdot 52$	$\cdot 53$	$\cdot 54$	- 55
6_{5}	-169	- 173	-177	-182	-186	- 190	-194	-199		-207	-211	$\cdot 216$	220	-224	-228	. 232
66	-163	-167	-171	- 175	-179	-183	-187	-191	-195	- 199	-203	-207	212	. 216	-220	. 224
67	-156	-160	.164	-168	- 172	-176	-180	-184	-188	-191	-195	-199	. 203	-207	. 211	. 215
68	- 150	- 54	- 157	-16I	-165	- 169	-172	-176	-180	-184	-187	-191	-195	-199	-202	- 206
69	-143	-147	- 51	- 54	- 58	- 161	- 165	-168	- 72	-176	${ }^{1} 79$	-183	- 186	-190	-194	-197
70	-137	-140	-144	-147	- 150	- 154	-157	-161	-164	-168	$\cdot 171$	- 74	-178	-181	-185	-188
71	- 130	-133	-137	- 140	- 143	-147	- 50	- 53	${ }^{1} 56$	-160	$\cdot 163$	-166	-169	-173	-176	-179
72	-124	-127	- 130	-133	- 136	- 139	-142	- 145	-148	-151	- 155	- 158	-161	-164	-167	-170
73	-117	-120	-123	-126	- 129	-132	- 134	- 137	- 140	-143	- 146	-149	- 152	- 55	-158	-161
74	- 110	-113	.II6	-119	-12I	-124	-127	- 130	- 132	- 135	- 138	- 4^{1}	. 143	-146	- 149	. 152
75	$\cdot 104$	-106	-109	- 111	-II 4	-116	-119	- 122	-124	-127	-129	- 32	- 135	- 37	$\cdot 140$	- 142
76	-097	. 099	- 102	${ }^{10} \mathrm{O}_{4}$	-106	-109	- III	-114	-116	-119	-121	-123	-126	-128	-131	-133
77	-090	. 092 .	-094.	. 097	- 099	- 101	-103	- 106	-108	- 110	-112	-115	-117	-119	. 121	-124
78	.083	.085	.087.	.089	.091	.094	-096	.098	. 100	-102	-104	-106	-108	- 110	$\cdot \mathrm{I}$	-II4
79	.076	. 078	.080.	. 082	. 084	-086	. 088	. 090	. 092	-193	. 095	. 097	. 099	- l Or	. 103	- 105
80	. 069	. 071	. 073	. 075	. 076	. 078	-080	-82	. 083	.085	. 087	. 089	-090	-092	-094	.096
8 I	-063	. 064	- 066	. 067	. 069	. 070	.072	-074	. 075	-077	. 078	-080	.081	. 083	.084	. 086
82	.056	. 057	. 058	. 060	.06I	.063	.064	. 065	. 067	. 068	. 070	.071	. 072	. 074	. 075	. 077
83	-049	. 050	. $\mathrm{O}_{5} \mathrm{I}$. 052	. 054	. 055	.056	. 057	. 058	.060	-061	. 062	. 063	. 065	. 066	. 067
84	-042	. 043	-044	. 045	. 046	-047	. 048	. 049	. 050	.05I	. 052	-053	. 054	. 055	. 056	. 057
85	. 035	. 036	-037	. 037	. 038	-039	-040	. 041	${ }^{\circ}{ }_{4} 2$	-043	-044	- 044	. 045	. 046	. 047	. 048
86	-028	. 029	. 029	. 030	. 031	. 031	-032	. 033	. 033	-034	. 035	. 036	. 036	. 037	. 038	-038
87	. 021	. 021	. 022	. 023	. 023	. 024	. 024	. 025	. 025	-026	. 026	. 027	. 027	. 028	. 028	. 029
88	- ${ }^{-14}$	- 014	. 015	. 015	-or 5	. 016	- 016	-016	-017	-017	. 017	. 018	. 018	. 018	. 019	- 019
89	.007	-007	. 007	. 008	. 008	. 008	. 008	. 008	. 008	-009	-009	. 009	. 009	. 009	. 009	- O
$\underset{\sim}{\underset{\sim}{\sim}}$	DIFFERENCE OF LONGITUDE															
	. 55	- 56	$\cdot 57$. 58	-58	-60	-61	- 62	-63	-64	-65	-66	$\cdot 67$. 58	-69	$\cdot 70$
${ }^{\circ} 5$	- 232	237	-241	245	- 249	- 254	258	-262	- 266	270	-275	-279	283	287	- 292	296
66	-224	-228	. 232	. 236	. 240	-244	-248	$\cdot 252$. 256	260	-264	- 268	. 273	-277	-28I	. 285
67	-215	. 219	. 223	-227	231	- 234	. 238	- 242	- 246	- 250	- 254	- 258	-262	. 266	- 270	. 274
68	-206	.210	.214	-217	.221	- 225	-229	- 232	. 236	- 240	- 243	- 247	-25I	. 255	- 258	- 262
69	-197	-201	. 204	-208	. 211	-215	. 219	. 222	. 226	-229	-233	-237	- 240	-244	-247	-251
70	-188	-192	-195	-198	-202	-205	-209	. 212	215	. 219	-222		229	233	. 236	239
71	-179	-182	-186	-189	-192	-195	-199	-202	. 205	- 208	$\cdot 212$. 215	218	. 221	. 225	-228
72	-170	- 173	-176	-179	-182	-185	-189	-192	-195	-198	-201	-204	- 207	- 210	-213	. 216
73	-161	-164	-167	-170	-172	-175	-178	-181	-184	-187	-190	-193	-196	-199	- 202	- 205
74	- 152	-154	-157	-160	-163	-165	-168	-171	-174	-176	- 179	-182	-185	-187	-190	- 193
	-142	-145	$\cdot 148$	- 150	- 153	- 155	- 158	-160	-163	-166	-168	. 171	- 173	- ${ }^{7} 6$	- 179	-181
76	-133	-135	- 138	${ }^{1} 40$	- 143	-145	-148	I 50	-152	- 155	- 157	-160	-162	-165	-167	-169
77	-124	-126	- 128	-130	-133	- 35	- 137	- 139	-142	-144	- 146	-148	- 151	- 153	- 155	- 57
78	-114	-116	-119	-121	. 123	- 125	-127	-129	-13	-133	- 135	-137	- 139	-14I	-143	-146
79	-105	-107	-109	- İI	.113	-114	.116	- 118	- 120	-122	-124	- 126	-128	. 130	. 132	- 134
80	-096	. 097	-099	- 101	-102	$\cdot \mathrm{IO} 4$	- 106	- 108	$\cdot 109$	-III	-II3	. 115	- 116	. 118	- 120	- 122
81	. 086	. 088	-089	.09I	. 092	. 094	. 095	-097	- 099	- 100	-102	-103	-105	-106	- 108	-110
82	-077	. 078	-079	.08I	. 082	. 084	. 085	-086	. 088	.089	-090	. 092	. 093	-095	-096	. 097
83	.067	. 068	. 069	.071	. 072	.073	. 074	. 076	. 077	. 078	- 079	. 080	.082	.083	. 084	. 085
84	. 057	. 059	. 060	. 061	. 062	. 063	. 064	. 065	-066	. 067	-068	-069	. 070	.071	. 072	. 073
85	-048	- 049	. 050	. 051	.05I	. 052	. 053	- 054	. 055	. 056	- 057	. 058	. 058	. 059	. 060	- 161
86	-038	- 039	. 040	. 040	. 041	. 042	. 043	. 043	- 044	. 045	- 045	. 046	. 047	. 047	. 048	- 049
87	-029	. 029	-030	. 030	.031	.031	. 032	. 032	. 033	. 033	-034	. 035	. 035	. 036	. 036	. 037
88	- 019	. 020	-020	. 020	. 021	.021	. 021	. 022	. 022	. 022	. 023	. 023	. 023	. 024	. 024	. 024
89	- 010	. 10	- ото	- 010	. 010	- 010	.orl	. 11	-ori	. OII	. OII	012	- 012	. 012	. 012	012

Traverse Table.
Showing difference of Longitude and Corresponding Departure.

䔍	DIFFERENCE OF LONGITUDE.															
	$\cdot 70$	$\cdot 71$	$\cdot 72$. 73	$\cdot 74$	$\cdot 75$. 76	$\cdot 77$. 78	$\cdot 79$	$\cdot 80$	$\cdot 81$. 82	. 83	. 84	. 85
6_{5}°	296	300	304	309	.313	$\cdot 317$	321	325	330	334	338	342	347	351		359
66	-285	-289	. 293	297	-301	$\cdot 305$	- 309	313	$\cdot 317$	$\cdot 321$	$\cdot 325$	-329	. 334	$\cdot 338$	342	346
67 68	-274	. 2777	-281	- 285	-289	- 283	-297	301	- 305	-309	$\cdot 313$	$\cdot 31$	-320	- 324	328	-332
68 69	- 262	-260	-270	. 273	. 277	-281	-285	-288	-292	. 296	- 328		- 3294	- 211	15	.318 .305
70	-239	-243	246	250	. 253	-257	. 260	263	267	$\cdot 270$	74					91
7 I	$\cdot 228$. 231	234	238	. 241	- 244	-247	$\cdot 251$	-254	. 257	- 260	. 264	267	. 270	73	277
72	-216	-219	. 222	-226	-229	- 232	- 235	-238	$\cdot 241$	- 244	. 247	-250	253	$\cdot 256$	260	. 263
73	-205	-208	211	-213	.216	$\cdot 219$	-222	$\cdot 225$	-228	-231	-234	-237	- 240	- 243	- 246	. 249
74	-193	-196	198	-201	-204	- 207	-209	. 212	-215	218	. 221			. 229	232	234
75	-181	-184	-186	-189	-192	-194	-197	-199	-202	. 204	-207	-210	. 21	$\cdot 215$. 217	20
76	-169	-172	- 174	-177	-179	-181	-184	-186	-189	-191	-194	-196	-198	201	-203	206
77	-157	-160	-162	-164		-169	-171	-173	-175	-178	- 180	-182	-184	-187	-189	191
78	-146	-148	-150	-152	-154	-156	-158	-160	-162	-164	-166	-168	-170	-173	175	-177
79 80	-134	-135	.137	-139	-141	-143	-145	-147	. 149	-151	-153	-155	-156	-158		. 162
80	-122	$\cdot 123$	-125	-127	128	-130	-132	- 134	- 135	-137	- 139					148
8 r	- 1	-111	-113	-114	116	-117	- 19	- 120	- 122		-125	-127	-128	. 130	. 131	
82 83	. 097	.099	.100	-102	. 103	-104	-106	-107	-109	-110	. HI 1	- 113	. 114	-116	117	118
83 84	. 085	. 087	. 088	. 089	. 097	.091	. 093	-094	-095	.096	.097	.089	100	. 108	102	-104
		. 06				- 0	. 066	. 067	. 068	. 069						
86	. 049	- 05	. 050	.051	. 052	. 052	. 053	. 054	. 054	. 05	. 056	-057	. 057	-058	.059	. 059
87	. 037	-037	.038	.038	-039	. 039	. 040	. 040	. 041	. 041	. 042	. 042	. 043	. 043	. 044	. 044
88	. 024	. 025	. 025	. 025	-026	. 026	. 027	- 027	. 027	. 028	. 028	. 028	. 029	. 229	. 029	. 030
89	. 012	- O 2	. ${ }^{1} 3$.oi3	.or3	. O_{3}	- ${ }^{1} 3$. O_{3}	. O 4	. O 4	. 014	. ${ }^{1} 4$. O 4	. 014	. 15	- 015
+	DIFFERENCE OF LONGITUDE.															
	. 85	-86	. 87	-88	89	$\cdot 90$	$\cdot 91$	$\cdot 92$. 93	. 84	$\cdot 95$	-s6	. 97	$\cdot 38$	$\cdot 99$	$1 \cdot 00$
${ }^{\circ} 5$. 363	$\cdot 368$	$\cdot 372$	-376	- 380	$\cdot 385$	-389		397		- 406	410	41	418	423
66	346	-350	$\cdot 354$	$\cdot 358$	- 362	-366	-370	-374	-378	382	-386	-390	-395	-399	403	407
67	$\cdot 332$	-336	-340	-344	. 348	-352	-356	-359	. 363	367	-371		-379	. 383	-387	-391
68	-318	-322	-326	-330	333	- 337	-34I	$\cdot 345$	$\cdot 348$	352	-356	-360	-363	$\cdot 367$	-371	- 375
69	- 305	- 308	-312	$\cdot 315$	-319	-323	-326	-330	-333	337	-340	$\cdot 344$	-348'	-351	-355	- 358
70	-291	-294	-298	-301	- 304	-308	-311	$\cdot 315$	-318	321	- 325	- 328	$\cdot 332$	$\cdot 335$	-339	$\cdot 342$
71	- 277	-280	-283	-287	290	- 293	296			306	-309	-313	$\cdot 316$	-319	-322	-326
72	-263	-266	-269	- 272	. 275	-278	281	-284	-287	290	- 294	. 297	-300	-303	$\cdot 306$	-309
73	-249	251	-254	257	260	- 263		-269	272	275	$\cdot 278$	-281	-284	$\cdot 287$	$\cdot 289$	-292
74	- 234	-237	-240	-243	$\cdot 245$	$\cdot 248$	251	. 254	256	259	-262	-265	-267	.270	-273	-276
	. 220	. 223	. 225	. 228	. 230	$\cdot 233$	$\cdot 236$	238	241	243	- 246	$\cdot 248$	251	254	$\cdot 256$	-259
76	-206	. 208	. 210	. 213	-215	$\cdot 218$	220	.223	225	227	-230	$\cdot 232$	235	-237	240	242
77	-191	-193	-196	-198	-200	-202	-205	-207	-209	211	$\cdot 214$	216	. 218	. 220	. 223	. 225
78	-177	-179	-181	. 183	-185	-187	I 189	-191	-193	195	-198'	-200	-202	-204	-206	. 208
79	-162	-164	-166	-168	-170	\cdot^{172}	- 74	-176	-177	179	-181	-183	. 185	-187	-189	-191
80	-148	- 149	-151	-153	-155	-156	-158	-160	-16I	163	-165	. 167	-168	-170	- 172	-174
81	-133	-135	-136	-138	- 39	- 141	${ }^{1} 2$	-144	-145	147	-149	-150	-152	I 53	-155	-156
82	-118	-120	- 121	- 122	- 124	- 125	-127		- 129	131	- 132	- 134	- 135	-136	-138	- 139
83	- 104	-105	- 106	-107	. 108	- rio	III	-112	. 113	115	-116	-117	-118	-119	-12I	-122
84	-089	-090'	.091	. 092	. 093	-094	. 095	. 096	. 097	098	-099	-100	- 101	-102	. 103	5
	- 074	. 075	. 076	. 077	. 078	-078	. 079	. 080	.081	082	.083	-084	. 085	. 085	. 086	.087
86	-059	. 060	. 061	-061	. 062	-063	-063	-064	-065	066	-066	.067	-668	-668	-069	- 070
87	-044	. 045	. 046	. 046	. 047	-047	-48	. 048	. 049	049	-050	. 050	.051	051	-052	. 052
88	-030	- 38	- 33	. 317	-031	-03I	-032	. 032	-032	-33	-033	. 334	- 34	- 34	- 35	. 35
89	- ${ }^{\text {O } 5}$	- 15	$\cdot \mathrm{OI} 5$	-015	.oi6	.or6	or 6	. 16	-016	OI6	. 017	. 017	OI7	or 7	-17	. 017

Traverse Table.

Showing difference of Longitude and Corresponding Departure.

Table C^{1}.
Azimuth Corresponding to A and B Correction in Departure.

$A \& B$	Az.	$A \& B$		A \& P	Az.	A \& B	Az.	A \& B	Az.	A \& B	Az.	$A \& B$	Az.
- óoo	$90^{\circ} 0$	-1íl	83.6	. 227	$77 \cdot 2$	$\cdot 34^{8}$	78.8	- 479	64.4	. 627	$57 \cdot 9$	798	$5 \stackrel{\circ}{1} \cdot 4$
-002	89.9	-114	'5	-229	-1	-350	7	-481	$\cdot 3$	-630	. 8	-801	$\cdot 3$
-003	. 8	-116	4	-231	77.0	-352	. 6	$\cdot 483$	$\cdot 2$. 632	$\cdot 7$. 804	2
. 005	$\cdot 7$	-117	$\cdot 3$	233	$76 \cdot 9$	$\cdot 354$	70.5	- 486	-1	. 635	. 6	- 807	1
.007	- 6	- 19	$\cdot 2$	- 235	- 8	-356	$\cdot 4$	-488	64.0	. 637	57.5	- 8io	$51 \cdot 0$
-009	89.5	-12I	I	- 236	7	-35	$\cdot 3$	-490	639	-640	- 4	-813	$50 \cdot 9$
- 010	$\cdot 4$	-123	83.0	. 238	. 6	- 360	2	-492	$\cdot 8$	-642	- 3	-816	. 8
. 012	$\cdot 3$	- 125	82.9	- 240	$76 \cdot 5$	$\cdot 362$	1	-494	7	-644	2	-818	7
- ${ }^{-1} 4$	$\cdot 2$	-126	. 8	- 242	4	- 364	$70 \cdot 0$	-496	$\cdot 6$. 647	1	. 821	6
- 016	${ }^{1}$	- 128	$\cdot 7$	- 244	$\cdot 3$	-366	69.9	-499	63.5	-649	57°	. 824	$50 \cdot 5$
- ${ }^{-17}$	89.0	- 130	. 6	$\cdot 246$	$\cdot 2$	-368	- 8	-501	$\cdot 4$	-652	$56 \cdot 9$. 827	$\cdot 4$
- 019	88.9	-132	82.5	$\cdot 24^{8}$	- 1	$\cdot 37^{\circ}$	7	. 503	$\cdot 3$	- 654	. 8	. 830	3
-021	- 8	- 133	4	- 249	$76 \cdot 0$	$\cdot 372$	-	$\cdot 505$	2	- 657	7	. 833	2
. 023	$\cdot 7$	-135	$\cdot 3$	-251	$75 \cdot 9$	- 374	69.5	-507	- 1	- 659	. 6	. 836	$50 \cdot 1$
. 024	- 6	-137	$\cdot 2$	-253	- 8	$\cdot 376$	4	-510	63.0	- 662	$56 \cdot 5$	-839	$50 \cdot 0$
. 026	88.5	- 139	- 1	- 255	7	$\cdot 378$	$\cdot 3$. 512	$62 \cdot 9$	- 664	$\cdot 4$	-842	$49 \cdot 9$
. 028	$\cdot 4$	-14 ${ }^{1}$	82.0	257	. 6	$\cdot 380$	2	-514	- 8	- 667	$\cdot 3$	-845	. 8
. 030	$\cdot 3$	- 142	8I.9	- 259	75.5	$\cdot 382$	I	- 516	7	- 669	2	-848	
. 031	2	-144	- 8	-261	$\cdot 4$	-384	69.0	-518	$\cdot 6$	-672	- 1	. 851	6
. 033	I	- 146	7	- 262	$\cdot 3$	-386	68.9	$\cdot 52 \mathrm{I}$	62.5	- 674	$56 \cdot 0$. 854	49.5
-035	$88 \cdot 0$	-148	. 6	- 264	2	$\cdot 388$	- 8	-52.3	4	- 677	$55 \cdot 9$. 857	$\cdot 4$
. 037	87.9	- 149	81.5	- 266	- 1	- 390	$\cdot 7$	-525	$\cdot 3$	-680	$\cdot 8$	- 860	3
-038	- 8	- 151	4	-268	$75^{\circ} \mathrm{O}$	- 392	- 6	- 527	2	-682	$\cdot 7$. 863	2
- 040	7	- 53	3	-270	74.9	-394	68.5	530	I	-685	. 6	-866	1
-042	- 6	- 155	2	-272	. 8	-396	$\cdot 4$. 532	62.0	-687	$55 \cdot 5$	-869	$49 \cdot 0$
-044	87.5	- 156	I	- 274	7	$\cdot 398$	3	- 534	$6 \mathrm{I} \cdot 9$	- 690	4	-872	$4^{8 \cdot 9}$
- 045	4	-158	$8 \mathrm{I} \cdot 0$	-275	$\cdot 6$	-400	2	. 536	- 8	- 692	$\cdot 3$	-875	- 8
. 047	- 3	- 160	80.9	- 277	74.5	402	- 1	. 538	7	- 695	$\cdot 2$. 878	$\cdot 7$
- 049	$\cdot 2$	-162	- 8	- 279	$\cdot 4$	- 404	$68 \cdot$. 541	. 6	- 698	1	. 882	- 6
-051	-1	164	$\cdot 7$	-281	$\cdot 3$	- 406	67.9	. 543	61.5	- 700	$55^{\circ} \mathrm{O}$. 885	$48 \cdot 5$
-052	87.0	166	. 6	- 283	- 2	-408	- 8	- 545	$\cdot 4$	$\cdot 703$	54.9	. 888	
. 054	$86 \cdot 9$	-167	80.5	- 285	- I	.110	7	- 547	- 3	-705	. 8	-891	3
-056	. 8	- 169	$\cdot 4$	- 287	74°	412	. 6	$\cdot 550$	- 2	-708	$\cdot 7$	-894	$\cdot 2$
-058	$\cdot 7$	-171	3	- 289	73.9	414	07.5	-552	I	- 711	$\cdot 6$	- 897	- 1
- 059	- 6	-173	-2	-290	. 8	-416	$\cdot 4$	- 554	61.0	-713	54.5	-900	$48 \cdot 0$
-061	$86 \cdot 5$	-175	I	- 292	$\cdot 7$	-418	$\cdot 3$	- 5.57	60.9	-716	$\cdot 4$	-904	47.9
-063	$\cdot 4$	- 176	80.0	. 294	- 6	-420	$\cdot 2$	- 559	. 8	. 719	$\cdot 3$	-907	. 8
- 065	- 3	-178	79.9	- 296	73.5	-422	I	- 561	7	- 721	$\cdot 2$	-910	7
- 066	2	-180	- 8	- 298	$\cdot 4$	- 424	67.0	. 563	. 6	724	I	-913	. 6
-068	I	-182	7	-300	$\cdot 3$	-427	66.9	- 566	$60 \cdot 5$	- 727	54.0	-916	47.5
-070	86.0	-184	$\cdot 6$	-302	- 2	429	- 8	- 568	$\cdot 4$	- 729	53.9	-919	$\cdot 4$
-072	85.9	-185	79.5	$\cdot 304$	I	431	7	-570	- 3	$\cdot 732$. 8	-923	3
-073	8	- 187	$\cdot 4$	-306	$73 \cdot 0$	-433	. 6	. 573	$\cdot 2$	-735	$\cdot 7$	-926	$\cdot 2$
- 075	7	-189	- 3	- 308	$72 \cdot 9$	435	66.5	. 575	1	-737	$\cdot 6$	-929	-1
-077	- 6	-191	$\cdot 2$	-310	. 8	437	- 4	. 577	$60 \cdot 0$	- 740	$53 \cdot 5$	-932	$47^{\circ} 0$
-079	$85 \cdot 5$	-193	- 1	-311	7	- 439	3	-580	$59 \cdot 9$	- 743	4	. 936	$46 \cdot 9$
-080	$\cdot 4$	-194	79.0	-313	- 6	-44 ${ }^{1}$	2	- 582	$\cdot 8$	- 745	- 3	-939	. 8
-082	-3	-196	$78 \cdot 9$	-315	$72 \cdot 5$	- 443	-1	$\cdot 584$	$\cdot 7$	- 748	- 2	-942	7
-084	2	-198	- 8	-317	\cdot	- 445	66.0	- 587	- 6	-751	1	-946	. 6
-086	,	- 200	7	-319	$\cdot 3$	- 447	65.9	- 589	$59 \cdot 5$	- 754	53.0	-949	$46 \cdot 5$
.087	85.0	- 202	- 6	-321	$\cdot 2$	- 449	. 8	-591	$\cdot 4$	-756	$52 \cdot 9$	$\cdot 952$	$\cdot 4$
-089	84.9	- 203	5	- 323	- 1	- 452	$\cdot 7$	- 594	$\cdot 3$	- 759	- 8	-956	3
-091	- 8	- 205	4	. 325	$72 \cdot 0$	- 454	. 6	- 596	$\cdot 2$	-762	$\cdot 7$	- 959	2
-093	7	- 207	$\cdot 3$	-327	71.9	- 456	65.5	- 598	I	$\cdot 765$. 6	-962	- 1
-095	. 6	- 209	$\cdot 2$	$\cdot 329$. 8	- 458	4	. 601	$59 \cdot 0$	$\cdot 767$	$52 \cdot 5$	-966	$46 \cdot 0$
-096	84.5	. 211	${ }^{1}$	-331	7	- 460	3	. 603	58.9	- 770	$\cdot 4$	- 969	$45 \cdot 9$
-098	4	-213	78.0	- 333	- 6	- 462	-2	- 606	- 8	- 773	- 3	- 972	- 8
- ioo	-3	- 214	77.9	- 335	$71 \cdot 5$	-464	$\cdot 1$	-608	7	$\cdot 776$	$\cdot 2$	-976	$\cdot 7$
-102	2	-216	- 8	$\cdot 336$	- 4	-466	65°	-610	. 6	-778	I	-979	. 6
-103	- 1	-218	7	- 338	$\cdot 3$	-468	64.9	-613	$58 \cdot 5$	$\cdot 781$	$52 \cdot 0$. 983	$45 \cdot 5$
-IO5	84.0	. 220	. 6	- 340	$\cdot 2$	-471	- 8	-615	- 4	$\cdot 784$	$51 \cdot 9$	- 986	4
:107	83.9	- 222	$77 \cdot 5$	- 342	I	- 473	$\cdot 7$	-618	-	$\cdot 787$	- 8	- 990	3
-109	- 8	- 224	- 4	- 344	71.0	- 475	. 6	. 620	$\cdot 2$	-790	$\cdot 7$	-993	2
-110	7	. 225	$\cdot 3$	- 346	$70 \cdot 9$	- 477	64.5	. 622	${ }^{1}$	- 793	$\cdot 6$	- 996	- 1
- 112	- 6	- 227	$\cdot 2$	-348	$\cdot 8$	- 479	- 4	. 625	$5^{8 \cdot 0}$	-795	51.5	r.000	45°

Table C'.

Azimuth Corresponding to A and B Correction in Departure.

Table C^{1}.

Azimuth Corresponding to A and B Correction in Departure.

A \& B	Az.	$\mathrm{A} \& \mathrm{~B} \quad \mathrm{Az}$.	A \& B Az.	A \& B Az.	A \& B Az.	A \& B Az.	A \& B	Az.
$1 \cdot$	$37 \quad 29$	1 $\mathrm{I} \cdot 355$ 36	1.4II $35 \begin{array}{lll}\text { 1 }\end{array}$	64 17 168 	$\begin{array}{lll}27 & 33 & 13 \\ 28 & 16\end{array}$	591 32 9 592 8	I. 660	5
I-305	28	I-357 23	I-4II 19	I.469 3415	I. 529 II	I. $593 \quad 7$	I-661	
I-306	27	I-358 22	1.412 I8	I 470 I 4	1.530 33 10	I-594 6	I. 662	2
1.306	26	1-359 21	$1.413 \quad 17$	1.470	I.531	$\begin{array}{llll}\text {-595 } & 32 & 5\end{array}$	1. 663	I
r. 307	3725	$1.360 \quad 3620$	$1.414 \quad 16$	1.4715	1.532	I-596 4	I. 664	310
1.308	24	I-360 I9	1.415 3515	I-472	I 533	1-597	I. 66530	3059
1.309	23	I-36I 18	$1 \cdot+16 \quad 14$	I-473 3410	I 534	I. 598	I. 666	58
r.309	22	I-362 17	$1+478$	I 474	1.535 33	I. 599	I. 668	57
I-310	21	1.363 16	1.418 I2	I 475	I. 536	1.600 $32 \begin{array}{ll}1.6\end{array}$	I. 669	56
I.3II	3720	I. $364 \begin{array}{lll}36 & 15\end{array}$	1.418	1.476	1.537	I-601 3159	I. 67030	3055
1.312	19	I. 365 I4	1.419 35 1о	1.477	I. 538	I.602 58	I.67I	54
I-313	18	I-365 13	1.420	1-478 34	- 5339	I. 60357	I. 672	53
I.313	17	I-366 $\quad 12$	I-42I	I•479	I.540 33	I. 60456	r. 673	52
I-3I4	16	I-367	I. 422	I 480	I•541 $32 \begin{array}{ll} & 59\end{array}$	I.605 3I 55	I-674	51
I.315	3715	1.368 36 го	I. 423	I.48i	I. $542{ }^{8}$	I. 6075	I. 675	- 50
I.316	14	I-369 9	I. 42435	1.482	I. 54357	I.608 53	1. 676	49
I.317	13	I 370	I. 425	I.483 34	I. 54456	I-609 52	I. 677	8
1-317	12	I 3730	I. 425	$1 \cdot 48331 \begin{array}{lll}49\end{array}$	I•545 $32 \quad 55$	I-610 5 I	I. 679	47
I.318	11	I 37 I	1.426	I. 48458	I.546 54	I-6II 3150	I.680	46
I.319	3710	$1 \cdot 37236$	I. 427	I.485 . 57	I 5477	I-612 49	I-68I	3045
1.320		I 373	1-428 35	1.486 - 56	I•548 ${ }^{82}$	1.6I3 4^{8}	I. 682	44
I-321	8	1-374	I. $42934 \begin{array}{ll}59\end{array}$	I.487 3315	1-549 51	I-614 47	I. 683	43
I-32 I	7	I-375	$1.430 \quad 58$	I.488 54	1.550 3250	I.615 46	I. 684	42
1-322	6	I 375	r.43I 57	I-489 53	I-55I 49	I-616 3145	I. 685	4 I
1.323	375	$\begin{array}{llll}\text { 1.376 } & 36 & \text { o }\end{array}$	I•432 56	I-490 5^{2}	I•552 ${ }^{18}$	I-617 44	I. 686	O 40
I. 324	4	$1 \cdot 377$ $35 \begin{array}{ll}59\end{array}$	I*433 3455	I-491 5I	1-553 47	I-6I8 83	1.687	39
I• 325		I.378 58	I-433 54	I.492 3315	r.554 4^{6}	I.619 4^{2}	I. 689	38
I. 325	2	1.37957	1-434 53	I-493 49	I•555 3245	I-620 4 I	I 690	37
I-326		$1 \cdot 380 \quad 56$	1*435 5^{2}	I-494 4^{8}	1-556 44	I. 62131840	I-691	36
I. 327	37	$1 \cdot 38 \mathrm{I} \quad 35 \quad 55$	I•436 5I	I-495 47	1-557 43	I-622 39	I. 692	3035
1-328	3659	$\mathrm{I} 38 \mathrm{I} \quad 54$	I.437 $34 \begin{aligned} & \text { 50 }\end{aligned}$	I-496 46	I. $55^{8} 42$	I-623 38	I. 693	34
I-329	58	I.382 53	I-438 ${ }^{8}$	I-497 33145	I. 5594 I	I. $624 \quad 37$	I-694	33
I-329	57	I-383 52	I-439 4^{8}	I-498 44	I.560 3240	I. 625 36	I. 695	32
I. 330	56	I-384 $\quad 5 \mathrm{I}$	I $440 \quad 47$	I-498 43	1.561 39	I. 626 31 35	I-696	31
1-331	3655	$\begin{array}{llll}1.385 & 35 & 50\end{array}$	I-44 $1{ }^{\text {I }}$	I-499 42	I. 56238	I-628 34	I-698	3030
I.332	54	I-386 49	I-44I 3445	I-500 $\mathbf{1}^{1}$	1.56337	I-629 33	I-699	29
I 333	53	I-386 48	I-442 44	$1 \cdot 501334^{0}$	I.564 36	I-630 32	1.700	28
I. 333	52	I-387 47	I-443 43	I•502 39	I.565 3235	I-63I 31	1•701	27
I•334	5 I	I-388 46	I-444 42	1.503 38	I-566 34	I. 632 3I 30	$1 \cdot 702$	26
I 335	3650	I•389 3545	I-445 4 I	r-504 37	I-567 33	I-633 29	1.703 3	3025
I. 336	49	I-390 44	I.446 344^{4}	$1 \cdot 50536$	I. 568 32	I-634 28	I'704	24
- $\times 337$	48	I-391 43	I-447 39	I•506 3335	1.569 3I	I-635 $\quad 27$	1.706	23
1-337	47	I-392 42	I-448 ${ }^{8} 3^{8}$	$1 \cdot 50734$	1.570 3230	I-636 26	1.707	22
I•338	46	I-392 41	I-449 37	$1 \cdot 50833$	1-571 29	I 6373125	I 708	21
1-339	3645		I $45^{\circ} \quad 36$	I. 50932	I 57228	I. 638 24	1.709 3	3020
I $\cdot 340$	44	I-394 39	1-450 3435	I.510 , 31	1.573 27	I.639 23	I-710	19
I•34	43	1-395 38	I-4.5 103	I•511 3330	1.574 26	I 640	I•711	18
I $34{ }^{2}$	42	I-396 37	I-452 33	1-512 29	1.575 $32 \begin{array}{ll} & 25\end{array}$	I-641 21	I-712	17
I•342	4 I	I-397 - 398	I-453 32	$\mathrm{I} \cdot 513 \quad 28$	1.576	I 643 31 20	I-714	16
I.343	3640	I-398 3535	I-454 31	I-5I4 27	1.577 23	I-644 $\quad 19$	1.7153	3015
I. 344	39	I-398 34	1.455 3430	$1.515 \quad 26$	I-578	I-645	1•716	14
I. 345	38	1-399 33	I-456 29	$1 \cdot 5163325$	1.579 21	I. $646 \quad 17$	1.717	13
I. 346	37	$1 \cdot 400 \quad 32$	1-457 28	$1.517 \quad 24$	1.5803220	$\mathrm{I} \cdot 647$ I6	I•718	12
I. 346	36	I-40I 31	I-458 $\quad 27$	I.517 23	1.5819	I-648 31 15	1.719	11
I. 347	3635	I.402 $35 \begin{array}{ll}30\end{array}$	I-459 26	I-518	$1.582-18$	$1 \mathrm{I} \cdot 649 \mathrm{I}$	I 7203	3010
I•348	34	$1.403 \quad 29$	I-460 $34 \begin{array}{ll}15\end{array}$	1.519 21	I. 583 I7	I $655^{\circ} \quad 13$	I•722	9
I•349	33	1.40428	I-460 24	I.520 33120	$1.584 \quad 16$	I-651 12	I•723	8
- $35{ }^{\circ}$	32	I.404 $\quad 27$	1.4615	I-52I 19	$\begin{array}{lllll}1.585 & 32 & 15\end{array}$	I $652 \quad 11$	I. 724	
I.35I	31	$1 \cdot 405 \quad 26$	$1.462 \quad 22$	1.522	1.586 14	1.653 31	I.725	6
1.35I	3630	I-406 35125	I. 463 21	$1.523 \quad 17$	I 587 I 5	I. 654	1.726 3	305
I•352	29	I.407 24	I.464 $34 \begin{array}{ll}\text { 20 }\end{array}$	I'524 16	1.588 12	r.655	I•727	4
I. 353	28	I-408 23	I. 465 19	$1 \cdot 525 \quad 3315$	I. 589 II	I. 657	I•729	3
I•354	27	I.409 22	$1 \cdot 466 \quad 18$	I. 526 I4	I.590 32 1о	I. 658	I.730	2
I•355	26	I.4IO 21	1.467	$1 \cdot 52713$	I.591	I.659 3I	I.731	1

Table \mathbf{C}^{1}.

Azimuth Corresponding to A and B Correction in Departure.

Table $\mathbf{C l}^{1}$.
Azmuth Corresponding to A and B Correction in Departure.

Table C^{1}

Azimuth Corresponding to A and B Correction in Departure.

Table C^{1} ．

Azimuth Corresponding to A and B Correction in Departure．

A\＆B	Az．	A \＆B											
7.60	30	8.89	${ }^{\circ} \mathrm{C} 2$	10									
7.61	29	8.92	24	10.75		13.5	415	18.0		27.1		$54 \cdot 6$	
7.63 7.65	27	8.94 8.96	23	10．78			I4	18．1		${ }^{27.3}$		55．4	
	${ }_{26}^{27}$	8．99	${ }_{22}^{22}$	${ }_{\text {lo }}^{\text {ro．} 85}$	17	$\xrightarrow{13 \cdot 6}$	13	18.2 18.3					
7.68	725	9．or	620	то．88	515	13.7	11	18.4				58	
		9.03	19		It	13.7	410	18.5		28.2		5	8
			18	Io．		［13．8		18	3	${ }_{28.6}^{28.4}$			
77.75	21	${ }_{\text {9．}}^{\text {91 }}$	$\xrightarrow{17}$	（10．99				18		28.9		61．4	
777	720	9．13	615	11．06	5 10	14.8		18.9		29.1		63.7	$\begin{array}{r}55 \\ 54 \\ \hline\end{array}$
7.79 7.85	19 18 18	${ }_{\text {9．18 }}^{9.15}$	${ }_{14}^{14}$	（1） $\begin{aligned} & 11.10 \\ & \text { IT } 13\end{aligned}$		$\left\lvert\, \begin{aligned} & 14.0 \\ & 14.1\end{aligned}\right.$	5	${ }_{\text {IT }}^{19.0}$		${ }_{29.6}^{29.4}$	57	64．9	
	17	9．21	2	11．17		14		19.2	259	$29 \cdot 9$			
7.8	16	9.23	H			14.		19.3	58	30.1		9	
	75		610	${ }^{11.24}$	55	I4．		19.4		$3{ }^{\circ}$	53	70.2	倍
								19		㤑			${ }^{88}$
7.90 7.92	${ }^{1} 3$	$9 \cdot 3$		（11．32		$1{ }_{14} 1$	359		2 5			${ }^{73 \cdot 1}$	47
7.93		9.36		II． 39		${ }_{14}$	57	19					
$7 \cdot 95$	7 10	$9 \cdot 38$	65	II	50	14	56	20.	52		48	78.1	仡
	8	$9 \cdot 44$		II． 47	＋59	14.	355	20．1	250	32．1．	7	79.9 8.8 8.8	4
8．0\％		9		11．55		14.		20^{3}	49	${ }_{32}$		83.8	
8.03		9.49		11.59		14.8		20.4	48	33.0	1	85.9	
8.0	7	9.51	6.	11．62	$+55$	14.9	5	20.6	47	33.	43	88.1	
			5	${ }^{11.67}$		r4	50	20.		33		90．5	
－		9.57		11．71			49	${ }^{20.8}$	45	34			37
$8 \cdot 12$		－ $\begin{aligned} & \text { 9．} \\ & 9.62\end{aligned}$	56		51	${ }_{15}^{15}$	47	${ }_{2 \mathrm{l}}^{20}$					
3．144		9．65	55	11．83	＋ 50	15.2	46	21.	4	35	38	Ior	
－					49	15．3	345	2 L	4	35．	37	${ }^{10}$	33
		9.73		II		15	43	$2 \mathrm{I} \cdot 6$		36	135	III	32
8.22	6	9.7	51			15.5	42	21.	38	36	34	115	
（8．24	$\bigcirc 55$	9．79	550	12．	$+45$	15	4 4	${ }_{22}^{21.9}$	37		33	${ }_{12}^{18}$	
8．28	5	${ }_{9}$ 9．82	${ }_{48}^{49}$	12		${ }_{1} 15$		22.				123	
8.30	52	9.87	47	12		15		22	，	${ }^{\text {d }}$		132	
8.32		9.90	46	12.21	，	15	37	22.		38.	29	${ }_{13}{ }^{1}$	
8．34 8.36	650	9.9	545	I2	＋ 40	15.9	，	22	32	析			
（	${ }_{48}^{49}$		${ }_{4}^{44}$		39 38	${ }^{160} 1$				39	26	149 156	
8.41	47					$1{ }^{1}$	33	$23 \cdot \mathrm{I}$	29	${ }^{\circ}$		164	
	46	10．05	${ }_{5}{ }^{41}$	$1{ }_{12}^{12}$	55		32	${ }^{23.2}$		40		172	
	${ }_{4}$		540				330	23	26	${ }^{41}$			
	43	Io．	38	12	33	16.	29	23.7	225	${ }_{42}$		202	
8.51	42	10	37	${ }^{121.61}$		${ }_{16}^{16 .}$	28	23.	24	43	120	225	
	$6{ }_{6}^{41}$					16.	27 26	24	22	43		22	
		10				1	325	24	21	44		264	
		1029			28			24	22			286	
	36 635					${ }_{1}^{17.0} 1$	${ }_{21}^{22}$	${ }_{25}^{24}$		46．4			
		10． 42			4		320	25	16		2	${ }_{4}{ }^{\circ}$	
	33			13	23	17.3	19	25	215	48.4		${ }_{491}$	
	3^{32}	10	26	边		17.	18	25.	${ }_{14}^{14}$	49． I		73	
	630	${ }_{\text {lo }}$	525				117	26.0	12	${ }_{50.5}^{49}$			
	29		24	$1{ }^{13.25}$		17.	315	26.2	11	$51 \cdot 3$		${ }_{114}{ }^{6}$	
	28		23	13.35	18		14		2 10				
	27		22		17		13			52.9	15		
8．87	26	68	1	13.40	16	17.9	12	6.8		53.7		nfinite	－

Table C^{2}

POSITION－LINES CORRESPONDING TO THE A AND B CORRECTION．FOR USE WITH THE PLANE－SCALE CHART IN THE SUMNER PROBLEM．

Name the position－line according to the name of the A and B correction，and contrary to the name of the bearing of the body observed．

$\begin{aligned} & \text { a } \\ & \text { 品 } \\ & \text { det } \\ & \text { 4 } \end{aligned}$				－${ }_{\text {n }}$		m．								no ${ }^{\text {n }}$	
$\therefore 00=0 \circ$		${ }^{\prime} 5=14^{\circ} \mathrm{O}$		$\cdot 50=26^{\circ} \cdot 6$		$75=3 \circ \cdot 9$		$\mathrm{I}^{\circ} \mathrm{Co}=45^{\circ} \mathrm{O}$		$\mathrm{I}^{\prime} 42=54^{\circ} \cdot 8$		$\mathrm{x} \cdot 92=62^{\circ} \cdot 5$		$4^{\prime} 2=76^{\circ} 6$	
－or	0.6	$\cdot 26$	$14^{6} 6$	51	27°	76	37.2	I．OI	$45^{\circ} 3$	r 44	$55^{\circ} 2$	r．94	$62 \cdot 7$		$77 \cdot 2$
－02	$1 \cdot 1$	27	15^{1}	． 52	27.5	77	$37^{\circ} 6$	r．02	$45^{\circ} 6$	r．46	$55^{\circ} 6$	r．96	63.0	$4 \cdot 6$	777
$\stackrel{.03}{ }$	ェ．7	${ }^{2} 8$	${ }_{1}^{15.6}$	53	27.9	78	38.0 38.3	I．03	45.8	1．48	56.0	r．98	${ }^{63} 3^{2}$	4.8	78.2
$\cdot 04$	$2 \cdot 3$	29	16.2	54	28.4	79	$38 \cdot 3$	r． 04	$46 \cdot 1$	1．50	$56 \cdot 3$	2.00	$63^{\circ} 4$	$5{ }^{\circ}$	78.7
－05	2.9	30	16.7	55	28.8	． 80	$38 \cdot 7$	r．05	$46 \cdot 4$	1．52	56.7	2.05	64.0	5.5	
－06	3.4	31	17.2	56	29.2	．81	$39^{\circ} \mathrm{O}$	r． 06	$46 \cdot 7$	1.54 1.56	57．0	${ }^{2} 10$	$64^{\circ} 5$	$6 \cdot 0$	$80 \cdot 5$
．07	4.0	32	17.7 18.3	． 57	29.7 $30^{\circ} \mathrm{I}$	．82	33.4	r．07	${ }^{46 \cdot 9}$	1．56	57．3	2.15 2.20	$65 \cdot 1$ $65 \cdot 6$	6.5	8 r 8 8.9
－08	${ }_{5}{ }^{\text {¢ }}$ I		18.3 18.8	． 58	$30^{\prime} \mathrm{I}$ 30	．83	39% 40.	${ }_{\text {r }} \mathrm{l}$－10	$47^{\prime 2}$ $47^{\prime} 7$	$\begin{array}{r}\text { r } \\ \text { r } 68 \\ \hline\end{array}$	57.7 58.0	2.20 2.25	$65^{\circ} \cdot$ 66.0	7\％	81.9 82.9
－10	5.7	$\cdot 35$	193	－60	$3{ }^{\circ} \mathrm{O}$	85	$40 \cdot 4$	I•12	48.2	r．62	$58 \cdot 3$	2．30	$66 \cdot 5$	9	$83 \cdot 7$
－11	63	． 36	$19 \cdot 8$	－ 6	$3{ }^{1} 4$	． 86	$40 \cdot 7$	I． 14	$48 \cdot 7$	1． 64	$58 \cdot 6$	$2 \cdot 40$	67.4	ro•	$84 \cdot 3$
$\cdot 12$	6.8	$\cdot 37$	$20 \cdot 3$	－62	$3{ }^{1} \cdot 8$	87	$4{ }^{\circ} \mathrm{O}$	1•16	$49^{\circ} 2$	1．66	58．9	$2 \cdot 50$	68.2	rio	84.8
－13	7.4	${ }^{38}$	$20 \cdot 8$	． 6	$32 \cdot 2$	88	$4 \mathrm{I}^{\circ} 3$	I．18	497	r 68	59．2	2.60	69.0	${ }^{12}{ }^{\circ} \mathrm{O}$	85.2
－${ }^{14}$	8.0	－39	2 T 3		$32 \cdot 6$	89	$4{ }^{1} 7$	1．20	$50 \cdot 2$	1．70	59．5	$2 \cdot 70$	69.7	13.0	$85 \cdot 6$
－ 15	$8 \cdot 5$	40	21.8	65	33°	90	42.0	1.22	50%	1．72	59．8	$2 \cdot 80$	$70 \cdot 3$	15.0	86.2
$\cdot 16$	${ }_{9}^{9.1}$	41	22.3 22.8 2	－66	$33^{\circ} 4$	91	$42 \cdot 3$	1.24	${ }_{51}^{51.1}$	r 74	60．	2.90	$77^{\circ} \mathrm{O}$		${ }^{86 \cdot 6}$
－17	9.6 10	$\stackrel{4}{4}$	22.8 23	$\stackrel{67}{ } 58$	338 34.2	${ }_{9}^{92}$	$42 \cdot 6$ $42 \cdot 9$	1.26 I 28	51.6 52.0	1．76 1.78	60.4 60.	3.00 3.10	$71 \cdot 6$ $72 \cdot \mathrm{I}$	20.0 $25^{\circ} \mathrm{O}$	$87 \cdot \mathrm{I}$ 87
$\cdot 19$	10.8		238 23	69	34.2 34		$42 \cdot 9$	1.30	$52 \cdot 4$	I．80	$60 \cdot 9$	3.20	${ }_{72 \cdot 6}$	30.0	$88 \cdot \mathrm{I}$
－ 20	11.3		24.2	$\cdot 70$	35°	95	$43 \cdot 5$	1.32	$52 \cdot 9$	I．82	61.2	3．30	73.1	40.0	88.6
－21	119	46	$22^{2} 7$	71	35.4	96	$43^{\circ} 8$	$1 \cdot 34$	$53 \cdot 3$	r．84	$61 \cdot 5$	3.40	$73 \cdot 6$	50°	88.9
${ }_{-22} \cdot 2$	12.4		25.2 25.6	${ }^{72}$			44.1 44.4		53.7 54	r． 86 r .88	$6 r^{\prime} 7$ 62.		$74 \cdot 5$ 75		89.4 89
$\begin{array}{r}23 \\ .24 \\ \hline\end{array}$	130 135		$25 \cdot 6$ $26 \cdot 1$	73 74	$36 \cdot 1$ $36 \cdot 5$	．99	$44 *$ 44	1．38	54.1 54	r r	$62 \cdot$ 62.2	3．80	$7{ }^{75 \cdot 3}$	Infinite	

It must be borne in mind that this table does not give the true geographical lines of position， but lines of position which will give the same result as to latitude and longitude on a plane chart as the true lines of position would give on a Mercator＇s chart．It is given here for the purpose of saving the trouble of getting out a chart．All that is required for plotting the Sumner position will be a horizontal line in the work－book representing the D．R．latitude，and a perpendicular line to the former for use in laying off the position－lines by a protractor．On the horizontal line set off the points of two longitudes at a distance from one another of，say， I in．to 10 of longitude． From these two points lay down the Sumner lines，and from the point where they intersect draw a perpendicular to the line of D．R．latitudes．The longitude at the point struck by the perpendicular is the longitude required，and can be measured from either of the points of longitude．The same scale is used for the latitude as for the longitude．

A small 5 in．boxwood protractor rule with a diagonal scale of inches for measuring to to part of an inch may be bought for is．，and is the only instrument which will be required．

To find the true position－hne from this table consider the A and B correction as a diff． long．，the dep．corresponding to this diff．long．will then give the true line of position， and will give the same position－ie．，latitude and longitude－on the Mercator chart that the other sines of position give on the plane chart．

Example for true position－line：In lat $47^{\circ} \mathrm{S}$ ．a．m．sun＇s obsn．，when A and B cor．$=\mathrm{d}$ ．long． $\because 85^{\prime} \mathrm{N} . \operatorname{dep}=\cdot 5^{\prime} \mathrm{N} .=$ true position－line $\mathrm{N} .30{ }^{\circ} \mathrm{I}^{\circ} \mathrm{W}$ ．

Table D.
Showing tre Error pronuced in the Time or Longitude sy an Error of í in the Altitude.

	AZIMUTHS.														
	90°	890	88°	87°	86°	85°	84°	83°	82°	81°	${ }^{80}$	79°	78°	77°	78°
-	s	s		s.		S.	s.	s.	s.			s.	s.	s.	
0	4.00	$4^{\circ} 00$	4.00	$4^{\circ} \mathrm{OI}$	4.01	4.02	4.02	4.03	4.04	4.05	4.06	4.07	4.09	$4^{\circ} 10$	4×12
1	4.00	4.00	4.00	4 - 01	4.01	4.02	4.02	4.03	4.04	4.05	4.06	4.08	4.09	$4^{\cdot 11}$	4^{-12}
2	4.00	4.00	4.00	4.01	4.01	4.02	4.02	4.03	4.04	4.05	4.06	4.08	4.09	4^{-11}	$4^{*} 12$
3	4.01	$4^{\circ} \mathrm{OI}$	$4{ }^{\circ} \mathrm{Or}$	$4^{\circ} \mathrm{OI}$	4.02	4.02	4.03	4.04	4.04	4*06	4.07	4.08	4.09	411	4*13
4	4.01	4.01	$4{ }^{\circ} \mathrm{OI}$	$4{ }^{\circ} 02$	402	4.03	$4{ }^{\circ} \mathrm{O}$	4.04	4.05	4.06	4.07	4.08	$4 \cdot 10$	4^{-12}	$4^{-1} 3$
5	4.01	4.02	4.02	4.02	4.03	4.03	4.04	4.05	4.05	407	4.08	4.09	$4 \cdot 10$	$4^{1} 12$	414
6	4.02	4.02	4.02	$4{ }^{\circ} 03$	4.03	4.04	$4 \cdot 04$	4.05	4.06	4.07	4.08	$4 \cdot 10$	4.1I	4.13	4.15
7	4.03	4.03	4.03	4.04	4.04	4.05	4.05	4.06	4.07	4.08	4.09	$4^{\cdot 1} 1$	$4 \cdot 12$	$4 \cdot 14$	$4 \cdot 15$
8	4.04	4.04	$4{ }^{\circ} \mathrm{O}$	4.04	4.05	4.05	4.06	4.07	4.08	4.09	4^{-10}	$4 \cdot 11$	4.13	4.15	4.15
9	4.05	4.05	4.05	4.06	4.06	4.07	4.07	4.08	4.09	$4^{1} 10$	4.11	$4 \cdot 13$	4.14	4•16	4.17
10	4.06	4.06	4.06	4.07	4.07	4.08	4.08	4.09	$4^{1} 10$	$4 \cdot 11$	$4^{1} 12$	$4^{1} 14$	4.15	$4^{\cdot 1} 7$	4.19
11	4.07	4.08	4.08	4.08	4.08	4.09	4×10	$4 \cdot 11$	4.11	4.13	4.14	$4^{\prime} 15$	4.17	4.18	$4{ }^{20}$
12	4.09	4.09	4.09	4.09	$4 \cdot 10$	4-10	4.1I	$4^{1} 12$	4.13	4.14	4.15	$4^{1} 17$	$4 \cdot 18$	$4 \cdot 20$	$4 \cdot 21$
13	4^{10}	$4 \cdot 11$	$4^{\circ} 11$	4'II	4.12	4.12	$4 \cdot 13$	$4^{-1} 4$	$4 \cdot 15$	4.16	4.17	$4 \cdot 18$	$4 \cdot 20$	4.21	$4 \cdot 23$
14	$4 \cdot 12$	$4^{\prime} 12$	$4 \cdot 12$	4.13	4•13	$4^{*} 14$	4.15	4.15	4.16	$4 \cdot 17$	$4 \cdot 19$	$4 \cdot 20$	$4 \cdot 21$	4.23	4.25
15	$4^{*} 14$	$4^{\circ} 14$	4^{-14}	$4 \cdot 15$	4*15	$4^{1} 16$	$4^{1} 16$	$4^{1} 17$	$4^{1} 18$	4'19	4.20	4.22	$4 \cdot 23$	4.25	$4 \cdot 27$
16	4.16	$4 \cdot 16$	4-16	$4 \cdot 17$	$4 \cdot 17$	$4 \cdot 18$	4-18	$4 \cdot 19$	$4 \cdot 20$	4.21	4.23	4.24	4.25	4.27	4.29
17	4.18	$4 \cdot 18$	4•19	4.19	4.19	4.20	4.21	4.21	4.22	4.23	4.25	4.26	$4 \cdot 28$	$4 \cdot 29$	4.31
18	4.21	4.21	$4 \cdot 21$	$4 \cdot 21$	4.22	4.22	4.23	4.24	4.25	$4 \cdot 26$	4.27	4.28	$4 \cdot 30$	$4 \cdot 32$	$4 \cdot 33$
19	4.23	4.23	4.23	$4 \cdot$	$4 \cdot 24$	4.25	4.25	4.26	4.27	$4 \cdot 28$	4.30	4.31	$4 \cdot 32$	$4 \cdot 34$	$4 \cdot 36$
20	4.26	4.26	4.26	4.26	$4 \cdot 27$	4.27	4.28	4.29	4.30	$4 \cdot 31$	4.32	4.34	4.35	$4 \cdot 37$	4.39
21	4.28	4.29	4.29	4.29	$4 \cdot 30$	$4 \cdot 30$	$4 \cdot 31$	4.32	4.33	$4 \cdot 34$	4.35	$4 \cdot 36$	$4 \cdot 38$	4.40	4.42
22	$4 \cdot 31$	4.31	$4 \cdot 32$	4.32	4.32	4.33	4.34	4.35	4.36	4.37	4.38	4.39	$4{ }^{\circ} 4$	4.43	4.45
23	4.34	4.35	$4 \cdot 35$	4.35	4.36	4.36	4.37	4.38	4.39	$4{ }^{4} 40$	4.41	4.43	4.44	4.46	4.48
24	4.38	$4 \cdot 38$	4.38	4.38	$4 \cdot 39$	4.40	4.40	$4{ }^{4} 4$	$4{ }^{42}$	4.43	4.45	4.46	4.48	4.49	4.51
25	44^{41}	$4{ }^{41}$	$4{ }^{4} 42$	4.42	$4{ }^{\circ} 42$	$4{ }^{*} 43$	4.44	$4 \cdot 45$	$4{ }^{46}$	4.47	4.48	4.50	4.51	4.53	4.55
26	4.45	$4 \cdot 45$	4.45	4.46	4.46	$4 \cdot 47$	4.47	4.48	$4 \cdot 49$	4.51	$4 \cdot 52$	4.53	4.55	4.57	4.59
27	$4{ }^{4} 49$	4.49	4.49	4.49	4.50	4.51	4.51	4.52	4.53	4.55	4.56	4.57	4.59	4.61	4.63
28	4.53	4.53	4.53	4.54	4.54	4.55	4.55	4.56	4.57	4.59	$4 \cdot 60$	4.62	4.63	4.65	$4 \cdot 67$
29	4.57	4.57	4.58	4.58	4.58	4.59	$4 \cdot 60$	$4 \cdot 61$	4.62	4.63	$4 \cdot 64$	$4 \cdot 66$	4.68	4.69	4.71
30	$4 \cdot 62$	$4 \cdot 62$	$4 \cdot 62$	4.63	$4 \cdot 63$	$4 \cdot 64$	4.64	$4 \cdot 65$	4.66	4.68	4.69	4.71	472	4.74	$4^{\cdot 76}$
31	4.67	4.67	4.67	4.67	4.68	4.68	4.69	4.70	4.71	4.72	4.74	4.75	4×77	4.79	4.8 r
32	4.72	4.72	4.72	4.72	4×73	4.73	4.74	4.75	4.76	4.78	${ }^{\prime} 779$	4.80	4.82	$4 \cdot 84$	$4 \cdot 86$
33	4.77	$4^{\prime} 77$	4.77	4.78	$4 \cdot 78$	4.79	4.80	4.8 r	4.82	$4 \cdot 83$	$4 \cdot 84$	$4 \cdot 86$	$4 \cdot 88$	4.89	4.92
34	4.82	4.82	4.83	$4 \cdot 83$	$4 \cdot 84$	$4 \cdot 84$	$4 \cdot 85$	4.86	4.87	$4 \cdot 89$	4.90	4.92	4.93	4.95	4.97
35	$4 \cdot 88$	$4 \cdot 88$	4.89	4.89	4.90	4.90	4.91	4.92	4.93	4.94	4.96	4.97	$4{ }^{\circ} 99$	$5 \cdot \mathrm{OI}$	5.03
36	4.94	4.95	4.95	4.95	4.96	4.96	4.97	4.98	4.99	5.01	5.02	$5 \cdot 04$	5.05	5.07	5.10
37	$5{ }^{\circ} \mathrm{OI}$	5.01	$5 \cdot 1$	5.02	5.02	5.03	5.04	5.05	5.06	5.07	5.09	$5 \cdot 10$	$5 \cdot 12$	$5 \cdot 14$	$5 \cdot 16$
38	5.08	5.08	$5 \cdot 08$	$5 \cdot 08$	5.09	$5 \cdot 10$	$5 \cdot 10$	$5 \cdot 11$	5.13	5.14	5.15	$5 \cdot 17$	$5 \cdot 19$	5.21	5.23
39	5.15	$5 \cdot 15$	$5 \cdot 15$	5.15	5.16	5.17	$5 \cdot 18$	5.18	$5 \cdot 20$	$5 \cdot 21$	5.23	5.24	$5 \cdot 26$	$5 \cdot 28$	5.30
40	$5 \cdot 22$	$5 \cdot 22$	$5 \cdot 22$	5.23	$5 \cdot 23$	$5 \cdot 24$	$5 \cdot 25$	5.26	$5 \cdot 27$	5.29	$5 \cdot 30$	$5 \cdot 32$	$5 \cdot 34$	$5 \cdot 36$	$5 \cdot 38$
41	$5 \cdot 30$	5.30	$5 \cdot 30$	$5 \cdot 31$	$5 \cdot 31$	$5 \cdot 32$	$5 \cdot 33$	$5 \cdot 34$	5.35	$5 \cdot 37$	$5 \cdot 38$	$5 \cdot 40$	5.42	5.44	5.46
42	$5 \cdot 38$	$5 \cdot 38$	$5 \cdot 39$	$5 \cdot 39$	5.40	5.40	5.41	5.42	5.44	5.45	5.47	5.48	5.50	5.52	5.55
43	5.47	5.47	5.47	5.48	5.48	$5 \cdot 49$	$5 \cdot 50$	5.51	$5 \cdot 52$	5.54	5.55	5.57	5.59	$5 \cdot 61$	$5 \cdot 64$
44	5.56	5.56	5.56	5.57	5.57	5.58	5.59	5.60	5.62	5.63	5.65	5.66	$5 \cdot 68$	5.71	5.73
45	$5 \cdot 66$	$5 \cdot 66$	$5 \cdot 66$	$5 \cdot 66$	$5 \cdot 67$	$5 \cdot 68$	$5 \cdot 69$	$5 \cdot 70$	5.71	$5 \cdot 73$	$5 \cdot 74$	$5 \cdot 76$	$5 \cdot 78$	$5 \cdot 81$	$5 \cdot 83$
46	$5 \cdot 76$	5.76	5.76	5.77	$5 \cdot 77$	5.78	$5 \cdot 79$	5.80	5.81	5.83	$5 \cdot 85$	$5 \cdot 87$	$5 \cdot 89$	5.91	5.93
47	$5 \cdot 87$	5.87	$5 \cdot 87$	5.87	$5 \cdot 88$	$5 \cdot 89$	5.90	5.91	5.92	5.94	5.96	5.97	$6 \cdot 00$	6.02	$6 \cdot 04$
48	5.98	$5 \cdot 98$	5.98	$5 \cdot 99$	5.99	$6 \cdot 00$	$6 \cdot 1$	6.02	6.04	$6 \cdot 05$	$6 \cdot 07$	$6 \cdot 09$	$6 \cdot 11$	$6 \cdot 14$	$6 \cdot 16$
49	$6 \cdot 10$	$6 \cdot 10$	$6 \cdot 10$	$6 \cdot 11$	$6 \cdot 11$	$6 \cdot 12$	$6 \cdot 13$	$6 \cdot 14$	$6 \cdot 16$	6.17	$6 \cdot 19$	$6 \cdot 21$	$6 \cdot 23$	$6 \cdot 26$	$6 \cdot 28$
50	$6 \cdot 22$	6	6.23	6.23	$6 \cdot 24$	$6 \cdot 25$	$6 \cdot 2$	6.27	.6.28	$6 \cdot 30$	$6 \cdot 32$	$6 \cdot 34$	$6 \cdot 36$	$6 \cdot 39$	6.41
51	$6 \cdot 36$	$6 \cdot 36$	$6 \cdot 36$	$6 \cdot 36$	$6 \cdot 37$	$6 \cdot 38$	$6 \cdot 39$	$6 \cdot 40$	6.42	$6 \cdot 44$	6.45	6.48	$6 \cdot 50$	$6 \cdot 52$	$6 \cdot 55$
52	$6 \cdot 50$	$6 \cdot 50$	$6 \cdot 50$	$6 \cdot 51$	$6 \cdot 51$	$6 \cdot 52$	$6 \cdot 53$	$6 \cdot 55$	$6 \cdot 56$	$6 \cdot 58$	$6 \cdot 60$	$6 \cdot 62$	$6 \cdot 64$	$6 \cdot 67$	$6 \cdot 70$
53	$6 \cdot 65$	$6 \cdot 65$	$6 \cdot 65$	$6 \cdot 66$	$6 \cdot 66$	6.67	6.68	$6 \cdot 70$	$6 \cdot 71$	$6 \cdot 73$	$6 \cdot 75$	$6 \cdot 77$	$6 \cdot 80$	$6 \cdot 82$	$6 \cdot 85$
54	6.81	$6 \cdot 81$	$6 \cdot 8 \mathrm{I}$	6.81	$6 \cdot 82$	6.83	$6 \cdot 84$	6.86	$6 \cdot 87$	$6 \cdot 89$	6.91	$6 \cdot 93$	$6 \cdot 96$	6.98	$7 \cdot 01$
55	$6 \cdot 97$	$6 \cdot 97$	$6 \cdot 98$	$6 \cdot 98$	$6 \cdot 99$	$7 \cdot 00$	$7 \cdot 1$	7.03	$7 \cdot 04$	7-05	$7 \cdot 08$	$7 \cdot 10$	$7 \cdot 13$	$7 \cdot 16$	$7 \cdot 19$
56	$7 \cdot 15$	$7 \cdot 15$	$7 \cdot 16$	$7 \cdot 16$	7.17	$7 \cdot 18$	$7 \cdot 19$	7.21	7.22	$7 \cdot 24$	$7 \cdot 26$	$7 \cdot 29$	7.3 I	7.34	7.37
57	7.34	$7 \cdot 35$	$7 \cdot 35$	7.35	7.36	7.37	$7 \cdot 38$	7.40	7.42	7.44	7.46	7.48	7.51	7.54	7.57
58	7.55	$7 \cdot 55$	$7 \cdot 55$	$7 \cdot 56$	7.57	7.58	7.59	7.61	7.62	7.64	7.66	7.69	7.72	7.75	7.78
59	7.77	7.77	7.77	$7 \cdot 78$	7.79	7.80	$7 \cdot 81$	7.82	7.84 8.08	7.86	$7 \cdot 89$ $8 \cdot 12$	7.91 8.15	7.94 8.18	7.97 8.21	8.00 8.24
60	$8 \cdot 00$	$8 \cdot 00$	$8 \cdot 00$	8.01	$8 \cdot 02$	8.03	$8 \cdot 04$	$8 \cdot 06$	$8 \cdot 08$	$8 \cdot 10$	$8 \cdot 12$	$8 \cdot 15$	8.18	8.21	$8 \cdot 24$

To convert time into longitude divide by 4 . Thus $8.00 \mathrm{~s} . \div 4=2^{\prime}$ long.

Table D.
Showing the Error produced in the Time or Longitude by an Error of i' in the Altitude.

	AZIMUTHS.														
	75°	74°	73°	72°	71°	70°	${ }^{69}$	${ }^{68}{ }^{3}$	67°	66°	65°	64°	63°	62°	61°
	s.	s.	s.	S.	s.	s.	s.	s.	s.		S.	s.	s.	s.	s.
\bigcirc	$4 \cdot 14$	4.16	4.18	4.21	$4 \cdot 23$	4.26	$4 \cdot 28$	$4 \cdot 31$	$4 \cdot 35$	$4 \cdot 38$	$4{ }^{4} 4$	4×45	$4 \cdot 49$	4*53	$4 \cdot 57$
1	4.14	4.16	$4 \cdot 18$	4.21	$4 \cdot 23$	$4 \cdot 26$	$4 \cdot 29$	$4 \cdot 31$	$4 \cdot 35$	$4 \cdot 38$	4.41	4.45	4.49	4.53	4.57
2	4.14	4•16	4*19	4.21	$4 \cdot 23$	$4 \cdot 26$	$4 \cdot 29$	$4 \cdot 32$	$4 \cdot 35$	$4 \cdot 38$	$4 \cdot 42$	4.45	4.49	4.53	4.58
3	4.15	4.17	4*19	4.21	4.24	$4 \cdot 26$	4.29	$4 \cdot 32$	4.35	$4 \cdot 38$	4.42	4.46	4.50	$4 \cdot 54$	4.58
	$4 \cdot 15$	4•17	4•19	4.22	4.24	4.27	4.30	$4 \cdot 32$	4.36	$4 \cdot 39$	4.42	4.46	4.50	4.54	$4 \cdot 58$
5	4•16	4-18	$4 \cdot 20$	4.22	4.25	$4 \cdot 27$	4.30	4.33	4.36	$4{ }^{40}$	4.43	4.47	4.51	4.55	4.59
6	4.16	4.18	4.21	4.23	$4^{\circ} 25^{\prime}$	4.28	4×31	4.34	4.37	$4 * 40$	4×44	4×47	4.51	4.56	$4 \cdot 60$
7	4.17	$4 \cdot 19$	$4 \cdot 21$	4.24	$4 \cdot 26$	$4 \cdot 29$	$4 \cdot 32$	$4 \cdot 35$	4.38	4.41	4.45	4.48	4.52	4.56	4.61
8	4.18	4.20	4.22	4.25	4.27	4.30	4.33	$4 \cdot 36$	4.39	4.42	4.46	4.49	4.53	4.57	$4 \cdot 62$
9	4.19	4.21	4.23	$4 \cdot 26$	4.28	4.31	4.34	4.37	4.40	4.43	$4 \cdot 47$	4.51	4.55	4.59	$4 \cdot 63$
10	4.20	4.23	$4 \cdot 25$	$4 \cdot 27$	$4 \cdot 30$	$4 \cdot 32$	4.35	$4 \cdot 38$	4.41	4.45	4.48	4.52	4.56	4.60	$4 \cdot 64$
II	4.	4.24	4.26	4.28	$4 \cdot 3 \mathrm{I}$	4.34	$4 \cdot 36$	$4 \cdot 39$	$4{ }^{\circ} 43$	4.46	4.50	4.53	4.57	$4 \cdot 62$	$4 \cdot 66$
12	4.23	4.25	4.28	4.30	$4 \cdot 32$	4.35	$4 \cdot 38$	$4{ }^{4} 1$	4.44	4.48	4.51	4.55	4.59	$4 \cdot 63$	$4 \cdot 68$
13	$4 \cdot 25$	4.27	$4 \cdot 29$	$4 \cdot 32$	4.34	$4 \cdot 37$	$4{ }^{4} 40$	4.43	4.46	4.49	4.53	4.57	$4 \cdot 61$	4.65	$4 \cdot 69$
14	4.27	$4 \cdot 29$	$4 \cdot 31$	$4 \cdot 33$	$4 \cdot 36$	4.39	$4 \cdot 42$	4.45	4.48	$4 \cdot 51$	4.55	4.59	4.63	4.67	4.71
15	4.29	4.31	$4 \cdot 33$	4.35	$4 * 38$	$4{ }^{41}$	4.44	$4 \cdot 47$	4.50	4.53	4.57	$4 \cdot 61$	4.65	$4 \cdot 69$	4.73
16	4.31	$4 \cdot 33$	4.35	4.38	$4{ }^{\circ} 40$	4.43	$4 \cdot 46$	4×49	45^{2}	$4 \cdot 56$	4.59	4.63	4.67	4×7	$4^{\prime} 76$
17	4.33	$4 \cdot 35$	4.37	$4 * 40$	$4 \cdot 42$	4.45	4.48	$4 \cdot 51$	4.54	$4 \cdot 58$	4.62	$4 \cdot 65$	4.69	4.74	$4 \cdot 78$
18	4.35	4.38	4.40	$4{ }^{*} 42$	4.45	4.48	4.51	4.54	4.57	$4 \cdot 60$	$4^{\cdot 64}$	$4 \cdot 68$	4.72	$4 \cdot 76$	$4 \cdot 81$
19	4.38	4.40	$4 \cdot 42$	4.45	4.47	4.50	4.53	4.56	4.60	4.63	4.67	4.71	4.75	4.79	$4 \cdot 84$
20	4.41	4.43	$4 * 45$	$4{ }^{48}$	4.50	4.53	4.56	4.59	4.62	$4 \cdot 66$	4'70	474	4.78	4.82	$4 \cdot 87$
21	$4 \cdot 44$	4.46	4.48	4.51	4.53	$4 \cdot 56$	4.59	4.62	$4 \cdot 65$	4.69	473	4.77	4.81	4.85	4.90
22	4.47	4.49	4.51	4.54	4.56	4.59	4.62	4.65	4.69	4772	4.76	$4 \cdot 80$	$4 \cdot 84$	$4 \cdot 89$	4.93
23	$4 \cdot 50$	4.52	4.54	4.57	4.60	$4^{*} 62$	$4 \cdot 65$	4.69	4.72	$4 \cdot 76$	4.79	$4 \cdot 83$	4.88	4.92	$4 \cdot 9$
24	4.53	4.56	$4 \cdot 58$	4.60	$4 \cdot 63$	4.66	4.69	4.72	4.76	4.79	4.83	$4 \cdot 87$	4.91	$4 \cdot 96$	$5 \cdot 01$
25	$4 \cdot 57$	$4 \cdot 59$	$4 \cdot 62$	$4 \cdot 64$	$4 \cdot 67$	4.70	473	4.76	4*79	$4 \cdot 83$	$4 \cdot 87$	4.91	4.95	$5^{\circ} 00$	5.05
26	$4 \cdot 61$	4.63	4.65	$4 \cdot 68$	4.71	4.74	4×77	$4 \cdot 80$	$4 \cdot 83$	4.87	4.91	4.95	4×9	5.04	5.09
27	$4 \cdot 65$	$4 \cdot 67$	$4 \cdot 69$	$4 \cdot 72$	$4 * 75$	4.78	4.81	4.84	$4 \cdot 88$	4.91	4.95	5.00	5.04	$5 \cdot 08$	$5 \cdot 13$
28	$4 \cdot 69$	4.71	4.74	$4^{\circ} 76$	4.79	4.82	$4 \cdot 85$	$4 \cdot 89$	4.92	4.96	$5{ }^{\circ} 00$	5.04	5.08	$5 \cdot 13$	5.18
29	4.73	4.76	4.78	$4 \cdot 8 \mathrm{I}$	$4 \cdot 84$	$4 \cdot 87$	$4 \cdot 90$	4.93	4.97	$5 \cdot 1$	5.05	$5 \cdot 09$	5.13	5.18	$5 \cdot 23$
30	4.78	$4 \cdot 80$	$4 \cdot 83$	$4 \cdot 86$	$4 \cdot 88$	4.92	4.95	4.98	$5{ }^{\circ} 02$	5.06	5.10	$5 \cdot 14$	5.18	5.23	$5 \cdot 28$
31	4.83	$4 \cdot 85$	$4 \cdot 88$	4.91	4.94	4.97	$5 \cdot 00$	5.03	5.07	$5 \cdot 11$	5.15	5.19	5.24	5.29	$5 \cdot 34$
32	$4 \cdot 88$	4.91	$4 * 93$	4.96	$4 \cdot 99$	5.02	$5 \cdot 05$	5.09	$5^{\circ} \mathrm{I} 2$	$5 \cdot 16$	$5 \cdot 20$	$5 \cdot 25$	$5 \cdot 29$	5.34	$5 \cdot 39$
33	4.94	4.96	4.99	$5 \cdot 101$	$5 \cdot 04$	5.08	$5 \cdot 11$	5.14	5.18	$5 \cdot 22$	5.26	5.31	$5 \cdot 35$	5.40	5.45
34	5.00	5.02	5.05	5.07	5.10	$5 \cdot 13$	$5 \cdot 17$	$5 \cdot 20$	5.24	5.28	5.32	$5 \cdot 37$	$5{ }^{\circ} 42$	5.46	5.52
35	5.06	5.08	$5 \cdot 11$	5.13	5.16	$5 \cdot 20$	5.23	$5 \cdot 27$	$5 \cdot 30$	$5 \cdot 35$	5.39	$5 \cdot 43$	$5 \cdot 48$	5.53	5.58
36	$5 \cdot 12$	$5 \cdot 14$	$5 \cdot 17$	$5 \cdot 20$	5.23	5.26	$5 \cdot 30$	5.33	$5 \cdot 37$	$5 \cdot 4 \mathrm{I}$	$5 \cdot 46$	$5 \cdot 50$	5.55	5.60	$5 \cdot 65$
37	5.19	$5 \cdot 21$	$5 \cdot 24$	$5 \cdot 27$	5.30	5.33	$5 \cdot 36$	$5 \cdot 40$	$5 \cdot 44$	5.48	5.53	5.57	$5 \cdot 62$	5.67	5.73
38	$5 \cdot 26$	$5 \cdot 28$	5.31	5.34	$5 \cdot 37$	$5 \cdot 40$	5.44	5.47	5.51	$5 \cdot 56$	5.60	$5 \cdot 65$	5.70	5.75	5.80
39	$5 \cdot 33$	$5 \cdot 35$	$5 \cdot 38$	5.41	5*44	5.48	5.51	5.55	5.59	$5 \cdot 63$	$5 \cdot 68$	5.73	$5 \cdot 78$	$5 \cdot 83$	5.88
40	$5 \cdot 4 \mathrm{I}$	5.43	5.46	$5 \cdot 49$	$5 \cdot 52$	5.56	5.59	5.63	$5 \cdot 67$	$5 \cdot 72$	$5 \cdot 76$	$5 \cdot 8 \mathrm{I}$	5.86	5.91	5.97
41	$5 \cdot 49$	5.51	$5 \cdot 54$	5.57	5.61	5.64	$5 \cdot 68$	$5 \cdot 72$	$5 \cdot 76$	5.80	5.85	5.90	5.95	$6 \cdot 00$	6.06
42	5.57	$5 \cdot 60$	$5 \cdot 63$	$5 \cdot 66$	$5 \cdot 69$	5.73	5.77	$5 \cdot 81$	$5 \cdot 85$	$5 \cdot 89$	5.94	5.99	$6 \cdot 04$	$6 \cdot 10$	$6 \cdot 15$
43	$5 \cdot 66$	$5 \cdot 69$	$5 \cdot 72$	5.75	5.78	$5 \cdot 82$	5.86	5.90	5.94	5.99	6.03	$6 \cdot 09$	$6 \cdot 14$	$6 \cdot 19$	6.25
44	5.76	$5 \cdot 78$	$5 \cdot 81$	5.85	$5 \cdot 88$	5.92	5.96	$6 \cdot 00$	6.04	$6 \cdot 09$	$6 \cdot 14$	$6 \cdot 19$	$6 \cdot 24$	$6 \cdot 30$	$6 \cdot 36$
45	$5 \cdot 86$	5.88	$5 \cdot 92$	5.95	$5 \cdot 98$	$6 \cdot 02$	6.06	6	$6 \cdot 15$	6.19	6.24	$6 \cdot 29$	$6 \cdot 35$	$6 \cdot 41$	6.47
46	5.97	5.99	6.02	$6 \cdot 05$	$6 \cdot 09$	$6 \cdot 13$	6.17	6.21	6.26	$6 \cdot 30$	$6 \cdot 35$	6.41	$6 \cdot 46$	$6 \cdot 52$	6.58
47	$6 \cdot 07$	$6 \cdot 10$	$6 \cdot 13$	$6 \cdot 17$	$6 \cdot 20$	$6 \cdot 24$	$6 \cdot 28$	$6 \cdot 33$	$6 \cdot 37$	$6 \cdot 42$	$6 \cdot 47$	$6 \cdot 53$	$6 \cdot 58$	$6 \cdot 64$	$6 \cdot 71$
48	6.19	$6 \cdot 22$	$6 \cdot 25$	$6 \cdot 29$	$6 \cdot 32$	$6 \cdot 36$	6.40	$6 \cdot 45$	$6 \cdot 49$	$6 \cdot 54$	$6 \cdot 60$	$6 \cdot 65$	$6 \cdot 71$	$6 \cdot 77$	6.83
49	$6 \cdot 31$	$6 \cdot 34$	$6 \cdot 38$	$6 \cdot 41$	$6 \cdot 45$	$6 \cdot 49$	$6 \cdot 53$	$6 \cdot 58$	$6 \cdot 62$	$6 \cdot 67$	6.73	$6 \cdot 78$	$6 \cdot 84$	$6 \cdot 91$	$6 \cdot 97$
50	6.44	$6 \cdot 47$	$6 \cdot 51$	$6 \cdot 54$	6.58	6	$6 \cdot 67$	6.71	$6 \cdot 76$	$6 \cdot 81$	$6 \cdot 87$	$6 \cdot 92$	$6 \cdot 98$	7.05	$7{ }^{\text {I I }}$
5 I	6.58	$6 \cdot 61$	$6 \cdot 65$	$6 \cdot 68$	$6 \cdot 72$	$6 \cdot 76$	6.81	6.86	$6 \cdot 90$	$6 \cdot 96$	$7 \cdot 01$	7.07	$7 \cdot 13$	7.20	$7{ }^{\circ} 27$
52	$6 \cdot 73$	$6 \cdot 76$	$6 \cdot 79$	$6 \cdot 83$	$6 \cdot 87$	$6 \cdot 91$	6.96	$7 \cdot 01$	7.06	$7 \cdot 11$	$7 \cdot 17$	$7 \cdot 23$	$7 \cdot 29$	7.36	7.43
53	$6 \cdot 88$	6.91	$6 \cdot 95$	$6 \cdot 99$	$7 \cdot 03$	7×7	$7 \cdot 12$	$7 \cdot 17$	$7 \cdot 22$	$7 \cdot 28$	$7 \cdot 33$	$7 \cdot 39$	$7 \cdot 46$	7.53	$7 \cdot 60$
54	7.05	$7 \cdot 08$	$7 \cdot 12$	$7 \cdot 16$	$7 \cdot 20$	$7 \cdot 24$	7.29	734	$7 \cdot 39$	7.45	7.51	$7 \cdot 57$	$7 \cdot 64$	7.71	7.78
55	7.22	$7 \cdot 25$	$7 \cdot 29$	$7 \cdot 33$	$7 \cdot 38$	$7 \cdot 42$	7×47	$7 \cdot 52$	$7 \cdot 58$	$7 \cdot 63$	$7 \cdot 69$	$7 \cdot 76$	$7 \cdot 83$	7.90	7×97
56	7.41	$7 \cdot 44$	$7 \cdot 48$	$7{ }^{\circ} 52$	7×5	$7 \cdot 61$	$7 \cdot 66$	7×1	7×77	7.83	$7 \cdot 89$	7.96	8.03	$8 \cdot 10$	8-18
57	7.60	$7 \cdot 64$	$7 \cdot 68$	$7{ }^{\circ} 72$	$7 \cdot 77$	$7 \cdot 82$	$7 \cdot 87$	$7 \cdot 92$	7.98	$8 \cdot 04$	$8 \cdot 10$	$8 \cdot 17$	$8 \cdot 24$	8.32	8.40
58	7.81	7.85	7.89	7×94	$7 \cdot 98$	8.03	$8 \cdot 09$	$8 \cdot 14$	$8 \cdot 20$	$8 \cdot 26$	$8 \cdot 33$	8.40	$8 \cdot 47$	$8 \cdot 55$	8.63
59	$8 \cdot 04$	8.08	$8 \cdot 12$	8-17	$8 \cdot 21$	$8 \cdot 26$	$8 \cdot 32$	$8 \cdot 38$	$8 \cdot 44$	$8 \cdot 50$	$8 \cdot 57$	$8 \cdot 64$	$8 \cdot 72$	$8 \cdot 80$	$8 \cdot 88$
60	$8 \cdot 28$	$8 \cdot 32$	$8 \cdot 37$	$8 \cdot 41$	$8 \cdot 46$	$8 \cdot 51$	$8 \cdot 57$	$8 \cdot 63$	$8 \cdot 69$	$8 \cdot 76$	$8 \cdot 83$	$8 \cdot 90$	8.98	9.06	9.15

Table D.
Showing the Error produced in the Time or Longitude by an Error of i' in the Altitude.

