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PREFACE

THE tables in this book present hyperbolic and circular functions of a complex

variable, both in polar and rectangular coordinates. Such complex functions

have not hitherto been published, except over a very restricted range. They have

important applications in electrical engineering. For instance, it is possible with

their help to find in a few minutes the potential, current and power, at any point

of an alternating-current line-conductor of known constants and terminal condi-

tions; whereas the same problem, to a like degree of precision, without aid from

these functions, and by older methods, would probably occupy hours of labor and

cover several sheets of computing-paper.

Although the principal application of these functions at the present time is in

dealing with alternating-current lines, especially those of either great length or

high frequency; yet it seems likely that other uses will develop for them.

The author desires to acknowledge his indebtedness, for suggestions and help,

to a number of workers, both in mathematical and practical fields; and particu-

larly to Messrs. C. L. Bouton, W. Duddell, E. V. Huntington, F. B. Jewett, John

Perry, H. J. Ryan, and E. B. Wilson.

A. E. K.
HARVARD UNIVERSITY

January, 1914.

I

PREFACE TO THE SECOND EDITION

i IN preparing the second edition of this book, six new tables have been computed.

J These are actually extensions of the tables I to VI already incorporated. It has

been considered advisable to add the new material in new tables at the end of the

volume rather than to recast the original tables in such a manner as to include the

new matter. The new matter has been found necessary in certain departments of

electrical engineering to which complex hyperbolic functions may be advanta-

geously applied.

A. B. K.

HARVARD UNIVERSITY

June, 1920.

442282
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TABLE I. HYPERBOLIC SINES, sinh (p /S)
= r

O.I o-3 0.4

45
46
47
48
49



TABLE I. HYPERBOLIC SINES, sinh = r /y. CONTINUED

0.6 0.7 0.8 0.9 i.o

45
46
47
48
49



TABLE I. HYPERBOLIC SINES, sinh (p IS)
= r {y. CONTINUED

1.4 i-S

45



TABLE I. HYPERBOLIC SINES, sinh (p /5)
= r /% CONTINUED

1.6 1.8 1.9

45



TABLE I. HYPERBOLIC SINES, sinh (p /5)
= r

/jy.
CONTINUED

2-3 2.4 2-5

45



TABLE I.

2.6



TABLE II. HYPERBOLIC COSINES, cosh (p /5)
= r

/_y

0-3 0.4

45



TABLE II. HYPERBOLIC COSINES, cosh (p /8)
= r /T. CONTINUED

0.6 0.7 0.8 0.9

45



TABLE II. HYPERBOLIC COSINES, cosh (p /5)
= r

/jy. CONTINUED

1.4

45
46
47
48
49



TABLE II. HYPERBOLIC COSINES.

1.6 1.7 i



TABLE II. HYPERBOLIC COSINES, cosh (p {8)
= r /_V CONTINUED

2.2 2-3 2.4 2-5

45



TABLE II. HYPERBOLIC COSINES, cosh (p /5)
= r /T. CONTINUED

2.6 2.7 2.9

45



TABLE III. HYPERBOLIC TANGENTS, tanh (p [$)
= r

o-3 0.4 o-S

45
46

47
48

49



TABLE III. HYPERBOLIC TANGENTS, tanh (p 5) = r /j. CONTINUED

0.6 0.7 0.8 0.9

45



TABLE III. HYPERBOLIC TANGENTS, tanh (p IS)
= r y. CONTINUED

i.i 1.2 1.4

45



TABLE III. HYPERBOLIC TANGENTS, tanh (p /8)
= r /. CONTINUED

1.6 1.8 1.9

45



TABLE III. HYPERBOLIC TANGENTS, tanh (p [S)
= r

/jy.
CONTINUED

2.3 2.4 2.5

45



TABLE III. HYPERBOLIC TANGENTS, tanh

2.6 2.7 2.8



sinh





sinh d



1ABLK IV. l^UJK.JK.Jl,V^lliNj

1.6 1.7



sinh 6
1ABLE IV.

2.1







TABLE V. CORRECTING

0.6 0.7

tanhfl
/y. CONTINUED

0.8 0.9

45
46
47



tanh 6





TABLE V.

2.1





TABLE VI

FUNCTIONS OF SEMI-IMAGINARIES. /(p/4) = r fa

p Sinh Cosh Tanh



TABLE VI

FUNCTIONS OF SEMI-IMAGINARIES. /(p/4^) = r /y. CONTINUED

Cosech Sech Coth

0.



TABLE VI

FUNCTIONS OF SEMI-IMAGINARIES. / (p /45) = r /y. CONTINUED

Sinh Cosh

4-5



TABLE VI

FUNCTIONS OF SEMI-IMAGINARIES. /(p/4s) = r /y. CONTINUED

Sinh and cosh Tanh and coth Sech and cosech

6.05



TABLE VI

FUNCTIONS OF SEMI-IMAGINARIES. f (p [*) = r CONTINUED

Sinh and cosh Tanh and coth Sech and cosech

8.30



TABLE VI

FUNCTIONS OF SEMI-IMAGINARIES. f(pl*) = r fa. CONTINUED
;

Sinh and cosh Tanh and coth Sech and cosech

10.55



TABLE VI

FUNCTIONS OF SEMI-IMAGINARIES. / (p /45!)
= r /y. CONTINUED

Sinh and cosh Tanh and coth Sech and cosech

12.80



TABLE VI

FUNCTIONS OF SEMI-IMAGINARIES. /(p/45JO
=

r/jy. CONTINUED

Sinh and cosh Tanh and coth Sech and cosech

15-05



TABLE VI

FUNCTIONS OF SEMI-IMAGINARIES.

p Sinh and cosh Tanh and coth

=
r/jy. CONTINUED

Sech and cosech

17.30



TABLE VI

FUNCTIONS OF SEMI-IMAGINARIES. /(p/45) = r /y. CONTINUED

Sinh and cosh Tanh and coth Sech and cosech

19-55



TABLE VII. HYPERBOLIC SINES, sinh (x + iq)
= u + iv

x = 0.05 x = 0.15

0.0

0.05
O.I

0.15
O.2



TABLE VII. HYPERBOLIC SINES, sinh (x + iq)
= u + iv. CONTINUED

x = 0.25 x =
0.3 = 0.35 x = 0.4 x = 0.45

o



TABLE VII. HYPERBOLIC SINES, sinh (x + iq)
= u + iv. CONTINUED

x = 0.5
= 0.55 x = 0.6 x = 0.65 x = 0.7

o

0.05
O.I

0.15
O.2



TABLE VII. HYPERBOLIC SINES, sinh (x + iq)
= u + iv. CONTINUED

x = 0.75 x = 0.85 x = o.g x = 0.95

o

0.05
O.I

0-15
O.2



TABLE VII. HYPERBOLIC SINES, sinh (* + iq)
= u + iv. CONTINUED

= 1.05
=

1.15

0.05
O.I

0.15
0.2



TABLE VII. HYPERBOLIC SINES, sinh (x + iq)
= u + iv. CONTINUED

=
1.25 x = 1.3 * = i-35 * = 1.4 =

1-45

o



TABLE VII. HYPERBOLIC SINES, sinh (x + iq)
= u + iv. CONTINUED

* =
1.5

=
i-SS 1.6 * = 1.65 x = 1.7

0.05
O.I

0.15
0.2



TABLE VII. HYPERBOLIC SINES, sinh (x + iq)
= u + iv, CONTINUED

=
i-7S x = 1.8 =

1.85 * = 1.9 x = 1.95

o



TABLE VII. HYPERBOLIC SINES, sinh (* + ig)
= u + iv. CONTINUED

x = 2.05 x = 2.15

o

0.05
O.I

0.15
0.2



TABLE VII. HYPERBOLIC SINES, sinh (x + iq)
= u + iv. CONTINUED

q



TABLE VII. HYPERBOLIC SINES, sinh (x + iq)
= u + iv. CONTINUED

x = 2.5
=

2.55 x = 2.6 x = 2.65
=

2.7

o

0.05
O.I

0.15
O.2



TABLE VII. HYPERBOLIC SINES, sinh (x + iq)
= u + iv. CONTINUED

x = 2.75 x = 2.85 x 2.9 x = 2.95

o

0.05
O.I

0.15
0.2



TABLE VII. HYPERBOLIC SINES, sinh (* + iq)
= u + iv. CONTINUED

x = 3.0 x - 3.05 x = 3.10 =
3-iS x = 3.20

o.o



TABLE VII. HYPERBOLIC SINES, sinh (x + iq)
= u + iv. CONTINUED

x =
3- 25 x = 3.30 = 3-35 x = 3-4 x = 3-45

o.o



TABLE VII. HYPERBOLIC SINES, sinh (x + iq)
= u + iv. CONTINUED

x = 3-50
= 3-55 x = 3.60 =

3-65 x = 3.70

0.0



TABLE VII. HYPERBOLIC SINES, sinh (x + iq)
= u + iv. CONTINUED

= 3-75 x = 3.80 * =
3.85 x = 3.90 = 3-95

o.o



TABLE VIII. HYPERBOLIC COSINES, cosh (x + iq)
= u + iv

x = 0.05 x = 0.15



TABLE VIII. HYPERBOLIC COSINES, cosh (x + iq)
= u + iv. CONTINUED

x =
0.25 x = 0.3 x = 0.35 x = 0.4 x = 0.45

o.os
O.I

0.15
0.2



TABLE VTII. HYPERBOLIC COSINES, cosh (x + iq)
= u + iv. CONTINUED

0.5 x = 0.55 x = 0.6 x = 0.65 x 0.7

o

0.05
O.I

0.15
0.2



TABLE VIII. HYPERBOLIC COSINES, cosh (x + iq)
= u + iv. CONTINUED

0.75 0.8 x = 0.85 x = o.g x = 0.95

o

0.05
O.I

0.15
O.2



TABLE VIII. HYPERBOLIC COSINES, cosh (x + iq)
= u + iv. CONTINUED

x = 1.05

0.05
O.I

0.15
O.2



TABLE VIII. HYPERBOLIC COSINES, cosh (* + iq)
= u + iv. CONTINUED

9



TABLE VIII. HYPERBOLIC COSINES, cosh (x + iq)
= u + iv. CONTINUED

*= 1.5
=

i-55 x = 1.6 x = 1.65 x = 1.7

o



TABLE VIII. HYPERBOLIC COSINES, cosh (x + iq)
= u + n>. CONTINUED

?



TABLE VIII. HYPERBOLIC COSINES, cosh (x + iq)
= u + iv. CONTINUED

9



TABLE VIII. HYPERBOLIC COSINES, cosh (* + iq)
= u + iv. CONTINUED

2.25 x = 2.3 x = 2.35 2.4 x = 2.45

o

0.05
O.I

0.15
O.2



TABLE VIII. HYPERBOLIC COSINES, cosh (x + iq)
= u + iv. CONTINUED

q



TABLE VIII. HYPERBOLIC COSINES, cosh (x + iq)
= u + iv. CONTINUED

x = 2.75 x = 2.80 x = 2.85 x = 2.90 x = 2.95

o

0.05
O.I

0.15
O.2



TABLE VIII. HYPERBOLIC COSINES, cosh (* + ig)
= u + iv. CONTINUED

x = 3-0 3-S x = 3.10
=

3-iS
= 3.20

o



TABLE VIII. HYPERBOLIC COSINES, cosh (* + iq)
= u + iv. CONTINUED

= 3-25 x = 3.30 = 3-35 = 3-40 3-45



TABLE VIII. HYPERBOLIC COSINES, cosh (x + iq)
= u + iv. CONTINUED

= 3-50
= 3-55 3.60 x = 3-65 x = 3.70

o



TABLE VIII. HYPERBOLIC COSINES, cosh (* + iq)
= u + iv. CONTINUED

* = 3-75 3-80 3-85 x = 3.90 3-95

o



TABLE IX. HYPERBOLIC TANGENTS, tanh (* + iq)
= u + iv

x = 0.05 x =
0.15 X = 0.2



TABLE IX. HYPERBOLIC TANGENTS, tanh (x + iq)
= u + iv. CONTINUED

x = 0.25
=

0.3 o-35 x = 0.4 x = 0.45

o

0.05
O.I

0.15
O.2



TABLE IX. HYPERBOLIC TANGENTS, tanh (x + iq)
= + w. CONTINUED

o-5
= 0.55 x = 0.6 x = 0.65

= 0.7

o

0.05
O.I

0.15
0.2



TABLE IX. HYPERBOLIC TANGENTS, tanh (x + iq)
= u + iv. CONTINUED

x = 0.75
=

0.85 * = 0.9 x = 0.95

o

0.05
O.I

0.15
0.2



TABLE IX. HYPERBOLIC TANGENTS, tanh (x + iq)
= u + iv. CONTINUED

x = 1.05 x = 1.15

0.05
O.I

0.15
O.2



TABLE IX. HYPERBOLIC TANGENTS, tanh (x + iq)
= u+ iv. CONTINUED

* = 1.25 * = 1.3 * = i-35 x = 1.4 * = 1.45



TABLE IX. HYPERBOLIC TANGENTS, tanh (x + iq)
= u + iv. CONTINUED

-
1.5

=
i-55 x = 1.6 =

1.65 x = 1.7

0.05
O.I

0.15
O.2



TABLE IX. HYPERBOLIC TANGENTS, tanh (x + iq)
= u + iv. CONTINUED

x = 1.75 x = 1.85 x = 1.9 x = 1.95

o

0.05
O.I

0.15
0.2



TABLE IX. HYPERBOLIC TANGENTS, tanh (x + iq)
= u + iv. CONTINUED

x = 2.05 x = 2.15

0.05
O.I

0.15
0.2



TABLE IX. HYPERBOLIC TANGENTS, tanh (x + iq)
= u + iv. CONTINUED

x = 2.25 x = 2.3
=

2.35 2.4 * = 2.45

o

0.05
O.I

0.15
O.2



TABLE IX. HYPERBOLIC TANGENTS, tanh (x + iq)
= u + iv. CONTINUED

=
2.5 * = 2.55 * = 2.6 x = 2.65 x = 2.7

0.05
O.I

0.15
O.2



TABLE IX. HYPERBOLIC TANGENTS, tanh (x + iq)
= u + iv. CONTINUED

x =
2.75 x = 2.80 x = 2.85 = 2.90 x =

2.95



TABLE IX. HYPERBOLIC TANGENTS, tanh (x + iq)
= u + iv. CONTINUED

= 3-0 * = 3-5 x = 3.10 x = 3.20

0.05
O.I

0.15
O.2



TABLE IX. HYPERBOLIC TANGENTS, tanh (x + iq) =u+ iv. CONTINUED

= 3-25 * = 3-30 * =
3-35 x = 3.40 = 3-45

o



TABLE IX HYPERBOLIC TANGENTS, tanh (* + iq) =u + iv. CONTINUED

- 3-50
= 3-55 x = 3.60 x = 3.70

0.05
O.I

0.15
O.2



TABLE IX. HYPERBOLIC TANGENTS, tanh (x + iq)
= u + iv. CONTINUED

= 3-75 x = 3.80 =
3-85 3-90 =

3-95

o



TABLE X. HYPERBOLIC SINES, sinh (x + iq)
= r

/y_

x = 0.05 x = 0.15

o



TABLE X. HYPERBOLIC SINES, sinh (at + iq)
= r /T. CONTINUED

= 0.25 x = 0.3
= 0.35 * = 0.4 x = 0.45

0.25261



TABLE X. HYPERBOLIC SINES, sinh (x + iq)
= r CONTINUED

x = 0.5
=

-55 x = 0.6 * = 0.65

0.05
O.I

0.15
0.2



TABLE X. HYPERBOLIC SINES, sinh (x + iq)
= r /y. CONTINUED



TABLE X. HYPERBOLIC SINES, sinh (* + iq)
= r /r CONTINUED



TABLE X. HYPERBOLIC SINES, sinh (x + iq)
= r /y. CONTINUED

=
1.25 x = 1.3 * = i-3S x = 1.4 x = 1.45

o

0.05
O.I

0.15
O.2



TABLE X. HYPERBOLIC SINES, sinh (* + iq)
= r /V CONTINUED

x = 1.50 X = 1 .60 x = 1.65 a; = 1.70

o



TABLE X. HYPERBOLIC SINES, sinh (* + iq)
= r fy. CONTINUED



TABLE X. HYPERBOLIC SINES, sinh (x + iq)
= r /y. CONTINUED



TABLE X. HYPERBOLIC SINES, sinh (x + ig)
= r fy. CONTINUED

* = 2.25 x = 2.3 * = 2.35 x = 2.4 x = 245



TABLE X. HYPERBOLIC SINES, sinh (x + iq)
= r /y. CONTINUED

x = 2.5
=

2.55 * = 2.6 x = 2.65 x = 2.7

o

0.05
O.I

0.15
O.2



TABLE X. HYPERBOLIC SINES, sinh (x + iq)
= r /y. CONTINUED

x = 2.75
= 2.85 * = 2.9 x = 2.95



TABLE X. HYPERBOLIC SINES, sinh (x + iq)
= r /y. CONTINUED



TABLE X. HYPERBOLIC SINES, sinh (x + iq)
= r /T. CONTINUED

=
3.25 =

3-3
=

3-35 * = 3-4 * = 3-45

o



TABLE X. HYPERBOLIC SINES, sinh (x + iq)
= r {y. CONTINUED

=
3-5

= 3-55 x = 3.6 * = 3-65
=

3-7

o



TABLE X. HYPERBOLIC SINES, sinh (x + iq)
= r fy. CONTINUED



TABLE XI. HYPERBOLIC COSINES, cosh (* + ig)
= r /y

x = 0.05 x, = 0.15

o

0.05
O.I

0.15
O.2



TABLE XI. HYPERBOLIC COSINES, cosh (x + ig)
= r Ay. CONTINUED



TABLE XI. HYPERBOLIC COSINES, cosh (x + iq)
= r /y. CONTINUED



TABLE XI. HYPERBOLIC COSINES, cosh (x + iq)
= r fy. CONTINUED

x = 0.75 =
0.85 x = o.g x = 0.95

o



TABLE XI. HYPERBOLIC COSINES, cosh (at + iq)
= r /y. CONTINUED

x = 1.05 x =
1.15

o

0.05
O.I

0.15
O.2



TABLE XI. HYPERBOLIC COSINES, cosh (x + iq)
= r /T. CONTINUED

x = 1.25 x =
1.3

=
i-3S = 1.4 =

1-45

o



TABLE XI. HYPERBOLIC COSINES, cosh (x + ig)
= r /y. CONTINUED

x = 1.5
= 1-55 x = 1.6 * = 1.65 x = 1.7

o



TABLE XI. HYPERBOLIC COSINES, cosh (* + iq)
= r /y. CONTINUED



TABLE XI. HYPERBOLIC COSINES, cosh (* + iq)
= r /T. CONTINUED

x = 2.05 a; = 2.15

o

0.05
O.I

0.15
0.2



TABLE XI. HYPERBOLIC COSINES, cosh (x + iq)
=

7/7. CONTINUED



TABLE XL HYPERBOLIC COSINES, cosh (x + iq)
= r /T. CONTINUED



TABLE XI. HYPERBOLIC COSINES, cosh (x + iq)
= r /T. CONTINUED

x = 2.75 x =.2.85 * = 2.9 x = 2.95

9



TABLE XL HYPERBOLIC COSINES, cosh (x + iq)
= r /y. CONTINUED



TABLE XI. HYPERBOLIC COSINES, cosh (* + iq)
= r y. CONTINUED

= 3-25 *' = 3-3
=

3-35 x = 3.4 = 3-45

9



TABLE XI. HYPERBOLIC COSINES, cosh (x + iq)
= r /y. CONTINUED



TABLE XL HYPERBOLIC COSINES, cosh (x + iq)
= r /r CONTINUED

x = 3-75 * = 3-
=

3-8S =
3-95



TABLE XII. HYPERBOLIC TANGENTS, tanh (x + iq)
= r



TABLE XII. HYPERBOLIC TANGENTS, tanh (x + iq)
= r

* = 0.25 x = 0.3
= o-3S x = 0.4

CONTINUED

= 0.45

q



TABLE XII. HYPERBOLIC TANGENTS, tanh (* + *?)
= r /y. CONTINUED



TABLE XII. HYPERBOLIC TANGENTS, tanh (x + ig)
= r Ay. CONTINUED

x = 0.75 x = 0.85 x = o.g x = 0.95



TABLE XII. HYPERBOLIC TANGENTS, tanh (* + iq)
=

x = 1.05 * = 1.15

1



TABLE XII. HYPERBOLIC TANGENTS, tanh (x + iq)
= r CONTINUED



TABLE XII. HYPERBOLIC TANGENTS, tanh (* + iq)
= r /y. CONTINUED



TABLE XII. HYPERBOLIC TANGENTS, tanh (* + iq)
= r fa. CONTINUED

=
1.75 x = 1.8 * = 1.85 * = 1.9 x = 1.95

9



TABLE XII. HYPERBOLIC TANGENTS, tanh (* + iq)
- f CONTINUED

x =
2.05 * = 2.15

o.os
O.I

0.15
O.2



TABLE XII. HYPERBOLIC TANGENTS, tanh (* + iq)
= r /y. CONTINUED



TABLE XII. HYPERBOLIC TANGENTS, tanh (x + iq)
= r fa. CONTINUED



TABLE XII. HYPERBOLIC TANGENTS, tanh (x + iq)
-

r^y. CONTINUED

= 2.75 = 2.8 * = 2.85 x = 2.9 x = 2.95

o

0.05
O.I

0.15
O.2



TABLE XII. HYPERBOLIC TANGENTS, tanh (x + iq)
= r CONTINUED



TABLE XII. HYPERBOLIC TANGENTS, tanh (x + iq)
= r % CONTINUED

=
3-25 =

3-35 * = 3-4 * = 3-45

o



TABLE XII. HYPERBOLIC TANGENTS, tanh (x + iq)
= r /r CONTINUED

=
3-5 x =

3-55 * = 3-6 x = 3-6S
=

3-7

o



TABLE XII. HYPERBOLIC TANGENTS, tanh (x + iq)
= r /y. CONTINUED



TABLE XIII. FUNCTIONS OF 4 + ig. f (4 + ?)
= +



TABLE XIII. FUNCTIONS OF 4 + iq. / (4 + iq)
= r



T'ABLE XIV. SEMI-EXPONENTIALS, and logw

e* . e*
x -

log
-



TABLE XIV. SEMI-EXPONENTIALS. - and loglo (
-

). CONTINUED

* 7 log"> 7



FABLE XIV. SEMI-EXPONENTIALS.
^

and Iog i0 (-\ CONTINUE



TABLE XIV. SEMI-EXPONENTIALS. - and Iog 10 ( ^ CONTINUED

X



TABLE XV

REAL HYPERBOLIC FUNCTIONS. / (x + io) = u + to

Sinh0 Cosh0 Tanh0 Cothe Sech0 Cosech 6

o.oo



TABLE XV

REAL HYPERBOLIC FUNCTIONS. / (x + io) = u + io. CONTINUED

e



TABLE XV

REAL HYPERBOLIC FUNCTIONS. / (x + io)
= u + io. CONTINUED

e



TABLE XV

REAL HYPERBOLIC FUNCTIONS. / (x + io)
= u + to. CONTINUED

e Sinh0 Cosh0 Tanh0 Coth Sech 6 Cosechfl 6

1.50



TABLE XV

REAL HYPERBOLIC FUNCTIONS, f (x + io) = u + io. CONTINUED

e



TABLE XV

REAL HYPERBOLIC FUNCTIONS. / (x + to) = u + io. CONTINTJED
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INTRODUCTION
THE Tables in this book are designed primarily for presenting hyperbolic functions

of a complex variable either in the rectangular coordinate form of that variable (x -f- iy)

or the polar coordinate form (p/8). They are also designed secondarily for presenting
circular functions of a complex variable. A few formulas are added as aids to the

conversion of such functions. The most extensive range offered is in Tables VII to

XIV inclusive, between which, the functions sinh (x + iy), cosh (x + iy), tanh (x -f iy),

expressed in the result either in rectangular coordinates u + iv or in polar coordinate

quantities r /y, may be obtained between the limits of o and 10 of x, and between the

limits of o and for y. It is shown, moreover, to be an easy matter to extend the

range of x beyond the offered range of 10, should such an extension be required.

