# TABLES OF <br> COMPLEX HYPERBOLIC AND OIRCULAR FUNCTIONS 

KENNELLY

## UNIVERSITY OF CALIFORNIA AT LOS ANGELES


c界Hedra

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

To mu/ esteemed colleague Hedrick
$26^{\text {2h }}$ Apil 1923 4 fir G.M.C.T

108 Peirce trall
litanaad

## TABLES

OF

# COMPLEX HYPERBOLIC AND CIRCULAR FUNCTIONS 

## BY

A. E. KENNELLY, Sc.D., A.M.

PROFESSOR OF ELECTRICAL ENGINEERING IN HARVARD UNIVERSITY

SECOND EDITION
REVISED AND ENLARGED


## CAMBRIDGE

HARVARD UNIVERSITY PRESS
LONDON: HUMPHREY MILFORD
Oxford University Press
1921

# COPYRIGHT, I914 AND I92I <br> HARVARD UNIVERSITY PRESS 

First edition, March, 1914 Second edition, February, 192I


## PREFACE

The tables in this book present hyperbolic and circular functions of a complex variable, both in polar and rectangular coördinates. Such complex functions have not hitherto been published, except over a very restricted range. They have important applications in electrical engineering. For instance, it is possible with their help to find in a few minutes the potential, current and power, at any point of an alternating-current line-conductor of known constants and terminal conditions; whereas the same problem, to a like degree of precision, without aid from these functions, and by older methods, would probably occupy hours of labor and cover several sheets of computing-paper.

Although the principal application of these functions at the present time is in dealing with alternating-current lines, especially those of either great length or high frequency; yet it seems likely that other uses will develop for them.

The author desires to acknowledge his indebtedness, for suggestions and help, to a number of workers, both in mathematical and practical fields; and particularly to Messrs. C. L. Bouton, W. Duddell, E. V. Huntington, F. B. Jewett, John Perry, H. J. Ryan, and E. B. Wilson.
A. E. K.

Harvard University
January, 1914.

## PREFACE TO THE SECOND EDITION

In preparing the second edition of this book, six new tables have been computed. These are actually extensions of the tables I to VI already incorporated. It has been considered advisable to add the new material in new tables at the end of the volume rather than to recast the original tables in such a manner as to include the new matter. The new matter has been found necessary in certain departments of electrical engineering to which complex hyperbolic functions may be advantageously applied.
A. E. K.

Harvard University
June, 1920.

## TABLE OF CONTENTS

I. Hyperbolic Sines. $\sinh (\rho / \delta)=r / \gamma$. . $\delta 45^{\circ}$ to $90^{\circ}$
PAGE
II. Hyperbolic Cosines. $\cosh (\rho / \delta)=r \angle \gamma$ " " " " ..... 8
III. Hyperbolic Tangents. $\tanh (\rho / \delta)=r / \gamma$ ..... 14
IV. Correcting Factor. $\frac{\sinh \theta}{\theta}$ ..... 20
V. Correcting Factor. $\frac{\tanh \theta}{\theta}$ ..... 26
VI. Functions of Semi-Imaginaries. $f\left(\rho / 45^{\circ}\right)$ ..... 32
VII. Hyperbolic Sines. $\sinh (x+i q)=u+\imath \jmath$ ..... 42
VIII. Hyperbolic Cosines. $\cosh (x+i q)=u+i v$ ..... 58
IX. Hyperbolic Tangents. $\tanh (x+i q)=u+i v$ ..... 74
X. Hyperbolic Sines. $\sinh (x+i q)=r / \gamma$ ..... 90
XI. Hyperbolic Cosines. $\cosh (x+i q)=r / \gamma$ ..... 106
XII. Hyperbolic Tangents. $\tanh (x+i q)=r / \gamma$ ..... 122
XIII. Functions of $4+i q . \quad f(4+i q)=u+i v$ ..... 138
$f(4+i q)=r / \gamma$ ..... I39
XIV. Semi-Exponentials. $\frac{e^{x}}{2}$ and $\log _{10}\left(\frac{e^{x}}{2}\right)$ ..... 140
XV. Real Hyperbolic Functions. $f(x+i o)=u+i o$ ..... 144
XVI. Subdivisions of a Degree ..... 150
Explanatory Text ..... 151
XVII. Hyperbolic Sines. $\sinh (\rho / \delta)=r / \gamma$ $\delta 0^{\circ}$ to $45^{\circ}$ ..... 214
XVIII. Hyperbolic Cosines. $\cosh (\rho / \delta)=r \angle \gamma$ ..... 216
XIX. Hyperbolic Tangents. $\tanh (\rho / \delta)=r / \gamma$ ..... 218
XX. Correcting Factor. $\frac{\sinh \theta}{\theta}$ ..... 220
XXI. Correcting Factor. $\frac{\tanh \theta}{\theta}$ ..... 222
XXII. Functions of Semi-Imaginaries. $f\left(\rho / 45^{\circ}\right)$ ..... 224
XXIII. Hyperbolic Function Formulas ..... 226

## TABLES OF COMPLEX HYPERBOLIC AND CIRCULAR FUNCTIONS

Table I. HYPERBOLIC SINES. $\sinh (\rho / \delta)=r \not \nu$

|  | 0.1 |  | 0.2 |  | 0.3 |  | 0.4 |  | 0.5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | - |  | - |  |  |  | - |  | - |
| 45 | 0.10000 | 45.096 | 0.20000 | $45 \cdot 383$ | 0.30001 | 45.860 | 0.40005 | 46.532 | 0.50016 | 47-391 |
| 46 | 0.099993 | 46.095 | 0.19995 | 46.382 | 0.29985 | 46.858 | 0.39968 | 47.529 | 0.49944 | 48.388 |
| 47 | 0.099987 | 47.095 | 0.19990 | 47-381 | 0.29969 | 47.856 | 0.3993 I | 48.526 | 0.49872 | 49.385 |
| 48 | 0.099981 | 48.094 | 0.19986 | 48.380 | 0.29954 | 48.854 | 0.39893 | 49.520 | 0.49799 | 50.378 |
| 49 | 0.099975 | 49.094 | 0.19982 | 49.378 | 0.29939 | 49.852 | 0.39856 | 50.513 | 0.49727 | 51.368 |
| 50 | 0.099970 | 50.094 | 0. 19976 | 50.376 | 0.29923 | 50.848 | 0.39820 | 51.506 | 0.49656 | 52.357 |
| 51 | 0.099965 | 51.093 | -. 19972 | 51.374 | 0.29907 | 51.842 | 0.39784 | 52.497 | 0.49585 | 53.342 |
| 52 | 0.099960 | 52.092 | -. 19968 | 52.371 | 0.29892 | 52.834 | 0.39748 | 53.486 | 0.49514 | 54.325 |
| 53 | 0.099955 | 53.091 | -.19963 | 53.367 | 0.29877 | 53.826 | 0.39712 | 54.472 | 0.49444 | 55.304 |
| 54 | 0.099950 | 54.090 | 0.19959 | $54 \cdot 362$ | 0.29862 | 54.818 | 0.39676 | 55.458 | 0.49374 | 56.281 |
| 55 | 0.099944 | 55.089 | 0.19955 | 55.357 | 0.29847 | 55.809 | 0.39641 | 56.440 | 0.49305 | 57.254 |
| 56 | 0.099939 | 56.088 | 0.19951 | 56.352 | 0.29833 | 56.799 | 0.39607 | 57.42 I | 0.49238 | 58.226 |
| 57 | 0.099933 | 57.086 | -0.19946 | 57.347 | 0.29819 | 57.787 | 0.39572 | 58.400 | 0.49172 | 59.195 |
| 58 | 0.099928 | 58.085 | 0.19941 | 58.342 | 0.29804 | 58.773 | 0.39538 | 59.378 | 0.49106 | 60.160 |
| 59 | 0.099922 | 59.083 | -. 19937 | 59.336 | 0.29790 | 59.760 | 0.39505 | 60.354 | 0.49041 | 61.123 |
| 60 | 0.099917 | 60.082 | 0.19934 | 60.33I | 0.29777 | 60.746 | 0.39473 | 61.330 | 0.48978 | 62.085 |
| 61 | 0.099912 | 61.08 r | -. 19929 | 61.324 | 0.29764 | 61.731 | 0.39441 | 62.302 | 0.48916 | 63.042 |
| 62 | 0.099907 | 62.079 | 0.19925 | 62.317 | 0.29751 | 62.715 | 0.39409 | 63.273 | 0.48855 | 63.998 |
| 63 | 0.099902 | 63.077 | -. 1992 I | 63.309 | 0.29738 | 63.698 | 0.39379 | 64.243 | 0.48795 | 64.950 |
| 64 | 0.099897 | 64.075 | -.19918 | 64.301 | 0.29725 | 64.680 | 0.39349 | 65.212 | 0.48738 | 65.900 |
| 65 | 0.099893 | 65.073 | 0.19914 | 65.293 | 0.29712 | 65.661 | 0.39320 | 66.179 | 0.4868 I | 66.848 |
| 66 | 0.099889 | 66.071 | 0.19911 | 66.284 | 0.29700 | 66.64I | 0.39293 | 67.144 | 0.48627 | 67.794 |
| 67 | 0.099885 | 67.069 | -. 19908 | 67.275 | 0.29689 | 67.621 | 0.39266 | 68.108 | 0.48575 | 68.738 |
| 68 | 0.09988 r | 68.066 | -. 19904 | 68.265 | 0.29678 | 68.599 | 0.39240 | 69.070 | 0.48523 | 69.679 |
| 69 | 0.099877 | 69.064 | 0.19901 | 69.255 | 0.29667 | 69.577 | 0.39214 | 70.030 | 0.48473 | 70.617 |
| 70 | 0.099873 | 70.062 | 0.19898 | 70.245 | 0.29657 | 70.555 | 0.39190 | 70.990 | 0.48426 | 71.554 |
| 71 | 0.099869 | 71.059 | -. 19895 | 71.235 | 0.29647 | 71.532 | 0.39167 | 71.948 | 0.48380 | 72.489 |
| 72 | 0.099865 | 72.057 | -. 19892 | 72.225 | 0.29637 | 72.508 | 0.39145 | 72.905 | 0.48338 | 73.422 |
| 73 | 0.099861 | 73.054 | -.19889 | 73.214 | 0.29628 | 73.483 | 0.39123 | 73.861 | 0.48296 | 74.354 |
| 74 | 0.099858 | 74.051 | -. 19887 | 74.203 | 0.29620 | 74.458 | 0.39104 | 74.817 | 0.48257 | 75.284 |
| 75 | 0.099855 | 75.048 | 0.19885 | 75.192 | 0.29612 | 75.432 | 0.39084 | 75.771 | 0.48220 | 76.212 |
| 76 | 0.099852 | 76.045 | -. 19883 | 76.180 | 0.29604 | 76.406 | 0.39066 | 76.724 | 0.48184 | 77.138 |
| 77 | 0.099850 | 77.042 | -.19881 | 77.168 | 0.29596 | 77.379 | 0.39050 | 77.676 | 0.48152 | 78.062 |
| 78 | 0.099847 | 78.039 | -. 19878 | 78.156 | 0.29590 | 78.35 I | 0.39034 | 78.628 | 0.48121 | 78.986 |
| 79 | 0.099845 | 79.036 | 0.19876 | 79.144 | 0.28584 | 79.322 | 0.39018 | 79.578 | 0.48093 | 79.909 |
| 80 | 0.099843 | 80.033 | 0.19875 | 80.131 | 0.29578 | 80.294 | 0.39004 | 80.528 | 0.48067 | 80.830 |
| 81 | 0.09984 I | 81.030 | -. 19873 | 81.118 | 0.29573 | 81.266 | 0.38993 | 81.477 | 0.48044 | 81.750 |
| 82 | 0.099839 | 82.026 | -. 19872 | 82.106 | 0.29569 | 82.238 | 0.38983 | 82.425 | 0.48023 | 82.669 |
| 83 | 0.099838 | 83.023 | 0.19871 | 83.093 | 0.29566 | 83.209 | 0.38973 | 83.373 | 0.48004 | 83.587 |
| 84 | 0.099837 | 84.020 | 0.19870 | 84.080 | 0.29563 | 84.180 | 0.38965 | 84.32 1 | 0.47987 | 84.505 |
| 85 | 0.099836 | 85.017 | -. 19869 | 85.067 | 0.29561 | 85.150 | 0.38958 | 85.268 | 0.47972 | 85.422 |
| 86 | 0.099835 | 86.014 | 0.19868 | 86.054 | 0.29559 | 86.120 | 0.38952 | 86.215 | 0.47960 | 86.338 |
| 87 | 0.099834 | 87.011 | -. 19868 | 87.04 I | 0.29557 | 87.090 | 0.38948 | 87.162 | 0.47952 | 87.254 |
| 88 | 0.099833 | 88.008 | -. 19867 | 88.028 | 0.29555 | 88.060 | 0.38946 | 88.108 | 0.47947 | 88.170 |
| 89 | 0.099832 | 89.004 | -. 19867 | 89.014 | 0.29553 | 89.030 | 0.38944 | 89.054 | 0.47945 | 89.085 |
| 90 | 0.099831 | 90.000 | 0. 19867 | 90.000 | 0.29552 | 90.000 | 0.38942 | 90.000 | 0.47943 | 90.000 |

Note. $\quad \sinh (0 / \delta)=0 / \delta$.
Examples. $\sinh \left(0.3 \angle 65^{\circ}\right)=0.29712 \angle 65^{\circ} .66 \mathrm{n}=0.29712 \angle 65^{\circ} \cdot 39^{\prime} \cdot 40^{\prime \prime}$.
$\sinh ^{-1}\left(0.39^{\circ} 18 / 79^{\circ} .578\right)=0.4 / 79^{\circ}$.

Table I. HYPERBOLIC SINES. $\sinh (\rho / \delta)=r / \gamma$. Continued

|  | 0.6 |  | 0.7 |  | 0.8 |  | 0.9 |  | 1.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | ${ }^{\circ}$ |  |  |  |  |  | - |  | - |
| 45 | 0.60042 | 48.440 | 0.70094 | 49.676 | 0.80184 | 51.108 | 0.90327 | 52.728 | 1.00553 | 54.531 |
| 46 | 0.59918 | 49.437 | 0.69894 | 50.679 | 0.79885 | 52.11 | 0.89904 | 53.735 | 0.99975 | 55.540 |
| 47 | 0.59793 | 50.434 | 0.69695 | 51.676 | 0.79587 | 53.109 | 0.89482 | 54.734 | 0.99394 | 56.550 |
| 48 | 0.59667 | 51.426 | 0.69497 | 52.666 | 0.79291 | 54.099 | 0.89060 | 55.725 | 0.988 I 6 | 57.543 |
| 49 | 0.59542 | 52.414 | 0.69299 | 53.652 | 0.78996 | 55.082 | 0.88640 | 56.707 | 0.98242 | 58.525 |
| 50 | 0.59418 | 53.398 | 0.69102 | 54.632 | 0.78703 | 56.058 | 0.88224 | 57.679 | 0.97672 | 59.495 |
| 51 | 0.59295 | 54.379 | 0.68907 | 55.606 | 0.78412 | 57.026 | 0.87810 | 58.642 | 0.97105 | 60.453 |
| 52 | 0.59174 | 55.355 | 0.68713 | 56.574 | 0.78124 | 57.987 | 0.87400 | 59.595 | 0.96543 | 61.399 |
| 53 | 0.59053 | 56.326 | 0.6852 I | 57.537 | 0.77838 | 58.940 | 0.86993 | 60.538 | 0.95986 | 62.333 |
| 54 | 0.58932 | 57.293 | 0.68331 | 58.493 | 0.77555 | 59.886 | 0.86590 | 61.472 | 0.95435 | 63.255 |
| 55 | 0.58814 | 58.256 | 0.68144 | 59.445 | 0.77275 | 60.824 | 0.86192 | 62.396 | 0.94890 | 64.166 |
| 56 | 0.58698 | 59.215 | 0.67959 | 60.391 | 0.76999 | 61.755 | 0.85800 | 63.312 | 0.94353 | 65.065 |
| 57 | 0.58583 | 60.171 | 0.67776 | 61.331 | 0.76727 | 62.678 | 0.85414 | 64.218 | 0.93825 | 65.952 |
| 58 | 0.58469 | 61.122 | 0.67595 | 62.265 | 0.76459 | 63.593 | 0.85034 | 65.114 | 0.93305 | 66.827 |
| 59 | 0.58357 | 62.069 | 0.67419 | 63.193 | 0.76195 | 64.502 | 0.84660. | 66.000 | 0.92795 | 67.691 |
| 60 | 0.58249 | 63.013 | 0.67247 | 64.117 | 0.75938 | 65.405 | 0.84295 | 66.878 | 0.92295 | 68.544 |
| 61 | 0.58142 | 63.953 | 0.67078 | 65.036 | 0.75686 | 66.300 | 0.83937 | 67.747 | 0.91805 | 69.385 |
| 62 | 0.58037 | 64.889 | 0.66912 | 65.951 | 0.75439 | 67.189 | 0.83587 | 68.607 | 0.91325 | 70.215 |
| 63 | 0.57934 | 65.821 | -0.66749 | 66.859 | 0.75197 | 68.070 | 0.83244 | 69.458 | 0.90856 | 71.033 |
| 64 | 0.57834 | 66.749 | 0.66591 | 67.762 | 0.74962 | 68.944 | 0.82909 | 70.300 | 0.90400 | 7 I .84 I |
| 65 | 0.57737 | 67.674 | 0.66437 | 68.661 | 0.74733 | 69.8 I 2 | 0.82585 | 71.136 | 0.89957 | 72.637 |
| 66 | 0.57643 | 68.596 | 0.66288 | 69.554 | 0.74512 | 70.674 | 0.82270 | 71.962 | 0.89527 | 73.424 |
| 67 | 0.57553 | 69.515 | 0.66145 | 70.444 | 0.74298 | 71.529 | 0.81967 | 72.780 | 0.89111 | 74.201 |
| 68 | 0.57465 | 70.430 | 0.66005 | 71.329 | 0.74091 | 72.379 | 0.81672 | 73.590 | 0.88708 | 74.968 |
| 69 | 0.57379 | 71.342 | 0.65870 | 72.209 | 0.73891 | 73.223 | 0.81387 | 74.392 | 0.88320 | 75.723 |
| 70 | 0.57297 | 72.25 I | 0.65740 | 73.085 | 0.73698 | 74.061 | 0.81114 | 75.187 | 0.87947 | 76.469 |
| 71 | 0.57219 | 73.157 | 0.65616 | 73.957 | 0.73513 | 74.894 | 0.80853 | 75.975 | 0.87589 | 77.207 |
| 72 | 0.57145 | 74.061 | 0.65498 | 74.825 | 0.73337 | 75.722 | 0.80602 | 76.756 | 0.87247 | 77.936 |
| 73 | 0.57074 | 74.962 | 0.65385 | 75.689 | 0.73169 | 76.544 | 0.80363 | 77.530 | 0.8692 I | 78.656 |
| 74 | 0.57006 | 75.860 | 0.65278 | 76.550 | 0.73009 | 77.361 | 0.80137 | 78.298 | 0.86612 | 79.368 |
| 75 | 0.5694 I | 76.756 | 0.65176 | 77.408 | 0.72858 | 78.174 | 0.79924 | 79.059 | 0.86320 | 80.072 |
| 76 | 0.5688 I | 77.649 | 0.6508 I | 78.263 | 0.72716 | 78.982 | 0.79723 | 79.815 | 0.86045 | 80.769 |
| 77 | 0.56824 | 78.540 | 0.64992 | 79.114 | 0.72583 | 79.787 | 0.79535 | 80.566 | 0.85788 | 8 I .458 |
| 78 | 0.56772 | 79.429 | 0.64909 | 79.962 | 0.72459 | 80.588 | 0.79359 | 81.312 | 0.85549 | 82.141 |
| 79 | 0.56724 | 80.317 | 0.64832 | 80.808 | 0.72345 | 81.385 | 0.79197 | 82.053 | 0.85328 | 82.818 |
| 80 | 0.56679 | 81.203 | 0.64761 | 81.652 | 0.72241 | 82.179 | 0.79048 | 82.789 | 0.85125 | 83.489 |
| 81 | 0.56638 | 82.087 | 0.64697 | 82.493 | 0.72146 | 82.969 | 0.789 I 3 | 83.522 | 0.84940 | 84.156 |
| 82 | 0.56602 | 82.970 | 0.64640 | 83.332 | 0.72061 | 83.757 | 0.78792 | 84.251 | 0.84774 | 84.817 |
| 83 | 0.56570 | 83.852 | 0.64589 | 84.169 | 0.71985 | 84.543 | 0.78685 | 84.976 | 0.84628 | 85.474 |
| 84 | 0.56542 | 84.732 | 0.64545 | 85.005 | 0.71919 | 85.327 | 0.78592 | 85.699 | 0.84501 | 86.128 |
| 85 | 0.56518 | 85.612 | 0.64507 | 85.839 | 0.71863 | 86.109 | 0.78513 | 86.420 | 0.84393 | 86.779 |
| 86 | 0.56498 | 86.490 | 0.64476 | 86.673 | 0.71817 | 86.889 | 0.78448 | 87.138 | 0.74305 | 87.426 |
| 87 | 0.56483 | 87.368 | 0.64452 | 87.506 | 0.71781 | 87.668 | 0.78397 | 87.855 | 0.84236 | 88.071 |
| 88 | -0.56473 | 88.246 | 0.64435 | 88.338 | 0.71755 | 88.446 | 0.78361 | 88.571 | 0.84186 | 88.715 |
| 89 | 0.56466 | 89.123 | 0.64425 | 89.169 | 0.71740 | 89.223 | 0.78339 | 89.286 | 0.84156 | 89.358 |
| 90 | 0.56464 | 90.000 | 0.64422 | 90.000 | 0.71736 | 90.000 | 0.78333 | 90.000 | 0.84147 | 90.000 |

[^0]Table I. HYPERBOLIC SINES. $\sinh (\rho / \delta)=r / \gamma$. Continued

|  | I.I |  | 1.2 |  | 1.3 |  | 1. 4 |  | 1.5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | ${ }^{\circ}$ |  |  |  | $\bigcirc$ |  | ${ }^{\circ}$ |  |  |
| 45 | 1.1089 | 56.519 | 1.2138 | 58.692 | 1.3205 | 61.034 | 1.4297 | 63.568 | 1.5418 | 66.262 |
| 46 | 1.1012 | 57.543 | 1.2037 | 59.726 | 1.3078 | 62.092 | 1.4138 | 64.639 | 1.5222 | 67.355 |
| 7 | 1.0935 | 58.555 | 1.1937 | 60.748 | 1.2951 | 63.128 | I. 3979 | 65.689 | 1.5027 | 68.426 |
| 48 | 1.0858 | 59.553 | 1.1838 | 61.753 | 1.2824 | 64.142 | 1.3822 | 66.717 | 1.4834 | 69.474 |
| 9 | 1.0782 | 60.536 | 1.1739 | 62.741 | 1.2699 | 65.137 | 1. 3665 | 67.723 | I. 4642 | 70.496 |
| 50 | 1.0706 | 61.506 | 1.164 1 | 63.712 | 1.2574 | 66.113 | 1.3509 | 68.707 | 1.445 | 71.492 |
| 51 | 1.0630 | 62.461 | 1.1543 | 64.666 | 1. 2450 | 67.068 | I. 3355 | 69.668 | 1.4262 | 72.462 |
| 52 | 1.0556 | 63.401 | I. 1446 | 65.603 | 1. 2327 | 68.004 | 1.3202 | 70.605 | I. 4075 | 73.405 |
| 53 | 1.0482 | 64.327 | 1.1350 | 66.523 | 1.2206 | 68.919 | 1.3051 | 71.519 | x. 3889 | 74.321 |
| 54 | 1.0409 | 65.239 | 1.1256 | 67.425 | 1.2086 | 69.814 | 1.2902 | 72.409 | 1.3706 | 75.210 |
| S | 1.0336 | 66.136 | 1.1162 | 68.310 | 1.1967 | 70.688 | 1.2754 | 73.275 | 1.3525 | 76.072 |
| , | 1.0265 | 67.019 | 1.1070 | 69.178 | 1.1850 | 71.542 | 1. 2609 | 74.117 | I. 3347 | 76.907 |
| 57 | 1.0195 | 67.888 | 1.0979 | 70.028 | 1.1735 | 72.376 | 1.2466 | 74.936 | 1.3172 | 77.713 |
| 58 | 1.0126 | 68.742 | 1.0890 | 70.860 | 1.1622 | 73.188 | 1.2325 | 75.730 | 1.3000 | 78.491 |
| 59 | 1.0058 | 69.58 I | 1.0802 | 71.675 | 1.1511 | 73.980 | 1.2187 | 76.500 | x.283I | 79.240 |
| 60 | 0.99920 | 70.406 | 1.0716 | 72.474 | 1.1403 | 74.752 | $1.205{ }^{2}$ | 77.246 | 1. 2665 | 79.964 |
| 61 | 0.99269 | 71.218 | 1.0632 | 73.255 | 1.1296 | 75.502 | 1.1919 | 77.967 | 1.2503 | 80.657 |
| 62 | 0.98633 | 72.016 | 1.0550 | 74.019 | 1.1192 | 76.232 | 1.1790 | 78.663 | 1.2345 | 81.321 |
| 63 | 0.98013 | 72.800 | 1.0470 | 74.767 | 1.1091 | 76.942 | 1.1664 | 79.335 | 1.2191 | 81.956 |
| 64 | 0.97409 | 73.570 | 1.039 | 75.497 | 1.0992 | 77.632 | 1.154I | 79.983 | 1.2040 | 82.562 |
| 65 | 0.9682 I | 74.327 | 1.0316 | 76.211 | 1.0895 | 78.301 | 1.1421 | 80.607 | I. 1894 | 83.140 |
| 66 | 0.96251 | 75.071 | 1.0242 | 76.909 | 1.0802 | 78.950 | 1.1305 | 81.207 | 1.1752 | 83.690 |
| 67 | 0.95698 | 75.801 | 1.0171 | 77.590 | 1.07 | 79.580 | 1.1193 | 81.783 | 1.1615 | 84.2 11 |
| 68 | 0.95165 | 76.519 | 1.010 | 78.257 | 1.0625 | 80.191 | 1.1084 | 82.335 | 1.1482 | 84.704 |
| 69 | 0.94650 | 77.225 | 1.0035 | 78.907 | 1.0540 | 80.783 | 1.0979 | 82.865 | x. 1354 | 85.169 |
| 70 | 0.94156 | 77.918 | 0.99712 | 79.543 | Y. 0459 | 81.357 | 1.0879 | 83.373 | I.123I | 85.607 |
| 71 | 0.93682 | 78.600 | 0.99099 | 80.164 | 1.0382 | 81.912 | 1.0783 | 83.858 | 1.1113 | 86.018 |
| 72 | 0.93229 | 79.27 I | 0.98514 | 80.771 | 1.0308 | 82.450 | 1:0691 | 84.322 | I. 1000 | 86.402 |
| 73 | 0.92798 | 79.931 | 0.97957 | 81.365 | 1.0237 | 82.971 | 1.0603 | 84.765 | 1.0893 | 86.761 |
| 74 | 0.92388 | 80.580 | 0.97428 | 81.946 | 1.0170 | 83.476 | 1.0520 | 85.188 | 1.0791 | 87.096 |
| 75 | 0.92001 | 81.220 | 0.96927 | 82.514 | 1.0107 | 83.966 | 1.0441 | 85.591 | 1.0694 | 87.406 |
| 76 | 0.91637 | 81.850 | 0.96456 | 83.069 | 1.0047 | 84.440 | 1.0367 | 85.975 | 1.0603 | 87.693 |
| 77 | 0.91296 | 82.47 I | 0.96015 | 83.614 | 0.99916 | 84.900 | 1.0298 | 86.342 | 1.0518 | 87.958 |
| 78 | 0.90978 | 83.084 | 0.95605 | 84.148 | 0.99397 | 85.346 | 1.0233 | 86.692 | 1.0439 | 88.201 |
| 79 | 0.90685 | 83.689 | 0.95226 | 84.672 | 0.98917 | 85.780 | 1.0173 | 87.026 | 1.0366 | 88.425 |
| 80 | 0.90416 | 84.286 | 0.94878 | 85.187 | 0.98477 | 86.202 | I.OII9 | 87.346 | 1.0299 | 88.630 |
| 81 | 0.90172 | 84.877 | 0.94562 | 85.693 | 0.98077 | 86.614 | 1.0069 | 87.651 | 1.0238 | 88.818 |
| 82 | 0.89953 | 85.462 | 0.94279 | 86.191 | 0.97715 | 87.016 | 1.0024 | 87.944 | 1.0183 | 88.991 |
| 83 | 0.89759 | 86.041 | 0.94029 | 86.683 | 0.97400 | 87.408 | 0.99845 | 88.227 | 1.0135 | 89.149 |
| 84 | 0.89590 | 86.616 | 0.938 II | 87.169 | 0.97124 | 87.793 | 0.99502 | 88.499 | 1.0093 | 89.294 |
| 85 | 0.89447 | 87.186 | 0.93626 | 87.649 | 0.96890 | 88.171 | 0.99210 | 88.762 | 1.0057 | 89.429 |
| 86 | 0.89330 | 87.753 | 0.93474 | 88.124 | 0.96698 | 88.544 | 0.98971 | 89.018 | 1.0027 | 89.554 |
| 87 | 0.89238 | 88.317 | 0.93356 | 88.596 | 0.96548 | 88.912 | 0.98785 | 89.269 | 1.0004 | 89.673 |
| 88 | 0.89173 | 88.879 | 0.93272 | 89.065 | 0.96441 | 89.277 | 0.98652 | 89.515 | 0.99880 | 89.785 |
| 89 | 0.89134 | 89.440 | 0.9322 I | 89.533 | 0.96377 | 89.639 | 0.98572 | 89.758 | 0.99782 | 89.893 |
| go | 0.89121 | 90.000 | 0.93204 | 90.000 | 0.96356 | 90.000 | 0.98545 | 90.000 | 0.99749 | 90.000 |

Examples. $\sinh \left(1.1 / 45^{\circ}\right)=1.1089 \angle 56^{\circ} .519=1.1089 \angle 56^{\circ} .31^{\prime} .08^{\prime \prime}$.
$\sinh ^{-1}\left(1.1084 \angle 82^{\circ} .335\right)=1.4 \angle 68^{\circ}$.

Table I. HYPERBOLIC SINES. $\sinh (\rho / \delta)=r / \gamma$. Continued

|  | 1.6 |  | 1.7 |  | 1.8 |  | 1.9 |  | 2.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | - |  | - |  | - |  | - |  | $\bigcirc$ |
| 45 | 1. 6575 | 69.117 | 1.7776 | 72.133 | 1.9029 | 75.292 | 2.0343 | 78.590 | 2.1726 | 82.016 |
| 46 | 1.6338 | 70.241 | 1.7493 | 73.288 | 1.8693 | 76.486 | 1.9947 | 79.829 | 2.1266 | 83.304 |
| 47 | 1.6103 | 71.339 | 1.7210 | 74.418 | 1.8359 | 77.651 | 1.9554 | 81.037 | 2.0809 | 84.560 |
| 48 | I. 5868 | 72.409 | 1.6929 | 75.515 | 1.8027 | 78.784 | 1.9165 | 82.210 | 2.0356 | 85.778 |
| 49 | 1.5635 | 73.451 | 1.6651 | 76.582 | 1.7697 | 79.883 | 1.8779 | 83.346 | 1.9907 | 86.958 |
| 50 | 1.5404 | 74.465 | 1.6375 | 77.618 | 1.7370 | 80.946 | 1.8396 | 84.444 | 1.9462 | 88.098 |
| 51 | 1.5175 | 75.449 | 1.6102 | 78.620 | 1.7046 | 81.974 | 1.8016 | 85.503 | 1.9022 | 89.196 |
| 52 | 1. 4949 | 76.402 | I. 583 I | 79.590 | 1.6726 | 82.966 | 1.7643 | 86.524 | 1.8588 | 90.253 |
| 53 | 1.4725 | 77.325 | 1. 5563 | 80.527 | 1.6410 | 83.921 | 1.7273 | 87.505 | 1.8160 | 91.267 |
| 54 | 1.4504 | 78.218 | 1.5299 | 81.429 | 1.6098 | 84.839 | 1.6909 | 88.444 | 1.7737 | 92.236 |
| 55 | I. 4285 | 79.079 | 1.5039 | 82.296 | I. 5791 | 85.718 | 1. 6550 | 89.342 | I. 7320 | 93.160 |
| 56 | 1.4070 | 79.910 | 1.4782 | 83.128 | 1. 5488 | 86.558 | 1.6196 | 90.197 | 1.691I | 94.039 |
| 57 | 1. 3859 | 80.709 | 1.4530 | 83.924 | 1.5190 | 87.358 | 1. 5848 | 91.008 | 1.6509 | 94.869 |
| 58 | I. 3651 | 81.475 | 1.4282 | 84.683 | 1.4898 | 88.116 | 1.5506 | 91.773 | 1.61 14 | 95.650 |
| 59 | 1.3447 | 82.209 | 1.4039 | 85.406 | I.4611 | 88.834 | 1.5171 | 92.493 | I. 5726 | 96.382 |
| 60 | I. 3247 | 82.910 | 1.3800 | 86.091 | 1.4330 | 89.510 | 1. 4843 | 93.167 | I. 5347 | 97.062 |
| 61 | 1.305I | 83.578 | 1.3567 | 86.738 | 1.4055 | 90.142 | 1.4523 | 93.792 | I. 4976 | 97.688 |
| 62 | 1.2860 | 84.212 | 1. 3339 | 87.347 | 1.3787 | 90.730 | 1.4210 | 94.368 | 1.4614 | 98.261 |
| 63 | 1.2674 | 84.813 | 1.3117 | 87.917 | 1.3525 | 91.274 | 1.3904 | 94.893 | 1.4260 | 98.778 |
| 64 | 1.2492 | 85.380 | I. 2901 | 88.447 | 1.3270 | 91.774 | 1.3606 | 95.368 | 1.3915 | 99.238 |
| 65 | 1.2316 | 85.913 | 1.2690 | 88.938 | 1.3022 | 92.228 | 1.3316 | 95.792 | 1.3580 | 99.639 |
| 66 | 1.2145 | 86.413 | I. 2486 | 89.390 | 1.2781 | 92.636 | 1.3035 | 96.162 | I. 3255 | 99.980 |
| 67 | 1.1979 | 86.879 | I. 2288 | 89.802 | 1.2548 | 92.997 | 1.2762 | 96.478 | 1.2940 | 100.261 |
| 68 | 1.1819 | 87.311 | 1.2097 | 90.175 | 1.2322 | 93.312 | 1.2499 | 96.741 | 1.2635 | 100.479 |
| 69 | 1.1664 | 87.710 | 1.1913 | 90.508 | 1.2104 | 93.580 | 1.2244 | 96.949 | 1.2340 | 100.634 |
| 70 | 1.1516 | 88.076 | 1.1736 | 90.801 | 1.1895 | 93.802 | 1.1999 | 97.102 | 1. 2056 | 100.725 |
| 71 | I. 1373 | 88.410 | 1.1566 | 91.055 | 1.1694 | 93.976 | I. 1764 | 97.199 | I. 1783 | 100.750 |
| 72 | 1.1237 | 88.712 | 1.1403 | 91.271 | 1.1502 | 94.104 | I. 1539 | 97.241 | I.I52I | 100.709 |
| 73 | 1.1107 | 88.982 | 1.1248 | 91.448 | I.1318 | 94.187 | I. 1324 | 97.227 | 1.127I | 100.602 |
| 74 | 1.0984 | 89.221 | I.IIOI | 91.588 | I.II44 | 94.224 | I.III9 | 97.158 | 1.1033 | 100.428 |
| 75 | 1.0867 | 89.431 | 1.096I | 91.692 | 1.0979 | 94.215 | 1.0925 |  | 1.0807 | 100.187 |
| 76 | 1.0757 | 89.613 | 1.0829 | 91.760 | 1.0823 | 94.162 | 1.0743 | 96.856 | 1.0594 | 99.880 |
| 77 | 1.0654 | 89.767 | 1.0706 | 91.794 | 1.0677 | 94.068 | 1.0571 | 96.625 | 1.0394 | 99.507 |
| 78 | 1.0558 | 89.894 | 1.0591 | 91.795 | 1.0541 | 93.933 | 1.0411 | 96.343 | 1.0207 | 99.070 |
| 79 | 1.0469 | 89.997 | 1.0485 | 91.765 | 1.0415 | 93.758 | 1.0262 | 96.012 | 1.0033 | 98.571 |
| 80 | 1.0388 | 90.076 | 1.0388 | 91.705 | 1.0299 | 93.545 | 1.0126 | 95.633 | 0.98729 | 98.011 |
| 81 | 1.0314 | 90.134 | 1.0299 | 91.618 | I.0194 | 93.298 | 1.0002 | 95.209 | 0.97271 | 97.394 |
| 82 | 1.0248 | 90.171 | 1.0219 | 91.505 | 1.0099 | 93.019 | 0.98899 | 94.744 | 0.95958 | 96.722 |
| 83 | 1.0189 | 90.191 | 1.0149 | 91.370 | 1.0015 | 92.711 | 0.97907 | 94.240 | 0.94792 | 96.000 |
| 84 | 1.0138 | 90.194 | 1.0088 | 91.214 | 0.99422 | 92.374 | 0.97043 | 93.702 | 0.93775 | 95.233 |
| 85 | 1.0095 | 90.184 | 1.0036 | 91.039 | 0.98802 | 92.015 | 0.96309 | 93.133 | 0.92911 | 94.426 |
| 86 | 1.0060 | 90.161 | 0.99929 | 90.850 | 0.98293 | 91.636 | 0.95706 | 92.539 | 0.92201 | 93.584 |
| 87 | 1.0032 | 90.129 | 0.99596 | 90.649 | 0.97896 | 91.241 | 0.95236 | 91.923 | 0.91646 | 92.713 |
| 88 | 1.0012 | 90.090 | 0.99357 | 90.438 | 0.97612 | 90.834 | 0.94899 | 91.291 | 0.91248 | 91.821 |
| 89 | 1.0000 | 90.046 | 0.99214 | 90.220 | 0.97442 | 90.419 | 0.94697 | 90.648 | 0.91009 | 90.914 |
| 90 | 0.99957 | 90.000 | 0.99166 | 90.000 | 0.97385 | 90.000 | 0.94630 | 90.000 | 0.90930 | 90.000 |

Examples. $\sinh \left(1.6 \angle 60^{\circ}\right)=1.3247 \angle 82^{\circ} \cdot .910=1.3247 \angle 82^{\circ} \cdot 54^{\prime} \cdot 36^{\prime \prime}$. $\sinh ^{-1}\left(\mathrm{I} .1999 \angle 97^{\circ} .102\right)=1.9 \angle 70^{\circ}$.

Table I. HYPERBOLIC SINES. $\sinh (\rho / \delta)=r / \gamma$. Continued

|  | 2.1 |  | 2.2 |  | 2.3 |  | 2.4 |  | 2.5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | - |  |  |  | - |  | - |  |  |
| 45 | 2.3190 | 85.558 | 2.4745 | 89.205 | 2.6404 | 92.946 | 2.8177 | 96.769 | 3.0079 | 100.661 |
| 46 | 2.2658 | 86.905 | 2.4135 | 90.613 | 2.5707 | 94.419 | 2.7386 | 98.312 | 2.9185 | 102.278 |
| 7 | 2.2131 | 88.213 | 2.3530 | 91.981 | 2.5017 | 95.851 | 2.6603 | 99.813 | 2.8301 | 103.852 |
|  | 2.1608 | 89.482 | 2.2936 | 93.307 | 2.4334 | 97.24 I | 2.5829 | 101.271 | 2.7429 | 105.383 |
| 49 | 2.1090 | 90.711 | 2.2337 | 94.592 | 2.3659 | 98.588 | 2.5065 | 102.685 | 2.6568 | 106.869 |
| 50 | 2.0577 | 91.898 | 2.1750 | 95.834 | 2.2992 | 99.890 | 2.4311 | 104.053 | 2.5720 | 108.309 |
| 5 I | 2.0071 | 93.042 | 2.1171 | 97.031 | 2.2334 | 101.146 | 2.3568 | 105.375 | 2.4885 | 109.701 |
| 52 | 1.9571 | 94.142 | 2.0600 | 98.181 | 2.1685 | 102.354 | 2.2836 | 106.648 | 2.4064 | III. 044 |
| 53 | 1.9078 | 95.197 | 2.0037 | 99.284 | 2.1046 | 103.514 | 2.2117 | 107.871 | 2.3257 | 112.337 |
| 4 | 1.8592 | 96.205 | 1.9483 | 100.338 | 2.0418 | 104.623 | 2.1410 | 109.042 | 2.2465 | 113.578 |
| 5 | 1.8114 | 97.165 | 1.8938 | 101.342 | 1.9801 | 105.680 | 2.0714 | 110.160 | 2.1687 |  |
| 5 | 1.7644 | 98.076 | 1.8402 | 102.294 | 1.9195 | 106.683 | 2.0032 | 111.223 | 2.0925 | 115.896 |
| 57 | 1.7182 | 98.935 | 1.7876 | 103.193 | 1.8600 | 107.629 | 1.9364 | 112.228 | 2.0178 | 116.970 |
| 58 | 1.6729 | 99.742 | 1.7360 | 104.035 | 1.8016 | 108.518 | 1.8709 | 113.174 | 1.9447 | 117.984 |
| 5 | 1.6284 | 100.494 | 1. 6854 | 104.820 | 1.7445 | 109.347 | 1.8068 | 114.059 | 1.8733 | 118.936 |
| 60 | 1.5849 | 10ì.191 | 1. 6359 | 105.546 | 1.6886 | 110.114 | 1.7441 | 114.880 | 1.8035 | 119.823 |
| 61 | 1.5424 | 101.830 | 1.5875 | 106.210 | 1. 6340 | 110.816 | 1.6829 | 115.634 | 1.7353 | 120.642 |
| 6 | 1.5008 | 102.410 | 1.5402 | 106.811 | 1.5807 | III.45 | 1.6232 | 116.319 | 1.6688 | 121.391 |
| 63 | 1.4603 | 102.929 | 1.4941 | 107.345 | 1.5287 | I 12.016 | 1.5649 | 116.93I | 1. 6040 | 122.067 |
| 64 | 1.4208 | 103.386 | 1.4492 | 107.811 | 1.47 | 112.5 | 1.5081 | 117.467 | 1.5409 | 122.665 |
| 65 | 1.3824 | 103.777 | 1.4055 | 108.207 | 1.4286 | 112.926 | 1.4528 | 117.924 | 1.4794 | 123.182 |
| 66 | 1.345 | 104.101 | 1.3630 | 108.529 | 1.3806 | 113.264 | 1.3991 | 118.297 | 1.4196 | 123.613 |
| 67 | 1.3089 | 104.357 | 1.3218 | 108.775 | I. 3341 | 113.519 | I.3469 | 118.583 | 1.3616 | 123.954 |
| 68 | 1.2738 | 104.542 | I.2819 | 108.943 | 1.2890 | 113.688 | 1.2963 | 118.777 | 1.3052 | 124.198 |
| 69 | 1.2399 | 104.655 | 1.2433 | 109.029 | 1.2453 | 113.767 | 1.2473 | I 18.874 | 1.2506 | 124.341 |
| 70 | 1.2072 | 104.694 | 1.2060 | 109.030 | 1.2031 | 113.752 | 1.1999 | 118.868 | 1.1977 | 124.376 |
| 71 | 1.1758 | 104.656 | 1.1701 | 108.944 | I. 1624 | 113.638 | 1.154I | 118.754 | 1.1466 | 124.296 |
| 72 | 1.1457 | 104.541 | 1.1356 | 108.769 | I. 1232 | II3.422 | 1.1099 | 118.526 | 1.0972 | 124.092 |
| 73 | 1.1168 | 104.348 | 1.1026 | 108.501 | 1.0857 | 113.100 | 1.0675 | 118.177 | 1.0497 | 123.755 |
| 74 | 1.0893 | 104.074 | 1.0 | 108.138 | 1.0498 | 112.667 | 1.0268 | 117.701 | 1.0040 | 123.277 |
| 75 | 1.0632 | 103.719 | 1.0411 | 107.678 | 1.0155 | 112.118 | 0.98795 | 117.091 | 0.96019 | 122.648 |
| 76 | 1.0385 | 103.283 | 1.0126 | 107.119 | 0.98292 | III. 449 | 0.95090 | 116.341 | 0.91831 | 121.857 |
| 77 | 1.0153 | 102.766 | 0.9858 r | 106.459 | 0.95214 | 1 10.659 | 0.91576 | 115.443 | 0.87843 | 120.891 |
| 78 | 0.99353 | 102.168 | 0.96065 | 105.699 | 0.92320 | 109. 744 | 0.88261 | 114.390 | 0.84063 | 119.740 |
| 79 | 0.97332 | IOI.491 | 0.93722 | 104.839 | 0.89615 | 108.701 | 0.85152 | 113.178 | 0.80503 | 118.392 |
| 80 | 0.95468 | 100.736 | 0.91557 | 103.879 | 0.87109 | 107.531 | 0.82256 | 111.803 | 0.77173 | 116.836 |
| 81 | 0.93765 | 99907 | 0.89575 | 102.822 | 0.84808 | 106.233 | 0.79589 | 110.26I | 0.74083 | 115.063 |
| 82 | 0.92229 | 99.008 | - 87784 | 101.671 | 0.82719 | 104.810 | 0.77158 | 108.550 | 0.71251 | Ir3.065 |
| 83 | 0.90862 | 98.043 | 0.86187 | 100.432 | 0.80853 | 103.267 | 0.74974 | 106.676 | 0.68692 | 110.841 |
| 84 | 0.89668 | 97.015 | 0.84789 | III | 0.79215 | IOI.6II | 0.73051 | 104.643 | 0.66422 | 108.390 |
| 85 | 0.88652 | 95.933 | 0.83596 | 97.715 | 0.77813 | 99.851 | 0.71396 | 102.462 | 0.64461 | 105.723 |
| 86 | 0.87817 | 94.806 | 0.82613 | 96.254 | 0.76655 | 98.000 | 0.70026 | 100.147 | 0.62827 | IO2.855 |
| 87 | 0.87164 | 93.639 | 0.81845 | 94.740 | 0.75747 | 96.071 | 0.68948 | 97.717 | 0.61536 | 99.81 I |
| 88 | 0.86696 | 92.443 | 0.81293 | 93.183 | 0.75095 | 94.082 | 0.68171 | 95.197 | 0.60602 | 96.624 |
| 89 | 0.86414 | 91.226 | 0.80961 | 91.599 | 0.74702 | 92.051 | 0.67703 | 92.615 | 0.60036 | 93.338 |
| 90 | 0.86321 | 90.000 | 0.80850 | 90.000 | 0.74571 | 90.000 | 0.67546 | 90.000 | 0.59847 | 90.000 |

Examples. $\sinh \left(2.5 \angle 75^{\circ}=0.96019 / 122^{\circ} .648=0.96019 \angle 122^{\circ} .38^{\prime} .53^{\prime \prime}\right.$. $\sinh ^{-1}\left(0.60036 \angle 93^{\circ} \cdot 338\right)=2.5 \angle 89^{\circ}$.

Table I. HYPERBOLIC SINES. $\sinh (\rho / \delta)=r / \gamma$. Continued

|  | 2.6 |  | 2.7 |  | 2.8 |  | 2.9 |  | 3.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | - |  |  |  |  |  | - |  | - |
| 45 | 3.2121 | 104.613 | 3.4318 | 108.614 | 3.6685 | 112.653 | 3.9236 | 116.721 | 4.1986 | 120.814 |
| 46 | 3.1115 | 106.307 | $3 \cdot 3191$ | 110.386 | 3.5426 | 114.506 | 3.7832 | 118.658 | 4.0426 | 122.832 |
| 47 | 3.0123 | 107.957 | 3.2079 | 112.116 | $3 \cdot 4186$ | 116.317 | 3.6453 | 120.55 I | 3.8895 | 124.808 |
| 48 | 2.9144 | 109.564 | 3.0985 | 113.801 | 3.2966 | 118.084 | $3 \cdot 5098$ | 122.400 | 3.7394 | 126.741 |
| 49 | 2.8179 | III.I26 | 2.9908 | II5.442 | 3.1767 | 119.806 | $3 \cdot 3768$ | 124.205 | 3.5923 | 128.630 |
| 50 | 2.7229 | 112.641 | 2.8849 | 117.037 | 3.0590 | 121.483 | 3.2465 | 125.965 | 3.4483 | 130.474 |
| 51 | 2.6295 | 114.109 | 2.7809 | 118.585 | 2.9436 | 123.113 | 3.1189 | 127.679 | 3.3076 | 132.272 |
| 52 | 2.5378 | 115.528 | 2.6789 | 120.084 | 2.8306 | 124.694 | 2.9941 | 129.345 | 3.1701 | 134.024 |
| 53 | $2.447^{8}$ | 116.897 | 2.5789 | 121.532 | 2.7200 | 126.226 | 2.872 I | 130.963 | 3.0359 | 135.729 |
| 54 | 2.3595 | 118.214 | 2.4809 | 122.929 | 2.6118 | 127.708 | 2.7529 | 132.532 | 2.905 I | 137.386 |
| 55 | 2.2729 | 119.476 | 2.3850 | 124.274 | 2.5060 | 129.138 | 2.6366 | 134.050 | 2.7777 | I 38.994 |
| 56 | 2.1882 | 120.684 | 2.2913 | 125.563 | 2.4027 | 130.515 | 2.5232 | 135.517 | 2.6536 | 140.553 |
| 57 | 2.1053 | 121.834 | 2.1996 | 126.797 | 2.3019 | 131.837 | 2.4127 | 136.932 | 2.5330 | 142.062 |
| 58 | 2.0242 | 122.925 | 2.1101 | 127.973 | 2.2036 | 133.103 | 2.3051 | I38.293 | 2.4157 | 143.519 |
| 59 | 1.9450 | 123.954 | 2.0228 | 129.088 | 2.1077 | 134.3II | 2.2004 | 139.598 | 2.3018 | 144.924 |
| 60 | 1.8677 | 124.918 | I. 9377 | I30.140 | 2.0144 | 135.459 | 2.0986 | 140.847 | 2.1912 | 146.276 |
| 61 | 1.7923 | 125.816 | 1.8547 | 131.128 | 1.9236 | 136.544 | 1.9997 | 142.037 | 2.0839 | 147.574 |
| 62 | 1.7187 | 126.644 | 1.7739 | 132.047 | 1.8352 | 137.565 | 1.9036 | 143.167 | 1.9798 | 148.817 |
| 63 | 1. 6470 | 127.399 | 1.6952 | 132.895 | 1.7493 | 138.519 | 1.8103 | 144.235 | 1.8789 | 150.004 |
| 64 | 1.5772 | 128.077 | 1.6187 | 133.669 | 1.6658 | 139.403 | 1.7198 | 145.239 | 1.7812 | 151.133 |
| 65 | 1.5094 | 128.674 | 1.5442 | 134.364 | 1.5847 | 140.214 | 1.6319 | 146.176 | 1.6865 | 152.204 |
| 66 | 1.4435 | 129.185 | 1.4719 | 134.978 | 1.5060 | 140.948 | 1. 5467 | 147.044 | 1. 5948 | 153.214 |
| 67 | 1.3794 | 129.606 | 1.4016 | 135.504 | 1.4295 | 141.599 | 1.4641 | 147.838 | 1.5061 | 154.161 |
| 68 | 1.3171 | 129.930 | 1.3334 | 135.935 | I. 3553 | 142.164 | 1.3840 | 148.555 | 1.4202 | 155.043 |
| 69 | I. 2568 | 130.151 | 1.2673 | 136.266 | 1.2833 | 142.634 | 1.3063 | 149.190 | 1.3370 | 155.858 |
| 70 | 1.1983 | 130.262 | 1.2031 | 136.489 | 1.2136 | 143.005 | 1.2310 | 149.738 | 1.2565 | 156.602 |
| 71 | 1.1417 | 130.254 | 1.1409 | 136.596 | I.1460 | 143.267 | 1.1581 | 150.191 | 1.1785 | 157.27 I |
| 72 | 1.0870 | 130.117 | 1.0807 | 136.576 | 1.0804 | 143.41 I | 1.0874 | 150.541 | 1.1030 | 157.860 |
| 73 | 1.0341 | 129.84 I | 1.0226 | 136.415 | I.OI69 | 143.424 | 1.0189 | 150.780 | 1.0298 | 158.363 |
| 74 | 0.98316 | 129.414 | 0.96631 | 136.101 | 0.95550 | 143.292 | 0.9525 I | 150.894 | 0.95893 | 158.772 |
| 75 | 0.93420 | 128.822 | 0.91207 | 135.617 | 0.89606 | 142.996 | 0.88819 | 150.867 | 0.89022 | 159.077 |
| 76 | 0.88720 | 128.049 | 0.85985 | 134.943 | 0.83862 | 142.516 | 0.82587 | 150.680 | 0.82356 | 159.265 |
| 77 | 0.84227 | 127.079 | 0.80965 | 134.058 | 0.78319 | 141.827 | 0.7655 I | 150.309 | 0.75887 | 159.319 |
| 78 | 0.79948 | 125.893 | 0.76157 | 132.935 | 0.72979 | 140.897 | 0.70706 | 149.72 I | 0.69605 | 159.216 |
| 79 | 0.7589 I | 124.47 I | 0.71568 | I31.542 | 0.67847 | 139.686 | 0.65054 | 148.876 | 0.63503 | 158.925 |
| 80 | 0.72068 | 122.793 | 0.67215 | 1 29.847 | 0.62934 | 138.145 | 0.59597 | 147.721 | 0.57573 | 158.404 |
| 8 I | 0.68499 | 120.837 | 0.63109 | 127.812 | 0.58252 | 136.217 | 0.54340 | 146.183 | 0.51809 | 157.592 |
| 82 | 0.65203 | 118.583 | 0.59275 | 125.396 | 0.53822 | 133.833 | 0.49294 | 144.169 | 0.46213 | 156.404 |
| 83 | 0.62196 | 116.016 | 0.55739 | I 22.554 | 0.49674 | 130.908 | 0.44484 | 141.553 | 0.40789 | 154.709 |
| 84 | 0.59507 | 113.126 | 0.52536 | 119.252 | 0.45849 | 127.351 | 0.39946 | 138.168 | 0.35548 | 152.313 |
| 85 | 0.57164 | 109.910 | 0.49705 | 115.458 | 0.42399 | 123.066 | 0.35738 | 133.795 | 0.30521 | 148.903 |
| 86 | 0.55191 | 106.382 | 0.47291 | 111.164 | 0.39394 | I17.968 | 0.31946 | 128.168 | 0.25775 | 143.974 |
| 87 | 0.53621 | 102.571 | 0.45344 | 106.390 | 0.36915 | I12.015 | 0.28691 | 121.005 | 0.21433 | 136.701 |
| 88 | 0.52479 | 98.524 | 0.43912 | 101.194 | 0.35055 | 105.244 | 0.26143 | 112.110 | 0.17731 | 125.843 |
| 89 | 0.51783 | 94.307 | 0.43033 | 95.682 | 0.33893 | 97.809 | 0.24496 | 101. 576 | 0.15092 | 110.091 |
| 90 | 0.51550 | 90.000 | 0.42738 | 90.000 | 0.33499 | 90.000 | 0.23925 | 90.000 | 0.14112 | 90.000 |

Examples. $\sinh \left(3.0 \angle 50^{\circ}\right)=3.4483 \angle 130^{\circ} .474=3.4483 \angle 130^{\circ} .28^{\prime} .26^{\prime \prime}$.
$\sinh ^{-1}\left(0.15092\left\lfloor 110^{\circ} .091\right)=3.0 \angle 89^{\circ}\right.$.

Table II. HYPERBOLIC COSINES. $\cosh (\rho \angle \delta)=r \angle \gamma$

|  | 0.1 |  | 0.2 |  | 0.3 |  | 0.4 |  | 0.5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\bigcirc$ |  | - |  | - |  | - |  | - |
| 45 | 1.00001 | 0.287 | 1.00013 | 1.148 | 1.00067 | 2.578 | 1.00210 | $4 \cdot 578$ | 1.00519 | 7.141 |
| 46 | 0.99983 | 0.287 | 0.99943 | 1.146 | 0.99910 | 2.577 | 0.99933 | $4 \cdot 584$ | 1.00085 | 7.159 |
| 47 | 0.99966 | 0.286 | 0.99873 | 1.144 | 0.99753 | 2.576 | 0.99655 | $4 \cdot 584$ | 0.99649 | 7.166 |
| 48 | 0.99948 | 0.285 | 0.99804 | 1.141 | 0.99597 | 2.571 | 0.99378 | 4.578 | 0.99214 | 7.165 |
| 49 | 0.99931 | 0.283 | 0.99735 | 1.136 | 0.99441 | 2.562 | 0.99101 | 4.566 | 0.98780 | 7.155 |
| 50 | 0.99914 | 0.282 | 0.99666 | 1.13I | 0.99285 | 2.551 | 0.98824 | 4.551 | 0.98347 | 7.137 |
| 51 | 0.99897 | 0.280 | 0.99597 | 1.123 | 0.99131 | 2.536 | 0.98547 | 4.528 | 0.97917 | 7.109 |
| 52 | 0.99880 | 0.278 | 0.99529 | I.II 5 | 0.98977 | 2.519 | 0.98274 | 4.500 | 0.97490 | 7.073 |
| 53 | 0.99863 | 0.275 | 0.99462 | 1.105 | 0.98825 | 2.498 | 0.98003 | 4.467 | 0.97065 | 7.028 |
| 54 | 0.99846 | 0.272 | 0.99395 | 1.094 | 0.98674 | 2.474 | 0.97734 | 4.427 | 0.96644 | 6.973 |
| 55 | 0.99830 | 0.269 | 0.99329 | 1.08r | 0.98525 | 2.447 | 0.97468 | 4.382 | 0.96226 | 6.910 |
| 56 | 0.99814 | 0.265 | 0.99263 | 1.067 | 0.98377 | 2.417 | 0.97205 | 4.332 | 0.95814 | 6.838 |
| 57 | 0.99798 | 0.261 | 0.99199 | 1.052 | 0.98232 | 2.383 | 0.96945 | 4.276 | 0.95406 | 6.756 |
| 58 | 0.99782 | 0.257 | 0.99135 | 1.036 | 0.98089 | 2.347 | 0.96690 | 4.214 | 0.95005 | 6.666 |
| 59 | 0.99766 | 0.253 | 0.99073 | 1.018 | 0.97948 | 2.308 | 0.96438 | 4.147 | 0.94609 | 6.567 |
| 60 | 0.99751 | 0.249 | 0.99012 | 0.999 | 0.97810 | 2.267 | 0.96191 | 4.075 | 0.94219 | 6.460 |
| 61 | 0.99736 | 0.244 | 0.98952 | 0.979 | 0.97674 | 2.22 I | 0.95948 | 3.998 | 0.93838 | 6.343 |
| 62 | 0.99721 | 0.238 | 0.98893 | 0.957 | 0.97541 | 2.173 | 0.95711 | 3.914 | 0.93465 | 6.217 |
| 63 | 0.99707 | 0.232 | 0.98835 | 0.934 | 0.97411 | 2.123 | 0.85478 | 3.826 | 0.93099 | 6.083 |
| 64 | 0.99693 | 0.226 | 0.98780 | 0.910 | 0.97285 | 2.070 | 0.95251 | 3.733 | 0.92741 | 5.941 |
| 65 | 0.99679 | 0.220 | 0.98725 | 0.885 | 0.97163 | 2.014 | 0.95031 | 3.635 | 0.92393 | 5.789 |
| 66 | 0.99666 | 0.214 | 0.98672 | 0.859 | 0.97044 | 1.955 | 0.94816 | 3.532 | 0.92054 | 5.631 |
| 67 | 0.99653 | 0.207 | 0.9862 I | 0.832 | 0.96927 | 1.894 | 0.94608 | 3.423 | 0.91725 | 5.463 |
| 68 | 0.99641 | 0.200 | 0.98571 | 0.804 | 0.96814 | 1.830 | 0.94407 | 3.310 | 0.91407 | 5.288 |
| 69 | 0.99629 | 0.193 | 0.98523 | 0.775 | 0.96706 | 1.764 | 0.94213 | 3.193 | 0.91100 | 5.106 |
| 70 | 0.99617 | 0.185 | 0.98477 | 0.744 | 0.96601 | 1. 696 | 0.94026 | 3.072 | 0.90805 | 4.916 |
| 71 | 0.99606 | 0.177 | 0.98433 | 0.713 | 0.96500 | 1.626 | 0.93846 | 2.946 | 0.90521 | 4.718 |
| 72 | 0.99596 | 0.169 | 0.98391 | 0.68I | 0.96404 | 1.553 | 0.93674 | 2.816 | 0.90248 | 4.513 |
| 73 | 0.99586 | -.16I | 0.98350 | 0.648 | 0.96313 | 1. 479 | 0.93510 | 2.682 | 0.89989 | 4.302 |
| 74 | 0.99576 | 0.153 | 0.98312 | 0.614 | 0.96227 | 1.402 | 0.93354 | 2.544 | 0.89742 | 4.085 |
| 75 | 0.99567 | 0.144 | 0.98276 | 0.580 | 0.96145 | 1.324 | 0.93207 | 2.403 | 0.89508 | 3.86 r |
| 76 | 0.99559 | 0.135 | 0.98242 | 0.545 | 0.96068 | I. 244 | 0.93069 | 2.258 | 0.89288 | 3.631 |
| 77 | 0.99551 | 0.126 | 0.98210 | 0.509 | 0.95996 | 1.162 | 0.92938 | 2.111 | 0.89081 | 3.396 |
| 78 | 0.99544 | 0.117 | 0.98181 | 0.472 | 0.95929 | 1.078 | 0.92816 | 1.960 | 0.88889 | 3.155 |
| 79 | 0.99537 | 0.108 | 0.98154 | 0.435 | 0.95866 | 0.993 | 0.92705 | 1.807 | 0.887 II | 2.910 |
| 80 | 0.9953 I | 0.099 | 0.98128 | 0.397 | 0.95808 | 0.908 | 0.92603 | 1. 652 | 0.88548 | 2.660 |
| 81 | 0.99525 | 0.090 | 0.98105 | 0.359 | 0.95756 | 0.82 I | 0.92509 | 1.494 | 0.88399 | 2.406 |
| 82 | 0.99520 | 0.080 | 0.98085 | 0.320 | 0.95710 | 0.732 | 0.92425 | 1. 333 | 0.88266 | 2.149 |
| 83 | 0.99515 | 0.070 | 0.98067 | 0.281 | 0.95670 | 0.643 | 0.62351 | I. 170 | 0.88147 | 1.888 |
| 84 | 0.99511 | 0.060 | 0.9805 I | 0.242 | 0.95635 | 0.552 | 0.92287 | 1.006 | 0.88044 | 1.624 |
| 85 | 0.99508 | 0.050 | 0.98037 | 0.203 | 0.95605 | 0.461 | 0.92233 | 0.84 I | 0.87957 | 1.357 |
| 86 | 0.99506 | 0.040 | 0.98026 | 0.163 | 0.95580 | 0.369 | 0.92189 | 0.675 | 0.87886 | 1.087 |
| 87 | 0.99504 | 0.030 | 0.98018 | 0.123 | 0.95560 | 0.277 | 0.92154 | 0.508 | 0.87830 | 0.816 |
| 88 | 0.99502 | 0.020 | 0.98012 | 0.082 | 0.95545 | 0.185 | 0.92128 | 0.340 | 0.87790 | 0.544 |
| 89 | 0.99501 | 0.010 | 0.98009 | 0.041 | 0.95537 | 0.093 | 0.92112 | -.171 | 0.87766 | 0.272 |
| 90 | 0.99500 | 0.000 | 0.98007 | 0.000 | 0.95534 | 0.000 | 0.92106 | 0.000 | 0.87758 | 0.000 |

Note. $\quad \cosh (0 \angle \delta)=1.0 \angle 0^{\circ}$ for all values of $\delta$.
Examples. $\quad \cosh \left(0.5 \angle 8 \mathrm{r}^{\circ}\right)=0.88399 \angle 2^{\circ} .406=0.88399 \angle 2^{\circ} .24^{\prime} .22^{\prime \prime}$. $\cosh ^{-1}\left(0.97810 \angle 2^{\circ} .267\right)=0.3 \angle 60^{\circ}$.

Table II. HYPERBOLIC COSINES. $\cosh (\rho / \delta)=r / \gamma$. Continued

|  | 0.6 |  | 0.7 |  | 0.8 |  | 0.9 |  | 1.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | $\bigcirc$ |  |  |  | $\bigcirc$ |  |  |  |  |
| 45 | 1.01070 | 10.254 | 1.O1982 | 13.890 | 1.03360 | 18.010 | 1.05333 | 22.567 | 1.08031 | 27.487 |
| 46 | 1.00449 | 10.291 | 1.OII36 | 13.960 | 1.02263 | 18.132 | 1.03959 | 22.755 | 1.06358 | 27.762 |
| 47 | 0.99825 | 10.315 | 1.00289 | 14.013 | 1.01164 | 18.231 | 1.02583 | 22.919 | 1.04680 | 28.011 |
| 48 | 0.99199 | 10.327 | 0.99441 | 14.050 | 1.00063 | 18.309 | 1.01203 | 23.059 | 1.03000 | 28.235 |
| 49 | 0.98575 | 10.326 | 0.98594 | 14.071 | 0.98963 | 18.368 | 0.99822 | 23.176 | 1.01315 | 28.433 |
| 50 | 0.97953 | 10.313 | 0.97748 | 14.075 | 0.97864 | 18.405 | 0.98443 | 23.267 | 0.99632 | 28.603 |
| 51 | 0.97333 | 10.287 | 0.96906 | 14.06I | 0.96768 | 18.42 I | 0.97064 | 23.332 | 0.97950 | 28.743 |
| 52 | 0.96716 | 10.248 | 0.96066 | 14.031 | 0.95675 | 18.414 | 0.95690 | 23.372 | 0.96270 | 28.854 |
| 53 | 0.96103 | 10.196 | 0.95232 | 13.982 | 0.94587 | 18.384 | 0.94320 | 23.383 | 0.94596 | 28.933 |
| 54 | 0.95495 | 10.131 | 0.94404 | 13.916 | 0.93506 | 18.332 | 0.92957 | 23.367 | 0.92928 | 28.981 |
| 55 | 0.94893 | 10.053 | 0.93582 | 13.831 | 0.92432 | 18.256 | 0.91603 | 23.321 | 0.91267 | 28.994 |
| 56 | 0.94296 | 9.961 | 0.92768 | 13.728 | 0.91367 | 18.156 | 0.90257 | 23.246 | 0.89615 | 28.974 |
| 57 | 0.93706 | 9.856 | 0.91962 | 13.606 | 0.90312 | 18.031 | 0.88922 | 23.140 | 0.87976 | 28.917 |
| 58 | 0.93125 | 9.738 | 0.91166 | 13.465 | 0.89270 | 17.88 I | 0.87602 | 23.003 | 0.86350 | 28.823 |
| 59 | 0.92552 | 9.606 | 0.90382 | 13.306 | 0.88240 | 17.705 | 0.86294 | 22.833 | 0.84739 | 28.689 |
| 60 | 0.91987 | 9.461 | 0.89607 | 13.127 | 0.87222 | 17.505 | 0.85001 | 22.631 | 0.83142 | 28.518 |
| 61 | 0.91433 | 9.303 | 0.88846 | 12.929 | 0.86221 | 17.278 | 0.83727 | 22.394 | 0.8 I564 | 28.303 |
| 62 | 0.90889 | 9.13 1 | 0.88100 | 12.713 | 0.85237 | 17.024 | 0.82471 | 22.122 | 0.80008 | 28.047 |
| 63 | 0.90357 | 8.945 | 0.87369 | 12.476 | 0.84271 | 16.743 | 0.81237 | 21.8I4 | 0.78475 | 27.745 |
| 64 | 0.89838 | 8.747 | 0.86653 | 12.220 | 0.83324 | 16.435 | 0.80025 | 21.471 | 0.76966 | 27.396 |
| 65 | 0.89332 | 8.536 | 0.85954 | II.945 | 0.82398 | 16.100 | 0.78837 | 21.091 | 0.75484 | 26.999 |
| 66 | 0.88838 | 8.312 | 0.85272 | 11.652 | 0.81494 | 15.738 | 0.77675 | 20.673 | 0.74029 | 26.555 |
| 67 | 0.88358 | 8.076 | 0.84609 | II. 339 | 0.80613 | 15.349 | 0.76540 | 20.218 | 0.72603 | 26.061 |
| 68 | 0.87894 | 7.827 | 0.83966 | 11.007 | 0.79757 | 14.93 I | 0.75435 | 19.722 | 0.71212 | 25.513 |
| 69 | 0.87445 | 7.565 | 0.83344 | 10.656 | 0.78927 | 14.486 | 0.74362 | 19.188 | 0.69857 | 24.911 |
| 70 | 0.87012 | 7.292 | 0.82744 | 10.287 | 0.78125 | 14.014 | 0.73322 | 18.615 | 0.68539 | 24.254 |
| 71 | 0.86596 | 7.007 | 0.82166 | 9.900 | 0.77352 | 13.515 | 0.72317 | 18.001 | 0.67261 | 23.541 |
| 72 | 0.86197 | 6.711 | 0.81611 | 9.496 | 0.76610 | 12.990 | 0.71347 | 17.348 | 0.66026 | 22.772 |
| 73 | 0.85816 | 6.404 | 0.81081 | 9.075 | 0.75899 | 12.438 | 0.70416 | 16.656 | 0.64836 | 21.946 |
| 74 | 0.85454 | 6.086 | 0.80576 | 8.637 | 0.75220 | I 1.860 | 0.69527 | 15.926 | 0.63692 | 21.061 |
|  | 0.85111 | 5.758 | 0.80097 | 8.183 | 0.74575 | II. 257 | 0.6868r | 15.156 | 0.62599 | 20.115 |
| 76 | 0.84787 | 5.420 | 0.79646 | 7.713 | 0.73965 | 10.630 | 0.67878 | 14.347 | 0.61560 | 19.111 |
| 77 | 0.84484 | 5.073 | 0.79222 | 7.228 | 0.73392 | 9.979 | 0.67121 | 13.502 | 0.60577 | 18.049 |
| 78 | 0.84201 | 4.718 | 0.78826 | 6.729 | 0.72856 | 9.306 | 0.66412 | 12.621 | 0.59652 | 16.929 |
| 79 | 0.83939 | 4.355 | 0.78459 | 6.217 | 0.72359 | 8.612 | 0.65753 | 11.706 | 0.58790 | 15.753 |
| 80 | 0.83698 | 3.984 | 0.78121 | 5.694 | 0.71901 | 7.897 | 0.65145 | 10.755 | 0.57991 | I4.52I |
| 81 | 0.83479 | 3.606 | 0.77814 | 5.159 | 0.71484 | 7.164 | 0.64589 | 9.776 | 0.57259 | 13.237 |
| 82 | 0.83282 | 3.221 | 0.77538 | 4.613 | 0.71108 | 6.413 | 0.64087 | 8.768 | 0.56596 | 11.904 |
| 83 | 0.83108 | 2.831 | 0.77293 | 4.057 | 0.70774 | 5.647 | 0.63641 | 7.733 | 0.56005 | 10.526 |
| 84 | 0.82957 | 2.436 | 0.77079 | 3.493 | 0.70483 | 4.867 | 0.63252 | 6.674 | 0.55487 | 9.105 |
| 85 | 0.82828 | 2.037 | 0.76898 | 2.922 | 0.70236 | 4.075 | 0.62921 |  | 0.55046 | 7.647 |
| 86 | 0.82722 | 1.634 | 0.76750 | 2.345 | 0.70033 | 3.272 | 0.62648 | 4.498 | 0.54683 | 6.157 |
| 87 | 0.82640 | 1.228 | 0.76634 | 1.763 | 0.69875 | 2.462 | 0.62435 | 3.386 | 0.54399 | 4.642 |
| 88 | 0.82581 | 0.820 | 0.76551 | 1.177 | 0.69761 | 1.645 | 0.62283 | 2.263 | 0.54195 | 3.106 |
| 89 | 0.82546 | 0.410 | 0.76501 | 0.589 | 0.69693 | 0.823 | 0.62192 | 1.133 | 0.54072 | 1. 556 |
| 90 | 0.82534 | 0.000 | 0.76484 | 0.000 | 0.69671 | 0.000 | 0.62161 | 0.000 | 0.54030 | 0.000 |

$\begin{array}{ll}\text { Examples. } & \cosh \left(0.7 \angle 7 I^{\circ}\right)=0.82166 \angle 9^{\circ} \cdot 900=0.82166 \angle 9^{\circ} \cdot 54^{\prime} .00^{\prime \prime} . \\ & \cosh ^{-1}\left(0.69857 / 24^{\circ} .911\right)=1.0 / 69^{\circ} .\end{array}$

Table II. HYPERBOLIC COSINES. $\cosh (\rho / \delta)=r / \gamma$. Continued

|  | I.I |  | 1.2 |  | 1.3 |  | 1.4 |  | I. 5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ |  | - |  | - |  | - |  | - |  | - |
| 45 | I.II 57 | 32.686 | 1.1608 | 38.076 | 1. 2163 | 43.570 | 1.2830 | 49.084 | 1.3616 | 54.550 |
| 46 | 1.0959 | 33.067 | 1.1376 | 38.582 | I.1897 | 44.210 | 1.2529 | 49.864 | 1.3279 | 55.471 |
| 47 | 1.0759 | 33.424 | I.II43 | 39.063 | 1.1630 | 44.827 | 1.2227 | 50.625 | 1.2941 | 56.378 |
| 48 | 1.0559 | 33.754 | 1.0910 | 39.517 | 1.1363 | 45.42 I | 1.1926 | 51.365 | 1.2604 | 57.266 |
| 49 | 1.0359 | 34.056 | 1.0676 | 39.943 | 1.1095 | 45.989 | I.I624 | 52.083 | 1.2267 | 58.134 |
| 50 | 1.0158 | 34.328 | 1.0443 | 40.341 | 1.0828 | 46.529 | I. 1322 | 52.777 | I.I93 I | 58.982 |
| 51 | 0.99578 | 34.570 | 1.0209 | 40.709 | 1.0561 | 47.041 | 1.102 1 | 53.446 | 1.1596 | 59.810 |
| 52 | 0.97577 | 34.780 | 0.99757 | 41.045 | 1.0294 | 47.525 | 1.0720 | 54.090 | 1.1262 | 60.618 |
| 53 | 0.95580 | 34.957 | 0.97428 | 41.349 | 1.0027 | 47.978 | 1.0421 | 54.708 | 1.0929 | 61.407 |
| 54 | 0.93589 | 35.100 | 0.95104 | 41.618 | 0.97613 | 48.400 | 1.0122 | 55.299 | 1.0598 | 62.175 |
| 55 | 0.91605 | 35.206 | 0.92788 | 41.850 | 0.94964 | 48.788 | 0.98242 | 55.862 | 1.0268 | 62.921 |
| 56 | 0.89630 | 35.275 | 0.90481 | 42.045 | 0.92325 | 49.141 | 0.95277 | 56.396 | 0.99406 | 63.645 |
| 57 | 0.87666 | $35 \cdot 305$ | 0.88 I 86 | 42.201 | 0.89697 | 49.458 | 0.92327 | 56.900 | 0.96149 | 64.347 |
| 58 | 0.85716 | 35.293 | 0.85902 | 42.314 | 0.87082 | 49.736 | 0.89393 | 57.372 | 0.92912 | 65.025 |
| 59 | 0.83781 | 35.238 | 0.83633 | 42.383 | 0.84482 | 49.973 | 0.86474 | 57.811 | 0.89696 | 65.681 |
| 60 | 0.81862 | 35.139 | 0.81379 | 42.406 | 0.81898 | 50.168 | 0.83573 | 58.214 | 0.86502 | 66.313 |
| 61 | 0.79961 | 34.992 | 0.79144 | 42.379 | 0.79331 | 50.315 | 0.80692 | 58.578 | 0.83332 | 66.919 |
| 62 | 0.7808 I | 34.794 | 0.76929 | 42.299 | 0.76783 | 50.412 | 0.77831 | 58.902 | 0.80186 | 67.497 |
| 63 | 0.76223 | $34 \cdot 545$ | 0.74735 | 42.164 | 0.74256 | 50.457 | 0.74991 | 59.185 | 0.77065 | 68.048 |
| 64 | 0.74390 | 34.242 | 0.72565 | 41.970 | 0.71752 | 50.446 | 0.72173 | 59.42 I | 0.73969 | 68.571 |
| 65 | 0.72584 | 33.881 | 0.70420 | 41.713 | 0.6927 I | 50.373 | 0.69377 | 59.608 | 0.70899 | 69.064 |
| 66 | 0.70808 | 33.459 | 0.68304 | 41.389 | 0.66815 | 50.235 | 0.66605 | 59.742 | 0.67855 | 69.524 |
| 67 | 0.69063 | 32.974 | 0.66218 | 40.993 | 0.64385 | 50.026 | 0.63858 | 59.817 | 0.64836 | 69.950 |
| 68 | 0.67352 | 32.423 | 0.64164 | 40.520 | 0.61985 | 49.739 | 0.61136 | 59.828 | 0.61844 | 70.340 |
| 69 | 0.65677 | 31.804 | 0.62146 | 39.966 | 0.59618 | $49 \cdot 368$ | 0.58441 | 59.769 | 0.58877 | 70.689 |
| 70 | 0.64043 | 31.112 | 0.60166 | $39 \cdot 324$ | 0.57283 | 48.905 | 0.55775 | 59.633 | 0.55937 | 70.995 |
| 71 | 0.62452 | 30.344 | 0.58227 | 38.589 | 0.54984 | 48.342 | 0.53137 | 59.410 | 0.53022 | 71.253 |
| 72 | 0.60907 | 29.498 | 0.56334 | 37.754 | 0.52724 | 47.668 | 0.50529 | 59.090 | 0.50134 | 71.458 |
| 73 | 0.59410 | 28.570 | 0.54489 | 36.812 | 0.50506 | 46.870 | 0.47955 | 58.659 | 0.47271 | 71.602 |
| 74 | 0.57966 | 27.558 | 0.52697 | 35.756 | 0.48335 | 45.937 | 0.45414 | 58.104 | 0.44434 | 71.677 |
| 75 | 0.56579 | 26.458 | 0.50963 | 34.578 | 0.46215 | 44.856 | 0.42910 | 57.405 | 0.41622 | 71.672 |
| 76 | 0.55252 | 25.269 | 0.49292 | 33.271 | 0.44151 | 43.610 | 0.40446 | 56.542 | 0.38836 | 71.573 |
| 77 | 0.53990 | 23.989 | 0.47688 | 31.828 | 0.42149 | 42.180 | 0.38028 | 55.487 | 0.36075 | 71.361 |
| 78 | 0.52796 | 22.616 | 0.46159 | 30.242 | 0.40216 | 40.548 | -.35658 | 54.206 | 0.33339 | 71.015 |
| 79 | 0.51675 | 21.151 | 0.44710 | 28.507 | 0.38360 | 38.692 | 0.33345 | 52.659 | 0.30630 | 70.501 |
| 80 | 0.50631 | 19.594 | 0.43349 | 26.616 | 0.36591 | 36.591 | 0.31099 | 50.800 | 0.27951 | 69.774 |
| 8I | 0.49669 | 17.946 | 0.42083 | 24.567 | 0.34921 | 34.223 | 0.28928 | 48.566 | 0.25304 | 68.774 |
| 82 | 0.48794 | 16.210 | 0.40919 | 22.359 | 0.33362 | 31.569 | 0.26848 | 45.888 | 0.22691 | 67.413 |
| 83 | 0.48009 | 14.391 | 0.39867 | 19.993 | 0.31928 | 28.608 | 0.24877 | 42.68I | 0.20122 | 65.561 |
| 84 | 0.47320 | I 2.495 | 0.38935 | I 7.475 | 0.30635 | 25.333 | 0.23039 | 38.853 | 0.17608 | 63.018 |
| 85 | 0.46730 | 10.529 | 0.38129 | 14.813 | 0.29499 | 21.739 | 0.21368 | $34 \cdot 303$ | 0.15169 | 59.474 |
| 86 | 0.46241 | 8.501 | 0.37457 | 12.022 | 0.28538 | 17.838 | -.19902 | 28.949 | -.12853 | 54.420 |
| 87 | 0.45857 | 6.422 | 0.36927 | 9.121 | 0.27770 | 13.659 | 0.18684 | 22.746 | 0.10710 | 47.029 |
| 88 | $0.455^{81}$ | $4 \cdot 304$ | 0.36545 | 6.132 | 0.27208 | 9.247 | 0.17765 | 15.729 | 0.08871 | 36.059 |
| 89 | 0.45415 | 2.159 | 0.36314 | 3.081 | 0.26865 | 4.668 | 0.17193 | 8.051 | 0.07570 | 20.198 |
| 90 | 0.45360 | 0.000 | 0.36236 | 0.000 | 0.26750 | 0.000 | 0.16997 | 0.000 | 0.07074 | 0.000 |

$$
\begin{array}{ll}
\text { Examples. } & \cosh \left(1.3 \angle 73^{\circ}\right)=0.50506 \angle 46^{\circ} .870=0.50506 \angle 46^{\circ} .52^{\prime} .12^{\prime \prime} . \\
& \cosh ^{-1}\left(0.07074 \angle 0^{\circ}\right)=1.5 \angle 90^{\circ} .
\end{array}
$$

Table II. HYPERBOLIC COSINES. $\cosh (\rho / \delta)=r / \gamma$. Continued

|  | 1.6 |  | 1.7 |  | І. 8 |  | 1.9 |  | 2.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | - |  | $\bigcirc$ |  | $\bigcirc$ |  | - |  | - |
| 45 | 1.4524 | 59.916 | 1.5556 | 65.149 | 1.6714 | 70.229 | 1.7999 | 75.152 | 1.9413 | 79.922 |
| 46 | 1.4149 | 60.974 | 1.5141 | 66.336 | 1.6257 | 71.536 | 1.7496 | 76.569 | 1.8861 | 8 I .437 |
| 47 | 1.3774 | 62.021 | 1.4727 | 67.516 | 1.5802 | 72.837 | 1.6997 | 77.979 | 1.8313 | 82.947 |
| 48 | 1.3400 | 63.051 | 1.4316 | 68.681 | 1.5350 | 74.125 | 1.6502 | 79.378 | 1.777 I | 84.445 |
| 49 | 1.3028 | 64.066 | 1.3906 | 69.833 | 1.4901 | $75 \cdot 403$ | 1.6012 | 80.768 | 1.7235 | 85.935 |
| 50 | 1.2657 | 65.065 | I. 3499 | 70.973 | 1.4456 | 76.671 | 1.5526 | 82.149 | 1.6706 | 87.417 |
| 51 | 1.2287 | 66.049 | 1.3095 | 72.100 | 1.4015 | 77.929 | 1.5046 | 83.522 | 1.6184 | 88.890 |
| 52 | 1.1919 | 67.018 | 1.2693 | 73.217 | 1.3579 | 79.179 | 1.4572 | 84.890 | 1.5669 | 90.356 |
| 53 | 1.1554 | 67.971 | 1.2295 | 74.324 | I. 3147 | 80.422 | 1.4104 | 86.252 | 1.5162 | 91.817 |
| 54 | I.II91 | 68.909 | 1.1900 | 75.421 | 1.2719 | 81.659 | 1.3643 | 87.609 | 1. 4664 | 93.275 |
| 55 | 1.0831 | 69.833 | 1.1509 | 76.508 | 1.2297 | 82.892 | 1.3188 | 88.963 | I. 4174 | 94.731 |
| 56 | 1.0473 | 70.744 | I.II 21 | 77.589 | 1.1879 | 84.122 | 1.2740 | 90.318 | 1.3693 | 96.188 |
| 57 | 1.0118 | 71.640 | 1.0737 | 78.663 | 1.1467 | 85.350 | 1.2299 | 91.674 | 1.322 I | 97.646 |
| 58 | 0.97653 | 72.522 | 1.0358 | 79.730 | 1.1061 | 86.576 | 1.1865 | 93.032 | 1.2758 | 99.108 |
| 59 | 0.94160 | 73.392 | 0.99826 | 80.795 | I. 0661 | 87.808 | 1.1439 | 94.398 | 1.2305 | 100.577 |
| 60 | 0.90699 | 74.249 | 0.96117 | 8 r .859 | 1.0266 | 89.045 | 1.1020 | 95.773 | 1.186I | 102.057 |
| 61 | 0.87268 | 75.094 | 0.92451 | 82.919 | 0.98772 | 90.287 | 1.0609 | 97.158 | 1.1427 | 103.548 |
| 62 | 0.83871 | 75.926 | 0.88831 | 83.982 | 0.94946 | 91.540 | 1.0207 | 98.559 | 1.1003 | 105.054 |
| 63 | 0.80508 | 76.748 | 0.85256 | 85.048 | 0.91182 | 92.807 | 0.98119 | 99.978 | 1.0589 | 106.580 |
| 64 | 0.77177 | 77:561 | 0.81727 | 86.121 | 0.87480 | 94.092 | 0.94254 | 101.420 | 1.0186 | 108.129 |
| 65 | 0.73879 | 78.365 | 0.78245 | 87.204 | 0.83842 | 95.400 | 0.90472 | 102.891 | 0.97928 | 109.707 |
| 66 | 0.70615 | 79.161 | 0.74810 | 88.300 | 0.80268 | 96.734 | 0.86773 | 104.394 | 0.94100 | III. 318 |
| 67 | 0.67383 | 79.951 | 0.71420 | 89.415 | 0.76759 | 98.101 | 0.86160 | 105.937 | 0.90378 | II 2.968 |
| 68 | 0.64184 | 80.736 | 0.68078 | 90.551 | 0.73314 | 99.508 | 0.79631 | 107.527 | 0.86764 | 114.663 |
| 69 | 0.61019 | 81.519 | 0.64782 | 91.717 | 0.69935 | 100.962 | 0.76190 | 109.170 | 0.83259 | 116.410 |
| 70 | 0.57887 | 82.300 | 0.61533 | 92.917 | 0.66624 | 102.473 | 0.72838 | 110.875 | 0. 79865 | 118.215 |
| 71 | 0.54786 | 83.084 | 0.58331 | 94.161 | 0.63379 | 104.050 | 0.69576 | II2.653 | 0.76583 | 120.087 |
| 72 | 0.51715 | 83.872 | 0.55175 | 95.458 | 0.60202 | 105.706 | 0.66406 | 114.514 | 0.73414 | 122.035 |
| 73 | 0.48674 | 84.668 | 0.52065 | 96.819 | 0.57095 | 107.453 | 0.63329 | 116.471 | 0.70361 | 124.068 |
| 74 | 0.45663 | 85.477 | 0.49003 | 98.258 | 0.54061 | 109.308 | 0.60349 | 118.537 | 0.67428 | 126.197 |
| 75 | 0.42680 | 86.304 | 0.45988 | 99.793 | 0.51100 | 111.29I | 0.57470 | 120.726 | 0.64618 | 128.432 |
| 76 | 0.39724 | 87.156 | 0.43021 | 101.445 | 0.48217 | 113.423 | 0.54696 | 123.058 | 0.61934 | 130.785 |
| 77 | 0.36794 | 88.041 | 0.40104 | 103.241 | 0.45415 | 115.732 | 0.52030 | 125.550 | 0.59381 | 133.267 |
| 78 | 0.33888 | 88.972 | 0.37238 | 105.215 | 0.42701 | 118.248 | 0.49480 | I28.224 | 0.56965 | 135.890 |
| 79 | 0.31006 | 89.963 | 0.34428 | 107.409 | 0.40082 | 121.008 | 0.47055 | 131.100 | 0.5469 I | 138.664 |
| 80 | 0.28146 | 91.036 | 0.31679 | 109.880 | 0.37567 | 124.055 | 0.44764 | 134.201 | 0.52568 | 14 I .60 I |
| 81 | 0.25309 | 92.221 | 0.28997 | 112.701 | 0.35167 | 127.438 | 0.42617 | 137.553 | 0.50603 | 144.713 |
| 82 | 0.22494 | 93.561 | 0.26395 | 115.971 | 0.32897 | 131.210 | 0.40626 | 141.172 | 0.48805 | 148.003 |
| 83 | 0.19700 | 95.128 | 0.23887 | 119.816 | 0.30779 | 135.433 | 0.38806 | 145.082 | 0.47184 | 151.474 |
| 84 | 0.16926 | 97.033 | 0.21497 | 124.413 | 0.28838 | 140.167 | 0.37174 | 149.292 | 0.45750 | 155.127 |
| 85 | 0.14177 | 99.473 | 0.19261 | 129.984 | 0.27102 | 145.463 | 0.35749 | 153.806 | 0.44514 | 158.954 |
| 86 | 0.11467 | 102.829 | 0.17231 | 136.806 | 0.25603 | 151.356 | 0.34550 | 158.614 | 0.43486 | 162.943 |
| 87 | 0.08809 | 107.920 | 0.15476 | 145.176 | 0.24378 | 157.847 | 0.33593 | 163.691 | 0.42674 | 167.072 |
| 88 | 0.06261 | 116.850 | 0.14093 | 155.306 | 0.23469 | 164.877 | 0.32895 | 168.991 | 0.42088 | 171.315 |
| 89 | 0.04025 | 136.057 | 0.13195 | 167.116 | 0.22911 | 172.324 | 0.32472 | 174.453 | 0.41734 | 175.637 |
| 90 | 0.02920 | 180.000 | 0.12884 | 180.000 | 0.22720 | 180.000 | 0.32329 | 180.000 | 0.41615 | 180.000 |

Examples. $\cosh \left(2.0 \angle 90^{\circ}\right)=0.41615 \angle 180^{\circ}$.
$\cosh ^{-1}\left(0.54691 \angle 138^{\circ} .664\right)=2.0 \angle 79^{\circ}$.

Table II. HYPERBOLIC COSINES. $\cosh (\rho / \delta)=r / \gamma$. Continued

|  | 2.1 |  | 2.2 |  | 2.3 |  | 2.4 |  | 2.5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | - |  | - |  | - |  | - |  | - |
| 45 | 2.0958 | 84.551 | 2.2636 | 89.050 | 2.4449 | 93.438 | 2.6403 | 97.730 | 2.8502 | 101.944 |
| 6 | 2.0350 | 86.159 | 2.1966 | 90.740 | 2.3711 | 95.202 | 2.5589 | 99.564 | 2.7603 | 103.842 |
| 47 | 1.9749 | 87.755 | 2.1306 | 92.417 | 2.2984 | 96.952 | 2.4788 | 101.380 | 2.6720 | 105.720 |
| 48 | 1.9155 | 89.341 | 2.0655 | 94.081 | 2.2269 | 98.687 | 2.4001 | 103.179 | 2.5853 | 107.578 |
| 49 | 1.8569 | 90.917 | 2.0013 | 95.734 | 2.1567 | 100.408 | 2.3229 | 104.962 | 2.5004 | 109.417 |
| 50 | 1. 7992 | 92.484 | 1.9382 | 97.376 | 2.0877 | 102.116 | 2.2473 | 106.729 | 2.4173 | 111.238 |
| 5 | 1.7424 | 94.043 | 1.8763 | 99.009 | 2.0200 | 103.812 | 2.1732 | 108.482 | 2.3361 | 113.041 |
| 52 | 1.6865 | 95.594 | 1.8155 | 10.633 | I. 953 | 105.498 | 2.1008 | 110.220 | 2.2568 | I14.826 |
| 53 | 1.6316 | 97.140 | 1. 7559 | 102.249 | т. 8889 | 107.173 | 2.0301 | III. 944 | 2.1795 | 116.593 |
| 54 | 1.5777 | 98.68 r | 1. 6976 | 103.858 | 1.8255 | 108.838 | 1.9612 | 113.656 | 2.1042 | 118.344 |
| 55 | 1.5249 | 100.220 | 1. 6406 | 105.462 | 1.7637 | 110.495 | 1.8940 | 115.356 | 2.0310 | 120.07 |
| 5 | 1.4732 | 101.758 | 1.5848 | 107.063 | 1.7034 | 112.145 | 1.8286 | 117.045 | 1.9599 | 121.799 |
| 57 | 1.4226 | 103.296 | 1.5303 | 108.662 | 1.6447 | 113.789 | 1.7651 | 118.724 | 1.8909 | 123.504 |
| 58 | 1.3731 | 104.836 | 1.4772 | 110.261 | 1.5876 | 115.430 | 1.7035 | 120.394 | 1.8241 | 125.195 |
| 59 | 1.3248 | 106.382 | 1.4256 | 111.862 | 1.5322 | 117.069 | 1.6438 | 122.057 | 1.7594 | 126.874 |
| 60 | 1.2776 | 107.936 | 1.3754 | 113.467 | 1.4784 | 118.708 | 1.5859 | 123.715 | บ. 6969 | 128.541 |
| 61 | 1.2317 | 109.501 | 1.3266 | 115.079 | 1.4262 | 120.347 | 1.5299 | 125.369 | I. 6366 | 130.198 |
| 62 | 1.1870 | 111.0 | 1.2792 | 116.700 | 1.3758 | 121.99 I | 1.4758 | 127.020 | 1.5785 | 131.846 |
| 63 | 1.1435 | 112.673 | 1.2332 | 118.333 | 1.3270 | 123.641 | 1.4237 | 128.671 | 1.5226 | ${ }^{1} 33.486$ |
| 64 | 1.1012 | 114.288 | 1.1887 | 119.982 | 1.279 | 125.300 | 1.3736 | 130.322 | 1.4689 | 135.120 |
| 65 | 1.0602 | 115.928 | 1.1457 | 121.650 | 1.234 | 126.970 | 1.3254 | 131.977 | 1.4173 | 136.749 |
| 66 | 1.0204 | 117.597 | 1.1042 | 123.339 | 1.1908 | I28.654 | 1.2791 | 133.63 | 1.3679 | 138.374 |
| 67 | 0.98193 | 119.299 | 1.0642 | 125.055 | 1.1488 | 130.355 | 1.2347 | I 35.306 | 1.3207 | 139.998 |
| 68 | 0.94 | 121.041 | 1.0256 | 126.801 | 1.1086 | 132.077 | 1.1923 | 136.985 | 1.2756 | 141.622 |
| 69 | 0.9088 | 122.82 | 0.98860 | 128.58 I | 1. | 133.823 | 1.1518 | 138.676 | 1.2327 | 143.247 |
| 70 | 0.87429 | 124.662 | 0.95308 | 130.400 | 1.0332 | 135.595 | 1.1132 | 140.382 | 1.1919 | 144.876 |
| 71 | 0.84105 | 126.554 | 0.91908 | 132.263 | 0.99804 | 137.397 | 1.0765 | 142.106 | 1.1532 | 146.511 |
| 72 | 0.80915 | 128.509 | 0.88663 | 134.174 | 0.96464 | 139.233 | 1.0417 | 143.850 | 1.1166 | 148.153 |
| 73 | 0.77861 | 130.533 | 0.85573 | 136.137 | 0.93297 | 141.106 | 1.0088 | 145.616 | 1.0821 | 149.803 |
| 74 | 0.74945 | 132.634 | 0.82638 | 138.158 | 0.90303 | 143.019 | 0.97785 | 147.407 | 1.049 | 151.464 |
| 75 | 0.72171 | 134.8 I 8 | 0.79862 | 140.242 | 0.8748 I | 144.976 | 0.94877 | 149.225 | 1.0193 | 153.137 |
| 76 | 0.69541 | 137.094 | 0.77246 | 142.393 | 0.84833 | 146.980 | 0.92156 | 151.071 | 0.99093 | 154.823 |
| 77 | 0.67060 | 139.468 | 0.74789 | 144.615 | 0.82360 | 149.033 | 0.89622 | 152.948 | 0.96459 | 156.524 |
| 78 | 0.64732 | 141.946 | 0.72497 | 146.911 | 0.80062 | 151.136 | 0.87276 | 154.857 | 0.94026 | 158.241 |
| 79 | 0.62558 | 144.534 | 0.70372 | 149.285 | 0. | 153.291 | 0.85117 | 156.798 | 0.91793 | ${ }^{1} 59.974$ |
| 80 | 0.60544 | 147.237 | 0.68416 | 151.738 | 0.75996 | I55.499 | 0.83145 | 158.771 | 0.89757 | 161.723 |
| 81 | 0.58697 | 150.058 | 0.66632 | 154.271 | 0.74231 | 157.760 | 0.81361 | 160.778 | 0.87918 | 163.490 |
| 82 | 0.5702 I | 152.997 | 0.65024 | 156.883 | 0.72646 | 160.074 | 0.79764 | 162.817 | 0.86276 | 165.274 |
| 83 | 0.55523 | 156.054 | 0.63595 | 159.572 | 0.71244 | 162.438 | 0.78354 | 164.888 | 0.84829 | 167.074 |
| 84 | 0.54209 | 159.225 | 0.62349 | 162.334 | 0.70025 | 164.848 | 0.77131 | 166.987 | 0.83575 | 168.889 |
| 85 | 0.53085 | 162.503 | 0.61287 | 165.164 | 0.68990 | 167.301 | 0.76095 | 169.112 | 0.82518 | 170.717 |
| 86 | 0.52156 | 165.876 | 0.60413 | 168.054 | 0.68141 | 169.793 | 0.75247 | 171.260 | 0.81650 | 172.558 |
| 87 | 0.51428 | 169.329 | 0.59731 | 170.994 | 0.67479 | 172.316 | 0.74587 | 173.427 | 0.80979 | 174.409 |
| 88 | 0.50905 | 172.849 | 0.59242 | 173.973 | 0.67006 | 174.863 | 0.74116 | 175.610 | 0.80499 | 176.269 |
| 89 | 0.50590 | 176.413 | 0.58948 | 176.980 | 0.66722 | 177.427 | 0.73834 | 177.803 | 0.80207 | 178.134 |
| 90 | 0.50485 | 180.000 | 0.58850 | 180.000 | 0.66628 | 180.000 | 0.73740 | 180.000 | 0.80114 | 180.000 |

Examples. $\quad \cosh \left(2.2 \angle 45^{\circ}\right)=2.2636 \angle 89^{\circ} .050=2.2636 \angle 89^{\circ} .03^{\prime} .00^{\prime \prime}$.
$\cosh ^{-1}\left(1.0821 / 149^{\circ} .803\right)=2.5 / 73^{\circ}$.

Table II. HYPERBOLIC COSINES. $\cosh (\rho / \delta)=r / \gamma$. Continued

|  | 2.6 |  | 2.7 |  | 2.8 |  | 2.9 |  | 3.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | $\bigcirc$ |  | - |  | - |  | - |  | - |
| 45 | 3.0753 | 106.093 | $3 \cdot 3163$ | 110.190 | $3 \cdot 5741$ | 114.248 | 3.8497 | 118.275 | 4.1443 | 122.282 |
| 46 | 2.9758 | 108.051 | 3.2062 | 112.207 | 3.4523 | 116.322 | 3.7146 | 120.406 | 3.9945 | 124.469 |
| 47 | 2.8783 | 109.987 | 3.0984 | 114.199 | 3.3329 | 118.368 | $3 \cdot 5826$ | 122.506 | 3.8483 | 126.623 |
| 48 | 2.7827 | 111.901 | 2.9928 | 116.166 | 3.2162 | 120.387 | 3.4536 | I 24.575 | 3.7057 | 128.743 |
| 49 | 2.689 r | 113.793 | 2.8896 | 118.108 | 3.1023 | 122.378 | 3.3278 | I26.614 | 3.5667 | 130.828 |
| 50 | 2.5977 | 115.663 | 2.7889 | 120.025 | 2.9913 | 124.340 | 3.2053 | I28.62 I | 3.4315 | 132.879 |
| 51 | 2.5085 | 117.512 | 2.6908 | 121.917 | 2.8832 | I26.273 | 3.0861 | 130.595 | 3.3001 | 134.894 |
| 52 | 2.4216 | 119.340 | 2.5952 | 123.784 | 2.7780 | 128.177 | 2.9703 | 132.536 | 3.1726 | 136.873 |
| 53 | 2.3369 | 121.147 | 2.5023 | 125.626 | 2.6759 | 130.052 | 2.8580 | 1 34.444 | 3.0490 | 138.815 |
| 54 | 2.2545 | 122.93 I | 2.4120 | 127.442 | 2.5769 | 131.898 | 2.7492 | 136.320 | 2.9294 | 140.720 |
| 55 | 2.1745 | 124.695 | 2.3245 | 129.233 | 2.4809 | 133.715 | 2.6439 | 138.162 | 2.8137 | 142.587 |
| 56 | 2.0970 | 126.440 | 2.2397 | 131.000 | 2.3880 | 135.502 | 2.542 I | 139.969 | 2.7020 | 144.415 |
| 57 | 2.0219 | 128.165 | 2.1577 | 132.742 | 2.2983 | 137.259 | 2.4439 | 141.742 | 2.5943 | 146.203 |
| 58 | 1.9492 | 129.872 | 2.0785 | 134.460 | 2.2118 | 138.987 | 2.3492 | 143.479 | 2.4905 | 147.951 |
| 59 | 1.8790 | 131.560 | 2.0021 | 136.154 | 2.1284 | 140.685 | 2.2580 | 145.180 | 2.3907 | 149.659 |
| 60 | 1.8113 | 133.23 I | 1.9284 | 137.824 | 2.048 I | 142.354 | 2.1703 | 146.846 | 2.2949 | 151.325 |
| 61 | 1.7460 | 134.885 | 1.8575 | 139.471 | 1.9709 | 143.993 | 2.0861 | 148.476 | 2.2030 | 152.949 |
| 62 | 1.6832 | 136.523 | 1.7894 | 141.095 | 1.8968 | 145.601 | 2.0053 | 150.071 | 2.1148 | 154.530 |
| 63 | 1.6229 | 138.146 | 1.7241 | 142.696 | 1.8259 | 147.179 | 1.9280 | 151.627 | 2.0304 | 156.067 |
| 64 | 1.5650 | 139.754 | 1.6615 | 144.276 | 1.7580 | 148.728 | 1.8541 | 153.146 | 1.9498 | 157.559 |
| 65 | 1.5096 | 141.349 | 1.6016 | 145.834 | 1.693I | 150.247 | 1.7835 | 154.628 | 1.8729 | 159.005 |
| 66 | 1.4566 | 142.932 | 1.5445 | 147.371 | 1.631 I | 151.737 | 1.7162 | 156.071 | 1.7997 | 160.406 |
| 67 | 1.4060 | 144.504 | 1.4900 | 148.887 | 1.5721 | 153.198 | 1.6522 | 157.477 | 1.7301 | 161.759 |
| 68 | 1.3578 | 146.066 | 1.4382 | 150.384 | 1.5161 | 154.628 | 1.5914 | 158.844 | I. 6640 | 163.064 |
| 69 | 1.3120 | 147.620 | 1.3889 | 151.863 | 1.4629 | 156.030 | I. 5338 | 160.172 | 1.6013 | 164.32 |
| 70 | 1.2685 | 149.164 | 1.3422 | 153.322 | 1.4126 | 157.404 | 1.4793 | 161.460 | 1.5420 | 165.528 |
| 71 | 1.2273 | 150.705 | $\underline{1.2981}$ | 154.764 | 1.3650 | 158.749 | 1.4278 | 162.709 | 1.4861 | 166.685 |
| 72 | 1.1885 | 152.239 | 1.2565 | 156.189 | 1.3202 | 160.066 | 1.3793 | 163.919 | 1.4335 | 167.792 |
| 73 | 1.1519 | 153.770 | 1.2174 | 157.599 | 1.2782 | 161.355 | 1.3338 | 165.090 | 1.3840 | 168.848 |
| 74 | 1.1176 | 155.298 | 1.1807 | 158.994 | 1.2388 | 162.617 | 1.2912 | 166.222 | 1.3377 | 169.853 |
| 75 | 1.0855 | 156.825 | 1.1465 | 160.374 | 1.2020 | 163.853 | 1.2514 | 167.315 | 1.2946 | I70.806 |
| 76 | 1.0556 | 158.351 | 1.1147 | 161.742 | 1.1677 | 165.063 | I. 2144 | 168.370 | 1.2545 | 171.708 |
| 77 | 1.0278 | 159.878 | 1.0852 | 163.096 | 1.1360 | 166.248 | 1.1802 | 169.387 | 1.2174 | I 72.560 |
| 78 | 1.0022 | 16 r .406 | 1.0580 | 164.440 | 1.1069 | 167.409 | 1.1486 | 170.368 | 1.1832 | 173.362 |
| 79 | 0.97880 | 162.937 | 1.0331 | 165.773 | 1.0803 | 168.547 | 1.1200 | 171.313 | 1.1519 | 174.116 |
| 80 | 0.95745 | 164.47 r | 1.0105 | 167.096 | 1.0561 | 169.664 | 1.0938 | 172.225 | I. 1235 | 174.823 |
| 81 | 0.93821 | 166.008 | 0.99006 | 168.411 | 1.0342 | 170.760 | 1.0702 | 173.104 | 1.0979 | 175.485 |
| 82 | 0.92106 | 167.549 | 0.97189 | 169.718 | 1.0147 | 171.837 | 1.0492 | 173.953 | 1.0751 | 176.104 |
| 83 | 0.90596 | 169.094 | 0.95592 | 171.018 | 0.99765 | 172.897 | 1.0307 | 174.774 | 1.0550 | 176.685 |
| 84 | 0.89290 | 170.643 | 0.94211 | 172.312 | 0.98287 | 173.942 | 1.0148 | 175.571 | 1.0377 | 177.229 |
| 85 | 0.88187 | 172.196 | 0.93045 | 173.601 | 0.97041 | 174.973 | 1.0014 | 176.344 | 1.0231 | 177.742 |
| 86 | 0.87286 | 173.752 | 0.92093 | 174.886 | 0.96025 | 175.993 | 0.99042 | 177.099 | 1.0112 | 178.228 |
| 87 | 0.86587 | 175.311 | 0.91354 | 176.168 | 0.95235 | 177.003 | 0.98190 | 177.838 | 1.0019 | 178.691 |
| 88 | 0.86089 | 176.873 | 0.90827 | 177.447 | 0.94671 | I 78.006 | 0.97582 | 178.566 | $0.995^{28}$ | 179.137 |
| 89 | 0.85789 | 178.436 | $0.905^{12}$ | 178.724 | 0.94334 | 179.004 | 0.97217 | 179.285 | 0.99130 | I 79.57 I |
| 90 | 0.85689 | 180.000 | 0.908407 | 180.000 | 0.94222 | 180.000 | 0.97096 | 180.000 | 0.98999 | 180.000 |

[^1]Table III. HYPERBOLIC TANGENTS. $\tanh (\rho / \delta)=r \not \gamma$

|  | 0.1 |  | 0.2 |  | 0.3 |  | 0.4 |  | 0.5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  |  |  | - |  |  |  | - |  |  |
| 45 | 0.10000 | 44.812 | 0.19997 | 44.235 | 0.29981 | 43.282 | 0.39921 | 41.954 | 0.49757 | 40.250 |
| 46 | 0.10001 | 45.812 | 0.20006 | 45.236 | 0.30012 | 44.281 | 0.39995 | 42.945 | 0.49902 | 41.229 |
| 47 | 0.10002 | 46.812 | 0.20015 | 46.237 | 0.30043 | 45.280 | 0.40069 | 43.942 | 0.50047 | 42.219 |
| 48 | 0.10003 | 47.812 | 0.20024 | 47.239 | 0.30075 | 46.283 | 0.40143 | 44.942 | 0.50192 | 43.213 |
| 49 | 0.10004 | 48.813 | 0.20 | 48.242 | 0.3010 | 47.290 | 0.40217 | 45.947 | 0.50340 | 44.213 |
| 50 | 0.10006 | 49.813 | 0.20043 | 49.245 | 0.30138 | 48.297 | 0.40293 | 46.955 |  | 45.220 |
| 51 | 0.100 | 50.813 | 0.20 | 50.251 | 0.30169 | 49.306 | 0.40370 | 47.969 | 0.50639 | 46.233 |
| 52 | 0.100 | 51.814 | 0.2006 | 51.256 | 0.30201 | 50.315 | 0.40446 | 48.986 | 0.50789 | 47.252 |
| 53 | 0.10 | 52.816 | 0.20 | 52.262 | 0.30232 | 5 I .328 | 0.40521 | 50.005 | 0.50939 | 48.276 |
| 54 | . 10 | 53.818 | 0.20 | 53.268 | 0.30263 | 52.344 | 0.40596 | 51.031 | 0.51089 | 49.308 |
| 55 | 100 | 54.820 | 0.2009 | 54.276 | 0.30294 | 53.362 | 0.40671 | 52.058 | 0.51239 | 50.344 |
| 56 | 0.10013 | 55.823 | 0.20099 | 55.285 | 0.30325 | 54.382 | 0.40746 | 53.089 | 0.51389 | 51.388 |
| 57 | 0.10 | 56.825 | 0.20107 | 56.295 | 0.30355 | 55.404 | 0.40820 | 54.124 | 0.51538 | 52.439 |
| 58 | 0.10015 | 57.828 | 0.20115 | 57.306 | 0.30385 | 56.426 | 0.40892 | 55.164 | 0.51687 | 53.494 |
| 59 | 0.100 | 58.830 | 0.20 | 58.318 | 0.30414 | 57.452 | 0.40964 | 56.207 | 0.51835 | 54.556 |
| 60 | 0.10017 | 59.833 | .20132 | 59-332 | 0.3 | 58.479 | 0.41037 | 57.255 | 0.51983 | 55.625 |
| 61 | 0. | 60.837 | 0.20 | 60.345 | 0.30473 | 59.510 | 0.41107 | 58.305 | 0.52128 | 56.700 |
| 62 | 0.100 | 61.841 | 0.20148 | 61.360 | 0.30501 | 60.542 | 0.41176 | 59.359 | 0.52271 | 57.781 |
| 63 | 0.10 | 62.845 | 0.20156 | 62.375 | 0.30528 | 61.575 | 0.41244 | 60.417 | 0.52412 | 58.867 |
| 64 | 0.10 | 63.849 | 0.20 | 63.391 | 0.3055 | 62.610 | 0.41311 | 61.479 | 0.525 | 59 |
| 65 | 0. | 64.8 | 0.20 | 64.408 | 0.30580 |  | 0.41376 |  | 0.52689 | 61.058 |
| 66 | 0.100 | 65.857 | 0.20 | 65.425 | 0.30605 | 64.686 | 0.41441 | 63.612 | 0.52824 | 62.164 |
| 67 | 0.10 | 66.862 | 0.20 | 66.443 | 0.30630 | 65.727 | 0.41504 | 64.685 | 0.52957 | 63.276 |
| 68 | 0.10024 | 67.866 | 0.2019 | 67.461 | 0.30655 | 66.769 | 0.41565 | 65.760 | 0.53085 | 64.391 |
| 69 | 0.10025 | 68.871 | 0.201 | 68.480 | 0.30678 | 67.813 | 0.41623 | 66.837 | 0.53209 |  |
| 70 | 0.10026 | 69.877 | 0.20206 | 69.501 | 0.30701 | 68.859 | 0.41680 | 67.918 | 0.53330 | 66.638 |
| 71 | 0.10026 | 70.882 | 0.20212 | 70.522 | 0.30722 | 69.906 | 0.41735 | 69.002 | 0.53446 | 67.771 |
| 72 | 0.10027 | 71.888 | 0.20217 | 71.544 | 0.30742 | 70.955 | 0.41788 | 70.089 | 0.53560 | 68.909 |
| 73 | 0.10028 | 72.893 | 0.20 | 72.566 | 0.30762 | 72.005 | 0.41838 | 71.179 | 0.53669 | 70.052 |
| 74 | 0.10028 | 73.898 | 0.20 | 73.589 | 0.30781 | 73.056 | 0.41886 | 72.272 | 0.53773 | 71.200 |
| 75 | 0.100 | 74.90 | 0.20234 | 74.612 | 0.30799 | 74.108 | 0.41932 | 73.368 | 0.53 | 72.35 I |
| 76 | 0.10029 | 75.910 | 0.20239 | 75.635 | 0.30816 | 75.162 | 0.41975 | 74.466 | 0.53965 | 73.507 |
| 77 | 0.1003 | 76.916 | 0.20243 | 76.659 | 0.30831 | 76.217 | 0.42016 | 75.566 | 0.54054 | 74.667 |
| 78 | 0.10030 | 77.922 | 0.20246 | 77.684 | 0.30846 | 77.273 | 0.42054 | 76.668 | 0.54138 | 75.83 I |
| 79 | 0.10031 | 78.928 | 0.2025 | 78.709 | 0.30860 | 78.329 | 0.42088 | 77.771 | 0.54215 | 76.999 |
| 80 | 0.10031 | 79.934 | 0.20254 | 79.734 | 0.30872 | 79.386 | 0.42120 | 78.876 | 0.54285 | 78.170 |
| 81 | 0.10032 | 80.940 | 0.20257 | 80.759 | 0.30884 | 80.445 | 0.42150 | 79.983 | 0.54349 | 79.344 |
| 82 | 0.10032 | 81.946 | 0.20260 | 81.785 | 0.30894 | 81.506 | 0.42177 | 81.092 | 0.54407 | 80.520 |
| 83 | 0.10032 | 82.953 | 0.20263 | 82.812 | 0.30904 | 82.567 | 0.42201 | 82.203 | 0.54459 | 81. 699 |
| 84 | 0.10033 | 83.960 | 0.20265 | 83.83 | 0.30912 | 83.628 | 0.42222 | 83.315 | 0.54503 | 82.88I |
| 85 | 0.10033 | 84.967 | 0.2026 | 84.864 | 0.30920 | 84.689 | 0.42239 | 84.427 | 0.54540 | 84.065 |
| 86 | 0.10033 | 85.974 | 0.20268 | 85.891 | 0.30926 | 85.751 | 0.42252 | 85.540 | 0.54571 | 85.251 |
| 87 | 0.10033 | 86.981 | 0.20270 | 86.918 | 0.30930 | 86.813 | 0.42264 | 86.654 | 0.54596 | 86.438 |
| 88 | 0.10033 | 87.988 | 0.20270 | 87.946 | 0.30933 | 87.875 | 0.42274 | 87.768 | 0.54616 | 87.626 |
| 89 | 0.10033 | 88.994 | 0.20271 | 88.973 | 0.30934 | 88.937 | 0.42279 | 88.883 | 0.54628 | 88.813 |
| 90 | 0.10033 | 90.000 | 0.20271 | 90.000 | 0.30934 | 90.000 | 0.42280 | 90.000 | 0.54631 | 90.000 |

Note. $\quad \tanh (0 \angle \delta)=0 \angle \gamma$.
Examples. $\tanh \left(0.5 \angle 60^{\circ}\right)=0.51983 \angle 55^{\circ} .625=0.51983 \angle 55^{\circ} \cdot 37^{\prime} \cdot 30^{\prime \prime}$.
$\tanh ^{-1}\left(0.54628 / 88^{\circ} .813\right)=0.5 / 89^{\circ}$.
[ 14 ]

Table III. HYPERBOLIC TANGENTS. $\tanh (\rho / \delta)=r / \gamma$. Continued
0.6

0 45
46
47
48
49 $0.59406 \quad 38^{\circ} 183$ $0.59650 \quad 39.146$ 0.5989840 .119 0.6014941 .099 0.6040342 .088
$50 \quad 0.60660 \quad 43.085$ $51 \quad 0.60920 \quad 44.092$ $52 \quad 0.6118245 .107$ 530.6144746 .130 $54 \quad 0.61713 \quad 47.162$

| 55 | 0.61980 | 48.203 |
| :--- | :--- | :--- |
| 56 | 0.62248 | 49.254 |
| 57 | 0.62517 | 50.315 |
| 58 | 0.62785 | 51.384 |
| 59 | 0.63053 | 52.463 |

$\begin{array}{llll}60 & 0.63322 & 53.552\end{array}$
$61 \quad 0.63588 \quad 54.650$
$62 \quad 0.63852 \quad 55.758$
$63 \quad 0.64115 \quad 56.876$
$64 \quad 0.64376 \quad 58.002$
$65 \quad 0.64633 \quad 59.138$
$66 \quad 0.64886 \quad 60.284$
$67 \quad 0.65135 \quad 61.439$
$68 \quad 0.65380 \quad 62.603$
$69 \quad 0.65618 \quad 63.777$
$\begin{array}{lll}70 & 0.65850 & 64.959\end{array}$ 710.66075 66.150 $72 \quad 0.66294 \quad 67.350$
$73 \quad 0.66505 \quad 68.559$
$74 \quad 0.66708 \quad 69.775$
$75 \quad 0.66902 \quad 70.998$
$\begin{array}{lll}76 & 0.67086 & 72.228\end{array}$
$\begin{array}{llll}77 & 0.67261 & 73.466\end{array}$
$78 \quad 0.67425 \quad 74.7$ II
$\begin{array}{llll}79 & 0.67577 & 75.962\end{array}$
So 0.6771877 .219
$81 \quad 0.67847 \quad 78.481$
$82 \quad 0.67964 \quad 79.749$
$83 \quad 0.68068$ 81.021
84 0.68г59 82.296
$85 \quad 0.68236 \quad 83.575$
$86 \quad 0.68299 \quad 84.856$
$87 \quad 0.68349$ 86.140
$\begin{array}{llll}88 & 0.68385 & 87.426\end{array}$
$89 \quad 0.68406 \quad 88.713$
$90 \quad 0.68413 \quad 90.000$
0.7
-
$0.68732 \quad 35.786$ 0.6910936 .719 0.6949537 .663 0.6988838 .617 0.7028739 .58 r
0.7069440 .557
0.7110741 .545
0.7152742 .543
0.7195243 .555
0.7238244 .577
0.7281745 .612
0.7325746 .662
0.7370047 .725
0.7414548 .800
$0.74593 \quad 49.888$
0.7504750 .990
$0.75499 \quad 52.107$
$0.75950 \quad 53.238$
$0.76400 \quad 54.383$
$0.76848 \quad 55.542$
0.7729456 .716
$0.77737 \quad 57.902$
0.7817759 .105
0.7860960 .322
0.7903361 .553
0.7945062 .798
$0.79858 \quad 64.057$
$0.80256 \quad 65.329$
0.8064166 .614
0.8101467 .913
0.8137169 .225
$0.81713 \quad 70.550$
0.8203871 .886
$0.82345 \quad 73.233$
0.8263274 .591
0.8289975 .958
0.8314477 .334
0.8336678 .719
0.83564 80.112
0.83738 81.512
$\begin{array}{llll}0.83887 & 82.917 & 1.02316 & 82.034 \\ 0.84009 & 84.328 & 1.02548 & 83.617 \\ 0.84105 & 85.743 & 1.02730 & 85.206 \\ 0.84173 & 87.161 & 1.02860 & 86.801 \\ 0.84214 & 88.580 & 1.02937 & 88.400\end{array}$
0.7757733 .098
$0.78117 \quad 33.980$
0.7867 I 34.878
$0.79240 \quad 35.790$
0.7982436 .715
0.8042137 .653
0.8103138 .605
$0.81655 \quad 39.573$
0.8229140 .556
0.8294041 .554
0.8360142 .568
0.8427443 .599
0.8495744 .647
0.8564945 .712
0.8635146 .797
$0.87063 \quad 47.900$
0.8778 I 49.022
0.8850450 .165
0.8923251 .327
$0.89965 \quad 52.509$
0.9069853 .712
$0.91433 \quad 54.936$
0.9216656 .180
$0.92894 \quad 57.448$
$0.93616 \quad 58.737$
$\begin{array}{ll}0.94332 & 60.047 \\ 0.95037 & 6 \mathrm{I} .379 \\ 0.95727 & 62.732 \\ 0.96402 & 64.106 \\ 0.97060 & 65.501\end{array}$
0.9769766 .917
0.983 II 68.352 0.9889869 .808
$0.99455 \quad 71.282$
$0.99981 \quad 72.773$
1.00473 74.282 $1.00926 \quad 75.805$ $1.01339 \quad 77.344$ $1.01710 \quad 78.896$ 1.0203680 .460
0.9
I. 2478 1 80.825 1.2521982 .640 1. 2556684.468 1.25814 86.308 1.2596388 .153
1.0

| 0.85756 | 30.161 | 0.93077 | 27.044 |
| :--- | :--- | :--- | :--- |
| 0.86480 | 30.980 | 0.93909 | 27.784 |
| 0.87229 | 31.815 | 0.94950 | 28.539 |
| 0.88001 | 32.666 | 0.95938 | 29.308 |
| 0.88799 | 33.531 | 0.96966 | 30.092 |
| 0.89620 | 34.412 | 0.98032 | 30.892 |
| 0.90466 | 35.310 | 0.99136 | 31.710 |
| 0.91337 | 36.223 | 1.00282 | 32.545 |
| 0.92231 | 37.155 | 1.01469 | 33.400 |
| 0.93150 | 38.105 | 1.02697 | 34.274 |

## $0.94094 \quad 39.075 \quad 1.03970 \quad 35.172$

$0.9506340 .066 \quad 1.0528736 .091$
$0.96056 \quad 41.078 \quad 1.06648 \quad 37.035$
$0.9706942 .111 \quad 1.0805438 .004$
$0.9810643 .167 \quad 1.0950639 .002$

| 0.99168 | 44.247 | 1.11009 | 40.026 |
| :--- | :--- | :--- | :--- |
| 1.0025 I | 45.353 | 1.12555 | 41.082 |
| 1.01353 | 46.486 | 1.14144 | 42.168 |
| 1.0247 I | 47.645 | 1.15777 | 43.289 |
| 1.03604 | 48.831 | 1.17454 | 44.445 |
| 1.04753 | 50.044 | 1.19173 | 45.638 |
| 1.05916 | 51.289 | 1.20935 | 46.869 |
| 1.07090 | 52.562 | 1.22737 | 48.140 |
| 1.08268 | 53.868 | 1.24569 | 49.455 |
| 1.09447 | 55.204 | 1.26429 | 50.812 |

$\begin{array}{lllll}1.10627 & 56.572 & 1.28316 & 52.215\end{array}$ $\begin{array}{llll}1.11803 & 57.974 & 1.30221 & 53.666\end{array}$ $1.12972 \quad 59.408 \quad$ I.32140 55.164 $1.14126 \quad 60.874 \quad 1.34063 \quad 56.710$ $\begin{array}{llll}1.15260 & 62.372 & 1.35986 & 58.307\end{array}$
$\begin{array}{lllll}1.16370 & 63.903 & 1.37894 & 59.957\end{array}$

1. $17450 \quad 65.468 \quad$ I. 3977561.658
$1.18493 \quad 67.064 \quad 1.41620 \quad 63.409$
1.19495 68.69I 1.434I2 65.2 I 2
$1.20447 \quad 70.347 \quad 1.45141 \quad 67.065$
$\begin{array}{lllll}1.21344 & 72.034 & 1.46790 & 68.968\end{array}$
I.22179 $73.746 \quad 1.48345 \quad 70.919$
$\begin{array}{llll}1.22946 & 75.483 & 1.49790 & 72.913\end{array}$
$1.23640 \quad 77.243 \quad 1.51110 \quad 74.948$
2. $24253 \quad 79.025 \quad$ I. 5228977.023
1.5331479 .132
1.54r70 81. 269
I. 5484883.429
I. 5533985.609
I. 5563787.802
0.8422990 .000

Eaxmples. $\tanh \left(0.9 \angle 77^{\circ}\right)=1.18493 \angle 67^{\circ} .064=1.18493 \angle 67^{\circ} .03^{\prime} \cdot 50^{\prime \prime}$.
$\tanh ^{-1}\left(0.66708 \angle 69^{\circ} .775\right)=0.6 \angle 74^{\circ}$.

