TABLES

OF

COMPLEX HYPERBOLIC AND CIRCULAR FUNCTIONS

KENNELLY

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

http://www.archive.org/details/tablesofcomplexh00kenniala

To my esteemed colleague Professor Hedrick 26th April 1923 4 pm G. M. C. T. 128 Pierce Hall Haward

TABLES

OF

COMPLEX HYPERBOLIC AND CIRCULAR FUNCTIONS

BY

A. E. KENNELLY, Sc.D., A.M. professor of electrical engineering in harvard university

> SECOND EDITION REVISED AND ENLARGED

CAMBRIDGE HARVARD UNIVERSITY PRESS LONDON: HUMPHREY MILFORD

Oxford University Press

1921

COPYRIGHT, 1914 AND 1921 HARVARD UNIVERSITY PRESS

First edition, March, 1914 Second edition, February, 1921

AHNOY CALFORINA XILOS ARGELES XERSEN

PREFACE

THE tables in this book present hyperbolic and circular functions of a complex variable, both in polar and rectangular coördinates. Such complex functions have not hitherto been published, except over a very restricted range. They have important applications in electrical engineering. For instance, it is possible with their help to find in a few minutes the potential, current and power, at any point of an alternating-current line-conductor of known constants and terminal conditions; whereas the same problem, to a like degree of precision, without aid from these functions, and by older methods, would probably occupy hours of labor and cover several sheets of computing-paper.

Although the principal application of these functions at the present time is in dealing with alternating-current lines, especially those of either great length or high frequency; yet it seems likely that other uses will develop for them.

The author desires to acknowledge his indebtedness, for suggestions and help, to a number of workers, both in mathematical and practical fields; and particularly to Messrs. C. L. Bouton, W. Duddell, E. V. Huntington, F. B. Jewett, John Perry, H. J. Ryan, and E. B. Wilson.

A. E. K.

A. E. K.

HARVARD UNIVERSITY January, 1914.

PREFACE TO THE SECOND EDITION

IN preparing the second edition of this book, six new tables have been computed. These are actually extensions of the tables I to VI already incorporated. It has been considered advisable to add the new material in new tables at the end of the volume rather than to recast the original tables in such a manner as to include the new matter. The new matter has been found necessary in certain departments of electrical engineering to which complex hyperbolic functions may be advantageously applied.

HARVARD UNIVERSITY June, 1920.

42282

TABLE OF CONTENTS

Ι.	Hyperbolic Sines. $\sinh (\rho / \delta) = r / \gamma \dots \delta 45^{\circ} \text{ to } 90^{\circ} \dots 2$
п.	Hyperbolic Cosines. $\cosh(\rho / \delta) = r / \gamma$. """"""" 5
III.	Hyperbolic Tangents. $\tanh(\rho / \delta) = r / \gamma$ """"""""
IV.	Correcting Factor. $\frac{\sinh\theta}{\theta}$
v.	Correcting Factor. $\frac{\tanh\theta}{\theta}$
VI.	Functions of Semi-Imaginaries. $f(\rho / 45^{\circ})$
VII.	HYPERBOLIC SINES. $\sinh(x + iq) = u + iv$
VIII.	Hyperbolic Cosines. $\cosh(x + iq) = u + iv \dots \dots \dots \dots \dots \dots \dots \dots 58$
IX.	HYPERBOLIC TANGENTS. $tanh (x + iq) = u + iv \dots 74$
x.	Hyperbolic Sines. $\sinh(x + iq) = r / \gamma$
XI.	Hyperbolic Cosines. $\cosh(x + iq) = r / \gamma$
XII.	Hyperbolic Tangents. $tanh(x + iq) = r / \gamma$
XIII.	Functions of $4 + iq$. $f(4 + iq) = u + iv$
	$f(4 + iq) = r / \gamma \dots \dots \dots \dots 139$
XIV.	SEMI-EXPONENTIALS. $\frac{e^x}{2}$ and $\log_{10}\left(\frac{e^x}{2}\right)$
XV.	REAL Hyperbolic Functions. $f(x + io) = u + io \dots 144$
XVI.	SUBDIVISIONS OF A DEGREE
,	EXPLANATORY TEXT
XVII.	Hyperbolic Sines. $\sinh \left(\rho / \delta\right) = r / \gamma$ $\delta \circ^{\circ}$ to $45^{\circ} \ldots \ldots 214$
XVIII.	Hyperbolic Cosines. $\cosh(\rho / \delta) = r / \gamma$ """""""" 216
XIX.	Hyperbolic Tangents. $\tanh \left(\rho / \delta\right) = r / \gamma$ """"""""" 218
XX.	CORRECTING FACTOR. $\frac{\sinh\theta}{\theta}$ """"" 220
XXI.	CORRECTING FACTOR. $\frac{\tanh \theta}{\theta}$ """"" 222
XXII.	Functions of Semi-Imaginaries. $f(\rho / 45^{\circ})$ 224
XXIII.	Hyperbolic Function Formulas

TABLESOFCOMPLEXHYPERBOLICANDCIRCULARFUNCTIONS

TABLE I. HYPERBOLIC SINES. $\sinh (\rho / \delta) = r / \gamma$

	0	.1	0	.2	c	•3	0	.4	0	-5
0		0		0		0		0		•
45	0.10000	45.006	0.20000	45.383	0.30001	45.860	0.40005	46.532	0.50016	A7.30T
45	0.000002	46.005	0 10005	46 282	0.20085	46.858	0.20068	47 520	0.40044	48 288
40	0.000087	47.005	0 10000	47 281	0.20060	47 856	0 20021	48 5 26	0 40872	40.380
47	0.099987	47.095	0.19990	47.301	0.29909	47.050	0.39931	40.520	0.49072	49.305
40	0.099991	40.094	0.19980	40.300	0.29954	40.054	0.39893	49.520	0.49799	50.378
49	0.099975	49.094	0.19982	49.378	0.29939	49.852	0.39850	50.513	0.49727	51.308
50	0.099970	50.094	0.19976	50.376	0.29923	50.848	0.39820	51.506	0.49656	52.357
51	0.000065	51.003	0.10072	51.374	0.20007	51.842	0.39784	52.497	0.49585	53.342
52	0.000060	52.002	0.10068	52.37I	0.20802	52.834	0.30748	53.486	0.40514	54.325
5-	0.000055	52.00T	0.10062	52.267	0.20877	53.826	0.30712	54.472	0.40444	55.204
55	0.000050	53.092	0 10050	53.301	0.20862	FA 818	0 20676	5- 4-8	0 40274	=6 28T
54	0.099930	54.090	0.19959	34.302	0.29002	54.010	0.39070	53.430	0.49374	50.201
55	0.099944	55.089	0.19955	55.357	0.29847	55.809	0.39641	56.440	0.49305	57.254
56	0.000030	56.088	0.10051	56.352	0.29833	56.799	0.39607	57.42I	0.49238	58.226
57	0.000033	57.086	0.10046	57.347	0.20810	57.787	0.30572	58.400	0.40172	50.105
r8	0.000028	58.085	0.10041	58.342	0.20804	58.773	0.30538	50.378	0.40106	60.160
50	0.000022	50.082	0 10027	50.226	0 20700	50.760	0 20505	60 254	0.40041	61 122
59	0.099922	39.003	0.19937	39.330	0.29790	39.700	0.39303	00.334	0.49041	01.123
60	0.099917	60.082	0.19934	60.331	0.29777	60.746	0.39473	61.330	0.48978	62.085
61	0.000012	61.081	0.19929	61.324	0. 29764	61.731	0.39441	62.302	0.48916	63.042
62	0.000007	62.070	0.10025	62.317	0.20751	62.715	0.30400	63.273	0.48855	63.008
62	0.000002	63.077	0.10021	63.300	0.20738	63.608	0.30370	64.243	0.48705	64.050
64	0.000807	64.075	0 10018	64.201	0 20725	64.680	0 20240	65.212	0 48728	65 000
04	0.099097	04.073	0.19910	04.301	0.197-3		0.33343		0.40730	03.900
65	0.099893	65.073	0.19914	65.293	0.29712	65.661	0.39320	66.179	0.48681	66.848
66	0.000880	66.071	0.19911	66.284	0.29700	66.641	0.39293	67.144	0.48627	67.794
67	0.000885	67.060	0.10008	67.275	0.20680	67.621	0.30266	68.108	0.48575	68.738
68	0.000881	68.066	0.10004	68.265	0.20678	68.500	0.30240	60.070	0.48523	60.670
60	0.000877	60.064	0.10001	60.255	0.20667	60.577	0.20214	70.030	0.48473	70.617
09	0.099077	09.004	0.19901	09.233	enzyce,	09.377	0.39	70.030	0.40473	/0.01/
70	0.099873	70.062	0.19898	70.245	0.29657	70.555	0.39190	70.990	0.48426	71.554
71	0.099869	71.059	0.19895	71.235	0.29647	71.532	0.39167	71.948	0.48380	72.489
72	0.000865	72.057	0.10802	72.225	0.20637	72.508	0.30145	72.005	0.48338	73.422
72	0.000861	73.054	0.10880	73.214	0.20628	73.483	0.30123	73.861	0.48206	74.354
74	0.099858	74.051	0.19887	74.203	0.29620	74.458	0.39104	74.817	0.48257	75.284
~ -	0.000855	75.048	0.1088	75 102	0 20672		0 10084	n# 777	0 48220	76 ara
15	0.099855	75.040	0.19885	75.192	0.29012	13.432	0.39004	15.111	0.40220	10.212
70	0.099852	70.045	0.19883	70.100	0.29004	70.400	0.39000	70.724	0.40104	77.130
77	0.099850	77.042	0.19881	77.108	0.29590	77.379	0.39050	77.070	0.48152	78.002
78	0.099847	78.039	0.19878	78.150	0.29590	78.351	0.39034	78.028	0.48121	78.980
79	0.099845	79.036	0.19876	79.144	0.28584	79.322	0.39018	79.578	0.48093	79.909
80	0.000843	80.033	0.10875	80.131	0.20578	80.204	0.30004	80.528	0.48067	80.830
8T	0.000841	81.030	0.10873	81.118	0.20573	81.266	0.38003	81.477	0.48044	81.750
82	0.000820	82 026	0 10873	82 106	0.20560	82 228	0 28082	82 125	0.48022	82 660
84	0.099039	82.020	0.19072	82.002	0.29309	82.200	0.30903	82 272	0.48004	82 - 87
03	0.099838	03.023	0.19871	03.003	0.29300	8, 209	0.30973	03.3/3	0.40004	03.507
84	0.099837	04.020	0.19870	84.080	0.29503	84.180	0.38905	84.321	0.47987	84.505
85	0.099836	85.017	0.19869	85.067	0.29561	85.150	0.38958	85.268	0.47972	85.422
86	0.099835	86.014	0.19868	86.054	0.29559	86.120	0.38952	86.215	0.47960	86.338
87	0.000834	87.011	0.10868	87.041	0.29557	87.000	0.38048	87.162	0.47052	87.254
88	0.000822	88.008	0.10867	88.028	0.20555	88.060	0.38046	88.108	0.47047	88.170
80	0.000833	80.004	0.10867	80.014	0.20552	80.020	0.28044	80.054	0.47045	80.085
-9	0.099032	- 9.004		-9.0-7	9555	-9.030		-994		09.003
90	0.099831	90.000	0.19867	90.000	0.29552	90.000	0.38942	90.000	0.47943	90.000

Note. $\sinh(o/\delta) = o/\delta$.

Examples. $\sinh(0.3 / 65^{\circ}) = 0.29712 / 65^{\circ}.661 = 0.29712 / 65^{\circ}.39'.40''.$ $\sinh^{-1}(0.39018 / 79^{\circ}.578) = 0.4 / 79^{\circ}.$

[2]

	0	.6	0	.7	0	.8	c	.9	I	.0
0		0		0		•		0		0
45	0.60042	48.440	0.70004	40.676	0.80184	51.108	0.00327	52.728	1.00553	54.531
46	0.50018	49.437	0.60804	50.670	0.79885	52.112	0.80004	53.735	0.00075	55.540
47	0.50703	50.434	0.60605	51.676	0.70587	53.109	0.80482	54.734	0.00304	56.550
48	0.50667	51.426	0.60407	52.666	0.70201	54.099	0.80060	55.725	0.08816	57.543
40	0.50542	52.414	0.60200	52.652	0.78006	55.082	0.88640	56.707	0.08242	58.525
49	0.3934-	J	0.09299	33:034	0.70990		0.00040	30.707	0.90242	20.223
50	0.59418	53.398	0.69102	54.632	0.78703	56.058	0.88224	57.679	0.97672	59.495
51	0.59295	54.379	0.68907	55.606	0.78412	57.026	0.87810	58.642	0.07105	60.453
52	0.59174	55.355	0.68713	56.574	0.78124	57.987	0.87400	50.505	0.06543	61.300
53	0.50053	56.326	0.68521	57.537	0.77838	58.940	0.86003	60.538	0.05086	62.333
54	0.58032	57.203	0.68331	58.403	0.77555	59.886	0.86500	61.472	0.05435	63.255
				5 150	11555		0,5		30100	-0-00
55	0.58814	58.256	0.68144	59-445	0.77275	00.824	0.86192	62.396	0.94890	64.166
56	o.58698	59.215	0.67959	60.39I	0.76999	61.755	0.85800	63.312	0.94353	65.065
57	0.58583	60.171	0.67776	61.33 1	0.76727	62.678	0.85414	64.218	0.93825	65.952
58	0.58469	61.122	0.67595	62.265	0.76459	63.593	0.85034	65.114	0.93305	66.827
59	0.58357	62.069	0.67419	63.193	0.76195	64.502	0.84660.	66.000	0.92795	67.691
	0					e				
00	0.58249	03.013	0.07247	04.117	0.75938	05.405	0.84295	00.878	0.92295	08.544
0I	0.58142	03.953	0.07078	05.030	0.75080	00.300	0.83937	67.747	0.91805	69.385
62	0.58037	04.889	0.00912	65.95I	0.75439	07.189	0.83587	68.607	0.91325	70.215
63	0.57934	65.821	0.66749	66.859	0.75197	08.070	0.83244	69.458	0.90856	71.033
64	0.57834	66.749	0.66591	67.762	0.74962	68.944	0.82909	70.300	0.90400	71.841
65	0.57737	67.674	0.66437	68.661	0.74733	69.812	0.82585	71.136	0.89957	72.637
66	0.57643	68.596	0.66288	69.554	0.74512	70.674	0.82270	71.062	0.89527	73.424
67	0.57553	60.515	0.66145	70.444	0.74208	71.529	0.81067	72.780	0.80111	74.201
68	0.57465	70.430	0.66005	71.320	0.74001	72.379	0.81672	73.500	0.88708	74.068
69	0.57379	71.342	0.65870	72.209	0.73891	73.223	0.81387	74.392	0.88320	75.723
70	0.57207	72.251	0.65740	72 085	0 72608	74.061	0.81114	75 187	0 87047	76.460
71	0.57210	72.157	0.65616	72 057	0.73598	74.804	0.80853	75 075	0.87580	77.207
72	0.57145	74.061	0.65408	74.825	0.73313	75.722	0.80602	76.756	0.87247	77.036
72	0.57074	74.062	0.65285	75 680	0.73337	76.544	0.80262	77 520	0.860.21	78.656
7.4	0.57074	75 860	0.05305	75.009	0.73109	77.261	0.00303	78 208	0.86612	70.268
/4	0.37000	13.000	0.03270	70.330	0.73009	11.30-	0.00137	70.290	0.00012	19.300
75	0.56941	76.756	0.65176	77.408	0.72858	78.174	0.79924	79.059	0.86320	80.072
76	0.56881	77.649	0.65081	78.263	0.72716	78.982	0.79723	79.815	0.86045	80.769
77	0.56824	78.540	0.64992	79.114	0.72583	79.787	0.79535	80.566	0. 85788	81.458
78	0.56772	79.429	0.64909	79.962	0.72459	80.588	0.79359	81.312	0.85549	82.141
79	0.56724	80.317	0.64832	80.808	0.72345	81.385	0.79197	82.053	0.85328	82.818
80	0.56670	81.203	0.64761	81.652	0.72241	82.179	0.70048	82.780	0.85125	83.480
81	0.56638	82.087	0.64607	82.403	0.72146	82.060	0.78013	83.522	0.84040	84.156
82	0.56602	82.070	0.64640	82.222	0.72061	82.757	0.78702	84.251	0.84774	84.817
83	0.56570	83.852	0.64580	84.160	0.71085	84.543	0.78685	84.076	0.84628	85.474
84	0.56542	84.732	0.64545	85.005	0.71010	85.327	0.78502	85.600	0.84501	86.128
						- 3-3-1		- 3 39		04
85	0.56518	85.612	0.64507	85.839	0.71863	86.109	0.78513	86.420	0.84393	86.779
86	0.56498	86.490	0.64476	86.673	0.71817	86.889	0.78448	87.138	0.74305	87.420
87	0.56483	87.368	0.64452	87.506	0.71781	87.668	0.78397	87.855	0.84236	88.071
88	0.56473	88.246	0.64435	88.338	0.71755	88.446	0.78361	88.571	0.84186	88.715
89	0.56466	89.123	0.64425	89.169	0.71740	89.223	0.78339	89.286	0.84156	89.358
90	0.56464	90.000	0.64422	90.000	0.71736	90.000	0.78333	90.000	0.84147	90.000

Examples. $\sinh (1.0 / 90^{\circ}) = 0.84147 / 90^{\circ}.$ $\sinh^{-1} (0.87947 / 76^{\circ}.469) = 1.0 / 70^{\circ}.$.

	I	.1	I	.2	1.	3	I	•4	I	•5
• 45 46 47 48 49	1.1089 1.1012 1.0935 1.0858 1.0782	° 56.519 57.543 58.555 59.553 60.536	1.2138 1.2037 1.1937 1.1838 1.1739	° 58.692 59.726 60.748 61.753 62.741	1.3205 1.3078 1.2051 1.2824 1.2699	° 61.034 62.092 63.128 64.142 65.137	1.4297 1.4138 1.3979 1.3822 1.3665	° 63.568 64.639 65.689 66.717 67.723	1.5418 1.5222 1.5027 1.4834 1.4642	° 66.262 67.355 68.426 69.474 70.496
50	1.0706	61.506	1.1641	63.712	1.2574	66.113	1.3509	68.707	1.4451	71.492
51	1.0630	62.461	1.1543	64.666	1.2450	67.068	1.3355	69.668	1.4262	72.462
52	1.0556	63.401	1.1446	65.603	1.2327	68.004	1.3202	70.605	1.4075	73.405
53	1.0482	64.327	1.1350	66.523	1.2206	68.919	1.3051	71.519	1.3889	74.321
54	1.0409	65.239	1.1256	67.425	1.2086	69.814	1.2902	72.409	1.3706	75.210
55 56 57 58 59	1.0330 1.0265 1.0195 1.0126 1.0058	67.888 68.742 69.581	1.1102 1.1070 1.0979 1.0890 1.0802	68.310 69.178 70.028 70.860 71.675	1.1907 1.1850 1.1735 1.1622 1.1511	70.088 71.542 72.376 73.188 73.980	1.2754 1.2609 1.2466 1.2325 1.2187	73.275 74.117 74.936 75.730 76.500	1.3525 1.3347 1.3172 1.3000 1.2831	70.072 76.907 77.713 78.491 79.240
60	0.99920	70.406	1.0716	72.474	1.1403	74.752	1.2052	77.246	1.2665	79.964
61	0.99269	71.218	1.0632	73.255	1.1296	75.502	1.1919	77.967	1.2503	80.657
62	0.98633	72.016	1.0550	74.019	1.1192	76.232	1.1790	78.663	1.2345	81.321
63	0.98013	72.800	1.0470	74.767	1.1091	76.942	1.1664	79.335	1.2191	81.956
64	0.97409	73.570	1.0392	75.497	1.0992	77.632	1.1541	79.983	1.2040	82.562
65	0.96821	74.327	1.0316	76.211	1.0895	78.301	1.1421	80.607	1.1894	83.140
66	0.96251	75.071	1.0242	76.909	1.0802	78.950	1.1305	81.207	1.1752	83.690
67	0.95698	75.801	1.0171	77.590	1.0712	79.580	1.1193	81.783	1.1615	84.211
68	0.95165	76.519	1.0102	78.257	1.0625	80.191	1.1084	82.335	1.1482	84.704
69	0.94650	77.225	1.0035	78.907	1.0540	80.783	1.0979	82.865	1.1354	85.169
70	0.94156	77.918	0.99712	79-543	1.0459	81.357	1.0879	83.373	1.1231	85.607
71	0.93682	78.600	0.99099	80.164	1.0382	81.912	1.0783	83.858	1.1113	86.018
72	0.93229	79.271	0.98514	80.771	1.0308	82.450	1.0691	84.322	1.1000	86.402
73	0.92798	79.931	0.97957	81.365	1.0237	82.971	1.0603	84.765	1.0893	86.761
74	0.92388	80.580	0.97428	81.946	1.0170	83.476	1.0520	85.188	1.0791	87.096
75	0.92001	81.220	0.96927	82.514	1.0107	83.966	1.0441	85.591	1.0694	87.406
76	0.91637	81.850	0.96456	83.069	1.0047	84.440	1.0367	85.975	1.0603	87.693
77	0.91296	82.471	0.96015	83.614	0.99916	84.900	1.0298	86.342	1.0518	87.958
78	0.90978	83.084	0.95605	84.148	0.99397	85.346	1.0233	86.692	1.0439	88.201
79	0.90685	83.689	0.95226	84.672	0.98917	85.780	1.0173	87.026	1.0366	88.425
80	0.90416	84.286	0.94878	85.187	0.98477	86.202	1.0119	87.346	1.0299	88.630
81	0.90172	84.877	0.94562	85.693	0.98077	86.614	1.0069	87.651	1.0238	88.818
82	0.89953	85.462	0.94279	86.191	0.97715	87.016	1.0024	87.944	1.0183	88.991
83	0.89759	86.041	0.94029	86.683	0.97400	87.408	0.99845	88.227	1.0135	89.149
84	0.89590	86.616	0.93811	87.169	0.97124	87.793	0.99502	88.499	1.0093	89.294
85	0.89447	87.186	0.93626	87.649	0.96890	88.171	0.99210	88.762	1.0057	89.429
86	0.89330	87.753	0.93474	88.124	0.96698	88.544	0.98971	89.018	1.0027	89.554
87	0.89238	88.317	0.93356	88.596	0.96548	88.912	0.98785	89.269	1.0004	89.673
88	0.89173	88.879	0.93272	89.065	0.96441	89.277	0.98652	89.515	0.99880	89.785
89	0.89134	89.440	0.93221	89.533	0.96377	89.639	0.98572	89.758	0.99782	89.893
30	0.89121	90.000	0.93204	90.000	0.96356	90.000	0.98545	00.000	0.99749	90.000

Examples. $\sinh(1.1/45^{\circ}) = 1.1089/56^{\circ}.519 = 1.1089/56^{\circ}.31'.08''.$ $\sinh^{-1}(1.1084/82^{\circ}.335) = 1.4/68^{\circ}.$

	I	.6	1	.7	I	.8	I	.9	2	.0
0		0		0		0		0		0
45	1.6575	60.117	1.7776	72.133	1.0020	75.202	2.0343	78.500	2.1726	82.016
45	1.6338	70.241	1.7403	73.288	1.8603	76.486	1.0047	70.820	2.1266	83.304
40	1.6102	71.220	1.7210	74.418	1.8250	77 651	1.0554	81 027	2.0800	84 560
4/	T = 868	71.339	1.7210	74.410	1.0339	77.031	1.9554	80.010	2.0009	87 778
40	1.5000	72.409	1.0929 1.66-1	13.313	1.0027	70.704	1.9105	82.210	2.0350	26
49	1.5035	73.451	1.0051	70.502	1.7097	79.883	1.8779	03.340	1.9907	80.958
50	1.5404	74.465	1.6375	77.618	1.7370	80.946	1.8396	84.444	1.9462	88.098
51	1.5175	75.449	1.6102	78.620	1.7046	81.974	1.8016	85.503	1.9022	89.196
52	1.4949	76.402	1.5831	79.590	1.6726	82.966	1.7643	86.524	1.8588	90.253
53	1.4725	77.325	1.5563	80.527	1.6410	83.021	1.7273	87.505	1.8160	01.267
54	1.4504	78.218	1.5299	81.429	1.6098	84.839	1.6909	88.444	1.7737	92.236
	T 4085	70.070	T 5020	80.006	TETOT	8	* 6==0	80.240	T 7220	02 760
55	1.4205	79.079	1.3039	82.290	1.5/91	05./10	1.0550	09.342	1.7320	93.100
50	1.4070	79.910	1.4782	83.128	1.5400	80.558	1.0190	90.197	1.0911	94.039
57	1.3859	80.709	1.4530	83.924	1.5190	87.358	1.5848	91.008	1.0509	94.809
58	1.3051	81.475	1.4282	84.683	1.4898	88.116	1.5500	91.773	1.0114	95.650
59	1.3447	82.209	1.4039	85.406	1.4611	88.834	1.5171	92.493	1.5726	96.382
60	1.3247	82.010	1.3800	86.001	1.4330	80.510	1.4843	03.167	1.5347	97.062
61	1.3051	83.578	1.3567	86.738	1.4055	00.142	1.4523	03.702	1.4076	07.688
62	T 2860	84.212	T. 2220	87.247	1.2787	00 720	T 4210	04.368	1.4614	08.261
60	1.2000	84 812	1.3339	87.017	1.3707	90.730	1.4210	04.802	1 4260	08 778
03	1.2074	87.013	1.3117	88	1.3323	91.274	1.3904	94.093	1.4200	90.770
04	1.2492	05.300	1.2901	00.447	1.3270	91.774	1.3000	95.308	1.3913	99.230
65	1.2316	85.913	1.2690	88.938	1.3022	92.228	1.3316	95.792	1.3580	99.639
66	1.2145	86.413	1.2486	89.390	1.2781	92.636	1.3035	96.162	1.3255	99.980
67	1.1979	86.879	1.2288	89.802	1.2548	92.997	1.2762	96.478	1.2940	100.261
68	1.1810	87.311	1.2007	00.175	1.2322	03.312	1.2400	96.741	1.2635	100.479
69	1.1664	87.710	1.1913	90.508	1.2104	93.580	1.2244	96.949	1.2340	100.634
70	1 1516	88 076	1 1726	00 801	T 1805	02 802	T 1000	07 102	1.2056	100.725
70	1.1310	88 470	1.1,50	01.055	1.1093	93.002	1.1999	07 100	T 1782	100.750
71	1.13/3	88.410	1.1300	91.055	1.1094	93.970	1.1704	97.199	1.1703	100.750
72	1.1237	88.712	1.1403	91.271	1.1502	94.104	1.1539	97.241	1.1521	100.700
73	1.1107	88.982	1.1248	91.448	1.1318	94.187	1.1324	97.227	1.12/1	100.002
74	1.0984	89.221	1.1101	91.588	1.1144	94.224	1.1119	97.158	1.1033	100.428
75 .	1.0867	89.431	1.0961	91.692	1.0979	94.215	1.0925	97.034	1.0807	100.187
76	1.0757	89.613	1.0829	91.760	1.0823	94.162	1.0743	96.856	1.0594	99. 880
77	1.0654	80.767	1.0706	91.794	1.0677	04.068	1.0571	96.625	1.0394	99.507
78	1.0558	80.804	1.0501	01.705	1.0541	03.033	1.0411	06.343	1.0207	00.070
79	1.0469	89.997	1.0485	91.765	1.0415	93.758	1.0262	96.012	1.0033	98.571
80	1 0288	00.076	1 0288	01 705	T 0200	02 545	1.0126	05 622	0.08720	08.077
00	1.0300	90.070	1.0300	91.703	1,0299	93.343	1.0120	95.033	0.90729	07 204
81	1.0314	90.134	1.0299	91.018	1.0194	93.298	1.0002	95.209	0.97271	97.394
82 .	1.0248	90.171	1.0219	91.505	1.0099	93.019	0.98899	94.744	0.95950	90.722
83	1.0189	90.191	1.0149	91.370	1.0015	92.711	0.97907	94.240	0.94792	90.000
84	1.0138	90.194	1.0088	91.214	0.99422	92.374	0.97043	93.702	0.93775	95.233
85	1.0005	90.184	1.0036	91.039	0.98802	92.015	0.96309	93.133	0.92911	94.426
86	1.0060	00.161	0.00020	00.850	0.08203	01.636	0.95706	92.539	0.92201	93.584
87	1.0032	00.120	0.00506	00.640	0.07806	01.241	0.05236	01.023	0.01646	02.713
88	1.0012	00.000	0.00257	00.428	0.07612	00.824	0.04800	01.201	0.01248	91.821
80	1.0000	90.090	0.00214	90.220	0.97442	90.419	0.94697	90.648	0.91009	90.914
							0.01600	00.000	0.00030	00.000
90	0.99957	90.000	0.99100	90.000	0.97385	90.000	0.94030	90.000	0.90930	90.000

Examples. $\sinh (1.6 / \underline{60^{\circ}}) = 1.3247 / \underline{82^{\circ}.910} = 1.3247 / \underline{82^{\circ}.54'.36''}.$ $\sinh^{-1} (1.1999 / \underline{97^{\circ}.102}) = 1.9 / \underline{70^{\circ}}.$

[5]

	2	2.1	:	2.2	:	2.3		2.4		2.5
0	*	•		· •		•		•		0
45	2.3190	85.558	2.4745	89.205	2.6404	92.946	2.8177	96.769	3.0079	100.661
46	2.2658	86.905	2.4135	90.613	2.5707	94.419	2.7386	98.312	2.9185	102.278
47	2.2131	88.213	2.3530	91.981	2.5017	95.851	2.6603	99.813	2.8301	103.852
48	2.1608	89.482	2.2030	93.307	2.4334	97.241	2.5829	101.271	2.7420	105.383
49	2.1000	00.711	2.2337	94.592	2.3650	08.588	2.5065	102.685	2.6568	106.860
.,	2			51.05	0 0)	2 0		Ū	•	
50	2.0577	91.898	2.1750	95. ⁸ 34	2.2992	99.890	2.4311	104.053	2.5720	108.309
51	2.0071	93.042	2.1171	97.031	2.2334	101.146	2.3568	105.375	2.4885	109.701
52	1.9571	94.142	2.0600	98.18I	2.1685	102.354	2.2836	106.648	2.4064	111.044
53	1.9078	95.197	2.0037	99.284	2.1046	103.514	2.2117	107.871	2.3257	112.337
54	1.8592	96.205	1.9483	100.338	2.0418	104.623	2.1410	109.042	2.2465	113.578
	- 9		- 9 9			707 690		6-	69 -	6-
55	1.0114	97.105	1.0930	101.342	1.9801	105.080	2.0714	110.100	2.1087	114.705
50	1.7044	98.070	1.8402	102.294	1.9195	100.083	2.0032	111.223	2.0925	115.890
57	1.7182	98.935	1.7870	103.193	1.8000	107.029	1.9304	112.228	2.0178	110.970
58	1.0729	99.742	1.7300	104.035	1.8010	108.518	1.8700	113.174	1.9447	117.984
59	1.0284	100.494	1.6854	104.820	1.7445	109.347	1.8008	114.059	1.8733	118.936
60	T 5840	TOT TOT	T 6250	TOF 546	7 6886	110 114	T 744T	114 880	T 8025	TTO 822
61	1.3049	101.191	1.0339 1.875	105.540	1.0000	110.114	T 6820	114.000	1.0033	120 642
62	1.5424	101.030	1.50/5	100.210	1.0340	110.010	T.6229	115.034	± 6688	120.042
62	1.5000	102.410	1.5402	100.311	1.5007	111.451	1.0232	110.319	1.0000	121.391
63	1.4003	102.929	1.4941	107.345	1.5207	112.010	1.5049	110.931	1.0040	122.007
04	1.4200	103.380	1.4492	107.011	1.4700	112.509	1.5001	117.407	1.5409	122.005
65	1.3824	103.777	1.4055	108.207	1.4286	112.926	1.4528	117.924	1.4794	123.182
66	1.3451	104.101	1.3630	108.520	1.3806	113.264	1.3001	118.207	1.4106	123.613
67	1.3080	104.357	1.3218	108.775	1.3341	113.510	1.3460	118.583	1.3616	123.054
68	1.2738	104.542	1.2810	108.043	1.2800	113.688	1.2063	118.777	1.3052	124.108
60	1.2300	104.655	1.2433	100.020	1.2453	113.767	1.2473	118.874	1.2506	124.341
,										
70	1.2072	104.694	1.2060	109.030	1.2031	113.752	1.1999	118.868	1.1977	124.376
7 1	1.1758	104.656	1.1701	108.944	1.1624	113.638	1.1541	118.754	1.1466	124.296
72	1.1457	104.541	1.1356	108.769	1.1232	113.422	1.1099	118.526	1.0972	124.092
73	1.1168	104.348	1.1026	108.501	1.0857	113.100	1.0675	118.177	1.0497	123.755
74	1.0893	104.074	1.0711	108.138	1.0498	112.667	1.0268	117.701	1.0040	123.277
	(0			
75	1.0032	103.719	1.0411	107.078	1.0155	112.118	0.98795	117.091	0.90019	122.048
70	1.0385	103.283	1.0120	107.119	0.98292	111.449	0.95090	110.341	0.91831	121.857
77	1.0153	102.760	0.98581	100.459	0.95214	110.059	0.91570	115.443	0.87843	120.891
78	0.99353	102.168	0.96065	105.699	0.92320	109.744	0.88261	114.390	0.84063	119.740
79	0.97332	101.491	0.93722	104.839	0.89615	108.701	0.85152	113.178	0.80503	118.392
80	0.05468	100 726	0.01557	102 870	0.87100	107 521	0 82256	111 802	0 77172	116 826
81	0.03765	00.007	0.80575	103.079	0.84808	107.331	0.02230	110.261	0.74082	115.052
82	0.93703	99 907	0.09373	102.022	0.04000	100.233	0.79309	110.201	0.74003	113.003
82	0.92229	99.000	0 86787	101.071	0.82/19	104.010	0.7/150	100.330	0./1251	113.005
8.	0.00802	98.043	0.00107	100.432	0.00053	103.207	0.74974	100.070	0.03092	110.041
04	0.89008	97.015	0.04709	99.111	0.79215	101.011	0.73051	104.043	0.00422	100.390
85	0.88652	95.933	0.83506	97.715	0.77813	99.851	0.71306	102.462	0.64461	105.723
86	0.87817	94.806	0.82613	96.254	0.76655	08.000	0.70026	100.147	0.62827	102.855
87	0.87164	03.630	0.81845	94.740	0.75747	06.071	0.68048	97.717	0.61536	99.811
88	0.86606	02.443	0.81203	03.183	0.75005	04.082	0.68171	05.107	0.60602	06.624
89	0.86414	91.226	0.80061	91.599	0.74702	92.051	0.67703	92.615	0.60036	93.338
	. 06		. 0. 0							
90	0.80321	90.000	0.80850	90.000	0.74571	90.000	0.07546	90.000	0.59847	90.000

Examples. $\sinh (2.5 / 75^{\circ} = 0.96019 / 122^{\circ}.648 = 0.96019 / 122^{\circ}.38'.53''.$ $\sinh^{-1} (0.60036 / 93^{\circ}.338) = 2.5 / 89^{\circ}.$

	2	.6	2	.7	2	.8	2	-9	3	.0
•		•		•		۰		•		•
45	3.2121	104.613	3.4318	108.614	3.6685	112.653	3.9236	116.721	4.1986	120.814
46	3.1115	106.307	3.3191	110.386	3.5426	114.506	3.7832	118.658	4.0426	122.832
47	3.0123	107.957	3.2079	112.116	3.4186	116.317	3.6453	120.551	3.8895	124.808
48	2.9144	109.564	3.0985	113.801	3.2966	118.084	3.5098	122.400	3.7394	126.741
49	2.8179	111.126	2.9908	115.442	3.1767	119.806	3.3768	124.205	3.5923	128.630
50	2.7220	112.641	2.8849	117.037	3.0590	121.483	3.2465	125.965	3.4483	130.474
51	2.6205	114.100	2.7800	118.585	2.0436	123.113	3.1180	127.679	3.3076	132.272
52	2.5378	115.528	2.6780	1 20.084	2.8306	124.604	2.0041	120.345	3.1701	134.024
53	2.4478	116.807	2.5780	121.532	2.7200	126.226	2.8721	130.063	3.0350	135.720
54	2.3595	118.214	2.4809	122.929	2.6118	127.708	2.7529	132.532	2.9051	137.386
55	2.2720	110.476	2.3850	124.274	2.5060	120.138	2.6366	134.050	2.7777	1 38.004
56	2.1882	120.684	2.2013	125.563	2.4027	130.515	2.5232	135.517	2.6536	140.553
57	2.1053	121.834	2.1006	126.707	2.3010	131.837	2.4127	136.032	2.5330	142.062
58	2.0242	122.025	2 1101	127.073	2.2036	133.103	2.3051	128.202	2.4157	142.510
50	1.0450	123.054	2.0228	120.088	2.1077	134.311	2.2004	130.508	2.3018	143.024
6.	- 96						0.0086			
600	1.8077	124.918	1.9377	130.140	2.0144	135.459	2.0980	140.047	2.1912	140.270
01	1.7923	125.810	1.0547	131.128	1.9230	130.544	1.9997	142.037	2.0839	147.574
02	1.7187	120.044	1.7739	132.047	1.8352	137.505	1.9030	143.107	1.9798	148.817
03	1.0470	127.399	1.0952	132.895	1.7493	138.519	1.8103	144.235	1.8789	150.004
64	1.5772	128.077	1.0187	133.009	1.0058	139.403	1.7198	145.239	1.7812	151.133
65	1.5094	128.674	1.5442	134.364	1.5847	140.214	1.6319	146.176	1.6865	152.204
66	1.4435	120.185	1.4719	134.978	1.5060	140.948	1.5467	147.044	1.5948	153.214
67	1.3794	129.606	1.4016	135.504	1.4295	141.599	1.4641	147.838	1.5061	154.161
68	1.3171	120.030	1.3334	135.935	1.3553	142.164	1.3840	148.555	1.4202	155.043
69	1.2568	130.151	1.2673	136.266	1.2833	142.634	1.3063	149.190	1.3370	155.858
70	1.1083	130.262	1.2031	136.480	1.2136	143.005	1.2310	140.738	1.2565	156.602
71	1.1417	130.254	1.1400	136.506	1.1460	143.267	1.1581	150.101	1.1785	157.271
72	1.0870	130.117	1.0807	136.576	1.0804	143.411	1.0874	150.541	1.1030	157.860
73	1.0341	120.841	1.0226	136.415	1.0160	143.424	1.0180	150.780	1.0208	158.363
74	0.98316	129.414	0.96631	136.101	0.95550	143.292	0.95251	150.894	0.95893	158.772
75	0.03420	128.822	0.01207	135.617	0.80606	142.006	0.88810	150.867	0.80022	150.077
76	0.88720	128.040	0.85085	134.043	0.83862	142.516	0.82587	150.680	0.82356	150.265
77	0 84227	127 070	0.80065	124 058	0.78210	141.827	0.76551	150.200	0.75887	150 210
78	0 70048	125 802	0.76157	122.025	0.72070	140.807	0.70706	140.721	0.60605	150 216
79	0.75891	124.471	0.71568	131.542	0.67847	139.686	0.65054	148.876	0.63503	158.925
80	0.72068	100 701	0.6707-	120 847	0.62024	T28 T4P	0 50507	147 701	0 17170	1-8 101
8.	0.72008	122.793	0.07215	129.847	0.02934	130.145	0.59597	14/./21	0.5/5/3	150.404
80	0.00499	120.037	0.03109	127.012	0.50252	130.217	0.54340	140.103	0.51009	157.592
02	0.05203	110.503	0.59275	125.390	0.53022	133.033	0.49294	144.109	0.40213	150.404
03	0.02190	110.010	0.55739	122.554	0.49074	130.908	0.44404	141.553	0.40789	154.709
04	0.59507	113.120	0.52530	119.252	0.45849	127.351	0.39940	138.108	0.35548	152.313
85	0.57164	109.910	0.49705	115.458	0.42399	123.066	0.35738	133.795	0.30521	148.903
86	0.55101	106.382	0.47201	111.164	0.39304	117.968	0.31946	128.168	0.25775	143.974
87	0.53621	102.571	0.45344	106.300	0.36915	112.015	0.28691	121.005	0.21433	136.701
88	0.52470	98.524	0.43012	101.104	0.35055	105.244	0.26143	112.110	0.17731	125.843
89	0.51783	94.307	0.43033	95.682	0.33893	97.809	0.24496	101.576	0.15092	110.091
90	0.51550	90.000	0.42738	90.000	0.33499	90.000	0.23925	90.000	0.14112	90.000

Examples. $\sinh (3.0 / 50^{\circ}) = 3.4483 / 130^{\circ} \cdot 474 = 3.4483 / 130^{\circ} \cdot 28' \cdot 26''$. $\sinh^{-1} (0.15092 / 110^{\circ} \cdot 091) = 3.0 / 89^{\circ} \cdot$

[7]

	0.1		0.2		0.3		0.4	ł	0.5	
۰.		•		•		•		•		•
45	1.00001	0.287	1.00013	1.148	1.00067	2.578	1.00210	4.578	1.00519	7.141
40	0.99983	0.287	0.99943	1.140	0.99910	2.577	0.99933	4.584	1.00085	7.159
47	0.99900	0.280	0.99873	1.144	0.00753	2.570	0.99055	4.504	0.99049	7.100
40	0.99948	0.205	0.99304	1.141	0.99597	2.5/1	0.99378	4.570	0.99214	7.105
49	0.99931	0.203	0.99735	1.130	0.99441	2.302	0.99101	4.500	0.90700	1.135
50	0.99914	0.282	0.99666	1.131	0.99285	2.551	0.98824	4.551	0.98347	7.137
51	0.99897	0.280	0.99597	1.123	0.99131	2.536	0.98547	4.528	0.97917	7.109
52	0.99880	0.278	0.99529	1.115	0.98977	2.519	0.98274	4.500	0.97490	7.073
53	0.99863	0.275	0.99402	1.105	0.98825	2.498	0.98003	4.407	0.97005	7.028
54	0.99840	0.272	0.99395	1.094	0.98074	2.474	0.97734	4.427	0.90044	0.973
55	0.99830	0.269	0.99329	1.081	0.98525	2.447	0.97468	4.382	0.96226	6.910
56	0.99814	0.265	0.99263	1.067	0.98377	2.417	0.97205	4.332	0.95814	6.838
57	0.99798	0.261	0.99199	1.052	0.98232	2.383	0.96945	4.276	0.95406	6.756
58	0.99782	0.257	0.99135	1.036	0.98089	2.347	0.96690	4.214	0.95005	6.666
59	0.99766	0.253	0.99073	1.018	0.97948	2.308	0.96438	4.147	0.94009	6.567
60	0.00751	0.240	0.99012	0.000	0.97810	2.267	0.96191	4.075	0.04210	6.460
61	0.09736	0.244	0.98952	0.979	0.97674	2.221	0.95948	3.998	0.93838	6.343
62	0.99721	0.238	0.98893	0.957	0.97541	2.173	0.95711	3.914	0.93465	6.217
63	0.99707	0.232	0.98835	0.934	0.97411	2.123	0.85478	3.826	0.93099	6.083
64	0.99693	0.226	0.98780	0.910	0.97285	2.070	0.95251	3.733	0.92741	5.941
65	0.00670	0.220	0.08725	0.885	0.07163	2.014	0.05031	3.635	0.02303	5.780
66	0.00666	0.214	0.98672	0.859	0.97044	1.955	0.94816	3.532	0.02054	5.631
67	0.99653	0.207	0.98621	0.832	0.96927	1.894	0.94608	3.423	0.91725	5.463
68	0.99641	0.200	0.98571	0.804	0.9 6814	1.830	0.94407	3.310	0.91407	5.288
69	0.99629	0.193	0.98523	0.775	0.96706	1.764	0.94213	3.193	0.91100	5.106
70	0.99617	0.185	0.98477	0.744	0.96601	1.696	0.94026	3.072	0.90805	4.916
71	0.99606	0.177	0.98433	0.713	0.96500	1.626	0.93846	2.946	0.90521	4.718
72	0.99596	0.169	0.98391	0.681	0.96404	1.553	0.93674	2.816	0.90248	4.513
73	0.99586	0.161	0.98350	0.648	0.96313	1.479	0.93510	2.682	0.89989	4.302
74	0.99576	0.153	0.98312	0.014	0.90227	1.402	0.93354	2.544	0.89742	4.085
75	0.99567	0.144	0.98276	0.580	0.96145	1.324	0.93207	2.403	0.89508	3.861
76	0.99559	0.135	0.98242	0.545	0.96068	1.244	0.93069	2.258	0.89288	3.631
77	0.99551	0. 126	0.98210	0.509	0. 95996	1.162	0.92938	2.111	0.89081	3.396
78	0.99544	0.117	0.98181	0.472	0.95929	1.078	0.92816	1.960	0.88889	3.155
79	0.99537	0.108	0.98154	0.435	0.95800	0.993	0.92705	1.807	0.88711	2.910
80	0.00531	0.000	0.98128	0.397	0.05808	0.008	0.02603	1.652	0.88548	2.660
81	0.99525	0.000	0.98105	0.359	0.95756	0.821	0.92509	1.494	0.88399	2.406
82	0.99520	0.080	0.98085	0.320	0.95710	0.732	0.92425	1.333	o.88266	2.149
83	0.99515	0.070	0.98067	0.281	0.95670	0.643	0.62351	1.170	0.88147	1.888
84	0.99511	0.060	0.98051	0.242	0.95635	0.552	0.92287	1.006	0.88044	1.624
85	0.00508	0.050	0.98037	0.203	0.95605	0.461	0.02233	0.841	0.87057	1.357
86	0.99506	0.040	0.98026	0.163	0.95580	0.369	0.92189	0.675	0.87886	1.087
87	0.99504	0.030	0.98018	0.123	0.95560	0.277	0.92154	0.508	0.87830	0.816
88	0.99502	0.020	0.98012	0.082	0.95545	0.185	0.92128	0.340	0.87790	0.544
89	0.99501	0.010	0.98009	0.041	0.95537	0.093	0.92112	0.171	0.87766	0.272
90	0.99500	0.000	0.98007	0.000	0.95534	0.000	0.92106	0.000	0.87758	0.000

Note.

 $\cosh(o/\delta) = 1.0/o^{\circ}$ for all values of δ .

Examples. $\cosh(0.5 / \underline{81^{\circ}}) = 0.88399 / \underline{2^{\circ}.406} = 0.88399 / \underline{2^{\circ}.24'.22''}.$ $\cosh^{-1}(0.97810 / \underline{2^{\circ}.267}) = 0.3 / \underline{60^{\circ}}.$

	0.6	5	0.7		0.8	3	0.	9	1.	0
0		0		•		0		0		0
45	1.01070	10.254	1.01082	13.800	1.03360	18.010	1.05333	22.567	T.0803T	27.487
46	1.00440	10.201	1.01136	13.060	1.02263	18.132	1.03050	22.755	1.06358	27.762
47	0.00825	10.315	1.00280	14.013	1.01164	18.231	1.02583	22.010	1.04680	28 011
18	0.00100	10.327	0.00441	14.050	1.00063	18.200	1.01202	22.050	1.04000	28.225
40	0.08575	10.326	0.08504	14.071	0.08063	18 268	0.00822	22 176	1.03000	20.233
49	0.90373	10.310	0.90394	14.071	0.90903	10.300	0.99012	23.170	1.01313	20.433
50	0.97953	10.313	0.07748	14.075	0.97864	18.405	0.98443	23.267	0.00632	28.603
51	0.97333	10.287	0.06006	14.061	0.96768	18.421	0.07064	23.332	0.07050	28.743
52	0.06716	10.248	0.06066	14.031	0.05675	18.414	0.05600	23.372	0.06270	28.854
53	0.06103	10.106	0.05232	13.082	0.04587	18.384	0.04320	23.383	0.04506	28.033
54	0.05405	10.131	0.04404 /	13.016	0.03506	18.332	0.02057	23.367	0.02028	28.081
J.		- · · · · ·			,00	00		-0.0.1		
55	0.94893	10.053	0.93582	13.831	0.92432	18.256	0.91603	23.321	0.91267	28.994
56	0.94296	9.961	0.92768	13.728	0.91367	18.156	0.90257	23.246	0.80615	28.974
57	0.93706	9.856	0.91962	13.606	0.90312	18.031	0.88922	23.140	0.87976	28.017
58	0.03125	9.738	0.01166	13.465	0.80270	17.881	0.87602	23.003	0.86350	28.823
59	0.02552	0.606	0.00382	13.306	0.88240	17.705	0.86204	22.833	0.84730	28.680
		-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					00		,
60	0.91987	9.461	0.89607	13.127	0.87222	17.505	0.85001	22.631	0.83142	28.518
61	0.91433	9.303	o.88846	12.929	0.86221	17.278	0.83727	22.394	0.81564	28.303
62	0.90889	9.131	0.88100	12.713	0.85237	17.024	0.82471	22.122	0.80008	28.047
63	0.90357	8.945	0.87369	12.476	0.84271	16.743	0.81237	21.814	0.78475	27.745
64	0.89838	8.747	0.86653	12.220	0.83324	16.435	0.80025	21.471	0.76066	27.306
	-								• •	
65	0.89332	8.536	0.85954	11.945	0.82398	16.100	0.78837	21.091	0.75484	26.999
66	0.88838	8.312	0.85272	11.652	0.81494	15.738	0.77675	20.673	0.74029	26.555
67	0.88358	8.076	0.84609	11.339	0.80613	15.349	0.76540	20.218	0.72603	26.061
68	0.87894	7.827	0 .83966	11.007	0.79757	14.931	0.75435	19.722	0.71212	25.513
69	0.87445	7.565	0.83344	10.656	0.78927	14.486	0.74362	19.188	0.69857	24.911
	0.		0	0	. 0			0.6	(0	
70	0.87012	7.292	0.82744	10.287	0.78125	14.014	0.73322	18.015	0.08539	24.254
71	0.80590	7.007	0.82100	9.900	0.77352	13.515	0.72317	18.001	0.07201	23.541
72	0.80197	0.711	0.81011	9.490	0.70010	12.990	0.71347	17.348	0.00020	22.772
73	0.85810	6.404	0.81081	9.075	0.75899	12.438	0.70410	10.050	0.64830	21.940
74	0.85454	6.086	0.80576	8.637	0.75220	11.800	0.69527	15.920	0.63692	21.001
~ ~	- 8-TTT	9		0 - 90			a 6868+		. 6	
75	0.05111	5.750	0.00097	0.103	0.74575	11.257	0.00001	15.150	0.02599	20.115
70	0.84787	5.420	0.79040	7.713	0.73905	10.030	0.07070	14.347	0.01500	19.111
77	0.04404	5.073	0.79222	7.220	0.73392	9.979	0.07121	13.502	0.00577	18.049
70	0.84201	4.710	0.78820	0.729	0.72850	9.300	0.00412	12.021	0.59052	10.929
79	0.83939	4.355	0.78459	0.217	0.72359	8.012	0.05753	11.700	0.58790	15.753
80	0 82608	2 084	0 787 27	r 601	0 71001	7 807	o Gette	10 755	0 57001	T4 50T
81	0.03090	3.904	0.70121	5.094	0.71901	7.097	0.05145	10.755	0.57991	14.521
82	0.03479	3.000	0.77014	5.159	0.71404	6.472	0.04509	8 768	0.57259	13.237
82	0.03202	3.221	0.77530	4.013	0.71103	0.413	0.04007	0.700	0.50590	11.904
84	0.03100	2.031	0.77293	4.057	0.70774	5.047	0.03041	1.133	0.50005	10.520
04	0.02957	2.430	0.77079	3.493	0.70403	4.007	0.03252	0.074	0.55407	9.105
85	0.82828	2.037	0.76808	2.022	0.70226	4.075	0.62021	5,505	0.55046	7.647
86	0.82722	1.624	0.76750	2.245	0.70022	3,272	0.62648	4.408	0.54682	6.157
87	0.82640	1.228	0.76624	1.762	0.60875	2.162	0.62425	3.286	0.54300	1.612
88	0.82581	0.820	0.76551	1.177	0.09075	T. 64	0.62282	2.262	0 54399	2 106
80	0.82546	0.410	0.70551	0.580	0.60602	0 822	0.62103	L.122	0.54072	J. 100
-9	0.01340	0.410	0.70301	0.309	0.09093	0.023	0.02192	1.133	0.340/2	1.320
90	0.82534	0.000	0.76484	0.000	0.60671	0.000	0.62161	0.000	0.54030	0.000

Examples. $\cosh(0.7 / 71^{\circ}) = 0.82166 / 9^{\circ}.900 = 0.82166 / 9^{\circ}.54'.00''.$ $\cosh^{-1}(0.69857 / 24^{\circ}.911) = 1.0 / 69^{\circ}.$

[9]

	1.	I	1.	2	I	•3	I	•4	I	-5
0		0		•		0		0		0
45	1.1157	32.686	1.1608	38.076	1.2163	43.570	1.2830	49.084	1.3616	54.550
46	1.0959	33.067	1.1376	38.582	1.1897	44.210	1.2520	49.864	1.3270	55.471
47	1.0759	33.424	1.1143	39.063	1.1630	44.827	1.2227	50.625	1.2041	56.378
48	1.0559	33.754	1.0910	39.517	1.1363	45.421	1.1926	51.365	1.2604	57.266
49	1.0359	34.056	1.0676	39.943	1.1095	45.989	1.1624	52.083	1.2267	58.134
	0				9 - 9	.6				.0 0
50	1.0150	34.320	1.0443	40.341	1.0020	40.529	1.1322	52.777	1.1931	58.982
51	0.99578	34.570	1.0200	40.700	1.0501	47.041	1.1021	53.440	1.1590	59.810
52	0.97577	34.700	0.99757	41.045	1.0294	47.525	1.0720	54.090	1.1202	00.018
53	0.95500	34.957	0.97428	41.349	1.0027	47.978	1.0421	54.708	1.0929	01.407
54	0.93509	35.100	0.95104	41.018	0.97013	40.400	1.0122	55.299	1.0598	02.175
55	0.91605	35.206	0.92788	41.850	0.94964	48.788	0.98242	55.862	1.0268	62.021
56	0.89630	35.275	0.90481	42.045	0.92325	49.141	0.95277	56.306	0.00406	63.645
57	0.87666	35.305	0.88186	42.201	0.89697	49.458	0.92327	56.000	0.06140	64.347
58	0.85716	35.293	0.85902	42.314	0.87082	49.736	0.80303	57.372	0.02012	65.025
59	0.83781	35.238	0.83633	42.383	0.84482	49.973	0.86474	57.811	0.80606	65.681
<i>c</i> .	- 0-06-				- 0-0-0			.0	00	~
00	0.81802	35.139	0.81379	42.400	0.81898	50.108	0.83573	58.214	0.80502	00.313
01	0.79901	34.992	0.79144	42.379	0.79331	50.315	0.80092	58.578	0.83332	00.919
02	0.78081	34.794	0.70929	42.299	0.70783	50.412	0.77831	58.902	0.80180	07.497
03	0.70223	34.545	0.74735	42.104	0.74250	50.457	0.74991	59.185	0.77005	08.048
04	0.74390	34.242	0.72505	41.970	0.71752	50.440	0.72173	59.421	0.73909	08.571
65	0.72584	33.881	0.70420	41.713	0.69271	50.373	0.69377	59.608	0.70899	69.064
66	0.70808	33.459	0. 68304	41.389	0. 66815	50.235	0.66605	59.742	0.67855	69.524
67	0.69063	32.974	0. 66218	40.993	0.64385	50.026	0.63858	59.817	0.64836	69.950
68	0.67352	32.423	0.64164	40.520	0 .61985	49.739	0.61136	59.828	0. 61844	70.340
69	0.65677	31.804	0. 62146	39.966	0 .59618	49.368	0.58441	59.769	0.58877	70.689
70	0.64043	31.112	0.60166	30.324	0.57283	48.005	0.55775	50.633	0.55037	70.005
71	0.62452	30.344	0.58227	38.580	0.54084	48.342	0.53137	50.410	0.53022	71.253
72	0.60007	20.408	0.56334	37.754	0.52724	47.668	0.50520	50.000	0.50134	71.458
73	0.50410	28.570	0.54480	36.812	0.50506	46.870	0.47055	58.650	0.47271	71.602
74	0.57966	27.558	0.52697	35.756	0.48335	45.937	0.45414	58.104	0.44434	71.677
~ ~	0 56570	26 458	0 50062	24 578	0 16215	44 8-6	0 42010	F7 405	0 41622	AT 670
15	0.50579	20.450	0.30903	34.370	0.40215	44.050	0.42910	57.405	0.41022	71.072
70	0.55252	23.209	0.49292	33.2/1	0.44151	43.010	0.40440	50.542	0.30030	11.3/3
78	0.53990	23.909	0.4/000	30.242	0.42149	42.100	0.30020	53.407	0.30075	71.301
70	0.52790	22.010	0.40139	28 507	0.40210	28 602	0.33030	54.200	0.33339	71.013
79	0.51075	21.151	0.44710	20.507	0.30300	30.092	0.33345	52.059	0.30030	70.501
80	0.50631	19.594	0.43349	26.616	0. 36591	36.591	0.31099	50.800	0.27951	69.774
81	0.49669	17.946	0.42083	24.567	0.34921	34.223	0.28928	48.566	0.25304	68.774
82	0.48794	16.210	0.40919	22.359	0.33362	31.569	0.26848	45.888	0.22691	67.413
83	0.48009	14.391	0.39867	19.993	0.31928	28.608	0.24877	42.681	0.20122	65.561
84	0.47320	12.495	0.38935	17.475	0.30635	25.333	0.23039	38.853	0.17608	03.018
85	0.46730	10.529	0.38120	14.813	0.29499	21.739	0.21368	34.303	0.15160	59.474
86	0.46241	8.501	0.37457	12.022	0.28538	17.838	0.19902	28.949	0.12853	54.420
87	0.45857	6.422	0.36927	9.121	0.27770	13.659	0.18684	22.746	0.10710	47.029
88	0.45581	4.304	0.36545	6.132	0.27208	9.247	0.17765	15.729	0.08871	36.050
89	0.45415	2.159	0.36314	3.081	0.26865	4.668	0.17193	8.051	0.07570	20.198
90	0.45360	0.000	0.36236	0.000	0.26750	0.000	0. 16997	0.000	0.07074	0.000

Examples. $\cosh(1.3/\underline{73^{\circ}}) = 0.50506/\underline{46^{\circ}.870} = 0.50506/\underline{46^{\circ}.52'.12''}.$ $\cosh^{-1}(0.07074/\underline{0^{\circ}}) = 1.5/\underline{90^{\circ}.}$

	1.	.6	Ι.	7	I	.8	1	•9	2	.0
0		0		•		•		0		0
45	1.4524	59.916	1.5556	65.149	1.6714	70.229	1.7999	75.152	1.9413	79.922
46	1.4149	60.974	1.5141	66.336	1.6257	71.536	1.7496	76.569	1.8861	81.437
47	1.3774	62.021	1.4727	67.516	1.5802	72.837	1.6997	77.979	1.8313	82.947
48	1.3400	63.051	1.4316	68.681	1.5350	74.125	1.6502	79.378	1.7771	84.445
49	1.3028	64.066	1.3906	69.833	1.4901	75.403	1.6012	80.768	1.7235	85.935
50	1.2657	65.065	1.3499	70.973	1.4456	76.671	1.5526	82.149	1.6706	87.417
51	1.2287	66.049	1.3095	72.100	1.4015	77.929	1.5046	83.522	1.6184	88.890
52	1.1919	67.018	1.2693	73.217	1.3579	79.179	1.4572	84.890	1.5669	90.356
53	1.1554	67.971	1.2295	74.324	1.3147	80.422	1.4104	86.252	1.5162	91.817
54	1.1191	68.909	1.1900	75.421	1.2719	81.659	1.3643	87.609	1.4664	93.275
55	1.0831	69.833	1.1509	76.508	1.2297	82.892	1.3188	88.963	1.4174	94.731
56	1.0473	70.744	1.1121	77.589	1.1879	84.122	1.2740	90.318	1.3603	96.188
57	1.0118	71.640	1.0737	78.663	1.1467	85.350	1.2200	91.674	1.3221	97.646
58	0.97653	72.522	1.0358	79.730	1.1061	86.576	1.1865	93.032	1.2758	99.108
59	0.94160	73.392	0.99826	80.795	1.0661	87.808	1.1439	94.398	1.2305	100.577
60	0.90699	74.249	0.96117	81.859	1.0266	89.045	1.1020	95.773	1.1861	102.057
61	0.87268	75.094	0.92451	82.919	0.98772	90.287	1.0600	97.158	1.1427	103.548
62	0.83871	75.926	0.88831	83.982	0.94946	91.540	1.0207	98.559	1.1003	105.054
63	0.80508	76.748	0.85256	85.048	0.91182	92.807	0.98119	99.978	1.0589	106.580
64	0.77177	77:561	0.81727	86.121	0.87480	94.092	0.94254	101.420	1.0186	108.129
65	0.73879	78.365	0.78245	87.204	0.83842	95.400	0.90472	102.891	0.97928	109.707
66	0.70615	79.16 1	0.74810	88.300	0.80268	96.734	o.86773	104.394	0.94100	111.318
67	0.67383	79.95I	0.71420	89.415	0.76759	98.101	0.86160	105.937	0.90378	112.968
68	0.64184	80.736	0.68078	90.551	0.73314	99.508	0.79631	107.527	0.86764	114.663
69	0.6101 9	81.519	0.64782	91.717	0.69935	100.962	0.76190	109.170	0.83259	116.410
70	0.57887	82.300	0.61533	92.917	0.66624	102.473	0.72838	110.875	0.79865	118.215
71	0.54786	83.084	0.58331	94.161	0.63379	104.050	0.69576	112.653	0.76583	120.087
72	0.51715	83.872	0.55175	95.458	0.60202	105.706	0. 66406	114.514	0.73414	122.035
73	0.48674	84.668	0.52065	9 6.819	0.57095	107.453	0.63329	116.471	0.70361	124.068
74	0.45663	85.477	0.49003	98.258	0.54061	109.308	0.60349	118.537	0.67428	126.197
75	0.42680	86.304	0.45988	99.793	0.51100	111.291	0.57470	120.726	o. 64618	128.432
76	0.39724	87.156	0.43021	101.445	0.48217	113.423	0.54696	123.058	0 .61934	130.785
77	0.36794	88.041	0.40104	103.241	0.45415	115.732	0.52030	125.550	0.59381	133.267
78	0.33888	88.972	0.37238	105.215	0.42701	118.248	0.49480	128.224	0.56965	135.890
79	0.31006	89.963	0.34428	107.409	0.40082	121.008	0.47055	131.100	0.54691	138.664
80	0.28146	91.036	0.31679	109.880	0.37567	124.055	0.44764	134.201	0.52568	141.601
81	0.25309	92.221	0.28997	112.701	0.35167	127.438	0.42617	137.553	0.50603	144.713
82	0.22494	93.561	0.26395	115.971	0.32897	131.210	0.40626	141.172	0.48805	148.003
83	0.19700	95.128	0.23887	119.816	0.30779	135.433	0.38806	145.082	0.47184	151.474
84	0.16926	97.033	0.21497	124.413	0.28838	140.167	0.37174	149.292	0.45750	155.127
85	0.14177	99.473	0. 19261	129.984	0.27102	145.463	0.35749	153.806	0.44514	158.954
86	0.11467	102.829	0.17231	136.806	0.25603	151.356	0.34550	158.614	0.43486	162.943
87	0.08809	107.920	0.15476	145.176	0.24378	157.847	0.33593	163.691	0.42674	167.072
88	0.06261	116.850	0.14093	155.306	0.23469	164.877	0.32895	168.991	0.42088	171.315
89	0.04025	136.057	0.13195	167.116	0.22911	172.324	0.32472	174.453	0.41734	175.637
00	0.02020	180.000	0.12884	180.000	0.22720	180.000	0.32320	180.000	0.41615	180.000

Examples. $\cosh (2.0 / 90^{\circ}) = 0.41615 / 180^{\circ}.$ $\cosh^{-1} (0.54691 / 138^{\circ}.664) = 2.0 / 79^{\circ}.$

	2.	.1	2.	.2	2	•3	2	•4	3	2.5
0		•		•		0		•		0
45	2.0058	84.551	2.2636	89.050	2.4449	93.438	2.6403	97.730	2.8502	101.044
46	2.0350	86.159	2.1966	90.740	2.3711	95.202	2.5589	99.564	2.7603	103.842
47	1.0740	87.755	2.1306	92.417	2.2984	96.952	2.4788	101.380	2.6720	105.720
48	1.0155	80.341	2.0655	04.081	2.2260	98.687	2.4001	103.170	2.5853	107.578
40	1.8560	00.017	2.0013	95.734	2.1567	100.408	2.3220	104.062	2.5004	100.417
72	5 5						• •	. ,		
50	1.7992	92.484	1.9382	97.376	2.0877	102.116	2.2473	106.729	2.4173	111.238
51	1.7424	94.043	1.8763	99.009	2.0200	103.812	2.1732	108.482	2.3361	113.041
52	1.6865	95.594	1.8155	100.633	1.9537	105.498	2.1008	110.220	2.2568	114.826
53	1.6316	97.140	1.7559	102.249	1.8889	107.173	2.0301	111.944	2.1795	116.593
54	1.5777	98.681	1.6976	103.858	1.8255	108.838	1.9612	113.656	2.1042	118.344
	T 5240	100.220	1.6406	105.462	1.7637	110.405	1.8040	115.256	2 0210	120.070
33	1.5249	101.758	T = 848	107.062	1.7037	112 145	т 8286	117 045	1.0500	120.079
50	1.4732	102.206	1.5040	108 662	T 6447	112 780	1 7651	118 724	1.9399	121.799
5/	1.4220	103.290	1.5303	110.261	1 -876	115.709	1.7031	110.724	1.0909	123.304
50	1.3/31	104.030	1.4//2	110.201	1.5070	113.430	1.7035	120.394	1.0241	125.195
59	1.3240	100.302	1.4250	111.002	1.5322	117.009	1.0430	122.057	1.7594	120.074
6 0	1.2776	107.936	1.3754	113.467	1.4784	118.708	1.5859	123.715	1.6969	128.541
61	1.2317	109.501	1.3266	115.079	1.4262	120.347	1.5299	125.369	1.6366	130.198
62	1.1870	111.079	1.2792	116.700	1.3758	121.991	1.4758	127.020	1.5785	131.846
63	1.1435	112.673	1.2332	118.333	1.3270	123.641	1.4237	128.671	1.5226	133.486
64	1.1012	114.288	1.1887	119.982	1.2799	125.300	1.3736	130.322	1.4689	135.120
6-	1.0602	115 028	T T457	121 650	T 2245	126 020	T 2254	121 077	T 4172	726 740
66	1.0002	117.507	1 1042	122.220	1.1008	128.654	1 2701	131.977	1.4173	130.749
67	1.0204	11/.59/	1.1042	125.339	1.1900	120.034	1.2/91	133.030	1.3079	130.3/4
60	0.98193	119.299	1.0042	125.055	1.1400	130.333	1.234/	135.300	1.3207	139.998
08	0.94474	121.041	1.0250	120.001	1.1000	132.077	1.1923	130.905	1.2750	141.022
09	0.90880	122.027	0.90000	120.501	1.0700	133.023	1.1510	138.070	1.2327	143.247
70	0.87429	124.662	0.95308	130.400	1.0332	135.595	1.1132	140.382	1.1919	144.876
71	0.84105	126.554	0.91908	132.263	0.99804	137.397	1.0765	142.106	1.1532	146.511
72	0.80915	128.500	0.88663	134.174	0.96464	139.233	1.0417	143.850	1.1166	148.153
7.3	0.77861	130.533	0.85573	136.137	0.93297	141.106	1.0088	145.616	1.0821	140.803
74	0.74945	132.634	0.82638	138.158	0.90303	143.019	0.97785	147.407	1.0497	151.464
7-	0 72171	T 24 8T8	0 20862	140 242	0.87481	144 076	0.04877	140 225	1.0102	752 727
75	0.60541	127 004	0.77246	142.202	0.84822	146.080	0.02156	151 071	0.00002	154 822
77	0.67060	120 468	0.74780	144 615	0.82360	140.022	0.80622	152 048	0.06450	156 524
78	0.64723	139.400	0.72407	146.011	0.80062	151 126	0.87276	154.857	0.90439	150.524
70	0.62558	141.940	0.70272	140.285	0.77040	152.201	0.85117	154.037	0.01702	150.241
79	0.02550	144.334	0.70372	149.205	0.77940	*33.291	0.03117	130.790	0.91793	159.974
80	0.60544	147.237	0.68416	151.738	0.75996	155.499	0.83145	158.771	0.89757	161.723
81	0.58697	150.058	0.66632	154.271	0.74231	157.760	0.81361	160.778	0.87918	163.490
82	0.57021	152.997	0.65024	156.88 3	0.72646	160.074	0.79764	162.817	0.86276	165.274
83	0.55523	156.054	0.63595	159.572	0.71244	162.438	0.78354	164.888	0.84829	167.074
84	0.54209	159.225	0.62349	162.334	0.70025	164.848	0.77131	166.987	0.83575	168.889
85	0.53085	162.503	0.61287	165.164	0.68000	167.301	0.76005	160.112	0.82518	170.717
86	0.52156	165.876	0.60413	168.054	0.68141	160.703	0.75247	171.260	0.81650	172.558
87	0.51428	160.320	0.50731	170.004	0.67470	172.316	0.74587	173.427	0.80070	174.400
88	0.50005	172.840	0.50242	173.073	0.67006	174.863	0.74116	175.610	0.80400	176.260
89	0.50590	176.413	0.58948	176.980	0.66722	177.427	0.73834	177.803	0.80207	178.134
90	0.50485	180.000	0.58850	180.000	0.66628	180.000	0.73740	180.000	0.80114	180.000

Examples. $\cosh(2.2 / 45^{\circ}) = 2.2636 / 89^{\circ}.050 = 2.2636 / 89^{\circ}.03'.00''.$ $\cosh^{-1}(1.0821 / 149^{\circ}.803) = 2.5 / 73^{\circ}.$

	2.	6	2.	7	2.	.8	2.	.9	• 3	.0
0		0		0		0			Ŭ	•
45	3.0753	106.003	3.3163	110.100	3.5741	114.248	3.8407	118.275	4 1442	122 282
46	2.0758	108.051	3.2062	112.207	3.4523	116.322	3.7146	120 406	2 0045	122.202
47	2 8782	100.087	3.0084	114.100	3.3320	118 268	2 5826	120.400	3.9943	124.409
48	2 7827	111.001	2 00 28	116 166	2 2162	120 287	3.3020	122.500	3.0403	120.023
40	2.7027	111.901	2.9920	118 108	3.1022	120.307	3.4330	124.575	3.7057	128.743
49	2.0091	113./93	2.0090	110.100	3.1023	122.370	3.3270	120.014	3.5007	130.828
50	2.5077	115.663	2.7880	120.025	2.0013	124.340	2 2052	1 28 621	2 4275	120 870
51	2 5085	117.512	2.6008	121.017	2.8822	126.272	2 0861	120.021	3.4313	132.079
5-	2 4 2 16	110 240	2 5052	122 784	2 7 7 80	128 177	3.0702	130.393	3.3001	134.094
52	2.2260	119.340	2.3932	125.704	2 6750	120.177	2.9703	132.530	3.1720	130.873
55	2.3309	121.147	2.3023	123.020	2.0759	130.052	2.0300	134.444	3.0490	138.815
54	2.2545	122.931	2.4120	12/.442	2.5709	131.090	2.7492	130,320	2.9294	140.720
55	2.1745	124.605	2.3245	120.233	2.4800	133.715	2.6430	128.162	2 8127	T42 587
55	2.0070	126.449	2.2307	131.000	2.3880	135.502	2 5421	120.060	2.0137	142.507
50	2 0 2 1 0	128.165	2.1577	122.742	2.2082	127 250	2 4420	139.909	2.7020	144.415
51	1.0402	120.872	2.0785	124 460	2 2118	128 087	2.4439	141./42	2.5943	140.203
50	1.9492	129.072	2.0703	134.400	2 1 2 8 4	130.907	2.3492	143.479	2.4905	147.951
59	1.8790	131.500	2.0021	130.154	2.1204	140.005	2.2500	145.180	2.3907	149.059
60	1.8113	133.231	1.0284	137.824	2.0481	142.354	2.1703	146 846	2 2040	TET 225
61	1.7460	134.885	1.8575	130.471	1.0700	143.003	2.0861	148 476	2.2020	151.525
62	T 6822	126 522	T. 7804	141.005	T.8068	145 601	2 0052	150 071	2.2030	152.949
62	1.0032	128 146	1.7094	142.606	1.8250	143.001	1.0055	150.071	2.1140	154.530
64	1.0229	130.140	1.6615	142.090	1.0239	14/11/9	1.9200	151.027	2.0304	150.007
04	1.5050	139.754	1.0015	144.270	1.7500	140.720	1.0541	153.140	1.9498	157.559
65	1.5096	141.349	1.6016	145.834	1.6931	150.247	1.7835	154.628	1.8720	150.005
66	1.4566	142.932	1.5445	147.371	1.6311	151.737	1.7162	156.071	1.7007	160.406
67	1.4060	144.504	1.4900	148.887	1.5721	153.198	1.6522	157.477	1.7301	161.750
68	1.3578	146.066	1.4382	1 50.384	1.5161	154.628	1.5914	158.844	1.6640	163.064
60	1.3120	147.620	1.3880	151.863	1.4620	156.030	1.5338	160.172	1.6013	164.321
-	Ū.		• •	• •			000			
70	1.2685	149.164	1.3422	153.322	1.4126	157.404	1.4793	161.460	1.5420	165.528
71	1.2273	150.705	1.2981	154.764	1.3650	158.749	1.4278	162.709	1.4861	166.685
72	1.1885	152.239	1.2565	156.189	1.3202	160.066	1.3793	163.919	1.4335	167.702
73	1.1519	153.770	1.2174	157.599	1.2782	161.355	1.3338	165.000	1.3840	168.848
74	1.1176	155.298	1.1807	158.994	1.2388	162.617	1.2912	166.222	1.3377	160.853
• •					-		-		0011	> 50
75	1.0855	156.825	1.1465	160.374	1.2020	163.853	1.2514	167.315	1.2946	170.806
76	1.0556	158.351	1.1147	161.742	1.1677	165.063	1.2144	168.370	1.2545	171.708
77	1.0278	159.878	1.0852	163.096	1.1360	166.248	1.1802	169.387	1.2174	172.560
78	1.0022	161.406	1.0580	164.44 0	1.1069	167.409	1.1486	170.368	1.1832	173.362
79	0.97880	162.937	1.0331	165.773	1.0803	168.547	1.1200	171.313	1.1510	174.116
									0 /	
80	0.95745	164.471	1.0105	107.090	1.0561	109.664	1.0938	172.225	1.1235	174.823
81	0.93821	166.008	0.99006	168.411	1.0342	170.760	1.0702	173.104	1.0979	175.485
82	0.92106	167.549	0.97189	169.718	1.0147	171.837	1.0492	173.953	1.0751	176.104
83	0.90596	169.094	0.95592	171.018	0.99765	172.897	1.0307	174.774	1.0550	176.685
84	0.89290	170.643	0.94211	172.312	0.98287	173.942	1.0148	175.571	1.0377	177.229
0-		100 106	0.02017	172 601	0.07047	154 052	7.007/	and day		
05	0.00107	1/2.190	0.93045	173.001	0.97041	1/4.9/3	1.0014	170.344	1.0231	177.742
80	0.07280	173.752	0.92093	1/4.000	0.90025	175.993	0.99042	177.099	1.0112	178.228
87	0.80587	175.311	0.91354	1/0.108	0.95235	177.003	0.98190	177.838	1.0019	178.091
88	0.80089	170.873	0.90827	177.447	0.94071	178.000	0.97582	178.500	0.99528	179.137
89	0.85789	178.430	0.90512	170.724	0.94334	179.004	0.97217	179.285	0.99130	179.571
00	0.85680	180.000	0.90407	180.000	0.94222	180.000	0.97096	180.000	0.08000	180.000

Examples. $\cosh (2.8 / \underline{85^{\circ}}) = 0.97041 / \underline{174^{\circ}.973} = 0.97041 / \underline{174^{\circ}.58'.23''}.$ $\cosh^{-1} (1.5420 / \underline{165^{\circ}.528}) = 3.0 / \underline{70^{\circ}}.$

TABLE III. HYPERBOLIC TANGENTS. $\tanh(\rho/\delta) = r/\gamma$

						5				
	о.	I	0	.2	0	•3	0	•4	о.	5
•		0		0		° •				0
45	0 10000	44.812	0 10007	11.225	0.20081	13.282	0.30021	41.054	0.40757	10.250
45	0.10001	45.812	0.20006	15.236	0.30012	44.281	0.30005	42.045	0.40002	41.220
40	0.10001	45.012	0.20000	45.230	0.30012	45 280	0.39993	42.943	0.49902	42 210
4/	0.10002	40.012	0.20013	40.237	0.30043	45.200	0.40009	43.94*	0.30047	42.219
40	0.10003	47.012	0.20024	47.239	0.30075	40.203	0.40143	44.942	0.50192	43.213
49	0.10004	40.013	0.20034	40.242	0.30107	47.290	0.40217	45.947	0.50340	44.213
50	0.10006	40.813	0.20043	40.245	0.30138	48.207	0.40203	46.055	0.50400	45.220
50	0.10007	50 812	0 20053	50.251	0.30160	40.306	0.40370	47.060	0.50630	46.222
51	0.10007	50.013	0.20053	51.251	0.30109	49.300	0.40370	48 086	0.50780	40.200
54	0.10000	51.014	0.20002	51.230	0.30201	50.313	0.40527	40.900	0.50709	47.232
53	0.10000	52.010	0.20071	52.202	0.30232	51.320	0.40521	50.005	0.50939	40.270
54	0.10010	53.010	0.20081	53.200	0.30203	52.344	0.40590	51.031	0.51009	49.308
55	0.10011	54.820	0.20000	54.276	0.30204	53.362	0.40671	52.058	0.51230	50.344
=6	0.10012	55.823	0.20000	55.285	0.30325	54.382	0.40746	53.080	0.51380	51.388
50	0.10014	56 825	0.20107	56.205	0 20255	55.404	0.40820	54.124	0.51538	52.420
51	0.10014	57 828	0.20115	57 206	0.30335	56 426	0.40802	55 164	0 51687	52 404
50	0.10013	57.020	0.20115	57.300	0.30303	50.420	0.40092	55.104	0.51007	53.494
59	0.10010	50.030	0.20124	50.310	0330414	57.454	0.40904	50.207	0.51035	54.550
60	0.10017	50.833	0.20132	50.332	0.30444	58.470	0.41037	57.255	0.51083	55.625
61	0 10018	60.827	0.20140	60.245	0.30473	50.510	0.41107	58.305	0.52128	56.700
62	0.10010	61 841	0.20148	61 260	0 20501	60.542	0.41176	50.350	0.52271	57.781
62	0.10019	62.845	0.20156	62 275	0.30528	61 575	0.41244	59.339	0.52412	= 8 867
63	0.10020	62.849	0.20150	62.375	0.30520	62.610	0.41244	61.470	0.52412	50.007
04	0.10020	03.049	0.20104	03.391	0.30333	02.010	0.41311	01.479	0.32332	39.939
65	0.10021	64.853	0.20171	64.408	0.30580	63.647	0.41376	62.544	0.52680	61.058
66	0.10022	65.857	0.20170	65.425	0.30605	64.686	0.41441	63.612	0.52824	62.164
67	0 10022	66.862	0.20186	66.442	0.30630	65.727	0.41504	64.685	0.52057	63.276
68	0.10023	67 866	0.20100	67 461	0.30030	66 760	0.41565	65 760	0.52937	64 201
60	0.10024	68 8	0.20193	68 480	0.30053	67.810	0.41503	66 807	0.53003	67 71
09	0.10025	00.071	0.20199	00.400	0.30070	07.013	0.41023	00.037	0.33209	03.511
70	0.10026	60.877	0.20206	60.501	0.30701	68.850	0.41680	67.018	0.53330	66.638
71	0.10026	70.882	0.20212	70.522	0.30722	60.006	0.41735	60.002	0.53446	67.771
72	0.10027	71 888	0 20217	71 544	0.30742	70.055	0.41788	70.080	0.53560	68.000
72	0.10027	72 802	0.20222	72 = 66	0.30762	72 005	0.41828	71 170	0.52660	70.052
13	0.10020	72.808	0.20223	72.500	0.30781	72.056	0.41886	72 272	0.53009	71.200
74	0.10020	73.090	0.20220	13.309	0.30701	73.030	0.41000	12.212	0.33773	/1.200
75	0.10020	74.004	0.20234	74.612	0.30700	74.108	0.41032	73.368	0.53872	72.351
76	0.10020	75.010	0.20230	75.635	0.30816	75.162	0.41075	74.466	0.53065	73.507
77	0.10030	76.016	0.20243	76.650	0.30831	76.217	0.42016	75.566	0.54054	74.667
78	0.10030	77.022	0.20246	77.684	0.30846	77.273	0.42054	76.668	0.54138	75.831
70	0.10021	78.028	0.20250	78 700	0.20860	78.220	0.42088	77.771	0.54215	76.000
19	0.10031	10.920	0.20230	10.709	0.30000	10.329	0.42000	11.11-	0.34213	10.999
80	0.10031	79.934	0.20254	70.734	0.30872	79.386	0.42120	78.876	0.54285	78.170
81	0.10032	80.040	0.20257	80.750	0.30884	80.445	0.42150	70.083	0.54340	70.344
82	0.10032	81.046	0.20260	81.785	0.30804	81.506	0.42177	81.002	0.54407	80.520
82	0.10032	82.053	0.20263	82.812	0.30004	82.567	0.42201	82.203	0.54450	81.600
84	0 10022	82.060	0.20265	82.828	0.20012	82.628	0.42222	82.215	0.54503	82.88T
-		-0.900		50.000	0.90912	-0		-0-0-0		
85	0.10033	84.967	0.20267	84.864	0.30920	84.689	0.42230	84.427	0.54540	84.065
86	0.10033	85.974	0.20268	85.801	0.30026	85.751	0.42252	85.540	0.54571	85.251
87	0.10033	86.981	0.20270	86.018	0.30030	86.813	0.42264	86.654	0.54506	86.438
88	0.10032	87.088	0.20270	87.046	0.30033	87.875	0.42274	87.768	0.54616	87.626
80 .	0.10022	88.004	0.20271	88.072	0.30034	88.037	0.42270	88.882	0.54628	88.812
-9	5			50.973	0.30934	0.957				10.0-5
90	0.10033	90.000	0.20271	90.000	0.30934	90.000	0.42280	90.000	0.54631	90.000

Note.

 $\tanh(o/\delta) = o/\gamma$.

Examples. $\tanh(0.5 / \underline{60^{\circ}}) = 0.51983 / \underline{55^{\circ}.625} = 0.51983 / \underline{55^{\circ}.37'.30''}.$ $\tanh^{-1}(0.54628 / \underline{88^{\circ}.813}) = 0.5 / \underline{89^{\circ}}.$

[14]

TABLE III. HYPERBOLIC TANGENTS. tanh (ρ / δ) = r / γ . Continued

	о.	6	о.	7	0.8	3	0.0)	1.0	>
0		0		0		0		0		٥
45	0.50406	38.183	0.68732	35.786	0.77577	33.008	0.85756	30.161	0.03077	27.044
46	0.50650	30.146	0.60100	36.710	0.78117	33.080	0.86480	30.080	0.03000	27.784
47	0.50808	40.110	0.60405	37.663	0.78671	34.878	0.87220	31.815	0.04050	28.530
48	0.60140	41.000	0.60888	38.617	0.70240	35.700	0.88001	32.666	0.05038	20.308
40	0.60403	42.088	0.70287	30.581	0.70824	36.715	0.88700	22.521	0.05066	20.002
79		40.000		J9-J-1		30.7-3	0.00799	33.33-	0.90900	30.092
50	0.60660	43.085	0.70694	40.557	0.80421	37.653	0.89620	34.412	0.98032	30.892
51	0.60920	44.092	0.71107	41.545	0.81031	38.605	0.00466	35.310	0.00136	31.710
52	0.61182	45.107	0.71527	42.543	0.81655	39.573	0.01337	36.223	1.00282	32.545
53	0.61447	46.130	0.71052	43.555	0.82201	40.556	0.02231	37.155	1.01460	33.400
54	0.61713	47.162	0.72382	44.577	0.82040	41.554	0.03150	38.105	1.02607	34.274
•••								0 0		•••••
55	0.61980	48.203	0.72817	45.612	0.83601	42.568	0.94094	39.075	1.03970	35.172
56	0.62248	49.254	0.73257	46.662	0.84274	43.599	0.95063	40.066	1.05287	36.091
57	0.62517	50.315	0.73700	47.725	0. 84957	44.647	0.96056	41.078	1.06648	37.035
58	0. 62785	51.384	0.74145	48.800	0. 85649	45.712	0.97069	42.111	1.08054	38.004
59	0.63053	52.463	0.74593	49.888	0.86351	46.797	0.98106	43.167	1.09506	39.002
60	0.03322	53.552	0.75047	50.990	0.87063	47.900	0. 99168	44.247	1.11009	40.026
61	0.63588	54.650	0.75499	52.107	0.87781	49.022	1.00251	45.353	1.12555	41.082
62	0.63852	55.758	0.75950	53.238	0.88504	50.165	1.01353	46.486	1.14144	42.168
63	0.64115	56.876	0. 76400	54.383	0.89232	51.327	1.02471	47.645	1.15777	43.289
64	0.64376	58.002	0. 76848	55-542	0. 89965	52.509	1.03604	48.831	1.17454	44.445
,		0								()
05	0.04033	59.138	0.77294	50.710	0.90698	53.712	1.04753	50.044	1.19173	45.038
66	0.64886	60.284	0.77737	57.902	0.91433	54.936	1.05916	51.289	1.20935	46.869
67	0.05135	61.439	0.78177	59.105	0.92166	56.180	1.07090	52.562	1.22737	48.140
68	0.65380	62.603	0.78609	60.322	0.92894	57.448	1.08268	53.868	1.24569	49.455
69	0.65618	63.777	0.79033	61.553	0. 93616	58.737	1.09447	55.204	1.26429	50.812
	- 6-8	6		6		6		-6		
70	0.05050	04.959	0.79450	02.798	0.94332	00.047	1.10027	50.572	1.28310	52.215
71	0.00075	00.150	0.79858	04.057	0.95037	01.379	1.11803	57.974	1.30221	53.000
72	0.00294	07.350	0.80250	05.329	0.95727	02.732	1.12972	59.408	1.32140	55.104
73	0.00505	08.559	0.80041	00.014	0.90402	04.100	1.14120	00.874	1.34003	50.710
74	0.00708	09.775	0.81014	07.913	0.97000	65.501	1.15200	02.372	1.35980	58.307
	0.66000	70.008	0 81277	60.00=	0.07607	66.018	T 16270	62.002	T 27804	50.057
15	0.00002	70.998	0.013/1	09.225	0.97097	68 272	1.103/0	6 - 168	1.37094	59.957 6x 6#8
70	0.07080	72.220	0.81713	70.550	0.98311	60.352	1.17450	67.064	1.39775	62.400
11	0.07201	73.400	0.82038	71.880	0.98898	09.000	1.18493	69 604	1.41020	65.409
70	0.07425	74.711	0.82345	73.233	0.99455	71.282	1.19495	08.001	1.43412	67.067
79	0.07577	75.902	0.82032	74.591	0.99981	72.773	1.20447	70.347	1.45141	07.005
80	0 67778	77 210	0 82800	75 058	T 00472	74 282	T 2T244	72 024	T 46700	68 068
81	0.67847	78 481	0.02099	77 224	1.00473	75 805	1.21344	72.034	т 48245	20.010
80	0.07047	70.401	0.03144	77.334	1.00920	13.005	1.221/9	13.140	1.40345	72.012
82	0.07904	79.749	0.03300	70.719	1.01339	11.344	1.22940	15.403	1.49790	74.048
81	0.00000	80.0021	0.03504	81.412	1.01/10	70.090	1.23040	11.243	1.51110	74.940
04	0.00159	02.290	0.03730	01.512	1.02030	00.400	1.24253	79.025	1.52209	11.023
85	0.68236	83.575	0.83887	82.017	1.02316	82.034	T.2478T	80.825	1.53314	70.132
86	0.68200	84.856	0.81000	81.328	1.02548	82 617	1.25210	82.640	1.54170	81.260
87	0.68340	86.140	0.84105	85.742	1.02720	85 206	1.25566	84.468	T.54848	83.420
88	0.68285	87.426	0.84172	87 161	1.02/30	86.801	T 258TA	86 208	1.55320	85.600
80	0.68406	88 712	0.04173	88 580	1.02000	88 400	1.25014	88 152	+·33339	87.802
59	0.00400	00.713	0.04214	00.300	1.02937	00.400	1.23903	00.133	2.22-21	01.000
90	0.68413	90.000	0.84229	90.000	1.02960	90.000	1.26015	90.000	1.55740	90.000

Eaxmples. $\tanh(0.9/77^{\circ}) = 1.18493/67^{\circ}.064 = 1.18493/67^{\circ}.03'.50''.$ $\tanh^{-1}(0.66708/69^{\circ}.775) = 0.6/74^{\circ}.$

TABLE III. HYPERBOLIC TANGENTS. $\tanh(\rho/\delta) = r/\gamma$. Continued

	1.1	ι.	1.	2	I	-3	Ι.	4	I	-5
•	. 0	•		0	0	•		•		0
45	0.99389	23.833	1.0457	20.010	1.0857	17.404	1.1143	14.484	1.1323	11.712
40	1.0049	24.470	1.0502	21.144	1.0993	17.002	1.1204	14.775	1.1404	11.004
47	1.0104	25.131	1.0/13	22.226	T T 286	18.301	1.1433	15.004	1.1013	12.040
40	1.0203	26.480	1.0005	22.708	1.1200	10.148	1.1756	15.640	T.1026	12.200
49	1.0400	201400	1.0993	22.790		191140	1.1/30	13:040	1.1930	12.302
50	1.0539	27.178	1.1147	23.371	1.1613	19.584	1.1932	15.930	1.2112	12.510
51	1.0676	27.891	1.1307	23.957	1.1789	20.027	1.2118	16.222	1.2299	12.652
52	1.0818	28.621	1.1474	24.558	1.1976	20.479	1.2315	16.515	1.2498	12.787
53	1.0907	29.370	1.1050	25.174	1.2173	20.941	1.2524	10.811	1.2709	12.914
54	1.1122	30.139	1.1835	25.007	1.2381	21.414	1.2740	17.110	1.2933	13.035
55	1.1284	30.930	1.2030	26.460	1.2602	21.900	1.2982	17.413	1.3172	13.151
56	1.1453	31.744	1.2235	27.133	1.2836	22.401	1.3234	17.721	1.3427	13.262
57	1.1629	32.583	1.2450	27.827	1.3084	22.918	1.3502	18.036	1.3700	13.366
58	1.1813	33.449	1.2677	28.546	1.3346	23.452	1.3787	18.358	1.3992	13.466
59	1.2005	34.343	1.2916	29.292	1.3626	24.007	1.4093	18.689	1.4305	13.559
60	T 2206	25 267	1.2168	20.068	T.2022	24.584	T.442T	10.022	T 4642	12 6FT
61	1.2415	36.226	1.3434	30.876	T.4230	25.187	T.4772	10.280	1.5005	12.728
62	1.2632	37.222	1.2714	31.720	1.4576	25.820	1.5148	10.761	1.5306	12.824
63	1.2858	38.255	1.4000	32.603	T.4035	26.485	1.5553	20.150	1.5810	12 008
64	1.3004	30.328	1.4321	33.527	1.5310	27.186	1.5000	20.562	1.6277	13.001
	• • •	0,0			00 2			Ū		
05	1.3339	40.440	1.4049	34.498	1.5729	27.928	1.0403	20.999	1.0770	14.070
00	1.3593	41.012	1.4995	35.520	1.0107	28.715	1.0974	21.405	1.7319	14.100
07	1.3850	42.827	1.5359	30.597	1.0037	29.554	1.7528	21.900	1.7914	14.201
08	1.4129	44.090	1.5743	37.737	1.7140	30.452	1.8131	22.507	1.8500	14.304
09	1.4411	45.421	1.0148	38.941	1.7080	31.415	1.8788	23.090	1.9285	14.480
70	1.4702	46.806	1.6573	40.219	1.8260	32.452	1.9506	23.740	2.0078	14.612
71	1.5001	48.256	1.7020	41.575	1.8882	33.570	2.0293	24.448	2.0959	14.765
72	1.5307	49.773	1.7488	43.017	1.9551	34.782	2.1158	25.232	2.1942	14.944
73	1.5 620	51.361	.1.7977	44.553	2.0269	36.1 01	2.2111	26.106	2.3043	15.159
74	1.5938	53.022	1.8488	46.190	2.1041	37·53 9	2.3164	27.084	2.4285	15.419
75	1.6261	54.762	1.0010	47.036	2.1860	30.110	2.4332	28.186	2.5604	15.734
76	1.6585	56.581	1.0568	40.708	2.2757	40.830	2.5631	20.433	2.7303	16.120
77	1.6010	58.482	2.0134	51.786	2.3706	42.720	2.7078	20.855	2.0157	16.507
78	1.7232	60.468	2.0713	53.006	2.4716	44.708	2.8607	32.486	3.1312	17.186
79	1.7550	62.538	2.1299	56.165	2.5786	47.088	3.0509	34.367	3.3843	17.924
80	9 - 9	61.600		-0	. 6			-6 6	. 69	-0 0 -6
87	1.7050	66.002	2.1007	58.571	2.0012	49.011	3.2530	30.540	3.0845	18.850
80	1.0155	60.031	2.24/1	62.820	2.0005	52.391	3.4007	39.005	4.0459	20.044
82	1.0435	71.650	2.3040	66 600	2.9290	53.447	3.7337	42.050	4.4070	21.570
84	т.8022	74 1 21	2.3505	60.604	3.0500	62.460	4.0135	45.540	5.0305	23.500
04	1.0933	/4.121	2.4094	09.094	3.1704	02.400	4.3100	49.040	5.7311	20.270
85	1.9142	76.657	2.4555	72.836	3.2845	66.432	4.6429	54.459	6.6297	29.955
86	1.9318	79.252	2.4955	76.102	3.3884	70.706	4.9729	60.069	7.8015	35.134
87	1.9460	81.895	2.5281	79.475	3.4767	75.253	5.2871	66.523	9.3413	42.644
88	1.9564	84.575	2.5523	82.933	3.5446	80.030	5.5531	73.786	11.259	53.726
89	1.9627	87.281	2.5671	86.452	3.5875	84.971	5.7333	81.707	13.182	69.695
90	1.9 648	90.000	2.5721	90.000	3.6021	90.000	5.9978	90.000	14.101	90.000

Examples. $\tanh(1.4 / 64^{\circ}) = 1.5990 / 20^{\circ} .562 = 1.5990 / 20^{\circ} .33' .43''.$ $\tanh^{-1}(1.7550 / 62^{\circ} .538 = 1.1 / 79^{\circ}.$

	1.	6	1.	7	1.	.8	I	.9	2	.0
0		0		•		•		0		0
45	1.1413	0.201	1.1428	6.084	1.1385	5.063	1.1302	2.128	LIIOT	2.004
16	1.1548	0.267	1.1552	6.052	1.1400	4.050	1.1401	2.260	1 1275	т 867
47	1 1601	0.218	T 1686	6.002	T 1618	4.930	1.1401	3.200	1.12/5	1.007
4/	T T842	0.258	1.1000	6 8 2 4	1.1010	4.614	1.1505	3.030	1.1303	1.013
40	1.1042	9.330	1.1020	6.74	1.1/43	4.039	1.1014	2.032	1.1455	1.333
49	1.2002	9.305	1.1974	0.749	1.1070	4.400	1.1728	2.570	1.1550	1.023
50	1.2171	9.400	1.2131	6.645	1.2016	4.275	1.1848	2.295	1.1650	0.681
51	1.2351	9.400	1.2296	6.520	1.2163	4.045	1.1975	1.981	1.1754	0.306
52	1.2541	9.384	1.2472	6.373	1.2318	3.787	1.2107	1.634	1.1863	0.103
53	1.2744	0.354	1.2650	6.203	1.2483	3.400	1.2247	1.253	1.1077	0.550
54	1.2060	0.300	1.2857	6.008	1.2657	3.180	1.2304	0.835	1.2006	1.030
	,	, , ,								
55	1.3190	9.246	1.3067	5.788	1.2842	2.826	1.2549	0.379	1.2220	1.571
56	1.3435	9.166	1.3292	5.539	1.3038	2.436	1.2713	0.121	1.2350	2.149
57	1.3698	9.069	1.3532	5.261	1.3247	2.008	1.2886	0.666	1.2487	2.777
58	1.3079	8.953	1.3788	4.953	1.3460	1.540	1.3060	1.250	1.2630	3.458
50	1.4281	8.817	1.4063	4.611	1.3706	1.026	1.3263	1.005	1.2781	4.105
37										
60	1.4606	8.661	1.4358	4.232	1.3959	0.465	1.3470	2.606	1.2939	4.995
61	1.4956	8.484	1.4675	3.819	1.4230	0.145	1.3689	3.366	1.3106	5.860
62	1.5334	8.286	1.5017	3.365	1.4521	0.810	1.3922	4.191	1.3281	6.793
63	1.5743	8.065	1.5386	2.869	1.4833	1.533	1.4170	5.085	1.3466	7.802
64	1.6187	7.819	1.5785	2.326	1.5169	2.318	1.4435	6.052	1.3662	8.891
				Ŭ	• •			-		
65	1.6670	7.548	1.6218	I.734	1.5531	3.172	1.4718	7.099	1.3868	10.068
66	1.7198	7.252	1.6690	1.090	1.5523	4.098	1.5022	8.232	1.4086	11.338
67	1.7777	6.928	1.7206	0.387	1.6347	5.104	1.5347	9.459	1.4317	12.707
68	1.8413	6.575	1.7770	0.376	1.6807	6.196	1.5696	10.786	1.4562	14.184
69	1.9116	6.191	1.8389	1.209	1.7308	7.382	1.6070	12.221	1.4821	15.776
					0	0.6	- 6			
70	1.9893	5.770	1.9072	2.110	1.7854	8.071	1.0474	13.773	1.5095	17.490
71	2.0759	5.320	1.9828	3.100	1.8451	10.074	1.0908	15.454	1.5385	19.337
72	2.1728	4.840	2.0667	4.187	1.9105	11.002	1.7376	17.273	1.5093	21.320
73	2.2819	4.314	2.1603	5.371	1.9823	13.266	1.7881	19.244	1.6019	23.400
74	2.4053	3.744	2.2652	6.670	2.0613	15.084	1.8425	21.379	1.6363	25.769
75	2.5461	2 1 27	2 2821	8.101	2. 1484	17.076	1.0011	23.602	1.6725	28.245
75	2 7070	2 457	2.3034	0.685	2 2446	10 261	1 0641	26 202	1 7105	20.005
70	2.7079	2.457	2.51/2	9.003	2.2440	27 664	2.0217	28 025	1.7502	22 760
11	2.0957	1.720	2.0000	11.447	2.3510	21.004	2.0317	20.925	1.7503	26 820
70	3.1157	0.922	2.0442	13.420	2.4005	24.315	2.1040	31.001	1.7917	10.020
79	3.3700	0.034	3.0455	15.044	2.5904	27.250	2.1009	35.000	1.0344	40.093
80	3.6000	0.060	3.2700	18.175	2.7416	30.510	2.2621	38.568	. 1.8781	43.590
81	4.0755	2.087	3.5510	21.083	2.8087	34.140	2.3460	42.344	1.9222	47.319
82	4.5558	3.300	2.8718	24.466	3.0700	38.101	2.4344	46.428	1.0661	51.281
82	F 1722	4.027	1 2187	28.446	3.2510	42.722	2.5230	50.842	2.0000	55.474
84	5.0806	6 820	4.6027	22.100	2 1177	47.703	2.6104	55.500	2.0407	50.804
54	3.9090	0.039	4.0927	33.133	5-4477	41.193	2.0104	00.090		09.094
85	7.1203	9.289	5.2102	38.945	3.6459	53.448	2.6940	60.673	2.0872	64.528
86	8.7720	12.668	5.7994	45.956	3.8392	59.720	2.7701	66.075	2.1202	69.359
87	11.388	17.791	6.4356	54.527	4.0157	66.606	2.8350	71.768	2.1476	74.359
88	15.000	26.760	7.0503	64.868	4.1502	74.043	2.8849	77.700	2.1680	79.494
89	24.844	46.011	7.5193	76.896	4.2531	81.905	2.9163	83.805	2.1807	84.723
			- 6-60				0.0057		0.1810	00.000
90	34.232	90.000	7.0908	90.000	4.2803	90.000	2.9271	90.000	2.1050	90.000

Note.

Negative quantities are in heavy type.

 $\tanh^{-1}(1.4718\sqrt{7^{\circ}.099}) = 1.9/65^{\circ}.$ [17]

Examples. $\tanh (1.6 / 54^{\circ}) = 1.2960 / 9^{\circ} .300 = 1.2960 / 9^{\circ} .18' .32''.$ $\tanh (2.0 / 64^{\circ}) = 1.3662 \sqrt{8^{\circ} .891} = 1.3662 \sqrt{8^{\circ} .53' .28''}.$

TABLE III. HYPERBOLIC TANGENTS. $\tanh(\rho/\delta) = r/\gamma$. Continued

	2	2.1	2	.2	2	1.3	2.	4	2.	5
•		0		•		۰	,	0		•
45	1.1005	1.007	1.0932	0.155	1.0799	0.492	1.0072	0.901	1.0553	1.283
40	1.1134	0.740	1.0987	0.127	1.0842	0.783	1.0702	1.252	1.0573	1.504
47	1.1200	0.458	1.1044	0.430	1.0004	1.101	1.0732	1.507	1.0592	1.808
40	1.1200	0.141	1.1102	0.774	1.0927	1.440	1.0702	1.908	1.0010	2.195
49	1.1357	0.200	1.1101	1.142	1.0970	1.020	1.0790	2.277	1.0020	2.540
50	1.1437	0.586	1.1222	1.542	1.1013	2.226	1.0818	2.676	1.0640	2.929
51	1.1519	1.001	1.1284	1.978	1.1056	2.666	1.0845	3.107	1.0653	3.340
52	1.1604	1.452	1.1347	2.452	1.1099	3.144	1.0870	3.572	1.0663	3.782
53	1.1693	1.943	1.1411	2.965	1.1142	3.659	1.0894	4.073	1.0671	4.256
54	1.1784	2.476	1.1477	3.520	1.1185	4.215	1.0917	4.614	1.0676	4.766
~ ~	T 1878	2.055	T. T.C.4.4	4 7 20	T T 2 2 7	4 815	1 00 17	F 706	1 0678	F 374
55	1.1076	2 682	1.1344	4.120	1.122/	5 462	1.0937	5.190 E 822	1.0078	5.002
50	1.1970	4 267	1 1681	5 460	1.1200	6 160	1.0933	6 406	1.0077	6 524
57	T 2182	5.004	1 1751	6 2 2 6	T T 248	6 012	1.00/1	7 220	1.00/2	7 211
50	1.2202	5.888	1.1822	7.042	1.1340	7.722	1.0004	7.008	1.0647	7.028
39	112292	3.000	111022	1.04-	111300	1.1.2.2	1.0993	7.990	1.0047	1.930
6 0	1.2405	6.745	1.1894	7.921	1.1422	8.594	1.0999	8.835	1.0628	8.718
61	1.2522	7.671	1.1967	8.8 69	1.1457	9.531	1.1001	9.735	1.0603	9.556
62	1.2644	8.669	1.2041	9.88 <u>9</u>	1.1490	10.540	1.0999	10.701	1.0572	10.455
63	1.2771	9.744	1.2116	10.988	1.1520	11.625	1.0992	11.740	1.0535	11.419
64	1.2903	10.902	1.2192	12.171	1.1548	12.791	1.0980	12.855	1.0490	12.455
65	1.3030	12.151	T.2268	13.443	1.1573	14.044	1.0062	14.053	1.0438	13.567
66	1.3181	13.406	1.2344	14.810	1.1505	15.300	1.0030	15.341	1.0378	14.761
67	1.3320	14.042	1.2421	16.280	1.1613	16.836	1.0000	16.723	1.0310	16.044
68	1.2482	16.400	T.2400	17.858	1.1628	18.380	1.0909	18.208	1.0222	17.424
60	1.3642	18.172	1.2576	10.552	1.1630	20.056	1.0820	10.802	1.0145	18.006
-							-	-		-
70	1.3808	19.968	1.2654	21.370	1.1645	21.843	1.0779	21.514	1.0049	20.500
71	1.3980	21.898	1.2732	23.319	1.1047	23.759	1.0721	23.352	0.99427	22.215
72	1.4159	23.968	1.2809	25.405	1.1044	25.811	1.0055	25.324	0.98205	24.001
73	1.4344	26.185	1.2885	27.636	r.1037	28.000	1.0582	27.439	0.97006	26.048
74	1.4535	28.500	1.2901	30.020	1.1025	30.352	1.0501	29.706	0.95049	28.187
75	1.4732	31.000	1.3036	32.564	1.1608	32.858	1.0413	32.134	0.04202	30.480
76	1.4034	33.811	1.3100	35.274	1.1587	35.53I	1.0318	34.730	0.02671	32.966
77	1.5140	36.702	1.3181	38.156	1.1561	38.374	1.0218	37.505	0.01068	35.633
78	1.5348	39.778	1.3251	41.212	1.1531	41.392	1.0113	40.467	0.80405	38.501
79	1.5559	43.043	1.3318	44.446	1.1498	44.590	1.0004	43.620	0.87701	41.582
8.	60	.6	7		6 -		0	.6 .60		
87	1.5700	40.501	1.3383	47.859	1.1402	47.908	0.98931	40.908	0.85979	44.007
80	1.5974	50.151	1.3444	51.449	1.1425	51.527	0.97822	50.517	0.84204	40.427
82	1.0174	53.909	1.3500	55.212	1.1307	55.204	0.90733	54.207	0.82584	52.209
03	1.0304	50.011	1.3552	59.140	1.1349	59.171	0.95080	58.212	0.80977	50.233
04	1.0541	02.210	1.3599	03.223	1.1312	03.237	0.94710	02.344	0.79470	00.499
85	1.6700	66.570	1.3640	67.449	1.1279	67.450	0.93826	66.650	0.78120	64.994
86	1.6837	71.070	1.3674	71.800	1.1250	71.793	0.93061	71.113	0.76946	69.703
87	1.6949	75.690	1.3702	76.254	1.1225	76.245	0.92439	75.710	0.75991	74.598
88	1.7031	80.406	1.3722	80.790	1.1207	80.781	0.91979	80.413	0.75283	79.645
89	1.7081	85.187	1.3734	85.381	1.1196	85.376	0.91696	85.188	0.74849	84.796
90	1.7000	00.000	1.3738	00.000	1.1102	00.000	0.01601	00.000	0.74702	00.000
-		-	010-							-

Note.

Negative quantities are in heavy type.

Examples. $\tanh (2.1 / 48^{\circ}) = 1.1280 / 0^{\circ}.141 = 1.1280 / 0^{\circ}.08'.28''.$ $\tanh (2.1 / 49^{\circ}) = 1.1357 \sqrt{0^{\circ}.206} = 1.1357 \sqrt{0^{\circ}.12'.22''}.$ $\tanh^{-1}(1.0318\sqrt{34^{\circ}.730}) = 2.4/76^{\circ}.$

TABLE III. HYPERBOLIC TANGENTS. $\tanh(\rho/\delta) = r/\gamma$. Continued

	2.0	5	2.7	,	2.8	3	2.0)	3.0	1
0		e		•		ò		•	-	•
45	1.0445	1.480	1.0348	1.576	1.0264	1.595	1.0102	1.554	· 1.0131	1.468
46	1.0456	1.744	1.0352	1.821	1.0262	1.816	1.0185	1.748	1.0120	1.637
47	1.0465	2.030	1.0354	2.083	1.0257	2.051	1.0175	1.955	1.0107	1.815
48	1.0473	2.337	1.0353	2.365	1.0250	2.303	1.0163	2.175	1,0001	2.002
49	1.0479	2.667	1.0350	2.666	1.0240	2.572	1.0148	2.409	1.0072	2.198
50	1.0483	3.022	1.0344	2.088	1.0227	2.857	1.0120	2.656	1.0040	2.405
51	1.0483	3.403	1.0335	3.332	1.0210	3.160	1.0106	2.016	1.0023	2.622
52	1.0480	3.812	1.0323	3.700	1.0180	3.483	1.0080	3.101	0.00022	2.840
53	1.0475	4.250	1.0307	4.004	1.0164	3.826	1.0040	3.481	0.00572	3.086
54	1.0466	4.717	1.0286	4.513	1.0135	4.190	1.0013	3.788	0.99174	3.334
55	1.0452	5.210	1.0260	4.050	1.0101	4.577	0.00722	4.112	0.08722	3.503
56	1.0434	5.756	1.0230	5.437	1.0061	4.087	0.00254	4.452	0.08211	3.862
57	1.0412	6.331	1.0104	5.045	1.0015	5.422	0.08724	4.810	0.07637	4.141
58	1.0285	6.047	1.0152	6.487	0.00625	5.884	0.081.26	5.186	0.06005	4.432
50	1.0351	7.606	1.0104	7.066	0.00027	6.374	0.07454	5.582	0.06270	4.735
39	110331	,		,	0.99027	0.374	0.97434	3.302	0190279	4.133
60	1.0311	8.313	1.0048	7.084	0.98353	0.895	0.90701	5.999	0.95481	5.049
61	1.0205	9.009	0.99847	8.343	0.97597	7.449	0.95862	0.439	0.94597	5.375
62	1.0211	9.879	0.99129	9.048	0.90751	8.030	0.94930	6.904	0.93619	5.713
03	1.0149	10.747	0.98322	9.801	0.95807	8.000	0.93897	7.392	0.92540	0.003
04	1.0079	11.077	0.97420	10.007	0.94700	9.325	0.92750	7.907	0.91352	0.420
65	0.99990	12.675	0.96414	11.470	0.93603	10.033	0.91500	8.452	0.90047	6.801
66	0.99099	13.747	0.95300	12.393	0.92328	10.78 9	0.90121	9.027	0.88618	7.192
67	0. 98106	14.898	0.94070	13.383	0.90927	11.599	0.88612	9.639	0.87055	7.598
68	0.97006	16.136	0.92720	14.449	0 .89396	12.464	o .86964	10.289	0.85350	8.021
69	0.95794	17.469	0.91243	15.597	0.87726	13.396	0.85169	10.982	0.83495	8.463
70	0.94467	18.902	0.89635	16.833	0.85912	14.399	0.83221	11.722	0.81482	8.926
71	0.93022	20.451	0.87893	18.168	0.83950	15.482	0.81113	12.518	0.79302	9.414
72	0.91458	22.122	0.86013	19.613	0.81834	16.655	0.78839	13.378	0. 76946	9.932
73	0.89775	23.929	0.83994	21.184	0. 79562	17.931	0.76394	14.310	0.74408	10.485
74	0.87976	25.884	0.81839	22.893	0.77134	19.325	0.73774	15.328	0.71683	11.081
75	o.86066	28.003	0.79552	24.757	0.74551	20.857	0.70977	16.448	o.68765	11.729
76	0.84053	30.302	0.77140	26.799	0.71815	22.547	0.68005	17.690	0.65650	12.443
77	0.81949	32.799	0.74612	29.038	o .68938	24:421	0.64861	19.078	0 .62338	13.241
78	0.79769	35-513	0.71985	31.505	0.65930	26.512	0.61551	20.647	0. 58829	14.146
79	0.77535	38.466	0.69278	34.23I	0.62807	28.861	0.58087	22.437	0.55129	15.191
80	0.75271	41.678	0.66520	37.249	0.59596	31.519	0.54486	24.504	0.51245	16.419
81	0.73010	45.171	0.63743	40.599	0.56326	34.543	0.50773	26.921	0.47100	17.893
82	0.70790	48.966	0.60990	44.322	0.53039	38.004	0.46981	29.784	0.42986	19.700
83	0.68652	53.078	0.58311	48.464	0.49791	41.989	0.43156	33.221	0.38661	21.976
84	0.66645	57-517	0.55765	53.060	0.46648	46.591	0.39363	37.403	0.34257	24.916
85	0.64820	62.286	0.53421	58.143	0.43601	51.907	0.35680	42.549	0.29833	28.839
86	0.63230	67.370	0.51353	63.722	0.41024	58.025	0.32255	48.931	0.25401	34.254
87	0.61928	72.740	0.49636	69.778	0.38762	64.988	0.29220	56.833	0.21393	41.990
88	0.60050	78.349	0.48347	76.253	0.37028	72.762	0.26701	66.456	0.17815	53.294
89	0.60361	84.129	0.47544	83.042	0.35929	81.195	0.25198	77.709	0.15225	69.480
90	0.60160	90.000	0.47273	90.000	0.35553	90.000	0.24641	90.000	0.14255	90.000

Note. Negative quantites are in heavy type.

Examples $\tanh (2.6 / 65^{\circ}) = 0.99990 / 12^{\circ} .675 = 0.99990 / 12^{\circ} .40' .30''.$ $\tanh^{-1}(0.88618\sqrt{7^{\circ}.192}) = 3.0/66^{\circ}.$

TABLE IV. CORRECTING FACTOR. $\frac{\sinh\theta}{\theta} = r / \gamma$

	0.1		0.2	:	0.3		0.4	4	0.	5
0		•		0		0		0		0
45	1.00000	0.006	1.00000	0.383	1.00000	0.860	1.00013	1.532	1.00032	2.301
46	0.00003	0.005	0.00075	0.382	0.00050	0.858	0.00020	1.520	0.00888	2.388
47	0.00087	0.005	0.00050	0.381	0.00807	0.856	0.00828	1.526	0.00744	2.385
48	0.00081	0.004	0.00030	0.380	0.00847	0.854	0.00733	1.520	0.00508	2.378
40	0.00075	0.004	0.00010	0.378	0.00707	0.852	0.00640	1.513	0.00454	2.368
49	0.99973	0.094	0.999910	0.370	0.99797	0.0 32	0.99040	1.313	0.99434	2.300
50	0.99970	0.094	0.99880	0.376	0.99743	0.848	0.99550	1.506	0.99312	2.357
51	0.99965	0.003	0.99860	0.374	0.99690	0.842	0.99460	1.497	0.99170	2.342
52	0.00060	0.002	0.00840	0.371	0.00640	0.834	0.00370	1.486	0.00028	2.325
53	0.00055	0.001	0.00815	0.367	0.00500	0.826	0.00280	1.472	0.088888	2.304
54	0.00050	0.000	0.00705	0.362	0.00540	0.818	0.00100	1.458	0.08748	2.281
5.	///0		,,,,,,,	u .	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,			
55	0.99944	0.089	0.99775	0.357	0.99490	0. 809	0.99103	1.440	0.98610	2.254
56	0.99939	0.088	0.99755	0.352	0.99443	0.799	0.99018	1.421	0.98476	2.226
57	0.00033	0.086	0.00730	0.347	0.00307	0.787	0.98930	1.400	0.98344	2.195
58	0.99928	0.085	0.99705	0.342	0.99347	0.773	0.98845	1.378	0.98212	2.160
50	0.00022	0.083	0.00685	0.336	0.00300	0.760	0.08763	1.354	0.08082	2.123
57				00	120				-	
6 0	0.99917	0.082	0. 9967 0	0.331	- 0.99257	0.746	0.98685	1.330	0.97956	2.085
61	0.99912	0.081	0.99645	0.324	0.09213	0.731	0.98603	1.302	0.97832	2.042
62	0.99907	0.079	0.99625	0.317	0.00170	0.715	0.98523	1.273	0.07710	1.998
63	0.00002	0.077	0.00605	0.300	0.00127	0.608	0.08448	1.243	0.07500	1.050
64	0.00807	0.075	0.00585	0.301	0.00083	0.680	0.08373	1.212	0.07476	1.000
•			,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ŭ	<i>,,,</i>		2 010		21.11	-
65	0.99893	0.073	0.99570	0.293	0.99040	0.661	0.98300	1.179	0.97364	1.848
66	0.99889	0.071	0.99555	0.284	0.99000	0.641	0.98232	1.144	0.97254	1.794
67	0.99885	0.069	0.99540	0.275	0.98963	0.621	0.98165	1.108	0.97150	1.738
68	0.99881	0.066	0.00520	0.265	0.08027	0.590	0.08100	1.070	0.97046	1.679
60	0.00877	0.064	0.00505	0.255	0.08801	0.577	0.08035	1.030	0.06046	1.617
-							,	Ŭ		
70	0.99873	0.062	0.99490	0.245	0.98857	0.555	0.97975	0.990	0.96852	1.554
71	0. 9986 9	0.059	0.99475	0.235	0.98823	0.532	0.97918	0.948	0.96760	1.489
72	0.99865	0.057	0. 99460	0.225	0.98790	0.508	0.97863	0.905	0. 96676	1.422
73	0.99861	0.054	0.99445	0.214	0.98760	0.483	0.97808	0.861	0.96592	1.354
74	0.99858	0.051	0.99435	0.203	0.08733	0.458	0.97758	0.817	0.96514	1.284
• •			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				,			
75	0.99855	0.048	0.99425	0.192	0.98707	0.432	0.97710	0.771	0.96440	1.212
76	0.99852	0.045	0.99415	0.180	0.98680	0.406	0.97665	0.724	0.96368	1.138
77	0.99850	0.042	0.99405	0.168	0.98653	0.379	0.97625	o. 676	0.96304	1.062
78	0.99847	0.039	0.99395	0.156	0.98633	0.351	0.97585	0. 628	0.96246	0.986
79	0.99845	0.036	0.99385	0.144	0.98613	0.322	0.97545	0.578	0.96190	0.909
						-		-		•
80	0.99843	0.033	0.99375	0.131	0.98593	0.294	0.97512	0.528	0.96134	0.830
81	0.99841	0.030	0.99365	0.118	0. 98577	0. 266	0.97483	0.477	0.96088	0.750
82	0.99839	0.0 26	0.99360	0.106	0.98563	0.238	0.97458	0.425	0.96046	0.669
83	0.99838	0.023	0.99355	0.093	0.98553	0.209	0.97433	0.373	0.96008	0.587
84	0.99837	0.020	0.99350	0.080	0.98543	0.180	0.97413	0.321	0. 95974	0.505
0					0					
85	0.99830	0.017	0.99345	0.007	0.98537	0.150	0.97395	0.208	0.95944	0.422
86	0.99835	0.014	0.99340	0.054	0.98530	0.120	0.97380	0.215	0.95920	0.338
87	0.99834	0.011	0.99335	0.041	0.98523	0.090	0.97370	0.102	0.95904	0.254
88	0.99833	0.008	0.99335	0.028	0.98517	0.060	0.97365	0.108	0.95894	0.170
89	0.99832	0.004	0.99335	0.014	0.98510	0.030	0.97360	0.054	0.95890	0.085
	0 .				0 .					
90	0.99831	0.000	0.99335	0.000	0.98507	0.000	0.97355	0.000	0.95880	0.000

Note.

 $\frac{\sinh\theta}{\theta} = 1.0 \text{ when } \theta = 0 / \delta.$

Example.
$$\frac{\sinh(0.3/69^\circ)}{0.3/69^\circ} = 0.98891 / 0^\circ .577 = 0.98891 / 0^\circ .34' .37''$$

[20]

TABLE IV. CORRECTING FACTOR. $\frac{\sinh \theta}{\theta} = r / \gamma$. Continued

	0.6		0.7		0.8		0.9)	I.0	
0		ò		0		•		0		0
45 46 47	1.00070 0.99863 0.99655	3.440 3.437 3.434	1.00134 0.99849 0.99564	4.676 4.679 4.676	1.00230 0.99856 0.99484	6.108 6.112 6.109	1.00363 0.99893 0.99425	7.728 7.735 7.734	1.00553 0.99975 0.90394	9.531 9.546 9.550
40 49	0.99445	3.414	0.98999	4.652	0.98745	6.099 6.082	0.98488	7.725	0.98242	9.543 9.525
50 51	0.99030	3.398 3.379	0.98717	4.032	0.98379	6.058 6.026	0.98020 0.97567	7.079	0.97072	9.495 9.453
52 53 54	0.98421 0.98220	3.326 3.293	0.97887	4.574 4.537 4.493	0.97033 0.97298 0.96944	5.987 5.940 5.886	0.96659 0.96211	7.538 7.472	0.95986 0.95435	9.399 9.333 9.255
55	0.98023	3.256	0.97349	4.445	0.96594	5.824	0.95769	7.396	0.94890	9.166
57	0.97638	3.171	0.96823	4.391	0.95909	5.678	0.95333	7.218	0.94355	8.952 8.827
59	0.97262	3.069	0.96313	4.193	0.95244	5.502	0.94067	7.000	0.93303	8.691
60 61	0.97081 0.96903	3.013 2.953	0.96067 0.95826	4.117 4.036	0.94923 0.94608	5.405 5.300	0.93661 0.93263	6.878 6.747	0.92295 0.91805	8.544 8.385
62 63	0.96728 0.96557	2.889 2.821	0.95589 0.95356	3.951 3.859	0.94299 0.93996	5.189 5.070	0.92874 0.92493	6.607 6.458	0.91325 0.90856	8.215 8.033
64 67	0.96390	2.749	0.95130	3.762 2.661	0.93703	4.944	0.92121	6.300	0.90400	7.841
66 -	0.96072	2.506	0.94911	3.554	0.03140	4.674	0.01411	5.962	0.89527	7.424
67	0.95922	2.515	0.94493	3.444	0.92873	4.529	0.91074	5.780	0.89111	7.201
68 69	0.95775 0.95632	2.430 2.342	0.94293 0.94100	3.329 3.209	0.92614 0.92364	4.379 4.223	0.90747 0.90430	5.590 5.392	0.88708 0.88320	6.968 6.723
70	0.95495	2.251	0.93914	3.085	0.92123	4.061	0.90127	5.187	0.87947	6.469
72	0.05242	2.061	0.03560	2.825	0.01671	3.722	0.80558	4.975	0.87247	5.036
73	0.05123	1.962	0.03407	2.689	0.91461	3.544	0.89292	4.530	0.86921	5.656
74	0.95010	1.860	0.93254	2.550	0.91261	3.361	0.89041	4.298	0.86612	5.368
75	0.94902	1.756	0.93109	2.408	0.91073	3.174	0.88804	4.059	0.86320	5.072
70	0.94602	1.049	0.92973	2.203	0.90895	2.982	0.00501	3.015	0.00045	4.709
78	0.94/07	1.540	0.92040	1.062	0.00729	2 = 88	0.88177	2 212	0.85540	4.430
79	0.94540	1.317	0.92617	1.808	0.90374	2.385	0.87997	3.053	0.85328	3:818
80	0.94465	1.203	0.92516	1.652	0.90301	2.179	0.87831	2.789	0.85125	3.489
81	0.94397	1.087	0.92424	1.493	0.90183	1.969	0.87681	2.522	0.84940	3.156
82	0.94337	0.970	0.92343	1.332	0.90076	1.757	0.87547	2.251	0.84774	2.817
83	0.94283	0.852	0.92270	1.169	0.89981	1.543	0.87428	1.970	0.84028	2.474
84	0.94237	0.732	0.92207	1.005	0.89899	1.327	0.87324	1.099	0.84501	2.128
85	0.94197	0.612	0.92153	0.839	0.89829	1.109	0.87237	1.420	0.84393	1.779
80	0.94103	0.490	0.92109	0.073	0.89771	0.000	0.07104	1.130	0.04305	1.420
88	0.94138	0.308	0.92074	0.500	0.00720	0.008	0.07108	0.055	0.04230	0.715
80	0.04122	0.122	0.92050	0.330	0.80675	0.440	0.87042	0.286	0.84156	0.358
90	0.94107	0.000	0.92030	0.000	0.89670	0.000	0.87037	0.000	0.84147	0.000

Example.
$$\frac{\sinh(1.0/85^{\circ})}{1.0/85^{\circ}} = 0.84393 / 1^{\circ}.779 = 0.84393 / 1^{\circ}.46'.44''.$$

[21]

TABLE IV. CORRECTING FACTOR. $\frac{\sinh \theta}{\theta} = r / \gamma$. Continued

	1.1		1.2		1.3		1.4		1.5	
0		0		0		0		0		0
45	1.0081	11.510	1.0115	13.602	1.0158	16.034	1.0212	18.568	1.0270	21.262
46	1.0011	11.543	1.0031	13.726	1.0000	16.002	1.0000	18.630	1.0148	21.355
47	0.00400	11.555	0.00475	13.748	0.00623	16.128	0.00850	18.680	1.0018	21.426
48	0.08700	11.552	0.08650	13.753	0.08654	16.142	0.08720	18.717	0.08803	21.474
40	0.08018	11 526	0.07825	12 741	0.0768	16 127	0.07607	18 722	0.07612	21 406
49	0.90010	11.330	0.97025	13.741	0.97003	10.137	0.97007	10.723	0.97013	*1.490
50	0.97327	11.506	0.97008	13.712	0.96722	16.113	0.96493	18.707	0.96340	21.492
51	0.96636	11.461	0.96192	13.666	0.95770	16.068	0.95393	18.668	0.95080	21.462
52	0.95964	11.401	0.05383	13.603	0.04822	16.004	0.04300	18.605	0.03833	21.405
5.3	0.05201	11.327	0.04583	13.523	0.03802	15.010	0.03221	18.510	0.02503	21.321
54	0.04627	11.230	0.03800	13.425	0.02060	15.814	0.02157	18.400	0.01373	21.210
5.			,0	0.0		5 1	> 51		, 010	
55	0.93963	11.130	0.93017	13.310	0.92054	15.688	0.91100	18.275	0.90167	21.072
56	0.93318	11.019	0.92250	13.178	0.91154	15.542	0.90064	18.117	0.88980	20.907
57	0.92682	10.888	0.91492	13.028	0.90269	15.376	0.89043	17.936	0.87813	20.713
58	0.92054	10.742	0.90750	12 . 860	0.89400	15.188	0.88036	17.730	o.86667	20.491
59	0.91436	10.581	0.90017	12.675	0.88546	14.980	0.87050	17.500	0.85540	20.240
60	0.00826	10 406	0 80200	70 474	0 87775	T4 750.	0 86086	17 246	0 84422	10.064
61	0.90030	10.400	0.88600	12.4/4	0.07713	14.752	0.85126	17.240	0.04433	19.904
62	0.90244	10.210	0.00000	12.235	0.80892	14.502	0.05130	10.907	0.033333	19.057
62	0.89000	10.010	0.87918	12.019	0.80092	14.232	0.84214	10.003	0.82300	19.321
03	0.89103	9.800	0.87250	11.707	0.85315	13.942	0.03314	10.335	0.81273	10.950
04	0.00554	9.570	0.00000	11.497	0.84554	13.032	0.82430	15.983	0.80207	18.502
65	0.88019	9.327	0.85967	11.211	0.83808	13.301	0.81579	15.607	0.79293	18.140
66	0.87501	0.071	0.85350	10.000	0.83004	12.050	0.80750	15.207	0.78347	17.600
67	0.86008	8.801	0.84758	10.504	0.82400	12.580	0.70050	14.783	0.77433	17.211
68	0.86514	8.510	0.84183	10.257	0.81731	12.101	0.70171	14.335	0.86547	16.704
69	0.86045	8.225	0.83625	9.907	0.81077	11.783	0.78421	13.865	0.75693	16.169
70	0 85506	F 0.18	0 82002	0 740	0 80151		0 55505	× 0 0 7 0	0 7 1 8 7 7	1 - 6
70	0.05590	7.910	0.03003	9.543	0.00454	11.357	0.77707	13.373	0.74073	15.007
71	0.05105	7.000	0.82583	9.104	0.79802	10.912	0.77021	12.050	0.74007	15.018
72	0.04754	7.271	0.82095	8.771	0.79292	10.450	0.70304	12.322	0.73333	14.402
73	0.84302	0.931	0.81031	8.305	0.78740	9.971	0.75730	11.705	0.72020	13.701
74	0.83989	0.580	0.81190	7.940	0.78231	9.470	0.75143	11.188	0.71940	13.090
75	0.83637	6.220	0.80773	7.514	0.77746	8.966	0.74570	10.501	0.71203	12.406
76	0.83306	5.850	0.80380	7.060	0.77287	8.440	0.74050	9.975	0.70687	11.603
77	0.82996	5.471	0.80013	6.614	0.76858	7.000	0.73557	0.342	0.70120	10.058
78	0.82707	5.084	0.70671	6.148	0.76450	7.346	0.73003	8.602	0.60503	10.201
79	0.82441	4.689	0.79355	5.672	0.76090	6.780	0.72664	8.026	0.69107	9.425
80	0 80106	1				6		6	- 6966-	9 6 4 4
00	0.82190	4.200	0.79005	5.187	0.75751	0.202	0.72279	7.340	0.08000	8.030
01	0.81975	3.877	0.78802	4.093	0.75444	5.014	0.71921	0.051	0.08253	7.818
02	0.81775	3.402	0.78500	4.191	0.75105	5.010	0.71000	5.944	0.07887	0.991
83	0.81599	3.041	0.78358	3.083	0.74923	4.408	0.71319	5.227	0.07507	0.149
84	0.81445	2.010	0.78175	3.169	0.74711	3.793	0.71073	4.499	0.07287	5.294
85	0.81315	2.186	0.78022	2.640	0.74531	3.171	0.70864	3.762	0.67047	4.420
8Ğ	0.81200	1.753	0.77805	2.124	0.74383	2.544	0.70604	3.018	0.66847	3.554
87	0.81125	1.317	0.77707	1.506	0.74268	1.012	0.70561	2.260	0.66603	2.673
88	0.81066	0.870	0.77727	1.065	0.7418	1.277	0.70466	TETE	0.66=87	1.78=
80	0.81031	0.440	0.77684	0.533	0.74136	0.620	0.70400	0.758	0.66521	0.802
	0					0.039	0.70409	0.750		0.093
90	0.81019	0.000	0.77670	0.000	0.74120	0.000	0.70389	0.000	0.66499	0.000

Example.
$$\frac{\sinh(1.5/65^{\circ})}{1.5/65^{\circ}} = 0.79293 / 18^{\circ}.140 = 0.79293 / 18^{\circ}.08'.24''.$$

[22]

TABLE IV. CORRECTING FACTOR. $\frac{\sinh \theta}{\theta} = r / \gamma$. Continued

	1.0	6	1.7	7	1.8	3	1.0	9	2.0	b
0		•		ö		0		0		0
45	1.0359	24.117	1.0456	27.133	1.0572	30.292	1.0707	33.590	1.0863	37.016
46	1.0211	24.24I	1.0290	27.288	1.0385	30.486	1.0499	33.820	1.0633	37.304
47	1.0064	24.339	1.0124	27.418	1.0100	30.651	1.0202	34.037	1.0405	37.560
48	0.99175	24.409	0.99582	27.515	1.0015	30.784	1.0087	34.210	1.0178	37.778
49	0.97719	24.451	0.97947	27.582	0.98317	30.883	0.98837	34.346	0.99535	37.958
	6			6-0	6		(0			.0 0
50	0.90275	24.405	0.90323	27.018	0.90500	30.940	0.90821	34.444	0.97310	38.098
51	0.94044	24.449	0.94718	27.020	0.94700	30.974	0.94621	34.503	0.95110	30.190
52	0.93431	24.402	0.93123	27.590	0.92922	30.900	0.92050	34.524	0.92940	30.253
53	0.92031	24.325	0.91547	27.527	0.91107	30.921	0.90911	34.505	0.90800	30.207
54	0.90050	24.210	0.89994	27.429	0.09433	30.039	0.00995	34.444	0.00005	30.230
55	0.89281	24.079	0.88465	27.296	0.87728	30.718	0.87106	34.342	0.86600	38.160
56	0.87938	23.910	0.86953	27.128	0.86044	30.558	0.85242	34.197	0.84555	38.039
57	0.86619	23.709	0.85471	26.924	0. 84389	30.358	0.83411	34.008	0.82545	37.869
58	0.85319	23.475	0.84012	26.683	0. 82767	30.116	0.81611	33.773	0.80570	37.650
59	o. 84044	23.209	0.82582	26.406	0.81172	29.834	0.79847	33.493	0.78630	37.382
60	0.82704	22.010	0.81176	26.001	0.70611	20.510	0.78121	33.167	0.76735	37.062
61	0.81560	22.578	0.70806	25.738	0.78083	20.142	0.76437	32.702	0.74880	36.688
62	0.80375	22.212	0.78464	25.347	0.76504	28.730	0.74705	32.368	0.73070	36.261
63	0.70213	21.813	0.77150	24.017	0.75130	28.274	0.73170	31.803	0.71300	35.778
64	0.78075	21.380	0.75888	24.447	0.73722	27.774	0.71611	31.368	0.69575	35.238
05	0.70975	20.913	0.74047	23.938	0.72344	27.228	0.70084	30.792	0.07900	34.039
00	0.75900	20.413	0.73447	23.390	0.71000	20.030	0.08005	30.102	0.00275	33.980
07	0.74809	19.879	0.72282	22.802	0.00711	25.997	0.07108	29.478	0.04700	33.201
60	0.73809	19.311	0.71150	22.175	0.08455	25.312	0.05779	20.741	0.03175	32.479
09	0.72900	18.710	0.70070	21.508	0.07244	24.500	0.04421	27.949	0.01700	31.034
70	0.71975	18.076	0.69035	20.801	0.66083	23.802	0.63153	27.102	0.60280	30.725
71	0.71081	17.410	0.68035	20.055	0.64967	22.976	0.61916	26.199	0.58915	29.750
72	0.70231	16.712	0.67076	19.271	0.63900	22.104	0.60731	25.241	0.57605	28.709
73	0.69419	15.982	0.66165	18.448	0.62878	21.187	0.59600	24.227	0.56355	27.002
74	0.68650	15.221	0.65300	17.588 .	0.61911	20.224	0.58526	23.158	0.55165	26.428
75	0.67919	14.431	0.64476	16.692	0.60004	19.215	0.57500	22.034	0.54035	25.187
76	0.67231	13.613	0.63700	15.760	0.60128	18.162	0.56542	20.856	0.52970	23.880
77	0.66588	12.767	0.62976	14.794	0.59317	17.068	0.55637	19.625	0.51970	22.507
78	0.65988	11.894	0.62300	13.795	0.58561	15.933	0.54795	18.343	0.51035	21.070
79	0.65431	10.997	0. 61676	12.765	0.57861	14.758	0.54011	17.012	0.50165	19.571
80	0.64025	10.076	0.61106	11.705	0.57217	T2.545	0.53205	15.633	0.40364	18.011
8T	0.64463	0.134	0.60582	10.618	0.56633	12.208	0.52642	14.200	0.48636	16.301
82	0.64050	8.171	0.60112	0.505	0.56106	11.010	0.52052	12.744	0.47070	14.722
83	0.63681	7.101	0.50700	8.370	0.55630	0.711	0.51530	11.240	0.47306	13.000
84	0.63363	6.194	0.59341	7.214	0.55234	8.374	0.51075	9.702	0.46888	11.233
0	. 60.00	0.		6	0.1.0		0 == 60-	9 7 9 9	0 16 1	0.106
05	0.03094	5.184	0.59035	0.039	0.54890	7.015	0.50089	6.133	0.40455	9.420
00	0.02875	4.101	0.58782	4.850	0.54007	5.030	0.50372	0.539	0.40101	7.504
07	0.02700	3.129	0.50580	3.049	0.54387	4.241	0.50124	4.923	0.45023	5.713
80	0.02575	2.000	0.50445	2.430	0.54229	2.034	0.49947	3.291	0.45024	3.021
09	0.02500	1.040	0.50301	1.230	0.54135	1.419	0.49041	1.040	0.45505	1.914
90	0.62473	0.000	0.58333	0.000	0.54103	0.000	0.49805	0.000	0.45465	0.000

Example.
$$\frac{\sinh(1.8/77^{\circ})}{1.8/77^{\circ}} = 0.59317/17^{\circ}.068 = 0.59317/17^{\circ}.4'.05''.$$

.