	AZIMUTHS.														
	60°	59°	58°	57°	56°	55°	54°	8°	52°	51°	50°	49°	48°	470	46°
-		s.	s.	s.	s.	S.	S.	S.	S.	s.	s.	8.	8.	s.	s.
-	$4 \cdot 62$	$4 \cdot 67$	$4^{\circ} 7^{2}$	4×77	4.82	4.88	4.94	5.01	5.08	$5 \cdot 15$	5.22	$5 \cdot 30$	5.38	5.47	$5 \cdot 56$
1	$4 \cdot 62$	4.67	$4 \cdot 72$	$4 \cdot 77$	4.83	$4 \cdot 88$	4.95	5.01	5.08	$5 \cdot 15$	5.22	$5 \cdot 30$	$5 \cdot 38$	5.47	5.56
2	$4 \cdot 62$	4.67	$4 \cdot 72$	4×77	4.83	$4 \cdot 89$	4.95	$5 \cdot 1$	5.08	$5 \cdot 15$	5.22	$5 \cdot 30$	$5 \cdot 39$	$5 \cdot 47$	5.56
3	$4 \cdot 63$	$4 \cdot 67$	4.72	4.78	4.83	$4 \cdot 89$	4.95	5.02	$5 \cdot 08$	$5 \cdot 15$	5.23	$5 \cdot 31$	5.39	5.48	5.57
4	$4 \cdot 63$	$4 \cdot 68$	$4 \cdot 73$	$4 \cdot 78$	$4 \cdot 84$	4.90	4.96	5.02	5*09	$5 \cdot 16$	5.23	5.31	$5{ }^{\circ} 40$	$5 \cdot 48$	5.57
5	4.64	4.68	4.73	4.79	$4 \cdot 84$	4.90	4×96	$5 \cdot 03$	$5 \cdot 10$	5.17	5.24	$5 \cdot 32$	5.40	$5 \cdot 49$	$5 \cdot 58$
6	$4 \cdot 64$	$4 \cdot 69$	4×74	$4 \cdot 80$	$4 \cdot 85$	4.91	4.97	$5 \cdot 04$	$5 \cdot 10$	$5 \cdot 17$	$5 \cdot 25$	$5 \cdot 33$	$5{ }^{\circ} 41$	$5 \cdot 50$	5.59
7	$4 \cdot 65$	470	4.75	4.81	$4 \cdot 86$	$4{ }^{\circ} 92$	4.98	5.05	$5 \cdot 11$	5•19	$5 \cdot 26$	$5 \cdot 34$	$5{ }^{4} 42$	5.51	$5 \cdot 60$
8	$4 \cdot 66$	4.71	4.76	4.82	$4 \cdot 87$	4.93	$4 \cdot 99$	5.06	$5 \cdot 13$	$5 \cdot 20$	5.27	$5 \cdot 35$	5.44	5.52	$5 \cdot 62$
9	$4 \cdot 68$	$4{ }^{7} 72$	$4 \cdot 78$	$4 \cdot 83$	$4 \cdot 89$	4.94	5° 이	$5 \cdot 07$	5.14	$5 \cdot 21$	5.29	$5 \cdot 37$	5.45	5.54	$5 \cdot 63$
10	$4 \cdot 69$	4.74	4.79	$4 \cdot 84$	4.90	4×96	5*02	5.09	5.15	5.23	$5 \cdot 30$	$5 \cdot 38$	5.47	5.55	$5 \cdot 65$
II	4.71	4×75	$4 \cdot 81$	4.86	4.92	4×97	$5 \cdot$	5.10	5'17	5.24	$5 \cdot 32$	5.40	$5 \cdot 48$	$5 \cdot 57$	$5 \cdot 66$
12	$4 \cdot 72$	$4 \cdot 77$	$4 \cdot 82$	$4 \cdot 88$	4.93	$4 \cdot 99$	$5 \cdot 05$	$5 \cdot 12$	5.19	5.26	$5 \cdot 34$	$5 \cdot 42$	5.50	5.59	$5 \cdot 68$
13	$4^{\circ} 74$	4.79	4.84	$4 \cdot 89$	4.95	5° 이	$5 \cdot 07$	$5 \cdot 14$	5.21	$5 \cdot 28$	$5 \cdot 36$	5.44	5.52	$5 \cdot 61$	$5 \cdot 71$
14	4×76	$4 \cdot 81$	4.86	4.92	4.97	5.03	5.10	5.16	5.23	5.30	$5 \cdot 38$	5.46	5.55	$5 \cdot 64$	5'73
15	$4 \cdot 78$	$4 \cdot 83$	4.88	4.94	$5 \cdot 00$	$5 \cdot 06$	5'12	5.19	$5 \cdot 26$	$5 \cdot 33$	5.41	5.49	5.57	$5 \cdot 66$	$5 \cdot 76$
16	4.80	4.85	4.91	$4 * 96$	5	$5 \cdot 08$	5.14	$5 \cdot 21$	$5 \cdot 28$	5.35	$5 \cdot 43$	5.51	5.60	$5 \cdot 69$	5.78
17	$4 \cdot 83$	$4 \cdot 88$	4.93	$4 * 99$	$5 \cdot 05$	$5^{\circ} \mathrm{II}$	5.17	$5 \cdot 24$	$5 \cdot 31$	$5 \cdot 38$	5.46	5.54	5.63	5.72	5.81
18	$4 \cdot 85$	4.91	4.96	$5 \cdot \mathrm{OI}$	5.07	5.13	5.20	$5 \cdot 27$	$5 \cdot 34$	$5{ }^{4} 41$	5.49	5.57	5.66	$5 \cdot 75$	$5 \cdot 85$
19	$4 \cdot 88$	4.94	4.99	$5{ }^{\circ} \mathrm{O} 4$	5.10	$5^{1} 16$	$5 \cdot 23$	5.30	$5 \cdot 37$	5.44	5.52	5.60	5.69	$5 \cdot 78$	$5 \cdot 88$
20	4.92	4.97	$5 \cdot 02$	$5 \cdot 08$	5-13	$5 \cdot 20$	5.26	$5 \cdot 33$	$5{ }^{4} 40$	$5 \cdot 48$	5.56	$5 \cdot 64$	5.73	5.82	5.92
21	4.9	5.00	$5 \cdot 05$	$5 \cdot 11$	$5 \cdot 17$	5.23	5.30	$5 \cdot 36$	5.44	5.51	5.59	5.68	5.77	$5 \cdot 86$	$5 \cdot 96$
22	4.98	5.03	5.09	5.14	5.20	$5 \cdot 27$	$5 \cdot 33$	5.40	5.47	$5 \cdot 55$	5.63	$5 \cdot 72$	5.81	5.90	$6 \cdot 00$
23	5.02	5.07	$5 \cdot 12$	$5^{\prime} 18$	$5 \cdot$	$5 \cdot 30$	$5 \cdot 37$	5.44	$5 \cdot 51$	$5 \cdot 59$	5.67	5.76	5.85	5.94	$6 \cdot 04$
24	$5{ }^{\circ} 06$	5.11	$5^{\circ} 16$	$5{ }^{\circ}$	$5 \cdot 28$	$5 \cdot 34$	5.41	5.48	5.56	5.63	$5 \cdot 72$	5.80	$5 \cdot 89$	5.99	$6 \cdot 09$
25	5.10	5.15	5.20	$5 \cdot 26$	$5 \cdot 32$	$5 \cdot 39$	$5 \cdot 46$	5.53	$5 \cdot 60$	$5 \cdot 68$	$5{ }^{\circ} 76$	$5 \cdot 85$	5.94	$6 \cdot 03$	6.13
26	$5 \cdot 1$	5*19	$5 \cdot$	$5 \cdot 31$	$5 \cdot 37$	5.43	5.50	5.57	$5 \cdot 65$	5.73	5.81	5.90	5.99	6.09	$6 \cdot 19$
27	$5 \cdot 1$	5.24	5.29	5*35	5.42	5.48	5.55	$5 \cdot 62$	$5 \cdot 70$	$5 \cdot 78$	$5 \cdot 86$	$5 \cdot 95$	$6 \cdot 04$	$6 \cdot 14$	$6 \cdot 24$
28	5.23	$5 \cdot 28$	$5 \cdot 34$	5.40	5.46	5.53	$5 \cdot 60$	$5 \cdot 67$	$5 \cdot 75$	$5 \cdot 83$	5.91	$6 \cdot 00$	6.10	6•19	$6 \cdot 30$
29	$5 \cdot 2$	5.34	5.39	5.45	5.52	5.58	$5 \cdot 65$	5.73	5.80	5.88	5.97	$6 \cdot 06$	6. 15	$6 \cdot 25$	$6 \cdot 36$
30	5.33	5.39	5.45	5.51	5.57	5.64	5.71	5.78	5.86	5.94	6.03	$6 \cdot 12$	$6 \cdot 22$	$6 \cdot 32$	$6 \cdot 42$
3 I	$5 \cdot 39$	5.44	5. 50	5.56	5.63	5.70	5`77 & \(5 \cdot 84\) & 5.92 & 6.00 & \(6 \cdot 09\) & \(6 \cdot 18\) & \(6 \cdot 28\) & \(6 \cdot 38\) & \(6 \cdot 49\) \\ \hline 32 & 5.45 & 5.50 & 5.56 & \(5 \cdot 62\) & 5.69 & 5.76 & \(5 \cdot 83\) & 5.91 & 5`99	6.07	$6 \cdot 16$	$6 \cdot 25$	$6 \cdot 35$	$6 \cdot 45$	$6 \cdot 56$		
33	$5^{\circ} 51$	$5 \cdot 56$	5.62	$5 \cdot 69$	5'75	5.82	5.90	5.97	$6 \cdot 05$	$6 \cdot 14$	$6 \cdot 23$	$6 \cdot 32$	$6 \cdot 42$	$6 \cdot 52$	$6 \cdot 63$
3	5.57	5.63	$5 \cdot 69$	5.75	5.82	$5 \cdot 89$	5.96	$6 \cdot 04$	$6 \cdot 12$	$6 \cdot 21$	$6 \cdot 30$	$6 \cdot 39$	$6 \cdot 49$	$6 \cdot 60$	6.71
35	$5 \cdot 64$	5.70	$5 \cdot 76$	$5 \cdot 82$	5.89	5.96	$6 \cdot 04$	6.11	$6 \cdot 20$	$6 \cdot 28$	$6 \cdot 37$	$6 \cdot 47$	$6 \cdot 57$	$6 \cdot 68$	$6 \cdot 79$
36	5.71	5’77	$5 \cdot 83$	5'90	5	$6 \cdot 04$	$6 \cdot 11$	$6 \cdot 19$	$6 \cdot 27$	$6 \cdot 36$	6.45	6.55	$6 \cdot 65$	6.76	6.87
37	5.78	$5 \cdot 84$	5.91	5.97	6.04	$6 \cdot 11$	$6 \cdot 19$	6.27	$6 \cdot 36$	$6 \cdot 44$	6.54	$6 \cdot 64$	6.74	$6 \cdot 85$	$6 \cdot 96$
38	$5 \cdot 86$	5.92	$5 \cdot 99$	$6 \cdot 05$	$6 \cdot 12$	$6 \cdot 20$	$6 \cdot 27$	$6 \cdot 36$	$6 \cdot 44$	$6 \cdot 53$	6.63	6.73	$6 \cdot 83$	$6 \cdot 94$	$7 \cdot 06$
39	$5 \cdot 94$	$6 \cdot 00$	$6 \cdot 07$	$6 \cdot 14$	$6 \cdot 21$	$6 \cdot 28$	$6 \cdot 36$	6.44	$6 \cdot 53$	6.62	$6 \cdot 72$	$6 \cdot 82$	$6 \cdot 93$	7.04	$7 \cdot 16$
40	$6 \cdot 03$	$6 \cdot 09$	6•16	6.23	$6 \cdot 30$	$6 \cdot 37$	$6 \cdot 45$	$6 \cdot 54$	6.63	$6 \cdot 72$	$6 \cdot 82$	$6 \cdot 92$	$7 \cdot 03$	$7 \cdot 14$	$7 \cdot 26$
41	$6 \cdot 12$	6.18	$6 \cdot 25$	$6 \cdot 32$	6.39	$6 \cdot 47$	6.55	$6 \cdot 64$	6.73	$6 \cdot 82$	6.92	7.02	$7 \cdot 13$	$7 \cdot 25$	$7 \cdot 37$
42	$6 \cdot 22$	$6 \cdot 28$	$6 \cdot 35$	$6 \cdot 42$	$6 \cdot 49$	$6 \cdot 57$	$6 \cdot 65$	$6 \cdot 74$	$6 \cdot 83$	6.93	7.03	$7 \cdot 13$	$7 \cdot 24$	$7 \cdot 36$	7.48
43	$6 \cdot 32$	$6 \cdot 38$	$6 \cdot 45$	$6 \cdot 52$	$6 \cdot 60$	$6 \cdot 68$	6.76	$6 \cdot 85$	$6 \cdot 94$	$7 \cdot 04$	$7 \cdot 14$	$7 \cdot 25$	$7 \cdot 36$	7.48	$7 \cdot 60$
44	$6 \cdot 42$	$6 \cdot 49$	$6 \cdot 56$	$6 \cdot 63$	6.71	$6 \cdot 79$	$6 \cdot 87$	$6 \cdot 96$	$7 \cdot 06$	$7 \cdot 16$	$7 \cdot 26$	$7 \cdot 37$	$7 \cdot 48$	$7 \cdot 60$	7.73
45	$6 \cdot 53$	$6 \cdot 60$	$6 \cdot 67$	$6 \cdot 75$	$6 \cdot 82$	$6 \cdot 91$	$6 \cdot 99$	$7 \cdot 08$	718	$7 \cdot 28$	$7 \cdot 38$	7.50	$7 \cdot 61$	773	$7 \cdot 86$
46	$6 \cdot 65$	$6 \cdot 72$	6.79	$6 \cdot 87$	6.95	7.03	$7 \cdot 12$	7.21	7.31	741	7.52	7.63	7×75	7.87	$8 \cdot 00$
47	$6 \cdot 77$	$6 \cdot 84$	$6 \cdot 92$	$6 \cdot 99$	7.07	$7 \cdot 16$	$7 \cdot 25$	$7 \cdot 34$	7.44	7.55	$7 \cdot 66$	7×77	7.89	$8 \cdot 02$	$8 \cdot 15$
48	$6 \cdot 90$	$6 \cdot 97$	$7 \cdot 05$	7-13	7.21	$7 \cdot 30$	$7 \cdot 39$	7.49	$7 \cdot 59$	$7 \cdot 69$	7.80	$7 \cdot 92$	$8 \cdot 04$	$8 \cdot 17$	$8 \cdot 31$
49	$7 \cdot 04$	$7 \cdot 11$	${ }_{7} \cdot 19$	7.27	7.35	7.44	7.54	$7 \cdot 63$	$7 \cdot 74$	$7 \cdot 85$	7.96	$8 \cdot 08$	$8 \cdot 20$	$8 \cdot 34$	$8 \cdot 48$
50	7'19	$7 \cdot 26$	$7 \cdot 34$	$7 \cdot 42$	$7 \cdot 5$	$7 \cdot$	$7 \cdot 69$	7.79	7.90	$8 \cdot 0$	$8 \cdot 12$	$8 \cdot 25$	$8 \cdot 37$	8.51	$8 \cdot 65$
51	7.34	7.42	$7 \cdot 49$	7.58	$7 \cdot 67$	7.76	$7 \cdot 86$	7.96	$8 \cdot 07$	$8 \cdot 18$	$8 \cdot 30$	8.42	8.55	$8 \cdot 69$	$8 \cdot 84$
52	7.50	$7{ }^{\prime} 58$	$7 \cdot 66$	775	7.84	7.93	$8 \cdot 03$	$8 \cdot 14$	$8 \cdot 24$	$8 \cdot 36$	$8 \cdot 48$	$8 \cdot 61$	$8 \cdot 74$	$8 \cdot 88$	$9 \cdot 03$
53	$7 \cdot 67$	775	7.84	$7 \cdot 93$	$8 \cdot 02$	8-11	$8 \cdot 22$	$8 \cdot 32$	8.43	$8 \cdot 55$	$8 \cdot 68$	8.81	$8 \cdot 94$	$9 \cdot 09$	9.24
54	$7 \cdot 86$	7.94	$8 \cdot 02$	$8 \cdot 11$	$8 \cdot 21$	$8 \cdot 31$	8.41	$8 \cdot 52$	$8 \cdot 64$	$8 \cdot 76$	$8 \cdot 88$	9.02	$9 \cdot 16$	$9 \cdot 30$	9.46
55	$8 \cdot 05$	$8 \cdot 14$	8	$8 \cdot 32$	$8 \cdot 41$	8.5I	$8 \cdot 62$	8.73	$8 \cdot 85$	$8 \cdot 97$	9	9.24	$9 \cdot 38$	9.54	$9 \cdot 69$
56	$8 \cdot 26$	$8 \cdot 35$	8.43	$8 \cdot 53$	8.63	8.73	$8 \cdot 84$	$8 \cdot 96$	9.08	$9 \cdot 20$	9.34	9.48	9.63	$9 \cdot 78$	9.94
57	$8 \cdot 48$	$8 \cdot 57$	$8 \cdot 66$	$8 \cdot 76$	$8 \cdot 86$	$8 \cdot 97$	$9 \cdot 08$	9.20	$9 \cdot 32$	$9 \cdot 45$	9.59	9.73	$9 \cdot 88$	$10 \cdot 04$	10.21
58	$8 \cdot 72$	8.81	$8 \cdot 90$	$9 \cdot 00$	$9 \cdot 10$	921	$9 \cdot 33$	9.45	958	9.71	$9 \cdot 85$	10.0	IO. 16	$10 \cdot 32$	$10 \cdot 49$
59	$8 \cdot 97$	$9 \cdot 06$	${ }^{9} 16$	$9 \cdot 26$	9.37	$9 \cdot 48$	$9 \cdot 60$	$9 \cdot 72$	$9 \cdot 86$	$9 \cdot 99$	$10 \cdot 14$	10. 29	10.45	$10 \cdot 62$	$10 \cdot 80$
60	$9 \cdot 24$	$9 \cdot 33$	$9 \cdot 43$	9.54	$9 \cdot 65$	9*77	$9 \cdot 89$	10.02	10.15	10.29	10*44	10.60	10.77	10`94	I1'12.

[^0]Table D.
Showing the Error produced in the Time or Longitude by an Error of í in the Altitude.

	AZIMUTHS.														
	45°	44°	43°	42°	41°	40°	39°	38^{3}	37°	36°	35°	34°	33°	32°	31°
\bigcirc	S.	S.		S.	s.	s.	s.	s.		s.	S.	s.	s.		s.
o	$5 \cdot 66$	5.76	$5 \cdot 87$	5.98	$6 \cdot 10$	$6 \cdot 22$	$6 \cdot 36$	$6 \cdot 50$	- $6 \cdot 65$	6.81	$6 \cdot 97$	$7 \quad 715$	$7 \cdot 3$	7*55	7'77
1	$5 \cdot 66$	$5 \cdot 76$	5.87	5.98	$6 \cdot 10$	$6 \cdot 22$	$6 \cdot 36$	$6 \cdot 50$	- $6 \cdot 65$	$6 \cdot 81$	$6 \cdot 97$	$7 \cdot 15$	7.35	$7 \cdot 55$	7.77
2	5.66	5.76	5.87	5.98	$6 \cdot 10$	$6 \cdot 23$	$6 \cdot 36$	$6 \cdot 50$	- 6.65	$6 \cdot 8 \mathrm{I}$	$6 \cdot 98$	7-16	$7 \cdot 35$	5	7×77
3	$5 \cdot 66$	5.77	5.87	5.99	$6 \cdot 11$	6.23	$6 \cdot 36$	6.51	16.66	$6 \cdot 81$	$6 \cdot 98$	$7 \cdot 16$	$7 \cdot 35$	7.56	7.78
4	$5 \cdot 67$	5.77	$5 \cdot 88$	5.99	$6 \cdot 11$	$6 \cdot 24$	$6 \cdot 37$	6.51	I $6 \cdot 66$	$6 \cdot 82$	$6 \cdot 99$	7•17	$7 \cdot 36$	7.57	7.79
5	$5 \cdot 68$	$5 \cdot 78$	$5 \cdot 89$	$6 \cdot 00$	$6 \cdot 12$	$6 \cdot 25$	$6 \cdot 38$	$6 \cdot 52$	26.67	$6 \cdot 83$	$7 \cdot 00$	$7 \cdot 18$	$7 \cdot 37$	7.58	$7 \cdot 80$
6	5.69	5.79	O	$6 \cdot 01$	$6 \cdot 13$	$6 \cdot 26$	$6 \cdot 39$	6.53	$6 \cdot 68$	$6 \cdot 84$	$7 \cdot 01$	$7 \cdot 19$	7×38	7×59	781
7	5.70	$5 \cdot 80$	5.91	6.02	$6 \cdot 14$	$6 \cdot 27$	6.40	6.55	6.70	$6 \cdot 86$	7.03	$7 \cdot 21$	7.40	7.61	7.82
8	5.71	5.8 I	$5 \cdot 92$	$6 \cdot{ }^{4}$	6.16	$6 \cdot 28$	6.42	$6 \cdot 56$	6.71	$6 \cdot 87$	7.04	$7{ }^{-22}$	$7 \cdot 42$	7.62	7.84
9	5.73	$5 \cdot 83$	5*94	$6 \cdot 05$	$6 \cdot 17$	$6 \cdot 30$	$6 \cdot 44$	$6 \cdot 58$	$8 \cdot 73$	$6 \cdot 89$	$7 \cdot 06$	7.24	7.44	$7 \cdot 64$	7.86
ro	5.74	$5 \cdot 85$	$5 \cdot 96$	$6 \cdot 07$	$6 \cdot 19$	$6 \cdot 32$	$6 \cdot 45$	6.60	$6 \cdot 75$	$6 \cdot 91$	7.	$7 \cdot 26$	$7{ }^{\circ} 46$	$7 \cdot 66$	7.89
11	5'76	$5 \cdot 87$	5.97	$6 \cdot 09$	1	$6 \cdot 34$	6.48	$6 \cdot 62$	6.77	$6 \cdot 93$	$7 \cdot$	$7 \cdot 29$	$7 \cdot 48$		7.91
12	$5 \cdot 78$	$5 \cdot 89$	$6 \cdot 00$	$6 \cdot 11$	$6 \cdot 23$	$6 \cdot 36$	$6 \cdot 50$	$6 \cdot 64$	$6 \cdot 80$	$6 \cdot 96$	$7 \cdot 13$	731	751	772	7.94
13	5.8 I	5.91	$6 \cdot 02$	$6 \cdot 14$	$6 \cdot 26$	$6 \cdot 39$	$6 \cdot 52$	$6 \cdot 67$	$6 \cdot 82$	$6 \cdot 98$	$7 \cdot 16$	7.34	754	775	797
14	5.83	5.93	$6 \cdot{ }_{4}$	$6 \cdot 16$	$6 \cdot 28$	$6 \cdot 41$	$6 \cdot 55$	$6 \cdot 70$	$6 \cdot 85$	$7 \cdot 01$	7'19	737	757	778	8.00
15	5	5.96	$6 \cdot 07$	$6 \cdot 19$	$6 \cdot 31$	6.44	$6 \cdot 58$	$6 \cdot 73$	$6 \cdot 88$	7.05	$7 \cdot 22$	7.41	7.60	7.81	8.04
16	$5 \cdot 88$	9	$6 \cdot 10$	$6 \cdot 22$,	$6 \cdot 47$	$6 \cdot 61$	$6 \cdot 76$	6.91	7.08	$7 \cdot 25$	7044	764	785	8.08
17	$5 \cdot 92$	6.02	$6 \cdot 13$	$6 \cdot 25$	$6 \cdot 38$	6.51	$6 \cdot 65$	$6 \cdot 79$	$6 \cdot 95$	$7 \cdot 12$	7.29	7.48	768	789	812
18	$5 \cdot 95$	$6 \cdot 05$	$6 \cdot 17$	$6 \cdot 28$	$6 \cdot 41$	$6 \cdot 54$	$6 \cdot 68$	$6 \cdot 83$	$6 \cdot 99$	$7 \cdot 16$	7.33	7.52	772	794	817
19	5.98	$6 \cdot 09$	$6 \cdot 20$	$6 \cdot 32$	$6 \cdot 45$	$6 \cdot 58$	$6 \cdot 72$	$6 \cdot 87$	7.03	$7 \cdot 20$	$7 \cdot 38$	7.57	777	7.98	$8 \cdot 21$
20		$6 \cdot 13$	$6 \cdot 24$	$6 \cdot 36$	$6 \cdot 49$	$6 \cdot 62$	$6 \cdot 76$	$6 \cdot 91$	7.07	7.24	$7 \cdot 42$	7.61	$7 \cdot 82$	8.03	$8 \cdot 26$
21	6	7	$6 \cdot 28$	$6 \cdot 40$	$6 \cdot 53$	$6 \cdot 67$	$6 \cdot 8 \mathrm{I}$	6.96	7'12	$7 \cdot 29$	7×47	$7 \cdot 66$	7.87	8.09	32
22	6	6.21	$6 \cdot 33$	$6 \cdot 45$	$6 \cdot 58$	$6 \cdot 71$	$6 \cdot 86$	$7 \cdot 1$	717	7.34	7.52	7.75	$7 \cdot 92$	$8 \cdot 14$	$8 \cdot 38$
23	$6 \cdot 15$	$6 \cdot 26$	$6 \cdot 37$	$6 \cdot 49$	$6 \cdot 62$	$6 \cdot 76$	$6 \cdot 90$	7.06	722	$7 \cdot 39$	7.58	$7 \cdot 77$	$7 \cdot 98$	$8 \cdot 20$	8.44
24	$6 \cdot 19$	$6 \cdot 30$	$6 \cdot 42$	$6 \cdot 54$	$6 \cdot 67$	$6 \cdot 81$	$6 \cdot 96$	$7 \cdot 11$	$7 \cdot 28$	745	7.63	$7 \cdot 83$	${ }^{8 \cdot} \mathrm{c}_{4}$	$8 \cdot 26$	8.50
25	$6 \cdot 24$	$6 \cdot 35$	$6 \cdot 47$	$6 \cdot 60$	$6 \cdot 73$	$6 \cdot 87$	$7 \cdot 01$	717	$7 \cdot 33$	$7 \cdot 51$	7.69	$7 \cdot 89$	$8 \cdot 10$	$8 \cdot 33$	$8 \cdot 57$
26	$6 \cdot 29$	6.41	$6 \cdot 53$	$6 \cdot 65$	6.78	6.92	7*07	7•23	$7 \cdot 39$	$7 \cdot 57$	$7 \cdot 76$	7'96	$8 \cdot 17$	$8 \cdot 40$	$8 \cdot 64$
27	$6 \cdot 35$	6.46	$6 \cdot 58$	$6 \cdot 71$	$6 \cdot 84$	$6 \cdot 98$	$7 \cdot 13$	$7 \cdot 29$	$7 \cdot 46$	$7 \cdot 64$	$7 \cdot 83$	$8 \cdot 03$	$8 \cdot 24$	$8 \cdot 47$	$8 \cdot 72$
28	6.41	$6 \cdot 52$	$6 \cdot 64$	$6 \cdot 77$	$6 \cdot 91$	$7 \cdot 05$	$7 \cdot 20$	$7 \cdot 36$	7.53	$7 \cdot 71$	$7 \cdot 90$	$8 \cdot 10$	$8 \cdot 32$	$8 \cdot 55$	$8 \cdot 80$
29	$6 \cdot 47$	$6 \cdot 58$	$6 \cdot 71$	$6 \cdot 83$	$6 \cdot 97$	7.11	$7 \cdot 27$	$7 \cdot 43$	7.60	778	7.97	$8 \cdot 18$	8.40	8.63	$8 \cdot 88$
30	$6 \cdot 53$		$6 \cdot 77$	$6 \cdot 90$	$7{ }^{\circ} \mathrm{O} 4$	719	$7 \cdot 34$	$7{ }^{\circ} 50$	$7 \cdot 67$	7.86	8.05	$8 \cdot 26$	$8 \cdot 48$	$8 \cdot 72$	$8 \cdot 97$
3 I	$6 \cdot 60$		$6 \cdot 84$	7	II	26	42	58	5	$7 \cdot 94$	$8 \cdot 14$	$8 \cdot 35$	$8 \cdot 57$	8.81	9.06
32	$6 \cdot 67$	$6 \cdot 79$	$6 \cdot 92$	$7 \cdot 05$	19	$7 \cdot 34$	$7 \cdot 49$	$7 \cdot 66$	$7 \cdot 84$	802	$8 \cdot 22$	$8 \cdot 43$	$8 \cdot 66$	$8 \cdot 90$	$9 \cdot 16$
33	6.74	$6 \cdot 87$	$6 \cdot 99$	$7{ }^{\prime} 13$	$7 \cdot 27$	$7 \cdot 42$	$7 \cdot 58$	7×75	7.93	$8 \cdot$ II	$8 \cdot 32$	$8 \cdot 53$	$8 \cdot 76$	9.00	$9 \cdot 26$
34	$6 \cdot 82$	$6 \cdot 95$	7*07	7.21	$7 \cdot 35$	7.51	$7 \cdot 67$	$7 \cdot 84$	8.02	$8 \cdot 21$	$8 \cdot 4 \mathrm{I}$	8.63	$8 \cdot 86$	9.10	$9 \cdot 37$
35	6.91	$7 \cdot 03$	7-16	$7 \cdot 30$	7.44	$7 \cdot 60$	$7 \cdot 76$	7.93	8•11	$8 \cdot 31$	$8 \cdot 51$	8.73	$8 \cdot 97$	9.21	$9 \cdot 48$
36	6.99	$7 \cdot 12$	$7 \cdot 25$	$7 \cdot 39$	$7 \cdot 54$	$7 \cdot 69$	$7 \cdot 86$	8.03	2	$8 \cdot 41$	$8 \cdot 62$	$8 \cdot 84$	9.08	9.33	9.60
37	$7 \cdot 08$	$7 \cdot 21$	$7 \cdot 34$	$7 \cdot 49$	$7 \cdot 63$	$7 \cdot 79$	7×96	$8 \cdot 14$	$8 \cdot 32$	$8 \cdot 52$	$8 \cdot 73$	$8 \cdot 96$	9.20	9.45	$9 \cdot 72$
38	$7 \cdot 18$	$7 \cdot 31$	7.44	7.59	$7 \cdot 74$	7.90	8.07	$8 \cdot 24$	$8 \cdot 43$	$8 \cdot 64$	$8 \cdot 85$	9.08	$9 \cdot 32$	${ }^{9} 58$	9.86
39	$7 \cdot 28$	7*4	$7 \cdot 55$	$7 \cdot 69$	$7 \cdot 85$	$8 \cdot 01$	$8 \cdot 18$	$8 \cdot 36$	$8 \cdot 55$	$8 \cdot 76$	$8 \cdot 97$	$9 \cdot 20$	$9 \cdot 45$	9.71	9.99
40	7.38	$7 \cdot 52$	$7 \cdot 66$	$7 \cdot 80$	$7 \cdot 96$	8.12	$8 \cdot 30$	$8 \cdot 48$	8.68	$8 \cdot 88$	$9^{\prime \prime} 10$	$9 \cdot 34$	9*59	$9 \cdot$	10.14
4 I	750	$7 \cdot 63$		$7 \cdot 92$	$8 \cdot 08$	$8 \cdot 25$	$8 \cdot 42$	$8 \cdot 61$	$8 \cdot 81$	9.02	9.24	$9 \cdot 48$	973	$10 \cdot 00$	10'29
42	$7 \cdot 61$	7.75	7.89	$8 \cdot{ }^{\circ}$	$8 \cdot 20$	$8 \cdot 37$	$8 \cdot 55$	$8 \cdot 74$	$8 \cdot 94$	$9 \cdot 16$	$9 \cdot 38$	9.63	$9 \cdot 88$	$10 \cdot 16$	10.45
43	7.73	$7 \cdot 87$	$8 \cdot 02$	$8 \cdot 17$	$8 \cdot 34$	$8 \cdot 51$	$8 \cdot 69$	8.88	$9 \cdot 09$	9.30	$9 \cdot 54$	$9^{\circ} 78$	$10 \cdot{ }^{1}$	$10 \cdot 32$	10.62
44	$7 \cdot 86$	$8 \cdot 00$	$8 \cdot 15$	$8 \cdot 31$	$8 \cdot 48$	$8 \cdot 65$	$8 \cdot 84$	$9 \cdot 03$	$9 \cdot 24$	9.46	$9 \cdot 69$	$9 * 94$	10.21	$10 \cdot 49$	10.80
45			8.29	8.45	$8 \cdot 62$	$8 \cdot 8$	$8 \cdot 99$	9*19	$9{ }^{\circ}{ }^{\circ}$	$9 \cdot 62$	9*86	10'12	10’39	10.6	10.98
46		8.29		$8 \cdot 61$	$8 \cdot 78$	$8 \cdot 96$	9'15	9*35	$9 \cdot 57$	$9 \cdot 80$	10.04	$10 \cdot 30$	10×57	10.87	II'18
47	$8 \cdot 29$	8.44	$8 \cdot 60$	$8 \cdot 77$	$8 \cdot 94$	$9 \cdot 12$	$9 \cdot 32$	$9 \cdot 53$	$9 \cdot 75$	9.98	10.23	$10 \cdot 49$	10'77	11.07	If 39
48	8.45	$8 \cdot 61$	$8 \cdot 77$	$8 \cdot 93$	$9 \cdot 11$	$9 \cdot 30$	9.50	$9{ }^{7} 7$	9.93	10.17	$10 \cdot 42$	$10 \cdot 69$	10.97	II.25	$1 \mathrm{I}^{\circ} \mathrm{6I}$
49	$8 \cdot 62$	$8 \cdot 78$	$8 \cdot 94$	$9 \cdot 11$	9.29	9.49	$9 \cdot 69$	9*90	$10 \cdot 13$	$10 \cdot 37$	10.63	$10 \cdot 90$	11'19	$11^{\circ} 5 \mathrm{I}$	11.84
50	8.	8.96	$9 \cdot 12$	$9 \cdot 30$	949	9.68	9.89	IO'II	$10 \cdot 34$	10.59	$10 \cdot 85$	II'13	II*43	11'74	$2 \cdot$
5 I	$8 \cdot 99$	9.15	$9 \cdot 32$	9.50	$9 \cdot 69$	$9 \cdot 89$	10'10	$10 \cdot 30$	10.56	10.81	II'08	I-37	11.67	11999	12.34
52	9.19	$9 \cdot 35$	$9 \cdot 53$	9.71	9.90	10'II	$10 \cdot 32$	$10 \cdot 55$	$10 \cdot 80$	11.05	II'33	11.62	Ir ${ }^{\circ} 93$	12.26	12.61
53	$9 \cdot 40$	$9 \cdot 57$	975	$9 \cdot 93$	10'13	10.34	10.56	10.80	$\mathrm{Ir}^{\circ} \mathrm{O}$	II.31	II'59	II•89	12.20	12.54	12.90
54	9.62	$9 \cdot 80$	$9 \cdot 98$	10.17	10.37	10.59	10.81	11.05	II•31	II 58	II•86	12.17	12.50	12.84	13.21
55	9.8	$10 \cdot 04$	10.23	42	10.63	$10 \cdot 85$	II.08	I1*33	I'59	II•86	12.16	12.47	12.80	13.16	13.54
56	10. 12	$10 \cdot 30$	10'49	10.69	10.90	If13	11*37	11.62	11.89	12.17	12.47	12.79	13.13	13.50	13.89
57	10.39	$10 \cdot 57$	10'77	10.97	II'19	1143	11.67	II•92	12.20	12.49	12.80	13.13	13.48	13.86	14.26
5	10.67	10.87	11.07	1128	II.51	II'74	11.99	12.26	12.54	12.84	13.16	13.50	13.86	$14^{\circ} 24$	14.66
59	10'98	II'18	11.39	$1 \mathrm{I}^{\circ} 61$	11.84	12.08	12.34	22.61	12.90	13.21	13.54	13.89	14.26	$14^{\circ} 66$	15.08 15.53
60	II*3I	11.52	11.73	II ${ }^{96}$	12.19	12.45	12.71	12.99	13.29	$13^{\circ} 61$	$13^{*} 95$	14.31	14.69	$15^{\circ} 10$	15.53

Table D.
Showing the Error produced in the Time or Longitude by an Erkor of i' in the Altitule.

	azmuths.														
	30°	${ }^{29}$	${ }^{29}$	27°	26°	25°	24	$23{ }^{\circ}$	22			${ }^{19}$	18°		16°
-	s.							s.	s.	s.	s.	s.	s.	s.	s.
-	8.00	$8 \cdot 25$	8.52	$8 \cdot 81$	9'12	$9 \cdot 46$	$9 \cdot 3$	$0 \cdot 2$	10.7	$1{ }^{1} 2$	$1{ }^{1} 7$	12.3	$13^{\circ} \mathrm{O}$	13.7	14.5
1	$8 \cdot 00$	8.25	${ }^{8 \cdot 52}$	8.81	$9 \cdot 13$	9.47	$9 \cdot 8$	10.2	10.7	1	1177	12.3	$13^{\circ} \mathrm{O}$	13.7	14.5
	8.00	$8 \cdot 26$	8.53	$8 \cdot 82$	$9 \cdot 13$	9.47	$9 \cdot 8$	$10 \cdot 2$	$10 \cdot 7$	II^{2}	1177	12.3	$13^{\circ} \mathrm{O}$	13.7	14.5
3	8.01	$8 \cdot 26$	8.53	$8 \cdot 82$	${ }^{9} \cdot 14$	9.48	9.85	$10 \cdot 3$	$10 \cdot 7$	$1{ }^{1 \cdot 2}$	1177	123	$13^{\circ} \mathrm{O}$	13.7	14.5
4	8.02	$8 \cdot 27$	8.54	$8 \cdot 83$	9.15	$9 \cdot 49$	9.86	$10 \cdot 3$	$10 \cdot 7$	11.2	1177	$12 \cdot 3$	$13^{\circ}{ }^{\circ}$	13.7	14.5
5	8.03	$8 \cdot 28$	$8 \cdot 55$	$8 \cdot 84$	$9 \cdot 16$	9.50	$9 \cdot 87$	$10 \cdot 3$	10.7	11.2	1177	123	$13^{\circ} \mathrm{O}$	13.7	14.6
6	8.04	$8 \cdot 30$	$8 \cdot 57$	8.86	$9 \cdot 17$	9.52	$9 \cdot 89$	$10 \cdot 3$	10.7	11'2	8	4	$13^{\circ} \mathrm{O}$	13.8	14.6
7	$8 \cdot 05$	$8 \cdot 3 \mathrm{r}$	$8 \cdot 58$	$8 \cdot 88$	$9 \cdot 19$	$9 \cdot 54$	9.91	$10 \cdot 3$	10	II 2	11.8	12.4	$13^{\circ}{ }^{\circ}$	13.8	14.6
8	8.08	8.33	8.60	8.90	$9 \cdot 21$	$9 \cdot 56$	9.93	$10 \cdot 3$	10.8	II•3	II.8	12.4	${ }^{13}{ }^{\text {I }}$	13.8	$14^{\prime} 7$
9	$8 \cdot 10$	$8 \cdot 35$	8.63	$8 \cdot 92$	$9 \cdot 24$	$9 \cdot 58$	9.96	$10 \cdot 4$	10.8	II^{3}	II	12.4	$13^{1} 1$	13.9	$14^{\prime} 7$
10	S.12	$8 \cdot 38$	8.65	$8 \cdot 95$	$9 \cdot 7$	$9 \cdot 61$	$9 \cdot 99$	$10 \cdot 4$	$10 \cdot 8$	1\%3	119 9	12.5	$13^{\prime} \mathrm{I}$	13.9	$14^{\prime} 7$
11	8.15	8.41	$8 \cdot 68$	$8 \cdot 98$	9.30	${ }^{9} \cdot 6.64$	$10 \cdot 0$	$10 \cdot 4$	$10 \cdot 9$	II_{4}	9	12.5	13^{2}	13.9	14.8
12	8.18	$8 \cdot 43$	8.71	9.01	$9 \cdot 33$	$9 \cdot 68$	$10 \cdot 1$	10.5	$10 \cdot 9$	114	12.0	12.6	$13^{\circ} 2$	14°	14.8
13	$8 \cdot 21$	8.47	$8 \cdot 74$	9.04	$9 \cdot 36$	9.71	10^{1}	$10 \cdot 5$	$1{ }^{\circ} \mathrm{O}$	11'5	12.0	12.6	13.3	$14^{\circ} \mathrm{O}$	$14^{\circ} 9$
14	8.24	$8 \cdot 50$	${ }^{8 \cdot 78}$	9.08	$9 \cdot 40$	$9 \cdot 75$	$10 \cdot 1$	10.6	If.O	$1{ }^{1} 5$	12.1	12	13.3	$14^{\circ} 1$	15°
15	$8 \cdot 28$	8.54	8.82	9.12	$9 \cdot 45$	9.80	10.2	- 06	${ }_{11}{ }^{1}$	11.6	12.1	12.7	$13^{\circ} 4$	14.2	15°
16	$8 \cdot 32$	$8 \cdot 58$	8.86	$9 \cdot 17$	49	9.85	10\%2	10.6	II'I	Ir.6	12.2	2.8	13.5	$14^{2} 2$	5.1
17	$8 \cdot 37$	8.63	$8 \cdot 91$	9.21	$9 \cdot 54$	9.90	$10 \cdot 3$	10.7	$1{ }^{1} 2$	$\mathrm{Ir}^{\prime} 7$	12.2	12.	13.5	14.3	15.2
18	$8 \cdot 41$	8.68	$8 \cdot 96$	$9 \cdot 26$	9. 59	$9 \cdot 95$	$10 \cdot 3$	10	1 H 2	$1{ }^{1} 7$	12.3	12.9	$13^{\circ} 6$	14.4	15.3
19	8.46	8.73	$9 \cdot \mathrm{or}$	$9 \cdot 32$	$9 \cdot 65$	10.0	$10 \cdot 4$	$10 \cdot 8$	$1{ }^{1} 3$	I. 8	12.4	13.0	13.7	14.5	15.3
20	8.51	3.78	$9 \cdot 07$	$9 \cdot 38$	9.71	10. 1	$10 \cdot 5$	$10 \cdot 9$	114	$1{ }^{\circ} 9$	12.4	13.1	13.8	14.6	15.4
21	$8 \cdot 57$	$8 \cdot 84$	9.13	$9 \cdot 44$	$9 \cdot 77$	10. 1	10.5	-	11.	12°	12.5	13.2	13.9	14.7	15.5
22	8.63	8.90	$9 \cdot 19$	9.50	$9 \cdot 84$	$10 \cdot 2$	$10 \cdot 6$	10°	15	12.0	12	13.3	$14^{\circ} \mathrm{O}$	14.8	15.7
23	8.69	8.96	9.26	$9 \cdot 57$	$9 \cdot 91$	10.3	$10 \cdot 7$	II's	11.6	I2.1	12.7	13.3	$14^{1} 1$	14	15.8
24	8.76	9.03	$9 \cdot 33$	$9 \cdot 64$	$9 \cdot 99$	10.4	10.8	II^{2}	H'7	12.2	12.8	13.4	$14^{2} 2$	$15^{\circ} \mathrm{O}$	15.9
25	8.83	$9 \cdot 10$	9.40	$9^{\prime} 72$	$10^{\circ} \mathrm{I}$	$10 \cdot 4$	$10 \cdot 9$	113	1.8	12.3	12.9	13.6	14.3	15	16.0
26	8.90	9.18	$9 \cdot 48$	9.80	$10 \cdot 2$	$10 \cdot 5$	$\bigcirc 9$	11.4	19	12	13.0	13	14.4	15	16.1
27	$8 \cdot 98$	9.26	9.56	9.89	$10 \cdot 2$	$10 \cdot 6$	11°	11.5	-	12.5	13.1	13.8	14.5	15.3	16.3
28	9.06	$9 \cdot 34$	9.65	9.98	$10 \cdot 3$	$10 \cdot 7$	$\mathrm{Ir}^{\text {¢ }}$	11.6	12.1	12.6	13.2	13.9	$14^{\prime} 7$	$15^{\circ} 5$	16.4
29	$9^{9} 15$	$9 \cdot 43$	9.74	$10 \cdot 1$	$\mathrm{rO}^{\circ} 4$	10.8	1 I	I'7	12.2	12.8	13.4	$14^{\circ} \mathrm{O}$	14.8	$15^{\circ} 6$	$16 \cdot 6$
30	9.24	9.53	9.84	$10 \cdot 2$	10'5	$10 \cdot 9$	$1{ }^{\text {I }}$	II	12.	12.9	13.5	$14^{\circ} 2$	14.9	15.8	16.8
$3{ }^{1}$	9.33	9.63	9.94	$10 \cdot 3$	10.6	1.0	$1{ }^{1} 5$	II	12.5	13.0	13.6	14.3	15.1	16.0	16.9
32	$9 \cdot 43$	9.73	10°	$10^{4} 4$	$10 \cdot 8$	11.2	$11 \cdot 6$	12.1	12.6	$13^{2} 2$	13.8	14.5	15^{3}	$16 \cdot 1$	17.1
33	9.54	9.84	$10 \cdot 2$	10.5	$10 \cdot 9$	11.3	11.7	12.2	12.7	13.3	$1{ }^{4}{ }^{\circ} \mathrm{O}$	14.	154	16.3	17.3
34	9.65	9.95	$10 \cdot 3$	10.6	${ }^{11}{ }^{\circ} \mathrm{O}$		11.9	${ }_{12}^{123}$	12.9	13.5	$1{ }^{1 / 1}$	$14^{\circ} 8$	15.6 15.8	$16^{\circ} 5$	17.5
35	9×77	$10 \cdot 1$	$10 \cdot 4$	10.8	II•	$1{ }^{1}$	12.0	12.5	$13^{\circ} \mathrm{O}$	13.6	14.3	$15^{\circ} \mathrm{O}$	15.8	$16 \cdot 7$	177
36	9.89	$10 \cdot 2$	10. 5	10.9	11.3	II'7	12.	12.7	13.2	13.8	14.5	$15^{\prime 2}$	16.0	16.9	17.9
37	$10^{\circ} \mathrm{O}$	10.3	10.7	ri.	11.4	11.9	$12 \cdot 3$	12.8	13.4	$14^{\circ} \mathrm{O}$	14.6	15.4	$16 \cdot 2$	$17 \cdot 1$	18.2
38	10°	$10 \cdot 5$	10.8	11°	11.6	12.0	12.5	$13^{\circ} \mathrm{O}$	${ }^{13} 3^{6}$	14^{2}	14.8	$15^{6} 6$	16.4	17.4	18.4
39	$1{ }^{10}{ }^{1} 3$	$10 \cdot 6$	${ }^{12}{ }^{\text {r }}$ -	${ }_{11} 1.3$	${ }_{1} \square^{\circ} 7$	12.2	$12 \cdot 7$	${ }_{13} 3^{2}$	${ }^{13}{ }^{\circ} 7$	$14^{4.4}$	${ }^{15} 5^{\circ}$	15.8 16.0	$16^{16.7}$	${ }^{17} \cdot 6$	18.7 18.9
40	10°	10	M1'I	11.5	$1{ }^{19} 9$	12.4	12	13.4	13×9	$14^{6} 6$	$15^{\circ} 3$:6\%	16.9	17.9	18.9
41	$10 \cdot 6$	$10 \cdot 9$	11.3	$11 \cdot 7$	${ }^{12} 12$	12.5	$13^{\circ} \mathrm{O}$	13.6	$14^{1 / 1}$	14.8	15.5	16.3	17^{2}	18.1	19.2
42	10.8	11'r	11.5	Ir9	12.3	$12 \cdot 7$	13°	13.3	14.4	15°	15.7	$16 \cdot 5$	17.4	18.4	19.5
43	$10 \cdot 9$	11.3	11.6	12.	12.5	12.9	$13^{\prime} 4$	14°	$14^{.6}$	15.3	16.0	16.8		18.7	19.8
44	II. 1	115	Ir.8	12.2	12.7	13.2	$13^{\prime} 7$	14^{2}	14.8	15.5	16.3	17.1	18.0	19°	$20 \cdot 2$
45	Ir.3	117	12.0	12.5	$12 \cdot 9$	$13^{\prime} 4$	$13^{\prime} 9$	14.5	$15^{\prime} 1$	$15^{\circ} 8$	16.5	17.4	18.3	19.3	20.5
46	11.5	I1.9	12.3	12.7	${ }^{13}{ }^{1}$	13.6	$14^{2} 2$	$14^{\circ} 7$	15.4	16.1	16.8	177	18.6	19.7	20.9
47	11.7	12.1	12.5	12.9	13.4	13.9	14.4	15°	$15^{\circ} \%$	16.4	${ }_{17}{ }^{1} \mathrm{I}$	18.0	19°	$20 \cdot 1$	$21 \cdot 3$
48	12.0	12.3	12.7	13.2	13.6	14.1	14.7	$15 \cdot 3$	16°	16.7	17.5		19.3	$22^{2} 4$	$21 \cdot 7$
49	12.2	12.6	${ }^{13}{ }^{\circ}$	13.4	$13^{13.9}$	14.4	${ }^{15} 5^{\circ}$	${ }^{15} 5^{\circ} 6$		17.0 17.4		18.7 19	19 20.1	$20 \cdot 9$ 21 1	$22 \cdot \mathrm{r}$ 22.6
50	12	12	13.3	$13^{\prime} 7$	$14^{\circ} 2$	$14^{\circ} 7$	15.3	$15^{\circ} 9$	16	17.4	18.2	19.1	20	21.3	$22 \cdot 6$
51	12.7	13.1	13.5	$14^{\circ} \mathrm{O}$	14.5	$15^{\circ} 0$	15.6	16.3	17°	17.7	$18 \cdot 6$	19.5	$20 \cdot 6$	$21 \cdot 7$ 22.2	$23 \cdot 1$ 23.6
52	13.0	13.4	13.8	14.3	$1{ }^{1} \cdot 8$	15.4	16.0	16.6	17.3	18. 18 18 1	19°	20^{20}	21.0	22.2 22.7	$23 \cdot 6$ $24^{\circ} \mathrm{I}$
53	13.3	$13^{\prime} 7$	14.2	$14^{\circ}{ }^{\circ} 6$	${ }^{15}{ }^{\circ} 2$	$15^{\circ} 7$	16.3	${ }^{17}{ }^{\circ} \mathrm{O}$	17.7	18.5	$19^{19}{ }^{\circ} 4$	20.4	21.5	$22 \cdot 7$	24.1 24.7
54	13.6	$14^{\circ} \mathrm{O}$	14.5	$15^{\circ}{ }^{\circ}$	15.5	16.1	16.7	17.4	18.2	19°	19.9	$20^{\circ} 9$	22	${ }^{23} 3$	$24^{\circ} 7$
55	13'9	14.4	$14^{\circ} 9$	15.4	15.9	16.5	${ }^{17} 1{ }^{1}$	17.8	18.6	19.5	$20^{\circ} 4$	21.4	22	$23^{\circ} 9$	$25^{\circ} 3$
56	14.3	14.8	$15^{2} 2$	15.8	16.3	16.9	17.6	18.3	19.1	20°	20.9	22.0	23.1	$24^{\prime} 5$	$26^{\circ} \mathrm{O}$
57	14.9	15^{1} I	${ }^{15} 5^{6}$	${ }^{16}$. 2	$1{ }^{1} 8$	17.4	18.1	18.8	$19^{\circ} 6$	20.5	21.5	$22 \cdot 6$	$23^{2.8}$	25. ${ }^{25}$	26.4 27.4
58	15.1	15.6 16.0	16.1 16.5 1	$16 \cdot 6$ $17 \cdot 1$ 1	$17^{17} 1$	17.9 18.9 18	${ }_{18}^{18 \cdot 6}$	19.3	20^{2}	${ }_{21}^{21.1}$	$22 \cdot 7$	23.2	${ }^{24.4}$	${ }_{26.6}^{25}$	27.4
60	16.0	16.	170	17.6	18.2	18.9	${ }^{19} 17$	20.5	2	$22 \cdot 3$	234	24.6	$25^{\circ} 9$	27.4	29°

To convert time into longitude divide by 4 . Thus $16 \mathrm{~s} . \div 4=4^{\prime}$ long.

Table D.
Showing the Error produced in the Time or Longitude by an Error of 1 ' in the Altitude.

Lat.	AZIMUTHS.														
	15°	14°	13°	12°	11°	10°	$9{ }^{\circ}$	3°	$7{ }^{\circ}$	6°	5°	$4{ }^{\circ}$	3°	2°	$1{ }^{\circ}$
-	s.	S.	s.	s.	s.	S.	s.	s.	s.	S.	s.	s.	s.	s.	s.
-	15.4	$16 \cdot 5$	17.8	19.2	$2 \mathrm{I}^{\circ}$	23.0	25.6	28.7	$32 \cdot 8$	$38 \cdot 3$	$45^{\circ} 9$	57.4	$76 \cdot 4$	115	229
1	15.5	$16 \cdot 5$	17.8	$19 * 3$	$1 \cdot 0$	$23^{\circ} \mathrm{O}$	25.6	$28 \cdot 7$	$32 \cdot 8$	$38 \cdot 3$	$45^{\circ} 9$	$57 \cdot 4$	$76 \cdot 4$	115	229
2	15.5	$16 \cdot 5$	17.8	$19 * 3$	$21^{\circ} \mathrm{O}$	$23^{\circ} \mathrm{O}$	$25 \cdot 6$	$28 \cdot 8$	$32 \cdot 8$	$38 \cdot 3$	$45^{\circ} 9$	57.4	$76 \cdot 5$	115	229
3	15.5	$16 \cdot 6$	17.8	19.3	$21^{\circ} \mathrm{O}$	$23^{\cdot 1}$	$25^{\circ} 6$	$28 \cdot 8$	32.9	$38 \cdot 3$	46°	$57 \cdot 4$	$76 \cdot 5$	115	230
4	15.5	16.6	17.8	19.3	21°	$23^{\circ} \mathrm{I}$	$25^{\circ} 6$	$28 \cdot 8$	$32 \cdot 9$	38.4	46.0	57.5	$76 \cdot 6$	115	230
5	15.5	$16 \cdot 6$	17.8	19.3	21°	23^{1} I	25.7	28.9	32.9	$38 \cdot 4$	46^{\prime} I	$57 \cdot 6$	$76 \cdot 7$	115	230
6	$15^{\circ} 5$	$16 \cdot 6$	17.9	19.3	2I•I	23.2	25.7	28.9	33°	38.5	$46 \cdot 1$	57\%7	$76 \cdot 9$	115	230
7	15.6	$16 \cdot 7$	17.9	19.4	2I'I	23.2	$25^{\circ} 8$	29*0	$33^{\text {I }}$	$38 \cdot 6$	$46 \cdot 2$	$57 \cdot 8$	$77 \cdot 0$	115	231
8	15.6	${ }^{16 \cdot 7}$	$18 \cdot 0$	19.4	$2 \mathrm{I} \cdot 2$	23.3	$25^{\circ} 8$	29°	$33^{\circ} \mathrm{I}$	$38 \cdot 6$	$46 \cdot 3$	57.9	$77^{\circ} 2$	116	231
9	15.6	$16 \cdot 7$	18.0	19.5	21.2	$23 \cdot 3$	25.9	29.1	$33^{\circ} 2$	$38 \cdot 7$	$46 \cdot 5$	$58 \cdot \mathrm{I}$	$77^{\circ} 4$	116	232
10	15.7	$16 \cdot 8$	$18 \cdot 1$	19.5	21•3	23.4	26°	29^{2}	$33^{\circ} 3$	$38 \cdot 9$	46.6	58.2	$77 \cdot 6$	116	233
II	15.7	$16 \cdot 8$	18. ${ }^{1}$	19.6	$2 \mathrm{I}^{\circ} 4$	23.5	$26 \cdot 0$	$29 \cdot 3$	$33^{\circ} 4$	$39^{\circ} \mathrm{O}$	$46 \cdot 8$	58.4	77×9	117	233
12	15.8	16.9	$18 \cdot 2$	19.7	21.4	23.5	$26 \cdot 1$	$29^{\circ} 4$	$33^{\circ} 6$	39^{-1}	$46 \cdot 9$	$58 \cdot 6$	$78 \cdot 1$	117	234
13	15.9	$17^{\circ} \mathrm{O}$	$18 \cdot 2$	19.7	21.5	$23 \cdot 6$	$26 \cdot 2$	29.5	$33^{\circ} 7$	$39^{\circ} 3$	47'1	$58 \cdot 9$	78.4	118	235
14	15.9	$17^{\circ} 0$	$18 \cdot 3$	19.8	21.6	23.7	26.4	29.6	$33^{\circ} 8$	$39^{\circ} 4$	$47 \cdot 3$	59.1	$78 \cdot 8$	i18	236
15	16.0	17.1	18.4	19.9	21.7	23.8	$26 \cdot 5$	$29 \cdot 8$	34°	$39 \cdot 6$	47.5	59.4	$79^{\text {I }}$	119	237
16	${ }_{16 \cdot 1}$	17.2	18.5	20*0	21.8	$24^{\circ} \mathrm{O}$	$26 \cdot 6$	$29^{\circ} 9$	$34^{\circ} \mathrm{I}$	$39 \cdot 8$	47×7	$59^{\circ} 7$	$79^{\circ} 5$	19	238
17	$16 \cdot 2$	17.3	$18 \cdot 6$	$20 \cdot$	21.9	$24^{.1}$	$26 \cdot 7$	$30^{\circ} \mathrm{I}$	34.3	40°	$48 \cdot 0$	$60 \cdot 0$	$79^{\circ} 9$	20	240
I8	16.2	17.4	18.7	$20 \cdot 2$	22°	24.2	$26 \cdot 9$	$30 \cdot 2$	34.5	40°	$48 \cdot 3$	$60 \cdot 3$	$80^{\circ} 4$	121	241
19	$16 \cdot 3$	17.5	$18 \cdot 3$	$20 \cdot 3$	$22 \cdot 2$	24.4	27°	$30 \cdot 4$	34.7	$40 \cdot 5$	$48 \cdot 5$	$60 \cdot 6$	$80 \cdot 8$	121	242
20	16.4	17.6	18.9	20.5	22.3	$24^{\circ} 5$	$27^{\circ} 2$	$30 \cdot 6$	$34^{\circ} 9$	40'7	$48 \cdot 8$	$61^{\circ} \mathrm{O}$	8r•3	122	244
21	16.6	17.7	19*0	$20 \cdot 6$	22.5	$24^{\circ} 7$	$27^{\circ} 4$	$30 \cdot 8$	$35^{\circ} 2$	4 ${ }^{\circ} 0$	$49 \cdot 2$	61.4	$8 \mathrm{I} \cdot 9$	123	246
22	16.7	17.8	$19^{\circ} 2$	20.7	22.6	$24^{\circ} 8$	27.6	31.0	$35^{\circ} 4$	41•3	$49 \cdot 5$	61.8	82.4	124	247
23	16.8	18.0	19.3	$20 \cdot 9$	22.8	$25^{\circ} \mathrm{O}$	27^{-8}	31.2	$35^{\circ} 7$	$4^{1} \cdot 6$	$49^{\circ} 9$	$62 \cdot 3$	83°	125	249
24	16.9	18.1	19.5	$2 \mathrm{I} \cdot \mathrm{I}$	$22 \cdot 9$	$25^{\circ} 2$	$28 \cdot 0$	31.5	$35^{\circ} 9$	$41^{\circ} 9$	50•2	$62 \cdot 8$	83.7	125	251
25	17.1	18.2	19.6	$21 \cdot 2$	$23 \cdot 1$	$25^{\circ} 4$	$28 \cdot 2$	$3{ }^{1 \cdot 7}$	$36 \cdot 2$	42^{2}	$50 \cdot 6$	$63 \cdot 3$	84.3	126	253
26	17.2	18.4	19.8	21.4	$23 \cdot 3$	$25^{\circ} 6$	28.4	$32 \cdot 0$	$36 \cdot 5$	$42 \cdot 6$	51•1	$63 \cdot 8$	85°	128	255
27	17.3	$18 \cdot 6$	20*0	21.6	$23 \cdot 5$	$25^{\circ} 8$	$28 \cdot 7$	$32 \cdot 3$	$36 \cdot 8$	$42 \cdot 9$	51.5	64.4	$85^{\circ} 8$	129	257
28	17.5	18.7	$20 \cdot 1$	$2 \mathrm{I} \cdot 8$	23.7	26.1	29*0	$32 \cdot 6$	$37^{\circ} 2$	$43 \cdot 3$	52.0	64.9	$86 \cdot 6$	130	260
29	17.7	18.9	$20 \cdot 3$	$22^{\circ} \mathrm{O}$	$24^{\circ} \mathrm{O}$	$26 \cdot 3$	$29^{\circ} 2$	$32 \cdot 9$	$37^{\circ} 5$	$43 \cdot 8$	52.5	$65 \cdot 6$	87.4	131	262
30	17.8	19'1	$20 \cdot 5$	22	24.2	$26 \cdot 6$	$29^{\circ} 5$	$33^{\circ} 2$	$37^{\circ} 9$	$44^{\circ} 2$	$53^{\circ} \mathrm{O}$	$66 \cdot 2$	$88 \cdot 3$	132	265
3 I	18.0	19.3	$20 \cdot 7$	22.4	$24^{\circ} 5$	$26 \cdot 9$	$29 \cdot 8$	33.5	$38 \cdot 3$	$44^{\circ} 6$	53.5	66.9	$89^{\circ} 2$	134	267
32	18.2	19.5	21	$22 \cdot 7$	$24^{\circ} 7$	27.2	$30 \cdot 2$	33.9	$38 \cdot 7$	$45^{\text { }}$ I	$54^{\circ} \mathrm{I}$	$67 \cdot 6$	$90 \cdot 1$	135	270
33	18.4	19.7	$21 \cdot 2$	22.9	$25^{\circ} \mathrm{O}$	27.5	$30 \cdot 5$	$34 \cdot 3$	$39^{\circ} \mathrm{I}$	$45^{\circ} 6$	54.7	68.4	91.I	137	273
34	18.6	$19{ }^{\circ} 9$	21.4	$23^{2} 2$	25.3	27.8	$30 \cdot 8$	$34^{\circ} 7$	$39^{\circ} 6$	$46 \cdot 2$	$55^{\circ} 4$	69.2	$92 \cdot 2$	138	276
35	18.9	$20 \cdot 2$	$21^{\prime} 7$	23.5	$25^{\circ} 6$	28.1	$3 \mathrm{I} \cdot 2$	$35^{\circ} \mathrm{I}$	40* 1	$46 \cdot 7$	56.0	70°	$93 \cdot 3$	140	280
36	19.1	$20 \cdot 4$	22	23.8	$25^{\circ} 9$	28.5	31.6	35.5	$40 \cdot 6$	47×3	56.7	70×9	$94^{\circ} 5$	142	283
37	19.4	$20 \cdot 7$	$22 \cdot 3$	$24^{.1}$	$26 \cdot 2$	$28 \cdot 8$	$32 \cdot 0$	$36 \cdot 0$	4 $\mathrm{I}^{\text {I }}$	$47^{\circ} 9$	57.5	71.8	$95^{\circ} 7$	144	287
38	$19 \cdot 6$	21°	$22 \cdot 6$	$24^{\circ} 4$	$26 \cdot 6$	29.2	32.4	$36 \cdot 5$	4 I 7	$48 \cdot 6$	$58 \cdot 2$	$72 \cdot 8$	97°	145	291
39	19.9	$21^{\circ} 3$	22.9	$24^{\circ} 8$	$27^{\circ} \mathrm{O}$	29.6	$32 \cdot 9$	$37^{\circ} \mathrm{O}$	$42 \cdot 2$	$49^{\circ} 2$	$59^{\text {I }}$ I	$73 \cdot 8$	$98 \cdot 3$	147	295
40	20.2	21.6	$23^{\circ} 2$	$25^{\cdot 1}$	27.4	$30 \cdot 1$	$33^{\circ} 4$	$37 \cdot 5$	$42 \cdot 8$	50*0	59.9	74.9	99*8	150	299
4 I	$20^{\circ} 5$	21.9	23.6	25.5	$27 \cdot 8$	30.5	$33^{\circ} 9$	$38 \cdot 1$	$43 \cdot 5$	$50 \cdot 7$	$60 \cdot 8$	76.0	101	152	304
42	20.8	22.2	23.9	25.9	28.2	$31^{\circ} \mathrm{O}$	$34^{\circ} 4$	$38 \cdot 7$	$44^{\circ} 2$	$51 \cdot 5$	$6 \mathrm{r} \cdot 8$	77.2	103	${ }^{1} 54$	308
43	21.1	22.6	24.3	$26 \cdot 3$	$28 \cdot 7$	3 F 5	$35^{\circ} \mathrm{O}$	$39 * 3$	$44^{\circ} 9$	$52 \cdot 3$	$62 \cdot 8$	$78 \cdot 4$	105	157	313
44	21.5	$23^{\circ} \mathrm{O}$	24.7	$26 \cdot 7$	29'1	$32 \cdot 0$	$35^{\circ} 5$	40°	$45^{\circ} 6$	53°	63.8	$79^{\circ} 7$	106	159	319
45	21.9	23.4	$25^{\circ} \mathrm{I}$	27.2	$29^{\circ} 6$	32.6	$36 \cdot 2$	$40 \cdot 6$	$46 \cdot 4$	$54^{.1}$	64.9	$8 \mathrm{I} \cdot \mathrm{I}$	108	162	324
46	22.2	23.8	$25^{\circ} 6$	$27^{\circ} 7$	$30^{\circ} 2$	$33^{\circ} 2$	$36 \cdot 8$	$4{ }^{1} 4$	$47^{\circ} 2$	$55^{\circ} \mathrm{I}$	$66 \cdot 1$	82.5	110	165	330
47	22.7	$24^{\circ} 2$	$26^{1} 1$	28.2	30.7	$33 \cdot 8$	$37 \cdot 5$	$42 \cdot 1$	$48^{\circ} \mathrm{I}$	56. 1	$67 \cdot 3$	$84^{\circ} \mathrm{I}$	112	168	336
48	$23^{\prime} \mathrm{I}$	$24^{\circ} 7$	$26 \cdot 6$	28.8	$31 \cdot 3$	34.4	$38 \cdot 2$	43°	$49^{\prime} \mathrm{I}$	$57 \cdot 2$	$68 \cdot 6$	85.7	114	171	343
49	$23^{\circ} 6$	$25^{\circ} 2$	27.1	29.3	32.0	$35^{\circ} \mathrm{I}$	39°	$43 \cdot 8$	$50 \cdot 0$	$58 \cdot 3$	$70^{\circ} 0$	87.4	116	175	349
50	$24^{\circ} \mathrm{O}$	25.7	27.7	29.9	$32 \cdot 6$	$35^{\circ} 8$	$39^{\circ} 8$	$44^{\circ} 7$	$5 \mathrm{I} \cdot 1$	59.5	71.4	89.2	119	178	357
51	$24^{\circ} 6$	$26 \cdot 3$	$28 \cdot 3$	$30 \cdot 6$	$33 \cdot 3$	$36 \cdot 6$	$40 \cdot 6$	$45^{\prime} 7$	52.2	$60 \cdot 8$	$72 \cdot 9$	91'1	121	182	364
53	$25^{\circ} \mathrm{I}$	$26 \cdot 9$	$28 \cdot 9$	$3 \mathrm{I} \cdot 2$	$34^{\circ} \mathrm{I}$	37.4	$4 \mathrm{~T} \cdot 5$	$46 \cdot 7$	$53 \cdot 3$	$62 \cdot 2$	74.5	93. 1	124	186	372
53	$25^{\circ} 7$	$27^{\circ} 5$	29.5	32.0	$34^{\circ} 8$	$38 \cdot 3$	42.5	$47 \cdot 8$	54.5	$63^{\circ} 6$	$76 \cdot 3$	$95^{\circ} 3$	127	190	381
54	$26 \cdot 3$	$28 \cdot 1$	$30 \cdot 3$	32.7	$35^{\circ} 7$	$39^{\circ} 2$	43.5	48.9	$55^{\circ} 8$	$65^{\circ} \mathrm{I}$	$78 \cdot 1$	$97^{\circ} 6$	- 130	195	390
55	26.9	28.8	$3{ }^{\circ} \mathrm{O}$	33.5	$36 \cdot 5$	$40 \cdot 2$	$44^{\circ} 6$	$50 \cdot 1$	$57 \cdot 2$	$66^{\prime} 7$	80°	-	133	200	400
56	27.6	29.6	$3 \mathrm{~F} \cdot 8$	$34^{\circ} 4$	37.5	$4{ }^{1} 2$	$45^{\circ} 7$	51.4	$58 \cdot 7$	$68 \cdot 4$	$82 \cdot 1$	102.5	137	205	410
57	28.4	$30 \cdot$	32.6	$35^{\circ} 3$	38.5	$42 \cdot 3$	$46 \cdot 9$	$52 \cdot 8$	$60 \cdot 3$	$70 \cdot 3$	84.3	105.3	140	210	421
58	$29^{\circ} 2$	$3{ }^{1} \cdot 2$	33.6	36.3	$39^{\circ} 6$	43.5	$48 \cdot 3$	$54^{\circ} 2$	$6{ }^{6} \cdot 9$	$72 \cdot 2$	86.6	108.2	${ }^{1} 44$	216	432
59	$30 \cdot 0$	$32 \cdot 1$	34.5	37.4	$40^{\circ} 7$	$44^{\circ} 7$	$49^{\circ} 6$	$55^{\circ} 8$	$63^{\circ} 7$	74.3	$89^{\circ} \mathrm{I}$	rir ${ }^{\text {c }}$	148	223	445
60	$30 \cdot 9$	$33^{\circ} \mathrm{I}$	$35^{\circ} 6$	$38 \cdot 5$	$4{ }^{\circ} 9$	$46 \cdot 1$	$51^{\circ} \mathrm{I}$	57.5	$65^{\circ} 6$	$76 \cdot 5$	91.8	114.7	153	229	458

To convert time into longitude divide by 4 . Thus $35^{\circ} \cdot \mathrm{s} . \div 4=8 \cdot 9^{\prime}$ long.