Table III. HYPERBOLIC TANGENTS. $\tanh (\rho / \delta)=r / \gamma$. Continued

|  | I.I |  | 1.2 |  | 1.3 |  | 1.4 |  | 1.5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | - |  |  |  | - |  | - |  |  |
| 45 | 0.99389 | 23.833 | ฯ. 0457 | 20.616 | . 1.0857 | 17.464 | 1.1143 | 14.484 | 1.1323 | 11.71 |
| 46 | 1.0049 | 24.476 | 1.0582 | 21.144 | 1.0993 | 17.882 | 1.1284 | 14.775 | 1.1464 | 1 I .884 |
| 47 | 1.0164 | 25.131 | 1.0713 | 21.685 | I.1136 | 18.301 | 1.1433 | 15.064 | I.1613 | 12.048 |
| 48 | 1.0283 | 25.799 | 1.0851 | 22.236 | I.I 286 | 18.721 | 1.1590 | 15.352 | 1.1770 | 12.208 |
| 49 | 1.0408 | 26.480 | 1.0995 | 22.798 | I. 1445 | 19.148 | 1.1756 | 15.640 | 1.1936 | 12.362 |
| 50 | 1.0539 | 27.178 | 1.1147 | 23.371 | 1.1613 | 19.584 | 1. 1932 | 15.930 | 1.2112 | 12.510 |
| 51 | 1.0676 | 27.891 | I.1307 | 23.957 | 1.1789 | 20.027 | 1.2118 | 16.222 | I. 2299 | 12.652 |
| 52 | 1.0818 | 28.621 | 1.1474 | 24.558 | 1.1976 | 20.479 | 1.2315 | 16.515 | I. 2498 | 12.787 |
| 53 | 1.0967 | 29.370 | I.1650 | 25.174 | 1.2173 | 20.941 | 1.2524 | 16.811 | 1.2709 | 12.914 |
| 54 | 1.1122 | 30.139 | 1.1835 | 25.807 | 1.2381 | 21.414 | 1.2746 | 17.110 | 1.2933 | 35 |
| 55 | 1.1284 | 30.930 | 1.2030 | 26.460 | 1.2602 | 21.900 | 1.2982 | 17.413 | 1.3172 | 13.151 |
| 56 | 1.1453 | 31.744 | 1.2235 | 27.133 | 1.2836 | 22.401 | 1.3234 | 17.721 | 1.3427 | 13.262 |
| 57 | I.1629 | 32.583 | 1.2450 | 27.827 | 1.3084 | 22.918 | I. 3502 | 18.036 | 1.3700 | 13.366 |
| 58 | 1.1813 | 33.449 | 1.2677 | 28.546 | 1. 3346 | 23.452 | 1.3787 | 18.358 | 1.3992 | 13.466 |
| 59 | 1.2005 | 34.343 | 1.2916 | 29.292 | 1.3626 | 24.007 | 1.4093 | 18.689 | I. 4305 | 13.559 |
| 60 | 1.2206 | 35.267 | 1.3168 | 30.068 | 1.3923 | 24.584 | I.442I | 19.032 | 1.4642 | 13.651 |
| 61 | 1.2415 | 36.226 | 1.3434 | 30.876 | 1.4239 | 25.187 | 1.4772 | 19.389 | 1.5005 | 13.738 |
| 62 | 1.2632 | 37.222 | 1.3714 | 31.720 | 1.4576 | 25.820 | 1.5148 | 19.761 | 1.5396 | 13.824 |
| 63 | 1.2858 | 38.25 | 1.4009 | 32.603 | 1.4935 | 26.485 | 1.5553 | 20.150 | I.5819 | 13.908 |
| 64 | I. 3094 | 39.328 | I. 432 I | 33.527 | 1.5319 | 27.186 | 1.5990 | 20.562 | 1.6277 | 13.991 |
| 65 | 1.3339 | 40.446 | 1.4649 | 34.498 | 1.5729 | 27.928 | 1. 6463 | 20.999 | 1. 6776 | 14.076 |
| 66 | 1.3593 | 41.612 | 1.4995 | $35 \cdot 520$ | 1.6167 | 28.715 | х.6974 | 21.465 | 1.7319 | 14.166 |
| 67 | 1. 3856 | 42.827 | 1. 5359 | 36.597 | 1.6637 | 29.554 | 1.7528 | 21.966 | 1.7914 | 14.261 |
| 68 | 1.4129 | 44.096 | 1.5743 | 37.737 | 1.7140 | 30.452 | 1.8131 | 22.507 | I. 8566 | 14.364 |
| 69 | I.44II | 45.42I | 1.6148 | 38.941 | 1.7680 | 3 I .415 | I. 8788 | 23.096 | 1.9285 | 14.480 |
| 70 | 1.4702 | 46.806 | 1. 6573 | 40.219 | 1.8260 | 32.452 | 1.9506 | 23.740 | 2.0078 | 14.612 |
| 71 | 1.5001 | 48.256 | 1.7020 | 41.575 | 1.8882 | 33.570 | 2.0293 | 24.448 | 2.0959 | 14.765 |
| 72 | 1.5307 | 49.773 | 1.7488 | 43.017 | 1.9551 | 34.782 | 2.1158 | 25.232 | 2.1942 | 14.944 |
| 73 | 1.5620 | 51.361 | .1. 7977 | 44.553 | 2.0269 | 36.101 | 2.2111 | 26.106 | 2.3043 | .15.159 |
| 74 | I. 5938 | 53.022 | 1.8488 | 46.190 | 2.1041 | 37.539 | 2.3164 | 27.084 | 2.4285 |  |
| 75 | 1.6261 | 54.762 | 1.9019 | 47.936 | 2.1869 | 39.1 10 | 2.4332 | 28.186 | 2.5694 | 15.734 |
| 76 | 1.6585 | 56.58 I | 1.9568 | 49.798 | 2.2757 | 40.830 | 2.5631 | 29.433 | 2.7303 | 16.120 |
| 77 | 1.6910 | 58.482 | 2.0134 | 51.786 | 2.3706 | 42.720 | 2.7078 | 30.855 | 2.9157 | 16.597 |
| 78 | 1.7232 | 60.468 | 2.0713 | 53.906 | 2.4716 | 44.798 | 2.8697 | 32.486 | 3.1312 | 17.186 |
| 79 | 1.7550 | 62.538 | 2.1299 | 56.165 | 2.5786 | 47.088 | 3.0509 | $34 \cdot 367$ | $3 \cdot 3843$ | 17.92 |
| 80 | 1.7858 | 64.692 | 2.1887 | 58.57x | 2.6912 | 49.6II | 3.2536 | 36.546 | 3.6845 | 18.856 |
| 8 I | I. 8155 | 66.93I | 2.247 I | 61.126 | 2.8085 | 52.39 I | 3.4807 | 39.085 | 4.0459 | 20.044 |
| 82 | 1.8435 | 69.252 | 2.3040 | 63.832 | 2.9290 | 55.447 | 3.7337 | 42.056 | 4.4876 | 21.578 |
| 83 | 1.8696 | 71.650 | 2.3585 | 66.690 | 3.0506 | 58.800 | 4.0135 | 45.546 | 5.0365 | 23.588 |
| 84 | 1.8933 | 74.121 | 2.4094 | 69.694 | 3.1704 | 62.460 | 4.3188 | 49.646 | 5.7311 | 26.276 |
| 85 | 1.9142 | 76.657 | 2.4555 | 72.836 | 3.2845 | 66.432 | 4.6429 | 54.459 | 6.6297 | 29.955 |
| 86 | 1.9318 | 79.252 | 2.4955 | 76.102 | 3.3884 | 70.706 | 4.9729 | 60.069 | 7.8015 | 35.134 |
| 87 | 1.9460 | 81.895 | 2.528 I | 79.475 | 3.4767 | 75.253 | 5.2871 | 66.523 | 9.3413 | 42.644 |
| 88 | 1.9564 | 84.575 | 2.5523 | 82.933 | 3.5446 | 80.030 | 5.5531 | 73.786 | 1 I .259 | 53.726 |
| 89 | 1.9627 | 87.28I | 2.5671 | 86.452 | 3.5875 | 84.971 | $5 \cdot 7333$ | 81.707 | 13.182 | 69.695 |
| 90 | I. 9648 | 90.000 | 2.5721 | 90.000 | 3.6021 | 90.000 | 5.9978 | 90.000 | 14.101 | 90.000 |

[^2]Table III. HYPERBOLIC TANGENTS. $\tanh (\rho / \delta)=r / \gamma$. Continued

|  | т. 6 |  | 1.7 |  | 1.8 |  | 1.9 |  | 2.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | $\bigcirc$ |  |  |  |  |  | - |  | $\bigcirc$ |
| 45 | 1.1413 | 9.201 | I. 1428 | 6.984 | 1.1385 | 5.063 | 1.1302 | 3.438 | 1.1191 | 2.094 |
| 46 | 1.1548 | 9.267 | 1.1553 | 6.952 | 1.1499 | 4.950 | I.1401 | 3.260 | 1.1275 | 1. 867 |
| 47 | 1.1691 | 9.318 | 1.1686 | 6.902 | 1.1618 | 4.814 | 1.1505 | 3.058 | 1.1363 | 1.613 |
| 48 | I. 1842 | 9.358 | I. 1826 | 6.834 | I. 1743 | 4.659 | 1.1614 | 2.832 | 1.1455 | 1.333 |
| 49 | 1.2002 | 9.385 | 1.1974 | 6.749 | 1.1876 | 4.480 | 1.1728 | 2.578 | $1.155^{\circ}$ | 1.023 |
| 50 | 1.2171 | 9.400 | 1.2131 | 6.645 | 1.2016 | 4.275 | 1.1848 | 2.295 | 1.1650 | 0.681 |
| 51 | 1.2351 | 9.400 | 1.2296 | 6.520 | 1.2163 | 4.045 | 1.1975 | 1.981 | 1.1754 | 0.306 |
| 52 | 1.2541 | 9.384 | 1.2472 | 6.373 | 1.2318 | 3.787 | 1.2107 | 1.634 | 1.1863 | 0.103 |
| 53 | 1.2744 | 9.354 | 1.2659 | 6.203 | 1.2483 | 3.499 | 1.2247 | r .253 | 1. 1977 | 0.550 |
| 54 | 1.2960 | 9.309 | 1.2857 | 6.008 | 1.2657 | 3.180 | I. 2394 | 0.835 | 1. 2096 | 1.039 |
| 55 | 1.3190 | 9.246 | 1.3067 | 5.788 | 1.2842 | 2.826 | 1.2549 | 0.379 | 1.2220 | 1.571 |
| 56 | 1.3435 | 9.166 | 1.3292 | $5 \cdot 539$ | 1.3038 | 2.436 | 1.2713 | 0.121 | 1.2350 | 2.149 |
| 57 | 1.3698 | 9.069 | 1.3532 | 5.261 | 1.3247 | 2.008 | 1.2886 | 0.666 | 1.2487 | 2.777 |
| 58 | 1.3979 | 8.953 | 1.3788 | 4.953 | 1.3469 | 1.540 | 1.3069 | 1.259 | 1.2630 | 3.458 |
| 59 | I. 428 I | 8.817 | 1.4063 | 4.611 | 1.3706 | 1.026 | 1.3263 | 1.905 | I. 278 I | 4.195 |
| 60 | 1.4606 | 8.661 | 1.4358 | 4.232 | 1.3959 | 0.465 | 1.3470 | 2.606 | 1.2939 | 5 |
| 61 | I. 4956 | 8.484 | 1.4675 | 3.819 | 1.4230 | 0.145 | 1.3689 | 3.366 | 1.3106 | 5.860 |
| 62 | 1.5334 | 8.286 | 1.5017 | 3.365 | 1.4521 | 0.810 | 1.3922 | 4.191 | 1.3281 | 6.793 |
| 63 | 1.5743 | 8.065 | 1.5386 | 2.869 | 1.4833 | 1.533 | 1.4170 | 5.085 | I. 3466 | 7.802 |
| 64 | 1.6187 | 7.819 | I. 5785 | 2.326 | 1.5169 | 2.318 | 1.4435 | 6.052 | 1. 3662 | 8.891 |
| 65 | 1.6670 | 7.548 | 1.6218 | 1.734 | 1.5531 | 3.172 | 1.4718 | 7.099 | 1.3868 | 10.068 |
| 66 | 1.7198 | 7.252 | 1.6690 | 1.090 | 1.5923 | 4.098 | 1.5022 | 8.232 | 1.4086 | 11.338 |
| 67 | 1.7777 | 6.928 | 1.7206 | 0.387 | 1.6347 | 5.104 | 1.5347 | 9.459 | 1.4317 | 12.707 |
| 68 | 1.8413 | 6.575 | 1.7770 | 0.376 | 1.6807 | 6.196 | 1.5696 | 10.786 | 1.4562 | 14.184 |
| 69 | 1.9116 | 6.191 | 1.8389 | 1.209 | 1.7308 | $7 \cdot 382$ | 1.6070 | 12.22 | 1.4821 | 76 |
| 70 | 1.9893 | 5.776 | 1.9072 | 2.116 | 1.7854 | 8.671 | 1.6474 | 13.773 | 1.5095 | 17.490 |
| 71 | 2.0759 | $5 \cdot 326$ | 1.9828 | 3.106 | 1.8451 | 10.074 | 1.6908 | 15.454 | 1.5385 | 19.337 |
| 72 | 2.1728 | 4.840 | 2.0667 | 4.187 | 1.9105 | 11.602 | 1.7376 | 17.273 | 1.5693 | 21.326 |
| 73 | 2.2819 | $4 \cdot 314$ | 2.1603 | 5.371 | 1.9823 | 13.266 | 1.788 I | 19.244 | 1.6019 | 23.466 |
| 74 | 2.4053 | 3.744 | 2.2652 | 6.670 | 2.0613 | 15.084 | 1.8425 | 21.379 | 1.6363 |  |
| 75 | 2.546 I | 3.127 | 2.3834 | 8.101 | 2.1484 | 17.076 | 1.9011 | 23.692 | 1.6725 | 28.245 |
| 76 | 2.7079 | 2.457 | 2.5172 | 9.685 | 2.2446 | 19.261 | 1.9641 | 26.202 | 1.7105 | 30.905 |
| 77 | 2.8957 | 1.726 | 2.6696 | 11.447 | 2.3510 | 21.664 | 2.0317 | 28.925 | 1.7503 | 33.760 |
| 78 | 3.1157 | 0.922 | 2.8442 | 13.420 | 2.4685 | 24.315 | 2.1040 | 31.88I | 1.7917 | 36 |
| 79 | 3.3766 | 0.034 | 3.0455 | 15.644 | 2.5984 | 27.250 | 2.1809 | 35.088 | 1.8344 | 40. |
| 80 | 3.6909 | 0.960 | 3.2790 | 18.175 | 2.7416 | 30.510 | 2.2621 | 38.568 | 1.8781 | 43.590 |
| 81 | 4.0755 | 2.087 | 3.5519 | 21.083 | 2.8987 | 34.140 | 2.3469 | 42.344 | 1.9222 | 47.319 |
| 82 | 4.5558 | 3.390 | 3.8718 | 24.466 | 3.0700 | 38.191 | 2.4344 | 46.428 | 1.9661 | 51.281 |
| 83 | 5.1722 | 4.937 | 4.2487 | 28.446 | 3.2540 | 42.722 | 2.5230 | 50.842 | 2.0090 | 55.474 |
| 84 | 5.9896 | 6.839 | 4.6927 | 33.199 | 3.4477 | 47.793 | 2.6104 | 55.590 | 2.0497 | 59 |
| 85 | 7.1203 | 9.289 | 5.2102 | 38.945 | 3.6459 | 53.448 | 2.6940 | 60.673 | 2.0872 | 64.528 |
| 86 | 8.7720 | 12.668 | 5.7994 | 45.956 | 3.8392 | 59.720 | 2.7701 | 66.075 | 2.1202 | 69.359 |
| 87 | 11.388 | 17.791 | 6.4356 | 54.527 | 4.0157 | 66.606 | 2.8350 | 71.768 | 2.1476 | 74.359 |
| 88 | 15.990 | 26.760 | 7.0503 | 64.868 | 4.1592 | 74.043 | 2.8849 | 77.700 | 2.1680 | 79.494 |
| 89 | 24.844 | 46.011 | 7.5193 | 76.896 | 4.2531 | 8 I .905 | 2.9163 | 83.805 | 2.1807 | 84.723 |
| 0 | . 23 | . 00 | 7.6968 | 90.00 | 4.2863 | 90.000 | 2.927 | 90.000 | 2.185 | 90.0 |

Note. Negative quantities are in heavy type.
Examples. $\quad \tanh \left(1.6 \angle 54^{\circ}\right)=1.2960 \angle 9^{\circ} .309=1.2960 \angle 9^{\circ} .18^{\prime} .32^{\prime \prime}$.
$\operatorname { t a n h } ( 2 . 0 \angle 6 4 ^ { \circ } ) = 1 . 3 6 6 2 \longdiv { 8 ^ { \circ } . 8 9 1 } = 1 . 3 6 6 2 \longdiv { 8 ^ { \circ } . 5 3 ^ { \prime } . 2 8 ^ { \prime \prime } }$.
$\tanh ^{-1}\left(1 . 4 7 1 8 \longdiv { 7 7 ^ { \circ } . 0 9 9 }\right)=1.9 \angle 65^{\circ}$.
[17]

Table III. HYPERBOLIC TANGENTS. $\tanh (\rho / \delta)=r / \gamma$. Continued

|  | 2.1 |  | 2.2 |  | 2.3 |  | 2.4 |  | 2.5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 。 |  | - |  | $\bigcirc$ |  | $\bigcirc$ |  |  |  | $\bigcirc$ |
| 45 | 1.1065 | 1.007 | 1.0932 | 0.155 | 1.0799 | 0.492 | 1.0672 | 0.961 | 1.0553 | 1.283 |
| 46 | I.II34 | 0.746 | 1.0987 | 0.127 | 1.0842 | 0.783 | 1.0702 | 1.252 | 1.0573 | 1.564 |
| 47 | 1.1206 | 0.458 | I. 1044 | 0.436 | 1.0884 | 1.101 | 1.0732 | 1.567 | 1.0592 | 1.868 |
| 48 | 1.1280 | 0.141 | 1.1102 | 0.774 | 1.0927 | 1.446 | 1.0762 | 1.908 | 1.0610 | 2.195 |
| 49 | 1.1357 | 0.206 | I.II6I | 1.142 | 1.0970 | 1.820 | 1.0790 | 2.277 | 1.0626 | 2.548 |
| 50 | 1.1437 | 0.586 | 1.1222 | 1.542 | 1.1013 | 2.226 | 1.0818 | 2.676 | 1.0640 | 2.929 |
| 51 | 1.1519 | 1.001 | 1.1284 | 1.978 | 1.1056 | 2.666 | 1.0845 | 3.107 | 1.0653 | 3.340 |
| 52 | 1.1604 | 1.452 | 1.1347 | 2.452 | 1.1099 | 3.144 | 1.0870 | 3.572 | 1.0663 | 3.782 |
| 53 | 1.1693 | 1.943 | 1.1411 | 2.965 | 1.1142 | 3.659 | 1.0894 | 4.073 | 1.0671 | 4.256 |
| 54 | 1.1784 | 2.476 | 1.1477 | 3.520 | I.II85 | 4.215 | 1.0917 | 4.614 | 1.0676 | 4.766 |
| 55 | 1.1878 | 3.055 | 1.1544 | 4.120 | 1.1227 | 4.815 | 1.0937 | 5.196 | 1.0678 | 5.314 |
| 56 | 1.1976 | 3.682 | 1.1612 | 4.769 | 1.1268 | 5.462 | 1.0955 | 5.822 | 1.0677 | 5.903 |
| 57 | 1.2078 | 4.361 | 1.168I | 5.469 | 1.1309 | 6.160 | 1.0971 | 6.496 | 1.0672 | 6.534 |
| 58 | 1.2183 | 5.094 | 1.1751 | 6.226 | I. 1348 | 6.912 | 1.0984 | 7.220 | 1.0662 | 7.211 |
| 59 | I. 2292 | 5.888 | 1.1822 | 7.042 | I. 1386 | 7.722 | 1.0993 | 7.998 | 1.0647 | 7.938 |
| 60 | 1.2405 | 6.745 | I.1894 | 7.921 | 1.1422 | 8.594 | 1.0999 | 8.835 | 1.0628 | 8.718 |
| 61 | 1.2522 | 7.671 | 1.1967 | 8.869 | 1.1457 | 9.53 I | 1.1001 | 9.735 | 1.0603 | 9.556 |
| 62 | 1.2644 | 8.669 | 1.2041 | 9.889 | 1.1490 | 10.540 | 1.0999 | 10.701 | 1.0572 | 10.455 |
| 63 | 1.2771 | 9.744 | 1.2116 | 10.988 | 1.1520 | 11.625 | 1.0992 | 11.740 | 1.0535 | 11.419 |
| 64 | 1.2903 | 10.902 | 1.2192 | 12.171 | 1.1548 | 12.791 | 1.0980 | 12.855 | 1.0490 | 12.455 |
| 65 | 1.3039 | 12.151 | 1.2268 | 13.443 | 1.1573 | 14.044 | 1.0962 | 14.053 | 1.0438 | 13.567 |
| 66 | I.318I | 13.496 | 1.2344 | 14.810 | 1.1595 | 15.390 | 1.0939 | 15.34 I | 1.0378 | 14.761 |
| 67 | 1.3329 | 14.942 | 1.2421 | 16.280 | 1.1613 | 16.836 | 1.0909 | 16.723 | 1.0310 | 16.044 |
| 68 | 1.3483 | 16.499 | 1.2499 | 17.858 | 1.1628 | 18.389 | 1.0872 | 18.208 | 1.0232 | 17.424 |
| 69 | 1. 3642 | 18.172 | 1.2576 | 19.552 | I.1639 | 20.056 | 1.0829 | 19.802 | 1.0145 | 18.906 |
| 70 | 1.3808 | 19.968 | 1.2654 | 21.370 | 1.1645 | 21.843 | 1.0779 | 21.514 | 1.0049 | 20.500 |
| 71 | 1.3980 | 21.898 | 1.2732 | 23.319 | 1.1647 | 23.759 | 1.0721 | 23.352 | 0.99427 | 22.215 |
| 72 | 1.4159 | 23.968 | 1.2809 | 25.405 | 1.1644 | 25.811 | 1.0655 | 25.324 | 0.98265 | 24.061 |
| 73 | 1.4344 | 26.185 | 1.2885 | 27.636 | I. 1637 | 28.006 | 1.0582 | 27.439 | 0.97006 | 26.048 |
| 74 | I. 4535 | 28.560 | 1.2961 | 30.020 | 1.1625 | 30.352 | 1.0501 | 29.706 | 0.95649 | 28.187 |
| 75 | 1.4732 | 31.099 | 1.3036 | 32.564 | 1.1608 | 32.858 | 1.0413 | 32.134 | 0.94202 | 30.489 |
| 76 | 1.4934 | 33.81 I | 1.3109 | 35.274 | 1.1587 | 35.53 I | 1.0318 | 34.730 | 0.92671 | 32.966 |
| 77 | 1.5140 | 36.702 | 1.3181 | 38.156 | 1.1561 | 38.374 | 1.0218 | 37.505 | 0.91068 | 35.633 |
| 78 | I. 5348 | 39.778 | 1.3251 | 41.212 | 1.1531 | 41.392 | I.OII3 | 40.467 | 0.89405 | 38.501 |
| 79 | I. 5559 | 43.043 | 1.3318 | 44.446 | 1.1498 | 44.590 | I. 0004 | 43.620 | 0.87701 | 41.582 |
| 80 | 1.5768 | 46.501 | 1.3383 | 47.859 | 1.1462 | 47.968 | 0.98931 | 46.968 | 0.85979 | 44.887 |
| 8 I | 1.5974 | 50.151 | I. 3444 | 51.449 | 1.1425 | 51.527 | 0.97822 | 50.517 | 0.84264 | 48.427 |
| 82 | 1.6174 | 53.989 | 1.3500 | 55.212 | 1.1387 | 55.264 | 0.96733 | 54.267 | 0.82584 | 52.209 |
| 83 | 1.6364 | 58.011 | I.3552 | 59.140 | 1.I349 | 59.171 | 0.95686 | 58.212 | 0.80977 | 56.233 |
| 84 | 1.6541 | 62.210 | I. 3599 | 63.223 | 1.13I2 | 63.237 | 0.94710 | 62.344 | 0.79476 | 60.499 |
| 85 | 1.6700 | 66.570 | I. 3640 | 67.449 | 1.1279 | 67.450 | 0.93826 | 66.650 | 0.78120 | 64.994 |
| 86 | 1.6837 | 71.070 | I. 3674 | 71.800 | I. 1250 | 71.793 | 0.93061 | 71.113 | 0.76946 | 69.703 |
| 87 | I. 6949 | 75.690 | 1.3702 | 76.254 | 1.1225 | 76.245 | 0.92439 | 75.710 | 0.75991 | 74.598 |
| 88 | 1.7031 | 80.406 | I. 3722 | 80.790 | I. 1207 | 80.781 | 0.91979 | 80.413 | 0.75283 | 79.645 |
| 89 | 1.708 I | 85.187 | 1.3734 | 85.381 | 1.1196 | 85.376 | 0.91696 | 85.188 | 0.74849 | 84.796 |
| 90 | 1.7099 | 90.000 | r. 3738 | 90.000 | I.1192 | 90.000 | 0.91601 | 90.000 | 0.74702 | 90.000 |

Note. Negative quantities are in heavy type.
Examples. $\tanh \left(2.1 \angle 48^{\circ}\right)=1.1280 / 0^{\circ} .14 \mathrm{I}=1.1280 / 0^{\circ} .08^{\prime} .28^{\prime \prime}$.
$\operatorname { t a n h } ( 2 . 1 / 4 9 ^ { \circ } ) = 1 . 1 3 5 7 \longdiv { 0 ^ { \circ } . 2 0 6 } = 1 . 1 3 5 7 \longdiv { 0 ^ { \circ } 1 2 ^ { \prime } . 2 2 ^ { \prime \prime } }$.
$\tanh ^{-1}\left(1 . 0 3 1 8 \longdiv { 3 4 ^ { \circ } . 7 3 0 }\right)=2.4 \angle 76^{\circ}$.
[ I8]

Table III. HYPERBOLIC TANGENTS. $\tanh (\rho / \delta)=r / \gamma$. Continued

|  | 2.6 |  | 2.7 |  | 2.8 |  | 2.9 |  | 3.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | $\bigcirc$ |  | - |  | - |  | - |  | - |
| 45 | 1.0445 | 1.480 | 1.0348 | 1.576 | 1.0264 | 1.595 | 1.0192 | 1.554 | 1.0131 | 1.468 |
| 46 | 1.0456 | 1.744 | 1.0352 | 1.821 | 1.0262 | 1.816 | I.O185 | 1.748 | I. Or 20 | 1.637 |
| 47 | 1.0465 | 2.030 | 1.0354 | 2.083 | 1.0257 | 2.051 | 1.0175 | 1.955 | 1.0107 | r.815 |
| 48 | 1.0473 | 2.337 | 1.0353 | 2.365 | 1.0250 | 2.303 | 1.0163 | 2.175 | 1.0091 | 2.002 |
| 49 | 1.0479 | 2.667 | 1.0350 | 2.666 | 1.0240 | 2.572 | I. 0148 | 2.409 | 1.0072 | 2.198 |
| 50 | 1.0483 | 3.022 | 1.0344 | 2.988 | 1.0227 | 2.857 | I.OI 29 | 2.656 | 1.0049 | 2.405 |
| 51 | 1.0483 | 3.403 | 1.0335 | 3.332 | 1.0210 | 3.160 | 1.0106 | 2.916 | 1.0023 | 2.622 |
| 52 | 1.0480 | 3.812 | 1.0323 | 3.700 | 1.0189 | 3.483 | 1.0080 | 3.191 | 0.99922 | 2.849 |
| 53 | 1.0475 | 4.250 | 1.0307 | 4.094 | 1.0164 | 3.826 | 1.0049 | 3.481 | 0.99572 | 3.086 |
| 54 | 1.0466 | $4.7 \times 7$ | 1.0286 | 4.513 | 1.0135 | 4.190 | 1.0013 | 3.788 | 0.99174 | 3.334 |
| 55 | 1.0452 | 5.219 | 1.0260 | 4.959 | 1.0101 | 4.577 | 0.99722 | 4.112 | 0.98722 | 3.593 |
| 56 | 1.0434 | 5.756 | 1.0230 | 5.437 | 1.0061 | 4.987 | 0.99254 | 4.452 | 0.98211 | 3.862 |
| 57 | 1.0412 | 6.331 | 1.0194 | 5.945 | 1.0015 | 5.422 | 0.98724 | 4.810 | 0.97637 | 4.141 |
| 58 | 1.0385 | 6.947 | 1.0152 | 6.487 | 0.99625 | 5.884 | 0.98126 | 5.186 | 0.96995 | 4.432 |
| 59 | 1.035 I | 7.606 | 1.0104 | 7.066 | 0.99027 | 6.374 | 0.97454 | $5 \cdot 582$ | 0.96279 | 4.735 |
| 60 | 1.0311 | 8.313 | 1.0048 | 7.684 | 0.98353 | 6.895 | 0.96701 | 5.999 | 0.95481 | 5.049 |
| 61 | 1.0265 | 9.069 | 0.99847 | 8.343 | 0.97597 | 7.449 | 0.95862 | 6.439 | 0.94597 | $5 \cdot 375$ |
| 62 | 1.0211 | 9.879 | 0.99129 | 9.048 | 0.96751 | 8.036 | 0.94930 | 6.904 | 0.93619 | 5.713 |
| 63 | 1.0149 | 10.747 | 0.98322 | 9.801 | 0.95807 | 8.660 | 0.93897 | 7.392 | 0.92540 | 6.063 |
| 64 | 1.0079 | 11.677 | 0.97420 | 10.607 | 0.94760 | 9.325 | 0.92756 | 7.907 | 0.91352 | 6.426 |
| 65 | 0.99990 | 12.675 | 0.96414 | 11.470 | 0.93603 | 10.033 | 0.91500 | 8.452 | 0.90047 | 6.801 |
| 66 | 0.99099 | 13.747 | 0.95300 | 12.393 | 0.92328 | 10.789 | 0.90121 | 9.027 | 0.88618 | 7.192 |
| 67 | 0.98106 | 14.898 | 0.94070 | 13.383 | 0.90927 | 11.599 | 0.88612 | 9.639 | 0.87055 | 7.598 |
| 68 | 0.97006 | 16.136 | 0.92720 | 14.449 | 0.89396 | 12.464 | 0.86964 | 10.289 | 0.85350 | 8.021 |
| 69 | 0.95794 | 17.469 | 0.91243 | 15.597 | 0.87726 | 13.396 | 0.85169 | 10.982 | 0.83495 | 8.463 |
| 70 | 0.94467 | 18.902 | 0.89635 | 16.833 | 0.85912 | 14.399 | 0.83221 | II.722 | 0.81482 | 8.926 |
| 71 | 0.93022 | 20.451 | 0.87893 | 18.168 | 0.83950 | 15.482 | 0.81113 | 12.518 | 0.79302 | 9.414 |
| 72 | 0.91458 | 22.122 | 0.86013 | 19.613 | 0.81834 | 16.655 | 0.78839 | 13.378 | 0.76946 | 9.932 |
| 73 | 0.89775 | 23.929 | 0.83994 | 21.184 | 0.79562 | 17.931 | 0.76394 | 14.310 | 0.74408 | 10.485 |
| 74 | 0.87976 | 25.884 | 0.81839 | 22.893 | 0.77134 | 19.325 | 0.73774 | 15.328 | 0.71683 | 11.08r |
| 75 | 0.86066 | 28.003 | 0.79552 | 24.757 | 0.74551 | 20.857 | 0.70977 | 16.448 | 0.68765 | 11.729 |
| 76 | 0.84053 | 30.302 | 0.77140 | 26.799 | 0.71815 | 22.547 | 0.68005 | 17.690 | 0.65650 | 12.443 |
| 77 | -0.81949 | 32.799 | 0.74612 | 29.038 | 0.68938 | 24:421 | 0.64861 | 19.078 | 0.62338 | 13.241 |
| 78 | 0.79769 | 35.513 | 0.71985 | 31.505 | 0.65930 | 26.512 | 0.61551 | 20.647 | 0.58829 | 14.146 |
| 79 | 0.77535 | 38.466 | 0.69278 | 34.23 I | 0.62807 | 28.86 1 | 0.58087 | 22.437 | 0.55129 | 15.191 |
| 80 | 0.7527 r | 41.678 | 0.66520 | 37.249 | 0.59596 | 31.519 | 0.54486 | 24.504 | 0.51245 | 16.419 |
| 81 | 0.73010 | 45.171 | 0.63743 | 40.599 | 0.56326 | 34.543 | 0.50773 | 26.921 | 0.47190 | 17.893 |
| 82 | 0.70790 | 48.966 | 0.60990 | 44.322 | 0.53039 | 38.004 | 0.46981 | 29.784 | 0.42986 | 19.700 |
| 83 | 0.68652 | 53.078 | 0.583 II | 48.464 | 0.49791 | 41.989 | 0.43156 | 33.221 | 0.38661 | 21.976 |
| 84 | 0.66645 | 57.517 | 0.55765 | 53.060 | 0.46648 | 46.591 | 0.39363 | 37.403 | 0.34257 | 24.916 |
| 85 | 0.64820 | 62.286 | 0.5342 I | 58.143 | 0.43691 | 51.907 | 0.35689 | 42.549 | 0.29833 | 28.839 |
| 86 | 0.63230 | 67.370 | 0.51353 | 63.722 | 0.41024 | 58.025 | 0.32255 | 48.931 | 0.25491 | 34.254 |
| 87 | 0.61928 | 72.740 | 0.49636 | 69.778 | 0.38762 | 64.988 | 0.29220 | 56.833 | 0.21393 | 41.990 |
| 88 | 0.60959 | 78.349 | 0.48347 | $76.253{ }^{\circ}$ | 0.37028 | 72.762 | 0.26791 | 66.456 | 0.17815 | 53.294 |
| 89 | 0.60361 | 84.129 | 0.47544 | 83.042 | 0.35929 | 81.195 | 0.25198 | 77.709 | 0.15225 | 69.480 |
| 90 | 0.60160 | 90.000 | 0.47273 | 90.000 | 0.35553 | 90.000 | 0.24641 | 90.000 | 0.14255 | 90.000 |

Note. Negative quantites are in heavy type.
Examples $\tanh \left(2.6 \angle 65^{\circ}\right)=0.99990 / 12^{\circ} .675=0.99990 / 12^{\circ} .40^{\prime} .30^{\prime \prime}$.
$\tanh ^{-1}\left(0.88618 \sqrt{7^{\circ} .19^{2}}\right)=3.0 \angle 66^{\circ}$.

Table IV. CORRECTING FACTOR. $\frac{\sinh \theta}{\theta}=r \angle \gamma$
0.1

0
$90 \quad 0.99831 \quad 0.000$
0.2

|  | 0 |
| :---: | :---: |
| 1.00000 | 0.383 |
| 0.99975 | 0.382 |
| 0.99950 | 0.381 |
| 0.99930 | 0.380 |
| 0.99910 | 0.378 |
| 0.99880 | 0.376 |
| 0.99860 | 0.374 |
| 0.99840 | 0.37 I |
| 0.99815 | 0.367 |
| 0.99795 | 0.362 |


| 0.99775 | 0.357 | 0.99490 | 0.809 |
| :--- | :--- | :--- | :--- |
| 0.99755 | 0.352 | 0.99443 | 0.799 |
| 0.99730 | 0.347 | 0.99397 | 0.787 |
| 0.99705 | 0.342 | 0.99347 | 0.773 |
| 0.99685 | 0.336 | 0.99300 | 0.760 |


| 0.99670 | 0.33 I | 0.99257 | 0.746 |
| :--- | :--- | :--- | :--- |
| 0.99645 | 0.324 | 0.99213 | 0.73 I |
| 0.99625 | 0.317 | 0.99170 | 0.715 |
| 0.99605 | 0.309 | 0.99127 | 0.698 |
| 0.99585 | 0.301 | 0.99083 | 0.680 |
| 0.99570 | 0.293 | 0.99040 | 0.661 |
| 0.99555 | 0.284 | 0.99000 | 0.64 I |
| 0.99540 | 0.275 | 0.98963 | 0.621 |
| 0.99520 | 0.265 | 0.98927 | 0.599 |
| 0.99505 | 0.255 | 0.98891 | 0.577 |


| 0.99490 | 0.245 |
| :--- | :--- |
| 0.99475 | 0.235 |
| 0.99460 | 0.225 |
| 0.99445 | 0.214 |
| 0.99435 | 0.203 |


| 0.99425 | 0.192 | 0.98707 | 0.432 |
| :--- | :--- | :--- | :--- |
| 0.99415 | 0.180 | 0.98680 | 0.406 |
| 0.99405 | 0.168 | 0.98653 | 0.379 |
| 0.99395 | 0.156 | 0.98633 | 0.351 |
| 0.99385 | 0.144 | 0.98613 | 0.322 |
| 0.99375 | 0.131 | 0.98593 | 0.294 |
| 0.99365 | 0.118 | 0.98577 | 0.266 |
| 0.99360 | 0.106 | 0.98563 | 0.238 |
| 0.99355 | 0.093 | 0.98553 | 0.209 |
| 0.99350 | 0.080 | 0.98543 | 0.180 |

$0.98857 \quad 0.555$ $0.98823 \quad 0.532$ $0.98790 \quad 0.508$ $0.98760 \quad 0.483$ $0.987330 .45^{8}$ $0.98707 \quad 0.432$ $0.98680 \quad 0.406$ $0.98653 \quad 0.379$ $0.98633 \quad 0.35 \mathrm{I}$ 0.985930 .294 $0.98577 \quad 0.266$ $0.98563 \quad 0.238$ $0.98553 \quad 0.209$ 0.985430 .180
0.98537 0.150 $0.98530 \quad 0.120$ $0.98523 \quad 0.090$ $0.98517 \quad 0.060$ $0.98510 \quad 0.030$
0.3

| 1.00000 | 0.860 |
| :--- | :---: |
| 0.99950 | 0.858 |
| 0.99897 | 0.856 |
| 0.99847 | 0.854 |
| 0.99797 | 0.852 |
| 0.99743 | 0.848 |
| 0.99690 | 0.842 |
| 0.99640 | 0.834 |
| 0.99590 | 0.826 |
| 0.99540 | 0.818 |
| 0.99490 | 0.809 |
| 0.99443 | 0.799 |
| 0.99397 | 0.787 |
| 0.99347 | 0.773 |
| 0.99300 | 0.760 |

0.4
0.5

|  | 0 |
| :---: | :---: |
| 1.00013 | 1.532 |
| 0.99920 | 1.529 |
| 0.99828 | 1.526 |
| 0.99733 | 1.520 |
| 0.99640 | 1.513 |

1.00032 2.391 $0.99888 \quad 2.388$ $0.99744 \quad 2.385$ $0.99598 \quad 2.378$ 0.994542 .368
$0.99550 \quad 1.506$
0.99460 1. 497
$0.99370 \quad 1.486$
0.992801 .472
$0.99190 \quad 1.458$
0.991031 .440
0.99018 1.421
$0.98930 \quad 1.400$
$0.98845 \quad 1.378$
$0.98763 \quad 1.354$
$0.99312 \quad 2.357$
$0.99170 \quad 2.342$
$\begin{array}{ll}0.99028 & 2.325\end{array}$
$0.98888 \quad 2.304$
$0.9874^{8} \quad 2.28 \mathrm{I}$
0.986102 .254
$0.98476 \quad 2.226$
0.983442 .195
0.982122 .160
$0.98082 \quad 2.123$

| 0.98685 | 1.330 | 0.97956 | 2.085 |
| :--- | :--- | :--- | :--- |
| 0.98603 | 1.302 | 0.97832 | 2.042 |
| 0.98523 | 1.273 | 0.97710 | 1.998 |
| 0.98448 | 1.243 | 0.97590 | 1.950 |
| 0.98373 | 1.212 | 0.97476 | 1.900 |
| 0.98300 | 1.179 | 0.97364 | 1.848 |
| 0.98232 | 1.144 | 0.97254 | 1.794 |
| 0.98165 | 1.108 | 0.97150 | 1.738 |
| 0.98100 | 1.070 | 0.97046 | 1.679 |
| 0.98035 | 1.030 | 0.96946 | 1.617 |

$\begin{array}{llll}0.97975 & 0.990 & 0.96852 & 1.554\end{array}$
$\begin{array}{llll}0.97918 & 0.948 & 0.96760 & 1.489\end{array}$
$\begin{array}{lllll}0.97863 & 0.905 & 0.96676 & 1.422\end{array}$
$\begin{array}{llll}0.97808 & 0.86 \mathrm{r} & 0.96592 & 1.354\end{array}$
$\begin{array}{llll}0.9775^{8} & 0.817 & 0.96514 & 1.284\end{array}$
$\begin{array}{lllll}0.97710 & 0.771 & 0.96440 & 1.212\end{array}$
$\begin{array}{lllll}0.97665 & 0.724 & 0.96368 & 1.138\end{array}$
$\begin{array}{llll}0.97625 & 0.676 & 0.96304 & 1.062\end{array}$
$\begin{array}{lllll}0.97585 & 0.628 & 0.96246 & 0.986\end{array}$
$\begin{array}{lllll}0.97545 & 0.578 & 0.96190 & 0.909\end{array}$
$0.97512 \quad 0.528$
0.974830 .477
$0.97458 \quad 0.425$
$0.97433 \quad 0.373$
$0.97413 \quad 0.32 \mathrm{I}$
$0.96134 \quad 0.830$ $0.96088 \quad 0.750$ $0.96046 \quad 0.669$ $0.96008 \quad 0.587$ $0.95974 \quad 0.505$
$0.97395 \quad 0.268$
$0.97380 \quad 0.215$
$0.97370 \quad 0.162$
0.973650 .108
$0.97360 \quad 0.054$

### 0.959440 .422

 $0.95920 \quad 0.338$ 0.959040 .254 0.958940 .170 $0.95890 \quad 0.085$$$
\begin{aligned}
& \text { Note. } \frac{\sinh \theta}{\theta}=1.0 \text { when } \theta=0 / \delta . \\
& \text { Example. } \frac{\sinh \left(0.3 \angle 69^{\circ}\right)}{0.3 \angle 69^{\circ}}=0.98891 \angle 0^{\circ} .577=0.98891 \angle 0^{\circ} \cdot 34^{\prime} \cdot 37^{\prime \prime} . \\
& {[20]}
\end{aligned}
$$

Table IV. CORRECTING FACTOR. $\frac{\sinh \theta}{\theta}=r \underline{/ \gamma}$. Continued

|  | 0.6. |  | 0.7 |  | 0.8 |  | 0.9 |  | I. 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | $\bigcirc$ |  | - |  | $\bigcirc$ |  | - |  | - |
| 45 | 1.00070 | 3.440 | 1.00134 | 4.676 | 1.00230 | 6.108 | 1.00363 | 7.728 | 1.00553 | 9.531 |
| 46 | 0.99863 | 3.437 | 0.99849 | 4.679 | 0.99856 | 6.112 | 0.99893 | 7.735 | 0.99975 | 9.546 |
| 47 | 0.99655 | 3.434 | 0.99564 | 4.676 | 0.99484 | 6.109 | 0.99425 | 7.734 | 0.90394 | 9.550 |
| 48 | 0.99445 | 3426 | 0.99281 | 4666 | 0.99114 | 6.099 | 0.98955 | 7.725 | 0.98816 | 9.543 |
| 49 | 0.99237 | 3.414 | 0.98999 | 4.652 | 0.98745 | 6.082 | 0.98488 | 7.707 | 0.98242 | 9.525 |
| 50 | 0.99030 | $3 \cdot 398$ | 0.98717 | 4.632 | 0.98379 | 6.058 | 0.98026 | 7.679 | 0.97672 | 9.495 |
| 51 | 0.98825 | 3.379 | 0.98439 | 4.606 | 0.98015 | 6.026 | 0.97567 | 7.642 | 0.97105 | 9.453 |
| 52 | 0.98623 | 3.355 | 0.98161 | $4 \cdot 574$ | 0.97655 | 5.987 | 0.97111 | 7.595 | 0.96543 | 9.399 |
| 53 | 0.9842 I | $3 \cdot 326$ | 0.97887 | 4.537 | 0.97298 | 5.940 | 0.96659 | 7.538 | 0.95986 | 9.333 |
| 54 | 0.98220 | 3.293 | 0.97616 | 4.493 | 0.96944 | 5.886 | 0.962 I | 7.472 | 0.95435 | 9.255 |
| 55 | 0.98023 | 3.256 | 0.97349 | 4.445 | 0.96594 | 5.824 | 0.95769 | 7.396 | 0.94890 | 9.166 |
| 56 | 0.97830 | 3.215 | 0.97084 | 4.391 | 0.96249 | 5.755 | 0.95333 | $7 \cdot 312$ | 0.94353 | 9.065 |
| 57 | 0.97638 | 3.171 | 0.96823 | 4.33I | 0.95909 | 5.678 | 0.94904 | 7.218 | 0.93825 | 8.952 |
| 58 | 0.97448 | 3.122 | 0.96564 | 4.265 | 0.95574 | $5 \cdot 593$ | 0.94482 | 7.114 | 0.93305 | 8.827 |
| 59 | 0.97262 | 3.069 | 0.96313 | 4.193 | 0.95244 | $5 \cdot 502$ | 0.94067 | 7.000 | 0.92795 | 8.691 |
| 60 | 0.97081 | 3.013 | 0.96067 | 4.117 | 0.94923 | $5 \cdot 405$ | 0.93661 | 6.878 | 0.92295 | 8.544 |
| 61 | 0.96903 | 2.953 | 0.95826 | 4.036 | 0.94608 | $5 \cdot 300$ | 0.93263 | 6.747 | 0.91805 | 8.385 |
| 62 | 0.96728 | 2.889 | $0.955^{89}$ | 3.951 | 0.94299 | 5.189 | 0.92874 | 6.607 | 0.91325 | 8.215 |
| 63 | 0.96557 | 2.82 I | 0.95356 | 3.859 | 0.93996 | 5.070 | 0.92493 | 6.458 | 0.90856 | 8.033 |
| 64 | 0.96390 | 2.749 | 0.95130 | 3.762 | 0.93703 | 4.944 | 0.92121 | 6.300 | 0.90400 | 7.841 |
| 65 | 0.96228 | 2.674 | 0.94911 | 3.661 | 0.93416 | 4.812 | 0.91761 | 6.136 | 0.89957 | 7.637 |
| 66 | 0.96072 | 2.596 | 0.94697 | 3.554 | 0.93140 | 4.674 | 0.91411 | 5.962 | 0.89527 | 7.424 |
| 67 | 0.95922 | 2.515 | 0.94493 | 3.444 | 0.92873 | 4.529 | 0.91074 | 5.780 | 0.89111 | 7.201 |
| 68 | 0.95775 | 2.430 | 0.94293 | 3.329 | 0.92614 | 4.379 | 0.90747 | 5.590 | 0.88708 | 6.968 |
| 69 | 0.95632 | 2.342 | 0.94100 | 3.209 | 0.92364 | 4.223 | 0.90430 | $5 \cdot 392$ | 0.88320 | 6.723 |
| 70 | 0.95495 | 2.251 | 0.93914 | 3.085 | 0.92123 | 4.061 | 0.90127 | 5.187 | 0.87947 | 6.469 |
| 71 | 0.95365 | 2.157 | 0.93737 | 2.957 | 0.91891 | 3.894 | 0.89837 | 4.975 | 0.87589 | 6.207 |
| 72 | 0.95242 | 2.061 | 0.93569 | 2.825 | 0.91671 | 3.722 | 0.89558 | 4.756 | 0.87247 | 5.936 |
| 73 | 0.95123 | 1.962 | 0.93407 | 2.689 | 0.91461 | 3.544 | 0.89292 | 4.530 | 0.86921 | 5.656 |
| 74 | 0.95010 | 1.860 | 0.93254 | 2.550 | 0.91261 | $3 \cdot 36 \mathrm{I}$ | 0.89041 | 4.298 | 0.86612 | 5.368 |
| 75 | 0.94902 | 1.756 | 0.93109 | 2.408 | 0.91073 | 3.174 | 0.88804 | 4.059 | 0.86320 | 5.072 |
| 76 | 0.94802 | 1.649 | 0.92973 | 2.263 | 0.90895 | 2.982 | 0.88581 | 3.815 | 0.86045 | 4.769 |
| 77 | 0.94707 | 1. 540 | 0.92846 | 2.114 | 0.90729 | 2.787 | 0.88372 | $3 \cdot 566$ | 0.85788 | 4.458 |
| 78 | 0.94620 | 1.429 | 0.92727 | 1.962 | 0.90574 | 2.588 | 0.88177 | $3 \cdot 312$ | 0.85549 | 4.141 |
| 79 | 0.94540 | 1.317 | 0.92617 | 1.808 | 0.90431 | 2.385 | 0.87997 | 3.053 | 0.85328 | $3: 818$ |
| 80 | 0.94465 | T. 203 | 0.92516 | 1.652 | 0.90301 | 2.179 | 0.87831 | 2.789 | 0.85125 | 3.489 |
| 81 | 0.94397 | 1.087 | 0.92424 | 1.493 | 0.90183 | 1.969 | 0.87681 | 2.522 | 0.84940 | 3.156 |
| 82 | 0.94337 | 0.970 | 0.92343 | 1. 332 | 0.90076 | 1.757 | 0.87547 | 2.251 | 0.84774 | 2.817 |
| 83 | 0.94283 | 0.852 | 0.92270 | 1.169 | 0.89981 | I. 543 | 0.87428 | $x .976$ | 0.84628 | 2.474 |
| 84 | 0.94237 | 0.732 | 0.92207 | 1.005 | 0.89899 | r. 327 | 0.87324 | 1.699 | 0.84501 | 2.128 |
| 85 | 0.94197 | 0.612 | 0.92153 | 0.839 | 0.89829 | 1.109 | 0.87237 | 1.420 | 0.84393 | 1.779 |
| 86 | 0.94163 | 0.490 | 0.92109 | 0.673 | 0.89771 | 0.889 | 0.87164 | 1.138 | 0.84305 | 1.426 |
| 87 | 0.94138 | 0.368 | 0.92074 | 0.506 | 0.89726 | 0.668 | 0.87108 | 0.855 | 0.84236 | 1.071 |
| 88 | 0.94122 | 0.246 | 0.92050 | 0.338 | 0.89694 | 0.445 | 0.87068 | 0.571 | 0.84186 | 0.715 |
| 89 | 0.94110 | 0.123 | 0.92036 | 0.169 | 0.89675 | 0.223 | 0.87043 | 0.286 | 0.84156 | 0.358 |
| 90 | 0.94107 | 0.000 | 0.92031 | 0.000 | 0.89670 | 0.000 | 0.87037 | 0.000 | 0.84147 | 0.000 |

Example. $\frac{\sinh \left(1.0 \angle 85^{\circ}\right)}{1.0 \angle 85^{\circ}}=0.84393 \angle 1^{\circ} .779=0.84393 \angle 1^{\circ} .46^{\prime} .44^{\prime \prime}$.

Table IV. CORRECTING FACTOR. $\frac{\sinh \theta}{\theta}=r \angle \gamma$. Continued

|  | I.I |  | 1.2 |  | 1.3 |  | 1.4 |  | 1.5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | - |  | - |  | - |  | - |  | $\bigcirc$ |
| 45 | 1.0081 | II.5I9 | 1.0115 | 13.692 | 1.OI 58 | 16.034 | 1.0212 | I8.568 | 1.0279 | 2 I .262 |
| 46 | 1.0011 | II. 543 | 1.0031 | 13.726 | 1.0060 | 16.092 | 1.0099 | 18.639 | 1.0148 | 21.355 |
| 47 | 0.99409 | II. 555 | 0.99475 | 13.748 | 0.99623 | 16.128 | 0.99850 | 18.689 | 1.0018 | 21.426 |
| 48 | 0.98709 | II. 553 | 0.98650 | 13.753 | 0.98654 | 16.142 | 0.98729 | 18.717 | 0.98893 | 21.474 |
| 49 | 0.98018 | 11.536 | 0.97825 | 13.741 | 0.97685 | 16.137 | 0.97607 | 18.723 | 0.97613 | 21.496 |
| 50 | 0.97327 | II. 506 | 0.97008 | 13.712 | 0.96722 | 16.113 | 0.96493 | 18.707 | 0.96340 | 21.492 |
| 51 | 0.96636 | II.46I | 0.96192 | I 3.666 | 0.95770 | 16.068 | 0.95393 | I 8.668 | 0.95080 | 21.462 |
| 52 | 0.95964 | II.401 | 0.95383 | 13.603 | 0.94822 | 16.004 | 0.94300 | I8.605 | 0.93833 | 21.405 |
| 53 | 0.95291 | II. 327 | 0.94583 | I 3.523 | 0.93892 | 15.919 | 0.93221 | 18.519 | 0.92593 | 2 I .32 I |
| 54 | 0.94627 | 11. 239 | 0.93800 | 13.425 | 0.92969 | 15.814 | 0.92157 | 18.409 | 0.91373 | 21.210 |
| 55 | 0.93963 | 11.136 | 0.93017 | 13.310 | 0.92054 | I 5.688 | 0.91100 | 18.275 | 0.90167 | 21.072 |
| 56 | 0.93318 | II.OI9 | 0.92250 | 13.178 | 0.91154 | 15.542 | 0.90064 | 18.117 | 0.88980 | 20.907 |
| 57 | 0.92682 | 10. 888 | 0.91492 | 13.028 | 0.90269 | 15.376 | 0.89043 | 17.936 | 0.87813 | 20.713 |
| $5^{8}$ | 0.92054 | 10.742 | 0.90750 | 12.860 | 0.89400 | I5.188 | 0.88036 | 17.730 | 0.86667 | 20.491 |
| 59 | 0.91436 | 10.581 | 0.90017 | 12.675 | 0.88546 | 14.980 | 0.87050 | 17.500 | 0.85540 | 20.240 |
| 60 | 0.90836 | 10.406 | 0.89300 | 12.474 | 0.87715 | 14.752 ${ }^{\circ}$ | 0.86086 | 17.246 | 0.84433 | 19.964 |
| 61 | 0.90244 | 10.218 | 0.88600 | 12.255 | 0.86892 | 14.502 | 0.85136 | 16.967 | 0.83353 | 19.657 |
| 62 | 0.89666 | 10.016 | 0.87918 | 12.019 | 0.86092 | 14.232 | 0.84214 | 16.663 | 0.82300 | I9.32 |
| 63 | 0.89103 | 9.800 | 0.87250 | 11.767 | 0.85315 | 13.942 | 0.83314 | 16.335 | 0.81273 | I8.956 |
| 64 | 0.88554 | 9.570 | 0.86600 | 11.497 | 0.84554 | 13.632 | 0.82436 | 15.983 | 0.80267 | 18.562 |
| 65 | 0.88019 | 9.327 | 0.85967 | II. 2 II | 0.83808 | 13.301 | 0.81579 | I 5.607 | 0.79293 | 18.140 |
| 66 | 0.87501 | 9.071 | 0.85350 | 10.909 | 0.83094 | 12.950 | 0.80750 | I 5.207 | 0.78347 | 17.690 |
| 67 | 0.86998 | 8.801 | 0.84758 | 10.594 | 0.82400 | 12.580 | 0.79950 | 14.783 | 0.77433 | 17.211 |
| 68 | 0.86514 | 8.519 | 0.84183 | 10.257 | 0.81731 | 12.191 | 0.79171 | 14.335 | 0.86547 | 16.704 |
| 69 | 0.86045 | 8.225 | 0.83625 | 9.907 | 0.81077 | 11.783 | 0.78421 | I 3.865 | 0.75693 | 16.169 |
| 70 | 0.85596 | 7.918 | 0.83093 | 9.543 | 0.80454 | 11.357 | 0.77707 | 13.373 | 0.74873 | 15.607 |
| 71 | 0.85165 | 7.600 | 0.82583 | 9.164 | 0.79862 | 10.912 | 0.77021 | 12.858 | 0.74087 | 15.018 |
| 72 | 0.84754 | 7.271 | 0.82095 | 8.771 | 0.79292 | 10.450 | 0.76364 | 12.322 | 0.73333 | 14.402 |
| 73 | 0.84362 | 6.931 | 0.81631 | 8.365 | 0.78746 | 9.971 | 0.75736 | 11.765 | 0.72620 | 13.761 |
| 74 | 0.83989 | 6.580 | 0.8 I190 | 7.946 | 0.78231 | 9.476 | 0.75143 | II. 188 | 0.71940 | 13.096 |
| 75 | 0.83637 | 6.220 | 0.80773 | $7 \cdot 514$ | 0.77746 | 8.966 | 0.74579 | 10.591 | 0.71293 | 12.406 |
| 76 | 0.83306 | 5.850 | 0.80380 | 7.069 | 0.77287 | 8.440 | 0.74050 | 9.975 | 0.70687 | 11.693 |
| 77 | 0.82996 | 5.471 | 0.80013 | 6.614 | 0.76858 | 7.900 | 0.73557 | 9.342 | 0.70120 | 10.958 |
| 78 | 0.82707 | 5.084 | 0.79671 | 6.148 | 0.76459 | 7.346 | 0.73093 | 8.692 | 0.69593 | 10.201 |
| 79 | 0.8244 I | 4.689 | 0.79355 | 5.672 | 0.76090 | 6.780 | 0.72664 | 8.026 | 0.69107 | 9.425 |
| 80 | 0.82196 | 4.286 | 0.79065 | 5.187 | 0.75751 | 6.202 | 0.72279 | 7.346 | 0.68660 | 8.630 |
| 81 | 0.81975 | 3.877 | 0.78802 | 4.693 | 0.75444 | 5.614 | 0.71921 | 6.651 | 0.68253 | 7.818 |
| 82 | 0.81775 | 3.462 | 0.78566 | 4.191 | 0.75165 | 5.016 | 0.71600 | 5.944 | 0.67887 | 6.991 |
| 83 | 0.81599 | 3.041 | 0.78358 | 3.683 | 0.74923 | 4.408 | 0.71319 | 5.227 | 0.67567 | 6.149 |
| 84 | 0.81445 | 2.616 | 0.78175 | 3.169 | 0.747 II | 3.793 | 0.71073 | 4.499 | 0.67287 | 5.294 |
| 85 | 0.81315 | 2.186 | 0.78022 | 2.649 | 0.74531 | 3.171 | 0.70864 | 3.762 | 0.67047 | 4.429 |
| 86 | 0.81209 | 1.753 | 0.77895 | 2.124 | 0.74383 | 2.544 | 0.70694 | 3.018 | 0.66847 | $3 \cdot 554$ |
| 87 | 0.81125 | 1.317 | 0.77797 | 1.596 | 0.74268 | 1.912 | 0.70561 | 2.269 | 0.66693 | 2.673 |
| 88 | 0.81066 | 0.879 | 0.77727 | 1.065 | 0.74185 | 1.277 | 0.70466 | 1.515 | 0.66587 | 1.785 |
| 89 | 0.81031 | 0.440 | 0.77684 | 0.533 | 0.74136 | 0.639 | 0.70409 | 0.758 | 0.66521 | 0.893 |
| 90 | 0.81019 | 0.000 | 0.77670 | 0.000 | 0.74120 | 0.000 | 0.70389 | 0.000 | 0.66499 | 0.000 |

Example. $\frac{\sinh \left(1.5 \angle 65^{\circ}\right)}{1.5 \angle 65^{\circ}}=0.79293 \angle 18^{\circ} .140=0.79293 \angle 18^{\circ} .08^{\prime} .24^{\prime \prime}$.

Table IV. CORRECTING FACTOR. $\frac{\sinh \theta}{\theta}=r / \gamma$. Continued


Table IV. CORRECTING FACTOR. $\frac{\sinh \theta}{\theta}=r \not \gamma$. Continued

|  | 2.1 |  | 2.2 |  | 2.3 |  | 2.4 |  | 2.5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | - |  | $\bigcirc$ |  | $\bigcirc$ |  |  |  |  |
| 45 | 1.1043 | 40.558 | 1.1248 | 44.205 | 1.1480 | 47.946 | 1.1740 | 51.769 | 1.2032 | 55.661 |
| 46 | 1.0789 | 40.905 | 1.0970 | 44.613 | 1.1177 | 48.419 | 1.1411 | 52.312 | 1.1674 | 56.278 |
| 47 | 1.0538 | 41.213 | 1.0695 | 44.981 | 1.0877 | 48.851 | 1.1085 | 52.813 | 1.1320 | 56.852 |
| 8 | 1.0289 | 41.482 | 1.0423 | 45.307 | 1.0580 | 49.24 I | 1.0762 | 53.271 | 1.0972 | 57.383 |
| 49 | 1.0043 | 41.711 | 1.0153 | 45.592 | 1.0286 | 49.588 | 1.0444 | 53.685 | 1.0627 | 57.869 |
| 50 | 0.97986 | 41.898 | 0.98864 | 45.834 | 0.99965 | 49.890 | 1.0130 | 54.053 | 1.0288 | 58.309 |
| 51 | 0.95576 | 42.042 | 0.96232 | 46.031 | 0.97104 | 50.146 | 0.98200 | 54.375 | 0.99540 | 58.701 |
| 52 | 0.93195 | 42.142 | 0.93636 | 46.18I | 0.94283 | 50.354 | 0.95150 | 54.648 | 0.96256 | 59.044 |
| 53 | 0.90848 | 42.197 | 0.91077 | 46.284 | 0.91504 | 50.514 | 0.92154 | 54.871 | 0.93028 | 59.337 |
| 54 | 0.88533 | 42.205 | 0.88559 | 46.338 | 0.88774 | 50.623 | 0.89208 | 55.042 | 0.89860 | 59.578 |
| 55 | 0.86257 | 42.165 | 0.86082 |  | 0.86091 | 50.680 | 0.86308 | 55.160 | 0.86748 |  |
| 56 | 0.84019 | 42.076 | 0.83646 | 46.294 | 0.83457 | 50.683 | 0.83467 | 55.223 | 0.83700 | 59.896 |
| 57 | 0.81819 | 41.935 | 0.81255 | 46.193 | 0.80869 | 50.629 | 0.80683 | 55.228 | 0.80712 | 59.970 |
| 58 | 0.79662 | 41.742 | 0.78909 | 46.035 | 0.78331 | 50.518 | 0.77954 | 55.174 | 0.77788 | 59.984 |
| 5 | 0.77543 | 41.494 | 0.76609 | 45.820 | 0.75848 | 50.347 | 0.75283 | 55.059 | 0.74932 | 59.936 |
| 60 | 0.75471 | 41.191 | 0.74359 | $45 \cdot 546$ | 0.73417 | 50.114 | 0.72671 | 54.880 | 0.72140 | 59.823 |
| 61 | 0.73447 | 40.830 | 0.72159 | 45.210 | 0.71043 | 49.816 | 0.70121 | 54.634 | 0.69412 | 59.642 |
| 62 | 0.71467 | 40.410 | 0.70009 | 44.8II | 0.68725 | 49.45I | 0.67633 | 54.319 | 0.66752 | 59.391 |
| 63 | 0.69538 | 39.929 | 0.67914 | 44.345 | 0.66465 | 49.016 | 0.65204 | 53.931 | 0.64160 | 59.067 |
| 64 | 0.67657 | 39.386 | 0.65873 | 43.811 | 0.64261 | 48.509 | 0.62838 | 53.467 | 0.61636 | 58.665 |
| 65 | 0.65829 | 38.777 | 0.63886 | 43.207 | 0.62113 | 47.926 | 0.60533 | 52.924 | 0.59176 | 58.182 |
| 66 | 0.64053 | 38.101 | 0.61955 | 42.529 | 0.60026 | 47.264 | 0.58296 | 52.297 | 0.56784 | 57.613 |
| 67 | 0.62329 | 37.357 | 0.60082 | 41.775 | 0.58004 | 46.519 | 0.56121 | 51.583 | 0.54464 | 56.954 |
| 68 | 0.60657 | 36.542 | 0.58268 | 40.943 | 0.56043 | 45.688 | 0.54013 | 50.777 | 0.52208 | 56.198 |
| 69 | 0.59043 | 35.655 | 0.56514 | 40.029 | 0.54143 | 44.76 | 0.51971 | 49.874 | 0.50024 | $55 \cdot 341$ |
| 70 | 0.57487 | 34.694 | 0.54818 | 39.030 | 0.52309 | 43.752 | 0.49996 | 48.868 | 0.47908 | 54.376 |
| 71 | 0.55990 | 33.656 | 0.53186 | 37.944 | 0.50539 | 42.638 | 0.48088 | 47.754 | 0.45864 | 53.296 |
| 72 | 0.54557 | 32.541 | 0.51618 | 36.769 | 0.48835 | 41.422 | 0.46246 | 46.526 | 0.43888 | 52.092 |
| 73 | 0.53181 | 31.348 | 0.50118 | 35-501 | 0.47204 | 40.100 | 0.44479 | 45.177 | 0.41988 | 50.755 |
| , | 0.51871 | 30.074 | 0.48682 | 34.138 | 0.45644 | 38.66 | 0.42783 | 43.701 | 0.40160 | 49.277 |
|  | 0.50629 | 28.719 | 0.47323 | 32.678 | 0.44152 | 37.118 | 0.41165 | 42.091 | 0.38408 | 47.648 |
| 76 | 0.49453 | 27.283 | 0.46027 | 31.119 | 0.42736 | 35.449 | 0.39621 | 40.341 | 0.36732 | 45.857 |
| 77 | 0.48347 | 25.766 | 0.44810 | 29.459 | 0.41397 | 33.659 | 0.38157 | 38.443 | 0.35137 | 43.891 |
| 78 | 0.47311 | 24.168 | 0.43666 | 27.699 | 0.40135 | 31.744 | 0.36775 | 36.390 | 0.33625 | 41.740 |
| 79 | 0.46349 | 22.491 | 0.42601 | 25.839 | 0.38963 | 29.701 | 0.35480 | 34.178 | 0.32201 | 39.392 |
| 80 | 0.45461 | 20.736 | 0.41617 | 23.879 | 0.37873 | 27.531 | 0.34273 | 31.803 | 0.30869 | 36.836 |
| 81 | 0.44650 | 18.907 | 0.40716 | 21.822 | 0.36873 | 25.233 | 0.33162 | 29.261 | 0.29633 | 34.063 |
| 82 | 0.43919 | 17.008 | 0.39902 | 19.671 | 0.35965 | 22.810 | 0.32149 | 26.550 | 0.28500 | 31.065 |
| 83 | 0.43268 | 15.043 | 0.39176 | 17.432 | 0.35153 | 20.267 | 0.31239 | 23.676 | 0.27477 | 27.841 |
| 84 | 0.42699 | 13.015 | 0.38540 | 15.111 | 0.3444 I | 17.611 | 0.30438 | 20.643 | 0.26569 | 24.390 |
| 85 | 0.42215 | 10.933 | 0.37998 | 12.715 | 0.3383 I | 14.85 I | 0.29748 | 17.462 | 0.25784 | 20.723 |
| 86 | 0.41818 | 8.806 | 0.37551 | 10.254 | 0.33328 | 12.000 | 0.29178 | 14.147 | 0.25131 | 16.855 |
| 87 | 0.41507 | 6.639 | 0.37202 | 7.740 | 0.32933 | 9.071 | 0.28728 | 10.717 | 0.24614 | 12.811 |
| 88 | 0.41284 | 4.443 | 0.36951 | 5.183 | 0.32650 | 6.082 | 0.28405 | 7.197 | 0.24241 | 8.624 |
| 89 | 0.41150 | 2.226 | 0.36800 | 2.599 | 0.32479 | 3.051 | 0.28210 | 3.615 | 0.24014 | 4.338 |
| 90 | 0.41105 | 0.000 | 0.36750 | 0.000 | 0.32422 | 0.000 | 0.28144 | 0.000 | 0.23939 | 0.000 |

$$
\text { Example. } \quad \frac{\sinh \left(2.3 / 84^{\circ}\right)}{2.3 \angle 84^{\circ}}=0.3444 \mathrm{I} \angle 17^{\circ} .6 \mathrm{II}=0.3444 \mathrm{I} \angle 17^{\circ} \cdot 36^{\prime} .40^{\prime \prime} \text {. }
$$

Table IV. CORRECTING FACTOR. $\frac{\sinh \theta}{\theta}=r \angle \gamma$. Continued

|  | 2.6 |  | 2.7 |  | 2.8 |  | 2.9 |  | 3.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | - |  | $\bigcirc$ |
| 45 | 1.2354 | 59.613 | 1.2710 | 63.614 | 1.3102 | 67.653 | 1.3530 | 71.721 | 1.3995 | 75.814 |
| 46 | 1.1967 | 60.307 | 1.2293 | 64.386 | 1.2652 | 68.506 | 1.3046 | 72.658 | I. 3475 | 76.832 |
| 47 | 1. 1586 | 60.957 | 1.1881 | 65.116 | 1.2209 | 69.317 | 1.2570 | 73.551 | 1.2965 | 77.808 |
| 48 | 1.1209 | 61.564 | I.1476 | 65.801 | 1.1774 | 70.084 | 1.2103 | 74.400 | 1. 2465 | 78.74 I |
| 49 | 1.0838 | 62.126 | 1.1077 | 66.442 | 1.1345 | 70.806 | 1.1644 | 75.205 | 1. 1974 | 79.630 |
| 50 | 1.0473 | 62.641 | 1.0685 | 67.037 | 1.0925 | 71.483 | I.1195 | 75.965 | I. 1494 | 80.474 |
| 51 | 1.0113 | 63.109 | 1.0300 | 67.585 | 1.0513 | 72.113 | 1.0755 | 76.679 | 1.1025 | 81.272 |
| 52 | 0.97608 | 63.528 | 0.99219 | 68.084 | 1.0109 | 72.694 | 1.0324 | 77.345 | 1.0567 | 82.024 |
| 53 | 0.94145 | 63.897 | 0.95514 | 68.532 | 0.97143 | 73.226 | 0.99038 | 77.963 | 1.0120 | 82.729 |
| 54 | 0.90750 | 64.214 | 0.91881 | 68.929 | 0.93279 | 73.708 | 0.94928 | 78.532 | 0.96837 | 83.386 |
| 55 | 0.87419 | 64.476 | 0.88333 | 69.274 | 0.89500 | 74.138 | 0.90917 | 79.050 | 0.92590 | 83.994 |
| 56 | 0.84162 | 64.684 | 0.84863 | 69.563 | 0.858 II | 74.515 | 0.87007 | 79.517 | 0.88453 | 84.553 |
| 57 | 0.80973 | 64.834 | 0.81467 | 69.797 | 0.82211 | 74.837 | 0.83197 | 79.932 | 0.84433 | 85.062 |
| 58 | 0.77854 | 64.925 | 0.78152 | 69.973 | 0.78700 | 75.103 | 0.79487 | 80.293 | 0.80523 | 85.510 |
| 59 | 0.74808 | 64.954 | 0.74919 | 70.088 | 0.75275 | 75.311 | 0.75876 | 80.598 | 0.76727 | 85.924 |
| 60 | 0.71835 | 64.918 | 0.71767 | 70.140 | 0.71943 | 75.459 | 0.72366 | 80.847 | 0.73040 | 86.276 |
| 61 | 0.68935 | 64.816 | 0.68692 | 70.128 | 0.68700 | 75.544 | 0.68955 | 81.037 | 0.69463 | 86.574 |
| 62 | 0.66104 | 64.644 | 0.65700 | 70.047 | 0.65543 | 75.565 | 0.65641 | 81.167 | 0.65993 | 86.817 |
| 63 | 0.63346 | 64.399 | 0.62786 | 69.895 | 0.62475 | 75.519 | 0.62424 | 81.235 | 0.62630 | 87.004 |
| 64 | 0.60662 | 64.077 | 0.59952 | 69.669 | 0.59493 | 75.403 | 0.59303 | 81.239 | 0.59373 | 87.133 |
| 65 | 0.58054 | 63.674 | 0.57193 | 69.364 | 0.56596 | 75.214 | 0.56272 | 8 I .176 | 0.56217 | 87.204 |
| 66 | 0.55519 | 63.185 | 0.54514 | 68.978 | 0.53785 | 74.948 | 0.53334 | 81.044 | 0.53160 | 87.214 |
| 67 | 0.53054 | 62.606 | 0.51911 | 68.504 | 0.51054 | 74.599 | 0.50486 | 80.838 | 0.50203 | 87.161 |
| 68 | 0.50658 | 61.930 | 0.49386 | 67.935 | 0.48404 | 74.164 | 0.47724 | 80.555 | 0.47340 | 87.043 |
| 69 | 0.48338 | 61.15I | 0.46937 | 67.266 | 0.45832 | 73.634 | 0.45045 | 80.190 | 0.44567 | 86.858 |
| 70 | 0.46089 | 60.262 | 0.44559 | 66.489 | 0.43343 | 73.005 | 0.42448 | 79.738 | 0.41883 | 86.602 |
| 71 | 0.43911 | 59.254 | 0.42256 | 65.596 | 0.40928 | 72.267 | 0.39934 | 79.191 | 0.39283 | 86.271 |
| 72 | 0.41808 | 58.117 | 0.40026 | 64.576 | 0.38586 | 71.41 I | 0.37497 | 78.541 | 0.36767 | 85.860 |
| 73 | 0.39773 | 56.84 I | 0.37872 | 63.415 | 0.36321 | 70.424 | 0.35135 | 77.780 | 0.34327 | 85.363 |
| 74 | 0.37814 | 55.414 | 0.35789 | 62.101 | 0.34125 | 69.292 | 0.32845 | 76.894 | 0.31964 | 84.772 |
| 75 | 0.35930 | 53.822 | 0.33780 | 60.617 | 0.32002 | 67.996 | 0.30627 | 75.867 | 0.29674 | 84.077 |
| 76 | 0.34123 | 52.049 | 0.31846 | 58.943 | 0.29951 | 66.516 | 0.28478 | 74.680 | 0.27452 | 83.265 |
| 77 | 0.32395 | 50.079 | 0.29987 | 57.058 | 0.27971 | 64.827 | 0.26397 | 73.309 | 0.25296 | 82.319 |
| 78 | 0.30749 | 47.893 | 0.28206 | 54.935 | 0.26064 | 62.897 | 0.24379 | 71.721 | 0.23202 | 8 8 .216 |
| 79 | 0.29189 | 45.471 | 0.26507 | 52.542 | 0.24231 | 60.686 | 0.22432 | 69.876 | 0.21168 | 79.925 |
| 80 | 0.27718 | 42.793 | 0.24894 | 49.847 | 0.22476 | 58.145 | 0.20551 | 67.721 | 0.19191 | 78.404 |
| 81 | 0.26346 | 39.837 | 0.23374 | 46.812 | 0.20804 | 55.217 | 0.18738 | 65.183 | 0.17270 | 76.592 |
| 82 | 0.25078 | 36.583 | 0.21954 | 43.396 | 0.19222 | 51.833 | -.16998 | 62.169 | 0.15404 | 74.404 |
| 83 | 0.23922 | 33.016 | 0.20644 | 39.554 | -.17741 | 47.908 | 0.15343 | 58.553 | 0.13596 | 71.709 |
| 84 | 0.22887 | 29.126 | 0.19458 | 35.252 | 0.16375 | $43 \cdot 35 \mathrm{I}$ | 0.13774 | 54.168 | -.11849 | 68.313 |
| 85 | 0.21986 | 24.910 | 0.18409 | 30.458 | 0.15142 | 38.066 | 0.12323 | 48.795 | 0.10174 | 63.903 |
| 86 | 0.21227 | 20.382 | 0.17515 | 25.164 | 0.14069 | 31.968 | 0.11016 | 42.168 | 0.085917 | 57.974 |
| 87 | 0.20623 | 15.571 | 0.16794 | 19.390 | -.13184 | 25.015 | 0.098934 | 34.005 | 0.071443 | 49.701 |
| 88 | 0.20184 | 10.524 | 0.16264 | 13.194 | 0.12520 | 17.244 | 0.090148 | 24.110 | 0.059103 | 37.843 |
| 89 | -.19917 | $5 \cdot 307$ | 0.15938 | 6.682 | 0.12105 | 8.809 | 0.084469 | 12.576 | 0.050307 | 21.091 |
| 90 | 0.19827 | 0.000 | 0.15829 | 0.000 | 0.11964 | 0.000 | 0.082845 | 0.000 | 0.047040 | 0.00 |

$$
\text { Example. } \quad \frac{\sinh \left(3.0 / 86^{\circ}\right)}{3.0 \angle 86^{\circ}}=0.085917 \angle 57^{\circ} .974=0.085917 \angle 59^{\circ} .58^{\prime} .26^{\prime \prime} \text {. }
$$

Table V. CORRECTING FACTOR. $\frac{\tanh \theta}{\theta}=r / \gamma$

|  | 0.1 |  | 0.2 |  | 0.3 |  | 0.4 |  | 0.5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | $\bigcirc$ |  | - |  | - |  | - |  | - |
| 45 | 1.00000 | 0.188 | 0.99985 | 0.765 | 0.99937 | 1.718 | 0.99803 | 3.046 | 0.99514 | $4 \cdot 750$ |
| 46 | 1.00010 | 0.188 | 1.00030 | 0.764 | 1.00040 | 1.719 | 0.99988 | 3.055 | 0.99804 | 4-771 |
| 47 | 1.00021 | 0.188 | 1.00075 | 0.763 | 1.00143 | 1.720 | 1.00173 | 3.058 | 1.00094 | 4.78I |
| 48 | I.00033 | 0.188 | 1.00120 | 0.761 | 1.00250 | 1.717 | I.00358 | 3.058 | 1.00384 | 4.787 |
| 49 | 1.00044 | 0.187 | 1.00170 | 0.758 | 1.00357 | 1.710 | 1.00543 | 3.053 | 1.00680 | $4 \cdot 787$ |
| 50 | 1.00056 | 0.187 | 1.00215 | 0.755 | 1.00460 | 1.703 | 1.00733 | 3.045 | 1.00980 | $4 \cdot 780$ |
| 51 | 1.00068 | 0.187 | 1.00265 | 0.749 | 1.00563 | 1.694 | 1.00925 | 3.031 | I.OI278 | $4 \cdot 767$ |
| 52 | 1.00080 | 0.186 | 1.00310 | 0.744 | 1.00670 | 1.685 | 1.01115 | 3.014 | 1.01578 | $4 \cdot 747$ |
| 53 | 1.00092 | 0.184 | 1.00355 | 0.738 | 1.00773 | 1.672 | 1.01303 | 2.995 | 1.01878 | $4 \cdot 724$ |
| 54 | 1.00103 | 0.182 | 1.00405 | 0.732 | 1.00877 | 1.656 | 1.01490 | 2.969 | I. 02178 | 4.692 |
| 55 | 1.00114 | 0.180 | 1.00450 | 0.724 | 1.00980 | 1.638 | 1.01675 | 2.942 | 1.02478 | 4.656 |
| 56 | 1.00125 | 0.177 | 1.00495 | 0.715 | 1.01083 | 1.6I8 | 1.01865 | 2.911 | 1.02778 | 4.612 |
| 57 | 1.00135 | 0.175 | 1.00535 | 0.705 | I.OII83 | 1.596 | 1.02050 | 2.876 | 1.03076 | 4.561 |
| 58 | 1.00146 | 0.172 | I.00575 | 0.694 | 1.01283 | 1.574 | 1.02230 | 2.836 | 1.03374 | $4 \cdot 506$ |
| 59 | 1.00156 | 0.170 | 1.00620 | 0.682 | I.OI380 | 1. 548 | 1.02410 | 2.793 | 1.03670 | $4 \cdot 444$ |
| 60 | 1.0017 | 0.167 | 1.0067 | 0.668 | 1.0148 | 1.52 I | 1.0259 | 2.745 | 1.0397 | $4 \cdot 375$ |
| 61 | 1.0018 | 0.163 | 1.0070 | 0.655 | I.O1 58 | 1.490 | 1.0278 | 2.695 | 1.0425 | 4.300 |
| 62 | 1.0019 | 0.159 | 1.0074 | 0.640 | 1.0167 | 1. 458 | 1.0294 | 2.641 | I. 0454 | 4.220 |
| 63 | 1.0020 | 0.155 | 1.0078 | 0.625 | 1.0176 | 1.425 | 1.0311 | 2.583 | 1.0482 | 4.133 |
| 64 | 1.0020 | 0.151 | 1.0082 | 0.609 | 1.0185 | 1.390 | 1.0328 | 2.52 I | 1.0510 | 4.041 |
| 65 | 1.0021 | 0.147 | 1.0086 | 0.592 | 1.0193 | 1.353 | 1.0344 | 2.456 | 1.0538 | 3.942 |
| 66 | 1.0022 | 0.143 | 1.0090 | 0.575 | 1.0202 | 1.314 | 1.0360 | 2.388 | 1.0564 | 3.836 |
| 67 | 1.0023 | 0.138 | 1.0093 | 0.557 | 1.0210 | 1.273 | 1.0376 | 2.315 | 1.0591 | 3.724 |
| 68 | 1.0024 | 0.134 | 1.0097 | 0.539 | 1.0218 | 1.231 | 1.0391 | 2.240 | 1.0617 | 3.609 |
| 69 | 1.0025 | 0.129 | 1.0100 | 0.520 | 1.0226 | 1.187 | 1.0406 | 2.163 | 1.0642 | 3.489 |
| 70 | 1.0026 | 0.123 | 1.0103 | 0.499 | 1.0234 | 1.I4 4 | 1.0420 | 2.082 | 1. 0666 | 3.362 |
| 71 | 1.0026 | 0.118 | 1.0106 | 0.478 | I. 0241 | 1.094 | 1.0434 | 1.998 | 1.0689 | 3.229 |
| 72 | 1.0027 | 0.112 | 1.OIO9 | 0.456 | 1.0247 | 1.045 | 1.0447 | 1.911 | 1.0712 | 3.091 |
| 73 | 1.0028 | 0.107 | I.OI 12 | 0.434 | 1.0254 | 0.995 | 1.0460 | 1.821 | 1.0734 | 2.948 |
| 74 | 1.0028 | 0.102 | I.OII4 | 0.411 | 1.0260 | 0.944 | 1.0472 | 1.728 | 1.0755 | 2.800 |
| 75 | 1.0029 | 0.096 | I.OII7 | 0.388 | I. 0266 | 0.892 | 1.0483 | 1.632 | 1.0774 | 2.649 |
| 76 | 1.0029 | 0.090 | 1.O120 | 0.365 | I. 0272 | 0.838 | 1.0494 | 1.534 | 1.0793 | 2.493 |
| 77 | 1.0030 | 0.084 | I.OI 22 | 0.341 | 1.0277 | 0.783 | 1.0504 | I. 434 | 1.0811 | 2.333 |
| 78 | 1.0030 | 0.078 | 1.0123 | 0.316 | 1.0282 | 0.727 | 1.0513 | 1.332 | 1.0828 | 2.169 |
| 79 | 1.0031 | 0.072 | I.OI 25 | 0.291 | 1.0287 | 0.671 | 1.0522 | 1.229 | 1.0843 | 2.001 |
| 80 | 1.0031 | 0.066 | 1.OI27 | 0.266 | 1.0291 | 0.614 | 1.0530 | 1.124 | 1.0857 | 1.830 |
| 81 | 1.0032 | 0.060 | 1.0129 | 0.241 | 1.0295 | 0.555 | 1.0538 | 1.017 | 1.0870 | 1.656 |
| 82 | 1.0032 | 0.054 | 1.0130 | 0.215 | 1.0298 | 0.494 | 1.0544 | 0.908 | 1.088 | 1.480 |
| 83 | 1.0032 | 0.047 | 1.0132 | 0.188 | 1.0301 | 0.433 | 1.0550 | 0.797 | 1.0892 | 1.301 |
| 84 | 1.0033 | 0.040 | 1.0133 | 0.162 | 1.0304 | 0.372 | 1.0555 | 0.685 | I.0901 | 1.119 |
| 85 | 1.0033 | 0.033 | I.OI34 | 0.136 | 1.0307 | 0.311 | 1.0560 | 0.573 | 1.0908 | 0.935 |
| 86 | 1.0033 | 0.026 | 1.0134 | 0.109 | 1.0309 | 0.249 | I. 0563 | 0.460 | 1.0914 | 0.749 |
| 87 | 1.0033 | 0.019 | 1.0135 | 0.082 | 1.0310 | 0.187 | 1.0566 | 0.346 | 1.0919 | 0.562 |
| 88 | 1.0033 | 0.012 | 1.0135 | 0.054 | 1.0311 | 0.125 | 1.0568 | 0.232 | 1.0923 | 0.374 |
| 89 | 1.0033 | 0.006 | 1.0135 | 0.027 | 1.0311 | 0.063 | 1.0570 | 0.117 | 1.0926 | 0.187 |
| 90 | 1.0033 | 0.000 | 1.OI36 | 0.000 | I.O3II | 0.000 | 1.0570 | 0.000 | 1.0926 | 0.000 |

Note. Negative quantities are in heavy type.
Example. $\frac { \operatorname { t a n h } ( 0 . 4 \angle 7 4 ^ { \circ } ) } { 0 . 4 \angle 7 4 ^ { \circ } } = 1 . 0 4 7 2 \longdiv { I ^ { \circ } \cdot 7 2 8 } = 1 . 0 4 7 2 \longdiv { I ^ { \circ } \cdot 4 3 ^ { \prime } \cdot 4 1 ^ { \prime \prime } . }$

Table V. CORRECTING FACTOR. $\frac{\tanh \theta}{\theta}=r \not \gamma$. Continued

|  | 0.6 |  | 0.7 |  | 0.8 |  | 0.9 |  | 1.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\bigcirc$ |  | $\bigcirc$ |  | $\bigcirc$ |  |  |  |  |
| 45. | 0.99010 | 6.817 | 0.98189 | 9.214 | 0.96971 | 11.902 | 0.95284 | 14.839 | 0.93077 | 17.956 |
| 46 | 0.99417 | 6.854 | 0.98727 | 9.28I | 0.97646 | 12.020 | 0.96089 | 15.020 | 0.93999 | 18.216 |
| 47 | 0.99830 | 6.881 | 0.99279 | 9.337 | 0.98339 | 12.122 | 0.96921 | 15.185 | 0.94950 | 18.461 |
| 48 | 1.00248 | 6.901 | 0.99840 | 9.383 | 0.99050 | 12.210 | 0.97779 | 15.334 | 0.95938 | 18.692 |
| 49 | 1.00672 | 6.912 | 1.00410 | 9.419 | 0.99780 | 12.285 | 0.98665 | 15.469 | 0.96966 | 18.908 |
| 50 | 1.01100 | 6.915 | 1.00991 | 9.443 | 1.00526 | 12.347 | 0.99578 | 15.588 | 0.98032 | 19.108 |
| 51 | 1.01533 | 6.908 | 1.01581 | 9.455 | 1.01289 | 12.395 | 1.00518 | 15.690 | 0.99136 | 19.290 |
| 52 | 1.01970 | 6.893 | 1.02181 | 9.457 | 1.02069 | 12.427 | 1.01486 | 15.777 | 1.00282 | 19.455 |
| 53 | 1.02412 | 6.870 | 1.02789 | 9.445 | 1.02864 | 12.444 | 1.02479 | 15.845 | 1.01469 | 19.600 |
| 54 | 1.02855 | 6.838 | 1.03403 | 9.423 | 1.03675 | 12.446 | 1.03500 | 15.895 | 1.02697 | 19.726 |
| 55 | 1.03300 | 6.797 | 1.04024 | 9.388 | 1.04501 | 12.432 | 1.04549 | 15.925 | 1.03970 | 19.828 |
| 56 | 1.03747 | 6.746 | 1.04653 | 9.338 | 1.05343 | 12.401 | 1.05626 | 15.934 | 1.05287 | 19.909 |
| 57 | 1.04195 | 6.685 | 1.05286 | 9.275 | 1.06196 | 12.353 | 1.06729 | 15.922 | 1.06648 | 19.965 |
| 58 | 1.04642 | 6.616 | 1.05921 | 9.200 | 1.07061 | 12.288 | 1.07854 | 15.889 | 1.08054 | 19.996 |
| 59 | 1.05089 | 6.537 | 1.06561 | 9.112 | 1.07939 | 12.203 | 1.09007 | 15.833 | 1.09506 | 19.998 |
| 60 | 1.05537 | 6.448 | 1.07210 | 9.010 | 1.08829 | 12.100 | 1.10188 | 15.753 | 1.11009 | 19.973 |
| 61 | 1.05980 | 6.350 | 1.07856 | 8.893 | 1.09726 | 11.978 | 1.11390 | 15.647 | 1.12555 | 19.918 |
| 62 | 1.06420 | 6.242 | 1.08500 | 8.762 | 1.10630 | 11.835 | 1.12614 | 15.514 | 1.14144 | 19.832 |
| 63 | 1.06858 | 6.124 | 1.09143 | 8.617 | 1.11540 | 11.673 | 1.13856 | 15.355 | 1.15777 | 19.711 |
| 64 | 1.07293 | 5.998 | 1.09783 | 8.458 | 1.12456 | 11. | 1.15116 | 15.169 | 1.17454 | 19.555 |
| 65 | 1.07722 | 5.862 | 1.10420 | 8.285 | 1.13373 | 11.288 | 1.16392 | 14.956 | 1.19173 | 19.362 |
| 66 | 1.08143 | 5.716 | 1.11053 | 8.098 | 1.14291 | 11.064 | 1.17684 | 14.711 | 1.20935 | 19.131 |
| 67 | 1.08560 | 5-561 | 1.11683 | 7.895 | 1.15208 | 10.820 | 1.18989 | 14.438 | 1.22737 | 18.860 |
| 68 | 1.08967 | $5 \cdot 397$ | 1.12299 | 7.678 | 1.16118 | 10.552 | 1.20298 | 14.132 | 1.24569 | 18.545 |
| 69 | 1.09363 | 5.223 | I.I 290 | 7.447 | I.I | 10.263 | r. 21608 | 13.796 | 1.26429 | 18.188 |
| 70 | 1.09750 | 5.04 I | 1.13500 | 7.202 | 1.17915 | 9.953 | 1.22919 | 13.428 | 1.28316 | 17.785 |
| 71 | I.IOI 25 | 4.850 | 1.14083 | 6.943 | 1.18796 | 9.621 | 1.24226 | 13.026 | 1.30221 | 17.334 |
| 72 | 1.10490 | 4.650 | 1.14651 | 6.671 | 1.19659 | 9.268 | 1.25524 | 12.592 | 1.32140 | 16.836 |
| 73 | 1.10842 | 4.44 I | I.I5201 | 6.386 | 1. 20503 | 8.894 | 1.26807 | 12.126 | 1.34063 | 16.290 |
| 74 | I.III80 | 4.225 | 1.157 | 6.087 | 1.21325 | 8.499 | 1.28067 | 11.628 | 1.35986 |  |
| 7 | 1.11503 | 4.002 | 1.16244 | 5.775 | 1.22121 | 8.083 | 1.29300 | 11.097 | 1.37894 | 15.043 |
| 76 | I.II8IO | 3.772 | 1.16733 | 5.450 | 1.22889 | 7.648 | 1.30500 | 10.532 | 1.39775 | 14.342 |
| 77 | 1.12102 | 3.534 | I.I7197 | 5.114 | 1.23623 | 7.192 | 1.31659 | 9.936 | 1.41620 | 13.591 |
| 78 | 1.12375 | 3.289 | I. 17636 | 4.767 | 1.24319 | 6.718 | 1.32772 | 9.309 | 1.43412 | 12.788 |
| 79 | I. 12628 | 3.038 | 1.18046 | 4.409 | 1.24976 | 6.227 | 1.33830 | 8.653 | 1.45141 | 11.935 |
| 80 | I. 12863 | 2.78 I | I. 18427 | 4.042 | 1.25591 | 5.718 | 1.34827 | 7.966 | I. 46790 | 11.032 |
| 81 | 1.13078 | 2.519 | 1.18777 | 3.666 | 1.26158 | 5.195 | 1.35754 | 7.254 | 1. 48345 | 10.08 I |
| 82 | I.13273 | 2.251 | 1.19094 | 3.281 | 1.26674 | 4.656 | 1.36607 | 6.517 | 1.49790 | 9.087 |
| 83 | 1.13447 | 1.979 | 1.19377 | 2.888 | 1.27138 | 4.104 | 1.37378 | 5.757 | 1.51110 | 8.052 |
| 84 | 1. 13598 | 1.704 | I. 19626 | 2.488 | 1.27545 | 3.540 | 1.380 | 4.975 | 1.52289 | 6.977 |
|  | 1.13727 | 1.425 | 1.19839 | 2.083 | 1.27895 | 2.966 | 1.38646 | 4.175 | 1.53314 | 5.868 |
| 86 | 1.13832 | 1.144 | r. 20013 | 1.672 | 1.28185 | 2.383 | 1.39132 | 3.360 | 1.54170 | 4.73 I |
| 87 | 1.13915 | 0.860 | 1.20150 | 1.257 | 1.28413 | 1.794 | 1.39518 | 2.532 | 1. 54848 | 3.571 |
| 88 | I.I3975 | 0.574 | 1.20247 | 0.839 | 1.28575 | 1.199 | 1.39793 | 1.692 | 1.55339 | 2.391 |
| 89 | 1.14010 | 0.287 | 1.20306 | 0.420 | 1.28671 | 0.600 | 1.39959 | 0.847 | 1.55637 | 1.198 |
| 90 | 1.14022 | 0.000 | 1.20327 | 0.000 | 1.28700 | 0.000 | 1.40017 | 0.000 | 1. 55740 | 0.000 |

Note. Negative quantities are in heavy type.

$$
\text { Example. } \quad \frac{\tanh \left(0.9 / 75^{\circ}\right)}{0.9 \angle 75^{\circ}}=1.293 \sqrt{I I^{\circ} .097}=1.293 \sqrt{I I^{\circ} .05^{\prime} \cdot 49^{\prime \prime}}
$$

Table V. CORRECTING FACTOR. $\frac{\tanh \theta}{\theta}=r \not \gamma$. Continued

|  | I.I |  | I. 2 |  | 1.3 |  | I. 4 |  | 1.5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | - |  | $\bigcirc$ |  | - |  | - |  | - |
| 45 | 0.90354 | 21.167 | 0.87142 | $24 \cdot 384$ | 0.83515 | 27.536 | 0.79593 | 30.516 | 0.75487 | 33.288 |
| 46 | 0.91359 | 21.524 | 0.88183 | 24.856 | 0.84561 | 28.118 | 0.80600 | 31.225 | 0.76427 | 34.116 |
| 47 | 0.92400 | 21.869 | 0.89275 | 25.315 | 0.85661 | 28.699 | 0.81664 | 31.936 | 0.77420 | 34.952 |
| 48 | 0.93482 | 22.201 | 0.90425 | 25.764 | 0.86815 | 29.279 | 0.82786 | 32.648 | 0.78467 | 35.792 |
| 49 | 0.94618 | 22.520 | 0.91625 | 26.202 | 0.88038 | 29.852 | 0.83971 | 33.360 | 0.79573 | 36.638 |
| 50 | 0.95809 | 22.822 | 0.92892 | 26.629 | 0.89331 | 30.416 | 0.85228 | 34.070 | 0.80747 | 37.490 |
| 51 | 0.97055 | 23.109 | 0.94225 | 27.043 | 0.90685 | 30.973 | 0.86557 | 34.778 | 0.81993 | 38.348 |
| 52 | 0.98345 | 23.379 | 0.95617 | 27.442 | 0.92123 | 31.521 | 0.87964 | 35.485 | 0.83320 | 39.213 |
| 53 | 0.99700 | 23.630 | 0.97083 | 27.826 | 0.93638 | 32.059 | 0.89457 | 36.189 | 0.84727 | 40.086 |
| 54 | I.OIII | 23.861 | 0.98625 | 28.193 | 0.95238 | 32.586 | 0.91043 | 36.890 | 0.86220 | 40.965 |
| 55 | 1.0258 | 24.070 | 1.0025 | 28.540 | 0.96938 | 33.100 | 0.92729 | 37.587 | 0.87813 | 41.849 |
| 56 | 1.0412 | 24.256 | 1.0196 | 28.867 | 0.98738 | 33.599 | 0.94529 | 38.279 | 0.89513 | 42.738 |
| 57 | 1.0572 | 24.417 | 1.0375 | 29.173 | 1.0065 | 34.082 | 0.96443 | 38.964 | 0.91333 | 43.634 |
| 58 | 1.0739 | 24.551 | 1.0564 | 29.454 | 1.0266 | 34.548 | 0.98479 | 39.642 | 0.93280 | 44.534 |
| 59 | 1.0914 | 24.657 | 1.0763 | 29.708 | 1.0482 | 34.993 | 1.0066 | 40.311 | 0.95367 | 45.441 |
| 60 | 1.1096 | 24.733 | 1.0973 | 29.932 | 1.0710 | 35.416 | 1.0301 | 40.968 | 0.97613 | 46.349 |
| 61 | I. 1286 | 24.774 | I.II95 | 30.124 | 1.0953 | 35.813 | 1.0551 | 41.6II | 1.0003 | 47.262 |
| 62 | 1.1484 | 24.778 | I.1428 | 30.280 | I. 1212 | 36.180 | 1.0820 | 42.239 | 1.0264 | 48.176 |
| 63 | 1.1689 | 24.745 | I.1674 | 30.397 | 1.1488 | 36.515 | 1.1109 | 42.850 | 1.0546 | 49.092 |
| 64 | I. 1904 | 24.672 | I. 1934 | 30.473 | I. 1784 | 36.814 | I.142I | 43.438 | 1.0851 | 50.009 |
| 65 | I. 2126 | 24.554 | 1.2208 | 30.502 | 1.2099 | 37.072 | 1.1759 | 44.001 | I. 1184 | 50.924 |
| 66 | 1.2357 | 24.388 | 1. 2496 | 30.480 | 1.2436 | 37.285 | 1.2124 | 44.535 | I. 1546 | 51.834 |
| 67 | 1.2596 | 24.173 | I. 2799 | 30.403 | 1. 2798 | 37.446 | 1.2520 | 45.034 | I. 1943 | 52.739 |
| 68 | 1. 2845 | 23.904 | I.3119 | 30.263 | 1.3185 | 37.548 | I. 2951 | 45.493 | 1.2377 | 53.636 |
| 69 | I.3IOI | 23.579 | 1.3457 | 30.059 | 1.3600 | 37.585 | 1.3420 | 45.904 | I. 2857 | 54.520 |
| 70 | 1.3365 | 23.194 | 1.3811 | 29.781 | 1. 4046 | $37 \cdot 548$ | 1.3933 | 46.260 | 1.3385 | 55.388 |
| 71 | 1.3637 | 22.744 | 1.4183 | 29.425 | 1.4525 | 37.430 | 1.4495 | 46.552 | 1.3973 | 56.235 |
| 72 | 1.3915 | 22.227 | I. 4573 | 28.983 | 1.5039 | 37.218 | 1.5113 | 46.768 | 1.4628 | 57.056 |
| 73 | 1.4200 | 21.639 | I. 4981 | 28.447 | I. 5592 | 36.899 | I. 5794 | 46.894 | 1.5362 | 57.841 |
| 74 | I.4489 | 20.978 | 1.5407 | 27.810 | 1.6186 | 36.461 | 1.6546 | 46.916 | 1.6190 | 58.58 I |
| 75 | 1.4783 | 20.238 | I. 5849 | 27.064 | 1.6822 | 35.890 | 1. 7380 | 46.8I4 | 1.7129 | 59.266 |
| 76 | I. 5077 | 19.419 | 1.6307 | 26.202 | 1.7505 | 35.170 | 1.8308 | 46.567 | 1.8202 | 59.880 |
| 77 | I. 5373 | 18.518 | 1.6778 | 25.214 | 1.8235 | 34.280 | I. 9341 | 46.145 | 1.9438 | 60.403 |
| 78 | 1. 5665 | 17.532 | 1.7261 | 24.094 | 1.9012 | 33.202 | 2.0498 | 45.514 | 2.0875 | 60.814 |
| 79 | 1.5955 | 16.462 | 1.7749 | 22.835 | $x .9835$ | 31.912 | 2.1792 | 44.633 | 2.2562 | 61.076 |
| 80 | 1.6235 | 15.308 | 1.8239 | 21.429 | 2.0702 | 30.389 | 2.3240 | 43.454 | 2.4563 | 61.144 |
| 81 | 1.6505 | 14.069 | 1.8726 | 19.874 | 2.1604 | 28.609 | 2.4862 | 41.915 | 2.6973 | 60.956 |
| 82 | 1.6759 | 12.748 | 1.9200 | 18.168 | 2.2531 | 26.553 | 2.6669 | 39.944 | 2.9917 | 60.422 |
| 83 | 1.6996 | 11.350 | 1.9654 | 16.310 | 2.3466 | 24.200 | 2.8668 | 37.454 | 3.3577 | 59.412 |
| 84 | 1.7212 | 9.879 | 2.0078 | 14.306 | 2.4388 | 21.540 | 3.0848 | 34.354 | 3.8207 | 57.724 |
| 85 | 1.7402 | 8.343 | 2.0463 | 12.164 | 2.5267 | 18.568 | $3 \cdot 3164$ | 30.541 | 4.4198 | 55.045 |
| 86 | 1.7562 | 6.748 | 2.0796 | 9.898 | 2.6065 | 15.294 | $3 \cdot 552 \mathrm{I}$ | 25.931 | 5.2010 | 50.866 |
| 87 | 1.7691 | 5.105 | 2.1068 | 7.525 | 2.6744 | I 1.747 | 3.7765 | 20.477 | 6.2275 | 44.356 |
| 88 | 1.7785 | 3.425 | 2.1269 | 5.067 | 2.7266 | 7.970 | 3.9665 | 14.214 | 7.5060 | 34.274 |
| 89 | 1.7843 | 1.719 | 2.1393 | 2.548 | 2.7596 | 4.029 | 4.0952 | 7.293 | 8.7880 | 19.305 |
| 90 | 1.7862 | 0.000 | 2.1434 | 0.000 | 2.7709 | 0.000 | 4.1413 | 0.000 | 9.4007 | 0.000 |

Note. Negative quantities are in heavy type.

$$
\text { Example. } \frac { \operatorname { t a n h } ( \mathrm { I } \cdot 3 \angle 4 5 ^ { \circ } ) } { \mathrm { I } \cdot 3 \angle 4 5 ^ { \circ } } = 0 . 8 3 5 1 5 \longdiv { 2 7 ^ { \circ } \cdot 5 3 ^ { 6 } } = 0 . 8 3 5 1 5 \longdiv { 1 7 ^ { \circ } \cdot 3 2 ^ { \prime } \cdot 1 0 ^ { \prime \prime } } \text {. }
$$

[28]

Table V. CORRECTING FACTOR. $\frac{\tanh \theta}{\theta}=r / \gamma$. Continued

|  | 1. 6 |  | 1.7 |  | 1. 8 |  | 1.9 |  | 2.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | - |  | - |  | - |  | - |  | $\bigcirc$ |
| 45 | 0.71331 | 35.799 | 0.67224 | 38.016 | 0.63250 | 39.937 | 0.59484 | 41.562 | 0.55955 | 42.906 |
| 46 | 0.72175 | 36.733 | 0.67959 | $39.048^{\circ}$ | 0.63883 | 41.050 | 0.60005 | 42.740 | 0.56375 | 44.133 |
| 47 | 0.73069 | 37.682 | 0.68741 | 40.098 | 0.64544 | 42.186 | 0.60553 | 43.942 | 0.56815 | 45.387 |
| 48 | 0.74013 | 38.642 | 0.69565 | 41.166 | 0.65239 | $43 \cdot 341$ | 0.61126 | 45.168 | 0.57275 | 46.667 |
| 49 | 0.75013 | 39.615 | 0.70435 | 42.251 | 0.65978 | 44.520 | 0.61726 | 46.422 | 0.57750 | 47.977 |
| 50 | 0.76069 | 40.600 | 0.71359 | 43.355 | 0.66756 | 45.725 | 0.62358 | 47.705 | 0.58250 | 49.319 |
| 51 | 0.77194 | 41.600 | 0.72329 | 44.480 | 0.67572 | 46.955 | 0.63026 | 49.019 | 0.58770 | 50.694 |
| 52 | 0.78381 | 42.616 | 0.73365 | 45.627 | 0.68433 | 48.213 | 0.63721 | 50.366 | 0.59315 | 52.103 |
| 53 | 0.79650 | 43.646 | 0.74465 | 46.797 | 0.69350 | 49.501 | 0.64458 | 51.747 | 0.59885 | 53.550 |
| 54 | 0.81000 | 44.691 | 0.75629 | 47.992 | 0.70317 | 50.820 | 0.65232 | 53.165 | 0.60480 | 55.039 |
| 55 | 0.82438 | 45.754 | 0.76865 | 49.212 | 0.71344 | 52.174 | 0.66047 | 54.62 I | 0.61100 | 56.571 |
| 56 | 0.83969 | 46.834 | 0.78188 | 50.461 | 0.72433 | 53.564 | 0.66911 | 56.121 | 0.61750 | 58.149 |
| 57 | 0.85613 | 47.931 | 0.79600 | 51.739 | 0.73594 | 54.992 | 0.67821 | 57.666 | 0.62435 | 59.777 |
| 58 | 0.87369 | 49.047 | 0.81106 | 53.047 | 0.74828 | 56.460 | 0.68784 | 59.259 | 0.63150 | 61.458 |
| 59 | 0.89256 | 50.183 | 0.82724 | 54.389 | 0.76144 | 57.974 | 0.69805 | 60.905 | 0.63905 | 63.195 |
| 60 | 0.91288 | 51.339 | 0.84459 | 55.768 | 0.77550 | 59.535 | 0.70895 | 62.606 | 0.64695 | 64.995 |
| 61 | 0.93475 | 52.516 | 0.86324 | 57.181 | 0.79056 | 61.145 | 0.72047 | 64.366 | 0.65530 | 66.860 |
| 62 | 0.95834 | 53.714 | 0.88335 | 58.635 | 0.80672 | 62.810 | 0.73274 | 66.191 | 0.66405 | 68.793 |
| 63 | 0.98394 | 54.935 | 0.90506 | 60.131 | 0.82406 | 64.533 | 0.74579 | 68.085 | 0.67330 | 70.802 |
| 64 | 1.0117 | 56.181 | 0.92853 | 61.674 | 0.84272 | 66.318 | 0.75974 | 70.052 | 0.68310 | 72.89 I |
| 65 | 1.0419 | 57.452 | 0.95400 | 63.266 | 0.86283 | 68.172 | 0.77463 | 72.099 | 0.69340 | 75.068 |
| 66 | 1.0749 | 58.748 | 0.98176 | 64.910 | 0.88461 | 70.098 | 0.79063 | 74.232 | 0.70430 | 77.338 |
| 67 | I.IIII | 60.072 | 1.0121 | 66.613 | 0.90817 | 72.104 | 0.80774 | 76.459 | 0.71585 | 79.707 |
| 68 | 1.1508 | 61.425 | 1.0453 | 68.376 | 0.93372 | 74.196 | 0.82611 | 78.786 | 0.72810 | 82.184 |
| 69 | 1. 1948 | 62.809 | 1.0817 | 70.209 | 0.96156 | 76.382 | 0.84579 | 81.22I | 0.74105 | 84.776 |
| 70 | 1.2433 | 64.224 | 1.1219 | 72.116 | 0.99189 | 78.671 | 0.86705 | 83.773 | 0.75475 | 87.490 |
| 71 | 1.2974 | 65.674 | 1.1663 | 74.106 | 1.0251 | 81.074 | 0.88989 | 86.454 | 0.76925 | 90.337 |
| 72 | -1.3580 | 67.160 | 1.2157 | 76.187 | 1.0614 | 83.602 | 0.91453 | 89.273 | 0.78465 | 93.326 |
| 73 | 1.4262 | 68.686 | 1.2708 | 78.371 | 1.1013 | 86.266 | 0.94111 | 92.244 | 0.80095 | 96.466 |
| 74 | I. 5033 | 70.256 | 1.3325 | 80.670 | $1.145^{2}$ | 89.084 | 0.96974 | 95.379 | 0.81815 | 99.769 |
| 75 | 1.5913 | 71.873 | 1.4020 | 83.101 | 1.1936 | 92.076 | 1.0005 | 98.692 | 0.83625 | 103.245 |
| 76 | 1.6924 | 73.543 | 1.4807 | 85.685 | 1.2470 | 95.261 | 1.0337 | 102.202 | 0.85525 | 106.905 |
| 77 | 1.8098 | 75.274 | 1.5704 | 88.447 | 1.3061 | 98.664 | 1.0693 | 105.925 | 0.87515 | 110.760 |
| 78 | 1.9473 | 77.078 | 1.6731 | 91.420 | 1.3714 | 102.315 | 1.1074 | 109.881 | 0.89585 | 114.820 |
| 79 | 2.1104 | 78.966 | 1.7915 | 94.644 | 1.4436 | 106.250 | 1.1478 | 114.088 | 0.91720 | 119.093 |
| 80 | 2.3068 | 80.960 | 1.9288 | 98.175 | 1.5231 | 110.510 | 1.1906 | 118.568 | 0.93905 | 123.590 |
| 81 | 2.5472 | 83.087 | 2.0894 | 102.083 | 1.6104 | 115.140 | 1.2352 | 123.344 | 0.96110 | 128.319 |
| 82 | 2.8474 | 85.390 | 2.2775 | 106.466 | 1.7056 | 120.191 | 1.2813 | 128.428 | 0.98305 | 133.281 |
| 83 | 3.2326 | 87.937 | 2.4992 | 111.446 | 1.8078 | 125.722 | 1.3279 | 133.842 | 1.0045 | 138.474 |
| 84 | 3.7435 | 90.839 | 2.7604 | 117.199 | I.9155 | 131.793 | 1.3739 | 139.590 | 1.0249 | 143.894 |
| 85 | 4.4502 | 94.289 | 3.0648 | 123.945 | 2.0255 | 138.448 | 1.4179 | 145.673 | 1.0436 | 149.528 |
| 86 | 5.4825 | 98.668 | 3.4114 | 131.956 | 2.1329 | 145.720 | 1.4579 | 152.075 | 1.0601 | 155.359 |
| 87 | 7.1175 | 104.79 | 3.7856 | 141.527 | 2.2309 | 153.606 | 1.4921 | 158.768 | 1.0738 | 161.359 |
| 88 | 9.9938 | 114.760 | 4.1472 | 152.868 | 2.3107 | 162.043 | 1.5184 | 165.700 | 1.0840 | 167.494 |
| 89 | 15.528 | 135.011 | 4.4231 | 165.896 | 2.3628 | 170.905 | 1.5349 | 172.805 | 1.0904 | 173.723 |
| 90 | 21.395 | 180.000 | 4.5275 | 180.000 | 2.3813 | 180.000 | 1.5406 | 180.000 | 1.0925 | 180.000 |

Note. Negative quantities are in heavy type.

$$
\text { Example. } \frac { \operatorname { t a n h } ( 2 . 0 / 8 0 ^ { \circ } ) } { 2 . 0 \angle 8 0 ^ { \circ } } = 0 . 9 3 9 0 5 \longdiv { 1 2 3 ^ { \circ } \cdot 5 9 0 } = 0 . 9 3 9 0 5 \longdiv { 1 2 3 ^ { \circ } \cdot 3 5 ^ { \prime } \cdot 2 4 ^ { \prime \prime } . }
$$

Table V. CORRECTING FACTOR. $\frac{\tanh \theta}{\theta}=r / \underline{\gamma}$. Continued

|  | 2.1 |  | 2.2 |  | 2.3 |  | 2.4 |  | 2.5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | - |  |  |  | - |  | $\bigcirc$ |  |  |
| 45 | 0.52690 | 43.993 | 0.4969 r | 44.845 | 0.46952 | 45.492 | 0.44467 | 45.961 | 0.42212 | 46.283 |
| 46 | 0.53019 | 45.254 | 0.49941 | 46.127 | 0.47139 | 46.783 | 0.44592 | 47.252 | 0.42292 | 47.564 |
| 47 | 0.53362 | 46.542 | 0.50200 | 47.436 | 0.47322 | 48.101 | 0.44717 | 48.567 | 0.42368 | 48.868 |
| 48 | 0.53714 | 47.859 | 0.50465 | 48.774 | 0.47509 | 49.446 | 0.44842 | 49.908 | 0.42440 | 50.195 |
| 49 | 0.54081 | 49.206 | 0.50732 | 50.142 | 0.47696 | 50.820 | 0.44958 | 51.277 | 0.42504 | 51.548 |
| 50 | 0.54462 | 50.586 | 0.51009 | 51.542 | 0.47883 | 52.226 | 0.45075 | 52.676 | 0.42560 | 52.929 |
| 51 | 0.54852 | 52.001 | 0.51291 | 52.978 | 0.48070 | 53.666 | 0.45188 | 54.107 | 0.42612 | 54.340 |
| 52 | 0.55257 | 53.452 | 0.51578 | 54.452 | 0.48256 | 55.144 | 0.45292 | 55.572 | 0.42652 | 55.782 |
| 53 | 0.5568 I | 54.943 | 0.51868 | 55.965 | 0.48443 | 56.659 | 0.45392 | 57.073 | 0.42684 | 57.256 |
| 54 | 0.56114 | 56.476 | 0.52168 | 57.520 | 0.48630 | 58.215 | 0.45488 | 58.614 | 0.42704 | 58.766 |
| 55 | 0.56562 | 58.055 | 0.52473 | 59.120 | 0.48813 | 59.815 | 0.45571 | 60.196 | 0.42712 | 60.314 |
| 56 | 0.57029 | 59.682 | 0.52782 | 60.769 | 0.48991 | 61.462 | 0.45646 | 61.822 | 0.42708 | 61.903 |
| 57 | 0.57514 | 61.361 | 0.53095 | 62.469 | 0.49170 | 63.160 | 0.45713 | 63.496 | 0.42688 | 63.534 |
| 58 | 0.58014 | 63.094 | 0.53414 | 64.226 | 0.49339 | 64.912 | 0.45767 | 65.220 | 0.42648 | 65.211 |
| 59 | 0.58533 | 64.888 | 0.53736 | 66.042 | 0.49504 | 66.722 | 0.45804 | 66.998 | 0.42588 | 66.938 |
| 60 | 0.59071 | 66.745 | 0.54064 |  | 0.49661 | 68.594 | 0.45829 | 68.835 | 0.42512 | 68.718 |
| 61 | 0.59629 | 68.671 | 0.54395 | 69.869 | 0.49813 | 70.531 | 0.45838 | 70.735 | 0.42412 | 70.556 |
| 62 | 0.60210 | 70.669 | 0.54732 | 71.889 | 0.49957 | 72.540 | 0.45829 | 72.701 | 0.42288 | 72.455 |
| 63 | -0.60814 | 72.744 | 0.55073 | 73.988 | 0.50087 | 74.625 | 0.45800 | 74.740 | 0.42140 | 74.419 |
| 64 | 0.61443 | 74.902 | 0.55418 | 76.171 | 0.50209 | 76.791 | 0.45750 | 76.855 | 0.41960 | 76.455 |
| 65 | 0.62090 | 77.151 | 0.55764 | 78.443 | 0.50317 | 79.044 | 0.45675 | 79.053 | 0.41752 | 78.567 |
| 66 | 0.62767 | 79.496 | 0.56109 | 80.810 | 0.50413 | 81.390 | 0.45579 | 81.341 | 0.41512 | 80.761 |
| 67 | 0.63471 | 8 I .942 | 0.56459 | 83.280 | 0.50491 | 83.836 | 0.45454 | 83.723 | 0.41240 | 83.044 |
| 68 | 0.64205 | 84.499 | 0.56814 | 85.858 | 0.50557 | 86.389 | 0.45300 | 86.208 | 0.40928 | 85.424 |
| 69 | 0.64962 | 87.172 | 0.57164 | 88.552 | 0.50604 | 89.056 | 0.45121 | 88.802 | 0.40580 | 87.906 |
| 70 | 0.65752 | 89.968 | 0.57518 | 91.370 | 0.50630 | 91.843 | 0.44913 | 91.514 | 0.40196 | 90.500 |
| 71 | 0.66571 | 92.898 | 0.57873 | 94.319 | 0.50639 | 94.759 | 0.44671 | 94.352 | 0.39771 | 93.215 |
| 72 | 0.67424 | 95.968 | 0.58223 | 97.405 | 0.50626 | 97.811 | 0.44396 | 97.324 | 0.39306 | 96.061 |
| 73 | 0.68305 | 99.185 | 0.58568 | 100.636 | 0.50596 | 101.006 | 0.44092 | 100.439 | 0.38802 | 99.048 |
| 74 | 0.69214 | 102.560 | 0.58914 | 104.020 | 0.50543 | 104.352 | 0.43754 | 103.706 | 0.38260 | 102.187 |
|  | 0.70152 | 106.099 | 0.59255 | 107.564 | 0.50470 | 107.858 | 0.43388 | 107.134 | 0.3768 I | 105.489 |
| 76 | 0.71114 | 109.811 | 0.59586 | 111.274 | 0.50378 | 111.531 | 0.42992 | 110.730 | 0.37068 | 108.966 |
| 77 | 0.72096 | 113.702 | 0.59914 | 115.156 | 0.50265 | 115.374 | 0.42575 | 114.505 | 0.36427 | 112.633 |
| 78 | 0.73086 | 117.778 | 0.60232 | 119.212 | 0.50135 | 119.392 | 0.42138 | 118.467 | 0.35762 | 116.501 |
| 79 | 0.74090 | 122.043 | 0.60536 | 123.446 | 0.49991 | 123.590 | 0.41683 | 122.620 | 0.35080 | 120.582 |
| 80 | 0.75086 | 126.501 | 0.60832 | 127.859 | 0.49835 | 127.968 | 0.41221 | 126.968 | 0.34392 | 124.887 |
| 81 | 0.76067 | 131.151 | 0.61109 | 132.449 | 0.49674 | 132.527 | 0.40759 | 131.517 | 0.33706 | 129.427 |
| 82 | 0.77019 | 135.989 | 0.61364 | 137.212 | 0.49509 | 137.264 | 0.40305 | 136.267 | 0.33033 | 134.209 |
| 83 | 0.77924 | 141.011 | 0.61600 | 142.140 | 0.49343 | 142.171 | 0.39869 | 141.212 | 0.32391 | 139.233 |
| 84 | 0.78767 | 146.210 | 0.61814 | 147.223 | 0.49183 | 147.237 | 0.39463 | 146.344 | 0.31790 | 144.499 |
| 85 | 0.79524 | 151.570 | 0.62000 | 152.449 | 0.49039 | 152.450 | 0.39094 | 151.650 | 0.31248 | 149.994 |
| 86 | 0.80176 | 157.070 | 0.62155 | 157.800 | 0.48913 | 157.793 | 0.38775 | 157.113 | 0.30778 | 155.703 |
| 87 | 0.80710 | 162.690 | 0.62282 | 163.254 | 0.48804 | 163.245 | 0.38516 | 162.710 | 0.30396 | 161.598 |
| 88 | 0.81100 | 168.406 | 0.62374 | 168.790 | 0.48726 | 168.781 | 0.38325 | 168.413 | 0.30113 | 167.645 |
| 89 | 0.81338 | 174.187 | 0.62427 | 174.381 | 0.48678 | 174.376 | 0.38207 | 174.188 | 0.29940 | 173.796 |
| 90 | 0.81424 | 180.000 | 0.62445 | 180.000 | 0.48661 | 180.000 | 0.38167 | 180.000 | 0.29880 | 80.000 |

Note Negative quantities are in heavy type.
Example. $\frac{\tanh \left(2.3 \angle 90^{\circ}\right)}{2.3 \angle 90^{\circ}}=0.4866 \mathrm{I} \sqrt{180^{\circ}}=0.48661 \angle 180^{\circ}$.