TABLE IV. CORRECTING FACTOR. $\frac{\sinh\theta}{\theta} = r/\gamma$. Continued

١

	2.3	I	2.2	2	2.3	3	- 2.4	1	2.	5
۰		•		0		•		•		•
45	1.1043	40.558	1.1248	44.205	1.1480	47.940	1.1740	51.709	1.2032	55.001
40	1.0709	40.905	1.0070	44.013	1.1177	40.419 48.8et	1.1411	52.312	1.1074	50.278
47	1.0330	41.213	1.0423	44.901	1.05/7	40.051	1.0762	52.013	1.1320	50.052
40	1.0043	41.711	1.0153	45.502	1.0286	40.588	1.0444	53.685	1.0627	57.860
12			00 (00 0		
50	0.97986	41.898	0.98864	45.834	0.99965	49.890	1.0130	54.053	1.0288	58.309
51	0.95570	42.042	0.90232	40.031	0.07104	50.140	0.98200	54.375	0.99540	58.701
52	0.93195	42.142	0.93030	40.101	0.94283	50.354	0.95150	54.040	0.00250	59.044
55	0.88533	42.205	0.88550	46.338	0.88774	50.623	0.80208	55.042	0.80860	59.537
54		J		4		55		55		39.370
55	0.86257	42.165	0.80082	46.342	0.86091	50.680	0.86308	55.100	0.86748	59.765
50	0.84019	42.070	0.83040	40.294	0.83457	50.083	0.83407	55.223	0.83700	59.890
57	0.01019	41.935	0.01255	40.193	0.00000	50.020	0.00003	55.220	0.00712	59.970
50	0.79002	41./42	0.76000	40.035	0.70331	50.510	0.77954	55-174	0.77700	59.904
59	0.77545	41.494	0.70009	45.020	0.75040	50.347	0.75203	33.039	0.74932	59.930
60	0.75471	41.191	0. 74359	45.546	0.73417	50.114	0.72671	54.880	0.72140	59.823
61	0.73447	40.830	0.72159	45.210	0.71043	49.816	0.70121	54.634	0.69412	59.642
02	0.71407	40.410	0.70009	44.811	0.08725	49.451	0.07033	54.319	0.00752	59.391
03	0.09538	39.929	0.07014	44.345	0.00405	49.010	0.05204	53.931	0.04100	59.007
04	0.07057	39.300	0.05073	43.011	0.04201	40.509	0.02030	53.407	0.01030	50.005
65	0.65829	38.777	o .63886	43.207	0.62113	47.926	0.60533	52.924	0.59176	58.182
66	0.64053	38.101	0.61955	42.529	0.60026	47.264	0.58296	52.297	0.56784	57.613
67	0.02329	37-357	0.00082	41.775	0.58004	40.519	0.50121	51.583	0.54404	50.954
60	0.00057	30.542	0.58208	40.943	0.50043	45.088	0.54013	50.777	0.52208	50.198
09	0.59043	35.055	0.50514	40.029	0.54143	44.707	0.51971	49.074	0.50024	55.341
70	0.57487	34.694	0.54818	39.030	0.52309	43.752	0.49996	48.868	0.47908	54.376
71	0.55990	33.656	0.53186	37.944	0 .50539	42.638	0.48088	47.754	0.45864	53.296
72	0.54557	32.541	0.51618	36.769	0. 48835	41.422	0.46246	46.526	0.43888	52.092
73	0.53181	31.348	0.50118	35.501	0.47204	40.100	0.44479	45.177	0.41988	50.755
74	0.51071	30.074	0.40082	34.138	0.45044	38.007	0.42783	43.701	0.40100	49.277
75	0.50629	28.719	0.47323	32.678	0.44152	37.118	0.41165	42.091	0.38408	47.648
76	0.49453	27.283	0.46027	31.119	0.42736	35.449	0.39621	40.341	0.36732	45.857
77	0.48347	25.700	0.44810	29.459	0.41397	33.059	0.38157	38.443	0.35137	43.891
78	0.47311	24.108	0.43000	27.099	0.40135	31.744	0.30775	30.390	0.33025	41.740
79	0.40349	22.491	0.42001	25.039	0.30903	29.701	0.35400	34.170	0.32201	39.392
80	0.45461	20.736	0.41617	23.879	0.37873	27.531	0.34273	31.803	0.30869	36.836
81	0.44650	18.907	0.40716	21.822	0.36873	25.233	0.33162	29.261	0.29633	34.063
82	0.43919	17.008	0.39902	19.671	0.35965	22.810	0.32149	20.550	0.28500	31.005
83	0.43208	15.043	0.39170	17.432	0.35153	20.207	0.31239	23.070	0.27477	27.841
04	0.42099	13.015	0.38540	15.111	0.34441	17.011	0.30438	20.043	0.20509	24.390
85	0.42215	10.933	0.37998	12.715	0.33831	14.851	0.29748	17.462	0.25784	20.723
86	0.41818	8.806	0.37551	10.254	0.33328	12.000	0.29178	14.147	0.25131	16.855
87	0.41507	6.639	0.37202	7.740	0.32933	9.071	0.28728	10.717	0.24614	12.811
88	0.41284	4.443	0.30951	5.183	0.32650	0.082	0.28405	7.197	0.24241	8.624
09	0.41150	2.220	0.30800	2.599	0.32479	3.051	0.28210	3.015	0.24014	4.338
90	0.41105	0.000	0.36750	0.000	0.32422	0.000	0. 28144	0.000	0.23 939	0.000
			ainh (a	. 10.01						
	° F	Example.	sinn (2.	3/04/	= 0.34441	/17°.611	= 0.34441	/17°.36'	.40".	
			2.3 /	84°	~J++++ [<u> </u>	
	2.6	5	2.	7	2.	8	2.9)	3.0	
----------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------
		0		0		0		0		•
45 46	1.2354 1.1967	59.613 60.307	1.2710 1.2293	63.614 64.386	1.3102 1.2652	67.653 68.506	1.3530 1.3046	71.721 72.658	1.3995 1.3475	75.814 76.832
47	1.1586	60.957	1.1881	65.116	1.2209	69.317	1.2570	73.551	1.2965	77.808
48	1.1200	61.564	1.1476	65.801	1.1774	70.084	1.2103	74.400	1.2465	78.741
49	1.0838	62.120	1.1077	66.442	1.1345	70.806	1.1644	75.205	1.1974	79.63 0
50	1.0473	62.641	1.0685	67.037	1.0925	71.483	1.1195	75.965	1.1494	80.474
51	1.0113	62.509	1.0300	68 68	1.0513	72.113	1.0755	70.079	1.1025	81.272
52	0.97000	62.807	0.99219	68 522	1.0109	72.094	1.0324	77.345	1.0507	82.024
53	0.94145	64 214	0.95514	68 020	0.02270	72 708	0.99038	78 522	0.06827	82.729
34	0.90730	04.214	0.91001	60.929	0.93279	13.700	0.94920	10.334	0.90037	03.300
55	0.87419	64.470	0.88333	09.274	0.89500	74.138	0.90917	79.050	0.92590	83.994
50	0.84102	04.084	0.84803	09.503	0.85811	74.515	0.87007	79.517	0.88453	84.553
57	0.80973	04.834	0.81407	09.797	0.82211	74.837	0.83197	79.932	0.84433	85.002
58	0.77854	04.925	0.78152	09.973	0.78700	75.103	0.79487	80.293	0.80523	85.510
59	0.74808	04.954	0.74919	70.088	0.75275	75.311	0.75870	80.598	0.70727	85.924
60	0.71835	64.918	0.71767	70.140	0.71943	75.459	0.72366	80.847	0.73040	86.276
01	0.08935	64.810	0.08092	70.128	0.08700	75.544	0.08955	81.037	0.09403	80.574
62	0.00104	04.044	0.05700	70.047	0.05543	75.505	0.05041	81.107	0.05993	80.817
63	0.03340	04.399	0.02780	09.895	0.02475	75.519	0.02424	81.235	0.02030	87.004
64	0.00002	04.077	0.59952	09.009	0.59493	75.403	0.59303	81.239	0.59373	87.133
65	0.58054	63.674	0.57193	69.364	0.56596	75.214	0.56272	81.176	0.56217	87.204
66	0.55519	63.185	0.54514	68.978	0.53785	74.948	0.53334	81.044	0.53160	87.214
67	0.53054	62.606	0.51911	68.504	0.51054	74.599	0.50486	80.838	0.50203	87.161
68	0.50658	61.930	0.49386	67.935	0.48404	74.164	0.47724	80.555	0.47340	87.043
69	0.48338	61.151	0. 46937	67.266	0.45832	73.634	0.45045	80.190	0.44567	86.858
70	0.46089	60.262	0.44559	66.489	0.43343	73.005	0.42448	79.738	0.41883	86.602
71	0.43911	59.254	0.42256	65.596	0.40928	72.267	0.39934	79.191	0.39283	86.271
72	0.41808	58.117	0.40026	64.576	0.38586	71.411	0.37497	78.541	0.36767	85.860
73	0.39773	56.841	0.37872	63.415	0.36321	70.424	0.35135	77.780	0.34327	85.363
74	0.37814	55.414	0.35789	62.101	0.34125	69.292	0.32845	76.894	0.31964	84.772
75	0.35930	53.822	0.33780	60.617	0.32002	67.996	0.30627	75.867	0.29674	84.077
76	0.34123	52.049	0.31846	58.943	0.29951	66.516	0.28478	74.680	0.27452	83.265
77	0.32395	50.079	0.29987	57.058	0.27971	64.827	0.26397	73.309	0.25296	82.319
78	0.30749	47.893	0.28200	54.935	0.26064	62.897	0.24379	71.721	0.23202	81.210
79	0.29189	45.471	0.26507	52.542	0.24231	60.686	0.22432	69.876	0.21168	79.925
80	0.27718	42.793	0. 24894	49.847	0.22476	58.145	0.20551	67.721	0.19191	78.404
81	0.26346	39.837	0.23374	46.812	0.20804	55.217	0.18738	65.183	0.17270	76.592
82	0.25078	36.583	0.21954	43.396	0.19222	51.833	0.16998	62.169	0.15404	74.404
83	0.23922	33.016	0.20644	39-554	0.17741	47.908	0.15343	58.553	0.13596	71.709
84	0.22887	29.126	0 .19458	35-252	0.16375	43.351	0.13774	54.168	0.11849	68.313
85	0.21086	24.010	0.18400	30.458	0.15142	38.066	0.12323	48.795	0.10174	63.903
86	0.21227	20.382	0.17515	25.164	0.14060	31.968	0.11016	42.168	0.085917	57.974
87	0.20623	15.571	0.16704	10.300	0.13184	25.015	0.0989.34	34.005	0.071443	49.701
88	0.20184	10.524	0.16264	13.194	0.12520	17.244	0.000148	24.110	0.059103	37.843
89	0.19917	5.307	0.15938	6.682	0.12105	8.809	0.084469	12.576	0.050307	21.091
90	0.19827	0.000	0.15829	0.000	0.11964	0.000	0.082845	0.000	0.047040	0.000

Example.
$$\frac{\sinh (3.0 / 86^{\circ})}{3.0 / 86^{\circ}} = 0.085917 / 57^{\circ}.974 = 0.085917 / 59^{\circ}.58'.26''.$$

[25]

	0.1		0.2	2	0.	3	о.	4	0.	5
0		0		0		0		0		0
15	1.00000	0.188	0.00085	0.765	0.00037	1.718	0.00803	3.046	0.00514	4.750
46	1.00010	0.188	1.00030	0.764	1.00040	1.710	0.00088	3.055	0.00804	4.771
47	1.00021	0.188	1.00075	0.763	1.00143	1.720	1.00173	3.058	1.00004	4.781
48	1.00033	0.188	1.00120	0.761	1.00250	1.717	1.00358	3.058	1.00384	4.787
40	T.00044	0.187	T.00170	0.758	1.00357	1.710	1.00543	3.052	1.00680	4.787
49	1.00044	,	,.		2000337		545	0.000		4.1.4
50	1.00056	0.187	1.00215	0.755	1.00460	1.703	1.00733	3.045	1.00980	4.780
51	1.00068	0.187	1.00265	0.749	1.00563	1.694	1.00025	3.031	1.01278	4.767
52	1.00080	0.186	1.00310	0.744	1.00670	1.685	1.01115	3.014	1.01578	4.747
53	1.00002	0.184	1.00355	0.738	1.00773	1.672	1.01303	2.995	1.01878	4.724
54	1.00103	0.182	1.00405	0.732	1.00877	1.656	1.01400	2.969	1.02178	4.692
•.	· ·									
55	1.00114	0.180	1.00450	0.724	1.00980	1.638	1.01675	2.942	1.02478	4.656
56	1.00125	0.177	1.00495	0.715	1.01083	1.618	1.01865	2.911	1.02778	4.612
57	1.00135	0.175	1.00535	0.705	1.01183	1.596	1.02050	2.876	1.03076	4.561
58	1.00146	0.172	1.00575	0.694	1.01283	1.574	1.02230	2.836	1.03374	4.506
59	1.00156	0.170	1.00620	0.682	1.01380	1.548	1.02410	2.793	1.03670	4.444
<i>c</i> .				- 660	9					
00	1.0017	0.107	1.0007	0.008	1.0148	1.521	1.0259	2.745	1.0397	4.375
01	1.0018	0.103	1.0070	0.055	1.0158	1.490	1.0278	2.095	1.0425	4.300
62	1.0019	0.159	1.0074	0.040	1.0107	1.458	1.0294	2.041	1.0454	4.220
63	1.0020	0.155	1.0078	0.025	1.0170	1.425	1.0311	2.583	1.0482	4.133
64	1.0020	0.151	1.0082	0.009	1.0185	1.390	1.0328	2.521	1.0510	4.041
60	1 00 21	0 147	T 0086	0.502	1 0102	T.252	T 0244	2 456	T 0528	2.042
66	1.0022	0 142	1.0000	0.575	1.0193	1.214	1.0344	2.430	1.0550	2.826
67	1.0022	0 1 28	1.0000	0.575	1.0202	1 272	1.0300	2.300	1.0504	3 724
68	1.0023	0.130	1.0003	0.537	1.0210	1.275	1.03/0	2.315	1.0391	2 600
60	1.0024	0.134	1.0007	0.539	1.0210	1.231	1.0391	2.240	1.0017	2 480
09	1.0025	0.129	1.0100	0.520	1.0220	1.107	1.0400	2.103	1.0042	3.409
70	1.0026	0.123	1.0103	0.499	1.0234	1.141	1.0420	2.082	1.0666	3.362
71	1.0026	0.118	1.0100	0.478	1.0241	1.004	1.0434	1.008	1.0680	3.220
72	1.0027	0.112	1.0100	0.456	1.0247	1.045	1.0447	1.011	1.0712	3.001
73	1.0028	0.107	1.0112	0.434	1.0254	0.005	1.0460	1.821	1.0734	2.948
74	1.0028	0.102	1.0114	0.411	1.0260	0.044	1.0472	1.728	1.0755	2.800
			•							
75	1.0029	0.096	1.0117	0.388	1.0266	0.892	1.0483	1.632	1.0774	2.649
76	1.0029	0.090	1.0120	0.365	1.0272	0.838	1.0494	1.534	1.0793	2.493
77	1.0030	0.084	1.0122	0.341	1.0277	0.783	1.0504	1.434	1.0811	2.333
78	1.0030	0.078	1.0123	0.316	1.0282	0.727	1.0513	1.332	1.0828	2.169
79	1.0031	0.072	1.0125	0.291	1.0287	0.671	1.0522	1.229	1.0843	2.001
0.				66						- 9
80	1.0031	0.000	1.0127	0.200	1.0291	0.014	1.0530	1.124	1.0857	1.030
81	1.0032	0.000	1.0129	0.241	1.0295	0.555	1.0538	1.017	1.0070	1.050
82	1.0032	0.054	1.0130	0.215	1.0298	0.494	1.0544	0.908	1.0001	1.480
83	1.0032	0.047	1.0132	0.188	1.0301	0.433	1.0550	0.797	1.0892	1.301
64	1.0033	0.040	1.0133	0.102	1.0304	0.372	1.0555	0.085	1.0001	1.119
85	1.0033	0.033	1.0134	0.136	1.0307	0.311	1.0560	0.573	1.0008	0.935
86	1.0033	0.026	1.0134	0.100	1.0300	0.240	1.0563	0.460	1.0014	0.740
87	1.0033	0.010	1.0135	0.082	1.0310	0.187	1.0566	0.346	1.0010	0.562
88	1.0033	0.012	1.0135	0.054	1.0311	0.125	1.0568	0.232	1.0023	0.374
80	1.0033	0.006	1.0135	0.027	1.0311	0.063	1.0570	0.117	1.0026	0.187
.,			00		0		51-			
00	I.0033	0.000	1.0136	0.000	1.0311	0.000	1.0570	0.000	1.0026	0.000

Note.

Negative quantities are in heavy type.

$$\frac{\tanh\left(0.4/74^{\circ}\right)}{0.4/74^{\circ}} = 1.0472 \sqrt{1^{\circ}.728} = 1.0472 \sqrt{1^{\circ}.43'.41''}.$$

[26]

	0.6		0.7	7	0.8	5	0.0	9	1.0)
•		0		0		0		0		0
45.	0.00010	6.817	0.98189	9.214	0.96971	11.902	0.05284	14.830	0.03077	17.056
46	0.00417	6.854	0.08727	0.281	0.07646	12.020	0.06080	15.020	0.03000	18.216
47	0.00830	6.881	0.00270	0.337	0.08330	12.122	0.06021	15.185	0.04050	18.461
18	1.00248	6.001	0.00840	0.383	0.00050	12.210	0.07770	15.334	0.05028	18 602
40	1.00672	6.012	1.00410	0.410	0.00780	12.285	0.08665	15.460	0.06066	18.008
49	1.000/2	0.912	1100410	.9.4-3	0.99700		0.90003	- 3.409	0.90900	10.900
50	1.01100	6.915	1,00001	9.443	1.00526	12.347	0.00578	15.588	0.08032	10.108
51	1.01533	6.908	1.01581	9.455	1.01280	12.395	1.00518	15.600	0.00136	10.200
52	1.01070	6.803	1.02181	9.457	1.02060	12.427	1.01486	15.777	1.00282	10.455
52	1.02412	6.870	1.02780	0.445	1.02864	12.444	1.02470	15.845	1.01460	10.600
54	1.02855	6.838	1.03403	0.423	1.03675	12.446	1.03500	15.805	1.02607	10.726
5.		° °	0.0		0.0		00			-3-1
55	1.03300	6.797	1.04024	9.388	1.04501	12.432	1.04549	15.925	1.03970	19.828
56	1.03747	6.746	1.04653	9.338	1.05343	12.401	1.05626	15.934	1.05287	19.909
57	1.04195	6.685	1.05286	9.275	1.06196	12.353	1.06729	15.922	1.06648	10.065
58	1.04642	6.616	1.05921	9.200	1.07061	12.288	1.07854	15.889	1.08054	10.006
50	1.05080	6.537	1.06561	0.112	1.07030	12.203	1.00007	15.833	1.00506	10.008
57			0	-						- 3.33-
60	1.05537	6.448	1.07210	9.010	1.08829	12.100	1.10188	15.753	1.11009	19.973
61	1.05980	6.350	1.07856	8.893	1.09726	11.978	1.11390	15.647	1.12555	19.918
62	1.06420	6.242	1.08500	8.762	1.10630	11.835	1.12614	15.514	1.14144	10.832
63	1.06858	6.124	1.00143	8.617	1.11540	11.673	1.13856	15.355	1.15777	10.711
64	1.07203	5.998	1.00783	8.458	1.12456	11.491	1.15116	15.160	1.17454	10.555
•								• •	1.01	
65	1.07722	5.862	1.10420	8.285	1.13373	11.288	1.16392	14.956	1.19173	19.362
66	1.08143	5.716	1.11053	8.098	1.14291	11.064	1.17684	14.711	1.20935	19.131
67	1.08560	5.561	1.11683	7.895	1.15208	10.820	1.18989	14.438	1.22737	18.860
68	1.08967	5.397	1.12200	7.678	1.16118	10.552	1.20298	14.132	1.24569	18.545
69	1.09363	5.223	1.12904	7.447	1.17020	10.263	1.21608	13.796	1.26429	18.188
70	1.09750	5.041	1.13500	7.202	1.17915	9.953	1.22919	13.428	1.28310	17.785
71	1.10125	4.850	1.14083	0.943	1.18790	9.621	1.24220	13.026	1.30221	17.334
72	1.10490	4.650	1.14651	6.671	1.19659	9.268	1.25524	12.592	1.32140	16.836
73	1.10842	4.44I	1.15201	6.386	1.20503	8.894	1.26807	12.126	1.34063	16.290
74	1.11180	4.225	1.15734	6.087	1.21325	8.499	1.28067	11.628	1.35986	15.693
						0 - 0 -			0	
75	1.11503	4.002	1.10244	5.775	1.22121	8.083	1.29300	11.097	1.37894	15.043
70	1.11810	3.772	1.10733	5.450	1.22889	7.048	1.30500	10.532	1.39775	14.342
77	1.12102	3.534	1.17197	5.114	1.23023	7.192	1.31059	9.930	1.41020	13.591
78	1.12375	3.289	1.17030	4.707	1.24319	0.718	1.32772	9.309	1.43412	12.788
79	1.12028	3.038	1.18040	4.409	1.24970	0.227	1.33830	8.053	1.45141	11.935
80	T T 2862	2 181	T 18427	4.042	T 25507	F 718	T 24827	7 066	T 46700	77.033
8-	1.12003	2.701	1.10427	4.042	1.25591	5.710	1.34027	7.900	1.40/90	11.032
01	1.13078	2.519	1.10///	3.000	1.20150	5.195	1.35754	7.254	1.40345	10.081
02	1.13273	2.251	1.19094	3.201	1.20074	4.050	1.30007	0.517	1.49790	9.007
83	1.13447	1.979	1.19377	2.000	1.27138	4.104	1.37378	5.757	1.51110	8.052
84	1.13598	1.704	1.19020	2.488	1.27545	3.540	1.38059	4.975	1.52289	0.977
85	1.12727	1.425	T. T0820	2.083	1.27805	2.066	1.38646	4.175	1.53314	5.868
86	T T 2822	T. T.4.4	1 20012	1.672	T 2818=	2.282	1.20122	2.260	1 54170	4 721
87	1 12017	0.860	1 20150	1.257	1 28412	1.704	1 20518	3.300	T 54848	2.577
88	1.13913	0 574	1.20130	0.820	T 28575	1.100	1 20702	1 602	1.54040	3.311
80	1.139/5	0.287	1.2024/	0.420	1.205/5	0.600	1 20050	0.847	1.55539	1 102
09	1.14010	0.207	1.20300	5.420	1.200/1	0.000	1.39939	0.047	1.33031	1.190
90	1.14022	0.000	1.20327	0.000	1.28700	0.000	1.40017	0.000	1.55740	0.000

Note.

Negative quantities are in heavy type.

Example.

$$\frac{\tanh(0.9/75^{\circ})}{0.9/75^{\circ}} = 1.293 \sqrt{11^{\circ}.097} = 1.293 \sqrt{11^{\circ}.05'.49''}.$$

[27]

	1.	I	1.	2	Ι.	3	I.,	4	I.,	5
0		0		0		0		•		•
45	0.00354	21.167	0.87142	24.384	0.83515	27.536	0.70503	30.516	0.75487	33.288
46	0.01350	21.524	0.88183	24.856	0.84561	28.118	0.80600	31.225	0.76427	34.116
47	0.02400	21.860	0.80275	25.215	0.8:661	28.600	0.81664	21.026	0 77420	24.052
47	0.02480	22.207	0.09273	23.313	0.86815	20.270	0 82786	32 648	0.78467	34.93*
40	0.93462	22.201	0.90425	25.704	0.80815	29.279	0.02700	32.040	0.78407	35.792
49	0.94018	22.520	0.91025	20.202	0.00030	29.852	0.03971	33.300	0.79573	30.038
	0.05800	22 822	0.02802	26 620	0 80227	20 416	0 85228	24 070	0 80747	27 400
50	0.93009	22.022	0.92092	20.029	0.09331	30.410	0.86557	34.078	0.81002	28 248
51	0.97055	23.109	0.94225	27.043	0.90085	30.973	0.00337	34.770	0.81993	30.340
52	0.98345	23.379	0.95017	27.442	0.92123	31.521	0.87904	35.405	0.83320	39.213
53	0.99700	23.030	0.97083	27.820	0.93038	32.059	0.09457	30.189	0.84727	40.080
54	1.0111	23.801	0.98625	28.193	0.95238	32.580	0.91043	30.890	0.80220	40.965
	1.0258	24.070	1.0025	28 540	0.06028	22.100	0.02720	27 587	0 87812	47.840
33	1.0230	24.070	1.0023	20.340 28.86 0	0.90930	33.100	0.92729	37.307	0.07013	41.049
50	1.0412	24.250	1.0190	20.007	0.90730	33.599	0.94529	30.279	0.09513	42.730
57	1.0572	24.417	1.0375	29.173	1.0005	34.002	0.90443	30.904	0.91333	43.034
58	1.0739	24.551	1.0504	29.454	1.0200	34.548	0.98479	39.042	0.93280	44.534
59	1.0914	24.657	1.0763	29.708	1.0482	34.993	1.0066	40.311	0.95367	45.441
60	1 1006	24 722	T 0072	20.022	1.0710	25 416	1 0201	40.068	0.07612	46 240
6.	1.1090	44.733	1.0973	29.932	1.0/10	35.410	1.0301	40.900	1.0001	40.349
61	1.1200	44.774	1.1195	30.124	1.0953	35.013	1.0551	41.011	1.0003	47.202
02	1.1404	24.778	1.1428	30.280	1.1212	30.100	1.0820	42.239	1.0204	40.170
03	1.1089	24.745	1.1074	30.397	1.1488	30.515	1.1109	42.850	1.0540	49.092
64	1.1904	24.672	1.1934	30.473	1.1784	36.814	1.1421	43.438	1.0851	50.009
65	1.2126	24.554	1.2208	30.502	T.2000	37.072	1.1750	44.001	1.1184	50.024
66	T 2257	24.388	1.2406	30.480	1.2426	37.285	1.2124	44.535	1.1546	51.824
67	1 2506	24 172	1.2490	30 403	1 2208	37.446	T 2520	45 034	T TO42	52 730
60	1.2590	24.173	1.2799	30.403	1.2790	37.440	1.2520	45.034	1.1943	52.739
08	1.2045	23.904	1.3119	30.203	1.3105	37.540	1.2951	45.493	1.23/7	53.030
09	1.3101	23.579	1.3457	30.059	1.3000	37.585	1.3420	45.904	1.2857	54.520
70	1.3365	23.194	1.3811	29.781	1.40 46	37.548	1.3033	46.260	1.3385	55.388
71	1.3637	22.744	1.4183	20.425	1.4525	37.430	1.4405	46.552	1.3073	56.235
72	1.2015	22.227	1.4573	28.083	1.5030	37.218	1.5113	46.768	1.4628	57.056
72	T 4200	27 620	T 408T	28 447	T 5502	36 800	T 5704	46.804	T #262	ET 841
13	1.4200 T 4480	20.078	1.4901	27 810	1.5392	26 461	T 6546	46.036	1.5302	28 -87
74	1.4409	20.970	1.5407	27.010	1.0100	30.401	1.0540	40.910	1.0190	20.201
75	1.4783	20.238	1.5849	27.064	1.6822	35.890	1.7380	46.814	1.7129	59.266
76	1.5077	10.410	1.6307	26.202	1.7505	35.170	1.8308	46.567	1.8202	59.880
77	1.5373	18.518	1.6778	25.214	1.8235	34.280	1.0341	46.145	1.0438	60.403
78	1.5665	17.532	1.7261	24.004	1.0012	33.202	2.0408	45.514	2.0875	60.814
70	1.5055	16.462	1.7740	22.835	1.0835	31.012	2.1702	44.633	2.2562	61.076
19	3933			00		JJ		44-50		
80	1.6235	15.308	1.8239	21.429	2.0702	30.389	2.3240	43-454	2.4563	61.144
81	1.6505	14.069	1.8726	19.874	2.1604	28.609	2.4862	41.915	2.6973	60.956
82	1.6759	12.748	1.9200	18.168	2.2531	26.553	2.6669	39.944	2.9917	60.422
83	1.6006	11.350	1.9654	16.310	2.3466	24.200	2.8668	37.454	3.3577	59.412
84	1.7212	9.879	2.0078	14.306	2.4388	21.540	3.0848	34.354	3.8207	57.724
0		0					(0	
85	1.7402	8.343	2.0403	12.104	2.5207	18.508	3.3104	30.541	4.4198	55.045
80	1.7502	0.748	2.0790	9.898	2.0005	15.294	3.5521	25.931	5.2010	50.866
87	1.7691	5.105	2.1068	7.525	2.6744	11.747	3.7765	20.477	6.2275	44.356
88	1.7785	3.425	2.1269	5.067	2.7266	7.970	3.9665	14.214	7.5060	34.274
89	1.7843	1.719	2.1393	2.548	2.7596	4.029	4.0952	7.293	8.7880	19.305
00	7 7860	0.000	0 1 4 9 4	0.000	0 5500	0.000	4 1410	0.000	0.4007	0.000
10	1./002	0.000	4.14.44	0.000	4.1100	0.000	4.1414	0.000	0.400/	0.000

Note.

Negative quantities are in heavy type.

Example.
$$\frac{\tanh(1.3/45^\circ)}{1.3/45^\circ} = 0.83515\sqrt{27^\circ.536} = 0.83515\sqrt{17^\circ.32'.10''}.$$

	1.(6	1.	7	1.	8	1.	9	2.0	•
0		0		•		•				0
45	0.71331	35.700	0.67224	38.016	0.63250	30.037	0.50484	41.562	0.55055	42.006
46	0.72175	36.733	0.67050	30.048	0.62882	41.050	0.60005	42.740	0.56275	44.133
47	0.73060	37.682	0.68741	40.008	0.64544	42.186	0.60552	43.042	0.56815	45.387
48	0.73009	38.642	0.00741	41 166	0.65220	42.241	0.00333	43.942	0.50015	46.667
40	0.74013	20 615	0.09303	41.100	0.05239	43.34-	0.01120	45.100	0.57275	47.077
49	0.73013	39.013	0.70435	42.231	0.03970	44.520	0.01/20	40.424	0.57750	41.911
50	0.76060	40.600	0.71350	43.355	0.66756	45.725	0.62358	47.705	0.58250	40.310
51	0.77104	41.600	0.72320	44.480	0.67572	46.055	0.63026	40.010	0.58770	50.604
52	0.78381	42.616	0.73365	45.627	0.68433	48.213	0.63721	50.366	0.50315	52.103
52	0.70650	43.646	0.74465	46.707	0.60350	40.501	0.64458	51.747	0.50885	53.550
54	0.81000	44.601	0.75620	47.002	0.70217	50.820	0.65232	53.165	0.60480	55.030
34		44.09-	01/3029	41.99-	0.703-7	301020	0.03232	33.203	0.00400	00.009
55	0.82438	45.754	0.76865	40.212	0.71344	52.174	0.66047	54.621	0.61100	56.571
56	0.83060	46.834	0.78188	50.461	0.72433	53.564	0.66011	56.121	0.61750	58.149
57	0.85613	47.031	0.70600	51.730	0.73504	54.002	0.67821	57.666	0.62435	50.777
58	0.87360	40.047	0.81106	53.047	0.74828	56.460	0.68784	50.250	0.63150	61.458
50	0.80256	50.183	0.82724	54.380	0.76144	57.074	0.60805	60.005	0.63005	63.105
39	0.09-30	3	0.0	54.903	0.70-44	51.914	0109003	ee.geg	0103903	-090
60	0.91288	51.339	0.84450	55.768	0.77550	59.535	0.70805	62.606	0.64695	64.995
61	0.03475	52.516	0.86324	57.181	0.70056	61.145	0.72047	64.366	0.65530	66.860
62	0.05834	53.714	0.88335	58.635	0.80672	62.810	0.73274	66.101	0.66405	68.793
63	0.08304	54.935	0.00506	60.131	0.82406	64.533	0.74570	68.085	0.67330	70.802
64	1.0117	56.181	0.02853	61.674	0.84272	66.318	0.75074	70.052	0.68310	72.801
-	,	3	0192033	01.014	0104-7-	00.510	0.13914	10103-	01003	12-
65	1.0419	57.452	0.95400	63.266	0.86283	68.172	0.77463	72.099	0.69340	75.068
66	1.0749	58.748	0.08176	64.910	0.88461	70.008	0.70063	74.232	0.70430	77.338
67	1.1111	60.072	1.0121	66.613	0.00817	72.104	0.80774	76.450	0.71585	79.707
68	1.1508	61.425	1.0453	68.376	0.03372	74.106	0.82611	78.786	0.72810	82.184
60	1.1048	62.800	1.0817	70.200	0.06156	76.382	0.84570	81.221	0.74105	84.776
- 9	94-	,		10.209	0.90-30	,	0104319			- 1.1.1 -
70	1.2433	64.224	1.1219	72.116	0.00180	78.671	0.86705	83.773	0.75475	87.490
71	1.2974	65.674	1.1663	74.106	1.0251	81.074	0.88080	86.454	0.76925	90.337
72	1.3580	67.160	1.2157	76.187	1.0614	83.602	0.01453	89.273	0.78465	93.326
73	1.4262	68.686	1.2708	78.371	1.1013	86.266	0.04111	02.244	0.80005	96.466
74	1.5033	70.256	1.3325	80.670	1.1452	80.084	0.06074	05.370	0.81815	00.760
	0-00							90.019		
75	1.5913	71.873	1.4020	83.101	1.1936	92.076	1.0005	98.692	0.83625	103.245
76	1.6924	73.543	1.4807	85.685	1.2470	95.261	1.0337	102.202	0.85525	106.905
77	1.8008	75.274	1.5704	88.447	1.3061	98.664	1.0693	105.925	0.87515	110.760
78	1.9473	77.078	1.6731	QI.420	1.3714	102.315	1.1074	100.881	0.89585	114.820
70	2.1104	78.066	1.7015	04.644	1.4436	106.250	1.1478	114.088	0.01720	119.093
				21 11	110					
80	2.3068	80.960	1.9288	98.175	1.5231	110.510	1.1906	118.568	0.93905	123.590
81	2.5472	83.087	2.0894	102.083	1.6104	115.140	1.2352	123.344	0.96110	128.319
82	2.8474	85.390	2.2775	106.466	1.7056	120.191	1.2813	128.428	0.98305	133.281
83	3.2326	87.937	2.4992	111.446	1.8078	125.722	1.3279	133.842	1.0045	138.474
84	3.7435	90.839	2.7604	117.199	1.9155	131.793	1.3739	139.590	1.0249	143.894
85	4.4502	94.289	3.0648	123.945	2.0255	138.448	1.4179	145.673	, 1.0436	149.528
86	5.4825	98.668	3.4114	131.956	2.1329	145.720	1.4579	152.075	1.0601	155.359
87	7.1175	104.791	3.7856	141.527	2.2300	153.606	1.4921	158.768	1.0738	161.359
88	9.9938	114.760	4.1472	152.868	2.3107	162.043	1.5184	165.700	1.0840	167.494
89	15.528	135.011	4.4231	165.896	2.3628	170.905	1.5349	172.805	1.0904	173.723
-					0		00.7			
00	21.305	180.000	4.5275	180.000 -	2.2812	180.000	1.5406	180.000	1.0025	180.000

Note. Negative quantities are in heavy type.

Example.
$$\frac{\tanh(2.0/80^{\circ})}{2.0/80^{\circ}} = 0.93905 \sqrt{123^{\circ}.590} = 0.93905 \sqrt{123^{\circ}.35'.24''}.$$

[29]

	2.	r	2.	2	2.	3	2.	4	2.	5
•		o		٥		0		0		0
45	0.52690	43.993	0.49691	44.845	0.46952	45.492	0.44467	45.961	0.42212	46.283
46	0.53019	45.254	0.49941	46.127	0.47139	46.783	0.44592	47.252	0.42292	47.564
47	0.53362	46.542	0.50200	47.436	0.47322	48.101	0.44717	48.567	0.42368	48.868
48	0.53714	47.859	0.50465	48.774	0.47509	49.446	0.44842	49.908	0.42440	50.195
40	0.54081	49.206	0.50732	50.142	0.47696	50.820	0.44958	51.277	0.42504	51.548
50	0.54462	50.586	0.51009	51.542	0.47883	52.220	0.45075	52.676	0.42560	52.929
51	0.54852	52.001	0.51291	52.978	0.48070	53.666	0.45188	54.107	0.42612	54.340
52	0.55257	53.452	0.51578	54.452	0.48256	55.144	0.45292	55.572	0.42652	55.782
53	0.55681	54.943	0.51868	55.965	0.48443	56.659	0.45392	57.073	0.42684	57.256
54	0.56114	56.476	0.52168	57.520	0.48630	58.215	0.45488	58.614	0.42704	58.766
								6		
55	0.50502	58.055	0.52473	59.120	0.40013	59.015	0.45571	00.190	0.42712	00.314
50	0.57029	59.082	0.52782	00.709	0.48991	01.402	0.45040	01.822	0.42708	01.903
57	0.57514	01.301	0.53095	02.409	0.49170	03.100	0.45713	03.490	0.42088	03.534
58	0.58014	03.094	0.53414	04.220	0.49339	04.912	0.45707	05.220	0.42048	05.211
59	0.58533	64.888	0.53730	00.042	0.49504	00.722	0.45804	00.998	0.42588	00.938
6.0	0 10011	66 747	0 54064	67 027	0 40667	68 504	0 45800	68 820	0 40570	68
00	0.59071	69 6	0.54004	60 860	0.49001	00.594	0.45029	00.035	0.42512	00.710
01	0.59029	00.071	0.54395	09.809	0.49013	70.531	0.45030	70.735	0.42412	70.550
02	0.00210	70.000	0.54732	71.009	0.49957	72.540	0.45020	72.701	0.42200	72.455
03	0.00014	72.744	0.55073	73.900	0.50087	74.025	0.45000	74.740	0.42140	74.419
64	0.01443	74.902	0.55410	70.171	0.50209	70.791	0.45750	70.855	0.41900	70.455
65	0.62000	77.151	0.55764	78.443	0.50317	70.044	0.45675	70.053	0.41752	78.567
66	0.62767	70.406	0.56100	80.810	0.50413	81.300	0.45570	81.341	0.41512	80.761
67	0.63471	81.042	0.56450	83.280	0.50401	83.836	0.45454	83.723	0.41240	83.044
68	0.64205	84.400	0.56814	85.858	0.50557	86.380	0.45300	86.208	0.400.28	85.424
60	0.64062	87.172	0.57164	88.552	0.50604	80.056	0.45121	88.802	0.40580	87.006
09	0.04902	0,	0.37204		•••J••••	-99-			0.40300	-1.9.0
70	0.65752	89.968	0.57518	91.370	0.50630	91.843	0.44913	91.514	0.40196	90.500
7I	0.66571	92.898	0.57873	94.319	0.50639	94.759	0.44671	94.352	0.30771	93.215
72	0.67424	95.968	0.58223	97.405	0.50626	97.811	0.44396	97.324	0.30306	96.061
73	0.68305	99.185	0.58568	100.636	0.50596	101.006	0.44092	100.439	0.38802	99.048
74	0.60214	102.560	0.58914	104.020	0.50543	104.352	0.43754	103.706	0.38260	102.187
			• • •							
75	0.70152	106.099	0.59255	107.504	0.50470	107.858	0.43388	107.134	0.37681	105.489
76	0.71114	109.811	0. 59586	111.274	0.50378	111.531	0.42992	110.730	0.37068	108.966
77	0.72096	113.702	0.59914	115.156	0.50205	115.374	0.42575	114.505	0.36427	112.633
78	0.73086	117.778	0.60232	119.212	0.50135	119.392	0.42138	118.467	0.35762	116.501
79	0.74090	122.043	0.60536	123.440	0.49991	123.590	0.41683	122.620	0.35080	120.582
80	0 75086	126 801	0.60822	127 850	0 40825	127 068	0 47007	726 068	0 24202	724 887
00 9-	0.75000	120.301	0.00032	127.039	0.49033	127.900	0.41221	120.900	0.34392	124.007
80	0.70007	131.151	0.01109	132.449	0.49074	132.321	0.40759	131.517	0.33700	129.427
82	0.77019	135.909	0.01304	137.212	0.49309	137.204	0.40303	130.207	0.33033	134.209
03	0.77924	141.011	0.01000	142.140	0.49343	142.1/1	0.39009	141.212	0.32391	139.233
04	0.78707	140.210	0.01014	141.223	0.49103	14/1-237	0.39403	140.344	0.31790	144-499
85	0.79524	151.570	0.62000	152.449	0.49030	152.450	0.30004	151.650	0.31248	149.994
86	0.80176	157.070	0.62155	157.800	0.48013	157.793	0.38775	157.113	0.30778	155.703
87	0.80710	162.690	0.62282	163.254	0.48804	163.245	0.38516	162.710	0.30306	161.508
88	0.81100	168.406	0.62374	168.790	0.48726	168.781	0.38325	168.413	0.30113	167.645
80	0.81338	174.187	. 0.62427	174.381	0.48678	174.376	0.38207	174.188	0.20040	173.796
-	0.00									
90	0.81424	180.000	0.02445	180.000	0.48601	180.000	0.38167	180.000	0.29880	180.000

· Note

Negative quantities are in heavy type.

$$\frac{\tanh\left(2.3\ \underline{/90^{\circ}}\right)}{2.3\ \underline{/90^{\circ}}} = 0.48661\ \overline{180^{\circ}} = 0.48661\ \underline{/180^{\circ}}.$$

	2.	6	• 2.	7	2.	8	2.0	9	3.	0
•		.6 .80	a a8aa6	0		0		0		°
45	0.40173	40.480	0.38320	40.570	0.30057	40.595	0.35145	40.554	0.33770	40.408
40	0.40215	47.744	0.30341	47.021	0.30030	47.010	0.35121	47.740	0.33733	47.037
47	0.40250	49.030	0.30340	49.003	0.30032	49.051	0.35050	40.955	0.33090	40.015
40	0.40201	50.557	0.28222	50.305	0.26571	51.572	0.33043	50.1/5	0.33037	50.002
49	0.40304	51.007	0.30333	51.000,	0.30371	31.374	0.34997	51.409	0.33573	51.190
50	0.40319	53.022	0.38311	52.988	0.36525	52.857	0.34928	52.656	0.33497	52.405
51	0.40319	54.403	0.38278	54.332	0.36464	54.160	0.34848	53.916	0.33410	53.622
52	0.40308	55.812	0.38233	55.700	0.36389	55.483	0.34759	55.191	0.33307	54.849
53	0.40288	57.250	0.38174	57.094	0.36300	56.826	0.34652	56.481	0.33191	56.086
54	0.40254	58.717	0.38096	58.513	0.36196	58.190	0.34528	57.788	0.33058	57.334
55	0.40200	60.219	0.38000	59-959	0.36075	59.577	0.34386	50.112	0.32007	58.503
56	0.40131	61.756	0.37880	61.437	0.35032	60.087	0.34226	60.452	0.32737	50.862
57	0.40046	63.331	0.37756	62.045	0.35768	62.422	0.34043	61.810	0.32546	61.141
58	0.30042	64.947	0.37600	64.487	0.35580	63.884	0.33837	63.186	0.32332	62.432
50	0.30812	66.606	0.37422	66.066	0.35367	65.374	0.33602	64.582	0.32003	63.735
39			011		000 1		00			-0100
60	0.39658	68.313	0.37215	67.084	0.35120	00.895	0.33345	05.999	0.31827	65.049
6 I	0.39481	70.009	0.30980	09.343	0.34850	08.449	0.33050	07.439	0.31532	00.375
62	0.39273	71.879	0.30710	71.048	0.34554	70.030	0.32734	08.904	0.31200	07.713
03	0.39035	73.747	0.30410	72.801	0.34217	71.000	0.32378	70.392	0.30847	09.003
64	0.38705	75.077	0.30081	74.007	0.33843	73.325	0.31985	71.907	0.30451	70.420
65	0.38458	77.675	0.35709	76.470	0.33430	75.033	0.31552	73.452	0.30016	71.801
66	0.38115	79.747	0.35296	78.393	0.32974	76.789	0.31076	75.027	0.29539	73.192
67	0.37733	81.898	0.34841	80.383	0.32474	78.599	0.30556	76.639	0.29018	74.598
68	0.37310	84.136	0.34341	82.449	0.31927	80.464	0.29988	78.289	0.28450	76.021
69	0.36844	86.469	0.33794	84.597	0.31331	82.396	0.29369	79.982	0.27832	77.463
70	0.36333	88.002	0.33108	86.833	0.30683	84.300	0.28607	81.722	0.27161	78.026
71	0.35777	01.451	0.32553	80.168	0.20082	86.482	0.27070	83.518	0.26434	80.414
72	0.35176	94.122	0.31857	01.613	0.20226	88.655	0.27186	85.378	0.25640	81.032
73	0.34520	06.020	0.31100	94.184	0.28415	00.031	0.26343	87.310	0.24803	83.485
74	0.33837	99.884	0.30311	96.893	0.27548	93.325	0.25439	89.328	0.23894	85.081
75	0 22102	102.003	0 20161	00.757	0 26625	05.857	0 24475	01.448	0 22022	86.720
76	0.32328	106.302	0.28570	102.700	0.25648	08.547	0.23450	03.600	0.21883	88.443
77	0.31510	100.700	0.27634	106.038	0.24621	101.421	0.22366	06.078	0.20770	00.241
78	0.30680	113.513	0.26661	100.505	0.23546	104.512	0.21224	08.647	0.10610	02.146
79	0.29821	117.466	0.25659	113.231	0.22431	107.861	0.20030	101.437	0.18376	94.191
80	0 28050	121 678	0.24627	117 240	0 27284	TTT FTO	0 18789	104 504	0 17082	06 410
81	0.28950	121.075	0.24037	121 500	0.21204	111.519	0.10700	107.021	0.17002	08 802
82	0.20001	120.066	0.23009	126.222	0.20110	120.004	0.1/50/	111.784	0.13/30	101.700
82	0.2/22/	130.900	0.22509	121.464	0.10943	120.004	0.10200	116.221	0.14329	104.076
84	0.20405	141.617	0.2159/	137.060	0.1/103	120.501	0.12572	121.402	0.12007	108.016
04	0.25033	-41.517	0.20034	137.000	0.10000	130.591	0.13573	121.403	0.11419	100.910
85	0.24931	147.286	0.19786	143.143	0.15604	136.907	0.12307	127.549	0.099443	113.839
86	0.24319	153.370	0.19020	149.722	0.14651	144.025	0.11122	134.931	0.084970	120.254
87	0.23818	159.740	0.18384	156.778	0.13844	151.988	0.10074	143.833	0.071310	128.990
88	0.23446	166.349	0.17906	164.253	0.13224	160.762	0.092383	154.456	0.059383	141.294
89	0.23216	173.129	0.17609	172.042	0.12832	170.195	0.086890	166.709	0.050750	158.480
90	0.23138	180.000	0.17509	180.000	0.12698	180.000	0.084969	180.000	0.047517	180.000

Note.

Negative quantities are in heavy type.

Example.
$$\frac{\tanh(2.9/85^{\circ})}{2.9/85^{\circ}} = 0.12307 \sqrt{127^{\circ}.549} = 0.12307 \sqrt{127^{\circ}.32'.56''}$$

[31]

FUNCTIONS OF SEMI-IMAGINARIES. $f(\rho / 45^{\circ}) = r / \gamma$

ρ	Sir	nh 。,	Co	osh 。,	Tanl	1 , ,
0	о.	45.00	1.	о.	0.	45.00
0.1	0.10000	45.06	1.00001	0.17	0.00000	44.40
0.2	0.20000	45.23	1.00013	1.00	0.10007	44.14
0.3	0.30001	45.52	1.0007	2.35	0.20081	43.17
0.4	0.40005	46.32	1.0021	4.35	0.39921	41.57
0.5	0.50016	47.23	1.0052	7.08	0.49757	40.15
0.6	0.60042	48.27	1.0107	10.15	0.59406	38.11
0.7	0.70094	49.40	1.0198	13.53	0.68732	35.47
0.8	0.80184	51.06	1.0336	18.00	0.77577	33.06
0.9	0.90327	52.44	1.0533	22.34	0.85756	30.10
1.0	1.0055	54.32	1.0803	27.29	0.93077	27.03
1.1	1.1089	56.31	1.1157	32.41	0.99389	23.50
1.2	1.2138	58.41	1.1608	38.05	1.0457	20.36
1.3	1.3205	61.02	1.2163	43.35	1.0857	17.27
1.4	1.4297	63.34	1.2830	49.05	1.1143	14.29
1.5	1.5418	66.15	1.3616	54-33	1.1323	11.42
1.6	1.0575	69.07	1.4524	59.55	1.1413	9.12
1.7	1.7776	72.08	1.5556	65.09	1.1428	6.59
1.8	1.9029	75.18	1.6714	70.14	1.1385	5.04
1.9	2.0343	78.36	1.7999	75.10	1.1302	3.26
2.0	2.1726	82.01	1.9413	79.56	1.1191	2.06
2.1	2.3190	85.34	2.0958	84.33	1.1065	1.01
2.2	2.4745	89.12	2.2636	89.03	1.0932	0.09
2.3	2.6404	92.57	2.4449	93.26	1.0799	0.29
2.4	2.8177	96.46	2.6403	97.44	1.0672	0.58
2.5	3.0079	100.30	2.8502	101.56	1.0553	1.17
2.6	3.2121	104.36	3.0753	106.05	1.0445	1.20
2.7	3.4318	108.36	3.3163	110.10	1.0348	1.34
2.8	3.6685	112.30	3.5741	114.15	1.0264	1.36
2.9	3.9236	116.43	3.8497	118.16	1.0192	1.33
3.0	4.1986	1 20.48	4.1443	122.16	1.0131	1.28
3.1	4.4948	124.56	4.4589	126.15	1.0080	1.19
3.2	4.8154	129.02	4.7955	130.15	1.0041	1.13
3.3	5.1586	133.09	5.1541	134.13	1.0008	1.04
3.4	5.5306	137.17	5.5393	138.13	0.9984	0.56
3.5	5.9305	141.24	5.9356	142.12	0.9967	0.48
3.6	6.3603	145.31	6.3900	146.11	0.9954	0.40
3.7	6.8244	149.38	6.8606	150.10	0.9947	0.32
3.8	7.3228	153.44	7.3646	154.09	0.9943	0.25
3.9	7.8590	157.50	7.9047	158.10	0.9942	0.20
4.0	8.4351	161.57	8.4831	162.11	0.9943	0.14
4.1	9.0535	166.02	9.1024	100.12	0.9946	0.10
4.2	9.7198	170.07	9.7704	170.13	0.9948	0.06
4.3	10.434	174.11	10.481	174.15	0.9955	0.04
4.4	11.201	178.16	11.246	178.16	0.9960	0.00

Note. Negative quantities are in heavy type.

Examples. $\sinh (1.7 / 45^{\circ}) = 1.7776 / 72^{\circ} .08'.$ $\tanh (2.4 / 45^{\circ}) = 1.0672 \sqrt{0^{\circ} .58'}.$

[32]

FUNCTIONS OF SEMI-IMAGINARIES. $f(\rho / 45^{\circ}) = r / \gamma$. Continued

ρ	Cose	ch 。,	Se	ch	Cot	oth 。,	
о.	8	45.00	г.	0.	8	45.00	
0.1	10.0000	45.06	0.00000	0.17	10.0000	44.40	
0.2	5.0000	45.23	0.00087	1.00	5.0008	44.14	
0.3	3.2222	45.52	0.0003	2.35	3.2255	42.17	
0.4	2.4007	46.32	0.0070	4.35	2.5050	43.47	
		40.0-	••9979	4.33	2.3030	41.57	
0.5	1.9984	47.23	0. 9948	7.08	2.0096	40.15	
0.0	1.6654	48.27	0.9894	10.15	1.6830	38.11	
0.7	1.4268	49.40	0.9806	13.53	1.4549	35.47	
0.8	1.2471	51.06	0.9675	18.00	1.2890	33.06	
0.9.	1.1070	52.44	0.9494	22.34	1.1660	30.10	
1.0	0.0045	54.32	0.9256	27.20	1.0746	27.03	
1.1	0.0018	56.31	0.8063	32.41	1.0001	23.50	
1.2	0.8238	58.41	0.8614	38.05	0.0564	20.36	
T.3	0.7573	61.02	0.8222	43.35	0.0211	17.27	
1.4	0.6995	63.34	0.7793	49.05	0.8006	14.29	
	a 6 196	66					
1.5	0.0480	60.15	0.7344	54.33	0.8831	11.42	
1.0	0.0033	09.07	0.0005	59.55	0.8703	9.12	
1.7	0.5025	72.08	0.0429	05.09	0.8751	0.59	
1.8	0.5250	75.18	0.5981	70.14	0.8788	5.04	
1.9	0.4910	78.30	0.5550	75.10	0.8848	3.20	
2.0	0.4603	82.01	0.5151	79.56	0.8936	2.06	
2.1	0.4312	85.34	0.4772	84.33	0 .9038	1.01	
2.2	0.4041	89.12	0.4418	89.03	0.9147	0.09	
2.3	0.3788	92.57	0.4090	93.26	0.9260	0.29	
2.4	0.3549	96.46	0.3788	97.44	0.9370	0.58	
2.5	0.3325	100.30	0.3500	101.56	0.0476	1.17	
26	0.3114	104.36	0.2252	106.05	0.0574	T 20	
27	0.2014	108.26	0.2016	110.10	0.0662	1.24	
28	0.2726	112.30	0.2708	114.15	0.0742	1.26	
2.0	0.2720	116.42	0.2790	118.16	0.9743	T 22	
2.9	0.2349	110.43	0.2390	110.10	0.9012	1.33	
3.0	0.2 382	120.48	0.2413	122.16	0.9871	1.28	
3.1	0.2225	124.50	0.2243	120.15	0.9920	1.19	
3.2	0.2077	129.02	0.2085	130.15	0 .9959	1.13	
3.3	0.1939	133.09	0.1940	134.13	0.9992	1.04	
3.4	0.1808	137.17	0.1805	138.13	1.0016	0.56	
3.5	0.1686	141.24	0.1681	142.12	1.0033	0.48	
3.6	0.1572	145.31	0.1565	146.11	1.0047	0.40	
3.7	0.1465	149.38	0.1458	150.10	1.0053	0.32	
3.8	0.1366	153.44	0.1358	154.00	1.0057	0.25	
3.9	0.1272	157.50	0.1265	158.10	1.0058	0.20	
4.0	0.1186	161.57	0 1170	162.11	1.0057	0.14	
4.0	0.1105	166.02	0 1000	166.12	1.0054	0.10	
4.1	0.1105	170.07	0.1099	170 13	1.0054	0.06	
4.2	0.1029	174.11	0.1024	174 15	1.0032	0.00	
4.3	0.09504	178 16	0.09541	178 16	1.0043	0.04	
4.4	0.0092/		0.00092	1/0.10	1.0040	0.00	

Note.

Negative quantities are in heavy type.

Examples. cosech $(2.0 / 45^{\circ}) = 0.4603 \sqrt{82^{\circ}.01'}$. coth $(2.5 / 45^{\circ}) = 0.9476 / 1^{\circ}.17'$.

[33]

FUNCTIONS OF SEMI-IMAGINARIES. $f(\rho / 45^{\circ}) = r / \gamma$. Continued

ρ	Si	nh	Cos	sh ,	Tanl	1 . <i>.</i>
		-9				
4.5	12.020	182.19	12.007	182.19	0.9900	0.00
4.0	12.000	180.23	12.940	180.21	0.9970	0.02
4.7	13.050	190.27	13.094	190.23	0.9974	0.04
4.0	14.070	194.30	14.909	194.20	0.9978	0.04
4.9	15.908	190.33	15.999	198.29	0.9980	0.04
5.0	17.140	202.36	17.169	202.32	0.0083	0.04
5.1	18.397	206.39	18.425	206.35	0.0085	0.04
5.2	19.747	210.42	19.772	210.38	0.0087	0.04
5.3	21.195	214.45	21.210	214.41	0.0080	0.04
5.4	22.750	218.48	22.772	218.44	0.9990	0.04
	a 9					
5.5	24.410	222.50	24.439	222.47	0.9992	0.03
5.0	20.219	220.53	20.238	220.51	0.9993	0.02
5.7	28.141	230.50	28.159	230.54	0.9994	0.02
5.0	30.192	234.59	30.209	234.57	0.9995	0.02
5.9	32.405	239.02	32.421	239.00	0.9990	0.02
6.0	34.784	243.05	34.798	243.04	0.9996	0.01
	Cosec	h	Sec	h	Coth	
ρ	Cosec	[.] h	Secl	h ,	Coth	۱。,
ρ 4·5	Cosec 0.08316	h , , 182.19	Sec) 0.08288	h ° / 182.19	Coth 1.0034	0,00
ρ 4·5 4.6	Cosec 0.08316 0.07746	h 0 / 182.19 186.23	Secl 0.08288 0.07723	h 0 / 182.19 186.21	Coth 1.0034 1.0030	0.00 0.02
ρ 4.5 4.6 4.7	Cosec 0.08316 0.07746 0.07216	h 182.19 186.23 190.27	Sec 0.08288 0.07723 0.07197	h 182.19 186.21 190.23	Coth 1.0034 1.0030 1.0026	0.00 0.02 0.04
P 4.5 4.6 4.7 4.8	Cosec 0.08316 0.07746 0.07216 0.06722	h 182.19 186.23 190.27 194.30	Sec 0.08288 0.07723 0.07197 0.06707	h 182.19 186.21 190.23 194.26	Coth 1.0034 1.0030 1.0026 1.0022	° / 0.00 0.02 0.04 0.04
ρ 4.5 4.6 4.7 4.8 4.9	Cosec 0.08316 0.07746 0.07216 0.06722 0.06263	h 182.19 186.23 190.27 194.30 198.33	Sect 0.08288 0.07723 0.07197 0.06707 0.06250	h 182.19 186.21 190.23 194.26 198.29	Coth 1.0034 1.0030 1.0026 1.0022 1.0020	o.00 0.02 0.04 0.04 0.04
ρ 4.5 4.6 4.7 4.8 4.9	Cosec 0.08316 0.07746 0.07216 0.06722 0.06263	h 182.19 186.23 190.27 194.30 198.33	Sect 0.08288 0.07723 0.07197 0.06707 0.06250	h 182.19 186.21 190.23 194.26 198.29	Coth 1.0034 1.0030 1.0026 1.0022 1.0020	0.00 0.02 0.04 0.04 0.04
ρ 4.5 4.6 4.7 4.8 4.9 5.0	Cosec 0.08316 0.07746 0.07216 0.06722 0.06263 0.05834 0.05834	h 182.19 186.23 190.27 194.30 198.33 202.36 206.30	Secl 0.08288 0.07723 0.06707 0.06707 0.06250 0.05824	h 182.19 186.21 190.23 194.26 198.29 202.32 206.35	Coth 1.0034 1.0026 1.0022 1.0022 1.0017	0.00 0.02 0.04 0.04 0.04 0.04
ρ 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2	Cosec 0.08316 0.07746 0.06722 0.06263 0.05834 0.05436 0.0564	h 182.19 186.23 190.27 194.30 198.33 202.36 206.39 210.42	Secl 0.08288 0.07723 0.07197 0.06707 0.06250 0.05824 0.05428	h 182.19 186.21 190.23 194.26 198.29 202.32 206.35 210.28	Coth 1.0034 1.0030 1.0020 1.0022 1.0020 1.0017 1.0017	0.00 0.02 0.04 0.04 0.04 0.04
ρ 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.2	Cosec 0.08316 0.07746 0.07216 0.06722 0.06263 0.05834 0.05834 0.05064 0.05064	h 182.19 186.23 190.27 194.30 198.33 202.36 206.39 210.42	Secl 0.08288 0.07723 0.06707 0.06707 0.06250 0.05824 0.05428 0.05428	h 182.19 186.21 190.23 194.26 198.29 202.32 206.35 210.38 214.41	Coth 1.0034 1.0020 1.0022 1.0020 1.0017 1.0015 1.0015	0.00 0.02 0.04 0.04 0.04 0.04 0.04
ρ 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.2 5.4	Cosec 0.08316 0.07746 0.07216 0.06722 0.06263 0.05834 0.05436 0.05064 0.04718 0.04718	h 182.19 186.23 190.27 194.30 198.33 202.36 206.39 210.42 214.45 248.48	Secl 0.08288 0.07723 0.07197 0.06707 0.06250 0.05824 0.05428 0.05428 0.05058 0.04713 0.04713	h ° , 182.19 186.21 190.23 194.26 198.29 202.32 206.35 210.38 214.41 218.44	Coth 1.0034 1.0030 1.0022 1.0020 1.0017 1.0015 1.0013 1.0011	0.00 0.02 0.04 0.04 0.04 0.04 0.04 0.04
ρ 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4	Cosec 0.08316 0.07746 0.07216 0.06722 0.06263 0.05834 0.05436 0.05064 0.04718 0.04396	h 182.19 186.23 190.27 194.30 198.33 202.36 206.39 210.42 214.45 218.48	Secl 0.08288 0.07723 0.07197 0.06707 0.06250 0.05824 0.05428 0.05428 0.05058 0.04713 0.04391	h ° , 182.19 186.21 190.23 194.26 198.29 202.32 206.35 210.38 214.41 218.44	Coth 1.0034 1.0030 1.0022 1.0020 1.0017 1.0015 1.0013 1.0011 1.0010	0.00 0.02 0.04 0.04 0.04 0.04 0.04 0.04
P 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5	Cosec 0.08316 0.07746 0.07216 0.06722 0.06263 0.05834 0.05436 0.05064 0.04718 0.04396 0.04095	h ° , 182.19 186.23 190.27 194.30 198.33 202.36 206.39 210.42 214.45 218.48 222.50	Secl 0.08288 0.07723 0.07197 0.06707 0.06250 0.05824 0.05428 0.05058 0.04713 0.04391 0.04092	h o , 182.19 186.21 190.23 194.26 198.29 202.32 206.35 210.38 214.41 218.44 222.47	Coth 1.0034 1.0020 1.0022 1.0020 1.0017 1.0015 1.0013 1.0011 1.0010	0.00 0.02 0.04 0.04 0.04 0.04 0.04 0.04
P 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6	Cosec 0.08316 0.07746 0.07216 0.06722 0.06263 0.05834 0.05436 0.05064 0.05064 0.04396 0.04095 0.03814	h s 182.19 186.23 190.27 194.30 198.33 202.36 206.39 210.42 214.45 218.48 222.50 226.53	Secl 0.08288 0.07723 0.07197 0.06707 0.06250 0.05824 0.05428 0.05058 0.04713 0.04391 0.04092 0.03811	h o / 182.19 186.21 190.23 194.26 198.29 202.32 206.35 210.38 214.41 218.44 222.47 226.51	Coth 1.0034 1.0020 1.0022 1.0020 1.0017 1.0015 1.0013 1.0011 1.0010 1.0008 1.0007	0.00 0.02 0.04 0.04 0.04 0.04 0.04 0.04
P 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.4 5.5 5.6 5.7	Cosec 0.08316 0.07746 0.07216 0.06722 0.06263 0.05834 0.05834 0.05564 0.04718 0.0495 0.04905 0.03554	h 182.19 186.23 190.27 194.30 198.33 202.36 206.39 210.42 214.45 218.48 222.50 226.53 230.56	Secl 0.08288 0.07723 0.07197 0.06707 0.06250 0.05824 0.05428 0.05428 0.05428 0.05428 0.04713 0.04391 0.04391 0.03811 0.03551	h o , 182.19 186.21 190.23 194.26 198.29 202.32 206.35 210.38 214.41 218.44 222.47 226.51 230.54	Coth 1.0034 1.0020 1.0022 1.0020 1.0017 1.0015 1.0013 1.0011 1.0010 1.0008 1.0007 1.0006	0.00 0.02 0.04 0.04 0.04 0.04 0.04 0.04
P 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Cosec 0.08316 0.07746 0.0722 0.06722 0.06263 0.05834 0.05436 0.05064 0.04718 0.04396 0.04095 0.03814 0.03554 0.03554	h 182.19 186.23 190.27 194.30 198.33 202.36 206.39 210.42 214.45 218.48 222.50 226.53 230.56 234.59	Secl c.08288 0.07723 0.07797 0.06707 0.06250 0.05824 0.05428 0.05428 0.05428 0.04713 0.04092 0.03811 0.03551 0.03310	h o , 182.19 186.21 190.23 194.26 198.29 202.32 206.35 210.38 214.41 218.44 222.47 226.51 230.54 234.57	Coth 1.0034 1.0020 1.0022 1.0020 1.0017 1.0015 1.0013 1.0011 1.0010 1.0008 1.0007 1.0006 1.0005	0.00 0.02 0.04 0.04 0.04 0.04 0.04 0.04
P 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Cosec 0.08316 0.07746 0.0722 0.06263 0.05834 0.05436 0.05436 0.04718 0.04095 0.03814 0.03554 0.03554 0.03554 0.03554 0.03554 0.03554 0.03554	h ° ', 182.19 186.23 190.27 194.30 198.33 202.36 206.39 210.42 214.45 218.48 222.50 226.53 230.56 234.59 239.02	Secl c.08288 0.07723 0.07723 0.06707 0.06250 0.05824 0.05428 0.05428 0.05058 0.04713 0.04092 0.03811 0.03551 0.03310 0.03085	h o , 182.19 186.21 190.23 194.26 198.29 202.32 206.35 210.38 214.41 218.44 222.47 226.51 230.54 234.57 239.00	Coth 1.0034 1.0030 1.0022 1.0020 1.0017 1.0015 1.0013 1.0011 1.0010 1.0008 1.0007 1.0006 1.0005 1.0005 1.0004	0.00 0.02 0.04 0.04 0.04 0.04 0.04 0.04

Note.

٥

Negative quantities are in heavy type.

Examples. $\tanh (6.0 / 45^{\circ}) = 0.9996 / 0^{\circ} .01'.$ sech $(5.0 / 45^{\circ}) = 0.05824 \sqrt{202^{\circ} .32'}.$

FUNCTIONS OF SEMI-IMAGINARIES. $f(\rho/45^{\circ}) = r/\gamma$. Continued

· · · · · · · · · · · · · · · · · · ·	o ⁻² 245.06
6.05 36.047 245.06 1.000 0.00 2.774×10	0-2 245.06
6.10 37.349 247.08 1.000 0.00 2.678 "	247.08
6.15 38.693 249.09 1.000 0.00 2.583 "	240.00
6.20 40.084 251.11 1.000 0.00 2.405 "	251.11
6.25 41.524 253.12 1.000 0.00 2.408 "	253.12
6.30 43.020 255.14 1.000 0.00 2.325 "	255.14
6.35 44.563 257.15 LOOO 0.00 2.244 "	257.15
6.40 46.171 250.17 1.000 0.00 2.166 "	250.17
6.45 47.832 261.18 1.000 0.00 2.001 "	261.18
6.50 49.553 263.20 1.000 0.00 2.018 "	263.20
6.55 51.336 265.22 1.000 0.00 1.048 "	265.22
6.60 53.183 267.24 LOOO 0.00 L880 "	267.24
6.65 55.110 260.25 1.000 0.00 1.815 "	260.25
6.70 57.058 271.27 LOOO 0.00 L752 "	271.27
675 50 126 272 28 1 000 0 00 1 601 "	272.28
0.75 59.130 273.20 1.000 0.00 1.091	273.20
6.80 61.259 275.30 1.000 0.00 1.632 "	275.30
6.85 63.463 277.31 1.000 0.00 1.576 4	277.31
6.90 65.746 279.33 I.000 0.00 I.52I "	279.33
6.95 68.119 281.34 1.000 0.00 1.468 "	281.34
7.00 70.570 283.36 1.000 0.00 1.417 "	283.36
7.05 73.109 285.37 1.000 0.00 1.368 "	285.37
7.10 75.739 287.39 1.000 0.00 1.312 "	287.39
7.15 78.473 289.40 1.000 0.00 1.274 "	289.40
7.20 81.296 291.42 1.000 0.00 1.230 "	291.42
7.25 84.215 293.43 1.000 0.00 1.187 "	293-43
7.30 87.250 295.45 1.000 0.00 1.146. "	295.45
7.35 90.386 297.46 1.000 0.00 1.016 "	297.46
7.40 93.083 299.48 1.000 0.00 1.074 "	299.48
7.45 97.009 301.49 1.000 0.00 1.031 "	301.49
7.50 100.50 303.51 1.000 0.00 9.950×10	0 ⁻³ 303.51
7.55 104.12 305.52 1.000 0.00 9.605 "	305.52
7.60 107.86 307.54 1.000 0.00 9.271 "	307.54
7.65 111.74 309.56 1.000 0.00 8.949 "	309.56
7.70 115.67 311.57 1.000 0.00 8.638 "	311.57
7.75 119.94 313.59 1.000 0.00 8.337 "	313.59
7.80 124.26 316.00 1.000 0.00 8.048 "	316.00
7.85 128.71 318.02 1.000 0.00 7.760 "	318.02
7.90 133.35 320.03 1.000 0.00 7.400 "	320.03
7.95 138.16 322.05 1.000 0.00 7.238 "	322.05
8.00 143.12 324.06 1.000 0.00 6.987 "	324.06
8.05 148.28 326.07 1.000 0.00 6.744 "	326.07
8.10 153.61 328.00 1.000 0.00 6.510 "	328.00
8.15 150.14 330.11 1.000 0.00 6.284 "	330.11
8.20 164.87 332.12 1.000 0.00 6.066 "	332.12
8.25 170.80 334.14 1.000 0.00 5.855 "	334.14

Note. Negative quantities are in heavy type.

Examples.
$$\sinh (7.55 / 45^{\circ}) = \cosh (7.55 / 45^{\circ}) = 104.12 / 305^{\circ}.52'.$$

sech $(7.50 / 45^{\circ}) = \operatorname{cosech} (7.50 / 45^{\circ}) = 9.950 \times 10^{-2} \sqrt{303^{\circ}.51'}.$

FUNCTIONS OF SEMI-IMAGINARIES. $f(\rho/45^{\circ}) = r/\gamma$. Continued

ρ	Sinh an	id cosh	Tanh ai	nd coth	Sech	and o	osech
		• /		۰			• 1.
8.30	176.95	336.15	1.000	0.00	5.651×	10-3	336.15
8.35	183.31	338.17 -	1.000	0.00	5.455	**	338.17
8.40	189.91	340.18	1.000	0,00	5.266	"	340.18
8.45	196.75	342.20	1.000	0.00	5.083	"	342.20
8.50	203.83	344.22	1.000	0.00	4.906	"	344.22
8.55	211.16	346.24	1.000	0.00	4.736	"	346.24
8.60	218.76	348.25	1.000	0.00	4.571	"	348.25
8.65	226.63	350.27	1.000	0.00	4.413	"	350.27
8.70	234.79	352.28	1.000	0.00	4.259	"	352.28
8.75	243.23	354.30	1.000	0.00	4.111	"	354.30
8.80	251.00	356.31	1.000	0.00	3.968	u	356.31
8.85	261.06	358.33	1.000	0.00	3.830	"	358.33
8.90	270.46	360.34	I.000	0.00	3.698	"	360.34
8.05	280.10	362.36	1.000	0.00	3.560	"	362.36
9.00	290.28	364.38	1.000	0.00	3.445	"	364.38
0.05	300.73	366.30	1.000	0.00	3.3253	ű	366.30
0.10	311.54	368.41	1.000	0.00	3.2000	"	368.41
0.15	322.75	370.42	I.000	0.00	3.0083	"	370.42
0.20	334.37	372.44	1.000	0.00	2.0008	"	372.44
9.25	346.39	374.46	1.000	0.00	2.8869	"	374.46
0.30	358.85	376.47	1.000	0.00	2.7867	"	376.47
0.35	371.81	378.48	1.000	0.00	2.6805	"	378.48
0.40	385.15	380.50	1.000	0.00	2.5064	"	380.50
0.45	300.04	382.51	1.000	0.00	2,5060	и	382.51
9.50	413.38	384.53	1.000	0.00	2.4191	"	384.53
9.55	428.26	386.55	1.000	0.00	2.3350	"	386.55
0.60	443.67	388.56	1.000	0.00	2.2540	"	388.56
0.65	446.03	300.57	1.000	0.00	2.2263	"	300.57
0.70	476.18	302.50	1.000	0.00	2.1001	"	302.50
9.75	493.31	395.01	1.000	0.00	2.0271	"	395.01
0.80	511.07	307.02	1.000	0.00	1.0567	"	307.02
0.85	520.46	300.03	1.000	0.00	1.8887	"	300.03
0.00	548.52	401.05	1.000	0.00	1.8231	"	401.05
0.05	568.25	103.07	1.000	0.00	1.7508	"	403.07
10.00	588.69	405.08	1.000	0.00	r.6987	"	405.08
10.05	600.80	407.00	1.000	0.00	1.6307	ű	407.00
10.10	631.84	400.11	1.000	0.00	1.5827	"	400.11
10.15	654.58	411.13	1.000	0.00	1.5277	"	411.13
10.20	678.14	413.14	1.000	0.00	1.4746	"	413.14
10.25	702.53	415.15	1.000	0.00	1.4234	u	415.15
10.30	727.81	417.17	1.000	0.00	1.3740	"	417.17
10.35	754.01	410.10	I.000	0.00	1.3262	"	410.10
10.40	781.14	421.21	1.000	0.00	1.2802	"	421.21
10.45	800.26	423.23	1.000	0.00	1.2357	"	423.23
10.50	838.38	425.24	1.000	0.00	1.1928	"	425.24

Note. Negative quantities are in heavy type.

Examples.

 $\sinh (10.0 / 45^{\circ}) = \cosh (10.0 / 45^{\circ}) = 588.69 / 405^{\circ}.08'.$ sech (10.0 / 45^{\circ}) = cosech (10.0 / 45^{\circ}) = 1.6987 × 10^{-3} \ 405^{\circ}.08' = 1.6987 × 10^{-3} \ 45^{\circ}.08'. [36]

FUNCTIONS OF SEMI-IMAGINARIES. $f(\rho/45^\circ) = r/\gamma$. Continued,

ρ	Sinh and	cosh	Tanh and	coth	Sech and co	sech
		• /		•		• /
10.55	868.56	427.26	1.000	0.00	1.1513×10-3	427.26
10.60	899.81	429.27	1.000	0.00	1.1113 "	429.27
10.65	932.18	431.29	I.000	0.00	1.0728 "	431.29
10.70	965.74	433.30	1.000	0.00	1.0555 "	433.30
10.75	1,000.5	435.32	1.000	0.00	9.9952×10 ⁻⁴	435.32
10.80	1.036.5	437.33	1.000	0.00	0.6478 "	437.33
10.85	1.073.8	430.35	1.000	0.00	0.3128 "	430.35
10.00	1.112.4	441.36	1.000	0.00	8.0802 "	441.36
10.05	1.152.5	443.38	1.000	0.00	8.6770 "	443.38
11.00	1,194.0	445.39	1.000	0.00	8.3750 "	445.39
11.05	1.237.0	447.41	1.000	0.00 .	8.0845 "	447.41
11.10	1.281.5	440.42	1.000	0.00	7.8027 "	440.42
TTTT	1 227 5	44944	1,000	0.00	7 5227 "	449.42
11.20	1 275 2	452.46	1.000	0.00	7 2711 "	452 46
TT 25	-,3/3·3 T 424 8	453.40	1.000	0.00	7.0184 "	455.40
11.25	1,424.0	433.47	1.000	0.00	7.0104	455.47
11.30	1,476.1	457.48	1.000	0.00	6.7747 "	457.48
11.35	1,529.2	459.50	1.000	0.00	6.5393 "	459.50
11.40	1,584.3	561.52	1.000	0.00	6.3120 "	461.52
11.45	1,641.4	463.53	1.000	0.00	6.0929 "	463.53
11.50	1,700.3	465.54	1.000	0.00	5.8811 "	465.54
11.55	1,761.5	467.56	1.000	0.00	5.6769 "	467.56
11.60	1,824.9	469.57	1.000	0.00	5.4797 "	469.57
11.65	1,890.6	471.59	1.000	0.00	5.2893 "	471.59
11.70	1,958.6	474.01	1.000	0.00	5.1056 "	474.0I
11.75	2,029.1	476.03	1.000	0.00	4.9282 "	476.03
11.80	2,102.1	478.04	1.000	0.00	4.7571 "	478.04
11.85	2,177.8	480.05	1.000	0.00	4.5910 "	480.05
11.90	2,256.1	482.07	I.000	0.00	4.4323 "	482.07
11.95	2,337.3	484.09	1.000	0.00	4.2784 "	484.09
12.00	2,421.5	486.10	I.000	0.00	4.1297 "	486.10
12.05	2,508.6	488.12	1.000	0.00	3.9862 "	488.12
12.10	2,598.9	490.14	1.000	0.00	3.8478 "	490.14
12.15	2,692.6	492.15	1.000	0.00	3.7141 "	492.15
12.20	2,789.0	494.17	1.000	0.00	3.5856 "	494.17
12.25	2,889.7	496.18	1.000	0.00	3.4605 "	496.18
12.30	2,993.7	498.20	1.000	0.00	3.3403 "	498.20
12.35	3,101.4	500.21	1.000	0.00	3.2243 "	500.21
12.40	3,213.1	502.23	1.000	0.00	3.0143 "	502.23
12.45	3,328.3	504.24	1.000	0.00	3.0042 "	504.24
12.50	3,448.5	506.26	1.000	0.00	2.8998 "	506.26
12.55	3,572.6	508.27	1.000	0.00	2.7991 "	508.27
12.60	3,701.1	510.29	1.000	0.00	2.7019 "	510.29
12.65	3,834.3	512.31	1.000	0.00	2.6080 "	512.31
12.70	3,972.6	514.32	I.000	0.00	2.5172 "	514.32
12.75	4,115.3	516.33	I.000	0.00	2.4300 "	516.33

Note. Negative quantities are in heavy type.

Examples. $\sinh(12.0/45^{\circ}) = \cosh(12.0/45^{\circ}) = 2421.5/486^{\circ}.10' = 2421.5/126^{\circ}.10'.$ sech $(12.75/45^{\circ}) = \operatorname{cosech}(12.75/45^{\circ}) = 2.43 \times 10^{-3} \sqrt{516^{\circ}.33'}.$

[37]

442282

FUNCTIONS OF SEMI-IMAGINARIES. $f(\rho/45^{\circ}) = r/\gamma$. Continued

ρ	Sinh an	nd cosh	Tanh an	d coth	Sech and co	osech
		• •		0		• /
12.80	4,263.4	518.35	1.000	0.00	2.3455×10-4	518.35
12.85	4,416.8	520.37	1.000	0.00	2.2641 "	520.37
12.90	4,575.7	522.38	1.000	0.00	2.1854 "	522.38
12.95	4,740.5	524.39	1.000	0.00	2.1095 "	524.39
13.00	4,911.0	526.41	1.000	0.00	2.0362 "	526.41
13.05	5,087.8	528.43	1.000	0.00	1.9655 "	528.43
13.10	5,270.9	530.44	1.000	0.00	1.8972 "	430.44
13.15	5,460.6	532.45	1.000	0.00	1.8313 "	532.45
13.20	5,657.0	534.47	1.000	0.00	1.7677 "	534.47
13.25	5,858.5	536.49	1.000	0,00	1.7061 "	536.49
13.30	6,071.6	538.50	1.000	0.00	1.6470 "	538.50
13.35	6,290.1	540.51	1.000	0.00	1.5898 "	540.51
13.40	6,516.5	542.53	1.000	0.00	1.5346 "	542.53
13.45	6,751.0	544.55	1.000 °	0.00	1.4813 "	544.55
13.50	6,993.9	546.57	1.000	0.00	1.4298 "	546.57
13.55	7,245.5	548.58	1.000	0.00	1.3801 "	548.58
13.60	7,506.4	551.00	1.000	0.00	1.3322 "	551.00
13.65	7,776.4	553.01	1.000	0.00	1.2859 "	553.01
13.70	8,056.4	555.03	1.000	0.00	1.2412 "	555.03
13.75	8,346.2	557.05	1.000	0.00	1.1982 "	557.05
13.80	8,646.7	559.06	1.000	0.00	1.1565 "	559.06
13.85	8,957.8	561.07	1.000	0.00	1.1164 "	561.07
13.90	9,280.3	563.09	1.000	0.00	1.0776 "	563.09
13.95	9,614.1	505.11	1.000	0.00	1.0165 "	505.11
14.00	9,900.2	507.12	1.000	0.00	1.0040 "	507.12
14.05	10,318	569.14	1.000	0.00	9.6914×10 ⁻⁵	569.14
14.10	10,690	571.15	1.000	0.00	9.3547 "	571.15
14.15	11,075	573.16	I.000	0.00	9.0296 "	573.16
14.20	11,473	575.18	1.000	0.00	8.7160 "	575.18
14.25	11,886	577.20	1.000	0.00	8.4132 "	577.20
14.30	12,314	579.21	1.000	0.00	8.1210 "	579.21
14.35	12,757	581.22	1.000	0.00	7.8388 "	581.22
14.40	13,216	583.24	1.000	0.00	7.5666 "	583.24
14.45	13,692	585.26	1.000	0.00	7.3037 "	585.26
14.50	14,184	587.27	1.000	0.00	7.0500 "	587.27
14.55	14,695	589.29	1.000	0.00	6.8050 "	289.29
14.60	15,224	591.30	1.000	0.00	6.5687 "	591.30
14.65	15,772	593.32	1.000	0.00	6.3405 "	593.32
14.70	16,339	595.34	1.000	0.00	6.1203 "	595-34
14.75	16,927	597.35	1.000	0.00	5.9077 "	597.35
14.80	17,536	599.37	1.000	0.00	5.7024 "	599.37
14.85	18,167	601.39	1.000	0.00	5.5044 "	601.39
14.90	18,822	603.40	1.000	0.00	5.3130 "	603.40
14.95	19,498	005.41	1.000	0.00	5.1286 "	005.41
15.00	20,200	007.43	1.000	0.00	4.9504 "	007.43

Note. Negative quantities are in heavy type.

Examples.
$$\sinh (14.0 / 45^{\circ}) = \cosh (14.0 / 45^{\circ}) = 9960.2 / 567^{\circ} . 12'.$$

sech $(14.0 / 45^{\circ}) = \operatorname{cosech} (14.0 / 45^{\circ}) = 1.0040 \times 10^{-4} \sqrt{567^{\circ} . 12'}.$

[38]

FUNCTIONS OF SEMI-IMAGINARIES. $f(\rho / 45^{\circ}) = r / \gamma$. Continued

ρ	Sinh and	l cosh	Tanh and	coth	Sech as	nd cos	ech
		• /		۰			• /
15.05	20,927	609.44	1.000	0.00	4.7785×	10-5	609.44
15.10	21,680	611.46	1.000	0.00	4.6120	"	611.46
15.15	22,460	613.48	1.000	0.00	4.4523	"	613.48
15.20	23,260	615.40	1.000	0.00	4.2080	"	615.40
15.25	24.106	617.50	1.000	0.00	4.1482	"	617.50
-33					44		
15.30	24,973	619.52	1.000	0.00	4.0040	"	619.52
15.35	25,873	021.54	1.000	0.00	3.8651		021.54
15.40	26,802	623.55	I.000	0.00	3.7310	"	623.55
15.45	27,768	625.57	1.000	0.00	3.6012		625.57
15.50	28,765	627.59	1.000	0.00	3.4760	"	627.59
15.55	29,803	630.00	1.000	0.00	3.3554	"	630.00
15.60	30.872	632.02	1.000	0.00	3.2300	"	632.02
15.65	31.087	634.04	1.000	0.00	3.1263	"	634.04
15.70	33.140	636.05	1.000	0.00	3.0170	"	636.05
15.75	34.331	638.06	1.000	0.00	2.0120	u	638.06
-3.13	34933-	0,000		0.00			
15.80	35,569	640.08	1,000	0.00	2.8110		640.08
15.85	36,846	642.10	1.000	0.00	2.7140	**	642.10
15.90	38,174	644.11	1,000	0.00	2.6200	"	644.11
15.95	39,546	646.12	1.000	0.00	2.5287	"	646.12
16.00	40,970	648.14	1.000	0.00	2.4410	и	648.14
16.05	42.443	650.16	1.000	0.00	2.3561	u	650.16
16.10	43.071	652.17	1.000	0.00	2.2740	"	652.17
16.15	45.552	654.18	1.000	0.00	2.1052	"	654.18
16.20	47 102	656.20	1.000	0.00	2.1100	"	656.20
16.25	48 800	658.22	1.000	0.00	2.0454	"	658.22
10123	40,090	0,00122			+3+		
16.30	50,649	660.23	1.000	0.00	1.9740	"	660.23
16.35	52,473	662.24	1.000 .	0.00	1.9055		662.24
16.40	54,359	664.26	1.000	0.00	1.8400		664.26
16.45	56,316	666.28	1.000	0.00	1.7757		666.28
16.50	58,475	668.29	1.000	0.00	1.7100	"	668.29
16.55	60,444	670.31	1.000	0.00	1.6544	"	670.31
16.60	62.610	672.32	1.000	0.00	1.5060	"	672.32
16.65	64.872	674.34	1.000	0.00	1.5415	"	674.34
16.79	57.208	676.35	1.000	0.00	1.4870	"	676.35
16.75	69,626	678.36	1.000	0.00	1.4362	и	678.36
-6.80	50 X 20	680 28	1 000	0.00	T 2862	"	680.28
10.80	72,132	680.30	1.000	0.00	1.3003	"	682.40
10.05	14,127	684.47	1.000	0.00	1.3302	"	684 41
10.90	77,410	686 40	1.000	0.00	T 2468	u	686 42
10.95	00,203	600.43	1.000	0.00	1.2400	"	688 47
17.00	03,000	000.45	1,000	0.00	1.2035		000.45
17.05	86,080	690.47	1.000	0.00	1.1617	"	690.47
17.10	89,176	692.48	1.000	0.00	1.1214	"	092.48
17.15	92,387	694.49	1.000	0.00	1.0824		094.49
17.20	95,711	696.51	1.000	0.00	1.0448	"	090.51
17.25	99,149	698.53	I.000	0.00	1.0086	•6	698.53

Note. Negative quantities are in heavy type.

Examples. $\sinh(17.0 / 45^{\circ}) = \cosh(17.0 / 45^{\circ}) = 83,088 / 688^{\circ}.45' = 83,088 / 328^{\circ}.45'.$ sech $(17.0 / 45^{\circ}) = \operatorname{cosech}(17.0 / 45^{\circ}) = 1.2035 \times 10^{-5} \sqrt{688^{\circ}.45'}.$

FUNCTIONS OF SEMI-IMAGINARIES. $f(\rho/45^{\circ}) = r/\gamma$. Continued

ρ	Sinh and	d cosh	Tanh at	nd coth	Sech and co	osech
		• /		•		• •
17.30	102,720	700.54	1.000	0.00	0.7340×10-6	700.54
17.35	106,420	702.55	1.000	0.00	9.3068 "	702.55
17.40	110.250	704.57	1.000	0.00	0.0703 "	704.57
17.45	114.220	706.50	1.000	0.00	8.7551 "	706.50
17.50	TT8.220	700.00	T.000	0.00	8.4510 "	700.00
17:30	110,330	7-91-0	11000	0.00	0.4310	109.00
17.55	122,590	711.01	1.000	0.00	8.1576 "	711.01
17.60	127,000	713.03	1.000	0.00	7.8741 "	713.03
17.65	131,570	715.05	1.000	0.00	7.6006 "	715.05
17.70	136,300	717.06	I.000	0.00	7.3365 "	717.06
17.75	141,210	719.07	1.000	0.00	7.0817 "	719.07
17.80	146,200	721.00	1.000	0.00	6.8356 "	721.00
17.85	151.550	723.11	T.000	0.00	6.5082 "	723.11
17.00	157 000	725 12	τ.000	0.00	6 2710 "	725 12
17.95	162 660	727 12	1,000	0.00	6 1478 "	723.12
17.95	102,000	727.13	1.000	0.00	5.0282 "	727.13
13.00	100,520	729.15	1.000	0.00	5.9303	729.15
18.05	174,580	731.17	1.000	0.00	5.7281 "	731.17
18.10	180,860	733.18	1.000	0.00	5.5292 "	733.18
18.15	183,530	735.20	1.000	0.00	5.4488 "	735.20
18.20	104.110	737.21	1.000	0.00	5.1517 "	737.21
18.25	201,100	739.23	1.000	0.00	4.9727 "	739.23
- 2			* * * *		. 9	
18.30	208,330	741.24	1.000	0.00	4.8000 "	741.24
18.35	215,830	743.20	1.000	0.00	4.0332 "	743.20
18.40	223,000	745.27	1.000	0.00	4.4723 "	745.27
18.45	231,050	747-29	1.000	0.00	4.3108 "	747.29
18.50	239,980	749.31	1.000	0.00	4.1671 "	749.31
18.55	248,620	751.32	1.000	0.00	4.0222 "	751.32
18.60	257,570	753.34	1.000	0.00	3.8825 "	753.34
18.65	266.840	755.35	1.000	0.00	3.7476 "	755.35
18.70	276.440	757.37	1.000	0.00	3.6174 "	757.37
18.75	286.300	750.38	1.000	0.00	3.4018 "	750.38
		139.0-			5-49-0	109.00
18.80	296,690	761.40	1.000	0.00	3.3628 "	761.40
18.85	307,380	763.41	1.000	0.00	3.2533 "	763.41
18.90	318,570	765.43	1.000	0.00	3.1404 "	765.43
18.95	329,890	767.44	1.000	0.00	3.0313 "	767.44
19.00	341,770	769.46	1.000	0.00	2.9260 "	769.46
10.05	354.060	771.47	1.000	0.00	2.8244 "	771.47
10.10	366,810	773.40	1.000	0.00	2.7262 "	773.40
10.15	380.010	775.50	1.000	0.00	2.6315 "	775.50
10.20	303,600	777.52	1.000	0.00	2.5401 "	777.52
10.25	407.850	770.52	1.000	0.00	2 4510 "	770.52
-93		119.33	1.000	0.00		119.23
19.30	422,530	781.55	1.000	0.00	2.3667 "	781.55
19.35	437,730	783.57	I.000	0.00	2.2845 "	783.57
19.40	453,490	785.59	1.000	0.00	2.2051 "	785.59
19.45	469,810	788.00	1.000	0.00	2.1285 "	788.00
19.50	486,720	700.02	1.000	0.00	2.0546 "	790.02

Note. Negative qyantities are in heavy type.

Examples. $\sinh (19.05 / 45^{\circ}) = \cosh (19.05 / 45^{\circ}) = 354,060 / 771^{\circ}.47' = 354,060 / 51^{\circ}.47'.$ $\operatorname{sech} (19.30 / 45^{\circ}) = \operatorname{cosech} (19.3 / 45^{\circ}) = 2.3667 \times 10^{-6} \sqrt{781^{\circ}.55'}.$

[40]

FUNCTIONS OF SEMI-IMAGINARIES. $f(\rho/45^{\circ}) = r/\gamma$. Continued

ρ	Sinh an	d cosh	Tanh ai	nd coth	Sech and cosech		
		• •		•		• •	
19.55	504,230	792.03	I.000	0.00	1.9832×10 ⁻⁶	792.03	
19.60	522,380	794.05	I.000	0.00	1.0153 "	794.05	
19.65	541,220	796.06	1.000	0.00	1.8478 "	796.06	
10.70	560,650	798.08	1.000	0.00	1.7837 "	798.08	
19.75	599,830	800.09	1.000	0.00	1.6671 "	800.09	
19.80	601,730	802.11	1.000	0.00	1.6610 "	802.11	
19.85	623,300	804.12	1.000	0.00	1.6041 "	804.12	
19.90	645,820	806.14	1.000	0.00	1.5484 "	806.14	
19.95	669,070	808.15	1.000	0.00	1.4046 "	808.15	
20.00	693,150	810.17	1.000	0.00	1.4426 "	810.17	
20.05	718,000	812.18	1.000	0.00	1.3926 "	812.18	
20.10	743,930	814.20	1.000	0.00	1.3442 "	814.20	
20.15	770,710	816.21	1.000	0.00	1.2975 "	816.21	
20.20	798,440	818.23	I.000	0.00	1.2525 "	818.23	
20.25	827,160	820.24	1.000	0.00	1.2090 "	820.24	
20.30	856,940	822.26	1.000	0.00	1.1669 "	822.26	
20.35	887,770	824.27	1.000	0.00	1.1264 "	824.27	
20.40	919,730	826.29	1.000	0.00	1.0873 "	826.29	
20.45	952,820	828.30	1.000	0.00	1.0496 "	828.30	
20.50	987,120	830.32	1.000	0.00	1.0130 "	830.32	

Note. Negative quantities are in heavy type.

٨

Example. sinh $(20.0 / 45^{\circ}) = \cosh(20.0 / 45^{\circ}) = 693,150 / 810^{\circ}.17' = 693,150 / 90^{\circ}.17'$.

q	x	= 0	<i>x</i> =	0.05	<i>x</i> =	0.1	x =	0.15	<i>x</i> =	0.2
0.0	0.00	0.00	0.05002	0.00	0.10017	0.00	0.15056	0.00	0.20134	0.00
0.05	0.00	0.07846	0.04987	0.07856	0.09986	0.07885	0.15010	0.07934	0.20072	0.08003
0.1	0.00	0.15643	0.04945	0.15663	0.09893	0.15722	0.14871	0.15820	0.19886	0.15957
0.15	0.00	0.23345	0.04864	0.23374	0.09740	0.23461	0.14640	0.23608	0.19577	0.23813
0.2	0.00	0.30902	0.04757	0.30940	0.09526	0.31056	0.14319	0.31250	0.19148	0.31522
0.25	0.00	0.38268	0.04621	0.38316	0.00254	0.38460	0.13010	0.38700	0.18601	0.30036
0.3	0.00	0.45399	0.04457	0.45454	0.08925	0.45626	0.13415	0.45911	0.17939	0.46310
0.35	0.00	0.52250	0.04265	0.52313	0.08541	0.52511	0.12838	0.52839	0.17167	0.53298
0.4	0.00	0.58778	0.04047	0.58850	0.08104	0.59073	0.12181	0.59441	c.16288	0.59958
0.45	0.00	0.64944	0.03804	0.65023	0.07617	0.65270	0. 11449	0.65677	0.15310	0.66248
0.5	0.00	0.70711	0.03537	0.70796	0.07083	0.71065	0.10646	0.71508	0.14237	0.72130
0.55	0.00	0.76041	0.03249	0.76133	0.06505	0.76421	0.09778	0.76898	0.13076	0.77567
0.6	0.00	0.80002	0.02940	0.81000	0.05888	0.81307	0.08850	0.81814	0.11834	0.82525
0.65	0.00	0.85264	0.02614	0.85367	0.05234	0.85601	0.07867	0.86225	0.10520	0.86975
0.7	0.00	0.89101	0.02271	0.89208	0.04547	0.89547	0.06835	0.90105	0.09141	0.90889
0.75	0.00	0.92388	0.01914	0.92503	0.03833	0.92850	0.05762	0.03420	0.07705	0.94242
0.8	0.00	0.95106	0.01546	0.95225	0.03095	0.95582	0.04653	0.96178	0.06222	0.97014
0.85	0.00	0.97237	0.01168	0.97359	0.02338	0.97724	0.03515	0.08333	0.04700	0.99188
0.0	0.00	0.98769	0.00783	0.98892	0.01567	0.99263	0.02355	0.00882	0.03150	1.00751
0.95	0.00	0.99692	0.00392	0.99816	0.00786	1.00191	0.01181	1.00815	0.01580	1.01692
1.0	0.00	1.00000	0.00	1.00125	0.00	1.00500	0.00	1.01127	0.00	1.02007
1.05	0.00	0.99692	0.00392	0.99816	0.00786	1.00191	0.01181	1.00815	0.01580	1.01692
I.I	0.00	0.98769	0.00783	0.98892	0.01567	0.99263	0.02355	0.99882	0.03150	1.00751
1.15	0.00	0.97237	0.01168	0.97359	0.02338	0.97724	0.03515	0.98333	0.04700	0.99188
1.2	0.00	0.95106	0.01546	0.95225	0.03095	0.95582	0.04653	0.96178	0.06222	0.97014
1.25	0.00	0.92388	0.01914	0.92503	0.03833	0.92850	0.05762	0.93429	0.07705	0.94242
1.3	0.00	0.89101	0.02271	0.89208	0.04547	0.89547	0.06835	0.90105	0.09141	0.90889
1.35	0.00	0.85264	0.02614	0.85367	0.05234	0.85691	0.07867	0.86225	0.10520	0.86975
1.4	0.00	0.80902	0.02940	0.81000	0.05888	0.81307	0.08850	0. 81814	0.11834	0.82525
1.45	0.00	0.76041	0.03249	0.76133	0.06505	0.76421	0.09778	0. 76898	0.13076	0.77567
1.5	0.00	0.70711	0.03537	0.70796	0.07083	0.71065	0.10646	0.71508	0.14237	0.72130
1.55	0.00	o. 64944	0.03804	0.65023	0.07617	0.65270	0.11449	0.65677	0.15310	0. 66248
1.6	0.00	0.58778	0.04047	0.58850	0.08104	0.59073	0.12181	0.59441	0.16288	0.59958
1.65	0.00	0.52250	0.04265	0.52313	0.08541	0.52511	0.12838	0.52839	0.17167	0.53298
1.7	0.00	0.45399	0.04457	0.45454	0.08925	0.45626	0.13415	0.45911	0.17939	0.46310
1.75	0.00	0.38268	0.04621	0.38316	0.09254	0.38460	0.13910	0.38700	0.18601	0.39036
1.80	0.00	0.30902	0.04757	0.30940	0.09526	0.31056	0.14319	0.31250	0.19148	0.31522
1.85	0.00	0.23345	0.04864	0.23374	0.09740	0.23461	0.14640	0.23608	0.19577	0.23813
1.9	0.00	0.15643	0.04945	0.15663	0.09893	0.15722	0.14871	0.15820	0.19886	0.15957
1.95	0.00	0.07845	0.04987	0.07856	0.09986	0.07885	0.15010	0.07934	0.20072	0.08003
2.0	0.00	0.00	0.05002	0.00	0.10017	0.00	0.15056	0.00	0.20134	0.00

Note.

Negative quantities are in heavy type.

Examples. $\sinh(0.1 + i \underline{0.5}) = 0.07083 + i 0.71065.$ $\sinh(0.1 + i \frac{1.2}{1.2}) = -0.03095 + i 0.95582.$

[42]

q	x = c	0.25	x =	0.3	x = c	0.35	x =	0.4	x =	0.45
	,									
0	0.25201	0.00	0.30452	0.00	0.35719	0.00	0.41075	0.00	0.40534	0.00
0.05	0.25183	0.08092	0.30358	0.08202	0.35009	0.08331	0.40949	0.08482	0.46391	0.08654
0.1	0.24950	0.10135	0.30077	0.16353	0.35279	0.16611	0.40570	0.16912	0.45961	0.17254
0.15	0.24503	0.24078	0.29011	0.24403	0.34732	0.24789	0.39940	0.25237	0.45249	0.25748
0.2	0.24025	0.31872	0.28962	0.32303	0.33971	0.32814	0.39065	0.33407	0.44257	0.34084
0.25	0.23338	0.30471	0.28134	0.40003	0.33000	0.40636	0.37040	0.41371	0.42002	0.42200
0.3	0.22508	0.46825	0.27133	0.47457	0.31826	0.48208	0.36508	0.40080	0.41462	0.50074
0.35	0.21530	0.53801	0.25065	0.54610	0.30455	0.55483	0.35022	0.56486	0.30677	0.57630
0.4	0.20437	0.60625	0.24636	0.61444	0.28807	0.62416	0.33231	0.62544	0.37647	0.64821
0.45	0.10208	0.66085	0.23156	0.67880	0.27161	0.68064	0.31234	0.70210	0.35285	0.71622
				,,	,				0.33303	0.71032
0.5	0.17862	0.72932	0.21533	0.73917	0.25257	0.75086	0.29045	0.76443	0.32905	0.77992
0.55	0.16406	0.78429	0.19777	0.79488	0.23198	0.80746	0.26676	0.82206	0.30222	0.83871
0.6	0.14848	0.83443	0.17899	0.84570	0.20995	0.85908	0.24143	0.87461	0.27352	0.89232
0.65	0.13199	0.87942	0.15911	0.89130	0.18663	0.90540	0.21462	0.92177	0.24314	0.94044
0.7	0.11468	0.91900	0.13825	0.93140	0.16216	0.94614	0.18648	0.96324	0.21126	0.98275
0.75	0.00667	0.05200	0.11654	0.06577	0.12660	0.08105	0 15710	0.00878	0 17808	1 01001
0.75	0.03801	0.032002	0.00410	0.00418	0.13009	1.00001	0.13/19	1.02816	0.1/000	T.01901
0.85	0.07807	1.00202	0.07100	1.01646	0.08228	1.00991	0.12093	1.02010	0.14300	1.04099
0.05	0.03097	1.00292	0.07100	1.01040	0.00330	1.03254	0.09309	1.05120	0.10003	1.0/230
0.9	0.03932	1.010/1	0.04704	1.03247	0.03300	1.04000	0.00420	1.00770	0.07200	1.00939
0.95	0.01902	1.02023	0.02309	1.04212	0.02003	1.03000	0.03223	1.0///4	0.03031	1.09957
1.0	0.00	1.03141	0.00	1.04534	0.00	1.06188	0.00	1.08107	0.00	1.10297
1.05	0.01982	1.02823	0.02389	1.04212	0.02803	1.05860	0.03223	1.07774	0.03651	1.09957
1.1	0.03952	1.01871	0.04764	1.03247	0.05588	1.04880	0.06426	1.06776	0.07280	1.08939
1.15	0.05897	1.00292	0.07109	1.01646	0.08338	1.03254	0.09589	1.05120	0.10863	1.07250
1.2	0.07801	0.98093	0.09410	0.99418	0.11038	1.00991	0.12693	1.02816	0.14380	1.04899
1.25	0.00667	0.05200	0.11654	0.06577	0.13660	0.08105	0.15710	0.00878	0.17808	1.01001
1.23	0 11468	0.01000	0 12825	0.02140	0 16216	0.04614	0 18648	0.06224	0.21126	0.08275
1.3	0.12100	0.87042	0.15011	0.93140	0.18662	0.00540	0.21462	0.02177	0.24214	0.04044
1.35	0.13199	0.82442	0.17800	0.84570	0.20005	0.85008	0.24142	0.92177	0 27252	0 80222
1.4 7.4	0.14040	0.03443	0.10777	0.70488	0.20993	0.03900	0.24143	0.82206	0.27332	0.82871
1.45	0.10400	0.70429	0.19777	0.79400	0.23190	0.00740	0.20070	0.02200	0.30222	0.03071
1.5	0.17862	0.72932	0.21533	0.73917	0.25257	0.75086	0.29045	0.76443	0.32905	0.77992
1.55	0.19208	0.66985	0.23156	0.67889	0.27161	0.68964	0.31234	0.70210	0.35385	0.71632
1.6	0.20437	0.60625	0.24636	0.61444	0.28897	0.62416	0.33231	0.63544	0.37647	0.64831
1.65	0.21530	0.53801	0.25065	0.54610	0.30455	0.55483	0.35022	0.56486	0.39677	0.57630
1.7	0.22508	0.46825	0.27133	0.47457	0.31826	0.48208	0.36598	0.49080	0.41462	0.50074
	0 00000	0 20477	0.08724	0.40003	0 22000	0.40626	0.27040	0 41 271	0 42002	0 4 2 2 0 0
1.75	0.23330	0.39471	0.20134	0.40003	0.33000	0.22814	0.37949	0.413/1	0.44255	0.42209
1.0	0.24025	0.31072	0.20902	0.32303	0.33971	0.32014	0.39005	0.33407	0.44257	0.34004
1.05	0.24503	0.24078	0.29011	0.24403	0.34732	0.24709	0.39940	0.25237	0.45249	0.25/40
1.9	0.24950	0.10135	0.30077	0.10353	0.35279	0.10011	0.40570	0.10912	0.45901	0.1/234
1.95	0.25183	0.08092	0.30358	0.08202	0.35009	0.08331	0.40949	0.00402	0.40391	0.00054
2.0	0.25261	0.00	0.30452	0.00	0.35719	0.00	0.41075	0.00	0.46534	0.00

Note. Negative quantities are in heavy type.

Examples. $\sinh(0.4 + i \circ) = 0.41075 + i \circ$.

 $\sinh(0.4 + i \underline{1}) = 0. + i 1.08107.$

q	x =	0.5	x =	0.55	x =	0.6	x =	0.65	x =	0.7
0	0.52110	0.00	0.57815	0.00	0.63665	0.00	0.69675	0.00	0.75858	0.00
0.05	0.51949	0.08847 =	0.57637	0.09063	0.63469	0.09301	0.69460	0.09563	0.75625	0.09848
0.1	0.51468	0.17640	0.57103	0.18070	0.62882	0.18545	0.68817	0.19066	0.74925	0.19635
0.15	0.50670	0.26324	0.56218	0.26965	0.61906	0.27674	0.67750	0.28452	0.73763	0.29301
0.2	0.49559	0.34846	0.54986	0.35695	0.60549	0.36633	0.66265	0.37663	0.72146	0.38787
0.25	0.48143	0.43152	0.53414	0.44204	0.58819	0.45366	0.64371	0.46641	0.70084	0.48033
0.3	0.46430	0.51193	0.51514	0.52441	0.56726	0.53819	0.62081	0.55332	0.67590	0.56984
0.35	0.44431	0.58918	0.49296	0.60354	0.54284	0.61940	0.59408	0.63682	0.64680	0.65582
0.40	0.42158	0.66280	0.46773	0.67895	0.51506	0.69680	0.56368	0.71639	0.61371	0.73777
0.45	0.39624	0.73233	0.43963	0.75018	0.48412	0.76990	0.52981	0.79154	0.57683	0.81517
0.5	0.36847	0.79735	0.40882	0.81678	0.45018	0.83825	0.49268	0.86182	0.53640	0.88754
0.55	0.33842	0.85745	0.37548	0.87835	0.41347	0.90144	0.45250	0.92678	0.49266	0.95444
0.6	0.30629	0.91227	0.33983	0.93450	0.37422	0.95906	0.40954	0.98602	0.44589	1.01545
0.65	0.27227	0.96146	0.30208	0.98489	0.33265	1.01078	0.36405	1.03919	0. 39636	1.07021
0.7	0.23657	1.00472	0.26248	1.02920	0.28904	1.05626	0.31632	1.08595	0.34439	1.11836
0.75	0.19942	1.04179	0.22125	1.06717	0.24364	1.09523	0. 26663	1.12602	0.29030	1.15962
0.8	0.16103	1.07244	0. 17866	1.09857	0.19674	1.12744	0.21531	1.15912	0.23442	1.19374
0.85	0.12165	1.09647	0.13497	1.12319	0.14862	1.15271	0.16265	1.18512	0.17709	1.22049
0.9	0.08152	1.11374	0.09044	1.14088	0.09959	1.17087	0.10900	1.20379	0.11867	1.23972
0.95	0.04088	1.12415	0.04530	1.15154	0.04995	1.18181	0.05407	1.21504	0.05952	1.25130
1.0	0.00	1.12763	0.00	1.15510	0.00	1.18547	0.00	1.21879	0.00	1.25517
1.05	0.04088	1.12415	0.04536	1.15154	0.04995	1.18181	0.05467	1.21504	0.05952	1.25130
1.1	0.08152	1.11374	0.09044	1.14088	0.09959	1.17087	0.10900	1.20379	0.11867	1.23972
1.15	0.12165	1.09647	0.13497	1.12319	0.14862	1.15271	0.16265	1.18512	0.17709	1.22049
1.2	0.10103	1.07244	0.17800	1.09857	0.19074	1.12744	0.21531	1.15912	0.23442	1.19374
1.25	0.19942	1.04179	0.22125	1.06717	0.24364	1.09523	0.26663	1.12602	0.29030	1.15962
1.3	0.23657	1.00472	0.26248	1.02920	0.28904	1.05626	0.31632	1.08595	0.34439	1.11836
1.35	0.27227	0.96146	0.30208	0 .98489	0.33265	1.01078	0.36405	1.03919	0.39636	1.07021
I.4	0.30629	0.91227	0.33983	0.93450	0.37422	0.95906	0.40954	0. 986 0 2	0.44589	1.01545
1.45	0.33842	0.85745	0.37548	0.87835	0.41347	0.90144	0.45250	0.92678	0.49266	0.95444
1.5	0.36847	0.79735	0.40882	0.81678	0.45018	0.83825	0.49268	0.86182	0.53640	0.88754
1.55	0.39624	0.73233	0.43963	0.75018	0.48412	0.76990	0.52981	0.79154	0.57683	0.81517
1.6	0.42158	0.66280	0.46773	0.67895	0.51506	0.69680	0.56368	0.71639	0.61371	0.73777
1.65	0.44431	0.58918	0.49296	0.60354	0.54284	0.61940	0.59408	0.63682	0.64680	0.65582
1.7	0.46430	0.51193	0.51514	0.52441	0.56726	0.53819	0.62081	0.55332	0.67590	0.56984
1.75	0.48143	0.43152	0.53414	0.44204	0.58819	0.45366	0.64371	0.46641	0.70084	0.48033
1.8	0.49559	0.34840	0.54986	0.35095	0.00549	0.36633	0.66265	0.37663	0.72146	0.38787
1.85	0.50070	0.20324	0.50218	0.20905	0.01906	0.27074	0.67750	0.28452	0.73763	0.29301
1.9	0.51408	0.17040	0.57103	0.18070	0.02882	0.18545	0.68817	0.19066	0.74925	0.19635
1.95	0.51949	0.08847	0.57037	0.09003	0.03409	0.09301	0.09400	0.09503	0.75025	0.09848
2.0	0.52110	0.00	0.57815	0.00	0.63665	0.00	0.69675	0.00	0.75858	0.00

Note.

Negative quantities are in heavy type.

Examples. $\sinh (0.65 + i \underline{0.75}) = 0.26663 + i 1.12602.$ $\sinh (0.55 + i \underline{1.40}) = -0.33983 + i 0.93450.$

q	<i>x</i> =	0.75	<i>x</i> =	0.8	<i>x</i> =	0.85	<i>x</i> =	0.9	<i>x</i> =	0.95
0	0.82232	0.00	0.88811	0.00	0.95612	0.00	1.02652.	0.00	1.00048	0.00
0.05	0.81978	0.10158	0.88537	0.10493	0.95317	0.10855	1.02335	0.11244	1.00610	0.11661
0.1	0.81219	0.20253	0.87717	0.20922	0.94435	0.21643	1.01388	0.22418	1.08595	0.23250
0.15	0.79960	0.30224	0.86357	0.31222	0.92970	0.32298	0.99816	0.33455	1.06911	0.34695
0.2	0.78207	0.40079	0.84464	0.41329	0.90932	0.42753	0.97628	0.44285	1.04567	0.45927
0.25	0.75972	0.49545	0.82050	0.51182	o.88334	0.52945	0.9 4838	0.54842	1.01579	0.56875
0.3	0.73269	0.58777	0.79131	0.60718	0.85191	0 .62811	0.91463	0. 65061	0.97965	0.67473
0.35	0.70114	0.67647	0.75724	0. 69881	0.81522	0.72289	0.87525	0.74879	0.93747	0.77655
0.4	0.66527	0.76100	0.71849	0.78613	0.77351	0.81322	0.83047	0.84235	0.88950	0.87358
0.45	0.62529	0.84083	0.67532	0.86859	0.72704	0.89853	0.78057	0.93071	0.83605	0.96523
0.5	0.58146	0.91548	0.62799	0.94571	o.67608	0.97830	0.72586	1.01334	0.77745	1.05092
0.55	0.53405	0. 98449	0.57678	1.01700	0.62095	1.05205	o. 66667	1.08973	0.71406	1.13013
0.6	0.48335	1.04742	0.52202	1.08201	0.56199	1.11930	0.60337	1.15939	0. 64621	1.20238
0.65	0.4 2966	1.10390	0.46403	1.14035	0.49957	1.17965	0.53635	I.22191	0.57448	1.26722
0.7	0.37332	1.15356	0.40319	1.19166	0.43407	1.23274	0.46603	1.27689	0. 49916	1.32425
0.75	0. 31469	1.19613	o .33986	1.23563	0.36589	1.27822	0.39283	1.32400	0.42076	1.37309
0.8	0.25411	1.23132	0.27444	1.27198	0.29546	1.31582	0.31721	1.36294	0.33976	1.41348
0.85	0.19197	1.25891	0.20732	1.30048	0.22320	1.34530	0.23964	1.39349	0.25667	1.44516
0.9	0.12864	1.27874	0.13893	1.32097	0.14957	1.36650	0.16058	1.41544	0.17200	1.46793
0.95	0.06452	1.29069	0.06968	1.33331	0.07502	1.37927	0.08054	1.42867	0.08627	1.48164
1.0	0.00	1.29468	0.00	1.33743	0.00	1.38353	0.00	1.43309	0.00	1.48623
1.05	0.06452	1.29069	0.06968	1,33331	0.07502	1.37927	0.08054	1.42867	0.08627	1.48164
1.1	0.12864	1.27874	0.13893	1.32097	0.14957	1.36650	0.16058	1.41544	0.17200	1.46793
1.15	0.19197	1.25891	0.20732	1.30048	0.22320	1.34530	0.23964	1.39349	0.25667	1.44516
ï.2	0.25411	1.23132	0.27444	1.27198	0.29546	1.31582	0.31721	1.36294	0.33976	1.41348
1.25	0.31469	1.19613	0.33986	1.23563	0.36589	1.27822	0.39283	1.32400	0.42076	1.37309
1.3	0.37332	1.15356	0.40319	1.19166	0.43407	1.23274	0.46603	1.27689	0.49916	1.32425
1.35	0.42966	1.10390	0.46403	1.14035	0.49957	1.17965	0.53635	1.22191	0.57448	1.20722
1.4	0.48335	1.04742	0.52202	1.08201	0.56199	1.11930	0.60337	1.15939	0.64621	1.20238
1.45	0.53405	0.98449	0.57678	1.01700	0.62095	1.05205	0.66667	1.08973	0.71406	1.13013
1.5	0.58146	0.91548	0.62799	0.94571	0.67608	0.97830	0.72586	1.01334	0.77745	1.05092
1.55	0.62529	0.84083	0.67532	0.86859	0.72704	0.89853	0.78057	0.03071	0.83605	0.96523
1.6	0.66527	0.76100	0.71849	0.78613	0.77351	0.81322	0.83047	0.84235	0.88950	0.87358
1.65	0.70114	o .67647	0.75724	0.69881	0.81522	0.72289	0.87525	0.74879	0.93747	0.77655
1.7	0.73269	0.58777	0.79131	0.60718	0.85191	0.62811	0.91463	0.65061	0.97965	0.67473
1.75	0.75972	0.49545	0.82050	0.51182	0.88334	0.52945	0.94838	0.54842	1.01579	0.56875
1.8	0.78207	0.40079	0.84464	0.41329	0.90932	0.42753	0.97628	0.44285	1.04567	0.45927
1.85	0.79960	0.30224	0.86357	0.31222	0.92970	0.32298	0.99816	0.33455	1.06911	0.34695
1.9	0.81219	0.20253	0.87717	0.20922	0.94435	0.21643	1.01388	0.22418	1.08595	0.23250
1.95	0.81978	0.10158	0.88537	0.10493	0.95317	0.10855	1.02335	0.11244	1.09610	0.11661
2.0	0.82232	0.00	0.88811	0.00	0.95612	0.00	1.02652	0,00	1.09948	0.00

Note.

Negative quantities are in heavy type.

Examples. $\sinh (0.8 + i 0.7) = 0.40319 + i 1.19166.$ $\sinh (0.8 + i 1.7) = -0.79131 + i 0.60718.$

.

q	x =		<i>x</i> =	1.05	<i>x</i> =	1.1	<i>x</i> =	1.15	<i>x</i> =	1.2
0	1.17520	0.00	1.25386	0.00	1.33565	0.00	1.42078	0.00	1.50946	0.00
0.05	1.17158	0.12107	1.24999	0.12583	1.33153	0.13091	1.41640	0.13632	1.50481	0.14206
0.1	1.16073	0.24139	1.23842	0.25089	1.31920	0.26101	1.40329	0.27179	1.49088	0.28325
0.15	1.14273	0.36023	1.21921	0.37440	1.29875	0.38951	1.38152	0.40559	1.46776	0.42269
0.2	1.11768	0.47684	1.19249	0.49560	1.27028	0.51560	1.35124	0.53689	1.43558	0.55952
0.25	1.08574	0.59051	1.15841	0.61375	1.23398	0.63852	1.31263	0.66488	1.39456	0.69291
0.3	1.04711	0.70055	1.11719	0.72811	1.19007	0.75749	1.26592	0.78877	1.34494	0.82202
0.35	1.00202	0.80626	1.06909	0.83798	1.13883	0.87180	1.21141	0.90780	1.28703	0.94607
0.4	0.95076	0.90700	1.01439	0.94269	1.08056	0.98073	1.14943	1.02123	1.22118	1.06428
0.45	0.89363	1.00215	0.95344	1.04158	1.01564	1.08362	1.08037	1.12836	1.14781	1.71593
0.5	0.83099	1.09112	0.88661	1.13405	0.94445	1.17982	1.00464	1.22854	1.06735	1.28033
0.55	0.76323	1.17337*	0.81432	1.21953	0.86743	1.26875	0.92272	1.32114	0.98032	1.37684
0.6	0.69077	1.24838	0.73700	1.29750	0.78508	1.34986	0.83511	1.40560	0.88724	1.46485
0.65	0.61404	1.31569	0.65514	1.36746	0.69787	1.42265	0.74235	1.48139	0.78869	1.54384
0.7	0.53353	1.37490	0.56924	1.42899	0.60637	1.48666	0.64502	1.54805	0.68528	1.61331
0.75	0.44973	1.42562	0.47983	1.48171	0.51113	1.54151	0.54371	1.60517	0.57765	1.67283
0.8	0.36316	1.46756	0.38746	1.52530	0.41274	1.58685	0.43904	1.65238	0.46645	1.72204
0.85	0.27435	1.50045	0.29271	1.55948	0.31180	1.62242	0.33167	1.68941	0.35238	1.76063
0.9	0.18384	1.52408	0.19615	1.58405	0.20894	1.64798	0.22226	1.71602	0.23613	1.78836
0.95	0.09221	1.53832	0.09838	1.59885	0.10479	1.66337	0.11147	1.73206	0.11843	1.80507
1.0	0.00	1.54308	0.00	1.60379	0.00	1.66852	0.00	1.73741	0.00	1.81066
1.05	0.09221	1.53832	0.09838	1.59885	0.10479	1.66337	0.11147	1.73206	0.11843	1.80507
1.1	0.18384	1.52408	0.19615	1.58405	0.20894	1.64798	0.22226	1.71602	0.23613	1.78836
1.15	0.27435	1.50045	0.29271	1.55948	0.31180	1.62242	0.33167	1.68941	0.35238	1.76063
1.2	0.36316	1.46756	0.38746	1.52530	0.41274	1.58685	0.43904	1.65238	0.46645	1.72204
1.25	0.44973	1.42562	0.47983	1.48171	0.51113	1.54151	0.54371	1.60517	0.57765	1.67283
1.3	0.53353	1.37490	0.56924	1.42899	0.60637	1.48666	0.64502	1.54805	0.68528	1.61331
1.35	0.61404	1.31569	0.65514	1.36746	0.69787	1.42265	0.74235	1.48139	0.78869	1.54384
1.4	0.69077	1.24838	0.73700	1.29750	0.78508	1.34986	0.83511	1.40560	0.88724	1.46485
1.45	0.76323	1.17337	0.81432	1.21953	0.86743	1.26875	0.92272	1.32114	0.98032	1.37684
1.5	0.83099	1.09112	0.88661	1.13405	0.94445	1.17982	1.00464	1.22854	1.06735	1.28033
1.55	0.89363	1.00215	0.95344	1.04158	1.01564	1.08362	1.08037	1.12836	1.14781	1.17593
1.6	0.95076	0.90700	1.01439	0.94269	1.08056	0.98073	1.14943	1.02123	1.22118	1.06428
1.65	1.00202	0.80626	1.06909	0.83798	1.13883	0.87180	1.21141	0.90780	1.28703	0.94607
1.7	1.04711	0.70055	1.11719	0.72811	1.19007	0.75749	1.26592	0.78877	1.34494	0.82202
1.75	1.08574	0.59051	1.15841	0.61375	1.23398	0.63852	1.31263	0.66488	1.39456	0.69291
1.8	1.11768	0.47684	1.19249	0.49560	1.27028	0.51560	1.35124	0.53689	1.43558	0.55952
1.85	1.14273	0.36023	1.21921	0.37440	1.29875	0.38951	1.38152	0.40559	1.46776	0.42269
1.9	1.16073	0.24139	1.23842	0.25089	1.31920	0.26101	1.40329	0.27179	1.49088	0.28325
1.95	1.17158	0.12107	1.24999	0.12583	1.33153	0.13091	1.41640	0.13632	1.50481	0.14206
2.0	1.17520	0.00	1.25386	0.00	1.33565	0.00	1.42078	0.00	1.50046	0.00

Note. Negative quantities are in heavy type.

6

Examples. $\sinh(1.0 + i \underline{1.0}) = 0 + i \underline{1.54308}.$ $\sinh(1.0 + i \overline{1.5}) = -0.83099 + i 1.09112.$

[46]

q	x =	1.25	x =	1.3	x =	1.35	x =	1.4	x =	1.45
0	1.60192	0.00	1.69838	0.00	1.79909	0.00	1.904.30	0.00	2.01427	0.00
0.05	1.50608	0.14816	1.60315	0.15464	1.79354	0.16150	1.80843	0.16876	2.00806	0.17644
0.1	1.58220	0.20541	1.67747	0.30832	1.77694	0.32100	1.88086	0.33647	1.08047	0.35180
0.15	1.55766	0.44084	1.65146	0.46010	1.74938	0.48051	1.85169	0.50212	1.05862	0.52408
0.2	1.52352	0.58355	1.61526	0.60905	1.71104	0.63606	1.81110	0.66466	1.91569	0.69493
0.25	1.47998	0.72267	1.56010	0.75424	1.66215	0.78760	1.75934	0.82311	1.86004	0.86060
0.3	1.42732	0.85733	1.51327	0.80478	1.60300	0.03446	1.60675	0.07640	1.70473	1.02005
0.35	1.36586	0.98670	1.44811	1.02080	1.53398	1.07548	1.62360	1.12384	1.71745	1.17502
0.4	1.20508	1.10000	1.37402	1.15848	1.45550	1.20086	1.54061	1.26427	1.62058	1.32184
0.45	1.21811	1.22643	1.29146	1.28001	1.36804	1.33678	1.44804	1.39690	1.53166	1.46051
0.5	1.13273	1.33532	1.20094	1.39365	1.27215	1.45546	1.34655	1.52092	1.42431	1.59017
0.55	1.04036	1.43597	1.10301	1.4987 0	1.16842	1.56517	1.23674	1.63556	1.30817	1.71007
0.6	0.94158	1.52777	0.99829	1.59451	1.05748	1.66523	1.11932	1.74012	1.18396	1.81935
0.65	0.83700	1.61014	0.88740	1.68048	0.94002	1.75502	0.99500	1.83394	1.05245	1.91745
0.7	0.72726	1.68260	0.77105	1.75610	0.81677	1.83399	0.86454	1.91646	0.91446	2.00373
0.75	0.61303	1.74467	0.64994	1.82089	o.68848	1.90165	0.72875	1.98717	0.77083	2.07766
0.8	0.49502	1.79600	0.52483	1.87445	0.55595	1.95759	0.58846	2.04562	0.62244	2.13878
0.85	0.37396	1.83624	0.39648	1.91646	0.41999	2.00146	0.44455	2.09147	0.47022	2.18671
0.9	0.25060	1.86517	0.26569	1.94665	0.28144	2.03299	0.29790	2.12442	0.31510	2.22115
0.95	0.12569	1.88260	0.13325	1.96484	0.14116	2.05199	0.14427	2.14427	0.15804	2.24191
1.0	0.00	1.88842	0.00	1.97091	0.00	2.05833	0.00	2.15090	0.00	2.24884
1.05	0.12569	1.88260	0.13325	1.96484	0.14116	2.05199	0.14427	2.14427	0.15804	2.24191
1.1	0.25060	1.86517	0.26569	1.94665	0.28144	2.03299	0.29790	2.12442	0.31510	2.22115
1.15	0.37396	1.83624	0.39648	1.91646	0.41999	2.00146	0.44455	2.09147	0.47022	2.18671
1.2	0.49502	1.79600	0.52483	1.87445	0.55595	1.95759	0.58846	2.04562	0.62244	2.13878
1.25	0.61303	1.74467	0.64994	1.82089	0.68848	1.90165	0.72875	1.98717	0.77083	2.07766
1.3	0.72726	1.68260	0.77105	1.75610	0.81677	1.83399	0.86454	1.91646	0.91446	2.00373
1.35	0.83700	1.61014	0.88740	1.68048	0.94002	1.75502	0.99500	1.83394	1.05245	1.91745
1.4	0.94158	1.52777	0.99829	1.59451	1.05748	1.66523	1.11932	1.74012	1.18396	1.81935
1.45	1.04036	1.43597	1.10301	1.49870	1.16842	1.56517	1.23674	1.63556	1.30817	1.71007
1.5	1.13273	1.33532	1.20094	1.39365	1.27215	1.45546	1.34655	1.52092	1.42431	1.59017
1.55	1.21811	1.22643	1.29146	1.28001	1.36804	1.33678	1.44804	1.39690	1.53166	1.40051
1.6	1.29598	1.10999	1.37402	1.15848	1.45550	1.20986	1.54061	1.26427	1.62958	1.32184
1.65	1.36586	0.98670	1:44811	1.02980	1.53398	1.07548	1.62369	1.12384	1.71745	1.17502
1.7	1.42732	0.85733	1.51327	0.89478	1.60300	0.93446	1.69675	0.97649	1.79473	1.02095
1.75	1.47998	0.72267	1.56910	0.75424	1.66215	0.78769	1.75934	0.82311	1.86094	0.86060
1.8	1.52352	0.58355	1.01520	0.00905	1.71104	0.03000	1.81110	0.66466	1.91509	0.09493
1.85	1.55766	0.44084	1.05146	0.40010	1.74938	0.48051	1.85169	0.50212	1.95862	0.52498
1.9	1.58220	0.29541	1.07747	0.30832	1.77694	0.32199	1.88086	0.33047	1.98947	0.35180
1.95	1.59698	0.14810	1.09315	0.15464	1.79354	0.16150	1.89843	0.10870	2.00800	0.17044
2.0	1.60192	0.00	1.69838	0.00	1.79909	0.00	1.90430	0.00	2.01427	0.00

Note.

Negative quantities are in heavy type.

Examples. $\sinh (1.35 + i \circ) = 1.70909 + i \circ.$ $\sinh (1.4 + i 1.15) = -0.44455 + i 2.09147.$

q	<i>x</i> =	1.5	x =	1.55	x =	1.6	x =	1.65	x =	1.7
0	2.12028	0.00	2.24961	0.00	2.37557	0.00	2.50746	0.00	2.64563	0.00
0.05	2.12272	0.18457	2.24268	0.19316	2.36824	0.20223	2.49973	0.21180	2.63747	0.22191
0.1	2.10307	0.36800	2.22191	0.38512	2.34632	0.40320	2.47659	0.42230	2.61306	0.44245
0.15	2.07045	0.54916	2.18745	0.57471	2.30993	0.60170	2.43818	0.63019	2.57253	0.66026
0.2	2.02507	0.72693	2.13951	0.76076	2.25930	0. 79648	2.38474	0.83420	2.51614	0.87400
0.25	1.96720	0.90023	2.07837	0.94211	2.19473	0.98636	2.31660	1.03306	2.44424	1.08235
0.3	1.89720	1.06797	2.00442	1.11766	2.11664	1.17015	2.23417	1.22550	2.35727	1.28403
0.35	1.81551	1.22913	1.91811	1.28632	2.02550	1.34672	2.13797	1.41050	2.25577	1.47779
0.4	1.72263	1.38271	1.81997	1.44704	1.92187	1.51500	2.02858	1.58074	2.14030	1.00244
0.45	1.61912	1.52777	1.71002	1.59885	1.80640	1.07393	1.90009	1.75320	2.01175	1.83084
0.5	1.50563	1.66341	1.59071	1.74080	1.67978	1.82254	1.77305	1.90885	1.87074	1.99992
0.55	1.38286	1.78879	1.46101	1.872 01	1.54281	1.95992	1.62847	2.05274	1.71820	2.15067
0.6	1.25156	1.90314	1.32229	1.99169	1.39632	2.08522	1.47385	2.18396	1.55506	2.28816
0.65	1.11255	2.00576	1.17542	2.09908	1.24123	2.19765	1.31015	2.30173	1.38234	2.41154
0.7	0.96667	2.09601	1.02130	2.19353	1.07848	2.29654	1.13837	2.40529	1.20109	2.52005
0.75	0.81484	2.17334	0.86089	2.27446	0.90909	2.38127	0.95957	2.49404	1.01244	2.61302
0.8	0.65798	2.23727	0.69517	2.34137	0.73409	2.45131	0.77485	2.56740	0.81754	2.68989
0.85	0.49707	2.28742	0.52516	2.39384	0.55456	2.50625	0.58536	2.62494	0.61761	2.75017
0.9	0.33309	2.32345	0.35192	2.43155	0. 37163	2.54573	0.39225	2.66629	0.41387	2.79350
0.95	0.16706	2.34516	0.17650	2.45427	0. 18639	2.56952	0.19673	2.69121	0.20757	2.81960
1.0	0.00	2.35241	0.00	2.46186	0.00	2.57746	0.00	2.69951	0.00	2.82832
1.05	0.16706	2.34516	0.17650	2.45427	0.18639	2.56952	0.19673	2.69121	0.20757	2.81960
1.1	0.33309	2.32345	0.35192	2.43155	0.37163	2.54573	0.39225	2.66629	0.41387	2.79350
1.15	0.49707	2.28742	0.52510	2.39384	0.55456	2.50625	0.58536	2.62494	0.61761	2.75017
1.2	0.65798	2.23727	0.69517	2.34137	0.73409	2.45131	0.77485	2.56740	0.81754	2.68989
1.25	0.81484	2.17334	0.86089	2.27446	0.90909	2.38127	0.95957	2.49404	1.01244	2.61302
1.3	0.96667	2.09601	1.02130	2.19353	1.07848	2.29654	1.13837	2.40529	1.20109	2.52005
1.35	1.11255	2.00576	1.17542	2.09908	1.24123	2.19765	1.31015	2.30173	1.38234	2.41154
1.4	1.25156	1.90314	1.32229	1.99169	1.39632	2.08522	1.47385	2.18396	1.55506	2.28816
1.45	1.38286	1.78879	1.46101	1.87201	1.54281	1.95992	1.62847	2.05274	1.71820	2.15067
1.5	1.50563	1.66341	1.59071	1.74080	1.67978	1.82254	1.77305	1.90885	1.87074	1.99992
1.55	1.61912	1.52777	1.71062	1.59885	1.80640	1.67393	1.90669	1.75320	2.01175	1.83684
1.6	1.72263	1.38271	1.81997	1.44704	1.92187	1.51500	2.02858	1.58674	2.14036	1.66244
1.65	1.81551	1.22913	1.91811	1.28632	2.02550	1.34672	2.13797	1.41050	2.25577	1.47779
1.7	1.89720	1.06797	2.00442	1.11766	2.11664	1.17015	2.23417	1.22556	2.35727	1.28403
1.75	1.96720	0.90023	2.07837	0.94211	2.19473	0.98636	2.31660	1.03306	2.44424	1.08235
1.8	2.02507	0.72093	2.13951	0.76076	2.25930	0.79648	2.38474	0.83420	2.51614	0.87400
1.85	2.07045	0.54910	2.18745	0.57471	2.30993	0.60170	2.43818	0.63019	2.57253	0.66026
1.9	2.10307	0.30800	2.22191	0.38512	2.34632	0.40320	2.47659	0.42230	2.61306	0.44245
1.95	2.12272	0.18457	2.24208	0.19310	2.36824	0.20223	2.49973	0.21180	2.63747	0.22191
2.0	2.12928	0.00	2.24961	0.00	2.37557	0.00	2.50746	0.00	2.64563	0.00

Note. Negative quantities are in heavy type.