The practical need for tabulated values of hyperbolic functions of (x + iy) beyond the

range of x = 10 appears to be so small that any such extension is left to the reader.

As the author's applications for financial assistance in the computation of the Tables

were unsuccessful, the steps in x and y (0.05 and 0.07854 respectively) are larger than

were originally intended; i.e., for reducing the work of the user to the lowest practic-

able limits. Consequently, interpolation must ordinarily be resorted to, when three or

more significant digits are needed in the results. Such interpolations require an appre-
ciable amount of time to effect in two dimensions; i.e., for both x and y. In order to

render such interpolation unnecessary for ordinary engineering purposes, where three, or

at most four, significant digits may be needed, a separate atlas of 23 large-scale charts,

45 cm. X 45 cm. over ruled areas, has been prepared, and is published as an adjunct

to these Tables. The necessary interpolation can very swiftly be made on the charts,

by inspection.

COMPLEX QUANTITIES
The following brief outline of complex quantities is offered in view of their funda-

mental importance in connection with the Tables, for the assistance of those who have

studied elementary mathematics, but who may not have become familiar with com-

plex numbers. For a more comprehensive discussion of complex quantities, the reader

must be referred to special treatises on the subject.

Ordinary numerical quantities, or the numbers dealt with in ordinary arithmetic,

may be considered to range between zero and either positive or negative infinity, by

indefinitely small gradations. Such numbers may be represented geometrically by

distances, in either direction, from a zero point on an infinite straight line. Thus in

Fig. i, we may consider that the straight line XOX extends from minus infinity on

the left, to plus infinity on the right, O being the zero point. The point x\. would then

represent + i, and so on. That is, the number + i may be regarded as represented

on the line XOX either by the position of the point xi with respect to the zero point 0;
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or, as the vector Ox\; i e., the straight line drawn from the origin O to the point x\ and

forming a part of the reference line XOX. Under these assumptions, the ordinary

numbers of arithmetic may be represented geometrically as vectors; but such vectors

are confined to a single straight-line direction from O towards .X" for positive numbers,
and from O towards X for negative numbers.

Complex quantities, or complex numbers, cannot be completely represented by
reference to a single direction, or to vectors along one and the same straight line. They
may, however, be represented geometrically by the position, in an infinite plane, of a

movable point with respect to a fixed point as origin. Thus, in Fig. i, the plane XOY
is the plane of reference, and the fixed point is the origin. Then any point PI in the

plane represents a complex number, and any complex number may be represented by
a point on the plane.

-Y

2 X

FIG. 2. Plane Vector 2.236 e"-106 or

FIG. i. Complex quantity i + a. designated by 2.236 763. 26'.

A complex number may be specified either in rectangular coordinates, or in polar

coordinates, as may be preferred. Thus, the same vector OP\ is represented in Fig. i

to rectangular coordinates, and in Fig. 2 to polar coordinates. In Fig. i, the X axis

XOX passing through the origin O is the fundamental reference axis, and the Y axis

YOY, perpendicular thereto in the reference plane, immediately follows. Then the

point Pi, measuring + i along OX, and -f- 2 along OF, may be defined by the expres-

sion (i + 22), where the symbol i signifies measurement along 'the subordinate axis.

It is shown in mathematical treatises that * = V i. The vector OP\ of Fig. i may
therefore be expressed as (i + V~ 1-2) and a vector from to any point in the plane

may be represented by x + V~i y x + *3S where x and y may have any positive or

negative numerical values, including zero.

In pursuance of time-honored terminology, the axis XOX is sometimes called the

"real" axis, and YOY the "imaginary," axis; so that the ^-component of a

complex number becomes the
"
real component," and the ^-component the "

imaginary

component." The symbol i still stands for the imaginary component. In mathematics

as applied to electrical engineering, the symbol i commonly designates electric current-

strength, and so, in order to prevent the possibility of confusion, the symbol j is

frequently substituted as the sign of the imaginary. Under such a convention, the

plane-vector, or complex quantity, OP\, would be represented as i -\- j 2. As, however,
in this book we necessarily consider complex quantities from a broader viewpoint than

that offered by electrical engineering, we shall use the symbol i to denote the imaginary

component, perpendicularly rotated with respect to the fundamental X axis.
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Complex quantities may also be expressed in polar coordinates, as in Fig. 2, where

the fundamental reference axis OX is drawn in the positive direction in the reference

plane, from the origin 0, and the circular angle 5i is measured in the positive or counter-

clockwise direction from OX to OP\. The vector OPi is then specified in polar co-

ordinates by its length pi and by its angle 5i. The length p\ is called the modulus of the

vector, and the angle 81 is called the argument. This argument may be expressed in

circular radians, in degrees-minutes-seconds, quadrants, or any other recognized unit

of circular angle. Thus, in Fig. 2, the vector OPi may be represented to polar co-

ordinates symbolically by pi/8\ or, using numbers, by 2.236/63. 26', where 2.236 is

the modulus to the same scale of linear measure as in Fig. i, and 63. 26' is the argument.
If one and the same complex quantity be expressed both in rectangular and polar

coordinates, as follows:

x + iy
= p/8 (i)

it is evident that x = p cos 8, y = p sin 5, ;y/a;
= tan 8, and p = V x2 + y

2
,
relations which

enable the coordinates to be changed, at will, from one form to the other.
'

Thus in

Figs i and 2, xi = i, yi
=

2, p\ VJ =
2.236, and 1

= tan -1
(2)

= 63.26
/

.

-X

FIG. 3. Complex quantity 2 i. FIG. 4. Plane-Vector 2.236 e*
3-608

. or 2.236^206^34'.

Similarly, Figs. 3 and 4 represent the complex quantity or plane vector OPi to rec-

tangular and polar coordinates respectively. Here x% = 2, yz
=

i, pz
= Vs =

2.236

and 82 = 206. 34'.

ADDITION OF COMPLEX QUANTITIES

One vector quantity is added to another, by drawing it in the reference plane from

the extremity of the latter as origin, and then drawing a vector from the origin to its

-X

-Y

FIG. 5. Addition of two complex quantities

(x + 2) + (- 2 - * i) = - i + i.

FIG. 6. Complex Addition, Polar coordinates.

Pl/Si +pJ/5i!
=

p3/53

2.236/63 ".26' + 2.236/2o6.34' = x.414/135*

Op + pP = OP

free end. The last named vector is the required sum. Thus, in Fig. 5, the complex

quantity OP2 2 ii of Fig 3 is added to the complex quantity OP\ =1+12
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of Fig i, giving the resultant vector OP = i + ii. Fig. 6 shows the corresponding

operation with polar coordinate vectors. Here OP2
= 2. 236/206.34' of Fig. 4 is added

to OPi = 2. 236/63. 26' of Fig. 2, to produce OP = 1.414/135 = p3 /8z of Fig. 6.

On the drawing-board, the graphic process of adding vectors is as easily effected

when they are expressed in polar as in rectangular coordinates. But the arithmetical

addition is much more easily made with rectangular coordinates. The rule is: find the

vector sum by taking first the sum of the reals, and then the sum of the imaginaries; or

+ xz + . . . -f *)(xi + iyj + (xz + iyz) + - . + (xn + fyB) =

+ i (y* + y* + . . . + ?) = 2x
In the case of Figs. 5 and 6:

(i + ) + (- 2 -
)
= (+ i - 2) + i(2

-
i)
= - i + ii =

SUBTRACTION OF COMPLEX QUANTITIES

(2)

/i3S.

Reversing the sign of a rectangular complex quantity means reversing the sign of

both its real and imaginary components. Reversing the sign of a polar complex quan-

tity means changing its argument by 180.

To subtract one complex quantity A from another B, reverse the sign of A, and then

add it thus reversed to B, by the rules of addition.

Y

o

FIG. 7. Complex Subtraction

(i + 12) - (- 2 -*i) .. 3 +*3 =OP.

FIG. 8. Complex Subtraction, Polar Coordinates

pi /Si p-i/b-i
= p3/5a

2.236 763".26'
-

2.236/206^34'
= 4.243/45"

Opt + piP = OP.

In Figs. 7 and 8, the vector Pz of Figs. 3 and 4 is subtracted from the vector P\ of

Figs, i and 2. In Fig. 7, we have

OPi - OP2
= OP.

(i + *2)
- (- 2 -

*l) =
(i + *2) + (2 + *l).

=
3 + *3-

In Fig. 8, pi/3i p2/52
=

psAj

2.236/63. 26^ 2. 236/206.34' = 2. 236/63. 26' + 2.236/26. 34'.

= 4.243/45.

Here again the process of complex subtraction, which is only a slight modification of

complex addition, is very easily made on the drawing board by purely geometric proc-

esses, whether the quantities are rectangular or polar. If, however, the process is to

be conducted algebraically, it is much more easily conducted with rectangular coordinates.
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MULTIPLICATION OF COMPLEX QUANTITIES

Two rectangular complex quantities may be multiplied algebraically by the ordinary
rules of algebra, remembering that i

2 = i. Thus

(*i + fyi) (*2 + iyz)
=

(xi xz - yi y2) + i(xi y2 + xz yi). (3)

In Fig. 9, the vector OP\ of Figs, i and 2 is multiplied by the vector OP2 of Figs. 3

and 4. The product is the broken line OPz.

For (i + M) X (- 2 - ii)
= (- 2 + 2)

-
i(i + 4) = -

*5.

FIG. 9. Product and Quotient of Complex Quantities

Rectangular Coordinates

(i +.2) X(-2 -ii) = -is =OP3

(-2 +11) -M+i + 12) = -o.8+to.6 = OP4

FIG. 10. Product of two Complex Quantities, Polar Coordinates

2.236 763. 26' X 2.236/2o6.34' = 5 /270 = OPs

If the two quantities to be multiplied are polar; then

Pi /Si X PZ/SZ = Pi Pz/8i + (4)

Or the rule is form the product of the moduli and add the arguments. Thus in Fig. 10,

OPi = Vj/63.26' and OP2
= Vs/2o6^3j/ /. OP3

= 5/27o.oo
/

.

RECIPROCAL OF A COMPLEX QUANTITY

The reciprocal of a rectangular complex quantity can be reduced to the standard

algebraic form, by multiplying both numerator and denominator by the same complex

quantity with reversed imaginary. Thus:

i i X (x
-

iy) _ x - iy _ ( x \ _ .f y \ ,.
1 yt.2 / V /L-2 _J /t2 / \J/

*2 +x + iy (x + iy) (x
-

iy)

For example if x + iy
= i + 12,

I _ I /I J2\ _ !_

1+^2 I + 12 \ I 12 ) I

12 I 12= = 0.2
+ 4 5 5

The reciprocal of a polar complex quantity is obtained by taking the reciprocal of

its modulus, and reversing its argument. That is

= -I- 8 =
p p

Ci57]
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For example:

V5/63. 2 6' VS

QUOTIENT OF COMPLEX QUANTITIES

To find the quotient of a complex quantity A divided by another B, form the re-

ciprocal of B and then multiply this reciprocal by A .

Thus to find (x\ + iyi)/(x2 + fy2)

/ x

For example:
\ __ 2 ii __ 2 ii /i i:

\ i + *2 i -f- 12 \ i i'.

_ (- 2 - 2) + t( o , ,= o.o + i o.o.

Thus, in Fig. 9,

The quotient of two polar complex quantities is formed by taking the quotient of

their moduli and the difference of their arguments. That is

P2/02 P2 /E
'

E /ox
-=7= = /fc

~
Si. (8)

Pi/5i Pi

Thus in Fig. 1 1 we have the quotient of OP2 of Figs. 3 and 4 divided by OPi of Figs,

i and 2, or

^ = i /I 43.o8
/

.

* A'

FIG. n. Quotient of two Complex Quantities,

Polar Coordinates.

8.836 /2o6.34
>

-5- 2.236 /63.26' = I.o/i43.o8' = O?4

Pz ^83

It is thus evident that in order to find either the sums or the differences of complex

quantities, it is desirable to have them expressed in rectangular coordinates; while,

on the other hand, in order to find products, reciprocals, or quotients, it is preferable

to have them expressed in polar coordinates.
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POWERS AND ROOTS OF COMPLEX QUANTITIES

It will be evident from the foregoing that

(p/8)
n = p

n
/n8: and \fpjl = y~p/8/n (9)

operations that are readily executed on polar complex quantities.

CIRCULAR AND HYPERBOLIC FUNCTIONS GEOMETRICALLY COMPARED

Since the Tables in this book are adapted for the evaluation of both circular and

hyperbolic functions of a complex variable; that is, either of sin (a; -f- iy), cos (it + iy)

and tan (x + iy); or of sinh (x + iy), cosh (x + iy) and tanh (x + iy), it may be

advisable to consider some propositions in the comparative geometry of the circular

and hyperbolic functions, both real and complex.

REAL CIRCULAR AND HYPERBOLIC FUNCTIONS

The geometry of the real circular functions sin x, cos x and tan x relates, as is well

known, to the motion of a radius vector over a circle. The geometry of the real hyper-
bolic functions sinh x, cosh x and tanh x relates to the motion of a radius vector over a

rectangular hyperbola. In Fig. 12, A b c d E g is a circle x* + y
2 =

i, assumed to have

unit radius, and center 0. As the radius vector OA rotates in the positive or coun-

terclockwise direction about the center 0, it describes a circular sector such as AOE,
and a circular angle /3, the tangent Ef being always perpendicular to the radius

vector OE. The magnitude of the circular angle /3 may be defined in either of two

ways, namely:

(1) By the ratio of the circular arc length 5 described during the motion, by the

vector's terminal E, to the constant length p of the radius vector.

(2) By the area of the circular sector AOE swept out by the radius vector during
the motion.

According to definition (i), if the radius vector generates any infinitesimal angle

dfi circular radians, by moving its terminal over an infinitesimally small circular arc ds

then <//3
= = circular radians (10)

P i

since the constant radius vector p has been taken equal to unity Consequently, in

passing over any circular arc from distance s\ to distance s%, through a distance s% s\ = s
y

the total circular sector and circular angle generated will of course be:

/ds
=

($2 si)
= s circular radians (n)

or the angle /3, as is well known, becomes equal to the length of the circular arc de-

scribed, when expressed in circular radians.

According to definition (2), if in Fig. 12, the radius vector of unit length moves from

the initial position OA to any position such as OE, it will sweep out a circular sector OEA.
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If the arc AE1 be measured in the negative or clockwise direction equal in length to the

arc AE, then it is well known that the area of the double sector EOE1 shaded in Fig. 12,

is equal to /3 units of area because the area of the whole circle is manifestly TT units,

Consequently, the magnitude of
2/3

and the shaded area is that of the whole circle.
27T

the angle (3 expressed in circular radians is numerically twice the area of the circular

sector AOE which it covers when the circle has unit radius.

FIG. 12. Circular Sector and Real

Circular Functions.

FIG. 13. Hyperbolic Sector and Real

Hyperbolic Functions.

Turning now to the hyperbolic case, let A b c d E Fig. 13, be an arc of a rectangular

hyperbola x2
y
2 =

i, assumed to have unit semi-diameter OA, and center 0. As

the radius vector OA rotates in the positive or counterclockwise direction with center O,

it describes a hyperbolic sector AOE*, and also what may conventionally be called

for convenience a
"
hyperbolic angle

"
0.* The tangent Ef to the path of the moving

terminal E always makes a circular angle /3 with the Y axis; or a circular angle of 2/3

with a perpendicular to the radius vector. The magnitude of the hyperbolic angle 6

may be denned in either of two ways; namely:

(1) By the ratio of the hyperbolic arc length s described during the motion, by the

terminal E, to the integrated mean length of the varying radius vector.

(2) By the area of the hyperbolic sector AOE Fig. 13, swept out by the radius vector

during the motion.f

According to definition (i), if the variable radius vector p generates any infinitesimal

hyperbolic angle dd by moving its terminal over an infinitesimally small hyperbolic arc

ds
;
then |

J*

hyperbolic radians (12)
ds

dd = -

P

* It should be pointed out that a "
hyperbolic angle

"
in the sense above denned is not the opening be-

tween two lines intersecting in a plane; but a quantity otherwise analogous to a circular angle, and the

argument x of the functions sinha;, cosh a;, tanh#, etc. The use of the term "
hyperbolic angle

"
can only

be justified by its convenience of analogy.

t GreenhilFs
"
Differential and Integral Calculus," 1896, p. 108.

I A demonstration of this proposition has been given by the author in
" The Application of Hyperbolic

Functions to Electrical Engineering Problems." Appendix L, p. 250. University of London Press, IQII.
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Consequently, in passing over any hyperbolic arc from distance Si to distance 53 through
a distance s2 Si = s

,
the total hyperbolic sector and hyperbolic angle generated will be

6 / ds = s_

p~ pi
hyperbolic radians (13)

where p
1

is the integrated mean value of p as defined by the last equation. Any in-

finitesimally small angle, whether circular or hyperbolic, is therefore expressed in corre-

ponding radian measure by one and the same term ds/p ;
but whereas, in the case of

circular angles, the constancy of the radius vector makes the integral simply s/p, in the

case of hyperbolic angles, the variation of the radius vector makes the integral more

complex. Fig. 14 represents a circular angle of i radian in five sections of 0.2 radian

each; while Fig. 15 represents a hyperbolic angle of i radian correspondingly divided.

The integrated mean radius vector of the full sector AOF intersects the curve in the

point/, the total length of the arc A B C D E F being 1.3167 units.

SINES, COSINES AND TANGENTS OF CIRCULAR AND HYPERBOLIC ANGLES

If, with unit radius, we draw both a circular and a rectangular hyperbolic sector,

as in Figs. 12 and 13, and take OA as the initial line in each; then for any position

FIG. 14. Circular Sector of i Radian Subdivided into Five

Sectors of 0.2 Radian each.

FIG. 15. Hyperbolic Sector of i Radian Subdivided into

Five Sectors each of o. 2 Radian.

of the radius vector such as OE, we shall have in either case the following magnitude

conditions:

The sine will be equal to the length of the perpendicular from the terminal of the

radius vector on to the X axis.

The cosine will be equal to the length of the intercept on the X axis made by the

above-mentioned perpendicular.

The versed sine will be equal to the length XA, Fig. 12, and AX, Fig. 13, between the

intercept on the X axis, and the horizontal unit radius.
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The tangent will be equal to the length of the perpendicular from the radius vector

(or radius vector produced) on to unit radius point of the X axis. Thus in

Fig. 12, sin/3 = XE.

Fig. 13, sinh 6 = XE.

Fig. 12, cos /3
= OX.

Fig. 13, coshfl = OX.

Fig. 12, tan/3 = At.

Fig. 13, tanh = At.

Whereas the values of sin /3, cos /3 and tan /3 fluctuate periodically in sign as /3 increases

from o to a
,
the values of sinh 6, cosh 6, and tanh 6 do not change sign, the graphs of

the real hyperbolic functions being indicated in Fig. 16, as far as 6 =
3.0.

i
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BISECTION or CIRCULAR AND HYPERBOLIC ANGLES

If we take any circular angle BOC Fig. 17, we may of course bisect this angle in either

of two ways:

FIG. 17. Bisection of a circular sector in the well-known

manner by a radius vector through the intersection of ter-

minal tangents, or through the midpoint of the chord be-

tween terminal points.

(i) By drawing tangents bb, cc, to the curve at the points B, C, respectively, and

drawing the straight line Od from the center O through the point of intersection d.