Table D．

Showing the Error produced in the Time or Longitude by an Error of i＇in the Altitude．

易者㡙	LATITUDES．														
	61°	62°	63°	64°	65°	66°	67°	68°	69°	70°	71°	72°	73°	74°	75°
－	s．	s．	s．	s．	s．	s．	s．	S．	S．	S．	s．	s．	S．	s．	S．
$0 \frac{1}{2}$	945	976	1010	1046	1085	1127	1173	1224	1279	1340	1408	1483	1568	1663	1771
，	473	488	505	523	542	563	587	612	640	670	704	742	784	832	886
$1{ }_{2}$	315	325	337	349	362	376	391	408	426	447	469	495	523	554	590
2	236	244	252	262	271	282	293	306	320	335	352	371	392	416	443
$2 \frac{1}{3}$	189	195	202	209	217	225	235	245	256	268	282	297	314	333	354
3	158	163	168	174	181	188	196	204	213	223	235	247	261	277	295
$3 \frac{3}{2}$	135	140	144	150	155	161	168	175	183	192	201	212	224	237	253
4	118	122	6	${ }^{1} 31$	136	141	147	153	160	168	176	186	196	208	222
$4 \frac{1}{2}$	105	109	112	116	121	125	130	136	142	149	157	165	174	185	197
5	94＊7	$97 \cdot 8$	101	105	109	113	117	123	128	134	141	149	157	167	177
$5 \frac{2}{2}$	$86 \cdot 1$	88.9	91•9	95^{2}	$98 \cdot 8$	103	107	III	116	122	128	135	143	151	161
	$79^{\text {I }}$	81＇5	84.3	87.3	$90 \cdot 5$	$94{ }^{1}$	97＊9	102	107	112	118	124	131	139	148
6 6	$72 \cdot 9$	$75 \cdot 3$	$77 \cdot 8$	80.6	83.6	86.9	$90 \cdot 4$	94.3	$98 \cdot 6$	103	109	114	121	128	137
	67.7	$69^{\circ} 9$	$72 \cdot 3$	74.9	$77^{\circ} 7$	$80 \cdot 7$	$84^{\circ} \mathrm{O}$	$87 \cdot 6$	91•6	$96 \cdot$	101	106	112	119	127
$7 \frac{1}{2}$	63.2	$65^{\circ} 3$	67.5	$69^{\circ} 9^{\circ}$	72.5	$75^{\circ} 3$	78.4	8I•8	85.5	$89 \cdot 6$	$94^{\text { }}$ I	99^{2}	105	III	118
8	59.3	6I＇2	63.3	$65 \cdot 6$	68°	$70 \cdot 7$	$73 \cdot 6$	$76 \cdot 7$	$80 \cdot 2$	$84^{\circ} \mathrm{O}$	$88 \cdot 3$	$93^{\circ} \mathrm{O}$	98．3	104	III
83	$55^{\circ} 8$	$57 \cdot 6$	$59 \cdot 6$	$6 \mathrm{I} \cdot 7$	$64^{\circ} \mathrm{O}$	$66 \cdot 5$	$69 \cdot 3$	$72 \cdot 2$	75.5	79^{1} I	83.1	$87 \cdot 6$	$92 \cdot 6$	98．2	105
	$52 \cdot 7$	54.5	56.3	$58 \cdot 3$	$60 \cdot 5$	$62 \cdot 9$	65.4	$68 \cdot 3$	71.4	$74 \cdot 8$	78.5	82.7	87.5	$92 \cdot 8$	$98 \cdot 8$
$9{ }^{1}$	$50^{\circ} \mathrm{O}$	$5 I^{\circ} 6$	53.4	55.3	57.3	59.6	62°	64.7	67.6	$70 \cdot 9$	74.4	78.4	82.9	87.9	93.6
10	47.5	$49^{\circ} \mathrm{I}$	50\％7	$52 \cdot 6$	$54^{\circ} 5$	$56 \cdot 6$	$59^{\circ} \mathrm{O}$	6r．5	64.3	67.4	$70 \cdot 8$	74.5	$78 \cdot 8$	$83 \cdot 6$	89°
10 否	$45^{\circ} 3$	$46 \cdot 8$	$48 \cdot 3$	$50 \cdot 1$	51.9	$54^{\circ} \mathrm{O}$	$56 \cdot 2$	$58 \cdot 6$	$6 \mathrm{I} \cdot 2$	64.2	67×4	$7 \mathrm{i}^{\circ}$	75＇1	$79 \cdot 6$	84.8
II	$43^{\prime 2}$	44.7	$46 \cdot 2$	$47 \cdot 8$	$49^{\circ} 6$	51．5	$53 \cdot 7$	56.0	58.5	6I＇3	64.4	$67 \cdot 8$	$71^{1} 7$	$76 \cdot 1$	$8 \mathrm{I} \cdot 0$
$11 \frac{1}{2}$	41.4	42.7	$44^{\circ} 2$	$45^{\circ} 8$	47.5	49.3	5 I 3	$53^{\circ} 6$	56.0	$58 \cdot 7$	$6 \mathrm{I} \cdot 6$	64.9	$68 \cdot 6$	$72 \cdot 8$	$77 \cdot 5$
12	$39^{\circ} 7$	4 ${ }^{\circ} \mathrm{O}$	42.4	43.9	$45^{\circ} 5$	473	$49^{\circ} 2$	$5 \mathrm{I}^{\circ} 4$	$53 \cdot 7$	$56 \cdot 3$	$59^{\circ} 1$	$62 \cdot 3$	$65 \cdot 8$	69.8	74.3
12 ${ }^{\text {3 }}$	$3^{8 \cdot 1}$	$39^{\circ} 4$	40\％ 7	42.2	$43^{\prime} 7$	＋5＊4	47×3	$49^{\circ} 3$	51．6	$54^{\circ} \mathrm{O}$	$56 \cdot 8$	$59^{\circ} 8$	$63^{\prime 2}$	67°	71.4
13	36.7	37.9	$39^{\circ} 2$	$40 \cdot 6$	42.1	43.7	$45^{\circ} 5$	$47 \cdot 5$	49.6	52.0	54.6	57．5	$60 \cdot 8$	64.5	$68 \cdot 7$
$13{ }^{\frac{1}{2}}$	$35^{\circ} 3$	$36 \cdot 5$	37.7	39^{\prime} I	$40^{\circ} 5$	$42^{\circ} \mathrm{I}$	$43^{\circ} 9$	$45^{\circ} 7$	$47^{\circ} 8$	50＇I	52.6	55．4	$58 \cdot 6$	$62 \cdot 2$	66．2
14	$34^{\circ} \mathrm{I}$	$35^{\circ} 2$	36.4	37.7	$39^{\circ} \mathrm{I}$	$40 \cdot 7$	42.3	$44^{\circ} \mathrm{I}$	$46 \cdot 1$	$48 \cdot 3$	$50 \cdot 8$	$53^{\circ} 5$	$56 \cdot 6$	$60 \cdot 0$	63.9
142	33°	34°	$35^{\circ} 2$	$36 \cdot 4$	$37^{\circ} 8$	$39 * 3$	$40 \cdot 9$	42.6	$44^{\cdot 6}$	$46 \cdot 7$	49 ${ }^{\text {I }}$	51．7	$54 \cdot 6$	58．0	$6{ }^{1} 7$
15	31．9	$32^{\circ} 9$	34°	$35^{\circ} 3$	$36 \cdot 6$	$38 \cdot 0$	$39^{\circ} 6$	41＊3	$43^{\circ} 1$	$45^{\circ} 2$	47.5	50＇0	52.9	56•1	59＊7
151 ${ }^{\frac{1}{2}}$	30＇9	31．9	$33^{\circ} 0$	$34^{\circ} \mathrm{I}$	$35^{\circ} 4$	36.8	$38 \cdot 3$	$40^{\circ} 0$	4I•8	$43 \cdot 8$	$4^{6} \cdot$	$48 \cdot 4$	$51 \cdot 2$	54.3	$57^{*} 8$
16	29.9	$30 \cdot 9$	$3^{\circ}{ }^{\circ}$	$33^{\prime} \mathrm{I}$	34.3	$35 \cdot 7$	$37 \cdot 1$	$38 \cdot 7$	$40 \cdot 5$	42.4	$44^{\circ} 6$	$47^{\circ} \mathrm{O}$	$49 \cdot 6$	$52 \cdot 6$	$56 \cdot 1$
$16 \frac{1}{2}$	29.1	$30 \cdot 0$	$31^{\circ} 0$	32^{\prime} I	33.3	$34^{\circ} 6$	36.0	$37 \cdot 6$	$39 \cdot 3$	$4{ }^{1} 2$	$43 \cdot 3$	$45^{\circ} 6$	$48 \cdot 2$	51．1	54.4
17	28.2	$29^{\circ} \mathrm{I}$	$30^{\circ} \mathrm{I}$	$3{ }^{1} \cdot 2$	32.4	$33^{\circ} 6$	$35^{\circ} \mathrm{O}$	36.5	$38^{\circ} 2$	40°	$4^{\circ} \mathrm{O}$	44.3	$46 \cdot 8$	$49 \cdot 6$	$52 \cdot 9$
172	27.4	$28 \cdot 3$	29.3	$30 \cdot 3$	$3{ }^{\prime} 5$	$32 \cdot 7$	$34^{\circ} \mathrm{O}$	$35^{\circ} 5$	$37 \cdot 1$	$38 \cdot 9$	40×9	43°	$45^{\circ} 5$	$48 \cdot 3$	$51 \cdot 4$
18	26.7	$27 \cdot 6$	$28 \cdot 5$	29.5	$30 \cdot 6$	$31 \cdot 8$	$33^{\circ} \mathrm{I}$	34.6	$36 \cdot 1$	$37 \cdot 8$	$39 \cdot 8$	41．9	$44^{\circ} 3$	47°	50°
188	26.0	26.9	$27 \cdot 8$	$28 \cdot 8$	$29 \cdot 8$	$3{ }^{\circ} \mathrm{O}$	$32 \cdot 3$	33.7	$35^{\circ} 2$	36.9	$38 \cdot 7$	$40 \cdot 8$	43^{1}	$45^{\prime} 7$	$48 \cdot 7$
19	25.3	26.2	$27^{1} 1$	28.0	$29^{\circ} \mathrm{I}$	$30 \cdot 2$	31.4	$32 \cdot 8$	$34^{\circ} 3$	35.9	37.7	$39 \cdot 8$	$4^{\circ}{ }^{\circ}$	$44^{\circ} 6$	$47 \cdot 5$
19．${ }^{2}$	$24^{\circ} 7$	25.5	26.4	27.3	28.4	29.5	$30 \cdot 7$	$32 \cdot 0$	33.4	$35^{\circ} \mathrm{O}$	$36 \cdot 8$	$38 \cdot 8$	$41^{\circ} \mathrm{O}$	$43 \cdot 5$	$46 \cdot 3$
20	$24^{\circ} \mathrm{I}$	24.9	25^{-8}	26.7	27.7	28.8	29．9	31．2	$32 \cdot 6$	$34^{\circ} 2$	35\％9	$37 \cdot 8$	40°	42.4	$45^{\circ} 2$
$20 \frac{1}{2}$	$23 \cdot 6$	24.3	$25^{\circ} 2$	$26 \cdot 1$	$27^{\circ} 0$	28．1	$29^{2} 2$	$30 \cdot 5$	31．9	$33^{\circ} 4$	35^{\prime} I	37°	39^{\prime} I	$4{ }^{1} 4$	44 ${ }^{\text {I }}$
2 L	23°	$23 \cdot 8$	$24^{\circ} 6$	25.5	26.4	27.4	28.6	29.8	$3 \mathrm{I} \cdot \mathrm{I}$	$32 \cdot 6$	34.3	$36^{\circ} \mathrm{I}$	$38 \cdot 2$	$40 \cdot 5$	$43^{\prime} 1$
$21 \frac{1}{2}$	22.5	23.2	$24^{\circ} \mathrm{O}$	24.9	$25^{\circ} 8$	$26 \cdot 8$	27.9	$29^{1.1}$	$30 \cdot 5$	$3{ }^{\circ} \cdot 9$	$33 \cdot 5$	$35 \cdot 3$	37.3	$39 \cdot 6$	$42^{\cdot 2}$
22	22.0	22.7	23.5	$24^{\circ} 4$	25.3	$26 \cdot 3$	$27 \cdot 3$	28.5	29.8	$3{ }^{1} \cdot 2$	$32 \cdot 8$	$34^{\circ} 6$	$36 \cdot 5$	$38 \cdot 7$	$4 \mathrm{I} \cdot 3$
222	21.6	22.3	23°	$23^{\circ} 8$	$24^{\circ} 7$	$25^{\circ} 7$	$26 \cdot 8$	27.9	29.2	30.6	$32^{1} 1$	$33^{\circ} 8$	$35^{\circ} 8$	$37 \cdot 9$	$40 \cdot 4$
23	21＇I	21．8	22.5	23.3	24.2	$25^{2} 2$	$26 \cdot 2$	27.3	28.6	29.9	$3 \mathrm{I} \cdot 4$	33^{\prime} I	35°	$37^{\prime 1}$	39.6
23 $\frac{1}{2}$	$20 \cdot 7$	$2 \mathrm{I} \cdot 4$	22．1	22.9	$23^{\circ} 7$	$24^{\circ} 7$	25.7	$26 \cdot 8$	28.0	$29^{\prime} 3$	$30 \cdot 8$	32.5	34.3	36.4	$38 \cdot 8$
24	$20 \cdot 3$	$20^{\prime} 9$	21.7	22.4	23.3	$24^{\circ} 2$	$25^{\circ} 2$	$26^{\circ} 3$	$27^{\circ} 4$	$28 \cdot 8$	$30 \cdot 2$	31．8	$33^{\circ} 6$	$35^{\circ} 7$	$38 \cdot$
$24 \frac{1}{2}$	19.9	$20 \cdot 5$	21.2	22°	22	23.7	24.7	$25^{\circ} 7$	26.9	28	$29^{\circ} 6$	31.2	$33^{\circ} \mathrm{O}$	$35^{\circ} \mathrm{O}$	37.3
25	19.5	20.2	20.8	21．6	22.4	23.3	$24^{\circ} 2$	$25^{\circ} 3$	26.4	27.7	29．1	$30 \cdot 6$	32.4	$34^{\circ} 3$	$36 \cdot 6$
25글	19.2	19.8	20.5	21.2	$22^{\circ} \mathrm{O}$	22.8	23.8	$24 \cdot 8$	$25^{\prime} 9$	$27^{\circ} 2$	28.5	$30 \cdot 1$	31．8	$33 \cdot 7$	$35^{\circ} 9$
26	18.8	19.4	$20 \cdot 1$	$20 \cdot 8$	21	22.4	23.4	24.4	$25^{\circ} 5$	26.7	28.0	29.5	$3 \mathrm{I} \cdot 2$	33^{\prime} I	$35^{\circ} 3$
261 ${ }^{2}$	$18 \cdot 5$	19.1	19.7	20.4	21.2	$22^{\circ} \mathrm{O}$	22.9	23.9	25°	$26 \cdot 2$	27.5	$29^{\circ} \mathrm{O}$	$30 \cdot 7$	32.5	$34^{\circ} 6$
27	18.2	$18 \cdot 8$	19.4	$20^{\circ} \mathrm{I}$	20	21.7	22.5	$23^{\circ} 5$	$24^{\circ} 6$	25^{-8}	27.1	28.5	$30^{\circ} \mathrm{I}$	$32^{\circ} \mathrm{O}$	34°
27글	17.9	18.5	19.1	19.8	20.5	21.3	22.2	$23^{1} 1$	$24^{\circ} 2$	25.3	$26 \cdot 6$	28.0	29.6	31.4	$33^{\circ} 5$
28	17.6	$18 \cdot 1$	18.8	19.4	20.2	$20 \cdot 9$	2I•8	22.7	23.8	24.9	$26 \cdot 2$	27.6	$29^{\prime} 1$	$30 \cdot 9$	32．9
$28 \frac{1}{2}$	17.3	179	18.5	19＊ 1	19.8	$20 \cdot 6$	21.5	22.4	23.4	$24^{\circ} 5$	$25^{\prime} 7$	$27 \cdot 1$	$28 \cdot 7$	$30 \cdot 4$	$32 \cdot 4$
29	17.0	17.6	$18 \cdot 2$	$18 \cdot 8$	19.5	$20 \cdot 3$	21.1	22.0	23°	$24^{.1}$	$25^{\circ} 3$	$26 \cdot 7$	$28 \cdot 2$	$29^{\circ} 9$	31.9
$29 \frac{1}{2}$	16.8	17.3	17.9	18.5	$19^{\circ} 2$	$20 \cdot 0$	$20 \cdot 8$	21.7	22.7	23.8	$25^{\circ} \mathrm{O}$	$26 \cdot 3$	$27^{\circ} 8$	29.5	31.4
30	16.5	17°	$17 \cdot 6$	$18 \cdot 2$	18.9	19.7	$20 \cdot 5$	21.4	22.3	23.4	24.6	$25 \cdot 9$	$27^{\circ} 4$	29°	$30 \cdot 9$

To convert time into longitude divide by 4 ．Thus $29 \cdot 2 \mathrm{~s} . \div$ by $4=7 \cdot 3^{\prime}$ longitude．

To convert time into longitude divide by 4 . Thus $50.8 \mathrm{~s} . \div$ by $4=12.7^{\prime}$ longitude.

Table D．
Showing the Error producbd in the Time or Longitude by an Error of it in the Altitude．

	LATITUDES．														
具	61°	62°	63°	64°	65°	66°	67°	68°	69°		70°	$70{ }^{1}{ }^{\circ}$	71°	$71 \frac{1}{2}^{\circ}$	72°
\bigcirc	S．	S．	S．	S．	S．	S．	S．		S．		S．	S．	S．	S．	S．
30	$16 \cdot 5$	17.0	$17 \cdot 6$	$18 \cdot 2$	$18 \cdot 9$	1907	$20 \cdot 5$	21.4	22．3	$22 \cdot 8$	23.4	$24^{\circ} 0$	$24^{\circ} 6$	$25^{\prime} 2$	25．9
31	16．0	$16 \cdot 5$	17＊ 1	17×7	$18 \cdot 4$	I9 ${ }^{\circ}$ I	19.9	20.7	21＇7	$22 \cdot 2$	22．7	23.3	23．9	24.5	$25^{\circ} \mathrm{I}$
32	$15^{\circ} 6$	I6．I	16．6	$17 \cdot 2$	17.9	$18 \cdot 6$	19＊3	20＊I	21＇I	$2 \mathrm{I} \cdot 6$	$22^{\circ} \mathrm{I}$	22.6	$23^{\cdot 2}$	23.8	$24^{\circ} 4$
33	$15^{\circ} \mathrm{I}$	$15^{\circ} 6$	$16 \cdot 2$	16．8	17.4	18．1	$18 \cdot 8$	19．6	20.5	21．0	21．5	22．0	22.6	$23^{\circ} \mathrm{I}$	$23 \cdot 8$
34	I 4.8	$15{ }^{\circ}$	15.8	$16 \cdot 3$	$16 \cdot 9$	17.6	$18 \cdot 3$	19＊I	20．0	20.4	20.9	$2 \mathrm{I}^{\circ} 4$	22°	22.5	23^{1} I
35	14＊4	14.9	15.4	15＊9	16．5	${ }^{1} 7{ }^{\circ} 1$	17．8	$18 \cdot 6$	19.5	19.9	20°	$20 \cdot 9$	$21^{\circ} 4$	22.0	$22 \cdot 6$
36	$14^{\circ} \mathrm{O}$	14.5	$15^{\circ} \mathrm{O}$	15．5	16．1	$16 \cdot 7$	17.4	$18 \cdot 2$	19.0	19.4	19．9	20.4	$20 \cdot 9$	$21^{\circ} 4$	$22^{\circ} \mathrm{O}$
37	13.7	$14^{\circ} \cdot 2$	14.6	15.2	$15 \cdot 7$	$16 \cdot 3$	17.0	17.7	$18 \cdot 5$	19＊0	19.4	19.9	$20 \cdot 4$	$20 \cdot 9$	21.5
3^{8}	I 3.4	13.8	14.3	14.8	15.4	16.0	$16 \cdot 6$	17.3	$18 \cdot 1$	$18 \cdot 6$	19＊0	19.5	$20 \cdot 0$	$20 \cdot 5$	$21^{\circ} 0$
39	13^{1} I	I 3.5	$14^{\circ} \mathrm{O}$	14.5	$15^{\circ} \mathrm{O}$	15.6	16•3	17.0	17\％7	$18 \cdot 1$	$18 \cdot 6$	19.0	19.5	$20 \cdot 0$	$20 \cdot 6$
40	12.8	13.3	13.7	14.	14.7	15.3	$15 * 9$	$16 \cdot 6$	17.4	17.8	$18 \cdot 2$	I8．6	19＇1	19	$20^{\circ} \mathrm{I}$
41	12．6	$13^{\circ} \mathrm{O}$	13.4	13．9	14.4	$15^{\circ} \mathrm{O}$	15.6	16．3	$17^{\circ} \mathrm{O}$	17.4	17.8	$18 \cdot 3$	$18 \cdot 7$	$9^{\circ} 2$	19.7
42	12．3	12.7	$13^{\circ} 2$	I $3 \cdot 6$	$14^{\circ} \mathrm{I}$	14.7	15．3	$16 \cdot 0$	$16 \cdot 7$	$17 \cdot 1$	17.5	17.9	$18 \cdot 4$	$18 \cdot 8$	19＊3
43	$12 \cdot 1$	12.5	$12 \cdot 9$	13.4	13.9	14.4	$15^{\circ} \mathrm{O}$	15.7	$16 \cdot 4$	16．7	$17^{\circ} \mathrm{I}$	$17^{\circ} 6$	18.0	$18 \cdot 5$	1900
44	II＇9	$12 \cdot 3$	12.7	$13^{\circ} \mathrm{I}$	13.6	14.2	14.7	$15^{\circ} 4$	16．1	16．4	$16 \cdot 8$	17.3	17\％	18．1	18．6
45	I 1×7	12．0	12．5	12．9	13.4	13.9	14.5	$15{ }^{\circ} \mathrm{I}$	15．8	$16 \cdot 2$	16.5	16．9	$17 \% 4$		$18 \cdot 3$
46	II• 5	II	12.2	12.7	13.2	13.7	14.2	14.8	15.5	$15 * 9$	16．3	16.7	17.1	17.5	18.0
47	II＊3	II． 6	12.0	I2．5	12.9	13.4	14.0	14.6	15.3	I5．6	$16 \cdot 0$	16.4	$16 \cdot 8$	$17 \cdot 2$	17.7
48	II＇I	II＊ 5	II•9	$12 \cdot 3$	12.7	13.2	I 3.8	14.4	$15^{\circ} \mathrm{O}$	15.4	15.7	16．1	16.5	17.0	17.4
49	10．9	II•3	II＇7	12．1	12.5	13.0	13.6	$14^{\circ} \mathrm{I}$	14.8	$15^{\circ} \mathrm{I}$	I $5^{\circ} 5$	15．9	$16 \cdot 3$	$16 \cdot 7$	17.2
50	10．8	II	II＊5	I I	12	12.8	13.4	13.9	$14^{\circ} 6$	I4．9	15.3	15.6	16.0	$16 \cdot 5$	16.9
51	$10 \cdot 6$	II＇O	II•3	I 1 ＇7	12	12.7	13.2	13.7	14.4	14.7	$15^{\circ} \mathrm{O}$	I $5^{\circ} 4$	15.8	16．2	16.7
52	10．5	10.8	I I 2	II•6	12	12.5	13.0	13.6	$14^{\circ} 2$	14.5	14.8	$15^{\circ} 2$	15.6	$16 \cdot 0$	16.4
53	$10^{\circ} 3$	10.7	11	II．4	II．9	12.3	12.8	13.4	$14^{\circ} \mathrm{O}$	14.3	I 4.6	$15^{\circ} \mathrm{O}$	15.4	15.8	16．2
54	$10 \cdot 2$	10．5	$10 \cdot 9$	II•3	II＇7	$12 \cdot 2$	12.7	$13^{\circ} 2$	I 3.8	$14^{\circ} \mathrm{I}$	I 4.5	$14^{\circ} 8$	$15^{\circ} 2$	15.6	16.0
55	$10^{\circ} 1$	$10 \cdot$	10	II＇I	II•5	I2	I2．5	13.	13.6	13.9	14.3	14.6	$15^{\circ} \mathrm{O}$	15.4	15.8
56	9.95	$10 \cdot 3$	$10 \cdot 6$	II．O	II．4	II＇9	$12 \cdot 3$	12.9	I 3.5	13.8	$14^{\circ} \mathrm{I}$	14.5	14.8	$15^{\circ} 2$	15.6
57	$9 \cdot 84$	10＊2	$10 \cdot 5$	$10 * 9$	II•3	II＇7	12．2	12.7	13.3	13.6	13．9	14.3	14.6	$15^{\circ} \mathrm{O}$	$15^{\circ} 4$
58	9.73	10．0	$10 \cdot 4$	10.8	II•2	II•6	12.1	12.6	I $3^{\circ} 2$	I 3.5	13.8	$14^{\circ} \mathrm{I}$	14.5	14.9	I $5 \cdot 3$
59	$9 \cdot 63$	9＊94	$10 \cdot 3$	$10 \cdot 6$	II．O	II＇5	II•9	12．5	$13^{\circ} \mathrm{O}$	I $3 \cdot 3$	13.6	14.0	14.3	14.7	I $5^{\circ} \mathrm{I}$
60	9.53	$9 \cdot 84$	10＊2	10.5	$10 \cdot 9$	II＇4	Ix ${ }^{\text {8 }}$	12．3	12．9	13.2	13.5	$13 \cdot 8$	14.2	14.6	14.9
61	$9 \cdot 43$	9.74	10＇1	$10 \cdot 4$	$10 \cdot 8$	II＇2	I「7	$12 \cdot 2$	12．8	13.1	13.4	13.7	$14^{\circ} \mathrm{O}$	14.4	14.8
62	$9 \cdot 34$	$9 \cdot 65$	10＊0	$10 \cdot 3$	10	II＇I	II＇6	12.1	12.6	I2．9	$13^{\circ} 2$	13.6	13.9	14.3	14.7
63	$9 \cdot 26$	$9 \cdot 56$	$9 \cdot 89$	$10 \cdot 2$	10.6	I I＇O	II．5	12.0	12.5	12．8	$13^{\circ} \mathrm{I}$	13.4	13.8	$14^{\circ} \mathrm{I}$	14.5
64	$9^{\cdot 18}$	$9 \cdot 48$	9.80	10＇2	10.5	10.9	II＇4	II＇9	12.4	12.7	$13^{\circ} \mathrm{O}$	$13^{\circ} 3$	13.7	$14^{\circ} \mathrm{O}$	14.4
65	$9^{\circ} \mathrm{IO}$	$9 \cdot 40$	$9^{\circ} 7^{2}$	10＊ 1	10	10.9	II＇3	II．	12．3	12	12.9	I $3 \cdot 2$	13.6	13.9	$14^{\circ} 3$
66	$9 \cdot 03$	$9 \cdot 33$	$9 \cdot 64$	9＊99	10.4	$10 \cdot 8$	II＇2	11＇7	$12 \cdot 2$	12.5	$12 \cdot 8$	$13^{\circ} \mathrm{I}$	I 3.4	I 3.8	14.2
67	$8 \cdot 96$	$9 \cdot 26$	$9 \cdot 57$	9．91	$10 \cdot 3$	$10 \cdot 7$	II＇I	II•6	12．I	12．4	12.7	$13^{\circ} \mathrm{O}$	I 3.3	13.7	$14^{\circ} \mathrm{I}$
68	$8 \cdot 90$	$9 \cdot 19$	9.50	$9 \cdot 84$	10.2	10.6	II＇O	II＇5	12.0	$12 \cdot 3$	$12 \cdot 6$	12.9	13.3	13.6	14.0
69	$8 \cdot 84$	$9 \cdot 13$	$9 \cdot 44$	$9 \cdot 77$	10．I	10． 5	II＊O	II＇4	12.0	12．2	$\underline{2.5}$	$12 \cdot 8$	$13^{\circ} 2$	$13^{\circ} 5$	I 3.9
70	$8 \cdot 78$	9＊07	$9 \cdot 38$	9.71	10	10.5		II	II＇9	12．2	$12{ }^{\circ}$	12．8	13．1	13.4	I 3.8
71	$8 \cdot 73$	$9 \cdot 01$	$9 \cdot 32$	$9 \cdot 65$	$10 \cdot 0$	$10 \cdot 4$	10.8	II•3	II•8	12.1	12．4	12.7	$13^{\circ} \mathrm{O}$	13.3	13．7
72	$8 \cdot 68$	$8 \cdot 96$	$9 \cdot 26$	9.59	9＊95	10•3	10.8	II＇2	II＇7	12.0	$12 \cdot 3$	$12 \cdot 6$	I2．9	13.3	13.6
73	$8 \cdot 63$	$8 \cdot 91$	$9 \cdot 21$	$9 \cdot 54$	9.90	10．3	10.7	II＇2	II＇7	II＇9	$12 \cdot 2$	12.5	12．8	$13^{\circ} 2$	13.5
74	$8 \cdot 58$	8－86	9．17	$9 \cdot 49$	$9 \cdot 85$	$10 \cdot 2$	10.6	II＇I	II•6	II．9	12．2	12.5	12．8	$13^{\circ} \mathrm{I}$	I 3.5
75	$8 \cdot 54$	$8 \cdot 82$	$9^{\circ} 12$	9.45	9.80	10＊2	$10 \cdot 6$	II＇I	II	II．8	I2．I	12.4	12.7	$13^{\circ} \mathrm{I}$	I 3.4
76	$8 \cdot 50$	$8 \cdot 78$	9.08	9.40	$9 \cdot 75$	$10^{\circ} 1$	10．6	II＊O	II．5	II•8	12.1	$12 \cdot 3$	12.7	$13^{\circ} \mathrm{O}$	I $3 \cdot 3$
77	$8 \cdot 47$	$8 \cdot 74$	$9 \cdot 04$	$9 \cdot 36$	9.71	$10^{\circ} \mathrm{I}$	10． 5	11.0	II． 5	II＇7	12	$12 \cdot 3$	12.6	12.9	13.3
78	$8 \cdot 44$	$8 \cdot 71$	$9 \cdot 01$	$9 \cdot 33$	$9 \cdot 68$	10＇I	$10 \cdot 5$	$10 \cdot 9$	II．4	I 1＇7	12.0	$12 \cdot 3$	12.6	12.9	13.2
79	$8 \cdot 41$	8．68	$8 \cdot 98$	$9 \cdot 30$	$9 \cdot 64$	$10^{\circ} 0$	10.4	$10 \cdot 9$	II＊ 4	II•6	II＊9	12．2	I2．5	$12 \cdot 8$	13.2
80	$8 \cdot 38$	$8 \cdot 65$	$8 \cdot 95$	$9 \cdot 27$	$9 \cdot 61$	9＊99	10.4	$10 \cdot 8$	II•3	II•6	II＇9	12.2	12.5	12.8	I3．1
31	$8 \cdot 35$	$8 \cdot 63$	$8 \cdot 92$	$9 \cdot 24$	9.58	9.96	$10 \cdot 4$	10.8	II•3	II•6	II•8	12.1	12.4	12.8	I3．1
82	$8 \cdot 33$	$8 \cdot 60$	$8 \cdot 90$	9．2I	$9 \cdot 56$	$9 \cdot 93$	$10 \cdot 3$	$10 \cdot 8$	II•3	II•5	I $1 \cdot 8$	12.1	12.4	12.7	$13^{\circ} \mathrm{I}$
83	$8 \cdot 3 \mathrm{I}$	$8 \cdot 58$	$8 \cdot 88$	9＊19	$9 \cdot 54$	$9 \cdot 91$	$10 \cdot 3$	10.8	I 12	II＇5	I $\cdot 8$	12.1	12.4	$12 \cdot 7$	13.0
84	$8 \cdot 30$	$8 \cdot 57$	$8 \cdot 87$	$9^{\cdot 17}$	$9 \cdot 52$	$9 \cdot 89$	$10 \cdot 3$	$10 \cdot 7$	II•2	II．5	I $1 \cdot 8$	12.0	12.4	$12 \cdot 7$	13.0
85	$8 \cdot 28$	$8 \cdot 55$	$8 \cdot 84$	9＊16	9.50	$9 \cdot 87$	$20 \cdot 3$	$10 \cdot 7$	II＇2	II＊5	11＇7	12.0	12．3	12.7	I 3.0
86	$8 \cdot 27$	$8 \cdot 54$	$8 \cdot 83$	$9^{\circ} \mathrm{I} 5$	$9 \cdot 49$	9.86	$10 \cdot 3$	$10 \cdot 7$	II＇2	II．4	II＇7	12\％	$12 \cdot 3$	12.6	13.0
87	$8 \cdot 26$	$8 \cdot 53$	$8 \cdot 82$	$9^{\circ} \mathrm{I} 4$	$9 \cdot 48$	$9 \cdot 85$	10•3	$10 \cdot 7$	II＊2	II＊4	II＇7	12.0	12.3	12.6	13.0
88	$8 \cdot 26$	$8 \cdot 53$	$8 \cdot 82$	$9^{\circ} \mathrm{I} 3$	$9 \cdot 47$	$9 \cdot 84$	$10 \cdot 2$	$10 \cdot 7$	II＊2	II＇4	II＇7	12.0	12．3	12.6	$13^{\circ} \mathrm{O}$
89	$8 \cdot 25$	$8 \cdot 52$	$8 \cdot 8 \mathrm{I}$	$9^{\circ} \mathrm{I} 3$	$9{ }^{\circ} 47$	$9 \cdot 84$	$10 \cdot 2$	$10 \cdot 7$	IIP2	II＊ 4	ェ1＊7	12.0	$12 \cdot 3$	12.6	I2．9
90	$8 \cdot 25$	$8 \cdot 52$	$8 \cdot 8 \mathrm{I}$	$9^{\circ} 12$	$9 \cdot 46$	$9 \cdot 83$	$10 \cdot 2$	10．7	II＇2	II＊ 4	11＊7	12.0	$12 \cdot 3$	12.6	12．9

[^1]Table D.
Showing the Error produced in the Time or Longitude by an Error of í in thr Altitude.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\stackrel{\text { ® }}{\text { ¢ }}\) \& \multicolumn{15}{|c|}{Latitudes.} \\
\hline 需 \& \(73^{\circ}\) \& \(74^{\circ}\) \& \(75^{\circ}\) \& \(76^{\circ}\) \& \(77^{\circ}\) \& \(78^{\circ}\) \& \(79^{\circ}\) \& \(80^{\circ}\) \& \(81^{\circ}\) \& \(82^{\circ}\) \& \(83^{\circ}\) \& \(83{ }^{10}\) \& \(84^{\circ}\) \& \(81^{\frac{1}{0}}\) \& \(85^{\circ}\) \\
\hline - \& s. \& s. \& s. \& S. \& s. \& S. \& s. \& S. \& S. \& S. \& S. \& s. \& s. \& s. \& s. \\
\hline 30 \& 27.4 \& 29*0 \& \(30 \cdot 9\) \& \(33^{-1}\) \& \(35^{*} 6\) \& \(38 \cdot 5\) \& 41•9 \& 46.1 \& 5I•I \& 57.5 \& \(65^{\circ} 6\) \& \(70 \cdot 7\) \& \(76 \cdot 5\) \& 83.5 \& 91.8 \\
\hline 31 \& 26.6 \& \(28 \cdot 2\) \& \(30^{\circ}\) \& \(32^{\cdot 1}\) \& 34.5 \& 37.4 \& \(40 \cdot 7\) \& 44.7 \& \(49 \cdot 6\) \& \(55^{\circ} 8\) \& 63.7 \& \(68 \cdot 6\) \& \(74 \cdot 3\) \& SİO \& \(89 \cdot 1\) \\
\hline 32 \& 25.8 \& 27.4 \& \(29^{\circ} 2\) \& \(3 \mathrm{I} \cdot 2\) \& \(33 \cdot 6\) \& \(36 \cdot 3\) \& 39.6 \& \(43^{\circ} 5\) \& \(48 \cdot 3\) \& \(54^{-2}\) \& 6I•9 \& \(66 \cdot 7\) \& \(72 \cdot 2\) \& \(78 \cdot 8\) \& \(86 \cdot 6\) \\
\hline 33 \& \(25^{\circ} \mathrm{I}\) \& \(26 \cdot 6\) \& 28.4 \& \(30 \cdot 4\) \& \(32 \cdot 6\) \& \(35 \cdot 3\) \& \(38 \cdot 5\) \& \(42 \cdot 3\) \& \(46 \cdot 9\) \& \(52 \cdot 8\) \& \(60 \cdot 3\) \& \(64^{\circ} 9\) \& \(70 \cdot 3\) \& \(76 \cdot 6\) \& \(84 \cdot 3\) \\
\hline 34 \& 24.5 \& \(26 \cdot 0\) \& 27.6 \& \(29 \cdot 6\) \& 3I•8 \& \(34^{\circ} 4\) \& \(37 \cdot 5\) \& 41.2 \& \(45^{\circ} 7\) \& 51.4 \& \(58 \cdot 7\) \& \(63^{\circ} 2\) \& 68.4 \& \(74^{\circ} 6\) \& \(82 \cdot 1\) \\
\hline 35 \& 23.9 \& \(25^{\circ} 3\) \& 26.9 \& \(28 \cdot 8\) \& \(3{ }^{\circ} \cdot 0\) \& \(33^{\circ} 5\) \& \(36 \cdot 5\) \& \(40^{\circ} 2\) \& \(44^{\circ} 6\) \& 50.1 \& \(57^{\circ} 2\) \& \(6 \mathrm{I} \cdot 6\) \& 66.7 \& \(72 \cdot 8\) \& \(80 \cdot 0\) \\
\hline 36 \& \(23 \cdot 3\) \& 24.7 \& \(26 \cdot 3\) \& \(28 \cdot 1\) \& \(30 \cdot 3\) \& \(32 \cdot 7\) \& \(35^{\circ} 7\) \& \(39^{\circ} 2\) \& 43.5 \& \(48 \cdot 9\) \& \(55^{\circ} 8\) \& \(60 \cdot 1\) \& \(65^{\prime}\) I \& 71.0 \& \(78 \cdot 1\) \\
\hline 37 \& 22.7 \& \(24^{.1}\) \& \(25^{\circ} 7\) \& 27.5 \& \(29^{\circ} 5\) \& \(32^{\circ} \mathrm{O}\) \& \(34 \cdot 8\) \& \(38 \cdot 3\) \& 42.5 \& \(47^{\circ} 8\) \& \(54 \cdot 5\) \& \(58 \cdot 7\) \& \(63^{\circ} 6\) \& 69.4 \& \(76 \cdot 3\) \\
\hline 38 \& 22.2 \& \(23 \cdot 6\) \& \(25^{\circ} \mathrm{I}\) \& 26.9 \& \(28 \cdot 9\) \& \(31 \cdot 2\) \& \(34^{\circ} \mathrm{O}\) \& 37.4 \& 4.5 \& \(46 \cdot 7\) \& \(53 \cdot 3\) \& 57.4 \& \(62 \cdot 2\) \& \(67 \cdot 8\) \& 74.5 \\
\hline 39 \& 21*7 \& \(23^{1} 1\) \& \(24^{\circ} 6\) \& \(26 \cdot 3\) \& \(28 \cdot 3\) \& \(30 \cdot 6\) \& \(33 \cdot 3\) \& \(36 \cdot 6\) \& \(40 \cdot 6\) \& \(45^{\circ} 7\) \& \(52 \cdot 2\) \& 56.1 \& \(60 \cdot 8\) \& \(66 \cdot 3\) \& \(72 \cdot 9\) \\
\hline 40 \& 21.3 \& \(22 \cdot 6\) \& \(24^{\circ} 0\) \& \(25^{\circ} 7\) \& \(27^{\circ} 7\) \& 29.9 \& \(32 \cdot 6\) \& \(35^{\circ} 8\) \& \(39^{\circ} 8\) \& 44.7 \& 51.1 \& \(55^{\circ} \mathrm{O}\) \& 59.5 \& \(64^{\circ} 9\) \& \(7{ }^{\circ} 4\) \\
\hline 41 \& \(20 \cdot 9\) \& \(22 \cdot 1\) \& 23.6 \& \(25^{\circ} 2\) \& \(27^{\circ} \mathrm{I}\) \& 29.3 \& \(32 \cdot 0\) \& \(35^{\circ} \mathrm{I}\) \& \(39^{\circ}\) \& \(43^{\circ} 8\) \& \(50^{\circ} \mathrm{O}\) \& \(53^{\circ} 9\) \& \(58 \cdot 3\) \& \(63 \cdot 6\) \& \(70^{\circ} 0\) \\
\hline 42 \& \(20 \cdot 4\) \& 21.7 \& \(23^{1} 1\) \& \(24^{\circ} 7\) \& \(26 \cdot 6\) \& \(28 \cdot 8\) \& 3I•3 \& 34.4 \& \(38 \cdot 2\) \& \(43^{\circ} \mathrm{O}\) \& \(49^{\circ} \mathrm{I}\) \& \(52 \cdot 8\) \& \(57^{2}\) \& 62.4 \& \(68 \cdot 6\) \\
\hline 43 \& \(20 \cdot 1\) \& 2I*3 \& 22.7 \& \(24^{\circ} 2\) \& 26.1 \& 28.2 \& \(30 \cdot 7\) \& \(33^{\circ} 8\) \& . 37.5 \& \(42 \cdot 1\) \& \(48^{\circ} \mathrm{I}\) \& \(51 \cdot 8\) \& \(56^{1}\) \& \(6 \mathrm{r} \cdot 2\) \& 67.3 \\
\hline 44 \& \(19 \% 7\) \& \(20 \cdot 9\) \& 22.2 \& \(23^{\circ} 8\) \& 25.6 \& \(27^{\circ} 7\) \& \(30 \cdot 2\) \& \(33 \cdot 2\) \& \(36 \cdot 8\) \& \(4{ }^{\circ} 4\) \& \(47 \cdot 2\) \& \(50 \cdot 9\) \& \(55^{\circ} \mathrm{I}\) \& \(60 \cdot 1\) \& \(66 \cdot 1\) \\
\hline 45 \& 19.3 \& \(20 \cdot 5\) \& \(2 \mathrm{I} \cdot 9\) \& 23.4 \& \(25 \cdot 1\) \& \(27 \cdot 2\) \& 29.6 \& \(32 \cdot 6\) \& \(36 \cdot 2\) \& \(40 \cdot 6\) \& 46.4 \& \(50^{\circ} \mathrm{O}\) \& \(54^{\circ} \mathrm{I}\) \& \(59^{\circ}\) \& 64.9 \\
\hline 46 \& \(19^{\circ} \mathrm{O}\) \& \(20 \cdot 2\) \& 21.5 \& \(23^{\circ} \mathrm{O}\) \& 24.7 \& \(26 \cdot 7\) \& \(29^{\prime}\) I \& \(32 \cdot 0\) \& \(35^{\circ} 5\) \& \(40^{\circ} 0\) \& \(45^{\circ} 6\) \& \(49^{\circ} \mathrm{I}\) \& \(53^{2} 2\) \& \(58^{\circ}\) \& \(63 \cdot 8\) \\
\hline 47 \& 18.7 \& \(19 \cdot 8\) \& 21.I \& \(22 \cdot 6\) \& \(24^{\circ} 3\) \& \(26 \cdot 3\) \& \(28 \cdot 7\) \& \(3{ }^{\circ} \cdot 5\) \& \(35^{\circ}\) \& \(39^{\circ} 3\) \& \(44^{\circ} 9\) \& \(48 \cdot 3\) \& \(52 \cdot 3\) \& \(57^{1}\) I \& 62.7 \\
\hline 48 \& 18.4 \& 19.5 \& \(20 \cdot 8\) \& \(22 \cdot 2\) \& 23.9 \& \(25^{\circ} 9\) \& \(28 \cdot 2\) \& \(31^{\circ} \mathrm{O}\) \& \(34^{\circ} 4\) \& \(38 \cdot 7\) \& \(44^{\circ} 2\) \& 47.5 \& 51'5 \& \(56 \cdot 2\) \& 6I•8 \\
\hline 49 \& 18.1 \& 19.2 \& 20 \& 21.9 \& \(23 \cdot 6\) \& \(25^{\circ} 5\) \& \(27 \cdot 8\) \& \(30 \cdot 5\) \& \(33^{\circ} 9\) \& \(38 \cdot 1\) \& 43.5 \& \(46 \cdot 8\) \& \(50 \cdot 7\) \& \(55^{\circ} 3\) \& \(60 \cdot 8\) \\
\hline 50 \& 17.9 \& 18.9 \& 20.2 \& 21.6 \& \(23^{\circ} 2\) \& \(25^{\circ} \mathrm{I}\) \& 27.4 \& \(30^{\circ} 1\) \& \(33^{\circ} 4\) \& 37.5 \& 42.9 \& \(46 \cdot 1\) \& \(50^{\circ}\) \& \(54^{\circ} 5\) \& 59*9 \\
\hline 51 \& 17.6 \& 18.7 \& 19.9 \& 2r*3 \& 22.9 \& \(24^{\circ} 8\) \& \(27^{\circ}\) \& 29.6 \& 32.9 \& \(37^{\circ} \mathrm{O}\) \& \(42 \cdot 2\) \& \(45 \cdot 5\) \& \(49^{\circ} 2\) \& \(53^{\circ} 7\) \& \(59^{\circ} \mathrm{I}\) \\
\hline 52 \& 17.4 \& 18.4 \& 19.6 \& \(21^{\circ} \mathrm{O}\) \& \(22 \cdot 6\) \& 24.4 \& \(26 \cdot 6\) \& \(29^{\circ} 2\) \& \(32 \cdot 5\) \& \(36 \cdot 5\) \& \(4{ }^{\circ} 7\) \& \(44^{\circ} 8\) \& \(48 \cdot 6\) \& 53.0 \& \(58 \cdot 2\) \\
\hline 53 \& \(17{ }^{1}\) \& I8.2 \& 19.4 \& \(20 \cdot 7\) \& \(22 \cdot 3\) \& \({ }^{24}{ }^{1} \cdot 1\) \& 26.2 \& 28.8 \& \(32^{\circ} \mathrm{O}\) \& \(36 \cdot 0\) \& \(4 \mathrm{I} \cdot \mathrm{I}\) \& \(44^{\circ} 2\) \& \(47^{\circ} 9\) \& \(52 \cdot 3\) \& \(57 \cdot 5\) \\
\hline 54 \& 16.9 \& 17.9 \& 19.1 \& \(20 \cdot 4\) \& \(22^{\circ} \mathrm{O}\) \& \(23^{\circ} 8\) \& \(25^{\circ} 9\) \& 28.5 \& \(3{ }^{1 \cdot 6}\) \& \(35^{\circ} 5\) \& \(40 \cdot 6\) \& \(43^{\prime} 7\) \& \(47 \cdot 3\) \& 51.6 \& \(56 \cdot 7\) \\
\hline 55 \& 16.7 \& 17.7 \& \(18 \cdot 9\) \& 20 \& \(2{ }^{1} 7\) \& 23.5 \& \(25 \cdot 6\) \& \(28 \cdot 1\) \& 31 \& \(35^{\circ} \mathrm{I}\) \& 40.1 \& 43.1 \& \(46 \cdot 7\) \& \(50 \cdot 9\) \& \(56 \cdot 0\) \\
\hline 56 \& 16.5 \& 17.5 \& \(18 \cdot 6\) \& 19.9 \& 2I.4 \& 23.2 \& \(25^{\circ} 3\) \& 27.8 \& \(30 \cdot 8\) \& \(34^{\circ} 7\) \& \(39^{6}\) \& \(42 \cdot 6\) \& \(46 \cdot 2\) \& \(50 \cdot 3\) \& \(55^{\circ} 4\) \\
\hline 57 \& \(16 \cdot 3\) \& 17.3 \& 18.4 \& \(19 * 7\) \& 21.2 \& 22.9 \& \(25^{\circ} \mathrm{O}\) \& 27.5 \& \(30 \cdot 5\) \& \(34^{\circ} 3\) \& \(39^{\circ} \mathrm{I}\) \& \(42 \cdot 1\) \& \(45^{\circ} 6\) \& \(49^{\circ} 8\) \& \(54^{\circ} 7\) \\
\hline 58 \& \({ }^{16 \cdot 1}\) \& 17.1 \& \(18 \cdot 2\) \& 19.5 \& \(21^{\circ} \mathrm{O}\) \& 22.7 \& 24.7 \& \(27^{\circ} 2\) \& \(30 \cdot 2\) \& 33.9 \& \(38 \cdot 7\) \& \(4{ }^{1 \cdot} 7\) \& \(45^{\circ} \mathrm{I}\) \& \(49^{\circ} \mathrm{C}\) \& 54.1
53.5 \\
\hline 59 \& 16.0 \& 16.9 \& 18.0 \& 19.3 \& \(20^{\circ}\) \& 22.4 \& \(24^{\circ} 5\) \& 26.9 \& \(29 \cdot 8\) \& \(33^{\circ} 5\) \& \(38 \cdot 3\) \& 41.2 \& \(44^{\circ} 6\) \& \(48 \cdot 7\) \& 53.5 \\
\hline 60 \& 15.8 \& 16.8 \& \({ }^{\text {¢ }} 78\) \& 19 \({ }^{\text {I }}\) \& 20.5 \& 22.2 \& \(24^{\circ} 2\) \& \(26 \cdot 6\) \& 29.5 \& \(33^{\circ} 2\) \& \(37 \cdot 9\) \& \(40 \cdot 8\) \& \(44^{\circ} 2\) \& \(48 \cdot 2\) \& \(53^{\circ} \mathrm{O}\) \\
\hline 61 \& \(15^{\circ} 6\) \& \(16 \cdot 6\) \& 17.7 \& \(18 \cdot 9\) \& \(20 \cdot 3\) \& \(22^{\circ} \mathrm{O}\) \& \(24^{\circ} \mathrm{O}\) \& \(26 \cdot 3\) \& \(29^{\circ} 2\) \& 32.9 \& 37.5 \& \(40 \cdot 4\) \& \(43^{\circ} 8\) \& \(47 \cdot 7\) \& 52.5 \\
\hline 62 \& 15.5 \& 16.4 \& 17.5 \& 18.7 \& \(20 \cdot 1\) \& \(2 \mathrm{I} \cdot 8\) \& \(23 \cdot 7\) \& \(26 \cdot 1\) \& \(29^{\circ}\) \& \(32 \cdot 6\) \& \(37 \cdot 2\) \& \(40^{\circ} 0\) \& \(43^{\circ} 3\) \& 47.3 \& \(52 \cdot 0\) \\
\hline 63 \& 15.3 \& \(16 \cdot 3\) \& \(71 \cdot 3\) \& 18.6 \& \(20 \cdot 0\) \& \(2 \mathrm{I} \cdot 6\) \& 23.5 \& \(25^{\circ} 9\) \& \(28^{\circ} 7\) \& \(32 \cdot 3\) \& \(36 \cdot 8\) \& \(39^{\circ} 7\) \& \(42 \cdot 9\) \& \(46 \cdot 8\) \& 51.5 \\
\hline 64 \& 15.2 \& \(16 \cdot 1\) \& 17.2 \& \(18 \cdot 4\) \& \(19 \cdot 8\) \& 21.4 \& \(23 \cdot 3\) \& \(25^{\circ} 6\) \& 28.4 \& \(32^{\circ} \mathrm{O}\) \& \(36 \cdot 5\) \& \(39^{\circ} 3\) \& \(42 \cdot 6\) \& \(46 \cdot 4\) \& \(5 \mathrm{I}^{\prime} \mathrm{I}\) \\
\hline 65 \& \(15^{\prime} \mathrm{I}\) \& 16.0 \& 17.1 \& 18.2 \& 19.6 \& \(2 \mathrm{I} \cdot 2\) \& \(23^{\circ} \mathrm{I}\) \& \(25^{\circ} 4\) \& 28.2 \& \(3 \mathrm{r} \cdot 7\) \& \(36 \cdot 2\) \& \(39^{\circ}\) \& \(42 \cdot 2\) \& \(46 \cdot 0\) \& \(50 \cdot 6\) \\
\hline 66 \& \(15^{\circ} \mathrm{O}\) \& 15.9 \& 16.9 \& 18.1 \& 19.5 \& \(2 \mathrm{I}^{1} \mathrm{I}\) \& \(22^{\circ} 9\) \& \(25^{\circ} 2\) \& 27 \& \(3{ }^{1 \cdot 5}\) \& 35.9 \& \(38 \cdot 7\) \& \(41^{\circ} 9\) \& \(45 \cdot 7\) \& \(50 \cdot 2\) \\
\hline 67 \& \(14^{\circ} 9\) \& 15.8 \& \(16 \cdot 8\) \& 18.0 \& 19.3 \& 20.9 \& \(22 \cdot 8\) \& \(25^{\circ}\) \& 27.8 \& \(3 \mathrm{I} \cdot 2\) \& \(35 \cdot 7\) \& 38.4 \& 41.6 \& \(45 \cdot 3\) \& 49.9 \\
\hline 68 \& 14.8 \& 15.7 \& \(16 \cdot 7\) \& 17.8 \& 19.2 \& \(20 \cdot 7\) \& 22.6 \& 24.8 \& 27.6 \& \(3{ }^{1} 0\) \& 35.4 \& \(38 \cdot 1\)
37 \& 41*3 \& \(45^{\circ}{ }^{\circ}\) \& \(49 \cdot 5\) \\
\hline 69 \& 14.7 \& 15.5 \& 16.6 \& 17.7 \& \(19^{\circ} \mathrm{O}\) \& \(20 \cdot 6\) \& \(22 \cdot 5\) \& \(24^{\circ} 7\) \& 27.4 \& \(30 \cdot 8\) \& \(35^{\circ} 2\) \& \(37^{\circ} 8\) \& 4100 \& 44.7 \& 49.2 \\
\hline 70 \& 14.6 \& 15.4 \& 16.4 \& 17.6 \& 18 \& 20.5 \& \(22 \cdot 3\) \& 24.5 \& 27.2 \& \(30 \cdot 6\) \& \(34^{\circ} 9\) \& 37.6 \& \(40 \cdot 7\) \& \(44^{\circ} 4\) \& 48.8 \\
\hline 71 \& 14.5 \& 15.3 \& \(16 \cdot 3\) \& 17.5 \& 18 \& 20.3 \& \(22 \cdot 2\) \& 24.4 \& \(27^{\circ} \mathrm{O}\) \& 30.4 \& 34.7 \& 37.4
37.2 \& \(40 \cdot 5\) \& \(44^{\circ} \mathrm{I}\) \& 8.5
\(\div 8.5\) \\
\hline 72 \& 14.4 \& 15.3 \& \(16 \cdot 3\) \& 17.4 \& 18.7 \& \(20^{\circ} 2\) \& \(22^{\circ}\) \& \(24^{\circ} 2\) \& 26.9 \& \(30^{2} 2\) \& 34.5 \& 37.2
36.9 \& \(40 \cdot 2\) \& \(43^{\circ} 9\) \& \(48 \cdot 3\) \\
\hline 73 \& 14.3 \& \(15^{\circ} 2\) \& \(16 \cdot 2\) \& \(17 \times 3\) \& \(18 \cdot 6\) \& \(20^{\circ} \mathrm{I}\) \& 21.9 \& \(24^{\circ} \mathrm{I}\) \& \(26 \cdot 7\) \& 30.1 \& \(34^{\circ} 3\) \& \(36 \cdot 9\)
36.8 \& \begin{tabular}{l}
\(40 \cdot 1\) \\
\\
\\
\hline 1
\end{tabular} \& \(43 \cdot 6\) \& \(4^{8 \cdot 0}\) \\
\hline 74 \& \(14^{\circ} 2\) \& 15.1 \& 16.1 \& \(17^{\circ} 2\) \& 18.5 \& 20 \& 21.8 \& \(24^{\circ} \mathrm{O}\) \& 26. \& 29*9 \& \(34^{\circ} \mathrm{I}\) \& \(36 \cdot 8\) \& \(39^{\circ} 8\) \& \(43^{\circ} 4\) \& \(47^{\circ} 7\) \\
\hline 75 \& 14.2 \& \(15^{\circ} 0\) \& 16*0 \& 17.1 \& 18.4 \& 19.9 \& \(2 \mathrm{I}^{\circ} 7\) \& 23.8 \& \(26 \cdot 5\) \& 29.8 \& \(34^{\circ} \mathrm{O}\) \& \(36 \cdot 6\) \& \(39^{\circ} 6\) \& \(43^{*} 2\) \& \(47 \cdot 5\) \\
\hline 76 \& 14.1 \& \(15^{\circ}\) \& \(15^{\circ} 9\) \& \(17^{\circ} \mathrm{O}\) \& 18.3 \& 19.8 \& 21.6 \& 23.7 \& 26.4 \& 29.6 \& \(33^{\circ} 8\) \& \(36 \cdot 4\)
\(36 \cdot 3\) \& 39\%4 \& \(43^{\circ} \mathrm{O}\) \& \(47 \cdot 3\) \\
\hline 77 \& \(14^{\circ} \mathrm{O}\) \& 14.9 \& \(15^{\circ} 9\) \& \(17^{\circ} 0\) \& 18. \& 19.7 \& 21.5 \& 23.6
23.5 \& \(26 \cdot 2\)
\(26 \cdot 1\) \& 29.5
29.4 \& \(33 \cdot 7\)
\(33^{\circ} 6\) \& \(36 \cdot 3\)
\(36 \cdot 1\) \& \begin{tabular}{l}
\(39^{\circ} 3\) \\
\(39^{\circ} \mathrm{I}\) \\
\hline
\end{tabular} \& \(42 \cdot 8\) \& 47.1
46.9 \\
\hline 78 \& \(14^{\circ} \mathrm{O}\) \& \(\mathrm{I}_{4} \cdot 3\) \& \(15^{\circ} 8\) \& 16.9 \& 18 \& \(19 \%\)
10 \& \(21^{\circ} 4\) \& 23.5
23.5 \& 26.1
26.0 \& 29.4
29.3 \& 33.6
\(33^{\circ} 4\) \& 36 \& \(39^{\circ} \mathrm{I}\)
\(39^{\circ}\) \& 42.7
42.5 \& \\
\hline 79 \& I 3.9 \& 14.8 \& 15.7 \& 16.8 \& \(18 \cdot 1\) \& \(19^{\circ} 6\) \& \(21^{\circ}\) \& \(23^{\circ} 5\) \& 26 \& \(29^{\circ} 3\) \& \(33^{\circ} 4\) \& 36.0
350 \& 39.0
38.9 \& \(42 \cdot 5\) \& \(46 \cdot 8\)
\(46 \cdot 6\) \\
\hline 80 \& 13.9 \& 14.7 \& \(15^{\circ} 7\) \& 16.8 \& 18.1 \& 19.5 \& \(21^{\circ} 3\) \& 23.4 \& 26.0
\(25^{\circ} 9\) \& 29.2
29 \& \(33 \cdot 3\)
33 \& 35.9
35.8 \& 38.9
38.7 \& \(42 \cdot 4\)
\(42 \cdot 3\) \& \(46 \cdot 6\)
\(46 \cdot 5\) \\
\hline 8 I \& 13.9 \& 14.7 \& \(15^{\circ} 6\) \& \(16 \cdot 7\) \& 18.0
18.0 \& 19.5 \& 21.2
21.2 \& 23.3
23.3 \& \(25^{\circ} 9\)
25 \& \(29^{\circ} \mathrm{I}\)
\(29^{\circ} \mathrm{O}\) \& \begin{tabular}{l}
\(33 \cdot 2\) \\
\(33^{\circ} \mathrm{I}\) \\
\hline
\end{tabular} \& 35.
35 \& \(38 \cdot 7\)
\(38 \cdot 6\) \& \(42 \cdot 3\)
\(42 \cdot 1\) \& \(46 \cdot 5\)
\(46 \cdot 3\) \\
\hline 82
83 \& 13.8 \& 14.7
14.6 \& 15.6
15.6 \& 16.7
16.7 \& 18.0
17 \& 19.4 \& \(21 \cdot 2\)
21.1 \& 23.3
23.2 \& 25.8
25.8 \& \(29^{\circ}\)
29 \& \(33^{\circ} \mathrm{I}\)
\(33^{\circ} \mathrm{I}\)

3 \& $35 \cdot 7$
$35 \cdot 6$ \& $38 \cdot 6$
$38 \cdot 6$ \& $42 \cdot 1$
42.0 \& $46 \cdot 3$
$46 \cdot 2$

\hline 84 \& 13.8 \& 14.6 \& 15.5 \& 16.6 \& 17.9 \& $19 \cdot 3$ \& $2 \mathrm{I} \cdot \mathrm{I}$ \& 23^{2} \& $25 \cdot 7$ \& $28 \cdot 9$ \& $33^{\circ} \mathrm{O}$ \& 35° \& $38 \cdot 5$ \& 42.0 \& $46 \cdot 1$

\hline 85 \& $13^{\circ} 7$ \& 14.6 \& 15.5 \& $16 \cdot 6$ \& 17.8 \& 19.3 \& $21^{\circ} \mathrm{O}$ \& $23^{\circ} 2$ \& $25^{\circ} 7$ \& 28.9 \& $32 \cdot 9$ \& 35.5 \& 3 \& 41.9 \& $46 \cdot 1$

\hline 86 \& 13.7 \& 14.5 \& 15.5 \& $16 \cdot 6$ \& 17.8 \& $19 \cdot 3$ \& $21^{\circ} \mathrm{O}$ \& 23^{1} \& $25^{2} 6$ \& 28.8
28.8 \& 32.9 \& 35.4
35.4 \& $38 \cdot 4$
$38 \cdot 3$ \& $41 \cdot 8$
$4 \mathrm{I} \cdot 8$ \& $46 \cdot 0$
46.0

\hline 87 \& 13.7 \& 14.5 \& 15.5 \& 16.6 \& 17.8
17.8 \& 19.3 \& $21^{\circ} \mathrm{O}$ \& 23.1
23 \& 25.6
25 \& $28 \cdot 8$
28.8 \& $32 \cdot 9$
32.8 \& 35.4
35 \& $38 \cdot 3$
$38 \cdot 3$ \& 41.8
$4 \mathrm{I} \cdot 8$ \& 46.0
$45^{\circ} 9$

\hline 88 \& 13.7 \& 14.5 \& 15.5 \& 16.5 \& 17.8
17.8 \& 19.2 \& 2100 \& 23°
23° \& $25^{2.6}$ \& 28.8
28.7 \& $32 \cdot 8$
$32 \cdot 8$ \& 35.4
35 \& $38 \cdot 3$
$38 \cdot 3$ \& $41 \cdot 8$
41
4 \& 45.9
45.9

\hline 89
90 \& 13.7
13.7 \& 14.5
14.5 \& 15.5
15 \& 16.5

16.5 \& | 17.8 |
| :--- |
| 17 |
| 18 | \& 19.2

19.2 \& $21^{\circ}{ }^{\circ} \mathrm{O}$ \& 23°
23° \& $25^{\circ} 6$
$25^{\circ} 6$ \& 28.7
28.7 \& $32 \cdot 8$
$32 \cdot 8$ \& 35.3 \& 38.3 \& $4{ }^{1} 17$ \& 45.9

\hline
\end{tabular}

Table E.
corrections of altitude of the sun and stars
(Involving Dip, Refraction, ©'s Sem diameter, and Parallax).
Add the Cor. to the Alt. of the \odot 's Lower Limb.

Table E.
CORRECTIONS OF ALTITUDE OF THE SUN AND STARS (lnvolving Dip, Refraction, \odot 's Semidiameter, and Parallax).
Add the Cor. to the Alt. of the \odot 's Lower Limb, except where marked - (minus).

	Height of the Eye, in Feet.										
	26 ft .	28 ft .	30 ft .	35 ft .	40 ft .	45 ft .	50 ft .	55 ft .	60 ft .	70 ft .	80 ft .
$\begin{aligned} & \circ \\ & 5 \\ & 6 \end{aligned}$	1 1 2.1	0. 0.9 2.4	$0 \cdot$ 0.7 2.2	0 0 $\cdot 7$	-0.1 1.3	-0.5	-0.8 0.6	1.2 0.2	- 1.6	-2.8 -0.7	1 -3.3 -1.3
7	$3 \cdot 6$	$3 \cdot 5$	$3 \cdot 3$	$2 \cdot 8$	$2 \cdot 4$	$2 \cdot 1$	1*7	$1 \cdot 3$	I'O	$0 \cdot 4$	-0.2
8	$4 \cdot 5$	$4 \cdot 3$	$4 \cdot 2$	$3 \cdot 7$	$3 \cdot 3$	3.0	$2 \cdot 6$	$2 \cdot 2$	I'9	I'3	$0 \cdot 7$
9	$5 \cdot 2$	$5^{\circ} \mathrm{O}$	$4 \cdot 8$	$4 \cdot 4$	$4^{\circ} \mathrm{O}$	$3 \cdot 6$	$3 \cdot 3$	2.9	$2 \cdot 6$	2.0	I'4
IO	$5 \cdot 8$	$5 \cdot 6$	$5 \cdot 4$	$5^{\circ} \mathrm{O}$	$4^{6} 6$	$4^{\circ} 2$	$3 \cdot 8$	$3 \cdot 5$	$3 \cdot 2$	$2 \cdot 5$	2.0
II	$6 \cdot 3$	$6 \cdot 1$	$5 \cdot 9$	$5 \cdot 5$	5'0	4.7	$4 \cdot 3$	$4^{\circ} 0$	3.6	$3^{\circ} \mathrm{O}$	2.5
12	$6 \cdot 7$	$6 \cdot 5$	$6 \cdot 3$	$5 \cdot 9$	$5 \cdot 5$	$5^{\prime} \mathrm{I}$	$4^{\cdot 7}$	$4{ }^{*}$	$4^{\circ} \mathrm{I}$	$3 \cdot 5$	2.9
13	$7{ }^{\circ} 0$	$6 \cdot 8$	$6 \cdot 6$	$6 \cdot 2$	$5 \cdot 8$	$5 \cdot 4$	5'1	4.7	4.4	$3 \cdot 8$	$3 \cdot 2$
14	$7 \cdot 3$	$7 \cdot 1$	$6 \cdot 9$	$6 \cdot 5$	$6 \cdot 1$	$5 \cdot 7$	5.4	$5^{\circ} \mathrm{O}$	4.7	4^{17}	$3 \cdot 5$
15	$7 \cdot 6$	$7 \cdot 4$	$7 \cdot 2$	$6 \cdot 8$	$6 \cdot 4$	$6 \cdot 0$	$5 \cdot 6$	$5 \cdot 3$	5°	4.4	$3 \cdot 8$
16	$7 \cdot 8$	$7 \cdot 6$	7.4	$7{ }^{\circ}$	$6 \cdot 6$	$6 \cdot 2$	$5 \cdot 9$	$5 \cdot 5$	$5 \cdot 2$	$4 \cdot 6$	$4^{\circ} \mathrm{O}$
17	$8 \cdot 0$	$7 \cdot 8$	$7 \cdot 6$	$7 \cdot 2$	$6 \cdot 8$	$6 \cdot 4$	6.1	5'7	$5 \cdot 4$	$4 \cdot 8$	$4^{\cdot 2}$
18	$8 \cdot 2$	$8 \cdot 0$	$7 \cdot 8$	$7 \cdot 4$	$7{ }^{\circ}$	$6 \cdot 6$	$6 \cdot 3$	$5 \cdot 9$	$5 \cdot 6$	$5 \cdot 0$	4.4
19	$8 \cdot 3$	$8 \cdot 2$	$8 \cdot 0$	$7 \cdot 5$	$7 \cdot 1$	$6 \cdot 8$	6.4	$6 \cdot 1$	$5 \cdot 8$	$5 \cdot 1$	$4 \cdot 6$
20	$8 \cdot 5$	$8 \cdot 3$	8. 1	$7 \cdot 7$	$7 \cdot 3$	$6 \cdot 9$	$6 \cdot 5$	$6 \cdot 2$	$5 \cdot 9$	5.3	47
22	$8 \cdot 7$	$8 \cdot 6$	$8 \cdot 4$	7.9	7.5	$7 \cdot 2$	$6 \cdot 8$	$6 \cdot 5$	6.2	5.5	$5^{\circ} \mathrm{O}$
24	9°	$8 \cdot 8$	$8 \cdot 6$	$8 \cdot 2$	$7 \cdot 8$	7.4	$7{ }^{\circ}$	$6 \cdot 7$	6.4	$5 \cdot 8$	$5 \cdot 2$
26	$9^{1} 1$	$9 \cdot 0$	$8 \cdot 8$	$8 \cdot 3$	$7 \cdot 9$	$7 \cdot 6$	$7 \cdot 2$	$6 \cdot 9$	$6 \cdot 6$	$5 \cdot 9$	$5 \cdot 4$
28	$9 \cdot 3$	$9^{\cdot 1}$	$8 \cdot 9$	$8 \cdot 5$	$8 \cdot 1$	77	$7 \cdot 4$	$7{ }^{\circ}$	$6 \cdot 7$	$6 \cdot 1$	$5 \cdot 5$
30	$9 \cdot 5$	$9 \cdot 3$	$9^{\circ} 1$	$8 \cdot 7$	$8 \cdot 3$	$7 \cdot 9$	$7 \cdot 5$	$7 \cdot 2$	$6 \cdot 9$	$6 \cdot 3$	$5 \cdot 7$
35	$9^{\circ} 7$	$9 \cdot 6$	9.4	$8 \cdot 9$	$8 \cdot 5$	$8 \cdot 2$	$7 \cdot 8$	7.5	$7 \cdot 2$	6. 5	6.0
40	10.0	$9 \cdot 8$	9.6	$9^{\cdot 2}$	$8 \cdot 8$	$8 \cdot 4$	$8 \cdot 0$	$7 \cdot 7$	7.4	$6 \cdot 8$	$6 \cdot 2$
45	10'1	10.0	$9 \cdot 8$	$9 \cdot 4$	$9^{\circ} \mathrm{O}$	$8 \cdot 6$	$8 \cdot 2$	7.9	$7 \cdot 6$	$7{ }^{\circ}$	6.4
50	$10 \cdot 3$	$10^{\circ} \mathrm{I}$	$9 \cdot 9$	9.5	$9^{\circ} \mathrm{I}$	$8 \cdot 7$	$8 \cdot 4$	$8 \cdot 0$	$7 \cdot 7$	$7 \cdot 1$	$6 \cdot 5$
55	10.5	10.3	10'1	$9 \cdot 7$	$9 * 3$	$8 \cdot 9$	$8 \cdot 5$	$8 \cdot 2$	7.9	$7 \cdot 3$	6.7
60	10.6	$10^{\circ} 4$	$10 \cdot 2$	$9 \cdot 8$	$9 \cdot 4$	$9^{\circ} \mathrm{O}$	$8 \cdot 6$	$8 \cdot 3$	8.0	7.4	$6 \cdot 8$
65	10.7	10.5	$10 \cdot 3$	$9 \cdot 9$	9.5	$9^{\cdot 1}$	$8 \cdot 7$	$8 \cdot 4$	$8 \cdot 1$	$7 \cdot 5$	6.9
70	10.8	10.6	$10 \cdot 4$	10.0	$9 \cdot 6$	$9 \cdot 2$	$8 \cdot 8$	8.5	8.2	7.6	$7{ }^{\circ} \mathrm{O}$
80	II'O	10.8	10.6	$10 \cdot 2$	$9 \cdot 8$	$9 \cdot 4$	$9^{\circ} \mathrm{O}$	$8 \cdot 7$	8.4	$7 \cdot 8$	$7 \cdot 2$
90	II'I	10.9	10.8	$10 \cdot 3$	$9 * 9$	$9 \cdot 6$	$9^{\circ} 2$	$8 \cdot 9$	$8 \cdot 5$	7.9	$7 \cdot 4$

SUPPLEMENTARY TABLES FOR LOW ALTITUDES.

Correction for Small Altitudes.			
		$\left\lvert\, \begin{gathered} \text { 2nd } \\ \text { Vario } \end{gathered}\right.$	Correction, us Heights.
		-	
$\begin{array}{ll} 0 \\ 3 & \end{array}$	$-4 \cdot 9$	Ft.	$+3.8$
310	$4 \cdot 4$	8	3.4
320	$3 \cdot 9$	ro	$3 \cdot 1$
330	$3 \cdot 4$	12	$2 \cdot 8$
340	$3 \cdot 0$	14	$2 \cdot 5$
350	$2 \cdot 5$	16	$2 \cdot 3$
40	2.1	18	$2 \cdot 1$
410	I 8	20	I• 8
420	1.4	22	I. 6
430	1.0	24	$1 \cdot 4$
440	0.8	26	I'2
50	0.2	28	1.0
520	$+0.4$	30	0.8
540	$0 \cdot 9$	32	0.7
60	I•3	34	$0 \cdot 5$
620	$1 \cdot 7$	36	$0 \cdot 3$
640	$2 \cdot 1$	38	0.2
7 0	2.4	40	$0 \cdot 0$
720	2.7	42	-0.2
740	$3^{\circ} 0$	44	$0 \cdot 3$
8 -	$3 \cdot 3$	46	$0 \cdot 5$
820	$3 \cdot 5$	48	0.6
840	$3 \cdot 8$	50	0.7
850	3.9	52	0.9
9 -	$4^{\circ} \mathrm{O}$	54	I'O
920	$4 \cdot 2$	56	$1 \cdot 1$
940	4.4	60	I. 4
100	$4 \cdot 6$	65	1'7
1030	$4 \cdot 8$	70	2.0
II 0	5.0	75	$2 \cdot 3$

CORRECTION OF A STAR'S ALTITUDE. (Subtract.)

$\stackrel{ \pm}{\circ}$	Height of the Eye, in Feet.										
苞	26 ft .	28 ft .	30 ft .	35 ft .	40 ft .	45 ft .	50 ft .	55 ft .	60 ft .	70 ft .	80 ¢t.
$\stackrel{0}{5}_{5}$	$15^{\circ} \mathrm{O}$	15.2	15.4	15.8	16.3	16.6	$17^{\circ} \mathrm{O}$	17.4	177	18.4	18.9
6	13.6	13.8	$14^{\circ} \mathrm{O}$	14.4	14.8	I 5.2	15.6	15.9	$16 \cdot 3$	16.9	17.5
7	12.5	12.7	12.9	13.3	13.7	$14^{\circ} \mathrm{I}$	14.8	14.8	15.1	15.8	16.3
8	11.6	II 8	12.0	12.4	12.8	13.2	13.6	13.9	14.3	14.9	15.4
9	10.9	II'I	II.3	I 17	12.1	12.5	12.9	$13^{\circ} 2$	13.5	$14^{.2}$	14.7
10	10.4	10.6	10\%7	II ${ }^{1}$	II• 6	II'9	12.3	12.6	$13^{\circ} \mathrm{O}$	13.6	$14^{\circ} 2$
II	9.9	10.1	10.3	10.7	III	II'5	II'9	12.2	12.5	13.1	13.7
12	9*5	9.7	$9 \cdot 8$	10.3	10.7	$11^{\circ} \mathrm{O}$	II.4	11.8	12.1	12.7	13.3
13	$9^{\circ} \mathrm{I}$	$9 * 3$	$9 \cdot 5$	9'9	10'3	10.7	II'I	II'4	11.7	12.3	12.9
14	$8 \cdot 9$	$9^{\circ} \mathrm{O}$	$9 \cdot 2$	$9 \cdot 7$	10'1	10.4	10.8	II'I	II 4	12.1	12.6
I 5	$8 \cdot 6$	$8 \cdot 8$	$8 \cdot 9$	$9 \cdot 4$	$9 \cdot 8$	10'1	10.5	10.8	II.2	I1.8	12.3
16	$8 \cdot 4$	$8 \cdot 5$	$8 \cdot 7$	$9 \cdot 2$	$9 \cdot 6$	9.9	10.3	10.6	10.9	II'6	12.1
17	8. 1	$8 \cdot 3$	$8 \cdot 5$	$8 \cdot 9$	$9 \cdot 3$	$9 \cdot 7$	10'1	10.4	$10^{\circ} 7$	II.4	II'9
18	$7 \cdot 9$	$8 \cdot 1$	$8 \cdot 3$	$8 \cdot 8$	9'2	$9 \cdot 5$	9.9	$10^{\circ} 2$	10.5	II'2	I 1.7
I9	$7 \cdot 8$	$8 \cdot 0$	$8 \cdot 2$	$8 \cdot 6$	$9 \cdot 0$	9.4	9*7	10' 1	$10 \cdot 4$	II'O	11.6
20	$7 \cdot 7$	$7 \cdot 8$	$8 \cdot 0$	$8 \cdot 5$	$8 \cdot 9$	$9^{\cdot 2}$	$9 \cdot 6$	$9 \cdot 9$	$10 \cdot 2$	10.9	II.4
22	$7 \cdot 4$	$7 \cdot 6$	$7 \cdot 8$	$8 \cdot 2$	$8 \cdot 6$	$9^{\circ} \mathrm{O}$	$9 \cdot 3$	9.7	10.0	10.6	I 1.2
24	$7 \cdot 2$	$7 \cdot 4$	$7 \cdot 5$	$8 \cdot 0$	$8 \cdot 4$	$8 \cdot 7$	$9^{\circ} \mathrm{I}$	$9 \cdot 4$	$9 \cdot 8$	10.4	10.9
26	$7 \cdot 0$	$7 \cdot 2$	$7 \cdot 4$	$7 \cdot 8$	$8 \cdot 2$	$8 \cdot 6$	8.9	$9 \cdot 3$	$9 \cdot 6$	$10^{\circ} 2$	10.8
28	$6 \cdot 8$	$7 \cdot 0$	$7 \cdot 2$	$7 \cdot 6$	$8 \cdot 0$	$8 \cdot 4$	$8 \cdot 8$	$9 \cdot 1$	$9 \cdot 4$	10.0	10.6
30	$6 \cdot 7$	$6 \cdot 9$	$7{ }^{\circ}$	$7 \cdot 5$	$7{ }^{\circ} 9$	$8 \cdot 2$	$8 \cdot 6$	$8 \cdot 9$	$9 \cdot 3$	9.9	10.4
35	$6 \cdot 4$	$6 \cdot 6$	$6 \cdot 8$	$7 \cdot 2$	$7 \cdot 6$	$8 \cdot 0$	$8 \cdot 3$	$8 \cdot 7$	$9 \cdot 0$	$9 \cdot 6$	10.2
40	$6 \cdot 2$	$6 \cdot 4$	$6 \cdot 5$	7.0	$7 \cdot 4$	77	$8 \cdot 1$	$8 \cdot 4$	$8 \cdot 8$	$9 \cdot 4$	$9 \cdot 9$
45	6.0	$6 \cdot 2$	$6 \cdot 4$	$6 \cdot 8$	$7 \cdot 2$	$7 \cdot 6$	$7 \cdot 9$	$8 \cdot 3$	$8 \cdot 6$	$9 \cdot 2$	9.8
50	$5 \cdot 8$	$6 \cdot 0$	$6 \cdot 2$	$6 \cdot 6$	$7 \cdot 0$	$7 \cdot 4$	$7 \cdot 8$	8.1	$8 \cdot 4$	9.0	9.6
55	$5 \cdot 7$	$5 \cdot 9$	6.1	$6 \cdot 5$	$6 \cdot 9$	$7 \cdot 3$	$7 \cdot 6$	7.9	$8 \cdot 3$	8.9 8.8	9.5
60	$5 \cdot 6$	$5 \cdot 8$	$5 \cdot 9$	$6 \cdot 4$	$6 \cdot 8$	$7 \cdot 1$	7.5	7.8	$8 \cdot 2$ 8.1	8.8 8.7	$9 \cdot 3$
65	$5 \cdot 5$	$5 \cdot 7$	$5 \cdot 8$	$6 \cdot 3$	$6 \cdot 7$	$7{ }^{\circ} \mathrm{O}$	$7 \cdot 4$	7.7	$8 \cdot 1$	$8 \cdot 7$	$9^{\circ} \cdot$
70	$5 \cdot 4$	$5 \cdot 6$	$5 \cdot 7$	$6 \cdot 2$	$6 \cdot 6$	6.9 6.8	$7 \cdot 3$	7.6 7.5	8.0 7.8	8.6	9'1
80	$5 \cdot 2$	$5 \cdot 4$	$5 \cdot 6$	6.0	6.4	$6 \cdot 8$	$7 \cdot 1$	7.5	7.8	8.4 8.	9.0
90	$5 \cdot 0$	$5 \cdot 2$	$5 \cdot 4$	$5 \cdot 8$	$6 \cdot 2$	$6 \cdot 6$	$6 \cdot 9$	$7 \cdot 3$	$7 \cdot 6$	$8 \cdot 2$	$8 \cdot 8$

		and Correction, Various Heights.	
			$\left.\left\lvert\, \begin{array}{\|c\|} \frac{A d d}{} \text { to } \\ \text { Subt. } \end{array}\right.\right\}$
3 ¢	$21{ }^{\prime}$ I	Ft. 6	+3:8
3 10	$20 \cdot 6$	8	3.4
320	$20 \cdot 0$	10	3.1
330	19.5	12	$2 \cdot 8$
340	19.1	14	$2 \cdot 5$
350	18.7	16	$2 \cdot 3$
4 o	18.3	18	$2 \cdot 1$
4 10	17.9	20	I•8
420	17.5	22	I. 6
430	17.2	24	1.4
440	16.9	26	I 2
5 -	16.3	28	$1 \cdot 0$
520	15.8	30	$0 \cdot 8$
540	15.3	32	$0 \cdot 7$
6 \%	14.8	34	- 05
620	14.4	36	$0 \cdot 3$
640	14.1	38	0.2
7 -	137	40	$0 \cdot 0$
720	13.4	42	-0.2
740	$13^{\circ} 1$	44	$\bigcirc \cdot 3$
8 o	12.8	46	$0 \cdot 5$
820	12.6	48	0.6
840	12.4	50	0.7
850	12.3	52	$0 \cdot 9$
9 o	12.1	54	I ${ }^{\circ}$
920	1199	56	$1 \cdot 1$
940	11.7	60	1.4
Io 0	11.6	65	1.7
1030	II'3	70	$2 \cdot 0$
II 0	II'I	75	$2 \cdot 3$

Table G.
STAR POLARIS AZIMUTH TABLE.

*'s Hr. Angle.	LATITUDES.										*'s Hr. Angle.
	0°	10°	20°	30°	35°	40°	45°	50°	$55^{\text {c }}$	60°	
Azimuths.											
H. M.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	H. M.
000	$0 \cdot 0$	0.0	0.0	0.0	$0 \cdot 0$	0.0	0.0	0.0	$0 \cdot 0$	$0 \cdot 0$	1200
O 20	$0 \cdot 1$	$0 \cdot 1$	O.I	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	O.I	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	II 40
- 40	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	0.2	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	0.4	$0 \cdot 4$	II 20
I 00	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 4$	$0 \cdot 4$	$0 \cdot 4$	0.5	$0 \cdot 5$	0.6	II 00
I 20	0.4	$0 \cdot 4$	0.4	$0 \cdot 5$	0.5	0.5	0.6	0.6	0.7	$0 \cdot 8$	1040
I 40	$0 \cdot 5$	$0 \cdot 5$	$0 \cdot 5$	0.6	0.6	0.7	0.7	0.8	$\bigcirc \cdot 9$	I'0	1020
200	0.6	$0 \cdot 6$	$0 \cdot 6$	$0 \cdot 7$	$0 \cdot 7$	0.8	0.8	0×9	I'I	I $\cdot 2$	1000
220	0.7	$0 \cdot 7$	0'7	0.8	0.8	$0 \cdot 9$	I'0	I'O	I*2	I* 4	940
240	$0 \cdot 8$	$0 \cdot 8$	0.8	0.9	$0 \cdot 9$	I'0	I'I	I'2	I'3	I•6	920
300	0.8	0.8	0.9	I'O	I'O	I'I	I•2	I'3	I'5	I'7	900
320	$0 \cdot 9$	$0 \cdot 9$	I'O	I'0	I'I	$1 \cdot 2$	$1 \cdot 3$	I'4	I. 6	I 8	840
340	I'O	I'0	I'O	I'I	I*2	I'3	I.4	I'5	I 7	$2 \cdot 0$	820
400	I'O	I'O	I'I	I'2	I'2	I'3	I'5	I 6	I•8	$2 \cdot 1$	800
420	I'I	I'I	I'I	I•2	I'3	I. 4	I'5	1.7	I'9	$2 \cdot 2$	740
440	I'I	I'I	I'2	I•3	I'4	I. 4	I•6	I 7	I'9	$2 \cdot 2$	720
500	I'I	I*2	I'2	I•3	I*4	I'5	I $\cdot 6$	I•8	$2{ }^{\circ} \mathrm{O}$	2'3	700
520	I*2	I*2	I*2	I•3	I.4	I. 5	I.6	I•8	2.0	$2 \cdot 3$	640
540	I•2	I'2	I'2	$1 \cdot 4$	$1 \cdot 4$	I. 5	I'7	I*8	$2{ }^{\circ} \mathrm{O}$	$2 \cdot 3$	620
600	I•2	I'2	I'2	I*4	I'4	I'5	I'7	I•8	$2 \cdot 0$	2.4	600

For the twelve hours before the meridian passage (above the Pole) it is east of north, and for the twelve hours after it is west of north.