Table V. CORRECTING FACTOR. $\frac{\tanh \theta}{\theta}=r \not \gamma$. Continued

|  | 2.6 |  | - 2.7 |  | 2.8 |  | 2.9 |  | 3.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | $\bigcirc$ |  | - |  | 0 |  | - |  | - |
| 45 | 0.40173 | 46.480 | 0.38326 | 46.576 | 0.36657 | 46.595 | 0.35145 | 46.554 | 0.33770 | 46.468 |
| 46 | 0.40215 | 47.744 | 0.38341 | 47.821 | 0.36650 | 47.816 | 0.35121 | 47.748 | 0.33733 | 47.637 |
| 47 | 0.40250 | 49.030 | 0.38348 | 49.083 | 0.36632 | 49.051 | 0.35086 | 48.955 | 0.33690 | 48.8I 5 |
| 48 | 0.40281 | 50.337 | 0.38344 | 50.365 | 0.36607 | 50.303 | 0.35045 | 50.175 | 0.33637 | 50.002 |
| 49 | 0.40304 | 51.667 | 0.38333 | 51.666 | 0.36571 | 51.572 | 0.34997 | 51.409 | 0.33573 | 51.198 |
| 50 | 0.40319 | 53.022 | 0.38311 | 52.988 | 0.36525 | 52.857 | 0.34928 | 52.656 | 0.33497 | 52.405 |
| 51 | 0.40319 | 54.403 | 0.38278 | 54.332 | 0.36464 | 54.160 | 0.34848 | 53.916 | 0.33410 | 53.622 |
| 52 | 0.40308 | 55.812 | 0.38233 | 55.700 | 0.36389 | 55.483 | 0.34759 | 55.191 | 0.33307 | 54.849 |
| 53 | 0.40288 | 57.250 | 0.38174 | 57.094 | 0.36300 | 56.826 | 0.34652 | 56.48 I | 0.33191 | 56.086 |
| 54 | 0.40254 | 58.717 | 0.38096 | 58.513 | 0.36196 | 58.190 | 0.34528 | 57-788 | 0.33058 | 57.334 |
| 55 | 0.40200 | 60.219 | 0.38000 | 59.959 | 0.36075 | 59.577 | 0.34386 | 59.112 | 0.32907 | 58.593 |
| 56 | 0.40131 | 61.756 | 0.37889 | 61.437 | 0.35932 | 60.987 | 0.34226 | 60.452 | 0.32737 | 59.862 |
| 57 | 0.40046 | 63.331 | 0.37756 | 62.945 | 0.35768 | 62.422 | 0.34043 | 61.810 | 0.32546 | 61.141 |
| 58 | 0.39942 | 64.947 | 0.37600 | 64.487 | 0.35580 | 63.884 | 0.33837 | 63.186 | 0.32332 | 62.432 |
| 59 | 0.398 i 2 | 66.606 | 0.37422 | 66.066 | 0.35367 | 65.374 | 0.33602 | 64.582 | 0.32093 | 63.735 |
| 60 | 0.39658 | 68.313 | 0.37215 | 67.684 | 0.35126 | 66.895 | 0.33345 | 65.999 | 0.31827 | 65.049 |
| 61 | 0.39481 | 70.069 | 0.36980 | 69.343 | 0.34856 | 68.449 | 0.33056 | 67.439 | 0.31532 | 66.375 |
| 62 | 0.39273 | 71.879 | 0.36716 | 71.048 | 0.34554 | 70.036 | 0.32734 | 68.904 | 0.31206 | 67.713 |
| 63 | 0.39035 | 73.747 | 0.36416 | 72.801 | 0.34217 | 71.660 | 0.32378 | 70.392 | 0.30847 | 69.063 |
| 64 | 0.38765 | 75.677 | 0.36081 | 74.607 | 0.33843 | 73.325 | 0.31985 | 71.907 | 0.30451 | 70.426 |
| 65 | 0.38458 | 77.675 | 0.35709 | 76.470 | 0.33430 | 75.033 | 0.31552 | 73.452 | 0.30016 | 71.801 |
| 66 | 0.38115 | 79.747 | 0.35296 | 78.393 | 0.32974 | 76.789 | 0.31076 | 75.027 | 0.29539 | 73.192 |
| 67 | 0.37733 | 81.898 | 0.34841 | 80.383 | 0.32474 | 78.599 | 0.30556 | 76.639 | 0.29018 | 74.598 |
| 68 | 0.37310 | 84.136 | 0.34341 | 82.449 | 0.31927 | 80.464 | 0.29988 | 78.289 | 0.28450 | 76.021 |
| 69 | 0.36844 | 86.469 | 0.33794 | 84.597 | 0.31331 | 82.396 | 0.29369 | 79.982 | 0.27832 | 77.463 |
| 70 | 0.36333 | 88.902 | 0.33198 | 86.833 | 0.30683 | 84.399 | 0.28697 | 8 I .722 | 0.27161 | 78.926 |
| 71 | 0.35777 | 91.451 | 0.32553 | 89.168 | 0.29982 | 86.482 | 0.27970 | 83.518 | 0.26434 | 80.414 |
| 72 | 0.35176 | 94.122 | 0.31857 | 91.613 | 0.29226 | 88.655 | 0.27186 | 85.378 | 0.25649 | 8 I .932 |
| 73 | 0.34529 | 96.929 | 0.31109 | 94.184 | 0.28415 | 90.931 | 0.26343 | 87.310 | 0.24803 | 83.485 |
| 74 | 0.33837 | 99.884 | 0.30311 | 96.893 | 0.27548 | 93.325 | 0.25439 | 89.328 | 0.23894 | 85.081 |
| 75 | 0.33102 | 103.003 | 0.29464 | 99.757 | 0.26625 | 95.857 | 0.24475 | 91.448 | 0.22922 | 86.729 |
| 76 | 0.32328 | 106.302 | 0.28570 | 102.799 | 0.25648 | 98.547 | 0.23450 | 93.690 | 0.21883 | 88.443 |
| 77 | -.31519 | 109.799 | 0.27634 | 106.038 | 0.24621 | 101.421 | 0.22366 | 96.078 | 0.20779 | 90.241 |
| 78 | 0.30680 | II3.513 | 0.26661 | 109.505 | 0.23546 | 104.512 | 0.21224 | 98.647 | 0.19610 | 92.146 |
| 79 | 0.2982 I | 117.466 | 0.25659 | II3.23 | 0.2243 I | 107.861 | 0.20030 | ror. 437 | 0.18376 | 94.191 |
| 80 | 0.28950 | 121.678 | 0.24637 | II7.249 | 0.21284 | 111.519 | 0.18788 | 104.504 | 0.17082 | 96.419 |
| 81 | 0.2808 I | 126.171 | 0.23609 | I2I. 599 | -.20116 | I I 5.543 | 0.17507 | 107.921 | O.15730 | 98.893 |
| 82 | 0.27227 | 130.966 | 0.22589 | 126.322 | 0.18943 | 120.004 | 0.16200 | III.784 | 0.14329 | 101.700 |
| 83 | 0.26405 | 136.078 | 0.21597 | 131.464 | 0.17783 | 124.989 | 0.14880 | II6.22I | 0.12887 | 104.976 |
| 84 | 0.25633 | 141.517 | 0.20654 | 137.060 | 0.16660 | 130.591 | 0.13573 | 121.403 | O.11419 | 108.916 |
| 85 | 0.24931 | 147.286 | 0.19786 | 143.143 | 0.15604 | 136.907 | 0.12307 | 127.549 | 0.099443 | 113.839 |
| 86 | 0.243I9 | 153.370 | 0.19020 | 149.722 | 0.14651 | 144.025 | O.III 22 | 134.931 | 0.084970 | 120.254 |
| 87 | 0.23818 | 159.740 | 0.18384 | 156.778 | 0.13844 | 151.988 | 0.10074 | 143.833 | 0.071310 | 128.990 |
| 88 | 0.23446 | 166.349 | 0.17906 | 164.253 | 0.13224 | 160.762 | 0.092383 | 154.456 | 0.059383 | 141.294 |
| 89 | 0.23216 | 173.129 | 0.17609 | 172.042 | 0.12832 | 170.195 | 0.086890 | 166.709 | 0.050750 | I58.480 |
| 90 | 0.23138 | 180.000 | 0.17509 | 180.000 | 0.12698 | 180.000 | 0.084969 | 180.000 | 0.047517 | 180.000 |

$$
\begin{array}{ll}
\text { Note. } & \text { Negative quantities are in heavy type. } \\
\text { Example. } & \frac { \operatorname { t a n h } ( 2 . 9 / 8 5 ^ { \circ } ) } { 2 . 9 / 8 5 ^ { \circ } } = 0 . 1 2 3 0 7 \longdiv { I 2 7 ^ { \circ } \cdot 5 4 9 } = 0 . 1 2 3 0 7 \longdiv { I 2 7 ^ { \circ } \cdot 3 2 ^ { \prime } \cdot 5 6 ^ { \prime \prime } }
\end{array}
$$

FUNCTIONS OF SEMI-IMAGINARIES. $f\left(\rho \angle 45^{\circ}\right)=r \angle \gamma$

| $\rho$ | Sinh |  | Cosh |  | Tanh |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | o. | 45.00 | 1. | 0. | -. | 45.00 |
| 0.1 | 0.10000 | 45.06 | 1.00001 | 0.17 | 0.09999 | 44.49 |
| 0.2 | 0.20000 | 45.23 | 1.00013 | .1.09 | 0.19997 | 44.14 |
| 0.3 | 0.30001 | 45.52 | 1.0007 | 2.35 | 0.29981 | 43.17 |
| 0.4 | 0.40005 | 46.32 | 1.002 I | $4 \cdot 35$ | 0.39921 | 41.57 |
| 0.5 | 0.50016 | 47.23 | 1.0052 | 7.08 | 0.49757 | 40.15 |
| 0.6 | 0.60042 | 48.27 | 1.0107 | 10.15 | 0.59406 | 38.11 |
| 0.7 | 0.70094 | 49.40 | 1.0198 | 13.53 | 0.68732 | 35.47 |
| 0.8 | 0.80184 | 51.06 | 1.0336 | 18.00 | 0.77577 | 33.06 |
| 0.9 | 0.90327 | 52.44 | 1.0533 | 22.34 | 0.85756 | 30.10 |
| 1.0 | 1.0055 | 54.32 | 1.0803 | 27.29 | 0.93077 | 27.03 |
| 1.1 | 1.1089 | 56.31 | 1.1157 | 32.41 | 0.99389 | 23.50 |
| 1.2 | 1.2138 | 58.41 | 1.1608 | 38.05 | 1.0457 | 20.36 |
| 1.3 | 1.3205 | 61.02 | I. 2163 | 43.35 | 1.0857 | 17.27 |
| 1.4 | 1.4297 | 63.34 | 1.2830 | 49.05 | 1.1143 | 14.29 |
| 1.5 | 1.5418 | 66.15 | 1.3616 | 54.33 | 1.1323 | 11.42 |
| 1.6 | 1.6575 | 69.07 | 1.4524 | 59.55 | 1.1413 | 9.12 |
| 1.7 | 1.7776 | 72.08 | 1.5556 | 65.09 | 1.1428 | 6.59 |
| 1.8 | 1.9029 | 75.18 | 1.6714 | 70.14 | 1.1385 | 5.04 |
| 1.9 | 2.0343 | 78.36 | 1.7999 | 75.10 | 1.1302 | 3.26 |
| 2.0 | 2.1726 | 82.01 | 1.9413 | 79.56 | 1.1191 | 2.06 |
| 2.1 | 2.3190 | 85.34 | 2.0958 | 84.33 | 1.1065 | 1.OI |
| 2.2 | 2.4745 | 89.12 | 2.2636 | 89.03 | 1.0932 | 0.09 |
| 2.3 | 2.6404 | 92.57 | 2.4449 | 93.26 | 1.0799 | 0.29 |
| 2.4 | 2.8177 | 96.46 | 2.6403 | 97.44 | 1.0672 | 0.58 |
| 2.5 | 3.0079 | 100.39 | 2.8502 | 101.56 | 1.0553 | 1.17 |
| 2.6 | 3.2121 | 104.36 | 3.0753 | 106.05 | 1.0445 | 1.29 |
| 2.7 | 3.4318 | 108.36 | 3.3163 | 110.10 | 1.0348 | 1. 34 |
| 2.8 | 3.6685 | 112.39 | $3 \cdot 5741$ | 114.15 | 1.0264 | 1.36 |
| 2.9 | 3.9236 | 116.43 | 3.8497 | 118.16 | 1.0192 | 1.33 |
| 3.0 | 4.1986 | 120.48 | 4.1443 | 122.16 | 1.0131 | 1.28 |
| 3.1 | 4.4948 | 124.56 | 4.4589 | 126.15 | 1.0080 | 1.19 |
| 3.2 | 4.8154 | 129.02 | 4.7955 | 130.15 | 1.0041 | 1.13 |
| $3 \cdot 3$ | 5.1586 | 133.09 | 5.1541 | 134.13 | 1.0008 | 1.04 |
| 3.4 | 5.5306 | 137.17 | 5.5393 | 138.13 | 0.9984 | 0.56 |
| 3.5 | 5.9305 | 141.24 | 5.9356 | 142.12 | 0.9967 | 0.48 |
| 3.6 | 6.3603 | 145.31 | 6.3900 | 146.11 | 0.9954 | 0.40 |
| 3.7 | 6.8244 | 149.38 | 6.8606 | 150.10 | 0.9947 | 0.32 |
| 3.8 | 7.3228 | 153.44 | 7.3646 | 154.09 | 0.9943 | 0.25 |
| 3.9 | 7.8590 | 157.50 | 7.9047 | 158.10 | 0.9942 | 0.20 |
| 4.0 | 8.4351 | 161.57 | 8.4831 | 162.11 | 0.9943 | 0.14 |
| 4.1 | 9.0535 | 166.02 | 9.1024 | 166.12 | 0.9946 | 0.10 |
| 4.2 | 9.7198 | 170.07 | 9.7704 | 170.13 | 0.9948 | 0.06 |
| $4 \cdot 3$ | 10.434 | 174.11 | 10.481 | 174.15 | 0.9955 | 0.04 |
| 4.4 | 11.201 | 178.16 | 11.246 | 178.16 | 0.9960 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\sinh \left(1.7 \angle 45^{\circ}\right)=1.7776 / 72^{\circ} .08^{\prime}$.
$\operatorname { t a n h } ( 2 . 4 / 4 5 ^ { \circ } ) = 1 . 0 6 7 2 \longdiv { 0 ^ { \circ } . 5 8 ^ { \prime } }$.
[32]

Table VI
FUNCTIONS OF SEMI-IMAGINARIES. $f\left(\rho / 45^{\circ}\right)=r / \gamma$. Continued

| $\rho$ | Cosech |  | Sech |  | Coth |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0. | $\infty$ | 45.00 | I. | 0. | $\infty$ | 45.00 |
| 0.1 | 10.0000 | 45.06 | 0.99999 | 0.17 | 10.0000 | 44.49 |
| 0.2 | 5.0000 | 45.23 | 0.99987 | 1.09 | 5.0008 | 44.14 |
| 0.3 | 3.3333 | 45.52 | 0.9993 | 2.35 | 3.3355 | 43.17 |
| 0.4 | 2.4997 | 46.32 | 0.9979 | 4.35 | 2.5050 | 41.57 |
| 0.5 | 1.9984 | 47.23 | 0.9948 | 7.08 | 2.0096 | 40.15 |
| 0.6 | 1.6654 | 48.27 | 0.9894 | 10.15 | 1.6830 | 38.11 |
| 0.7 | 1.4268 | 49.40 | 0.9806 | 13.53 | 1. 4549 | 35.47 |
| 0.8 | 1.2471 | 51.06 | 0.9675 | 18.00 | 1.2890 | 33.06 |
| 0.9. | 1.1070 | 52.44 | 0.9494 | 22.34 | 1.1660 | 30.10 |
| 1.0 | 0.9945 | 54.32 | 0.9256 | 27.29 | 1.0746 | 27.03 |
| I. 1 | 0.9018 | 56.31 | 0.8963 | 32.41 | 1.0061 | 23.50 |
| 1.2 | 0.8238 | 58.41 | 0.8614 | 38.05 | 0.9564 | 20.36 |
| 1.3 | 0.7573 | 61.02 | 0.8222 | 43.35 | 0.9211 | 17.27 |
| 1.4 | 0.6995 | 63.34 | 0.7793 | 49.05 | 0.8996 | 14.29 |
| 1.5 | 0.6486 | 66.15 | 0.7344 | 54.33 | 0.8831 | 11.42 |
| 1.6 | 0.6033 | 69.07 | 0.6885 | 59.55 | 0.8763 | 9.12 |
| 1.7 | 0.5625 | 72.08 | 0.6429 | 65.09 | 0.8751 | 6.59 |
| 1.8 | 0.5256 | 75.18 | 0.5981 | 70.14 | 0.8788 | 5.04 |
| 1.9 | 0.4916 | 78.36 | 0.5556 | 75.10 | 0.8848 | 3.26 |
| 2.0 | 0.4603 | 82.01 | 0.5151 | 79.56 | 0.8936 | 2.06 |
| 2.1 | 0.4312 | 85.34 | 0.4772 | 84.33 | 0.9038 | 1.01 |
| 2.2 | 0.4041 | 89.12 | 0.4418 | 89.03 | 0.9147 | 0.09 |
| 2.3 | 0.3788 | 92.57 | 0.4090 | 93.26 | 0.9260 | 0.29 |
| 2.4 | 0.3549 | 96.46 | 0.3788 | 97.44 | 0.9370 | 0.58 |
| 2.5 | 0.3325 | 100.39 | 0.3509 | 101.56 | 0.9476 | 1.17 |
| 2.6 | 0.3114 | 104.36 | 0.3252 | 106.05 | 0.9574 | 1.29 |
| 2.7 | 0.2914 | 108.36 | 0.3016 | 110.10 | 0.9663 | 1.34 |
| 2.8 | 0.2726 | 112.39 | 0.2798 | 114.15 | 0.9743 | 1. 36 |
| 2.9 | 0.2549 | 116.43 | 0.2598 | 118.16 | 0.9812 | 1.33 |
| 3.0 | 0.2382 | 120.48 | 0.2413 | 122.16 | 0.9871 | 1.28 |
| 3.1 | 0.2225 | 124.56 | 0.2243 | 126.15 | 0.9920 | 1.19 |
| 3.2 | 0.2077 | 129.02 | 0.2085 | 130.15 | 0.9959 | 1.13 |
| $3 \cdot 3$ | -.1939 | 133.09 | 0.1940 | 134.13 | 0.9992 | 1.04 |
| 3.4 | 0.1808 | 137.17 | 0.1805 | 138.13 | 1.0016 | 0.56 |
| $3 \cdot 5$ | 0.1686 | 141.24 | 0.1681 | 142.12 | 1.0033 | 0.48 |
| 3.6 | 0.1572 | 145.31 | 0.1565 | 146.11 | 1.0047 | 0.40 |
| 3.7 | 0.1465 | 149.38 | 0.1458 | 150.10 | 1.0053 | 0.32 |
| 3.8 | 0.1366 | 153.44 | 0.1358 | 154.09 | 1.0057 | 0.25 |
| $3 \cdot 9$ | 0.1272 | 157.50 | 0.1265 | 158.10 | 1.0058 | 0.20 |
| 4.0 | 0.1186 | 161.57 | - 1179 | 162.11 | 1.0057 | 0.14 |
| 4.1 | 0.1105 | 166.02 | 0.1099 | 166.12 | 1.0054 | 0.10 |
| 4.2 | 0.1029 | 170.07 | 0.1024 | 170.13 | 1.0052 | 0.06 |
| $4 \cdot 3$ | 0.09584 | 174.11 | 0.09541 | 174.15 | 1.0045 | 0.04 |
| 4.4 | 0.08927 | 178.16 | 0.08892 | 178.16 | 1.0040 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\operatorname { c o s e c h } ( 2 . 0 / 4 5 ^ { \circ } ) = 0 . 4 6 0 3 \longdiv { 8 2 ^ { \circ } . \mathrm { OI } ^ { \prime } }$. $\operatorname{coth}\left(2.5 \angle 45^{\circ}\right)=0.9476 \angle 1^{\circ} .17^{\prime}$.
[33]

Table VI
FUNCTIONS OF SEMI-IMAGINARIES. $f\left(\rho / 45^{\circ}\right)=r / \gamma$. Continued

| $\rho$ | Sinh |  |
| :---: | :---: | :---: |
|  | , |  |
| 4.5 | 12.026 | 182.19 |
| 4.6 | 12.909 | 186.23 |
| 4.7 | 13.858 | 190.27 |
| 4.8 | 14.876 | 194.30 |
| 4.9 | 15.968 | 198.33 |
| 5.0 | 17.140 | 202.36 |
| 5.1 | 18.397 | 206.39 |
| 5.2 | 19.747 | 210.42 |
| 5.3 | 21.195 | 214.45 |
| 5.4 | 22.750 | 218.48 |
| 5.5 | 24.418 | 222.50 |
| 5.6 | 26.219 | 226.53 |
| 5.7 | 28.141 | 230.56 |
| 5.8 | 30.192 | 234.59 |
| 5.9 | 32.405 | 239.02 |
| 6.0 | 34.784 | 243.05 |

Cosh
Tanh

| 12.067 | 182.19 | 0.9966 | 0.00 |
| :--- | :--- | :--- | :--- |
| 12.948 | 186.21 | 0.9970 | 0.02 |
| 13.894 | 190.23 | 0.9974 | 0.04 |
| 14.909 | 194.26 | 0.9978 | 0.04 |
| 15.999 | 198.29 | 0.9980 | 0.04 |
| 17.169 | 202.32 | 0.9983 | 0.04 |
| 18.425 | 206.35 | 0.9985 | 0.04 |
| 19.772 | 210.38 | 0.9087 | 0.04 |
| 21.219 | 214.41 | 0.9989 | 0.04 |
| 22.772 | 218.44 | 0.9990 | 0.04 |
| 24.439 | 222.47 | 0.9992 | 0.03 |
| 26.238 | 226.51 | 0.9993 | 0.02 |
| 28.159 | 230.54 | 0.9994 | 0.02 |
| 30.209 | 234.57 | 0.9995 | 0.02 |
| 32.421 | 239.00 | 0.9996 | 0.02 |
| 34.798 | 243.04 | 0.9996 | 0.01 |

Cosech 。 ,
Sech
Coth

| $\rho$ | Cosech |  |
| :---: | :---: | :---: |
|  |  | 0, |
| 4.5 | 0.08316 | 182.19 |
| 4.6 | 0.07746 | 186.23 |
| 4.7 | 0.07216 | 190.27 |
| 4.8 | 0.06722 | 194.30 |
| 4.9 | 0.06263 | 198.33 |
| 5.0 | 0.05834 | 202.36 |
| 5.1 | 0.05436 | 206.39 |
| 5.2 | 0.05064 | 210.42 |
| 5.3 | 0.04718 | 214.45 |
| 5.4 | 0.04396 | 218.48 |
| 5.5 | 0.04095 | 222.50 |
| 5.6 | 0.03814 | 226.53 |
| 5.7 | 0.03554 | 230.56 |
| 5.8 | 0.03312 | 234.59 |
| 5.9 | 0.03086 | 239.02 |
| 6.0 | 0.02875 | 243.05 |


| Sech |  | Coth | $\circ$, |
| :---: | :---: | :---: | :---: |
| 0.08288 | 182.19 | 1.0034 | 0.00 |
| 0.07723 | 186.21 | 1.0030 | 0.02 |
| 0.07197 | 190.23 | 1.0026 | 0.04 |
| 0.06707 | 194.26 | 1.0022 | 0.04 |
| 0.06250 | 198.29 | 1.0020 | 0.04 |
| 0.05824 | 202.32 | 1.0017 | 0.04 |
| 0.05428 | 206.35 | 1.0015 | 0.04 |
| 0.05058 | 210.38 | 1.0013 | 0.04 |
| 0.04713 | 214.41 | 1.0011 | 0.04 |
| 0.04391 | 218.44 | 1.0010 | 0.04 |
| 0.04092 | 222.47 | 1.0008 | 0.03 |
| 0.03811 | 226.51 | 1.0007 | 0.02 |
| 0.03551 | 230.54 | 1.0006 | 0.02 |
| 0.03310 | 234.57 | 1.0005 | 0.02 |
| 0.03085 | 239.00 | 1.0004 | 0.02 |
| 0.02874 | 243.04 | 1.0004 | 0.01 |

Note. Negative quantities are in heavy type.
Examples. $\tanh \left(6.0 / 45^{\circ}\right)=0.9996 / 0^{\circ} . \mathrm{OI}^{\prime}$.

$$
\operatorname{sech}\left(5.0 \angle 45^{\circ}\right)=0.05824 \sqrt{202^{\circ} \cdot 32^{\prime}}
$$

Table VI
FUNCTIONS OF SEMI-IMAGINARIES. $f\left(\rho / 45^{\circ}\right)=r / \gamma$. Continued

| $\rho$ | Sinh and cosh |  | Tanh and coth |  | Sech and cosech |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | - , |  | - |  |  |  |
| 6.05 | 36.047 | 245.06 | 1.000 | 0.00 | 2.774 | (10-2 | 245.06 |
| 6.10 | 37.349 | 247.08 | 1.000 | 0.00 | 2.678 |  | 247.08 |
| 6.15 | 38.693 | 249.09 | 1.000 | 0.00 | 2.583 |  | 249.09 |
| 6.20 | 40.084 | 251.11 | 1.000 | 0.00 | 2.495 | " | 251.11 |
| 6.25 | 41.524 | 253.12 | 1.000 | 0.00 | 2.408 | " | 253.12 |
| 6.30 | 43.020 | 255.14 | 1.000 | 0.00 | 2.325 | " | 255.14 |
| 6.35 | 44.563 | 257.15 | 1.000 | 0.00 | 2.244 | " | 257.15 |
| 6.40 | 46.171 | 259.17 | 1.000 | 0.00 | 2.166 | " | 259.17 |
| 6.45 | 47.832 | 261.18 | 1.000 | 0.00 | 2.091 | " | 261.18 |
| 6.50 | 49.553 | 263.20 | 1.000 | 0.00 | 2.018 | " | 263.20 |
| 6.55 | 51.336 | 265.22 | 1.000 | 0.00 | 1.948 | " | 265.22 |
| 6.60 | 53.183 | 267.24 | 1.000 | 0.00 | 1.880 | " | 267.24 |
| 6.65 | 55.110 | 269.25 | 1.000 | 0.00 | 1.815 | " | 269.25 |
| 6.70 | 57.058 | 271.27 | 1.000 | 0.00 | 1.752 | " | 271.27 |
| 6.75 | 59.136 | 273.28 | 1.000 | 0.00 | 1.691 | " | 273.28 |
| 6.80 | 61.259 | 275.30 | 1.000 | 0.00 | 1.632 | " | 275.30 |
| 6.85 | 63.463 | 277.31 | 1.000 | 0.00 | 1.576 | " | 277.31 |
| 6.90 | 65.746 | 279.33 | 1.000 | 0.00 | 1.521 | " | 279.33 |
| 6.95 | 68.119 | 281.34 | 1.000 | 0.00 | 1.468 | " | 281.34 |
| 7.00 | 70.570 | 283.36 | 1.000 | 0.00 | I. 417 | " | 283.36 |
| 7.05 | 73.109 | 285.37 | 1.000 | 0.00 | 1. 368 | " | 285.37 |
| 7.10 | 75.739 | 287.39 | 1.000 | 0.00 | I. 312 | " | 287.39 |
| 7.15 | 78.473 | 289.40 | 1.000 | 0.00 | r. 274 | " | 289.40 |
| 7.20 | 8 8 .296 | 291.42 | 1.000 | 0.00 | 1.230 | " | 291.42 |
| 7.25 | 84.215 | 293.43 | 1.000 | 0.00 | 1.187 | " | 293.43 |
| 7.30 | 87.250 | 295.45 | 1.000 | 0.00 | 1.146 | " | 295.45 |
| 7.35 | 90.386 | 297.46 | 1.000 | 0.00 | 1.016 | " | 297.46 |
| 7.40 | 93.083 | 299.48 | 1.000 | 0.00 | 1.074 | ${ }^{\prime}$ | 299.48 |
| 7.45 | 97.009 | 301.49 | 1.000 | 0.00 | 1.031 |  | 301.49 |
| 7.50 | 100.50 | 303.51 | 1.000 | 0.00 | 9.950 | $10^{-3}$ | 303.51 |
| 7.55 | 104.12 | 305.52 | 1.000 | 0.00 | 9.605 | " | 305.52 |
| 7.60 | 107.86 | 307.54 | 1.000 | 0.00 | 9.271 |  | 307.54 |
| 7.65 | 111.74 | 309.56 | 1.000 | 0.00 | 8.949 | " | 309.56 |
| 7.70 | 115.67 | 311.57 | 1.000 | 0.00 | 8.638 | " | 311.57 |
| 7.75 | 119.94 | 313.59 | 1.000 | 0.00 | 8.337 | " | 313.59 |
| 7.80 | 124.26 | 316.00 | 1.000 | 0.00 | 8.048 | " | 316.00 |
| 7.85 | 128.71 | 318.02 | 1.000 | 0.00 | 7.769 | " | 318.02 |
| 7.90 | 133.35 | 320.03 | 1.000 | 0.00 | 7.499 | " | 320.03 |
| 7.95 | 138.16 | 322.05 | 1.000 | 0.00 | 7.238 | " | 322.05 |
| 8.00 | 143.12 | 324.06 | 1.000 | 0.00 | 6.987 | * | 324.06 |
| 8.05 | 148.28 | 326.07 | 1.000 | 0.00 | 6.744 | " | 326.07 |
| 8.10 | 153.61 | 328.09 | 1.000 | 0.00 | 6.510 | " | 328.09 |
| 8.15 | 159.14 | 330.11 | 1.000 | 0.00 | 6.284 | " | 330.11 |
| 8.20 | 164.87 | 332.12 | 1.000 | 0.00 | 6.066 | " | 332.12 |
| 8.25 | 170.80 | 334.14 | 1.000 | 0.00 | 5.855 | * | 334.14 |

Note. Negative quantities are in heavy type.
Examples. $\sinh \left(7.55 \angle 45^{\circ}\right)=\cosh \left(7.55 \angle 45^{\circ}\right)=104.12 \angle 305^{\circ} .52^{\prime}$. $\operatorname { s e c h } ( 7 . 5 0 \angle 4 5 ^ { \circ } ) = \operatorname { c o s e c h } ( 7 . 5 0 \angle 4 5 ^ { \circ } ) = 9 . 9 5 0 \times 1 0 ^ { - 2 } \longdiv { 3 0 3 ^ { \circ } . 5 1 ^ { \prime } } .$

Table VI
FUNCTIONS OF SEMI-IMAGINARIES. $f\left(\rho \angle 45^{\circ}\right)=r / \gamma$. Continued

| $\rho$ | Sinh and cosh |  | Tanh and coth |  | Sech and cosech |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | - , |
| 8.30 | 176.95 | 336.15 | 1.000 | 0.00 | $5.651 \times$ | $10^{-3}$ | 336.15 |
| 8.35 | $183.3{ }^{\text {I }}$ | 338.17 | 1.000 | 0.00 | 5.455 |  | 338.17 |
| 8.40 | 189.91 | 340.18 | 1.000 | 0.00 | 5.266 | " | 340.18 |
| 8.45 | 196.75 | 342.20 | 1.000 | 0.00 | 5.083 | " | 342.20 |
| 8.50 | 203.83 | 344.22 | . 000 | 0.00 | 4.906 | " | 344.22 |
| 8.55 | 211.16 | 346.24 | 1.0 | 0.00 | 4.736 | " | 346.24 |
| 8.60 | 218.76 | 348.25 | 1.000 | 0.00 | 4.571 |  | 348.25 |
| 8.65 | 226.63 | 350.27 | 1.000 | 0.00 | 4.413 | " | 350.27 |
| 8.70 | 234.79 | 352.28 | 1.000 | 0.00 | 4.259 |  | 352.28 |
| 8.75 | 243.23 | 354.30 | . 00 | 0.00 | 4.111 | " | 354.30 |
| 8.80 | 251.99 | 356.3 I | 1.000 | 0.00 | 3.968 |  | 356.31 |
| 8.85 | 261.06 | 358.33 | 1.000 | 0.00 | 3.830 | " | 358.33 |
| 8.90 | 270.46 | 360.34 | 1.000 | 0.00 | 3.698 | " | 360.34 |
| 8.95 | 280.19 | 362.36 | 1.000 | 0.0 | 3.569 |  | 362.36 |
| 9.00 | 290.28 | 364.38 | 1.000 | 0.00 | 3.445 | " | 364.38 |
| 9.05 | 300.73 | 366.39 | 1.000 | 0.00 | 3.3253 |  | 366.39 |
| 9.10 | 311.54 | 368.41 | 1.000 | 0.00 | 3.2099 |  | 368.41 |
| 9.15 | 322.75 | 370.42 | 1.000 | 0.00 | 3.0983 | " | 370.42 |
| 9.20 | 334.37 | 372.44 | 1.000 | 0.00 | 2.9908 | " | 372.44 |
| 9.25 | 346.39 | 374.46 | 1.000 | 0.00 | 2.8869 | " | 374.46 |
| 9.30 | 358.85 | 376.47 | 1.000 | 0.00 | 2.7867 | " | 376.47 |
| 9.35 | 37 I .8 I | 378.48 | 1.000 | 0.00 | 2.6895 |  | 378.48 |
| 9.40 | 385.15 | 380.50 | 1.000 | 0.00 | 2.5964 | " | 380.50 |
| 9.45 | 399.04 | 382.51 | 1.000 | 0.00 | 2.5060 | " | 382.51 |
| 9.50 | 413.38 | 384.53 | I. 1.00 | 0.0 | 2.4191 | " | 384.53 |
| 9.55 | 428.26 | 386.55 | 1.000 | 0.00 | 2.3350 | " | 386.55 |
| 9.60 | 443.67 | 388.56 | 1.000 | 0.00 | 2.2540 |  | 388.56 |
| 9.65 | 446.93 | 390.57 | 1.000 | 0.00 | 2.2263 | " | 390.57 |
| 9.70 | 476.18 | 392.59 | 1.000 | 0.00 | 2.1001 | " | 392.59 |
| 9.75 | 493.31 | 395.01 | 1.000 | 0.0 | 2.0271 |  | 395.01 |
| 9.80 | 511.07 | 397.02 | 1.000 | . 00 | 1.9567 | " | 397.02 |
| 9.85 | 529.46 | 399.03 | 1.000 | 0.00 | 1.8887 |  | 399.03 |
| 9.90 | 548.52 | 401.05 | 1.000 | 0.00 | 1.8231 | " | 401.05 |
| 9.95 | 568.25 | 403.07 | 1.000 | 0.00 | 1.7598 | " | 403.07 |
| 10.00 | 588.69 | 405.08 | 1.000 | 0.0 | r. 6987 | " | 405.08 |
| 10.05 | 609.89 | 407.09 | 1.000 | 0.00 | 1.6397 | " | 407.09 |
| 10.10 | 631.84 | 409.11 | 1.000 | 0.00 | 1.5827 | " | 409.11 |
| 10.15 | 654.58 | 411.13 | 1.000 | 0.00 | 1.5277 | " | 411.13 |
| 10.20 | 678.14 | 413.14 | 1.000 | 0.00 | 1.4746 |  | 413.14 |
| 10.25 | 702.53 | 415.15 | 1.000 | 0.00 | 1.4234 | " | 415.15 |
| 10.30 | 727.81 | 417.17 | 1.000 | 0.00 | 1.3740 | " | 417.17 |
| 10.35 | 754.01 | 419.19 | 1.000 | 0.00 | 1.3262 | " | 419.19 |
| 10.40 | 781.14 | 421.21 | 1.000 | 0.00 | 1.2802 | " | 421.2I |
| 10.45 | 809.26 | 423.23 | 1.000 | 0.00 | 1.2357 | " | 423.23 |
| 10.50 | 838.38 | 425.24 | 1.000 | 0.00 | 1.1928 | " | 425.24 |

Note. Negative quantities are in heavy type.

## Examples.

$\sinh \left(10.0 \angle 45^{\circ}\right)=\cosh \left(10.0 \angle 45^{\circ}\right)=588.69 \angle 405^{\circ} .08^{\prime}$.
$\operatorname{sech}\left(10.0 \angle 45^{\circ}\right)=\operatorname{cosech}\left(10.0 \angle 45^{\circ}\right)=1.6987 \times 10^{-3} \sqrt{405^{\circ} .08^{\prime}}=1.6987 \times 10^{-3} \sqrt[35^{\circ} .08^{\prime}]{ }$.
[ 36 ]

## Table VI

## FUNCTIONS OF SEMI-IMAGINARIES. $f\left(\rho / 45^{\circ}\right)=r \angle \gamma$. Continued

| $\rho$ | Sinh and cosh |  | Tanh and coth |  | Sech and cosech |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | - |  |  | - |
| 10.55 | 868.56 | 427.26 | 1.000 | 0.00 | 1.1513 | $\times 10^{-3}$ | 427.26 |
| 10.60 | 899.81 | 429.27 | 1.000 | 0.00 | 1.1113 |  | 429.27 |
| 10.65 | 932.18 | 431.29 | 1.000 | 0.00 | 1.0728 | " | 431.29 |
| 10.70 | 965.74 | $433 \cdot 30$ | 1.000 | 0.00 | 1.0555 | " | 433.30 |
| 10.75 | 1,000.5 | $435 \cdot 32$ | 1.000 | 0.00 | 9.9952 | $\times 10^{-4}$ | 435.32 |
| 10.80 | 1,036.5 | $437 \cdot 33$ | 1.000 | 0.00 | 9.6478 | " | 437.33 |
| 10.85 | 1,073.8 | 439.35 | 1.000 | 0.00 | 9.3128 |  | 439.35 |
| 10.90 | I, II 2.4 | 441.36 | 1.000 | 0.00 | 8.9892 | " | 441.36 |
| 10.95 | I, 152.5 | 443.38 | 1.000 | 0.00 | 8.6770 | " | $443 \cdot 38$ |
| 11.00 | 1,194.0 | $445 \cdot 39$ | 1.000 | 0.00 | 8.3750 | " | $445 \cdot 39$ |
| 11.05 | 1,237.0 | 447.41 | 1.000 | 0.00 | 8.0845 |  | 447.4I |
| 11.10 | 1,281.5 | 449.42 | 1.000 | 0.00 | 7.8037 |  | 449.42 |
| II.15 | 1,327.5 | 451.44 | 1.000 | 0.00 | 7.5327 |  | 451.44 |
| 11.20 | 1,375.3 | 453.46 | 1.000 | 0.00 | 7.2711 |  | 453.46 |
| II. 25 | I,424.8 | 455.47 | 1.000 | 0.00 | 7.0184 | " | $455 \cdot 47$ |
| 11.30 | 1,476.1 | 457.48 | 1.000 | 0.00 | 6.7747 | " | 457.48 |
| 11.35 | 1,529.2 | 459.50 | 1.000 | 0.00 | 6.5393 |  | 459.50 |
| 11.40 | 1,584.3 | 561.52 | 1.000 | 0.00 | 6.3120 | " | 461.52 |
| 11.45 | 1,641.4 | 463.53 | 1.000 | 0.00 | 6.0929 | " | 463.53 |
| 11.50 | 1,700.3 | 465.54 | 1.000 | 0.00 | 5.88II | " | 465.54 |
| 11.55 | 1,761.5 | 467.56 | 1.000 | 0.00 | 5.6769 | " | 467.56 |
| 11.60 | I,824.9 | 469.57 | 1.000 | 0.00 | 5.4797 | " | 469.57 |
| 11.65 | 1,890.6 | 471.59 | 1.000 | 0.00 | 5.2893 | " | 471.59 |
| 11.70 | 1,958.6 | 474.01 | 1.000 | 0.00 | 5.1056 | " | 474.01 |
| 11.75 | 2,029.1 | 476.03 | 1.000 | 0.00 | 4.9282 | " | 476.03 |
| 11.80 | 2,102.1 | 478.04 | 1.000 | 0.00 | 4.7571 | * | 478.04 |
| 11.85 | 2,177.8 | 480.05 | 1.000 | 0.00 | 4.5910 |  | 480.05 |
| 11.90 | 2,256.1 | 482.07 | 1.000 | 0.00 | 4.4323 | " | 482.07 |
| 11.95 | 2,337.3 | 484.09 | 1.000 | 0.00 | 4.2784 | " | 484.09 |
| 12.00 | 2,421.5 | 486.10 | 1.000 | 0.00 | 4.1297 | * | 486.10 |
| 12.05 | 2,508.6 | 488.12 | 1.000 | 0.00 | 3.9862 | " | 488.12 |
| 12.10 | 2,598.9 | 490.14 | 1.000 | 0.00 | 3.8478 |  | 490.14 |
| 12.15 | 2,692.6 | 492.15 | 1.000 | 0.00 | 3.7141 | " | 492.15 |
| 12.20 | 2,789.0 | 494.17 | 1.000 | 0.00 | . $3 \cdot 5856$ | " | 494.17 |
| 12.25 | 2,889.7 | 496.18 | 1.000 | 0.00 | 3.4605 | " | 496.18 |
| 12.30 | 2,993.7 | 498.20 | 1.000 | 0.00 | $3 \cdot 3403$ | " | 498.20 |
| 12.35 | 3,101.4 | 500.21 | 1.000 | 0.00 | 3.2243 | " | 500.21 |
| 12.40 | 3,213.1 | 502.23 | 1.000 | 0.00 | 3.0143 |  | 502.23 |
| 12.45 | 3,328.3 | 504.24 | 1.000 | 0.00 | 3.0042 | " | 504.24 |
| 12.50 | 3,448.5 | 506.26 | 1.000 | 0.00 | 2.8998 | " | 506.26 |
| 12.55 | 3,572.6 | 508.27 | 1.000 | 0.00 | 2.7991 | $\cdots$ | 508.27 |
| 12.60 | 3,701.1 | 510.29 | 1.000 | 0.00 | 2.7019 |  | 510.29 |
| 12.65 | 3,834-3 | 512.3I | 1.000 | 0.00 | 2.6080 | " | 512.3 I |
| 12.70 | 3,972.6 | 514.32 | 1.000 | 0.00 | 2.5172 | " | 514.32 |
| 12.75 | 4,1 15.3 | 516.33 | 1.000 | 0.00 | 2.4300 | " | 516.33 |

Note. Negative quantities are in heavy type.
Examples. $\sinh \left(12.0 / 45^{\circ}\right)=\cosh \left(12.0 \angle 45^{\circ}\right)=2421.5 \angle 486^{\circ} .10^{\prime}=2421.5 \angle 126^{\circ} .10^{\circ}$. $\operatorname{sech}\left(12.75 \angle 45^{\circ}\right)=\operatorname{cosech}\left(\mathrm{x} 2.75 \angle 45^{\circ}\right)=2.43 \times 10^{-3} \sqrt{516^{\circ} .33^{\prime}}$.
[37]

## Table VI

FUNCTIONS OF SEMI-IMAGINARIES. $f\left(\rho / 45^{\circ}\right)=r / \gamma$. Continued

| $\rho$ | Sinh and cosh |  | Tanh and coth |  | Sech and cosech |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | - , |  | - |  |  | - , |
| 12.80 | 4,263.4 | 518.35 | 1.000 | 0.00 | 2.3455 | 10-4 | 518.35 |
| 12.85 | 4,416.8 | 520.37 | 1.000 | 0.00 | 2.2641 |  | 520.37 |
| 12.90 | 4,575.7 | 522.38 | 1.000 | 0.00 | 2.1854 | " | 522.38 |
| 12.95 | 4,740.5 | 524.39 | 1.000 | 0.00 | 2.1095 | " | 524.39 |
| 13.00 | 4,911.0 | 526.41 | 1.000 | 0.00 | 2.0362 | " | 526.41 |
| 13.05 | 5,087.8 | 528.43 | 1.000 | 0.00 | 1.9655 | " | 528.43 |
| 13.10 | 5,270.9 | 530.44 | 1.000 | 0.00 | 1.8972 | ${ }^{\prime}$ | 430.44 |
| 13.15 | 5,460.6 | 532.45 | 1.000 | 0.00 | 1.8313 | " | 532.45 |
| 13.20 | 5,657.0 | 534.47 | 1.000 | 0.00 | 1.7677 | " | 534.47 |
| 13.25 | 5,858.5 | 536.49 | 1.000 | 0.00 | 1.7061 | " | 536.49 |
| 13.30 | 6,071.6 | 538.50 | 1.000 | 0.00 | 1.6470 | " | 538.50 |
| 13.35 | 6,290.1 | 540.51 | 1.000 | 0.00 | 1.5898 | " | 540.51 |
| 13.40 | 6,516.5 | 542.53 | 1.000 | 0.00 | I. 5346 | " | 542.53 |
| 13.45 | 6,751.0 | 544.55 | $1.000^{\circ}$ | 0.00 | 1.4813 | " | 544.55 |
| 13.50 | 6,993.9 | 546.57 | 1.000 | 0.00 | 1.4298 | " | 546.57 |
| I 3.55 | 7,245.5 | 548.58 | 1.000 | 0.00 | 1.3801 | " | 548.58 |
| 13.60 | 7,506.4 | 551.00 | 1.000 | 0.00 | 1.3322 | " | 551.00 |
| 13.65 | 7,776.4 | 553.01 | 1.000 | 0.00 | 1.2859 | " | 553.01 |
| 13.70 | 8,056.4 | 555.03 | 1.000 | 0.00 | 1.2412 | " | 555.03 |
| 13.75 | 8,346.2 | 557.05 | 1.000 | 0.00 | 1.1982 | " | 557.05 |
| 13.80 | 8,646.7 | 559.06 | 1.000 | 0.00 | 1.1565 | " | 559.06 |
| 13.85 | 8,957.8 | 561.07 | 1.000 | 0.00 | 1.1164 | " | 561.07 |
| 13.90 | 9,280.3 | 563.09 | 1.000 | 0.00 | 1.0776 | " | 563.09 |
| 13.95 | 9,614.1 | 565.1 1 | 1.000 | 0.00 | 1.0165 | " | 565.11 |
| 14.00 | 9,960.2 | 567.12 | 1.000 | 0.00 | 1.0040 | " | 567.12 |
| 14.05 | 10,318 | 569.14 | 1.000 | 0.00 | $9.6914 \times$ | $10^{-5}$ | 569.14 |
| 14.10 | 10,690 | 571.15 | 1.000 | 0.00 | 9.3547 |  | 571.15 |
| 14.15 | 11,075 | 573.16 | 1.000 | 0.00 | 9.0296 | " | 573.16 |
| 14.20 | 11,473 | 575.18 | 1.000 | 0.00 | 8.7160 | " | 575.18 |
| 14.25 | 11,886 | 577.20 | 1.000 | 0.00 | 8.4132 | " | 577.20 |
| 14.30 | 12,314 | 579.21 | 1.000 | 0.00 | 8.1210 | " | 579.2 I |
| 14.35 | 12,757 | 581.22 | 1.000 | 0.00 | 7.8388 | " | 581.22 |
| 14.40 | 13,216 | 583.24 | 1.000 | 0.00 | 7.5666 | " | 583.24 |
| 14.45 | 13,692 | 585.26 | 1.000 | 0.00 | 7.3037 | " | 585.26 |
| 14.50 | 14,184 | 587.27 | 1.000 | 0.00 | 7.0500 | " | 587.27 |
| 14.55 | 14,695 | 589.29 | 1.000 | 0.00 | 6.8050 | " | 289.29 |
| 14.60 | 15,224 | 591.30 | 1.000 | 0.00 | 6.5687 | " | 591.30 |
| 14.65 | 15,772 | 593.32 | 1.000 | 0.00 | 6.3405 | " | 593.32 |
| 14.70 | 16,339 | 595.34 | 1.000 | 0.00 | 6.1203 | " | 595.34 |
| 14.75 | 16,927 | 597.35 | 1.000 | 0.00 | 5.9077 | " | 597.35 |
| 14.80 | 17,536 | 599.37 | 1.000 | 0.00 | 5.7024 | " | 599.37 |
| 14.85 | 18,167 | 601.39 | 1.000 | 0.00 | 5.5044 | " | 601.39 |
| 14.90 | 18,822 | 603.40 | 1.000 | 0.00 | 5.3130 | " | 603.40 |
| 14.95 | 19,498 | 605.41 | 1.000 | 0.00 | 5.1286 | " | 605.41 |
| 15.00 | 20,200 | 607.43 | 1.000 | 0.00 | 4.9504 | " | 607.43 |

Note. Negative quantities are in heavy type.
Examples. $\quad \sinh \left(14.0 \angle 45^{\circ}\right)=\cosh \left(14.0 \angle 45^{\circ}\right)=9960.2 \angle 567^{\circ} .12^{\prime}$. $\operatorname{sech}\left(14.0 \angle 45^{\circ}\right)=\operatorname{cosech}\left(14.0 \angle 45^{\circ}\right)=1.0040 \times 10^{-4} \sqrt{567^{\circ} .12^{\prime}}$.

FUNCTIONS OF SEMI-IMAGINARIES. $f\left(\rho \angle 45^{\circ}\right)=r \angle \gamma$. Continued

| $\rho$ | Sinh and cosh |  | Tanh and coth |  | Sech and cosech |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 。 |  |  |  |
| 15.05 | 20,927 | 609.44 | 1.000 | 0.00 | $4.7785 \times$ | ${ }_{10}{ }^{-5}$ | 609.44 |
| 15.10 | 21,680 | 611.46 | 1.000 | 0.00 | 4.6120 |  | 6II. 46 |
| 15.15 | 22,460 | 613.48 | 1.000 | 0.00 | 4.4523 | " | 613.48 |
| 15.20 | 23,269 | 615.49 | 1.000 | 0.00 | 4.2980 | " | 615.49 |
| 15.25 | 24,106 | 617.50 | 1.000 | 0.00 | 4.1482 | " | 617.50 |
| 15.30 | 24,973 | 619.52 | 1.000 | 0.00 | 4.0040 | " | 619.52 |
| 15.35 | 25,873 | 621.54 | 1.000 | 0.8 | 3.8651 | " | 621.54 |
| 15.40 | 26,802 | 623.55 | 1.000 | 0.00 | 3.7310 | " | 623.55 |
| 15.45 | 27,768 | 625.57 | 1.000 | 0.00 | 3.6012 |  | 625.57 |
| 15.50 | 28,765 | 627.59 | 1.000 | 0.00 | 3.4760 | " | 627.59 |
| 15.55 | 29,803 | 630.00 | 1.000 | 0.00 | 3.3554 |  | 630.00 |
| 15.60 | 30,872 | 632.02 | 1.000 | 0.00 | 3.2390 |  | 632.02 |
| 15.65 | 31,987 | 634.04 | 1.000 | 0.00 | 3.1263 | " | 634.04 |
| 15.70 | 33,140 | $6_{36.05}$ | 1.000 | 0.00 | 3.0170 | " | 636.05 |
| 15.75 | 34,331 | 638.06 | 1.000 | 0.00 | 2.9129 | " | 638.06 |
| 15.80 | 35,569 | 640.08 | 1.000 | 0.00 | 2.8110 | " | 640.08 |
| 15.85 | 36,846 | 642.10 | 1.000 | 0.00 | 2.7140 |  | 642.10 |
| 15.90 | 38,174 | 644.11 | 1.000 | 0.00 | 2.6200 | " | 644.11 |
| 15.95 | 39,546 | 646.12 | 1.000 | 0.00 | 2.5287 | " | 646.12 |
| 16.00 | 40,970 | 648.14 | 1.000 | 0.00 | 2.4410 | " | 648.14 |
| 16.05 | 42,443 | 650.16 | 1.000 | 0.00 | 2.3561 | " | 650.16 |
| 16.10 | 43,97I | 652.17 | 1.000 | 0.00 | 2.2740 |  | 652.17 |
| 16.15 | 45,553 | 654.18 | 1.000 | 0.00 | .2.1952 | " | 654.18 |
| 16.20 | 47,192 | 656.20 | 1.000 | 0.00 | 2.1190 | " | 656.20 |
| 16.25 | 48,890 | 658.22 | 1.000 | 0.00 | 2.0454 | " | 658.22 |
| 16.30 | 50,649 | 660.23 | 1.000 | 0.00 | 1.9740 | " | 660.23 |
| 16.35 | 52,473 | 662.24 | 1.000 | . 0.00 | 1.9055 | " | 662.24 |
| 16.40 | 54,359 | 664.26 | 1.000 | 0.00 | 1.8400 | " | 664.26 |
| 16.45 | 56,316 | 666.28 | 1.000 | 0.00 | 1.7757 |  | 666.28 |
| 16.50 | 58,475 | 668.29 | 1.000 | 0.00 | 1.7100 | " | 668.29 |
| 16.55 | 60,444 | 670.31 | 1.000 | 0.00 | I. 6544 | " | 670.3 I |
| 16.60 | 62,619 | 672.32 | 1.000 | 0.00 | 1.5969 |  | 672.32 |
| 16.65 | 64,872 | 674.34 | 1.000 | 0.00 | 1.5415 | " | 674.34 |
| 16.70 | 57,208 | 676.35 | 1.000 | 0.00 | 1.4879 | " | 676.35 |
| 16.75 | 69,626 | 678.36 | 1.000 | 0.00 | 1.4362 | " | 678.36 |
| 16.80 | 72,132 | 680.38 | 1.000 | 0.00 | 1. 3863 | " | 680.38 |
| 16.85 | 74,727 | 682.40 | 1.000 | 0.00 | I. 3382 | " | 682.40 |
| 16.90 | 77,418 | 684.41 | 1.000 | 0.00 | 1.2917 |  | 684.41 |
| 16.95 | 80,203 | 686.43 | 1.000 | 0.00 | 1. 2468 | " | 686.43 |
| 17.00 | 83,088 | 688.45 | 1.000 | 0.00 | 1.2035 | " | 688.45 |
| 17.05 | 86,080 | 690.47 | 1.000 | 0.00 | 1.1617 | " | 690.47 |
| 17.10 | 89,176 | 692.48 | 1.000 | 0.00 | I.1214 | " | 692.48 |
| 17.15 | 92,387 | 694.49 | 1.000 | 0.00 | 1.0824 |  | 694.49 |
| 17.20 | 95,711 | 696.51 | 1.000 | 0.00 | 1.0448 |  | 696.51 |
| 17.25 | 99, 149 | 698.53 | 1.000 | 0.00 | 1.0086 |  | 698.53 |

Note. Negative quantities are in heavy type.
Examples. $\sinh \left(17.0 / 45^{\circ}\right)=\cosh \left(17.0 \angle 45^{\circ}\right)=83,088 \angle 688^{\circ} .45^{\prime}=83,088 \angle 328^{\circ} .45^{\prime}$. $\operatorname { s e c h } ( 1 7 . 0 \angle 4 5 ^ { \circ } ) = \operatorname { c o s e c h } ( 1 7 . 0 \angle 4 5 ^ { \circ } ) = 1 . 2 0 3 5 \times 1 0 ^ { - 5 } \longdiv { 6 8 8 ^ { \circ } . 4 5 ^ { \prime } } .$

FUNCTIONS OF SEMI-IMAGINARIES. $f\left(\rho / 45^{\circ}\right)=r \angle \gamma$. Continued

| $\rho$ | Sinh and cosh |  | Tanh and coth |  | Sech and cosech |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 。 |  |  | - , |
| 17.30 | 102,720 | 700.54 | 1.000 | 0.00 | $9.7349 \times$ | $\times 10^{-6}$ | 700.54 |
| 17.35 | 106,420 | 702.55 | 1.000 | 0.00 | 9.3968 |  | 702.55 |
| 17.40 | 110,250 | 704.57 | 1.000 | 0.00 | 9.0703 | " | 704.57 |
| 17.45 | 114,220 | 706.59 | 1.000 | 0.00 | 8.755 I | " | 706.59 |
| 17.50 | 118,330 | 709.00 | 1.000 | 0.0 | 8.4510 | " | 709.00 |
| 17.55 | 122,590 | 711.01 | 1.000 | 0.00 | 8.1576 | " | 711.01 |
| 17.60 | 127,000 | 713.03 | 1.000 | 0.00 | 7.8741 | " | 713.03 |
| 17.65 | 131,570 | 715.05 | 1.000 | 0.00 | 7.6006 | " | 715.05 |
| 17.70 | 136,300 | 717.06 | 1.000 | 0.00 | 7.3365 | " | 717.06 |
| 17.75 | 141,210 | 719.07 | 1.000 | 0.00 | 7.0817 |  | 719.07 |
| 17.80 | 146,290 | 721.09 | 1.000 | 0.0 | 6.8356 | " | 72 T .09 |
| 17.85 | 151,550 | 723.11 | 1.000 | 0.00 | 6.5983 |  | 723.11 |
| 17.90 | 157,000 | 725.12 | 1.000 | 0.00 | 6.3710 | " | 725.12 |
| 17.95 | 162,660 | 727.13 | 1.000 | 0.00 | 6.1478 | " | 727.13 |
| 18.00 | 168,520 | 729.15 | . 000 | 0.00 | 5.9383 | " | 729.15 |
| 18.05 | 174,580 | 731.17 | 1.000 | 0.00 | 5.728工 |  | 731.17 |
| 18.10 | 180,860 | 733.18 | 1.000 | 0.0 | 5.5292 |  | 733.18 |
| 18.15 | 183,530 | 735.20 | 1.000 | 0.00 | 5.4488 | " | 735.20 |
| 18.20 | 194,110 | 737.21 | 1.000 | 0.00 | 5.1517 | " | 737.21 |
| 18.25 | 201,100 | 739.23 | 1.000 | 0.00 | 4.9727 |  | 739.23 |
| 18.30 | 208,330 | 741.24 | 1.000 | 0.00 | 4.8000 | " | 741.24 |
| 18.35 | 215,830 | 743.26 | 1.000 | 0.00 | 4.6332 | " | 743.26 |
| 18.40 | 223,600 | 745.27 | 1.000 | 0.00 | 4.4723 | " | 745.27 |
| 18.45 | 231,650 | 747.29 | 1.000 | 0.00 | 4.3168 | " | 747.29 |
| 18.50 | 239,980 | 749.31 | . 00 | 0.00 | 4.1671 | " | 749.3 I |
| 18.55 | 248,620 | 751.32 | 1.000 | 0.00 | 4.0222 | " | 751.32 |
| 18.60 | 257,570 | 753.34 | 1.000 | 0.0 | 3.8825 |  | 753.34 |
| 18.65 | 266,840 | 755.35 | 1.000 | 0.00 | 3.7476 | " | $755 \cdot 35$ |
| 18.70 | 276,440 | 757.37 | 1.000 | 0.00 | 3.6174 | " | 757.37 |
| 18.75 | 286,390 | 759.38 | 1.000 | 0.00 | 3.49 r 8 | " | 759.38 |
| 18.80 | 296,690 | 76 I .40 | 1.000 | 0.00 | 3.3628 | " | 76 r .40 |
| 18.85 | 307,380 | 763.41 | 1.000 | 0.00 | 3.2533 | " | 763.41 |
| 18.90 | 318,570 | 765.43 | 1.000 | 0.00 | 3.1404 | " | 765.43 |
| 18.95 | 329,890 | 767.44 | 1.000 | 0.00 | 3.0313 | " | 767.44 |
| 19.00 | 341,770 | 769.46 | 1.000 | 0.00 | 2.9260 | " | 769.46 |
| 19.05 | 354,060 | 771.47 | 1.000 | 0.00 | 2.8244 | " | 771.47 |
| 19.10 | 366.810 | 773.49 | 1.000 | 0.00 | 2.7262 | " | 773.49 |
| 19.15 | 380,010 | 775.50 | 1.000 | 0.00 | 2.6315 | " | 775.50 |
| 19.20 | 393,690 | 777.52 | 1.000 | 0.00 | 2.5401 | " | 777.52 |
| 19.25 | 407,850 | 779.53 | 1.000 | 0.00 | 2.4519 | " | 779.53 |
| 19.30 | 422,530 | 78 r .55 | 1.000 | 0.00 | 2.3667 | " | 78 r .55 |
| 19.35 | 437,730 | 783.57 | 1.000 | 0.00 | 2.2845 | " | 783.57 |
| 19.40 | 453,490 | 785.59 | 1.000 | 0.00 | 2.205 I | " | 785.59 |
| 19.45 | 469,8io | 788.00 | 1.000 | 0.00 | 2.1285 | " | 788.00 |
| 9.50 | 486,720 | 790.02 | 1.000 | 0.00 | 2.0546 | " | 790.02 |

Note. Negative qyantities are in heavy type.
Examples. $\quad \sinh \left(19.05 \angle 45^{\circ}\right)=\cosh \left(19.05 \angle 45^{\circ}\right)=354,060 \angle 771^{\circ} .47^{\prime}=354,060 \angle 51^{\circ} .47^{\prime}$. $\operatorname{sech}\left(19.30 \angle 45^{\circ}\right)=\operatorname{cosech}\left(19.3 / 45^{\circ}\right)=2.3667 \times 10^{-6} \sqrt{781^{\circ} .55^{\prime}}$.
[40]

Table VI
FUNCTIONS OF SEMI-IMAGINARIES. $f\left(\rho \angle 45^{\circ}\right)=r / \gamma$. Continued

| $\rho$ | Sinh and cosh |  | Tanh and coth |  | Sech and cosech |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | - , |  | - |  |  | - , |
| 19.55 | 504,230 | 792.03 | 1.000 | 0.00 | $1.9832 \times$ | 10-6 | 792.03 |
| 19.60 | 522,380 | 794.05 | 1.000 | 0.00 | 1.9153 |  | 794.05 |
| 19.65 | 541,220 | 796.06 | 1.000 | 0.00 | 1.8478 | " | 796.06 |
| 19.70 | 560,650 | 798.08 | 1.000 | 0.00 | 1.7837 |  | 798.08 |
| 19.75 | 599,830 | 800.09 | 1.000 | 0.00 | 1.6671 | " | 800.09 |
| 19.80 | 601,730 | 802.11 | 1.000 | 0.00 | 1.6619 | " | 802.11 |
| 19.85 | 623,390 | 804.12 | 1.000 | 0.00 | 1.6041 | " | 804.12 |
| 19.90 | 645,820 | 806.14 | 1.000 | 0.00 | 1.5484 | " | 806.14 |
| 19.95 | 669,070 | 808.15 | 1.000 | 0.00 | 1.4946 | " | 808.15 |
| 20.00 | 693,150 | 810.17 | 1.000 | 0.00 | 1.4426 | ، | 810.17 |
| 20.05 | 718,090 | 812.18 | 1.000 | 0.00 | 1.3926 | " | 812.18 |
| 20.10 | 743,930 | 814.20 | 1.000 | 0.00 | 1.3442 | " | 814.20 |
| 20.15 | 770,710 | 816.21 | 1.000 | 0.00 | 1.2975 | " | 816.21 |
| 20.20 | 798,440 | 818.23 | 1.000 | 0.00 | 1.2525 | " | 818.23 |
| 20.25 | 827,160 | 820.24 | 1.000 | 0.00 | 1.2090 | " | 820.24 |
| 20.30 | 856,940 | 822.26 | 1.000 | 0.00 | 1.1669 | " | 822.26 |
| 20.35 | 887,770 | 824.27 | 1.000 | 0.00 | I. 1264 | " | 824.27 |
| 20.40 | 919,730 | 826.29 | 1.000 | 0.00 | 1.0873 | " | 826.29 |
| 20.45 | 952,820 | 828.30 | 1.000 | 0.00 | 1.0496 | " | 828.30 |
| 20.50 | 987,120 | 830.32 | 1.000 | 0.00 | 1.0130 | " | 830.32 |

Note. Negative quantities are in heavy type.
Example. $\sinh \left(20.0 \angle 45^{\circ}\right)=\cosh \left(20.0 \angle 45^{\circ}\right)=693,15^{\circ} \angle 810^{\circ} .17^{\prime}=693,150 \angle 90^{\circ} .17^{\prime}$.

Table VII. HYPERBOLIC SINES. $\sinh (x+i q)=u+i v$

| $q$ | $x=0$ |  | $x=0.05$ |  | $x=0.1$ |  | $x=0.15$ |  | $x=0.2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 0.00 | 0.00 | 0.05002 | 0.00 | 0.10017 | 0.00 | 0.15056 | 0.00 | 0.20134 | 0.00 |
| 0.05 | 0.00 | 0.07846 | 0.04987 | 0.07856 | 0.09986 | 0.07885 | 0.15010 | 0.07934 | 0.20072 | 0.08003 |
| 0.1 | 0.00 | 0.15643 | 0.04945 | 0.15663 | 0.09893 | 0.15722 | 0.14871 | 0.15820 | -.19886 | 0.15957 |
| 0.15 | 0.0 | 0.23345 | 0.04864 | 0.23374 | 0.09740 | 0.23461 | 0.14640 | 0.23608 | 0.19577 | 0.23813 |
| 0.2 | 0.00 | 0.30902 | 0.04757 | 0.30940 | 0.09526 | 0.31056 | 0.14319 | 0.31250 | -.19148 | 0.31522 |
| 0.25 | 0.00 | 0.38268 | 0.04621 | 0.38316 | 0.09254 | 0.38460 | -.13910 | 0.38700 | 0.18601 | 0.39036 |
| 0.3 | 0.00 | 0.45399 | 0.04457 | 0.45454 | 0.08925 | 0.45626 | 0.13415 | 0.45911 | 0.17939 | 0.46310 |
| 0.35 | 0.00 | 0.52250 | 0.04265 | 0.52313 | 0.08541 | 0.52511 | 0.12838 | 0.52839 | 0.17167 | 0.53298 |
| 0.4 | 0.00 | 0.58778 | 0.04047 | 0.58850 | 0.08104 | 0.59073 | 0.12181 | 0.59441 | c.16288 | 0.59958 |
| 0.45 | 0.00 | 0.64944 | 0.03804 | 0.65023 | 0.07617 | 0.65270 | 0.11449 | 0.65677 | 0.15310 | 0.66248 |
| 0.5 | 0.00 | 0.707I I | 0.03537 | 0.70796 | 0.07083 | 0.71065 | 0.10646 | 0.71508 | 0.14237 | 0.72130 |
| 0.55 | 0.00 | 0.76041 | 0.03249 | 0.76133 | 0.06505 | 0.76421 | 0.09778 | 0.76898 | 0.13076 | 0.77567 |
| 0.6 | 0.00 | 0.80902 | 0.02940 | 0.81000 | 0.05888 | 0.81307 | 0.08850 | 0.81814 | 0.11834 | 0.82525 |
| 0.65 | 0.00 | 0.85264 | 0.02614 | 0.85367 | 0.05234 | 0.85691 | 0.07867 | 0.86225 | 0.10520 | 0.86975 |
| 0.7 | 0.00 | 0.89101 | 0.0227 I | 0.89208 | 0.04547 | 0.89547 | 0.06835 | 0.90105 | 0.09141 | 0.90889 |
| 0.75 | . 00 | 0.92388 | 0. | 0.92503 | 0.03833 | 0.92850 | 0.05762 | 0.93429 | 0.07705 | 0.94242 |
| 0.8 | 0.00 | 0.95106 | 0.01546 | 0.95225 | 0.03695 | 0.95582 | 0.04653 | 0.96178 | 0.06222 | 0.97014 |
| 0.85 | 0.00 | 0.97237 | 0.01168 | 0.97359 | 0.02338 | 0.97724 | 0.03515 | 0.98333 | 0.04700 | 0.99188 |
| 0.9 | 0.00 | 0.98769 | 0.00783 | 0.98892 | 0.01567 | 0.99263 | 0.02355 | 0.99882 | 0.03150 | 1.00751 |
| 0.95 | 0.00 | 0.99692 | 0.00392 | 0.99816 | 0.00786 | 1.00191 | 0.01181 | 1.00815 | 0.01580 | 1.01692 |
| 1.0 | . 00 | 1.00000 | 0.00 | 1.001 25 | 0.00 | 1.00500 | 0.00 | 1.O1127 | 0.00 | 1.02007 |
| 1.05 | . 0 | 0.99692 | 0.00392 | 0.99816 | 0.00786 | 1.00191 | 0.01181 | 1.00815 | 0.01580 | 1.01692 |
| I.I | 0.00 | 0.98769 | 0.00783 | 0.98892 | 0.01567 | 0.99263 | 0.02355 | 0.99882 | 0.03150 | 1.00751 |
| 1.15 | . 00 | 0.97237 | 0.01168 | 0.97359 | 0.02338 | 0.97724 | 0.03515 | 0.98333 | 0.04700 | 0.99188 |
| 1.2 | 0.00 | 0.95106 | 0.01546 | 0.95225 | 0.03095 | $0.955^{82}$ | 0.04653 | 0.96178 | 0.06222 | 0.97014 |
| 1.25 | 0.00 | 0.92388 | 0.01914 | 0.92503 | 0.03833 | 0.92850 | 0.05762 | 0.93429 | 0.07705 | 0.94242 |
| 1.3 | 0.00 | 0.89 IOI | 0.02271 | 0.89208 | 0.04547 | 0.89547 | 0.06835 | 0.90105 | 0.09141 | 0.90889 |
| 1.35 | 0.00 | 0.85264 | 0.02614 | 0.85367 | 0.05234 | 0.85691 | 0.07867 | 0.86225 | 0.10520 | 0.86975 |
| 1.4 | 0.00 | 0.80902 | 0.02940 | 0.81000 | 0.05888 | 0.81307 | 0.08850 | 0.81814 | 0.11834 | 0.82525 |
| I. 45 | 0.00 | 0.76041 | 0.03249 | 0.76133 | 0.06505 | 0.76421 | 0.09778 | 0.76898 | 0.13076 | 0.77567 |
| 1.5 | 0.00 | 0.70711 | 0.03537 | 0.70796 | 0.07083 | 0.71065 | 0.10646 | 0.71508 | 0.14237 | 0.72130 |
| 1. 55 | 0.00 | 0.64944 | 0.03804 | 0.65023 | 0.07617 | 0.65270 | 0.11449 | 0.65677 | 0.15310 | 0.66248 |
| 1.6 | 0.00 | 0.58778 | 0.04047 | 0.58850 | 0.08104 | 0.59073 | 0.12181 | 0.59441 | 0.16288 | -. 59958 |
| 1.65 | 0.00 | 0.52250 | 0.04265 | 0.52313 | 0.08541 | 0.52511 | 0.12838 | 0.52839 | 0.17167 | 0.53298 |
| 1.7 | 0.00 | 0.45399 | 0.04457 | 0.45454 | 0.08925 | 0.45626 | 0.13415 | 0.45911 | 0.17939 | 0.46310 |
| 1.75 | 0.00 | 0.38268 | 0.04621 | 0.38316 | 0.09254 | 0.38460 | 0.13910 | 0.38700 | 0.18601 | 0.39036 |
| 1.80 | 0.00 | 0.30902 | 0.04757 | 0.30940 | 0.09526 | 0.31056 | 0.14319 | 0.31250 | 0.19148 | 0.31522 |
| 1.85 | 0.00 | 0.23345 | 0.04864 | 0.23374 | 0.09740 | -0.23461 | 0.14640 | 0.23608 | 0.19577 | 0.23813 |
| 1.9 | 0.00 | 0.15643 | 0.04945 | 0.15663 | 0.09893 | 0.15722 | 0.14871 | 0.15820 | 0.19886 | 0.15957 |
| 1.95 | 0.00 | 0.07845 | 0.04987 | 0.07856 | 0.09986 | 0.07885 | 0.15010 | 0.07934 | 0.20072 | 0.08003 |
| 2.0 | 0.00 | 0.00 | 0.05002 | 0.00 | 0.10017 | 0.00 | 0.15056 | 0.00 | 0.20134 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\sinh (0.1+i 0.5)=0.0708_{3}+i 0.71065$.
$\sinh \left(0.1+i_{1.2}\right)=-0.03095+i 0.95582$.

Table VII. HYPERBOLIC SINES. $\sinh (x+i q)=u+i v$. Continued

| $q$ | $x=$ | 0.25 | $x=$ |  | $x=$ | 35 | $x=$ |  | $x=$ | 0.45 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.25261 | 0.00 | 0.30452 | 0.00 | 0.35719 | 0.00 | 0.41075 | 0.00 | 0.46534 | 0.00 |
| 0.05 | 0.25183 | 0.08092 | 0.30358 | 0.08202 | 0.35609 | 0.08331 | 0.40949 | 0.08482 | 0.46391 | 0.08654 |
| O.I | 0.24950 | 0.16135 | 0.30077 | 0.16353 | 0.35279 | 0.16611 | 0.40570 | 0.16912 | 0.45961 | 0.17254 |
| 0.15 | 0.24563 | 0.24078 | 0.29611 | 0.24403 | 0.34732 | 0.24789 | 0.39940 | 0.25237 | 0.45249 | 0.25748 |
| 0.2 | 0.24025 | 0.31872 | 0.28962 | 0.32303 | 0.33971 | 0.32814 | 0.39065 | 0.33407 | 0.44257 | 0.34084 |
| 0.25 | 0.23338 | 0.39471 | 0.28134 | 0.40003 | 0.33000 | 0.40636 | 0.37949 | 0.41371 | 0.42992 | 0.42209 |
| 0.3 | 0.22508 | 0.46825 | 0.27133 | 0.47457 | 0.31826 | 0.48208 | 0.36598 | 0.49080 | 0.41462 | 0.50074 |
| 0.35 | 0.21539 | 0.53891 | 0.25965 | 0.54619 | 0.30455 | 0.55483 | 0.35022 | 0.56486 | 0.39677 | 0.57630 |
| 0.4 | 0.20437 | 0.60625 | 0.24636 | 0.61444 | 0.28897 | 0.62416 | 0.33231 | 0.63544 | 0.37647 | 0.64831 |
| 0.45 | 0.19208 | 0.66985 | 0.23156 | 0.67889 | 0.27161 | 0.68964 | 0.31234 | 0.70210 | 0.35385 | 0.71632 |
| 0.5 | 0.17862 | 0.72932 | 0.21533 | 0.73917 | 0.25257 | 0.75086 | 0.29045 | 0.76443 | 0.32905 | 0.77992 |
| 0.55 | 0.16406 | 0.78429 | 0.19777 | 0.79488 | 0.23198 | 0.80746 | 0.26676 | 0.82206 | 0.30222 | 0.83871 |
| 0.6 | 0.14848 | 0.83443 | -.17899 | 0.84570 | 0.20995 | 0.85908 | 0.24143 | 0.87461 | 0.27352 | 0.89232 |
| 0.65 | 0.13199 | 0.87942 | O.I5911 | 0.89130 | 0.18663 | 0.90540 | 0.21462 | 0.92177 | 0.24314 | 0.94044 |
| 0.7 | -.11468 | 0.91900 | 0.13825 | 0.93140 | 0.16216 | 0.94614 | 0.18648 | 0.96324 | 0.21126 | 0.93275 |
| 0.75 | 0.09667 | 0.95290 | 0.11654 | 0.96577 | -.13669 | 0.98105 | 0.15719 | 0.99878 | 0.17808 | 1.OI901 |
| 0.8 | 0.07801 | 0.98093 | 0.09410 | 0.99418 | 0.11038 | 1.00991 | 0.12693 | 1.02816 | 0.14380 | 1.04899 |
| 0.85 | 0.05897 | 1.00292 | 0.07109 | I.01646 | 0.08338 | 1.03254 | 0.09589 | 1.05120 | -.10863 | 1.07250 |
| 0.9 | $0.0395^{2}$ | 1.01871 | 0.04764 | 1.03247 | 0.05588 | 1.04880 | 0.06426 | 1.06776 | 0.07280 | 1.08939 |
| 0.95 | 0.01982 | 1.02823 | 0.02389 | 1.04212 | 0.02803 | 1.05860 | 0.03223 | 1.07774 | 0.03651 | 1.09957 |
| 1.0 | 0.00 | 1.03141 | 0.00 | 1.04534 | 0.00 | 1.06188 | 0.00 | 1.08107 | 0.00 | 1. 10297 |
| 1.05 | 0.01982 | 1.02823 | 0.02389 | 1.04212 | 0.02803 | 1.05860 | 0.03223 | 1.07774 | 0.03651 | 1.09957 |
| I. I | 0.03952 | 1.01871 | 0.04764 | 1.03247 | 0.05588 | 1.04880 | 0.06426 | 1.06776 | 0.07280 | 1.08939 |
| I.I5 | 0.05897 | 1.00292 | 0.07109 | 1.01646 | 0.08338 | I. 03254 | 0.09589 | 1.05120 | 0.10863 | 1.07250 |
| 1.2 | 0.07801 | 0.98093 | 0.09410 | 0.99418 | 0.11038 | 1.00991 | 0.12693 | 1.02816 | 0.14380 | 1.04899 |
| 1.25 | 0.09667 | 0.95290 | 0.11654 | 0.96577 | 0.13669 | 0.98105 | 0.15719 | 0.99878 | 0.17808 | 1.OI901 |
| I. 3 | 0.11468 | 0.91900 | 0.13825 | 0.93140 | 0.16216 | 0.94614 | 0.18648 | 0.96324 | 0.21126 | 0.98275 |
| I. 35 | O.13199 | 0.87942 | 0.15911 | 0.89130 | 0.18663 | 0.90540 | 0.21462 | 0.92177 | 0.24314 | 0.94044 |
| 1.4 | 0.14848 | 0.83443 | 0.17899 | 0.84570 | 0.20995 | 0.85908 | 0.24143 | 0.87461 | 0.27352 | 0.89232 |
| 1.45 | 0.16406 | 0.78429 | 0.19777 | 0.79488 | 0.23198 | 0.80746 | 0.26676 | 0.82206 | 0.30222 | 0.83871 |
| 1.5 | 0.17862 | 0.72932 | 0.21533 | 0.73917 | 0.25257 | 0.75086 | 0.29045 | 0.76443 | 0.32905 | $0.7799^{2}$ |
| 1.55 | 0.19208 | 0.66985 | 0.23156 | 0.67889 | 0.27161 | 0.68964 | 0.31234 | 0.70210 | 0.35385 | 0.71632 |
| 1.6 | 0.20437 | 0.60625 | 0.24636 | 0.61444 | 0.28897 | 0.62416 | 0.33231 | 0.63544 | 0.37647 | 0.64831 |
| 1.65 | 0.21539 | 0.53891 | 0.25965 | 0.54619 | 0.30455 | 0.55483 | 0.35022 | 0.56486 | 0.39677 | 0.57630 |
| 1.7 | 0.22508 | 0.46825 | 0.27133 | 0.47457 | 0.31826 | 0.48208 | 0.36598 | 0.49080 | 0.41462 | 0.50074 |
| 1.75 | 0.23338 | 0.39471 | 0.28134 | 0.40003 | 0.33000 | 0.40636 | 0.37949 | 0.41371 | 0.42992 | 0.42209 |
| 1.8 | 0.24025 | 0.31872 | 0.28962 | 0.32303 | 0.33971 | 0.32814 | 0.39065 | 0.33407 | 0.44257 | 0.34084 |
| 1.85 | 0.24563 | 0.24078 | 0.29611 | 0.24403 | 0.34732 | 0.24789 | 0.39940 | 0.25237 | 0.45249 | 0.25748 |
| 1.9 | 0.24950 | 0.16135 | 0.30077 | 0.16353 | 0.35279 | 0.166II | 0.40570 | 0.16912 | 0.45961 | 0.17254 |
| 1.95 | 0.25183 | 0.08092 | 0.30358 | 0.08202 | 0.35609 | 0.08331 | 0.40949 | 0.08482 | 0.46391 | 0.08654 |
| 2.0 | 0.25261 | 0.00 | 0.30452 | 0.00 | 0.35719 | 0.00 | 0.41075 | 0.00 | 0.46534 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\sinh (0.4+i 0)=0.41075+i 0$.
$\sinh (0.4+i \underline{I})=0 .+i \quad 1.08107$.

Table VII. HYperbolic Sines. $\sinh (x+i q)=u+i v$. Continued
$q$ 0.05 0.1
0.15
0.2
$0.25-0.4843$
$0.3 \quad 0.46430 \quad 0.51193$
$\begin{array}{llll}0.35 & 0.44431 & 0.58918\end{array}$
$0.40 \quad 0.42158 \quad 0.66280$
$\begin{array}{lll}0.45 & 0.39624 & 0.73233\end{array}$
$\begin{array}{lll}0.5 & 0.36847 & 0.79735\end{array}$
$0.55 \quad 0.33842 \quad 0.85745$
$0.6 \quad 0.30629 \quad 0.91227$
$\begin{array}{llll}0.65 & 0.27227 & 0.96146\end{array}$
$0.7 \quad 0.23657 \quad 1.00472$
$\begin{array}{lllll}0.75 & 0.19942 & 1.04179 & 0.22125 & 1.06717 \\ 0.8 & 0.16103 & 1.07244 & 0.17866 & 1.09857 \\ 0.85 & 0.12165 & 1.09647 & 0.13497 & 1.12319 \\ 0.9 & 0.08152 & 1.11374 & 0.09044 & 1.14088 \\ 0.95 & 0.04088 & 1.12415 & 0.04536 & 1.15154\end{array}$
$1.00 .00 \quad$ I. 12763
$\begin{array}{lll}1.05 & 0.04088 & \text { I.1241 }\end{array}$
I.I 0.08152 I.II374
$\begin{array}{lll}1.15 & 0.12165 & 1.09647\end{array}$
1.20 .161031 .07244
$\begin{array}{lll}1.25 & 0.19942 & 1.04179\end{array}$
$1.3 \quad 0.23657 \quad 1.0047$
$\begin{array}{llll}1.35 & 0.27227 & 0.96146\end{array}$
$\begin{array}{lll}1.4 & 0.30629 & 0.91227\end{array}$
$\begin{array}{lll}1.45 & 0.33842 & 0.85745\end{array}$

| 1.5 | 0.36847 | 0.79735 | 0.40882 | 0.81678 |
| :--- | :--- | :--- | :--- | :--- |
| 1.55 | 0.39624 | 0.73233 | 0.43963 | 0.75018 |
| 1.6 | 0.42158 | 0.66280 | 0.46773 | 0.67895 |
| 1.65 | 0.44431 | 0.58918 | 0.49296 | 0.60354 |
| 1.7 | 0.46430 | 0.51193 | 0.51514 | 0.5244 I |
|  |  |  |  |  |
| 1.75 | 0.48143 | 0.43152 | 0.53414 | 0.44204 |
| 1.8 | 0.49559 | 0.34846 | 0.54986 | 0.35695 |
| 1.85 | 0.50670 | 0.26324 | 0.56218 | 0.26965 |
| 1.9 | 0.51468 | 0.17640 | 0.57103 | 0.18070 |
| 1.95 | 0.51949 | 0.08847 | 0.57637 | 0.09063 |
| 2.0 | 0.52110 | 0.00 | 0.57815 | 0.00 |

$$
x=0.6
$$

0.636650 .00 $0.63469 \quad 0.09301$ 0.628820 .18545 $0.61906 \quad 0.27674$ $0.60549 \quad 0.36633$
$0.58819 \quad 0.45366$ $0.56726 \quad 0.53819$ 0.542840 .61940 0.515060 .69680 $0.48412 \quad 0.76990$
$0.45018 \quad 0.83825$ $0.41347 \quad 0.90144$ $0.37422 \quad 0.95906$ 0.33265 1.01078 0.289041 .05626

| 0.24364 | $1.095^{23}$ |
| :--- | :--- |
| 0.19674 | 1.12744 |
| 0.14862 | 1.1527 I |
| 0.09959 | 1.17087 |
| 0.04995 | 1.1818 I |

$0.00 \quad 1.15510$ 0.04536 1.15154
0.090441 .14088
0.134971 .12319
$0.17866 \quad 1.09857$
0.221251 .06717
0.262481 .02920
$0.30208 \quad 0.98489$
$0.33983 \quad 0.93450$
$0.37548 \quad 0.87835$
0.408820 .81678
$0.43963 \quad 0.75018$
0.467730 .67895
0.492960 .60354
0.534140 .44204
0.562180 .35695
0.571030 .18070
0.578150 .00
$0.57815 \quad 0.00$
$0.57637 \quad 0.09063$
0.571030 .18070
$0.56218 \quad 0.26965$
$0.54986 \quad 0.35695$
0.534140 .44204 $0.51514 \quad 0.52441$ 0.492960 .60354 0.467730 .67895 $0.43963 \quad 0.75018$
$0.40882 \quad 0.81678$
$0.37548 \quad 0.87835$
0.339830 .93450
$0.30208 \quad 0.98489$
$0.26248 \quad 1.02920$
0.09959 1.17087
0.04995 1.18181

| 0.00 | 1.18547 |
| :--- | :--- |
| 0.04995 | 1.18181 |
| 0.09959 | 1.17087 |
| 0.14862 | 1.15271 |
| 0.19674 | 1.12744 |
| 0.24364 | 1.09523 |
| 0.28904 | 1.05626 |
| 0.33265 | 1.01078 |
| 0.37422 | 0.95906 |
| 0.41347 | 0.90144 |

$0.45018 \quad 0.83825$
$0.48412 \quad 0.7699^{\circ}$
0.515060 .69680
0.54284 0.61940
$0.56726 \quad 0.53819$
0.588190 .45366
$0.60549 \quad 0.36633$
0.619060 .27674
0.628820 .18545
0.634690 .09301
$0.63665 \quad 0.00$
0.00 I. 88547
0.04995 1.18181
0.09959 1.17087
$\begin{array}{ll}0.14862 & 1.15271 \\ 0.19674 & 1.12744\end{array}$
0.243641 .09523
0.289041 .05626
0.374220 .95906
$0.41347 \quad 0.90144$
0.266631 .12602
0.316321 .08595
0.36405 1.03919
0.409540 .98602
$0.45250 \quad 0.92678$
$0.49268 \quad 0.86182$
0.529810 .79154
$0.56368 \quad 0.71639$
$0.59408 \quad 0.63682$
0.620810 .55332
$0.64371 \quad 0.46641$
$0.66265 \quad 0.37663$
$0.67750 \quad 0.28452$
0.688170 .19066
$0.69460 \quad 0.09563$
0.696750 .00
0.001 .21879 $0.05467 \quad 1.21504$ $0.10900 \quad 1.20379$ 0.162651 .18512 0.21531 1.15912

$$
x=0.7
$$

0.696750 .00 $0.69460 \quad 0.09563$ 0.688170 .19066 $0.67750 \quad 0.28452$ $0.66265 \quad 0.37663$
$0.64371 \quad 0.46641$ $0.6208 \mathrm{I} \quad 0.55332$ $0.59408 \quad 0.63682$ $0.56368 \quad 0.71639$ 0.529810 .79154
$0.49268 \quad 0.86182$ $0.45250 \quad 0.92678$ $0.40954 \quad 0.98602$ 0.36405 1.03919 $0.31632 \quad 1.08595$
0.266631 .12602
0.215311 .15912 0.162651 .18512 0.109001 .20379 0.054671 .21504
$\begin{array}{ll}0.23442 & 1.19374\end{array}$
$0.29030 \quad 1.15962$
0.344391 .11836
0.396361 .07021
0.44589 1.01 545
0.492660 .95444
$0.53640 \quad 0.88754$
$0.57683 \quad 0.81517$
0.613710 .73777
$0.64680 \quad 0.65582$
$0.67590 \quad 0.56984$
0.700840 .48033
$0.72146 \quad 0.38787$
0.737630 .29301
$0.74925 \quad 0.19635$
0.756250 .09848
0.758580 .00

Note. Negative quantities are in heavy type.
Examples. $\sinh (0.65+i \underline{0.75})=0.26663+i_{\text {I. } 12602 .}$. $\sinh (0.55+i \underline{\text { I.40 }})=-0.33983+i 0.93450$.

Table VII. HYPERBOLIC SINES. $\sinh (x+i q)=u+i v$. Continued

| 9 | $x=0.75$ |  | $x=0.8$ |  | $x=0.85$ |  | $x=0.9$ |  | $x=0.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 0.82232 | 0.00 | 0.888II | . $\infty$ | 0.95612 | 0.00 | 1.0265 | . $\infty$ | 1.09948 | 0.00 |
| 0.05 | 0.81978 | -.10158 | 0.88537 | 0.10493 | 0.95317 | 0.10855 | 1.02335 | -.11 244 | 1.09610 | 0.11661 |
| 0.1 | 0.81219 | 0.20253 | 0.87717 | 0.20922 | 0.94435 | 0.21643 | 1.01388 | 0.22418 | 1.08595 | 0.23250 |
| 0.15 | 0.79960 | 0.30224 | 0.86357 | 0.31222 | 0.92970 | 0.32298 | 0.99816 | 0.33455 | 1.06911 | 0.34695 |
| 0.2 | 0.78207 | 0.40079 | 0.84464 | 0.41329 | 0.90932 | 0.42753 | 0.97628 | 0.44285 | 1.04567 | 0.45927 |
| 0.25 | 0.75972 | 0.49545 | 0.82050 | 0.51182 | 0.88334 | 0.5294 .5 | 0.94838 | 0.54842 | 1.01579 | 0.56875 |
| 0.3 | 0.73269 | 0.58777 | 0.79131 | 0.60718 | 0.85191 | 0.62811 | 0.91463 | 0.65061 | 0.97965 | 0.67473 |
| 0.35 | 0.70114 | 0.67647 | 0.75724 | 0.69881 | 0.81522 | 0.72289 | 0.87525 | 0.74879 | 0.93747 | 0.77655 |
| 0.4 | 0.66527 | 0.76100 | 0.71849 | 0.78613 | 0.77351 | 0.81322 | 0.83047 | 0.84235 | 0.88050 | 0.87358 |
| 0.45 | 0.62529 | 0.84083 | 0.67532 | 0.86859 | 0.72704 | 0.89853 | 0.78057 | 0.93071 | 0.83605 | 0.96523 |
| 0.5 | 0.58146 | 0.91548 | 0.62799 | 0.94571 | 0.67608 | 0.97830 | 0.72586 | 1.01334 | 0.77745 | 1.05092 |
| 0.55 | 0.53405 | 0.98449 | 0.57678 | 1.01700 | 0.62095 | 1.05205 | 0.66667 | 1.08973 | 0.71406 | 1.13013 |
| 0.6 | 0.48335 | 1.04742 | 0.52202 | 1.08201 | 0.56199 | I.11930 | 0.60337 | I.15939 | 0.64621 | 1.20238 |
| 0.65 | 0.42966 | 1.10390 | 0.46403 | 1.14035 | 0.49957 | 1.17965 | 0.53635 | T.22191 | 0.57448 | 1.26722 |
| 0.7 | 0.37332 | 1.15356 | 0.40319 | 1.19166 | 0.43407 | 1.23274 | 0.46603 | 1.27689 | 0.49916 | 1.32425 |
| 0.75 | 0.31469 | 1.19613 | 0.33986 | 1.23563 | 0.36589 | 1.27822 | 0.39283 | 1.32400 | 0.42076 | 1.37309 |
| 0.8 | 0.25411 | 1.23132 | 0.27444 | 1.27198 | 0.29546 | 1.31582 | 0.31721 | 1.36294 | 0.33976 | 1.41348 |
| 0.85 | 0.19197 | 1.25891 | 0.20732 | 1.30048 | 0.22320 | 1.34530 | 0.23964 | 1.39349 | 0.25667 | 1.445 ${ }^{1} 6$ |
| 0.9 | 0.12864 | 1.27874 | 0.13893 | 1.32097 | 0.14957 | 1. 36650 | 0.16058 | 1.41544 | 0.17200 | 1. 46793 |
| 0.95 | $0.0645^{2}$ | 1.29069 | 0.06968 | 1.3333 1 | 0.07502 | 1.37927 | 0.08054 | 1.42867 | 0.08627 | 1.48164 |
| 1.0 | 0.00 | 1. 29468 | 0.00 | I. 33743 | 0.00 | 1.38353 | 0.00 | 1.43309 | 0.00 | 1.48623 |
| 1.05 | 0.06452 | 1. 29069 | 0.06968 | 1.33331 | 0.07502 | 1.37927 | 0.08054 | 1.42867 | 0.08627 | 1.48164 |
| I.I | 0.12864 | 1.27874 | 0.13893 | 1.32097 | 0.14957 | 1.36650 | 0.16058 | 1.41544 | 0.17200 | 1.46793 |
| I. 15 | 0.19197 | 1.25891 | . 20732 | 1.30048 | . 22320 | 1.34530 | 0.23964 | 1. 39349 | 0.25667 | 1.44516 |
| 1. 2 | 0.25411 | 1.23132 | 0.27444 | 1.27198 | 0.29546 | 1.31582 | 0.31721 | 1.36294 | 0.33976 | 1.41348 |
| 1.25 | 0.31469 | 1.19613 | 0.33986 | 1.23563 | 0.36589 | 1.27822 | 0.39283 | 1. 32400 | 0.42076 | 1.37309 |
| I. 3 | 0.37332 | I.15356 | 0.40319 | 1.19166 | 0.43407 | I. 23274 | 0.46603 | 1.27689 | 0.49916 | 1.32425 |
| I. 35 | 0.42966 | 1.10390 | 0.46403 | 1.14035 | 0.49957 | 1.17965 | 0.53635 | 1.22191 | 0.57448 | 1. 26722 |
| I. 4 | 0.48335 | 1.04742 | 0.52202 | 1.08201 | 0.56199 | 1.11930 | 0.60337 | 1.15939 | 0.64621 | 1.20238 |
| 1.45 | 0.53405 | 0.98449 | 0.57678 | 1.01700 | 0.62095 | 1.05205 | 0.66667 | 1.08973 | 0.71406 | I.13013 |
| 1.5 | 0.58146 | 0.91548 | 0.62799 | 0.94571 | 0.67608 | 0.97830 | 0.72586 | 1.01334 | 0.77745 | 1.05092 |
| 1. 55 | 0.62529 | 0.84083 | 0.67532 | 0.86859 | 0.72704 | 0.89853 | 0.78057 | 0.93071 | 0.83605 | 0.96523 |
| 1.6 | 0.66527 | 0.76100 | 0.71849 | 0.78613 | 0.77351 | 0.81322 | 0.83047 | 0.84235 | 0.88950 | 0.87358 |
| 1.65 | 0.70114 | 0.67647 | 0.75724 | 0.69881 | 0.81522 | 0.72289 | 0.87525 | 0.74879 | 0.93747 | 0.77655 |
| 1.7 | 0.73269 | 0.58777 | 0.79131 | 0.60718 | 0.85191 | 0.6281 I | 0.91463 | 0.6506I | 0.97965 | 0.67473 |
| 1.75 | 0.75972 | 0.49545 | 0.82050 | 0.51182 | 0.88334 | 0.52945 | 0.94838 | 0.54842 | 1.01579 | 0.56875 |
| 1.8 | 0.78207 | 0.40079 | 0.84464 | 0.41329 | 0.90932 | 0.42753 | 0.97628 | 0.44285 | 1.04567 | 0.45927 |
| 1.85 | 0.79960 | 0.30224 | 0.86357 | 0.31222 | 0.92970 | 0.32298 | 0.99816 | 0.33455 | 1.06911 | 0.34695 |
| 1.9 | 0.81219 | 0.20253 | 0.87717 | 0.20922 | 0.94435 | 0.21643 | 1.01388 | 0.22418 | 1.08595 | 0.23250 |
| 1.95 | 0.81978 | 0.10158 | 0.88537 | 0.10493 | 0.95317 | 0.10855 | 1.02335 | 0.11244 | 1.09610 | 0.11661 |
| 2.0 | 0.82232 | 0.00 | 0.888 II | 0.00 | 0.95612 | 0.00 | 1.02652 | $0 . \infty$ | 1. 09948 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\sinh \left(0.8+i_{0.7}\right)=0.40319+i_{\text {1.19166. }}$ $\sinh \left(0.8+i_{1.7}\right)=-0.79131+i 0.60718$.

Table VII. HYperbolic SINES. $\sinh (x+i q)=u+i v$. Continued

| $q$ | $x$ |  | $x=$ |  |  |  | $x=$ | 15 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 1.17520 | 0.00 | 1.25386 | 0.00 | 1.33565 | 0.00 | 1.42078 | 0.00 | 1. 50946 | 0.0 |
| 0.05 | 1.17158 | 0.12107 | 1.24999 | 0.12583 | I.33153 | 0.13091 | 1.41640 | 0.13632 | 1.50481 | 0.14206 |
| 0.1 | 1.16073 | 0.24139 | 1.23842 | 0.25089 | 1.31920 | 0.2610I | 1.40329 | 0.27179 | 1.49088 | 0.28325 |
| 0.15 | 1.14273 | 0.36023 | 1.2192I | 0.37440 | 1.29875 | 0.38951 | I.38I52 | 0.40559 | 1. 46776 | 0.42269 |
| 0.2 | 1.11768 | 0.47684 | I.19249 | 0.49560 | 1.27028 | 0.51560 | 1.35124 | 0.53689 | 1.43558 | 0.55952 |
| 0.25 | 1.08574 | 0.59051 | I.15841 | 0.61375 | I. 23398 | 0.63852 | 1.31263 | 0.66488 | 1. 39456 | 0.69291 |
| 0.3 | 1.04711 | 0.70055 | 1.11719 | 0.72811 | I. 19007 | 0.75749 | 1. 26592 | 0.78877 | 1.34494 | 0.82202 |
| 0.35 | 1.00202 | 0.80626 | 1.06909 | 0.83798 | 1.13883 | 0.87180 | 1.21141 | 0.90780 | 1.28703 | 0.94607 |
| 0.4 | 0.95076 | 0.90700 | 1.01439 | 0.94269 | 1.08056 | 0.98073 | I.14943 | 1.02123 | 1.22118 | 1.06428 |
| 0.45 | 0.89363 | 1.00215 | 0.95344 | 1.041 58 | 1.OI 564 | 1.08362 | 1.08037 | I.I2836 | 1.14781 | 1.71593 |
| 0.5 | 0.83099 | 1.09112 | 0.88661 | 1.13405 | 0.94445 | 1.17982 | 1.00464 | 1. 22854 | 1.06735 | 1.28033 |
| 0.55 | 0.76323 | 1.17337* | 0.81432 | 1.21953 | 0.86743 | I. 26875 | 0.92272 | I. 32114 | 0.98032 | 1.37684 |
| 0.6 | 0.69077 | 1. 24838 | 0.73700 | 1.29750 | 0.78508 | 1. 34986 | 0.83511 | I. 40560 | 0.88724 | 1. 46485 |
| 0.65 | 0.61404 | I.31569 | 0.65514 | 1.36746 | 0.69787 | 1. 42265 | 0.74235 | 1.48139 | 0.78869 | 1. 54384 |
| 0.7 | 0.53353 | 1.37490 | 0.56924 | 1.42899 | 0.60637 | 1.48666 | 0.64502 | 1.54805 | 0.68528 | 1.61331 |
| 0.75 | 0.44973 | 1.42562 | 0.47983 | 1.48171 | 0.51113 | 1.54151 | 0.54371 | 1.60517 | 0.57765 | 1.67283 |
| 0.8 | 0.36316 | 1.46756 | 0.38746 | 1.52530 | 0.41274 | 1. 58685 | 0.43904 | 1. 65238 | 0.46645 | 1. 72204 |
| 0.85 | 0.27435 | 1.50045 | 0.29271 | 1. 55948 | 0.31180 | 1.62242 | 0.33167 | 1.68941 | 0.35238 | 1.76063 |
| 0.9 | 0.18384 | 1.52408 | 0.19615 | 1.58405 | 0.20894 | 1. 64798 | 0.22226 | 1.71602 | 0.23613 | 1.78836 |
| 0.95 | 0.09221 | 1. 53832 | 0.09838 | 1.59885 | 0.10479 | 1. 66337 | 0.11147 | 1.73206 | 0.11843 | 1.80507 |
| 1.0 | 0.00 | 1.54308 | 0.00 | 1.60379 | 0.00 | 1.66852 | 0.00 | 1.7374I | 0.00 | 1.81066 |
| 1.05 | 0.09221 | 1.53832 | 0.09838 | 1.59885 | 0.10479 | 1.66337 | 0.11147 | 1.73206 | 0.11843 | 1.80507 |
| 1.1 | 0.18384 | 1. 52408 | 0.19615 | 1.58405 | 0.20894 | 1.64798 | 0.22226 | 1.71602 | 0.23613 | 1.78836 |
| 1.15 | 0.27435 | 1.50045 | 0.29271 | 1.55948 | 0.31180 | 1. 62242 | 0.33167 | 1.68941 | 0.35238 | 1.76063 |
| 1.2 | 0.36316 | 1.46756 | 0.38746 | 1.52530 | 0.41274 | 1.58685 | 0.43904 | 1.65238 | 0.46645 | 1.72204 |
| 1.25 | 0.44973 | 1.42562 | 0.47983 | 1.48171 | 0.51113 | 1.54151 | 0.54371 | 1.60517 | 0.57765 | 1. 67283 |
| 1.3 | 0.53353 | 1.37490 | 0.56924 | 1.42899 | 0.60637 | 1.48666 | 0.64502 | 1.54805 | 0.68528 | 1.61331 |
| 1. 35 | 0.61404 | 1.31569 | 0.65514 | 1. 36746 | 0.69787 | 1.42265 | 0.74235 | 1.48139 | 0.78869 | 1. 54384 |
| 1.4 | 0.69077 | 1.24838 | 0.73700 | 1.29750 | 0.78508 | 1. 34986 | 0.83511 | 1.40560 | 0.88724 | 1. 46485 |
| 1.45 | 0.76323 | 1.17337 | 0.81432 | 1.21953 | 0.86743 | 1.26875 | 0.92272 | 1.32114 | 0.98032 | 1.37684 |
| 1.5 | 0.83099 | 1.09112 | 0.88661 | I.I3405 | 0.94445 | 1.17982 | 1.00464 | 1. 22854 | 1.06735 | 1.28033 |
| I. 55 | 0.89363 | 1.00215 | 0.95344 | 1.04158 | 1.01564 | 1.08362 | 1.08037 | 1.12836 | 1.14781 | 1.17593 |
| 1.6 | 0.95076 | 0.90700 | 1.01439 | 0.94269 | 1.08056 | 0.98073 | 1.14943 | 1.02123 | 1.22118 | 1.06428 |
| 1.65 | 1.00202 | 0.80626 | 1.06909 | 0.83798 | 1.13883 | 0.87180 | 1.21141 | 0.90780 | 1.28703 | 0.94607 |
| 1.7 | 1.04711 | 0.70055 | 1.11719 | 0.72811 | 1.19007 | 0.75749 | 1.26592 | 0.78877 | 1.34494 | 0.82202 |
| 1.75 | 1.08574 | 0.59051 | 1.15841 | 0.61375 | 1.23398 | 0.63852 | 1.31263 | 0.66488 | 1.39456 | 0.69291 |
| 1.8 | 1.11768 | 0.47684 | 1.19249 | 0.49560 | 1.27028 | 0.51560 | 1.35124 | 0.53689 | 1.43558 | 0.55952 |
| 1.85 | 1.14273 | 0.36023 | 1.21921 | 0.37440 | 1.29875 | 0.38951 | r.38152 | 0.40559 | 1.46776 | 0.42269 |
| 1.9 | 1.16073 | 0.24139 | 1.23842 | 0.25089 | 1.31920 | 0.26ior | 1.40329 | 0.27179 | 1.49088 | 0.28325 |
| 1.95 | 1.17158 | 0.12107 | 1.24999 | 0.12583 | 1.33153 | 0.13091 | 1.41640 | 0.13632 | 1.50481 | 0.14206 |
| 2.0 | 1.17520 | 0.00 | 1.25386 | 0.00 | 1.33565 | 0.00 | 1. 42078 | 0.00 | 1.50946 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\sinh \left(\right.$ 1.0 $\left.+i_{1.0}\right)=0+i_{1.54308}$.
$\sinh \left(1.0+i_{1.5}\right)=-0.83099+i_{1.09112}$.
[46]

Table VII. HYperbolic SINES. $\sinh (x+i q)=u+i v$. Continued

| $q$ |  |  |  |  |  | 5 |  | 1.4 |  | . 45 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 1.60192 | 0.00 | 1. 69838 | 0.00 | 1.79909 | 0.00 | 1.90430 | 0.00 | 2.01427 | 0.00 |
| 0.05 | 1.59698 | 0.14816 | 1.69315 | 0.15464 | 1.79354 | 0.16150 | 1.89843 | $0.1687{ }^{\circ}$ | 2.00806 | 0.17644 |
| 0.1 | 1.58220 | 0.2954 I | 1.67747 | 0.30832 | 1.77694 | 0.32199 | 1.88086 | 0.33647 | 1.98947 | 0.35180 |
| 0.15 | 1.55766 | 0.44084 | 1. 65146 | 0.46010 | 1.74938 | 0.48051 | 1.85169 | 0.50212 | 1.95862 | 0.52498 |
| 0.2 | 1.52352 | 0.58355 | I.6I526 | 0.60905 | 1.71104 | 0.63606 | 1.81110 | 0.66466 | 1.91569 | 0.69493 |
| 0.25 | 1.47998 | 0.72267 | 1.56910 | 0.75424 | 1.66215 | 0. 78769 | 1.75934 | 0.82311 | 1.86094 | 0.86060 |
| 0.3 | 1.42732 | 0.85733 | 1.51327 | 0.89478 | 1.60300 | 0.93446 | 1.69675 | 0.97649 | 1.79473 | 1.02095 |
| 0.35 | I. 36586 | 0.98670 | I.448II | 1.02980 | 1. 53398 | 1.07548 | 1.62369 | 1.12384 | 1.71745 | 1.17502 |
| 0.4 | 1.29598 | 1.10999 | 1.37402 | 1.15848 | 1.45550 | 1. 20986 | 1.54061 | 1.26427 | 1. 62958 | 1.32184 |
| 0.45 | 1.21811 | 1.22643 | 1.29146 | 1.2800I | 1. 36804 | 1.33678 | 1.44804 | 1.39690 | 1.53166 | 1.46051 |
| 0.5 | 1.13273 | 1. 33532 | 1. 20094 | 1.39365 | 1.27215 | 1.45546 | 1.34655 | 1.52092 | 1.42431 | 1.59017 |
| 0.55 | 1.04036 | I. 43597 | I.10301 | 1.49870 | 1.16842 | 1.56517 | 1.23674 | 1.63556 | 1.30817 | 1.71007 |
| 0.6 | 0.94158 | 1.52777 | 0.99829 | 1.59451 | 1.05748 | 1.66523 | 1.11932 | 1.74012 | 1.18396 | 1.81935 |
| 0.65 | 0.83700 | 1.61014 | 0.88740 | 1.68048 | 0.94002 | 1.75502 | 0.99500 | 1. 83394 | 1.05245 | 1.91745 |
| 0.7 | 0.72726 | 1. 68260 | 0.77105 | 1.75610 | 0.81677 | 1. 83399 | 0.86454 | 1.91646 | 0.91446 | 2.00373 |
| 0.75 | 0.61303 | 1.74467 | 0.64994 | 1.82089 | 0.68848 | 1.90165 | 0.72875 | 1.98717 | 0.77083 | 2.07766 |
| 0.8 | 0.49502 | 1.79600 | 0.52483 | 1.87445 | 0.55595 | 1.95759 | 0.58846 | 2.04562 | 0.62244 | 2.13878 |
| 0.85 | 0.37396 | 1.83624 | 0.39648 | 1.91646 | 0.41999 | 2.00146 | 0.44455 | 2.09147 | 0.47022 | 2.18671 |
| 0.9 | 0.25060 | 1.86517 | 0.26569 | 1.94665 | 0.28144 | 2.03299 | 0.29790 | 2.12442 | 0.31510 | 2.22115 |
| 0.95 | 0.12569 | 1.88260 | 0.13325 | 1.96484 | 0.14116 | 2.05199 | 0.14427 | 2.14427 | 0.15804 | 2.24191 |
| 1.0 | 0.00 | 1.88842 | 0.00 | 1.97 | 0.0 | 2.05833 | 0.00 | 2.15090 | 0.0 | 2.24884 |
| 1.05 | 0.12569 | 1.88260 | 0.13325 | 1.96484 | 0.14116 | 2.05199 | 0.14427 | 2.14427 | 0.15804 | 2.24191 |
| I.I | 0.25060 | 1.86517 | 0.26569 | 1.94665 | 0.28144 | 2.03299 | 0.29790 | 2.12442 | 0.31510 | 2.22115 |
| I.I5 | 0.37396 | 1.83624 | 0.39648 | 1.91646 | 0.41999 | 2.00146 | 0.44455 | 2.09147 | 0.47022 | 2.18671 |
| 1.2 | 0.49502 | 1.79600 | 0.52483 | 1.87445 | 0.55595 | 1.95759 | 0.58846 | 2.04562 | 0.62244 | 2.13878 |
| 1.25 | 0.61303 | 1.74467 | 0.64994 | 1.82089 | 0.68848 | 1.90165 | 0.72875 | 1.98717 | 0.77083 | 2.07766 |
| 1.3 | 0.72726 | 1.68260 | 0.77105 | 1.75610 | 0.81677 | 1.83399 | 0.86454 | 1.91646 | 0.91446 | 2.00373 |
| 1.35 | 0.83700 | 1.61014 | 0.88740 | 1. 68048 | 0.94002 | 1.75502 | 0.99500 | 1.83394 | 1.05245 | 1.91745 |
| I. 4 | 0.94158 | 1. 52777 | 0.99829 | I.5945I | 1.05748 | 1.66523 | 1.11932 | 1.74012 | 1.18396 | I.81935 |
| 1.45 | 1.04036 | 1.43597 | 1.10301 | 1.49870 | 1.16842 | 1.56517 | 1.23674 | 1. 63556 | 1.30817 | 1.71007 |
| 1.5 | 1.13273 | 1.33532 | 1.20094 | 1.39365 | 1.27215 |  | 1.34655 | 1.52092 | 1.42431 | 1.59017 |
| 1.55 | 1.21811 | 1.22643 | 1.29146 | 1.28001 | 1.36804 | 1.33678 | 1.44804 | 1.39690 | 1.53166 | 1.46051 |
| 1.6 | 1.29598 | 1.10999 | 1.37402 | 1.15848 | 1.45550 | 1. 20986 | 1.54061 | I. 26427 | 1.62958 | 1. 32184 |
| 1.65 | 1.36586 | 0.98670 | 1:44811 | 1.02980 | 1.53398 | 1.07548 | 1.62369 | I.12384 | 1.71745 | 1.17502 |
| 1.7 | 1.42732 | 0.85733 | 1.51327 | 0.89478 | 1.60300 | 0.93446 | 1.69675 | 0.97649 | 1.79473 | 1.02095 |
| 1.75 | 1.47998 | 0.72267 | 1.56910 | 0.75424 | 1.66215 | 0.78769 | 1.75934 | 0.82311 | 1.86094 | 0.86060 |
| 1.8 | 1.52352 | 0.58355 | 1.61526 | 0.60905 | 1.71104 | 0.63606 | r.81110 | 0.66466 | 1.91569 | . 69493 |
| 1.85 | 1.55766 | 0.44084 | 1.65146 | 0.46010 | 1.74938 | 0.48051 | 1.85169 | 0.50212 | 1.95862 | 0.52498 |
| 1.9 | 1.58220 | 0.29541 | 1.67747 | 0.30832 | 1.77694 | 0.32199 | 1.88086 | 0.33647 | 1.98947 | 0.35180 |
| 1.95 | 1.59698 | 0.14816 | 1.69315 | 0.15464 | I. 79354 | 0.16150 | r. 89843 | 0.16876 | 2.00806 | 0.17644 |
| 2.0 | r.60192 | 0.00 | 1.69838 | 0.00 | 1.79909 | 0.00 | 1.90430 | 0.00 | 2.01427 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\sinh (1.35+i 0)=1.70909+i 0$.
$\sinh \left(\mathrm{I} .4+i_{1.15}\right)=-0.44455+i_{2.09147}$.

Table VII. HYPERBOLIC SINES. $\sinh (x+i q)=u+i v$. Continued

| $q$ | $x$ |  | $\boldsymbol{x}$ | 55 | $x=$ | 1.6 | $x$ |  | $x=$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 2.12928 | 0.00 | 2.24961 | 0.00 | 2.37557 | 0.00 | 2.50746 | 0.00 | 2.64563 | 0.00 |
| 0.05 | 2.12272 | 0.18457 | 2.24268 | 0.19316 | 2.36824 | 0.20223 | 2.49973 | 0.21180 | 2.63747 | 0.22191 |
| 0.1 | 2.10307 | 0.36800 | 2.22191 | 0.38512 | 2.34632 | 0.40320 | 2.47659 | 0.42230 | 2.61306 | 0.44245 |
| 0.15 | 2.07045 | 0.54916 | 2.18745 | 0.57471 | 2.30993 | 0.60170 | 2.43818 | 0.63019 | 2.57253 | 0.66026 |
| 0.2 | 2.02507 | 0.72693 | 2.13951 | 0.76076 | 2.25930 | 0.79648 | 2.38474 | 0.83420 | 2.51614 | 0.87400 |
| 0.25 | 1.96720 | 0.90023 | 2.07837 | 0.94211 | 2.19473 | 0.98636 | 2.31660 | 1.03306 | 2.44424 | 1.08235 |
| 0.3 | 1.89720 | 1.06797 | 2.00442 | 1.11766 | 2.11664 | 1.17015 | 2.23417 | 1. 22556 | 2.35727 | 1. 28403 |
| 0.35 | 1.81551 | 1.22913 | 1.91811 | 1.28632 | 2.02550 | 1.34672 | 2.13797 | 1.41050 | 2.25577 | 1.47779 |
| 0.4 | 1.72263 | 1.38271 | 1.81997 | 1.44704 | 1.92187 | 1.51500 | 2.02858 | 1.58674 | 2.14036 | 1.66244 |
| 0.45 | 1.61912 | 1.52777 | 1.71062 | 1.59885 | 1.80640 | 1. 67393 | 1.90669 | 1.75320 | 2.01175 | 1.83684 |
| 0.5 | 1.50563 | 1.66341 | 1.59071 | 1.74080 | 1.67978 | 1. 82254 | 1.77305 | 1. 90885 | 1.87074 | 1.99992 |
| 0.55 | 1.38286 | 1.78879 | 1.46101 | 1.87201 | 1.5428I | 1.95992 | 1.62847 | 2.05274 | 1.71820 | 2.15067 |
| 0.6 | 1.25156 | 1.90314 | 1.32229 | 1.99169 | 1.39632 | 2.08522 | 1.47385 | 2.18396 | 1.55506 | 2.28816 |
| 0.65 | 1.11255 | 2.00576 | 1.17542 | 2.09908 | 1.24123 | 2.19765 | 1.31015 | 2.30173 | 1.38234 | 2.41154 |
| 0.7 | 0.96667 | 2.09601 | 1.02130 | 2.19353 | 1.07848 | 2.29654 | 1.13837 | $2.405^{29}$ | 1.20109 | 2.52005 |
| 0.75 | 0.81484 | 2.17334 | 0.86089 | 2.27446 | 0.90909 | 2.38127 | 0.95957 | 2.49404 | 1.01244 | 2.61302 |
| 0.8 | 0.65798 | 2.23727 | 0.69517 | 2.34137 | 0.734 C 9 | 2.45131 | 0.77485 | 2.56740 | 0.81754 | 2.68989 |
| 0.85 | 0.49707 | 2.28742 | 0.52516 | 2.39384 | 0.55456 | 2.50625 | 0.58536 | 2.62494 | 0.61761 | 2.75017 |
| 0.9 | 0.33309 | 2.32345 | 0.35192 | 2.43155 | 0.37163 | 2.54573 | 0.39225 | 2.66629 | 0.41387 | 2.79350 |
| 0.95 | 0.16706 | 2.34516 | 0.17650 | 2.45427 | 0.18639 | 2.56952 | 0.19673 | 2.69121 | 0.20757 | 2.81960 |
| 1.0 | 0.00 | 2.35241 | 0.00 | 2.46186 | 0.00 | 2.57746 | 0. | 2.69951 | 0.00 | 2.82832 |
| 1.05 | 0.16706 | 2.34516 | 0.17650 | 2.45427 | 0.18639 | 2.56952 | 0.19673 | 2.69121 | 0.20757 | 2.81960 |
| 1. | 0.33309 | 2.32345 | 0.35192 | 2.43155 | 0.37163 | 2.54573 | 0.39225 | 2.66629 | 0.41387 | 2.79350 |
| 1.15 | 0.49707 | 2.28742 | 0.52516 | 2.39384 | 0.55456 | 2.50625 | 0.58536 | 2.62494 | 0.61761 | 2.75017 |
| 1.2 | 0.65798 | 2.23727 | 0.69517 | 2.34137 | 0.73409 | 2.45131 | 0.77485 | 2.56740 | 0.81754 | 2.68989 |
| 1.25 | 0.81484 | 2.17334 | 0.86089 | 2.27446 | 0.90909 | 2.38127 | 0.95957 | 2.49404 | 1.01244 | 2.61302 |
| 1.3 | 0.96667 | 2.09601 | 1.02130 | 2.19353 | 1.07848 | 2.29654 | 1.13837 | 2.40529 | 1.20109 | 2.52005 |
| 1. 35 | 1.11255 | 2.00576 | 1.17542 | 2.09908 | 1.24123 | 2.19765 | 1.31015 | 2.30173 | 1.38234 | 2.41154 |
| 1.4 | 1.25156 | 1.90314 | 1.32229 | 1.99169 | 1.39632 | 2.08522 | 1.47385 | 2.18396 | 1.55506 | 2.28816 |
| 1. 45 | 1.38286 | 1.78879 | 1.46101 | 1.87201 | I.5428I | 1. 95992 | 1.62847 | 2.05274 | 1.71820 | 2.15067 |
| 1.5 | 1.50563 | 1.66341 | 1.59071 | 1.74080 | 1.67978 | 1. 82254 | 1.77305 | 1.90885 | 1.87074 |  |
| 1. 55 | 1.61912 | 1.52777 | 1.71062 | 1. 59885 | 1.80640 | 1.67393 | 1.90669 | 1.75320 | 2.01175 | 1.83684 |
| 1.6 | 1.72263 | 1.38271 | 1.81997 | 1.44704 | 1.92187 | 1.51500 | 2.02858 | 1.58674 | 2.14036 | 1.66244 |
| 1.65 | 1.81551 | 1.22913 | 1.91811 | 1.28632 | 2.02550 | 1.34672 | 2.13797 | 1.41050 | 2.25577 | 1.47779 |
| 1.7 | 1.89720 | 1.06797 | 2.00442 | 1.11766 | 2.11664 | 1.17015 | 2.23417 | 1.22556 | 2.35727 | 1.28403 |
| 1.75 | 1.96720 | 0.90023 | 2.07837 | 0.94211 | 2.19473 | 0.98636 | 2.31660 | 1.03306 | 2.44424 | 1.08235 |
| 1.8 | 2.02507 | 0.72693 | 2.13951 | 0.76076 | 2.25930 | 0.79648 | 2.38474 | 0.83420 | 2.51614 | 0.87400 |
| 1.85 | 2.07045 | 0.54916 | 2.18745 | 0.57471 | 2.30993 | 0.60170 | 2.43818 | 0.63019 | 2.57253 | 0.66026 |
| 1. 9 | 2.10307 | 0.36800 | 2.22191 | 0.38512 | 2.34632 | 0.40320 | 2.47659 | 0.42230 | 2.61306 | 0.44245 |
| 1.95 | 2.12272 | 0.18457 | 2.24268 | 0.19316 | 2.36824 | 0.20223 | 2.49973 | 0.21180 | 2.63747 | 0.2219I |
| 2.0 | 2.12928 | 0.00 | 2.24961 | 0.00 | 2.37557 | 0.00 | 2.50746 | 0.00 | 2.64563 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\sinh (1.7+i 0.7)=1.20109+i 2.52005$.
$\sinh \left(1.7+i_{\text {1.7 }}\right)=-2.35727+i_{\text {1.28403 }}$.

Table VII. HYPERBOLIC SINES. $\sinh (x+i q)=u+i v$. Continued

| $q$ | $x=1.75$ |  | $x=\mathrm{I} .8$ |  | $x=1.85$ |  | $x=1.9$ |  | $x=1.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 2.79041 | 0.00 | 2.94217 | 0.00 | 3.10129 | 0.00 | 3.26816 | 0.00 | 3.44321 | 0.00 |
| 0.05 | 2.78181 | 0.23257 | 2.93310 | 0.24381 | 3.09173 | 0.25566 | 3.25809 | 0.26815 | 3.43259 | 0.28131 |
| 0.1 | 2.75606 | 0.46370 | 2.90595 | 0.48612 | 3.06311 | 0.50975 | 3.22793 | 0.53465 | 3.40081 | 0.56089 |
| 0. 15 | 2.7133 I | 0.69198 | 2.86088 | 0.72542 | 3.01560 | 0.76069 | 3.17787 | 0.79785 | 3.34807 | 0.83701 |
| 0.2 | 2.65384 | 0.91599 | 2.79817 | 0.96026 | 2.94950 | 1.00694 | 3.10821 | 1.05614 | 3.27468 | 1. 10797 |
| 0.25 | 2.57800 | 1.13435 | 2.71821 | 1.18918 | 2.86522 | 1.24698 | 3.01939 | 1.30791 | 3.18111 | 1.37210 |
| 0.3 | 2.48627 | 1.34571 | 2.62149 | 1.41076 | 2.76327 | 1.47934 | 2.91196 | 1.55162 | 3.06792 | 1.62777 |
| 0.35 | 2.37922 | 1. 54878 | 2.50862 | 1.62365 | 2.64429 | 1.70258 | 2.78657 | 1.78576 | 2.93582 | 1.87341 |
| 0.4 | 2.25749 | 1.74231 | 2.38027 | 1.82653 | 2.50900 | 1.91531 | 2.64400 | 2.00889 | 2.78561 | 2.10749 |
| 0.45 | 2.12185 | 1.92509 | 2.23725 | 2.01814 | 2.35824 | 2.11624 | 2.48513 | 2.21964 | 2.61823 | 2.32858 |
| 0.5 | 1.97312 | 2.09600 | 2.08043 | 2.19731 | 2.19294 | 2.30413 | 2.31094 | 2.41670 | 2.43471 | 2.53532 |
| 0.55 | 1.81223 | 2.25399 | 1.91079 | 2.36294 | 2.01413 | 2.47780 | 2.12250 | 2.59887 | 2.23618 | 2.72642 |
| 0.6 | 1.64016 | 2.39808 | 1.72937 | 2.51400 | 1.82289 | 2.63620 | 1.92098 | 2.76501 | 2.02387 | 2.90071 |
| 0.65 | 1.45799 | 2.52739 | 1.53728 | 2.64956 | 1.62042 | 2.77835 | 1.70761 | 2.91409 | 1.79907 | 3.05713 |
| 0.7 | 1.26682 | 2.64111 | 1.33572 | 2.76878 | 1.40796 | 2.90337 | 1. 48372 | 3.04522 | 1.56318 | 3.19469 |
| 0.75 | 1. 06784 | 2.73855 | I. 12592 | 2.87093 | 1.18681 | 3.01049 | 1. 25067 | 3.15757 | 1.31766 | 3.31255 |
| 0.8 | 0.86229 | 2.819 II | 0.90918 | 2.95538 | 0.95835 | 3.09904 | 1.00992 | 3.25045 | 1.06401 | 3.41000 |
| 0.85 | 0.65141 | 2.88229 | 0.68684 | 3.02161 | 0.72398 | 3.16850 | 0.76294 | 3.32330 | 0.80380 | 3.48641 |
| 0.9 | 0.43652 | 2.92769 | 0.46026 | 3.06921 | 0.48627 | 3.21841 | 0.51125 | 3.37565 | 0.53864 | 3.54134 |
| 0.95 | 0.21893 | 2.95505 | 0.23084 | 3.09789 | 0.24332 | 3.24848 | 0.25642 | 3.40719 | 0.27015 | 3.57443 |
| 1. | 0.00 | 2.96419 | 0.00 | 3.10747 | 0.00 | 3.25853 | 0.0 | 3.41773 | 0.00 | 3.58548 |
| 1.05 | 0.21893 | 2.95505 | 0.23084 | 3.09789 | 0.24332 | 3.24848 | 0.25642 | 3.40719 | 0.27015 | 3.57443 |
| I.I | 0.43652 | 2.92769 | 0.46026 | 3.06921 | 0.48627 | 3.21841 | 0.51125 | 3.37565 | 0.53864 | 3.54134 |
| 1.15 | 0.65141 | 2.88229 | 0.68684 | 3.02161 | 0.72398 | 3.16850 | 0.76294 | 3.32330 | 0.80380 | 3.48641 |
| 1.2 | 0.86229 | 2.819II | 0.90918 | 2.95538 | 0.95835 | 3.09904 | 1.00992 | 3.25045 | 1.06401 | 3.41000 |
| 1.25 | 1.06784 | 2.73855 | 1.12592 | 2.87093 | 1.18681 | 3.01049 | 1.25067 | 3.15757 | 1.31766 | 3.31255 |
| 1.3 | 1.26682 | 2.64 III | 1.33572 | 2.76878 | 1.40796 | 2.90337 | 1.48372 | 3.04522 | 1.56318 | 3.19469 |
| 1.35 | 1.45799 | 2.52739 | 1.53728 | 2.64956 | 1.62042 | 2.77835 | 1.70761 | 2.91409 | 1.79907 | 3.05713 |
| I. 4 | 1.64016 | 2.39808 | 1.72937 | 2.51400 | 1.82289 | 2.63620 | 1.92098 | 2.76501 | 2.02387 | 2.90071 |
| 1.45 | 1.81223 | 2.25399 | 1.91079 | 2.36294 | 2.01413 | 2.47780 | 2.12250 | 2.59887 | 2.23618 | 2.72642 |
| 1.5 | 1.97312 | 2.09600 | 2.08043 | 2.19731 | 2.19294 | 2.30413 | 2.31094 | 2.41670 | 2.43471 | 2.53532 |
| I. 55 | 2.12185 | 1.92509 | 2.23725 | 2.01814 | 2.35824 | 2.11624 | 2.48513 | 2.21964 | 2.61823 | 2.32858 |
| 1. 6 | 2.25749 | 1.74231 | 2.38027 | 1.82653 | 2.50900 | 1.91531 | 2.64400 | 2.00889 | 2.78561 | 2.10749 |
| 1.65 | 2.37922 | 1.54878 | 2.50862 | 1. 62365 | 2.64429 | 1.70258 | 2.78657 | 1.78576 | 2.93582 | 1.87341 |
| 1.7 | $2.48627^{\circ}$ | 1. 3457 I | 2.62149 | 1.41076 | 2.76327 | 1.47934 | 2.91196 | 1.55162 | 3.06792 | 1.62777 |
| 1.75 | 2.57800 | 1.13435 | 2.71821 | 1.18918 | 2.86522 | 1.24698 | 3.01939 | 1.30791 | 3.18111 | 1.37210 |
| 1.8 | 2.65384 | 0.91599 | 2.79817 | 0.96026 | 2.94950 | 1.00694 | 3.10821 | 1.05614 | 3.27468 | 1.10797 |
| 1.85 | 2.71331 | -0.69198 | 2.86088 | 0.72542 | 3.01560 | 0.76069 | 3.17787 | 0.79785 | $3 \cdot 34807$ | 0.83701 |
| 1.9 | 2.75606 | 0.46370 | 2.90595 | 0.48612 | 3.06311 | 0.50975 | 3.22793 | 0.53465 | $3 \cdot 40081$ | 0.56089 |
| 1.95 | 2.78181 | 0.23257 | 2.93310 | 0.24381 | 3.09173 | 0.25566 | 3.25809 | 0.26815 | 3.43259 | 0.28131 |
| 2.0 | 2.79041 | 0.00 | 2.94217 | 0.00 | 3.10129 | 0.00 | 3.26816 | 0.00 | 3.4432 I | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\sinh \left(\mathrm{I} .8_{5}+i \underline{0.75}\right)=1.1868 \mathrm{I}+i 3.01049$.
$\sinh \left(1.85+i_{1.35}\right)=-1.62042+i_{2.77835}$.

Table VII. HYPERBOLIC SINES. $\sinh (x+i q)=u+i v$. Continued

| $q$ | $x=2.0$ |  | $x=2.05$ |  | $x=2.1$ |  | $x=2.15$ |  | $x=2.2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 3.62686 | 0.00 | 3.81958 | 0.00 | 4.02186 | 0.00 | 4.23419 | 0.00 | 4.457 II | 0.00 |
| 0.05 | 3.61568 | 0.29518 | 3.80781 | 0.30978 | 4.00946 | 0.32516 | 4.22113 | 0.34135 | 4.44337 | 0.35839 |
| 0.I | 3.58221 | 0.58854 | 3.77256 | 0.61765 | 3.97235 | 0.64831 | 4.18206 | 0.68060 | 4.40223 | 0.71458 |
| 0.15 | 3.52666 | 0.87827 | 3.71404 | 0.92172 | 3.91074 | 0.96747 | 4.11720 | 1.01564 | 4.33396 | 1.06636 |
| 0.2 | 3-44935 | 1.16258 | 3.63264 | 1.22010 | 3.82501 | 1.28066 | 4.02695 | 1. 34443 | 4.23896 | 1.41156 |
| 0.25 | 3.35078 | 1. 43973 | 3.52883 | 1.51096 | 3.71571 | 1.58596 | 3.91188 | 1.66493 | 4.11783 | 1.74806 |
| 0.3 | 3.23156 | 1.70800 | 3.40327 | 1.79250 | 3.58351 | 1.88148 | 3.77269 | 1.97516 | 3.97131 | 2.07379 |
| 0.35 | 3.09241 | 1.96574 | 3.23673 | 2.06299 | 3.42920 | 2.16540 | 3.61024 | 2.27322 | 3.80031 | 2.38672 |
| 0.4 | 2.93420 | 2.21136 | 3.09011 | 2.32076 | 3.25376 | 2.43597 | 3.42553 | 2.55726 | 3.60588 | 2.68495 |
| 0.45 | 2.75789 | 2.44335 | 2.90443 | 2.56423 | 3.05825 | 2.69152 | 3.21970 | 2.82553 | $3 \cdot 38921$ | 2.96661 |
| 0.5 | 2.56458 | 2.66027 | 2.70085 | 2.79188 | 2.84389 | 2.93048 | 2.99402 | 3.07639 | 3.15165 | 3.23000 |
| 0.55 | 2.35546 | 2.86080 | 2.48062 | 3.0023 .2 | 2.61199 | 3.15137 | 2.74988 | 3.30828 | 2.89466 | 3.47347 |
| 0.6 | 2.13182 | 3.04368 | 2.24509 | 3.19426 | 2.36399 | 3.35283 | 2.48879 | 3.51977 | 2.61982 | 3.69552 |
| 0.65 | 1.89503 | 3.20780 | 1.99573 | 3.36649 | 2.10142 | 3.53361 | 2.21236 | 3.70956 | 2.32883 | 3.89478 |
| 0.7 | I. 64656 | 3.35214 | 1.73405 | 3.51798 | r. 82589 | 3.69261 | 1.92228 | 3.87647 | 2.02349 | 4.07003 |
| 0.75 | 1.38794 | 3.47581 | 1.46169 | 3.64777 | 1.53910 | 3.82885 | 1.62035 | 4.01950 | 1.70566 | 4.22019 |
| 0.8 | 1.12076 | 3.57806 | 1.18032 | 3.75507 | 1.24282 | 3.94148 | 1.30844 | 4.13773 | 1.37732 | 4.34433 |
| 0.85 | 0.84667 | 3.65825 | 0.89166 | 3.83923 | 0.93888 | 4.02981 | 0.98845 | 4.23046 | 1.04049 | 4.44170 |
| 0.9 | 0.56737 | 3.71587 | 0.59751 | 3.89971 | 0.62916 | 4.09329 | 0.66237 | 4.29711 | 0.69724 | 4.51167 |
| 0.95 | 0.28456 | 3.75059 | 0.29968 | 3.93615 | 0.31555 | 4.13154 | 0.3322 I | 4.33726 | 0.34970 | 4.55382 |
| 1.0 | 0.00 | 3.76220 | 0.00 | 3.94832 | 0.00 | 4.14431 | 0.00 | 4.35067 | 0.00 | 4.56791 |
| 1.05 | 0.28456 | 3.75059 | 0.29968 | 3.93615 | 0.31555 | 4.13154 | 0.33221 | 4.33726 | 0.34970 | 4.55382 |
| 1. | 0.56737 | 3.71587 | 0.59751 | 3.89971 | 0.62916 | 4.09329 | 0.66237 | 4.29711 | 0.69724 | 4.51167 |
| I.15 | 0.84667 | 3.65825 | 0.89166 | 3.83923 | 0.93888 | 4.02981 | 0.98845 | 4.23046 | 1.04049 | 4.44170 |
| 1.2 | I. 12076 | 3.57806 | 1.18032 | 3.75507 | 1.24282 | 3.94148 | 1.30844 | 4.13773 | 1.37732 | $4 \cdot 34433$ |
| 1.25 | 1.38794 | $3 \cdot 47581$ | 1.46169 | 3.64777 | 1.53910 | 3.82885 | 1.62035 | 4.01950 | 1.70566 | 4.22019 |
| 1. 3 | 1.64656 | 3.35214 | 1.73405 | 3.51798 | 1.82589 | 3.69261 | 1.92228 | 3.87647 | 2.02349 | 4.07003 |
| 1.35 | 1.89503 | 3.20780 | 1.99573 | 3.36649 | 2.10142 | 3.53361 | 2.21236 | 3.70956 | 2.32883 | 3.89478 |
| 1.4 | 2.13182 | 3.04368 | 2.24509 | 3.19426 | 2.36399 | 3.35283 | 2.48879 | 3.51977 | 2.61982 | 3.69552 |
| 1.45 | 2.35546 | 2.86080 | 2.48062 | 3.00232 | 2.61199 | 3.15137 | 2.74988 | $3 \cdot 30828$ | 2.89466 | 3.47347 |
| 1.5 | 2.56458 | 2.66027 | 2.70085 | 2.79188 | 2.84389 | 2.93048 | 2.99402 | 3.07639 | 3.15165 | 3.23000 |
| 1.55 | 2.75789 | 2.44335 | 2.90443 | 2.56423 | 3.05825 | 2.69152 | 3.21970 | 2.82553 | 3.38921 | 2.96661 |
| 1.6 | 2.93420 | 2.21136 | 3.09011 | 2.32076 | 3.25376 | 2.43597 | 3.42553 | 2.55726 | 3.60588 | 2.68495 |
| 1.65 | 3.09241 | 1.96574 | 3.23673 | 2.06299 | 3.42920 | 2.16540 | 3.61024 | 2.27322 | 3.80031 | 2.38672 |
| 1.7 | 3.23156 | 1.70800 | 3.40327 | 1.79250 | 3.58351 | I.88I48 | 3.77269 | 1.97516 | 3.97131 | 2.07379 |
| 1.75 | 3.35078 | 1.43973 | 3.52883 | 1.51096 | 3.71571 | 1.58596 | 3.91188 | 1. 66493 | 4.11783 | 1.74806 |
| 1. 8 | 3.44935 | 1.16258 | 3.63264 | 1.22010 | 3.8250 T | 1.28066 | 4.02695 | 1. 34443 | 4.23896 | 1.41156 |
| I. 85 | 3.52666 | 0.87827 | 3.71404 | 0.92172 | 3.91074 | 0.96747 | 4.11720 | 1.01564 | 4.33396 | 1.06636 |
| 1.9 | 3.58221 | 0.58854 | 3.77256 | 0.61765 | 3.97235 | 0.64831 | 4.18206 | 0.68060 | 4.40223 | 0.71458 |
| 1.95 | 3.61568 | 0.29518 | 3.80781 | 0.30978 | 4.00946 | 0.32516 | 4.22113 | 0.34135 | 4.44337 | 0.35839 |
| 2.0 | 3.62686 | 0.00 | 3.81958 | 0.00 | 4.02186 | 0.00 | 4.23419 | 0.00 | 4.45711 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\sinh \left(2.2+i_{1.0}\right)=0+i_{4.5}{ }^{6} 79 \mathrm{I}$. $\sinh \left(2.2+i_{\text {I. } 5}\right)=-\dot{-}_{3.15165}+i_{3.23000}$.

Table VII. HYPERBOLIC SINES. $\sinh (x+i q)=u+i v$. Continued

| $q$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 4.69117 | 0.00 | 4.93696 | 0.00 | 5.19510 | 0.00 | 5.46623 | 0.00 | 5103 | 0.00 |
| 0.05 | 4.67671 | 0.37633 | 4.92174 | 0.39522 | 5.17909 | 0.41509 | 5.44938 | 0.43599 | 5.73330 | 5799 |
| 0.1 | 4.63341 | 0.75035 | 4.87618 | 0.78799 | 5.13114 | 0.82761 | $5 \cdot 39893$ | 0.86930 | 5.68022 | 0.91316 |
| 0.15 | 4.56155 | I.11974 | 4.80056 | 1.17592 | 5.05156 | 1. 23504 | $5 \cdot 31521$ | 1.29724 | 5.59213 | 1.36269 |
| 0.2 | 4.46157 | 1.48222 | 4.69533 | x. 55659 | 4.94083 | 1. 63485 | 5.19869 | 1.71719 | 5.46955 | 1.80383 |
| 0.25 | 4.33407 | r. 8355 | $4.561 \times 6$ | 1. 92766 | 4.79965 | 2.02457 | 5.05014 |  | 5.31325 | 2.23385 |
| 0.03 | 4.17986 | 2.17760 | 4.39887 | 2.28685 | 4.62887 | 2.40182 | 4.87045 | 2.52280 | 5.12420 | 2.65009 |
| 0.35 | 3.99987 | 2.50620 | 4.20946 | 2.63194 | 4.42955 | 2.76426 | 4.66073 | 2.90349 | 4.90356 | 3.04999 |
| 0.4 | 3.79523 | 2.81935 | 3.99409 | 2.9608 I | 4.20292 | 3.10966 | 4.42228 | 3.26629 | 4.65268 | 3.43109 |
| 0.45 | 3.56719 | 3.11512 | 3.75410 | 3.2714 r | 3.95038 | 3.43588 | 4.15656 | 3.60894 | 4.37311 | 3.79104 |
| 0.5 | 3.31716 | 3.39168 | 3.49096 | 3.56185 | 3.6735 I | 3.74093 | 3.8652 I | 3.92935 | 4.06659 |  |
| 0.55 | 3.04677 | 3.64734 | 3.20630 | 3.83034 | 3.37395 | 4.02290 | 3.55003 | 4.22554 | 3.73499 | 4.43873 |
| 0.6 | 2.75740 | 3.88050 | 2.90188 | 4.07520 | 3.05360 | 4.28008 | 3.21297 | 4.49567 | $3 \cdot 38036$ | 4.72249 |
| 0.65 | 2.45 II3 | 4.08975 | 2.57956 | 4.29494 | 2.71443 | 4.51087 | 2.85610 | 4.73808 | 3.00490 | 4.97713 |
| 0.7 | 2.12975 | 4.27377 | 2.24134 | 4.48820 | 2.35853 | 4.71384 | 2.48162 | 4.95127 | 2.61091 | 5.20109 |
| 0.75 | 1.79523 | 4.43145 | 1.88930 | 4.65378 | 1. 98808 | 4.88776 | 2.09184 | 5.13394 | 2.20082 | $5 \cdot 39298$ |
| 0.8 | 1.44965 | 4.56181 | 1.52560 | 4.79058 | 1.60537 | 5.03153 | 1.68916 | 5.28496 | 1.77716 | 5.55162 |
| 0.85 | 1.09513 | 4.66404 | 1.1525 I | 4.89805 | x.21277 | 5.14429 | 1.27607 | 5.40341 | 1.34255 | 5.67603 |
| 0.9 | 0.73386 | 4.73751 | 0.7723 I | 4.97521 | 0.81269 | 5.22533 | 0.85511 | 5.48853 | 0.89966 | 5.76545 |
| 0.95 | 0.36807 | 4.78178 | 0.38735 | 5.02169 | 0.40760 | 5.27416 | 0.42888 | 5.53981 | 0.45122 | 5.81933 |
| 1.0 | 0.00 | 4.79657 | . 0 | 5.03722 | 0.00 | 5.29047 | 0.00 | 5.55695 | 0.00 | 5.83732 |
| 1.05 | 0.36807 | 4.78178 | 0.38735 | 5.02169 | 0.40760 | 5.27416 | 0.42888 | 5.53981 | 0.45122 | 5.81933 |
| 1.1 | 0.73386 | 4.73751 | 0.7723 I | 4.9752 r | 0.81269 | 5.22533 | 0.85511 | 5.48853 | 0.89966 | 5.76545 |
| 1.15 | 1.09513 | 4.66404 | 1.15251 | 4.89805 | 1.21277 | 5.14429 | 1.27607 | $5 \cdot 4034 \mathrm{r}$ | 1.34255 | 5.67603 |
| 1.2 | 1.44965 | 4.56181 | 1.52560 | 4.79058 | 1.60537 | 5.03153 | 1.68916 | 5.28496 | 1.77716 | $5 \cdot 55162$ |
| 1.25. | 1.795 | 4.43145 | 1.88930 | 4.65378 | 1.98808 | 4.88776 | 2.09184 | 5.13394 | 2.20082 | 5.39298 |
| 1.3 | 2.12975 | 4.27377 | 2.24134 | 4.48820 | 2.35853 | 4.71384 | 2.48162 | 4.95127 | 2.61091 | 5.20109 |
| 1.35 | 2.45113 | 4.08975 | 2.57956 | 4.29494 | 2.71443 | 4.51087 | 2.85610 | 4.73808 | 3.00490 | 4.97713 |
| 1.4 | 2.75740 | 3.88050 | 2.90188 | 4.07520 | 3.05360 | 4.28008 | 3.21297 | 4.49567 | 3.38036 | 4.72249 |
| 1.45 | 3.04677 | 3.6473 | 3.20630 | 3.8303 | 3.37395 | 4.02290 | $3 \cdot 55003$ | 4.22554 | 3.73499 | 4.43873 |
| 1. 5 | 3.31716 | 3.39168 | 3.49096 | 3.56185 | 3.67351 | 3.74093 | 3.86521 | 3.92935 | 4.06659 | 4.12761 |
| 1.55 | 3.56719 | 3.11512 | 3.75410 | 3.27141 | 3.95038 | 3.43588 | 4.15656 | 3.60894 | 4.37311 | 3.79104 |
| 1.6 | 3.79523 | 2.81935 | 3.99409 | 2.9608 x | 4.20292 | 3.10966 | 4.42228 | 3.26629 | 4.65268 | 3.43109 |
| 1.65 | 3.99987 | 2.50620 | 4.20946 | 2.63194 | 4.42955 | 2.76426 | 4.66073 | 2.90349 | 4.90356 | 3.04999 |
| 1.7 | 4.17986 | 2.17760 | 4.39887 | 2.28685 | 4.62887 | 2.40182 | 4.87045 | 2.52280 | 5.12420 | 2.65009 |
| 1.75 | 4.33407 | 1.83557 | 4.56116 | 1.92766 | 4.79965 | 2.02457 | 5.05014 | 2.12655 | 5.31325 | 2.23385 |
| 1.8 | 4.46157 | 1.48222 | 4.69533 | 1.55659 | 4.94083 | 1.63485 | 5.19869 | 1.71719 | 5.46955 | 1.80383 |
| 1.85 | $4.56 \times 55$ | 1.11974 | 4.80056 | r.17592 | 5.05156 | 1.23504 | -5.31521 | 1.29724 | 5.59213 | 1.36269 |
| 1.9 | 4.63341 | 0.75035 | 4.87618 | 0.78799 | 5.13114 | 0.82761 | 5.39893 | 0.86930 | 5.68022 | 0.91316 |
| 1.95 | 4.67671 | 0.37633 | 4.92174 | 0.39522 | 5.17909 | 0.41509 | 5.44938 | 0.43599 | 5.73330 | 0.45799 |
| 2.0 | 4.69117 | 0.00 | 4.93696 | 0.00 | 5.19510 | 0.00 | $5 \cdot 46623$ | 0.00 | 5.75103 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\sinh (2.4+i 0.05)=5.44938+i 0.43599$.
$\sinh (2.4+i \underline{1.95})=-5.44938+i 0.43599$.