FIG. 18. Bisection of a hyperbolic sector by a radius vector through the intersection of

terminal tangents, or through the midpoint of the chord between terminal points.
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(2) By drawing the chord BC, and marking the radius OD through the midpoint 8

of this chord.

Similarly, if we take any hyperbolic angle BDC Fig. 18, between the points B and C
of a rectangular hyperbola, we may bisect this angle in either of two ways:

(1) By drawing tangents bb, cc, to the curve at the points B, C, respectively, and

drawing the straight line Od from the center O through the point of intersection d.

(2) By drawing the chord, BC, and marking the radius OD through the midpoint
5 of this chord.*

COMPARATIVE GEOMETRY OF COMPLEX CIRCULAR AND HYPERBOLIC FUNCTIONS

We have seen that the real circular functions sin x, cos x, may be derived from a

circle diagram, and that the real hyperbolic functions sinh x, cosh x, may be similarly

derived from a rectangular hyperbola diagram. We shall see that both the complex
circular functions sin (x + iy), cos (x + iy), and the complex hyperbolic functions

sinh (x + iy), cosh (x -\- iy), may be derived from a combination circle and hyperbola

diagram.

COMPLEX CIRCULAR FUNCTIONS

CONSTRUCTION FOR sin (x iy), AND FOR sin"1
(u in)

In Fig. 19, take OA = i along the negative side of the Y axis. From OA as initial

line, mark off the circular angle x = AOB. From OB as initial line, mark off the hyper-
bolic angle y and its sector BOD. Let C be the foot of the perpendicular from D on

OB produced. Drop perpendiculars from C and D on the axis of reals OX, at c and

d respectively. About c as center, rotate cd positively through 90 to cZ. Then will

* This proposition is proved in GreenhilFs
"

Differential and Integral Calculus," Macmillan & Co., 1896,

page 67, Fig. 16, for the particular case when the angle AOB, in our Fig. 18, is zero. The demonstration of

proposition (i) for the general case of Fig. 18 is not difficult; but that found by the author is rather lengthy.

The demonstration of the general proposition (2) is, however, brief and direct, as follows:

Let 0i be the hyperbolic angle of the sector AOB.
Let 02 be the hyperbolic angle of the sector AOC.

Then it is required to show that
S = hA_ = hA =
Of OA i

But from an inspection of the Figure,

Be = sinh 0i, Cg = sinh 02,

Oe = cosh 0i, Og = cosh 02,

eB + gC sinh 0i + sinh 02
so that

2 2

Oe -4- Og cosh 0i + cosh 02
and Of =

2 2

_
jft _ sinh 0i -\- sinh 02

Of~ cosh 0i + cosh 02

io

tions," 1909, p. XIV, Formula (49).

(n I rt \

which is a known equivalent expression for tanh ,
see Becker and Van Orstrand's "Hyperbolic Func-
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the complex vector OZ = Oc + icd be the required circular sine of the complex angle

x + iy radians. In the case represented, sin (i + i i)
=

1.299 + ^0.635 = 1.446

/26.o5. As y varies, Z moves along the hyperbola bZ :

X2 Y*

sin2 x cosz x

and as x varies, Z moves along the ellipse :

X2 Y2

= i (14)

cosh2
y

'

sinh2
y

Both the hyperbola and the ellipse have as common foci FF', the points X =
i, F = o.

7

FIG. 19. Constructions for sin (* + iy) and sin-1 (u =*=
I'D).

From the same figure, we have also, if Oc = u and cZ =
iv,

sin"1
(u iv)

= sin"1 Ob i cosh"1 OE
/(IT uY + v2 - Vd -

)
2 + v2 \

2 /

= sn

i (16)

^ FZ ~ F 'Z A KV FZ + F 'Z
since Ob = and OE =

CONSTRUCTIONS FOR cos (x + iy) AND FOR cos"1
(u + iv)

In Fig. 20, take OA as unit distance along the real or X axis, in the positive direction.

From OA as initial line, describe the circular angle x, or the circular sector AOB of area

x/2. On OB as initial line, describe the hyperbolic angle y, or the hyperbolic sector

area BOD of area y/2. Let C be the foot of the perpendicular from D on OB produced.

Drop perpendiculars from C and D on the X axis at c and d respectively. With c as

center, rotate the line cd in the positive direction through 90 into the position cZ; so

that ~cZ = i.~cd. Then the complex quantity OZ = Oc + *'.cd will be the required

circular cosine of the complex angle (x + iy) radians.
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In the case represented, cos (i + i i)
= 0.834 * 0.989 = i.293\49.866. As y

varies, Z moves along the hyperbola bZ defined by

X2 Y2

= i

cos^ x sirr x

and as x varies, Z moves along the ellipse ZE, defined by

(18)
cosh2

y sinh2
y

Both the hyperbola and the ellipse have as common foci FF', the points X = i
,
Y = o.

FIG. 20. Constructions for cos (x == iy) and cos"1
( in).

From Fig. 20 we obtain:

cos"1 OZ = cos"1

(u iv)
= cos"1 Ob =F cosh"1 OE

E2 1
(19)

snce = FZ ~ F 'Z
and OE =

COMPLEX HYPERBOLIC FUNCTIONS

CONSTRUCTIONS FOR sinh (x iy) AND sinh"1
(u ')

In Fig. 21, take CM as unit length along the real or X axis in the positive direction.

From OA as initial line, describe the circular angle y, or the circular .ector AOB of

area y/z. From OB as initial line describe the hyperbolic angle x, or the hyperbolic
sector BOD of area x/2. Let C be the foot of the perpendicular from D on OB pro-
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duced. Drop perpendiculars from C and D on the F axis at c and d respectively. With

c as center, rotate the line cd negatively, or clockwise, through 90 to cZ. The

complex quantity OZ = Oc i.cd will be the required hyperbolic sine of the complex

angle (x + iy) radians.

In the case represented, sinh (i + * i)
= 0.635 + * I - 2 98 5

= 1.446/63.95. As x

varies, Z moves along the hyperbola Zbz:

F2 X2

= i

sin" y cos" y

and as y varies, Z moves along the ellipse XExy
F2 Y2
7 i - V

(20)

(21)
cosh2 x sinh2 #

The hyperbola and ellipse are confocal at the points F and/ defined by X =
o, F = i.

FIG. 21. Constructions for sinh (* * iy) and sinh"1 (u =t in).

From Fig. 21 we also obtain

sinh"1
( w) = sinh~l

(cZ Oc) = cosh-1 OE * sin"1 Ob.

= cosh"1

db i sin"1 (22)

since
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CONSTRUCTIONS FOR cosh (x -f- iy) AND cosh"1
(u + iv)

In Fig. 22, take OA as unit distance along the real or X axis in the positive direction.

From OA, as initial line, describe the circular angle y, or the circular sector AOB of area

y/z. From OB, as initial line, describe the hyperbolic angle x, or the hyperbolic sector

BOD of area x/2. Let C be the foot of the perpendicular from D on OB produced.

Drop perpendiculars from C and D on the X axis at c and d respectively. About c, as

FIG. 22. Constructions for cosh (x == jy) and cosh ' (u MI).

center, rotate the line cd negatively, or clockwise, through 90 to cZ
;
so that cZ = i.cd.

Then the complex quantity OZ = Oc i.cd will be the required cosine of the complex

angle (x + iy) radians.

In the case represented, cosh (i + i i)
= 0.834 + 20.989 = 1.293 749. 866. As x

varies, Z moves along the hyperbola Zbz

X2

cos2
y sin2

}/

As y varies, Z moves along the ellipse EZez

F2

= i.

i = i.

(23)

(24)
cosh2 x sinh2 x

The ellipse and hyperbola are confocal at the points A, a, denned by X =
i, Y = O.
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From the same figure. If Oc u and cZ = iv

cosh-1
(u iv)

= cosh" 1

(Oc i.cZ)
= cosh-1 OE i cos"1 C

_i_ ~_\
* cos" 1

= cosh" 1 V(l + ")
2 + ^ + V(l - U)

2

(25)

CONSTRUCTIONS FOR tan (x fy) AND tan-1 (u *)

In Fig. 23, lay off along the X axis a point A distant tan x from 0, and also a point
B such that O.5 = cot x. Draw a circle through A and 5 having its center on OX
at C. The distance OC measures cot 2x and the radius of the circle is cosec 2X. Any
circle thus drawn will intersect the Y axis at two points e and / which are at unit dis-

FIG. 23. Constructions for tan (* iy) and tan~' (u

tances from 0. Then lay off the Y axis two points a and b, distant respectively tanh y
and coth y from O. With center c on the Y axis, draw a circle through a and b. The

distance Oc will be coth 2y, and the radius of the circle will be cosech 2j. Let Z be

the point of intersection of the two circles. Then OZ is the required tangent of (x + iy).

If x is kept constant but y is varied, the point Z moves over the circle AZB. If on the

other hand y is kept constant, but x is varied, Z will move around the circle aZb and

will make one complete revolution for each increase of TT units in x.
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In the case represented, tan (i + i i)
= 0.2718 + i 1.084 = 1.118/75. 916.

From Fig. 23 it is evident that the angle AeO is equal to x, and angle eAO is thus

the complement of x. Hence half the angle between r\_ and r2 is the complement of x.

Moreover ;y
=

loge V^/

tan-1 (u iv)
=

- tan-

Therefore, if OZ = u +
1

( ^ + tan- 1

\ v i

(26)

CONSTRUCTIONS FOR tanh (x iy) AND tanh- 1

(w n>)

In Fig. 24 mark off on the axis of reals xOX two points T and -X" such that the former

is distant by tanh x and the latter by coth x from the origin O. Find the point C mid-

way between T and X. Incidentally, this point will be distant coth 2X from O. With

FIG. 24. Constructions for tanh (x =*=
'y) and tanh 1 (w =*= i)

center C and radius CT = CX = cosech 2x, draw the circle TXZ. Mark off on the

axis of imaginaries yOY, two points t and y such that the former is distant by tan y

and the latter by cot y from the origin O. Find the point c midway between them.

Incidentally, this point will be distant cot 2y from O. With center c and radius ct =

cy = cosec zy, draw the circle ByAt. This circle will cut the axis of reals at two points

A and B distant each one unit from O. It will also intersect the circle TXZ perpen-

dicularly at Z. Connect OZ. This vector OZ is the required hyperbolic tangent of

the complex angle (x + iy) radians.
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In the case represented, tanh (i -f- i i)
= 1.084 + 20.2718 = 1.118/14.084. As x

varies, Z moves along the circle AtB. As y varies, Z m^ves along the circle TZX,
performing one complete revolution for each TT units of increase in y,

From the same Figure, if OZ u iv = op ipZ, we have tanh"1
(u iv)

=
x iy.

In this case x = loge Vri/ r2

or * = $log.(ri/ra). (27)

and y = - - where a is the circular angle at Z between the radii vectores r, and r2 .

2

Also

Hence

DEGREE OF PRECISION OF TABLES

INTRODUCTION

If a numerical quantity, freed from decimals, is correctly expressed to within say
i part in 1000; i.e., i part in io3

,
then this degree of precision may conveniently be

described as precision of the third order. In general, therefore, if a numerical quantity
be correctly expressed to within i part in ion

,
where n is any real positive number, its

precision is of the nth order. The weekly statement of the financial assets of a bank

might be expressed as $186,257,361.26 which, assuming that it is to be taken as being

numerically correct to a single cent, represents 18,625,736,126 cents, an apparent

precision of i in lo10 '27
,
or of the 10.2 7th order. Physical and astronomical precisions

are less ostensibly pretentious, however, and rarely exceed the 6th order. Engineering

computations are commonly satisfied with a precision of the third order; although,
on rare occasions, the order required may be the highest that physics can attain.

The degree of precision corresponding to retaining a specified number of significant

digits correct within unity, in Tables, can only be stated approximately ;
since it varies

with the values of the digits. Thus, if we have tables containing entries each of three

significant digits, correct to the last digit, the lowest entry may be 100 and the highest

999. The precision would therefore be i in 100 in the former case, and practically i in

1000 in the latter. That is the order of precision would vary between the second and

the third. The average precision might be stated as of the 2. 5th order. Such tables

of n significant digits lay claim to an average precision of the (n i/2)th order.

Many tables are, however, employed in which the last digit is stated to be correct to

the nearest digit; that is within half of unity. On that understanding, the precision

of say a three-digit table would vary between 1/2 in 100 to 1/2 in 999 or between the

2.3rd and the 3.3rd order, with a mean of the 2.8th order. Consequently, we may say

that such tables, giving n significant digits, lay claim to an average precision of the

(n o.2)th order.
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DEGREE OF PRECISION PRESENTED IN THE FOLLOWING TABLES

The tables of complex hyperbolic functions here presented have been prvffciied

with a view to giving five decimal places regularly. This means five significant digits

when the values of the results lie between o.i and unity, six significant digits when they

lie between i and 10, four when they lie between o.i and o.oi and so on. Tables I to

VI inclusive were computed with the aid of five-figure logarithms of real hyperbolic

functions, so that their degree of precision is necessarily limited to, and must on the

average fall below that of such logarithm tables, which, as we have seen, is of the 4.8th

FIG. 25. sinh (p/5) expressed in polar coordinates.

order. Exclusive of such mistakes as may exist, they do not claim a degree of pre-

cision beyond the 4. 5th order.

Tables VII to XIII inclusive were, however, computed for the most part from Lig-

owski's gudermannian angles which are tabulated by him for each thousandth of a

hyperbolic radian, to the nearest hundredth of a second of circular arc. The logarithms

of the corresponding real hyperbolic functions were then found in the eight-place

tables of Bauschinger and Peters, which offer such logarithms for each and every second

of circular arc. The results were computed in the formulas to at least six significant
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digits and the sixth was then frequently discarded to meet the needs 9f the five-decimal

table. Consequently in this group of tables, excluding such errors as may exist, the

precision is on the average of the 4.8th order, and rises to the 5.8th order, when the

value of the result lies between i and 10. The average precision of the second group
of tables is thus about half an order greater than that of the first group.

PRECISION OF THE CHARTS IN THE ATLAS

The charts of the accompanying Atlas have been prepared with a view to offering
three digits in the deduced quantity, if reasonable care be taken in their use. This

represents an average degree of precision of the 2. 5th order; or about equal to that fur-

FIG. 26. sinh in polar coordinates.

nished by an ordinary 25 cm. slide rule. When a higher degree of precision than this

is needed, arithmetical interpolation in the Tables must ordinarily be resorted to; but

even then it is desirable to obtain a preliminary approximate value from the Atlas,

in order to furnish a check against gross error.
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GRAPHIC REPRESENTATIONS

Figs. 25 and 26 present the results obtained from Table I to true polar coordinates.

Each intersection of the curves corresponds to an entry in the table. Fig. 25 relates

to pages 2, 3, and Fig. 26 to the rest of the table. The curves of constant p intersect

those of constant 5 perpendicularly. That is, each intersection occurs theoretically

at right angles. If, however, an attempt is made to prepare plates corresponding to

Figs. 25 and 26 on a large scale, for a reasonable degree of precision, in rapid interpola-

tion by graphical inspection, difficulties present themselves. Firstly, it has been found

impracticable to procure polar coordinate ruled sheets large enough. Secondly, regular

polar coordinate charts of the type presented in Figs. 25 and 26' necessarily offer very
little graphical interpolation precision at small radial distances from the origin of co-

1 2 3
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INTERPOLATION CHARTS

Plates IA, IB, and Ic of the Atlas correspond to Table I and present, to squared polar

coordinates, the results in that table. Each intersection of curves in the plates corre-

sponds to one entry in the table. Plate IA includes the entries on pages 2 and 3 of

the table; while Plates IB and Ic include the entries in the remainder of the table.

The curves of constant p and constant 5 intersect one another at various angles, but the

method of interpolation requires little explanation. The entering quantity will fall

within some particular curvilinear parallelogram. The respective opposite sides may
be subdivided into tenths in any of the three following ways: (i) by direct inspectional

estimate, (2) by graphical subdivision on a sheet of tracing paper laid over the chart,

(3) by means of a radiating decimal scale of lines, prepared in advance, on tracing paper
or thin celluloid. It is not, in general, worth the effort of attempting a closer subdivi-

sion than tenths of the sides of any parallelogram. The point of intersection of lines

parallel to the sides, through the correct decimal points, is then to be marked on the

covering tracing paper, or held with a blunt pointer, such as a knitting needle, on the

chart itself, and the rectangular coordinates of this point read off from the parallel

ruling or background of the plate. That is, the charts are always used with the entering

variable on the curvilinear coordinates, and with the result found on the rectilinear frame-

work in the background; except when inverse functions are sought, and the procedure

consequently reversed.

TABLE I

sinh (p/8)
= ry

POLAR HYPERBOLIC SINES OF A POLAR VARIABLE

Table I, pages 2 to 7, gives the hyperbolic sine of vectors up to 3.0 in modulus, by

steps of o.i, for each degree of argument from 45 to 90. The results are also expressed

in polar coordinates, as plane vectors, corresponding to the relation:

sinh (p/5)
= r/7 (30)

or p/d_
= sinh-1

(7/7). (31)

The graphs of the results to true polar coordinates appear in Figs. 25 and 26, where

the curves of constant p always intersect orthogonally the curves of constant d
;
so that

at any point of intersection the angles of intersection are right angles. In Plates IA,

IB, and Ic of the Atlas, the same graphs are given to squared polar coordinates, the

disadvantages of the distortion being more than outweighed by the advantages in

facility of graphic interpolation. In these charts the curves of constant p do not inter-

sect the curves of constant 8 orthogonally.
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INTERPOLATION. FIRST CASE. IN MODULUS ONLY

If Table I is entered with a vector quantity of more than one decimal in modulus

and of some exact degree of argument, such as 2.76/70; then the result will lie nearly

on the line between the results for 2.7/70 and 2.8/70; namely, between 1.2

and i. 2136/143.005. A first approximation may be obtained by proportional parts

between them, thus :

Required sinh 2.76/70

by Table, sinh 2.80/70 = 1.2136/143.005.

by Table, sinh 2.70/70 = 1.2031/136.489.

Difference 0.10/70
= 0.0105 /6.5i6.

Proportion for 0.06/70
= 0.0063 /3.Qio.

sinh 2.70/70 = i. 2031/136.489.

Result sinh 2.76/70 = 1.2094/140.399.

The true value is 1.2086 /140.366.

INTERPOLATION BY THE USE OF TAYLOR'S THEOREM

When more precise interpolation is required than that by simple intermediate pro-

portion, we may use Taylor's theorem in the following form; since

-cosh*, =sinh0, etc.
d0

sinh (0 + A0) = sinh + A0 cosh + sinh + - cosh + . . (32)
2!

Let =
p/5 and A0 =

Ap/5.
Then

sinh \(p + Ap)/ j
= sinh (p/6) +Ap/5. cosh (p/5)+~ M sinh (p/3) + . . . (33)

The number of correction terms to be retained depends on the interval, and on the

degree of precision desired. It is seldom that more than two correction terms have to

be retained. Thus in the case already considered:

sinh (2.76/70) = sinh (2.7/70) -f- 0.06/70. cosh (2.7/70) +0.0018/140. sinh(2.7/70).

By Table II, page 13, cosh (2.7/70) = 1.3422/153.322. Consequently dealing first

with the first correction term only:

sinh (2.76/70)
= i.203i/i36.489 + 0.06/70 X 1.3422/153.322
= i.2031/136.489 + 0.08053/223.322
= i. 2031/136.489 (i + 0.066937/86.833)
= i. 2031/136.489 (i + 0.003698 + i 0.06684)

= i 2031/136.489 (i.00592 /3.8io)
= i.2102/140. 299.

[176]



EXPLANATORY TEXT

Taking next the second correction term into account.

sinh (2.76/70) = i. 2102/140. 299 -}- 0.0018/140 X i. 203 1/136.489

= i.2102/140. 299 + 0.002166/276.489

= i.2102/140. 299 (i -+ 0.001789/136. 190)

= i.2102/140. 299 (i 0.00129 + i 0.00124)

= i.2102/140. 299 (0.99871 -f-io.00124)

= i. 2102/140. 299 (0.99871 /o.067)

= 1.2086/140.366.

The correct result is 1.2086/140.366.

(34)

SECOND AND GENERAL CASE. INTERPOLATION BOTH IN MODULUS AND ARGUMENT

Let the entered quantity be sinh (1.025/80.75).

We have from Table I the four nearest results as follows:

sinh 1.0/80 =
0.85125/83^.489. sinh 1.1/80 =

0.90416/84^.286.

sinh 1.0/81 = 0.84940/84. 156. sinh 1.1/81 = 0.90172/84. 877.

Difference for i = 0.00185 + o.667.

Proportion for 0.75
= 0.001388 + 0.500.

sinh i.0/80. 75 = 0.84986/83.989. sinh i.i/8o

sinh i.i /8o.75 = 0.90233/84. 729.

Difference for o.i = + 0.05247 /o.74o.

Proportion for 0.025 = + 0.01312 /o.i85.

sinh i.Q25/8o.75 = 0.86298/84. 174.

The true value = 0.86372/84. 166.

Diff. for i = 0.00244 + o-59i-

0.00183 + 0.443.

= 0.90233

(35)

DUAL INTERPOLATION BY THE USE or TAYLOR'S THEOREM

Let the nearest tabular function be sinh = sinh (p/5_) and the required function

sinh (0 + A0) = sinh
| (p + Ap)/d + A8\.