Examples. $\sinh (1.7 + i 0.7) = 1.20109 + i 2.52005.$ $\sinh (1.7 + i 1.7) = -2.35727 + i 1.28403.$

q	x =	1.75	x =	1.8	x =	1.85	x =	1.9	x =	1.95
0	2.70041	0.00	2.94217	0.00	3.10120	0.00	3.26816	0.00	3.44321	0.00
0.05	2.78181	0.23257	2.93310	0.24381	3.09173	0.25566	3.25800	0.26815	3.43259	0.28131
0.1	2.75606	0.46370	2.00505	0.48612	3.06311	0.50075	3.22703	0.53465	3.40081	0.56080
0.15	2.71331	0.60108	2.86088	0.72542	3.01560	0.76060	3.17787	0.70785	3.34807	0.83701
0.2	2.65384	0.91599	2.79817	0.96026	2.94950	1.00694	3.10821	1.05614	3.27468	1.10797
0.25	2.57800	1.13435	2.71821	1.18018	2.86522	1.24698	3.01030	1.30701	3.18111	1.37210
0.3	2.48627	1.34571	2.62140	1.41076	2.76327	1.47934	2.01106	1.55162	3.06702	1.62777
0.35	2.37922	1.54878	2.50862	1.62365	2.64420	1.70258	2.78657	1.78576	2.03582	1.87341
0.4	2.25749	1.74231	2.38027	1.82653	2.50000	1.01531	2.64400	2.00880	2.78561	2.10740
0.45	2.12185	1.92509	2.23725	2.01814	2.35824	2.11624	2.48513	2.21964	2.61823	2.32858
0.5	1.97312	2.09600	2.08043	2.19731	2.19294	2.30413	2.31094	2.41670	2.43471	2.53532
0.55	1.81223	2.25399	1.91079	2.36294	2.01413	2.47780	2.12250	2.59887	2.23618	2.72642
0.6	1.64016	2.39808	1.72937	2.51400	1.82289	2.63620	1.92098	2.76501	2.02387	2.90071
0.65	1.45799	2.52739	1.53728	2.64956	1.62042	2.77835	1.70761	2.91409	1.79907	3.05713
0.7	1.26682	2.64111	1.33572	2.76878	1.40796	2.90337	1.48372	3.04522	1.56318	3.19469
0.75	1.06784	2.73855	1.12592	2.87093	1.18681	3.01049	1.25067	3.15757	1.31766	3.31255
0.8	0.86229	2.81911	0.90918	2.95538	0.95835	3.09904	1.00992	3.25045	1.06401	3.41000
0.85	0.65141	2.88229	0.68684	3.02161	0.72398	3.16850	0.76294	3.32330	0.80380	3.48641
0.9	0.43652	2.92769	0.46026	3.06921	0.48627	3.21841	0.51125	3.37565	0.53864	3.54134
0.95	0.21893	2.95505	0.23084	3.09789	0.24332	3.24848	0.25642	3.40719	0.27015	3.57443
1.0	0.00	2.96419	0.00	3.10747	0.00	3.25853	0.00	3.41773	0.00	3.58548
1.05	0.21893	2.95505	0.23084	3.09789	0.24332	3.24848	0.25642	3.40719	0.27015	3.57443
I.I	0.43652	2.92769	0.46026	3.06921	0.48627	3.21841	0.51125	3.37565	0.53864	3.54134
1.15	0.65141	2.88229	0.68684	3.02161	0.72398	3.16850	0.76294	3.32330	0.80380	3.48641
1.2	0.86229	2.81911	0.90918	2.95538	0.95835	3.09904	1.00992	3.25045	1.06401	3.41000
1.25	1.06784	2.73855	1.12592	2.87093	1.18681	3.01049	1.25067	3.15757	1.31766	3.31255
1.3	1.26682	2.64111	1.33572	2.76878	1.40796	2.90337	1.48372	3.04522	1.56318	3.19469
1.35	1.45799	2.52739	1.53728	2.64956	1.62042	2.77835	1.70761	2.91409	1.79907	3.05713
1.4	1.64016	2.39808	1.72937	2.51400	1.82289	2.03020	1.92098	2.70501	2.02387	2.90071
1.45	1.81223	2.25399	1.91079	2.36294	2.01413	2.47780	2.12250	2.59887	2.23018	2.72042
1.5	1.97312	2.09600	2.08043	2.19731	2.19294	2.30413	2.31094	2.41670	2.43471	2.53532
1.55	2.12185	1.92509	2.23725	2.01814	2.35824	2.11624	2.48513	2.21964	2.61823	2.32858
т.6	2.25749	1.74231	2.38027	1.82653	2.50900	1.91531	2.64400	2.00889	2.78561	2.10749
1.65	2.37922	1.54878	2.50862	1.62365	2.64429	1.70258	2.78657	1.78576	2.93582	1.87341
1.7	2.48627	1.34571	2.62149	1.41076	2.76327	1.47934	2.91196	1.55162	3.06792	1.62777
1.75	2.57800	1.13435	2.71821	1.18918	2.86522	1.24698	3.01939	1.30791	3.18111	1.37210
1.8	2.65384	0.91599	2.79817	0.96026	2.94950	1.00094	3.10821	1.05014	3.27408	1.10797
1.85	2.71331	0.69198	2.86088	0.72542	3.01560	0.76069	3.17787	0.79785	3.34807	0.83701
1.9	2.75606	0.46370	2.90595	0.48612	3.06311	0.50975	3.22793	0.53405	3.40081	0.50089
1.95	2.78181	0.23257	2.93310	0.24381	3.09173	0.25500	3.25809	0.20815	3.43259	0.28131
2.0	2.79041	0.00	2.94217	0.00	3.10129	0.00	3.26816	0.00	3.44321	0.00

Note.

Negative quantities are in heavy type.

Examples. $\sinh(1.85 + i \underline{0.75}) = 1.18681 + i 3.01049.$ $\sinh(1.85 + i \underline{1.35}) = -1.62042 + i 2.77835.$

q	<i>x</i> =	2.0	<i>x</i> =	2.05	<i>x</i> =	= 2.1	<i>x</i> =	2.15	<i>x</i> =	2.2
0	3.62686	0.00	3.81958	0.00	4.02186	0.00	4.23419	0.00	4.45711	0.00
0.05	3.61568	0.29518	3.80781	0.30978	4.00946	0.32516	4.22113	0.34135	4.44337	0.35839
0.1	3.58221	0.58854	3.77256	0.61765	3.97235	0.64831	4.18206	0.68060	4.40223	0.71458
0.15	3.52666	0.87827	3.71404	0.92172	3.91074	0.96747	4.11720	1.01564	4.33396	1.06636
0.2	3.44935	1.16258	3.63264	1.22010	3.82501	1.28066	4.02695	1.34443	4.23896	1.41156
0.25	3.35078	1.43973	3.52883	1.51096	3.71571	1.58596	3.91188	1.66493	4.11783	1.7 480 6
0.3	3.23156	1.70800	3.40327	1.79250	3.58351	1.88148	3.77269	1.97516	3.97131	2.07379
0.35	3.09241	1.96574	3.23673	2.06299	3.42920	2.16540	3.61024	2.27322	3.80031	2.38672
0.4	2.93420	2.21136	3.09011	2.32076	3.25376	2.43597	3.42553	2.55726	3.60588	2.68495
0.45	2.75789	2.44335	2.90443	2.56423	3.05825	2.69152	3.21970	2.82553	3.38921	2.96661
0.5	2.56458	2.66027	2.70085	2.79188	2.84389	2.93048	2.99402	3.07639	3.15165	3.23000
0.55	2.35546	2.86080	2.48062	3.00232	2.61199	3.15137	2.74988	3.30828	2.89466	3.47347
0.6	2.13182	3.04368	2.24509	3.19426	2.36399	3.35283	2.48879	3.51977	2.61982	3.69552
0.65	1.89503	3.20780	1.99573	3.36649	2.10142	3.53361	2.21236	3.70956	2.32883	3.89478
0.7	1.64656	3.35214	1.73405	3.51798	1.82589	3.69261	1.92228	3.87647	2.02349	4.07003
0.75	1.38794	3.47581	1.46169	3.64777	1.53910	3.82885	1.62035	4.01950	1.70566	4.22019
0.8	1.12076	3.57806	1.18032	3.75507	1.24282	3.94148	1.30844	4.13773	1.37732	4.34433
0.85	0.84667	3.65825	0.89166	3.83923	0.93888	4.02981	0.98845	4.23046	1.04049	4.44170
0.9	0.56737	3.71587	0.59751	3.89971	0.62916	4.09329	0.66237	4.29711	0.69724	4.51167
0.95	0.28456	3.75059	0.29968	3.93615	0.31555	4.13154	0.33221	4.33726	0.34970	4.55382
1.0	0.00	3.76220	0.00	3.94832	0.00	4.14431	0.00	4.35067	0.00	4.56791
1.05	0.28456	3.75059	0.29968	3.93615	0.31555	4.13154	0.33221	4.33726	0.34970	4.55382
1.1	0.56737	3.71587	0.59751	3.89971	0.62916	4.09329	0.66237	4.29711	0.69724	4.51167
1.15	0.84667	3.65825	0.89166	3.83923	0.93888	4.02981	0.98845	4.23046	1.04049	4.44170
1.2	1.12076	3.57806	1.18032	3.75507	1.24282	3.94148	1.30844	4.13773	1.37732	4.34433
1.25	1.38794	3.47581	1.46169	3.64777	1.53910	3.82885	1.62035	4.01950	1.70566	4.22019
1.3	1.64656	3.35214	1.73405	3.51798	1.82589	3.69261	1.92228	3.87647	2.02349	4.07003
1.35	1.89503	3.20780	1.99573	3.36649	2.10142	3.53361	2.21236	3.70956	2.32883	3.89478
1.4	2.13182	3.04368	2.24509	3.19426	2.36399	3.35283	2.48879	3.51977	2.61982	3.69552
1.45	2.35546	2.86080	2.48062	3.00232	2.61199	3.15137	2.74988	3.30828	2.89466	3.47347
1.5	2.56458	2.66027	2.70085	2.79188	2.84389	2.93048	2.99402	3.07639	3.15165	3.23000
1.55	2.75789	2.44335	2.90443	2.56423	3.05825	2.69152	3.21970	2.82553	3.38921	2.96661
1.6	2.93420	2.21136	3.09011	2.32076	3.25376	2.43597	3.42553	2.55726	3.60588	2.68495
1.65	3.09241	1.96574	3.23673	2.06299	3.42920	2.16540	3.61024	2.27322	3.80031	2.38672
1.7	3.23156	1.70800	3.40327	1.79250	3.58351	1.88148	3.77269	1.97516	3.97131	2.07379
1.75	3.35078	1.43973	3.52883	1.51096	3.71571	1.58596	3.91188	1.66493	4.11783	1.74806
1.8	3.44935	1.16258	3.63264	1.22010	3.82501	1.28066	4.02695	1.34443	4.23896	1.41156
1.85	3.52666	0.87827	3.71404	0.92172	3.91074	0.96747	4.11720	1.01564	4.33396	1.06636
1.9	3.58221	0.58854	3.77256	0.61765	3.97235	0.64831	4.18206	0.68060	4.40223	0.71458
1.95	3.61568	0.29518	3.80781	0.30978	4.00946	0.32516	4.22113	0.34135	4.44337	0.35839
2.0	3.62686	0.00	3.81958	0.00	4.02186	0.00	4.23419	0.00	4.45711	0.00

Note. Negative quantities are in heavy type.

Examples. $\sinh (2.2 + i \underline{1.0}) = 0 + i 4.56791.$ $\sinh (2.2 + i \underline{1.5}) = -3.15165 + i 3.23000.$

q	x =	2.25	x =	2.3	x =	2.35	x =	- 2.4	x =	2.45
0	4.69117	0.00	4.93696	0.00	5.19510	0.00	5.46623	0.00	5.75103	0.00
0.05	4.67671	0.37633	4.92174	0.39522	5.17909	0.41509	5.44938	0.43599 .	5.73330	0.45799
0.1	4.63341	0.75035	4.87618	0.78799	5.13114	0.82761	5.39893	0.86930	5.68022	0.91316
0.15	4.56155	1.11974	4.80056	1.17592	5.05156	1.23504	5.31521	1.29724	5.59213	1.36269
0.2	4.46157	1.48222	4.69533	1.55659	4.94083	1.63485	5.19869	1.71719	5.46955	1.80383
0.25	4.33407	1.83557	4.56116	1.92766	4.79965	2.02457	5.05014	2.12655	5.31325	2.23385
0.03	4.17986	2.17760	4.39887	2.28685	4.62887	2.40182	4.87045	2.52280	5.12420	2.65009
0.35	3.99987	2.50620	4.20946	2.63194	4.42955	2.76426	4.66073	2.90349	4.90356	3.04999
0.4	3.79523	2.81935	3.99409	2.96081	4.20292	3.10966	4.42228	3.26629	4.65268	3.43109
0.45	3.56719	3.11512	3.75410	3.27141	3.95038	3.43588	4.15656	3.60894	4.37311	3.79104
0.5	3.31716	3.39168	3.49096	3.56185	3.67351	3.74093	3.86521	3.92935	4.06659	4.12761
0.55	3.04077	3.64734	3.20030	3.83034	3.37395	4.02290	3.55003	4.22554	3.73499	4.43873
0.6	2.75740	3.88050	2.90188	4.07520	3.05360	4.28008	3.21297	4.49567	3.38036	4.72249
0.65	2.45113	4.08975	2.57956	4.29494	2.71443	4.51087	2.85610	4.73808	3.00490	4.97713
0.7	2.12975	4.27377	2.24134	4.48820	2.35853	4.71384	2.48162	4.95127	2.61091	5.20109
0.75	1.79523	4.43145	1.88930	4.65378	1.98808	4.88776 .	2.09184	5.13394	2.20082	5.39298
0.8	1.44965	4.56181	1.52500	4.79058	1.60537	5.03153	1.68916	5.28496	1.77716	5.55162
0.85	1.09513	4.66404	1.15251	4.89805	1.21277	5.14429	1.27007	5.40341	1.34255	5.67603
0.9	0.73386	4.73751	0.77231	4.97521	0.81269	5.22533	0.85511	5.48853	0.89966	5.76545
0.95	0.30807	4.78178	0.38735	5.02109	0.40700	5.27410	0.42888	5.53981	0.45122	5.81933
1.0	0.00	4.79657	0.00	5.03722	0.00	5.29047	0.00	5.55695	0.00	5.83732
1.05	0.36807	4.78178	0.38735	5.02169	0.40760	5.27416	0.42888	5.53981	0.45122	5.81933
1.1	0.73386	4.73751	0.77231	4.97521	0.81269	5.22533	0.85511	5.48853	0.89966	5.76545
1.15	1.09513	4.66404	1.15251	4.89805	1.21277	5.14429	1.27607	5.40341	1.34255	5.67603
1.2	1.44965	4.56181	1.52560	4.79058	1.60537	5.03153	1.68916	5.28496	1.77716	5.55162
1.25	1.79523	4.43145	1.88930	4.65378	1.98808	4.88776	2.09184	5.13394	2.20082	5.39298
1.3	2.12975	4.27377	2.24134	4.48820	2.35853	4.71384	2.48162	4.95127	2.61091	5.20109
1.35	2.45113	4.08975	2.57950	4.29494	2.71443	4.51087	2.85610	4.73808	3.00490	4.97713
1.4	2.75740	3.88050	2.90188	4.07520	3.05360	4.28008	3.21297	4.49507	3.38030	4.72249
1.45	3.04677	3.64734	3.20630	3.83034	3.37395	4.02290	3.55003	4.22554	3.73499	4.43873
1.5	3.31716	3.39168	3.49096	3.56185	3.67351	3.74093	3.86521	3.92935	4-06659	4.12761
1.55	3.56719	3.11512	3.75410	3.27141	3.95038	3.43588	4.15050	3.60894	4.37311	3.79104
1.6	3.79523	2.81935	3.99409	2.90081	4.20292	3.10966	4.42228	3.26629	4.65268	3.43109
1.65	3.99987	2.50020	4.20940	2.03194	4.42955	2.76426	4.66073	2.90349	4.90350	3.04999
1.7	4.17980	2.17700	4.39887	2.28085	4.62887	2.40182	4.87045	2.52280	5.12420	2.05009
1.75	4.33407	1.83557	4.56116	1.92766	4.79965	2.02457	5.05014	2.12655	5.31325	2.23385
1.8	4.40157	1.48222	4.09533	1.55059	4.94083	1.03485	5.19809	1.71719	5.40955	1.80383
1.85	4.50155	1.11974	4.80050	1.17592	5.05150	1.23504	5.31521	1.29724	5.59213	1.30200
1.9	4.03341	0.75035	4.87018	0.78799	5.13114	0.82701	5.39893	0.80930	5.08022	0.91310
1.95	4.07071	0.37033	4.92174	0.39522	5.17909	0.41509	5.44938	0.43599	5.73330	0.45799
2.0	4.69117	0.00	4.93696	0.00	5.19510	0.00	5.46623	0.00	5.75103	0.00

Note.

Negative quantities are in heavy type.

Examples. $\sinh (2.4 + i \underline{0.05}) = 5.44938 + i 0.43599.$ $\sinh (2.4 + i \underline{1.95}) = -5.44938 + i 0.43599.$

6

q	<i>x</i> =	= 2.5	x =	2.55	<i>x</i> =	= 2.6	x =	2.65	x =	2.7
0	6.05020	0.00	6.36451	0.00	6.69473	0.00	7.04169	0.00	7.40626	0.00
0.05	6.03155	0.48113	6.34489	0.50548	6.67409	0.53109	7.01998	0.55803	7.3 ⁸ 343	0.58636
0.1	5.97572	0.95930	6.28615	1.00784	6.61231	1.05891	6.95500	1.11262	7.31508	1.16911
0.15	5.88304	1.43155	6.18866	1.50399	6.50976	1.58019	6.84713	1.66034	7.20163	1.74465
0.2	5.75408	1.89498	6.05301	1.99087	6.36706	2.09174	6.69705	2.19784	7.04377	2.30943
0.25	5.58966	2.34673	5.88004	2.46547	6.18512	2.59039	6.50567	2.72178	6.84249	2.85997
0.3	5.39077	2.78401	5.67082	2.92488	5.96505	3.07306	6.27419	3.22894	6.59903	3.39288
0.35	5.15865	3.20411	5.42664	3.36624	5.70819	3.53680	6.00403	3.71619	6.31488	3.90488
0.4	4.89472	3.60448	5.14900	3.78686	5.41615	3.97872	5.69685	4.18053	5.99179	4.39279
0.45	4.60062	3.98260	4.83961	4.18413	5.09071	4.39612	5.35454	4.61910	5.63177	4.85363
0.5	4.27814	4.33619	4.50039	4.55560	4.73389	4.78641	4.97923	5.02919	5.23702	5.28454
0.55	3.92929	4.66304	4.13342	4.89898	4.34788	5.14719	4.57321	5.40827	4.80998	5.68287
0.6	3.55622	4.96113	3.74097	5.21217	3.93506	5.47624	4.13900	5.75401	4.35329	6.04606
0.65	3.16122	5.22864	3.32545	5.49321	3.49799	5.77153	3.67927	6.06427	3.86976	6.37218
0.7	2.74674	5.46392	2.88943	5.74039	3.03934	6.03123	3.19686	6.33714	3.36237	6.65891
0.75	2.31531	5.66550	2.43559	5.95218	2.56196	6.25374	2.69474	6.57 095	2.83425	6.90458
0.8	1.86961	5.83215	1.96674	6.12727	2.06878	6.4377 0	2.17600	6.76424	2.28866	7.10769
0.85	1.41239	5.96287	1.48577	6.26458	1.56285	6.58199	1.64385	6.91583	1.72896	7.26697
0.9	0.94646	6.05680	0.99563	6.36327	1.04729	6.68567	1.10156	7.02478	1.15859	7.38146
0.95	0.47469	6.11339	0.49935	6.42273	0.52526	6.74814	0.55249	7.09042	0.58109	7.45043
1.0	0.00	6.13229	0.00	6.44259	0.00	6.76901	0.00	7.11234	0.00	7-47347
1.05	0.47469	6.11339	0.49935	6.42273	0.52526	6.74814	0.55249	7.09042	0.58109	7.45043
1.1	0.94646	6.05680	0.99563	6.36327	1.04729	6.68567	1.10156	7.02478	1.15859	7.38146
1.15	1.41239	5.96287	1.48577	6.26458	1.56285	6.58199	1.64385	6.91583	1.72896	7.26697
1.2	1.86961	5.83215	1.96674	6.12727	2.06878	6.43770	2.17600	6.76424	2.28866	7.10769
1.25	2.31531	5.66550	2.43559	5.95218	2.56196	6.25374	2.69474	6.57095	2.83425	6.90458
1.3	2.74674	5.46392	2.88943	5.74039	3.03934	6.03123	3.19686	6.33714	3.36237	6.65891
1.35	3.16122	5.22864	3.32545	5.49321	3.49799	5.77153	3.67927	6.06427	3.86976	6.37218
1.4	3.55622	4.96113	3.74097	5.21217	3.93506	5.47624	4.13900	5.75401	4.35329	6.04606
1.45	3.92929	4.66304	4.13342	4.89898	4.34788	5.14719	4.57321	5.40827	4.80998	5.68287
1.5	4.27814	4.33619	4.50039	4.55560	4.73389	4.78641	4.97923	5.02919	5.23702	5.28454
1.55	4.60062	3.98260	4.83961	4.18413	5.09071	4.39612	5.35454	4.61910	5.63177	4.85363
1.6	4.89472	3.60448	5.14900	3.78686	5.41615	3.97872	5.69685	4.18053	5.99179	4.39279
1.65	5.15865	3.20411	5.42664	3.36624	5.70819	3.53680	6.00403	3.71619	6.31488	3.90488
1.7	5.39077	2.78401	5.67082	2.92488	5.96505	3.07306	6.27419	3.22894	6.59903	3.39288
1.75	5.58966	2.34673	5.88004	2.46547	6.18512	2.59039	6.50567	2.72178	6.84249	2.85997
1.8	5.75408	1.89498	6.05301	1.99087	6.36706	2.09174	6.69705	2.19784	7.04377	2.30943
1.85	5.88304	1.43155	6.18866	1.50399	6.50976	1.58019	6.84713	1.66034	7.20163	1.74465
1.9	5.97572	0.95930	6.28615	1.00784	6.61231	1.05891	6.95500	1.11262	7.31508	1.16911
1.95	6.03155	0.48113	6.34489	0.50548	6.67409	0.53109	7.01998	0.55803	7.38343	0.58636
2.0	6.05020	0.00	6.36451	0.00	6.69473	0.00	7.04169	0.00	7.40626	0.00

Note.

Negative quantities are in heavy type.

Examples. $\sinh (2.7 + i \underline{0.7}) = 3.36237 + i 6.65891.$

 $\sinh (2.5 + i \overline{1.25}) = -2.31531 + i 5.66550.$,

q	x =	2.75	<i>x</i> =	2.8	x =	2.85	<i>x</i> =	2.9	x =	2.95
0	7.7 ⁸ 935	0.00	8.19192	0.00	8.61497	0.00	9.05956	0.00	9.52681	0.00
0.05	7.76534	0.61616	8.16666	0.64750	8.58841	0.68046	9.03163	0.71512	9.49744	0.75157
0.1	7.69345	1.22852	8.09106	1.29101	8.50891	1.35673	8.94802	1.42583	9.40952	1.49851
0.15	7.57413	1.83331	7.96557	1.92656	8.37694	2.02463	8.80924	2.12776	9.26358	2.23621
0.2	7.40811	2.42680	7.79098	2.55023	8.19332	2.68005	8.61616	2.81656	9.06053	2.96012
0.25	7.19642	3.00532	7.56834	3.15818	7.95919	3.31894	8.36994	3.48800	8.80162	3.66578
0.3	6.94036	3.56531	7.29905	3.74666	7.67599	3.93738	8.07213	4.13793	8.48845	4.34884
0.35	6.64151	4.10333	6.98476	4.31204	7.34547	4.53153	7.72455	4.76236	8.12294	5.00509
0.4	6.30172	4.61604	6.62740	4.85983	6.96966	5.09775	7.32934	5.35742	7.70735	5.63049
0.45	5.92307	5.10030	6.22918	5.35972	6.55088	5.63254	6.88894	6.91945	7.24424	6.22116
0.5	5.50790	5.55311	5.79256	5.83556	6.09170	6.13261	6.40608	6.44498	6.73647	6.77348
0.55	5.05878	5.97168	5.32022	6.27542	5.59498	6.59486	5.88371	6.93078	6.18717	7.28404
0.6	4.57847	6.35344	4.81509	6.67660	5.06375	7.01646	5.32508	7.373 ⁸ 5	5.63048	7.74969
0.65	4.06993	6.69602	4.28026	7.03661	4.50131	7.39479	4.73361	7.77146	4.97774	8.16757
0.7	3.53629	6.99732	3.71905	7.35323	3.91112	7.72754	4.11295	8.12115	4.32508	8.53508
0.75	2.98086	7.25548	3.13491	7.62452	3.29681	8.01263	3.46694	8.42078	3.64575	8.84998
0.8	2.40704	7.46891	2.53144	7.84881	2.66217	8.24834	2.79956	8.66850	2.94395	9.11031
0.85	1.81839	7.63629	1.91237	8.02470	2.01112	8.43318	2.11491	8.86275	2.22399	9.31447
0.9	1.21852	7.75659	1.28150	8.15112	1.34768	8.56604	1.41723	9.00237	1.49032	9.46121
0.95	0.61115	7.82907	0.64273	8.22728	0.67592	8.64608	0.71081	9.08649	0.74747	9.54962
1.0	0.00	7.85328	0.00	8.25273	0.00	8.67281	0.00	9.11458	0.00	9.57915
1.05	0.61115	7.82907	0.64273	8.22728	0.67592	8.64608	0.71081	9.08649	0.74747	9.54962
1.1	1.21852	7.75659	1.28150	8.15112	1.34768	8.56604	1.41723	9.00237	1.49032	9.46121
1.15	1.81839	7.63629	1.91237	8.02470	2.01112	8.43318	2.11491	8.86275	2.22399	9.31447
1.2	2.40704	7.46891	2.53144	7.84881	2.66217	8.24834	2.79956	8.66850	2.94395	9.11031
1.25	2.98086	7.25548	3.13491	7.62452	3.29681	8.01263	3.46694	8.42078	3.64575	8.84998
1.3	3.53629	6.99732	3.71905	7.35323	3.91112	7.72754	4.11295	8.12115	4.32508	8.53508
1.35	4.06993	6.69602	4.28026	7.03661	4.50131	7.39479	4.73361	7.77146	4.97774	8.16757
1.4	4.57847	6.35344	4.81509	6.67660	5.06375	7.01646	5.32508	7.373 ⁸ 5	5.63048	7.74969
1.45	5.05878	5.97168	5.32022	6.27542	5.59498	6.59486	5.88371	6.93078	6.18717	7.28404
1.5	5.50790	5.55311	5.79256	5.83556	6.09170	6.13261	6.40608	6.44498	6.73647	6.77348
1.55	5.92307	5.10030	6.22918	5.35972	6.55088	5.63254	6.88894	5.91945	7.24424	6.22116
1.6	6.30172	4.61604	6.62740	4.85083	6.96966	5.09775	7.32934	5.35742	7.70735	5.63049
1.65	6.64151	4.10333	6.98476	4.31204	7.34547	4.53153	7.72455	4.76236	8.12294	5.00509
1.7	6.94036	3.56531	7.29905	3.74666	7.67599	3.9373 ⁸	8.07213	4.13793	8.48845	4.34884
1.75	7.19642	3.00532	7.56834	3.15818	7.95919	3.31894	8.36994	3.48800	8.80162	3.66578
1.8	7.40811	2.42680	7.79098	2.55023	8.19332	2.68005	8.61616	2.81656	9.06053	2.96012
1.85	7.57413	1.83331	7.96557	1.92656	8.37694	2.02463	8.80924	2.12776	9.26358	2.23621
1.9	7.69345	1.22852	8.09106	1.29101	8.50891	1.35673	8.94802	1.42583	9.40952	1.49851
1.95	7.76534	0.61616	8.16666	0.64750	8.58841	0.68046	9.03163	0.71512	9.49744	0.75157
2.0	7.78935	0.00	8.19192	0.00	8.61497	0.00	9.05956	0.00	9.52681	0.00

Note.

Negative quantities are in heavy type.

Examples. $\sinh (2.9 + i \underline{0.9}) = 1.41723 + i 9.00237.$ $\sinh(2.8 + i \underline{1.4}) = -4.81509 + i 6.67660.$

[53]

q	<i>x</i> =	= 3.0	x =	3.05	x =	3.10	x =	3.15	x =	3.20
0.0	10.01787	0.00	10.53399	0.00	11.07645	0.00	11.64661	0.00	12.24588	0.00
0.05	9.98699	0.78990	10.50150	0.83020	11.04230	0.87258	11.61070	0.91714	12.20810	0.96399
0.1	9.89454	1.57493	10.40430	1.65529	10.94010	1.73979	11.50320	1.82863	12.00510	1.02205
0.15	9.74108	2.35025	10.24290	2.47017	10.77040	2.59626	11.32480	2.72885	11.90750	2.86826
0.2	9.5275 7	3.11108	10.01840	3.26982	10.53430	3.43673	11.07660	3.61224	11.64650	3.79678
0.25	9.25531	3.85273	9.73216	4.04931	10.23330	4.25602	10.76010	4.47336	11.31370	4.70190
0.3	8.92599	4.57062	9.38586	4.80383	9.86919	5.04906	10.37720	5.30690	10.91120	5.57802
0.35	8.54164	5.26034	8.98171	5.52874	9.44423	5.81097	9.93036	6.10773	10.44130	6.41976
0.4	8.10463	5.91762	8.52218	6.21956	8.96104	6.53795	9.42230	6.87089	9.90712	7.22191
0.45	7.61765	6.53842	8.01011	6.87204	8.42260	7.22284	8.85615	7.59170	9.31184	7.97954
0.5	7.08371	7.11891	7.44866	7.48215	7.83223	7.86409	8.23539	8.26570	8.65915	8.68797
0.55	0.50000	7.05551	6.84128	8.04012	7.19358	8.45080	7.50387	8.88873	7.95300	9.34284
0.6	5.88830	8.14491	6.19173	8.56049	6.51058	8.99749	6.84570	9.45697	7.19795	9.94011
0.65	5.23433	8.58409	5.50400	9.02209	5.78743	9.48264	6.08533	9.96690	6.39846	10.47610
0.7	4.54806	8.97035	4.78233	9.42805	5.02860	9.90933	5.28745	10.41540	5.55952	10.94750
0.75	3.83368	9.30131	4.03119	9.77589	4.23878	10.27490	4.45696	10.79970	4.68630	11.35140
o.8	3.09569	9.57492	3.25518	10.06350	3.42281	10.57720	3.59900	11.11730	3.78419	11.68530
0.85	2.33863	9.78949	2.45911	10.28900	2.58575	10.81420	2.71885	11.36650	2.85874	11.94720
0.9	1.56714	9.94371	1.64788	10.45110	1.73274	10.98460	1.82193	11.54550	1.91568	12.13540
0.95	0.78599	10.03660	0.82649	10.54870	0.86905	11.08720	0.91378	11.65340	0.96080	12.24880
1.0	0.00	10.06766	0.00	10.58135	0.00	11.12150	0.00	11.68946	0.00	12.28665
1.05	0.78599	10.03660	0.82649	10.54870	0.86905	11.08720	0.91378	11.65340	0.96080	12.24880
1.1	1.56714	9.9437I	1.64788	10.45110	1.73274	10.98460	1.82193	11.54550	1.91568	12.13540
1.15	2.33863	9.7894 9	2.45911	10.28900	2.58575	10.81420	2.71885	11.36650	2.85874	11.94720
1.2	3.09569	9.57492	3.25518	10.06350	3.42281	10.57720	3.59900	11.11730	3.78419	11.68530
1.25	3.83368	9.30131	4.03119	9.77589	4.23878	10.27490	4.45696	10.79970	4.68630	11.35140
1.3	4.54806	8.97035	4.78233	9.42805	5.02860	9.90933	5.28745	10.41540	5.55952	10.94750
1.35	5.23433	8.58409	5.50400	9.02209	5.78743	9.48264	6.08533	9. 96690	6.39846	10.47610
1.4	5.88836	8.14491	6.19173	8.56049	6.51058	8.99749	6.84570	9.45697	7.19795	9.94011
1.45	6.50609	7.65551	6.84128	8.04612	7.19358	8.45686	7.56387	8.88873	7.95306	9.34284
1.5	7.08371	7.11891	7.44866	7.48215	7.83223	7.86409	8.23539	8.26570	8.65915	8.68797
1.55	7.61765	6.53842	8.01011	6.87204	8.42260	7.22284	8.85615	7.59170	9.31184	7.97954
1.6	8.10463	5.91762	8.52218	6.21956	8.96104	6.53705	9.42230	6.87089	9.90712	7.22191
1.65	8.54164	5.26034	8.98171	5.52874	9.44423	5.81097	9.93036	6.10773	10.44130	6.41976
1.7	8.92599	4.57062	9.38 586	4.80383	9.86919	5.04906	10.37720	5.30690	10.91120	5.57802
1.75	9.25531	3.85273	9.73216	4.04931	10.23330	4.25602	10.76010	4.47336	11.31370	4.70190
1.8	9.52757	3.11108	10.01840	3.26982	10.53430	3.43673	11.07660	3.61224	11.64650	3.79678
1.85	9.74108	2.35025	10.24290	2.47017	10.77040	2.59626	11.32480	2.72885	11.90750	2.86826
1.9	9.89454	1.57493	10.40430	1.65529	10.94010	1.73979	11.50320	1.82863	12.09510	1.92205
1.95	9.98699	0.78990	10.50150	0.83020	11.04230	0.87258	11.61070	0.91714	12.20810	0.96399
2.0	10.01787	0.00	10.53399	0.00	11.07645	0.00	11.64661	0.00	12.24588	0.00

Note.

Negative quantities are in heavy type.

Examples. $\sinh (3.0 + i \underline{0.95}) = 0.78599 + i 10.03660.$ $\sinh (3.0 + i \underline{1.05}) = -0.78599 + i 10.03660.$

[54]

q	x =	3.25	x =	3.30	x = z	3.35	x = x	3.40	x = z	3-45
0.0 0.05 0.1 0.15	12.87578 12.83610 12.71726 12.52002	0.00 1.01326 2.02028 3.01484	13.53788 13.49615 13.37120 13.16388	0.00 1.06507 2.12356 3.16897	14.23382 14.18950 14.05851 13.84054	0.00 1.11953 2.23215 3.33101	14.96536 14.91923 14.78111 14.55188	0.00 1.17679 2.34632 3.50139	15.73432 15.68581 15.54061 15.29959	0.00 1.23699 2.46636 3.68053
0.2	12.24500	3.99082	12.87530	4.19483 5.10485	13.53717	4.40933 5.46075	14.23291	4.03487	14.90423	4.87198 6.03341
0.3	11.47240	5.86300	12.06234	6.16381	12.68244	6.47795	13.33423	6.80028	14.01040	7.15765
0.35	10.97841	6.74784	11.54294	7.09279	12.13633	7.45549	12.76006	7.83682	13.41572	8.23775
0.4	10.41673	7.59099	10.95235	7.97905	11.51541	8.38705	12.10723	8.81604	12.72933	9.26706
0. 45	9.79082	8.38733	10.29428	8.81610	10.82349	9.26691	11.37975	9.74090	11.96447	10.23924
0.5	9.10455	9.13197	9.57273	9.59881	10.06483	10.08964	10.58212	10.6057 0	11.12585	11.14830
0.55	8.30217	9.82031	8.79215	10.32233	9.24413	10.85010	9.71923	11.40512	10.21803	11.98801
0.0	7.50820	10.44810	7.95737	10.98222	8.30043	11.54379	8.79042	12.13423	9.24840	12.75501
0.05	0.72758	11.01147	7.07352	11.57440	7.43715	12.10023	7.01930	12.70052	8.22110	13.44270
0.7	5.04540	11.50095	0.14070	12.09520	0.40202	12.71309	0.79414	13.30397	7.14324	14.04704
0.75	4.92735	11.93150	5.18072	12.54145	5.44705	13.18275	5.72700	13.85702	0.02127	14.50595
0.8	3.97883	12.28247	4.18343	12.91035	4.39850	13.57054	4.02455	14.20405	4.80217	14.99442
0.85	3.00579	12.55773	3.10030	13.19970	3.32282	13.87405	3.49359	14.58432	3.07311	15.33045
0.9	2.01422	12.75550	2.11780	13.40704	2.22000	14.09323	2.34110	14.81410	2.40139	15.57190
0.95	1.01022	12.87474	1.00217	13.53290	1.11077	14.22498	1.17417	14.95250	1.23450	15.71740
1.0	0.00	12.91456	0.00	13.57476	0.00	14.26891	0.00	14.99874	0.00	15.76607
1.05	1.01022	12.87474	1.06217	13.53290	1.11677	14.22498	1.17417	14.95250	1.23450	15.71746
1.1	2.01422	12.75550	2.11780	13.40764	2.22000	14.09323	2.34110	14.81410	2.40139	15.57190
1.15	3.00579	12.55773	3.10030	13.19970	3.32282	13.87405	3.49359	14.58432	3.07311	15.33045
1.2	3.97883	12.28247	4.18343	12.91035	4.39850	13.57054	4.02455	14.20405	4.80217	14.99442
1.25	4.92735	11.93150	5.18072	12.54145	5.44705	13.18275	5.72700	13.85702	6.02127	14.56595
1.3	5.84548	11.50695	6.14670	12.09520	6.46202	12.71369	6.79414	13.36397	7.14324	14.04764
1.35	6.72758	11.01147	7.07352	11.57440	7.43715	12.16623	7.81938	12.78852	8.22116	13.44278
1.4	7.56820	10.44810	7.95737	10.98222	8.36643	11.54379	8.79642	12.13423	9.24840	12.75501
1.45	8.36217	9.82031	8.79215	10.32233	9.24413	10.85010	9.71923	11.40512	10.21803	11.98861
1.5	9.10455	9.13197	9.57273	9.59881	10.06483	10.08964	10.58212	10.60570	11.12585	11.14830
1.55	9.79 082	8.38733	10.29428	8.81610	10.82349	9.26691	11.37975	9.74090	11.96447	10.23924
1.6	10.41673	7.59099	10.95235	7.97905	11.51541	8.38705	12.10723	8.81604	12.72933	9.26706
1.65	10.97841	6.74784	11.54294	7.09279	12.13633	7.45549	12.76006	7.83682	13.41572	8.23775
1.7	11.47240	5.86309	12.06234	6.16381	12.68244	6.47795	13.33423	6.80928	14.01940	7.15765
1.75	11.89566	4.94218	12.50736	5.19485	13.15033	5.46075	13.82620	5.73977	14.53662	6.03341
1.0	12.24500	3.99082	12.07530	4.19403	13.53717	4.40933	14.23201	4.03487	14.90423	4.07198
1.05	12.52002	3.01404	13.10388	3.10097	13.04054	3.33101	14.55100	3.50139	15-29959	3.00053
1.9	12.71720	2.02020	13.37120	2.12350	14.05051	2.23215	14.70111	2.34032	15.54001	1.22600
1.95	12.03010	1.01320	13.49015	1.00507	14.10950	1.11953	14.91923	1.17079	13.00501	1.23099
2.0	12.87578	0.00	13.53788	0.00	14.23382	0.00	14.90530	0.00	15.73432	0.00

Note.

Negative questions are in heavy type.

Examples. $\sinh (3.40 + i 0) = 14.96536 + i 0.$ $\sinh (3.45 + i \underline{1.45}) = -10.21863 + i 11.98861.$ $g = \frac{M}{M_{10}} - M4 - M2$

[55] $\exists f 2 \leq \frac{4}{m_2} - n4 \leq 4$ multiply (sink [x + i g]) by -1 ie (-1) (u + i v)

m, n = 0, 1, 2select n so that $0 \leq \frac{M}{m_{12}} - h4 \leq 4$ select m so that $\leq (\frac{m}{m_{h}} - n \cdot 1) - m \cdot 2 \leq 2$

\boldsymbol{q}	x =	3.50	x = x	3.55	x =	3.60	x =	3.65	x =	3.70
0.0	16.54263	0.00	17.39230	0.00	18.28546	0.00	19.22434	0.00	20.21129	0.00
0.05	16.49163	1.30029	17.33870	1.36684	18.22900	1.43680	19.16506	1.51036	20.14900	1.58770
0.1	16.33896	2.59256	17.17817	2.72525	18.06033	2.86475	18.98765	3.01142	19.96246	3.16561
0.15	16.08555	3.86885	16.91175	4.06686	17.78022	4.27503	18.69316	4.49390	19.65290	4.72401
0.2	15.73300	5.12129	16.54105	5.3 ⁸ 339	17.39050	5.65896	18.28342	5.94868	19.22208	6.25327
0.25	15.28340	6.34215	16.06840	6.66674	16.89356	7.00800	17.76096	7.36678	18.67280	7.74399
0.3	14.73960	7.52391	15.49665	7.90898	16.29246	8.31383	17.12900	8.73946	18.00840	9.18696
0.35	14.10490	8.65928	14.82933	9.10246	15.59090	9.56840	16.39143	10.05827	17.23295	10.57330
0.4	13.38330	9.74126	14.07066	10.23982	14.79326	10.76400	15.55281	11.31505	16.35127	11.89444
0.45	12.57910	10.76320	13.22520	11.31405	13.90436	11.89320	14.61830	12.50208	15.36878	13.14223
0.5	11.69740	11.71820	12.29820	12.31852	12.92978	12.94910	13.59365	13.61203	14.29155	14.30902
0.55	10.74357	12.60210	11.29540	13.24705	11.87545	13.92515	12.48520	14.63806	13.12620	15.38760
0.6	9.72361	13.40770	10.22293	14.09390	10.74789	14.81535	11.29972	15.57383	11.87990	16.37127
0.65	8.64360	14.13065	9.08745	14.85386	9.55412	15.61421	10.04469	16.41360	10.56037	17.25404
0.7	7.51020	14.76650	7.89594	15.52225	8.30143	16.31680	8.72766	17.15216	9.17573	18.03040
0.75	6.33059	15.31130	6.65574	16.09492	6.99754	16.91880	7.35683	17.78497	7.73453	18.69565
0.8	5.11195	15.76170	5.37451	16.56840	5.65052	17.41650	5.94065	18.30814	6.24563	19.24560
0.85	3.86180	16.11491	4.06015	16.93970	4.26865	17.80680	4.48783	18.71843	4.71823	19.67690
0.9	2.58783	16.36878	2.72075	17.20653	2.86047	18.08732	3.00735	19.01331	3.16174	19.98688
0.95	1. 29792	16.52173	1.36458	17.36731	1.43466	18.25632	1.50832	19.19100	1.58576	20.17362
1.0	0.00	16.57282	0.00	17.42102	0.00	18.31278	0.00	19.25033	0.00	20.23601
1.05	1.29792	16.52173	1.36458	17.36731	1.43466	18.25632	1.50832	19.19100	1.58576	20.17362
1.1	2.58783	16.36878	2.72075	17.20653	2.86047	18.08732	3.00735	19.01331	3.16174	19.98688
1.15	3.86180	16.11491	4.06015	16.93970	4.26865	17.80680	4.48783	18.71843	4.71823	19.67690
1.2	5.11195	15.76170	5-37451	16.56840	5.65052	17.41650	5.94065	18.30814	6.24563	19.24560
1.25	6.33059	15.31130	6.65574	16.09492	6.99754	16.91880	7.35683	17.78497	7.73453	18.69565
1.3	7.51020	14.76650	7.89594	15.52225	8.30143	16.31680	8.72766	17.15216	9.17573	18.03040
1.35	8.64360	14.13065	9.08745	14.85386	9.55412	15.61421	10.04469	16.41360	10.56037	17.25404
1.4	9.72361	13.40770	10.22293	14.09390	10.74789	14.81535	11.29972	15.57383	11.87990	16.37127
1.45	10.74357	12.60210	11.29540	13.24705	11.87545	13.92515	12.48520	14.63806	13.12620	15.38760
1.5	11.69740	11.71820	12.29820	12.31852	12.92978	12.94910	13.59365	13.61203	14.29155	14.30902
1.55	12.57910	10.76320	13.22520	11.31405	13.90436	11.89320	14.61830	12.50208	15.36878	13.14223
1.6	13.38330	9.74126	14.07066	10.23982	14.79326	10.76400	15.55281	11.31505	16.35127	11.89444
1.65	14.10490	8.65928	14.82933	9.10246	15.59090	9.56840	16.39143	'10.05827	17.23295	10.57330
1.7	14.73960	7.52391	15.49665	7.90898	16.29246	8.31383	17.12900	8.73946	18.00840	9.18696
1.75	15.28340	6.34215	16.06840	6.66674	16.89356	7.00800	17.76096	7.36678	18.67280	7.74399
1.8	15.73300	5.12129	16.54105	5.38339	17.39050	5.65896	18.28342	5.94868	19.22208	6.25327
1.85	16.08555	3.86885	16.91175	4.06686	17.78022	4.27503	18.69316	4.49390	19.65290	4.72401
1.9	16.33896	2.59256	17.17817	2.72525	18.06033	2.86475	18.98765	3.01142	19.96246	3.16561
1.95	16.49163	1.30029	17.33870	1.36684	18.22900	1.43680	19.16506	1.51036	20.14900	1.58770
2.0	16.54263	0.00	17.39230	0.00	18.28546	0.00	19.22434	0.00	20.21129	0.00

Note.

Negative quantities are in heavy type.

Examples. $\sinh (3.70 + i \underline{0.5}) = 14.29155 + i 14.30902.$ $\sinh (3.70 + i \underline{1.5}) = -14.29155 + i 14.30902.$

q	x = x	3.75	x = x	3.80	x =	3.85	x =	3.90	x =	3.95
0.0	21.24878	0.00	22.33941	0.00	23.48589	0.00	24.69110	0.00	25.95806	0.00
0.05	21.18327	1.66900	22.27052	1.75448	23.41348	1.84435	24.61500	1.93883	25.87805	2.03816
0.1	20.98716	3.32772	22.06437	3.49815	23.19673	3.67733	24.38710	3.86571	25.63849	4.06375
0.15	20.66167	4.96592	21.72216	5.22025	22.83696	5.48764	24.00888	5.76875	25.24084	6.06429
0.2	20.20879	6.57350	21.24603	6.91017	22.33640	7.26411	23.48262	7.63623	24.68760	8.02744
0.25	19.63131	8.14055	20.63891	8.55748	21.69813	8.99580	22.81160	9.45662	23.98212	9.94109
0.3	18.93280	9.65741	19.90455	10.15203	20.92608	10.67203	21.99993	11.21871	23.12881	11.79366
0.35	18.11756	11.11473	19.04746	11.68400	20.02501	12.28246	21.05272	12.91164	22.13290	13.57315
0.4	17.19062	12.50353	18.07296	13.14392	19.00048	13.81716	19.97556	14.52497	21.00052	15.26910
0.45	16.15770	13.81524	16.98701	14.52281	17.85880	15.26668	18.77526	16.04874	19.73867	16.87098
0.5	15.02516	15.04177	15.79634	15.81216	16.60702	16.62208	17.45924	17.47355	18.35512	18.36873
0.55	13.79998	16.17556	14.50828	17.00402	15.25286	17.87500	16.03558	18.79065	16.85842	19.75331
0.6	12.48971	17.20963	13.13076	18.09105	13.80465	19.01770	14.51307	19.99190	15.25776	21.01610
0.65	11.10246	18.13760	11.67230	19.06655	12.27134	20.04315	12.90106	21.06988	13.56305	22.14931
0.7	9.64674	18.95373	10.14188	19.92448	10.66233	20.94503	11.20952	22.01797	11.78474	23.14597
0.75	8.13156	19.65301	8.54892	20.65958	8.98766	21.71778	9.44887	22.83030	9.93373	23.99991
0.8	6.56624	20.23113	6.90325	21.26731	7.25754	22.35664	7.62997	23.50188	8.02149	24.70590
0.85	4.96043	20.68452	5.21503	21.74391	5.48267	22.85766	•5.76402	24.02856	6.05979	25.25957
0.9	3.32404	21.01038	3.49465	22.08646	3.67400	23.21775	3.86254	24.40710	4.06074	25.65749
0.95	1.66716	21.20670	1.75273	22.29283	1.84268	23.43470	1.93724	24.63516	2.03665	25.89724
1.0	0.00	21.27230	0.00	22.36178	0.00	23.50717	0.00	24.71135	0.00	25.97731
1.05	1.66716	21.20670	1.75273	22.29283	1.84268	23.43470	1.93724	24.63516	2.03665	25.89724
1.1	3.32404	21.01038	3.49465	22.08646	3.67400	23.21775	3.86254	24.40710	4.06074	25.65749
1.15	4.96043	20.68452	5.21503	21.74391	5.48267	22.85766	5.76402	24.02856	6.05979	25.25957
1.2	6.56624	20.23113	6.90325	21.26731	7.25754	22.35664	7.62997	23.50188	8.02149	24.70590
1.25	8.13156	19.65301	8.54892	20.65958	8.98766	21.71778	9.44887	22.83030	9.93373	23.99991
1.3	9.64674	18.95373	10.14188	19.92448	10.66233	20.94503	11.20952	22.01797	11.78474	23.14597
1.35	11.10246	18.13760	11.67230	19.06655	12.27134	20.04315	12.90106	21.06988	13.56305	22.14931
1.4	12.48971	17.20963	13.13076	18.09105	13.80465	19.01770	14.51307	19.99190	15.25776	21.01610
1.45	13.79998	16.17556	14.50828	17.00402	15.25286	17.87500	16.03558	18.79065	16.85842	19.75331
1.5	15.02516	15.04177	15.79634	15.81216	16.60702	16.62208	17.45924	17.47355	18.35512	18.36873
1.55	16.15770	13.81524	16.98701	14.52281	17.85880	15.26668	18.77526	16.04874	19.73867	16.87098
1.6	17.19062	12.50353	18.07296	13.14392	19.00048	13.81716	19.97556	14.52497	21.00052	15.26910
1.65	18.11756	11.11473	19.04746	11.68400	20.02501	12.28246	21.05272	12.91164	22.13290	13.57315
1.7	18.93280	9.65741	19.90455	10.15203	20.92608	10.67203	21.99993	11.21871	23.12881	11.79366
1.75,	19.63131	8.14055	20.63891	8.55748	21.69813	8.99580	22.81160	9.45662	23.98212	9.94109
1.8	20.20879	6.57350	21.24603	6.91017	22.33640	7.26411	23.48262	7.63623	24.68760	8.02744
1.85	20.66167	4.96592	21.72216	5.22025	22.83696	5.48764	24.00888	5.76875	25.24084	6.06429
1.9	20.98716	3.32772	22.06437	3.49815	23.19673	3.67733	24.38710	3.86571	25.63849	4.06375
1.95	21.18327	1.66900	22.27052	1.75448	23.41348	1.84435	24.61500	1.93883	25.87805	2.03816
2.0	21.24878	0.00	22.33941	0.00	23.48589	0.00	24.69110	0.00	25.95806	0.00

Note.

Negative quantities are in heavy type.

Examples. $\sinh (3.90 + i \underline{0.75}) = 9.44887 + i 22.83030.$ $\sinh (3.95 + i \underline{1.95}) = -25.87805 + i 2.03816.$

TABLE VIII. HYPERBOLIC COSINES. $\cosh(x + iq) = u + iv$

q	x = c	c	x = c	0.05	<i>x</i> = .	0.1	x =	0.15	<i>x</i> =	0.2
0	1.0000	0.00	1.00125	0.00	1.00500	0.00	1.01127	0.00	1.02007	0.00
0.05	0.00602	0.00	0.0081Ő	0.00302	1.00101	0.00786	1.00815	0.01181	1.01692	0.01580
0.1	0.08760	0.00	0.08802	0.00783	0.00263	0.01567	0.99882	0.02355	1.00751	0.03150
0.15	0.07237	0.00	0.07385	0.01168	0.07724	0.02338	0.98333	0.03515	0.00188	0.04700
0.2	0.95106	0.00	0.95225	0.01546	0.95582	0.03095	0.96178	0.04653	0.97014	0.06222
0.25	0.92388	0.00	0.92503	0.01914	0.92850	0.03833	0.93429	0.05762	0.94242	0.07705
0.3	0.89101	0.00	0.89208	0.02271	0.89547	0.04547	0.90105	0.06835	0.90889	0.09141
0.35	0.85264	0.00	0.85367	0.02614	0.85691	0.05234	0.86225	0.07867	0.86975	0.10520
0.4	0.80902	0.00	0.81000	0.02940	0.81307	0.0 5888	0.81814	0.08850	0.82525	0.11834
0.45	0.76041	0.00	0.76133	0.03249	0.76421	0.06505	0.76898	0.09778	0.77567	0.13076
0.5	0.70711	0.00	0.70796	0.03537	0.71065	0.07083	0.71508	0.10646	0.72130	0.14237
0.55	0.64945	0.00	0.65023	0.03804	0.65270	0.07617	0.65677	0.11449	0.66248	0.15310
0.6	0.58779	0.00	0.58850	0.04047	0.59027	0.08104	0.59441	0.12181	0.59958	0.16288
0.65	0.52250	0.00	0.52313	0.04265	0.52511	0.08541	0.52839	0.12838	0.53298	0.17167
0.7	0.45399	0.00	0.45439	0.04457	0.45626	0.08925	0.45911	0.13415	0.46310	0.17939
0.75	0.38268	0.00	0.38316	0.04621	0.38460	0.09254	0.38700	0.13910	0.39036	0.18601
0.8	0.30902	0.00	0.30940	0.04757	0.31056	0.09526	0.31250	0.14319	0.31522	0.19148
0.85	0.23345	0.00	0.23374	0.04864	0.23461	0.09740	0.23608	0.14640	0.23813	0.19577
0.9	0.15643	0.00	0.15663	0.04941	0.15722	0.09893	0.15820	0.14871	0.15957	0.19886
0.95	0.07846	0.00	0.07856	0.04987	0.07885	0.09986	0.07934	0.15010	0.08003	0.20072
1.0	0.00	0.00	0.00	0.05002	0.00	0.10017	0.00	0.15056	0.00	0.20134
1.05	0.07846	0.00	0.07856	0.04987	0.07885	0.09986	0.07934	0.15010	0.08003	0.20072
1.1	0.15643	0.00	0.15663	0.04941	0.15722	0.09893	0.15820	0.14871	0.15957	0.19886
1.15	0.23345	0.00	0.23374	0.04864	0.23461	0.09740	0.23608	0.14640	0.23813	0.19577
I.2	0.30902	0.00	0.30940	0.04757	0.31056	0.09526	0.31250	0.14319	0.31522	0.19148
1.25	0.38268	0.00	0.38316	0.04621	0.38460	0.09254	0.38700	0.13910	0.39036	0.18601
1.3	0.45399	0.00	0.45439	0.04457	0.45626	0.08925	0.45911	0.13415	0.46310	0.17939
1.35	0.52250	0.00	0.52313	0.04265	0.52511	0.08541	0.52839	0.12838	0.53298	0.17167
I.4	0.58779	0.00	0.58850	0.04047	0.59027	0.08104	0.59441	0.12181	0.59958	0.16288
1.45	0.64945	0.00	0.65023	0.03804	0.65270	0.07617	0.65677	0.11449	0.66248	0.15310
1.5	0.70711	0.00	0.70796	0.03537	0.71065	0.07083	0.71508	0.10646	0.72130	0.14237
1.55	0.76041	0.00	0.76133	0.03249	0.76421	0.06505	0.76898	0.09778	0.77567	0.13076
1.6	0.80902	0.00	0.81000	0.02940	0.81307	0.05888	0.81814	0.08850	0.82525	0.11834
1.65	0.85264	0.00	0.85367	0.02614	0.85691	0.05234	0.86225	0.07867	0.86975	0.10520
1.7	0.89101	0.00	0.89208	0.02271	0.89547	0.04547	0.90105	0.06835	0.90889	0.0914 1
1.75	0.92388	0.00	0.92503	0.01914	0.92850	0.03833	0.93429	0.05762	0.94242	0.07705
1.8	0.95106	0.00	0.95225	0.01546	0.95582	0.03095	0.96178	0.04653	0.97014	0.06222
1.85	0.97237	0.00	0.97385	0.01168	0.97724	0.02338	0.98333	0.03515	0.99188	0.04700
1.9	0.98769	0.00	0.98892	0.00783	0.99263	0.01567	0.99882	0.02355	1.00751	0.03150
1.95	0.99692	0.00	0.99816	0.00392	1.00191	0.00786	1.00815	0.01181	1.01692	0.01580
2.0	1.0000	0.00	1.00125	0.00	1.00500	0.00	1.01127	0.00	1.02007	0.00

Note.

Negative quantities are in heavy type.

Examples. $\cosh(0 + i 0.75) = 0.38268 + i 0.$

 $\cosh(0.2 + i_{1.5}) = -0.72130 + i_{0.14237}$

q	x =	0.25	x =	• 0.3	x =	0.35	x =	0.4	x =	0.45
0	1.03141	0.00	1.04534	0.00	1.06188	0.00	1.08107	0.00	1.10207	0.00
0.05	1.02823	0.01982	1.04212	0.02380	1.05860	0.02803	1.07774	0.03223	1.00057	0.03651
0.1	1.01871	0.03952	1.03247	0.04764	1.04880	0.05588	1.06776	0.06426	1.080.30	0.07280
0.15	1.00202	0.05807	1.01646	0.07100	1.03254	0.08338	1.05120	0.00580	1.07250	0.10863
0.2	0.08003	0.07806	0.00418	0.00410	1.00001	0.11038	1.02816	0.12603	1.04800	0.14380
		,						0.11093		4,000
0.25	0.05200	0.09667	0.06577	0.11654	0.08105	0.13660	0.00878	0.15710	1.01001	0.17808
0.3	0.01000	0.11468	0.03140	0.13825	0.04614	0.16216	0.06324	0.18648	0.08275	0.21126
0.35	0.87042	0.13100	0.80130	0.15011	0.00540	0.18663	0.02177	0.21462	0.04044	0.24314
0.4	0.83443	0.14848	0.84570	0.17800	0.85008	0.20005	0.87461	0.24143	0.80232	0.27352
0.45	0.78420	0.16406	0.70488	0.10777	0.80746	0.23108	0.82206	0.26676	0.82871	0 20222
0.45	0.70419	0.10400	0.79400	0.19/11	0.00740	0.13190	0.02200	0.20070	0.03071	0.30222
0.5	0.72932	0.17862	0.73017	0.21533	0.75086	0.25257	0.76443	0.20045	0.77002	0.32005
0.55	0.66085	0.10208	0.67880	0.23156	0.68064	0.27161	0.70210	0.31234	0.71632	0.35385
0.6	0.60625	0.20437	0.61444	0.24636	0.62416	0.28807	0.63544	0.33231	0.64831	0.37647
0.65	0.53801	0.21530	0.54610	0.25065	0.55483	0.30455	0.56486	0.35022	0.57630	0.30677
0.7	0.46825	0.22508	0.47457	0.27122	0.48208	0.31826	0.40080	0.26508	0.50074	0.41462
0.7	0.40023	0.22300	0.4/43/	0.27-33	0140200	0.91020	0.49000	0.30390	0.30074	0.41402
0.75	0.30471	0.23338	0.40003	0.28134	0.40636	0.33000	0.41371	0.37040	0.42200	0.42002
0.8	0.31872	0.24025	0.32303	0.28062	0.32814	0.33071	0.33407	0.30065	0.34084	0.44257
0.85	0.24078	0.24563	0.24403	0.20611	0.24780	0.34732	0.25237	0.30040	0.25748	0 45240
0.0	0 16125	0 24050	0 16252	0 20077	0 16611	0 25270	0.16012	0.40570	017254	0.45061
0.05	0.08003	0.25182	0.08202	0.20258	0.08227	0.25600	0.08482	0.40040	0.08654	0.46201
0.95	0.00092	0.23103	0.00202	0.30330	0.00331	0.33009	0.00402	0.40949	0.00034	0.40391
1.0	0.00	0.25261	0.00	0.30452	0.00	0.35710	0.00	0.41075	0.00	0.46534
1.05	0.08002	0.25183	0.08202	0.30358	0.08331	0.35600	0.08482	0.40040	0.08654	0.46301
T.T	0.16135	0.24050	0.16353	0.30077	0.16611	0.35270	0.16012	0.40570	0.17254	0.45061
1 15	0.24078	0.24562	0.24403	0.20611	0.24780	0.24732	0.25237	0 20040	0.25748	0.45240
T 2	0.21872	0 24025	0.22202	0.28062	0.22814	0 22071	0 32407	0.30065	0.24084	0 44257
1.4	0.31072	0.24023	0.32303	0.20902	0.32014	0.33971	0.33407	0.39003	0.34004	0.44237
1.25	0.39471	0.23338	0.40003	0.28134	0.40636	0.33000	0.41371	0.37040	0.42200	0.42002
1.3	0.46825	0.22508	0.47457	0.27133	0.48208	0.31826	0.40080	0.36508	0.50074	0.41462
1.35	0.53801	0.21530	0.54610	0.25065	0.55483	0.30455	0.56486	0.35022	0.57630	0.30677
T /	0.60625	0.20/37	0.61444	0.24636	0.62416	0.28807	0.63544	0.22221	0.64831	0.37647
T 15	0.66085	0 10208	0.67880	0 22156	0.68064	0.27161	0.70210	0.21224	0.71622	0.25285
+5	energe j	0119200	,,	01-3-30				0.31234	01/2032	0.55505
1.5	0.72932	0.17862	0.73917	0.21533	0.75086	0.25257	0.76443	0.20945	0.77992	0.32905
1.55	0.78420	0.16406	0.79488	0.10777	0.80746	0.23108	0.82206	0.26676	0.83871	0.30222
1.6	0.83443	0.14848	0.84570	0.17800	0.85008	0.20005	0.87461	0.24143	0.80232	0.27352
1.65	0.87042	0.13100	0.80130	0.15011	0.00540	0.18663	0.02177	0.21462	0.04044	0.24314
17	0.01000	0 11468	0.03140	O T 2825	0.04614	0 16216	0.06224	0 18648	0.08275	0.21126
/					94014				-190273	
1.75	0.95290	0.09667	0.96577	0.11654	0.98105	0.13669	0.99878	0.15719	1.01901	0.17808
1.8	0.08003	0.07806	0.99418	0.00410	1.00001	0.11038	1.02816	0.12603	1.04899	0.14380
1.85	1.00202	0.05807	1.01646	0.07100	1.03254	0.08338	1.05120	0.00580	1.07250	0.10863
1.0	1.01871	0.03052	1.03247	0.04764	1.04880	0.05588	1.06776	0.06426	1.08030	0.07280
1.05	1.02823	0.01082	1.04212	0.02380	1.05860	0.02803	1.07774	0.03223	1.00057	0.03651
95										
2.0	1.03141	0.00	1.04534	0.00	1.06188	0.00	1.08107	0.00	1.10297	0.00

Note.

Negative quantities are in heavy type.

Examples. $\cosh(0.3 + i 0.9) = 0.16353 + i 0.30077$. $\cosh(0.45 + i \underline{1.7}) = -0.98275 + i 0.21126.$

[59]

\boldsymbol{q}	x =	0.5	x =	0.55	x =	0.0	x =	0.05	x =	0.7
					* * 8 - 4 -	0.00	T 21870	0.00	1 25517	~ ~~
0	1.12703	0.00	1.15510	0.00	1.1054/	0.00	1.210/9	0.00	1.23317	0.00
0.05	1.12415	0.04088	1.15154	0.04530	1.10101	0.04995	1.21304	0.05407	1.25130	0.03932
0.1	1.11374	0.08152	1.14088	0.09044	1.17087	0.09959	1.20379	0.10000	1.239/2	0.11007
0.15	1.09647	0.12105	1.12319	0.13497	1.15271	0.14802	1.18512	0.10205	1.22049	0.17709
0.2	1.07244	0.16103	1.09857	0.17866	1.12744	0.19074	1.15912	0.21531	1.19374	0.23442
					1 00 1 1 1	0 04164	1 12602	0 26662	1 15062	0 20020
0.25	1.04179	0.19942	1.00717	0.22125	1.09523	0.24304	1.12002	0.20003	1.13902	0.29030
0.3	1.00472	0.23057	1.02920	0.20240	1.05020	0.20904	1.00595	0.31032	1.11030	0.34439
0.35	0.90140	0.27227	0.98489	0.30208	1.01078	0.33205	1.03919	0.30405	1.07021	0.39030
0.4	0.91227	0.30029	0.93450	0.33983	0.95900	0.37422	0.98002	0.40954	1.01545	0.44589
0.45	0.85745	0.33842	0.87835	0.37548	0.90144	0.41347	0.92078	0.45250	0.95444	0.49200
0.5	0 70725	0.36847	0.81678	0.40882	0.83825	0.45018	0.86182	0.49268	0.88754	0.53640
0.5	0 72 222	0.30624	0.75018	0.43063	0.76000	0.48412	0.70154	0.52081	0.81517	0.57683
0.33	0.75233	0.42158	0.67805	0.46773	0.60680	0.51506	0.71630	0.56368	0.73777	0.61371
0.0	0.00200	0.44421	0.60254	0.40206	0.61040	0.54281	0.63682	0.50408	0.65582	0.64680
0.05	0.50910	0.44431	0.00334	0.49290	0.52810	0.54204	0.55222	0.62081	0.56084	0.67500
0.7	0.51193	0.40430	0.52441	0.31314	0.53019	0.30720	0.33332	0.02001	0.30904	0.07390
0.75	0.43152	0.48143	0.44204	0.53414	0.45366	0.58819	0.46641	0.64371	0.48033	0.70084
0.8	0.34846	0.40550	0.35605	0.54086	0.36633	0.60549	0.37663	0.66265	0.38787	0.72146
0.85	0.26324	0.50670	0.26065	0.56218	0.27674	0.61006	0.28452	0.67750	0.20301	0.73763
0.0	0.17640	0.51468	0.18070	0.57103	0.18545	0.62882	0.10066	0.68817	0.10635	0.74025
0.05	0.08847	0.51040	0.00063	0.57637	0.00301	0.63460	0.00563	0.60460	0.00848	0.75625
0.95	0.00047	0.7-949			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
1.0	0.00	0.52110	0.00	0.57815	0.00	0.63665	0.00	0.69675	0.00	0.75858
1.05	0.08847	0.51949	0.09063	0.57637	0.09301	o. 63469	0.09563	0.69460	0.09848	0.75625
I.I	0.17640	0.51468	0.18070	0.57103	0.18545	0. 62882	0.19066	0.68817	0.19635	0.74925
1.15	0.26324	0.50670	0.26965	0.56218	0. 27674	0.61906	0.28452	0.67750	0.29301	0.73763
1.2	0.34846	0.49559	0.35695	0.54986	0.36633	0.60549	0.37663	0.66265	0.38787	0.72146
		a 19710		0 52474	0 45266	0 58810	0 46647	0.64277	0 18000	0.70084
1.25	0.43152	0.48143	0.44204	0.53414	0.45300	0.30019	0.40041	0.04371	0.40033	0.70084
1.3	0.51193	0.40430	0.52441	0.51514	0.53019	0.50720	0.55332	0.02081	0.50984	0.07500
1.35	0.58918	0.44431	0.00354	0.49290	0.01940	0.54204	0.03082	0.59408	0.05502	0.04080
1.4	0.00280	0.42158	0.07895	0.40773	0.09080	0.51500	0.71039	0.50308	0.73777	0.01371
1.45	0.73233	0.39024	0.75018	0.43903	0.70990	0.48412	0.79154	0.52981	0.81517	0.57083
1.5	0.70735	0.36847	0.81678	0.40882	0.83825	0.45018	0.86182	0.49268	0.88754	0.53640
TEE	0.85745	0.33842	0.87835	0.37548	0.00144	0.41347	0.02678	0.45250	0.05444	0.40266
т.б	0.01227	0.20620	0.03450	0.33083	0.05006	0.37422	0.08602	0.40054	1.01545	0.44580
т.6г	0.06146	0.27227	0.08480	0.30208	1.01078	0 22265	1.03010	0 26405	1.07021	0.20626
1.05	1.00472	0.22657	1 02020	0.26248	1 05626	0.33203	1.08505	.0 21622	1 11826	0.39030
1./	1.00472	0.23037	1.02920	0.20240	1.03010	0.20904	1.00393	0.31032	1.11030	0.34439
1.75	1.04179	0.19942	1.06717	0.22125	1.09523	0.24364	1.12602	0.26663	1.15962	0.29030
1.8	1.07244	0.16103	1.09857	0.17866	1.12744	0.19674	1.15912	0.21531	1.19374	0.23442
1.85	1.09647	0.12165	1.12319	0.13497	1.15271	0.14862	1.18512	0.16265	1.22049	0.17700
1.0	1.11374	0.08152	1.14088	0.09044	1.17087	0.09959	1.20379	0.10000	1.23972	0.11867
1.95	1.12415	0.04088	1.15154	0.04536	1.18181	0.04995	1.21504	0.05467	1.25130	0.05952
					0				-	
2.0 *	1.12703	0.00	1.15510	0.00	1.18547	0.00	1.21879	0.00	1.25517	0.00

Note.

Negative quantities are in heavy type.

Examples. $\cosh(0.6 + i 0.95) = 0.09301 + i 0.63469.$ $\cosh(0.6 + i \underline{1.05}) = -0.09301 + i 0.63469.$
q	x =	0.75	<i>x</i> =	o.8	x =	0.85	x =	0.9	x =	0.95
0	1.20468	0.00	1.33743	0.00	1.38353	0.00	1.43300	0.00	1.48623	0.00
0.05	1.20060	0.06452	1.33331	0.06968	1.37927	0.07502	1.42867	0.08054	1.48164	0.08627
0.1	1.27874	0.12864	1.32007	0.13803	1.36650	0.14057	1.41544	0.16058	1.46703	0.17200
0.15	1.25801	0.10107	1.30048	0.20732	1.34530	0.22320	1.30340	0.23064	1.44516	0.25667
0.2	1.23132	0.25411	1.27108	0.27444	1.31582	0.29546	1.36204	0.31721	1.41348	0.33076
					0					
0.25	1.19013	0.31409	1.23503	0.33980	1.27822	0.30589	1.32400	0.39283	1.37309	0.42070
0.3	1.15350	0.37332	1.19100	0.40319	1.23274	0.43407	1.27089	0.40003	1.32425	0.49910
0.35	1.10390	0.42900	1.14035	0.40403	1.17905	0.49957	1.22194	0.53035	1.20722	0.57448
0.4	1.04742	0.48335	1.08201	0.52202	1.11930	0.50199	1.15939	0.00337	1.20238	0.04020
0.45	0.98449	0.53405	1.01700	0.57078	1.05205	0.02095	1.08973	0.00007	1.13013	0.71400
0.5	0.91548	0.58147	0.94571	0.62799	0.97830	0.67608	1.01334	0.72586	1.05092	0.77745
0.55	0.84083	0.62529	0.86859	0.67532	0.89853	0.72704	0.93071	0.78057	0.96523	0.83605
0.6	0.76100	0.66527	0.78613	0.71849	0.81322	0.77351	0.84235	0.83047	0.87358	0.88950
0.65	0.67647	0.70114	0.69881	0.75724	0.72290	0.81522	0.74879	0.87525	0.77655	0.93747
0.7	0.58777	0.73269	0.60718	0.79131	0.62811	0.85191	0.65061	0.91463	0. 67473	0.97965
0.75	0.49545	0.75972	0.51182	0.82050	0.52945	0.88334	0.54842	0.94838	0.56875	1.01570
0.8	0.40008	0.78207	0.41329	0.84464	0.42753	0.90932	0.44285	0.97628	0.45927	1.04567
0.85	0.30224	0.79960	0.31222	0.86357	0.32298	0.92970	0.33455	0.99816	0.34695	1.06911
0.9	0.20253	0. 81219	0.20922	0.87717	0.21643	0.94435	0.22418	1.01388	0.23250	1.08595
0.95	0.10158	0.81978	0.10493	0.88537	0.10855	0.95317	0.11244	1.02335	0.11661	1.09610
1.0	0.00	0.82232	0.00	0.88811	0.00	0.95612	0.00	1.02652	0.00	1.09948
1.05	0.10158	0. 81978	0.10493	o.88537	0.10855	0.95317	0.11244	1.02335	0.11661	1.09610
I.I	0.20253	0.81219	0.20922	0.87717	0.21643	0.94435	0.22418	1.01388	0.23250	1.08595
1.15	0.30224	0.79960	0.31222	0.86357	0.32298	0.92970	0.33455	0 .99816	0.34695	1.06911
1.2	0.40008	0.78207	0.41329	o. 84464	0.42753	0.90932	0.44285	0.97628	0.45927	1.04567
1.25	0.49545	0.75972	0.51182	0.82050	0.52945	0.88334	0.54842	0.94838	0.56875	1.01579
1.3	0.58777	0.73269	0.60718	0.79131	0.62811	0.85191	0.65061	0. 91463	0.67473	0.97965
1.35	0.67647	0.70114	0.69881	0.75724	0.72290	0.81522	0.74879	0.87525	0.77655	0.93747
1.4	0.76100	0.66527	0.78613	0.71849	0.81322	0.77351	0.84235	0.83047	0.87358	0.88950
1.45	0.84083	0.62529	0.86859	0.67532	0.89853	0.72704	0.93071	0.78057	0.96523	0.83605
1.5	0.91548	0.58147	0.94571	0.62799	0.97830	0.67608	1.01334	0.72586	1.05092	0.77745
1.55	0.98449	0.53405	1.01700	0.57678	1.05205	0.62095	1.08973	o. 66667	1.13013	0.71406
1.6	1.04742	0.48335	1.08201	0.52202	1.11930	0.56199	1.15939	0.60337	1.20238	0.64626
1.65	1.10390	0.4 2966	1.14035	0.46403	1.17965	0. 49957	1.22194	0.53635	1.26722	0.57448
1.7	1.15356	0.37332	1.19166	0.40319	1.23274	0.43407	1.27689	0.46603	1.32425	0.49916
1.75	1.19613	0.31469	1.23563	0.33986	1.27822	0.36589	1.32400	0.39283	1.37309	0.42076
1.8	1.23132	0.25411	1.27198	0.27444	1.31582	0.29546	1.36294	0.31721	1.41348	0.33976
1.85	1.25891	0.19197	1.30048	0.20732	1.34530	0.22320	1.39349	0.23964	1.44516	0.25667
1.9	1.27874	0.12864	1.32097	0.13893	1.36650	0.14957	1.41544	0.16058	1.46793	0.17200
1.95	1.29069	0.06452	1.33331	0.06968	1.37927	0.07502	1.42867	0.08054	1.48164	0.08627
2.0	1.29468	0.00	1.33743	0.00	1.38353	0.00	1.43309	0.00	1.48623	0.00

Note.

Negative quantities are in heavy type.

Examples. $\cosh(0.9 + i \underline{1.0}) = 0 + i \underline{1.02652}$. $\cosh(0.9 + i \underline{1.10}) = -0.22418 + i \underline{1.01388}$.

a	x =	1.0	<i>x</i> ==	1.05	x =	I.I	x =	1.15	x =	I.2
r				°.				•		
~	7 54208	0.00	1.62270	0.00	T.66852	0.00	1.73741	0.00	1.81066	0.00
0	1.54300	0.00	1.00379	0.00828	T 66227	0 10470	1 72206	0 11147	T 80507	0.11842
0.05	1.53032	0.09221	1.59005	0.09030	1.00337	0.104/9	1.73200	0.00006	1.00307	0.11043
0.1	1.52408	0.18384	1.50405	0.19015	1.04798	0.20804	1./1002	0.22220	1.70030	0.23013
0.15	1.50045	0.27435	1.55948	0.29271	1.02242	0.31180	1.08941	0.33107	1.70003	0.35238
0.2	1.46756	0.36316	1.52530	0.38746	1.58685	0.41274	1.65238	0.43904	1.72204	0.46645
0.25	1.42562	0.44973	1.48171	0.47983	1.54151	0.51113	1.00517	0.54371	1.07283	0.57765
0.3	1.37400	0.53353	1.42899	0.56924	1.48666	0.60637	1.54805	0.64502	1.61331	0.68528
0.35	1.31560	0.61404	1.36746	0.65514	1.42265	0.69787	1.48139	0.74235	1.54384	0.78860
0.4	T 24828	0.60077	1.20750	0.73700	1.34086	0.78508	1.40560	0.83511	1.46485	0.88724
0.45	T 17227	0 76222	1.21052	0.81432	T.26875	0.86743	1.32114	0.02272	1.37684	0.08022
0.45	1.1/33/	0.70323	1.1.933	0.01431	1120075	0.00743				0.90031
0.5	1 00112	0.82000	1.13405	0.88661	1.17082	0.04445	1.22854	1.00464	1.28033	1.06735
0.5	1.00112	0.80262	1 04158	0.05244	T 08262	1 01664	T T2826	1 08027	T 17502	T T 478T
0.55	1.00215	0.09303	1.04150	0.93344	1.00302	1.01304	1.12030	1.00037	1.1/393	1.14/01
0.0	0.00700	0.95070	0.94209	1.01439	0.00073	1.00050	1.02123	1.14943	1.00420	1.22110
0.05	0.80020	1.00202	0.83798	1.00909	0.87180	1.13003	0.90780	1.21141	0.94007	1.28703
0.7	0.70055	1.04711	0.72811	1.11719	0.75749	1.19007	0.78877	1.20592	0.82202	1.34494
0.75	0 50051	1.08574	0.61375	1.15841	0.63852	1.23308	0.66488	1.31263	0.60201	1.30456
0.75	0.39031	1.003/4	0.40560	1.10240	0.51560	1.27028	0.52680	T.25124	0 55052	T 42558
- 0-	0.47004	1.11/00	0.49300	1.19249	0.32300	1.2/020	0.33009	x 39750	0.33932	1.43330
0.05	0.30023	1.142/3	0.37440	1.21921	0.30931	1.29075	0.40339	1.30132	0.42209	1.40770
0.9	0.24139	1.10073	0.25089	1.23042	0.20101	1.31920	0.27179	1.40329	0.28325	1.49088
0.95	0.12107	1.17158	0.12583	1.24999	0.13091	1.33153	0.13032	1.41040	0.14200	1.50481
1.0	0.00	1.17520	0.00	1.25386	0.00	1.33565	0.00	1.42078	0.00	1.50046
TOF	0.12107	T 17158	0.12583	T-24000	0.13001	1.22152	0.13632	1.41640	0.14206	T 5048T
1.05	0.11107	1.1/1 30	0.25080	1 22842	0.261.01		0.25750	T 40220	0.28225	1.30401
1.1	0.24139	1.100/3	0.23009	1.23042	0.20101	1.31920	0.2/1/9	1.40329	0.20325	1.49000
1.15	0.30023	1.142/3	0.37440	1.21921	0.30951	1.29075	0.40559	1.30152	0.42209	1.40770
1.2	0.47084	1.11708	0.49500	1.19249	0.51500	1.27028	0.53089	1.35124	0.55952	1.43558
1.25	0.59051	1.08574	0.61375	1.15841	0.63852	1.23398	0.66488	1.31263	0.69291	1.39456
1.3	0.70055	1.04711	0.72811	1.11710	0.75749	1.10007	0.78877	1.26502	0.82202	1.34404
1.35	0.80626	1.00202	0.83708	1.06000	0.87180	1.13883	0.00780	1.21141	0.04607	1.28703
T 4	0.00700	0.05076	0.04260	T.OT/20	0.08073	T 08056	1.02122	T T4042	T 06428	1 22118
1.4r	1.00215	0.93070	TOATES	0.05244	1 08262	1.00030	7 7 28 26	1.14943	1.00420	1.22110
1.45	1.00215	0.09303	1.04150	0.95344	1.00302	1.01504	1.12030	1.00037	1.17593	1.14/01
1.5	1.00112	0.83000	1.13405	0.88661	1.17082	0.04445	1.22854	1.00464	1.28033	1.06735
1.55	T.17337	0.76323	1.21053	0.81432	1.26875	0.86743	1.32114	0.02272	1.27684	0.08022
T 6	1 24838	0.0077	T 20750	0.72700	T 24086	0.78508	1 40560	0.92272	1.37004	0.90032
- 6-	1.24030	0.00077	1.29730	0.73700	1.34900	0.70300	1.40500	0.03511	1.40405	0.00724
1.05	1.31509	0.01404	1.30740	0.05514	1.42205	0.09787	1.40139	0.74235	1.54384	0.78800
1.7	1.37490	0.53353	1.42899	0.50924	1.48000	0.00037	1.54805	0.04502	1.01331	0.08528
1.75	1.42562	0.44973	1.48171	0.47983	1.54151	0.51113	1.60517	0.54371	1.67283	0.57765
1.8	1.46756	0.36316	1.52530	0.38746	1.58685	0.41274	1.65238	0.43004	1.72204	0.46645
1.85	1.50045	0.27435	1.55048	0.20271	1.62242	0.31180	1.68041	0.33167	1.76062	0.25228
1.0	1.52408	0.18384	1.58405	0.10615	1.64708	0.20804	1.71602	0.22226	1.78826	0.22612
TOF	T #2822	0.00221	T. 50885	0.00828	T. 66227	0 10470	1 72206	0 11147	1 80505	0.11842
*•93		0.09221	**39003	0.09030	1.00337	0.10479	1.73200	0.1114/	1.00507	0.11043
2.0	1.54308	0.00	1.60379	0.00	1.66852	0.00	1.73741	0.00	1.81066	0.00

Note.

Negative quantities are in heavy type.

Examples. $\cosh(1.2 + i \circ) = 1.81066 + i \circ.$ $\cosh(1.1 + i 1.1) = -0.26101 + i 1.31920.$

	•								
q	x = 1.25	x =	1.3	x = 1	-35	x = z	r.4	x = x	1.45
0	1.88842 0.0	0 1.97091	0.00	2.05833	0.00	2.15090	0.00	2.24884	0.00
0.05	1.88260 0.1	2569 1.96484	1.13325	2.05200	0.14116	2.14427	0.14941	2.24191	0.15804
0.1	1.86517 0.2	5060 1.94665	0.26569	2.03299	0.28144	2.12442	0.29790	2.22115	0.31510
0.15	1.83624 0.3	7396 1.91646	0.39648	2.00146	0.41999	2.09147	0.44455	2.18671	0.47022
0.2	1.70600 0.4	0502 1.87445	0.52483	1.95759	0.55595	2.04562	0.58846	2.13878	0.62244
0.25	1.74467 0.6	1303 1.82089 2726 1.75610 3700 1.68048 4158 1.59451 4036 1.49870	0.64994	1.90165	0.68848	1.98717	0.72875	2.07766	0.77083
0.3	1.68260 0.7		0.77105	1.83399	0.81677	1.91646	0.86454	2.00373	0.91446
0.35	1.61014 0.8		0.88740	1.75502	0.94002	1.83394	0.99500	1.91745	1.05245
0.4	1.52777 0.9		0.99829	1.66523	1.05748	1.74012	1.11932	1.81935	1.18396
0.45	1.43597 1.6		1.10301	1.56517	1.16842	1.63556	1.23674	1.71007	1.30817
0.5	1.33532 1.1	32731.39365118111.2800195981.1584865861.02980.27320.89478	1.20094	1.45546	1.27215	1.52092	1.34655	1.59017	1.42431
0.55	1.22643 1.2		1.29146	1.33678	1.36804	1.39690	1.44804	1.46051	1.53166
0.6	1.10999 1.2		1.37402	1.20986	1.45550	1.26427	1.54061	1.32184	1.62958
0.65	0.98670 1.3		1.44811	1.07548	1.53398	1.12384	1.62369	1.17502	1.71745
0.7	0.85733 1.4		1.51327	0.93446	1.60300	0.97649	1.69675	1.02095	1.79473
0.75	0.72267 I.4	79980.7542423520.6090557660.4601082200.3083296980.15464	1.56910	0.78769	1.66215	0.82311	1.75934	0.86060	1.86094
0.8	0.58355 I.5		1.61526	0.63606	1.71104	0.66466	1.81110	0.69493	1.91569
0.85	0.44084 I.5		1.65146	0.48051	1.74938	0.50212	1.85169	0.52498	1.95862
0.9	0.2954I I.5		1.67747	0.32199	1.77694	0.33647	1.88086	0.35180	1.98947
0.95	0.14816 I.5		1.69315	0.16150	1.79354	0.16876	1.89843	0.17644	2.00806
1.0 1.05 1.1 1.15 1.2	0.001.60.148161.50.295411.50.440841.50.583551.5	01920.0096980.1546482200.3083257660.4601023520.60905	1.69838 1.69315 1.67747 1.65146 1.61526	0.00 0.16150 0.32199 0.48051 0.63606	1.79909 1.79354 1.77694 1.74938 1.71104	0.00 0.16876 0.33647 0.50212 0.66466	1.90430 1.89843 1.88086 1.85169 1.81110	0.00 0.17644 0.35180 0.52498 0.69493	2.01427 2.00806 1.98947 1.95862 1.91569
1.25	0.72267 1.4	79980.7542427320.8947865861.0298095981.1584818111.28001	1.56910	0.78769	1.66215	0.82311	1.75934	0.86060	1.86094
1.3	0.85733 1.4		1.51327	0.93446	1.60300	0.97649	1.69675	1.02095	1.79473
1.35	0.98670 1.3		1.44811	1.07548	1.53398	1.12384	1.62369	1.17502	1.71745
1.4	1.10999 1.2		1.37402	1.20986	1.45550	1.26427	1.54061	1.32184	1.62958
1.45	1.22643 1.2		1.29146	1.33678	1.36804	1.39690	1.44804	1.46051	1.53166
1.5	1.33532 1.1	3273 1.39365 4036 1.49870 4158 1.59451 3700 1.68048 2726 1.75610	1.20094	1.45546	1.27215	1.52092	1.34655	1.59017	1.42431
1.55	1.43597 1.0		1.10301	1.56517	1.16842	1.63556	1.23674	1.71007	1.30817
1.6	1.52777 0.9		0.99829	1.66523	1.05748	1.74012	1.11932	1.81935	1.18396
1.65	1.61014 0.8		0.88740	1.75502	0.94002	1.83394	0.99500	1.91745	1.05245
1.7	1.68260 0.7		0.77105	1.83399	0.81677	1.91646	0.86454	2.00373	0.91446
1.75	1.74467 0.6	13031.82089.95021.87445.73961.91646.50601.94665.25691.96484	0.64994	1.90165	0.68848	1.98717	0.72875	2.07766	0.77083
1.8	1.79600 0.4		0.52483	1.95759	0.55595	2.04562	0.58846	2.13878	0.62244
1.85	1.83624 0.3		0.39648	2.00146	0.41999	2.09147	0.44455	2.18671	0.47022
1.9	1.86517 0.2		0.26569	2.03299	0.28144	2.12442	0.29790	2.22115	0.31510
1.95	1.88260 0.1		0.13325	2.05200	0.14110	2.14427	0.14941	2.24191	0.15804
2.0	1.88842 0.0	0 1.97091	0.00	2.05833	0.00	2.15090	0.00	2.24884	0.00

Note.

Negative quantities are in heavy type.

Examples. $\cosh(1.4 + i \underline{1.9}) = -2.12442 + i 0.29790,$ $\cosh(1.4 + i \underline{1.4}) = -1.26427 + i 1.54061.$

q	x =	1.5	x =	1.55	<i>x</i> =	1.6	x =	1.65	x =	1.7
0	2.35241	0.00	2.46186	0.00	2.57746	0.00	2.69952	0.00	2.82832	0.00
0.05	2.34516	0.16706	2.45427	0.17650	2.56952	0.18639	2.69121	0.19673	2.81960	0.20757
0.1	2.32345	0.33300	2.43155	0.35192	2.54573	0.37162	2.66629	0.39225	2.79350	0.41387
0.15	2.28742	0.40707	2.30384	0.52516	2.50625	0.55456	2.62494	0.58536	2.75017	0.61761
0.2	2.23727	0.65798	2.34137	0.69517	2.45131	0.73409	2.56740	0.77485	2.68989	0.81754
0.25	2.17334	0.81484	2.27446	0.86089	2.38127	0.90909	2.49404	0.95957	2.61302	1.01244
0.3	2.09601	0. 96667	2.19353	1.02130	2.29654	1.07848	2.40529	1.13837	2.52005	1.20109
0.35	2.00576	1.11255	2.09908	1.17542	2.19765	1.24123	2.30173	1.31015	2.41154	1.38234
0.4	1.90314	1.25156	1.99169	1.32229	2.08522	1.39632	2.18396	1.47385	2.28816	1.55506
0.45	1.78879	1.38286	1.87201	1.46101	1.95992	1.54281	2.05274	1.62847	2.15067	1.71820
0.5	1.66341	1.50563	1.74080	1.59071	1.82254	1.67978	1.90885	1.77305	1.99992	1.87074
0.55	1.52777	1.61912	1.59885	1.71062	1.67393	1.80640	1.75320	1.90669	1.83684	2.01175
0.6	1.38271	1.72263	1.44704	1.81997	1.51500	1.92187	1.58674	2.02858	1.66244	2.14036
0.65	1.22913	1.81551	1.28632	1.91811	1.34672	2.02550	1.41050	2.13797	1.47779	2.25577
0.7	1.06797	1.89720	1.11766	2.00442	1.17015	2.11664	1.22556	2.23417	1.28403	2.35727
0.75	0.00023	1.06720	0.04211	2.07837	0.98636	2.19473	1.03306	2.31660	1.08235	2.44424
0.8	0.72603	2.02507	0.76076	2.13951	0.79648	2.25930	0.83420	2.38474	0.87400	2.51614
0.85	0.54916	2.07045	0.57471	2.18745	0.60170	2.30993	0.63019	2.43818	0.66026	2.57253
0.0	0.36800	2.10307	0.38512	2.22101	0.40320	2.34632	0.42230	2.47659	0.44245	2.61306
0.95	0.18457	2.12272	0.19316	2.24268	0.20223	2.36824	0.21180	2.49973	0.22191	2.63747
1.0	0.00	2.12928	0.00	2.24961	0.00	2.37557	0,00	2.50747	0.00	2.64563
1.05	0.18457	2.12272	0.19316	2.24268	0.20223	2.36824	0.21180	2.49973	0.22191	2.63747
1.1	0.36800	2.10307	0.38512	2.22191	0.40320	2.34632	0.42230	2.47659	0.44245	2.61306
1.15	0.54916	2.07045	0.57471	2.18745	0.60170	2.30993	0.63019	2.43818	0.66026	2.57253
1.2	0.72693	2.02507	0.76076	2.13951	0.79648	2.25930	0.83420	2.38474	0.87400	2.51614
1.25	0.90023	1.96720	0.94211	2.07837	0.98636	2.19473	1.03306	2.31660	1.08235	2.44424
1.3	1.06797	1.89720	1.11766	2.00442	1.17015	2.11664	1.22556	2.23417	1.28403	2.35727
1.35	1.22913	1.81551	1.28632	1.91811	1.34672	2.02550	1.41050	2.13797	1.47779	2.25577
1.4	1.38271	1.72263	1.44704	1.81997	1.51500	1.92187	1.58674	2.02858	1.66244	2.14036
1.45	1.52777	1.61912	1.59885	1.71062	1.67393	1.80640	1.75320	1.90669	1.83684	2.01175
1.5	1.66341	1.50563	1.74080	1.59071	1.82254	1.67978	1.90885	1.77305	1.99992	1.87074
1.55	1.78879	1.38286	1.87201	1.46101	1.95992	1.54281	2.05274	1.62847	2.15067	1.71820
1.6	1.90314	1.25156	1.99169	1.32229	2.08522	1.39632	2.18396	1.47385	2.28816	1.55506
1.65	2.00576	1.11255	2.09908	1.17542	2.19765	1.24123	2.30173	1.31015	2.41154	1.38234
1.7	2.09601	0.96667	2.19353	1.02130	2.29654	1.07848	2.40529	1.13837	2.52005	1.20109
1.75	2.17334	0.81484	2.27446	0.86089	2.38127	0.90909	2.49404	0.95957	2.61302	1.01244
1.8	2.23727	0.65798	2.34137	0.69517	2.45131	0.73409	2.56740	0.77485	2.68989	0.81754
1.85	2.28742	0.49707	2.39384	0.52516	2.50625	0.55456	2.62494	0.58536	2.75017	0.61761
1.9	2.32345	0.33309	2.43155	0.35192	2.54573	0.37162	2.66629	0.39225	2.79350	0.41387
1.95	2.34516	0.16706	2.45427	0.17650	2.56952	0.18639	2.69121	0.19673	2.81960	0.20757
2.0	2.35241	0.00	2.46186	0.00	2.57746	0.00	2.60052	0.00	2.82832	0.00

Note.

Negative quantities are in heavy type.

Examples. $\cosh (1.6 + i \underline{0.4}) = 2.08522 + i 1.39632.$ $\cosh (1.7 + i \underline{1.2}) = -0.87400 + i 2.51614.$

q	x =	1.75	x =	1.8	x = z	1.85	x =	1.9	x = 1	1.95
0	2.96419	0.00	3.10747	0.00 0.23084	3.25853 3.24848	0.00	3.41773	0.00	3.58548	0.00
0.T	2.02760	0.43652	3.060.21	0.46026	3.21841	0.48627	3.37565	0.51125	2 54124	0 52864
0.15	2.88220	0.65141	3.02161	0.68684	3.16850	0.72308	3.32330	0.76204	2 48641	0.80280
0.2	2.81011	0.86220	2.05538	0.00018	3.00004	0.05835	3.25045	1.00002	3.41000	1.06401
			2000		•	20 00	0 0 10		5-4	
0.25	2.73855	1.06784	2.87093	1.12592	3.01049	1.18681	3.15757	1.25067	3.31255	1.31766
0.3	2.64111	1.26682	2.76878	1.33572	2.90337	1.40796	3.04522	1.48372	3.19469	1.56318
0.35	2.52739	1.45799	2.64956	1.53728	2.77835	1.02042	2.91409	1.90761	3.05713	1.79907
0.4	2.39808	1.64016	2.51400	1.72937	2.03020	1.82289	2.76501	1.92098	2.90071	2.02387
0.45	2.25399	1.81223	2.30294	1.91079	2.47780	2.01413	2.59887	2.12250	2.72642	2.23618
0.5	2.00600	1.07312	2.10731	2.08043	2.30413	2.10204	2.41670	2.31004	2.53532	2 4 3 4 7 1
0.55	1.02500	2.12185	2.01814	2.23725	2.11624	2.35824	2.21064	2.48513	2.32858	2.61822
0.6	1.74231	2.25740	1.82653	2.38027	1.01531	2.50000	2.00880	2.64400	2.10740	2.78561
0.65	1.54878	2.37022	1.62365	2.50862	1.70258	2.64420	1.78576	2.78657	1.87341	2.03582
0.7	1.34571	2.48627	1.41076	2.62140	1.47934	2.76327	1.55162	2.01106	1.62777	3.06702
•	0107						50		///	5
0.75	1.13435	2.57800	1.18918	2.71821	1.24698	2.86522	1.30791	3.01939	1.37210	3.18111
0.8	0.91599	2.65384	0.96026	2.79817	1.00694	2.94950	1.05614	3.10821	1.10797	3.27468
0.85	0.09198	2.71331	0.72542	2.80088	0.76069	3.01560	0.79785	3.17787	0.83701	3.34807
0.9	0.46370	2.75000	0.48012	2.90595	0.50975	3.00311	0.53405	3.22793	0.56089	3.40081
0.95	0.23257	2.78181	0.24381	2.93310	0.25500	3.09173	0.20815	3.25809	0.28131	3.43259
1.0	0.00	2.70041	0.00	2.04217	0.00	3.10120	0.00	3.26816	0.00	3.44321
1.05	0.23257	2.78181	0.24381	2.03310	0.25566	2.00173	0.26815	3.25800	0.28131	3.43250
1.1	0.46370	2.75606	0.48612	2.00595	0.50975	3.06311	0.53465	3.22793	0.56080	3.40081
1.15	0.69198	2.71331	0.72542	2.86088	0.76069	3.01560	0.79785	3.17787	0.83701	3.34807
1.2	0.91599	2.65384	0.96026	2.79817	1.00694	2.94950	1.05614	3.10821	1.10797	3.27468
T 25	T T2425	2 57800	T 18018	a 718ar	1 24608	2 86522	1 20701	2 01020	1 17110	2 7 8 7 7 7
1.25	T 2457T	2.37000	1 41076	2 6 2 1 4 0	T 47024	2 76227	1.50791	2.01106	1.57210	2.06702
1.3	T # 4878	2.40027	T 62265	2 50862	1 70258	2 64420	1.33102	2.78657	T 8724T	3.00792
1.33	1.74221	2.25740	1.82652	2.28027	1.01521	2.504429	2.00880	2 64400	2.10740	2.93502
T 15	1.02500	2.12185	2.01814	2.22725	2.11624	2.25824	2.21064	2.48512	2.22858	2 67822
1.43	1.92309	2	2101014	2.23723	2111024	2.33024	2.21904	2.40313	2.32030	2.01023
1.5	2.09600	1.97312	2.19731	2.08043	2.30413	2.19294	2.41670	2.31094	2.53532	2.43471
1.55	2.25399	1.81223	2.36294	1.91079	2.47780	2.01413	2.59887	2.12250	2.72642	2.23618
1.6	2.39808	1.64016	2.51400	1.72937	2.63620	1.82289	2.76501	1.92098	2 .9 0071	2.02387
1.65	2.52739	1.45799	2.64956	1.53728	2.77835	1.62042	2.91409	1.90761	3.05713	1.79907
1.7	2.64111	1.26682	2.76878	1.33572	2.90337	1.40796	3.04522	1.48372	3.19469	1.56318
1.75	2.73855	1.06784	2.87003	1.12502	3.01040	1.18681	3.15757	1.25067	3.31255	1.31766
1.8	2.81011	0.86220	2.05538	0.00018	3.00004	0.05835	3.25045	1.00002	3.41000	1.06401
1.85	2.88220	0.65141	3.02161	0.68684	3.16850	0.72308	3.32330	0.76204	3.48641	0.80380
1.0	2.02760	0.43652	3.06021	0.46026	3.21841	0.48627	3.37565	0.51125	3.54134	0.53864
1.05	2.05505	0.21803	3.00780	0.23084	3.24848	0.24332	3.40710	0.25642	3.57443	0.27015
.,,,		90	0			-100-2		-0-1-	0 01 440	
2.0	2.96419	0.00	3.10747	0.00	3.25853	0.00	3.41773	0.00	3.58548	0.00

Note. .

Negative quantities are in heavy type.

Examples. $\cosh(1.8 + i \underline{0.2}) = 2.95538 + i 0.90918.$ $\cosh(1.8 + i \underline{2.0}) = -3.10747 + i o.$

q	x =	2.0	x =	2.05	<i>x</i> =	2.1	x =	2.15	<i>x</i> =	2.2
0	3.76220	0.00	3.94832	0.00	4.14431	0.00	4.35067	0.00	4.56791	0.00
0.05	3.75059	0.28450	3.93015	0.29908	4.13154	0.31555	4.33720	0.33221	4.55302	0.34970
0.1	3.71507	0.50737	3.89971	0.59751	4.09329	0.02010	4.29/11	0.00237	4.51107	1.04040
0.15	3.05825	0.84007	3.03923	0.80100	4.02901	0.93000	4.23040	0.90045 T 20844	4.441/0	1.04049
0.2	3.57000	1.12070	3.75507	1.10032	3.94140	1.24202	4.13//3	1.30044	4.34433	1.3//34
0.25	3.47581	1.38794	3.64777	1.46169	3.82885	1.53910	4.01950	1.62035	4.22019	1.70566
0.3	3.35214	1.64656	3.51798	1.73405	3.69261	1.82589	3.87647	1.92228	4.07003	2.02349
0.35	3.20780	1.89503	3.36649	1.99573	3.53301	2.10142	3.70950	2.21230	3.89478	2.32883
0.4	3.04368	2.13182	3.19420	2.24509	3.35283	2.30399	3.51977	2.48879	3.09552	2.01982
0.45	2.80080	2.35540	3.00232	2.48002	3.15137	2.01199	3.30828	2.74988	3.47347	2.89400
0.5	2.66027	2.56458	2.79188	2.70085	2.93048	2.84389	3.07639	2.99402	3.23000	3.15165
0.55	2.44335	2.75789	2.56423	2.90443	2.69152	3.05825	2.82553	3.21970	2.96661	3.38921
0.6	2.21136	2.93420	2.32076	3.09011	2.43597	3.25370	2.55720	3.42553	2.68495	3.60588
0.65	1.96574	3.09241	2.06299	3.23673	2.16540	3.42920	2.27322	3.61024	2.38672	3.80031
0.7	1.70800	3.23156	1.79250	3.40327	1.88148	3.58351	1.97516	3.77269	2.07379	3.97131
0.75	I.43973	3.35078	1.51096	3.52883	1.58596	3.71571	1.66493	3.91188	1.74806	4.11783
0.8	1.16258	3.44935	1.22010	3.63264	1.28066	3.82501	1.34443	4.02695	1.41156	4.23896
0.85	0.87827	3.52666	0.92172	3.71404	0.96747	3.91074	1.01564	4.11720	1.06636	4.33396
0.9	0. 58854	3.58221	0.61765	3.77256	0.64831	3.97235	0.68059	4.18206	0.71458	4.40223
0.95	0.29518	3.61568	0.30978	3.80781	0.32516	4.00946	0.34135	4.22113	0.35839	4.44337
1.0	0.00	3.62686	0.00	3.81958	0.00	4.02186	0.00	4.23419	0.00	4.45711
1.05	0.29518	3.61568	0.30978	3.80781	0.32516	4.00946	0.34135	4.22113	0.35839	4.44337
1.1	0.58854	3.58221	0.61765	3.77256	0.64831	3.97235	0.68059	4.18206	0.71458	4.40223
1.15	0.87827	3.52666	0.92172	3.71404	0.96747	3.91074	1.01564	4.11720	1.06636	4.33396
1.2	1.16258	3.44935	1.22010	3.63264	1.28066	3.82501	1.34443	4.02695	1.41156	4.23896
1.25	1.43973	3.35078	1.51096	3.52883	1.58596	3.71571	1.66493	3.91188	1.74806	4.11783
1.3	1.70800	3.23156	1.79250	3.40327	1.88148	3.58351	1.97516	3.77269	2.07379	3.97131
1.35	1.96574	3.09241	2.06299	3.23673	2.16540	3.42920	2.27322	3.61024	2.38672	3.80031
1.4	2.21136	2.93420	2.32076	3.09011	2.43597	3.25376	2.55726	3.42553	2.68495	.3.60588
1.45	2.44335	2.75789	2.56423	2.90443	2.69152	3.05825	2.82553	3.21970	2.96661	3.38921
1.5	2.66027	2.56458	2.79188	2.70085	2.93048	2.84389	3.07639	2.99402	3.23000	3.15165
1.55	2.86080	2.35546	3.00232	2.48062	3.15137	2.61199	3.30828	2.74988	3.47347	2.89466
1.6	3.04368	2.13182	3.19426	2.24509	3.35283	2.36399	3.51977	2.48879	3.69552	2.61982
1.65	3.20780	1.89503	3.36649	1.99573	3.53361	2.10142	3.70956	2.21236	3.89478	2.32883
1.7	3.35214	1.64656	3.51798	1.73405	3.69261	1.82589	3.87647	1.92228	4.07003	2.02349
1.75	3.47581	1.38794	3.64777	1.46169	3.82885	1.53910	4.01950	1.62035	4.22019	1.70566
1.8	3.57806	1.12076	3.75507	1.18032	3.94148	1.24282	4.13773	1.30844	4.34433	1.37732
1.85	3.65825	0.84667	3.83923	0.89166	4.02981	0.93888	4.23046	0.98845	4.44170	1.04049
1.9	3.71587	0.56737	3.89971	0.59751	4.09329	0.62916	4.29711	0.66237	4.51167	0.69724
1.95	3.75059	0.28456	3.93615	0.29968	4.13154	0.31555	4.33726	0.33221	4.55382	0.34970
2.0	3.76220	0.00	3.94832	0.00	4.14431	0.00	4.35067	0.00	4.56701	0.00

Note.

Negative quantities are in heavy type.

Examples. $\cosh(2.1 + i \underline{0.8}) = 1.28066 + i 3.82501.$ $\cosh(2.2 + i \underline{1.25}) = -1.74806 + i 4.11783.$

q	<i>x</i> =	2.25	x =	2.3	<i>x</i> =	2.35	<i>x</i> =	2.4	x =	2.45
0	4.79657	0.00	5.03722	0.00	5.29047	0.00	5.55695	0.00	5.83732	0.00
0.05	4.78178	0.36807	5.02160	0.38735	5.27416	0.40760	5.53981	0.42888	5.81033	0.45122
0.1	4.73751	0.73386	4.07521	0.77231	5.22533	0.81260	5.48853	0.85511	5.76545	0.80066
0.15	4.66404	1.00513	4.80805	1.15251	5.14420	1.21277	5.40341	1.27607	5.67603	1.34255
0.2	4.56181	1.44965	4.79058	1.52560	5.03153	1.60537	5.28496	1.68916	5.55162	1.77716
0.25	4.43145	1.79523	4.65378	1.88030	4.88776	1.98808	5.13394	2.00184	5.30208	2.20082
0.3	4.27377	2.12975	4.48820	2.24134	4.71384	2.35853	4.95127	2.48162	5.20100	2.61001
0.35	4.08075	2.45113	4.20404	2.57056	4.51087	2.71443	4.73808	2.85610	4.07713	3.00400
0.4	3.88050	2.75740	4.07520	2.00188	4.28008	3.05360	4.40567	3.21207	4.72240	3.38036
0.45	3.64734	3.04677	3.83034	3.20630	4.02290	3.37395	4.22554	3.55003	4.43873	3.73499
0.5	3.39168	3.31716	3.56185	3.49096	3.74093	3.6735I	3.92935	3.86521	4.12761	4.06659
0.55	3.11512	3.56719	3.27141	3.75410	3.43588	3.95038	3.60894	4.15656	3.79104	4.37311
0.6	2.81935	3.79523	2.96081	3.00400	3.10066	4.20202	3.26629	4.42228	3.43100	4.65268
0.65	2.50620	3.99987	2.63194	4.20046	2.76426	4.42955	2.00349	4.66073	3.04000	4.00356
0.7	2.17760	4.17986	2.28685	4.39887	2.40182	4.62887	2.52280	4.87045	2.65009	5.12420
0.75	1.83557	4.33407	1.92766	4.56116	2.02457	4.79965	2.12655	5.05014	2.23385	5.31325
0.8	1.48222	4.46157	1.55659	4.69533	1.63485	4.94083	1.71719	5.19869	1.80383	5.46955
0.85	1.11974	4.56155	1.17592	4.80056	1.23504	5.05156	1.29724	5.31521	1.36269	5.59213
0.9	0.75035	4.63341	0.78799	4.87618	0.82761	5.13114	0.86930	5.39893	0.91316	5.68022
0.95	0.37633	4.67671	0.39522	4.92174	0.41509	5.17909	0.43599	5-44938	0.45799	5.73330
1.0	0.00	4.69117	0.00	4.93696	0.00	5.19510	0.00	5.46623	0.00	5.75103
1.05	0.37633	4.67671	0.39522	4.92174	0.41509	5.17909	0.43599	5.44938	0.45799	5.73330
I.I	0.75035	4.63341	0.78799	4.87618	0.82761	5.13114	0.86930	5.39893	0.91316	5.68022
1.15	1.11974	4.56155	1.17592	4.80056	1.23504	5.05156	1.29724	5.31521	1.36269	5.59213
1.2	1.48222	4.46157	1.55659	4.69533	1.63485	4.94083	1.71719	5.19869	1.80383	5.46955
1.25	1.83557	4.33407	1.92766	4.56116	2.02457	4.79965	2.12655	5.05014	2.23385	5.31325
1.3	2.17760	4.17986	2.28685	4.39887	2.40182	4.62887	2.52280	4.87045	2.65009	5.12420
1.35	2.50620	3.99987	2.63194	4.20946	2.76426	4.42955	2.90349	4.66073	3.04999	4.90356
1.4	2.81935	3.79523	2.96081	3.99409	3.10966	4.20292	3.26629	4.42228	3.43109	4.65268
1.45	3.11512	3.56719	3.27141	3.75410	3.43588	3.95038	3.60894	4.15656	3.79104	4.37311
1.5	3.39168	3.31716	3.56185	3.49096	3.74093	3.67351	3.92935	3.86521	4.12761	4.06659
1.55	3.64734	3.04677	3.83034	3.20030	4.02290	3.37395	4.22554	3.55003	4.43873	3.73499
1.6	3.88050	2.75740	4.07520	2.90188	4.28008	3.05300	4.49507	3.21297	4.72249	3.38030
1.65	4.08975	2.45113	4.29494	2.57950	4.51087	2.71443	4.73808	2.85010	4.97713	3.00490
1.7	4.27377	2.12975	4.48820	2.24134	4.71384	2.35853	4.95127	2.48162	5.20109	2.61091
1.75	4.43145	1.79523	4.65378	1.88930	4.88776	1.98808	5.13394	2.09184	5.39298	2.20082
1.8	4.56181	1.44965	4.79058	1.52500	5.03153	1.00537	5.28496	1.08910	5.55162	1.77716
1.85	4.66404	1.09513	4.89805	1.15251	5.14429	1.21277	5.4034I	1.27007	5.07003	1.34255
1.9	4.73751	0.73386	4.97521	0.77231	5.22533	0.81209	5.48853	0.85511	5.70545	0.89966
1.95	4.78178	0.36807	5.02169	0.38735	5.27416	0.40760	5.53981	0.42888	5.81933	0.45122
2.0	4.79657	0.00	5.03722	0.00	5.29047	0.00	5.55695	0.00	5.83732	0.00

Note.

Negative quantities are in heavy type.

Examples. $\cosh(2.4 + i \underline{0.4}) = 4.49567 + i 3.21297.$ $\cosh(2.4 + i \underline{1.5}) = -3.92935 + i 3.86521$

q	<i>x</i> =	2.5	x =	2.55	x =	2.6	x =	2.65	<i>x</i> =	2.7
0	6.13229	0.00	6.44259	0.00	6.76901	0.00	7.11234	0.00	7.47347	0.00
0.05	6.11339	0.47469	6.42273	0.49935	6.74814	0.52526	7.09042	0.55249	7.45043	0.58109
0.1	6.05680	0.94646	6.36327	0.99563	6.68567	1.04729	7.02478	1.10156	7.38146	1.15859
0.15	5.96287	1.41239	6.26458	1.48577	6.58199	1.56285	6.91583	1.64385	7.26697	1.72896
0.2	5.83215	1.86961	6.12727	1.96674	6.43770	2.06878	6.76424	2.17600	7.10769	2.28866
0.25	5.66550	2.31531	5.95218	2.43559	6.25374	2.56196	6.57095	2.69474	6.90458	2.83425
0.3	5.46392	2.74674	5.74039	2.88943	6.03123	3.03934	6.33714	3.19686	6.65891	3.36237
0.35	5.22864	3.16122	5.49321	3.32545	5.77153	3.49799	6.06427	3.67927	6.37218	3.86976
0.4	4.96113	3.55622	5.21217	3.74097	5.47624	3.93506	5.75401	4.13900	6.04606	4.35329
0.45	4.66304	3.92929	4.89898	4.13342	5.14719	4.34788	5.40827	4.57321	5.68287	4.80998
0.5	4.33619	4.27814	4.55560	4.50039	4.78641	4.73389	5.02919	4.97923	5.28454	5.23702
0.55	3.98260	4.60062	4.18413	4.83961	4.39612	5.09071	4.61910	5.35454	4.85363	5.63177
0.6	3.60448	4.89472	3.78686	5.14900	3.97872	5.41615	4.18053	5.69685	4.39279	5.99179
0.65	3.20411	5.15865	3.36624	5.42664	3.53680	5.70819	3.71619	6.00403	3.90488	6.31488
0.7	2.78401	5.39077	2.92488	5.67082	3.07306	5.96505	3.22894	6.27419	3.39288	6.59903
0.75	2.34673	5.58966	2.46547	5.88004	2.59039	6.18512	2.72178	6.50567	2.85997	6.84249
0.8	1.89498	5.75408	1.99087	6.05301	2.09174	6.36706	2.19784	6.69705	2.30943	7.04377
0.85	1.43155	5.88304	1.50399	6.18866	1.58019	6.50976	1.66034	6.84713	1.74465	7.20163
0.9	0.95930	5.97572	1.00784	6.28615	1.05891	6.61231	1.11262	6.95500	1.16911	7.31508
0.95	0.48113	6.03155	0.50548	6.34489	0.53109	6.67409	0.55803	7.01998	0.58636	7.38343
1.0	0.00	6.05020	0.00	6.36451	0.00	6.69473	0.00	7.04169	0.00	7.40626
1.05	0.48113	6.03155	0.50548	6.34489	0.53109	6.67409	0.55803	7.01998	0.58636	7.38343
1.1	0.95930	5.97572	1.00784	6.28615	1.05891	6.61231	1.11262	6.95500	1.16911	7.31508
1.15	1.43155	5.88304	1.50399	6.18866	1.58019	6.50976	1.66034	6.84713	1.74465	7.20163
1.2	1.89498	5.75408	1.99087	6.05301	2.09174	6.36706	2.19784	6.69705	2.30943	7.04377
1.25	2.34673	5.58966	2.46547	5.88004	2.59039	6.18512	2.72178	6.50567	2.85997	6.84249
1.3	2.78401	5.39077	2.92488	5.67082	3.07306	5.96505	3.22894	6.27419	3.39288	6.59903
1.35	3.20411	5.15865	3.36624	5.42664	3.53680	5.70819	3.71619	6.00403	3.90488	6.31488
1.4	3.60448	4.89472	3.78586	5.14900	3.97872	5.41615	4.18053	5.69685	4.39279	5.99179
1.45	3.98260	4.60062	4.18413	4.83961	4.39612	5.09071	4.61910	5.35454	4.85363	5.63177
1.5	4.33619	4.27814	4.55560	4.50039	4.78641	4.73389	5.02919	4.97923	5.28454	5.23702
1.55	4.66304	3.92929	4.89898	4.13342	5.14719	4.34788	5.40827	4.57321	5.68287	4.80998
1.6	4.96113	3.55622	5.21217	3.74097	5.47624	3.93506	5.75401	4.13900	6.04606	4.35329
1.65	5.22864	3.16122	5.49321	3.32545	5.77153	3.49799	6.06427	3.67927	6.37218	3.86976
1.7	5.46392	2.74674	5.74039	2.88943	6.03123	3.03934	6.33714	3.19686	6.65891	3.36237
1.75	5.66550	2.31531	5.95218	2.43559	6.25374	2.56196	6.57095	2.69474	6.90458	2.83425
1.8	5.83215	1.86961	6.12727	1.96674	6.43770	2.06878	6.76424	2.17600	7.10769	2.28866
1.85	5.96287	1.41239	6.26458	1.48577	6.58199	1.56285	6.91583	1.64385	7.26697	1.72896
1.9	6.05680	0.94646	6.36327	0.99563	6.68567	1.04729	7.02478	1.10156	7.38146	1.15859
1.95	6.11339	0.47469	6.42273	0.49935	6.74814	0.52526	7.09042	0.55249	7.45043	0.58109
2.0	6.13229	0.00	6.44259	0.00	6.76901	0.00	7.11234	0.00	7.47347	0.00.

Note.

Negative quantities are in heavy type.

Examples. $\cosh (2.7 + i \underline{1.00}) = 0 + i 7.40626.$ $\cosh (2.6 + i \underline{1.2}) = -2.09174 + i 6.36706.$

q	x = x	2.75	x = 2	2.80	x = 2	2.85	x = x	2.90	x = 2	2.95
0	7.85328	0.00	8.25273	0.00	8.67281	0.00	9.11458	0.00	9.57915	0.00
0.05	7.82907	0.61115	8.22728	0.64273	8.64608	0.67592	9.08649	0.71081	9.54962	0.74747
0.1	7.75659	1.21852	8.15112	1.28150	8.56604	1.34768	9.00237	1.41723	9.46121	1.49032
0.15	7.63629	1.81839	8.02470	1.91237	8.43318	2.01112	8.86275	2.11491	9.31447	2.22399
0.2	7.46891	2.40704	7.84881	2.53144	8.24834	2.66217	8.66850	2.79956	9.11031	2.94395
0.25	7.25548	2.98086	7.62452	3.13491	8.01263	3.29681	8.42078	3.46694	8.84998	3.64575
0.3	6.99732	3.53629	7.35323	3.71905	7.72754	3.91112	8.12115	4.11295	8.53508	4.32508
0.35	6.69602	4.06993	7.03661	4.28026	7.39479	4.50131	7.77146	4.73361	8.16757	4.97774
0.4	6.35344	4.57847	6.67660	4.81509	7.01646	5.06375	7.37385	5.32508	7.74969	5.63048
0.45	5.97168	5.05878	6.27542	5.32022	6.59486	5.59498	6.93078	5.88371	7.28404	6.18717
0.5	5.55311	5.50790	5.83556	5.79256	6.13261	6.09170	6.44498	6.40608	6.77348	6. 73647
0.55	5.10030	5.92307	5.35972	6.22918	5.63254	6.55088	5.91945	6.88894	6.22116	7.24424
0.6	4.61604	6.30172	4.85083	6.62740	5.09775	6.96966	5.35742	7.32934	5.63048	7.70735
0.65	4.10333	6.64151	4.31204	6.98476	4.53153	7.34547	4.76236	7.72455	5.00509	8.12294
0.7	3.56531	6.94036	3.74666	7.29905	3.93738	7.67599	4.13793	8.07213	4.34884	8.48845
0.75	3.00532	7.19642	3.15818	7.56834	3.31894	7.95919	3.48800	8.36994	3.66578	8.80162
0.8	2.42680	7.40811	2.55023	7.79098	2.68005	8.19332	2.81656	8.61616	2.96012	9.06053
0.85	1.83331	7.57413	1.92656	7.96557	2.02463	8.37694	2.12776	8.80924	2.23621	9.26358
0.9	1.22852	7.69345	1.29101	8.09106	1.35673	8.50891	1.42583	8.94802	1.49851	9.40952
0.95	0.61616	7.76534	0.64750	8.16666	0.68046	8.58841	0.71512	9.03163	0.75157	9.49744
1.0	0.00	7.78935	0.00	8.19192	0.00	8.61497	0.00	9.05956	0.00	9.52681
1.05	0.61616	7.76534	0.64750	8.16666	0.68046	8.58841	0.71512	9.03163	0.75157	9.49744
1.1	1.22852	7.69345	1.29101	8.09106	1.35673	8.50891	1.42583	8.94802	1.49851	9.40952
1.15	1.83331	7.57413	1.92656	7.96557	2.02463	8.37694	2.12776	8.80924	2.23621	9.26358
1.2	2.42680	7.40811	2.55023	7.79098	2.68005	8.19332	2.81656	8.61616	2.96012	9.06053
1.25	3.00532	7.19642	3.15818	7.56834	3.31894	7.95919	3.48800	8.36994	3.66578	8.80162
1.3	3.56531	6.94036	3.74666	7.299 05	3.93738	7.67599	4.13793	8.07213	4.34884	8.48845
1.35	4.10333	6.64151	4.31204	6.98476	4.53153	7.34547	4.76236	7.72455	5.00509	8.12294
1.4	4.61604	6.30172	4.85083	6.62740	5.09775	6.96966	5.35742	7.32934	5.63048	7.70735
1.45	5.10030	5.92307	5.35972	6.22918	5.63254	6.55088	5.91945	6.88894	6.22116	7.24424
1.5	5.55311	5.50790	5.83556	5.79256	6.13261	6.09170	6.44498	6.40608	6.77348	6.73647
1.55	5.97168	5.05878	6.27542	5.32022	6.59486	5.59498	6.93078	5.88371	7.28404	6.18717
1.6	6.35344	4.57847	6.67660	4.81509	7.01646	5.06375	7.37385	5.32508	7.7496 9	5.63048
1.65	6.69602	4.06993	7.03661	4.28026	7.39479	4.50131	7.77146	4.73361	8.16757	4.97774
1.7	6.99732	3.53629	7.35323	3.71905	7.72754	3.91112	8.12115	4.11295	8.53508	4.32508
1.75	7.25548	2.98086	7.62452	3.13491	8.01263	3.29681	8.42078	3.46694	8.84998	3.64575
1.8	7.46891	2.40704	7.84881	2.53144	8.24834	2.66217	8.66850	2.79956	9.11031	2.94395
1.85	7.63629	1.81839	8.02470	1.91237	8.43318	2.01112	8.86275	2.11491	9.31447	2.22399
1.9	7.75659	1.21852	8.15112	1.28150	8.56604	1.34768	9.00237	1.41723	9.46121	1.49032
1.95	7.82907	0.61115	8.22728	0.64273	8.64608	0.67592	9.08649	0.71081	9.54962	0.74747
2.0	7.85328	0.00	8.25273	0.00	8.67281	0.00	9.11458	0.00	9.57915	0.00

Note.

1

Negative quantities are in heavy type.

Examples. $\cosh (2.95 + i \circ) = 9.57915 + i \circ.$ $\cosh (2.8 + i \underline{1.2}) = -2.55023 + i 7.79098.$

q	<i>x</i> =	3.0	x =	3.05	x =	3.10	<i>x</i> =	3.15	x =	3.20
0 0 .0 5 0.1	10.06766 10.03660 9.94371	0.00 0.78599 1.56714	10.58135 10.54870 10.45110	0.00 0.82649 1.64788	11.12150 11.08720 10.98460	0.00 0.86905 1.73274	11.68946 11.65340 11.54550	0.00 0.91378 1.82193	12.28665 12.24880 12.13540	0.00 0.96080 1.91568
0.15 0.2	9.78949 9.57492	2.33803 3.09569	10.28900 10.06350	2.45911 3.25518	10.81420	2.58575 3.42281	11.30050	2.71885 3.59900	11.94720	2.85874 3.78419
0.25 0.3	9.30131 8.97035	3.83368 4.54806	9.77589 9.42805	4.03120 4.78233	10.27490 9.90933	4.23878 5.02860	10.79970 10.41540	4.45696 5.28745	11.35140 10.94750	4.68630 5.55952
0.35 0.4	8.58409 8.14491	5-23433 5.88836	9.02209 8.56049	5.50400 6.19173	9.48264 8.99749	5.78743 6.51058	9.96690 9.45697	6.08533 6.84570	10.47610 9.94011	6.39846 .7.19795
0.45	7.65551	6.50009	8.04012 7.48215	0.84128 7.44866	8.45080 7.86400	7.19358	8.26570	7.50387	9.34284 8.68707	7.95300 8.65015
0.55 0.6	6.53842 5.01762	7.61765	6.87204 6.21956	8.01011 8.52218	7.22284	8.42260 8.96104	7.59170 6.87089	8.85615	7.97954	9.31184
0.65 0.7	5.26034 4.57062	8.54164 8.92599	5.52874 4.80383	8.9817 1 9.38586	5.81097 5.04906	9.44423 9.86919	6.10773 5.30690	9.93036 10.37720	6.41976 5.57802	10.44130 10.91120
0.75	3.85273	9.25531 9.52757	4.04931 3.26082	9.73216 10.01840	4.25602	10.23330	4.47336	10.76010 11.07660	4.70190	11.31370
0.85 0.9	2.35025 1.57493	9.74108 9.89454	2.47017 1.65529	10.24290 10.40430	2.59626 1.73979	10.77040 10.94010	2.72885 1.82863	11.32480 11.50320	2.86826 1.92205	11.90750
0.95	0.78990	9.98699	0.83020 0.00	10.50150	0.87258	11.04230	0.91714	11.61070	0.96400	12.20810
1.05 1.1	0.78990	9. 98699 9. 89454	0.83020	10.50150	0.87258	11.04230 10.94010	0.91714	11.61070	0.96400	12.20810
1.15 1.2	2.35025 3.11108	9.74108 9.52757	2.47017 3.26982	10.24290 10.01840	2.59626 3.43673	10.77040 10.53430	2.72885 3.61224	11.32480 11.07660	2.86826 3.79678	11.90750 11.64650
1.25	3.85273	9.25531 8.02500	4.04931	9.73216 9.38586	4.25602	10.23330 0.86010	4.47336	10.76010 10.37720	4.70190	11.31370
1.35 1.4	5.26034 5.91762	8.54164 8.10463	5.52874 6.21956	8.98171 8.52218	5.81097 6.53705	9.44423 8.96104	6.10773 6.87089	9.93036 9.42230	6.41976 7.22191	10.44130 9.90712
1.45	6.53842	7.61765	6.87204 7.48215	8.01011 7.44866	7.22284	8.42260 7.83223	7.59170 8.26570	8.85615	7.97954 8.68707	9.31184
1.55 1.6	7.65551 8.14491	6.50609 5.88836	8.04612 8.56049	6.84128 6.19173	8.45686 8.99749	7.19358 6.51058	8.88873	7.56387	9.34284 9.94011	7.95306
1.65 1.7	8.58409 8.97035	5.23433 4.54806	9.02209 9.42805	5.50400 4.78233	9.48264 9.90933	5.78743 5.02860	9.96690 10.41540	6.08533 5.28745	10.47610 10.94750	6.39846 5.55952
1.75 1.8	9.30131 9.57402	3.83368 3.00560	9.77589 10.06350	4.03120 3.25518	10.27490	4.23878 3.42281	10.79970	4.45696	11.35140	4.68630
1.85 1.9 1.95	9.78949 9.94371 10.03660	2.33863 1.56714 0.78500	10.28900 10.45110 10.54870	2.45911 1.64788 0.82640	10.81420 10.98460 11.08720	2.58575 1.73274 0.86005	11.36650 11.54550 11.65340	2.71885 1.82193 0.91378	11.94720 12.13540 12.24880	2.85874 1.91568 0.06080
2.0	10.06766	0.00	10.58135	0.00	11.12150	0.00	11.68946	0.00	12.28665	0.00

Note.

Negative quantities are in heavy type.

Examples. $\cosh (3.10 + i 0.5) = 7.86409 + i 7.83223.$ $\cosh (3.10 + i 1.55) = -8.45686 + i 7.19358.$

q	x =	3.25	x =	3.30	<i>x</i> =	3.35	x =	3.40	x =	3.45
0	12.91456	0.00	13.57476	0.00	14.26891	0.00	14.99874	0.00	15.76607	0.00
0.05	12.87474	1.01022	13.53290	1.06217	14.22498	1.11677	14.95250	1.17417	15.71746	1.23450
0.1	12.75555	2.01422	13.40764	2.11780	14.09323	2.22666	14.81410	2.34110	15.57196	2.46139
0.15	12.55773	3.00579	13.19970	3.16036	13.87465	3.32282	14.58432	3.49359	15.33045	3.67311
0.2	12.28247	3.97883	12.91035	4.18343	13.57054	4.39850	14.26465	4.62455	14.99442	4.86217
0.25	11.93150	4.92735	12.54145	5.18072	13.18275	5.44705	13.85702	5.72700	14.56595	6.02127
0.3	11.50695	5.84548	12.09520	6.14670	12.71369	6.46202	13.36397	6.79414	14.04764	7.14324
0.35	11.01147	6.72758	11.57440	7.07352	12.16623	7.43715	12.78852	7.81938	13.44278	8.22116
0.4	10.44810	7.56820	10.98222	7.95737	11.54379	8.36643	12.13423	8.79642	12.75501	9.24840
0.45	9.82031	8.36217	10.32233	8.79215	10.85016	9.24413	11.40512	9.71923	11.98861	10.21863
0.5	9.13197	9.10456	9.59881	9.57273	10.08964	10.06483	10.60570	10.58212	11.14830	11.12585
0.55	8.38733	9.79082	8.81610	10.29428	9.26691	10.82349	9.74090	11.37975	10.23924	11.96447
0.6	7.59099	10.41673	7.97905	10.95235	8.38705	11.51541	8.81604	12.10723	9.26706	12.72933
0.65	6.74784	10.97841	7.09279	11.54294	7.45549	12.13633	7.83682	12.76006	8.23775	13.41572
0.7	5.86309	11.47240	6.16381	12.06234	6.47795	12.68244	6.80928	13.33423	7.15765	14.01940
0.75	4.94218	11.89566	5.19485	12.50736	5.46075	13.15033	5-73977	13.82620	6.03341	14.53662
0.8	3.99082	12.24560	4.19483	12.87530	4.40933	13.53717	4.63487	14.23291	4.87198	14.96423
0.85	3.01484	12.52002	3.16897	13.16388	3.33101	13.84054	3.50139	14.55188	3.68053	15.29960
0.9	2.02028	12.71726	2.21356	13.37120	2.23215	14.05851	2.34632	14.78111	2.46636	15.54061
0.95	1.01326	12.83610	1.06507	13.49615	1.11953	14.18950	1.17679	14.91923	1.23699	15.68581
1.0	0.00	12.87578	0.00	13.53788	0.00	14.23382	0.00	14.96536	0.00	15.73432
1.05	1.01326	12.83610	1.06507	13.49615	1.11953	14.18950	1.17679	14.91923	1.23699	15.68581
1.1	2.02028	12.71726	2.12356	13.37120	2.23215	14.05851	2.34632	14.78111	2.46636	15.54061
1.15	3.01484	12.52002	3.16897	13.16388	3.33101	13.84054	3.50139	14.55188	3.68053	15.29960
1.2	3.99082	12.24560	4.19483	12.87530	4.40933	13.53717	4.63487	14.23291	4.87198	14.96423
1.25	4.94218	11.89566	5.19485	12.50736	5.46075	13.15033	5.73977	13.82620	6.03341	14.53662
1.3	5.86309	11.47240	6.16381	12.06234	6.47795	12.68244	6.80928	13.33423	7.15765	14.01940
1.35	6.74784	10.97841	7.09279	11.54294	7.45549	12.13633	7.83682	12.76006	8.23775	13.41572
1.4	7.59099	10.41673	7.97905	10.95235	8.38705	11.51541	8.81604	12.10723	9.26706	12.72933
1.45	8.38733	9.79082	8.81610	10.29428	9.26691	10.82349	9.74090	11.37975	10.23924	11.96447
1.5	9.13197	9.10456	9.59881	9.57273	10.08964	10.06483	10.60570	10.58212	11.14830	11.12585
1.55	9.82031	8.36217	10.32233	8.79215	10.85016	9.24413	11.40512	9.71923	11.98861	10.21863
1.6	10.44810	7.56820	10.98222	7.95737	11.54379	8.36643	12.13423	8.79642	12.75501	9.24840
1.65	11.01147	6.72758	11.57440	7.07352	12.16623	7.43715	12.78852	7.81938	13.44278	8.22116
1.7	11.50695	5.84548	12.09520	6.14670	12.71369	6.46202	13.36397	6.79414	14.04764	7.14324
1.75	11.93150	4.92735	12.54145	5.18072	13.18275	5.44705	13.85702	5.72700	14.56595	6.02127
1.8	12.28247	3.97883	12.91035	4.18343	13.57054	4.39850	14.26465	4.62455	14.99442	4.86217
1.85	12.55773	3.00579	13.19970	3.16036	13.87465	3.32282	14.58432	3.49359	15.33045	3.67311
1.9	12.75555	2.01422	13.40764	2.11780	14.09323	2.22666	14.81410	2.34110	15.57196	2.46139
1.95	12.87474	1.01022	13.53290	1.06217	14.22498	1.11677	14.95250	1.17417	15.71746	1.23450
2.0	12.91456	0.00	13.57476	0.00	14.26891	0.00	14.99874	0.00	15.76607	0.00

Note. Negative quantities are in heavy type.

Examples. $\cosh (3.45 + i \underline{0.05}) = 15.71746 + i 1.23450.$ $\cosh (3.25 + i \underline{1.95}) = -12.87474 + i 1.01022.$

\boldsymbol{q}	x =	3.50	<i>x</i> =	3-55	<i>x</i> =	3.60	x =	3.65	x =	3.70
0	16.57282	0.00	17.42102	0.00	18.31278	0.00	19.25033	0.00	20.23601	0.00
0.05	16.52173	1.29792	17.36731	1.36458	18.25632	1.43466	19.19100	1.50832	20.17362	1.58576
0.1	16.36878	2.58783	17.20653	2.72075	18.08732	2.86047	19.01331	3.00735	19.98688	3.16174
0.15	16.11491	3.86180	16.93970	4.06015	17.80680	4.26865	18.71843	4.48783	19.67690	4.71823
0.2	15.76170	5.11195	16.56840	5.37451	17.41650	5.65052	18.30814	5.94065	19.24560	6.24563
0.25	15.31130	6.33059	16.09492	6.65574	16.91880	6.99754	17.78497	7.35683	18.69565	7.73453
0.3	14.76650	7.51020	15.52225	7.89594	16.31680	8.30143	17.15216	8.72766	18.03040	9.17573
0.35	14.13065	8.64360	14.85386	9.08745	15.61421	9.55412	16.41360	10.04469	17.25404	10.56037
0.4	13.40770	9.72361	14.09390	10.22293	14.81535	10.74789	15.57383	11.29972	16.37127	11.87990
0.45	12.60210	10.74357	13.24705	11.29540	13.92515	11.87545	14.63806	12.48520	15.38760	13.12620
0.5	11.71820	11.69740	12.31852	12.29820	12.94910	12.92978	13.61203	13.59365	14.30902	14.29155
0.55	10.76320	12.57910	11.31405	13.22520	11.89320	13.90436	12.50208	14.61830	13.14223	15.36878
0.6	9.74126	13.38330	10.23982	14.07066	10.76400	14.79326	11.31505	15.55281	11.89444	16.35127
0.65	8.65928	14.10490	9.10246	14.82933	9.56840	15.59090	10.05827	16.39143	10.57330	17.23295
0.7	7.52391	14.73960	7.90898	15.49665	8.31383	16.29246	8.73946	17.12900	9.18696	18.00840
0.75	6.34215	15.28340	6.66674	16.06840	7.00800	16.89356	7.36678	17.76096	7.74399	18.67280
0.8	5.12129	15.73300	5.38339	16.54105	5.65896	17.39050	5.94868	18.28342	6.25327	19.22208
0.85	3.86885	16.08555	4.06686	16.91175	4.27503	17.78022	4.49390	18.69316	4.72401	19.65290
0.9	2.59256	16.33896	2.72525	17.17817	2.86475	18.06033	3.01142	18.98765	3.16561	19.96246
0.95	1.30029	16.49163	1.36684	17.33870	1.43680	18.22900	1.51036	19.16506	1.58770	20.14900
1.0	0.00	16.54263	0.00	17.39230	0.00	18.28546	0.00	19.22434	0.00	20.21129
1.05	1.30029	16.49163	1.36684	17.33870	1.43680	18.22900	1.51036	19.16506	1.58770	20.14900
1.1	2.59256	16.33896	2.72525	17.17817	2.86475	18.06033	3.01142	18.98765	3.16561	19.96246
1.15	3.86885	16.08555	4.06686	16.91175	4.27503	17.78022	4.49390	18.69316	4.72401	19.65290
1.2	5.12129	15.73300	5.38339	16.54105	5.65896	17.39050	5.94868	18.28342	6.25327	19.22208
1.25	6.34215	15.28340	6.66674	16.06840	7.00800	16.89356	7.36678	17.76096	7.74399	18.67280
1.3	7.52391	14.73960	7.90898	15.49665	8.31383	16.29246	8.73946	17.12900	9.18696	18.00840
1.35	8.65928	14.10490	9.10246	14.82933	9.56840	15.59090	10.05827	16.39143	10.57330	17.23295
1.4	9.74126	13.38330	10.23982	14.07066	10.76400	14.79326	11.31505	15.55281	11.89444	16.35127
1.45	10.76320	12.57910	11.31405	13.22520	11.89320	13.90436	12.50208	14.61830	13.14223	15.36878
1.5	11.71820	11.69740	12.31852	12.29820	12.94910	12.92978	13.61203	13.59365	14.30902	14.29155
1.55	12.60210	10.74357	13.24705	11.29540	13.92515	11.87545	14.63806	12.48520	15.38760	13.12620
1.6	13.40770	9.72361	14.09390	10.22293	14.81535	10.74789	15.57383	11.29972	16.37127	11.87990
1.65	14.13065	8.64360	14.85386	9.08745	15.61421	9.55412	16.41360	10.04469	17.25404	10.56037
1.7	14.76650	7.51020	15.52225	7.89594	16.31680	8.30143	17.15216	8.72766	18.03040	9.17573
1.75	15.31130	6.33059	16.09492	6.65574	16.91880	6.99754	17.78497	7.35683	18.69565	7.73453
1.8	15.76170	5.11195	16.56840	5.37451	17.41650	5.65052	18.30814	5.94065	19.24560	6.24563
1.85	16.11491	3.86180	16.93970	4.06015	17.80680	4.26865	18.71843	4.48783	19.67690	4.71823
1.9	16.36878	2.58783	17.20653	2.72075	18.08732	2.86047	19.01331	3.00735	19.98688	3.16174
1.95	16.52173	1.29792	17.36731	1.36458	18.25632	1.43466	19.19100	1.50832	20.17362	1.58576
2.0	16.57282	0.00	17.42102	0,00	18.31278	0.00	19.25033	0.00	20.23601	0.00

Note.