Table VII. HYPERBOLIC SINES. $\sinh (x+i q)=u+i v$. Continued

|  | $x=2.5$ |  | $=2.55$ |  | $x=2.6$ |  | $x=2.65$ |  | $x=2.7$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 。 | 6.05020 | 0.00 | 6.36 | . | 73 | 0.00 | 7.04169 |  | 7.40626 |  |
| 0.05 | 6.03155 | 0.48113 | 6.3448 | 0.50548 | 6.67409 | 0.53109 | 7.01998 | 0.55 | 7.38343 |  |
| 0.1 | 5.97572 | 0.95930 | 6.2861 | 1.00784 | 6.61231 | 1.05891 | 6.95500 | ${ }_{1} \mathrm{I} 11262$ | 7.31508 | II |
| -. | 5.88304 | 1.43 515 | 6.18866 | 1.50399 | 6.50976 | 1.58019 | 6.84713 | 1. 66034 | 7.2016 | 1.74465 |
| 0.2 | 5.75408 | 1.89498 | 6.05301 | 1.99087 | 6.36706 | 2.09174 | 6.69705 | 2.19784 | 7.04377 | 2.30943 |
|  | 5.58966 | 2.3 | 8800 |  | 6.18512 |  | 6.50567 | 2.72178 | 6.8 |  |
| 0.3 |  | 2.78401 | .6708 | 2.92488 | 5.96505 | 3.0730 | 6.27419 | 3.22894 | 6.5 | 3.39288 |
| 0.35 | 5.15865 | 3.20411 | 5.42664 | 3.36624 | 5.70819 | 3.5368 | 6.00403 | 3.71619 | 6.314 | 3.90488 |
| 0.4 | 4.89472 | 3.60448 | . 14900 | 3.7868 | 5.41615 | 3.978 | 5.69685 | 4.18053 | 5.99179 | 4.39279 |
| 0.45 | 4.600 | 3.982 | 8396 | 4.184 | 5.0907 I | 4.396 | 5.35 | 4.61910 | 3177 | 63 |
| 0.5 | 4.27814 | 4.336 | 4.50039 | 4.55560 | 4.7338 | 4.78641 | 4.97923 | 5.02919 | 5.23702 |  |
| 0.55 | 3.92929 | 4.663 | 4.13342 | 4.89898 | 4.3478 | 5.14719 | 4.5732 I | 5.40827 | 4.80998 |  |
| 0.6 | 3.55622 | 4.96113 | 3.74097 | 5.21217 | 3.935 | 5.4762 | 4.13900 | 5.75401 | 4.35329 | 6.04606 |
| 0.65 | 3.16 | $5 \cdot 22864$ | 3.32545 | 5.4932 | 3.4979 | 5.77153 | 3.679 | 6.0642 | 3.869 | 6.37218 |
| 0.7 | 2.746 | 5.463 | 2.880 | 5.740 | 3.0393 | 6.03123 | 3.1968 | 6.33714 | 3.36237 |  |
|  |  | 665 | 43559 |  | 2.561 | 6.253 | 2.69474 | 6.5 |  | 58 |
| 0.8 | 1. 869 | 5.832 | 1.9667 | 6.1272 | 2.06878 | 6.4377 | 2.1760 | 6.7642 | 2.288 | 7.10769 |
| 0.85 | 1.41239 | 5.9628 | 1.48577 | 6.26458 | 1.56285 | 6.58 I | 1.64385 | 6.9158 | r. 72896 | 26697 |
| 0.9 | 0.94646 | 6.05680 | 0.99563 | 6.36327 | 1.04729 | 6.685 | 1.1015 | 7.02478 | I. 15859 | 8146 |
| 0.95 | 0.474 | 6.113 | 0.49935 | 6.42 | 0.52526 |  | 0.55 | -004 |  |  |
| 1.0 | 0.00 | 6.13 | 0.00 | 6.44 | 0.00 | 6.769 | 0.00 | 7.112 | 0.00 | 7.47347 |
| 1.05 | 0.47469 | 6.113 | 0.49935 | 6.42273 | 0.52526 | 6.748 | 0.55249 | 7.09042 | 0.58109 | 7.45043 |
| I.I | 0.94646 | 6.056 | 0.99563 | 6.3632 | 1.04729 | 6.685 | 1.1015 | 7.024 | 1.1585 |  |
| 1.15 | 1.41239 | 5.96287 | 1.48577 | 6.2645 | 1.56285 | 6.58199 | 1.64385 | 6.91583 | 1.72896 | 7.26697 |
| 1.2 | 1.8696 | 83215 |  | 6.12727 |  | 6.43770 |  | 6.76424 | . 28 |  |
| 1.25 | 2.3153 I | 5.665 | 2.43559 | 5.9521 | 2.56196 | 6.25374 | 2.69474 | 6.57095 | 2.83425 |  |
| 1.3 | 2.74674 | 5.463 | 2.88943 | 5.74039 | 3.03934 | 6.031 | 3.1968 | 6.3371 | 3.3623 |  |
| 35 | 3.16122 | 5.22864 | 3.32545 | 5.49321 | 4979 | 5.7715 | 3.67927 | 6.0642 | 3.86976 | 6.37218 |
| 1.4 | 3.55622 | 4.96113 | 3.74097 | 5.2121 | 3.93506 | 5.47624 | 4.13900 | 5.75401 | 4.35329 | \%6 |
| 1.45 | 3. | 4.66304 |  |  |  | 5.14 | 4.57321 | 5 |  |  |
| 1.5 | 4.27814 | 4.33 |  | 4.55560 | -4.73389 | 4.78641 | 4.97923 |  | 5.23702 |  |
| 1.55 | 4.60062 | 3.98260 | 4.83961 | 4.18413 | 5.09071 | 4.39612 | 5.35454 | 4.61910 | 5.63177 | 4.85363 |
| 1.6 | 4.89472 | 3.60448 | 5.14900 | 3.78686 | 5.41615 | 3.9787 | 5.69685 | 4.18053 | 5.99179 | 4.39279 |
| 1.65 | 5.15865 | 3.20411 | $5 \cdot 42664$ | 3.3662 | 5.70819 | 3.53680 | 6.00403 | 3.71619 | 6.314 |  |
| 1.7 | 5-39077 |  | 5 | 2.924 | 5.96505 | 3.073 | 6.27419 | 3.228 | 59903 |  |
| 1.75 | 5.58966 | 2.34673 | 5.88004 | 2.46547 | 6.18512 | 2.59039 | 6.50567 | 2.72178 | 6.84249 | 2.85997 |
| 1.8 | 5.75408 | 1.89498 | 6.05301 | 1.99087 | 6.36706 | 2.091 | 6.69705 | 2.19784 | 7.04377 | 2.30943 |
| 1.85 | 5.88304 | 1.43555 | 6.18866 | 1.50399 | 6.50976 | 1.58019 | 6.84713 | 1.66034 | 7.20163 | 1.74465 |
| 1.9 | 5.97572 | 0.95930 | 6.28615 | 1.00784 | ${ }^{6.61231}$ | 1.05891 | 6.95500 | 1.11262 | 7.31508 | 1.16911 |
| 1.95 | 6.03155 | 0.48 II 3 | 6.34489 | 0.50548 | 6.67409 | 0.53109 | 7.01998 | 0.55803 | 7.38343 | 0.58636 |
| 2.0 | 6.05020 | . 0 | 6.36451 | 0.00 | 6.69473 | . 00 | 7.04169 | 0.00 | 40626 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\sinh (2.7+i \underline{0.7})=3.36237+i 6.65891$. $\sinh \left(2.5+i_{\text {I.25 }}\right)=-2.3153 \mathrm{I}+i_{5.66550}$.

Table VII. HYperbolic Sines. $\sinh (x+i q)=u+i v$. Continued

| 9 |  |  |  |  |  |  |  | 2.9 | $x=$ | 95 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 7.78935 | 0.00 | 8.19192 | . 00 | 8.61497 | 0.00 | 9.05956 | 0.00 | 9.52681 | 0.00 |
| 0.05 | 7.76534 | 0.61616 | 8.16666 | 0.64750 | 8.58841 | 0.68046 | 9.03163 | 0.71512 | 9.49744 | 0.75157 |
| 0.1 | 7.69345 | 1. 22852 | 8.09106 | 1.29101 | 8.50891 | 1.35673 | 8.94802 | 1.42583 | 9.40952 | 1.4985 |
| 0.15 | 7.57413 | 1.83331 | 7.96557 | 1.92656 | 8.37694 | 2.02463 | 8.80924 | 2.12776 | 9.26358 | 2.23621 |
| 0.2 | 7.40811 | 2.42680 | 7.79098 | 2.55023 | 8.19332 | 2.68005 | 8.61616 | 2.81656 | 9.06053 | 2.96012 |
| 0.25 | 7.19642 | 3.00532 | 7.56834 | 3.15818 | 7.95919 | 3.31894 | 8.36994 | 3.48800 | 8.80162 | 3.66578 |
| 0.3 | 6.94036 | 3.5653I | 7.29905 | 3.74666 | 7.67599 | 3.93738 | 8.07213 | 4.13793 | 8.48845 | 4.34884 |
| 0.35 | 6.64151 | 4.10333 | 6.98476 | 4.31204 | 7.34547 | 4.53153 | 7.72455 | 4.76236 | 8.12294 | 5.00509 |
| 0.4 | 6.30172 | 4.61604 | 6.62740 | 4.85083 | 6.96966 | 5.09775 | 7.32934 | $5 \cdot 35742$ | 7.70735 | 5.63049 |
| 0.45 | 5.92307 | 5.10030 | 6.22918 | $5 \cdot 35972$ | 6.55088 | 5.63254 | 6.88894 | 6.91945 | 7.24424 | 6.22116 |
| 0.5 | $5 \cdot 50790$ | 5.553II | 5.79256 | 5.83556 | 6.09170 | 6.1326 r | 6.40608 | 6.44498 | 6.73647 | 6.77348 |
| 0.55 | 5.05878 | 5.97168 | 5.32022 | 6.27542 | 5.59498 | 6.59486 | 5.88371 | 6.93078 | 6.18717 | 7.28404 |
| 0.6 | 4.57847 | 6.35344 | 4.81509 | 6.67660 | 5.06375 | 7.01646 | 5.32508 | 7.37385 | 5.63048 | 7.74969 |
| 0.65 | 4.06993 | 6.69602 | 4.28026 | 7.03661 | 4.50131 | 7.39479 | 4.7336 I | 7.77146 | 4.97774 | 8.16757 |
| 0.7 | 3.53629 | 6.99732 | 3.71905 | $7 \cdot 35323$ | 3.91112 | 7.72754 | 4.11295 | 8.12115 | 4.32508 | 8.53508 |
| 0.75 | 2.98086 | 7.25548 | 3.13491 | 7.62452 | 3.29681 | 8.01263 | 3.46694 | 8.42078 | 3.64575 | 8.84998 |
| 0.8 | 2.40704 | 7.46891 | 2.53144 | 7.84881 | 2.66217 | 8.24834 | 2.79956 | 8.66850 | 2.94395 | 9.11031 |
| 0.85 | 1.81839 | 7.63629 | 1.91237 | 8.02470 | 2.01112 | 8.43318 | 2.11491 | 8.86275 | 2.22399 | 9.31447 |
| 0.9 | 1.21852 | 7.75659 | 1.28150 | 8.15112 | 1.34768 | 8.56604 | 1.41723 | 9.00237 | 1.49032 | 9.46121 |
| 0.95 | 0.61115 | 7.82907 | 0.64273 | 8.22728 | 0.67592 | 8.64608 | 0.71081 | 9.08649 | 0.74747 | 9.54962 |
| 1.0 | 0.00 | 7.85328 | 0.00 | 8.25273 | 0.00 | 8.6728 I | 0.00 | 9.11458 | 0.00 | 9.57915 |
| 1.05 | 0.61115 | .7.82907 | 0.64273 | 8.22728 | 0.67592 | 8.64608 | 0.71081 | 9.08649 | 0.74747 | 9.54962 |
| 1.1 | 1.21852 | 7.75659 | 1.28150 | 8.15112 | 1.34768 | 8.56604 | 1.41723 | 9.00237 | 1.49032 | 9.4612 |
| 1.15 | 1.81839 | 7.63629 | 1.91237 | 8.02470 | 2.01112 | 8.43318 | 2.11491 | 8.86275 | 2.22399 | 9.31447 |
| 1.2 | 2.40704 | 7.46891 | 2.53144 | 7.84881 | 2.66217 | 8.24834 | 2.79956 | 8.66850 | 2.9 | 9.11031 |
| 1.25 | 2.98086 | 7.25548 | 3.13491 | 7.62452 | 3.2968 I | 8.01263 | 3.46694 | 8.42078 | 3.64575 | 8.84998 |
| 1.3 | 3.53629 | 6.99732 | 3.71905 | 7.35323 | 3.91112 | 7.72754 | 4.11295 | 8.12115 | 4.32508 | 8.53508 |
| 1.35 | 4.06993 | 6.69602 | 4.28026 | 7.03661 | 4.50131 | 7.39479 | 4.73361 | 7.77146 | 4.97774 | 8.16757 |
| 1.4 | 4.57847 | 6.35344 | 4.81509 | 6.67660 | 5.06375 | 7.01646 | 5.32508 | 7.37385 | 5.63048 | 7.74969 |
| 1.45 | 5.05878 | 5.97168 | 5.32022 | 6.27542 | 5.59498 | 6.59486 | 5.88371 | 6.93078 | 6.18717 | 7.28404 |
| 1.5 | 5.50790 | 5.553I I | 5.79256 | 5.83556 | 6.09170 | 6.1326I | 6.40608 | 6.44498 | 6.73647 | 6.77348 |
| 1.55 | 5.92307 | 5.10030 | 6.22918 | 5.35972 | 6.55088 | 5.63254 | 6.88894 | 5.91945 | 7.24424 | 6.22116 |
| 1.6 | 6.30172 | 4.61604 | 6.62740 | 4.85083 | 6.96966 | 5.09775 | 7.32934 | $5 \cdot 35742$ | 7.70735 | 5.63049 |
| 1.65 | 6.64151 | 4.10333 | 6.98476 | 4.31204 | 7.34547 | 4.53153 | 7.72455 | 4.76236 | 8.12294 | 5.00509 |
| 1.7 | 6.94036 | 3.56531 | 7.29905 | 3.74666 | 7.67599 | $3.9373^{8}$ | 8.07213 | 4.13793 | 8.48845 | 4.34884 |
| 1.75 | 7.19642 | 3.00532 | 7.56834 | 3.15818 | 7.95919 | 3.31894 | 8.36994 | 3.48800 | 8.80162 | 3.66578 |
| 1.8 | 7.40811 | 2.42680 | 7.79098 | 2.55023 | 8.19332 | 2.68005 | 8.61616 | 2.81656 | 9.06053 | 2.96012 |
| 1.85 | 7.57413 | 1.8333 | 7.96557 | 1.92656 | 8.37694 | 2.02463 | 8.80924 | 2.12776 | 9.26358 | 2.23621 |
| 1.9 | 7.69345 | 1.22852 | 8.09106 | 1.29101 | 8.5089 I | 1.35673 | 8.94802 | 1.42583 | 9.40952 | 1.49851 |
| 1.95 | 7.76534 | 0.61616 | 8.16666 | 0.64750 | 8.58841 | 0.68046 | 9.03163 | 0.71512 | 9.49744 | 0.75157 |
| 2.0 | 7.78935 | 0.00 | 8.19192 | 0.00 | 8.61497 | 0.00 | 9.05956 | 0.00 | 9.52681 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\sinh (2.9+i \underline{0.9})=1.41723+i 9.00237$. $\sinh \left(2.8+i \frac{1.4}{}\right)=-4.8 \mathrm{I} 509+i 6.67660$.

Table VII. HYPERBOLIC SINES. $\sinh (x+i q)=u+i v$. Continued

| $q$ | $x=3.0$ |  | $x=3.05$ |  | $x=3.10$ |  | $x=3.15$ |  | $x=3.20$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 0 | 10.01787 | 0.00 | 10.53399 | 0.00 | 11.07645 | 0.00 | 11.6466ı | 0.00 | 12.24588 | 0.00 |
| 0.05 | 9.98699 | 0.78990 | 10.50150 | 0.83020 | 11.04230 | 0.87258 | 11.61070 | 0.91714 | 12.20810 | 0.96399 |
| 0.1 | 9.89454 | 1.57493 | 10.40430 | 1.65529 | 10.94010 | 1.73979 | 11.50320 | 1.82863 | 12.09510 | 1.92205 |
| 0.15 | 9.74108 | 2.35025 | 10.24290 | 2.47017 | 10.77040 | 2.59626 | II. 32480 | 2.72885 | 11.90750 | 2.86826 |
| 0.2 | 9.52757 | 3.15108 | 10.01840 | 3.26982 | 10.53430 | 3.43673 | 11.07660 | 3.61224 | 11.64650 | 3.79678 |
| 0.25 | 9.25531 | 3.85273 | 9.73216 | 4.04931 | 10.23330 | 4.25602 | 10.76010 | 4.47336 | 11.31370 | 4.70190 |
| 0.3 | 8.92599 | 4.57062 | 9.38586 | 4.80383 | 9.86919 | 5.04906 | 10.37720 | $5 \cdot 30690$ | 10.91120 | $5 \cdot 57802$ |
| 0.35 | 8.54164 | 5.26034 | 8.98171 | 5.52874 | 9.44423 | 5.81097 | 9.93036 | 6.10773 | 10.44130 | 6.41976 |
| 0.4 | 8.10463 | 5.91762 | 8.52218 | 6.21956 | 8.96104 | 6.53705 | 9.42230 | 6.87089 | 9.90712 | 7-22191 |
| 0.45 | 7.61765 | 6.53842 | 8.01011 | 6.87204 | 8.42260 | 7.22284 | 8.85615 | 7.59170 | 9.31184 | 7.97954 |
| 0.5 | 7.08371 | 7.11891 | 7.44866 | 7.48215 | 7.83223 | 7.86409 | 8.23539 | 8.26570 | 8.65915 | 8.68797 |
| 0.55 | 6.50609 | 7.65551 | 6.84128 | 8.04612 | 7.19358 | 8.45686 | 7.56387 | 8.88873 | 7.95306 | 9.34284 |
| 0.6 | 5.88836 | 8.14491 | 6.19173 | 8.56049 | 6.51058 | 8.99749 | 6.84570 | 9.45697 | 7.19795 | 9.94011 |
| 0.65 | 5.23433 | 8.58409 | 5.50400 | 9.02209 | 5.78743 | 9.48264 | 6.08533 | 9.96690 | 6.39846 | 10.47610 |
| 0.7 | 4.54806 | 8.97035 | 4.78233 | 9.42805 | 5.02860 | 9.90933 | 5.28745 | 10.41540 | 5.55952 | 10.94750 |
| 0.75 | 3.83368 | 9.30131 | 4.03119 | 9.77589 | 4.23878 | 10.27490 | 4.45696 | 10.79970 | 4.68630 | 11.35140 |
| 0.8 | 3.09569 | 9.57492 | 3.25518 | 10.06350 | 3.42281 | 10.57720 | 3.59900 | 11.15730 | 3.78419 | 11.68530 |
| 0.85 | 2.33863 | 9.78949 | 2.45911 | 10.28900 | 2.58575 | 10.81420 | 2.71885 | II. 36650 | 2.85874 | 11.94720 |
| 0.9 | 1.56714 | 9.94371 | 1. 64788 | 10.45110 | 1.73274 | 10.98460 | 1.82193 | 11.54550 | 1.91568 | 12.13540 |
| 0.95 | 0.78599 | 10.03660 | 0.82649 | 10.54870 | 0.86905 | 11.08720 | 0.91378 | II. 65340 | 0.96080 | 12.24880 |
| 1.0 | 0.00 | 10.06766 | 0.00 | 10.58135 | 0.00 | II.12150 | 0.00 | 11. 68946 | . 0 | 12.28665 |
| 1.05 | 0.78599 | 10.03660 | 0.82649 | 10.54870 | 0.86905 | 11.08720 | 0.91378 | 11.65340 | , 0.96080 | 12.24880 |
| 1.1 | 1.56714 | 9.94371 | 1.64788 | 10.45110 | 1.73274 | 10.98460 | 1.82193 | 11.54550 | 1.91568 | 12.13540 |
| 1.15 | 2.33863 | 9.78949 | 2.45911 | 10.28900 | 2.58575 | 10.81420 | 2.71885 | 11.36650 | 2.85874 | 11.94720 |
| 1.2 | 3.09569 | 9.57492 | 3.25518 | 10.06350 | 3.4228I | 10.57720 | $3 \cdot 59900$ | II.II 730 | 3.78419 | 11.68530 |
| 1.25 | 3.83368 | 9.30131 | 4.03119 | 9.77589 | 4.23878 | 10.27490 | 4.45696 | 10.79970 | 4.68630 | 11.35140 |
| 1.3 | $4 \cdot 54806$ | 8.97035 | 4.78233 | 9.42805 | 5.02860 | 9.90933 | .5.28745 | 10.41540 | 5.55952 | 10.94750 |
| 1.35 | 5.23433 | 8.58409 | 5.50400 | 9.02209 | 5.78743 | 9.48264 | 6.08533 | 9.96690 | 6.39846 | 10.47610 |
| 1.4 | 5.88836 | 8.1449I | 6.19173 | 8.56049 | 6.51058 | 8.99749 | 6.84570 | 9.45697 | 7.19795 | 9.94011 |
| 1.45 | 6.50609 | 7.65551 | 6.84128 | 8.04612 | 7.19358 | 8.45686 | 7.56387 | 8.88873 | 7.95306 | 9.34284 |
| 1.5 | 7.08371 | 7.11891 | 7.44866 | 7.48215 | 7.83223 | 7.86409 | 8.23539 | 8.26570 | 8.65915 | 8.68797 |
| 1.55 | 7.61765 | 6.53842 | 8.01011 | 6.87204 | 8.42260 | 7.22284 | 8.85615 | 7.59170 | 9.31184 | 7.97954 |
| 1.6 | 8.10463 | 5.91762 | 8.52218 | 6.21956 | 8.96104 | 6.53705 | 9.42230 | 6.87089 | 9.90712 | 7.22191 |
| 1.65 | 8.54164 | 5.26034 | 8.98171 | $5 \cdot 52874$ | 9.44423 | 5.81097 | 9.93036 | 6.10773 | 10.44130 | 6.41976 |
| 1.7 | 8.92599 | 4.57062 | 9.38586 | 4.80383 | 9.86919 | 5.04906 | 10.37720 | $5 \cdot 30690$ | 10.91120 | 5.57802 |
| 1.75 | 9.25531 | 3.85273 | 9.73216 | 4.04931 | 10.23330 | 4.25602 | 10.76010 | $4 \cdot 47336$ | 11.31370 | 4.70190 |
| 1.8 | 9.52757 | 3.11108 | 10.01840 | 3.26982 | 10.53430 | 3.43673 | 11.07660 | 3.61224 | 11.64650 | 3.79678 |
| 1.85 | 9.74108 | 2.35025 | 10.24290 | 2.47017 | 10.77040 | 2.59626 | 11.32480 | 2.72885 | 11.90750 | 2.86826 |
| 1.9 | 9.89454 | 1.57493 | 10.40430 | 1.65529 | 10.94010 | 1. 73979 | 11.50320 | 1.82863 | 12.09510 | 1.92205 |
| 1.95 | 9.98699 | 0.78990 | 10.50150 | 0.83020 | 11.04230 | 0.87258 | 11.61070 . | 0.91714 | 12.20810 | 0.96399 |
| 2.0 | 10.01787 | 0.00 | 10.53399 | 0.00 | 11.07645 | 0.00 | 11.64661 | 0.00 | 12.24588 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\sinh (3.0+i 0.95)=0.78599+i{ }_{10.03660 .}$
$\sinh \left(3.0+i_{1.05}\right)=-0.78599+i_{10.03660}$.

Table VII. HYperbolic SInES. $\sinh (x+i q)=u+i v$. Continued


Note. Negative questions are in heavy type.
Examples. $\sinh (3.40+i 0)=14.96536+i 0$.
$\sinh \left(3.45+i_{1.45}\right)=-10.21863+i_{11.98861}$.

$$
q=\frac{1}{\pi / 2}-n_{4}-m_{2}
$$

Table VII. HYPERBOLIC SINES. $\sinh (x+i q)=u+i v$. Continued

| $q$ | $x=3.50$ |  | $x=3.55$ |  | $x=3.60$ |  | $x=3.65$ |  | $x=3.70$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 16.54263 | 0.00 | 17.39230 |  | 18.28546 | 0.00 | 19.2 | 0.00 |  |  |
| 0.05 | 16.49163 | 1.30029 | 17.33870 | I. 36684 | 18.22900 | 1.43680 | 19.16506 | 1.51036 | 20.1490 | 70 |
| 0.1 | 16.33896 | 2.59256 | 17.17817 | 2.72525 | 18.06033 | 2.86475 | 18.98765 | 3.01142 | 19.96246 | 3.16561 |
| 0.15 | 16.08555 | 3.86885 | 16.91175 |  | 17.78022 | 4.27503 | 18.69316 | 4.49390 | 19.65290 | 4.72401 |
| 0.2 | 15.73300 | 5.12129 | 16.54105 | $5 \cdot 38339$ | 17.39050 | 5.65896 | 18.28342 | 5.94868 | 19.22208 | 6.25327 |
| 0.25 | 15.28340 | 6.3 | 16.06840 | 6.66674 | 16.89356 | 7.00800 | 17.76096 | 7.36678 | 18.67280 |  |
| 0. | 14.73960 | 7.5239 | 15.4966 | 7.90898 | 16.29246 | 8.31383 | 17.12900 | 8.73946 | 18.00840 | 9.18696 |
| 0.35 | 14.10490 | 8.65928 | 14.82933 | 9.10246 | 15.59090 | 9.56840 | 16.39143 | 10.05827 | 17.23295 | 10.57330 |
| 0.4 | 13.38330 | 9.74126 | 14.07066 | 10.23982 | 14.79326 | 10.76400 | 15.5528 r | 11.31505 | 16.3512 | II. 89444 |
| 0. | 12.57910 | 10.76 | 13.2252 | 1 I .314 | 13.9043 | 11.8932 | 14.61830 | 12.5020 | 15.368 | 13.14223 |
| 0.5 | 11.697 |  | 12.29 | 12.31852 | 12.92978 | 12.94910 | 3.59 |  | 14.2915 |  |
| 0.55 | 10.74357 | 12.6021 | 11.2954 | 13.24705 | 11.87545 | 13.92515 | 12.4852 | 14.63806 | 13.1262 | 15.38760 |
| 0.6 | 9.72361 | 13.40770 | 10.22293 | 14.09390 | 10.74789 | 14.81535 | 11.2997 | 15.57383 | 11.8799 | 16.37127 |
| 0.65 | 8.64360 | 14.13065 | 9.08745 | 14.85386 | 9.55412 | 15.61421 | 10.04469 | 16.41360 | 10.56037 | 7.25404 |
| 0.7 | 7.51020 | 14.76650 | 7.895 | 5.52225 | 8.3014 | , 1 | 8.72766 | 17.15216 | 9.17 | O40 |
| 0.7 | 6.3305 | 15.31130 | 6.65574 | 16.09492 | 6.99754 | 16.918 | 7.35 | 17.78497 | 7.73 | 65 |
| 0.8 | 5.1119 | 15.7617 | $5 \cdot 37451$ | I6.568 | 5.65052 | 17.41650 | 5.9406 | 18.30814 | 6.245 | 60 |
| 0.85 | 3.86180 | 16.11491 | 4.06015 | 16.93970 | 4.26865 | 17.80680 | 4.48783 | 18.71843 | 4.71823 | 19.67690 |
| 0.9 | 2.58783 | 16.36878 | 2.72075 | 17.20653 | 2.86047 | 18.08732 | 3.00735 | 19.01331 | 3.16174 | 19.98688 |
| 0.95 | 1.29792 | 16.52173 | , | 17.3673 | I. 4346 | 18.25632 |  | 19.19100 | 585 | 20.17362 |
| 1.0 | 0.00 | 16.57282 | 0.00 | 17.42 | 0.00 | 18.31278 | 0.00 | 19.2 | 0.00 | 20.23601 |
| 1.05 | 1.29792 | 16.52173 | 1.36458 | 17.36731 | 1.43466 | 18.25632 | 1.50832 | 19.19100 | 1. 58576 | 20.17362 |
| I.I | 2.58783 | 16.36878 | 2.72075 | 17.20653 | 2.86047 | 18.08732 | 3.00735 | 19.0133I | 3.16174 | 19.98688 |
| 1.15 | 3.86180 | 16.11491 | 4.06015 | 16.93970 | 4.26865 | 17.80680 | 4.487 | 18.71843 | 4.71823 |  |
| 1.2 | 5.11195 | 15.7617 | 5.3745 | 6.568 | 5.6505 | .41650 | 5.94 | .30814 | 6.24563 | - |
| 1.25 | 6.33059 | 15.31130 | 6.65574 | 16.0949 | 6.99754 | 16.91880 | 7.356 | 17.78 | 7.73453 | 56 |
| 1.3 | 7.51020 | 14.76650 | 7.89594 | 15.5222 | 8.30143 | 16.31680 | 8.72766 | 17.15216 | 9.17573 | 8.03040 |
| 1.35 | 8.64360 | 14.13065 | 9.08745 | 14.85386 | 9.55412 | 15.61421 | 10.04469 | 16.41360 | 10.56037 | 7.25404 |
| 1. 4 | 9.72361 | 13.40770 | 10.22293 | 14.09390 | 10.74789 | 14.81535 | 11.29972 | 15.57383 | 1 I .87990 | 16.37127 |
| 1.45 | 10.74357 | 12.60210 | 11 | 3.24705 | 11.87545 | 13.92515 | 12.4 | . 6 | 13.1 |  |
| 1.5 | 11.69740 | 71820 | 12.298 | 12.31852 |  | , |  | 3.612 |  | 02 |
| 1.55 | 12.57910 | 10.76320 | 13.22520 | 11.31405 | 13.90436 | 11.89320 | 14.61830 | 12.50208 | 15.36878 | 3.14223 |
| 1.6 | 13.38330 | 9.74126 | 14.07066 | 10.23982 | 14.79326 | 10.76400 | 15.55281 | 11.31505 | 16.35127 | .11.89444 |
| 1.65 | 14.10490 | . 65928 | 14.82933 | 9.10246 | 15.59090 | 9.56840 | 16.39143 | 10.05827 | 17.23295 | 10.57330 |
| 1.7 | 14.73960 | 7.52391 | 15.49665 | 7.9 | 16.29246 | 8.313 | 17.129 | 8.73946 | 18.00840 | 6 |
| 1.75 | 15.28340 | 6.34215 | 16.06840 | 6.66674 | 16.89356 | 7.0080 | 17.76096 | 7.36678 | 18.67280 | 7.74399 |
| 1. 8 | 15.73300 | 5.12129 | 16.54105 | 5.383 | 17.39050 | 5.65896 | 18.28342 | 5.94868 | 19.22208 | 6.25327 |
| 1.85 | 16.08555 | 3.86885 | 16.91175 | 4.06686 | 17.78022 | 4.27503 | 18.69316 | 4.49390 | 19.65290 | 4.72401 |
| 1.9 | 16.33896 | 2.59256 | 17.17817 | 2.72525 | 18.06033 | 2.86475 | 18.98765 | 3.01142 | 19.96246 | 3.16561 |
| 1.95 | 16.49163 | 1.30029 | 17.33870 | 1. 36684 | 18.22900 | I. 4368 | 19.16506 | 1.51036 | 20.14900 | 1.58770 |
| 2.0 | 16.54263 | 0.00 | 17.39230 | 0.00 | 18.28546 | . 0 | 19.2243 | 0.00 | 20.2112 | 0.00 |

Note. $\quad$ Negative quantities are in heavy type.
Examples. $\sinh (3.70+i 0.5)=14.29155+i_{14.30902}$. $\sinh \left(3.70+i_{1.5}\right)=-14.29155+i{ }_{14.30902}$.
[56]

Table VII. HYPERBOLIC SINES. $\sinh (x+i q)=u+i v$. Continued

|  | $x=3.75$ |  | $x=3.80$ |  | $x=3.85$ |  | $x=3.90$ |  | $x=3.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2,394 |  | 3.485 |  |  |  | 25.95806 |  |
| 0.05 | 21.18327 | 1.66900 | $22.270{ }^{2}$ | 1.75448 | 23.413 | 1.84435 | 24.61500 | 1.93883 | 25.87805 | 16 |
| 0.1 | 20.98716 | $3.3277^{2}$ | 22.06437 | 3.49815 | 23.1967 | 3.67733 | 24.38710 | 3.86571 | 25.63849 | 4.06375 |
| 0.15 | 20.66167 | 4.96592 | 21.72216 | 5.22025 | 22.8 | 5.48764 | 24.0088 | 5.76875 | 25.24084 | 6.06429 |
| 0.2 | 20.20879 | $6.5735^{\circ}$ | 21.24603 | 6.91017 | 22.336 | 7.26411 | 23.48262 | 7.63623 | 24.68760 | 8.02744 |
|  | 19.63131 | 8.14055 | 20.6389 I | 8.5574 | 21.698r3 |  | 22. |  |  |  |
| 0.3 | 18.93280 | 9.65741 | 19.9045 | 10.15203 | 20.926 | 10.67203 | 21.99993 | II.218 | 23.12881 | II.793 |
| 0.3 | 18.11756 | 11.11473 | 19.04746 | II. 68400 | 20.02501 | 12.282 | 21.05272 | 12.91164 | 22.13290 | 13.57315 |
| - | 17.19062 | 12.50353 | 18.07296 | 13.1439 | 19.00048 | 13.81716 | 19.97556 | 14.52497 | 21.0005 | 5.26910 |
| 0.45 | 16.15 |  | 16.98701 |  | 17.858 |  | 18.77526 | , |  | 6.8708 |
| 0.5 | 15.02516 | 15.04177 | 15.79634 | 15.81 | 16.60702 | 6.62208 | 17.4592 | 17.47 | 18.35512 | 18.36873 |
| 0.55 | 13.79998 | 16.17556 | 14.50828 | 17.00402 | 15.25286 | 17.87500 | 16.03558 | 18.79 | 16.85842 | 19.75331 |
| 0.6 | 12.48971 | 17.20963 | I3.13076 | 18.09105 | 13.80465 | 19.01770 | 14.51307 | 19.99190 | 15.25776 | 1.01610 |
| 0.65 | 11.10246 | 18.13760 | 11.6723 | 19.0665 | 12.27134 | . 043 | 12.901 | 21.06988 | I 3.563 | 22.14931 |
| 0.7 | 9.64674 | 18.95373 | 10.14188 | 924 | 10.66233 | , | 11.2 | 22.017 | II. 78 |  |
|  | 8. | 19.65301 | 8.54892 | 20.6 | 8.98 | 21.71778 | 9.44887 | 22.83 | . 93373 | 23.99991 |
| 0.8 | 6.56624 | 20.23113 | 90325 | 21.26731 | 7.25754 | 22.356 | 7.62997 | 23.50188 | 8.0214 | 24.70590 |
| 0.85 | 4.96043 | 20.68452 | 21503 | 21.74391 | 5.482 | 22.8576 | .5.76402 | 24.02856 | 6.059 | 25.25957 |
| 0.9 | 3.32404 | 21.01038 | 3.49465 | 22.08646 | 3.67400 | 23.21775 | 3.86254 | 24.40710 | 4.06 | 25.65749 |
| 0.95 | 66716 | 21.20670 | 75273 | 22.29283 | r. 84268 |  | 1. 93724 | 24.6351 | 2.03665 | 25.80724 |
| 1.0 |  |  |  | 22.36178 |  | 23 |  | . 7 |  | 731 |
| 1.05 | 1.66716 | 21.20670 | 75273 | 22.29283 | 1.84268 | 23.43 | . 93 | 24.63 | . 0366 | 25.89724 |
| I.I | 3.32404 | 21.01038 | 49465 | 22.08646 | 3.67400 | 23.21775 | 3.86254 | 24.4071 | 4.06074 | 25.65749 |
| 1.15 | 4.96043 | 20.68452 | 21503 | 21.74391 | 5.48267 | 22.857 | 5.76402 | 24.02 | 6.05979 | 25.25957 |
| 1.2 |  |  | 90325 | 21.26731 |  |  | 7.62997 |  |  |  |
| 1.25 | 8.1 | 19 | 8.5 | 20.65 | 8.98766 | 21.71778 | 9.4488 | 22.830 | 9.93373 | 3. |
| I. 3 | 9.64674 | 18.95373 | 10.14188 | 19.92448 | 10.66233 | 20.94503 | 11.20952 | 22.0179 | 11.78474 | 23.14597 |
| I. 35 | 11.10246 | 18.13760 | 11.67230 | 19.06655 | 12.27134 | 20.04315 | 12.90106 | 21.0698 | 13.56305 | 22.14931 |
| I. 4 | 12.48971 | 20963 | 13.13076 | 18.09105 | 13.80465 | 19.017 | 14.51307 | 19.9919 | 15.25776 |  |
| 1.45 | 13.79998 | $16.1755^{6}$ |  |  | 5 |  | 16.035 | 18.79065 |  | 75331 |
| 1.5 | 15.02516 | 15.04177 | 15.79634 | 15.81216 | 16.60702 | 6.62 | 17.45924 | 17.47355 | 18.35512 |  |
| 1.5 | 16.15770 | 13.81524 | 16.98701 | 14.52281 | 17.85880 | 15.26668 | 18.7752 | 16.04874 | 19.73867 |  |
| 1. | 17.19062 | 12.50353 | 18.07296 | 13.14392 | 19.00048 | 13.81716 | 19.9755 | 14.52497 | 1.00052 | 5.26910 |
| ェ. 65 | 18.11756 | 11.11473 | 19.04746 | 11.68400 | 20.02501 | 12.28246 | 21.05272 | 12.91164 | 22.13290 | 13.57315 |
| 1.7 | 18.93 | 9.65741 | 19 | . 5 | 20.9 | 10.67203 | 21.99993 | 1 I .2 | 23.12 | I. 7 |
|  | 19.6 | 8.14055 | 20.63891 | 8.55748 | 21.6981 | 8.99580 | 22.81160 | 662 |  |  |
| 1.8 | 20.20879 | 6.57350 | 21.24603 | 6.91017 | 22.33640 | 7.26411 | 23.48262 | 7.6 | 24.68760 | 8.02744 |
| I. 85 | 20.66167 | 4.96592 | 21.72216 | 5.22025 | 22.83696 | 5.48764 | 24.00888 | 5.76875 | 25.24084 | 6.06429 |
| 1.9 | 20.98716 | 3.32772 | 22.06437 | 3.4981 | 23.19673 | 3.67733 | 24.38710 | 3.86571 | 25.63849 |  |
| 1.95 | 21.18327 | 1.66 | 22.27052 | 1. 754 | 23.41 | 1.84435 | 615 | I. 93 | 25.8780 |  |
| 2.0 | 21.24878 | 0.00 | 2.3394 | 0.00 | 23.48589 | . 00 | 4.69110 | 0.00 | 5.95806 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\sinh (3.90+i 0.75)=9.44887+i 22.83030$.
$\sinh \left(3.95+i_{\underline{1.95}}\right)=-25.87805+i_{2.03816}$.

Table VIII. HYPERBOLIC COSINES. $\cosh (x+i q)=u+i v$

| $q$ | $x=0$ |  | $x=0.05$ |  | $x=0 . \mathrm{x}$ |  | $x=0.15$ |  | $x=0.2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 1.0000 | 0.00 | 1.00125 | 0.00 | 1.00500 | 0.00 | 1.01127 | 0.00 | 1.02007 | 0.00 |
| 0.05 | 0.99692 | 0.00 | 0.99816 | 0.00392 | 1.00191 | 0.00786 | I.00815 | 0.01181 | 1.01692 | 0.01580 |
| 0.1 | 0.98769 | . 00 | 0.98892 | 0.00783 | 0.99263 | 0.01567 | 0.99882 | 0.02355 | 1.00751 | 0.03150 |
| 0.15 | 0.97237 | 0.00 | 0.97385 | 0.01168 | 0.97724 | 0.02338 | 0.98333 | 0.03515 | 0.99188 | 0.04700 |
| 0.2 | 0.95106 | 0.00 | 0.95225 | 0.01546 | 0.95582 | 0.03095 | 0.96178 | 0.04653 | 0.97014 | 0.06222 |
| 0.25 | 0.92388 | 0.00 | 0.92503 | 0.0 | 0.92850 | 0.03833 | 0.93429 | 0.05762 | 2 | 0.07705 |
| 0.3 | 0.89101 | 0.00 | 0.89208 | 0.02271 | 0.89547 | 0.04547 | 0.90105 | 0.06835 | 0.90889 | 0.09141 |
| 0.35 | 0.85264 | 0.00 | 0.85367 | 0.02614 | 0.85691 | 0.05234 | 0.86225 | 0.07867 | 0.86975 | 0.10520 |
| 0.4 | 0.80902 | 0.00 | 0.81000 | 0.02940 | 0.81307 | 0.05888 | 0.81814 | 0.08850 | 0.82525 | 0.11834 |
| 0.45 | 0.76041 | 0.00 | 0.76133 | 0.03249 | 0.7642 I | 0.06505 | 0.76898 | 0.09778 | 0.77567 | 0.13076 |
| 0.5 | 0.70711 | . 0 | 0.70796 | 0.03537 | 0.71065 | 0.07083 |  | 0.10646 |  | 0.14237 |
| 0.55 | 0.64945 | 0.00 | 0.65023 | 0.03804 | 0.65270 | 0.07617 | 0.65677 | 0.11449 | 0.66248 | 0.15310 |
| 0.6 | 0.58779 | 0.00 | 0.58850 | 0.04047 | 0.59027 | 0.08104 | 0.59441 | 0.12181 | 0.59958 | 0.16288 |
| 0.65 | 0.52250 | 0.00 | 0.52313 | 0.04265 | 0.52511 | 0.08541 | 0.52839 | 0.12838 | 0.53298 | 0.17167 |
| 0.7 | 0.45399 | 0.00 | 0.45439 | 0.04457 | 0.45626 | 0.08925 | 0.45911 | 0.13415 | 0.46310 | 0.17939 |
| 0.75 | 0.38268 | 0.00 | 0.38316 | 0.04621 | 0.38460 | 0.09254 | 0.38700 | 0.13910 | 0.39036 | 0.18601 |
| 0.8 | 0.30902 | . 0 | 0.30940 | 0.04757 | 0.31056 | 0.09526 | 0.31250 | 0.14319 | 0.31522 | 0.19148 |
| 0.85 | 0.23345 | 0.00 | 0.2337 | 0.04864 | 0.23461 | 0.09740 | 0.23608 | 0.14640 | 0.23813 | 0. 19577 |
| 0.9 | 0.15643 | 0.00 | 0.15663 | 0.0494 I | 0.15722 | 0.09893 | 0.15820 | 0.14871 | 0.15957 | 0.19886 |
| 0.95 | 0.07846 | 0.00 | 0.07856 | 0.04987 | 0.07885 | 0.09986 | 0.07934 | 0.15010 | 0.08003 | 0.20072 |
| 1.0 | 0.00 | 0.00 | 0.00 | 0.05002 | . 00 | 0.10017 | 0.00 | 0.150 | 0.00 | 0.20134 |
| 1.05 | 0.07846 | 0.00 | 0.07856 | 0.04987 | 0.07885 | 0.09986 | 0.07934 | 0.15010 | 0.08003 | 0.20072 |
| I.I | 0.15643 | 0.00 | 0.15663 | 0.04941 | 0.15722 | 0.09893 | 0.15820 | 0.14871 | 0.15957 | -. 19886 |
| 1.15 | 0.23345 | 0.00 | 0.23374 | 0.04864 | 0.23461 | 0.09740 | 0.23608 | 0.14640 | 0.23813 | 0.19577 |
| 1.2 | 0.30902 | 0.0 | 0.30940 | 0.04757 | 0.31056 | 0.09526 | 0.31250 | 0.14319 | 0.31522 | -.19148 |
| 1.25 | 0.38268 | 0.00 | 0.38316 | 0.04621 | 0.38460 | 0.09254 | 0.38700 | 0.13910 | 0.39036 | 0.18601 |
| 1.3 | 0.45399 | 0.00 | 0.45439 | 0.04457 | 0.45626 | 0.08925 | 0.45911 | 0.13415 | 0.46310 | 0.1 |
| 1.35 | 0.52250 | 0.00 | 0.52313 | 0.04265 | 0.52511 | 0.08541 | 0.52839 | 0.12838 | 0.53298 | 0.17167 |
| 1.4 | 0.58779 | 0.00 | 0.58850 | 0.04047 | 0.59027 | 0.08104 | 0.59441 | 0.1218r | 0.59958 | 0.16288 |
| 1.45 | 0.64945 | 0.00 | 0.65023 | 0.03804 | 0.65270 | 0.07617 | 0.65677 | 0.11449 | 0.66248 | . 1 |
| 1.5 | 0.7071 | 0.00 | 0.70796 | 0.03537 | 0.71065 | 0.07083 | 0.71508 | 0.10646 | 0.72130 | 0.14237 |
| 1. 55 | 0.76041 | 0.00 | 0.76133 | 0.03249 | 0.76421 | 0.06505 | 0.76898 | 0.09778 | 0.77567 | 0.13076 |
| 1.6 | 0.80902 | 0.00 | 0.81000 | 0.02940 | 0.81307 | 0.05888 | 0.81814 | 0.08850 | 0.82525 | 0.11834 |
| 1.65 | 0.85264 | - | 0.85367 | 0.02614 | 0.85691 | 0.05234 | 0.86225 | 0.07867 | 0.86975 | 0.10520 |
| 1.7 | 0.89101 | 0.0 | 0.89208 | 0.02271 | . 0.89547 | 0.04547 | 0.90105 | 0.06835 | 0.90889 | 0.0914 |
| 1.75 | 0.92388 | . | 0.92503 | 0.01914 | 0.92850 | 0.03833 | 0.93429 | 0.05762 | 0.94242 | 0.07705 |
| 1.8 | 0.95106 | 0.00 | 0.95225 | 0.01546 | 0.95582 | 0.03095 | 0.96178 | 0.04653 | 0.97014 | 0.06222 |
| 1.85 | 0.97237 | 0.00 | 0.97385 | 0.01168 | 0.97724 | 0.02338 | 0.98333 | 0.03515 | 0.99188 | 0.04700 |
| 1.9 | 0.98769 | 0.00 | 0.98892 | 0.00783 | 0.99263 | 0.01567 | 0.99882 | 0.02355 | 1.00751 | 0.03150 |
| I. 95 | 0.99692 | 0.00 | 0.99816 | 0.00392 | I.00191 | 0.00786 | 1.00815 | 0.01181 | 1.01692 | 0.01580 |
| 2.0 | 1.0000 | 0.00 | 1.00125 | 0.00 | 1.00500 | 0.00 | 1.01127 | 0.00 | 1.02007 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\cosh (0+i 0.75)=0.38268+i 0$. $\cosh \left(0.2+i_{1.5}\right)=-0.72130+i 0.14237$

Table VIII. HYPERBOLIC COSINES. $\quad \cosh (x+i q)=u+i v$. Continued

| $q$ | $x=0.25$ |  | $x=0.3$ |  | $x=0.35$ |  | $x=0.4$ |  | $x=0.45$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 1.03141 | 0.00 | 34 | 0.00 | 1.06188 | 0.00 | 1.08107 | $0 . \infty$ | 10297 | 0.0 |
| 0.05 | 1.02823 | 0.01982 | 1.04212 | 0.02389 | 1.05860 | 0.02803 | 1.07774 | 0.03223 | 1.09957 | 0.03651 |
| 0.1 | 1.01871 | 0.03952 | 1.03247 | 0.04764 | 1.04880 | 0.05588 | 1.06776 | 0.06426 | 1.08939 | 0.07280 |
| 0.15 | 1.00292 | 0.05897 | 1.01646 | 0.07109 | 1.03254 | 0.08338 | 1.05120 | 0.09589 | 1.07250 | 0.10863 |
| 0.2 | 0.98093 | 0.07806 | 0.99418 | 0.09410 | 1.00991 | 0.11038 | 1.02816 | 0.12693 | 1.04899 | 0.14380 |
| 0.25 | 0.95290 | 0.09667 | 0.96577 | 0.11654 | 0.98105 | 0.13669 | 0.99378 |  | OI | 0.17808 |
| 0.3 | 0.91900 | 0.11468 | 0.93140 | 0.13825 | 0.94614 | -.16216 | 0.96324 | -. 18648 | 0.98275 | 0.21126 |
| 0.35 | 0.87942 | 0.13199 | 0.89130 | 0.1591I | 0.90540 | 0.18663 | 0.92177 | 0.21462 | 0.94044 | 0.24314 |
| 0.4 | 0.83443 | 0.14848 | 0.84570 | 0.17899 | 0.85908 | 0.20995 | 0.87461 | 0.24143 | 0.89232 | 0.27352 |
| 0.45 | 0.78429 | 0.16406 | 0.79488 | -.19777 | 0.80746 | 0.23198 | 0.82206 | 0.26676 | 0.83871 | 0.30222 |
| 0.5 | 0.72932 | 0.17862 | 0.73917 | 0.21533 | 0.75086 | 0.25257 | 0.76443 | 0.29045 | 0.77992 | 0.32905 |
| 0.55 | 0.66985 | 0.19208 | 0.67889 | 0.23156 | 0.68964 | 0.27161 | 0.70210 | 0.31234 | 0.71632 | 0.35385 |
| 0.6 | 0.60625 | 0.20437 | 0.61444 | 0.24636 | 0.62416 | 0.28897 | 0.63544 | 0.33231 | 0.64831 | 0.37647 |
| 0.65 | 0.53891 | 0.21539 | 0.54619 | 0.25965 | 0.55483 | 0.30455 | 0.56486 | 0.35022 | 0.57630 | 0.39677 |
| 0.7 | 0.46825 | 0.22508 | 0.47457 | 0.27133 | 0.48208 | 0.31826 | 0.49080 | 0.36598 | 0.50074 | 0.41462 |
| 0.75 | 0.39471 | 0.23338 | 0.40003 | 0.28134 | 0.40636 | 0.33000 | 0.41371 | 0.37949 | 0.42209 | 0.42992 |
| 0.8 | 0.31872 | 0.24025 | 0.32303 | 0.28962 | 0.32814 | 0.33971 | 0.33407 | 0.39065 | 0.34084 | 0.44257 |
| 0.85 | 0.24078 | 0.24563 | 0.24403 | 0.29611 | 0.24789 | 0.34732 | 0.25237 | 0.39940 | 0.25748 | 0.45249 |
| 0.9 | 0.16135 | 0.24950 | 0.16353 | 0.30077 | 0.16611 | 0.35279 | 0.16912 | 0.40570 | 0.17254 | 0.45961 |
| 0.95 | 0.08092 | 0.25183 | 0.08202 | 0.30358 | 0.08331 | 0.35609 | 0.08482 | 0.40949 | 0.0865 | 0.46391 |
| 1. | 0.00 | 0.25261 | 0.00 | 0.30452 | 0. | 0.3571 | 0.00 | 0.41075 | 0.00 | 0.46534 |
| 1.05 | 0.08092 | 0.25183 | 0.08202 | 0.30358 | 0.08331 | 0.35609 | 0.08482 | 0.40949 | 0.08654 | 0.46391 |
| 1.1 | 0.16135 | 0.24950 | 0.16353 | 0.30077 | 0.16611 | 0.35279 | 0.16912 | 0.40570 | 0.17254 | 0.45961 |
| 1.15 | 0.24078 | 0.24563 | 0.24403 | 0.29611 | 0.24789 | 0.34732 | 0.25237 | 0.39940 | 0.25748 | 0.45249 |
| 1.2 | 0.31872 | 0.24025 | 0.32303 | 0.28962 | 0.32814 | 0.33971 | 0.33407 | 0.39065 | 0.34084 | 0.44257 |
| 1.25 | 0.39471 | 0.23338 | 0.40003 | 0.28134 | 0.40636 | 0.3300 | 0.41371 | 0.37949 | 0.42209 | 0.42992 |
| 1.3 | 0.46825 | 0.22508 | 0.47457 | 0.27133 | 0.48208 | 0.31826 | 0.49080 | 0.36598 | 0.50074 | 0.41462 |
| 1. 35 | 0.53891 | 0.21539 | 0.54619 | 0.25965 | 0.55483 | 0.30455 | 0.56486 | 0.35022 | 0.57630 | 0.39677 |
| 1.4 | 0.60625 | 0.20437 | 0.61444 | 0.24636 | 0.62416 | 0.28897 | 0.63544 | 0.3323I | 0.64831 | 0.37647 |
| 1.45 | 0.66985 | 0.19208 | 0.67889 | 0.23156 | 0.68964 | 0.27161 | 0.7021 | 0.31234 | 0.71632 | 0.35385 |
| 1.5 | 0.72932 | 0.17862 | 0.73917 | 0.21533 | 0.75086 | 0.25257 | 0.76443 | 0.20945 | 0.77992 | 0.32905 |
| 1.55 | 0.78429 | 0.16406 | 0.79488 | 0.19777 | 0.80746 | 0.23198 | 0.82206 | 0.26676 | 0.83871 | 0.30222 |
| 1.6 | 0.83443 | 0.14848 | 0.84570 | -.17899 | 0.85908 | 0.20995 | 0.87461 | 0.24143 | 0.89232 | 0.27352 |
| 1.65 | 0.87942 | 0.13199 | 0.89130 | -.15911 | 0.90540 | 0.18663 | 0.92177 | 0.21462 | 0.94044 | 0.24314 |
| 1.7 | 0.91900 | -.11468 | 0.93140 | 0.13825 | 0.94614 | 0.16216 | 0.96324 | 0.18648 | 0.98275 | 0.21126 |
| 1.75 | 0.95290 | 0.09667 | 0.96577 | 0.11654 | 0.98105 | 0.13669 | 0.99878 | 0.15719 | 1.01901 | 0.17808 |
| 1.8 | 0.98093 | 0.07806 | 0.99418 | 0.09410 | 1.00991 | 0.11038 | 1.02816 | 0.12693 | 1.04899 | 0.14380 |
| 1.85 | 1.00292 | 0.05897 | 1.01646 | 0.07109 | 1.03254 | 0.08338 | 1.05120 | 0.09589 | 1.07250 | 0. 10863 |
| 1.9 | 1.01871 | $0.0395^{2}$ | 1.03247 | 0.04764 | 1.04880 | 0.05588 | 1.06776 | 0.06426 | 1.08939 | 0.07280 |
| 1.95 | 1.02823 | 0.01982 | 1.04212 | 0.02389 | 1.05860 | 0.02803 | 1.07774 | 0.03223 | 1.09957 | 0.03651 |
| 2.0 | 1.0314I | 0.00 | 1.04534 | 0.00 | 1.06188 | 0.00 | 1.08107 | 0.00 | 1.10297 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\cosh (0.3+i 0.9)=0.16353+i 0.30077$. $\cosh \left(0.45+i_{\underline{1.7}}\right)=-0.98275+i 0.21126$.

Table VIII. HYPERBOLIC COSINES. $\quad \cosh (x+i q)=u+i v$. Continued

| $\boldsymbol{q}$ | $x=0.5$ |  | $x=0.55$ |  | $x=0.6$ |  | $x=0.65$ |  | $x=0.7$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 1.12763 | 0.00 | 1.15510 | 0.00 | 1.18547 | 0.00 | 1.21879 | 0.00 | 1.25517 | 0.00 |
| 0.05 | 1.12415 | 0.04088 | I.15154 | 0.04536 | 1.1818I | 0.04995 | 1.21504 | 0.05467 | 1. 25130 | 0.05952 |
| 0.1 | 1.11374 | 0.08152 | 1.14088 | 0.09044 | 1.17087 | 0.09959 | 1.20379 | 0.10900 | 1.23972 | 0.11867 |
| 0.15 | 1.09647 | 0.12165 | 1.12319 | 0.13497 | I.1527I | 0.14862 | 1.18512 | 0.16265 | 1.22049 | 0.17709 |
| 0.2 | 1.07244 | 0.16103 | 1.09857 | 0.17866 | 1.12744 | 0.19674 | 1.15912 | 0.21531 | 1. 19374 | 0.23442 |
| 0.25 | 1.04179 | 0.19942 | 1.06717 | 0.22125 | 1.09523 | 0.24364 | 1.12602 | 0.26663 | 1.15962 | 0.29030 |
| 0.3 | 1.00472 | 0.23657 | 1.02920 | 0.26248 | 1.05626 | 0.28904 | 1.08595 | 0.31632 | 1.11836 | 0.34439 |
| 0.35 | 0.96146 | 0.27227 | 0.98489 | 0.30208 | 1.01078 | 0.33265 | 1.03919 | 0.36405 | 1.07021 | 0.39636 |
| 0.4 | 0.91227 | 0.30629 | 0.93450 | 0.33983 | 0.95906 | 0.37422 | 0.98602 | 0.40954 | 1.01545 | 0.44589 |
| 0.45 | 0.85745 | 0.33842 | 0.87835 | 0.37548 | 0.90144 | 0.41347 | 0.92678 | 0.45250 | 0.95444 | 0.49266 |
| 0.5 | 0.79735 | 0.36847 | 0.81678 | 0.40882 | 0.83825 | 0.45018 | 0.86182 | 0.49268 | 0.88754 | 0.53640 |
| 0.55 | 0.73233 | 0.39624 | 0.75018 | 0.43963 | 0.76990 | 0.48412 | 0.79154 | 0.52981 | 0.81517 | 0.57683 |
| 0.6 | 0.66280 | 0.42158 | 0.67895 | 0.46773 | 0.69680 | 0.51506 | 0.71639 | 0.56368 | 0.73777 | 0.61371 |
| 0.65 | 0.58918 | 0.44431 | 0.60354 | 0.49296 | 0.61940 | 0.54284 | 0.63682 | 0.59408 | 0.65582 | 0.64680 |
| 0.7 | 0.51193 | 0.46430 | 0.52441 | 0.51514 | 0.53819 | 0.56726 | 0.55332 | 0.62081 | 0.56984 | 0.67590 |
| 0.75 | 0.43152 | 0.48143 | 0.44204 | 0.53414 | 0.45366 | 0.58819 | 0.46641 | 0.64371 | 0.48033 | 0.70084 |
| 0.8 | 0.34846 | 0.49559 | 0.35695 | 0.54986 | 0.36633 | 0.60549 | 0.37663 | 0.66265 | 0.38787 | 0.72146 |
| 0.85 | 0.26324 | 0.50670 | 0.26965 | 0.56218 | 0.27674 | 0.61906 | 0.28452 | 0.67750 | 0.29301 | 0.73763 |
| 0.9 | 0.17640 | 0.51468 | 0.18070 | 0.57103 | 0.18545 | 0.62882 | 0.19066 | 0.68817 | 0.19635 | 0.74925 |
| 0.95 | 0.08847 | 0.51949 | 0.09063 | 0.57637 | 0.09301 | 0.63469 | 0.09563 | 0.69460 | 0.09848 | 0.75625 |
| 1.0 | 0.00 | 0.52110 | 0.00 | 0.57815 | 00 | 0.63665 | 0. | 0.69675 | 0.0 | 0.75858 |
| 1.05 | 0.08847 | 0.51949 | 0.09063 | 0.57637 | 0.09301 | 0.63469 | 0.09563 | 0.69460 | 0.09848 | 0.75625 |
| 1.1 | 0.17640 | 0.51468 | 0.18070 | 0.57103 | 0.18545 | 0.62882 | 0.19066 | 0.688ı 7 | 0.19635 | 0.74925 |
| 1.15 | 0.26324 | 0.50670 | 0.26965 | 0.56218 | 0.27674 | 0.61906 | 0.28452 | 0.67750 | 0.29301 | 0.73763 |
| 1.2 | 0.34846 | 0.49559 | 0.35695 | 0.54986 | 0.36633 | 0.60549 | 0.37663 | 0.66265 | 0.38787 | 0.72146 |
| 1.25 | 0.43152 | 0.48143 | 0.44204 | 0.53414 | 0.45366 | 0.58819 | 0.46641 | 0.64371 | 0.48033 | 0.70084 |
| 1.3 | 0.51193 | 0.46430 | 0.52441 | 0.51514 | 0.53819 | 0.56726 | 0.55332 | 0.62081 | 0.56984 | 0.67590 |
| 1.35 | 0.58918 | 0.4443 I | 0.60354 | 0.49296 | 0.61940 | 0.54284 | 0.63682 | 0.59408 | 0.65582 | 0.64680 |
| 1.4 | 0.66280 | 0.42158 | 0.67895 | 0.46773 | 0.69680 | 0.51506 | 0.71639 | 0.56368 | 0.73777 | 0.61371 |
| 1.45 | 0.73233 | 0.39624 | 0.75018 | 0.43963 | 0.76990 | 0.48412 | 0.79154 | 0.5298I | 0.81517 | 0.57683 |
| 1.5 | 0.79735 | 0.36847 | 0.81678 | 0.40882 | 0.83825 | 0.45018 | 0.86182 | 0.49268 | 0.88754 | 0.53640 |
| 1.55 | 0.85745 | 0.33842 | 0.87835 | 0.37548 | 0.90144 | 0.41347 | 0.92678 | 0.45250 | 0.95444 | 0.49266 |
| 1. 6 | 0.91227 | 0.30629 | 0.93450 | 0.33983 | 0.95906 | 0.37422 | 0.98602 | 0.40954 | 1.01545 | 0.44589 |
| 1.65 | 0.96146 | 0.27227 | 0.98489 | 0.30208 | 1.01078 | 0.33265 | 1.03919 | 0.36405 | 1.0702 I | 0.39636 |
| 1.7 | 1.00472 | 0.23657 | 1.02920 | 0.26248 | 1.05626 | 0.28904 | 1.085 | 0.31632 | 1.11836 | 0.34439 |
| 1.75 | 1.04179 | 0.19942 | 1.06717 | 0.22125 | 1.09523 | 0.24364 | 1.12602 | 0.26663 | 1.15962 | 0.29030 |
| 1.8 | 1.07244 | 0.16103 | 1.09857 | 0.17866 | 1.12744 | 0.19674 | 1.15912 | 0.21531 | 1.19374 | 0.23442 |
| 1.85 | 1.09647 | 0.12165 | 1.12319 | 0.13497 | 1.15271 | 0.14862 | 1.18512 | 0.16265 | 1.22049 | 0.17709 |
| 1.9 | 1.11374 | 0.08152 | 1.14088 | 0.09044 | 1.17087 | 0.09959 | 1.20379 | 0.10900 | 1.23972 | 0.11867 |
| 1.95 | 1.12415 | 0.04088 | 1.15154 | 0.04536 | 1.18181 | 0.04995 | 1.21504 | 0.05467 | 1.25130 | 0.05952 |
| 2.0 | 1.12763 | 0.00 | 1.15510 | 0.00 | 1.18547 | 0.00 | 1.21879 | 0.00 | 1.25517 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\quad \cosh (0.6+i 0.95)=0.09301+i 0.63469$. $\cosh (0.6+i \underline{\text { 1.05 }})=-0.09301+i 0.63469$.

Table VIII. HYPERBOLIC COSINES. $\cosh (x+i q)=u+i v$. Continued

| $q$ | $x=0.75$ |  | $x=0.8$ |  | $x=0.85$ |  | $x=0.9$ |  | $x=0.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | 1. 29468 | 0.00 | 1.33743 | 0.00 | 1. 38353 | 0.00 | 1.43309 | 0.00 | 1.48623 |  |
| 0.05 | 1.29069 | $0.0645^{2}$ | r.3333I | 0.06968 | 1.37927 | 0.07502 | 1.42867 | 0.08054 | 1.48164 | 0.08627 |
| 0.1 | 1.27874 | 0.12864 | 1.32097 | 0.13893 | I. 36650 | 0.14957 | 1. 41544 | 0.16058 | 1.46793 | 0.17200 |
| 0.15 | 1.25891 | 0.19197 | I. 30048 | 0.20732 | I. 34530 | 0.22320 | I. 39349 | 0.23964 | 1.44516 | 0.25667 |
| 0.2 | I. 23132 | 0.25411 | 1.27198 | 0.27444 | 1.31582 | 0.29546 | I. 36294 | 0.31721 | 1.41348 | 0.33976 |
| 0.25 | 1.19613 | 0.31469 | 1.23563 | 0.33986 | 1.27822 | 0. 36589 | 1.32400 | 0.39283 | 1.37309 | 0.42076 |
| 0.3 | 1.15356 | 0.37332 | 1.19166 | 0.40319 | 1. 23274 | 0.43407 | I. 27689 | 0.46603 | 1.32425 | 0.49916 |
| 0.35 | 1.10390 | 0.42966 | 1.14035 | 0.46403 | 1.17965 | 0.49957 | 1. 22194 | 0.53635 | 1.26722 | 0.57448 |
| 0. | 1.04742 | 0.48335 | 1.08201 | 0.52202 | I.11930 | 0.56199 | I.I5939 | 0.60337 | I. 20238 | 0.64626 |
| 0.45 | 0.98449 | 0.53405 | 1.01700 | 0.57678 | 1.05205 | 0.62095 | 1.08973 | 0.66667 | 1.13013 | 0.71406 |
| 0.5 | 0.91548 | 0.58147 | 0.94571 | 0.62799 | 0.97830 | 0.67608 | 1.01334 | 0.72586 | 1.05092 |  |
| 0.55 | 0.84083 | 0.62529 | 0.86859 | 0.67532 | 0.89853 | 0.72704 | 0.93071 | 0.78057 | 0.96523 | 0.83605 |
| 0.6 | 0.76100 | 0.66527 | 0.78613 | 0.71849 | 0.81322 | 0.77351 | 0.84235 | 0.83047 | 0.87358 | 0.88950 |
| 0.65 | 0.67647 | 0.70114 | 0.6988 I | 0.75724 | 0.72290 | 0.81522 | 0.74879 | 0.87525 | 0.77655 | 0.93747 |
| 0.7 | 0.58777 | 0.73269 | 0.60718 | 0.79131 | 0.62811 | 0.85 IgI | 0.65065 | 0.91463 | 0.67473 | 0.97965 |
| 0.75 | 0.49545 | 0.75972 | 0.51182 | 0.82050 | 0.52945 | 0.88334 | 0.54842 | 0.94838 | 0.56875 | 1.01579 |
| 0.8 | 0.40008 | 0.78207 | 0.41329 | 0.84464 | 0.42753 | 0.90932 | 0.44285 | 0.97628 | 0.45927 | 1.04567 |
| 0.85 | 0.30224 | 0.79960 | 0.31222 | 0.86357 | 0.32298 | 0.92970 | 0.33455 | 0.99816 | 0.34695 | 1.06911 |
| 0.9 | 0.20253 | 0.81219 | 0.20922 | 0.87717 | 0.21643 | 0.94435 | 0.22418 | т.01388 | 0.23250 | 1.08595 |
| 0.95 | 0.10158 | 0.81978 | 0.10493 | 0.88537 | 0.10855 | 0.95317 | 0.11244 | 1.02335 | 0.11661 | 1.09610 |
| 1.0 | 0.00 | 0.82232 | 0.00 | 0.88811 | 0.0 | 0.95612 | 0.00 | 1.02652 | 0.00 | т. 09948 |
| 1.05 | 0.10158 | 0.81978 | 0.10493 | 0.88537 | 0.10855 | 0.95317 | 0.11244 | 1.02335 | 0.11661 | 1.09610 |
| I.I | 0.20253 | 0.81219 | 0.20922 | 0.87717 | 0.21643 | 0.94435 | 0.22418 | 1.01388 | 0.23250 | 1.08595 |
| 1.15 | 0.30224 | 0.79960 | 0.31222 | 0.86357 | 0.32298 | 0.92970 | 0.33455 | 0.99816 | 0.34695 | 1.06915 |
| 1.2 | 0.40008 | 0.78207 | 0.41329 | 0.84464 | 0.42753 | 0.90932 | 0.44285 | 0.97628 | 0.45927 | 1.04567 |
| 5 | 0.49545 | 0.75972 | 0.51182 | 0.82050 | 0.52945 | 0.88334 | 0.54842 | 0.94838 | 0.56875 | 1.01579 |
| 1.3 | 0.58777 | 0.73269 | 0.60718 | 0.79131 | 0.62811 | 0.85191 | 0.65061 | 0.91463 | 0.67473 | 0.97965 |
| I. 35 | 0.67647 | 0.70114 | 0.69881 | 0.75724 | 0.72290 | 0.81522 | 0.74879 | 0.87525 | 0.77655 | 0.93747 |
| 1.4 | 0.76100 | 0.66527 | 0.78613 | 0.71849 | 0.81322 | 0.77351 | 0.84235 | 0.83047 | 0.87358 | 0.88950 |
| 1.45 | 0.84083 | 0.62529 | 0.86859 | 0.67532 | 0.89853 | 0.72704 | 0.93071 | 0.78057 | 0.96523 | 0.83605 |
| 1.5 | 0.91548 | 0.58147 | 0.94571 | 0.62799 | 0.97830 | 0.67608 | 1.01334 | 0.72586 | 1.05092 |  |
| 1. 55 | 0.98449 | 0. 53405 | 1.01700 | 0.57678 | 1.05205 | 0.62095 | 1.08973 | 0.66667 | I.13013 | 0.71406 |
| 1.6 | 1.04742 | 0.48335 | 1.08201 | 0.52202 | 1.11930 | 0.56199 | 1.15939 | 0.60337 | 1.20238 | 0.64626 |
| 1.65 | 1.10390 | 0.42966 | 1.14035 | 0.46403 | 1.17965 | 0.49957 | 1.22194 | 0.53635 | 1.26722 | 0.57448 |
| 1.7 | 1. | 0.37332 | 1. | 0.403 | 1.23274 | - 43 | 1. 27689 | -5635 | r. 32425 | 6 |
| 1.75 | 1.19613 | 0.31469 | 1.23563 | 0.33986 | 1.27822 | 0.36580 | 1.32400 | 0.39283 | 1. 37309 | 0.42076 |
| 1.8 | 1.23132 | 0.25411 | 1.27198 | 0.27444 | 1.31582 | 0.29546 | 1.36294 | 0.31721 | 1.41348 | 0.33976 |
| 1.85 | 1.25891 | 0.19197 | 1.30048 | 0.20732 | 1.34530 | 0.22320 | 1.39349 | 0.23964 | 1.44516 | 0.25667 |
| 1.9 | 1.27874 | 0.12864 | 1.32097 | 0.13893 | r. 36650 | 0.14957 | 1.41544 | 0.16058 | 1.46793 | 0.17200 |
| 1.95 | 1.29069 | $0.0645^{2}$ | 1.3333 | 0.06968 | 1.37927 | 0.07502 | 1.42867 | 0.08054 | 1.48164 | 0.08627 |
| 2.0 | 1.29468 | 0.00 | 1.33743 | 0.00 | 1.38353 | 0.00 | 1.43309 | 0.00 | 1.48623 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\quad \cosh \left(0.9+i_{1.0}\right)=0+i_{1.02652}$.
$\cosh \left(0.9+i_{\underline{1.10}}\right)=-0.22418+i_{1.01388}$.

Table VIII. HYPERBOLIC COSINES. $\cosh (x+i q)=u+i v$. Continued

| $q$ | $x=$ | 0 | $x=$ | 1.05 | $x$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 1. 54308 | 0.00 | 1.60379 | 0.00 | 1. 66852 | - |
| 0.05 | 1.53832 | 0.09221 | 1.59885 | 0.09838 | 1. 66337 | 0.10479 |
| 0.1 | 1.52408 | 0.18384 | 1.58405 | 0.19615 | 1.64798 | 0.20894 |
| 0.15 | 1. 50045 | 0.27435 | 1.55948 | 0.29271 | 1.62242 | 0.31180 |
| 0.2 | 1. 46756 | 0.36316 | 1.52530 | 0.38746 | 1.58685 | 0.41274 |
| 0.25 | I. 42562 | 0.44973 | 1.48r7 | 0.47983 | 1.54151 | 0.51113 |
| 0.3 | 1.37490 | 0.53353 | 1.42899 | 0.56924 | 1.48666 | 0.60637 |
| 0.35 | 1.31569 | 0.61404 | I. 36746 | 0.65514 | 1.42265 | 0.69787 |
| 0.4 | 1.24838 | 0.69077 | 1.29750 | 0.73700 | I. 34986 | 0.78508 |
| 0.45 | 1.17337 | 0.76323 | ' 1.21953 | 0.81432 | I. 26875 | 0.86743 |
| 0.5 | 1.09112 | 0.83099 | 1.13405 | 0.88661 | 1.17982 | 0.94445 |
| 0.55 | 1.00215 | 0.89363 | 1.04158 | 0.95344 | 1.08362 | 1.01564 |
| 0.6 | 0.90700 | 0.95076 | 0.94269 | 1.01439 | 0.98073 | 1.08056 |
| 0.65 | 0.80626 | 1.00202 | 0.83798 | 1.06909 | 0.87180 | 1.13883 |
| 0.7 | 0.70055 | 1.04711 | 0.728 II | 1.11719 | 0.75749 | 1.19007 |
| 0.75 | 0.59051 | 1.08574 | 0.61375 | 1.1584I | 0.63852 | 1.23398 |
| 0.8 | 0.47684 | 1.11768 | 0.49560 | I.I9249 | 0.51560 | 1.27028 |
| 0.85 | 0.36023 | 1.14273 | 0.37440 | 1.2192I | 0.38951 | 1.29875 |
| 0.9 | 0.24139 | 1.16073 | 0.25089 | 1.23842 | 0.26101 | 1.31920 |
| 0.95 | 0.12107 | 1.17158 | 0.12583 | 1.24999 | 0.13091 | x.33153 |
| 1.0 | 0.00 | 1.17520 | 0.00 | 1.25386 | 0.00 | 1.33565 |
| 1.05 | 0.12107 | 1.17158 | 0.12583 | 1. 24999 | 0.13091 | I.33I 53 |
| 1. | 0.24139 | 1.16073 | 0.25089 | 1.23842 | 0.26101 | 1.31920 |
| 1.15 | 0.36023 | 1.14273 | 0.37440 | 1.2192I | 0.38951 | 1.29875 |
| 1.2 | 0.47684 | 1.11768 | 0.49560 | 1.19249 | 0.51560 | 1.27028 |
| 1.25 | 0.59051 | 1.08574 | 0.61375 | 1.1584 | 0.63852 | I. 23398 |
| 1.3 | 0.70055 | 1.04711 | 0.728 II | 1.11719 | 0.75749 | 1.19007 |
| 1.35 | 0.80626 | 1.00202 | 0.83798 | 1.06909 | 0.87180 | 1.13883 |
| 1.4 | 0.90700 | 0.95076 | 0.94269 | 1.01439 | 0.98073 | 1.08056 |
| 1.45 | 1.00215 | 0.89363 | 1.04158 | 0.95344 | 1.08362 | I.OI 564 |
| 1.5 | 1.09112 | 0.83099 | 1.13405 | 0.88661 | 1.17982 | 0.94445 |
| 1.55 | 1.17337 | 0.76323 | 1.21953 | 0.81432 | 1.26875 | 0.86743 |
| 1.6 | 1. 24838 | 0.69077 | 1.29750 | 0.73700 | 1.34986 | 0.78508 |
| 1.65 | 1.31569 | 0.61404 | 1.36746 | 0.65514 | 1.42265 | 0.69787 |
| 1.7 | 1.37490 | 0.53353 | 1.42899 | 0.56924 | 1.48666 | 0.60637 |
| 1.75 | 1.42562 | 0.44973 | 1.48171 | 0.47983 | 1.54151 | 0.51113 |
| 1.8 | 1.46756 | 0.36316 | 1.52530 | 0.38746 | 1.58685 | 0.41274 |
| 1.85 | 1.50045 | 0.27435 | 1.55948 | 0.29271 | 1.62242 | 0.31180 |
| 1.9 | 1.52408 | 0.18384 | 1.58405 | 0.19615 | 1.64798 | 0.20894 |
| 1.95 | 1.53832 | 0.0922 I | 1.59885 | 0.09838 | 1.66337 | 0.10479 |
| 2.0 | 1. 54308 | 0.00 | 1.60379 | 0.00 | 1.66852 | 0.00 |

$$
x=1.15
$$

$$
x=1.2
$$

$$
\begin{array}{llll}
1.73741 & 0.00 & 1.81066 & 0.00 \\
1.73206 & 0.11147 & 1.80507 & 0.11843 \\
1.71602 & 0.22226 & 1.78836 & 0.23613 \\
1.68941 & 0.33167 & 1.76063 & 0.35238 \\
1.65238 & 0.43904 & 1.72204 & 0.46645
\end{array}
$$

$$
\begin{array}{ll}
1.60517 & 0.54371
\end{array}
$$

$$
1.54805 \quad 0.64502
$$

$$
1.48139 \quad 0.74235
$$

$$
1.40560 \quad 0.8351 \mathrm{I}
$$

$$
\begin{array}{ll}
1.32114 & 0.92272
\end{array}
$$

$$
1.22854 \mathrm{I} .00464
$$

$$
1.12836 \quad 1.08037
$$

$$
1.02123 \quad 1.14943
$$

$$
0.90780 \quad 1.21141
$$

$$
0.78877 \quad \mathrm{I} .2659^{2}
$$

$$
0.66488 \quad 1.31263
$$

$$
0.53689 \quad 1.35124
$$

$$
0.40559 \mathrm{I} .38152
$$

$$
0.27179 \quad 1.40329
$$

$$
0.13632 \quad 1.41640
$$

$$
0.00 \quad 1.42078
$$

$$
0.136321 .41640
$$

$$
0.27179 \quad 1.40329
$$

$$
0.40559 \text { 1.38152 }
$$

$$
0.53689 \quad 1.35124
$$

$$
0.66488 \text { I. } 31263
$$

$$
0.78877 \quad 1.26592
$$

$$
0.90780 \quad 1.21141
$$

$$
1.02123 \quad 1.14943
$$

$$
\mathbf{1 . 1 2 8 3 6 ~} 1.08037
$$

$$
1.22854 \quad 1.00464
$$

$$
1.321140 .92272
$$

$$
1.40560 \quad 0.835 \mathrm{II}
$$

$$
1.48139 \quad 0.74235
$$

$$
1.548050 .64502
$$

$$
1.60517 \quad 0.54371
$$

$$
1.65238 \quad 0.43904
$$

$$
\begin{array}{ll}
1.68941 & 0.33167
\end{array}
$$

$$
1.716020 .22226
$$

$$
1.732060 .11147
$$

$1.73741 \quad 0.00$
$\begin{array}{ll}1.67283 & 0.57765\end{array}$ 1.6133 I 0.68528 $1.54384 \quad 0.78869$ $1.46485 \quad 0.88724$ $1.37684 \quad 0.98032$
1.28033 1.06735 I.17593 1.14781 1.06428 1.22118 0.946071 .28703 0.822021 .34494
$0.69291 \quad 1.39456$
$0.5595^{2} 1.43558$
$0.42269 \quad 1.46776$
0.283251 .49088
0.14206 1.5048I
$0.00 \quad 1.50946$
0.14206 r .5048 I
0.283251 .49088
0.422691 .46776
0.55952 I. $4355^{8}$
0.69291 1. 39456
0.82202 I. 34494
0.946071 .28703
1.06428 I .22118
1.17593 1.14781
1.280331 .06735
$1.37684 \quad 0.98032$
1.464850 .88724
1.543840 .78869
1.6133I 0.68528
$1.67283 \quad 0.57765$
1.722040 .46645
1.760630 .35238
1.788360 .23613
1.805070 .11843
1.810660 .00

Note. Negative quantities are in heavy type.
Examples. $\cosh (1.2+i 0)=1.81066+i 0$.
$\cosh \left(\mathrm{I} . \mathrm{I}+\mathrm{i}_{\mathrm{I} . \mathrm{I}}\right)=-0.2610 \mathrm{I}+\mathrm{i}_{\mathrm{I} .31920}$.

Table VIII. HYPERBOLIC COSINES. $\quad \cosh (x+i q)=u+i v$. Continued


Note. Negative quantities are in heavy type.
Examples. $\cosh \left(1.4+i_{1.9}\right)=-2.12442+i 0.29790$, $\cosh \left(1.4+i_{1.4}\right)=-1.26427+i_{1.54061}$.

Table VIII. HYPERBOLIC COSINES. $\quad \cosh (x+i q)=u+i v . \quad$ Continued

| $q$ | $x=1.5$ |  | $x=\mathrm{I} .55$ |  | $x=1.6$ |  | $x=1.65$ |  | $x=1.7$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2.3 | 0.00 | 2.46186 | 0.0 | 2.57746 |  | 2.69952 | 0.00 | 2.82832 |  |
| 0.05 | 2.34516 | 0.16706 | 2.45427 | 0.17650 | 2.56952 | 0.18639 | 2.69121 | 0.19673 | 2.81960 | 0.20757 |
| 0.1 | 2.32345 | 0.33309 | 2.43155 | 0.35192 | 2.54573 | 0.37162 | 2.66629 | 0.39225 | 2.79350 | 0.41387 |
| 0.15 | 2.28742 | 0.49707 | 2.39384 | 0.52516 | 2.50625 | 0.55456 | 2.62494 | 0.58536 | 2.75017 | 0.61761 |
| 0.2 | 2.23727 | 0.65798 | 2.34137 | 0.69517 | 2.45131 | 0.73409 | 2.56740 | 0.7748 | 2.68989 | 0.81754 |
| 0.25 | 2.17334 | 0.81484 | 2.27446 | 0.86089 | 2.38127 |  | 2.49404 | 0.950 | .61302 |  |
| 0.3 | 2.09601 | 0.96667 | 2.19353 | 1.02130 | 2.29654 | 1.07848 | 2.40529 | 1.13837 | 2.52005 | 1.20109 |
| 0.35 | 2.00576 | 1.11255 | 2.0990 | 1.17542 | 2.19765 | 1. 24123 | 2.30173 | 1.31015 | 2.41154 | 1. 38234 |
| 0.4 | 1.90314 | 1.25156 | 1.99169 | 1.32229 | 2.08522 | I. 39632 | 2.18396 | 1.47385 | 2.28816 | 1.55506 |
| 0.45 | 1.78879 | 1.38286 | 1.87201 | 1.46101 | 1.95992 | I. 542 | 2.05274 | 1.62847 | 2.15067 | 1.71820 |
| 0.5 | 1.66341 | 1.50563 | 1.74080 | 1.59071 | I. 82254 | 1.67978 | 1.90885 | 1.7 |  | . 87074 |
| 0.55 | 1. 52777 | 1.61912 | 1. 59885 | 1.71062 | 1.67393 | 1.80640 | 1.75320 | 1.90669 | 1.83684 | 2.01175 |
| 0.6 | 1.38271 | 1.72263 | I. 44704 | 1.81997 | 1.51500 | 1.92187 | 1.58674 | 2.02858 | 1.66244 | 2.14036 |
| 0.65 | I.22913 | 1.81551 | 1. 28632 | 1.918II | I. 34672 | 2.02550 | 1.41050 | 2.13797 | 1.47779 | 2.25577 |
| 0.7 | 1.06797 | 1.89720 | 1.117 | 2.00442 | 1.17015 | 2.116 | 1. 22556 | 2.23417 |  | 2.35727 |
| 0.75 | 0.90023 | 1.96720 | 0.94211 | 2.07837 | 0.98636 | 2.19473 | 1.03306 | 2.31660 | 1. 08235 | 2.44424 |
| 0.8 | 0.72693 | 2.02507 | 0.76076 | 2.13951 | 0.79648 | 2.25930 | 0.83420 | 2.38474 | 0.87400 | 2.51614 |
| 0.85 | 0.54916 | 2.07045 | 0.57471 | 2.18745 | 0.60170 | 2.30993 | 0.63019 | 2.438 | 0.66026 | 2.57253 |
| 0.9 | 0.36800 | 2.10307 | 0.38512 | 2.22191 | 0.40320 | 2.34632 | 0.42230 | 2.47659 | 0.44245 | 2.61306 |
| 0.95 | 0.18457 | 2.12272 | 0.19316 | 2.24268 | 0.20223 | 2.36824 | 0.21 | 2.499 | 0.22191 | 2.63747 |
|  | . 0 | 2.129 | 0.00 | 2.249 | . 00 | 2.37 |  | 2.50747 | 0.00 | 2.64563 |
| 1.05 | 0.18457 | 2.1227 | 0.19316 | 2.24268 | 0.20223 | 2.36824 | 0.21180 | 2.49973 | 2219 | 2.63747 |
| I. 1 | 0.36800 | 2.10307 | 0.38512 | 2.22191 | 0.40320 | 2.34632 | 0.42230 | 2.4765 | 0.44245 | 2.61306 |
| 15 | 0.54916 | 2.07045 | 0.57471 | 2.18745 | 0.60170 | 2.30993 | 0.63019 | 2.438 | 0.66026 | 2.57253 |
| 1.2 | 0.72693 | 2.025 | 0.76076 | 2.139 | 0.79648 | 2.25930 | 0.83420 | 2.38 | 0.87400 |  |
| 1. 25 | 0.90023 | 1.96720 | 0.94211 | 2.07837 | 0.98636 | 2.19473 | 1.03306 | 2.31660 | 1.08235 | 2.44424 |
| 1.3 | 1.06797 | 1.89720 | 1.11766 | 2.00442 | 1.17015 | 2.11664 | 1.22556 | 2.23417 | 1.28403 | 2.35727 |
| 1.35 | 1.22913 | 1.81551 | 1.28632 | 1.918II | 1.34672 | 2.02550 | 1.41050 | 2.13797 | 1.47779 | 2.25577 |
| I. 4 | 1.38271 | 1.72263 | 1.44704 | 1.81997 | 1.51500 | 1.92187 | 1.58674 | 2.02858 | 1.66244 | 2.14036 |
| 45 | 1.52777 | 1.619 | 1.59 | 1.710 | 1.67393 | 1. 80640 | 1.75320 | 1.9066 | 1.83684 | 2.01175 |
| 1.5 | 1.66 | 1.505 | 1.74080 | 1.59071 | 1.82254 | 1. 67978 | 1.90885 | 1.773 | 1.99992 | 1. 87074 |
| 1.55 | 1.78879 | 1. 38286 | 1.87201 | 1.46101 | 1.95992 | 1.54281 | 2.05274 | 1. 62847 | 2.15067 | 1.71820 |
| 1.6 | 1.90314 | 1.25156 | 1.99169 | 1. 32229 | 2.08522 | 1.39632 | 2.18396 | 1.47385 | 2.28816 | 1.55506 |
| 1.65 | 2.00576 | 1.11255 | 2.09908 | 1.17542 | 2.19765 | 1.24123 | 2.30173 | 1.31015 | 2.41154 | 1.38234 |
| 1.7 | 2.09601 | 0.966 | 353 | . 2130 | 29654 | 1.07848 | 2.30173 | I. 138 | 2.41584 | I |
| 1.75 | 2.17334 | 0.81484 | 2.27446 | 0.86089 | 2.38127 | 0.90909 | 2.49404 | 0.95957 | 2.61302 | 1.01244 |
| 1.8 | 2.23727 | 0.65798 | 2.34137 | 0.69517 | 2.45131 | 0.73409 | 2.56740 | 0.77485 | 2.68989 | 0.81754 |
| I. 85 | 2.28742 | 0.49707 | 2.39384 | 0.52516 | 2.50625 | 0.55456 | 2.62494 | 0.58536 | 2.75017 | 0.61761 |
| 1.9 | 2.32345 | 0.33309 | 2.43155 | 0.35192 | 2.54573 | 0.37162 | 2.66629 | 0.39225 | 2.79350 | 0.41387 |
| 1.95 | 2.34516 | 0.16706 | 2.45427 | 0.17650 | 2.56952 | 0.18639 | 2.69121 | 0.19673 | 2.81960 | 0.20757 |
|  | 2.35241 | . 0 | 2.46186 | 0.00 | 2.57746 | 0.00 | 2.6995 | . 0 | 828 |  |

Note. Negative quantities are in heavy type.
Examples. . $\cosh (\mathrm{r} .6+i 0.4)=2.08522+i_{1} 139632$.
$\cosh \left(1.7+i_{\text {I.2 }}\right)=-0.87400+i_{2.51614}$.

Table VIII. HYPERBOLIC COSINES. $\cosh (x+i q)=u+i v$. Continued

| $q$ | $x=1.75$ |  | $x=1.8$ |  | $x=1.85$ |  | $x=$ 1.9 |  | $x=1.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 2.96419 | 0.00 | 3.10747 | 0.00 | 3.25853 | 0.00 | 3.41773 | 0.00 | 3.58548 | 0.00 |
| 0.05 | 2.95505 | 0.21893 | 3.09789 | 0.23084 | 3.24848 | 0.24332 | 3.40719 | 0.25642 | 3.57443 | 0.27015 |
| 0.1 | 2.92769 | 0.43652 | 3.06921 | 0.46026 | 3.2184 I | 0.48627 | 3.37565 | 0.51125 | 3.54134 | 0.53864 |
| 0.15 | 2.88229 | 0.65141 | 3.02161 | 0.68684 | 3.16850 | 0.72398 | 3.32330 | 0.76294 | 3.48641 | 0.80380 |
| 0.2 | 2.819 II | 0.86229 | 2.95538 | 0.90918 | 3.09904 | 0.95835 | 3.25045 | 1.00992 | 3.41000 | 1.06401 |
| 0.25 | 2.73855 | 1.06784 | 2.87093 | 1.12592 | 3.01049 | r.18681 | 3.15757 | 1.25067 | 3.31255 | I.31766 |
| 0.3 | 2.64 III | I. 26682 | 2.76878 | 1. 33572 | 2.90337 | 1.40796 | 3.04522 | 1.48372 | 3.19469 | r.56318 |
| 0.35 | 2.52739 | r. 45799 | 2.64956 | 1.53728 | 2.77835 | 1.62042 | 2.91409 | 1.90761 | 3.05713 | 1.79907 |
| 0.4 | 2.39808 | 1.64016 | 2.51400 | 1.72937 | 2.63620 | 1.82289 | 2.76501 | 1.92098 | 2.9007 I | 2.02387 |
| 0.45 | 2.25399 | I.81223 | 2.36294 | 1.91079 | 2.47780 | 2.01413 | 2.59887 | 2.12250 | 2.72642 | 2.23618 |
| 0.5 | 2.09600 | 1.973I2 | 2.19731 | 2.08043 | 2.30413 | 2.19294 | 2.41670 | 2.31094 | 2.53532 | 2.43471 |
| 0.55 | 1.92509 | 2.12185 | 2.01814 | 2.23725 | 2.11564 | 2.35824 | 2.21964 | 2.48513 | 2.32858 | 2.61823 |
| 0.6 | 1.74231 | 2.25749 | 1.82653 | 2.38027 | 1.91531 | 2.50900 | 2.00889 | 2.64400 | 2.10749 | 2.78561 |
| 0.65 | 1.54878 | 2.37922 | 1.62365 | 2.50862 | 1.70258 | 2.64429 | 1.78576 | 2.78657 | r. 87341 | 2.93582 |
| 0.7 | I. 34571 | 2.48627 | 1.41076 | 2.62149 | 1. 47934 | 2.76327 | 1.55162 | 2.91196 | 1.62777 | 3.06792 |
| 0.75 | 1.13435 | 2.57800 | 1.18918 | 2.71821 | 1. 24698 | 2.86522 | 1.30791 | 3.01939 | 1.37210 | 3.18III |
| 0.8 | 0.91599 | 2.65384 | 0.96026 | 2.79817 | 1.00694 | 2.94950 | 1.05614 | 3.1082I | I.10797 | 3.27468 |
| 0.85 | 0.69193 | 2.71331 | 0.72542 | 2.86088 | 0.76069 | 3.01560 | 0.79785 | 3.17787 | 0.83701 | $3 \cdot 34807$ |
| 0.9 | 0.46370 | 2.75606 | 0.48612 | 2.90595 | 0.50975 | 3.06311 | 0.53465 | 3.22793 | 0.56089 | 3.4008 I |
| 0.95 | 0.23257 | 2.78 I8I | 0.2438 I | 2.93310 | 0.25566 | 3.09173 | 0.268 I 5 | 3.25809 | 0.28131 | 3.43259 |
| 1.0 | 0.00 | 2.7904 I | 0.00 | 2.94217 | 0.00 | 3.10129 | 0.00 | 3.268 r 6 | . 0 | 3.4432 I |
| 1.05 | 0.23257 | 2.7818 I | 0.2438 I | 2.93310 | 0.25566 | 2.09173 | 0.26815 | 3.25809 | 0.28131 | 3.43259 |
| I.I | 0.46370 | 2.75606 | 0.48512 | 2.90595 | 0.50975 | 3.06311 | 0.53465 | 3.22793 | 0.56089 | 3.4008 I |
| 1.15 | 0.69198 | 2.71331 | 0.72542 | 2.86088 | 0.76069 | 3.01560 | 0.79785 | 3.17787 | 0.83701 | 3.34807 |
| 1.2 | 0.91599 | 2.65384 | 0.96026 | 2.79817 | 1.00694 | 2.94950 | 1.05614 | 3.10821 | r. 10797 | 3.27468 |
| 1.25 | 1.13435 | 2.57800 | 1.18918 | 2.71821 | 1.24698 | 2.86522 | 1.3079I | 3.01939 | 1.37210 | 3.18 III |
| 1.3 | 1.34571 | 2.48627 | 1.41076 | 2.62149 | 1.47934 | 2.76327 | 1.55162 | 2.91196 | 1.62777 | 3.06792 |
| I. 35 | 1.54878 | 2.37922 | 1.62365 | 2.50862 | 1.70258 | 2.64429 | 1.78576 | 2.78657 | 1.87341 | 2.93582 |
| 1. 4 | 1.74231 | 2.25749 | 1.82653 | 2.38027 | 1.91531 | 2.50900 | 2.00889 | 2.64400 | 2.10749 | 2.7856 r |
| I. 45 | 1.92509 | 2.12185 | 2.01814 | 2.23725 | 2.11624 | 2.35824 | 2.21964 | 2.48513 | 2.32858 | 2.61823 |
| 1.5 | 2.0960 | 1.97312 | 2.19731 | 2.08043 | 2.30413 | 2.19294 | 2.41670 | 2.31094 | 2.53532 | 2.43471 |
| 1.55 | 2.25399 | 1.81223 | 2.36294 | 1.91079 | 2.47780 | 2.01413 | 2.59887 | 2.12250 | 2.72642 | 2.23618 |
| 1. 6 | 2.39808 | 1.64016 | 2.51400 | 1.72937 | 2.63620 | 1.82289 | 2.76501 | 1.92098 | 2.90071 | 2.02387 |
| 1. 65 | 2.52739 | 1.45799 | 2.64956 | 1.53728 | 2.77835 | 1.62042 | 2.91409 | 1.90761 | 3.05713 | 1. 79907 |
| 1.7 | 2.64111 | 1.26682 | 2.76878 | 1. 33572 | 2.90337 | 1.40796 | 3.04522 | 1. 48372 | 3.19469 | r.56318 |
| 1.75 | 2.73855 | 1.06784 | 2.87093 | 1.12592 | 3.01049 | 1.18681 | 3.15757 | 1.25067 | 3.31255 | 1.31766 |
| 1.8 | 2.81911 | 0.86229 | 2.95538 | 0.90918 | 3.09904 | 0.95835 | 3.25045 | 1.00992 | $3 \cdot 41000$ | 1.06401 |
| 1.85 | 2.88229 | 0.6514 I | 3.02161 | 0.68684 | 3.16850 | 0.72398 | 3.32330 | 0.76294 | $3 \cdot 48641$ | -.80380 |
| 1.9 | 2.92769 | 0.43652 | 3.06921 | 0.46026 | 3.21841 | 0.48627 | 3.37565 | 0.51125 | 3.54134 | 0.53864 |
| 1.95 | 2.95505 | 0.21893 | 3.09789 | 0.23084 | 3.24848 | 0.24332 | 3.40719 | 0.25642 | 3.57443 | 0.27015 |
| 2.0 | 2.96419 | 0.00 | 3.10747 | 0.00 | 3.25853 | 0.00 | 3.41773 | 0.00 | 3.58548 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\cosh (1.8+i \underline{0.2})=2.95538+i 0.90918$.
$\cosh (\mathrm{x} .8+i \underline{2.0})=-3.10747+i 0$.

Table VIII. HYperbolic COSINES. $\quad \cosh (x+i q)=u+i v . \quad$ Continued

| $q$ | $x=$ |  | $x$ | 2.05 | $x=$ |  | $x=$ | 15 | $x=$ | 2.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 3.76220 | 0.00 | 3.94832 | 0.00 | 4.14431 | 0.00 | $4 \cdot 35067$ | 0.00 | 4.5679 I | 0.00 |
| 0.05 | 3.75059 | 0.28456 | 3.93615 | 0.29968 | 4.13154 | 0.31555 | 4.33726 | 0.33221 | 4.55382 | 0.34970 |
| 0.1 | 3.71587 | 0.56737 | 3.89971 | 0.59751 | 4.09329 | 0.62916 | 4.29711 | 0.66237 | 4.51167 | 0.69724 |
| 0.15 | 3.65825 | 0.84667 | 3.83923 | 0.89166 | 4.02981 | 0.93888 | 4.23046 | 0.98845 | 4.44170 | 1.04049 |
| 0.2 | 3.57806 | 1.12076 | 3.75507 | 1.18032 | 3.94148 | 1.24282 | 4.13773 | 1. 30844 | 4.34433 | 1.37732 |
| 0.25 | $3 \cdot 475^{81}$ | 1.38794 | 3.64777 | 1.46169 | 3.82885 | 1.53910 | 4.01950 | 1. 62035 | 4.22019 | 1.70566 |
| 0.3 | 3.35214 | 1.64656 | 3.51798 | 1.73405 | 3.69261 | 1.82589 | 3.87647 | 1.92228 | 4.07003 | 2.02349 |
| 0.35 | 3.20780 | 1.89503 | 3.36649 | 1.99573 | $3 \cdot 53361$ | 2.10142 | 3.70956 | 2.21236 | 3.89478 | 2.32883 |
| 0.4 | 3.04368 | 2.13182 | 3.19426 | 2.24509 | 3.35283 | 2.36399 | $3 \cdot 51977$ | 2.48879 | 3.69552 | 2.61982 |
| 0.45 | 2.86080 | 2.35546 | 3.00232 | 2.48062 | 3.15137 | 2.61199 | $3 \cdot 30828$ | 2.74988 | 3.47347 | 2.89466 |
| 0.5 | 2.66027 | 2.56458 | 2.79188 | 2.70085 | 2.93048 | 2.84389 | 3.07639 | 2.99402 | 3.23000 | 3.15165 |
| 0.55 | 2.44335 | 2.75789 | 2.56423 | 2.90443 | 2.69152 | 3.05825 | 2.82553 | 3.21970 | 2.9666 I | 3.38921 |
| 0.6 | 2.21136 | 2.93420 | 2.32076 | 3.09011 | 2.43597 | 3.25376 | 2.55726 | 3.42553 | 2.68495 | 3.60588 |
| 0.65 | 1.96574 | 3.09241 | 2.06299 | 3.23673 | 2.16540 | 3.42920 | 2.27322 | 3.61024 | 2.38672 | 3.80031 |
| 0.7 | 1.70800 | 3.23156 | 1.79250 | 3.40327 | I. 88148 | 3.58351 | 1.97516 | 3.77269 | 2.07379 | 3.97131 |
| 0.75 | r. 43973 | 3.35078 | 1.51096 | 3.52883 | 1. 58596 | 3.71571 | 1.66493 | 3.91188 | 1.74806 | 4.11783 |
| 0.8 | 1.16258 | 3.44935 | 1.22010 | 3.63264 | r. 28066 | 3.82501 | 1. 34443 | 4.02695 | 1.41156 | 4.23896 |
| 0.85 | 0.87827 | 3.52666 | 0.92172 | 3.71404 | 0.96747 | 3.91074 | 1.01564 | 4.11720 | 1.06636 | $4 \cdot 33396$ |
| 0.9 | 0.58854 | 3.58221 | 0.61765 | 3.77256 | 0.64831 | 3.97235 | 0.68059 | 4.18206 | 0.71458 | 4.40223 |
| 0.95 | 0.29518 | 3.61568 | 0.30978 | 3.8078 I | 0.32516 | 4.00946 | 0.34135 | 4.22113 | 0.35839 | 4.44337 |
| 1.0 | 0.00 | 3.62686 | 0.00 | 3.81958 | 0.00 | 4.02186 | 0.00 | 4.23419 | 0.00 | 4.45711 |
| 1.05 | 0.29518 | 3.61568 | 0.30978 | 3.8078 I | 0.32516 | 4.00946 | 0.34135 | 4.22113 | 0.35839 | 4.44337 |
| 1. | 0.58854 | 3.58221 | 0.61765 | 3.77256 | 0.64831 | 3.97235 | 0.68059 | 4.18206 | 0.71458 | 4.40223 |
| 1.15 | 0.87827 | 3.52666 | 0.92172 | 3.71404 | 0.96747 | 3.91074 | 1.01564 | 4.11720 | 1.06636 | 4.33396 |
| 1.2 | 1.16258 | 3.44935 | 1.22010 | 3.63264 | 1.28066 | 3.82501 | 1.34443 | 4.02695 | 1.41156 | 4.23896 |
| 1.25 | I. 43973 | 3.35078 | 1.51096 | 3.52883 | 1.58596 | 3.71571 | 1.66493 | 3.91188 | 1.74806 | 4.11783 |
| 1.3 | 1.70800 | 3.23156 | 1.79250 | 3.40327 | 1.88148 | 3.58351 | 1.97516 | 3.77269 | 2.07379 | 3.97131 |
| 1.35 | 1.96574 | 3.09241 | 2.06299 | 3.23673 | 2.16540 | 3.42920 | 2.27322 | 3.61024 | 2.38672 | 3.80031 |
| 1.4 | 2.21136 | 2.93420 | 2.32076 | 3.09011 | 2.43597 | 3.25376 | 2.55726 | 3.42553 | 2.68495 | . 3.60588 |
| 1.45 | 2.44335 | 2.75789 | 2.56423 | 2.90443 | 2.69152 | 3.05825 | 2.82553 | 3.21970 | 2.96661 | 3.38921 |
| 1. 5 | 2.66027 | 2.56458 | 2.79188 | 2.70085 | 2.93048 | 2.84389 | 3.07639 | 2.99402 | 3.23000 |  |
| 1. 55 | 2.86080 | 2.35546 | 3.00232 | 2.48062 | 3.15137 | 2.61199 | 3.30828 | 2.74988 | 3.47347 | 2.89466 |
| 1.6 | 3.04368 | 2.13182 | 3.19426 | 2.24509 | 3.35283 | 2.36399 | 3.51977 | 2.48879 | 3.69552 | 2.61982 |
| 1.65 | 3.20780 | 1.89503 | 3.36649 | 1.99573 | 3.53361 | 2.10142 | 3.70956 | 2.21236 | 3.89478 | 2.32883 |
| 1.7 | 3.35214 | 1.64656 | 3.51798 | 1.73405 | 3.69261 | 1.82589 | 3.87647 | 1.92228 | 4.07003 | 2.02349 |
| I. 75 | 3.4758 r | 1.38794 | 3.64777 | 1.46169 | 3.82885 | 1.53910 | 4.01950 | 1.62035 | 4.22019 | 1.70566 |
| 1.8 | 3.57806 | 1.12076 | 3.75507 | 1.18032 | 3.94148 | 1. 24282 | 4.13773 | 1.30844 | 4.34433 | 1. 37732 |
| 1.85 | 3.65825 | 0.84667 | 3.83923 | 0.89166 | 4.0298 I | 0.93888 | 4.23046 | 0.98845 | 4.44170 | 1. 04049 |
| 1.9 | 3.71587 | 0.56737 | 3.89971 | 0.59751 | 4.09329 | 0.62916 | 4.29711 | 0.66237 | 4.51167 | 0.69724 |
| 1.95 | 3.75059 | 0.28456 | 3.93615 | 0.29968 | 4.13154 | 0.31555 | 4.33726 | 0.3322 I | 4.55382 | 0.34970 |
| 2.0 | 3.76220 | 0.00 | 3.94832 | 0.00 | 4.14431 | 0.00 | 4.35067 | 0.00 | 4.56791 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\cosh (2.1+i 0.8)=1.28066+i 3.82501$.
$\cosh \left(2.2+i_{\underline{1.25}}\right)=-1.74806+i_{4.11783}$.

Table VIII. HYPERBOLIC COSINES. $\cosh (x+i q)=u+i v . \quad$ Continued

| $q$ |  |  |  |  |  |  | $\boldsymbol{x}$ |  | $x$ | 45 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 4.79657 | 0.00 | 5.03722 | 0.00 | 5.29047 | 0.00 | $5 \cdot 55695$ | 0.00 | 5.83732 | 0.00 |
| 0.05 | 4.78178 | 0.36807 | 5.02169 | 0.38735 | 5.27416 | 0.40760 | 5.5398 x | 0.42888 | 5.81933 | 0.45122 |
| 0.1 | 4.73751 | 0.73386 | 4.9752 I | 0.77231 | 5.22533 | 0.81269 | 5.48853 | 0.855 II | 5.76545 | 0.89966 |
| 0.15 | 4.66404 | 1.09513 | 4.89805 | I. 15251 | 5.14429 | 1.21277 | 5.4034 I | 1.27607 | 5.67603 | 1.34255 |
| 0.2 | 4.56181 | 1. 44965 | 4.79058 | 1.52560 | 5.03 I 53 | 1.60537 | 5.28496 | 1.68916 | $5 \cdot 55162$ | 1.77716 |
| 0.25 | 4.43145 | 1.79523 | 4.65378 | 1.88930 | 4.88776 | 1.98808 | 5.13394 |  | $5 \cdot 39298$ | 2.20082 |
| 0.3 | 4.27377 | 2.12975 | 4.48820 | 2.24134 | 4.71384 | 2.35853 | 4.95127 | 2.48162 | 5.20109 | 2.6109 r |
| 0.35 | 4.08975 | 2.45113 | 4.29494 | 2.57956 | 4.51087 | 2.71443 | 4.73808 | 2.85610 | 4.97713 | 3.00490 |
| 0.4 | 3.88050 | 2.75740 | 4.07520 | 2.90188 | 4.28008 | 3.05360 | 4.49567 | 3.21297 | 4.72249 | $3 \cdot 38036$ |
| 0.45 | 3.64734 | 3.04677 | 3.83034 | 3.20630 | 4.02290 | 3.37395 | 4.22554 | $3 \cdot 55003$ | 4.43873 | 3.73499 |
| 0.5 | $3 \cdot 39168$ | 3.31716 | 3.56185 | 3.49096 | 3.74093 | 3.67351 | 3.92935 | 3.86521 | 4.1276I | 4.06659 |
| 0.55 | 3.11512 | 3.56719 | 3.27141 | 3.75410 | 3.43588 | 3.95038 | 3.60894 | 4.15656 | 3.79104 | 4.37311 |
| 0.6 | 2.81935 | 3.79523 | 2.9608 I | 3.99409 | 3.10966 | 4.20292 | 3.26629 | 4.42228 | 3.43 IO 9 | 4.65268 |
| 0.65 | 2.50620 | 3.99987 | 2.63194 | 4.20946 | 2.76426 | 4.42955 | 2.90349 | 4.66073 | 3.04999 | 4.90356 |
| 0.7 | 2.17760 | 4.17986 | 2.28685 | $4 \cdot 39887$ | 2.40182 | 4.62887 | 2.52280 | 4.87045 | 2.65009 | 5.12420 |
| 0.75 | 1.83557 | 4.33407 | 1. 92766 | 4.56rr6 | 2.02457 | 4.79965 | 2.12655 | 5.05014 | 2.23385 | 5.31325 |
| 0.8 | 1.48222 | 4.46157 | I. 55659 | 4.69533 | 1.63485 | 4.94083 | 1.71719 | 5.19869 | 1.80383 | $5 \cdot 46955$ |
| 0.85 | 1.11974 | 4.56155 | r.17592 | 4.80056 | 1.23504 | 5.05156 | 1.29724 | 5.3152x | r. 36269 | 5.59213 |
| 0.9 | 0.75035 | 4.63341 | 0.78799 | 4.87618 | 0.82761 | 5.13114 | 0.86930 | 5.39893 | 0.91316 | 5.68022 |
| 0.95 | 0.37633 | 4.67671 | 0.39522 | 4.92174 | 0.41509 | 5.17909 | 0.43599 | 5-44938 | 0.45799 | 5.73330 |
| 1.0 | 0.00 | 4.69117 | 0.00 | 4.93696 | 0.00 | 5.19510 | 0.00 | 5.46623 | 0.00 | 5.75103 |
| 1.05 | 0.37633 | 4.67671 | 0.39522 | 4.92174 | 0.41509 | 5.17909 | 0.43599 | 5.44938 | 0.45799 | 5.73330 |
| I.I | 0.75035 | 4.63341 | 0.78799 | 4.87618 | 0.82761 | 5.13114 | 0.86930 | 5-39893 | 0.91316 | 5.68022 |
| 1.15 | 1. 11974 | 4.56155 | 1.17592 | 4.80056 | 1.23504 | 5.05156 | 1.29724 | $5 \cdot 31521$ | 1.36269 | 5.59213 |
| 1.2 | $\underline{1.48222 ~}$ | 4.46157 | 1. 55659 | 4.69533 | 1. 63485 | 4.94083 | 1.71719 | 5.19869 | r.80383 | $5 \cdot 46955$ |
| 1.25 | r .83557 | 4.33407 | 1.92766 | 4.56116 | 2.02457 | 4.79965 | 2.12655 | 5.05014 | 2.23385 | $5 \cdot 31325$ |
| 1.3 | 2.17760 | 4.17986 | 2.28685 | 4.39887 | 2.40182 | 4.62887 | 2.52280 | 4.87045 | 2.65009 | 5.12420 |
| 1.35 | 2.50620 | 3.99987 | 2.63194 | 4.20946 | 2.76426 | 4.42955 | 2.90349 | 4.66073 | 3.04999 | 4.90356 |
| 1.4 | 2.81935 | 3.79523 | 2.9608 I | 3.99409 | 3.10966 | 4.20292 | 3.26629 | 4.42228 | 3.43109 | 4.65268 |
| T. 45 | 3.11512 | 3.56719 | 3.27141 | 3.75410 | 3.43588 | 3.95038 | 3.60894 | 4.15656 | 3.79104 | $4 \cdot 373$ II |
| 1.5 | 3.39168 | 3.31716 | 3.56185 | 3.49096 | 3.74093 | 3.6735 I | 3.92935 | 3.8652 I | 4.12761 | 4.06659 |
| 1.55 | 3.64734 | 3.04677 | 3.83034 | 3.20630 | 4.02290 | $3 \cdot 37395$ | 4.22554 | 3.55003 | 4.43873 | 3.73499 |
| 1.6 | 3.88050 | 2.75740 | 4.07520 | 2.90188 | 4.28008 | 3.05360 | 4.49567 | 3.21297 | 4.72249 | 3.38036 |
| 1.65 | 4.08975 | 2.45 I I3 | 4.29494 | 2.57956 | 4.51087 | 2.71443 | 4.73808 | 2.85610 | 4.97713 | 3.00490 |
| 1.7 | 4.27377 | 2.12975 | 4.48820 | 2.24134 | 4.71384 | 2.35853 | 4.95127 | 2.48162 | 5.20109 | 2.61091 |
| 1.75 | 4.43145 | 1.79523 | 4.65378 | 1.88930 | 4.88776 | 1.98808 | 5.13394 | 2.09184 | 5.39298 | 2.20082 |
| 1.8 | 4.56181 | 1. 44965 | 4.79058 | 1.52560 | 5.03153 | 1.60537 | 5.28496 | 1.68916 | $5 \cdot 55162$ | 1.77716 |
| 1.85 | 4.66404 | 1.09513 | 4.89805 | I.1525I | 5.14429 | 1.21277 | 5.40341 | 1.27607 | 5.67603 | 1.34255 |
| 1.9 | 4.73751 | 0.73386 | 4.97521 | 0.77231 | 5.22533 | 0.81269 | 5.48853 | 0.85511 | 5.76545 | 0.89966 |
| 1.95 | 4.78178 | 0.36807 | 5.02169 | 0.38735 | 5.27416 | 0.40760 | 5.53981 | 0.42888 | 5.81933 | 0.45122 |
| 2.0 | 4.79657 | 0.00 | 5.03722 | 0.00 | 5.29047 | 0.00 | 5.55695 | 0.00 | 5.83732 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\cosh (2.4+i \underline{0.4})=4.49567+i_{3.21297 .}$
$\cosh \left(2.4+i_{\text {I. } 5}\right)=-3.92935+i_{3.86521}$

Table VIII. HYperbolic COSINES. $\cosh (x+i q)=u+i v$. Continued

| $q$ |  |  | $x=2.55$ |  | $x=2.6$ |  | $x=2.65$ |  | $x=2.7$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 6.13229 | 0.00 | 6.44259 | 0.00 | 6.76901 | 0.00 | 7.11234 | 0.00 | 7.47347 | 0.00 |
| 0.05 | 6.11339 | 0.47469 | 6.42273 | 0.49935 | 6.74814 | 0.52526 | 7.09042 | 0.55249 | 7.45043 | 0.58109 |
| 0.1 | 6.05680 | 0.94646 | 6.36327 | 0.99563 | 6.68567 | 1.04729 | 7.02478 | I.10156 | 7.38146 | I. 15859 |
| 0.15 | 5.96287 | 1.41239 | 6.26458 | 1.48577 | 6.58199 | 1.56285 | 6.91583 | 1.64385 | 7.26697 | 1. 72896 |
| 0.2 | 5.83215 | 1.8696x | 6.12727 | 1.96674 | 6.43770 | 2.06878 | 6.76424 | 2.17600 | 7.10769 | 2.28866 |
| 0.25 | 5.66550 | 2.31531 | 5.95218 | 2.43559 | 6.25374 | 2.56196 | 6.57095 | 2.69474 | 6.90458 | 2.83425 |
| 0.3 | 5.46392 | 2.74674 | 5.74039 | 2.88943 | 6.03123 | 3.03934 | 6.33714 | 3.19686 | 6.6589 I | 3.36237 |
| 0.35 | 5.22864 | 3.16122 | 5.49321 | 3.32545 | 5.77153 | 3.49799 | 6.06427 | 3.67927 | 6.37218 | 3.86976 |
| 0.4 | 4.96113 | 3.55622 | 5.21217 | 3.74097 | 5.47624 | 3.93506 | 5.75401 | 4.13900 | 6.04606 | 4.35.329 |
| 0.45 | 4.66304 | 3.92929 | 4.89898 | 4.13342 | 5.14719 | $4 \cdot 34788$ | 5.40827 | 4.5732 I | 5.68287 | 4.80998 |
| 0.5 | 4.33619 | 4.27814 | 4.55560 | 4.50039 | 4.78641 | 4.73389 | 5.02919 | 4.97923 | 5.28454 | 5.23702 |
| 0.55 | 3.98260 | 4.60062 | 4.18413 | 4.83961 | $4 \cdot 39612$ | 5.09071 | 4.61910 | 5.35454 | 4.85363 | 5.63177 |
| 0.6 | 3.60448 | 4.89472 | 3.78686 | 5.14900 | 3.97872 | 5.41615 | 4.18053 | 5.69685 | 4.39279 | 5.99179 |
| 0.65 | 3.20411 | 5.15865 | $3 \cdot 36624$ | 5.42664 | 3.53680 | 5.70819 | 3.71619 | 6.00403 | 3.90488 | 6.31488 |
| 0.7 | 2.78401 | $5 \cdot 39077$ | 2.92488 | 5.67082 | 3.07306 | 5.96505 | 3.22894 | 6.27419 | 3.39288 | 6.59903 |
| 0.75 | 2.34673 | 5.58966 | 2.46547 | 5.88004 | 2.59039 | 6.18512 | 2.72178 | 6.50567 | 2.85997 | 6.84249 |
| 0.8 | 1.89498 | 5.75408 | 1.99087 | 6.05301 | 2.09174 | 6.36706 | 2.19784 | 6.69705 | 2.30943 | 7.04377 |
| 0.85 | 1.43I55 | 5.88304 | I. 50399 | 6.18866 | I.58019 | 6.50976 | 1.66034 | 6.84713 | 1.74465 | 7.20163 |
| 0.9 | 0.95930 | 5.97572 | 1.00784 | 6.28615 | 1.05891 | 6.61231 | 1.11262 | 6.95500 | 1.16911 | 7.31508 |
| 0.95 | 0.48 II 3 | 6.03155 | 0.50548 | 6.34489 | 0.53109 | 6.67409 | 0.55803 | 7.01998 | 0.58636 | 7.38343 |
| 1.0 | 0.00 | 6.05020 | 0.00 | 6.36451 | 0.00 | 6.69473 | 0.00 | 7.04169 | 0.00 | 7.40626 |
| 1.05 | 0.48113 | 6.03155 | 0.50548 | 6.34489 | 0.53109 | 6.67409 | 0.55803 | 7.01998 | 0.58636 | 7.38343 |
| 1.I | 0.95930 | 5.97572 | 1.00784 | 6.28615 | 1.05891 | 6.6123I | 1.11262 | 6.95500 | 1.16911 | 7.31508 |
| 1.15 | 1.43155 | 5.88304 | 1.50399 | 6.18866 | 1.58019 | 6.50976 | 1.66034 | 6.84713 | 1.74465 | 7.20163 |
| 1.2 | 1.89498 | 5.75408 | 1.99087 | 6.05301 | 2.09174 | 6.36706 | 2.19784 | 6.69705 | 2.30943 | 7.04377 |
| 1.25 | 2.34673 | $5 \cdot 58966$ | 2.46547 | 5.88004 | 2.59039 | 6.18512 | 2.72178 | 6.50567 | 2.85997 | 6.84249 |
| 1.3 | 2.78401 | $5 \cdot 39077$ | 2.92488 | 5.67082 | 3.07306 | 5.96505 | 3.22894 | 6.27419 | 3.39288 | 6.59903 |
| 1. 35 | 3.20411 | 5.15865 | 3.36624 | $5 \cdot 42664$ | 3.53680 | 5.70819 | 3.71619 | 6.00403 | 3.90488 | 6.31488 |
| 1.4 | 3.60448 | 4.89472 | 3.78586 | 5.14900 | 3.97872 | 5.41615 | 4.18053 | 5.69685 | 4.39279 | 5.99179 |
| 1.45 | 3.98260 | 4.60062 | 4.18413 | 4.83961 | 4.39612 | 5.09071 | 4.61910 | $5 \cdot 35454$ | 4.85363 | 5.63177 |
| 1.5 | 4.33619 | 4.27814 | 4.55560 | 4.50039 | 4.78641 | 4.73389 | 5.02919 | 4.97923 | 5.28454 | 5.23702 |
| 1.55 | 4.66304 | 3.92929 | 4.89898 | 4.13342 | 5.14719 | 4.34788 | 5.40827 | 4.5732 L | 5.68287 | 4.80998 |
| 1.6 | 4.96113 | 3.55622 | 5.21217 | 3.74097 | 5.47624 | 3.93506 | 5.75401 | 4.13900 | 6.04606 | 4.35329 |
| 1.65 | 5.22864 | 3.16122 | 5.4932 I | 3.32545 | 5.77153 | 3.49799 | 6.06427 | 3.67927 | 6.37218 | 3.86976 |
| 1.7 | 5.46392 | 2.74674 | 5.74039 | 2.88943 | 6.03123 | 3.03934 | 6.33714 | 3.19686 | 6.65891 | 3.36237 |
| 1.75 | 5.66550 | 2.3153 I | 5.95218 | 2.43559 | 6.25374 | 2.56196 | 6.57095 | 2.69474 | 6.90458 | 2.83425 |
| 1.8 | 5.83215 | 1.86961 | 6.12727 | 1.96674 | 6.43770 | 2.06878 | 6.76424 | 2.17600 | 7.10769 | 2.28866 |
| 1.85 | 5.96287 | 1.41239 | 6.26458 | 1.48577 | 6.58199 | 1.56285 | 6.91583 | 1. 64385 | 7.26697 | 1.72896 |
| 1.9 | 6.05680 | 0.94646 | 6.36327 | 0.99563 | 6.68567 | 1.04729 | 7.02478 | 1.10156 | 7.38146 | ז. 55859 |
| 1.95 | 6.11339 | 0.47469 | 6.42273 | 0.49935 | 6.74814 | 0.52526 | 7.09042 | 0.55249 | 7.45043 | 0.58109 |
| 2.0 | 6.13229 | 0.00 | 6.44259 | 0.00 | 6.76901 | 0.00 | 7.11234 | 0.00 | $7 \cdot 47347$ | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\cosh \left(2.7+i_{\underline{1.00}}\right)=0+i_{7.40626 .}$
$\cosh (2.6+i \underline{\text { I.2 }})=-2.09174+i 6.36706$.

Table VIII. HYPERBOLIC COSINES. $\cosh (x+i q)=u+i v$. Continued

| $q$ | $x=2.75$ |  | $x=2.80$ |  | $x=2.85$ |  | $x=2.90$ |  | $x=2.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 7.85328 | 0.00 | 8.25273 | . 00 | 8.67 | 0.00 | 9.11458 | 0.00 | ¢ 9.57915 | 0.00 |
| 0.05 | 7.82907 | 0.61115 | 8.22728 | 0.64273 | 8.64608 | 0.67592 | 9.08649 | 0.71081 | 9.54962 | 0.74747 |
| 0.1 | 7.75659 | 1.21852 | 8.15112 | 1.28150 | 8.56604 | 1. 34768 | 9.00237 | 1.41723 | 9.46121 | 1.49032 |
| 0.15 | 7.63629 | 1.81839 | 8.02470 | 1.91237 | 8.43318 | 2.01112 | 8.86275 | 2.11491 | 9.31447 | 2.22399 |
| 0.2 | $7 \cdot 46891$ | 2.40704 | 7.8488 r | 2.53144 | 8.24834 | 2.66217 | 8.66850 | 2.79956 | 9.11031 | 2.94395 |
| 0.25 | 7.25548 | 2.98086 | 7.62452 | 3.13491 | 8.01263 | 3.2968 I | 8.42078 | 3.46694 | 8.84998 | 3.64575 |
| 0.3 | 6.99732 | 3.53629 | 7.35323 | 3.71905 | 7.72754 | 3.91112 | 8.12115 | 4.11295 | 8.53508 | 4.32508 |
| 0.35 | 6.69602 | 4.06993 | 7.03661 | 4.28026 | 7.39479 | 4.50131 | 7.77146 | 4.73361 | 8.16757 | 4.97774 |
| 0.4 | 6.35344 | 4.57847 | 6.67660 | 4.81509 | 7.01646 | 5.06375 | 7.37385 | 5.32508 | 7.74969 | 5.63048 |
| 0.45 | 5.97168 | 5.05878 | 6.27542 | $5 \cdot 32022$ | 6.59486 | $5 \cdot 59498$ | 6.93078 | 5.88371 | 7.28404 | 6.18717 |
| 0.5 | 5.55311 | 5.50790 | 5.83556 | 5.79256 | 6.13261 | 6.09170 | 6.44498 | 6.40608 | 6.77348 | 6.73647 |
| 0.55 | 5.10030 | 5.92307 | 5.35972 | 6.22918 | 5.63254 | 6.55088 | 5.91945 | 6.88894 | 6.22116 | 7.24424 |
| 0.6 | 4.61604 | 6.30172 | 4.85083 | 6.62740 | 5.09775 | 6.96966 | $5 \cdot 35742$ | 7.32934 | 5.63048 | 7.70735 |
| 0.65 | 4.10333 | 6.64151 | 4.31204 | 6.98476 | 4.53153 | 7.34547 | 4.76236 | 7.72455 | 5.00509 | 8.12294 |
| 0.7 | 3.5653 I | 6.94036 | $3 \cdot 74666$ | 7.29905 | 3.93738 | 7.67599 | 4.13793 | 8.07213 | 4.34884 | 8.48845 |
| 0.75 | 3.00532 | 7.19642 | 3.15818 | 7.56834 | 3.31894 | 7.95919 | 3.48800 |  | 3.66578 | 8.80162 |
| 0.8 | 2.42680 | 7.408II | 2.55023 | 7.79098 | 2.68005 | 8.19332 | 2.81656 | 8.61616 | 2.96012 | 9.06053 |
| 0.85 | 1.83331 | 7.57413 | 1.92656 | 7.96557 | 2.02463 | 8.37694 | 2.12776 | 8.80924 | 2.23621 | 9.26358 |
| 0.9 | 1.22852 | 7.69345 | I.29101 | 8.09106 | I. 35673 | 8.50891 | 1.42583 | 8.94802 | 1.49851 | 9.40952 |
| 0.95 | 0.61616 | 7.76534 | 0.64750 | 8.16666 | 0.68046 | 8.5884I | 0.71512 | 9.03163 | 0.75157 | 9.49744 |
| 1.0 | 0.00 | 7.78935 | 0.00 | 8.19192 | 0.00 | 8.61497 | 0.00 | 9.05956 | 0.00 | 9.5268 I |
| 1.05 | 0.61616 | 7.76534 | 0.64750 | 8.16666 | 0.68046 | 8.58841 | 0.71512 | 9.03163 | 0.75157 | 9.49744 |
| 1.1 | 1.22852 | 7.69345 | 1.29101 | 8.09106 | 1.35673 | 8.50891 | 1.42583 | 8.94802 | 1.49851 | 9.40952 |
| 1.15 | 1.83331 | 7.57413 | 1.92656 | 7.96557 | 2.02463 | 8.37694 | 2.12776 | 8.80924 | 2.23621 | 9.26358 |
| 1.2 | 2.42680 | 7-408II | 2.55023 | 7.79098 | 2.68005 | 8.19332 | 2.81656 | 8.616r6 | 2.96012 | 9.06053 |
| 1.25 | 3.00532 |  | 3.15818 | 7.56834 | 3.31894 | 7.95919 | 3.48800 | 8.36994 | 3.66578 | 8.80162 |
| 1.3 | 3.5653 I | 6.94036 | 3.74666 | 7.29905 | 3.93738 | 7.67599 | 4.13793 | 8.07213 | $4 \cdot 34884$ | 8.48845 |
| 1.35 | 4.10333 | 6.6415I | 4.31204 | 6.98476 | 4.53153 | 7.34547 | 4.76236 | 7.72455 | 5.00509 | 8.12294 |
| 1.4 | 4.61604 | 6.30172 | 4.85083 | 6.62740 | 5.09775 | 6.96966 | $5 \cdot 35742$ | 7.32934 | 5.63048 | 7.70735 |
| 1.45 | 5.10030 | 5.92307 | 5.35972 | 6.22918 | 5.63254 | 6.55088 | 5.91945 | 6.88894 | 6.22116 | 7.24424 |
| 1.5 | $5 \cdot 55311$ | 5.50790 | 5.83556 | 5.79256 | 6.13261 | 6.09170 | 6.44498 | 6.40608 | 6.77348 | 6.73647 |
| 1.55 | 5.97168 | 5.05878 | 6.27542 | $5 \cdot 32022$ | 6.59486 | 5.59498 | 6.93078 | 5.88371 | 7.28404 | 6.18717 |
| 1.6 | 6.35344 | 4.57847 | 6.67660 | 4.8 r 509 | 7.01646 | 5.06375 | 7.37385 | 5.32508 | 7.74969 | 5.63048 |
| 1.65 | 6.69602 | 4.06993 | 7.03661 | 4.28026 | 7.39479 | 4.50131 | 7.77146 | 4.73361 | 8.16757 | 4.97774 |
| 1.7 | 6.99732 | 3.53629 | 7.35323 | 3.7190 | 7.72754 | 3.91112 | 8.12115 | 4.11295 | 8.53508 | 4.32508 |
| 1.75 | 7.25548 | 2.98086 | 7.62452 | 3.13491 | 8.01263 | 3.29681 | 8.42078 | 3.46694 | 8.84998 | 3.64575 |
| 1. 8 | 7.46891 | 2.40704 | 7.84881 | 2.53144 | 8.24834 | 2.66217 | 8.66850 | 2.79956 | 9.11031 | 2.94395 |
| 1.85 | 7.63629 | 1.81839 | 8.02470 | 1.91237 | 8.43318 | 2.01112 | 8.86275 | 2.11491 | 9.31447 | 2.22399 |
| 1.9 | 7.75659 | 1.21852 | 8.15112 | 1.28150 | 8.56604 | 1.34768 | 9.00237 | 1.41723 | 9.46121 | 1. 49032 |
| 1.95 | 7.82907 | 0.61115 | 8.22728 | 0.64273 | 8.64608 | $0.6759^{2}$ | 9.08649 | 0.7108 I | 9.54962 | 0.74747 |
| 2.0 | 7.85328 | 0.00 | 8.25273 | 0.00 | 8.6728 I | 0.00 | 9.11458 | 0.00 | 9.57915 | 0.00 |

Note. Negative quantities are in heavy type.

$$
\begin{array}{ll}
\text { Examples. } & \cosh (2.95+i 0)=9.57915+i 0 . \\
& \cosh \left(2.8+i_{1.2}\right)=-2.55023+i 7.79098 .
\end{array}
$$

Table VIII. HYperbolic COSINES. $\cosh (x+i q)=u+i v$. Continued

| $q$ | $x=3.0$ |  | $x=3.05$ |  | $x=3.10$ |  | $x=3.15$ |  | $x=3.20$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 10.06 | 0.00 | 10.58135 |  | 11.12150 |  | 11.68946 | 0.00 | 5 |  |
| 0.0 | 10.03660 | 0.78599 | 10.54870 | 0.82649 | 11.08720 | 0.86905 | 11.65340 | 78 | 12.24880 | 80 |
| o.r | 9.94371 | 1.56714 | 10.45110 | 1. 64788 | 10.98460 | 1. 73274 | 11.54550 | 1.82193 | 12.13540 | 1.91568 |
| 0.15 | 9.78949 | 2.33863 | 10.28900 | 2.45911 | 10.81420 | 2.58575 | 11.36650 | 2.71885 | 11.94720 |  |
| 0.2 | 9.57492 | 3.09569 | $10.0635^{\circ}$ | 3.25518 | 10.57720 | 3.4228 I | 11.11730 | 3.59900 | 11.68530 | 3.78419 |
| 0.25 | 9.30131 | 3.833 | 9.77589 | 4.03120 | 10.27490 | 4.23878 | 10.79970 | 4.45696 | 11.35140 | 4.68630 |
| 0.3 | 8.97035 | 4.5480 | 9.42805 | 4.78233 | 9.90933 | 5.0286 | 10.41540 | 5.28745 | 10.94750 | 5.55952 |
| 0.35 | 8.58409 | 5.23433 | 9.02209 | 5.50400 | 9.48264 | 5.78743 | 9.96690 | 6.08533 | 10.47610 | 6.39846 |
| 0.4 | 8.14491 | 5.88836 | 8.56049 | 6.19173 | 8.99749 | 6.51058 | 9.45697 | 6.84570 | 9.9401 I | 7.19795 |
| 0.45 | 7.6555 I | 6.5060 | 8.04612 | 6.84128 | 8.45686 | 7.19358 | 8.88873 | 7.56387 | 9.34284 | 7.95306 |
| 0.5 | 7.11891 | 7.0837 I | 7.48215 | 7.44866 | 7.86409 | 7.83223 | 8.26570 | 8.23539 | 8.68797 | 8.65915 |
| 0.55 | 6.53842 | 7.61765 | 6.87204 | 8.01011 | 7.22284 | 8.42260 | 7.59170 | 8.85615 | 7.97954 | 9.31184 |
| 0.6 | 5.91762 | 8.10463 | 6.21956 | 8.52218 | 6.53705 | 8.96104 | 6.87089 | 9.42230 | 7.22191 | 9.90712 |
| 0.65 | . 26034 | 8.54164 | 5.52874 | 8.98171 | 5.81097 | 9.44423 | 6.10773 | 9.93036 | 6.41976 | 10.44×30 |
| 0.7 | 510 | 8.92599 | 4.80383 | 9.38586 | 5.04906 | 9.86919 | 5.30690 | 10.37720 | 5.57802 | 10.91120 |
| 0.7 | 3.85273 | 9.25531 | 4.0493 I | 9.73 | 4.25602 | 10.23 | 4.473 | 10.76010 | . 70 | 1.31370 |
| 0.8 | 3.11108 | 9.52757 | 3.26982 | 10.01840 | 3.43673 | 10.53430 | 3.61224 | 11.07660 | 3.79678 | I1.64650 |
| 0.85 | 2.35025 | 9.7410 | 2.47017 | 10. 24290 | 2.59626 | 10.77040 | 2.72885 | II. 32480 | 2.86826 | 11.90750 |
| 0.9 | 1.57493 | 9.89454 | 1. 65529 | 10.40430 | 1.73979 | 10.94010 | r. 82863 | 11.50320 | 1.92205 | 12.09510 |
| 0.95 | 0.78990 | 9.986 | 0.83020 | 10.50150 | 0.87258 | 11.04230 | 0.91714 | 11.610 | .96400 | 12.20 |
| 1.0 | 0.00 | 10.01787 | . 00 | 10.5339 | 0.00 | 11.07645 | 0.00 | 11.64661 | . 00 | 12.24588 |
| 1.05 | 0.78990 | 9.98699 | 0.83020 | 10.50150 | 0.87258 | 11.04230 | 0.91714 | 1 r .61070 | 0.96400 | 12.20810 |
| I.I | 1.57493 | 9.89454 | 1.65529 | 10.40430 | 1.73979 | 10.94010 | 1.82863 | 11.50320 | . 92205 | 12.09510 |
| 1.15 | 2.35025 | 9.74108 | 2.47017 | 10.24290 | 2.59626 | 10.77040 | 2.72885 | 11.32480 | 2.86826 | 11.90750 |
| 1.2 | 3.11108 | 9.52757 | 26982 | 10.01840 | 3.43 | 10.53430 | 3.61224 | 11.07660 | 3.79678 | 11.64650 |
| 1.25 | 3.85273 | 9.2553 ${ }^{\text {I }}$ | 4.0493 I | 9.73216 | 4.25602 | 10.23330 | 4.47336 | 10.76010 | 4.70190 | 11.31370 |
| 1.3 | 4.57062 | 8.92599 | 4.80383 | 9.38586 | 5.04906 | 9.86919 | 5.30690 | 10.37720 | 5.57802 | 10.91120 |
| 1.35 | 5.26034 | 8.54164 | 5.52874 | 8.98171 | 5.81097 | 9.44423 | 6.10773 | 9.93036 | 6.41976 | 10.44130 |
| 1.4 | 5.91762 | 8.10463 | 6.21956 | 8.52218 | 6.53705 | 8.96104 | 6.87089 | 9.42230 | 7.22191 | 9.90712 |
| 1.45 | 6.53842 | 7.61765 |  | 8.0101x | 7.22284 |  | 7.59170 |  | . 9795 |  |
| ¢. 5 | 7.11891 | 7.0837 | 7.48215 | 7.44866 | 7.86409 | 7.83223 | 8.26570 | 8.235 | 8.68797 | 8.65915 |
| 1. 55 | 7.65551 | 6.50609 | 8.04612 | 6.84128 | 8.45686 | 7.19358 | 8.88873 | 7.56387 | 9.34284 | 7.95306 |
| т. 6 | 8.14491 | 5.8883 | 8.56049 | 6.19173 | 8.99749 | 6.51058 | 9.45697 | 6.84570 | 9.9401 I | 7.19795 |
| x. 65 | 8.58409 | 5.234 | 9.02209 | 5.50400 | 9.48264 | 5.78743 | 9.96690 | 6.08533 | 10.4761 | 6.39846 |
| 1. 7 | 8.97035 | 4.54806 | 9.42805 | 4.78233 | 9.90933 | 5 | 10.41540 | 5.28745 | 10.9475 | 52 |
| 1.75 | 9.30131 | 3.83368 | 9.77589 | 4.03120 | 10.27490 | 4.23878 | 10.79970 | 4.45696 | 11.35140 | 4.68630 |
| 1. 8 | 9.57492 | 3.09569 | 10.06350 | 3.25518 | 10.57720 | 3.42281 | 11.11730 | 3.59900 | 11.68530 | 3.78419 |
| 1.85 | 9.78949 | 2.33863 | 10.28900 | 2.45911 | 10.81420 | 2.58575 | 11.36650 | 2.71885 | 11.94720 | 2.85874 |
| 1.9 | 9.94371 | r. 56714 | 10.45110 | 1.64788 | 10.98460 | x. 73274 | 11.54550 | 1.82193 | 12.13540 | 1.91568 |
| $\underline{1} 95$ | 10.03660 | 0.78599 | r0.54870 | 0.82649 | 11.08720 | 0.86905 | 11.65340 | 0.91378 | 12.24880 | 0.96080 |
| . 0 | 10.06766 | . 0 | 10.58135 | 0.00 | 11.12150 | 0.00 | 11.68946 | 0.00 | 12.28665 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\cosh (3.10+i 0.5)=7.86409+i 7.83223$. $\cosh \left(3.10+i_{\text {I. } 55}\right)=-8.45686+i_{7.19358 .}$.