Then (p + Ap) /S + A3 = p/S + (Ap + * PA5). (36)

where the increment Ap + *pA5 is taken with reference to the vector axis p/5. Refer-

ring this increment to the initial axis of reference,

+ A0 =
(p + Ap)/5+AS = p/5 + V(Ap

2 + (PA6)
2

/& + tan'1
- (37)/&

So that A0 = V (Ap)
2 + (pAS)

2
/8 + tan"1

(pA3/Ap). (38)

When, however, A5 is not very small, the last formula may contain an appreciable

error, and the following method of deducing A0, using rectangular complex quantities,

is to be preferred.
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Let =
p/_8

= x + iy.

and + A0 =
(p -f Ap) /8 + A3 = x + A* + * (y + Ay).

Then A0 = A* + i.

(39)

(40)

= V(Aa)
2 + (Ay)

2
/tan-

1
(Ay/As). (41)

We then have by Taylor's theorem, as before,

sinh (0 + A0) = sinh + A0. cosh + - -
. sinh + - -

. cosh + . . . (42)
2 3.2

a series in which two correcting terms only need ordinarily be retained. Thus, in the

example last considered, = 1.0/80 and + A0 = 1.025/80. 75. If we form A0 by

the use of (37), we have Ap =
0.025, A5 = o.75 = 0.01309 radian, pA5 =

0.01309.

A0 = V(o-25)
2 + (o.oi309)

2
/8o + tan"1

(0.01309/0.025)

= 0.02822/80 + 27.637
= 0.02822 /107.637.

If we form A0 by the use of the rigid formula (41)

+ A0 = 1.025/80. 75 = 0.164761 + i 1.0116715.

= 1.0/80 = 0.173648 + ^0.9848078.

A0 = 0.008887 + 30.0268637
= 0.028295/108 .306.

Entering now the correction formula (42), we find in the tables:

sinh 1.0/80 = 0.85125/83.489, cosh 1.0/80 = 0.57991/14. 521.

so that

sinh 1.025/80. 75 = sinh 1.0/80 + 0.028295 /io8.3o6 X cosh 1.0/80

6

= 0.85125/83.489 -fr- 0.028295 /io8.3o6 X 0.57991/14. 521

+ 0.0004003/2 1 6. 6 1 2 X 0.85125/83.489

+ o.ooo ooi /324.9i8 X 0.57991/14. 521.

It is evident that in conformity with the precision of the tables, only the first two
correction terms need be included. Taking the first into account, we have:

sinh i.025/80. 75 =
0.85125/83^.489 + 0.028295/108.306 X 0.57991/1.

=
0.85125/83^.489 + o.oi64o8/i22.827

=
0.85125/83/^489 (i + o.oi9276/39.338)

=
0.85125/83^.489 (i + 0.014909 + 30.012219)

= 0.85125/83.489 (1.014909 + 30.012219)
=

0.85125/83^.489 X i.01498/0.690
= 0.86400/84. 1 79.
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Taking up the second correction term:

sinh 1.025/80. 75 = 0.86400 784. 179 + 0.0004003 /2i6.6i2 X 0.851 25 783.489
= 0.86400/84. 179 + 0.0003405 /3oo. IQI

= 0.86400/84. 1 79 (i + 0.000395/215.922)
= 0.86400/84. 1 79 (i 0.00032 20.000232)
= 0.86400/84. 1 79 (0.99968 to.000232)
= 0.86400/84. 1 79 X 0.99968X0.013
= 0.863727 /84.166.

The true value is 0.86372 /84.166.

CONCLUSIONS

In general, dual interpolation by simple proportion, as in (35), will give a result of

the third order of precision. In order to secure precision of the fourth order, inter-

polation by the use of Taylor's theorem as in (42) may be required.

EXTENSION or TABLE BY USE or FORMULA FOR 28

Although Table I is only carried as far as 3.0 in modulus (p 3) ; yet it may be

used with a little additional calculation in conjunction with Table II, for obtaining

the hyp. sines of plane vector quantities of moduli up to 6.0, by means of the formula:

sinh 29 = 2 sinh cosh 6 (43)

Example: Required sinh 5.0/77, a quantity outside of Table I. Here 6 = 2.5/77

is within the limits of the Table; so that

sinh 5-0/77 = 2 X sinh 2.5/77 X cosh 2.5/77 (44)

= 2 X 0.87843 /i 20.891 X o.96459/i56.524
= 2 X 0.87843 X 0.96459/277^.415
= 1.75686 X 0.96459/277^.415
= 1.69465 /277.41S.

This method ordinarily calls for interpolation both in sinh 6 and cosh 6. For this

reason, it may be preferable to obtain the required result by the use of either Table

VII or Table X, the limits of which are less restricted.

TABLE II

cosh
(p/J>)

=
r[i_

POLAR HYPERBOLIC COSINES OF A POLAR VARIABLE

Table II gives the value of cosh p/5 between the limits of p = o and p = 3.0 by

steps of o.i, and the limits 5 = 45 and 5 = 90, by steps of i. The graphs of these

quantities, to squared polar coordinates, appear in Plates HA and HB of the Atlas.
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INTERPOLATION BY SIMPLE PROPORTION

In general, as in the case of Table I, a very fair degree of precision in interpolation

can be obtained by taking first simple proportional parts in argument, and then simple

proportional parts in modulus.

Example: Required cosh (0.931 05 1

We have from Table II: -

cosh 0.9/57 = 0.88922/23. 140.

cosh 0.9/58 = 0.87602/23.003.

Difference for i = 0.01320 /o.i37.

Diff. for 0.518 = -
0.00685 /o.o7i.

cosho.9/57. 518 = 0.88237 /23.o69.

cosh 1.0/57
=

cosh 1.0/58 =

Difference for i = 0.01626 /o.o94.

Diff. for 0.518 = 0.00844 /o.Q49.

cosh i.o/57.5i8 = 0.87132 /28.868.

cosh 0.9 /57-5i8 = 0.88237 /23.o69.

Difference for o.i =
0.01105 /5-799-

Diff. for 0.3105 =
0.00343 /i.8oo.

cosh 0.93105/57. 518 = 0.87894 /24.869.

The correct value is 0.87837 /24.803.

INTERPOLATION OF TAYLOR'S THEOREM

When a higher degree of precision is required than can be expected from simple

proportional parts, we may use Taylor's Theorem in the following form:

cosh (0 + A0) = cosh + A0 sinh + cosh + *=f- sinh + . . . (45)
" ; 3-

Example: Required cosh 0.93105/57. 518

having given in Table II cosh 0.9/57 = 0.88922/23. 140

and in Table I sinh 0.9/57 =
0.85414/64^.^8.

0.93105/57.518 = 0.500 + * 0.785398.

0.900 /57
= 0.49018 + 20.754804.

A0 = 0.00982 + 20.030594
= 0.03214/72. 196.

cosh 0.93105/57. 518 = cosh 0.9/57 + 0.03214/72. 196 X 0.85414/64. 218

+ o.00052 /i44.392 X 0.88922/23. 140.
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It is evident that for the Tables here considered only two correction terms need be
included. Taking up the first correction term,

cosh o.93io5/57.5i8 = 0.88922 /2^.140 + 0.03214/22^10)6 X o.854i4./64.2i8
= 0.88922/23. 140 + 0.02745/136.414
= 0.88922/23. 140 (i + 0.03087 /i 13. 274)

= 0.88922/23. 140 (i 0.01220 + * 0.02835)

= 0.88922/23. 140 (0.98780 + i 0.02835)

= 0.88922/23. 140 X 0.98780 (i + i 0.02870)

= 0.88922/23. 140 X 0.98780 X i.00041/1.645
= 0.87873 /24.?85.

Taking up the second correction term:

cosh 0.93105/57. 518 = 0.87873/24. 785 + 0.00052/144.392 X 0.88922 /23.i40
= 0.87873/24. 785 + o.ooo46/i67.532
= 0.87873/24. 785 (i + o.ooo524/i42.747

= 0.87873/24. 785 (i 0.000416 -f- i 0.000317)

= 0.87873 /24.785 (0.999584 + * 0.0003 1 7)

= 0.87873 X 0.999584 /24^7_8 (i + i 0.00032)

= 0.87837 /24 .785 X 1/0.018

= 0.87837 /24.8Q3.

The correct value is 0.87837/24.8Q3.

GRAPHICAL INTERPOLATION

For rapid but less precise work, interpolation may be made by proportional parts

on Plate HA or Plate HB, without arithmetical computation.

TABLE III

tanh (p/3) = r/y

POLAR HYPERBOLIC TANGENTS OF A POLAR VARIABLE

Table III gives in polar coordinates the value of tanh p/3 between the limits p = o

and p =
3.0 by steps of o.i, and the limits 8 = 45 and 8 = 90, by steps of i. The

graphs of these quantities, to squared polar coordinates, appear in Plates HlA and

Ills of the Atlas.

INTERPOLATION BY SIMPLE PROPORTION

In general, as in the cases of Tables I and II, a very fair degree of precision can be

obtained by taking first simple proportional parts in argument and then simple propor-

tional parts in modulus.

Example: Required tanh (0.93105/57. 518).
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We have from Table III:

tanh 0.9/57 = 0.96056 /4i.o78.

tanh 0.9/58 = 0.97069/42. in.

Difference for i = 0.01013 /i.o33.

Diff. for 0.518 = 0.00525 /o.535.

tanh 0.9/57.518 = 0.96581/41.613.

tanh 1.0/57 = 1.06648 /37.Q3S.

tanh 1.0/58 = 1.08054 /38.oo4.

Difference for i = 0.01406 /o.g6g.

Diff. for 0.518 = 0,00728 /o.5Q2.

tanh i.o/57.5i8 = 1.07376 /37-537-

tanh 0.9/57.518 =
0.96581 /4i.6i3.

Difference for o.i = 0.10795 / 4-Q76.
"

for 0.3105 = O.03352/ i.266.

Inferred value of tanh 0.93105 /57.5i8 = 0.99933 /40.347.

Correct value of tanh 0.93105/57^.518
= 1.0000 /40.395.

INTERPOLATION BY TAYLOR'S THEOREM

For a higher degree of interpolation precision than by simple proportion, we may
use Taylor's theorem in the following form:

(A0)
2

tanh (0 A0) = tanh 6 + A0 sech2 -

(A0)
3

2!
2 sech2 tanh0

2 sech2
(sech

2 - 2 tanh2
0) (46)

Example: Required tanh 0.93105/57. 518.

having given in Table I sinh 0.9/57 = 0.85414/64.218.

II cosh 0.9/57 = 0.88922/23. 140.

Ill tanh 0.9/57
= Q.96o56/4i.o78.

Here A0 = 0.03214/72. 196, as given by (41). Hence by Taylor's theorem as far as

the second correction term inclusive,

0.03214 2.i6
tanh 0.93105/511518 = tanh 0.9/52! +

(0.8892 2)

(o.o32i4)
2
/i44 .392-

(0.88922)
2

/46. 28o

Taking up the first correction term:

tanh o.93iQ5/57.5i8 = 0.96056 /4i.Q78 +
= 0.96056/41.078 + 0.04065/25.916

= 0.96056 /4i.o78,(i + 0.04084 20.01107)

= 0.96056/41.078 (1.04084 i 0.01107)

= 0.96056 /4I.O78 (1.04090X0.609)
= 0.99985 /4o.469.
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Taking up next the second correction term:

tanh o.93io5/57.5i8 =
0.99985/40^469 0.00103 /i44-3Q2 X 0.96056/41^078

(o.88922)
2
/46.28o

=
0.99985/40^.469 + 0.00103 X 0.96056X40.810

0.79071

= 0.99985/40.469 + 0.00126X40.810

= 0.99985/40.469 (i + 0.00126X81.279)

= 0.99985/40.469 (i + 0.00019
~~ * 0.00125)

= 0.99985/40.469 (1.00019
~ * 0.00125)

= 0.99985/40.469 X i.oooi9\o.o72

= i.oooo /4o.-

Correct value = 1.0000 /40.395.

When more than two correction terms have to be retained, it is often easier to deter-

mine sinh (8 + A0) and cosh (6 + A0) by Taylor's theorem, as already described, and
then to take their ratio for tanh (6 + A0).

TABLE IV

sinh
POLAR RATIO - FOR POLAR VALUES OF

v

Table IV has been prepared by dividing the values of sinh found successively in

Table I by their respective values of 0. The object of the table is to facilitate the

computation of the equivalent T or II of any uniform alternating-current line of known
electrical constants.* That is, the table pertains more particularly to the applications

of hyperbolic functions than to the fundamental properties of those functions. The
sinh (p/5)

table gives the vector value of - - for the range p = o to p = 3 by steps of o.i,
p/5

and for 5 = 45 to 5 = 90 by steps of i. The graphs of the values contained in the

tables are plotted to squared polar coordinates in Charts IVA and IVs of the Atlas, for

rapid graphic interpolation.

INTERPOLATION BY SIMPLE PROPORTION

A fair degree of precision in interpolation can ordinarily be obtained by first taking

simple proportional parts in argument and then simple proportional parts in modulus.

sinh (1.025/80. 75)
Example: Required

-

*"The Application of Hyperbolic Functions to Electrical Engineering Problems," by A. E. Kennelly,

University of London Press, 1914, Chap. III.
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We have from Table IV the following values of -
:

u

For 1.0/80 = 0.85125 /3.48g. For 1.1/80 = 0.82196 /4.286.

1.0/81 = 0.84940 /3.i56. 1.1/81 =
0.81975 /3.8y7.

Difference for i = 0.00185 / -333- Difference for i = 0.00221 / o.

0.75
= O.OOI39/ o.25o. -75

= ~~ o.00166 / o.

For i.i/8o.75 = 0.82030 /^.g

0.84986 /3.239. For i.o/8o.75 = 0.84986 /3.2

Difference for o.i = 0.02956 /o.74o.

for 0.025 = 0.00739 /o.i85.

For i.025/80. 75 =
0.84247 /3.424.

Correct value = 0.84265 /3.416.

When a higher degree of precision is required than can be expected from proportional

parts, the proper value of sinh (6 + A0) should be obtained by Taylor's theorem as

already explained in connection with Table I, and this value divided by (6 + Ad) ;

because the expansion of , . directly, by Taylor's theorem, does not lend itself

conveniently for computation.

EXTENSION FOR THE RANGE OF THE TABLE BY THE USE OF FORMULA FOR 26

Although Table IV is only carried as far as 3.0 in modulus (p
=

3); yet it may be

used with a little additional calculation, in conjunction with Table II, for obtaining

,
for vector values of 6 with moduli up to 6.0, by means of the formula:

a

sinh 26 = 2 sinh 6. cosh 6 (47)

sinh 26 sinh 6
whence - = -

. cosh 6. (48)
20 6

Consequently, to find - for the double of any quantity within the range of Table
u

IV, find the value of - - for the quantity, by interpolation directly in Table IV, and
V

multiply the result by the hyperbolic cosine of the quantity as obtained from Table II.

Corresponding steps may be taken with Charts II and IV.

sinh (5.0/77)
Example: Required -; 5 ,

this being outside of the limits of Table IV;
* iii,

but not outside twice the value therein obtainable.

Here for = 2.5/77 is by Table IV 0.35137e

and cosh 6
" " " " "

II 0.96459 l
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EXPLANATORY TEXT

= 0-35137 /43-89i X Q.96459/i56.524.

= 0.33893 /200 .415.

sin 6
This procedure calls for interpolation both in - - and in cosh 6. For this reason

e

it may be preferable to obtain the required result by the use of either Table VII or

Table X, the limits of which are less restricted.

TABLE V

tanh 6
POLAR RATIO - FOR POLAR VALUES OF

u

Table V, like Table IV, has been prepared for electrical engineering applications of

hyperbolic functions, rather than for developing these functions alone. It gives the

tanh (p/6)
vector value of

p/5
for the range p o to p = 3.0 in modulus, by steps of o.i,

and for the range 5 = 45 to 8 = 90 in argument, by steps of i. It was computed
directly from Table III by dividing the resulting values successively by their respec-
tive values of 6. The graphs of the values in Table V are presented to squared polar
coordinates in Chart V, for rapid graphic interpolation.

INTERPOLATION BY SIMPLE PROPORTION

Except where a high degree of precision in interpolation is required, it is prefer-

able to interpolate first by simple proportion in argument, and then by simple pro-

portion in modulus; although this order of operations may be inverted.

Example: Required -r for 6 = 0.93105^
9

We have from Table V:

For 6 0.9/57 = 1.06729 \i5.922.

6 = 0.9/58 = 1.07854 \i5.889 .

For 6 = 1.0/57 = i-06648 \i^<

Difference for i = o.oii25\ 0.033.

for 0.518 = o.oo583\ 0.017.

For = 0.9/57. 518 = J -73 12 -95-

6 = 1.0/58 = i.o8o54\i9.996.

Difference for i = 0.01406 \o.o3i.
"

for o.5i8 = 0.00728 \o.oi6.

For = i.o/57.5i8 = 1.07376X19.981.

6 = o.9/57-5i8 = 1.07312 \i5-905.

Difference for o.i = 0.00064 \4-o76.
"

for 0.03105 = 0.00020 \i.266.

For0 = o.93iQ5/57-5i8 = 1.07332X17^171.

Correct value,
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When a higher degree of precision is needed than simple proportion can give, it is

preferable to find the proper interpolated value for tanh Q from preceding tables and

then to divide by 0; since the function - -. r does not lend itself to expansion
(0 + A0)

by Taylor's theorem in a simple form.

Tables IV and V jointly, with their respective graphs in the Atlas, enable the equiva-

lent T or II of any uniform alternating-current line in the steady state, at a single fre-

quency, to be completely determined, provided does not exceed six radians in modulus

(5 lying between 45 and 90) ;
because although in both tables, is not carried beyond

three radians; yet can be found by extension up to six radians, and in the formu-

las for deducing the equivalent T or II,
- - has only to be carried to half the modulus

, sinh
of -0-'

The following example may illustrate the use of Tables IV and V either with or

without the aid of the graphic interpolation Charts IV and V of the Atlas. An alter-

nating-current line of uniform electrical constants is 250 km. long and has, at a certain

frequency, a total conductor impedance of 565.711 784. 777 ohms, associated with a

total distributed insulation admittance of 4.3707 X io~3
/9o mhos. Its hyperbolic

angle is therefore Vs.65711 X 4.3707 X io~1
/i74 .777 = 1.5724 787.388 hyperbolic

radians. Interpolating either from the tables or the Charts IV and V, we obtain

sinh0 .tanh () tanh 0.7862/87^88
= 0.638 /. _

.786a/8

If we multiply the conductor impedance by -
,
we have

u

565. 711 784. 777 X 0.638/2. 6 = 360.69/87.377 ohms, and if we multiply half the

insulation admittance by
ff)

.

g
,
we have

Iff/

2.1854 X io-3
/9o X i.27\i.5 = 2.78 X io-3

/88.g mhos = 359-77\88.5 ohms.

If now we apply an artificial condenser leak of 2.78 X io-y88.5 mhos to each end of a

localised impedance coil of 360.69/87^.3^7 ohms, we obtain the "equivalent II" of the

line at the frequency considered, and such a combination of localised impedance and ad-

mittances would behave exactly like the line, at its terminals, or outside them, so as to

be capable of replacing the line in any electrical system, at that frequency.
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TABLE VI

POLAR FUNCTIONS OF POLAR SEMI-IMAGINARY QUANTITIES

A semi-imaginary quantity is a complex numerical quantity which, when expressed
in rectangular coordinates, has equal real and imaginary components; or, when ex-

pressed in polar coordinates, has an argument of 45. That is x/ 45 = a rt i a.

The interest of the table pertains primarily to the application of hyperbolic functions

to uniform alternating-current lines of negligibly small linear inductance and leakance,

a case approximated to by cabled lines at low frequencies. The table was first pub-
lished by the author in the transactions of the International Electrical Congress of

St. Louis (1904). The arguments of the results are given in degrees and minutes, and

not in degrees and decimals like the rest of the tables.

The table gives the hyperbolic sine, cosine, tangent, cosecant, secant, and cotangent
of the vector x/4$ for the range x = o to x '=

20.5, by steps in x of o.i up to x =
6,

and of 0.05 beyond that point. At x =
6, the values of the hyp. sine and cosine so

nearly coincide, that they are taken as equal in the table, thus bringing sech x and

cosech x into equality as well as tanh x = coth x = i. Graphs of the functions are

given in Chart VI as far as x =
4, approximately.

INTERPOLATION BY SIMPLE PROPORTION

In general, interpolation may be quickly effected by simple proportional parts of

modulus since the argument is constant at 45. This procedure is sufficiently evident

to require no exemplification.

INTERPOLATION OF TAYLOR'S THEOREM

When precise interpolation is necessary, we have the following expansions for

f (0 + A0)

sinh (* + A*) /4S!
= sinh (2/45) + (Ax) /4S . cosh (*/45) +

sinh (*/45) + -=r/ilS. cosh (*/45) + ..... (49)
O "

cosh
|
(* + A*)/45}

= cosh (x/4S + (A*)/45_. sinh(*/45) + ^fl^L<
(Ar^ 3

cosh (*/45) +
^fr/ias!-

sinh (* 0̂) + (5o)

,

tanh (* + A*)/4,S!
= tanh

2 sech2 (/4S). tanh (s/4Q - Zl^. . 2. sech2 (*/45).

J
sech2

(*/45 )
- 2 tanh2

(s/4S ) *+.... (51)

Example: Required cosh (3.1/45), having given in Table VI

sinh (3.0/45) = 4.1986 /i 2o.48
/

.

cosh (3.0/45) = 4-U43 /i22.i6
/
.
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Here cosh (3.1/45!)
= 4.i443/i22.i6' + 0.1/45 X 4-1986 /i2o.48'

0.01/90 o.ooi ,

+ - - X 4.i443/i22.i6' H /i35 X 4.1986 /120.48'

= 4.1443 /I22.l6' + 4.1986/120.48 (0.1/45 + 0.00017/135)

+ 4. 1443 /I 22. 1 6' (0.005/90)
= 4. 1443 /i 2 2. 1 6' (i + 20.005) + 4.i986/i65.48' (o.i + 20.00017)

= 4.i443/i22.i6' ( i.0000/0. 1 7') + 4. 1986/165.48' (o.i /o.oi')
= 4.1443 /i 22^33' + o.4i99/i65.49

/

:2.33
/

(i + o. 10132/43. 16')

= 4.1443 /i 22.33
/

(i + 0.07378 + * 0.06944)
= 4.1443 /I22.33

/

(1.07378 + * 0.06944)
= 4.I443/I22.33' X 1.0760 /3.42

;

which is in substantial agreement with the tabulated value of cosh 3.1.