•

Negative quantities are in heavy type.

Examples. $\cosh (3.50 + i 0.70) = 7.52391 + i 14.73960.$ $\cosh (3.60 + i 1.55) = -13.92515 + i 11.87545.$

q	x =	3.75	x =	3.80	x =	3.85	x =	3.90	x =	3.95
0	21.27230	0.00	22.36178	0.00	23.50717	0.00	24.71135	0.00	25.97731	0.00
0.05	21.20670	1.66716	22.29283	1.75273	23.43470	1.84268	24.63516	1.93724	25.89724	2.03665
0.1	21.01038	3.32404	22.08646	3.49465	23.21775	3.67400	24.40710	3.86254	25.65749	4.06074
0.15	20.68452	4.96043	21.74391	5.21503	22.85766	5.48267	24.02856	5.76402	25.25957	6.05979
0.2	20.23113	6.56624	21.26731	6.90325	22.35664	7.25754	23.50188	7.62997	24.70590	8.02149
0.25	19.65301	8.13156	20.65958	8.54892	21.71778	8.98766	22.83030	9.44887	23.999991	9.93373
0.3	18.95373	9.64674	19.92448	10.14188	20.94503	10.66233	22.01797	11.20952	23.14597	11.78474
0.35	18.13760	11.10246	19.06655	11.67230	20.04315	12.27134	21.06988	12.90106	22.14931	13.56305
0.4	17.20963	12.48971	18.09105	13.13076	19.01770	13.80465	19.99190	14.51307	21.01610	15.25776
0.45	16.17556	13.79998	17.00402	14.50828	17.87500	15.25286	18.79065	16.03558	19.75331	16.85842
0.5	15.04177	15.02516	15.81216	15.79634	16.62208	16.60702	17.47355	17.45924	18.36873	18.35512
0.55	13.81524	16.15770	14.52281	16.98701	15.26668	17.85880	16.04874	18.77526	16.87098	19.73867
0.6	12.50353	17.19062	13.14392	18.07296	13.81716	19.00048	14.52497	19.97556	15.26910	21.00052
0.65	11.11473	18.11756	11.68400	19.04746	12.28246	20.02501	12.91164	21.05272	13.57315	22.13290
0.7	9.65741	18.93280	10.15203	19.90455	10.67203	20.92608	11.21871	21.99993	11.79366	23.12881
0.75	8.14055	19.63131	8.55748	20.63891	8.99580	21.69813	9.45662	22.81160	9.94109	23.98212
0.8	6.57350	20.20879	6.91017	21.24603	7.26411	22.33640	7.63623	23.48262	8.02744	24.68760
0.85	4.96592	20.66167	5.22025	21.72216	5.48764	22.83696	5.76875	24.00888	6.06429	25.24084
0.9	3.32772	20.98716	3.49815	22.06437	3.67733	23.19673	3.86571	24.38710	4.06375	25.63849
0.95	1.66900	21.18327	1.75448	22.27052	1.84435	23.41348	1.93883	24.61500	2.03816	25.87805
1.0	0.00	21.24878	0.00	22.33941	0.00	23.48589	0.00	24.69110	0.00	25.95806
1.05	1.66900	21.18327	1.75448	22.27052	1.84435	23.41348	1.93883	24.61500	2.03816	25.87805
1.1	3.32772	20.98716	3.49815	22.06437	3.67733	23.19673	3.86571	24.38710	4.06375	25.63849
1.15	4.96592	20.66167	5.22025	21.72216	5.48764	22.83696	5.76875	24.00888	6.06429	25.24084
1.2	6.57350	20.20879	6.91017	21.24603	7.26411	22.33640	7.63623	23.48262	8.02744	24.68760
1.25	8.14055	19.63131	8.55748	20.63891	8.99580	21.69813	9.45662	22.81160	9.94109	23.98212
1.3	9.65741	18.93280	10.15203	19.90455	10.67203	20.92608	11.21871	21.99993	11.79366	23.12881
1.35	11.11473	18.11756	11.68400	19.04746	12.28246	20.02501	12.91164	21.05272	13.57315	22.13290
1.4	12.50353	17.19062	13.14392	18.07296	13.81716	19.00048	14.52497	19.97556	15.26910	21.00052
1.45	13.81524	16.15770	14.52281	16.98701	15.26668	17.85880	16.04874	18.77526	16.87098	19.73867
1.5	15.04177	15.02516	15.81216	15.79634	16.62208	16.60702	17.47355	17.45924	18.36873	18.35512
1.55	16.17556	13.79998	17.00402	14.50828	17.87500	15.25286	18.79065	16.03558	19.75331	16.85842
1.6	17.20963	12.48971	18.09105	13.13076	19.01770	13.80465	19.99190	14.51307	21.01610	15.25776
1.65	18.13760	11.10246	19.06655	11.67230	20.04315	12.27134	21.06988	12.90106	22.14931	13.5630 5
1.7	18.95373	9.64674	19.92448	10.14188	20.94503	10.66233	22.01797	11.20952	23.14597	11.78474
1.75	19.65301	8.13156	20.65958	8.54892	21.71778	8.98766	22.83030	9.44887	23.99991	9.93373
1.8	20.23113	6.56624	21.26731	6.90325	22.35664	7.25754	23.50188	7.62997	24.70590	8.02149
1.85	20.68452	4.96043	21.74391	5.21503	22.85766	5.48267	24.02856	5.76402	25.25957	6.05979
1.9	21.01038	3.32404	22.08646	3.49465	23.21775	3.67400	24.40710	3.86254	25.65749	4.06074
1.95	21.20670	1.66716	22.29283	1.75273	23.43470	1.84268	24.63516	1.93724	25.89724	2.03665
2.0	21.27230	0.00	22.36178	0.00	23.50717	0.00	24.71135	0.00	25.97731	0.00

Note.

Negative quantities are in heavy type.

Examples. $\cosh(3.90 + i \underline{0.25}) = 22.83030 + i 9.44887.$ $\cosh(3.75 + i \underline{1.25}) = -8.14055 + i 19.63131.$

9		x = 0	x =	0.05	x =	0.1	x =	• 0.15	x =	0.2
					0 00067	0.00	0 14880	0.00	0.70708	
0	0.00	0.00	0.04990	0.00	0.00007	0.00	0.14009	0.00	0.19730	0.00
0.05	0.00	0.07870	0.05027	0.07050	0.10023	0.07792	0.14979	0.07095	0.19855	0.07502
0.1	0.00	0.15838	0.05121	0.15798	0.10214	0.15077	0.15254	0.154/9	* 0.20213	0.15207
0.15	0.00	0.24008	0.05283	0.23944	0.10535	0.23755	0.15/27	0.23440	0.20828	0.23021
0.2	0.00	0.32492	0.05522	0.32402	0.11008	0.32130	0.10422	0.31098	0.21732	0.31098
0.25	0.00	0.41421	0.05850	0.41300	0.11 657	0.40940	0.17377	0.40350	0.22970	0.30543
0.3	0.00	0.50053	0.06280	0.50792	0.12522	0.50317	0.18647	0.49538	0.24613	0.48477
0.35	0.00	0.61280	0.06865	0.61070	0.13650	0.60446	0.20310	0.59427	0.26758	0.58044
0.4	0.00	0.72654	0.07623	0.72378	0.15140	0.71557	0.22484	0.70222	0.20540	0.68417
0.45	0.00	0.85408	0.08624	0.85040	0.17113	0.83051	0.25330	0.82186	0.33102	0.70812
						0,0	0007			
0.5	0.00	1.0000	0.09967	0.99503	0.19738	0.98033	0.29131	0.95663	0.37995	0.92501
0.55	0.00	1.17085	0.11804	1.16395	0.23313	1.14305	0.34258	1.11113	0.44423	1.06819
o. 6	0.00	1.37638	0.14392	1.36649	0.28315	1.33754	0.41357	1.29164	0.53203	1.23185
0.65	0.00	1.63185	0.18179	1.61702	0.35567	1.57401	0.51496	1.50674	0.65502	1.42088
0.7	0.00	1.96261	0.24007	1.93900	0. 46575	1.87150	0. 66202	1.75880	0. 83268	1.64005
0.75	0.00	2.41421	0.33624	2.37365	0.64333	2.25041	0.00034	2.00061	1.00827	T 80082
0.8	0.00	2.07768	0.51100	2.00011	0.05307	2.78504	1.28858	2.18723	1.50082	2 16055
0.85	0.00	4 16520	0.87867	2 08246	T 56000	2,51765	1.07216	2 04167	2 16111	2.10055
0.05	0.00	6 31 375	T 8-674	5.90240	2.01746	3.31703	2 2 2 2 8 0	2.94107	2.10111	2.30000
0.9	0.00	0.313/5	1.05074	5.72000	6.01808	4.47700	5.22909	3.27750	3.15925	2.37070
0.95	0.00	12.70020	5.79801	9.05499	0.21000	4.03133	5.20217	2.71349	4.39054	1.07517
1.0	0.00	80	20.01667	0.00	10.03331	0.00	6.71659	0.00	5.06649	0.00
1.05	0.00	12.70620	5.79801	9.05499	6.21808	4.83133	5.28217	2.71349	4.39854	1.67517
1.1	0.00	6.31375	1.85674	5.72808	2.91746	4.47780	3.22989	3.27758	3.15925	2.37676
1.15	0.00	4.16530	0.87867	3.98246	1.56000	3.51765	1.97316	2.94167	2.16111	2.38860
1.2	0.00	3.07768	0.51109	2.99911	0.95397	2.78504	1.28858	2.48723	1.50982	2.16055
T 05	0.00	2 41421	0 22624	2 25265	0.64222	2 25041	0.00024	2 00067	1 00807	- 99-
1.25	0.00	7 06267	0.33024	2.37303	0.46575	1 87150	0.66202	1 75880	0.82068	1.09003
1.3	0.00	7.60201	0.24007	1.93900	0.403/3	1.07130	0.00202	1.75000	0.03200	1.04005
1.35	0.00	1.03105	0.13179	1.01702	0.35507	1.57401	0.51490	1.50074	0.05502	1.42088
1.4	0.00	1.37030	0.14392	1.30049	0.20315	1.33754	0.41357	1.29104	0.53203	1.23185
1.45	0.00	1.17005	0.11804	1.10395	0.23313	1.14305	0.34250	1.11113	0.44423	1.00819
1.5	0.00	1.0000	0.09967	0.99503	0.19738	0.98033	0.29131	0.95663	0.37995	0.02501
1.55	0.00	0.85408	0.08624	0.85040	0.17113	0.83951	0.25339	0.82186	0.33102	0.70813
1.6	0.00	0.72654	0.07623	0.72378	0.15140	0.71557	0.22484	0.70222	0.20540	0.68417
1.65	0.00	0.61280	0.06865	0.61070	0.13650	0.60446	0.20310	0.50427	0.26758	0.58044
1.7	0.00	0.50953	0.06289	0.50792	0.12522	0.50317	0.18647	0.49538	0.24613	0.48477
	0.00		0.01915		0 7767-	0.10010	0 10055			
1.75	0.00	0.41421	0.05850	0.41300	0.11057	0.40940	0.17377	0.40350	0.22970	0.39543
1.0	0.00	0.32492	0.05522	0.32402	0.11008	0.32130	0.10422	0.31098	0.21732	0.31098
1.05	0.00	0.24008	0.05283	0.23944	0.10535	0.23755	0.15727	0.23440	0.20828	0.23021
1.9	0.00	0.15838	0.05121	0.15798	0.10214	0.15077	0.15254	0.15479	0.20213	0.15207
1.95	0.00	0.07870	0.05027	0.07850	0.10028	0.07792	0.14979	0.07695	0.19855	0.07562
2.0	0.00	0.00	0.04996	0.00	0.00067	0.00	0.14880	0.00	0.10738	0.00

Note.

Negative quantities are in heavy type.

Examples. $\tanh(o + i \underline{o.95}) = o + i \underline{12.70620}$. $\tanh(0+i\underline{1.45}) = 0 - i 1.17085.$

q	x = c	0.25	x = 0	0.3	x = c	0.35	x =	0.4	x = c	0.45
0	0.24492	0.00	0.29131	0.00	0.33638	0.00	0.37995	0.00	0.42190	0.00
0.05	0.24635	0.07395	0.29296	0.07199	0.33322	0.06975	0.38196	0.06728	0.42405	0.06462
0.1 0.15 0.2	0.25814 0.26907	0.22490 0.30351	0.30660 0.31921	0.14404 0.21864 0.29471	0.34304 0.35346 0.36750	0.21153 0.28475	0.39853 0.41376	0.13503 0.2037 <u>3</u> 0.27384	0.43050 0.44169 0.45784	0.12901 0.19534 0.26216
0.25	0.28402	0.38540	0.33640	0.37362	0.38658	0.36035	0.43438	0.34585	0.47964	0.33039
0.3	0.30377	0.47162	0.35903	0.45623	0.41161	0.43898	0.46130	0.42022	0.50796	0.40033
0.35	0.32947	0.56335	0.38833	0.54348	0.44383	0.52131	0.49575	0.49737	0.54397	0.47216
0.4	0.36272	0.66200	0.42600	0.63638	0.48497	0.60802	0.53941	0.57764	0.58924	0.54593
0.45	0.46352	0.88682	0.53705	0.84355	0.60437	0.79671	0.66404	0.74770	0.71630	0.69779
0.55	0.53655	1.01699	0.61869	0.95983	0.69041	0.89893	0.75200	0.83632	0.80407	0.77365
0.65	0.63656	1.16180	0.72640	1.08513	0.80176	1.00519	0.86357	0.92478	0.91321	0.84608
0.65	0.77356	1.32269	0.87037	1.21810	0.94684	1.11212	1.00528	1.00856	1.04844	0.91003
0.7	0.96528	1.49862	1.06521	1.35360	1.13666	1.21222	1.18469	1.07919	1.21438	0.95708
0.75	1.23914	1.68151	1.33091	1.47820	1.38412	1.29020	1.40896	1.12181	1.41397	0.97400
0.8	1.63553	1.84484	1.69121	1.56140	1.70028	1.31745	1.68068	1.11235	1.64487	0.94186
0.85	2.20223	1.91863	2.16210	1.54177	2.08309	1.24667	1.98936	1.01695	1.89366	0.83750
0.9	2.95122	1.75011	2.71602	1.31829	2.49443	1.01613	2.29855	0.79978	2.12957	0.64107
0.95	3.72316	1.11789	3.21905	0.79096	2.83603	0.58484	2.53928	0.44728	2.30471	0.35122
1.0	4.08299	0.00	3.43274	0.00	2.97287	0.00	2.63193	0.00	2.37024	0.00
1.05	3.72316	1.11789	3.21905	0.79096	2.83603	0.58484	2.53928	0.44728	2.30471	0.35122
1.1	2.95122	1.75011	2.71602	1.31829	2.49443	1.01613	2.29855	0.79978	2.12957	0.64107
1.15	2.20223	1.91863	2.16210	1.54177	2.08309	1.24667	1.98936	1.01695	1.89366	0.83750
1.2	1.63553	1.84484	1.69121	1.56140	1.70028	1.31745	1.68068	1.11235	1.64487	0.94186
1.25	1.23914	1.68151	1.33091	1.47820	1.38412	1.29020	1.40896	1.12181	1.41397	0.97400
1.3	0.96528	1.49862	1.06521	1.35360	1.13666	1.21222	1.18469	1.07919	1.21438	0.95708
1.35	0.77356	1.32269	0.87037	1.21810	0.94684	1.11212	1.00528	1.00856	1.04844	0.91003
1.4	0.63656	1.16180	0.72640	1.08513	0.80176	1.00519	0.86357	0.92478	0.91321	0.84608
1.45	0.53655	1.01699	0.61869	0.95983	0.69041	0.89893	0.75200	0.83632	0.80407	0.77365
1.5	0.46212	0.88682	0.53705	0.84355	0.60437	0.79671	0.66404	0.74770	0.71630	0.69779
1.55	0.40582	0.76919	0.47444	0.73604	0.53739	0.69969	0.59450	0.66116	0.64580	0.62138
1.6	0.36272	0.66200	0.42600	0.63638	0.48497	0.60802	0.53941	0.57764	0.58924	0.54593
1.65	0.32947	0.56335	0.38833	0.54348	0.44383	0.52131	0.49575	0.49737	0.54397	0.47216
1.7	0.30377	0.47162	0.35903	0.45623	0.41161	0.43898	0.46130	0.42022	0.50796	0.40033
1.75	0.28402	0.38540	0.33640	0.37362	0.38658	0.36035	0.43438	0.34585	 0.47964 0.45784 0.44169 0.43056 0.42405 	0.33039
1.8	0.26907	0.30351	0.31921	0.29471	0.36750	0.28475	0.41376	0.27384		0.26216
1.85	0.25814	0.22490	0.30660	0.21864	0.35346	0.21153	0.39853	0.20373		0.19534
1.9	0.25069	0.14866	0.29799	0.14464	0.34384	0.14007	0.38808	0.13503		0.12961
1.95	0.24635	0.07395	0.29296	0.07199	0.33822	0.06975	0.38196	0.06728		0.06462
2.0	0.24492	0.00	0.29131	0.00	0.33638	0.00	0.37995	0.00	0.42190	0.00

Note.

- Negative quantities are in heavy type.

Examples. $\tanh(0.4 + i 0.4) = 0.5394i + i 0.57764.$ $\tanh(0.45 + i 1.75) = 0.47964 - i 0.33039.$

q	x =	0.5	x =	0.55	<i>x</i> =	• 0. 6	x =	0.65	x =	• 0.7
~	0. (6arr	0.00	0.50050	0.00	0 52704	0.00	0 57767	0.00	0 60427	0.00
0	0.40211	0.00	0.50052	0.00	0.53704	0.00	0.5/10/	0.00	0.00437	0.00
0.05	0.40430	0.00181	0.50284	0.05889	0.53941	0.05590	0.57405	0.05288	0.00074	0.04984
0.1	0.47119	0.12390	0.50987	0.11790	0.54057	0.11189	0.58125	0.10570	0.01390	0.09902
0.15	0.48281	0.18051	0.52183	0.17737	0.55872	0.10804	0.59344	0.15803	0.02002	0.14925
0.2	0.49964	0.24990	0.53910	0.23725	0.57620	0.22437	0.61094	0.21144	0.64336	0.19858
0.25	0.52227	0.31424	0.56223	0.29765	0.59953	0.28085	0.63419	0.26404	0.66631	0.24741
0.3	0.55151	0.37967	0. 59196	0.35856	0.62935	0.33731	0.66377	0. 31618	0.69534	0.29540
0.35	0. 58846	0. 4461 6	0. 62928	0.41979	o.66653	0. 39344	0.70039	0. 36748	0.73105	0.34205
0.4	0.63452	0.51350	0.67541	0.48093	0.71212	o. 44869	0.74493	0.41714	0.77413	0.38662
0.45	0. 69149	0.58116	0.73188	0.54121	0.76736	0.50211	0.79836	0.46428	0.82533	0.42806
0.5	0.76159	0.64805	0.80050	0.59933	0.83365	0.55229	0.86173	0.50738	0.88535	0.46492
0.55	0.84752	0.71220	0.88332	0.65320	0.01240	0.59707	0.93607	0.54434	0.95480	0.49522
0.6	0.95230	0.77067	0.98247	0.69957	1.00521	0.63346	1.02105	0.57227	1.03389	0.51635
0.65	1.07007	0.81812	1.00073	0.73362	1.11262	0.65676	1.11062	0.58738	1.12222	0.52508
0.7	1.23020	o.8 4688	1.23587	0.74858	1.23436	0.66157	1.22793	0.58492	1.21827	0.51757
0.75	1.40570	0.84585	1.38026	0.73540	1.36782	0.64076	1.34386	0.55051	1.31896	0.48076
0.8	1.60005	0.80073	1.55308	0.68387	1.50605	0.58681	1.46173	0.50588	1.41000	0.43803
0.85	1.80225	0.60623	1.71785	0.58300	1.64135	0.40366	1.57271	0.42040	1.51148	0.36034
o .o	1.08505	0.52107	1.86183	0.43071	1.75601	0.35040	1.66532	0.30300	1.58713	0.25755
0.95	2.11599	0.28167	1.96180	0.22977	1.83417	0.19009	1.72736	0.15910	1.63711	0.13449
1.0	2.16305	0.00	1.00702	0.00	1.86202	0.00	1.74026	0.00	1.65462	0.00
1.05	2.11599	0.28167	1.06180	0.22977	1.83417	0.10000	1.72736	0.15910	1.63711	0.13449
1.1	1.08505	0.52107	1.86163	0.43071	1.75601	0.35040	1.66532	0.30300	1.58713	0.25755
1.15	1.80225	0.69623	1.71785	0.58300	1.64135	0.40366	1.57271	0.42040	1.51148	0.36034
1.2	1.60095	0.80073	1.55398	0.68387	1.50695	0.58681	1.46173	0.50588	1.41909	0.43803
1.25	1.40570	0.84585	1.38026	0.73549	1.36782	0.64076	1.34386	0.55051	1.31806	0.48076
1.3	1.23020	0.84688	1.23587	0.74858	1.23436	0.66157	1.22703	0.58492	1.21827	0.51757
1.35	1.07007	0.81812	1.00073	0.73362	1.11262	0.65676	1.11062	0.58738	1.12222	0.52508
1.4	0.05230	0.77067	0.08247	0.60057	1.00521	0.63346	1.02105	0.57227	1.03380	0.51635
1.45	0.84752	0.71229	0.88332	0.65320	0.91249	0.59707	0.93607	0.54434	0.95480	0.49522
1.5	0.76159	0.64805	0.80050	0.59933	0.83365	0.55220	0.86173	0.50738	0.88535	0.46492
1.55	0.69149	0.58116	0.73188	0.54121	0.76736	0.50211	0.79836	0.46428	0.82533	0.42806
1.6	0.63452	0.51350	0.67541	0.48003	0.71212	0.44860	0.74403	0.41714	0.77413	0.38662
1.65	0.58846	0.44616	0.62028	0.41070	0.66653	0.30344	0.70030	0.36748	0.73105	0.34205
1.7	0.55151	0.37967	0.59196	0.35856	0.62935	0.33731	0.66377	0.31618	0.69534	0.29540
1.75	0.52227	0.31424	0.56223	0.29765	0.59953	0.28085	0.63419	0.26404	0.66631	0.25741
1.8	0.49964	0.24990	0.53910	0.23725	0.57620	0.22437	0.61004	0.21144	0.64336	0.19858
1.85	0.48281	0.18651	0.52183	0.17737	0.55872	0.16804	0.59344	0.15863	0.62602	0.14925
1.9	0.47119	0.12390	0.50987	0.11796	0.54657	0.11180	0.58125	0.10576	0.61390	0.09962
1.95	0.46436	0.06181	0.50284	0.05889	0.53941	0.05590	0.57405	0.05288	0.60674	0.04984
2.0	0.46211	0.00	0.50052	0.00	0.53704	0.00	0.57167	0.00	0.60437	0.00

Note. Negative quantities are in heavy type.

Examples. $\tanh (0.6 + i \underline{0.6}) = 1.00521 + i 0.63346.$ $\tanh (0.6 + i \underline{1.5}) = 0.83365 - i 0.55229.$

h

•

q	x =	0.75	x =	o. 8	x =	0.85	x =	0.9	x =	0.95
0	0.63515	0.00	0.66403	0.00	0.60107	0.00	0.71620	0.00	0.73078	0.00
0.05	0.63740	0.04684	0.66622	0.04388	0.60330	0.04000	0.71845	0.02820	0.74185	0.02551
0.0	0.64456	0.00254	0 67225	0.08758	0.70002	0.08176	0 72404	0.07614	0 74807	0.07072
0.15	0.65640	0.12007	0.67323	0.00730	0.71122	0 12206	0.72582	0.07014	0.75850	0.07073
0.15	0.05049	0.13997	0.00490	0.13009	0.71132	0.12200	0.73302	0.11354	0.75050	0.10537
0.2	0.07352	0.18592	0.70148	0.17357	0.72730	0.10100	0.75123	0.15008	0.77321	0.13900
0.25	0.69595	0.23112	0.72325	0.21528	0.74832	0.20001	0.77130	0.18537	0.79231	0.17143
0.3	0.72420	0.27510	0.75051	0.25559	0.77440	0.23083	0.79620	0.21893	0.81592	0.20198
0.35	0.75872	0.31749	0.78364	0.29392	0.80603	0.27146	0.82011	0.25018	0.84411	0.23013
0.4	0.80005	0.35735	0.82300	0.32949	0.84328	0.30314	0.86117	0.27837	0.87695	0.25520
0.45	0.84871	0.39368	o. 86893	0.36128	o. 88638	0.33091	0.90143	0.30261	0.91438	0. 27634
0.5	0.90515	0.42510	0.92167	0.38798	0.93541	0.35357	0.94681	0.32181	0.95624	0.20250
0.55	0.06063	0.44978	0.98122	0.40706	0.00018	0.36066	0.99700	0.33460	1.00211	0.30285
0.6	1.04203	0.46543	1.04722	0.41026	1.05015	0.37751	1.05136	0.33085	1.05120	0.30503
0.65	1.12161	0.46034	1.11872	0.42057	1.11427	0.37527	1.10885	0.33580	1.10271	0.30064
0.7	1.20665	0.45847	1.19395	0.40661	1.18081	0.36108	1.16765	0.32108	1.15485	0.28588
0.75	1.20416	0.42077	1.27012	0.37806	T.24723	0.32335	T.22572	0.20458	1.20560	0.26087
0.8	1 27061	0.28084	1.24221	0.22228	1.21017	0.20108	T. 28006	0.25572	T 25270	0 22522
0.8-	1.37901	0.30004	T 40862	0.35230	1 26562	0 22424	1 22742	0.20182	1 20244	0.17068
0.05	1.45/01	0.31003	1.46062	0.10000	1.30302	0.16461	T 26428	0.14220	1.29344	0.17900
0.9	1.51945	0.22031	T 40428	0.00840	1.40931	0.08400	1.30430	0.14330	1.32493	0.12520
0.95	1.50023	0.11403	1.49420	0.09040	1.43/33	0.00499	1.30/90	0.07300	1.34490	0.00430
1.0	1.57443	0.00	1.50594	0.00	1.44703	0.00	1.39606	0.00	1.35175	0.00
1.05	1.56023	0.11463	1.49428	0.09840	1.43735	0.08499	1.38796	0.07380	1.34490	0.06438
1.1	1.51945	0.22051	1.46062	0.19000	1.40931	0.16461	1.36438	0.14330	1.32493	0.12528
1.15	1.45701	0.31065	1.40862	0.26920	1.36562	0.23434	1.32742	0.20483	1.29344	0.17968
1.2	1.37961	0.38084	1.34331	0.33238	1.31017	0.29108	1.28006	0.25573	1.25279	0.22532
1.25	1.29416	0.42977	1.27012	0.37806	1.24723	0.33335	1.22572	0.29458	1.20569	0.26087
1.3	1.20665	0.45847	1.19395	0.40661	1.18081	0.36108	1.16765	0.32108	1.15485	0.28588
1.35	1.12161	0.46934	1.11872	0.42057	1.11427	0.37527	1.10885	0.33580	1.10271	0.30064
1.4	1.04203	0.46543	1.04722	0.41926	1.05015	0.37751	1.05130	0.33985	1.05120	0.30503
1.45	0.96963	0.44978	0.98122	0.40796	0.99018	0.36966	0.99700	0.33469	1.00211	0.30285
1.5	0.00515	0.42510	0.02167	0.38798	0.03541	0.35357	0.94681	0.32181	0.05624	0.20250
1.55	0.84871	0.30368	0.86803	0.36128	0.88638	0.33001	0.00143	0.30261	0.01438	0.27634
т.6	0.80005	0.35735	0.82300	0.32040	0.84328	0.30314	0.86117	0.27837	0.87605	0.25520
1.0 1.6e	0.75872	0.31740	0.78364	0.20302	0.80603	0.27146	0.82611	0.25018	0.84411	0.23013
1.05	0.73072	0.27516	0.75051	0.25550	0.77446	0.23683	0.70620	0.21802	0.81502	0.20108
1.7	0.72420	0.27510	••••		•				0.01391	yo
1.75	0.69595	0.23112	0.72325	0.21528	0.74832	0.20001	0.77130	0.18537	0.79231	0.17143
1.8	0.67352	0.18592	0.70148	0.17357	0.72736	0.10100	0.75123	0.15008	0.77321	0.13906
1.85	0.65649	0.13997	0.68490	0.13089	0.71132	0.12206	0.73582	0.11354	0.75850	0.10537
1.9	0.64456	0.09354	0.67325	0.08758	0.70002	0.08176	0.72494	0.07614	0.74807	0.07073
1.95	o. 63749	0.04684	0.66633	0.04388	0.69330	0.04099	0.71845	0.03820	0.74185	0.03551
2.0	0.63515	0.00	0.66403	0.00	0.69107	0.00	0.71629	0.00	0. 73978	0.00

Note.

Negative quantities are in heavy type.

Examples. $\tanh(0.95 + i \circ) = 0.73978 + i \circ.$ $\tanh(0.9 + i \underline{1.9}) = 0.72494 - i 0.07614.$

1

q	x =	1.0	x =	1.05	x =	1.1	x =	1.15	x =	1.2
0	0 .76159	0.00	0.78181	0.00	0.80050	0.00	0.81775	0.00	0.83365	0.00
0.05	0.76357	0.03293	0.78368	0.03048	0.80227	0.02816	0.81943	0.02597	0.83522	0.02390
0.1	0.76950	0.0 6556	0.78932	0.06065	0.80760	0.05599	0.82444	0.05160	0.83992	0.04748
0.15	0.77943	0.09757	0.79873	0.09016	0. 81648	0.08317	0.83279	0.07658	0.84775	0.07041
0.2	0.79341	0.12858	0.81195	0.11867	0.82893	0.10932	0.84447	0.10054	0.85867	0.09233
0.07	0 9 T T T T	0.15801	a 82007	0 14575	0 84405	0.12405	0 85045	0 12210	0 87264	0.77.088
0.25	0.01151	0.15021	0.82901	0.145/5	0.84493	0.13403	0.03945	0.12310	0.87204	0.11200
0.3	0.03377	0.18598	0.84991	0.17090	0.80450	0.13092	0.87700	0.14303	0.00930	0.13100
0.35	0.80022	0.21133	0.87404	0.19377	0.88753	0.1//42	0.89907	0.10220	0.90938	0.14023
0.4	0.89080	0.23301	0.90311	0.21350	0.91392	0.19501	0.92345	0.17789	0.93180	0.10213
0.45	0.92554	0.25205	0.93515	0.22900	0.94344	0.20900	0.95058	0.19017	0.95074	0.17207
0.5	0.96403	0.26580	0.97045	0.24130	0.97574	0.21892	0.98010	0.19852	0.98368	0.17996
0.55	1.00585	0.27392	1.00852	0.24767	1.01034	0.22389	1.01151	0.20236	1.01217	0.18288
0.6	1.05030	0.27542	1.04864	0.24798	1.04654	0.22331	1.04415	0.20115	1.04160	0.18123
0.65	1.00632	0.26933	1.08084	0.24144	1.08342	0.21658	1.07718	0.19441	1.07119	0.17461
0.7	1.14516	0.25486	1.13084	0.22747	1.11984	0.20326	1.10957	0.18182	1.10003	0.16281
	0.									0 .
0.75	1.18715	0.23145	1.17009	0.20572	1.15445	0.18315	1.14015	0.10330	1.12709	0.14580
0.8	1.22812	0.19904	1.20585	0.17023	1.18575	0.15037	1.10703	0.13902	1.15129	0.12380
0.85	1.20319	0.15812	1.23024	0.13955	1.21219	0.12347	1.19340	0.10950	1.17152	0.09730
0.9	1.29017	0.10993	1.25949	0.09077	1.23231	0.08544	1.20821	0.07503	1.18080	0.00709
0.95	1.30721	0.05038	1.27410	0.04950	1.24492	0.04309	1.21914	0.03803	1.19031	0.03424
1.0	1.31304	0.00	1.27008	0.00	1.24022	0.00	1,22286	0.00	1.10054	0.00
1.05	1.30721	0.05638	1.27410	0.04956	1.24402	0.04360	1.21014	0.03863	1.10631	0.03424
1.1	1.20017	0.10003	1.25040	0.00677	1.23231	0.08544	1.20821	0.07563	1.18680	0.06700
1.15	1.26310	0.15812	1.23624	0.13955	1.21210	0.12347	1.10346	0.10050	1.17152	0.00730
1.2	1.22812	0.19904	1.20585	0.17623	1.18575	0.15637	1.16763	0.13002	1.15120	0.12380
	0				010					
1.25	1.18715	0.23145	1.17009	0.20572	1.15445	0.18315	1.14015	0.16330	1.12709	0.14580
1.3	1.14516	0.25480	1.13084	0.22747	1.11984	0.20326	1.10957	0.18182	1.10003	0.16281
1.35	1.09632	0.26933	1.08984	0.24144	1.08342	0.21658	1.07718	0.19441	1.07119	0.17461
1.4	1.05030	0.27542	1.04804	0.24798	1.04054	0.22331	1.04415	0.20115	1.04160	0.18123
1.45	1.00585	0.27392	1.00852	0.24767	1.01034	0.22389	1.01151	0.20236	1.01217	0.18288
1.5	0.06403	0.26580	0.07045	0.24130	0.07574	0.21802	0.08010	0.10852	0.08368	0.17006
1.55	0.02554	0.25205	0.03515	0.22066	0.04344	0.20006	0.05058	0.10017	0.05674	0.17287
1.6	0.80086	0.23361	0.00311	0.21356	0.01302	0.10501	0.02345	0.17780	0.03186	0.16213
1.65	0.86022	0.21133	0.87464	0.10377	0.88753	0.17742	0.80007	0.16226	0.00038	0.14823
1.7	0.83377	0.18508	0.84001	0.17006	0.86450	0.15602	0.87768	0.14383	0.88058	0.13166
,									0100930	
1.75	0.81151	0.15821	0.82901	0.14575	0.84495	0.13405	0.85945	0.12310	0.87264	0.11288
1.8	0.79341	0.12858	0.81195	0.11867	0.82893	0.10932	0.84447	0.10054	0.85867	0.09233
1.85	0.77943	0.09757	0.79873	0.09016	0.81648	0.08317	0.83279	0.07658	0.84775	0.07041
1.9	0.76950	0.06556	0.78932	0.06065	0.80760	0.05599	0.82444	0.05160	0.83992	0.04748
1.95	0.76357	0.03293	0.78368	0.03048	0.80227	0.02816	0.81943	0.02597	0.83522	0.02390
2.0	0.76159	0.00	0.78181	0.00	0.80050	0.00	0.81775	0.00	0.83365	0.00

Note.

Negative quantities are in heavy type.

Examples. $\tanh (1.2 + i \underline{0.75}) = 1.12709 + i 0.14580.$ $\tanh (1.2 + i \underline{1.25}) = 1.12709 - i 0.14580.$

[78]

1

q	<i>x</i> =	1.25	x =	1.3	<i>x</i> =	1.35	<i>x</i> =	1.4	<i>x</i> =	1.45
0	0.84828	0.00	0.86172	0.00	0.87405	0.00	0.88535	0.00	0.89569	0.00
0.05	0.84975	0.02197	0.86300	0.02017	0.87533	0.01840	0.88653	0.01693	0.89678	0.01549
0.1	0.85414	0.04363	0.86719	0.04003	0.87913	0.03668	0.80006	0.03357	0.00005	0.03070
0.15	0.86145	0.06464	0.87308	0.05927	0.88544	0.05428	0.80501	0.04965	0.00545	0.04537
0.2	0.87162	0.08468	0.88344	0.07756	0.89421	0.07097	0.90401	0.06486	0.91293	0.05923
0.25	0.88461	0.10339	0.89548	0.09458	0.90535	0.08644	0.91429	0.07892	0.92240	0.07199
0.3	0.90032	0.12039	0.90791	0.10997	0.91875	0.10036	0.92663	0.09151	0.93375	0.08338
0.35	0.91861	0.13528	0.92686	0.12336	0.93425	0.11240	0.94087	0.10234	0.94680	0.00312
0.4	0.93928	0.14765	0.94585	0.13437	0.95166	0.12221	0.95680	0.11108	0.96137	0.10092
0.45	0.96207	0.15706	0.96669	0.14262	0.97069	0.12945	0.97417	0.11745	0.97719	0.10654
0.5	0.98661	0.16307	0.98903	0.14773	0 .99101	0.13381	0.99263	0.12117	0.99396	0.10971
0.55	1.01244	0.16528	1.01243	0.14937	1.01219	0.13499	1.01181	0.1 2199	1.01133	0.11026
0.6	1.03897	0.16332	1.03634	0.14722	1.03375	0.13275	1.03125	0.11972	1.02885	0.10801
0.65	1.06550	0.15691	1.06013	0.14109	1.05510	0.12693	1.05042	0.11425	1.04 607	0.10 288
0.7	1.09121	0.14591	1.08308	0.13088	1.07560	0.11749	1.06875	0.10555	1.06248	0. 09488
0.75	1.11521	0.13034	1.10430	0.11665	1.00457	0.10450	1.08565	0.00371	1.07756	0.08411
0.8	1.13656	0.11042	1.12328	0.00862	1.11131	0.08820	1.10052	0.07806	1.00078	0.07077
0.85	1.15434	0.08662	1.13805	0.07724	1.12512	0.06807	1.11277	0.06167	1.10166	0.05521
0.0	1.16772	0.05064	1.15070	0.05311	1.13551	0.04738	T.12102	0.04232	1.10076	0.03785
0.95	1.17603	0.03041	1.15799	0.02706	1.14192	0.02412	1.12758	0.02153	1.11476	0.01925
1.0	1.17885	0.00	1.16047	0.00	1.14410	0.00	1.12950	0.00	1.11646	0.00
1.05	1.17603	0.03041	1.15799	0.02706	1.14192	0.02412	1.12758	0.02153	1.11476	0.01925
1.1	1.16772	0.05964	1.15070	0.05311	1.13551	0.04738	1.12102	0.04232	1.10076	0.03785
1.15	1.15434	0.08662	1.13895	0.07724	1.12512	0.06897	1.11277	0.06167	1.10166	0.05521
1.2	1.13656	0.11042	1.12328	0.09862	1.11131	0.08820	1.10052	0.07896	1.09078	0.07077
1.25	1.11521	0.13034	1.10439	0.11665	1.09457	0.10450	1.08565	0.09371	1.07756	0.08411
1.3	1.09121	0.14591	1.08308	0.13088	1.07560	0.11749	1.06875	0.10555	1.06248	0.09488
1.35	1.06550	0.15691	1.06013	0.14109	1.05510	0.12693	1.05042	0.11425	1.04607	0.10288
1.4	1.03897	0.16332	1.03634	0.14722	1.03375	0.13275	1.03125	0.11972	1.02885	0.10801
1.45	1.01244	0.16528	1.01243	0.14937	1.01219	0.13499	1.01181	0.12199	1.01133	0.11026
1.5	0.98661	0.16307	0.98903	0.14773	0.99101	0.13381	0.99263	0.12117	0.99396	0.10971
1.55	0.96207	0.15706	0.96669	0.14262	0.97069	0.12945	0.97417	0.17745	0.97719	0.10654
1.6	0.93928	0.14765	0.94585	0.13437	0.95166	0.12221	0.95680	0.11108	0.96137	0.10092
1.65	0.91861	0.13528	0.92686	0.12336	0.93425	0.11240	0. 94087	0.10234	0.94680	0.09312
1.7	0.90032	0.12039	0.90791	0.10997	0.91875	0.10036	0.92663	0.09151	0.93375	0.08338
1.75	0.88461	0.10339	0.89548	0.09458	0.90535	0.08644	0.91429	0.07892	0.92240	0.07199
1.8	0.87162	0.08468	0.88344	0.07756	0.89421	0.07097	0.90401	0.06486	0.91293	0.05923
1.85	0.86145	0.06464	0.87398	0.05927	0.88544	0.05428	0.89591	0.04965	0.90545	0.04537
1.9	0.85414	0.04363	0.86719	0.04003	0.87913	0.03668	0.89006	0.03357	0.90005	0.03070
1.95	0.84975	0.02197	0.86309	0.02017	0.87533	0.01849	0.88653	0.01693	0.89678	0.01549
2.0	0.84828	0.00	0.86172	0.00	0.87405	0.00	0.88535	0.00	o. 89569	0.00

Note.

Negative quantities are in heavy type.

Examples. $\tanh (1.4 + i \underline{0.8}) = 1.10052 + i 0.07896.$ $\tanh (1.3 + i \underline{1.3}) = 1.08308 - i 0.13088.$

q	<i>x</i> =	1.5	x = x	1.55	<i>x</i> =	1.6	x = x	1.65	<i>x</i> =	1.7
0	0.00515	0.00	0.01370	0.00	0.02167	0.00	0.92886	0.00	0.03541	0.00
0.05	0.00616	0.01415	0.01471	0.01202	0.02253	0.01178	0.02064	0.01074	0.03613	0.00070
0.1	0.00017	0.02804	0.01740	0.02560	0.02508	0.02334	0.03100	0.02127	0.03828	0.01037
0.15	0.01415	0.04143	0.02208	0.03770	0.02020	0.03445	0.03586	0.03138	0.04183	0.02857
0.2	0.02104	0.05404	0.02842	0.04027	0.03511	0.04488	0.04110	0.04086	0.04671	0.03718
		6.6			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
0.25	0.92975	0.00503	0.93041	0.05978	0.94245	0.05442	0.94791	0.04951	0.95285	0.04502
0.3	0.94017	0.07593	0.94595	0.00909	0.95118	0.00284	0.95509	0.05712	0.90015	0.05190
0.35	0.95212	0.08408	0.95089	0.07097	0.90117	0.00993	0.90501	0.00351	0.90840	0.05700
0.4	0.90542	0.09105	0.90903	0.08320	0.97223	0.07551	0.97509	0.00850	0.97703	0.00213
0.45	0.97983	0.09000	0.98214	0.08758	0.98415	0.07938	0.98592	0.07193	0.98748	0.00517
0.5	0.99506	0.09933	0.99595	0.08992	0.99668	0.08139	0.99728	0.07367	0.99777	0.06667
0.55	1.01076	0.09965	1.0101 6	0.09008	1.00954	0.08142	1.00891	0.07361	1.00829	0.06655
0.6	1.02657	0.09746	1.02441	0.08796	1.02240	0.07940	1.02052	0.07169	1.01877	0.06474
0.65	1.04204	0.09268	1.03834	0.08353	1.03492	0.07530	1.03179	0.06791	1.02892	0.06126
0.7	1.05675	0.08534	1.05152	0.07680	1.04676	0.06915	1.04242	0.06230 *	1.03847	0.05614
0.75	1.07022	0.07554	1.06357	0.06700	1.05755	0.06107	1.05200	0.05495	1.04714	0.04948
0.8	1.08200	0.06340	1.07408	0.05700	1.06693	0.05121	1.06049	0.04604	1.05466	0.04142
0.85	1.00167	0.04947	1.08269	0.04438	1.07461	0.03984	1.06734	0.03579	1.06079	0.03218
0.0	1.00886	0.03300	1.08000	0.03038	1.08030	0.02726	1.07241	0.02448	1.06533	0.02200
0.95	1.10329	0.01723	1.09302	0.01544	1.08380	0.01385	1.07554	0.01243	1.06811	0.01117
1.0	1.10470	0.00	1.004.36	0.00	1.08500	0.00	1.07659	0.00	1.06006	0.00 .
1.05	1.10320	0.01723	1.00302	0.01544	1.08380	0.01385	1.07554	0.01243	1.06811	0.01117
1.1	1.00886	0.03300	1.08000	0.03038	1.08030	0.02726	1.07241	0.02448	1.06533	0.02200
1.15	1.00167	0.04047	1.08260	0.04438	1.07461	0.03984	1.06734	0.03570	1.06070	0.03218
1.2	1.08200	0.06349	1.07408	0.05700	1.06693	0.05121	1.06049	0.04604	1.05466	0.04142
1.25	1.07022	0.07554	1.06357	0.06700	1.05755	0.06107	1.05200	0.05405	1.04714	0.04048
1.3	1.05675	0.08534	1.05152	0.07680	1.04676	0.06015	1.04242	0.06230	1.03847	0.05614
1.35	1.04204	0.00268	1.03834	0.08353	1.03402	0.07530	1.03170	0.06701	1.02802	0.06126
1.4	1.02657	0.00746	1.02441	0.08706	1.02240	0.07040	1.02052	0.07160	1.01877	0.06474
1.45	1.01076	0.09965	1.01016	0.09008	1.00954	0.08142	1.00891	0.07361	1.00829	0.06655
1.5	0.00506	0.00033	0.00505	0.08002	0.00668	0.08130	0.00728	0.07367	0.00777	0.06667
1.55	0.07083	0.00660	0.08214	0.08758	0.08415	0.07038	0.08502	0.07103	0.08748	0.06517
1.6	0.06542	0.00165	0.06002	0.08320	0.07222	0.07551	0.07500	0.06850	0.07762	0.06212
1.65	0.05212	0.08468	0.05680	0.07607	0.06117	0.06003	0.06501	0.06351	0.06846	0.05766
1.7	0.04017	0.07503	0.04505	0.06000	0.05118	0.06284	0.05580	0.05712	0.06015	0.05100
		6.6					-193309		0.900-3	0.03190
1.75	0.92975	0.06563	0.93641	0.05978	0.94245	0.05442	0.94791	0.04951	0.95285	0.04502
1.8	0.92104	0.05404	0.92842	0.04927	0.93511	0.04488	0.94119	0.04086	0.94671	0.03718
1.85	0.91415	0.04143	0.92208	0.03779	0.92929	0.03445	0.93586	0.03138	0.94183	0.02857
1.9	0.90917	0.02804	0.91749	0.02560	0.92508	0.02334	0.93199	0.02127	0.93828	0.01937
1.95	0.90616	0.01415	0.91471	0.01292	0.92253	0.01178	0.92964	0.01074	0.93613	0.00979
2.0	0.90515	0.00	0.91379	0.00	0.92167	0.00	0.92886	0.00	0.93541	0.00

Note.

Negative quantities are in heavy type.

Examples. $\tanh (1.7 + i \underline{0.7}) = 1.03847 + i 0.05614.$ $\tanh (1.6 + i \underline{1.6}) = 0.97223 - i 0.07551.$

q	x = z	1.75	x =	1.8	x = 1	1.85	x =	1.9	x = x	1.95
0	0.94138	0.00	0.94681	0.00	0.95175	0.00	0.95624	0.00	0.96032	0.00
0.05	0.94204	0.00891	0.94741	0.00811	0.95230	0.00737	0.95674	0.00670	0.96078	0.00609
0.1	0.94400	0.01763	0.94921	0.01604	0.95394	0.01459	0.95825	0.01326	0.96215	0.01204
0.15	0.94725	0.02600	0.95218	0. 02364	0.95666	0.02149	0.96072	0.01952	0.96441	0.01773
0.2	0.95172	0.03382	0.95626	0.03074	0.96038	0.02793	0.96412	0.02537	0.96750	0.02303
				0					0	0 .
0.25	0.95733	0.04092	0.90139	0.03718	0.90500	0.03370	0.90838	0.03005	0.97138	0.02782
0.3	0.90399	0.04714	0.90740	0.04280	0.97059	0.03885	0.97342	0.03525	0.97597	0.03198
0.35	0.97150	0.05233	0.97435	0.04748	0.97080	0.04307	0.97912	0.03905	0.98110	0.03541
0.4	0.97991	0.05034	0.98194	0.05107	0.98370	0.04629	0.98538	0.04195	0.98684	0.03801
0.45	0.98884	0.05904	0.99005	0.05348	0.99111	0.04843	0.99200	0.04380	0.99289	0.03972
0.5	0.00818	0.06034	0.00851	0.05461	0.00878	0.04042	0.00000	0.04472	0.00018	0.04047
0.55	1.00760	0.06017	1.00711	0.05440	1.006=6	0.04010	1.00604	0.04448	1 00555	0.04022
0.6	1.01714	0.05848	1.01565	0.05282	1.01427	0.04772	1.00004	0.04212	1 01184	0.02807
0.65	1.02620	0.05528	1.02280	0.04080	1.02170	0.04773	1.01070	0.04313	1.01788	0.02672
0.03	1.02488	0.05061	1.02162	0.04564	1.02866	0.04118	1.01970	0.02716	1.02252	0.03073
0.7	1.03400	0.03001	1.03102	0.04304	1.02000	0.04110	1.02390	0.03710	1.02332	0.03334
0.75	1.04266	0.04457	1.03861	0.04016	1.03494	0.03621	1.03162	0.03265	1.02862	0.02946
0.8	1.04040	0.03720	1.04466	0.03358	1.04037	0.03026	1.03650	0.02727	1.03300	0.02450
0.85	1.05480	0.02805	1.04058	0.02606	1.04478	0.02347	1.04046	0.02115	1.03656	0.01006
0.0	1.05805	0.01978	1.05320	0.01780	1.04804	0.01602	1.04337	0.01443	1.03018	0.01301
0.05	1.06143	0.01004	1.05543	0.00003	1.05003	0.00813	1.04516	0.00732	1.04078	0.00050
	•		0010	, ,	5 0	0	15	10		57
1.0	1.06228	0.00	1.05619	0.00	1.05070	0.00	1.04576	0.00	1.04131	0.00
1.05	1. 0 6143	0.01004	1.05543	0.00903	1.05003	0.00813	1.04516	0.00732	1.04078	0.00659
1.1	1.05895	0.01978	1.05320	0.01780	1.04804	0.01602	1.04337	0.01443	1.03918	0.01301
1.15	1.05489	0.02895	1.04958	0.02606	1.04478	0.02347	1.04046	0.02115	1.03656	0.01906
1.2	1.04940	0.03729	1.04466	0.03358	1.04037	0.03026	1.03650	0.02727	1.03300	0.02459
			06-			6	6 -		96 -	
1.25	1.04200	0.04457	1.03801	0.04010	1.03494	0.03021	1.03102	0.03205	1.02802	0.02940
1.3	1.03488	0.05001	1.03102	0.04504	1.02800	0.04118	1.02590	0.03710	1.02352	0.03354
1.35	1.02029	0.05528	1.02389	0.04989	1.02170	0.04504	1.01970	0.04007	1.01788	0.03073
1.4	1.01714	0.05848	1.01505	0.05283	1.01427	0.04773	1.01300	0.04313	1.01184	0.03897
1.45	1.00709	0.00017	1.00711	0.05440	1.00050	0.04919	1.00004	0.04448	1.00555	0.04022
1.5	0.00818	0.06034	0.00851	0.05461	0.00878	0.04042	0.00000	0.04472	0.00018	0.04047
1.55	0.08884	0.05004	0.00005	0.05348	0.00111	0.04843	0.00206	0.04386	0.00280	0.03072
т.6	0.07001	0.05634	0.08104	0.05107	0.08376	0.04620	0.08528	0.04105	0.08684	0.03801
1.65	0.07156	0.05233	0.07435	0.04748	0.07686	0.04307	0.07012	0.03005	0.08116	0.03541
1.05	0.06200	0.04714	0.06746	0.04280	0.07050	0.03885	0.07242	0.03525	0.07507	0.03108
1.1	9.90399	0104114	0.90740	0.04200	0.97039	0.03003	0.9734~	0.03323	0.97397	0.03.90
1.75	0.95733	0.04092	0.96139	0.03718	0.96506	0.03376	0.96838	0.03065	0.97138	0.02782
1.8	0.95172	0.03382	0.95626	0.03074	0.96038	0.02793	0.96412	0.02537	0.96750	0.02303
1.85	0.94725	0.02600	0.95218	0.02364	0.95666	0.02149	0.96072	0.01952	0.96441	0.01773
1.9	0.94400	0.01763	0.94921	0.01604	0.95394	0.01459	0.95825	0.01326	0.96215	0.01204
1.95	0.94204	0.00891	0.94741	0.00811	0.95230	0.00737	0.95674	0.00670	0.96078	0.00609
			a 60 -							
2.0	0.94138	0.00	0.94081	0.00	0.95175	0.00	0.95024	0.00	0.90032	0.00

Note.

Negative quantities are in heavy type.

Examples. $\tanh(1.85 + i \underline{0.85}) = 1.04478 + i 0.02347.$ $\tanh(1.95 + i \overline{1.25}) = 1.02862 - i 0.02946.$

TABLE IX. HYPERBOLIC TANGENTS. tanh(x + iq) = u + iv. CONTINUED

q	x =	2.0	x =	2.05	x =	2.1	x =	2.15	x =	2.2
0	0.06403	0.00	0.06740	0.00	0.07045	0.00	0.07323	0.00	0.07574	0.00
0.05	0.06445	0.00553	0.06778	0.00502	0.07080	0.00456	0.07354	0.00413	0.07603	0.00375
0.1	0.06570	0.01004	0.06802	0.00003	0.07184	0.00001	0.07440	0.00817	0.07680	0.00741
0.15	0.06775	0.01610	0.07070	0.01461	0.07354	0.01 326	0.07604	0.01203	0.07830	0.01001
0.2	0.97058	0.02090	0.97336	0.01897	0.97588	0.01721	0.97816	0.01561	0.98023	0.01415
0.25	0.07411	0.02524	0.07657	0.02280	0.07880	0.02076	0.08081	0.01882	0.08264	0.01706
0.3	0.07827	0.02000	0.08036	0.02630	0.08224	0.02384	0.08304	0.02161	0.08548	0.01058
0.35	0.08200	0.03200	0.08464	0.02000	0.08613	0.02636	0.08747	0.02388	0.08868	0.02163
0.4	0.08815	0.03444	0.08032	0.03120	0.00037	0.02826	0.00132	0.02550	0.00217	0.02317
0.45	0.99364	0.03596	0.99430	0.03256	0.99489	0.02948	0.99541	0.02669	0.99587	0.02416
0.5	0.00033	0.03662	0.00045	0.03314	0.00055	0.02008	0.00063	0.02713	0.00070	0.02455
0.55	1.00500	0.03638	1.00466	0.03200	1.00426	0.02076	1.00389	0.02601	1.00355	0.02434
0.6	1.01077	0.03523	1.00070	0.03184	1.00800	0.02878	1.00808	0.02602	1.00734	0.02353
0.65	1.01623	0.03318	1.01471	0.02008	1.01334	0.02700	1.01210	0.02448	1.01007	0.02212
0.7	1.02131	0.03028	1.01930	0.02734	1.01748	0.02469	1.01583	0.02231	1.01434	0.02015
0.75	1.02589	0.02658	1.02343	0.02300	1.02120	0.02166	1.01919	0.01956	1.01736	0.01767
0.8	1.02984	0.02218	1.02608	0.02001	1.02440	0.0 1806	1.02207	0.01631	1.01996	0.01472
0.85	1.03304	0.01719	1.02986	0.01550	1.02699	0.01399	1.02440	0.01262	1.02206	0.01140
0.9	1.03539	0.01172	1.03107	0.01057	1.02880	0.00054	1.02611	0.00861	1.02360	0.00777
0.95	1.03683	0.00594	1.03327	0.00536	1.03005	0.00483	1.02715	0.00436	1.02454	0.00394
1.0	1.03731	0.00	1.03370	0.00	1.03045	0.00	1.02751	0.00	1.02486	0.00
1.05	1.03683	0.00594	1.03327	0.00536	1.03005	0.00483	1.02715	0.00436	1.02454	0.00394
I.I	1.03539	0.01172	1.03197	0.01057	1.02889	0.00954	1.02611	0.00861	1.02360	0.00777
1.15	1.03304	0.01719	1.02986	0.01550	1.02699	0.01399	1.02440	0.01262	1.02206	0.01140
1.2	1.02984	0.02218	1.02698	0.02001	1.02440	0.01806	1.02207	0.01631	1.01996	0.01472
1.25	1.02589	0.02658	1.0 2343	0.02399	1.02120	0.02166	1.01919	0.01956	1.01736	0.01767
1.3	1.02131	0.03028	1.01930	0.02734	1.01748	0.02469	1.01583	0.02231	1.01434	0.02015
1.35	1.01623	0.03318	1.01471	0.02998	1.01334	0.02709	1.01210	0.02448	1.01097	0.02212
1.4	1.01077	0.03523	1.00979	0.03184	1.00890	0.02878	1.00808	0.02602	1.00734	0.02353
1.45	1.00509	0.03638	1.00466	0.03290	1.00426	0.02976	1.00389	0.02691	1.00355	0.02434
1.5	0.99933	0.03662	0.99945	0.03314	0.99955	0.02998	0.99963	0.02713	0.99970	0.02455
1.55	0.99364	0.03596	0.99430	0.03256	0.99489	0.02948	0.99541	0.02669	0.99587	0.02416
1.6	0.98815	0.03444	0.98932	0.03120	0.99037	0.02826	0.99132	0.02559	0.99217	0.02317
1.65	0.98299	0.03209	0.98464	0.02909	0.98613	0.02636	0.98747	0.02388	0.98868	0.02163
1.7	0. 97827	0.02900	0.98036	0.02630	0. 98224	0.02384	0.98394	0.02161	0.98548	0.01958
1.75	0.97411	0.02524	0.97657	0.02289	0.97880	0.02076	0.98081	0.01882	0.98264	0.01706
1.8	0.97058	0.02090	0.97336	0.01897	0.97588	0.01721	0.97816	0.01561	0.98023	0.01415
1.85	0.90775	0.01010	0.97079	0.01461	0.97354	0.01326	0.97604	0.01203	0.97830	0.01091
1.9	0.96570	0.01094	0.96892	0.00993	0.97184	0.00901	0.97449	0.00817	0.97689	0.00741
1.95	0.96445	0.00553	0.96778	0.00502	0.97080	0.00456	0.97354	0.00413	0.97603	0.00375
2.0	0.96403	0.00	0.96740	0.00	0.97045	0.00	0.97323	0.00	0.97574	0.00

Note.

Negative quantities are in heavy type.

Examples. $\tanh (2.2 + i \circ) = \circ 97574 + i \circ.$ $\tanh (2.15 + i 1.15) = 1.02440 - i \circ.01262.$

q	x =	2.25	<i>x</i> =	2.3	x =	2.35	<i>x</i> =	2.4	x =	2.45
0	0.07803	0.00	0.98010	0.00	0 .98197	0.00	0.98367	0.00	0.98522	0.00
0.05	0.07820	0.00340	0.08034	0.00308	0.08210	0.00280	0.08387	0.00253	0.08540	0.00230
0.1	0.07007	0.00672	0.08105	0.00010	0.08283	0.00553	0.08446	0.00501	0.08502	0.004 54
0.15	0.08035	0.00080	0.08221	0.00807	0.08380	0.00813	0.08541	0.00736	0.08680	0.00667
0.2	0.98210	0.01283	0.98380	0.01163	0.98534	0.01054	0.98673	0.00955	0.98799	0.00865
0.25	0.08420	0.01547	0.08570	0.01401	0.08714	0.01270	0.08836	0.01150	0.08047	0.01042
0.3	0.08687	0.01774	0.08813	0.01607	0.08026	0.01456	0.00020	0.01310	0.00121	0.01104
0.35	0.08077	0.01060	0.00076	0.01775	0.00165	0.01607	0.00245	0.01456	0.00317	0.01318
0.4	0.00204	0.02008	0.00363	0.01000	0.00425	0.01720	0.00481	0.01557	0.00531	0.01410
0.45	0.99629	0.02187	0.99667	0.01979	0.99700	0.01791	0.99730	0.01621	0.99757	0.01468
0.5	0.99975	0.02222	0.99980	0.02010	0.99984	0.01819	o.99986	0.0 1646	0.00080	0.01480
0.55	1.00324	0.02202	1.00205	0.01992	1.00260	0.01802	1.00245	0.01630	1.00222	0.01474
0.6	1.00666	0.02127	1.00604	0.01024	1.00540	0.01740	1.00498	0.01573	1.00451	0.01423
0.65	1.00004	0.02000	1.00000	0.01808	1.00816	0.01634	1.007.30	0.01478	1.00603	0.01336
0.7	1.01298	0.01821	1.01175	0.01646	1.010 64	0.01487	1.00963	0.01345	1.00872	0.01216
0.75	1.01571	0.01 596	1.01421	0.01442	1.01286	0.01303	1.01164	0.01178	1.01053	0.01064
0.8	1.01805	0.01330	1.01632	0.01201	1.01477	0.01085	1.01 336	0.00981	1.01208	0.00886
0.85	1.01994	0.01029	1.01803	0.00929	1.01631	0.00839	1.01475	0.00758	1.01333	0.00685
0.0	1.02133	0.00701	1.01928	0.00633	1.01744	0.00572	1.01576	0.00517	1.01425	0.00467
0.95	1.02218	0.00355	1.02006	0.00322	1.01812	0.00290	1.01639	0.00262	1.01482	0.00237
1.0	1.02247	0.00	1.02031	0.00	1.01836	0.00	1.01659	0.00	1.01500	0.00
1.05	1.02218	0.00355	1.02006	0.00322	1.01812	0.00290	1.01639	0.00262	1.01482	0.00237
1.1	1.02133	0.00701	1.01928	0.00633	I.0 1744	0.00572	1.01576	0.00517	1.01425	0.00467
1.15	1.01994	0.01029	1.01803	0.00929	1.0 1631	0.00839	1.01475	0.00758	1.01333	0.00685
1.2	1.01805	0.01330	1.01632	0.01201	1.01477	0.01085	1.01336	0.00981	1.01208	0.00886
1.25	1.01571	0.01596	1.01421	0.01442	1.01286	0.01303	1.01164	0.01178	1.01053	0.01064
1.3	1.0 1298	0.01821	1.01175	0.01646	1.01064	0.01487	1.00963	0.01345	1.00872	0.01210
1.35	1.00994	0.02000	1.00000	0.01808	1.00816	0.01634	1.00739	0.01478	1.00693	0.01330
1.4	1.00666	0.02127	1.00604	0.01924	1.00549	0.01740	1.00498	0.01573	1.00451	0.01423
1.45	1.00324	0.02202	1.00295	0.01992	1.00269	0.01802	1.00245	0.01630	1.00222	0.01474
1.5	0.99975	0.02222	0.99980	0.02010	0. 99984	0.01819	0. 99986	0.01646	o. 99989	0.01489
1.55	0.99629	0.02187	0.99667	0.01979	0.99700	0.01791	0.99730	0.01021	0.99757	0.01468
1.6	0.99294	0.02098	0.99363	0.01900	0.99425	0.01720	0.99481	0.01557	0.99531	0.01410
1.65	0.98977	0.01960	0.99076	0.01775	0.99165	0.01607	0.99245	0.01456	0.99317	0.01318
1.7	0.98687	0.01774	0. 98813	0.01607	0.98926	0.01450	0.99029	0.01319	0.99121	0.01194
1.75	0.98429	0.01547	0.98579	0.01401	0.98714	0.01270	0.98836	0.01150	0.98947	0.01042
1.8	0.98210	0.01283	0.98380	0.01163	0.98534	0.01054	0.98673	0.00955	0.98799	0.00865
1.85	0.98035	0.00989	0.98221	0.00897	0.98389	0.00813	0.98541	0.00736	0.98680	0.00667
1.9	0.97907	0.00672	0.98105	0.00610	0.98283	0.00553	0.98446	0.00501	0.98592	0.00454
1.95	0.97829	0.00340	0.98034	0.00308	0.98219	0.00280	0.98387	0.00253	0.98540	0.00230
2.0	0.97803	0.00	0.98010	0.00	0.98197	0.00	0.98367	0.00	0.98522	0.00

Note.

Negative quantities are in heavy type.

Examples. $\tanh (2.25 + i \underline{0.25}) = 0.98429 + i 0.01547.$ $\tanh (2.45 + i \underline{1.45}) = 1.00222 - i 0.01474.$

q	x = x	2.5	x = 2	2.55	x =	2.6	x = x	2.65	x =	2.7
	0//		0.00							
0	0. 8001	0.00	0.98788	0.00	0.98903	0.00	0.99007	0.00	0.99101	0.00
0.05	0.98078	0.00208	0.98803	0.00189	0.98910	0.00171	0.99019	0.00155	0.99112	0.00140
0.1	0.98720	0.00411	0.98840	0.00373	0.98950	0.00337	0.99055	0.00300	0.99144	0.00277
0.15	0.98805	0.00005	0.98918	0.00548	0.99021	0.00490	0.99113	0.00449	0.99198	0.00407
0.2	0.98913	0.00784	0.99016 (0.00710	0.99109	0.00643	0.99194	0.00582	0.99270	0.00527
0.25	0.00047	0.00044	0.00738	0.00855	0.00220	0.00774	0.00204	0.00701	0.00361	0.00635
0.23	0.00205	0.01082	0.00281	0.00070	0.00350	0.00887	0.00412	0.00803	0.00468	0.00727
0.25	0.00282	0.01102	0.00442	0.01080	0.00405	0.00078	0.00544	0.00886	0.00588	0.00802
0.35	0.00576	0.01276	0.00617	0.01155	0.00654	0.01046	0.00688	0.00047	0.00718	0.00857
0.4	0.99570	0.01270	0.00802	0.01202	0.00822	0.01088	0.00820	0.00085	0.00855	0.00801
0.45	0.99781	0.01320	0.99002	0.01202	0.99022	0.01000	0.99039	0.00903	0.99033	0.00091
0.5	0.99991	0.01348	0.99993	0.01219	0 .99994	0.01103	0.99995	0.00998	0.99996	0.00903
0.55	1.00202	0.01334	1.00184	0.01207	1.00167	0.01092	1.00151	0.00988	1.00137	0.00893
0.6	1.00409	0.01287	1.00371	0.01164	1.00336	0.01053	1.00304	0.00952	1.00276	0.00 862
0.65	1.00606	0.01208	1.00549	0.01093	1.00498	0.00988	1.00450	o. 00894	1.00408	0.00808
0.7	1.00789	0.01099	1.00714	0.00994	1.00647	0. 00898	1.00585	0.00812	1.00530	0.00735
0.75	7 000 5 7	0.00062	T 00862	0.00870	1 00780	0 00786	1 00706	0.00711	1 00620	0.00642
0.75	1.00953	0.00002	1.00002	0.00070	1.00700	0.00/00	1.00800	0.00711	1.00039	0.00525
0.0	1.01093	0.0001	1.00030	0.00720	1.00003	0.00034	1.00803	0.00392	1.00732	0.00333
0.05	1.01200	0.00010	1.01091	0.00500	1.00937	0.00300	1.00003	0.00457	1.00867	0.00413
0.9	1.01289	0.00422	1.01100	0.00381	1.01054	0.00345	1.00054	0.00312	1.00802	0.00282
0.95	1.01340	0.00214	1.01211	0.00193	1.01090	0.00175	1.00991	0.00158	1.00890	0.00143
1.0	1.01357	0.00	1.01227	0.00	1.01110	0.00	1.01003	0.00	1.00907	0.00
1.05	1.01340	0.00214	1.01211	0.00193	1.01096	0.00175	1.00001	0.00158	1.00896	0.00143
1.1	1.01280	0.00422	1.01166	0.00381	1.01054	0.00345	1.00954	0.00312	1.00862	0.00282
1.15	1.01206	0.00619	1.01091	0.00560	1.00987	0.00506	1.00893	0.00457	1.00807	0.00413
1.2	1.01093	0.00801	1.00989	0.00726	1.00895	0.00654	1.00809	0.00592	1.00732	0.00535
1.25	T 00052	0.00062	T 00862	0.00870	T 00780	0.00786	1 00706	0.00711	T 00620	0.00642
T 2	1.00780	0.01000	1.00714	0.00004	1.00647	0.00808	1.00585	0.00812	1.00530	0.00735
1.3	1.00709	0.01208	1.00714	0.01003	1.00408	0.00090	1.00303	0.00804	1.00330	0.00808
1.33	1.00000	0.01287	1.00349	0.01093	1.00498	0.00900	1.00430	0.00094	1.00400	0.00862
1.4	1.00409	0.01207	1.003/1	0.01104	1.00330	0.01055	1.00304	0.00952	1.00270	0.00002
1.45	1.00202	0.01334	1.00104	0.01207	1.00107	0.01092	1.00131	0.00900	1.00137	0.00095
1.5	0.99991	0.01348	0.99993	0.01219	o.99994	0.01103	0.99995	0.00998	0.99996	0.00903
1.55	0.00781	0.01328	0.00802	0.01202	0.00822	0.01088	0.00830	0.00085	0.00855	0.00801
1.6	0.00576	0.01276	0.00617	0.01155	0.00654	0.01046	0.00688	0.00947	0.99718	0.00857
1.65	0.00383	0.01103	0.00442	0.01080	0.00405	0.00078	0.00544	0.00886	0.00588	0.00802
1.7	0.99205	0.01082	0.99281	0.00979	0.99350	0.00887	0.99412	0.00803	0.99468	0.00727
1 7 6	0.00047	0.00044	0.00120	0.00855	0.00000	0.00774	0.0000	0.00507	0.00267	0.0062=
1./3	0.99047	0.00944	0.99130	0.00055	0.99220	0.00774	0.99294	0.00701	0.99301	0.00035
1.0	0.90913	0.00704	0.99010	0.00710	0.99109	0.00043	0.99194	0.00582	0.99270	0.00527
1.05	0.90005	0.00005	0.90918	0.00540	0.99021	0.00490	0.99113	0.00449	0.99198	0.00407
1.9	0.90/20	0.00411	0.90040	0.00373	0.90950	0.00337	0.99055	0.00300	0.99144	0.00277
1.95	0.90078	0.00208	0.98803	0.00189	0.98910	0.00171	0.99019	0.00155	0.99112	0.00140
2.0	0.98661	0.00	0.98788	0.00	0.98903	0.00	0.99007	0.00	0.99101	0.00

Note.

Negative quantities are in heavy type.

Examples. $\tanh (2.60 + i \underline{0.35}) = 0.99495 + i 0.00978.$ $\tanh (2.70 + i \underline{1.35}) = 1.00408 - i 0.00808.$

9	x = 2	•75	x = 2	.80	x = 2	.85	x = 2	2.90	x = 2	.95
0	0.99186	0.00	0. 99263	0.00	0.99333	0.00	0.99396	0.00	0.00454	0.00
0.05	0.99196	0.00127	0.99272	0.00115	0.99341	0.00104	0.99404	0.00004	0.00460	0.00085
0.1	0.99225	0.00251	0.99299	0.00227	0.99365	0.00206	0.00426	0.00186	0.00480	0.00168
0.15	0.99274	0.00368	0.99343	0.00334	0.99405	0.00302	0.99462	0.00273	0.00513	0.00248
0.2	0.99340	0.00477	0.99403	0.00432	0.99459	0.00391	0.99511	0.00354	0.99557	0.00321
0.25	0.99422	0.00575	0.99477	0.00519	0.99527	0.00471	0.99572	0.00426	0.99613	0.00386
0.3	0.99519	0.00658	o .99564	0.00596	0. 99606	0.00539	0.99644	0.00 488	0.99678	0.00442
0.35	0.99 627	0.00726	0. 99663	0.00657	0.99695	0.00594	0.99724	0.00538	0.99750	0.00487
0.4	0.99745	0.00775	0.99769	0.00702	0.99791	0.00635	0. 99811	0.00575	0.99830	0.00520
0.45	0.99 869	0.00806	0.99882	0.00730	0. 99893	0.00660	0.99904	0.00598	0.99913	0.00541
0.5	0.99997	0.00817	0.99997	q.00740	0.99998	0.00669	0.99998	0.00606	0.99999	0.00548
0.55	1.00125	0.00808	1.00113	0.00731	1.00103	0.00662	1.00093	0.00599	1.00084	0.00542
0.6	1.00250	0.00779	1.00220	0.00705	1.00205	0.00638	1.00186	0.00577	1.00168	0.00522
0.65	1.00369	0.00731	1.00334	0.00661	1.00303	0.00598	1.00274	0.00541	1.00248	0.00489
0.7	1.00479	0.00664	1.00434	0.00601	1.00393	0.00544	1.00355	0.00480	1.00322	0.00445
0.75	1.00578	0.00581	1.00523	0.00525	1.00473	0.00475	1.00428	0.00430	1.00387	0.00389
0.8	1.00662	0.00484	1.00599	0.00437	1.00542	0.00396	1.00490	0.00358	1.00444	0.00324
0.85	1.00730	0.00374	1.00661	0.00338	1.00598	0.00306	1.00540	0.00276	1.00489	0.00250
0.9	1.00780	0.00255	1.00700	0.00230	1.00638	0.00208	1.00577	0.00188	1.00522	0.00170
0.95	1.00810	0.00129	1.00733	0.00117	1.00663	0.00105	1.00600	0.00095	1.00542	0.00086
1.0	1.00821	0.00	1.00742	0.00	1.00671	0.00	1.00607	0.00	1.00549	0.00
1.05	1.00810	0.00129	1.00733	0.00117	1.00003	0.00105	1.00000	0.00095	1.00542	0.00086
1.1	1.00780	0.00255	1.00700	0.00230	1.00638	0.00208	1.00577	0.00188	1.00522	0.00170
1.15	1.00730	0.00374	1.00001	0.00338	1.00598	0.00306	1.00540	0.00276	1.00489	0.00250
1.2	1.00602	0.00484	1.00599	0.00437	1.00542	0.00396	1.00490	0.00358	1.00444	0.00324
1.25	1.00578	0.00581	1.00523	0.00525	1.00473	0.00475	1.00428	0.00430	1.00387	0.00389
1.3	1.00479	0.00004	1.00434	0.00001	1.00393	0.00544	1.00355	0.00480	1.00322	0.00445
1.35	1.00309	0.00731	1.00334	0.00001	1.00303	0.00598	1.00274	0.00541	1.00248	0.00489
1.4	1.00250	0.00779	1.00220	0.00705	1.00205	0.00638	1.00180	0.00577	1.00168	0.00522
1.45	1.00125	0.00808	1.00113	0.00731	1.00103	0.00662	1.00093	0.00599	1.00084	0.00542
1.5	0.99997	0.00817	0.00007	0.00740	0.99998	0.00669	0.00008	0.00606	0.99999	0.00548
1.55	0.99869	0.00806	0.99882	0.00730	0.00803	0.00660	0.00004	0.00598	0.00013	0.00541
1.6	0.99745	0.00775	0.99769	0.00702	0.99791	0.00635	0.99811	0.00575	0.99830	0.00520
1.65	0.99627	0.00726	0.99663	0.00657	0.99695	0.00594	0.99724	0.00538	0.99750	0.00487
1.7	0.99519	0.00658	0.99564	0.00596	0.99606	0.00539	0.99644	0.00488	0.99678	0.00442
1.75	0.99422	0.00575	0.99477	0.00519	0.99527	0.00471	0.99572	0.00426	0.99613	0.00386
1.8	0.99340	0.00477	0.99403	0.00432	0.99459	0.00391	0.99511	0.00354	0.99557	0.00321
1.85	0.99274	0.00368	0.99343	0.00334	0.99405	0.00302	0.99462	0.00273	0.99513	0.00248
1.9	0.99225	0.00251	0.99299	0.00227	0.99365	0.00206	0.99426	0.00186	0.99480	0.00168
1.95	0.99196	0.00127	0.99272	0.00115	0.99341	0.00104	0.99404	0.00094	0.99460	0.00085
2.0	0.99186	0.00	0.99263	0.00	0.99333	0.00	0.99396	0.00	0.99454	0.00

Note.

Negative quantities are in heavy type.

Examples. $\tanh (2.9 + i \underline{0.9}) = 1.00577 + i 0.00188.$ $\tanh (2.95 + i \underline{1.95}) = 0.99460 - i 0.00085.$

q	x =	3.0	x =	3.05	<i>x</i> =	3.10	<i>x</i> =	3.15	<i>x</i> =	3.20
0	0.00505	0.00	0.00552	0.00	0.99595	0.00	0.99633	0.00	0.99668	0.00
0.05	0.00512	0.00077	0.00558	0.00070	0.00600	0.00063	0.00638	0.00057	0.99672	0.00052
0.1	0.00530	0.00153	0.00574	0.00138	0.00615	0.00125	0.00651	0.00113	0.00684	0.00102
0.15	0.00550	0.00224	0.00601	0.00203	0.00630	0.00184	0.00673	0.00166	0.99704	0.00150
0.2	0.99599	0.00290	0.99637	0.00263	0.99672	0.00238	0.99703	0.00215	0.99731	0.00195
0.25	0.00640	0.00340	0.00683	0.00316	0.00713	0.00286	0.99740	0.00259	0.99765	0.00234
0.3	0.00708	0.00400	0.00736	0.00362	0.00761	0.00328	0.00784	0.00207	0.00805	0.00268
0.35	0.00774	0.00441	0.00706	0.00300	0.00815	0.00361	0.00833	0.00327	0.00840	0.00206
0.4	0.00846	0.00471	0.00861	0.00426	0.00874	0.00386	0.00886	0.00340	0.00807	0.00316
0.45	0.99921	0.00489	0.99929	0.00443	0.99936	0.00401	0.99942	0.00363	0.99947	0.00328
0.5	0.00000	0.00406	0.00000	0.00440	0.00000	0.00406	0.00000	0.00367	0.00000	0.00332
0.55	1.00076	0.00400	1.00060	0.00443	T.00063	0.00401	1.00057	0.00363	1.00051	0.00328
0.6	1.00152	0.00472	1.00138	0.00427	1.00125	0.00387	1.00113	0.00350	1.00102	0.00316
0.65	T 00224	0.00442	1.00202	0.00401	1 00184	0.00262	1.00166	0.00328	1.00151	0.00207
0.03	1.00201	0.00403	1.00263	0.00264	1.00228	0.00320	1.00216	0.00208	1.00105	0.00260
0.7	1.00291	0.00402	1.00203	0.00304	1.00230	0.00329	1.00210	0.00290	1.00193	0.00209
0.75	1.00351	0.00352	1.00317	0.00318	1.00287	0.00288	1.00200	0.00200	1.00235	0.00230
0.8	1.00401	0.00293	1.00363	0.00265	1.00329	0.00239	1.00297	0.00217	1.00269	0.00196
0.85	1.00443	0.00226	1.00400	0.00205	1.00362	0.00185	1.00328	0.00167	1.00297	0.00151
0.9	1.00473	0.00154	1.00426	0.00139	1.00387	0.00126	1.00350	0.00114	1.00317	0.00103
0.95	1.00491	0.00078	1.00444	0.00071	1.00402	0.00064	1.00363	0.00058	1.00329	0.00052
1.0	1.00497	0.00	1.00450	0.00	1.00407	0.00 ,	1.00368	0.00	1.00333	0.00
1.05	1.00491	0.00078	1.00444	0.00071	1.00402	0.00064	1.00363	0.00058	1.00329	0.00052
1.1	1.00473	0.00154	1.00426	0.00139	1.00387	0.00126	1.00350	0.00114	1.00317	0.00103
1.15	1.00443	0.00226	1.00400	0.00205	1.00362	0.00185	1.00328	0.00167	1.00297	0.00151
1.2	1.00401	0.00293	1.00363	0.00265	1.00329	0.00239	1.00297	0.00217	1.00269	0.00196
1.25	1.00351	0.00352	1.00317	0.00318	1.00287	0.00288	1.00260	0.00260	1.00235	0.00236
1.3	1.00291	0.00402	1.00263	0.00364	1.00238	0.00329	1.00216	0.00298	1.00195	0.00269
1.35	1.00224	0.00443	1.00203	0.00401	1.00184	0.00362	1.00166	0.00328	1.00151	0.00297
1.4	1.00152	0.00472	1.00138	0.00427	1.00125	0.00387	1.00113	0.00350	1.00102	0.00316
1.45	1.00076	0.00490	1.00069	0.00443	1.00063	0.00401	1.00057	0.00363	1.00051	0.00328
1.5	0.00000	0.00406	0.00000	0.00440	0.00000	0.00406	0.00000	0.00367	0.00000	0.00332
1.55	0.00021	0.00480	0.00020	0.00443	0.00036	0.00401	0.00042	0.00363	0.00047	0.00328
T.6	0.00846	0.00471	0.00861	0.00426	0.00874	0.00386	0.00886	0.00340	0.00807	0.00316
1.65	0.00774	0.004AT	0.00706	0.00300	0.00815	0.00361	0.00833	0.00327	0.00840	0.00206
1.7	0.99708	0.00400	0.99736	0.00362	0.99761	0.00328	0.99784	0.00297	0.99805	0.00268
1.75	0.00640	0.00340	0.00682	0.00316	0.00713	0.00286	0.00740	0.00250	0.00765	0.00234
1.8	0.00500	0.00200	0.00627	0.00263	0.00672	0.00238	0.00703	0.00215	0.00731	0.00105
1.85	0.00550	0.00224	0.00601	0.00203	0.00630	0.00184	0.00673	0.00166	0.00704	0.00150
1.0	0.00520	0.00153	0.00574	0.00138	0.00615	0.00125	0.00651	0.00113	0.00684	0.00102
1.95	0.99512	0.00077	0.99558	0.00070	0.99600	0.00063	0.99638	0.00057	0.99672	0.00052
2.0	0.99505	0.00	0.99552	0.00	0.99595	0.00	0.99633	0.00	0.99668	0.00

Note. Negative quantities are in heavy type.

Examples. $\tanh(3.0 + i \underline{1.00}) = 1.00497 + i 0.$

 $\tanh(3.0 + i \overline{1.50}) = 0.99999 - i 0.00496.$

q	x =	3.25	x = z	3.30	x = x	3.35	x = x	3.40	x =	3.45
0	0.00700	0.00	0.99728	0.00	0.99754	0.00	0.99777	0.00	0.00700	0.00
0.05	0.99704	0.00047	0.99732	0.00042	0.99757	0.00038	0.99780	0.00035	0.00801	0.00031
0.1	0.00715	0.00003	0.99742	0.00084	0.99766	0.00076	0.99788	0.00060	0.00800	0.00062
0.15	0.00732	0.00136	0.00758	0.00123	0.99781	0.00112	0.99802	0.00101	0.00821	0.00001
0.2	0.99757	0.00176	0.99780	0.00160	0.99801	0.00144	0.99820	0.00131	0.99837	0.00118
0.25	0.00787	0.00212	0.00808	0.00192	0.99826	0.00174	0.99843	0.00157	0.00857	0.00142
0.3	0.08823	0.00243	0.99840	0.00220	0.99855	0.00100	0.99869	0.00180	0.00881	0.00163
0.35	0.00863	0.00268	0.99876	0.00242	0.99888	0.00210	0.99899	0.00198	0.00008	0.00170
0.4	0.00007	0.00286	0.00016	0.00259	0.99924	0.00234	0.99931	0.00212	0.00038	0.00102
0.45	0.99953	0.00297	0.99957	0.00269	0.99961	0.00243	0.99965	0.00220	0. 99968	0.00200
0.5	1.00000	0.00301	1.00000	0.00272	1.00000	0.00246	1.00000	0.00223	1.00000	0.00202
0.55	1.00047	0.00297	1.00042	0.00269	1.00038	0.00243	1.00035	0.00220	1.00031	0.00200
o. 6	1.00091	0.00286	1.00084	0.00259	1.00076	0.00234	1.00069	0.00212	1.00062	0.00192
0.65	1.00136	0.00268	1.00123	0.00243	1.00112	0.00220	1.00101	0.00199	1,00001	0.00180
0.7	1.00177	0.00244	1.00160	0.00220	1.00145	0.00199	1.00131	0.00180	1.00118	0.00163
0.75	1.00213	0.00213	1.00102	0.00103	1.00174	0.00174	1.00158	0.00158	1.00143	0.00143
5. 8	1.00244	0.00177	1.00222	0.00160	1.00100	0.00145	1.00180	0.00131	1.00163	0.00110
0.85	1.00268	0.00137	1.00242	0.00124	1.00220	0.00112	1.00199	0.00103	1.00180	0.00002
0.0	1.00286	0.00003	1.00260	0.00084	1.00234	0.00076	1.00212	0.00069	1.00192	0.00062
0.95	1.00298	0.00047	1.00269	0.00043	1.00243	0.00039	1.00220	0.00035	1.00200	0.00032
1.0	1.00301	0.00	1.00273	0.00	1.00246	0.00	1.00223	0.00	1.00202	0.00
1.05	1.00298	0.00047	1.00269	0.00043	1.00243	0.00039	I.00220	0.00035	1.09200	0.00032
1.1	1.00286	0.00093	1.00260	0.00084	1.00234	0.00076	1.00212	0.0006 9	1.00192	0.00062
1.15	1.00268	0.00137	1.00242	0.00124	1.00220	0.00112	1.00199	0.00103	1.00180	0.00092
1.2	1.00244	0.00177	1.00222	0.00160	1.00199	0.00145	1.00180	0.00131	1.00163	0.00119
1.25	1.00213	0.00213	1.00192	0.00193	1.00174	0.00174	1.00158	0.00158	1.00143	0.00143
1.3	1.00177	0.00244	1.00160	0.00220	1.00145	0.00199	1.00131	0.00180	1.00118	0.00163
1.35	1.00136	0.00268	1.00123	0.00243	1.00112	0.00220	1.00101	0.00199	1,00091	0.00180
1.4	1.00091	0.00286	1.00084	0.00259	1.00076	0.00234	1.00069	0.00212	1.00062	0.00192
1.45	1.00047	0.00297	1.00042	0.00269	1.00038	0.00243	1.00035	0.00220	1.00031	0.00200
1.5	1.00000	0.00301	1.00000	0.00272	1.00000	0.00246	1.00000	0.00223	1.00000	0.00202
1.55	0.99953	0.00297	0.99957	0.00269	0.99961	0.00243	0.99965	0.00220	0.99968	0.00200
1.6	0.99907	0.00286	0.99916	0.00259	0.99924	0.00234	0.99931	0.00212	0.99938	0.00192
1.65	0.99863	0.00268	0.99870	0.00242	0.99888	0.00219	0.99899	0.00198	0.99908	0.00179
1.7	0.99823	0.00243	0.99840	0.00220	0.99855	0.00199	0.99869	0.00180	0.99881	0.00103
1.75	0.99787	0.00212	0.99808	0.00192	0.99826	0.00174	0.99843	0.00157	0.99857	0.00142
1.8	0.99757	0.00176	0.99780	0.00160	0.99801	0.00144	0.99820	0.00131	0.99837	0.00118
1.85	0.99732	0.00136	0.99758	0.00123	0.99781	0.00112	0.99802	0.00101	0.99821	0.00091
1.9	0.99715	0.00093	0.99742	0.00084	0.99766	0.00076	0.99788	0.00009	0.99809	0.00002
1.95	0.99704	0.00047	0.99732	0.00042	0.99757	0.00038	0.99780	0.00035	0.99801	0.00031
2.0	0.99700	0.00	0.99728	0.00	0.99754	0.00	0 .99777	0.00	0.99799	0.00

Note.

Negative quantities are in heavy type.

Examples. $\tanh (3.25 + i \underline{0.75}) = 1.00213 + i 0.00213.$ $\tanh (3.30 + i \underline{1.50}) = 1.0000 - i 0.00272.$

q	x =	3.50	x =	3.55	x =	3.60	x =	3.65	x =	3.70
0	0.00818	0.00	0.99835	0.00	0.99851	0.00	0.99865	0.00	0.99878	0.00
0.05	0.00820	0.00028	0.00837	0.00026	0.99853	0.00023	0.99867	0.00021	0.00870	0.00010
0.1	C.00827	0.00056	0.00843	0.00051	0.00858	0.00046	0.99872	0.00042	0.99884	0.00038
0.15	0.00837	0.00083	0.99853	0.00075	0.99867	0.00068	0.99880	0.00061	0.99891	0.00055
0.2	0.99853	0.00107	0.99867	0.00097	0.99879	0.00088	0.99891	0.00079	0.99901	0.00072
0.25	0.99871	0.00129	0.99883	0.00117	o .99894	0.00105	0.99904	0.00095	0.99914	0.00086
0.3	0.99893	0.00147	0.99903	0.00133	0.99912	0.00121	0.99921	0.00109	0.99928	0.00099
0.35	0.99917	0.00162	0.99925	0.00147	0.99932	0.00133	0.99939	0.00120	0.99944	0.00109
0.4	0.99944	0.00173	o.99949	0.00157	0.99954	0.00142	0.99958	0.00128	0.99962	0.00116
0.45	0.99971	0.00180	0.99974	0.00163	0.99977	0.00147	0.99979	0.00133	0.99981	0.00121
0.5	1.00000	0.00182	1.00000	0.00165	1.00000	0.00149	1.00000	0.00135	1.00000	0.00122
0.55	1 00028	0.00180	1.00026	0.00163	1.00025	0.00148	1.00021	0.00133	1.00019	0.00121
0.6	1.00056	0.00174	1.00051	0.00157	1.00048	0.00142	1.00042	0.00129	1.00038	0.00116
0.65	1.00083	0.00163	1.00075	0.00147	1.00068	0.00133	1.00061	0.00120	1.00055	0.00109
0.7	1.00107	0.00148	1.00097	0.00134	1.00088	0.00121	1.00079	0.00109	1.00072	0.00099
0.75	1.00129	0.00129	1.00117	0.00117	1.00106	0.00106	1.00096	0.00096	1.00086	0.00086
0.8	1.00148	0.00107	1.00133	0.00097	1.00121	0.00088	1.00108	0.00080	1.00099	0.00072
0.85	1.00163	0.00083	1.00147	0.00075	1.00133	0.00068	1.00120	0.00061	1.00100	0.00056
0.9	1.00174	0.00056	1.00157	0.00051	1.00142	0.00046	1.00129	0.00042	1.00116	0.00038
0.95	1.00180	0.00029	1.00163	0.00026	1.00148	0.00023	1.00134	0.00021	1.00121	0.00019
1.0	1.00183	0.00	1.00165	0.00	1.00149	0.00	1.00135	0.00	1.00122	0.00
1.05	1.00180	0.00029	1.00163	0.00026	1.00148	0.00023	1.00134	0.0002I	1.00121	0.00019
1.1	1.00174	0.00056	1.00157	0.00051	1.00142	0.00046	1.00129	0.00042	1.00116	0.00038
1.15	1.00163	0.00083	1.00147	0.00075	1.00133	0.00068	1.00120	0.00061	1.00109	0.00056
1.2	1.00148	0.00107	1.00133	0.00097	1.00121	0.00088	1.00108	0.00080	1.00099	0.00072
1.25	1.00129	0.00129	1.00117	0.00117	1.00106	0.00106	1.00096	0.000 9 6	1.00086	0.00086
1.3	1.00107	0.00148	1.00097	0.00134	1.00088	0.00121	1.00079	0.00100	1.00072	0.00099
1.35	1.00083	0.00163	1.00075	0.00147	1.00068	0.00133	1.00061	0.00120	1.00055	0.00109
1.4	1.00056	0.00174	1.00051	0.00157	1.00048	0.00142	1.00042	0.00129	1.00038	0.00116
1.45	1.00028	0.00180	1.00026	0.00163	1.00025	0.00148	1.00021	0.00133	1.00019	0.00121
1.5	1.00000	0.00182	1.00000	0.00165	1.00000	0.00149	1.00000	0.00135	1.00000	0.00122
1.55	0.99971	0.00180	0. 99974	0.00163	0.99977	0.00147	0.99979	0.00133	0.99981	0.00121
1.6	0.99944	0.00173	o.99949	0.00157	0.99954	0.00142	0.99958	0.00128	0.99962	0.00116
1.65	0.99917	0.00162	0.99925	0.00147	0.99932	0.00133	0.99939	0.00120	0.99944	0.00109
1.7	0.99893	0.00147	0.99903	0.00133	0.99912	0.00121	0.99921	0.00109	0.99928	0.00099
1.75	0.99871	0.00129	0.99883	0.00117	0.99894	0.00105	0.99904	0.00095	0.99914	0.00086
1.8	0.99853	0.00107	0.99807	0.00097	0.99879	0.00088	0.99891	0.00079	0.99901	0.00072
1.85	0.99837	0.00083	0.99853	0.00075	0.99807	0.00008	0.99880	0.00061	0.99891	0.00055
1.9	0.99827	0.00050	0.99843	0.00051	0.99858	0.00040	0.99872	0.00042	0.99884	0.00038
1.95	0.99820	0.00028	0.99837	0.00020	0.99853	0.00023	0.99807	0.00021	0.99879	0.00019
2.0	0.99818	0.00	0.99835	0.00	0.99851	0.00	0.99865	0.00	0.99878	0.00

Note.

Negative quantities are in heavy type.

Examples.

 $\tanh(3.60 + i 0.80) = 1.00121 + i 0.00088.$ $\tanh(3.70 + i \overline{1.70}) = 0.99928 - i 0.00099.$

q	x =	3.75	x = x	3.80	x = z	3.85	x = x	3.90	x =	3.95
0	0.99889	0.00	0.99900	0.00	0.99909	0.00	0.99918	0.00	0.99926	0.00
0.05	0.99891	0.00017	0.00001	0.00016	0.99911	0.00014	0.00010	0.00013	0.00027	0.00012
0.1	0.99895	0.00034	0.99905	0.00031	0.99914	0.00028	0.00022	0.00025	0.00030	0.00023
0.15	0.00001	0.00050	0.00011	0.00045	0.99919	0.00041	0.00027	0.00037	0.00034	0.00034
0.2	0.99911	0.00065	0.99919	0.00059	0.99927	0.00053	0.99934	0.00048	0.99940	0.00044
0.25	0.99922	0.00078	0.99929	0.00071	0.9 9936	0.00064	0.99942	0.00058	0. 99948	0.00052
0.3	0.99935	0.00089	0.99941	0.00081	0.99947	0.00073	0.99952	0.00066	0.99956	0.00060
0.35	0.99950	0.00099	0.99955	0.00089	0.99959	18000.0	0.99963	0.00073	0. 99966	0.00066
0.4	0.99966	0.00105	0.99969	0.00095	0.99972	0.00086	0.99975	0.00078	0.99977	0.00071
0.45	0.99983	0.00109	0.99984	0.00099	0. 99986	0.00089	0.99987	0.00081	0. 99988	0.00073
0.5	1.00000	0.00111	1.00000	0.00100	1.00000	0.00001	1.00000	0.00082	1.00000	0.00074
0.55	1.00017	0.00109	1.00010	0.00099	1.00014	0.00089	1.00013	0.00081	1.00012	0.00073
0.0	1.00034	0.00105	1.00031	0.00095	1.00028	0.00080	1.00025	0.00078	1.00023	0.00071
0.05	1.00050	0.00099	1.00045	0.00089	1.00041	0.00081	1.00037	0.00073	1.00034	0.00066
0.7	1.00065	0.00090	1.00059	0.00081	1.00053	0.00073	1.00048	0.00066	1.00044	0.00060
0.75	1.00078	0.00078	1.00071	0.00071	1.00064	0.00064	1.00058	0.00058	1.00052	0.00052
0.8	1.00089	0.00065	1.00081	0.00059	1.00073	0.00053	1.00066	0.00048	1.00060	0.00044
0.85	1.00099	0.00050	1.00089	0.00045	1.00081	0.00041	1.00073	0.00037	1.00066	0.00034
0.9	1.00105	0.00034	1.00096	0.00031	1.00086	0.00028	1.00078	0.00025	1.00071	0.00023
0.95	1.00109	0.00017	1.00099	0.00016	1.00089	0.00014	1.00081	0.00013	1.00073	0.00012
1.0	1.00111	0.00	1.00100	0.00	1.00090	0.00	1.00082	0.00	1.00074	0.00
1.05	1.00109	0.00017	1.00000	0.00016	1.00089	0.00014	1.00081	0.00013	1.00073	0.00012
1.1	1.00105	0.00034	1.00096	0.00031	1.00086	0.00028	1.00078	0.00025	1.00071	0.00023
1.15	1.00099	0.00050	1.00089	0.00045	1.00081	0.00041	1.00073	0.00037	1.00066	0.00034
1.2	1.00089	0.00065	1.00081	0.00059	1.00073	0.00053	1.00066	0.00048	1.00060	0.00044
1.25	1.00078	0.00078	1.00071	0.00071	1.00064	0.00064	1.00058	0.00058	1.00052	0.00052
1.3	1.00065	0.00090	1.00059	0.00081	1.00053	0.00073	1.00048	0.00066	1.00044	0.00060
1.35	1.00050	0.00099	1.00045	0.00089	1.00041	0.00081	1.00037	0.00073	1.00034	0.00066
I.4	1.00034	0.00105	1.00031	0.00095	1.00028	0.00086	1.00025	0.00078	1.00023	0.00071
1.45	1.00017	0.00109	1.00016	0.00099	1.00014	0.00089	1.00013	0.00081	1.00012	0.00073
1.5	1.00000	0.00111	1.00000	0.00100	I.00000	0.00091	I.00000	0.00082	1.00000	0.00074
1.55	0.00083	0.00100	0.00084	0.00000	0.00086	0.00089	0.00087	0.00081	0.00088	0.00073
1.6	0.00066	0.00105	0.00060	0.00005	0.00072	0.00086	0.00075	0.00078	0.90077	0.00071
1.65	0.00050	0.00000	0.00055	00080	0.00050	0.00081	0.00063	0.00073	0.00066	0.00066
1.7	0.99935	0.00089	0.99941	0.00081	0.99947	0.00073	0.99952	0.00066	0.99956	0.00060
1.75	0.99922	0.00078	0.99929	0.00071	0.99936	0.00064	0.99942	0.00058	0.99948	0.00052
1.8	0.99911	0.00065	0.99919	0.00059	0.99927	0.00053	o.99934	0.00048	0.99940	0.00044
1.85	0.99901	0.00050	0.99911	0.00045	0.99919	0.00041	0.99927	0.00037	0.99934	0.00034
1.9	0.99895	0.00034	0.99905	0.00031	0.99914	0.00028	0.99922	0.00025	0.99930	0.00023
1.95	0.99891	0.00017	0.99901	0.00016	0.99911	0.00014	0.99919	0.00013	0.99927	0.00012
2.0	0.99889	0.00	0.99900	0.00	0.99909	0.00	0.99918	0.00	0.99926	0.00

i Note.

Negative quantities are in heavy type.

Examples. $\tanh (3.95 + i \underline{0.95}) = 1.00073 + i 0.00012.$ $\tanh (3.95 + i \underline{1.05}) = 1.00073 - i 0.00012.$

TABLE X. HYPERBOLIC SINES. $\sinh(x + iq) = r/\gamma$

	x = 0	.0	x =	0.05	<i>x</i> =	= 0.1	x =	0.15	<i>x</i> =	= 0.2
a	r	γ	*	γ	*	γ	r	γ	r	γ
-		0		•		0		0		0
0	0.000	00	0.05002	0.000	0.10017	0.000	0.15056	0.000	0.20134	0.000
0.05	0.07846	00	0.00305	57.503	0.12724	38.300	0.16978	27.861	0.21608	21.730
0.05	0.07640	00	0.16424	72.403	0.18576	57.810	0.21712	46.771	0.25407	38.746
0.1	0.13043	00	0.23874	78.245	0.25403	67.455	0.27770	58.195	0.30827	50.576
0.15	0.30902	9 0	0.31304	81.259	0.32485	72.947	0.34375	65.382	0.36882	58.723
0.25	0.28268	00	0.38504	83.123	0.30558	76.471	0.41124	70.220	0.43422	64.522
0.25	0.45300	00	0.45672	84.400	0.46401	78.032	0.47831	73.711	0.49663	68.825
0.3	0 52250	00	0.52487	85.330	0.53201	80.762	0.54376	76.344	0.55005	72.147
0.33	0.52230	00	0.58080	86.066	0.50626	82.180	0.60676	78.410	0.62131	74.802
0.45	0.64944	90	0.65135	86.652	0.65713	83.344	o.66667	80.111	0.67994	76.988
0.5	0 20211	00	0.70803	87.130	0.71417	84.308	0.72206	81.532	0.73521	78.835
0.5	0.76041	00	0.76202	87.557	0.76608	85.134	0.77527	82.753	0.78661	80.431
0.55	0.70041	00	0.81052	87.021	0.81520	85.858	0.82201	83.826	0.83370	81.830
0.0	0.80902	90	0.01033	88 246	0.85851	86.505	0.86582	84.787	0.87600	82.102
0.05	0.89101	90	0.89237	88.542	0. 89662	87.093	0.90364	85.662	0.91347	84.257
	0.02288	00	0.02522	88.814	0.02030	87.626	0.03607	86.471	0.04556	85.326
0.75	0.92300	90	0.92323	80.070	0.05622	88 145	0.06200	87.221	0.07213	86.331
0.8	0.93100	90	0.93237	80.212	0.07752	88.620	0.08206	87.053	0.00300	87.287
0.05	0.97237	90	0.97300	80 547	0.00275	80.005	0.90390	88 640	1.00800	88.200
0.05	0.00602	00	0.90817	89.775	1.00104	89.550	1.00822	89.329	1.01704	89.110
10	T 00000	00	1 00125	00.000	T 00500	00.000	1.01127	00.000	1.02007	00.000
1.0	0.00602	00	0.00817	00.225	1.00104	00.450	T 00822	00 671	1.01704	00.800
1.05	0.99092	90	0.99017	00.152	0.00275	00.005	0.00000	01.251	1.00800	01.701
1.1	0.90709	90	0.90093	00.433	0.99273	01 271	0.08206	02 047	0.00200	02 712
1.15	0.97237	90	0.97300	90.007	0.97752	91.371	0.90390	02.547	0.07212	02 660
1.2	0.95100	90	0.93237	90.930	0.95032	91.055	0.90290	92.709	0.97213	93.009
1.25	0.92388	90	0.92523	91.186	0.92930	92.364	0.93007	93.529	0.94550	94.674
1.3	0.89101	90	0.89237	91.458	0.89662	92.907	0.90364	94.338	0.91347	95.743
1.35	0.85264	90	0.85407	91.754	0.85851	93.495	0.80583	95.213	0.87009	96.897
I.4	0.80902	90	0.81053	92.079	0.81520	94.142	0.82291	96.174	0.83370	98.161
1.45	0.76041	90	0.76202	92.443	0. 76698	94.866	0.77527	97.247	0.78661	99.569
1.5	0.70711	90	0.70803	92.860	0.71417	95.692	0.72296	98.468	0.73521	101.165
1.55	0.64044	00	0.65135	03.348	0.65713	96.656	0.66667	00.880	0.67004	103.012
1.6	0.58778	00	0.58080	03.034	0.59626	97.811	0.60676	101.581	0.62131	105.198
1.65	0.52250	óo	0.52487	04.661	0.53201	00.238	0.54376	103.656	0.55005	107.853
1.7	0. 45399	<u>90</u>	0.45672	95.600	0.46491	101.068	0.47831	106.289	0.49663	111.175
1.75	0.38268	00	0.38504	96.877	0.39558	103.520	0.41124	100.771	0.43242	115.478
1.8	0.30002	00	0.31304	98.741	0.32485	107.053	0.34375	114.618	0.36882	121.277
1.85	0.23345	90	0.23874	101.755	0.25403	112.545	0.27770	121.805	0.30827	120.424
1.0	0.15643	00	0.16424	107.507	0.18576	122.181	0.21712	133.220	0.25407	141.254
1.95	0.07846	90	0.09305	122.407	0.12724	141.700	0.16978	152.139	0.21608	158.261
2.0	0.00	90	0.05002	180.000	0.10017	180.000	0.15056	180.000	0.20134	180.000

Example. $\sinh(0.15 + i \underline{0.15}) = 0.27779 / 58^{\circ} \cdot 195 = 0.27779 / 58^{\circ} \cdot 11' \cdot 42''$.

	x =	0.25	<i>x</i> =	0.3	x =	0.35	x =	0.4	x =	0.45
q	r	γ	*	γ	r	γ	r	γ	r	γ
		0		0		0		0		•
0	0.25261	0.000	0.30452	0.000	0.35719	0.000	0.41075	0.000	0.46534	0.000
0.05	0.26452	17.814	0.31447	15.118	0.36571	13.169	0.41818	11.703	0.47101	10.567
0.1	0.20782	32.800	0.34235	28.533	0.38994	25.214	0.43953	22.629	0.40003	20.576
0.15	0.34306	44.943	0.38370	39.493	0.42671	35.516	0.47246	32.288	0.52062	20.642
0.2	0.39913	52.992	0.43385	48.122	0.47231	44.008	0.51401	40.536	0.55860	37.601
0.25	0.45854	59.405	0.48906	54.882	0.52348	50.921	0.56140	47.471	0.60249	44.473
0.3	0.51954	64.327	0.54666	60.242	0.57766	56.843	0.61223	53.288	0.65012	50.374
0.35	0.58036	68.215	0.60476	64.575	0.63292	61.237	0.66462	58.200	0.69968	55.454
0.4	0.63977	71.371	0.66199	68.151	0. 68781	65.157	0.71708	62.393	0.74969	59.856
0.45	0.69685	73.999	0.71730	71.166	0.74119	68.503	0.76844	66.018	0.79895	63.712
0.5	0.75088	76.238	0.76989	73.759	0.79220	71.408	0.81775	69.196	0.84649	67.125
0.55	0.80127	78.185	0.81912	76.028	0.84012	73.971	0.86426	72.021	0.89149	70.184
0.6	0.84754	79.911	0.86443	78.049	0.88436	76.267	0.90732	74.568	0.93330	72.958
0.65	0.88927	81.464	0.90539	79.878	0.92444	78.353	0.94642	76.893	0.97136	75.504
0.7	0.92612	82.887	0.94161	81.557	0.95994	80.274	0.98113	79.043	1.00521	77.868
0.75	0.95779	84.207	0.97277	83.119	0.99052	82.068	1.01107	81.056	1.03446	80.087
0.8	0.98403	85.450	0. 99862	84.593	1.01592	83.762	1.03597	82.962	1.05880	82.194
0.85	1.00464	86.635	1.01894	85.999	1.03590	85.383	1.05557	84.788	1.07798	84.216
0.9	1.01949	87.779	1.03357	87.358	1.05029	86.951	1.0 6970	86.556	1.09182	86.177
0.95	1.02843	88.896	1.04239	88.687	1.05898	88.484	1.07822	88.287	1.10017	88.098
I.0	1.03141	90.000	1.04534	90.000	1.06188	90.000	1.08107	90.000	1.10297	90.000
1.05	1.02843	91.104	1.04239	91.313	1.05898	Q1.51 0	1.07822	91.713	1.10017	91.902
I.I	1.01949	92.221	1.03357	92.642	1.05029	93.050	1.06970	93.444	1.09182	93.823
1.15	1.00464	93.36 5	1.01894	94.001	1.03590	94.617	1.05557	95.212	1.07798	95.784
1.2	0.98403	94.550	0.99862	95.407	1.01592	96.238	1.03597	97.038	1.05880	97.806
I 25	0.95779	95.793	0.97277	96.881	0.99052	97.932	1.01107	98.944	1.03446	99.913
1.3	0.92612	97.113	0.94161	98.443	0.95994	99.726	0.98113	100.957	1.00521	102.132
1.35	0.88927	98.530	0.90539	100.122	0.92444	101.647	0.94642	103.107	0.97136	104.496
1.4	0.84754	100.090	0.86443	101.951	0.88430	103.733	0.90732	105.432	0.93330	107.042
1.45	0.80127	101.815	0.81912	103.972	0.84012	106.029	0. 86426	107.979	0.89149	109.816
1.5	0.75088	103.762	0.76989	106.241	0.79220	108.592	0.81775	110.804	o. 84649	112.875
1.55	0.69685	106.001	0.71730	108.834	0.74119	111.497	0.76844	113.982	0.79895	116.288
1.6	0.63977	108.629	0.66199	111.849	0.68781	114.843	0.71708	117.607	0.74969	120.144
1.65	0. 58036	111.785	0.60476	115.425	0.63292	118.763	0.66462	121.800	0.69968	124.546
1.7	0.51954	115.673	0. 54666	119.758	0.57766	123.157	0.61223	126.712	0.65012	129.626
1.75	0.45854	120.595	0.48906	125.118	0.52348	129.079	0.56140	132.529	0.60249	135.527
1.8	0.39913	127.008	0.43385	131.878	0.47231	135.992	0.51401	139.464	0.55860	142.399
1.85	0.34396	135.057	0.38370	140.507	0.42071	144.484	0.47246	147.712	0.52062	150.358
1.9	0.29782	147.110	0.34235	151.467	0.38994	154.786	0.43953	157.371	0.49093	159.424
1.95	0.26452	162.186	0.31447	164.882	0.36571	166.831	0.41818	168.297	0.47191	169.433
2.0	0.25261	180.000	0.30452	180.000	0.35719	180.000	0.41075	180.000	0. 46534	180.000

Example. sinh $(0.40 + i 0.25) = 0.56140 / 47^{\circ} .471 = 0.56140 / 47^{\circ} .28' .16''$.

	x =	• 0.5	x =	0.55	<i>x</i> =	= 0.6	x =	0. 65	<i>x</i> =	= 0.7
q	r	γ	r	γ	r	γ	r	γ	r	γ
		0	•	0		•		0		0
0	0.52110	0.000	0.57815	0.000	0.63665	0.000	0.69675	0.000	0.75858	0.000
0.05	0.52697	9.665	0.58345	8.936	0.64147	8.337	0.70115	7.839	0.76263	7.419
0.1	0.54407	18.918	0.59894	17.559	0.65559	16.432	0.71409	15.486	0.77455	14.685
0.15	0.57100	27.453	0.62350	25.625	0.67810	24.086	0.73482	22.781	0.79369	21.665
0.2	0.60583	35.111	0.65555	32.990	0.70769	31.174	0.76220	29.613	0.81911	28.263
0.25	0.64652	41.871	0.69333	39.610	0.74282	37.642	0.79492	35.926	0.84965	34.426
0.3	0.69112	47.793	0.73510	45.511	0.78194	43.494	0.83160	41.710	0.88406	40.133
0.35	0.73793	52.980	0.77927	50.759	0.82361	48.769	0.87090	46.989	0.92112	45.397
0.4	0.78552	57.542	0.82447	55.437	0.86650	53.529	0.91156	51.803	0.95966	50.245
0.45	0.83266	61.584	0.86951	59.628	0.90946	57.838	0.95249	56.204	0.99861	54.716
0.5	0.87837	65.198	0.91338	63.411	0 .95149	61.762	0.99270	60.245	1.03704	58.853
0.55	0.92182	68.462	0.95524	66.854	0.99171	65.360	1.0 3134	63.976	1.07409	62.698
0.6	0.96232	71.441	0.99437	70.016	1.02948	68.685	1.06769	67.445	1.10904	66.294
0.65	0.99927	74.189	1.03004	72.948	1.06411	71.784	1.10111	70.694	1.14125	69.677
0.7	1.03220	76.751	1.06214	75.693	1.09509	74.696	1.13108	73.760	1.17019	72.884
0.75	1.06070	70.164	1.08087	78.287	1.12200	77.450	1.15715	76.678	1.10541	75.046
0.8	1.08446	81.461	1.11300	80.763	1.14448	80.102	1.17802	70.477	1.21653	78.800
0.85	1.10320	83.660	1.13127	83.148	1.16226	82.653	1.10623	82.185	1.23327	81.714
0.0	1.11672	85.814	1.14446	85.467	1.17510	85.121	1.20871	84.826	T.24528	84.522
0.95	1.12489	87.917	1.15244	87.744	1.18287	87.580	1.21626	87.424	1.25271	87.277
1.0	1.12763	00.000	1.15510	00.000	1.18547	00.000	1.21870	00.000	1.25517	00.000
1.05	1.12480	02.083	1.15244	02.256	1.18287	02.420	1.21626	02.576	1.25271	02.723
1.1	1.11672	04.186	1.14446	04.533	1.17510	04.870	1.20871	05.174	1.24538	05.468
1.15	1.10320	06.331	1.13127	06.852	1.16226	07.347	1.10623	07.815	I.23327	08.256
1.2	1.08446	98.539	1.11300	99.237	1.14448	99.898	1.17892	100.523	1.21653	101.110
1.25	1.06070	100.836	1.08987	101.713	1.12200	102.541	1.15715	103.322	1:10541	104.054
1.3	1.03220	103.240	1.06214	104.307	1.00,500	105.304	1.13108	106.240	1.17010	107.116
1.35	0.00027	105.811	1.03004	107.052	1.06411	108.216	1.10111	100.306	1.14125	110.323
1.4	0.06232	108.550	0.00437	100.084	1.02048	111.315	1.06760	112.555	1.10004	113.706
1.45	0.92182	111.538	0.95524	113.146	0.99174	114.640	1.03134	116.024	1.07409	117.302
1.5	0.87837	114.803	0.91338	116.589	0.95149	118.238	0.99270	119.755	1.03704	121.148
1.55	0.83266	118.416	0.86951	120.372	0.909 46	122.162	0.95249	123.796	0.99861	125.284
1.6	0.78552	122.458	0.82447	124.563	0.86650	126.471	0.91156	128.197	0.95966	120.755
1.65	0.73793	127.020	0.77927	120.241	0.82361	131.231	0.87000	133.011	0.02112	134.603
1.7	0.69112	132.207	0.73510	134.489	0. 78194	136.506	0.83160	138.290	0.88406	139.867
1.75	0.64652	138.129	0.69333	140.390	0.74282	142.358	0.79492	144.074	0.84965	145.574
1.8	0.60583	144.889	0.65555	147.010	0.70769	148.826	0.76220	150.387	0.81911	151.737
1.85	0.57100	152.547	0.62350	154-375	0.67810	155.914	0.73482	157.219	0.79369	158.335
1.9	0.54407	161.082	0.59894	162.441	0.65559	163.568	0.71409	164.514	0.77455	165.315
1.95	0.52697	170.335	0.58345	171.064	0.64147	171.663	0.70115	172.161	0.76263	172.581
2.0	0.52110	180.000	0.57815	180.000	0.63665	180.000	0.69675	180.000	0.75858	180.000

Example. $\sinh (0.70 + i \underline{1.70}) = 0.88406 / \underline{139^{\circ}.867} = 0.88406 / \underline{130^{\circ}.52'.01''}.$

	<i>x</i> =	• 0.75	<i>x</i> =	= 0.8	<i>x</i> =	= 0.85	<i>x</i> =	• 0.9	x =	0.95
q	r	γ	r	γ	r	γ	r	γ	r	γ
		•		0		0		0		0
0.00	0.82232	0.000	0.88811	0.000	0.95612	0.000	1.02652	0.000	1.09948	0.000
0.05	0.82605	7.064	0.89157	6.759	0.95933	6.497	1.02951	6.270	1.10227	6.073
0.10	0.83706	14.002	0.90178	13.415	0.96883	12.000	1.03837	12.468	1.11056	12.085
0.15	0.85481	20.706	0.91828	19.877	0.98420	19.158	1.05273	18.529	1.12400	17.980
0.2	0.87846	27.093	0.94033	26.073	1.00481	25.181	1.07202	24.399	1.14209	23.712
0.25	0.90700	33.111	0.96705	31.955	1.02985	30.938	1.09553	30.039	1.16418	29.245
0.3	0.93932	38.737	0.99742	37.500	1.05843	36.401	1.12243	35.426	1.19227	34.557
0.35	0.97427	43.974	1.03041	42.702	1.08957	41.565	1.15184	40.547	1.21732	39.637
0.4	1.01079	48.840	1.06500	47.574	1.12234	46.433	1.18289	45.407	1.24674	44.483
0.45	1.04785	53.363	1.10024	52.135	1.15583	51.022	1.21471	50.014	1.27697	49.102
0.5	1.08453	57.578	1.13522	56.414	1.18918	55.353	1.24649	54.386	1.30723	53.507
0.55	1.12001	01.522	1.10917	00.441	1.22103	59.450	1.27748	58.543	1.33082	57.714
0.0	1.15350	05.228	1.20135	04.245	1.25240	03.399	1.30700	02.507	1.30505	01.743
0.05	1.18457	08.733	1.23115	67.857	1.28107	67.048	1.33444	66.301	1.39130	05.013
0.7	1.21248	72.007	1.25802	71.307	1.30693	70.602	1.35927	69.949	1.41519	69.347
0.75	1.23689	75.260	1.28152	74.621	1.32955	74.026	1.38105	73.474	1.43611	72.963
0.8	1.25726	78.339	1.30124	77.825	1.34858	77.344	1.39937	76.898	1.45371	76.484
0.85	1.27346	81.330	1.31691	80.942	1.36369	80.580	1.41395	80.242	1.46778	79.929
0.9	1.28520	84.255	1.32825	83.996	1.37466	83.754	1.42452	83.527	1.47797	83.316
0.95	1.29230	87.138	1.33513	87.008	1.38130	86.887	1.43094	86.773	1.48415	86.668
1.0	1.29468	90.000	1.33743	90.000	1.38353	90.000	1.43309	90.000	1.48623	90.000
1.05	1.29230	92.862	1.33513	92.992	1.38130	93.113	1.43094	93.227	1.48415	93.332
1.1	1.28520	95.745	1.32825	96.004	1.37466	96.246	1.42452	96.473	1.47797	96.684
1.15	1.27346	98.670	1.31691	99.058	1.36369	99.420	1.41395	99.758	1.46778	100.071
1.2	1.25726	101.661	1.30124	102.175	1.34858	102.656	1.39937	103.102	1.45371	103.516
1.25	1.23689	104.740	1.28152	105.379	1.32955	105.974	1.38105	106.526	1.43611	107.037
1.3	1.21248	107.933	1.25802	108.693	1.30693	109.398	1.35927	110.051	1.41519	110.053
1.35	1.18457	111.207	1.23115	112.143	1.28107	112.952	1.33444	113.099	1.39130	114.387
I.4	1.15350	114.772	1.20135	115.755	1.25246	116.601	1.30700	117.493	1.30505	118.257
1.45	1.12001	118.478	1.16917	119.559	1.22163	120.550	1.27748	121.457	1.33682	122.280
1.5	1.08453	122.422	1.13522	123.586	1.18918	124.647	1.24649	125.614	1.30723	126.493
1.55	1.04785	126.637	1.10024	127.865	1.15583	128.978	1.21471	129.986	1.27697	1 30.898
1.6	1.01079	131.160	1.06500	132.426	1.12234	133.567	1.18289	134.593	1.24674	135.517
1.65	0.97427	136.026	1.03041	137.298	1.08957	138.435	1.15184	139.453	1.21732	140.363
1.7	0.93932	141.263	0.99742	142.500	1.05843	143.599	1.12243	144.574	1.19227	145.443
1.75	0.90700	146.889	0.96705	148.045	1.02985	149.062	1.09553	149.961	1.16418	150.755
1.8	0.87846	152.907	0.94033	153.927	1.00481	154.819	1.07202	155.601	1.14209	150.288
1.85	0.85481	1 59.294	0.91828	160.123	0.98420	160.842	1.05273	161.471	1.12400	162.020
1.9	0.83706	165.998	0.90178	166.585	0. 96883	167.091	1.03837	167.532	1.11056	167.915
1.95	0.82605	172.936	0.89157	173.241	0.95933	173.503	1.02951	173.730	1.10227	173.927
2.0	0.82232	180.000	0.88811	180.000	0.95612	180.000	1.02652	180.000	1.09948	180.000

Example. $\sinh(0.90 + i \underline{1.0}) = 1.43309 / 90^{\circ}$.

[93]

	<i>x</i> =	= 1.0	x =	1.05	<i>x</i> =	= 1.1	<i>x</i> =	1.15	<i>x</i> =	1.2
q	r	γ	r	γ	r	γ	r	γ	7	γ
		•		•		•		0		0
0	1.17520	0.000	1.25386	0.000	1.33565	0.000	1.42078	0.000	1.50046	0.000
0.05	1.17782	5.000	1.25631	5.748	1.33795	5.615	1.42204	5.497	1.51150	5.393
0.1	1.18552	11.748	1.26358	11.453	1.34478	11.102	1.42036	10.061	1.51755	10.757
0.15	1.10816	17.406	1.27540	17.071	1.35500	16.604	1.43083	16.361	1.52741	16.065
0.2	1.21515	23.105	1.29137	22.568	1.37093	22.092	1.45399	21.670	1.54077	21.294
0.25	1.23594	28.541	1.31095	27.915	1.38939	27.359	1.47141	26.864	1.55721	26.421
0.3	1.25984	33.784	1.33351	33.093	1.41070	32.477	1.49155	31.926	1.57626	31.433
0.35	1.28612	38.821	1.35837	38.090	1.43421	37.435	1.51381	36.847	1.59733	36.319
0.4	1.31400	43.651	1.38479	42.002	1.45926	42.227	1.53756	41.620	1.61987	41.073
0.45	1.34272	48.276	1.41207	47.530	1.48517	46.855	1.56217	46.245	1.64325	45.693
0.5	1.37153	52.707	1.43950	51.981	1.51128	51.323	1.58701	50.725	1.66688	50.184
0.55	1.39976	56.957	1.46641	56.268	1.53694	55.640	1.61147	55.069	1.69018	54.549
0.6	1.42675	61.043	1.49220	60.403	1.56156	59.818	1.63497	59.284	1.71260	58.797
0.65	1.45193	64.981	1.51630	64.401	1.58460	63.870	1.65699	63.384	1.73363	62.939
0.7	1.47479	68.791	1.53820	68.280	1.60558	67.811	1.67705	67.380	1.75282	66.986
0.75	1.49487	72.491	1.55747	72.056	1.62404	71.656	1.69472	71.287	1.76975	70.950
0.8	1.51182	76.101	1.57374	75.747	1.63965	75.421	1.70071	75.120	1.78409	74.844
0.85	1.52532	70.638	1.58671	70.360	1.65211	70.121	1.72166	78.803	1.79555	78.682
0.0	1.53513	83.122	1.50614	82.041	1.66117	82.774	1.73036	82.620	1.80380	82.478
0.95	1.54108	86.724	1.60187	86.479	1.66667	86.395	1.73564	86.317	1.80895	86.246
1.0	1.54308	90.000	1.60379	90.000	1.66852	90.000	1.73741	90.000	1.81066	90.000
1.05	1.54108	93.276	1.60187	93.521	1.66667	93.605	1.73564	93.683	1.80895	93.754
1.1	1.53513	96.878	1.59614	97.059	1.66117	97.226	1.73036	97.380	1.80389	97.522
1.15	1.52532	100.362	1.58671	100.631	1.65211	100.879	1.72166	101.107	1.79555	101.318
1.2	1.51182	103.899	1.57374	104.253	1.63965	104.579	1.70971	104.880	1.78409	105.156
1.25	1.49487	107.509	1.55747	107.944	1.62404	108.344	1.69472	108.713	1.76975	109.050
1.3	1.47479	111.209	1.53820	111.720	1.60558	112.189	1.67705	112.620	1.75282	113.014
1.35	1.45193	115.019	1.51630	115.599	1.58460	116.130	1.65699	116.616	1.73363	117.061
1.4	1.42675	118.957	1.49220	119.597	1.56156	120.182	1.63497	120.716	1.71260	121.203
1.45	1.39976	123.043	1.46641	123.732	1.53694	124.360	1.61147	124.931	1.69018	125.451
1.5	1.37153	127.293	1.43950	128.019	1.51128	128.677	1.58701	120.275	1.66688	129.816
1.55	1.34272	131.724	1.41207	132.470	1.48517	133.145	1.56217	133.755	1.64325	134.307
1.6	1.31400	136.340	1.38470	137.008	1.45026	137.773	1.53756	138.380	1.61087	138.027
1.65	1.28612	141.179	1.35837	141.010	1.43421	142.565	1.51381	143.153	1.50733	143.681
1.7	1.25984	146.216	1.33351	146.907	1.41070	147.523	1.49155	148.074	1.57626	148.567
1.75	1.23594	151.459	1.31095	152.085	1.38939	152.641	1.47141	153.136	1.55721	153.579
1.8	1.21515	156.895	1.29137	157.432	1.37093	157.908	1.45399	158.330	1.54077	158.706
1.85	1.19816	162.504	1.27540	162.929	1.35590	163.306	1.43983	163.639	1.52741	163.935
1.9	1.18552	168.252	1.26358	168.547	1.34478	168.808	1.42936	169.039	1.51755	169.243
1.95	1.17782	174.100	1.25631	174.252	1.33795	174.385	1.42294	174.503	1.51150	174.607
2.00	1.17520	180.000	1.25386	180.000	1.33565	180.000	1.42078	180.000	1.50946	180.000

Example. $\sinh (1.20 + i \underline{1.25}) = 1.76975 / \underline{109^{\circ}.050} = 1.76995 / \underline{109^{\circ}.03'.00''}.$

	<i>x</i> =	= 1.25	<i>x</i> =	= 1.3	<i>x</i> =	= 1.35	<i>x</i> =	= 1.4	<i>x</i> =	= 1.45
q	r	γ	*	γ	r	γ	r	γ	<i>r</i>	γ
		0		•		0		0		•
0	1.60192	0.000	1.69838	0.000	1.79909	0.000	1.90430	0.000	2.01427	0.000
0.05	1.60384	5.301	1.70010	5.218	1.80080	5.145	1.90592	5.080	2.01580	5.021
0.1	1.60054	10.576	1.70557	10.415	1.80588	10.271	1.91072	10.143	2.02034	10.028
0.15	1.61884	15.803	1.71435	15.568	1.81417	15.359	1.91856	15.172	2.02775	15.005
0.2	1.63145	20.958	1.72627	20.659	1.82544	20.392	1.92921	20.153	2.03784	19.939
0.25	1.64699	26.026	1.74096	25.673	1.83934	25.356	1.94237	25.073	2.05030	24.818
0.3	1.66501	30.991	1.75802	30.595	1.85549	30.240	1.95767	29.92I	2.06479	29.634
0.35	1.68497	35.845	1.77694	35.418	1.87343	35.035	1.97468	34.689	2.08093	34.379
0.4	1.70635	40.580	1.79722	40.135	1.89268	39.735	1.99295	39.373	2.09828	39.047
0.45	1.72856	45.195	1.81832	44.745	1.91273	44.338	2.01200	43.970	2.11637	43.638
0.5	1.75104	49.693	1.83970	49.248	1.93306	48.845	2.03135	48.480	2.13478	48.150
0.55	1.77323	54.077	1.86084	53.648	1.95319	53.258	2.05051	52.905	2.15302	52.584
0.6	1.79462	58.354	1.88123	57.950	1.97262	57.583	2.06903	57.249	2.17067	56.945
0.65	1.81470	62.533	1.90040	62.163	1.99091	61.825	2.08647	61.518	2.18731	61.238
0.7	1.83304	66.625	1.91792	66.295	2.00764	65.994	2.10244	65.719	2.20254	65.469
0.75	1.84924	70.640	1.93341	70.356	2.02245	70.097	2.11658	69.861	2.21604	69.645
0.8	1.86297	74.590	1.94654	74.358	2.03500	74.145	2.12858	73.951	2.22751	73.774
0.85	1.87394	78.489	1.95704	78.311	2.04505	78.149	2.13819	78.000	2.23669	77.864
0.9	1.88193	82.348	1.96470	82.228	2.05238	82.118	2.14520	82.018	2.24334	81.925
0.95	1.88679	86.180	1.96935	86.120	2.05684	86.065	2.14947	86.014	2.24747	85.968
1.0	1.88842	90.000	1.97091	90.000	2.05833	90.000	2.15090	90.000	2.24884	90.000
1.05	1.88679	93.820	1.90935	93.880	2.05084	93.935	2.14947	93.980	2.24747	94.032
1.1	1.88193	97.652	1.90470	97.772	2.05238	97.882	2.14520	97.982	2.24334	98.075
1.15	1.87394	101.511	1.95704	101.689	2.04505	101.851	2.13819	102.000	2.23009	102.130
1.2	1.86297	105.410	1.94654	105.042	2.03500	105.855	2.12858	100.049	2.22751	100.220
1.25	1.84924	109.360	1.93341	109.644	2.02245	109.903	2.11658	110.139	2.21604	110.355
1.3	1.83304	113.375	1.91792	113.705	2.00704	114.000	2.10244	114.281	2.20254	114.531
1.35	1.81470	117.407	1.90040	117.837	1.99091	118.175	2.08047	110.402	2.18731	118.702
1.4	1.79402	121.040	1.88123	122.050	1.97202	122.417	2.00903	122.751	2.17007	123.055
1.45	1.77323	125.923	1.80084	120.352	1.95319	120.742	2.05051	127.095	2.15302	127.410
1.5	1.75104	130.308	1.83970	130.752	1.93306	131.155	2.03135	131.520	2.13478	131.851
1.55	1.72856	134.805	1.81832	135.255	1.91273	135.662	2.01200	136.030	2.11637	136.362
1.6	1.70635	139.420	1.79722	139.865	1.89268	140.265	1.99295	140. 627	2.09828	140.953
1.65	1.68497	144.155	1.77694	144.582	1.87343	144.965	1.97468	145.311	2.08093	145.621
1.7 .	1.66501	149.009	1.75802	149.405	1.85549	149.760	1.95767	150.079	2.06479	150.366
1.75	1.64699	153.974	1.74096	154.327	1.83934	154.644	1.94237	154.927	2.05030	155.182
1.8	1.63145	159.042	1.72627	159.341	1.82544	159.608	1.92921	159.847	2.03784	160.061
1.85	1.61884	164.197	1.71435	164.432	1.81417	164.641	1.91856	164.828	2.02775	164.995
1.9	1.60954	169.424	1.70557	169.585	1.80588	169.729	1.91072	169.857	2.02034	169.972
1.95	1.60384	174.699	1.70019	174.782	1.80080	174.855	1.90592	174.920	2.01580	174.979
2.0	1.60192	180.000	1.69838	180.000	1.79909	180.000	1.90430	180.000	2.01427	180.000

Example. $\sinh(1.45 + i 1.70) = 2.06479 / 150^{\circ} \cdot 366 = 2.06479 / 150^{\circ} \cdot 22' \cdot 01''$.

	x =	1.50	x =	1.55	x =	1.60	x =	1.65	x =	1.70
q	r	γ.	7	γ	r	γ	r	γ	r	γ
		0		0		0		0		0
0	2.12928	0.000	2.24961	0.000	2.37557	0.000	2.50746	0.000	2.64563	0.000
0.05	2.13073	4.969	2.25098	4.923	2.37686	4.881	2.50869	4.843	2.64679	4.809
0.1	2.13502	9.925	2.25504	9.833	2.38071	9.751	2.51234	9.677	2.65025	9.610
0.15	2.14204	14.855	2.26169	14.721	2.38701	14.600	2.51831	14.492	2.65591	14.395
0.2	2.15159	19.746	2.27074	19.574	2.39558	19.419	2.52644	19.280	2.66361	19.155
0.25	2.16340	24.590	2.28193	24.385	2.40619	24.200	2.53650	24.034	2.67316	23.884
0.3	2.17714	29.376	2.29496	29.144	2.41850	28.935	2.54824	28.747	2.68430	28.578
0.35	2.19245	34.099	2.30949	33.846	2.43235	33.619	2.56133	33.415	2.69673	33.229
0.4	2.20892	38.753	2.32513	38.488	2.44721	38.248	2.57544	38.032	2.71014	37.837
0.45	2.22612	43.337	2.34148	43.066	2.46274	42.820	2.59021	42.599	2.72418	42.398
0.5	2.24362	47.850	2.35812	47.580	2.47857	47.334	2.60527	47.113	2.73850	46.911
0.55	2.26098	52.294	2.37465	52.030	2.49430	51.791	2.62024	51.574	2.75274	51.378
0.6	2.27779	56.670	2.39066	56.420	2.50955	56.192	2.63476	55.986	2.76657	55.799
0.65	2.29365	60.984	2.40577	60.752	2.52395	60.542	2.64847	60.351	2.77963	60.178
0.7	2.30819	65.241	2.419 76	65.033	2.53717	64.845	2.66108	64.673	2.79164	64.517
0.75	2.32107	69.448	2.43103	69.268	2.54800	69.105	2.67226	68.056	2.80230	68.821
0.8	2.33202	73.611	2.44238	73.464	2.55887	73.320	2.68178	73.206	2.81138	73.004
0.85	2.34080	77.740	2.45076	77.626	2.56687	77.523	2.68041	77.420	2.81867	77.343
0.0	2.34720	81.842	2.45688	81.765	2.57272	81.605	2.60400	81.631	2.82300	81.573
0.95	2.35110	85.925	2.46061	85.887	2.57627	85.851	2.69839	85.819	2.82723	85.790
1.0	2.35241	90.000	2.46186	90.000	2.57746	90.000	2.69951	90.000	2.82832	90.000
1.05	2.35110	94.075	2.46061	94.113	2.57627	94.149	2.69839	94.181	2.82723	94.210
1.1	2.34720	98.158	2.45688	98.235	2.57272	98.305	2.60499	98.369	2.82300	98.427
1.15	2.34080	102.260	2.45076	102.374	2.56687	102.477	2.68941	102.571	2.81867	102.657
1.2	2.33202	106.389	2.44238	106.536	2.55887	106.671	2.68178	106.794	2.81138	106.906
1.25	2.32107	110.552	2.43193	110.732	2.54890	110.895	2.67226	111.044	2.80230	111.179
1.3	2.30819	114.759	2.41976	114.967	2.53717	115.155	2.66108	115.327	2.79164	115.483
1.35	2.29365	119.016	2.40577	119.248	2.52395	119.458	2.64847	.119.649	2.77963	119.822
1.4	2.27779	123.330	2.39066	123.580	2.50955	123.808	2.63476	124.014	2.76657	124.201
1.45	2.26098	127.706	2.37465	127.970	2.49430	128.209	2.62024	128.426	2.75274	128.622
1.5	2.24362	132.150	2.35812	132.421	2.47857	132.666	2.60527	132.887	2.73850	133.089
1.55	2.22612	136.663	2.34148	136.934	2.46274	137.180	2.59021	137.401	2.72418	137.602
1.6	2.20892	141.247	2.32513	141.512	2.44721	141.752	2.57544	141.968	2.71014	142.163
1.65	2.19245	145.9 01	2.30949	146.154	2.43235	146.381	2.56133	146.585	2.69673	146.771
1.7	2.17714	150.624	2.29496	150.856	2.41856	151.065	2.54824	151.253	2.68430	151.422
1.75	2.16340	155.410	2.28193	155.615	2.40619	155.800	2.53650	155.966	2.67316	156.116
1.8	2.15159	160.254	2.27074	160.426	2.39558	160.581	2.52044	160.720	2.66361	160.845
1.85	2.14204	165.145	2.26169	165.279	2.38701	165.400	2.51831	165.508	2.65591	165.605
1.9	2.13502	170.075	2.25504	170.167	2.38071	170.249	2.51234	170.323	2.65025	170.390
1.95	2.13073	175.031	2.25098	175.077	2.37686	175.119	2.50869	175.157	2.64679	175.191
2.0	2.12928	180.000	2.24961	180.000	2.37557	180.000	2.50746	180.000	2.64563	180.000

٠.