Table VIII. HYPERBOLIC COSINES. $\cosh (x+i q)=u+i v$. Continued

| $q$ | $x=3.25$ |  | $x=3.30$ |  | $x=3.35$ |  | $x=3.40$ |  | $x=3.45$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 12.91456 | 0.00 | 13.57476 | 0.00 | 14.26891 | 0.00 | 14.99874 | 0.00 | 15.76607 | 0.00 |
| 0.05 | 12.87474 | 22 | 13.53290 | 1.06217 | 14.22498 | 1.11677 | 14.95250 | 1.17417 | 15.71746 | 1.23450 |
| 0.1 | 12.75555 | 2.01422 | 13.40764 | 2.11780 | 14.09323 | 2.22666 | 14.81410 | 2.34110 | 15.57196 | 2.46139 |
| 0.15 | 12.55773 | 3.00579 | 13.19970 | 3.16036 | 13.87465 | $3 \cdot 32282$ | 14.58432 | 3.49359 | 15.33045 | 3.67311 |
| 0.2 | 12.28247 | 3.97883 | 12.91035 | 4.18343 | 13.57054 | 4.39850 | 14.26465 | 4.62455 | 14.99442 | 4.86217 |
| 0.25 | 11.93150 |  | 12.54145 | 5.18072 | 13.18275 |  | 13.85702 | 5.72700 | 14.56595 | 6.02127 |
| 0.3 | 11.50695 | 5.84548 | 12.09520 | 6.14670 | $12.71369^{\circ}$ | 6.46202 | 13.36397 | 6.79414 | 14.04764 | 7.14324 |
| 0.35 | 11.01147 | 6.72758 | 11.57440 | 7.07352 | 12.16623 | 7.43715 | 12.78852 | 7.81938 | 13.44278 | 8.22116 |
| 0.4 | 10.44810 | 7.56820 | 10.98222 | 7.95737 | 11.54379 | 8.36643 | 12.13423 | 8.79642 | 12.75501 | 9.24840 |
| 0.45 | 9.82031 | 8.36217 | 10.32233 | 8.79215 | 10.85016 | 9.24413 | 11.40512 | 9.71923 | 11.98861 | 10.21863 |
| 0.5 | 9.13197 | 9.10456 | 9.5988r | 9.57273 | 10.08964 | 10.06483 | 10.60570 | 10.58212 | 11.14830 |  |
| 0.55 | 8.38733 | 9.79082 | 8.81610 | 10.29428 | 9.26691 | 10.82349 | 9.74090 | 11.37975 | 10.23924 | II.96447 |
| 0.6 | 7.59099 | 10.41673 | 7.97905 | 10.95235 | 8.38705 | II.51541 | 8.81604 | 12.10723 | 9.26706 | 12.72933 |
| 0.65 | 6.74784 | 10.97841 | 7.09279 | II. 54294 | 7.45549 | 12.13633 | 7.83682 | 12.76006 | 8.23775 | 13.41572 |
| 0.7 | 5.86309 | II.47240 | 6.16381 | 12.06234 | 6.47795 | 12.68244 | 6.80928 | 13.33423 | 7.15765 | 14.01940 |
| 0.75 | 4.94218 | Ir. 89566 | 5.19485 | 12.50736 | 5.46075 | I3.15033 | 5.73977 | 13.82620 | 6.03341 | 14.53662 |
| 0.8 | 3.99082 | 12.24560 | 4.19483 | 12.87530 | 4.40933 | 13.53717 | 4.63487 | 14.23291 | 4.87198 | 14.96423 |
| 0.85 | 3.01484 | 12.52002 | 3.16897 | 13.16388 | 3.33101 | 13.84054 | $3 \cdot 50139$ | 14.55188 | 3.68053 | 15.29960 |
| 0.9 | 2.02028 | 12.71726 | 2.21356 | 13.37120 | 2.23215 | 14.05851 | 2.34632 | 14.78111 | 2.46636 | 15.54061 |
| 0.95 | 1.01326 | 12.83610 | 1.06507 | 13.49615 | I.II953 | 14.18950 | 1.17679 | 14.91923 | 1.23699 | 15.68581 |
| 1.0 | . 00 | 12.87578 | 0.00 | 13.53788 | 0.00 | 14.23382 | 0.00 | 14.96536 | 0.00 | 15.73432 |
| 1.05 | 1.01326 | 12.836 ro | 1.06507 | 13.49615 | 1.11953. | 14.18950 | 1.17679 | 14.91923 | 1.23699 | 15.68581 |
| I.I | 2.02028 | 12.71726 | 2.12356 | 13.37120 | 2.23215 | 14.05851 | 2.34632 | 14.78111 | 2.46636 | 15.54061 |
| 1.15 | 3.01484 | 12.52002 | 3.16897 | 13.16388 | 3.33101 | 13.84054 | 3.50139 | 14.55188 | 3.68053 | 15.29960 |
| 1.2 | 3.99082 | 12.24560 | 4.19483 | 12.87530 | 4.40933 | 13.53717 | 4.63487 | 14.23291 | 4.87198 | 14.96423 |
| 1.25 | 4.94218 | Ir. 89566 | 5.19485 | 12.50736 | 5.46075 | I3.15033 | 5.73977 | 13.82620 | 6.0334 I | 14.53662 |
| 1.3 | 5.86309 | II.47240 | 6.16381 | 12.06234 | 6.47795 | 12.68244 | 6.80928 | 13.33423 | 7.15765 | 14.01940 |
| 1.35 | 6.74784 | 10.97841 | 7.09279 | 11.54294 | 7.45549 | 12.13633 | 7.83682 | 12.76006 | 8.23775 | 13.41572 |
| 1.4 | 7.59099 | 10.41673 | 7.97905 | 10.95235 | 8.38705 | 11.51541 | 8.81604 | 12.10723 | 9.26706 | 12.72933 |
| I. 45 | 8.38733 | 9.79082 | 8.81610 | 10.29428 | 9.26691 | 10.82349 | .74090 | II. 37975 | 10.23924 | II. 96447 |
| 1.5 | 9.13197 | 9.10456 | 9.59881 | 9.57273 | 10.08964 | 10.06483 | 10.60570 | 10.582I2 | II.14830 | 11.12585 |
| 1.55 | 9.8203 I | 8.36217 | 10.32233 | 8.79215 | 10.85016 | 9.24413 | 11.40512 | 9.71923 | 11.98861 | 10.21863 |
| 1.6 | 10.44810 | 7.56820 | 10.9822 | 7.95737 | 11.54379 | 8.36643 | 12.13423 | 8.79642 | 12.75501 | 9.24840 |
| I. 65 | 11.01147 | 6.72758 | II.57440 | 7.07352 | 12.16623 | 7.43715 | 12.78852 | 7.81938 | 13.44278 | 8.22116 |
| 1.7 | 11.50695 | 5.84548 | 12.095 | 6.14670 | 12.71369 | 6.46202 | 13.36397 | 6.79414 | 14.04764 | 7.14324 |
| 1.75 | 11.93150 | 4.92735 | 12.54145 | 5.18072 | 13.18275 | 5.44705 | 13.85702 | 5.72700 | 14.56595 | 6.02127 |
| 1.8 | 12.28247 | 3.97883 | 12.91035 | 4.18343 | 13.57054 | 4.39850 | 14.26465 | 4.62455 | 14.99442 | 4.86217 |
| I. 85 | 12.55773 | 3.00579 | 13.19970 | 3.16036 | 13.87465 | $3 \cdot 32282$ | 14.58432 | 3.49359 | 15.33045 | 3.67311 |
| 1.9 | 12.75555 | 2.01422 | 13.40764 | 2.11780 | 14.09323 | 2.22666 | 14.81410 | 2.34110 | 15.57196 | 2.46139 |
| 1.95 | 12.87474 | 1.01022 | 13.53290 | 1.06217 | 14.22498 | 1.11677 | 14.95250 | 1.17417 | 15.71746 | 1.23450 |
| 2.0 | 12.91456 | 0.00 | 13.57476 | 0.00 | 14.26891 | 0.00 | 14.99874 | 0.00 | 15.76607 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\cosh (3.45+i 0.05)=15.71746+i 1.23450$.
$\cosh (3.25+i \underline{1.95})=-12.87474+i_{1.01022 .}$

Table VIII. HYPERBOLIC COSINES. $\cosh (x+i q)=u+i v$. Continued
$q$

$$
x=3.50
$$

| 0 | 16.57282 | 0.00 |
| :--- | :--- | :--- |
| 0.05 | 16.52173 | 1.29792 |
| 0.1 | 16.36878 | 2.58783 |
| 0.15 | 16.11491 | 3.86180 |
| 0.2 | 15.76170 | 5.11195 |
| 0.25 | 15.31130 | 6.33059 |
| 0.3 | 14.76650 | 7.51020 |
| 0.35 | 14.13065 | 8.64360 |
| 0.4 | 13.40770 | 9.72361 |
| 0.45 | 12.60210 | 10.74357 |
| 0.5 | 11.71820 | 11.69740 |
| 0.55 | 10.76320 | 12.57910 |
| 0.6 | 9.74126 | 13.38330 |
| 0.65 | 8.65928 | 14.10490 |
| 0.7 | 7.52391 | 14.73960 |
| 0.75 | 6.34215 | 15.28340 |
| 0.8 | 5.12129 | 15.73300 |
| 0.85 | 3.86885 | 16.08555 |
| 0.9 | 2.59256 | 16.33896 |
| 0.95 | 1.30029 | 16.49163 |


| 17.42102 | 0.00 |
| ---: | :--- |
| 17.36731 | 1.36458 |
| 17.20653 | 2.72075 |
| 16.93970 | 4.06015 |
| 16.56840 | 5.37451 |
| 16.09492 | 6.65574 |
| 15.52225 | 7.89594 |
| 14.85386 | 9.08745 |
| 14.09390 | 10.22293 |
| 13.24705 | 11.29540 |
| 12.31852 | 12.29820 |
| 11.31405 | 13.22520 |
| 10.23982 | 14.07066 |
| 9.10246 | 14.82933 |
| 7.90898 | 15.49665 |
| 6.66674 | 16.06840 |
| 5.38339 | 16.54105 |
| 4.06686 | 16.91175 |
| 2.72525 | 17.17817 |
| 1.36684 | 17.33870 |

$1.0 \quad 0.00 \quad 16.54263$
$1.05 \quad 1.30029 \quad 16.49163$
I.I $\quad 2.59256 \quad 16.33896$
$\begin{array}{llll}1.15 & 3.86885 & 16.08555\end{array}$
$1.2 \quad 5.1212915 .73300$
$1.25 \quad 6.3421515 .28340$
$1.3 \quad 7.52391$ I4.73960
$\begin{array}{llll}1.35 & 8.65928 & \text { 14.10490 }\end{array}$
$1.4 \quad 9.74126 \quad 13.38330$
$1.45 \quad 10.76320 \quad 12.57910$
$1.5 \quad 11.71820 \quad 11.69740$ $\begin{array}{lll}1.55 & 12.60210 & 10.74357 \\ 1.6 & 13.40770 & 0.72361\end{array}$ $\begin{array}{lll}1.65 & 14.13065 & 8.64360\end{array}$ $\begin{array}{llll}1.7 & 14.76650 & 7.51020\end{array}$

| 1.75 | 15.31130 | 6.33059 |
| :--- | :--- | :--- |
| 1.8 | 15.76170 | 5.11195 |
| 1.85 | 16.11491 | 3.86180 |
| 1.9 | 16.36878 | 2.58783 |
| 1.95 | 16.52173 | 1.29792 |

$\begin{array}{lll}2.0 & 16.57282 & 0.00\end{array}$
$0.00 \quad 17.39230$ 1.36684 I7.33870 2.7252517 .17817 4.0668616 .91175 5.3833916 .54105
6.66674 I6.06840 7.90898 I5.49665 9.10246 14.82933 10.2398214 .07066 11.3140513 .22520
$12.31852 \quad 12.29820$ 13.24705 II. 29540 14.0939010 .22293 $14.85386 \quad 9.08745$ $15.52225 \quad 7.89594$

| 16.09492 | 6.65574 |
| :--- | :--- |
| 16.56840 | 5.37451 |
| 16.93970 | 4.06015 |
| 17.20653 | 2.72075 |
| 17.3673 I | 1.36458 |
| 17.42102 | 0.00 |

$x=3.60$ $18.25632 \quad 1.43466$ $18.08732 \quad 2.86047$ $17.80680 \quad 4.26865$ $17.41650 \quad 5.65052$
$16.91880 \quad 6.99754$ $16.31680 \quad 8.30143$ $15.6142 \mathrm{I} \quad 9.55412$ $14.81535 \quad 10.74789$ 13.9251511 .87545
12.9491012 .92978 $11.89320 \quad 13.90436$ 10.7640014 .79326 $9.56840 \quad 15.59090$ 8.31383 16.29246
7.00800 16.89356 $5.65896 \quad 17.39050$ 4.2750317 .78022 2.8647518 .06033 1.4368018 .22900
$\begin{array}{llll}12.94910 & 12.92978\end{array}$ 13.9251511 .87545 $14.81535 \quad 10.74789$ $15.6142 \mathrm{I} \quad 9.55412$ $16.31680 \quad 8.30143$
$\begin{array}{lllllll}18.31278 & 0.00 & 19.25033 & 0.00 & 20.23601 & 0.00\end{array}$

|  |  |  |  |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| 0.00 | 18.28546 | 0.00 | 19.22434 | 0.00 | 20.21129 |
| 1.43680 | 18.22900 | 1.51036 | 19.16506 | 1.58770 | 20.14900 |
| 2.86475 | 18.06033 | 3.01142 | 18.98765 | 3.16561 | 19.96246 |
| 4.27503 | 17.78022 | 4.49390 | 18.69316 | 4.72401 | 19.65290 |
| 5.65896 | 17.39050 | 5.94868 | 18.28342 | 6.25327 | 19.22208 |
| 7.00800 | 16.89356 | 7.36678 | 17.76096 | 7.74399 | 18.67280 |
| 8.31383 | 16.29246 | 8.73946 | 17.12900 | 9.18696 | 18.00840 |
| 9.56840 | 15.59090 | 10.05827 | 16.39143 | 10.57330 | 17.23295 |
| 10.76400 | 14.79326 | 11.31505 | 15.55281 | 11.89444 | 16.35127 |
| 11.89320 | 13.90436 | 12.50208 | 14.61830 | 13.14223 | 15.36878 |
| 12.94910 | 12.92978 | 13.61203 | 13.59365 | 14.30902 | 14.29155 |
| 13.42515 | 11.87545 | 14.63806 | 12.48520 | 15.38760 | 13.12620 |
| 14.81535 | 10.74789 | 15.57383 | 11.29972 | 16.37127 | 11.87990 |
| 15.61421 | 9.55412 | 16.41360 | 10.04469 | 17.25404 | 10.56037 |
| 16.31680 | 8.30143 | 17.15216 | 8.72766 | 18.03040 | 9.17573 |
| 16.91880 | 6.99754 | 17.78497 | 7.35683 | 18.69565 | 7.73453 |
| 17.41650 | 5.65052 | 18.30814 | 5.94065 | 19.24560 | 6.24563 |
| 17.80680 | 4.26865 | 18.71843 | 4.48783 | 19.67690 | 4.71823 |
| 18.08732 | 2.86047 | 19.01331 | 3.00735 | 19.98688 | 3.16174 |
| 18.25632 | 1.43466 | 19.19100 | 1.50832 | 20.17362 | 1.58576 |
| 18.31278 | 0.00 | 19.25033 | 0.00 | 20.23601 | 0.00 |


|  |  |  |  |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| 0.00 | 18.28546 | 0.00 | 19.22434 | 0.00 | 20.21129 |
| 1.43680 | 18.22900 | 1.51036 | 19.16506 | 1.58770 | 20.14900 |
| 2.86475 | 18.06033 | 3.01142 | 18.98765 | 3.16561 | 19.96246 |
| 4.27503 | 17.78022 | 4.49390 | 18.69316 | 4.72401 | 19.65290 |
| 5.65896 | 17.39050 | 5.94868 | 18.28342 | 6.25327 | 19.22208 |
| 7.00800 | 16.89356 | 7.36678 | 17.76096 | 7.74399 | 18.67280 |
| 8.31383 | 16.29246 | 8.73946 | 17.12900 | 9.18696 | 18.00840 |
| 9.56840 | 15.59090 | 10.05827 | 16.39143 | 10.57330 | 17.23295 |
| 10.76400 | 14.79326 | 11.31505 | 15.55281 | 11.89444 | 16.35127 |
| 11.89320 | 13.90436 | 12.50208 | 14.61830 | 13.14223 | 15.36878 |
| 12.94910 | 12.92978 | 13.61203 | 13.59365 | 14.30902 | 14.29155 |
| 13.42515 | 11.87545 | 14.63806 | 12.48520 | 15.38760 | 13.12620 |
| 14.81535 | 10.74789 | 15.57383 | 11.29972 | 16.37127 | 11.87990 |
| 15.61421 | 9.55412 | 16.41360 | 10.04469 | 17.25404 | 10.56037 |
| 16.31680 | 8.30143 | 17.15216 | 8.72766 | 18.03040 | 9.17573 |
| 16.91880 | 6.99754 | 17.78497 | 7.35683 | 18.69565 | 7.73453 |
| 17.41650 | 5.65052 | 18.30814 | 5.94065 | 19.24560 | 6.24563 |
| 17.80680 | 4.26865 | 18.71843 | 4.48783 | 19.67690 | 4.71823 |
| 18.08732 | 2.86047 | 19.01331 | 3.00735 | 19.98688 | 3.16174 |
| 18.25632 | 1.43466 | 19.19100 | 1.50832 | 20.17362 | 1.58576 |
| 18.31278 | 0.00 | 19.25033 | 0.00 | 20.23601 | 0.00 |

$$
x=3.65
$$

| 19.25033 | 0.00 | 20.23601 | 0.00 |
| :--- | :--- | :--- | :--- |
| 19.19100 | 1.50832 | 20.17362 | 1.58576 |
| 19.01331 | 3.00735 | 19.98688 | 3.16174 |
| 18.71843 | 4.48783 | 19.67690 | 4.71823 |
| 18.30814 | 5.94065 | 19.24560 | 6.24563 |
|  |  |  |  |
| 17.78497 | 7.35683 | 18.69565 | 7.73453 |
| 17.15216 | 8.72766 | 18.03040 | 9.17573 |
| 16.41360 | 10.04469 | 17.25404 | 10.56037 |
| 15.57383 | 11.29972 | 16.37127 | 11.87990 |
| 14.63806 | 12.48520 | 15.38760 | 13.12620 |

13.6120313 .59365 12.5020814 .61830 11.3150515 .5528 I 10.0582716 .39143 8.73946 17.12900
7.36678 I7.76096 $5.94868 \quad 18.28342$ 4.49390 18.69316 3.0114218 .98765 1.51036 19.16506
$0.00 \quad 19.22434$ 1.5103619 .16506 3.0114218 .98765 4.49390 18.69316 $5.94868 \quad 18.28342$
$7.36678 \quad 17.76096$ 8.7394617 .12900 $10.05827 \quad 16.39143$ II.3I505 I5.5528I 12.5020814 .61830
13.6120313 .59365 14.6380612 .48520 15.57383 II. 29972 $16.41360 \quad 10.04469$ 17.15216 8.72766

|  |  |  |  |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| 0.00 | 18.28546 | 0.00 | 19.22434 | 0.00 | 20.21129 |
| 1.43680 | 18.22900 | 1.51036 | 19.16506 | 1.58770 | 20.14900 |
| 2.86475 | 18.06033 | 3.01142 | 18.98765 | 3.16561 | 19.96246 |
| 4.27503 | 17.78022 | 4.49390 | 18.69316 | 4.72401 | 19.65290 |
| 5.65896 | 17.39050 | 5.94868 | 18.28342 | 6.25327 | 19.22208 |
| 7.00800 | 16.89356 | 7.36678 | 17.76096 | 7.74399 | 18.67280 |
| 8.31383 | 16.29246 | 8.73946 | 17.12900 | 9.18696 | 18.00840 |
| 9.56840 | 15.59090 | 10.05827 | 16.39143 | 10.57330 | 17.23295 |
| 10.76400 | 14.79326 | 11.31505 | 15.55281 | 11.89444 | 16.35127 |
| 11.89320 | 13.90436 | 12.50208 | 14.61830 | 13.14223 | 15.36878 |
| 12.94910 | 12.92978 | 13.61203 | 13.59365 | 14.30902 | 14.29155 |
| 13.42515 | 11.87545 | 14.63806 | 12.48520 | 15.38760 | 13.12620 |
| 14.81535 | 10.74789 | 15.57383 | 11.29972 | 16.37127 | 11.87990 |
| 15.61421 | 9.55412 | 16.41360 | 10.04469 | 17.25404 | 10.56037 |
| 16.31680 | 8.30143 | 17.15216 | 8.72766 | 18.03040 | 9.17573 |
| 16.91880 | 6.99754 | 17.78497 | 7.35683 | 18.69565 | 7.73453 |
| 17.41650 | 5.65052 | 18.30814 | 5.94065 | 19.24560 | 6.24563 |
| 17.80680 | 4.26865 | 18.71843 | 4.48783 | 19.67690 | 4.71823 |
| 18.08732 | 2.86047 | 19.01331 | 3.00735 | 19.98688 | 3.16174 |
| 18.25632 | 1.43466 | 19.19100 | 1.50832 | 20.17362 | 1.58576 |
| 18.31278 | 0.00 | 19.25033 | 0.00 | 20.23601 | 0.00 |

$$
x=3.70
$$

Note. Negative quantities are in heavy type.
Examples. $\quad \cosh (3.50+i \underline{0.70})=7.52391+i_{14.73960 .}$


Table VIII. HYPERBOLIC COSINES. $\cosh (x+i q)=u+i v$. Continued

| $q$ | $x=3.75$ |  | $x=3.80$ |  | $x=3.85$ |  | $x=3.90$ |  | $x=3.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | 21.27230 | 0.00 | 22.36178 | 0.00 | 23.50717 | 0.00 | 24.71135 | . 0 | 31 | 0.00 |
| 0.05 | 21.20670 | 1.66716 | 22.29283 | 1.75273 | 23.43470 | 1.84268 | 24.63516 | 1.93724 | 25.89724 | 2.03665 |
| 0.1 | 21.01038 | 3.32404 | 22.08646 | 3.49465 | 23.21775 | 3.67400 | 24.40710 | 3.86254 | 25.65749 | 4.06074 |
| 0.15 | 20.68452 | 4.96043 | 21.74391 | 5.21503 | 22.85766 | 5.48267 | 24.02856 | 5.76402 | $25.2595{ }^{\prime} 7$ | 6.05979 |
| 0.2 | 20.23113 | 6.56624 | 21.26731 | 6.90325 | 22.35664 | 7.25754 | 23.50188 | 7.62997 | 24.70590 | 8.02149 |
| 0.25 | 19.65301 | 8.13156 | 20.65958 | 8.54892 | 21.71778 | 8.98766 | 22.83030 | 9.44887 | 23.99991 | 9.93373 |
| 0.3 | 18.95373 | 9.64674 | 19.92448 | 10.14188 | 20.94503 | 10.66233 | 22.01797 | 11.20952 | 23.14597 | 11.78474 |
| 0.35 | 18.13760 | II.10246 | 19.06655 | 11.67230 | 20.04315 | 12.27134 | 21.06988 | 12.90106 | 22.14931 | 13.56305 |
| 0.4 | 17.20963 | 12.4897 I | 18.09105 | 13.13076 | 19.01770 | 13.80465 | 19.99190 | 14.51307 | 21.01610 | 15.25776 |
| 0.45 | 16.17556 | 13.79998 | 17.00402 | 14.50828 | 17.87500 | 15.25286 | 18.79065 | 16.03558 | 19.75331 | 16.85842 |
| - | 15.04177 | 15.02516 | 15.81216 | 15.79634 | 16.62208 |  | 17.47355 | 17.45924 | 18.36873 | 18.35512 |
| 0.55 | 13.81524 | 16.15770 | 14.5228I | 16.98701 | 15.26668 | 17.85880 | 16.04874 | 18.77526 | 16.87098 | 19.73867 |
| 0.6 | 12.50353 | 17.19062 | 13.14392 | 18.07296 | 13.81716 | 19.00048 | 14.52497 | 19.97556 | 15.26910 | 21.00052 |
| 0.65 | 11.11473 | 18.11756 | 11.68400 | 19.04746 | 12.28246 | 20.02501 | 12.91164 | 21.05272 | 13.57315 | 22.13290 |
| 0.7 | 9.65741 | 18.93280 | 10.15203 | 19.90455 | 10.67203 | 20.92608 | 11.21871 | 21.99993 | Ir. 79366 | 23.1288I |
| 0.75 | 8.14055 | 19.63131 | 8.55748 | 20.63891 | 8.99580 | 21.69813 | 9.45662 | 22.81160 | 9 |  |
| 0.8 | 6.57350 | 20.20879 | 6.91017 | 21.24603 | 7.26411 | 22.33640 | 7.63623 | 23.48262 | 8.02744 | 24.68760 |
| 0.85 | 4.96592 | 20.66167 | 5.22025 | 21.72216 | 5.48764 | 22.83696 | 5.76875 | 24.00888 | 6.06429 | 25.24084 |
| 0.9 | 3.32772 | 20.98716 | $3 \cdot 49815$ | 22.06437 | 3.67733 | 23.19673 | 3.86571 | 24.38710 | 4.06375 | 25.63849 |
| 0.95 | 1.66900 | 21.18327 | 1.75448 | 22.27052 | I. 84435 | 23.41348 | 1.93883 | 24.61500 | 2.03816 | 25.87805 |
| 1.0 | 0.0 | 21.24878 | . 00 | 22.33941 | 0.00 | 23.48589 | 0.00 | 24.69110 | . 00 | 25.95806 |
| 1.05 | 1.66900 | 21.18327 | 1.75448 | 22.27052 | 1.84435 | 23.41348 | 1.93883 | 24.61500 | 2.03816 | 25.87805 |
| 1.1 | $3 \cdot 327$ | 20.98716 | $3 \cdot 49815$ | 22.06437 | 3.67733 | 23.19673 | 3.86571 | 24.38710 | 4.06375 | 25.63849 |
| 1.15 | 4.96592 | 20.66167 | 5.22025 | 21.72216 | 5.48764 | 22.83696 | 5.76875 | 24.00888 | 6.06429 | 25.24084 |
| 1.2 | 6.57350 | 20.20879 | 6.91017 | 21.24603 | 7.26411 | 22.33640 | 7.63623 | 23.48262 | 8.02744 | 24.68760 |
| 1.25 | 8.14055 | 19.6313 | 8.55748 | 20.6389 I | 8.99580 | 21.69813 | 9.45662 | 22.8 | 9.94109 | 23.98212 |
| 1.3 | 9.65741 | 18.93280 | 10.15203 | 19.90455 | 10.67203 | 20.92608 | 11.21871 | 21.99993 | 11.79366 | 23.12881 |
| 1.35 | 11.11473 | 18.11756 | 11.68400 | 19.04746 | 12.28246 | 20.02501 | 12.91164 | 21.05272 | 13.57315 | 22.13290 |
| 1.4 | 12.50353 | 17.19062 | 13.14392 | 18.07296 | 13.81716 | 19.00048 | 14.52497 | 19.97556 | 15.26910 | 21.00052 |
| 1.45 | 13.81524 | 16.15770 | 14.52281 | 16.98701 | 15.26668 | 17.85880 | 16.04874 | 18.77526 | 16.87098 | 19.73867 |
| 1.5 | 15.04177 | 15.02516 | 15.81216 | 15.79634 | 16.62208 | 16.60702 | 17.47355 | 17.45924 | 18.36873 | 18.35512 |
| I. 55 | 16.17556 | 13.79998 | 17.00402 | 14.50828 | 17.87500 | 15.25286 | 18.79065 | 16.03558 | 19.75331 | 16.85842 |
| 1.6 | 17.20963 | 12.48971 | 18.09105 | 13.13076 | 19.01770 | 13.80465 | 19.99190 | 14.51307 | 21.01610 | 15.25776 |
| I. 65 | 18.13760 | 11.10246 | 19.06655 | 11.67230 | 20.04315 | 12.27134 | 21.06988 | 12.90106 | 22.14931 | 13.56305 |
| 1.7 | 18.95373 | 9.64674 | 19.92448 | 10.14188 | 20.94503 | 10.66233 | 22.01797 | 11.20952 | 23.14597 | 11.78474 |
| 1.75 | 19.65301 | 8.13156 | 20.65958 | 8.54892 | 21.71778 | 8.98766 | 22.83030 | 9.44887 | 23.99991 | 9.93373 |
| I. 8 | 20.23113 | 6.56624. | 21.26731 | 6.90325 | 22.35664 | 7.25754 | 23.50188 | 7.62997 | 24.70590 | 8.02149 |
| 1.85 | 20.68452 | 4.96043 | 21.74 | 5.21503 | 22.85766 | 5.48267 | 24.02856 | 5.76402 | 25.25957 | 6.05979 |
| 1.9 | 21.01038 | 3.32404 | 22.08646 | 3.49465 | 23.21775 | 3.67400 | 24.40710 | 3.86254 | 25.65749 | 4.06074 |
| 1.95 | 21.20670 | 1.66716 | 22.29283 | 1.75273 | 23.43470 | 1. 84268 | 24.63516 | 1.93724 | 25.89724 | 2.03665 |
| . 0 | 21.27230 | 0.00 | 22.36178 | 0.00 | 23.50717 | 0.00 | 24.71135 | $0 . \infty$ | 25.97731 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\cosh (3.90+i 0.25)=22.83030+i 9.44887$. $\cosh (3.75+i \underline{1.25})=-8.14055+i{ }^{19} .63131$.

Table IX. HYPERBOLIC TANGENTS. $\tanh (x+i q)=u+i v$

| $q$ | $x=0$ |  | $x=0.05$ |  | $x=0.1$ |  | $x=0.15$ |  | $x=0.2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 0.00 | 0.00 | 0.04996 | 0.00 | 0.09967 | 0.00 | 0.14889 | 0.0 | 0.19738 | 0.00 |
| 0.05 | 0.00 | 0.07870 | 0.05027 | 0.07850 | 0.10028 | 0.07792 | 0.14979 | 0.07695 | 0.19855 | 0.07562 |
| 0.1 | 0.00 | 0.15838 | 0.05121 | 0.15798 | 0.10214 | 0.15677 | 0.15254 | 0.15479 | 0.20213 | 0.15207 |
| 0.15 | 0.00 | 0.24008 | 0.05283 | 0.23944 | 0.10535 | 0.23755 | 0.15727 | 0.23446 | 0.20828 | 0.23021 |
| 0.2 | , 0 | 0.32492 | 0.05522 | 0.32402 | 0.11008 | 0.32136 | 0.16422 | 0.31698 | 0.21732 | 0.31098 |
| 0.25 | 0.00 | 0.4142 I | 0.05850 | 0.41300 | 0.11657 | 0.40940 | 0.17377 | 0.40350 | 0.22970 | 0.39543 |
| 0.3 | 0.00 | 0.50953 | 0.06289 | 0.50792 | 0.12522 | 0.50317 | 0.18647 | 0.49538 | 0.24613 | 0.48477 |
| 0.35 | 0.00 | 0.61280 | 0.06865 | 0.61070 | -.13659 | 0.60446 | 0.20310 | 0.59427 | 0.26758 | 0.58044 |
| 0.4 | 0.00 | 0.72654 | 0.07623 | 0.72378 | -.15149 | 0.71557 | 0.22484 | 0.70222 | 0.29549 | 0.68417 |
| 0.45 | . 0 | 0.85408 | 0.08624 | 0.85040 | 0.17113 | 0.83951 | 0.25339 | 0.82186 | 0.33192 | 0.79813 |
| 0.5 | 0.00 | 0000 | 0.09967 | 0.99503 | 0.19738 | 0.98033 | 0.29131 | 0.95663 | 0.37995 | 0.92501 |
| 0.55 | 0.00 | 1.17085 | 0.11804 | 1.16395 | 0.23313 | I.14365 | 0.34258 | 1.11113 | 0.44423 | 1.06819 |
| 0.6 | 0.00 | 1.37638 | 0.14392 | 1. 36649 | 0.28315 | I. 33754 | 0.41357 | I. 29164 | 0.53203 | 1.23185 |
| 0.65 | 0.00 | 1.63185 | 0.18179 | 1.61702 | 0.35567 | 1.57401 | 0.51496 | 1. 50674 | 0.65502 | 1.42088 |
| 0.7 | 0.00 | I. 96261 | 0.24007 | 1.93900 | 0.46575 | 1.87150 | 0.66202 | 1.75880 | 0.83268 | 1. 64005 |
| 0.7 | 0.00 | 2.41421 | 0.33624 | 2.37365 | 0.64333 | 2.25941 | 0.90034 | 2.09061 | 1.09837 | 1.89083 |
| 0.8 | 0.00 | 3.07768 | 0.51109 | 2.99911 | 0.95397 | 2.78504 | I. 28858 | 2.48723 | 1.50982 | 2.16055 |
| 0.85 | . 00 | 4.16530 | 0.87867 | 3.98246 | 1.56000 | 3.51765 | 1.97316 | 2.94167 | 2.16111 | 2.38860 |
| 0.9 | 0.00 | 6.31375 | 1.85674 | 5.72808 | 2.91746 | 4.47780 | 3.22989 | 3.27758 | 3.15925 | 2.37676 |
| 0.95 | 0.00 | 12.70620 | 5.79801 | 9.05499 | 6.21808 | 4.83133 | 5.28217 | 2.71349 | 4.39854 | 1.67517 |
| 1.0 | . 0 | $\infty$ | 20.01667 | 0.00 | 10.03331 | 0.00 | 6.71659 | 0.00 | 5.06649 | 0.00 |
| 1.05 | 0.00 | 12.70620 | 5.79801 | 9.05499 | 6.21808 | 4.83133 | 5.28217 | 2.71349 | 4.39854 | 1.67517 |
| I.I | 0.00 | 6.31375 | 1.85674 | 5.72808 | 2.91746 | 4.47780 | 3.22989 | 3.27758 | 3.15925 | 2.37676 |
| 1.15 | 0.00 | 4.16530 | 0.87867 | 3.98246 | 1.56000 | 3.51765 | 1.97316 | 2.94167 | 2.16111 | 2.38860 |
| 1.2 | 0.00 | 3.07768 | 0.51109 | 2.999 II | 0.95397 | 2.78504 | I. 28858 | 2.48723 | 1.50982 | 2.16055 |
| 1.25 | 0.00 | 2.4142 I | 0.33624 | 2.37365 | 0.64333 | 2.25941 | 0.90034 | 2.09061 | 1.09837 | 1.89083 |
| 1.3 | 0.00 | 1.96261 | 0.24007 | 1.93900 | 0.46575 | 1.87150 | 0.66202 | 1.75880 | 0.83268 | 1.64005 |
| 1.35 | 0.00 | 1.63185 | 0.18179 | 1.61702 | 0.35567 | 1.57401 | 0.51496 | 1.50674 | 0.65502 | 1.42088 |
| I. 4 | 0.00 | 1.37638 | 0.14392 | 1. 36649 | 0.28315 | I. 33754 | 0.41357 | 1.29164 | 0.53203 | 1.23185 |
| 1.45 | 0.00 | 1.17085 | 0.11804 | 1.16395 | 0.23313 | 1.14365 | 0. 34258 | 1.11113 | 0.44423 | 1.06819 |
| 1.5 | 0.00 | 1.0000 | 0.09967 | 0.99503 | 0.19738 | 0.98033 | 0.29131 | 0.95663 | 0.37995 | 0.92501 |
| 1.55 | 0.00 | 0.85408 | 0.08624 | 0.85040 | 0.17113 | 0.83951 | 0.25339 | 0.82 | 0.33192 | 0.79813 |
| 1. 6 | 0.00 | 0.72654 | 0.07623 | 0.72378 | -.15149 | 0.71557 | 0.22484 | 0.70222 | 0.29549 | 0.68417 |
| I. 65 | 0.00 | 0.61280 | 0.06865 | 0.61070 | 0.13659 | 0.60446 | 0.20310 | 0.59427 | 0.26758 | 0.58044 |
| 1.7 | 0.00 | 0.50953 | 0.06289 | 0.50792 | 0.12522 | 0.50317 | 0.18647 | 0.49538 | 0.24613 | 0.48477 |
| 1.75 | 0.00 | 0.4142 I | 0.05850 | 0.41300 | 0.11657 | 0.40940 | 0.17377 | 0.40350 | 0.22970 | 0.39543 |
| 1.8 | 0.00 | 0.32492 | 0.05522 | 0.32402 | 0.11008 | 0.32136 | 0.16422 | 0.31698 | 0.21732 | 0.31098 |
| 1.85 | 0.00 | 0.24008 | 0.05283 | 0.23944 | 0.10535 | 0.23755 | 0.15727 | 0.23446 | 0.20828 | 0.23021 |
| 1.9 | 0.00 | -. 15838 | 0.05121 | 0.15798 | 0.10214 | 0.15677 | 0.15254 | 0.15479 | 0.20213 | 0.15207 |
| 1.95 | 0.00 | 0.07870 | 0.05027 | 0.07850 | 0.10028 | 0.07792 | 0.14979 | 0.07695 | 0.19855 | 0.07562 |
| . 0 | 0.00 | 0.00 | 0.04996 | 0.00 | 0.09967 | 0.00 | 0.14889 | 0.00 | 0.19738 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh (0+i \underline{0.95})=0+i_{12.70620 .}$
$\tanh \left(0+i_{\text {I.45 }}\right)=0-i_{\text {I. } 17085 .}$

Table IX. HYPERBOLIC TANGENTS. $\tanh (x+i q)=u+i v . \quad$ Continued

| $q$ | $x=0.25$ |  | $x=0.3$ |  | $x=0.35$ |  | $x=0.4$ |  | $x=0.45$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | 0.24492 | 0.0 | 0.29131 | 0.0 | 0.33638 |  | 0.37995 |  | 0.42190 |  |
| 0.05 | 0.24635 | 0.07395 | 0.29296 | 0.07199 | 0.33322 | 0.06975 | 0.38196 | 0.06728 | 0.42405 | 0.06462 |
| 0.1 | 0.25069 | 0.14866 | 0.29799 | 0.14464 | 0.34384 | 0.14007 | 0.38808 | 0.13503 | 0.43056 | 0.12961 |
| 0.15 | 0.25814 | 0.22490 | 0.30660 | 0.21864 | 0.35346 | 0.21153 | 0.39853 | 0.20373 | 0.44169 | 0.19534 |
| 0.2 | 0.26907 | 0.30351 | 0.31921 | 0.29471 | 0.36750 | 0.28475 | 0.41376 | 0.27384 | 0.45784 | 0.26216 |
| 0. | 0.28402 | 0.38540 | 0.33640 | 0.37362 | 0.38658 | 0.36035 |  |  | 0.47964 | 0.33039 |
| 0.3 | 0.30377 | 0.47162 | 0.35903 | 0.45623 | 0.41161 | 0.43898 | 0.46130 | 0.42022 | 0.50796 | 0.40033 |
| 0.35 | 0.32947 | 0.56335 | 0.38833 | 0.54348 | 0.44383 | 0.52131 | 0.49575 | 0.49737 | 0.54397 | 0.47216 |
| 0.4 | 0.36272 | 0.66200 | 0.42600 | 0.63638 | 0.48497 | 0.60802 | 0.53941 | 0.57764 | 0.58924 | 0.54593 |
| 0. | 0.40582 | 0.76919 | 0.47444 | 0.73604 | 0.53739 | 0.69969 | 0.59450 | 0.66116 | 0.64580 | 0.62138 |
| 0.5 | 0.46212 | 0.88682 | 0.53705 | 0.84355 | 0.60437 | 0.79671 | 0.66404 | 0.74770 | 0.71630 | 0.69779 |
| 0.55 | 0.53655 | 1.01699 | 0.61869 | 0.95983 | 0.69041 | 0.89893 | 0.75200 | 0.83632 | 0.80407 | 0.77365 |
| 0.6 | 0.63656 | 1.16180 | 0.72640 | 1.08513 | 0.80176 | 1.00519 | 0.86357 | 0.92478 | 0.91321 | 0.84608 |
| 0.65 | 0.77356 | 1.32269 | 0.87037 | 1.21810 | 0.94684 | 1.11212 | 1.00528 | 1.00856 | 1.04844 | 0.91003 |
| 0.7 | 0.96528 | 1.49862 | 1.06521 | 1.35360 | I. 13666 | 1.21222 | 1.18469 | 1.07919 | 1.21438 | 0.95708 |
| 0.75 | 1.23914 | 1.68rsi | 1.33091 | 1.47820 | 1.38412 | 1. 29020 | 1.40896 | 1.12181 | 1.41 | 0.97400 |
| 0.8 | 1. 63553 | 1. 84484 | 1.69121 | 1.56140 | 1.70028 | 1.31745 | 1. 68068 | 1.11235 | 1. 64487 | 0.94186 |
| 0.85 | 2.20223 | 1.91863 | 2.16210 | 1.54177 | 2.08309 | 1.24667 | 1.98936 | 1.01695 | 1.89366 | 0.83750 |
| 0.9 | 2.95122 | 1.75011 | 2.71602 | 1.31829 | 2.49443 | 1.01613 | 2.29855 | 0.79978 | 2.12957 | 0.64107 |
| 0.95 | 3.72316 | 1.11789 | 3.21905 | -.79096 | 2.83603 | 0.58484 | 2.53928 | 0.44728 | 2.30471 | 0.35122 |
| 1.0 | 4.08299 | 0.00 | 3.43274 | 0.00 | 2.97287 | 0.00 | 2.63193 | 0.00 | 2.37024 | 0.00 |
| 1.05 | 3.72316 | 1.11789 | 3.21905 | 0.79096 | 2.83603 | 0.58484 | 2.53928 | 0.44728 | 2.30471 | 0.35122 |
| 1. | 2.95122 | 1.75011 | 2.71602 | 1.31829 | 2.49443 | 1.01613 | 2.29855 | 0.79978 | 2.12957 | 0.64107 |
| 1.15 | 2.20223 | 1.91863 | 2.16210 | 1.54177 | 2.08309 | 1.24667 | 1.98936 | 1.01695 | 1.89366 | 0.83750 |
| 1.2 | 1.63553 | 1.84484 | 1.69121 | 1.56140 | 1.70028 | 1.31745 | 1.68068 | 1.11235 | 1. 64487 | 0.94186 |
| 1.25 | 1.23 | 1.68151 | 1.33091 | 1.47820 | 1.38412 | 1.29020 | 1.40896 | 1.12181 | 1.41397 | 0.97400 |
| 1.3 | 0.96528 | 1.49862 | 1.06521 | 1.35360 | 1.13666 | 1.21222 | 1.18469 | 1.07919 | 1.21438 | 0.95708 |
| I. 35 | 0.77356 | 1.32269 | 0.87037 | 1.21810 | 0.94684 | 1.112 | 1.00528 | 1.00856 | 1.04844 | 0.91003 |
| 1. | 0.63656 | 1.16180 | 0.72640 | 1.08513 | 0.80176 | 1.00519 | 0.86357 | 0.92478 | 0.91321 | 0.84608 |
| 1.4 | 0.53655 | 1.01 | 0.6x860 | 0.95983 | 0.69041 | 0.89893 | 0.75200 | 0.83632 | 0.80407 | 0.77365 |
| 1.5 | 0.46212 | 0.88682 | 0.53705 | 0.84355 | 0.60437 | 0.79671 | 0.66404 | 0.74770 | 0.71630 | 0.69779 |
| 1.55 | 0.40582 | 0.76919 | 0.47444 | 0.73604 | 0. 53739 | 0.69969 | 0.59450 | 0.66116 | 0.64580 | 0.62138 |
| 1.6 | 0.36272 | 0.66200 | 0.42600 | 0.63638 | 0.48497 | 0.60802 | 0.53941 | 0.57764 | 0.58924 | 0.54593 |
| 1.65 | 0.32947 | 0.56335 | 0.38833 | 0.54348 | 0.44383 | 0.52131 | 0.49575 | 0.49737 | 0.54397 | 16 |
| 1.7 | 0.30377 | 0.47162 | 0.35903 | 0.45623 | 0.41161 | 0.43898 | 0.46530 | 0.42022 | 0.50796 | 0.40033 |
| 75 | 0.28402 | 0.38540 | 0.33640 | 0.37362 | 0.38658 | 0.36035 | 0.43438 | 0.34585 | 0.47964 | 0.33039 |
| 1.8 | 0.26907 | 0.30351 | 0.31921 | 0.29471 | 0.36750 | 0.28475 | 0.41376 | 0.27384 | 0.45784 | 0.26216 |
| 1.85 | 0.25814 | 0.22490 | 0.30660 | 0.21864 | - 0.35346 | 0.21153 | -0.39853 | 0.20373 | 0.44169 | 0. 19534 |
| 1.9 | 0.25069 | 0.14866 | 0.29799 | 0.14464 | -. 34384 | 0.14007 | 0.38808 | 0.13503 | 0.43056 | 0.12961 |
| 1.95 | 0.24635 | 0.07395 | 0.29296 | 0.07199 | 0.33822 | 0.06975 | 0.38196 | 0.06728 | 0.42405 | 0.06462 |
| 2.0 | 0.24492 | 0.00 | 0.29131 | 0.00 | 0.33638 | 0.00 | 0.37995 | 0.00 | 0.42190 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\quad \tanh (0.4+i 0.4)=0.5394 \mathrm{i}+i 0.57764$.
$\tanh \left(0.45+\overline{i_{\text {1.75 }}}\right)=0.47964-i 0.33039$.

Table IX. HYPERBOLIC TANGENTS. $\tanh (x+i q)=u+i v$. Continued

|  | $x=0.5$ |  | $x=0.55$ |  | $x=0.6$ |  | $x=0.65$ |  | $x=0.7$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.462 II |  |  |  | . 53704 | $0 . \infty$ | 0.57167 |  |  |  |
| 0.05 | 0.46436 | 0.0 | 0.50284 | 0.05889 | 0.53941 | 0.055 | 0.57405 | 0.05288 | 0.60674 | 0.04984 |
| 0.1 | 0.47119 | 0.12390 | 0.50987 | 0.11796 | 0.54657 | 0.11189 | 0.58125 | -.10576 | 0.61390 | 0.09962 |
| 0.15 | 0.48281 | 0.18651 | 0.52183 | 0.17737 | 0.55872 | 0.1680 | 0.59344 | 0.15863 | 0.62602 | 0.14925 |
| 0.2 | 0.49964 | 0.2499 | 0.53810 | 0.23725 | 0.57620 | 0.224 | 0.61094 | 0.21144 | 0.64336 | 0.1 |
| 0.25 | 0.52227 | 0.31424 | 0.56223 |  | 0.59953 | 0.28085 |  |  | 0.66631 |  |
| 0.3 | 0.55151 | 0.37967 | 0.59196 | 0.358 | 0.62935 | 0.33731 | 0.66377 | 0.316 | 0.69534 | 0.29540 |
| 35 | 0.58846 | 0.44616 | 0.62928 | 0.41979 | 0.66653 | 0.39344 | 0.70039 | 0.36748 | 0.73105 | 0.34205 |
| 0.4 | 0.63452 | 0.51350 | .67541 | 0.48093 | . 71212 | 0.4486 | . 7449 | 0.4171 | 0.77413 | 0.3866 |
| 45 | 0.69149 | 0.58116 | 73 | 0.54121 | . 76736 | 0.50211 | 0.798 | 0.464 | 0.82533 | 0.4 |
| 0.5 | 0.76159 | 0.64805 | 0.80050 | 0.59933 | 0.83365 | 0.55229 | 73 | 0.50 | 35 | 0.4 |
| 0.55 | 0.84752 | 0.71229 | 0.88332 | 0.65320 | 0.91249 | 0.59707 | 0.93607 | 0.54434 | 0.9548 | 0.4952 |
| 0.6 | 0.95230 | 0.77067 | 0.98247 | 0.6995 | 1.00521 | -0.63346 | 1.02195 | 0.5722 | 1.0338 | 0.51635 |
| 0.65 | 1.07907 | 0.8181 | 1. 09973 | 0.73362 | .11262 | 0.65676 | I.11962 | 0.5873 | 1.12222 | 0.5250 |
| 0.7 | 1.23020 | 0.8468 | 23587 | 0.7485 | . 2343 | 0.66157 | 1.22793 | 0.58492 | . 21827 | 0.51757 |
| 0.75 | 1.40579 | 0.84585 | 1.38926 |  | 1.36782 | 0.64076 | r. 34386 | 0.55 | 1.31896 | 0.48976 |
| 0.8 | 1.60095 | 0.80073 | 1.55398 | 0.68387 | 1.50695 | 0.58681 | 1.461 73 | 0.50588 | 1.41909 | 0.43803 |
| 0.85 | 1.80225 | 0.69623 | 1.75785 | 0.58390 | 1.64135 | 0.49366 | 1.57271 | 0.42040 | 1.51148 | -. 36034 |
| 0.9 | 1.98505 | 0.52197 | 1.86183 | 0.43071 | 1.75601 | 0.35949 | I. 66532 | 0.30300 | $1.587 \times 13$ | 0.25755 |
| 0.95 | 2.11599 | 0.28167 |  | 0.22977 | 1.83417 | 0.19009 | 1.72736 | 0.1591 | 6711 | . 13 |
| 1.0 | 2.16395 | 0.00 | т. 99792 | 0.00 | . 86 | 0.00 | 1.74926 | 0.00 | т. 65462 | 0.00 |
| 1.05 | 2.11599 | 0.28167 | 1.96180 | 0.22977 | I. 8341 | 0.19009 | 1.72736 | 0.1591 | 1.63711 | 0.13449 |
| I.I | 1.98505 | 0.52197 | 1.86163 | 0.43071 | I. 75601 | 0.3594 | 1.66532 | 0.3030 | 1.58713 | 0.25755 |
| 1.15 | 1.80225 | 0.69623 | 1.71785 | 0.58390 | 1.64135 | 0.49366 | 1.57271 | 0.42040 | 1.51148 | 0.36034 |
| 1. | 1.60095 | 0.80073 | 1.55398 | 0.68387 |  | 0.586 | 1.46173 | 0.505 |  | 0.43803 |
| 1. 2 | 1.40579 | 0.84 | 1.389 | 0.73 | 1.36782 | 0.64076 | 1. 34386 | 0.559 | 1.3 | 0.48976 |
| I. 3 | 1.23020 | 0.84688 | 1.23587 | 0.74858 | 1. 23436 | 0.66157 | 1.22793 | 0.58492 | 1.21827 | 0.51757 |
| 1.35 | 1.07907 | 0.81812 | 1.09973 | 0.73362 | I.II262 | 0.65676 | I.11962 | 0.58738 | 1.12222 | 0.52508 |
| 1. 4 | 0.95230 | 0.77067 | 0.98247 | 0.69957 | .00521 | 0.63346 | 1.02195 | 0.57227 | 1.03389 | 0.51635 |
| I. 45 | 0.84752 | 0.71229 | 88 | 0.653 | .9124 | 0.597 | - | 54 |  |  |
| 1.5 | 0.76159 | 0.64805 | 0.80050 | 0.59933 | 0.83365 | 0.55229 | 0.86173 | 0.50738 | 0.88535 | 0.46492 |
| 1.5 | 0.69149 | 0.58116 | 0.73188 | 0.54121 | 0.76736 | 0.50211 | 0.79836 | 0.46428 | 0.82533 | 0.42806 |
| 1. 6 | 0.63452 | 0.51350 | 0.67541 | 0.48093 | 0.71212 | 0.44869 | 0.74493 | 0.41714 | 0.77413 | 0.38662 |
| 1.65 | 0.58846 | 0.44616 | 0.62928 | 0.41979 | 0.66653 | 0.39344 | 0.70039 | 0.36748 | 0.73105 | 0.34205 |
| 1.7 | 0.55151 | 0.37967 | 0.59196 | 0.35856 | 0.62935 | 0.337 | 0.6637 | 0.316 | 0.69534 | 0.29 |
| . 75 | 0.52227 | 0.31424 | 0.56223 | 0.29765 | 0.59953 | 0.28085 | 0.6341 | 0.26404 | $0.666_{3} \mathrm{r}$ | 0.257 |
| 1.8 | 0.49964 | 0.24990 | 0.53910 | 0.23725 | 0.57620 | 0.22437 | 0.61094 | 0.21144 | 0.64336 | 0. 19858 |
| 1.8 | 0.48281 | 0.18651 | 0.52183 | 0.17737 | 0.55872 | 0.16804 | 0.59344 | 0.15863 | 0.62602 | 0.14925 |
| 1.9 | 0.47119 | 0.12390 | 0.50987 | 0.11796 | 0.54657 | 0.11189 | 0.58125 | 0.10576 | 0.61390 | 0.09962 |
| 1.95 | 0.46436 | 0.06181 | 0.50284 | 0.0588 | 0.53941 | 0.055 | 0.57405 | 0.05288 | . 606 | 0.049 |
| 2.0 | 0.46211 | . 0 | 0.50052 | . 0 | . 53704 | 0.00 | 0.57167 | 0.00 | 0.60437 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh (0.6+i \underline{0.6})=1.00521+i 0.63346$.
$\tanh (0.6+i \underline{\text { I.5 }})=0.83365-i 0.55229$.
[76]

Table IX. HYPERBOLIC TANGENTS. $\tanh (x+i q)=u+i v$. Continued

| $q$ | $x=0.75$ |  | $x=0.8$ |  | $x=0.85$ |  | $x=0.9$ |  | $x=0.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 0.63515 | . 00 | , | 0.00 | 0.69107 | 0.00 | 0.71629 | 0.00 | 0.73978 | 0.0 |
| 0.05 | 0.63749 | 0.04684 | 0.66633 | 0.04388 | 0.69330 | 0.04099 | 0.71845 | 0.03820 | 0.7418 | 0.03551 |
| 0.1 | 0.64456 | 0.09354 | 0.67325 | 0.08758 | 0.70002 | 0.08176 | 0.72494 | 0.07614 | 0.74807 | 0.07073 |
| 0.15 | 0.65649 | 0.13997 | 0.68490 | 0.13089 | 0.71132 | 0.12206 | 0.73582 | 0.11354 | 0.75850 | 0.10537 |
| 0.2 | 0.67352 | 0.18592 | 0.70148 | 0.17357 | 0.72736 | 0.16160 | 0.75123 | 0.15008 | 0.77321 | 0.13906 |
| 0.25 | 0.69595 | 0.23112 | 0.72325 | 0.21528 | 0.74832 | 0.20001 | 0.77130 | 0.18537 | 0.79231 | 0.17143 |
| 0.3 | 0.72420 | 0.27516 | 0.75051 | 0.25559 | 0.77446 | 0.23683 | 0.79620 | 0.21893 | 0.81592 | 0.20198 |
| 0.35 | 0.75872 | 0.31749 | 0.78364 | 0.29392 | 0.80603 | 0.27146 | 0.82611 | 0.25018 | 0.8441 I | 0.23013 |
| 0.4 | 0.80005 | 0.35735 | 0.82300 | 0.32949 | 0.84328 | 0.30314 | 0.86117 | 0.27837 | 0.87695 | 0.25520 |
| 0.45 | 0.84871 | 0.39368 | 0.86893 | 0.36128 | 0.88638 | 0.33091 | 0.90143 | 0.30261 | 0.91438 | 0.27634 |
| 0.5 | 0.90515 | 0.42510 | 0.92167 | 0.38798 | 0.93541 | 0.35357 | 0.9468 I | 0.32181 | 0.95624 | 0.29259 |
| 0.55 | 0.96963 | 0.44978 | 0.98122 | 0.40796 | 0.99018 | 0.36966 | 0.99700 | 0.33469 | 1.00211 | 0.30285 |
| 0.6 | 1.04203 | 0.46543 | 1.04722 | 0.41926 | 1.05015 | 0.37751 | 1.05136 | 0.33985 | 1.05129 | 0.30593 |
| 0.65 | 1.12161 | 0.46934 | I.11872 | 0.42057 | 1.11427 | 0.37527 | I. 10885 | 0.33580 | 1.10271 | 0.30064 |
| 0.7 | I. 20665 | 0.45847 | 1.19395 | 0.40661 | 1.18081 | -0.36108 | 1.16765 | 0.32108 | 1.15485 | 0.28588 |
| 0.75 | 1.29416 | 0.42977 | 1.27012 | 0.37806 | 24723 | 0.3333 | I. 22572 | 0.29458 | 1.20569 | 0.26087 |
| 0.8 | 1.37961 | 0.38084 | 1.34331 | 0.33238 | 1.31017 | 0.291 | 1. 28006 | 0.25573 | 1.25279 | 0.22532 |
| 0.85 | 1.45701 | 0.31065 | 1.40862 | 0.26920 | 1.36562 | 0.23434 | 1.32742 | 0.20483 | 1.29344 | -. 17968 |
| 0.9 | 1.51945 | 0.22051 | 1. 46062 | 0.19000 | 1.40931 | 0.16461 | 1. 36438 | 0.14330 | 1.32493 | 0.12528 |
| 0.95 | 1.56023 | 0.11463 | I. 49428 | 0.0984 | 1.43735 | 0.0849 | 1.38796 | 0.07380 | 1. 34490 | 0.06438 |
| 1.0 | I. 57443 | 0.00 | 1.50594 | . 00 | 1.44703 | 0.00 | I. 3960 | . 00 | 1.35175 | 0.00 |
| 1.05 | 1.56023 | 0.11463 | 1.49428 | 0.09840 | 1. 43735 | 0.08499 | 1.38796 | 0.07380 | 1.34490 | 0.06438 |
| I.I | 1.51945 | 0.22051 | 1. 46062 | 0.19000 | 1.40931 | 0.16461 | 1.36438 | 0.14330 | 1.32493 | 0.12528 |
| 1.15 | 1.45701 | 0.31065 | 1. 40862 | 0.26920 | 1.36562 | 0.23434 | 1.32742 | 0.20483 | 1.29344 | 0.17968 |
| 1.2 | 1.37961 | 0.38084 | I. 3433 I | 0.33238 | 1.31017 | 0.29108 | 1. 28006 | 0.25573 | . 252 | 0.22 |
| 1.25 | 1.29416 | 0.42977 | 1.27012 | 0.37806 | 1.24723 | 0.33335 | 1.22572 | 0.29458 | 1.20569 | 0.26087 |
| 1.3 | 1.20665 | 0.45847 | 1.19395 | 0.4066r | 1.18081 | 0.36108 | 1.16765 | 0.32108 | 1.15485 | 0.28588 |
| 1.35 | 1.12161 | 0.46934 | 1.11872 | 0.42057 | I.11427 | 0.37527 | 1.10885 | 0.33580 | 1.10271 | 0.30064 |
| 1.4 | 1.04203 | 0.46543 | 1.04722 | 0.41926 | 1.05015 | 0.37751 | 1.05136 | 0.33985 | 1.05129 | 0.30593 |
| 1.45 | 0.96963 | 0.44978 | 0.98122 | 0.40796 | 0.99018 | 0.36966 | 0.99700 | 0.33469 | I.002II | 0.30285 |
| 1.5 | 0.90515 | 0.42510 | 0.92167 | 0.38798 | 0.93541 | 0.35357 | 0.94681 | 0.32181 | 0.95624 | 0.29259 |
| 1.55 | 0.84871 | 0.39368 | 0.86893 | 0.36128 | 0.88638 | 0.33091 | 0.90143 | 0.30261 | 0.91438 | 0.27634 |
| 1.6 | 0.80005 | 0.35735 | 0.82300 | 0.32949 | 0.84328 | 0.30314 | 0.86117 | 0.27837 | 0.87695 | 0.25520 |
| 1.65 | 0.75872 | 0.31749 | 0.78364 | 0.29392 | 0.80603 | 0.27146 | 0.82611 | 0.25018 | 0.84411 | 0.23013 |
| 1.7 | 0.72420 | 0.27516 | 0.7505 I | 0.25559 | 0.77446 | 0.23683 | 0.79620 | 0.21893 | 0.81592 | 0.20198 |
| 1.75 | 0.69595 | 0.23112 | 0.72325 | 0.21528 | 0.74832 | 0.20001 | 0.77130 | 0.18537 | 0.79231 | 0.17143 |
| 1.8 | 0.67352 | 0.18592 | 0.70148 | 0.17357 | 0.72736 | 0.16160 | 0.75123 | 0.15008 | 0.77321 | 0.13906 |
| 1.85 | 0.65649 | 0.13997 | 0.68490 | 0.13089 | 0.71132 | 0.12206 | 0.73582 | 0.11354 | 0.75850 | 0.10537 |
| 1.9 | 0.64456 | 0.09354 | 0.67325 | 0.08758 | 0.70002 | 0.08176 | 0.72494 | 0.07614 | 0.74807 | 0.07073 |
| 1.95 | 0.63749 | 0.04684 | 0.66633 | 0.04388 | 0.69330 | 0.04099 | 0.71845 | 0.03820 | 0.74185 | 0.03551 |
| 2.0 | 0.63515 | 0.00 | 0.66403 | 0.00 | 0.69107 | 0.00 | 0.71629 | 0.00 | 0.73978 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh (0.95+i o)=0.73978+i 0$.
$\tanh \left(0.9+i_{\text {I. }}\right)=0.72494-i 0.07614$.

Table IX. HYPERBOLIC TANGENTS. $\tanh (x+i q)=u+i v$. Continued

| $q$ |  |  |  | 5 | $x=$ |  | $=$ | 15 | $x=$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 0.76159 | 0.00 | 0.7818 I | 0.00 | 0.80050 | 0.00 | 0.81775 | 0.00 | 0.83365 | 0.00 |
| 0.05 | 0.76357 | 0.03293 | 0.78368 | 0.03048 | 0.80227 | 0.02816 | 0.81943 | 0.02597 | 0.83522 | 0.02390 |
| 0.1 | 0.76950 | 0.06556 | 0.78932 | 0.06065 | 0.80760 | 0.05599 | 0.82444 | 0.05160 | 0.83992 | 0.04748 |
| 0.15 | 0.77943 | 0.09757 | 0.79873 | 0.09016 | 0.81648 | 0.08317 | 0.83279 | 0.07658 | 0.84775 | 0.07041 |
| 0.2 | 0.79341 | 0.12858 | 0.81195 | 0.11867 | 0.82893 | 0.10932 | 0.84447 | 0.10054 | 0.85867 | 0.09233 |
| 0.25 | 0.81151 | 0.15821 | 0.82901 | 0.14575 | 0.84495 | 0.13405 | 0.85945 | 0.12310 | 0.87264 | -.11288 |
| 0.3 | 0.83377 | 0.18598 | 0.84991 | 0.17096 | 0.86450 | 0.15692 | 0.87768 | 0.14383 | 0.88958 | 0.13166 |
| 0.35 | 0.86022 | 0.21133 | 0.87464 | 0.19377 | 0.88753 | 0.17742 | 0.89907 | 0.16226 | 0.90938 | 0.14823 |
| 0.4 | 0.89086 | 0.23361 | 0.90311 | 0.21356 | 0.91392 | 0.19501 | 0.92345 | 0.17789 | 0.93186 | 0.16213 |
| 0.45 | 0.92554 | 0.25205 | 0.93515 | 0.22966 | 0.94344 | 0.20906 | 0.95058 | 0.19017 | 0.95674 | 0.17287 |
| 0.5 | 0.96403 | 0.26580 | 0.97045 | 0.24130 | 0.97574 | 0.21892 | 0.98010 | 0.19852 | 0.98368 | 0.17996 |
| 0.55 | 1.00585 | 0.27392 | 1.00852 | 0.24767 | 1.01034 | 0.22389 | 1.01151 | 0. 20236 | 1.01217 | 0.18288 |
| 0.6 | 1.05030 | 0.27542 | 1.04864 | 0.24798 | 1.04654 | 0.22331 | 1.04415 | 0.20115 | 1.04160 | 0.18123 |
| 0.65 | 1.09632 | 0.26933 | 1.08984 | 0.24144 | 1.08342 | 0.21658 | 1.07718 | 0.19441 | 1.07119 | 0.17461 |
| 0.7 | 1.14516 | 0.25486 | 1.13084 | 0.22747 | 1.11984 | 0.20326 | 1.10957 | 0.18182 | 1.10003 | 0.1628 I |
| 0.75 | 1.18715 | 0.23145 | 1.17009 | 0.20572 | 1.15445 | 0.18315 | 1.14015 | 0.16330 | 1.12709 | 0.14580 |
| 0.8 | 1.22812 | 0.19904 | I. 20585 | 0.17623 | 1.18575 | 0.15637 | 1.16763 | 0.13902 | 1.15129 | 0.12380 |
| 0.85 | 1.26319 | 0.15812 | 1.23624 | 0.13955 | 1.21219 | 0.12347 | I. 19346 | 0.10950 | 1.17152 | 0.09730 |
| 0.9 | 1.29017 | 0.10993 | 1.25949 | 0.09677 | 1.23231 | 0.08544 | 1.20821 | 0.07563 | 1.18680 | 0.06709 |
| 0.95 | 1.30721 | 0.05638 | 1.27410 | 0.04956 | 1.24492 | 0.04369 | 1.21914 | 0.03863 | 1.19631 | 0.03424 |
| 1.0 | 1.31304 | 0.00 | 1.27908 | 0.00 | 1.24922 | 0.0 | 1.22286 | 0.00 | 1.19954 | 0.0 |
| 1.05 | 1.30721 | 0.05638 | 1.27410 | 0.04956 | 1.24492 | 0.04369 | 1.21914 | 0.03863 | I.19631 | 0.03424 |
| I. 1 | 1.29017 | 0.10993 | 1.25949 | 0.09677 | 1.23231 | 0.08544 | r. 20821 | 0.07563 | I.18680 | 0.06709 |
| 1.15 | 1.26319 | 0.15812 | 1.23624 | 0.13955 | 1.21219 | 0.12347 | 1.19346 | 0.10950 | 1.17152 | 0.09730 |
| 1.2 | 1.22812 | 0.19904 | 1.20585 | 0.17623 | I.18575 | 0.15637 | 1.16763 | 0.13902 | I.15129 | 0.12380 |
| 1.25 | 1.18715 | 0.23145 | 1.17009 | 0.20572 | I. 5445 | 0.18315 | 1.14015 | 0.16330 | 1.12709 | 0.14580 |
| 1.3 | 1.14516 | 0.25486 | 1.13084 | 0.22747 | 1.11984 | 0.20326 | 1.10957 | 0.18182 | 1.10003 | 0.1628I |
| I. 35 | 1.09632 | 0.26933 | 1.08984 | 0.24144 | 1.08342 | 0.21658 | 1.07718 | 0.19441 | 1.07119 | 0.1746I |
| 1.4 | 1.05030 | 0.27542 | 1.04864 | 0.24798 | r. 04654 | 0.22331 | 1.04415 | 0.20115 | 1.04160 | 0.18123 |
| 1.45 | 1.00585 | 0.27392 | 1.00852 | 0.24767 | 1.01034 | 0.22389 | I.OII5I | 0.20236 | 1.01217 | 0.18288 |
| 1.5 | 0.96403 | 0.26580 | 0.97045 | 0.24130 | 0.97574 | 0.21892 | 0.98010 | 0.19852 | 0.98368 | 0.17996 |
| 1.55 | 0.92554 | 0.25205 | 0.93515 | 0.22966 | 0.94344 | 0.20906 | 0.95058 | 0.19017 | 0.95674 | 0.17287 |
| 1.6 | 0.89086 | 0.23361 | 0.90311 | 0.21356 | 0.91392 | 0.19501 | 0.92345 | 0.17789 | 0.93186 | 0.16213 |
| 1.65 | 0.86022 | 0.21133 | 0.87464 | 0.19377 | 0.88753 | 0.17742 | 0.89907 | 0.16226 | 0.90938 | 0.14823 |
| 1.7 | 0.83377 | 0.18598 | 0.84991 | 0.17096 | 0.86450 | 0.15692 | 0.87768 | 0.14383 | 0.88958 | 0.13166 |
| 1.75 | 0.81151 | 0.15821 | 0.82901 | 0.14575 | 0.84495 | 0.13405 | 0.85945 | 0.12310 | 0.87264 | 0.11288 |
| 1.8 | 0.79341 | 0.12858 | 0.81195 | 0.11867 | 0.82893 | 0.10932 | 0.84447 | 0.10054 | 0.85867 | 0.09233 |
| 1.85 | 0.77943 | 0.09757 | 0.79873 | 0.09016 | 0.81648 | 0.08317 | 0.83279 | 0.07658 | 0.84775 | 0.07041 |
| 1.9 | 0.76950 | 0.06556 | 0.78932 | 0.06065 | 0.80760 | 0.05599 | 0.82444 | 0.05160 | 0.83992 | 0.04748 |
| 1.95 | 0.76357 | 0.03293 | 0.78368 | 0.03048 | 0.80227 | 0.02816 | 0.81943 | 0.02597 | 0.83522 | 0.02390 |
| 2.0 | 0.76159 | 0.00 | 0.78181 | 0.00 | 0.80050 | 0.00 | 0.81775 | 0.00 | 0.83365 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\quad \tanh (1.2+i 0.75)=1.12709+i 0.14580$.
$\tanh (1.2+i \underline{1.25})=1.12709-i 0.14580$.

Table IX. HYPERBOLIC TANGENTS. $\tanh (x+i q)=u+i v . \quad$ Continued

| $\boldsymbol{q}$ |  |  |  |  |  |  | $x$ |  | $x=$ | . 45 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 0.84828 | 0.00 | 0.86172 | 0.00 | 0.87405 | 0.00 | 0.88535 | 0.00 | 0.89569 | . 0 |
| 0.05 | 0.84975 | 0.02197 | 0.86309 | 0.02017 | 0.87533 | 0.01849 | 0.88653 | 0.01693 | 0.89678 | 0.01549 |
| 0.1 | 0.85414 | 0.04363 | 0.86719 | 0.04003 | 0.87913 | 0.03668 | 0.89006 | 0.03357 | 0.90005 | 0.03070 |
| 0.15 | 0.86145 | 0.06464 | 0.87398 | 0.05927 | 0.88544 | 0.05428 | 0.89591 | 0.04965 | 0.90545 | 0.04537 |
| 0.2 | 0.87162 | 0.08468 | 0.88344 | 0.07756 | 0.89421 | 0.07097 | 0.90401 | 0.06486 | 0.91293 | 0.05923 |
| 0.25 | 0.88461 | 0.10339 | 0.89548 | 0.09458 | 0.90535 | 0.08644 | 0.91429 | 0.07892 | 0.9224 | 0.07199 |
| 0.3 | 0.90032 | 0.12039 | 0.90791 | 0.10997 | 0.91875 | 0.10036 | 0.92663 | 0.09151 | 0.93375 | 0.08338 |
| 0.35 | 0.91861 | 0.13528 | 0.92686 | 0.12336 | 0.93425 | O.11240 | 0.94087 | 0.10234 | 0.94680 | 0.09312 |
| 0.4 | 0.93928 | 0.14765 | 0.94585 | -.13437 | 0.95166 | 0.12221 | 0.95680 | 0.11108 | 0.96137 | 0.10092 |
| 0.45 | 0.96207 | 0.15706 | 0.96669 | 0.14262 | 0.97069 | 0.12945 | 0.97417 | 0.11745 | 0.97719 | 0.10654 |
| 0.5 | 0.98661 | 0.16307 | 0.98903 | 0.14773 | - 0.99101 | 0.1338 r | 0.99263 | 0.12117 | 0.99396 | 0.10971 |
| 0.55 | 1.01244 | 0.16528 | 1.01243 | 0.14937 | 1.01219 | 0.13499 | 1.01181 | 0.12199 | 1.01133 | 0.11026 |
| 0.6 | 1.03897 | 0.16332 | 1.03634 | 0.14722 | 1.03375 | 0.13275 | 1.03125 | 0.11972 | 1.02885 | 0.10801 |
| 0.65 | 1.06550 | 0.15691 | 1.06013 | 0.14109 | 1.05510 | 0.12693 | 1.05042 | 0.11425 | 1.04607 | 88 |
| 0.7 | 1.0912I | 0.14591 | 1.08308 | 0.13088 | 1.07560 | 0.11749 | 1.06875 | 0.10555 | 1.06248 | 0.09488 |
| 0.75 | I.II52I | 13034 | I.10439 | 0.11665 | 1.09457 | 0.10450 | 1.08565 | 0.09371 | 1.07756 | 0.08411 |
| 0.8 | 1.13656 | 0.11042 | 1.12328 | 0.09862 | I.III3I | 0.08820 | 1.10052 | 0.07896 | 1.09078 | 0.07077 |
| 0.85 | I.15434 | 0.08662 | 1.13895 | 0.07724 | 1.12512 | 0.06897 | 1.11277 | 0.06167 | I.IOI66 | 0.05521 |
| 0.9 | 1.16772 | 0.05964 | 1.15070 | 0.05311 | 1.1355I | 0.04738 | 1.12192 | 0.04232 | 1.10976 | 0.03785 |
| 0.95 | 1.17603 | 0.03041 | 1.15 | 0.02706 | 1.14192 | 0.02412 | 1.12758 | 0.0215 | 1.11476 | 0.01925 |
| 1.0 | 1.17885 | 0.00 | 1.16047 | . 00 | 1.14410 | 0.00 | I. 12950 | 0.00 | 1.11646 | 0.00 |
| 1.05 | 1.17603 | 0.03041 | 1.15799 | 0.02706 | 1.14192 | 0.02412 | I.I2758 | 0.02153 | 1.11476 | 0.01925 |
| 1. | 1.16772 | 0.05964 | 1.15070 | 0.05 | I.13551 | 0.04738 | I.1219 | . 0.04232 | 1.10976 | 0.03785 |
| 1.15 | I.15434 | 0.08662 | 1.13895 | 0.07724 | I.12512 | 0.06897 | 1.11277 | 0.06167 | 1.10166 | 0.05521 |
| 1.2 | 1.13656 | 0.11042 | I. 12328 | 0.09862 | I.III3I | 0.08820 | 1.10052 | 0.07896 | 1.09078 | 0.07077 |
| 1.25 | 1.115 | 0.13034 | 1.10439 | 0.11665 | 1.09457 | 0.10 | 1.08565 | 0.09371 | 1.07756 | 0.08411 |
| 1.3 | 1.09121 | 0.14591 | 1.08308 | 0.13088 | 1.07560 | 0.11749 | 1.06875 | 0.10555 | 1.06248 | 0.09488 |
| 1.35 | 1.06550 | 0.15691 | 1.06013 | 0.14109 | 1.05510 | 0.12693 | 1.05042 | 0.11425 | 1.04607 | 0.10288 |
| 1.4 | 1.03897 | 0.16332 | 1.03634 | 0.14722 | 1.03375 | 0.13275 | 1.03125 | 0.11972 | 1.02885 | 0.10801 |
| 1.45 | 1.01244 | 0.16528 | 1.OI 243 | 0.14937 | 1.OI219 | 0.13 | 1.01181 | 0.12199 | 1.01133 | 026 |
| 1.5 | 0.98661 | 0.16307 | 0.98903 | 0.14773 | 0.99101 | 0.1338 r | 0.99263 | 0.12117 | 0.99396 | 0.10971 |
| 1.55 | 0.96207 | 0.15706 | 0.96669 | 0.14262 | 0.97069 | 0.12945 | 0.97417 | 0.17745 | 0.97719 | 0.10654 |
| 1.6 | 0.93928 | 0.14765 | 0.94585 | 0.13437 | 0.95166 | 0.12221 | 0.95680 | 0.11108 | 0.96137 | 0.10092 |
| 1.65 | 0.91861 | 0.13528 | 0.92686 | 0.123 | 0.93425 | 0.11240 | 0.94087 | 0.10234 | 0.94680 | 0.09312 |
| 1.7 | 0.90032 | 0.12039 | 0.90791 | 0.10997 | 0.91875 | 0.10036 | 0.92663 | 0.09151 | 0.93375 | 0.08338 |
| 1.75 | 0.88461 | 0.10339 | 0.89548 | 0.09458 | 0.90535 | 0.08644 | 0.91429 | 0.07892 | 0.92240 | 0.07199 |
| 1.8 | 0.87162 | 0.08468 | 0.88344 | 0.07756 | 0.8942 I | 0.07097 | 0.90401 | 0.06486 | 0.91293 | 0.05923 |
| 1.85 | 0.86145 | 0.06464 | 0.87398 | 0.05927 | 0.88544 | 0.05428 | 0.89591 | 0.04965 | 0.90545 | 0.04537 |
| 1.9 | 0.85414 | 0.04363 | 0.86719 | 0.04003 | 0.87913 | 0.03668 | 0.89006 | 0.03357 | 0.90005 | 0.03070 |
| 1.95 | 0.84975 | 0.02197 | 0.86309 | 0.02017 | 0.87533 | 0.01849 | 0.88653 | 0.01693 | 0.89678 | 0.01549 |
| 2.0 | 0.84828 | 0.00 | 0.86172 | 0.00 | 0.87405 | 0.00 | 0.88535 | 0.00 | 0.89569 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh (\mathrm{I} .4+i \underline{0.8})=1.1005^{2}+i 0.07896$.
$\tanh (\mathrm{I} .3+i \underline{\mathrm{I} .3})=1.08308-i 0.13088$.

Table IX. HYperbolic tangents. $\tanh (x+i q)=u+i v$. Continued

| $\boldsymbol{q}$ | $x=$ |  | $x$ |  | $x$ | 1.6 | $x=$ | . 65 | $x=$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 0.90515 | 0.00 | 0.91379 | 0.00 | 0.92167 | 0.00 | 0.92886 | 0.00 | 0.93541 | 0.00 |
| 0.05 | 0.90616 | 0.01415 | 0.91471 | 0.01292 | 0.92253 | 0.01178 | 0.92964 | 0.01074 | 0.93613 | 0.00979 |
| 0.1 | 0.90917 | 0.02804 | 0.91749 | 0.02560 | 0.92508 | 0.02334 | 0.93199 | 0.02127 | 0.93828 | 0.01937 |
| 0.15 | 0.91415 | 0.04143 | 0.92208 | 0.03779 | 0.92929 | 0.03445 | 0.93586 | 0.03138 | 0.94183 | 0.02857 |
| 0.2 | 0.92104 | 0.05404 | 0.92842 | 0.04927 | 0.93511 | 0.04488 | 0.94119 | 0.04086 | 0.9467 I | 0.03718 |
| 0.25 | 0.92975 | 0.06563 | 0.93641 | 0.05978 | 0.94245 | 0.05442 | 0.94791 | 0.04951 | 0.95285 | 0.04502 |
| 0.3 | 0.94017 | 0.07593 | 0.94595 | 0.06909 | 0.95118 | 0.06284 | 0.95589 | 0.05712 | 0.96015 | 0.05190 |
| 0.35 | 0.95212 | 0.08468 | 0.95689 | 0.07697 | 0.96117 | 0.06993 | 0.96501 | 0.06351 | 0.96846 | 0.05766 |
| 0.4 | 0.96542 | 0.09165 | 0.96903 | 0.08320 | 0.97223 | 0.07551 | 0.97509 | 0.06850 | 0.97763 | 0.06213 |
| 0.45 | 0.97983 | 0.09660 | 0.98214 | 0.08758 | 0.98415 | $0.0793^{8}$ | 0.98592 | 0.07193 | 0.98748 | 0.06517 |
| 0.5 | 0.99506 | 0.09933 | 0.99595 | 0.08992 | 0.99668 | 0.08139 | 0.99728 | 0.07367 | 0.99777 | 0.06667 |
| 0.55 | 1.01076 | 0.09965 | 1.01016 | 0.09008 | 1.00954 | 0.08142 | 1.00891 | 0.07361 | 1.00829 | 0.06655 |
| 0.6 | 1.02657 | 0.09746 | 1.02441 | 0.08796 | 1.02240 | 0.07940 | 1.02052 | 0.07169 | 1.01877 | 0.06474 |
| 0.65 | 1.04204 | 0.09268 | 1.03834 | 0.08353 | 1.03492 | 0.07530 | 1.03179 | 0.06791 | 1.02892 | 0.06126 |
| 0.7 | 1.05675 | 0.08534 | 1.05152 | 0.07680 | 1.04676 | 0.06915 | 1.04242 | 0.06230 | 1.03847 | 0.05614 |
| 0.75 | 1.07022 | 0.07554 | 1.06357 | 0.06790 | 1.05755 | 0.06107 | 1.05209 | 0.05495 | 1.04714 | 0.04948 |
| 0.8 | 1.08200 | 0.06349 | 1.07408 | 0.05700 | 1.06693 | 0.05121 | 1.06049 | 0.04604 | 1.05466 | 0.04142 |
| 0.85 | 1.09167 | 0.04947 | 1.08269 | 0.04438 | 1.07461 | 0.03984 | 1.06734 | 0.03579 | 1.06079 | 0.03218 |
| 0.9 | 1.09886 | 0.03390 | 1.08909 | 0.03038 | 1.08030 | 0.02726 | 1.07241 | 0.02448 | 1.06533 | 0.02200 |
| 0.95 | 1.10329 | 0.01723 | 1.09302 | 0.01544 | 1.08380 | $0.013^{8} 5$ | 1.07554 | 0.01243 | 1.068 II | 0.01117 |
| 1.0 | 1.10479 | 00 | 1.09436 | 0.00 | 1.08500 | 0.00 | 1.07659 | 0.00 | 1.06906 | 0.00 |
| 1.05 | 1.10329 | 0.01723 | 1.09302 | 0.01544 | 1.08380 | 0.01385 | 1.07554 | 0.01243 | 1.06811 | 0.01117 |
| I.I | 1.09886 | 0.03390 | 1.08909 | 0.03038 | 1.08030 | 0.02726 | 1.07241 | 0.02448 | 1.06533 | 0.02200 |
| 1.15 | 1.09167 | 0.04947 | 1.08269 | 0.04438 | 1.07461 | 0.03984 | 1.06734 | 0.03579 | 1.06079 | 0.03218 |
| 1.2 | 1.08200 | 0.06349 | 1.07408 | 0.05700 | 1.06693 | 0.0512 I | 1.06049 | 0.04604 | 1.05466 | 0.04142 |
| 1.25 | 1.07022 | 0.07554 | 1.06357 | 0.06790 | 1.05755 | 0.06107 | 1.05209 | 0.05495 | 1.04714 | 0.04948 |
| 1.3 | 1.05675 | 0.08534 | 1.05152 | 0.07680 | 1.04676 | 0.06915 | 1.04242 | 0.06230 | 1.03847 | 0.05614 |
| 1.35 | 1.04204 | 0.09268 | I.O3834 | 0.08353 | 1.03492 | 0.07530 | 1.03179 | 0.06791 | 1.02892 | 0.06126 |
| 1. 4 | 1.02657 | 0.09746 | 1.0244I | 0.08796 | 1.02240 | 0.07940 | 1.02052 | 0.07169 | 1.01877 | 0.06474 |
| 1.45 | 1.01076 | 0.09965 | I.OIOI6 | 0.09008 | 1.00954 | 0.08142 | 1.00891 | 0.07361 | 1.00829 | 0.06655 |
| 1.5 | 0.99506 | 0.09933 | 0.99595 | 0.08992 | 0.99668 | 0.08139 | 0.99728 | 0.07367 | 0.99777 | 0.06667 |
| 1.55 | 0.97983 | 0.09660 | 0.98214 | 0.08758 | 0.98415 | 0.07938 | 0.98592 | 0.07193 | 0.98748 | 0.06517 |
| 1.6 | 0.96542 | 0.09165 | 0.96903 | 0.08320 | 0.97223 | 0.07551 | 0.97509 | 0.06850 | 0.97763 | 0.06213 |
| 1.65 | 0.95212 | 0.08468 | 0.95689 | 0.07697 | 0.96117 | 0.06993 | 0.96501 | 0.06351 | 0.96846 | 0.05766 |
| 1.7 | 0.94017 | 0.07593 | 0.94595 | 0.06909 | 0.95118 | 0.06284 | 0.95589 | 0.05712 | 0.96015 | 0.05190 |
| 1.75 | 0.92975 | 0.06563 | 0.93641 | 0.05978 | 0.94245 | 0.05442 | 0.94791 | 0.04951 | 0.95285 | 0.04502 |
| 1.8 | 0.92104 | 0.05404 | 0.92842 | 0.04927 | 0.93511 | 0.04488 | 0.94119 | 0.04086 | 0.94671 | 0.03718 |
| 1.85 | 0.91415 | 0.04143 | 0.92208 | 0.03779 | 0.92929 | 0.03445 | 0.93586 | 0.03138 | 0.94183 | 0.02857 |
| 1.9 | 0.90917 | 0.02804 | 0.91749 | 0.02560 | 0.92508 | 0.02334 | 0.93199 | 0.02127 | 0.93828 | 0.01937 |
| 1.95 | 0.90616 | 0.01415 | 0.91471 | 0.01292 | 0.92253 | 0.01178 | 0.92964 | 0.01074 | 0.93613 | 0.00979 |
| 2.0 | 0.90515 | 0.00 | 0.91379 | 0.00 | 0.92167 | 0.00 | 0.92886 | 0.00 | 0.93541 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh (1.7+i \underline{0.7})=1.03847+i 0.05614$.
$\tanh \left(\mathrm{1} .6+i_{\text {1.6 }}\right)=0.97223-i 0.0755 \mathrm{I}$.

Table IX. HYPERBOLIC TANGENTS. $\tanh (x+i q)=u+i v$. Continued

| $\underline{1}$ | $x=1.75$ |  | $x=1.8$ |  | $x=1.85$ |  | $x=1.9$ |  | $x=1.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 0.94138 | 0.00 | 0.94681 | 0.00 | 0.95175 | 0.00 | 0.95624 |  |  | 0.00 |
| 0.05 | 0.94204 | 0.00891 | 0.94741 | 0.00811 | 0.95230 | 0.00737 | 0.95674 | 0.00670 | 0.96078 | 0.00609 |
| 0.1 | 0.94400 | 0.01763 | 0.9492 I | 0.01604 | 0.95394 | 0.01459 | 0.95825 | 0.01326 | 0.96215 | 0.01204 |
| 0.15 | 0.94725 | 0.02600 | 0.95218 | 0.02364 | 0.95666 | 0.02149 | 0.96072 | 0.01952 | 0.96441 | 0.01773 |
| 0.2 | 0.95172 | 0.03382 | 0.95626 | 0.03074 | 0.96038 | 0.02793 | 0.96412 | 0.02537 | 0.96750 | 0.02303 |
| 0.25 | 0.95733 | 0.04092 | 0.96139 | 0.03718 | 0.96506 | 0.03376 | 0.96838 | 0.03065 | 0.97138 | 0.02782 |
| 0.3 | 0.96399 | 0.04714 | 0.96746 | 0.04280 | 0.97059 | 0.03885 | 0.97342 | 0.03525 | 0.97597 | 0.03198 |
| 0.35 | 0.97156 | 0.05233 | 0.97435 | 0.04748 | 0.97686 | 0.04307 | 0.97912 | 0.03905 | 0.98116 | 0.03541 |
| 0.4 | 0.97991 | 0.05634 | 0.98194 | 0.05107 | 0.98376 | 0.04629 | 0.98538 | 0.04195 | 0.98684 | 0.03801 |
| 0.45 | 0.98884 | 0.05904 | 0.99005 | 0.05348 | 0.991 II | 0.04843 | 0.99206 | 0.04386 | 0.99289 | 0.03972 |
| 0.5 | 0.99818 | 0.06034 | 0.99851 | 0.05461 | 0.99878 | 0.04942 | 0.99900 | 0.04472 | 0.99918 | 0.04047 |
| 0.55 | 1.00769 | 0.06017 | 1.00711 | 0.05440 | 1.00656 | 0.04919 | 1.00604 | 0.04448 | 1.00555 | 0.04022 |
| 0.6 | 1.01714 | 0.05848 | 1.01565 | 0.05283 | 1.01427 | 0.04773 | 1.01300 | 0.04313 | 1.01184 | 0.03897 |
| 0.65 | 1.02629 | 0.05528 | 1.02389 | 0.04989 | 1.02170 | 0.04504 | 1.01970 | 0.04067 | 1.01788 | 0.03673 |
| 0.7 | 1.03488 | 0.05061 | 1.03162 | 0.04564 | 1.02866 | 0.04118 | 1.02596 | 0.03716 | 1.02352 | 0.03354 |
| 0.75 | 1.04266 | 0.04457 | 1.03861 | 0.04016 | 1.03494 | 0.03621 | 1.03162 | 0.03265 | 1.02862 | 0.02946 |
| 0.8 | 1.04940 | 0.03729 | 1.04466 | 0.03358 | 1.04037 | 0.03026 | 1.03650 | 0.02727 | 1.03300 | 0.02459 |
| 0.85 | 1.05489 | 0.02895 | 1.04958 | 0.02606 | 1.04478 | 0.02347 | 1.04046 | 0.02115 | 1.03656 | 0.01906 |
| 0.9 | 1.05895 | 0.01978 | 1.05320 | 0.01780 | 1.04804 | 0.01602 | 1.04337 | 0.01443 | 1.03918 | .01301 |
| 0.95 | 1.06143 | 0.01004 | 1.05543 | 0.00903 | 1.05003 | 0.00813 | 1.04516 | 0.00732 | 1.04078 | 0.00659 |
| 1.0 | 1.06228 | 0.00 | 1.05619 | 0.00 | 1.05070 | 0.00 | 1.04576 | 0.00 | 1.04131 | 0.00 |
| 1.05 | 1.06143 | 0.01004 | 1.05543 | 0.00903 | 1.05003 | 0.00813 | 1.04516 | 0.00 | 1.04078 | 0.00659 |
| 1.1 | 1.05895 | 0.01978 | 1.05320 | 0.01780 | 1.04804 | 0.01602 | 1.04337 | 0.01443 | 1.03918 | 0.01301 |
| 1.15 | 1.05489 | 0.02895 | 1.04958 | 0.02606 | 1.04478 | 0.02347 | 1.04046 | 0.02115 | 1.03656 | 0.01906 |
| 1.2 | 1.04940 | 0.03729 | 1.04466 | 0.03358 | 1.04037 | 0.03026 | 1.03650 | 0.02727 | 1.03300 | 0.0245 |
| 1.25 | 1.04266 | 0.04457 | 1.03861 | 0.04016 | 1.03494 | 0.03621 | 1.03162 | 0.03265 | 1.02862 | 0.02946 |
| 1.3 | 1.03488 | 0.05061 | 1.03162 | 0.04564 | 1.02866 | 0.04118 | 1.02596 | 0.03716 | 1.02352 | 0.03354 |
| 1. 35 | 1.02629 | 0.05528 | 1.02389 | 0.04989 | 1.02170 | 0.04504 | 1.01970 | 0.04067 | 1.01788 | 0.03673 |
| 1.4 | 1.01714 | 0.05848 | I.O1565 | 0.05283 | 1.01427 | 0.04773 | 1.01300 | 0.04313 | r.oil 84 | 0.003897 |
| 1. 45 | 1.00769 | 0.06017 | 1.00711 | 0.05 | 1.00656 | 0.04919 | 1.00604 | 0.04448 | 1.00555 | 0.04022 |
| 1.5 | 0.99818 | 0.06034 | 0.99851 | 0.05461 | 0.99878 | 0.04942 | 0.99900 | 0.04472 | 0.99918 | 0.04047 |
| 1.55 | 0.98884 | 0.05904 | 0.99005 | 0.05348 | 0.99111 | 0.04843 | 0.99206 | 0.04386 | 0.99289 | 0.03972 |
| 1.6 | 0.97991 | 0.05634 | 0.98194 | 0.05107 | 0.98376 | 0.04629 | 0.98538 | 0.04195 | 0.98684 | 0.03801 |
| 1.65 | 0.97156 | 0.05233 | 0.97435 | 0.04748 | 0.97686 | 0.04307 | 0.97912 | 0.03905 | 0.98116 | 0.03541 |
| 1.7 | 0.96399 | 0.04714 | 0.96746 | 0.04280 | 0.97059 | 0.03885 | 0.97342 | 0.03525 | 0.97597 | 0.03198 |
| 1.75 | 0.95733 | 0.04092 | 0.96139 | 0.03718 | 0.96506 | 0.03376 | 0.96838 | 0.03065 | 0.97138 | 0.02782 |
| 1.8 | 0.95172 | 0.03382 | 0.95626 | 0.03074 | 0.96038 | 0.02793 | 0.96412 | 0.02537 | 0.96750 | 0.02303 |
| 1.85 | 0.94725 | 0.02600 | 0.95218 | 0.02364 | 0.95666 | 0.02149 | 0.96072 | 0.01952 | 0.96441 | 0.01773 |
| 1.9 | 0.94400 | 0.01763 | 0.94921 | 0.01604 | 0.95394 | 0.01459 | 0.95825 | 0.01326 | 0.96215 | 0.01204 |
| 1.95 | 0.94204 | 0.00891 | 0.94741 | 0.0081 | 0.95230 | 0.00737 | 0.95674 | 0.00670 | 0.96078 | 0.00609 |
| 2.0 | 0.94138 | 0.00 | 0.9468 I | 0.00 | 0.95175 | 0.00 | 0.95624 | 0.00 | 0.96032 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh (1.85+i 0.85)=1.04478+i 0.02347$. $\tanh \left(1.95+i_{\text {1.25 }}\right)=1.02862-i 0.02946$.

Table IX. HYPERBOLIC TANGENTS. $\tanh (x+i q)=u+i v$. Continued

| 0 | 0.96403 | 0.00 |
| :--- | :--- | :--- |
| 0.05 | 0.96445 | 0.00553 |
| 0.1 | 0.96570 | 0.01094 |
| 0.15 | 0.96775 | 0.01610 |
| 0.2 | 0.97058 | 0.02090 |
| 0.25 | 0.97411 | 0.02524 |
| 0.3 | 0.97827 | 0.02900 |
| 0.35 | 0.98299 | 0.03209 |
| 0.4 | 0.98815 | 0.03444 |
| 0.45 | 0.99364 | 0.03596 |
| 0.5 | 0.99933 | 0.03662 |
| 0.55 | 1.0509 | 0.03638 |
| 0.6 | 1.01077 | 0.03523 |
| 0.65 | 1.01623 | 0.03318 |
| 0.7 | 1.02131 | 0.03028 |
| 0.75 | 1.02589 | 0.02658 |
| 0.8 | 1.02984 | 0.02218 |
| 0.85 | 1.03304 | 0.01719 |
| 0.9 | 1.03539 | 0.01172 |
| 0.95 | 1.03683 | 0.00594 |


| 1.0 | 1.03731 | 0.00 | 1.03370 | 0.00 |
| :---: | :---: | :---: | :---: | :---: |
| 1.05 | 1.03683 | 0.00594 | 1.03327 | 0.00536 |
| I.I | 1.03539 | 0.01172 | 1.03197 | 0.01057 |
| 1.15 | 1.03304 | 0.01719 | 1.02986 | 0.01550 |
| 1.2 | 1.02984 | 0.02218 | 1.02698 | 0.02001 |
| 1.25 | 1.02589 | 0.02658 | 1.02343 | 0.02399 |
| I. 3 | 1.02131 | 0.03028 | 1.O1930 | 0.02734 |
| I. 35 | 1.01623 | 0.03318 | 1.01471 | 0.02998 |
| 1.4 | 1.01077 | 0.03523 | 1.00979 | 0.03184 |
| 1. 45 | 1.00509 | 0.03638 | 1.00466 | 0.03290 |
| 1.5 | 0.99933 | 0.03662 | 0.99945 | 0.03314 |
| 1. 55 | 0.99364 | 0.03596 | 0.99430 | 0.03256 |
| 1.6 | 0.98815 | 0.03444 | 0.98932 | 0.03120 |
| 1. 65 | 0.98299 | 0.03209 | 0.98464 | 0.02909 |
| 1.7 | 0.97827 | 0.02900 | 0.98036 | 0.02630 |
| 1.75 | 0.97411 | 0.02524 | 0.97657 | 0.02289 |
| 1.8 | 0.97058 | 0.02090 | 0.97336 | 0.01897 |
| 1.85 | 0.96775 | 0.01610 | 0.97079 | 0.01461 |
| 1.9 | 0.96570 | 0.01094 | 0.96892 | 0.00993 |
| 1.95 | 0.96445 | 0.00553 | 0.96778 | 0.00502 |
| 2.0 | 0.96403 | 0.00 | 0.96740 | 0.00 |

$x=2 . \mathrm{I}$
$0.96740 \quad 0.00$ $0.96778 \quad 0.00502$ 0.968920 .00993 0.970790 .01461 $0.97336 \quad 0.01897$
$0.97657 \quad 0.02289$ $0.98036 \quad 0.02630$ $0.98464 \quad 0.02909$ 0.989320 .03120 $0.99430 \quad 0.03256$
$0.99945 \quad 0.03314$ 1.004660 .03290 $1.00979 \quad 0.03184$ 1.014710 .02998 $1.01930 \quad 0.02734$

| 1.02343 | 0.02399 |
| :--- | :--- |
| 1.02698 | 0.02001 |
| 1.02986 | 0.01550 |
| 1.03197 | 0.01057 |
| 1.03327 | 0.00536 |

1.030450 .00 $1.03005 \quad 0.00483$ 1.028890 .00954 1.026990 .01399 $1.02440 \quad 0.01806$
$1.02120 \quad 0.02166$ I.OI748 0.02469 1.OI $334 \quad 0.02709$ $1.00890 \quad 0.02878$ 1.004260 .02976
$0.99955 \quad 0.02998$ $0.99489 \quad 0.02948$ $0.99037 \quad 0.02826$ $0.98613 \quad 0.02636$ $0.98224 \quad 0.02384$
$0.97880 \quad 0.02076$ 0.97588 0.01721 0.973540 .01326 $0.97184,0.00901$ $0.97080 \quad 0.00456$

$$
x=2.15
$$

### 0.973230 .00

 $0.97354 \quad 0.00413$ 0.974490 .00817 0.976040 .01203 0.978160 .01561$0.9808 \mathrm{I} \quad 0.01882$ 0.983940 .02161 $0.98747 \quad 0.02388$ 0.991320 .02559 0.995410 .02669
0.999630 .02713 $1.00389 \quad 0.02691$ $1.00808 \quad 0.02602$ $1.01210 \quad 0.02448$ 1.015830 .02231 1.019190 .01956 1.022070 .01631 1.024400 .01262 1.026110 .00861 1.027150 .00436

| 1.02751 | 0.00 |
| :--- | :--- |
| 1.02715 | 0.00436 |
| 1.02611 | 0.00861 |
| 1.02440 | 0.01262 |
| 1.02207 | 0.01631 |
|  |  |
| 1.01919 | 0.01956 |
| 1.01583 | 0.02231 |
| 1.01210 | 0.02448 |
| 1.00808 | 0.02602 |
| 1.00389 | 0.02601 | $1.00389 \quad 0.02691$ 0.999630 .02713 $0.9954 \mathrm{I} \quad 0.02669$ 0.991320 .02559 $0.98747 \quad 0.02388$ 0.98394 0.02161

$0.9808 \mathrm{I} \quad 0.01882$ $0.97816 \quad 0.01561$ 0.976040 .01203 0.974490 .00817 0.973540 .00413
0.973230 .00
$x=2.2$
0.975740 .00 0.976030 .00375 0.976890 .00741 $0.97830 \quad 0.01091$ 0.980230 .01415
0.982640 .01706 $0.98548 \quad 0.01958$ $0.98868 \quad 0.02163$ $0.99217 \quad 0.02317$ 0.995870 .02416
$0.99970 \quad 0.02455$ 1.003550 .02434 1.007340 .02353 1.010970 .02212 1.014340 .02015 1.017360 .01767 1.019960 .01472 1.022060 .01140 $1.02360 \quad 0.00777$ 1.024540 .00394
$1.02486 \quad 0.00$
1.024540 .00394 $1.02360 \quad 0.00777$ 1.022060 .01140 1.019960 .01472
$1.01736 \quad 0.01767$
1.014340 .02015 1.010970 .02212 1.007340 .02353 1.003550 .02434
$0.99970 \quad 0.02455$ $0.99587 \quad 0.02416$ $0.99217 \quad 0.02317$ $0.98868 \quad 0.02163$ $0.98548 \quad 0.01958$
$0.98264 \quad 0.01706$ 0.980230 .01415 0.97830 0.01091 $0.97689 \quad 0.00741$ 0.976030 .00375
0.975740 .00

Note. Negative quantities are in heavy type.
Examples. $\tanh (2.2+i 0)=097574+i 0$.
$\tanh \left(2.15+\underline{I I I S}^{\text {I.15 }}=1.02440-i 0.01262\right.$.

Table IX. HYPERBOLIC TANGENTS. $\tanh (x+i q)=u+i v . \quad$ Continued

|  | $x=2.25$ |  | $x=2.3$ |  | $x=2.35$ |  | $x=2.4$ |  | $x=2.45$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.00 |  | 0.00 |  |  |  | 0.00 |  |  |
| 0.05 | 0.97829 | 0.00340 | 0.98034 | 0.00308 | 0.98219 | 0.00280 | 0.98387 | 0.00253 | 0.98540 | 0.0023 |
| 0.1 | 0.97907 | 0.00672 | 0.9810 | 0.00610 | 0.982 | 0.00553 | 0.98446 | 0.00501 |  | 0.0045 |
| 0.15 | 0.98035 | 0.00989 | 0.98221 | 0.0089 | 0.98389 | 0.00813 | 0.98541 | 0.00736 | 0.98680 | 0.0066 |
| 0.2 | 0.98210 | 0.01283 | 0.98380 | 0.011 | 0.985 | 0.01054 | 0.98673 | 0.00955 | 0.98799 | 0. |
| 0.25 | 0.9842 | 0.01547 |  |  |  |  | 0.98836 | 0.01150 | 0.98947 |  |
| 0.3 | 0.9868 | 0.01774 | 0.98813 | 0.0160 | 0.989 | 0.01456 | 0.99029 | 0.01319 | 0.99121 | 0.011 |
| 0.35 | 0.98977 | 0.01960 | 0.99076 | 0.01775 | 0.99165 | 0.01607 | 0.99245 | 0.01456 | 0.99317 | 0.013 |
| 0.4 | 0.99294 | 0.02098 | 0.99363 | 0.019 | . 99425 | 0.017 | 0.9948 | 0.0 | 0.9953 I | 0.01 |
| . 45 | 0.99629 | 0.0218 | 0.99667 | 0.019 | 99700 | 0.01 | 997 |  | . 9975 | 0.0146 |
| 0.5 | 0.99975 | 0.02222 | 0.99 |  | 0.9 | 0.01 | 0.9 | 0.01 | 0.99989 |  |
| 0.55 | 1.00324 | 0.02202 | 1.00295 | 0.019 | 1.00269 | 0.01 | 1.00245 | 0.0163 | 1.00222 | 0.0147 |
| 0.6 | I. 006 | 0.02127 | 1.00604 | 0.01924 | 1.00549 | 0.0174 | 1.0049 | 0.0157 | . 0 | 0.0142 |
| 0.65 | 1.00994 | 0.020 | 1.0090 | 0.018 | 1.00816 | 0.016 | 1.00739 | 0.014 | 1.00693 | 0.01336 |
| . 7 | I.OI 298 | 0.018 | 1.01 | 0.016 | 1.01064 | 0.014 | 1.00963 | 0.0134 | 1.00872 | 0.01216 |
|  | I. 1 | 0.01596 | 1.0142I |  | 1.01286 | 0.013 | 1.01164 | 0.01178 | 1.01053 |  |
| 0.8 | 1.0180 | 0.01330 | 1.016 | 0.01201 | 1.01477 | 0.01085 | 1.01336 | 0.0098 I | 1.01208 | . 0 |
| 0.85 | 1.01994 | 0.01029 | 1.018 | 0.009 | 1.016 | 0.00839 | 1.01475 | 0.00758 | 1.0133 | 0.0068 |
| 0.9 | 1.0213 | 0.00701 | 1.019 | 0.00633 | 1.01 | 0.00572 | 1.015 | 0.00517 | 1.014 | , |
| 0.95 | 1.0221 | 0.003 | 1.02006 | 0.003 |  | 0.002 | I.OI | 0.00 |  |  |
| 1.0 | 02 | 0.00 | 1.0203 | 0.00 | 1.01836 | 0.00 | 1.01659 |  | 1.01500 | 0.00 |
| 1.05 | 1.02 | 0.00355 | 1.020 | 0.003 |  | 0.00290 | 1.01639 | 0.00 | 1.01482 | 0.0023 |
| I. 1 | 1.021 | 0.00701 | . 19 | 0.00633 | 1.01 | 0.00572 | 1.0157 | 0.0051 | 1.01425 | 0.0046 |
| 15 | 1.019 | 0.010 | 1.01803 | 0.0092 | 1.01 | 0.008 | 1.014 | 0.00758 | I. 013 | 0.0068 |
| 1.2 | 1.018 | 0.013 | 1.016 |  | I. 014 |  | 1.01 | 0.009 | 1.01 |  |
| 1.25 | 1.01571 | 0.0159 | 1.0142I | 0.014 | r.01286 | 0.013 | 1.01 | 0.01 | 1.01053 | 0.0 |
| 1. 3 | 1.01298 | 0.01821 | 1.01175 | 0.01646 | 1 | 0.01487 | .0096 | 0.0134 | . 008 |  |
| 1.35 | 1.0099 | 020 | . 009 | 0.01808 | .0081 | 0.0163 | 1.0073 | 0.0147 | 1.0069 | 0.013 |
| I. 4 | 1.006 | 0.021 | 1.006 | 0.0192 | 1.00549 | 0.01740 | 1.00498 | 0.01573 | 1.00451 | 0.0 |
| 1.45 | 1.0 | 0.0 | 1.00295 | 0.01 |  | 0.0 | 1.00245 | 0.0 | 1.00 | 0.0 |
| 1.5 | 0.9 | 0.02 |  | 0.0 | 0.99984 | 0.01819 | 0.99986 | 0.01646 |  | 0.01489 |
| 1.55 | 0.99629 | 0.02187 | 0.99667 | 0.01979 | 0.99700 | 0.01791 | 0.99730 | 0.01621 | . 99757 | 0.01468 |
| 1.6 | 0.99294 | 0.02098 | 0.99363 | 0.0190 | 0.99425 | 0.0172 | 0.9948 | 0.0155 | -.99531 | 0.0141 |
| 1.65 | 0.98977 | 0.01960 | 0.99076 | 0.017 | 0.9916 | 0.01607 | 0.99245 | 0.01456 | 0.99317 | 0.0131 |
| 1.7 | 0.98687 | o. | 8813 | 0.016 | 0.98926 | 0.014 | 0.99029 | 0.013 | 10, |  |
| 75 | 0.98429 | 0.0154 | 0.9 | 0.01401 | . 98714 | 0.01270 | 0.98836 | 0.01150 | 0.98947 | 0.01042 |
| 1.8 | 0.98210 | 0.01283 | 0.98380 | 0.01163 | . 98534 | 0.01054 | 0.98673 | 0.00955 | 0.98799 | 0.00865 |
| 85 | 0.98035 | 0.00989 | 0.98221 | 0.00897 | 0. 98389 | 0.00813 | 0.985 | 0.00736 | 0.98680 | 0.00667 |
| 1.9 | 0.97907 | 0.00 | .98105 | 0.006r0 | . 98283 | 0.00553 | 0.9844 | 0.00501 | 0.98592 | 0.00454 |
| 1.95 | 0.97829 | 0.00340 | 0.98034 | 0.00308 | 0.98219 | 0.00280 | 0.9838 | 0.00253 | 0.98540 | . 002 |
| 2.0 | 0.97803 | 0.00 | . .98 | . 00 | -.9819 | 0.00 | 0.9836 | 0.00 | . 985 |  |

Note. Negative quantities are in heavy type.
Examples. $\quad \tanh (2.25+i 0.25)=0.98429+i 0.01547$.
$\tanh (2.45+i \underline{\text { 1.45 }})=1.00222-i 0.01474$.

Table IX. HYPERBOLIC TANGENTS. $\tanh (x+i q)=u+i v$. Continued

| $q$ |  |  | $x=$ |  | $x=$ |  | $x=$ |  | $x=$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | -. 866 I | 0.00 | 0.98788 | 0.00 | 0.98903 | 0.00 | 0.99007 | 0.00 | 0.99101 | 0.00 |
| 0.05 | 0.98678 | 0.00208 | 0.98803 | 0.00189 | 0.98916 | 0.00171 | 0.99019 | 0.00155 | 0.99112 | 0.00140 |
| 0.1 | 0.98726 | 0.00411 | 0.98846 | 0.00373 | 0.98956 | 0.00337 | 0.99055 | 0.00306 | 0.99144 | 0.00277 |
| 0.15 | 0.98805 | 0.00605 | 0.98918 | 0.00548 | 0.99021 | 0.00496 | 0.99113 | 0.00449 | 0.99198 | 0.00407 |
| 0.2 | 0.98913 | 0.00784 | 0.99016 | 0.00710 | 0.99109 | 0.00643 | 0.99194 | $0.005^{82}$ | 0.99270 | 0.00527 |
| 0.25 | 0.99047 | 0.00944 | 0.99138 | 0.00855 | 0.99220 | 0.00774 | 0.99294 | 0.00701 | 0.99361 | 0.00635 |
| 0.3 | 0.99205 | 0.01082 | 0.99281 | 0.00979 | 0.99350 | 0.00887 | 0.99412 | 0.00803 | 0.99468 | 0.00727 |
| 0.35 | 0.99383 | 0.01193 | 0.99442 | 0.01080 | 0.99495 | 0.00978 | 0.99544 | 0.00886 | 0.99588 | 0.00802 |
| 0.4 | 0.99576 | 0.01276 | 0.99617 | 0.01155 | 0.99654 | 0.01046 | 0.99688 | 0.00947 | 0.99718 | 0.00857 |
| 0.45 | 0.9978 I | 0.01328 | 0.99802 | 0.01202 | 0.99822 | 0.01088 | 0.99839 | 0.00985 | 0.99855 | 0.00891 |
| 0.5 | 0.9999 I | 0.01348 | 0.99993 | 0.01219 | 0.99994 | 0.01103 | 0.99995 | 0.00998 | 0.99996 | 0.00903 |
| 0.55 | 1.00202 | 0.01334 | 1.00184 | 0.01207 | 1.00167 | 0.01092 | 1.00151 | 0.00988 | 1.00137 | 0.00893 |
| 0.6 | 1.00409 | -.01287 | 1.00371 | 0.01164 | 1.00336 | 0.01053 | 1.00304 | 0.00952 | 1.00276 | 0.00862 |
| 0.65 | 1.00606 | 0.01208 | 1.00549 | 0.01093 | 1.00498 | 0.00988 | 1.00450 | 0.00894 | 1.00408 | 0.00808 |
| 0.7 | 1.00789 | 0.01099 | 1.00714 | 0.00994 | 1.00647 | 0.00898 | $1.005^{85}$ | 0.00812 | 1.00530 | 0.00735 |
| 0.75 | 1.00953 | 0.00962 | 1.00862 | 0.00870 | 1.00780 | 0.00786 | 1.00706 | 0.00711 | 1.00639 | 0.00643 |
| 0.8 | 1.01093 | 0.00801 | 1.00989 | 0.00726 | 1.00895 | 0.00654 | 1.00809 | 0.00592 | 1.00732 | 0.00535 |
| 0.85 | 1.01206 | 0.00619 | 1.01091 | 0.00560 | 1.00987 | 0.00506 | 1.00893 | 0.00457 | 1.00807 | 0.00413 |
| 0.9 | 1.01289 | 0.00422 | 1.01166 | 0.00381 | 1.01054 | 0.00345 | 1.00954 | 0.00312 | 1.00862 | 0.00282 |
| 0.95 | 1.01340 | 0.00214 | I.OI2II | 0.00193 | 1.0109 6 | 0.00175 | 1.00991 | 0.00158 | 1.00896 | 0.00143 |
| 1.0 | 1.OI357 | 0.00 | 1.O1227 | 0.00 | 1.01110 | 0.00 | 1.01003 | 0. | 1.00907 | 0.00 |
| 1.05 | 1.01340 | 0.00214 | 1.01211 | 0.00193 | 1.01096 | 0.00175 | 1.00991 | 0.00158 | 1.00896 | 0.00143 |
| 1. | 1.01 289 | 0.00422 | 1.01166 | 0.0038 I | 1.01054 | 0.00345 | 1.00954 | 0.00312 | 1.00862 | 0.00282 |
| 1.15 | 1.01206 | 0.00619 | 1.01091 | 0.00560 | 1.00987 | 0.00506 | 1.00893 | 0.00457 | 1.00807 | 0.00413 |
| 1.2 | 1.01093 | 0.00801 | 1.00989 | 0.00726 | 1.00895 | 0.00654 | 1.00809 | 0.00592 | 1.00732 | 0.00535 |
| 1.25 | 1.00953 | 0.00962 | 1.00862 | 0.00870 | 1.00780 | 0.00786 | 1.00706 | 0.00711 | 1.00639 | 0.00643 |
| 1.3 | 1.00789 | 0.01099 | 1.00714 | 0.00994 | 1.00647 | 0.00898 | $1.005^{8} 5$ | 0.00812 | 1.00530 | 0.00735 |
| 1.35 | 1.00606 | 0.01208 | 1.00549 | 0.01093 | 1.00498 | 0.00988 | 1.00450 | 0.00894 | 1.00408 | 0.00808 |
| 1.4 | 1.00409 | 0.01287 | 1.00371 | 0.01164 | 1.00336 | 0.01053 | 1.00304 | 0.00952 | 1.00276 | 0.00862 |
| 1.45 | 1.00202 | 0.01334 | 1.00184 | 0.01207 | 1.00167 | 0.01092 | 1.00151 | 0.00988 | 1.00137 | 0.00893 |
| 1.5 | 0.9999 I | 0.01348 | 0.99993 | 0.01219 | 0.99994 | 0.01103 | 0.99995 | 0.00998 | 0.99996 | 0.00903 |
| 1.55 | 0.99781 | 0.01328 | 0.99802 | 0.01202 | 0.99822 | 0.01088 | 0.99839 | 0.00985 | 0.99855 | 0.00891 |
| 1.6 | 0.99576 | 0.01276 | 0.99617 | 0.01155 | 0.99654 | 0.01046 | 0.99688 | 0.00947 | 0.99718 | 0.00857 |
| 1.65 | 0.99383 | 0.01193 | 0.99442 | 0.01 | 0.99495 | 0.00978 | 0.99544 | 0.00886 | 0.99588 | 0.00802 |
| 1.7 | 0.99205 | 0.01082 | 0.99281 | 0.00979 | 0.99350 | 0.00887 | 0.99412 | 0.00803 | 0.99468 | 0.00727 |
| 1.75 | 0.99047 | 0.00944 | 0.99138 | 0.00855 | 0.99220 | 0.00774 | 0.99294 | 0.00701 | 0.99361 | 0.00635 |
| 1.8 | 0.98913 | 0.00784 | 0.99016 | 0.00710 | 0.99109 | 0.00643 | 0.99194 | 0.00582 | 0.99270 | 0.00527 |
| 1.85 | 0.98805 | 0.00605 | 0.98918 | 0.00548 | 0.99021 | 0.00496 | 0.99113 | 0.00449 | 0.99198 | 0.00407 |
| 1.9 | 0.98726 | 0.00411 | 0.98846 | 0.00373 | 0.98956 | 0.00337 | 0.99055 | 0.00306 | 0.99144 | 0.00277 |
| 1.95 | 0.98678 | 0.00208 | 0.98803 | 0.00189 | 0.98916 | 0.00171 | 0.99019 | 0.00155 | 0.99112 | 0.00140 |
| 2.0 | 0.98661 | 0.00 | 0.98788 | 0.00 | 0.98903 | 0.00 | 0.99007 | 0.00 | 0.99101 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\quad \tanh (2.60+i 0.35)=0.99495+i 0.00978$. $\tanh \left(2.70+i_{1.35}\right)=1.00408-i 0.00808$.

Table IX. HYPERBOLIC TANGENTS. $\tanh (x+i q)=u+i v$. Continued

| $q$ |  |  | $x=2$ |  | $x=2$ |  | $x=2$. |  | $x=2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 0.99186 | 0.00 | 0.99263 | 0.00 | 0.99333 | 0.00 | 0.99396 | 0.00 |  | 0.0 |
| 0.05 | 0.99196 | 0.00127 | 0.99272 | 0.00115 | 0.99341 | 0.00104 | 0.99404 | 0.00094 | 0.99460 | 0.00085 |
| 0.1 | 0.99225 | 0.00251 | 0.99299 | 0.00227 | 0.99365 | 0.00206 | 0.99426 | 0.00186 | 0.99480 | 0.00168 |
| 0.15 | 0.99274 | 0.00368 | 0.99343 | 0.00334 | 0.99405 | 0.00302 | 0.99462 | 0.00273 | 0.99513 | 0.00248 |
| 0.2 | 0.99340 | 0.00477 | 0.99403 | 0.00432 | 0.99459 | 0.00391 | 0.99511 | 0.00354 | 0.99557 | 0.00321 |
| 0.25 | 0.99422 | 0.00575 | 0.99477 | 0.0 | 0.99527 | 0.00471 | 0.99572 | 0.00426 | 0.99613 | 0.00386 |
| 0.3 | 0.99519 | 0.00658 | 0.99564 | 0.00596 | 0.99606 | 0.00539 | 0.99644 | 0.00488 | 0.99678 | 0.00442 |
| 0.35 | 0.99627 | 0.00726 | 0.99663 | 0.00657 | 0.99695 | 0.00594 | 0.99724 | 0.00538 | 0.99750 | 0.00487 |
| 0.4 | 0.99745 | 0.00775 | 0.99769 | 0.00702 | 0.99791 | 0.00635 | 0.99811 | 0.00575 | 0.99830 | 0.00520 |
| 0.45 | 0.99869 | 0.00806 | 0.99882 | 0.00730 | 0.99893 | 0.00660 | 0.99904 | 0.00598 | 99913 | 0.00541 |
| 0. | 0.99997 | 0.00817 | 0.99997 | 0.00740 | 0.999 | 0.00669 | 0.99998 | 0.00606 | 0.99999 | 0.00548 |
| 0.55 | 1.00125 | 0.00808 | 1.00113 | 0.00731 | 1.00103 | 0.00662 | 1.00093 | 0.00599 | 1.00084 | 0.00542 |
| 0.6 | 1.00250 | 0.00779 | 1.00226 | 0.00705 | 1.00205 | 0.00638 | 1.00186 | 0.00577 | 1.00168 | 0.00522 |
| 0.65 | 1.00369 | 0.00731 | 1.00334 | 0.0066I | 1.00303 | 0.00598 | 1.00274 | 0.00541 | I. 00248 | 0.00489 |
| 0.7 | 1.00479 | 0.00664 | 1.00434 | 0.006 | 1.00393 | 0.00544 | 1.00355 | 0.00480 | 1.00322 | 0.00445 |
| 0.75 | 1.00578 | 0.0058 I | 1.00523 | 0.00525 | 1.00473 | 0.00475 |  | 0.00430 | 1.00387 | 0.00389 |
| 0.8 | 1.00662 | 0.00484 | 1.00599 | 0.00437 | 1.00542 | 0.00396 | 1.00490 | 0.00358 | . 00444 | 0.00324 |
| 0.85 | 1.00730 | 0.00374 | 1.00661 | 0.00338 | I.00598 | 0.00306 | 1.00540 | 0.00276 | 1.00489 | 0.00250 |
| 0.9 | 1.00780 | 0.00255 | 1.00706 | 0.00230 | 1.00638 | 0.00208 | 1.00577 | 0.00188 | 1.00522 | 0.00170 |
| 0.95 | 1.00810 | 0.00129 | 1.00733 | 0.00117 | 1.00663 | 0.00105 | 1.00600 | 0.00095 | 1.00542 | 0.00086 |
| 1.0 | I. 00821 | 0.0 | 1.00 | . 0 | 1.00671 | 0.0 | 1.00607 | 0.0 | . 00549 | 0.00 |
| 1.05 | 1.00810 | 0.00129 | 1.00733 | 0.00117 | 1.00663 | 0.00105 | 1.00600 | 0.00095 | 1.00542 | 0.00086 |
| I.I | 1.00780 | 0.00255 | 1.00706 | 0.00230 | 1.00638 | 0.00208 | 1.00577 | 0.00188 | 1.00522 | .00170 |
| 15 | 1.00 | 0.00374 | 1.00 | 0.00338 | 1.00598 | 0.00306 | 1.00540 | 0.00276 | 1.00489 | 50 |
| 1.2 | 1.00662 | 0.00484 | 1.00599 | 0.00 | 1.00542 | 0.0039 | 1.004 | 0.00358 | 1.00 | 324 |
| 1.25 | 1.00578 | 0.0058I | 1.00523 | 0.00525 | 1.00473 | 0.00475 | 1.00428 | 0.00430 | 1.00387 | 0.00389 |
| 1.3 | 1.00479 | 0.006 | 1.00434 | 0.00601 | 1.00393 | 0.00544 | 1.00355 | 0.00480 | 1.00322 | 0.00445 |
| 1.35 | 1.00369 | 0.0073 I | 1.00334 | 0.0066r | 1.00303 | 0.00598 | 1.00274 | 0.00541 | 1.00248 | 0.00489 |
| 1.4 | $1.0025^{\circ}$ | 0.00779 | 1.00226 | 0.00705 | 1.00205 | 0.00638 | 1.00 | 0.00577 | 1.00168 | 0.00522 |
| 1. 45 | 1.00125 | 0.00808 | 1.00113 | 0.00731 | 1.00103 | 0.00662 | 1.00093 | 0.00599 | 1.00084 | 0.0 |
| 1.5 | 0.99997 | 0.00817 | 0.99997 | 0.00740 | 0.99998 | 0.00669 | 0.99998 | 0.00606 | 0.99999 | 0.00548 |
| 1.55 | 0.99869 | 0.00806 | 0.99882 | 0.00730 | 0.99893 | 0.00660 | 0.99904 | 0.00598 | 0.99913 | 0.00541 |
| 1.6 | 0.99745 | 0.00775 | 0.99769 | 0.00702 | 0.99791 | 0.00635 | 0.99811 | 0.00575 | 0.99830 | 0.00520 |
| 1.65 | 0.99627 | 0.00726 | 0.99663 | 0.00657 | 0.99695 | 0.00594 | 0.99724 | 0.00538 | 0.99750 | 0.00487 |
| 1.7 | 0.99519 | 0.00658 | 0.99564 | 0.00596 | 0.99606 | 0.00539 | 0.99644 | 0.00488 | 0.99678 | 0.00442 |
| 1.75 | 0.99422 | 0.00575 | 0.99477 | 0.00519 | 0.99527 | 0.00471 | 0.99572 | 0.00426 | 0.99613 | 0.00386 |
| 1.8 | 0.99340 | 0.00477 | 0.99403 | 0.00432 | 0.99459 | 0.00391 | 0.99511 | 0.00354 | 0.99557 | . 0 |
| 1.85 | 0.99274 | 0.00368 | 0.99343 | 0.00334 | 0.99405 | 0.00302 | 0.99462 | 0.00273 | 0.99513 | 0.00248 |
| 1.9 | 0.99225 | 0.00251 | 0.99299 | 0.00227 | 0.99365 | 0.0020 | 0.99426 | 0.00186 | 0.99480 | 0.00168 |
| 1.95 | 0.99196 | 0.00127 | 0.99272 | 0.00115 | 0.9934 I | 0.00104 | 0.99404 | 0.00094 | 0.99460 | 0.00085 |
| 2.0 | 0.99186 | 0.00 | 0.99263 | 0.00 | 0.99333 | 0.00 | 0.99396 | 0.00 | 0.99454 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\quad \tanh (2.9+i 0.9)=1.00577+i 0.00188$.
$\tanh \left(2.95+i_{1.95}\right)=0.99460-i 0.00085$.