Beyond x =
6, the value of either sinh (3/45) or cosh (#/45!) was computed from

the formula:

sinh (s/45) = cosh (s/45) = J
/T/T radians. (52)v ^

where e = 2.71828 . . .

X 6 141.14
Thus, with x =

7, T= = 4.9498,
- =- =

70.57 at the argument of 4.9498 cir-
\j 2 ^2

cular radians = 283. 36'; so that:

sinh (7/45) = cosh (7/4.5!)
= 7Q.57/283 .36

/

which coincides with the tabulated value in Table VI.

TABLE VII

sinh (x + iy)
= u + vo

RECTANGULAR HYPERBOLIC SINES OF A RECTANGULAR VARIABLE

Tables I to VI contain certain restrictions in range which limit their general appli-

cation. They are primarily designed to cover particular applications of hyperbolic
functions to electrical engineering. Tables VII to XIV, however, are free from such

restrictions, and are intended to furnish the circular as well as the hyperbolic sine, cosine,

and tangent of a complex angle, and to furnish this result either in the rectangular or

polar form. That is, they furnish:

sinh (x + iy) \ . ,
. . . . . , ,

; . ; > in the form u + vo
;
also in the form r /j

or sin (x + iy) j

cosh (x -\- iy)\ . ^ f , ,1 e /
. ( } in the form u + vo\ also in the form r /y

or cos (x + iy) J

tanh (x + iy) \ . . , , ,

. ( > in the form u + tv: also in the form r /y
or tan (x + ly) }
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between the limits, for the hyperbolic functions, x = o and x =
10, by steps of 0.05

and between the limits y = o and y = oc
, by steps of 0.07854 =

TT/^O.

PERIODIC PROPERTIES OF THE RECTANGULAR COMPLEX HYPERBOLIC
SINES AND COSINES

It is well known that sinh \x + i (y -f 2mr)\ = sinh \x + iy\ (53)
and cosh \x + i (y + 2mr) \

= cosh \x + iy\ (54)

where n is any integer.

This means that, keeping x constant, the values of the hyp. sine and hyp. cosine

repeat themselves as iy passes through increments of i.2ir\ or they are periodic functions

of iy, having the period 2ir i.

The matter may be visualised more clearly from geometrical reasoning. Consider-

ing the exponential form of the hyperbolic cosine,

c
* + 'V _L

e
-<* + ')

cosh (x + iy)
=-

. (55)

e* . e~1

This may written in the form: . e iy
-\ e~ iv

. If x be kept constant, we

require to study the changes produced in this form of the hyp. cosine by varying y.

q'

$

%sZ**>*
-a d

^~ -A

P
FIG. 29. Geometrical constructions for cosh (x + iy) and sinh (* + iy).

In Fig. 29, OA is an initial line and OP a radius vector of length or modulus */ 2 >

multiplied by e '; that is rotated positively about O, from OA through a circular angle
of y radians. Similarly, op is a vector of length or modulus ~*/ 2 rotated negatively

through a circular angle of y radians from the initial line Oa. The equation (55) states

that the hyperbolic cosine is the plane vector sum of OP and op, or O'p' in the Figure.

If now we steadily increase the value of y, leaving x constant, we cause OP to rotate

steadily counterclockwise, and also op to rotate steadily clockwise, through Ay cir-

cular radians. When Ay =
2ir, both OP and op will have made one complete revo-

lution and will have returned to their initial positions indicated. Consequently, the

value of cosh \x + i (y + 271-) \ repeats that of cosh \x + iy \.

x + iy _ f -(x + iy)

Since sinh (x + iy)
= -

(56)

the same reasoning applies; but the vector op is added in the negative or reversed di-

rection; so that O'q' is the hyperbolic sine of x + iy.

The above mentioned periodic property of the hyp. sine and cosine has been utilized

for shortening the tables of those functions by reducing the circular angle y of Fig. 29

[189]



EXPLANATORY TEXT

from radians to quadrants. That is, any complex angle x + iy represented by a point

P, and radius vector OP, in the complex plane XY, Fig. 30, is first transferred to a

new complex plane XQ, Fig. 31, at the point p =
x, q, by keeping x the same in both

planes, but making the points -, ,,,... etc., on the Y axis of the XY diagram,2222
become the points i, 2, 3, 4 ... etc., on the Q axis of the XQ diagram. Thus if

x + iy
=

2.5 + * 6. 2832,

x + iq
=

2.5 + i 4.00

where 4.00 is underscored to indicate quadrant measure, instead of the ordinary radian

measure.

"Y

FIG. .30. FIG 3 r.

Transference of a Complex Quantity from the XY to the XQ Plane.

In the case indicated by Fig. 30, x + iy
=

3 + i 9 and x + iq 3 + * 5.74 in Fig. 31.

Consequently, after a complex angle has been transferred from the complex plane

XY to the complex plane XQ, the values of either sinh (x + iq) or cosh (x + iq) exactly

repeat themselves for each 4 units of increase in q; or with reference to Fig. 31 for each

4 quadrants of increase in the circular angle instead of 6.2832 . . . radians. The

operation of transferring the complex angle from the XY to the XQ plane may there-

fore be described as quadranting y; i.e., changing the expression of y from circular

radian units to circular quadrant units.

All of the Tables VII to XIII inclusive require to be entered in terms of x + iq;

so that the complex entering value has to be quadranted by dividing its imaginary or

y-component by the numeric v/2 = 1.57079 This preliminary step occupies

a certain extra time and effort; but it actually economises the total time and effort

involved. If the tables were computed for x -f- iy, they would have to be repeated in

bulk for each TT radians, or 2 quadrants, increase in y. In electrical engineering appli-
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cations, y frequently rises to 100 radians, and might easily be much greater than 100.

In order to go up to 100 radians, the bulk of the Tables VII to XIII would have to be

increased about thirty fold. Altogether, aside from the greatly increased bulk and expense
of such tables, the extra time and effort consumed in turning over the numerous pages
would be comparable with that saved by eliminating the preliminary step of quadranting
the imaginary component or dividing it by ir/2.

RULES FOR THE USE OF TABLE VII

Express the
"
angle

" whose hyperbolic sine is required in the form of an ordinary

rectangular complex quantity x + iy.

Quadrant the imaginary component y through the process of dividing it by ir/2;

i.e., transfer the quantity from the XY to XQ plane; so that the new expression of the

complex quantity is x + iq; where q
= y/i. 57079. . . .

If q is greater than 4.6, divide by 4 and retainonly the remainder. If the remainder

exceeds 2, subtract 2 therefrom, and apply a negative sign to the result found in the

table. A change of 2 quadrants simply reverses the sign of the result. If the remainder

on the other hand does not exceed 2, enter Table VII with it, and take out the result

with unchanged sign.

Example: Required the hyperbolic sine of 0.65 + i 25.75. Here x =
0.65 and

y =
25.75. That is y is 25.75 circular radians. Reduce this to quadrants through

dividing by 1.57079. . . .

25-75
*

log 25.75
= 1.4107772.

1.57079 ... log TT/2
= 0.1961199.

log 16.393 = 1.2146573.

The quadranted yalue x + iq
=

0.65 + i 16.393

NOTE. It is found convenient to underscore quadrantal quantities to distinguish

them from radianal quantities.

Rejecting quadrant multiples of 4, i.e., 16 in this case, we enter Table VII with

x -|- iq
=

0.65 + i 0.393. The nearest entry to this is x = 0.65, q
=

0.4, for which

the hyperbolic sine is 0.56368 + * 0.71639, an ordinary rectangular complex quantity

on the U V plane. Interpolation should be made in this result to meet the change
from q

= 0.40 to q
= 0.393, as wiH De explained later.

Second Example: Required sinh (x + iy)
= sinh (1.15 + i 10.10).

. / . 10.10 \
Quadranting the imaginary, sinh (x + iq)

= sinh ( 1.15 + * = 1

= sinh (1.15 + i 6.430).

Rejecting 4'$ from the imaginary = sinh (1.15 + i 2.430).

Deducting 2 from the residual and chang-

ing the sign
= sinh (1.15 -f *'o-43)-

* This operation would ordinarily be effected with the slide-rule, when a high degree of precision is not

aimed at.
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We now enter Table VII with x =
1.15 and q

=
0.43. The nearest entry is x =

1.15

q = 0.45, the result for which is 1.08037 + * 1.12836. But we must apply a negative

sign to the whole of this result because of the 2 rejected in the quadrantal residuum.

Hence,
sinh (1.15 + i 10. 10) = (1.08037 + * 1-12836)

= 1.08037 i 1.12836 = u + i v

except for the interpolation from q = 0.45 to q
=

0.43. The operation of interpolation

will be discussed later on.

Third Example: Required sinh (x + iy)
= sinh (3.60 + i 18.1).

Quadranting the imaginary, sinh (x + iq)
= sinh

( 3.60 + i '^ }
* \ i-57<V

= sinh (3.60 + i 11.523).

Rejecting 4'$ from the quadrants = sinh (3.60 + ^'3.523).

Deducting 2 from the residual imaginary
and changing the sign .............. = sinh (3.60 + i 1.523).

Entering Table VII with x = 3.6 and q
=

1.523, the nearest entry is x = 3.6 and

q
=

1.5, for which the result is 12.92978 + * 12.94910. But applying the negative

sign to this result because of 2 deducted from the quadrantal imaginary, and we have

finally:
sinh (3.60 -+- i 18.1)

=
( 12.92978 + i 12.94910)

= 12.92978 i 12.94910 = u + iv

except for the interpolated correction from q
= 1.500 to q

= 1.523, to be considered

later.

RANGE OF THE TABLE

Table VII extends by steps of 0.05 in x up to x =
3.95, and in Table XIII up to

x =
4.0. In y, the range is indefinitely great; because after dividing y by ir/2 so as

to reduce it to quadrant measure, all multiples of 4 are rejected. From o to 2, in the

remainder, the table gives the result directly and from 2 to 4, by change of sign in the

total. Cases of x greater than 4.0 are dealt with in connection with Table XIV.

REPETITIONS IN THE TABLE

If sinh
{
x + i- a = u + iv (57)

I \2 / )

it is easy to show that:

sinh I * -M (
- + ) \

= u + iv. (58)
I \2 / J

It follows that in any column of Table VII, the entry for q = (i a) is the same as

that for q = i + a except for a change in the sign of u. Consequently, the table might
have been reduced to half its present size, if the responsibility for making this change of

sign had been left to the reader. It was considered, however, that since the reader is al-

ready charged with the duty of applying a negative sign to the total result when the q
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residuum lies between 2 and 4, the retention of the full size of the present table was

warranted, especially as the duplication of the text in each column provides a certain

check upon the numerical work of tabulation.

INTERPOLATION BY SIMPLE PROPORTION

As a first approximation, interpolation may be effected by simple proportion, first

in regard to x and second in regard to q.

Example: Required sinh (0.15 -f 3*0.25), having given:

sinh (0.2 -f 3*0.2)
= 0.19148 + 3*0.31522. sinh (0.2 + i 0.3)

= 0.17939 + 3*0.46310.

sinh (o.i + 3*0.2)
= 0.09526 + 3*0.31056. sinh (o.i + 3*0.3)

=
0.08925 + 3*0.45626.

Diff. for o.i x = 0.09622 + 3*0.00466. Diff. for o.ix = 0.09014 -f- 3*0.00684.

Diff. for 0.052;
= 0.04811 + 3*0.00233. Diff. for 0.052;

= 0.04507 + 3*0.00342.

sinh (0.15 + i 0.3)
= 0.13432 + 3*0.45968.

sinh (0.15 + 3*0.2)
= 0.14337 H~ * 0.31289. sinh (0.15 + 3*0.2)

= 0.14337 -f- 3*0.31289.

Diff. for q o.io = 0.00905 + 3*0.14679.

Diff. for q 0.05 = 0.00453 + i 0.07340.

sinh (0.15 + 3*0.25)
= 0.13885 + 3*0.38629.

Correct value = 0.13910 + 3*0.38700.

INTERPOLATION BY TAYLOR'S THEOREM

When a higher degree of precision is desired than that which can be expected by

simple proportion, we may use Taylor's theorem in the following form:

sinh (0 + A0) = sinh + A0 cosh + ^- sinh + z=f-
cosh + . . . (59)

sinh
{ (x + iy) + (Ax + i Ay) \

= sinh (x + iy) -f- (Ax + i Ay) cosh (x + iy)

. (Ax + 3* Ay)
2

. , f ... (Ax + iAy)
z

, , . , ,,. %+ - - sinh (x + 3y) + -
.

- cosh (x + ly) + (60)
* O *

Quadranting imaginaries on both sides; or transferring to the XQ plane,

sinh
| (x + iq) + (Ax + i Aq) \

= sinh (x + iq) + \
Ax -f i (IT/ 2) Aq) \

cosh (x + iq)

!A* + 3*(7r/2)A;y!
2

. \Ax + 3 Or/2) Aq\
3

,

, ., ,

+ L - smh (x + iq) + L A-t- *- cosh (x + iq) + . . . (61)

= sinh (x + iq) + A'0 cosh (x + iq) + - ~- sinh (x + iq)

+^ cosh (* + iq) + . . .

3 !

where A'0 = Ax + iAy = Ax + i (IT/ 2) Aq. (62)
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Example (i): With A^ = o.

Required sinh (0.15 + i 0.2), having given in Table VII and in Table VIII:

sinh (o.i + i 0.2) = 0.09526 + i 0.3 1056.

cosh(o.i + 3*0.2)
= 0.95582 + i 0.03095. Then by (60);

sinh (0.15 + * 0.2)
= sinh (o.i + i 0.2) + 0.05 cosh (o.i + i 0.2) -\

sinh (o.i + 3*0.2) -\
- cosh (o.i + 3*0.2)

o

= 0.09526 + 3*0.31056 + 0.05 (0.95582 + 30.03095)

+ O.OOI25 (0.09526 + 3*0.31056) + O.OOO02 (0.95582 +
3* 0.03095)

= I.OOI25 (0.09526 + 3*0.31056) + 0.05002 (0.95582 + 3*0.03095)
= (0.09538 + 30.31095) + (0.04781 + 30.00155)
= 0.14319 + 3* 0.3 1250

which is the correct tabular value of sinh (0.15 + i 0.2) in Table VII.

Example (2): With Ax = o.

Required sinh (o.i + 3*0.25), having given in Table VII and in Table VIII:

sinh (o.i + 3*0.2)
= 0.09526 + 3*0.31056.

cosh (o.i + 3*0.2)
= 0.95582 + 3*0.03095. Then by (62);

sinh (o.i + 3*0.25)
= sinh (o.i + 3*0.2) + 3*0.05 X 1.5708 X cosh (o.i + 3*0.2)

., (0.05 X 1.5708)2 .
f

.+ 3
2 - sinh (i.o + 30.2)

2 1

.

., (0.05 X 1.5708^ , t
.

+ 3
3 -^ - - cosh (i.o + 30.2)

3 !

= 0.09526 + 3*0.31056 + 3* X 0.07854 (0.95582 + 3*0.03095)

0.00617 / <:\

(0.09526 + 0.31056)
2

. O.OO048
(0.95582 + 30.03095)

6
= (0.09526 + 30.31056) (i 0.00309)

+ 3* (0.95582 + 3*0.03095) (0.07854 0.00006)
= 0.99691 (0.09526 + 3*0.31056) + 0.07848 ( 0.03095 + 3*0.95582)
= 0.09497 + 3*0.30960 O.OO243 + 3'O.075OI
= 0.09254 + 3*0.38461.

The tabular value is 0.09254 + i 0.38460.

Example (3) : Interpolation for both Ax and A^.

Required sinh (0.15 + i 0.25), having given

sinh (o.i + 3*0.2)
= 0.09526 + 3*0.31056 by Table VII

and cosh (o.i + 3*0.2)
= 0.95582 + 3*0.03095 by Table VIII.

Here A6 in formula (59)
=

(0.05 + i 0.05)

and A'0 in formula (62) =
(0.05 + i(ir/2) X 0.05) =

(0.05 + 30.07854).
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Thus: -

sinh (0.15 + ^0.25) = sinh (o.i + 10.2) + A'0 cosh (o.i + io.z

(A'0)
2

+
,

sinh (o.i + io.2) + . . .

A'0 = 0.05 + i 0.07854.

(A'8)
2 = + 0.0025 0.00617 + i 0.00785
= 0.00367 + io.00785.

(A'0)
2

= 0.00184 ~t~ ^

(A'8)
3 =

(0.05 + i 0.07854)3 = 0.00080 + *'o.oooio.

(A'8)*
7 =

0.00013 + * 0.00002.

f (A'0) 2
">

sinh (0.15 -f 10.25) = sinh (o.i + i 0.2)
j

i -f-
- p + . >

+ cosh (o.i + * 0.2)
j
A'0 + ^^ + . . .

|
\ 3 /

= (0.09526 + i 0.31056) (0.99816 + i 0.00393) = 0.09386 + i 0.31036
+ (0.95582 + i 0.03095) (0.04987 + i 0.07856) = 0.04524 + i 0.07664

= 0.13910 + i 0.38700.
The correct tabulated value is = 0.13910 + i 0.38700.

EFFECTS OF CHANGES OF SIGN IN THE ENTERING QUANTITY

Table VII expresses the relation

sinh (x + iq)
= u + iv. (63)

(a) If x be taken with negative sign, we have

sinh ( x + iq)
= u + iv (64)

so that changing the sign of the real component entering the table changes the sign of

the real component in the result; but leaves the sign of the imaginary component

unchanged.

(b) If q be taken with negative sign, we have

sinh (x iq)
= u iv (65)

so that changing the sign of the imaginary component in the entering quantity changes
the sign of the imaginary component in the result, leaving the sign of the real com-

ponent unchanged.

(c) If both x and q be taken with negative sign, we have

sinh ( x iq)
= sinh

\ (x + iq) \
= u iv = (u + (66)

so that changing the sign of the total entering quantity changes the sign of the total

result.

The facts may be summed up by saying that changes in the sign of the entering

quantity produce corresponding changes of sign in the result.
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CIRCULAR SINES OF COMPLEX " ANGLES "

Since, as is well known:

sin 6 = i sinh (iff) (67)

we have
sin (x + iy)

= i sinh (ix y) (68)

= * sinh (y ix). (69)

Consequently, in order to find the circular sine of the complex quantity (x + iy), enter

Table VII for sinh (y + ix), which on being quadranted, becomes sinh
\ y + ix/(ir/2) \

and let the result be (u + iv). Then sinh (y ix)
= u iv and sin (x + iy)

= v + iu.

In other words, invert the entering components, and then invert the components of the

result.

Example: Required sin (i + i 2) from Table VII. Here 6 = (i + i 2).

Enter the Table with sinh (id)
= sinh ( id)

= sinh (2 i i).

Quadranting the imaginary, we enter the table with (x iq)
=

(2 i 0.6366).

The nearest entry is (2 i 0.65), for which the hyp. sine is given as 1.89503 i 3.20780.

Consequently, sin (i + i 2) = 3.2078 -f- i 1.89503, except in so far as interpolation is

needed to reduce sinh (2 i 0.6366) from sinh (2 3' 0.65). In this way any circular

sine of a complex quantity can always be obtained from the table of hyperbolic sines,

between the limits of o and 4 in y, and of o and o in x.

GRAPHIC INTERPOLATION BY MEANS OF CHARTS VIlA, Vila, VIIc

Charts VII-VIII A, B, and c, serve for the evaluation of either sinh (x + iq) or

cosh (x + iq), according to the axis of reference selected. Thus, taking Chart VII-

VIIIs, if this is held with the. line SS as the axis of reference or initial line; then by
comparison with the entries in Table VII, it will be found that sinh (x + iq) can be

read from it directly over the range q
= o to q

=
4, beyond which the values repeat

themselves indefinitely. On the other hand, if the chart be turned through 90, so

as to bring the line CC as the axis of reference, it will be found by comparison with the

entries of Table VIII, that cosh (x + iq) can be read from it directly over the range

q = o to q
=

4.

Chart VII-VIIlA gives sinh (x + iq) and cosh (x + iq) for values of x up to about

0.9. Chart VII-VIIIs gives the corresponding results for values of x up to about

x = 2. Finally, Chart VII-VIIIc provides for values of x up to x =
4. In all of

these charts, interpolation can be made for both x and q to o.oi, by direct inspection.

The graphs on these charts are undistorted, since they give complex functions as results,

in rectangular coordinates. The curves therefore always intersect orthogonally, and

they represent a confocal system of ellipses and hyperbolas, the common foci being at

two points at unit distances from the center, along one of the reference axes. The curvi-

linear rectangles into which the charts are divided have pairs of sides the ratio of

whose lengths tends to the value ir/2.