Diagram to illustrate the Apparent Motion of Star a Ursæ Minoris (Polaris) round the Pole. Declination of Star in 1910, $88^{\circ} 49 \frac{1_{2}^{\prime}}{}$ N.; Right Ascension, 1 h. 27 m .

REDUCTION TO THE MERIDIAN TABLE FOR * POLARIS.

AT HOUR-ANGLES FROM UPPER MERIDIAN.
$A d d$ Reduction to obtain Meridian Altitude.
AT HOUR-ANGLES FROM LOWER MERIDIAN.
Subtract Reduction to obtain Meridian Altitude.

	Latitudes.					
	10°	20°	3°	40°	50°	60°
H. M. 1_{0}						¢
	$\bigcirc \cdot 3$	$0 \cdot 3$	$\bigcirc \cdot 3$	$\bigcirc \cdot 3$		
30	0.6	$0 \cdot 6$	$0 \cdot 6$	$0 \cdot 6$	$\bigcirc \cdot 6$	
40	I.1	$1 \cdot \mathrm{I}$	$1 \cdot \mathrm{I}$	$1 \cdot 1$	${ }_{1} \cdot 1$	
50	${ }^{1} 7$	17	$5^{\prime} 7$	17	${ }^{1} 7$	r 7
10	2.4	2.4	2.4	2.4	$2 \cdot 5$	2.5
ı0	3.3	$3 \cdot 3$	3.3	3.3	3.3	3.4
20	4.3	$4 \cdot 3$	4.3	4.3	4.4	4.4
30	$5 \cdot 6$	5.4 6.6	$5 \cdot 4$	5.4	5.5	5.5 6.8
50	$8 \cdot$	8.0	8.	8.0	$8 \cdot \mathrm{I}$	8.2
11	9.5	9.5	$9 \cdot 5$	9.6	$9 \cdot 7$	$9 \cdot 8$
	IT.0	$1{ }^{1} 1$	$1{ }^{\prime} 2$	I ${ }^{\prime}$ 2	If 3	11.4
20	12.8	12.8	12.9	12.9	13.	13.2
30	$14^{\prime} 6$	14.6	14.7	14.8	14.9	${ }^{15}{ }^{\circ} \mathrm{O}$
40	16.5 18.6	${ }_{1}^{16.6}$	16.7	16.7 18.8	16.8	$17^{\circ} \mathrm{O}$
III 0			$20 \cdot 8$			
10	22.9	23.0	23.1	23.2	23.3	23.5
20	25.2	$25^{\prime} 3$	$25^{\prime} 4$	25^{5}	$25^{\circ} 7$	25.9
30	27.6	27.7	27.8	$27^{\prime} 9$	$28 \cdot 1$	28.4
40	$30 \cdot 1$	$30^{\prime 2}$	$30 \cdot 3$	$30 \cdot 4$	$30 \cdot 6$	30'9
50	327	32.8	$32 \cdot 9$	$33^{\circ} \mathrm{O}$	$33^{\prime 2}$	$33^{\prime} 5$
	$35^{\circ} 3$	35.4	35.5	35.7	35.9	
10	38.0.	$33^{\prime \cdot}$	38.2	38.4	38.6	38.9
20	$40 \cdot 8$	$40^{\prime} 9$	$41^{\circ} \mathrm{O}$	$4^{1 \cdot 2}$	$4{ }^{1} 4$	$4{ }^{1} \cdot 7$
3	${ }_{4}^{4} 6^{\circ} 5$	43.7	43.9 46	44.0.	${ }_{4}^{44^{\circ} \mathrm{I}}$	$44^{\circ} \mathrm{C}$ 47
50	49.4	$49 \cdot 5$	$49 \cdot 6$	$49 \cdot 8$	$50^{\circ} \mathrm{I}$	$50^{\prime} 4$
-	$52 \cdot 3$	$52 \cdot 4$	$52 \cdot 6$		53°	53.3
	55.3 58.3	55.4	55.6	55.8	56°	$55^{\prime} 3$
20.	[${ }^{5} \times$	58.5				
401	4.4	4.5	47	$4 \cdot 9$	$5 \cdot$	
50.1	$7 \cdot 5$	7.6			8.2	

For Azimuths of $*$ Polaris see page 88.

Examples in tile Use of the above Table

Example r.-On April 2nd, 1914, at 3 h . 30 m . a.m., A.T. Sp. in latitude by D.R. $40^{\circ} \mathrm{I}^{\prime \prime} \mathrm{N}$., longitude $I I^{\circ} \mathrm{W}$. Required the approximate altitude of $*$ Polaris for setting the sextant for an observation to obtain the latitude. Height of eye, 40 ft .

Example 2.-On April 2nd, 1914, at 3 h .35 m. a.m., A.T. Sp. in latitude by D.R. $40^{\circ}{ }^{1} 5^{\prime}$ N., longitude $1 I^{\circ} \mathrm{W}$. Observed altitude of * Polaris was found to be $39^{\circ} 40^{\prime} \mathrm{N}$. Height of eye, 37 ft . Required the latitude.

			н. м.		
Obsd. alt. of $*$	$3940 \mathrm{~N} .$	Mer. pass. of * in 1914 Time of observation	o 46 a.m. 335 a.m.	Reduction Cor. for 4 years	$\begin{aligned} & 18^{\circ} 0 \\ & -3 \end{aligned}$
Reduction	$\begin{array}{rl} 39 & 32.5 \\ -17.7 \end{array}$	*'s Approx. H.A. (below Pole)	$\underline{249}$ gives reduction $1 y^{\prime} \%$.	True reduction	177
Mer. alt. (below Pole)	3914.8				
P. dist. in 1914	$\begin{array}{r}198 \\ \hline\end{array}$	*'s Sidereal H.A. would	ne nearly $\frac{1}{2} \mathrm{~m}$. greater; thi leration table, (page 86).	It will be nearl	$\begin{aligned} & \text { luired, } \\ & \text { ly } 1 \mathrm{~m} . \end{aligned}$
Latitude	4024°				

DIAGRAM TO AID IN FINDING THE.POSITION OF SOUTH POLE.

This diagram represents the apparent motion of the bright high-declination stars Achernar, Canopus, and those in the constellations of the Southern Cross and Centaurs to an observer in the latitude of Wellington, New Zealand, in about $41^{\circ} \mathrm{S}$. In this latitude none of these stars ever set, and they appear to describe a circle round an imaginary South Pole, with a radius equal to the co-declination of the star. The radius of α Crucis, for instance, is about $27 \frac{1}{2}^{\circ}$. It will be seen from the diagram that β Centauri and Achernar are always on opposite sides of the circle to one another, and that both stars are at nearly equal distances from the Pole; therefore the approximate position of the South Pole in the heavens will always be at a point midway between these two stars. When β Centauri is on the meridian above the Pole, Achernar will be close to the meridian below the Pole, or when β Centauri is east of the Pole Achernar will be about the same distance west of the Pole. The Centaurs will appear in almost exactly the same position in the heavens at, say, $6 \mathrm{p} . \mathrm{m}$. on any given day that Achernar was in at $6 \mathrm{a} . \mathrm{m}$. on the same day, or the Centaurs will appear in almost exactly the same position at 6 p.m. on one day that Achernar was in at the same hour of the day six months previously.

(GANERAL RFMARKS. RULES. AND EXAMPLES.

GENERAL? REMARKS ON THE DOUBLE-ALTITUDE AND "SUMNER" PROBLEM.

Many navigators undervalue "Sumner's" method in low latitudes; first, because of the small change of bearing between the usual times of taking the observations, and, secondly, because with a high altitude the circle of altitude or line of position is not to the same extent a straight line on the chart. But in practice I have found "Sumner's" method give equally good, or better results in low latitudes than in high, if the observations are taken-or, at any rate, the second one is taken-within an hour of noon, or considerably less than an hour when in the tropics and latitude and declination are of the same name, in which case the "Sumner" or double-altitude method is all the more valuable, as an ex-meridian of the sun by itself would not give a dependable latitude unless the observation was taken within a very few minutes from noon; whereas in high latitudes an ex-meridian will often give a latitude fairly near the truth when the observation has been taken nearly an hour from the meridian. In low latitudes, when observations are taken on both sides of the meridian, 90° change of bearing may often be obtained within an hour, and by the aid of Blackburne's and Westland's exmeridian tables a good "Sumner" position may be very quickly and accurately obtained from ex-meridian east and west of the meridian. To illustrate this an extreme case is given in this work where the greater altitude is 89°, and the change in bearing in 5 m . amounted to 72°.

It is impressed on navigators in these pages by the numerous examples and illustrations following that the lines of position need never be of great length, so that they may always be considered as straight lines even in tropical latitudes. When D.R. latitude is very uncertain, and one of the observations has been taken anywhere near the meridian, it may be worked out as an ex-meridian, plotted on the chart, and combined with another observation taken nearer the prime vertical, which would be worked out for a longitude; or two ex-meridian observations may be be taken and plotted on the chart, examples of which are given on pp. 152 and 153. Reviewers of former editions of this work have been much struck with the simplicity and practical value of this problem. Although the work is simplified and graphically illustrated by plotting the latitudes or longitudes on the chart, the resulting position is readily obtained by calculation without the aid of chart, as shown on pp. 92 to 95 .

As most ex-meridian tables and methods of calculation only give a correct latitude when the observation is taken not far from the meridian, a method is given in this work which gives a correct latitude corresponding to a given hour-angle when the sun or other celestial body is several hours away from the meridian. The D.R. latitude is not used in this calculation.

In obtaining the latitude by the double-altitude or "Sumner " method it is best, if the observations are taken on the same side of the meridian, for the same person to observe both; and generally the truest latitude will be found if both observations are taken on the same side bf the meridian, as it is probable that, if for any reason the altitude is observed too high or too low, the same thing will occur in both observations. For the same reason the truest longitude will be found from observations taken on different sides of the meridian. An example to illustrate this is given on pp. II 4 and 115 .

REMARKS ON P.M. OBSERVATIONS.

Any one who is in the habit of regularly taking p.m. sights must have noticed the large differences which sometimes occur between a.m. and p.m. observations, which is generally attributed to current, and some men have even been led to believe from this that p.m. sights are not of any value, as though the sun-or, rather, the earth-did not move as uniformly in the afternoon as in the forenoon. The principal difference between the result of the two observations is probably generally due to erroneous altitude, especially in rough weather, and sometimes, of course, to erroneous latitude, and the mean of the results from the two observations will generally be nearest the true position. It has often been noticed when there is a heavy sea on that p.m. sights place the longitude a long way to the eastward of the a.m. ones, owing probably to the sun being observed on the top of a wave, and consequently, the altitude being too small, an error which in the morning would place the ship to the westward of the
true position, but in the afternoon just as much to the eastward of it ; so that, supposing the ship to be in latitude 48° and the sun to be 30° from meridian at each observation, an error in the latitude of 2^{\prime} too little on both occasions would make a difference of 12' of longitude, as may be seen from Table D, on p. 8o. Suppose, then, that on the same occasion both observations have been worked with an error of 2^{\prime} south of the true latitude ; this would make another difference of about $1 \mathrm{o}_{\frac{1}{2}}{ }^{\prime}$ of longitude, making the p.m. sights $22 \frac{1}{2}^{\frac{1}{2}}$ of longitude to eastward of the a.m. observation, and a slight easterly current in the interval between the two observations might easily make over 30^{\prime} difference. Generally, no doubt, one of these errors will in a measure counteract another, but exceptional occasions are almost sure to arise when they will all combine in the same direction.

RULE FOR FINDING THE POSITION OF SHIP FROM TWO OBSERVATIONS BY AID OF TABLES A, B, AND C ${ }^{2}$ WITHOUT THE USE OF . CHART.

From Two Chronometer Observations of the Sun.

(I.) Let two chronometer observations be taken at an interval of about an hour and a half or two hours,* and let the first be worked out with the D.R. latitude at the time of observation.
(2.) Let the D.R. latitude and longitude thus obtained be corrected for the run of the ship in the interval between the observations, and let the second observation be worked with the corrected latitude. Name these longitudes (1) and (2).
(2.) With the hour-angle, latitude, and declination at each observation, take out the difference of longitude correction from Tables A and B, and name the position-lines corresponding to these corrections according to the instruction under the heading of Table C^{2} (p. 75).

Tables $A \pm B$ give the error in longitude due to I^{\prime} of error in latitude.

When both Position-lines go through the Same or Opposite Quadrants.
(3.) The differenie between the two A and B corrections will give the difference in the resulting longitudes due to I^{\prime} of error in the latitude. (See example on p . roo.)

When both Position-lines go through Adjacent Quadrants.

(4.) The sum of the two A and B corrections will give the difference in the resulting longitudes due to I^{\prime} of error in the latitude. (See example on pp. 102 and 107.)

The three elements used in the calculation of time, or longitude, are altitude, latitude, and polar distance. Presuming that the altitude and polar distance are correct, the resulting difference in longitude between the two observations must be due to error in the latitude. The sum or difference of the two A and B corrections give the difference of longitude in the two observations due to I^{\prime} of error in the latitude used in the calculation, and the amount of error in the latitude will therefore be found by a simple proportion sum (see p. Ioo) from which it will be seen that the error or correction to be applied to the D.R. latitude will be found by dividing the difference between longitudes (I) and (2) by the sum or difference of the A and B corrections. It must be applied to the latitude used in the last observation, and to the N. or S . according to whether the position-lines cut one another N. or S. of the D.R. latitude used in the calculation. The true longitude is then found by multiplying either of the A and B corrections by the latitude error, and applying the correction according to the trend of the position-line.

To prevent the possibility of making a mistake in the application of the correction to the latitude, a short horizontal line representing the parallel of D.R. latitude may be drawn with a free hand in the work-book; on this line put down longitudes (I) and (2), and roughly draw the position-lines through each longitude, following the rule for naming the position-lines given on p .75 , under the heading of Table C^{2}, also bearing in mind that if the line runs in a north-easterly direction it is equally

[^2]true that the line must also run in the opposite direction or south-westerly. No scale for longitude need be used, or protractor for laying down the bearings, but simply put longitude (1) or (2) to the right or left of the other, as they are to the east or west of one another, then draw the general trend of the position-lines through these two longitudes, thus :-

For Steilar Observations.
When finding the position of ship from stellar observations, it is best to observe the altitude of two stars which have a considerable difference in bearing from one another, and to take both observations within a few minutes of the same time. If the ship has not appreciably changed her position during the interval between the observations, both observations may be worked with the same latitude, and no correction for run need be applied to the first-observation latitude or longitude. Otherwise the same rules apply as for the observations by the sun.

When the ship has appreciably changed her position during the interval between the observations, rules Nos. I and 2 must be observed as in the sun observations.

From Ex-meridian and Chronometer Observation Combined. $2 b 8 c^{\circ}$
Let two observations be taken with a suitable difference in bearing between them, and let the one nearest the prime vertical be used for a longitude (working it with the D.R. latitude), and the other one for a latitude, using the time deduced from the longitude found by observation in the calculation for latitude: bring both results up to the same instant of time by applying the run in interval between the observations.

Take out the A and B correction for the H.A. and latitude of each observation, and with this enter Table C^{2} (p. 75) and take out the corresponding position-lines. We have then two latitudes and their corresponding position-lines starting from different points on the same meridian. Where these lines cut with one another on a plane chart will be the position of the ship.

From the figure representing these positions and position-lines it will be easy for any one having a knowledge of plane trigonometry to complete the calculation. For the sake of those who have not this knowledge, examples taken from the problems given in this book are now given to illustrate the different cases.

Example i (p. 109).-Observations East and West of Meridian.
With lat. $41^{\circ} \mathrm{o}^{\prime} \mathrm{S} .$, long. by chron. from * Canopus gave $174^{\circ} 30^{\prime} \mathrm{E}$. and position-line S. $44^{\frac{1}{2}} \mathrm{E}$.

With long. $174^{\circ} 30^{\prime}$ E., lat. by ex-mer. of * a Centauri gave $4 \mathrm{I}^{\circ} \quad 26^{\prime} 40^{\prime \prime} \mathrm{S}$. and positionline N. $6 \mathrm{r}^{\circ} \mathrm{E}$.

For the figure. - From A, in lat. $4 \mathrm{I}^{\circ} \mathrm{o}^{\prime} \mathrm{S}$. and long. $174^{\circ} 30^{\prime} \mathrm{E}$., draw a meridian-line to B , in lat. $4 \mathrm{I}^{\circ} 26^{\prime} 40^{\prime \prime} \mathrm{S}$.; from A and B draw the lines S. $44 \frac{1}{2}^{\circ} \mathrm{E}$. and N. $6 \mathrm{I}^{\circ} \mathrm{E}$. respectively to cut one another at C. From C drop a perp. on $A B$ at D.

In the right angled triangles ADC and BDC the angles at C will be respectively $45 \frac{1}{2}^{\circ}$ and 29°, and therefore the angle at C in the $\triangle A B C$ will $=74 \frac{1}{2}^{\circ}$. We then have in the $\triangle \mathrm{ABC}$, $\mathrm{A}=44 \frac{1}{2}^{\circ}, \mathrm{C}=74 \frac{1}{2}^{\circ}$, and $\mathrm{AB}=26.7^{\circ}$. First find a, then BD, and next $(C D$.

Formula.

$$
\begin{aligned}
& a=\mathrm{AB} \cdot \sin \mathrm{~A} \cdot \operatorname{cosec} \mathrm{C} \\
& \mathrm{BD}=a \cdot \cos \mathrm{~B} \\
& \mathrm{CD}=a \cdot \cos \mathrm{C}
\end{aligned}
$$

	$\begin{aligned} & \text { A B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 26.77^{\prime} \\ & 444^{\frac{10}{2}} \\ & 74 \frac{1}{2} \end{aligned}$	Log Sin Cosec	$\begin{aligned} & 1 \cdot 4265 \\ & 9 \cdot 8457 \\ & 0 \cdot 0161 \end{aligned}$
	$\begin{aligned} & a \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 19^{\circ} 42^{\prime} \\ & 61^{\circ} \end{aligned}$	$\underset{\operatorname{Cos}}{\log }$	$\begin{aligned} & \mathrm{I} \cdot 2883 \\ & 9.6856 \end{aligned}$
Cor. for lat.	B D	$94^{\prime 2}$	Log	0.9739
	$\stackrel{a}{C}$	$\begin{aligned} & 190^{\circ} 42^{\prime} \\ & 29^{\circ} \end{aligned}$	$\stackrel{\mathrm{Log}}{\mathrm{Cos}}$	$\begin{aligned} & \mathrm{r} \cdot 2883 \\ & 9.9418 \end{aligned}$
Cor. for long.	C D	$17.0{ }^{\prime}$	Log	1-2301

From Two Ex-meridian Observations on Different Sides of the Meridian.

Let two observations be taken with a suitable difference in bearing between them, one east and the other west of the meridian, deducing the hour-angle by applying the equation of time and longitude by D.R. Bring both results up to the same instant of time by applying the run in interval between the observations. The latitude from either observation (if worked by a correct method) is the latitude where the circle of altitude of the body observed cuts the meridian used in deducing the time. If both latitudes agree when observations have a considerable difference in bearing between them the longitude must be correct. If the latitudes do not agree the true latitude and longitude may readily be found by plotting on the chart, or by the formula used in preceding example, or by No. 2 method explained below.

> Method No. 2.
> By Aid of Table giving the Error in Latitude by Ex-meridian due to 4 sec. Error in Time or I^{\prime} of Longitude.

By the aid of the above-named table the double altitude problem may be worked from the meridian, on the same principle as two chronometer observations are worked from a parallel of latitude. If the azimuth is not over 70° (the limit of the table), the problem may be worked from the meridian with either an exmeridian and chronometer observation combined or from two ex-meridians.

When both observations are on same side of meridian, the difference between the two errors in latitude, due to I^{\prime} of error in the longitude, taken from the table, will be the divisor for the two differences of latitude resulting from the two observations, and will give the correction for the longitude used.

When one observation is east and the other west of meridian the error of longitude will be found by dividing the differences of latitude resulting from the two observations by the sum of the factors taken from the table. The error in latitude will then be found by multiplying the error in longitude by the correction taken from the table (in preference using the azimuth nearest to the meridian) and applying this to the ex-meridian latitude in the direction of the trend of the position-line, which is always at right angles to the bearing of object.

When the altitude is high and near the meridian the azimuth should be obtained by the time and altitude. This may be done either by Table D or by the rule of sines. (See examples on p. 105.)

Example 2 (p . 105). Both Observations on Same Side of Meridian.

a	$7 \cdot 5^{\prime}$	\log	$0 \cdot 8751$
B	32°	Sin	$9^{\circ} 7242$
A	40°	Cosec	$0^{\circ} 1919$
b	6.18^{\prime}	\log	$0 \cdot 7912$
C	72°	Cos	9.4900

Cor. for lat. C D $\mathrm{I}^{\circ} 9 \mathrm{I}_{\underline{6}}$ Log 0.2812
$1^{\prime} 54^{\circ} 6^{\prime \prime}$

With lat. $46^{\circ} 2 I^{\prime} \mathrm{N} .$, long. by chron. from \odot obsn. gave $14^{\circ} 46^{\prime} 55^{\prime \prime} \mathrm{W}$. and position-line N. 32° E.

With long. $14^{\circ} 46^{\prime} 55^{\prime \prime}$ W., lat. by ex-mer. from second \odot obsn. gave $46^{\circ} 28^{\prime} 30^{\prime \prime} \mathrm{N}$. and positionline N. 72° E.

For the figure.-From B, in lat. $46^{\circ}{ }_{2 I^{\prime}} \mathrm{N}$. and $14^{\circ} 47^{\prime} \mathrm{W}$., draw a meridian-line to $\mathrm{C}=$ lat. 46° $28^{\circ} 5^{\prime} \mathrm{N}$. ; and from B and C draw two lines N. 32° E. and N. $72^{\circ} \mathrm{E}$. respectively to cut one another at A. From A drop a perp. on BC produced at D.

We now have in the right-angled triangle A B D angle $B=32^{\circ} \therefore A=58^{\circ}$; and in the right-angled triangle $A C D$ angle $C=72^{\circ} \therefore A=18^{\circ}$

In the triangle ABC, A will therefore $=40^{\circ}$
Then in the triangle $\mathrm{ACB}, \mathrm{B}=32^{\circ}, \mathrm{A}=40^{\circ}$, and $a=7 \cdot 5^{\prime}$

First find b, then $\mathrm{CD}=$ lat. cor., and $\mathrm{AD}=$ long. cor.

Formula.

Lat. by ex-mer. Cor.	$\begin{array}{r} 0 \\ 46 \\ 4 \\ 28 \\ 30 \\ 130 \\ 15 \end{array}$
Correct lat.	463025 N

$\underset{\text { Long. by chron. }}{\text { Lor }}$	
Cor.	553 E
Correct long.	14412 W

1st obsn. \odot^{\prime} 's Az. S $66 \frac{1}{2}^{\circ} \mathrm{E}$ gives (Table M, pp. 150-151) 1.59 N to Ed. 2nd obsn. \odot 's Az. S 25° E gives (Table M, pp. 150-15t) o. 32 N to Ed.

Lat. error							
$1^{\circ} 27^{\prime}$	$:$	Long.	1^{\prime}	$::$	$7^{\circ} 5^{\prime}$	$:$	Diff. lat.
:---:	$\quad 5^{\prime} 9^{\prime}$						

$$
\begin{aligned}
& 1 \div 27) \quad 7.5\left(5^{\prime} 9 \mathrm{E} \times \cdot{ }_{32}=\text { Lat. cor. } \mathrm{I} \cdot 888 \mathrm{~N}\right.
\end{aligned}
$$

Lat. by ex-mer. (2nd obsn.) $46 \quad 28^{\circ} 5 \mathrm{~N}$

$$
\text { Lat. in } \quad \frac{169}{46304} \mathrm{~N}
$$

By No. 2 Method.

Diff. $\overline{1.27}$

Long. $\quad \stackrel{\circ}{14} 46.9 \mathrm{~W}$
Cor.
Long.
5.9
$1+4 \mathrm{I}^{\circ} \mathrm{O}$
W

Lat: 46°

Example 3.-Two Ex-meridians on Different Sides of the Meridian. At time of 2nd Observation.

With long. D.R. $2^{\circ} 35^{\prime} 40^{\prime \prime}$ W., lat. by ex-mer. a.m. \odot Obsn. $10^{\circ} 10 \cdot 4^{\prime} \mathrm{S}$. and position-line for plane chart N. $64 \cdot 8^{\circ} \mathrm{W}$.

With long. D.R. $2^{\circ} 35^{\prime} 40^{\prime \prime}$ W., lat. by ex-mer. p.m. \odot Obsn. $9^{\circ} 559^{\prime}$ S. and position-line for plain chart S. $63.7^{\circ} \mathrm{W}$.

For the figure.-From A in lat. $10^{\circ} 10.4^{\prime} \mathrm{S}$. 'and long. $2^{\circ} 35.7^{\prime} \mathrm{W}$. draw a meridian line to B at $9^{\circ} 55 \cdot 9^{\prime} \mathrm{S}$. and from A and B draw two lines $\mathrm{N} .64 \cdot 8^{\circ} \mathrm{W}$. and S. $63.7^{\circ} \mathrm{W}$. respectively to cut one another at C. From C drop a perpendicular on A B at D.

In the right-angled triangles $A C D$ and $B C D$ the angles at C will be respectively 25.2° and 26.3°, and therefore the angle at C in the triangle A B C will equal $5 \mathrm{I} \cdot 5^{\circ}$. We then have in the triangle $\mathrm{ABC}, \mathrm{A}=64 \cdot 8^{\circ}, \mathrm{C}=5 \mathrm{I} \cdot 5^{\circ}$, and AB (diff. lat.) $=144^{\circ}$. First find a, then $\mathrm{B} D=$ lat. cor., and $\mathrm{C} D=$ long. cor.

Formula.

$a=\mathrm{AB} \cdot \sin \mathrm{A} \operatorname{cosec} \mathrm{C}$
$\mathrm{BD}=a \cdot \cos \mathrm{~B}$
$\mathrm{CD}=a \cdot \cos \mathrm{BCD}$

By No. 2 Method
A.M. obsn. \odot 's $\mathrm{Az}, \mathrm{N} 25^{\circ} \cdot 5 \mathrm{E}$ gives (Table M, pp. 156-157) $\overbrace{}^{\prime} 47 \mathrm{~N}$ to Wd . P.M.obsn. ©'sAz N $26 \cdot 7$ W gives (Table M, pp. 156-157) 50 S to Wd ,

Lat. (I) 10 10.4 S
Lat. (2) $955^{\circ} 9$
$\therefore 97) \mathrm{I}_{4} \cdot 5\left(1_{5} \times 1.5=7^{\prime} 5 \mathrm{~S}\right.$

REMARKS ON THE POSITION-LINE AND "SUMNER" PROBLEM IN CONNECTION WITH EX-MERIDIANS.
Although most navigators are now fully alive to the value of the position-line in connection with the longitude by chronometer, the value of the position-line in connection with the latitude by ex-meridian is seldom presented in works of navigation. It is generally supposed that an ex-meridian, if taken within a certain time from noon, will give a correct latitude, and that therefore the ship's line of position is anywhere on that parallel of latitude. This, however, is only the case when the ship time (which depends on the longitude) is nearly correct.

The further the object is in bearing away from the meridian the greater will be the error due to an error in the time. (See Table M, pp. 156 and 157).

The time, however, might be uncertain to 4 or 5 minutes, and yet the exmeridian observation may be of great value in connection with the position-line, either when near the land by combining this line of bearing with some sounding or bearing of the land (see p. i70), or by combining it with another astronomical position-line, as in the "Sumner" problem. When the body which is used as an ex-meridian is within the limits of ex-meridian tables, an accurate starting point for a position-line may be obtained with very few figures. For cases where the body is outside the usual ex-meridian limits, a formula is here given (pp. 97 to 98) which will give a correct latitude for any time from the meridian corresponding to the true hour-angle of the sun or other heavenly body, and the latitude on an approximate D.R. longitude will give the starting point for the position-line which these tables give, cutting this longitude meridian, at that latitude.

It is very generally believed by navigators that an observation taken near the meridian is of no use in connection with the "Sumner" problem. To some extent this is true when the problem is worked by the usually taught methods, and the D.R. latitude is much in error. I have endeavoured to show by the following examples how the ex-meridian problem may be combined with the chronometer observation in the "Sumner" problem : and, if this is done, it matters little how the sun or stars bear when the observations are taken, provided there is a suitable difference in bearing (say, 3 points or more) between the two position-lines.

The latest ex-meridian tables by Blackburne and Westland enable the navigator to very readily obtain his position from two ex-meridians, or by an exmeridian and chronometer observation, which may be worked as a double altitude, or plotted on the chart, just as accurately and even more rapidly than it could be done from two chronometer observations.

When observations are taken at the best possible time-shortly before sunrise and after sunset, when probably only three or four of the brightest stars are visible-we can not expect always to get two stars sufficiently far from the meridian and prime vertical as is considered by some necessary (vide "Wrinkles," 9 th Ed., p. 514) for a satisfactory double altitude to be worked on the "Sumner" principle. However, if advantage is taken of the methods shown in the following examples, it will be seen how little this matters. The only necessary condition of importance to insure good results is that the stars should be sufficiently far apart in bearing to give a good cut; and if one observation be near the prime vertical, and the other one near the meridian, the writer would say so much the better, rather than that this should be looked upon as an objection.

The following figures give the cases for any time from the meridian, when from a given hour-angle the latitude is required to be found.

LATITUDE BY EX-MERIDIAN WHEN OUTSIDE ORDINARY LIMITS.

Case No. r.-Object above the Pole, Angle at Z (= Bearing of Object) more than 90° reckoned from Observer's Pole.
In the spherical triangle $Z P D$, let $Z P=$ co-lat., $Z \mathrm{D}=$ co-alt, and $\mathrm{PD}=$ Polar Dist.
Given $Z D, P D$, and angle at P : to find $\mathrm{P} Z=$ co-lat.

From D drop a perpendicular on the meridian at M, then in the right-angled spher. triangle PMD we have PD and angle at P to find $P M=\operatorname{arc}(1)$.

Formula. $-\operatorname{Cos} P=\tan (\mathrm{I}) \cdot \cot P D \therefore$ $\tan (1)=\cos P \cdot \tan P D$.
Next find $Z M=\operatorname{arc}$ (2).
In the spher. triangle $\mathrm{PMD}, \cos \mathrm{PD}=$ $\cos (\mathrm{I}) \cdot \cos$ M D.
In the spher. triangle $Z M D, \cos Z D=$ $\cos (2) \cdot \cos$ M D.

$$
\begin{aligned}
& \therefore\left.\frac{\operatorname{Cos}(2)}{\operatorname{Cos}(1)}=\frac{\operatorname{Cos} Z D}{\operatorname{Cos} P D} \therefore\right\} \begin{array}{l}
\cos (2)=\cos (1) \\
\cos Z D \cdot \sec P D
\end{array} \\
& P Z(\cos -\operatorname{lat} .=\operatorname{arc}(1)-\operatorname{arc}(2)
\end{aligned}
$$

Case No. 2.-Angle at Z less than 90°

Fig. 2.

Same formula as in previous case, but $\mathrm{PZ}($ co-lat. $)=\operatorname{arc}(\mathrm{I})+\operatorname{arc}(2)$.

Case No. 3.-Object below the Pole.
Fig. 3.

In the spher. triangle PMD , angle at $\mathrm{P}=$ supplement of hour-angle. Then follow the same formula as in Case No. I

PZ (co-lat.) $=\operatorname{arc}(2)-\operatorname{arc}(\mathrm{I})$.

By using the complements of $P D$ and $Z D$, and comp. of $P M$ for arc (r) when object is above the Pole, or comp. of Z M when object is below the Pole, the formula may be arranged as follows, and the rule as below applied:-

Object above the Pole.

Cot arc $(\mathrm{I})=\cos$ H.A. $\times \cot$ decl.
Cos $\operatorname{arc}(2)=\operatorname{cosec}$ decl. $\times \sin \operatorname{arc}(1) \times \sin$ alt.
Name arc (1) same as decl.
Name arc (2) contrary to bearing of object-i.e., \mathbf{N}. or S . of the prime vertical.
Add like and subtract unlike names. Sum or diff. of arc (1) and arc (2) = latitude.

Object below the Pole.

Tan $\operatorname{arc}(\mathrm{I})=\cos$ suppt. of H.A. $\times \cot$ decl.
Sin $\operatorname{arc}(2)=\operatorname{cosec}$ decl. $\times \cos \operatorname{arc}(\mathrm{I}) \times \sin$ alt.
Name both arc (1) and arc (2) same as the decl.
Latitude $=$ sum of $\operatorname{arc}(\mathrm{I})$ and $\operatorname{arc}(2)$ always named same as the decl.
Note.- It is not advisable to use the formulæ here given when other methods can be used, if the declination of object is within 3° or $4^{\circ} \mathrm{N}$. or S. decl. If it is then used, six-figure logarithms should be taken out, and the corrections made for odd seconds of arc.

Examples in the use of these formulæ are given in the problems following.

FORMUL压 FOR EX-MERIDIANS.

Worked-out Examples to illustrate each Case.

As some have been puzzled in trying to follow the ex-meridian formulæ from the figures here given when latitude and declination are of contrary names, owing to PD and PM being over 90°, the reader is reminded that to take out the tan and sec of an arc if over 90° he must take out the cotan and cosec of amount in excess of 90°.

If the rule is followed independently of the figure this confusion will be avoided, as decl. and alt. are used, instead of P.D. and Z.D.

Examples of each case, following either ftgure or rule, are here fully worked out which can be easily followed.

Case No. 1.-Hour-angle 2 h .17 m . ios., Lat. S., Decl. 23° N., and Altitude $16^{\circ} \mathrm{N}$. Required the latitude.
formula from the Figure.

Formula from the Figure.			
		Cos 9.91707 Tan ${ }^{\prime}{ }^{\prime} 37215$	Sec 0\%40812
PM	$117^{\circ} 11 \frac{1}{2}^{\prime}$	Tan 0.28922	$\operatorname{Cos} 9.65989$
		ZD 74°	$\operatorname{Cos} 9.44034$
ZM	71 112	. . .	Cos 9.50835
Co-lat. P Z	46 o		
Lat.	44 oS		

Formula deduced as per Rule.

Case No. 2.-Hour-angle Ih. 38 m . i2 s., Lat. N., Decl. 40° N., and Altitude $61^{\circ} \mathrm{N}$. Required the latitude.

	$\begin{aligned} & \text { H.A. } \\ & \text { PD } \end{aligned}$	$\begin{array}{cc} \text { H. M. S. } \\ \text { I } 38 & 12 \\ 50^{\circ} \end{array}$	Cos 9.95885 Tan 0.07619	Sec 0'19193	$\begin{array}{ll} & \text { H. M. S. } \\ \text { H.A. } & \text { I } 38 \text { I2 } \\ \text { Decl. } & 40^{\circ} \end{array}$	Cos 9.95885 Cot 0.07619	Cosec	0•19193
	PM	$47^{\circ} 18 \frac{1^{\prime}}{}$	Tan 0.03504	Cos 9.83126	$\operatorname{Arc}(\mathrm{I}) 42^{\circ} 4{ }^{1 \frac{1}{2}}{ }^{\prime} \mathrm{N}$	Cot 0.03504	Sin	9.83126
			Z D 29°	Cos 9.94182		Alt. $6 \mathrm{I}^{\circ}$	Sin	9.94182
	ZM	$2241 \frac{1}{2}$	- . . .	Cos 9\%96501	Arc (2) $22 \quad 41 \frac{1}{2} \mathrm{~S}$	- Cos	9.96501
Co-lat.	P Z	700			Lat. $20 \quad 0 \mathrm{~N}$			
	Lat.	200 N						

Case No. 3.-Hour-angle $9 \mathrm{~h} .23 \mathrm{~m} .47 \mathrm{s}$. . Lat. S., Decl. $62^{\circ} 34^{\prime} \mathrm{S} .$, and Altitude $22^{\circ} \mathrm{S}$. Required the latitude.

The accuracy of this method may easily be proved by reversing the process, and finding the hour-angle from the latitude, declination, and altitude given.

Case No. 3 is especially useful, as with high-declination stars the latitude will generally be fairly correct, even when the time is in error a couple of minutes and the body observed is an hour or more from the meridian below the Pole. For instance, in the latitudes of last example, an ex-meridian of $* a$ Crucis with hour-angle II h., or I h. from meridian below the Pole, and 2 m . of error in the time used, would only cause an error of $2 \frac{1}{2}^{\prime}$ in the resulting latitude.

DOUBLE-ALTITUDE POSITION BY TWO SUN OBSERVATIONS.

1902.-March 29th, p.m., the following observations were taken in the artificial horizon, at 56 Hawker Street, ellington :-

> " 28 15 51 18 2815 5I 18
> " 525 10

Required the true bearing of the sun at each observation, and the position of place, assuming latitude to be $4 r^{\circ} 0^{\prime} \mathrm{S}$. Index error of sextant $+1^{\prime} 23^{\prime \prime}$; ther. 70°; bar. $30^{\circ} 0 \mathrm{in}$.

ist Observation.

2nd Observation.

M. T. G.	$\begin{array}{llll} \text { D. } & \text { H. M. } & \text { s. } \\ 28 & 13 & 17 & 3 I \\ \hline \end{array}$	Dl. var. $58^{\prime \prime} 52 \times \stackrel{\text { H. }}{\text { H }}$. 71			
Before noon, 29th	104229	Cor. Dl., 29th	$\bigcirc{ }^{\circ}$ 10 ${ }^{\prime \prime} 6^{\prime \prime} 7$		
Eq. T. var.	0.767×107		25654		
	$\begin{array}{cc} \text { M. } & \text { S. } \\ +8 \cdot 2 \\ 5 & 5^{\prime} \mathrm{I} \end{array}$	Cor. Dl.	925654		
Cor. ${ }_{\text {Eq. }}$ T, 29th		P. D.			
Eq. T., 29th					

Cor. Eq. T. $513.3+$ A.T.
Cor. Eq. T. $\overline{5113}$

$\begin{array}{ll}\text { Long. (1) cor. }=3 \cdot 7 \mathrm{I} \\ \text { Long. (2) to } \mathrm{E} & \text { (1) to } \mathrm{A} \\ \text { Lo } & \left.\begin{array}{l}\text { (2) to } \mathrm{A}\end{array}\right\} \text { in Fig. }\end{array}$
D. long. $\quad \overline{2 \cdot 95}:$ d. long. $54^{\prime} 7:$: lat. 1 : lat. cor. $18 \cdot 5$

Lat. used	41 ${ }^{\circ}$ ó ó	S	Long. (2)			¢ ${ }^{\prime \prime} 11$	E
Cor.	1830	S	$18.5^{\prime} \times{ }^{\prime} 76^{\prime}$			144	W
Lat. in	411830	S	Long. in	17	74	4627	E

In this example, with the latitude used in the calculation ${ }^{\prime} 7 \frac{1}{2}{ }^{\prime}$ in error, the resulting latitude is I^{\prime} in error. This is due to the sun's azimuth differing nearly 2° at the position corresponding to the hour-angle found with 41° lat. from that of the true hour-angle and latitude. If the position had been worked in the usual way as given in the Board of Trade examinations with two latitudes, say, 17^{\prime} in error on each side of the true latitude, the resulting latitude would have been just 2^{\prime} north of that here found, or r^{\prime} north of the true latitude. When the hour-angle is small, and the two latitudes used on each side of the true latitude are far apart, the resulting position-line always places the ship on the Equatorial side of the true position-line or circle of altitude. When the problem is worked with the D.R. latitude, and a position-line at right angles to the bearing of the object observed, the resulting position-line will place the ship on the Polar side of the true line of position; an error of 30^{\prime} in the D.R. latitude in either case will sometimes make 2^{\prime} to 3^{\prime} error in the latitude. When one of the hour-angles is not far from the meridian, as in this case, the problem as worked on the following page will give a more accurate position, and the work is not longer.

These observations when reworked on the same principle, when using a latitude near the the truth, give the latitude of position within $0^{\prime} I^{\prime}$ of the truth. Several observations were taken at the same time, and all the resulting latitudes agreed within a few seconds of one another.

For position of place plotted on the chart, see chartlet on next page.

DOUBLE-ALTITUDE POSITION BY TWO SUN OBSERVATIONS

(Combining Chron. Long. Observation with an Ex-meridian).

1902.-March 29th, p.m. In assumed latitude $4 \mathrm{I}^{\circ} \mathrm{o}^{\prime} \mathrm{S}$. the true altitude of sun's centre was $44^{\circ} 14^{\prime} 4^{\prime \prime}$ when a chronometer showed M.T.G. 28 d. 13 h .17 m .31 s . ; and again on the same afternoon the true altitude of sun's centre was found to be $25^{\circ} 45^{\prime} 30^{\prime \prime}$ when a chronometer showed M.T. G. 28 d .15 h .51 m .18 s . Required the position of place by projection on the chart.
ist Obsn. West of Meridian.

Position by Chart.
Lat. $\quad \stackrel{\circ}{4^{1}}{ }^{1} 7 \frac{1}{2} \mathrm{~S}$
Long. 17447 E

Position by two chron. observations $=$ Lat $\quad 0^{\circ} \quad$ I $18 \frac{1}{2} \mathrm{~S}$.
(see previous page) Long. $17446 \frac{1}{2} \mathrm{E}$.

The following example is taken from Captain Thompson's excellent book, " Navigation Simplified," which, I presume, is now in the hands of nearly all those navigators who desire to obtain the highest certificates. This example is taken as the work is there given in detail, with the plotting on the chart, so that the reader can compare the working, and see for himself the saving in figures, while maintaining equal, if not greater, accuracy by using the A and B Tables.

POSITION BY DOUBLE ALTITUDE OF SUN.

1900.-July 2nd, at about 6 h .50 m . a.m., and again at II a.m., from the following observations :-

Mean Time at Greenwich by Chron.

$$
\begin{array}{ccccc}
\text { D. } & \text { H. } & \text { M. } & \text { S. } \\
\text { r } & 7 & 43 & \text { I2 } \\
\text { I } & \text { II } & 57 & 36
\end{array}
$$

True Altitude of the Sun's Centre.

$$
\begin{array}{ccc}
0 & 1 & \prime \prime \\
25 & 51 & 6 \\
69 & 50 & 25
\end{array}
$$

Find the true bearing of the sun when the first altitude was ubserved, and the position of the ship when the second altitude was taken, assuming the ship to be between latitudes $49^{\circ} 50^{\prime} \mathrm{N}$. and $50^{\circ} 20^{\prime} \mathrm{N}$. The ship's course and distance between the observations was N. $67^{\circ} \mathrm{W}$., dist. 30 miles.

N. P. D.

$90 \quad 0 \quad 0$
$6653 \quad 11$

$$
\text { N.P.D. } \quad 665353
$$

d. long. d. long. lat. lat.
$3^{\prime} 12^{\prime \prime}$: $26 \cdot 5^{\prime}$: : I^{\prime} : $8 \cdot 5^{\prime}$ cor. Lat. at 2 nd obsn. 50 i $42^{\prime \prime} \mathrm{N}$
Cor.
Lat. in

For position of ship when plotted on the chart, see chartlet on next page.

DOUBLE ALTITUDE OF THE SUN

(Combining Chron. Long. Observation with an Ex-meridian).
1900.-2nd July, at about 6 h .50 m . a.m., and again at II a.m., from the following observations:Mean Time at Greenwich by Chron. True Altitude of the Sun's Centre.

D.	H. M.	s.	\circ	1
I	7	43	I2	25
I	II	57	36	60
		50		

Find the true bearing of the sun when first altitude was observed, and the position of the ship when the second altitude was taken, assuming the ship to be between latitudes $49^{\circ} 50^{\prime} \mathrm{N}$. and $50^{\circ} 20^{\prime} \mathrm{N}$. The ship's course and distance between the observations was N. 67° W., dist. 30 miles.

ist Obsn.

IST ObSn.				
A	$\stackrel{\circ}{25}$	5' ${ }^{\prime \prime}$		
$\underset{\mathrm{P}}{\mathrm{L}}$	49	50 -	Sec Cosec	$\begin{aligned} & 0 \cdot 19043 \mathrm{I} \\ & 0 \cdot 036340 \end{aligned}$
		53 II		
	142	3417		
$\begin{aligned} & S \\ & S \end{aligned}$	71	178.5	Cos Sine	$\begin{aligned} & 9.506301 \\ & 9.852750 \end{aligned}$
		$26 \quad 2.5$		
	$\begin{aligned} & \text { H. } \\ & 24 \end{aligned}$	$\begin{array}{cc} \text { M. } & \mathbf{S} . \\ 0 & 0 \end{array}$		
H.A. east	- 5	658	Sin 2	9.585822

A. T. ship

$$
\begin{array}{r}
18532 \\
+\quad 25
\end{array}
$$

Eq. T.
M. T. ship

$$
\overline{185637}
$$

$$
\begin{array}{r}
74312 \\
\hline
\end{array}
$$

Long. in T. 111325
Longitude $168^{\circ}{ }_{21} I^{\prime} 15^{\prime \prime} \mathrm{E}$
Rund. long

$$
\begin{array}{r}
68^{\circ} 2 \mathrm{I}^{\prime} 15^{\prime \prime} \mathrm{E} \\
43 \mathrm{O}
\end{array}
$$

$$
\begin{aligned}
& \text { Rund. long } \frac{43 \times W}{167 \quad 3815} \mathrm{E}=\begin{array}{l}
\text { H. M. s. } \\
\text { Long. (2) } \\
\text { Io } 33
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { M.T.G. }+\frac{\text { II } 5736}{2389} \\
& \text { M.T. ship }
\end{aligned}
$$

$\left.\begin{array}{lr}\text { H.A. } & 5 \text { h. } \\ \text { Lat. } & 50^{\circ} \mathrm{E} \\ \mathbf{N}\end{array}\right\}$

$\begin{array}{llllll}\text { Ll. } & 53^{\circ} & \mathrm{N} & \mathrm{N} & -28 \\ \mathrm{~B} & .55 \mathrm{~N}\end{array}$
Cor. Table C $\overline{{ }^{\circ} 6} \mathrm{~N}$ gives Az . N $84 \cdot \mathrm{I}^{\circ} \mathrm{E}$ and Pos.-line for plane chart, Table $\mathrm{C} 2, \mathrm{~N} 9^{\circ} \mathrm{W}$

Chartlet for Problem on page 102.

For above Problem.

With the desire to show the especial utility of these tables for obtaining accuracy of position and conciseness in work, and the superiority of the method here advocated over the method still employed in the Board of Trade Examinations of Masters and Mates, for the "Sumner" problem, the following example is given and plotted on the chart by both methods. For the sake of better illustrating the possible error due to the old method, a wider range of latitude has been taken than is usually given in the examination papers, though, considering the high speed of some of the present-day steamers, the range is not excessive, as the run in interval itself might often amount to over r° of latitude

"SUMNER" PROBLEM AS GIVEN IN THE B. OF T. EXAMINATIONS.

1898.-On 20th June, a.m., at ship, at sea, and uncertain of my ship's position: when a chronometer indicated M. T. Green. 19 d .22 h .30 m . the true altitude of sun's centre was $52^{\circ} 9^{\prime}$; and again, a.m. on same day, when chronometer indicated 20 d . oh. 16 m . the true altitude of sun's centre was $65^{\circ} 18^{\prime}$, the ship having made 23 miles on a true $\mathrm{N} .24^{\circ} \mathrm{E}$. course during the interval between the observations. Required the line of position and true bearing of the sun at time of ist observation; and the position of the ship when 2nd observation was taken assuming latitudes $46^{\circ} \mathrm{N}$. and $47^{\circ} \mathrm{N}$.

2nd Observation.

A \mathbf{L} \mathbf{P}	$\begin{array}{lr}0 \\ 6 & 18 \\ 46 & 0 \\ 66 & 33\end{array}$	Sec Cosec	$0 \cdot 158229$ 0.037438	A L \mathbf{P}	$\begin{array}{ll} 60 \\ 65 & 18 \\ 47 & 0 \\ 66 & 33 \end{array}$	Sec Cosec	$0 \cdot 166217$ 0’037438
	17751				17851		
$\begin{aligned} & S \\ & S-A \end{aligned}$	$\begin{array}{ll} 88 & 55 \frac{1}{2} \\ 23 & 37 \frac{1}{2} \end{array}$	$\begin{aligned} & \text { Cos } \\ & \text { Sin } \end{aligned}$	$\begin{array}{r} 8 \cdot 273260 \\ 9 \cdot 602872 \end{array}$	$\mathrm{S}-\mathrm{A}$	$\begin{array}{rl}89 & 25 \frac{1}{2} \\ 24 & 7 \frac{1}{3}\end{array}$	Cos Sin	$\begin{aligned} & 8 \cdot 001538 \\ & 9 \cdot 6 \text { II } 435 \end{aligned}$
H. A. D.	$\begin{array}{ccc} \text { H. M. } & \text { S. } \\ \text { o } & 49 & 53^{\circ} \mathrm{I} \end{array}$	Sin ${ }^{2}$	$8 \cdot 071799$	H. A. D.	$\begin{array}{ccc} \text { H. M. } & \text { S. } \\ \text { O } & 37 & 9.2 \mathrm{E} \end{array}$	Sin^{2}	7•816628
A.T. ship 19	23 10 6.9			A.T.ship ig	232250.8		
A.T G. 19	$241442{ }^{\prime}$			A. T. G. Ig	$241442 \cdot 3$		
Long. in T .	I $435^{\circ} 4$			Long. in T .	- 51 51.5		
Long. C	$16^{\circ} 8^{\prime} 5 \mathrm{I}^{\prime \prime} \mathrm{W}$			Long. D	$12^{\circ} 57^{\prime} 52^{\prime \prime} \mathrm{W}$		

Line of position N $24 \frac{10}{}^{\circ} \mathrm{E}$ Sun's bearing $\mathrm{S} 65^{\frac{1}{2}} \mathrm{E}$

Position at 2nd obsn.-Lat. $46^{\circ} 27^{\prime} \mathrm{N}$ Long. $14^{\circ} 43^{\prime} \mathrm{W}$

True posn.-Lat. $46^{\circ} 30^{\prime}, 20^{\prime \prime \prime} \mathrm{N}$
Long. $14^{\circ} 4 I^{\prime} 0^{\prime \prime} \mathrm{W}$

SUMNER PROBLEM FACILITATED BY A, B, AND C² TABLES.

1898.- On 20th June, a.m., at ship, at sea, and uncertain of my ship's position : when a chronometer indicated M. T. Green. I9 d. 22 h . 30 m . the true altitude of sun's centre was $52^{\circ} 9^{\prime}$; and again on same day when chronometer indicated 20 d .0 h .16 m . the true altitude of sun's centre was $65^{\circ} 18^{\prime}$, the ship having made 23 miles on a true $\mathrm{N} .24^{\circ} \mathrm{E}$. course during the interval between the observations. Required the line of position and true bearing of the sun at time of ist observation; and the position of the ship when 2nd observation was taken, assuming D.R. latitude to be $46^{\circ} \mathrm{N}$. when Ist observation was taken.

RULE FOR FINDING LATITUDE BY EXMERIDIAN TABLE No. 3 (ABOVE POLE OBSERVATION).

With declination at side and hour-angle from top take out arc reduction.

Add this reduction to the declination for arc (1).
Name it the same as declination.
With altitude at the side and azimuth from the top take out 2nd arc reduction.

Subtract the reduction from Z D for arc (2).
Name arc (2) contrary to bearing of object.
Latitude $=\operatorname{arc}(1) \pm \operatorname{arc}(2)$.

+ when arcs are of like names.
- when arcs are of unlike names.

Note.-This problem worked by the old method (which is still used in the Board of Trade examinations) would give a result $3 \frac{1}{2}^{\prime}$ in error in the latitude and 2^{\prime} in error in the longitude. (See page 104.)

EXAMPLE TO SHOW METHOD OF FINDING THE TRUE LINE OF POSITION OR CIRCLE OF ALTITUDE BY USE OF THE A AND B TABLES.

This is given in response to an inquiry by a correspondent, who asked for an explanation of author's remark about the tables doing this, in the preface to the first edition in 1883.

Example Plotted on Chartlet facing Page 104.

Cor. for $10^{\prime} \mathrm{N}=27^{\prime} \cdot 2 \mathrm{E}=\begin{gathered}\mathrm{M} . \mathrm{s} . \\ 49\end{gathered}$

Cor. for $10^{\prime} \mathrm{N}=29^{\circ} \circ \mathrm{O} \mathrm{E}=\mathrm{I} \cdot \mathrm{S}$.

Cor. for $10^{\prime} \mathrm{N}=30^{\circ} 6 \mathrm{E}=\begin{gathered}\mathrm{M} . \mathrm{s}_{4} \\ 2 \mathrm{2}\end{gathered}$

Cor. for $10^{\prime} \mathrm{N}=32^{\prime} .4 \mathrm{E}=2_{2}^{\mathrm{M} . \mathrm{S} \text {. }}$

Lat. $\left.4^{\circ}{ }^{6} 45 \mathrm{~N}\right)$ A $5 \cdot 88 \mathrm{~S}$
Dl. 2327 N B 2.44 N
H. M.
0.4 I \int_{C}
H.A. O 41 C 344

Cor. for $10^{\prime} \mathrm{N}=34^{\circ} 4 \mathrm{E}=2 \mathrm{M}$. I .

Lat. $\left.465_{5}^{\prime} \mathrm{N}\right)$ A 6.30 S
\(\left.\begin{array}{c}Dl. \begin{array}{c}23

H. M.

H.A.

o 38 \frac{1}{2}\end{array}\end{array}\right\}\)| B |
| :--- |
| 2.54 N |
| 3.76 S |

H.A. $38 \frac{1}{2}$

Cor. for $10^{\prime} \mathrm{N}=37^{\circ} 6 \mathrm{E}=\begin{gathered}\mathrm{M} . \mathrm{s} . \\ 2\end{gathered} 30$

$\begin{array}{llll}\text { Lat. } & 46 \text { io N gives Long. I5 } 41^{\circ} 7 \mathrm{~W} & \text { H.A. } 048 & 4 \\ \text { Cor for } \\ \text { Io }\end{array}$
$\begin{array}{r}-156 \\ \hline 0468\end{array}$

045 o for next.

Cor. for ${ }^{20} \mathrm{~N}=$ H. ${ }^{2} \cdot 6 \mathrm{E}$ H.

$-2 \quad 2$
0446

Lat. $\quad i_{6} 3^{\prime} 0 \mathrm{~N}$ gives Long. $1442^{\circ} \mathrm{I} \mathrm{W}$

Lat. $\quad 4_{6}^{6} 4^{\prime} \mathrm{N}$ gives Long. $14 \quad 9 \cdot 7 \mathrm{~W}$
o 4156
04050 for next.

Cor. for \quad io $\mathrm{N}=\quad 34^{\circ} 4 \mathrm{E}$ -2 I8

Lat. $\quad \stackrel{\circ}{650 \mathrm{~N} \text { gives Long. } 1335^{\circ} 3} \mathrm{~W}$

- 3938
$\frac{-110}{-3828}$ for next.

Lat. $\quad \stackrel{0}{46} 5^{\circ} \mathrm{N}$ gives Long. I3 $35^{\circ} 3 \mathrm{~W}$
Cor. for $10 \mathrm{~N}=\quad 37^{\circ} 6 \mathrm{E}$
Lat. $\quad \begin{array}{r} \\ 47\end{array}$ óN gives Long. $1257^{\circ} 7 \mathrm{~W}$

DOUBLE-ALTITUDE POSITION BY TWO STELLAR OBSERVATIONS.

1902.-On 15th March, p.m., the following observations were taken in the artificial horizon, at 56 Hawker Street, Wellington: True position from chart, lat. $4^{\circ} 17^{\prime} 32^{\prime \prime}$ S., long. $174^{\circ} 46^{\prime} 57^{\prime \prime}$ E. :-

> D. H. M. S.
> M.T. at Greenwich by chron.
> 142166
> Obsd.alt. of $*$ Sirius $\stackrel{\circ}{1} 6 \frac{1}{16} 33^{\prime \prime}$ oto N. Wd.
> 1422267 " Canopus in 12 io io to S . Wd.

Required the true bearing of both stars, and the position of place, assuming latitude to be $41^{\circ} 0^{\prime}$ S. ($17 \frac{1^{\prime}}{}{ }^{\prime}$ in error). Index error of sextant $+I^{\prime} 20^{\prime \prime}$.

	D. H. M. S.				
M. \odot 's R.A.	14218880 +2388	Accl. 21 h .6 m .			
Sid. T. G.	203414.45	M. ©'s R.A.	23	28	$8 \cdot 45$

	H. M. S.		H. M. S.
M.T.G.	22267	Sid. T. (G. noon)	$232440 \cdot 46$
M. $\bigcirc^{\text {'s R.A. }}$	232821.6	Accl.	+ 341.13
Sid. T. G.	$215428 \cdot 6$	M. \odot 's R.A.	2328 21*59

* Sirius to N.Wo.

Long. (1) cor. $=\mathrm{I} \cdot 25 \mathrm{~S}$ to W
$"$ (2) " $0 \circ 98$ S to E
D. long. $\overline{2 \cdot 23}:$ d. long. $39^{\circ} 25^{\prime}::$ lat. $\mathrm{I}^{\prime}:$ lat. cor. $17^{\circ} 6^{\prime}$

The above were bona fide observations taken on a windy night, needing patience to wait till the quicksilver was quite steady; being on different sides of the prime vertical, the observations naturally give a good latitude, as I^{\prime} error of altitude due to instrument or refraction would make practically no difference in the resulting latitude. This problem reworked with a latitude near the truth only makes a few seconds difference in the resulting position.
[Note.-A, true alt.; L, lat.; P, Polar dist.; S, half sum of $A+L+P ; S-A$, diff. between S and A; H.A., hour-angle.]

DOUBLE-ALTITUDE POSITION BY TWO STELLAR OBSERVATIONS.

1902.-On 15th March, p.m., the following observations were taken in the artificial horizon:-
D. H. M. S.

Required the true bearing of both stars, and the position of place, assuming latitude to be $4 \mathrm{I}^{\circ} \mathrm{o}^{\prime} \mathrm{S}$. Index error of sextant $+\mathrm{I}^{\prime} \mathbf{2 0 ^ { \prime \prime }}$.

Long. (1) cor. $=\mathrm{r}^{\prime} 76 \mathrm{~S}$ to W

* (2) " 0.98 S to E
D. long. $2^{\prime} 74$: d. long. $47^{\prime} 17^{\prime}$: lat. $\mathrm{I}^{\prime}:$ lat. cor. $17^{\prime} 22^{\prime}=17^{\prime} 13^{\prime \prime}$

These observations were taken on the same evening as those given on the preceding page. As one star was east of the meridian and the other one west, the case is not good for latitude; but it should give the truest longitude, as instrumental errors, \&c., will practically eliminate one another in the resulting longitude. This problem reworked with a latitude near the truth makes no appreciable difference in the resulting position.

For position of ship when plotted on chart, see chartlet on next page.

DOUBLE ALTITUDE OF TWO STARS
 (Combining Chron. Long. Observation with an Ex-meridian).

1902.-On I5th March, p.m., the following observations were taken:-

Required position of place by projection on the chart, assuming the approximate latitude to
be $4 \mathrm{I}^{\circ} \mathrm{o}^{\prime} \mathrm{S}$.

* Canopus to S.Wd.

The chartlet below serves to illustrate both the problem above and the one on previous page. In the first case the position-lines are laid down from the two longitudes corresponding to the parallel of latitude $4 \mathrm{r}^{\circ} \mathrm{S}$., and in the second case the position-lines are laid down from the meridian of longitude $174^{\circ} 30^{\prime}$ E., the longitude found by chronometer from observation of star Canopus in latitude $4 \mathrm{r}^{\circ} \mathrm{S}$. The observation of star a Centauri is worked as an ex-meridian from the time deduced from longitude $174^{\circ} 30^{\prime} \mathrm{E}$. Though the hour-angle in this case is a little over six hours, the latitude found is perfectly correct.

* As the logs for sines and tangents are practically the same for very small angles are (1) may be taken out from the \log sine table to save calculating for the seconds.

SIMULTANEOUS($\left.{ }^{\text {a }}\right)$ OBSERVATIONS OF TWO DIFFERENT STARS BY THE OLD "SUMNER". METHOD.

1898. - Shortly after sunset on March 3rd, somewhere between the parallels of $5 \mathrm{I}^{\circ} \mathrm{I} 5^{\prime} \mathrm{N}$. and $51^{\circ} 50^{\prime} \mathrm{N} .$, a chronometer indicated mean time at Greenwich 3 d .6 h .48 m .38 s . when the true altitude of $*$ Procyon was $3 \mathrm{I}^{\circ} 57^{\prime}$ east of meridian; again, after running east (true) $3 \frac{3}{4} \mathrm{~m} .$, a chronometer indicated 3 d .6 h . 59 m .20 s . when the true altitude of $*$ Capella was $83^{\circ} 50^{\prime}$ east of meridian.

Required the position of the ship at time of last observation, and the true bearing of the stars by Sumner's method of progression on the chart.
ist Observation: * Procyon to S.Ed.

2nd Observation: * Capella to S.Ed.

	D. H. M. S.	T. alt. of *	$8{ }_{8} 830 \mathrm{E}$
	365920		
	$2245 \quad 7 \times 9$		
Sid. T. (G. noon) Accl.	+ 1 8.9	's Dl. 4	
Sid. T. Green.	$54536 \cdot 8$		
		P D	446 N

Run between observations, East $3^{\circ} 75 \mathrm{~m} .=$ d. long. $6^{\circ} 0^{\circ} \mathrm{E}$

Position of ship by Sumner: Lat. $51^{\circ} 27 \frac{1^{\prime}}{}$ N., long. $13^{\circ} \mathrm{o}^{\prime} \mathrm{W}$.
True position of ship: Lat. $51^{\circ} 32^{\prime} \mathrm{N}$. , long. $12^{\circ} 55^{\prime} \mathrm{W}$.
Bearing of * Procyon, S. 53° E. ; and bearing of * Capella, S. 24° E.
(a) Practically though not absolutely simultaneous.

Note.-This is the problem (b) of the Board of Trade Examination for Extra Master, with the exception that as set for that examination both observations are taken at the same instant, only one chronometer time being given. As this is probably never realized in practice, the more usual experience of having a few minutes' interval between the observations is here given.
Position by "Sumner", plotted on chart from four calculated hour-angles, as required to be worked
when the chart is used for Board of Trade Examination of an Extra Master.

NOTE. The difference between the trwe cincle of altitude from A to B and the straight line joining these two points is so small that it could not be wall shown or this chartlet. The straight lere cuts the circle of altitude between C and D at $20 \mathrm{ct} .51{ }^{\circ} 32 \mathrm{k} N$. and long. $12^{\circ} 54^{\circ} \mathrm{W}$. The true pasition of ship, where the two circlee of altitude would cut, is lat. $51^{\circ} 32^{\prime} \mathrm{N}$. and lona. $12^{\circ} 55 \mathrm{~W}$.

SIMULTANEOUS $\left.{ }^{(}{ }^{(}\right)$OBSERVATIONS OF TWO DIFFERENT STARS BY THE IMPROVED "SUMNER" METHOD.

1898.-Shortly after sunset on March 3rd, in latitude by D.R. $51^{\circ} 15^{\prime} \mathrm{N}$., longitude $13^{\circ} 40^{\prime} \mathrm{W}$., a chronometer indicated mean time at Greenwich 3 d .6 h .48 m .38 s . when the true altitude of * Procyon was $31^{\circ} 57^{\prime}$ east of meridian; again, after running east (true) $3 \frac{3}{3} \mathrm{~m}$. , a chronometer indicated 3 d. 6 h .59 m .20 s . when the true altitude of $*$ Capella was $83^{\circ} 50^{\prime}$ east of meridian.

Required the position of the ship at the time of last observation, and the true bearing of each star at the time of their observation.
ist Observation: * Procyon to S.Ed.

M.T. Green. Sid. T. (G. noon)	H. M. S.	T. alt. of *	31	57
	64838			
	$22 \quad 45 \quad 79$			
Accl.	+ 171	* 's Dl.	5	29 N
Sid. T. Green	534 53*0	P.D.	84	31 N

Run between observations, East $3.75 \mathrm{~m} .=\mathrm{d}$. long. $60^{\prime} \mathrm{E}$.

2nd Observation: * Capella to S.Ed.

M.T. Green. Long. in T .	$\begin{aligned} & \text { H. M. s. } \\ & 65920 \\ & -\mathrm{o} 53 \mathrm{I} 7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { T. alt. of } * \\ & \text { Z.D. } \end{aligned}$		$\begin{gathered} \circ \\ 83 \\ 50 \mathrm{Sd} \\ 6 \\ 10 \end{gathered}$
M. T. Sp.	$6 \quad 6 \quad 18 \cdot 3$			
Sid.T. (G. noon)	$2245 \quad 79$			
Accl.	1889			
Sid. T. Sp. *'s R.A. $(+24)$	$\begin{array}{rrr}28 & 52 & 35 \cdot 1 \\ 29 & 9 & \text { Ir }\end{array}$			
*'s H.A.	- 1636.3 E	Sin	$8 \cdot 8595$	
Dec.		Cos	9.8426	
Alt.	$83^{\circ} 50^{\prime}$	Sec	0.9689	
Az.	$\mathrm{S} 27^{\circ} 57^{\prime} \mathrm{E}$	Sin	9.6710	
Pos.-line	N $62{ }^{\circ} \mathrm{E}$.			

Lat. by Ex-mer. Table No. 3 of Blackburne's and Westland's Tables.

H. M.	- ${ }^{\text {¢ }}$	Alt 8350 Cor	-
H.A. 016.6	Cor. +4.5	Alt. 8350 Cor.	-43
Dec. $45^{\circ} 54^{\prime} \mathrm{N}$	4554	Az. 2757 ¢ Z D	610 N
Arc (1)	$45^{\circ} 58.5^{\prime} \mathrm{N}$	Arc (2)	557 N
Arc (2)	557 N		
Lat.	$51^{\circ} 25.51 \mathrm{~N}$		

ist obsn. *'s Az. S $53.3^{\circ} \mathrm{E}$ gives lat. error from Table M $\cdot 84 \mathrm{~N}$ to E at lat. $5^{\circ} \mathrm{I}^{\prime}$ in $_{5} \mathrm{~N}$ 2nd obsn. *'s Az. S 28° E gives lat. error from Table $\mathrm{M} \cdot 33 \mathrm{~N}$ to E at lat. $5^{1} 25^{\circ} 5 \mathrm{~N}$

$$
\text { Lat. error }{ }^{51}: \text { diff. lat. } 10^{\prime} 5:: \begin{aligned}
& \text { long. long. cor. } \\
& 10^{\prime}
\end{aligned} 20^{\circ} 6^{\prime} \mathrm{E} \text {. }
$$

Figure.

Abstract

Note.-This example illustrates very forcibly the superiority of the improved Sumner method over the old Sumner method which the Board of Trade so tenaciously hold on to in their examinations. By the old method the work is about twice as long, requires the aid of a chart, and gives a result $4 \frac{1}{2}^{\frac{1}{\prime}}$ in error in the latitude and 5^{\prime} of error in the longitude. By the improved method no chart is required (though it may be used if preferred with the same result), and the position is less than $\frac{1}{2}^{\prime}$ in error in either latitude or longitude. The Marcq St. Hilaire method of calculation gives 2^{\prime} of error in latitude and 2^{\prime} in the longitude.

(a) Practically though not absolutely simultaneous.

TIONS

(Combining Chron. Long. Observation with an Ex-meridian below the Pole).
1898.-Soon after sunset on 25th December, at about 8 h .2 m . p.m., in latitude by D.R. 46° S., and longitude $164^{\circ} 30^{\prime}$ E. Suppose the following observations:-
M. T. Green. 21 h. I m. 20 s . when T. alt. of * Sirius was $28^{\circ} 26^{\prime}$ E. of meridian.
M. T. Green. 21 h .7 m .26 s . when T. alt. of a Crucis was $20^{\circ} 45^{\prime} \mathrm{E}$. of meridian.

Run in interval between observations, S. 80°, E. r m. $=$ dep. $\circ \cdot 98^{\prime}=$ d. long. $1{ }^{\prime} 4^{\prime} \mathrm{E}$. Required the position of ship at time of second observation.

2nd Observation : * a Crucis.

M. T. Green. 21726	
Long. E +105955	Accl. $+328^{\circ}$
M. T. Sp. $\quad 8 \quad 721$ M. \odot 's R.A. $\quad 18 \quad 15 \quad 36.3$	M. \odot 's R.A. $\quad 18 \quad 15 \quad 36.3$
$\begin{array}{lrrr}\text { Sid. T. Sp. } & 22257.3 \\ \text { *'s R.A. } & 122059 & \\ \text { \% }\end{array}$	
$\text { *'s H.A. } \quad-\begin{array}{rll} 9 & 58 & 2.3 \mathrm{E} \\ 12 & 0 & 0 \end{array}$	* a Crucis C 5.56 S
Supt. 2 I 58	

Table C2 gives Posn.-line for Plane Chart, S $799^{\frac{80}{\circ}}$ W

For Latitude by Ex-meridian Table No. 3 of Blackburne's and WFstland's Tables.

Decl. H.A.	$\left.\begin{array}{c} 62^{\circ} 32^{\prime} \mathrm{S} \\ 2 \mathrm{~h} .2 \mathrm{~m} . \end{array}\right\} \text { p. } 149\{$	Arc cor. P D	$\begin{array}{r} \circ \\ -320.3 \\ 2728 \circ \\ \hline 20 \mathrm{~S} \end{array}$
		Arc (1)	$24 \quad 7.7 \mathrm{~S}$
Alt. Az.	${ }^{\circ} 2045 \mathrm{~S}$		- ${ }^{\circ} 7^{\circ}$
	1430 S ; p. 145 \{	Alt.	$2045{ }^{\circ} \mathrm{O}$ S
		Arc (2)	2122.3 S
		$\prime \prime$ (r)	$24 \quad 7.7$ S
		Lat.	45 30*0 S

Rule for Use of Ex-meridian Table No. 3 .

With Hour-angle from Lower Meridian.
With declination and hour-angle take out arc reduction; subtract this reduction from PD for arc (I).
With altitude and azimuth take out and arc reduction; add this reduction to altitude for arc (2).

$$
\operatorname{Arc}(1)+\operatorname{arc}(2)=\text { latitude }
$$

* Sirius with latitude 46° S. gives longitude $164^{\circ} 58^{\prime} 45^{\prime \prime}$ E., and position-line for plane chart N. $7 \frac{1}{2}^{\circ} \mathrm{W}$.
* a Crucis with longitude $164^{\circ} 58^{\prime} .45^{\prime \prime} \mathrm{E}$. gives latitude $45^{\circ} 30^{\prime} \mathrm{S}$., and position-line S. $80^{\circ} \mathrm{W}$.

Chart position: Latitude $45^{\circ} 30 \cdot 7^{\prime} \mathrm{S}$., longitude $164^{\circ} 55^{\prime} \mathrm{E}$.

High-declination stars, such as a Crucis, are very useful for ex-meridians, as, if the time is only approximately correct, the latitude will not be far from the truth if the body is within an hour from the meridian below the Pole.

In this example, notwithstanding that the star a Crucis is over 2 hours from the lower meridian passage, 1 m . of error in the time used for ex-meridian would only make $2 \frac{1}{2}^{\prime}$ of error in the resulting latitude.

THE SUPERIORITY OF STELLAR OVER SOLAR OBSERVATIONS.

The two great advantages of stellar over solar observations are (i) that by the stars the latitude and longitude can be obtained simultaneously, instead of having an interval of three or four hours between the observations as is often the case when the sun is used, and (2) that uncertain errors in altitude resulting from personal equation, arc errors of sextant, or exceptional refraction may be practically eliminated by a proper choice of stars. If meridian altitudes can be obtained about the same time to the north and south of observer, it will be apparent to any one that the errors would be eliminated by taking the mean result of the two observations for the true latitude; and in the same way the true longitude would be found by the mean result of observations taken nearly east and west of meridian. But it may happen that stars are not to be found north, south, east, and west of observer during the short time that the horizon is good for observation. The following is the plan that the writer used for several years with great success: Take three stars, and of these choose two on the same side of the meridian northward and southward of the observer for a good latitude. If they both happen to be the same distance from the meridian, as in the following example, io' of error in the altitude will make practically no difference in the resulting latitude as found by the "Sumner" or double-altitude problem. Then choose another star on the other side of the meridian, as near as possible the same distance from the meridian; calculate the longitude with the latitude found from the previous observations, and the true longitude will be obtained by taking the mean between the eastern and western stars worked with the correct latitude.

Elimination of Errors in Altitude.
Diagram showing how the true latitude may be found by the "Sumner" method even when altitudes have been observed by a sextant with large unknown arc errors.

See worked-out example from which this is taken on the following two pages.

114

POSITION OF SHIP FROM OBSERVATION OF THREE STARS,

Thereby eliminating Errors in Position kesulting from Unknown Errors in Altitude.
1898.-On March I8th, at 8 h. II m. p.m., A.T. at ship, in latitude by D.R. $44^{\circ} 32^{\prime} \mathrm{S}$., longitude $152^{\circ} 20^{\prime} \mathrm{E}$. Required the position of ship from the following observations :-
$\begin{array}{ll}\text { (r) * Achernar's corrected alt. } & 0 \\ \text { (2) * Betelguese } & 24 \\ 30 & 13 \\ 30 & \mathrm{~W} \\ \text { (}\end{array}$
3013 W
D. H. M. S.

1722 M. S
$\begin{array}{llll}17 & 22 & 5 & 50 \\ & 93\end{array}$
$\begin{array}{rrrr}17 & 22 & 9 & 33 \\ 17 & 22 & 12 & 17\end{array}$
Ship making a true east course at speed of 12 miles per hour.
(2) Decl.

0	1	11	
7	23	16	N
90	0	0	
97	23	16	

Sid. T. (G. Noon).

	$\begin{gathered} \text { H. м. S. } \\ 23 \\ 40 \\ 19.67 \end{gathered}$
Accl. 22 h .99 m.	+ 338.40
Cor. Sid. T.	234358.07
M. T. G.	22933
Sid. T. Green.	21533 r \% ${ }^{2}$

(3) Decl.	- , "		
	59	52	58
		0	
P. D.		7	

Sid. T. (G. Noon).

Sid. T. Green. $2156 \quad 15.53$

* Achernar to S.Wd.				* Betelguese to N.Wd			
ALP		Sec Cosec	$\begin{aligned} & 0.147006 \\ & 0.272772 \end{aligned}$	A		Sec Cosec	$\begin{aligned} & 0.147006 \\ & 0.003616 \end{aligned}$
	${ }^{\circ} 3318$				$\begin{aligned} & 0 \\ & 30 \\ & 13 \end{aligned}$		
	4432				4432		
	3215			P	9723		
	101 14				1728		
S	557	Cos	9:757326	S	864	Cos	$8 \cdot 836297$
S-A	2140	Sin	9.567269	S - A	5551	Sin	9.917805
$\begin{aligned} & \text { *'s H.A. } \\ & \text { *'s R.A. } \end{aligned}$	н. м. S. 6 6 15	Sin'2	9`744337	*'s H.A. *'s R.A.	$\begin{aligned} & \text { H. M. S. } \\ & \text { 2 II } 4 \text { I. } 6 \mathrm{~W} \\ & 54940^{\circ} 6 \end{aligned}$	Sin2	$8 \cdot 904724$
	I $3354{ }^{\circ} 4$						
Sid. T. Sp.Sid. T. Green.	75912.9	A	'IIS	Sid. T. Sp. Sid. T. Green.	$8 \quad 1 \quad 22.2$	A	- 52 N
	. $214947 * 5$		1.59 S		2153 $31 \cdot 1$		$1 \cdot 24 \mathrm{~N}$
Long. in T .	10 925.4	C^{2}	r'70 S gives	Long. in T .	10 751.1	C2	r'76 N gives
Longitude Rın	$\begin{array}{r} 152^{\circ} 21^{\prime} 21^{\prime \prime} \mathrm{E} \\ \mathrm{I} \end{array}$	Pos -line S $59 \frac{1}{2}^{\circ} \mathrm{E}$		$\begin{gathered} \text { Longitude (2) } \\ \prime \prime \end{gathered}$	$151^{\circ} 57^{\prime} 46^{\prime \prime} \mathrm{E}$	Pos.-line N $60{ }_{2}{ }^{\circ} \mathrm{E}$	
				1522221 E			
Long. (1)	1522221 E	Diff. long. $2435=24^{\circ} 6^{\prime}$					

POSITION OF SHIP FROM OBSERVATION OF THREE STARS.

 (This is previous example worked with 10^{\prime} less altitude for each star. Result the same.) 1898.-On 18th March, at 8 h . If m. p.m., A.T. ship, in latitude by D.R. $44^{\circ} 32^{\prime} \mathrm{S}$., longitude $152^{\circ} 20^{\prime}$ E. Required the position of ship from the following observations :-(i) * Achernar true alt. $33^{\circ} 17^{\prime} \mathrm{W}$. of mer. when chron. showed M. T. Green.
(2) * Betelguese " 303 W .
D. H. M.S.
3) * $\boldsymbol{*}$ C

Ship making a true east course at speed cf 12 miles per hour.

(1) Decl.	$\begin{aligned} & 574517 \mathrm{~S} \\ & 90 \mathrm{o} \\ & \mathrm{o} \end{aligned}$	2) Decl.	$\begin{array}{ccc} 7 & 23 & 16 N \\ 90 & 0 & 0 \end{array}$	(3) Decl.		5	${ }^{\prime \prime}$
P. D.	321443		972316		30	7	2

Sid. T. (G. Noon).

	$\begin{aligned} & \text { H. M. S. } \\ & 23 \text { 40 } 19 \cdot 67 \\ & +\quad 337 \cdot 80 \end{aligned}$
Cor. Sid. T.	234357.47
M. T. Green.	22550
Sid. T. Green.	214947×4

Sid. T. (G. Noon).