Table IX. HYPERBOLIC TANGENTS. $\tanh (x+i q)=u+i v$. Continued

| $q$ | $x=3.0$ |  | $x=3.05$ |  | $x=3.10$ |  | $x=3.15$ |  | $x=3.20$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 0.99505 | 0.00 | 0.99552 | 0.00 | 0.99595 | 0.00 | 0.99633 | 0.00 | 0.99668 | 0.00 |
| 0.05 | 0.99512 | 0.00077 | 0.99558 | 0.00070 | 0.99600 | 0.00063 | 0.99638 | 0.00057 | 0.99672 | 0.00052 |
| 0.1 | 0.99530 | 0.00153 | 0.99574 | 0.00138 | 0.99615 | 0.00125 | 0.99651 | 0.00113 | 0.99684 | 0.00102 |
| 0.15 | 0.99559 | 0.00224 | 0.99601 | 0.00203 | 0.99639 | 0.00184 | 0.99673 | 0.00166 | 0.99704 | 0.00150 |
| 0.2 | 0.99599 | 0.00290 | 0.99637 | 0.00263 | 0.99672 | 0.00238 | 0.99703 | 0.00215 | 0.99731 | 0.00195 |
| 0.25 | 0.99649 | 0.00349 | 0.99683 | 0.00316 | 0.99713 | 0.00286 | 0.99740 | 0.00259 | 0.99765 | 0.00234 |
| 0.3 | 0.99708 | 0.00400 | 0.99736 | 0.00362 | 0.99761 | 0.00328 | 0.99784 | 0.00297 | 0.99805 | 0.00268 |
| 0.35 | 0.99774 | 0.0044 I | 0.99796 | 0.00399 | 0.99815 | 0.00361 | 0.99833 | 0.00327 | 0.99849 | 0.00296 |
| 0.4 | 0.99846 | 0.00471 | 0.99861 | 0.00426 | 0.99874 | 0.00386 | 0.99886 | 0.00349 | 0.99897 | 0.00316 |
| 0.45 | 0.9992 I | 0.00489 | 0.99929 | 0.00443 | 0.99936 | 0.00401 | 0.99942 | 0.00363 | 0.99947 | 0.00328 |
| 0.5 | 0.99999 | 0.00496 | 0.99999 | 0.00449 | 0.99999 | 0.00406 | 0.99999 | 0.00367 | 0.99999 | 0.00332 |
| 0.55 | 1.00076 | 0.00490 | 1.00069 | 0.00443 | 1.00063 | 0.00401 | 1.00057 | 0.00363 | 1.00051 | 0.00328 |
| 0.6 | 1.00152 | 0.00472 | 1.00138 | 0.00427 | 1.00125 | 0.00387 | 1.00113 | 0.00350 | 1.00102 | 0.00316 |
| 0.65 | 1.00224 | 0.00443 | 1.00203 | 0.00401 | 1.00184 | 0.00362 | 1.00166 | 0.00328 | 1.00151 | 0.00297 |
| 0.7 | 1.00291 | 0.00402 | 1.00263 | 0.00364 | 1.00238 | 0.00329 | 1.00216 | 0.00298 | 1.00195 | 0.00269 |
| 0.75 | 1.00351 | 0.00352 | 1.00317 | 0.00318 | 1.00287 | 0.00288 | 1.00260 | 0.00260 | 1.00235 | 0.00236 |
| 0.8 | 1.00401 | 0.00293 | 1.00363 | 0.00265 | 1.00329 | 0.00239 | 1.00297 | 0.00217 | 1.00269 | 0.00196 |
| 0.85 | 1.00443 | 0.00226 | 1.00400 | 0.00205 | 1.00362 | 0.00185 | 1.00328 | 0.00167 | 1.00297 | 0.00151 |
| 0.9 | 1.00473 | 0.00154 | 1.00426 | 0.00139 | 1.00387 | 0.00126 | 1.00350 | 0.00114 | 1.00317 | 0.00103 |
| 0.95 | 1.0049 I | 0.0007 | 1.00 | 0.00071 | 1.00402 | 0.00064 | 1.00363 | 0.00058 | 1.00329 | $0.0005^{2}$ |
| 1.0 | 1.00497 | 0.00 | 1.00450 | 0.00 | 1.00407 | 0.00 | 1.00368 | 0.00 | 1.00333 |  |
| 1.05 | 1.0049I | 0.00078 | 1.00444 | 0.0007 | 1.00402 | 0.00064 | 1.00363 | 0.00058 | 1.00329 | 0.00052 |
| 1. | 1.00473 | 0.0015 | 1.00426 | 0.00139 | 1.00387 | 0.00126 | 1.00350 | 0.00114 | 1.00317 | 0.00103 |
| 1.15 | 1.00443 | 0.00226 | 1.00400 | 0.00205 | 1.00362 | 0.00185 | 1.00328 | 0.00167 | 1.00297 | 0.00151 |
| I. 2 | 1.00401 | 0.00293 | 1.00363 | 0.00265 | 1.00329 | 0.00239 | 1.00297 | 0.00217 | 1.00269 | 0.00196 |
| I. 25 | 1.00351 | 0.00352 | 1.00317 | 0.00318 | 1.00287 | 0.00288 | 1.00260 | 0.00260 | 1.00235 | 0.00236 |
| 1.3 | 1.00291 | 0.00402 | 1.00263 | 0.00364 | 1.00238 | 0.00329 | 1.00216 | 0.00298 | 1.00195 | 0.00269 |
| 1.35 | 1.00224 | 0.00443 | 1.00203 | 0.00401 | 1.00184 | 0.00362 | 1.00166 | 0.00328 | 1.00151 | 0.00297 |
| 1. 4 | 1.00152 | 0.00472 | 1.00138 | 0.00427 | 1.00125 | 0.00387 | 1.00113 | 0.00350 | 1.0 | 0.00316 |
| I. 45 | 1.00076 | 0.00490 | 1.00069 | 0.00 | 1.00063 | 0.00401 | 1.00057 | 0.00363 | 1.00051 | 0.00328 |
| I. 5 | 0.99999 | 0.00496 | 0.99999 | 0.00449 | 0.99999 | 0.00406 | 0.99999 | 0.00367 | 0.99999 | 0.00332 |
| 1.55 | 0.9992 I | 0.00489 | 0.99929 | 0.00443 | 0.99936 | 0.00401 | 0.99942 | 0.00363 | 0.99947 | 0.00328 |
| 1.6 | 0.99846 | 0.00471 | 0.9986 I | 0.00426 | 0.99874 | 0.00386 | 0.99886 | 0.00349 | 0.99897 | 0.00316 |
| 1.65 | 0.99774 | 0.0044 I | 0.99796 | 0.00399 | 0.99815 | 0.00361 | 0.99833 | 0.00327 | 0.99849 | 0.00296 |
| 1.7 | 0.99708 | 0.00400 | 0.99736 | 0.00362 | 0.99761 | 0.00328 | 0.99784 | 0.00297 | 0.99805 | 0.00268 |
|  | 0.99649 | 0.00349 | 0.99683 | 0.00316 | 0.99713 | 0.00286 | 0.99740 | 0.00259 | 0.99765 | 0.00234 |
| 1.8 | 0.99599 | 0.00290 | 0.99637 | 0.00263 | 0.99672 | 0.00238 | 0.99703 | 0.00215 | 0.9973 I | 0.00195 |
| 1.85 | 0.99559 | 0.00224 | 0.99601 | 0.00203 | 0.99639 | 0.00184 | 0.99673 | 0.00166 | 0.99704 | 0.00150 |
| 1.9 | 0.99530 | 0.00153 | 0.99574 | 0.00138 | 0.99615 | 0.00125 | 0.99651 | 0.00113 | 0.99684 | 0.00102 |
| 1.95 | 0.99512 | 0.00077 | 0.99558 | 0.00070 | 0.99600 | 0.00063 | 0.99638 | 0.00057 | 0.99672 | 0.00052 |
| 2.0 | 0.99505 | 0.00 | 0.99552 | 0.00 | 0.99595 | 0.00 | 0.99633 | 0.00 | 0.99668 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh (3.0+i \underline{1.00})=1.00497+i 0$.
$\tanh (3.0+i \underline{\underline{1.50}})=0.99999-i 0.00496$.

Table IX. HYPERBOLIC TANGENTS. $\tanh (x+i q)=u+i v$. Continued

| $q$ | $x=3.25$ |  | $x=3.30$ |  | $x=3.35$ |  | $x=3.40$ |  | $x=3.45$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 0.9970 | . 0 | 0.99728 | 0.00 | 0.99754 | 0.00 | 0.99777 | . 0 | 0.99799 | 0.00 |
| 0.05 | 0.99704 | 0.00047 | 0.99732 | 0.00042 | 0.99757 | 0.00038 | 0.99780 | 0.00035 | 0.99801 | 0.00031 |
| O.I | 0.99715 | 0.00093 | 0.99742 | 0.00084 | 0.99766 | 0.00076 | 0.99788 | 0.00069 | 0.99809 | 0.00062 |
| 0.15 | 0.99732 | 0.00136 | 0.99758 | 0.00123 | 0.9978 r | 0.00112 | 0.99802 | 0.00101 | 0.99821 | 0.00091 |
| 0.2 | 0.99757 | 0.00176 | 0.99780 | 0.00160 | 0.99801 | 0.00144 | 0.99820 | 0.00131 | 0.99837 | 0.00118 |
| 0.25 | 0.99787 | 0.00212 | 0.99808 | 0.00192 | 0.99826 | 0.00174 | 0.99843 | 0.00157 | 0.99857 | 0.00142 |
| 0.3 | 0.98823 | 0.00243 | 0.99840 | 0.00220 | 0.99855 | 0.00199 | 0.99869 | 0.00180 | 0.9988 I | 0.00163 |
| 0.35 | 0.99863 | 0.00268 | 0.99876 | 0.00242 | 0.99888 | 0.00219 | 0.99899 | 0.00198 | 0.99908 | 0.00179 |
| 0.4 | 0.99907 | 0.00286 | 0.99916 | 0.00259 | 0.99924 | 0.00234 | 0.9993 I | 0.00212 | 0.99938 | 0.00192 |
| 0.45 | 0.99953 | 0.00297 | 0.99957 | 0.00269 | 0.99961 | 0.00243 | 0.99965 | 0.00220 | 0.99968 | 0.00200 |
| 0.5 | 1.0000 | 0.00301 | 1.000 | 0.00272 | 1.00000 | 0.00246 | 1.00000 | 0.00223 | 1.00000 | 0.00202 |
| 0.55 | 1.00047 | 0.00297 | 1.00042 | 0.00269 | 1.00038 | 0.00243 | 1.00035 | 0.00220 | 1.00031 | . 00200 |
| 0.6 | 1.00091 | 0.00286 | 1.00084 | 0.00259 | 1.00076 | 0.00234 | 1.00069 | 0.00212 | 1.00062 | 0.00192 |
| 0.65 | 1.00136 | 0.00268 | 1.00123 | 0.00243 | 1.00112 | 0.00220 | 1.00101 | 0.00199 | 1.00091 | 0.00180 |
| 0.7 | 1.00177 | 0.00244 | 1.00160 | 0.00220 | 1.00145 | 0.00199 | 1.00131 | 0.00180 | 1.00118 | 0.00163 |
| 0.75 | 1.00213 | 0.00213 | , | 0.00193 | , 017 | 0.00174 | 1.00158 | 0.00158 | 1.00143 | 0.00143 |
| 0.8 | 1.00244 | 0.00177 | 00222 | 0.00160 | 1.00199 | 0.00145 | 1. | 0.00131 | I.00163 | 0.00119 |
| 0.85 | 1.00268 | 0.00137 | 1.00242 | 0.00124 | 1.00220 | 0.00112 | 1.00199 | 0.00103 | 1.00180 | 0.00092 |
| 0.9 | 1.00286 | 0.00093 | 1.00 | 0.00084 | 1.00234 | 0.00076 | 00212 | 0.00069 | 1.00192 | .00062 |
| 0.95 | 1.00298 | 0.000 | 1.00 | 0.00043 | 1.00243 | 0.00039 | 1.00220 | 0.00035 | 1.00200 | 0.0003 |
| 1.0 | 1.00301 | 0.00 | 1.00273 | 0.00 | 1.00246 | 0.00 | 1.00223 | 0.00 | 1.00202 | 0.00 |
| 1.05 | 1.00298 | 0.00047 | 1.00269 | 0.00043 | 1.00243 | 0.00039 | 1.00220 | 0.00035 | 1.00200 | 0.00032 |
| I.I | 1.00286 | 0.00093 | 1.00260 | 0.00084 | 1.00234 | 0.00076 | 1.00212 | 0.00069 | 2 | 062 |
| I. 15 | 1.00268 | 0.00137 | I. 00242 | 0.00124 | 1.00220 | 0.00112 | 1.00199 | 0.00103 | 1.00180 | 0.00092 |
| 1.2 | 1.00 | 0.001 | 1.00222 | 0.0016 | 1.001 | 0.00145 | 1.00180 | 0.00131 | 1.00163 | 0.00119 |
| 1.25 | 1.00213 | 0.00213 | 1.00192 | 0.00193 | r. 00 | 0.0017 | 1.00158 | 0.00158 | 1.00143 | 0.00143 |
| 1.3 | 1.00177 | 0.00244 | 1.00160 | 0.00220 | 1.00145 | 0.00199 | 1.00131 | 0.00180 | 1.00118 | 0.00163 |
| 1.35 | 1.00136 | 0.00268 | 1.00123 | 0.00243 | 1.00112 | 0.00 | I.OOIOT | 0.00199 | 1.00091 | 0.00180 |
| 1.4 | 1.00091 | 0.00286 | 1.00084 | 0.00259 | 1.00076 | 0.00234 | 1.00069 | 0.0021 | 1.00062 | .00192 |
| 1. 45 | 1.00047 | 0.00297 | 1.00042 | 0.00269 | 1.00038 | 0.00243 | 1.00035 | . 00 | 1.0003I | 0.00200 |
| 1.5 | 1.00000 | 0.00301 | 1.00000 | 0.00272 | 1.00000 | 0.00246 | 1.00000 | 0.00223 | 1.00000 | 0.00202 |
| 1. 55 | 0.99953 | 0.00297 | 0.99957 | 0.00269 | 0.9996 I | 0.00243 | 0.99965 | 0.00 | 0.99968 | 0.00200 |
| 1.6 | 0.99907 | 0.00286 | 0.99916 | 0.00259 | 0.99924 | 0.00234 | 0.99931 | 0.00212 | 0.99938 | 0.00192 |
| 1. 65 | 0.99863 | 0.0026 | 0.99876 | 0.00242 | 0.99888 | 0.00219 | 0.99899 | 0.00198 | 0.99908 | 0.00179 |
| 1.7 | 0.99823 | 0.00243 | 0.99840 | 0.00220 | 0.99855 | 0.00199 | 0.99869 | 0.00180 | 0.9988 I | 0.00163 |
| 1.75 | 0.99787 | 0.00212 | 0.99808 | 0.00192 | 0.99826 | 0.00174 | 0.99843 | 0.00157 | 0.99857 | 0.00142 |
| 1.8 | 0.99757 | 0.00176 | 0.99780 | 0.00160 | 0.99801 | 0.00144 | 0.99820 | 0.00131 | 0.99837 | 0.00118 |
| 1.85 | 0.99732 | 0.00136 | 0.99758 | 0.00123 | 0.99781 | 0.00112 | 0.99802 | 0.00101 | 0.99821 | 0.00091 |
| 1.9 | 0.99715 | 0.00093 | 0.99742 | 0.00084 | 0.99766 | 0.00076 | 0.99788 | 0.00069 | 0.99809 | 0.00062 |
| 1.95 | 0.99704 | 0.00047 | 0.99732 | 0.00042 | 0.99757 | 0.0,0038 | 0.99780 | 0.00035 | 0.99801 | 0.00031 |
| 2.0 | 0.9970 | 0.00 | 0.99728 | 0.00 | 0.99754 | 0.00 | 0.99777 | 0.00 | 0.99799 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh (3.25+i 0.75)=1.00213+i 0.00213$. $\tanh (3.30+i \underline{1.50})=1.00000-i 0.00272$.

Table IX HYperbolic TANGENTS. $\tanh (x+i q)=u+i v$. Continued

| $\underline{1}$ | $x=3.50$ |  | $x=3.55$ |  | $x=3.60$ |  | $x=3.65$ |  | $x=3.70$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 0.998 I 8 | 0.00 | 0.99835 | 0.00 | 0.9985 r | 0.00 | 0.99865 | 0.00 | 0.99878 | 0.00 |
| 0.05 | 0.99820 | 0.00028 | 0.99837 | 0.00026 | 0.99853 | 0.00023 | 0.99867 | 0.00021 | 0.99879 | 0.00019 |
| 0.1 | c. 99827 | 0.00056 | 0.99843 | 0.00051 | 0.99858 | 0.00046 | 0.99872 | 0.00042 | 0.99884 | 0.00038 |
| 0.15 | 0.99837 | 0.00083 | 0.99853 | 0.00075 | 0.99867 | 0.00068 | 0.99880 | 0.00061 | 0.99891 | 0.00055 |
| 0.2 | 0.99853 | 0.00107 | 0.99867 | 0.00097 | 0.99879 | 0.00088 | 0.99891 | 0.00079 | 0.99901 | 0.00072 |
| 0.25 | 0.99871 | 0.00129 | 0.99883 | 0.00117 | 0.99894 | 0.00105 | 0.99904 | 0.00095 | 0.99914 | 0.00086 |
| 0.3 | 0.99893 | 0.00147 | 0.99903 | 0.00133 | 0.99912 | 0.00121 | 0.9992 I | 0.00109 | 0.99928 | 0.00099 |
| 0.35 | 0.99917 | 0.00162 | 0.99925 | 0.00147 | 0.99932 | 0.00133 | 0.99939 | 0.00120 | 0.99944 | 0.00109 |
| 0.4 | 0.99944 | 0.00173 | 0.99949 | 0.00157 | 0.99954 | 0.00142 | 0.99958 | 0.001 28 | 0.99962 | 0.00116 |
| 0.45 | 0.99971 | 0.00180 | 0.99974 | 0.00163 | 0.99977 | 0.00147 | 0.99979 | 0.00133 | 0.99981 | 0.00121 |
| 0.5 | 1.00000 | 0.00182 | 1.00000 | 0.00165 | 1.00000 | 0.00149 | 1.00000 | 0.00135 | 1.00000 | 0.00122 |
| 0.55 | 100028 | 0.00180 | 1.00026 | 0.00163 | 1.00025 | 0.00148 | 1.00021 | 0.00133 | 1.00019 | 0.00121 |
| 0.6 | 1.00056 | 0.00174 | 1.00051 | 0.00157 | 1.00048 | 0.00142 | 1.00042 | 0.00129 | 1.00038 | 0.00116 |
| 0.65 | 1.00083 | 0.00163 | 1.00075 | 0.00147 | 1.00068 | 0.00133 | 1.00061 | 0.00120 | 1.00055 | 0.00109 |
| 0.7 | 1.00107 | 0.00148 | 1.00097 | 0.00134 | r.00088 | 0.00121 | 1.00079 | 0.00109 | 1.00072 | 0.00099 |
| 0.75 | 1.00129 | 0.00129 | 1.00117 | 0.00117 | 1.00106 | 0.00106 | 1.00096 | 0.00096 | r.00086 | 0.00086 |
| 0.8 | 1.00148 | 0.00107 | 1.00133 | 0.00097 | 1.00121 | 0.00088 | 1.00108 | 0.00080 | r.00099 | 0.00072 |
| 0.85 | 1.00163 | 0.00083 | 1.00147 | 0.00075 | 1.00133 | 0.00068 | 1.00120 | 0.00061 | 1.00109 | 0.00056 |
| 0.9 | 1.00174 | $0.000{ }^{6}$ | 1.00157 | 0.00051 | 1.00142 | 0.00046 | 1.00129 | 0.00042 | 1.00116 | 0.00038 |
| 0.95 | 1.00180 | 0.00029 | 1.00163 | 0.00026 | 1.00148 | 0.00023 | 1.00134 | 0.00021 | 1.00121 | 0.00019 |
| . 0 | 1.00183 | 0.00 | 1.00165 | 0.00 | 1.00149 | 0.00 | 1.00135 | 0.00 | 1.00122 | 0.00 |
| 1.05 | 1.00180 | 0.00029 | 1.00163 | 0.00026 | 1.00148 | 0.00023 | 1.00134 | 0.00021 | 1.00121 | 0.00019 |
| 1.1 | 1.00174 | 0.00056 | 1.00157 | 0.00051 | 1.00142 | 0.00046 | 1.00129 | 0.00042 | 1.00116 | 0.00038 |
| 1.15 | 1.00163 | 0.00083 | 1.00147 | 0.00075 | 1.00133 | 0.00068 | 1.00120 | 0.0006I | 1.00109 | 0.00056 |
| 1. 2 | 1.00148 | 0.00107 | 1.00133 | 0.00097 | r.00121 | 0.00088 | 1.00108 | 0.00080 | 1.00099 | 0.00072 |
| 1.25 | 1.00129 | 0.00129 | 1.00117 | 0.00117 | 1.00106 | 0.00106 | 1.00096 | 0.00096 | 1.00086 | 0.00086 |
| 1.3 | 1.00107 | 0.00148 | 1.00097 | 0.00134 | 1.00088 | O0 | 1.00079 | 0.00109 | 1.00072 | 0.00099 |
| 1.35 | 1.00083 | 0.00163 | 1.00075 | 0.00147 | 1.00068 | 0.00133 | 1.00061 | 0.00120 | 1.00055 | 0.00109 |
| 1.4 | 1.00056 | 0.00174 | 1.00051 | 0.00157 | 1.00048 | 0.00142 | 1.00042 | 0.00129 | 1.00038 | 0.001 16 |
| 1.45 | 1.00028 | 0.00180 | 1.00026 | 0.00163 | 1.00025 | 0.00148 | 1.00021 | 0.00133 | 1.00019 | 0.00121 |
| 1.5 | 1.00000 | 0.00182 | 1.00000 | 0.00165 | 1.00000 | 0.00149 | 1.00000 | 0.00135 | 1.00000 | 0.00122 |
| 1.55 | 0.99971 | 0.00180 | 0.99974 | 0.00163 | 0.99977 | 0.00147 | 0.99979 | 0.00133 | 0.99981 | 0.00121 |
| 1.6 | 0.99944 | 0.00173 | 0.99949 | 0.00157 | 0.99954 | 0.00142 | 0.99958 | 0.00128 | 0.99962 | 0.00116 |
| 1. 65 | 0.99917 | 0.00162 | 0.99925 | 0.00147 | 0.99932 | 0.00133 | 0.99939 | 0.00120 | 0.99944 | 0.00109 |
| 1.7 | 0.99893 | 0.00147 | 0.99903 | 0.00133 | 0.99912 | 0.00121 | $0.999^{21}$ | 0.00109 | 0.99928 | 0.00099 |
| 1.75 | 0.99871 | 0.00129 | 0.99883 | 0.00117 | 0.99894 | 0.00105 | 0.99904 | 0.00095 | 0.99914 | 0.00086 |
| 1.8 | 0.99853 | 0.00107 | 0.99867 | 0.00097 | 0.99879 | 0.00088 | 0.99891 | 0.00079 | 0.99901 | 0.00072 |
| 1.85 | 0.99837 | 0.00083 | -. 99853 | 0.00075 | 0.99867 | 0.00068 | 0.99880 | 0.00061 | 0.99891 | 0.00055 |
| 1.9 | 0.99827 | 0.00056 | 0.99843 | 0.00051 | 0.99858 | 0.00046 | 0.99872 | 0.00042 | 0.99884 | 0.00038 |
| 1.95 | 0.99820 | 0.00028 | 0.99837 | 0.00026 | 0.99853 | 0.00023 | 0.99867 | 0.00021 | 0.99879 | 0.00019 |
| 2.0 | 0.99818 | 0.00 | 0.99835 | 0.00 | 0.99851 | 0.00 | 0.99865 | 0.00 | 0.99878 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\quad \tanh (3.60+i 0.80)=1.00121+i 0.00088$. $\tanh (3.70+i \underline{\text { 1.70 }})=0.99928-i 0.00099$.

Table IX. HYPERBOLIC TANGENTS. $\tanh (x+i q)=u+i v$. Continued

| $q$ | $x=3.75$ |  | $x=3.80$ |  | $x=3.85$ |  | $x=3.90$ |  | $x=3.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | 0.99889 | 0.00 | 0.99900 | 0.00 | 0.99909 | 0.00 | 0.99918 | 0.00 | 0.99926 | 0.00 |
| 0.05 | 0.99891 | 0.00017 | 0.99901 | 0.00016 | 0.99911 | 0.00014 | 0.99919 | 0.00013 | 0.99927 | 0.00012 |
| 0.1 | 0.99895 | 0.00034 | 0.99905 | 0.00031 | 0.99914 | 0.00028 | 0.99922 | 0.00025 | 0.99930 | 0.00023 |
| 0.15 | 0.99901 | 0.00050 | 0.999 I I | 0.00045 | 0.99919 | 0.0004 I | 0.99927 | 0.00037 | 0.99934 | 0.00034 |
| 0.2 | 0.99911 | 0.00065 | 0.99919 | 0.00059 | 0.99927 | 0.00053 | 0.99934 | 0.00048 | 0.99940 | 0.00044 |
| 0.25 | 0.99922 | 0.00078 | 0.99929 | 0.0007 I | 0.99936 | 0.00064 | 0.99942 | 0.00058 | 0.99948 | $0.000{ }^{2}$ |
| 0.3 | 0.99935 | 0.00089 | 0.99941 | 0.00081 | 0.99947 | 0.00073 | 0.99952 | 0.00066 | 0.99956 | 0.00060 |
| 0.35 | 0.99950 | 0.00099 | 0.99955 | 0.00089 | 0.99959 | 0.00081 | 0.99963 | 0.00073 | 0.99966 | 0.00066 |
| 0.4 | 0.99966 | 0.00105 | 0.99969 | 0.00095 | 0.99972 | 0.00086 | 0.99975 | 0.00078 | 0.99977 | 0.00071 |
| 0.45 | 0.99983 | 0.00109 | 0.99984 | 0.00099 | 0.99986 | 0.0008 | 0.99987 | 0.00081 | 0.99988 | 0.00073 |
| 0.5 | 1.00000 | 0.00 | 1.00000 | .00100 | 1.00000 | 0.00091 | 1.00000 | 0.00082 | 1.00000 | 0.00074 |
| 0.55 | 1.00017 | 0.00109 | 1.00016 | 0.00099 | 1.0001 | 0.00089 | 1.00013 | 0.00081 | 1.00012 | 0.00073 |
| 0.6 | 1.00034 | 0.00105 | 1.00031 | 0.00095 | 1.00028 | 0.00086 | 1.00025 | 0.00078 | 1.00023 | 0.00071 |
| 0.65 | 1.00050 | 0.00099 | 1.00045 | 0.00089 | 1.00041 | 0.00081 | 1.00037 | 0.00073 | 1.00034 | 0.00066 |
| 0.7 | 1.00065 | 0.00090 | 1.00059 | 0.00081 | 1.00053 | 0.00073 | 1.00048 | 0.00066 | 1.00044 | 0.0 |
| 0.75 | 1.00078 | 0.00078 | 1.00071 | 0.00071 | 1.00064 | 0.0006 | 1.00058 | 0.00058 | $1.0005^{2}$ | 0.00052 |
| 0.8 | 1.00089 | 0.00065 | 1.00081 | 0.00059 | 1.00073 | 0.00053 | 1.00066 | 0.00048 | 1.00060 | 0.00044 |
| 0.85 | 1.00099 | 0.00050 | 1.00089 | 0.00045 | 1.00081 | 0.00041 | 1.00073 | 0.00037 | 1.00066 | 0.00034 |
| 0.9 | 1.00105 | 0.00034 | 1.00096 | 0.00031 | 1.00086 | 0.00028 | 1.00078 | 0.00025 | 1.00071 | 0.00023 |
| 0.95 | 1.00109 | 0.00017 | 1.00099 | 0.00016 | 1.00089 | 0.00014 | 1.00081 | 0.00013 | 1.00073 | 0.00012 |
| 1.0 | 1.00 | 0.00 | $\infty$ | . 00 | 1.00090 | 0.00 | 1.00082 | 0.00 | 1.00074 | 0.0 |
| 1.05 | 1.00109 | 0.00017 | 1.00099 | 0.00016 | 1.00089 | 0.00014 | 1.0008 | 0.00013 | 1.00073 | 0.00012 |
| I. 1 | 1.00105 | 0.00034 | 1.00096 | 0.00031 | 1.00086 | 0.00028 | 1.00078 | 0.00025 | 1.00071 | 0.00023 |
| 1.15 | 1.00099 | 0.00050 | 1.00089 | 0.00045 | 1.0008I | 0.00041 | 1.00073 | 0.00037 | 1.00066 | 0.00034 |
| 1.2 | 1.00089 | 0.00065 | 1.0008I | 0.0005 | 1.00073 | 0.0005 | 1.00066 | 0.00048 | 1.0006 | 0.00 |
| 1.25 | 1.00078 | 0.00078 | 1.00071 | 0.00071 | 1.00064 | 0.00064 | 1.00058 | 0.00058 | 1.00052 | 0.00052 |
| 1.3 | 1.00065 | 0.00090 | 1.00059 | 0.00 | 1.00053 | 0.00073 | 1.00048 | 0.00066 | 1.00044 | 0.00060 |
| 1.35 | 1.00050 | 0.00099 | 1.00045 | 0.00089 | 1.00041 | 0.00081 | 1.00037 | 0.00073 | 1.00034 | 0.00066 |
| 1.4 | 1.00034 | 0.00105 | 1.00031 | 0.00095 | 1.00028 | 0.00086 | 1.00025 | 0.00078 | 1.00023 | 0.00071 |
| 1.45 | 1.00017 | 0.00109 | 1.00016 | 0.00099 | 1.00014 | 0.0008 | 1.00013 | 0.0008 I | 1.00012 | 0.00073 |
| 1.5 | 1.00000 | 0.00 | 1.00000 | 0.00100 | 1.00000 | 0.00091 | 1.00000 | 0.00082 | 1.00000 | 0.00074 |
| 1.55 | 0.99983 | 0.00109 | 0.99984 | 0.00099 | 0.99986 | 0.00089 | 0.99987 | 0.00081 | 0.99988 | 0.00073 |
| 1. | 0.99966 | 0.00105 | 0.99969 | 0.00095 | 0.99972 | 0.00086 | 0.99975 | 0.00078 | 0.99977 | 0.00071 |
| 1.65 | 0.99950 | 0.00099 | 0.99955 | 00089 | 0.99959 | 0.00081 | 0.99963 | 0.00073 | 0.99966 | 0.00066 |
| 1.7 | 0.99935 | 0.00089 | 0.99941 | 0.0008I | 0.99947 | 0.00073 | 0.99952 | 0.00066 | 0.99956 | 0.00060 |
| 1.75 | 0.99922 | 0.00078 | 0.99929 | 0.00071 | 0.99936 | 0.00064 | 0.99942 | 0.00058 | 0.99948 | 0.00052 |
| 1.8 | 0.99911 | 0.00065 | 0.99919 | 0.00059 | 0.99927 | 0.00053 | 0.99934 | 0.00048 | 0.99940 | 0.00044 |
| 1.85 | 0.99901 | 0.00050 | 0.99911 | 0.00045 | 0.99919 | 0.00041 | 0.99927 | 0.00037 | 0.99934 | 0.00034 |
| 1.9 | 0.99895 | 0.00034 | 0.99905 | 0.00031 | 0.99914 | 0.00028 | 0.99922 | 0.00025 | 0.99930 | 0.00023 |
| 1.95 | 0.99891 | 0.00017 | 0.99901 | 0.00016 | 0.99911 | 0.00014 | 0.99919 | 0.0001 | 0.99927 | 0.00012 |
| 2.0 | 0.99889 | 0.00 | 0.99900 | 0.00 | 0.99909 | 0.00 | 0.99918 | 0.00 | 0.99926 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh (3.95+i 0.95)=1.00073+i 0.00012$.
$\tanh \left(3.95+i_{\text {I.05 }}\right)=1.00073-i_{0.00012}$.

Table X. HYPERBOLIC SINES. $\sinh (x+i q)=r / \gamma$

|  | $x=0.0$ |  | $x=0.05$ |  | $x=0 . \mathrm{r}$ |  | $x=0.15$ |  | $x=0.2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\gamma$ | 7 | $\boldsymbol{\gamma}$ | 7 | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ |
|  |  | - |  | - |  | - |  |  |  |  |
| $\bigcirc$ | 0.000 | 90 | 0.05002 | 0.000 | 0.10017 | . 000 | 56 | 0.000 | 34 | . 000 |
| 0.05 | 0.07846 | 90 | 0.09305 | 57.593 | 0.12724 | 38.300 | 0.16978 | 27.861 | 0.21608 | 21.739 |
| 0.1 | 0.15643 | 90 | 0.16424 | 72.493 | 0.18576 | 57.819 | 0.21712 | 46.771 | 0.25497 | 38.746 |
| 0.15 | 0.23345 | 90 | 0.23874 | 78:245 | 0.25403 | 67.455 | 0.27779 | 58.195 | 0.30827 | 50.576 |
| 0.2 | 0.30902 | 90 | 0.31304 | 8 I .259 | 0.32485 | 72.947 | 0.34375 | 65.382 | 0.36882 | 58.723 |
| 0.25 | 0.38268 | 90 | 0.38594 | 83.123 | 0.39558 | 76.47 I | 0.41124 | 70.229 | 0.43422 | 龶 |
| 0.3 | 0.45399 | 90 | 0.45672 | 84.400 | 0.46491 | 78.932 | 0.4783 I | 73.711 | 0.49663 | 8.825 |
| 0.35 | 0.52250 | 90 | 0.52487 | 85.339 | 0.53201 | 80.762 | 0.54376 | 76.344 | 0.55995 | 72.147 |
| 0.4 | 0.58778 | 90 | 0.58989 | 86.066 | 0.59626 | 82.189 | 0.60676 | 78.419 | 0.62131 | 74.802 |
| 0.45 | 0.64944 | 90 | 0.65135 | 86.652 | 0.65713 | 83.344 | 0.66667 | 80.111 | 0.67994 | 76.988 |
| 0.5 | 0.707 II | 90 | 0.70803 | 87.139 | 0.71417 | 84.308 | 0.72296 | 81.532 | 0.73521 | 78.835 |
| 0.55 | 0.76041 | 90 | 0.76202 | 87.557 | 0.76698 | 85.134 | 0.77527 | 82.753 | 0.78661 | 80.43 I |
| 0.6 | 0.80902 | 90 | 0.81053 | 87.92 I | 0.81520 | 85.858 | 0.82291 | 83.826 | 0.83370 | 8 r .839 |
| 0.65 | 0.85264 | 90 | 0.85407 | 88.246 | 0.85851 | 86.505 | 0.86583 | 84.787 | 0.87609 | 83.103 |
| 0.7 | 0.89101 | 90 | 0.89237 | 88.542 | 0.89662 | 87.093 | 0.90364 | 85.662 | 0.91347 | 84.257 |
| 0.75 | 0.92388 | 90 | 0.92523 | 88.814 | 0.92930 | 87.636 | 0.93607 | 86.47 I | 0.94556 | 85.326 |
| 0.8 | 0.95106 | 90 | 0.95237 | 89.070 | 0.95632 | 88.145 | 0.96290 | 87.231 | 0.97213 | 331 |
| 0.85 | 0.9723 | 90 | 0.97366 | 89.313 | 0.97752 | 88.629 | 0.98396 | 87.953 | 0.99300 | 87.287 |
| 0.9 | 0.98769 | 90 | 0.98895 | 89.547 | 0.99275 | 89.095 | 0.99909 | 88.649 | 1.00800 | 88.209 |
| 0.95 | 0.99692 | 90 | 0.99817 | 89.775 | 1.00194 | 89.550 | 1.00822 | 89.329 | 1.01704 | 8 I IIO |
| 1.0 | 1.0000 | 90 | 1.001 25 | 90.000 | 1.00500 | 90.000 | . 01127 | 90.000 | 1.02007 |  |
| 1.05 | 0.99692 | 90 | 0.99817 | 90.225 | 1.00194 | 90.450 | 1.00822 | 90.671 | 1.01704 | 90.89 |
| I.I | 0.98769 | 90 | 0.9889 | 90.453 | 0.99275 | 90.905 | 0.99909 | 9 I .35 I | 1.00800 | I.791 |
| 1.15 | 0.97237 | 90 | 0.9736 | 90.687 | 0.97752 | 91.371 | 0.98396 | 92.047 | 0.99300 | 92.713 |
| 1.2 | 0.95106 | 90 | 0.95237 | 90.930 | 0.95632 | 91.855 | 0.96290 | 92.769 | 0.97213 |  |
| 25 | 0.92388 | 90 | 0.92523 | 91.186 | 0.9293 | 92.364 | 0.93607 | 93.529 | 0.94556 | 94.6 |
| 1. 3 | 0.89101 | 90 | 0.89237 | 9 I .458 | 0.89662 | 92.907 | 0.90364 | 94.338 | 0.91347 | 95.743 |
| 1.35 | 0.85264 | 90 | 0.85407 | 91.754 | 0.85851 | 93.495 | 0.86583 | 95.213 | 0.87609 | 9.897 |
| 1.4 | 0.80902 | 90 | 0.81053 | 92.079 | 0.81520 | 94.142 | 0.82291 | 96.174 | 0.83370 |  |
| I. 45 | 0.7604 I | 90 | 0.76202 | 92.443 | 0.76698 | 94.866 | 0.77527 | 97.247 | 0.78661 |  |
| 5 | 0.707 | 90 | 0.70803 | 92.860 | 0.71417 | 95.692 | 0.72296 | 98.468 | 0.73521 | 101.165 |
| 1.55 | 0.64944 | 90 | 0.65135 | 93.348 | 0.65713 | 96.656 | 0.66667 | 99.889 | 0.67994 |  |
| 1.6 | 0.58778 | 90 | 0.58989 | 93.934 | 0.59626 | 97.8I I | 0.60676 | 101.581 | 0.62131 | 105.198 |
| 1.65 | 0.52250 | 90 | 0.52487 | 94.661 | 0.53201 | 99.238 | 0.54376 | 103.656 | 0.55995 | 107.853 |
| 1.7 | 0.45399 | 90 | 0.45672 | 95.600 | 0.46491 | 101.068 | 0.47831 | 106.289 | 0.49663 | III. 17 |
| 1.75 | 0.38268 | 90 | 0.38594 | 96.877 | 0.39558 | 103.529 | 0.41124 | 109.771 | 0.43242 | 115.478 |
| 1.8 | 0.30902 | 90 | 0.31304 | 98.741 | 0.32485 | 107.053 | 0.34375 | 114.618 | 0.36882 | 121.277 |
| 1.85 | 0.23345 | 90 | 0.23874 | 101.755 | 0.25403 | I 12.545 | 0.27779 | 121.805 | 0.30827 | 129.42 |
| 1.9 | 0.15643 | 90 | 0.16424 | 107.507 | 0.18576 | 122.181 | 0.21712 | 133.229 | 0.25497 | 141.254 |
| 1.95 | 0.07846 | 90 | 0.09305 | 122.407 | 0.12724 | 141.700 | 0.16978 | 152.139 | 0.21608 | 158.261 |
| . | 0.00 | 90 | 0.05002 | 180.000 | 0.10017 | 180.000 | 0.15056 | 180.000 | . 201 |  |

Example. $\sinh (0.15+i \underline{0.15})=0.27779 \angle 58^{\circ} .195=0.27779 \angle 58^{\circ} .11^{\prime} .42^{\prime \prime}$.

Table X. HYPERBOLIC SINES. $\sinh (x+i q)=r / \gamma$. Continued

| $q$ | $x=0.25$ |  | $x=0.3$ |  | $x=0.35$ |  | $x=0.4$ |  | $x=0.45$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $r$ | $\boldsymbol{\gamma}$ | 7 | $\boldsymbol{\gamma}$ | F | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ |
|  |  | - |  | $\bigcirc$ |  | - |  |  |  |  |
| $\bigcirc$ | 0.25261 | 0.000 | 0.30452 | 0.000 | 0.35719 | 0.000 | 0.41075 | 0.000 | 0.46534 | 0.000 |
| 0.05 | 0.26452 | 17.814 | 0.31447 | 15.118 | 0.36571 | 13.169 | 0.41818 | 11.703 | 0.47191 | 10.567 |
| 0.1 | 0.29782 | 32.890 | 0.34235 | 28.533 | 0.38994 | 25.214 | 0.43953 | 22.629 | 0.49093 | 20.576 |
| 0.15 | 0.34396 | 44.943 | 0.38370 | 39.493 | 0.42671 | 35.516 | 0.47246 | 32.288 | 0.52062 | 29.642 |
| 0.2 | 0.39913 | 52.992 | 0.43385 | 48.122 | 0.47231 | 44.008 | 0.51401 | 40.536 | 0.55860 | 37.601 |
| 0.25 | 0.45854 | 59.405 | 0.48906 | 54.882 | 0.52348 | 50.92 I | 0.56140 | 47.471 | 0.60249 | 44.473 |
| 0.3 | 0.51954 | 64.327 | 0.54666 | 60.242 | 0.57766 | 56.843 | 0.61223 | 53.288 | 0.65012 | 50.374 |
| 0.35 | 0.58036 | 68.215 | 0.60476 | 64.575 | 0.63292 | 61.237 | 0.66462 | 58.200 | 0.69968 | 55.454 |
| 0.4 | 0.63977 | 71.371 | 0.66199 | 68.151 | 0.68781 | 65.157 | 0.71708 | 62.393 | 0.74969 | 59.856 |
| 0.45 | 0.69685 | 73.999 | 0.71730 | 71.166 | 0.74119 | 68.503 | 0.76844 | 66.018 | 0.79895 | 63.712 |
| 0.5 | 0.75088 | 76.238 | 0.76989 | 73.759 | 0.79220 | 71.408 | 0.81775 | 69.196 | 0.84649 | 67.125 |
| 0.55 | 0.80127 | 78.185 | 0.81912 | 76.028 | 0.84012 | 73.971 | 0.86426 | 72.021 | 0.89149 | 70.184 |
| 0.6 | 0.84754 | 79.911 | 0.86443 | 78.049 | 0.88436 | 76.267 | 0.90732 | 74.568 | 0.93330 | 72.958 |
| 0.65 | 0.88927 | 81.464 | 0.90539 | 79.878 | 0.92444 | 78.353 | 0.94642 | 76.893 | 0.97136 | 75.504 |
| 0.7 | 0.92612 | 82.887 | 0.94161 | 81.557 | 0.95994 | 80.274 | 0.98113 | 79.043 | 1.00521 | 77.868 |
| 0.75 | 0.95779 | 84.207 | 0.97277 | 83.119 | 0.99052 | 82.068 | 1.01107 | 8 r .056 | 1.03446 | 80.087 |
| 0.8 | 0.98403 | 85.450 | 0.99862 | 84.593 | I. 01592 | 83.762 | 1.03597 | 82.962 | 1.05880 | 82.194 |
| 0.85 | 1.00464 | 86.635 | 1.01894 | 85.999 | 1.03590 | 85.383 | 1.05557 | 84.788 | 1.07798 | 84.216 |
| 0.9 | 1.01949 | 87.779 | 1.03357 | 87.358 | 1.05029 | 86.951 | 1.06970 | 86.556 | 1.09182 | 86.177 |
| 0.95 | 1.02843 | 88.896 | 1.04239 | 88.687 | 1.05898 | 88.484 | 1.07822 | 88.287 | I.10017 | 88.098 |
| 1.0 | 1.03141 | 90.000 | 1.04534 | 90.000 | 1.06188 | 90.000 | 1.08107 | 90.000 | 1.10297 | 90.000 |
| 1.05 | 1.02843 | 91.104 | 1.04239 | 91.313 | 1.05898 | 91.516 | 1.07822 | 91.713 | 1.10017 | 91.902 |
| 1.1 | 1.01949 | 92.221 | 1.03357 | 92.642 | 1.05029 | 93.050 | 1.06970 | 93.444 | 1.09182 | 93.823 |
| 1.15 | 1.00464 | 93.365 | 1.01894 | 94.001 | 1.03590 | 94.61 7 | 1.05557 | 95.212 | 1.07798 | 95.784 |
| 1.2 | 0.98403 | 94.550 | 0.99862 | 95.407 | 1.01592 | 96.238 | 1.03597 | 97.038 | 1.05880 | 97.806 |
| I 25 | $0.95779^{\circ}$ | 95.793 | 0.97277 | 96.88 I | $0.990{ }^{2}$ | $97.93{ }^{2}$ | 1.01107 | 98.944 | 1.03446 | 99.913 |
| 1.3 | 0.92612 | 97.113 | 0.94161 | 98.443 | 0.95994 | 99.726 | 0.98113 | 100.957 | 1.00521 | 102.132 |
| 1.35 | 0.88927 | 98.536 | 0.90539 | 100.122 | 0.92444 | 101. 647 | 0.94642 | 103.107 | 0.97136 | 104.496 |
| 1.4 | 0.84754 | 100.090 | 0.86443 | 101.95I | 0.88436 | 103.733 | 0.90732 | 105.432 | 0.93330 | 107.042 |
| 1.45 | 0.80127 | 101.8I5 | 0.8 I9I 2 | 103.972 | 0.84012 | 106.029 | 0.86426 | 107.979 | 0.89149 | 109.816 |
| 1.5 | 0.75088 | 103.762 | 0.76989 | 106.24 I | 0.79220 | 108.592 | 0.81775 | 110.804 | 0.84649 | 112.875 |
| 1.55 | 0.69685 | 106.001 | 0.71730 | 108.834 | 0.74119 | III. 497 | 0.76844 | 113.982 | 0.79895 | 116.288 |
| 1.6 | 0.63977 | 108.629 | 0.66199 | 111. 849 | 0.6878 I | I 14.843 | 0.71708 | 117.607 | 0.74969 | 120.144 |
| 1.65 | 0.58036 | 111.785 | 0.60476 | 115.425 | 0.63292 | 118.763 | 0.66462 | 121.800 | 0.69968 | 124.546 |
| 1.7 | 0.51954 | I 5.673 | 0.54666 | 119.758 | 0.57766 | 123.157 | 0.61223 | 126.712 | 0.65012 | 129.626 |
| 1.75 | 0.45854 | 120.595 | 0.48906 | 125.118 | 0.52348 | 129.079 | 0.56140 | 132.529 | 0.60249 | 135.527 |
| 1.8 | 0.39913 | 127.008 | 0.43385 | 131.878 | 0.47231 | 135.992 | 0.51401 | 139.464 | 0.55860 | 142.399 |
| I. 85 | 0.34396 | 135.057 | 0.38370 | 140.507 | 0.42671 | 144.484 | 0.47246 | 147.712 | 0.52062 | I 50.358 |
| 1.9 | 0.29782 | I47.110 | 0.34235 | 151.467 | 0.38994 | 154.786 | 0.43953 | 157.37 I | 0.49093 | 159.424 |
| I. 95 | 0.26452 | 162.186 | 0.31447 | 164.882 | 0.36571 | 166.83 I | 0.41818 | 168.297 | 0.47191 | 169.433 |
| 2.0 | 0.25261 | 180.000 | $0.3045^{2}$ | 180.000 | 0.35719 | 180.000 | 0.41075 | 180.000 | 0.46534 | 180.000 |

Example. $\quad \sinh (0.40+i \underline{0.25})=0.5^{6140} \angle 47^{\circ} .47 \mathrm{I}=0.56140 \angle 47^{\circ} .28^{\prime} .16^{\prime \prime}$.

Table X. HYPERBOLIC SINES. $\sinh (x+i q)=r / \underline{\gamma}$ Continued

|  | $x=0.5$ |  | $x=0.55$ |  | $x=0.6$ |  | $x=0.65$ |  | $x=0.7$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\gamma$ | $r$ | $\gamma$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ |
|  |  |  |  | $\bigcirc$ |  | $\bigcirc$ |  |  |  |  |
| $\bigcirc$ | 0.52110 | 0.000 | 0.57815 | 0.000 | 0.63665 | 0.000 | 0.69675 | 0.000 | 0.75858 | . 000 |
| 0.05 | 0.52697 | 9.665 | 0.58345 | 8.936 | 0.64147 | 8.337 | 0.70115 | 7.839 | 0.76263 | 7.419 |
| 0.1 | 0.54407 | 18.918 | 0.59894 | 17.559 | 0.65559 | 16.432 | 0.71409 | 15.486 | 0.77455 | 14.685 |
| 0.15 | 0.57100 | 27.453 | 0.62350 | 25.625 | 0.67810 | 24.086 | 0.73482 | 22.781 | 0.79369 | 21.665 |
| 0.2 | 0.60583 | 35.111 | 0.65555 | 32.990 | 0.70769 | 31.174 | 0.76220 | 29.613 | 0.81911 | 28.263 |
| 0.25 | 0.64652 | 41.871 | 0.69333 | 39.610 | 0.74282 | 37.642 | 0.79492 | 35.926 | 0.84965 | 34.426 |
| 0.3 | 0.69112 | 47.793 | 0.73510 | 45.51 I | 0.78194 | 43.494 | 0.83160 | 41.710 | 0.88406 | 40.133 |
| 0.35 | 0.73793 | 52.980 | 0.77927 | 50.759 | 0.82361 | 48.769 | 0.87090 | 46.989 | 0.92112 | $45 \cdot 397$ |
| 0.4 | 0.78552 | 57.542 | 0.82447 | 55.437 | 0.86650 | 53.529 | 0.91156 | 51.803 | 0.95966 | 50.245 |
| 0.45 | 0.83266 | 61.584 | 0.86951 | 59.628 | 0.90946 | 57.838 | 0.95249 | 56.204 | 0.99861 | 54.716 |
| 0.5 | 0.87837 | 65.198 | 0.91338 | 63.41 I | 0.95149 | 6 r .762 | 0.99270 | 60.245 | 1.03704 | 58.853 |
| 0.55 | 0.92182 | 68.462 | 0.95524 | 66.854 | 0.99171 | 65.360 | 1.03134 | 63.976 | 1.07409 | 62.698 |
| 0.6 | 0.96232 | 71.441 | 0.99437 | 70.016 | 1.02948 | 68.685 | 1.06769 | 67.445 | I.10904 | 66.294 |
| 0.65 | 0.99927 | 74.189 | 1.03004 | 72.948 | I. 06411 | 71.784 | m.ioili | 70.694 | 1.14125 | 69.677 |
| 0.7 | 1.03220 | 76.751 | 1.06214 | 75.693 | 1.09509 | 74.696 | 1.13108 | 73.760 | I.I7019 | 72.884 |
| 0.75 | 1.06070 | 79.164 | 1.08987 | 78.287 | 1.12200 | 77.459 | 1.15715 | 76.678 | 1.19541 | 75.946 |
| 0.8 | 1.08446 | 81.461 | 1.11300 | 80.763 | 1.14448 | 80.102 | 1.17892 | 79.477 | 1.21653 | 78.890 |
| 0.85 | 1.10320 | 83.669 | I.13127 | 83.148 | 1.16226 | 82.653 | 1.19623 | 82.185 | 1.23327 | 81.744 |
| 0.9 | 1.11672 | 85.814 | 1.14446 | 85.467 | 1.17510 | 85.121 | 1.20871 | 84.826 | I. 24538 | 84.532 |
| 0.95 | I. 12489 | 87.917 | I.I5244 | 87.744 | 1.18287 | 87.580 | 1.21626 | 87.424 | I.2527I | 87.277 |
| 1.0 | 1.12763 | 90.000 | 1.15510 | 90.000 | 1.18547 | 90.000 | 1.21879 | 90.000 | 1.25517 | 90.000 |
| 1.05 | I.I 2489 | 92.083 | I.15244 | 92.256 | 1.18287 | 92.420 | 1.21626 | 92.576 | 1.25271 | 92.723 |
| I.I | 1.11672 | 94.186 | I.14446 | 94.533 | 1.17510 | 94.879 | 1.20871 | 95.174 | I. 24538 | 95.468 |
| 1.15 | 1.10320 | 96.331 | 1.13127 | 96.852 | 1.16226 | 97.347 | 1.19623 | 97.815 | 1.23327 | 98.256 |
| 1.2 | 1.08446 | 98.539 | I.II 300 | 99.237 | 1.14448 | 99.898 | 1.17892 | 100.523 | I. 21653 | IOI.İO |
| 1.25 | 1.06070 | 100.836 | 1.08987 | 101.713 | 1.12200 | 102.541 | 1.15715 | 103.322 | I:1954 | 104.054 |
| 1.3 | 1.03220 | 103.249 | 1.06214 | 104.307 | 1.09509 | 105.304 | 1.13108 | 106.240 | 1.17019 | 107.116 |
| 1.35 | 0.99927 | 105.811 | 1.03004 | 107.052 | 1.06411 | 108.216 | I.10111 | 109.306 | 1.14125 | 110.323 |
| 1.4 | 0.96232 | 108.559 | 0.99437 | 109.984 | 1.02948 | III.3I5 | 1.06769 | 112.555 | 1.10904 | 113.706 |
| 1.45 | 0.92182 | III.538 | 0.95524 | 113.146 | 0.99174 | II4.640 | 1.03134 | II6.024 | 1.07409 | 117.302 |
| 1.5 | 0.87837 | 114.803 | 0.91338 | 116.589 | 0.95149 | 118.238 | 0.99270 | I19.755 | 1.03704 | 121.148 |
| 1.55 | 0.83266 | 118.416 | 0.86951 | 120.372 | 0.90946 | 122.162 | 0.95249 | 123.796 | 0.99861 | 125.284 |
| 1.6 | 0.78552 | 122.458 | 0.82447 | 124.563 | 0.86650 | 126.47 I | 0.91156 | 128.197 | 0.95966 | 129.755 |
| 1.65 | 0.73793 | 127.020 | 0.77927 | 129.241 | 0.82361 | 131.231 | 0.87090 | 133.011 | 0.92112 | 134.603 |
| 1.7 | 0.69112 | 132.2097 | 0.73510 | 134.489 | 0.78194 | 136.506 | 0.83160 | 138.290 | 0.88406 | 1 39.867 |
| 1.75 | 0.64652 | 138.129 | 0.69333 | 140.390 | 0.74282 | 142.358 | 0.79492 | 144.074 | 0.84965 | 145.574 |
| 1.8 | 0.60583 | 144.889 | 0.65555 | 147.010 | 0.70769 | 148.826 | 0.76220 | 150.387 | 0.81911 | 151.737 |
| 1.85 | 0.57100 | 152.547 | 0.62350 | 154.375 | 0.67810 | 155.914 | 0.73482 | 157.219 | 0.79369 | 158.335 |
| 1.9 | 0.54407 | 161.082 | 0.59894 | 162.44 I | 0.65559 | 163.568 | 0.71409 | 164.514 | 0.77455 | 165.315 |
| 1.95 | 0.52697 | 170.335 | 0.58345 | 171.064 | 0.64147 | 171.663 | 0.70115 | 172.161 | 0.76263 | 172.58 I |
| 2.0 | 0.52110 | 180.000 | 0.57815 | 180.000 | 0.63665 | 180.000 | 0.69675 | 180.000 | 0.75858 | 180.000 |

Example. $\quad \sinh \left(0.70+i_{1.70}\right)=0.88406 \angle 139^{\circ} .867=0.88406 \angle 130^{\circ} .52^{\prime} .01^{\prime \prime}$.

Table X. Hyperbolic SINES. $\sinh (x+i q)=r \not \gamma$. Continued

|  | $x=0.75$ |  | $x=0.8$ |  | $x=0.85$ |  | $x=0.9$ |  | $x=0.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\gamma$ | $r$ | $\gamma$ | r | $\gamma$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\gamma$ |
|  |  | - |  |  |  |  |  |  |  |  |
| 0.00 | 0.82232 | 0.000 | 0.8881 i | 0.000 | 0.95612 | 0.000 | 1.02652 | 0.000 | 1.09948 | . 000 |
| 0.05 | 0.82605 | 7.064 | 0.89157 | 6.759 | 0.95933 | 6.497 | 1.02951 | 6.270 | 1.10227 | 6.073 |
| 10 | 0.83706 | 14.002 | 0.90178 | 13.415 | 0.96883 | 12.909 | 1.03837 | 12.468 | 1.11056 | 12.085 |
| 0.15 | 0.8548 I | 20.706 | 0.91828 | 19.877 | 0.98420 | 19.158 | 1.05273 | 18.529 | I.12400 | 17.980 |
| 0.2 | 0.87846 | 27.093 | 0.94033 | 26.073 | 1.00481 | 25.181 | 1.07202 | 24.399 | 1.14209 | 23.712 |
| 0.25 | 0.90700 | 33.111 | 0.96705 | 31.955 | 1.02985 | 30.938 | 1.09553 | 30.039 | 1.16418 | 29.245 |
| 0.3 | 0.93932 | 38.737 | 0.99742 | 37.500 | 1.05843 | 36.401 | 1.12243 | 35.426 | 1.19227 | 34.557 |
| 0.35 | 0.97427 | 43.974 | 1.03041 | 42.702 | 1.08957 | 41.565 | 1.15184 | 40.547 | 1.21732 | 39.637 |
| 0.4 | 1.01079 | 48.840 | 1.06500 | 47.574 | 1.12234 | 46.433 | 1.18289 | 45.407 | I. 24674 | 44.483 |
| 0.45 | 1.04785 | 53.363 | 1.100 | 52.135 | 1.15583 | 51.022 | 1.21471 | 50.014 | 1.27697 | 49.102 |
| 0.5 | 1. 08453 | 57.578 | 1.13522 | 56.414 | r.18918 | 55.353 | 1.24649 | 54.386 | 1. 30723 | 53.507 |
| 0.55 | 1.12001 | 61.522 | 1.16917 | 60.441 | 1.22163 | 59.450 | 1.27748 | 58.543 | 1.33682 | 57.714 |
| 0.6 | 1.15356 | 65.228 | 1.20135 | 64.245 | 1.25246 | 63.399 | I. 30700 | 62.507 | 1.36505 | 61.743 |
| 0.65 | 1.18457 | 68.733 | 1.23115 | 67.857 | 1.28107 | 67.048 | I. 33444 | 66.301 | 1.39136 | 65.613 |
| 0.7 | 1.21248 | 72.067 | 1.25802 | 71.307 | I. 30693 | 70.602 | 1. 35927 | 69.949 | 1.41519 | 69.347 |
| 0.75 | 1.23689 | 75.260 | I.28152 | 74.621 | 1.32955 | 74.026 | 1.38105 | 73.474 | 1.43611 | 72.963 |
| 0.8 | 1. 25726 | 78.339 | T.30124 | 77.825 | 1.34858 | 77.344 | I. 39937 | 76.898 | 1.45371 | 76.484 |
| 0.85 | I. 27346 | 8 8 .330 | 1.31691 | 80.942 | т. 36369 | 80.580 | 1.41395 | 80.242 | 1.46778 | 79.929 |
| 0.9 | 1.28520 | 84.255 | 1.32825 | 83.996 | 1.37466 | 83.754 | I. 42452 | 83.527 | 1.47797 | 83.316 |
| 0.95 | I. 29230 | 87.138 | 1.33513 | 87.008 | 1.38130 | 86.887 | 1.43094 | 86.773 | 1.48415 | 86.668 |
| 1.0 | I. 29468 | 90.000 | 1.33743 | 90.000 | 1.38353 | 90.000 | 1.43309 | 90.000 | 1.48623 | 90.000 |
| 1.05 | 1.29230 | 92.862 | 1.33513 | 92.992 | 1.38130 | 93.113 | 1.43094 | 93.227 | 1.48415 | 93.332 |
| 1.1 | 1.28520 | 95.745 | I. 32825 | 96.004 | 1.37466 | 96.246 | I. 42452 | 96.473 | 1.47797 | 96.684 |
| 1.15 | I. 27346 | 98.670 | 1.31691 | 99.058 | I. 36369 | 99.420 | 1.41395 | 99.758 | 1.46778 | 100.071 |
| 1.2 | 1.25726 | 101.661 | 1.30124 | 102.175 | 1.34858 | 102.656 | I. 39937 | 103.102 | 1.45371 | 103.516 |
| 1.25 | 1.23689 | 104.740 | 1.28152 | 105.379 | 1. 32955 | 105.974 | 1.38105 | 106.526 | 1.43611 | 107.037 |
| 1.3 | 1.21248 | 107.933 | 1.25802 | 108.693 | 1.30693 | 109.398 | I. 35927 | 110.051 | 1.41519 | 110.653 |
| 1.35 | 1.18457 | 111.267 | 1.23115 | 112.143 | 1.28107 | $112.95{ }^{2}$ | 1. 33444 | 113.699 | 1.39136 | 114.387 |
| 1.4 | 1.15356 | 114.772 | 1.20135 | 115.755 | 1.25246 | 116.601 | 1.30700 | 117.493 | I. 36505 | 118.257 |
| 1.45 | I.12001 | 118.478 | 1.16917 | 119.559 | 1.22163 | 120.550 | 1. 27748 | 121.457 | 1.33682 | 122.286 |
| 1.5 | 1.08453 | 122.422 | 1.13522 | 123.586 | 1.18918 | 124.647 | 1. 24649 | 125.614 | 1.30723 | 126.493 |
| 1.55 | 1.04785 | 126.637 | 1.10024 | 127.865 | $1.1555^{8} 3$ | 128.978 | 1.21471 | 129.986 | 1.27697 | 130.898 |
| 1.6 | 1.01079 | 131.160 | 1.06500 | 132.426 | 1.12234 | ${ }^{1} 33.567$ | 1.18289 | I 34.593 | 1. 24674 | I35.517 |
| 1. 65 | 0.97427 | 136.026 | 1.03041 | 137.298 | 1.08957 | 138.435 | 1.15184 | I 39.453 | 1.21732 | 140.363 |
| 1.7 | 0.93932 | 141.263 | 0.99742 | 14 | 1.05843 | 143.599 | 1.12243 | 144 | 1. 19227 | 145.443 |
| 1.75 | 0.90700 | 146.889 | 0.96705 | 148.045 | 1.02985 | 149.062 | 1.09553 | 149.961 | 1.16418 | 150.755 |
| $\underline{1.8}$ | 0.87846 | 152.907 | 0.94033 | 153.927 | 1.0048I | 154.819 | 1.07202 | 155.601 | 1.14209 | 156.288 |
| 1.85 | 0.85481 | 159.294 | 0.91828 | 160.123 | 0.98420 | 160.842 | 1.05273 | 161.471 | I.12400 | 162.020 |
| 1.9 | 0.83706 | 165.998 | 0.90178 | 166.585 | 0.96883 | 167.091 | 1.03837 | 167.532 | 1.11056 | 167.915 |
| 1.95 | 0.82605 | 172.936 | 0.89157 | 173.241 | 0.95933 | 173.503 | 1.02951 | 173.730 | 1.10227 | 173.927 |
| 2.0 | 0.82232 | 180.000 | 0.88811 | 180.000 | 0.95612 | 180.000 | $1.0265^{2}$ | 180.000 | 1.0994 | 0.00 |

Example. $\quad \sinh \left(0.90+i_{\underline{\text { I. }}}\right)=1.43309 \angle 90^{\circ}$.

Table X. HYPERBOLIC SINES. $\sinh (x+i q)=r \not q$. Continued

|  | $x=1.0$ |  | $x=1.05$ |  | $x=1.1$ |  | $x=1.15$ |  | $x=1.2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | T | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\gamma$ | $r$ | $\gamma$ | r | $\boldsymbol{\gamma}$ |
|  |  | $\bigcirc$ |  | $\bigcirc$ |  |  |  |  |  |  |
| $\bigcirc$ | 1.17520 | 0.000 | 1.25386 | 0.000 | 1.33565 | 0.000 | 1. 42078 | 0.000 | 1.50946 | 0.000 |
| 0.05 | 1.17782 | 5.900 | 1.25631 | 5.748 | 1.33795 | 5.615 | 1. 42294 | 5.497 | 1.51150 | $5 \cdot 393$ |
| 0.1 | 1.18552 | 11.748 | 1.26358 | 11.453 | 1.34478 | 11.192 | 1.42936 | 10.961 | 1.51755 | 10.757 |
| 0.15 | 1.19816 | 17.496 | 1.27540 | 17.071 | 1.35590 | 16.694 | 1.43983 | 16.361 | 1.52741 | 16.065 |
| 0.2 | 1.21515 | 23.105 | 1.29137 | 22.568 | 1.37093 | 22.092 | 1.4539.9 | 21.670 | 1.54077 | 21.294 |
| 0.25 | 1.23594 | 28.54 r | 1.31095 | 27.915 | 1.38939 | 27.359 | 1.47141 | 26.864 | 1.55721 | 26.42 I |
| 0.3 | 1.25984 | 33.784 | 1.33351 | 33.093 | 1.41070 | 32.477 | 1.49155 | 31.926 | 1.57626 | 31.433 |
| 0.35 | 1.28612 | 38.821 | 1.35837 | 38.090 | 1.4342 | 37.435 | r.5138I | 36.847 | 1.59733 | 36.319 |
| 0.4 | 1.31400 | 43.651 | 1.38479 | 42.902 | 1.45926 | 42.227 | 1.53756 | 41.620 | 1.61987 | 41.073 |
| 0.45 | 1.34272 | 48.276 | 1.41207 | 47.530 | 1.48517 | 46.855 | 1.56217 | 46.245 | 1.64325 | 45.693 |
| 0.5 | 1.37153 | 52.707 | 1.43950 | 51.981 | 1.51128 | 51.323 | 1.58701 | 50.725 | 1.66688 | 50.184 |
| 0.55 | 1.39976 | 56.957 | 1.46641 | 56.268 | 1.53694 | 55.640 | 1.61147 | 55.069 | 1.69018 | 54.549 |
| 0.6 | 1.42675 | 61.043 | 1.49220 | 60.403 | 1.56156 | 59.818 | 1.63497 | 59.284 | 1.71260 | 58.797 |
| 0.65 | 1.45193 | 64.98 I | 1.51630 | 64.401 | 1.58460 | 63.870 | 1. 65699 | 63.384 | 1.73363 | 62.939 |
| 0.7 | 1.47479 | 68.79 I | 1.53820 | 68.280 | 1.60558 | 67.811 | 1.67705 | 67.380 | 1.75282 | 66.986 |
| 0.75 | 1.49487 | 72.49 I | 1.55747 | 72.056 | 1.62404 | 71.656 | 1. 69472 | 71.287 | 1.76975 | 70.950 |
| 0.8 | 1.51182 | 76.101 | 1.57374 | 75.747 | 1.63965 | 75.42 I | 1.70971 | 75.120 | 1.78409 | 74.844 |
| 0.85 | 1.52532 | 79.638 | 1.58671 | 79.369 | 1.65211 | 79.121 | 1.72166 | 78.893 | 1.79555 | 78.682 |
| 0.9 | 1.53513 | 83.122 | 1.59614 | 82.94 I | 1.66117 | 82.774 | 1.73036 | 82.620 | 1.80389 | 82.478 |
| 0.95 | 1.54108 | 86.724 | 1.60187 | 86.479 | 1. 66667 | 86.395 | 1.73564 | 86.317 | 1.80895 | 86.246 |
| 1.0 | 1.54308 | 90.000 | 1.60379 | 90.000 | r. 66852 | 90.000 | 1.73741 | 90.000 | 1.81066 | 90.000 |
| 1.05 | 1.54108 | 93.276 | 1.60187 | 93.521 | т. 66667 | 93.605 | 1.73564 | 93.683 | 1.80895 | 93.754 |
| 1.1 | 1.53513 | 96.878 | 1.59614 | 97.059 | 1.66117 | 97.226 | 1.73036 | 97.380 | 1.80389 | 97.522 |
| 1.15 | 1.52532 | 100.362 | 1.58671 | 100.63 I | 1.65211 | 100.879 | 1.72166 | IOI.107 | 1.79555 | 101. 318 |
| 1.2 | 1.51182 | 103.899 | 1.57374 | 104.253 | 1. 63965 | 104.579 | 1.70971 | 104.880 | 1.78409 | 105.156 |
| 1.25 | 1.49487 | 107.509 | 1.55747 | 107.944 | 1.62404 | 108.344 | 1.69472 | 108.713 | 1.76975 | 109.050 |
| 1.3 | 1.47479 | 111.209 | 1.53820 | 111.720 | 1.60558 | 112.189 | $\times .67705$ | 112.620 | 1.75282 | 113.014 |
| 1.35 | 1.45193 | 115.019 | 1.51630 | 115.599 | 1.58460 | 116.130 | 1.65699 | 116.616 | 1.73363 | 117.061 |
| 1.4 | 1. 42675 | II8.957 | 1.49220 | 119.597 | 1.56156 | 120.182 | 1.63497 | 120.716 | 1.71260 | 121.203 |
| 1.45 | 1.39976 | 123.043 | 1.4664 | 123.732 | 1. 53694 | 124.360 | 1.61147 | 124.93I | 1.69018 | 125.451 |
| 1.5 | 1.37153 | 127.293 | 1.43950 | 128.019 | 1.51128 | 128.677 | 1.58701 | 129.275 | 1.66688 | 129.816 |
| 1.55 | 1.34272 | 131.724 | 1.41207 | 132.470 | 1.48517 | 133.145 | 1.56217 | 133.755 | 1.64325 | 134.307 |
| 1.6 | 1.31400 | 136.349 | 1.38479 | 137.098 | 1.45926 | 137.773 | r. 53756 | 138.380 | 1.61987 | 138.927 |
| 1.65 | 1.28612 | 141.179 | 1.35837 | 141.910 | 1.4342 I | 142.565 | r.51381 | 143.153 | 1. 59733 | 143.681 |
| 1.7 | 1. 25984 | 146.216 | 1.3335 ${ }^{1}$ | 146.907 | 1.41070 | 147.523 | 1.49155 | 148.074 | 1.57626 | 148.567 |
| 1.75 | 1.23594 | 151.459 | 1.31095 | 152.085 | 1.38939 | 152.641 | 1.47141 | 153.136 | T.55721 |  |
| 1.8 | 1.21515 | 156.895 | 1.29137 | 157.432 | 1.37093 | ${ }^{1} 57.908$ | 1. 45399 | 158.330 | 1.54077 | $158.706$ |
| 1.85 | 1.19816 | 162.504 | 1.27540 | 162.929 | I. 35590 | 163.306 | 1.43983 | 163.639 | 1.52741 | 163.935 |
| 1.9 | 1.18552 | 168.252 | 1. 26358 | 168.547 | 1. 34478 | 168.808 | 1.42936 | 169.039 | 1.51755 | 169.243 |
| 1.95 | 1.17782 | 174.100 | 1.2563 | 174.252 | 1. 33795 | ${ }^{174.385}$ | 1.42294 | 174.503 | 1.51150 | 174.607 |
| 2.00 | 1.17520 | 180.000 | 1. 25386 | 180.000 | 1.33565 | 180.000 | 1.42078 | 180.000 | 1.50946 | 180.000 |

Example. $\sinh \left(1.20+i_{1.25}\right)=1.76975 \angle 109^{\circ} .050=1.76995 \angle 109^{\circ} .03^{\prime} .00^{\prime \prime}$.

Table X. HYPERBOLIC SINES. $\sinh (x+i q)=r / \gamma$. Continued

|  | $x=1.25$ |  | $x=1.3$ |  | $x=1.35$ |  | $x=1.4$ |  | $x=1.45$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $\boldsymbol{r}$ | $\boldsymbol{\gamma}$ | $\gamma$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ |
|  |  | $\bigcirc$ |  | $\bigcirc$ |  |  |  |  |  |  |
| $\bigcirc$ | 1.60192 | 0.000 | r. 69838 | 0.000 | 1.79909 | 0.000 | 1.90430 | 0.000 | 2.01427 | 0.000 |
| 0.05 | 1.60384 | $5 \cdot 30 \mathrm{r}$ | 1.70019 | 5.218 | 1.80080 | 5.145 | 1.90592 | 5.080 | 2.01580 | 5.021 |
| 0.1 | 1.60954 | 10.576 | 1.70557 | 10.415 | 1.80588 | 10.271 | 1.91072 | 10.143 | 2.02034 | 10.028 |
| 0.15 | 1.61884 | 15.803 | 1.71435 | 15.568 | 1.81417 | 15.359 | 1.91856 | 15.172 | 2.02775 | 15.005 |
| 0.2 | 1.63145 | 20.958 | 1.72627 | 20.659 | 1.82544 | 20.392 | 1.92921 | 20.153 | 2.03784 | 19.939 |
| 0.25 | 1.64699 | 26.026 | 1.74096 | 25.673 | 1.83934 | 25.356 | 1.94237 | 25.073 | 2.05030 | 24.818 |
| 0.3 | 1.66501 | 30.99 r | 1.75802 | 30.595 | 1.85549 | 30.240 | 1.95767 | 29.92 r | 2.06479 | 29.634 |
| 0.35 | 1.68497 | 35.845 | 1.77694 | 35.418 | 1.87343 | 35.035 | 1.97468 | 34.689 | 2.08093 | 34.379 |
| 0.4 | 1.70635 | 40.580 | 1.79722 | 40.135 | 1.89268 | 39.735 | 1.99295 | 39.373 | 2.09828 | 39.047 |
| 0.45 | 1.72856 | 45.195 | 1.81832 | 44.745 | 1.91273 | 44.338 | 2.01200 | 43.970 | 2.11637 | 43.638 |
| 0.5 | 1.75104 | 49.693 | ェ. 83970 | 49.248 | 1.93306 | 48.845 | 2.03135 | 48.480 | 2.13478 | 48.150 |
| 0.55 | 1.77323 | 54.077 | 1.86084 | 53.648 | 1.95319 | 53.258 | 2.05051 | 52.905 | 2.15302 | 52.584 |
| 0.6 | 1.79462 | 58.354 | 1.88123 | 57.950 | 1.97262 | 57.583 | 2.06903 | 57.249 | 2.17067 | 56.945 |
| 0.65 | 1.81470 | 62.533 | I. 90040 | 62.163 | 1.99091 | 61.825 | 2.08647 | 61.518 | 2.18731 | 61.238 |
| 0.7 | 1.83304 | 66.625 | 1.91792 | 66.295 | 2.00764 | 65.994 | 2.10244 | 65.719 | 2.20254 | 65.469 |
| 0.75 | 1.84924 | 70.640 | 1.9334I | 70.356 | 2.02245 | 70.097 | 2.11658 | 69.86 I | 2.21604 | 69.645 |
| 0.8 | 1.86297 | 74.590 | 1.94654 | 74.358 | 2.03500 | 74.145 | 2.12858 | 73.951 | 2.22751 | 73.774 |
| 0.85 | 1.87394 | 78.489 | 1.95704 | 78.311 | 2.04505 | 78.149 | 2.13819 | 78.000 | 2.23669 | 77.864 |
| 0.9 | 1.88193 | 82.348 | 1.96470 | 82.228 | 2.05238 | 82.118 | 2.14520 | 82.018 | 2.24334 | 81.925 |
| 0.95 | т. 88679 | 86.180 | 1.96935 | 86.120 | 2.05684 | 86.065 | 2.14947 | 86.014 | 2.24747 | 85.968 |
| 1.0 | 1.88842 | 90.000 | 1.97091 | 90.000 | 2.05833 | 90.000 | 2.15090 | 90.000 | 2.24884 | 90.000 |
| 1.05 | 1.88679 | 93.820 | I. 96935 | 93.880 | 2.05684 | 93.935 | 2.14947 | 93.986 | 2.24747 | 94.032 |
| I.I | 1.88193 | 97.652 | 1.96470 | $97.77{ }^{2}$ | 2.05238 | 97.882 | 2.14520 | 97.982 | 2.24334 | 98.075 |
| 1.15 | 1.87394 | 101.511 | 1.95704 | 101.689 | 2.04505 | IOI. 851 | 2.13819 | 102.000 | 2.23669 | 102.136 |
| 1.2 | 1.86297 | 105.410 | I. 94654 | 105.642 | 2.03500 | 105.855 | 2.12858 | 106.049 | 2.22751 | 106.226 |
| 1.25 | 1.84924 | 109.360 | 1.93341 | 109.644 | 2.02245 | 109.903 | 2.11658 | 110.139 | 2.21604 | 110.355 |
| 1.3 | 1.83304 | 113.375 | 1.91792 | 113.705 | 2.00764 | 114.006 | 2.10244 | II4.28r | 2.20254 | 114.531 |
| 1.35 | 1.81470 | 117.467 | 1.90040 | 117.837 | 1.99091 | 118.175 | 2.08647 | 118.482 | 2.18731 | 118.762 |
| 1.4 | 1.79462 | 121.646 | 1.88123 | 122.050 | 1.97262 | 122.417 | 2.06903 | 122.751 | 2.17067 | 123.055 |
| 1.45 | 1.77323 | 125.923 | 1.86084 | 126.352 | 1.95319 | 126.742 | 2.0505 I | 127.095 | 2.15302 | 127.416 |
| 1.5 | 1.75104 | 130.308 | 1.83970 | 130.752 | 1.93306 | 131.155 | 2.03135 | 131.520 | 2.13478 | 131.851 |
| 1.55 | I. 72856 | 134.805 | 1.81832 | I 35.255 | 1.91273 | 135.662 | 2.01200 | I36.030 | 2.11637 | 1 36.362 |
| 1.6 | 1.70635 | 139.420 | 1.79722 | 139.865 | 1.89268 | 140.265 | 1.99295 | 140.627 | 2.09828 | 140.953 |
| 1.65 | 1.68497 | 144.155 | 1.77694 | 144.582 | 1.87343 | 144.965 | 1.97468 | 145.311 | 2.08093 | 145.62 I |
| 1.7 | 1.66501 | 149.009 | 1.75802 | 149.405 | I. 85549 | 149.760 | 1.95767 | 150.079 | 2.06479 | 150.366 |
| 1.75 | 1.64699 | 153.974 | 1.74096 | 154.327 | 1.83934 | 154.644 | 1.94237 | 154.927 | 2.05030 | 155.182 |
| 1.8 | 1. 63145 | 159.042 | 1.72627 | 159.341 | 1.82544 | 159.608 | 1.92921 | 159.847 | 2.03784 | 160.061 |
| 1.85 | 1.61884 | 164.197 | 1.71435 | 164.432 | 1.81417 | I64.641 | 1.91856 | 164.828 | 2.02775 | 164.995 |
| 1.9 | 1.60954 | 169.424 | 1.70557 | 169.585 | 1.80588 | 169.729 | 1.91072 | 169.857 | 2.02034 | 169.972 |
| 1.95 | 1.60384 | 174.699 | 1.70019 | 174.782 | 1.80080 | 174.855 | 1.90592 | 174.920 | 2.01580 | 174.979 |
| 2.0 | 1.60192 | 180.000 | 1.69838 | 180.000 | 1.79909 | 180.000 | 1.90430 | 180.000 | 2.01427 | 180.000 |

Example. $\quad \sinh \left(1.45+i_{\underline{1.70}}\right)=2.06479 \angle 150^{\circ} .366=2.06479 \angle 150^{\circ} .32^{\prime} .01^{\prime \prime}$.

Table X. HYperbolic SINES. $\sinh (x+i q)=r / \gamma$. Continued

|  | $x=1.50$ |  | $x=1.55$ |  | $x=$ 1. 60 |  | $x=\mathrm{r} .65$ |  | $x=1.70$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\gamma$ | $r$ | $\gamma$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\gamma$ | $r$ | $\boldsymbol{\gamma}$ |
|  |  | - |  | $\bigcirc$ |  |  |  |  |  |  |
| $\bigcirc$ | 2.12928 | 0.000 | 2.24961 | 0.000 | 2.37557 | 0.000 | 2.50746 | 0.000 | 2.64563 | 0.000 |
| 0.05 | 2.13073 | 4.969 | 2.25098 | 4.923 | 2.37686 | 4.881 | 2.50869 | 4.843 | 2.64679 | 4.809 |
| 0.1 | 2.13502 | 9.925 | 2.25504 | 9.833 | 2.38071 | 9.751 | 2.51234 | 9.677 | 2.65025 | 9.610 |
| 0.15 | 2.14204 | 14.855 | 2.26169 | 14.72 I | 2.38701 | 14.600 | 2.51831 | 14.492 | 2.65591 | 14.395 |
| 0.2 | 2.15159 | 19.746 | 2.27074 | 19.574 | 2.39558 | 19.419 | 2.52644 | 19.280 | 2.66361 | 19.155 |
| 0.25 | 2.16340 | 24.590 | 2.28193 | 24.385 | 2.40619 | 24.200 | 2.53650 | 24.034 | 2.67316 | 23.884 |
| 0.3 | 2.17714 | 29.376 | 2.29496 | 29.144 | 2.41856 | 28.935 | 2.54824 | 28.747 | 2.68430 | 28.578 |
| 0.35 | 2.19245 | 34.099 | 2.30949 | 33.846 | 2.43235 | 33.619 | 2.56133 | 33.415 | 2.69673 | 33.229 |
| 0.4 | 2.20892 | 38.753 | 2.32513 | 38.488 | 2.44721 | 38.248 | 2.57544 | 38.032 | 2.71014 | 37.837 |
| 0.45 | 2.22612 | 43.337 | 2.34148 | 43.066 | 2.46274 | 42.820 | 2.5902 I | 42.599 | 2.72418 | 42.398 |
| 0.5 | 2.24362 | 47.850 | 2.35812 | 47.580 | 2.47857 | 47.334 | 2.60527 | 47.113 | 2.73850 | 46.911 |
| 0.55 | 2.26098 | 52.294 | 2.37465 | 52.030 | 2.49430 | 5 I .791 | 2.62024 | 51.574 | 2.75274 | 51.378 |
| 0.6 | 2.27779 | 56.670 | 2.39066 | 56.420 | 2.50955 | 56.192 | 2.63476 | 55.986 | 2.76657 | 55.799 |
| 0.65 | 2.29365 | 60.984 | 2.40577 | 60.752 | 2.52395 | 60.542 | 2.64847 | 60.351 | 2.77963 | 60.178 |
| 0.7 | 2.30819 | 65.24 I | 2.41976 | 65.033 | 2.53717 | 64.845 | 2.66108 | 64.673 | 2.79164 | 64.517 |
| 0.75 | 2.32107 | 69.448 | 2.43193 | 69.268 | 2.54890 | 69.105 | 2.67226 | 68.956 | 2.80230 | 68.82 I |
| 0.8 | 2.33202 | 73.611 | 2.44238 | 73.464 | 2.55887 | 73.329 | 2.68178 | 73.206 | 2.81138 | 73.094 |
| 0.85 | 2.34080 | 77.740 | 2.45076 | 77.626 | 2.56687 | 77.523 | 2.68941 | 77.429 | 2.81867 | 77.343 |
| 0.9 | 2.34720 | 81.842 | 2.45688 | 81.765 | 2.57272 | 81.695 | 2.69499 | 81.631 | 2.82399 | 8 r .573 |
| 0.95 | 2.35110 | 85.925 | 2.46061 | 85.887 | 2.57627 | 85.85 I | 2.69839 | 85.819 | 2.82723 | 85.790 |
| 1. | 2.35241 | 90.000 | 2.46186 | 90.000 | 2.57746 | 90.000 | 2.69951 | 90.000 | 2.82832 | 90.000 |
| 1.05 | 2.35110 | 94.075 | 2.46061 | 94.113 | 2.57627 | 94.149 | 2.69839 | 94.181 | 2.82723 | 94.210 |
| I.I | 2.34720 | 98.158 | 2.45688 | 98.235 | 2.57272 | 98.305 | 2.69499 | 98.369 | 2.82399 | 98.427 |
| 1.15 | 2.34080 | 102.260 | 2.45076 | 102.374 | 2.56687 | 102.477 | 2.68941 | 102.57 I | 2.81867 | 102.657 |
| I. 2 | 2.33202 | 106.389 | 2.44238 | 106.536 | 2.55887 | 106.671 | 2.68178 | 106.794 | 2.81138 | 106.906 |
| 1.25 | 2.32107 | $110.55{ }^{2}$ | 2.43193 | 110.732 | 2.54890 | 110.895 | 2.67226 | III. 044 | 2.80230 | 111.179 |
| 1.3 | 2.30819 | 114.759 | 2.41976 | 114.967 | 2.53717 | 115.155 | 2.66108 | II 5.327 | 2.79164 | 115.483 |
| 1.35 | 2.29365 | 119.016 | 2.40577 | 119.248 | 2.52395 | 119.458 | 2.64847 | .119.649 | 2.77963 | 119.822 |
| 1.4 | 2.27779 | 123.330 | 2.39066 | 123.580 | 2.50955 | 123.808 | 2.63476 | 124.014 | 2.76657 | 124.201 |
| I. 45 | 2.26098 | 127.706 | 2.37465 | 127.970 | 2.49430 | 128.209 | 2.62024 | I28.426 | 2.75274 | 128.622 |
| 1.5 | 2.24362 | I32.150 | 2.35812 | 132.42 I | 2.47857 | I 32.666 | 2.60527 | I32.887 | 2.73850 | 133.089 |
| 1.55 | 2.22612 | 136.663 | 2.34148 | 136.934 | 2.46274 | 137.180 | 2.59021 | 137.401 | 2.72418 | 137.602 |
| 1.6 | 2.20892 | 141.247 | 2.32513 | 141.512 | 2.44721 | 141.752 | 2.57544 | 141.968 | 2.71014 | 142.163 |
| 1.65 | 2.19245 | 145.901 | 2.30949 | 146.154 | 2.43235 | 146.38I | 2.56133 | 146.585 | 2.69673 | 146.771 |
| 1.7 | 2.17714 | 150.624 | 2.29496 | 150.856 | 2.41856 | 151.065 | 2.54824 | 151.253 | 2.68430 | 151.422 |
|  | 2.16340 | I55.410 | 2.28193 | 155.615 | 2.40619 | 155.800 | 2.53650 | 155.966 | 2.67316 | 156.1ı6 |
| 1.8 | 2.15159 | 160.254 | 2.27074 | 160.426 | 2.39558 | 160.581 | 2.52644 | 160.720 | 2.66361 | 160.845 |
| 1.85 | 2.14204 | 165.145 | 2.26169 | 165.279 | 2.38701 | 165.400 | 2.51831 | 165.508 | 2.65591 | 165.605 |
| 1.9 | 2.13502 | 170.075 | 2.25504 | 170.167 | 2.38071 | 170.249 | 2.51234 | 170.323 | 2.65025 | 170.390 |
| 1.95 | 2.13073 | I75.03I | 2.25098 | 175.077 | 2.37686 | 175.119 | 2.50869 | I75.157 | 2.64679 | 175.191 |
| 2.0 | 2.12928 | 180.000 | 2.24961 | 180.000 | 2.37557 | 180.000 | 2.50746 | 180.000 | 2.64563 | 180.000 |

Example. $\sinh (1.55+i \underline{0.60})=2.39066 \angle 56^{\circ} .420=2.39066 \angle 56^{\circ} .25^{\prime} .12^{\prime \prime}$.

Table X. HYperbolic Sines. $\sinh (x+i q)=r / \gamma$. Continued

|  | $x=1.75$ |  | $x=\mathrm{r} .8$ |  | $x=1.85$ |  | $x=1.9$ |  | $x=1.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\gamma$ |
|  |  | $\bigcirc$ |  | - |  | $\bigcirc$ |  | - |  | 。 |
| 0 | 2.79041 | 0.00 | 2.94217 | 0.00 | 3.10129 | 0.00 | 3.26816 | 0.00 | 3.44321 | . |
| 0.05 | 2.79151 | 4.779 | 2.94322 | $4.75{ }^{2}$ | 3.10228 | 4.727 | 3.26911 | 4.705 | 3.44410 | 4.685 |
| 0.1 | 2.79479 | $9 \cdot 551$ | 2.94633 | 9.497 | 3.10523 | 9.448 | 3.27191 | 9.405 | 3.44675 | 9.365 |
| 0.15 | 2.80016 | 14.307 | 2.95142 | 14.228 | 3.11006 | 14.158 | 3.27649 | 14.094 | 3.45112 | 14.036 |
| 0.2 | 2.80747 | 19.042 | 2.95835 | 18.941 | 3.11665 | 18.850 | 3.28274 | 18.767 | 3.45702 | 18.693 |
| 0.25 | 2.81653 | 23.750 | 2.96695 | 23.629 | 3.12481 | 23.520 | 3.29049 | 23.42 I | 3.46441 | 23.332 |
| 0.3 | 2.82710 | 28.425 | 2.97699 | 28.287 | 3.13434 | 28.163 | 3.29955 | 28.051 | 3.47301 | 27.950 |
| 0.35 | 2.83891 | 33.063 | 2.98821 | 32.912 | 3.14500 | 32.776 | $3 \cdot 30967$ | 32.654 | 3.48263 | 32.543 |
| 0.4 | 2.85165 | 37.661 | 3.00031 | 37.501 | 3.15650 | 37.357 | $3 \cdot 32060$ | 37.227 | 3.49302 | 37.110 |
| 0.45 | 2.86499 | 42.216 | 3.01300 | 42.053 | 3.16856 | 41.904 | $3 \cdot 33207$ | 41.770 | 3.50393 | 41.649 |
| 0.5 | 2.87861 | 46.730 | 3.02595 | 46.565 | 3.18088 | 46.416 | $3 \cdot 34378$ | 46.281 | 3.51507 | 46.160 |
| 0.55 | 2.89217 | 51.200 | 3.03885 | 51.039 | 3.19315 | 50.893 | $3 \cdot 35546$ | 50.76 I | 3.52617 | 50.642 |
| 0.6 | 2.90532 | 55.630 | 3.05138 | 55.476 | 3.20507 | 55.337 | $3 \cdot 36681$ | 55.21 I | 3.53698 | 55.096 |
| 0.65 | 2.91777 | 60.020 | 3.06323 | 59.877 | 3.21636 | 59.748 | $3 \cdot 37756$ | 59.63 I | $3 \cdot 54721$ | 59.524 |
| 0.7 | 2.92921 | 64.375 | 3.07413 | 64.246 | 3.22675 | 64.129 | $3 \cdot 38745$ | 64.023 | 3.55663 | 63.927 |
| 0.75 | 2.93938 | 68.698 | 3.08382 | 68.586 | 3.23598 | 68.484 | 3.39624 | 68.392 | 3.56500 | 68.308 |
| 0.8 | 2.94804 | 72.992 | 3.09206 | 72.900 | 3.24384 | 72.816 | 3.40373 | 72.740 | 3.57213 | 72.670 |
| 0.85 | 2.95498 | 77.265 | 3.09869 | 77.194 | 3.25015 | 77.129 | 3.40975 | 77.071 | 3.57788 | 77.017 |
| 0.9 | 2.96006 | 81.520 | 3.10353 | 81.471 | 3.25477 | 8 I .428 | 3.41415 | 81.388 | 3.58207 | 8 I .352 |
| 0.95 | 2.96315 | 85.763 | 3.10648 | 85.738 | 3.25759 | 85.716 | 3.41683 | 85.696 | 3.58462 | 85.678 |
| 1.0 | 2.96419 | 90.000 | $3 \cdot 10747$ | 90.000 | 3.25853 | 90.000 | 3.41773 | 90.000 | 3.58548 | 90.000 |
| 1.05 | 2.96315 | 94.237 | 3.10648 | 94.262 | 3.25759 | 94.284 | 3.41683 | 94.304 | 3.58462 | 94.322 |
| 1.1 | 2.96006 | 98.480 | 3.10353 | 98.529 | 3.25477 | 98.572 | 3.41415 | 98.612 | 3.58207 | 98.648 |
| 1.15 | 2.95498 | 102.735 | 3.09869 | 102.806 | 3.25015 | 102.871 | 3.40975 | 102.929 | 3.57788 | 102.983 |
| 1.2 | 2.94804 | 107.008 | 3.09206 | 107.100 | 3.24384 | 107.184 | 3.40373 | 107.260 | 3.57213 | 107.330 |
| 1.25 | 2.93938 | 111.302 | 3.08382 | 111.414 | 3.23598 | 111.516 | 3.39624 | 111.608 | 3.56500 | 111.692 |
| 1.3 | 2.9292 I | 115.625 | 3.07413 | 115.754 | 3.22675 | 115.87 I | 3.38745 | 115.977 | 3.55663 | 116.073 |
| 1.35 | 2.91777 | 119.980 | 3.06323 | 120.123 | 3.21636 | I 20.252 | 3.37756 | 120.369 | 3.54721 | 120.476 |
| 1. 4 | 2.90532 | 124.370 | 3.05138 | 124.524 | 3.20507 | 124.663 | $3 \cdot 36681$ | 124.789 | 3.53698 | 124.904 |
| 1.45 | 2.89217 | 128.800 | 3.03885 | 128.961 | 3.19315 | 129.107 | $3 \cdot 35546$ | 129.239 | 3.52617 | $129.35^{8}$ |
| 1.5 | 2.87861 | 133.270 | 3.02595 | 133.435 | 3.18088 | I 33.584 | 3.34378 | 133.719 | 3.51507 | 133.840 |
| 1.55 | 2.86499 | 137.784 | 3.01300 | 137.947 | 3.16856 | 138.096 | 3.33207 | 138.230 | 3.50393 | 138.351 |
| 1.6 | 2.85165 | 142.339 | 3.00031 | 142.499 | 3.15650 | 142.643 | 3.32060 | 142.773 | 3.49302 | 142.890 |
| 1.65 | 2.83891 | 146.937 | 2.98821 | 147.088 | 3.14500 | 147.224 | $3 \cdot 30967$ | 147.346 | 3.48263 | 147.457 |
| 1.7 | 2.82710 | 151.575 | 2.97699 | 151.713 | 3.13434 | 151.837 | 3.29955 | 151.949 | 3.47301 | 152.050 |
| 1.75 | 2.81653 | 156.250 | 2.96695 | 156.371 | 3.1248 I | 156.480 | 3.29049 | 156.579 | 3.46441 | 156.668 |
| 1.8 | 2.80747 | $160.95^{8}$ | 2.95825 | 161.059 | 3.11665 | 161.150 | 3.28274 | 161.233 | 3.45702 | 161.307 |
| 1.85 | 2.80016 | 165.693 | 2.95142 | 165.772 | 3.11006 | 165.842 | 3.27649 | 165.906 | 3.45112 | 165.964 |
| 1.9 | 2.79479 | 170.449 | 2.94633 | 170.503 | 3.10523 | 170.552 | 3.27191 | 170.595 | 3.44675 | 170.635 |
| 1.95 | 2.79151 | 175.221 | 2.94322 | 175.248 | 3.10228 | 175.273 | 3.26911 | 175.295 | 3.44410 | 175.315 |
| 2.0 | 2.79041 | 180.000 | 2.94217 | 180.000 | 3.10129 | 180.000 | 3.26816 | 180.000 | 3.4432 I | 180.000 |

Example. $\quad \operatorname { s i n h } ( \mathrm { r } . 9 0 + \underline { i } _ { 2 . 0 } ) = 3 . 2 6 8 \mathrm { I } 6 \angle \mathrm { I } 8 0 ^ { \circ } . \mathrm { O } = 3 . 2 6 8 \mathrm { I } 6 \longdiv { 1 8 0 ^ { \circ } . 0 } .$

Table X. HYPERBOLIC SINES. $\sinh (x+i q)=r / \gamma$. Continued

|  | $x=2.0$ |  | $x=2.05$ |  | $x=2.1$ |  | $x=2.15$ |  | $x=2.2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | \% | $\boldsymbol{\gamma}$ | $\dagger$ | $\boldsymbol{\gamma}$ | \% | $\boldsymbol{\gamma}$ |
|  |  | - |  | - |  | - |  | - |  |  |
| $\bigcirc$ | 3.62686 | 0.000 | 2.81950 | 0.000 | 4.02186 | 0.000 | 4.23419 | 0.000 | 4.45711 | 0.000 |
| 0.05 | 3.62771 | 4.667 | 3.82039 | 4.651 | 4.02263 | 4.636 | 4.2349 I | 4.623 | 4.45779 | 4.611 |
| 0.1 | 3.63023 | 9.330 | 3.82279 | 9.298 | 4.02490 | 9.269 | 4.23707 | 9.243 | 4.45985 | 9.220 |
| 0.15 | 3.63437 | 13.984 | 3.82671 | 13.938 | 4.02863 | 13.895 | 4.24061 | 13.857 | 4.46322 | 13.823 |
| 0.2 | 3.64000 | 18.626 | 3.83206 | 18.566 | 4.03371 | 18.511 | 4.24544 | 18.462 | 4.46780 | 18.418 |
| 0.25 | 3.64699 | 23.252 | 3.83870 | 23.180 | 4.04002 | 23.114 | 4.25145 | 23.055 | 4.47350 | 23.002 |
| 0.3 | 3.65517 | 27.858 | 3.84648 | 27.776 | 4.04740 | 27.701 | 4.25846 | 27.634 | -4.48017 | 27.573 |
| 0.35 | 3.66430 | 32.443 | 3.85515 | 32.353 | 4.05566 | 32.271 | 4.26630 | 32.197 | 4.48763 | 32.130 |
| 0.4 | 3.67418 | 37.004 | 3.86454 | 36.908 | 4.06459 | 36.821 | 4.27479 | 36.743 | 4.49570 | 36.671 |
| 0.45 | 3.68455 | 41.539 | 3.87440 | 41.440 | 4.07396 | 4 I .35 I | 4.28371 | 41.270 | 4.50417 | 41.196 |
| 0.5 | 3.69515 | 46.049 | 3.88448 | 45.950 | 4.08355 | 45.859 | 4.29282 | 45.778 | 4.51285 | 45.703 |
| 0.55 | 3.70572 | 50.533 | 3.89453 | 50.435 | 4.09311 | 50.347 | 4.30193 | 50.266 | 4.52150 | 50.193 |
| 0.6 | 3.71600 | 54.992 | 3.90432 | 54.898 | 4.10243 | 54.813 | $4 \cdot 31079$ | 54.736 | 4.52993 | 54.666 |
| 0.65 | 3.72574 | 59.427 | 3.91359 | 59.340 | 4.11125 | 59.260 | 4.31918 | 59.188 | $4 \cdot 53793$ | 59.123 |
| 0.7 | 3.73470 | 63.840 | 3.92213 | 63.761 | 4.11938 | 63.689 | $4 \cdot 32693$ | 63.624 | 4.54529 | 63.565 |
| 0.75 | 3.74268 | 68.232 | 3.92972 | 68.164 | 4.1266I | 68.101 | 4.3338 r | 68.044 | 4.55184 | 67.993 |
| 0.8 | 3.74948 | 72.608 | 3.93620 | 72.551 | 4.13278 | 72.499 | $4 \cdot 33968$ | 72.452 | 4.55744 | 72.409 |
| 0.85 | -3.75495 | 76.969 | 3.94142 | 76.925 | 4.13774 | 76.885 | $4 \cdot 34440$ | 76.849 | 4.56167 | 76.816 |
| 0.9 | 3.75894 | 81.319 | 3.9452 I | 81.289 | 4.14136 | 8 I .262 | 4.34785 | 81.237 | 4.56523 | 8 8 .215 |
| 0.95 | 3.76137 | 85.661 | 3.94753 | 85.646 | 4.14357 | 85.632 | $4 \cdot 34996$ | 85.620 | 4.56723 | 85.609 |
| 1. | 3.76220 | 90.000 | 3.94832 | 90.000 | 4.14431 | 90.000 | 4.35067 | 90.000 | $4 \cdot 56791$ | 90.000 |
| 1.05 | 3.76137 | 94.339 | 3.94753 | 94.354 | 4.14357 | 94.368 | $4 \cdot 34996$ | 94.380 | 4.56723 | 94.39 I |
| 1.I | 3.75894 | 98.681 | 3.9452 I | 98.711 | 4.14136 | 98.738 | $4 \cdot 34785$ | 98.763 | 4.56523 | 98.785 |
| 1.15 | 3.75495 | 103.031 | 3.94142 | 103.075 | 4.13774 | 103.115 | $4 \cdot 34440$ | 103.151 | 4.56167 | 103.184 |
| 1.2 | 3.74948 | 107.392 | 3.93620 | 107.449 | 4.13278 | 107.501 | $4 \cdot 33968$ | 107.548 | 4.55744 | 107.591 |
| 1.25 | 3.74268 | 111.768 | 3.92972 | 111.836 | 4.1266I | 111.899 | 4.3338r | III.956 | 4.55184 | 112.007 |
| 1.3 | 3.73470 | 116.160 | 3.92213 | 116.239 | 4.11938 | 116.311 | $4 \cdot 32693$ | 116.376 | 4.54529 | 116.435 |
| 1.35 | 3.72574 | 120.573 | 3.91359 | 120.660 | 4.11125 | 120.740 | 4.31918 | 120.812 | 4.53793 | 120.877 |
| 1.4 | 3.71600 | 125.008 | 3.90432 | 125.102 | 4.10243 | 125.187 | $4 \cdot 31079$ | 125.264 | $4 \cdot 52993$ | 125.334 |
| 1.45 | 3.70572 | 129.467 | 3.89453 | 129.56 | 4.09311 | 129.653 | 4.30193 | 129.734 | 4.52150 | 129.807 |
| 1.5 | 3.69515 | 133.951 | 3.88448 | 134.051 | 4.08355 | 134.14 1 | 4.29282 | 134.223 | 4.51285 | 134.297 |
| 1.55 | 3.68455 | 138.46 I | 3.87440 | 138.560 | 4.07396 | I 38.649 | 4.28371 | 138.730 | 4.50417 | 138.804 |
| 1. 6 | 3.67418 | 142.996 | 3.86454 | 143.092 | 4.06459 | 143.179 | 4.27479 | 143.257 | 4.49570 | 143.329 |
| 1.65 | 3.66430 | 147.557 | 3.85515 | 147.647 | 4.05566 | 147.729 | 4.26630 | 147.803 | 4.48763 | 147.870 |
| 1.7 | 3.65517 | 152.142 | 3.84648 | 152.224 | 4.04740 | 152.299 | 4.25846 | 152.366 | 4.48017 | 152.427 |
| 1.75 | 3.64699 | 156.748 | 3.83870 | 156.820 | 4.04002 | 156.886 | 4.25145 | 156.945 | 4.47350 | r56.998 |
| 1.8 | 3.64000 | 161.374 | 3.83206 | 161.434 | 4.03371 | 161.489 | 4.24544 | 161.538 | 4.46780 | 161.582 |
| 1.85 | 3.63437 | 166.016 | 3.82671 | 166.062 | 4.02863 | 166.105 | 4.24061 | 166.143 | 4.46322 | 166.177 |
| 1.9 | 3.63023 | 170.670 | 3.82279 | 170.702 | 4.02490 | 170.731 | 4.23707 | 170.757 | 4.45985 | 170.780 |
| 1.95 | 3.62771 | 175.333 | 3.82039 | 175.349 | 4.02263 | 175.364 | 4.2349 I | 175.377 | 4.45779 | I 75.389 |
| 2.0 | 3.62686 | 180.000 | 3.81958 | 180.000 | 4.02186 | 180.000 | 4.23419 | 180.000 | $4 \cdot 45711$ | 180.000 |

Example. $\quad \sinh \left(2.0+i_{\text {I.0 }}\right)=3.76220 \angle 90^{\circ}$.

Table X. HYperbolic SINES. $\sinh (x+i q)=r / \gamma$. Continued

|  | $x=2.25$ |  | $x=2.3$ |  | $x=2.35$ |  | $x=2.4$ |  | $x=2.45$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ | F | $\boldsymbol{\gamma}$ | $r$ | $\gamma$ | r | $\gamma$ |
|  |  | $\bigcirc$ |  |  |  |  |  |  |  |  |
| $\bigcirc$ | 4.69117 | 0.000 | 4.93696 | 0.000 | 5.19510 | 0.000 | 5.46623 | 0.000 | 5.75103 | 0.000 |
| 0.05 | 4.69182 | 4.601 | 4.93759 | 4.591 | 5.19569 | 4.582 | '5.46679 | 4.574 | 5.75156 | 4.567 |
| 0.1 | 4.69377 | 9.199 | 4.93944 | 9.180 | 5.19745 | 9.163 | $5 \cdot 46847$ | 9.147 | 5.75316 | 9.133 |
| 0.15 | 4.69697 | 13.792 | 4.94249 | 13.764 | 5.20035 | 13.739 | 5.47122 | 13.716 | 5.75576 | 13.695 |
| 0.2 | 4.70134 | 18.378 | 4.94662 | 18.341 | 5.20428 | 18.309 | 5.47495 | 18.279 | 5.75932 | 18.252 |
| 0.25 | 4.70675 | 22.954 | 4.95177 | 22.910 | 5.20917 | 22.871 | 5.47961 | 22.835 | 5.76375 | 22.803 |
| 0.3 | 4.71308 | 27.518 | 4.95780 | 27.469 | 5.21490 | 27.424 | $5 \cdot 48505$ | 27.383 | 5.76892 | 27.347 |
| 0.35 | 4.72017 | 32.070 | 4.96454 | 32.016 | 5.22131 | 31.966 | 5.49115 | 31.922 | 5.77472 | 31.881 |
| 0.4 | 4.72784 | 36.608 | 4.97183 | 36.549 | 5.22825 | 36.497 | 5.49775 | 36.449 | 5.78099 | 36.407 |
| 0.45 | 4.73592 | 41.130 | 4.97950 | 41.070 | $5 \cdot 23553$ | 41.016 | $5 \cdot 50468$ | 40.966 | 5.78758 | 40.922 |
| - 5 | 4.74415 | 45.636 | 4.98734 | 45.576 | 5.23728 | 45.521 | $5 \cdot 51177$ | 45.471 | 5.79434 | 45.427 |
| 0.55 | 4.75240 | 50.127 | 4.99518 | 50.068 | 5.25046 | 50.014 | 5.51887 | 49.965 | 5.80108 | 49.92 I |
| 0.6 | 4.76042 | 54.603 | 5.00281 | 54.546 | 5.25772 | 54.494 | $5 \cdot 52578$ | 54.447 | 5.80765 | 54.405 |
| 0.65 | 4.76802 | 59.064 | 5.01005 | 59.011 | 5.26461 | 58.962 | 5.53233 | 58.919 | 5.81389 | 58.879 |
| 0.7 | 4.77503 | 63.512 | 5.01672 | 63.463 | 5.27096 | 63.419 | 5.53837 | 63.380 | 5.81964 | 63.344 |
| 0.75 | 4.78127 | 67.947 | 5.02265 | 67.904 | 5.27662 | 67.866 | $5 \cdot 54375$ | 67.831 | 5.82476 | 67.800 |
| 0.8 | 4.78661 | 72.371 | 5.02773 | 72.336 | 5.28143 | 72.304 | 5.54834 | 72.275 | 5.82913 | 72.249 |
| 0.85 | 4.79088 | 76.786 | 5.03181 | 76.759 | 5.28531 | 76.735 | 5.55204 | 76.712 | 5.83265 | 76.692 |
| 0.9 | 4.79402 | 8 I .195 | 5.03479 | 81.176 | 5.288 I 6 | 8 I .160 | $5 \cdot 55474$ | 8 I .144 | 5.83522 | 8 I .131 |
| 0.95 | 4.79593 | 85.599 | 5.03661 | 85.589 | 5.28989 | 85.581 | $5 \cdot 55639$ | 85.573 | 5.83680 | 85.566 |
| 1.0 | 4.79657 | 90.000 | 5.03722 | 90.000 | 5.29047 | 90.000 | 5.55695 | 90.000 | 5.83732 | 90.000 |
| 1.05 | 4.79593 | 94.401 | 5.03661 | 94.41 I | 5.28989 | 94.419 | 5.55639 | 94.427 | 5.83680 | 94.434 |
| 1.1 | 4.79402 | 98.805 | 5.03479 | 98.824 | 5.28816 | 98.840 | $5 \cdot 55474$ | 98.856 | 5.83522 | 98.869 |
| 1.15 | 4.79088 | 103.214 | 5.03181 | 103.241 | 5.28531 | 103.265 | $5 \cdot 55204$ | 103.288 | 5.83265 | 103.308 |
| 1.2 | 4.78661 | 107.629 | 5.02773 | 107.664 | 5.28143 | 107.696 | $5 \cdot 54834$ | 107.725 | 5.82913 | 107.751 |
| 1.25 | 4.78127 | 112.053 | 5.02265 | 112.096 | 5.27662 | 112.134 | 5.54375 | 112.169 | 5.82476 | 112.200 |
| 1.3 | 4.77503 | 116.488 | 5.01672 | 116.537 | 5.27096 | 116.581 | 5.53837 | 116.620 | 5.81964 | 116.656 |
| 1.35 | 4.76802 | 120.936 | 5.01005 | 120.989 | 5.26461 | 121.038 | $5 \cdot 53233$ | I2I. | 5.81389 | 18.65 |
| 1.4 | 4.76042 | 125.397 | 5.0028 I | 125.454 | 5.25772 | 125.506 | 5.52578 | 125.553 | 5.80765 | 125.595 |
| I. 45 | 4.75240 | 129.873 | 4.99518 | 129.932 | 5.25046 | 129.986 | 5.51887 | 130.035 | 5.80108 | 130.079 |
| 1.5 | 4.74415 | 1 34.354 | 4.98734 | 134.424 | 5.23728 | 134.479 | 5.51177 | 134.529 | 5.79434 | 134.573 |
| 1.55 | 4.73592 | 138.870 | 4.97950 | 138.930 | 5.23553 | 138.984 | 5.50468 | 1 39.034 | 5.78758 | 139.078 |
| 1.6 | 4.72784 | 143.392 | 4.97183 | 143.451 | 5.22825 | 143.503 | $5 \cdot 49775$ | 143.551 | 5.78099 | 143.593 |
| 1.65 | 4.72017 | 147.930 | 4.96454 | 147.984 | 5.22131 | 148.034 | 5.49115 | 148.078 | 5.77472 | 148.119 |
| 1.7 | 4.71308 | 152.482 | 4.95780 | 152.53 I | 5.21490 | 152.576 | 5.48505 | 152.617 | 5.76982 | 152.653 |
| 1.75 | 4.70675 | 157.046 | 4.95177 | 157.090 | 5.20917 | 157.129 | 5.47961 | 157.165 | 5.76375 | 157.197 |
| 1.8 | 4.70134 | 161.622 | 4.94662 | 161.659 | 5.20428 | 161.691 | 5.47495 | 161.721 | 5.75932 | 161.748 |
| 1.85 | 4.69697 | 166.208 | 4.94249 | 166.236 | 5.20035 | 166.261 | 5.47122 | 166.284 | 5.75576 | 166.305 |
| 1.9 | 4.69377 | 170.801 | 4.93944 | 170.820 | 5.19745 | 170.837 | 5.46847 | 170.853 | 5.75316 | 170.867 |
| 1.95 | 4.69182 | 175.399 | 4.93759 | 175.409 | 5.19569 | 175.418 | 5.46679 | 175.426 | 5.75156 | 175.433 |
| 2.0 | 4.69117 | 180.000 | 4.93696 | 180.000 | 5.19510 | 180.000 | 5.46623 | 180.000 | $5 \cdot 75103$ | 180.000 |

Example. $\quad \sinh (2.40+i \underline{0.4})=5.49775 \angle 36^{\circ} .449=5.49775 \angle 36^{\circ} .26^{\prime} .56^{\prime \prime}$.

Table X. HYPERBOLIC SINES. $\sinh (x+i q)=r \not q . \quad$ Continued

|  | $x=2.5$ |  | $x=2.55$ |  | $x=2.6$ |  | $x=2.65$ |  | $x=2.7$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ |
|  |  | - |  | - |  |  |  | $\bigcirc$ |  |  |
| $\bigcirc$ | 6.05020 | 0.000 | 6.36451 | 0.000 | 6.69473 | 0.000 | 7.04169 | 0.000 | 7.40626 | . 000 |
| 0.05 | 6.05071 | 4.56I | 6.36499 | 4.555 | 6.69518 | 4.550 | 7.04213 | 4.545 | 7.40668 | 4.540 |
| 0.1 | 6.05223 | 9.120 | 6.36644 | 9.109 | 6.69656 | 9.098 | 7.04343 | 9.089 | 7.40791 | 9.080 |
| 0.15 | 6.05471 | 13.676 | 6.36879 | 13.660 | 6.69880 | 13.644 | 7.04556 | 13.631 | 7.40994 | 13.618 |
| 0.2 | 6.05808 | 18.228 | 6.37201 | 18.206 | 6.70185 | 18.187 | 7.04847 | 18.169 | 7.41271 | 18.153 |
| 0.25 | 6.06229 | 22.774 | 6.37601 | 22.748 | 6.70565 | 22.725 | 7.05208 | 22.703 | 7.41614 | 22.684 |
| 0.3 | 6.06722 | 27.314 | 6.38068 | 27.284 | 6.71011 | 27.257 | 7.05631 | 27.232 | 7.42017 | 27.210 |
| 0.35 | 6.07273 | 31.845 | 6.38592 | 31.812 | 6.71509 | 31.782 | 7.06105 | 31.756 | 7.42467 | 31.731 |
| 0.4 | 6.07869 | 36.368 | 6.39160 | 36.333 | 6.72048 | 36.301 | 7.06618 | 36.273 | 7.42955 | 36.246 |
| 0.45 | 6.08496 | 40.882 | 6.39755 | 40.845 | 6.72616 | 40.813 | 7.07158 | 40.783 | 7.43468 | 40.756 |
| 0.5 | 6.09139 | 45.386 | 6.40367 | 45.350 | 6.73197 | 45.316 | 7.07711 | 45.286 | 7.43994 | 45.259 |
| 0.55 | 6.09781 | 49.881 | 6.40977 | 49.845 | 6.73778 | 49.812 | 7.08264 | 49.782 | 7.44519 | 49.755 |
| 0.6 | 6.10406 | 54.366 | 6.41572 | 54.332 | 6.74343 | 54.300 | 7.08802 | 54.272 | 7.45032 | 54.246 |
| 0.65 | 6.10999 | 58.843 | 6.42137 | 58.810 | 6.7488 I | 58.78 I | 7.09313 | 58.754 | 7.45518 | 58.730 |
| 0.7 | 6.11547 | 63.31 I | 6.42658 | 63.282 | 6.75376 | 63.255 | 7.09784 | 63.230 | 7.45966 | 63.209 |
| 0.75 | 6.12034 | 67.772 | 6.43121 | 67.746 | 6.75818 | 67.722 | 7.10204 | 67.701 | 7.46366 | 67.682 |
| 0.8 | 6.12450 | 72.226 | 6.43518 | 72.204 | 6.76195 | 72.185 | 7.10563 | 72.167 | 7.46708 | 72.152 |
| 0.85 | 6.12785 | 76.674 | 6.43836 | 76.658 | 6.76499 | 76.643 | 7.10851 | 76.629 | 7.46982 | 76.617 |
| 0.9 | 6.13030 | 8 I .119 | 6.44069 | 81.107 | 6.76720 | 81.097 | 7.11062 | 81.088 | 7.47183 | 81.080 |
| 0.95 | 6.13179 | 85.560 | 6.442 I 2 | $85 \cdot 554$ | 6.76855 | 85.549 | 7.11191 | 85.544 | 7.47306 | 85.540 |
| , | 6.13229 | 90.000 | 6.44259 | 90.000 | 6.76901 | 90.000 | 7.11234 | 90.000 | 7.47347 | 90.000 |
| 1.05 | 6.13179 | 94.440 | 6.44212 | 94.446 | 6.76855 | 94.45 | 7.11191 | 94.456 | 7.47306 | 94.460 |
| I.I | 6.13030 | 98.88 1 | 6.44069 | 98.893 | 6.76720 | 98.903 | 7.11062 | 98.912 | 7.47183 | 98.920 |
| 1.15 | 6.12785 | 103.326 | 6.43836 | 103.342 | 6.76499 | 103.357 | 7.10851 | 103.371 | 7.46982 | 103.383 |
| 1.2 | 6.12450 | 107.774 | 6.43518 | 107.796 | 6.76195 | 107.815 | 7.10563 | 107.833 | 7.46708 | 107.848 |
| 1.25 | 6.12034 | 112.228 | 6.43121 | II2.254 | 6.758 I 8 | 112.278 | 7.10204 | II2.299 | 7.46366 | II 2.318 |
| 1.3 | 6.11547 | 116.689 | 6.42658 | 116.718 | 6.75376 | 116.745 | 7.09784 | 116.770 | 7.45966 | 116.79 r |
| I. 35 | 6.10999 | 121.157 | 6.42137 | 121.190 | 6.7488 I | 121.219 | 7.09313 | 121.246 | 7.45518 | 121.270 |
| 1.4 | 6.10406 | 125.634 | 6.41572 | 125.668 | 6.74343 | 125.700 | 7.08802 | 125.728 | 7.45032 | 125.754 |
| I. 45 | 6.0978 I | 130.119 | 6.40977 | 130.155 | 6.73778 | 130.188 | 7.08264 | 130.218 | 7.44519 | 130.245 |
| 1.5 | 6.09139 | 134.614 | 6.40367 | 134.651 | 6.73197 | 134.684 | 7.07711 | 134.713 | 7.43994 | 134.74 I |
| 1.55 | 6.08496 | 139.118 | 6.39755 | 139.155 | 6.72616 | 139.187 | 7.07158 | 139.217 | 7.43468 | I 39.244 |
| 1.6 | 6.07869 | 143.632 | 6.39160 | 143.667 | 6.72048 | 143.699 | 7.06618 | 143.727 | 7.42955 | 143.754 |
| צ. 65 | 6.07273 | 148.155 | 6.38592 | 148.188 | 6.71509 | 148.218 | 7.06105 | 148.244 | 7.42467 | 148.269 |
| 1.7 | 6.06722 | 152.686 | 6.38068 | 152.716 | 6.71011 | 152.743 | 7.0563 I | 152.768 | 7.42017 | 152.790 |
| 1.75 | 6.06229 | 157.226 | 6.37601 | 157.252 | 6.70565 | 157.275 | 7.05208 | 157.297 | 7.41614 | 157.316 |
| 1.8 | 6.05808 | 161.772 | 6.37201 | 161.794 | 6.70185 | 161.813 | 7.04847 | 161.831 | 7.4127 I | 161.847 |
| 1.85 | 6.0547 I | 166.324 | 6.36879 | 166.340 | 6.69880 | 166.356 | 7.04566 | 166.369 | 7.40994 | 166.382 |
| 1.9 | 6.05223 | 170.880 | 6.36644 | 170.891 | 6.69656 | 170.902 | 7.04343 | 170.911 | 7.40791 | 170.920 |
| 1.95 | 6.05071 | 175.439 | 6.36499 | 175.445 | 6.69518 | 175.450 | 7.04213 | 175.455 | 7.40668 | 175:460 |
| 2.0 . | 6.05020 | 180.000 | 6.36451 | 180.000 | 6.69473 | 180.000 | 7.04169 | 180.000 | 7.40626 | 180.000 |

Example. $\quad \sinh (2.6+i \underline{0.6})=6.74343 \angle 54^{\circ} \cdot 300=6.74343 \angle 54^{\circ} \cdot 18^{\prime} 00^{\prime \prime}$.

Table X. HYperbolic SINES. $\sinh (x+i q)=r \not \gamma$. Continued

|  | $x=2.75$ |  | $x=2.8$ |  | $x=2.85$ |  | $x=2.9$ |  | $x=2.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\gamma$ |
|  |  | $\bigcirc$ |  | $\bigcirc$ |  | - |  | - |  |  |
| $\bigcirc$ | 7.78935 | 0.000 | 8.19192 | 0.000 | 8.61497 | 0.000 | 9.05956 | 0.000 | 9.52681 | . 000 |
| 0.05 | 7.78975 | 4.537 | 8.19230 | 4.533 | 8.61532 | 4.530 | 9.05990 | 4.527 | 9.52713 | 4.525 |
| 0.1 | 7.79092 | 9.073 | 8.1934I | 9.066 | 8.61639 | 9.060 | 9.06091 | 9.054 | 9.52809 | 9.049 |
| 0.15 | 7.79285 | 13.607 | 8.19524 | 13.596 | 8.61813. | 13.587 | 9.06257 | 13.579 | 9.52967 | 13.571 |
| 0.2 | 7.79547 | 18.138 | 8.19774 | 18.125 | 8.6205 I | 18.113 | 9.06483 | 18.102 | 9.53182 | 18.093 |
| 0.25 | 7.79875 | 22.666 | 8.20085 | 22.650 | 8.62347 | 22.636 | 9.06764 | 22.623 | 9.53450 | 22.611 |
| 0.3 | 7.80257 | 27.190 | 8.20449 | 27.172 | 8.62691 | 27.155 | 9.07093 | 27.141 | 9.53762 | 27.127 |
| 0.35 | 7.80685 | 31.709 | 8.20857 | 31.689 | 8.63080 | 31.671 | 9.07461 | 31.655 | 9.54 II 3 | 31.640 |
| 0.4 | 7.81149 | 36.223 | 8.21298 | 36.202 | 8.63500 | 36.183 | 9.0786 I | 36.165 | 9.54492 | 36.150 |
| 0.45 | 7.81637 | 40.73 I | 8.21762 | 40.710 | 8.6394 I | 40.690 | 9.08281 | 40.671 | 9.54892 | 40.655 |
| 0.5 | 7.82138 | 45.234 | 8.22238 | 45.212 | 8.64395 | 45.192 | 9.08711 | 45.173 | 9.55301 | 45.157 |
| 0.55 | 7.82638 | 49.731 | 8.22713 | 49.709 | 8.64846 | 49.689 | 9.09142 | 49.671 | 9.55711 | 49.655 |
| 0.6 | 7.83125 | 54.222 | 8.23177 | 54.201 | 8.65287 | 54.182 | 9.09561 | 54.165 | 9.56109 | 54.149 |
| 0.65 | 7.83588 | 58.708 | 8.23617 | 58.688 | 8.65706 | 58.670 | 9.09959 | 58.654 | 9.56488 | 58.640 |
| 0.7 | 7.84015 | 63.189 | 8.24024 | 63.171 | 8.66092 | 63.155 | 9.10327 | 63.140 | 9.56838 | 63.127 |
| 0.75 | 7.84395 | 67.665 | 8.24385 | 67.649 | 8.66436 | 67.636 | 9.10655 | 67.622 | 9.57150 | 67.611 |
| 0.8 | 7.84720 | 72.137 | 8.24694 | 72.124 | 8.66731 | 72.112 | 9.10934 | 72.102 | 9.57416 | 72.092 |
| 0.85 | 7.84980 | 76.606 | 8.24942 | 76.596 | 8.66967 | 76.587 | 9.11160 | 76.579 | 9.57630 | 76.571 |
| 0.9 | 7.85172 | 81.072 | 8.25124 | 81.065 | 8.67140 | 81.059 | 9.11324 | 81.053 | 9.57787 | 81.048 |
| 0.95 | 7.85288 | 85.536 | 8.25235 | 85.533 | 8.67246 | 85.530 | 9.11424 | 85.527 | 9.57882 | 85.524 |
| 1.0 | 7.85328 | 90.000 | 8.25273 | 90.000 | 8.6728 x | 90.000 | 9.11458 | 90.000 | 9.57915 | 90.000 |
| 1.05 | 7.85288 | 94.464 | 8.25235 | 94.467 | 8.67246 | 94.470 | 9.11424 | 94.473 | 9.57882 | 94.476 |
| 1.1 | 7.85172 | 98.928 | 8.25124 | 98.935 | 8.67140 | 98.94 I | 9.11324 | 98.947 | 9.57787 | 98.952 |
| 1.15 | 7.84980 | 103.394 | 8.24942 | 103.404 | 8.66967 | 103.413 | 9.11160 | 103.42I | 9.57630 | 103.429 |
| 1.2 | 7.84720 | 107.863 | 8.24694 | 107.876 | 8.6673 I | 107.888 | 9.10934 | 107.898 | 9.57416 | 107.908 |
| 1.25 | 7.84395 | I 12.335 | 8.24385 | 112.351 | 8.66436 | 112.364 | 9.10655 | 112.378 | 9.57150 | II 2.389 |
| I. 3 | 7.84015 | I16.81I | 8.24024 | 116.829 | 8.66092 | I 16.845 | 9.10327 | I 16.860 | 9.56838 | 116.873 |
| 1. 35 | 7.83588 | 121.292 | 8.23617 | 121.312 | 8.65706 | 121.330 | 9.09959 | 121.346 | 9.56488 | 121.360 |
| I. 4 | 7.83125 | 125.778 | 8.23177 | 125.799 | 8.65287 | 125.818 | 9.09561 | 125.835 | 9.56109 | 125.851 |
| 1.45 | 7.82638 | 130.269 | 8.22713 | I30.291 | 8.64846 | 130.311 | 9.09142 | 130.329 | 9.55711 | 130.345 |
| 1.5 | 7.82138 | 134.766 | 8.22238 | 134.788 | 8.64395 | 134.808 | 9.08711 | 134.827 | 9.55301 | 134.843 |
| 1.55 | 7.81637 | 139.269 | 8.21762 | 139.290 | 8.6394 I | 139.310 | 9.0828 I | 139.329 | 9.54892 | 139.345 |
| 1.6 | 7.81149 | 143.777 | 8.21298 | 143.798 | 8.63500 | 143.817 | 9.0786 I | 143.835 | 9.54492 | 143.850 |
| 1.65 | 7.80685 | 148.29 I | 8.20857 | 148.311 | 8.63080 | 148.329 | 9.07461 | 148.345 | 9.54113 | 148.360 |
| 1.7 | 7.80257 | 152.810 | 8.20449 | 152.828 | 8.62691 | I 52.845 | 9.07093 | 152.859 | 9.53762 | 152.873 |
| 1.75 | 7.79875 | 157.334 | 8.20085 | 157.350 | 8.62347 | 157.364 | 9.06764 | 157.377 | 9.53450 | 157.389 |
| 1.8 | 7.79547 | 161.862 | 8.19774 | 161.875 | 8.62051 | 161.887 | 9.06483 | 16 I .898 | 9.53182 | 161.907 |
| 1.85 | 7.79285 | 166.393 | 8.19524 | 166.404 | 8.61813 | 166.413 | 9.06257 | 166.42 I | 9.52967 | 166.429 |
| 1.9 | 7.79092 | 170.927 | 8.19341 | 170.934 | 8.61639 | 170.940 | 9.06091 | 170.946 | 9.52809 | 170.951 |
| 1.95 | 7.78975 | 175.463 | 8.19230 | 175.467 | 8.61532 | 175.470 | 9.05990 | 175.473 | 9.52713 | 175.475 |
| 2.0 | 7.78935 | 180.000 | 8.19192 | 180.000 | 8.61497 | 180.000 | 9.05956 | 180.000 | 9.52681 | 180.000 |

Example. $\quad \sinh (2.95+i \underline{1.95})=9.52713 \angle 175^{\circ} .475=9.52713 \angle 175^{\circ} .28^{\prime} .30^{\prime \prime}$.

Table X. HYPERBOLIC SINES. $\sinh (x+i q)=r / \gamma$. Continued

|  | $x=3.0$ |  | $x=3.05$ |  | $x=3.1$ |  | $x=3.15$ |  | $x=3.2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $\boldsymbol{r}$ | $\boldsymbol{\gamma}$ |
|  |  | - |  | $\bigcirc$ |  | - |  | - |  |  |
| $\bigcirc$ | 10.01787 | 0.000 | 10.53399 | 0.000 | 11.07645 | 0.000 | 11.64661 | 0.000 | 12.24588 | 0.000 |
| 0.05 | 10.01820 | 4.522 | 10.53430 | 4.520 | 11.07670 | 4.518 | 11.64690 | 4.516 | 12.24610 | 4.515 |
| 0.1 | 10.01910 | 9.044 | 10.53520 | 9.040 | 11.07750 | 9.036 | 11.64770 | 9.033 | 12.24690 | 9.030 |
| 0.15 | 10.02060 | 13.565 | 10.53660 | 13.559 | 11.07890 | 13.553 | 11.64890 | 13.548 | 12.24810 | 13.543 |
| 0.2 | 10.02260 | 18.084 | 10.53850 | 18.076 | 11.08080 | 18.068 | 11.65070 | 18.062 | 12.24980 | 18.056 |
| 0.25 | 10.02520 | 22.601 | 10.54090 | 22.591 | 11.08310 | 22.583 | 11.65290 | 22.575 | 12.25180 | 22.568 |
| 0.3 | 10.02820 | 27.115 | 10.54380 | 27.104 | 11.08580 | 27.094 | 11.65540 | 27.085 | 12.25430 | 27.077 |
| 0.35 | 10.03150 | 31.627 | 10.54690 | 31.615 | 11.08880 | 31.604 | 11.65830 | 31.594 | 12.25700 | 31.585 |
| 0.4 | 10.03510 | 36.135 | 10.55040 | 36.122 | 11.09200 | 36.111 | 11.66140 | 36.100 | 12.26000 | 36.091 |
| 0.45 | 10.03890 | 40.640 | 10.55400 | $40.627$ | 11.09540 | 40.615 | 11.66470 | 40.604 | 12.26310 | 40.594 |
| 0.5 | 10.04280 | 45.142 | 10.55770 | 45.129 | 11.09900 | 45.116 | 11.66810 | 45.105 | 12.26630 | 45.095 |
| 0.55 | 10.04670 | 49.640 | 10.56140 | 49.627 | 11.10250 | 49.615 | 11.67140 | 49.604 | 12.26950 | 49.594 |
| 0.6 | 10.05050 | 54.135 | 10.56500 | 54.122 | 11.10600 | 54.110 | 11.67470 | 54.100 | 12.27260 | 54.090 |
| 0.65 | 10.05410 | 58.626 | 10.56840 | 58.614 | 11.10920 | 58.604 | 11.67780 | 58.594 | 12.27550 | 58.585 |
| 0.7 | 10.05743 | 63.114 | 10.57160 | 63.104 | II.11220 | 63.094 | 11.68060 | 63.085 | 12.27820 | 63.077 |
| 0.75 | 10.06040 | 67.600 | 10.57440 | 67.591 | II.II490 | 67.582 | 11.68320 | 67.574 | 12.28070 | 67.567 |
| 0.8 | 10.06292 | 72.083 | 10.57680 | 72.075 | 11.11720 | 72.068 | 11.68540 | 72.062 | 12.28280 | 72.056 |
| 0.85 | 10.06500 | 76.564 | 10.57880 | 76.558 | 11.11900 | 76.553 | 11.68710 | 76.548 | 12.28440 | 76.543 |
| 0.9 | 10.06645 | 8 1 .044 | 10.58020 | 81.040 | 11.12040 | 81.036 | 11.68840 | 81.032 | 12.28560 | 81.029 |
| 0.95 | 10.06737 | 85.522 | 10.58 I 10 | 85.520 | 11.12120 | 85.518 | 11.68920 | 85.516 | 12.28640 | 85.515 |
| I. 0 | 10.06766 | 90.000 | 10.58135 | 90.000 | 11.12150 | 90.000 | 11.68946 | 90.000 | 12.28665 | 90.000 |
| 1.05 | 10.06737 | 94.478 | 10.58110 | 94.480 | 11.12120 | 94.482 | 11.68920 | 94.484 | 12.28640 | 94.485 |
| I.I | 10.06645 | 98.956 | 10.58020 | 98.960 | 11.12040 | 98.964 | 11.68840 | 98.968 | 12.28560 | 98.97 r |
| 1.15 | 10.06500 | 103.436 | 10.57880 | 103.442 | 11.11900 | 103.447 | 11.68710 | 103.452 | 12.28440 | 103.457 |
| 1.2 | 10.06292 | 107.917 | 10.57680 | 107.925 | 11.11720 | . 107.932 | 11.68540 | 107.938 | 12.28280 | 107.944 |
| 1.25 | 10.06040 | 112.400 | 10.57440 | 112.409 | 11.11490 | 112.418 | 11.68320 | 112.426 | 12.28070 | 112.433 |
| 1.3 | 10.05743 | 116.886 | 10.57160 | 116.896 | 11.11220 | 116.906 | 11.68060 | 116.915 | 12.27820 | 116.923 |
| 1.35 | 10.05410 | 121.374 | 10.56840 | 121.386 | 11.10920 | 121.396 | II. 67780 | 121.406 | 12.27550 | 121.415 |
| 1.4 | 10.05050 | 125.856 | 10.56500 | 125.878 | 11.10600 | 125.890 | 11.67470 | 125.900 | 12.27260 | 125.910 |
| I. 45 | 10.04670 | 130.360 | 10.56140 | 130.373 | 11.10250 | 130.385 | 11.67140 | 130.396 | 12.26950 | 130.406 |
| 1.5 | 10.04280 | 134.858 | 10.55770 | 134.871 | 11.09900 | 134.884 | 11.66810 | 134.895 | 12.26630 | 134.905 |
| 1.55 | 10.03890 | 139.360 | 10.55400 | 139.373 | 11.09540 | 1 39.385 | 11.66470 | 139.396 | 12.26310 | 139.406 |
| 1.6 | 10.03510 | 143.865 | 10.55040 | 143.878 | 11.09200 | 143.889 | 11.66140 | 143.900 | 12.26000 | 143.909 |
| 1. 65 | 10.03150 | 148.373 | 10.54690 | 148.385 | 11.08880 | 148.396 | 11.65830 | 148.406 | 12.25700 | 148.415 |
| 1.7 | 10.02820 | 152.885 | 10.54380 | 152.896 | 11.08580 | 152.906 | 11.65540 | 152.915 | 12.25430 | 152.923 |
| 1.75 | 10.02520 | 157.399 . | 10.54090 | 157.409 | 11.08310 | 157.417 | 11.65290 | 157.425 | 12.25180 | 157.432 |
| I. 8 | 10.02260 | 161.916 | 10.53850 | 161.924 | 11.08080 | 161.93I | 11.65070 | 161.938 | 12.24980 | 161.944 |
| 1.85 | 10.02060 | 166.435 | 10.53660 | 166.441 | 11.07890 | 166.447 | 11.64890 | 166.452 | 12.24810 | 166.457 |
| 1.9 | 10.01910 | 170.956 | 10.53520 | 170.960 | $11.0775^{\circ}$ | 170.964 | 11.64770 | 170.967 | 12.24690 | 170.970 |
| 1.95 | 10.01820 | 175.478 | 10.53430 | 175.480 | 11.07670 | 175.482 | 11.64690 | 175.484 | 12.24610 | 175.485 |
| 2.0 | 10.01787 | 180.000 | 10.53399 | 180.000 | 11.07645 | 180.000 | 1 1.64661 | 180.000 | 12.24588 | 180.000 |

Example. $\sinh \left(3.2+i_{1.1}\right)=12.28560 \angle 98^{\circ} .971=12.28560 \angle 98^{\circ} .58^{\prime} .16^{\prime \prime}$.