If the preliminary process of quadranting the imaginary of the entering quantity
were not adopted; that is, if the graphs were entered in terms of (x + iy), instead of
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(* + iq) ;
then it would be necessary* to have a new chart for each range of 2ir units in

3>; or some 16 sets of Charts A, B, and C, in order to reach y = 100. That is, 48 charts

would have to be computed, prepared, drawn, lithographed, bound, sold and operated
instead of the 3 charts actually presented. Moreover, if y were needed greater than

100, the set of 48 would fail; whereas, working with quadrant imaginaries, the three

charts serve up to indefinitely great values of q and y,

GRAPHIC CHART VII-VIIlA

This chart corresponds to Tables VII and VIII at least as far as x = 0.9, or for

pages 42 to 45, and 58 to 61 of this book. To find hyperbolic sines from the chart,

place it facing the observer with the axis OO vertical. This is the major axis of all the

ellipses shown. Starting from this central axis towards the right hand, the successive

ellipses marked o.i, 0.2, 0.3, etc., represent values of x; while the successively rising

hyperbolas o.i, 0.2, represent values of q. These values of q will be found to extend

over two quadrants. Enter the chart on the curvilinear coordinates for x and q. At

the proper intersection read off the u and v coordinates of the rectilinear ruling, u being
the abscissas and v the ordinates.

Conversely, to find sinh"1
(u + iv) within the limits u = o and = i,=oto

v = 2.0, enter the chart with the same aspect on the rectilinearly ruled coordinates

and read off at the proper intersection the curvilinear values taking x on the ellipses

and q on the hyperbolas.

To find hyperbolic cosines from the chart, rotate it clockwise 90; so as to have

the axis OO horizontal. Then enter on the curvilinear coordinates with x on the ellipses

and q on the hyperbolas. The first and fourth quadrants only will be presented to the

observer; but from the symmetry of the diagram, it will be easy to reverse the chart,

so as to present the second and third quadrants. Read off the result on the rectilinear

background using u for abscissas and v for ordinates.

Conversely, to find cosh"1
(u + iv) from the chart with the axis OO horizontal, enter

on the rectilinear background and read off at the proper intersection from the curvilinear

coordinates in x and q, taking the ellipses as parts of the it-system and the hyperbolas

as part of the ^-system.

GRAPHIC CHART VII-VIIIs

This chart gives the graph of the functions sinh (x + iq) and cosh (x + iq) from

x = 0.8 at least as far as x =
2.05 along the ellipses and from q = o to q = o by virtue

of successive rotations. In this and the following charts, the numerical values of q are

all underscored, an indication which may serve readily to distinguish the imaginaries

q, from the reals, x.

* A single set of charts entered in terms of (x + iy) could be used up to y 6.2832 in one revolution,

and could be used for all larger values by throwing out multiples of 2*-. This operation of dividing y by 2T

would, however, take as much time as the operation of quadranting, and would also lead to a dissymmetrical

chart in the hyperbolas.
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In all of the Charts VII to IX inclusive, the curvilinear rectangles all tend to have

sides in the ratio TT : 2; that is the long side approximates to being 1.57 times the short

side. In IXA exceptions are found; because extra curvilinear coordinates are supplied.

To find sinh (x + iq) from Chart VII-VIIlB, hold the minor axis 55 horizontal.

Enter on the curvilinear coordinates with x on ellipses and g on hyperbolas. At the

proper intersection read off on the rectilinear background in u and v. Proceed inversely

to find the inverse function sinh" 1

(u + iv).

To find cosh (x + iq) from the same chart, hold the major axis CC horizontal. Enter

on the curvilinear coordinates with x on ellipses and q on hyperbolas. Read off on the

rectilinear background.
All four quadrants appear in this and the following chart, so that it is not necessary

to limit the value of q to less than 2 quadrants.

GRAPHIC CHART VII-VIIIc

This Chart gives the graph of sinh (x + iq) and cosh (x + iq) from x =
2.0, at least

as far as x =
3.90. The procedure is precisely the same as that for VII-VIIlB already

described.

TABLE VIII

cosh (x + iq)
= + iv

RECTANGULAR HYPERBOLIC COSINES or A RECTANGULAR VARIABLE

Table VIII may be regarded as an inversion of Table VII; because:

cosh 6 = i sinh (6 + iir/z) (70)
or in quadrant imaginaries,

cosh 6 = i sinh (6 + i i). (71)

That is the hyp. cosine of any complex quantity (x + iq) is i times the hyp. sine

of that quantity with an additional quadrant in the imaginary. Thus

cosh (0.5 + io,6) = isinh (0.5 + i 1.6)

= * ( 0.42158 + 20.66280)
= + 0.66280 + * 0.42158.

All of the entries in Table VII thus reproduce themselves by inversion in corresponding

parts of Table VIII, a fact which serves as a numerical check upon both.

In order to find the value of cosh (x + iy), quadrant the imaginary quantity y, by

dividing it with IT/ 2, as in entering Table VII. The complex quantity (x + iy) will

now be expressed as (x -\- iq); or will in effect have been transferred from the XY to

the XQ plane. Next throw out multiples of 4 from q, so as to leave a remainder less

than 4. If this remainder exceeds 2, deduct 2 from it, but change the sign of the total

result thereupon deduced. If the remainder, however, is not greater than 2, then,

the result is taken directly from the table.

Example: To find cosh (1+25 )
= cosh (x + iy).

Quadranting, we have cosh (i + 13.183) = cosh (x + iq).

Deducting 2 from q, cosh (i + i 1.183).
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With this we enter Table VIII. The nearest entry is x + iq
= i +^1^2, the result

for which is 0.47684 + i 1.11768. This has to be corrected by interpolation from

q
= 1.2 to q

=
1.183. Reverse the sign of the result to 0.47684 i 1.11768 for the

deduction of 2 quadrants.

Example 2: Required cosh (0.25 + 2*30 )
= cosh (x + iy).

Quadranting, this becomes cosh (0.25 + i 19.099) = cosh (x + iq).

Rejecting imaginary quadruples = cosh (0.25 + 2*3.099)
= cosh (x + iq).

Deducting 2 quadrants = cosh (0.25 + i 1.099)
= cosh (x + iq).

The nearest entry is 0.25 + ii.i for which the result is ( 0.16135 + * 0.24950).

Applying the negative sign on account of the two deducted quadrants, the final result

is, neglecting interpolation,

cosh (0.25 + i 30)
= 0.16135

~~ * o- 2495o = u iv.

INTERPOLATION BY SIMPLE PROPORTION

A first approximation can be obtained by interpolating according to simple pro-

portion.

Example: Required cosh (0.55 + 2*0.55)
= cosh (x + iq)

having given
cosh (0.6 + 20.5) = 0.83825 + i 0.45018. cosh (0.6 + i 0.6)

= 0.69680 + 10.51506.
cosh (0.5 + 2*0.5)

= 0.79735 + i 0.36847. cosh (0.5 + 20.6) = 0.66280 + 2*0.42158.

Diff. for x o.i = 0.04090 + 20.08171. Diff. for x o.i = 0.03400 -f- 20.09348.
Diff. for x 0.05

= 0.02045 ~l~ 20.04086. Diff. for x 0.05
= 0.01700 + 2*0.04674.

cosh (0.55 + i 0.6) = 0.67980 + 20.46832.

cosh (o.55 + 2o.jj)
= 0.81780 + 20.40933. cosh (0.55 + 2*0.5)

= 0.81780 + 10.40933.

Diff. for q cxi = 0.13800 + 2*0.05899.

Diff. for (70.05
= 0.06900 + 2*0.02950.

cosh (0.55 + 2*0.55)
= 0.74880 + 20.43883.

Correct value = 0.75018 + * 0.43963.

INTERPOLATION BY TAYLOR'S THEOREM

For a higher degree of precision than simple proportion affords, reference may be

had to Taylor's theorem in the following form :

cosh (6 + A0) = cosh 6 + A0 sinh Q + - cosh 6 + sinh + . . .

2! 3 !

cosh
{ (x -f- iy) + (Ax + 2' Ay) \

= cosh (x + iy) + (Ax + iAy) sinh (x + iy)

+ (^iM! cosh (, + ^ + (a-M*y)'
sinh (, + iy)+... (7ia)
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Quadranting imaginaries on both sides, or transferring to the XQ plane,
cosh

\ (x + iq) + (A* + iAq) |
= cosh (x + iq) + (Ax + iAq ir/2) sinh (x + iq)

(Ax + iAq 7T/ 2 )
2

+ - * - u t \cosh (* + ^q)

, (Ax + 3*A<7 ir/2)
3

. ,
, . .+ -

f*-

- sinh (x + 39) + .

O "

= cosh (x + iq) -f A'0 sinh (x + iq)

cosh (x + iq) + . . .

where A'0 = (Ax + * Aj) = (Ax + * A^ x/a). (7ib)

Example: Required cosh (0.5 + 3*0.55) = cosh (x + iq)

having given cosh (0.5 + ^0.5) =
0.79735 + i 0.36847 in Table VIII

and sinh (0.5 + ^0.5) = 0.36847 + 0.79735 in Table VII.

Here Ax =
o, Aq = 10.05, A'0 = 30.05 X 1.5708 = 30.07854.

cosh (0.5 + io^) = cosh (0.5 + io. i + + + . .

+ sinh (0.5 + 3'o^ A'0

A'0 =
3*0.07854.

(A'0)
2

(A'0)
2 =

0.00617. ~~T~
= ~

0-00309
2!

(A'0)
3

(A'0)
3 = 3*0.00048. p = 3*0.00008.

(A'0)
4

(A'0)
4 = + 0.00004. i

= o.ooooo.
4 !

cosh (0.5 + 3*0.55) =
(o.79735 + ^ 0.36847) (i

-
0.00309)

+ (0.36847 + ^' 0.79735) (30.07854 3*0.00008)
= (-79735 + * 0.36847) 0.99691

+ (0.36847 + i 0.79735) 3*0.07846
= 0.79489 -f- 3*0.36733 + 3*0.02891 0.06256
= 0.73233 + 3*0.39624.

The tabulated value = 0.73233 + 0.39624.

In view of the similarity of the interpolation operations by Taylor's theorem to

those already discussed in relation to Table VII, further examples are probably not

needed.

EFFECTS OF CHANGES OF SIGN IN THE ENTERING QUANTITY

Since if cosh ( x + iy)
= u + iv (72)

cosh ( x + iy}
= u iv (73)

cosh ( x iy)
= u iv (74)

cosh ( x iy)
= u + iv (75)

changing the 'sign of either the real or imaginary entering component only changes the

sign of the imaginary component in the result; while changing the sign of the enter-

ing quantity as a whole, has no effect on the sign of the result.
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CIRCULAR COSINES OF COMPLEX " ANGLES "

It is well known that if 6 be any angle, real or complex,

cos 6 = cosh (i6). (76)

Consequently,
cos (x + iy)

= cosh ( y -f ix) (77)

or, quadranting the imaginary component,

cos (x + iy)
= cosh ( y -f- i 2x/ir)

= u + iv. (78)

To find the circular cosine of any complex quantity x + iy, we enter Table VIII

with ( y -f * x/ 1. 5 708). The result is the desired cosine.

Example: Required cos (0.4 + i 1.2).

Thus we require cosh ( 1.2 + i 0.2546).

We now enter Table VIII with x = 1.2 and q = 0.2546 the nearest entry being
x = 1.2 and q

=
0.25, for which the result is 1.67283 * 0.57765.

Hence cos (0.4 + * 1.2)
= 1.67283 i 0.57765 neglecting interpolation from q = 0.25

to q = 0.2546.

GRAPHIC CHART INTERPOLATIONS

The use of the Graphic Charts VII-VIIlA, B, c, for hyperbolic cosines has already

been described in connection with sines, on pages 197-198.

TABLE IX

tanh (x + iq)
= u + iv

RECTANGULAR HYPERBOLIC TANGENTS OF A RECTANGULAR VARIABLE

Entering Process

Let tanh (x + iy} be the required function. Quadrant the imaginary component,
as described under Tables VII and VIII; that is, divide y by IT/ 2; so that y/(*/2) q.

The required function is now expressed in the form tanh (x + iq). Throw out mul-

tiples of 2 from q and retain only the remainder as q. Enter Table IX with (x + iq),

and find the result directly as u iv. It is a well-known property of tanh (x + iy),

that it is periodic in iy, and that the period is i.ir circular radians; or, in quadrants,

i.2. That is

tanh
I
x + * (y -f mr) \

= tanh (x + iy). (79)

where n is any integer; or, in quadrant measure of the imaginary,

tanh
\
x + i (q + 2n) j

= tanh (x + iq). (80)

Example: Required tanh (0.25 + *3o) = tanh (x + iy).

Quadranting, tanh (0.25 + i 19.099) = tanh (x + iq).

Rejecting multiples of 2, tanh (0.25 + i 1.099)
= tan^ (x + *'?)

We now enter Table IX with x = 0.25 and q
= 1.099, the nearest entry to which

x = 0.25, q
= i.i. The result is 2.95122 i 1.75011.
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INTERPOLATION

Interpolation may be approximately effected by simple proportion, first in x and then

in q, as indicated in connection with Tables VII and VIII; or, when a higher degree of

precision is required, recourse may be had to Taylor's theorem in the following form:

tanh (0 + A0) = tanh 6 + A0 sech2 -
?f- 2 sech2 tanh

+ - 2 sech2
(2 tanh2 - sech2

0) + . . . (81)
o *

or

tanh i (* + iy) + (A* + iAy) \
= tanh (x + iy) +

(A* + iAy)' .

_ _

cosh2

(as +
and quadranting,

tanh \ (x + iq) + (A* + i&q) \
= tanh (x + iq) +

-
.

cosh2
(x + i

so that as far as the second correction term:

tanh
\ (x + iq) + (A* + *Ag) }

= tanh (* + iq) + cosh2

tanh (, + {)+ ... (83)

\IQ

(A'O)* tanh (ag + iq)

cosh2
(* + iq)

where A'0 = (A* + iAy) = \Ax + iAq (ir/z) } (85)

Example: Required tanh (0.5 + 3' 0.5 5)
= tanh (a: + ^)

having given cosh (0.5 + ^'0.5)
=

0.79735 + * 0.3684 7 by Table VIII
= 0.87837 /24 .8o3 by Table XI

and tanh (0.5 + ^'0.5)
= 0.76159 -f- i 0.64805 by Table IX
= i.0/40.395 by Table XII.

Here A'0 = (o + ^'0.05 X 1.5708)
= (o + ^'0.07854).

*' 0.07854 ,
0-00617 X i /4Q.

tanh (0.5 + .0^5) = 0.76x59 + .0.64805 + 2 ^ +

= 0.76159 + i 0.64805 +
0.77153 0.77153

= 0.76159 + i 0.64805 + 0.10180/40.394 + o.oo8oo\9.2ii
= 0.76159 + i 0.64805 + 0.07753 + * 0.06597 ~J~ 0.00790 i 0.00128

= 0.84702 + i 0.71274.

The correct value is 0.84752 + * 0.71229.

As the third correction term is inconvenient for computation, it is often preferable

to obtain a precise interpolation of tanh (x + iy) in working out the correct inter-

polations of sinh (x + iy) and cosh (x + iy) by the methods already illustrated, and
then to take their ratio.

[202]



EXPLANATORY TEXT

EFFECTS OF CHANGES OF SIGN IN THE ENTERING QUANTITY

If tanh ( x + iy) u + iv (86)

then tanh ( x iy)
= u iv (87)

tanh ( x + iy)
= u + iv (88)

and tanh ( x iy)
= (u + iv). (89)

Consequently, changes in the sign of the entering quantity produce corresponding changes
of sign in the result.

FIG. 32. Graphs of x + iy and tanh (* + iy) in the XY and UV planes respectively.

CIRCULAR TANGENTS OF COMPLEX " ANGLES "

Since tan 6 = ita.nh (id), (go)

It follows that tan (x + iy)
= stanh ( y + ix) (91)

or, quadranting the imaginary:

tan (x + iy)
= i tanh ( y + i 2x/ir)

= i tanh ( y + iq)

= i ( u + iv)

= v + iu. (92)

Consequently, to find tan (x iy) from Table IX, enter it with y as x and with x/(ir/2)

as q. Invert the components of the result and the required function is obtained. Thus
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required tan (i+ 2* 2). We enter with x = 2 and q
= 0.6366. The nearest entry is

x 2.0 and q
= 0.65 for which u + iv = 1.01623 + i 0.03318. Therefore, inverting,

tan (i + i 2)
= 0.03318 + i 1.01623

neglecting the interpolation from q
= 0.65 to q

= 0.6366.

GRAPHIC INTERPOLATION BY MEANS or CHARTS IXA, IXs, AND IXc

These charts contain all of the entries in Table IX, and also a certain number of

additional results. They present circles intersecting circles orthotomically; i.e., by

rectangular intersection. It is clear that for values of x less than o.io, the curves run

off Chart IXA. In fact the first curve shown of x = o.oi extends as far as u = 100.

By taking x small enough, the corresponding values of u and v may become indefinitely

great. The entire UV plane is covered to infinity once between x = o and x = o,

q
= o and q

= ^ It is covered once more for each 2 quadrants increase in q.

When entering for tanh ( x iq); or for the inverse operation tanh"1
( u ),

it must be remembered that the confocal conic-section diagrams VII and VIII

are complete for negative as well as for positive values of x and q; but that only half

of the UV plane is presented in Charts IX. The full graph is indicated in Fig. 32,

by the aid of which the functions corresponding to negative real values are readily

apprehended.

TABLE X
sinh (x + iq)

= r /y

POLAR HYPERBOLIC SINES or A RECTANGULAR VARIABLE

This table corresponds completely to Table VII, already considered, except that it

offers results in polar instead of rectangular coordinates.

To find sinh (x + iy) expressed in polar coordinates, quadrant the imaginary, and

express the entering variable as (x + iq). Reject multiples of 4 in q, and if the re-

mainder exceeds 2, reject 2 but change the sign of the total result.

INTERPOLATION BY SIMPLE PROPORTION

Required sinh (o. 1 5 + i 0.25) having given

sinh (0.2 + 1*0.2)
= o.36882/58.723. sinh (0.2 + 20.3) = 0.49663/68. 825.

sinh (o.i + 20.2) = 0.32485 /72.947. sinh (o.i + ^'0.3)
= 0.46491 778. 932.

Diff. for o.i x = +0.043977 14. 224. Diff. for o.i x = +0.031727 10. 107.

Diff. for 0.05 x = 0.02I99/ 7. 112. Diff. for 0.05 x = 0.015867 5.Q54.

sinh (0.15 + foj) = o.48o77/73.878.
sinh (0.15 + 1*0.2)

= 0.34684 /65.83S. sinh (0.15 + 1*0.2)
= 0.34684/65.835.

Diff. for i o.i = 0.133937 8-43-
Diff. for 2*0.015

= o.06697 / 4.022.

sinh (0.15 + 2*0.25)
= 0.41381/69. 857.

Correct Value 0.41 124/70.229.
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INTERPOLATION BY TAYLOR'S THEOREM

For a higher degree of precision than is obtainable by simple proportion, it is con-

venient to use rectangular coordinates and apply formula (62). Thus, required sinh

(0.15 + 20.25). Here referring to Table VII and to the work on page 195, we find

for the result u + iv = 0.13911 + i 0.38701.

Here ^0.38701 = 1.5877110 yo .^'.^ = jo.22g ^0.13911 = 1.1433584

log 0.13911 = 1.1433584 log sec. 7o.229 = 0.4707400

0.4443526 log 0.41124= 1.6140984

log tan 70. 13'
= 0.4440674 Result 0.41124/70. 229.

2853 Correct Value 0.41 124 /70.229.
0-72

3968

INTERPOLATION BY CHARTS X-XlA AND X-XIs

These charts present the polar coordinate results on rectangular coordinate sheets,

so that they are not true graphs, but are merely to be regarded as interpolation dia-

grams.
To find sinh (x + fy), proceed as in the use of the tables and quadrant the imaginary

so as to obtain the entering quantity in the form (x + iq}> Enter with the curvilinear

coordinates, taking the more nearly vertical wavy lines for x and the more nearly hori-

zontal lines for q, starting from the line SS as the zero of q. Read off the result on

the rectangular background to the left-hand scale of ordinates.

When we leave X-XlA and enter X-XlB,it is noticeable that the curves of constant

x approach vertical straight lines and the curves of constant q approach horizontal

straight lines. At and beyond x =
3.0, we may approximate to the modulus r at any

required q, by taking the value of r at q = 0.5 and simple proportional parts between

this and r at q
= o or r at q

= i.o. The change in modulus r between q
=

0.5, and

either of the above limits is very nearly e~z/ 2 - Thus at x =
3.5 and q

=
0.5, r by the

tables is 16.55774. At q
=

o, r = 16.54263, a change of 0.01511, and at q
= i.o

r = 16.57282, a change of + 0.01508. The value of c~3 -6
/2 will be found to be 0.01510,

and over the entire range of q from o to i.o, the change in r follows in nearly simple

proportion.

Beyond x =
3.2, the limit of Chart X-XIs, the values of r can be obtained

by the above rule applied to Table X and with the aid of Chart VII-VIIIc. The

values of the amplitude y beyond x = 3 closely approximate to q quadrants. That

t
x

is sinh (x -f- iq) approximates to ^, with q in quadrant measure.

TABLE XI

cosh (x -\- iq) * /7

POLAR HYPERBOLIC COSINES OF A RECTANGULAR VARIABLE

Table XI corresponds completely with Table VIII, except that it gives results

expressed in polar instead of rectangular coordinates. It is entered with (x -f iq} just

as in Table VIII.
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Interpolation may be effected by simple proportion, as in the case of Table X, or

when a higher degree of precision is required, it may be carried on by Taylor's theorem.

In the latter case, it is more convenient to refer to the corresponding entries in Table

VIII, interpolating according to formula (716). The rectangular coordinates duly

interpolated are then transformed into polar coordinates, as in the last example on

page 225.

INTERPOLATION BY CHARTS X-XlA AND X-XIs

When Charts X-XI are used to find cosh (x + iy) ,
the imaginary is first quadranted

by dividing with ?r/2, so as to obtain the entering variable in the form cosh (x + iq).

Starting then from q
= o at the horizontal line CC, near the middle of the chart, the

underscored figures correspond to q for a little more than the first quadrant. The

manifest repetition of the curves enables the lower half of the sheet, however, to be

used for the second quadrant. The result is read off on the rectangular background
to the right-hand scale of argument.