Acci. 22 h. $9 \frac{1}{2} \mathrm{~m}$.	$\begin{aligned} & \text { н. M. S. } \\ & 234019.67 \\ & +\quad 338.40 \end{aligned}$
Cor. Sid. T.	234358.07
M. T. Green.	22933
	215331×07

Sin. T. (G. Noon).
н. m. s.
$23 \quad 40 \quad 19.67$ Acci. 22 h. $12 \frac{1}{4} \mathrm{~m} .+338.86$

Cor Sid T M. T. Green. $\quad 22$	23	12	58

Sid. T. Green. 215615.53

	* Achernar	S.Wb.			Betelguese	o N.W	
A	0 3317			A	${ }^{\circ} \mathrm{B}{ }^{\prime}$		
1.	4432	Sec	0.147006	L	4432	Sec	0.147006
P	3215	Cosec	0.272772	P	9723	Cosec	0.003616.
	IIO 4				17158		
S	552	Cos	9.758230	S	8559	Cos	8.845387
$\mathrm{S}-\mathrm{A}$	2145	Sin	$9 \cdot 568856$	$S-A$	5556	Sin	9.918233
*'s H.A.	$\begin{aligned} & \text { н. м. s. } \\ & 626{ }_{46} 9 \text { W } \end{aligned}$	Sin ${ }^{2}$	9'746864	*'s H.A.	$\begin{array}{llll}\text { 11. M. S. } \\ 2 & 13 & \text { IF'2 }\end{array}$	Sin ${ }^{2}$	8.914242
*'s R.A.	I $3354{ }^{\circ} 4$			*'s R.A.	$54940 \cdot 6$		
Sid. T. Sp.	8 o $41 \cdot 3$	A	- 12 S	Sid. T. Sp.	88 2 51		$1 \cdot 50 \mathrm{~N}$
Sid. T. Green.	. 214947%	B	1.59 S	Sid. T. Green.	215331.1		24 N
Long. in T.	เо 1053.8	C^{2}	r.7i S gives	Long. in T .	เ0 $920 \% 7$	Cz 1	I'74 N gives
Longitude	$\mathrm{i}^{1} 52^{\circ} 43^{\prime} 27^{\prime \prime} \mathrm{E}$	Pos.-lin	S $59.6{ }^{\circ} \mathrm{E}$	Longitude (1)	$152^{\circ} 20^{\prime} 110^{\prime \prime} \mathrm{E}$	Pos.-lin	ne $\mathrm{N} 60{ }^{\circ} 1^{\circ} \mathrm{E}$
Run	I o E			" (2)	$\begin{array}{ll}152 & 44\end{array} 27 \mathrm{E}$		
Long. (1)	1524427 E			Diff. long.	$2417=2$		

EXAMPLES TO FIND STARS SUITABLE FOR DETERMINING POSITION BY SIMULTANEOUS ALTITUDES.

Example i.
1898.-On 22nd February, at about 5 h . 30 m . p.m., in lat. by D.R. $49^{\circ} 20^{\prime} \mathrm{N}$., long. $8^{\circ} 45^{\prime} \mathrm{W}$. Find what stars not less bright than mag. o. 5 are suitable for determining the position of ship by simultaneous altitudes.

K	
*Vega +24 .	$\begin{aligned} & 2754 \\ & 18 \quad 33 \end{aligned}$
* ${ }^{\prime}$ H.A.	921

The only stars of this magnitude (not including planets) which would be above the horizon would be Capella, Rigel, Sirius, and Procyon east of meridian. and Vega to the west.

Rigel and Capella, having nearly the same R.A. and a large difference in declination, will always make a good cut with one another; also, position-lines from Vega and Capella will nearly always cross one another at a good angle in the Northern Hemisphere, as these stars are about $10 \frac{1}{2}$ hours apart in R.A., and in high northern latitudes they both remain almost continuously above the horizon. In this case either Capella or Procyon, worked for longitude, would make a good cut with any of the other three stars, which would be nearer the meridian than the prime vertical, and could therefore be worked for latitude, Rigel and Sirius being to the south and Vega to the north.

Example 2.
1898.-On 25 th June, at about 5 h . p.m., in lat. by D.R. 40° S., long. $171^{\circ} \mathrm{E}$. Find what stars not less bright than mag. o. 5 are suitable for determining the position. of ship by simultaneous altitudes.

It will be seen at once that Sirius, nearly on the prime vertical, and Achernar, near the meridian below the Pole, will give a splendid position. Canopus would also give a good longitude in combination with Achernar, or position-line from Procyon to N.W. would cross well with Arcturus to N.E. Rigel, having a very small altitude, would probably not be seen.

Note:-The planets Venus, Jupiter, Saturn, and Mars make good daylight stars for observation. Venus, the brightest of all, is nearly always available for longitude either in the early morning or evening. The relative positions of the other planets with the sun vary continuously.
${ }^{-1}$ In the Northern Hemisphere Vega and Altair, or Rigel and Capella, nearly always pair well together: when the first pair are morning the other are evening stars, and vice versa. In the Southern Hemisphere Canopus and Sirius, or either a or β Centauri and Arcturus, make good pairs for determining positions. In higher latitudes, in place of Arcturus, Achernar will always make a good cut with either of the Centaurs.

DOUBLE-ALTITUDE POSITION BY SUN AND MOON.

Longitude by Chronometer, and Ex-meridian 3 Hours from the Meridian.

1898. - On 2nd January, at about 3 p.m., A.T. at ship, observed altitude of moon's U.L. was $26^{\circ} 33^{\prime} \mathrm{o}^{\prime \prime} \mathrm{E}$. of meridian when chronometer showed M.T. Green. 3 h .48 m . 30 s. , and observed altitude of sun's L.L. was $5^{\circ} 30^{\prime} 45^{\prime \prime} \mathrm{W}$. of meridian when chronometer showed M. T. Green. 3 h .53 m .7 s . Latitude by D.R. $51^{\circ} 30^{\prime}$ N., longitude $12^{\circ} 20^{\prime} \mathrm{W}$. Height of eye, 33 ft . Run in interval between observations, 1 m . on a true S. $85^{\circ} \mathrm{E}$. course $=\mathrm{dep} . \mathrm{r}^{\circ} \mathrm{o}^{\prime}=\mathrm{d}$. long. $\mathrm{I}^{\cdot} 6^{\prime} \mathrm{E}$.

Required the position of ship at time of second observation.

$$
\text { Position of ship }=\text { Lat. } 51^{\circ} 42^{\prime} \mathrm{N} ., \text { Long. } 11^{\circ} 52 \frac{1^{\prime}}{4} \mathrm{~W} .
$$

As the moon was on the prime vertical when the altitude was taken, the time deduced from this observation should be absolutely correct, and the latitude by exmeridian of the sun will also be correct without any additional work.

Note. - The work of correcting the moon's semidiameter and horizontal parallax is not here shown. These elements should be taken from the Nautical Almanac (p. III) of the month, where they are given for Greenwich noon, and midnight, for every day of the year. For accuracy, a correction is necessary for the number of hours from noon or midnight, and also two other small corrections-one for parallax, for the figure of the earth, and the other for moon's augmentation with increase of altitude. For sea observations these corrections can usually be made with sufficient accuracy at sight.

POSITION FROM TWO CHRONOMETER LONGITUDES BY SUN AND MOON.

1898.- On roth July, at about 8 h .5 m . a.m., A.'T. ship, the observed altitude of \odot 's L.L. was $35^{\circ} 12^{\prime} 30^{\prime \prime}$ when a chronometer showed M. T. Green. 20 h .45 m .40 s. , and observed altitude of ©'s U.L. was $39^{\circ} 47^{\prime} 20^{\prime \prime} \mathrm{W}$. of meridian when the chronometer showed M. T. Green. 20h. 48 m .48 s . Latitude by D.R. $49^{\circ} \mathrm{N} .$, longitude $10^{\circ} 45^{\prime} \mathrm{W}$. Height of eye, 28 ft . Run in interval between observations, N. $80^{\circ} \mathrm{E} .0^{\circ} 5^{\prime}=\mathrm{d}$. lat. $0^{\circ} 1^{\prime} \mathrm{N} . ;$ dep. $0^{\circ} 5^{\prime} \mathrm{E} .=$ d. long. $0 \cdot 66^{\prime}=\mathrm{o}^{\prime} 40^{\prime \prime} \mathrm{E}$.

$$
\text { d. long. } \mathrm{I}^{\prime} 34^{\prime} \text { : lat. } \mathrm{I}^{\prime} \mathrm{o}^{\prime}::
$$

d. long. $13 \cdot 8$: lat. cor. io $3^{\prime} \mathrm{S}$

[^3]EXAMPLES TO FIND THE ERROR AND DEVIATION OF THE COMPASS.

(i.) By Sun's Azimuth.

1903.-On 23rd June, p.m., at ship, in latitude $35^{\circ} 30^{\prime} \mathrm{S}$. , long. $175^{\circ} \mathrm{o}^{\prime}$ E., when a chronometer which kept mean time at Greenwich showed 22 d . 16 h . II m. 39 s . the sun bore by compass $\mathrm{N} .70^{\circ} \mathrm{W}$.

Required the true azimuth and error of the compass by the A, B, C, Azimuth Tables; and supposing the variation to be $13^{\circ} 30^{\circ} \mathrm{E}$., required the deviation of the compass for the direction of the ship's head.

(2.) By Star's Azimuth.
1903.-On 15 th November, at about 3 h .20 m . a.m., at ship, in latitude $39^{\circ} 30^{\prime} \mathrm{S}$., longitude $177^{\circ} 30^{\prime}$ E., when a chronometer (corrected) indicated mean time at Greenwich 14 d .3 h .30 m . the star a^{2} Centauri bore by compass S. $41^{\circ} \mathrm{E}$.

Required the true azimuth and error of compass by the A, B, C, Time Azimutb Tables; and supposing the variation to be $15^{\circ} 30^{\prime} \mathrm{E}$., required the deviation of the compass for the direction of the ship's head.

Note.-The H.A. of a star is found by taking the difference between the Sid. T. at ship and the star's R.A. The H.A. is east when Sid. T. is least, and west when sid. T. is best.

EXAMPLES TO FIND THE CORRECT HOUR-ANGLE AND AZIMUTH WHEN TIME IS GIVEN IN NEW ZEALAND MEAN TIME.

(i.) Sun's Azimuth.
1904.-On 24th May, at 3 h . om. p.m., New Zealand mean time. Required the sun's true azimuth by the A, B, C, Azimuth Tables, at Nelson, in lat. $41^{\circ} 17^{\prime} \mathrm{S}$. and long. $173^{\circ} 15^{\prime} \mathrm{E} .=$ 11 h. 33 m .

M. T. N.Z.	D. H. M.		024		M. S.
M. T. N.Z. ${ }_{\text {Long. } 170^{\circ} 30^{\prime} \mathrm{E}}$	2430	©'s Decl., 23 rd ,	2024 II N	Eq. of Time	332.3.
Long. $1700^{\circ} 30^{\prime} \mathrm{E}$	- 1130	Hr. var. $29^{\prime \prime} \times 15{ }^{\circ} \mathrm{h}$. $=$ cor.	+ 730	Hr.var.0.18s. $\times 15.5 \mathrm{~h}=$ cor.	$2 \cdot 8$
M. T. Green. Long. Nelson	$\begin{aligned} & 231530 \\ & +1133 \mathrm{E} \end{aligned}$	Cor. Decl.	203141 N	Cor. Eq. Time	329.5
M. T. Nelson		Lat. 41×3			
Eq. of Time	+3 32	Decl. $20^{10} 5$	B $\quad 51 \mathrm{~N}$		
A. T. Nelson	$24 \quad 3 \quad 6 \frac{1}{2}$	H. A. 3 h .6 m .	C $1 \cdot 35 \mathrm{~N}$ give	Ue Az. N $44^{\circ} \mathrm{7}$ W W	

\odot° 's Azimuth by Burdwood's Tables, $\mathrm{N} 44^{\circ} 6 \mathrm{~W}$
(2.) Sun's Azimuth.
1904.-On 23 rd December, at 7 h. om. p.m., New Zealand mean time. Required the sun's true azimuth by the A, B, C, Azimuth Tables, at Wellington, in lat. $41^{\circ} 17^{\prime} \mathrm{S}$. and long. $174^{\circ} 45^{\prime} \mathrm{E}$.

Long. for Standard time	${ }_{172}^{\circ} 30 \mathrm{E}$	
- Wellington	17445 E	Note.-The Decl. and Eq. of Time may be taken out sight with sufficient accuracy for azimuth purposes.]
Cor. for diff. of long.	$215=+9 \mathrm{~m}$. to N, Z. M. time	

\odot 's Azimuth by Burdwood's Tables, $\mathrm{S} 6 \mathrm{r}^{\prime} 2 \mathrm{~W}$

(3.) Star's Azimuth.

1904.-On ${ }^{15}$ th September, at 7 h. 30 m. p.m., New Zealand nean time, in lat. $43^{\circ} 30^{\prime} \mathrm{S}$. and long. $169^{\circ} 40^{\prime} \mathrm{E}$. Required the true azimuth of star a Centauri by the A, B, C, Azimuth Tables.

M. T. N.Z. Long. $172^{\circ} 30^{\prime} \mathrm{E}$	$\begin{array}{cccc} \text { D. } & \text { H. } & \text { M. } & \text { S. } \\ \text { I5 } & 7 & 30 & 0 \\ -1130 & 0 \end{array}$	Sid. T. (Green. noon) 14th Accl. for 20 h .	$\begin{array}{rrr} \text { H. } & \text { M. } & \text { S. } \\ \text { II } & 29 & 8 \cdot 8 \\ +\quad 317.1 \end{array}$
M. T. Green. Long. $169^{\circ} 40^{\prime} \mathrm{E}$	$\begin{array}{rrr} 14 & 20 & 0 \\ + & 11 & 18 \\ 40 \end{array}$	M. \odot 's R. A.	$1113225^{\circ} 9$
$\begin{aligned} & \text { M. T. ship } \\ & \text { M. } \odot \text { 's R.A. } \end{aligned}$	$\begin{array}{r} 1571840 \\ +\quad 113226 \end{array}$	$\begin{aligned} & \text { Lat. } 43^{\circ} 5^{\mathrm{S}} \mathrm{~S} \\ & \text { a Centauri } \end{aligned}$	$\begin{gathered} \mathrm{A} \cdot 45 \mathrm{~N} \\ \mathrm{~B} \\ \mathrm{r} \cdot 95 \end{gathered}$
Sid. T. ship *'s R.A.	$\begin{array}{lll} 18 & 51 & 6 \\ 14 & 33 & 1 \end{array}$	H. A. $4 \mathrm{~h} .18 \mathrm{~m} . \quad \int$	$\mathrm{C}_{\underline{1} 50} \mathrm{~S}$ gives Azimuth $\mathrm{S}_{42^{\circ} 6 \mathrm{~W}}$
*'s H. A.	4185 W	True Azimuth by calculat	O11, $S_{42}{ }^{\circ}{ }^{5} 5$

GREAT-CIRCLE SAILING-COURSES.

The initial great-circle courses between any two places on the globe comprised within the zones of latitudes $85^{\circ} \mathrm{N}$. and $85^{\circ} \mathrm{S}$. may be quickly determined by the aid of the A, B, and C Tables. (See rule and examples below.)

Rule.-Turn the difference of longitude between the two piaces into time, and consider this as the hour-angle; with this H.A. and the latitude of departure as latitude, take out the factor from Table A, and with the latitude of destination as declination, enter Table B. Follow the same rules as for finding and naming the azimuth, and Table C (azimuths) will give the initial course. Reverse the process, and we have the course at point of destination.

The following examples are taken from Norie's Epitome, so that it may be readily seen that there is no appreciable difference between the course as found by these tables and that obtained by the more rigorous and lengthy calculation which is generally used :-

Example (1).-Required the great-circle initial courses between Cape Runaway, New Zealand, in latitude $37^{\circ} 31^{\prime}$ S., longitude $178^{\circ} 1^{\prime}$ E., and Cape Horn, in latitude $55^{\circ} 59^{\prime}$ S., longitude $67^{\circ} 16^{\prime} \mathrm{W}$.

$$
\begin{aligned}
& \text { (2.) Lat. } 5559 \mathrm{~S} \text {. Long. } 6716 \mathrm{~W} .) 114^{\circ} 43^{\prime}=73^{8} 52 \text {. }
\end{aligned}
$$

H.A. $\begin{array}{r}\text { H. } \\ 7\end{array}$

Lat. $\left.\begin{array}{ccc}\circ & 37 \frac{1}{2} & \circ \\ \mathrm{~S} .\end{array}\right\}$
A $\quad .35 \mathrm{~S}$

Decl. $56 \circ \mathrm{~S}$.
C $\xlongequal{\text { r. } 99 \text { S. gives Co. S. } 32 \frac{12}{2}}$ E.

Course from Cape Runaway, S. $32 \frac{1}{2}^{\circ} \mathrm{E}$; or from Cape Horn, S. $49 \frac{1}{2}^{\circ} \mathrm{W}$.

Example (2).-Required the initial great-circle courses between Otago, in latitude $45^{\circ} 47^{\prime}$ S., longitude $170^{\circ} 45^{\prime} \mathrm{E}$., and Panama, in latitude $8^{\circ} 57^{\prime} \mathrm{N}$., longitude $79^{\circ} 31^{\prime} \mathrm{W}$.

(2.) Lat. 857 N . Long. 79 3I W. ${ }^{2} 9^{\circ} 44^{\prime}=71856$.

Course from Otago, S. 82° E.; or from Panama, S. $44 \frac{1}{2}^{\circ} \mathrm{W}$.

Example (3).-Required the initial great-circle courses between a position off Lizard, in latitude $49^{\circ} 50^{\prime} \mathrm{N}$., longitude $5^{\circ} 12^{\prime} \mathrm{W}$. , and 5 m . E. of Barbadoes, in latitude $13^{\circ} 6^{\prime} \mathrm{N}$, longitude $59^{\circ} 20^{\prime} \mathrm{W}$.

$$
\begin{aligned}
& \text { (2.) Lat. } 136 \mathrm{~N} \text {. Long. } 5920 \mathrm{~W} .4^{\circ} 8^{\prime}=33632 .
\end{aligned}
$$

EXAMPLES TO FIND THE ERROR OF COMPASS FROM BEARINGS OF THE MOON AND OF THE STAR POLARIS.

(r.) By Moon's Azimuth.
1898.-On 6th January, at about 9 h .46 m . a.m., M.T. at ship, in latitude $72^{\circ} \mathrm{N}$., and longitude $25^{\circ} 15^{\prime}$ E., when a chronometer showed M.T. Green. 20 h .5 m .3 s . the moon bore by compass $\mathrm{N} .25^{\circ} \mathrm{W}$. Required the moon's true bearing and the error of compass for the direction of ship's head.

(2.) By Star Polaris Azimuth.
1906. - On 6th February, at ioh. 30 m . p.m., A.T. at ship, in latitude $25^{\circ} \mathrm{N}$., longitude $35^{\circ} 45^{\prime} \mathrm{E}$. Suppose $*$ Polaris bore N. 4° E. Required the error of compass for the direction of ship's head.

ILLUSTRATIONS TO SHOW HOW LIVES AND SHIPS MAY BE SAVED BY THE CAREFUL OBSERVER, AND, CONVERSELY, HOW LIVES MAY BE LOST.

As it has been the duty of the writer for the last few years to carefully go over all the evidences in connection with strandings, \&c., on the New Zealand coast, he has been more than ever impressed with the value of keeping up regular systematic bearings and astronomical observations. Personally, he has known the comfort and benefit of doing so by several years' experience, and of late has many times noted the sad consequences of neglect to do so.

As an illustration, let us take the case of a barque which stranded a few years ago, about II miles south of Kaipara Harbour. She was bound to Kaipara Harbour from Sydney in ballast, and at noon was about 143 miles from Kaipara Heads, with a fresh fair wind for her port. Towards evening (the weather apparently still fine) the barometer began to fall, and at 3 a.m. the wind had increased to gale force from W.S.W. Shortly afterwards land was seen, estimated to be 6 to 8 miles off. The land sighted was considerably to the southward of Kaipara Harbour, and the ship being in ballast it was impossible to beat off the coast to make either Kaipara or Manukau Harbours; there was therefore nothing left to be done but to run the ship on the softest spot on a lee shore. Now, had the master of this vessel been in the habit of getting the ship's position shortly after sunset by stellar observations, he would in all probability have been able to get a very accurate determination of the ship's position at about 7 p.m., or a little later, when only 50 miles or less from the range of Kaipara light, which he could then have steered for with confidence, and a certainty of making; and, as it happened to be H.W. at about 2 a.m., he would have had everything in his favour for an easy run into the harbour.

Another case was that of a large passenger steamer which was wrecked on the Three Kings-a disaster which caused the loss of many lives. So far as we are able to gather from the evidence given at the inquiry, the weather was fine, on the evening before the disaster, and in all probability the position of the ship might have been very accurately determined at about 7 p.m., when the ship was about 90 miles in advance of the noon position. Such an observation would most likely have shown which way the current was setting, and many lives would have been saved.

The third case within three years which has come before the New Zealand Courts in which a ship has been totally lost, but would in all human probability have been saved had the master taken stellar observations before dark, was that of a barque (2,192 tons) which was wrecked on Palmerston Island, Cook Islands.

At noon on 6 th November observations were taken which showed that the South Point of islands bore S. 52° W. 98 miles, and north end bore S. $55^{\circ} \mathrm{W}$. distant 95 miles. The ship was then on port tack, wind S.S.E. (true). The Captain then decided to go to leeward of the islands, and kept away a point. At 4 a.m. the look-out reported land on the starboard beam, and almost immediately afterwards the ship was on the reef.

From the evidence it was stated that the sky was clear at that time, so that there is little doubt but that a position obtained by stellar observation at about 7 p.m. would have shown the master how the current was setting, and enabled him to set a safe course to go clear of all dangers.

A fourth and more recent case was that of an auxiliary schooner which was stranded and wrecked on Minerva Reef in about 24° south latitude in June, 1915.

At 4 p.m. an observation was taken which made the ship to be 5 or 6 miles to westward of D.R. longitude from the noon position, but the master stated that he did not place much reliance on this observation.

Had the master been conversant with the problem of determining his position by two stars he could no doubt have got an accurate latitude and longitude simultaneously at twilight, at about 5.30 p.m., about two hours before the time when the ship was wrecked.

Since the loss of some of the vessels just mentioned I have received the more cheering news of the probable salvation of two large steamers owing to the master, or his officers, taking stellar observations, and so being warned in time of a dangerous set by an unusually strong current. The captain of a large liner of over 7,500 tons gross register wrote to the author in March, 1906, as follows: "During my ten years of command I have always used your tables for sun and star navigation, and invariably with excellent results and great success. In one instance particularly (of which I send you the working) it saved me from a narrow escape off Lincoln Island (northern extreme Island of Paracel group). Having experienced unusually strong currents setting to westward I kept well over to Macclesfield Bank, but nevertheless I took good observations in the morning and obtained cross bearings of stars, and was able to alter my course in time. Another shipmaster expressed gratitude that these tables had taught him the value of stellar observatiors, as such observations had been the means of saving his ship from stranding in the Bay of Bengal."

VALUE OF TWILIGHT STELLAR OBSERVATIONS.

Twilight (a few minutes after sunset, or a few minutes before sunrise) is far and away the best time out of the twenty-four hours for reliable observations. The horizon at that time is generally very clearly defined, without any glare, requiring no shades for the sextant, and two or three of the brightest stars with a suitable difference of bearing between them can often be observed, which will give a perfect position in both latitude and longitude at practically the same instant of time. The writer having made a regular practice of taking these observations for several years of his sea life knows well from experience that no other observations are to be compared with them. The noon position is as best only an approximation, and should never be relied on too implicitly, for though half a dozen men may take the meridian altitude and get the same result they may all be several miles in error, owing to some unusual excessive refraction near the horizon. The very agreement of so many observers would only give a false confidence, which is the more dangerous as there is no opportunity with the sun observation (except when near land) of checking it, and thereby determining the error. Then, again, the so-called noon longitude generally depends on an observation taken at about 8 or 9 a.m., and the calculation of the time from this observation is often made with an erroneous
latitude, thereby giving a wrong result ; and currents, or bad steering, \&c., may again combine to still further throw the position out. With the position, however, obtained by simultaneous observations of two or three stars, errors resulting from uncertainty of refraction, \&c., may be eliminated, and the position altogether should be much more accurate.

POWER OF SHIPOWNERS AND BOARD OF TRADE TO MINIMIZE DISASTER.
If shipowners made it compulsory for their officers to obtain the ship's position whenever possible by stellar observations at twilight, it would, I believe, be the means of saving many ships from disaster, and the saving of not a few lives; also, if this problem were given in our Board of Trade examinations for master and mate it would help greatly in making our ship officers familiar with it, and to further encourage the more frequent observations of this very important problem we would advocate that short and accurate methods of solving the problem by the use of up-to-date tables for facilitating the work should be allowed in the examination. The problem is now given in the voluntary examination for extra master, but it is given in a very unpractical way, requiring two observers with sextants as well as an officer to take the time; and the lengthy way in which it is required to be worked in the examination-room will be quite enough to deter most men from making anything like a daily practice of such an observation after their examination is over. To obtain confidence in the result of observations for any problem the navigator must make more than an occasional trial of it.

Value of combined observations of moon and planets With THE SUN.

It may not be amiss here to remind navigators that when the moon is up in the daytime observations of moon and sun will also give both latitude and longitude at the same instant of time. Reference to example on p. 117 , shows that the moon may often be observed on the prime vertical when, in the winter months, the sun never comes near to it. When the sun has a high south declination, the moon, when near the full, will have a high north declination, and vice versa, so that in the winter months it is especially good when in this quarter for longitude, and during the summer months for latitude. This observation, however, is even less frequently taken than that of simultaneous observations of two stars, as this problem is not given even in the extra masters' examination ; it also entails more work in the calculation, and the upper limb has often to be taken, which without practice is liable to be confusing. The planet Venus, too, may sometimes be utilized in the daytime. The writer has occasionally obtained the latitude from an observation of "Venus when on or near the meridian, at about 9 a.m., or 3 p.m., when the usual sights were taken for longitude. Captain W. P. Dawson, R.N., of H.M. surveying-ship "Penguin," has informed him that he has sometimes observed Jupiter, Sirius, and Canopus during the daytime. This must require good eyesight and a very clear atmosphere. The approximate altitude of the planet should, of course, be calculated, and the sextant set to it; then, it the observer looks at the horizon in the direction of the meridian through a good telescope, he may see a little white speck near the horizon, which will be the reflected star. A pelorus set to the true north or south will be found helpful in directing to the spot where it should be seen.

On the back of the United States pilot chart of the North Pacific Ocean for November, igog, published by the Hydrographic Office of the United States of America Navy Department, some very interesting experiences of stellar observations during strong daylight were given by Captain R. E. Thomas, of the British steamer " Swedish Prince." He states that on the passage from New York to the Brazils noon observations of Venus for longitude were made simultaneously with observations of the sun for latitude on fourteen dates, between September 21st and October 8th, 1906. On another occasion, while on a passage from Rio to New York, similar observations were taken on sixteen dates, between February 8th and February 26th, 1907. Using Venus and Jupiter in conjunction with the sun while on the passage from Cape San Roque to Barbadoes, in a current varying in strength and direction, he was able for a number of days to obtain four absolute positions in broad daylight during each day--viz., about 9 a.m., longitude sun, latitude Venus; about "io. 30 a.m., latitude and longitude by observing Venus S.W. and sun S.E.; at noon, latitude sun, longitude Venus W.; and about 4 p.m., latitude Jupiter, longitude sun. During these days the noon longitude obtained solely by the sun could not but be considerably in error. In concluding he says: "I may add that Jupiter, though not so easily observed as Venus, is still worthy, of a place as an observable object by daylight, and one that will repay the patience and practice which its successful observing calls for."

EXAMPLE OF FINDING THE ERROR OF CHRONOMETER BY OBSERVATIONS IN ARTIFICIAL HORIZON,

Showing the Use of Table D in working out several Observations separately.

1898.-On 16th April, at about 7 h . Io m. a.m., M.T. at place. Suppose the following observations to have been taken at Observation Spot, Suez Dock. Index error of sextant - ó $34^{\prime \prime}$. Lat. $29^{\circ} 56^{\prime} 3^{\prime \prime}$ N., long. $32^{\circ} 33^{\prime} 12^{\prime \prime} \mathrm{E} .=2 \mathrm{~h}$. 10 m .12 .8 s .

Required the error of chronometer.

M. T. G. 17 o 22.5 Chron. (4) I7 o $47^{\circ} 0$

Chron. fast o 24.5

M.T.G. (No.2)	H. M. S. 165932.9
$2.31 \mathrm{~S} . \times 10^{\frac{2}{3}}$	$6-24 \cdot 6$
M.T. G. (No. I)	165983
Chron.	$165933{ }^{\circ}$
Chron. fast	- 24.7

$\begin{aligned} & \text { M. T. G. (No. (N) } \\ & { }_{2}^{2} 3 \mathrm{I} \mathrm{S.} \times \mathrm{IO}^{\frac{1}{2}} \end{aligned}$	$\begin{aligned} & \text { H. M. S. } \\ & \text { 17 } \begin{array}{l} \text { o } 22.5 \\ - \end{array} 24.2 \end{aligned}$		$\begin{array}{ccc} \text { H. M. } & \text { S. } \\ \text { 16 } & 59 & 58 \cdot 3 \\ -\quad 254 \end{array}$
M. T. G. (No.3)	$16 \lcm{59} 8.3$	M. T. G. (No. 2)	16 $5932 \cdot 9$
Chron.	17 O $23{ }^{\circ} \mathrm{O}$	Chron.	16.5957 .5
Chron. fast	O 24.7	Chron, fast	- 24.6
M.T.G.(No.4)	$\begin{array}{cccc} \text { H. } & \text { M. } & \text { S. } \\ \text { I7 } & \text { O } & 22 \cdot 5 \end{array}$	M. T. G. (No. 5)	$\begin{array}{cll}\text { H. } & \text { M. S. } \\ \text { I7 } & 0 & 46.4\end{array}$
$2.31 \mathrm{IS}. \times 10{ }^{\frac{1}{3}}$	+ 23.9	$2.31 \mathrm{~s} . \times \mathrm{IO}^{\frac{1}{2}}$	+ 24.2
M. T. G. (No.5)	17 O 1046.4	M. T. G. (No.6)	17.110 .6
Chron.	17 I II'0	Chron.	$17 \quad 135.5$
Chron. fast	- 24.6	Chron. fast	- $24{ }^{\circ} 9$

H. M, S.

M.T.G. (No. 6) 17 I $10 \cdot 6$
$2^{\circ} 31 \mathrm{~S} . \times 11^{2 \prime} \quad+27$
$\begin{array}{ccccc}\text { M.T.G.(No.7) } & 17 & 1 & 37.6\end{array}$
Chron.
$\begin{array}{r}17 \quad 2000 \\ \hline 022.4 \\ \hline\end{array}$
It is evident that the last observation was in error, probably owing to the altitude having been either read off or put down incorrectly. It is therefore rejected, and a mean taken of the other six.

Results.

Observations with artificial horizon are not so much needed as they were twenty or thirty years ago, as of late years time signals giving G.M.T. have been established at most places of importance. Still, it is well to be independent of such aids. In the first place, they are not always reliable, and, secondly, in these days of steam and rush a vessel sometimes arrives at and leaves a port again, as at Port Said, $24^{\circ} 6$ before the time when the signal is given; and there are still many places where such aids are not to be found. The writer, when second officer, used sometimes to check the chronometer by observations of stars in the quicksilver, in his middle watch at night, when tied up in the Suez Canal or at anchor in the Bitter Lakes. Results were very satisfactory, as proved by observations east and west of the meridian, which did not generally differ more than is. from one other.

He never found it possible to get such observations of the sun on board ship, as in the daytime so many people are moving about; but in a large ship at anchor in smooth water observations in the quicksilver can often be taken at night, when all on board except the observer and time-taker are in bed, and everything is quiet.

9-Azimuth.

REMARKS ON THE VALUE OF EQUAL ALTITUDES BY SEA.

We would draw attention here to the value of the short equal-altitude problem, as this method of obtaining the longitude, though very simple and useful, is seldom noticed by nautical writers. The problem is more especially useful in the case of stars, owing to there being no appreciable change in a star's declination, and because suitable ones can generally be found in any latitude. Even on dark nights a very fair longitude can generally be obtained, errors of altitude eliminating one another in a similar way as when stars are observed for latitude north and south of the meridian. An equally good result is obtained if both altitudes are observed the same amount too great, or too small, as if they had both been correct, and the problem is so simple that it takes very little longer than to get the latitude by meridian altitude-we mean, of course, when within the limits where correction for change of latitude and declination are not necessary.

The writer has often taken these equal altitudes about the same time as other observations have been taken-sometimes before daylight with an indifferent horizon, and at others with a good horizon a little before sunrise or after sunset-and they have nearly always agreed splendidly with the star-position longitude obtained by double altitude.

The navigator should not, however, use this method beyond its proper limits, and when the sun is observed it will seldom be useful except in the tropics, and then principally when running nearly due east or west, as on passages from Penang to Ceylon and Aden. When running due east or west no correction of altitude or time is required for ship's change of position, as she would change her longitude only by the portion of time which she gains or loses on the sun in the interval. Also, when the body observed bears east or west, no correction is required for several miles' change of latitude to the north or south; therefore it follows that when the observed body is near the prime vertical, and the change of latitude is small, it is not practically necessary to make any corrections for change of ship's position. Table 29 in Raper gives the hour-angle and altitude of a body on the prime vertical ; and most other epitomes also have a table at any rate for giving the hour-angle of same, which is always useful for showing the best time to observe for longitude.

(1.) The Computation (Raper, p. 8or).

Take the mean of a.m. and p.m. times by chronometer: this, when the ship does not change her latitude, is the time by chronometer of apparent noon; when the latitude changes, this time is the time of approximate noon. Apply chronometer error and equation of time (p. II., N.A.), which will then show the A.T.G.; the difference between that and the apparent noon at ship being the longitude in time.

(2.) Correction for Change of Latitude.

With half the interval as an hour-angle, compute the azimuth. To the log. sine of half the D. lat. made good, add the log. sec. of the lat. and the log. cotan. of the azimuth ; the sum, rejecting tens, is the log. sine of the correction in time.

When the ship has approached the sun or star in the interval, subtract this time from the above mean; when she has receded from the sun, add it. The result is the time by chronometer at apparent noon.

NOTE.-When the observed body is within 10° or so of meridian, the D. lat. made good in the interval may be added or subtracted from the altitude according as the ship has approached or receded from the sun, instead of going through the longer but more accurate computation.

Longitude by Equal Altitudes of the Sun. Example 1.-Ship steering nearly East or West.
In lat. by D.R. $6^{\circ} \mathrm{N}$. and \odot 's decl. $5^{\circ} \mathrm{N}$. Equal altitudes of the sun were taken when chronometer times, a.m. and p.m., showed respectively 18 h . 10 m .36 s . and 18 h .42 m .52 s . Chronometer fast on G.M.T. 10 m. 6 s . Required the longitude.

Chron. time a.m. Chron. time p.m	$\begin{aligned} & \text { H. M. S. } \\ & \text { 18 10 } 36 \end{aligned}$ 184252
	2) 365328
Middle time by chron. Chron. fast	$\begin{array}{r}18 \\ -10 \\ -14 \\ \hline\end{array}$
M. T. G. of Sp. A. noon	181638
Eq. T.	- 334
A. T. G. of Sp. A. noon	1813
A. T. Sp.	24 o
Long. in. time	54656
Longitude	$86^{\circ} 44^{\prime} \mathrm{o}^{\prime \prime} \mathrm{E}$

Example 2.-Where Ship has changed her Latitude between Sights.
Using the preceding example, with course made good N. $73^{\circ} \mathrm{E} .7 \mathrm{~m} .=\mathrm{D}$. lat. 2^{\prime}.

Half intl. as H.A. ${ }_{\text {H. M. }}^{\text {O. }} 16$ S.		
Lat. $6^{\circ} \mathrm{N}$	Table A	1.50 S
Decl. $5^{\circ} \mathrm{N}$	B	1.25 N
Az. $\mathrm{S} 76^{\circ}$	" C	${ }^{25} 5$

Here the sun is to the southward and the course is to the northward, or the ship has receded from the sun.

As the change in C^{\prime} 's decl. never exceeds I^{\prime} in an hour, the correction for this may be disregarded when observations are taken within a few minutes of noon.

Example 3.-Longitude by Equal Altitudes of a Star near the Meridian.

* I 898.-On 6th September, at about 5 h .26 m . and 5 h .36 m . a.m., A.T. at ship, in lat. by D.R. $9^{\circ} 30^{\prime} \mathrm{N}$., long. $63^{\circ} \mathrm{E}$. Observed equal altitudes of * Aldebaran to the northward at 13 h .49 m .5 s . and 13 h .59 m .5 s . by chronometer which was fast of G.M.T. 37 m .36 s . Run in interval between observations, S. $75^{\circ} \mathrm{E} .2 \mathrm{~m} .=\mathrm{D}$. lat. $\mathrm{o} \cdot 5^{\prime}$.

In this example, as the star was only 10° from the meridian, and the ship had receded from the star, $\mathrm{o}^{\prime} 30^{\prime \prime}$ less altitude was set to the sextant for the second observation.

There is no more work here than with the sun, as there is no equation of time to apply, and it is even easier to correct the sidereal time than the equation of time.

The writer's usual morning double altitude was taken 3 m . before this first sight, by Saturn and Sirius, both east of meridian, the resultant giving longitude, when brought up to the same time, within I^{\prime} of the equal-altitude longitude. He has taken several with equally good results, though in this case it was probably accidental that so near an agreement with the other observations was obtained, as better results might have been expected with a longer interval of time, when the star would have been nearer the prime vertical; daylight, however, prevented this.

It is best to choose stars with declination nearly the same as latitude, or else of the same name and the declination less than the latitude. If the declination is greater than the latitude, as in the last example, it does not come to the prime vertical at all; neither does it if the declination and latitude are of contrary names. With latitude and declination of same name, when the numbers corresponding to the hour-angles in Tables A and B nearly agree is always a good time. For instance, in latitude $46^{\circ} \mathrm{N}$., at hourangle oh. 20 m. , with $*$ Capella, the numbers in Tables A and B exactly agree, both being II $\cdot 8^{\prime}$; Capella, therefore, with that latitude and hour-angle would be exactly on the prime vertical.

The following example (on p. 128) will show how a star may sometimes be observed almost on the prime vertical to within 2 or 3 minutes of its meridian passage, or at any time within 2 or 3 hours of its transit.

[^4]Example 4.-Longitude by Equal Altitudes of a Star nearly East or West. 1898.- Colombo towards Aden. On 13th October, at 6 h. 24 m. and $6 \mathrm{~h} .34 \mathrm{~m} . \mathrm{p} . \mathrm{m}$. (ship time). Observed equal altitudes of * Altair at 2 h .16 m .55 s . and 2 h .28 m .24 s . by a chronometer which was fast of G.M.T. 39 m .4 s . Star's azimuth at ist obns., S. 80° E. Lat. by meridian altitude, $8^{\circ} 46^{\prime} \mathrm{N}$. Run in interval, N: $80^{\circ} \mathrm{W}$., distance $2 \frac{1}{2} \mathrm{~m}$.

ist chron. time and chron. time	H. M. S.
	21655
	22824
	2) 44519
Chron. time of transit	22239.5
Chron. error	- 394
M.T.G. of transit	14335.5
Sid. T. (G. noon)	132816.3
Accl. for I h. $43 \frac{1}{2} \mathrm{~m}$.	+ 17
Sid. T. at Green.Sid. T. at Sp. ($*$'s R.A.)	15128.8
	1945 51.6
Long. in time	43342.8

Equal altitudes of this star were taken in the twilight for three or four evenings running. A few miles change of ship's position N. or S. in this case would not have affected the longitude I^{\prime}.

The following example gives the position of ship, latitude by ex-meridian (with azimuth 45°), and longitude from equal altitude observations. The problem is also plotted on the chart, and the same result obtained.

POSITION OF SHIP BY SHORT EQUAL ALTITUDE OBSERVATIONS OF SUN.

1898.-On March 20th, about noon, approximate position of ship on Equator in longitud $\epsilon 75^{\circ}$ E. Observed alt. of \odot^{\prime} s L.L. was $89^{\circ} 20^{\prime}$ S.E. when a chronometer indicated M.T.G. 19 d .19 h .6 m .9 s. , and again (p.m.) the observed alt. of \odot 's L.L. was $89^{\circ} 20^{\prime}$ S.W. when chronometer indicated M.T.G. 19 d. 19 h .9 m . Is. Course and distance run between the observations west $0 \frac{1}{2} \mathrm{~m}$. Height of eye 40 ft .

Required position of the ship at apparent noon.

The accompanying chartlet gives a good illustration of the "Sumner" principle in connection with this problem without any logarithmic calculations for H.A., azimuth, or reduction, and it confirms the above method of calculation.

We are indebted for this method to the writer's old friend Captain T. S. Angus, Nautical Inspector for the P. and O. S. N. Company, one of the keenest and most enthusiastic navigators he ever met. The method is as follows, viz. : Observe an altitude while the azimuth is yet large, and as soon as the Z.D. is small enough to be conveniently measured on the chart with a pair of dividers. Plot the geographical position of the sun (lat. $=$ decl., long. $=$ G.A.T.), and from this position as centre sweep an arc with Z.D. as radius. This is a position-line. Wait until the azimuth has sufficiently changed to give a good cut, and repeat the operation, the intersection gives the position at once without any further calculation.

The following figures give all that is necessary for plotting on the chart.

REMARKS ON EX-MERIDIAN AND MERIDIAN ALTITUDES.

Although we have at the present day quite a number of special very useful exmeridian tables, apart from the standard navigational epitomes, we would here remind those who use Raper that there are tables in that epitome which make very short work of this problem when within the ordinary ex-meridian limits, and the limits of 35° of declination. When within the limits of latitude 35° these tables may also be used for stars of any declination up to $62^{\circ} \mathrm{N}$. or S., by using the declination as latitude, and vice versa. The following examples will illustrate this:-

Example 1.-In lat. by D.R. 10° N., T. alt. of $* a$ Crucis $16^{\circ} 10^{\prime}$, hour-angle of star $\mathrm{I} h$. Io m . Required the reduction to meridian.

Example 2.-In lat. by D.R. $23^{\circ} 30^{\prime \prime}$ S., T. alt. of $*$ a Crucis $50^{\circ} 53^{\prime}$, hour-angle $o h$. rom. Required the reduction to meridian.

H.A. oh. 10 m . Lat. $23^{\circ} 30^{\prime}$ S. as decl.	decl. $62^{\circ} 35^{\prime}$ S. as lat.	Table 7 oh. 10 m .	Log. Sin 2	$\begin{aligned} & 0 \cdot 127 \\ & 6.678 \end{aligned}$
	Reduction $\mathbf{2}^{\prime} 12^{\prime \prime}$	- . .	Sine	6.805

In the first example the error from the calculated reduction by Raper's table only amounted to $15^{\prime \prime}$ with no error in the second, although the first example was outside the limits of the ex-meridian tables of Brent, Walter, and Williams, which tables until lately were considered to have exceptional limits, especially on account of comprising declination limits up to 70°.

The tables, however, at the end of this book are available for any latitude, or declination from Pole to Pole, and the time-limits of the first example might have been extended for another 50 min . without making more than about $\frac{1}{2}^{\prime}$ of error in the reduction. See limits on pp. 144 and 152 .* Larger ex-meridian tables by the author, which are published in another volume, give still more extensive limits, sometimes as much as 3 hours from the meridian (and in a new edition of the work now in the Press) when the azimuth is sometimes over 70° from the meridian.

[^5]In this work the actual reductions and azimuths are taken out at sight for 30 of the brightest stars for limits far exceeding that of any other reduction tables, and as the reductions and azimuths have been calculated for the actual declination of the stars a minimum of interpolation is required in the use of the table. It would be impossible to make position-finding from two stars simpler than by the aid of these tables. An example is given on p. 128 of this work with an altitude of $89^{\frac{1}{2}}{ }^{\circ}$ and azimuth of 45°. In this example the hour-angle was accurately determined by equal altitudes close to the meridian, otherwise this latitude by ex-meridian would only be of value as giving a latitude on the meridian of the D.R. longitude, and the position-line or circle of altitude at right angles to the bearing of the object, to be used in conjunction with another observation. Taken as a single observation 4 sec . of error in the time would make I^{\prime} of error in the latitude. (See Table M, pp. 156 and 157 .)

EXtension of limits in use of tables No. i AND No. 2.

A very considerable extension of the ex-meridian limits of Tables No. I and No. 2 in this work can also be obtained by transposing latitude and declination as shown in example on p. 163. For instance, in Table 1, in latitude 25° and declination 50°, contrary names, the limits of time within which a correct reduction can be obtained by the table is 150 m ., but with latitude 50° and declination 25° it is only 49 m . Caution.-It must, however, be remembered that you cannot get the correct azimuth or position-line by transposing latitude and declination, so that if latitude and declination are transposed for the reduction a further determination of the A and B correction will be required to find the position-line.

Value of high declination stars for ex-meridians.

Stars with high declinations are especially valuable for ex-meridian observations, and in high latitudes it is best to choose circumpolar stars, near the meridian below the Pole, as these stars change very slowly both in altitude and azimuth, and consequently errors in time only produce small errors in the resulting latitude. The amount of error due to 4 sec . of time is seen at a glance from Table M, pp. 156 and 157. It was the recognition of the great value of these stars for both latitude and azimuth that induced the writer to calculate the actual true reduction and azimuth for twenty of the brightest circumpolar stars up to 2 to 3 hours from the meridian at the inferior transit. These tables make it almost as easy to determine the latitude by ex-meridian as by the meridian altitude when within the limits of the table, and also to set the sextant to the approximate altitude, which is a great advantage when taking twilight stars. The writer has lately calculated the reduction and azimuth in the same way for thirty of the brightest stars when near the meridian at the superior transit. High-declination stars are also preferable for observations of the meridian altitude, as a few minutes will then generally elapse without any appreciable change of altitude, both before and after meridian passage; and it is a good plan to take several observations-say, 5 m . before to 5 m . after meridian passage-unclamping the index each time, and to take the mean of these observations for meridian altitude. This plan is far preferable with stellar observations for latitude (except when altitude is very high) to that which is so often adopted of watching for the star beginning to fall.

It is necessary to caution against this prevailing plan (in these days of rapid steam navigation) even with the sun, as by so doing the observation is sometimes taken rom. or more after noon, and at others a few minutes before noon. This was brought prominently to the writer's notice many years ago, when second officer of a new mailsteamer. He made it a practice always to correct his watch and the ship clock before noon by comparison with chronometer and longitude applied. On one occasion when proceeding due south off Cape Finisterre, in a winter month, the captain and a couple of officers were observing for the meridian altitude. The writer reported that it was noon when his watch came round to the hour, but the captain said he did not make it so, and the sun was still rising; we all therefore remained aft by compulsion until the captain made the sun to dip, at about iom. after noon, and the writer was wrongly and thoughtlessly blamed for the clock being in error. In this particular case the ship was steaming directly towards the sun at about 14 knots an hour, and by this change of position, had the sun been stationary, the altitude would have increased $14^{\prime \prime}$ in 1 m . of time, or $70^{\prime \prime}$ in 5 m . of time, and had the ship been stationary the sun would have only dipped $o^{\prime} 36^{\prime \prime}$ in that time; therefore the altitude would have increased to observer $\mathrm{o}^{\prime} 34^{\prime \prime}$. The sun's change of declination in rom. would only amount to $2^{\prime \prime}$, and is not therefore taken into account.

If the clock had then been put back, and bearings of the land had been obtained, the supposed meridian altitude would have given a latitude $2^{\prime} 4^{\prime} \mathrm{N}$. of that by bearings; or if the time had been taken by chronometer, and the observation worked out as an ex-meridian, it would be found that a correction of 2.4^{\prime} was required to be added to the altitude. Should the observation be taken of a high-declination star, such as a Crucis, anywhere in the tropics, either north or south of the Equator, the natural fall of altitude in rom. would be less than $2 \frac{1^{\prime}}{}{ }^{\prime}$ if latitude and declination were of same name, and barely $\mathrm{I}_{\frac{1}{2}}{ }^{\prime}$ with latitude and declination of contrary name. When the meridian altitude of the moon is observed for latitude the moon's change of declination must also be remembered, which is very rapid when near the Equator, varying in different years from a little over 9^{\prime} to a little over 18^{\prime} an hour.

Mr. C. Westland has drawn the writer's attention to a method of finding the hourangle of maximum altitude by the help of the A \& B Tables, as follows:-

Assume reduction at 1 m . from meridian $=\frac{15^{\prime}}{2[\mathrm{~A} \pm \mathrm{B}]} \quad \begin{gathered}\text { (Formula of Ex-meridian } \\ \text { Table No. 2.) }\end{gathered}$
Then H.A. of maximum altitude is given in minutes of time by $\frac{\mathrm{K}[\mathrm{A} \pm \mathrm{B}]}{15^{\prime}}$ and since I m . of time is equal to ${ }^{15}$ ' of arc it follows that the numerator of this fraction is the required H.A. expressed in arc.

Rule. - Express the difference in motion of lat. \pm decl. (that is K) in minutes of arc per minutes of time, and multiply it by $A \pm B$ for Im . To reduce to time subtract one third and move decimal point one place to left.

Example.-Using data above, and disregarding change of decl. (as it only amounts to $0.2^{\prime \prime}$ in I m. of time), $\mathrm{K}=14^{\prime \prime}=0.233^{\prime}$.

This method is considerably shorter and easier to remember than the methods usually given in navigational books.

a Few Navigational Notes and cautions.

EXCEPTIONAL EXCESSIVE REFRACTION NEAR THE HORIZON.*

It has often been pointed out in text-books of navigation and elsewhere that altitudes observed at sea are subject to error when peculiar atmospheric conditions operate to produce an extraordinary deflection of the ray of light from the horizon, and thus to make the actual angle of dip vary from its tabulated value. It is believed that attention can not be too frequently directed to this important subject, for the reason that there are undoubtedly many navigators who do not realize the magnitude of the error that may be involved: some have the impression that this error is such as to throw the results out by no more than a mile or so, and hence may be neglected for all practical purposes ; others, while knowing that in the Red Sea and other special localities the error is to be guarded against, do not consider that it need ordinarily be feared by the navigator. It can be demonstrated that this error may attain a value so great as to jeopardize a vessel, even if a very large margin be allowed for inaccuracy of the sights, and that the conditions under which it is produced are such that it may occur in any region of the ocean.

It has been seen that the conditions necessary to produce extraordinary deflections of the rays require that the atmosphere shall arrange itself in a series of horizontal strata of uniformly varying density. It follows, therefore, that the mere difference in temperature between air and water is not sufficient in itself to produce the error, and that any cause that interferes with the formation of strata will prevent the occurrence of the deflection. As wind, by keeping the air in motion, renders the conditions unfavourable for the existence of layers of unequal density, it follows that a light breeze will,

[^6]in general, greatly reduce the error, and that a strong one will effectually prevent it. Hence it is that the maximum bending of rays is to be expected in calm weather. It seems probable that the stratification is more likely to be disturbed when the air is colder than the sea than in the opposite condition, since the heavier particles are then above the lighter, and the atmosphere is in a state of unstable equilibrium that may be easily disturbed.

Both theory and experience show that the higher the eye of the observer is placed above sea-level the smaller are the deflections from the causes under consideration. It is therefore well, especially when there is reason to suspect the conditions that produce abnormal deflections, to observe altitudes from the highest available position.

One of the most dangerous features of this error is that there is no satisfactory method of arriving at a correct estimate of its amount. If the conditions with which it is necessary to deal were fixed in their nature, such, for example, as the mean atmospheric conditions for which the ordinary dip-table is computed, it would be a simple matter to arrive, either by theory or experiment, at the amount of the deflection. But the elements of the problem can not, in their nature, be known. For instance, the conditions of temperature and wind at a distance of several miles from the observer, which can not be determined at the ship, have an important bearing on the solution; so also with the amount of moisture in the air, which is doubtless a material factor. The navigator may, however, recognize the existence of the disturbing conditions and the probable direction in which the disturbance will affect the results of his observations, and with this knowledge he must make ample allowance for possible errors.

From a very large number of recorded instances of abnormal deflections of the rays of light from the horizon, due to inequality of temperature between sea and air, a few will be chosen to illustrate the possible magnitude of this error.

It is related that on one of Captain Cook's voyages the meridian altitude of the sun was being taken when a light snow-squall came on. The horizon and sun remaining visible, the altitude shown by the sextant had almost instantly to be altered 32^{\prime} to maintain contact, the horizon having appeared to fall by that amount when the air surrounding the observers was cooled by the snow-squall. At the same time a distant mountain-peak, which before had stood well above the horizon, almost disappeared from view. Both of these effects vanished with the passing of the squall, the measured altitude resuming its former value and the peak rising again above the horizon, Even if we are inclined to doubt the instruments of those times, and therefore the exactness of the observed difference, this account is of interest in showing at how early a day the presence of this error was recognized in navigation.

According to Raper, Mr. Fisher observed in the Arctic regions a variation of 18' in the place of the horizon.

The late Captain Lecky, in his "Wrinkles," states that on a clear day in midwinter, off the coast of Long Island, five observers at noon closely agreed upon an altitude which gave a certain latitude; in less than two hours afterwards the land was sighted, and the latitude brought forward from the meridian altitude was found to be 14^{\prime} in error.

Lieutenant Koss and Ensign Thun-Hohenstein, of the Austrian Navy, while conducting observations near Pola for finding the variation in the dip of the horizon, observed on a quiet day a rise of the apparent horizon above its computed position of $8^{\prime} 47^{\prime \prime}$ at a height of 50 ft ., and of $9^{\prime} 23^{\prime \prime}$ at a height of 33 ft . above water.

Of the numerous instances that might be cited of extraordinary errors in the results given by astronomical sights in the Red Sea (so extraordinary as to have given rise to an erroneous belief as to the currents existing in that body of water), it may be mentioned briefly that Lieutenant Marshall, U.S. Navy, of the U.S.S. "Detroit," found errors of position from 12^{\prime} to 18^{\prime} arising from sights of the sun; Captain Nedden, of the s.s. "Madeline," found the latitude by observation to differ io miles from the correct one, and images of islands to be greatly distorted; and Captain Lecky discovered the positions of certain islands to be apparently 7 to 8 miles in error in one direction from morning sights, and a similar amount in error in the opposite direction from afternoon sights.

A similar instance of error in the region of the Gulf Stream was reported by Lieu-tenant-Commander W. L. Rodgers, U.S. Navy, of the U.S.S. "Lancaster," two lines of position from the sun intersecting at about 7 miles to the south-east of the ship's true position, and two from stars intersecting at a like distance in the opposite direction, the direction of the error in each case according with that which was to be expected from the observed differences in temperature of air and water.

As a result of what has been set forth, the following brief summary may be given for the guidance of navigators:-
(a.) The inaccuracy of tables showing the dip and the visibility of objects should always be suspected when there is a marked difference between the temperature of the air and that of the sea-water.
(b.) The errors will be largest in calm weather and when the eye is not far elevated above the sea, and will decrease as the wind increases and the eye is raised.
(c.) When the air is warmer than the water, the visible horizon is raised above its normal position; the altitude corrected by the ordinary dip-table will be too small, and the resulting Sumner line will be farther from the observed body than the true line. An object will be sighted from a greater distance than usual.
(d.) When the water is warmer than the air, the visible horizon is lowered below its normal position; the altitude corrected by the ordinary dip-table will be too large, and the resulting Sumner line will be nearer the observed body than the true line. An object will be sighted from a less distance than usual.

A few years before the time of writing this a very well authenticated case of undoubted excessive refraction was brought to the notice of the writer by an old pupil (Captain W. H. Sweny), then commanding the P. and O. s.s. "Mooltan." At about 6 p.m. on April inth, igio, he took observations of four different stars for a posi-tion-viz., Procyon (ex-meridian) to northward, Rigel to north-westward, Canopus to south-westward, and β Centauri to south-eastward, to cross with one another. The chief officer took an ex-meridian of Pollux to northward, and Rigel and $\boldsymbol{\beta}$ Centauri for a cross. Shortly afterwards the fourth officer took Procyon, Canopus, β Centauri, and Jupiter to eastward. Captain Sweny first sent the writer his own observations, asking him to work them out and let him know what he made the resulting position. This was done, and when the captain afterwards sent the results of his work both positions were in agreement and evidently not more than about I^{\prime} in error in either latitude or longitude. The captain also sent the workedout observations of the other two officers, and from all these observations the writer was able to deduce fairly accurate separate positions, and it was evident from these observations that refraction was excessive all round the horizon, but greatest to the northward, where it was about $1 I^{\circ} 0^{\prime}$, and in other parts of the horizon averaging about $6{ }^{3}$ ', the altitudes being smaller by these amounts than they should have been by allowing the usual tabular corrections. The height of eye when these observations were taken was 50 ft . If the captain had been satisfied with the ex-meridian observations of Procyon and Pollux, and the longitude of β Centauri, he would have been II $^{\prime}$ or 122^{\prime} out in the latitude and 33^{\prime} out in the longitude. By using the observations intelligently he was practically correct in his position, and made Rottnest Light nearly ahead at $2 \mathrm{a} . \mathrm{m}$. His position at the time was about $30^{\circ} 4^{\prime} \mathrm{S}$. and $I 13^{\circ} 47^{\prime} \mathrm{E}$.

The above related experiences, though undoubtedly very exceptional, should tend to warn navigators not to trust too implicitly even in daylight to observations taken on one side only of the meridian, or prime vertical; for though such excessive refraction is very rave, and may not be experienced in the lifetime of a frequent observer, it is probable that such amounts as 2^{\prime} difference from the tabulated value of refraction is not uncommon.

EFFECT OF ALTITUDE ERRORS.

With a.m. sights too great an altitude will place a ship to eastward of true position, and vice versa with p.m. sights and too small an altitude. The amount of error in longitude or time due to I^{\prime} error of altitude is shown in Table D.

OBSERVATIONS IN ARTIFICIAL HORIZON.

In correcting the altitude taken in artificial horizon, first apply index error, ther halve the altitude after which apply the other corrections-viz., refräction, parallax, and semidiameter.

When the lower limb is taken with a.m. sights the suns appear to be separating, and when the upper limb is taken the suns appear to be closing in on one another. Vice versa with p.m. sights.

NUMBER OF FIGURES TO USE WITH LOGARITHMS.

Using more than four figures of logarithms in working any of the sailings is generally a waste of figures; as also in working an altitude or time azimuth or the time when hour-angle is less than 2 hours.

In Bowditch's "American Practical Navigator" not more than five figures are given in any of the tables, and the work is thereby much facilitated.

CORRECTIONS OF SUN'S DECLINATION AND EQUATION OF TIME.

For ordinary sea practice it is generally useless precision when correcting the sun's declination to take out the hourly variation to decimals of a second; also, one place of decimal is amply sufficient when correcting the equation of time.

CORRECTION OF. A PLANET'S R.A. AND DECL.

The R.A. and decl. of a planet may often be quickly corrected by the aid of the traverse-table used as a proportional table. The following example will illustrate this :-
1898.-30th August ; M. T. G. 9 h. 36 m. Required the corrections for R.A. and decl. Daily change of R.A. was 236.3 s ., and of decl. $28 \cdot 8^{\prime}$.

To find correction for R.A. due to 9.6 h . from noon: Add a cipher to 24 h ., then with 240 in dist. column look out the nearest number abreast it in either the dep. or d. lat. column. This will be found at 10° in d. lat. column-viz., 236.4. Having added a cipher to 24 h . the decimal point in 9.6 h . must be removed one figure to the right; then look out the number in d. lat. column against 96 in dist. column and the correction $94^{\circ} 5 \mathrm{~s}$. will be found.

To find correction for decl. due to 9.6 h . from noon : $28 \cdot 8^{\prime}$ is the change in 24 h . At 33° in the traverse-table we find 239.9 in d. lat. column against 286 in dist. column, and again 96.4 in d. lat. against 115 in dist. $\therefore I^{\prime} 5^{\prime}$ will be the correction (nearly).

NOTES ON MERCATOR AND MIDDLE-LATITUDE SAILINGS.

Mercator's sailing should be used generally when the course is between I° and 70°, especially with long distances and in high latitudes. With a large course, and using either Raper or Norie, the distance may sometimes be considerably in error owing to the meridional parts not being given to decimals. The following examples will illustrate this:-

Find the true course and distance from lat. $5^{\circ} 28^{\prime} \mathrm{N} .$, long. $85^{\circ} 30^{\prime} \mathrm{E}$., to lat. $5^{\circ} 34^{\prime}$ N., long. $91^{\circ} o^{\prime} \mathrm{E}$.

By Mercator's Sailing (Raper's Tables).

By Inman's Tables.

By Middle-Latitude Sailing.

To take out the distance accurately for a large course, as between 85° and 90°, the log. of secant should be taken out to seconds; this may be practically done by bearing in mind that the secant and tangent differences here are almost the same. Thus in the last example the difference between the sec. and tan. in the fourth figure is about 2 ; then add 2 to the log. tan. of course.

When the course is large the distance is very readily found from the traverse-table by a comparison of the dep. with the dist. column. For instance, with an 88° course, distance 329 is 0.2 greater than the departure; with an 87° course, distance 329 is 0.5 greater than the departure. In the same way, when the course is within 3° or 4° of the meridian, the distance will be nearly the same, but a trifle greater than the dat.

SIMPLE METHODS OF FINDING THE SHIP'S DISTANCE FROM A POINT BY TWO BEARINGS AND THE RUN IN INTERVAL BETWEEN THEM.

As so many strandings have occurred on the New Zealand coast owing to the neglect to take or make use of bearings, it has been thought advisable to give the following simple methods for approximately determining the ship's distance from a single point or light when cross-bearings are not obtainable. The methods here given have the advantage of being determined quickly, with a minimum of calculation, without leaving the deck or having to plot the bearings on a chart. Figure 3 and Table H were first published in the writer's first edition of "A and B Tables," \&c., and their value has since been further impressed on navigators by the late Captain Lecky in the latest editions of his famous " Wrinkles." The writer has also been pleased to notice that some of the local steamers now have a brass plate on the bridge marked somewhat after the style of Figure 3.

Problem I .-To find the Distance from a Point when the Angle on Bow is doubled.
Whenever the angle between the course and object is doubled, the distance run in the interval is the distance off at second bearing. The well-known four-point bearing illustrates this, and, as the second bearing then gives the distance off abeam, it is most frequently used ; but it is often very useful to be able to know the distance off at an earlier period, as illustrated by Fig. i.

Example.-A ship making io miles an hour on a S.E. course by compass sighted Kaipara light, bearing E.S.E.; after continuing to make good the same course and speed for 57 m . the light bore E. Required the distance from the light when second bearing was taken.

First bearing E.S.E. 2 points on bow ; second bearing E. 4 points on bow ; angle doubled: the distance run in interval between bearings will be the distance off at last bearing. Interval 57 m . $=\frac{57}{67}$ or 0.95 of an hour \times Io gives run in interval, 9.5 m . the distance off.

It is apparent from the figure that if this course is continued the ship will probably run foul of the North Spit. (See Fig, I.)

Problem 2 will illustrate how by the aid of the traverse-table the course may quickly be set to pass a safe distance off.

Problem 2.-From a known Distance from Object, to set Course to pass any required Distance from it.
Rule.-Enter the traverse-table with the distance required to pass off in the dep. column and the present distance off in dist. column. The course heading this will be the angle to bring the object on the bow.

Example as shown in Fig. 2.-Ship steering S. 45° E. by compass, Kaipara light bore E. distant $9^{\circ} 5 \mathrm{~m}$. Set the course to pass 8 m . off the light. Enter the traverse-table with distance 9.5 in dist. column, and turn over until the nearest to 8.0 is found in dep. column. This is found at 57°. Bring the lighthouse 57° on bow, or course by compass S. 33° E. 9.5 in dist. column gives 7.97 in dep., and $5^{\circ} 17$ in D. lat. column, the distance to run. Fig. 2 illustrates this

The advantage of knowing the distance that a ship will pass off a point on a given course, in good time before coming up to it, struck the writer many years ago when he was quite a junior officer, and he then made out the figure given below, which has often been used since.

The distance run in the interval between any two of the following bearings will give the distance that the ship will pass off the object if the same course is continued and made good.

Problem 3.-To find the Distance a Ship will pass off an Object when abeam by the Distance run in Interval between certain Bearings as given below.

Fig. 3.

Betwe	22°	and 34°	
"		, $4^{\mathrm{I}^{\circ}}$	
"	$26 \frac{1}{2}^{\circ}$, 45°	The distance run will be
"	32°	(159	the distance the ship will pass off
"		" 72°	
"	45°	" 90°	
"	45°	$\text { " } 63 \frac{1_{2}^{2}}{2} \text { the }$	the distance run will be half distance the ship will pass off.

The numbers under base of figure represent the length of the base of the rightangled triangle proportionate to the perpendicular of 10 . Thus, should the ship be passing io miles off an object, and the object be 22° on bow, ship will be $24^{\circ} 8$ miles from the beam bearing.

The traverse-table gives the three sides of right-angled triangles for every degree of angle subtending the base or perpendicular. If, therefore, we know the angle on bow and the perpendicular-i.e., the distance the ship will pass off the point when abeam-the other two sides of the triangle-viz., the distance off at the time, and the distance to run to beam bearing-are seen at a glance from the table.

Say angle on bow is 32°, and previous bearings give distance to pass off 10 m . Open traverse-table at 32° and against io in dep. column, we have 18.9 in dist. column as the distance off, and 16.0 in the D. lat. column as the distance to run to beam bearing.

Example.-A ship steering north observes a light bearing N. 32° E.; after running on same course for 6.0 miles the light bears N. 59° E. Required the distance the ship will pass off the light if she continues on the same course, and the distance from the light at time of second bearing.-Answer: Distance run in interval (6.0 miles) will be the distance the ship will pass off the light. Then, opening the traverse-table with 59° as course, and 6 in dep. column, we find 7 in dist. column as the distance the ship will be from object at that time.

As a ship changes the bearing of an object much more rapidly when nearing the beam bearing than at any other time, the distance that a ship passes off a point will be better determined by the run in interval between the two bearings of $63 \frac{1}{2}^{\circ}$ on bow and $63 \frac{1}{2}^{\circ}$ from stern-or, in other words, when it is $26 \frac{1}{2}^{\circ}$ from the beam bearing before and abaft-than at any other time.

It sometimes happens that a light or point is not sighted till after the ship has passed the four-point bearing. In such case Table H will be found useful, and might be copied out and put inside the wheel-house for ready reference.

Problem 4 (by Table H).-To find the Distance from an Object when abeam by the Distance run between Beam Beaving and any other Beaving before or abaft the Beam.

Table H.

\bigcirc		\bigcirc		\bigcirc		\bigcirc		\bigcirc	
35	70	45	I•00	55	1.43	65	$2 \cdot 14$	75	3.73
36	73	46	1.04	56	1.48	66	2.25	76	$4^{\circ} \mathrm{OI}$
37	75	47	1.07	57	I-54	67	$2 \cdot 36$	77	$4 \cdot 33$
38	$\cdot 78$	48	I'II	58	I 60	68	2.48	78	4.70
39	.81	49	1. 15	59	I. 66	69	2.61	79	5.14
40	$\cdot 84$	50	1.19	60	1.73	70	2.75	80	$5 \cdot 67$
41	$\cdot 87$	51	$1 \cdot 23$	61	1.80	71	$2 \cdot 90$	8 I	$6 \cdot 31$
42	-90	52	1.28	62	I-88	72	3.08	82	712
43	$\cdot 93$	53	1-33	63	I.96	73	$3 \cdot 27$	83	$8 \cdot 14$
44	$\cdot 97$	54	I. 38	64	2.05	74	3.49	84	9.51

Rule.-Enter the table above with the number of degrees that the object is on the bow, and take out the factor given in the table abreast it. This factor multiplied by

Fig. 4.
 the run in the interval between the bearing on the bow and the bearing of the object when abeam will give the distance off when abeam.

Example. - A lighthouse is observed 70° on bow, ship's speed ro m ., and interval in time to beam bearing 48 min .
$48 \mathrm{~min} .=0.8$ of an hour $\times 10 \mathrm{~m} .=8 \mathrm{~m}$. for the run in the interval.

Against 70° in the table is 2.75 , which $\times 8 \mathrm{~m}$. gives 22 m ., the distance off when abeam; or by traverse-table, enter with 70°, and with distance run 8 m . in D. lat. column, gives distance off in dep. column $=22 \mathrm{~m}$., and 23.4 m . the distance off when first bearing was taken.

Chart Methods.

Problem r.-To find the Distance from an Object by Two Bearings, and the Run in Interval between them.

Rule.-Lay off the first bearing and the ship's course, then lay off the last bearing, and measure off the distance run on the course since the first one was taken; through this distance draw a line parallel to the first bearing: the point of intersection between this line and the second bearing should be the ship's position.

Example (see Fig. 5).-A ship steering from A towards B on a N. $20^{\circ} \mathrm{E}$. course sights a point bearing N. 65° E. ; after running on this course for 18.5 m . the point bears S. 70° E. Required the distance off at second bearing by plotting on the chart.

Lay oft the course N. 20° E., also the bearing of P. N. 65° E.; then measure 18.5 m . on the line of course from this bearing, and make a mark; through this mark draw a line parallel to the bearing N. 65° E.; then the intersection of this line with the second bearing will be the ship's position, which gives 18.5 m . as the distance off.

Problem 2.-To find the Distance from an Object by Two Bearings of Differen Objects with Run in Interval between the Two Bearings.
This problem is exactly the same in principle as the "Sumner" with two sun observations, and the writer when at sea often found it of great practical use, though he never found other navigators make use of the method (except after he had drawn their attention to it), nor is the method presented, so far as he is aware, in other nautical works. It is now given occasionally in New Zealand in the examination of masters and mates in the chart-examination problems.

Rule.-The rule for problem 2 will be exactly the same as for problem 1.
Example (see Fig. 6).-A ship steering from C towards D on a N. $45^{\circ} \mathrm{E}$ course sights a point N. bearing S. 15° E.; after running on this course for 15.6 m . point R is sighted bearing $\mathrm{N} .85^{\circ} \mathrm{E}$. Required the distance from R at second bearing.

Lay off the course N. 45° E. from C to D, also the bearing of N. S. 15° E.; then measure 15.6 m . on the line of course from this bearing, and make a mark; through this mark draw a line parallel to the bearing S. $15^{\circ} \mathrm{E}$.; then the intersection of this line with the second bearing will be the ship's position-viz., S. 85° W. 17.2 m . from point R.

This problem may often be used with advantage at night-time with two lights when one light is sighted shortly after the other one has been lost; or where the simultaneous bearing of two lights or two points makes too large an angle for a good fix. It will also be found useful in foggy weather in close navigation, where one near point after another may be just seen for a few minutes and then obscured
again. The bearing of these points in combination (the first bearing having been moved forward for the run in interval) will then generally give a good fix.

The distances in these plottings have been taken from the diagonal scale below the figures; the opportunity having been taken to draw attention to this handy useful scale, which any one can easily make for himself.

Explanation of the Diagonal Scale and Protractor.

In the diagonal scale, the shorter lines dividing the length into equal portions (units) are crossed perpendicularly by to others extending the length of the scale. The end division, or unit, has its upper and lower edge subdivided into io equal parts, and diagonal lines are drawn from the beginning of one division to the cnd of the opposite one. This effects a further subdivision by io, as an example will show. To take the No. 18.5 from this scale by the compasses: Set one foot at I , and the other at the 8th line on the lower edge of the subdivided unit; this gives 18. Now follow up the diagonal line at the 8 to the 5 th line of the long parallel lines, and fixing the point there, extend the other point to meet the line which rises at I , crossing the breadth; and the number is taken.

The same process serves for tens and units as for units and tenths, and so on ; thus the No. 185 or 185 is taken as above.

To lay off or measure an angle by the marked divisions. Place the middle point of the scale or ruler (which is strongly marked) on the meridian line, and, keeping it there, incline the ruler to the required angle, which is shown by the graduated scale of degrees coinciding with the upper part of the meridian line. Field's parallel ruler is marked in this way, and is very useful in laying off true bearings.

Caution. - The distance found by any of these methods from bearings with a run interval must only be considered as an approximation, as they depend on the course and distance run in interval having been made good. If, therefore, a current is known to exist, allowance must be made for it.

Cross-bearings of two (or, better still, three) prominent points will give a more certain position, provided the error of compass is known, and the angles are neither too large nor too sma 11 for a good " fix," and the points are accurately laid down on the chart ; but every careful man will have at least two strings to his bow, and the position as found by run and interval will be a good check against possible errors. I think every one will admit their liability to such mistakes as reading off the wrong bearing, or applying the variation the wrong way, \&c., and for this reason it is therefore always better to take three cross-bearings, when such are available.

Examples in the use of all these methods of finding the position of the ship by bearings, either with or without the chart, are given in the New Zealand examinations of either the home or foreign-going candidates for masters and mates.

The Compass and Pelorus.

Some owners do not seem to realize the value of having a proper compass, with a suitable position selected for it in the ship. Dozens of New Zealand ships would but for the Adjusters' reports be without any proper appliances for taking bearings, and many of the compasses are so closely surrounded by iron that no deviation card can be depended on. I would like here to point out the value in coastal navigation of having a Pelorus, which can be shifted to a stand made for it from one side of the bridge to the other, as is needed. The instrument is generally made of brass, being a dumb compass card without needles. It is a convenient plan to have the Pelorus set to the true geographical course, or else the magnetic course the ship is steering; then any bearings taken by it will be true, or magnetic, as the case may be, and free from the trouble of applying the error or variation of the compass. It may also be set to zero, N. or S., and the angle on the bow will then be readily read off for greater convenience in finding the distance off Foints, as in the problems which have been here mentioned.

Warning.-Do not use the Pelorus for long-distance bearings, such as Mount Egmont, 50 miles off.

Lecky's Danger-angle Table.

When mentioning up-to-date methods of finding the ship's position at sea, Lecky's splerdid little book, "The Danger-angle and Off-shore Distance Tables," ought not to be passed over. The book is in two parts: The tables in Part I comprise heights from 50 ft . to $\mathrm{I}, 100 \mathrm{ft}$., and distances from a cable's length up to five miles; they can only be used in connection with objects lying on or within the bounding line of the observer's horizon; for objects beyond the horizon Part II has been calculated. The tables in Part II comprise heights from 200 ft . to 18 ,000 ft., and distances from five miles up to roo miles. They are intended to be used with objects lying beyond the horizon, and the observed altitude must be corrected after the index has been applied by subtracting the true depression corresponding to the height of the eye, and also one-twelfth of the roughly estimated distance from the mountain. Under the result as a corrected altitude, and abreast the height of the summit in the left-hand margin of the tables, will be found a very close approximation to the true distance. This distance, combined with a bearing of the mountain. fixes the ship's position with a minimum of labour. For an example, suppose the peak of Mount Egmont to be observed from the ship's deck. 25 ft . above the water, bearing east magnetic,

SUPPLEMENTARY

EX-MERIDIAN TABLES.

EXPLANATION OF TABLES.

Ex-meridian Table No. 1.

The factor under the heading of Reduction abreast the A and B Correction is the reduction at 1 min. from the meridian to apply to an altitude to reduce it to the meridian altitude.

Instructions concerning the Use of Table and Rule for Application.

Multiply the factor corresponding to the A and B correction under the heading of Reduction by the number of minutes and decimals in the hour-angle from the meridian, which then gives the correction to apply to the observed altitude to reduce it to the meridian altitude. Add this correction to the observation taken near the upper meridian passage, and subtract the correction when observation is taken near the meridian below the Pole.

This reduction will not be more than $\frac{1_{2}^{\prime}}{}{ }^{\prime}$ in error when the hour-angle is less than that shown in the accompanying table immediately following, which shows the limits within which it is safe to use the table without appreciable error.

The table gives the correct reduction at r m . from the meridian for any azimuth up to 45° from the meridian, or the equivalent $\mathrm{A} \pm \mathrm{B}$ correction in latitude o°, and has been rigorously calculated by seven figure logarithms from the following formulæ:-

> Cot. Z.D. $=\sin . \operatorname{azim} \cdot \cdot \cot$. H.A. mm. Tan. decl. $=\sin . \mathrm{H.A.A} \mathrm{~m} . \cdot \cot$ azim. Cot. az. $=\mathrm{A} \pm \mathrm{B}$ correction.

Table showing Limits of Reduction Tables No. i and No. 2.
These two tables show at a glance the hour-angles at which it is safe to use Reduction Tables No. I and No. 2, so that with the correct time the reduction will not be in error more than $\frac{1^{\prime}}{2}$. It must, however, be borne in mind that the resulting latitude is the latitude corresponding to the meridian of longitude used in the deduction of the time. The A and B correction through Table C readily gives the azimuth, which subtracted from 90° gives the true line of position for a Mercator Chart; or through Table C^{2} it gives at once the position-line for use with a plane chart. This position-line must be laid down from the meridian of the D.R. longitude used in determining the time.

When the H.A. is on, or four or five minutes less than the limit given in the table, $0 \cdot 4^{\prime}$ may be added to or subtracted from the reduction calculated by Ex-meridian Tables No. I and No. 2, according as the letter against the minutes is g or l. If the H.A. is more than 5 m . less than the limits in the table the reduction may be considered as correct, and in either case the resulting reduction would seldom be as much as $\frac{1}{1^{\prime}}$ in error.

When the letter n is marked after the minutes in the table the resulting reduction will seldom be as much as $\frac{1}{4}^{\prime}$ in error. When the altitude is over 75° both time and altitude should be used in the determination of the azimuth, and the A and B correction corresponding to this azimuth should be used in finding the reduction. See examples on pages $105,128,158,160$, \&c.

Ex-meridian Table No. 2.

The instructions and rules relating to this table are exactly the same as for Table No. r.

Formula used in the calculation:

$$
\text { Reduction for } \mathrm{I} \min .=\frac{15^{\prime}}{2[\mathrm{~A} \pm \mathrm{B}]}
$$

Note.-This table is entirely independent of Table No. r, which will generally give the best results and widest limit. Table No. 2 is given on account of the wide limits of reduction which it gives with high declinations and low latitudes; and the same wide limits may be obtained when in high latitudes, and low declinations by transposing latitude for declination, and vice versa. A glance at the tables showing the limits of the two ex-meridian tables will at once show whether it is most advantageous to use No. r or No. 2 Ex-meridian Tables. (See example page 163.)

Table M.

Showing the Error in Latitude due to an Error of 4 Seconds in Time or 1^{\prime} of Longitude.

This table (pages 156 and 157) shows at a glance the error which would result in the latitude from any single observation out of the meridian for every 4 sec . of error in the time.

When two observations are taken the factors given in this table facilitate the problem of finding the ship's position from two ex-meridian observations, or one chronometer observation, and an ex-meridian (see page 95).

Formula used in the calculation : Lat. error $=$ Tan. azim. cos. lat.

Table showing the Hour=angle Limits within which the Error of the Reduction calculated by Ex=meridian Table No. 1 will not exceed 0.5 .