Example. $\sinh (1.55 + i \underline{0.60}) = 2.39066 / 56^{\circ} \cdot 420 = 2.39066 / 56^{\circ} \cdot 25' \cdot 12''$.
	x =	1.75	<i>x</i> =	· 1.8	<i>x</i> =	1.85	x =	= 1.9	x =	1.95
q	r	γ	r	γ	r	γ	r	γ	r	γ
		o		0		•		•		0
0	2.79041	0.00	2.94217	0.00	3.10129	0.00	3.26816	0.00	3.44321	0.00
0.05	2.79151	4.779	2.94322	4.752	3.10228	4.727	3.26011	4.705	3.44410	4.685
0.1	2.79479	9.551	2.04633	0.407	3.10523	0.448	3.27101	0.405	3.44675	0.365
0.15	2.80016	14.307	2.05142	14.228	3.11006	14.158	3.27640	14.004	3.45112	14.036
0.2	2.80747	19.042	2.95835	18.941	3.11665	18.850	3.28274	18.767	3.45702	18.693
0.25	2.81653	23.750	2.96695	23.629	3.12481	23.520	3.29049	23.421	3.46441	23.332
0.3	2.82710	28.425	2.97699	28.287	3.13434	28.163	3.20055	28.051	3.47301	27.050
0.35	2.83801	33.063	2.08821	32.012	3.14500	32.776	3.30067	32.654	3.48263	32.543
0.4	2.85165	37.661	3.00031	37.501	3.15650	37.357	3.32060	37.227	3.40302	37.110
0.45	2.86499	42.216	3.01300	42.053	3.16856	41.904	3.33207	41.770	3.50393	41.649
0.5	2.87861	46.730	3.02595	46.565	3.18088	46.416	3.34378	46.281	3.51507	46.160
0.55	2.89217	51.200	3.03885	51.039	3.19315	50.893	3.35546	50.761	3.52617	50.642
0.6	2.90532	55.630	3.05138	55.476	3.20507	55.337	3.36681	55.211	3.53608	55.006
0.65	2.01777	60.020	3.06323	50.877	3.21636	50.748	3.37756	50.631	3.54721	50.524
o.7	2.92921	64.375	3.07413	64.246	3.22675	64.129	3.38745	64.023	3.55663	63.927
0.75	2.93938	68.698	3.08382	68.586	3.23598	68.484	3.39624	68.392	3.56500	68.308
0.8	2.94804	72.992	3.09206	72.000	3.24384	72.816	3.40373	72.740	3.57213	72.670
0.85	2.05408	77.265	3.00860	77.194	3.25015	77.120	3.40075	77.071	3.57788	77.017
0.0	2.06006	81.520	3.10353	81.471	3.25477	81.428	3.41415	81.388	3.58207	81.352
0.95	2.96315	85.763	3.10648	85.738	3.25759	85.716	3.41683	85.696	3.58462	85.678
1.0	2.96419	90.000	3.10747	90.000	3.25853	90.000	3.41773	90.000	3.58548	90.000
1.05	2.96315	94.237	3.10648	94.262	3.25759	94.284	3.41683	94.304	3.58462	94.322
1.1	2.96006	98.480	3.10353	98.529	3.25477	98.572	3.41415	98.612	3.58207	98.648
1.15	2.05408	102.735	3.00860	102.806	3.25015	102.871	3.40075	102.020	3.57788	102.083
1.2	2.94804	107.008	3.09206	107.100	3.24384	107.184	3.40373	107.260	3.57213	107.330
1.25	2.93938	111.302	3.08382	111.414	3.23598	111.516	3.39624	111.608	3.56500	111.692
1.3	2.92921	115.625	3.07413	115.754	3.22675	115.871	3.38745	115.977	3.55663	116.073
1.35	2.91777	119.980	3.06323	120.123	3.21636	120.252	3.37756	120.369	3.54721	120.476
1.4	2.90532	124.370	3.05138	124.524	3.20507	124.663	3.36681	124.789	3.53698	124.904
1.45	2.89217	128.800	3.03885	128.961	3.19315	129.107	3.35546	1 29.239	3.52617	129.358
1.5	2.87861	133.270	3.02595	133.435	3.18088	133.584	3.34378	133.719	3.51507	133.840
1.55	2.86499	137.784	3.01300	137.947	3.16856	138.096	3.33207	138.230	3.50393	138.351
1.6	2.85165	142.339	3.00031	142.499	3.15650	142.643	3.32060	142.773	3.49302	142.890
1.65	2.83801	146.037	2.08821	147.088	3.14500	147.224	3.30067	147.346	3.48263	147.457
1.7	2.82710	151.575	2.97699	151.713	3.13434	151.837	3.29955	151.949	3.47301	152.050
1.75	2.81653	156.250	2.96695	156.371	3.12481	156.480	3.29049	156.579	3.46441	156.668
1.8	2.80747	160.958	2.95835	161.059	3.11665	161.150	3.28274	161.233	3.45702	161.307
1.85	2.80016	165.693	2.95142	165.772	3.11006	165.842	3.27649	165.906	3.45112	165.964
1.9	2.79479	170.440	2.94633	170.503	3.10523	170.552	3.27101	170.595	3.44675	170.635
1.95	2.79151	175.221	2.94322	175.248	3.10228	175.273	3.26911	175.295	3.44410	175.315
2.0	2.79041	180.000	2.94217	180.000	3.10129	180.000	3.26816	180.000	3.44321	180.000

Example. $\sinh(1.90 + i \underline{2.0}) = 3.26816 / 180^{\circ} \cdot 0 = 3.26816 \sqrt{180^{\circ} \cdot 0}$

[97]

	x =	2.0	<i>x</i> =	2.05	x =	2.1	x =	2.15	<i>x</i> =	2.2
q	*	γ	*	γ	*	γ	r	γ	7	γ
		•		•		0		0		•
0	3.62686	0.000	2.81950	0.000	4.02186	0.000	4.23419	0.000	4.45711	0.000
0.05	3.62771	4.667	3.82030	4.651	4.02263	4.636	4.23491	4.623	4.45779	4.611
0.1	3.63023	0.330	3.82279	9.298	4.02400	9.269	4.23707	9.243	4.45985	9.220
0.15	3.63437	13.084	3.82671	13.038	4.02863	13.805	4.24061	13.857	4.46322	13.823
0.2	3.64000	18.626	3.83206	18.566	4.03371	18.511	4.24544	18.462	4.46780	18.418
0.25	3.64699	23.252	3.83870	23.180	4.04002	23.114	4.25145	23.055	4.47350	23.002
0.3	3.65517	27.858	3.84648	27.776	4.04740	27.701	4.25846	27.634	4.48017	27.573
0.35	3.66430	32.443	3.85515	32.353	4.05566	32.271	4.26630	32.197	4.48763	32.130
0.4	3.67418	37.004	3.86454	36.908	4.06459	36.821	4.27479	36.743	4.49570	36.671
0.45	3.68455	41.539	3.87440	41.440	4.07396	41.351	4.28371	41.270	4.50417	41.196
0.5	3.69515	46.049	3.88448	45.950	4.08355	45.859	4.29282	45.778	4.51285	45.703
0.55	3.70572	50.533	3.89453	50.435	4.09311	50.347	4.30193	50.200	4.52150	50.193
0.6	3.71000	54.992	3.90432	54.898	4.10243	54.813	4.31079	54.730	4.52993	54.000
0.65	3.72574	59.427	3.91359	59.340	4.11125	59.200	4.31918	59.188	4.53793	59.123
0.7	3.73470	63.84 0	3.92213	63.761	4.11938	63.689	4.32693	63.624	4.54529	63.565
0.75	3.74268	68.232	3.92972	68.164	4.12661	68.101	4.33381	68.044	4.55184	67.993
0.8	3.74948	72.608	3.93620	72.55I	4.13278	72.499	4.33968	72.452	4.55744	72.409
0.85	3.75495	76.969	3.94142	76.925	4.13774	76.885	4.34440	76.849	4.56167	76.816
0.0	3.75894	81.319	3.94521	81.289	4.14136	81.262	4.34785	81.237	4.56523	81.215
0.95	3.76137	85.661	3.94753	85.646	4.14357	85.632	4.34996	85.620	4.56723	85.609
1.0	3.76220	90.000	3.94832	90.000	4.14431	90.000	4.35067	90.000	4.56791	90.000
1.05	3.76137	94.339	3.94753	94.354	4.14357	94.368	4.34996	94.380	4.56723	94.391
1.1	3.75894	98.681	3.94521	98.711	4.14136	98.738	4.34785	98.763	4.56523	98.785
1.15	3.75495	103.031	3.94142	103.075	4.13774	103.115	4.34440	103.151	4.56167	103.184
1.2	3.74948	107.392	3.93620	107.449	4.13278	107.501	4.33968	107.548	4.55744	107.591
1.25	3.74268	111.768	3.92972	111.836	4.12661	111.899	4.33381	111.956	4.55184	112.007
1.3	3.73470	110.100	3.92213	110.239	4.11938	110.311	4.32093	110.370	4.54529	110.435
1.35	3.72574	120.573	3.91359	120.000	4.11125	120.740	4.31918	120.812	4.53793	120.877
1.4	3.71000	125.008	3.90432	125.102	4.10243	125.187	4.31079	125.204	4.52993	125.334
1.45	3.70572	129.407	3.89453	129.505	4.09311	129.053	4.30193	129.734	4.52150	129.807
1.5	3.69515	133.951	3.88448	134.051	4.08355	134.141	4.29282	134.223	4.51285	134.297
1.55	3.68455	138.461	3.87440	138.560	4.07396	138.649	4.28371	138.730	4.50417	138.804
1.6	3.67418	142.996	3.86454	143.092	4.06459	143.179	4.27479	143.257	4.49570	143.329
1.65	3.6643 0	147.557	3.85515	147.647	4.05566	147.729	4.26630	147.803	4.48763	147.870
1.7	3.65517	152.142	3.84648	152.224	. 4.04740	152.299	4.25846	152.366	4.48017	152.427
1.75	3.64699	156.748	3.83870	156.820	4.04002	156.886	4.25145	156.945	4.47350	156.998
1.8	3.64000	161.374	3.83206	161.434	4.03371	161.489	4.24544	161.538	4.46780	161.582
1.85	3.63437	166.016	3.82671	166.062	4.02863	166.105	4.24061	166.143	4.46322	166.177
1.9	3.63023	170.670	3.82279	170.702	4.02490	170.731	4.23707	170.757	4.45985	170.780
1.95	3.62771	175.333	3.82039	175.349	4.02263	175.364	4.23491	175.377	4.45779	175.389
2.0	3.62686	180.000	3.81958	180.000	4.02186	180.000	4.23419	180.000	4-45711	180.000

Example. $\sinh (2.0 + i \underline{1.0}) = 3.76220 / 90^{\circ}$.

[98]

	x =	2.25	<i>x</i> =	2.3	<i>x</i> =	2.35	x =	2.4	x =	2.45
9	r	γ	r	γ	r	γ	r	Ŷ	r	γ
		0		•		•		۰		۰
0	4.09117	0.000	4.93090	0.000	5.19510	0.000	5.40023	0.000	5.75103	0.000
0.05	4.09182	4.001	4.93759	4.591	5.19509	4.582	5.40079	4.574	5.75150	4.507
0.1	4.09377	9.199	4.93944	9.180	5.19745	9.103	5.40847	9.147	5.75310	9.133
0.15	4.69697	13.792	4.94249	13.764	5.20035	13.739	5.47122	13.716	5.75570	13.695
0.2	4.70134	18.378	4.94662	18.341	5.20428	18.309	5.47495	18.279	5.75932	18.252
0.25	4.70675	22.954	4.95177	22.910	5.20917	22.871	5.47961	22.835	5.76375	22.803
0.3	4.71308	27.518	4.95780	27.469	5.21490	27.424	5.48505	27.383	5.76892	27.347
0.35	4.72017	32.070	4.96454	32.016	5.22131	31.966	5.49115	31.922	5.77472	31.881
0.4	4.72784	36.608	4.97183	36.549	5.22825	36.497	5.49775	36.449	5.78099	36.407
0.45	4.73592	41.130	4.97950	41.070	5.23553	41.016	5.50468	40.966	5.78758	40.922
05	4.74415	45.636	4.98734	45.576	5.23728	45.521	5.51177	45.471	5.79434	45.427
0.55	4.75240	50.127	4.99518	50.068	5.25046	50.014	5.51887	49.965	5.80108	49.921
0.6	4.76042	54.603	5.00281	54.546	5.25772	54.494	5.52578	54.447	5.80765	54.405
0.65	4.76802	59.064	5.01005	59.011	5.26461	58.962	5.53233	58.919	5.81389	58.879
0.7	4.77503	63.512	5.01672	63.463	5.27096	63.419	5.53837	63.380	5.81964	63.344
0.75	4.78127	67.947	5.02265	67.904	5.27662	67.866	5.54375	67.831	5.82476	67.800
0.8	4.78661	72.371	5.02773	72.336	5.28143	72.304	5-54834	72.275	5.82913	72.249
0.85	4.79088	76.786	5.03181	76.759	5.28531	76.735	5.55204	76.712	5.83265	76.692
0.9	4.79402	81.195	5.03479	81.176	5.28816	81.160	5.55474	81.144	5.83522	81.131
0.95	4.79593	85.599	5.03661	85.589	5.28989	85.581	5.55639	85.573	5.83680	85.566
1.0	4.79657	90.000	5.03722	90.000	5.29047	90.000	5.55695	90.000	5.83732	90.000
1.05	4.79593	94.401	5.03661	94.411	5.28989	94.419	5.55639	94.427	5.83680	94.434
1.1	4.79402	98.805	5.03479	98.824	5.28816	98.840	5.55474	98.856	5.83522	98.869
1.15	4.79088	103.214	5.03181	103.241	5.28531	103.265	5.55204	103.288	5.83265	103.308
1.2	4.78661	107.629	5.02773	107.664	5.28143	107.696	5.54834	107.725	5.82913	107.751
1.25	4.78127	112.053	5.02265	112.096	5.27662	112.134	5.54375	112.169	5.82476	112.200
1.3	4.77503	116.488	5.01672	116.537	5.27096	116.581	5.53837	116.620	5.81964	116.656
1.35	4.76802	120.936	5.01005	120.989	5.26461	121.038	5.53233	121.081	5.81389	121.121
1.4	4.76042	125.397	5.00281	125.454	5.25772	125.506	5.52578	125.553	5.80765	125.595
1.45	4.75240	129.873	4.99518	129.932	5.25046	129.986	5.51887	130.035	5.80108	1 30.079
1.5	4.74415	134.364	4.98734	134.424	5.23728	134.479	5.51177	134.529	5.79434	134.573
1.55	4.73592	138.870	4.97950	138.930	5.23553	138.984	5.50468	139.034	5.78758	139.078
1.6	4.72784	143.392	4.97183	143.451	5.22825	143.503	5.49775	143.551	5.78099	143.593
1.65	4.72017	147.930	4.96454	147.984	5.22131	148.034	5.49115	148.078	5-77472	148.119
1.7	4.71308	152.482	4.95780	152.531	5.21490	152.576	5.48505	152.617	5.76982	152.653
1.75	4.70675	157.046	4.95177	157.090	5.20917	157.129	5.47961	157.165	5.76375	157.197
1.8	4.70134	161.622	4.94662	161.659	5.20428	161.691	5.47495	161.721	5.75932	161.748
1.85	4.69697	166.208	4.94249	166.236	5.20035	166.261	5.47122	166.284	5.75576	166.305
1.9	4.69377	170.801	4.93944	170.820	5.19745	170.837	5.46847	170.853	5.75316	170.867
1.95	4.69182	175.399	4.93759	175.409	5.19569	175.418	5.46679	175.426	5.75156	175.433
2.0	4.69117	180.000	4.93696	180.000	5.19510	180.000	5.46623	180.000	5.75103	180.000

Example. sinh $(2.40 + i 0.4) = 5.49775 / 36^{\circ}.449 = 5.49775 / 36^{\circ}.26'.56''.$

12

	x =	= 2.5	<i>x</i> =	= 2.55	<i>x</i> =	= 2.6	x =	2.65	<i>x</i> =	= 2.7
q	r	γ	r	γ	r	γ	r	γ	r	γ.
		0		•		•		•		0
0	6.05020	0.000	6.36451	0.000	6.60473	0.000	7.04160	0.000	7.40626	0.000
0.05	6.05071	4.561	6.36400	4.555	6.60518	4.550	7.04213	4.545	7.40668	4.540
0.T	6.05223	0.120	6.36644	0.100	6.60656	0.008	7.04343	0.080	7.40701	0.080
0.15	6.05471	13.676	6.36870	13.660	6.60880	13.644	7.04556	13.631	7.40004	13.618
0.2	6.05808	18.228	6.37201	18.206	6.70185	18.187	7.04847	18.169	7.41271	18.153
0.25	6.06229	22.774	6.37601	22.748	6.70565	22.725	7.05208	22.703	7.41614	22.684
0.3	6.06722	27.314	6.38068	27.284	6.71011	27.257	7.05631	27.232	7.42017	27.210
0.35	6.07273	31.845	6.38592	31.812	6.71509	31.782	7.06105	31.756	7.42467	31.731
0.4	6.07860	36.368	6.30160	36.3.33	6.72048	36.301	7.06618	36.273	7.42955	36.246
0.45	6.08496	40.882	6.39755	40.845	6.72616	40.813	7.07158	40.783	7.43468	40.756
0.5	6.09139	45.386	6.40367	45.350	6.73197	45.316	7.07711	45.286	7.43994	45.259
0.55	6 .0 9781	49.881	6.40977	49.845	6.73778	49.812	7.08264	49.782	7.44519	49.755
0.6	6.10406	54.366	6.41572	54.332	6.74343	54.300	7.08802	54.272	7.45032	54.246
0.65	6.10999	58.843	6.42137	58.810	6.74881	58.781	7.09313	58.754	7.45518	58.730
0.7	6.11547	63.311	6.42658	63.282	6.75376	63.255	7.09784	63.230	7.45966	63.209
0.75	6.12034	67.772	6.43121	67.746	6.75818	67.722	7.10204	67.701	7.46366	67.682
0.8	6.12450	72.226	6.43518	72.204	6.76195	72.185	7.10563	72.167	7.46708	72.152
0.85	6.12785	76.674	6.43836	76.658	6.76499	76.643	7.10851	76.629	7.46982	76.617
0.0	6.13030	81.110	6.44060	81.107	6.76720	81.007	7.11062	81.088	7.47183	81.080
0.95	6.13179	85.560	6.44212	85.554	6.76855	85.549	7.11191	85.544	7.47306	85.540
1.00	6.13229	90.000	6.44259	90.000	6.76901	90.000	7.11234	90.000	7.47347	90.000
1.05	6.13179	94.440	6.44212	94.446	6.76855	94.451	7.11191	94.456	7.47306	94.460
1.1	6.13030	98.881	6.44069	98.893	6.76720	98.903	7.11062	98.912	7.47183	98.92 0
1.15	6.12785	103.326	6.43836	103.342	6.76499	103.357	7.10851	103.371	7.46982	103.383
1.2	6.12450	107.774	6.43518	107.796	6.76195	107.815	7.10563	107.833	7.46708	107.848
1.25	6.12034	112.228	6.43121	112.254	6.75818	112.278	7.10204	112.299	7.46366	112.318
1.3	6.11547	116.689	6.42658	116.718	6.75376	116.745	7.09784	116.770	7.45966	116.791
1.35	6.10999	121.157	6.42137	121.190	6.74881	121.219	7.09313	121.246	7.45518	121.270
1.4	6.10406	125.634	6.41572	125.668	6.74343	125.700	7.08802	125.728	7.45032	125.754
1.45	6.09781	130.119	6.40977	130.155	6.73778	130.188	7.08264	130.218	7.44519	130.245
1.5	6.09139	134.614	6.40367	134.651	6.73197	134.684	7.07711	134.713	7.43994	134.741
1.55	6.08496	139.118	6.39755	139.155	6.72616	139.187	7.07158	139.217	7.43468	130.244
1.6	6.07869	143.632	6.39160	143.667	6.72048	143.699	7.06618	143.727	7.42955	143.754
1.65	6.07273	148.155	6.38592	148.188	6.71500	148.218	7.06105	148.244	7.42467	148.260
1.7	6.06722	152.686	6.38068	152.716	6.71011	152.743	7.05631	152.768	7.42017	152.790
1.75	6.06229	157.226	6.37601	157.252	6.70565	157.275	7.05208	157.297	7.41614	157.316
1.8	6.05808	161.772	6.37201	161.794	6.70185	161.813	7.04847	161.831	7.41271	161.847
1.85	6.05471	166.324	6.36870	166.340	6.69880	166.356	7.04566	166.360	7.40004	166.382
1.9	6.05223	170.880	6.36644	170.801	6.69656	170.002	7.04343	170.011	7.40701	170.020
1.95	6.05071	175.439	6.36499	175.445	6.69518	175.450	7.04213	175.455	7.40668	175.460
2.0 .	6.05020	180.000	6.36451	180.000	6.69473	180.000	7.04169	180.000	7.40626	180.000

Example. sinh $(2.6 + i 0.6) = 6.74343 / 54^{\circ} . 300 = 6.74343 / 54^{\circ} . 18'00''$.

[100]

	<i>x</i> =	2.75	<i>x</i> =	= 2.8	<i>x</i> =	2.85	<i>x</i> =	= 2.9	x =	2.95
q	r	γ	7	γ	r	γ	r	γ	r	γ
		•		•		0		0		•
0	7.78035	0.000	8.10102	0.000	8.61407	0.000	0.05056	0.000	0.52681	0.000
0.05	7.78075	4.537	8.10230	4.533	8.61532	4.530	0.05000	4.527	0.52713	4.525
0.1	7.70002	0.073	8.10341	0.066	8.61630	0.060	0.06001	0.054	0.52800	0.040
0.15	7.70285	12.607	8 10524	12 506	8.61812	12.587	0.06257	12.570	0.52067	12 571
0.2	7 70547	18 128	8 10774	18 125	8 62051	18 112	0.06482	18 102	0.52182	18 002
0.1	1.19341	10.130	0.19774	10.123	0.01031	10.113	9100403	10.104	9.33102	10.093
0.25	7.79875	22.666	8.20085	22.65 0	8.62347	22.636	9.06764	22.623	9.53450	22.61 1
0.3	7.80257	27.190	8.20449	27.172	8.62691	27.155	9.07093	27.141	9.53762	27.127
0.35	7.80685	31.709	8.20857	31.689	8.63080	31.671	9.0 7461	31.655	9.54113	31.640
0.4	7.81149	36.223	8.21298	36.202	8.63500	36.183	9.07861	36.165	9.54492	36.150
0.45	7.81637	40.731	8.21762	40.710	8.63941	40.690	9.08281	40.671	9.54892	40.655
0.5	7.82138	45.234	8.22238	45.212	8.64305	45.102	0.08711	45.173	0.55301	45.157
0.55	7.82638	40.731	8.22713	40.700	8.64846	40.680	0.00142	40.671	0.55711	40.655
0.6	7 82125	EA 222	8 221 77	F4 201	8 65 287	54 182	0.00561	54 165	0.56100	F4 140
0.67	7.82588	54-222	8 22617	-8 688	8 6 7 7 0 6	54.102	0.00301	54.105	0.50100	54.149
0.05	7.03500	50.700	8.23017	50.000	8.66000	50.070	9.09939	50.054	9.50400	50.040
0.7	7.84015	03.189	0.24024	03.171	8.00092	03.155	9.10327	03.140	9.50838	03.127
0.75	7.84395	67.665	8.24385	67.649	8.66436	67.636	9.10655	67.622	9.57150	67.611
0.8	7.84720	72.137	8.24694	72.124	8.66731	72.112	9.10934	72.102	9.57416	72.092
0.85	7.84980	76.606	8.24942	76.596	8.66967	76.587	9.11160	76.579	9.57630	76.571
0.0	7.85172	81.072	8.25124	81.065	8.67140	81.059	0.11324	81.053	9.57787	81.048
0.95	7.85288	85.536	8.25235	85.533	8.67246	85.530	9.11424	85.527	9.57882	85.524
T.O	7.85328	00.000	8.25273	00.000	8.67281	00.000	0.11458	00.000	0.57015	00.000
LOF	7 85288	04 464	8 25225	04.467	8.67246	04.470	0.11424	04 473	0 57882	04 476
1.03 T T	7 85172	08 028	8 25123	08 025	8 67140	08 041	0 11224	08 047	0.57787	08 052
1.1 7 T.C	7.84080	102.204	8 24042	90.935	8 66 67	102 412	9.11324	102 421	9.57707	90.952
1.15	7.84980	103.394	0.24942	103.404	8.66907	103.413	9.11100	103.421	9.57030	103.429
1.2	7.84720	107.003	0.24094	107.870	0.00731	107.000	9.10934	107.090	9.57410	107.908
1.25	7.84395	112.335	8.24385	112.351	8.66436	112.364	9.10655	112.378	9.57150	112.389
1.3	7.84015	116.811	8.24024	116.829	8.66092	116.845	9.10327	116.860	9.56838	116.873
1.35	7.83588	121.292	8.23617	121.312	8.65706	121.330	9.09959	121.346	9.56488	121.360
I.4	7.83125	125.778	8.23177	125.799	8.65287	125.818	9.0 9561	125.835	9.56109	125.851
1.45	7.82638	130.269	8.22713	130.291	8.64846	130.311	9.09142	130.329	9.55711	130.345
1.5	7.82138	134.766	8.22238	134.788	8.64395	134.808	9.08711	134.827	0.55301	134.843
1.55	7.81637	130.260	8.21762	130.200	8.63041	130.310	0.08281	130.320	0.54802	130.345
T. 6	7.81140	143.777	8.21208	143.708	8.63500	143.817	0.07861	143.835	0.54402	143.850
1.65	7.80685	148.201	8.20857	148.311	8.63080	148.320	0.07461	148.345	0.54113	148.260
1.7	7.80257	152.810	8.20440	152.828	8.62601	152.845	0.07003	152.850	0.53762	152.872
1.,	1.00-51	- 3-10-10				- J=.0.4J	9.07093	- J-10 J9	9.331.=	-321073
1.75	7.79875	157.334	8.20085	157.350	8.62347	157.364	9.06764	157.377	9.53450	157.389
1.8	7.79547	161.862	8.19774	161.875	8.62051	161.887	9.06483	161.898	9.53182	161.907
1.85	7.79285	166.393	8.19524	166.404	8.61813	166.413	9.06257	166.421	9.52967	166.429
1.9	7.79092	170.927	8.19341	170.934	8.61639	170.940	9.06091	170.946	9.52809	170.951
1.95	7.78975	175.463	8.19230	175.467	8.61532	175.470	9.05990	175.473	9.52713	175.475
2.0	7.78935	180.000	8.19192	180.000	8.61497	180.000	9.05956	180.000	9.52681	180.000

Example. $\sinh (2.95 + i \underline{1.95}) = 9.52713 / \underline{175^{\circ}.475} = 9.52713 / \underline{175^{\circ}.28'.30''}.$

	x =	3.0	x =	3.05	x =	3.1	x =	3.15	<i>x</i> =	3.2
q	7	γ	<i>r</i>	γ	7	γ	r	γ	7	γ
		•		•		•		•		•
o ·	10.01787	0.000	10.53300	0.000	11.07645	0.000	11.64661	0.000	12.24588	0.000
0.05	10.01820	4.522	10.53430	4.520	• 11.07670	4.518	11.64690	4.516	12.24610	4.515
0.1	10.01010	0.044	10.53520	0.040	11.07750	0.036	11.64770	0.033	12.24600	0.030
0.15	10.02060	13.565	10.53660	13.559	11.07800	13.553	11.64800	13.548	12.24810	13.543
0.2	10.02260	18.084	10.53850	18.076	11.08080	18.068	11.65070	18.062	12.24980	18.056
0.25	10.02520	22.601	10.54090	22.591	11.08310	22.583	11.65290	22.575	12.25180	22.568
0.3	10.02820	27.115	10.54380	27.104	11.08580	27.094	11.05540	27.085	12.25430	27.077
0.35	10.03150	31.627	10.54690	31.015	11.08880	31.604	11.65830	31.594	12.25700	31.585
0.4	10.03510	36.135	10.55040	30.122	11.09200	30.111	11.00140	30.100	12.20000	36.091
0.45	10.03890	40.640	10.55400	40.627	11.09540	40.615	11.66470	40.604	12.26310	40.594
0.5	10.04280	45.142	10.55770	45.129	11.09900	45.116	11.66810	45.105	12.26630	45.095
0.55	10.04670	49.640	10.56140	49.627	11.10250	49.615	11.67140	49.604	12.26950	49.594
0.6	10.05050	54.135	10.56500	54.122	11.10600	54.110	11.67470	54.100	12.27260	54.090
0.65	10.05410	58.626	10.56840	58.614	11.10920	58.604	11.67780	5 ⁸ .594	12.27550	58.585
0.7	10.05743	63.114	10.57160	63.104	11.11220	63.094	11.68060	63.085	12.27820	63.077
0.75	10.06040	67.600	10.57440	67.501	11.11400	67.582	11.68320	67.574	12.28070	67.567
0.8	10.06202	72.083	10.57680	72.075	11.11720	72.068	11.68540	72.062	12.28280	72.056
0.85	10.06500	76.564	10.57880	76.558	11.11000	76.553	11.68710	76.548	12.28440	76.543
0.0	10.06645	81.044	10.58020	81.040	11.12040	81.036	11.68840	81.032	12.28560	81.020
0.95	10.06737	85.522	10.58110	85.520	11.12120	85.518	11.68920	85.516	12.28640	85.515
1.0	10.06766	90.000	10.58135	90.000	11.12150	90.000	11.68946	90.000	12.28665	90.000
1.05	10.00737	94.478	10.58110	94.480	11.12120	94.482	11.08920	94.484	12.28040	94.485
1.1	10.06645	98.956	10.58020	98.960	11.12040	98.964	11.68840	98.968	12.28560	98.971
1.15	10.06500	103.436	10.57880	103.442	11.11900	103.447	11.68710	103.452	12.28440	103.457
1.2	10.06292	107.917	10.57680	107.925	11.11720	107.932	11.68540	107.938	12.28280	107.944
1.25	10.06040	112.400	10.57440	112.409	11.11490	112.418	11.68320	112.426	12.28070	112.433
1.3	10.05743	116.886	10.57160	116.896	11.11220	116.906	11.68060	116.915	12.27820	116.923
1.35	10.05410	121.374	10.56840	121.386	11.10920	121.396	11.67780	121.406	12.27550	121.415
1.4	10.05050	125.856	10.56500	125.878	11.10600	125.890	11.67470	125.900	12.27260	125.910
1.45	10.04670	130.360	10.56140	130.373	11.10250	130.385	11.67140	130.396	12.26950	130.406
1.5	10.04280	134.858	10.55770	134.871	11.09900	134.884	11.66810	134.895	12.26630	134.005
1.55	10.03800	139.360	10.55400	139.373	11.09540	139.385	11.66470	130.306	12.26310	130.406
1.6	10.03510	143.865	10.55040	143.878	11.00200	143.880	11.66140	143.000	12.26000	143.000
1.65	10.03150	148.373	10.54600	148.385	11.08880	148.306	11.65830	148.406	12.25700	148.415
1.7	10.02820	152.885	10.54380	152.896	11.08580	152.906	11.65540	152.915	12.25430	152.923
1.75	10.02520	157.399	10.54090	157.409	11.08310	157.417	11.65290	157.425	12.25180	157.432
1.8	10.02260	161.916	10.53850	161.924	11.08080	161.931	11.65070	161.938	12.24980	161.944
1.85	10.02060	166.435	10.53660	166.441	11.07890	166.447	11.64890	166.452	12.24810	166.457
1.9	10.01910	170.956	10.53520	170.960	11.07750	170.964	11.64770	170.967	12.24690	170.970
1.95	10.01820	175.478	10.53430	175.480	11.07670	175.482	11.64690	175.484	12.24610	175.485
2.0	10.01787	180.000	10.53399	180.000	11.07645	180.000	11.64661	180.000	12.24588	180.000

Example. $\sinh (3.2 + i \underline{1.1}) = 12.28560 / 98^{\circ}.971 = 12.28560 / 98^{\circ}.58'.16''.$

	x =	3.25	x =	3.3	x =	3.35	x =	3.4	x =	3-45
q	r	γ	r	γ	r	γ	r	γ	r	r
		0		0		0		0		•
0	12.87578	0.000	13.53788	0.000	14.23382	0.000	14.96536	0.000	15.73432	0.000
0.05	12.87600	4.514	13.53810	4.512	14.23403	4.511	14.96556	4.510	15.73450	4.509
0.1	12.87670	9.027	13.53878	9.024	14.23470	9.022	14.96616	9.020	15.73510	9.018
0.15	12.87790	13.539	13.53991	13.536	14.23573	13.532	14.96716	13.529	15.73603	13.526
0.2	12.87949	18.051	13.54141	18.046	14.23718	18.041	14.96855	18.038	15.73736	18.034
0.25	12.88146	22.561	13.54322	22.555	14.23897	22.550	14.97023	22.545	15.73898	22.541
0.3	12.88380	27.070	13.54550	27.063	14.24106	27.057	14.97225	27.052	15.74088	27.047
0.35	12.88637	31.577	13.54796	31.569	14.24339	31.563	14.97448	31.557	15.74300	31.551
0.4	12.88910	36.082	13.55062	36.074	14.24595	36.067	14.97690	36.061	15.74529	36.055
0.45	12.89215	40.58 5	13.55346	40.577	14.24863	40.570	14.97945	40.563	15.74772	40.557
0.5	12.89518	45.086	13.55633	45.078	14.25137	45.071	14.98205	45.064	15.75020	45.058
0.55	12.89820	49.585	13.55918	49.577	14.25412	49.570	14.98466	49.563	15.75270	49.557
0.6	12.90117	54.082	13.56203	54.074	14.25614	54.067	14.98721	54.061	15.75510	54.055
0.65	12.90398	58.577	13.56470	58.569	14.25933	58.563	14.98960	58.557	15.75740	58.551
0.7	12.90658	63.070	13.56718	63.063	14.26167	63.057	14.99186	63.052	15.75950	63.047
0.75	12.00888	67.561	13.56036	67.555	14.26377	67.550	14.00385	67.545	15.76144	67.541
0.8	12.01085	72.051	13.57123	72.046	14.26556	72.041	14.00555	72.038	15.76303	72.034
0.85	12.01240	76.530	13.57275	76.535	14.26700	76.532	14.00602	76.520	15.76433	76.526
0.0	12.01360	81.027	13.57387	81.024	14.26805	81.022	14.00700	81.020	15.76530	81.018
0.95	12.91430	85.514	13.57455	85.512	14.26870	85.511	14.99853	85.510	15.76587	85.509
1.0	12.01456	00.000	13.57476	00.000	14.26891	00.000	14.99874	00.000	15.76607	00.000
1.05	12.01430	94.486	13.57455	94.488	14.26870	94.489	14.99853	94.490	15.76587	04.401
1.1	12.01360	08.073	13.57387	08.076	14.26805	08.078	14.00700	08.080	15.76530	08.082
1.15	12.01240	103.461	13.57275	103.465	14.26700	103.468	14.00602	103.471	15.76433	103.474
1.2	12.91085	107.949	13.57123	107.954	14.26556	107.959	14.99555	107.963	15.76303	107.966
1.25	12.90888	112.439	13.56936	112.445	14.26377	112.450	14.99385	112.455	15.76144	112.459
1.3	12.90658	116.930	13.56718	116.937	14.26167	116.943	14.99186	1 16.948	15.75950	116.953
1.35	12.90398	121.423	13.56470	121.431	14.25933	121.437	14.98960	121.443	15.75740	121.449
1.4	12.00117	125.918	13.56203	125.926	14.25614	125.933	14.98721	125.939	15.75510	125.945
1.45	12.89820	130.415	13.55918	130.423	14.25412	130.430	14.98466	130.437	15.75270	130.443
1.5	12.89518	134.914	13.55633	134.922	14.25137	134.929	14.98205	134.936	15.75020	134.942
1.55	12.89215	139.415	13.55346	139.423	14.24863	139.430	14.97945	139.437	15.74772	139.443
1.6	12.88910	143.918	13.55062	143.926	14.24595	143.933	14.97690	143.939	15.74529	143.945
1.65	12.88637	148.423	13.54796	148.431	14.24339	148.437	14.97448	148.443	15.74300	148.449
1.7	12.88380	152.930	13.54550	152.937	14.24106	152.943	14.97225	152.948	15.74088	152.953
1.75	12.88146	157.439	13.54322	157.445	14.23897	157.450	14.97023	157.455	15.73898	157.459
1.8	12.87949	161.949	13.54141	161.954	14.23718	161.959	14.96855	161.962	15.73736	101.966
1.85	12.87790	166.461	13.53991	166.464	14.23573	166.468	14.96716	166.471	15.73603	166.474
1.9	12.87670	170.973	13.53878	170.976	14.23470	170.978	14.96616	170.980	15.73510	170.982
1.95	12.87600	175.486	13.53810	175.488	14.23403	175.489	14.96556	175.490	15.73450	175.491
2.0	12.87578	180.000	13.53788	180.000	14.23382	180.000	14.96536	180.000	15.73432	180.000

Example. sinh $(3.3 + i \underline{1.3}) = 13.56718 / 116^{\circ} .937 = 13.56718 / 116^{\circ} .56' .13''$.

							,			
	x =	3 ∙5	x =	3.55	<i>x</i> =	= 3.6	x =	3.65	x =	3.7
q	r	γ	r	γ	7	γ	r	γ	r	γ
		0		•		0		0		0
0	16.54263	0.000	17.39230	0.000	18.28546	0.000	19.22434	0.000	20.21129	0.000
0.05	16.54281	4.508	17.39248	4.507	18.28560	4.507	19.22448	4.506	20.21140	4.506
0.1	16.54337	0.016	17.30300	0.015	18.28611	9.013	19.22496	9.012	20.21189	9.011
0.15	16.54428	13.524	17.30386	13.522	18.28604	13.519	19.22577	13.518	20.21268	13.516
0.2	16.54550	18.031	17.39504	18.028	18.28805	18.025	19.22681	18.023	20.21365	18.021
0.25	16.54702	22.537	17.39650	22.534	18.28942	22.530	19.22813	22.527	20.21490	22.525
0.3	16.54885	27.042	17.39822	27.038	18.29109	27.035	19.22968	27.031	20.21639	27.028
0.35	16.55087	31.547	17.40015	31.542	18.29292	31.538	19.23142	31.535	20.21804	31.531
04	16.55307	36.050	17.40222	36.045	18.29490	36.041	19.23331	36.037	20.21981	36.033
0.45	16.55538	40.552	17.40441	40.547	18.29699	40.542	19.23530	40.538	20.22170	40.535
0.5	16.55774	45.052	17.40665	45.047	18.29912	45.043	19.23732	45.039	20.22365	45.035
0.55	16.56010	49.552	17.40900	49.547	18.30126	49.542	19.23940	49.538	20.22560	49.535
o. 6	16.56240	54.050	17.41110	54.045	18.30335	54.04I	19.24134	54.037	20.22750	54.033
0.65	16.5646 0	58.547	17.41310	58.542	18.30530	58.538	19.24323	58.535	20.22930	58.531
0.7	16.56660	63.042	17.41510	63.038	18.30715	63.035	19.24496	63.031	20.23090	63.028
0.75	16.56840	67.537	17.41680	67.533	18.30880	67.530	10.24650	67.527	20.23240	67.525
0.8	16.56006	72.031	17.41830	72.028	18,31020	72.025	10.24700	72.023	20.23365	.72.021
0.85	16.57120	76.524	17.41045	76.521	18.31130	76.510	10.24800	76.518	20.23460	76.516
0.0	16.57210	81.016	17.42030	81.015	18.31210	81.013	10.24070	81.012	20.23540	81.011
0.95	16.57260	85.508	17.42083	85.507	18.31260	85.507	19.25015	85.506	20.23585	85.506
1.0	16.57282	00.000	17.42102	90.000	18.31278	90.000	19.25033	00.000	20.23601	00.000
1.05	16.57260	04.402	17.42083	94.493	18.31260	94.493	10.25015	94.494	20.23585	94.494
1.1	16.57210	08.084	17.42030	08.085	18.31210	08.087	10.24070	98.988	20.23540	08.080
1.15	16.57120	103.476	17.41045	103.470	18.31130	103.480	10.24800	103.482	20.23460	103.484
1.2	16.56996	107.969	17.41830	107.972	18.31020	107.975	19.24790	107.977	20.23365	107.979
1.25	16.56840	112.463	17.41680	112.467	18.30880	112.470	19.24650	112.473	20.23240	112.475
1.3	16.56660	116.958	17.41510	116.962	18.30715	116.965	19.24496	116.969	20.23090	116.972
1.35	16.56460	121.453	17.41310	121.458	18.30530	121.462	19.24323	121.465	20.22930	121.469
1.4	16.56240	125.950	17.41110	125.955	18.30335	125.959	19.24134	125.963	20.22750	125.967
1.45	16.56010	130.448	17.40900	130.453	18.30126	130.458	19.23940	130.462	20.22560	130.465
1.5	16.55774	134.948	17.40665	134.953	18.29912	134.957	19.23732	134.961	20.22365	134.965
1.55	16.55538	139.448	17.40441	139.453	18.29699	139.458	19.23530	139.462	20.22170	139.465
1.6	16.55307	143.950	17.40222	143.955	18.29490	143.959	19.23331	143.963	20.21981	143.967
1.65	16.55087	148.453	17.40015	148.458	18.29292	148.462	19.23142	148.465	20.21804	148.469
1.7	16.54885	152.958	17.39822	152.962	18.29109	152.965	19.22968	152.969	20.21639	152.972
1.75	16.54702	157.463	17.39650	157.466	18.28942	157.470	19.22813	157.473	20.21490	157.475
1.8	16.54550	161.969	17.38504	161.972	18.28805	161.975	19.22681	161.977	20.21365	161.979
1.85	16.54428	166.476	17.39386	166.478	18.28694	166.481	19.22577	166.482	20.21268	166.484
1.9	16.54337	170.984	17.39300	170.985	18.28611	170.987	19.22496	170.988	20.21189	170.989
1.95	16.54281	175.492	17.39248	175.493	18.28560	175.493	19.22448	175.494	20.21140	175.494
2.0	16.54263	180.000	17.39230	180.000	18.28546	180,000	19.22434	180.000	20.21129	180.000

Example. $\sinh (3.65 + i 0.25) = 19.22813 / 22^{\circ} . 527 = 19.22813 / 22^{\circ} . 31' . 37''$.

	<i>x</i> =	3.75	<i>x</i> =	3.8	x =	3.85	<i>x</i> =	3.9	<i>x</i> =	3.95
q	r	γ	r	γ	r	γ	r	γ	r	γ
		0		0		0		0		0
0	21.24878	0.000	22.33941	0.000	23.48589	0.000	24.69110	0.000	25.95806	0.000
0.05	21.24891	4.505	22.33952	4.504	23.48601	4.504	24.60120	4.504	25.95820	4.503
0.1	21.24935	0.010	22.33005	0.000	23.48640	0.008	24.601 50	0.007	25.05854	0.007
0.15	21.25006	13.514	22.34061	13.513	23.48704	13.512	24.60223	13.511	25.05011	13.510
0.2	21.25102	18.019	22.34153	18.017	23.48791	18.015	24.69302	18.014	25.95991	18.013
0.25	21.25221	22.522	22.34270	22.520	23.48900	22.518	24.69406	22.517	25.96090	22.515
0.3	21.25362	27.026	22.34401	27.023	23.49028	27.021	24.69528	27.019	25.96205	27.017
0.35	21.25520	31.528	22.34550	31.526	23.49115	31.523	24.69662	31.521	25.96333	31.519
0.4	21.25685	36.030	22.34712	36.027	23.49322	36.025	24.69809	36.022	25.96471	36.020
0.45	21.25869	40.531	22.34883	40.528	23.49486	40.526	24.69964	40.523	25.96618	40.521
0.5	21.26052	45.032	, 22.35060	45.029	23.49652	45.026	24.70121	45.023	25.96770	45.021
0.55	21.20230	49.531	22.35230	49.528	23.49820	49.520	24.70280	49.523	25.96920	49.521
0.6	21.20415	54.030	22.35403	54.027	23.49980	54.025	24.70440	54.022	25.97060	54.020
0.65	21.20580	58.528	22.35505	58.520	23.50130	58.523	24.70580	58.521	25.97200	58.519
0.7	21.20745	63.026	22.35716	63.023	23.50277	63.021	24.70720	63.019	25.97337	63.017
0.75	21.26885	67.522	22.35850	67.520	23.50404	67.518	24.70840	67.517	25.97450	67.515
0.8	21.27000	72.010	22.35962	72.017	23.50512	72.015	24.70040	72.014	25.07550	72.013
0.85	21.27100	76.514	22.36055	76.513	23.50600	76.512	24.71024	76.511	25.07630	76.510
0.0	21.27170	81.010	22.36122	81.000	23.50664	81.008	24.71000	81.007	25.07680	81.007
0.95	21.27212	85.505	22.36163	85.504	23.50702	85.504	24.71120	85.504	25.97720	85.503
1.0	21.27230	90.000	22.36178	90.000	23.50717	90.000	24.71135	90.000	25.97731	90.000
1.05	21.27212	94.495	22.36163	94.496	23.50702	94.496	24.71120	94.496	25.97720	94.497
1.1	21.27170	98.990	22.36122	98.99I	23.50664	98.992	24.71000	98.993	25.97680	98.993
1.15	21.27100	103.486	22.36055	103.487	23.50600	103.488	24.71024	103.489	25.97630	103.490
1.2	21.27000	107.981	22.35962	107.983	23.50512	107.985	24.70940	107.986	25.97550	107.987
1.25	21.26885	112.478	22.35850	112.480	23.50404	112.482	24.70840	112.483	25.97450	112.485
1.3	21.26745	116.974	22.35710	116.977	23.50277	116.979	24.70720	116.981	25.97337	110.983
1.35	21.26586	121.472	22.35505	121.474	23.50130	121.477	24.70580	121.479	25.97200	121.481
1.4	21.20415	125.970	22.35403	125.973	23.49980	125.975	24.70440	125.978	25.97000	125.980
1.45	21.26236	130.469	22.35230	130.472	23.49820	130.474	24.70280	130.477	25.96920	130.479
1.5	21.26052	134.968	22.35060	134.971	23.49652	134.974	24.70121	134.976	25.96770	134.979
1.55	21.25860	130.460	22.34883	139.472	23.49486	139.474	24.69964	139.477	25.96618	139.479
1.6	21.25685	143.070	22.34712	143.073	23.40322	143.975	24.60800	143.078	25.06471	143.080
1.65	21.25520	148.472	22.34550	148.474	23.40115	148.477	24.60662	148.479	25.06333	148.481
1.7	21.25362	152.974	22.34401	152.977	23.49028	152.979	24.69528	152.981	25.96205	152.983
1.75	21.25221	157.478	22.34270	157.480	23.48900	157.482	24.69406	157.483	25.96090	157.485
1.8	21.25102	161.981	22.34153	161.983	23.48791	161.985	24.69302	161.986	25.95991	161.987
1.85	21.25006	166.486	22.34061	166.487	23.48704	166.488	24.69223	166.489	25.95911	166.490
1.9	21.24935	170.990	22.33995	170.991	23.48640	170.992	24.69159	170.993	25.95854	170.993
1.95	21.24891	175.495	22.33952	175.496	23.48601	175.496	24.69120	175.496	25.95820	175.497
2.0	21.24878	180.000	22.33941	180.000	23.48589	180.000	24.69110	180.000	25.95806	180.000

Example. sinh $(3.90 + i \underline{1.90}) = 24.69159 / \underline{170^{\circ}.993} = 24.69159 / \underline{170^{\circ}.59'.35''}$.

[105]

	x =	0.0	x =	0.05	<i>x</i> =	• 0.1	x =	0.15	x =	0.2
q	r	γ	7	γ	7	γ	r	γ	*	γ
		0		•		•		0		0
0	1.00000	0.00	1.00125	0.00	1.00500	0.00	1.01127	0.00	1.02007	0.00
0.05	0.00602	0.00	0.00817	0.225	1.00104	0.450	1.00822	0.671	1.01704	0.800
0.1	0.08760	0.00	0.08805	0.453	0.00275	0.005	0.00000	1.351	1.00800	1.701
0.15	0.07237	0.00	0.07366	0.687	0.07752	1.371	0.08306	2.047	0.00300	2.713
0.2	0.95106	0.00	0.95237	0.930	0.95632	1.855	0.96290	2.769	0.97213	3.669
0.25	0.92388	0.00	0.92523	1.186	0.92930	2.364	0.93607	3.529	0.94556	4.674
0.3	0.89101	0.00	0.89237	1.458	0.89662	2.907	0.90364	4.338	0.91347	5.743
0.35	0.85264	0.00	0.85407	1.754	0.85851	3.495	0.86583	5.213	0.87600	6.897
0.4	0.80002	0.00	0.81053	2.079	0.81520	4.142	0.82291	6.174	0.83370	8.161
0.45	0.76041	0.00	0.76202	2.443	0.76698	4.866	0.77527	7.247	0.78661	9.569
0.5	0.70711	0.00	0.70803	2.860	0.71417	5.692	0.72296	8.468	0.73521	11.165
0.55	0.64945	0.00	0.65135	3.348	0.65713	6.656	0.66667	9.889	0.67994	13.012
o. 6	0.58779	0.00	0.58989	3.934	0.59626	7.811	0.60676	11.581	0.62131	15.198
0.65	0.52250	0.00	0.52487	4.661	0.53201	9.238	0.54376	13.656	0.55995	17.853
0.7	0.45399	0.00	0.45672	5.600	0.46491	11.068	0.47831	16.289	0.49663	21.175
0.75	0.38268	0.00	0.38594	6.877	0.39558	13.529	0.41124	19.771	0.43242	25.478
0.8	0.30902	0.00	0.31304	8.741	0.32485	17.053	0.34375	24.618	0.36882	31.277
0.85	0.23345	0.00 '	0.23874	11.755	0.25403	22.545	0.27779	31.805	0.30827	39.424
0.9	0.15643	0.00	0.16424	17.507	0.18576	32.181	0.21712	43.229	0.25497	51.254
0.95	0.07846	0.00	0.09305	32.407	0.12724	51.700	0.16978	62.139	0.21608	68.261
1.0	0.00	180	0.05002	90.000	0.10017	90.000	0.15056	90.000	0.20134	90.000
1.05	0.07846	180	0.09305	147.593	0.12724	128.300	0.16978	117.861	0.21608	111.739
1.1	0.15643	180	0.16424	162.493	0.18576	147.819	0.21712	136.771	0.25497	128.746
1.15	0.23345	180	0.23874	168.245	0.25403	157.455	0.27779	148.195	0.30827	140.576
1.2	0.30902	180	0.31304	171.259	0.32485	162.947	0.34375	155.382	0.36882	148.723
1.25	0.38268	180	0.38594	173.123	0.39558	166.471	0.41124	160.229	0.43242	154.522
1.3	0.45399	180	0.45672	174.400	0.46491	168.932	0.47831	163.711	0.49663	158.825
1.35	0.52250	180	0.52487	175.339	0.53201	170.762	0.54370	100.344	0.55995	162.147
1.4	0.58779	180	0.58989	170.000	0.59020	172.189	0.00070	168.419	0.02131	164.802
1.45	0.64945	180	0.65135	176.652	0.65713	173.344	0.66667	170.111	0.67994	166.988
1.5	0.70711	180	0.70803	177.139	0.71417	174.308	0.72296	171.532	0.73521	168.835
1.55	0.76041	180	0.76202	177.557	0.76698	175.134	0.77527	172.753	0.78661	170.431
1.6	0.80902	180	0.81053	177.921	0.81520	175.858	0.82291	173.826	0.83370	171.839
1.65	0.85264	180	0.85407	178.246	0.85851	176.505	0.86583	174.787	0.87609	173.103
1.7	0.89101	180	0.89237	178.542	0.89662	177.093	0.90364	175.662	0.91347	174.257
1.75	0.92388	180	0.92523	178.814	0.92930	177.636	0.93607	176.471	0.94556	175.326
1.8	0.95106	180	0.95237	179.070	0.95632	178.145	0.96290	177.231	0.97213	176.331
1.85	0.97237	180	0.97366	179.313	0.97752	178.629	0.98396	177.953	0.99300	177.287
1.9	0.98769	180	0.98895	179.547	0.99275	179.095	0.99909	178.649	1.00800	178.209
1.95	0.99692	180	0.99817	179.775	1.00194	179.550	1.00822	179.329	1.01704	179.110
2.0	1.00000	180	1.00125	180.000	1.00500	180.000	1.01127	180.000	1.02007	180.000

Example. $\cosh(0.10 + i 0.55) = 0.65713 / 6^{\circ} .656 = 0.65713 / 6^{\circ} .39' .22''$.

	x =	0.25	x =	• 0.3	x =	0.35	x =	• 0.4	x =	0.45
q	r	γ	r	γ	r	γ	r	γ	r	γ
		0		•		0		0		0
0	1.03141	0.000	1.04534	0.000	1.06188	0.000	1.08107	0.000	1.10207	0.000
0.05	1.02843	1.104	1.04230	1.313	1.05898	1.516	1.07822	1.713	1.10017	1.002
0.1	1.01949	2.221	1.03357	2.642	1.05020	3.050	1.06070	3.444	1.00182	3.823
0.15	1.00464	3.365	1.01804	4.001	1.03500	4.617	1.05557	5.212	1.07708	5.784
0:2	0.98403	4.550	0.99862	5.407	1.01592	6.238	1.03597	7.038	1.05880	7.806
0.25	0.95779	5.793	0.97277	6.881	0.99052	7.932	1.01107	8.944	1.03446	9.913
0.3	0.92612	7.113	0.94161	8.443	0.95994	9.726	0.98113	10.957	1.00521	12.132
0.35	0.88927	8.536	0.90539	10.122	0.92444	11.647	0.94642	13.107	0.97136	14.496
0.4	0.84754	10.090	0.86443	11.951	0. 88436	13.733	0.90732	15.432	0.93330	17.042
0.45	0.80127	11.815	0.81912	13.972	0.84012	16.029	0.86426	17.979	0.89149	19.816
0.5	0.75088	13.762	0.76989	16.241	0.79220	18.592	0.81775	20.804	o.8 4469	22.875
0.55	0.69685	10.001	0.71730	18.834	0.74119	21.497	0.76844	23.982	0.79895	26.288
0.6	0.63977	18.629	0.66199	21.849	0.68781	24.843	0.71708	27.607	0.74969	30.144
0.65	0.58036	21.785	0.60476	25.425	0.63292	28.763	0.66462	31.800	0. 69968	34.546
0.7	0.51954	25.673	0.54666	29.758	0.57766	33.157	0.61223	36.712	0.65012	39.626
0.75	0.45854	30.595	0.48006	35.118	0.52348	30.070	0.56140	42.520	0.60240	45.527
0.8	0.30013	37.008	0.43385	41.878	0.47231	45.002	0.51401	49.464	0.55860	52.300
0.85	0.34306	45.057	0.38370	50.507	0.42671	54.484	0.47246	57.712	0.52062	60.358
0.0	0.20782	57.110	0.34235	61.467	0.38004	64.786	0.43053	67.371	0.40003	60.424
0.95	0.26452	72.186	0.31447	74.882	0.36571	76.831	0.41818	78.297	0.47191	79.433
1.0	0.25261	90.000	0.30452	90.000	0.35719	90.000	0.41075	90.000	0.46534	90.000
1.05	0. 26452	107.814	0.31447	105.118	c.36571	103.169	0.41818	101.703	0.47191	100.567
1.1	0.29782	122.890	0.34235	118.533	0.38994	115.214	0.43953	112.629	0.49093	110.576
1.15	0.34396	134.943	0.38370	1 29.493	0.42671	125.516	0.47246	122.288	0.52062	119.642
1.2	0.39913	142.992	0.43385	138.122	0.47231	1 34.008	0.51401	130.536	0.55860	127.601
1.25	0.45854	149.405	0.48906	144.882	0.52348	140.921	0.56140	137.471	0.60249	134.473
1.3	0.51954	154.327	0.54666	150.242	0.57766	146.843	0.61223	143.288	0.65012	140.374
1.35	0.58036	158.215	0.60476	154.575	0.63292	151.237	0.66462	148.200	0.69968	145.454
1.4	0.63977	161.371	0.66199	158.151	0.68781	155.157	0.71708	152.393	0.74969	149.856
1.45	0.69685	163.999	0.71730	161.166	0.74119	158.503	0. 76844	156.018	0.79895	153.712
1.5	0.75088	166.238	0.76989	163.759	0.79220	161.408	0.81775	159.196	o.84649	157.125
1.55	0.80127	168.185	0.81012	166.028	0.84012	163.971	0.86426	162.021	0.89149	160.184
1.6	0.84754	160.010	0.86443	168.040	0.88436	166.267	0.00732	164.568	0.03330	162.958
1.65	0.88027	171.464	0.00530	160.878	0.02444	168.353	0.04642	166.803	0.07136	165.504
1.7	0.92612	172.887	0.94161	171.557	0.95994	170.274	0.98113	169.043	1.00521	167.868
1.75	0.95779	174.207	0.97277	173.119	0.99052	172.068	1.01107	171.056	1.03446	170.087
1.8	0.98403	175.450	0.99862	174.593	1.01592	173.762	1.03597	172.962	1.05880	172.194
1.85	1.00464	176.635	1.01894	175.999	1.03590	175.383	1.05557	174.788	1.07798	174.216
1.9	1.01949	177.779	1.03357	177.358	1.05029	176.950	1.06970	176.556	1.09182	176.177
1.95	1.02843	178.896	1.04239	178.687	1.05898	178.484	1.07822	178.287	1.10017	178.098
2.0	1.03141	180.000	1.04534	180.000	1.06188	180.000	1.08107	180.000	1.10297	180.000

.

Example. $\cosh(0.40 + i 0.5) = 0.81775 / 20^{\circ} .804 = 0.81775 / 20^{\circ} .48' .14''.$

	x =	0.5	x =	0.55	x =	0.6	x =	0.65	x =	0.7
q	7	γ	*	γ	r	γ	*	γ	r	γ
		•		•		•		0		•
0	1.12763	0.000	1.15510	0.000	1.18547	0.000	1.21870	0.000	1.25517	0.000
0.05	1.12480	2.083	1.15244	2.256	1.18287	2.420	1.21626	2.576	1.25271	2.723
0.1	1.11672	4.186	1.14446	1.523	1.17510	4.870	1.20871	5.174	1.24538	5.468
0.15	1.10220	6.221	1.12127	6.852	1.16226	7.347	1.10623	7.815	1.23327	8.256
0.2	1.08446	8.539	1.11300	9.237	1.14448	9.898	1.17892	10.523	1.21653	11.110
0.25	1.06070	10.836	1.08087	11.713	1.12200	12.541	1.15715	13.322	1.10541	14.054
0.3	1.03220	13.240	1.06214	14.307	1.00500	15.304	1.13108	16.240	1.17010	17.116
0.35	0.00027	15.811	1.03004	17.052	1.06411	18.216	1.10111	10.306	1.14125	20.323
0.4	0.06232	18.550	0.00437	10.084	1.02048	21.315	1.06760	22.555	1.10004	23.706
0.45	0.02182	21.538	0.05524	23.146	0.00174	24.640	1.03134	26.024	1.07400	27.302
0.45			0.933-4				0.01			-1.0
0.5	0.87837	24.803	0.91338	26.589	0.95149	28.238	0.99270	29.755	1.03704	31.148
0.55	0.83266	28.416	0.86951	30.372	0.90946	32.162	0.95249	33.796	0.99861	35.284
0.6	0.78552	32.458	0.82447	34.563	0.86650	36.471	0.91156	38.197	0.95966	39.755
0.65	0.73793	37.020	0.77927	39.241	0.82361	41.231	0.87090	43.011	0.92112	44.603
0.7	0.69112	42.207	0.73510	44.489	0.78194	46.506	0.83160	48.290	0.88406	49.867
0.75	0.64652	48.120	0.60333	50.300	0.74282	52.358	0.70402	54.074	0.84065	55.574
0.8	0.60583	54.880	0.65555	57.010	0.70760	58.826	0.76220	60.387	0.81011	61.737
0.85	0.57100	62.547	0.62350	64.375	0.67810	65.014	0.73482	67.210	0.70360	68.335
0.0	0.54407	71.082	0.50804	72.441	0.65550	73.568	0.71400	74.514	0.77455	75.315
0.95	0.52697	80.335	0.58345	81.064	0.64147	81.663	0.70115	82.161	0.76263	82.581
LO	0.52110	00.000	0.57815	00.000	0.63665	00.000	0.60675	00.000	0.75858	00.000
1.05	0.52607	00.665	0.58345	08.036	0.64147	08.337	0.70115	07.830	0.76263	07.410
LT	0.54407	108.018	0.50804	107.550	0.65550	106.432	0.71400	105.486	0.77455	104.685
T T C	0 57100	117.452	0.62250	115.625	0.67810	114.086	0.72482	112.781	0.70260	111.665
1.1.5	0.60582	125 111	0.65555	122.000	0.70760	121.174	0.76220	110.612	0.81011	118.262
	0.00303	0			0.70709		0.,0220			
1.25	0.04052	131.871	0.09333	129.010	0.74282	127.042	0.79492	125.920	0.84905	124.420
1.3	0.09112	137.793	0.73510	135.511	0.78194	133.494	0.83100	131.710	0.88400	130.133
1.35	0.73793	142.980	0.77927	140.759	0.82301	138.709	0.87090	130.989	0.02112	135.397
1.4	0.78552	147.542	0.82447	145.437	0.80050	143.529	0.91150	141.803	0.95900	140.245
1.45	0.83200	151.584	0.80951	149.028	0.90940	147.838	0.95249	140.204	0.99801	144.710
1.50	0 .87837	155.198	0.91338	153.411	0.95149	151.762	0.99270	150.245	1.03704	148.853
1.55	0.92182	158.462	0.95524	156.854	0.99174	155.360	1.03134	153.976	1.07409	152.698
1.60	0.96232	161.441	0.99437	160.016	1.02948	158.685	1.06769	157.445	1.10904	156.294
1.65	0.99927	164.189	1.03004	162.948	1.06411	161.784	1.10111	160.694	1.14125	159.677
1.70	1.03220	166.751	1.06214	165.693	1.09509	164.69 6	1.13108	163.760	1.17019	162.884
1.75	1.06070	169.164	1.08987	168.287	1.12200	167.459	1.15715	166.678	1.19541	165.946
1.8	1.08446	171.461	1.11300	170.763	1.14448	170.102	1.17892	169.477	1.21653	168.800
1.85	1.10320	173.669	1.13127	173.148	1.16226	172.653	1.19623	172.185	1.23327	171.744
1.9	1.11672	175.814	1.14446	175.467	1.17510	175.121	1.20871	174.826	1.24538	174.532
1.95	1.12489	177.917	1.15244	177.744	1.18287	177.580	1.21626	177.424	1.25271	177.277
2.0	1.12763	180.000	1.15510	180.000	1.18547	180.000	1.21879	180.000	1.25517	180.000

Example. $\cosh(0.65 + i \underline{1.0}) = 0.69675 / 90^{\circ}$.

	x =	0.75	x =	0.8	x = c	0.85	x =	0.9	x = c	0.95
q	r	γ	r	γ	r	γ	r	γ	r	γ
		0		0		•		•		0
0	1.29468	0.000	1.33743	0.000	1.38353	0.000	1.43309	0.000	1.48623	0.000
0.05	1.29230	2.862	1.33513	2.992	1.38130	3.113	1.43094	3.227	1.48415	3.332
0.1	1.28520	5.745	1.32825	6.004	1.37466	6.246	1.42452	6.473	1.47797	6.684
0.15	1.27346	8.670	1.31691	9.058	1.36369	9.420	1.41395	9.758	1.46778	10.071
0.2	1.25726	11.661	1.30124	12.175	1.34858	12.656	1.39937	13.102	1.45371	13.516
0.25	1.23689	14.740	1.28152	15.379	1.32955	15.974	1.38105	16.526	1.43611	17.037
0.3	1.21248	17.933	1.25802	18.693	1.30693	19.398	1.35927	20.051	1.41519	20.653
0.35	1.18457	21.267	1.23115	22.143	1.28107	22.952	1.33444	23.699	1.39136	24.387
0.4	1.15356	24.772	1.20135	25.755	1.25246	26.601	1.30700	27.493	1.36505	28.257
0.45	1.12001	28.478	1.16917	29.559	1.22163	30.550	1.27748	31.457	1.33682	32.286
0.5	1.08453	32.442	1.13522	33.586	1.18918	34.647	1.24649	35.614	1.30723	36.493
0.55	1.04785	30.037	1.10024	37.865	1.15583	38.978	1.21471	39.986	1.27697	40.898
0.6	1.01079	41.100	1.06500	42.426	1.12234	43.567	1.18289	44.593	1.24674	45.517
0.65	0.97427	46.026	1.03041	47.298	1.08957	48.435	1.15184	49.453	1.21732	50.363
0.7	0.93932	51.263	0.99742	52.500	1.05843	53.599	1.12243	54.574	1.19227	55.443
0.75	0.90700	56.889	0.96705	58.045	1.02085	50.062	1.00553	59.961	1.16418	60.755
0.8	0.87846	62.907	0.94033	63.927	1.00481	64.810	1.07202	65.601	1.14200	66.288
0.85	0.85481	69.294	0.91828	70.123	0.08420	70.842	1.05273	71.471	1.12400	72.020
0.0	0.83706	75.008	0.00178	76.585	0.06883	77.001	1.03837	77.532	1.11056	77.015
0.95	0.82605	82.936	0.89157	83.241	0.95933	83.503	1.02951	83.730	1.10227	83.927
1.0	0.82232	90.000	0.88811	90.000	0.95612	90.000	1.02652	90 000	1.09948	90.000
1.05	0.82605	97.064	0.89157	96.759	0.95933	96.497	1.02951	96.270	1.10227	96.073
1.1	0.83706	104.002	0.90178	103.415	0.96883	102.000	1.03837	102.468	1.11056	102.085
1.15	0.85481	110.706	0.91828	100.877	0.98420	100.158	1.05273	108.520	I 12400	107.980
1.2	0.87846	117.093	0.94033	116.073	1.00481	115.181	1.07202	114.399	1.14209	113.712
1.25	0.90700	123.111	0.96705	121.955	1.02985	1 20.938	1.09553	1 20.039	1.16418	119.245
1.3	0.93932	128.737	0.99742	127.500	1.05843	126.401	1.12243	125.426	1.19227	124.557
1.35	0.97427	133.974	1.03041	132.702	1.08957	131.565	1.15184	130.547	1.21732	129.637
1.4	1.01079	138.840	1.06500	137.574	1.12234	136.433	1.18289	135.407	1.24674	134.483
1.45	1.04785	143.363	1.10024	142.135	1.15583	141.022	1.21471	140.014	1.27697	139.102
1.5	1.08453	147.578	1.13522	146.414	1.18918	145.353	1.24649	144.386	1.30723	143.507
1.55	1.12001	151.522	1.16917	150.441	1.22163	149.450	1.27748	148.543	1.33682	147.714
1.6	1.15356	155.228	1.20135	154.245	1.25246	153.399	1.30700	152.507	1.36505	151.743
1.65	1.18457	158.733	1.23115	157.857	1.28107	157.048	1.33444	156.301	1.39136	155.613
1.7	1.21248	162.067	1.25802	161.307	1.30693	160.602	1.35927	159.949	1.41519	159.347
1.75	1.23689	165.260	1.28152	164.621	1.32955.	164.026	1.38105	163.474	1.43611	162.963
1.8	1.25726	168.339	1.30124	167.825	1.34858	167.344	1.39937	166.898	1.45371	166.484
1.85	1.27346	171.330	1.31691	170.942	1.36369	170.580	1.41395	170.242	1.46778	169.929
1.9	1.28520	174.255	1.32825	173.996	1.37466	173.754	1.42452	173.527	1.47797	173.316
1.95	1.29230	177.138	1.33513	177.008	1.38130	176.887	1.43094	176.773	1.48415	176.668
2.0	1.29468	180.000	1.33743	180.000	1.38353	180.000	1.43309	180.000	1.48623	180.000

Example. $\cosh(0.90 + i 0.5) = 1.24649 / 35^{\circ}.614 = 1.24649 / 35^{\circ}.36'.50''.$

	x =	1.0	x =	1.05	x =	1.1	x =	1.15	x =	1.2
q	<i>r</i>	γ	r	γ	r	γ	*	γ	*	γ
		۰		•		0		۰		•
0	1.54308	0.000	1.60379	0.000	1.66852	0.000	1.73741	0.000	1.81066	0.000
0.05	1.54108	3.276	1.60187	3.521	1.66667	3.605	1.73564	3.683	1.80895	3.754
0.1	1.53513	6.878	1.59614	7.059	1.66117	7.226	1.73036	7.380	1.80389	7.522
0.15	1.52532	10.362	1.58671	10.631	1.65211	10.879	1.72166	11.107	1.79555	11.318
0.2	1.51182	13.899	1.57374	14.253	1.63965	14.579	1.70971	14.880	1.78409	15.156
0.25	1.49487	17.509	1.55747	17.944	1.62404	18.344	1.69472	18.713	1.76975	19.050
o. 3	I.47479	21.209	1.53820	21.720	1.60558	22.189	1.67705	22.620	1.75282	23.014
0.35	1.45193	25.019	1.51630	25.599	1.58460	26.130	1.65699	26.616	1.73363	27.061
0.4	1.42675	28.957	1.49220	29.597	1.56156	30.182	1.63497	30.716	1.71260	31.203
0.45	1.39976	33.043	1.46641	33.732	1.53694	34.36 0	1.61147	34.931	1.69018	35.451
0.5	1.37153	37.293	1.43950	38.019	1.51128	38.677	1.58701	39.275	1.66688	39.816
0.55	1.34272	41.724	1.41207	42.470	1.48517	43.145	1.56217	43.755	1.04325	44.307
0.6	1.31400	46.349	1.38479	47.098	1.45920	47.773	1.53750	48.380	1.61987	48.927
0.65	1.28612	51.179	1.35837	51.910	1.43421	52.565	1.51381	53.153	1.59733	53.681
0.7	1.25984	56.216	1.33351	56.907	1.41070	57.523	1.49155	58.074	1.57626	58.567
0.75	1.23594	61.459	1.31005	62.085	1.38030	62.641	1.47141	63.136	1.55721	63.579
0.8	1.21515	66.805	1.20137	67.4.32	1.37003	67.008	1.45300	68.330	1.54077	68.706
0.85	1.19816	72.504	1.27540	72.020	1.35500	73.306	1.43083	73.639	1.52741	73.935
0.0	1.18552	78.252	1.26358	78.547	1.34478	78.808	1.42036	70.030	1.51755	70.243
0.95	1.17782	84.100	1.25631	84.252	1.33795	84.385	1.42294	84.503	1.51150	84.607
1.0	1.17520	90.000	1.25386	90.000	1.33565	90.000	1.42078	90.000	1.50946	90.000
1.05	1.17782	95.900	1.25631	95.748	1.33795	95.615	1.42294	95.497	1.51150	95.393
1.1	1.18552	101.748	1.26358	101.453	1.34478	101.192	1.42936	100.961	1.51755	100.757
1.15	1.19816	107.496	1.27540	107.071	1.35590	106.694	1.43983	106.361	1.52741	106.065
1.2	1.21515	113.105	1.29137	112.568	1.37093	112.092	1.45399	111.670	1.54077	111.294
1.25	1.23594	118.541	1.31095	117.915	1.38939	117.359	1.47141	116.864	1.55721	116.421
1.3	1.25984	123.784	1.33351	123.093	1.41070	122.477	1.49155	121.926	1.57626	121.433
1.35	1.28612	128.821	1.35837	128.090	1.43421	127.435	1.51381	126.847	1.59733	126.319
1.4	1.31400	133.651	1.38479	132.902	1.45926	132.227	1.53756	131.620	1.61987	131.073
1.45	1.34272	138.276	1.41207	137.530	1.48517	136.855	1.56217	136.245	1.64325	135.693
1.5	1.37153	142.707	1.43950	141.981	1.51128	141.323	1.58701	140.725	1.66688	140.184
1.55	1.39976	146.957	1.46641	146.268	1.53604	145.640	1.61147	145.060	1.60018	-44.549
1.6	1.42675	151.043	1.40220	150.403	1.56156	149.818	1.63497	140.284	1.71260	148.797
1.65	1.45103	154.081	1.51630	154.401	1.58460	153.870	1.65600	153.384	1.73363	152.030
1.7	1.47479	158.791/	1.53820	158.280	1.60558	157.811	1.67705	157.380	1.75282	1 56.986
1.75	1.49487	162.491	1.55747	162.056	1.62404	161.656	1.69472	161.287	1.76975	160.950
1.8	1.51182	166.101	1.57374	165.747	1.63965	165.421	1.70971	165.120	1.78409	164.844
1.85	1.52532	169.638	1.58671	169.369	1.65211	169.121	1.72166	168.893	1.79555	168.682
1.9	1.53513	173.122	1.59614	172.941	1.66117	172.774	1.73036	172.620	1.80380	172.478
1.95	1.54108	176.724	1.60187	176.479	1.66667	176.395	1.73564	176.317	1.80895	176.246
2.0	1.54308	180.000	1.60379	180.000	1.66852	180.000	1.73741	180.000	1.81066	180.000

Example. $\cosh(1.20 + i \circ) = 1.81066 / o^{\circ}$.

[110]

	x =	1.25	<i>x</i> =	1.3	<i>x</i> =	1.35	x =	1.4	x =	1.45
q	r	γ	r	γ	r	γ	r	γ	r	γ
		0		0		0		0		0
0	1.88842	0.000	1.07001	0.000	2.05833	0.000	2.1 5000	0.000	2.24884	0.000
0.05	1.88670	3.820	1.06035	3.880	2.05684	3.035	2.14047	3.086	2.24747	4.032
0.1	1.88103	7.652	1.06470	7.772	2.05238	7.882	2.14520	7.082	2.24334	8.075
0.15	1.87304	11.511	1.05704	11.680	2.04.505	11.851	2.13810	12.000	2.23660	12.136
0.2	1.86297	15.410	1.94654	15.642	2.03500	15.855	2.12858	16.049	2.22751	16.226
0.25	1.84924	19.360	1.93341	19.644	2.02245	19.903	2.11658	20.139	2.21604	20.355
0.3	1.83304	23.375	1.91792	23.705	2.00764	24.006	2.10244	24.281	2.20254	24.531
0.35	1.81470	27.467	1.90040	27.837	1.99091	28.175	2.08647	28.482	2.18731	28.762
0.4	1.79462	31.646	1.88123	- 32.050	1.97262	32.417	2.06903	32.751	2.17067	33.055
0.45	1.77323	35.923	1.86084	26.352	1.95319	36.742	2.05051	37.095	2.15302	37.416
0.5	1.75104	40.308	1.83970	40.752	1.93306	41.155	2.03135	41.520	2.13478	41.851
0.55	1.72850	44.805	1.81832	45.255	1.91273	45.002	2.01200	46.030	2.11037	40.302
0.0	1.70035	49.420	1.79722	49.805	1.89208	50.205	1.99295	50.627	2.09828	50.953
0.65	1.68497	54.155	1.77094	54.582	1.87343	54.905	1.97468	55.311	2.08093	55.021
0.7	1.66501	59.009	1.75802	59.405	1.85549	59.700	1.95767	60.079	2.06479	60.366
0.75	1.64699	63.974	1.74096	64.327	1.83934	64.644	1.94237	64.927	2.05030	65.182
0.8	1.63145	69.042	1.72627	69 . 341	1.82544	69.608	1.92921	69.847	2.03784	70.061
0.85	1.61884	74.197	1.71435	74.432	1.81417	74.641	1.91856	74.828	2.02775	74.995
0.9	1.60954	79.424	1.70557	79.585	1.80588	79.729	1.91072	79.857	2.02034	79.972
0.95	1.60384	84.699	1.70019	84.782	1.80080	84.855	1.90592	84.920	2.01580	84.979
1.0	1.60192	90.000	1.69838	90.000	1.79909	90.000	1.90430	90.000	2.01427	90.000
1.05	1.60384	95.301	1.70019	95.218	1.80080	95.145	1.90592	95.080	2.01580	95.021
1.1	1.60954	100.576	1.70557	100.415	1.80588	100.271	1.91072	100.143	2.02034	100.028
1.15	1.61884	105.803	1.71435	105.568	1.81417	105.359	1.91856	105.172	2.02775	105.005
1.2	1.63145	110.958	1.72627	110.659	1.82544	110.392	1.92921	110.153	2.03784	109.939
1.25	1.64699	116.026	1.74096	115.673	1.83934	115.356	1.94237	115.073	2.05030	114.818
1.3	1.00501	120.991	1.75802	120.595	1.85549	120.240	1.95707	119.921	2.00479	119.034
1.35	1.08497	125.845	1.77094	125.418	1.87343	125.035	1.97408	124.089	2.08093	124.379
1.4	1.70035	130.580	1.79722	130.135	1.89208	129.735	1.99295	129.373	2.09828	129.047
1.45	1.72850	135.195	1.81832	134.745	1.91273	134.338	2.01200	133.970	2.11037	133.038
1.5	1.75104	139.693	1.83970	139.248	1.93306	138.845	2.03135	138.480	2.13478	138.15 0
1.55	1.77323	144.077	1.86084	143.648	1.95319	143.258	2.05051	142.905	2.15302	142.584
1.6	1.79462	148.354	1.88123	147.950	1.97262	147.583	2.06903	147.249	2.17067	146.945
1.65	1.81470	152.533	1.90040	152.163	1.99091	151.825	2.08647	151.518	2.18731	151.238
1.7	1.83304	156.625	1.91792	156.295	2.00764	155.994	2.10244	155.719	2.20254	155.469
1.75	1.84924	160.640	1.93341	160.356	2.02245	160.097	2.11658	159.861	2.21604	159.645
1.8	1.80297	164.590	1.94054	104.358	2.03500	104.145	2.12858	103.951	2.22751	103.774
1.85	1.87394	168.489	1.95704	108.311	2.04505	108.149	2.13819	108.000	2.23069	107.864
1.9	1.88193	172.348	1.90470	172.228	2.05238	172.118	2.14520	172.018	2.24334	171.925
1.95	1.88679	176.180	1.90935	170.120	2.05084	170.005	2.14947	170.014	2.24747	175.968
2.0	1.88842	180.000	1.97091	180.000	2.05833	180.000	2.15090	180.000	2.24884	180.000

Example. $\cosh(1.35 + i \underline{1.30}) = 1.85549 / \underline{120^{\circ}.240} = 1.85549 / \underline{120^{\circ}.14'.24''}.$

[111]

	x =	= 1.5	x =	1.55	<i>x</i> =	= 1. 6	x =	1.65	x =	1.7
q	r	γ	r	γ	r	γ	r	γ	r	γ
		0		•		0		0		0
0	2.35241	0.000	2.46186	0.000	2.57746	0.000	2.69952	0.000	2.82832	0.000
0.05	2.35110	4.075	2.46061	4.113	2.57627	4.149	2.69839	4.181	2.82723	4.210
0.1	2.34720	8.158	2.45688	8.235	2.57272	8.305	2.69499	8.360	2.82300	8.427
0.15	2.34080	12.260	2.45076	12.374	2.56687	12.477	2.68041	12.571	2.81867	12.657
0.2	2.33202	16.389	2.44238	16.536	2.55887	16.671	2.68178	16.794	2.81138	16.906
0.25	2.32107	20.552	2.43193	20.732	2.54890	20.895	2.67226	21.044	2.80230	21.179
0.3	2.30819	24.759	2.41976	24.967	2.53717	25.155	2.66108	25.327	2.79164	25.483
0.35	2.29365	29.016	2.40577	29.248	2.52395	29.458	2.64847	29.649	2.77963	29.822
0.4	2.27779	33.330	2.39066	33.580	2.50955	3 3 .808	2.63476	34.014	2.76657	34.201
0.45	2.26098	37.706	2.37465	37.970	2.49430	38.209	2.62024	38.426	2.75274	38.622
0.5	2.24362	42.150	2.35812	42.421	2.47857	42.666	2.60527	42.887	2.73850	43.089
0.55	2.22012	40.063	2.34148	40.934	2.40274	47.180	2.59021	47.401	2.72418	47.602
0.6	2.20892	51.247	2.32513	51.512	2.44721	51.752	2.57544	51.968	2.71014	52.163
0.65	2.19245	55.901	2.30949	50.154	2.43235	50.381	2.56133	56.585	2.69673	56.771
0.7	2.17714	60.624	2.29496	60.856	2.41856	61.065	2.54824	61.253	2.68430	61.422
0.75	2.16340	65.410	2.28193	65.615	2.40619	65.800	2.53650	65.966	2.67316	66.116
0.8	2.15159	70.254	2.27074	70.426	2.39558	70.581	2.52644	70.720	2.66361	70.845
0.85	2.14204	75.145	2.26160	75.279	2.38701	75.400	2.51831	75.508	2.65501	75.605
0.0	2.13502	80.075	2.25504	80.167	2.38071	80.240	2.51234	80.323	2.65025	80.300
0.95	2.13073	85.031	2.25098	85.077	2.37686	85.119	2.50869	85.157	2.64679	85.191
1.0	2.12928	90.000	2.24961	90.000	2.37557	90.000	2.50747	90.000	2.64563	90.000
1.05	2.13073	94.969	2.25098	94.923	2.37686	94.881	2.50869	94.84 3	2.64679	94.809
1.1	2.13502	99.925	2.25504	99.83 3	2.38071	99.751	2.51234	99.677	2.65025	99.610
1.15	2.14204	104.855	2.26169	104.721	2.38701	104.600	2.51831	104.492	2.65591	104.395
1.2	2.15159	109.746	2.27074	109.574	2.39558	109.419	2.52644	109.280	2.66361	109.155
1.25	2.16340	114.590	2.28193	114.385	2.40619	114.200	2.53650	114.034	2.67316	113.884
I.3	2.17714	119.370	2.29490	119.144	2.41850	118.935	2.54824	118.747	2.68430	118.578
1.35	2.19245	124.099	2.30949	123.840	2.43235	123.019	2.50133	123.415	2.69673	123.229
1.4	2.20892	128.753	2.32513	128.488	2.44721	128.248	2.57544	128.032	2.71014	127.837
1.45	2.22012	133.337	2.34148	133.000	2.40274	132.820	2.59021	132.599	2.72418	132.398
1.5	2.24362	137.850	2.35812	137.580	2.47857	137.334	2.60527	137.113	2.73850	136.911
1.55	2.26098	142.294	2.37465	142.030	2.49430	141.791	2.62024	141.574	2.75274	141.378
1.Ğ	2.27779	146.670	2.39066	146.420	2.50955	146.192	2.63476	145.986	2.76657	145.799
1.65	2.29365	150.984	2.40577	150.752	2.52395	150.542	2.64847	150.351	2.77963	150.178
1.7	2.30819	155.241	2.41976	155.033	2.53717	154.845	2.66108	154.673	2.79164	154.517
1.75	2.32107	159.448	2.43193	159.268	2.54890	159.105	2.67226	158.956	2.80230	158.821
1.8	2.33202	163.611	2.44238	163.464	2.55887	163.329	2.68178	163.206	2.81138	163.094
1.85	2.34080	167.740	2.45076	167.626	2.56687	167.523	2.68941	167.429	2.81867	167.343
1.9	2.34720	171.842	2.45688	171.765	2.57272	171.695	2.69499	171.631	2.82399	171.573
1.95	2.35110	175.925	2.46061	175.887	-2.57627	175.851	2.69839	175.819	2.82723	175.790
2.0	2.35241	180.000	2.46186	180.000	2.57746	180.000	2.69952	180.000	2.82832	180.000

Example. $\cosh(1.6 + i \underline{1.6}) = 2.50955 / \underline{146^{\circ}.192} = 2.50955 / \underline{146^{\circ}.11'.31''}.$

[112]

	x =	1.75	<i>x</i> =	1.8	x =	1.85	x =	1.9	x =	1.95
q	<i>r</i> `	γ	r	γ	r	γ	r	γ	r	γ
		0		•		0		•		0
0	2.06410	0.000	3.10747	0.000	3.25853	0.000	3.41773	0.000	3.58548	0.000
0.05	2.06315	4,237	3.10648	4.262	3.25759	4.284	3.41683	4.304	3.58462	4.322
O. T	2.06006	8.480	3.10353	8.520	3.25477	8.572	3.41415	8.612	2.58207	8 6 4 8
0.15	2 05408	12.725	2.00860	12.806	3.25015	12.871	3.40075	12 020	2 57788	12.082
0.13	2.04804	17.008	2 00 206	17 100	2.24284	17 184	2 40272	17 260	3.57700	12.903
0.2	2.94004	17.000	3.09200	1/1100	3-24304	-/	3.4-373	17.200	3.37213	17.330
0.25	2.93938	21.302	3.08382	21.414	3.23598	21.516	3.39624	21.608	3.56500	21.692
0.3	2.92921	25.625	3.07413	25.754	3.22675	25.871	3.38745	25.977	3.55663	26.073
0.35	2.91777	29.98 0	3.06323	30.123	3.21636	30.252	3.37756	30.369	3.54721	30.476
0.4	2.90532	34.370	3.05138	34.524	3.20507	34.663	3.36681	34.789	3.53698	34.904
0.45	2.89217	38.800	3.03885	38.961	3.19315	39.107	3.35546	39.239	3.52617	39.358
	0.04	-			0.00	0				07.00
0.5	2.87801	43.270	3.02595	43.435	3.18088	43.584	3.34378	43.719	3.51507	43.840
0.55	2.80499	47.784	3.01300	47.947	3.10850	48.090	3.33207	48.230	3.50393	48.351
0.6	2.85105	52.339	3.00031	52.499	3.15050	52.043	3.32000	52.773	3.49302	52.890
0.65	2.83891	56.937	2.98821	57.088	3.14500	57.224	3.30967	57.346	3.48263	57.457
0.7	2.82710	61.575	2.97699	61.713	3.13434	61.837	3.29955	61.949	3.47301	62.050
0.75	2.81653	66.250	2.06605	66.371	3.12481	66.480	3,20040	66.570	3.16111	66.668
0.8	2.80747	70.058	2.05835	71.050	3.11665	71.150	3.28274	71.233	3.45702	71.207
0.85	2.80016	75.603	2.05142	75.772	3.11006	75.842	3.27640	75.006	3.45112	75.064
0.0	2 70470	80.440	2.04633	80.503	3.10523	80.552	3.27101	80.505	2.44675	80.625
0.05	2.70151	85.221	2.04322	85.248	3.10228	85.273	3.26011	85.205	3.44073	85.215
0.93	2.19-3-	- 3	940	*34-	0	-575	0	- 3 93	3-11-2	03.3-3
1.0	2.79041	90.000	2.94217	90.000	3.10129	90.000	3.26816	90.000	3.44321	90.000
1.05	2.79151	94.779	2.94322	94.752	3.10228	94.727	3.26911	94.705	3.44410	94.685
1.1	2.79479	99.551	2.94633	99.497	3.10523	99.448	3.27191	99.405	3.44675	99.365
1.15	2.80016	104.307	2.95142	104.228	3.11006	104.158	3.27649	104.094	3.45112	104.036
1.2	2.80747	109.042	2.95835	108.941	3.11665	108.850	3.28274	108.767	3.45702	108.69 3
1.25	2.81653	113.750	2.06605	113.620	3.12481	113.520	3,20040	113.421	3.46441	113.332
1.2	2.82710	118.425	2.07600	118.287	3.13434	118.163	3,20055	118.051	3.47301	117.050
1.25	2.83801	123.063	2.08821	122.012	3.14500	122.776	3.30067	122.654	3.48263	122.543
T: 4	2.85165	127.661	3.00031	127.501	3.15650	127.357	3.32060	127.227	3.40302	127 110
T 15	2.86400	122.216	2.01200	122.052	2.16856	121.004	2.22207	121.770	2 50202	127.640
1.43	2.00499	1320210	3.01300	-32.033	3.20030	-09-4	3.33207	1311/10	3.30393	131.049
1.5	2.87861	136.730	3.02595	136.565	3.18088	136.416	3.34378	136.281	3.51507	136.160
1.55	2.89217	141.200	3.03885	141.039	3.19315	140.803	3.35546	140.761	3.52617	140.642
1.6	2.00532	145.630	3.05138	145.476	3.20507	145.337	3.36681	145.211	3.53608	145.006
1.65	2.01777	1 50.020	3.06323	149.877	3.21636	149.748	3.37756	140.631	3.54721	140.524
1.7	2.02021	154.375	3.07413	154.246	3.22675	154.120	3.38745	154.023	3.55663	153.027
		.0	.0.0				6 6 7 10		0.00-0	0.757
1.75	2.93938	158.098	3.08382	158.586	3.23598	158.484	3.39024	158.392	3.50500	158.308
1.8	2.94804	102.992	3.09200	102.900	3.24384	102.810	3.40373	102.740	3.57213	102.070
1.85	2.95498	167.265	3.09869	167.194	3.25015	167.129	3.40975	167.071	3.57788	167.017
1.9	2.96006	171.520	3.10353	171.471	3.25477	171.428	3.41415	171.388	3.58207	171.352
1.95	2.96315	175.763	3.10648	175.738	3.25759	175.716	3.41683	175.696	3.58462	175.678
2.0	2.96419	180.000	3.10747	180.000	3.25853	180.000	3.41773	180.000	3.58548	180.000

Example. $\cosh(1.95 + i 1.25) = 3.46441 / 113^{\circ} .332 = 3.46441 / 113^{\circ} .19' .55''.$

	<i>x</i> =	= 2.0	x =	2.05	x =	= 2.1	x =	2.15	x =	2.2
q	r	γ	r	γ	r	γ	r	γ	r	γ
		0		0		0		0		0
0	3.76220	0.000	3.94832	0.000	4.14431	0.000	4.35067	0.000	4.56791	0.000
0.05	3.76137	4.339	3.94753	4.354	4.14357	4.368	4.34996	4.380	4.56723	4.391
0.1	3.75894	8.681	3.94521	8.711	4.14136	8.738	4.34785	8.763	4.56523	8.785
0.15	3.75495	13.031	3.94142	13.075	4.13774	13.115	4.34440	13.151	4.56167	13.184
0.2	3.74948	17.392	3.93620	17.449	4.13278	17.501	4.33968	17.548	4.55744	17.591
0.25	3.74268	21.768	3.92972	21.836	4.12661	21.899	4.33381	21.956	4.55184	22.007
0.3	3.73470	26.160	3.92213	26.239	4.11938	26.311	4.32693	26.376	4.54529	26.435
0.35	3.72574	30.573	3.91359	30.660	4.11125	30.740	4.31918	30.812	4.53793	30.877
0.4	3.71600	35.008	3.90432	35.102	4.10243	35.187	4.31079	35.264	4.52993	35.334
0.45	3.70572	39.467	3.89453	39.565	4.09311	39.653	4.30193	39.734	4.52150	39.807
0.5	3.69515	43.951	3.88448	44.051	4.08355	44.141	4.29282	44.223	4.51285	44.297
0.55	3.68455	48.461	3.87440	48.560	4.07396	48.649	4.28371	48.730	4.50417	48.804
0.6	3.67418	52.996	3.86454	53.092	4.06459	53.179	4.27479	53.257	4.49570	53.329
0.65	3.6643 0	57.557	3.85515	57.647	4.05566	57.729	4.26630	57.803	4.48763	57.870
0.7	3.65517	62.142	3.84648	62.224	4.04740	62.299	4.25846	62.366	4.48017	62.427
0.75	3.64600	66.748	3.83870	66.820	4.04002	66.886	4.25145	66.945	4.47350	66.998
0.8	3.64000	71.374	3.83206	71.434	4.03371	71.489	4.24544	71.538	4.46780	71.582
0.85	3.63437	76.016	3.82671	76.062	4.02863	76.105	4.24061	76.143	4.46322	76.177
0.0	3.63023	80.670	3.82270	80.702	4.02400	80.731	4.23707	80.757	4.45085	80.780
0.95	3.62771	85.333	3.82039	85.349	4.02263	85.364	4.23491	85.377	4.45779	85.389
1.0	3.62686	90.000	3.81958	90.000	4.02186	90.000	4.23419	90.000	4.45711	90.000
1.05	3.62771	94.667	3.82039	94.651	4.02263	94.636	4.23491	94.623	4.45779	94.611
1.1	3.63023	99.330	3.82279	99.298	4.02490	99.269	4.23707	99.243	4.45985	99.220
1.15	3.63437	103.984	3.82671	103.938	4.02863	103.895	4.24061	103.857	4.46322	103.823
1.2	3.64000	108.626	3.83206	108.566	4.03371	108.511	4.24544	108.462	4.46780	108.418
1.25	3.64699	113.252	3.83870	113.180	4.04002	113.114	4.25145	113.055	4.47350	113.002
1.3	3.65517	117.858	3.84648	117.776	4.04740	117.701	4.25846	117.634	4.48017	117.573
1.35	3.66430	122.443	3.85515	122.353	4.05566	122.271	4.26630	122.197	4.48763	122.130
1.4	3.67418	127.004	3.86454	126.908	4.06459	126.821	4.27479	126.743	4.49570	126.671
1.45	3.68455	131.539	3.87440	131.440 -	4.07396	131.351	4.28371	131.270	4.50417	131.196
1.5	3.69515	136.049	3.88448	135.950	4.08355	135.859	4.29282	135.778	4.51285	135.703
1.55	3.70572	140.533	3.89453	140.435	4.09311	140.347	4.30193	140.200	4.52150	140.193
1.0	3.71600	144.992	3.90432	144.898	4.10243	144.813	4.31079	144.730	4.52993	144.666
1.65	3.72574	149.427	3.91359	149.340	4.11125	149.260	4.31918	149.188	4-53793	149.123
1.7	3.73470	153.840	3.92213	153.761	4.11938	153.689	4.32693	153.624	4.54529	153.565
1.75	3.74268	158.232	3.92972	158.164	4.12661	158.101	4.33381	158.044	4.55184	157.993
1.8	3.74948	162.608	3.93620	102.551	4.13278	162.499	4.33968	102.452	4.55744	162.409
1.85	3.75495	166.969	3.94142	166.925	4.13774	166.885	4.34440	166.849	4.56167	166.816
1.9	3.75894	171.319	3.94521	171.289	4.14136	171.262	4.34785	171.237	4.56523	171.215
1.95	3.76137	175.661	3.94753	175.646	4.14357	175.632	4.34996	175.620	4.56723	175.609
2.0	3.76220	180.000	3.94832	180.000	4.14431	180.000	4.35067	180.000	4.56791	180.000

Example. $\cosh (2.0 + i \underline{0.5}) = 3.69515 / 43^{\circ}.951 = 3.69515 / 43^{\circ}.57'.04''.$

	<i>x</i> =	2.25	x =	2.3	x =	2.35	x =	2.4	x =	2.45
q	*	γ	r	γ	r	ŗ	r	γ	r	γ
		0		0		0		0		0
0	4.70657	0.000	5.03722	0.000	5.29047	0.000	5.55695	0.000	5.83732	0.000
0.05	4.70503	4.401	5.03661	4.411	5.28080	4.410	5.55630	4.427	5.83680	4.434
0.1	4.70402	8.805	5.03470	8.824	5.28816	8.840	5.55474	8.856	5.83522	8.860
OTE	4.70088	13.214	5.03181	13.241	5.28531	13.265	5.55204	13.288	5.83265	13.308
0.2	4.78661	17.629	5.02773	17.664	5.28143	17.696	5.54834	17.725	5.82913	17.751
0.25	4.78127	22.053	5.02265	22.006	5.27662	22.134	5.54375	22.160	5.82476	22.200
0.3	4.77503	26.488	5.01672	26.537	5.27096	26.581	5.53837	26.620	5.81064	26.656
0.35	4.76802	30.036	5.01005	30.080	5.26461	31.038	5.53233	31.081	5.81380	31.121
0.4	1.76042	35.307	5.00281	35.454	5.25772	35.506	5.52578	35.553	5.80765	35.505
0.45	4.75240	39.873	4.99518	39.932	5.25046	39.986	5.51887	40.035	5.80108	40.079
0.5	4.74415	44.364	4.98734	44.424	5.23728	44.479	5.51177	44.529	5.79434	44.573
0.55	4.73592	48.870	4.97950	48.930	5.23553	48.984	5.50468	49.034	5.78758	49.078
0.6	4.72784	53.392	4.97183	53.451	5.22825	53.503	5.49775	53.551	5.78099	53.593
0.65	4.72017	57.930	4.96454	57.984	5.22131	58.034	5.49115	58.078	5.77472	58.119
0.7	4.71308	62.482	4.95780	62.531	5.21490	62.576	5.48505	62.617	5.76892	62.653
0.75	4.70675	67.046	4.95177	67.090	5.20917	67.129	5.47961	67.165	5.76375	67.197
0.8	4.70134	71.622	4.94662	71.659	5.20428	71.691	5.47495	71.721	5.75932	71.748
0.85	4.69697	76.208	4.94249	76.236	5.20035	76.261	5.47122	76.284	5.75576	76.305
0.0	4.69377	80.801	4.93944	80.820	5.19745	80.837	5.46847	80.853	5.75316	80.867
0.95	4.69182	85.399	4.93759	85.409	5.19569	85.418	5.46679	85.426	5.75156	85.433
1.0	4.69117	90.000	4.93696	90.000	5.19510	90.000	5.46623	90.000	5.75103	90.000
1.05	4.69182	94.601	4.93759	94.591	5.19569	94.582	5.46679	94.574	5.75156	94.567
1.1	4.69377	99.199	4.93944	99.180	5.19745	99.163	5.46847	99.147	5.75316	99.133
1.15	4.69697	103.792	4.94249	103.764	5.20035	103.739	5.47122	103.716	5.75576	103.695
1.2	4.70134	108.378	4.94662	108.341	5.20428	108.309	5-47495	108.279	5.75932	108.252
1.25	4.70675	112.954	4.95177	112.910	5.20917	112.871	5.47961	112.835	5.76375	112.803
1.3	4.71308	117.518	4.95780	117.409	5.21490	117.424	5.48505	117.383	5.70892	117.347
1.35	4.72017	122.070	4.90454	122.010	5.22131	121.000	5.49115	121.922	5.77472	121.881
1.4	4.72784	120.008	4.97183	120.549	5.22825	120.497	5.49775	120.449	5.78099	120.407
1.45	4.73592	131.130	4.97950	131.070	5.23553	131.010	5.50408	130.900	5.78758	130.922
1.5	4.74415	135.636	4.98734	135.576	5.23728	135.521	5.51177	135.471	5.79434	135.427
1.55	4.75240	140.127	4.99518	140.068	5.25046	140.014	5.51887	139.965	5.80108	139.921
1.6	4.76042	144.603	5.00281	144.546	5.25772	144.494	5.52578	144.447	5.80765	144.405
1.65	4.76802	140.064	5.01005	140.011	5.26461	148.062	5.53233	148.010	5.81389	148.879
1.7	4.77503	153.512	5.01672	153.463	5.27096	153.419	5.53837	153.380	5.81964	153.344
1.75	4.78127	157.947	5.02265	157.904	5.27662	157.866	5.54375	157.831	5.82476	157.800
1.8	4.78661	162.371	5.02773	162.336	5.28143	162.304	5.54834	162.275	5.82913	162.249
1.85	4.79088	166.786	5.03181	166.759	5.28531	166.735	5.55204	166.712	5.83265	166.692
1.9	4.79402	171.195	5.03479	171.176	5.28816	171.160	5.55474	171.144	5.83522	171.131
1.95	4.79593	175.599	5.03661	175.589	5.28989	175.581	5.55639	175.573	5.83680	175.566
2.0	4.79657	180.000	5.03722	180.000	5.29047	180.000	5.55695	180.000	5.83732	180.000

Example. $\cosh(2.40 + i \underline{2.0}) = 5.55695 / 180^{\circ} = 5.55695 \sqrt{180^{\circ}}$.

	<i>x</i> =	= 2.5	<i>x</i> =	2.55	<i>x</i> =	= 2.6	<i>x</i> =	2.65	<i>x</i> =	= 2.7
q	*	γ	7	γ	<i>r</i>	γ	*	γ	r	γ
		•		•		0		۰		•
0	6.13229	0.000	6.44259	0.000	6.76901	0.000	7.11234	0.000	7.47347	0.000
0.05	6.13179	4.440	6.44212	4.446	6.76855	4.451	7.11191	4.456	7.47306	4.460
0.1	6.13030	8.881	6.44069	8.893	6.76720	8.903	7.11062	8.912	7.47183	8.920
0.15	6.12785	13.326	6.43836	13.342	6.76499	13.357	7.10851	13.371	7.46982	13.383
0.2	6.12450	17.774	6.43518	17.796	6.76195	17.815	7.10563	17.833	7.46708	17.848
0.25	6.12034	22.228	6.43121	22.254	6.75818	22.278	7.10204	22.299	7.46366	22.318
0.3	6.11547	26.689	6.42658	26.718	6.75376	26.745	7.09784	26.770	7.45966	26.791
0.35	6.10999	31.157	6.42137	31.190	6.74881	31.219	7.09313	31.246	7.45518	31.270
0.4	6.10406	35.634	6.41572	35.668	6.74343	35.700	7.08802	.35.728	7.45032	35.754
0.45	6.09781	40.119	6.40977	40.155	6.73778	40.188	7.08264	40.218	7.44519	40.245
0.5	6.09139	44.614	6.40367	44.651	6.73197	44.684	7.07711	44.713	7.43994	44.741
0.55	6.08496	49.118	6.39755	49.155	6.72616	49.187	7.07158	49.217	7.43468	49.244
0.6	6.07869	53.632	6.39160	53.667	6.72048	53.699	7.06618	53.727	7.42955	53.754
0.65	6.07273	58.155	6.38592	58.188	6.71509	58.218	7.06105	58.244	7.42467	58.269
0.7	6.06722	62.686	6.38068	62.716	6.71011	62.743	7.05631	62.768	7.42017	62.790
0.75	6.06229	67.226	6.37601	67.252	6.70565	67.275	7.05208	67.297	7.41614	67.316
0.8	6.05808	71.772	6.37201	71.794	6.70185	71.813	7.04847	71.831	7.41271	71.847
0.85	6.05471	76.324	6.36879	76.340	6.69880	76.356	7.04556	76.369	7.40994	76.382
0.9	6.05223	80.880	6.36644	80.891	6.69656	80.902	7.04343	80.911	7.40791	.80.920
0.95	6.05071	85.439	6.36499	85.445	6.69518	85.450	7.04213	85.455	7.40668	85.460
1.0	6.05020	90.000	6.36451	90.000	6.69473	90.000	7.04169	90.000	7.40626	90.000
1.05	6.05071	94.561	6.36499	94.555	6.69518	94.550	7.04213	94.545	7.40668	94.540
1.1	6.05223	99.120	6.36644	99.109	6.69656	99.098	7.04343	99.089	7.40791	99.080
1.15	6.05471	103.676	6.36879	103.660	6.69880	103.644	7.04556	103.631	7.40994	103.618
1.2	6.05808	108.228	6.37201	108.206	6.70185	108.187	7.04847	108.169	7.41271	108.153
1.25	6.06229	112.774	6.37601	112.748	6.70565	112.725	7.05208	112.703	7.41614	112.684
1.3	6.06722	117.314	6.38068	117.284	0.71011	117.257	7.05031	117.232	7.42017	117.210
1.35	6.07273	121.845	6.38592	121.812	0.71500	121.782	7.00105	121.750	7.42467	121.731
1.4	6.07869	1 26.368	6.39160	120.333	0.72048	126.301	7.00018	120.273	7.42955	126.246
1.45	6.08496	130.882	6.39755	130.845	6.72616	130.813	7.07158	130.783	7.43468	130.756
1.5	6.09139	135.386	6.40367	135.350	6.73197	135.316	7.07711	135.286	7.43994	135.250
1.55	6.09781	139.881	6.40977	139.845	6.73778	139.812	7.08264	130.782	7.44510	130.755
1.6	6.10406	144.366	6.41572	144.332	6.74343	144.300	7.08802	144.272	7.45032	144.246
1.65	6.10000	148.843	6.421.37	148.810	6.74881	148.781	7.00313	148.754	7.45518	148.730
1.7	6.11547	153.311	6.42658	153.282	6.75376	153.255	7.09784	153.230	7.45966	153.209
1.75	6.12034	157.772	6.43121	157.746	6.75818	157.722	7.10204	157.701	7.46366	157.682
1.8	6.12450	162.226	6.43518	162.204	6.76195	162.185	7.10563	162.167	7.46708	162.152
1.85	6.12785	166.674	6.43836	166.658	6.76499	166.643	7.10851	166.629	7.46982	166.617
1.9	6.13030	171.119	6.44069	171.107	6.76720	171.097	7.11062	171.088	7.47183	171.080
1.95	6.13179	175.560	6.44212	175.554	6.76855	175.549	7.11191	175.544	7.47306	175.540
2.0	6.13229	180.000	6.44259	180.000	6.76901	180.000	7.11234	180.000	7-47347	180.000

Example. $\cosh (2.65 + i \underline{0.75}) = 7.05208 / 67^{\circ} \cdot 207 = 7.05208 / 67^{\circ} \cdot 17' \cdot 49''$.

	x =	2.75	<i>x</i> =	2.8	<i>x</i> =•	2.85	x =	2.9	x =	2.95
q	7	γ	7	γ	7	γ	<i>r</i>	γ	*	γ
		•		0		. •		•		•
0	7.85328	0.000	8.25273	0.000	8.67281	0.000	9.11458	0.000	9.57915	0.000
0.05	7.85288	4.464	8.25235	4.467	8.67246	4.470	9.11424	4.473	0.57882	4.476
0.1	7.85172	8.928	8.25124	8.035	8.67140	8.041	0.11324	8.047	0.57787	8.052
0.15	7.84080	13.304	8.24042	13.404	8.66067	13.413	0.11160	13.421	0.57630	13.420
0.2	7.84720	17.863	8.24694	17.876	8.66731	17.888	9.10934	17.898	9.57416	17.908
0.25	7.84395	22.335	8.24385	22.351	8.66436	22.364	9.10655	22.378	9.57150	22.389
0.3	7.84015	26.811	8.24024	26.829	8.66092	26.845	9.10327	26.860	9.56838	26.873
0 35	7.83588	31.292	8.23617	31.312	8.65706	31.330	9.00059	31.346	9.56488	31.360
0.4	7.83125	35.778	8.23177	35.799	8.65287	35.818	9.00561	35.835	0.56100	35.851
0.45	7.82638	40.269	8.22713	40.291	8.64846	40.311	9.09142	40.329	9.55711	40.345
0.5	7.82138	44.766	8.22238	44.788	8.64395	44.808	9.08711	44.827	9.55301	44.843
0.55	7.81637	49.269	8.21762	49.290	8.63941	49.310	9.08281	49.329	9.54892	49.345
0.6	7.81149	53.777	8.21298	53.798	8.63500	53.817	9.07861	53.835	9.54492	53.850
0.65	7.80685	58.291	8.20857	58.311	8.63080	58.329	9.07461	58.345	9.54113	58.360
0.7	7.80257	62.810	8.20449	62.828	8.62691	62.845	9.07093	62.859	9.53762	62.873
0.75	7.79875	67.334	8.20085	67.350	8.62347	67.364	9.06764	67.377	9.53450	· 67.389
0.8	7.79547	71.862	8.19774	71.875	8.62051	71.887	9.06483	71.898	9.53182	71.907
0.85	7.79285	76.393	8.19524	76.404	8.61813	76.413	9.06257	76.421	9.52967	76.429
0.0	7.79092	80.927	8.19341	80.934	8.61639	80.940	9.06091	80.946	9.52800	80.051
0.95	7.78975	85.463	8.19230	85.467	8.61532	85.470	9.05990	85.473	9.52713	85.475
1.0	7.78935	90.000	8.19192	90.000	8.61497	90.000	9.05956	90.000	9.52681	90.000
1.05	7.78975	94.537	8.19230	94.533	8.61532	94.530	9.05990	94.527	9.52713	94.525
1.1	7.79092	99.073	8.19341	99.066	8.61639	99.060	9.06091	99.054	9.52809	99.049
1.15	7.79285	103.607	8.19524	103.596	8.61813	103.587	9.06257	103.579	9.52967	103.571
1.2	7.79547	108.138	8.19774	108.125	8.62051	108.113	9.06483	108.102	9.53182	108.093
1.25	7.79875	112.666	8.20085	112.650	8.62347	112.636	9.06764	112.623	9.53450	112.611
I.3 \	7.80257	117.190	8.20449	117.172	8.62691	117.155	9.07093	117.141	9.53762	117.127
1.35	7.80685	121.709	8.20857	121.689	8.63080	121.671	9.07461	121.655	9.54113	121.640
1.4	7.81149	126.223	8.21298	126.202	8.63500	126.183	9.07861	126.165	9.54492	126.150
1.45	7.81637	130.731	8.21762	130.710	8.63941	130.690	9.08281	130.671	9.54892	130.655
1.5	7.82138	135.234	8.22238	135.212	8.64395	135.192	9.08711	135.173	9.55301	135.157
1.55	7.82638	139.731	8.22713	139.709	8.64846	139.689	9.09142	139.671	9.55711	139.655
1.6	7.83125	144.222	8.23177	144.201	8.65287	144.182	9.09561	144.165	9.56109	144.149
1.65	7.83588	148.708	8.23617	148.688	8.65706	148.670	9.09959	148.654	9.56488	148.640
1.7	7.84015	153.189	8.24024	153.171	8.66092	153.155	9.10327	153.140	9.56838	153.127
1.75	7.84395	157.665	8.24385	157.649	8.66436	157.636	9.10655	157.622	9.57150	157.611
1.8	7.84720	102.137	8.24694	102.124	8.66731	102.112	9.10934	102.102	9.57416	102.092
1.85	7.84980	166.606	8.24942	166.596	8.66967	166.587	9.11160	166.579	9.57630	166.571
1.9	7.85172	171.072	8.25124	171.065	8.67140	171.059	9.11324	171.053	9.57787	171.048
1.95	7.85288	175.536	8.25235	175.533	8.67246	175.530	9.11424	175.527	9.57882	175.524
2.0	7.85328	180.000	8.25273	180.000	8.67281	180.000	9.11458	180.000	9.57915	180.000

Example. $\cosh(2.90 + i \underline{0.9}) = 9.06091 / 80^{\circ}.946 = 0.96091 / 80^{\circ}.56'.46''.$

	x =	3.0	x = z	3.05	• x =	3.1	x = x	3.15	x =	3.2
q	r	2	r	γ	7	γ	r	γ	<i>r</i>	γ
		0		0		0		•		0
0	10.06766	0.000	10.58135	0.000	11.12150	0.000	11.68946	0.000	12.28665	0.000
0.05	10.06737	4.478	10.58110	4.480	11.12120	4.482	11.68920	4.484	12.28640	4.485
0.1	10.06645	8.056	10.58020	8.060	11.12040	8.964	11.68840	8.968	12.28560	8.971
0.15	10.06500	13.436	10.57880	13.442	11.11000	13.447	11.68710	13.452	12.28440	13.457
0.2	10.06292	17.917	10.57680	17.925	11.11720	17.932	11.68540	17.938	12.28280	17.944
0.25	10.06040	22.400	10.57440	22.409	11.11490	22.418	11.68320	22.426	12.28070	22.433
0.3	10.05743	26.886	10.57160	26.896	11.11220	26.906	11.68060	26.915	12.27820	26.923
0.35	10.05410	31.374	10.56840	31.386	11.10920	31.396	11.67780	31.406	12.27550	31.415
0.4	10.05050	35.865	10.56500	35.878	11.10600	35.890	11.67470	35.900	12.27260	35.910
0.45	10.04670	40.360	10.56140	40.373	11.10250	40.385	11.67140	40.396	12.26950	40.406
0.5	10.04280	44.858	10.55770	44.871	11.09900	44.884	11.66810	44.895	12.26630	44.905
0.55	10.03890	49.36 0	10.55400	49.373	11.09540	49.385	11.66470	49.396	12.26310	49.406
0.6	10.03510	53.86 5	10.55040	53.878	11.09200	53.889	11.66140	53.900	12.26000	53.909
0.65	10.03150	58.373	10.54690	58.385	11.08880	58.396	11.65830	58.406	12.25700	58.415
0.7	10.02820	62.885	10.54380	62.896	11.08580	62.906	11.65540	62.915	12.25430	62.923
0.75	10.02520	67.399	10.54000	67.400	11.08310	67.417	11.65290	67.425	12.25180	67.432
0.8	10.02260	71.016	10.53850	71.924	11.08080	71.932	11.65070	71.938	12.24980	71.944
0.85	10.02060	76.4.35	10.53660	76.441	11.07890	76.447	11.64890	76.452	12.24810	76.457
0.0	10.01010	80.056	10.53520	80.060	11.07750	80.964	11.64770	80.967	12.24600	80.970
0.95	10.01820	85.478	10.53430	85.480	11.07670	85.482	11.64690	85.484	12.24610	85.485
1.0	10.01787	90.000	10.53399	90.000	11.07645	90.000	11.64661	90.000	12.24588	90.000
1.05	10.01820	04.522	10.53430	94.520	11.07670	94.518	11.64690	94.516	12.24610	94.515
I.I	10.01010	00.044	10.53520	99.040	11.07750	99.036	11.64770	00.033	12.24600	00.030
1.15	10.02060	103.565	10.53660	103.550	11.07800	103.553	11.64800	103.548	12.24810	103.543
1.2	10.02260	108.084	10.53850	108.076	11.08080	108.068	11.65070	108.062	12.24980	108,056
1.25	10.02520	112.601	10.54090	112.591	11.08310	112.583	11.65290	112.575	12.25180	112.568
1.3	10.02820	117.115	10.54380	117.104	11.08580	117.094	11.65540	117.085	12.25430	117.077
1.35	10.03150	121.627	10.54600	121.615	11.08880	121.604	11.65830	121.594	12.25700	121.585
1.4	10.03510	126.135	10.55040	126.122	11.00200	126.111	11.66140	126.100	12.26000	126.001
1.45	10.03890	130.640	10.55400	130.627	11.09540	130.615	11.66470	130.604	12.26310	130.594
1.5	10.04280	135.142	10.55770	135.129	11.09900	135.116	11.66810	135.105	12.26630	135.095
1.55	10.04670	139.64 0	10.56140	139.627	11.10250	139.615	11.67140	139.604	12.26950	139.594
1.6	10.05050	144.135	10.56500	144.122	11.10600	144.110	11.67470	144.100	12.27260	144.000
1.65	10.05410	148.626	10.56840	148.614	11.10920	148.604	11.67780	148.594	12.27550	148.585
1.7	10.05743	153.114	10.57160	153.104	11.11220	153.094	11.68060	153.085	12.27820	153.077
1.75	10.06040	157.600	10.57440	157.591	11.11490	157.582	11.68320	157.574	12.28070	157.567
1.8	10.06292	162.083	10.57680	162.075	11.11720	162.068	11.68540	162.062	12.28280	162.056
1.85	10.06500	166.564	10.57880	166.558	11.11900	166.553	11.68710	166.548	12.28440	166.543
1.9	10.06645	171.044	10.58020	171.040	11.12040	171.036	11.68840	171.032	12.28560	171.020
1.95	10.06737	175.522	10.58110	175.520	11.12120	175.518	11.68920	175.516	12.28640	175.515
2.0	10.06766	180.000	10.58135	180.000	11.12150	180.000	11.68946	180.000	12.28665	180.000

Example. $\cosh (3.15 + i 0.15) = 11.68710 / 13^{\circ} \cdot 452 = 11.68710 / 13^{\circ} \cdot 27' \cdot 07''$.

	x = 3	.25	x = x	3 ·3	x = 3	.35	x = z	3.4	x = 3	•45
q	r	γ	r	γ	r	γ	r	γ	7	γ
		0		0		0		0		0
0	12.91456	0.000	13.57476	0.000	14.26891	0.000	14.00874	0.000	15.76607	0.000
0.05	12.01430	4.486	13.57455	4.488	14.26870	4.480	14.00853	4.400	15.76587	4.401
0.1	12.01360	8.073	13.57387	8.076	14.26805	8.078	I4.00700	8 080	15 76520	8 082
0.15	12.01240	13.461	13.57275	12.465	14.26700	12.468	14.00602	12 471	15 76422	12 474
0.2	12.01085	17.040	13.57122	17.054	14.26556	17.050	14.99092	17.062	15.70433	13.4/4
		-7-949	-3-373	-7.934	-4-20330	-1.939	-4.99333	17.903	13.70303	17.900
0.25	12.90888	22.439	13.56936	22.445	14.26377	22.450	14.99385	22.455	15.76144	22.459
0.3	12.90658	26.930	13.56718	26.937	14.26167	26.943	14.99186	26.948	15.75950	26.953
0.35	12.90398	31.423	13.56470	31.431	14.25933	31.437	14.98960	31.443	15.75740	31.449
0.4	12.90117	35.918	13.56203	35.926	14.25614	35.933	14.98721	35.939	15.75510	35.945
0.45	12.89820	40.415	13.55918	40.423	14.25412	40.430	14.98466	40.437	15.75270	40.443
0.5	12.89518	44.914	13.55633	44.022	14.25137	44.020	14.08205	44.036	15.75020	44.042
0.55	12.80215	49.415	13.55346	40.423	14.24863	40.430	14.07045	40.437	15.74772	40.443
0.6	12.88010	53.018	13.55062	53.026	14.24505	53.033	14.07600	53.030	15.74520	53.045
0.65	12.88637	58.423	13.54706	58.431	14.24330	58.437	14.07448	58.443	15.74300	58.440
0.7	12.88380	62.030	13.54550	62.037	14.24106	62.043	14.07225	62.048	15.74088	62.053
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 0 100	,01		210			0.71	
0.75	12.88140	67.439	13.54322	67.445	14.23897	67.450	14.97023	67.455	15.73898	67.459
0.8	12.87949	71.949	13.54141	71.954	14.23718	71.959	14.96855	71.963	15.73736	71.966
0.85	12.87790	76.461	13.53991	76.465	14.23573	76.468	14.96716	76.471	15.73603	76.474
0.9	12.87670	80.973	13.53878	80.976	14.23470	80.978	14.96616	80.980	15.73510	80.982
0.95	12.87600	85.486	13.53810	85.488	14.23403	85.489	14.96556	85.490	15.73450	85.491
1.0	12.87578	90.000	13.53788	90.000	14.23382	90.000	14.96536	90.000	15.73432	90 .0 00
1.05	12.87600	94.514	13.53810	94.512	14.23403	94.511	14.96556	94.510	15.73450	94.509
1.1	12.87670	99.027	13.53878	99.024	14.23470	99.022	14.96616	99.020	15.73510	99.018
1.15	12.87790	103.530	13.53001	103.535	14.23573	103.532	14.96716	103.529	15.73603	103.526
1.2	12.87949	108.051	13.54141	108.046	14.23718	108.041	14.96855	108.037	15.73736	108.034
1.25	12.88146	112.561	13.54322	112.555	14.23807	112.550	14.07023	112.545	15.73808	112.541
1.3	12.88380	117.070	13.54550	117.063	14.24106	117.057	14.07225	117.052	15.74088	117.047
1.35	12.88637	121.577	13.54706	121.560	14.24330	121.563	14.07448	121.557	15.74300	121.551
1.4	12.88010	126.082	13.55062	126.074	14.24505	126.067	14.07600	126.061	15.74520	126.055
1.45	12.89215	130.585	13.55346	130.577	14.24863	130.570	14.97945	130.563	15.74772	130.557
TE	12.80518	125.086	T2.55623	135.078	14.25127	125.071	14.08205	135.064	15.75020	135.058
1.55	12.80820	120.585	12.55018	120.577	14.25412	120.570	14.08466	130.563	15.75270	130.557
т.6	12.00117	144.082	12.56202	144.074	14.25614	139.370	14.08721	144.061	15.75510	144.055
T. 6F	12.00208	148 577	12 56470	148 560	14.25022	148 = 62	14.08060	148 557	15.75740	148.551
1.05	12.90390	140.377	12.56718	152.062	14.25935	140.303	14.00186	152.052	15.75050	153.047
1.,	12.90030	133.070	13.30710	133.003	14.20107	133.037	14.99100	100-0-	-3-7393-	-3347
1.75	12.90888	157.561	13.56936	157.555	14.26377	157.550	14.99385	157.545	15.70144	157.541
1.8	12.91085	162.051	13.57123	162.046	14.26556	162.041	14.99555	102.037	15.70303	102.034
1.85	12.91240	166.539	13.57275	166.535	14.26700	166.532	14.99692	100.529	15.70433	100.520
1.9	12.91360	171.027	13.57387	171.024	14.26805	171.022	14.99790	171.020	15.70530	171.018
1.95	12.91430	175.514	13.57455	175.512	14.26870	175.511	14.99853	175.510	15.76587	175.509
2.0	12.91456	180.000	13.57476	180.000	14.26891	180.000	14.99874	180.000	15.76607	180.000

.

Example. $\cosh (3.4 + i 0.75) = 14.97023 / 67^{\circ}.455 = 14.97023 / 67^{\circ}.27'.18''.$

[119]

	<i>x</i> =	= 3.5	x =	3-55	x =	: 3.6	x =	3.65	x =	3.7
q	7	γ	*	γ	7	γ	*	γ	r	γ
		0		0		0		0		•
0	16.57282	0.000	17.42102	0.000	18.31278	0.000	19.25033	0.000	20.23601	0.000
0.05	16.57260	4.492	17.42083	4.493	18.31260	4.493	19.25015	4.494	20.23585	4.495
0.1	16.57210	8.984	17.42030	8.985	18.31210	8.987	19.24970	8.988	20.23540	8.989
0.15	16.57120	13.476	17.41945	13.479	18.31130	13.481	19.24800	13.483	20.23460	13.484
0.2	16.56996	17.969	17.41830	17.972	18.31020	17.975	19.24790	17.977	20.23365	17.979
0.25	16.56840	22.463	17.41680	22.467	18.30880	22.470	19.24650	22.473	20.23240	22.475
0.3	16.56660	26.958	17.41510	26.962	18.30715	26.965	19.24496	26.969	20.23090	26.972
0.35	16.5646 0	31.454	17.41310	31.458	18.30530	31.462	19.24323	31.466	20.22930	31.469
0.4	16.56240	35.950	17.41110	35.955	18.30335	35.959	19.24134	35.963	20.22750	35.967
0.45	16.56010	40.448	17.40900	40.453	18.30126	40.458	19.23940	40.462	20.22560	40.465
0.5	16.55770	44.948	17.40665	44.953	18.29910	44.957	19.23732	44.961	20.22365	44.965
0.55	10.55538	49.448	17.40441	49.453	18.29099	49.458	19.23530	49.402	20.22170	49.405
0.0	10.55307	53.950	17.40222	53.955	18.29490	53.959	19.23331	53.903	20.21981	53.907
0.65	16.55087	58.454	17.40015	58.458	18.29292	58.462	19.23142	58.405	20.21804	58.469
0.7	16.54885	62.958	17.39822	62.962	18.29109	62.965	19.22968	62.969	20.21639	62.972
0.75	16.54702	67.463	17.39650	67.466	18.28942	67.470	19.22813	67.473	20.21490	67.475
0.8	16.54550	71.969	17.39504	71.972	18.28805	71.975	19.22681	71.977	20.21365	71.979
0.85	16.54428	76.476	17.30386	76.479	18.28694	76.481	19.22577	76.483	20.21268	76.484
0.0	16.54337	80.984	17.30300	80.985	18.28611	80.987	19.22496	80.988	20.21189	80.989
0.95	16.54281	85.492	17.39248	85.493	18.28560	85.493	19.22448	85.494	20.21140	85.495
1.0	16.54263	90.000	17.39230	90.000	18.28546	90.000	19.22434	. 00.000	20.21129	90.000
1.05	16.5428 1	94.508	17.39248	94.507	18.28560	94.507	19.22448	94.506	20.21140	94.506
1.1	16.54337	99.016	17.39300	99.015	18.28611	99.013	19.22496	99.012	20.21189	99.011
1.15	16.54428	103.524	17.39386	103.522	18.28694	103.519	19.22577	103.518	20.21268	103.516
1.2	16.54550	108.031	17.39504	108.028	18.28805	108.025	19.22681	108.023	20.21365	108.021
1.25	16.54702	112.537	17.39650	112.534	18.28942	112.530	19.22813	112.527	20.21490	112.525
1.3	16.54885	117.042	17.39822	117.038	18.29109	117.035	19.22968	117.031	20.21639	117.028
1.35	16.55087	121.547	17.40015	121.542	18.29292	121.538	19.23142	121.535	20.21804	121.531
1.4	10.55307	126.050	17.40222	126.045	18.29490	126.041	19.23331	126.037	20.21981	126.033
1.45	16.55538	130.552	17.40441	130.547	18.29699	130.542	19.23530	130.538	20.22170	130.535
1.5	16.55770	135.052	17.40665	135.047	18.20010	135.043	10.23732	135.030	20.22365	135.035
1.55	16.56010	139.552	17.40000	139.547	18.30126	139.542	10.23040	139.538	20.22560	139.535
1.6	16.56240	144.050	17.41110	144.045	18.30335	144.041	10.24134	144.037	20.22750	144.033
1.65	16.56460	148.546	17.41310	148.542	18.30530	148.538	10.24323	148.534	20.22030	148.531
1.7	16.56660	153.042	17.41510	153.038	18.30715	153.035	19.24496	153.031	20.23090	153.028
1.75	16.56840	157.537	17.41680	157.533	18.30880	157.530	19.24650	157.527	20.23240	157.525
1.8	16.56996	162.031	17.41830	162.028	18.31020	162.025	19.24790	162.023	20.23365	162.021
1.85	16.57120	166.524	17.41945	166.521	18.31130	166.519	19.24890	166.517	20.23460	166.516
1.9	16.57210	171.016	17.42030	171.015	18.31210	171.013	19.24970	171.012	20.23540	171.011
1.95	16.57260	175.508	17.42083	175.507	18.31260	175.507	19.25015	175.506	20.23585	175.505
2.0	16.57282	180.000	17.42102	180.000	18.31278	180.000	19.25033	180.000	20.23601	180.000

Example.
$$\cosh (3.65 + i \underline{0.05}) = 19.25015 / 4^{\circ} \cdot 494 = 19.25015 / 4^{\circ} \cdot 29' \cdot 38''$$
.

[120]

	x =	3.75	x =	3.8	<i>x</i> =	3.85	x =	3.9	x =	3.95
q	r	γ	r	γ	7	γ	*	γ	7	γ
		•		. •		0		•		0
0	21.27230	0.000	22.36178	0.000	23.50717	0.000	24.71135	0.000	25.07731	0.000
0.05	21.27212	4.495	22.36163	4.495	23.50702	4.496	24.71120	4.406	25.07720	4.407
0.1	21.27170	8.990	22.36122	8.991	23.50664	8.002	24.71000	8.003	25.07680	8.003
0.15	21.27100	13.486	22.36055	13.487	23.50600	13.488	24.71024	13.480	25.07620	T2 400
0.2	21.27000	17.981	22.35962	17.983	23.50512	17.985	24.70940	17.986	25.97550	17.988
0.25	21.26885	22.478	22.35850	22.480	23.50404	22.482	24.70840	22.483	25.07450	22.485
0.3	21.26745	26.974	22.35716	26.977	23.50277	26.979	24.70720	26.981	25.97337	26.083
0.35	21.26586	31.472	22.35565	31.474	23.50136	31.477	24.70580	31.470	25.07206	31.481
0.4	21.26415	35.970	22.35403	35.973	23.49980	35.975	24.70440	35.078	25.07066	35.080
0.45	21.26236	40.469	22.35230	40.472	23.49820	40.474	24.70280	40.477	25.96920	40.479
0.5	21.26052	44.968	22.35060	44.971	23.49650	44.974	24.70120	44.977	25.96770	44.979
0.55	21.25869	49.469	22.34883	49.472	23.49486	49.474	24.69964	49.477	25.96618	49.479
0.6	21.25685	53.970	22.34712	53.973	23.49322	53.975	24.69809	53.978	25.96471	53.980
0.65	21.25520	58.472	22.34550	5 ⁸ .474	23.49115	58.477	24.69662	58.479	25.06333	58.481
0.7	21.25362	62.974	22.34401	62.977	23.49028	62.979	24.69528	62.981	25.96205	62.983
0.75	21.25221	67.478	22.34270	67.480	23.48900	67.482	24.69406	67.483	25.96090	67.485
0.8	21.25102	71.981	22.34153	71.983	23.48791	71.985	24.69302	71.986	25.95991	71.988
0.85	21.25006	76.486	22.34061	76.487	23.48704	76.488	24.69223	76.489	25.95911	76.490
0.9	21.24935	80.990	22.33995	80.991	23.48640	80.992	24.69159	80.993	25.95854	80.003
0.95	21.24891	85.495	22.33952	85.496	23.48601	85.496	24.69120	85.496	25.95820	85.497
1.0	21.24878	90.000	22.33941	90.000	23.48589	90.000	24.69110	90.000	25.95806	90.000
1.05	21.24891	94.505	22.33952	94.504	23.48001	94.504	24.69120	94.504	25.95820	94.503
1.1	21.24935	99.010	22.33995	99.009	23.48640	99.008	24.69159	99.007	25.95854	99.007
1.15	21.25006	103.514	22.34061	103.513	23.48704	103.512	24.69223	103.511	25.95911	103.510
1.2	21.25102	108.019	22.34153	108.017	23.48791	108.015	24.69302	108.014	25.95991	108.013
1.25	21.25221	112.522	22.34270	112.520	23.48900	112.518	24.69406	112.517	25.96090	112.515
1.3	21.25302	117.020	22.34401	117.023	23.49028	117.021	24.69528	117.019	25.96205	117.017
1.35	21.25520	121.528	22.34550	121.520	23.49115	121.523	24.69662	121.521	25.96333	121.519
1.4	21.25685	120.030	22.34712	120.027	23.49322	120.025	24.69809	120.022	25.96471	126.020
1.45	21.25869	130.531	22.34883	130.528	23.49480	130.525	24.69964	130.523	25.96618	130.521
1.5	21.26052	135.032	22.35060	135.029	23.49650	135.026	24.70120	135.023	25.96770	135.021
1.55	21.26236	139.531	22.35230	139.528	23.49820	139.526	24.70280	139.523	25.06020	130.521
1.6	21.26415	144.030	22.35403	144.027	23.40080	144.025	24.70440	144.022	25.07066	144.020
1.65	21.26586	148.528	22.35565	148.526	23.50136	148.523	24.70580	148.521	25.07206	148.510
1.7	21.26745	153.026	22.35716	153.023	23.50277	153.021	24.70720	153.019	25.97337	153.017
1.75	21.26885	157.522	22.35850	157.520	23.50404	157.518	24.70840	157.517	25.97450	157.515
1.8	21.27000	162.019	22.35962	162.017	23.50512	162.015	24.70940	162.014	25.97550	162.012
1.85	21.27100	166.514	22.36055	166.513	23.50600	166.512	24.71024	166.511	25.97630	166.510
1.9	21.27170	171.010	22.36122	171.009	23.50664	171.008	24.71090	171.007	25.97680	171.007
1.95	21.27212	175.505	22.36163	175.505	23.50702	175.504	24.71120	175.504	25.97720	175.503
2.0	21.27230	180.000	22.36178	180.000	23.50717	180.000	24.71135	180.000	25.97731	180.000

Example. $\cosh (3.85 + i \underline{1.05}) = 23.48601 / <u>94^{\circ}.504} = 23.48601 / <u>94^{\circ}.30'.14''</u>.$ </u>

[121]

TABLE XII. HYPERBOLIC TANGENTS. $tanh (x + iq) = r / \gamma$

	x =	0	x =	0.05	x =	0.1	x =	0.15	<i>x</i> =	0.2
q	r	γ	r	γ	7	γ	*	γ	*	γ
		0		0		•		0		•
0	0.00	00	0.04006	0.00	0.00067	0.00	0.14880	0.00	0.10738	0.00
0.05	0.07870	00	0.00322	57.368	0.12600	37.846	0.16840	27.100	0.21246	20.840
0.1	0.15828	00	0.16607	72.040	0.18711	56.014	0.21732	45.420	0.25204	36.055
0.15	0 24008	00	0.24520	77.558	0.25087	66.084	0.28232	56.148	0.31045	47.863
0.13	0.24000	00	0.22870	80.220	0.22060	71.002	0.35600	62.612	0.37030	55.054
0.2	0.32492	90	0.52070	00.329	0.33909	111092	0.33099		0.07909	22.024
0.25	0.41421	90	0.41727	81.937	0.42508	74.107	0.43932	00.700	0.45731	59.848
0.3	0.50953	90	0.51180	82.942	0.51851	70.025	0.52931	09.373	0.54308	03.082
0.35	0.61280	90	0.61455	83.585	0. 61970	77.267	0.62802	71.131	0.63915	65.250
0.4	0.72654	90	0.72778	83.987	0.73143	78.047	0.73734	72.245	0.74525	66.64I
0.45	0 .85408	90	0. 85476	84.209	o. 85678	78.478	0.86004	72.864	0.86439	67.419
0.5	1.00000	90	1.00000	84.279	1.00000	78.616	1.00000	73.064	1.00000	67.670
0.55	1.17085	90	1.16991	84.209	1.16717	78.478	1.16274	72.864	1.15688	67.419
0.6	1.37638	90	1.37404	83.987	1.36718	78.047	1.35623	72.245	1.34183	66,641
0.65	1.63185	00	1.62722	83.585	1.61369	77.267	1.59231	71.131	1.56459	65.250
0.7	1.9 6261	90	1.95388	82.942	1.92859	76.025	1.88925	69.373	1.83933	63.082
0.75	2.41421	90	2.39735	81.937	2.34919	74.107	2.27623	66.700	2.18669	59.848
0.8	3.07768	00	3.04234	80.329	2.94391	71.092	2.80120	62.612	2.63581	55.054
0.85	4.165.30	00	4.07824	77.558	3.84810	66.084	3.54212	56.148	3.22115	47.863
0.0	6.31375	00	6.02140	72.040	5.34442	56.014	4.60155	45.420	3.95347	36.955
0.95	12.70620	90	10.72750	57.368	7.87464	37.846	5.93842	27.190	4.70673	20.849
1.0	00	90	20.01667	0.00	10.03331	0.00	6.71659	0.00	5.06649	0.00
1.05	12.70620	90	10.72750	57.368	7.87464	37.846	5.93842	27.190	4.70673	20.849
1.1	6.31375	90	6.02140	72.040	5.34442	56.914	4.60155	45:420	3.95347	36.955
1.15	4.165.30	00	4.07824	77.558	3.84810	66.084	3.54212	56.148	3.22115	47.863
1.2	3.07768	90	3.04234	80.329	2.94391	71.092	2.80120	62.612	2.63581	55.054
1.25	2.41421	90	2.39735	81.937	2.34919	74.107	2.27623	66.700	2.18669	59.848
1.3	1.96261	90	1.95388	82.942	1.92859	76.025	1.88925	69.373	1.83933	63.082
1.35	1.63185	90	1.62722	83.585	1.61369	77.267	1.59231	71.131	1.56459	65.250
1.4	I.37638	90	I.37404	83.987	1.36718	78.047	1.35623	72.245	1.34183	66.641
1.45	1.17085	90	1.16991	84.209	1.16717	78.478	1.16274	72.864	1.15688	67.419
1.5	1.00000	90	1.00000	84.279	- 1.00000	78.616	1.00000	73.064	1.00000	67.670
1.55	0.85408	90	o .85476	84.209	0.85678	78.478	0.86004	72.864	0.86439	67.419
1.6	0.72654	90	0.72778	83.987	0.73143	78.047	0.73734	72.245	0.74525	66.64I
1.65	0.61280	90	0.61455	83.585	0.61970	77.267	0.62802	71.131	0.63915	65.250
1.7	0.50953	90	0.51180	82.942	0.51851	76.025	0.52931	69.373	0.54368	63.082
1.75	0.41421	90	0.41727	81,937	0.42568	74.107	0.43932	66.700	0.45731	59.848
1.8	0.32492	90	0.32870	80.329	0.33969	71.092	0.35699	62.612	0.37939	55.054
1.85	0.24008	90	0.24520	77.558	0.25987	66.084	0.28232	56.148	0.31045	47.863
1.9	0.15838	90	0.16607	72.040	0.18711	56.914	0.21732	45.420	0.25204	36.955
1.95	0.07870	90	0.09322	57.368	0.12699	37.846	0.16840	27.190	0.21246	20.849
2.0	0.00	90	0.04996	0.00	0.09967	0.00	0.14889	0.00	0.19738	0.00

Note. Negat

Negative quantities are in heavy type.