Beyond x =
3.2, the limit of Chart X-XlB reference may be had to Chart VII-

VIIlB; or the approximate formula may be used:

e
x

cosh (x + iq}
= /. (93)

the argument q of the result being interpreted in quadrant measure and converted into

degrees.

TABLE XII

tanh (x + iq)
= r /y

POLAR HYPERBOLIC TANGENTS OF A RECTANGULAR VARIABLE

Table XII corresponds completely with Table IX, except that it gives results

expressed in polar instead of rectangular coordinates.

If we desire to find tanh (x + iy), we must first divide y by IT/ 2 so as to obtain the

entering quantity in the form (x + iq). Multiples of 2 are then rejected in q leaving

a remainder less than 2. With this remainder the table is entered.

Interpolation may be made by simple proportion to a moderate degree of precision.

GRAPHIC INTERPOLATION BY MEANS OF CHARTS XIlA, B, c, D

These charts cover between them the full range of Table XII. To find tanh (x + iq)

from them with q less than 2, find the proper chart, and enter orr'the curvilinear co-

ordinates keeping the underscored number for q. Read off the result on the rectilinear

background.
For tan (x + iy) and also for the effects of changes of sign, see directions in the dis-

cussion on Table IX.

To find tanh""1

(r/r), enter immediately on the rectangular background of r and 7
in the proper chart, and read off at the correct intersection the corresponding values

on the curvilinear coordinates. The result will appear in terms of (x + iq). The

imaginary q must be dequadranted, or multiplied by 7r/2, in order to be expressed in

terms of (x + iy).
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TABLE XIII

/ (4 + iq)
= u + iv or r /y

RECTANGULAR AND POLAR FUNCTIONS OF THE RECTANGULAR VARIABLE (4 + iq)

In this table the hyperbolic sine, cosine and tangent of (4 + iq) are collected from

q o to q = 2.0. The results are expressed both in rectangular coordinates (u + iv),

and in polar coordinates r /y.

It will be seen that the moduli of the tangents vary between 0.99933 and 1.00067,
or differ from unity by two thirds of one per mil, at most. The arguments also differ

from o by less than 0.04, or about 2'. 17" of arc.

Beyond x =
4, it is evident that the hyp. sine and cosine differ by so small a per-

centage, that no tabulation of these differences would ordinarily be required.

TABLE XIV

e*/2 and log 10 (e
x
/2)

SEMI-EXPONENTIALS

This table enables the hyp. sine or cosine of any rectangular variable (x + iq) to

be found for values of x greater than 4 and less than 10. It is shown in the preceding
table that when x reaches 4, the ratio of the sine to the cosine never differs from unity

by more than two-thirds of i per mil. This deviation from unity rapidly diminishes as

x is further increased. Consequently, the sine and cosine may each be computed from

the formula.

sinh (x + iq)
= cosh (x -f- iq)

=
/q. (94)

Example: Required the value of sinh (8.51 -f- i 25.75). The first step is to quad-
rant the imaginary by dividing with x/2, as on page 191. This gives the required func-

tion in the form sinh (8.51 + i 16.393). Rejecting multiples of 4.0 in q, we may then

write it sinh (8.51 + 3*0.393). Turning to the top of page 143, we find e
x
/2 = 2482.082

for x = 8.51; so that the result is 2482.082 70.393 quadra-nt. Expressing the argument
in .degrees by multiplying with 90 and we have 0.393 X 90 = 35.37. Thus

sinh (8.51 + i 16.393) = cosh (8.51 + i 16.393) = 2482.082 /35.37.

INTERPOLATION IN x

. Since ^ = ?^ = <- I+Al+ (M! + +... (95)

it follows that when Ax is a small quantity, it suffices to multiply the tabular value of

er/2 by (i -f Ax) in order to arrive at the interpolated result unless (A*)
2
/ 2! the second

correction term, is of sufficient magnitude to need consideration.
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Example: To find sinh (8.51 + iq), having given that sinh (8.50 + iq)
=

2457.383 /.
Here Ax = o.oi.

2457-383 X 1 = 1 2457.383

2457-3 83 X Ax = o.oi 24.574

(A*)
2

2457-383 X - = 0.00005 -123

2482.080

Result 2482.080 /q.

Tabulated value 2482.082 [^

TABLE XV
/(* + * o)

REAL HYPERBOLIC FUNCTIONS

This is a short table of real, as distinguished from complex hyperbolic functions for

convenience of reference. It was prepared and published by the author in 1903 in re-

lation to continuous-current electric circuit applications, taking the sines, cosines, and

tangents from Ligowski's tables, and adding the corresponding computed reciprocals

for the cosecants, secants, and cotangents. Much more extensive tables of real hyper-
bolic functions are, however, available. See Bibliography, page 211.

TABLE XVI

SUBDIVISIONS or A DEGREE

This is a short table for convenience in changing the expression of a circular angle
from decimals of a degree to minutes and seconds, or inversely. By its aid, three-

decimal subdivisions of a degree may be converted into minutes and seconds of arc, by
direct inspection; or minutes and seconds may be read off as decimals of a degree ta

three-digit accuracy.

METHODS EMPLOYED IN COMPUTATION

Tables I to V, inclusive, were computed as one group, and Tables VII to XIII,

inclusive, as a separate group.

Tables I to V were computed, at first, by using the formulas:

sinh (x + iy)
= V sinh2 x + sin2

y /tan"
1
(tan y / tanh x) = ri /yi. (96)

cosh (x + iy)
= Vcosh 2# sin2

;y /tan"
1

(tan y tanh x) = r2 /72 . (97)

tanh (x + iy)
=

(ri/r2) /TI
~

72- (98)

At a later stage of the work, the following formulas, kindly suggested by Professor

Bouton, were substituted:

sinh (x + iy)
= Vcosh 2X sin z /tan"

1
(tan y / tanh x) = ri fji. (99)

cosh (x + iy)
= V cosh sx cos z /tan"

1
(tan y tanh x) = r% /jz . (100)

tanh (x + iy)
= tan z /y\ 72- (101)
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Where the auxiliary circular angle z is defined by :

cos 2y- = COS 2Z. (102)cosh 2X

The arithmetical work was conducted with the aid of five-place logarithms, and was

checked by tabulating successive first and second differences in the tabulated results.

Tables VII to XII were computed by means of the following formulas:

sinh (x + iy)
= sinh x cos y -f- i cosh x sin y. (103)

cosh (x -f- iy)
= cosh x cos y + * sinh x sin y. (104)

, f . . sinh 2X sin 2ytanh (x + ty)
= r-

-
-f * ^

(105)cosh 2# -f cos 2y cosh 2* + cos 2y

A standard schedule was prepared and seven-place logarithms used in the compu-
tation. The value of tanh (x + iy) was arrived at in two ways, first by dividing (103)

by (104), and second by the independent formula (105). If these two methods did not

give identical results for tanh (x -f- iy) to five decimal places, when expressed both in

rectangular and polar coordinates, the steps of the computation were gone over afresh.*

Complete agreement being secured, leads to the inference that the values of sinh, cosh,

and tanh (x + iy) are correct, at least as far as their logarithms.

Finally, all of the tables have been reduced to graphic form in the Atlas, each entry
of the tables being marked off on its proper chart with a sharp needle, and the ruling

pen drawn through the successive punctures. In this process a certain number of

errors were discovered and rectified. The tables were then set up in type from the

MSS. used in making the charts, and were proofread three times. By this procedure
it is hoped that the outstanding errors are neither large nor numerous.

BIBLIOGRAPHY AND APPLICATIONS OF HYPERBOLIC FUNCTIONS

Hyperbolic functions of a real variable are employed extensively in mathematics

generally. In particular, they are used in the solution of cubic equations.

In navigation, real hyperbolic functions enter in connection with Mercator sailing.

In cartography, real hyperbolic functions are used in preparing maps on certain pro-

jections, especially on Mercator's projection, which appears to have been the first

application of hyperbolic functions.

In statics, real hyperbolic functions naturally present themselves in relation to the

properties of the catenary and of the funicular polygon; also in the discussion of the

forms and stresses of elastic bodies.

In dynamics, the same functions present themselves in the theory of vibrations,

and in the motion of bodies through a resisting medium.

* The author desires to express his acknowledgement of the care and painstaking effort of his assistants

engaged in computation, namely,
Miss Ethel Smith, A.B. Radcliffe, 1911.

Miss A. F. Daniell, A.B. Radcliffe, 1911.

Miss Mary M. Devlin, A.B. Radcliffe, 1912.

Miss Hope M. Hearn, A.B. Radcliffe, 1912.
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A good summary of the historical development of real hyperbolic functions is given
in Becker and van Orstrand's "Hyperbolic Functions," Smithsonian Mathematical

Tables, 1909, together with a fine compendium of formulas involving these functions.*

In electrical engineering, the earliest published application of real hyperbolic func-

tions is perhaps in T. H. Blakesley's "Alternating Currents of Electricity," London,

1889, which also appends a short table of these (real) functions. The real functions

were also introduced by Sir J. J. Thomson, in "The Electrician," Vol. XXVIII, page

599, 1891. "On the Heat Produced by Eddy Currents in an Iron Plate Exposed to an

Alternating Magnetic Field."

The fundamental differential equation of the alternating potential-current, steady-

state distribution along a uniform conductor, involving hyperbolic functions, nominally

real, seems to have been first published by O. Heaviside in 1893, "Electromagnetic

Theory," Vol. I, page 450.

The first published application of complex hyperbolic functions to the last-named

problem was by the author, "On the Fall of Pressure in Long-Distance Alternating-

Current Conductors," Electrical World, N. Y., Vol. XXIII, page 17, January, 1894

and "The Electrician," London (abstract), Vol. XXXII, page 239, January 5, 1894.

Complex hyperbolic functions also present themselves in the discussion of Hertzian-

wave reflections, and in other branches of electrical engineering. They naturally enter

the subject of confocal ellipses and hyperbolas, such as Captain Weir's Azimuth diagram
of these confocals, for indicating the azimuth of a celestial object in terms of the hour-

angle, latitude and declination. (Godfray's "Astronomy," 222.)

The mathematical discussion of hyperbolic functions is found in GreenhilTs "Differ-

ential and Integral Calculus," Macmillan and Co., 1896; Ligowski's "Tafeln der Hyper-
belfunctionen und der Kreisfunctionen," Berlin, Ernst & Korn, 1890; McMahon's

"Hyperbolic Functions," Wiley and Sons, N. Y., 1896; Becker and van Orstrand's

"Hyperbolic Functions," Smithsonian Institution, 1909; Vassall's "Nouvelles Tables

des Logarithmes," Paris, Gauthier-Villars, 1872; as well as other text-books.

Works dealing with the applications of hyperbolic functions to electrical engineering

are: "The Application of Hyperbolic Functions to Electrical Engineering Problems,"

by the author, The University of London Press, 1911, and Fleming's "The Propagation

of Electrical Currents in Telephone and Telegraph Conductors," Constable & Co.,

London, 1911.

A three-dimensional complex-angle geometrical model,f from which the hyperbolic

sines and cosines of complex angles can be presented projectively, has 'been constructed

and described.

BRIEF BIBLIOGRAPHY or TABLES or HYPERBOLIC FUNCTIONS

(i) "Tafeln der Hyperbelfunctionen und der Kreisfunctionen," by Dr. W. Ligowski,

Berlin, 1890, Ernst and Korn, 104 pages, giving five-figure logarithms of sinh 6, cosh 6,

and tanh up to 8 = 9, by steps of o.ooi up to 6 = 2 and from 2.0 to 9.0 by steps of

* This compendium has, by permission, been included in this book at its second edition, as Table XXIH.
f "A new geometrical model for the orthogonal projection of the cosines and sines of complex angles" by

A. E. Kennelly, Proc. Am. Ac. of Arts and Sciences, Vol. 54, April, 1919, pp. 371-378.
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o.oi; also the Gudermannian angle to two or more decimals of a second of arc, and

other tables.

(2) Smithsonian Mathematical Tables, "Hyperbolic Functions," by George F.

Becker, and C. E. van Orstrand, Smithsonian Institute, Washington, D.C., 1909, 321

pages, giving five-figure logarithms of sinh 6, cosh 0, and tanh 0, by steps of o.oooi

up to o.i, by steps of o.ooi from o.i to 3.0, and by steps of o.oi from 3.0 to 6.0; also

similar five-figure tables of natural real hyperbolic functions, and various other tables.

(3) "Alternating-Current Phenomena in Parallel Conductors," Vol. I by F. E. Pernot,

John Wiley, New York, 1918, containing a Table of six-decimal logarithms of hyperbolic

functions, up to 2.0 by steps of o.ooi. These present a higher order of precision by
one unit, than have been previously available for real hyperbolic functions.

The following is a list of all the tables of Complex Hyperbolic Functions known

to the present writer, in the order of date of publication:

(4) ChrystaFs "Algebra," Edinburgh, 1889, briefly discusses the theory of sinh 6,

cosh0, and tanh 6 where 6 is complex; or of the form x + iy. Graphs are given in out-

line for these functions, from which a few numerical values may be read.

(5) The paper on "Resonance in Alternating-Current Lines," by E. J. Houston

and A. E. Kennelly, Transactions A. I. E. E., April, 1895, Vol. XII, pages 133-169,

contains a Plate for the graphical evaluation of sinh 6 and of cosh 0, being a complex

variable x + iq, between the limits of x = o and #=i.25;g = o and q = , by steps

of 0.05 in x and q. The Plate is 40 cm. X 34 cm. and corresponds to Plates VII

VIILv of the Atlas prepared from tables in this book, except that it gives the result in

regular polar coordinates instead of regular rectangular coordinates. It was produced,

by a graphical process, for a precision of the 2.5th order.

(6) The first tables of complex hyperbolic functions were a short set published by
Dr. James McMahon in his Chapter IV, entitled "Hyperbolic Functions," of a book

by Merriam and Woodward on "Higher Mathematics," pages 107-168. The tables

gave sinh (x + iy) and cosh (x + iy) from x = o to x = 1.5, by steps of o.i, and also

from y = o to y = 1.5, by steps of o.i, Wiley & Sons, New York, 1896. The chapter

has since been issued as a separate volume by the same publishers.

(7) A table of hyperbolic functions of semi-Lmaginaries or sinh, cosh, tanh, coth,

sech and cosech of x /45, by steps of o.i in x up to x = 20.5, was published by the

present writer in a paper on "The Alternating-Current Theory of Transmission Speed

over Submarine Telegraph Cables," in the Proceedings of The International Electrical

Congress of St. Louis, Section A, Vol. I, pages 68-105, 1904. This table is reproduced

in Table VI of this volume.

(8) Some short tables of sinh, cosh, tanh, coth, sech, and cosech p/5 by steps of o.i

in p, up to p = 1.5, for five particular values of 5, published by the present writer in an

article on "The Distribution of Pressure and Current over Alternating-Current Cir-

cuits," in the Harvard Engineering Journal, 1905-06.
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(9) Short three-digit tables of sinh and cosh (x + iy) up to x = i, and y = i, by
W. E. Miller, in a paper "Formulae, Constants, and Hyperbolic Functions for Trans-

mission-Line Problems" in the General Electrical Review, Schenectady, N. Y., May,

1910. Supplement.

(10) "Tables of Hyperbolic Functions in Reference to Long Alternating-Current

Transmission Lines," published by the present writer in the Transactions of the American

Institute of Electrical Engineers, December 1911, pages 2495-2506. These give sinh,

cosh, and tanh p /5 from p = o to p = 0.5, by steps of o.i, and from 5 = 60 to 5 = 90

by steps of i. These tables are incorporated in Tables I, II, and III of this volume.

(n) "Tables of Sines, Cosines, Tangents, Cosecants, Secants, and Cotangents of

Real and Complex Hyperbolic Angles," published by the present writer in The Har-

vard Engineering Journal" 1912. These gave sinh, cosh, and tanh p /8 from p = o

to p i by steps of o.i, and from 5 = 45 to 5 = 90 by steps of i; also corresponding

tables of (sinh 0)/0 and of (tanh 0)/0. These tables are published in separate form by
the Harvard Engineering Journal. They are incorporated in tables I, II, III, IV, and V
of this volume.

NEW TABLES INTRODUCED IN THE SECOND EDITION

Tables I to V in this volume were computed for the range of 45 to 90 in the slope

or argument 5 of the entering vector quantity; because at that time it did not appear
that there would be any need for the range from o to 45. Alternating-current lines

used for the transmission or distribution of power have linear hyperbolic angles a, the

slope of which is commonly between 80 and 90, rarely falling as low as 45. It has

been shown during recent years, however, that railway-signal engineers employ track-

signaling circuits, formed of the rails. These are metallic circuits of low frequency,

small linear capacitance and large distributed linear leakance. The linear hyperbolic

angles a of such circuits develop slopes lying within the range 5 = o to 45. It has

therefore become desirable to cover this range, at least as far as p = i. For that pur-

pose, Tables XVII to XXI have been inserted. They run by steps of 0.05 in p, from

o to i.o, and by steps of 5 in 5, from o to 45. This new tabulated material is

available for use in track-signaling and similar computations. It is hoped to incorpo-

rate it graphically into the associated Chart Atlas at the first opportunity.

Table XVII presents sinh p/ as a polar planevector. It corresponds to and may
be regarded as an extension of Table I. Similarly Tables XVIII, XLX, XX and XXI
correspond respectively to Tables II, III, IV and V. Whereas, however, Tables I to V
are carried to five decimal places in the sizes and three decimal places in the slopes of

the evaluated quantities, the new tables are carried to six decimal places in sizes and

four decimal places in slopes. They thus aim at one higher order of precision.*

Table XXII is similar to Table XI and expands the region covered by the first six

entries of the latter into a correspondingly magnified field. It has been found that in

* The author desires to express his acknowledgment of the painstaking assistance, on these tables, by Miss

Lillian L. Hodgdon, of the Harvard Observatory computing staff.
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dealing with short lengths of alternating-current line, having negligible linear induc-

tance as well as negligible linear leakance, and therefore having a semi-imaginary linear

angle, there is frequent need for a magnified table of this kind. It may be noted that

whereas Table VI expresses slopes in degrees and minutes, Table XXII expresses them

as degrees, and four-place decimals of a degree.

Table XXIII is a useful collection of 238 formulas, with a few insertions, taken

from Becker and van Orstrand's book of Tables of real hyperbolic functions, referred to

in the footnote on page 210.



TABLE XVII. HYPERBOLIC SINES, sinh (P /5)
= r

0.05



TABLE XVII. HYPERBOLIC SINES.

O.I5 O.2O



TABLE XVIII. HYPERBOLIC COSINES. cosh(p/5)
=

r/7-

0.05

o-3S 0.40

0.70 0-7S

O.IO



TABLE XVIII. HYPERBOLIC COSINES, cosh (p/3)
= r /?. CONTINUED

O.I5 O.2O O.2S 0.30



TABLE XIX. HYPERBOLIC TANGENTS, tanh (p l&)
= r

0.05

o



TABLE XIX. HYPERBOLIC TANGENTS, tanh (p /6)
= r fa. CONTINUED

0.15 0.25 0.30



o

5
10

25

30
35
40
45

o

5
10

IS
20

25

30
35
40
45

o

5
10

IS
20

25

30
35
40
45

I.OOOOOO
I.OOOOOO
I.OOOOOO
I.OOOOOO
I.OOOOOO

o.oooo
o.oooo
o.oooo
0.0000
o.oooo

I.OOOOOO O.OOOO

I.OOOOOO 0.0000

I.OOOOOO O.OOOO
I.OOOOOO O.OOOO

I.OOOOOO O.OOOO

0-35

o

1.020543 o.oooo

1.020230 0.2014

1.019305 0.3969
1.017796 0.5808
1.015748 0.7472

1.013224 0.8908
1.010302 1.0089

1.007070 1.0961

1.003630 1.1503
1.00008 1.1694

0.70

o

1.083691 o.oooo

1.082429 0.7875
1.078682 1.5533

.072572 2.2755

.064292 2.9344

.054105 3-5103

.042331 3.9861

.029340 4.3467

1.015532 4.5800
1.001334 4-6767



TABLE XX. CORRECTING

O.IS 0.20



TABLE XXI. CORRECTING FACTOR.
taphg

e

0.05





TABLE XXIL FUNCTIONS OF SEMI-IMAGINARIES

COMPLEX VARIABLE 0/45 (slope constant).

9



TABLE XXII. FUNCTIONS OF SEMI-IMAGINARIES. CONTINUED

COMPLEX VARIABLE 6 /45 (slope constant).

e



TABLE XXIII. HYPERBOLIC FUNCTION FORMULAS

(from Smithsonian Mathematical Tables No. 1871 of 1909, Becker and van Orstrand's

"Hyperbolic Functions," by permission.)

A. RELATIONS BETWEEN HYPERBOLIC AND CIRCULAR FUNCTIONS

1. sinh u = i sin iu = tan gd u.

2. cosh u = cos iu = sec gd u.

3. tanh u = i tan iu = sin gd u.

4. tanh \u tan \ gd u.

5. 0" = (i + sin gd u) -i- cos gd u,
= [i

- cos (J TT + gd tt)3 -i- sin ( TT + gd ),

= tan (JTT + % gdu).

6. sinh iu = i sin u.

7. cosh ra = cos u.

8. tanh * = i tan w.

8a. sin u = i sinh iu = tanh (grf"
1

u).

8b. cos M = cosh iu = sech (gd""
1

u).

8c. tan M = i tanh i = sinh (gd~
l

u).

9. sinh (u w>)
= i sin (z> =F i),
= sinh u cos v i cosh w sin v.

10. cosh (w iv)
= cos (v T iu),

= cosh M cos v db t sinh w sin w.

loa. sin (w =t *) = i sinh (t tw)
= sin cosh v i cos sinh v.

xob. cos ( =b iv)
= cosh (v =F iu)

= cos M cosh v =F i sin sinh .