					LATIT	UE	AND 1	DECLIN	fation	OF	A ME	AM				
$\stackrel{1}{5}$	Declination.															
	0	2°	4°	6°	8°	10°	15°	20°	25°	30°	35°	40°	45°	50°	60°	70°
-	M.	M.	M.	M.	M.	M.	M.	M.	M.	M.	M.	M.	M.	M.	M.	M.
-		$8 n$	$16 n$	$24 n$	$32 n$	40 g	42 g	44 g	46 g	48 g	51 g	538	55 g	58 g	63 g	71 g
1	$4 n$	4^{n}	$12 n$	$20 n$	$28 n$	35 g	39 g	42 g	45 g	47 g	50 g	51g	55 g	56 g	62 g	71 g
2	$8 n$		$8 n$	$16 n$	$24 n$	32 g	36 g	40 g	438	46 g	48 g	50 g	53 g	56 g	62 g	709
3	$12 n$	4^{n}	4^{n}	$12 n$	$20 n$	28 g	35 g	38 g	42 g	46 g	48 g	498	52 g	56 g	62 g	69 g
	$16 n$	$8 n$..	$8 n$	$16 n$	24 g	34 g	35 g	41 g	45 g	478	$48 g$	50 g	55 g	62 g	68 g
5	$20 n$	$12 n$	$4 n$	$4 n$	$12 n$	$20 n$	319	35 g	40 g	449	46 g	48 g	50 g	54 g	62 g	68 g
6		$16 l$	$8 n$	\ldots	$8 n$	$16 n$	30 g	35 g	39 g	43 g	46 g	$4^{8 g}$	50 g	53 g	6 cg	67 g
8		20 l	$16 l$	$8 n$	\cdots	$8 n$	29 g	34 g	378	41g	44 g	478	48 g	52 g	60 g	66 g
	$25 l$	$22 l$	17 l	14	81		$20 n$	$34 g$.	36 g	39 g	42 g	448	48 g	52 g	57 g	66 g
	261	$22 l$	201	17	$13 l$	$8 l$	$12 l$	35 g	35 g	37 g	40 g	44 g	46 g	50 g	57g	66 g
	271	$25 l$	$22 l$	2 Ol	17%	$\mathrm{I}_{4} l$		181	40 g	36 g	39 g	43 g	44 g	$48 g$	55 g	65 g
	281	$27 l$	$24 l$	$23 l$	202	$19 l$	11 l		$16 l$	51 g	39 g	42 g	42 g	46 g	538	63 g
	301	281	271	$26 l$	$24 l$	$22 l$	$17 l$	10 l		$13 l$	29 l	45 g	43 g	46 g	51 g	61 g
	$32 l$	301	291	$28 l$	262	$25 l$	$2 \mathrm{I} l$	$16 l$	$9 l$		$12 l$	271	54 g	46 g	48 g	59 g
	$34 l$	$32 l$	3 Il	30 l	$28 l$	$27 l$	$24 l$	$20 l$	$15 l$	ol		$13 l$	$26 l$	60 g	47 g	57 g
	$35 l$	$34 l$	331	$32 l$	$3 \mathrm{l} l$	301	$27 l$	$23 l$	201	16l	$10 l$	\cdots	I 17	262	$5 \mathrm{c} g$	56 g
	$38 l$	$36 l$	$34 l$	34 l	$32 l$	$32 l$	301	$27 l$	$24 l$	$2 \mathrm{I} l$	$16 l$	1 cl		$13 l$	65 g	54 g
	$39 l$	37 l	351	$35 l$	$34 l$	$35 l$	331	32 l	$28 l$	$25 l$	2 Il	$16 l$	± 1		301	54 g
	40 l	40 l	$38 l$	371	371	371	$36 l$	$34 l$	32 l	291	$25 l$	2 Il	17	$12 l$	${ }_{15}{ }^{\text {l }}$	59 g
			4 Ol	391	391	4 Ol	39 l	391	351	322	291	261	$23 l$	19 l		481
INFERIOR TRANSIT.																
NOTE.							Declination.									
							25°	30°	35°	40°	45°	50°	55°	60°	65°	70°
g signifies that true reduction is greater than tabular reduction.						\bigcirc	M.	M.	M.	M.	M.	M.	M.	M.	M.	M.
						25										88 g
						30							\cdots		103 g	959
l signifies that true reduction is less than tabular reduction.						40							8 l	I 1001	112 g	1078
						45						$68 i$	75'	S6l	IIcl	170 g
						5					601	$65 l$	708	$80!$	9 g	$120 l$
n signifies that there is						55				$56 l$	601	$63 l$	681	$74 l$	861	$105 l$
						60			$54 l$	$57 l$	$59 l$	$62 l$	671	7 O	$78 l$	$92 l$
no error as great as o.5' within limits of hour-						65		$48 l$	$54 l$	$55 l$	$59 l$	6 ± 1	$65 l$	$69 l$	$74 l$	$84 l$
						70	$53 l$	$53 l$	$55 l$	$57 l$	59 l	601	622	$63 l$	7 Ol	$79 l$
angle which give $\mathrm{A} \pm \mathrm{B}$ greater than I ${ }^{\circ} \mathrm{ooo}^{\prime}$						75	$54 l$	$54 l$	$56 l$	581	601	$6 \mathrm{I} l$	62 l	$66 l$	7 O	$78 l$
						80	$58 l$	591	601	$62 l$	$63 l$	$64 l$	661	$68 l$	$72 l$	$75 l$
						8	661	681	691	7 O	$72 l$	722	$74 l$	$74 l$	$76 l$	781
LATITUDE AND DECLINATION OF CONTRARY Names.																
	Declination.															
$\mathfrak{9}$	$0{ }^{\circ}$	2°	4°	$6{ }^{\circ}$	8°	10°	15°	20°	25°	30°	35°	40°	45°	50°	60°	70°
	M.	M.	M.		M.	M.	M.	M.	M.	M.	M.	M.	M.	M.	M.	M.
1		$12 n$	$20 n$	$28 n$	$36 n$	42 g	45 g	$45 g$	48 g	50 g	52 g	55 g	578	598	62 g	719
2	$8 n$	$16 n$	$24 n$	$32 n$	$40 n$	448	48 g	48 g	50 g	52 g	54 g	56 g	58 g	59 g	63 g	72 g
3	$12 n$	2 Cn	$28 n$	$36 l$	$44 l$	$50 n$	52 g	53 g	54 g	54 g	55 g	578	58 g	60 g	63 g	73 g
4	$16 n$	24^{n}	$32 l$	40 Ol	$48 l$	$56 n$	56 g	58 g	56 g	56 g	58 g	58 g	58 g	61 g	64 g	74 g
5	$20 n$	$26 l$	$32 l$	39 l	$44 l$	6 cl	$80 n$	62 g	598	598	598	58 g	60 g	62 g	67 g	748
6	$24 l$	281	$32 l$	$38 l$	$4 \mathrm{I} l$	$48 l$	$85 n$	72 g	62 g	58 g	58 g	60 g	64 g	64 g	68 g	75 g
8	$24 l$	$30 l$	31 l	34 l	4 ol	$44 l$	$60 l$	$112 n$	76 g	68 g	66 g	63 g	64 g	66 g	69 g	76 g
10	$25 l$	$29 l$	32 l	$34 l$	$39 l$	$40 l$	$52 l$	$64 l$	115	80 g	72 g	68 g	68 g	70 g	70 g	76 g
	267	$29 l$	32 l	$34 l$	$36 l$	401	$46 l$	$58 l$	$74 l$	120 g	88 g	74 g	74 g	71 g	72 g	778
15	271	3 l	331	$34 l$	$36 l$	391	$48 l$	$53 l$	Col	$74 l$	$140 n$	98 g	80 g	76 g	74 g	80 g
20	281	$32 l$	$32 l$	351	$36 l$	381	$44 l$	$49 l$	$54 l$	601	722	90l	130 n	roog	90 g	8 .
25	30 l	$34 l$	$34 l$	35 l	371	39 l	$43 l$	$46 l$	50l	$56 l$	$62 l$	7 Ol	861	$150 l$	90 g	
30	$32 l$	33 l	$35 l$	371	371	39 l	$43 l$	$46 l$	$49 l$	$53 l$	$6 \mathrm{I} l$	661	$72 l$	$86 l$		
	342	$35 l$	361	$38 l$	39 l	4 cl	$42 l$	$45 l$	$48 l$.	$52 l$	$56 l$	62 l	$69 l$	$78 l$		
	351	361	381	$39 l$	4 Ol	4 ol	$42 l$	$44 l$	$48 l$.	$52 l$	$56 l$	6 cl	$65 l$			
45	$38 l$	381	39 l	39 l	41 1	$42 l$	44	$46 l$	49 l	$52 l$	$55 l$	$56 l$				
50		40 l	$4{ }^{\circ} \mathrm{l}$	$4 \mathrm{I} l$	$4 \mathrm{x} l$	$43 l$	$45 l$	$47 l$	$49 l$	$52 l$	$55 l$					
	40 l	$4 \mathrm{I} l$	$42 l$	$42 l$	$43 l$	$44 l$	$46 l$	481	49 l	$52 l$						
	$42 l$	42 l	44 l	44 l	$45 l$	$45 l$	$46 l$	$48 l$	$50 l$.		

145

EX=MERIDIAN TABLE No. 1.
Showing the Reduction at I min. from the Meridian corresponding to the A and B Corrections given on Pages 12 to 37 of this Work.

A and B Cor.	Reduction.	$\begin{gathered} A \text { and } B \\ \text { Cor. } \end{gathered}$	$\begin{aligned} & \text { Reduc- } \\ & \text { tion. } \end{aligned}$	$\begin{gathered} A \text { and } B \\ \text { Cor. } \end{gathered}$	Reduction.	$\begin{aligned} & \text { A and } \\ & \text { Cor. } \end{aligned}$	Reduction.	$\begin{aligned} & \mathrm{A} \text { and } \mathrm{B} \\ & \text { Cor. } \end{aligned}$	Reduction.	$\left\lvert\, \begin{gathered} A \text { and } B \\ \text { Cor. } \end{gathered}\right.$	Reduction.	$\begin{gathered} A \text { and } B \\ \text { Cor. } \end{gathered}$	Reduc tion.
			18		5.647	10	5•396	I. 280	5.165	50	I		
	$6 \cdot 209$	I.071	$5 \cdot 914$	IT4	$5 \cdot 643$	I 211	$5 \cdot 393$	1.	$5 \cdot 162$	I	$4 \cdot 948$		
I $\cdot 002$	$6 \cdot 205$	$\mathrm{I} \cdot \mathrm{O}$	5.91	I-I 4	$5 \cdot 639$	I 212	$5 \cdot$	I 282	$5 \cdot 158$	I $\cdot 352$	$4 \cdot 945$	1.	6
1.	$6 \cdot 20$	I 073	5.906	I-143	5.636	I 213	$5 \cdot 3$	I 283	$5 \cdot 155$	- 353	$4 \cdot 942$	I. 423	44
1.004	6.196	I.074	5.902	I-144	5.632	I 214	$5 \cdot 382$	1-284	$5 \cdot 152$	I-354	4.939	I-424	$\cdot 741$
I $\cdot 0005$	6.191	I.075	$5 \cdot 898$	I-145	$5 \cdot 628$	I. 215	$5 \cdot 379$	I 285	5•I49	1-355	4.936		$4 \cdot 738$
1.	б.187	I 076	5.894	I-146	$5 \cdot 624$	I 216	$5 \cdot 376$	I 286	$5 \cdot 146$	I. 356	$4 \cdot 933$	I. 426	$4 \cdot 735$
I	$6 \cdot 183$	I.077	5.890	I-147	$5 \cdot 621$	I.217	$5 \cdot 372$	I. 287	5•143	I $\cdot 357$	4.930	1.427	33
	$6 \cdot 178$	I.078	5.886	I-148	$5 \cdot 617$	I.218	$5 \cdot 369$	I \cdot	$5 \cdot 140$	I $\cdot 358$	4.927	I.428	-730
I $\cdot 009$	$6 \cdot 174$	I 079	5.882	I-149	$5 \cdot 613$	-2	$5 \cdot 365$	I-289	5•136	I 359	4.924	I.429	-727
I 0 Io	$6 \cdot 170$	I.080	$5 \cdot 878$	I-I 50	$5 \cdot 610$	I 222	$5 \cdot 362$	I 290	5•133	I 360	4.921	I 430	
1	$6 \cdot 165$	I 0081	5.874	I-15 ${ }^{\text {I }}$	$5 \cdot 60$	I-221	$5 \cdot 358$	I	$5 \cdot 130$	I. 36	$4 \cdot 918$	I-43I	$4 \cdot 722$
I	6.16I	I 0		I-152	$5 \cdot 60$	I $\cdot 222$	$5 \cdot 355$	1.282	$5 \cdot 127$	I. 362	$4 \cdot 915$	I. 432	$4 \cdot 719$
I OI 3	$6 \cdot 157$	I 0083	5.866	I-153	$5 \cdot 599$	I 223	$5 \cdot 352$	I-293	$5 \cdot 124$	I. 363	$4 \cdot 912$	1.433	$\cdot 716$
I OIM 4	$6 \cdot 152$	I 084	5.862	I 154	5•595	I 224	$5 \cdot 348$	I 294	$5 \cdot 121$	I 364	4.910	r 434	4
I.OI 5	6.148	I 085	$5 \cdot 858$	I-155	5.591	I 225	$5 \cdot 345$	I 295	$5 \cdot 11$		07	I 435	$4 \cdot 711$
I .	6.I 44	I $\cdot 086$	$5 \cdot 854$	I•I5 5	$5 \cdot 58$. 226	$5 \cdot 342$	I 296	5.115	I $\cdot 366$	$4 \cdot 904$	I 436	$4 \cdot 708$
roif	$6 \cdot 139$	1.0	$5 \cdot 850$	I-157	$5 \cdot 584$	I 227	$5 \cdot 338$	I 297	5-III	I. 367	$4 \cdot 901$	I 4.37	$4 \cdot 705$
1.	6.135	I-088	$5 \cdot 846$	I-158	5.580	I 222	$5 \cdot 335$	I 298	$5 \cdot 108$	I $\cdot 368$	$4 \cdot 898$	I 43	$4 \cdot 703$
I.OI9	$6 \cdot 131$	I•089	$5 \cdot 842$	I-159	5.577	I 222	5*33I	I 299	$5 \cdot 105$	I 369	$4 \cdot 895$	I 439	o
1.	$6 \cdot 127$	I 090	5.838	I $\cdot 160$	$5 \cdot 57$	I 2	$5 \cdot 328$	I $\cdot 300$	$5 \cdot 102$	1-370	$4 \cdot 892$	I 44°	8
I	$6 \cdot 1$	I 091	5.834	I•16I	$\cdot 5$	I 2	$5 \cdot 325$	I 301	$5 \cdot 099$	I.371	$4 \cdot 889$	I.44 ${ }^{\text {I }}$	4.695
I.	6	I 092	5.830	I-162	$5 \cdot 56$	I. 232	5.321	I 302	$5 \cdot 096$	I $\cdot 372$	$4 \cdot 886$	I. 442	$4 \cdot 692$
1.023	6-114	I 093	5.826	-163	$5 \cdot 562$	I $\cdot 233$	$5 \cdot 318$	1.303	5.093	- 373	4.883	I 443	$4 \cdot 690$
I 024	6.110	I 094	$5 \cdot 823$	I-164	5.559	I-23	$5 \cdot 315$	I 30	5.089	1-374	$4 \cdot 88 \mathrm{I}$	I 44	7
I. 025	$6 \cdot 105$	I 0095	5.819	I.I	$5 \cdot 555$	I. 235	5.311	$1 \cdot 3$	$5 \cdot 086$	1-375		I 445	
I.	$6 \cdot 101$	I -096	$5 \cdot 815$	I-166	$5 \cdot 551$	I $\cdot 236$	$5 \cdot 3$	I-306	$5 \cdot 083$	I. 376	$4 \cdot 875$	I. 446	$4 \cdot 682$
I. 027	6.097	I.097	5.8II	I•167	$5 \cdot 548$	I-237	5•305	1.307	$5 \cdot 080$	1-377	$4 \cdot 872$	I 44	$4 \cdot 679$
I.028	$6 \cdot 093$	I-098	$5 \cdot 807$	168	. 544	I 23	5-301	I•3	5.077	I $\cdot 37$	$4 \cdot 869$	I-448	$4 \cdot 676$
1.0	6.089	r 099	$5 \cdot 803$	I.169	$5 \cdot 541$	I-239	5.298	I-3	$5 \cdot$	$1 \cdot 37$	86	I.449	$4 \cdot 674$
I 1 O3	$6 \cdot 084$	I•IOO	5.799	-170	5.537	I-240	5.295	$1 \cdot 3$	5.07	$1 \cdot 380$	$4 \cdot 864$	I. 45°	$4 \cdot 671$
1.03	6.080	I $\cdot 101$	5.795	I-171	$5 \cdot 533$	I-24I	$5 \cdot 291$	I.3I	$5 \cdot 06$	$1 \cdot 381$	$4 \cdot 86 \mathrm{I}$	I.45 1	$4 \cdot 668$
1.032	$6 \cdot 076$	I-102	5.791	I-172	5.530	I-242	5.288	I-31	$5 \cdot 065$	1-382	$4 \cdot 858$	I 4.452	$4 \cdot 666$
I 0	6.072	$\mathrm{I} \cdot \mathrm{IO}_{3}$	$5 \cdot 787$	r. 173	-526	I 2	$5 \cdot 285$	$1 \cdot$	5.062	I 383	$4 \cdot 855$	I 453	$4 \cdot 663$
I	6.067	I.IO	$5 \cdot 784$	I-174	$5 \cdot 5$	$\mathrm{I} \cdot 2$	$5 \cdot 28$	1-314	5.059	I 384	$4 \cdot 85$	1-454	
I.035	$6 \cdot 063$	I		-1775	5.519	I 245	5.278	I.315	5.056	I-385	$4 \cdot 849$	I.455	$4 \cdot 658$
I.036	$6 \cdot 059$		$5 \cdot 776$	I-176	5.515	I-246	5.275	1-316	$5 \cdot 053$	I 386	$4 \cdot 847$	I 45	$4 \cdot 655$
I.037	$6 \cdot 055$	I-107	$5 \cdot 772$	I-177	5.512	I 2	$5 \cdot 272$	I. 31	5.049	1-387	$4 \cdot 844$	I 457	$4 \cdot 652$
I.038	$6 \cdot 050$	1-108	5.768	I•17	5.508	I-2	$5 \cdot 268$	I-3	$5 \cdot 046$	I 388		I 45	4.650
1.03	$6 \cdot 046$	I-109	5:764	I-179	$5 \cdot 505$	1-249	$5 \cdot 265$	I-319	5.043	I-389	4.838	I 459	$4 \cdot 647$
I. $04{ }^{\circ}$	$6 \cdot 042$	I	$5 \cdot 760$	I	$5 \cdot 501$	1.250	$5 \cdot 262$	I. 320	5.040	I $39{ }^{\circ}$	4.835	I. 460	$4 \cdot 644$
I.O4I	$6 \cdot 038$	I-III	5.757	181	$5 \cdot 497$	1-25I	5.259	$1 \cdot$	$5 \cdot 037$	I-39	+.833	I 461	$4 \cdot 642$
$\mathrm{I} \cdot \mathrm{O}_{4}$	$6 \cdot 033$	I-112	5.753	I-182	5*494	1-252	5.255	1.322	5.034	I 392	4.830	1.462	$4 \cdot 639$
1.0	$6 \cdot 029$	I-II	5•749	I-183	$5 \cdot 490$	I-253	$5 \cdot 252$	1.323	$5 \cdot 03$	I-393	4.827	I. 463	$4 \cdot 637$
$\mathrm{r} \cdot \mathrm{O} 44$	$6 \cdot 025$	I-II4	$5 \cdot 745$	I-184	5.487	I 254	5.249	I. 324	$5 \cdot 0$	I-394	4.824	$\mathrm{I} \cdot 464$	$4 \cdot 634$
I.045	$6 \cdot 021$	I-II I-16	$5 \cdot 741$	I-185	5.483	I. 255	5.246	I-325	5.025	I-395	4.82 I	I-465	4.631
I. 046	$6 \cdot 017$	I-116	$5 \cdot 737$	I•186	$5 \cdot 480$	I $\cdot 256$	$5 \cdot 242$	I $\cdot 326$	$5 \cdot 022$	1-396	$4 \cdot 819$	I-466	4.629
I.047	$6 \cdot 012$	I-117	$6 \cdot 734$	I-187	5.476	I 257	$5 \cdot 239$	I. 327	$5 \cdot 019$	I 397	$4 \cdot 816$	I.467	$4 \cdot 626$
I. 048	$6 \cdot 0$	I-II 8	5.730	I-188	5.473	I 258	$5 \cdot 236$	I-328	5 -OI	I-398	4.813	I. 468	4.624
I.049		I•II9	$5 \cdot 726$	I-189	5.469	I 259	5.233	I. 329	$5 \cdot 013$	I-399	$4 \cdot 810$	I-469	$4 \cdot 621$
I.050	$6 \cdot 000$	I-120	$5 \cdot 722$	I-190	$5 \cdot 466$	I. 260	5.229	I. 330	$5 \cdot$ о10	I 400	$4 \cdot 807$	1.470	+ 618
I.051	5.996	I-121	5.718	I-I9I	$5 \cdot 462$	I 261	5.226	I 331	$5 \cdot 007$	I.40I	$4 \cdot 805$	1.471	$4 \cdot 616$
I.052	5.992	I•122	$5 \cdot 714$	I•192	5.459	I $\cdot 262$	5.223	I 332	$5 \cdot \mathrm{OO}_{4}$	I 402	$4 \cdot 802$	1.472	4.613
I.053	5	I	$5 \cdot 711$	I - 193	$5 \cdot 455$	1.263	,	I-333	5 .001	I 403	4.799	I 473	4.611
I 054	$5 \cdot 983$	I-I24	5•707	I•194	$5 \cdot 452$	I-264	5.216	I 334	4 •998	I.404	$4 \cdot 796$	I 474	$4 \cdot 608$
r 055	$5 \cdot 979$	I-125	$5 \cdot 703$	I-195	$5 \cdot 448$	I $\cdot 265$	5.213	I $\cdot 335$	$4 \cdot 995$	I 405	$4 * 793$	I 475	$4 \cdot 605$
I.056	$5 \cdot 975$	I-I26	5.699	1-196	$5 \cdot 445$	I 266	$5 \cdot 210$	I-336	$4 \cdot 992$	I 406	4.790	I. 476	$4 \cdot 603$
1.057	$5 \cdot 971$	I	$5 \cdot 696$	I-197	$5 \cdot 44 \mathrm{I}$	1.267	$5 \cdot 207$	1-337	$4 \cdot 989$	I 407	$4 \cdot 788$	I 477	$4 \cdot 600$
1.0	$5 \cdot 967$		5	1-98	$5 \cdot 438$	I	5.203	I-338	4.986	I 408	4.785	I 478	$4 \cdot 598$
I.059	5.963	I-129	$5 \cdot 688$	I.199	5.434	I-269	$5 \cdot 200$	I-339	4.983	1.409	4.782	I.479	4.595
I $\cdot 060$	5.959	I-130	$5 \cdot 684$	200	$5 \cdot 43$ I	I 278	5•197	1-340	$4 \cdot 980$	1.410	$4 \cdot 779$	I 480	$4 \cdot 593$
I 061	5.955	I-13I	5.681	I 201	$5 \cdot 427$	I 271	5•194	I $34{ }^{1}$	$4 \cdot 977$	I.411	4.776	I-481	4.590
1.	5.951	I-132	$5 \cdot 677$	I 202	$5 \cdot 424$	$1 \cdot 272$	5.190	I 34^{2}	$4 \cdot 974$	I.412	4.774	I. 482	$4 \cdot 588$
I.063	$5 \cdot 9$	I•I33	$5 \cdot 673$	I. 203	5.421	I. 273	5.187	1-343	$4 \cdot 971$	1.413	4.771	I 483	4.585
$I \cdot$		I'I34	$5 \cdot 669$	1.204 I 205	$5 \cdot 417$	I 2774	$5 \cdot 184$	I 344	$4 \cdot 968$	I.414	$4 \cdot 768$	I 484	4.582
I^{\prime}		I $\cdot 135$ - 136	$5 \cdot 666$	I 205	5.414	I 275	$5 \cdot 181$	I 345	$4 \cdot 965$	I.415	4.765	1.485	$4 \cdot 580$
\| I •066	5.934	I-I36	$5 \cdot 662$	I-206	5.410	I. 276	5•178	I $\cdot 346$	$4 \cdot 962$	I.416	$4 \cdot 763$	1.486	$4 \cdot 577$
$\begin{aligned} & \mathrm{I} \cdot 067 \\ & \mathrm{I} \cdot 068 \end{aligned}$	5.930 $5 \cdot 926$	I-1 37 I 138	$5 \cdot 654$	I. 207 I 208	5.407 5.403	I 2777 1.278	5.174	I $\cdot 347$ - 34	$4 \cdot 959$	I.417	$4 \cdot 760$	I. 487	$4 \cdot 575$
I. 068 I 069	$5 \cdot 926$ $5 \cdot 922$	I $\cdot 138$ $\mathbf{I} \cdot 139$	$5 \cdot 654$ $5 \cdot 65 \mathrm{I}$	r.208 I 209	5.403 5.400	I 2788 I 279	$5 \cdot 171$ $5 \cdot 168$	r 348 - $\cdot 349$	4.957 4.954	I-4 48 1-419	4.757 4.755	I 4888 1.489	$4 \cdot 572$ $4 \cdot 570$
1069	5.922	$1 \cdot 139$	$5 \cdot 65$	I.209	$5 \cdot 40$	1.279	5•168	I $\cdot 349$	$4 \cdot 95$	1.419	$4 \cdot 7$.	I. 489	$4 \cdot 5$

EX=MERIDIAN TABLE No. 1.
Showing the Reduction at 1 min. from the Meridian corresponding to the A and B Corrections given on Pages 12 to 37 of this Work.

A and B Cor.	$\begin{aligned} & \text { Reduc- } \\ & \text { tion. } \end{aligned}$		$\begin{aligned} & \text { Reduc- } \\ & \text { tion. } \end{aligned}$	$\begin{gathered} A \operatorname{and} B \\ \text { Cor. } \end{gathered}$	$\begin{aligned} & \text { Reduc- } \\ & \text { tion. } \end{aligned}$	$\begin{aligned} & A \text { and } B \\ & \text { Cor. } \end{aligned}$	$\begin{aligned} & \text { Reduc- } \\ & \text { tion. } \end{aligned}$	$\left\lvert\, \begin{aligned} & A \text { and } B \\ & \text { Cor. } \end{aligned}\right.$	$\begin{aligned} & \text { Reduc- } \\ & \text { tion. } \end{aligned}$	$\begin{aligned} & A \text { and } B \\ & \text { Cor. } \end{aligned}$	$\begin{aligned} & \text { Reduc- } \\ & \text { tion. } \end{aligned}$	$\left\lvert\, \begin{gathered} A \text { and } B \\ \text { Cor. } \end{gathered}\right.$	Reduction.
	4.567	1.560	4.396	I. 630	$4 \cdot 235$	I 1 ' 700	4-ó85	1. P_{70}	3.944	I. $88_{4} \mathrm{O}$		Io	89
1.49	$4 \cdot 564$	1.561	$4 \cdot 3$	I.631	4.232	$1 \cdot 701$	4.083	$1 \cdot 771$	3	$\mathrm{I} \cdot 84 \mathrm{~L}$		$1 \cdot 911$	
1.492	4.561	I.562	$4 \cdot 3$	I.632	4.230	I•702	4.081	${ }^{1} \cdot 772$	$3 \cdot 9$	I. 842		1.912	
I-49	$4 \cdot 559$	1.563		I.633	4.228	I.703	4.078	$1 \cdot 773$	3	$\mathrm{I} \cdot 843$	$3 \cdot 807$	I-913	
I.49	4.557	I.564		I.634	4	1.704	4.076	${ }^{1} \cdot 774$	$3 \cdot 9$	$\mathrm{I} \cdot 844$	$3 \cdot$	$\mathrm{I} \cdot 914$	$3 \cdot 682$
I 149	4.554	I-565	$4 \cdot$	I.635	4.22	I.705	4.074	${ }^{1} \cdot 775$	$3 \cdot 9$		$3 \cdot 8$		
I. 49	4.55	1.566	$4 \cdot 381$	$\left.\begin{array}{\|c} 1.636 \\ 1.637 \end{array} \right\rvert\,$	$\begin{aligned} & 4.221 \\ & 4.210 \end{aligned}$	$\begin{aligned} & \mathrm{I} \cdot 706 \\ & \mathrm{I} 707 \end{aligned}$	$4^{\circ} \mathrm{O} 72$	${ }^{\text {I }} \cdot 777$	$3 \cdot$		3.8	I	$3 \cdot 679$
I 4.497 I 498	4.549 4.547	+1.567	4.379 4.376	$\begin{aligned} & \text { I.637 } \\ & 1.638 \end{aligned}$	$\begin{aligned} & 4.219 \\ & 4.217 \end{aligned}$	$\begin{aligned} & 1 \cdot 707 \\ & \mathrm{r} \cdot 708 \end{aligned}$	4.070 4.068	$\begin{aligned} & \mathrm{r} \cdot 777 \\ & \mathrm{r} \cdot 778 \end{aligned}$	3.931 3.929	I $\mathrm{I} \cdot 847$	$3 \cdot 800$ $3 \cdot 798$	1.917 1.918	
1	$4 \cdot 544$	I. 569	$4 \cdot 374$	I 639	$4 \cdot 215$	1.709	4°	I-779	$3 \cdot 927$	I.849	$3 \cdot 796$	1.919	
	$4 \cdot 542$	1.570	4.371	I. 640	4.213	I.710	4.0	I.780	$3 \cdot 925$	I.850	3.794		$3 \cdot 672$
1.5	$4 \cdot 5$	$\stackrel{1}{1.571}$	4.36	${ }^{1} \cdot 641$	211	I.711		1.781	$3 \cdot$	I.851	$3 \cdot$	I.921	
	4.537	I.572	4.36	I. 642	4.208	1.712		1.782	3.	I.852	$3 \cdot 7$	I.922	
1.50		I.573	$4 \cdot 36$	I. 643	$4 \cdot 2$	I.713	4.05	I.783	3.	I.853		I. 923	
1	$4 \cdot 532$	I.574	4.36	$1 \cdot 64$	$4 \cdot 2$	$1 \cdot 714$	4.056	I.784	$3 \cdot 917$	I. 854		I. 924	$3 \cdot 665$
I	-5	1.575 1.576	$4 \cdot 36$	I.645	4.202 4.200	1.715 1.716 1	${ }_{4}^{4.054}$	I.785	$3 \cdot 915$	1.855			
	4.5	1.576	$4 \cdot 3$ 4.3		$\begin{aligned} & 4 \cdot 200 \\ & 4 \cdot 197 \end{aligned}$	${ }_{1}^{1} 171$	$\begin{aligned} & 4^{\circ 0} \\ & 4.0 \end{aligned}$	I. 7	3.	1.856 I .857	3.78 3.78 3	$\stackrel{1}{1}$	
		1.578	$4 \cdot 353$	I-648	4-195	1.718	$4^{\circ} \mathrm{O} 8$	I. 78	3.910	I.858		I -928	
1.	$4 \cdot 5$	1-579	$4 \cdot 35$	649	4.193	${ }^{1} 719$	4.04	I.789	$3 \cdot 908$	I-859	3.778	I. 929	$3 \cdot 657$
1.	4.517	I. 580	$4 \cdot 34$	I.650	$4 \cdot 191$	I.720	4.	1.790			3.777	I-930	$3 \cdot 655$
I.511	4.514	I.581	$4 \cdot 346$	I.65I	4.189	I.721	4.0	$1 \cdot 791$	$3 \cdot 9$		$3 \cdot 775$	- 1931	
1.	$4 \cdot 512$	I. 582	4.343	I.652	4.186	I 722	4.0	${ }_{1}$-792	3.90		$3 \cdot 77$	I.932	. 652
1.51	+50	1.583	4.341	I.653	${ }_{4} \cdot 184$	I.723	4.038	- 7.793	3.9				
. 51	$4 \cdot 5$	$1 \cdot 58$	4.339	I-654	4.182	I. 724	4.036	${ }^{\text {I }} 794$	$3 \cdot 89$			1.934	
$1 \cdot 5$	4.504 4.502	I.585	$4 \cdot 336$	I.655	$4 \cdot 180$ $4 \cdot 178$	${ }_{1}^{1} \cdot 725$	4.034 4.031	1.795	3.896	I. 8			$3 \cdot 647$
	4.4	1.58	4.	1.657	$4 \cdot 17$	$1 \cdot 72$	4.0		3.8	I.867	3.764		
	4.497	$1 \cdot 58$	$4 \cdot 329$	I. 658	4-174	1.	4.027	I 17	3 -89				
1.519	4.494	1-589	4.327	I.659	$4^{\cdot 171}$	1.729	4.025			I.			
1.520	$4 \cdot 492$	590	4.325	I. 660	4.169	1.730	4.023			I.870	3.	I $94{ }^{\circ}$	
	4.48	591	4.323	I.661	$4 \cdot 16$	I.731	4.0	I.801				I $94{ }^{\text {I }}$	
1.522	$4 \cdot 48$	I-592	$4 \cdot 32$	I. 662	4.165	732	4.019	. 80	3.8	1.872	$3 \cdot 7$		
I 5223	4.484	$\stackrel{\text { I } 593}{\text { I } 59}$	$4 \cdot 3$	I.663	$4 \cdot 16$	- 1733	4 4.017	r.803		$\underline{\mathrm{I}} \mathrm{I} 873$	3.7	I $\cdot 943$	34
	48	1.594	-	I. 6	$4 \cdot 16$	I 733	4.015		3.				
1	4.479	1.595	$4 \cdot 313$		4.158	I 1735	4.013			I.875	$3 \cdot 7$		$3 \cdot 630$
	4.477 4.475	1.596 1.597 1	$4 \cdot 3 \mathrm{II}$ 4.309	I.667	${ }_{4}^{4 \cdot 156}$	1.736 1.737	$4{ }_{4}^{\text {4.011 }}$	1.806 1.807	$3 \cdot 876$ $3 \cdot 874$	I 1876	$3 \cdot 746$		3.629 3.627 3
	475	1.597 1.598	$4 \cdot 309$	1.667	${ }^{\text {4. }} 154$	1.737 1.738 1	$4^{4.009}$	r.807	3.874 3.872	I 1877 1.878	$3 \cdot 7$		3.627 3.625
I. 529		I-5	$4 \cdot 304$	I.66	$4 \cdot 150$		$4 \cdot 005$	I.809					
I.530	4.467	I.6	$4 \cdot 302$	1.670	4.148	1.740	4.003	I.810	3.8		3.7	50	$3 \cdot 622$
1.5	$4 \cdot 465$	I.6	$4 \cdot 3 \mathrm{co}$	1.671	4.146	1.741		I.811			37		
1.5	$4 \cdot 462$	I. 60	4.297	1.672	4. 143	1.742	999	I.812	3.864	I.88		5	19
I.533	$4 \cdot 460$	I.603	4.295	${ }^{1} \cdot 673$	${ }^{4 \cdot 141}$	I $\cdot 743$	$3 \cdot 997$	I.813		I.883	3.7	I 953	3.617
	$4 \cdot 457$	1.604		-64		- 744							
			4.291	I.675	+ 137 $4 \cdot 135$			$\xrightarrow{1.815}$			$3 \cdot 7$		3.614
		I. 607	$4 \cdot 286$	I. 677	$4_{4} \cdot 13$	1.747	$3 \cdot 989$	I.817	$3 \cdot 855$	I.887	$3 \cdot 72$	I 995	3.610
	$4 \cdot 448$	I. 608	4.284	1.678	$4 \cdot 131$	I.748		I .81	$3 \cdot 853$	I.888	3.727	I 95	$3 \cdot 609$
	4445	1.609	$4 \cdot 282$	I.679	4-129	1.749	$3 \cdot 9$	I.819	3.85 I	I. 889	3.725	- 959	
r. 540	4.443	I.610	4.279	- 68	$4 \cdot 127$	1.750	$3 \cdot 984$	I. 8	3.849		$3 \cdot 724$	I. 960	
	4.44 I	1.611	4.277	. 68	${ }_{4}^{4 \cdot 124}$		3.982			I-891	3.722 3.720	I.961	
	仡	1 l 1.612	4.275 4.273	r.682 I. 683	$4 \cdot 122$	I.752 r r 753	3.980 3	1.822 r .823	3.846 3.844	r.892 r .893	3.720 3.718 3	I 1.962	3.602 3.601
	4433	1.614	4.270	I 688	4-118	I 754	-976	I. 824	$3 \cdot 842$	I.894	$3 \cdot 717$	I. 964	. 599
	$4 \cdot 431$	1.615	$4 \cdot 268$	I 685	4-116	I 755	$3 \cdot 974$	I. 825	3.840	I. 895	3.715	I. 965	
I 546	4.429	I.616	4.266		4-114	1.756	$3 \cdot 972$	1.826	3.838	I.896	$3 \cdot 713$	I $\cdot 966$	3.596
I.	4	1.617 1.618	$4 \cdot 264$ 4.261	I.687	${ }_{4}^{4 \cdot 112}$	I 755 - 759 r	3.970 3.968	I 1827 I .828	3.836 3.835		3.712		$3 \cdot 594$
		1-618	4.261	I.688	$4 \cdot 110$	1.759 r r	3.968 3.966	I. 828 I .829 18	3.835 3.833	I.898 r.899	3.710 3.708 3	I 1968 - 969	$3 \cdot 593$
1	22	I 619 1.620	4.259 4.257	I. 6890	4.108 4.105		3.966 3.964	I 828 . 830	3.833 3.83 S	1.899 1.900	3.708 3	1.969 1.970	3.591 3.589
51	$4 \cdot 417$	1621	$4 \cdot 255$	I•691	4-103	1.761	$3 \cdot 962$	I.831	3.829	I-901	3.70	I•971	86
1.552	$4 \cdot 414$	I. 622	$4 \cdot 252$	I•692	4-101	1.762	$3 \cdot 960$	I. 832	3.827	I 902	$3 \cdot 70$	I 972	
53	$4 \cdot 41$	I. 623	4.250	I.693	$4^{\circ} \mathrm{O}$	I.763	$3 \cdot 958$	I. 833	$3 \cdot 825$	I.903	$3 \cdot 70$	1.973	84
I $\cdot 554$	$4 \cdot 409$	1.624	$4 \cdot 248$	I. 694	4.99	I. 764	3.95	I. 834	3.824	I.904	$3 \cdot 6$	I 974	3 ${ }^{\text {a }}$
	$4 \cdot 40 \%$	I•625	$4 \cdot 246$	I 695	4.095	I.7	3.954	I. 835	3.822	I.90	3.69	I $\cdot 975$	$3 \cdot 581$
56	$4 \cdot 405$	I. 6	4.244	I.696	4.093	$\stackrel{1}{1} 766$	$3 \cdot 952$		3.8 3.818 3	I.906	$3 \cdot 69$	I.976	
1.558	400	I.627	4.241 4.239	I 1697 I .698	4.091 4 4	r 767 $\mathrm{i} \cdot 768$	3.950 3.948	I. 837 I .838	3.818 3.816	I-907 1-908	3.69 3.69	r 9797 $\mathrm{r} \cdot 978$	3.578 3.576
ז-5.59	$4 \cdot 398$		4.237	I.699		I. 769	$3 \cdot 946$	I. 839	$3 \cdot 814$	1.909	$3 \cdot 6$	I. 979	$3 \cdot 575$

EX=MERIDIAN TABLE No. i.

Showing the Reduction at Imin. from the Meridian corresponding to the A and B Corrections given on Pages 12 to 37 of this Work.

\square

	,		$3 \cdot 463$	$2 \cdot 120$	$3 \cdot 360$	0	3.263	$2 \cdot 260$	3.170	$2 \cdot 330$	3.084		
$\mathrm{I} \cdot 98 \mathrm{r}$				$2 \cdot 12$	$3 \cdot 359$	2•191	$3 \cdot 261$	$2 \cdot 261$	3-169	2			
1-982	3.570	$2 \cdot 052$	$3 \cdot 460$	2•122	$3 \cdot 357$	2.192	$3 \cdot 260$	$2 \cdot 262$	$3 \cdot 168$	$2 \cdot 3$	3.081		9
98	$3 \cdot 5$	2.053	3.459	2.123	3.3	2•193	$3 \cdot 259$	$2 \cdot 263$	$3 \cdot 16$	$2 \cdot 333$	3.8	$2 \cdot 4$	
I. 984	3.5	2.054	3.457	2.124	$3 \cdot 355$		3.25	$2 \cdot 264$	3.165	$2 \cdot 334$	3.079		$2 \cdot 996$
r. 08	$3 \cdot 5$		$3 \cdot 456$	2-125	$3 \cdot 353$	$2 \cdot 195$	$3 \cdot 2$	$2 \cdot 265$	$3 \cdot 1$	2.335	3.077	$2 \cdot 405$	$2 \cdot 995$
r.98	3.563	2.056	3.45		$3 \cdot 35$	2.196	3.255 3.253	$2 \cdot 26$	${ }_{\substack{3 \cdot 163 \\ 3.162}}$	$2 \cdot 336$	3.076	$2 \cdot 4$	2.994
I. 08	3.562 3.560	2.057 2.058	3.453	28	$3 \cdot 35$	2.197 $2 \cdot 198$	$3 \cdot 25$	2.267 2.268	3.162	2.337 2.338 2.3	3.075	2.407	
989	3.559 3.557	$\begin{aligned} & 2.059 \\ & 2.060 \end{aligned}$	$\begin{aligned} & 3.450 \\ & 3.448 \end{aligned}$	2.	3.347	$2 \cdot 199$	$\begin{aligned} & 3.250 \\ & 3.249 \end{aligned}$	$2 \cdot 270$	$\begin{aligned} & 3 \cdot 159 \\ & 3 \cdot 158 \end{aligned}$	2.339 2.340	3.073 3.071		-
I•99	$3 \cdot 555$		44	2-131	$3 \cdot 345$		3.248	$2 \cdot 271$	3•156	$2 \cdot 341$		$2 \cdot 411$	
I-992	$3 \cdot 55$		$3 \cdot 445$	2.132	3	$2 \cdot 202$	3.246	2.272	3•155	$2 \cdot 342$	3.069	2.412	
I.993	$3 \cdot 55$	2.063	$3 \cdot$	2.133	-	$2 \cdot 203$	$3 \cdot 245$	$2 \cdot 273$	$3 \cdot 15$	$2 \cdot 343$	3.	$2 \cdot 413$	
I $\cdot 994$	$3 \cdot 55$		$3 \cdot 4$	${ }^{2 \cdot 134}$	3.3	$2 \cdot 204$				$2 \cdot$		2.414	
	$3 \cdot 54$		$3 \cdot 44 \mathrm{I}$	$2 \cdot 1$			$3 \cdot$	$2 \cdot 275$	$3 \cdot 1$		3.065		
r.99	$3 \cdot 54$		$3 \cdot 439$	${ }_{2}^{2 \cdot 136}$	3.33		3.241 3.240	$\begin{aligned} & 2 \cdot 2 \\ & 2 \cdot 2 \end{aligned}$	$3 \cdot 1$	2.34	3.064		
I.997 I 998	3.546 3.544	2.0	$3 \cdot 438$	$\begin{aligned} & 2 \cdot 137 \\ & 2 \cdot 138 \end{aligned}$	3.33	$\begin{aligned} & 2 \cdot 2 \\ & 2 \cdot 2 \end{aligned}$	3.240 3.238	2.277 2.278	$\begin{aligned} & 3 \cdot 149 \\ & 3 \cdot 148 \end{aligned}$	$2 \cdot 3$ $2 \cdot 3$			2.981 2.980
				$\begin{aligned} & 2 \cdot I \\ & 2 \cdot I \end{aligned}$		$\begin{aligned} & 2.208 \\ & 2.209 \end{aligned}$	$\begin{aligned} & 3.238 \\ & 3.237 \end{aligned}$		$\begin{aligned} & 3 \cdot 148 \\ & 3 \cdot 146 \end{aligned}$	$2 \cdot 348$	2		
	$3 \cdot 5$	2.070		2.140	$3 \cdot 332$		3.236		${ }^{3 \cdot 145}$	2.35	$3 \cdot 059$		
2.001	$3 \cdot 5$	2.071	$3 \cdot 432$	2.14	3.33	2.211	3.234		$3^{\text {-1 }} 44$	$2 \cdot 351$			
2.002	3.5	2.072	$3 \cdot 430$	2.142	$3 \cdot 32$	12	3.233		3.143	$2 \cdot 35$	3.057		76
$2 \cdot 00$	3.536	2.073	$3 \cdot 429$	${ }^{2 \cdot 143}$	$3 \cdot$	2.213	3.232	2.283	${ }^{3 \cdot 1} 1{ }^{\text {I }}$	$2 \cdot 353$	3.056	2.423	2.975
2.00	$3 \cdot 5$	2.074	3.427	2.144	$3 \cdot 3$	2.214	3.230	2.284	${ }^{1.140}$	$2 \cdot 354$			
	$3 \cdot 533$	2.075	$3 \cdot 426$	2.I45	$3 \cdot 325$	2.215 2.216	$\begin{aligned} & 3.22 \\ & 3.22 \end{aligned}$	2.285 2.286	${ }_{3 \cdot 1}^{3 \cdot 1}$	$2 \cdot 355$			
2.007					3.322	2.217	$3 \cdot 226$	$2 \cdot 287$	${ }_{3 \cdot 136}$		3-05		
	$3 \cdot 5$	2.078	$3 \cdot 42 \mathrm{I}$	2.148	$3 \cdot 321$		3.2		3-135	$2 \cdot 35$	3.050		
2.009	$3 \cdot 527$	2.079	3.	2.149	$3 \cdot 31$	$2 \cdot 219$	3.22	$2 \cdot 289$	$3 \cdot 13$	$2 \cdot 35$	3.04		
$2 \cdot 01$	$3 \cdot 525$		$3 \cdot 418$	2.150			$3 \cdot$	$2 \cdot 290$	3-133	2.360		$2 \cdot 4$	
	$3 \cdot 524$		3.41	2.151	$3 \cdot 3$	2.221	3.221		$3 \cdot 131$		3.046		
2.012	$3 \cdot 522$		$3 \cdot 416$	2.152	$3 \cdot 315$	2.222	3.	$2 \cdot 2$	$3 \cdot 130$	$2 \cdot 362$	3.045	2.432	
2.013	$3 \cdot 521$	2.083	3.414	2.153	$3 \cdot 314$	2.223	$3 \cdot 2$		$3 \cdot 1$	2.363	3.0	仡	
	$3 \cdot 5$				$3 \cdot 312$	$2 \cdot 224$	$3 \cdot 2$		$3 \cdot 1$				
	3.517 3.516	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	3.4	2.15	$\begin{aligned} & 3.311 \\ & 3.309 \end{aligned}$	2.225	$\begin{aligned} & 3.21 \\ & 3.21 \end{aligned}$	$2 \cdot 2$		2.365 2.366	3.	2.435 2.436	
2.017	$3 \cdot 514$	2.087		2.157	$3 \cdot 308$	$2 \cdot 22$	$3 \cdot 2$	2.29	3-124	$2 \cdot 367$	$3 \cdot 039$	$2 \cdot 4$	$2 \cdot 959$
2.018	$3 \cdot 51$		3.407	$2 \cdot 158$	$3 \cdot 307$		3.212	2.29	3.123	$2 \cdot 368$	3.038		
	$3 \cdot 511$		3.405		$3 \cdot 305$		$3 \cdot 21$	$2 \cdot 299$	3.121	$2 \cdot 369$	$3 \cdot$	$2 \cdot$	
2.020	$3 \cdot 510$	2.09	$3 \cdot 404$		$3 \cdot 304$	$2 \cdot$	$3 \cdot$	$2 \cdot 3$		2.370			
	$3 \cdot 5$		3.4										
2.023	$3 \cdot 505$	2.093	3	2-163	$3 \cdot 300$	$2 \cdot 233$	3.205	$2 \cdot 303$		$2 \cdot 373$			
24	$3 \cdot 503$	2.094		2-164	$3 \cdot 298$	$2 \cdot 234$	$3 \cdot 2$	$2 \cdot 304$	$3 \cdot 11$	$2 \cdot 374$	3.031	2.444	$2 \cdot 951$
2.025	$3 \cdot 502$	2.095	$3 \cdot 39$	$2 \cdot 165$	$3 \cdot 297$	2.235	3.20	$2 \cdot 305$	$3 \cdot 114$	$2 \cdot 375$	3.0	2.445	
	$3 \cdot 500$	2.096	$3 \cdot 39$		3.296	$2 \cdot 236$	$3 \cdot 2$	$2 \cdot 306$	$3 \cdot 113$	$2 \cdot 376$		2.446	
2.027 2.028	$3 \cdot 499$	2.097	3.394 3.392	$2 \cdot 167$ $2 \cdot 168$	3.	$\begin{aligned} & 2.237 \\ & 2.238 \end{aligned}$	$3 \cdot 2$ $3 \cdot 1$ 1	$2 \cdot 307$ 2.308	3.112 $3 \cdot 110$	2.377 2.378		2.447 2.448	
	$3 \cdot 496$	2.099		2.169	$3 \cdot 291$	$2 \cdot 239$	3-197	$2 \cdot 309$	$3 \cdot 1$	$2 \cdot 379$	$3 \cdot \mathrm{O}$		
2.030	$3 \cdot 494$	$2 \cdot 100$	3.	2.170	$3 \cdot 290$	$2 \cdot 2{ }^{\circ}$	3-196	$2 \cdot 310$	$3 \cdot 10$		3.024	$2 \cdot 450$	
2.031	3.493	2-101	3.	2-171	$3 \cdot 289$	$2 \cdot 241$	3-195	$2 \cdot 311$	3.107	$2 \cdot 381$	3.023	$2 \cdot 451$	
2.032	$3 \cdot 491$,	2-172	$3 \cdot 287$	$2 \cdot 242$	3.	$2 \cdot 312$	$3 \cdot 105$	$2 \cdot 382$		2.452	2.942
2.033	3.490	$2 \cdot 103$	$3 \cdot 38$	2.173	3.286	$2 \cdot 243$	3.192	$\begin{aligned} & 2 \cdot 31 \\ & 2 \cdot 31 \end{aligned}$		$\begin{aligned} & 2 \cdot 383 \\ & 2 \cdot 384 \end{aligned}$		$\begin{aligned} & 2.453 \\ & 2.454 \end{aligned}$	
		2.104		2-174	$3 \cdot 284$	$2 \cdot 244$	3.191 3.190	$\begin{aligned} & 2 \cdot 31 \\ & 2.31 \end{aligned}$	$3 \cdot 1$ $3 \cdot 1$	$2 \cdot 384$ $2 \cdot 385$	3.01	2.454	2.940
2.036	$3 \cdot 485$	2.106	38	2.176	$3 \cdot 282$	$2 \cdot 246$	$3 \cdot 18$	$2 \cdot 316$	$3 \cdot 10$	$2 \cdot 386$	3 -or	2	2.938
	$3 \cdot 483$	2.107		2.177	.280	$2 \cdot 247$	3.18	$2 \cdot 317$	3.099	$2 \cdot 387$	$3 \cdot 0$	$2 \cdot 457$	-937
2.038	$3 \cdot 482$	$2 \cdot 108$	$3 \cdot 37$	2.178	3.279	$2 \cdot 24^{8}$	3.18	$2 \cdot 318$	3.098	$2 \cdot 388$	3.015	$2 \cdot 458$	$2 \cdot 935$
2.039	$3 \cdot 480$	2.109	$3 \cdot 376$	2.179	$3 \cdot 278$	$2 \cdot 249$	$3 \cdot 18$	$2 \cdot 319$	3.097	$2 \cdot 389$	3.014		
2.040 2.04 I	$3 \cdot 479$	$2 \cdot 110$	$3 \cdot 375$	218	3.276	$2 \cdot 250$	318	$2 \cdot 320$	3.096		3.0	2.461	
2.04 I 2.042	3.477	2.III	$3 \cdot 373$	2.181	3.275	$2 \cdot 251$	3.18	$2 \cdot 321$	3.094	$2 \cdot 391$ $2 \cdot 392$	$33^{\circ} \mathrm{O}$	2.461 2.462	$2 \cdot$
2.042 2.043	3.476 3.474	2.112 2.113	3.37	2.182 $2 \cdot 183$	3.274 3.272	$2 \cdot 2$	$3 \cdot 18$ $3 \cdot 17$	$\begin{aligned} & 2.322 \\ & 2.323 \end{aligned}$	3.093 3.092	2.392 2.393	3.00	2.462 2.463	2.931 2.930
4	$3 \cdot 473$	$2 \cdot 114$	$3 \cdot 369$	2.184	$3 \cdot 271$	254	$3 \cdot 17$	$2 \cdot 324$	3.091	$2 \cdot 394$	3	2.464	
	3.471	15	$3 \cdot 367$	$2 \cdot 185$	3.269	$2 \cdot 255$	3.177	$2 \cdot 325$	3.090	$2 \cdot 395$	3.00	$2 \cdot 465$	2.928
46	$3 \cdot 470$	-116	$3 \cdot 366$	2.186	$3 \cdot 268$	$2 \cdot 256$	3•176	$2 \cdot 326$	$3 \cdot 088$	$2 \cdot 396$	3.005	67	27
	$3 \cdot 468$	17	$3 \cdot 365$	87	67	$2 \cdot 257$	3	$2 \cdot 327$	$\begin{aligned} & 3.087 \\ & 3.086 \end{aligned}$	$\begin{aligned} & 2 \cdot 397 \\ & 2 \cdot 398 \end{aligned}$			
2.048 2.049							$3 \cdot 173$ $3 \cdot 172$	2.328 2.329		$2 \cdot 398$	3.003 3.002	析	2.924 2.923

EX=MERIDIAN TABLE No. 1.
Showing the Reduction at I min. from the Meridian corresponding to the A and B Correcticns given on Pages 12 to 37 of this Work.

EX=MERIDIAN TABLE No. 1.
5 ming the Reduction at 1 min. from the Meridian corresponding to the A and B Corrections given on Pages 12 to 37 of this Work.

A and B Cor.	Reduction.	$\mathrm{A} \text { and }$	Reduction.	$\underset{\text { A and } B}{\text { Cor. }}$	Reduction.	A and B		$\begin{gathered} A \text { and } B \\ \text { Cor. } \end{gathered}$	Reduction.	$\begin{gathered} A \text { and } B \\ \text { Cor. } \end{gathered}$	Reduction.	$\begin{aligned} & \mathrm{A} \text { and } \mathrm{B} \\ & \text { Cor. } \end{aligned}$	Reduction.
$3 \cdot 360$	2-185	$3 \cdot 5$	2-IOI	3.	2.023	780	95	$3 \cdot 920$	I 883	060	820	$4 \cdot 200$	
-	$2 \cdot 183$	$3 \cdot 5$	$2 \cdot 100$	$3 \cdot 642$	$2 \cdot 022$	$3 \cdot 78$	I $95{ }^{\circ}$	3.922	82	4	9	$4 \cdot 202$	60
$3 \cdot 364$	2-182	$3 \cdot 504$	$2 \cdot 098$	3.644	$2 \cdot 0$	3.784	I $\cdot 949$	$3 \cdot 924$	I-88I	4.064	-818	$4 \cdot 204$	-759
$3 \cdot 366$	2•181	$3 \cdot 50$	$2 \cdot 097$	$3 \cdot 646$	$2 \cdot 020$		I•948	$3 \cdot 926$	880	$4 \cdot 066$	-818	$4 \cdot 206$	-759
68	$2 \cdot 180$	$3 \cdot 5$	$2 \cdot 096$	$3 \cdot 648$	$2 \cdot 019$	$3 \cdot 7$	I 947	3.928	1.879	4.	817	-208	1•758
$3 \cdot 370$	$2 \cdot 178$	3.510	$2 \cdot 095$	$3 \cdot 650$	$2 \cdot 018$	$3 \cdot 790$	1.946	$3 \cdot 930$	I.878	$4 \cdot 070$	-816	$4 \cdot 210$	757
72	2•177	$3 \cdot 512$	$2 \cdot 094$	$3 \cdot 652$	$2 \cdot 017$	$3 \cdot 792$	I 945	3.932	I. 878	$4^{\circ} 072$	-815	$4 \cdot 21$	- 756
$3 \cdot 374$	$2 \cdot 176$	$3 \cdot 514$. 93	3.654	$2 \cdot 016$	$3 \cdot 794$	944	3.934	I-877	4.074	I.814	$4 \cdot 21$	-755
76	$2 \cdot 175$	$3 \cdot 516$	2.092	$3 \cdot 656$	$2 \cdot 015$	3•796	-943	3.936	I-876	4.076	I.813	4.216	I•755
$3 \cdot 378$	2.173	$3 \cdot 5$	2.090	$3 \cdot 658$	$2 \cdot 014$		42	3.938	I-875	4.078	I.812	$4 \cdot 218$	- 754
$3 \cdot 380$	$2 \cdot 172$	$3 \cdot 520$	$2 \cdot 089$	$3 \cdot 660$	$2 \cdot 012$		I 944^{1}	3.940	I-874		-8II	$4 \cdot 220$	- 753
$3 \cdot 382$	$2 \cdot 171$	$3 \cdot 5$	$2 \cdot 088$	$3 \cdot 662$	$2 \cdot \mathrm{OII}$	$3 \cdot 802$	I 940	$3 \cdot 942$	I 873	$4 \cdot 082$	-81 I	$4 \cdot 222$	- 752
$3 \cdot 384$	$2 \cdot 170$	$3 \cdot 524$	2.087	$3 \cdot 664$	$2 \cdot 010$	$3 \cdot 804$	I 939	3.944	I. 872	4.084	81	$4 \cdot 22$	- 751
$3 \cdot 38$	$2 \cdot 169$	$3 \cdot 526$	$2 \cdot 086$	3.666	O	$3 \cdot 806$	-938	$3 \cdot 946$	I.871	4.086	. 809	4.226	1.751
	$2 \cdot 167$	$3 \cdot 528$	$2 \cdot 085$. 668	2.008	$3 \cdot 808$	-937	$3 \cdot 948$	I.870	4.088	. 808	4.228	I 750
$3 \cdot 390$	$2 \cdot 1$	3.530	$2 \cdot 084$	$3 \cdot 670$	$2 \cdot 007$	$3 \cdot 810$	I $\cdot 936$	$3 \cdot 950$	869	$4 \cdot 090$	-807	$4 \cdot 23$	- 749
$3 \cdot 392$	$2 \cdot 165$	3.532	2.083	3.672	-006	$3 \cdot 81$	-935	$3 \cdot 952$	8	$4 \cdot 092$	6	$4 \cdot 232$	-748
3.394	$2 \cdot 164$	3.534	$2 \cdot 08 \mathrm{I}$	$3 \cdot 674$	$2 \cdot 005$	$3 \cdot 81$	934	3.954	I.867	4.094	I. 805	$4 \cdot 234$	- 747
3	$2 \cdot 162$	3.536	$2 \cdot 080$	$3 \cdot 676$	$2 \cdot 004$	$3 \cdot 816$	933	$3 \cdot 056$	I.867	$4 \cdot 096$	I. 805	$4 \cdot 236$	- 747
$3 \cdot$	2•161	3.538	- 79	$3 \cdot 67$	$2 \cdot 003$	$3 \cdot$	-932	$3 \cdot 958$	866	$4 \cdot 098$	I. 804	$4 \cdot 238$	I•746
3.40	$2 \cdot 160$	$3 \cdot 540$	2.078	$3 \cdot 680$	$2 \cdot 002$	$3 \cdot 8$	1×931	$3 \cdot 960$	I $\cdot 865$	$4 \cdot 100$	803	$4 \cdot 24^{\circ}$	1.745
$3 \cdot 402$	$2 \cdot 159$	$3 \cdot 542$	2.077	3.682	$2 \cdot 001$	3.822	I 930	$3 \cdot 962$	I. 864	$4 \cdot 102$	-802	$4 \cdot 242$	1•744
$3.4{ }^{\circ}$	$2 \cdot 158$	$3 \cdot 5$	$2 \cdot 076$	3.684	$2 \cdot 000$	3.82	929	3.964	I.863	$4 \cdot 10$	-801	$4 \cdot 24$	- 743
$3 \cdot$	$2 \cdot 156$	$3 \cdot 5$	$2 \cdot 075$	$3 \cdot 686$	-999	3.8	928	3.966	62			$4 \cdot 24$	- 743
$3 \cdot 408$	$2 \cdot 155$	$3 \cdot 548$	2.074	$3 \cdot$	I ${ }^{1} 9$	3.	I•927	$3 \cdot 968$	I	4	-799	$4 \cdot$	-742
3.410	$2 \cdot 154$	3.550	2.072	3.690	I•997	3.830	$1 \cdot 926$	$3 \cdot 970$	I $\cdot 860$	$4 \cdot 1$	-799	4.	-741
$3 \cdot 41$	$2 \cdot 153$	$3 \cdot 552$	2.071	$3 \cdot 692$	I•996	3.832	925	$3 \cdot 972$	I.859	$4 \cdot 11$	-798	$4 \cdot 252$	- $74{ }^{\circ}$
$3 \cdot 41$	$2 \cdot 152$	3.554	2.070	3.694	I $\cdot 995$	$3 \cdot 8$	924	$3 \cdot 974$	I-858	$4 \cdot 11$	-797	4.254	-739
$3 \cdot 4$	$2 \cdot 150$	$3 \cdot 556$	$2 \cdot 06$	$3 \cdot 69$	I $\times 994$		I•923	$3 \cdot 976$	857	$4 \cdot 11$	795	4.256	-739
3.41	$2 \cdot 149$	$3 \cdot 558$	$2 \cdot 068$	$3 \cdot 698$	I $\cdot 993$	$3 \cdot 838$	I 922	3.978	I 8557	$4^{\cdot 1}$	- 795	$4 \cdot$	738
$3 \cdot$	$2 \cdot 148$	$3 \cdot 560$	$2 \cdot 067$	$3 \cdot 700$	I $\cdot 992$	$3 \cdot 840$	I 92 I	3.980	I.856	$4 \cdot 120$	I•794	4	- 737
$3 \cdot 422$	$2 \cdot 147$	3.562	$2 \cdot 066$	$3 \cdot 702$	I 999°	$3 \cdot 84$	-920	$3 \cdot 982$	I.855	4^{-12}	-794	$4 \cdot 262$	I.736
$3 \cdot$	$2 \cdot 145$	$3 \cdot 5$	$2 \cdot 065$	$3 \cdot 704$	989		-919	$3 \cdot 984$	I. 854	$4 \cdot 1$	793	$4 \cdot 264$	-735
$3 \cdot 42$	$2 \cdot 144$		2.063	$3 \cdot 706$	I $\cdot 988$		I•9		- 853	$4 \cdot$	792	$4 \cdot 2$	-735
	$2 \cdot 143$	3.568	. 062	$3 \cdot 708$	I.987	$3 \cdot 848$	1.917	$3 \cdot 988$	I.852	$4 \cdot 128$	I•791	$4 \cdot 268$	-734
$3 \cdot$	$2 \cdot 142$	$3.57{ }^{\circ}$	$2 \cdot 061$	$\cdot 710$	I•986	$3 \cdot 85^{\circ}$	r•916	3.990	I-85I	$4 \cdot 130$	I•790	4.270	- 733
3.432	$2 \cdot 14{ }^{1}$	$3 \cdot 572$	$2 \cdot 060$	$3 \cdot 712$	I.985	$3 \cdot 852$	-915	$3 \cdot 992$	I.851	$4 \cdot 132$	I•789	$4 \cdot 272$	-732
3.434	$2 \cdot 139$	$3 \cdot 574$	$2 \cdot 059$	$3 \cdot 714$	I 988	$3 \cdot 854$	r-914	$3 \cdot 994$	I.849	$4^{-1} 34$		$4 \cdot 274$	-732
	$2 \cdot 138$	3.576	$2 \cdot 058$	$3 \cdot 716$	I.983		r913	3.996	I. 848	$4 \cdot 136$		$4 \cdot 276$	$73{ }^{1}$
3.438	$2 \cdot 137$	$3 \cdot 578$	2.057	$3 \cdot 718$	I 9882	$3 \cdot 858$	-912	$3 \cdot 998$	I. 848	$4 \cdot 138$	- 86		-730
3.440	$2 \cdot 136$	$3 \cdot 580$	$2 \cdot 056$	$\cdot 720$	I.98I	3.860	I•91 I	$4 \cdot 000$	I. 847	$4^{\cdot 1} 4^{\circ}$	$1 \cdot 786$	4.280	1.729
3.442	$2 \cdot 135$	$3 \cdot 582$	$2 \cdot 055$	$3 \cdot 722$	I.980	$3 \cdot 862$	1.91 1	4.002	I. 846	$4 \cdot 142$	1.785	$4 \cdot 282$	$1 \cdot 728$
3	$2 \cdot 134$		$2 \cdot 054$	$3 \cdot 724$	1-979		I 910	$4 \cdot 00$	I. 845	$4 \cdot 144$	I•784	$4 \cdot$. 728
$3 \cdot 446$	$2 \cdot 132$	$3 \cdot 58$	$2 \cdot 052$	$3 \cdot 726$	1-978	3.866	I•909	4.006	I. 844	4. 146	I•783		727
3	$2 \cdot 131$	$3 \cdot 588$	$2 \cdot 051$	3.728	I•977	3.868	[.908	4.008	I. 843	4-1 48	1.783	$4 \cdot 28$	726
3.450	2•130	3.590	$2 \cdot 050$	$3 \cdot 730$	I 97976	$3 \cdot 870$	I.907	$4 \cdot 010$	I. 842	4-150	I.782	$4 \cdot 29$. 725
3.452	$2 \cdot 129$	3.592	$2 \cdot 049$	3.732	I 975	$3 \cdot 872$	-906	4 -OI 2	I.84I	$4 \cdot 152$	$1 \cdot 7$	$4 \cdot 29$	-725
3.454	2	$3 \cdot 594$	$2 \cdot 048$	$3 \cdot 734$	I 974	$3 \cdot 8$	I 9 9 5	4 -OI	I. 840	$4^{-1} 54$	1.780	$4 \cdot 2$	724
$3 \cdot 456$	2-126	$3 \cdot 596$	2.047	$3 \cdot 736$	I 97973		I 904	$4^{\circ} \mathrm{OI} 6$	I.839	4-156	1.779	$4 \cdot 29$	723
$3 \cdot 458$	$2 \cdot 125$	$3 \cdot 598$	$2 \cdot 046$	$3 \cdot 738$	I 9.972	3.878	I $\cdot 933$	$4 \cdot 018$	I.839	$4^{\cdot 1} 5^{8}$	- $\cdot 778$	$4 \cdot 29$	22
$3 \cdot$	$2 \cdot 124$	$3 \cdot 600$	$2 \cdot 045$	$3 \cdot 740$	I-971	3.880	I $\cdot 902$	4.020	I.838	4^{-160}	-778	$4 \cdot 30$	721
34	$2 \cdot 123$		$2 \cdot 044$	$3 \cdot 742$	1970	3.88	901	4.022	-837	$4^{\cdot 1}$	- $\cdot 777$	+30	721
$3 \cdot 464$	$2 \cdot 122$	3.604	$2 \cdot 043$	$3 \cdot 744$	I -969	3.884	$1 \cdot 900$	4.024	I.836	$4 \cdot 164$	1•776	$4 \cdot 30$	
$3 \cdot 466$	2-12I	$3 \cdot 606$	$2 \cdot 04 \mathrm{I}$	$3 \cdot 746$	I $\cdot 968$	3.886	I-899	4.026	I.835	$4^{\cdot} 1$	$1 \cdot 775$		
$3 \cdot 468$	2.119	$3 \cdot 608$	$2 \cdot 040$	3.748	I.967	3.888	I.898	4.028	I.834	$4 \cdot 1$	1.774	$4 \cdot$	
3.470	$2 \cdot 1$	$3 \cdot 610$	2.039	$3 \cdot 750$	I-966	$3 \cdot 890$	I.897	$4 \cdot 030$	I.833	$4 \cdot 170$	773		
$3 \cdot 472$	$2 \cdot 11$	$3 \cdot 6$	2.038	$3 \cdot 752$	- 965	3.892	. 896	$4 \cdot 032$. 832	$4 \cdot 172$	773	4	
74	$2 \cdot 1$	3.614	2.037	$3 \cdot 754$	I 9664	3.894	I.895	4.034	I.83I	$4 \cdot 1$			
76	$2 \cdot 115$	$3 \cdot 616$	2.036	$3 \cdot 756$	1.963	3.896 3.898	I.894	4.036 4.038	I. 83 I I .830	$4 \cdot 176$ $4 \cdot 178$	1.771 r r rla	$4 \cdot 3$ $4 \cdot 3$	15
	$2 \cdot 114$	3.618 3.620	$2 \cdot 035$	$3 \cdot 758$ $3 \cdot 760$	I 966	3.898 $3 \cdot 900$	I $\cdot 893$ $\mathrm{I} \cdot 892$	4.038 4.040	I 830 1.829	+ $\cdot 178$ $4 \cdot 180$	1.770 $\mathrm{r} \cdot 769$	$4 \cdot 3$ 4.3	${ }^{71} 4$
3.482	2-III	$3 \cdot 622$	$2 \cdot 033$	3.762	I.960	3.902	I.892	$4 \cdot 042$. 828	$4 \cdot 182$	I.768	$4 \cdot 322$.713
3.484	$2 \cdot$	$3 \cdot 624$	$2 \cdot 032$	$3 \cdot 764$	I $\cdot 959$	$3 \cdot 904$	I.891	4.044	827	4.184	I $\cdot 768$	$4 \cdot 324$	-712
3.486	$2 \cdot 109$	$3 \cdot 626$	2.031	$3 \cdot 766$	I.958	$3 \cdot 906$	I.890	4.046	22	$4 \cdot 186$		$4 \cdot$	711
3.488	$2 \cdot 108$	$3 \cdot 628$	2.030	3.768	I 959	$3 \cdot 908$	I.889	$4 \cdot 048$	I.825	4-188	I 766 $\mathrm{r} \cdot 765$	4.32 4.33	10
3.490	$2 \cdot 107$	$3 \cdot 630$. 29	3.770	$1 \cdot 950$	$3 \cdot 910$	I.888	$4 \cdot 05^{\circ}$	I.824	$4 \cdot 190$	I.765 $\mathrm{r} \cdot 764$	4.33 4.33	
3.492	$2 \cdot 105$	$3 \cdot 632$	2.027	$3 \cdot 772$	1.955	3.912	887	$4 \cdot 052$	24	4-192 $4 \cdot 194$	764	4.332 4.334	
	$2 \cdot 104$ $2 \cdot 103$	3.634 3.636	2.026 2.025	$3 \cdot 774$ 3.776	$\mathrm{I} \cdot 954$ $\mathrm{I} \cdot 953$	3.914 3.916	I.886 I .885	4.054 4.056	I.823 $\mathrm{I} \cdot 822$	4.194 $4 \cdot 196$	764 763	4.334 4.336	$1 \cdot 708$ $1 \cdot 707$
496	$2 \cdot 103$ $2 \cdot 102$	3.636 3.638	2.025 2.024	3.776 3.778	1×953 $1 \cdot 952$	3.916 3.918	I.885 I 88	4.056 4.058	822	$4 \cdot 196$ $4 \cdot 198$	1.7	4336	1.707 1

150
EX=MERIDIAN TABLE No. I.
Showing the Reduction at I min. from the Meridian corresponding to the A and B Corrections given on Pages 12 to 37 of this Work.

$A \text { and } B$ Cor.	Reduction.	$\begin{aligned} & \text { A and B } \\ & \text { Cor. } \end{aligned}$	Reduction.	$\begin{aligned} & \text { A and B } \\ & \text { Cor. } \end{aligned}$	Reduc tion.	$\begin{gathered} A \text { and } B \\ \text { Cor. } \end{gathered}$	Reduction.	$\begin{aligned} & \text { A and B } \\ & \text { Cor. } \end{aligned}$	Reduction.	$\begin{gathered} A \text { and } B \\ \text { Cor. } \end{gathered}$	$\begin{aligned} & \text { Reduc- } \\ & \text { tion. } \end{aligned}$	$\begin{gathered} \mathrm{A} \text { and } \mathrm{B} \\ \text { Cor. } \end{gathered}$	$\begin{aligned} & \text { Reduc- } \\ & \text { tion. } \end{aligned}$
$4 \cdot 340$	1•706	4.480	1.654	$4 \cdot 620$	I.605	4.760	1.559	900				Oo	
42	$1 \cdot 705$	$4 \cdot 482$	I.653	$4 \cdot 622$	1.604	$4 \cdot 762$	I.558	$4 \cdot 902$				Ooo	1.202 1.200
4.344	$1 \cdot 704$	4.484	I.652	$4 \cdot 624$	1.604	$4 \cdot 764$	I 5557	$4 \cdot 904$	1.514	$5 \cdot 520$	I•348	$6 \cdot 220$	198
$4 \cdot 346$	$1 \cdot 703$	4.486	I.652	$4 \cdot 626$	I. 603	4.766	I 5557	$4 \cdot 906$	1.513	5.530	I-345	$6 \cdot 23$	-196
$4 \cdot 348$	1.703	$4 \cdot 488$	I.65I	4.628	I. 602	$4 * 768$	- 555	4.908	I.513	$5 \cdot 540$	I-343	$6 \cdot 240$	-194
$4 \cdot 350$	1.702	4490	1.650	4.630	I 602	4.770	I $\cdot 555$	4.910	1.512	5.550	1-34	6.250	I-192
$4 \cdot 352$	I.701	4.492	I 649	4.632	6	$4 \cdot 772$	I 555	4.912	1.511	$5 \cdot 560$	1-338	$6 \cdot 260$	I-191
$4 \cdot 354$	I.700	4.494	I 649	4.634	-600	$4 \cdot 774$	I 554	$4 \cdot 914$	1.511	$5 \cdot 570$	1-336	$6 \cdot 270$	-189
$4 \cdot 356$	1•700	$4 \cdot 496$	I.648	4.636	I 599	47776	I 5554	4.916	1.510	$5 \cdot 580$	1.333	$6 \cdot 280$	-187
$4 \cdot 358$	I•699	4.498	I 647	4.638	1-599	4778	I $\cdot 553$	$4 \cdot 918$	1.510	5.590	I•33	$6 \cdot 290$	-185
$4 \cdot 3$	I. 698	$4 \cdot 5$	I 647	4.640	1.598	4.780	I-552	4.920	1.509	$5 \cdot 600$	I-329	$6 \cdot 300$	$1 \cdot 183$
$4 \cdot 36$	I•697	$4 \cdot 502$	I.646	$4 \cdot 642$	1.597	$4 \cdot 782$	I $\cdot 552$	4.922	1.508	$5 \cdot 610$	I-326	6.310	I. 18 I
$4 \cdot 364$	I 697	$4 \cdot 504$	I 645	$4 \cdot 644$	I 597	$4 \cdot 784$	I•55I	4.926	1-507	$5 \cdot 620$	1-324	$6 \cdot 320$	- 179
$4 \cdot 366$	I.696	$4 \cdot 506$	I 645	$4 \cdot 646$	I 596	$4 \cdot 786$	1.550	4.930	1-506	5.630	$1 \cdot 322$	$6 \cdot 33{ }^{\circ}$	177
$4 \cdot 368$	I 695	$4 \cdot 508$	I 644	$4 \cdot 648$	I•595	4788	1.550	4.940	1-503	$5 \cdot 640$	I 320	$6 \cdot 34{ }^{\circ}$	-176
$4 \cdot 370$	I.694	4.510	$1 \cdot 643$	$4 \cdot 650$	1.595	4.790	- 549	4.950	I. 500	$5 \cdot 650$	I-317	6.350	- 174
$4 \cdot 372$	I 694	$4 \cdot 512$	I. 642	$4 \cdot 652$	I. 594	$4 \cdot 792$	$1 \cdot 548$	4.960	I•497	$5 \cdot 660$	1-315	$6 \cdot 360$	$1 \cdot 172$
$4 \cdot 374$	I•693	4.514	I•642	$4 \cdot 654$	I.593	$4 \cdot 794$	1-548	4.970	I.494	$5 \cdot 670$	1-313	$6 \cdot 370$	-170
$4 \cdot 376$	I.692	$4 \cdot 516$	I.64I	$4 \cdot 656$	I 593	4•796	I 547	$4 \cdot 980$	I.491	$5 \cdot 680$	1-310	$6 \cdot 380$	-168
4.378	I 691	$4 \cdot 518$	I $64{ }^{\circ}$	4.658	1.592	4798	I 547	4.990	I.488	$5 \cdot 690$	1-308	6-390	67
	$1 \cdot 691$	4.5	I. 640	$4 \cdot 660$	- 591	$4 \cdot 800$	I. 546	$5 \cdot 000$	I. 485	$5 \cdot 700$	I 306	$6 \cdot 400$	I. 165
$4 \cdot$	I 699°	4.522	I.639	$4 \cdot 662$	I.591	$4 \cdot 802$	I. 545	$5 \cdot 10$	I. 482	5.710	1-303	$6 \cdot 410$	I.163
$4 \cdot 384$	I 689	4.524	I.638	$4 \cdot 664$	I.590	4.804	I•545	$5 \cdot 020$	I.480	$5 \cdot 720$	1.301	$6 \cdot 420$	-161
$4 \cdot 386$	I 688	$4 \cdot 526$	1.637	$4 \cdot 666$	1.589	$4 \cdot 806$	I•544	$5 \cdot \mathrm{O} 30$	I 477	5.730	I 299		-159
$4 \cdot 388$	I 688	$4 \cdot 528$	I.637	$4 \cdot 668$	1.589	$4 \cdot 808$	I-544	$5 \cdot{ }^{\circ} \mathrm{O}$	I 474	5.740	I 297		-158
$4 \cdot 390$	I 687	4.530	1.636	$4 \cdot 670$	I.588	$4 \cdot 810$	1-543	$5 \cdot 050$	1.471	$5 \cdot 75{ }^{\circ}$	I. 294	$6 \cdot 450$	I-156
$4 \cdot 392$	I 686	4.532	I.635	$4 \cdot 672$	I. 587	$4 \cdot 812$	I•542	5.060	I 468	$5 \cdot 760$	I 292	$6 \cdot 460$	I. 54
$4 \cdot 394$	1.685	4.534	I.635	$4 \cdot 674$	I.587	4.814	I.542	5.070	I.465	$5 \cdot 770$	I 290	6	152
$4 \cdot 396$	I.685	$4 \cdot 536$	I.634	$4 \cdot 676$	I. 586	$4 \cdot 816$	I $54{ }^{1}$	5.080	1.462	$5 \cdot 780$	I-288		50
$4 \cdot 398$	$\underline{I} \cdot 684$	4.538	1.633	$4 \cdot 678$	1.585	$4 \cdot 818$	I 540	5.090	I 460	$5 \cdot 790$	86	$6 \cdot 4$	I 149
4.40	I.683	4.540	632	$4 \cdot 680$	1.585	4.820	I 540	5.100	$1 \cdot 457$	$5 \cdot 800$	I-284	6.500	I 147
4.402	I 6	$4 \cdot 542$	I.632	$4 \cdot 682$	I. 584	4.822	I.539	5.110	I 454	5.810	I 281	$6 \cdot 510$	-145
4.404	I 682	4.544	1.631	$4 \cdot 684$	I. 583	4.824	I•538	-120	I.45	$5 \cdot 820$	I-279	$6 \cdot 520$	44
4.406	I 681	$4 \cdot 546$	I.630	$4 \cdot 686$	I.583	4.826	1.538	5-130	1.448	5.830	277	$6 \cdot 530$	142
4.408	I 680	4.548	1.630	$4 \cdot 688$	I. 582	4.828	I. 537	$5 \cdot 14^{\circ}$	I 446	5.840		$6 \cdot 540$	I 40
44^{10}	I 679	4.550	I.629	$4 \cdot 690$	I 588	4.830	I 5337	5.150	1.443	$5 \cdot 850$	I 273	$6 \cdot 55$	I 138
$4 \cdot 412$	1.679	4.552	628	$4 \cdot 692$	I-581	4.832	I•536	5-160	I 440	5.860	$1 \cdot 270$	$6 \cdot 56$	I-137
4.414	I.678	$4 \cdot 554$	628	$4 \cdot 694$	1.580	4.834	I•535	$5^{5} 170$	I•437	$5 \cdot 870$	I 268	$6 \cdot 570$	-135
4.416	1.677	4.556	-627	$4 \cdot 696$	1.579	4.836	1.535	$5 \cdot 180$	I-435	5.880	I 266	$6 \cdot 580$	- 33
4.418	1.676	4.558	-626	$4 \cdot 698$	1.579	4.838	I. 534	5.190	I.432	$5 \cdot 890$	I 264	$6 \cdot 590$	I-13I
4.420	1.676	4.560	I $\cdot 625$	$4 \cdot 700$	I. 578	$4 \cdot 840$	1-533	$5 \cdot 200$	I.429	$5 \cdot 900$	I.262	$6 \cdot 600$	-130
$4 \cdot 422$	1.675	$4 \cdot 562$	I.625	$4 \cdot 702$	I 577	$4 \cdot 842$	1.533	5.210	1.427	5.910	I 260	6.610	8
4.42	I•674	4.564	I $\cdot 624$	$4 \cdot 704$	1.577	$4 \cdot 844$	I.532	. 220	I. 424	$5 \cdot 920$	I-258	$6 \cdot 620$	127
4.426	1.673	4.566	$1 \cdot 623$	$4 \cdot 706$	1.576	$4 \cdot 846$	I.532	$5 \cdot 230$	I•42I	$5 \cdot 930$	I 256	6.630	-125
4.428	I.673	$4 \cdot 568$	$1 \cdot 623$	$4 \cdot 708$	1.576	$4 \cdot 848$	I.53I	5.240	1.418	5.940	I 254	$6 \cdot 640$	I.123
4.430	I 672	$4 \cdot 570$	622	$4 \cdot 710$	1.575	$4 \cdot 850$	I.530	5.250	1.416	$5 \cdot 950$	$1 \cdot 252$	$6 \cdot 650$	2
4.432	I 67 I	$4 \cdot 572$	21	4.712	I.574	$4 \cdot 852$	I.530	5.260	I.413	5.960	I 250	$6 \cdot 660$	-120
4.434	I.671	$4 \cdot 574$	62 I	$4 \cdot 714$	I.574	$4 \cdot 854$	I. 529	$5 \cdot 270$	I.411	5.970	I 247	$6 \cdot 670$	8
4.436	I. 670	$4 \cdot 576$	620	$4 \cdot 716$	1.573	$4 \cdot 856$	I-528	$5 \cdot 280$	I 408	5.980	I 245	$6 \cdot 680$	I•II 7
4.438	1.669	$4 \cdot 578$	I.619	4.718	I. 572	$4 \cdot 858$	I. 528	$5 \cdot 290$	I.405	$5 \cdot 990$	I 243	$6 \cdot 690$	I-115
$4.44{ }^{\circ}$	I 668	4.58	1-618	$4 \cdot 720$	1.572	4.860	$1 \cdot 527$	5.300	I.403	$6 \cdot 000$	I. 241	$6 \cdot 700$	I-II3
$4.44{ }^{2}$	I 6	$4 \cdot 582$	61	$4 \cdot 722$	1.571	$4 \cdot 862$	I 527	5.310	I.400	$6 \cdot 010$	I. 239	$6 \cdot 710$	-112
	I $\cdot 667$	$4 \cdot 584$	I•617	$4 \cdot 724$	$1 \cdot 570$	4.864	I-526	$5 \cdot 320$	I•398	$6 \cdot 020$	I 2337	$6 \cdot 720$	-
$4 \cdot 446$	I 666	$4 \cdot 586$	I.616	$4 \cdot 726$	1.570	$4 \cdot 866$	I. 525	$5 \cdot 330$	I 395	6.030	I. 235	$6 \cdot 730$	-108
4.448	I-665	$4 \cdot 588$	616	4.728	1.569	$4 \cdot 868$	I. 525	$5 \cdot 34{ }^{\circ}$	I $\cdot 392$	6.040	1.233	$6 \cdot 74^{\circ}$	1-107
4.450	I $\cdot 665$	$4 \cdot 590$	I.615	4.730	I.568	$4 \cdot 870$	$1 \cdot 524$	$5 \cdot 350$	I•390	$6 \cdot 050$	1.231	$6 \cdot 750$	I•IO5
$4 \cdot 452$	I-664	4.592	I.614	4732	I 568	$4 \cdot 872$	I-524	5.360	I•387	$6 \cdot 060$	I 2229	6.760	I $\cdot 103$
4.454	I -663	$4 \cdot 594$	$\mathrm{I}^{6} 1 \mathrm{I}_{4}$	$4 \cdot 734$.	I.567	$4 \cdot 874$	I.523	$5 \cdot 370$	I•385	$6 \cdot 070$	I 2227	$6 \cdot 770$	1-102
	I 663	4.596	1.613	4.736	I.566	$4 \cdot 876$	I.522	$5 \cdot 380$	I-382	$6 \cdot 080$	I 222	$6 \cdot 780$	100
4.458	1.66	$4 \cdot 598$	d	$4 \cdot 738$	I 566	$4 \cdot 878$	$2 \cdot 522$	$5 \cdot 390$	I-380	6.090	1223	$6 \cdot 790$	I 099
$4 \cdot 460$	I 66	$4 \cdot 600$	I•612	$4.74{ }^{\circ}$	I. 565	$4 \cdot 880$	$2 \cdot 521$	$5 \cdot 400$	I•377	6.100	1221	$6 \cdot 800$	I 097
4.462	I.66	$4 \cdot 602$	I•61	4.742	I. 565	4.882	$2 \cdot 521$	$5 \cdot 410$	1•375	$6 \cdot 110$	I-219	$6 \cdot 810$	$1 \cdot 095$
$4 \cdot 464$	I $\cdot 660$	$4 \cdot 604$	I 610	$4 \cdot 744$	I.564	4-884	$2 \cdot 520$	$5 \cdot 420$	1.372	$6 \cdot 120$	1.217	6.820	I.094
4.466	I 659	$4 \cdot 606$	1.610	4.746	I. 563	4.886	$2 \cdot 520$	5.430	I-370	$6 \cdot 130$	I-215	$6 \cdot 830$	1.092
$4 \cdot 468$	I 658	$4 \cdot 608$	1.609	$4 \cdot 748$	I.563	$4 \cdot 888$	2.519	$5 \cdot 440$	I. 367	$6 \cdot 140$	I-213	$6 \cdot 84{ }^{\circ}$	I.091
4.470	I 657	$4 \cdot 610$	60	4.750	I.562	4.890	2.518	$5 \cdot 450$	- 3.365	6.150	-211	$6 \cdot 850$	I.089
4.472	I 657	$4 \cdot 612$	r 608	4.752	I-561	4.892	$2 \cdot 517$	$5 \cdot 460$	I-362	$6 \cdot 160$ $6 \cdot 170$	I-210 I 208	$6 \cdot 860$ $6 \cdot 870$	I $\cdot 088$ I.086 r
4.474	I 656	$4 \cdot 614$	I 607	4.754	I-561	4.894	$2 \cdot 517$	$5 \cdot 470$	I•360	6.170	I-208	$6 \cdot 870$ 6.880	I $\cdot 086$ $\mathrm{I} \cdot 084$ [
4.476	I 655	$4 \cdot 616$	I 606	$4 \cdot 756$	I-560	$4 \cdot 896$	$2 \cdot 516$	$5 \cdot 480$	1-357	6.180	I 206	$6 \cdot 880$ 6.800	$\mathrm{I} \cdot 084$ $\mathrm{I} \cdot 083$
4.478	I 65.5	4.	I.6	4.75	I.559	$4 \cdot 898$	$2 \cdot 51$	$5 \cdot 490$	I 35	$6 \cdot 190$	$\underline{1} 20$	$6 \cdot 890$	1.08

EX=MERIDIAN TABLE No. 1.