Examples. $\tanh(0.1 + i \underline{0.25}) = 0.42568 / \underline{74^{\circ}.107} = 0.42568 / \underline{74^{\circ}.06'.25''}.$ $\tanh(0.1 + i \underline{1.2}) = 2.94391 \sqrt{71^{\circ}.092} = 2.94391 \sqrt{71^{\circ}.05'.31''}.$

[122]

TABLE XII. HYPERBOLIC TANGENTS. $\tanh(x + iq) = r / \gamma$. CONTINUED

	<i>x</i> =	0.25	<i>x</i> =	0.3	<i>x</i> =	0.35	<i>x</i> =	0.4	<i>x</i> =	0.45
q	r	γ	*	γ	r	γ	Ý	γ	7	γ
		0		0		0		0		0
0	0.24492	0.00	0.29131	0.00	0.33638	0.00	0.37995	0.00	0.42100	0.00
0.05	0.25721	16.710	0.30168	13.805	0.34534	11.652	0.38784	0.000	0.42804	8.665
0.1	0.20145	30.660	0.33123	25.891	0.37127	22.164	0.41000	10.185	0.44065	16.753
0.15	0.34237	41.063	0.37657	35.492	0.41192	30.000	0.447.58	27.076	0.48205	23.858
0.2	0.40561	48.442	0.43445	42.715	0.46491	37.770	0.49617	33.498	0.52758	29.796
0.25	0.47875	53.612	0.50275	48.001	0.52849	42.989	0.55525	38.527	0.58242	34.560
0.3	0.56098	57.214	0.58056	51.799	0.60177	46.843	0.62401	42.331	0.64675	38.242
0.35	0.65262	59.679	o .66796	54.453	o. 68466	49.590	0.70225	45.093	0.72031	40.958
0.4	0.75486	61.281	0.76580	56.200	0.77774	51.423	0.79033	46.961	0.80327	42.815
0.45	0.86968	62.184	0.87570	57.194	0.88225	52.474	0.88914	48.039	0.89620	43.896
0.5	1.00000	62.476	1.00000	57.518	1.00000	52.817	1.00000	48.392	1.00000	44.250
0.55	1.14985	62.184	1.14195	57.194	1.13347	52.474	1.12469	48.039	1.11583	43.896
0.6	1.32476	61.281	1.30582	56.200	1.28577	51.423	1.26529	46.961	1.24492	42.815
0.65	1.53228	59.679	1.49710	54-453	1.46059	49.590	1.42400	45.093	1.38830	40.958
0.7	1.78259	57.214	1.72246	51.799	1.66176	46.843	1.60255	42.331	1.54620	38.242
0.75	2.08878	53.612	1.98907	48.001	1.89219	42.989	1.80100	38.527	1.71698	34.560
0.8	2.46545	48.442	2.30177	42.715	2.15006	37.770	2.01545	33.498	1.80545	29.796
0.85	2.92081	41.063	2.65553	35.492	2.42764	30.000	2.23422	27.076	2.07060	23.858
0.0	3.43113	30.669	3.01003	25.891	2.69344	22.164	2.43370	10.185	2.22397	16.753
0.95	3.88795	16.710	3.31480	13.805	2.89571	11.652	2.57838	9.990	2.33132	8.665
1.0	4.08299	0.00	3.43274	0.00	2.97287	0.00	2.63193	0.00	2.37024	0.00
1.05	3.88795	16.710	3.31480	13.805	2.89571	11.652	2.57838	9.990	2.33132	8.665
1.1	3.43113	30.669	3.01903	25.891	2.69344	22.164	2.43370	19.185	2.22397	16.753
1.15	2.92081	41.063	2.65553	35.492	2.42764	30.900	2.23422	27.076	2.07060	23.858
1.2	2.46545	48.442	2.30177	42.715	2.15096	37.770	2.01545	33.498	1.89545	29.796
1.25	2.08878	53.612	1.98907	48.001	1.89219	42.989	1.80100	38.527	1.71698	34.560
1.3	1.78259	57.214	1.72246	51.799	1.66176	46.843	1.60255	42.331	1.54620	38.242
1.35	1.53228	59.679	1.49710	54.453	1.46059	49.590	1.42400	45.093	1.38830	40.958
1.4	1.32476	61.281	1.30582	56:200	1.28577	51.423	1.26529	46.961	1.24492	42.815
1.45	1.14985	62.184	1.14195	57.194	1.13347	52.474	1.12469	48.039	1.11583	43.896
1.5	1.00000	62.476	1.00000	57.518	1.00000	52.817	1.00000	48.392	1.00000	44.250
1.55	0.86068	62.184	0.87570	57.194	0.88225	52.474	0.88014	48.039	0.80620	43.896
1.6	0.75486	61.281	0.76580	56.200	0.77774	51.423	0.70033	46.961	0.80327	42.815
1.65	0.65262	50.670	0.66706	54.453	0.68466	49.500	0.70225	45.093	0.72031	40.058
1.7	0.56098	57.214	0.58056	51.799	0.60177	46.843	0.62401	42.331	0.64675	38.242
1.75	0.47875	53.612	0.50275	48.001	0.52849	42.989	0.55525	38.527	0.58242	34.560
1.8	0.40561	48.442	0.43445	42.715	0.46491	37.770	0.49617	33.498	0.52758	29.796
1.85	0.34237	41.063	0.37657	35.492	0.41192	30.900	0.44758	27.076	0.48295	23.858
1.9	0.29145	30.669	0.33123	25.891	0.37127	22.164	0.41090	19.185	0.44965	16.753
1.95	0.25721	16.710	0.30168	13.805	0.34534	11.652	0.38784	9.990	0.42894	8.665
2.0	0.24492	0.00	0.29131	0.00	0.33638	0.00	0.37995	0.00	0.42190	0.00

Note. Negative quantities are in heavy type.

Examples. $\tanh(0.4 + i 0) = 0.37995 / 0^{\circ}$. $\tanh(0.45 + i \underline{1.1}) = 2.22397 \sqrt{16^{\circ}.753} = 2.22397 \sqrt{16^{\circ}.45'.11''}$.

[123]

TABLE XII. HYPERBOLIC TANGENTS. $tanh(x + iq) = r / \gamma$. Continued

	x =	0.5	x =	0.55	x =	0.6	x =	0.65	x =	0.7
q	7	γ	*	γ	r	γ	- r	γ	r	γ
		•		۰		•		0		•
0	0.46211	0.00	0.50052	0.00	0.53704	0.00	0.57167	0.00	0.60437	0.00
0.05	0.46846	7.582	0.50628	6.680	0.54230	5.917	0. 57648	5.263	0.60878	4.696
0.1	0.48720	14.732	0.52334	13.027	0.55790	11.570	0.59079	10.312	0.62194	9.217
0.15	0.51758	21,122	0.55115	18.773	0.58344	16.739	0.61428	14.966	0.64357	13.409
0.2	0.55865	26.572	0.58900	23.753	0.61835	21.276	0.64650	19.090	0.67331	17.153
0.25	0.60952	31.035	0.63616	27.897	0. 66205	25.101	° 0. 68696	22.604	0.71076	20.372
0.3	0.66956	34.544	0.09209	31.204	0.71405	28.190	0.73523	25.471	0.75548	23.017
0.35	0.73847	37.109	0.75045	33.707	0.77399	30.553	0.79092	27.083	0.80711	25.074
0.4	0.81628	38.983	0.82914	35.453	0.84168	32.214	0.85377	29.248	0.86531	26.539
0.45	0.90328	40.046	0.91025	36.482	0.91703	33.198	0.92354	30.180	0.92973	27.414
0.5	1.00000	40.395	1.00000	36.822	1.00000	33.524	1.00000	30.489	1.00000	27.705
0.55	1.10708	40.040	1.09800	30.482	1.09048	33.198	1.08279	30.180	1.07558	27.414
0.0	1.22508	38.983	1.20007	35.453	1.18810	32.214	1.17128	29.248	1.15500	20.539
0.05	1.35414	37.109	1.32197	33.707	1.29201	30.553	1.20434	27.083	1.23898	25.074
0.7	1.49352	34.544	1.44490	31.204	1.40047	28.190	1.30012	25.471	1.32300	23.017
0.75	1.64064	31.035	1.57193	27.897	1.51047	25.101	1.45568	22.604	1.40695	20.372
0.8	1.79004	26.572	1.69780	23.753	1.61722	21.276	1.54680	19.090	1.48519	17.153
0.85	1.93206	21.122	1.81438	18.773	1.71398	16.739	1.62793	14.966	1.55384	13.409
0.9	2.05254	14.732	1.91081	13.027	1.79243	11.570	1.69266	10.312	1.60788	9.217
0.95	2.13465	7.582	1.97520	6.680	1.84400	5.917	1.73467	5.263	1.64262	4.696
1.0	2.16395	0.00	1.99792	0.00	1.86202	0.00	1.74926	0.00	1.65462	0.00
1.05	2.1 3465	7.582	1.97520	6.680	1.84400	5.917	1.73467	5.263	1.64262	4.696
1.1	2.05254	14.732	1.91081	13.027	1.79243	11.570	1.69266	10.312	1.60788	9.217
1.15	1.93206	21.122	1.81438	18.773	1.71398	16.739	1.62793	14.966	1.55384	13.409
1.2	1.79004	26.572	1.69780	23.753	1.61722	21.276	1.54680	19.090	1.48519	17.153
1.25	1.64064	31.035	1.57193	27.897	1.51047	25.101	1.45568	22.604	1.40695	20.372
1.3	1.49352	34.544	1.44490	31.204	1.40047	28.190	1.30012	25.471	1.32300	23.017
1.35	1.35414	37.109	1.32197	33.707	1.20201	30.553	1.20434	27.083	1.23898	25.074
1.4	1.22508	38.983	1.20007	35.453	1.18810	32.214	1.17128	29.248	1.15500	20.539
1.45	1.10708	40.040	1.09800	30.482	1.09048	33.198	1.08279	30.180	1.07558	27.414
1.5	1.00000	40.395	1.00000	36.822	1.00000	33.524	1.00000	30.489	1.00000	27.705
1.55	0.90328	40.046	0.91025	36.482	0.91703	33.198	0.92354	30.180	0.92973	27.414
1.6	0.81628	38.983	0.82914	35.453	0.84168	32.214	0.85377	29.248	0.86531	26.539
1.65	0.73847	37.169	0.75645	33.707	0.77399	30.553	0.79092	27.683	0.80711	25.074
1.7	0.66956	34.544	0.69209	31.204	0.71405	28.190	0.73523	25.471	0.75548	23.017
1.75	0.60952	31.035	0.63616	27.897	0.66205	25.101	0.68696	22.604	0.71076	20.372
1.8	0.55865	26.572	0.58900	23.753	0.61835	21.276	0.64650	19.090	0.67331	17.153
1.85	0.51758	21.122	0.55115	18.773	0.58344	16.739	0.61428	14.966	0.64357	13.409
1.9	0.48720	14.732	0.52334	13.027	0.55790	11.570	0.59079	10.312	0.62194	9.217
1.95	0. 46846	7.582	0.50628	6.680	0.54230	5.917	0.57648	5.263	0.60878	4.696
2.0	0.46211	0.00	0.50052	0.00	0.53704	0.00	0.57167	0.00	0.60437	0.00

Note.

Negative quantities are in heavy type.

Examples. $\tanh (0.7 + i 0.7) = 1.32366 / 23^{\circ}.017 = 1.32366 / 23^{\circ}.01'.01''.$ $\tanh (0.6 + i 1.5) = 1.0000 \sqrt{33^{\circ}.524} = 1.0000 \sqrt{33^{\circ}.31'.26''}.$

[124]

TABLE XII. HYPERBOLIC TANGENTS. $tanh(x + iq) = r/\gamma$. Continued

	x =	0.75	x =	= o.8	x =	0.85	. <i>x</i> =	• 0.9	<i>x</i> =	0.95
q	7	γ	r	γ	<i>r</i>	γ	r	12	7	γ
		0		•		•		0		•
0	0.63515	0.00	0.66403	0.00	0.69107	0.00	0.71629	0.00	0.73978	0.00
0.05	0.63021	4.202	0.66777	3.767	0.69451	3.384	0.71947	3.043	0.74260	2.741
0.1	0.65131	8.257	0.67802	7.411	0.70478	6.662	0.72802	5.995	0.75141	5.401
0.15	0.67125	12.036	0.60730	10.810	0.72172	9.737	0.74453	8.771	0.76578	7.000
0.2	0.69871	15.432	0.72264	13.898	0.74509	12.526	0.76607	11.297	0.78561	10.196
0.25	0.73333	18.371	0.75461	16.576	0.77459	14.964	0.79326	13.513	0.81065	12.208
0.3	0.77471	20.804	0.79285	18.807	0.80 986	17.004	0.82576	15.375	0.84054	13.904
0.35	0.82247	22.707	0.83695	20.559	0.85051	18.613	0.86316	16.848	0.87492	15.250
0.4	0.87623	24.068	0.88650	21.819	0.89611	19.773	0.90504	17.914	0.91333	16.226
0.45	0.93557	24.885	0.94104	22.576	0.94614	20.472	0.95086	18.557	0.95523	16.816
0.5	1.00000	25.157	1.00000	22.828	1.00000	20.706	1.00000	18.772	1.00000	17.013
0.55	1.06887	24.885	1.06265	22.570	1.05093	20.472	1.05108	18.557	1.04087	10.810
0.6	1.14125	24.068	1.12803	21.819	1.11594	19.773	1.10492	17.914	1.09490	10.220
0.65	1.21585	22.707	1.19482	20.559	1.17570	18.613	1.15853	16.848	1.14297	15.250
0.7	1.29081	20.804	1.26128	18.807	1.23478	17.004	1.21101	15.375	1.18971	13.904
0.75	1.36365	18.371	1.32510	16.576	1.20101	14.064	1.26062	13.513	1.23358	12.208
0.8	1.43121	15.432	1.38382	13.808	1.34212	12.526	1.30536	11.207	1.27289	10.196
0.85	1.48076	12.036	1.43411	10.810	1.38559	9.737	1.34313	8.771	1.30586	7.900
0.0	1.53537	8.257	1.47203	7.411	1.41880	6.662	1.37180	5.995	1.33083	5.401
0.95	1.56444	4.202	1.49751	3.767	1.43986	3.384	1.38992	3.043	1.34645	2.741
1.0	1.57443	0.00	T. 50504	0.00	1.44703	0.00	1.30606	0.00	1.35175	0.00
1.05	T.56444	4.202	1.40751	3.767	1.43086	3.384	1.38002	3.043	1.34645	2.741
т.т	1.52527	8.257	T.47202	7.411	1.41880	6.662	1.37180	5.005	T. 33083	5.401
T.T.C	T.48076	12.036	T.424TT	10.810	1.28550	0.737	T. 2/ 2T 2	8.771	1.30586	7.000
T.2	1.42121	15.422	T. 28282	12.808	1.24212	12.526	T. 20526	11.207	1.27280	10.106
	6 - 6 -	-0.43-		-66			~			
1.25	1.30305	18.371	1.32519	10.570	1.29101	14.904	1.20002	13.513	1.23350	12.200
1.3	1.29081	20.804	1.20128	18.807	1.23478	17.004	1.21101	15.375	1.10971	13.904
1.35	1.21505	22.707	1.19482	20.559	1.17570	18.013	1.15053	10.040	1.14297	15.250
1.4	1.14125	24.008	1.12803	21.819	1.11594	19.773	1.10492	17.914	1.09490	10.220
1.45	1.00887	24.885	1.00205	22.570	1.05093	20.472	1.05108	18.557	1.04087	10.810
1.5	1.00000	25.157	1.00000	22.828	1.00000	20.706	1.00000	18.772	1.00000	17.013
1.55	0.93557	24.885	0.94104	22.576	0.94614	20.472	0.95086	18.557	0.95523	16.816
1.6	0.87623	24.068	0.88650	21.819	0.89611	19.773	0.90504	17.914	0.91333	16.226
1.65	0.82247	22.707	0.83695	20.559	0.85051	18.613	0.86316	16.848	0.87492	15.250
1.7	0.77471	20.804	0.79285	18.807	0.80986	17.004	0.82576	15.375	0.84054	13.904
1.75	0.73333	18.371	0.75461	16.576	0.77459	14.964	0.79326	13.513	0.81065	12.208
1.8	0.09871	15.432	0.72264	13.898	0.74509	12.526	0.70007	11.297	0.78501	10.190
1.85	0.07125	12.036	0.69730	10.819	0.72172	9.737	0.74453	8.771	0.70578	7.909
1.9	0.05131	8.257	0.07892	7.411	0.70478	6.662	0.72892	5.995	0.75141	5.401
1.95	0.63921	4.202	0.66777	3.767	0.69451	3.384	0.71947	3.043	0.74209	2.741
2.0	0.63515	0.00	0.66403	0.00	0.60107	0.00	0.71620	0.00	0.73978	0.00

-

Note. Negative quantities are in heavy type.

Examples. $\tanh(0.9 + i \underline{1.0}) = 1.39606 / 0^{\circ}.$ $\tanh(0.95 + i \underline{1.55}) = 0.95523 \overline{16^{\circ}.816} = 0.95523 \overline{16^{\circ}.48'.58''}.$

[125]

TABLE XII. HYPERBOLIC TANGENTS. $tanh (x + iq) = r / \gamma$. Continued

	<i>x</i> =	1.0	x = 1	.05	x =	1.1	x = 1	.15	x =	1.2
q	*	γ	<i>r</i>	γ	7	γ	r	Y	*	r
		0		•		•		•		•
0	0.76150	0.00	0.78181	0.00	0.80050	0.00	0.81775	0.00	0.83365	0.00
0.05	0.76428	2.470	0.78427	2.228	0.80277	2.010	0.81084	1.815	0.83557	1.630
0.1	0.77220	4.870	0.70164	4.304	0.80054	3.066	0.82605	3.582	0.84127	3.235
0.15	0.78552	7.134	0.80380	6.440	0.82071	5.815	0.83630	5.254	0.85067	4.747
0.2	0.80376	9.206	0.82058	8.315	0.83611	7.513	0.85043	6.790	0.86361	6.138
0.25	0.82678	11.032	0.84172	9.971	0.85551	9.015	0.86822	8.151	0.87991	7.371
0.3	0.85425	12.575	0.86693	11.373	0.87862	10.288	0.88939	9.306	0.89927	8.419
0.35	0.88580	13.802	0.89585	12.492	0.90509	11.305	0.91359	10.231	0.92138	9.258
0.4	0.92098	14.694	0.92802	13.305	0.93449	12.045	0.94042	10.004	0.94585	9.870
0.45	0.95925	15.233	0.96294	13.798	0.96632	12.495	0.96941	11.313	0.97223	10.242
0.5	1.00000	15.414	1.00000	13.963	1.00000	12.646	1.00000	11.451	1.00000	10.368
0.55	1.04248	15.233	1.03849	13.798	1.03486	12.495	1.03155	11.313	1.02854	10.242
0.6	1.08581	14.694	1.07756	13.305	1.07010	12.045	1.06335	10.904	1.05725	9.870
0.65	1.12892	13.802	1.11626	12.492	1.10486	11.305	1.09458	10.231	1.08533	9.258
0.7	1.17061	12.575	1.15349	11.373	1.13815	10.288	1.12437	9.306	1.11201	8.419
0.75	1.20051	11.032	1.18804	0.071	1.16880	0.015	1.15170	8.151	1.13640	7.37I
0.8	1.24415	0.206	1.21866	8.315	1.10602	7.513	1.17587	6.700	1.15703	6.138
0.85	1.27305	7.134	1.24400	6.440	1.21846	5.815	1.10574	5.254	1.17555	4.747
0.0	1.20485	4.870	1.26320	4.304	1.23527	3.066	1.21058	3.582	1.18868	3.235
0.95	1.30843	2.470	1.27506	2.228	1.24569	2.010	1.21976	1.815	1.19680	1.639
I.0	1.31304	0.00	1.27908	0.00	1.24922	0.00	1.22286	0.00	1.19954	0.00
1.05	1.30843	2.470	1.27506	2.228	1.24569	2.010	1.21976	1.815	1.19680	1.639
I.I	1.29485	4.870	1.26320	4.394	1.23527	3.966	1.21058	3.582	1.18868	3.235
1.15	1.27305	7.134	1.24409	6.440	1.21846	5.815	1.19574	5.254	1.17555	4.747
1.2	1.24415	9.206	1.21866	8.315	1.19602	7.513	1.17587	6.790	1.15793	6.138
1.25	1.20951	11.032	1.18804	9.971	1.16889	9.015	1.15179	8.151	1.13649	7.371
1.3	1.17061	12.575	1.15349	11.373	1.13815	10.288	1.12437	9.300	1.11201	8.419
1.35	1.12892	13.802	1.11626	12.492	1.10486	11.305	1.09458	10.231	1.08533	9.258
1.4	1.08581	14.694	1.07750	13.305	1.07010	12.045	1.06335	10.904	1.05725	9.870
1.45	1.04248	15.233	1.03849	13.798	1.03486	12.495	1.03155	11.313	1.02854	10.242
1.5	1.00000	15.414	1.00000	13.963	1.00000	12.646	1.00000	11.451	1.00000	10.368
1.55	0.95925	15.233	0.96294	13.798	0.96632	12.495	0.96941	11.313	0.97223	10.242
1.6	0.92098	14.694	0.92802	13.305	0.93449	12.045	0.94042	10.904	0.94585	9.870
1.65	0.88580	13.802	0.80585	12.492	0.00500	11.305	0.91359	10.231	0.92138	9.258
1.7	0.85425	12.575	0.86693	11.373	0.87862	10.288	0.88939	9.306	0.89927	8.419
1.75	0.82678	11.032	0.84172	9.971	0.85551	9.015	0.86822	8.151	0.87991	7.371
1.8	0.80376	9.206	0.82058	8.315	0.83611	7.513	0.85043	6.790	0.86361	6.138
1.85	0.78552	7.134	0.80380	6.440	0.82071	5.815	0.83630	5.254	0.85067	4.747
1.9	0.77229	4.870	0.79164	4.394	0.80954	3.966	0.82605	3.582	0.84127	3.235
1.95	0.76428	2.470	0.78427	2.228	0.80277	2.010	0.81984	1.815	0.83557	1.639
2.0	0.76159	0.00	0.78181	0.00	0.80030	0.00	0.81775	0.00	0.83365	0.00

Note. Negative quantities are in heavy type.

Examples. $\tanh(1.1 + i 0.7) = 1.13815 / 10^{\circ}.288 = 1.13815 / 10^{\circ}.17'.17''.$ $\tanh(1.2 + i 1.7) = 0.89927 \sqrt{8^{\circ}.419} = 0.89927 \sqrt{8^{\circ}.25'.08''}.$ **TABLE XII.** HYPERBOLIC TANGENTS. $tanh (x + iq) = r / \gamma$. Continued

	<i>x</i> =	1.25	<i>x</i> =	1.3	x = z	1.35	x =	1.4	x = 1	.45
q	r	r	r	γ	r	γ	7	γ	*	γ
		0		0		0		0		0
0	0.84828	0.00	0.86172	0.00	0.87405	0.00	0.88535	0.00	0.80560	0.00
0.05	0.85004	1.481	0.86333	1.338	0.87552	1.210	0.88660	1.004	0.80602	0.080
0.1	0.85526	2.024	0.86811	2.643	0.87000	2.380	0.80060	2.161	0.00057	1.053
OIS	0.86287	4.201	0 87500	2 870	0.88711	2.508	0.80728	2.172	0.00650	2 860
0.2	0.87572	5 540	0.88684	5.017	0.80702	4 528	0.00624	4 104	0.01485	2 712
	0.07373	3.349	0.00004	3.017	0.09702	+.330	0.90034	4.104	0.91403	3.1.4
0.25	0.89063	6.666	0.90047	6.029	0.90947	5.454	0.91769	4.934	0.92521	4.463
0.3	0.90833	7.616	0.91663	6.890	0.92421	6.234	0.93114	5.640	0.93746	5.103
0.35	0.02852	8.378	0.03504	7.581	0.94099	6.86o	0.94642	6.207	0.95137	5.617
0.4	0.05082	8.033	0.05534	8.085	0.95947	7.317	0.06323	6.622	0.06665	5.003
0.45	0.07481	0.272	0.97715	8.393	0.97928	7.596	0.98122	6.875	0.98298	6.222
		0		9 406		- 69-	-	6 . 6 .		6
0.5	1.00000	9.305	1.00000	8.490	1.00000	7.000	1.00000	6.900	1.00000	0.299
0.55	1.02584	9.272	1.02338	8.393	1.02110	7.590	1.01014	0.075	1.01733	0.222
0.0	1.05173	8.933	1.04074	0.005	1.04224	7.317	1.03817	0.022	1.03450	5.993
0.05	1.07099	8.378	1.00948	7.501	1.00271	0.800	1.05001	0.207	1.05112	5.017
0.7	1.10092	7.010	1.09090	0.890	1.08200	0.234	1.07395	5.040	1.00071	5.103
0.75	1.12280	6.666	1.11054	6.029	1.09955	5.454	1.08963	4.934	1.08084	4.463
0.8	1.14192	5.549	1.12760	5.017	1.11483	4.538	1.10335	4.104	1.09308	3.712
0.85	1.15758	4.201	1.14156	3.879	1.12726	3.508	1.11448	3.172	1.10304	2.869
0.0	1.16924	2.924	1.15193	2.643	1.13650	2.389	1.12272	2.161	1.11041	1.953
0.95	1.17642	1.481	1.15831	1.338	1.14218	1.210	1.12779	1.094	1.11493	0.989
1.0	1.17885	0.00	1.16047	0.00	1.14410	0.00	1.12050	0.00	1.11646	0.00
1.05	1.17642	1.481	1.15831	1.338	1.14218	1.210	1.12770	1.004	1.11403	0.080
LT	1.16024	2.024	1.15103	2.643	1.13650	2.380	1.12272	2.161	1.11041	1.053
LIS	1.15758	4.201	1.14156	3.870	1.12726	3.508	1.11448	3.172	1.10304	2.860
1.2	1.14102	5.540	1.12760	5.017	1.11483	4.538	1.10335	4.104	1.00308	3.712
		3.349	,			4.00-		44	0.0	
1.25	1.12280	0.000	1.11054	0.029	1.09955	5.454	1.08903	4.934	1.08084	4.403
1.3	1.10092	7.010	1.00000	0.890	1.08200	0.234	1.07395	5.040	1.00071	5.103
1.35	1.07699	8.378	1.00948	7.581	1.00271	0.800	1.05001	0.207	1.05112	5.017
1.4	1.05173	8.933	1.04074	8.085	1.04224	7.317	1.03817	0.022	1.03450	5.993
1.45	1.02584	9.272	1.02338	8.393	1.02110	7.590	1.01914	0.875	1.01733	0.222
1.5	1.00000	9.385	1.00000	8.496	1.00000	7.689	1.00000	6.960	I.00000	6.299
1.55	0.97481	9.272	0.97715	8.393	0.97928	7.596	0.98122	6.875	0. 98298	6.222
1.6	0.95082	8.933	0.95534	8.085	0.95947	7.317	0.96323	6.622	0.96665	5.993
1.65	0.02852	8.378	0.93504	7.581	0.94099	6.860	0.94642	6.207	0.95137	5.617
1.7	0.90833	7.616	0.91663	6.890	0.92421	6.234	0.93114	5.640	0.93746	5.103
1 75	0.80062	6.666	0.00047	6.020	0.00047	5.454	0.01760	4.034	0.02521	4.463
18	0.87572	5.540	0.88684	5.017	0.80702	4.538	0.00634	4.104	0.01485	3.712
T.8=	0.86287	4.201	0.87500	3.870	0.88711	3.508	0.80728	3.172	0.00650	2.860
1.05	0.85526	2.024	0.86811	2.643	0.87000	2.380	0.80060	2.161	0.00057	1.053
1.9	0.85004	1.481	0.86322	1.338	0.87552	1.210	0.88660	1.004	0.80602	0.080
1.93	.0.03004		-100333		101031					
2.0	0.84828	0.00	0.86172	0.00	0.87405	0.00	0.88535	0.00	0.89569	0.00

Note.

Negative quantities are in heavy type.

Examples. $\tanh(1.25 + i \underline{0.25}) = 0.89063 / 6^{\circ} .666 = 0.89063 / 6^{\circ} .39' .58''.$ $\tanh(1.25 + i \underline{1.25}) = 1.12280 \sqrt{6^{\circ} .666} = 1.12280 \sqrt{6^{\circ} .39' .58''}.$

[127]

• •	<i>x</i> =	1.5	x = x	1.55	<i>x</i> ==	1.6	x = x	1.65	x =	1.7
q	7	γ	*	γ	r	γ	7	γ.	r	γ
		•		۰		•		0		•
0	0.90515	0.00	0.91379	0.00	0.92167	0.00	0.92886	0.00	0.93541	0.00
0.05	0.90627	0.894	0.91481	0.809	0.92260	0.732	0.92970	0. 662	o.93618	0.599
0.1	0.00060	1.767	0.91785	1.598	0.92537	1.446	0.93223	1.308	0.93848	1.183
0.15	0.01 500	2.595	0.92285	2.347	0.92993	2.123	0.93638	1.921	0.94226	1.738
0.2	0.92263	3.357	0.92972	3.038	0.93619	2.748	0.94207	2.486	0.94744	2.249
0.25	0.93207	4.038	0.93832	3.653	° 0. 94401	3.305	0.94920	2.990	0.95392	2.705
0.3	0.94323	4.617	0.94847	4.177	0.95325	3.780	0.95760	3.420	0.96155	3.095
0.35	0.95588	5 .0 83	0 .95998	4.599	0.96371	4.161	0.96710	3.766	0.97018	3.407
0.4	0.96976	5.423	0.97259	4.908	0.97516	4.440	o.97749	4.019	0.97961	3.636
0.45	0.98458	5.631	0.98603	5.096	0.98735	4.611	0. 98854	4.173	0.98962	3.776
0.5	1.00000	5.700	1.00000	5.159	1.00000	4.668	1.00000	4.225	1.00000	3.822
0.55	1.01500	5.631	1.01417	5.090	1.01281	4.011	1.01159	4.173	1.01049	3.770
0.6	1.03118	5.423	1.02818	4.908	1.02548	4.440	1.02303	4.019	1.02082	3.636
0.65	1 .0 4616	5.083	1.04169	4.599	1.03766	4.161	1.03402	3.766	1.03074	3.407
0.7	1.06019	4.617	1.05433	4.177	1.04904	3.780	1 .0 4428	3.420	1.03999	3.095
0.75	1.07280	4.038	1.06574	3.653	1.05031	3.305	1.05353	2.000	1.04831	2.705
0.8	1.08386	3.357	1.07550	3.038	1.06817	2.748	1.06140	2.486	1.05548	2.240
0.85	1.00270	2.505	1.08360	2.347	1.07535	2.123	1.06705	1.021	1.06128	1.738
0.0	1.00038	1.767	1.08051	1.508	1.08065	1.446	1.07270	1.308	1.06556	1.182
0.95	1.10343	0.894	1.09313	0.809	1.08390	0.732	1.07562	0.662	1.06817	0.599
1.0	1.10479	0.00	1.0 9436	0.00	1.08500	0.00	1. 0 7659	0.00	1.06906	0.00
1.05	1.10343	0.894	1.09313	0.809	1.08390	0.732	1.07562	0.662	1.06817	0.599
1.1	1.09938	1.767	1.08951	1.598	1.08065	1.446	1.07270	1.308	1.06556	1.183
1.15	1.00270	2.595	1.08360	2.347	1.07535	2.123	1.06795	1.921	1.06128	1.738
1.2	1.08386	3.357	1.07559	3.038	1.06817	2.748	1.06149	2.486	1.05548	2.249
1.25	1.07289	4.038	1.06574	3.653	1.05931	3.305	1.05353	2.990	1.04831	2,705
1.3	1.06019	4.617	1.05433	4.177	1.04904	3.780	1.04428	3.420	1.03999	3.095
1.35	1.0 4616	5.083	1.04169	4.599	1.03766	4.1.61	1.03402	3.766	1.03074	3.407
I.4	1.03118	5.423	1.02818	4.908	1.02548	4.440	1.02303	4.019	1.02082	3.636
1.45	1.01566	5.631	1.01417	5.096	1.01281	4.611	1.01159	4.173	1.01049	3.776
1.5	1.00000	5.700	1.00000	5.159	1.00000	4.668	1.00000	4.225	1.00000	3.822
1.55	0.98458	5.631	0.98603	5.096	0.98735	4.611	0.98854	4.173	0.98962	3.776
1.6	o .96976	5.423	0.97259	4.908	0.97516	4.440	0.97749	4.019	0.97961	3.636
1.65	0. 95588	5.083	0. 95998	4.599	0.96371	4.161	0.96710	3.766	0.97018	3.407
1.7	0.94323	4.617	0.94847	4.177	0.95325	3.780	0.95760	3.420	0.96155	3.095
1.75	0.93207	4.038	0.93832	3.653	0.94401	3.305	0.94920	2.990	0.95392	2.705
1.8	0.92263	3.357	0.92972	3.038	0.93619	2.748	0.94207	2.486	0.94744	2.249
1.85	0.91509	2.595	0.92285	2.347	0.92993	2.123	0.93638	1.921	0.94226	1.738
1.9	0.90960	1.767	0.91785	1.598	0.92537	1.446	0.93223	1.308	0.93848	1.183
1.95	0.90627	0.894	0.91481	0.809	0.92260	0.732	0.92970	0.662	0.93618	0.599
2.0	0.90515	0.00	0.91379	0.00	0.92167	0.00	0.92886	0.00	0.93541	0.00

Note.

Negative quantities are in heavy type.

Examples. $\tanh(1.7 + i \underline{0.7}) = 1.03999 / \underline{3^{\circ}.095} = 1.03999 / \underline{3^{\circ}.05'.42''}.$ $\tanh(1.6 + i \underline{1.7}) = 0.95325 \sqrt{3^{\circ}.780} = 0.95325 \sqrt{3^{\circ}.46'.48''}.$ TABLE XII. HYPERBOLIC TANGENTS. $tanh (x + iq) = r / \gamma$. Continued

	<i>x</i> =	1.75	x =	1.8	x =	1.85	<i>x</i> =	1.9	x =	1.95
q	r	γ	r	γ	r	γ	7	γ	r	γ
		0		0		0		0		0
0	0.04138	0.00	0.04681	0.00	0.95175	0.00	0.05624	0.00	0.06032	0.00
0.05	0.04208	0.542	0.04745	0.400	0.05232	0.443	0.05677	0.401	0.06080	0.363
0.1	0.04417	1.070	0.04035	0.068	0.05406	0.876	0.05834	0.703	0.06222	0.717
0.15	0.04761	1.572	0.05247	1.422	0.05600	1.287	0.06002	1.165	0.06457	1.053
0.2	0.95232	2.035	0.95676	1.841	0.96079	1.666	0.96445	1.507	0.96778	1.364
0.25	0.95821	2.448	0.96211	2.215	0.96565	2.004	o.96886	1.813	0.97178	1.640
0.3	0.96514	2.800	0.96840	2.533	0.97136	2.292	0.97405	2.074	0.97649	1.877
0.35	0.97297	3.083	0.97551	2.789	0.97781	2.524	0.97990	2.285	0.98179	2.067
0.4	0.98153	3.291	0.98327	2.977	0.98485	2.694	0.98628	2.438	0.98757	2.206
0.45	0.99061	3.417	0.99149	3.092	0.99230	2.798	0.99303	2.531	0.99369	2.291
0.5	1.00000	3.459	1.00000	3.130	1.00000	2.833	1.00000	2.562	1.00000	2.319
0.55	1.00948	3.417	1.00858	3.092	1.00770	2.798	1.00702	2.531	1.00635	2.291
0.6	1.01882	3.291	1.01702	2.977	1.01539	2.094	1.01392	2.438	1.01258	2.206
0.65	1.02778	3.083	1.02511	2.789	1.02209	2.524	1.02051	2.285	1.01854	2.067
0.7	1.03612	2.800	1.03263	2.533	1.02948	2.292	1.02664	2.074	1.02408	1.877
0.75	1.04362	2.448	1.03030	2.215	1.03558	2.004	1.03214	1.813	1.02004	1.640
0.8	1.05007	2.035	1.04520	1.841	1.04081	1.666	1.03686	1.507	1.03320	1.364
0.85	1.05529	1.572	1.04000	1.422	1.04504	1.287	1.04067	1.165	1.03673	1.053
0.0	1.05013	1.070	1.05336	0.068	1.04816	0.876	1.04347	0.703	1.03026	0.717
0.95	1.06148	0.542	1.05547	0.490	1.05006	0.443	1.04519	0.401	1.04080	0.363
1.0	1.06228	0.00	1.05619	0.00	1.05070	0.00	1.04576	0.00	1.04131	0.00
1.05	1.06148	0.542	1.05547	0.490	1.05006	0.443	1.04519	0.401	1.04080	0.363
I.I	1.05913	1.070	1.05336	0.968	1.04816	0.876	1.04347	0.793	1.03926	0.717
1.15	1.05529	1.572	1.04990	1.422	1.04504	1.287	1.04067	1.165	1.03673	1.053
1.2	1.05007	2.035	1.04520	1.841	1.04081	1.666	1.03686	1.507	1.03329	1.364
1.25	1.04362	2.448	1.03939	2.215	1.03558	2.004	1.03214	1.813	1.02904	1.640
1.3	1.03012	2.800	1.03203	2.533	1.02948	2.292	1.02004	2.074	1.02408	1.877
1.35	1.02778	3.083	1.02511	2.789	1.02209	2.524	1.02051	2.285	1.01854	2.007
1.4	1.01882	3.291	1.01702	2.977	1.01539	2.094	1.01392	2.438	1.01258	2.200
1.45	1.00948	3.417	1.00858	3.092	1.00770	2.798	1.00702	2.531	1.00635	2.291
1.5	1.00000	3.459	1.00000	3.130	1.00000	2.833	1.00000	2.562	1.00000	2.319
1.55	0.99061	3.417	0.99149	3.092	0.99230	2.798	0.99303	2.531	0.99369	2.291
1.6	0.98153	3.291	0.98327	2.977	0.98485	2.694	0.98628	2.438	0.98757	2.206
1.65	0.97297	3.083	0.97551	2.789	0.97781	2.524	0.97990	2.285	0.98179	2.067
1.7	0.96514	2.800	0.96840	2.533	0.97136	2.292	0.97405	2.074	0.97649	1.877
1.75	0.95821	2.448	0.96211	2.215	0.96565	2.004	0.96886	1.813	0.97178	1.640
1.8	0.95232	2.035 .	0.95676	1.841	0.96079	1.666	0.96445	1.507	0.96778	1.364
1.85	0.94761	1.572	0.95247	1.422	0.95690	1.287	0.96092	1.165	0.96457	1.053
1.9	0.94417	1.070	0.94935	0.968	0.95406	0.876	0.95834	0.793	0.96222	0.717
1.95	0.94208	0.542	0.94745	0.490	0.95232	0.443	0.95677	0.401	0.96080	0.363
2.0	0.94138	0.00	0.94681	0.00	0.95175	0.00	0.95624	0.00	0.96032	0.00

Note.

Negative quantities are in heavy type.

Examples. $\tanh(1.9 + i \underline{0.05}) = 0.95677 / 0^{\circ}.401 = 0.95677 / 0^{\circ}.24'.04''.$ $\tanh(1.95 + i \underline{1.5}) = 1.000 \sqrt{2^{\circ}.319} = 1.000 \sqrt{2^{\circ}.19'.08''}.$

[129]

TABLE XII. HYPERBOLIC TANGENTS. $tanh (x + iq) = r / \gamma$. Continued

	<i>x</i> =	2.0	x = x	2.05	<i>x</i> =	2.1	x = x	2.15	x =	2.2
q	r	γ	r	γ	*	γ	+	γ	*	γ
		0		0		0		0		•
0	0.96403	0.00	0.96740	0.00	0.97045	0.00	0.97323	0.00	0.97574	0.00
0.05	0.96446	0.328	0.96779	0.297	0.97081	0.268	0.97355	0.243	0.97604	0.220
0.1	0.96576	0.649	0.96897	0.587	0.97188	0.531	0.97452	0.481	0.97692	0.435
0.15	0.06780	0.053	0.07000	0.862	0.07363	0.780	0.97611	0.706	0.97842	0.639
0.2	0.97080	1.234	0.97354	1.117	0.97603	1.010	0.97829	0.914	0.98033	0.827
0.25	0.97443	1.484	0.97684	1.343	0.97902	1.215	0.98100	1.099	0.98279	0.995
0.3	0 .97870	1.698	0.98071	1.537	0. 98253	1.390	0.98418	1.258	0.98567	1.138
0.35	0.98351	1.87 0	0.98507	1.692	0.98648	1.531	0.98776	1.385	0.98892	1.253
0.4	0.98875	1.996	0.98981	1.806	0.99078	1.634	0.99165	1.479	0.99244	1.337
0.45	0.99429	2.072	0.99483	1.876	0.99532	1.698	0.99577	1.536	0.99617	1.389
0.5	1.00000	2.098	1.00000	1.899	1.00000	1.718	1.00000	1.555	1.00000	1.406
0.55	1.00574	2.072	1.00520	1.876	1.00470	1.698	1.00425	1.536	1.00385	1.389
0.6	1.01138	1.996	1.01029	1.806	1.00931	1.634	1.00842	1.479	1.00702	1.337
0.65	1.01676	1.870	1.01516	1.692	1.01371	1.531	1.01240	1.385	1.01121	1.253
0.7	1.02176	1.698	1.01967	1.537	1.01778	1.390	1.01608	1.258	1.01454	1.138
0.75	1.02624	1.484	1.02371	1.343	1.02143	1.215	1.01037	1.000	1.01751	0.005
0.8	1.03008	1.234	1.02718	1.117	1.02456	1.010	1.02220	0.014	1.02006	0.827
0.85	1.03318	0.053	1.02008	0.862	1.02708	0.780	1.02447	0.706	1.02206	0.630
0.0	1.03545	0.640	1.03203	0.587	1.02804	0.53I	1.02614	0.481	1.02363	0.435
0.95	1.03685	0.328	1.03328	0.297	1.03007	0.268	1.02717	0.243	1.02455	0.220
1.0	1.03731	0.00	1.03370	0.00	1.03045	0.00	1.02751	0.00	1.02486	0.00
1.05	1.0 3685	0.328	1.03328	0.297	1.03007	0.268	1.02717	0.243	1.02455	0.220
1.1	1.03545	0.649	1.03202	0.587	1.02894	0.531	1.02614	0.481	1.02363	0.435
1.15	1.03318	0.953	1.02998	0.862	1.02708	0.780	1.02447	0.706	1.02206	0.639
1.2	1.03008	1.234	1.02718	1.117	1.02456	1.010	1.02220	0.914	1.02006	0.827
1.25	1.02624	1.484	1.02371	1.343	1.02143	1.215	1.01937	1.099	1.01751	0.995
1.3	1.02170	1.698	1.01967	1.537	1.01778	1.390	1.01608	1.258	1.01454	1.138
1.35	1.01070	1.870	1.01510	1.692	1.01371	1.531	1.01240	1.385	1.01121	1.253
1.4	1.01138	1.996	1.01029	1.806	1.00931	1.634	1.00842	1.479	1.00762	1.337
1.45	1.00574	2.072	1.00520	1.876	1.00470	1.698	1.00425	1.536	1.00385	1.389
1.5	1.00000	2.098	1.00000	1.899	1.00000	1.718	1.00000	1.555	1.00000	1.406
1.55	0.99429	2.072	0.99483	1.876	0.99532	1.698	0.99577	1.536	0.99617	1.389
1.6	0.98875	1.996	0.98981	1.806	0.99078	1.634	0.99165	1.479	0. 99244	1.337
1.65	0.98351	1.870	0.98507	1.692	0.98648	1.531	0.98776	1.385	0 .98892	1.253
1.7	0.97870	1.698	0.98071	1.537	0.98253	1.390	0.98418	1.258	0.98567	1.138
1.75	0.97443	1.484	0.97684	1.343	0.97902	1.215	0.98100	1.099	0.98279	0.995
1.8	0.97080	1.234	0.97354	1.117	0.97603	1.010	0.97829	0.914	0.98033	0.827
1.85	0.96789	0.953	0.97090	0.862	0.97363	0.780	0.97611	0.706	0.97842	0.639
1.9	0.96576	0.649	0.96897	0.587	0.97188	0.531	0.97452	0.481	0.97692	0.435
1.95	0 .96446	0.328	0.96779	0.297	0.97081	0.268	0.97355	0.243	0.97604	0.220
2.0	0.96403	0.00	0.96740	0.00	0.97045	0.00	0.07323	0.00	0.97574	0.00

Note.

Negative quantities are in heavy type.

Examples. $\tanh (2.2 + i \circ) = 0.97574 / \circ^{\circ}$. $\tanh (2.2 + i 1.95) = 0.97604 \sqrt{\circ^{\circ}.220} = 0.97604 \sqrt{\circ^{\circ}.13'.12''}$.

[130]

TABLE XII. HYPERBOLIC TANGENTS. $tanh (x + iq) = r / \gamma$. CONTINUED

	x = x	2.25	x =	2.3	x = 2	.35	x = x	2.4	x = 2	•45
9	*	γ	7	γ	7	γ	r	γ	r	γ
		•		0		•		0		•
0	0.97803	0.00	0.98010	0.00	0.98197	0.00	0.98367	0.00	0.98522	0.00
0.05	0.97829	0.100	0.08034	0.180	0.08210	0.163	0.08388	0.147	0.08540	0.134
0.1	0.97909	0.304	0.08106	0.356	0.08285	0.322	0.08447	0.201	0.08504	0.264
0.15	0.08040	0.578	0.08225	0.523	0.08303	0.473	0.08544	0.428	0.08682	0.388
0.2	0.98219	0.748	0.98387	0.677	0.98539	0.613	0.98677	0.554	0.98802	0.501
0.25	0.98441	0.900	0.98589	0.814	0.98722	0.737	0.98843	0.666	0.98953	0.603
0.3	0.98703	1.030	0.98825	0.932	0.98937	0.843	0.99037	0.763	0.99129	0.690
0.35	0.98997	1.134	0.99092	1.027	0.99178	0.929	0.99256	0.841	0.99326	0.760
0.4	0.99316	1.211	0.99381	1.095	0.99440	0.991	0.99493	0.896	0.99541	0.812
0.45	0.99653	1.257	0.99686	1.138	0.99716	1.030	0.99743	0.931	0.99767	0.843
0.5	1.00000	1.273	1.00000	1.152	1.00000	1.042	1.00000	0.942	1.00000	0.853
0.55	1.00348	1.257	1.00315	1.138	1.00285	1.030	1.00258	0.931	1.00233	0.843
0.0	1.00689	1.211	1.00623	1.095	1.00504	0.991	1.00510	0.896	1.00401	0.812
0.05	1.01014	1.134	1.00917	1.027	1.00829	0.929	1.00750	0.841	1.00078	0.700
0.7	1.01314	1.030	1.01189	0.932	1.01075	0.843	1.00972	0.763	1.00879	0.690
0.75	1.01583	0.000	1.01431	0.814	1.01205	0.737	1.01171	0.666	1.01058	0.603
0.8	1.01814	0.748	1.01640	0.677	1.01482	0.613	1.01340	0.554	1.01212	0.501
0.85	1.01000	0.578	1.01807	0.523	1.01634	0.473	1.01477	0.428	1.01336	0.388
0.0	1.02136	0.304	1.01030	0.356	1.01745	0.322	1.01578	0.201	1.01426	0.264
0.95	1.02219	0.199	1.02005	0.180	1.01813	0.163	1.01639	0.147	1.01482	0.134
1.0	1.02247	0.00	1.02031	0.00	1.01836	0.00	1.01659	0.00	1.01500	0.00
1.05	1.02219	0.199	1.02005	0.180	1.01813	0.163	1.01639	0.147	1.01482	0.134
1.1	1.02136	0.394	1.01930	0.356	1.01745	0.322	1.01578	0.291	1.01426	0.264
1.15	1.01999	0.578	1.01807	0.523	1.01634	0.473	1.01477	0.428	1.01330	0.388
1.2	1.01814	0.748	1.01640	0.677	1.01482	0.613	1.01340	0.554	1.01212	0.501
1.25	1.01583	0.900	1.01431	0.814	1.01295	0.737	1.01171	0.666	1.01058	0.603
1.3	1.01314	1.030	1.01189	0.932	1.01075	0.843	1.00972	0.703	1.00879	0.090
1.35	1.01014	1.134	1.00917	1.027	1.00829	0.929	1.00750	0.841	1.00078	0.700
1.4	1.00689	1.211	1.00623	1.095	1.00564	0.991	1.00510	0.890	1.00401	0.812
1.45	1.00348	1.257	1.00315	1.138	1.00285	1.030	1.00258	0.931	1.00233	0.843
1.5	1.00000	1.273	1.00000	1.152	1.00000	1.042	1.00000	0.942	1.00000	0.853
1.55	0.00653	1.257	0.99686	1.138	0.99716	1.030	0.99743	0.931	0.99767	0.843
1.6	0.99316	1.211	0.99381	1.095	0.99440	0.991	0.99493	0.896	0.99541	0.812
1.65	0.08007	1.134	0.00002	1.027	0.99178	0.929	0.99256	0.841	0.99326	0.760
1.7	0.98703	1.030	0.98825	0.932	0.98937	0.843	0.99037	0.763	0.99129	0.690
1.75	0.98441	0.900	0.98589	0.814	0.98722	0.737	0.98843	0.666	0.98953	0.603
1.8	0.98219	0.748	0.98387	0.677	0.98539	0.613	0.98677	0.554	0.98802	0.501
1.85	0.98040	0.578	0.98225	0.523	0.98393	0.473	0.98544	0.428	0.98682	0.388
1.9	0.97909	0.394	0.98106	0.356	0.98285	0.322	0.98447	0.291	0.98594	0.204
1.95	0.97829	0.199	0.98034	0.180	0.98219	0.163	0.98388	0.147	0.98540	0.134
2.0	0.97803	0.00	0.98010	0.00	0.98197	0.00	0.98367	0.00	0.98522	0.00

Note. Negative quantities are in heavy type.

Examples. $\tanh (2.45 + i 0.7) = 1.00879 / 0^{\circ}.690 = 1.00879 / 0^{\circ}.41'.24''.$ $\tanh (2.45 + i 1.7) = 0.99129 \sqrt{0^{\circ}.690} = 0.99129 \sqrt{0^{\circ}.41'.24''}.$

[131]

TABLE XII. HYPERBOLIC TANGENTS. $tanh (x + iq) = r / \gamma$. Continued

	x =	2.5	x = 2	2.55	x =	2.6	x =	2.65	x =	2.7
q	*	γ	*	γ	r	γ	r	γ	r	γ
		0		•		0		0		•
0	0.98 661	0.00	0.98788	0.00	0.98903	0.00	0.99007	0.00	0.99101	0.00
0.05	0.98678	0.121	0.98803	0.109	0.98916	0.099	0.99019	0.089	0.99112	0.081
0.1	0.08727	0.239	0.98847	0.216	0.98956	0.195	0.99055	0.177	0.99145	0.160
0.15	0.98806	0.350	0.98919	0.317	0.99022	0.287	0.99114	0.260	0. 99198	0.235
0.2	0.98916	0.454	0.99018	0.411	0.99111	0.372	0.99196	0.336	0.99272	0.304
0.25	0.99052	0.546	0.99142	0.494	0.99223	0.447	0.99297	0.405	0.99363	0.366
0.3	0.99211	0.625	0.99286	0.565	0.99354	0.512	0.99415	0.463	0.99471	0.419
0.35	0.99390	0.688	0.99448	0.623	0.99500	0.563	0.99548	0.510	0.99591	0.461
0.4	0. 99584	0.734	0.99624	0.665	0.99660	0.601	0.99692	0.544	0.99721	0.492
0.45	0.99789	0.763	0.99809	0.690	0.99828	0.624	0.99844	0.565	0.99859	0.511
0.5	1.00000	0.772	1.00000	0.699	1.00000	0.632	1.00000	0.573	1.00000	0.518
0.55	1.00211	0.703	1.00191	0.000	1.00173	0.024	1.00150	0.505	1.00141	0.511
0.6	1.00417	0.734	1.00377	0.005	1.00342	0.001	1.00309	0.544	1.00280	0.492
0.05	1.00014	0.088	1.00555	0.023	1.00502	0.503	1.00454	0.510	1.00411	0.401
0.7	1.00795	0.625	1.00719	0.565	1.00651	0.512	1.00589	0.463	1.00532	0.419
0.75	1.00058	0.546	1.00866	0.494	1.00783	0.447	1.00708	0.405	1.00641	0.366
0.8	1.01006	0.454	1.00001	0.411	1.00897	0.372	1.00811	0.336	1.00733	0.304
0.85	1.01208	0.350	1.01002	0.317	1.00088	0.287	1.00804	0.260	1.00808	0.235
0.0	1.01200	0.230	1.01166	0.216	1.01055	0.105	1.00054	0.177	1.00863	0.160
0.95	1.01340	0.121	1.01212	0.109	1.01096	0.099	1.00991	0.089	1.00896	0.081
1.0	1.01357	0.00	1.01227	0.00	1.01110	0.00	1.01003	0.00	1.00907	0.00
1.05	1.01340	0.121	1.01212	0.109	1.01096	0.099	1.00991	0.089	1.00896	0.081
1.1	1.01290	0.239	1.01166	0.216	1.01055	0.195	1.00954	0.177	1.00863	0.160
1.15	1.01208	0.350	1.01092	0.317	1.00988	0.287	1.00894	0.260	1.00808	0.235
1.2	1.01096	0.454	1.00991	0.411	1.00897	0.372	1.00811	0.336	1.00733	0.304
1.25	1.00958	0.546	1.00866	0.494	1.00783	0.447	1.00708	0.405	1.00641	0.366
1.3	1.00795	0.025	1.00719	0.505	1.00051	0.512	1.00589	0.403	1.00532	0.419
1.35	1.00014	0.088	1.00555	0.623	1.00502	0.503	1.00454	0.510	1.00411	0.461
1.4	1.00417	0.734	1.00377	0.005	1.00342	0.001	1.00309	0.544	1.00280	0.492
1.45	1.00211	0.703	1.00191	0.090	1.00173	0.024	1.00156	0.565	1.00141	0.511
1.5	1.00000	0.772	1.00000	0.699	1.00000	0.632	1.00000	0.573	1.00000	0.518
1.55	0 .99789	0.763	0.99809	0.690	0.99828	0.624	0.99844	0.565	0.99859	0.511
1.6	0.99584	0.734	0.99624	0.665	0.99660	0.601	0.99692	0.544	0.00721	0.492
1.65	0.99390	o.688	0.99448	0.623	0.99500	0.563	0.99548	0.510	0.99591	0.46T
1.7	0.99211	0.625	0.99286	0.565	0.99354	0.512	0.99415	0.463	0.99471	0.419
1.75	0.99052	0.546	0.99142	0.494	0.99223	0.447	0.99297	0.405	0.99363	0.366
1.8	0.98916	0.454	0.99018	0.411	0.99111	0.372	0. 99196	0.336	0.99272	0.304
1.85	0.98806	0.350	0.98919	0.317	0.99022	0.287	0.99114	0.260	0.99198	0.235
1.9	0.98727	0.239	0.98847	0.216	0.98956	0.195	0.99055	0.177	0.99145	0.160
1.95	0.98678	0.121	0.98803	0.109	0.98916	0.099	0.99019	0.089	0.99112	0.081
2.0	0.98661	0.00	0.98788	0.00	0.98903	0.00	0.99007	0.00	0.00101	0.00

Note.

Negative quantities are in heavy type.

Examples. $\tanh (2.5 + i \underline{0.25}) = 0.99052 / 0^{\circ} .546 = 0.99052 / 0^{\circ} .32' .46''.$ $\tanh(2.5 + i \underline{1.75}) = 0.99052 \sqrt{0^{\circ}.546} = 0.99052 \sqrt{0^{\circ}.32'.46''}$

[132]

,
TABLE XII. HYPERBOLIC TANGENTS. $tanh (x + iq) = r / \gamma$. Continued

	x = 2.75		x = 2.8		x = 2	.85	x = 2.9		x = 2.95	
q	r	γ	r	γ	r	γ	r	γ	*	γ
		•		•		0		0		•
0	0.99186	0.00	0.99263	0.00	0.99333	0.00	0.99396	0.00	0.99454	0.00
0.05	0.99196	0.073	0.99272	0.066	0.99341	0.060	0.99404	0.054	0.99460	0.040
0.1	0.99226	0.145	0.99299	0.131	0.99366	0.119	0.99426	0.107	0.99480	0.007
0.15	0.99275	0.213	0.99343	0.192.	0.99406	0.174	0.99462	0.158	0.00513	0.143
0.2	0.99341	0.275	0.99404	0.249	0.99460	0.226	0.99511	0.204	0.99558	0.184
0.25	0.99424	0.331	0.99478	0.300	0.99528	0.271	0.99573	0.245	0.99613	0.222
0.3	0.99521	0.379	0.99566	0.343	0.99607	0.310	0.99645	0.281	0. 99679	0.254
0.35	0.99630	0.417	0.99665	0.378	0.99697	0.342	0.99726	0.309	0.99752	0.280
0.4	0.99748	0.446	0.99772	0.403	0.99793	0.365	0.99813	0.330	0.99831	0.299
0.45	0.99872	0.463	0.99884	0.419	0.99895	0.379	0.99905	0.343	0.99914	0.310
0.5	1.00000	0.468	1.00000	0.424	1.00000	0.383	1,00000	0.347	1.00000	0.313
0.55	1.00128	0.403	1.00110	0.419	1.00105	0.379	1.00095	0.343	1.00080	0.310
0.0	1.00253	0.440	1.00229	0.403	1.00207	0.305	1.00187	0.330	1.00169	0.299
0.05	1.00372	0.417	1.00330	0.378	1.00304	0.342	1.00275	0.309	1.00249	0.280
0.7	1.00482	0.379	1.00430	0.343	1.00394	0.310	1.00350	0.281	1.00323	0.254
0.75	1.00580	0.331	1.00524	0.300	1.00474	0.27 I	1.00420	0.245	1.00388	0.222
0.8	1.00664	0.275	1.00600	0.249	1.00543	0.226	1.00401	0.204	1.00444	0.184
0.85	1.00731	0.213	1.00661	0.192	1.00598	0.174	1.00541	0.158	1.00480	0.143
0.0	1.00780	0.145	1.00706	0.131	1.00638	0.119	1.00578	0.107	1.00522	0.007
0.95	1.00810	0.073	1.00733	0.066	1.00663	0.060	1.00600	0.054	1.00543	0.049
1.0	1.00821	0.00	1.00742	0.00	1.00671	0.00	1.00607	0.00	1.00549	0.00
1.05	1.00810	0.073	1.00733	0.066	1.00663	0.060	1.00600	0.054	1.00543	0.049
I.I	1.00780	0.145	1.00706	0.131	1.00638	0.119	1.00578	0.107	1.00522	0.097
1.15	1.00731	0.213	1.00661	0.192	1.00598	0.174	1.00541	0.158	1.00489	0.143
1.2	1.00664	0.275	1.00000	0.249	1.00543	0.226	1.00491	0.204	1.00444	0.184
1.25	1.00580	0.331	1.00524	0.300	1.00474	0.271	1.00429	0.245	1.00388	0.222
1.3	1.00482	0.379	1.00430	0.343	1.00394	0.310	1.00350	0.281	1.00323	0.254
1.35	1.00372	0.417	1.00330	0.378	1.00304	0.342	1.00275	0.309	1.00249	0.280
1.4	1.00253	0.440	1.00220	0.403	1.00207	0.305	1.00187	0.330	1.00109	0.299
1.45	1.00128	0.403	1.00110	0.419	1.00105	0.379	1.00095	0.343	1.00080	0.310
1.5	1.00000	0.468	1.00000	0.424	1.00000	0.383	1.00000	0.347	1.00000	0.313
1.55	0.99872	0.463	0.99884	0.419	0.99895	0.379	0.99905	0.343	0. 99914	0.310
1.6	0.99748	0.446	0.99772	0.403	0.99793	0.365	0.99813	0.330	0.99831	0.299
1.65	0.99630	0.417	0.99665	0.378	0.99697	0.342	0. 99726	0.309	0.99752	0.280
1.7	0.99521	0.379	0.99566	0.343	0.99607	0.310	0.99645	0.281	0.99679	0.254
1.75	0.99424	0.331	0.99478	0.300	0.99528	0.271	0.99573	0.245	0.99613	0.222
1.8	0.99341	0.275	0.99404	0.249	0.99460	0.220	0.99511	0.204	0.99558	0.184
1.85	0.99275	0.213	0.99343	0.192	0.99406	0.174	0.99462	0.158	0.99513	0.143
1.9	0.99226	0.145	0.99299	0.131	0.99366	0.119	0.99426	0.107	0.99480	0.097
1.95	0.99196	0.073	0.99272	0.066	0.99341	0.060	0.99404	0.054	0.99460	0.049
2.0	0.99186	0.00	0.99263	0.00	0.99333	0.00	0.99396	0.00	0.99454	0.00

Note.

Negative quantities are in heavy type.

Examples.
$$\tanh (2.9 + i 0.5) = 1.0000 / 0^{\circ} .347 = 1.0000 / 0^{\circ} .26' .49''.$$

 $\tanh (2.95 + i 1.75) = 0.99613 \sqrt{0^{\circ} .222} = 0.99613 \sqrt{0^{\circ} .13' .19''}.$

[133]

TABLE XII. HYPERBOLIC TANGENTS. $tanh (x + iq) = r / \gamma$. CONTINUED

	<i>x</i> = ;	3.0	x = 3	.05	x = z	3.I	x = 3	.15	x = x	3.2
q	*	γ	r	γ	*	γ	*	γ	*	γ
		0		0		0		0		•
0	0.00505	0.00	0.00552	0.00	0.99595	0.00	0.99633	0.00	0.99668	0.00
0.05	0.00511	0.044	0.00558	0.040	0.00000	0.037	0.99638	0.033	0.00672	0.030
0.1	0.00530	o.088	0.99575	0.070	0.00615	0.072	0.99651	0.065	0.00685	0.050
0.15	0.00550	0.120	0.00601	0.117	0.00630	0.106	0.00673	0.006	0.00704	0.086
0.2	0.99600	0.167	0.99638	0.151	0.99672	0.137	0.99703	0.124	0.99732	0.112
0.25	0.99650	0.201	0.99683	0.182	0.99714	0.165	0.99741	0.149	0.99765	0.135
0.3	0.99709	0.229	0. 99737	0.208	0.99762	0.188	0.99784	0.170	0.99805	0.154
0.35	0.99775	0.253	0.99797	0.229	0 .99816	0.207	0. 99833	0.188	0.99849	0.170
0.4	0. 99847	0.270	0. 99862	0.244	0.99875	0.221	0. 99887	0,200	0.99897	0.181
0.45	0.99923	0.281	0.99930	0.254	0.99937	0.230	0.99943	0.208	0.99948	0.188
0.5	1.00000	0.284	1.00000	0.257	1.00000	0.233	1.00000	0.211	1.00000	0.191
0.55	1.00078	0.281	1.00070	0.254	1.00064	0.230	1.00058	0.208	1.00052	0.188
0.6	1.00153	0.270	1.00139	0.244	1.00125	0.221	1.00114	0.200	1.00103	0.181
0.65	1.00225	0.253	1.00204	0.229	1.00185	0.207	1.00107	0.188	1.00151	0.170
0.7	1.00292	0.229	1 00264	0.208	1.00239	0.188	1.00216	0.170	1.00196	0.154
0.75	1.00351	0.201	1.00318	0.182	1.00287	0.165	1.00260	0.140	1.00235	0.135
0.8	1.00402	0.167	1.00363	0.151	1.00320	0.137	1.00297	0.124	1.00260	0.112
0.85	1.00443	0.120	1.00400	0.117	1.00360	0.106	1.00328	0.006	1.00207	0.086
0.0	1.00473	0.088	1.00427	0.070	1.00387	0.072	1.00350	0.065	1.00316	0.050
0.95	1.00491	0.044	1.00444	0.040	1.00399	0.037	1.00363	0.033	1.00329	0.030
1.0	1.00497	0.00	1.00450	0.00	1.00407	0.00	1.00368	0.00	1.00333	0.00
1.05	1.00491	0.044	1.00444	0.040	1.00399	0.037	1.00363	0.033	1.00329	0.030
1.1	1.00473	0.088	1.00427	0.079	1.00387	0.072	1.00350	0.065	1.00316	0.059
1.15	1.00443	0.129	1.00400	0.117	1.00360	0.106	1.00328	0.096	1.00297	0.086
1.2	1.00402	0.167	1.00363	0.151	1.00329	0.137	1.00297	0.124	1.00269	0.112
1.25	1.00351	0.201	1.00318	0.182	1.00287	0.165	1.00260	0.149	1.00235	0.135
1.3	1.00292	0.229	1.00204	0.208	1.00239	0.188	1.00210	0.170	1.00190	0.154
1.35	1.00225	0.253	1.00204	0.229	1.00185	0.207	1.00107	0.188	1.00151	0.170
1.4	1.00153	0.270	1.00139	0.244	1.00125	0.221	1.00114	0.200	1.00103	0.181
1.45	1.00078	0.281	1.00070	0.254	1.00004	0.230	1.00058	0.208	1.00052	0.188
1.5	1.00000	0.284	1.00000	0.257	1.00000	0.233	1.00000	0.211	1.00000	0.191
1.55	0.99923	0.281	0.99930	0.254	0.99937	0.230	0.99943	0.208	0. 99948	0.188
1.6	0. 99847	0.270	0. 99862	0.244	0.99875	0.221	0. 99887	0.200	0.99897	0.181
1.65	0.99775	0.253	0. 99797	0.229	0 .99816	0.207	o .99833	0.188	0.99849	0.170
1.7	0.99709	0.229	0. 99737	0.208	0.99762	0.188	0.99784	0.170	0.99805	0.154
1.75	0.99650	0.201	0.99683	0.182	0.99714	0.165	0.99741	0.149	0.99765	0.135
1.8	0.99600	0.167	0.99638	0.151	0.99672	0.137	0.99703	0.124	0.99732	0.112
1.85	0.99559	0.129	0.99601	0.117	0.99639	0.106	0.99673	0.096	0.99704	0.086
1.9	0.99530	0.088	0.99575	0.079	0.99615	0.072	0.99651	0.065	0.99685	0.059
1.95	0.99511	0.044	0.99558	0.040	0.99600	0.037	0. 99638	0.033	0.99672	0.030
2.0	0.99505	0.00	0.99552	0.00	0.99595	0.00	0 .99633	0.00	0. 99668	0.00

Note. Negative quantities are in heavy type.

Examples. $\tanh (3.2 + i \circ) = 0.99668 / \circ^{\circ}$. $\tanh (3.2 + i \underline{1.05}) = 1.00329 \sqrt{0^{\circ}.030} = 1.00329 \sqrt{0^{\circ}.1'.48''}.$

[134]

TABLE XII. HYPERBOLIC TANGENTS. $tanh (x + iq) = r / \gamma$. Continued

	x = 3.25		x = 3.3		x = 3.35		x = 3.4		x = 3.45	
q .	*	γ	r	`γ		γ	*	r	*	γ
		0		0		•		0		0
0	0.99700	0.00	0.99728	0.00	0.99754	0.00	0.99777	0.00	0.99799	0.00
0.05	0.99703	0.027	0.99732	0.024	0.99757	0.022	0.99780	0.020	0.99801	0.018
0.I	0.99714	0.053	0.99741	0.048	0.99766	0.044	0.99788	0.030	0.00800	0.036
0.15	0.99732	0.078	0.99758	0.071	0.99781	0.064	0.99802	0.058	0.00821	0.052
0.2	0.99757	0.101	0.99780	0.092	0.99801	0.083	0.99820	0.075	0.99837	0.068
0.25	0.99788	0.122	0.99807	0.110	0.99826	0.100	0.99843	0.090	0.99858	0.082
0.3	0.99823	0.139	0.99840	0.126	0.99855	0.114	0.99869	0.103	0.99882	0.094
0.35	0.99864	0.153	0.98877	0.139	0.99888	0.126	0.99899	0.114	0.99909	0.103
0.4	0.99907	0.164	0.99916	0.148	0.99924	0.134	0.99931	0.121	0.99938	0.110
0.45	0.99953	0.170	0.99958	0.154	0.99962	0.139	0.99965	0.126	0. 99968	0.114
0.5	1.00000	0.172	1.00000	0.156	1.00000	0.141	1.00000	0.128	1.00000	0. 116
0.55	1.00047	0.170	1.00042	0.154	1.00039	0.139	1.00035	0.120	1.00032	0.114
0.0	1.00093	0.164	1.00084	0.148	1.00076	0.134	1.00069	0.121	1.00062	0.110
0.05	1.00137	0.153	1.00124	0.139	1.00112	0.120	1.00101	0.114	1.00092	0.103
0.7	1.00177	0.139	1.00100	0.126	1.00145	0.114	1.00131	0.103	1.00118	0.094
0.75	1.00213	0.122	1.00103	0.110	1.00174	0.100	1.00158	0.000	1.00143	0.082
0.8	1.00244	0.101	1.00220	0.002	1.00100	0.083	1.00180	0.075	1.00163	0.068
0.85	1.00268	0.078	1.00243	0.071	1.00220	0.064	1.00100	0.058	1.00180	0.052
0.0	1.00286	0.053	1.00250	0.048	1.00234	0.044	1.00212	0.030	1.00192	0.036
0.95	1.00297	0.027	1.00269	0.024	1.00243	0.022	1.00220	0.020	1.00199	0.018
1.0	1.00301	0.00	1.00273	0.00	1.00246	0.00	1.00223	0.00	1.00202	0.00
1.05	1.00297	0.027	1.00269	0.024	1.00243	0.022	1.00220	0.020	1.00199	0.018
1.1	1.00286	0.053	1.00259	0.048	1.00234	0.044	1.00212	0.039	1.00192	0.036
1.15	1.00268	0.078	1.00243	0.071	1.00220	0.064	1.00199	0.058	1.00180	0.052
1.2	1.00244	0.101	1.00220	0.092	1.00199	0.083	1.00180	0.075	1.00163	. 0.068
1.25	1.00213	0.122	1.00193	0.110	1.00174	0.100	1.00158	0.090	1.00143	0.082
1.3	1.00177	0.139	1.00160	0.126	1.00145	0.114	1.00131	0.103	1.00118	0.094
1.35	1.00137	0.153	1.00124	0.139	1.00112	0.126	1.00101	0.114	1.00092	0.103
1.4	1.00093	0.164	1.00084	0.148	1.00076	0.134	1.00069	0.121	1.00002	0.110
1.45	1.00047	0.170	1.00042	0.154	1.00039	0.139	1.00035	0.120	1.00032	0.114
1.5	1.00000	0.172	1,00000	0.156	1.00000	0.141	1.00000	0.128	1.00000	0.116
1.55	0.99953	0.170	0.99958	0.154	0.99962	0.139	0.99965	0.126	0.99968	0.114
1.6	0.99907	0.164	0.99916	0.148	0.99924	0.134	0.99931	0.121	0.99938	0.110
1.65	0.99864	0.153	0.99877	0.139	0.99888	0.126	0.99899	0.114	0.99909	0.103
1.7	0.99823	0.139	0.99840	0.126	0.99855	0.114	0.99869	0.103	0.99882	0.094
1.75	0.99788	0.122	0.99807	0.110	0.99826	0.100	0.99843	0.090	0.99858	0.082
1.8	0.99757	0.101	0.99780	0.092	0.99801	0.083	0.99820	0.075	0.99837	0.068
1.85	0.99732	0.078	0.99758	0.071	0.99781	0.064	0.99802	0.058	0.99821	0.052
1.9	0.99714	0.053	0.99741	0.048	0.99766	0.044	0.99788	0.039	0.99809	0.036
1.95	0.99703	0.027	0.99732	0.024	0.99757	0.022	0.99780	0.020	0.99801	0.018
2.0	0.99700	0.00	0.99728	0.00	0.99754	0.00	0.99777	0.00	0.99799	0.00

-

Note. Negative quantities are in heavy type.

Examples. $\tanh (3.4 + i 0.7) = 1.00131 / 0^{\circ} .103 = 1.00131 / 0^{\circ} .06' .11''.$ $\tanh (3.45 + i 1.4) = 1.00062 \sqrt{0^{\circ} .110} = 1.00062 \sqrt{0^{\circ} .06' .36''}.$

[135]

TABLE XII. HYPERBOLIC TANGENTS. $tanh(x + iq) = r/\gamma$. Continued

r	x = x	3.5	x = 3	\$-55	x =	3.6	x = z	3.65	x =	3.7
q	*	γ	r	γ	7	γ	r	γ	*	γ
		•		0		•		•		•
0	0.99818	0.00	0.09835	0.00	0.99851	0.00	0.99865	0.00	0.99878	0.00
0.05	0.00820	0.016	0.00837	0.015	0.00853	0.013	0.99867	0.012	0.99879	0.011
0.1	0.99827	0.032	0.00843	0.020	0.00858	0.026	0.99872	0.024	0.99884	0.022
0.15	0.00838	0.047	0.00853	0.043	0.00867	0.030	0.00880	0.035	0.99891	0.032
0.2	0.99853	0.061	0.99867	0.055	0.99879	0.050	0.99891	0.046	0.99901	0.041
0.25	0.99871	0.074	0.99883	0.067	0.98894	0.061	0.99905	0.055	0.99914	0.050
0.3	0. 9989 3	0.084	0.99903	0.076	0.99912	0.069	0.99921	0.063	0.99928	0.057
0.35	0.99917	0.093	0.99925	0.084	0.99932	0.076	0.99939	0.069	0.99945	0.063
0.4	0.99944	0.099	0.99949	0.090	0.99954	0.081	0.99958	0.074	0.99962	0.067
0.45	0.99972	0.103	0. 99974	0.093	0.99977	0.085	0.99979	0.076	0.99981	0.069
0.5	1.00000	0.104	1.00000	0.095	1.00000	0.086	1.00000	0.077	1.00000	0.070
0.55	1.00028	0.103	1.00020	0.093	1.00023	0.085	1.00021	0.070	1.00019	0.009
0.0	1.00050	0.099	1.00051	0.000	1.00040	0.081	1.00042	0.074	1.00038	0.007
0.65	1.00083	0.093	1.00075	0.084	1.00068	0.070	1.00001	0.009	1.00050	0.003
0.7	1.00107	0.084	1.00097	0.076	1.00088	0.069	1.00079	0.063	1.00072	0.057
0.75	1.00120	0.074	1.00117	0.067	1.00106	0.061	1.00006	0.055	1.00087	0.050
0.8	1.00148	0.061	1.00134	0.056	1.00121	0.050	1.00100	0.046	1.00000	0.041
0.85	1.00163	0.048	1.00147	0.043	1.00133	0.030	1.00120	0.035	1.00100	0.032
0.0	1.00174	0.032	1.00157	0.020	1.00142	0.026	1.00120	0.024	1.00117	0.022
0.95	1.00180	0.016	1.00163	0.015	1.00148	0.013	1.00134	0.012	1.00121	0.011
1.0	1.00183	0.00	1.00165	0.00	1.00149	0.00	1.00135	0.00	1.00122	0.00
1.05	1.00180	0.016	1.00163	0.015	1.00148	0.013	1.00134	0.012	1.00121	0.011
1.1	1.00174	0.032	1.00157	0.029	1.00142	0.026	1.00129	0.024	1.00117	0.022
1.15	1.00163	0.048	1.00147	0.043	1.00133	0.039	I.00120	0.035	1.00109	0.032
1.2	1.00148	0.061	1.00134	0.056	1.00121	0.050	1.00109	0.046	1.00099	0.041
1.25	1.00129	0.074	1.00117	0.067	1.00106	0.061	1.00096	0.055	1.00087	0.050
1.3	1.00107	0.084	1.00097	0.070	1.00088	0.009	1.00079	0.003	1.00072	0.057
1.35	1.00083	0.093	1.00075	0.084	1.00008	0.070	1.00001	0.009	1.00050	0.003
1.4	1.00050	0.099	1.00051	0.090	1.00040	0.081	1.00042	0.074	1.00038	0.007
1.45	1.00028	0.103	1.00020	0.093	1.00023	0.085	1.00021	0.070	1.00019	0.009
1.5	1.00000	0.104	1.00000	0.095	1.00000	0.086	1.00000	0.077	1.00000	0.070
1.55	0.99972	0.103	0.99974	0.093	0.99977	0.085	0.99979	0.076	0.99981	0.069
1.6	0.99944	0.099	0.99949	0.090	0.99954	0.081	0.99958	0.074	0.99962	0.067
1.65	0.99917	0.093	0.99925	0.084	0.99932	0.076	0.99939	0.069	0.99945	0.063
1.7	0.99893	0.084	0.99903	0.076	0.99912	0.06 9	0.99921	0.063	0.99928	0.057
1.75	0.99871	0.074	0.99883	0.067	0.99894	0.061	0.99905	0.055	0.99914	0.050
1.8	0.99853	0.061	0.99867	0.055	0.99879	0.050	0 .99891	0.046	0.99901	0.041
1.85	0.99838	0.047	0.99853	0.043	0.99867	0.039	0.99880	0.035	0.99891	0.032
1.9	0.99827	0.032	0.99843	0.029	0.99858	0.026	0.99872	0.024	0.99884	0.022
1.95	0.99820	0.016	0.99837	0.015	0. 99853	0.013	0.99867	0.012	0.99879	0.011
2.0	0.99818	0.00	0.99835	0.00	0.99851	0.00	0.99865	0.00	0.99878	0.00

Note. Negative quantities are in heavy type.

Examples. $\tanh (3.6 + i \circ) = 0.99851 / o^{\circ}$. $\tanh (3.7 + i \underline{1.7}) = 0.99928 \sqrt{0^{\circ}.057} = 0.99928 \sqrt{0^{\circ}.03'.25''}$

[136]

TABLE XII. HYPERBOLIC TANGENTS. $tanh (x + iq) = r/\gamma$. CONTINUED

,	<i>x</i> = 3	3.75	x =	3.8	x = z	3.85	x = x	3.9	x = 3	3-95
q	r	'nγ	~ r	γ	r	γ	r	γ	1 7	γ
		0		•		0		0		•
0	0.00880	0.00	0.00000	0.00	0.00000	0.00	81000.0	0.00	0.00026	0.00
0.05	0.99891	0.010	0.00001	0.000	0.00011	0.008	0.00010	0.007	0.00027	0.007
0.1	0.00805	0.020	0.00005	0.018	0.99914	0.016	0.00022	0.015	0.00030	0.013
0.15	0.00002	0.020	0.00011	0.026	0.00010	0.024	0.00027	0.021	0.00034	0.010
0.2	0.99911	0.037	0.99919	0.034	0.99927	0.031	0.99934	0.028	0.99940	0.025
0.25	0.99922	0.045	0.99929	0.041	0.99936	0.037	0.99942	0.033	0.99948	0.030
0.3	0.99935	0.051	0.99941	0.046	0.99947	0.042	0.99952	0.038	0.99956	0.034
0.35	0.99950	0.056	0.99955	0.051	0.99959	0.046	0.99963	0.042	0.99966	0.038
0.4	0.9 9966	0.060	0.99969	0.055	0.99972	0.049	0.99975	0.045	0.99977	0.040
0.45	0.99983	0.063	0.99984	0.057	0.99986	0.051	0.99987	0.046	0.99988	0.042
0.5	1.00000	0.063	1.00000	0.057	1.00000	0.052	1.00000	0.047	1.00000	0.043
0.55	1.00017	0.063	1.00016	0.057	1.00014	0.051	1.00013	0.046	1.00012	0.042
0.6	1.00034	0.060	1.00031	0.055	1.00028	0.049	1.00025	0.045	1.00023	0.040
0.65	1.00050	0.056	1.00045	0.051	1.00041	0.046	1.00037	0.042	1.00034	0.038
0.7	1.00065	0.051	1.00059	0.046	1.00053	0.042	1.00048	0.038	1.00044	0.034
0.75	1.00078	0.045	1.00071	0.041	1.00064	0.037	1.00058	0.033	1.00052	0.030
0.8	1.00080	0.037	1.00081	0.034	1.00073	0.031	1.00066	0.028	1.00060	0.025
0.85	1.00000	0.020	1.00080	0.026	1.00081	0.024	1.00073	0.021	1.00066	0.010
0.0	1.00105	0.020	1.00005	0.018	1.00086	0.016	1.00078	0.015	1.00071	0.013
0.95	1.00109	0.010	1.00099	0.009	1.00089	0.008	1.00081	0.007	1.00073	0.007
1.0	1.00111	0.00	1.00100	0.00	1.000000	0.00	1.00082	0.00	1.00074	0.00
1.05	1.00100	0.010	1.00099	0.009	1.00089	0.008	1.00081	0.007	1.00073	0.007
1.1	1.00105	0.020	1.00095	0.018	1.00086	0.016	1.00078	0.015	1.00071	0.013
1.15	1.00009	0.029	1.00089	0.026	1.00081	0.024	1.00073	0.021	1.00066	0.019
1.2 .	1.00089	0.037	1.00081	0.034	1.00073	0.031	1.00066	0.028	1.00060	0.025
1.25	1.00078	0.045	1.00071	0.041	1.00064	0.037	1.00058	0.033	1.00052	0.030
1.3	1.00065	0.051	1.00059	0.046	1.00053	0.042	1.00048	0.038	1.00044	0.034
1.35	1.00050	0.056	1.00045	0.051	1.00041	0.046	1.00037	0.042	1.00034	0.038
1.4	1.00034	0.060	1.00031	0.055	1.00028	0.049	1.00025	`0.045	1.00023	0.040
1.45	1.00017	0.063	1.00016	0.057	1.00014	0.051	1.00013	0.046	1.00012	0.042
1.5	1.00000	0.063	1.00000	0.057	1.00000	0.052	1.00000	0.047	1.00000	0.043
1.55	0.99983	0.063	0.99984	0.057	0.99986	0.051	0.99987	0.046	0.99988	0.042
1.6	0.99966	0.060	0.99969	0.055	0.99972	0.049	0.99975	0.045	0.99977	0.040
1.65	0.99950	0.056	0.99955	0.051	0.99959	0.046	0.99963	0.042	0.99966	0.038
1.7	0.99935	0.051	0.99941	0.046	0.99947	0.042	0.99952	0.038	0.99956	0.034
1.75	0.99922	0.045	0.99929	0.041	0.99936	0.037	0.99942	0.033	0.99948	0.030
1.8	0.99911	0.037	0.99919	0.034	0.99927	0.031	0.99934	0.028	0.99940	0.025
1.85	0.99902	0.029	0.99911	0.026	0.99919	0.024	0.99927	0.021	0.99934	0.019
1.9	0.99895	0.020	0.99905	0.018	0.99914	0.016	0.99922	0.015	0.99930	0.013
1.95	0.99891	0.010	0.99901	0.009	0.99911	0.008	0.99919	.0.007	0.99927	0.007
2.0	0.99889	0.00	0.99900	0.00	0.99909	0.00	0.99918	0.00	0.99926	0.00

Note. Negative quantities are in heavy type.

Examples. $\tanh (3.95 + i \underline{0.9}) = 1.00071 / 0^{\circ} \cdot 013 = 1.00071 / 0^{\circ} \cdot 0' \cdot 47^{\circ} \cdot \\ \tanh (3.95 + i \underline{1.9}) = 0.99930 \sqrt{0^{\circ} \cdot 013} = 0.99930 \sqrt{0^{\circ} \cdot 0' \cdot 47^{\circ}} \cdot$

[137]

TABLE XIII. FUNCTIONS OF 4 + iq. f(4 + iq) = u + iv

	sii	h.	со	sh	tanh		
q	u	υ	u	U	u	v	
0	27.28002	0.00	27.30823	0.00	0.99933	0.00	
0.05	27.20570	2.14258	27.22405	2.14114	0.99934	0.00010	
0.1	26.05302	4.27195	26.97202	4.26908	0.99936	0.00021	
0.15	26.53588	6.37498	26.55370	6.37071	0.99940	0.00030	
0.2	25.95425	8.43871	25.97166	8.43305	0.99946	0.00039	
0.25	25 27260	10 45041	25 22051	10.44340	0.00053	0.00047	
0.2	24 21551	12 20768	24 22181	12.38035	0.00061	0.00054	
0.25	22 26848	TA 2685T	22.28410	14.25805	0.00070	0.00060	
0.35	22.07800	16.05128	22.00282	16.04061	0.00070	0.00064	
0.45	20.75141	17.73528	20.76534	17.72339	0.00080	0.00066	
10	600						
0.5	19.29088	19.30983	19.30983	19.29088	1.00000	0.00007	
0.55	17.72339	20.70534	17.73528	20.75141	1.00011	0.00000	
0.0	10.04001	22.09282	10.05138	22.07800	1.00021	0.00004	
0.05	14.25895	23.28410	14.20851	23.20848	1.00030	0.00000	
0.7	12.38935	24.33181	12.39708	24.31551	1.00039	0.00054	
0.75	10.44340	25.22951	10.45041	25.21260	1.00047	0.00047	
0.8	8.4 <u>3</u> 30 <u>5</u>	25.97166	8.43871	25.95425	1.00054	0.00039	
0.85	6.37071	26.55370	6.37498	26.53588	1.00060	0.00030	
0.9	4.26908	26.97202	4.27195	26.95392	1.00064	0.00021	
0.95	2.14114	27.22405	2.14258	27.20579	1.00066	0.00011	
1.0	0.00	27.30823	0.00	27.28992	1.00067	0.00	
1.05	2.14114	27.22405	2.14258	27.20579	1.00066	0.00011	
1.1	4.26908	26.97202	4.27195	26.95392	1.00064	0.00021	
1.15	6.37071	26.55370	6.37498	26.53588	1.00060	0.00030	
1.2	8.43305	25.97166	8.43871	25.95425	1.00054	0.00039	
1.25	10.44340	25.22051	10.45041	25.21260	1.00047	0.00047	
1.3	12.38035	24.33181	12.30768	24.31551	1.00030	0.00054	
1.35	14.25805	23.28410	14.26851	23.26848	1.00030	0.00060	
I.4	16.04061	22.00282	16.05138	22.07800	1.00021	0.00064	
1.45	17.72339	20.76534	17.73528	20.75141	1.00011	0.00066	
	To 20689	TO 20082	70 20082	10 00699	T 00000	0.0006=	
1.5	19.29008	19.30983	19.30903	19.29088	1.00000	0.00007	
1.55	20.75141	1/./3520	20.70534	17.723.39	0.99939	0.00000	
1.0	22.07800	10.05130	22.09202	10.04001	0.99979	0.00004	
1.05	23.20040	14.20051	23.20410	14.25095	0.99970	0.00000	
1./	24.31331	12.39/00	24.33101	12.30935	0.999901	0.00054	
1.75	25.21260	10.45041	25.22951	10.44340	0.99953	0.00047	
1.8	25.95425	8.43871	25.97166	8.43305	0.99946	0.00039	
1.85	20.53588	0.37498	20.55370	0.37071	0.99940	0.00030	
1.9	20.95392	4.27195	20.97202	4.20908	0.99936	0.00021	
1.95	27.20579	2.14258	27.22405	2.14114	0.99934	0.00010	
2.0	27.28992	0.00	27.30823	0.00	0.00033	0.00	

Note.

Negative quantities are in heavy type.

Examples.

 $\sinh (4 + i \underline{0.7}) = 12.38935 + i 24.33181.$ $\cosh (4 + i \underline{1.25}) = -10.45041 + i 25.21260.$ TABLE XIII. FUNCTIONS OF 4 + iq. $f(4 + iq) = r/\gamma$

a

	sinh		cos	h	tanh		
9	7	γ	7	γ	r	γ	
		0		0		0	
0	27.28002	0.00	27.30823	0.00	0.00033	0.00	
0.05	27.20002	4.503	27.30810	4.497	0.00034	0.006	
0.1	27.29036	9.006	27.30780	8.994	0.00036	0.012	
0.15	27.29090	13.500	27.30723	13.491	0.00040	0.018	
0.2	27.29166	18.011	27.30650	17.989	0.99946	0.023	
0.25	27.29260	22.514	27.30550	22.486	0.99953	0.027	
0.3	27.29370	27.016	27.30445	26.984	0. 99961	0.031	
0.35	27.29492	31.517	27.30324	31.483	0.99970	0.034	
0.4	27.29024	30.018	27.30190	35.982	0.99979	0.037	
0.45	27.29764	40.519	27.30050	40.481	0.99990	0.038	
0.5	27.29908	45.019	27.29908	44.981	I.00000	0.038	
0.55	27.30050	49.519	27.29764	49.48I	1.00010	o.o38	
0.6	27.30190	54.018	27.29624	53.982	1.00021	0.037	
0.65	27.30324	58.517	27.29492	58.483	1.00030	0.034	
0.7	27.30445	63.016	27.29370	62.984	1.00039	0.031	
0.75	27.30550	67.514	27.29260	67.486	1.00047	0.027	
0.8	27.30650	72.011	27.20166	71.080	1.00054	0.023	
0.85	27.30723	76.500	27.20000	76.401	1.00060	0.018	
0.0	27.30780	81.006	27.20036	80.004	1.00064	0.012	
0.95	27.30810	85.503	27.29002	85.497	1.00066	0.006	
I.0	27.30823	00	27.28002	00	1.00067	0.00	
1.05	27.30810	94.497	27.20002	04.503	1.00066	0.006	
1.1	27.30780	08.004	27.20036	00.006	1.00064	0.012	
1.15	27.30723	103.401	27.20000	103.500	1.00060	0.018	
1.2	27.30650	107.989	27.29166	108.011	1.00054	0.023	
1.25	27.30550	112.486	27.29260	112.514	1.00047	0.027	
1.3	27.30445	116.984	27.29370	117.016	1.00039	0.031	
1.35	27.30324	121.483	27.29492	121.517	1.00030	0.034	
I.4	27.30190	125.982	27.29624	126.018	1.00021	0.037	
1.45	27.30050	130.481	27.29764	130.519	1.00010	0.038	
1.5	27.29908	134.981	27.29908	135.019	1.00000	0.038	
1.55	27.29764	139.481	27.30050	139.519	0.99990	0.038	
1.6	27.29624	143.982	27.30190	144.018	0.99979	0.037	
1.65	27.29492	148.483	27.30324	148.517	0.99970	0.034	
1.7	27.29370	152.984	27.30445	153.016	0.99961	0.031	
1.75	27.29260	157.486	27.30550	157.514	0.99953	0.027	
1.8	27.29166	161.989	27.30650	162.011	0.99946	0.023	
1.85	27.29090	166.491	27.30723	166.509	0.99940	0.018	
1.9	27.29036	170.994	27.30780	171.006	0.99936	0.012	
1.95	27.29002	175.497	27.30810	175.503	0.99934	0.006	
2.0	27.28992	180	27.30823	180	0.99933	0.00	

Note.

Negative quantities are in heavy type.

Examples. $\sinh (4 + i \underline{1.0}) = 27.30823 / \underline{90^{\circ}}.$ $\tanh (4 + i \underline{1.5}) = 1.0000 \sqrt{0^{\circ}.038} = 1.0000 \sqrt{0^{\circ}.02'.17''}.$

[139]

TABLE XIV. SEMI-EXPONENTIALS. $\frac{e^x}{2}$ and $\log_{10}\left(\frac{e^x}{2}\right)$

0	ez	e ^z		ez	e ^z		ez	. e*
x	2	log 10 _2	x	2	log 10 - 2	x	2	log 10 -2
4.00	27 200	T 4267470	4 50	45 000	T 6522052	5 00	74 207	1 8704424
4.00	27.572	1.4301479	4.50	45.009	T.657638T	5.01	74.052	1.8747854
4.02	27.851	1.4448338	4.52	45.018	1.6610811	5.02	75.706	1.8701283
4.03	28.130	1.4491768	4.53	46.379	1.6663240	5.03	76.467	1.8834712
4.04	28.413	1.4535197	4.54	46.845	1.6706669	5.04	77.235	1.8878142
4.05	28.600	1.4578627	4.55	47.316	1.6750000	5.05	78.011	1.8021571
4.06	28.087	1.4622056	4.56	47.702	1.6703528	5.06	78.795	1.8065001
4.07	29.278	1.4665485	4.57	48.272	1.6836958	5.07	79.587	1.9008430
4.08	29.573	1.4708915	4.58	48.757	1.6880387	5.08	80.387	1.9051860
4.09	29.870	1.4752344	4.59	49.247	1.6923817	5.09	81.195	1.9095289
4.10	30.170	1.4795774	4.60	49.742	1.6967246	5.10	82.011	1.9138719
4.11	30.473	1.4839203	4.61	50.242	1.7010676	5.11	82.835	1.9182148
4.12	30.780	1.488263 3	4.62	50.747	1.7054105	5.12	83.668	1.9225577
4.13	31.089	1.4920002	4.63	51.257	1.7097535	5.13	84.509	1.9269007
4.14	31.401	1.4909492	4.04	51.772	1.7140904	5.14	85.358	1.9312430
4.15	31.717	1.5012921	4.65	52.292	1.7184393	5.15	86.216	1.9355866
4.16	32.036	1.505635 0	4.66	52.818	1.7227823	5.16	87.082	1.9399295
4.17	32.358	1.5099780	4.67	53.349	1.7271252	5.17	87.957	1.9442725
4.18	32.083	1.5143209	4.08	53.885	1.7314082	5.18	88.841	1.9480154
4.19	33.011	1.5180039	4.09	54.427	1.7358111	5.19	69.734	1.9529584
4.20	33.343	1.5230068	4.70	54.974	1.7401541	5.20	90.636	1.9573013
4.21	33.078	1.5273498	4.71	55.520	1.7444970	5.21	91.547	1.9616443
4.22	34.017	1.5310927	4.72	50.084	1.7488400	5.22	92.407	1.9059872
4.23	34.359	1.5300357	4.73	50.048	1.7531820	5.23	93.390	1.9703301
4.24	34.704	1.5403780	4.14	57.217	1.7575250	5.24	94.333	1.9/40/31
4.25	35.053	1.5447215	4.75	57.792	1.7618688	5.25	95.283	1.9790160
4.20	35.405	1.5490045	4.70	58.373	1.7002117	5.20	90.241	1.9833590
4.2/	26 120	1.5534074	4.77	50.900	1.7705547	5.27	08 185	1.9877019
4.20	36.483	1.5620033	4.70	59·55 ² 60.151	1.7702406	5.20	00.172	1.0063878
4 20	26 8 70	* =664262	180	60 777		59	100 168	0007208
4.30	30.030	1.5004303	4.80	61 266	1.7035035	5.30	100.108	2.0007308
4.32	37.504	1.5751222	4.82	61.083	1.7022604	5.32	102.102	2.0004166
4.33	37.972	1.5704651	4.83	62.605	1.7066123	5.33	103.210	2.0137506
4.34	38.354	1.5838081	4.84	63.235	1.8009553	5.34	104.256	2.0181025
4.25	38.720	1.5881510	4.85	63.870	1.8052082	5.25	105,204	2.0221155
4.36	30.120	1.5024030	4.86	64.512	1.8006412	5.30	106.362	2.0267884
4.37	39.522	1.5968369	4.87	65.160	1.8139841	5.37	107.431	2.0311314
4.38	39.919	1.6011798	4.88	65.815	1.8183271	5.38	108.511	2.0354743
4.39	40.320	1.6055228	4.89	66.477	1.8226700	5.39	109.602	2.0398173
4.40	40.725	1.6098657	4.90	67.145	1.8270130	5.40	110.703	2.0441602
4.41	41.135	1.6142087	4.91	67.820	1.8313559	5.41	111.816	2.0485031
4.42	41.548	1.6185516	4.92	68.501	1.8356989	5.42	112.940	2.0528461
4.43	41.966	1.0228946	4.93	69.190	1.8400418	5.43	114.075	2.0571890
4.44	42.387	1.0272375	4.94	09.885	1.8443847	5.44	115.221	2.0015320
4.45	42.813	1.6315804	4.95	70.587	1.8487277	5.45	116.379	2.0658749
4.46	43.244	1.0359234	4.96	71.297	1.8530706	5.46	117.549	2.0702179
4.47	43.078	1.0402003	4.97	72.013	1.8574136	5.47	118.730	2.0745008
4.40	44.117	1.0440003	4.98	72.737	1.8017505	5.48	119.923	2.0789038
4.49	44.501	1.0409522	4.99	13.408	1.8000995	5.49	121.129	2.0032407
4.50	45.009	1.0532952	5.00	74.207	1.8704424	5.50	122.346	2.0875897

Example. $\frac{e^{4.20}}{2} = 33.343 \log_{10} \left(\frac{e^{4.20}}{2}\right) = 1.5230068.$ [140]

TABLE XIV. SEMI-EXPONENTIALS. $\frac{e^x}{2}$ and $\log_{10}\left(\frac{e^x}{2}\right)$. Continued

x	$\frac{e^x}{2}$	$\log_{10} \frac{e^x}{2}$	x	$\frac{e^x}{2}$	$\log_{10} \frac{e^x}{2}$	x	$\frac{e^x}{2}$	$\log_{10} \frac{e^x}{2}$
5.50	122.346	2.0875897	6.00	201.714	2.3047369	6.50	332.571	2.5218844
5.51	123.576	2.0919326	6.01	203.742	2.3090785	6.51	335.913	2.5262268
5.52	124.818	2.0962755	6.02	205.789	2.3134222	6.52	339.289	2.5305699
5.53	126.072	2.1006185	6.03	207.858	2.3177667	6.53	342.699	2.5349128
5.54	127.339	2.1049614	6.04	209.947	2.3221098	6.54	346.143	2.5392556
5.55	128.619	2.1093044	6.05	212.057	2.3264527	6.55	349.622	2.5435988
5.56	129.911	2.1136473	6.06	214.188	2.3307951	6.56	353.135	2.5479408
5.57	131.217	2.1179903	6.07	216.340	2.3351368	6.57	356.685	2.5522849
5.58	132.536	2.1223332	6.08	218.514	2.3394793	6.58	360.270	2.5566281
5.59	133.868	2.1266762	6.09	220.711	2.3438220	6.59	363.890	2.5609701
5.60	135.213	2.1310191	6.10	222.929	2.3481666	6.60	367.547	2.5653129
5.61	136.572	2.1353620	6.11	225.169	2.3525086	6.61	371.241	2.5696560
5.62	137.945	2.1397050	6.12	227.432	2.3568516	6.62	374.973	2.5740000
5.63	139.331	2.1440479	6.13	229.718	2.3611951	6.63	378.741	2.5783424
5.64	140.731	2.1483909	6.14	232.027	2.3655386	6.64	382.547	2.5826849
5.65	142.146	2.1527338	6.15	234.359	2.3698817	6.65	386.391	2.5870270
5.66	143.574	2.1570768	6.16	236.714	2.3742240	6.66	390.275	2.5913708
5.67	145.017	2.1614197	6.17	239.093	2.3785669	6.67	394.197	2.5957134
5.68	146.475	2.1657627	6.18	241.496	2.3829100	6.68	398.160	2.6000576
5.69	147.947	2.1701056	6.19	243.923	2.3872527	6.69	402.161	2.6044000
5.70	149.434	2.1744485	6.20	246.375	2.3915966	6.70	406.202	2.6087420
5.71	150.936	2.1787915	6.21	248.851	2.3959394	6.71	410.285	2.6130856
5.72	152.452	2.1831344	6.22	251.352	2.4002824	6.72	414.409	2.6174292
5.73	153.985	2.1874774	6.23	253.877	2.4046234	6.73	418.574	2.6217721
5.74	155.532	2.1918203	6.24	256.429	2.4089672	6.74	422.780	2.6261144
5.75	157.095	2.1961633	6.25	259.006	2.4133099	6.75	427.030	2.6304584
5.76	158.674	2.2005062	6.26	261.609	2.4176526	6.76	431.321	2.6348006
5.77	160.269	2.2048492	6.27	264.239	2.4219970	6.77	435.656	2.6391436
5.78	161.880	2.2091921	6.28	266.894	2.4263388	6.78	440.034	2.6434862
5.79	163.507	2.2135351	6.29	269.576	2.4306813	6.79	444.457	2.6478298
5.80	165.150	2.2178780	6.30	272.285	2.4350237	6.80	448.923	2.6521719
5.81	166.810	2.2222209	6.31	275.022	2.4393675	6.81	433.435	2.6565151
5.82	168.486	2.2265639	6.32	277.786	2.4437104	6.82	457.993	2.6608589
5.83	170.179	2.2309068	6.33	280.578	2.4480536	6.83	462.595	2.6652009
5.84	171.890	2.2352498	6.34	283.398	2.4523967	6.84	467.244	2.6995437
5.85	173.617	2.2395927	6.35	286.246	2.4567394	6.85	471.940	2.6738868
5.86	175.362	2.2439357	6.36	289.123	2.4610826	6.86	476.683	2.6782296
5.87	177.124	2.2482786	6.37	292.029	2.4654260	6.87	481.474	2.6825728
5.88	178.905	2.2526216	6.38	294.964	2.4697690	6.88	486.312	2.6869150
5.89	180.703	2.2569645	6.39	297.928	2.4741114	6.89	491.200	2.6912584
5.90	182.519	2.2613074	6.40	300.922	2.4784540	6.90	496.137	2.6956016
5.91	184.353	2.2656504	6.41	303.947	2.4827979	6.91	501.123	2.6999443
5.92	186.206	2.2699933	6.42	307.002	2.4871412	6.92	506.160	2.7042878
5.93	188.077	2.2743363	6.43	310.087	2.4914836	6.93	511.246	2.7086299
5.94	189.967	2.2786792	6.44	313.203	2.4958260	6.94	.516.386	2.7129744
5.95	191.877	2.2830222	6.45	316.352	2.5001705	6.95	521.575	2.7173168
5.96	193.805	2.2873651	6.46	319.530	2.5045116	6.96	526.816	2.7216589
5.97	195.753	2.2917081	6.47	322.742	2.5088555	6.97	532.112	2.7260030
5.98	197.720	2.2960510	6.48	325.985	2.5131977	6.98	537.459	2.7303454
5.99	199.707	2.3003939	6.49	329.262	2.5175416	6.99	542.860	2.7346878
6.00	201.714	2.3047360	6.50	332.571	2.5218844	7.00	548.317	2.7390317

Example. $\frac{e^{5.60}}{2} = 135.213 \log_{10} \left(\frac{e^{5.60}}{2}\right) = 2.1310191.$

TABLE XIV. SEMI-EXPONENTIALS. $\frac{e^x}{2}$ and $\log_{10}\left(\frac{e^x}{2}\right)$. Continued

.

x	$\frac{e^x}{2}$	$\log_{10}\frac{e^x}{2}$	x	$\frac{e^x}{2}$	$\log_{10} \frac{e^x}{2}$	x	$\frac{e^x}{2}$	$\log_{10}\frac{e^2}{2}$
7.00	548.317	2.7390317	7.50	904.021	2.9561785	8.00	1490.479	3.1733259
7.01	553.827	2.7433741	7.51	913.107	2.9605217	8.01	1505.457	3.1776683
7.02	559.393	2.7477170	7.52	922.284	2.9648647	8.02	1520.589	3.1820118
7.03	565.015	2.7520600	7.53	931.553	2.9692076	8.03	1535.870	3.1863546
7.04	570.694	2.7564033	7.54	940.915	2.9735504	8.04	1551.306	3.1906976
7.05	576.429	2.7607458	7.55	950.371	2.9778932	8.05	1566.895	3.1950399
7.06	582.223	2.7650893	7.56	959.923	2.9822364	8.06	1582.645	3.1993836
7.07	588.074	2.7694320	7.57	969.570	2.9865792	8.07	1598.552	3.2037268
7.08	593.984	2.7737747	7.58	979.314	2.9909220	8.08	1614.617	3.2080694
7 .09	599.954	2.7781180	7.59	989.157	2.9952653	8.09	1630.841	3.2124116
7.10	605.984	2.7824612	7.60	999.098	2.9996080	8.10	1647.234	3.2167554
7.11	612.074	2.7868039	7.61	1009.139	3.0039510	8.11	1663.789	3.2210981
7.12	618.225	2.7911467	7.62	1019.281	3.0082939	8.12	1680.510	3.2254412
7.13	624.439	2.7954901	7.63	1029.525	3.0126369	8.13	1697.400	3.2297842
7.14	630.714	2.7998325	7.64	1039.872	3.0169799	8.14	1714.458	3.2341270
7.15	637.053	2.8041755	7.65	1050.323	3.0213229	8.15	1731.690	3.2384703
7.16	643.456	2.8085189	7.66	1060.879	3.0256659	8.16	1749.092	3.2428130
7.17	649.922	2.8128612	7.67	1071.541	3.0300088	8.17	1766.672	3.2471560
7.18	656.454	2.8172043	7.58	1082.310	3.0343517	8.18	1784.427	3.2514988
7.19	663.052	2.8215476	7.69	1093.187	3.0386944	8.19	1802.364	3.2558425
7.20	669.715	2.8258901	7.70	1104.174	3.0430376	8.20	1820.476	3.2601848
7.21	676.446	2.8302331	7.71	1115.271	3.0473806	8.21	1838.774	3.2645284
7.22	683.245	2.8345765	7.72	1126.480	3.0517234	8.22	1857.251	3.2688706
7.23	690.111	2.8389189	7.73	1137.801	3.0560663	8.23	1875.914	3.2732129
7.24	697.047	2.8432620	7.74	1149.236	3.0604092	8.24	1894.770	3.2775566
7.25	704.052	2.8476047	7.75	1160.786	3.0647523	8.25	1913.812	3.2188994
7.26	711.128	2.8519478	7.76	1172.452	3.0690950	8.26	1933.047	3.2862424
7.27	718.275	2.8562908	7.77	1184.236	3.0734383	8.27	1952.473	3.2905850
7.28	725.494	2.8606338	7.78	1196.137	3.0777810	8.28	1972.098	3.2949284
7.29	732.785	2.8649766	7.79	1208.159	3.0821242	8.29	1991.913	3.2992704
7.30	740.150	2.8693197	7.80	1220.301	3.0864670	8.30	2011.936	3.3036142
7.31	747.589	2.8736629	7.81	1232.565	3.0908098	8.31	2032.158	3.3079575
7.32	755.102	2.8780056	7.82	1244.953	3.0951531	8.32	2052.580	3.3123000
7.33	762.691	2.8823487	7.83	1257.465	3.0994961	8.33	2073.206	3.3166425
7.34	770.356	2.8866915	7.84	1270.102	3.1038386	8.34	2094.045	3.3209860
7.35	778.098	2.8910343	7.85	1282.867	3.1081818	8.35	2115.092	3.3253293
7.36	785.918	2.8953772	7.86	1295.760	3.1125246	8.36	2136.347	3.3296718
7.37	793.817	2.8997205	7.87	1308.783	3.1168677	8.37	2157.819	3.3340150
7.38	801.795	2.9040633	7.88	1321.936	3.1212105	8.38	2179.505	3.3383578
7.39	809.853	2.9084062	7.89	1335.222	3.1255535	8.39	2201.409	3.3427008
7.40	817.992	2.9127491	7.90	1348.641	3.1298964	8.40	2223.533	3.3470436
7.41	826.213	2.9170920	7.91	1362.195	3.1342394	8.41	2245.881	3.3513868
7.42	834.517	2.9214351	7.92	1375.886	3.1385826	8.42	2268.452	3.3557296
7.43	842.904	2.9257782	7.93	1389.713	3.1429254	8.43	2291.250	3.3600725
7.44	851.375	2.9301209	7.94	1403.680	3.1472680	8.44	2314.277	3.3644154
7.45	859.932	2.9344641	7.95	1417.787	3.1516110	8.45	2337.536	3.3687583
7.46	868.574	2.9388068	7.96	1432.036	3.1559539	8.46	2361.030	3.3731014
7.47	877.303	2.9431496	7.97	1446.429	3.1602971	8.47	2384.752	3.3774433
7.48	886.120	2.9474925	7.98	1460.966	3.1646402	8.48	2408.725	3.3817872
7.49	895.026	2.9518356	7.99	1475.648	3.1689827	8.49	2432.926	3.3861290
7.50	904.021	2.9561785	8.00	1490.479	3.1733259	8.50	2457.383	3.3904730

Example. $\frac{e^{7.10}}{2} = 605.984 \log_{10} \left(\frac{e^{7.10}}{2}\right) = 2.7824612.$

TABLE XIV. SEMI-EXPONENTIALS. $\frac{e^x}{2}$ and $\log_{10}\left(\frac{e^x}{2}\right)$. Continued

x	$\frac{e^x}{2}$	$\log_{10} \frac{e^x}{2}$	x	$\frac{e^x}{2}$	$\log_{10} \frac{e^x}{2}$	x	$\frac{e^x}{2}$	$\log_{10}\frac{e^x}{2}$
8.50	2457.383	3.3904730	9.00	4051.543	3.6076204	9.50	6679.863	3.8247676
8.51	2482.082	3.3948162	9.01	4092.263	3.6119636	9.51	6746.988	3.8291101
8.52	2507.027	3.3991590	9.02	4133.388	3.6163062	9.52	6814.805	3.8334534
8.53	2532.221	3.4035016	9.03	4174.929	3.6206491	9.53	6883.295	3.8377964
8.53	2557.672	3.4078448	9.04	4216.889	3.6249922	9.54	6952.475	3.8421394
8.55	2583.380	3.4121882	9.05	4259.264	3.6293345	9.55	7022.345	3.8464822
8.56	2609.341	3.4165308	9.06	4302.076	3.6336780	9.56	7092.923	3.8508252
8.57	2635.562	3.4208732	9.07	4345.302	3.6380200	9.57	7164.203	3.8551679
8.58	2662.052	3.4252166	9.08	4388.982	3.6423638	9.58	7236.210	3.8595112
8.59	2688.810	3.4295601	9.09	4433.098	3.6467073	9.59	7308.929	3.8638537
8.60	2715.830	3.4339026	9.10	4477.646	3.6510498	9.60	7382.390	3.8681970
8.61	2743.126	3.4382458	9.11	4522.647	3.6553927	9.61	7456.583	3.8725398
8.62	2770.693	3.4425884	9.12	4568.100	3.6597356	9.62	7531.526	3.8768830
8.63	2798.535	3.4469308	9.13	4614.016	3.6640791	9.63	7607.221	3.8812260
8.64	2826.665	3.4512744	9.14	4660.383	3.6684216	9.64	7683.672	3.8855688
8.65	2855.070	3.4556167	9.15	4707.211	3.6727637	9.65	7760.882	3.8899111
8.66	2883.767	3.4599602	9.16	4754.528	3.6771074	9.66	7838.890	3.8942546
8.67	2912.745	3.4643025	9.17	4802.308	3.6814500	9.67	7917.680	3.8985980
8.68	2942.023	3.4686462	9.18	4850.577	3.6857934	9.68	7997.247	3.9029406
8.69	2971.592	3.4729891	9.19	4899.328	3.6901365	9.69	8077.622	3.9072835
8.70	3001.456	3.4773320	9.20	4948.563	3.6944792	9.70	8158.802	3.9116264
8.71	3031.621	3.4816749	9.21	4998.284	3.6988209	9.71	8240.792	3.9159690
8.72	3062.088	3.4860178	9.22	5048.532	3.7031652	9.72	8323.623	3.9203124
8.73	3092.852	3.4903592	9.23	5099.272	3.7075082	9.73	8407.262	3.9246546
8.74	3123.948	3.4947038	9.24	5150.519	3.7118510	9.74	8491.770	3.9289982
8.75	3155.337	3.4990458	9.25	5202.272	3.7161930	9.75	8577.112	3.9333411
8.76	3187.054	3.5033896	9.26	5254.569	3.7205370	9.76	8663.316	3.9376842
8.77	3219.085	3.5077325	9.27	5307.367	3.7248791	9.77	8750.384	3.9420270
8.78	3251.440	3.5120756	9.28	5360.716	3.7292228	9.78	8838.326	3.9463700
8.79	3284.114	3.5164182	9.29	5414.587	3.7335654	9.79	8927.154	3.9507131
8.80 8.81 8.82 8.83 8.83 8.84	3317.122 3350.460 3384.133 3418.141 3452.496	3.5207614 3.5251044 3.5294474 3.5337900 3.5381332	9.30 9.31 9.32 9.33 9.34	5469.009 5523.975 5579.491 5635.563 5692.203	3.7379086 3.7422517 3.7465946 3.7509373 3.7552804	9.80 9.81- 9.82 9.83 9.84	9016.875 9107.481 9199.026 9291.480 9384.860	3.9550560 3.9593983 3.9637418 3.9680850 3.9724278
8.85	3487.197	3.5424766	9.35	5749.405	3.7596229	9.85	9479.163	3.9767701
8.86	3522.243	3.5468192	9.36	5807.194	3.7639664	9.86	9574.444	3.9811136
8.87	3557.631	3.5511609	9.37	5865.555	3.7683091	9.87	9670.678	3.9854569
8.88	3593.395	3.5555050	9.38	5924.507	3.7726522	9.88	9767.860	3.9897994
8.89	3629.512	3.5598482	9.39	5984.054	3.7769956	9.89	9866.020	3.9941420
8.90	3665.986	3.5641908	9.40	6044.191	3.7813382	9.90	9965.186	3.9984854
8.91	3702.820	3.5685326	9.41	6104.922	3.7856801	9.91	10065.350	4.0028289
8.92	3740.045	3.5728768	9.42	6166.290	3.7900240	9.92	10166.494	4.0071712
8.93	3777.635	3.5772201	9.43	6228.269	3.7943 ⁶ 74	9.93	10268.667	4.0115141
8.94	3815.597	3.5815626	9.44	6290.860	3.7987100	9.94	10371.873	4.0158572
8.95	3853.937	3.5859044	9.45	6354.080	3.8030526	9·95	10476.107	4.0201999
8.96	3892.678	3.5902486	9.46	6417.943	3.8073958	9.96	10581.397	4.0245430
8.97	3931.795	3.5945909	9.47	6482.450	3.8117392	9.97	10687.745	4.0288860
8.98	3971.316	3.5989344	9.48	6547.591	3.8160816	9.98	10795.160	4.0332290
8.99	4011.228	3.6032773	9.49	6613.388	3.8204240	9·99	10903.652	4.0375721
9.00	4051.543	3.6076204	9.50	6679.863	3.8247676	10.00	11013.233	4.0419148

Example. $\frac{e^{8.90}}{2} = 3665.986 \log_{10} \left(\frac{e^{8.90}}{2}\right) = 3.5641908.$ [143]

REAL HYPERBOLIC FUNCTIONS. f(x + io) = u + io

θ	$\sinh \theta$	$\cosh\theta$	Tanh θ	$\operatorname{Coth} \theta$	$\operatorname{Sech} \theta$	Cosech θ	θ
0.00 0.01 0.02 0.03 0.04	0.00 0.010000 0.020001 0.030005 0.040011	1.00 1.000050 1.000200 1.000450 1.000800	0.00 0.01000 0.02000 0.02999 0.0 <u>3</u> 998	00. 50. 33.34 25.013	1.00 0.9999 0.9998 0.9995 0.9992	∞ 100. 50. 33.333 24.99	0.00 0.01 0.02 0.03 0.04
0.05	0.050021	1.001250	o.o4996	20.016	0.9987	19.992	0.05
0.06	0.060036	1.001801	o.o5993	16.686	0.9982	16.657	0.06
0.07	0.070057	1.002451	o.o6989	14.308	0.9975	14.274	0.07
0.08	0.080085	1.003202	o.o7983	12.527	0.9968	12.487	0.08
0.09	0.090122	1.004053	o.o8976	11.141	0.9959	11.097	0.09
0.10	0.100167	1.005004	0.09967	10.033	0.9950	9.983	0.10
0.11	0.110222	1.006056	0.10956	9.128	0.9940	9.073	0.11
0.12	0.120288	1.007209	0.11943	8.373	0.9928	8.314	0.12
0.13	0.130366	1.008462	0.12927	7.735	0.9916	7.669	0.13
0.14	0.140458	1.009816	0.13909	7.189	0.9902	7.120	0.14
0.15	0.150563	1.011271	0.14888	6.716	0.9888	6.642	0.15
0.16	0.160684	1.012827	0.15865	6.303	0.9873	6.223	0.16
0.17	0.170820	1.014485	0.16838	5.939	0.9857	5.854	0.17
0.18	0.180974	1.016244	0.17808	5.615	0.9840	5.525	0.18
0.19	0.191145	1.018104	0.18775	5.325	0.9822	5.232	0.19
0.20	0.201336	1.020067	0.19737	5.067	0.9803	4.967	0.20
0.21	0.211547	1.022131	0.20696	4.832	0.9784	4.726	0.21
0.22	0.221779	1.024298	0.21652	4.618	0.9763	4.509	0.22
0.23	0.232033	1.026567	0.22603	4.425	0.9742	4.310	0.23
0.24	0.242311	1.028939	0.23549	4.246	0.9719	4.127	0.24
0.25	0.252612	1.031413	0.24492	4.083	0.9695	3.959	0.25
0.26	0.262939	1.033991	0.25430	3.932	0.9671	3.803	0.26
0.27	0.273292	1.036672	0.26363	3.793	0.9646	3.659	0.27
0.28	0.283673	1.039457	0.27290	3.664	0.9620	3.525	0.28
0.29	0.294082	1.042346	0.28214	3.544	0.9591	3.400	0.29
0.30	0.304520	1.045339	0.29131	3.433	0.9566	3.284	0.30
0.31	0.314989	1.048436	0.30043	3.328	0.9537	3.175	0.31
0.32	0.325489	1.051638	0.30951	3.231	0.9511	3.072	0.32
0.33	0.336022	1.054946	0.31852	3.140	0.9479	2.976	0.33
0.34	0.346589	1.058359	0.32748	3.053	0.9447	2.885	0.34
0.35	0.357190	1.061878	0.33637	2.973	0.9416	2.800	0.35
0.36	0.367827	1.065503	0.34522	2.897	0.9385	2.719	0.36
0.37	0.378500	1.069234	0.35399	2.825	0.9353	2.642	0.37
0.38	0.389212	1.073073	0.36271	2.757	0.9319	2.569	0.38
0.39	0.399962	1.077019	0.37136	2.693	0.9285	2.500	0.39
0.40	0.410752	1.081072	0.37995	2.632	0.9250	2.434	0.40
0.41	0.421584	1.085234	0.38847	2.574	0.9215	2.372	0.41
0.42	0.432457	1.089504	0.39693	2.519	0.9178	2.312	0.42
0.43	0.443374	1.093883	0.40532	2.467	0.9141	2.256	0.43
0.44	0.454335	1.098372	0.41365	2.417	0.9103	2.201	0.44
0.45	o.465342	1.102970	0.42190	2.370	0.9066	2.149	0.45
0.46	o.476395	1.107679	0.43009	2.325	0.0925	2.099	0.46
0.47	o.487496	1.112498	0.43820	2.282	0.8988	2.051	0.47
0.48	o.498646	1.117429	0.44624	2.241	0.8949	2.006	0.48
0.49	o.509845	1.122471	0.45421	2.202	0.8909	1.961	0.49

Example. $\sinh 0.25 = 0.252612$.

[144]

.....

REAL HYPERBOLIC FUNCTIONS. f(x + io) = u + io. Continued

-0 c	Sinh θ	$\cosh \theta$	-Tanh θ	$\operatorname{Coth} \theta$	Sech θ	Cosech θ	θ
0.50	0.521095	1.127626	0.46211	2.164	0.8868	1.919	0.50
0.51	0.532398	1.132893	0.46995	2.128	0.8827	1.878	0.51
0.52	0.543754	1.138274	0.47769	2.093	0.8785	1.839	0.52
0.53	0.555164	1.143769	0.48538	2.060	0.8743	1.801	0.53
0.53	0.566629	1.149378	0.49299	2.028	0.8700	1.765	0.54
0.55	0.578152	1.155101	0.50052	1.998	0.8658	1.730	0.55
0.56	0.589732	1.160941	0.50797	1.969	0.8614	1.696	0.56
0.57	0.601371	1.166896	0.51536	1.940	0.8570	1.663	0.57
0.58	0.613070	1.172968	0.52266	1.913	0.8525	1.631	0.58
0.59	0.624831	1.179158	0.52990	1.887	0.8480	1.601	0.59
0.60	0.636654	1.185465	0.53704	1.862	0.8435	1.571	0.60
0.61	0.648540	1.191891	0.54413	1.838	0.8390	1.542	0.61
0.62	0.660492	1.198436	0.55112	1.814	0.8344	1.514	0.62
0.63	0.672509	1.205101	0.55805	1.792	0.8298	1.487	0.63
0.64	0.684594	1.211887	0.56490	1.770	0.8251	1.461	0.64
0.65	0.696748	1.218793	0.57166	1.749	0.8205	1.435	0.65
6.66	0.708970	1.225822	0.57836	1.729	0.8158	1.410	0.66
0.67	0.721264	1.232973	0.58498	1.709	0.8110	1.387	0.67
0.68	0.733630	1.240247	0.59152	1.690	0.8065	1.363	0.68
0.69	0.746070	1.247646	0.59798	1.672	0.8015	1.340	0.69
0.70	0.758584	1.255169	0.60437	1.655	0.7967	1.318	0.70
0.71	0:771174	1.262818	0.61067	1.637	0.7919	1.297	0.71
0.72	0.783840	1.270593	0.61691	1.621	0.7870	1.276	0.72
0.73	0.796586	1.278495	0.62306	1.605	0.7821	1.255	0.73
0.74	0.809411	1.286525	0.62914	1.590	0.7773	1.235	0.74
0.75	0.822317	1.294683	0.63516	1.5744	0.7724	1.216	0.75
0.76	0.835305	1.302971	0.64108	1.5599	0.7675	1.1972	0.76
0.77	0.848377	1.311390	0.64693	1.5457	0.7625	1.1787	0.77
0.78	0.861533	1.319939	0.65271	1.5320	0.7576	1.1607	0.78
0.79	0.874776	1.328621	0.65842	1.5188	0.7527	1.1431	0.79
0.80	0.888106	1.337435	0.66403	1.5059	0.7477	1.1259	0.80
0.81	0.901525	1.346383	0.66959	1.4934	0.7427	1.1092	0.81
0.82	0.915034	1.355466	0.67507	1.4813	0.7377	1.0928	0.82
0.83	0.928635	1.364684	0.68047	1.4696	0.7327	1.0768	0.83
0.83	0.942328	1.374039	0.68580	1.4582	0.7278	1.0612	0.84
0.85	0.956116	1.383531	0.69107	1.4470	0.7228	1.0459	0.85
0.86	0.969999	1.393161	0.69626	1.4362	0.7178	1.0309	0.86
0.87	0.983980	1.402931	0.70137	1.4258	0.7128	1.0163	0.87
0.88	0.998058	1.412841	0.70642	1.4156	0.7078	1.0020	0.88
0.89	1.012237	1.422893	0.71139	1.4057	0.7028	0.9881	0.89
0.90	1.026517	1.433086	0.71629	1.3961	0.6978	0.9737	0.90
0.91	1.040899	1.443423	0.72114	1.3867	0.6928	0.9607	0.91
0.92	1.055386	1.453905	0.72591	1.3776	0.6878	0.9475	0.92
0.93	1.069978	1.464531	0.73060	1.3687	0.6828	0.9346	0.93
0.94	1.084677	1.475305	0.73522	1.3600	0.6778	0.9219	0.94
0.95	1.099484	1.486225	0.73979	1.3518	0.6728	0.9095	0.95
0.96	1.114402	1.497295	0.74427	1.3436	0.6678	0.8973	0.96
0.97	1.129431	1.508514	0.74870	1.3356	0.6629	0.8854	0.97
0.98	1.144573	1.519884	0.75306	1.3279	0.6579	0.8737	0.98
0.99	1.159829	1.531406	0.75736	1.3204	0.6529	0.8621	0.99

Example. $\cosh 0.55 = 1.155101$.

[145]

REAL HYPERBOLIC FUNCTIONS. f(x + io) = u + io. Continued

θ	$\sinh \theta$	$\cosh \theta$	$\operatorname{Tanh} \theta$	${\rm Coth}\dot{\theta}$	$\operatorname{Sech} \theta$	$\operatorname{Cosech} \theta$	θ
1.00	1.175201	1.543081	0.76159	1.3130	0.6480	0.8509	1.00
1.01	1.190691	1.554910	0.76576	1.3059	0.6431	0.8395	1.01
1.02	1.206300	1.566895	0.76987	1.2989	0.6382	0.8290	1.02
1.03	1.222029	1.579036	0.77391	1.2921	0.6333	0.8183	1.03
1.04	1.237881	1.591336	0.77789	1.2855	0.6284	0.8078	1.04
1.05	1.253857	1.603794	0.78181	1.2791	0.6235	0.7975	1.05
1.06	1.269958	1.616413	0.78566	1.2728	0.6186	0.7874	1.06
1.07	1.286185	1.629194	0.78940	1.2666	0.6138	0.7777	1.07
1.08	1.302542	1.642138	0.79320	1.2607	0.6090	0.7677	1.08
1.09	1.319029	1.655245	0.79688	1.2549	0.6042	0.7581	1.09
1.10	1.335647	1.668519	0.80050	1.2492	0.5993	0.7487	1.10
1.11	1.352400	1.681959	0.80406	1.2437	0.5945	0.7393	1.11
1.12	1.369287	1.695567	0.80757	1.2382	0.5898	0.7302	1.12
1.13	1.386312	1.709345	0.81102	1.2330	0.5850	0.7215	1.13
1.14	1.403475	1.723294	0.81441	1.2279	0.5803	0.7125	1.14
1.15	1.420778	1.737415	0.81775	1.2229	0.5755	0.7038	1.15
1.16	1.438224	1.751710	0.82104	1.2180	0.5708	0.6953	1.16
1.17	1.455813	1.766180	0.82427	1.2132	0.5662	0.6869	1.17
1.18	1.473548	1.780826	0.82745	1.2085	0.5616	0.6786	1.18
1.19	1.491430	1.795651	0.83058	1.2040	0.5569	0.6705	1.19
1.20	1.509461	1.810656	0.83365	1.1995	0.5523	0.6625	1.20
1.21	1.527644	1.825841	0.83668	1.1952	0.5477	0.6546	1.21
1.22	1.545979	1.841209	0.83965	1.1910	0.5431	0.6468	1.22
1.23	1.564468	1.856761	0.84258	1.1868	0.5385	0.6392	1.23
1.24	1.583115	1.872499	0.84546	1.1828	0.5340	0.6317	1.24
1.25	1.601919	1.888424	0.84828	1.1789	0.5296	0.6242	1.25
1.26	1.620884	1.904538	0.85106	1.1750	0.5251	0.6170	1.26
1.27	1.640010	1.920842	0.85380	1.1712	0.5206	0.6098	1.27
1.28	1.659301	1.937339	0.85648	1.1675	0.5162	0.6026	1.28
1.29	1.678758	1.954029	0.85913	1.1640	0.5118	0.5957	1.29
1.30	1.698382	1.970914	0.86172	1.1605	0.5074	0.5888	1.30
1.31	1.718177	1.987997	0.86428	1.1570	0.5030	0.5820	1.31
1.32	1.738143	2.005278	0.86678	1.1537	0.4987	0.5753	1.32
1.33	1.758283	2.022760	0.86925	1.1504	0.4944	0.5687	1.33
1.34	1.778599	2.040445	0.87167	1.1472	0.4901	0.5623	1.34
1.35	1.799093	2.058333	0.87405	1.1441	0.4858	0.5559	1.35
1.36	1.819766	2.076427	0.87639	1.1410	0.4816	0.5495	1.36
1.37	1.840622	2.094729	0.87869	1.1380	0.4773	0.5433	1.37
1.38	1.861662	2.113240	0.88095	1.1351	0.4732	0.5372	1.38
1.39	1.882887	2.131963	0.88317	1.1323	0.4690	0.5311	1.39
I.40	1.904302	2.150898	0.88535	1.1295	0.4649	0.5252	1.40
I.41	1.925906	2.170049	0.88749	1.1268	0.4608	0.5192	1.41
I.42	1.947703	2.189417	0.88960	1.1241	0.4568	0.5134	1.42
I.43	1.969695	2.209004	0.89167	1.1215	0.4527	0.5077	1.43
I.44	1.991884	2.228812	0.89370	1.1189	0.4486	0.5020	1.44
1.45	2.014272	2.248842	0.89569	1.1165	0.4446	0.4964	1.45
1.46	2.036862	2.269098	0.89765	1.1140	0.4407	0.4909	1.46
1.47	2.059655	2.289580	0.89958	1.1116	0.4367	0.4855	1.47
1.48	2.082654	2.310292	0.90147	1.1093	0.4329	0.4802	1.48
1.49	2.105861	2.331234	0.90332	1.1070	0.4290	0.4749	1.49

Example. $\tanh 1.25 = 0.84828.$

[146]

REAL HYPERBOLIC FUNCTIONS. f(x + io) = u + io. Continued

0	$\sinh \theta$	$\cosh\theta$	$\operatorname{Tanh} \theta$	$\operatorname{Coth} \theta$	Sech θ	$\operatorname{Cosech} \theta$	θ
1.50	2.129279	2.352410	0.90515	1.1048	0.4251	0.4697	1.50
1.51	2.152910	2.373820	0.90694	1.1026	0.4212	0.4645	1.51
1.52	2.176757	2.395469	0.90870	1.1005	0.4174	0.4594	1.52
1.53	2.200821	2.417356	0.91042	1.0984	0.4137	0.4543	1.53
1.54	2.225105	2.439486	0.91212	1.0963	0.4099	0.4494	1.54
1.55	2.249611	2.461859	0.91379	1.0944	0.4062	0.4444	1.55
1.56	2.274343	2.484479	0.91542	1.0924	0.4025	0.4398	1.56
1.57	2.299302	2.507347	0.91703	1.0905	0.3988	0.4350	1.57
1.58	2.324490	2.530465	0.91860	1.0886	0.3952	0.4302	1.58
1.59	2.349912	2.553837	0.92015	1.0868	0.3916	0.4255	1.59
1.60	2.375568	2.577464	0.92167	1.0850	0.3879	0.4209	1.60
1.61	2.401462	2.601349	0.92316	1.0832	0.3844	0.4164	1.61
1.62	2.427596	2.625495	0.92462	1.0815	0.3809	0.4119	1.62
1.63	2.453973	2.649902	0.92606	1.0798	0.3774	0.4075	1.63
1.64	2.480595	2.674575	0.92747	1.0782	0.3739	0.4031	1.64
1.65	2.507465	2.699515	0.92886	1.0766	0.3704	0.3988	1.65
1.66	2.534586	2.724725	0.93022	1.0750	0.3670	0.3945	1.66
1.67	2.561960	2.750207	0.93155	1.0735	0.3636	0.3903	1.67
1.68	2.589591	2.775965	0.93286	1.0719	0.3602	0.3862	1.68
1.69	2.617481	2.802000	0.93415	1.0704	0.3569	0.3820	1.69
1.70	2.645632	2.82831 5	0.93541	1.0691	0.3536	0.3780	1.70
1.71	2.674048	2.854914	0.93665	1.0676	0.3503	0.3740	1.71
1.72	2.702731	2.881797	0.93786	1.0662	0.3470	0.3700	1.72
1.73	2.731685	2.908969	0.93906	1.0649	0.3438	0.3661	1.73
1.74	2.760912	2.936432	0.94023	1.0636	0.3405	0.3622	1.74
1.75	2.790414	2.964188	0.94138	1.0623	0.3373	0.3584	1.75
1.76	2.820196	2.992241	0.94250	1.0610	0.2342	0.3546	1.76
1.77	2.850260	3.020593	0.94361	1.0597	0.3310	0.3508	1.77
1.78	2.880609	3.049247	0.94470	1.0585	0.3279	0.3471	1.78
1.79	2.911246	3.078206	0.94576	1.0573	0.3248	0.3435	1.79
1.80	2.942174	3.107473	0.94681	1.0562	0.3218	0.3399	1.80
1.81	2.973397	3.137051	0.94783	1.0550	0.3187	0.3363	1.81
1.82	3.004916	3.166942	0.94884	1.0539	0.3158	0.3328	1.82
1.83	3.036737	3.197150	0.94983	1.0528	0.3128	0.3293	1.83
1.84	3.068860	3.227678	0.95080	1.0517	0.3098	0.3258	1.84
1.85	3.101291	3.258528	0.95175	1.0507	0.3069	0.3224	1.85
1.86	3.134032	3.289705	0.95268	1.0497	0.3040	0.3191	1.86
1.87	3.167086	3.321210	0.95359	1.0487	0.3011	0.3157	1.87
1.88	3.200457	3.353047	0.95449	1.0477	0.2982	0.3125	1.88
1.89	3.234148	3.385220	0.95537	1.0467	0.2954	0.3092	1.89
1.90	3.268163	3.417732	0.95624	1.0458	0.2926	0.3059	1.90
1.91	3.302504	3.450585	0.95709	1.0448	0.2897	0.3028	1.91
1.92	3.337176	3.483783	0.95792	1.0439	0.2870	0.2997	1.92
1.93	3.372181	3.517329	0.95873	1.0430	0.2843	0.2965	1.93
1.94	3.407524	3.551227	0.95953	1.0422	0.2816	0.2935	1.94
1.95	3.443207	3.585481	0.96032	1.0413	0.2789	0.2904	1.95
1.96	3.479234	3.620093	0.96109	1.0405	0.2762	0.2874	1.96
1.97	3.515610	3.655067	0.96185	1.0397	0.2736	0.2844	1.97
1.98	3.552337	3.690406	0.96259	1.0389	0.2710	0.2815	1.98
1.99	3.589419	3.726115	0.96331	1.0380	0.2684	0.2786	1.99

Example. coth 1.70 = 1.0691.