1 1 . cosh (w TT)
= cos m IT. (m is an integer.)

12. sinh (2 w + i) \ i IT = i sin (2 w + i) I T. (m is an integer.)

B. RELATIONS AMONG THE HYPERBOLIC FUNCTIONS

13. sinh u= \(e
u e~u) = sinh ( u)

=
(csch u)

~l

,

= 2 tanh \ u -i- (i tanh2
\ u) = tanh u -f- (i tanh 2

)*.

14. cosh =
(e

u + e~") = cosh ( u) = (sech u)~
l
,

=
(i + tanh2

i u) -5- (i
- tanh2

} M) = i -=- (i
- tanh2

)*.

15. tanh u = (e
u -

e~") -T- (e
u + r) = - tanh (- w),

= (coth u)~
l = sinh M -i- cosh M = (i sech2

M)*.

16. sechtt = sech ( w) = (i tanh2
)*.
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17. cschw = csch ( )
= (coth

2 w i)*.

1 8. coth u = - coth (- u) = (csch
2 w + i)*.

19. cosh2 u sinh2 u = i.

20. sinh = V i
(cosh w i).

21. cosh % w = V i
(cosh w + i).

22. tanh ^ = (cosh w i) -5- sinh u,

= sinh u -T- (i + cosh w) = V (cosh u i) -r- (cosh M + i).

23. sinh 2 = 2 sinh w cosh u = 2 tanh M -f- (i tanh2
u).

24. cosh 2 = cosh2 u + sinh2 w = 2 cosh2 M i,

= 1+2 sinh2 =
(i + tanh2

) -f- (i tanh2
w).

25. tanh 2U = 2 tanh M -f- (i + tanh2
).

26. sinh 3
=

3 sinh w + 4 sinh3 .

27. cosh 3
= 4 cosh3 3 cosh u.

28. tanh 3
=

(3 tanh u + tanh3
w) -f- (i + 3 tanh2

).

28a> m cosh u + n sinh w = J (w + ) e
u + \ (m ri) e~".

a8b. m e
u we~u = (m ri) cosh w + (w =F w) sinh u.

29. sinh M =

n cosh""1 u sinh w + ^-^ -4-J cosh""3 M sinh3 +....
6

/M ('M T
)

30. cosh nu = cosh" u -\ cosh n~2 u sinh2 u +
2

31. sinh w + sinh i>
= 2 sinh \ (u -\- v) cosh (M z>).

32. sinh w sinh v = 2 cosh !( + ) sinh % (u v).

33. cosh u -f cosh = 2 cosh ( + v) cosh ( v).

34. cosh cosh v = 2 sinh %(u + v) sinh HM ~ *)

35. sinh u + cosh M = (i + tanh w) -H (i tanh i w).

36. (sinh w + cosh u)
n = cosh w + sinh nu.

36a. a sinh u + b cosh u = V#2 ~ ^2 sinh ( + tanh"1
^). a> b

= V*
2 - a2 cosh ( + coth"1

1). 6 > a

__^____^^ i

36b. a cosh i sinh u = Va2 62 cosh (w tanh"1
j).

37. tanh w + tanh z>
= sinh (M + v) + cosh w cosh v.

38. tanh M tanh v = sinh (u v) -f- cosh w cosh .

39. coth u + coth t>
= sinh ( + v) -i- sinh M sinh .
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40. coth u coth v = sinh (u v) -f- sinh u sinh v.

41. sinh (u v)
= sinh w cosh z> =t cosh M sinh t>.

42. cosh (u =t z>)
= cosh w cosh z; sinh M sinh z>.

43. tanh (u z)
= (tanh w tanh v) -H (i tanh w tanh z>).

44. coth (u v)
= (coth M coth z> i) -f- (coth z> coth M).

45. sinh (u + v) + sinh (w zi)
= 2 sinh u cosh z>.

46. sinh (u + z>) sinh ( z>)
= 2 cosh w sinh v.

47. cosh ( + )+ cosh (u v)
= 2 cosh u cosh z>.

48. cosh (u + v) cosh (M )
= 2 sinh u sinh v.

49. tanh \ (u + z;)
= (sinh M -f sinh z>)

-f- (cosh M + cosh v).

50. tanh ^ (w v)
=

(sinh M sinh v) -f- (cosh w + cosh z>).

51. coth J (M + z>)
= (sinh w sinh v) -t- (cosh M cosh ).

52. coth 5 ( )
=

(sinh M + sinh z>)
-f- (cosh cosh z>).

tanh + tanh v _ sinh (w + v)

tanh M tanh v sinh ( z;)

*

coth u + coth v _ _ sinh (w + )

coth M coth z sinh (w v)

55. sinh (w + z>) + cosh ( + v)
= (cosh w + sinh M) (cosh + shih v).

56. shih (w + v) sinh ( )
= sinh2 u sinh2

,

= cosh2 u cosh2
z>.

57. cosh (u + z>) cosh (u v)
= cosh2 u + sinh2

,

= sinh2 M + cosh2
v.

58. sinh (#w TT)
= o. (m is an integer.)

59. cosh (miir) = ( i)
m

.

60. tanh (mi TT)
= o.

61. sinh (u + miir) = ( i)
m sinh.

62. cosh (u + mi IT)
=

( i)
m coshw.

63. sinh (2 m + i) *' TT = i.

64. cosh (2 w + i) 3 i TT = o.

65. sinh
( )

= i cosh M.
\ 2 /

. cosh
( w) = =t * sinh M.
\2 /

66.
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66a. sinh
{ (u + iv) + i f \

= sinh
{ (u + iv) + i i

\
i cosh (u + iv).

66b. cosh
\ (u + iv) + i f |

= cosh
| (w + >) + T; \

=
i.sinh (M + iv).

66c. tanh
^ (w + iv) + i f |

= tanh
| (w + iv) + i

i_ \
= coth (u + iv).

66d. sinh
| (w + iv) + i TT

\
= sinh

\ (u + iv) + is_\
= sinh (u + iv).

66e. cosh
\ (u + iv) + i *

\
= cosh

\ (u + iv) + i 2
\
= cosh (u + iv).

66f. tanh
\ (u + iv) + i T

\
= tanh

\ (u + iv) + i 2
\
= tanh (u + iv).

67. tanh (u + iir)
= tanh u.

67a. If sinh
^ (u + t (i

-
q) \

= x + iy; then sinh
\
u + i (i + q) \

=- x + iy.

670. If cosh \(u + i(i-q)\=x + iy: then cosh
\
u + i (i + q) \

=- x + iy.

67C. If tanh
\
u + i (i

-
q) \

= x + iy: then tanh
\
u + i (i 4- q) I

= x - iy.

C. INVERSE HYPERBOLIC FUNCTIONS

/TT-TI u *

^ + i;

69. cosh-1 u =
log (w + Vw2

i)
= sinh -1 V 2 - i = / ,

2 _ ^

r du
70. tanh"1 w = \ log (i + ) log (i u)

= I
2

*

%/ A **

71. coth"1 M = ^ log (i + u) i log (u i)
= /

j _ W2
:

72.

73. csch"1 u =

74. sin"1 w = sinh" 1 iu = i log (I'M + V1
2
)-

75. cos"1 u = i cosh"1 M = i log (M + i Vi ~ 2
)-

76. tan-1 u= i tanh"1 ZM = : log (i + iu) . log (i iu).
t 1. 11:21

77. cot'1 u- i coth-1 iu = . log (iu i) TJ Jg (*M + J )-
2 Z* **

78. sin"1 iu = i sinh"1 u = i log (w
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1 7

80. tan"1 iu = i tanh- 1 u = -
log (i + )

-
log (i ).

2 2

81. cot-1 iu = i cotir1 u =-- log (w + i) + log (u i).
2 2

82. cosh-1

\(u + -}
= sinh-1 \(u - -} =

\ / \ / tt

i- i

~
= 2 tanh-1 - = log M.

+ i

83. tanh-1 tan M = \gdzu.

84. tan"1 tanh M = \ gd~
l
2 .

85. cosh"1 esc 2 = sinh-1 cot 2 u = tanh-1 cos 2 u = log tan u.

86. tanh-1 tan2 (J TT + i )
= J log esc w.

87. tankr1 tan2
1 = ^ log sec u.

88. cosh"1 cosh"1 v = cosh"1

[ V (w
2

i) (v
2

i)].

89. sinh"1 sinh"1
z> = sinh-1

\ju V i + v2 z; V i + w2
].

D. SERIES

M2
7<

3 M4

90. e = I+M + - + - + -+ . .. (M
2
<oc)

91. log u = (u
-

i)
- *-

(u
-

i)
2 + -

(w
-

i)
-

. . . ( 2 > w> o)

93 .

94. log (i + M) = u -- w2
H-- 3 - w4 + .234

95- log
ferj)

= 2 tt + W3 + M6 + W7 + . . . 1 (M
2
<l)

*>e^-,tt
+ife>v7fe)

<

*;'^]
M3 5 M7

97- smh = * + +++... (
2 < a )

2
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''

+JL--U
6!

98. cOSh=I+^-+- -+- f + . . .

(
2
<cr)

(0\
/ A \ ,

4
2\ / 4M-\ /

, 4
2 \

1

~*~J V
1

3
2 r2

/ V
l "*" ?~W ' * * (

2 < <*)

99. tanh = w 3
H w8 w7 + . . . (

2 < i T
2
)

1,1 2
100. u com = i H

* w4
H w8

. fo2O2
)

3 45 945

1
> , 5 6 1

101 . sech u = i
^ + 4

2 24 720

102. U CSCh U = I T-U2 + -~ U4

108. com"1 = tanh"1 - =
I

-. -\ r H 7 + . .

M u 3
*

5 M
5

7 w
7

I . 2 IM 13** 135

6 360 15120

103. gdu =
<t>
= u z~ w3 H w5 7 + . . . (M small)

r i sech3 w 13 sech5 u= sech u ... (u large)
2 2 3 245

I - . I
s . 6l - / T\

104. tt = ga
1

<
=

<p-t--^<p'
J

H <pH ^0
7 +... (0 <-

6 24 540 \ 2/

105. sinh"1 = ---+-- - - - 4 + . . . (
2 <i)

23 245 2467

22 M2 244W4 2466 M6

II I 3 I 1351
106. cosh"1 u = log 2 w -

9 i -T 7; ... ( > i)22 W2 244 tt
4 2466 tt

6III /

107. tanh"1 u = u + - w -\
6 H w + . . . ( < i)

3 5 7

ioo . seen w *~ \^V/JI.A AVCL
M 22 244 2466
II II I^I 1351 / '\

no. csch-'* = sinh" 1 - ----_+--_- ---
, + . . .

=
log

f + I^_I3
4

+ I3|^_ B-< (tt2<1 )

U 22 244 2466
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E. DERIVATIVES
deu

in. -7- = e
u

.

du

. loge U I
112. d j

= -
(III U

dav dv .

113. -r = a", -r- .log, a.
du du

114. -3 = uu (i + loge ).

J sinh M
iis. :

= coshtt.
du

d cosh M . ,

116. :
= smhtt.

du

d tanh u
117.

-j

= sech2 .

d coth u
118. ;

= csch2 M.
du

d sech u
no. ;

= sechw. tanhM.
du

d csch u
1 20. ;

= csch u. coth u.
du

121
d sinh"1 u

du ^#2 _|_ j

J cosh"1 M i
122. =

123.

du

d tanh"1 u

d coth"1 u
124. -j

=
du

d sech"1 u
125. ;

=
du u

126.
du u ^ + z

dgd u
127. 3 = sechw.

du

d gd
-1

128. ^3 = secw.
du
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F. INTEGRALS. (INTEGRATION CONSTANTS ARE OMITTED.)

1 29. I sinh u du = cosh u.

130. I cosh udu = sinh u.

131. I tanh udu =
log cosh .

132. I coth udu =
log sinh .

X33- / sech udu = 2 tan" 1 eu = gd u.

134. I csch udu =
log tanh - -

135. /
sinh" u du = - sinh "-' M. cosh u / sinh n~2 u du,J w n J

I w _|_ 2 /*=
;

sinh "4l M cosh w I sinh n+2 M rfw.+ i w + iJ

136. I cosh" udu = - sinh w. cosh n-1 M + / cosh n~? w dw,J w w J

sinh u coshn+1 u -\
^

/ coshn+2 du.
n + i

137. I u sinh udu = u cosh M sinh M.

138. I u cosh udu = u sinh w cosh .

139. / w2 sinh udu = (u
2 + 2) cosh u 2 u sinh .

140. I M" sinh udu = un cosh ww""1 sinh u + n(n i) I
n~s

si

141. I sinh2 w JM = \ (sinh M cosh u u).

142. I sinh . cosh u du = \ cosh (2 ).^

143. / cosh2 u du = % (sinh u cosh + M).
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144. I tanh2 u du = u tanh w.

145. I coth2 u du = u coth u.

146. I sech2
rf = tanhw.

147. I sech3 M du = i sech w tanh u + \ gd u.

148. I csch2 udu= coth .

149. / sinh-1 u du = u sinh-1
(i + w2

)*.

150. I cosh-1 u du = u cosh"1 u (w
2

i)*.

151. / tanh-1 udu = u tanh-1 w + i log (i w2
).

152. T sinh-1 u du = i (2 w
2 + i) sinh-1 u - u (i + 2

)* .

153- TM cosh-1 u du = l\ (2 u
2 -

i) cosh-1 u - u (u?
-

i) .

154 . i (cosh a + cosh w)"
1 du = 2 csch o. tanh"1

(tanh ^ w. tanh a),

= csch a log cosh (w + a)
-

log cosh \(u - a) .

155. I (cos a + cosh u)~
l du - 2 esc a. tan-1 ( tanh $ w. tan \ a).

156. / (i + cos a. cosh w)"
1 du = 2 esc a. tanh-1

(tanh i w. tan a).

157. I sinh cos </ = i (cosh M. cos u + sinh . sin ).

158. / cosh . cos udu= \ (sinh w. cos u + cosh w. sin ).

159. I sinh w. sin M rfw = 5 (cosh u. sin sinh u. cos w).

160. I cosh w. sin M du = i (sinh w. sin u cosh . cos ).
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161. I sinh (mu) sinh (nu) du

-

2
m sinh (nu) cosh (mu) n cosh (nu) sinh (w) .m - n L J

162. I cosh (WM) sinh (nu) du

m sinh (nu) sinh (w) w cosh (nu) cosh (w)w n L J

163. I cosh (WM) cosh (M) rfw

=
5 m sinh (mu) cosh (WM) n sinh () cosh (mu) .m n

\_

164. / sinh u tanh u du = sinh u gd u./ucosh u coth udu = cosh M + log tanh

1 66. I sec M du gd"
1

.

167. I sec3
<j>d<t>

= I (i + tan2
</>)* J tan <

= sec < tan + | gd
-1

0,

=
| tan $ (i + tan2

<)* + \ sinh-1
(tan 0). Here <f>

= gd u.

r du .u r du
168. I , ,

,..
= sinh-1 -- f

-p-j
-

5T7
= sin"1

J (u
2 + a2

)* a J (a
2

n

')*

"""
a'

r du ,u r du .u
l6o. I 7-S

-^T = COSh"1 - I r-~--5rr-
= COS 1

J (u
2 a2

)* a J (a
2 2

)* a

/<f
w i . u r du * i A .

7-5
--

5x
= - tanh"1 - ,

,
,

= - tan-1 -

(a
2 - w2

)u<o a J a2 + w2 a a

/
JM i

,
C du i .

r~5 v
- = - coth-1

/-r^i = ~ cot -*
(w

2 -a2
)u>a a a J a2 + 2 a a

/
d i . f du i u- - = - sech-1 -

I 7-5
-

^T-
= sec * -

M (a
2 2

)* a a J u (u
2 a2

)* a a

/
d i

,
u f du i u

u(a* + u2
)*

=
a
CSCh

a" J (
2 - a2

)

=
a

C!

a

/du i
,

aw + b
. , ,

TT = = sinh-1

7
--

rjrr- , a positive, ac > b2
;

(au
2 + 2bu + c)* v C

- P)1

i , au + & ... ^ ,,= -= cosh"1

^75 y , a positive, ac < b2
;

= cos"1
, ^
U

X1 >
a negative.

(b
2

ac)
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FORMULAS

/
du

(au
2

tan
au + b

(ac
- 62

)* (ac
-

i
"

v-i
au + b

(b*
-

a,

tanlr
(b

2 -
ac)*

ac > b*;

ac < b2
,

au + b < (b
2

ac)*.

ac < 62
,

au + 6 > (6
2 -

ac)*.

176. J (a- u) (u
-

6)* (a
-

6)*

b

a b

or

or

2 \u b
tan-1

(b
-

a)*

2

(a
-

6)i
coth-1

I77< f
J (a-

du

b~=~a'

u b

a b

tanh"1

u) (b
-

w)* (b
-

a)*

2 \b u
or

or

TT
-rr

(b a)*

-.
-

TTJ
(a b)*

coth-1

tan

a

--

a b

(The real form is to be taken.)

b u

b a

(The real form is to be taken.)

178.

179.

1 80.

181.

182.

183-

184.

185.

= i w (
2 a2

)* | a
2 cosh"1

a

2
)* JM = ^ u (a

2 - 2
)i + ^ a

2 sin"1 -
o>

du= a2
)*

/<'-

JV-

JV +

//flu** u ~~
a
''

/gOUutf*
u du = -j (aw i).a

/
Um MU

yy> f*

um-(P
u du = I um~ l

e?u du.
a aj

/e?

u du _ i e" /^e u a
7

!* 1

um m i [
""^

/ w*""1

J

//T&a^rfw =
6 log a
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FORMULAS

C _au un _ nau un ~l n (n i) au un ~2

J log a (log a)
2

(log a)
3

n (n i) (n 2) 2. i a"

(log a)
n+1

l8? ra"^M = a" r E
iqg g _ (log a)

2

J un n i [
"-1

(w 2) w""2
(w 2) (w

-
3)

-
;

(log a)
"-1 ra"du 1

(w- 2) (w- 3)
.... 2 .iJ ~u~ \'

Cau du _ . (u log a)
2

( log a)
3

J U 2.2 I 3.3 !

du e
u

du

-
log ( V a + bemu + V"a) .

/ue
u du e"

(i + )
2 ~TT

"

/e u
log

195. I logudu = u log u u.

196. Ju
m
logudu = um+l

[^^
~

(w + l)2 J-

197. I (log )" du = u (log w)
n n I (log w)"-

1
rfw.

r /i
w>n+1 (lg M)" n C m n ^n-

198. /

m
(log u)

n du = -
I wm (log )"

y m + i w -f- i7

20 -

(log )
n </M _ (log u)

n+l
^

u n + i

dw
, (logw)

2
. (log)
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FORMULAS

r du u
2OI

2O2

/du
u i r du

(log )
n
~

(w
-

i) (log tt)"-
1 - ij (logtt)"-

1
'

/M
TO o# um+l m + i /* um du

., i

*^~ -4 ' I *

(log )
n

( i) (log tt)""
1 n i J (log )

n~

/
m

a" /^e~tf

= I Jy, where y = (m -f i) log w.

log u J y

/du :=
log (log u).

u log u

/du
i_ .

u (log u)
n

(n i) (log w)
n~

206. I (a + bu)
m
log udu =

r (a + to)*
+1
log u I

o (w + i) L J w J

207. I
m
log (a + to) O"M =

- u"*1
log (fl + to)

- 6 /w+iL J a + bu \

208. I
- =

J u

bu

/logM^M
_ I logW /* </

(a + to)*
"

6 (f
-

i) L

~
(a + to)"

1
-1
+
J w(a +

/log
udu i

'

, / ,
T N i Tlog (a + to)

^-^ == _

/,
(a + to)

2
.

(a + bu) log u du = - -
log20

f(a + bu)
2

. a2
log u

(a + bu) log u du = -
;

-
log u ^

au

fk
212. I 7-J (a

log M C?M

+ to)*

~

(log u 2) V( + to) + V a log ( Va + to + V a)
* L

- V a log ( V a, 4- to V a) ,
if a> o,

= -T- (log M 2) V (& + bu) + 2 V a tan" 1
-vl -

,
if a < o.
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FORMULAS

213. Ce~<**du = -^ = r(i).Jo 2 a 20,

214. rue-*du=T (n+J =^
Jo a n+l a n

s . r-r~^= i

Jo

-
+1

.2 n a

2i6. I e
"*~

^r du = - - \IT a > o.. I e~"*~ & du =- A| IT

Jo 2 >

/*" i [TT

217.
' e""" V M d = -- A - '

Jo 2n V n

/*e-

u
17

==~du = \
i Vw > w

f
00

^M 7T

219. . , ,
-r = -

J o sinh (w) 2 w

f
00 M^M 7T

2

. . , (
-

r- = -5-
J o smh (nu) 4 w

j
220

221
f*it /IT

sinh (mu) . sinh () du = I cosh (WM) . cosh () <

*/ o Jo
=

o, if m is different from n.

/it
(*i* i^

cosh2
(mu) du = I sinh2 (w) </w =

i Jo 2

it

sinh (WM) JM = o.

*

rir

224. I cosh (mu) du = o.
J o

/tf sinh (w) cosh (nu) du = o.
-it

pit
226. I sinh (mu) cosh (ww) </M = o.

J o

T 1

logM , 7T
2

227.
- du = *

Jo i - 6

/"! log U IT
2

228. I .
- du =

Jo I + U 12

C l
log u ,

229.
' du =

Jo i-u2
*.
8
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FORMULAS

r 1
. / I + U \ du 7T*

230. log { )

=
Jo 3

\i - u) u 4

du

-u)du

233. / (logw)
n <fo= (-J

r/. i\
Jo

(log-j

237.

[240]
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