Table X. HYPERBOLIC SINES. $\sinh (x+i q)=r / \gamma$. Continued

|  | $x=3.25$ |  | $x=3 \cdot 3$ |  | $x=3.35$ |  | $x=3.4$ |  | $x=3.45$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $\gamma$ | $\boldsymbol{\gamma}$ | $r$ | $\gamma$ | r | $\boldsymbol{\gamma}$ |
|  |  | $\bigcirc$ |  |  |  |  |  |  |  |  |
| $\bigcirc$ | 12.87578 | 0.000 | 13.53788 | 0.000 | 14.23382 | 0.000 | 14.96536 | 0.000 | 15.73432 | 0.000 |
| 0.05 | 12.87600 | 4.514 | 13.53810 | 4.512 | 14.23403 | 4.5II | 14.96556 | 4.510 | 15.73450 | 4.509 |
| 0.1 | 12.87670 | 9.027 | 13.53878 | 9.024 | 14.23470 | 9.022 | 14.96616 | 9.020 | 15.73510 | 9.018 |
| 0.15 | 12.87790 | 13.539 | 13.53991 | 13.536 | 14.23573 | 13.532 | 14.96716 | 13.529 | 15.73603 | 13.526 |
| 0.2 | 12.87949 | 18.051 | 13.54141 | 18.046 | 14.23718 | 18.041 | 14.96855 | 18.038 | 15.73736 | 18.034 |
| 0.25 | 12.88146 | 22.561 | 13.54322 | 22.555 | 14.23897 | 22.550 | 14.97023 | 22.545 | 15.73898 | 22.54 I |
| 0.3 | 12.88380 | 27.070 | 13.54550 | 27.063 | 14.24106 | 27.057 | 14.97225 | 27.052 | 15.74088 | 27.047 |
| 0.35 | 12.88637 | 31.577 | 13.54796 | 31.569 | 14.24339 | 31.563 | 14.97448 | 31.557 | 15.74300 | 31.551 |
| 0.4 | 12.88910 | 36.082 | 13.55062 | 36.074 | 14.24595 | 36.067 | 14.97690 | 36.061 | 15.74529 | 36.055 |
| 0.45 | 12.89215 | 40.585 | 13.55346 | 40.577 | 14.24863 | 40.570 | 14.97945 | 40.563 | 15.74772 | 40.557 |
| 0.5 | 12.89518 | 45.086 | 13.55633 | 45.078 | 14.25137 | 45.071 | 14.98205 | 45.064 | I5.75020 | 45.058 |
| 0.55 | 12.89820 | 49.585 | 13.55918 | 49.577 | 14.25412 | 49.570 | 14.98466 | 49.563 | 15.75270 | 49.557 |
| 0.6 | 12.90117 | 54.082 | 13.56203 | 54.074 | 14.25614 | 54.067 | 14.98721 | 54.061 | 15.75510 | 54.055 |
| 0.65 | 12.90398 | 58.577 | 13.56470 | 58.569 | 14.25933 | 58.563 | 14.98960 | 58.557 | 15.75740 | 58.551 |
| 0.7 | 12.90658 | 63.070 | 13.56718 | 63.063 | 14.26167 | 63.057 | 14.99186 | 63.052 | 15.75950 | 63.047 |
| 0.75 | 12.90888 | 67.561 | 13.56936 | 67.555 | 14.26377 | 67.550 | 14.99385 | 67.545 | 15.76144 | 67.541 |
| 0.8 | 12.91085 | 72.051 | 13.57123 | 72.046 | 14.26556 | 72.041 | 14.99555 | 72.038 | 15.76303 | 72.034 |
| 0.85 | 12.91240 | 76.539 | 13.57275 | 76.535 | 14.26700 | 76.532 | 14.99692 | 76.529 | 15.76433 | 76.526 |
| 0.9 | 12.91360 | 81.027 | 13.57387 | 81.024 | 14.26805 | 81.022 | 14.99790 | 81.020 | 15.76530 | 81.018 |
| 0.95 | 12.9143 | 85.514 | I 3.57455 | 85.512 | 14.26870 | 85.511 | 14.99853 | 85.510 | I5.76587 | 85.509 |
| 1.0 | 12.91456 | 90.000 | 13.57476 | 90.000 | 14.26891 | 90.000 | 14.99874 | 90.000 | 15.76607 | 90.000 |
| 1.05 | 12.91430 | 94.486 | 13.57455 | 94.488 | 14.26870 | 94.489 | 14.99853 | 94.490 | 15.76587 | 94.491 |
| 1.1 | 12.91360 | 98.973 | 13.57387 | 98.976 | 14.26805 | 98.978 | 14.99790 | 98.980 | 15.76530 | 98.982 |
| 1.15 | 12.91240 | 103.461 | 13.57275 | 103.465 | 14.26700 | 103.468 | 14.99692 | 103.47 I | 15.76433 | 103.474 |
| 1.2 | 12.91085 | 107.949 | 13.57123 | 107.954 | 14.26556 | 107.959 | 14.99555 | 107.963 | 15.76303 | 107.966 |
| 1.25 | 12.90888 | 112.439 | 13.56936 | 112.445 | 14.26377 | II 2.450 | 14.99385 | II 2.455 | 15.76144 | II2.459 |
| 1.3 | 12.90658 | 116.930 | 13.56718 | 116.937 | 14.26167 | 116.943 | 14.99186 | 116.948 | 15.75950 | 116.953 |
| 1.35 | 12.90398 | 121.423 | 13.56470 | 121.431 | 14.25933 | 121.437 | 14.98960 | 121.443 | 15.75740 | 121.449 |
| I. 4 | 12.90117 | 125.918 | 13.56203 | 125.926 | 14.25614 | 125.933 | 14.9872 I | 125.939 | 15.75510 | 125.945 |
| 1.45 | 12.89820 | 130.415 | 13.55918 | 130.423 | 14.25412 | 130.430 | 14.98466 | 130.437 | 15.75270 | 130.443 |
| 1.5 | 12.89518 | 134.914 | 13.55633 | 134.922 | 14.25137 | 134.929 | 14.98205 | 134.936 | 15.75020 | I34.942 |
| 1.55 | 12.89215 | 139.415 | 13.55346 | 139.423 | 14.24863 | 139.430 | 14.97945 | 139.437 | 15.74772 | 139.443 |
| 1.6 | 12.88910 | 143.918 | 13.55062 | 143.926 | 14.24595 | 143.933 | 14.97690 | 143.939 | $15.745^{29}$ | 143.945 |
| 1.65 | 12.88637 | 148.423 | 13.54796 | 148.431 | 14.24339 | 148.437 | 14.97448 | 148.443 | 15.74300 | 148.449 |
| 1.7 | 12.88380 | 152.930 | 13.54550 | 152.937 | 14.24106 | 152.943 | 14.97225 | 152.948 | 15.74088 | I 52.953 |
| 1.75 | 12.88146 | 157.439 | 13.54322 | 157.445 | 14.23897 | 157.450 | 14.97023 | 157.455 | 15.73898 | 157.459 |
| 1.8 | 12.87949 | 161.949 | 13.54141 | 161.954 | 14.23718 | 161.959 | 14.96855 | 161.962 | 15.73736 | 161.966 |
| 1.85 | 12.87790 | 166.461 | 13.53991 | 166.464 | 14.23573 | 166.468 | 14.96716 | 166.47 I | 15.73603 | 166.474 |
| 1.9 | 12.87670 | 170.973 | 13.53878 | 170.976 | 14.23470 | 170.978 | 14.96616 | 170.980 | 15.73510 | 170.982 |
| 1.95 | 12.87600 | 175.486 | 13.53810 | 175.488 | 14.23403 | 175.489 | 14.96556 | 175.490 | 15.73450 | 175.49 I |
| 2.0 | 12.87578 | 180.000 | 13.53788 | 180.000 | 14.23382 | 180.000 | 14.96536 | 180.000 | 15.73432 | 180.000 |

Example. $\quad \sinh (3.3+i \underline{1.3})=13.56718\left\lfloor 116^{\circ} .937=13.56718\left\lfloor 116^{\circ} .56^{\prime} .13^{\prime \prime}\right.\right.$.

Table X. HYPERBOLIC SINES. $\sinh (x+i q)=r \not \gamma$. Continued

|  | $x=3.5$ |  | $x=3.55$ |  | $x=3.6$ |  | $x=3.65$ |  | $x=3.7$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ |
|  |  | $\bigcirc$ |  | - |  | - |  | $\bigcirc$ |  |  |
| $\bigcirc$ | 16.54263 | 0.000 | 17.39230 | 0.000 | 18.28546 | 0.000 | 19.22434 | 0.000 | 20.21129 | . 000 |
| 0.05 | 16.5428 | 4.508 | 17.39248 | 4.507 | 18.28560 | 4.507 | 19.22448 | 4.506 | 20.21140 | 4.506 |
| 0.1 | 16.54337 | 9.016 | 17.39300 | 9.015 | 18.28611 | 9.013 | 19.22496 | 9.012 | 20.21189 | 9.011 |
| 0.15 | 16.54428 | 13.524 | 17.39386 | 13.522 | 18.28694 | 13.519 | 19.22577 | 13.518 | 20.21268 | 13.516 |
| 0.2 | 16.54550 | 18.031 | 17.39504 | 18.028 | 18.28805 | 18.025 | 19.22681 | 18.023 | 20.21365 | 18.02 I |
| 0.25 | 16.54702 | 22.537 | 17.39650 | 22.534 | 18.28942 | 22.530 | 19.22813 | 22.527 | 20.21490 | 22.525 |
| 0.3 | 16.54885 | 27.042 | 17.39822 | 27.038 | 18.29109 | 27.035 | 19.22968 | 27.031 | 20.21639 | 27.028 |
| 0.35 | I6.55087 | 31.547 | 17.40015 | 31.542 | 18.29292 | 31.538 | 19.23142 | 31.535 | 20.21804 | 31.531 |
| - 4 | 16.55307 | 36.050 | 17.40222 | 36.045 | 18.29490 | 36.041 | 19.23331 | 36.037 | 20.21981 | 36.033 |
| 0.45 | 16.55538 | 40.552 | 17.40441 | 40.547 | 18.29699 | 40.542 | 19.23530 | 40.538 | 20.22170 | 40.535 |
| 0.5 | ${ }^{16.55774}$ | 45.052 | 17.40665 | 45.047 | 18.29912 | 45.043 | 19.23732 | 45.039 | 20.22365 | 45.035 |
| 0.55 | 16.56010 | 49.552 | 17.40900 | 49.547 | 18.30126 | 49.542 | 19.23940 | 49.538 | 20.22560 | 49.535 |
| 0.6 | 16.56240 | 54.050 | 17.41110 | 54.045 | 18.30335 | 54.041 | 19.24134 | 54.037 | 20.22750 | 54.033 |
| 0.65 | 16.56460 | 58.547 | 17.41310 | 58.542 | 18.30530 | 58.538 | 19.24323 | 58.535 | 20.22930 | 58.531 |
| 0.7 | 16.56660 | 63.042 | 17.41510 | 63.038 | 18.30715 | 63.035 | 19.24496 | 63.031 | 20.23090 | 63.028 |
| 0.75 | 16.56840 | 67.537 | 17.41680 | 67.533 | 18.30880 | 67.530 | 19.24650 | 67.527 | 20.23240 | 67.525 |
| 0.8 | 16.56996 | 72.031 | 17.41830 | 72.028 | 18.31020 | 72.025 | 19.24790 | 72.023 | 20.23365 | 72.021 |
| 0.85 | 16.57120 | 76.524 | 17.41945 | 76.521 | 18.31130 | 76.519 | 19.24890 | 76.518 | 20.23460 | 76.516 |
| 0.9 | 16.57210 | 81.016 | 17.42030 | 81.015 | 18.31210 | 81.013 | 19.24970 | 81.012 | 20.23540 | 81.011 |
| 0.95 | 16.57260 | 85.508 | 17.42083 | 85.507 | 18.31260 | 85.507 | 19.25015 | 85.506 | 20.23585 | 85.506 |
| 1.0 | 16.57282 | 90.000 | 17.42102 | 90.000 | 18.31278 | 90.000 | 19.25033 | 90.000 | 20.23601 | 90.000 |
| 1.05 | 16.57260 | 94.492 | 17.42083 | 94.493 | 18.31260 | 94.493 | 19.25015 | 94.494 | 20.23585 | 94.494 |
| I.I | 16.57210 | 98.984 | 17.42030 | 98.985 | 18.31210 | 98.987 | 19.24970 | 98.988 | 20.23540 | 98.989 |
| 1.15 | 16.57120 | 103.476 | 17.41945 | 103.479 | 18.31130 | 103.480 | 19.24890 | 103.482 | 20.23460 | 103.484 |
| 1.2 | 16.56996 | 107.969 | 17.41830 | 107.972 | 18.31020 | 107.975 | 19.24790 | 107.977 | 20.23365 | 107.979 |
| 1.25 | 16.56840 | 112.463 | 17.41680 | 112.467 | 18.30880 | 112.470 | 19.24650 | 112.473 | 2 C .23240 | II2.475 |
| 1.3 | 16.56660 | I 16.958 | 17.41510 | 116.962 | 18.30715 | 116.965 | 19.24496 | 116.969 | 20.23090 | 116.972 |
| 1.35 | 16.56460 | 121.453 | 17.41310 | 121.458 | 18.30530 | 121.462 | 19.24323 | 121.465 | 20.22930 | 121.469 |
| 1.4 | I6.56240 | I 25.950 | 17.41110 | 125.955 | 18.30335 | 125.959 | 19.24134 | 125.963 | 20.22750 | 125.967 |
| 1.45 | 16.56010 | I30.448 | 17.40900 | 130.453 | I8.301 26 | 130.458 | 19.23940 | 130.462 | 20.22560 | I30.465 |
| 1.5 | 16.55774 | 134.948 | 17.40665 | 134.953 | 18.29912 | 134.957 | 19.23732 | 134.961 | 20.22365 | 1 34.965 |
| 1.55 | 16.55538 | I 39.448 | 17.40441 | 139.453 | 18.29699 | 139.458 | 19.23530 | 139.462 | 20.22170 | I 39.465 |
| 1.6 | 16.55307 | 143.950 | 17.40222 | 143.955 | 18.29490 | 143.959 | 19.23331 | 143.963 | 20.21981 | 143.967 |
| 1.65 | 16.55087 | I48.453 | 17.40015 | 148.458 | 18.29292 | 148.462 | 19.23142 | 148.465 | 20.21804 | 1.48.469 |
| 1.7 | 16.54885 | 152.958 | 17.39822 | 152.962 | 18.29109 | 152.965 | 19.22968 | 152.969 | 20.21639 | 152.972 |
| 1.75 | 16.54702 | 157.463 | 17.39650 | 157.466 | 18.28942 | 157.470 | I9.22813 | 157.473 | 20.21490 | 157.475 |
| 1.8 | 16.54550 | 161.969 | 17.38504 | 161.972 | 18.28805 | 161.975 | I9.2268I | 161.977 | 20.21365 | 161.979 |
| 1.85 | 16.54428 | 166.476 | 17.39386 | 166.478 | 18.28694 | 166.48 I | 19.22577 | 166.482 | 20.21268 | 166.484 |
| 1.9 | I6.54337 | 170.984 | 17.39300 | 170.985 | 18.28611 | 170.987 | 19.22496 | 170.988 | 20.21189 | 170.989 |
| 1.95 | 16.54281 | 175.492 | 17.39248 | 175.493 | 18.28560 | 175.493 | I9. 22448 | 175.494 | 20.21140 | 175.494 |
| 2.0 | 16.54263 | 180.000 | 17.39230 | I80.000 | 18.28546 | 180.000 | 19.22434 | 180.000 | 20.21129 | 180.000 |

Example. $\quad \sinh (3.65+i \underline{0.25})=19.22813 \angle 22^{\circ} .527=19.22813 \angle 22^{\circ} \cdot 31^{\prime} .37^{\prime \prime}$.

Table X. HYperbolic SInes. $\sinh (x+i q)=r / \gamma$. Continued

|  | $x=3.75$ |  | $x=3.8$ |  | $x=3.85$ |  | $x=3.9$ |  | $x=3.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $\boldsymbol{r}$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ |
|  |  | - |  |  |  |  |  |  |  |  |
| $\bigcirc$ | 21.24878 | 0.000 | 22.3394 I | 0.000 | 23.48589 | 0.000 | 24.69110 | 0.000 | 25.95806 | 0.000 |
| 0.05 | 21.24891 | 4.505 | 22.33952 | 4.504 | 23.48601 | 4.504 | 24.69120 | 4.504 | 25.95820 | 4.503 |
| 0.1 | 21.24935 | 9.010 | 22.33995 | 9.009 | 23.48640 | 9.008 | 24.69159 | 9.007 | 25.95854 | 9.007 |
| 0.15 | 21.25006 | 13.514 | 22.34061 | 13.513 | 23.48704 | 13.512 | 24.69223 | 13.511 | 25.95911 | 13.510 |
| 0.2 | 21.25102 | 18.019 | 22.34153 | 18.017 | 23.48791 | 18.015 | 24.69302 | 18.014 | 25.95991 | 18.013 |
| 0.25 | 21.25221 | 22.522 | 22.34270 | 22.520 | 23.48900 | 22.518 | 24.69406 | 22.517 | 25.96000 | 22.515 |
| 0.3 | 21.25362 | 27.026 | 22.34401 | 27.023 | 23.49028 | 27.021 | 24.69528 | 27.019 | 25.96205 | 27.017 |
| 0.35 | 21.25520 | 31.528 | 22.34550 | 31.526 | 23.49115 | 31.523 | 24.69662 | 31.521 | 25.96333 | 31.519 |
| 0.4 | 21.25685 | 36.030 | 22.34712 | 36.027 | 23.49322 | 36.025 | 24.69809 | 36.022 | 25.9647 I | 36.020 |
| 0.45 | 21.25869 | 40.531 | 22.34883 | 40.528 | 23.49486 | 40.526 | 24.69964 | 40.523 | 25.96618 | 40.52 I |
| 0.5 | 21.26052 | 45.032 | , 22.35060 | 45.029 | 23.49652 | 45.026 | 24.70121 | 45.023 | 25.96770 | 45.02I |
| 0.55 | 21.26236 | 49.531 | 22.35230 | 49.528 | 23.49820 | 49.526 | 24.70280 | 49.523 | 25.96920 | 49.52 I |
| 0.6 | 2 I .26415 | 54.030 | 22.35403 | 54.027 | 23.49980 | 54.025 | 24.70440 | 54.022 | 25.97066 | 54.020 |
| 0.65 | 21.26586 | 58.528 | 22.35565 | 58.526 | 23.50136 | 58.523 | 24.70580 | 58.521 | 25.97206 | 58.519 |
| 0.7 | 21.26745 | 63.026 | 22.35716 | 63.023 | 23.50277 | 63.021 | 24.70720 | 63.019 | 25.97337 | 63.017 |
| 0.75 | 21.26885 | 67.522 | 22.35850 | 67.520 | 23.50404 | 67.518 | 24.70840 | 67.517 | 25.97450 | 67.515 |
| 0.8 | 21.27000 | 72.019 | 22.35962 | 72.017 | 23.50512 | 72.015 | 24.70940 | 72.014 | 25.97550 | 72.013 |
| 0.85 | 21.27100 | 76.514 | 22.36055 | 76.513 | 23.50600 | 76.512 | 24.71024 | 76.511 | 25.97630 | 76.510 |
| 0.9 | 21.27170 | 81.010 | 22.36122 | 81.009 | 23.50664 | 81.008 | 24.71090 | 81.007 | 25.97680 | 81.007 |
| 0.95 | 21.27212 | 85.505 | 22.36163 | 85.504 | 23.50702 | 85.504 | 24.71120 | 85.504 | 25.97720 | 85.503 |
| 1. | 21.27 | 90.000 | 22.36178 | 90.000 | 23.50717 | 90.000 | 24.71135 | 90.000 | 25.97731 | 90.000 |
| 1.05 | 21.27212 | 94.495 | 22.36163 | 94.496 | 23.50702 | 94.496 | 24.71120 | 94.496 | 25.97720 | 94.497 |
| I. 1 | 21.27170 | 98.990 | 22.36122 | 98.991 | 23.50664 | 98.992 | 24.71090 | 98.993 | 25.97680 | 98.993 |
| 1.15 | 21.27100 | 103.486 | 22.36055 | 103.487 | 23.50600 | 103.488 | 24.71024 | 103.489 | 25.97630 | 103.490 |
| 1.2 | 21.27000 | 107.981 | 22.35962 | 107.983 | 23.50512 | 107.985 | 24.70940 | 107.986 | 25.97550 | 107.987 |
| 1.25 | 21.26885 | 112.478 | 22.35850 | 112.480 | 23.50404 | 112.482 | 24.70840 | 112.483 | 25.97450 | 112.485 |
| 1.3 | 21.26745 | 116.974 | 22.35716 | 116.977 | 23.50277 | 116.979 | 24.70720 | 116.981 | 25.97337 | 116.983 |
| 1.35 | 21.26586 | 121.472 | 22.35565 | 121.474 | 23.50136 | 121.477 | 24.70580 | 121.479 | 25.97206 | I21.48I |
| 1.4 | 21.26415 | 125.970 | 22.35403 | I25.973 | 23.49980 | I25.975 | 24.70440 | 125.978 | 25.97066 | 125.980 |
| 1.45 | 21.26236 | 130.469 | 22.35230 | I30.472 | 23.49820 | 130.474 | 24.70280 | 130.477 | 25.96920 | 130.479 |
| 1.5 | 21.26052 | 134.968 | 22.35060 | 134.97I | 23.49652 | I34.974 | 24.70121 | 134.976 | 25.96770 | 134.979 |
| 1.55 | 21.25869 | 139.469 | 22.34883 | 139.472 | 23.49486 | 139.474 | 24.69964 | 1 39.477 | 25.96618 | I39.479 |
| 1.6 | 21.25685 | 143.970 | 22.34712 | 143.973 | 23.49322 | 143.975 | 24.69809 | 143.978 | 25.96471 | 143.980 |
| I. 65 | 21.25520 | 148.472 | 22.34550 | 148.474 | 23.49115 | 148.477 | 24.69662 | 148.479 | 25.96333 | 148.48 I |
| 1.7 | 21.25362 | 152.974 | 22.34401 | 152.977 | 23.49028 | 152.979 | 24.69528 | 152.981 | 25.96205 | 152.983 |
| 1.75 | 21.25221 | 157.478 | 22.34270 | 157.480 | 23.48900 | 157.482 | 24.69406 | 157.483 | 25.96090 | 157.485 |
| 1.8 | 21.25102 | 161.981 | 22.34153 | 161.983 | 23.48791 | 161.985 | 24.69302 | 161.986 | 25.95991 | 161.987 |
| 1.85 | 21.25006 | 166.486 | 22.34061 | 166.487 | 23.48704 | 166.488 | 24.69223 | 166.489 | 25.95911 | 166.490 |
| 1.9 | 21.24935 | 170.990 | 22.33995 | 170.991 | 23.48640 | 1-0.992 | 24.69159 | 170.993 | 25.95854 | 170.993 |
| 1.95 | 2 T .2489 I | 175.495 | 22.33952 | 175.496 | 23.48601 | 175.496 | 24.69120 | 175.496 | 25.95820 | 175.497 |
| 2.0 | 21.24878 | 180.000 | 22.33941 | 180.000 | 23.48589 | 180.000 | 24.69110 | 180.000 | 25.95806 | 180.000 |

Example. $\quad \sinh \left(3.90+i_{\underline{1.90}}\right)=24.69159 \angle 170^{\circ} .993=24.69159 \angle 170^{\circ} .59^{\prime} .35^{\prime \prime}$.

Table XI. HYPERBOLIC COSINES. $\quad \cosh (x+i q)=r \underline{\gamma}$

|  | $x=0.0$ |  | $x=0.05$ |  | $x=0.1$ |  | $x=0.15$ |  | $x=0.2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\gamma$ | $r$ | $\gamma$ | $r$ | $\gamma$ | $r$ | $\gamma$ | $r$ | $\boldsymbol{\gamma}$ |
|  |  | $\bigcirc$ |  | $\bigcirc$ |  | $\bigcirc$ |  | $\bigcirc$ |  |  |
| $\bigcirc$ | 1.00000 | 0.00 | 1.00125 | 0.00 | 1.00500 | 0.00 | 1.01127 | 0.00 | 1.02007 | . 00 |
| 0.05 | 0.99692 | 0.00 | 0.99817 | 0.225 | 1.00194 | 0.450 | 1.00822 | 0.671 | 1.01704 | 0.890 |
| 0.1 | 0.98769 | 0.00 | 0.98895 | 0.453 | 0.99275 | 0.905 | 0.99909 | 1.351 | 1.00800 | 1.791 |
| 0.15 | 0.97237 | 0.00 | 0.97366 | 0.687 | 0.97752 | 1.371 | 0.98396 | 2.047 | 0.99300 | 2.713 |
| 0.2 | 0.95106 | 0.00 | 0.95237 | 0.930 | 0.95632 | 1.855 | 0.96290 | 2.769 | 0.97213 | 3.669 |
| 0.25 | 0.92388 | 0.00 | 0.92523 | 1.186 | 0.92930 | 2.364 | 0.93607 | $3 \cdot 529$ | 0.94556 | 4.674 |
| 0.3 | 0.89101 | 0.00 | 0.89237 | 1.458 | 0.89662 | 2.907 | 0.90364 | 4.338 | 0.91347 | 5.743 |
| 0.35 | 0.85264 | 0.00 | 0.85407 | 1.754 | 0.85851 | 3.495 | 0.86583 | 5.213 | 0.87609 | 6.897 |
| 0.4 | 0.80902 | 0.00 | 0.81053 | 2.079 | 0.81520 | 4.142 | 0.82291 | 6.174 | 0.83370 | 8.161 |
| 0.45 | 0.76041 | 0.00 | 0.76202 | 2.443 | 0.76698 | 4.866 | 0.77527 | 7.247 | 0.78661 | 9.569 |
| 0.5 | 0.70711 | 0.00 | 0.70803 | 2.860 | 0.71417 | 5.692 | 0.72296 | 8.468 | $0.735^{21}$ | 11.165 |
| 0.55 | 0.64945 | 0.00 | 0.65135 | 3.348 | 0.65713 | 6.656 | 0.66667 | 9.889 | 0.67994 | 13.012 |
| 0.6 | 0.58779 | 0.00 | 0.58989 | 3.934 | 0.59626 | 7.811 | 0.60676 | 11.58 I | 0.62131 | 15.198 |
| 0.65 | 0.52250 | 0.00 | 0.52487 | 4.661 | 0.53201 | 9.238 | 0.54376 | 13.656 | 0.55995 | 17.853 |
| 0.7 | 0.45399 | 0.00 | 0.45672 | 5.600 | 0.46491 | 11.068 | 0.47831 | 16.289 | 0.49663 | 21.175 |
| 0.75 | 0.38268 | 0.00 | 0.38594 | 6.877 | 0.39558 | 13.529 | 0.41124 | 19.771 | 0.43242 | 25.478 |
| 0.8 | 0.30902 | 0.00 | 0.31304 | 8.741 | 0.32485 | 17.053 | 0.34375 | 24.618 | 0.36882 | 31.277 |
| 0.85 | 0.23345 | 0.00 | 0.23874 | 11.755 | 0.25403 | 22.545 | 0.27779 | 31.805 | 0.30827 | 39.424 |
| 0.9 | 0.15643 | 0.00 | 0.16424 | 17.507 | 0.18576 | 32.181 | 0.21712 | 43.229 | 0.25497 | 51.254 |
| 0.95 | 0.07846 | 0.00 | 0.09305 | 32.407 | 0.12724 | 51.700 | 0.16978 | 62.139 | 0.21608 | 68.261 |
| 1.0 | 0.00 | 180 | 0.05002 | 90.000 | 0.10017 | 90.000 | 0.15056 | 90.000 | 0.20134 | 90.000 |
| 1.05 | 0.07846 | 180 | 0.09305 | 147.593 | 0.12724 | 128.300 | 0.16978 | 117.861 | 0.21608 | 111.739 |
| 1.1 | 0.15643 | 180 | 0.16424 | 162.493 | 0.18576 | 147.819 | 0.21712 | 136.771 | 0.25497 | I28.746 |
| 1.15 | 0.23345 | 180 | 0.23874 | 168.245 | 0.25403 | 157.455 | 0.27779 | 148.195 | 0.30827 | 140.576 |
| 1.2 | 0.30902 | 180 | 0.31304 | 171.259 | 0.32485 | 162.947 | 0.34375 | 155.382 | 0.36882 | 148.723 |
| 1.25 | 0.38268 | 180 | 0.38594 | 173.123 | 0.39558 | 166.47 I | 0.41124 | 160.229 | 0.43242 | $154.5^{22}$ |
| 1.3 | 0.45399 | 180 | 0.45672 | 174.400 | 0.4649 I | 168.932 | 0.47831 | 163.711 | 0.49663 | 158.825 |
| 1.35 | 0.52250 | 180 | 0.52487 | 175.339 | 0.53201 | 170.762 | 0.54376 | 166.344 | 0.55995 | 162.147 |
| 1.4 | 0.58779 | 180 | 0.58989 | 176.066 | 0.59626 | 172.189 | 0.60676 | 168.419 | 0.62131 | 164.802 |
| 1.45 | 0.64945 | 180 | 0.65135 | 176.652 | 0.65713 | 173.344 | 0.66667 | 170.111 | 0.67994 | 166.988 |
| 1.5 | 0.70711 | 180 | 0.70803 | 177.139 | 0.71417 | 174.308 | 0.72296 | 171.532 | 0.7352 I | 168.835 |
| 1.55 | 0.76041 | 180 | 0.76202 | 177.557 | 0.76698 | 175.134 | 0.77527 | 172.753 | 0.78661 | 170.431 |
| 1.6 | 0.80902 | 180 | 0.81053 | 177.921 | 0.81520 | 175.858 | 0.82291 | 173.826 | 0.83370 | 171.839 |
| 1.65 | 0.85264 | 180 | 0.85407 | 178.246 | 0.85851 | 176.505 | 0.86583 | 174.787 | 0.87609 | 173.103 |
| 1.7 | 0.89101 | 180 | 0.89237 | 178.542 | 0.89662 | 177.093 | 0.90364 | 175.662 | 0.91347 | 174.257 |
| 1.75 | 0.92388 | 180 | 0.92523 | 178.814 | 0.92930 | 177.636 | 0.93607 | 176.471 | 0.94556 | 175.326 |
| 1.8 | 0.95106 | 180 | 0.95237 | 179.070 | 0.95632 | 178.145 | 0.96290 | 177.231 | 0.97213 | 176.331 |
| 1.85 | 0.97237 | 180 | 0.97366 | 179.313 | 0.97752 | 178.629 | 0.98396 | 177.953 | 0.99300 | 177.287 |
| 1.9 | 0.98769 | 180 | c. 98895 | 179.547 | 0.99275 | 179.095 | 0.99909 | 178.649 | 1.00800 | 178.209 |
| 1.95 | 0.99692 | 180 | 0.99817 | 179.775 | 1.00194 | 179.550 | 1.00822 | 179.329 | 1.01704 | 179.110 |
| 2.0 | 1.00000 | 180 | I.OOI 25 | 180.000 | 1.00500 | 180.000 | 1.OI 127 | 180.000 | 1.02007 | 180.000 |

Example. $\quad \cosh (0.10+i \underline{0.55})=0.65713 \angle 6^{\circ} .656=0.65713 \angle 6^{\circ} .39^{\prime} .22^{\prime \prime}$.

Table XI. HYPERBOLIC COSINES. $\cosh (x+i q)=r / \gamma$. Continued

|  | $x=0.25$ |  | $x=0.3$ |  | $x=0.35$ |  | $x=0.4$ |  | $x=0.45$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\gamma$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\gamma$ | $r$ | $\gamma$ | $r$ | $\gamma$ |
|  |  | $\bigcirc$ |  |  |  |  |  |  |  |  |
| $\bigcirc$ | 1.03141 | 0.000 | 1.04534 | 0.000 | 1.06188 | 0.000 | 1.08107 | 0.000 | 1.10297 | 0.000 |
| 0.05 | 1.02843 | 1.104 | 1.04239 | 1.313 | 1.05898 | 1.516 | 1.07822 | 1.713 | 1.10017 | 1.902 |
| O.I | 1.01949 | 2.221 | 1.03357 | 2.642 | 1.05029 | 3.050 | 1.06970 | 3.444 | 1.09182 | 3.823 |
| 0.15 | 1.00464 | $3 \cdot 365$ | 1.01894 | 4.001 | 1.03590 | 4.617 | 1.05557 | 5.212 | 1.07798 | 5.784 |
| $0: 2$ | 0.98403 | 4.550 | 0.99862 | 5.407 | 1.01592 | 6.238 | 1.03597 | 7.038 | 1.05880 | 7.806 |
| 0.25 | 0.95779 | 5.793 | 0.97277 | 6.88 I | 0.99052 | 7.932 | 1.01107 | 8.944 | 1.03446 | 9.913 |
| 0.3 | 0.92612 | 7.113 | 0.94161 | 8.443 | 0.95994 | 9.726 | 0.98113 | 10.957 | 1.00521 | 12.132 |
| 0.35 | 0.88927 | 8.536 | 0.90539 | 10.122 | 0.92444 | 11.647 | 0.94642 | 13.107 | 0.97136 | 14.496 |
| 0.4 | 0.84754 | 10.090 | 0.86443 | 11.951 | 0.88436 | 13.733 | 0.90732 | 15.432 | 0.93330 | 17.042 |
| 0.45 | 0.80127 | 11.815 | 0.81912 | 13.972 | 0.84012 | 16.029 | 0.86426 | 17.979 | 0.89149 | 19.816 |
| 0.5 | 0.75088 | 13.762 | 0.76989 | 16.241 | 0.79220 | 18.592 | 0.81775 | 20.804 | 0.84469 | 22.875 |
| 0.55 | 0.69685 | 16.001 | 0.71730 | 18.834 | 0.74119 | 21.497 | 0.76844 | 23.982 | 0.79805 | 26.288 |
| 0.6 | 0.63977 | 18.629 | 0.66199 | 21.849 | 0.68781 | 24.843 | 0.71708 | 27.607 | 0.74969 | 30.144 |
| 0.65 | 0.58036 | 21.785 | 0.60476 | 25.425 | 0.63292 | 28.763 | 0.66462 | 31.800 | 0.69968 | 34.546 |
| 0.7 | 0.51954 | 25.673 | 0.54666 | 29.758 | 0.57766 | 33.157 | 0.61223 | 36.712 | 0.65012 | 39.626 |
| 0.75 | 0.45854 | 30.595 | 0.48906 | 35.118 | 0.52348 | 39.079 | 0.56140 | 42.529 | 0.60249 | $45 \cdot 527$ |
| 0.8 | 0.39913 | 37.008 | 0.43385 | 41.878 | 0.47231 | 45.992 | 0.51401 | 49.464 | 0.55860 | 52.399 |
| 0.85 | 0.34396 | 45.057 | 0.38370 | 50.507 | 0.42671 | 54.484 | 0.47246 | 57.712 | 0.52062 | 60.358 |
| 0.9 | 0.29782 | 57.110 | 0.34235 | 61.467 | 0.38994 | 64.786 | 0.43953 | 67.371 | 0.49093 | 69.424 |
| 0.95 | 0.26452 | 72.186 | 0.31447 | 74.882 | 0.3657 I | 76.831 | 0.41818 | 78.297 | 0.47191 | 79.433 |
| 1.0 | 0.25261 | 90.000 | 0.30452 | 90.000 | 0.35719 | 90.000 | 0.41075 | 90.000 | 0.46534 | 90.000 |
| 1.05 | 0.26452 | 107.814 | 0.31447 | 105.118 | c. 36571 | 103.169 | 0.41818 | 101.703 | 0.47191 | 100.567 |
| I.I | 0.29782 | 122.890 | 0.34235 | II8.533 | 0.38994 | II5.214 | 0.43953 | II 2.629 | 0.49093 | 110.576 |
| 1.15 | 0.34396 | 134.943 | 0.38370 | 129.493 | 0.42671 | 125.516 | 0.47246 | 122.288 | 0.52062 | 119.642 |
| 1.2 | 0.39913 | 142.992 | 0.43385 | 138.122 | 0.47231 | 134.008 | 0.51401 | 130.536 | 0.55860 | 127.601 |
| 1.25 | 0.45854 | 149.405 | 0.48906 | 144.882 | 0.52348 | 140.921 | 0.56140 | 137.471 | 0.60249 | 134.473 |
| 1.3 | 0.51954 | 154.327 | 0.54666 | 150.242 | 0.57766 | 146.843 | 0.61223 | 143.288 | 0.65012 | 140.374 |
| 1.35 | 0.58036 | 158.215 | 0.60476 | 1 54.575 | 0.63292 | 151.237 | 0.66462 | 148.200 | 0.69968 | 145.454 |
| I. 4 | 0.63977 | 161.371 | 0.66199 | 158.151 | 0.68781 | 155.157 | 0.71708 | 152.393 | 0.74969 | 149.856 |
| 1.45 | 0.69685 | 163.999 | 0.71730 | 161.166 | 0.74119 | 158.503 | 0.76844 | 156.018 | 0.79895 | 153.712 |
| 1.5 | 0.75088 | 166.238 | 0.76989 | 163.759 | 0.79220 | 161.408 | 0.81775 | 159.196 | 0.84649 | 157.125 |
| 1.55 | 0.80127 | 168.185 | 0.81912 | 166.028 | 0.84012 | 163.971 | 0.86426 | 162.021 | 0.89149 | 160.184 |
| 1.6 | 0.84754 | 169.910 | 0.86443 | 168.049 | 0.88436 | 166.267 | 0.90732 | 164.568 | 0.93330 | 162.958 |
| 1.65 | 0.88927 | 171.464 | 0.90539 | 169.878 | 0.92444 | 168.353 | 0.94642 | 166.893 | 0.97136 | 165.504 |
| 1.7 | 0.92612 | 172.887 | 0.94 I 6 I | 171.557 | 0.95994 | 170.274 | 0.98113 | 169.043 | $1.005^{2 I}$ | 167.868 |
| 1.75 | 0.95779 | 174.207 | 0.97277 | 173.119 | 0.99052 | 172.068 | 1.01107 | 171.056 | 1.03446 | 170.087 |
| 1.8 | 0.98403 | 175.450 | 0.99862 | 174.593 | 1.01592 | 173.762 | 1.03597 | 172.962 | 1.05880 | 172.194 |
| 1.85 | 1.00464 | 176.635 | 1.01894 | 175.999 | 1.03590 | 175.383 | 1. 05557 | 174.788 | 1.07798 | 174.216 |
| 1.9 | I.OI949 | 177.779 | 1.03357 | 177.358 | 1.05029 | 176.950 | 1.06970 | ${ }_{1} 76.556$ | 1.09182 | 176.177 |
| 1.95 | 1.02843 | 178.896 | 1.04239 | 178.687 | 1.05898 | 178.484 | 1.07822 | 178.287 | 1.10017 | 178.098 |
| 2.0 | 1.03141 | 180.000 | 1.04534 | 180.000 | 1.06188 | 180.000 | 1.08107 | 180.000 | 1.10297 | 180.000 |

Example. $\quad \cosh (0.40+i \underline{0.5})=0.81775 \angle 20^{\circ} .804=0.81775 \angle 20^{\circ} .48^{\prime} .14^{\prime \prime}$.

Table XI. HYPERBOLIC COSINES. $\cosh (x+i q)=r \not \underline{\gamma}$. Continued

|  | $x=0.5$ |  | $x=0.55$ |  | $x=0.6$ |  | $x=0.65$ |  | $x=0.7$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ |
|  |  | $\bigcirc$ |  | $\bigcirc$ |  |  |  |  |  |  |
| $\bigcirc$ | 1.12763 | 0.000 | 1.15510 | 0.000 | 1.18547 | 0.000 | 1.21879 | 0.000 | 1.25517 | 0.000 |
| 0.05 | 1.12489 | 2.083 | 1.15244 | 2.256 | 1.18287 | 2.420 | 1.21626 | 2.576 | 1.2527 I | 2.723 |
| 0.1 | 1.11672 | 4.186 | 1.14446 | 4.533 | 1.17510 | 4.879 | 1.20871 | 5.174 | 1.24538 | 5.468 |
| 0.15 | 1.10320 | 6.331 | 1.13127 | 6.852 | 1.16226 | 7.347 | 1.19623 | 7.815 | 1.23327 | 8.256 |
| 0.2 | 1.08446 | 8.539 | 1.11300 | 9.237 | 1.14448 | 9.898 | 1.17892 | 10.523 | 1.21653 | 11.110 |
| 0.25 | 1.06070 | 10.836 | 1.08987 | 11.713 | 1.12200 | 12.54 I | 1.15715 | 13.322 | 1.19541 | . 054 |
| 0.3 | 1.03220 | 13.249 | 1.06214 | 14.307 | 1.09509 | I5.304 | I. 13108 | 16.240 | 1.17019 | 17.116 |
| 0.35 | 0.99927 | 15.811 | 1.03004 | 17.052 | 1.06411 | 18.216 | I.10111 | 19.306 | 1.14125 | 20.323 |
| 0.4 | 0.96232 | 18.559 | 0.99437 | 19.984 | 1.02948 | 21.315 | 1.06769 | 22.555 | 1.10904 | 23.706 |
| 0.45 | 0.92182 | 21.538 | 0.95524 | 23.146 | 0.99174 | 24.640 | 1.03134 | 26.024 | 1.07409 | 27.302 |
| 0.5 | 0.87837 | 24.803 | 0.91338 | 26.589 | 0.95149 | 28.238 | 0.99270 | 29.755 | 1.03704 | 31:148 |
| 0.55 | 0.83266 | 28.416 | 0.86951 | 30.372 | 0.90946 | 32.162 | 0.95249 | 33.796 | 0.99861 | 35.284 |
| 0.6 | 0.78552 | 32.458 | 0.82447 | 34.563 | 0.86650 | 36.47 I , | 0.91156 | 38.197 | 0.95966 | 39.755 |
| 0.65 | 0.73793 | 37.020 | 0.77927 | 39.241 | 0.82361 | 41.23 I | 0.87090 | 43.011 | 0.92112 | 44.603 |
| 0.7 | 0.69112 | 42.207 | 0.73510 | 44.489 | 0.78194 | 46.506 | 0.83160 | 48.290 | 0.88406 | 49.867 |
| 0.75 | 0.64652 | 48.129 | 0.69333 | 50.390 | 0.74282 | 52.358 | 0.79492 | 54.074 | 0.84965 | 55.574 |
| 0.8 | 0.60583 | 54.889 | 0.65555 | 57.010 | 0.70769 | 58.826 | 0.76220 | 60.387 | 0.81911 | 61.737 |
| 0.85 | 0.57100 | 62.547 | 0.62350 | 64.375 | 0.67810 | 65.914 | 0.73482 | 67.219 | 0.79369 | 68.335 |
| 0.9 | 0.54407 | 71.082 | 0.59894 | 72.44 I | 0.65559 | 73.568 | 0.71409 | 74.514 | 0.77455 | 75.315 |
| 0.95 | 0.52697 | 80.335 | 0.58345 | 81.064 | 0.64147 | $8 \mathrm{8r} .663$ | 0.70115 | 82.16I | 0.76263 | 82.581 |
| 1.0 | 0.52110 | 90.000 | 0.57815 | 90.000 | 0.63665 | 90.000 | 0.69675 | 90.000 | 0.75858 | 90.000 |
| 1.05 | 0.52697 | 99.665 | 0.58345 | 98.936 | 0.64147 | 98.337 | 0.70115 | 97.839 | 0.76263 | 97.419 |
| 1. | 0.54407 | 108.918 | 0.59894 | 107.559 | 0.65559 | 106.432 | 0.71409 | 105.486 | 0.77455 | 104.685 |
| 1.15 | 0.57100 | 117.453 | 0.62350 | 115.625 | 0.67810 | 114.086 | 0.73482 | I12.78I | 0.79369 | III. 665 |
| 1.2 | 0.60583 | 125.11I | 0.65555 | 122.990 | 0.70769 | 121.174 | 0.76220 | 119.613 | 0.81911 | 118.263 |
| 1.25 | 0.64652 | 131.871 | 0.69333 | 129.610 | 0.74282 | 127.642 | 0.79492 | 125.926 | 0.84965 | 124.426 |
| 1.3 | 0.69112 | 137.793 | 0.73510 | 135.511 | 0.78194 | 133.494 | 0.83160 | 131.710 | 0.88406 | 130.133 |
| 1.35 | 0.73793 | 142.980 | 0.77927 | 140.759 | 0.82361 | 138.769 | 0.87090 | 136.989 | 0.92112 | 135.397 |
| 1.4 | 0.78552 | 147.542 | 0.82447 | 145.437 | 0.86650 | 143.529 | 0.91156 | 141.803 | 0.95966 | 140.245 |
| 1.45 | 0.83266 | 151.584 | 0.86951 | 149.628 | 0.90946 | 147.838 | 0.95249 | 146.204 | 0.99861 | 144.716 |
| 1.50 | 0.87837 | 155.198 | 0.91338 | 153.411 | 0.95149 | 151.762 | 0.99270 | I50.245 | 1.03704 | 148.853 |
| 1. 55 | 0.92182 | 158.462 | 0.95524 | 156.854 | 0.99174 | 155.360 | 1.03134 | 153.976 | 1.07409 | 152.698 |
| 1.60 | 0.96232 | 161.441 | 0.99437 | 160.016 | 1.02948 | I58.685 | 1.06769 | 157.445 | 1.10904 | 156.294 |
| 1.65 | 0.99927 | 164.189 | 1.03004 | 162.948 | 1.06411 | 161.784 | x.101II | 160.694 | 1.14125 | 1 59.677 |
| 1.70 | 1.03220 | 166.751 | 1.06214 | 165.693 | 1.09509 | 164.696 | 1.13108 | 163.760 | 1.17019 | 162.884 |
| 1.75 | 1.06070 | 169.164 | 1.08987 | 168.287 | 1.12200 | 167.459 | 1.15715 | 166.678 | 1. 19541 | 165.946 |
| 1.8 | 1.08446 | 171.461 | I.11300 | 170.763 | 1.14448 | 170.102 | 1.17892 | 169.477 | 1.21653 | 168.890 |
| 1.85 | 1.10320 | 173.669 | 1.13127 | 173.148 | 1.16226 | 172.653 | 1.19623 | 172.185 | 1.23327 | 171.744 |
| 1.9 | 1.11672 | I75.814 | I.I4446 | 175.467 | 1.17510 | 175.121 | 1.20871 | 174.826 | 1.24538 | 174.532 |
| 1.95 | 1.12489 | 177.917 | 1.15244 | 177.744 | 1.18287 | 177.580 | 1.21626 | 177.424 | 1.2527 I | 177.277 |
| 2.0 | 1.12763 | 180.000 | 1.15510 | 180.000 | 1.18547 | 180.000 | 1.21879 | 180.000 | 1.25517 | 180.000 |

Example. $\quad \cosh \left(0.65+i_{\underline{1.0}}\right)=0.69675 \angle 90^{\circ}$.

Table XI. HYPERBOLIC COSINES. $\cosh (x+i q)=r / \gamma$. Continued

|  | $x=0.75$ |  | $x=0.8$ |  | $x=0.85$ |  | $x=0.9$ |  | $x=0.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $\gamma$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ |
|  |  | $\bigcirc$ |  | $\bigcirc$ |  | - |  |  |  |  |
| $\bigcirc$ | 1.29468 | 0.000 | 1.33743 | 0.000 | 1.38353 | 0.000 | 1.43309 | 0.000 | 1.48623 | . 000 |
| 0.05 | 1.29230 | 2.862 | 1.33513 | 2.992 | 1.38130 | 3.113 | 1.43094 | 3.227 | 1.48415 | 3.332 |
| 0.1 | 1.28520 | 5.745 | I. 32825 | 6.004 | 1.37466 | 6.246 | 1.42452 | 6.473 | 1.47797 | 6.684 |
| 0.15 | 1.27346 | 8.670 | I.31691 | 9.058 | 1.36369 | 9.420 | 1.41395 | 9.758 | I. 46778 | 10.07 I |
| 0.2 | 1.25726 | 11.661 | 1.30124 | 12.175 | I. 34858 | 12.656 | 1.39937 | 13.102 | 1.45371 | 13.516 |
| 0.25 | 1.23689 | 14.740 | 1.28152 | 15.379 | 1.32955 | 15.974 | I. 38105 | 16.526 | 1.43611 | 17.037 |
| 0.3 | 1.21248 | 17.933 | 1.25802 | 18.693 | 1.30693 | 19.398 | 1.35927 | 20.051 | 1.41519 | $20.653^{\circ}$ |
| 0.35 | 1.18457 | 21.267 | 1.23115 | 22.143 | 1.28107 | 22.952 | 1.33444 | 23.699 | 1.39136 | 24.387 |
| 0.4 | I. 15356 | 24.772 | 1. 20135 | 25.755 | 1. 25246 | 26.601 | 1.30700 | 27.493 | 1.36505 | 28.257 |
| 0.45 | 1.12001 | 28.478 | 1.16917 | 29.559 | 1.22163 | 30.550 | 1.27748 | 31.457 | 1.33682 | 32.286 |
| 0.5 | 1.08453 | 32.442 | 1.13522 | 33.586 | 1.18918 | 34.647 | 1.24649 | 35.614 | 1.30723 |  |
| 0.55 | 1.04785 | 36.637 | 1.10024 | 37.865 | 1.15583 | 38.978 | 1.2147 I | 39.986 | 1.27697 | 40.898 |
| 0.6 | 1.01079 | 41.160 | 1.06500 | 42.426 | 1.12234 | 43.567 | 1.18289 | 44.593 | 1.24674 | 45.517 |
| 0.65 | 0.97427 | 46.026 | 1.0304 I | 47.298 | 1.08957 | 48.435 | 1.15184 | 49.453 | 1.21732 | 50.363 |
| 0.7 | 0.93932 | 51.263 | 0.99742 | 52.500 | 1.05843 | 53.599 | 1.12243 | 54.574 | 1.19227 | 55.443 |
| 0.75 | 0.90700 | 56.889 | 0.96705 | 58.045 | 1.02985 | 59.062 | 1.09553 | 59.96I | 1.16418 | 0.755 |
| 0.8 | 0.87846 | 62.907 | 0.94033 | 63.927 | 1.0048 I | 64.819 | 1.07202 | 65.601 | 1.14209 | 6.288 |
| 0.85 | 0.8548 I | 69.294 | 0.91828 | 70.123 | 0.98420 | 70.842 | 1.05273 | 71.471 | 1.12400 | 72.020 |
| 0.9 | 0.83706 | 75.998 | 0.90178 | 76.585 | 0.96883 | 77.091 | 1.03837 | 77.532 | 1.11056 | 77.915 |
| 0.95 | 0.82605 | 82.936 | 0.89157 | 83.24 I | 0.95933 | 83.503 | 1.0295 I | 83.730 | I. 10227 | 83.927 |
| 1.0 | 0.82232 | 90.000 | 0.888 II | 90.000 | 0.95612 | 90.000 | 1.02652 | 90000 | 1.09948 | 90.000 |
| 1.05 | 0.82605 | 97.064 | 0.89157 | 96.759 | 0.95933 | 96.497 | 1.02951 | 96.270 | 1.10227 | 96.073 |
| 1.1 | 0.83706 | 104.002 | 0.90178 | 103.415 | 0.96883 | 102.909 | 1.03837 | 102.468 | 1.11056 | 102.085 |
| 1.15 | 0.8548 r | 110.706 | 0.91828 | 109.877 | 0.98420 | 109.158 | 1.05273 | 108.529 | 112400 | 107.980 |
| 1.2 | 0.87846 | 117.093 | 0.94033 | 116.073 | 1.00481 | 115.181 | 1.07202 | 114.399 | 1.14209 | I 13.712 |
| 1.25 | 0.90700 | 123.111 | 0.96705 | 121.955 | 1.02985 | 120.938 | 1.09553 | 120.039 | I.I6418 | 119.245 |
| 1.3 | 0.93932 | 128.737 | 0.99742 | 127.500 | 1.05843 | 126.401 | 1.12243 | 125.426 | 1.19227 | 124.557 |
| 1.35 | 0.97427 | 133.974 | 1.03041 | 132.702 | 1.08957 | 131.565 | I.15184 | 130.547 | 1.21732 | 129.637 |
| 1.4 | 1.01079 | I38.840 | 1.06500 | 137.574 | 1.12234 | 136.433 | 1.18289 | 135.407 | 1.24674 | 134.483 |
| 1.45 | 1.04785 | 143.363 | 1.10024 | 142.135 | 1.15583 | 141.022 | 1.21471 | 140.014 | 1.27697 | 139.102 |
| 1.5 | 1.08453 | 147.578 | 1.13522 | 146.414 | r.18918 | 145.353 | I. 24649 | 144.386 | 1.30723 | 143.507 |
| 1.55 | 1.12001 | 151.522 | 1.16917 | 150.44I | 1.22163 | 149.450 | 1.27748 | 148.543 | 1.33682 | 147.714 |
| 1.6 | 1.15356 | 155.228 | 1.20135 | 154.245 | 1.25246 | 153.399 | 1.30700 | 152.507 | I. 36505 | 151.743 |
| 1.65 | I. 18457 | 158.733 | I. 23115 | 157.857 | 1.28107 | 157.048 | I. 33444 | 156.301 | I.39136 | 155.613 |
| 1.7 | 1.21248 | 162.067 | 1.25802 | 161.307 | 1.30693 | 160.602 | 1.35927 | 159.949 | 1.41519 | I 59.347 |
| 1.75 | 1. 23689 | 165.260 | 1.28I52 | 164.62 I | I. 32955. | 164.026 | 1.38105 | 163.474 | 1.43611 | 162.963 |
| 1.8 | 1.25726 | 168.339 | 1.30124 | 167.825 | I. 34858 | 167.344 | 1.39937 | 166.898 | 1.45371 | 166.484 |
| 1.85 | 1.27346 | 171.330 | 1.31691 | 170.942 | 1.36369 | 170.580 | 1.41395 | 170.242 | 1.46778 | 169.929 |
| 1.9 | 1.28520 | 174.255 | 1.32825 | 173.996 | 1.37466 | 173.754 | 1.42452 | 173.527 | 1.47797 | 173.316 |
| 1.95 | 1.29230 | 177.138 | 1.33513 | 177.008 | 1.38130 | 176.887 | 1.43094 | 176.773 | 1.48415 | 176.668 |
| . 0 | 1.29468 | 80.000 | 1.33743 | 180.000 | .38353 | 180.000 | . 4 | 80.00 | . 486 | 0.00 |

Example. $\quad \cosh (0.90+i \underline{0.5})=1.24649 \angle 35^{\circ} .614=1.24649 \angle 35^{\circ} \cdot 36^{\prime} \cdot 50^{\prime \prime}$.

Table XI. HYperbolic COSINES. $\cosh (x+i q)=r \nsim$. Continued

| $q$ | $x=1.0$ |  | $x=1.05$ |  | $x=1 . \mathrm{I}$ |  | $x=1.15$ |  | $x=1.2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $\gamma$ | $\boldsymbol{\gamma}$ |
|  |  | $\bigcirc$ |  | - |  | - |  | $\bigcirc$ |  | - |
| $\bigcirc$ | 1. 54308 | 0.000 | 1.60379 | 0.000 | 1.66852 | 0.000 | I.7374I | 0.000 | 1.81066 | 0.000 |
| 0.05 | 1.54108 | 3.276 | 1.60187 | $3 \cdot 521$ | 1.66667 | 3.605 | 1.73564 | 3.683 | 1.80895 | 3.754 |
| O.I | I.53513 | 6.878 | 1.59614 | 7.059 | r.66117 | 7.226 | 1.73036 | 7.380 | 1.80389 | 7.522 |
| 0.15 | 1.52532 | 10.362 | I.58671 | 10.631 | 1.65211 | 10.879 | 1.72166 | 11.107 | 1.79555 | 11.318 |
| 0.2 | 1.51182 | 13.899 | 1.57374 | 14.253 | 1.63965 | 14.579 | 1.70971 | 14.880 | 1.78409 | 15.156 |
| 0.25 | I. 49487 | 17.509 | 1. 55747 | I7.944 | 1. 62404 | 18.344 | 1.69472 | 18.713 | 1.76975 | 19.050 |
| 0.3 | I. 47479 | 21.209 | 1.53820 | 21.720 | I. 60558 | 22.189 | 1.67705 | 22.620 | 1.75282 | 23.014 |
| 0.35 | 1.45193 | 25.019 | 1.51630 | 25.599 | 1.58460 | 26.130 | 1.65699 | 26.616 | 1.73363 | 27.061 |
| 0.4 | I. 42675 | 28.957 | 1. 49220 | 29.597 | I.56I56 | 30.182 | 1. 63497 | 30.716 | 1.71260 | 31.203 |
| 0.45 | 1. 39976 | 33.043 | I.4664I | 33.732 | 1.53694 | 34.360 | 1.61147 | 34.931 | 1.69018 | 35.451 |
| 0.5 | 1.37153 | 37.293 | 1.43950 | 38.019 | 1.51128 | 38.677 | 1.58701 | 39.275 | 1.66688 | 39.816 |
| 0.55 | I. 34272 | 41.724 | 1.41207 | 42.470 | 1.48517 | 43.145 | 1.56217 | 43.755 | 1. 64325 | 44.307 |
| 0.6 | 1. 31400 | 46.349 | I. 38479 | 47.098 | 1.45926 | 47.773 | I. 53756 | 48.380 | 1.61987 | 48.927 |
| 0.65 | I. 28612 | 5 I. 779 | I. 35837 | 51.910 | 1.43421 | 52.565 | I.51381 | 53.153 | 1.59733 | 53.681 |
| 0.7 | I. 25984 | 56.216 | I.3335 | 56.907 | 1.41070 | 57.523 | 1.49155 | 58.074 | 1. 57626 | 58.567 |
| 0.75 | I. 23594 | 61.459 | I.31095 | 62.085 | 1.38939 | 62.641 | 1.47141 | 63.136 | 1.5572 I | 63.579 |
| 0.8 | I. 21515 | 66.895 | I.29137 | 67.432 | 1.37093 | 67.908 | I. 45399 | 68.330 | I. 54077 | 68.706 |
| 0.85 | I.I98i6 | 72.504 | 1.27540 | 72.929 | I. 35590 | 73.306 | 1.43983 | 73.639 | I. 52741 | 73.935 |
| 0.9 | I.18552 | 78.252 | 1.26358 | 78.547 | 1. 34478 | 78.808 | 1.42936 | 79.039 | I.51755 | 79.243 |
| 0.95 | 1.17782 | 84.100 | 1.25631 | 84.252 | 1.33795 | 84.385 | 1.42294 | 84.503 | I.51150 | 84.607 |
| 1.0 | 1.17520 | 90.000 | I. 25386 | 90.000 | 1. 33565 | 90.000 | 1.42078 | 90.000 | 1.50946 | 90.000 |
| 1.05 | I.17782 | 95.900 | 1.25631 | 95.748 | I. 33795 | 95.615 | I. 42294 | 95.497 | 1.51150 | 95.393 |
| I. I | I.18552 | IOI. 748 | I. 26358 | IOI. 453 | I. 34478 | IOI.I92 | 1. 42936 | 100.961 | 1.51755 | 100.757 |
| I. 15 | 1.19816 | 107.496 | 1.27540 | 107.071 | I.35590 | 106.694 | I. 43983 | 106.361 | 1.52741 | 106.065 |
| 1.2 | 1.21515 | 113.105 | 1.29137 | I I 2.568 | 1.37093 | 112.092 | I. 45399 | III.670 | I. 54077 | III. 294 |
| 1.25 | 1.23594 | 118.541 | 1.31095 | 117.915 | 1.38939 | 117.359 | 1.47141 | 116.864 | I.5572I | I 16.42 I |
| 1.3 | I. 25984 | 123.784 | 1.33351 | 123.093 | 1.41070 | 122.477 | I. 49155 | 121.926 | I. 57626 | 121.433 |
| I. 35 | I. 28612 | I 28.82 I | I. 35837 | 128.090 | 1.4342 I | 127.435 | I. 51381 | I 26.847 | 1. 59733 | 126.319 |
| 1.4 | 1.31400 | 133.651 | I. 38479 | 132.902 | I. 45926 | 132.227 | I. 53756 | 131.620 | 1.61987 | 131.073 |
| 1.45 | I. 34272 | 138.276 | 1.41207 | 137.530 | 1.48517 | 136.855 | I.56217 | I 36.245 | 1.64325 | I35.69̊ |
| 1.5 | 1.37153 | 142.707 | 1.43950 | 141.981 | 1.51128 | 141.323 | 1.58701 | 140.725 | 1. 66688 | 140.184 |
| 1. 55 | I. 39976 | 146.957 | I.4664I | 146.268 | I. 53694 | I45.640 | 1.61147 | 145.069 | 1.69018 | -44.549 |
| 1.6 | 1.42675 | 151.043 | I. 49220 | 150.403 | I.56I56 | 149.8I8 | 1.63497 | 149.284 | 1.71260 | 148.797 |
| 1.65 | I.45193 | I 54.981 | 1.51630 | 154.401 | I.58460 | 1.53 .870 | 1.65699 | I 53.384 | 1.73363 | 152.939 |
| 1.7 | 1.47479 | I58.791' | 1.53820 | 158.280 | 1.60558 | 157.8II | 1.67705 | 157.380 | 1.75282 | 156.986 |
| 1.75 | 1.49487 | 162.491 | I. 55747 | 162.056 | 1.62404 | 161.656 | 1.69472 | 161.287 | 1.76975 | 160.950 |
| 1.8 | 1.51182 | 166.101 | I. 57374 | 165.747 | 1.63965 | 165.421 | 1.70971 | 165.120 | 1.78409 | 164.844 |
| I. 85 | 1.52532 | 169.638 | 1.58671 | 169.369 | 1.652 II | 169.12I | 1.72166 | 168.893 | 1.79555 | 168.682 |
| 1.9 | 1.53513 | 173.122 | 1.59614 | I72.94I | 1.66117 | 172.774 | 1.73036 | 172.620 | 1.80389 | 172.478 |
| 1.95 | 1.54108 | 176.724 | 1.60187 | 176.479 | 1. 66667 | 176.395 | I. 73564 | 176.317 | 1.80895 | 176.246 |
| 2.0 | 1.54308 | 180.000 | 1.60379 | . 180.000 | I. 66852 | 180.000 | I.7374 1 | 180.000 | 1.81066 | 180.000 |

Example. $\quad \cosh (\mathrm{I} .20+i 0)=1.81066 / 0^{\circ}$.

Table XI. HYPERBOLIC COSINES. $\cosh (x+i q)=r \not q$. Continued

|  | $x=1.25$ |  | $x=1.3$ |  | $x=1.35$ |  | $x=1.4$ |  | $x=\mathbf{1 . 4 5}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\gamma$ | $r$ | $\gamma$ | $r$ | $\gamma$ | $r$ | $\gamma$ |  |  |
|  |  | - |  |  |  |  |  |  |  |  |
|  | 1. 88842 | 0.00 | 1.97091 | 0.000 | 2.05833 | 0.000 | 2.15090 | . 0 | 2.24884 | 0.000 |
| 0.05 | 1.88679 | 3.820 | 1.96935 | 3.880 | 2.05684 | 3.935 | 2.14947 | 3.986 | 2.24747 | 4.032 |
| o.1 | 1.88193 | 7.652 | 1.96470 | 7.772 | 2.05238 | 7.882 | 2.14520 | 7.982 | 2.24334 | 8.075 |
| 0.15 | 1.87394 | 11.511 | 1.95704 | 11.689 | 2.04505 | 11.851 | 2.13819 | 12.000 | 2.23669 | 12.136 |
| 0.2 | 1.86297 | 15.410 | 1.946 | 15.642 | 2.03500 | 15.855 | 2.128 | 16.04 | 2.2275 I | 16.226 |
| 0.25 | 1. 84924 | 19.360 | .9334 | 19.644 | 2.022 | 19.9 | 2.11658 | 20.139 | 2.21604 | 20.355 |
| 0.3 | 1.83304 | 23.375 | 91792 | 23.705 | 2.00764 | 24.006 | 2.10244 | 24.281 | 2.20254 | 24.53 I |
| 0.35 | 1.81470 | 27.46 | 1.90040 | 27.837 | 1.99091 | 28.175 | 2.08647 | 28.482 | 2.18731 | 28.762 |
| 0.4 | 1.79462 | 31.64 | 1.88123 | 32.050 | 1.97262 | 32.417 | 2.06903 | 32.751 | 2.17067 | 33.055 |
| 0.45 | 1.77323 | 35.923 | 1.86084 | 26.352 | 1.95319 | 36.742 | 2.05051 | 37.095 | 2.15302 | 37.416 |
| 0.5 | 1.75104 | 40.308 | 1.83970 | 40.752 | 1.93306 | 41.1 | 2.03135 | 41.520 | 2.13478 | 41.851 |
| 0.55 | 1.72856 | 44.805 | 1.81832 | 45.255 | 1.91273 | 45.662 | 2.0120 | 46.030 | 2.11637 | 46.362 |
| 0.6 | 1.70635 | 49.420 | 1.79722 | 49.865 | 1.89268 | 50.265 | 1.99295 | 50.627 | 2.09828 | 50.953 |
| 0.65 | 1.68497 | 54-155 | 1.7769 | 54.582 | 1. 87343 | 54.96 | 1.97468 | 55.3II | 2.08093 | 55.62 I |
| 0.7 | 1.66501 | 59.009 | 1.758 | 59.405 | т. 85549 | 59.760 | 1. 95767 | 60.079 | 2.06479 |  |
| 0.75 | 1.6469 | 63 | 1.74 | 6 | 1.83934 | 64 | 1.94237 | 64.9 | 2.05030 | 65.182 |
| 0.8 | 1.63145 | 69.042 | 1.726 | 69.34I | 1.8254 | 69.60 | 1.92921 | 69.8 | 2.03784 | 70.061 |
| 0.85 | $1.6 \pm 884$ | 74.197 | 1.71435 | 74.432 | 1.8141 | 74.641 | 1.91856 | 74.82 | 2.02775 | 99 |
| 0.9 | 1.60954 | 79.424 | 1.70557 | 79.585 | 1. 80588 | 79.729 | 1.91072 | 79.857 | 2.02034 | 79.972 |
| 0.95 | 1.60384 | 84.699 | 1.70019 | 84.782 | 1.80080 | 84.855 | 1.90592 | 4.20 | 2.01580 | 84.979 |
| 1.0 | I. 60 | 90.00 | 1.69838 | 90.00 | 1.79909 | 90.000 | 1. 90430 | 90.000 | 2.014 | 90.000 |
| 1.05 | I. 60384 | 95.301 | 1.70019 | 95.218 | 1.80080 | 95.145 | 1.90592 | 95.080 | 2.01580 | 95.021 |
| I.I | 1.60954 | 100.576 | 1.70557 | 100.415 | 1.80588 | 100.271 | 1.91072 | 100.143 | 2.02034 | 100.028 |
| 1.15 | 1.61884 | 105.803 | 1.71435 | 105.568 | 1.81417 | 105.359 | 1.91856 | 105.172 | 2.02775 | 105.005 |
| 1.2 | 1.63145 | 110.958 |  | 110.659 |  | 110.392 | I. 92921 |  |  |  |
| 1.25 | 1.64699 | 116.026 | 1.74096 | 115.673 | 1. 83934 | 115.356 | 1.94237 | i15.073 | 2.05030 | 114.818 |
| 1.3 | 1.66501 | 120.991 | 1.75802 | 120.595 | I. 85549 | 120.240 | 1.95767 | 119.921 | 2.06479 | 119.634 |
| 1.35 | 1.68497 | 125.845 | 1.77694 | 125.418 | 1. 8734 | 125.035 | 1.97468 | 124.689 | 2.08093 | 124.379 |
| 1.4 | I. 70635 | 130.580 | 1.79722 | 130.135 | 1.89268 | 129.735 | 1.99295 | 129.373 | 2.09828 | 129.047 |
| 1.45 | 1.72856 | 135.195 | 1.81832 | 134.745 | I.91273 | 134.33 | 2.01200 | 133.970 | 2.11637 | 13 |
| 1.5 | I.75104 | 139.693 | 1.83970 | 139.248 | 1.93306 | 138.8 | 2.03135 | 138.480 | 2.13478 | 138.150 |
| 1.55 | 1.77323 | 144.077 | 1.86084 | 143.648 | 1.95319 | 143.258 | 2.05051 | 142.905 | 2.15302 | 142.584 |
| 1.6 | 1.79462 | 148.354 | 1.88123 | 147.950 | 1.97262 | 147.583 | 2.06903 | 147.249 | 2.17067 | 146.945 |
| 1.65 | 1.81470 | 152.533 | 1.90040 | 152.163 | 1.99091 | 151.825 | 2.08647 | 151.518 | 2.18731 | 151.238 |
| 1.7 | 1. 83304 | 156.625 | 1.91792 | 156.295 | 2.00764 | 155.994 | 2.10244 | 155.719 | 2.20254 |  |
| 75 | 1. 84924 | 160.640 | 1.93341 | 160.356 | 2.02245 | 160.097 | 2.11658 | 159.86ı | 2.21604 | 159.645 |
| I. 8 | 1.86297 | 164.590 | 1.94654 | 164.358 | 2.03500 | 164.145 | 2.12858 | 163.951 | 2.22751 | 163.774 |
| 1.85 | 1.87394 | 168.489 | 1.95704 | 168.311 | 2.04505 | 168.149 | 2.13819 | 168.000 | 2.23669 | 167.864 |
| 1.9 | 1.88193 | 172.348 | 1.96470 | 172.228 | 2.05238 | 172.118 | 2.14520 | 172.018 | 2.24334 | 171.925 |
| 1.95 | 1.88679 | 176.18 | 1.96935 | 176.12 | 2.056 | 76.065 | 2.14947 | 176.014 | 2.24747 | 175.968 |
|  | . 8884 | 180.000 | 970 | 180.00 | . 0583 | 0.000 | 15 | 80.00 | 248 |  |

Example. $\quad \cosh (\mathrm{I} .35+i \underline{\underline{1.30}})=1.85549^{\circ}\left\lfloor 120^{\circ} .240=1.85549 ~<120^{\circ} .14^{\prime} .24^{\prime \prime}\right.$.

Table XI. HYPERBOLIC COSINES. $\cosh (x+i q)=r \underline{\gamma}$. Continued

|  | $x=1.5$ |  | $x=1.55$ |  | $x=1.6$ |  | $x=1.65$ |  | $x=1.7$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\gamma$ | $r$ | $\boldsymbol{\gamma}$ | r | $\gamma$ | $r$ | $\gamma$ | $r$ | $\boldsymbol{\gamma}$ |
|  |  | - |  | $\bigcirc$ |  | - |  |  |  |  |
| $\bigcirc$ | 2.35241 | 0.000 | 2.46186 | 0.000 | 2.57746 | 0.000 | 2.69952 | 0.000 | 2.82832 | 0.000 |
| 0.05 | 2.35110 | 4.075 | 2.46061 | 4.113 | 2.57627 | 4.149 | 2.69839 | 4.181 | 2.82723 | 4.210 |
| 0.1 | 2.34720 | 8.158 | 2.45688 | 8.235 | 2.57272 | 8.305 | 2.69499 | 8.369 | 2.82399 | 8.427 |
| 0.15 | 2.34080 | 12.260 | 2.45076 | 12.374 | 2.56687 | 12.477 | 2.6894 I | 12.571 | 2.81867 | 12.657 |
| 0.2 | 2.33202 | 16.389 | 2.44238 | 16.536 | 2.55887 | 16.671 | 2.68178 | 16.794 | 2.81138 | 16.906 |
| 0.25 | 2.32107 | 20.552 | 2.43193 | 20.732 | 2.54890 | 20.895 | 2.67226 | 21.044 | 2.80230 | 21.179 |
| 0.3 | 2.30819 | 24.759 | 2.41976 | 24.967 | 2.53717 | 25.155 | 2.66108 | 25.327 | 2.79164 | 25.483 |
| 0.35 | 2.29365 | 29.016 | 2.40577 | 29.248 | 2.52395 | 29.458 | 2.64847 | 29.649 | 2.77963 | 29.822 |
| 0.4 | 2.27779 | 33.330 | 2.39066 | 33.580 | 2.50955 | 33.808 | 2.63476 | 34.014 | 2.76657 | 34.201 |
| 0.45 | 2.26098 | 37.706 | 2.37465 | 37.970 | 2.49430 | 38.209 | 2.62024 | 38.426 | 2.75274 | 38.622 |
| 0.5 | 2.24362 | 42.150 | 2.35812 | 42.42 I | 2.47857 | 42.666 | 2.60527 | 42.887 | 2.73850 | 43.089 |
| 0.55 | 2.22612 | 46.663 | 2.34148 | 46.934 | 2.46274 | 47.180 | 2.59021 | 47.401 | 2.72418 | 47.602 |
| 0.6 | 2.20892 | 51.247 | 2.32513 | 51.512 | 2.44721 | 51.752 | 2.57544 | 51.968 | 2.71014 | 52.163 |
| 0.65 | 2.19245 | 55.901 | 2.30949 | 56.154 | 2.43235 | 56.38 I | 2.56133 | 56.585 | 2.69673 | 56.771 |
| 0.7 | 2.17714 | 60.624 | 2.29496 | 60.856 | 2.41856 | 61.065 | 2.54824 | 61.253 | 2.68430 | 61.422 |
| 0.75 | 2.16340 | 65.410 | 2.28193 | 65.615 | 2.40619 | 65.800 | 2.53650 | 65.966 | 2.67316 | 66.116 |
| 0.8 | 2.15159 | 70.254 | 2.27074 | 70.426 | 2.39558 | 70.581 | 2.52644 | 70.720 | 2.66361 | 70.845 |
| 0.85 | 2.14204 | 75.145 | 2.26169 | 75.279 | 2.38701 | 75.400 | 2.51831 | $75 \cdot 508$ | 2.65591 | 75.605 |
| 0.9 | 2.13502 | 80.075 | 2.25504 | 80.167 | 2.38071 | 80.249 | 2.51234 | 80.323 | 2.65025 | 80.390 |
| 0.95 | 2.13073 | 85.031 | 2.25098 | 85.077 | $2 \cdot 37686$ | 85.119 | 2.50869 | 85.157 | 2.64679 | 85.191 |
| 1.0 | 2.I 2928 | 90.000 | 2.24961 | 90.000 | 2.37557 | 90.000 | 2.50747 | 90.000 | 2.64563 | 90.000 |
| 1.05 | 2.13073 | 94.969 | 2.25098 | 94.923 | 2.37686 | 94.88I | 2.50869 | 94.843 | 2.64679 | 94.809 |
| . 1 | 2.13502 | 99.925 | 2.25504 | 99.833 | 2.38071 | 99.751 | 2.51234 | 99.677 | 2.65025 | 99.610 |
| 1.15 | 2.14204 | 104.855 | 2.26169 | 104.721 | 2.38701 | 104.600 | 2.51831 | 104.492 | 2.65591 | 104.395 |
| 1.2 | 2.15I59 | 109.746 | 2.27074 | 109.574 | 2.39558 | 109.419 | 2.52644 | 109.280 | 2.66361 | 109.155 |
| 1.25 | 2.16340 | 114.590 | 2.28193 | 114.385 | 2.40619 | 114.200 | 2.53650 | II4.034 | 2.67316 | 113.884 |
| L. 3 | 2.17714 | 119.376 | 2.29496 | 119.144 | 2.41856 | 118.935 | 2.54824 | 118.747 | 2.68430 | 118.578 |
| 1.35 | 2.19245 | 124.099 | 2.30949 | 123.846 | 2.43235 | 123.619 | 2.56133 | 123.415 | 2.69673 | 123.229 |
| I. 4 | 2.20892 | 128.753 | 2.32513 | 128.488 | 2.44721 | 128.248 | 2.57544 | 128.032 | 2.71014 | 127.837 |
| I. 45 | 2.22612 | 133.337 | 2.34148 | 133.066 | 2.46274 | 132.820 | 2.59021 | 132.599 | 2.72418 | 132.398 |
| 1.5 | 2.24362 | 137.850 | 2.35812 | 137.580 | 2.47857 | 137.334 | 2.60527 | 137.113 | 2.73850 | 136.911 |
| 1.55 | 2.26098 | 142.294 | 2.37465 | 142.030 | 2.49430 | 141.791 | 2.62024 | 141.574 | 2.75274 | 141.378 |
| 1. 6 | 2.27779 | 146.670 | 2.39066 | 146.420 | 2.50955 | 146.192 | 2.63476 | 145.986 | 2.76657 | 145.799 |
| 1.65 | 2.29365 | 150.984 | 2.40577 | I50.752 | 2.52395 | 150.542 | 2.64847 | 150.351 | 2.77963 | 150.178 |
| 1.7 | 2.30819 | 155.241 | 2.41976 | 155.033 | 2.53717 | ${ }^{1} 54.845$ | 2.66108 | I 54.673 | 2.79164 | 154.517 |
| 1.75 | 2.32107 | 159.448 | 2.43193 | 159.268 | 2.54890 | 159.105 | 2.67226 | 158.956 | 2.80230 | 158.821 |
| 1.8 | 2.33202 | 163.611 | 2.44238 | 163.464 | 2.55887 | 163.329 | 2.68178 | 163.206 | 2.81138 | 163.094 |
| 1.85 | 2.34080 | 167.740 | 2.45076 | 167.626 | 2.56687 | 167.523 | 2.68941 | 167.429 | 2.81867 | 167.343 |
| 1.9 | 2.34720 | 171.842 | 2.45688 | 171.765 | 2.57272 | 171.695 | 2.69499 | 171.631 | 2.82399 | 171.573 |
| 1.95 | 2.35110 | 175.925 | 2.46061 | I75.887 | -2.57627 | 175.851 | 2.69839 | 175.819 | 2.82723 | 175.790 |
| 2.0 | 2.35241 | 180.000 | 2.46186 | 180.000 | 2.57746 | 180.000 | 2.69952 | 180.000 | 2.82832 | 180.000 |

Example. $\cosh \left(1.6+i_{\underline{1} .6}\right)=2.50955 \angle 146^{\circ} .192=2.50955 \angle 146^{\circ} .11^{\prime} .31^{\prime \prime}$.

Table XI. HYPERBOLIC COSINES. $\cosh (x+i q)=r / \gamma$. Continued

|  | $x=1.75$ |  | $x=\mathrm{r} .8$ |  | $x=1.85$ |  | $x=1.9$ |  | $x=1.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{q}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\gamma$ | $r$ | $\gamma$ | $r$ | $\boldsymbol{\gamma}$ |
|  |  | - |  | $\bigcirc$ |  | 。 |  | 。 |  |  |
| $\bigcirc$ | 2.96419 | 0.000 | 3.10747 | 0.000 | 3.25853 | 0.000 | 3.41773 | 0.000 | 3.58548 | .000 |
| 0.05 | 2.96315 | 4.237 | 3.10648 | 4.262 | 3.25759 | 4.284 | 3.41683 | 4.304 | 3.58462 | 4.322 |
| 0.1 | 2.96006 | 8.480 | 3.10353 | 8.529 | 3.25477 | 8.572 | 3.41415 | 8.612 | 3.58207 | 8.648 |
| 0.15 | 2.95498 | 12.735 | 3.09869 | 12.806 | 3.25015 | 12.871 | 3.40975 | 12.929 | 3.57788 | 12.983 |
| 0.2 | 2.94804 | 17.008 | 3.09206 | 17.100 | 3.24384 | 17.184 | 3.40373 | 17.260 | 3.57213 | 17.330 |
| 0.25 | 2.93938 | 21.302 | 3.08382 | 21.414 | 3.23598 | 21.516 | $3 \cdot 39624$ | 21.608 | 3.56500 | 21.692 |
| 0.3 | 2.92921 | 25.625 | 3.07413 | 25.754 | 3.22675 | 25.87 I | 3.38745 | 25.977 | 3.55663 | 26.073 |
| 0.35 | 2.91777 | 29.980 | 3.06323 | 30.123 | 3.21636 | 30.252 | $3 \cdot 37756$ | 30.369 | 3.54721 | 30.476 |
| 0.4 | 2.90532 | 34.370 | 3.05138 | 34.524 | 3.20507 | 34.663 | $3 \cdot 36681$ | 34.789 | 3.53698 | 34.904 |
| 0.45 | 2.89217 | 38.800 | 3.03885 | 38.96 I | 3.19315 | 39.107 | 3.35546 | 39.239 | 3.52617 | 39.358 |
| 0.5 | 2.8786 I | 43.270 | 3.02595 | 43.435 | 3.18088 | 43.584 | 3.34378 | 43.719 | 3.51507 | 43.840 |
| 0.55 | 2.86499 | 47.784 | 3.01300 | 47.947 | 3.16856 | 48.096 | $3 \cdot 33207$ | 48.230 | 3.50393 | 48.351 |
| 0.6 | 2.85165 | 52.339 | 3.0003 I | 52.499 | 3.15650 | 52.643 | 3.32060 | 52.773 | 3.49302 | 52.890 |
| 0.65 | 2.8389 I | 56.937 | 2.9882 I | 57.088 | 3.14500 | 57.224 | $3 \cdot 30967$ | 57.346 | 3.48263 | 57.457 |
| 0.7 | 2.82710 | 61.575 | 2.97699 | 61.713 | 3.13434 | 61.837 | 3.29955 | 6 I .949 | 3.47301 | 62.050 |
| 0.75 | 2.81653 | 66.250 | 2.96695 | 66.371 | 3.12481 | 66.480 | 3.29049 | 66.579 | 3.46441 | 66.668 |
| 0.8 | 2.80747 | 70.958 | 2.95835 | 71.059 | 3.11665 | 71.150 | 3.28274 | 71.233 | 3.45702 | 71.307 |
| 0.85 | 2.80016 | 75.693 | 2.95142 | 75.772 | 3.11006 | 75.842 | 3.27649 | 75.906 | 3.45112 | 75.964 |
| 0.9 | 2.79479 | 80.449 | 2.94633 | 80.503 | 3.10523 | 80.552 | 3.27191 | 80.595 | 3.44675 | 80.635 |
| 0.95 | 2.79151 | 85.22 I | 2.94322 | 85.248 | 3.10228 | 85.273 | 3.26911 | 85.295 | 3.44410 | 85.315 |
| $\bigcirc$ | 2.79041 | 90.000 | 2.94217 | 90.000 | 3.10129 | 90.500 | 3.26816 | 90.000 | 3.4432 I | 90.000 |
| 1.05 | 2.79151 | 94.779 | 2.94322 | 94.752 | 3.10228 | 94.727 | 3.26911 | 94.705 | 3.44410 | 94.685 |
| 1.1 | 2.79479 | 99.551 | 2.94633 | 99.497 | 3.10523 | 99.448 | 3.27191 | 99.405 | 3.44675 | 99.365 |
| 1.15 | 2.80016 | 104.307 | 2.95142 | 104.228 | 3.11006 | 104.158 | 3.27649 | 104.094 | 3.45112 | 104.036 |
| 1.2 | 2.80747 | 109.042 | 2.95835 | 108.941 | 3.11665 | 108.850 | 3.28274 | 108.767 | 3.45702 | 108.693 |
| 1.25 | 2.81653 | 113.750 | 2.96695 | 113.629 | 3.1248 r | 113.520 | 3.29049 | II3.42I | 3.46441 | 113.332 |
| 1.3 | 2.82710 | 118.425 | 2.97699 | 118.287 | 3.13434 | 118.163 | 3.29955 | 118.051 | 3.47301 | 117.950 |
| 1.35 | 2.83891 | 123.063 | 2.9882 I | 122.912 | 3.14500 | 122.776 | $3 \cdot 30967$ | 122.654 | 3.48263 | 122.543 |
| I. 4 | 2.85165 | 127.661 | 3.00031 | 127.501 | 3.15650 | 127.357 | 3.32060 | 127.227 | 3.49302 | 127.110 |
| 1.45 | 2.86499 | 132.216 | 3.01300 | 132.053 | 3.16856 | 131.904 | 3.33207 | 131.770 | $3 \cdot 50393$ | 131.649 |
| I. 5 | 2.87861 | 136.730 | 3.02595 | 136.565 | 3.18088 | 136.416 | $3 \cdot 34378$ | 136.28r | 3.51507 | 136.160 |
| 1.55 | 2.89217 | 141.200 | 3.03885 | 141.039 | 3.19315 | 140.893 | $3 \cdot 35546$ | 140.761 | 3.52617 | 140.642 |
| 1.6 | 2.90532 | 145.630 | 3.05138 | 145.476 | 3.20507 | 145.337 | 3.36681 | 145.211 | 3.53698 | 145.096 |
| 1.65 | 2.91777 | 150.020 | 3.06323 | 149.877 | 3.21636 | 149.748 | $3 \cdot 37756$ | 149.631 | 3.54721 | 149.524 |
| 1.7 | 2.92921 | 154.375 | 3.07413 | 154.246 | 3.22675 | 154.129 | 3.38745 | 154.023 | 3.55663 | 153.927 |
| 1.75 | 2.93938 | 158.698 | 3.08382 | 158.586 | 3.23598 | 158.484 | 3.39624 | 158.392 | 3.56500 | 158.308 |
| 1.8 | 2.94804 | 162.992 | 3.09206 | 162.900 | 3.24384 | 162.816 | 3.40373 | 162.740 | 3.57213 | 162.670 |
| 1.85 | 2.95498 | 167.265 | 3.09869 | 167.194 | 3.25015 | 167.129 | 3.40975 | 167.071 | 3.57788 | 167.017 |
| 1.9 | 2.96006 | 171.520 | 3.10353 | 171.471 | 3.25477 | 171.428 | 3.41415 | 171.388 | 3.58207 | 171.352 |
| 1.95 | 2.96315 | 175.763 | 3.10648 | 175.738 | 3.25759 | 175.716 | 3.41683 | 175.696 | 3.58462 | 175.678 |
| 2.0 | 2.96419 | 180.000 | 3.10747 | 180.000 | 3.25853 | 180.000 | 3.41773 | 180.000 | 3.58548 | 180.000 |



Table XI. HYperbolic COSINES. $\cosh (x+i q)=r \not \underline{q}$. Continued

|  | $x=2.0$ |  | $x=2.05$ |  | $x=2.1$ |  | $x=2.15$ |  | $x=2.2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\gamma$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\gamma$ | $r$ | $\gamma$ | $r$ | $\gamma$ |
|  |  | $\bigcirc$ |  |  |  |  |  |  |  |  |
| $\bigcirc$ | 3.76220 | 0.000 | 3.94832 | 0.000 | 4.14431 | 0.000 | $4 \cdot 35067$ | 0.000 | 4.56791 | 0.000 |
| 0.05 | 3.76137 | 4.339 | 3.94753 | 4.354 | 4.14357 | $4 \cdot 368$ | 4.34996 | 4.380 | 4.56723 | 4.391 |
| 0.1 | 3.75894 | 8.681 | 3.94521 | 8.711 | 4.14136 | 8.738 | 4.34785 | 8.763 | 4.56523 | 8.785 |
| 0.15 | 3.75495 | 13.031 | 3.94142 | 13.075 | 4.13774 | 13.115 | $4 \cdot 34440$ | 13.151 | $4 \cdot 56167$ | 13.184 |
| 0.2 | 3.7494 | 17.392 | 3.93620 | 17.449 | 4.13278 | 17.501 | 4.33968 | 17.548 | 4.55744 | 17.591 |
| 0.25 | 3.74268 | 21.768 | 3.92972 | 21.836 | 4.12661 | 21.899 | $4 \cdot 33381$ | 21.956 | 4.55184 | 22.007 |
| 0.3 | 3.73470 | 26.160 | 3.92213 | 26.239 | 4.11938 | 26.311 | $4 \cdot 32693$ | 26.376 | 4.54529 | 26.435 |
| 0.35 | 3.72574 | 30.573 | 3.91359 | 30.660 | 4.11125 | 30.740 | 4.31918 | 30.812 | 4.53793 | 30.877 |
| 0.4 | 3.71600 | 35.008 | 3.90432 | 35.102 | 4.10243 | 35.187 | $4 \cdot 31079$ | 35.264 | 4.52993 | 35.334 |
| 0.45 | 3.70572 | 39.467 | 3.89453 | 39.565 | 4.09311 | 39.653 | 4.30193 | 39.734 | 4.52150 | 39.807 |
| 0.5 | 3.69515 | 43.951 | 3.88448 | 44.051 | 4.08355 | 44.14I | 4.29282 | 44.223 | 4.51285 | 44.297 |
| 0.55 | 3.68455 | 48.461 | 3.87440 | 48.560 | 4.07396 | 48.649 | 4.28371 | 48.730 | 4.50417 | 48.804 |
| 0.6 | 3.67418 | 52.996 | 3.86454 | 53.092 | 4.06459 | 53.179 | 4.27479 | 53.257 | 4.49570 | 53.329 |
| 0.65 | 3.66430 | 57.557 | 3.85515 | 57.647 | 4.05566 | 57.729 | 4.26630 | 57.803 | 4.48763 | 57.870 |
| 0.7 | 3.65517 | 62.142 | 3.84648 | 62.224 | 4.04740 | 62.299 | 4.25846 | 62.366 | 4.48017 | 62.427 |
| 0.75 | 3.64699 | 66.748 | 3.83870 | 66.820 | 4.04002 | 66.886 | 4.25145 | 66.945 | 4.47350 | 66.998 |
| 0.8 | 3.64000 | 71.374 | 3.83206 | 71.434 | 4.03371 | 71.489 | 4.24544 | 71.538 | 4.46780 | 71.582 |
| 0.85 | 3.63437 | 76.016 | 3.82671 | 76.062 | 4.02863 | 76.105 | 4.24061 | 76.143 | 4.46322 | 76.177 |
| 0.9 | 3.63023 | 80.670 | 3.82279 | 80.702 | 4.02490 | 80.731 | 4.23707 | 80.757 | 4.45985 | 80.780 |
| 0.95 | 3.62771 | 85.333 | 3.82039 | 85.349 | 4.02263 | 85.364 | 4.23491 | 85.377 | 4.45779 | 85.389 |
| I. | 3.62686 | 90.000 | 3.81958 | 90.000 | 4.02186 | 90.000 | 4.23419 | 90.000 | 4.457 II | 90.000 |
| 1.05 | 3.62771 | 94.667 | 3.82039 | 94.651 | 4.02263 | 94.636 | 4.23491 | 94.623 | 4.45779 | 94.61 |
| I.I | 3.63023 | 99.330 | 3.82279 | 99.298 | 4.02490 | 99.269 | 4.23707 | 99.243 | 4.45985 | 99.220 |
| 1.15 | 3.63437 | 103.984 | 3.82671 | 103.938 | 4.02863 | 103.895 | 4.24061 | 103.857 | 4.46322 | 103.823 |
| 1.2 | 3.64000 | 108.626 | 3.83206 | 108.566 | 4.0337 I | 108.511 | 4.24544 | 108.462 | 4.46780 | 108.418 |
| 1.25 | 3.64699 | 113.252 | 3.83870 | 113.180 | 4.94002 | 113.114 | 4.25145 | 113.055 | 4.47350 | 113.002 |
| 1.3 | 3.65517 | 117.858 | 3.84648 | 117.776 | 4.04740 | 117.701 | 4.25846 | 117.634 | 4.48017 | 117.573 |
| 1.35 | 3.66430 | 122.443 | 3.85515 | 122.353 | 4.05566 | 122.271 | 4.26630 | 122.197 | 4.48763 | 122.130 |
| 1.4 | 3.67418 | 127.004 | 3.86454 | 126.908 | 4.06459 | 126.82 I | 4.27479 | 126.743 | 4.49570 | 126.671 |
| 1.45 | 3.68455 | 131.539 | 3.87440 | 131.440. | 4.07396 | 131.351 | 4.28371 | 131.270 | 4.50417 | 131.196 |
| 1.5 | 3.69515 | 136.049 | 3.88448 | 135.950 | 4.08355 | 135.859 | 4.29282 | 135.778 | 4.51285 | 135.703 |
| 1. 55 | 3.70572 | 140.533 | 3.89453 | 140.435 | 4.09311 | 140.347 | $4 \cdot 30193$ | 140.266 | 4.512150 | 140.193 |
| 1.6 | 3.71600 | 144.992 | 3.90432 | 144.898 | 4.10243 | 144.813 | 4.31079 | 144.736 | 4.52993 | 144.666 |
| 1.65 | 3.72574 | 149.427 | 3.91359 | 149.340 | 4.11125 | 149.260 | 4.31918 | 149.188 | 4-53793 | 149.123 |
| 1.7 | 3.73470 | 153.840 | 3.92213 | 153.761 | 4.11938 | 153.689 | 4.32693 | I 53.624 | 4.54529 | 153.565 |
| 1.75 | 3.74268 | 158.232 | 3.92972 | 158.164 | 4.12661 | 158.101 | 4.33381 | 158.044 | 4.55184 | 157.993 |
| 1.8 | 3.74948 | 162.608 | 3.93620 | 162.551 | 4.13278 | 162.499 | $4 \cdot 33968$ | 162.452 | 4.55744 | 162.409 |
| 1.85 | 3.75495 | 166.969 | 3.94142 | 166.925 | 4.13774 | 166.885 | $4 \cdot 34440$ | 166.849 | 4.56167 | 166.816 |
| 1.9 | 3.75894 | 171.319 | 3.94521 | 171.289 | 4.14136 | 171.262 | 4.34785 | 171.237 | 4.56523 | 171.215 |
| 1.95 | 3.76137 | 175.661 | 3.94753 | 175.646 | 4.14357 | 175.632 | 4.34996 | 175.620 | 4.56723 | 175.609 |
| 2.0 | 3.76220 | 180.000 | 3.94832 | 180.000 | 4.14431 | 180.000 | $4 \cdot 35067$ | 180.000 | 4.56791 | 180.000 |

Example. $\quad \cosh (2.0+i \underline{\underline{0} .5})=3.695^{15} \angle 43^{\circ} .951=3.695 I^{\prime} \angle 43^{\circ} .57^{\prime} .04^{\prime \prime}$.

Table XI. HYPERBOLIC COSINES. $\cosh (x+i q)=r / \gamma$. Continued

|  | $x=2.25$ |  | $x=2.3$ |  | $x=2.35$ |  | $x=2.4$ |  | $x=2.45$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | r | $\gamma$ | $r$ | $\gamma$ | $r$ | $\gamma$ | $r$ | $\gamma$ |  | $\gamma$ |
|  |  |  |  |  |  |  |  |  |  |  |
| $\bigcirc$ | 4.79657 | 0.000 | 5.03722 | 0.000 | 5.29047 | 0.00 | 5.55695 | 0.000 | 5.83732 | . 00 |
| 0.05 | 4.79593 | 4.401 | 5.03661 | 4.411 | 5.28989 | 4.419 | $5 \cdot 55639$ | 4.427 | 5.83680 | 4.434 |
| 0.1 | 4.79402 | 8.805 | 5.03479 | 8.824 | 5.28816 | 8.840 | 5.55474 | 8.856 | 5.83522 | 8.869 |
| 0.15 | 4.70088 | 13.214 | 5.03181 | 13.241 | 5.28531 | 13.265 | $5 \cdot 55204$ | 13.288 | 5.83265 | 13.308 |
| 0.2 | 4.78661 | 17.629 | 5.02773 | 17.664 | 5.28143 | 17.696 | $5 \cdot 54834$ | 17.725 | 5.82913 | 17.751 |
| 0.25 | 4.78127 | 22.053 | 5.02265 | 22.096 | 5.27662 | 22.134 | 5.54375 | 22.169 | 5.82476 | 2.2 |
| 0.3 | 4.77503 | 26.488 | 5.01672 | 26.537 | 5.27096 | 26.58 T | 5.53837 | 26.620 | 5.81964 | 26.656 |
| 0.35 | 4.76802 | 30.936 | 5.01005 | 30.989 | 5.26461 | 31.038 | 5.53233 | 31.08I | 5.81389 | 31.121 |
| 0.4 | 4.76042 | 35.397 | 5.00281 | 35.454 | 5.25772 | 35.506 | 5.52578 | 35.553 | 5.80765 | 35.595 |
| 0.45 | 4.75240 | 39.873 | 4.99518 | 39.932 | 5.25046 | 39.986 | 5.51887 | 40.035 | 5.801 | 40.07 |
| 0.5 | 4.74415 | 44.364 | 4.98734 | 44. | 5.23 | 44 | 5.51177 | 44.529 | 5.79434 | 44.573 |
| 0.55 | 4.73592 | 48.870 | 4.97950 | 48.930 | 5.23553 | 48.984 | 5.50468 | 49.034 | 5.78758 | 49.078 |
| 0.6 | 4.72784 | 53.392 | 4.97183 | 53.45 I | 5.22825 | 53.503 | 5.49775 | 53.551 | 5.78099 | 53.593 |
| 0.65 | 4.72017 | 57.930 | 4.96454 | 57.984 | 5.22131 | 58.034 | 5.49115 | 58.078 | 5.77472 | 58.119 |
| 0.7 | 4.71308 | 62.482 | 4.95780 | 62.53 I | 5.21490 | 62.576 | 5.48505 | 62.617 | 5.76892 | 62.653 |
| 0. | 4.70675 | 67.046 | 4.95177 | 67.090 | 5.20917 | 67.129 | 5.47961 | 67.165 | 5.76375 | 67.197 |
| 0.8 | 4.70134 | 71.622 | 4.94662 | 71.659 | 5.20428 | 71.691 | 5.47495 | 71.721 | 5.75932 | 71.748 |
| 0.85 | 4.69697 | 76.208 | 4.94249 | 76.236 | 5.20035 | 76.261 | 5.47122 | 76.284 | 5.75576 | 76.305 |
| 0.9 | 4.69377 | 80.801 | 4.93944 | 80.820 | 5.19745 | 80.837 | 5.46847 | 80.853 | 5.75316 | 80.867 |
| 0.95 | 4.69182 | 85.399 | 4.93759 | 85.409 | 5.19569 | 85.418 | 5.46679 | 85.426 | 5.75156 | 85.433 |
| 1.0 | 4.69117 | 90.000 | 4.93696 | 90.00 | 5.19 | 90. | 5.46623 | 90.000 | 5.75103 | 90.000 |
| 1.05 | 4.69182 | 94.601 | 4.93759 | 94-591 | 5.19569 | 94.582 | 5.46679 | 94.574 | 5.75156 | 94.567 |
| 1.1 | 4.69377 | 99.199 | 4.93944 | 99.180 | 5.19745 | 99.163 | 5.46847 | 99.147 | 5.75316 | 99.133 |
| 1.15 | 4.69697 | 103.792 | 4.94249 | 103.764 | 5.20035 | 103.739 | 5.47122 | 103.716 | 5.75576 | 103.695 |
| 1.2 | 4.70134 | 108.378 | 4.94662 | $108.34{ }^{1}$ | $5 \cdot 20428$ | 108.3 | 5.47495 | 108.279 | 5.75932 | 108.252 |
| 1.25 | 4.70675 | 112.95 | 4.95177 | 112.910 | 5.20917 | 112.871 | 5.47961 | 112.835 | 5.76375 | 112.803 |
| 1.3 | 4.71308 | 117.518 | 4.95780 | 117.469 | 5.21490 | 117.424 | 5.48505 | 117.383 | 5.76892 | 117.347 |
| 1.35 | 4.72017 | 12.070 | 4.96454 | 122.016 | 5.22131 | 121.966 | 5.49115 | 121.922 | 5.77472 | I21.88I |
| 1. 4 | 4.72784 | 126.608 | 4.97183 | 126.549 | 5.22825 | 126.497 | 5.49775 | 126.449 | 5.78099 | 126.407 |
| I. 45 | 4.73592 | 131.130 | $4.9795{ }^{\circ}$ | 131.070 | 5.23553 | 131.016 | $5 \cdot 50468$ | 130.966 | 5.78758 | 130.922 |
| 1.5 | 4.74415 | 135.636 | 4.98734 | 135.576 | 5.23728 | 135.521 | 5.51177 | 135.471 | 5.79434 | I35.427 |
| 1.55 | 4.75240 | 140.127 | 4.99518 | 140.068 | 5.25046 | 140.014 | 5.51887 | I39.965 | 5.80108 | 139.921 |
| 1.6 | 4.76042 | 144.603 | 5.00281 | 144.546 | $5.2577{ }^{2}$ | 144.494 | 5.52578 | 144.447 | 5.80765 | 144.405 |
| 1.65 | 4.76802 | 149.064 | 5.01005 | 149.011 | 5.26461 | 148.962 | 5.53233 | 148.919 | 5.81389 | 148.879 |
| 1. 7 | 4.77503 | 153.512 | 5.01672 | 153.463 | 5.27096 | 153.419 | 5.53837 | 153.380 | 5.81964 | 153.344 |
|  | 4.78127 | 157.947 | 5.02265 | 157.904 | 5.27662 | 157.866 | 5.54375 | 157.831 | 5.82476 | 157.800 |
| I. 8 | 4.78661 | 162.37 I | 5.02773 | 162.336 | 5.28143 | 162.304 | 5.54834 | 162.275 | 5.82913 | 162.249 |
| 1. 85 | 4.79088 | 166.786 | 5.03181 | 166.759 | 5.28531 | 166.735 | 5.55204 | 166.712 | 5.83265 | 166.692 |
| 1.9 | 4.79402 | 171.195 | 5.03479 | 171.176 | 5.28816 | 171.160 | $5 \cdot 55474$ | 171.144 | 5.83522 | 171.131 |
| 1. 95 | 4.79593 | 175.599 | 5.03661 | 175.589 | 5.28989 | 175.581 | 5.55639 | 175.573 | 5.83680 | 175.566 |
| 2.0 | 4.79657 | 180.000 | 5.03722 | 180.000 | 5.29047 | 180.000 | 5.55695 | 180. | 5.83732 | 80 |

Example. $\quad \operatorname { c o s h } ( 2 . 4 0 + i \underline { 2 . 0 } ) = 5 . 5 5 6 9 5 \angle 1 8 0 ^ { \circ } = 5 . 5 5 6 9 5 \longdiv { I 8 0 ^ { \circ } } .$

Table XI. HYPERBOLIC COSINES. $\cosh (x+i q)=r / \gamma$. Continued

|  | $x=2.5$ |  | $x=2.55$ |  | $x=2.6$ |  | $x=2.65$ |  | $x=2.7$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ | \% | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ |
|  |  | - |  | - |  |  |  | - |  | - |
| $\bigcirc$ | 6.13229 | 0.000 | 6.44259 | 0.00 | 6.76901 | 0.000 | 7.11234 | 0.000 | 7.47347 | 0.000 |
| 0.05 | 6.13179 | 4.440 | 6.44212 | 4.446 | 6.76855 | 4.45 I | 7.11191 | 4.456 | 7.47306 | 4.460 |
| . | 6.13030 | 8.881 | 6.44069 | 8.893 | 6.76720 | 8.903 | 7.11062 | 8.912 | 7.47183 | 8.920 |
| 0.15 | 6.12785 | 13.326 | 6.43836 | 13.342 | 6.76499 | 13.357 | 7.10851 | 13.371 | 7.46982 | 13.383 |
| 0.2 | 6.12450 | 17.774 | 6.43518 | 17.796 | 6.76195 | 17.815 | 7.10563 | 17.833 | 7.46708 | 17.848 |
| 0.25 | 6.12034 | 22.228 | 6.43121 | 22.254 | 6.758 r 8 | 22.278 | 7.10204 | 22.299 | 7.46366 | 22.318 |
| 0.3 | 6.11547 | 26.689 | 6.42658 | 26.718 | 6.75376 | 26.745 | 7.09784 | 26.770 | $7 \cdot 45966$ | 26.791 |
| 0.35 | 6.10999 | 31.157 | 6.42137 | 31.190 | 6.7488 I | 31.219 | 7.09313 | 31.246 | 7.45518 | 31.270 |
| 0.4 | 6.10406 | 35.634 | 6.41572 | 35.668 | 6.74343 | 35.700 | 7.08802 | 35.728 | 7.45032 | 35.754 |
| 0.45 | 6.09781 | 40.119 | 6.40977 | 40.155 | 6.73778 | 40.188 | 7.08264 | 40.218 | 7.44519 | 40.245 |
| 0.5 | 6.09139 | 44.614 | 6.40367 | 44.651 | 6.73197 | 44.684 | 7.07711 | 44.713 | 7.43994 | 44-74I |
| 0.55 | 6.08496 | 49.118 | 6.39755 | 49.155 | 6.72616 | 49.187 | 7.07158 | 49.217 | 7.43468 | 49.244 |
| 0.6 | 6.07869 | 53.632 | 6.39160 | 53.667 | 6.72048 | 53.699 | 7.06618 | 53.727 | 7.42955 | 53.754 |
| 0.65 | 6.07273 | 58.155 | 6.38592 | 58.188 | 6.71509 | 58.218 | 7.06105 | 58.244 | 7.42467 | 58.269 |
| 0.7 | 6.06722 | 62.686 | 6.38068 | 62.716 | 6.71011 | 62.743 | 7.05631 | 62.768 | 7.42017 | 62.790 |
| 0.75 | 6.06229 | 67.226 | 6.37601 | 67.252 | 6.70565 | 67.275 | 7.05208 | 67.297 | 7.41614 | 67.316 |
| 0.8 | 6.05808 | 71.772 | 6.37201 | 71.794 | 6.70185 | 71.813 | 7.04847 | 7 I .831 | 7.41271 | 71.847 |
| 0.85 | 6.05471 | 76.324 | 6.36879 | 76.340 | 6.69880 | 76.356 | 7.04556 | 76.369 | 7.40994 ' | 76.382 |
| 0.9 | 6.05223 | 80.880 | 6.36644 | 80.891 | 6.69656 | 80.902 | 7.04343 | 80.911 | 7.40791 | 80.920 |
| 0.95 | 6.0507 I | 85.439 | 6.36499 | 85.445 | 6.69518 | 85.450 | 7.04213 | 85.455 | 7.40668 | 85.460 |
| . 0 | 6.05020 | 90.000 | 6.36451 | 90.000 | 6.69473 | 90.000 | 7.04169 | 90.000 | 7.40626 | 90.000 |
| 1.05 | 6.05071 | 94.561 | 6.36499 | 94.555 | 6.69518 | 94.550 | 7.04213 | 94.545 | 7.40668 | 94.540 |
| .1 | 6.05223 | 99.120 | 6.36644 | 99.109 | 6.69656 | 99.098 | 7.04343 | 99.089 | $7 \cdot 40791$ | 99.080 |
| 1.15 | 6.05471 | 103.676 | 6.36879 | 103.660 | 6.69880 | 103.644 | 7.04556 | 103.631 | 7.40994 | 103.618 |
| 1.2 | 6.05808 | 108.228 | 6.37201 | 108.206 | 6.70185 | 108.187 | 7.04847 | 108.169 | 7.41271 | 108.153 |
| 1.25 | 6.06229 | 112.774 | 6.37601 | 112.748 | 6.70565 | 112.725 | 7.05208 | 112.703 | 7.41614 | 112.684 |
| 1.3 | 6.06722 | 117.314 | 6.38068 | 117.284 | 6.71011 | 117.257 | 7.05631 | 117.232 | 7.42017 | 117.210 |
| I. 35 | 6.07273 | 121.845 | 6.38592 | 121.812 | 6.71509 | 121.782 | 7.06105 | 121.756 | 7.42467 | 121.731 |
| 1.4 | 6.07869 | 126.368 | 6.39160 | 126.333 | 6.72048 | 126.301 | 7.06618 | 126.273 | 7.42955 | 126.246 |
| 1.45 | 6.08496 | 130.882 | 6.39755 | I 30.845 | 6.72616 | 130.813 | 7.07158 | 130.783 | 7.43468 | 130.756 |
| 1.5 | 6.09139 | 135.386 | 6.40367 | 135.350 | 6.73197 | 135.316 | 7.07711 | 135.286 | 7.43994 | 135.259 |
| 1.55 | 6.09781 | 1 39.88 I | 6.40977 | I 39.845 | 6.73778 | 139.812 | 7.08264 | 139.782 | 7.44519 | 139.755 |
| 1.6 | 6.10406 | 144.366 | 6.41572 | 144.332 | 6.74343 | 144.300 | 7.08802 | 144.272 | 7.45032 | 144.246 |
| 1.65 | 6.10999 | 148.843 | 6.42137 | 148.810 | 6.7488 I | 148.781 | 7.09313 | 148.754 | 7-45518 | 148.730 |
| 1.7 | 6.11547 | 153.311 | 6.42658 | 153.282 | 6.75376 | 153.255 | 7.09784 | 153.230 | 7.45966 | 153.209 |
| 1.75 | 6.12034 | 157.772 | 6.43121 | 157.746 | 6.75818 | 157.722 | 7.10204 | 157.701 | 7.46366 | 157.682 |
| 1.8 | 6.12450 | 162.226 | 6.43518 | 162.204 | 6.76195 | 162.185 | 7.10563 | 162.167 | 7.46708 | 162.152 |
| 1.85 | 6.12785 | 166.674 | 6.43836 | 166.658 | 6.76499 | 166.643 | 7.10851 | 166.629 | 7.46982 | 166.617 |
| 1.9 | 6.13030 | 171.119 | 6.44069 | 171.107 | 6.76720 | 171.097 | 7.11062 | 171.088 | 7.47183 | 171.080 |
| 1.95 | 6.13179 | 175.560 | 6.44212 | I75.554 | 6.76855 | 175.549 | 7.11191 | 175.544 | 7.47306 | 175.540 |
| 2.0 | 6.13229 | 180.000 | 6.44259 | 180.000 | 6.76901 | 180.000 | 7.11234 | 180.000 | 7.47347 | 180.000 |

Example. $\quad \cosh (2.65+i \underline{0.75})=7.05208 \angle 67^{\circ} .297=7.05208 \angle 67^{\circ} .17^{\prime} .49^{\prime \prime}$.

Table. XI. HYPERBOLIC COSINES. $\cosh (x+i q)=r / \gamma$. Continued

|  | $x=2.75$ |  | $x=2.8$ |  | $x=2.85$ |  | $x=2.9$ |  | $x=2.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $\boldsymbol{r}$ | $\boldsymbol{\gamma}$ | $r$ | $\gamma$ | I | $\gamma$ | $r$ | $\boldsymbol{\gamma}$ | 7 | $\gamma$ |
|  |  | - |  |  |  | - |  |  |  |  |
| 0 | 7.85328 | 0.000 | 8.25273 | 0.000 | 8.67281 | 0.000 | 9.11458 | 0.000 | 9.57915 | 0.000 |
| 0.05 | 7.85288 | 4.464 | 8.25235 | 4.467 | 8.67246 | 4.470 | 9.11424 | 4.473 | 9.57882 | 4.476 |
| 0.1 | 7.85172 | 8.928 | 8.25124 | 8.935 | 8.67140 | 8.941 | 9.11324 | 8.947 | 9.57787 | 8.952 |
| 0.15 | 7.84980 | 13.394 | 8.24942 | 13.404 | 8.66967 | 13.413 | 9.11160 | 13.42 I | 9.57630 | 13.429 |
| 0.2 | 7.84720 | 17.863 | 8.24694 | 17.876 | 8.6673 I | 17.888 | 9.10934 | 17.898 | 9.57416 | 17.908 |
| 0.25 | 7.84395 | 22.335 | 8.24385 | 22.351 | 8.66436 | 22.364 | 9.10655 | 22.378 | 9.57150 |  |
| 0.3 | 7.84015 | 26.81 I | 8.24024 | 26.829 | 8.66092 | 26.845 | 9.10327 | 26.860 | 9.56838 | 26.873 |
| - 35 | 7.83588 | 31.292 | 8.23617 | 31.312 | 8.65706 | 31.330 | 9.09959 | 31.346 | 9.56488 | 31.360 |
| 0.4 | 7.83125 | 35.778 | 8.23177 | 35.799 | 8.65287 | 35.818 | 9.09561 | 35.835 | 9.56109 | 35.85 I |
| 0.45 | 7.82638 | 40.269 | 8.22713 | 40.291 | 8.64846 | 40.311 | 9.09142 | 40.329 | 9.55711 | 40.345 |
| 0.5 | 7.82138 | 44.766 | 8.22238 | 44.788 | 8.64395 | 44.808 | 9.08711 | 44.827 | 9.55301 | 44.843 |
| 0.55 | 7.81637 | 49.269 | 8.21762 | 49.290 | 8.63941 | 49.310 | 9.0828 I | 49.329 | 9.54892 | 49.345 |
| 0.6 | 7.81149 | 53.777 | 8.21298 | 53.798 | 8.63500 | 53.817 | 9.07861 | 53.835 | 9.54492 | 53.850 |
| 0.65 | 7.80685 | 58.291 | 8.20857 | 58.31 I | 8.63080 | 58.329 | 9.07461 | 58.345 | 9.54113 | 58.360 |
| 0.7 | 7.80257 | 62.810 | 8.20449 | 62.828 | 8.62691 | 62.845 | 9.07093 | 62.859 | 9.53762 | 62.873 |
| 0.75 | 7.79875 | 67.334 | 8.20085 | 67.350 | 8.62347 | 67.364 | 9.06764 | 67.377 | 9.53450 | 67.389 |
| 0.8 | 7.79547 | 71.862 | 8.19774 | 71.875 | 8.62051 | 71.887 | 9.06483 | 71.898 | 9.53182 | 71.907 |
| 0.85 | 7.79285 | 76.393 | 8.19524 | 76.404 | 8.61813 | 76.413 | 9.06257 | 76.421 | 9.52967 | 76.429 |
| 0.9 | 7.79092 | 80.927 | 8.19341 | 80.934 | 8.61639 | 80.940 | 9.06091 | 80.946 | 9.52809 | 80.951 |
| 0.95 | 7.78975 | 85.463 | 8.19230 | 85.467 | 8.61532 | 85.470 | 9.05990 | 85.473 | 9.52713 | 85.475 |
| 1.0 | 7.78935 | 90.000 | 8.19192 | 90.000 | 8.61497 | 90.000 | 9.05956 | 90.000 | 9.52681 | 90.000 |
| 1.05 | 7.78975 | 94.537 | 8.19230 | 94.533 | 8.61532 | 94.530 | 9.05990 | 94.527 | 9.52713 | 94.525 |
| 1.1 | 7.79092 | 99.073 | 8.19341 | 99.066 | 8.61639 | 99.060 | 9.06091 | 99.054 | 9.52809 | 99.049 |
| 1.15 | 7.79285 | 103.607 | 8.19524 | 103.596 | 8.61813 | 103.587 | 9.06257 | 103.579 | 9.52967 | 103.571 |
| 1.2 | 7.79547 | 108.138 | 8.19774 | 108.125 | 8.62051 | 108.113 | 9.06483 | 108.102 | 9.53182 | 108.093 |
| 1.25 | 7.79875 | 112.666 | 8.20085 | 112.650 | 8.62347 | 112.636 | 9.06764 | 112.623 | 9.53450 | 112.611 |
| 1.3 | 7.80257 | 117.190 | 8.20449 | 117.172 | 8.62691 | 117.155 | 9.07093 | 117.141 | 9.53762 | 117.127 |
| 1.35 | 7.80685 | 121.709 | 8.20857 | 121. 689 | 8.63080 | 121.671 | 9.07461 | 121.655 | 9.54113 | 121.640 |
| 1.4 | 7.81149 | 126.223 | 8.21298 | 126.202 | 8.63500 | 126.183 | 9.0786 I | 126.165 | 9.54492 | 126.150 |
| 1.45 | 7.81637 | 130.731 | 8.21762 | 130.710 | 8.63941 | 130.690 | 9.0828I | 130.671 | 9.54892 | 130.655 |
| 1.5 | 7.82138 | 135.234 | 8.22238 | 135.212 | 8.64395 | 135.192 | 9.08711 | 135.173 | 9.55301 | 135.157 |
| 1.55 | 7.82638 | 139.731 | 8.22713 | 139.709 | 8.64846 | 139.689 | 9.09142 | 139.671 | 9.55711 | 139.655 |
| 1.6 | 7.83125 | 144.222 | 8.23177 | 144.201 | 8.65287 | 144.182 | 9.09561 | 144.165 | 9.56109 | 144.149 |
| 1.65 | 7.83588 | 148.708 | 8.23617 | 148.688 | 8.65706 | 148.670 | 9.09959 | 148.654 | 9.56488 | 148.640 |
| 1.7 | 7.84015 | 153.189 | 8.24024 | 153.171 | 8.66092 | 153.155 | 9.10327 | 153.140 | 9.56838 | 153.127 |
| 1.75 | 7.84395 | 157.665 | 8.24385 | 157.649 | 8.66436 | 157.636 | 9.10655 | 157.622 | 9.57150 | 157.611 |
| 1.8 | 7.84720 | 162.137 | 8.24694 | 162.124 | 8.66731 | 162.112 | 9.10934 | 162.102 | 9.57416 | 162.092 |
| 1.85 | 7.84980 | 166.606 | 8.24942 | 166.596 | 8.66967 | 166.587 | 9.11160 | 166.579 | 9.57630 | 166.571 |
| 1.9 | 7.85172 | 171.072 | 8.25124 | 171.065 | 8.67140 | 171.059 | 9.11324 | 171.053 | 9.57787 | 171.048 |
| 1.95 | 7.85288 | 1 75.536 | 8.25235 | 175.533 | 8.67246 | 175.530 | 9.11424 | 175.527 | 9.57882 | 175.524 |
| 2.0 | 7.85328 | 180.000 | 8.25273 | 180.000 | 8.67281 | 180.000 | 9.11458 | 180.000 | 9.57915 | 180.000 |

Example. $\quad \cosh (2.90+i \underline{\underline{0 . g}})=9.0609 \mathrm{I} \angle 80^{\circ} .946=0.9609 \mathrm{I} \angle 80^{\circ} .56^{\prime} .46^{\prime \prime}$.

Table XI. HYPERBOLIC COSINES. $\cosh (x+i q)=r \not r$. Continued

| $q$ | $x=3.0$ |  | $x=3.05$ |  | - $x=3.1$ |  | $x=3.15$ |  | $x=3.2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $r$ | ) | $r$ | $\gamma$ | $r$ | $\gamma$ | $r$ | $\gamma$ | $r$ | $\gamma$ |
|  |  | - |  |  |  |  |  |  |  |  |
| $\bigcirc$ | 10.06766 | 0.000 | 10.58135 | 0.000 | 11.12150 | 0.000 | 11.68946 | 0.000 | 12.28665 | 0.000 |
| 0.05 | 10.06737 | 4.478 | 10.58110 | 4.480 | 11.12120 | 4.482 | 11.68920 | 4.484 | 12.28640 | 4.485 |
| 0.1 | 10.06645 | 8.956 | 10.58020 | 8.960 | II.I2040 | 8.964 | II. 68840 | 8.968 | 12.28560 | 8.971 |
| 0.15 | 10.06500 | 13.436 | 10.57880 | 工 3.442 | II.11900 | 13.447 | 11.68710 | 13.452 | 12.28440 | 13.457 |
| 0.2 | 10.06292 | 17.917 | 10.57680 | 17.925 | 11.11720 | 17.932 | 11.68540 | 17.938 | 12.28280 | 17.944 |
| 0.25 | 10.06040 | 22.400 | 10.57440 | 22.409 | 11.11490 | 22.418 | 11.68320 | 22.426 | 12.28070 | 22.433 |
| 0.3 | 10.05743 | 26.886 | 10.57160 | 26.896 | II.11220 | 26.906 | 11.68060 | 26.915 | 12.27820 | 26.923. |
| 0.35 | 10.05410 | 31.374 | 10.56840 | 31.386 | II.10920 | 31.396 | 11.67780 | 31.406 | 12.27550 | 3 I .415 |
| 0.4 | 10.05050 | 35.865 | 10.56500 | 35.878 | 11.10600 | 35.890 | 11.67470 | 35.900 | 12.27260 | 35.910 |
| 0.45 | 10.04670 | 40.360 | 10.56140 | 40.373 | 11.10250 | 40.385 | 11.67140 | 40.396 | 12.26950 | 40.406 |
| 0.5 | 10.04280 | 44.858 | 10.55770 | 44.871 | II.09900 | 44.884 | 11.668ı0 | 44.895 | 12.26630 | 44.905 |
| 0.55 | 10.03890 | 49.360 | 10.55400 | 49.373 | 11.09540 | 49.385 | 11.66470 | 49.396 | 12.26310 | 49.406 |
| 0.6 | 10.03510 | 53.865 | 10.55040 | 53.878 | II.09200 | 53.889 | 11.66140 | 53.900 | 12.26000 | 53.909 |
| 0.65 | 10.03150 | 58.373 | 10.54690 | 58.385 | 11.08880 | 58.396 | 11.65830 | 58.406 | 12.25700 | 58.415 |
| 0.7 | 10.02820 | 62.885 | 10.54380 | 62.896 | II.08580 | 62.906 | 11. 65540 | 62.915 | 12.25430 | 62.923 |
| 0.75 | 10.02520 | 67.399 | 10.54090 | 67.409 | 11.08310 | 67.417 | 11.65290 | 67.425 | 12.25180 | 67.432 |
| 0.8 | 10.02260 | 71.916 | 10.53850 | 71.924 | 11.08080 | 71.932 | 11.65070 | 71.938 | 12.24980 | 71.944 |
| 0.85 | 10.02060 | 76.435 | 10.53660 | 76.44 I | 11.07890 | 76.447 | 11.64890 | 76.452 | 12.24810 | 76.457 |
| 0.9 | 10.01910 | 80.956 | 10.53520 | 80.960 | 11.07750 | 80.964 | 11.64770 | 80.967 | 12.24690 | 80.970 |
| 0.95 | 10.01820 | 85.478 | 10.53430 | 85.480 | 11.07670 | 85.482 | 11.64690 | 85.484 | 12.24610 | 85.485 |
| 1.0 | 10.01787 | 90.000 | 10.53399 | 90.000 | 11.07645 | 90.000 | 11.64661 | 90.000 | 12.24588 | 90.000 |
| 1.05 | 10.01820 | 94.522 | 10.53430 | 94.520 | 11.07670 | 94.518 | 11.64690 | 94.516 | 12.24610 | 94.515 |
| I.I | 10.01910 | 99.044 | 10.53520 | 99.040 | 11.07750 | 99.036 | II. 64770 | 99.033 | 12.24690 | 99.030 |
| 1.15 | 10.0206 | 103.565 | 10.53660 | 103.559 | 11.07890 | 103.553 | 11.64890 | 103.548 | 12.24810 | 103.543 |
| I. 2 | 10.02260 | 108.084 | 10.53850 | 108.076 | 11.08080 | 108.068 | II. 65070 | 108.062 | 12.24980 | 108,056 |
| 1.25 | 10.02520 | II 2.601 | 10.54090 | 112.59I | 11.08310 | 112.583 | 11.65290 | I12.575 | 12.25180 | I 12.568 |
| 1.3 | 10.02820 | II7.115 | 10.54380 | 117.104 | 11.08580 | 117.094 | 11.65540 | 117.085 | 12.25430 | 117.077 |
| 1.35 | 10.03150 | 121.627 | 10.54690 | 121.6I5 | II.08880 | 121.604 | II. 65830 | 121.594 | 12.25700 | 121.585 |
| 1.4 | 10.03510 | 126.r35 | 10.55040 | 126.122 | 11.09200 | 126.111 | II.66140 | 126.100 | 12.26000 | 126.091 |
| I. 45 | 10.03890 | I30.640 | 10.55400 | 130.627 | 11.09540 | 130.615 | 11.66470 | 130.604 | 12.26310 | 130.594 |
| 1.5 | 10.04280 | 135.142 | 10.55770 | 135.129 | II.09900 | 135.116 | 11.66810 | 135.105 | 12.26630 | 135.095 |
| I. 55 | 10.04670 | I 39.640 | 10.56140 | I 39.627 | II.10250 | 139.6I5 | 11.67140 | I39.604 | 12.26950 | 139.594 |
| 1.6 | 10.05050 | 144.135 | 10.56500 | 144.122 | 11.10600 | 144.110 | 11.67470 | 144.100 | 12.27260 | 144.090 |
| 1.65 | 10.05410 | 148.626 | 10.56840 | 148.614 | II.10920 | 148.604 | 11.67780 | 148.594 | 12.27550 | 148.585 |
| 1.7 | 10.05743 | 153.114 | 10.57160 | 153.104 | II.II220 | 153.094 | II. 68060 | 153.085 | 12.27820 | 153.077 |
| 1.75 | 10.06040 | 157.600 | 10.57440 | 157.591 | II.11490 | 157.582 | 11.68320 | 157.574 | 12.28070 | 157.567 |
| 1.8 | 10.06292 | 162.083 | 10.57680 | 162.075 | 11.11720 | 162.068 | 11.68540 | 162.062 | 12.28280 | 162.056 |
| 1.85 | 10.06500 | 166.564 | 10.57880 | 166.558 | II.11900 | r66.553 | 11.68710 | 166.548 | 12.28440 | 166.543 |
| 1.9 | 10.06645 | 171.044 | 10.58020 | 171.040 | II.12040 | 171.036 | 11.68840 | I71.032 | 12.28560 | 171.029 |
| 1.95 | 10.06737 | 175.522 | 10.58110 | 175.520 | 1 I .12120 | 175.518 | I1.68920 | I 75.516 | 12.28640 | 175.515 |
| 2.0 | 10.06766 | 180.000 | 10.58135 | 180.000 | 11.12150 | 180.000 | II. 68946 | 180.000 | 12.28665 | 180.000 |

Example. $\quad \cosh (3.15+i \underline{0.15})=11.68710 \angle 13^{\circ} .452=11.68710 \angle 13^{\circ} .27^{\prime} .07^{\prime \prime}$.