[147]

REAL HYPERBOLIC FUNCTIONS. f(x + io) = u + io. Continued

θ	$\sinh \theta$	$\cosh \theta$	Tanh θ	$\operatorname{Coth} \theta$	$\operatorname{Sech} \boldsymbol{\theta}$	Cosech θ	θ
2.00	3.626860	3.762196	0.96403	1.0373	0.2658	0.2757	2.00
2.01	3.66466	3.79865	0.96473	1.0365	0.2632	0.2729	2.01
2.02	3.70283	3.83549	0.96541	1.0358	0.2607	0.2701	2.02
2.03	3.74138	3.87271	0.90008	1.0351	0.2582	0.2073	2.03
2.04	3.78029	3.91032	0.90075	1.0344	0.2557	0.2045	2.04
2.05	3.81958	3.94832	0.96740	i. 0337	0.2533	0.2618	2.05
2.06	3.85926	3.98671	0. 96803	1.0330	0.2508	0.2596	2.06
2.07	3.89932	4.02550	0.96865	1.0323	0.2484	0.2565	2.07
2.08	3.93977	4.00470	0.90920	1.0317	0.2400	0.2538	2.08
2.09	3.98001	4.10430	0.90980	1.0310	0.2430	0.2512	2.09
2.10	4.02186	4.14431	0.97045	1.0305	0.2413	0.2486	2.10
2.11	4.00350	4.18474	0.97103	1.0298	0.2389	0.2401	2.11
2.12	4.10555	4.22558	0.97159	1.0293	0.2300	0.2430	2.12
2.13	4.14801	4.20085	0.97215	1.0280	0.2344	0.2411	2.13
2.14	4.19009	4.30055	0.97209	1.0200	0.2321	0.2300	2.14
2.15	4.23419	4.35067	0.97323	1.0275	0.2298	0.2362	2.15
2.10	4.27791	4.39323	0.97375	1.0209	0.2270	0.2338	2.16
2.17	4.32205	4.43023	0.97420	1.0204	0.2254	0.2314	2.17
2.10	4.30003	. 4.47907	0.97477	1.0259	0.2232	0.2200	2.18
2.19	4.41105	4.52350	0.97520	1.0254	0.2211	0.2207	2.19
2.20	4.45711	4.50791	0.97574	1.0249	0.2189	0.2244	2.20
2.21	4.50301	4.01271	0.97022	1.0243	0.2108	0.2221	2.21
2.22	4.54930	4.05797	0.97008	1.0239	0.2147	0.2198	2.22
2.23	4.59017	4.70370	0.97714	1.0234	0.2120	0.2170	2.23
2 .24	4.04344	4.74909	0.97750	1.0229	0.2105	0.2154	2.24
2.25	4.09117	4.79057	0.97803	1.0225	0.2085	0.2132	2.25
2.20	4.73937	4.84372	0.97847	1.0220	0.2004	0.2110	2.20
2.27	4.70004	4.09130	0.97888	1.0210	0.2044	0.2089	2.27
2.20	4.88682	4.93940	0.07020	1.0211	0.2024	0.2007	2.20
	4.00003	4.90010	0.97970		0.2003	0.2047	2.29
2.30	4.93090	5.03722	0.98010	1.0203	0.1985	0.2020	2.30
2.31	4.90750	5.00004	0.98049	1.0199	0.1900	0.2005	2.31
2.32	5.03070	5.13097	0.98087	1.0195	0.1947	0.1985	2.32
2.34	5.14245	5.23870	0.08161	1.0187	0.1000	0.1045	2.33
	J	J-=30/9	0.90100	0.	º	0.1945	2.34
2.35	5.19510	5.20047	0.98198	1.0104	0.1000	0.1925	2.35
2.30	5.24027	5.34209	0.98268	1.0130	0.1872	0.1905	2.30
2.38	5.35618	5.39344	0.08302	LOI72	0.1054	0.1867	2.37
2.30	5.41003	5.50256	0.08335	1.0160	0.1817	0.1848	2.30
2 40	r 16600		0.08068	1 0166	0	0 - 900	
2.40	5.40023	5.55095	0.98308	1.0100	0.1000	0.1829	2.40
2.42	5.57847	5.66720	0.08431	1.0100	0.1765	0.1311	2.41
2.43	5.63542	5.72346	0.08462	1.0156	0.1747	0.1775	2.42
2.44	5.69294	5.78010	0.98492	1.0153	0.1730	0.1757	2.44
2.45	5.75103	5.83732	0.08522	LOISO	0 1712	0 1720	2 4 5
2.46	5.80060	5.80512	0.08551	1.01/7	0.1606	0.1721	2.46
2.47	5.86803	5.95352	0.08570	1.0144	0.1680	0.1704	2.47
2.48	5.92876	6.01250	0.98607	1.0141	0.1663	0.1687	2.48
2.49	5.98918	6.07209	0.98635	1.0138	0.1647	0.1670	2.49

Example. sech 2.00 = 0.2658.

[148]

REAL HYPERBOLIC FUNCTIONS. f(x + io) = u + io. Continued

0	$\sinh \theta$	$\cosh \theta$	$\operatorname{Tanh} \theta$	$\operatorname{Coth} \theta$	Sech θ	$\operatorname{Cosech} \theta$	θ
2.5	6.05020	6.13220	0.08661	1.0136	0.1631	0.1653	2.5
2.6	6.60473	6.76001	0.08003	1.0111	0.1477	0.1404	2.6
2.7	7.40626	7.47347	0.00101	1.0001	0.1338	0.1350	2.7
2.8	8.10102	8.25273	0.00263	1.0074	0.1212	0.1221	2.8
2.0	0.05056	0.11458	0.00306	1.0061	0.1007	0.1104	2.0
						0 .	
3.0	10.01787	10.00700	0.99505	1.0050	0.0937	0.09982	3.0
3.1	11.07045	11.12150	0.99595	1.0041	0.0899	0.0003	3.1
3.2	12.24588	12.28005	0.99008	1.0033	0.0814	0.0810	3.2
3.3	13.53788	13.57470	0.99728	1.0027	0.0730	0.0739	3.3
3.4	14.90530	14.99074	0.99778	1.0022	0.0007	0.0008	3.4
3.5	16.54263	16.57282	0.99818	1.0018	0.0604	0.0604	3.5
3.6	18.28546	18.31278	0.99851	1.0015	0.0546	0.0547	3.6
3.7	20.21129	20.23601	0.99878	1.0012	0.0494	0.0495	3.7
3.8	22.33941	22.36178	0.99900	1.0010	0.0447	0.0448	3.8
3.9	24.69110	24.71135	0.99918	1.0008	0.0405	0.0405	3.9
4.0	27.28002	27.30823	0.99933	1.0007	0.0366	0.0366	4.0
4.1	30.16186	30.17843	0.99945	1.0006	0.0331	0.0332	4.1
4.2	33.33567	33.35066	0.99955	1.0005	0.0300	0.0300	4.2
4.3	36.84311	36.85668	0.99963	1.0004	0.0271	0.0271	4.3
4.4	40.71930	40.73157	0.99970	1.0003	0.0245	0.0245	4.4
1.5	45.00301	45.01412	0.00075	1.0003	0.0222	0.0222	4.5
4.6	40.72713	40.74718	0.00080	1.0002	0.0201	0.0201	4.6
47	FA 06004	54.07813	0.00083	1.0002	0.0182	0.0182	4.7
4.8	60 75100	60.75032	0.00086	1.0001	0.0165	0.0165	4.8
4.0	67.14117	67.14861	0.00080	1.0001	0.0140	0.0140	4.0
4.9	0/11411/	0,114011					
5.0	74.20321	74.20995	0.99991	1.0001	0.0135	0.0135	5.0
5.1	82.0079	82.0140	0.99993	1.00007	0.01219	0.01219	5.1
5.2	90.0334	90.0389	0.99993	1.00007	0.01103	0.01103	5.2
5.3	100.1059	100.1709	0.99994	1.00000	0.00000	0.000998	5.3
5.4	110.7009	110.7055	0.99995	1.00005	0.00903	0.00903	5.4
5.5	122.3439	122.3480	0.99996	1.00004	0.00818	0.00818	5.5
5.6	135.2114	135.2150	0.99997	1.00003	0.00740	0.00740	5.6
5.7	149.4320	149.4354	0.99998	1.00002	0.00669	0.00669	5.7
5.8	165.148 3	165.1513	0.99998	1.00002	0.00000	0.00000	5.8
5.9	182.5174	182.5201	0.99998	1.00002	0.00548	0.00548	5.9
6.0	201.7132	201.7156	0.99999	1.00001	0.00496	0.00496	6.0
6.1	222.0278	222.9300	1.000	1.000	0.00449	0.00449	6.1
6.2	246.3735	246.3755	1.000	1.000	0.00406	0.00406	6.2
6.3	272.2850	272.2869	I.000	1.000	0.00367	0.00367	6.3
6.4	300.9217	300.9233	1.000	1.000	0.00332	0.00332	6.4
6 =	222.5701	332.5716	1.000	1.000	0.00301	0.00301	6.5
6.6	367.5460	367.5483	1.000	1.000	0.00272	0.00272	6.6
6.7	406.2023	406.2035	1.000	1.000	0.00246	0.00246	6.7
6.8	448.0231	448.0242	1.000	1.000	0.00223	0.00223	6.8
6.0	496.1360	496.1379	1.000	1.000	0.00202	0.00202	6.9
70	F 48 2161	548 2170	1.000	1.000	0.00182	0.00182	7.0
7.0	605 0821	605.0830	1.000	1.000	0.00165	0.00165	7.1
7.1	660 7150	660.7158	1.000	1.000	0.00140	0.00140	7.2
7.2	740 1406	740.1502	1.000	1.000	0.00135	0.00135	7.3
7.4	817.0010	817.0025	1.000	1.000	0.00122	0.00122	7.4
1.4	011.99-9	/		* 000	0.00111	0.00177	7 5
7.5	904.0209	904.0215	1.000	1.000	0.00111	0.00111	1.2

Example. $\operatorname{cosech} 2.50 = 0.1653$.

[149]

TABLE XVI. SUBDIVISIONS OF A DEGREE - AUXILIARY TABLE

											1
0	, ,,	•	, ,,	•	, ,,		0	'	0	"	0
0.01	00.26	0.41	24.26	0.81	48.26	01	0.0167	41	0.6833	21	0.0058
0.01	01.12	0.42	25.12	0.82	40.12	02	0.0333	42	0.7000	22	0.0061
0.02	01.48	0.42	25.48	0.82	40.48	03	0.0500	43	0.7167	23	0.0064
0.03	02 24	0.44	26.24	0.84	50.24	04	0.0667	44	0.7333	24	0.0067
0.04	02.00	0.45	27.00	0.85	51.00	05	0.0833	45	0.7500	25	0.0060
0.05	03.00	0.43	27.00	0.03	31.00	- J	0.000	73		- 5	
0.06	03.36	0.46	27.36	o.8 6	51.36	o 6	0.1000	46	0.7667	26	0.0072
0.07	04.12	0.47	28.12	0.87	52.12	07	0.1167	47	0.7833	27	0.0075
0.08	04.48	0.48	28.48	0.88	52.48	08	0.1333	48	0.8000	28	0.0078
0.00	05.24	0.49	29.24	0.89	53.24	09	0.1500	49	0.8167	29	0.0081
0.10	06.00	0.50	30.00	0.90	54.00	10	0.1667	50	0.8333	30	0.0083
		-									
							0		0		04
0.11	o 6.36	0.51	3 0. 36	0.91	54.30	11	0.1833	51	0.8500	31	0.0080
0.12	07.12	0.52	31.12	0.92	55.12	12	0.2000	52	0.8007	32	0.0089
0.13	07.48	0.53	31.48	0.93	55.48	13	0.2107	53	0.8833	33	0.0092
0.14	08.24	0.54	32.24	0.94	56.24	14	0.2333	54	0.9000	34	0.0094
0.15	09.00	0.55	33.00	0.95	57.00	15	0.2500	55	0.9107	35	0.0097
6	aa a6	0.06	a.a. a.f.	0.06		•6	0 0667	-6	• • • • • •	26	
0.10	09.30	0.50	33.30	0.90	57.30	10	0.2007	50	0.9333	30	0.0100
0.17	10.12	0.57	34.12	0.97	50.12	17	0.2033	57	0.9500	37	0.0103
0.10	10.40	0.50	34.40	0.98	50.40	10	0.3000	50	0.9007	30	0.0100
0.19	11.24	0.59	35.24	0.99	59.24	19	0.3107	59	0.9833	39	0.0108
0.20	12.00	0.00	30.00	1.00	00.00	20	0.3333	00	1.0000	40	0.0111
								"	•		
0.21	12.36	0. 61	36.36			21	0.3500	01	0.0003	41	0.0114
0.22	13.12	0.62	37.12			22	0.3667	02	0.0006	42	0.0117
0.23	13.48	0.63	37.48			23	0.3833	03	0.0008	43	0.0110
0.24	14.24	0.64	38.24			24	0.4000	04	0.0011	44	0.0122
0.25	15.00	0.65	30.00			25	0.4167	05	0.0014	45	0.0125
Ũ	•					•		•			•
0.26	15.36	0.66	39.36		• • • •	26	0.4333	o 6	0.0017	46	0.0128
0.27	16.12	0.67	40.12	• • • •		27	0.4500	07	0.0019	47	0.0131
0.28	16.48	0.68	40.48	• • • •	• • • •	28	0.4667	08	0.0022	48	0.0133
0.29	17.24	0.69	41.24	• • • •	• • • •	29	0.4833	09	0.0025	49	0.0136
0.30	18.00	0.70	42.00	• • • •	••••	30	0.5000	10	0.0028	50	0.0139
				0	, ,,						
0.21	18.26	0.71	12.26	0.007	00.02 6	2 T	0 5167	TT	0.0027	E.T.	0.0142
0.22	10.30	0.72	42.30	0.002	00.07.2	22	0.5107	12	0.0031	51	0.0144
0.22	10.48	0.72	12.18	0.002	00.10.8	22	0.5500	T 2	0.0026	52	0.0147
0.24	20.24	0.74	44.24	0.004	00.14.4	24	0.5667	10	0.0020	55	0.0150
0.35	21.00	0.75	45.00	0.005	00.18	25	0.5822	15	0.0042	55	0.0152
			13.00			55		- 5		33	
0.36	21.36	0.76	45.36	0.006	00.21.6	36	0.6000	16	0.0044	56	0.0156
0.37	22.12	0.77	46.12	0.007	00.25.2	37	0.6167	17	0.0047	57	0.0158
0.38	22.48	0.78	46.48	0.008	00.28.8	38	0.6333	18	0.0050	58	0.0101
0.39	23.24	0.79	47.24	0.009	00.32.4	39	0.6500	19	0.0053	59	0.0164
0.40	24.00	0.80	48.00	0.010	00.36	40	0.6667	20	0.0055	60	0.0167
0.40											

4

Examples. $o^{\circ}.41 = o^{\circ}.24'.36''$ $o^{\circ}.41'.oo'' = o^{\circ}.68_{33}.$ $o^{\circ}.005 = o^{\circ}.00'.18''$ $o^{\circ}.00'.46'' = o^{\circ}.0128.$

INTRODUCTION

THE Tables in this book are designed primarily for presenting hyperbolic functions of a complex variable either in the rectangular coördinate form of that variable (x + iy)or the polar coördinate form (ρ/δ) . They are also designed secondarily for presenting circular functions of a complex variable. A few formulas are added as aids to the conversion of such functions. The most extensive range offered is in Tables VII to XIV inclusive, between which, the functions $\sinh(x + iy)$, $\cosh(x + iy)$, $\tanh(x + iy)$, expressed in the result either in rectangular coördinates u + iv or in polar coördinate quantities r/γ , may be obtained between the limits of \circ and \pm 10 of x, and between the limits of \circ and $\pm \alpha$ for y. It is shown, moreover, to be an easy matter to extend the range of x beyond the offered range of \pm 10, should such an extension be required. The practical need for tabulated values of hyperbolic functions of (x + iy) beyond the range of $x = \pm 10$ appears to be so small that any such extension is left to the reader.

As the author's applications for financial assistance in the computation of the Tables were unsuccessful, the steps in x and y (0.05 and 0.07854 respectively) are larger than were originally intended; *i.e.*, for reducing the work of the user to the lowest practicable limits. Consequently, interpolation must ordinarily be resorted to, when three or more significant digits are needed in the results. Such interpolations require an appreciable amount of time to effect in two dimensions; *i.e.*, for both x and y. In order to render such interpolation unnecessary for ordinary engineering purposes, where three, or at most four, significant digits may be needed, a separate atlas of 23 large-scale charts, 45 cm. \times 45 cm. over ruled areas, has been prepared, and is published as an adjunct to these Tables. The necessary interpolation can very swiftly be made on the charts, by inspection.

COMPLEX QUANTITIES

The following brief outline of complex quantities is offered in view of their fundamental importance in connection with the Tables, for the assistance of those who have studied elementary mathematics, but who may not have become familiar with complex numbers. For a more comprehensive discussion of complex quantities, the reader must be referred to special treatises on the subject.

Ordinary numerical quantities, or the numbers dealt with in ordinary arithmetic, may be considered to range between zero and either positive or negative infinity, by indefinitely small gradations. Such numbers may be represented geometrically by distances, in either direction, from a zero point on an infinite straight line. Thus in Fig. 1, we may consider that the straight line -XOX extends from minus infinity on the left, to plus infinity on the right, O being the zero point. The point x_1 would then represent +1, and so on. That is, the number +1 may be regarded as represented on the line -XOX either by the position of the point x_1 with respect to the zero point O; or, as the vector Ox_1 ; *i.e.*, the straight line drawn from the origin O to the point x_1 and forming a part of the reference line -XOX. Under these assumptions, the ordinary numbers of arithmetic may be represented geometrically as vectors; but such vectors are confined to a single straight-line direction from O towards X for positive numbers, and from O towards -X for negative numbers.

Complex quantities, or complex numbers, cannot be completely represented by reference to a single direction, or to vectors along one and the same straight line. They may, however, be represented geometrically by the position, in an infinite plane, of a movable point with respect to a fixed point as origin. Thus, in Fig. 1, the plane XOY is the plane of reference, and the fixed point O is the origin. Then any point P_1 in the plane represents a complex number, and any complex number may be represented by a point on the plane.

FIG. 1. — Complex quantity 1 + i2.

FIG. 2. — Plane Vector 2.236 e^{i1.106} or peⁱ⁰, designated by 2.236 /63°.26'.

A complex number may be specified either in rectangular coördinates, or in polar coördinates, as may be preferred. Thus, the same vector OP_1 is represented in Fig. 1 to rectangular coördinates, and in Fig. 2 to polar coördinates. In Fig. 1, the X axis -XOX passing through the origin O is the fundamental reference axis, and the Y axis -YOY, perpendicular thereto in the reference plane, immediately follows. Then the point P_1 , measuring + 1 along OX, and + 2 along OY, may be defined by the expression (1 + i2), where the symbol *i* signifies measurement along the subordinate axis. It is shown in mathematical treatises that $i = \sqrt{-1}$. The vector OP_1 of Fig. 1 may therefore be expressed as $(1 + \sqrt{-1} \cdot 2)$ and a vector from O to any point in the plane may be represented by $x + \sqrt{-1} \cdot y = x + iy$, where x and y may have any positive or negative numerical values, including zero.

In pursuance of time-honored terminology, the axis -XOX is sometimes called the "real" axis, and -YOY the "imaginary," axis; so that the x-component of a complex number becomes the "real component," and the y-component the "imaginary component." The symbol *i* still stands for the *imaginary* component. In mathematics as applied to electrical engineering, the symbol *i* commonly designates electric current-strength, and so, in order to prevent the possibility of confusion, the symbol *j* is frequently substituted as the sign of the imaginary. Under such a convention, the plane-vector, or complex quantity, OP_1 , would be represented as 1 + j 2. As, however, in this book we necessarily consider complex quantities from a broader viewpoint than that offered by electrical engineering, we shall use the symbol *i* to denote the imaginary component, perpendicularly rotated with respect to the fundamental X axis.

Complex quantities may also be expressed in polar coördinates, as in Fig. 2, where the fundamental reference axis OX is drawn in the positive direction in the reference plane, from the origin O, and the circular angle δ_1 is measured in the positive or counterclockwise direction from OX to OP_1 . The vector OP_1 is then specified in polar coordinates by its length ρ_1 and by its angle δ_1 . The length ρ_1 is called the *modulus* of the vector, and the angle δ_1 is called the *argument*. This argument may be expressed in circular radians, in degrees-minutes-seconds, quadrants, or any other recognized unit of circular angle. Thus, in Fig. 2, the vector OP_1 may be represented to polar coordinates symbolically by ρ_1/δ_1 or, using numbers, by 2.236/63°.26', where 2.236 is the modulus to the same scale of linear measure as in Fig. 1, and $\delta_3^{\circ}.26'$ is the argument.

If one and the same complex quantity be expressed both in rectangular and polar coördinates, as follows:

$$x + iy = \rho/\delta \tag{1}$$

it is evident that $x = \rho \cos \delta$, $y = \rho \sin \delta$, $y/x = \tan \delta$, and $\rho = \sqrt{x^2 + y^2}$, relations which enable the coërdinates to be changed, at will, from one form to the other. Thus in Figs 1 and 2, $x_1 = 1$, $y_1 = 2$, $\rho_1 = \sqrt{5} = 2.236$, and $\delta_1 = \tan^{-1}(2) = 63^\circ.26'$.

FIG. 3. — Complex quantity -2 - i1.

Similarly, Figs. 3 and 4 represent the complex quantity or plane vector OP_2 to rectangular and polar coördinates respectively. Here $x_2 = -2$, $y_2 = -1$, $\rho_2 = \sqrt{5} = 2.236$ and $\delta_2 = 206^{\circ}.34'$.

Addition of Complex Quantities

One vector quantity is added to another, by drawing it in the reference plane from the extremity of the latter as origin, and then drawing a vector from the origin to its

free end. The last named vector is the required sum. Thus, in Fig. 5, the complex quantity $OP_2 = -2 - ii$ of Fig 3 is added to the complex quantity $OP_1 = i + i2$

of Fig 1, giving the resultant vector OP = -1 + iI. Fig. 6 shows the corresponding operation with polar coördinate vectors. Here $OP_2 = 2.236/206^{\circ}.34'$ of Fig. 4 is added to $OP_1 = 2.236/63^{\circ}.26'$ of Fig. 2, to produce $OP = 1.414/135^{\circ} = \rho_3/\delta_3$ of Fig. 6.

On the drawing-board, the graphic process of adding vectors is as easily effected when they are expressed in polar as in rectangular coördinates. But the arithmetical addition is much more easily made with rectangular coördinates. The rule is: find the vector sum by taking first the sum of the reals, and then the sum of the imaginaries; or

$$(x_1 + iy_1) + (x_2 + iy_2) + \dots + (x_n + iy_n) = (x_1 + x_2 + \dots + x_n) + i(y_2 + y_2 + \dots + y_n) = \Sigma x + i\Sigma y.$$
(2)

In the case of Figs. 5 and 6:

$$(1 + i2) + (-2 - i1) = (+1 - 2) + i(2 - 1) = -1 + i1 = \sqrt{2} / 135^{\circ}.$$

SUBTRACTION OF COMPLEX QUANTITIES

Reversing the sign of a rectangular complex quantity means reversing the sign of both its real and imaginary components. Reversing the sign of a polar complex quantity means changing its argument by 180° .

To subtract one complex quantity A from another B, reverse the sign of A, and then add it thus reversed to B, by the rules of addition.

FIG. 7. — Complex Subtraction $(1 + i_2) - (-2 - i_1) \dots 3 + i_3 = OP.$

 $\begin{array}{l} {\rm Fro. 8. - Complex Subtraction, Polar Coördinates} \\ \rho_1 \underline{/\delta_1} - \rho_2 \underline{/\delta_2} = \rho_3 \underline{/\delta_3} \\ 2.236 \underline{/63^\circ.26'} - 2.236 \underline{/206^\circ.34'} = 4.243 \underline{/45^\circ} \\ {\rm Op_1} + p_1 {\rm P} = {\rm OP}. \end{array}$

In Figs. 7 and 8, the vector P_2 of Figs. 3 and 4 is subtracted from the vector P_1 of Figs. 1 and 2. In Fig. 7, we have

$$OP_{1} - OP_{2} = OP.$$

$$(1 + i2) - (-2 - i1) = (1 + i2) + (2 + i1).$$

$$= 3 + i3.$$
In Fig. 8,
$$\rho_{1}/\underline{\delta_{1}} - \rho_{2}/\underline{\delta_{2}} = \rho_{3}/\underline{\delta_{3}}$$

$$2.236/\underline{\delta_{3}^{\circ}.26'} - 2.236/\underline{206^{\circ}.34'} = 2.236/\underline{63^{\circ}.26'} + 2.236/\underline{26^{\circ}.34'}.$$

$$= 4.243/\underline{45^{\circ}}.$$

Here again the process of complex subtraction, which is only a slight modification of complex addition, is very easily made on the drawing board by purely geometric processes, whether the quantities are rectangular or polar. If, however, the process is to be conducted algebraically, it is much more easily conducted with rectangular coördinates.

MULTIPLICATION OF COMPLEX QUANTITIES

Two rectangular complex quantities may be multiplied algebraically by the ordinary rules of algebra, remembering that $i^2 = -1$. Thus

$$(x_1 + iy_1) (x_2 + iy_2) = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1).$$
(3)

In Fig. 9, the vector OP_1 of Figs. 1 and 2 is multiplied by the vector OP_2 of Figs. 3 and 4. The product is the broken line OP_3 .

For $(1 + i2) \times (-2 - i1) = (-2 + 2) - i(1 + 4) = -i5$.

FIG. 9. --- Product and Quotient of Complex Quantities Rectangular Coördinates $(\mathbf{1} + i2) \times (-2 - i1) = -i5 = OP_3$ $(-2 + i1) + (+1 + i2) = -0.8 + i0.6 = OP_4$

FIG. 10. — Product of two Complex Quantities, Polar Coördinates $2.236/63^{\circ}.26' \times 2.236/206^{\circ}.34' = 5/270^{\circ} = OP_3$

If the two quantities to be multiplied are polar; then

$$\rho_1/\delta_1 \times \rho_2/\delta_2 = \rho_1 \rho_2/\delta_1 + \delta_2. \tag{4}$$

Or the rule is form the product of the moduli and add the arguments. Thus in Fig. 10, $OP_1 = \sqrt{5}/63^{\circ}.26'$ and $OP_2 = \sqrt{5}/206^{\circ}.34' \therefore OP_3 = 5/270^{\circ}.00'$.

RECIPROCAL OF A COMPLEX QUANTITY

The reciprocal of a rectangular complex quantity can be reduced to the standard algebraic form, by multiplying both numerator and denominator bý the same complex quantity with reversed imaginary. Thus:

$$\frac{\mathbf{I}}{x+iy} = \frac{\mathbf{I} \times (x-iy)}{(x+iy) \ (x-iy)} = \frac{x-iy}{x^2+y^2} = \left(\frac{x}{x^2+y^2}\right) - i\left(\frac{y}{x^2+y^2}\right).$$
 (5)

For example if x + iy = 1 + i2,

$$\frac{\mathbf{I}}{\mathbf{I}+i2} = \frac{\mathbf{I}}{\mathbf{I}+i2} \left(\frac{\mathbf{I}-i2}{\mathbf{I}-i2}\right) = \frac{\mathbf{I}-i2}{\mathbf{I}+4} = \frac{\mathbf{I}}{5} - \frac{i2}{5} = 0.2 - i0.4.$$

The reciprocal of a polar complex quantity is obtained by taking the reciprocal of its modulus, and reversing its argument. That is

$$\frac{\mathbf{I}}{\rho \underline{\delta}} = \frac{\mathbf{I}}{\rho} \underline{-\delta}_{[157]} = \frac{\mathbf{I}}{\rho} \overline{\delta}.$$
(6)

For example:

$$\frac{\mathbf{I}}{\sqrt{5} \underline{/63^{\circ}.26'}} = \frac{\mathbf{I}}{\sqrt{5}} \overline{\sqrt{63^{\circ}.26'}}.$$

QUOTIENT OF COMPLEX QUANTITIES

To find the quotient of a complex quantity A divided by another B, form the reciprocal of B and then multiply this reciprocal by A.

Thus to find $(x_1 + iy_1)/(x_2 + iy_2)$

$$\frac{x_1 + iy_1}{x_2 + iy_2} = \frac{x_1 + iy_1}{x_2 + iy_2} \left(\frac{x_2 - iy_2}{x_2 - iy_2} \right) = \frac{(x_1x_2 + y_1y_2) + i(y_1x_2 - y_2x_1)}{x_2^2 + y_2^2} .$$
(7)

For example:

$$\frac{OP_2}{OP_1} = \frac{-2 - iI}{I + i2} = \frac{-2 - iI}{I + i2} \left(\frac{I - i2}{I - i2}\right)$$
$$= \frac{(-2 - 2) + i(4 - I)}{I + 4} = \frac{-4 + i3}{5} = -0.8 + i0.6.$$
$$(5.9), \quad \frac{OP_2}{OP_1} = OP_4.$$

Thus, in Fig. 9, $\frac{OP_2}{OP_1}$

The quotient of two polar complex quantities is formed by taking the quotient of their moduli and the difference of their arguments. That is

$$\frac{\rho_2/\delta_2}{\rho_1/\delta_1} = \frac{\rho_2}{\rho_1} \frac{\delta_2 - \delta_1}{\delta_2 - \delta_1}.$$
(8)

Thus in Fig. 11 we have the quotient of OP_2 of Figs. 3 and 4 divided by OP_1 of Figs. 1 and 2, or

It is thus evident that in order to find either the sums or the differences of complex quantities, it is desirable to have them expressed in rectangular coördinates; while, on the other hand, in order to find products, reciprocals, or quotients, it is preferable to have them expressed in polar coördinates.

POWERS AND ROOTS OF COMPLEX QUANTITIES

It will be evident from the foregoing that

$$(\rho/\delta)^n = \rho^n/n\delta$$
: and $\sqrt[n]{\rho/\delta} = \sqrt[n]{\rho}/\delta/n$ (9)

operations that are readily executed on polar complex quantities.

CIRCULAR AND HYPERBOLIC FUNCTIONS GEOMETRICALLY COMPARED

Since the Tables in this book are adapted for the evaluation of both circular and hyperbolic functions of a complex variable; that is, either of sin (x + iy), cos (x + iy) and tan (x + iy); or of sinh (x + iy), cosh (x + iy) and tanh (x + iy), it may be advisable to consider some propositions in the comparative geometry of the circular and hyperbolic functions, both real and complex.

REAL CIRCULAR AND HYPERBOLIC FUNCTIONS

The geometry of the real circular functions sin x, cos x and tan x relates, as is well known, to the motion of a radius vector over a circle. The geometry of the real hyperbolic functions sinh x, cosh x and tanh x relates to the motion of a radius vector over a rectangular hyperbola. In Fig. 12, $A \ b \ c \ d \ E \ g$ is a circle $x^2 + y^2 = 1$, assumed to have unit radius, and center O. As the radius vector OA rotates in the positive or counterclockwise direction about the center O, it describes a circular sector such as AOE, and a circular angle β , the tangent Ef being always perpendicular to the radius vector OE. The magnitude of the circular angle β may be defined in either of two ways, namely: —

(1) By the ratio of the circular arc length s described during the motion, by the vector's terminal E, to the constant length ρ of the radius vector.

(2) By the area of the circular sector AOE swept out by the radius vector during the motion.

According to definition (1), if the radius vector generates any infinitesimal angle $d\beta$ circular radians, by moving its terminal over an infinitesimally small circular arc ds

$$d\beta = \frac{ds}{\rho} = \frac{ds}{r}$$
 circular radians (10)

since the constant radius vector ρ has been taken equal to unity Consequently, in passing over any circular arc from distance s_1 to distance s_2 , through a distance $s_2 - s_1 = s$, the total circular sector and circular angle generated will of course be: —

$$\beta = \int_{s_1}^{s_2} \frac{ds}{1} = (s_2 - s_1) = s \qquad \text{circular radians (11)}$$

or the angle β , as is well known, becomes equal to the length of the circular arc described, when expressed in circular radians.

According to definition (2), if in Fig. 12, the radius vector of unit length moves from the initial position OA to any position such as OE, it will sweep out a circular sector OEA.

then

If the arc AE^1 be measured in the negative or clockwise direction equal in length to the arc AE, then it is well known that the area of the double sector EOE^1 shaded in Fig. 12, is equal to β units of area because the area of the whole circle is manifestly π units, and the shaded area is $\frac{2\beta}{2\pi}$ that of the whole circle. Consequently, the magnitude of the angle β expressed in circular radians is numerically twice the area of the circular sector AOE which it covers when the circle has unit radius.

FIG. 12. — Circular Sector and Real Circular Functions.

FIG. 13. — Hyperbolic Sector and Real Hyperbolic Functions.

Turning now to the hyperbolic case, let $A \ b \ c \ d \ E$ Fig. 13, be an arc of a rectangular hyperbola $x^2 - y^2 = 1$, assumed to have unit semi-diameter OA, and center O. As the radius vector OA rotates in the positive or counterclockwise direction with center O, it describes a hyperbolic sector AOE^{β} , and also what may conventionally be called for convenience a "hyperbolic angle" θ .* The tangent Ef to the path of the moving terminal E always makes a circular angle β with the Y axis; or a circular angle of 2β with a perpendicular to the radius vector. The magnitude of the hyperbolic angle θ may be defined in either of two ways; namely: —

(1) By the ratio of the hyperbolic arc length s described during the motion, by the terminal E, to the integrated mean length of the varying radius vector.

(2) By the area of the hyperbolic sector AOE Fig. 13, swept out by the radius vector during the motion.[†]

According to definition (1), if the variable radius vector ρ generates any infinitesimal hyperbolic angle $d\theta$ by moving its terminal over an infinitesimally small hyperbolic arc ds; then \ddagger

$$d\theta = \frac{ds}{\rho}$$
 hyperbolic radians (12)

* It should be pointed out that a "hyperbolic angle" in the sense above defined is not the opening between two lines intersecting in a plane; but a quantity otherwise analogous to a circular angle, and the argument x of the functions $\sinh x$, $\cosh x$, $\tanh x$, etc. The use of the term "hyperbolic angle" can only be justified by its convenience of analogy.

† Greenhill's "Differential and Integral Calculus," 1896, p. 108.

[‡] A demonstration of this proposition has been given by the author in "The Application of Hyperbolic Functions to Electrical Engineering Problems." Appendix L, p. 250. University of London Press, 1911.

Consequently, in passing over any hyperbolic arc from distance s_1 to distance s_2 through a distance $s_2 - s_1 = s$, the total hyperbolic sector and hyperbolic angle generated will be

$$\theta = \int_{s_1}^{s_2} \frac{ds}{\rho} = \frac{s}{\rho^1}$$
 hyperbolic radians (13)

where ρ^1 is the integrated mean value of ρ as defined by the last equation. Any infinitesimally small angle, whether circular or hyperbolic, is therefore expressed in correponding radian measure by one and the same term ds/ρ ; but whereas, in the case of circular angles, the constancy of the radius vector makes the integral simply s/ρ , in the case of hyperbolic angles, the variation of the radius vector makes the integral more complex. Fig. 14 represents a circular angle of 1 radian in five sections of 0.2 radian each; while Fig. 15 represents a hyperbolic angle of 1 radian correspondingly divided. The integrated mean radius vector of the full sector AOF intersects the curve in the point f, the total length of the arc A B C D E F being 1.3167 units.

SINES, COSINES AND TANGENTS OF CIRCULAR AND HYPERBOLIC ANGLES

If, with unit radius, we draw both a circular and a rectangular hyperbolic sector, as in Figs. 12 and 13, and take OA as the initial line in each; then for any position

Sectors of 0.2 Radian each.

of the radius vector such as OE, we shall have in either case the following magnitude conditions: —

The sine will be equal to the length of the perpendicular from the terminal of the radius vector on to the X axis.

The cosine will be equal to the length of the intercept on the X axis made by the above-mentioned perpendicular.

The versed sine will be equal to the length XA, Fig. 12, and AX, Fig. 13, between the intercept on the X axis, and the horizontal unit radius.

The tangent will be equal to the length of the perpendicular from the radius vector (or radius vector produced) on to unit radius point of the X axis. Thus in

Fig. 12, $\sin \beta = XE$. Fig. 13, $\sinh \theta = XE$. Fig. 12, $\cos \beta = OX$. Fig. 13, $\cosh \theta = OX$. Fig. 12, $\tan \beta = At$. Fig. 13, $\tanh \theta = At$.

Whereas the values of $\sin \beta$, $\cos \beta$ and $\tan \beta$ fluctuate periodically in sign as β increases from 0 to α , the values of $\sinh \theta$, $\cosh \theta$, and $\tanh \theta$ do not change sign, the graphs of the real hyperbolic functions being indicated in Fig. 16, as far as $\theta = 3.0$.

BISECTION OF CIRCULAR AND HYPERBOLIC ANGLES

If we take any circular angle BOC Fig. 17, we may of course bisect this angle in either of two ways: —

FIG. 17. — Bisection of a circular sector in the well-known manner by a radius vector through the intersection of terminal tangents, or through the midpoint of the chord between terminal points.

(1) By drawing tangents bb, cc, to the curve at the points B, C, respectively, and drawing the straight line Od from the center O through the point of intersection d.

FIG. 18. — Bisection of a hyperbolic sector by a radius vector through the intersection of terminal tangents, or through the midpoint of the chord between terminal points.

(2) By drawing the chord BC, and marking the radius OD through the midpoint δ of this chord.

Similarly, if we take any hyperbolic angle BDC Fig. 18, between the points B and C of a rectangular hyperbola, we may bisect this angle in either of two ways: --

(1) By drawing tangents bb, cc, to the curve at the points B, C, respectively, and drawing the straight line Od from the center O through the point of intersection d.

(2) By drawing the chord, BC, and marking the radius OD through the midpoint δ of this chord.*

COMPARATIVE GEOMETRY OF COMPLEX CIRCULAR AND HYPERBOLIC FUNCTIONS

We have seen that the real circular functions $\sin x$, $\cos x$, may be derived from a circle diagram, and that the real hyperbolic functions $\sinh x$, $\cosh x$, may be similarly derived from a rectangular hyperbola diagram. We shall see that both the complex circular functions sin (x + iy), cos (x + iy), and the complex hyperbolic functions $\sinh(x+iy)$, $\cosh(x+iy)$, may be derived from a combination circle and hyperbola diagram.

COMPLEX CIRCULAR FUNCTIONS

CONSTRUCTION FOR sin $(x \pm iy)$, AND FOR sin⁻¹ $(u \pm iv)$

In Fig. 19, take OA = 1 along the negative side of the Y axis. From OA as initial line, mark off the circular angle x = AOB. From OB as initial line, mark off the hyperbolic angle y and its sector BOD. Let C be the foot of the perpendicular from D on Drop perpendiculars from C and D on the axis of reals OX, at c and OB produced. d respectively. About c as center, rotate cd positively through 00° to cZ. Then will

* This proposition is proved in Greenhill's "Differential and Integral Calculus," Macmillan & Co., 1896, page 67, Fig. 16, for the particular case when the angle AOB, in our Fig. 18, is zero. The demonstration of proposition (1) for the general case of Fig. 18 is not difficult; but that found by the author is rather lengthy. The demonstration of the general proposition (2) is, however, brief and direct, as follows: -

Let θ_1 be the hyperbolic angle of the sector AOB.

Let θ_2 be the hyperbolic angle of the sector AOC.

Then it is required to show that

$$\frac{\delta f}{Of} = \frac{hA}{OA} = \frac{hA}{I} = \tanh \frac{(\theta_1 + \theta_2)}{2}$$

But from an inspection of the Figure,

$$Be = \sinh \theta_1, \qquad Cg = \sinh \theta_2, \\ Oe = \cosh \theta_1, \qquad Og = \cosh \theta_2, \\ f\delta = \frac{eB + gC}{2} = \frac{\sinh \theta_1 + \sinh \theta_2}{2} \cdot \\ Of = \frac{Oe + Og}{2} = \frac{\cosh \theta_1 + \cosh \theta_2}{2} \cdot \\ f\delta = \sinh \theta_1 + \sinh \theta_2$$

so that

and

$$Of = \frac{Oe + Og}{2} = \frac{\cosh \theta_1 + \cosh \theta_2}{2}$$

$$f\delta \quad \sinh \theta_1 + \sinh \theta_2$$

Thus

which is a known equivalent expression for $\tanh \frac{(\theta_1 + \theta_2)}{2}$, see Becker and Van Orstrand's "Hyperbolic Func-'tions," 1909, p. XIV, Formula (49).

 $\overline{Of} = \overline{\cosh \theta_1 + \cosh \theta_2}$

[164]

the complex vector OZ = Oc + icd be the required circular sine of the complex angle x + iy radians. In the case represented, sin $(1 + i i) = 1.299 + i 0.635 = 1.446 / 26^{\circ}.05$. As y varies, Z moves along the hyperbola bZ : -

$$\frac{X^2}{\sin^2 x} - \frac{Y^2}{\cos^2 x} = 1$$
 (14)

and as x varies, Z moves along the ellipse: --

$$\frac{X^2}{\cosh^2 y} + \frac{Y^2}{\sinh^2 y} = 1.$$
 (15)

Both the hyperbola and the ellipse have as common foci FF', the points $X = \pm 1$, Y = 0.

FIG. 19. — Constructions for sin (x + iy) and sin⁻¹ $(u \pm iv)$.

From the same figure, we have also, if Oc = u and cZ = iv, $\sin^{-1}(u \pm iv) = \sin^{-1}Ob \pm i \cosh^{-1}OE$

$$= \sin^{-1} \left\{ \frac{\sqrt{(1+u)^2 + v^2} - \sqrt{(1-u)^2 + v^2}}{2} \right\}$$

$$\pm i \cosh^{-1} \left\{ \frac{\sqrt{(1+u)^2 + v^2} + \sqrt{(1-u)^2 + v^2}}{2} \right\}$$
(16)
since $Ob = \frac{FZ - F'Z}{2}$ and $OE = \frac{FZ + F'Z}{2}$.

Constructions for $\cos(x + iy)$ and for $\cos^{-1}(u + iy)$

In Fig. 20, take OA as unit distance along the real or X axis, in the positive direction. From OA as initial line, describe the circular angle x, or the circular sector AOB of area x/2. On OB as initial line, describe the hyperbolic angle y, or the hyperbolic sector area BOD of area y/2. Let C be the foot of the perpendicular from D on OB produced. Drop perpendiculars from C and D on the X axis at c and d respectively. With c as center, rotate the line cd in the positive direction through 90° into the position cZ; so that $\overline{cZ} = i.\overline{cd}$. Then the complex quantity OZ = Oc + i.cd will be the required circular cosine of the complex angle (x + iy) radians.

In the case represented, $\cos(1 + i I) = 0.834 - i 0.989 = 1.293 \sqrt{49^{\circ}.866}$. As y varies, Z moves along the hyperbola bZ defined by

$$\frac{X^2}{\cos^2 x} - \frac{Y^2}{\sin^2 x} = 1$$
 (17)

and as x varies, Z moves along the ellipse ZE, defined by

$$\frac{X^2}{\cosh^2 y} + \frac{Y^2}{\sinh^2 y} = 1.$$
 (18)

Both the hyperbola and the ellipse have as common foci FF', the points $X = \pm I$, Y = 0.

FIG. 20. — Constructions for $\cos (x \pm iy)$ and $\cos^{-1} (u \pm iv)$.

From Fig. 20 we obtain: ---

$$\cos^{-1} OZ = \cos^{-1} (u \pm iv) = \cos^{-1} Ob \mp \cosh^{-1} OE$$

= $\cos^{-1} \left\{ \frac{\sqrt{(1+u)^2 + v^2} - \sqrt{(1-u)^2 + v^2}}{2} \right\}$
 $\mp i \cosh^{-1} \left\{ \frac{\sqrt{(1+u)^2 + v^2} + \sqrt{(1-u)^2 + v^2}}{2} \right\}$ (19)
 $Ob = \frac{FZ - F'Z}{2}$ and $OE = \frac{FZ + F'Z}{2}$.

since

COMPLEX HYPERBOLIC FUNCTIONS CONSTRUCTIONS FOR sinh $(x \pm iy)$ AND sinh⁻¹ $(u \pm iv)$

In Fig. 21, take OA as unit length along the real or X axis in the positive direction. From OA as initial line, describe the circular angle y, or the circular ector AOB of area y/2. From OB as initial line describe the hyperbolic angle x, or the hyperbolic sector BOD of area x/2. Let C be the foot of the perpendicular from D on OB pro-

duced. Drop perpendiculars from C and D on the Y axis at c and d respectively. With c as center, rotate the line cd negatively, or clockwise, through 90° to cZ. The complex quantity OZ = Oc - i.cd will be the required hyperbolic sine of the complex angle (x + iy) radians.

In the case represented, sinh $(1 + i 1) = 0.635 + i 1.2985 = 1.446/63^{\circ}.95$. As x varies, Z moves along the hyperbola Zbz: —

$$\frac{Y^2}{\sin^2 y} - \frac{X^2}{\cos^2 y} = 1$$
 (20)

and as y varies, Z moves along the ellipse XExy

$$\frac{Y^2}{\cosh^2 x} + \frac{X^2}{\sinh^2 x} = 1.$$
 (21)

The hyperbola and ellipse are confocal at the points F and f defined by X = 0, $Y = \pm 1$.

FIG. 21. — Constructions for sinh (x = iy) and sinh⁻¹ (u = iv).

From Fig. 21 we also obtain $\sinh^{-1} (u \pm iv) = \sinh^{-1} (cZ \pm Oc) = \cosh^{-1} OE \pm i \sin^{-1} Ob.$ $= \cosh^{-1} \left\{ \frac{\sqrt{(1+v)^2 + u^2} + \sqrt{(1-v)^2 + u^2}}{2} \right\}$ $\pm i \sin^{-1} \left\{ \frac{\sqrt{(1+v)^2 + u^2} - \sqrt{(1-v)^2 + u^2}}{2} \right\}$ (22) since $OE = \frac{fZ + FZ}{2}$ and $Ob = \frac{fZ - FZ}{2}$.

[167]

Constructions for $\cosh(x + iy)$ and $\cosh^{-1}(u + iv)$

In Fig. 22, take OA as unit distance along the real or X axis in the positive direction. From OA, as initial line, describe the circular angle y, or the circular sector AOB of area y/2. From OB, as initial line, describe the hyperbolic angle x, or the hyperbolic sector BOD of area x/2. Let C be the foot of the perpendicular from D on OB produced. Drop perpendiculars from C and D on the X axis at c and d respectively. About c, as

FIG. 22. — Constructions for $\cosh(x \pm iy)$ and $\cosh^{-1}(u \pm iv)$.

center, rotate the line *cd* negatively, or clockwise, through 90° to *cZ*; so that cZ = -i.cd. Then the complex quantity OZ = Oc - i.cd will be the required cosine of the complex angle (x + iy) radians.

In the case represented, $\cosh(1 + i1) = 0.834 + i0.989 = 1.293/49^{\circ}.866$. As x varies, Z moves along the hyperbola Zbz

$$\frac{X^2}{\cos^2 y} - \frac{Y^2}{\sin^2 y} = \mathbf{I}.$$
 (23)

As y varies, Z moves along the ellipse EZez

$$\frac{X^2}{\cosh^2 x} + \frac{Y^2}{\sinh^2 x} = \mathbf{I}.$$
 (24)

The ellipse and hyperbola are confocal at the points A, a, defined by $X = \pm 1$, Y = 0.

[168]
From the same figure. If Oc = u and cZ = iv $\cosh^{-1}(u \pm iv) = \cosh^{-1}(Oc \pm i.cZ) = \cosh^{-1}OE \pm i\cos^{-1}Ob$

$$= \cosh^{-1}\left(\frac{r_{1}+r_{2}}{2}\right) \pm i\cos^{-1}\left(\frac{r_{1}-r_{2}}{2}\right)$$
$$= \cosh^{-1}\left\{\frac{\sqrt{(1+u)^{2}+v^{2}}+\sqrt{(1-u)^{2}+v^{2}}}{2}\right\}$$
$$\pm i\cos^{-1}\left\{\frac{\sqrt{(1+u)^{2}+v^{2}}-(\sqrt{1-u})^{2}+v^{2}}{2}\right\}. (25)$$

CONSTRUCTIONS FOR tan $(x \pm iy)$ AND $\tan^{-1}(u \pm iv)$

In Fig. 23, lay off along the X axis a point A distant tan x from O, and also a point B such that $OB = \cot x$. Draw a circle through A and B having its center on OX at C. The distance OC measures $\cot 2x$ and the radius of the circle is $\csc 2x$. Any circle thus drawn will intersect the Y axis at two points e and f which are at unit dis-

FIG. 23. — Constructions for $\tan (x \pm iy)$ and $\tan^{-1} (u \pm iv)$.

tances from O. Then lay off the Y axis two points a and b, distant respectively $\tanh y$ and $\coth y$ from O. With center c on the Y axis, draw a circle through a and b. The distance Oc will be $\coth 2y$, and the radius of the circle will be $\operatorname{cosech} 2y$. Let Z be the point of intersection of the two circles. Then OZ is the required tangent of (x + iy). If x is kept constant but y is varied, the point Z moves over the circle AZB. If on the other hand y is kept constant, but x is varied, Z will move around the circle aZb and will make one complete revolution for each increase of π units in x.

In the case represented, $\tan(1 + i 1) = 0.2718 + i 1.084 = 1.118/75^{\circ}.916$.

From Fig. 23 it is evident that the angle AcO is equal to x, and angle eAO is thus the complement of x. Hence half the angle between r_1 and r_2 is the complement of x. Moreover $y = \log_e \sqrt{r_2/r_1}$. Therefore, if OZ = u + iv,

$$\tan^{-1}(u \pm iv) = \left\{ \frac{\pi - \tan^{-1}\left(\frac{u}{\pm v - 1}\right) + \tan^{-1}\left(\frac{u}{\pm v + 1}\right)}{2} + \frac{i}{2}\log_e \sqrt{\frac{(1 \pm v)^2 + u^2}{(1 \mp v)^2 + u^2}}.$$
 (26)

CONSTRUCTIONS FOR $\tanh(x \pm iy)$ AND $\tanh^{-1}(u \pm iv)$

In Fig. 24 mark off on the axis of reals xOX two points T and X such that the former is distant by $\tanh x$ and the latter by $\coth x$ from the origin O. Find the point C midway between T and X. Incidentally, this point will be distant $\coth 2x$ from O. With

FIG. 24. — Constructions for $\tanh(x \pm iy)$ and $\tanh^{-1}(u \pm iv)$

center C and radius $CT = CX = \operatorname{cosech} 2x$, draw the circle TXZ. Mark off on the axis of imaginaries yOY, two points t and y such that the former is distant by $\tan y$ and the latter by $\cot y$ from the origin O. Find the point c midway between them. Incidentally, this point will be distant $\cot 2y$ from O. With center c and radius $ct = cy = \operatorname{cosec} 2y$, draw the circle ByAt. This circle will cut the axis of reals at two points A and B distant each one unit from O. It will also intersect the circle TXZ perpendicularly at Z. Connect OZ. This vector OZ is the required hyperbolic tangent of the complex angle (x + iy) radians.

In the case represented, $\tanh(1 + i 1) = 1.084 + i 0.2718 = 1.118/14^{\circ}.084$. As x varies, Z moves along the circle AtB. As y varies, Z moves along the circle TZX, performing one complete revolution for each π units of increase in y.

From the same Figure, if $OZ = u \pm iv = op \pm ipZ$, we have $\tanh^{-1}(u \pm iv) = x \pm iy$.

In this case $x = \log_e \sqrt{r_1/r_2}$

or
$$x = \frac{1}{2} \log_e (r_1/r_2)$$
. (27)

and $y = \frac{\pi - \alpha}{2}$ where α is the circular angle at Z between the radii vectores r, and r_2 . Also

$$\alpha = \tan^{-1} \left(\frac{u+1}{\pm v} \right) - \tan^{-1} \left(\frac{u-1}{\pm v} \right).$$
(28)

Hence

$$\tanh^{-1}(u \pm iv) = \frac{1}{2}\log_e \sqrt{\frac{(1+u)^2 + v^2}{(1-u)^2 + v^2}} + i \left\{ \frac{\pi - \tan^{-1}\left(\frac{u+1}{\pm v}\right) + \tan^{-1}\left(\frac{u-1}{\pm v}\right)}{2} \right\}$$
(29)

DEGREE OF PRECISION OF TABLES

INTRODUCTION

If a numerical quantity, freed from decimals, is correctly expressed to within say I part in 1000; *i.e.*, I part in 10³, then this degree of precision may conveniently be described as precision of the third order. In general, therefore, if a numerical quantity be correctly expressed to within I part in 10ⁿ, where n is any real positive number, its precision is of the *n*th order. The weekly statement of the financial assets of a bank might be expressed as \$186,257,361.26 which, assuming that it is to be taken as being numerically correct to a single cent, represents 18,625,736,126 cents, an apparent precision of I in $10^{10.27}$, or of the 10.27th order. Physical and astronomical precisions are less ostensibly pretentious, however, and rarely exceed the 6th order. Engineering computations are commonly satisfied with a precision of the third order; although, on rare occasions, the order required may be the highest that physics can attain.

The degree of precision corresponding to retaining a specified number of significant digits correct within unity, in Tables, can only be stated approximately; since it varies with the values of the digits. Thus, if we have tables containing entries each of three significant digits, correct to the last digit, the lowest entry may be 100 and the highest 999. The precision would therefore be 1 in 100 in the former case, and practically 1 in 1000 in the latter. That is the order of precision would vary between the second and the third. The average precision might be stated as of the 2.5th order. Such tables of n significant digits lay claim to an average precision of the (n - 1/2)th order.

Many tables are, however, employed in which the last digit is stated to be correct to the nearest digit; that is within half of unity. On that understanding, the precision of say a three-digit table would vary between 1/2 in 100 to 1/2 in 999 or between the 2.3rd and the 3.3rd order, with a mean of the 2.8th order. Consequently, we may say that such tables, giving n significant digits, lay claim to an average precision of the (n - 0.2)th order.

DEGREE OF PRECISION PRESENTED IN THE FOLLOWING TABLES

The tables of complex hyperbolic functions here presented have been proposed with a view to giving five decimal places regularly. This means five significant digits when the values of the results lie between o.1 and unity, six significant digits when they lie between 1 and 10, four when they lie between 0.1 and 0.01 and so on. Tables I to VI inclusive were computed with the aid of five-figure logarithms of real hyperbolic functions, so that their degree of precision is necessarily limited to, and must on the average fall below that of such logarithm tables, which, as we have seen, is of the 4.8th

FIG. 25. — sinh (ρ / δ) expressed in polar coördinates.

order. Exclusive of such mistakes as may exist, they do not claim a degree of precision beyond the 4.5th order.

Tables VII to XIII inclusive were, however, computed for the most part from Ligowski's gudermannian angles which are tabulated by him for each thousandth of a hyperbolic radian, to the nearest hundredth of a second of circular arc. The logarithms of the corresponding real hyperbolic functions were then found in the eight-place tables of Bauschinger and Peters, which offer such logarithms for each and every second of circular arc. The results were computed in the formulas to at least six significant

digits and the sixth was then frequently discarded to meet the needs of the five-decimal table. Consequently in this group of tables, excluding such errors as may exist, the precision is on the average of the 4.8th order, and rises to the 5.8th order, when the value of the result lies between 1 and 10. The average precision of the second group of tables is thus about half an order greater than that of the first group.

PRECISION OF THE CHARTS IN THE ATLAS

The charts of the accompanying Atlas have been prepared with a view to offering three digits in the deduced quantity, if reasonable care be taken in their use. This represents an average degree of precision of the 2.5th order; or about equal to that fur-

nished by an ordinary 25 cm. slide rule. When a higher degree of precision than this is needed, arithmetical interpolation in the Tables must ordinarily be resorted to; but even then it is desirable to obtain a preliminary approximate value from the Atlas, in order to furnish a check against gross error.

GRAPHIC REPRESENTATIONS

Figs. 25 and 26 present the results obtained from Table I to true polar coördinates. Each intersection of the curves corresponds to an entry in the table. Fig. 25 relates to pages 2, 3, and Fig. 26 to the rest of the table. The curves of constant ρ intersect those of constant δ perpendicularly. That is, each intersection occurs theoretically at right angles. If, however, an attempt is made to prepare plates corresponding to Figs. 25 and 26 on a large scale, for a reasonable degree of precision, in rapid interpolation by graphical inspection, difficulties present themselves. Firstly, it has been found impracticable to procure polar coördinate ruled sheets large enough. Secondly, regular polar coördinate charts of the type presented in Figs. 25 and 26 necessarily offer very little graphical interpolation precision at small radial distances from the origin of co-

FIG. 27. – Polar Coördinate Diagram Regular Presentation on Circular Sheet.

ordinates, where the radial lines, sharply converging, crowd the diagram. On the other hand, they offer relatively great apparent interpolation precision at large distances from the origin, as the radii diverge. In preparing interpolation charts, therefore, the author has devised the scheme of using squared paper sheets for presenting such polar coördinate quantities as appear in Figs. 25 and 26. Fig. 27 represents the regular polar coördinate r/γ diagram, in which the lines of constant r are circles concentric at O, and the lines of constant γ are radii diverging from O. Fig. 28 represents the corresponding squared polar coördinate diagram, in which the lines of constant γ are the parallel horizontal lines, while the origin point O in Fig. 27 becomes expanded into the original straight line o-o in Fig. 28. The straight, broken line DU is transformed into the curved line du, and, in general, orthogonally intersecting curves of one diagram do not transform into orthogonally intersecting curves on the other.

INTERPOLATION CHARTS

Plates IA, IB, and Ic of the Atlas correspond to Table I and present, to squared polar coördinates, the results in that table. Each intersection of curves in the plates corresponds to one entry in the table. Plate IA includes the entries on pages 2 and 3 of the table; while Plates IB and IC include the entries in the remainder of the table. The curves of constant ρ and constant δ intersect one another at various angles, but the method of interpolation requires little explanation. The entering quantity will fall within some particular curvilinear parallelogram. The respective opposite sides may be subdivided into tenths in any of the three following ways: (1) by direct inspectional estimate, (2) by graphical subdivision on a sheet of tracing paper laid over the chart, (3) by means of a radiating decimal scale of lines, prepared in advance, on tracing paper or thin celluloid. It is not, in general, worth the effort of attempting a closer subdivision than tenths of the sides of any parallelogram. The point of intersection of lines parallel to the sides, through the correct decimal points, is then to be marked on the covering tracing paper, or held with a blunt pointer, such as a knitting needle, on the chart itself, and the rectangular coördinates of this point read off from the parallel ruling or background of the plate. That is, the charts are always used with the entering variable on the curvilinear coördinates, and with the result found on the rectilinear framework in the background; except when inverse functions are sought, and the procedure consequently reversed.

TABLE I

$$\sinh (\rho/\delta) = r/\gamma$$

POLAR HYPERBOLIC SINES OF A POLAR VARIABLE

Table I, pages 2 to 7, gives the hyperbolic sine of vectors up to 3.0 in modulus, by steps of 0.1, for each degree of argument from 45° to 90° . The results are also expressed in polar coördinates, as plane vectors, corresponding to the relation:—

$$\sinh\left(\rho/\delta\right) = r/\gamma \tag{30}$$

$$\rho/\delta = \sinh^{-1}\left(r/\gamma\right). \tag{31}$$

The graphs of the results to true polar coördinates appear in Figs. 25 and 26, where the curves of constant ρ always intersect orthogonally the curves of constant δ ; so that at any point of intersection the angles of intersection are right angles. In Plates IA, IB, and Ic of the Atlas, the same graphs are given to squared polar coördinates, the disadvantages of the distortion being more than outweighed by the advantages in facility of graphic interpolation. In these charts the curves of constant ρ do not intersect the curves of constant δ orthogonally.

or

INTERPOLATION. FIRST CASE. IN MODULUS ONLY

If Table I is entered with a vector quantity of more than one decimal in modulus and of some exact degree of argument, such as $2.76/\underline{70^{\circ}}$; then the result will lie nearly on the line between the results for $2.7/\underline{70^{\circ}}$ and $2.8/\underline{70^{\circ}}$; namely, between 1.2031/136.489 and $1.2136/\underline{143^{\circ}.005}$. A first approximation may be obtained by proportional parts between them, thus: —

Required sinh 2.76/70° by Table, sinh 2.80/70° = $1.2136/143^{\circ}.005$. by Table, sinh 2.70/70° = $1.2031/136^{\circ}.489$. Difference 0.10/70° = 0.0105 /6°.516. Proportion for 0.06/70° = $0.0063/3^{\circ}.910$. sinh 2.70/70° = $1.2031/136^{\circ}.489$. Result sinh 2.76/70° = $1.2094/140^{\circ}.399$. The true value is $1.2086/140^{\circ}.366$.

INTERPOLATION BY THE USE OF TAYLOR'S THEOREM

When more precise interpolation is required than that by simple intermediate proportion, we may use Taylor's theorem in the following form; since

$$\frac{d\,(\sinh\theta)}{d\theta}=\cosh\theta,\quad \frac{d^2\,(\sinh\theta)}{d\theta^2}=\sinh\theta,\ \ {\rm etc.}$$

 $\sinh (\theta + \Delta \theta) = \sinh \theta + \Delta \theta \cosh \theta + \frac{(\Delta \theta)^2}{2!} \sinh \theta + \frac{(\Delta \theta)^3}{3!} \cosh \theta + \dots (32)$ Let $\theta = \rho / \delta$ and $\Delta \theta = \Delta \rho / \delta$. Then

 $\sinh \{(\rho + \Delta \rho) / \delta\} = \sinh (\rho / \delta) + \Delta \rho / \delta. \cosh (\rho / \delta) + \frac{(\Delta \rho)^2}{2!} / 2\delta. \sinh (\rho / \delta) + \dots (33)$

The number of correction terms to be retained depends on the interval, and on the degree of precision desired. It is seldom that more than two correction terms have to be retained. Thus in the case already considered: —

 $\sinh(2.76/70^\circ) = \sinh(2.7/70^\circ) + 0.06/70^\circ \cdot \cosh(2.7/70^\circ) + 0.0018/140^\circ \cdot \sinh(2.7/70^\circ)$. By Table II, page 13, $\cosh(2.7/70^\circ) = 1.3422/153^\circ \cdot 322$. Consequently dealing first with the first correction term only:

$$\sinh (2.76/\underline{70^{\circ}}) = 1.2031/\underline{136^{\circ}.489} + 0.06/\underline{70^{\circ}} \times 1.3422/\underline{153^{\circ}.322}$$

= 1.2031/\underline{136^{\circ}.489} + 0.08053/\underline{223^{\circ}.322}
= 1.2031/136^{\circ}.489 (1 + 0.066937/86^{\circ}.833)
= 1.2031/136^{\circ}.489 (1 + 0.003698 + *i* 0.06684)
= 1.2031/136^{\circ}.489 (1.00592/3^{\circ}.810)
= 1.2102/140^{\circ}.299.

[176]

Taking next the second correction term into account.

$$\sinh (2.76 / 70^{\circ}) = 1.2102 / 140^{\circ}.299 + 0.0018 / 140^{\circ} \times 1.2031 / 136^{\circ}.489$$

$$= 1.2102 / 140^{\circ}.299 + 0.002166 / 276^{\circ}.489$$

$$= 1.2102 / 140^{\circ}.299 (1 + 0.001789 / 136^{\circ}.190)$$

$$= 1.2102 / 140^{\circ}.299 (1 - 0.00129 + i 0.00124)$$

$$= 1.2102 / 140^{\circ}.299 (0.99871 + i 0.00124)$$

$$= 1.2102 / 140^{\circ}.299 (0.99871 / 0^{\circ}.067)$$

$$= 1.2086 / 140^{\circ}.366.$$
(34)
The correct result is

SECOND AND GENERAL CASE. INTERPOLATION BOTH IN MODULUS AND ARGUMENT

Let the entered quantity be sinh $(1.025/80.75^{\circ})$.

We have from Table I the four nearest results as follows: --

= (0.85125/	83°.489.	sinh 1.1/80°	? =	0.90416	<u>/84°.286.</u>
=	o.84940/	84°.156.	sinh 1.1 /81	<u> </u>	0.90172	<u>/84°.877</u> .
= - (0.00185 -	+ o°.667.	Diff. for 1°	= -	0.00244	+ 0°.591.
= - (0.001388	+ 0.500.		_	0.00183	+ 0.443.
-	0.84986	/83°.989.	sinh 1.1/80°.75	=	0.90233	<u>/84°.729</u> .
=	0.90233	/84°.729.				
= +	0.05247	/0°.740.				
= +	0.01312	/0°.185.				
=	0.86298	^{84°.174.}				
-	0.86372	/84°.166.				(35)
		= 0.85125/2 = 0.84940/2 = 0.84940/2 = 0.00185 = 0.84986/2 = 0.90233/2 = + 0.05247 = + 0.05247 = + 0.01312 = 0.86298/2 = 0.86372/2 = 0.872/2 =	$= 0.85125 / 83^{\circ}.489.$ $= 0.84940 / 84^{\circ}.156.$ $= - 0.00185 + 0^{\circ}.667.$ $= - 0.001388 + 0.500.$ $= 0.84986 / 83^{\circ}.989.$ $= 0.90233 / 84^{\circ}.729.$ $= + 0.05247 / 0^{\circ}.740.$ $= + 0.01312 / 0^{\circ}.185.$ $= 0.86298 / 84^{\circ}.174.$ $= 0.86372 / 84^{\circ}.166.$	$= 0.85125/83^{\circ}.489. \qquad \sinh 1.1/80^{\circ}$ $= 0.84940/84^{\circ}.156. \qquad \sinh 1.1/81^{\circ}$ $= -0.00185 + 0^{\circ}.667. \qquad \text{Diff. for } 1^{\circ}$ $= -0.001388 + 0.500. \qquad \text{o.84986/83^{\circ}.989. } \sinh 1.1/80^{\circ}.75$ $= 0.90233/84^{\circ}.729. \qquad \sinh 1.1/80^{\circ}.75$ $= + 0.05247/0^{\circ}.740. \qquad \text{o.} 185. \qquad \text{o.86298/84^{\circ}.174. } \\ = 0.86372/84^{\circ}.166. \qquad \text{o.} 12000000000000000000000000000000000000$	$= 0.85125 / 83^{\circ}.489. \qquad \sinh 1.1 / 80^{\circ} = 0.84940 / 84^{\circ}.156. \qquad \sinh 1.1 / 81^{\circ} = 0.84940 / 84^{\circ}.156. \qquad \sinh 1.1 / 81^{\circ} = 0.84986 / 83^{\circ}.989. \qquad \sinh 1.1 / 80^{\circ}.75 = 0.84986 / 83^{\circ}.989. \qquad \sinh 1.1 / 80^{\circ}.75 = 0.90233 / 84^{\circ}.720. = 0.05247 / 0^{\circ}.740. = 0.05247 / 0^{\circ}.740. = 0.05247 / 0^{\circ}.185. = 0.86298 / 84^{\circ}.174. = 0.86372 / 84^{\circ}.166.$	$= 0.85125/83^{\circ}.489. \sinh 1.1/80^{\circ} = 0.90416$ $= 0.84940/84^{\circ}.156. \sinh 1.1/81^{\circ} = 0.90172$ $= -0.00185 + 0^{\circ}.667. \text{Diff. for } 1^{\circ} = -0.00244$ $= -0.001388 + 0.500. -0.00183$ $= 0.84986/83^{\circ}.989. \sinh 1.1/80^{\circ}.75 = 0.90233$ $= 0.90233/84^{\circ}.729.$ $= + 0.05247/0^{\circ}.740.$ $= + 0.01312/0^{\circ}.185.$ $= 0.86298/84^{\circ}.174.$ $= 0.86372/84^{\circ}.166.$

DUAL INTERPOLATION BY THE USE OF TAYLOR'S THEOREM

Let the nearest tabular function be $\sinh \theta = \sinh (\rho / \delta)$ and the required function $\sinh (\theta + \Delta \theta) = \sinh \{ (\rho + \Delta \rho) / \delta + \Delta \delta \}.$

Then
$$(\rho + \Delta \rho)/\delta + \Delta \delta = \rho/\delta + (\Delta \rho + i\rho\Delta \delta).$$
 (36)

where the increment $\Delta \rho + i \rho \Delta \delta$ is taken with reference to the vector axis ρ / δ . Referring this increment to the initial axis of reference,

$$\theta + \Delta\theta = (\rho + \Delta\rho) / \delta + \Delta\delta = \rho / \delta + \sqrt{(\Delta\rho^2 + (\rho\Delta\delta)^2} / \delta + \tan^{-1} \left(\frac{\rho\Delta\delta}{\Delta\rho}\right). (37)$$

So that $\Delta\theta = \sqrt{(\Delta\rho)^2 + (\rho\Delta\delta)^2} / \delta + \tan^{-1} (\rho\Delta\delta/\Delta\rho). (38)$

When, however, $\Delta \delta$ is not very small, the last formula may contain an appreciable error, and the following method of deducing $\Delta \theta$, using rectangular complex quantities, is to be preferred.

[177]

Let
$$\theta = \rho / \underline{\delta} = x + iy.$$

 $\theta + \Delta \theta = (\rho + \Delta \rho) / \underline{\delta} + \Delta \overline{\delta} = x + \Delta x + i (y + \Delta y).$ (39)

and

$$Then \Delta\theta = \Delta x + i\Delta y$$
(40)

$$\Delta v = \Delta x + v \Delta y \qquad (40)$$

$$= \sqrt{(\Delta x)^2 + (\Delta y)^2/\tan^{-1}(\Delta y/\Delta x)}.$$
 (41)

We then have by Taylor's theorem, as before,

$$\sinh (\theta + \Delta \theta) = \sinh \theta + \Delta \theta. \cosh \theta + \frac{(\Delta \theta)^2}{2}. \sinh \theta + \frac{(\Delta \theta)^3}{3.2}. \cosh \theta + \dots \quad (42)$$

a series in which two correcting terms only need ordinarily be retained. Thus, in the example last considered, $\theta = 1.0/80^{\circ}$ and $\theta + \Delta\theta = 1.025/80^{\circ}.75$. If we form $\Delta\theta$ by the use of (37), we have $\Delta\rho = 0.025$, $\Delta\delta = 0^{\circ}.75 = 0.01309$ radian, $\rho\Delta\delta = 0.01309$.

$$\Delta \theta = \sqrt{(0.025)^2 + (0.01309)^2} / 80^\circ + \tan^{-1} (0.01309 / 0.025)^2}$$

= 0.02822 / 80° + 27°.637
= 0.02822 / 107°.637.

If we form $\Delta \theta$ by the use of the rigid formula (41)

$$\theta + \Delta \theta = 1.025 / \underline{80^{\circ}.75} = 0.164761 + i 1.0116715.$$

$$\theta = 1.0 / \underline{80^{\circ}} = 0.173648 + i 0.9848078.$$

$$\Delta \theta = -0.008887 + i 0.0268637$$

$$= 0.028295 / \underline{108^{\circ}.306}.$$

Entering now the correction formula (42), we find in the tables:

$$\sinh 1.0/80^\circ = 0.85125/83^\circ.489$$
, $\cosh 1.0/80^\circ = 0.57991/14^\circ.521$.

so that

$$\sinh 1.025 / \underline{80^{\circ}.75} = \sinh 1.0 / \underline{80^{\circ}} + 0.028295 / \underline{108^{\circ}.306} \times \cosh 1.0 / \underline{80^{\circ}} + \frac{(0.028295)^2}{2} / \underline{216^{\circ}.612} \times \sinh 1.0 / \underline{80^{\circ}} + \frac{(0.028295)^3}{6} / \underline{324^{\circ}.918} \times \cosh 1.0 / \underline{80^{\circ}} = 0.85125 / \underline{83^{\circ}.489} + 0.028295 / \underline{108^{\circ}.306} \times 0.57991 / \underline{14^{\circ}.521} + 0.0004003 / \underline{216^{\circ}.612} \times 0.85125 / \underline{83^{\circ}.489}$$

 $+ 0.000001 / 324^{\circ}.018 \times 0.57001 / 14^{\circ}.521.$

$$\sinh 1.025 / \underline{80^{\circ}.75} = 0.85125 / \underline{83^{\circ}.489} + 0.028295 / \underline{108^{\circ}.306} \times 0.57991 / \underline{14^{\circ}.521}$$

$$= 0.85125 / \underline{83^{\circ}.489} + 0.016408 / \underline{122^{\circ}.827}$$

$$= 0.85125 / \underline{83^{\circ}.489} (1 + 0.019276 / \underline{39^{\circ}.338})$$

$$= 0.85125 / \underline{83^{\circ}.489} (1 + 0.014909 + i 0.012219)$$

$$= 0.85125 / \underline{83^{\circ}.489} (1.014909 + i 0.012219)$$

$$= 0.85125 / \underline{83^{\circ}.489} \times 1.01498 / \underline{0^{\circ}.690}$$

$$= 0.86400 / \underline{84^{\circ}.179}.$$

[178]

Taking up the second correction term: --

sinh
$$1.025/80^{\circ}.75 = 0.86400/84^{\circ}.179 + 0.0004003/216^{\circ}.612 \times 0.85125/83^{\circ}.489$$

 $= 0.86400/84^{\circ}.179 + 0.0003405/300^{\circ}.101$
 $= 0.86400/84^{\circ}.179 (1 + 0.000395/215^{\circ}.922)$
 $= 0.86400/84^{\circ}.179 (1 - 0.00032 - i0.000232)$
 $= 0.86400/84^{\circ}.179 (0.99968 - i0.000232)$
 $= 0.86400/84^{\circ}.179 \times 0.99968 \sqrt{0^{\circ}.013}$
 $= 0.863727/84^{\circ}.166.$
The true value is $0.863727/84^{\circ}.166.$

CONCLUSIONS

In general, dual interpolation by simple proportion, as in (35), will give a result of the third order of precision. In order to secure precision of the fourth order, interpolation by the use of Taylor's theorem as in (42) may be required.

EXTENSION OF TABLE BY USE OF FORMULA FOR 2θ

Although Table I is only carried as far as 3.0 in modulus ($\rho = 3$); yet it may be used with a little additional calculation in conjunction with Table II, for obtaining the hyp. sines of plane vector quantities of moduli up to 6.0, by means of the formula:

 $\sinh 2\theta = 2 \sinh \theta \cosh \theta$ Example: Required sinh 5.0/77°, a quantity outside of Table I. Here $\theta = 2.5/77^{\circ}$ is within the limits of the Table; so that

$$\sinh 5.0/77^{\circ} = 2 \times \sinh 2.5/77^{\circ} \times \cosh 2.5/77^{\circ}$$
(44)
= 2 × 0.87843/120^{\circ}.891 × 0.96459/156^{\circ}.524
= 2 × 0.87843 × 0.96459/277^{\circ}.415
= 1.75686 × 0.96459/277^{\circ}.415
= 1.69465/277^{\circ}.415.

(43)

This method ordinarily calls for interpolation both in $\sinh \theta$ and $\cosh \theta$. For this reason, it may be preferable to obtain the required result by the use of either Table VII or Table X, the limits of which are less restricted.

TABLE II

$\cosh(\rho/\delta) = r/\gamma$

POLAR HYPERBOLIC COSINES OF A POLAR VARIABLE

Table II gives the value of $\cosh \rho/\delta$ between the limits of $\rho = 0$ and $\rho = 3.0$ by steps of o.1, and the limits $\delta = 45^{\circ}$ and $\delta = 90^{\circ}$, by steps of 1°. The graphs of these quantities, to squared polar coördinates, appear in Plates IIA and IIB of the Atlas.

INTERPOLATION BY SIMPLE PROPORTION

In general, as in the case of Table I, a very fair degree of precision in interpolation can be obtained by taking first simple proportional parts in argument, and then simple proportional parts in modulus.

Example: Required cosh (0.93105/57°.518).

We have from Table II: ---

$\cosh 1.0/57^{\circ} =$	0.87976 <u>/28°.917</u> .
$\cosh 1.0/58^\circ =$	0.86350/28°.823.
Difference for $1^\circ = -$	0.01626 <u>/0°.094</u> .
Diff. for $0.518^\circ = -$	0.00844 <u>/0°.049</u> .
$\cosh 1.0/57^{\circ}.518 =$	0.87132/28°.868.
$\cosh 0.9 / 57.518 =$	0.88237 <u>/23.069</u> .
Difference for $0.1 = -$	0.01105 / <u>5°.799</u> .
Diff. for $0.3105 = -$	0.00343 <u>/1°.800</u> .
cosh 0.93105 <u>/57°.51</u> 8=	0.87894 <u>/24°.869</u> .
The correct value is	0.87837 /24.803.
	$\cosh 1.0/57^{\circ} =$ $\cosh 1.0/58^{\circ} =$ Difference for 1° = - Diff. for 0.518° = - $\cosh 1.0/57^{\circ}.518 =$ $\cosh 0.9/57.518 =$ Difference for 0.1 = - Diff. for 0.3105 = - $\cosh 0.93105/57^{\circ}.518 =$ The correct value is

INTERPOLATION OF TAYLOR'S THEOREM

When a higher degree of precision is required than can be expected from simple proportional parts, we may use Taylor's Theorem in the following form: ---

 $\cosh (\theta + \Delta \theta) = \cosh \theta + \Delta \theta \sinh \theta + \frac{(\Delta \theta)^2}{2!} \cosh \theta + \frac{(\Delta \theta)^3}{3!} \sinh \theta + \dots$ (45) Example: Required $\cosh 0.93105/57^{\circ}.518$ having given in Table II $\cosh 0.9/57^{\circ} = 0.88922/23^{\circ}.140$ and in Table I $\sinh 0.9/57^{\circ} = 0.85414/64^{\circ}.218$. 0.93105/57.518 = 0.500 + i0.785398. $0.900 /57^{\circ} = 0.49018 + i0.754804$. $\Delta \theta = 0.00982 + i0.030594$ $= 0.03214/72^{\circ}.196$. $\cosh 0.93105/57^{\circ}.518 = \cosh 0.9/57^{\circ} + 0.03214/72^{\circ}.196 \times 0.85414/64^{\circ}.218$ $+ 0.00052/144^{\circ}.392 \times 0.88922/23^{\circ}.140$.

It is evident that for the Tables here considered only two correction terms need be included. Taking up the first correction term,

$$\begin{aligned} \cosh 0.93105 / 57^{\circ} .518 &= 0.88922 / 23^{\circ} .140 + 0.03214 / 72^{\circ} .196 \times 0.85414 / 64^{\circ} .218 \\ &= 0.88922 / 23^{\circ} .140 + 0.02745 / 136^{\circ} .414 \\ &= 0.88922 / 23^{\circ} .140 (1 + 0.03087 / 113^{\circ} .274) \\ &= 0.88922 / 23^{\circ} .140 (1 - 0.01220 + i 0.02835) \\ &= 0.88922 / 23^{\circ} .140 (0.98780 + i 0.02835) \\ &= 0.88922 / 23^{\circ} .140 \times 0.98780 (1 + i 0.02870) \\ &= 0.88922 / 23^{\circ} .140 \times 0.98780 \times 1.00041 / 1^{\circ} .645 \\ &= 0.87873 / 24^{\circ} .785. \end{aligned}$$

Taking up the second correction term: -

$$\begin{aligned} \cosh 0.93105 / \underline{57^{\circ}.518} &= 0.87873 / \underline{24^{\circ}.785} + 0.00052 / \underline{144^{\circ}.392} \times 0.88922 / \underline{23^{\circ}.140} \\ &= 0.87873 / \underline{24^{\circ}.785} + 0.00046 / \underline{167^{\circ}.532} \\ &= 0.87873 / \underline{24^{\circ}.785} (1 + 0.000524 / \underline{142^{\circ}.747} \\ &= 0.87873 / \underline{24^{\circ}.785} (1 - 0.000416 + i 0.000317) \\ &= 0.87873 / \underline{24^{\circ}.785} (0.999584 + i 0.000317) \\ &= 0.878373 \times 0.999584 / \underline{24^{\circ}.785} (1 + i 0.00032) \\ &= 0.87837 / \underline{24^{\circ}.785^{\circ}} \times 1 / 0.018^{\circ} \\ &= 0.87837 / \underline{24^{\circ}.803}. \end{aligned}$$
The correct value is $0.87837 / \underline{24^{\circ}.803}.$

GRAPHICAL INTERPOLATION

For rapid but less precise work, interpolation may be made by proportional parts on Plate IIA or Plate IIB, without arithmetical computation.

TABLE III

$$\tanh(\rho/\delta) = r/\gamma$$

POLAR HYPERBOLIC TANGENTS OF A POLAR VARIABLE

Table III gives in polar coördinates the value of $\tanh \rho / \delta$ between the limits $\rho = o$ and $\rho = 3.0$ by steps of 0.1, and the limits $\delta = 45^{\circ}$ and $\delta = 90^{\circ}$, by steps of 1°. The graphs of these quantities, to squared polar coördinates, appear in Plates IIIA and IIIB of the Atlas.

INTERPOLATION BY SIMPLE PROPORTION

In general, as in the cases of Tables I and II, a very fair degree of precision can be obtained by taking first simple proportional parts in argument and then simple proportional parts in modulus.

Example: Required tanh (0.93105/57°.518).

[181]

We have from Table III: --

tanh 0.9 <u>/57</u> °	=	0.96056	/41°.078.
tanh 0.9 <u>/58</u> °	=	0.97069	/42°.111.
Difference for 1°	-	0.01013	/1°.033.
Diff. for 0.518°	=	0.00525	<u>/0°.535</u> .

$\tanh 1.0/57^{\circ} = 1.00048$	/37 .035.
$\tanh 1.0/58^\circ = 1.08054$	/38°.004.
Difference for $1^{\circ} = 0.01406$	/0°.969.
Diff. for $0.518^{\circ} = 0.00728$	/0°.502.
$\tanh 1.0/57^{\circ}.518 = 1.07376$	/37°.537.
$\tanh 0.9/57.518 = 0.96581$	<u>/41°.613</u> .
Difference for $0.1 = 0.10795$	/- 4°.076.
" for $0.3105 = 0.03352$	/− 1°.266.
$h 0.93105/57^{\circ}.518 = 0.99933$	/40°.347.

Inferred value of tanh $0.93105/57^{\circ}.518 = 0.99933 /40^{\circ}.347$. Correct value of tanh $0.93105/57^{\circ}.518 = 1.0000 /40^{\circ}.395$.

INTERPOLATION BY TAYLOR'S THEOREM

For a higher degree of interpolation precision than by simple proportion, we may use Taylor's theorem in the following form: ---

$$\tanh (\theta + \Delta \theta) = \tanh \theta + \Delta \theta \operatorname{sech}^{2} \theta - \frac{(\Delta \theta)^{2}}{2!} \cdot 2 \operatorname{sech}^{2} \theta \tanh \theta$$
$$- \frac{(\Delta \theta)^{3}}{3!} 2 \operatorname{sech}^{2} \theta (\operatorname{sech}^{2} \theta - 2 \tanh^{2} \theta) + \dots \qquad (46)$$

Example: Required tanh $0.93105/57^{\circ}.518$. having given in Table I sinh $0.9/57^{\circ} = 0.85414/64.218$. II cosh $0.9/57^{\circ} = 0.88922/23^{\circ}.140$.

III $\tanh 0.9/57^{\circ} = 0.96056/41^{\circ}.078$.

Here $\Delta \theta = 0.03214/72^{\circ}.196$, as given by (41). Hence by Taylor's theorem as far as the second correction term inclusive,

$$\tanh 0.93105 / 57^{\circ} . 518 = \tanh 0.9 / 57^{\circ} + \frac{0.03214 / 72.196}{(0.88922)^2 / 46.280} - \frac{(0.03214)^2 / 144^{\circ} . 392}{(0.88922)^2 / 46^{\circ} . 280} \times 0.96056 / 41^{\circ} . 078$$

Taking up the first correction term: --

$$\begin{aligned} \tanh 0.93105 / 57^{\circ}.518 &= 0.96056 / 41^{\circ}.078 + \frac{0.03214}{0.79071} / 25^{\circ}.916 \\ &= 0.96056 / 41^{\circ}.078 + 0.04065 / 25^{\circ}.916 \\ &= 0.96056 / 41^{\circ}.078 (1 + 0.04232 \sqrt{15^{\circ}.162}) \\ &= 0.96056 / 41^{\circ}.078 (1 + 0.04084 - i 0.01107) \\ &= 0.96056 / 41^{\circ}.078 (1.04084 - i 0.01107) \\ &= 0.96056 / 41.078 (1.04090 \sqrt{0^{\circ}.609}) \\ &= 0.99985 / 40^{\circ}.469. \\ &[182] \end{aligned}$$

Taking up next the second correction term: -

$$tanh \ 0.93105/57^{\circ}.518 = 0.99985/40^{\circ}.469 - \underbrace{0.00103/144^{\circ}.392 \times 0.96056/41^{\circ}.078}_{(0.88922)^2/46^{\circ}.280}$$

$$= 0.99985/40^{\circ}.469 + \underbrace{0.00103 \times 0.96056}_{0.79071} \sqrt{40^{\circ}.810}$$

$$= 0.99985/40^{\circ}.469 + 0.00126\sqrt{40^{\circ}.810}$$

$$= 0.99985/40^{\circ}.469 (1 + 0.00126\sqrt{81.279})$$

$$= 0.99985/40^{\circ}.469 (1 + 0.0019 - i 0.00125)$$

$$= 0.99985/40^{\circ}.469 (1.00019 - i 0.00125)$$

$$= 0.99985/40^{\circ}.469 \times 1.00019\sqrt{0^{\circ}.072}$$

$$= 1.0000/40^{\circ}.395.$$
Correct value = 1.0000/40^{\circ}.395.

When more than two correction terms have to be retained, it is often easier to determine $\sinh(\theta + \Delta\theta)$ and $\cosh(\theta + \Delta\theta)$ by Taylor's theorem, as already described, and then to take their ratio for $\tanh(\theta + \Delta\theta)$.

TABLE IV

Polar Ratio $\frac{\sinh\theta}{\theta}$ for Polar Values of θ

Table IV has been prepared by dividing the values of $\sinh \theta$ found successively in Table I by their respective values of θ . The object of the table is to facilitate the computation of the equivalent T or II of any uniform alternating-current line of known electrical constants.^{*} That is, the table pertains more particularly to the applications of hyperbolic functions than to the fundamental properties of those functions. The table gives the vector value of $\frac{\sinh(\rho/\delta)}{\rho/\delta}$ for the range $\rho = 0$ to $\rho = 3$ by steps of 0.1, and for $\delta = 45^{\circ}$ to $\delta = 90^{\circ}$ by steps of 1°. The graphs of the values contained in the tables are plotted to squared polar coördinates in Charts IVA and IVB of the Atlas, for

INTERPOLATION BY SIMPLE PROPORTION

A fair degree of precision in interpolation can ordinarily be obtained by first taking simple proportional parts in argument and then simple proportional parts in modulus.

Example: Required
$$\frac{\sinh(1.025/80^{\circ}.75)}{1.025/80^{\circ}.75}$$
.

rapid graphic interpolation.

*" The Application of Hyperbolic Functions to Electrical Engineering Problems," by A. E. Kennelly, University of London Press, 1914, Chap. III.

		U	θ			
For $1.0/80^\circ =$	0.85125	/3°.489.	For 1.1/80	° =	0.82196	<u>/4°.286.</u>
$1.0/81^{\circ} =$	0.84940	/3°.156.	1.1/81	_ =	0.81975	<u>/3°.877.</u>
Difference for $1^{\circ} =$	- 0.00185/	- 0°. <u>33</u> 3.	Difference for 1	° = -	- 0.00221/	– 0°.40 <u>9</u> .
0.75° =	- 0.00139/	$-0^{\circ}.250$.	°.7	5 = -	- 0.001 66/	<u> </u>
			For 1.1 /80°.7	5 =.	0.82030	/3°.979.
For $1.0/80^{\circ}.75 =$	0.84986	<u>/3°.239</u> .	For 1.0/80°.7.	5 =	0.84986	/3°.239.
			Difference for o.	I = -	- 0.02956	/0°.740.
			" for 0.02	5 = -	- 0.00739	/0°.185.
			For 1.025/80°.7	5 =	0.84247	/3°.424.
			Correct value	=	0.84265	<u>/3.°416.</u>

We have from Table IV the following values of $\frac{\sinh\theta}{\partial t}$: —

When a higher degree of precision is required than can be expected from proportional parts, the proper value of sinh $(\theta + \Delta \theta)$ should be obtained by Taylor's theorem as already explained in connection with Table I, and this value divided by $(\theta + \Delta \theta)$; because the expansion of $\frac{\sinh (\theta + \Delta \theta)}{(\theta + \Delta \theta)}$ directly, by Taylor's theorem, does not lend itself conveniently for computation.

Extension for the Range of the Table by the Use of Formula for 2θ

Although Table IV is only carried as far as 3.0 in modulus ($\rho = 3$); yet it may be used with a little additional calculation, in conjunction with Table II, for obtaining $\frac{\sinh\theta}{\theta}$, for vector values of θ with moduli up to 6.0, by means of the formula: —

$$\sinh 2\theta = 2 \sinh \theta. \cosh \theta \tag{47}$$

$$\frac{\sinh 2\theta}{2\theta} = \frac{\sinh \theta}{2\theta} \cdot \cosh \theta.$$

whence $\frac{\sinh 2\theta}{2\theta} = \frac{\sinh \theta}{\theta} \cdot \cosh \theta.$ (48) Consequently, to find $\frac{\sinh \theta}{\theta}$ for the double of any quantity within the range of Table IV, find the value of $\frac{\sinh \theta}{\theta}$ for the quantity, by interpolation directly in Table IV, and multiply the result by the hyperbolic cosine of the quantity as obtained from Table II. Corresponding steps may be taken with Charts II and IV.

Example: Required $\frac{\sinh (5.0/77^{\circ})}{5.0/77^{\circ}}$, this being outside of the limits of Table IV; but not outside twice the value therein obtainable.

Here $\frac{\sinh \theta}{\theta}$ for $\theta = 2.5/77^{\circ}$ is by Table IV 0.35137 /43°.891. and $\cosh \theta$ """""""""II 0.96459/156°.524. [184]

Hence
$$\frac{\sinh (5.0/77^{\circ})}{5.0/77^{\circ}} = 0.35137/43^{\circ}.891 \times 0.96459/156^{\circ}.524.$$

= 0.33893/200°.415.

This procedure calls for interpolation both in $\frac{\sin \theta}{\theta}$ and in $\cosh \theta$. For this reason it may be preferable to obtain the required result by the use of either Table VII or Table X, the limits of which are less restricted.

TABLE V

POLAR RATIO $\frac{\tanh \theta}{\theta}$ for Polar Values of θ

Table V, like Table IV, has been prepared for electrical engineering applications of hyperbolic functions, rather than for developing these functions alone. It gives the vector value of $\frac{\tanh(\rho/\delta)}{\rho/\delta}$ for the range $\rho = 0$ to $\rho = 3.0$ in modulus, by steps of 0.1, and for the range $\delta = 45^{\circ}$ to $\delta = 90^{\circ}$ in argument, by steps of 1°. It was computed directly from Table III by dividing the resulting values successively by their respective values of θ . The graphs of the values in Table V are presented to squared polar coördinates in Chart V, for rapid graphic interpolation.

INTERPOLATION BY SIMPLE PROPORTION

Except where a high degree of precision in interpolation is required, it is preferable to interpolate first by simple proportion in argument, and then by simple proportion in modulus; although this order of operations may be inverted.

Example: Required $\frac{\tanh\theta}{\theta}$ for $\theta = 0.93105/57^{\circ}.518$.

We have from Table V: --

For

For $\theta = 0.9/57^{\circ} = 1.06729 \ 15^{\circ}.922.$	For $\theta = 1.0/57^{\circ} = 1.06648 \setminus 19^{\circ}.965$
$\theta = 0.9/58^{\circ} = 1.07854 \ \sqrt{15^{\circ}.889}.$	$\theta = 1.0/58^{\circ} = 1.08054\sqrt{19^{\circ}.996}$
Difference for $1^\circ = 0.01125 \sqrt{-0.033}$.	Difference for $1^{\circ} = 0.01406 \sqrt{0^{\circ}.031}$
" for $0.518^\circ = 0.00583 \sqrt{-0.017}$.	" for $0^{\circ}.518 = 0.00728$ $\sqrt{0^{\circ}.016}$
	For $\theta = 1.0/57^{\circ}.518 = 1.07376\sqrt{19^{\circ}.981}$
$\theta = 0.9/57^{\circ}.518 = 1.07312 \ \overline{15^{\circ}.905}.$	$\theta = 0.9 / 57^{\circ} . 518 = 1.07312 \sqrt{15.905}$
	Difference for $0.1 = 0.00064 \sqrt{4^{\circ}.076}$
	" for 0.03105 = 0.00020 $\sqrt{1^{\circ}.266}$.
For	$\theta = 0.93105 / 57^{\circ} . 518 = 1.07332 \sqrt{17^{\circ} . 171}.$
Cor	rect value, $1.07406 \sqrt{17^{\circ}.123}$.
[18	5].

When a higher degree of precision is needed than simple proportion can give, it is preferable to find the proper interpolated value for $\tanh \theta$ from preceding tables and then to divide by θ ; since the function $\frac{\tanh (\theta + \Delta \theta)}{(\theta + \Delta \theta)}$ does not lend itself to expansion by Taylor's theorem in a simple form.

Tables IV and V jointly, with their respective graphs in the Atlas, enable the equivalent T or Π of any uniform alternating-current line in the steady state, at a single frequency, to be completely determined, provided θ does not exceed six radians in modulus (δ lying between 45° and 90°); because although in both tables, θ is not carried beyond three radians; yet $\frac{\sinh \theta}{\theta}$ can be found by extension up to six radians, and in the formu-

las for deducing the equivalent T or II, $\frac{\tanh \theta}{\theta}$ has only to be carried to half the modulus

of
$$\frac{\sinh\theta}{\theta}$$

The following example may illustrate the use of Tables IV and V either with or without the aid of the graphic interpolation Charts IV and V of the Atlas. An alternating-current line of uniform electrical constants is 250 km. long and has, at a certain frequency, a total conductor impedance of $565.711 / 84^{\circ}.777$ ohms, associated with a total distributed insulation admittance of $4.3707 \times 10^{-3} / 90^{\circ}$ mhos. Its hyperbolic angle is therefore $\sqrt{5.65711 \times 4.3707 \times 10^{-1} / 174^{\circ}.777} = 1.5724 / 87^{\circ}.388}$ hyperbolic radians. Interpolating either from the tables or the Charts IV and V, we obtain

$$\frac{\sinh \theta}{\theta} = 0.638 \frac{2^{\circ}.6}{(\frac{\theta}{2})^{\circ}} \text{ and } \frac{\tanh \left(\frac{\theta}{2}\right)}{(\frac{\theta}{2})^{\circ}} = \frac{\tanh 0.7862 \frac{87^{\circ}.388}}{0.7862 \frac{87^{\circ}.388}{2}} = 1.27 \sqrt{1^{\circ}.5}.$$

If we multiply the conductor impedance by $\frac{\sinh \theta}{\theta}$, we have $565.711 / 84^{\circ}.777 \times 0.638 / 2^{\circ}.6 = 360.69 / 87^{\circ}.377$ ohms, and if we multiply half the insulation admittance by $\frac{\tanh (\frac{\theta}{2})}{(\frac{\theta}{2})}$, we have

$$2.1854 \times 10^{-3}/90^{\circ} \times 1.27 \sqrt{1^{\circ}.5} = 2.78 \times 10^{-3}/88^{\circ}.5$$
 mhos = $359.77 \sqrt{88^{\circ}.5}$ ohms.

If now we apply an artificial condenser leak of $2.78 \times 10^{-3}/88^{\circ}.5$ mhos to each end of a localised impedance coil of $360.69/87^{\circ}.377$ ohms, we obtain the "equivalent II" of the line at the frequency considered, and such a combination of localised impedance and admittances would behave exactly like the line, at its terminals, or outside them, so as to be capable of replacing the line in any electrical system, at that frequency.

TABLE VI

POLAR FUNCTIONS OF POLAR SEMI-IMAGINARY QUANTITIES

A semi-imaginary quantity is a complex numerical quantity which, when expressed in rectangular coördinates, has equal real and imaginary components; or, when expressed in polar coördinates, has an argument of 45° . That is $x/\pm 45^{\circ} = a \pm i a$. The interest of the table pertains primarily to the application of hyperbolic functions to uniform alternating-current lines of negligibly small linear inductance and leakance, a case approximated to by cabled lines at low frequencies. The table was first published by the author in the transactions of the International Electrical Congress of St. Louis (1904). The arguments of the results are given in degrees and minutes, and not in degrees and decimals like the rest of the tables.

The table gives the hyperbolic sine, cosine, tangent, cosecant, secant, and cotangent of the vector $x/45^{\circ}$ for the range x = 0 to x = 20.5, by steps in x of 0.1 up to x = 6, and of 0.05 beyond that point. At x = 6, the values of the hyp. sine and cosine so nearly coincide, that they are taken as equal in the table, thus bringing sech x and cosech x into equality as well as tanh x = coth x = 1. Graphs of the functions are given in Chart VI as far as x = 4, approximately.

INTERPOLATION BY SIMPLE PROPORTION

In general, interpolation may be quickly effected by simple proportional parts of modulus since the argument is constant at 45° . This procedure is sufficiently evident to require no exemplification.

INTERPOLATION OF TAYLOR'S THEOREM

When precise interpolation is necessary, we have the following expansions for f $(\theta + \Delta \theta)$

$$\sinh \left\{ (x + \Delta x) / 45^{\circ} \right\} = \sinh (x / 45^{\circ}) + (\Delta x) / 45^{\circ}. \cosh (x / 45^{\circ}) + \frac{(\Delta x)^{2}}{2!} / 90^{\circ}.$$

$$\sinh (x / 45^{\circ}) + \frac{(\Delta x)^{3}}{3!} / 135^{\circ}. \cosh (x / 45^{\circ}) + \dots (49)$$

$$\cosh \left\{ (x + \Delta x) / 45^{\circ} \right\} = \cosh (x / 45^{\circ} + (\Delta x) / 45^{\circ}. \sinh (x / 45^{\circ}) + \frac{(\Delta x)^{2}}{2!} / 90^{\circ}.$$

$$\cosh (x / 45^{\circ}) + \frac{(\Delta x)^{3}}{3!} / 135^{\circ}. \sinh (x / 45^{\circ}) + \dots (50)$$

$$\tanh \left\{ (x + \Delta x) / 45^{\circ} \right\} = \tanh (x / 45^{\circ} + (\Delta x) / 45^{\circ}. \operatorname{sech}^{2} (x / 45^{\circ}) + \dots (50)$$

$$\tanh \left\{ (x + \Delta x) / 45^{\circ} \right\} = \tanh (x / 45^{\circ}) + (\Delta x) / 45^{\circ}. \operatorname{sech}^{2} (x / 45^{\circ}) + \dots (50)$$

$$\tanh \left\{ (x + \Delta x) / 45^{\circ} \right\} = \tanh (x / 45^{\circ}) + (\Delta x) / 45^{\circ}. \operatorname{sech}^{2} (x / 45^{\circ}) + \dots (50)$$

$$\tanh \left\{ (x + \Delta x) / 45^{\circ} \right\} = \tanh (x / 45^{\circ}) + (\Delta x) / 45^{\circ}. \operatorname{sech}^{2} (x / 45^{\circ}) + \dots (50)$$

$$\tanh \left\{ (x + \Delta x) / 45^{\circ} \right\} = \tanh (x / 45^{\circ}) + (\Delta x) / 45^{\circ}. \operatorname{sech}^{2} (x / 45^{\circ}) + \dots (50)$$

$$\tanh \left\{ (x + \Delta x) / 45^{\circ} \right\} = \tanh (x / 45^{\circ}) + (\Delta x) / 45^{\circ}. \operatorname{sech}^{2} (x / 45^{\circ}) + \dots (50)$$

$$\tanh \left\{ (x + \Delta x) / 45^{\circ} \right\} = \tanh (x / 45^{\circ}) + (\Delta x) / 45^{\circ}. \operatorname{sech}^{2} (x / 45^{\circ}).$$

$$\left\{ \operatorname{sech}^{2} (x / 45^{\circ}) - 2 \tanh^{2} (x / 45^{\circ}) \right\} + \dots (51)$$
Example: Required $\cosh (3.1 / 45^{\circ})$, having given in Table VI
$$\sinh (3.0 / 45^{\circ}) = 4.1986 / 120^{\circ}.48'.$$

$$\cosh (3.0 / 45^{\circ}) = 4.1443 / 122^{\circ}.16'.$$

[187]

Here
$$\cosh (3.1/45^{\circ}) = 4.1443/122^{\circ}.16' + 0.1/45^{\circ} \times 4.1986/120^{\circ}.48'$$

 $+ \frac{0.01/90^{\circ}}{2} \times 4.1443/122^{\circ}.16' + \frac{0.001}{6}/135^{\circ} \times 4.1986/120^{\circ}.48'$
 $= 4.1443/122^{\circ}.16' + 4.1986/120^{\circ}.48 (0.1/45^{\circ} + 0.00017/135^{\circ})$
 $+ 4.1443/122^{\circ}.16' (0.005/90^{\circ})$
 $= 4.1443/122^{\circ}.16' (1 + i 0.005) + 4.1986/165^{\circ}.48' (0.1 + i 0.00017)$
 $= 4.1443/122^{\circ}.16' (1.0000/0^{\circ}.17') + 4.1986/165^{\circ}.48' (0.1/0^{\circ}.01')$
 $= 4.1443/122^{\circ}.33' + 0.4199/165^{\circ}.40'$
 $= 4.1443/122^{\circ}.33' (1 + 0.10132/43^{\circ}.16')$
 $= 4.1443/122^{\circ}.33' (1 + 0.07378 + i 0.06944)$
 $= 4.1443/122^{\circ}.33' \times 1.0760/3^{\circ}.42'$
 $= 4.4590/126^{\circ}.15'.$

which is in substantial agreement with the tabulated value of cosh 3.1.

Beyond x = 6, the value of either sinh $(x/45^{\circ})$ or cosh $(x/45^{\circ})$ was computed from the formula: ---

$$\sinh (x/45^{\circ}) = \cosh (x/45^{\circ}) = \frac{\epsilon^{\frac{x}{\sqrt{2}}}}{2} \sqrt{\frac{x}{\sqrt{2}}} \text{ radians.}$$
(52)

where $\epsilon = 2.71828$. . .

Thus, with x = 7, $\frac{x}{\sqrt{2}} = 4.9498$, $\frac{\frac{x}{\sqrt{2}}}{2} = \frac{141.14}{2} = 70.57$ at the argument of 4.9498 circular radians = $283^{\circ}.36'$; so that: --sin

h
$$(7/45^{\circ}) = \cosh(7/45^{\circ}) = 70.57/283^{\circ}.36'$$

which coincides with the tabulated value in Table VI.

TABLE VII

$$\sinh(x+iy) = u + iv$$

RECTANGULAR HYPERBOLIC SINES OF A RECTANGULAR VARIABLE

Tables I to VI contain certain restrictions in range which limit their general appli-They are primarily designed to cover particular applications of hyperbolic cation. functions to electrical engineering. Tables VII to XIV, however, are free from such restrictions, and are intended to furnish the circular as well as the hyperbolic sine, cosine, and tangent of a complex angle, and to furnish this result either in the rectangular or polar form. That is, they furnish: ---

 $\begin{cases} \sinh (x + iy) \\ \text{or sin } (x + iy) \\ \cosh (x + iy) \\ \text{or cos } (x + iy) \end{cases} \text{ in the form } u + iv; \text{ also in the form } r/\gamma \\ \text{in the form } u + iv; \text{ also in the form } r/\gamma \end{cases}$ F 188]

between the limits, for the hyperbolic functions, x = 0 and $x = \pm 10$, by steps of 0.05 and between the limits y = 0 and $y = \pm \infty$, by steps of 0.07854 = $\pi/40$.

Periodic Properties of the Rectangular Complex Hyperbolic Sines and Cosines

It is well known that
$$\sinh \{x + i (y + 2n\pi)\} = \sinh \{x + iy\}$$

and $\cosh \{x + i (y + 2n\pi)\} = \cosh \{x + iy\}$ (53)

where *n* is any integer.

This means that, keeping x constant, the values of the hyp. sine and hyp. cosine repeat themselves as iy passes through increments of $i.2\pi$; or they are periodic functions of iy, having the period $2\pi i$.

The matter may be visualised more clearly from geometrical reasoning. Considering the exponential form of the hyperbolic cosine,

$$\cosh(x+iy) = \frac{e^{x+iy} + e^{-(x+iy)}}{2}.$$
(55)

This may written in the form: $\frac{\epsilon^x}{2} \cdot \epsilon^{iy} + \frac{\epsilon^{-x}}{2} \epsilon^{-iy}$. If x be kept constant, we require to study the changes produced in this form of the hyp. cosine by varying y.

FIG. 29. — Geometrical constructions for $\cosh(x + iy)$ and $\sinh(x + iy)$.

In Fig. 29, OA is an initial line and OP a radius vector of length or modulus $\epsilon^{x/2}$, multiplied by ϵ^{iy} ; that is rotated positively about O, from OA through a circular angle of y radians. Similarly, op is a vector of length or modulus $\epsilon^{-x/2}$ rotated negatively through a circular angle of y radians from the initial line Oa. The equation (55) states that the hyperbolic cosine is the plane vector sum of OP and op, or O'p' in the Figure. If now we steadily increase the value of y, leaving x constant, we cause OP to rotate steadily counterclockwise, and also op to rotate steadily clockwise, through Δy circular radians. When $\Delta y = 2\pi$, both OP and op will have made one complete revolution and will have returned to their initial positions indicated. Consequently, the value of $\cosh \{x + i (y + 2\pi)\}$ repeats that of $\cosh \{x + iy\}$.

Since
$$\sinh(x + iy) = \frac{\epsilon^{x + iy} - \epsilon^{-(x + iy)}}{2}$$
 (56)

the same reasoning applies; but the vector op is added in the negative or reversed direction; so that O'q' is the hyperbolic sine of x + iy.

The above mentioned periodic property of the hyp. sine and cosine has been utilized for shortening the tables of those functions by reducing the circular angle y of Fig. 29

from radians to quadrants. That is, any complex angle x + iy represented by a point P, and radius vector OP, in the complex plane XY, Fig. 30, is first transferred to a new complex plane XQ, Fig. 31, at the point p = x, q, by keeping x the same in both planes, but making the points $\frac{\pi}{2}$, $\frac{2\pi}{2}$, $\frac{3\pi}{2}$, $\frac{4\pi}{2}$, \ldots etc., on the Y axis of the XY diagram, become the points 1, 2, 3, 4 \ldots etc., on the Q axis of the XQ diagram. Thus if $x + iy = 2.5 + i \, 6.2832$,

$$x + iq = 2.5 + i \underline{4.00}$$

where 4.00 is underscored to indicate quadrant measure, instead of the ordinary radian measure.

In the case indicated by Fig. 30, x + iy = 3 + i 9 and $x + iq = 3 + i \frac{5.74}{10}$ in Fig. 31. Consequently, after a complex angle has been transferred from the complex plane XY to the complex plane XQ, the values of either sinh (x + iq) or cosh (x + iq) exactly repeat themselves for each 4 units of increase in q; or with reference to Fig. 31 for each 4 quadrants of increase in the circular angle instead of 6.2832... radians. The

operation of transferring the complex angle from the XY to the XQ plane may therefore be described as quadranting y; *i.e.*, changing the expression of y from circular radian units to circular quadrant units.

All of the Tables VII to XIII inclusive require to be entered in terms of x + iq; so that the complex entering value has to be quadranted by dividing its imaginary or y-component by the numeric $\pi/2 = 1.57079...$ This preliminary step occupies a certain extra time and effort; but it actually economises the total time and effort involved. If the tables were computed for x + iy, they would have to be repeated in bulk for each π radians, or 2 quadrants, increase in y. In electrical engineering appli-

cations, y frequently rises to 100 radians, and might easily be much greater than 100. In order to go up to 100 radians, the bulk of the Tables VII to XIII would have to be increased about thirty fold. Altogether, aside from the greatly increased bulk and expense of such tables, the extra time and effort consumed in turning over the numerous pages would be comparable with that saved by eliminating the preliminary step of quadranting the imaginary component or dividing it by $\pi/2$.

Rules for the Use of Table VII

Express the "angle" whose hyperbolic sine is required in the form of an ordinary rectangular complex quantity x + iy.

Quadrant the imaginary component y through the process of dividing it by $\pi/2$; *i.e.*, transfer the quantity from the XY to XQ plane; so that the new expression of the complex quantity is x + iq; where q = y/1.57079...

If q is greater than 4.0, divide by 4 and retain only the remainder. If the remainder exceeds 2, subtract 2 therefrom, and apply a negative sign to the result found in the table. A change of 2 quadrants simply reverses the sign of the result. If the remainder on the other hand does not exceed 2, enter Table VII with it, and take out the result with unchanged sign.

• Example: Required the hyperbolic sine of 0.65 + i 25.75. Here x = 0.65 and y = 25.75. That is y is 25.75 circular radians. Reduce this to quadrants through dividing by 1.57079...

 $\frac{25.75}{1.57079} * log 25.75 = 1.4107772.$ log $\pi/2 = 0.1961199.$ log 16.393 = 1.2146573:

The quadranted value $x + iq = 0.65 + i \underline{16.393}$

NOTE. — It is found convenient to underscore quadrantal quantities to distinguish them from radianal quantities.

Rejecting quadrant multiples of 4, *i.e.*, 16 in this case, we enter Table VII with $x + iq = 0.65 + i \underline{0.393}$. The nearest entry to this is x = 0.65, q = 0.4, for which the hyperbolic sine is 0.56368 + i 0.71639, an ordinary rectangular complex quantity on the UV plane. Interpolation should be made in this result to meet the change from q = 0.40 to q = 0.393, as will be explained later.

Second Example: Required sinh $(x + iy) = \sinh (1.15 + i 10.10)$. Quadranting the imaginary, sinh $(x + iq) = \sinh \left(1.15 + i \frac{10.10}{1.5708} \right)$ $= \sinh (1.15 + i \frac{6.430}{2.430})$. Rejecting 4's from the imaginary $= \sinh (1.15 + i \frac{2.430}{2.430})$. Deducting 2 from the residual and changing the sign $= -\sinh (1.15 + i \frac{0.430}{2.430})$.

* This operation would ordinarily be effected with the slide-rule, when a high degree of precision is not aimed at.

We now enter Table VII with x = 1.15 and q = 0.43. The nearest entry is x = 1.15 q = 0.45, the result for which is 1.08037 + i 1.12836. But we must apply a negative sign to the whole of this result because of the 2 rejected in the quadrantal residuum. Hence,

$$\sinh (1.15 + i 10.10) = - (1.08037 + i 1.12836) \\= - 1.08037 - i 1.12836 = u + iv$$

except for the interpolation from q = 0.45 to q = 0.43. The operation of interpolation will be discussed later on.

Third Example: Required sinh $(x + iy) = \sinh (3.60 + i \cdot 18.1)$. Quadranting the imaginary, sinh $(x + iq) = \sinh \left(3.60 + i \cdot \frac{18.1}{1.5708}\right)$

$$= \sinh (3.60 + i 11.52)$$

Rejecting 4's from the quadrants = sinh (3.60 + i 3.523).

Deducting 2 from the residual imaginary

and changing the sign..... = $-\sinh(3.60 + i \underline{1.523})$.

Entering Table VII with x = 3.6 and q = 1.523, the nearest entry is x = 3.6 and q = 1.5, for which the result is -12.92978 + i 12.94910. But applying the negative sign to this result because of 2 deducted from the quadrantal imaginary, and we have finally: ---

$$\sinh (3.60 + i \, 18.1) = - (- \, 12.92978 + i \, 12.94910) \\ = \, 12.92978 - i \, 12.94910 = u + iv$$

except for the interpolated correction from q = 1.500 to q = 1.523, to be considered later.

RANGE OF THE TABLE

Table VII extends by steps of 0.05 in x up to x = 3.95, and in Table XIII up to x = 4.0. In y, the range is indefinitely great; because after dividing y by $\pi/2$ so as to reduce it to quadrant measure, all multiples of 4 are rejected. From 0 to 2, in the remainder, the table gives the result directly and from 2 to 4, by change of sign in the total. Cases of x greater than 4.0 are dealt with in connection with Table XIV.

REPETITIONS IN THE TABLE

If
$$\sinh\left\{x+i\left(\frac{\pi}{2}-a\right)\right\} = u+iv$$
 (57)

it is easy to show that:

$$\sinh\left\{x+i\left(\frac{\pi}{2}+a\right)\right\} = -u+iv.$$
(58)

It follows that in any column of Table VII, the entry for q = (1 - a) is the same as that for q = 1 + a except for a change in the sign of u. Consequently, the table might have been reduced to half its present size, if the responsibility for making this change of sign had been left to the reader. It was considered, however, that since the reader is already charged with the duty of applying a negative sign to the total result when the q.

residuum lies between 2 and 4, the retention of the full size of the present table was warranted, especially as the duplication of the text in each column provides a certain check upon the numerical work of tabulation.

INTERPOLATION BY SIMPLE PROPORTION

As a first approximation, interpolation may be effected by simple proportion, first in regard to x and second in regard to q.

Example: Required sinh (0.15 + i 0.25), having given:sinh (0.2 + i 0.2) = 0.19148 + i 0.31522.sinh (0.2 + i 0.3) = 0.17939 + i 0.46310.sinh (0.1 + i 0.2) = 0.09526 + i 0.31056.sinh (0.1 + i 0.3) = 0.08925 + i 0.45626.Diff. for 0.1 x = 0.09622 + i 0.00466.Diff. for 0.1x = 0.09014 + i 0.00684.Diff. for 0.05x = 0.04811 + i 0.00233.Diff. for 0.05x = 0.04507 + i 0.00342.sinh (0.15 + i 0.2) = 0.14337 + i 0.31289.sinh (0.15 + i 0.2) = 0.14337 + i 0.31289.Diff. for q 0.10 = -0.00905 + i 0.14679.

 $\frac{7 + i 0.31289}{\text{Diff. for } q \ 0.15 + i \ 0.2)} = 0.14337 + i 0.31289.}{\text{Diff. for } q \ 0.10} = -0.00905 + i 0.14679.}$ $\frac{\text{Diff. for } q \ 0.05}{\text{Diff. for } q \ 0.05} = -0.00453 + i \ 0.07340.}$ $\frac{100}{100} + i \ 0.15 + i \ 0.25} = 0.13885 + i \ 0.38629.}$ Correct value = 0.13910 + i \ 0.38700.}

INTERPOLATION BY TAYLOR'S THEOREM

When a higher degree of precision is desired than that which can be expected by simple proportion, we may use Taylor's theorem in the following form: —

$$\sinh (\theta + \Delta \theta) = \sinh \theta + \Delta \theta \cosh \theta + \frac{(\Delta \theta)^2}{2!} \sinh \theta + \frac{(\Delta \theta)^3}{3!} \cosh \theta + \dots \quad (59)$$

$$\sinh\left\{\left(x+iy\right)+\left(\Delta x+i\Delta y\right)\right\}=\sinh\left(x+iy\right)+\left(\Delta x+i\Delta y\right)\cosh\left(x+iy\right)$$

$$+ \frac{(\Delta x + i \Delta y)^2}{2!} \sinh (x + iy) + \frac{(\Delta x + i \Delta y)^3}{3!} \cosh (x + iy) + \dots$$
 (60)

Quadranting imaginaries on both sides; or transferring to the XQ plane, $\sinh \{ (x + iq) + (\Delta x + i\Delta q) \} = \sinh (x + iq) + \{ \Delta x + i (\pi/2)\Delta q \} \cosh (x + iq) + \frac{\{\Delta x + i (\pi/2)\Delta q\}^2}{2} \sinh (x + iq) + \frac{\{\Delta x + i (\pi/2)\Delta q\}^3}{3!} \cosh (x + iq) + \dots$ $= \sinh (x + iq) + \Delta' \theta \cosh (x + iq) + \frac{(\Delta' \theta)^2}{2!} \sinh (x + iq) + \frac{(\Delta' \theta)^3}{3!} \cosh (x + iq) + \dots$ $+ \frac{(\Delta' \theta)^3}{3!} \cosh (x + iq) + \dots$ where $\Delta' \theta = \Delta x + i\Delta y = \Delta x + i (\pi/2)\Delta q$. (62) [193]

Example (1): With $\Delta q = 0$. Required sinh (0.15 + i 0.2), having given in Table VII and in Table VIII: $\sinh(0.1 + i 0.2) = 0.00526 + i 0.31056.$ $\cosh(0.1 + i 0.2) = 0.95582 + i 0.03095$. Then by (60); $\sinh(0.15 + i \underline{0.2}) = \sinh(0.1 + i \underline{0.2}) + 0.05 \cosh(0.1 + i \underline{0.2}) + \frac{0.0025}{2}$ $\sinh(0.1 + i 0.2) + \frac{0.00013}{6} \cosh(0.1 + i 0.2)$ = 0.09526 + i 0.31056 + 0.05 (0.95582 + i 0.03095)+ 0.00125 (0.09526 + i 0.31056) + 0.00002 (0.95582 +i 0.03005)= 1.00125 (0.00526 + i 0.31056) + 0.05002 (0.05582 + i 0.03005)= (0.00538 + i 0.31005) + (0.04781 + i 0.00155)= 0.14319 + i 0.31250which is the correct tabular value of sinh (0.15 + i 0.2) in Table VII. Example (2): With $\Delta x = 0$. Required sinh (0.1 + i 0.25), having given in Table VII and in Table VIII: $\sinh(0.1 + i 0.2) = 0.00526 + i 0.31056.$ $\cosh(0.1 + i 0.2) = 0.95582 + i 0.03095$. Then by (62); $\sinh(0.1 + i0.25) = \sinh(0.1 + i0.2) + i0.05 \times 1.5708 \times \cosh(0.1 + i0.2)$ $+ i^{2} \frac{(0.05 \times 1.5708)^{2}}{2!} \sinh (1.0 + i 0.2)$ $+ i^{3} \frac{(0.05 \times 1.5708)^{3}}{3!} \cosh (1.0 + i 0.2)$

 $= 0.09526 + i 0.31056 + i \times 0.07854 (0.95582 + i 0.03095)$

 $-\frac{0.00617}{2}(0.09526+0.31056)$

$$-i\frac{0.00048}{6}(0.95582 + i0.03095)$$

= (0.09526 + i0.31056) (1 - 0.00309)
+ i (0.95582 + i0.03095) (0.07854 - 0.00006)
= 0.99691 (0.09526 + i0.31056) + 0.07848 (- 0.03095 + i0.95582)
= 0.09497 + i0.30960 - 0.00243 + i0.07501
= 0.00254 + i0.28461

The tabular value is 0.09254 + i 0.38460.

Example (3): Interpolation for both Δx and Δq . Required sinh (0.15 + i 0.25), having given sinh (0.1 + i 0.2) = 0.09526 + i 0.31056 by Table VII and cosh (0.1 + i 0.2) = 0.95582 + i 0.03095 by Table VIII. Here $\Delta \theta$ in formula (59) = (0.05 + i 0.05)

and $\Delta'\theta$ in formula (62) = (0.05 + $i (\pi/2) \times 0.05$) = (0.05 + i 0.07854). [194] Thus: ---

$$\begin{aligned} \sinh (0.15 + i \underline{0.25}) &= \sinh (0.1 + i \underline{0.2}) + \Delta'\theta \cosh (0.1 + i \underline{0.2}) \\ &+ \frac{(\Delta'\theta)^2}{2!} \sinh (0.1 + i \underline{0.2}) + \dots \\ \Delta'\theta &= 0.05 + i 0.07854. \\ (\Delta'\theta)^2 &= + 0.0025 - 0.00617 + i 0.00785 \\ &= - 0.00367 + i 0.00785. \\ \frac{(\Delta'\theta)^2}{2} &= - 0.00184 + i 0.00393. \\ (\Delta'\theta)^3 &= (0.05 + i 0.07854)^3 = - 0.00080 + i 0.00016. \\ \frac{(\Delta'\theta)^3}{6} &= - 0.00013 + i 0.0002. \\ \sinh (0.15 + i \underline{0.25}) &= \sinh (0.1 + i \underline{0.2}) \left\{ 1 + \frac{(\Delta'\theta)^2}{2!} + \dots \right\} \\ &+ \cosh (0.1 + i \underline{0.2}) \left\{ \Delta'\theta + \frac{(\Delta'\theta)^3}{3!} + \dots \right\} \\ &= (0.09526 + i 0.31056) (0.99816 + i 0.00393) = 0.09386 + i 0.31036 \\ &+ (0.95582 + i 0.03095) (0.04987 + i 0.07856) = 0.04524 + i 0.07664 \\ &= 0.13910 + i 0.38700. \end{aligned}$$

EFFECTS OF CHANGES OF SIGN IN THE ENTERING QUANTITY

Table VII expresses the relation

$$\sinh(x+iq) = u + iv. \tag{63}$$

(a) If x be taken with negative sign, we have

 $\sinh\left(-x+iq\right) = -u+iv\tag{64}$

so that changing the sign of the real component entering the table changes the sign of the real component in the result; but leaves the sign of the imaginary component unchanged.

(b) If q be taken with negative sign, we have

$$\sinh(x - iq) = u - iv \tag{65}$$

so that changing the sign of the imaginary component in the entering quantity changes the sign of the imaginary component in the result, leaving the sign of the real component unchanged.

(c) If both x and q be taken with negative sign, we have

 $\sinh(-x - iq) = \sinh\{-(x + iq)\} = -u - iv = -(u + iv)$ (66)

so that changing the sign of the total entering quantity changes the sign of the total result.

The facts may be summed up by saying that changes in the sign of the entering (uantity produce corresponding changes of sign in the result.

CIRCULAR SINES OF COMPLEX "ANGLES"

Since, as is well known: ----

$$\sin \theta = -i \sinh (i\theta) \tag{67}$$

we have

$$\sin (x + iy) = -i \sinh (ix - y) \tag{68}$$

$$= i \sinh (y - ix). \tag{69}$$

Consequently, in order to find the circular sine of the complex quantity (x + iy), enter Table VII for sinh (y + ix), which on being quadranted, becomes sinh $\{y + ix/(\pi/2)\}$ and let the result be (u + iv). Then sinh (y - ix) = u - iv and sin (x + iy) = v + iu. In other words, invert the entering components, and then invert the components of the result.

Example: Required sin (1 + i 2) from Table VII. Here $\theta = (1 + i 2)$.

Enter the Table with $-\sinh(i\theta) = \sinh(-i\theta) = \sinh(2 - i I)$.

Quadranting the imaginary, we enter the table with (x - iq) = (2 - i 0.6366). The nearest entry is (2 - i 0.65), for which the hyp. sine is given as 1.89503 - i 3.20780. Consequently, sin (1 + i 2) = 3.2078 + i 1.89503, except in so far as interpolation is needed to reduce sinh (2 - i 0.6366) from sinh (2 - i 0.65). In this way any circular sine of a complex quantity can always be obtained from the table of hyperbolic sines, between the limits of 0 and ± 4 in y, and of 0 and $\pm \infty$ in x.

GRAPHIC INTERPOLATION BY MEANS OF CHARTS VIIA, VIIB, VIIC

Charts VII-VIII A, B, and c, serve for the evaluation of either sinh (x + iq) or cosh (x + iq), according to the axis of reference selected. Thus, taking Chart VII-VIIIB, if this is held with the line SS as the axis of reference or initial line; then by comparison with the entries in Table VII, it will be found that sinh (x + iq) can be read from it directly over the range q = 0 to q = 4, beyond which the values repeat themselves indefinitely. On the other hand, if the chart be turned through 90°, so as to bring the line CC as the axis of reference, it will be found by comparison with the entries of Table VIII, that cosh (x + iq) can be read from it directly over the range q = 0 to q = 4.

Chart VII-VIIIA gives $\sinh (x + iq)$ and $\cosh (x + iq)$ for values of x up to about o.g. Chart VII-VIIIB gives the corresponding results for values of x up to about x = 2. Finally, Chart VII-VIIIC provides for values of x up to x = 4. In all of these charts, interpolation can be made for both x and q to o.or, by direct inspection. The graphs on these charts are undistorted, since they give complex functions as results, in rectangular coördinates. The curves therefore always intersect orthogonally, and they represent a confocal system of ellipses and hyperbolas, the common foci being at two points at unit distances from the center, along one of the reference axes. The curvilinear rectangles into which the charts are divided have pairs of sides the ratio of whose lengths tends to the value $\pi/2$.

If the preliminary process of quadranting the imaginary of the entering quantity were not adopted; that is, if the graphs were entered in terms of (x + iy), instead of

(x + iq); then it would be necessary* to have a new chart for each range of 2π units in y; or some 16 sets of Charts A, B, and C, in order to reach y = 100. That is, 48 charts would have to be computed, prepared, drawn, lithographed, bound, sold and operated instead of the 3 charts actually presented. Moreover, if y were needed greater than 100, the set of 48 would fail; whereas, working with quadrant imaginaries, the three charts serve up to indefinitely great values of q and y.

GRAPHIC CHART VII-VIIIA

This chart corresponds to Tables VII and VIII at least as far as x = 0.9, or for pages 42 to 45, and 58 to 61 of this book. To find hyperbolic sines from the chart, place it facing the observer with the axis OO vertical. This is the major axis of all the ellipses shown. Starting from this central axis towards the right hand, the successive ellipses marked 0.1, 0.2, 0.3, etc., represent values of x; while the successively rising hyperbolas 0.1, 0.2, represent values of q. These values of q will be found to extend over two quadrants. Enter the chart on the curvilinear coördinates for x and q. At the proper intersection read off the u and v coördinates of the rectilinear ruling, u being the abscissas and v the ordinates.

Conversely, to find $\sinh^{-1}(u + iv)$ within the limits u = 0 and $u = \pm 1$, v = 0 to v = 2.0, enter the chart with the same aspect on the rectilinearly ruled coördinates and read off at the proper intersection the curvilinear values taking x on the ellipses and q on the hyperbolas.

To find hyperbolic cosines from the chart, rotate it clockwise 90° ; so as to have the axis OO horizontal. Then enter on the curvilinear coördinates with x on the ellipses and q on the hyperbolas. The first and fourth quadrants only will be presented to the observer; but from the symmetry of the diagram, it will be easy to reverse the chart, so as to present the second and third quadrants. Read off the result on the rectilinear background using u for abscissas and v for ordinates.

Conversely, to find $\cosh^{-1}(u + iv)$ from the chart with the axis OO horizontal, enter on the rectilinear background and read off at the proper intersection from the curvilinear coördinates in x and q, taking the ellipses as parts of the x-system and the hyperbolas as part of the q-system.

GRAPHIC CHART VII-VIIIB

This chart gives the graph of the functions $\sinh (x + iq)$ and $\cosh (x + iq)$ from x = 0.8 at least as far as x = 2.05 along the ellipses and from q = 0 to $q = \infty$ by virtue of successive rotations. In this and the following charts, the numerical values of q are all underscored, an indication which may serve readily to distinguish the imaginaries q, from the reals, x.

* A single set of charts entered in terms of (x + iy) could be used up to y = 6.2832 in one revolution, and could be used for all larger values by throwing out multiples of 2π . This operation of dividing y by 2π would, however, take as much time as the operation of quadranting, and would also lead to a dissymmetrical chart in the hyperbolas.

In all of the Charts VII to IX inclusive, the curvilinear rectangles all tend to have sides in the ratio π : 2; that is the long side approximates to being 1.57 times the short side. In IXA exceptions are found; because extra curvilinear coördinates are supplied.

To find sinh (x + iq) from Chart VII-VIIIB, hold the minor axis SS horizontal. Enter on the curvilinear coördinates with x on ellipses and q on hyperbolas. At the proper intersection read off on the rectilinear background in u and v. Proceed inversely to find the inverse function $\sinh^{-1}(u + iv)$.

To find $\cosh(x + iq)$ from the same chart, hold the major axis CC horizontal. Enter on the curvilinear coördinates with x on ellipses and q on hyperbolas. Read off on the rectilinear background.

All four quadrants appear in this and the following chart, so that it is not necessary to limit the value of q to less than 2 quadrants.

GRAPHIC CHART VII-VIIIC

This Chart gives the graph of $\sinh (x + iq)$ and $\cosh (x + iq)$ from x = 2.0, at least as far as x = 3.90. The procedure is precisely the same as that for VII-VIIIB already described.

TABLE VIII

$$\cosh(x+iq) = u + iv$$

RECTANGULAR HYPERBOLIC COSINES OF A RECTANGULAR VARIABLE

Table VIII may be regarded as an inversion of Table VII; because:

$$\cosh \theta = -i \sinh \left(\theta + i\pi/2\right) \tag{70}$$

or in quadrant imaginaries,

 $\cosh \theta = -i \sinh (\theta + i \mathbf{I}). \tag{71}$

That is the hyp. cosine of any complex quantity (x + iq) is -i times the hyp. sine of that quantity with an additional quadrant in the imaginary. Thus

$$\cosh (0.5 + i 0.6) = -i \sinh (0.5 + i 1.6) \\ = -i (-0.42158 + i 0.66280) \\ = + 0.66280 + i 0.42158.$$

All of the entries in Table VII thus reproduce themselves by inversion in corresponding parts of Table VIII, a fact which serves as a numerical check upon both.

In order to find the value of $\cosh (x + iy)$, quadrant the imaginary quantity y, by dividing it with $\pi/2$, as in entering Table VII. The complex quantity (x + iy) will now be expressed as (x + iq); or will in effect have been transferred from the XY to the XQ plane. Next throw out multiples of 4 from q, so as to leave a remainder less than 4. If this remainder exceeds 2, deduct 2 from it, but change the sign of the total result thereupon deduced. • If the remainder, however, is not greater than 2, then, the result is taken directly from the table.

Example: To find $\cosh(1 + i5) = \cosh(x + iy)$. Quadranting, we have $\cosh(1 + i3.183) = \cosh(x + iq)$. Deducting 2 from q, $\cosh(1 + i1.183)$.

[198]

With this we enter Table VIII. The nearest entry is $x + iq = 1 + i \underline{1.2}$, the result for which is $-0.47684 + i \underline{1.11768}$. This has to be corrected by interpolation from $q = \underline{1.2}$ to $q = \underline{1.183}$. Reverse the sign of the result to $0.47684 - i \underline{1.11768}$ for the deduction of 2 quadrants.

Example 2: Required $\cosh(0.25 + i \, 30) = \cosh(x + i y)$. Quadranting, this becomes $\cosh(0.25 + i \, \underline{10.099}) = \cosh(x + i q)$. Rejecting imaginary quadruples $= \cosh(0.25 + i \, \underline{3.099})$ $= \cosh(x + i q)$. Deducting 2 quadrants $= \cosh(0.25 + i \, \underline{1.099})$ $= -\cosh(x + i q)$.