Showing the Reduction at I min. from the Meridian corresponding to the A and B Corrections given on Pages 12 to 37 of this Work.

${ }^{\text {A and }}$ Cor. ${ }^{\text {c }}$	Reduc- tion.	$A \text { and } B C$	$\begin{aligned} & \text { Reduc- } \\ & \text { tion. } \end{aligned}$	$\left\lvert\, \begin{gathered} A \text { and } B \\ C o r . \end{gathered}\right.$	Reduc- tion.	$\begin{aligned} & A \operatorname{and} B \\ & \text { Cor. } \\ & \text { cor } \end{aligned}$	$\begin{aligned} & \text { Reduc } \\ & \text { tion. } \end{aligned}$	$\left\lvert\, \begin{gathered} A \operatorname{and} B \\ C o r . \end{gathered}\right.$	$\begin{aligned} & \text { Reduc- } \\ & \text { tion. } \end{aligned}$	$\begin{gathered} A \operatorname{and} B \\ C o r . \end{gathered}$	Reduc	$A \text { and } B$	$\begin{aligned} & \text { Ravuc- } \\ & \text { tion. } \end{aligned}$
6.90	roos	7.60	983	$8 \cdot 6$	869	ro'о0	$77^{\prime} 8$	Ir: 40	$6{ }_{57}$	12.80	585	14:20	${ }_{527}{ }^{6}$
6.91	1.080	$7 \cdot 61$	98 r	$8 \cdot 62$	867	$10 \cdot 02$	747	$\mathrm{Ir}^{1} 42$	655	12.82	584	14.22	527
6.92	r.078	$7 \cdot 62$	'980	$8 \cdot 64$. 865	10.04	745	Ir 44	654	12.84	583	14.24	526
6.93	r'077	$7 \cdot 63$	-979	$8 \cdot 66$	863	10'06	744	Ir 46	653	12.86	582	14.26	-525
6.9	r 075	$7 \cdot 64$	977	$8 \cdot 68$	861	ro.08	742	Ir ${ }^{48}$	$\cdot 652$	12.88	581	14.28	525
6.95	r`o74	$7 \cdot 65$	-976	8.70	859	10	741	Ir 50	$\cdot 651$	12.90	58 r	14.30	-524
6.96	r.072	$7 \cdot 66$	-975	$8 \cdot 72$	857	10'12	739	11.52	-650	12.92	580	14.32	-523
6.97	r 07 y	7.67	974	8.74	855	${ }^{10} 14$	738	II.54	-649	12.94	579	14.34	$\cdot 522$
6•98	$\begin{array}{r}\mathrm{r} \\ \mathrm{r} 069 \\ \hline 068 \\ \hline\end{array}$	7.68	-972	8.76 8.78	. 853	10.16	736	I1.56	$\cdot 648$	12.96 12.98	578	$1{ }^{1} 4.36$. 522
6.99 7.00	$\xrightarrow{\text { r }} \mathrm{r}$-068	7.69 770	-971	8.78 8.80 88	-852	10.18 10.20	$\cdot 735$.734	11.58 11.60	$\cdot 646$	12.98 13.00	577 576	1438 14.40	. 521
7 -1	r-065	771	969	8.82	848	10.22	732	11.62	644	13.02	575	14.42	519
7.02	I'063	772	967	8.84	846	10. 24	731	II 64	643	13.04	574	14.44	-519
7.03	r.062	773	966	8.86	844	10.26	729	IT•6	642	13.06	573	14.46	518
7.04	1.060	774	965	8.88	842	10.28	728	Ir 68	641	13.08	573	14.48	$\cdot 517$
7.05	1.059	775	'964	8.90	840	10'30	726	11'70	640	13.10	572	14.50	517
$7{ }^{7} 9$	1.057	776	. 962	8.92	838	$10 \cdot 32$	725	11.72	639	13.12	571	14.60	. 513
7.0	1.056	777	.961	8.94	836	$10 \cdot 34$	724	11.74	- 638	${ }_{13}{ }^{1} 4$	570	14.70	510
$7{ }^{7} 08$	1.054	778	'960	8.96	. 835	10. 36	722	r17 ${ }^{6}$	- 63	I3'16	569	14.80	506
$7{ }^{7}$	${ }^{1} \mathrm{O} 053$	779	'959	8.98	833	$10 \cdot 38$	721	II'78	636	13 '18	568	$14^{\prime} 90$	503
7-10	1.051	7.80	'958	$9^{\circ} \mathrm{O}$	831	$10 \cdot 40$	720	11.80	634	13.20	567	$15^{\circ} 00$	499
711	1050	7.81	956	9.02	829	10*42	718	İ88	633	13.22	566	$15^{1} 10$	496
7.	r.047	$7{ }^{7} 8.83$	955	9.04	8827	10.44	717 7 7	I1.84 II 86	.632	13.24 13.26	66	15.20 15.30	493
714	$\mathrm{r} \cdot 045$	$7 \cdot 84$	953	$9 \cdot 08$	824	10.48	774	88	. 630	1328	564	15.40	490 487
$7 \cdot 15$	r ${ }^{\circ} 04$	7.85	952	9.10	822	10.50	713	1190	629	13.30	563	15.50	483
7 76	I. 042	7.86	950	$9 \cdot 12$	820	$10 \cdot 5$	711	II.92	628	$13 \cdot 32$	562	15.60	480
717	$\mathrm{r} \cdot 04 \mathrm{I}$	7.87	949	9.14	818	10.54	710	II'94	627	13.34	561	15.70	477
7	1.040	7.88	9+8	9'16	816	10'56	709	II'96	626	13.36	56i	15.80	474
$7 \cdot$	1.038	7.89	. 947	$9^{9} 18$	815	$10 \cdot 58$	707	1198	625	13.38	'560	1590	471
$7{ }^{7}$	r.037	7.90	946	. 20	813	10.60	706	12.00	624	1340	559	16.00	468
7	r 035	$7{ }^{\text {91 }}$	-944	9.22	8 II	10.62	705	12.02	623	13.42	558	10	465
7	r.034	$7{ }^{7} 9$	943	9.24	809	10.64	'703	12.04	622	13.44	557	2	463
7.23	1.032	7.93	-942	$9 \cdot 26$	808	10.66	702	12.06	621	13.46	556	16.30	460
7.24	1.03 I	7.94	94I	9.28	806	10.68	'701	12.08	620	13.48	. 556	$16{ }^{\circ} \mathrm{O}$	457
7.25	r.030	$7 \cdot 95$	940	9.30	804	10.70	-699	12'10	619	13.50	555	16.50	454
7.26	ro28	7.96	939	9.32	802	10.72	-98	I2'12	618	13.52	554	16.60	451
7.27	$1 \cdot 027$	7.97	937	9'34	801	10.74	-697	12.14	617	13.54	553	16.70	449
7.28	r.025	$7 \cdot 98$	936	9.36	799	$10 \cdot 76$	$\cdot 696$	12'16	616	13.56	552	16.80	446
7.29	r. 024	7.99	935	9.38	797	10.78	-694	12. 18	615	13.58	551	16.90	443
7.30	I'023	8.00	934	9.40	796	10.80	-93	12.20	${ }^{61} 4$	13.60	551	$17^{\circ} 00$	44 I
7.31	I. 021	8.02	932	$9^{9} 42$	794	10.82	$\cdot 692$	12.22	$\cdot 613$	$13^{\prime} 62$	550	$17^{\prime} 10$. 438
7.32	$1 \cdot 020$	8.04	-929	$9 \cdot 44$	792	10.84	$\cdot 690$	12.24	-612	13.64	. 549	17.20	436
7.33	1.	8.06 8.08	-927	9.46	$\checkmark 791$	10.86	. 689	I2.26	611	13.6	548	17.30	433
7.35	$1 \cdot 016$	$8 \cdot \mathrm{I}$	922	9.48	$\bigcirc 788$	10.90	-687	12.28 12.30	609	13.68 13.70	548	17.40 17.50	${ }^{4} 428$
7.36	roi4	$8 \cdot 12$	920	9.52	786	10.92	$\cdot 685$	$12 \cdot 32$	608	13.72	546	17.60	426
7.37	1.013	8.14	918	9.54	$\checkmark 784$	10.94	$\cdot 684$	12'34	607	13.74	545	17.70	423
7.38	$1{ }^{1} 012$	8.16	916	9.56	$7{ }^{82}$	10.96	$\cdot 683$	12.36	606	13.76	544	17.80	42 L
7.39	r-010	$8 \cdot 18$	913	9. 58	781	10.98	$\cdot 682$	12.38	605	13.78	543	17.90	419
7.40	r ${ }^{\circ} 009$	$8 \cdot 20$	91	9.60	779	Ir ${ }^{\circ}$	-680	12.40	604	13:80	543	18.00	416
$7 \cdot 41$	${ }^{1} \cdot 008$	8.22	'909	$9 \cdot 62$	778	11.02	- 79	12.42	$\cdot 603$	13.82	542	$18 \cdot 10$	$4{ }^{4}$
$7{ }^{7} 42$	I.006	8.24	-907	$9 \cdot 64$	776	II.04	- 678	12.44	-602	13.84	54 I	18.20	412
$7 \cdot 43$	${ }_{1} \mathrm{O} 005$	8.26	905	$9 \cdot 66$	774	Ir.06	- 677	12.46	601	13.86	540	18.30	410
7.44	${ }_{1} \mathrm{O} 004$	$8 \cdot 28$	-902	9.68	$\cdot 773$	II.08	$\cdot 676$	12.48	600	13.88	540	18.40	407
7.45 7.46	r.002	8.30	.900	$9^{9} 70$	771	${ }_{11} 10$	$\cdot 674$	12.50	-599	13.90	539	18.50	405
77.46	r -001	8.32	-898	${ }^{9} 72$	$\bigcirc 770$	11°	$\cdot 673$	12.52	598	13.92	538	18.60	403
7.47 7.48	.999	8.34 8.36	. 896	${ }^{9} 74$	7.768	II'14	$\cdot 672$	12.5	597	13.94	537	18.70	$4{ }^{401}$
7.49	. 997	8.35	$\cdot 892$	9.76 9.78	7765		.671	12.56 12.58	596 595	13.96 13.98	-536	18.80 18.90	399 397
7.50	996	8.40	890	$9 \cdot 80$	763	I1.20	-668	12.60	594	14.00	535	19.00	394
7.51	-994	$8 \cdot 42$	-888	9.82	762	1	-667	12.62	593	$14^{\circ} \mathrm{O}$	534	19'10	392
$7^{7} 52$	993	8.44	-885	$9 \cdot 84$	- 760	11.24	666	12'64	592	14.04	533	19.20	390
7.53	'992	8.46	$\cdot 883$	$9 \cdot 86$	759	11.26	-665	$12 \cdot 66$	591	14.06	533	19.30	388
7.54	990	8.48	$\cdot 881$	9.88	757	$1{ }^{\text {P }}$	664	12.68	591	14.08	532	$19 \cdot 40$	386
7.55 7.56	989	8.50	-879	9.90	756	II.30	66	$12 \cdot 70$	590	14^{10}	531	19.50	${ }^{38+}$
7.56 7.57	988	$8 \cdot 52$. 877	${ }^{9} 9.92$.754	Ir ${ }^{1} 2$ I 34		I2.72	. 588	${ }^{14}{ }^{\text {I } 12}$	530	19.60	382
7.58	988	8.56	-875	9.94	${ }^{7} 753$	${ }_{\text {Ir }} 124$	659	$1 \begin{aligned} & 12.74 \\ & 12.78\end{aligned}$	587	14.16	529	19.80	380
$7 \cdot 59$	984	$8 \cdot 58$	871	$9 \cdot 98$	750	[r ${ }^{3} 8$	658	12.78	586	$14^{1} 18$	528	20.00	375

Table showing the Hour=angle Limits within which the Error of the Reduction calculated by Ex=meridian Table No. 2 will not exceed $0 \cdot 5^{\prime}$.

LATITUDE AND DECLINATION OF CONTRARY NAMES.

	Declination.															
			56°	57°	58°	59°	60°	62°	$64{ }^{\circ}$	66°	68°	70°	73°	76°	80°	85°
-	M.	M.	M.	M.	M.	M.	M.	M.	M.	M.	M.	M.	m.	M.	M.	M.
o	$72 l$	$77 l$	861	$123 n$	$128 n$	130 g	110 g	98 g	91 g	81 g	80 g	78 g	78 g	80 g	85 g	102 g
2	7 l	771	$83 l$	$94 l$	$122 l$	134 g	120 g	$98 g$	91 g	83 g	$8 \mathrm{~g} g$	81 g	81 g	82 g	88 g	$1 \mathrm{O}_{4} \mathrm{~g}$
4	7 Ol	$77 l$	$82 l$	931	$\mathrm{II}_{4} \mathrm{l}$	140 g	130 g	102 g	92 g	84 g	8 g g	81 g	81 g	84 g	88 g	105 g
6	7 Ol	761	$82 l$	90l	106l	$142 n$	136 g	$108 g$	96 g	85 g	$8_{4} \mathrm{~g}$	83 g	81g	84 g	90g	
8	7 l	761	$80 l$	881	971	$142 l$	150 g	II3g	100 g	86 g	85 g	84 g	82 g	84 g	90 g	
10	7ol	$75 l$	$80 l$	861	$92 l$	109l	$154 n$	120 g	103 g	$89 g$	85 g	84 g	82 g	85 g		
12	7ol	$75 l$	$78 l$	$85 l$	90l	103l	$13 \mathrm{I} l$	133 g	110 g	948	85 g	86 g	85 g	86 g		
I_{4}	691	73 l	$76 l$	$83 l$	871	961	iol	145 g	1148	1048	90 g	90 g	88 g	..	\cdots	
16	$69 l$	73 l	751	$8 \mathrm{I} l$	$86 l$	$92 l$	$102 l$	162 g	124 g	106 g	95 g	93 g	..			
18	681	731	751	$79 l$	$84 l$	$90 l$	$98 l$	$178 n$	1348	109g	998	94 g	\ldots	.		
20	681	$72 l$	$74 l$	$78 l$	$82 l$	$88 l$	$94 l$	116 l	150 g	I20g	Ioog					
22	681	$72 l$	73 l	$77 l$	8 ol	$86 l$	$90 l$	$108 l$	140 n	IIon	-	\cdots	.	\cdots		
24	681	69 l	$72 l$	761	781	$84 l$	861	100l	IIon	..				.		
26	661	$68 l$	$72 l$	751	$76 l$	$82 l$	$84 l$	$92 l$								
28	$65 l$	681	701	731	$76 l$	8ol	$82 l$									
30	$65 l$	681	7 Ol	$72 l$	$76 l$	$78 l$										

EX=MERIDIAN TABLE No. 2.
Showing the Reduction at I min. from the Meridian corresponding to the A and B Corrections given on Pages 12 to 37 of this Work.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline $$
\begin{array}{|c|c|}
A_{\text {and }} \\
\text { Cor. }
\end{array}
$$ \& Reduc-
tion. \& $$
A \text { and } B
$$ \& Reduc- \& $$
\begin{gathered}
\mathrm{A} \text { and } \mathrm{B} \\
\text { Cor. }
\end{gathered}
$$ \& Reduc- \& $$
\begin{aligned}
& A_{\text {and }}^{\text {and }} . \\
& \hline
\end{aligned}
$$ \& $$
\begin{gathered}
\text { Reduc- } \\
\text { tion. }
\end{gathered}
$$ \& $$
A \text { and } B
$$ \& $$
\begin{aligned}
& \text { Reduc- } \\
& \text { tituon. }
\end{aligned}
$$ \& $$
\left\lvert\, \begin{gathered}
A \text { and } B \\
C o r .
\end{gathered}\right.
$$ \& Reduc tion. \& $$
\begin{aligned}
& A \operatorname{and} B \\
& \text { Cor. }
\end{aligned}
$$ \& Reduction.

\hline 3.00 \& $2 \cdot 500$ \& 3'70 \& $2 \cdot 027$ \& $4^{\prime}{ }^{\prime}{ }^{\circ}$ \& ${ }^{1} \cdot 705$ \& 5'ı0 \& 1.47 x \& 5'80 \& ${ }_{1} \times 293$ \& $6 \cdot 50$ \& I•154 \& 7'20 \& I. ${ }_{4}$

\hline 3 -01 \& 2.492 \& 3.71 \& $2 \cdot 02$ \& 4.41 \& $1 \cdot 701$ \& 5'11 \& 1468 \& 5.81 \& 1291 \& $6 \cdot 51$ \& 1'152 \& $7 \cdot 21$ \& r. 040

\hline 3.02 \& 2.483 \& $3 \cdot 72$ \& 2.016 \& 4.42 \& r'697 \& 5'12 \& 1.465 \& $5 \cdot 82$ \& I'289 \& 6.52 \& r'150 \& $7 \cdot 2$ \& r. 039

\hline 3.03 \& 2.475 \& 3.73 \& OII \& $4 \cdot 43$ \& r.693 \& 5.13 \& 1.462 \& 5.83 \& $1 \cdot 286$ \& $6 \cdot 53$ \& I•148 \& $7 \cdot 23$ \& r.037

\hline 3.04 \& $2 \cdot 467$ \& 3.74 \& $2 \cdot 005$ \& 4.44 \& r.689
. 685
d \& 5.14 \& r.459 \& 5.84 \& $1 \cdot 284$ \& 6.54 \& ${ }_{1} 147$ \& 724 \& r.036

\hline 3.05 \& 2.459 \& 3.75 \& 2.000 \& 4.45 \& 1.685

. 682 \& 5.15 \& r.456 \& 5.85 \& r.282 \& ${ }^{6.55}$ \& I. 145 \& 7.25 \& I. 034

\hline 3.06
3.07 \& 2.451
2.443 \& 3.76
3.77 \& r. 995
r 989 \& 4.46

4.47 \& | 1.682 |
| :--- |
| $\mathrm{r} \cdot 678$ | \& 5.16 \& r.453 \& 5.86 \& 1.280

1.278 \& 6.56
6.57 \& $1 \cdot 143$
$1 \cdot 142$ \& 7.26
$7 \cdot 27$ \& r. 033
r.032
r

\hline 3. \& 2.443
2.4 \& ${ }^{3} 78$ \& r-984 \& 4.48 \& r. 674 \& 5'18 \& $1 \cdot 448$ \& 5.88 \& 1-276 \& $6 \cdot 58$ \& $1 \cdot 140$ \& $7 \cdot 28$ \& r.032
ro30

-

\hline 3.09 \& 2.427 \& 3.79 \& r.979 \& 4.49 \& 1.670 \& $5 \cdot 19$ \& 12445 \& 5.89 \& $1 \cdot 273$ \& $6 \cdot 59$ \& r138 \& 729 \& r-029

\hline 3.10 \& 2.419 \& 3.80 \& r.974 \& $4 \cdot 5$ \& r.667 \& $5 \cdot 20$ \& I•442 \& 5.90 \& 1271 \& 6.60 \& I'136 \& 730 \& r'027

\hline 3.11 \& 2.412 \& 3.81 \& r 969 \& 4.51 \& r.663 \& 5.21 \& 1.440 \& 5.91 \& ${ }^{1} 269$ \& 6.61 \& r'35 \& 7.31 \& r.026

\hline $3 \cdot$ \& $2 \cdot 404$ \& 3.82 \& r.963 \& $4 \cdot 52$ \& r.659 \& $5 \cdot 22$ \& r 437 \& 5.92 \& $1 \cdot 267$ \& $6 \cdot 62$ \& r'133 \& $7{ }^{7} 32$ \& I.025

\hline 3.13 \& 2.396 \& 3.83 \& r.958 \& 4.53 \& $1 \cdot 655$ \& 5.23 \& 1.434 \& 5.93 \& I.265 \& 6.63 \& -131 \& 7.33 \& ${ }^{1} \mathrm{O} 023$

\hline 3.14 \& $2 \cdot 389$ \& 3.84 \& r'953 \& 4.54 \& r.652 \& 524 \& 1431 \& $5 \cdot 94$ \& r263 \& $6 \cdot 64$ \& I'130 \& $7 \cdot 34$ \& I. 022

\hline $3 \cdot 15$ \& $2 \cdot 381$ \& 3.85 \& r.948 \& 4.55 \& 1.648

r 6 \& 5.25
5.26 \& 1.429 \& 5.95 \& $\stackrel{\text { r } 261}{ }$ \& 6.65 \& r.128 \& \& 1.020

\hline 3. \& 2.373
2.366 \& 3.86
3.87 \& $\begin{array}{r}1943 \\ \mathrm{r} .938 \\ \hline\end{array}$ \& 4.56 \& r.645 \& 5 \& 1.422 \& 5. \& r.258 \& 6.66 \& $\xrightarrow{\text { r.126 }}$ \& $7 \cdot$ \&

\hline 3. \& 2.358 \& 3.88 \& 933 \& 4.58 \& 1.638 \& $5 \cdot 28$ \& ${ }^{1} 420$ \& $5 \cdot 98$ \& r254 \& $6 \cdot 68$ \& I•123 \& 7.38 \& r-016

\hline 3.19 \& $2 \cdot 351$ \& 3.89 \& $1 \cdot 928$ \& 4.59 \& I'634 \& 5.29 \& 1418 \& 5.99 \& $\mathrm{r}^{2} 25$ \& $6 \cdot 69$ \& -121 \& 739 \& r-015

\hline 3.20 \& 2.344 \& 3.90 \& I.923 \& 4.60 \& r.630 \& 5.30 \& 1415 \& 6.00 \& 1.250 \& 6.70 \& -119 \& $7{ }^{40}$ \& r. ${ }^{\text {O }} 4$

\hline 3 \& $2 \cdot 336$ \& 3.91 \& r.918 \& 4.61 \& r.627 \& $5{ }^{12}$ \& 1412 \& 6.01 \& 1.248 \& $6 \cdot 71$ \& I'II8 \& $7{ }^{7}{ }^{1}$ \& I'012

\hline 3 \& $2 \cdot 329$ \& 3.92 \& r.913 \& 4.62 \& r.623 \& 5.32 \& r410 \& 6. \& $1 \cdot 246$ \& $6 \cdot 72$ \& I'II6 \& $7 \cdot 42$ \& I

\hline 3.23 \& $2 \cdot 322$ \& 3'93 \& r 908 \& 4.63 \& r.620 \& 5.33 \& 1407 \& 6.03 \& $1 \cdot 244$ \& 6.73 \& r'II4 \& 773 \& r.009

\hline 3.24 \& $2 \cdot 315$ \& 3.94 \& $1 \cdot 904$ \& 4.64 \& r.616 \& $5 \cdot 34$ \& r 404 \& 6.04 \& $1 \cdot 242$ \& 6.74 \& r'113 \& 7×44 \& r'008

\hline 3.25
3.26 \& 2.308
2.301 \& 3.95 \& I-899 \& 4.65 \& 1.613 \& 5.35 \& r 402 \& 6.05 \& 1.240 \& 6.75 \& 'III \& \& ${ }^{1} \cdot 007$

\hline $3 \cdot 27$ \& $2 \cdot 294$ \& 3.97 \& I-889 \& 4.67 \& r.606 \& 5.37 \& r.397 \& 6.07 \& $1 \cdot 236$ \& 6.77 \& I•108 \& 7.47 \& r-005

\hline 3.28 \& $2 \cdot 287$ \& 3.98 \& I•884 \& $4 \cdot 68$ \& r •603 \& $5 \cdot 38$ \& 1 394 \& 6.08 \& 1234 \& 6.78 \& I'106 \& 748 \& I'003

\hline 3.29 \& 2.280 \& 3.99 \& 1.880 \& $4 \cdot 69$ \& 1.599 \& 5.39 \& r 391 \& $6 \cdot 09$ \& 1.232 \& 6.79 \& $1 \cdot 10$ \& 749 \& 1.001

\hline 3.30 \& 2.273
2 \& $4^{\circ} \mathrm{O}$ \& r. 875 \& 4.70 \& $\begin{array}{r}1.596 \\ \\ \hline\end{array}$ \& $5 \cdot 40$ \& 1.389
1.386 \& 6.10 \& 1.230 \& 6.80 \& 1.103 \& 77.50 \& $r \cdot 000$

\hline 3.31
3.32 \& 2.266
2.259 \& 4.01 \& 1.870

r \& 4.71 \& r.592 \& 5.41 \& r.386 \& 6•11 \& | 1.227 |
| :--- |
| 1.225 | \& 6.81 \& $1 \cdot 101$ \& 7.51 \& 999

\hline 3 \& 2.252 \& $4^{\circ} 03$ \& r.86r \& ${ }^{4} 73$ \& $1 \cdot 586$ \& 543 \& 1.381 \& $6 \cdot 13$ \& I-223 \& 6.83 \& r-098 \& 7.53 \& 997

\hline 3.34 \& 2.246 \& 4.04 \& r.856 \& 4.74 \& 1.582 \& $5 \cdot 44$ \& 1-379 \& 6.14 \& I.22I \& $6 \cdot 84$ \& r-096 \& 7.54 \& 995

\hline 3.35 \& 2.239 \& 4.05 \& 1.852 \& 4.75 \& 1.579 \& 5.45 \& 1376 \& $6 \cdot 15$ \& 1.220 \& 6.85 \& 1.095 \& 7.55 \& 993

\hline 3.36
3.37 \& 2.232
2.226 \& ${ }^{4}$-06 \& 1.847
1.843 \& 4.76 \& r.576 \& 5.46 \& r 374 \& 6•16 \& 1.218 \& $6 \cdot 86$ \& r.093 \& 7.56 \& 992

\hline 3.37
3.38 \& 2.226
2.219 \& 4.07
4.08 \& r 843
1.838
r \& 4.77
4 \& 1.572 \& 5.47
5.48 \& $1 \cdot 37 \mathrm{I}$ \& $6 \cdot 17$
$6 \cdot 18$ \& $1 \cdot 216$ \& 687
6.88 \& 1.092 \& 7.57 \& 89

\hline $3 \cdot 3$ \& 2.212 \& 4.09 \& r.834 \& $4 \cdot 79$ \& 1.566 \& 5.49 \& 1.366 \& 6-19 \& ${ }_{1} 1212$ \& 6.89 \& r-089 \& 7.59 \& -988

\hline 3.40 \& $2 \cdot 206$ \& $4 \cdot 10$ \& r. 829 \& 4.80 \& 1-563 \& 5.50 \& r 364 \& $6 \cdot 20$ \& 1-210 \& 6.90 \& r.087 \& 7.60 \& $\cdot 987$

\hline 3.41 \& 2. 199 \& $4 \cdot 11$ \& 1.825 \& $4 \cdot 81$ \& 1.559 \& $5 \cdot 51$ \& $1 \cdot 361$ \& 6.21 \& r-208 \& $6 \cdot 91$ \& r.085 \& 7 \& 986

\hline 3.42 \& $\begin{array}{r}2.193 \\ \hline\end{array}$ \& 4.12 \& $\begin{array}{r}1.820 \\ \hline\end{array}$ \& 4.82 \& 1.556 \& 5.52 \& I 359 \& 6.22 \& I 206 \& $6 \cdot 92$ \& r.084 \& $7 \cdot 62$ \& '984

\hline 3.43 \& $2 \cdot 187$ \& 4.13 \& 1.816 \& 4.83 \& r.553 \& 5.53 \& - 355 \& 6.23 \& I-204 \& 6.93 \& 1.082 \& 7.63 \& 983

\hline 3.44
3.45 \& 2.180

2 \& $4 \cdot 14$ \& r. 812
r 807
ren \& 4.84 \& - 5550 \& 5.54 \& r.354 \& 6. 24 \& r 202 \& 6.94 \& r-08I \& 7.64 \& 982

\hline 3.4
3 \& 2.174

'168 \& $4 \cdot 15$
$4 \cdot 16$ \& 1.807
1.803 \& 4.85 \& 1.546 \& 5.55 \& r 351 \& ${ }^{6 \cdot 25}$ \& ${ }^{1} \mathrm{I} 200$ \& ${ }^{6} 6.95$ \& r'079 \& 7.65 \& 980

\hline 3.4 \& 2•161 \& ${ }_{4} \cdot 17$ \& $\begin{array}{r}1.799 \\ \hline\end{array}$ \& 4.87 \& 1.540 \& 5.57
5 \& r.346 \& 6.26
6.27 \& r'198
r 196 \& 6.96
6.97 \& $\xrightarrow{1.078} \mathrm{r} \cdot 076$ \& 7.67 \& ${ }_{9}^{979}$

\hline 3.48 \& ${ }^{2 \cdot 155}$ \& 4.18 \& ${ }^{1} 794$ \& 4.88 \& - 537 \& 5.58 \& r-344 \& $6 \cdot 28$ \& I•194 \& 6.98 \& I.074 \& $7 \cdot 68$ \& 977

\hline 3.49 \& ${ }^{2 \cdot 149}$ \& 4.19 \& r 790 \& 4.89 \& r.534 \& 5.59 \& I•342 \& 6.29 \& r'192 \& 6.99 \& r 073 \& $7 \cdot 69$ \& 975

\hline 3.50 \& ${ }^{2 \cdot 143}$ \& 4.20 \& 1788 \& 4.90 \& r.53I \& 5.60 \& r 339 \& $6 \cdot 30$ \& - ${ }^{\text {r }}$ 90 \& $7{ }^{\circ} 00$ \& r'07r \& 770 \& 974

\hline | 3.51 |
| :--- |
| 3.52 | \& 2.137

2.131 \& 4.21 \& ${ }^{1} 781$ \& $4 \cdot 91$ \& 1.527 \& $5 \cdot 61$ \& I-337 \& $6 \cdot 31$ \& r-189 \& $7{ }^{\circ} \mathrm{O}$ \& 1.070 \& 77^{1} \& 973

\hline 3.52 \& 2.131
2.125 \& 4.22 \& 1777 \& $4{ }^{192}$ \& r.524 \& 5.62 \& I 333 \& $6 \cdot 32$ \& r $\times 187$ \& $7{ }^{7} 02$ \& 1.068 \& 7772 \& 972

\hline 3.53 \& $2 \cdot 125$ \& $4^{\circ} 23$ \& 1.773 \& 4.93 \& r.52I \& $5 \cdot 63$ \& 1.332 \& 6.33 \& I•185 \& $7 \cdot 03$ \& $1 \cdot 067$ \& $7 \cdot 73$ \& 970

\hline 3.5 \& ${ }^{2 \cdot 119}$ \& 4.24 \& 1.769 \& 4.94 \& 1518 \& 5.64 \& 1.330 \& $6 \cdot 34$ \& $1 \cdot 183$ \& $7{ }^{7} 04$ \& ${ }^{1} \cdot 065$ \& 774 \&

\hline 3.5
3.5 \& 2.113 \& 4.25 \& ${ }^{1} 765$ \& 4.95 \& 1.515 \& $5 \cdot 65$ \& I 327 \& $6 \cdot 35$ \& $\stackrel{1}{1} 18 \mathrm{r}$ \& 7.05 \& ${ }^{1} \cdot 064$ \& 775 \& ${ }^{968}$

\hline 3.56
3.57 \& $2 \cdot 107$ \& 4.26 \& 1.761 \& 4.96 \& 1.51 \& 5.66 \& 1.325 \& $6 \cdot 36$ \& 1'179 \& 7.06 \& ${ }^{1} 062$ \& 776 \& 966

\hline 3.57
3.58 \& $2 \cdot 101$ \& 4.27 \& 1.756 \& 4.97 \& 1.509 \& 5.67 \& 1323 \& $6 \cdot 37$ \& $1 \cdot 177$ \& $7{ }^{7} 07$ \& 1.061 \& 777 \& 65

\hline 3.5 \& 2.089 \& 4.29 \& 17748 \& 4.99 \& $1 \cdot 503$ \& 5.69 \& - 318 \& $6 \cdot 39$ \& -174 \& 7×09 \& r.o58 \& 7.79 \& ${ }_{9}^{964}$

\hline 3. \& 2.083 \& 4.30 \& I'744 \& 5\%o \& r.500 \& 570 \& r316 \& 6.40 \& 1-172 \& 7 -10 \& 1.056 \& 7.80 \& ${ }_{962}$

\hline $3 \cdot 6$ \& 2.078 \& 4.31 \& 1740 \& 5 -01 \& 1497 \& 571 \& I.313 \& 6.41 \& $1{ }^{1} 170$ \& 7×11 \& r.055 \& 7.81 \& 960

\hline 3.6 \& 2.072
2.066 \& 4.32 \& r.736 \& $5{ }^{5} 5$ \& 1.494 \& $5{ }^{5} 72$ \& I.311 \& 6.42 \& 1.168 \& $7{ }^{7} 12$ \& r.053 \& 7.82 \& 959

\hline 3.63 \& 2.066 \& 4.33 \& $1 \cdot 732$ \& 5.03 \& 1×491 \& 573 \& r.309 \& $6 \cdot 43$ \& r•166 \& $7 \cdot 13$ \& $1 \cdot 052$ \& 7.83 \& 958

\hline $3 \cdot 6$ \& 2.060 \& 4.34 \& r 728 \& 5.04 \& 1.488 \& 574 \& I•307 \& $6 \cdot 44$ \& I'165 \& $7{ }^{7} 14$ \& 1.050 \& 7.84 \& 957

\hline 3.6 \& 2.055 \& 4.35 \& r'724 \& 5.05 \& $1 \cdot 485$ \& 575 \& I•304 \& $6 \cdot 45$ \& 1'163 \& 7×15 \& $1{ }^{1} 049$ \& 7.85 \& 955

\hline 3.6 \& 2.049 \& 4.36
4.37 \& $1 / 720$
1.716 \& 5.06 \& 1.482
1.479 \& $5^{5.76}$ \& r.302 \& 6.46 \& I'161 \& 7.16 \& \& 7.86 \& 954

\hline 3.68 \& 2.038 \& 4.38 \& 1772 \& 5.08 \& $1 \cdot 476$ \& 5.78 \& 1-298 \& 6.48 \& $1 \cdot 157$ \& 718 \& $1 \cdot 045$ \& 7.88 \& 952

\hline $3 \cdot 69$ \& 2.033 \& 4.39 \& 1'708 \& 5.09 \& r 473 \& $5{ }^{\text {² }} 7$ \& I-295 \& 6.49 \& 1.156 \& 7-19 \& r.043 \& 7.89 \& 951

\hline
\end{tabular}

EX=MERIDIAN TABLE No. 2.

Showing the Reduction at I min. from the Meridian corresponding to the A and B Corrections given on Pages 12 to 37 of this Work.

$\begin{aligned} & \mathrm{A} \text { and } \mathrm{B} \\ & \text { Cor. } \end{aligned}$	Reduc-	$A \text { and } B \mid$	Reduc-	A and B Cor.	Reduction.	A and B Cor.	Reduction.	A and B Cor.	Reduction,	$\begin{aligned} & A \text { and } B \\ & \text { Cor. } \end{aligned}$	Reduction.	$\begin{gathered} A \text { and } B \\ \text { Cor. } \end{gathered}$	Reduction.
$7 \cdot 90$	-949	$8 \cdot 60$. 872	$9 \cdot 30$	-806	10.00	$\cdot 750$	10.70	701	40	658	$12 \cdot 20$	5
$7 \cdot 91$	$\cdot 948$	$8 \cdot 61$	-871	$9 \cdot 31$	-806	10.01	$\cdot 749$	10.71	$\cdot 700$	II 41	-657	$12 \cdot 22$	614
$7 \cdot 92$	-947	$8 \cdot 62$	-870	$9 \cdot 32$	-805	10.02	-749	10. 72	$\cdot 700$	11.42	-657	$12 \cdot 24$	-613
$7 \cdot 93$	-946	$8 \cdot 63$	-869	$9 \cdot 33$	-804	10.03	$\cdot 748$	$10 \cdot 73$	-699	II* 43	-656	12.26	$\cdot 612$
$7 \cdot 94$	-945	$8 \cdot 64$	-868	$9 \cdot 34$	- 803	10.04	$\cdot 747$	$10 \cdot 74$	-698	II 44	-656	12.28	611
$7 \cdot 95$	-943	$8 \cdot 65$	-867	$9 \cdot 35$	-802	10.05	$\cdot 746$	$10 \cdot 75$	-698	II 45	-655	$12 \cdot 30$	610
$7 \cdot 06$	-942	$8 \cdot 66$	-866	$9 \cdot 36$	-801	10.06	$\cdot 746$	$10 \cdot 76$	-697	II 146	-654	$12 \cdot 32$	609
$7 \cdot 97$	-94I	$8 \cdot 67$	-865	$9 \cdot 37$	-800	10.07	$\cdot 745$	$10 \cdot 77$	-696	II 47	-654	$12 \cdot 34$	608
$7 \cdot 98$	-940	$8 \cdot 68$	-864	$9 \cdot 38$	-800	10.08	$\cdot 744$	$10 \cdot 78$	-696	II 4.48	-653	$12 \cdot 36$	$\cdot 607$
$7 \cdot 99$	-939	$8 \cdot 69$	-863	$9 \cdot 39$	799	$10 \cdot 09$	$7 \cdot 43$	10. 79	-695	II 49	-653	$12 \cdot 38$	-606
$8 \cdot 00$	-938	$8 \cdot 70$	-862	$9 \cdot 40$	$\cdot 798$	10.io	$\cdot 743$	$10 \cdot 80$	-694	II 50	-652	12.40	-605
$8 \cdot \mathrm{OI}$	-936	$8 \cdot 71$	-861	$9 \cdot 4{ }^{1}$	$\cdot 797$	$10 \cdot$	$\cdot 742$	10.81	-694	11.51	-652	12.42	$\cdot 604$
$8 \cdot 02$	-935	$8 \cdot 72$	-860	$9 \cdot 42$	$\cdot 796$	10•12	$\cdot 741$	10.82	-693	11.52	$\cdot 651$	12.44	-603
$8 \cdot 03$	-934	$8 \cdot 73$	-859	$9 \cdot 43$	$\cdot 795$	10.13	$\cdot 740$	10.83	-693	11.53	-650	12.46	. 602
$8 \cdot{ }^{8}$	-933	$8 \cdot 74$	-858	$9 \cdot 44$	$\cdot 794$	$10 \cdot 14$	$\cdot 740$	10.84	-692	II $\cdot 54$. 650	12.48	601
$8 \cdot 05$	-932	$8 \cdot 75$	-857	$9 \cdot 45$	-794	10.15	739	10.85	-691	I 1 55	-649	12.50	600
8.06	-931	$8 \cdot 76$	- 856	$9 \cdot 46$	-793	Io•16	738	$10 \cdot 86$	-691	II $\cdot 56$	-649	$12 \cdot 52$	599
$8 \cdot 07$	-929	$8 \cdot 77$	-855	$9 \cdot 47$	$\cdot 792$	$10 \cdot 17$	$\cdot 737$	10.87	-690	I 1 57	-648	$12 \cdot 54$	598
$8 \cdot 08$	-928	$8 \cdot 78$	-854	$9 \cdot 48$	-791	10•18	$\cdot 737$	10.88	. 689	II-58	$\cdot 648$	12.56	597
$8 \cdot 09$	-927	$8 \cdot 79$	-853	$9 \cdot 49$	-790	10•19	$\cdot 736$	10.89	$\cdot 689$	I I 59	-647	$12 \cdot 58$	$\cdot 596$
8-10	-926	8.80	-852	$9 \cdot{ }^{\circ}$	$\cdot 789$	10.20	$\cdot 735$	10.90	-688	11.60	-647	12.60	595
8-11	-925	$8 \cdot 8 \mathrm{I}$	-851	$9 \cdot 51$	$\cdot 789$	$0 \cdot 21$	$\cdot 735$	10.91	$\cdot 687$	II $\cdot 61$	$\cdot 646$	12.62	594
8-12	-924	$8 \cdot 82$	-850	$9 \cdot 52$	$\cdot 788$	$10 \cdot 2$	$\cdot 734$	10.92	-687	II $\cdot 62$	-645	12.64	-593
$8 \cdot 13$	-923	8.83	-849	$9 \cdot 53$	$\cdot 787$	10.23	$\cdot 733$	$10 \cdot 93$	-686	I 1.63	$\cdot 645$	12.66	-592
$8 \cdot 14$	-921	$8 \cdot 84$	-848	$9 \cdot 54$	$\cdot 786$	10.24	$\cdot 732$	10.94	686	II $\cdot 64$	-644	12.68	591
8-15	$\cdot 920$	$8 \cdot 85$	-847	$9 \cdot 55$	$\cdot 785$	10.25	$\cdot 732$	$10 \cdot 95$. 685	II. 65	-644	$12 \cdot 70$	-591
8-16	-919	8.86	-847	9.56	$\cdot 785$	10.26	73 I	10.96	.684	I I $\cdot 66$	-643	12.72	-590
8-17	-918	$8 \cdot 87$	-846	9.57	$\cdot 784$	10.27	$\cdot 730$	$10 \cdot 97$	$\cdot 684$	II 67	-643	$12 \cdot 74$	$\cdot 589$
8-18	-917	$8 \cdot 88$	-845	9•58	$\cdot 783$	$10 \cdot 28$	730	10.98	. 683	11.68	-642	12.76	-588
8-19	-916	$8 \cdot 89$	-844	9.59	$\cdot 782$	$10 \cdot 29$	729	$10 \cdot 99$	682	I 1 $\cdot 69$	-642	12.78	$\cdot 587$
$8 \cdot 20$	-915	$8 \cdot 90$	-843	$9 \cdot 60$	$\cdot 781$	$10 \cdot 30$	728	II 00	682	11.70	-641	12.80	-586
8-21	-914	8-91	-842	$9 \cdot 61$	$\cdot 780$	$10 \cdot 31$	$\cdot 727$	II ${ }^{\circ}$	-681	11•71	-640	12.82	$\cdot 585$
$8 \cdot 22$	-912	$8 \cdot 92$	-841	$9 \cdot 62$	$\cdot 780$	$10 \cdot 32$	$\cdot 727$	11.02	681	11.72	-640	12.84	$\cdot 584$
$8 \cdot 23$	-91I	$8 \cdot 93$	-840	$9 \cdot 63$	$\cdot 779$	10.33	$\cdot 726$	11.03	680	11.73	-639	12.86	. 583
$8 \cdot 24$	-910	$8 \cdot 94$	-839	$9 \cdot 64$	$\cdot 778$	10.34	$\cdot 725$	II.O4	-679	II 74	-639	12.88	$\cdot 582$
$8 \cdot 25$	-909	$8 \cdot 95$	-838	$9 \cdot 65$	$\cdot 777$	$10 \cdot 35$	$\cdot 725$	11.05	-679	I $1 \cdot 75$	-638	12.90	.581
$8 \cdot 26$	-908	$8 \cdot 96$	-837	9.66	$\cdot 776$	10.36	$\cdot 724$	11.06	-678	Ir 76	-638	12.92	. 580
$8 \cdot 27$	-907	$8 \cdot 97$	-836	$9 \cdot 67$	$\cdot 776$	10.37	$\cdot 723$	11.07	-678	11.77	-637	I2.94	. 580
$8 \cdot 28$	-906	$8 \cdot 98$	-835	$9 \cdot 68$	$\cdot 775$	10.38	$\cdot 723$	11.08	-677	11.78	-637	12.96	579
$8 \cdot 29$	-905	$8 \cdot 99$	-834	9.69	-774	10.39	$\cdot 722$	II 009	-676	11.79	-636	12.98	-578
$8 \cdot 30$	-904	$9 \cdot 00$	-833	$9 \cdot 70$	$\cdot 773$	$10 \cdot 40$	721	II $\cdot 10$	$\cdot 676$	II.80	-636	13.00	577
$8 \cdot 31$	-903	9.01	-832	$9 \cdot 71$	$\cdot 772$	$10 \cdot 41$	$\cdot 720$	11	-675	II $\cdot 8 \mathrm{I}$	-635	13.02	$\cdot 576$
$8 \cdot 32$	-901	$9 \cdot 02$	-831	$9 \cdot 72$	$\cdot 772$	$10 \cdot 42$	$\cdot 720$	II 12	-674	II.82	-635	13.04	$\cdot 575$
$8 \cdot 33$	-900	$9 \cdot{ }^{\circ}$	-831	$9 \cdot 73$	-771	$10 \cdot 43$	'719	II 13	-674	II. 83	-634	13.06	-574
$8 \cdot 34$	-899	$9 \cdot{ }^{\circ}$	-830	$9 \cdot 74$	$\cdot 770$	$10 \cdot 44$	-718	II ${ }^{1} 4$	-673	II $\cdot 8$	-633	13.08	573
$8 \cdot 35$	-898	$9 \cdot 05$	-829	$9 \cdot 75$	$\cdot 769$	10.45	$\cdot 718$	II 15	-673	I I $\cdot 85$	-633	13.10	573
8.36	-897	$9 \cdot 06$	-828	$9 \cdot 76$	$\cdot 768$	10.46	-717	II-I6	-672	II. 86	-632	$13 \cdot 12$	$\cdot 572$
$8 \cdot 37$	-896	$9 \cdot 7$	-827	$9 \cdot 77$	$\cdot 768$	$10 \cdot 47$	$\cdot 716$	II I 77	-671	II. 87	-632	13.14	. 571
$8 \cdot 38$	-895	$9 \cdot 08$	-826	$9 \cdot 78$	$\cdot 767$	10.48	$\cdot 716$	II-18	-671	II 188	-631	13.16	-570
$8 \cdot 39$	-894	$9 \cdot 09$	-825	$9 \cdot 79$	$\cdot 766$	$10 \cdot 49$	$\cdot 715$	II 19	-670	II $\cdot 89$	-631	13.18	$\cdot 569$
$8 \cdot 40$	-893	9-10	-824	$9 \cdot 80$	$\cdot 765$	10.50	$\cdot 714$	II $\cdot 20$	-670	II 190	-630	13.20	-568
$8 \cdot 41$	-892	$9 \cdot 11$	-823	$9 \cdot 8 \mathrm{I}$	$\cdot 765$	$10 \cdot 51$	$\cdot 714$	II-2I	-669	I 1.91	-630	13.22	$\cdot 567$
$8 \cdot 42$	-891	9-12	-822	$9 \cdot 82$	$\cdot 764$	10. 52	-71 3	11.22	-668	I $1 \cdot 92$	-629	13.24	- 566
$8 \cdot 43$	-890	9•13	-821	$9 \cdot 83$	$\cdot 763$	10.53	$\cdot 712$	11.23	-668	II 193	-629	I 3.26	-566
$8 \cdot 44$	-889	9-14	-821	$9 \cdot 84$	$\cdot 762$	$10 \cdot 54$	$\cdot 712$	11.24	-667	II ${ }^{1} 94$	-628	I 3.28	- 565
$8 \cdot 45$	-888	$9 \cdot 15$	-820	$9 \cdot 85$	$\cdot 761$	10.55	$\cdot 711$	11.25	- 667	1 1 -95	$\cdot 628$	I $3 \cdot 30$	- 564
$8 \cdot 46$	-887	9-16	-819	$9 \cdot 86$	$\cdot 761$	10.56	$\cdot 710$	II 126	-666	I 1.96	$\cdot 627$	13.32	-563
$8 \cdot 47$	-885	9•17	-818	$9 \cdot 87$	$\cdot 760$	10.57	7710	11.27	- 665	11.97	- 627	13.34	$\cdot 562$
$8 \cdot 48$	-884	9•18	-817	$9 \cdot 88$	-759	10.58	$\cdot 709$	11.28	- 665	II 198	-626	13.36	$\cdot 561$
$8 \cdot 49$	-883	9•19	-816	$9 \cdot 89$	-758	10.59	$\cdot 708$	11.29	-664	II•99	-626	13.38	$\cdot 561$
$8 \cdot 50$	-882	$9 \cdot 20$	-815	$9 \cdot 90$	-758	10.60	$\cdot 708$	11.30	-664	12.00	-625	I 3.40	$\cdot 560$
$8 \cdot 51$	-88I	$9 \cdot 21$	-814	$9 \cdot 91$	-757	$10 \cdot 6$	$\cdot 707$	$1 \mathrm{I} \cdot 31$	-663	2.02	-624	13.42	- 559
$8 \cdot 52$	-880	$9 \cdot 22$	-813	$9 \cdot 92$	-756	10.62	$\cdot 706$	11.32	-663	12.04	-623	13.44	- 558
$8 \cdot 53$	-879	$9 \cdot 23$	-813	$9 \cdot 93$	$\cdot 755$	10.63	$\cdot 706$	II.33	-662	12.06	-622	13.46	-557
$8 \cdot 54$	-878	$9 \cdot 24$	-812	$9 \cdot 94$	-755	$10 \cdot 64$	$\cdot 705$	II.34	-661	12.08	-621	13.48	$\cdot 556$
$8 \cdot 55$	-877	$9 \cdot 25$	-811	$9 \cdot 95$	$\cdot 754$	10.65	${ }^{7} 7$	11.35	-661	$12 \cdot 10$	-620	13.50	$\cdot 556$
$8 \cdot 56$	-876	$9 \cdot 26$	-810	$9 \cdot 96$	$\cdot 753$	10.66	$\cdot 704$	II 136	-660	12.12	-619	13.52	$\cdot 555$
8.57	$\cdot 875$	9.27	. 809	$9 \cdot 97$	$\cdot 752$	10.67	$\cdot 70$	11.37	. 660	12.14 12.16	$\cdot 618$	I 3.54	$\cdot 554$
$8 \cdot 58$	-874	$9 \cdot 28$	-808	$9 \cdot 98$	$\cdot 752$	10.68	$\cdot 702$	II 138	-659	$12 \cdot 16$	$\cdot 617$	13.56	- 553
$8 \cdot 59$	$\cdot 873$	$9 \cdot 29$	$\cdot 807$	$9 \cdot 99$	$\cdot 751$	$10 \cdot 69$	$\cdot 702$	11*39	$\cdot 658$	12.18	$\cdot 616$	13.58	$\cdot 552$

EX=MERIDIAN TABLE No. 2.
Showing the Reduction at I min. from the Meridian corresponding to the A and B Corrections given on Pages 12 to 37 of this Work.

${ }_{\text {A }}^{\text {and }}$ Cor. ${ }^{\text {a }}$	Reduc- tion.	A and B Cor.	$\begin{aligned} & \text { Reduc- } \\ & \text { tion. } \end{aligned}$	$\begin{aligned} & \mathrm{A} \text { and } \mathrm{B} \\ & \text { Cor. } \end{aligned}$	$\begin{aligned} & \text { Reduc- } \\ & \text { tion. } \end{aligned}$	$A_{\text {Cor. }}^{\mathrm{And} B}$	$\begin{aligned} & \text { Reduc- } \\ & \text { tion. } \end{aligned}$	${ }_{\text {Cor. }}^{\operatorname{and}}$	$\begin{aligned} & \text { Reduc- } \\ & \text { tion. } \end{aligned}$	$\begin{gathered} A \operatorname{and} B \\ \text { Corr. } \end{gathered}$	Reduc-	${ }_{\mathrm{Cor}}^{\mathrm{Cand}} \mathrm{B}$	$\begin{gathered} \text { Redu } \\ \text { tion } \end{gathered}$
13.60	551	17.10	439	20	$\cdot 364$	$24 \cdot 50$	$\cdot 306$	31:50	238	45.20	-166	77	
13.65	549	${ }_{1} 7 \cdot 15$	437	$20 \cdot 65$	363	24^{6}.	305	31.60	237	45.40	165		-09
13.70	54	17.20	436	20.70	362	24.70	304	$3 \mathrm{~L} \cdot 70$	237	$45 \cdot 6$	-165	79°	-09
13.75	5	17.25	435	$20 \cdot 75$	361		302		236		-164		-09
13.	543	${ }^{1} 7.30$	434	20.80	361	$24 \cdot 90$	301	32.00	234	$46 \cdot 0$	-163	8 I -	
13.85	542	${ }^{1} 7 \cdot 35$	432	$20 \cdot 85$	360	25.00	300	$32 \cdot 20$	233	$46 \cdot 2$	-162	82.0	
13.90	540	17.40	43 x	$20 \cdot 90$	$\cdot 359$	25.10	299	$32 \cdot 4$	232	$46 \cdot 40$	${ }^{1} 162$	83.0	
13.9	53	1745	430	$20 \cdot 95$	358	25.2	298	$32 \cdot 6$	$\cdot 230$	$46 \cdot 6$	-161	84	.08
$14^{\circ} \mathrm{O}$	536	17.50	$\cdot 429$	21.00	357	$25 \cdot 30$	296	$32 \cdot 8$	229	$46 \cdot 80$	160		
14	534	17.55	$\cdot 427$	21.05	356	25.40	295	33.00	$\cdot 227$	47°	$\cdot 160$	$86 \cdot$	
14.	532	17.	$\cdot 426$	21-10	355	25.5	29	33	226	47	- 5	87	
14.1	-530	17.65	$\cdot 425$	$21 \cdot 15$	$\cdot 355$	$25 \cdot 6$	293	33.40	225	47		88	
14.	528	17.70	$\cdot 424$	21	354	25.70	292	$33 \cdot 6$	23	47	- 15	89.0	-08
14.25	526	17.75	$\cdot 423$	21.25	353	25.	291	33	222		-157		
14.30	524	17.80	$\cdot 421$	21.30	352	25.90	290	$34^{\circ} \mathrm{O}$	221	48	- 15	91.0	
14.3	523	17.85	420	21.35	351	26.	289	34.	219	48	156	92.0	
14.4	$\cdot 521$	17.90	419	21.40	351	$26 \cdot 10$	287	34		48	-	93.0	
14.45	519	17.95	418	21.45	350	26.	286	34.6	-217	48	-15	$94^{\circ} \mathrm{O}$	
14.50	517	18.00	$\cdot 417$	21.50	$\cdot 349$	$26 \cdot 3$	285	$34 \cdot 8$	-216	48	${ }^{-15}$	95°	-
1.4.55	515	18.05	$\cdot 416$	21.55	$\cdot 348$	$26 \cdot 40$	284	$35^{\circ} \mathrm{O}$	214	49.0	'153		
14.6	514	$18 \cdot 10$	$4^{11} 4$	21.60	347	$26 \cdot 5$	283	35°	13	49	${ }^{152}$	97°	$\bigcirc 7$
14.6	${ }^{51}$	18.15	$\cdot 413$	21.65	$\cdot 346$	$26 \cdot 6$	282	35.	212	49	52		-077
14.	$\cdot 510$	18.	$\cdot 412$	21.70	346	$26 \cdot 70$	281	35.	-21I	49	I5I	$99^{\circ} \mathrm{O}$. 076
	. 508	18.25	411	21.75	345	$26 \cdot 80$	280	35	210	49	${ }^{151}$	${ }^{100}{ }^{\circ}$	
	. 507	18.30	410	21.88	344	$26 \cdot 90$	279	$36 \cdot 0$	-208	50.0	-150	110.0	
14.8	505	18.35	409	21.85	343	27.00	$\cdot 278$	36.	207	$50 \cdot 20$	-149	120.0	
14	. 503	18.40	408	21.90	-343	$27 \cdot 10$	$\cdot 277$	36.4		50	- 149	13	05
14.9	$\cdot 502$	18.45	$\cdot 407$	21-95	342	27.20	$\cdot 276$		-205		-148	14	05
15.00	-500	18.50	405	22.00	34 I	27.3	-275	$36 \cdot 80$	-204	50	-148	150	$\bigcirc 5^{\circ}$
15°	498	18.55	404	$22 \cdot 05$	34°	27.4	274	$37^{\circ} \mathrm{O}$	-203	51.00	. 147		047
15.	497	18.60	403	22.	-339	$27 \cdot 5$	273	37.2	202	5 I		$17^{\circ} \mathrm{O}$	
15	495	18.65	402	$22 \cdot 15$	339	$27 \cdot 60$	$\cdot 272$	37.4	-201	$51^{1} 4$	${ }^{1} 14$	180	42
15.20	493	18.70	401	22.2	338	27.70	$\cdot 271$				${ }^{1} 45$	190°	
15.25	492	18.75	400	$22 \cdot 25$	337	27.8	-270		-198	5 I	'145	Oo	038
15	490	18.80	399	$22 \cdot 30$	336	27.90	269		-197	$52 \cdot 0$	${ }^{1} 14$	2100	$\bigcirc 36$
15	489	18.85	-398	$22 \cdot 35$	$\cdot 336$	28.00	-268	38	-196	$52 \cdot 2$	-14	$220 \cdot 0$	
15	$\cdot 487$	18.90	-397	22.40	335	$28 \cdot 1$	267	$38 \cdot 40$	-195	52.4	${ }^{1} 143$	230	3
15	$\cdot 485$	18.95	-396	$22 \cdot 45$	334	$28 \cdot 2$			94		${ }^{1} 43$	24°	
15	44^{8}	19.00	395	$22 \cdot 5$	333	28.30	$\cdot 265$	$38 \cdot 8$	193	52	${ }^{1} 42$	250.	-030
15.55	$\cdot 482$	19.05	-394	$22 \cdot 55$	333	28.40	-264	39°	-192	53.	-142	260	
15	481	$19 \cdot 10$	393	$22 \cdot 6$	332	28.50	-2	39	-191	53	$\cdot 141$	27	
15.65	479	19.15	392	22.65	331	$28 \cdot 6$	262	$39 \cdot 4$	-190	53.	${ }^{1} 40$	280.0	-2
15.70	478	19.20	391	$22 \cdot 70$	330	28.70	-261	39	- 189	53	- 140	290.0	
	$\cdot 476$	19.25	390	22	-330	$28 \cdot 80$	$\cdot 26$	$39 \cdot 80$		53.8	- 139	$300 \cdot 0$	-025
15.	$\cdot 475$	19.30	389	22.80	$\cdot 329$	28.90	$\cdot 26$	$40 \cdot 0$	-188	54°	- 139	320	-2
15.85	473	$19 \cdot 35$	388	$22 \cdot 85$	-328	29.00	-259	$40 \cdot 20$. 187	$54 \cdot 40$			
15.90	472	1940	387	22.90	$\cdot 328$	$29 \cdot 10$	- 258	$40 \cdot 40$	18	54.8	-137	$360 \cdot 0$. 021
15.	470	19.45	386	$22 \cdot 95$	$\cdot 327$	29.2	- 257	40.60	-185	55	-136	380	
16.	469	19.50	385	$23^{\circ} 00$	$\cdot 326$	29.30	256	$40 \cdot 80$	184	55	- 135	400	-019
16.05	$\cdot 467$	19.55	384	23.05	$\cdot 325$	29.40	-255	$4^{1.00}$	-183	56.	${ }^{-13}$	$420 \cdot 0$	
16.	466	19.60	383	$23 \cdot 10$	-325	29.50	-254	$4 \mathrm{I} \cdot 20$	-182		-	44	
$16 \cdot 15$	464	$19 \cdot 6$	382	$23 \cdot 15$	$\cdot 324$	29.60	253	$41 \cdot{ }^{\circ}$	181	58.	-129	460	-
16.	463	19.70	381	23.20	$\cdot 323$	29.70	-253	$4{ }^{1} \cdot 60$	180	59°	-12	480	
$16 \cdot 25$	462	19.75	380	23.25	$\cdot 323$	29.80	252	41.80	I79	$60 \cdot 0$	-125	500	$\cdot 015$
16.30	460	19.80	379	$23 \cdot 30$	$\cdot 322$	$29 \cdot 90$	$\cdot 251$	42.	-179	6 I .	-12	520	
16.35	459	19.85	378	$23 \cdot 35$	$\cdot 321$	$30 \cdot 0$	-250	$42 \cdot 2$	-178	62 .	$\cdot 121$	5	促
16.40	457	19.90	377	$23.4{ }^{\circ}$	321	-	-249	$42 \cdot 40$	- 177	63.	-119	560	-OI3
16.45	456	19.95	376	23.45	-320	$30 \cdot 2$	$\cdot 248$	$42 \cdot 60$	- 176	64.	-117	58	$\bigcirc{ }^{\circ} 13$
16.50	455		375	23.50	319	$30 \cdot 30$	24^{8}	$42 \cdot 80$	- 175	65°	-115	600	-13
16.5	453	20	374	23.55	319	$30^{\circ}{ }^{\circ}$	247	$43^{\circ} \mathrm{Co}$	'174	66°	${ }^{1} 14$	650°	-12
16	452	-	373	$23 \cdot 60$	$\cdot 318$	$30 \cdot 50$	$\cdot 246$	$43 \cdot 2$. 174	67°	-112	700	
16.6	45°	$20 \cdot 15$	372	$23 \cdot 65$	$\cdot 317$	$30 \cdot 60$	-245	43	- 73	68.00	-110	750	-10
$16 \cdot 70$	449	$2 \cdot 20$	37 I	$23 \cdot 70$	-317	$30 \cdot 70$	-244	$43 \cdot 6$	${ }^{1} 72$	69.00	10	800	
16.75	448	20.25	370	23.80	-315	30.80	-244	$43 \cdot 8$	${ }^{1} 7$	$70^{\circ} \mathrm{O}$	10		
16.80	446	$20.3{ }^{\circ}$	370	23.90	$\cdot 314$	$30 \cdot 90$	-243	$44^{\circ} \mathrm{O}$	${ }^{1} 71$	1.	-106	Iooo	
16.85	445	20*35	369	24	113	31	242	44^{20}	-170	72.00	$\cdot 104$	I200	
16.90	444	$20 \cdot 40$	368	$24 \cdot 10$	$\cdot 311$	$3{ }^{1} \cdot$	241	44.40	169	$73^{\prime} 0$	-103	1500	${ }^{\circ} 005$
16	44^{2}	$20 \cdot 45$	-367	24^{20}	310	$3{ }^{1} 20$	-2 4°	44^{60}	-168	$74^{\circ} \mathrm{O}$	-101	oo	$\cdot 004$
	44	$20 \cdot 50$	366	2430	99	31.30	24°			$75^{\circ} \mathrm{O}$	Io	$2500 \cdot 0$	
17.05	44	$20 \cdot 55$	36	24.4	. 307	1.40	23	45.0	16	76.00	099	3000	

TABLE M.
Error in Latitude due to an Error of 4 Seconds in Time or l^{\prime} of Longitude.

方	LATITUDE.															
<	0°	5°	10°	15°	18°	20°	22°	24°	26°	28°	30°	32°	34°	36°	38°	40°
2	. 03	. 03	. 03	. 03	. 03	. 03	. 03	. 03	. 03	. 03	. 03	. 03	. 03	-03	- 03	
4	. 07	. 07	07	. 07	-07	. 07	.06	.06	.06	.06	.06	.06	.06	.06	.06	. 05
6	- II	-10	-10	- 10	- 10	- 10	- 10	-10	-09	-09	-09	-09	. 09	-09	-08	. 08
8	- 14	-14	-14	-14	- 13	- 13	- 13	-13	- 13	-12	- 12	-12	-12	- II	- I I	11
Io	-18	-18	-17	-17	-17	-17	-16	$\cdot 16$	-16	-16	- 15	- 15	- 15	-14	$\cdot 14$	-14
12	-21	- 21	- 21	$\cdot 21$	-20	-20	-20	-19	-19	-19	-18	-18	-18	-17	-17	-16
14	- 25	$\cdot 25$	$\cdot 25$	- 24	- 24	. 23	. 23	- 23	- 22	- 22	- 22	- 21	-21	- 20	- 20	-19
16	- 29	- 29	- 28	- 28	- 27	- 27	- 27	- 26	- 26	$\cdot 25$	$\cdot 25$	- 24	- 24	$\cdot 23$	$\cdot 23$. 22
18	- 32	$\cdot 32$	$\cdot 32$	$\cdot 31$	$\cdot 31$	-31	$\cdot 30$	$\cdot 30$	- 29	- 29	- 28	-28	$\cdot 27$	- 26	- 26	. 25
20	- 36	$\cdot 36$	$\cdot 36$	-35	-35	$\cdot 34$	-34	$\cdot 33$	$\cdot 33$	$\cdot 32$	$\cdot 32$	$\cdot 31$	$\cdot 30$	- 29	-29	$\cdot 28$
2 I	$\cdot 38$	$\cdot 38$	$\cdot 38$	-37	-37	-36	-36	-35	-35	$\cdot 34$	-33	-33	$\cdot 32$	-31	$\cdot 30$	-29
22	$\cdot 40$	$\cdot 40$	- 40	-39	-38	$\cdot 38$	-37	-37	-36	$\cdot 36$	-35	-34	-33	-33	$\cdot 32$	-31
23	- 42	- 42	- 42	-4	$\cdot 40$	$\cdot 40$	-39	-39	$\cdot 38$	$\cdot 37$	$\cdot 37$	$\cdot 36$	-35	$\cdot 34$	$\cdot 33$	$\cdot 33$
24	$\cdot 45$	-44	$\cdot 44$	-43	$\cdot 42$	$\cdot 4^{2}$	$\cdot 41$	$\cdot 41$	$\cdot 40$	-39	-39	$\cdot 38$	-37	-36	-35	- 34
25	$\cdot 47$	$\cdot 46$	$\cdot 46$	$\cdot 45$	$\cdot 44$	- 44	$\cdot 43$	-43	$\cdot 4^{2}$	4 I	$\cdot 40$	${ }^{4} 0$	-39	$\cdot 38$	-37	$\cdot 36$
26	-49	-49	$\cdot 48$	$\cdot 47$	$\cdot 46$	- 46	$\cdot 45$	-45	-44	-43	$\cdot 4^{2}$	4^{1}	- 40	-39	$\cdot 38$	$\cdot 37$
27	$\cdot 51$	$\cdot 51$	$\cdot 50$	-49	-48	$\cdot 48$	$\cdot 47$	-47	-46	$\cdot 45$	$\cdot 44$	-43	$\cdot 42$	$\cdot 41$	$\cdot 40$	$\cdot 39$
28	-53	- 53	$\cdot 52$	${ }^{51}$	${ }^{51}$	-50	-49	$\cdot 49$	$\cdot 48$	$\cdot 47$	$\cdot 46$	- 45	-44	$\cdot 43$	$\cdot 42$	$\cdot 41$
29	-55	- 55	- 55	$\cdot 54$	$\cdot 53$	$\cdot 52$	${ }^{51}$	$\cdot 51$	$\cdot 50$	-49	$\cdot 4^{8}$	-47	-46	-45	-44	- 42
30	$\cdot 58$	$\cdot 58$	$\cdot 57$	$\cdot 56$	$\cdot 55$	-54	$\cdot 54$	$\cdot 53$	$\cdot 52$	$\cdot 51$	$\cdot 50$	$\cdot 49$	$\cdot 48$	$\cdot 47$	$\cdot 45$	$\cdot 44$
31	. 60	. 60	-59	58	-57	- 56	$\cdot 56$	-55	-54	-53	$\cdot{ }^{2}$	$\cdot 51$	$\cdot 50$	-49	-47	- 46
32	-62	. 62	. 62	. 60	$\cdot 59$	- 59	$\cdot 58$	$\cdot 57$	$\cdot 56$	- 55	$\cdot 54$	$\cdot 53$	$\cdot 52$. 51	-49	$\cdot 48$
33	$\cdot 65$	-65	. 64	. 63	- 62	-6I	-60	- 59	$\cdot 58$	-57	$\cdot 56$	-55	- 54	$\cdot 53$	-51	- 50
34	$\cdot 67$	$\cdot 67$	- 66	. 65	- 64	. 63	. 63	. 62	-61	-60	$\cdot 58$	- 57	$\cdot 56$	- 55	-53	- 52
35	$\cdot 70$	$\cdot 70$	-69	. 68	. 67	-66	. 65	. 64	. 63	. 62	. 61	- 59	$\cdot 58$	- 57	$\cdot 55$	- 54
36	$\cdot 73$	$\cdot 72$	$\cdot 72$	$\cdot 70$	- 69	- 68	. 67	-66	. 65	- 64	. 63	- 62	-60	-59	-57	- 56
37	$\cdot 75$	$\cdot 75$	$\cdot 74$	$\cdot 73$	$\cdot 72$	$\cdot 71$	$\cdot 70$. 69	. 68	- 67	. 65	- 64	-62	-61	- 59	- 58
38	$\cdot 78$	$\cdot 78$	$\cdot 77$	$\cdot 75$	$\cdot 74$	$\cdot 73$	$\cdot 72$	$\cdot 71$	$\cdot 70$	-69	-68	- 66	-65	-63	- 62	- 60
39	-81	-81	-80	$\cdot 78$	$\cdot 77$	$\cdot 76$	$\cdot 75$	$\cdot 74$	$\cdot 73$	$\cdot 72$	$\cdot 70$	-69	$\cdot 67$. 66	. 64	- 62
40	$\cdot 84$	- 84	. 83	.81	-80	$\cdot 79$	$\cdot 78$	$\cdot 77$	$\cdot 75$	$\cdot 74$	$\cdot 73$	$\cdot 71$	$\cdot 70$	-68	-66	-64
41	. 87	. 87	. 86	. 84	. 83	- 82	.81	$\cdot 79$	$\cdot 78$	$\cdot 77$	$\cdot 75$	$\cdot 74$	$\cdot 72$	$\cdot 70$	-69	- 67
42	$\cdot 90$	-90	-89	- 87	. 86	$\cdot 85$. 83	- 82	.81	$\cdot 79$	$\cdot 78$	$\cdot 76$	$\cdot 75$	$\cdot 73$	$\cdot 71$	- 69
43	-93	-93	-92	-90	- 89	- 88	-86	. 85	- 84	$\cdot 82$	-81	$\cdot 79$	$\cdot 77$	$\cdot 75$	$\cdot 73$	$\cdot 71$
44	-97	-96	$\cdot 95$	$\cdot 93$	$\cdot 92$	$\cdot 91$	-90	- 88	- 87	$\cdot 85$	$\cdot 84$	- 82	-80	$\cdot 78$	$\cdot 76$	$\cdot 74$
45	1.00	I.00	$\cdot 98$	-97	-95	$\cdot 94$	-93	.91	-90	-88	$\cdot 87$	$\cdot 85$	$\cdot 83$	-8I	$\cdot 79$	$\cdot 77$
46	I.05	I.03	I-02	I•00	$\cdot 98$	-97	-96	-95	-93	$\cdot 91$	-90	-88	-86	$\cdot 84$	-82	$\cdot 79$
47	1.07	I.07	I.06	I. 04	I-02	I.OI	-99	$\cdot 98$	- 96	$\cdot 95$	$\cdot 93$	$\cdot 91$	-89	- 87	$\cdot{ }^{8} 4$. 82
48	I•II	I•II	I.09	I.07	I 06	I-04	I.03	I-OI	I-00	$\cdot 98$. 96		$\cdot 92$	$\cdot 90$. 88	. 85
49	I. 15	I•15	I. 13	I•II	I-09	I.08	1.07	I-05	I.03	I. 02	I.00	98	$\cdot 95$	$\cdot 93$	-91	. 88
50	I•19	I•19	I-17	I•I5	I-13	I•I2	I. 10	I-09	1.07	I 05	I-03	I-OI	-99	$\cdot 96$	$\cdot 94$	-91
5 I	I. 23	I. 23	I-22	I•19	I•17	I•16	I•I4	I•I3	I•II	1.09	I.07	1.05	I-02	I.00	-97	
52	I.28	I-28	6	I. 24	I-22	-20	I•19	I-17	I•I5	$1 \cdot 13$	I.II	I-09	I-06	I. 04	I-OI	$\cdot 98$
53	I.33	1-32	1-31	I.28	I 26	I. 25	I. 23	I.2I	I-19	$1 \cdot 17$	I-I5	I-13	I•10	I.07	I. 05	I-02
54	I. 38	I•38	I.36	$1 \cdot 33$	I•3I	I. 29	I. 28	I 26	I-24	I. 22	I.19	I-17	I-I4	I-II	I.08	I. 05
55	I. 43	I-42	1.41	I 38	I•36	I•34	I. 32	I.30	I. 28	I. 26	I-24	I-21	I-18	I•16	I•13	1.09
56	I. 48	I-48	I 46	I 43	I. 41	I.39	I•37	I. 35	I•33	I.3I	I 28	I. 26	I-23	I 20	1•17	I-14
57	I. 54	I-53	I. 52	I 49	I 46	I 45	1.43	I-41	I 38	I 36	I 33	I•3I	I-28	I-25	I. 21	I-18
58	I. 6	I. 59	I. 58	I 55	I-52	I-50	I 48	I-46	I 44	I. 41	I 39	I. 36	I•33	I-29	I 26	I. 23
59	I.	I. 66	I. 64	I. 61	I. 58	I. 56	I. 54	I. 52	I.50	I. 47	I. 44	I. 41	I. 38	I-35	I.31	I 27 I 23
60	I•73	I.73	1.71	I. 67	I-65	I. 63	I 61	I. 58	I.56	I. 53	I-50	I 47	I-44	I. 40	I 36	1-33
61	I.80	I.80	I.78	I•74	I•72	1.71	I. 67	I. 65	I. 62	I. 59	I. 56	I. 53	I. 50	1.46	I. 42	I. 38
62	I. 88	I.87	I. 85	I. 82	1.79	1.77	$1 \cdot 74$	1.72	I. 69	I. 66	I. 63	I 59	I. 56	I•52	I. 48	1.44
63	I.96	I.95	I. 93	1.90	1.87	I. 84	I. 82	I.79	I. 76	I•73	I.70	I-66	I. 63	I. 59	I. 55	I. 50
64	$2 \cdot 05$	$2 \cdot 04$	$2 \cdot 02$	I.98	I. 95	I•93	I.90	I. 87	I. 84	I. 81	I. 78	I. 74	I.70	I. 66	I. 62	I. 57
65	2-14	$2 \cdot 14$	$2 \cdot 11$	$2 \cdot 07$	$2 \cdot 04$	2.02	I.99	I. 96	I.93	I-89	I $\cdot 86$	I. 82	I.78	I.74	I. 69	I 64
66	$2 \cdot 25$	$2 \cdot 24$	$2 \cdot 21$	$2 \cdot 17$	$2 \cdot 14$	$2 \cdot 11$	$2 \cdot 08$	$2 \cdot 05$	$2 \cdot 02$	I•98	I•95	I 90	I. 86	I. 82	1.77	$1 \cdot 72$
67	$2 \cdot 36$	$2 \cdot 35$	$2 \cdot 32$	$2 \cdot 28$	$2 \cdot 24$	$2 \cdot 21$	$2 \cdot 18$	$2 \cdot 15$	$2 \cdot 12$	$2 \cdot 08$	$2 \cdot 04$	$2 \cdot 00$	I $\cdot 95$	1.91	I. 86	I-80
68	2.48 2.61	$2 \cdot 47$	2.44	2.39	$2 \cdot 35$	$2 \cdot 33$	$2 \cdot 30$	$2 \cdot 26$	$2 \cdot 22$	$2 \cdot 19$	2.14	$2 \cdot 10$	$2 \cdot 05$	$2 \cdot 00$	$1 \cdot 95$	1•90
69	2.61 2.75	$2 \cdot 59$ 2.74	2.57 2.71	$2 \cdot 52$	$2 \cdot 48$	2.45 2.58	2.42 2.55	$2 \cdot 38$	$2 \cdot 34$	$2 \cdot 30$ 2.43	2.26 2.38	2.21 2.33	$2 \cdot 16$ 2.28	2.11 2.22	$2 \cdot 05$ $2 \cdot 16$	$2 \cdot 00$ $2 \cdot 10$
70	$2 \cdot 75$	$2 \cdot 74$	2.71	$2 \cdot 65$	$2 \cdot 61$	$2 \cdot 58$	$2 \cdot 55$	$2 \cdot 51$	2.47	2.43	$2 \cdot 38$	$2 \cdot 33$	$2 \cdot 28$	$2 \cdot 22$	2•16	2•10

TABLE M.

Error in Latitude due to an Error of 4 Seconds in Time or 1' of Longitude.

	LATITUDES															
哭	42°	44°	46°	48°	49°	50°	51°	52°	53°	54°	55°	56°	57°	58°	59°	60°
${ }_{2}$	-03	-03	. 02	- 02	. 22	'02	'02	. 02	${ }^{\circ} \mathrm{O}$	- 02	'02	\bigcirc	¢ 02	. 02	'02	. 02
4	$\cdot 05$	-05	-05	-05	-05	-04	- 04	. 04	.04	-04	. 04	-04	. 04	. 04	- 04	-03
6	-08	-08	-07	.07	-07	-07	-07	-06	-06	-06	-06	-06	-06	-06	.05	-05
8	-10	-10	- 10	-09	-09	-09	-99	-09	-08	. 08	-08	-08	-08	-07	. 07	-07
го	- 13	-13	-12	-12	$\cdot 12$	- II	-II	'II	- II	-	-10	$\cdot{ }^{10}$	-10	-99	-99	-09
12	-16	- 15	- 15	- 14	${ }^{1} 4$	- 14	- 13	. 13	-13	-12	$\cdot 12$	$\cdot 12$. 12	-11	$\cdot 11$	-II
14	$\cdot 19$	-18	- 17	- 17	-16	-16	-16	- 15	- 15	- 15	- 14	'14	- 14	- 13	-13	$\cdot \mathrm{I} 2$
16	-21	-21	- 20	-19	-19	-18	-18	- 18	- 17	- 17	-16	-16	-16	- 15	- 15	- 14
18	$\cdot 24$. 23	. 23	$\cdot 22$	-21	-21	- 20	- 20	- 20	-19	-19	-18	-18	-17	-17	-16
20	$\cdot 27$	- 26	$\cdot 25$. 24	24	23	. 23	-22	$\cdot 22$	-21	-21	$\cdot 20$	$\cdot 20$	-19	-19	-18
21	$\cdot 29$	28	$\cdot 27$	- 26	$\cdot 25$	-25	- 24	. 24	. 23	$\cdot 23$	22	21	21	20	20	-19
22	$\cdot 30$	-29	-28	$\cdot 27$	27	-26	$\cdot 25$	-25	- 24	- 24	$\cdot 23$	$\cdot 23$. 22	21	21	. 20
23	$\cdot 32$	31	-29	-28	28	$\cdot 27$	$\cdot 27$	-26	- 26	$\cdot 25$	$\cdot 24$	24	. 23	22	22	$\cdot 21$
24	$\cdot 33$	$\cdot 32$	$\cdot 31$	- 30	. 29	$\cdot 29$	-28	- 27	- 27	- 26	$\cdot 26$	$\cdot 25$	${ }^{2} 4$	${ }^{2} 4$	$\cdot 23$	$\cdot 22$
25	$\cdot 35$	$\cdot 34$	-32	-31	-31	$\cdot 30$	-29	-29	-28	-27	$\cdot 27$	-26	'25	-25	$\cdot 24$	-23
26	$\cdot 36$	-35	34	-33	32	-31	-31	- 30	-29	- 29	-28	. 27	27	26	. 25	- 24
27	$\cdot 38$	$\cdot 37$	$\cdot 35$	- 34	33	-33	$\cdot 32$	-31	-3I	. 30	$\cdot 29$	-28	- 28	- 27	-26	$\cdot 25$
28	$\cdot 40$	-38	$\cdot 37$	-36	- 35	34	$\cdot 33$	-33	-32	-31	$\cdot 30$	30	-29	- 28	$\cdot 27$	$\cdot 27$
29	41	40	$\cdot 39$	$\cdot 37$	-36	-36	-35	-34	$\cdot 33$. 33	$\cdot 32$	31	30	29	$\cdot 29$	- 28
30	$\cdot 43$	42	${ }^{40}$	-39	. 38	$\cdot 37$	-36	36	$\cdot 35$	34	$\cdot 33$	32	31	31	30	-29
31	45	43	42	$\cdot 40$	- 39	$\cdot 39$	-38	37	$\cdot 36$	- 35	$\cdot 34$	$\cdot 34$	$\cdot 33$	$\cdot 32$	31	-30
32	$\cdot 46$	-45	43	${ }^{42}$	${ }^{41}$	40	$\cdot 39$	-38	$\cdot 38$	- 37	$\cdot 36$. 35	$\cdot 34$	-33	-32	31
33	48	47	45	-43	43	-42	4 I	40	$\cdot 39$	-38	$\cdot 37$	-36	-35	- 34	. 33	32
34	$\cdot 50$	-49	47	$\cdot 45$	-4	43	42	42	$4{ }^{1}$	$4{ }^{4}$	$\cdot 39$	-38	$\cdot 37$	$\cdot 36$. 35	. 34
35	$\cdot 52$	-50	-49	-47	46	45	-44	-43	$\cdot 4^{2}$	41	$\cdot 40$	-39	-38	-37	-36	35
36	$\cdot 54$	$\cdot 52$	50	49	48	47	-46	45	-4	43	$\cdot 42$	41	-40	- 39	-37	36
37	$\cdot 56$	-54	${ }^{52}$	50	-49	48	-47	46	45	44	-43	42	41	40	$\cdot 39$	$\cdot 38$
38	$\cdot 58$	- 56	-54	52	51	-50	-49	48	-47	46	$\cdot 45$	44	43	41	40	39
39	-60	-58	-56	. 54	53	$\cdot 52$	-51	. 50	- 49	48	46	$\cdot 45$	$\cdot 44$	43	$\stackrel{42}{ }$	40
40	. 62	$\cdot 60$	-58	-56	$\cdot 55$	54	-53	-52	-51	-49	$\cdot 48$	-47	-46	44	$\cdot 43$	42
41	$\cdot 65$. 63	. 60	. 58	-57	$\cdot 56$	-55	54	-52	${ }^{51}$	-50	-49	47	$\cdot 46$	45	43
42	$\cdot 67$	$\cdot 65$. 63	-60	- 59	. 58	- 57	55	$\cdot 54$	53	$\cdot 52$	$\cdot 50$	49	48	-46	-45
43	$\stackrel{\cdot 69}{\cdot 72}$		$\cdot 65$	${ }^{-62}$			- 59	-57	. 58	. 55	$\stackrel{53}{ } \cdot 5$	$\cdot 52$	${ }^{51} 5$	- 49	$\stackrel{.}{48}$	
44 45	$\cdot 72$ $\cdot 74$ $\cdot 74$	$\cdot 69$. 67	$\cdot 65$	-63	-62	-61	. 59	. 58	. 57	$\stackrel{55}{\cdot 57}$	-54	. 53	. 51	$\stackrel{.50}{\cdot 52}$	$\cdot{ }^{48}$
45 46		72	$\cdot 72$. 69	$\cdot 68$	$\cdot 67$. 65	$\cdot 6$	$\cdot 62$	-61		. 58	56	55	53	52
47	. 80	77	$\cdot 74$	$\cdot 72$	$\cdot 70$	$\cdot 69$	$\cdot 67$	-66	$\cdot 65$.6	. 62	. 60	. 58	57	. 55	. 54
48	. 83	-80	. 77	74	$\cdot 73$	- 71	70	-68	$\cdot 67$	${ }^{6} 5$	$\cdot 64$	-62	. 60	-59	-57	. 56
49	. 85	. 83	. 80	$\cdot 77$	$\cdot 75$	74	$\cdot 72$	71	-69	. 68	-66	-64	. 63	-61	$\cdot 59$. 58
50	. 89	. 86	. 83	-80	78	$\cdot 77$	- 75	-73	$\cdot 72$	70	-68	-67	-65	$\cdot 63$	-6I	$\cdot 60$
51	$\cdot 92$. 89	. 86	. 83	. 81	79	$\cdot 78$	76	74	73	71	$\cdot 69$	$\cdot 67$	$\cdot 65$	$\cdot 64$	62
52	$\cdot 95$	-92	$\cdot 89$. 86	$\cdot 84$. 82	.81	79	77	$\cdot 75$	73	72	$\cdot 70$	$\cdot 68$	-66	. 64
53	$\cdot 99$	-95	-92	$\cdot 89$. 87	$\cdot 85$	-84	. 82	. 80	78	$\cdot 76$.74	$\cdot 72$	70	$\cdot 68$	
54		-99 +103	.96	. 92	-90	. 88	-87		.83					.73	$\cdot 71$	
55	I.06	$1 \cdot 03$	-99	-96	- 94	92	-90	. 88	. 86	- 84	.82	. 80	7^{8}	776	74	7 7
56	r•10	1.07	I.03	99	97	-95	-93	-91	. 89	. 87	.85	-83	.81	79	76	74
57	I-14	$1 \cdot 11$	1.07	1.03	$1 \cdot 01$	-99	-97	-95	-93	-91	$\cdot 88$.86	$\cdot 84$.82	. 79	. 77
58	1.	I 15	$1 \cdot 11$	1.07	I•05	I.03	1.01	-99	$\cdot 96$	-94	$\cdot 92$	-89	$\cdot 87$	-85	. 82	
59	I-24	1.	$1 \cdot 1$	$1 \cdot 11$	I•09	I. 7	$1 \cdot 05$	1.02	${ }^{1} \cdot 00$	-98	$\cdot 95$. 93	-91	$\cdot 88$		
60	I-29	$1 \cdot 25$	$1 \cdot 20$	I•16	$\mathrm{I}_{1} 14$	I-II	$1 \cdot 09$	I.07	I. 04	$1 \cdot 02$	-99	-97	'94	-92	-89	$\cdot 87$
61	1.34	1.30	1.25	1.21	I-18	I•16	$\mathrm{I}_{1} \mathrm{I}_{4}$	I•II	1.09	I-06	1.05	1.01	-98	-96	$\cdot 93$	$\cdot 90$
62	${ }^{1} 40$	I•35	1.31	1.26	1.23	1.21	I-18	$1 \cdot 16$	I.13	$1 \cdot 11$	1.08	1.05	1.02	I.OO	97	
63	1.46	1.41	I.36	$1 \cdot 31$	1.29	I 26	1.24	1.21	1.18	$1 \cdot 15$	I•13	I•10	1.07	$1 \cdot 04$	$\xrightarrow{\text { I }} \mathrm{C}$	- 98 r 03 r
64	1.52	1.47	1.42	$1 \cdot 37$	I.34	I-32	1.29	1.26	1.23	-21	I• 18	${ }^{1} 15$	${ }^{\text {I }} 112$	r-09	I.06	1.03 1.07
65	1.59	I 54	I•49	$1 \cdot 43$	1.41	$1 \cdot 38$	1.35	$1 \cdot 32$	I 29	-26	1.23	$1 \cdot 2$	${ }^{1} 17$	I-14	I•10	1.07
66	1.67	I. 62	I. 56	1.50	$1 \cdot 47$	$1 \cdot 44$	$1 \cdot 41$	1.38	1.35	$1 \cdot 32$	I29	1.26	1.22	I. 19	I•16	I•12
67 68	I.75	1.69	${ }^{\text {I }} 64$	I. 58	I. 55	I-51	I. 48	I.45	$1 \cdot 42$	I. 38	I 35	1.32	35	I. 25	1	I-18 1.24 1
69	1.84 I 94 1	I.78	I.72	1.74	${ }_{1}^{1.62}$	I. 59 1.67	1.56	1.52	I.49	- $1 \cdot 45$	I-42		1.35	I•38	1.27	1.24 1.30
70	$2 \cdot 04$	I.98	-91	I. 84	I. 80	1.77	$1 \cdot 73$	I. 69	- 65	I.6I	1.58	$1 \cdot 54$	I.50	I-46	1.41	1.37

POSITION OF SHIP FROM TWO SUN EX-MERIDIAN OBSERVATIONS, USING A AND B EX-MERIDIAN TABLES AND LOGARITHMS.

1917.-On January 21st, a.m. at ship, in lat. by D.R. $8^{\circ} \mathrm{o}^{\prime} \mathrm{N}$. and long. $74^{\circ} 22^{\prime}$ E., when a chronometer indicated M.T. Green. $20 \mathrm{~d} . \mathrm{I}_{7} \mathrm{~h} .33 \mathrm{~m} .51 \mathrm{~s}$., the true altitude of sun's centre was $52^{\circ} 34^{\prime} \mathrm{S} . ;$ and again on same afternoon when chronometer indicated 20 d .21 h .1 m .21 s ., the true altitude of sun's centre was $52^{\circ} 12^{\prime} \mathrm{S}$., the ship having made $52 \frac{1}{2}$ miles on a true $\mathrm{N} .79^{\circ} \mathrm{W}$. course during the interval between the observations. Required the position of ship at time of 2nd observation, and prove work by two different methods.

> P.M. Observation.-Ex-meridian Latitude by Spherical Calculation.

As a Check on the Work the Ex-meridian Table No. I may be used.

EXAMPLE FROM PREVIOUS PAGE WORKED FROM TWO LONGITUDE CALCULATIONS.

A.M. Observation.

Run N. $79^{\circ} \mathrm{W} \cdot 52 \frac{1}{2} \mathrm{~m} .=100^{\prime} \mathrm{N} \cdot 5 \mathrm{I}^{\circ} 5^{\prime}=520^{\prime} \mathrm{W}$.

P.M. Observation.

Worked without the aid of Chart.

Example from 2nd edition of "Calculated Hour-angles and Ex-meridian Tables," \&c., by H. S. Blackburne, giving a true position from a right-angle cross of two sun observations less than 5 minutes from noon.

POSITION FROM TWO EX-MERIDIAN OBSERVATIONS OF SUN WITH ALTITUDES LESS THAN $1 \frac{1}{2}^{\circ}$ FROM ZENITH.

1917.-March 19th, in approximate position in lat. 0° and long. $45^{\circ} \mathrm{W}$., with the following observations find the position of ship at time of second observation :-

> H. M. S.

A.M. Observation.

Posn. on chart $\begin{array}{rlrl}\circ & 21 \\ 0 & 21.0 N . \\ 44 & 38 \cdot 7 & \mathrm{~W} .\end{array}$
P.M. Observation.

This example as an extreme case where both altitudes were near the zenith, and the D.R. position considerably in error illustrates clearly the errors which would result from considering the position-lines as straight lines; the resulting position being $0^{\circ} 27 \cdot 7^{\prime} \mathrm{N}$. and $44^{\circ} 46 \cdot 8^{\prime} \mathrm{W}$. A perfectly true position, however, is obtained by the method here shown.

On the meridian of $45^{\circ} \mathrm{W}$. lat. (I) was found to be $0^{\circ} 12 \cdot 2^{\prime} \mathrm{S}$. when sun bore $\mathrm{S} .72^{\circ} \mathrm{E}$. with Z.D. 79^{\prime}.

On the meridian of $45^{\circ} \mathrm{W}$. lat. (2) was found to be $o^{\circ} 32 \cdot 0^{\prime} \mathrm{N}$. when sun bore S. $18^{\circ} \mathrm{W}$. with Z.D. $72 \cdot 6^{\prime}$.

In such an extreme case, if inconvenient to adopt this method, a second calculation could very quickly be made by the use of the ex-meridian table with a new hour-angle deduced from the approximate longitude obtained by the first calculation. When nearly under the sun the longitude is seldom likely to be much in error as the sun would be close to the prime vertical during almost the whole day.

DOUBLE PROOF OF CORRECTNESS OF POSITION AS DETERMINED BY THE METHOD AND CALCULATION OF PREVIOUS EXAMPLE.

The following is a very good and simple way of proving the accuracy of double altitude observations, viz. :-

With the resulting longitude deduce a new hour-angle, and recalculate the latitude by a true method from both observations. If both latitudes are the same as from previous determinations it is a good guarantee of the correctness of position ; or

With the resulting latitude recalculate the longitude from both observations. If they both agree with previous results we may rely with confidence on the correctness of the calculations, but of course this will not guarantee the correctness of position if a wrong altitude has been observed or a wrong declination used in the calculations.

For Determination of Latitudes.

Determination or Longitudes.

Note.-The determination of latitude by the use of Table VIII should only be nade within the limits of time given in Tables VII or VIIA, as it will not give a true result outside these limits.
"SUMNER" POSITION FROM A.M. AND P.M. SUN OBSERVATIONS NEAR THE MERIDIAN.
1898.-On August 3ist, in lat. by D.R. $7^{\circ} 42^{\prime}$ N., long. $73^{\circ} 50^{\prime}$ E. Obsd. alt. of \odot^{\prime} s L.L. (a.m. at ship) was $88^{\circ} 50^{\prime} \mathrm{N}$. when a chronometer indicated M.T.G. 30 d . 19 h .2 m .53 s ., and again (p.m.) the obsd. alt. of \odot^{\prime} 's L.L. was $88^{\circ} 44^{\prime}$ when chronometer indicated M.T.G. 30 d . 19 h .7 m .57 s . Run in interval, N. $80^{\circ} \mathrm{W}$., 1 m ., gives $0 \cdot 2^{\prime}$ N., $\mathrm{I}^{\circ} \mathrm{o}^{\prime} \mathrm{W}$. Height of eye, 35 ft . Required, posn. of ship by "Sumner's" method from ex-meridian tables.

A.M. Observation

For Azimuth and Reduction.

H.A.	2 m .	Sin.	7.9408
Decl.	$8^{\circ} 37 \frac{1}{2}^{\prime}$	Cos	9*9951
Alt.	89°	Sec.	1.758
Az.	$29^{\circ} 37 \frac{1}{}{ }^{\prime}$	Sin.	9.6940

gives (p. 40) A \& B I•78! gives (p. 75)
position-line for plane chart $\mathrm{N} 60^{\circ} 7^{\circ} \mathrm{W}$.,
and (p .146) Redn at $\mathrm{Imin} .3^{\circ} 92^{\prime} \times 2 \mathrm{~m}$.
$=\operatorname{Redn} 7^{\prime} 8^{\prime}$.

For the Latitude.

P.M. Observation.

For Azimuth:

H.A.	3 m .	Sin.	8.1169
Dl.	$8^{\circ} 37{ }^{\frac{1}{2}}$	Cos.	9.9951
Alt.	$88^{\circ} 54^{\prime}$	Sec.	1'7168
Az.	$42^{\circ} 24^{\prime}$	Sin.	9.8288

gives (p. 40) A \& B r'ri' gives (p. 37) position-line for plane chart $\mathrm{N} 48^{\circ} \mathrm{E}$, or $\mathrm{S}_{4} 8^{\circ} \mathrm{W}$., and (p. 145)
Redn at imin. $5^{\prime} 76^{\prime} \times 3 \mathrm{~m} .=$ Reduction $I^{\prime} 3^{\prime}$ MOON
1898.-On March 3oth, at about I h. 24 m . p.m., at ship, observed alt. of \mathbb{C} 's U.L. was $27^{\circ} 57^{\prime}$ east of meridian when a chronometer indicated M.T.G. 2 h .18 m .57 s , , and after running on an east course 2 miles the \odot 's L.L. was observed to be $32^{\circ} 5 \mathrm{I}^{\prime}$ when the chronometer indicated 2 h .26 m . 35 s . Lat. by D.R. $58^{\circ} 2 \frac{1}{2}^{\prime}$ N., long. $12^{\circ} 30^{\prime}$ W., height of eye 35 ft .

Run east $2 \mathrm{~m} .=\mathrm{d}$. long. $3^{\prime} 8^{\prime} \mathrm{E}$.
2nd Observation, \odot.
Lat. by Ex-meridian Table No. 2.
By reference to page 152 it will be seen that with, a low latitude and high declination this table may be used without appreciable error to about 2 hours from the meridian. Therefore, by transposing lat. and dec. the same wide range may be obtained. The example below illustrates this case.

Correctness of Work by the above Methods with Ex-meridian Table No. 2 proved by rigorous Calculation.

H.A. Decl.	$\begin{gathered} \text { H. M. } \\ \text { I } 32 \\ 3^{\circ} 55^{\prime} 4 \mathrm{I}^{\prime \prime} \mathrm{N} \end{gathered}$	Cos. Cot.	$\begin{aligned} & 9 \cdot 964026 \\ & \mathrm{I} \cdot{ }_{163267} \end{aligned}$	Cosec.	I•164289
Arc (I)	- 4 ís ${ }^{\prime \prime} 88 \mathrm{~N}$	Cot.	1.127293	Sin.	8.871502
		\odot 's alt.	$33^{\circ} 0^{\prime}$	Sin.	9.736109
" (2)	534430 N.	- -	-	Cos.	9:771900
Lat.	$58 \quad 0 \quad 28 \mathrm{~N}$.				

As the moon was on the prime vertical when the altitude was taken, the time deduced from this observation should be absolutely correct, and the latitude by ex-meridian of the sun will also be correct without any additional work.

See note on page 117 about correcting moon's semidiameter and horizontal parallax for Greenwich date.

POSITION OF SHIP FROM COMBINED EX-MERIDIAN OBSERVATIONS OF TWO STARS, USING STAR-REDUCTION AND AZIMUTH EX-MERIDIAN TABLES.

1917.-On March 26th, soon after sunset, at about 6 h .5 m . and 6 h . 12 m . p.m., in approximate latitude 18° S., and longitude D.R. $3^{\circ} 36^{\prime} \mathrm{W}$., the true altitude of $*$ Capella was $24^{\circ} 5^{\prime}$ N.Wd., when chronometer showed M.T.G. 6 h .24 m . 18 s., and after running N. $45^{\circ} \mathrm{W}$. $1 \frac{1}{2}$ miles the true altitude of $*$ Sirius was $87^{\circ} \mathrm{IO}_{\frac{1}{2}}{ }^{\prime} \mathrm{N}$.Ed. when chronometer showed 6 h . 3I m. 17 s . Required, the position of ship at 2nd observation. Run N. $45^{\circ} \mathrm{W} . \mathrm{I} \cdot 5 \mathrm{~m} .=\mathrm{I} \cdot \mathrm{o}^{\prime} \mathrm{N}$. rer' W.

* Capella to North-westward.
* Sirius to North-eastward.

For Position-line on Plane Chart.
Az. N. 59.9° E. gives (p. 258*) lat. var. 2.44 S., which gives (p. 270^{*}) posn.-line N. $3 \mathrm{I}^{\circ} 4^{\circ} \mathrm{W}$.

* Page references to "Tables of Calculated Hour-angles," \&c., by Blackburne. 2nd Edition.

Extract of Azimuth Ex=meridian Table, from Blackburne's New Book.

	AZIMUTHS.														
	$58 \cdot 6$	$58 \cdot 7$	58.8	$58 \cdot 9$	$59 \cdot 0$	$59 \cdot 1$	$59 \cdot 2$	$59 \cdot 3$	$59 \cdot 4$	$\stackrel{\circ}{59} 5$	$59 \cdot 6$	$59 \cdot 7$	$59 \cdot 8$	$59 \cdot 9$	$60 \cdot 0$
	Reduction to the Meridian at Hour-angle of i min.														
\bigcirc	$8 \cdot 42$	$8 \cdot 43$	$8 \cdot 45$	$8 \cdot 47$	$8 \cdot 49$	$8 \cdot 50$	$8 \cdot 52$	$8 \cdot 54$	$8 \cdot 56$	$8 \cdot 57$	$8 \cdot 59$	$8 \cdot 61$	$8 \cdot 63$	$8 \cdot 64$	$8 \cdot 66$
2	$8 \cdot 41$	$8 \cdot 43$	$8 \cdot 45$	$8 \cdot 46$	$8 \cdot 48$	$8 \cdot 50$	$8 \cdot 52$	$8 \cdot 53$	$8 \cdot 55$	$8 \cdot 57$	$8 \cdot 58$	$8 \cdot 60$	$8 \cdot 62$	$8 \cdot 64$	$8 \cdot 65$
4	$8 \cdot 40$	$8 \cdot 4 \mathrm{I}$	$8 \cdot 43$	$8 \cdot 45$	$8 \cdot 47$	$8 \cdot 48$	$8 \cdot 50$	$8 \cdot 52$	$8 \cdot 54$	$8 \cdot 55$	$8 \cdot 57$	$8 \cdot 59$	8.61	$8 \cdot 62$	$8 \cdot 64$
6	$8 \cdot 37$	$8 \cdot 39$	$8 \cdot 41$	$8 \cdot 42$	$8 \cdot 44$	$8 \cdot 46$	$8 \cdot 47$	$8 \cdot 49$	$8 \cdot 51$	$8 \cdot 53$	$8 \cdot 54$	$8 \cdot 56$	$8 \cdot 58$	$8 \cdot 60$	$8 \cdot 61$
8	$8 \cdot 34$	$8 \cdot 35$	$8 \cdot 37$	$8 \cdot 39$	$8 \cdot 40$	$8 \cdot 42$	$8 \cdot 44$	$8 \cdot 46$	$8 \cdot 47$	$8 \cdot 49$	$8 \cdot 51$	$8 \cdot 52$	$8 \cdot 54$	$8 \cdot 56$	$8 \cdot 58$
9	8-3I	$8 \cdot 33$	$8 \cdot 35$	$8 \cdot 37$	$8 \cdot 38$	$8 \cdot 40$	$8 \cdot 42$	$8 \cdot 43$	$8 \cdot 45$	$8 \cdot 47$	$8 \cdot 48$	$8 \cdot 50$	$8 \cdot 52$	$8 \cdot 54$	$8 \cdot 55$
Io	$8 \cdot 29$	$8 \cdot 3 \mathrm{I}$	$8 \cdot 32$	$8 \cdot 34$	$8 \cdot 36$	$8 \cdot 37$	$8 \cdot 39$	$8 \cdot 4$ I	$8 \cdot 43$	$8 \cdot 44$	$8 \cdot 46$	$8 \cdot 48$	$8 \cdot 49$	$8 \cdot 51$	$8 \cdot 53$
II	$8 \cdot 26$	$8 \cdot 28$	$8 \cdot 30$	$8 \cdot 31$	$8 \cdot 33$	$8 \cdot 35$	$8 \cdot 37$	$8 \cdot 38$	$8 \cdot 40$	$8 \cdot 42$	8.43	$8 \cdot 45$	$8 \cdot 47$	$8 \cdot 48$	$8 \cdot 50$
12	$8 \cdot 23$	$8 \cdot 25$	$8 \cdot 27$	$8 \cdot 28$	$8 \cdot 30$	$8 \cdot 32$	$8 \cdot 34$	$8 \cdot 35$	$8 \cdot 37$	$8 \cdot 39$	$8 \cdot 40$	$8 \cdot 42$	$8 \cdot 44$	$8 \cdot 45$	$8 \cdot 47$
13	$8 \cdot 20$	$8 \cdot 22$	$8 \cdot 23$	$8 \cdot 25$	$8 \cdot 27$	$8 \cdot 29$	$8 \cdot 30$	$8 \cdot 32$	$8 \cdot 34$	$8 \cdot 35$	$8 \cdot 37$	$8 \cdot 39$	$8 \cdot 4^{\circ}$	$8 \cdot 42$	$8 \cdot 44$
I4	8.17	8-18	$8 \cdot 20$	$8 \cdot 22$	$8 \cdot 23$	$8 \cdot 25$	$8 \cdot 27$	$8 \cdot 29$	$8 \cdot 30$	$8 \cdot 32$	$8 \cdot 34$	$8 \cdot 35$	$8 \cdot 37$	$8 \cdot 39$	$8 \cdot 40$
15	8.13	8-15	$8 \cdot 16$	8-18	$8 \cdot 20$	$8 \cdot 21$	$8 \cdot 23$	$8 \cdot 25$	$8 \cdot 26$	$8 \cdot 28$	$8 \cdot 30$	$8 \cdot 3 \mathrm{I}$	$8 \cdot 33$	$8 \cdot 35$	$8 \cdot 36$
16	$8 \cdot 09$	8-11	8-12	$8 \cdot 14$	8.16	8.17	8-19	$8 \cdot 21$	$8 \cdot 22$	$8 \cdot 24$	$8 \cdot 26$	$8 \cdot 27$	$8 \cdot 29$	$8 \cdot 31$	$8 \cdot 32$
17	$8 \cdot 05$	$8 \cdot 07$	$8 \cdot 08$	$8 \cdot 10$	$8 \cdot 12$	$8 \cdot 13$	8.15	$8 \cdot 17$	$8 \cdot 18$	$8 \cdot 20$	$8 \cdot 22$	$8 \cdot 23$	$8 \cdot 25$	$8 \cdot 27$	$8 \cdot 28$
I8	$8 \cdot \mathrm{I}$	$8 \cdot 02$	$8 \cdot 04$	$8 \cdot 05$	$8 \cdot 07$	$8 \cdot 09$	8-10	8-12	8-14	8-15	8.17	8-19	$8 \cdot 20$	$8 \cdot 22$	$8 \cdot 24$

EXAMPLE FROM PREVIOUS PAGE WORKED FROM TWO CALCULATED LONGITUDES AND PLOTTED ON PLANE CHART.

Run N. $45^{\circ} \mathrm{W} . \mathrm{I}^{\prime} 5 \mathrm{~m} .=\mathrm{I}^{\circ} 0^{\prime}$ N. $I^{\prime} \mathrm{I}^{\prime} \mathrm{W}$.

Note.-To get accurate results with so high an altitude when working from the meridian the D.R. longitude should not be more than 5^{\prime} or 6^{\prime} in error if the azimuth is large, or when working from a parallel of latitude the D.R. latitude should not be much in error when the azimuth is small. The slight error (o 0^{\prime} ') in latitude from the ex-meridian observation is due to neglect to interpolate in the reduction table for * Capella for mo' of error in the D.R. latitude, and the 0.3^{\prime} of error in the longitude is due to curvature in the position-line in $12 \frac{1}{2}^{\prime}$ of arc, with a small Z D.

POSITION OF SHIP BY COMBINED OBSERVATIONS OF SUN AND PLANET VENUS. LONGITUDE AND EX-MERIDIAN OBSERVATIONS.

r917.-December 29th, p.m. at ship, in approximate latitude $30^{\circ} \mathrm{S}$., the true altitude of sun's centre was $52^{\circ} 3^{\prime}$ when a chronometer (corrected) indicated M.T.G. I h. 51 m .58 s ., and about the same time the true altitude of planet Venus (centre) was $74^{\circ} 43^{\prime} \mathrm{N}$. when chronometer (corrected) indicated M.T.G. I h. 53 m . I 5 s . Run in interval N. $4 \mathrm{I}^{\circ} \mathrm{W} .0 \cdot 3 \mathrm{~m} .=$ d. long. $\mathrm{o}^{\prime} \mathrm{I} 5^{\prime \prime} \mathrm{W}$. Required, position of ship at time of second observation.
$\odot P . M$. Observation for Longitude.

Planet Venus. Ex-meridian for Latitude.

M.T. Green.		M.		True alt. of $* 74{ }^{\circ} 43^{\prime} \cdot \mathrm{oN}$.		
Sid. T.G. noon	$\times 8$	29	28.7			
Accl.			18.6	True alt. of $* 7+$Reduction		
				Mer. alt.	7454.5	
Sid. T, Green.	2023	23	$2 \cdot 3$			
Long. E.	- 5	58	$6 \cdot 7$	M.Z.D. Decl.	15	$\begin{aligned} & 5 \cdot 5 \mathrm{~S} . \\ & 4 \cdot 8 \mathrm{~S} . \end{aligned}$
Sid. T. Sp.						
*'s R.A.	213	31	39	Lat.	$3010 \cdot 3 \mathrm{~S}$.	

For Azim. and Reduction.

H.A. ${ }^{\text {M. }}$ Io 30	Sin.	$8 \cdot 6609$
Dl. 155	Cos.	9.9848
Alt. 7443	Sec.	$0 \cdot 5791$
Az. N. $9^{\circ} 39 \frac{1}{2}^{\prime}$ E. gives	Sin.	9.2248
A. and B. cor. $6 \cdot 80^{\prime}$		
which gives Redn. at		
1 min . $=1 \cdot 10^{\prime} \times$		
$10.5 \mathrm{~m}=$ Reduction		
II'55'.		

H.A.	$\begin{aligned} & \text { Latitule by } \\ & \text { M. } \\ & \text { Io. } \\ & \text { Io } \\ & \hline \end{aligned}$	Spheric Cos.	al Calculatio 9.999544			True	Position.
D1.	15 ${ }^{\circ}$ ' 4 4 48	Cot.	0.569527	Cosec.	0.584747	Lat.	${ }_{3}^{\circ} \mathrm{O}$ 10. 3 S .
Arc. (1)	$15542 \frac{1}{2} \mathrm{~S}$.	Cot.	0.569071	Sin.	9.415679		$\underline{1431.7}$
		Alt.	$74^{\circ} 43^{\prime}$	Sin.	9.984363		
, (2)	15433 S .	- .	- . .	Cos.	$\underline{9.984789}$		
Lat.	$301015 \frac{1}{2} \mathrm{~S}$.						

Note.-As the sun was on the prime vertical when the observation for longitude was taken IO^{\prime} of error in the latitude worked with makes no difference in the longitude; the hour-angle deduced from this longitude for calculation of ex-meridian would be correct, and consequently the latitude by ex-meridian will also be correct without any plotting on the chart or further calculation. The hour-angle worked by direct spherics by logarithms gives exactly the same result to the decimal of a second.

POSITION FROM TWO STELLAR OBSERVATIONS.

(Combining Chron. Long. Observation with an Ex-meridian below the Pole.)

1898.-On October 8th, at about 6 h. 44 m. p.m. A.T. at ship, observed altitude of $*$ Canopus east of meridian was $15^{\circ} 14^{\prime}$ S., when a chronometer indicated mean time at Greenwich 7 d . 19 h . 36 m .16 s ., and after running on a true $\mathrm{S} .55^{\circ} \mathrm{E}$. course for three-quarters of a mile observed altitude of $*$ Fomalhaut to north-eastward was $49^{\circ} 20^{\prime}$, when chronometer indicated 7 d . 19 h . 40 m .6 s . Height of eye, 28 ft . Required, true bearing of stars and position of ship at time of second observation, the approximate position at the time being latitude $51^{\circ} \mathrm{S}$. and longitude $163^{\circ} \mathrm{E}$.

Az. from Table*	S. ${ }_{11 \frac{1}{2}} \mathrm{E}$
Position-line	N. $\underline{78 \frac{1}{2}} \mathrm{E}$

Obsd. alt .of $*$ Fomalhaut	- 1	*'s Decl.	- ' 11
	$4920{ }^{\circ}$		$30 \quad 924$
		P. Dist.	595036
True alt.	49 14.0		

Position of ship, $51^{\circ} 12 \frac{3 y^{\prime}}{\prime}$ S. $163^{\circ} 33^{\frac{1}{3}}$ E.
Note.-As time is often lost in getting hold of the log-book and working up the D.R. position, this example is worked with the nearest whole degree of latitude and longitude, and this will generally be near enough for a pretty accurate result when working by the improved "Sumner" method.

This problem worked closely by spherics gives within $\frac{1}{4}^{\prime}$ of same result.

TO FIND APPROXIMATE ALTITUDES AND BEARINGS OF SUITABLE STARS FOR ObSERVATION TO QUICKLY ObTAIN POSITION OF SHIP.*

I917.-On July 9th, soon after sunset, at about 7 h .50 m . p.m. and 7 h .54 m ., in approximate latitude $47^{\circ} \mathrm{N}$. and longitude $7^{\circ} \mathrm{W}$., find what stars of first magnitude within the limits of the Reduction and Azimuth Tables would be suitable for quickly determining the ship's position, and the approximate altitudes and bearings of the stars. Height of eye, $4^{\circ} \mathrm{ft}$.

First find the Sid. Time at ship = A.T. Sp. + A. \odot 's R.A.

POSITION FROM COMBINED ALTITUDES OF TWO EX-MERIDIAN STARS.

${ }^{191} 7$.-On July 9th, soon after sunset, at about 7 h .50 m. p.m., in approximate latitude $47^{\circ} \mathrm{N}$. and longitude $7^{\circ} \mathrm{W}$. , the true altitude of $*$ Capella was $7^{\circ} 2 \cdot 2^{\prime} \mathrm{N} . \mathrm{W}$. , when chronometer showed M.T.G. $8 \mathrm{~h} .23 \mathrm{~m} .4^{8 \mathrm{~s} .,}$, and true altitude of $*$ Arcturus was $60^{\circ} 23 \cdot 7^{\prime} \mathrm{S} . \mathrm{W}$., when chronometer showed M.T.G. 8 h .26 m .59 s . Run in interval N. $32^{\circ} \mathrm{E} .0 .7 \mathrm{~m}$. Required, position of ship at time of 2 nd observation.

* Arcturus to S.W.

[^7] Calculated Reductions and Azimuths of Bright Stars," by H. S. Blackburne. James Brown and Son, Glasgow. Ios. 6d.

POSITION FROM CALCULATED EX-MERIDIAN OF TWO STARS, EACH OVER FOUR HOURS FROM THE MERIDIAN OF INFERIOR TRANSIT.

1898.-On roth Nov., at about 7 h. 25 m. p.m. A.T. at ship in lat. by D.R. 40° $30^{\prime} \mathrm{S}$. and long. $173^{\circ} 0^{\prime} \mathrm{E}$. Observed altitude of $*$ Canopus was $17^{\circ} 10^{\prime}$ to.S.E. when a chronometer indicated M.T.G. 9 d .19 h .35 m .28 s ., and again after running east (true) for $\frac{1}{2} \mathrm{~m}$. observed altitude of $* a^{2}$ Centauri $22^{\circ} 5 \mathrm{I}^{1^{\prime}}$ to S.W. when a chronometer indicated M.T.G. 19 h .37 m .48 s . Height of eye, 36 ft . Required the position of ship at the time of second observation.

H. M. S.			\bigcirc	1		
H.A. 4456	Cos 9.68236	Az.	27	59	Cos	9.94600
Dl. ($0^{\circ} 25^{\prime}$	Cot 9*75411	Alt.	22	43	Cot	0.37815
Arc (1) 1510.8 S	Tan 9.43647	Arc (2)		21'9	Cot	0.32415

Lat. $40 \quad 38 \cdot 7 \mathrm{~S}$ and posn.-line $\mathrm{N} 62^{\circ} \mathrm{W}$

Table M (page 156).
 2nd obsn. Az. S. 28 W . and Lat. $4038^{\circ} 7$ S. gives 41 lat. error N. to Wd.

$$
\text { D. lat. } \quad \overline{5^{2}} \div \quad \overline{92}=\begin{gathered}
\text { iong. cor. } 5^{\circ} 6^{\prime} \mathrm{W} . \\
=\text { lat. cor. } 2 \cdot 86^{\prime} \\
\mathrm{S} .
\end{gathered}
$$

Lat. (I)	+1) 33.5 S			
Cor.	$\begin{array}{r}2.9 \\ \hline\end{array}$	Cor.		5.6 W
Lat. in	4036.45	Long. in 1	172	54.9 E

Note.-These observations worked as two chronometer problems gave exactly the same results, but had the second ex-meridian latitude been worked with the azimuth as found by the A and B Tables the latitude would have been nearly I^{\prime} in error, due to a slight change in the star's declination in twelve years; the B Table having been calculated for *'s declination in 1910 It is well to remember, however, that the best results will always be obtained by using the sine method with hour-angle and altitude in the calculation of the azimuth, and this is especially the case where the altitude is high.

BELOW POLE EX-MERIDIAN AND POSITION-LINE.

1910.-On April ist, soon after sunset, at 6 h. 42 m. p.m., observed altitude of $* a$ Cygni (Deneb) $8^{\circ} 4^{\prime}$ W. of meridian when a chronometer indicated mean time at Greenwich 7 h . 34 m . I3 s . Approximate latitude $52^{\circ} \mathrm{N}$., and longitude $12^{\circ} \mathrm{W}$. Required, latitude of meridian, and positionline from it.

M.T. Green. Long. $12^{\circ} \mathrm{W}$.	$\begin{array}{r} \text { H. M. s. } \\ 734 \mathrm{I} \\ -48 \mathrm{o} \end{array}$	Sid. T. (G. noon) Accl. 7 h. 34 m.	$\begin{aligned} & \text { H. м. s. } \\ & \text { o } 355 I^{\circ} 6 \\ & + \text { I4.6 } \end{aligned}$	Obsd. alt. of * Cor. (40 ft .)	$\begin{aligned} & \circ \\ & 8 \\ & -\quad 46.0 \mathrm{~N} . \\ & -12.3 \end{aligned}$
M.T. Sp. M. ©'s R.A.	$\begin{array}{r} 64613 \\ +\quad 0376 \end{array}$	M. \odot 's R.A.	- 376.2	T. alt. Redn.*	$\begin{array}{r}833.7 \\ -\quad 20.2 \\ \hline\end{array}$
Sid. T. at Sp. *'s R.A.	$\begin{array}{r} 72319 \\ 70 \quad 3821 \end{array}$		-	Mer. alt. P.D.	$\begin{array}{rrr} 7 & 13.5 \\ 45 & 2.9 \mathrm{~N} . \end{array}$
*'s H.A.	10 4458	m	$\begin{array}{r} \text { N. } 130^{\circ} \\ 90^{\circ} 0 \end{array}$	Lat. Cor. for $\mathbf{1}^{\prime \prime}$	$\begin{array}{ll} 52 & 16.4 \\ + & 0.4 \end{array}$
Supt.	1152	Position-line	N. 76.7 E		
H.A. at Inferior Transit.				Lat.	$52 \quad 16.8 \mathrm{~N} .$

The above example is given to draw special attention to the great value of the ex-meridian problem when near the meridian below the Pole. The observation gives with a minimum amount of work (when within the limits of these tables) the latitude on a certain meridian, and the positionline from this meridian. The curvature of this position-line is seen at a glance from the azimuth table, which is given on the same page as the reduction table. In this example the change of azimuth only amounts to $0 \cdot 7$ of a degree in 4 m . of time, or I° of longitude.

The position-line at Loop Head would be N. $78^{\circ} \mathrm{E}$.
This position-line crossed by a bearing of Tearaght Island light (if sighted) would give a good reliable position, provided the observation was good. A sounding in conjunction with this positionline would also give a fairly accurate position.

The latitude and position-line could also have been found at the same time from these tables by * Sirius, the position-line of which would have then been $\mathrm{S} .79^{\circ} \mathrm{E}$. The crossing of these two position-lines would give an excellent latitude, but the longitude would not be reliable, as the angle is small, and both observations are west of the meridian.

[^8]
FORMULE FOR CALCULATION OF EX-MERIDIAN LATITUDE WHEN AZIMUTH IS KNOWN.

It will be seen from the accompanying figure that if we drop a perpendicular on the meridian from D at M the following arcs, $P M \operatorname{arc}(1)$, and $Z M$ arc (2), are readily calculated. The sum or difference of $\operatorname{arc}(\mathrm{I})$ and $\operatorname{arc}(2)=$ latitude.
Rule for Object above the Pole.
Name arc (r) same as declination.
Name arc (2) contrary to bearing of object-i.e., N. or S. of the prime vertical.
Add like and subtract unlike names, which will give the required latitude.

Formula of Calculation.

Cot. PM arc (I) $=\operatorname{Cos}$ H.A. \times Cot. decl.
Tan $Z \mathrm{M}$ arc $(2)=$ Cos. Az. \times Cot. Alt.

Rule for Object below the Pole.

Name both arc (1) and arc (2) same as the decl.
Latitude $=$ Sum of $\operatorname{arc}(\mathrm{I})$ and arc (2).

Formula for the Calculation.

H.A. $=$ Supplement of H.A. from upper meridian.
For Arc (2) use comp. of $Z \mathrm{M}$, or M N, then
Tan. arc $(\mathrm{I})=$ Cos. H.A. \times Cot. decl.
Cot. arc (z) $=$ Cos. Az. \times Cot. alt.
$\mathrm{PM}+\mathrm{MN}=$ comp. $\mathrm{P} \mathrm{Z}=$ latitude.
$\operatorname{Arc}(\mathrm{I})$ is found by the same formula as is used on p .97 , and the same arc is used for arc (2), but with a trifle less work; and as an ex-meridian outside the ordinary limits of ex-meridian tables is seldom of much use without the azimuth, this method is recommended in preference, if the azimuth is calculated with the H.A. and altitude. This method should always be used in preference when the declination of object is small. The writer's attention was first drawn to this excellent method of obtaining the latitude by a letter to the Nautical Magazine, August, 1899, p. 581, from E. S. Haynes, master of the tug "Cuzuni," and the value of it has been further impressed on him by a study of Admiral H. E. Purey Cust's valuable little book on "Sumner's" method. In this work Admiral Cust, R.N. (late Hydrographer to the Admiralty), strongly advocates this method.

Formula to compute Altitudes.
Using the accompanying figure. From Z drop a perp. on the hour circle at N . This will be outside the usual spherical triangle when the hour-angle is over 6 h . $\operatorname{Arc}(\mathrm{I})=\mathrm{PN} . \quad \operatorname{Arc}(2)=\mathrm{PD}-\mathrm{PN}=\mathrm{ND}$ when H.A. is less than 6 h . Arc $(2)=P D+P N$ when H.A. is more than 6 h . Then Tan. $\operatorname{Arc}(\mathrm{I})=\operatorname{Cos} . \mathrm{P} \times \operatorname{Cot}$. Lat.

$$
\text { Sin. Alt. }=\sin . \text { lat. } \times \sec . \operatorname{arc}(1) \times \text { Cos. arc }(2) .
$$

H.A. $6 \mathrm{~h}=90^{\circ}$ Formula.

Sin. Alt. $=$ sin. decl. \times sin. lat.

DHAGHRMS WVITHI EXEKANANIONS hiluStrating the
 RULE 0F THE ROAD FOR SAILING-SHIPS,
 BY

H. S. BLACKBURNE, WITH WHICH ARE EMBODIED THE
©REGULATIONS FOR PREVENTING COLLISIONS AT SEA."
poblished by J. D. Potter, 145 Minories, london E., and by H. S. Blackburne, Wellington, New Zealand.
PRICE, 2s. NEW ZEALAND, 2s. 3D.

EXTRACTS FROM LETTERS TO THE AUTHOR BY NAUTICAL EXPERTS.

From CAPTAIN E. W. OWENS, Examiner, Local Marine Board, London.
" I certainly have no objection to make, but much approval; your work is concise, clear, and, from my point of view, correct."

From CAPTAIN R. W. ESPINASSE Examiner to the Marine Board of Victoria, Australia. Letter to Editor of " Nautical Magazine," published March, 1904.
" Captain Blackburne is well known for diagrams with explanations ' Illustrating the Rule of the Road for Sailing-ships.' . . . This booklet is worthy of praise as the clearest and most original view of the subject yet made public."

NAUTICAL ASSESSORS AND TEACHERS OF NAVIGATION.

CAPTAIN A. WOOD, N.A. and Teacher of Navigation.
"I think they will be very useful to candidates getting up the Rule of the Road. I especially llke your treatment of two vessels close-hauled on the same tack, Diagram I."

CAPTAIN SAML. BROOKS, N.A.
" Your diagrams are excellent, and I think every officer in charge of a watch on board ship should have a copy of your book for his own information."

CAPTAIN J. T. CASTLE, N.A.
" It is well thought out, and you are to be congratulated on the simple and efficient manner in which its problems are presented. You may rest assured that its production will be of great service to those who wish to study so important a subject as that of knowing what means to adopt in order to a void a collision when meeting or crossing another sailing-vessel."

CAPTAIN G. KENNETH-HORE, N.A.
" It seems to me that you have taken great pains to make a clear explanation of the 'weather rule, position, and, what is sometimes a very difficult question to determine, how a vessel is steering when her green light is seen three points on the port bow of your own vessel, which at the same time has the wind on her port beam, and what is to be done under these circumstances."

CAPTAIN J. NETHERCLIFT JUTSUM, Principal of the Nautical Academy.
61 Fitzhamon Embankment, Cardiff.
" Many thanks for your little book re Rule of the Road. I consider it is as near perfection as any graphic method could be brought for illustrating this subject, and, although it is striking in its simplicity, its conciseness bears the impress of very careful and painstaking consideration in its production."

Captain Geo. SHIELDS, Principal of Naval Academy, 40 Clyde Place.
" Allow me to thank you for the copy of your book, which is perfection itself. I wish you every success, and shall be pleased to recommend it to my pupils at all times."

CAPTAIN JOHN OWEN, Principal of the Nautical School, 48 London Square, Cardiff.
" I thank you for your diagrams of the Rule of the Road for Sailing-ships. I think the illustrations are very good, and better than anything I have seen before on this most important subject."

REVIEWS FROM THE PRESS.

SHIPPING GAZETTE.

"There is good reason to anticipate that appreciation of these diagrams will not be limited to candidates for Board of Trade certificates, and we have no doubt that many officers at sea will find them of valuable and very practical assistance."

T'HE SHIELDS DAILY GAZETTE AND SHIPPING TELEGRAPH.
"Captain Blackburne, a well-known name in nautical circles, has just rendered a signal service to his seafaring confreres. His diagrams, with explanations, illustrating the new Rule of the Road, are marked with simplicity and distinctness. His little and unpretentious work ought to be in the hands of every master of a sailing-ship."

TABLES FOR AZIMUTHS, GREAT-CIRCLE SAILING,

REDUGTION TO THE MERIDIAN, WITH A NEW AND IMPROVED "SUMNER" METHOD.
``` LATITUDES900%\textrm{N}\mathrm{ TO 90' S.

```
}

Azimuths through Tables A, B, and C (or separately through Table D), for all the Heavenly Bodies at any Time the Body is above the Horizon : and Great-circle Sailing-courses between any two Places on the Globe.
Also other useful Navigational Tables, with Numerous Examples of Double Altitudes, Equal Altitudes, Azimuths, \&c.

By H. S. BLACKBURNE (Extra Master),
Princibal Examiner of Masters and Mates in New Zealand, and Nautical Adviser to the Govermment [Fourth Ed ifion, 1916].

\title{
MODERN UP-TO-DATE NAVIGATION.
} POSITION FINDING

BY THE

\author{
IMPROVED "SUMNER" METHOD \\ Contrasted with
}

THE NEW NAVIGATION (Marcq St. Hilaire System) and the OLD "SUMNER" METHOD,

TOGETHER WITH
A few Special Star Reduction and Azimuth Tables.

BY H. S. BLACKBURNE.
Price, 1s. 6d.

\section*{BOOK OF "SUMNER" CHARTS.}

Price, 2s. 6d.
A book containing examples of positions found by the improved "Sumner" method from ex-meridians, and twenty-four plane blank "Sumner" charts on a convenient scale for facilitating the "Sumner" problem in connection with Captain Blackburne's \(\mathrm{A}, \mathrm{B}\), and C azimuth tables mentioned above.

Every single chart is available for any latitude through the aid of the above-mentioned tables, by which greater accuracy of position is found, as well as a wider range for observation, than is given by the usually taught "Sumner's" method.

Note. - With reference to the above, Lieutenant G. W. Logan, United States Navy, editor of a provious revised edition of Bowditch's "American Practical Navigator," states that " the plane chart for plotting the intersection of 'Sumner' lines is excellent, and I freely concede that your method by means of Table \(\mathrm{C}^{2}\) is an improvement on my own for those who work 'Sumner's' with one position and an azimuth.-U.S.S. 'Castine,' Santo Domingo City, S.D., 17th January, 1905."

Mr. H. B. Goodwin, R.N., M.A., author of several works on navigation, \&c., formerly Examiner in Nautical Astronomy at the Royal Naval College, Greenwich, says:-
"I notice several interesting features in your present edition, notably the adaptation of 'Sumner' methods to plane charts, which should be more generally known."Aug., 1905.

\footnotetext{
Published by Marine Department, New Zealand Government, Wellington, New Zealand Sold in New Zealand at the Shipping Offices, and by Booksellers.
Sole Agents in United Kingdom: James Brown and Son, \(52-58\) Darnley Street, Glasgow.
}

\section*{EXTRACTS FROM PRESS REVIEWS}

ON THE

\title{
Tables for Azimuths, Great=circle Sailing,
}

AND

\section*{REDUCTION TO THE MERIDIAN.}

\begin{abstract}
[From the Syren and Shipping, 23rd August, 1905, and 4th November, 1908.]
Captain Blackburne's labour-saving aids for navigators are known all over the world by his brethren who keep themselves posted in up-to-date methods; and this collection of tables now published leaves nothing to desire by the navigator wishful of finding his ship's geographical position, or the error of her oompass, with the least possible chance of error, and in the shortest possible interval of time, anywhere within the usual limits of navigation. There is one point in connection with these tables which is deserving of the close consideration of the Board of Trade. Although the practical seaman will almost invariably use such data at sea, yet the Board compels the candidates for certificates to plod along in a way which gives admittedly erroneous results under certain conditions. . . . That the Board of Trade should examine along one line-that of antiquity-and that practical navigators should work along quite another line-that of labour-saving tables-is surely ludicrous. The New Zealand Government requested the Board of Trade to allow the use in the examinationroom of tables like those of Captain Blackburne's, together with improved methods of working, but the request has not been granted. We sincerely trust that the Board of Trade will see fit to adopt modern methods by allowing the candidates permission to use the A, B, C Azimuth Tables of Blackburne, or any similar labour-saving work. More convenient in form or more utilitarian in application these tables could not be.
\end{abstract}
[Extract from the Nautical Magazine, September and December, 1908.]
In the new edition of his well-known A, B, C, and D Tables, Captain Blackburne must surely have cut all existing records. . . . Captain Blackburne is as indefatigable as ever in his efforts to lighten the labours of those who go down to the sea in ships. Early in the present year he published an edition of the A, B, and C Tables. They are now republished, with an appendix entitled Ex-meridian and Azimuth Inspection Tables. . . . The author seems here to have hit upon a happy idea, for we have a maximum of information in a minimum of space; and, as he points out, once calculated, the reduction and azimuths will hold good for a long series of years.
[Extract from the Shipping World, 9th December, 1908.]
The new issue of his A, B, and C Tables for Azimuth, \&c., is undoubtedly the most complete and comprehensive volume on this subject yet published.
[Extract from the United Service Magazine, December, 1908.]
These tables now make it possible to determine the position of the ship more readily at any time, and with less trouble than ever before.
[Extract from the Mariner, 15th December, 1908.]
Sufficient is it to say that the various navigation tables, rules and examples, including a new and improved "Sumner" method, make the volume on all counts one of the most complete and authoritative that we know in nautical literature.
[Extract from Shipping Illustrated, New York, 5th December, 1909.]
These tablcs, as set forth in the present edition, are the most complete and com. prehensive Azimuth and Ex-meridian Tables for practical work yet published.
[Extract from New Zealand Military Journal, October, 1913.]
As an adjunct to marching or flying by day and night without a compass may be taken another work for the reason that the tables it contains practically enabled a revolution to be made in the old methods of night marching. This is "Tables for Azimuths and Great-circle Sailing," by H. S. Blackburne.

\section*{EXTRAGTS FROM LETTERS TO THE AUTHOR}

\section*{RE THE}

\section*{TABLES FOR AZIMUTHS AND REDUCTION TO THE MERIDIAN.}

\begin{abstract}
Mr. W. H. Sweny, Chief Officer, P. and O. s.s. "Mooltan," writes,-
I have now had your new edition of Azimuth and Reduction to the Meridian Tables in use for one Australian voyage, using them almost daily for stellar observation. The results obtained have been surprising, and so satisfactory that I have discarded all other books on these problems.-23rd January, 1909.
\end{abstract}

Captain John Owen, Teacher of Navigation, Cardiff, writes,-
Your method of solving the Time Azimuth problem by the A, B, C Tables is concise, and easy of solution. If these tables were more generally known I think seafarers would use them in preference to Burdwood's or any other special tables employed at present.25th January, 1909.

Mr. John Blencowe, late Second Officer, B.I. s.s. "Shirala," writes,-
In Lyttelton I obtained a copy of your new Azimuth and Ex-meridian Tables, and on showing them to my brother officers they were so taken with them that they all bought a copy for themselves. I think the tables are splendid, and for the sake of the profession will do all I can to make them more widely known.-9th February, 1909.

Captain P. Thompson, late Secretary to the Local Marine Board, and Examiner of Masters and Mates, London ; Author of "Navigation Simplified," \&c., writes, -
Having gone carefully through your book I am satisfied that your short methods of solving the most practical problems in navigation will commend themselves to the officers of the Mercantile Marine ; for myself, I cannot too strongly express how highly I appreciate what you have done to simplify the every-day calculations of those navigators whose duties in the ordinary work of a steamer leave them little leisure for working out a ship's position by the longer methods expected from them when undergoing the Board of Trade examination for a qualifying certificate.-12th February, 1909.

Mr. S. C. Warner, Chief Officer, P. and O. s.s. "Socotra," writes,-
I should like to add my humble testimonial to the new A, B, C book you have brought out, and to tell you how much it is appreciated here on board. I certainly think it is the very best book of navigation ever printed.-13th September, 1910.

Captain George Burton, Instructor of Cadets, Ocean Training-ship "Port Jackson," writes, -
I have shown your book to all our senior cadets, and advised them to procure copies. The book is certainly altogether the most complete education in modern navigation yet published. -26 th November, 1910.

Captain Herbert H. Edmonds, Teacher of Navigation, Sydney, Australia, writes,-
Of the two systems the Marcq-Hilaire and that which you so strongly advocate I decidedly prefer the latter. . . . I like your Ex-meridian Tables; it is no extra work finding the azimuth beforehand, since it is required in the after-plctting. It is a great pity the Board of Trade do not keep abreast of the times in adopting this system.-17th December, 1910.

Captain J. King Davis, commanding the Australasian Antarctic Expedition, S.Y. "Aurora," writes,-

Macquarie Island, 16 th December, 1911.
We have already several copies of the previous edition, as I use nothing else, and have insisted on my officers learning to use them, as they are the only suitable tables for our work, and are much handier, in my opinion, for any latitude.

Mr. H. Rochford Hughes, Navigating Officer, H.M. Cable Steamer "Iris," writes,
Having just returned from Sydney, New South Wales, after sounding proposed track for the new cable from Auckland to that port, I hasten to write to say what a boon your splendid A, B, C Tables have proved during the expedition, more especially the \(\mathrm{C}^{2}\) Table. . . . I have tried "new navigation" methods, and all the principal tables of the day, during my search for the shortest and most accurate methods, and have come to the conclusion that for our work your tables and system generally are the best.-5th and 8th February, 1912.

Commander Richard Hyde, R.N., Navigation School, Portsmouth, writes,I have just returned from a cruise with our gunboats the "Dryad" and "Harrier," when I used your tables exclusively for finding azimuths, and personally I prefer them to Burdwood or Weir's diagram.-12th April, 1912.

Lieutenant Edward R. G. R. Evans, R.N., who Commanded the British Antarctic Expedition R.Y.S. "Terra Nova " from England to Antarctic in 1910, writes, -
I shall endeavour to bring your tables into more general use in the Navy, as I consider them facile princeps of their kind. Burdwood and Davis are so cumbersome. I think you will be pleased to hear that on the southern journey I used your tables exclusively, and worked out all magnetic variations and true bearings by means of them up to latitude \(85^{\circ}\) and hence to \(88^{\circ}\) almost by exterpolation.-17th April, 1912.

Captain L. B. Bennett Gillman, s.s. "Matatua," writes,-
Before leaving Wellington on our last homeward voyage I procured a 1911 edition of your tables for azimuth and reduction to the meridian. I think it is the cheapest and best book on practical navigation ever offered to the seafaring community. Had the price been two guineas instead of six shillings it would have been nearer the intrinsic value of the book. The tables are absclutely the last word in modern and up-to-date navigation.-30th April, 1912.

Lieutenant Harry Pennell, K.N., Commanaing the British Antarctic Expedition R.Y.S. "Terra Nova," writes,-

I have used your A, B, C and Ex-meridian Tables whenever the "Terra Nova" has made a voyage south, and bave found them invaluable. In parts of Ross Sea the variation changes \(1^{\circ}\) for every four miles run at right angles to the lines of equal variation, and the large number of azimuths that it is necessary to take during the twenty-four hours would mean a prohibitive amount of work if your all-embracing tables were not at hand.-3rd June, 19.12.

\section*{Captain Thomas Liddle, Sunderland, writes,-}

Your last 1911 edition is undoubtedly the best book published for navigators, and the cheapest. - 28 ch December, 1912.

Lieut.-Col. W. A. Tilney, commanding 17th Lancers, Sialkot, India, writes, -
Your tables have practically enabled us to revolutionize night marching, as you see by the enclosed report.-29th July, 1913.

\section*{Lieut. E. Ballard Dalby, R.N.R., Extra Master (London), H.M.S. "Carmania," at sea, writes,-}

The officers who joined this ship in Liverpool when she was converted into an armed cruiser were drawn from nearly every company under the British flag, and no less than six of them had brought copies of your A and B Tables with them. It is a significant fact that once an officer commences to use them he never goes back to Burwood and Davis, where interpolation is in many cases tedious. Your tables certainly are the tables par excellence for an officer of the watch.-10th May, 1915.

\section*{EXTRACTS FROM PAPER REVIEWS}
and Letters on

\section*{MODERN UP-TO-DATE NAVIGATION.}

\begin{abstract}
[The Nautical Magazine, Glasgow, July, 1914.]
One advantage that should accrue to this little book and to all those who use it is the fact that its editor and compiler, in addition to being a good theoretical man, is also an experienced navigator and practical shipmaster. Having spent some time in preparing candidates for the Board of Trade examinations, he has acquired the "knack" of putting things as men can understand them, and in a way in which they will be most useful to them. The book throughout shows a sound knowledge of the subject, and will, with the help of the worked examples and chartlets, surely be the means of a larger number of navigators becoming interested in modern up-to-date navigation.
\end{abstract}

\section*{[The United Service Gazette, London, 15th October, 1914.]}

The book contains some nautical tables of great value for ready position-finding from observations of two stars out of the meridian. They also give by simple inspection the true bearing within certain limits of a few bright stars, and the calculated reduction to the meridian up to about an hour or a little over from the meridian, enabling a navigator to determine his latitude and position-line from a single observation of a star, with little more trouble than when the star is on the meridian. The book also contains several fully worked-out examples showing the usc of the tables, with some well executed diagrams illustrating the problems; the different methods of determining the ship's position by the "Old Sumner Method," the "Improved Sumner Method," and the "New Navigation Method" are contrasted, and the author clearly exposes some of the fallacious claims which have been made by one or two recent writers for the so-called "New Navigation" or "Marcq St. Hilaire" system of dealing with observations for position-finding. The value of the below Pole reduction and Azimuth Tables is well illustrated by the example on page 47. Small as the work is, having been printed on thin paper, it contains the tabulated results of about 19,900 calculations.

\section*{Captain H. H. Edmonds, Teacher of Navigation, Sydney, writes,-}

I thoroughly endorse all you say on the Marcq St. Hilaire method; it is the truest thing that has been written on the subject.

Captain T. L. Evans, F.R.G.S., Manager, Donald Steamship Company, Bristol, writes, -
I am convinced that the book "Modern Up-to-date Navigation" is one of the best auxiliaries to the navigator that I have yet perused, and would have been glad of such a book during my career as master in the foreign service. I must congratulate you on the very excellent methods which you have published in your book, which I consider most valuable to all navigators who wish to ascertain the position of their ship, by the splendid methods contained in your book, and which are so simply illustrated and explained that any one with an ordinary amount of intelligence can grasp without any instructions except that which is contained in your book. I shall certainly have the greatest pleasure in recommending it to all my younger friends who are now masters and officers of ships.

\section*{Captain Thos. Liddle, Sunderland, writes,-}

It's wonderful the information you have got in such a small space, and so far I have never seen any book to equal it. Why the Board of Trade will not sanction the use of your books for the examinations I cannot understand.
Captain J. W. Maxwell, King Edward VII Nautical School, London E, writes, -
I agree with your remarks, and see in this little work how very clear and sound your knowledge is.

\title{
NEMY ZEALAND NAUTICAL ALMANAC \& TIDE-TABLES:
}

\section*{also}

\title{
Information with Plans about the Principal Ports of New Zealand,
}
and

\author{
SUPPLEMENTARY INFORMATION TO DATE RELATING T0 THE \\ "NEW ZEALAND PILOT," EDITION 1908.
}

Published by Direction of the Hon. the Minister of Marine. Wellington, N.Z.
```

PRICE - - 3/-.

```

\begin{abstract}
The above-mentioned work is published annually towards the end of the year for the following year. It contains the usual Nautical Almanac data required in the ordinary navigation of ships, tide-tables (calculated by the N.Z. Lands and Survey Department), giving time and heights of high and low water at Wellington and Auckland, as standard ports, and constants to about eighty other places in the Dominion; also the tidal stream predictions for Tory Channel and French Pass, where the tidal streams attain a rate of five to seven knots at springs. Next to the tide-tables the special purpose of the work is to supplement and keep the "New Zealand Pilot" up to date, by collating all the notices to mariners and latest information since the last edition of the "New Zealand Pilot." It also gives somewhat fuller information, with plans of wharves, \&c., about all the ports of any importance in the Dominion.

The last edition of the work contains about 530 pages, and over thirty folded maps and plans of harbours, wharves, \&c., with latest alterations, and much information relating to the principal ports and harbours of New Zealand and of value to mariners.

Courses and distances between all the principal ports in New Zealand, also between New Zealand, Australia, Fiji, South Africa, San Francisco, Vancouver, Valparaiso, Panama, New York, and to England, via Cape Horn, and Panama, with the return via Capetown, are given in the work.

Some very valuable nautical tables and examples of problems worked by their aid are published in the Almanac, which it is hoped will greatly encourage masters and officers generally to make a practice of determining the ship's position from two stars at twilight, as these tables make the problems very easy, and also enable the observer to make sure that he is taking the right star by the easy calculation of the approximate altitude, and the bearing of the stars is given at sight.

The Almanac now finds its way not only to England and Australia, but has been sent for from North America and Jamaica. Mr. G. H. Halligan, Inspecting Engineer and Hydrographer in New South Wales, wrote of a previous year's edition, " This most valuable publication is now almost indispensable in Australia, and I find it of the utmost value in my hydrographic investigations."

The Editor of the " Rudder" Magazine, New York, U.S.A., wrote to the Secretary, Marine Department, when acknowledging receipt of a copy,-"I am always pleased to receive this publication, and congratulate you on its excellence. It is far better than anything we have published in this country."
\end{abstract}

\section*{PUBLISHED BY MARINE DEPARTMENT, N.Z. GOVERNMENT, WELLINGTON, N.Z.}

\footnotetext{
Sold in New Zealand at the Shipping Offices and Customhouses, and can be obtained in United Kingdom from the New Zealand High Commissioner, Victoria Street, London, S.W.
}

> Over 400 Pages of Solid Figure Matter.

LARGE BOOK OF Over 400 Pages of Solid Figure Matter.

\section*{NAUTICAL TABLES.}

\author{
Calculated Hour-angles and Altitude Azimuth Table, \(30^{\circ} \mathrm{N}\). to \(30^{\circ} \mathrm{S} . ;\) \\ Ex-meridian Tables, \(60^{\circ} \mathrm{N}\). to \(60^{\circ} \mathrm{S}\).; and Calculated Reduction and Azimuths of 27 Bright Stars from 1 to 3 Hours from Meridian, \(64^{\circ} \mathrm{N}\). to \(60^{\circ} \mathrm{S}\).
}

\section*{H. S. BLACKBURNE, \\ Extra Master (London),}

PRINCIPAL EXAMINER OF MASTERS AND MATES IN NEW ZEALAND AND NAUTICAL ADVISER TO THE GOVERNMENT.

\section*{Price : 7/6 in United Kingdom and 8/- in New Zealand.}

Nothing has ever before been published to so quickly, simply, and accurately solve the problem of finding the ship's position from two or three stellar observations out of the meridian, or for determining the latitude and position-line from a single observation, which may often be used in conjunction with a sounding, or the bearing of some mountain peak, or light, in determining the actual position of a ship.

AZIMUTHS from stars within the limits of the table are more simply found than by any other tables, and without question the same thing may be said about the star REDUCTIONS which have been calculated for 27 of the brightest stars from about i hour from upper meridian and from 2 to 3 hours from the meridian below the Pole for the circumpolar stars, for the actual declination of the stars for the year 1920, and for latitudes between \(64^{\circ} \mathrm{N}\). and \(60^{\circ} \mathrm{S}\). The reduction and azimuth of star Polaris is given up to 6 hours above and 6 hours below the Pole.

The great advantage of these tables for daylight and twilight observations is that the ready determination of the altitude and azimuth from the table prevents the possibility of the wrong star being taken, and an observation may be obtained by setting the approximate altitude to the sextant before the star is visible to the naked eye.

CAPTAIN WALTER LUMSDEN, C.V.O., R.N., Director Royal Indian Marine, writes, saying : "I am obtaining copies of this publication for supply to Royal Indian Marine seagoing vessels."

\footnotetext{
The P. and O.S.N. Company, the N.Z.S.S. Company, the White Star Line, and the U.S.S. Company of New Zealand supply copies of the work to their ateamers. The New Zealand Government are also supplying each of H.M.N.Z. transport steamers with a copy of the book.
}

AGENTS IN UNITED KINGDOM:
Thomas Ainsley, South Shields, England ; James Brown and Son, Glasgow, Scotland; J. D. Potter, 145 Minories, London E.C., England.

SOLD BY NAUTICAL BOOKSELLERS AND AT THE GOVERNMENT SHIPPING OFFICES IN NEW ZEALAND.

\title{
EXTRACTS FROM PRESS REVIEWS AND LETTERS ox tables of calculated hour-angles AND ALTITUDE AZIMUTH TABLE, ETC.
}
[Extract from Shipping Illustrated, New York, U.S.A., April 3rd, 1915.]
The main purpose of these tables is to make as easy as possible the problem of finding the ship's position from combined altitudes of the sun, moon, or stars, and especially to facilitate the much-neglected practice of determining the ship's position from two or three stars at twilight, a few minutes before sunrise, and a few minutes after sunset. By the aid of the calculated star reduction and azimuth tables in this book a latitude and position line can be obtained at any time when the stars are visible almost as easily as by meridian altitude of a star. This method is the simplest yet brought forth for quickly and accurately solving the problem of determining position from stellar observations out of the meridian, or for determining latitude and position line from a single observation, which may be used in connection with a sounding, or the bearing of some mountain peak or light.

Captain G. N. Tomlin, R.N., H.M.S. "Agincourt," writes,-"I have already found your tables most useful and simple; I hope they will meet with the success they deserve."

Commander Harry Pennell, R.N., H.M.s. "Duke of Edinburgh," writes,-_" These hour-angle and azimuth tables reduce sights now to the minimum of work conceivable when they fall within its limits.

Captain Thos. Washington, U.S. Navy, Hydrographer, writes,-"I am sure your tables are going to prove to be a most useful and accurate help for shipmasters and others interested in navigation ; I congratulate you upon the excellence of the work."

Captain Herbert H. Edmonds, Teacher of Navigation, Sydney, writes,_"Received my copy of your book with which I am greatly pleased. I have tested a few critical cases and find results all that can be desired, both with hour-angle and azimuths. What a boon to have all you want with a position-line in one act."

Commander Edward R. G. R. Evans, R.N., H.M.S. "Viking," writes,_" Very many thanks for 'Tables of Calculated Hour-angles, Star Reductions, and Azimuth Tables.' Like all your works this is excellent, and simple enough for any navigator who will read the explanation and work a few examples until he is familiar with their use-then they are a pleasure."

Lieut. E. B. Dalby, R.N.R., H.M.S. "Carmania," writes,--"I have purchased a copy of your new book, and hasten to say how much I like it. The printing is good, the arrangement could not be bettered, the explanations are copious, and the whole book a marvel of cheapness. I have checked the hour-angles in Table 1 by working out quite a number of sights in the usual way and then working the same sights by this table. In no case did I get a difference of over a second, and in most cases the error was under half a second. The facility and accuracy with which the azimuth is obtained through the latitude variation (with a little mental interpolation in some cases) is certainly remarkable. For your star reduction and azimuth tables I have nothing but admiration. For stellar navigation I know of nothing to equal these incomparable tables."

Captain Robert W. Ferguson, of Brisbane, Queensland, writes, -"The tables are magnificent, and the most singular part of them is the truly graphic Altltude Azimuth Table No. IV, it being the best and most ingenious I have ever seen. . . These and your 'Tables for Azimuth, Great-circle Sailing, and Reduction to the Meridian' \(90^{\circ} \mathrm{N}\). to \(90^{\circ} \mathrm{S}\). are of inestimable value to the science of navigation, and your methods supersede all others in accuracy and brevity, for which you deserve well and worthily at the hands of the profession."

\section*{[Extract from N.Z. Gazette No. 103, 14th Sept., 1916.]}

Notice to Mariners No. 74 of 1916.

\section*{New Edition of Nautical Tables published.}

Marine Department, Wellington, N.Z., 11 th September, 1916.

NOTICE is hereby given that the New Zealand Marine Department have just published a fourth edition of "Tables for Azimuth, Great Circle Sailing, and Reduction to the Meridian," Lats. \(90^{\circ} \mathrm{N}\). to \(90^{\circ} \mathrm{S}\).
The azimuth tables, which for some years have been acknowledged to be the most complete and comprehensive azimuth tables published, remain the same as in last edition. They include limits from pole to pole for sun, moon, and all the stars in the heavens, for any hour angle from the meridian.
The reduction tables, though still very compact, have been more than doubled in size since issue of last edition, and their limits of use have been considerably enlarged. They are available for all latitudes and declinations, and for any altitude, often with more than double the hour-angle limits from the meridian given in the ex-meridian tables in the standard works of navigation in general use.

They are also available for below pole hour-angles as well as the hour-angles from upper meridian. As an illustration of the wide limits of these tables an example is given on page 158, which will no doubt surprise navigators generally. The position of ship is accurately determined from two ex-meridian latitudes where the reduction to both zenith distances was over \(9^{\circ}\), hour-angles over 1 h .40 m ., and azimuth over \(40^{\circ}\) from the meridian.

The accuracy of resulting position from these observations is proved by a fresh calculation of two longitudes from a near parallel of latitude, by the ordinary double altitude method, with the use of the A and B Tables. Other new and interesting problems have also been added in this edition.

Published by Marine Department, New Zealand Government, Wellington, New Zealand. Price 6s.

Sold in New Zealand at the shipping offices and by booksellers. Sole agents in United Kingdom : James Brown and Son, 52-58 Darnley Street, Glasgow, Scotland.

GEORGE ALLPORT,
Secretary.

隻
```


[^0]: To convert time into longitude divide by 4 . Thas $9.24 \mathrm{~s} . \div 4=2.3 \mathrm{I}^{\prime}$ long.

[^1]: To convert time into longitude divide by 4 ．Thus $123 . \div 4=3$ long．

[^2]: * Provided the sun's bearing has changed not less than two points.

[^3]: * See note on previous page about correcting moon's semidiameter and horizontal parallax for Greenwich date.

[^4]: * The actual observations for this and the following example were taken in 1885, but for the sake of uniformity are here worked for the year 1898.

[^5]: * Tables of Calculated Hour-angles and Altitude Azimuth Tables ($30^{\circ} \mathrm{N}$. to $30^{\circ} \mathrm{S}$.) , Ex-meridiar Tables ($70^{\circ} \mathrm{N}$. to $70^{\circ} \mathrm{S}$), and Calculated Reduction and Azimuths of 30 Bright Stars ($64^{\circ} \mathrm{N}$. to 60° S.), by H. S. Blackburne. Second Edition. Price ros. 6d. Published in United Kingdom by Thos. Ainsley, James Brown and Son, and J. D. Potter.

[^6]: * Extract from a publication issued by the Bureau of Equipment, Department of the Navy, Washington D.C. ; by Lieutenant G. W. Logan, U.S. Navy.

[^7]: * This example is taken from "Tables of Calculated Hour-angles and Altitude Azimuths, Ex-meridian Tables, and

[^8]: * From Blackburne's and Westland's "Azimuth and Reduction Tables."