The nearest entry is $0.25 + i \underline{1.1}$ for which the result is (-0.16135 + i 0.24950). Applying the negative sign on account of the two deducted quadrants, the final result is, neglecting interpolation,

$$\cosh(0.25 \pm i 30) = 0.16135 - i 0.24950 = u - iv.$$

INTERPOLATION BY SIMPLE PROPORTION

A first approximation can be obtained by interpolating according to simple proportion.

Example: Required $\cosh(0.55 + i 0.55) = \cosh(x + iq)$ having given $\cosh(0.6 + i 0.5) = 0.83825 + i 0.45018.$ $\cosh(0.6 + i 0.6) = 0.69680 + i 0.51506.$ $\cosh(0.5 + i 0.5) = 0.79735 + i 0.36847.$ $\cosh(0.5 + i 0.6) = 0.66280 + i 0.42158.$ Diff. for $x \circ .1 = 0.04090 + i \circ .08171$. Diff. for $x \circ i = 0.03400 + i \circ 0.00348$. Diff. for x 0.05 = 0.01700 + i 0.04674. Diff. for x 0.05 = 0.02045 + i 0.04086. $\cosh(0.55 + i 0.6) = 0.67980 + i 0.46832.$ $\cosh(0.55 + i0.5) = 0.81780 + i0.40933.$ $\cosh(0.55 + i 0.5) = 0.81780 + i 0.40933.$ Diff. for q 0.1 = -0.13800 + i 0.05899. Diff. for $q \, \overline{0.05} = -0.06900 + i \, 0.02950$. $\cosh(0.55 + i 0.55) =$ 0.74880 + i 0.43883.Correct value = 0.75018 + i0.43963.

INTERPOLATION BY TAYLOR'S THEOREM

For a higher degree of precision than simple proportion affords, reference may be had to Taylor's theorem in the following form: ---

$$\cosh (\theta + \Delta \theta) = \cosh \theta + \Delta \theta \sinh \theta + \frac{(\Delta \theta)^2}{2!} \cosh \theta + \frac{(\Delta \theta)^3}{3!} \sinh \theta + \dots$$

$$\cosh \{ (x + iy) + (\Delta x + i\Delta y) \} = \cosh (x + iy) + (\Delta x + i\Delta y) \sinh (x + iy)$$

$$+ \frac{(\Delta x + i\Delta y)^2}{2!} \cosh (x + iy) + \frac{(\Delta x + i\Delta y)^3}{3!} \sinh (x + iy) + \dots \quad (71a)$$
[199]

Quadranting imaginaries on both sides, or transferring to the XQ plane,

$$\cosh \{ (x + iq) + (\Delta x + i\Delta q) \} = \cosh (x + iq) + (\Delta x + i\Delta q \pi/2) \sinh (x + iq) + \frac{(\Delta x + i\Delta q \pi/2)^2}{2!} \cosh (x + iq) + \dots + \frac{(\Delta x + i\Delta q \pi/2)^3}{3!} \sinh (x + iq) + \dots + \frac{(\Delta x + i\Delta q \pi/2)^2}{3!} \cosh (x + iq) + \dots + \frac{(\Delta' \theta)^2}{2!} \cosh (x + iq) + \dots + \frac{(\Delta' \theta)^2}{2!} \cosh (x + iq) + \dots + \frac{(\Delta' \theta)^2}{2!} \cosh (x + iq) + \dots + \frac{(\Delta' \theta)^2}{2!} \cosh (x + iq) + \dots + \frac{(\Delta' \theta)^2}{2!} \cosh (x + iq) + \dots + \frac{(\Delta' \theta)^2}{2!} \cosh (x + iq) + \dots + \frac{(\Delta x + i\Delta q \pi/2)}{3!} (x + i\Delta q \pi/2). \quad (71b)$$
Example: Required $\cosh (0.5 + i0.55) = \cosh (x + iq)$
having given $\cosh (0.5 + i0.55) = \cosh (x + iq)$
having given $\cosh (0.5 + i0.55) = \cos 36847 + 0.79735$ in Table VIII
and $\sinh (0.5 + i0.55) = \cos 36847 + 0.79735$ in Table VIII.
Here $\Delta x = 0$, $\Delta q = i0.05$, $\Delta' \theta = i0.05 \times 1.5708 = i0.07854.$
 $\cosh (0.5 + i0.55) = \cosh (0.5 + i0.55) \left\{ 1 + \frac{(\Delta' \theta)^2}{2!} + \frac{(\Delta' \theta)^3}{4!} + \dots \right\} + \sinh (0.5 + i0.55) \left\{ \Delta' \theta + \frac{(\Delta' \theta)^3}{3!} + \dots \right\} \cdot \Delta' \theta = i0.07854.$
 $(\Delta' \theta)^2 = -0.00617. \quad \frac{(\Delta' \theta)^2}{2!} = -0.00309.$
 $(\Delta' \theta)^3 = -i0.00048. \quad \frac{(\Delta' \theta)^3}{3!} = -i0.00008.$
 $(\Delta' \theta)^4 = +0.0004. \quad \frac{(\Delta' \theta)^3}{4!} = 0.00008.$
 $(\Delta' \theta)^4 = +0.0004. \quad \frac{(\Delta' \theta)^3}{4!} = 0.00008.$
 $\cosh (0.5 + i0.55) = (0.79735 + i0.36847) (1 - 0.00309) + (0.36847 + i0.79735) (i0.07854 - i0.0008)$
 $= (0.79735 + i0.36847) \sin 0.90601 + (0.36847 + i0.79735) (i0.07854 - i0.0008)$
 $= (0.79489 + i0.36733 + i0.02891 - 0.06256 = 0.73233 + i0.39624.$
The tabulated value = 0.73233 + i0.39624.

In view of the similarity of the interpolation operations by Taylor's theorem to those already discussed in relation to Table VII, further examples are probably not needed.

EFFECTS OF CHANGES OF SIGN IN THE ENTERING QUANTITY

Since if	$\cosh(x+iy) = u+iv$	(72)
	$\cosh(-x+iy) = u - iv$	(73)
	$\cosh(x - iy) = u - iv$	(74)
	$\cosh(-x - iy) = u + iv$	(75)

changing the sign of either the real or imaginary entering component only changes the sign of the imaginary component in the result; while changing the sign of the entering quantity as a whole, has no effect on the sign of the result.

CIRCULAR COSINES OF COMPLEX "ANGLES"

It is well known that if θ be any angle, real or complex,

$$\cos\theta = \cosh(i\theta). \tag{76}$$

Consequently,

$$\cos(x+iy) = \cosh(-y+ix) \tag{77}$$

or, quadranting the imaginary component,

$$\cos (x + iy) = \cosh (-y + i 2x/\pi) = u + iv.$$
(78)

To find the circular cosine of any complex quantity x + iy, we enter Table VIII with (-y + ix/1.5708). The result is the desired cosine.

Example: Required $\cos(0.4 + i 1.2)$.

Thus we require $\cosh(-1.2 + i \, 0.2546)$.

We now enter Table VIII with x = -1.2 and q = 0.2546 the nearest entry being x = -1.2 and q = 0.25, for which the result is 1.67283 - i 0.57765.

Hence $\cos(0.4 + i \cdot 1.2) = 1.67283 - i \cdot 0.57765$ neglecting interpolation from q = 0.25to q = 0.2546.

GRAPHIC CHART INTERPOLATIONS

The use of the Graphic Charts VII-VIIIA, B, C, for hyperbolic cosines has already been described in connection with sines, on pages 197-198.

TABLE IX

$$\tanh(x+iq)=u+iv$$

RECTANGULAR HYPERBOLIC TANGENTS OF A RECTANGULAR VARIABLE

Entering Process

Let tanh (x + iy) be the required function. Quadrant the imaginary component, as described under Tables VII and VIII; that is, divide y by $\pi/2$; so that $y/(\pi/2) = q$. The required function is now expressed in the form tanh (x + iq). Throw out multiples of 2 from q and retain only the remainder as q. Enter Table IX with (x + iq), and find the result directly as $u \pm iv$. It is a well-known property of tanh (x + iy), that it is periodic in iy, and that the period is $i.\pi$ circular radians; or, in quadrants, i.2. That is

$$\tanh \{x + i (y + n\pi)\} = \tanh (x + iy).$$
 (79)

where n is any integer; or, in quadrant measure of the imaginary,

$$\tanh \{x + i (q + 2n)\} = \tanh (x + iq).$$
 (80)

Required $\tanh(0.25 + i_{30}) = \tanh(x + iy)$. Example:

 $\tanh(0.25 + i_{19.099}) = \tanh(x + iq).$ Quadranting, Rejecting multiples of 2, tanh (0.25 + i 1.000) = tanh (x + iq).

We now enter Table IX with x = 0.25 and q = 1.099, the nearest entry to which x = 0.25, q = 1.1. The result is 2.95122 - i 1.75011.

INTERPOLATION

Interpolation may be approximately effected by simple proportion, first in x and then in q, as indicated in connection with Tables VII and VIII; or, when a higher degree of precision is required, recourse may be had to Taylor's theorem in the following form: —

$$\tanh (\theta + \Delta \theta) = \tanh \theta + \Delta \theta \operatorname{sech}^{2} \theta - \frac{(\Delta \theta)^{2}}{2!} \operatorname{2} \operatorname{sech}^{2} \theta \tanh \theta + \frac{(\Delta \theta)^{3}}{3!} \operatorname{2} \operatorname{sech}^{2} \theta (\operatorname{2} \tanh^{2} \theta - \operatorname{sech}^{2} \theta) + \dots$$
(81)

or

t

$$\tanh \left\{ (x+iy) + (\Delta x + i\Delta y) \right\} = \tanh (x+iy) + \frac{(\Delta x + i\Delta y)}{\cosh^2 (x+iy)} - \frac{(\Delta x + i\Delta y)^2}{\cosh^2 (x+iy)} \tanh (x+iy) + \dots$$
(82)

and quadranting, tanh { (a

$$\operatorname{anh} \left\{ \left(x + iq \right) + \left(\Delta x + i\Delta q \right) \right\} = \operatorname{tanh} \left(x + iq \right) + \frac{\left\{ \Delta x + i\Delta q \left(\pi/2 \right) \right\}}{\cosh^2 \left(x + iq \right)} - \frac{\left\{ \Delta x + i\Delta q \left(\pi/2 \right) \right\}^2}{\cosh^2 \left(x + iq \right)} \operatorname{tanh} \left(x + iq \right) + \dots$$
(83)

so that as far as the second correction term: --

$$\tanh \left\{ \left(x + iq \right) + \left(\Delta x + i\Delta q \right) \right\} = \tanh \left(x + iq \right) + \frac{\Delta \theta}{\cosh^2 \left(x + iq \right)} - \frac{\left(\Delta' \theta \right)^2 \tanh \left(x + iq \right)}{\cosh^2 \left(x + iq \right)} + \dots$$
(84)

where
$$\Delta'\theta = (\Delta x + i\Delta y) = \{\Delta x + i\Delta q (\pi/2)\}$$

(85)

. 10

Example: Required tanh (0.5 +
$$i$$
 0.55) = tanh ($x + iq$)
having given cosh (0.5 + i 0.5) = 0.79735 + i 0.36847 by Table VIII
= 0.87837 /24°.803 by Table XI
and tanh (0.5 + i 0.5) = 0.76159 + i 0.64805 by Table IX
= $1.0 /40^{\circ}.395$ by Table XII.
Here $\Delta'\theta$ = ($0 + i$ 0.05 × 1.5708) = ($0 + i$ 0.07854).
anh ($0.5 + i$ 0.55) = 0.76159 + i 0.64805 + $\frac{i$ 0.07854}{(0.87837)^2/49^{\circ}.606} + $\frac{0.00617 \times 1/40^{\circ}.395}{(0.87837)^2/49^{\circ}.606}$
= $0.76159 + i$ 0.64805 + $\frac{0.07854 /40^{\circ}.394}{0.77153}$ + $\frac{0.00617 \sqrt{9^{\circ}.211}}{0.77153}$
= $0.76159 + i$ 0.64805 + $0.10180 /40^{\circ}.394$ + $0.00800 \sqrt{9^{\circ}.211}$
= $0.76159 + i$ 0.64805 + $0.07753 + i$ 0.06597 + $0.00790 - i$ 0.00128

The correct value is 0.84752 + i 0.71229.

= 0.84702 + i 0.71274.

As the third correction term is inconvenient for computation, it is often preferable to obtain a precise interpolation of $\tanh (x + iy)$ in working out the correct interpolations of $\sinh (x + iy)$ and $\cosh (x + iy)$ by the methods already illustrated, and then to take their ratio.

EFFECTS OF CHANGES OF SIGN IN THE ENTERING QUANTITY

If	tanh (x + iy	u + iv	(86)
then	tanh (x - iy) =	u - iv	(87)
	tanh (–	$x + iy) = \cdot$	-u + iv	(88)
and	tanh (-	$(x - iy) = \cdot$	-(u+iv).	(89)

Consequently, changes in the sign of the entering quantity produce corresponding changes of sign in the result.

FIG. 32. — Graphs of x + iy and tanh (x + iy) in the XY and UV planes respectively.

CIRCULAR TANGENTS OF COMPLEX "ANGLES"

 $\tan \theta = -i \tanh (i\theta).$ (90)

$$\tan(x+iy) = -i\tanh(-y+ix) \tag{91}$$

or, quadranting the imaginary: --

Since

It follows that

$$\tan (x + iy) = -i \tanh (-y + i 2x/\pi) = -i \tanh (-y + iq)$$

= -i (-u + iv)
= v + iu. (92)

Consequently, to find tan (x - iy) from Table IX, enter it with y as x and with $x/(\pi/2)$ as q. Invert the components of the result and the required function is obtained. Thus

required tan (1+i2). We enter with x = 2 and q = 0.6366. The nearest entry is x = 2.0 and q = 0.65 for which u + iv = 1.01623 + i0.03318. Therefore, inverting, tan (1 + i2) = 0.03318 + i1.01623

neglecting the interpolation from q = 0.65 to q = 0.6366.

GRAPHIC INTERPOLATION BY MEANS OF CHARTS IXA, IXB, AND IXC

These charts contain all of the entries in Table IX, and also a certain number of additional results. They present circles intersecting circles orthotomically; *i.e.*, by rectangular intersection. It is clear that for values of x less than 0.10, the curves run off Chart IXA. In fact the first curve shown of x = 0.01 extends as far as u = 100. By taking x small enough, the corresponding values of u and v may become indefinitely great. The entire UV plane is covered to infinity once between x = 0 and $x = \infty$, q = 0 and q = 2. It is covered once more for each 2 quadrants increase in q.

When entering for $\tanh(-x \pm iq)$; or for the inverse operation $\tanh^{-1}(-u \pm v)$, it must be remembered that the confocal conic-section diagrams VII and VIII are complete for negative as well as for positive values of x and q; but that only half of the UV plane is presented in Charts IX. The full graph is indicated in Fig. 32, by the aid of which the functions corresponding to negative real values are readily apprehended.

TABLE X

$$\sinh(x+iq)=r/\gamma$$

POLAR HYPERBOLIC SINES OF A RECTANGULAR VARIABLE

This table corresponds completely to Table VII, already considered, except that it offers results in polar instead of rectangular coördinates.

To find sinh (x + iy) expressed in polar coördinates, quadrant the imaginary, and express the entering variable as (x + iq). Reject multiples of 4 in q, and if the remainder exceeds 2, reject 2 but change the sign of the total result.

INTERPOLATION BY SIMPLE PROPORTION

Required sinh (0.15	+ i 0.25) having giv	en	
$\sinh(0.2 + i \underline{0.2}) =$	0.36882 <u>/58°.723.</u>	$\sinh\left(0.2+i\underline{0.3}\right) =$	0.49663/68°.825.
$\sinh(0.1 + i \underline{0.2}) =$	0.32485 <u>/72°.947.</u>	$\sinh\left(0.1+i\underline{0.3}\right) =$	0.46491 <u>/ 78°.932.</u>
Diff. for $0.1 x = -$	$+0.04397/-14^{\circ}.224.$	Diff. for $0.1 x =$	+0.03172/-10°.107.
Diff. for $0.05 x =$	0.02199/ <u>- 7°.112.</u>	Diff. for $0.05 x =$	0.01586 <u>/- 5°.054.</u>
•		$\sinh(0.15 + i 0.3) =$	0.48077 <u>/73°.878.</u>
$\sinh(0.15 + i \underline{0.2}) =$	0.34684 <u>/65°.835.</u>	$\sinh\left(0.15+i\underline{0.2}\right) =$	0.34684/ <u>65</u> °.8 <u>35.</u>
		Diff. for $i 0.1 =$	0.13393 <u>/</u> 8°.043.
		Diff. for $i \underline{0.05} =$	0.06697 <u>4</u> °.022.
		$\sinh(0.15 + i 0.25) =$	0.41381/69°.857.
	Correct Value	•	0.41124/70°.229.
		7	

[204]
INTERPOLATION BY TAYLOR'S THEOREM

For a higher degree of precision than is obtainable by simple proportion, it is convenient to use rectangular coördinates and apply formula (62). Thus, required sinh (0.15 + i 0.25). Here referring to Table VII and to the work on page 195, we find for the result u + iv = 0.13911 + i 0.38701.

Here $\log 0.38701 = 1.5877110$ $70^{\circ}.13'.\frac{72}{100} = 70^{\circ}.229$ $\log 0.13911 = 1.1433584$ $\log 0.141124$ \log

INTERPOLATION BY CHARTS X-XIA AND X-XIB

These charts present the polar coördinate results on rectangular coördinate sheets, so that they are not true graphs, but are merely to be regarded as interpolation diagrams.

To find sinh (x + iy), proceed as in the use of the tables and quadrant the imaginary so as to obtain the entering quantity in the form (x + iq). Enter with the curvilinear coördinates, taking the more nearly vertical wavy lines for x and the more nearly horizontal lines for q, starting from the line SS as the zero of q. Read off the result on the rectangular background to the left-hand scale of ordinates.

When we leave X-XIA and enter X-XIB, it is noticeable that the curves of constant x approach vertical straight lines and the curves of constant q approach horizontal straight lines. At and beyond x = 3.0, we may approximate to the modulus r at any required q, by taking the value of r at q = 0.5 and simple proportional parts between this and r at q = 0 or r at q = 1.0. The change in modulus r between q = 0.5, and either of the above limits is very nearly $e^{-x/2}$. Thus at x = 3.5 and q = 0.5, r by the tables is 16.55774. At q = 0, r = 16.54263, a change of - 0.01511, and at q = 1.0, r = 16.57282, a change of + 0.01508. The value of $e^{-3.5/2}$ will be found to be 0.01510, and over the entire range of q from 0 to 1.0, the change in r follows in nearly simple proportion.

Beyond x = 3.2, the limit of Chart X-XIB, the values of r can be obtained by the above rule applied to Table X and with the aid of Chart VII-VIIIc. The values of the amplitude γ beyond x = 3 closely approximate to q quadrants. That is sinh (x + iq) approximates to $\frac{\epsilon^x}{2}/q$, with q in quadrant measure.

TABLE XI

$\cosh(x + iq) = r/\gamma$

POLAR HYPERBOLIC COSINES OF A RECTANGULAR VARIABLE

Table XI corresponds completely with Table VIII, except that it gives results expressed in polar instead of rectangular coördinates. It is entered with (x + iq) just as in Table VIII.

Interpolation may be effected by simple proportion, as in the case of Table X, or when a higher degree of precision is required, it may be carried on by Taylor's theorem. In the latter case, it is more convenient to refer to the corresponding entries in Table VIII, interpolating according to formula (71b). The rectangular coordinates duly interpolated are then transformed into polar coordinates, as in the last example on page 225.

INTERPOLATION BY CHARTS X-XIA AND X-XIB

When Charts X-XI are used to find $\cosh(x + iy)$, the imaginary is first quadranted by dividing with $\pi/2$, so as to obtain the entering variable in the form $\cosh(x + iq)$. Starting then from q = 0 at the horizontal line *CC*, near the middle of the chart, the underscored figures correspond to q for a little more than the first quadrant. The manifest repetition of the curves enables the lower half of the sheet, however, to be used for the second quadrant. The result is read off on the rectangular background to the right-hand scale of argument.

Beyond x = 3.2, the limit of Chart X-XIB reference may be had to Chart VII-VIIIB; or the approximate formula may be used:

$$\cosh(x+iq) = \frac{\epsilon^x}{2} / q.$$
 (93)

the argument q of the result being interpreted in quadrant measure and converted into degrees.

TABLE XII

$$\tanh(x+iq)=r/\gamma$$

POLAR HYPERBOLIC TANGENTS OF A RECTANGULAR VARIABLE

Table XII corresponds completely with Table IX, except that it gives results expressed in polar instead of rectangular coördinates.

If we desire to find $\tanh (x + iy)$, we must first divide y by $\pi/2$ so as to obtain the entering quantity in the form (x + iq). Multiples of 2 are then rejected in q leaving a remainder less than 2. With this remainder the table is entered.

Interpolation may be made by simple proportion to a moderate degree of precision.

GRAPHIC INTERPOLATION BY MEANS OF CHARTS XIIA, B, C, D

These charts cover between them the full range of Table XII. To find tanh (x + iq) from them with q less than 2, find the proper chart, and enter on the curvilinear coordinates keeping the underscored number for q. Read off the result on the rectilinear background.

For tan (x + iy) and also for the effects of changes of sign, see directions in the discussion on Table IX.

To find $\tanh^{-1}(r/\gamma)$, enter immediately on the rectangular background of r and γ in the proper chart, and read off at the correct intersection the corresponding values on the curvilinear coördinates. The result will appear in terms of (x + iq). The imaginary q must be dequadranted, or multiplied by $\pi/2$, in order to be expressed in terms of (x + iy).

TABLE XIII

$f(4+iq) = u + iv \text{ or } r/\gamma$

Rectangular and Polar Functions of the Rectangular Variable (4 + iq)

In this table the hyperbolic sine, cosine and tangent of (4 + iq) are collected from q = 0 to q = 2.0. The results are expressed both in rectangular coördinates (u + iv), and in polar coördinates r/γ .

It will be seen that the moduli of the tangents vary between 0.99933 and 1.00067, or differ from unity by two thirds of one per mil, at most. The arguments also differ from 0° by less than 0.04° , or about 2'.17'' of arc.

Beyond x = 4, it is evident that the hyp. sine and cosine differ by so small a percentage, that no tabulation of these differences would ordinarily be required.

TABLE XIV

$e^{x}/2$ and $\log_{10}(e^{x}/2)$

SEMI-EXPONENTIALS

This table enables the hyp. sine or cosine of any rectangular variable (x + iq) to be found for values of x greater than 4 and less than 10. It is shown in the preceding table that when x reaches 4, the ratio of the sine to the cosine never differs from unity by more than two-thirds of 1 per mil. This deviation from unity rapidly diminishes as x is further increased. Consequently, the sine and cosine may each be computed from the formula.

$$\sinh (x + iq) = \cosh (x + iq) = \frac{\epsilon^x}{2} \underline{/q}.$$
 (94)

Example: Required the value of sinh (8.51 + i 25.75). The first step is to quadrant the imaginary by dividing with $\pi/2$, as on page 191. This gives the required function in the form sinh (8.51 + i 16.393). Rejecting multiples of 4.0 in q, we may then write it sinh (8.51 + i 0.393). Turning to the top of page 143, we find $\epsilon^{x}/2 = 2482.082$ for x = 8.51; so that the result is 2482.082 / 0.393 quadrant. Expressing the argument in degrees by multiplying with 90 and we have $0.393 \times 90 = 35.37^{\circ}$. Thus

$$\sinh(8.51 + i \cdot 16.393) = \cosh(8.51 + i \cdot 16.393) = 2482.082 / 35^{\circ}.37.$$

INTERPOLATION IN x

Since
$$\frac{\epsilon^{x+\Delta x}}{2} = \frac{\epsilon^{x}}{2} \epsilon^{\Delta x} = \frac{\epsilon^{x}}{2} \left\{ \mathbf{I} + \Delta x + \frac{(\Delta x)^{2}}{2!} + \frac{(\Delta x)^{3}}{3!} + \ldots \right\}$$
 (95)

it follows that when Δx is a small quantity, it suffices to multiply the tabular value of $\epsilon^{x}/2$ by $(1 + \Delta x)$ in order to arrive at the interpolated result unless $(\Delta x)^{2}/2!$ the second correction term, is of sufficient magnitude to need consideration.

Example: To find sinh (8.51 + iq), having given that sinh (8.50 + iq) = 2457.383 /q. Here $\Delta x = 0.01$.

2457.383 >	×	I	=	I	2457.383	
2457.383 >	<	Δx	=	0.01	24.574	
2457.383 >	×	$\frac{(\Delta x)^2}{2}$	=	0.00005	.123	
					2482.080	
		Resul	t		2482.080 /	q.
		Tabu	lat	ed value	2482.082	q.

TABLE XV

f(x+io)

REAL HYPERBOLIC FUNCTIONS

This is a short table of real, as distinguished from complex hyperbolic functions for convenience of reference. It was prepared and published by the author in 1903 in relation to continuous-current electric circuit applications, taking the sines, cosines, and tangents from Ligowski's tables, and adding the corresponding computed reciprocals for the cosecants, secants, and cotangents. Much more extensive tables of real hyperbolic functions are, however, available. See Bibliography, page 211.

TABLE XVI

SUBDIVISIONS OF A DEGREE

This is a short table for convenience in changing the expression of a circular angle from decimals of a degree to minutes and seconds, or inversely. By its aid, threedecimal subdivisions of a degree may be converted into minutes and seconds of arc, by direct inspection; or minutes and seconds may be read off as decimals of a degree to three-digit accuracy.

METHODS EMPLOYED IN COMPUTATION

Tables I to V, inclusive, were computed as one group, and Tables VII to XIII, inclusive, as a separate group.

Tables I to V were computed, at first, by using the formulas: -

$$\sinh (x + iy) = \sqrt{\sinh^2 x + \sin^2 y} / \frac{\tan^{-1} (\tan y / \tanh x)}{(\tan^{-1} (\tan y \cdot \tanh x)} = r_1 / \frac{\gamma_1}{\gamma_1}.$$
(96)

$$\cosh (x + iy) = \sqrt{\cosh^2 x - \sin^2 y} / \frac{\tan^{-1} (\tan y \cdot \tanh x)}{(\tan^{-1} (\tan y \cdot \tanh x))} = r_2 / \frac{\gamma_2}{\gamma_2}.$$
(97)

$$\tanh (x + iy) = (r_1/r_2) / \frac{\gamma_1 - \gamma_2}{\gamma_1 - \gamma_2}.$$
(98)

At a later stage of the work, the following formulas, kindly suggested by Professor Bouton, were substituted: —

$$\sinh (x + iy) = \sqrt{\cosh 2x} \cdot \sin \frac{z}{\tan^{-1}(\tan y / \tanh x)} = r_1 / \gamma_1. \tag{99}$$
$$\cosh (x + iy) = \sqrt{\cosh 2x} \cdot \cos \frac{z}{\tan^{-1}(\tan y \cdot \tanh x)} = r_2 / \gamma_2. \tag{100}$$
$$\tanh (x + iy) = \tan \frac{z}{\gamma_1 - \gamma_2}. \tag{101}$$

Where the auxiliary circular angle z is defined by:

$$\frac{\cos 2y}{\cosh 2x} = \cos 2z. \tag{102}$$

The arithmetical work was conducted with the aid of five-place logarithms, and was checked by tabulating successive first and second differences in the tabulated results. Tables VII to XII were computed by means of the following formulas: —

 $\sinh (x + iy) = \sinh x \cos y + i \cosh x \sin y. \tag{103}$

 $\cosh(x + iy) = \cosh x \cos y + i \sinh x \sin y. \tag{104}$

$$\tanh(x+iy) = \frac{\sinh 2x}{\cosh 2x + \cos 2y} + i \frac{\sin 2y}{\cosh 2x + \cos 2y}.$$
 (105)

A standard schedule was prepared and seven-place logarithms used in the computation. The value of tanh (x + iy) was arrived at in two ways, first by dividing (103) by (104), and second by the independent formula (105). If these two methods did not give identical results for tanh (x + iy) to five decimal places, when expressed both in rectangular and polar coördinates, the steps of the computation were gone over afresh.* Complete agreement being secured, leads to the inference that the values of sinh, cosh, and tanh (x + iy) are correct, at least as far as their logarithms.

Finally, all of the tables have been reduced to graphic form in the Atlas, each entry of the tables being marked off on its proper chart with a sharp needle, and the ruling pen drawn through the successive punctures. In this process a certain number of errors were discovered and rectified. The tables were then set up in type from the MSS. used in making the charts, and were proofread three times. By this procedure it is hoped that the outstanding errors are neither large nor numerous.

BIBLIOGRAPHY AND APPLICATIONS OF HYPERBOLIC FUNCTIONS

Hyperbolic functions of a real variable are employed extensively in mathematics generally. In particular, they are used in the solution of cubic equations.

In navigation, real hyperbolic functions enter in connection with Mercator sailing.

In cartography, real hyperbolic functions are used in preparing maps on certain projections, especially on Mercator's projection, which appears to have been the first application of hyperbolic functions.

In statics, real hyperbolic functions naturally present themselves in relation to the properties of the catenary and of the funicular polygon; also in the discussion of the forms and stresses of elastic bodies.

In dynamics, the same functions present themselves in the theory of vibrations, and in the motion of bodies through a resisting medium.

* The author desires to express his acknowledgement of the care and painstaking effort of his assistants engaged in computation, namely,

Miss Ethel Smith, A.B. Radcliffe, 1911. Miss A. F. Daniell, A.B. Radcliffe, 1911. Miss Mary M. Devlin, A.B. Radcliffe, 1912. Miss Hope M. Hearn, A.B. Radcliffe, 1912.

[209]

A good summary of the historical development of real hyperbolic functions is given in Becker and van Orstrand's "Hyperbolic Functions," Smithsonian Mathematical Tables, 1909, together with a fine compendium of formulas involving these functions.*

In electrical engineering, the earliest published application of real hyperbolic functions is perhaps in T. H. Blakesley's "Alternating Currents of Electricity," London, 1889, which also appends a short table of these (real) functions. The real functions were also introduced by Sir J. J. Thomson, in "The Electrician," Vol. XXVIII, page 599, 1891. "On the Heat Produced by Eddy Currents in an Iron Plate Exposed to an Alternating Magnetic Field."

The fundamental differential equation of the alternating potential-current, steadystate distribution along a uniform conductor, involving hyperbolic functions, nominally real, seems to have been first published by O. Heaviside in 1893, "Electromagnetic Theory," Vol. I, page 450.

The first published application of complex hyperbolic functions to the last-named problem was by the author, "On the Fall of Pressure in Long-Distance Alternating-Current Conductors," *Electrical World*, N. Y., Vol. XXIII, page 17, January, 1894, and "The Electrician," London (abstract), Vol. XXXII, page 239, January 5, 1894.

Complex hyperbolic functions also present themselves in the discussion of Hertzianwave reflections, and in other branches of electrical engineering. They naturally enter the subject of confocal ellipses and hyperbolas, such as Captain Weir's Azimuth diagram of these confocals, for indicating the azimuth of a celestial object in terms of the hourangle, latitude and declination. (Godfray's "Astronomy," § 222.)

The mathematical discussion of hyperbolic functions is found in Greenhill's "Differential and Integral Calculus," Macmillan and Co., 1896; Ligowski's "Tafeln der Hyperbelfunctionen und der Kreisfunctionen," Berlin, Ernst & Korn, 1890; McMahon's "Hyperbolic Functions," Wiley and Sons, N. Y., 1896; Becker and van Orstrand's "Hyperbolic Functions," Smithsonian Institution, 1909; Vassall's "Nouvelles Tables des Logarithmes," Paris, Gauthier-Villars, 1872; as well as other text-books.

Works dealing with the applications of hyperbolic functions to electrical engineering are: "The Application of Hyperbolic Functions to Electrical Engineering Problems," by the author, The University of London Press, 1911, and Fleming's "The Propagation of Electrical Currents in Telephone and Telegraph Conductors," Constable & Co., London, 1911.

A three-dimensional complex-angle geometrical model,[†] from which the hyperbolic sines and cosines of complex angles can be presented projectively, has been constructed and described.

BRIEF BIBLIOGRAPHY OF TABLES OF HYPERBOLIC FUNCTIONS

(1) "Tafeln der Hyperbelfunctionen und der Kreisfunctionen," by Dr. W. Ligowski, Berlin, 1890, Ernst and Korn, 104 pages, giving five-figure logarithms of $\sinh \theta$, $\cosh \theta$, and $\tanh \theta$ up to $\theta = 9$, by steps of 0.001 up to $\theta = 2$ and from 2.0 to 9.0 by steps of

* This compendium has, by permission, been included in this book at its second edition, as Table XXIII. † "A new geometrical model for the orthogonal projection of the cosines and sines of complex angles" by A. E. Kennelly, Proc. Am. Ac. of Arts and Sciences, Vol. 54, April, 1919, pp. 371-378.

o.or; also the Gudermannian angle to two or more decimals of a second of arc, and other tables.

(2) Smithsonian Mathematical Tables, "Hyperbolic Functions," by George F. Becker, and C. E. van Orstrand, Smithsonian Institute, Washington, D.C., 1909, 321 pages, giving five-figure logarithms of $\sinh \theta$, $\cosh \theta$, and $\tanh \theta$, by steps of 0.001 up to 0.1, by steps of 0.001 from 0.1 to 3.0, and by steps of 0.01 from 3.0 to 6.0; also similar five-figure tables of natural real hyperbolic functions, and various other tables.

(3) "Alternating-Current Phenomena in Parallel Conductors," Vol. I by F. E. Pernot, John Wiley, New York, 1918, containing a Table of six-decimal logarithms of hyperbolic functions, up to 2.0 by steps of 0.001. These present a higher order of precision by one unit, than have been previously available for real hyperbolic functions.

The following is a list of all the tables of Complex Hyperbolic Functions known to the present writer, in the order of date of publication: —

(4) Chrystal's "Algebra," Edinburgh, 1889, briefly discusses the theory of $\sinh \theta$, $\cosh \theta$, and $\tanh \theta$ where θ is complex; or of the form x + iy. Graphs are given in outline for these functions, from which a few numerical values may be read.

(5) The paper on "Resonance in Alternating-Current Lines," by E. J. Houston and A. E. Kennelly, *Transactions A. I. E. E.*, April, 1895, Vol. XII, pages 133-169, contains a Plate for the graphical evaluation of $\sinh \theta$ and of $\cosh \theta$, θ being a complex variable x + iq, between the limits of x = 0 and x = 1.25; q = 0 and $q = \alpha$, by steps of 0.05 in x and q. The Plate is 40 cm. \times 34 cm. and corresponds to Plates VII— VIIIA of the Atlas prepared from tables in this book, except that it gives the result in regular polar coördinates instead of regular rectangular coördinates. It was produced, by a graphical process, for a precision of the 2.5th order.

(6) The first tables of complex hyperbolic functions were a short set published by Dr. James McMahon in his Chapter IV, entitled "Hyperbolic Functions," of a book by Merriam and Woodward on "Higher Mathematics," pages 107-168. The tables gave sinh (x + iy) and cosh (x + iy) from x = 0 to x = 1.5, by steps of 0.1, and also from y = 0 to y = 1.5, by steps of 0.1, Wiley & Sons, New York, 1896. The chapter has since been issued as a separate volume by the same publishers.

(7) A table of hyperbolic functions of semi-imaginaries or sinh, cosh, tanh, coth, sech and cosech of $x/45^{\circ}$, by steps of 0.1 in x up to x = 20.5, was published by the present writer in a paper on "The Alternating-Current Theory of Transmission Speed over Submarine Telegraph Cables," in the *Proceedings of The International Electrical Congress of St. Louis*, Section A, Vol. I, pages 68-105, 1904. This table is reproduced in Table VI of this volume.

(8) Some short tables of sinh, cosh, tanh, coth, sech, and cosech ρ/δ by steps of 0.1 in ρ , up to $\rho = 1.5$, for five particular values of δ , published by the present writer in an article on "The Distribution of Pressure and Current over Alternating-Current Circuits," in the Harvard Engineering Journal, 1905-06.

(9) Short three-digit tables of sinh and $\cosh (x + iy)$ up to x = 1, and y = 1, by W. E. Miller, in a paper "Formulae, Constants, and Hyperbolic Functions for Transmission-Line Problems" in the *General Electrical Review*, Schenectady, N. Y., May, 1910. Supplement.

(10) "Tables of Hyperbolic Functions in Reference to Long Alternating-Current Transmission Lines," published by the present writer in the *Transactions of the American Institute of Electrical Engineers*, December 1911, pages 2495-2506. These give sinh, cosh, and tanh ρ/δ from $\rho = 0$ to $\rho = 0.5$, by steps of 0.1, and from $\delta = 60^{\circ}$ to $\delta = 90^{\circ}$ by steps of 1°. These tables are incorporated in Tables I, II, and III of this volume.

(11) "Tables of Sines, Cosines, Tangents, Cosecants, Secants, and Cotangents of Real and Complex Hyperbolic Angles," published by the present writer in *The Har*vard Engineering Journal," 1912. These gave sinh, cosh, and $\tanh \rho/\delta$ from $\rho = o$ to $\rho = I$ by steps of 0.1, and from $\delta = 45^{\circ}$ to $\delta = 90^{\circ}$ by steps of r° ; also corresponding tables of $(\sinh \theta)/\theta$ and of $(\tanh \theta)/\theta$. These tables are published in separate form by the Harvard Engineering Journal. They are incorporated in tables I, II, III, IV, and V of this volume.

NEW TABLES INTRODUCED IN THE SECOND EDITION

Tables I to V in this volume were computed for the range of 45° to 90° in the slope or argument δ of the entering vector quantity; because at that time it did not appear that there would be any need for the range from 0° to 45° . Alternating-current lines used for the transmission or distribution of power have linear hyperbolic angles a, the slope of which is commonly between 80° and 90° , rarely falling as low as 45° . It has been shown during recent years, however, that railway-signal engineers employ tracksignaling circuits, formed of the rails. These are metallic circuits of low frequency, small linear capacitance and large distributed linear leakance. The linear hyperbolic angles a of such circuits develop slopes lying within the range $\delta = 0^{\circ}$ to 45° . It has therefore become desirable to cover this range, at least as far as $\rho = 1$. For that purpose, Tables XVII to XXI have been inserted. They run by steps of 0.05 in ρ , from o to 1.0, and by steps of 5° in δ , from 0° to 45° . This new tabulated material is available for use in track-signaling and similar computations. It is hoped to incorporate it graphically into the associated Chart Atlas at the first opportunity.

Table XVII presents $\sinh \rho / \delta$ as a polar planevector. It corresponds to and may be regarded as an extension of Table I. Similarly Tables XVIII, XIX, XX and XXI correspond respectively to Tables II, III, IV and V. Whereas, however, Tables I to V are carried to five decimal places in the sizes and three decimal places in the slopes of the evaluated quantities, the new tables are carried to six decimal places in sizes and four decimal places in slopes. They thus aim at one higher order of precision.*

Table XXII is similar to Table XI and expands the region covered by the first six entries of the latter into a correspondingly magnified field. It has been found that in

^{*} The author desires to express his acknowledgment of the painstaking assistance, on these tables, by Miss Lillian L. Hodgdon, of the Harvard Observatory computing staff.

dealing with short lengths of alternating-current line, having negligible linear inductance as well as negligible linear leakance, and therefore having a semi-imaginary linear angle, there is frequent need for a magnified table of this kind. It may be noted that whereas Table VI expresses slopes in degrees and minutes, Table XXII expresses them as degrees, and four-place decimals of a degree.

Table XXIII is a useful collection of 238 formulas, with a few insertions, taken from Becker and van Orstrand's book of Tables of real hyperbolic functions, referred to in the footnote on page 210.

TABLE XVII. HYPERBOLIC SINES. $\sinh (\rho / \delta) = r / \gamma$.

		0	0.	.05	0.	10
0		•		0		0
0	0.000000	0.0000	0.050021	0.0000	0.100167	0.0000
5	0.000000	5.0000	0.050020	5.0042	0.100164	5.0167
10	0.000000	10.0000	0.050020	10.0081	0.100157	10.0325
15	0.000000	15.0000	0.050019	15.0119	0.100144	15.0478
20	0.000000	20.0000	0.050016	20.0153	0.100128	20.0614
25	0.000000	25.0000	0.050014	25.0183	0.100107	25.0730
30	0.000000	30.0000	0.050011	30.0208	0.100083	30.0828
35	0.000000	35.0000	0.050006	35.0222	0.100057	35.0897
40	0.000000	40.0000	0.050003	40.0236	0.100029	40.0942
45	0.000000	45.0000	0.05000	45.0236	0.10000	45.0952
	0	25	0	40	0	45
	0.	55	0.	.40		43
0		0	0.170740	0	- 16	0
2	0.357190	0.0000	0.410/52	0.0000	0.405342	0.0000
5	0.357081	5.2014	0.410589	5.2025	0.405100	5.3314
10	0.350757	10.3909	0.410105	10.5172	0.404420	10.0531
15	0.350228	15.5000	0.400310	15.7509	0.403294	15.9550
20	0.355512	20.7472	0.408245	20.9742	0.401707	21.2303
25	0.354628	25.8908	0.406925	26.1625	0.459886	26.4686
30	0.353606	31.0089	0.405397	31.3161	0.457709	31.6630
35	0.352475	36.0961	0.403709	36.4305	0.455303	36.8086
40	0.351270	41.1503	0.401910	41.5017	0.452741	41.8997
45	0.35003	46.1694	0.40006	46.5278	0.45010	46.9338
		-				°-
	0.	/0	0.	15	0.	00
0	0 7 5 8 5 8 4	°	B 800075	•	0 888-06	0
2	0.750504	5.0000	0.822317	0.0000	0.8865100	6.0000
5	0.757700	5.7075	0.821227	5.9000	0.000700	0.0192
10	0.755078	11.5533	0.817993	11.7753	0.002043	12.0100
15	0.750000	17.2755	0.812/19	17.0019	0.870425	17.0401
20	0.745004	9344	0.005570	23.3307	0.007734	23.0044
25	0.737873	28.5103	0.796787	29.0175	0.857048	29.5561
30	0.729632	33.9861	0.786636	34.5647	0.844710	35.1800
35	0.720538	39.3467	0.775439	39.9811	0.831105	40.6567
40	0.710872	44.5800	0.763544	45.2525	0.816660	45.9697
45	0.700934	49.6767	0.751317	50.3678	0.801819	51.1064

Examples. $\sinh (0.35/35^{\circ}) = 0.352475/36^{\circ}.0961.$ $\sinh (0.80/5^{\circ}) = 0.886780/6^{\circ}.0192.$

[214]

TABLE XVII. HYPERBOLIC SINES. $\sinh \left(\rho / \delta\right) = r / \gamma$. Continued

1

	0.1	5	0.	20 -	о.	25	0.	30
•		•	0	0		0		•
0	0.150563	0.0000	0.201336	0.0000	0.252612	0.0000	0.304520	0.0000
5	0.150554	5.0372	0.201316	5.0661	0.252573	5.1033	0.304452	· 5.1483
10	0.150529	10.0733	0.201256	10.1303	0.252455	10.2033	0.304248	10.2022
15	0.150488	15.0172	0.201157	15.1906	0.252263	15.2072	0.303015	15.4275
20	0.150432	20.1380	0.201024	20.2450	0.252002	20.3825	0.303465	20.5500
25	0.150362	25.1644	0.200859	25.2919	0.251680	25.4561	0.302909	25.6558
30	0.150282	30.1858	0.200669	30.3303	0.251308	30.5158	0.302265	30.7419
35	0.150193	35.2017	0.200458	35.3586	0.250896	35.5600	0.301553	35.8058
40	0.150098	40.2114	. 0.200233	40.3761	0.250457	40.5872	0.300795	40.8456
45	0.15000	45.2146	0.20000	45.3817	0.25001	45.5965	0.30001	45.8592
						6-		6 -
	0.5	50	0	-55	0.	.00	0.	05
•		•	0	•		0		•
0	0.521095	0.0000	0.578152	0.0000	0.030054	0.0000	0.696748	0.0000
5	0.520770	5.4078	0.577720	5.4919	0.030100	5.5833	0.696042	5.6819
10	0.519829	10.8039	0.570403	10.9097	0.034450	11.1500	0.693947	11.3477
15	0.518282	10.1707	0.574400	10.4197	0.031774	10.0842	0.000530	10.9094
20	0.510184	21.5153	0.571004	21.8280	0.028138	22.1700	0.085898	22.5380
25	0.513601	26.8094	0.568162	27.1844	0.623662	27.5933	0.680199	28.0355
30	0.510612	32.0503	0.564179	32.4764	0. 618485	32.9414	0.673609	33.4450
35	0.50 7309	37.2305	0.559779	37.6956	0.612769	38.2036	0.666335	38.7539
40	0.503794	42.3439	0.555099	42.8344	0.606689	43.3705	0.658601	43.9525
45	0.50017	47.3872	0.550279	47.8880	0.600432	48.4369	0.650644	49.0330
	0.8	55	c	.90	0	-95	I	.00
•		•		•	0	•		•
0	0. 956116	0.0000	1.020517	0.0000	1.099484	0.0000	1.175201	0.0000
5	0.954520	6.1447	1.024615	6.2767	1.097239	6.4147	1.172573	0.5592
10	0.949784	12.2592	1.018975	12.5200	1.090583	12.7928	1.104779	13.0775
15	0.942064	18.3131	1.009783	18.6967	1.079736	19.0986	1.152083	19.5180
20	0.931612	24.2775	0.997344	24.7753	1.065062	25.2909	1.134913	25.8417
25	0.918768	30.1255	0.982060	30.7253	1.047043	31.3544	1.113841	32.0122
30	0.903942	35.8314	0.964429	36.5183	1.026266	37.2400	1.089558	37.9955
35	0.887604	41.3730	0.945011	42.1294	1.003398	42.9253	1.062847	43.7603
40	0.870267	46.7314	0.924414	47.5372	0.979156	48.3864	1.034550	49.2789
45	0.852463	51.8917	0.903276	52.7242	0.954292	53.6033	1.005545	54.5292

Examples. $\sinh (0.90/20^\circ) = 0.997344/24^\circ.7753$. $\sinh (1.0/0^\circ) = 1.175201/0^\circ.$

[215]

TABLE XVIII. HYPERBOLIC COSINES. $\cosh \left(\rho / \delta\right) = r / \gamma$.

	0		о.	05	0.1	0
•		0		0		•
0	1.000000	0.0000	1.001250	0.0000	1.005004	0.0000
• 5	1.000000	0.0000	1.001231	0.0125	1.004929	0.0497
10	1.000000	0.0000	1.001175	0.0244	1.004703	0.0078
15	1,000000	0.0000	1.001083	0.0358	1.004335	0.1428
20	1.000000	0.0000	1.000958	0.0461	1.003836	0.1836
25	1.000000	0.0000	1.000804	0.0547	1.003221	0.2189
30	1.000000	0.0000	1.000020	0.0019	1.002507	0.2478
35	1.000000	0.0000	1.000428	0.0672	1.001718	0.2689
40	1.000000	0.0000	1.000218	0.0705	· I.000876	0.2820
45	1.000000	0.0000	1.00000	0.0716	1.00001	0 .2864
				•		
	0.	35	0.	40	0.4	5
•		0		•		0
0	1.061878	0.0000	1.081072	0.0000	1.102970	0.0000
5	1.060965	0.5861	1.079886	0.7567	1.101477	0.9453
10	1.058252	1.1561	1.076361	I.4933	1.007041	1.8669
15	1.053810	1.6950	1.070508	2.1011	1.080786	2.7411
20	1.047791	2.1872	1.062762	2.8303	1.079919	3.5450
25	1.040347	2.6180	1.05.3070	3.3036	1.067721	4.2567
30	1.031702	2.0772	1.041820	3.8630	1.053530	4.8550
35	1.022112	3.2506	1.020330	4.2264	1.037782	5.3208
40	1.011850	3.4205	1.015074	4.4678	1.020008	5.6375
45	1.00125	3.5071	1.00213	4.5784	1.00341	5.7000
	5	001		1.07-1		5.19
	0.	70	о.	0.75		0
0		•		•		•
0	1.255160	0.0000	1.204683	0.0000	1.337435	0.0000
5	1.251660	2.1083	1.200600	2.3744	1.332018	2.6483
10	1.241 264	4.1750	1.278820	4.7044	1.310/03	5.2500
15	1.224242	6.1581	1.250402	6.0456	T 207525	7 7578
20	1.201069	8.0155	1.232970	9.0520	1.267648	10.1236
25	1.172378	9.7039	1.200241	10.9775	1.230648	12.2978
30	1.138949	11.1803	1.162104	12.6747	1.187536	14.2294
35	1.101690	12.4000	1.119583	14.0942	1.139459	15.8644
40	1.061615	13.3186	1.073820	15.1850	1.087691	17.1458
45	1.019823	13.8911	1.026048	15.8947	1.033602	18.0136

Examples. $\cosh(0.10/25^{\circ}) = 1.003221/0^{\circ}.2189.$ $\cosh(0.75/40^{\circ}) = 1.073820/15^{\circ}.1850.$

[216]

TABLE XVIII. HYPERBOLIC COSINES. $\cosh(\rho/\delta) = r/\gamma$. Continued

	0.1	15	0	.20	0.	25	0.	30
0		0		0		0		•
0	1.011271	0.0000	1.020067	0.0000	1.031413	0.0000	1.045330	0.0000
5	1.011101	O.IIII	1.019765	0.1964	1.030043	0.3047	1.044665	0.4350
10	1.010595	0.2180	1.018868	0.3872	1.020547	0.6006	1.042663	0.8578
15	1.000760	0.3203	1.017404	0.5664	1.027265	0.8704	1.030300	1.2567
20	1.008648	0.4119	1.015415	0.7292	1.024167	1.1328	1.034944	1.6200
25	1.007265	0.4914	1.012961	0.8703	1.020343	1.3533	1.029455	1.9375
30	1.005662	0.5561	1.010116	0.9858	1.015908	1.5344	1.023084	2.1994
35	1.003887	0.6042	1.006966	1.0719	1.010992	1.6703	1.016021	2.3975
40	1.001995	0.6339	1.003604	1.1258	1.005746	1.7567	1.008476	2.5253
45	1.00005	0.6445	1.00013	1.1458	1.00033	1.7901	1.00068	2.5773
	0.5	:0	o	.55	0.	60	0	65
•				0		•		0
õ	1.127626	0,0000	LISSIO	0.0000	1.185465	0.0000	1.218702	0.0000
5	1.125704	1.1506	1.152800	1.2711	1 182861	1.6053	1.215756	1.8514
10	1 120240	2 2726	1.146251	2.7108	1.175118	2.1752	1.206728	2.6644
15	1.111445	2.2411	1.125641	2.0872	1.162452	4.6750	1.101056	5.4000
20	1.099330	4.3264	1.121066	5.1694	1.145211	6.0689	1.171848	7.0194
25	1.084345	5.2028	1.103034	6.2267	1.123873	7.3222	1.146955	8.4836
30	1.066914	5.9453	1.082045	7.1292	1.099026	8.4006	1.117959	9.7533
35	1.047534	6.5297	1.058692	7.8481	1.071363	9.2700	1.085656	10.7894
40	1.026760	6.9350	1.033637	8.3566	1.041655	9.8980	1.050938	11.5539
45	1.00520	7.1424	1.007598	8.6311	1.010745	10.2544	1.014773	1 2.0094
	0.8	35	0	.00	0.	.05	1.	.00
•		0		0		0		0
0	1 282521	0.0000	1.433086	0.0000	1.486225	0.0000	1.543081	0.0000
-	1.303331	2.0280	1.433000	2 2150	1.470051	3.5053	1.536155	3.7080
3	1.3/0400	5 8002	1.42/430	6.2704	1.461313	6.0580	1.515588	7.5475
15	1.303390	8 5014	T 282TAE	0.4428	1.420851	10.3086	1.481087	11.1858
20	1.305212	11.2253	1.345771	12.3525	1.380438	13.5005	1.436333	14.6653
					0-940-		.0 000	
25	1.263709	13.6589	1.299533	15.0545	1.338233	16.4789	1.379926	17.9267
30	1.215358	15.8375	1.245685	17.4914	1.278634	19.1844	1.314321	20.9097
35	1.161440	17.7030	1.185653	19.6019	1.212219	21.5531	1.241261	23.5483
40	1.103367	19.1936	1.120988	21.3192	1.140689	23.5142	1.162611	25.7689
45	1.042645	20.2411	1.053338	22.5686	1.065840	24.9872	1.080307	27.4870

Examples. $\cosh(0.25/30^{\circ}) = 1.015908/1^{\circ}.5344.$ $\cosh(1.00/40^{\circ}) = 1.162611/25^{\circ}.7689.$

[217]

TABLE XIX. HYPERBOLIC TANGENTS. $\tanh(\rho/\delta) = r/\gamma$.

0			0.	05	0.10	
•		0		0		0
0	0.000000	0.0000	0.049958	0.0000	0.000668	0.0000
5	0.000000	5.0000	0.049959	4.9917	0.099673	4.9670
10	0.000000	10.0000	0.049961	9.9837	0.000688	9.9347
15	0.000000	15.0000	0.049965	14.9761	0.099712	14.9050
20	0.000000	20.0000	0.049968	19.9692	0.099745	19.8778
25	0.000000	25.0000	0.049974	24.9636	0.099786	24.8541
30	0.000000	30.0000	0.049980	29.9589	0.099833	29.8350
35	0.000000	35.0000	0.049985	34.9550	0.099886	34.8208
40	0.000000	40.0000	0.049992	39.9531	0.099941	39.8122
45	0.000000	45.0000	0.05000	44.9520	0.10000	44.8087

	0.3	0.35		40	0.45	
•		•		0		0
0	o.336375	0.0000	0.379949	0.0000	0.421899	0.0000
5	0.336562	4.6153	0.380215	4.5058	0.422260	4.3861
10	0.337110	9.2408	0.381011	9.0239	0.423339	8.7862
15	0.338036	13.8858	0.382325	13.5658	0.425124	13.2147
20	0.339296	18.5600	0.384135	18.1439	0.427594	17.6853
25	0.340875	23.2719	0.386414	22.7689	0.430717	22.2119
30	0.342740	28.0317	0.389121	27.4522	0.434449	26.8080
35	0.344849	32.8455	0.392202	32.2041	0.438727	31.4878
40	0.347153	37.7208	0.395591	37.0339	0.443469	36.2622
45	0.34959	42.6623	0.39921	41.9494	0.44857	41.1432

	0.7	0	о.	75	0.80		
•		0		0	0		
0	0.604367	0.0000	0.635150	0.0000	0.664037	0.0000	
5	0.605352	3.6792	0.636270	3.5256	0.665292	3.3700	
10	0.608313	7.3783	0.639647	7.0709	0.669078	6.7608	
15	0.613278	11.1174	0.645321	10.6563	0.675454	10.1903	
20	0.620284	14.9189	0.653363	14.3047	0.684523	13.6808	
25	0.620382	18.8064	0.663856	18.0400	0.606420	17.2583	
30	0.640610	22.8058	0.676907	21.8900	0.711313	20.0506	
35	0.654020	26.9467	0.692614	25.8869	0.720386	24.7922	
40	0.660614	31.2614	0.711054	30.0675	0.750820	28.8239	
45	0.687309	35.7856	0.732244	34.4731	0.775752	33.0928	

Examples. $\tanh(0.75/25^{\circ}) = 0.663856/18^{\circ}.0400.$ $\tanh(0.40/20^{\circ}) = 0.384135/18^{\circ}.1439.$ TABLE XIX. HYPERBOLIC TANGENTS. $\tanh \left(\rho / \delta\right) = r / \gamma$. Continued

	0.1	5 1	0.	.20	0.	25	о.	30
0		•		•		0		•
0	0.148885	0.0000	0.197375	0.0000	0.244919	0.0000	0.291312	0.0000
5	0.148901	4.9261	0.197414	4.8697	0.244992	4.7986	0.201435	4.7133
10	0.148951	9.8544	0.197529	9.7431	0.245210	9.6027	0.201700	9.4344
15	0.149032	14.7869	0.197718	14.6242	0.245567	14.4178	0.292398	14.1708
20	0.149142	19.7261	0.197972	19.5158	0.246055	19.2497	0.293219	18.9300
25	0.149277	24.6730	0.198289	24.4216	0.246663	24.1028	0.294242	23.7183
30	0.149436	29.6297	0 .198659	29.3445	0.247373	28.9814	0.295445	28.5425
35	0.149611	34.5975	0.199071	34.2867	0.248168	33.8897	0.296798	33.4083
40	0.149799	39.5775	0.199514	39.2503	0.249027	38.8305	0.298267	38.3203
45	0.14999	44.5701	0.19997	44.2359	0.24993	43.8064	0.29981	43.2819
						60		6-
	0.	50	. 0	.33	0.	.00	0.	05
0		•		•		0		0
0	0.402117	0.0000	0.500521	0.0000	0.537049	0.0000	0.571000	0.0000
5	0.402580	4.2572	0.501107	4.1200	0.537704	3.9780	0.572518	3.8305
10	0.403988	8.5303	0.502807	0.2509	0.539908	7.9747	0.575005	7.0803
15	0.400314	12.8350	0.505793	12.4325	0.543404	12.0092	0.579325	11.5094
20	0.409545	17.1889	0.509875	10.0592	0.548491	10.1011	0.585313	15.5192
25	0.473651	21.6066	0.515090	20.9577	0.554922	20.2711	0.593047	19.5519
30	0.478587	26.1050	0.521400	25.3472	0.562757	24.5408	0.602535	23.6917
35	0.484289	30.7008	0.528746	29.8475	0.571953	28.9336	0.613763	27.9645
40	0.490664	35.4089	0.537034	34.4778	0.582428	33.4725	0.626679	32.3986
45	0.49759	40.2448	0.546130	39.2569	0.594049	38.1825	0.641172	37.0236
	0.8	35	0	.90	0	.95	I.	.00
•		0		0		0		0
0	0.691070	0.0000	0.716298	0.0000	0.739782	0.0000	0.761595	0.0000
5	0.692454	3.2158	0.717804	3.0617	0.741402	2.9094	0.763317	2.7603
10	0.696634	6.4500	0.722358	6.1406	0.746304	5.8339	0.768533	5.5300
15	0.703692	9.7217	0.730063	9.2539	0.754611	8.7900	0.777391	8.3322
20	0.713763	13.0522	0.741095	12.4228	0.766541	11.7964	0.790146	11.1764
25	0.727041	16.4666	0.755702	15.6708	0.782407	14.8755	0.807174	14.0855
30	0.743766	19.9939	0.774215	19.0269	0.802627	18.0556	0.828989	17.0858
35	0.764227	23.6700	0.797038	22.5275	0.827737	21.3722	0.856264	20.2120
40	0.788737	27.5378	0.824642	26.2180	0.858389	24.8722	0.889851	23.5100
45	0.817596	31.6506	0.857537	30.1556	0.895343	28.6161	0.930795	27.0422

Examples. $\tanh(0.25/25^{\circ}) = 0.246663/24^{\circ}.1028.$ $\tanh(0.90/30^{\circ}) = 0.774215/19^{\circ}.0269.$

[219]

TABLE XX. CORRECTING FACTOR. $\frac{\sinh\theta}{\theta} = r/\gamma$.

	0	0		05	0.10	
0		0		•		0
0	1.000000	0.0000	1.000420	0.0000	1.0 01670	0.0000
5	1.000000	0.0000	1.000404	0.0042	1.001638	0.0167
10	1.000000	0.0000	1.000398	0.0081	1.001570	0.0325
15	1.000000	0.0000	1.000373	0.0110	1.001442	0.0478
20	1.000000	0.0000	1.000317	0.0153	1.001279	0.0614
25	1.000000	0.0000	1.000279	0.0183	1.001071	0.0730
30	1.000000	0.0000	1.000216	0.0208	1.000834	0.0828
35	1.000000	0.0000	1.000134	0.0222	1.000571	0.0897
40	1.000000	0.0000	1.000061	0.0236	1.000290	0.0942
45	1.000000	0.0000	1.00000	0.0236	1.00000	0.0952

	0.35		0.,	40	0.45		
0		0		0		0	
0	1.020543	0.0000	1.026880	0.0000	1.034093	0.0000	
5	1.020230	0.2014	1.026473	0.2625	1.033577	0.3314	
10	1.019305	0.3969	1.025264	0.5172	1.032044	0.6531	
15	1.017796	0.5808	1.023200	0.7569	1.029542	0.9558	
20	1.015748	0.7472	1.020612	0.9742	1.026148	1.2303	
25	1.013224	0.8908	1.017312	1.1625	1.021969	1.4686	
30	1.010302	1.0089	1.013493	1.3161	1.017131	1.6630	
35	1.007070	1.0961	1.009272	1.4305	1.011784	1.8086	
40	1.003630	1.1503	1.004775	1.5017	1.006092	1.8997	
45	1.00008	1.1694	1.00014	1.5278	1.00023	1.9338	

	0.70		0.	75	0.8	0.80	
0		0		0		0	
0	1.083691	0.0000	1.096423	0.0000	1.110132	0.0000	
5	1.082429	0.7875	1.094969	0.9000	1.108475	1.0192	
10	1.078682	1.5533	1.090658	1.7753	1.103554	2.0108	
15	1.072572	2.2755	1.083625	2.6019	1.095532	2.9481	
20	1.064292	2.9344	1.074102	3.3567	1.084668	3.8044	
25	1.054105	3.5103	1.062383	4.0175	1.071311	4.5561	
30	1.042331	3.986 1	1.048848	4.5647	1.055881	5.1800	
35	1.029340	4.3467	1.033919	4.9811	1.038881	5.6567	
40	1.015532	4.5800	1.018059	5.2525	1.020825	5.9697	
45	1.001334	4.6767	1.001756	5.3678	1.002274	6.1064	

Example.
$$\frac{\sinh(0.40/25^{\circ})}{0.40/25^{\circ}} = 1.017312/1^{\circ}.1625.$$

[220]

TABLE XX. CORRECTING FACTOR. $\frac{\sinh \theta}{\theta} = r / \gamma$. Continued

	0.15		0.20	0.20		0.25		0.30	
		0		0		0		0	
0	1.003753	0.0000	1.006680	0.0000	1.010448	0.0000	1.015067	0.0000	
5	1.003696	0.0372	1.006579	0.0661	1.010201	0.1033	1.014830	0.1483	
10	1.003527	0.0733	1.006278	0.1303	1.000820	0.2033	1.014161	0.2022	
15	1.003253	0.0172	1.005784	0.1906	1.000051	0.2072	1.013051	0.4275	
20	1.002878	0.1380	1.005119	0.2450	1.008007	0.3825	1.011549	0.5500	
25	1.002412	0.1644	1.004296	0.2919	1.006722	0.4561	1.000696	0.6558	
30	1.001878	0.1858	1.003343	0.3303	1.005233	0.5158	1.007550	0.7419	
35	1.001287	0.2017	1.002200	0.3586	1.003584	0.5600	1.005177	0.8058	
40	1.000653	0.2114	1.001167	0.3761	1.001830	0.5872	1.002651	0.8456	
45	1.00000	0.2146	1.00001	0.3817	1.00003	0.5965	1.00005	0.8592	
	0.5	0	0.53		0.60		0.65	,	
	0.5		0.5.	,	0.00		0.03		
~	7.043700	0,0000	T OFTT 8r	0,0000	T 067000	0		0	
2	1.042190	0.0000	1.051105	0.0000	1.001000	0.0000	1.071920	0.0000	
5	1.041552	0.4070	1.030411	0.4919	1.000107	0.5033	1.070033	0.0019	
10	1.039037	T. 1767	1.040114	0.9097	1.057420	1.1500	1.00/011	1.3477	
15	1.030304	1.1/0/	1.044303	1.4197	1.052950	1.0042	1.002354	1.9094	
20	1.032309	1.3133	1.039200	1.0200	1.040890	2.1700	1.055220	2.5300	
25	1.027202	1.8094	1.033021	2.1844	1.039436	2.5933	1.046459	3.0355	
30	1.021223	2.0503	1.025779	2.4764	1.030808	2.9414	1.036322	3.4450	
35	1.014618	2.2305	1.017780	2.6956	1.021281	3.2036	1.025131	3.7539	
40	1.007587	2.3439	1.009270	2.8344	1.011148	3.3705	1.013232	3.9525	
45 ·	1.00035	2.3872	1.000508	2.8880	1.000720	3.4369	1.000991	4.0330	
	0.8	5	0.00)	0.05		1.00		
		0	,	•		•		•	
0	1.124842	0.0000	1.140574	0.0000	1.157352	0.0000	1.175201	0.0000	
5	1.122064	1.1447	1.138461	1.2767	1.154080	1.4147	1.172573	1.5502	
10	1.117303	2.2502	1.132104	2.5200	1.147082	2.7028	1.164770	3.0775	
15	1.108311	3.3131	1.121081	3.6067	1.136564	4.0086	1.152083	4.5180	
20	1.006014	4.2775	1.108160	4.7753	1.121117	5.2060	1.134013	5.8417	
		1. 110		11100	/	5-7-7		0	

	•						• • • •	
25 30 35 40 45	1.080904 1.063461 1.044241 1.023843 1.002897	5.1255 5.8314 6.3730 6.7314 6.8917	1.091177 1.071587 1.050012 1.027127 1.003640	5.7253 6.5183 7.1294 7.5372 7.7242	1.102151 1.080280 1.056208 1.030691 1.004518	6.3544 7.2400 7.9253 8.3864 8.6033	1.113841 1.089558 1.062847 1.034550 1.005545	7.0122 7.9955 8.7603 9.2780 9.5292

Example	$\sinh(0.95/25^{\circ})$		100151 16º 2544
Example.	0.95/25°	- 1	.102151 / 0 .3544.

TABLE XXI. CORRECTING FACTOR. $\frac{\tanh\theta}{\theta} = r/\gamma$.

	0		0.0	5	0.1	0.10	
0		•		0		0	
0	1.000000	0.0000	0.999160	0.0000	0.996680	0.0000	
5	1.000000	0.0000	0.999177	0.0083	0.996732	0.0330	
10	1.000000	0.0000	0.000223	0.0163	0.996882	0.0653	
15	1.000000	0.0000	0.000201	0.0239	0.997119	0.0950	
20	1.000000	0.0000	0.999359	0.0308	0.997448	0.1222	
25	1.000000	0.0000	o .999475	0.0364	0.997858	0.1459	
30	1.000000	0.0000	0.999591	0.0411	0.998331	0.1650	
35	1.000000	0.0000	0.999707	0.0450	0.998856	0.1792	
40	1.000000	0.0000	0.999844	0.0469	0.999414	0.1878	
45	1.000000	0.0000	1.00000	0.0480	0.99999	0.1913	

	0.3	5	0.4	0	0.4	5
0		0		0		•
0	0.951071	0.0000	0.949872	0.0000	0.937553	0.0000
5	0.961606	0.3847	0.950538	0.4942	0.938355	0.6139
10	0.063197	0.7592	0.952528	0.9761	0.940753	1.2138
15	0.965817	1.1142	0.955812	1.4342	0.944719	1.7853
20	0.969419	1.4400	0.960338	1.8561	0.950209	2.3147
25	0.073020	1.7281	0.966036	2.2311	0.957150	2.7881
30	0.979258	1.9683	0.972801	2.5478	0.965442	3.1920
35	0.985284	2.1545	0.980505	2.7959	0.974949	3.5122
40	0.001867	2.2792	0.988977	2.9661	0.985487	3.7378
45	0.99883	2.3377	0.99800	3.0506	0.99684	3.8568.

0.70		0	0.;	75	0.8	0.80	
•		0		0		•	
0	0.863381	0.0000	0.846867	0.0000	0 .830046	0.0000	
5	0.864789	1.3208	0.848360	1.4744	0.831615	1.6291	
10	0.869019	2.6217	0.852862	2.9291	0.836347	3.2392	
15	0.876111	3.8826	0.860428	4-3437	0.844318	4.8097	
20	0.886121	5.0811	0.871150	5.6953	0.855654	6.3192	
25	0.899117	6.1936	0.885142	6.9600	0.870525	7.7417	
30	0.915169	7.1942	0.902542	8.1100	0.889141	9.0494	
35	0.934328	8.0533	0.923485	9.1131	0.911732	10.2078	
40	0.956592	8.7386	0.948072	9.9325	0.938525	11.1761	
45	0.981870	9.2144	0.976325	10.5269	0.969690	11.9072	

Note.

Negative quantities are in heavy type.

Example. $\frac{\tanh(0.75/25^{\circ})}{0.75/25^{\circ}} = 0.885142\sqrt{6^{\circ}.9600}.$

TABLE XXI. CORRECTING FACTOR. 4

$anh \theta$			Courses
A	11	r / γ .	CONTINUED

o o	000
0 0.992567 0.0000 0.986875 0.0000 0.979676 0.0000 0.971040 0.000 5 0.992676 0.0739 0.98769 0.1303 0.979676 0.0000 0.971040 0.00 10 0.993006 0.1456 0.987642 0.2569 0.98839 0.3973 0.972665 0.56 15 0.993267 0.2131 0.988588 0.3758 0.982269 0.5822 0.974660 0.82 20 0.994280 0.2739 0.989860 0.4842 0.984222 0.7503 0.977396 1.07 25 0.995182 0.3270 0.991446 0.5784 0.986650 0.8972 0.988807 1.28 30 0.996237 0.3703 0.992395 0.6555 0.989493 1.0186 0.988327 1.83 35 0.997410 0.4025 0.995357 0.7133 0.992673 1.1103 0.989327 1.55 40 0.998660 0.4225 0.9997571 0.7641 0.99071 </td <td>000</td>	000
5 0.992676 0.0739 0.987069 0.1303 0.979068 0.2014 0.971449 0.21 10 0.993006 0.1456 0.987642 0.2569 0.980839 0.3973 0.972665 0.58 15 0.993206 0.2131 0.988588 0.3758 0.982269 0.5822 0.974660 0.82 20 0.994280 0.2739 0.989860 0.4842 0.984222 0.7503 0.977396 1.07 25 0.995182 0.3703 0.993295 0.6555 0.98493 1.0186 0.984817 1.48 35 0.997410 0.4025 0.997571 0.7497 0.992673 1.1103 0.989327 1.52 40 0.99995 0.4299 0.99987 0.7641 0.99071 1.1936 0.999327 1.57 45 0.99995 0.4299 0.99987 0.7641 0.99071 1.1936 0.99937 1.71	
10 0.993006 0.1456 0.987642 0.2569 0.986839 0.3973 0.972665 0.581 15 0.993547 0.2131 0.988588 0.3758 0.982269 0.5822 0.974660 0.82 20 0.994280 0.2739 0.989860 0.4842 0.984222 0.7503 0.977396 1.09 25 0.995182 0.3270 0.991446 0.5784 0.986650 0.8972 0.988807 1.28 30 0.996237 0.3703 0.993295 0.65555 0.989493 1.0186 0.988927 1.58 40 0.998660 0.4225 0.997571 0.7497 0.996106 1.1695 0.994224 1.67 45 0.99995 0.4299 0.99987 0.7641 0.99971 1.1936 0.99937 1.71 0.50 0.55 0.60 0.655 0.60 0.655 0.605 0.655	867
15 0.993547 0.2131 0.988588 0.3758 0.982269 0.5822 0.974660 0.8 20 0.994280 0.2739 0.989860 0.4842 0.984222 0.7503 0.977396 1.07 25 0.995182 0.3703 0.991446 0.5784 0.986650 0.8972 0.988807 1.28 30 0.996237 0.3703 0.993295 0.6555 0.989493 1.0186 0.984817 1.48 35 0.997410 0.4025 0.995357 0.7133 0.992673 1.1103 0.989327 1.55 40 0.998660 0.4225 0.997571 0.7497 0.996106 1.1695 0.994224 1.67 45 0.99995 0.4299 0.99987 0.7641 0.99971 1.1936 0.99937 1.71 0.50 0.55 0.60 0.655 0.60 0.655	656
20 0.994280 0.2739 0.989860 0.4842 0.984222 0.7503 0.977396 1.07 25 0.995182 0.3270 0.991446 0.5784 0.986650 0.8972 0.980807 1.28 30 0.996237 0.3703 0.993295 0.65555 0.989493 1.0186 0.984817 1.48 35 0.997410 0.4025 0.995357 0.7133 0.992673 1.1103 0.9898327 1.55 40 0.99995 0.4229 0.99987 0.7641 0.990171 1.1936 0.999377 1.71 45 0.99995 0.4299 0.99987 0.7641 0.99971 1.1936 0.99937 1.71 0.50 0.55 0.60 0.655 0.605 0.655 0.60 0.655	202
25 0.995182 0.3270 0.991446 0.5784 0.986650 0.8972 0.980807 1.26 30 0.996237 0.3703 0.99295 0.6555 0.980493 1.0186 0.98837 1.42 35 0.997410 0.4025 0.995357 0.7133 0.992673 1.1103 0.989327 1.55 40 0.99995 0.4225 0.997571 0.7497 0.996106 1.1695 0.992424 1.67 45 0.99995 0.4299 0.99987 0.7641 0.99971 1.1936 0.99937 1.71 0.50 0.55 0.655 0.60 0.655 0.60 0.655	700
30 0.996237 0.3703 0.993295 0.6555 0.98493 I.0186 0.984817 I.43 35 0.997410 0.4025 0.995357 0.7133 0.992673 I.1103 0.98327 I.55 40 0.998660 0.4225 0.997571 0.7497 0.996106 I.1695 0.99424 I.67 45 0.99995 0.4299 0.99887 0.7641 0.99971 I.1936 0.99937 I.71 0.50 0.55 0.60 0.655 0.60 0.655 0.655	817
35 0.997410 0.4025 0.995357 0.7133 0.992673 1.1103 0.989327 1.59 40 0.998660 0.4225 0.997571 0.7497 0.996106 1.1695 0.994224 1.67 45 0.99995 0.4299 0.99987 0.7641 0.99971 1.1936 0.99937 1.71 0.50 0.55 0.60 0.65	575
40 0.998660 0.4225 0.997571 0.7497 0.996106 1.1695 0.994224 1.67 45 0.99995 0.4299 0.99987 0.7641 0.99971 1.1936 0.99937 1.71 0.50 0.55 0.60 0.65	917
45 0.99995 0.4299 0.99987 0.7641 0.99971 1.1936 0.99937 1.71 0.50 0.55 0.60 0.65	797
0.50 0.55 0.60 0.65	181
0.50 0.55 0.00 0.05	
• • • • • • • • •	
0 0.924234 0.0000 0.910038 0.0000 0.895082 0.0000 0.879491 0.00	000
5 0.925172 0.7428 0.911104 0.8792 0.896274 1.0220 0.880796 1.10	695
10 0.927976 1.4697 0.914304 1.7411 0.899847 2.0253 0.884716 2.31	197
15 0.932627 2.1644 0.919624 2.5675 0.905806 2.9908 0.891269 3.43	306
20 0.939089 2.8111 0.927046 3.3408 0.914151 3.8989 0.900482 4.48	308
25 0.047302 3.3934 0.036527 4.0423 0.024870 4.2280 0.012380 5.44	481
30 0.957174 3.8950 0.948001 4.6528 0.937928 5.4592 0.926976 6.30	083
35 0.968577 4.2992 0.961356 5.1525 0.953254 6.0664 0.944250 7.03	355
40 0.081327 4.5011 0.076426 5.5222 0.070713 6.5275 0.064122 7.60	014
45 0.99516 4.7552 0.992963 5.7431 0.990081 6.8175 0.986419 7.97	764
0.85 0.90 0.95 I.00	
o o o o o	
0 0.813024 0.0000 0.795887 0.0000 0.778718 0.0000 0.761595 0.00	000
5 0.814651 1.7842 0.797560 1.9383 0.780424 2.0906 0.763317 2.23	397
10 0.819569 3.5500 0.802620 3.8594 0.785583 4.1661 0.768533 4.47	700
15 0.827873 5.2783 0.811181 5.7461 0.704327 6.2100 0.777391 6.66	578
20 0.839722 6.9478 0.823438 7.5772 0.806886 8.2036 0.790146 8.82	236
25 0.855342 8.5334 0.839669 9.3292 0.823586 10.1245 0.807174 10.91	45
30 0.875019 10.0061 0.860239 10.9731 0.844870 11.9444 0.828989 12.91	(42
35 0.899091 11.3300 0.885598 12.4725 0.871302 13.6278 0.856264 14.78	380
40 0.927926 12.4622 0.916269 13.7820 0.903567 15.1278 0.889851 16.49	000
45 0.961877 13.3494 0.952819 14.8444 0.942466 16.3839 0.930795 17.95	578

Note.

Negative quantities are in heavy type.

Example.

$$\frac{\tanh\left(1.0/10^{\circ}\right)}{1.0/10^{\circ}} = 0.768533\sqrt{4^{\circ}.4700}.$$

TABLE XXII. FUNCTIONS OF SEMI-IMAGINARIES

COMPLEX VARIABLE $\theta / 45^{\circ}$ (slope constant).

θ	Sinh 6	9/45°	Cosh	$\theta/45^{\circ}$	$\tanh \theta$	/45°	Cosech	$\theta/45^{\circ}$
hyp.	Size	Slope	Size	Slope	Size	Slope	Size	Slope
rads.	numeric	degrees	numeric	degrees	numeric	degrees	numeric	degrees
0.00	0.00000	°45.0000	1.00000	0.0000	0.00000	45.0000	×	45.0000
0.01	0.01000	45.0009	1.00000	0.0028	0.01000	44.9981	100.00000	45.0000
0.02	0.02000	45.0037	1.00000	0.0114	0.02000	44.9923	50.00000	45.0037
0.03	0.03000	45.0084	1.00000	0.0257	0.03000	44.9827	33.33333	45.0084
0.04	0.04000	45.0151	1.00000	0.0458	0.04000	44.9693	25.00000	45.0151
0.05	0.05000	45.0236	1.00000	0.0716	0.05000	44.9520	20.00000	45.0236
0.06	0.06000	45.0342	1.00000	0.1031	0.06000	44.0310	16.66667	45.0342
0.07	0.07000	45.0465	1.00000	0.1403	0.07000	44.9062	14.28571	45.0465
0.08	0.08000	45.0608	1.00000	0.1833	0.08000	44.8775	12.50000	45.0608
0.09	0.00000	45.0770	1.00001	0.2320	0.09000	44.845 0	11.11111	45.0770
0.10	0.10000	45.0952	1.00001	0.2864	0.10000	44.8087	10.00000	45.0952
0.11	0.11000	45.1152	1.00001	0.3466	0.11000	44.7686	9.09091	45.1152
0.12	0.12000	45.1372	1.00002	0.4125	0.12000	44.7247	8.33333	45.1372
0.13	0.13000	45.1611	1.00003	0.4841	0.13000	44.6770	7.69231	45.1611
0.14	0.14000	45.1869	1.00004	0.5614	0.13999	44.6255	7.14286	45.1869
0.15	0.15000	45.2146	1.00005	0.6445	0.14999	44.5701	6.66667	45.2146
0.16	0.16000	45.2442	1.00006	0.7333	0.15999	44.5109	6.25000	45.2442
0.17	0.17000	45.2757	80000.1	0.8278	0.16999	44.4479	5.88235	45.2757
0.18	0.18000	45.3092	1.00009	0.9281	0.17998	44.3811	5.55556	45.3092
0.19	0.19000	45.3445	1.00011	1.0341	0.18998	44.3104	5.26316	45.3445
0.20	0.20000	45.3817	1.00013	1.1458	0.19997	44.2359	5.00000	45.3817
0.21	0.21000	45.4208	1.00016	1.2632	0.20997	44.1576	4.76190	45.4208
0.22	0.22000	45.4619	1.00020	1.3864	0.21996	44.0755	4.54545	45.4619
0.23	0.23000	45.5048	1.00024	1.5152	0.22995	43.9896	4.34783	45.5048
0.24	0.24000	45.5497	1.00028	1.6498	0.23994	43.8999	4.16667	45.5497
0.25	0.25001	45.5965	1.00033	1.7901	0.24993	43.8064	3.99984	45.5965
0.26	0.26001	45.6453	1.00038	1.9361	0.25991	43.7092	3.84601	45.6453
0.27	0.27001	45.6959	1.00044	2.0878	0.26989	43.6081	3.70357	45.6959
0.28	0.28001	45.7485	1.00051	2.2452	0.27987	43.5032	3.57130	45.7485
0.29	0.29001	45.8029	1.00060	2.4084	0.28984	43.3945	3.44816	45.8029
0.30	0.30001	45.8592	1.00068	2.5773	0.29981	43.2819	3.33322	45.8592
0.31	0.31002	45.9174	1.00077	2.7520	0.30978	43.1654	3.22560	45.9174
0.32	0.32002	45-9775	1.00087	2.9323	0.31974	43.0452	3.12481	45.9775
0.33	0.33002	46.0396	1.00098	3.1183	0.32970	42.9213	3.03012	46.0396
0.34	0.34002	46.1030	1.00111	3.3099	0.33965	42.7937	2.94100	46.1030
0.35	0.35003	40.1094	1.00125	3.5071	0.34959	42.0023	2.85690	46.1094
0.36	0.36003	46.2372	1.00140	3.7100	0.35953	42.5272	2.77755	46.2372
0.37	0.37004	46.3069	1.00156	3.9185	0. 36946	42.3884	2.70241	46.3069
0.38	0.38004	40.3780	1.00174	4.1328	0.37939	42.2458	2.63130	40.3780
0.39	0.39005	40.4522	1.00193	4.3528	0.38930	42.0994	2.50377	40.4522
0.40	0.40000	40.5278	1.00213	4.5704	0.39921	41.9494	2.49903	40.5278
0.41	0.41000	46.6053	1.00235	4.8096	0.40910	41.7957	2.43867	46.6053
0.42	0.42007	40.0840	1.00259	5.0404	0.41899	41.0382	2.38050	46.6846
0.43	0.43008	40.7058	1.00285	5.2889	0.42880	41.4778	2.32515	40.7058
0.44	0.44009	40.8489	1.00312	5.5309	0.43872	41.3120	2.27220	40.8489
0.45	0.45010	40.9338	1.00341	5.7900	0.44857	41.1432	2.22173	40.9338
0.46	0.40012	47.0200	1.00372	0.0498	0.45841	40.9708	2.17335	47.0206
0.47	0.47013	47.1093	1.00400	0.3140	0.40823	40.7947	2.12707	47.1093
0.48	0.48014	47.2000	1.00442	0.5850	0.47803	40.0150	2.08273	47.2000
0.49	0.49010	47.2920	1.00480	0.0009	0.48782	40.4317	2.04015	47.2920
0.50	0.50017	41.3072	1.00520	1.1424	0.49759	40.2440	1.99932	47.3072

Note.

Negative quantities are in heavy type.

Examples. $\sinh 0.13 / 45^{\circ} = 0.13000 / 45^{\circ}.1611.$ $\cosh 0.26 / 45^{\circ} = 1.00038 / 1.^{\circ}.9361.$

TABLE XXII. FUNCTIONS OF SEMI-IMAGINARIES. CONTINUED

COMPLEX VARIABLE $\theta / 45^{\circ}$ (slope constant).

θ	Sech	θ <u>/45</u> °	Coth	9 / 45°	$\sinh\theta/45$	° / θ / 45°	$\tanh \theta / 4$	$5^{\circ}/\theta/45^{\circ}$
hyp.	Size	Slope	Size	Slope	Size	Slope	. Size	Slope
rads.	numeric	degrees	numeric	degrees	numeric	degrees	numeric	degrees
0.00	I.00000	0.0000	°C	45.0000	1.00000	0.0000	1.00000	0.0000
0.01	1.00000	0.0028	100.00000	44.9981	1.00000	0.0000	1.00000	0.0019
0.02	1.00000	0.0114	50.00000	44.9923	1.00000	0.0037	1.00000	0.0077
0.03	1.00000	0.0257	33-33333	44.9827	1.00000	0.0084	1.00000	0.0173
0.04	1.00000	0.0458	25.00000	44.9693	1.00000	0.0151	1.00000	0.0307
0.05	1.00000	0.0716	20.00000	44.9520	1.00000	0.0236	1.00000	0.0480
0.06	1.00000	0.1031	16.66667	44.9310	1.00000	0.0342	1.00000	0.0690
0.07	1.00000	0.1403	14.28571	44.9062	1.00000	0.0465	0.99999	0.0938
0.08	1.00000	0.1833	12.50000	44.8775	1.00000	0.0608	0.99999	0.1225
0.09	0.99999	0.2320	11.11111	44.8450	1.00000	0.0770	0.99999	0.1550
0.10	0.99999	0.2804	10.00000	44.8087	1.00000	0.0952	0.99999	0.1913
0.11	0.99999	0.3466	9.09091	44.7686	1.00000	0.1152	0.99998	0.2314
0.12	0. 99998	0.4125	8.33333	44.7247	1.00000	0.1372	0.99998	0.2753
0.13	0.99997	0.4841	7.69231	44.6770	1.00000	0.1611	0.99997	0.3230
0.14	o .99996	0.5614	7.14337	44.0255	1.00000	0.1809	0.99996	0.3745
0.15	0.99995	0.0445	0.00712	44.5701	1.00000	0.2140	o.99995	0.4299
0.16	0 .99994	0.7333	6.25039	44.5109	1.00000	0.2442	0.99994	0.4891
0.17	0.99992	0.8278	5.88271	44 4479	1.00001	0.2757	0.99992	0.5521
0.18	0.99991	0.9281	5.55018	44.3811	1.00001	0.3092	0.99991	0.6189
0.19	0.99989	1.0341	5.20371	44.3104	1.00001	0.3445	0.99989	0.0890
0.20	0.99987	1.1458	5.00050	44.2359	1.00001	0.3817	0.99987	0.7041
0.21	0.99984	1.2632	4.76258	44.1576	1.00002	0.4208	0.99984	0.8424
0.22	0.99980	1.3864	4.54628	44.0755	1.00002	0.4619	0.99981	0.9245
0.23	o .99976	1.5152	4.34878	43.9890	1.00002	0.5048	0.99978	1.0104
0.24	0.99972	1.0498	4.10771	43.8999	1.00002	0.5497	0.99975	1.1001
0.25	0.99907	1.7901	4.00112	43.0004	1.00003	0.5905	0.99971	1.1930
0.26	0.99962	1.9361	3.84748	43.7092	1.00003	0.6453	0.99966	1.2908
0.27	0.99956	2.0878	3.70521	43.0081	1.00003	0.0959	0.99900	1.3919
0.28	0.99949	2.2452	3.57309	43.5032	1.00004	0.7405	0.99953	1.4900
0.29	0.99940	2.4084	3.45010	43.3945	1.00004	0.8029	0.99945	1.0055
0.30	0.99932	2.5773	3.33544	43.2019	1.0005	0.0392	0.99937	- 9- 16
0.31	0.99923	2.7520	3.22810	43.1054	1.00005	0.9174	0.99928	1.8340
0.32	0.99913	2.9323	3.12754	43.0452	1.00000	0.9775	0.99919	1.9540
0.33	0.99902	3.1103	3.03305	42.9213	1.00000	1.0390	0.99908	2.0707
0.34	0.99809	3.3099	2.94421	42.7937	1.00007	1.1030	0.00882	2.2377
0.35	0.99075	3.5071	2.00049	42.0023	1.00000	1.1094	0.99003	2.3377
0.30	0.99800	3.7100	2.70141	42.5272	1.00000	1.2372	0.00814	2.4720
0.37	0.99844	3.9105	2.70005	42.3004	1.00010	1.3009 T 2786	0.00827	2.7542
0.30	0.99820	4.1320	2.03500	42.2450	1.00012	1.5700	0.00810	2.0006
0.39	0.00788	4.3520	2.50404	42.0404	1.00014	1.5278	0.00800	3.0506
0.40	0.99766	4.5704	0.44428	41 7057	1.00016	T 6052	0.00780	3.2043
0.41	0.99700	4.0090	2.44430	41.7957	1.00017	T 6846	0.00750	3.3618
0.42	0.99742	5.0404	2.30000	41.0302	1.00010	1.7658	0.00736	3.5230
0.44	0.00680	5.5360	2.27025	41.3120	1.00021	1.8480	0.00711	3.6880
0.45	0.00660	5.7006	2.22030	41.1432	1.00023	1.9338	0.99684	3.8568
0.46	0.00620	6 0408	2.18145	40.0708	1.00025	2.0200	0.00655	4.0202
0.47	0.00506	6.3146	2.12571	40.7047	1.00027	2.1003	0.00624	4.2053
0.48	0.00560	6.5850	2.00100	40.6150	1.00030	2.2000	0.00501	4.3850
0.40	0.00522	6.8600	2.04005	40.4317	1.00032	2.2926	0.99555	4.5683
0.50	0.90483	7.1424	2.00960	40.2448	1.00035	2.3872	0.99516	4.7552
		Note.	Negativ	e quantitie	s are in heav	y type.		

Examples. $\frac{\tanh 0.39 / 45^{\circ}}{0.20 / 45^{\circ}} = 0.99819 \sqrt{2^{\circ}.9006}.$ 0.39/45°

$$\coth 0.50 / 45^{\circ} = 2.00969 \sqrt{40^{\circ}.2448}.$$

[225]

TABLE XXIII. HYPERBOLIC FUNCTION FORMULAS

(from Smithsonian Mathematical Tables No. 1871 of 1909, Becker and van Orstrand's "Hyperbolic Functions," by permission.)

A. RELATIONS BETWEEN HYPERBOLIC AND CIRCULAR FUNCTIONS

 $\sinh u = -i \sin iu = \tan g d u$. Ι. $\cosh u = \cos iu = \sec gd u.$ 2. $\tanh u = -i \tan iu = \sin gd u$. 3. $\tanh \frac{1}{2}u = \tan \frac{1}{2}gdu$. 4. $e^u = (1 + \sin gd u) \div \cos gd u$ 5. $= \left[\mathbf{I} - \cos\left(\frac{1}{2}\pi + gd\,u\right) \right] \div \sin\left(\frac{1}{2}\pi + gd\,u\right),$ $= \tan \left(\frac{1}{4} \pi + \frac{1}{2} g d u \right).$ $\sinh iu = i \sin u$. 6. $\cosh iu = \cos u$. 7. 8. $\tanh iu = i \tan u$. 8a. $\sin u = -i \sinh iu = \tanh (gd^{-1}u)$. 8b. $\cos u = \cosh iu = \operatorname{sech} (\operatorname{gd}^{-1} u)$. 8c. $\tan u = -i \tanh iu = \sinh (gd^{-1}u)$. $\sinh(u \pm iv) = \pm i \sin(v \mp iu),$ **0**. $= \sinh u \cos v \pm i \cosh u \sin v$. 10. $\cosh(u \pm iv) = \cos(v \mp iu)$, $= \cosh u \cos v \pm i \sinh u \sin v$. 10a. $\sin(u \pm iv) = \pm i \sinh(v \pm iu) = \sin u \cosh v \pm i \cos u \sinh v$. 10b. $\cos(u \pm iv) = \cosh(v \mp iu) = \cos u \cosh v \mp i \sin u \sinh v$. II. $\cosh(mi\pi) = \cos m\pi$. (*m* is an integer.) $\sinh (2m + 1) \frac{1}{2} i \pi = i \sin (2m + 1) \frac{1}{2} \pi$. (*m* is an integer.) 12. B. RELATIONS AMONG THE HYPERBOLIC FUNCTIONS $\sinh u = \frac{1}{2} (e^u - e^{-u}) = -\sinh (-u) = (\operatorname{csch} u)^{-1}$ 13. $= 2 \tanh \frac{1}{2} u \div (1 - \tanh^2 \frac{1}{2} u) = \tanh u \div (1 - \tanh^2 u)^{\frac{1}{2}}.$ $\cosh u = \frac{1}{2} (e^u + e^{-u}) = \cosh (-u) = (\operatorname{sech} u)^{-1}$ 14. $= (1 + \tanh^2 \frac{1}{2}u) \div (1 - \tanh^2 \frac{1}{2}u) = 1 \div (1 - \tanh^2 u)^{\frac{1}{2}}.$ $\tanh u = (e^u - e^{-u}) \div (e^u + e^{-u}) = -\tanh(-u),$ 15. $= (\coth u)^{-1} = \sinh u \div \cosh u = (1 - \operatorname{sech}^2 u)^{\frac{1}{2}}.$ $\operatorname{sech} u = \operatorname{sech} (-u) = (1 - \tanh^2 u)^{\frac{1}{2}}.$ 16. [226]

 $\operatorname{csch} u = -\operatorname{csch} (-u) = (\operatorname{coth}^2 u - \mathbf{1})^{\frac{1}{2}}.$ 17. $\coth u = - \coth (-u) = (\operatorname{csch}^2 u + \mathbf{I})^{\frac{1}{2}}.$ 18. $\cosh^2 u - \sinh^2 u = 1.$ 19. $\sinh \frac{1}{2} u = \sqrt{\frac{1}{2} (\cosh u - 1)}.$ 20. $\cosh \frac{1}{2} u = \sqrt{\frac{1}{2} (\cosh u + 1)},$ 21. $\tanh \frac{1}{2}u = (\cosh u - 1) \div \sinh u.$ 22. $= \sinh u \div (\mathbf{I} + \cosh u) = \sqrt{(\cosh u - \mathbf{I})} \div (\cosh u + \mathbf{I}).$ $\sinh 2u = 2 \sinh u \cosh u = 2 \tanh u \div (1 - \tanh^2 u).$ 23. $\cosh 2u = \cosh^2 u + \sinh^2 u = 2 \cosh^2 u - 1.$ 24. $= 1 + 2 \sinh^2 u = (1 + \tanh^2 u) \div (1 - \tanh^2 u).$ $\tanh 2u = 2 \tanh u \div (1 + \tanh^2 u).$ 25. 26. $\sinh 3u = 3 \sinh u + 4 \sinh^3 u.$ $\cosh 3u = 4 \cosh^3 u - 3 \cosh u$. 27. $\tanh 3u = (3 \tanh u + \tanh^3 u) \div (1 + 3 \tanh^2 u).$ 28. 28a, $m \cosh u + n \sinh u = \frac{1}{2} (m + n) e^{u} + \frac{1}{2} (m - n) e^{-u}$. 28b. $m e^{u} \pm m e^{-u} = (m \pm n) \cosh u + (m \mp n) \sinh u$. $\sinh nu =$ 29. $n \cosh^{n-1} u \sinh u + \frac{(n)(n-1)(n-2)}{6} \cosh^{n-3} u \sinh^3 u + \dots$ $\cosh nu = \cosh^n u + \frac{n(n-1)}{2} \cosh^{n-2} u \sinh^2 u + \dots$ 30. $\sinh u + \sinh v = 2 \sinh \frac{1}{2} (u + v) \cosh \frac{1}{2} (u - v).$ 31. $\sinh u - \sinh v = 2 \cosh \frac{1}{2} (u + v) \sinh \frac{1}{2} (u - v).$ 32. $\cosh u + \cosh v = 2 \cosh \frac{1}{2} (u+v) \cosh \frac{1}{2} (u-v).$ 33. $\cosh u - \cosh v = 2 \sinh \frac{1}{2} (u + v) \sinh \frac{1}{2} (u - v).$ 34. $\sinh u + \cosh u = (1 + \tanh \frac{1}{2}u) \div (1 - \tanh \frac{1}{2}u).$ 35. $(\sinh u + \cosh u)^n = \cosh nu + \sinh nu.$ 36. 36a. $a \sinh u + b \cosh u = \sqrt{a^2 - b^2} \sinh (u + \tanh^{-1} \frac{b}{a})$. a > b $=\sqrt{b^2-a^2}\cosh\left(u+\coth^{-1}\frac{b}{a}\right).$ b > a36b. $a \cosh u \pm b \sinh u = \sqrt{a^2 - b^2} \cosh \left(u \pm \tanh^{-1} \frac{b}{a}\right)$. $\tanh u + \tanh v = \sinh (u + v) \div \cosh u \cosh v.$ 37. $\tanh u - \tanh v = \sinh (u - v) \div \cosh u \cosh v.$ 38. $\operatorname{coth} u + \operatorname{coth} v = \sinh(u + v) \div \sinh u \sinh v.$ 39. [227]

02

 $\operatorname{coth} u - \operatorname{coth} v = -\sinh(u - v) \div \sinh u \sinh v.$ 40. $\sinh(u \pm v) = \sinh u \cosh v \pm \cosh u \sinh v$. 41. $\cosh(u \pm v) = \cosh u \cosh v \pm \sinh u \sinh v$. 42. $\tanh(u \pm v) = (\tanh u \pm \tanh v) \div (1 \pm \tanh u \tanh v).$ 43: $\operatorname{coth}(u \pm v) = (\operatorname{coth} u \operatorname{coth} v \pm 1) \div (\operatorname{coth} v \pm \operatorname{coth} u).$ 44. $\sinh(u+v) + \sinh(u-v) = 2 \sinh u \cosh v.$ 45. $\sinh(u+v) - \sinh(u-v) = 2 \cosh u \sinh v.$ 46. $\cosh(u+v) + \cosh(u-v) = 2 \cosh u \cosh v.$ 47. $\cosh(u+v) - \cosh(u-v) = 2 \sinh u \sinh v.$ 48. $\tanh \frac{1}{2}(u+v) = (\sinh u + \sinh v) \div (\cosh u + \cosh v).$ 49. $\tanh \frac{1}{2}(u-v) = (\sinh u - \sinh v) \div (\cosh u + \cosh v).$ 50. $\coth \frac{1}{2}(u+v) = (\sinh u - \sinh v) \div (\cosh u - \cosh v).$ 51. $\coth \frac{1}{2}(u-v) = (\sinh u + \sinh v) \div (\cosh u - \cosh v),$ 52. $\frac{\tanh u + \tanh v}{\tanh u - \tanh v} = \frac{\sinh (u + v)}{\sinh (u - v)}$ 53. $\frac{\coth u + \coth v}{\coth u - \coth v} = -\frac{\sinh (u + v)}{\sinh (u - v)}$ 54. $\sinh (u + v) + \cosh (u + v) = (\cosh u + \sinh u) (\cosh v + \sinh v).$ 55. $\sinh (u + v) \sinh (u - v) = \sinh^2 u - \sinh^2 v,$ 56. $= \cosh^2 \mu - \cosh^2 \eta$ $\cosh(u+v)\cosh(u-v) = \cosh^2 u + \sinh^2 v,$ 57. $= \sinh^2 u + \cosh^2 v$ $\sinh(mi\pi) = 0.$ (*m* is an integer.) 58. $\cosh\left(mi\,\pi\right)\,=\,(\,-\,1)^{m}.$ 59. 60. $\tanh(mi\pi) = 0.$ $\sinh (u + mi \pi) = (-1)^m \sinh u.$ 61. $\cosh\left(u+mi\,\pi\right)=(-1)^m\cosh u.$ 62. $\sinh (2m + 1) \frac{1}{2} i \pi = \pm i.$ 63. $\cosh(2m+1)\frac{1}{2}i\pi = 0.$ 64. 65. $\sinh\left(\frac{i\pi}{2}\pm u\right)=i\cosh u.$ 66. $\cosh\left(\frac{i\pi}{2} \pm u\right) = \pm i \sinh u.$

[228]

66a. $\sinh \{ (u + iv) + i\frac{\pi}{2} \} = \sinh \{ (u + iv) + i\underline{I} \} = i\cosh (u + iv).$ 66b. $\cosh \{ (u + iv) + i\frac{\pi}{2} \} = \cosh \{ (u + iv) + i\underline{I} \} = i\sinh (u + iv).$ 66c. $\tanh \{ (u + iv) + i\frac{\pi}{2} \} = \tanh \{ (u + iv) + i\underline{I} \} = \coth (u + iv).$ 66d. $\sinh \{ (u + iv) + i\pi \} = \sinh \{ (u + iv) + i\underline{I} \} = \coth (u + iv).$ 66e. $\cosh \{ (u + iv) + i\pi \} = \cosh \{ (u + iv) + i\underline{I} \} = -\cosh (u + iv).$ 66f. $\tanh \{ (u + iv) + i\pi \} = \tanh \{ (u + iv) + i\underline{I} \} = \tanh (u + iv).$ 67. $\tanh (u + i\pi) = \tanh u.$ 67. $\tanh (u + i\pi) = \tanh u.$ 67a. If $\sinh \{ (u + i(\underline{I} - q) \} = x + iy; \ then \sinh \{ u + i(\underline{I} + q) \} = -x + iy.$ 67b. If $\cosh \{ (u + i(\underline{I} - q) \} = x + iy; \ then \cosh \{ u + i(\underline{I} + q) \} = -x + iy.$

67c. If
$$\tanh \{u + i(1 - q)\} = x + iy$$
: then $\tanh \{u + i(1 + q)\} = x - iy$.

C. INVERSE HYPERBOLIC FUNCTIONS

 $\sinh^{-1} u = \log \left(u + \sqrt{u^2 + 1} \right) = \cosh^{-1} \sqrt{u^2 + 1} = \int \frac{du}{(u^2 + 1)^{\frac{1}{2}}}$ 68. $\cosh^{-1} u = \log \left(u + \sqrt{u^2 - 1} \right) = \sinh^{-1} \sqrt{u^2 - 1} = \int \frac{du}{(u^2 - 1)^{\frac{1}{2}}} du$ 69. $\tanh^{-1} u = \frac{1}{2} \log (1 + u) - \frac{1}{2} \log (1 - u) = \int \frac{du}{1 - u^2} du$ 70. $\operatorname{coth}^{-1} u = \frac{1}{2} \log (1 + u) - \frac{1}{2} \log (u - 1) = \int \frac{du}{1 - u^2} = \tanh^{-1} \frac{1}{u}$ 71. 72. $\operatorname{sech}^{-1} u = \log\left(\frac{1}{u} + \sqrt{\frac{1}{u^2} - 1}\right) = -\int \frac{du}{u(1 - u^2)^{\frac{1}{2}}} = \cosh^{-1} \frac{1}{u}$ $\operatorname{csch}^{-1} u = \log\left(\frac{\mathrm{I}}{u} + \sqrt{\frac{\mathrm{I}}{u^2} + \mathrm{I}}\right) = -\int \frac{du}{u(u^2 + \mathrm{I})^{\frac{1}{2}}} = \sinh^{-1}\frac{\mathrm{I}}{u}.$ 73. $\sin^{-1} u = -i \sinh^{-1} i u = -i \log (i u + \sqrt{1 - u^2}).$ 74. $\cos^{-1} u = -i \cosh^{-1} u = -i \log (u + i \sqrt{1 - u^2}).$ 75. $\tan^{-1} u = -i \tanh^{-1} iu = \frac{1}{2i} \log \left(1 + iu\right) - \frac{1}{2i} \log \left(1 - iu\right).$ 76. $\cot^{-1} u = i \coth^{-1} iu = \frac{1}{2} \log (iu - 1) - \frac{1}{2} \log (iu + 1).$ 77. $\sin^{-1} iu = i \sinh^{-1} u = i \log (u + \sqrt{1 + u^2}).$ 78. 79. $\cos^{-1} iu = -i \cosh^{-1} iu = \frac{\pi}{2} - i \log (u + \sqrt{1 + u^2}).$ [220]

So.
$$\tan^{-1} iu = i \tanh^{-1} u = \frac{i}{2} \log (1 + u) - \frac{i}{2} \log (1 - u).$$

SI. $\cot^{-1} iu = -i \coth^{-1} u = -\frac{i}{2} \log (u + 1) + \frac{i}{2} \log (u - 1).$
S2. $\cosh^{-1} \frac{1}{2} \left(u + \frac{1}{u} \right) = \sinh^{-1} \frac{1}{2} \left(u - \frac{1}{u} \right) = \tanh^{-1} \frac{u^2 - 1}{u^2 + 1},$
 $= 2 \tanh^{-1} \frac{u - 1}{u + 1} = \log u.$
S3. $\tanh^{-1} \tan u = \frac{1}{2} vd 2u$

- 84. $\tan^{-1} \tanh u = \frac{1}{2} g d^{-1} 2 u$.
- 85. $\cosh^{-1} \csc 2 u = -\sinh^{-1} \cot 2 u = -\tanh^{-1} \cos 2 u = \log \tan u$.
- 86. $\tanh^{-1} \tan^2 \left(\frac{1}{4}\pi + \frac{1}{2}u\right) = \frac{1}{2} \log \csc u.$
- 87. $\tanh^{-1} \tan^2 \frac{1}{2} u = \frac{1}{2} \log \sec u$.

88.
$$\cosh^{-1} u \pm \cosh^{-1} v = \cosh^{-1} \left[uv \pm \sqrt{(u^2 - 1)(v^2 - 1)} \right]$$

89. $\sinh^{-1} u \pm \sinh^{-1} v = \sinh^{-1} \left[u \sqrt{1 + v^2} \pm v \sqrt{1 + u^2} \right].$

D. Series

90.
$$e^{u} = \mathbf{I} + u + \frac{u^{2}}{2!} + \frac{u^{3}}{3!} + \frac{u^{4}}{4!} + \dots$$
 $(u^{2} < \alpha)$

91.
$$\log u = (u - 1) - \frac{1}{2}(u - 1)^2 + \frac{1}{3}(u - 1)^3 - \dots$$
 (2> u> 0)

92.
$$\log u = \frac{u-1}{u} + \frac{1}{2} \left(\frac{u-1}{u}\right)^2 + \frac{1}{3} \left(\frac{u-1}{u}\right)^3 + \dots$$
 $(u > \frac{1}{2})$

93.
$$\log u = 2 \left[\frac{u-1}{u+1} + \frac{1}{3} \left(\frac{u-1}{u+1} \right)^3 + \frac{1}{5} \left(\frac{u-1}{u+1} \right)^5 + \dots \right]$$
 (u> o)

94.
$$\log(1 + u) = u - \frac{1}{2}u^2 + \frac{1}{3}u^3 - \frac{1}{4}u^4 + \dots$$
 $(u^2 < 1)$

95.
$$\log\left(\frac{1+u}{1-u}\right) = 2\left[u+\frac{1}{3}u^3+\frac{1}{5}u^5+\frac{1}{7}u^7+\ldots\right]$$
 $(u^2 < 1)$

96.
$$\log\left(\frac{u+1}{u-1}\right) = 2\left[\frac{1}{u} + \frac{1}{3}\left(\frac{1}{u}\right)^3 + \frac{1}{5}\left(\frac{1}{u}\right)^5 + \dots\right]$$
 $(u^2 > 1)$

97.
$$\sinh u = u + \frac{u^3}{3!} + \frac{u^5}{5!} + \frac{u^7}{7!} + \dots$$
 $(u^2 < \alpha)$

$$= u \left(I + \frac{u^2}{\pi^2} \right) \left(I + \frac{u^2}{2^2 \pi^2} \right) \left(I + \frac{u^2}{3^2 \pi^2} \right) \dots \qquad (u^2 < \alpha)$$
[230]

98.	$\cosh u = 1 + \frac{u^2}{2!} + \frac{u^4}{4!} + \frac{u^6}{6!} + \dots$	$(u^2 < \infty)$
	$= \left(\mathbf{I} + \frac{4 u^2}{\pi^2}\right) \left(\mathbf{I} + \frac{4 u^2}{3^2 \pi^2}\right) \left(\mathbf{I} + \frac{4 u^2}{5^2 \pi^2}\right) \dots$	$(u^2 < \alpha)$
9 9.	$\tanh u = u - \frac{1}{3}u^3 + \frac{2}{15}u^5 - \frac{17}{315}u^7 + \ldots$	$(u^2 < rac{1}{4} \pi^2)$
100.	$u \operatorname{coth} u = 1 + \frac{1}{3}u^2 - \frac{1}{45}u^4 + \frac{2}{945}u^6 - \ldots$	$(u^2 < \pi^2)$
101.	sech $u = I - \frac{I}{2} u^2 + \frac{5}{24} u^4 - \frac{6I}{720} u^6 + \ldots$	$(u^2 < \frac{1}{4} \pi^2)$
102.	$u \operatorname{csch} u = 1 - \frac{1}{6} u^2 + \frac{7}{360} u^4 - \frac{31}{15120} u^6 + \ldots$	$(u^2 < \pi^2)$
103.	$gd u = \phi = u - \frac{1}{6} u^3 + \frac{1}{24} u^5 - \frac{61}{5040} u^7 + \ldots$	(u small)
	$= \frac{\pi}{2} - \operatorname{sech} u - \frac{1}{2} \frac{\operatorname{sech}^3 u}{3} - \frac{1}{2} \frac{3}{4} \frac{\operatorname{sech}^5 u}{5} - \dots$	(u large)
104.	$u = gd^{-1}\phi = \phi + \frac{1}{6}\phi^3 + \frac{1}{24}\phi^5 + \frac{61}{5^{040}}\phi^7 + \ldots$	$\left(\phi < \frac{\pi}{2}\right)$
105.	$\sinh^{-1} u = u - \frac{1}{2} \frac{u^3}{3} + \frac{1}{2} \frac{3}{4} \frac{u^5}{5} - \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{u^7}{7} + \dots$	(<i>u</i> ² < 1)
	$= \log 2 u + \frac{1}{2} \frac{1}{2 u^2} - \frac{1}{2} \frac{3}{4} \frac{1}{4 u^4} + \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6 u^6} - \dots$	$(u^2 > 1)$
106.	$\cosh^{-1} u = \log 2 u - \frac{1}{2} \frac{1}{2 u^2} - \frac{1}{2} \frac{3}{4} \frac{1}{4 u^4} - \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6 u^6} - \cdots$	$(u^2 > 1)$
107.	$\tanh^{-1} u = u + \frac{1}{3}u^3 + \frac{1}{5}u^5 + \frac{1}{7}u^7 + \ldots$	$(u^2 < 1)$
108.	$\operatorname{coth}^{-1} u = \tanh^{-1} \frac{\mathbf{I}}{u} = \frac{\mathbf{I}}{u} + \frac{\mathbf{I}}{3 u^3} + \frac{\mathbf{I}}{5 u^5} + \frac{\mathbf{I}}{7 u^7} + \ldots$	$(u^2 > 1)$
109.	$\operatorname{sech}^{-1} u = \operatorname{cosh}^{-1} \frac{\mathrm{I}}{u} = \log \frac{2}{u} - \frac{\mathrm{I}}{2} \frac{u^2}{2} - \frac{\mathrm{I}}{2} \frac{3}{4} \frac{u^4}{4} - \frac{\mathrm{I}}{2} \frac{3}{4} \frac{5}{6} \frac{u^6}{6} - \cdots$	(<i>u</i> ² < 1)
110.	$\operatorname{csch}^{-1} u = \sinh^{-1} \frac{1}{u} = \frac{1}{u} - \frac{1}{2} \frac{1}{3u^3} + \frac{1}{2} \frac{3}{4} \frac{1}{5u^5} - \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{7u^7} + \ldots$	$(u^2 > 1)$
	$= \log \frac{2}{u} + \frac{1}{2} \frac{u^2}{2} - \frac{1}{2} \frac{3}{4} \frac{u^4}{4} + \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{u^6}{6} - \cdots$	$(u^2 < 1)$

[231]

111.	$\frac{d e^u}{du} = e^u.$
112.	$d \frac{\log_e u}{du} = \frac{\mathbf{I}}{u} \cdot $
113.	$\frac{d a^{v}}{du} = a^{v} \cdot \frac{dv}{du} \cdot \log_{\bullet} a.$
114.	$\frac{d\ u^u}{du} = u^u \ (\mathbf{I} + \log_e u).$
115.	$\frac{d\sinh u}{du} = \cosh u.$
116.	$\frac{d\cosh u}{du} = \sinh u.$
117.	$\frac{d \tanh u}{du} = \operatorname{sech}^2 u.$
118.	$\frac{d\coth u}{du} = -\operatorname{csch}^2 u.$
119.	$\frac{d \operatorname{sech} u}{du} = -\operatorname{sech} u. \ \tanh u.$
120.	$\frac{d \operatorname{csch} u}{du} = -\operatorname{csch} u. \operatorname{coth} u.$
1 21.	$\frac{d\sinh^{-1}u}{du} = \frac{\mathbf{I}}{\sqrt{u^2 + \mathbf{I}}}.$
122.	$\frac{d\cosh^{-1}u}{du} = \frac{\mathbf{I}}{\sqrt{u^2 - \mathbf{I}}}.$
123.	$\frac{d \tanh^{-1} u}{du} = \frac{\mathbf{I}}{\mathbf{I} - u^2}$
124.	$\frac{d \coth^{-1} u}{du} = \frac{\mathbf{I}}{\mathbf{I} - u^2}.$
125.	$\frac{d \operatorname{sech}^{-1} u}{du} = \frac{-\mathrm{I}}{u \sqrt{\mathrm{I} - u^2}}.$
126.	$\frac{d \operatorname{csch}^{-1} u}{du} = \frac{-\mathrm{I}}{u \sqrt{u^2 + \mathrm{I}}}.$
127.	$\frac{d \operatorname{gd} u}{du} = \operatorname{sech} u.$
128.	$\frac{d \operatorname{gd}^{-1} u}{du} = \sec u.$

E. DERIVATIVES

[232]

INTEGRALS. (INTEGRATION CONSTANTS ARE OMITTED.) F. 129. $\int \sinh u \, du = \cosh u.$ 130. $\int \cosh u \, du = \sinh u.$ 131. $\int \tanh u \, du = \log \cosh u.$ 132. $\int \coth u \, du = \log \sinh u.$ 133. $\int \operatorname{sech} u \, du = 2 \tan^{-1} e^u = \operatorname{gd} u.$ 134. $\int \operatorname{csch} u \, du = \log \tanh \frac{u}{2}$. 135. $\int \sinh^n u \, du = \frac{1}{n} \sinh^{n-1} u \cdot \cosh u - \frac{n-1}{n} \int \sinh^{n-2} u \, du,$ $=\frac{\mathrm{I}}{n+\mathrm{I}}\sinh^{n+1}u\cosh u-\frac{n+2}{n+\mathrm{I}}\int\sinh^{n+2}u\,du.$ 136. $\int \cosh^n u \, du = \frac{1}{n} \sinh u \cdot \cosh^{n-1} u + \frac{n-1}{n} \int \cosh^{n-2} u \, du,$ $= -\frac{\mathbf{I}}{n+1} \sinh u \cosh^{n+1} u + \frac{n+2}{n+1} \int \cosh^{n+2} u \, du.$ 137. $\int u \sinh u \, du = u \cosh u - \sinh u.$ 138. $\int u \cosh u \, du = u \sinh u - \cosh u.$ 139. $\int u^2 \sinh u \, du = (u^2 + 2) \cosh u - 2 u \sinh u.$ 140. $\int u^n \sinh u \, du = u^n \cosh u - n u^{n-1} \sinh u + n (n-1) \int u^{n-2} \sinh u \, du.$ 141. $\int \sinh^2 u \, du = \frac{1}{2} (\sinh u \cosh u - u).$ 142. $\int \sinh u \cdot \cosh u \, du = \frac{1}{4} \cosh (2 u).$ 143. $\int \cosh^2 u \, du = \frac{1}{2} (\sinh u \cosh u + u).$ [233]

144.
$$\int \tanh^2 u \, du = u - \tanh u.$$

145.
$$\int \coth^2 u \, du = u - \coth u.$$

146.
$$\int \operatorname{sech}^2 u \, du = \tanh u.$$

147.
$$\int \operatorname{sech}^3 u \, du = \frac{1}{2} \operatorname{sech} u \tanh u + \frac{1}{2} \operatorname{gd} u.$$

148.
$$\int \operatorname{csch}^2 u \, du = - \coth u.$$

149.
$$\int \sinh^{-1} u \, du = u \sinh^{-1} u - (1 + u^2)^{\frac{1}{2}}.$$

150.
$$\int \cosh^{-1} u \, du = u \cosh^{-1} u - (u^2 - 1)^{\frac{1}{2}}.$$

151.
$$\int \tanh^{-1} u \, du = u \tanh^{-1} u + \frac{1}{2} \log (1 - u^2).$$

152.
$$\int u \sinh^{-1} u \, du = \frac{1}{4} \left[(2 u^2 + 1) \sinh^{-1} u - u (1 + u^2)^{\frac{1}{2}} \right].$$

153.
$$\int u \cosh^{-1} u \, du = \frac{1}{4} \left[(2 u^2 - 1) \cosh^{-1} u - u (u^2 - 1)^{\frac{1}{2}} \right].$$

154.
$$\int (\cosh u + \cosh u)^{-1} \, du = 2 \operatorname{csch} a \tanh^{-1} (\tanh \frac{1}{2} u. \tanh \frac{1}{2} a),$$

$$= \operatorname{csch} a \left[\log \cosh \frac{1}{2} (u + a) - \log \cosh \frac{1}{2} (u - a) \right].$$

155.
$$\int (\cos a + \cosh u)^{-1} \, du = 2 \operatorname{csc} a. \tanh^{-1} (\tanh \frac{1}{2} u. \tanh \frac{1}{2} a).$$

156.
$$\int (1 + \cos a. \cosh u)^{-1} \, du = 2 \operatorname{csc} a. \tanh^{-1} (\tanh \frac{1}{2} u. \tan \frac{1}{2} a).$$

157.
$$\int \sinh u \cos u \, du = \frac{1}{2} (\cosh u. \cos u + \sinh u. \sin u).$$

158.
$$\int \cosh u. \cos u \, du = \frac{1}{2} (\cosh u. \sin u - \sinh u. \cos u).$$

159.
$$\int \sinh u. \sin u \, du = \frac{1}{2} (\cosh u. \sin u - \sinh u. \cos u).$$

160.
$$\int \cosh u. \sin u \, du = \frac{1}{2} (\sinh u. \sin u - \cosh u. \cos u).$$

[234]

ſ

$$161. \int \sinh(mu) \sinh(nu) du = \frac{1}{m^2 - n^2} \left[m \sinh(nu) \cosh(mu) - n \cosh(nu) \sinh(mu) \right].$$

$$162. \int \cosh(mu) \sinh(nu) du = \frac{1}{m^2 - n^2} \left[m \sinh(nu) \sinh(mu) - n \cosh(nu) \cosh(mu) \right].$$

$$163. \int \cosh(mu) \cosh(nu) du = \frac{1}{m^2 - n^2} \left[m \sinh(mu) \cosh(nu) - n \sinh(nu) \cosh(mu) \right].$$

$$163. \int \cosh(mu) \cosh(nu) du = \frac{1}{m^2 - n^2} \left[m \sinh(mu) \cosh(nu) - n \sinh(nu) \cosh(mu) \right].$$

$$164. \int \sinh u \tanh u \, du = \sinh u - g \, du.$$

$$165. \int \cosh u \coth u \, du = \cosh u + \log \tanh \frac{u}{2}.$$

$$166. \int \sec u \, du = gd^{-1} \, u.$$

$$167. \int \sec^3 \phi \, d\phi = \int (1 + \tan^2 \phi)^{\frac{1}{2}} d \tan \phi = \frac{1}{2} \sec \phi \tan \phi + \frac{1}{2} gd^{-1} \phi,$$

$$= \frac{1}{2} \tan \phi (1 + \tan^2 \phi)^{\frac{1}{2}} + \frac{1}{2} \sinh^{-1} (\tan \phi). \quad \text{Here } \phi = g \, du.$$

$$168. \int \frac{du}{(u^2 + a^2)^{\frac{1}{2}}} = \sinh^{-1} \frac{u}{a}. \qquad \int \frac{-du}{(a^2 - u^2)^{\frac{1}{2}}} = \sin^{-1} \frac{u}{a}.$$

$$170. \int \frac{du}{(a^2 - u^2)_{u

$$171. \int \frac{-du}{(u^2 - a^2)^{\frac{1}{2}}} = \frac{1}{a} \operatorname{coth}^{-1} \frac{u}{a}. \qquad \int \frac{-du}{(u^2 - a^2)^{\frac{1}{2}}} = \frac{1}{a} \operatorname{cot}^{-1} \frac{u}{a}.$$

$$172. \int \frac{-du}{u(a^2 - u^2)^{\frac{1}{2}}} = \frac{1}{a} \operatorname{coth}^{-1} \frac{u}{a}. \qquad \int \frac{-du}{u(u^2 - a^2)^{\frac{1}{2}}} = \frac{1}{a} \operatorname{cot}^{-1} \frac{u}{a}.$$

$$173. \int \frac{-du}{(a^2 + u^2)^{\frac{1}{2}}} = \frac{1}{a} \operatorname{coth}^{-1} \frac{u}{a}. \qquad \int \frac{1}{u(u^2 - a^2)^{\frac{1}{2}}} = \frac{1}{a} \operatorname{cot}^{-1} \frac{u}{a}.$$

$$174. \int \frac{du}{(au^2 + 2bu + c)^{\frac{1}{2}}} = \frac{1}{\sqrt{a}} \sinh^{-1} \frac{au + b}{(b^2 - ac)^{\frac{1}{2}}}, \qquad a \text{ positive, } ac > b^2;$$

$$= \frac{1}{\sqrt{a}} \operatorname{cosh}^{-1} \frac{(au + b)}{(b^2 - ac)^{\frac{1}{2}}}, \qquad a \text{ positive, } ac < b^2;$$

$$= \frac{1}{\sqrt{a}} \operatorname{cosh}^{-1} \frac{(au + b)}{(b^2 - ac)^{\frac{1}{2}}}, \qquad a \text{ negative.}$$$$

$$175. \int \frac{du}{(au^{2} + 2bu + c)} = \frac{1}{(ac - b^{2})^{\frac{1}{2}}} \tan^{-1} \frac{au + b}{(ac - b^{2})^{\frac{1}{2}}}, \qquad ac > b^{\frac{2}{2}}$$

$$= \frac{-1}{(b^{\frac{2}{2}} - ac)^{\frac{1}{2}}} \tanh^{-1} \frac{au + b}{(b^{\frac{2}{2}} - ac)^{\frac{1}{2}}}, \qquad au + b < (b^{\frac{2}{2}} - ac)^{\frac{3}{2}}$$

$$= \frac{-1}{(b^{\frac{2}{2}} - ac)^{\frac{1}{2}}} \coth^{-1} \frac{au + b}{(b^{\frac{2}{2}} - ac)^{\frac{1}{2}}}, \qquad au + b < (b^{\frac{2}{2}} - ac)^{\frac{3}{2}}$$

$$176. \int \frac{du}{(a - u)} \frac{du}{(u - b)^{\frac{1}{2}}} = \frac{2}{(a - b)^{\frac{1}{2}}} \tanh^{-1} \sqrt{\frac{u - b}{a - b}}, \qquad ac < b^{\frac{2}{2}}, \qquad au + b > (b^{\frac{2}{2}} - ac)^{\frac{3}{2}}$$

$$176. \int \frac{du}{(a - u)} \frac{du}{(u - b)^{\frac{1}{2}}} = \frac{2}{(a - b)^{\frac{1}{2}}} \tanh^{-1} \sqrt{\frac{u - b}{a - b}}, \qquad au + b > (b^{\frac{2}{2}} - ac)^{\frac{3}{2}}$$

$$176. \int \frac{du}{(a - u)} \frac{du}{(u - b)^{\frac{1}{2}}} = \frac{2}{(a - b)^{\frac{1}{2}}} \tanh^{-1} \sqrt{\frac{u - b}{a - a}}, \qquad or \ \frac{2}{(a - b)^{\frac{1}{2}}} \coth^{-1} \sqrt{\frac{u - b}{a - b}}. \qquad (The real form is to be taken.)$$

$$177. \int \frac{du}{(a - u)} \frac{du}{(b - u)^{\frac{1}{2}}} = \frac{2}{(b - a)^{\frac{1}{2}}} \tanh^{-1} \sqrt{\frac{b - u}{b - a}}, \qquad or \ \frac{2}{(b - a)^{\frac{1}{2}}} \tanh^{-1} \sqrt{\frac{b - u}{a - b}}. \qquad (The real form is to be taken.)$$

$$177. \int \frac{du}{(a - u)} \frac{du}{(b - u)^{\frac{1}{2}}} = \frac{2}{(b - a)^{\frac{1}{2}}} \tanh^{-1} \sqrt{\frac{b - u}{b - a}}, \qquad or \ \frac{2}{(a - b)^{\frac{1}{2}}} \tanh^{-1} \sqrt{\frac{b - u}{a - b}}. \qquad (The real form is to be taken.)$$

$$178. \int (u^{2} - a^{2})^{\frac{1}{2}} du = \frac{1}{2}u (u^{2} - a^{2})^{\frac{1}{2}} - \frac{1}{2}a^{2} \cosh^{-1} \frac{u}{a}.$$

$$180. \int (u^{2} - a^{2})^{\frac{1}{2}} du = \frac{1}{2}u (u^{2} - a^{2})^{\frac{1}{2}} + \frac{1}{2}a^{2} \sinh^{-1} \frac{u}{a}.$$

$$182. \int ue^{uu} du = \frac{e^{uu}}{a}.$$

$$183. \int ue^{uu} du = \frac{e^{uu}}{a} - \frac{m}{a} \int u^{m-1}e^{uu} du.$$

$$184. \int \frac{e^{uu}}{u^{m}} du = \frac{1}{m} \left[-\frac{e^{uu}}{u^{m-1}} + a \int \frac{e^{uu}}{u^{m-1}}} \right].$$

$$185. \int a^{bu} du = \frac{a^{bu}}{b \log a}.$$

$$1236 \end{bmatrix}$$

0.

$$186. \int u^{n} a^{u} du = \frac{a^{u} u^{n}}{\log a} - \frac{na^{u} u^{n-1}}{(\log a)^{2}} + \frac{n(n-1) a^{u} u^{n-2}}{(\log a)^{3}} \cdots \\ \pm \frac{n(n-1) (n-2) \cdots 2.1 a^{u}}{(\log a)^{n+1}} \cdot \\ 187. \int \frac{a^{u} du}{u^{n}} = \frac{a^{u}}{n-1} \left[-\frac{1}{u^{n-1}} - \frac{\log a}{(n-2) u^{n-2}} - \frac{(\log a)^{2}}{(n-2) (n-3) u^{n-3}} \\ - \cdots + \frac{(\log a)^{n-1}}{(n-2) (n-3) \cdots 2.1} \int \frac{a^{u} du}{u} \right]. \\ 188. \int \frac{a^{u} du}{u} = \log u + u \log a + \frac{(u \log a)^{2}}{2.2!} + \frac{(u \log a)^{3}}{(3 \cdot 3!)} + \cdots \\ 189. \int \frac{du}{1+e^{u}} = \log \frac{e^{u}}{1+e^{u}} \cdot \\ 190. \int \frac{du}{a+be^{nu}} = \frac{1}{am} \left[mu - \log (a+be^{mu}) \right]. \\ 191. \int \frac{du}{ae^{mu} + be^{-mu}} = \frac{1}{m(ab)!} \tan^{-1} \left(e^{mu} \sqrt{\frac{a}{b}} \right). \\ 192. \int \frac{du}{(a+be^{mu})!} = \frac{1}{m\sqrt{a}} \left[\log (\sqrt{a+be^{mu}} - \sqrt{a}) - \log (\sqrt{a+be^{mu}} + \sqrt{a}) \right]. \\ 193. \int \frac{ue^{u} du}{(1+u)^{2}} = \frac{e^{u}}{1+u} \cdot \\ 194. \int e^{au} \log u \, du = \frac{e^{au} \log u}{a} - \frac{1}{a} \int \frac{e^{au} du}{u} \cdot \\ 195. \int \log u \, du = u \log u - u. \\ 196. \int u^{m} \log u \, du = \frac{a^{m+1} \left[\frac{\log u}{m+1} - \frac{1}{(m+1)^{2}} \right]. \\ 197. \int (\log u)^{n} \, du = u (\log u)^{n} - n \int (\log u)^{n-1} \, du. \\ 198. \int u^{m} (\log u)^{n} \, du = \frac{u^{m+1} (\log u)^{n}}{m+1} - \frac{n}{m+1} \int u^{m} (\log u)^{n-1} \, du. \\ 199. \int \frac{(\log u)^{n} \, du}{u} = \frac{(\log u)^{n+1}}{n+1} \cdot \\ 200. \int \frac{du}{\log u} = \log (\log u) + \log u + \frac{(\log u)^{2}}{2.2!} + \frac{(\log u)^{3}}{3\cdot3!} + \cdots$$

$$201. \quad \int \frac{du}{(\log u)^n} = -\frac{u}{(n-1)} \frac{u}{(\log u)^{n-1}} + \frac{1}{n-1} \int \frac{du}{(\log u)^{n-1}}.$$

$$202. \quad \int \frac{u^m du}{(\log u)^n} = -\frac{u^{m+1}}{(n-1)} \frac{m+1}{(\log u)^{n-1}} + \frac{m+1}{n-1} \int \frac{u^m du}{(\log u)^{n-1}}.$$

$$203. \quad \int \frac{u^m du}{\log u} = \int \frac{e^u}{y} dy, \text{ where } y = -(m+1) \log u.$$

$$204. \quad \int \frac{du}{u \log u} = \log (\log u).$$

$$205. \quad \int \frac{du}{u (\log u)^n} = -\frac{1}{(n-1)} \frac{1}{(\log u)^{n-1}}.$$

$$206. \quad \int (a+bu)^m \log u du = \frac{1}{b(m+1)} \left[(a+bu)^{m+1} \log u - \int \frac{(a+bu)^{m+1} du}{u} \right].$$

$$207. \quad \int u^m \log (a+bu) du = \frac{1}{m+1} \left[u^{m+1} \log (a+bu) - b \int \frac{u^{m+1} du}{a+bu} \right].$$

$$208. \quad \int \frac{\log (a+bu) du}{u} = \log a \log u + \frac{bu}{a} - \frac{1}{2^2} \left(\frac{bu}{u} \right)^2 + \frac{1}{3^2} \left(\frac{bu}{a} \right)^3 - \cdots,$$

$$= \frac{1}{2} (\log bu)^2 - \frac{a}{bu} + \frac{1}{2^2} \left(\frac{a}{bu} \right)^2 - \frac{1}{3^2} \left(\frac{a}{bu} \right)^3 + \cdots$$

$$209. \quad \int \frac{\log u du}{a+bu} = \frac{1}{b} \log u. \log (a+bu) - \frac{1}{b} \int \frac{\log (a+bu)}{u} du.$$

$$211. \quad \int (a+bu) \log u du = \frac{(a+bu)^2}{2b} \log u - \frac{a^2 \log u}{2b} - au - \frac{1}{2} bu^2.$$

$$212. \quad \int \frac{\log u du}{(a+bu)^3} = \frac{2}{b} \left[(\log u-2) \sqrt{(a+bu)} + \sqrt{a} \log (\sqrt{a+bu} + \sqrt{a}) - \sqrt{a} \log (\sqrt{a+bu} - \sqrt{a}) \right], \text{ if } a > 0,$$

$$= \frac{2}{b} \left[(\log u - 2) \sqrt{(a+bu)} + 2 \sqrt{-a} \tan^{-1} \sqrt{\frac{a+bu}{a}}, \text{ if } a < 0.$$

> 0.

213.
$$\int_{0}^{\infty} e^{-a^{2u}} du = \frac{\sqrt{\pi}}{2a} = \frac{1}{2a} \Gamma(\frac{1}{2}).$$

214.
$$\int_{0}^{\infty} u^{n} e^{-au} du = \Gamma(\frac{n+1}{a^{n+1}}) = \frac{n!}{a^{n+1}}.$$

215.
$$\int_{0}^{\infty} u^{n} e^{-au} du = \Gamma(\frac{n+1}{a^{n+1}}) \sqrt{\frac{\pi}{a}}.$$

216.
$$\int_{0}^{\infty} e^{-ut} \frac{a^{n}}{u^{n}} du = \frac{e^{-2u}}{2} \sqrt{\pi}.$$

217.
$$\int_{0}^{\infty} e^{-uu} \sqrt{u} du = \frac{1}{2n} \sqrt{\frac{\pi}{n}}.$$

218.
$$\int_{0}^{\infty} \frac{e^{-uu}}{\sqrt{u}} du = \sqrt{\frac{\pi}{n}}.$$

220.
$$\int_{0}^{\infty} \frac{du}{\sinh(nu)} = \frac{\pi}{2n}.$$

221.
$$\int_{0}^{\infty} \frac{u}{\sinh(nu)} = \frac{\pi^{2}}{2n}.$$

222.
$$\int_{0}^{\frac{\pi}{n}} \sinh(nu) \sinh(nu) du = \int_{0}^{1\pi} \cosh(nu) \cosh(nu) du$$

$$= 0, \text{ if } m \text{ is different from } n.$$

223.
$$\int_{-i\pi}^{+i\pi} \sinh(mu) du = 0.$$

224.
$$\int_{0}^{i\pi} \cosh(mu) du = 0.$$

225.
$$\int_{-i\pi}^{i\pi} \sinh(mu) \cosh(nu) du = 0.$$

226.
$$\int_{0}^{i\pi} \sinh(mu) \cosh(nu) du = 0.$$

227.
$$\int_{0}^{1} \frac{\log u}{1-u} du = -\frac{\pi^{2}}{6}.$$

228.
$$\int_{0}^{1} \frac{\log u}{1-u^{2}} du = -\frac{\pi^{2}}{8}.$$

[239]

230.
$$\int_{0}^{1} \log\left(\frac{1+u}{1-u}\right) \cdot \frac{du}{u} = \frac{\pi^{2}}{4}$$

231.
$$\int_{0}^{1} \frac{\log u \, du}{(1-u^{2})^{\frac{1}{2}}} = -\frac{\pi}{2} \log 2.$$

232.
$$\int_{0}^{1} \frac{(u^{p}-u^{q}) \, du}{\log u} = \log \frac{p+1}{q+1}, \text{ if } p+1 > 0, q+1 > 0.$$

233.
$$\int_{0}^{1} (\log u)^{n} \, du = (-1)^{n} \cdot n !.$$

234.
$$\int_{0}^{1} \left(\log \frac{1}{u}\right)^{\frac{1}{2}} \, du = \frac{\sqrt{\pi}}{2} \cdot$$

235.
$$\int_{0}^{1} \left(\log \frac{1}{u}\right)^{n} \, du = n !.$$

236.
$$\int_{0}^{1} \frac{du}{(\log \frac{1}{u})^{\frac{1}{2}}} = \sqrt{\pi}.$$

237.
$$\int_{0}^{1} u^{m} \log \left(\frac{1}{u}\right)^{n} \, du = \frac{\Gamma(n+1)}{(m+1)^{n+1}}, \text{ if } m+1 > 0, n+1 > 0.$$

238.
$$\int_{0}^{\infty} \log \left(\frac{e^{u}+1}{e^{u}-1}\right) \, du = \frac{\pi^{2}}{4} \cdot$$

UNIVERSITY of CALIFORNIA AT LOS ANGELES LIBRARY Engineering & Mathematical Sciences Library

QA 342 K39t 1921

1921

AUXICIARY. STACK

JUL 72 *

1 2 2

2 hor

1 1