Table XI. HYPERBOLIC COSINES. $\cosh (x+i q)=r \not \gamma$. Continued

|  | $x=3.25$ |  | $x=3 \cdot 3$ |  | $x=3.35$ |  | $x=3.4$ |  | $x=3.45$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\gamma$ |
|  |  | - |  | - |  |  |  |  |  |  |
| $\bigcirc$ | 12.91456 | 0.000 | 13.57476 。 | 0.000 | 14.26891 | 0.000 | 14.99874 | 0.000 | 15.76607 | . 000 |
| 0.05 | 12.91430 | 4.486 | 13.57455 | 4.488 | 14.26870 | 4.489 | 14.99853 | 4.490 | 15.76587 | 4.49 I |
| 0.1 | 12.91360 | 8.973 | 13.57387 | 8.976 | 14.26805 | 8.978 | 14.99790 | 8.980 | 15.76530 | 8.982 |
| 0.15 | 12.91240 | 13.461 | 13.57275 | I 3.465 | 14.26700 | 13.468 | 14.99692 | 13.471 | 15.76433 | 13.474 |
| 0.2 | 12.91085 | 17.949 | 13.57123 | I 7.954 | 14.26556 | 17.959 | 14.99555 | 17.963 | 15.76303 | 17.966 |
| 0.25 | 12.90888 | 22.439 | 13.56936 | 22.445 | 14.26377 | 22.450 | 14.99385 | 22.455 | 15.76144 | 22.459 |
| 0.3 | 12.90658 | 26.930 | 13.56718 | 26.937 | 14.26167 | 26.943 | 14.99186 | 26.948 | 15.75950 | 26.953 |
| 0.35 | 12.90398 | 31.423 | 13.56470 | 31.431 | 14.25933 | 31.437 | 14.98960 | 31.443 | 15.75740 | 31.449 |
| 0.4 | 12.90117 | 35.918 | 13.56203 | 35.926 | 14.25614 | 35.933 | 14.98721 | 35-939 | 15.75510 | 35.945 |
| 0.45 | 12.89820 | 40.415 | 13.55918 | 40.423 | 14.25412 | 40.430 | 14.98466 | 40.437 | 15.75270 | 40.443 |
| 0.5 | 12.89518 | 44.914 | 13.55633 | 44.922 | 14.25137 | 44.929 | 14.98205 | 44.936 | 15.75020 | 44.942 |
| 0.55 | 12.89215 | 49.415 | 13.55346 | 49.423 | 14.24863 | 49.430 | 14.97945 | 49.437 | 15.74772 | 49.443 |
| 0.6 | 12.88910 | 53.918 | 13.55062 | 53.926 | 14.24595 | 53.933 | 14.97690 | 53.939 | 15.74529 | 53.945 |
| 0.65 | 12.88637 | 58.423 | 1 3.54796 | 58.431 | 14.24339 | 58.437 | 14.97448 | 58.443 | 15.74300 | 58.449 |
| 0.7 | 12.88380 | 62.930 | I 3.54550 | 62.937 | 14.24106 | 62.943 | 14.97225 | 62.948 | 15.74088 | 62.953 |
| 0.75 | 12.88146 | 67.439 | 13.54322 | 67.445 | 14.23897 | 67.450 | 14.97023 | 67.455 | 15.73898 | 67.459 |
| 0.8 | 12.87949 | 71.949 | 13.54141 | 71.954 | 14.23718 | 71.959 | 14.96855 | 71.963 | 15.73736 | 71.966 |
| 0.85 | 12.87790 | 76.461 | 13.53991 | 76.465 | 14.23573 | 76.468 | 14.96716 | 76.47 I | 15.73603 | 76.474 |
| 0.9 | 12.87670 | 80.973 | 13.53878 | 80.976 | 14.23470 | 80.978 | 14.96616 | 80.980 | 15.73510 | 80.982 |
| 0.95 | 12.87600 | 85.486 | 13.53810 | 85.488 | 14.23403 | 85.489 | 14.96556 | 85.490 | 15.73450 | 85.49 t |
| 1.0 | 12.87578 | 90.000 | 13.53788 | 90.000 | 14.23382 | 90.000 | 14.96536 | 90.000 | 15.73432 | 90.000 |
| 1.05 | 12.87600 | 94.514 | 13.53810 | 94.512 | 14.23403 | 94.51 1 | 14.96556 | 94.510 | 15.73450 | 94.509 |
| 1.1 | 12.87670 | 99.027 | 13.53878 | 99.024 | 14.23470 | 99.022 | 14.96616 | 99.020 | 15.73510 | 99.018 |
| 1.15 | 12.87790 | 103.539 | 13.53991 | 103.535 | 14.23573 | 103.532 | 14.96716 | 103.529 | 15.73603 | 103.526 |
| 1.2 | 12.87949 | 108.051 | 13.54141 | 108.046 | 14.23718 | 108.041 | 14.96855 | 108.037 | 15.73736 | 108.034 |
| 1.25 | 12.88146 | 112.561 | 13.54322 | 112.555 | 14.23897 | 112.550 | 14.97023 | 112.545 | 15.73898 | II2.541 |
| 1.3 | 12.88380 | 117.070 | 13.54550 | 117.063 | 14.24106 | 117.057 | 14.97225 | 117.052 | 15.74088 | 117.047 |
| 1.35 | 12.88637 | 121.577 | 13.54796 | 121.569 | 14.24339 | 121.563 | 14.97448 | 121.557 | 15.74300 | 121.551 |
| 1.4 | 12.88910 | 126.082 | 13.55062 | 126.074 | 14.24595 | 126.067 | 14.97690 | 126.061 | 15.74529 | 126.055 |
| 1.45 | 12.89215 | 130.585 | 13.55346 | 130.577 | 14.24863 | 130.570 | 14.97945 | 130.563 | $15.7477^{2}$ | 130.557 |
| 1.5 | 12.89518 | 135.086 | 13.55633 | 135.078 | 14.25137 | 135.071 | 14.98205 | 135.064 | 15.75020 | 135.058 |
| 1.55 | 12.89820 | 139.585 | 13.55918 | 139.577 | 14.25412 | 139.570 | 14.98466 | 139.563 | 15.75270 | 139.557 |
| 1.6 | 12.90117 | 144.082 | 13.56203 | 144.074 | 14.25614 | 144.067 | 14.98721 | 144.061 | 15.75510 | 144.055 |
| 1. 65 | 12.90398 | 148.577 | 13.56470 | 148.569 | 14.25933 | 148.563 | 14.98960 | 148.557 | 15.75740 | 148.551 |
| 1.7 | 12.90658 | I 53.070 | 13.56718 | 153.063 | 14.26167 | 153.057 | 14.99186 | 153.052 | 15.75950 | 153.047 |
| 1.75 | 12.90888 | I 57.56I | 13.56936 | 157.555 | 14.26377 | 157.550 | 14.99385 | 157.545 | 15.76144 | 157.541 |
| 1.8 | 12.91085 | 162.051 | 13.57123 | 162.046 | 14.26556 | 162.041 | 14.99555 | 162.037 | 15.76303 | 162.034 |
| 1.85 | 12.91240 | 166.539 | 13.57275 | 166.535 | 14.26700 | 166.532 | 14.99692 | 166.529 | 15.76433 | 166.526 |
| 1.9 | 12.91360 | 171.027 | 13.57387 | 171.024 | 14.26805 | 171.022 | 14.99790 | 171.020 | 15.76530 | 171.018 |
| 1.95 | 12.91430 | 175.514 | 13.57455 | 175.512 | 14.26870 | 175.511 | 14.99853 | 175.510 | 15.76587 | 175.509 |
| 2.0 | 12.91456 | 180.000 | 13.57476 | 180.000 | 14.26891 | 180.000 | 14.99874 | 180.000 | 15.76607 | 180.000 |

Example. $\quad \cosh (3.4+i 0.75)=14.97023 \angle 67^{\circ} .455=14.97023 \angle 67^{\circ} .27^{\prime} .18^{\prime \prime}$.

Table XI. HYPERBOLIC COSINES. $\cosh (x+i q)=r / \gamma$. Continued

|  | $x=3.5$ |  | $x=3.55$ |  | $x=3.6$ |  | $x=3.65$ |  | $x=3.7$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ |
|  |  | - |  | - |  | - |  | - |  |  |
| $\bigcirc$ | 16.57282 | 0.000 | 17.42102 | 0.000 | 18.31278 | 0.000 | 19.25033 | 0.000 | 20.23601 | 0.000 |
| 0.05 | 16.57260 | 4.492 | 17.42083 | 4.493 | 18.31260 | 4.493 | 19.25015 | 4.494 | 20.23585 | 4.495 |
| 0.1 | 16.57210 | 8.984 | 17.42030 | 8.985 | 18.31210 | 8.987 | 19.24970 | 8.988 | 20.23540 | 8.989 |
| 0.15 | 16.57120 | 13.476 | 17.41945 | 13.479 | 18.31130 | 13.481 | 19.24890 | 13.483 | 20.23460 | 13.484 |
| 0.2 | 16.56996 | 17.969 | 17.41830 | 17.972 | 18.31020 | 17.975 | 19.24790 | 17.977 | 20.23365 | 17.979 |
| 0.25 | 16.56840 | 22.463 | 17.41680 | 22.467 | 18.30880 | 22.470 | 19.24650 | 22.473 | 20.23240 | 22.475 |
| 0.3 | 16.56660 | 26.958 | 17.41510 | 26.962 | 18.30715 | 26.965 | 19.24496 | 26.969 | 20.23090 | 26.972 |
| 0.35 | 16.56460 | 31.454 | 17.41310 | 31.458 | 18.30530 | 31.462 | 19.24323 | 31.466 | 20.22930 | 31.469 |
| 0.4 | 16.56240 | 35.950 | 17.41110 | 35.955 | 18.30335 | 35.959 | 19.24134 | 35.963 . | 20.22750 | 35.967 |
| 0.45 | 16.56010 | 40.448 | 17.40900 | 40.453 | 18.30126 | 40.458 | 19.23940 | 40.462 | 20.22560 | 40.465 |
| 0.5 | 16.55770 | 44.948 | 17.40665 | 44.953 | 18.29910 | 44.957 | 19.23732 | 44.961 | 20.22365 | 44.965 |
| 0.55 | 16.55538 | 49.448 | 17.40441 | 49.453 | 18.29699 | 49.458 | 19.23530 | 49.462 | 20.22170 | 49.465 |
| 0.6 | 16.55307 | 53.950 | 17.40222 | 53.955 | 18.29490 | 53.959 | 19.23331 | 53.963 | 20.21981 | 53.967 |
| 0.65 | 16.55087 | 58.454 | 17.40015 | 58.458 | 18.29292 | 58.462 | 19.23142 | 58.465 | 20.21804 | 58.469 |
| 0.7 | 16.54885 | 62.958 | 17.39822 | 62.962 | 18.29109 | 62.965 | 19.22968 | 62.969 | 20.21639 | 62.972 |
| 0.75 | 16.54702 | 67.463 | 17.39650 | 67.466 | 18.28942 | 67.470 | 19.22813 | 67.473 | 20.21490 | 67.475 |
| 0.8 | 16.54550 | 71.969 | 17.39504 | 71.972 | 18.28805 | 71.975 | 19.22681 | 71.977 | 20.21365 | 71.979 |
| 0.85 | 16.54428 | 76.476 | 17.39386 | 76.479 | 18.28694 | 76.48 I | 19.22577 | 76.483 | 20.21268 | 76.484 |
| 0.9 | 16.54337 | 80.984 | 17.39300 | 80.985 | 18.286 II | 80.987 | 19.22496 | 80.988 | 20.21189 | 80.989 |
| 0.95 | 16.54281 | 85.492 | 17.39248 | 85.493 | 18.28560 | 85.493 | 19.22448 | 85.494 | 20.21140 | 85.495 |
| 1.0 | 16.54263 | 90.000 | 17.39230 | 90.000 | 18.28546 | 90.000 | 19.22434 | 90.000 | 20.21129 | 90.000 |
| 1.05 | 16.54281 | 94.508 | 17.39248 | 94.507 | 18.28560 | 94.507 | 19.22448 | 94.506 | 20.21140 | 94.506 |
| 1.1 | 16.54337 | 99.016 | 17.39300 | 99.015 | 18.28611 | 99.013 | 19.22496 | 99.012 | 20.21189 | 99.011 |
| 1.15 | 16.54428 | 103.524 | 17.39386 | 103.522 | 18.28694 | 103.519 | 19.22577 | 103.518 | 20.21268 | 103.516 |
| I. 2 | 16.54550 | 108.031 | I7.39504 | 108.028 | 18.28805 | 108.025 | 19.2268I | 108.023 | 20.21365 | 108.02I |
| 1.25 | 16.54702 | I12.537 | 17.39650 | 112.534 | 18.28942 | 112.530 | 19.22813 | 112.527 | 20.21490 | II2.525 |
| 1.3 | 16.54885 | II7.042 | 17.39822 | 117.038 | 18.29109 | 117.035 | 19.22968 | 117.031 | 20.21639 | 117.028 |
| 1.35 | 16.55087 | 121.547 | 17.40015 | 121.542 | 18.29292 | 121.538 | 19.23142 | 121.535 | 20.21804 | 12 I .53 I |
| 1.4 | 16.55307 | 126.050 | 17.40222 | 126.045 | 18.29490 | 126.04 1 | 19.23331 | 126.037 | 20.21981 | I26.033 |
| I. 45 | 16.55538 | 130.552 | I7.4044 | 130.547 | 18.29699 | 130.542 | 19.23530 | 130.538 | 20.22170 | 130.535 |
| 1.5 | 16.55770 | 135.052 | 17.40665 | 135.047 | 18.29910 | 135.043 | 19.23732 | 135.039 | 20.22365 | 135.035 |
| 1.55 | 16.56010 | 139.552 | 17.40900 | 139.547 | 18.30126 | 139.542 | 19.23940 | I39.538 | 20.22560 | 139.535 |
| 1.6 | 16.56240 | 144.050 | 17.41110 | 144.045 | 18.30335 | 144.041 | 19.24134 | 144.037 | 20.22750 | 144.033 |
| 1. 65 | 16.56460 | 148.546 | 17.41310 | 148.542 | 18.30530 | 148.538 | 19.24323 | 148.534 | 20.22930 | 148.53 I |
| 1.7 | 16.56660 | 153.042 | 17.41510 | 153.038 | 18.30715 | 153.035 | 19.24496 | 153.031 | 20.23090 | 153.028 |
| 1.75 | 16.56840 | 157.537 | 17.41680 | 157.533 | 18.30880 | 157.530 | 19.24650 | 157.527 | 20.23240 | 157.525 |
| 1.8 | 16.56996 | 162.031 | 17.41830 | 162.028 | 18.31020 | 162.025 | 19.24790 | 162.023 | 20.23365 | 162.021 |
| I. 85 | 16.57120 | 166.524 | 17.41945 | 166.52 1 | 18.31130 | 166.519 | 19.24890 | 166.517 | 20.23460 | 166.516 |
| 1.9 | 16.57210 | 171.016 | 17.42030 | 171.015 | 18.31210 | 171.013 | 19.24970 | 171.012 | 20.23540 | 171.011 |
| 1.95 | 16.57260 | 175.508 | 17.42083 | 175.507 | 18.31260 | 175.507 | 19.25015 | 175.506 | 20.23585 | 175.505 |
| 2.0 | 16.57282 | 180.000 | 17.42102 | 180.000 | 18.31278 | 180.000 | 19.25033 | 180.000 | 20.23601 | 180.000 |

Example. $\quad \cosh (3.65+i 0.05)=19.25015 \angle 4^{\circ} .494=19.25015 \angle 4^{\circ} \cdot 29^{\prime} .38^{\prime \prime}$.

Table XI. HYPERBOLIC COSINES. $\cosh (x+i q)=r / \gamma$. Continued

|  | $x=3.75$ |  | $x=3.8$ |  | $x=3.85$ |  | $x=3.9$ |  | $x=3.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $\boldsymbol{r}$ | $\gamma$ | r | $\boldsymbol{\gamma}$ | $\boldsymbol{r}$ | $\boldsymbol{\gamma}$ | $r$ | $\gamma$ | $r$ | $\boldsymbol{\gamma}$ |
|  |  |  |  |  |  |  |  |  |  |  |
| $\bigcirc$ | 21.27230 | 0.000 | 22.36178 | 0.000 | 23.50717 | 0.000 | 24.71135 | 0.000 | 25.97731 | . 000 |
| 0.05 | 21.27212 | 4.495 | 22.36163 | 4.495 | 23.50702 | 4.496 | 24.71120 | 4.496 | 25.97720 | 4.497 |
| 0.1 | 21.27170 | 8.990 | 22.36122 | 8.991 | 23.50664 | 8.992 | 24.71090 | 8.993 | 25.97680 | 8.993 |
| 0.15 | 21.27100 | 13.486 | 22.36055 | 13.487 | 23.50600 | 13.488 | 24.71024 | 13.489 | 25.97630 | 13.490 |
| 0.2 | 21.27000 | 17.981 | 22.35962 | 17.983 | 23.50512 | 17.985 | 24.70940 | 17.986 | 25.97550 | 17.988 |
| 0.25 | 21.26885 | 22.478 | 22.35850 | 22.480 | 23.50404 | 22.482 | 24.70840 | 22.483 | 25.97450 | 22.485 |
| 0.3 | 21.26745 | 26.974 | 22.35716 | 26.977 | 23.50277 | 26.979 | 24.70720 | 26.98 I | 25.97337 | 26.983 |
| 0.35 | 21.26586 | 31.472 | 22.35565 | 31.474 | 23.50136 | 31.477 | 24.70580 | 31.479 | 25.97206 | 31.48 I |
| 0.4 | 21.26415 | 35.970 | 22.35403 | 35.973 | 23.49980 | 35.975 | 24.70440 | 35.978 | 25.97066 | 35.980 |
| 0.45 | 21.26236 | 40.469 | 22.35230 | 40.472 | 23.49820 | 40.474 | 24.70280 | 40.477 | 25.96920 | 40.479 |
| 0.5 | 21.26052 | 44.968 | 22.35060 | 44.97 I | 23.49650 | 44.974 | 24.70120 | 44.977 | 25.96770 | 44.979 |
| 0.55 | 21.25869 | 49.469 | 22.34883 | 49.472 | 23.49486 | 49.474 | 24.69964 | 49.477 | 25.96618 | 49.479 |
| 0.6 | 21.25685 | 53.970 | 22.34712 | 53.973 | 23.49322 | 53.975 | 24.69809 | 53.978 | 25.9647 I | 53.980 |
| 0.65 | 21.25520 | 58.472 | 22.34550 | 58.474 | 23.49115 | 58.477 | 24.69662 | 58.479 | 25.96333 | 58.48 I |
| 0.7 | 21.25362 | 62.974 | 22.34401 | 62.977 | 23.49028 | 62.979 | 24.69528 | 62.981 | 25.96205 | 62.983 |
| 0.75 | 21.25221 | 67.478 | 22.34270 | 67.480 | 23.48900 | 67.482 | 24.69406 | 67.483 | 25.96090 | 67.485 |
| 0.8 | 21.25102 | 71.981 | 22.34153 | 71.983 | 23.48791 | 71.985 | 24.69302 | 71.986 | 25.95991 | 71.988 |
| 0.85 | 21.25006 | 76.486 | 22.34061 | 76.487 | 23.48704 | 76.488 | 24.69223 | 76.489 | 25.95911 | 76.490 |
| 0.9 | 21.24935 | 80.990 | 22.33995 | 80.991 | 23.48640 | 80.992 | 24.69159 | 80.993 | 25.95854 | 80.993 |
| 0.95 | 21.24891 | 85.495 | 22.33952 | 85.496 | 23.48601 | 85.496 | 24.69120 | 85.496 | 25.95820 | 85.497 |
| 1.0 | 21.24878 | 90.000 | 22.33941 | 90.000 | 23.48589 | 90.000 | 24.69110 | 90.000 | 25.95806 | 0.000 |
| 1.05 | 21.24891 | 94.505 | 22.33952 | 94.504 | 23.48601 | 94.504 | 24.69120 | 94.504 | 25.95820 | 94.503 |
| I.I | 21.24935 | 99.010 | 22.33995 | 99.009 | 23.48640 | 99.008 | 24.69159 | 99.007 | 25.95854 | 99.007 |
| 1.15 | 21.25006 | 103.514 | 22.34061 | 103.513 | 23.48704 | 103.512 | 24.69223 | 103.511 | 25.95911 | 103.510 |
| 1.2 | 21.25102 | 108.019 | 22.341 | 108.017 | 23.48791 | 108.015 | 24.69302 | 108.014 | 25.95991 | 108.013 |
| 1.25 | 21.25221 | 112.522 | 22.34270 | 112.520 | 23.48900 | 112.518 | 24.69406 | II2.517 | 25.96090 | II2.515 |
| I. 3 | 21.25362 | 117.026 | 22.34401 | 117.023 | 23.49028 | 117.021 | 24.69528 | 117.019 | 25.96205 | 117.017 |
| 1.35 | 21.25520 | 121.528 | 22.34550 | 121. 526 | 23.49115 | 121.523 | 24.69662 | 121.521 | 25.96333 | 121.519 |
| 1.4 | 21.25685 | 126.030 | 22.34712 | 126.027 | 23.49322 | 126.025 | 24.69809 | 126.022 | 25.96471 | 126.020 |
| 1.45 | 21.25869 | 130.53 I | 22.34883 | 130.528 | 23.49486 | 130.525 | 24.69964 | 130.523 | 25.96618 | 130.52 I |
| 1. 5 | 21.26052 | 135.032 | 22.35060 | 135.029 | 23.49650 | 135.026 | 24.70120 | 135.023 | 25.96770 | 135.02I |
| 1.55 | 21.26236 | 139.531 | 22.35230 | 139.528 | 23.49820 | 139.526 | 24.70280 | 1 39.523 | 25.96920 | 139.52 |
| I. 6 | 21.26415 | 144.030 | 22.35403 | 144.027 | 23.49980 | 144.025 | 24.70440 | 144.022 | 25.97066 | 144.020 |
| 1.65 | 21.26586 | 148.528 | 22.35565 | 148.526 | 23.50136 | 148.523 | 24.70580 | 148.52 I | 25.97206 | 148.519 |
| 1.7 | 21.26745 | 153.026 | 22.35716 | 153.023 | 23.50277 | 153.021 | 24.70720 | 153.019 | 25.97337 | 153.017 |
| 1.75 | 21.26885 | 157.522 | 22.35850 | 157.520 | 23.50404 | 157.518 | 24.70840 | 157.517 | 25.97450 | 157.515 |
| 1.8 | 21.27000 | 162.019 | 22.35962 | 162.017 | 23.50512 | 162.015 | 24.70940 | 162.014 | 25.97550 | 162.012 |
| 1.85 | 21.27100 | 166.514 | 22.36055 | 166.513 | 23.50600 | 166.512 | 24.71024 | 166.511 | 25.97630 | 166.510 |
| 1.9 | 21.27170 | 171.010 | 22.36122 | 171.009 | 23.50664 | 171.008 | 24.71090 | 171.007 | 25.97680 | 171.007 |
| 1.95 | 21.27212 | 175.505 | 22.36163 | 175.505 | 23.50702 | 175.504 | 24.71120 | 175.504 | 25.97720 | I75.503 |
| 2.0 | 21.27230 | 180.000 | 22.36178 | 180.000 | 23.507I7 | 180.000 | 24.71135 | 180.000 | 25.97731 | 180.000 |

Example. $\quad \cosh (3.85+i \underline{\underline{1} .05})=23.48601 \angle 94^{\circ} .504=23.4860 \mathrm{I} \angle 94^{\circ} \cdot 30^{\prime} .14^{\prime \prime}$.

Table XII. HYPERBOLIC TANGENTS. $\tanh (x+i q)=\boldsymbol{\gamma} / \boldsymbol{\gamma}$

|  | $x=0$ |  | $x=0.05$ |  | $x=0.1$ |  | $x=0.15$ |  | $x=0.2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | r | $\gamma$ | $r$ | $\boldsymbol{\gamma}$ | 7 | $\boldsymbol{\gamma}$ |
|  |  | - |  | $\bigcirc$ |  | - |  | - |  |  |
| $\bigcirc$ | 0.00 | 90 | 0.04996 | 0.00 | 0.09967 | 0.00 | 0.14889 | 0.00 | 0.19738 | 0.00 |
| 0.05 | 0.07870 | 90 | 0.09322 | 57.368 | 0.12699 | 37.846 | 0.16840 | 27.190 | 0.21246 | 20.849 |
| 0.1 | 0.15838 | 90 | 0.16607 | 72.040 | 0.18711 | 56.914 | 0.21732 | 45.420 | 0.25294 | 36.955 |
| 0.15 | 0.24008 | 90 | 0.24520 | 77.558 | 0.25987 | 66.084 | 0.28232 | 56.148 | 0.31045 | 47.863 |
| 0.2 | 0.32492 | 90 | 0.32870 | 80.329 | 0.33969 | 71.092 | 0.35699 | 62.612 | 0.37939 | 55.054 |
| 0.25 | 0.4142 I | 90 | 0.41727 | 81.937 | 0.42568 | 74.107 | 0.43932 | 66.700 | 0.45731 | 59.848 |
| 0.3 | -. 50953 | 90 | 0.51180 | 82.942 | 0.51851 | 76.025 | 0.52931 | 69.373 | 0.54368 | 63.082 |
| 0.35 | 0.61280 | 90 | 0.61455 | 83.585 | 0.61970 | 77.267 | 0.62802 | 71.131 | 0.63915 | 65.250 |
| 0.4 | 0.72654 | 90 | 0.72778 | 83.987 | 0.73143 | 78.047 | 0.73734 | 72.245 | 0.74525 | 66.641 |
| 0.45 | 0.85408 | 90 | 0.85476 | 84.209 | 0.85678 | 78.478 | 0.86004 | 72.864 | 0.86439 | 67.419 |
| 0.5 | 1.00000 | 90 | 1.00000 | 84.279 | 1.00000 | 78.616 | 1.00000 | 73.064 | 1.00000 | 67.670 |
| 0.55 | I.17085 | 90 | 1.16991 | 84.209 | 1.16717 | 78.478 | I. 16274 | 72.864 | 1.15688 | 67.419 |
| 0.6 | 1.37638 | 90 | 1.37404 | 83.987 | 1.36718 | 78.047 | 1.35623 | 72.245 | 1.34183 | 66,641 |
| 0.65 | т.63185 | 90 | 1.62722 | 83.585 | т.61369 | 77.267 | I.5923 | 71.131 | 1.56459 | 65.250 |
| 0.7 | 1.96261 | 90 | 1.95388 | 82.942 | 1.92859 | 76.025 | т. 88925 | 69.373 | 1. 83933 | 63.082 |
| 0.75 | 2.41421 | 90 | 2.39735 | 81.937 | 2.34919 | 74.107 | 2.27623 | 66.700 | 2.18669 | 59.848 |
| 0.8 | 3.07768 | 90 | 3.04234 | 80.329 | 2.94391 | 71.092 | 2.80120 | 62.612 | 2.63581 | 55.054 |
| 0.85 | 4.16530 | 90 | 4.07824 | 77.558 | 3.84810 | 66.084 | 3.54212 | 56.148 | 3.22115 | 47.863 |
| 0.9 | 6.31375 | 90 | 6.02149 | 72.040 | 5.34442 | 56.914 | 4.60155 | 45.420 | 3.95347 | 36.955 |
| 0.95 | 12.70620 | 90 | 10.72750 | 57.368 | 7.87464 | 37.846 | 5.93842 | 27.190 | 4.70673 | 20.849 |
| 1.0 | $\infty$ | 90 | 20.01667 | 0.00 | 10.0333I | 0.00 | 6.71659 | 0.00 | 5.06649 | . 00 |
| 1.05 | 12.70620 | 90 | 10.72750 | 57.368 | 7.87464 | 37.846 | 5.93842 | 27.190 | $4.70673$ | 20.849 |
| 1.I | 6.31375 | 90 | 6.02149 | 72.040 | 5.34442 | 56.914 | 4.60155 | 45.420 | 3.95347 | 36.955 |
| 1.15 | 4.16530 | 90 | 4.07824 | 77.558 | 3.84810 | 66.084 | 3.54212 | 56.148 | 3.22115 | 47.863 |
| 1.2 | 3.07768 | 90 | 3.04234 | 80.329 | 2.94391 | 71.092 | 2.80120 | 62.612 | 2.6358 I | 55.054 |
| 1.25 | 2.41421 | 90 | 2.39735 | 81.937 | 2.34919 | 74.107 | 2.27623 | 66.700 | 2.18669 | 59.848 |
| 1.3 | 1.96261 | 90 | 1.95388 | 82.942 | 1.92859 | 76.025 | 1.88925 | 69.373 | 1.83933 | 63.082 |
| 1.35 | 1. 63185 | 90 | 1.62722 | 83.585 | 1.61369 | 77.267 | I.59231 | 71.131 | 1.56459 | 65.250 |
| 1.4 | 1.37638 | 90 | 1.37404 | 83.987 | 1.36718 | 78.047 | 1.35623 | 72.245 | 1.34183 | 66.64 I |
| 1.45 | 1.17085 | 90 | 1.16991 | $84.209$ | 1.16717 | 78.478 | 1.16274 | 72.864 | 1.15688 | 67.419 |
| 1.5 | 1.00000 | 90 | 1.00000 | 84.279 | 1.00000 | 78.616 | 1.00000 | 73.064 | 1.00000 | 67.670 |
| 1.55 | 0.85408 | 90 | 0.85476 | 84.209 | 0.85678 | 78.478 | 0.86004 | 72.864 | 0.86439 | 67.419 |
| 1.6 | 0.72654 | 90 | 0.72778 | 83.987 | 0.73143 | 78.047 | 0.73734 | 72.245 | 0.74525 | 66.641 |
| 1.65 | 0.61280 | 90 | 0.61455 | 83.585 | 0.61970 | 77.267 | 0.62802 | 71.131 | 0.63915 | 65.250 |
| 1.7 | 0.50953 | 90 | 0.51180 | 82.942 | 0.51851 | 76.025 | 0.52931 | 69.373 | 0.54368 | 63.082 |
| 1.75 | 0.4142 I | 90 | 0.41727 | 81,937 | 0.42568 | 74.107 | 0.43932 | 66.700 | 0.45731 | 59.848 |
| 1.8 | 0.32492 | 90 | 0.32870 | 80.329 | 0.33969 | 71.092 | 0.35699 | 62.612 | 0.37939 | 55.054 |
| 1.85 | 0.24008 | 90 | 0.24520 | 77.558 | 0.25987 | 66.084 | 0.28232 | 56.148 | 0.31045 | 47.863 |
| 1.9 | 0.15838 | 90 | 0.16607 | 72.040 | 0.18711 | 56.914 | 0.21732 | 45.420 | 0.25294 | 36.955 |
| 1.95 | 0.07870 | 90 | 0.09322 | 57.368 | 0.12699 | 37.846 | 0.16840 | 27.190 | 0.21246 | 20.849 |
| 2.0 | 0.00 | 90 | 0.04996 | 0.00 | 0.09967 | 0.00 | 0.14889 | 0.00 | 0.19738 | 0.00 |

Note. Negative quantities are in heavy type.

$$
\begin{array}{ll}
\text { Examples. } & \tanh (0.1+i \underline{0.25})=0.42568 \angle 74^{\circ} .107=0.42568 \angle 74^{\circ} .06^{\prime} .25^{\prime \prime} . \\
& \tanh (0.1+i \underline{I .2})=2.9439 \mathrm{I} \sqrt{7 \mathrm{I}^{\circ} .09^{2}}=2.94399^{7 \mathrm{I}^{\circ} .05^{\circ} \cdot 3 \mathrm{I}^{\prime \prime} .}
\end{array}
$$

Table XII. HYPERBOLIC TANGENTS. $\tanh (x+i q)=r / \gamma$. Continued

|  | $x=0.25$ |  | $x=0.3$ |  | $x=0.35$ |  | $x=0.4$ |  | $x=0.45$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\gamma$ | $\dagger$ | $\gamma$ | r | $\boldsymbol{\gamma}$ |
|  |  | $\bigcirc$ |  |  |  | - |  |  |  |  |
| $\bigcirc$ | 0.24492 | 0.00 | 0.29131 | 0.00 | 0.33638 | 0.00 | 0.37995 | 0.00 | 0.42190 | 0.00 |
| 0.05 | 0.25721 | 16.710 | 0.30168 | 13.805 | 0.34534 | 11.652 | 0.38784 | 9.990 | 0.42894 | 8.665 |
| 0.1 | 0.29145 | 30.669 | 0.33123 | 25.891 | 0.37127 | 22.164 | 0.41090 | 19.185 | 0.44965 | 16.753 |
| 0.15 | 0.34237 | 41.063 | 0.37657 | 35.492 | 0.41192 | 30.900 | 0.44758 | 27.076 | 0.48295 | 23.858 |
| 0.2 | 0.40561 | 48.442 | 0.43445 | 42.715 | 0.46491 | 37.770 | 0.49617 | 33.498 | 0.52758 | 29.796 |
| 0.25 | 0.47875 | 53.612 | 0.50275 | 48.001 | 0.52849 | 42.989 | 0.55525 | 38.527 | 0.58242 | 34.560 |
| 0.3 | 0.56098 | 57.214 | 0.58056 | 51.799 | 0.60177 | 46.843 | 0.62401 | 42.331 | 0.64675 | 38.242 |
| 0.35 | 0.65262 | 59.679 | 0.66796 | 54.453 | 0.68466 | 49.590 | 0.70225 | 45.093 | 0.72031 | 40.958 |
| 0.4 | 0.75486 | 61.28I | 0.76580 | 56.200 | 0.77774 | 51.423 | 0.79033 | 46.961 | 0.80327 | 42.815 |
| 0.45 | 0.86968 | 62.184 | 0.87570 | 57.194 | 0.88225 | 52.474 | 0.88914 | 48.039 | 0.89620 | 43.896 |
| 0.5 | 1.00000 | 62.476 | 1.00000 | 57.518 | 1.00000 | 52.817 | 1.00000 | 48.392 | 1.00000 | 44.250 |
| 0.55 | 1.14985 | 62.184 | 1.14195 | 57.194 | I.13347 | 52.474 | 1.12469 | 48.039 | 1.11583 | 43.896 |
| 0.6 | 1.32476 | 61.281 | 1.30582 | 56.200 | 1.28577 | 51.423 | 1.26529 | 46.961 | 1. 24492 | 42.815 |
| 0.65 | 1.53228 | 59.679 | 1.49710 | 54.453 | 1. 46059 | 49.590 | 1.42400 | 45.093 | 1.38830 | 40.958 |
| 0.7 | 1.78259 | 57.214 | 1.72246 | 51.799 | 1.66176 | 46.843 | 1.60255 | 42.33 I | 1. 54620 | 38.242 |
| 0.75 | 2.08878 | 53.612 | 1.98907 | 48.001 | r.89219 | 42.989 | 1.80100 | 38.527 | 1.71698 | 34.560 |
| 0.8 | 2.46545 | 48.442 | 2.30177 | 42.715 | 2.15096 | 37.770 | 2.01545 | 33.498 | 1. 89545 | 29.796 |
| 0.85 | 2.9208 I | 41.063 | 2.65553 | 35.492 | 2.42764 | 30.900 | 2.23422 | 27.076 | 2.07060 | 23.858 |
| 0.9 | 3.43113 | 30.669 | 3.01903 | 25.891 | 2.69344 | 22.164 | 2.43370 | 19.185 | 2.22397 | 16.753 |
| 0.95 | 3.88795 | 16.710 | 3.31480 | 13.805 | 2.8957 I | 11.652 | 2.57838 | 9.990 | 2.33132 | 8.665 |
| 1.0 | 4.08299 | . 00 | 3.43274 | 0.00 | 2.97287 | 0.00 | 2.63193 | 0.00 | 2.37024 | 0.00 |
| 1.05 | 3.88795 | 16.710 | 3.31480 | 13.805 | 2.89571 | 11.652 | 2.57838 | 9.990 | 2.33132 | 8.665 |
| 1.1 | 3.43113 | 30.669 | 3.01903 | 25.891 | 2.69344 | 22.164 | 2.43370 | 19.185 | 2.22397 | 16.753 |
| 1.15 | 2.9208 I | 41.063 | 2.65553 | 35.492 | 2.42764 | 30.900 | 2.23422 | 27.076 | 2.07060 | 23.858 |
| 1.2 | 2.46545 | 48.442 | 2.30177 | 42.715 | 2.15096 | 37.770 | 2.01545 | 33.498 | 1. 89545 | 29.796 |
| 1.25 | 2.08878 | 53.612 | 1.98907 | 48.001 | 1.89219 | 42.989 | 1.80100 | 38.527 | 1.71698 | 34.560 |
| 1.3 | 1.78259 | 57.214 | 1.72246 | 51.799 | 1.66176 | 46.843 | 1.60255 | 42.331 | 1. 54620 | 38.242 |
| 1.35 | I. 53228 | 59.679 | 1.49710 | 54.453 | 1. 46059 | 49.590 | 1. 42400 | 45.093 | 1.38830 | 40.958 |
| 1.4 | 1. 32476 | 61.281 | 1.30582 | 56.200 | 1.28577 | 51.423 | 1. 26529 | 46.961 | 1.24492 | 42.815 |
| 1.45 | I. 14985 | 62.184 | 1.14195 | 57.194 | 1.13347 | 52.474 | 1.12469 | 48.039 | I. 11583 | 43.896 |
| 1.5 | 1.00000 | 62.476 | 1.00000 | 57.518 | 1.00000 | 52.817 | 1.00000 | 48.392 | 1.00000 | 44.250 |
| 1.55 | 0.86968 | 62.184 | 0.87570 | 57.194 | 0.88225 | 52.474 | 0.88914 | 48.039 | 0.89620 | 43.896 |
| 1.6 | 0.75486 | 61.281 | 0.76580 | 56.200 | 0.77774 | 51.423 | 0.79033 | 46.961 | 0.80327 | 42.815 |
| 1.65 | 0.65262 | 59.679 | 0.66796 | 54.453 | 0.68466 | 49.590 | 0.70225 | 45.093 | 0.72031 | 40.958 |
| 1.7 | 0.56098 | 57.214 | 0.58056 | 51.799 | 0.60177 | 46.843 | 0.62401 | 42.331 | 0.64675 | 38.242 |
| 1.75 | 0.47875 | 53.612 | 0.50275 | 48.001 | 0.52849 | 42.989 | 0.55525 | 38.527 | 0.58242 | 34.560 |
| 1.8 | 0.40561 | 48.442 | 0.43445 | 42.715 | 0.46491 | 37.770 | 0.49617 | 33.498 | 0.52758 | 29.796 |
| 1.85 | 0.34237 | 41.063 | 0.37657 | 35.492 | 0.41192 | 30.900 | 0.44758 | 27.076 | 0.48295 | 23.858 |
| 1.9 | 0.29145 | 30.669 | 0.33123 | 25.891 | 0.37127 | 22.164 | 0.41090 | 19.185 | 0.44965 | 16.753 |
| 1.95 | 0.25721 | 16.710 | 0.30168 | 13.805 | 0.34534 | 11.652 | 0.38784 | 9.990 | 0.42894 | 8.665 |
| 2.0 | 0.24492 | 0.00 | 0.29131 | 0.00 | 0.33638 | 0.00 | 0.37995 | 0.00 | 0.42190 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh (0.4+i \circ)=0.37995 / 0^{\circ}$.
$\operatorname { t a n h } ( 0 . 4 5 + i _ { \underline { \text { I.I } } } ) = 2 . 2 2 3 9 7 \longdiv { I 6 ^ { \circ } . 7 5 3 } = 2 . 2 2 3 9 7 \longdiv { I 6 ^ { \circ } . 4 5 ^ { \prime } \cdot 1 \mathrm { I } ^ { \prime \prime } } .$

Table XII. HYPERBOLIC TANGENTS. $\tanh (x+i q)=r / \gamma$. Continued

|  | $x=0.5$ |  | $x=0.55$ |  | $x=0.6$ |  | $x=0.65$ |  | $x=0.7$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ |
|  |  | - |  | - |  | - |  | - |  | - |
| $\bigcirc$ | 0.46211 | 0.00 | 0.50052 | 0.00 | 0.53704 | 0.00 | 0.57167 | 0.00 | 0.60437 | 0.00 |
| 0.05 | 0.46846 | 7.582 | 0.50628 | 6.680 | 0.54230 | 5.917 | 0.57648 | 5.263 | 0.60878 | 4.696 |
| 0.1 | 0.48720 | 14.732 | 0.52334 | 13.027 | 0.55790 | 11.570 | 0.59079 | 10.312 | 0.62194 | 9.217 |
| 0.15 | 0.51758 | 21.122 | 0.55115 | 18.773 | 0.58344 | 16.739 | 0.61428 | 14.966 | 0.64357 | 13.409 |
| 0.2 | 0.55865 | 26.572 | 0.58900 | 23.753 | 0.61835 | 21.276 | 0.64650 | 19.090 | 0.67331 | 17.153 |
| 0.25 | 0.60952 | 31.035 | 0.63616 | 27.897 | 0.66205 | 25.101 | ${ }^{\circ} 0.68696$ | 22.604 | 0.71076 | 20.372 |
| 0.3 | 0.66956 | 34.544 | 0.69209 | 31.204 | 0.71405 | 28.190 | 0.73523 | 25.47 I | 0.75548 | 23.017 |
| 0.35 | 0.73847 | 37.169 | 0.75645 | 33.707 | 0.77399 | 30.553 | 0.79092 | 27.683 | 0.80711 | 25.074 |
| 0.4 | 0.81628 | 38.983 | 0.82914 | 35.453 | 0.84168 | 32.214 | 0.85377 | 29.248 | 0.86531 | 26.539 |
| 0.45 | 0.90328 | 40.046 | 0.91025 | 36.482 | 0.91703 | 33.198 | 0.92354 | 30.180 | 0.92973 | 27.414 |
| 0.5 | 1.00000 | 40.395 | 1.00000 | 36.822 | 1.00000 | 33.524 | 1.00000 | 30.489 | 1.00000 | 27.705 |
| 0.55 | 1.10708 | 40.046 | 1.09860 | 36.482 | 1.09048 | 33.198 | 1.08279 | 30.180 | 1.07558 | 27.414 |
| 0.6 | 1.22508 | 38.983 | 1. 20607 | 35.453 | 1.18810 | 32.214 | 1.17128 | 29.248 | 1.15566 | 26.539 |
| 0.65 | I. 35414 | 37.169 | I. 32197 | 33.707 | 1.29201 | 30.553 | 1.26434 | 27.683 | 1.23898 | 25.074 |
| 0.7 | I. $4935{ }^{2}$ | 34.544 | I. 44490 | 3 I .204 | 1.40047 | 28.190 | 1.36012 | 25.47I | 1.32366 | 23.017 |
| 0.75 | 1.64064 | 31.035 | 1.57193 | 27.897 | 1.51047 | 25.ror | 1. 45568 | 22.604 | 1.40695 | 20.372 |
| 0.8 | 1.79004 | 26.572 | 1.69780 | 23.753 | 1.61722 | 21.276 | 1.54680 | 19.090 | 1.48519 | 17.153 |
| 0.85 | 1.93206 | 21.122 | 1.81438 | 18.773 | 1.71398 | 16.739 | 1. 62793 | 14.966 | 1.55384 | 13.409 |
| 0.9 | 2.05254 | 14.732 | 1.9108I | 13.027 | 1.79243 | 11.570 | 1.69266 | 10.312 | 1.60788 | 9.217 |
| 0.95 | 2.13465 | 7.582 | 1.97520 | 6.680 | 1.84400 | 5.917 | 1.73467 | 5.263 | 1. 64262 | 4.696 |
| 1.0 | 2.16395 | 0.00 | 1.99792 | 0.00 | 1. 86202 | 0.00 | I. 74926 | 0.00 | 1. 65462 | 0.00 |
| 1.05 | 2.13465 | 7.582 | 1.97520 | 6.680 | 1.84400 | 5.917 | 1.73467 | 5.263 | 1.64262 | 4.696 |
| I.I | 2.05254 | 14.732 | 1.9108I | 13.027 | 1.79243 | 11.570 | 1. 69266 | 10.312 | 1.60788 | 9.217 |
| 1.15 | 1.93206 | 21.122 | 1.81438 | 18.773 | 1.71398 | 16.739 | 1.62793 | 14.966 | 1.55384 | 13.409 |
| 1.2 | 1.79004 | 26.572 | I. 69780 | 23.753 | 1.61722 | 21.276 | I. 54680 | 19.090 | 1.48519 | 17.153 |
| 1.25 | 1.64064 | 31.035 | 1.57193 | 27.897 | 1.51047 | 25.ror | r.45568 | 22.604 | I. 40695 | 20.372 |
| I. 3 | 1.49352 | 34.544 | 1. 44490 | 31.204 | 1.40047 | 28.190 | 1.36012 | 25.471 | 1.32366 | 23.017 |
| 1.35 | 1.35414 | 37.169 | 1.32197 | 33.707 | 1.29201 | 30.553 | 1. 26434 | 27.683 | 1.23898 | 25.074 |
| 1. 4 | 1.22508 | 38.983 | 1.20607 | 35.453 | 1.18810 | 32.214 | 1.17128 | 29.248 | 1.15566 | 26.539 |
| 1.45 | 1.10708 | 40.046 | 1.09860 | 36.482 | 1.09048 | 33.198 | 1.08279 | 30.180 | 1.07558 | 27.414 |
| 1. 5 | 1.00000 | 40.395 | 1.00000 | 36.822 | 1.00000 | 33.524 | 1.00000 | 30.489 | 1.00000 | 27.705 |
| 1.55 | 0.90328 | 40.046 | 0.91025 | 36.482 | 0.91703 | 33.198 | 0.92354 | 30.180 | 0.92973 | 27:414 |
| 1.6 | 0.81628 | 38.983 | 0.82914 | 35.453 | 0.84168 | 32.214 | 0.85377 | 29.248 | 0.86531 | 26.539 |
| 1.65 | 0.73847 | 37.169 | 0.75645 | 33.707 | 0.77399 | 30.553 | 0.79092 | 27.683 | 0.80711 | 25.074 |
| 1.7 | 0.66956 | 34.544 | 0.69209 | 31.204 | 0.71405 | 28.190 | 0.73523 | 25.47 I | 0.75548 | 23.017 |
| 1.75 | 0.60952 | 31.035 | 0.63616 | 27.897 | 0.66205 | 25.101 | 0.68696 | 22.604 | 0.71076 | 20.372 |
| 1.8 | 0.55865 | 26.572 | 0.58900 | 23.753 | 0.61835 | 21.276 | 0.64650 | 19.090 | 0.67331 | 17.153 |
| 1.85 | 0.51758 | 21.122 | 0.55115 | 18.773 | 0.58344 | 16.739 | 0.61428 | 14.966 | 0.64357 | 13.409 |
| 1.9 | 0.48720 | 14.732 | 0.52334 | 13.027 | 0.55790 | 11.570 | 0.59079 | 10.312 | 0.62194 | 9.217 |
| 1.95 | 0.46846 | 7.582 | 0.50628 | 6.680 | 0.54230 | 5.917 | 0.57648 | 5.263 | 0.60878 | 4.696 |
| 2.0 | 0.46211 | 0.00 | $0.5005^{2}$ | 0.00 | 0.53704 | 0.00 | 0.57167 | 0.00 | 0.60437 | 0.00 |

$$
\begin{array}{ll}
\text { Note. } & \text { Negative quantities are in heavy type. } \\
\text { Examples. } & \tanh \left(0.7+i \underline{\underline{0.7})}=1.32366 \angle 23^{\circ} .017=1.32366 \angle 23^{\circ} .01^{\prime} .01^{\prime \prime} .\right. \\
& \operatorname { t a n h } ( 0 . 6 + i \underline { 1 . 5 } ) = 1 . 0 0 0 0 \sqrt { 3 3 ^ { \circ } . 5 2 4 } = 1 . 0 0 0 0 \longdiv { 3 3 ^ { \circ } \cdot 3 1 ^ { \prime } \cdot 2 6 ^ { \prime \prime } . }
\end{array}
$$

Table XII. HYPERBOLIC TANGENTS. $\tanh (x+i q)=r / \gamma$. Continued

|  | $x=0.75$ |  | $x=0.8$ |  | $x=0.85$ |  | $x=0.9$ |  | $x=0.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ | $r$ | $1 \gamma$ | r |  |
|  |  |  |  | $\bigcirc$ |  |  |  |  |  |  |
| $\bigcirc$ | 0.63515 | 0.00 | 0.66403 | 0.00 | 0.69107 | 0.00 | 0.71629 | 0.00 | 0.73978 | 0.00 |
| 0.05 | 0.63921 | 4.202 | 0.66777 | 3.767 | 0.6945 I | 3.384 | 0.71947 | 3.043 | 0.74269 | 2.741 |
| 0.1 | 0.65131 | 8.257 | 0.67892 | 7.411 | 0.70478 | 6.662 | 0.72892 | 5.995 | 0.75141 | 5.401 |
| 0.15 | 0.67125 | 12.036 | 0.69730 | 10.819 | 0.72172 | 9.737 | 0.74453 | 8.771 | 0.76578 | 7.909 |
| 0.2 | 0.69871 | 15.432 | 0.72264 | 13.898 | 0.74509 | 12.526 | 0.76607 | 11.297 | 0.78561 | 10.196 |
| 0.25 | 0.73333 | 18.371 | 0.75461 | 16.576 | 0.77459 | 14.964 | 0.79326 | 13.513 | 0.81065 | 12.208 |
| 0.3 | 0.77471 | 20.804 | 0.79285 | 18.807 | 0.80986 | 17.004 | 0.82576 | 15.375 | 0.84054 | 13.904 |
| 0.35 | 0.82247 | 22.707 | 0.83695 | 20.559 | 0.85051 | 18.613 | 0.86316 | 16.848 | 0.87492 | 15.250 |
| 0.4 | 0.87623 | 24.068 | 0.88650 | 21.819 | 0.89611 | 19.773 | 0.90504 | 17.914 | 0.91333 | 16.226 |
| 0.45 | 0.93557 | 24.885 | 0.94104 | 22.576 | 0.94614 | 20.472 | 0.95086 | 18.557 | 0.95523 | 16.816 |
| 0.5 | 1.00000 | 25.157 | 1.00000 | 22.828 | 1. 00000 | 20.706 | 1.00000 | 18.772 | 1.00000 | 17.013 |
| 0.55 | 1.06887 | 24.885 | 1.06265 | 22.576 | 1.05693 | 20.472 | 1.05168 | 18.557 | 1.04687 | 16.816 |
| 0.6 | I.14125 | 24.068 | I. 12803 | 21.819 | I.II 594 | 19.773 | 1.10492 | 17.914 | 1.09490 | 16.226 |
| 0.65 | 1.21585 | 22.707 | 1.19482 | 20.559 | 1.17576 | 18.613 | 1.15853 | 16.848 | 1.14297 | 15.250 |
| 0.7 | 1.29081 | 20.804 | 1.26128 | 18.807 | 1.23478 | 17.004 | 1.21101 | 15.375 | 1.18971 | 13.904 |
| 0.75 | 1.36365 | 18.371 | 1.32519 | 16.576 | 1.29101 | 14.964 | 1.26062 | 13.513 | I. 23358 | 12.208 |
| 0.8 | 1.43121 | 15.432 | 1.38382 | 13.898 | 1.34212 | 12.526 | 1.30536 | 11.297 | 1.27289 | 10.196 |
| 0.85 | 1.48976 | 12.036 | 1.43411 | 10.819 | 1.38559 | 9.737 | 1.34313 | 8.771 | 1.30586 | 7.909 |
| 0.9 | 1.53537 | 8.257 | 1.47293 | 7.411 | 1.41889 | 6.662 | 1.37189 | 5.995 | 1.33083 | 5.401 |
| 0.95 | 1.56444 | 4.202 | 1.49751 | 3.767 | 1. 43986 | 3.384 | 1.38992 | 3.043 | 1.34645 | 2.741 |
| 1.0 | 1.57443 | 0.00 | 1.50594 | 0.00 | 1.44703 | 0.00 | 1.39606 | 0.00 | 1.35175 | 0.00 |
| 1.05 | 1. 56444 | 4.202 | 1.49751 | 3.767 | 1. 43986 | 3.384 | 1.38992 | 3.043 | 1.34645 | 2.741 |
| 1.1 | 1. 53537 | 8.257 | 1.47293 | 7.411 | 1.41889 | 6.662 | 1.37189 | 5.995 | 1.33083 | 5.401 |
| 1.15 | 1. 48976 | 12.036 | 1.43411 | 10.819 | 1. 38559 | 9.737 | 1.34313 | 8.771 | r. 30586 | 7.909 |
| 1.2 | 1.43121 | 15.432 | 1.38382 | 13.898 | 1.34212 | 12.526 | 1.30536 | 11.297 | 1.27289 | 10.196 |
| 1.25 | 1.36365 | 18.371 | 1.32519 | 16.576 | I.29101 | 14.964 | 1.26062 | 13.513 | 1.23358 | 12.208 |
| 1.3 | 1.2908 I | 20.804 | 1.26128 | 18.807 | 1.23478 | 17.004 | 1.21101 | 15.375 | 1.18971 | 13.904 |
| 1.35 | 1.21585 | 22.707 | I.19482 | 20.559 | 1.17576 | 18.613 | 1.15853 | 16.848 | 1.14297 | 15.250 |
| 1.4 | 1.14125 | 24.068 | 1.12803 | 21.819 | I.11594 | 19.773 | 1.10492 | 17.914 | 1.09490 | 16.226 |
| 1.45 | 1.06887 | 24.885 | 1.06265 | 22.576 | 1.05693 | 20.472 | 1.05168 | 18.557 | 1.04687 | 16.816 |
| 1.5 | 1.00000 | 25.157 | 1.00000 | 22.828 | 1.00000 | 20.706 | 1.00000 | 18.772 | 1.00000 | 17.013 |
| 1.55 | 0.93557 | 24.885 | 0.94104 | 22.576 | 0.94614 | 20.472 | 0.95086 | 18.557 | 0.95523 | 16.816 |
| 1.6 | 0.87623 | 24.068 | 0.88650 | 21.819 | 0.89611 | 19.773 | 0.90504 | 17.914 | 0.91333 | 16.226 |
| 1. 65 | 0.82247 | 22.707 | 0.83695 | 20.559 | 0.85051 | 18.613 | 0.86316 | 16.848 | 0.87492 | 15.250 |
| 1.7 | 0.77471 | 20.804 | 0.79285 | 18.807 | 0.80986 | 17.004 | 0.82576 | 15.375 | 0.84054 | 13.904 |
| 1.75 | 0.73333 | 18.371 | 0.7546 I | 16.576 | 0.77459 | 14.964 | 0.79326 | 13.513 | 0.81065 | 12.208 |
| 1.8 | 0.69871 | 15.432 | 0.72264 | 13.898 | 0.74509 | 12.526 | 0.76607 | 11.297 | 0.78561 | 10.196 |
| $\underline{1.85}$ | 0.67125 | 12.036 | 0.69730 | 10.819 | 0.72172 | 9.737 | 0.74453 | 8.771 | 0.76578 | 7.909 |
| 1.9 | 0.65131 | 8.257 | 0.67892 | 7.411 | 0.70478 | 6.662 | 0.72892 | 5.995 | 0.75141 | $5 \cdot 401$ |
| 1.95 | 0.63921 | 4.202 | 0.66777 | 3.767 | 0.69451 | 3.384 | 0.71947 | 3.043 | 0.74269 | 2.741 |
| 2.0 | 0.63515 | 0.00 | 0.66403 | 0.00 | 0.69107 | 0.00 | 0.71629 | 0.00 | 0.73978 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh \left(0.9+i_{\text {I.0 }}\right)=1.39606 / 0^{\circ}$.

$$
\tanh \left(0.95+i_{1.55}\right)=0.95523 \sqrt{16^{\circ} .816}=0.95523 \sqrt{16^{\circ} .48^{\prime} .58^{\prime \prime}}
$$

TAble XII. HYPERBOLIC TANGENTS. $\tanh (x+i q)=r / \gamma$. Continued

|  | $x=1.0$ |  | $x=1.05$ |  | $x=1 . \mathrm{I}$ |  | $x=1.15$ |  | $x=1.2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $\dagger$ | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ |
|  |  | - |  | - |  | $\bigcirc$ |  | - |  | - |
| $\bigcirc$ | 0.76159 | 0.00 | 0.78181 | 0.00 | 0.80050 | 0.00 | 0.81775 | 0.00 | 0.83365 | 0.00 |
| 0.05 | 0.76428 | 2.470 | 0.78427 | 2.228 | 0.80277 | 2.010 | 0.81984 | 1.815 | 0.83557 | 1.639 |
| 0.1 | 0.77229 | 4.870 | 0.79164 | 4.394 | 0.80954 | 3.966 | 0.82605 | 3.582 | 0.84127 | 3.235 |
| 0.15 | 0.78552 | 7.134 | 0.80380 | 6.440 | 0.82071 | 5.815 | 0.83630 | 5.254 | 0.85067 | 4.747 |
| 0.2 | 0.80376 | 9.206 | 0.82058 | 8.315 | 0.83611 | 7.513 | 0.85043 | 6.790 | 0.86361 | 6.138 |
| 0.25 | 0.82678 | 11.032 | 0.84172 | 9.971 | 0.85551 | 9.015 | 0.86822 | 8.151 | 0.87991 | 7.371 |
| 0.3 | 0.85425 | 12.575 | 0.86693 | 11.373 | 0.87862 | 10.288 | 0.88939 | 9.306 | 0.89927 | 8.419 |
| 0.35 | 0.88580 | 13.802 | 0.89585 | 12.492 | 0.90509 | 11.305 | 0.91359 | 10.231 | 0.92138 | 9.258 |
| 0.4 | 0.92098 | 14.694 | 0.92802 | 13.305 | 0.93449 | 12.045 | 0.94042 | 10.904 | 0.94585 | 9.870 |
| 0.45 | 0.95925 | 15.233 | 0.96294 | 13.798 | 0.96632 | 12.495 | 0.96941 | 11.313 | 0.97223 | 10.242 |
| 0.5 | 1.00000 | 15.414 | 1.00000 | 13.963 | 1.00000 | 12.646 | 1.00000 | 11.451 | 1.00000 | 10.368 |
| 0.55 | 1.04248 | 15.233 | 1.03849 | 13.798 | 1.03486 | 12.495 | 1.03155 | 11.313 | 1.02854 | 10.242 |
| 0.6 | 1.08581 | 14.694 | 1.07756 | I 3.305 | 1.07010 | 12.045 | 1.06335 | 10.904 | 1.05725 | 9.870 |
| 0.65 | I.12892 | 13.802 | 1.11626 | 12.492 | 1.10486 | 11.305 | 1.09458 | 10.231 | 1.08533 | 9.258 |
| 0.7 | 1.17061 | 12.575 | I.I5349 | I1. 373 | I.13815 | 10.288 | 1.12437 | 9.306 | I.II201 | 8.419 |
| 0.75 | 1.20951 | 11.032 | 1.18804 | 9.971 | 1.16889 | 9.015 | 1.15179 | 8.151 | 1.13649 | 7.371 |
| 0.8 | 1.24415 | 9.206 | 1.21866 | 8.315 | 1.19602 | 7.513 | 1.17587 | 6.790 | 1.15793 | 6.138 |
| 0.85 | 1.27305 | 7.134 | 1.24409 | 6.440 | 1.21846 | 5.815 | 1.19574 | 5.254 | 1.17555 | 4.747 |
| 0.9 | 1. 29485 | 4.870 | 1.26320 | 4.394 | 1. 23527 | 3.966 | I. 21058 | $3 \cdot 582$ | 1.18868 | 3.235 |
| 0.95 | 1. 30843 | 2.470 | 1.27506 | 2.228 | I. 24569 | 2.010 | 1. 21976 | 1.815 | 1.19680 | 1.639 |
| 1.0 | 1.3I304 | 0.00 | 1.27908 | 0.00 | 1.24922 | 0.00 | 1.22286 | 0.00 | 1. 19954 | 0.00 |
| 1.05 | 1.30843 | 2.470 | 1.27506 | 2.228 | 1.24569 | 2.010 | 1.21976 | 1.815 | 1.19680 | 1.639 |
| I.I | 1.29485 | 4.870 | 1.26320 | 4.394 | 1.23527 | 3.966 | 1.21058 | 3.582 | 1. 18868 | 3.235 |
| 1.15 | 1.27305 | 7.134 | 1.24409 | 6.440 | 1.21846 | 5.815 | 1.19574 | 5.254 | 1.17555 | 4.747 |
| 1.2 | 1.24415 | 9.206 | 1. 21866 | 8.315 | 1.19602 | 7.513 | 1.17587 | 6.790 | 1. 15793 | 6.138 |
| 1.25 | 1.20951 | 11.032 | 1.18804 | 9.971 | 1.16889 | 9.015 | 1.15179 | 8.151 | 1. 13649 | 7.371 |
| 1.3 | 1.17061 | 12.575 | 1.15349 | 11.373 | 1.13815 | 10.288 | 1.12437 | 9.306 | 1.11201 | 8.419 |
| 1.35 | 1.12892 | 13.802 | 1.11626 | 12.492 | 1.10486 | 11.305 | 1.09458 | 10.231 | 1.08533 | 9.258 |
| 1.4 | 1.08581 | 14.694 | 1.07756 | 13.305 | 1.07010 | 12.045 | 1.06335 | 10.904 | 1.05725 | 9.870 |
| I. 45 | 1.04248 | 15.233 | 1.03849 | 13.798 | 1.03486 | 12.495 | 1.03155 | 11.313 | 1.02854 | 10.242 |
| 1.5 | 1.00000 | 15.414 | 1.00000 | 13.963 | 1.00000 | 12.646 | 1.00000 | 11.451 | 1.00000 | 10.368 |
| 1.55 | 0.95925 | 15.233 | 0.96294 | 13.798 | 0.96632 | 12.495 | 0.96941 | 11.313 | 0.97223 | 10.242 |
| $\pm .6$ | 0.92098 | 14.694 | 0.92802 | 13.305 | 0.93449 | 12.045 | 0.94042 | 10.904 | 0.94585 | 9.870 |
| 1.65 | 0.88580 | 13.802 | 0.89585 | 12.492 | 0.90509 | 11.305 | 0.91359 | 10.231 | 0.92138 | 9.258 |
| 1.7 | 0.85425 | 12.575 | 0.86693 | 11.373 | 0.87862 | 10.288 | 0.88939 | 9.306 | 0.89927 | 8.419 |
| 1.75 | 0.82678 | 11.032 | 0.84172 | 9.971 | 0.85551 | 9.015 | 0.86822 | 8.151 | 0.87991 | 7.371 |
| 1.8 | 0.80376 | 9.206 | 0.82058 | 8.315 | 0.83611 | 7.513 | 0.85043 | 6.790 | 0.86361 | 6.138 |
| 1.85 | 0.78552 | 7.134 | 0.80380 | 6.440 | 0.82071 | 5.815 | 0.83630 | 5.254 | 0.85067 | 4.747 |
| 1.9 | 0.77229 | 4.870 | 0.79164 | 4.394 | 0.80954 | 3.966 | 0.82605 | 3.582 | 0.84127 | 3.235 |
| 1.95 | 0.76428 | 2.470 | 0.78427 | 2.228 | 0.80277 | 2.010 | 0.81984 | 1.815 | 0.83557 | 2.639 |
| 2.0 | 0.76159 | 0.00 | 0.78181 | 0.00 | 0.80050 | 0.00 | 0.81775 | 0.00 | 0.83365 | 0.00 |

Note. Negative quantities are in heavy type.

> Examples. $\quad \tanh (1.1+i \underline{0.7})=1.13815 / 10^{\circ} .288=1.13815 / 10^{\circ} .1^{\prime} 7^{\prime} \cdot 17^{\prime \prime}$.
> $\operatorname { t a n h } ( 1 . 2 + \underline { i n g } _ { \underline { 1 . 7 } ) } ) = 0 . 8 9 9 2 7 \longdiv { 8 ^ { \circ } . 4 1 9 } = 0 . 8 9 9 2 7 \longdiv { 8 ^ { \circ } . 2 5 ^ { \prime } . 0 8 ^ { \prime \prime } } .$

Table XII. HYPERBOLIC TANGENTS. $\tanh (x+i q)=r / \gamma$. Continued

|  | $x=1.25$ |  | $x=1.3$ |  | $x=1.35$ |  | $x=1.4$ |  | $x=1.45$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{q}$ | $r$ | $\gamma$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ |
|  |  | $\bigcirc$ |  |  |  | - |  |  |  |  |
| $\bigcirc$ | 0.84828 | 0.00 | 0.86172 | 0.00 | 0.87405 | 0. | 0.88535 | 0.00 | 0.89569 | 0.00 |
| 0.05 | 0.85004 | I.48I | 0.86333 | 1.338 | 0.87552 | 1.210 | 0.88669 | 1.094 | 0.89692 | 0.989 |
| 0.1 | 0.85526 | 2.924 | 0.868 II | 2.643 | 0.87990 | 2.389 | 0.89069 | 2.161 | 0.90057 | 1.953 |
| 0.15 | 0.86387 | 4.291 | 0.87599 | 3.879 | 0.88711 | 3.508 | 0.89728 | 3.172 | 0.90659 | 2.869 |
| 0.2 | 0.87573 | 5.549 | 0.88684 | 5.017 | 0.89702 | 4.538 | 0.90634 | 4.104 | 0.91485 | 3.712 |
| 0.25 | 0.89063 | 6.666 | 0.90047 | 6.029 | 0.90947 | 5.454 | 0.91769 | 4.934 | 0.9252 I | 4.463 |
| 0.3 | 0.90833 | 7.616 | 0.91663 | 6.890 | 0.9242 I | 6.234 | 0.93114 | 5.640 | 0.93746 | 5.103 |
| 0.35 | 0.92852 | 8.378 | 0.93504 | 7.581 | 0.94099 | 6.860 | 0.94642 | 6.207 | 0.95137 | 5.617 |
| 0.4 | 0.95082 | 8.933 | 0.95534 | 8.085 | 0.95947 | 7.317 | 0.96323 | 6.622 | 0.96665 | 5.993 |
| 0.45 | 0.97481 | 9.272 | 0.97715 | 8.393 | 0.97928 | 7.596 | 0.98122 | 6.875 | 0.98298 | 6.222 |
| 0.5 | 1.00000 | 9.385 | 1.00000 | 8.496 | 1.00000 | 7.689 | 1.00000 | 6.960 | 1.00000 | 6.299 |
| 0.55 | 1.02584 | 9.272 | 1.02338 | 8.393 | 1.02116 | 7.596 | 1.01914 | 6.875 | 1.01733 | 6.222 |
| 0.6 | 1.05173 | 8.933 | 1.04674 | 8.085 | 1.04224 | 7.317 | 1.03817 | 6.622 | 1.03450 | 5.993 |
| 0.65 | 1.07699 | 8.378 | 1.06948 | 7.581 | 1.06271 | 6.860 | 1.05661 | 6.207 | 1.05112 | 5.617 |
| 0.7 | 1.10092 | 7.616 | 1.09096 | 6.890 | 1.08200 | 6.234 | 1.07395 | 5.640 | 1.06671 | 5.103 |
|  | 1.12280 | 6.666 | 1.11054 | 6.029 | 1.09955 | 5.454 | 1.08963 | 4.934 | 1.08084 | 4.463 |
| 0.8 | 1.14192 | $5 \cdot 549$ | 1.12760 | 5.017 | 1.11483 | 4.538 | 1.10335 | 4.104 | 1.09308 | 3.712 |
| 0.85 | I. 15758 | 4.291 | 1.14156 | 3.879 | 1.12726 | $3 \cdot 508$ | 1.11448 | 3.172 | 1.10304 | 2.869 |
| 0.9 | 1.16924 | 2.924 | 1.15193 | 2.643 | 1.13650 | 2.389 | 1.12272 | 2.161 | I.IIO4I | I. 953 |
| 0.95 | 1.17642 | 1.48I | 1.15831 | 1.338 | 1.14218 | 1.210 | 1.12779 | 1.094 | I.II493 | 0.989 |
| 1.0 | 1.17885 | 0.00 | 1.16047 | 0.00 | 1.14410 | 0.00 | 1. 12950 | 0.00 | I.II646 | 0.0 |
| 1.05 | 1.17642 | 1.481 | 1.1583I | 1.338 | 1.14218 | 1.210 | 1.12779 | 1.094 | I.II493 | 0.989 |
| I. 1 | 1.16924 | 2.924 | 1.15193 | 2.643 | I. 13650 | 2.389 | 1.12272 | 2.161 | I.1104I | 1.953 |
| 1.15 | 1.15758 | 4.29 I | 1.14156 | 3.879 | I.12726 | 3.508 | 1.11448 | 3.172 | 1.10304 | 2.869 |
| 1.2 | 1.14192 | 5.549 | I.12760 | 5.017 | I.I1483 | 4.538 | 1.10335 | 4.104 | 1.09308 | 3.712 |
| 1.25 | 1.12280 | 6.666 | I.11054 | 6.029 | 1.09955 | 5.454 | 1.08963 | 4.934 | 1.08084 | 4.463 |
| 1.3 | 1.10092 | 7.616 | 1.09096 | 6.890 | 1.08200 | 6.234 | 1.07395 | 5.640 | 1.06671 | 5.103 |
| 1.35 | 1.07699 | 8.378 | 1.06948 | 7.581 | 1.06271 | 6.860 | 1.05661 | 6.207 | 1.05112 | 5.617 |
| 1.4 | 1.05173 | 8.933 | 1.04674 | 8.085 | 1.04224 | 7.317 | 1.03817 | 6.622 | 1.03450 | 5.993 |
| 1.45 | 1.02584 | 9.272 | 1.02338 | 8.393 | 1.02116 | 7.596 | 1.01914 | 6.875 | 1.01733 | 6.222 |
| 1.5 | 1.00000 | 9.385 | 1.00000 | 8.496 | 1.00000 | 7.689 | 1.00000 | 6.960 | 1.00000 |  |
| 1.55 | 0.9748 I | 9.272 | 0.97715 | 8.393 | 0.97928 | 7.596 | 0.98122 | 6.875 | 0.98298 | 6.222 |
| 1.6 | 0.95082 | 8.933 | 0.95534 | 8.085 | 0.95947 | 7.317 | 0.96323 | 6.622 | 0.96665 | 5.993 |
| 1.65 | 0.92852 | 8.378 | 0.93504 | 7.581 | 0.94099 | 6.860 | 0.94642 | 6.207 | 0.95137 | 5.617 |
| 1.7 | 0.90833 | 7.616 | 0.91663 | 6.890 | 0.9242 I | 6.234 | 0.93114 | 5.640 | 0.93746 | 5.103 |
| 1.75 | 0.89063 | 6.666 | 0.90047 | 6.029 | 0.90947 | 5.454 | 0.91769 | 4.934 | 0.92521 | 4.463 |
| 1.8 | 0.87573 | $5 \cdot 549$ | 0.88684 | 5.017 | 0.89702 | 4.538 | 0.90634 | 4.104 | 0.91485 | 3.712 |
| 1.85 | 0.86387 | 4.291 | 0.87599 | 3.879 | 0.88711 | 3.508 | 0.89728 | 3.172 | 0.90659 | 2.869 |
| 1.9 | 0.85526 | 2.924 | 0.868 II | 2.643 | 0.87990 | 2.389 | 0.89069 | 2.161 | 0.90057 | 1.953 |
| 1.95 | 0.85004 | 1.48I | 0.86333 | 1.338 | 0.87552 | 1.210 | 0.88669 | 1.094 | 0.89692 | 0.989 |
| 2.0 | 0.84828 | 0.00 | 0.86172 | 0.00 | 0.87405 | 0.00 | 0.88535 | 0.00 | 0.89569 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh (\mathrm{I} .25+i \underline{0.25})=0.89063 / 6^{\circ} .666=0.89063 / 6^{\circ} \cdot 39^{\prime} .58^{\prime \prime}$.

$$
\operatorname { t a n h } ( 1 . 2 5 + i \underline { 1 . 2 5 } ) = 1 . 1 2 2 8 0 \sqrt { 6 ^ { \circ } . 6 6 6 } = 1 . 1 2 2 8 0 \longdiv { 6 ^ { \circ } . 3 9 ^ { \prime } \cdot 5 ^ { \prime \prime } . }
$$

Table XII. HYPERBOLIC TANGENTS. $\tanh (x+i q)=r / \gamma$. Continued

|  |  |  |  |  | $x=$ |  | $x=\mathrm{I}$ |  | = | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $\boldsymbol{r}$ | $\boldsymbol{\gamma}$ | \% | $\boldsymbol{\gamma}$ | $r$ | $\gamma$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ |
|  |  | - |  | - |  |  |  |  |  |  |
| $\bigcirc$ | 0.90515 | 0.00 | 0.91379 | 0.00 | 0.92167 | 0.00 | 0.92886 | 0.00 | 0.93541 | 0.00 |
| 0.05 | 0.90627 | 0.894 | 0.91481 | 0.809 | 0.92260 | 0.732 | 0.92970 | 0.662 | 0.93618 | 0.599 |
| 0.1 | 0.90960 | 1.767 | 0.91785 | 1.598 | 0.92537 | 1.446 | 0.93223 | I. 308 | 0.93848 | 1.183 |
| 0.15 | 0.91509 | 2.595 | 0.92285 | 2.347 | 0.92993 | 2.123 | 0.93638 | 1.921 | 0.94226 | 1.738 |
| 0.2 | 0.92263 | 3.357 | 0.92972 | 3.038 | 0.93619 | 2.748 | 0.94207 | 2.486 | 0.94744 | 2.249 |
| 0.25 | 0.93207 | 4.038 | 0.93832 | 3.653 | 0.94401 | 3.305 | 0.94920 | 2.990 | 0.95392 | 2.705 |
| 0.3 | 0.94323 | 4.617 | 0.94847 | 4.177 | 0.95325 | 3.780 | 0.95760 | 3.420 | 0.96155 | 3.095 |
| 0.35 | 0.95588 | 5.083 | 0.95998 | 4.599 | 0.96371 | 4.161 | 0.96710 | 3.766 | 0.97018 | 3.407 |
| 0.4 | 0.96976 | 5.423 | 0.97259 | 4.908 | 0.97516 | 4.440 | 0.97749 | 4.019 | 0.97961 | 3.636 |
| 0.45 | 0.98458 | 5.631 | 0.98603 | 5.096 | 0.98735 | 4.61 I | 0.98854 | 4.173 | 0.98962 | 3.776 |
| 0.5 | 1.00000 | 5.700 | 1.00000 | 5.159 | 1.00000 | 4.668 | 1.00000 | 4.225 | 1.00000 | 3.822 |
| 0.55 | 1.01566 | 5.631 | I.or417 | 5.096 | 1.01281 | 4.611 | I.OII59 | 4.173 | 1.01049 | 3.776 |
| 0.6 | 1.03118 | 5.423 | 1.02818 | 4.908 | 1.02548 | 4.440 | 1.02303 | 4.019 | 1.02082 | 3.636 |
| 0.65 | 1.04616 | 5.083 | 1.04169 | 4.599 | 1.03766 | 4.161 | 1.03402 | 3.766 | 1.03074 | 3.407 |
| 0.7 | 1.06019 | 4.617 | 1.05433 | 4.177 | 1.04904 | 3.780 | 1.04428 | 3.420 | 1.03999 | 3.095 |
| 0.75 | 1.07289 | 4.038 | 1.06574 | 3.653 | 1.05931 | 3.305 | 1.05353 | 2.990 | 1.0483I | 2.705 |
| 0.8 | 1.08386 | 3.357 | 1.07559 | 3.038 | 1.06817 | 2.748 | 1.06149 | 2.486 | 1.05548 | 2.249 |
| 0.85 | 1.09279 | 2.595 | 1.08360 | 2.347 | 1.07535 | 2.123 | 1.06795 | 1.921 | 1.06128 | 1.738 |
| 0.9 | 1.09938 | 1.767 | 1.08951 | 1.598 | 1.08065 | 1.446 | 1.07270 | 1.308 | 1.06556 | 1.183 |
| 0.95 | I.IO343 | 0.894 | 1.09313 | 0.809 | 1.08390 | 0.732 | 1.07562 | 0.662 | 1.06817 | 0.599 |
| 1.0 | I. 10479 | 0.00 | 1.09436 | 0.00 | 1.08500 | 0.00 | 1.07659 | 0.0 | 1.06906 | 0.00 |
| 1.05 | 1.10343 | 0.894 | 1.09313 | 0.809 ${ }^{\text {' }}$ | 1.08390 | 0.732 | 1.07562 | 0.662 | 1.06817 | 0.599 |
| I. 1 | 1.09938 | 1.767 | 1.08951 | 1.598 | 1.08065 | 1.446 | 1.07270 | 1.308 | 1.06556 | 1.183 |
| 1.15 | 1.09279 | 2.595 | 1.08360 | 2.347 | 1.07535 | 2.123 | 1.06795 | 1.921 | 1.06128 | 1.738 |
| 1.2 | 1.08386 | 3.357 | 1.07559 | 3.038 | 1.06817 | 2.748 | 1.06149 | 2.486 | 1.05548 | 2.249 |
| 1.25 | 1.07289 | 4.038 | 1.06574 | 3.653 | r.0593I | 3.305 | 1.05353 | 2.990 | 1.04831 | 2,705 |
| 1.3 | 1.06019 | 4.617 | 1.05433 | 4.177 | 1.04904 | 3.780 | 1.04428 | 3.420 | 1.03999 | 3.095 |
| 1.35 | 1.04616 | 5.083 | 1.04169 | 4.599 | 1.03766 | 4.161 | 1.03402 | 3.766 | 1.03074 | 3.407 |
| I. 4 | 1.03118 | 5.423 | 1.02818 | 4.908 | I. 02548 | 4.440 | 1.02303 | 4.019 | 1.02082 | 3.636 |
| 1.45 | 1.OI 566 | 5.63 I | 1.01417 | 5.096 | I.OI28I | 4.611 | I.OII 59 | 4.173 | 1.01049 | 3.776 |
| 1.5 | 1.00000 | 5.700 | 1.00000 | 5.159 | 1.00000 | 4.668 | 1.00000 | 4.225 | 1.00000 | 3.822 |
| 1.55 | 0.98458 | 5.63I | 0.98603 | 5.096 | 0.98735 | 4.61 I | 0.98854 | 4.173 | 0.98962 | 3.776 |
| 1.6 | 0.96976 | 5.423 | 0.97259 | 4.908 | 0.97516 | 4.440 | 0.97749 | 4.019 | 0.97961 | 3.636 |
| I. 65 | 0.95588 | 5.083 | 0.95998 | 4.599 | 0.96371 | 4.161. | 0.96710 | 3.766 | 0.97018 | 3.407 |
| 1.7 | 0.94323 | 4.617 | 0.94847 | 4.177 | 0.95325 | 3.780 | 0.95760 | 3.420 | 0.96155 | 3.095 |
| 1.75 | 0.93207 | 4.038 | 0.93832 | 3.653 | 0.94401 | 3.305 | 0.94920 | 2.990 | 0.95392 | 2.705 |
| r. 8 | 0.92263 | 3.357 | 0.92972 | 3.038 | 0.93619 | 2.748 | 0.94207 | 2.486 | 0.94744 | 2.249 |
| 1.85 | 0.91509 | 2.595 | 0.92285 | 2.347 | 0.92993 | 2.123 | 0.93638 | 1.921 | 0.94226 | 1.738 |
| 1.9 | 0.90960 | 1.767 | 0.91785 | 1.598 | 0.92537 | 1.446 | 0.93223 | 1.308 | 0.93848 | $1.183^{\circ}$ |
| 1.95 | 0.90627 | 0.894 | 0.9148 I | 0.809 | 0.92260 | 0.732 | 0.92970 | 0.662 | 0.93618 | 0.599 |
| . 0 | 0.90515 | 0.00 | 0.91379 | 0.00 | 0.92167 | 0.00 | 0.92886 | 0.00 | 0.9354 I | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\quad \tanh (1.7+i \underline{0.7})=1.03999 \angle 3^{\circ} .095=1.03999 / 3^{\circ} .05^{\prime} .42^{\prime \prime}$.
$\operatorname { t a n h } ( \mathrm { I } . 6 + i _ { \underline { 1 . 7 } } ) = 0 . 9 5 3 2 5 \longdiv { 3 ^ { \circ } . 7 8 0 } = 0 . 9 5 3 2 5 \longdiv { 3 ^ { \circ } . 4 6 ^ { \prime } . 4 8 ^ { \prime \prime } } .$
[ 128 ]

Table XII. HYPERBOLIC TANGENTS. $\tanh (x+i q)=r / \gamma$. Continued

|  | $x=1.75$ |  | $x=1.8$ |  | $x=1.85$ |  | $x=1.9$ |  | $x=1.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{q}$ | $r$ | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ |  | $\gamma$ |
|  |  |  |  |  |  |  |  |  |  |  |
| 0 | 0.94138 | 0.00 | 0.94681 | 0.00 | 0.95175 | 0.00 | 0.95624 | 0.00 | 0.96032 | 0.00 |
| 0.05 | 0.94208 | 0.542 | 0.94745 | 0.490 | 0.95232 | 0.443 | 0.95677 | 0.401 | 0.96080 | 0.363 |
| 0.1 | 0.94417 | 1.070 | 0.94935 | 0.968 | 0.95406 | 0.876 | 0.95834 | 0.793 | 0.96222 | 0.717 |
| 0.15 | 0.94761 | 1.572 | 0.95247 | 1.422 | 0.95690 | 1.287 | 0.96092 | 1.165 | 0.96457 | 1.053 |
| 0.2 | 0.95232 | 2.035 | 0.95676 | 1.84I | 0.96079 | 1.666 | 0.96445 | 1.507 | 0.96778 | 1. 364 |
| 0.25 | 0.9582 I | 2.448 | 0.96211 | 2.215 | 0.96565 | 2.004 | 0.96886 | 1.813 | 0.97178 | 1. 640 |
| 0.3 | 0.96514 | 2.800 | 0.96840 | 2.533 | 0.97136 | 2.292 | 0.97405 | 2.074 | 0.97649 | 1.877 |
| 0.35 | 0.97297 | 3.083 | 0.97551 | 2.789 | 0.97781 | 2.524 | 0.97990 | 2.285 | 0.98179 | 2.067 |
| 0.4 | 0.98153 | 3.291 | 0.98327 | 2.977 | 0.98485 | 2.694 | 0.98628 | 2.438 | 0.98757 | 2.206 |
| 0.45 | 0.99061 | 3.417 | 0.99149 | 3.092 | 0.99230 | 2.798 | 0.99303 | 2.53 I | 0.99369 | 2.291 |
| 0.5 | 1.00000 | 3.459 | 1.00000 | 3.130 | 1.00000 | 2.833 | 1.00000 | 2.562 | 1.00000 | 2.319 |
| 0.55 | 1.00948 | 3.417 | 1.00858 | 3.092 | 1.00776 | 2.798 | 1.00702 | 2.531 | 1.00635 | 2.291 |
| 0.6 | 1.01882 | 3.291 | 1.01702 | 2.977 | 1.01539 | 2.694 | 1.01392 | 2.438 | 1.01258 | 2.206 |
| 0.65 | 1.02778 | 3.083 | 1.02511 | 2.789 | 1.02269 | 2.524 | 1.02051 | 2.285 | 1.01854 | 2.067 |
| 0.7 | 1.03612 | 2.800 | 1.03263 | 2.533 | 1.02948 | 2.292 | 1.02664 | 2.074 | 1.02408 | 1.877 |
| 0.75 | 1.04362 | 2.448 | 1.03939 | 2.215 | 1.03558 | 2.004 | 1.03214 | 1.813 | 1.02904 | 1. 640 |
| 0.8 | 1.05007 | 2.035 | 1.04520 | 1.841 | 1.04081 | 1.666 | 1.03686 | 1.507 | 1.03329 | 1. 364 |
| 0.85 | 1.05529 | 1.572 | 1.04990 | 1.422 | 1.04504 | 1.287 | 1.04067 | 1.165 | 1.03673 | 1.053 |
| 0.9 | 1.05913 | 1.070 | 1.05336 | 0.968 | 1.04816 | 0.876 | 1.04347 | 0.793 | 1.03926 | 0.717 |
| 0.95 | 1.06148 | 0.542 | 1.05547 | 0.490 | 1.05006 | 0.443 | 1.04519 | 0.401 | 1.04080 | 0.363 |
| 1. | 1.06228 | 0.00 | 1.05619 | 0.00 | 1.05070 | 0.00 | 1.04576 | 0.00 | 1.04131 | 0.00 |
| 1.05 | 1.06148 | 0.542 | 1.05547 | 0.490 | 1.05006 | 0.443 | 1.04519 | 0.401 | 1.04080 | 0.363 |
| I.I | 1.05913 | 1.070 | 1.05336 | 0.968 | 1.04816 | 0.876 | 1.04347 | 0.793 | 1.03926 | 0.717 |
| 1.15 | 1.05529 | 1.572 | 1.04990 | 1.422 | 1.04504 | 1.287 | 1.04067 | 1.165 | 1.03673 | 1.053 |
| 1.2 | 1.05007 | 2.035 | 1.04520 | r.84I | 1.04081 | 1.666 | 1.03686 | 1.507 | 1.03329 | 1.364 |
| 1.25 | 1.04362 | 2.448 | 1.03939 | 2.215 | 1.03558 | 2.004 | 1.03214 | 1.813 | 1.02904 | 1.640 |
| I. 3 | 1.03612 | 2.800 | 1.03263 | 2.533 | 1.02948 | 2.292 | 1.02664 | 2.074 | 1.02408 | 1.877 |
| 1.35 | 1.02778 | 3.083 | 1.02511 | 2.789 | 1.02269 | 2.524 | 1.02051 | 2.285 | 1.01854 | 2.067 |
| 1.4 | 1.01882 | 3.291 | 1.01702 | 2.977 | 1.01539 | 2.694 | 1.01392 | 2.438 | 1.01258 | 2.206 |
| 1. 45 | 1.00948 | 3.417 | 1.00858 | 3.092 | 1.00776 | 2.798 | 1.00702 | 2.531 | 1.00635 | 2.291 |
| 1.5 | 1.00000 | 3.459 | 1.00000 | 3.130 | 1.00000 | 2.833 | 1.00000 | 2.562 | 1.00000 | 2.319 |
| 1. 55 | 0.99061 | 3.417 | 0.99149 | 3.092 | 0.99230 | 2.798 | 0.99303 | 2.531 | 0.99369 | 2.291 |
| 1.6 | 0.98153 | 3.291 | 0.98327 | 2.977 | 0.98485 | 2.694 | 0.98628 | 2.438 | 0.98757 | 2.206 |
| 1.65 | 0.97297 | 3.083 | 0.9755 I | 2.789 | 0.97781 | 2.524 | 0.97990 | 2.285 | 0.98179 | 2.067 |
| 1.7 | 0.96514 | 2.800 | 0.96840 | 2.533 | 0.97136 | 2.292 | 0.97405 | 2.074 | 0.97649 | 1.877 |
| 1.75 | 0.95821 | 2.448 | 0.96211 | 2.215 | 0.96565 | 2.004 | 0.96886 | 1.813 | 0.97178 | 1.640 |
| 1.8 | 0.95232 | 2.035 | 0.95676 | 1.84 1 | 0.96079 | 1.666 | 0.96445 | 1.507 | 0.96778 | 1.364 |
| 1.85 | 0.94761 | 1.572 | 0.95247 | 1.422 | 0.95690 | 1. 287 | 0.96092 | 1.165 | 0.96457 | 1.053 |
| 1.9 | 0.94417 | 1.070 | 0.94935 | 0.968 | 0.95406 | 0.876 | 0.95834 | 0.793 | 0.96222 | 0.717 |
| 1.95 | 0.94208 | 0.542 | 0.94745 | 0.490 | 0.95232 | 0.443 | 0.95677 | 0.401 | 0.96080 | 0.363 |
| 2.0 | 0.94138 | 0.00 | 0.94681 | 0.00 | 0.95175 | 0.00 | 0.95624 | 0.00 | 0.96032 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\quad \tanh (1.9+i 0.05)=0.95677 / 0^{\circ} .401=0.95677 / 0^{\circ} .24^{\prime} .04^{\prime \prime}$.
$\operatorname { t a n h } ( 1 9 5 + i _ { 1 . 5 } ) = 1 . 0 0 0 \longdiv { 2 ^ { \circ } . 3 ^ { 1 9 } } = 1 . 0 0 0 \longdiv { 2 ^ { \circ } . 1 9 ^ { \prime } . 0 8 ^ { \prime \prime } } .$

Table XII. HYPERBOLIC TANGENTS. $\tanh (x+i q)=r / \gamma$. Continued

|  | $x=2.0$ |  | $x=2.05$ |  | $x=2.1$ |  | $x=2.15$ |  | $x=2.2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | r | $\gamma$ | r | $\gamma$ | F | $\boldsymbol{\gamma}$ | \% | $\gamma$ | r | $\boldsymbol{\gamma}$ |
|  |  | - |  | - |  | - |  | - |  |  |
| $\bigcirc$ | 0.96403 | 0.00 | 0.96740 | 0.00 | 0.97045 | 0.0 | 0.97323 | 0.00 | 0.97574 | 0.00 |
| 0.05 | 0.96446 | 0.328 | 0.96779 | 0.297 | 0.97081 | 0.268 | 0.97355 | 0.243 | 0.97604 | 0.220 |
| 0.1 | 0.96576 | 0.649 | 0.96897 | 0.587 | 0.97188 | 0.531 | 0.97452 | 0.48 I | 0.97692 | 0.435 |
| 0.15 | 0.96789 | 0.953 | 0.97090 | 0.862 | 0.97363 | 0.780 | 0.97611 | 0.706 | 0.97842 | 0.639 |
| 0.2 | 0.97080 | I. 234 | 0.97354 | 1.117 | 0.97603 | 1.010 | 0.97829 | 0.914 | 0.98033 | 0.827 |
| 0.25 | 0.97443 | I. 484 | 0.97684 | 1.343 | 0.97902 | 1.215 | 0.98100 | 1.099 | 0.98279 | 0.995 |
| 0.3 | 0.97870 | 1. 698 | 0.98071 | 1.537 | 0.98253 | 1.390 | 0.98418 | 1.258 | 0.98567 | 1.138 |
| 0.35 | 0.98351 | 1.870 | 0.98507 | 1.692 | 0.98648 | 1.531 | 0.98776 | 1.385 | 0.98892 | 1.253 |
| 0.4 | 0.98875 | 1.996 | 0.98981 | 1.806 | 0.99078 | 1.634 | 0.99165 | 1.479 | 0.99244 | 1.337 |
| 0.45 | 0.99429 | 2.072 | 0.99483 | 1.876 | 0.99532 | х. 698 | 0.99577 | 1. 536 | 0.99617 | 1.389 |
| 0.5 | 1.00000 | 2.098 | 1.00000 | т. 899 | 1.00000 | 1.718 | 1.00000 | 1.555 | 1.00000 | 1.406 |
| 0.55 | 1.00574 | 2.072 | 1.00520 | 1.876 | 1.00470 | ェ. 698 | 1.00425 | 1. 536 | 1.00385 | 1.389 |
| 0.6 | 1.01138 | 1.996 | 1.01029 | 1.806 | 1.00931 | 1.634 | 1.00842 | 1.479 | 1.00762 | 1.337 |
| 0.65 | 1.01676 | 1.870 | 1.01516 | 1. 692 | 1.01371 | 1.531 | 1.01240 | 1.385 | 1.OII2I | 1.253 |
| 0.7 | 1.02176 | 1.698 | 1.01967 | I. 537 | 1.01778 | 1.390 | 1.01608 | 1.258 | 1.01454 | 1.138 |
| 0.75 | 1.02624 | 1.484 | 1.02371 | 1.343 | 1.02143 | 1.215 | 1.01937 | 1.099 | 1.01751 | 0.995 |
| 0.8 | 1.03008 | 1.234 | 1.02718 | 1.117 | 1.02456 | 1.010 | 1.02220 | 0.914 | 1.02006 | 0.827 |
| 0.85 | 1.03318 | 0.953 | 1.02998 | 0.862 | 1.02708 | 0.780 | 1.02447 | 0.706 | 1.02206 | 0.639 |
| 0.9 | 1.03545 | 0.649 | 1.03203 | 0.587 | 1.02894 | 0.53I | 1.02614 | 0.481 | 1.02363 | 0.435 |
| 0.95 | 1.03685 | 0.328 | 1.03328 | 0.297 | 1.03007 | 0.268 | 1.02717 | 0.243 | 1.02455 | 0.220 |
| 1.0 | 1.0373I | 0.00 | 1.03370 | 0.00 | 1.03045 | 0.00 | 1.02751 | 0.00 | 1.02486 | 0.00 |
| 1.05 | 1.03685 | 0.328 | 1.03328 | 0.297 | 1.03007 | 0.268 | 1.02717 | 0.243 | 1.02455 | 0.220 |
| 1. | 1.03545 | 0.649 | 1.03202 | 0.587 | 1.02894 | 0.53I | 1.02614 | 0.481 | 1.02363 | 0.435 |
| 1.15 | 1.03318 | 0.953 | 1.02998 | 0.862 | 1.02708 | 0.780 | 1.02447 | 0.706 | 1.02206 | 0.639 |
| 1.2 | 1.03008 | 1.234 | 1.02718 | 1.117 | 1.02456 | 1.010 | 1.02220 | 0.914 | 1.02006 | 0.827 |
| 1.25 | 1.02624 | 1.484 | 1.02371 | 1.343 | 1.02143 | 1.215 | 1.01937 | 1.099 | 1.01751 | 0.995 |
| 1.3 | 1.02176 | 1.698 | 1.01967 | 1.537 | 1.01778 | 1.390 | 1.01608 | 1.258 | 1.01454 | 1.138 |
| 1.35 | 1.01676 | r. 870 | 1.01516 | 1.692 | 1.01371 | 1.53 I | 1.01240 | 1.385 | 1.01121 | 1.253 |
| 1.4 | 1.OII38 | 1.996 | 1.01029 | 1.806 | 1.00931 | 1.634 | 1.00842 | 1.479 | 1.00762 | 1.337 |
| 1.45 | 1.00574 | 2.072 | 1.00520 | 1.876 | 1.00470 | 1.698 | 1.00425 | 1.536 | 1.00385 | 1.389 |
| 1.5 | 1.00000 | 2.098 | 1.00000 | 1.899 | 1.00000 | 1.718 | 1.00000 | 1.555 | 1.00000 | 1.406 |
| 1. 55 | 0.99429 | 2.072 | 0.99483 | 1.876 | 0.99532 | 1.698 | 0.99577 | 1.536 | 0.99617 | 1.389 |
| 1.6 | 0.98875 | 1.996 | 0.98981 | 1.806 | 0.99078 | 1.634 | 0.99165 | 1.479 | 0.99244 | 1.337 |
| 1.65 | 0.98351 | 1.870 | 0.98507 | 1.692 | 0.98648 | 1.531 | 0.98776 | 1.385 | 0.98892 | 1.253 |
| 1.7 | 0.97870 | 1.698 | 0.98071 | 1.537 | 0.98253 | 1.390 | 0.98418 | 1.258 | 0.98567 | 1.138 |
| 1.75 | 0.97443 | 1.484 | 0.97684 | 1.343 | 0.97902 | 1.215 | 0.98100 | 1.099 | 0.98279 | 0.995 |
| 1.8 | 0.97080 | 1.234 | 0.97354 | 1.117 | 0.97603 | 1.010 | 0.97829 | 0.914 | 0.98033 | 0.827 |
| 1.85 | 0.96789 | 0.953 | 0.97090 | 0.862 | 0.97363 | 0.780 | 0.97611 | 0.706 | 0.97842 | 0.639 |
| 1.9 | 0.96576 | 0.649 | 0.96897 | 0.587 | 0.97188 | 0.531 | 0.97452 | 0.481 | 0.97692 | 0.435 |
| 1.95 | 0.96446 | 0.328 | 0.96779 | 0.297 | 0.9708 I | 0.268 | 0.97355 | 0.243 | 0.97604 | 0.220 |
| 2.0 | 0.96403 | 0.00 | 0.96740 | 0.00 | 0.97045 | 0.00 | 0.97323 | 0.00 | 0.97574 | 0.00 |

Note. - Negative quantities are in heavy type.
Examples. $\tanh (2.2+i \circ)=0.97574 / 0^{\circ}$.
$\tanh \left(2 . 2 + \underline { i } _ { \underline { 1 . 9 5 } ) } = 0 . 9 7 6 0 4 \longdiv { 0 ^ { \circ } . 2 2 0 } = 0 . 9 7 6 0 4 \longdiv { 0 ^ { \circ } . 1 3 ^ { \prime } . 1 2 ^ { \prime \prime } } .\right.$

Table XII. HYPERBOLIC TANGENTS. $\tanh (x+i q)=r / \gamma$. Continued

|  | $x=2.25$ |  | $x=2.3$ |  | $x=2.35$ |  | $x=2.4$ |  | $x=2.45$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | $r$ | $\gamma$ | $\vdash$ | $\gamma$ | 7 | $\boldsymbol{\gamma}$ | 「 | $\boldsymbol{\gamma}$ | r | $\gamma$ |
|  |  | - |  | $\bigcirc$ |  | - |  |  |  |  |
| 0 | 0.97803 | 0.00 | 0.98010 | 0.00 | 0.98197 | 0.00 | 0.98367 | 0.00 | 0.98522 | 0.00 |
| 0.05 | 0.97829 | -0.199 | 0.98034 | 0.180 | 0.98219 | 0.163 | 0.98388 | 0.147 | 0.98540 | 0.134 |
| 0.1 | 0.97909 | 0.394 | 0.98106 | 0.356 | 0.98285 | 0.322 | 0.98447 | 0.291 | 0.98594 | 0.264 |
| 0.15 | 0.98040 | 0.578 | 0.98225 | 0.523 | 0.98393 | 0.473 | 0.98544 | 0.428 | 0.98682 | 0.388 |
| 0.2 | 0.98219 | 0.748 | 0.98387 | 0.677 | 0.98539 | 0.613 | 0.98677 | 0.554 | 0.98802 | 0.501 |
| 0.25 | 0.9844 I | 0.900 | 0.98589 | 0.814 | 0.98722 | 0.737 | 0.98843 | 0.666 | 0.98953 | 0.603 |
| 0.3 | 0.98703 | 1.030 | 0.98825 | 0.932 | 0.98937 | 0.843 | 0.99037 | 0.763 | 0.99129 | 0.690 |
| 0.35 | 0.98997 | 1.134 | 0.99092 | 1.027 | 0.99178 | 0.929 | 0.99256 | 0.84 I | 0.99326 | 0.760 |
| 0.4 | 0.99316 | 1.211 | 0.99381 | 1.095 | 0.99440 | 0.991 | 0.99493 | 0.896 | 0.9954 I | 0.812 |
| 0.45 | 0.99653 | 1.257 | 0.99686 | 1.138 | 0.99716 | 1.030 | 0.99743 | 0.931 | 0.99767 | 0.843 |
| 0.5 | 1.00000 | 1.273 | 1.00000 | 1.152 | 1.00000 | 1.042 | 1.00000 | 0.942 | 1.00000 | 0.853 |
| 0.55 | 1.00348 | 1.257 | 1.00315 | 1.138 | 1.00285 | 1.030 | 1.00258 | 0.931 | 1.00233 | 0.843 |
| 0.6 | 1.00689 | I.2II | 1.00623 | 1.095 | 1.00564 | 0.991 | 1.00510 | 0.896 | 1.00461 | 0.812 |
| 0.65 | 1.01014 | I.I34 | 1.00917 | 1.027 | 1.00829 | 0.929 | 1.00750 | 0.84I | 1.00678 | 0.760 |
| 0.7 | 1.O1314 | 1.030 | 1.01189 | 0.932 | 1.01075 | 0.843 | 1.00972 | 0.763 | I.00879 | 0.690 |
| 0.75 | I.OI 583 | 0.900 | I.OI43I | 0.814 | I.OI 295 | 0.737 | I.OII7I | 0.666 | I. 01058 | 0.603 |
| 0.8 | 1.01814 | 0.748 | 1.01640 | 0.677 | 1.01482 | 0.613 | 1.01340 | 0.554 | 1.01212 | 0.501 |
| 0.85 | 1.01999 | 0.578 | 1.01807 | 0.523 | 1.01634 | 0.473 | 1.01477 | 0.428 | 1.01336 | 0.388 |
| 0.9 | 1.02136 | 0.394 | 1.01930 | -0.356 | 1.01745 | 0.322 | 1.01578 | 0.291 | 1.01426 | 0.264 |
| 0.95 | 1.02219 | -. 199 | 1.02005 | 0.180 | 1.01813 | 0.163 | 1.01639 | 0.147 | 1.01482 | 0.134 |
| 1.0 | 1.02247 | 0.00 | 1.02031 | 0.00 | 1.01836 | 0.00 | 1.01659 | 0.00 | 1.01500 | 0.00 |
| 1.05 | 1.02219 | 0.199 | 1.02005 | 0.180 | 1.01813 | 0.163 | 1.01639 | 0.147 | 1.01482 | 0.134 |
| I.I | 1.02136 | 0.394 | 1.01930 | 0.356 | 1.01745 | 0.322 | 1.01578 | 0.291 | 1.01426 | 0.264 |
| 1.15 | 1.01999 | 0.578 | 1.01807 | 0.523 | 1.01634 | 0.473 | 1.01477 | 0.428 | 1.01336 | 0.388 |
| 1.2 | 1.01814 | 0.748 | I.O1640 | 0.677 | 1.01482 | 0.613 | I.OI 340 | 0.554 | 1.01212 | 0.501 |
| 1.25 | 1.O1583 | 0.900 | 1.01431 | 0.814 | 1.01295 | 0.737 | 1.01171 | 0.666 | 1.01058 | 0.603 |
| 1.3 | 1.01314 | 1.030 | 1.01189 | 0.932 | 1.01075 | 0.843 | 1.00972 | 0.763 | 1.00879 | 0.690 |
| 1.35 | 1.01014 | 1. 134 | 1.00917 | 1.027 | 1.00829 | 0.929 | 1.00750 | 0.841 | 1.00678 | 0.760 |
| 1.4 | 1.00689 | 1.211 | 1.00623 | 1.095 | 1.00564 | 0.991 | 1.00510 | 0.896 | 1.00461 | 0.812 |
| 1.45 | 1.00348 | 1.257 | 1.00315 | 1.138 | 1.00285 | 1.030 | 1.00258 | 0.931 | 1.00233 | 0.843 |
| 1.5 | 1.00000 | 1.273 | 1.00000 | 1.152 | 1.00000 | 1.042 | 1.00000 | 0.942 | 1.00000 | 0.853 |
| 1.55 | 0.99653 | 1.257 | 0.99686 | 1.138 | 0.99716 | 1.030 | 0.99743 | 0.931 | 0.99767 | 0.843 |
| 1.6 | 0.99316 | 1.211 | 0.9938 r | 1.095 | 0.99440 | 0.991 | 0.99493 | 0.896 | 0.99541 | 0.812 |
| 1.65 | 0.98997 | I. 134 | 0.99092 | 1.027 | 0.99178 | 0.929 | 0.99256 | 0.84 I | 0.99326 | 0.760 |
| 1.7 | 0.98703 | 1.030 | 0.98825 | 0.932 | 0.98937 | 0.843 | 0.99037 | 0.763 | 0.99129 | 0.690 |
| 1.75 | 0.98441 | 0.900 | 0.98589 | 0.814 | 0.98722 | 0.737 | 0.98843 | 0.666 | 0.98953 | 0.603 |
| 1.8 | 0.98219 | 0.748 | 0.98387 | 0.677 | 0.98539 | 0.613 | 0.98677 | 0.554 | 0.98802 | 0.501 |
| 1.85 | 0.98040 | 0.578 | 0.98225 | 0.523 | 0.98393 | 0.473 | 0.98544 | 0.428 | 0.98682 | 0.388 |
| 1.9 | 0.97909 | 0.394 | 0.98106 | 0.356 | 0.98285 | 0.322 | 0.98447 | 0.291 | 0.98594 | 0.264 |
| I. 95 | 0.97829 | 0.199 | 0.98034 | 0.180 | 0.98219 | 0.163 | 0.98388 | 0.147 | 0.98540 | 0.134 |
| 2.0 | 0.97803 | 0.00 | 0.98010 | 0.00 | 0.98197 | 0.00 | 0.98367 | 0.00 | 0.98522 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh (2.45+i \underline{0.7})=1.00879 / 0^{\circ} .690=1.00879 / 0^{\circ} .41^{\prime} .24^{\prime \prime}$. $\operatorname { t a n h } ( 2 . 4 5 + i _ { \underline { \text { I. } } } ) = 0 . 9 9 1 2 9 \longdiv { 0 ^ { \circ } . 6 9 0 } = 0 . 9 9 1 2 9 \longdiv { 0 ^ { \circ } . 4 1 ^ { \prime } . 2 4 ^ { \prime \prime } } .$

Table XII. HYPERBOLIC TANGENTS. $\tanh (x+i q)=r / \gamma$. Continued

|  | $x=2.5$ |  | $x=2.55$ |  | $x=2.6$ |  | $x=2.65$ |  | $x=2.7$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ | 1 | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ | F | $\boldsymbol{\gamma}$ |
|  |  | - |  | - |  | - |  | - |  |  |
| $\bigcirc$ | 0.9866 r | 0.00 | 0.98788 | 0.00 | 0.98903 | 0.00 | 0.99007 | 0.00 | 0.99101 | 0. |
| 0.05 | 0.98678 | 0.121 | 0.98803 | 0.109 | 0.98916 | 0.099 | 0.99019 | 0.089 | 0.99112 | 0.081 |
| 0.1 | 0.98727 | 0.239 | 0.98847 | 0.216 | 0.98956 | 0.195 | 0.99055 | 0.177 | 0.99145 | 0.160 |
| 0.15 | 0.98806 | 0.350 | 0.98919 | 0.317 | 0.99022 | 0.287 | 0.99114 | 0.260 | 0.99198 | 0.235 |
| 0.2 | 0.98916 | 0.454 | 0.99018 | 0.411 | 0.99111 | 0.372 | 0.99196 | 0.336 | 0.99272 | 0.304 |
| 0.25 | 0.99052 | 0.546 | 0.99142 | 0.494 | 0.99223 | 0.447 | 0.99297 | 0.405 | 0.99363 | 0.366 |
| 0.3 | 0.99211 | 0.625 | 0.99286 | 0.565 | 0.99354 | 0.512 | 0.99415 | 0.463 | 0.99471 | 0.419 |
| 0.35 | 0.99390 | 0.688 | 0.99448 | 0.623 | 0.99500 | 0.563 | 0.99548 | 0.510 | 0.99591 | 0.46 I |
| 0.4 | 0.99584 | 0.734 | 0.99624 | 0.665 | 0.99660 | 0.601 | 0.99692 | 0.544 | 0.99721 | 0.492 |
| 0.45 | 0.99789 | 0.763 | 0.99809 | 0.690 | 0.99828 | 0.624 | 0.99844 | 0.565 | 0.99859 | 0.511 |
| 0.5 | 1.00000 | 0.772 | 1.00000 | 0.699 | 1.00000 | 0.632 | 1.00000 | 0.573 | 1.00000 | 0.518 |
| 0.55 | 1.00211 | 0.763 | 1.00191 | 0.690 | 1.00173 | 0.624 | 1.00156 | 0.565 | 1.00141 | 0.511 |
| 0.6 | 1.00417 | 0.734 | 1.00377 | 0.665 | 1.00342 | 0.601 | 1.00309 | 0.544 | 1.00280 | 0.492 |
| 0.65 | 1.00614 | 0.688 | 1.00555 | 0.623 | 1.00502 | 0.563 | 1.00454 | 0.510 | 1.00411 | 0.461 |
| 0.7 | 1.00795 | 0.625 | 1.00719 | 0.565 | 1.00651 | 0.512 | 1.00589 | 0.463 | 1.00532 | 0.419 |
| 0.75 | 1.00958 | 0.546 | 1.00866 | 0.494 | 1.00783 | 0.447 | 1.00708 | 0.405 | 1.00641 | 0.366 |
| 0.8 | 1.01096 | 0.454 | 1.00991 | 0.411 | 1.00897 | 0.372 | 1.00811 | 0.336 | 1.00733 | 0.304 |
| 0.85 | 1.01208 | 0.350 | 1.01092 | 0.317 | r.00988 | 0.287 | 1.00894 | 0.260 | 1.00808 | 0.235 |
| 0.9 | 1.01290 | 0.239 | I.O1166 | 0.216 | 1.01055 | 0.195 | 1.00954 | 0.177 | 1.00863 | 0.160 |
| 0.95 | 1.01340 | O.I2I | r.O1212 | 0.109 | 1.01096 | 0.099 | 1.00991 | 0.089 | 1.00896 | 0.081 |
| 1.0 | I.O1357 | 0.00 | 1.01227 | 0.00 | I.OIIIO | 0.00 | 1.01003 | 0.00 | 1.00907 | 0.00 |
| 1.05 | 1.01340 | 0.121 | 1.01212 | 0.109 | r.orog 6 | 0.099 | 1.00991 | 0.089 | 1.00896 | 0.08r |
| I.I | 1.01290 | 0.239 | I.OII66 | 0.216 | 1.01055 | 0.195 | 1.00954 | 0.177 | I.00863 | 0.160 |
| 1.15 | 1.01208 | 0.350 | r.orog2 | 0.317 | 1.00988 | 0.287 | 1.00894 | 0.260 | 1.00808 | 0.235 |
| 1.2 | 1.01096 | 0.454 | 1.00991 | 0.411 | 1.00897 | 0.372 | 1.00811 | 0.336 | 1.00733 | 0.304 |
| 1.25 | 1.00958 | 0.546 | 1.00866 | 0.494 | 1.00783 | 0.447 | 1.00708 | 0.405 | 1.0064I | 0.366 |
| 1.3 | 1.00795 | 0.625 | 1.00719 | 0.565 | 1.00651 | 0.512 | 1.00589 | 0.463 | r.00532 | 0.419 |
| 1.35 | r.00614 | 0.688 | 1.00555 | 0.623 | 1.00502 | 0.563 | 1.00454 | 0.510 | 1.00411 | 0.46 r |
| 1.4 | 1.00417 | 0.734 | 1.00377 | 0.665 | 1.00342 | 0.601 | 1.00309 | 0.544 | 1.00280 | 0.492 |
| 1.45 | 1.00211 | 0.763 | 1.00191 | 0.690 | 1.00173 | 0.624 | 1.00156 | 0.565 | r.0014 | 0.51 r |
| 1.5 | 1.00000 | 0.772 | 1.00000 | 0.699 | 1.00000 | 0.632 | 1.00000 | 0.573 | 1.00000 | 0.518 |
| 1.55 | 0.99789 | 0.763 | 0.99809 | 0.690 | 0.99828 | 0.624 | 0.99844 | 0.565 | 0.99859 | 0.511 |
| 1.6 | 0.99584 | 0.734 | 0.99624 | 0.665 | 0.99660 | 0.601 | 0.99692 | 0.544 | 0.99721 | 0.492 |
| 1.65 | 0.99390 | 0.688 | 0.99448 | 0.623 | 0.99500 | 0.563 | 0.99548 | 0.510 | 0.99591 | 0.46r |
| 1.7 | 0.99211 | 0.625 | 0.99286 | 0.565 | 0.99354 | 0.512 | $0.994{ }^{1} 5$ | 0.463 | 0.9947 I | 0.419 |
| 1.75 | 0.99052 | 0.546 | 0.99142 | 0.494 | 0.99223 | 0.447 | 0.99297 | 0.405 | 0.99363 | 0.366 |
| 1.8 | 0.98916 | 0.454 | 0.99018 | 0.411 | 0.99111 | 0.372 | 0.99196 | 0.336 | 0.99272 | 0.304 |
| 1.85 | 0.98806 | 0.350 | 0.98919 | 0.317 | - 0.99022 | 0.287 | 0.99114 | 0.260 | 0.99198 | 0.235 |
| 1.9 | 0.98727 | 0.239 | 0.98847 | 0.216 | 0.98956 | 0.195 | 0.99055 | 0.177 | 0.99145 | 0.160 |
| 1.95 | 0.98678 | 0.121 | 0.98803 | 0.109 | 0.98916 | 0.099 | 0.99019 | 0.089 | 0.99112 | 0.08I |
| 2.0 | 0.9866 r | 0.00 | 0.98788 | 0.00 | 0.98903 | 0.00 | 0.99007 | 0.00 | 0.99101 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh (2.5+i 0.25)=0.9905^{2} \angle 0^{\circ} .546=0.99052 / 0^{\circ} .32^{\prime} .46^{\prime \prime}$.
$\operatorname { t a n h } ( 2 . 5 + i _ { 1 . 7 5 } ) = 0 . 9 9 0 5 ^ { 2 } \sqrt { 0 ^ { \circ } . 5 4 6 } = 0 . 9 9 0 5 _ { 2 } \longdiv { 0 ^ { \circ } . 3 2 ^ { \prime } \cdot 4 6 ^ { \prime \prime } } .$
[132]

Table XII. HYPERBOLIC TANGENTS. $\tanh (x+i q)=r / \gamma$. Continued

|  | $x=2.75$ |  | $x=2.8$ |  | $x=2.85$ |  | $x=2.9$ |  | $x=2.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | F | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ |
|  |  | $\bigcirc$ |  |  |  |  |  |  |  |  |
| $\bigcirc$ | 0.99186 | 0.00 | 0.99263 | 0.0 | 0.99333 | 0.0 | 0.99396 | 0.00 | 0.99454 | 0.00 |
| 0.05 | 0.99196 | 0.073 | 0.99272 | 0.066 | 0.99341 | 0.060 | 0.99404 | 0.054 | 0.99460 | 0.049 |
| 0.1 | 0.99226 | 0.145 | 0.99299 | 0.131 | 0.99366 | 0.119 | 0.99426 | 0.107 | 0.99480 | 0.097 |
| 0.15 | 0.99275 | 0.213 | 0.99343 | 0.192 . | 0.99406 | 0.174 | 0.99462 | 0.158 | 0.99513 | -. 143 |
| 0.2 | 0.99341 | 0.275 | 0.99404 | 0.249 | 0.99460 | 0.226 | 0.995 II | 0.204 | 0.99558 | 0.184 |
| 0.25 | 0.99424 | 0.331 | 0.99478 | 0.300 | 0.99528 | 0.271 | 0.99573 | 0.245 | 0.99613 | 0.222 |
| 0.3 | $0.995{ }^{21}$ | 0.379 | 0.99566 | 0.343 | 0.99607 | 0.310 | 0.99645 | 0.28I | 0.99679 | 0.254 |
| 0.35 | 0.99630 | 0.417 | 0.99665 | 0.378 | 0.99697 | 0.342 | 0.99726 | 0.309 | 0.99752 | 0.280 |
| 0.4 | 0.99748 | 0.446 | 0.99772 | 0.403 | 0.99793 | 0.365 | 0.99813 | 0.330 | 0.99831 | 0.299 |
| 0.45 | 0.99872 | 0.463 | 0.99884 | 0.419 | 0.99895 | 0.379 | 0.99905 | 0.343 | 0.99914 | 0.310 |
| 0.5 | 1.00000 | 0.468 | 1.00000 | 0.424 | $\underline{1.00000}$ | 0.383 | 1.00000 | 0.347 | 1.00000 | 0.3I3 |
| 0.55 | 1.00128 | 0.463 | r.001r6 | 0.419 | 1.00105 | 0.379 | 1.00095 | 0.343 | 1.00086 | 0.310 |
| 0.6 | 1.00253 | 0.446 | 1.00229 | 0.403 | 1.00207 | 0.365 | 1.00187 | 0.330 | 1.00169 | 0.299 |
| 0.65 | 1.00372 | 0.417 | 1.00336 | 0.378 | 1.00304 | 0.342 | 1.00275 | 0.309 | 1.00249 | 0.280 |
| 0.7 | 1.00482 | 0.379 | 1.00436 | 0.343 | 1.00394 | 0.310 | 1.00356 | 0.28 I | 1.00323 | 0.254 |
| 0.75 | 1.00580 | 0.331 | 1.00524 | 0.300 | 1.00474 | 0.271 | 1.00429 | 0.245 | 1.00388 | 0.222 |
| 0.8 | 1.00664 | 0.275 | 1.00600 | 0.249 | 1.00543 | 0.226 | 1.00491 | 0.204 | 1.00444 | 0.184 |
| 0.85 | 1.00731 | 0.213 | 1.00661 | 0.192 | 1.00598 | 0.174 | 1.00541 | 0.158 | 1.00489 | 0.143 |
| 0.9 | 1.00780 | 0.145 | 1.00706 | 0.131 | 1.00638 | 0.119 | 1.00578 | 0.107 | $1.005^{22}$ | 0.097 |
| 0.95 | 1.00810 | 0.073 | 1.00733 | 0.066 | 1.00663 | 0.060 | 1.00600 | 0.054 | 1.00543 | 0.049 |
| 1.0 | 1.0082 I | 0.00 | 1.00742 | 0.00 | 1.00671 | 0.00 | 1.00607 | 0.00 | 1.00549 | 0.00 |
| 1.05 | 1.00810 | 0.073 | 1.00733 | 0.066 | 1.00663 | 0.060 | 1.00600 | 0.054 | 1.00543 | 0.049 |
| 1.1 | 1.00780 | 0.145 | 1.00706 | 0.131 | 1.00638 | 0.119 | 1.00578 | 0.107 | 1.00522 | 0.097 |
| 1.15 | 1.00731 | 0.213 | 1.00661 | 0.192 | 1.00598 | 0.174 | I.00541 | 0.158 | 1.00489 | 0.143 |
| 1.2 | 1.00664 | 0.275 | 1.00600 | 0.249 | 1.00543 | 0.226 | 1.00491 | 0.204 | 1.00444 | 0.184 |
| 1.25 | 1.00580 | 0.331 | 1.00524 | 0.300 | 1.00474 | 0.271 | 1.00429 | 0.245 | 1.00388 | 0.222 |
| 1.3 | 1.00482 | 0.379 | 1.00436 | 0.343 | 1.00394 | 0.310 | 1.00356 | 0.281 | 1.00323 | 0.254 |
| 1.35 | 1.00372 | 0.417 | 1.00336 | 0.378 | 1.00304 | 0.342 | 1.00275 | 0.309 | 1.00249 | 0.280 |
| 1.4 | 1.00253 | 0.446 | 1.00229 | 0.403 | 1.00207 | 0.365 | 1.00187 | 0.330 | 1.00169 | 0.299 |
| 1.45 | 1.00128 | 0.463 | 1.00116 | 0.419 | 1.00105 | 0.379 | 1.00095 | 0.343 | 1.00086 | 0.310 |
| 1.5 | 1.00000 | 0.468 | 1.00000 | 0.424 | 1.00000 | 0.383 | 1.00000 | 0.347 | 1.00000 | 0.313 |
| 1.55 | 0.99872 | 0.463 | 0.99884 | 0.419 | 0.99895 | 0.379 | 0.99905 | 0.343 | 0.99914 | 0.310 |
| 1.6 | 0.99748 | 0.446 | 0.99772 | 0.403 | 0.99793 | 0.365 | 0.99813 | 0.330 | 0.99831 | 0.299 |
| 1.65 | 0.99630 | 0.417 | 0.99665 | 0.378 | 0.99697 | 0.342 | 0.99726 | 0.309 | 0.99752 | 0.280 |
| 1.7 | 0.9952 I | 0.379 | 0.99566 | 0.343 | 0.99607 | 0.310 | 0.99645 | 0.281 | 0.99679 | 0.254 |
| 1.75 | 0.99424 | 0.331 | 0.99478 | 0.300 | 0.99528 | 0.271 | 0.99573 | 0.245 | 0.99613 | 0.222 |
| 1.8 | 0.99341 | 0.275 | 0.99404 | 0.249 | 0.99460 | 0.226 | 0.99511 | 0.204 | 0.99558 | 0.184 |
| 1.85 | 0.99275 | 0.213 | 0.99343 | 0.192 | 0.99406 | 0.174 | 0.99462 | 0.158 | 0.99513 | 0.143 |
| 1.9 | 0.99226 | 0.145 | 0.99299 | 0.131 | 0.99366 | 0.119 | 0.99426 | 0.107 | 0.99480 | 0.097 |
| 1.95 | 0.99196 | 0.073 | 0.99272 | 0.066 | 0.99341 | 0.060 | 0.99404 | 0.054 | 0.99460 | 0.049 |
| 2.0 | 0.99186 | 0.00 | 0.99263 | 0.00 | 0.99333 | 0.00 | 0.99396 | 0.00 | 0.99454 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh (2.9+i \underline{0.5})=1.0000 \angle 0^{\circ} .347=1.0000 / 0^{\circ} .26^{\prime} .49^{\prime \prime}$.
$\operatorname { t a n h } ( 2 . 9 5 + i ^ { 1 . 7 5 } ) = 0 . 9 9 6 1 3 \longdiv { 0 ^ { \circ } . 2 2 2 } = 0 . 9 9 6 1 3 \longdiv { 0 ^ { \circ } . 1 3 ^ { \prime } . 1 9 ^ { \prime \prime } } .$

Table XII. HYPERBOLIC TANGENTS. $\tanh (x+i q)=r / \gamma$. Continued

|  | $x=3.0$ |  | $x=3.05$ |  | $x=3.1$ |  | $x=3.15$ |  | $x=3.2$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | r | $\gamma$ | $r$ | $\gamma$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ |
|  |  | - |  | - |  | - |  | $\bigcirc$ |  |  |
| $\bigcirc$ | 0.99505 | 0.00 | 0.99552 | 0.00 | 0.99595 | 0.00 | 0.99633 | 0.00 | 0.99668 | 0.00 |
| 0.05 | 0.995 II | 0.044 | 0.99558 | 0.040 | 0.99600 | 0.037 | 0.99638 | 0.033 | 0.99672 | 0.030 |
| 0.1 | 0.99530 | 0.088 | 0.99575 | 0.079 | 0.99615 | 0.072 | 0.99651 | 0.065 | 0.99685 | 0.059 |
| 0.15 | 0.99559 | 0.129 | 0.99601 | 0.117 | 0.99639 | 0.106 | 0.99673 | 0.096 | 0.99704 | 0.086 |
| 0.2 | 0.99600 | 0.167 | 0.99638 | 0.151 | 0.99672 | 0.137 | 0.99703 | 0.124 | 0.99732 | 0.112 |
| 0.25 | 0.99650 | 0.201 | 0.99683 | 0.182 | 0.99714 | 0.165 | 0.99741 | 0.149 | 0.99765 | 0.135 |
| 0.3 | 0.99709 | 0.229 | 0.99737 | 0.208 | 0.99762 | 0.188 | 0.99784 | 0.170 | 0.99805 | 0.154 |
| 0.35 | 0.99775 | 0.253 | 0.99797 | 0.229 | 0.99816 | 0.207 | 0.99833 | 0.188 | 0.99849 | 0.170 |
| 0.4 | 0.99847 | 0.270 | 0.99862 | 0.244 | 0.99875 | 0.221 | 0.99887 | 0.200 | 0.99897 | 0.181 |
| 0.45 | 0.99923 | 0.28I | 0.99930 | 0.254 | 0.99937 | 0.230 | 0.99943 | 0.208 | 0.99948 | 0.188 |
| 0.5 | 1.00000 | 0.284 | 1.00000 | 0.257 | 1.00000 | 0.233 | 1.00000 | 0.21 | 1.00000 | 0.191 |
| 0.55 | 1.00078 | 0.281 | 1.00070 | 0.254 | 1.00064 | 0.230 | 1.00058 | 0.208 | 1.00052 | 0.188 |
| 0.6 | 1.00153 | 0.270 | 1.00139 | 0.244 | 1.00125 | 0.221 | 1.00114 | 0.200 | 1.00103 | 0.181 |
| 0.65 | 1.00225 | 0.253 | 1.00204 | 0.229 | 1.00185 | 0.207 | 1.00167 | 0.188 | 1.00151 | 0.170 |
| 0.7 | 1.00292 | 0.229 | I 00264 | 0.208 | 1.00239 | 0.188 | 1.00216 | 0.170 | r.00196 | 0.154 |
| 0.75 | 1.00351 | 0.201 | 1.00318 | 0.182 | 1.00287 | 0.165 | 1.00260 | 0.149 | 1.00235 | 0.135 |
| 0.8 | 1.00402 | 0.167 | 1.00363 | 0.151 | 1.00329 | 0.137 | 1.00297 | 0.124 | 1.00269 | 0.112 |
| 0.85 | 1.00443 | 0.129 | 1.00400 | 0.117 | 1.00360 | 0.106 | 1.00328 | 0.096 | 1.00297 | 0.086 |
| 0.9 | 1.00473 | 0.088 | 1.00427 | 0.079 | 1.00387 | 0.072 | 1.00350 | 0.065 | 1.00316 | 0.059 |
| 0.95 | 1.00491 | 0.044 | 1.00444 | 0.040 | 1.00399 | 0.037 | 1.00363 | 0.033 | 1.00329 | 0.030 |
| 1.0 | 1.00497 | 0.00 | 1.00450 | 0.00 | 1.00407 | 0.00 | 1.00368 | 0.00 | 1.00333 | 0.00 |
| 1.05 | 1.00491 | 0.044 | 1. 00444 | 0.040 | 1.00399 | 0.037 | 1.00363 | 0.033 | 1.00329 | 0.030 |
| I.I | 1.00473 | 0.088 | 1.00427 | 0.079 | 1.00387 | 0.072 | 1.00350 | 0.065 | 1.00316 | 0.059 |
| 1.15 | 1.00443 | 0.129 | 1.00400 | 0.117 | 1.00360 | 0.106 | 1.00328 | 0.096 | 1.00297 | 0.086 |
| 1.2 | 1.00402 | 0.167 | 1.00363 | 0.151 | 1.00329 | 0.137 | 1.00297 | 0.124 | 1.00269 | 0.112 |
| 1.25 | 1.00351 | 0.201 | 1.00318 | 0.182 | 1.00287 | 0.165 | 1.00260 | 0.149 | 1.00235 | 0.135 |
| 1.3 | 1.00292 | 0.229 | 1.00264 | 0.208 | 1.00239 | 0.18 | 1.00216 | 0.170 | 1.00196 | 0.154 |
| I. 35 | 1.00225 | 0.253 | 1.00204 | 0.229 | 1.00185 | 0.207 | 1.00167 | 0.188 | 1.00151 | 0.170 |
| I. 4 | 1.00153 | 0.270 | r.001 39 | 0.244 | 1.00125 | 0.2 | 1.00114 | 0.200 | 1.00103 | 0.181 |
| I. 45 | 1.00078 | 0.28 | 1.00070 | 0.254 | 1.00064 | 0.230 | 1.00058 | 0.208 | $1.0005^{2}$ | 0.188 |
| I. 5 | 1.00000 | 0.284 | 1.00000 | 0.257 | 1.00000 | 0.233 | 1.00000 | 0.211 | 1.00000 | 0.191 |
| 1.55 | 0.99923 | 0.28I | 0.99930 | 0.254 | 0.99937 | 0.230 | 0.99943 | 0.208 | 0.99948 | 0.188 |
| 1.6 | 0.99847 | 0.270 | 0.99862 | 0.244 | 0.99875 | 0.22 | 0.99887 | 0.200 | 0.99897 | 0.181 |
| 1.65 | 0.99775 | 0.253 | 0.99797 | 0.229 | 0.99816 | 0.207 | 0.99833 | 0.188 | 0.99849 | 0.170 |
| 1.7 | 0.99709 | 0.229 | 0.99737 | 0.208 | 0.99762 | 0.188 | 0.99784 | 0.170 | 0.99805 | 0.154 |
| 1.75 | 0.99650 | 0.201 | 0.99683 | 0.182 | 0.99714 | 0.165 | 0.99741 | 0.149 | 0.99765 | 0.135 |
| 1.8 | 0.99600 | 0.167 | 0.99638 | 0.151 | 0.99672 | 0.137 | 0.99703 | 0.124 | 0.99732 | 0.112 |
| 1.85 | 0.99559 | 0.129 | 0.99601 | 0.117 | 0.99639 | 0.106 | 0.99673 | 0.096 | 0.99704 | 0.086 |
| 1.9 | 0.99530 | 0.088 | 0.99575 | 0.079 | 0.99615 | 0.072 | 0.99651 | 0.065 | 0.99685 | 0.059 |
| 1.95 | 0.995 II | 0.044 | 0.99558 | 0.040 | 0.99600 | 0.037 | 0.99638 | 0.033 | 0.99672 | 0.030 |
| 2.0 | 0.99505 | 0.00 | 0.99552 | 0.00 | 0.99595 | 0.00 | 0.99633 | 0.00 | 0.99668 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh (3.2+i 0)=0.99668 / 0^{\circ}$.
$\operatorname { t a n h } ( 3 . 2 + i _ { 1 . 0 5 } ) = 1 . 0 0 3 2 9 \longdiv { 0 ^ { \circ } . 0 3 0 } = 1 . 0 0 3 2 9 \longdiv { 0 ^ { \circ } . 1 ^ { \prime } . 4 8 ^ { \prime \prime } } .$

Table XII. HYPERBOLIC TANGENTS. $\tanh (x+i q)=r / \gamma$. Continued

|  | $x=3.25$ |  | $x=3.3$ |  | $x=3.35$ |  | $x=3.4$ |  | $x=3.45$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | \% | $\boldsymbol{\gamma}$ | $r$ | $\cdot \gamma$ | \% | $\boldsymbol{\gamma}$ | $\%$ | 7 | r | $\boldsymbol{\gamma}$ |
|  |  | $\bigcirc$ |  | - |  | - |  | - |  |  |
| $\bigcirc$ | 0.99700 | 0.00 | 0.99728 | 0.00 | 0.99754 | 0.00 | 0.99777 | 0.00 | 0.99799 | 0.00 |
| 0.05 | 0.99703 | 0.027 | 0.99732 | 0.024 | 0.99757 | 0.022 | 0.99780 | 0.020 | 0.99801 | 0.018 |
| 0.1 | 0.99714 | 0.053 | 0.99741 | 0.048 | 0.99766 | 0.044 | 0.99788 | 0.039 | 0.99809 | 0.036 |
| 0.15 | 0.99732 | 0.078 | 0.99758 | 0.071 | 0.99781 | -0.064 | 0.99802 | 0.058 | 0.9982 I | 0.052 |
| 0.2 | 0.99757 | o.ror | 0.99780 | 0.092 | 0.99801 | 0.083 | 0.99820 | 0.075 | 0.99837 | 0.068 |
| 0.25 | 0.99788 | 0.122 | 0.99807 | 0.110 | 0.99826 | 0.100 | 0.99843 | 0.090 | 0.99858 | 0.082 |
| 0.3 | 0.99823 | 0.139 | 0.99840 | 0.126 | 0.99855 | 0.114 | 0.99869 | 0.103 | 0.99882 | 0.094 |
| 0.35 | 0.99864 | 0.153 | 0.98877 | 0.139 | 0.99888 | 0.126 | 0.99899 | -.114 | 0.99909 | 0.103 |
| 0.4 | 0.99907 | 0.164 | 0.99916 | 0.148 | 0.99924 | 0.134 | 0.99931 | 0.121 | 0.99938 | 0.110 |
| 0.45 | 0.99953 | 0.170 | 0.99958 | 0.154 | 0.99962 | -.139 | 0.99965 | 0.126 | 0.99968 | 0.114 |
| 0.5 | 1.00000 | 0.172 | 1.00000 | 0.156 | 1.00000 | 0.141 | 1.00000 | 0.128 | 1.00000 | 0.116 |
| 0.55 | 1.00047 | 0.170 | 1.00042 | 0.154 | 1.00039 | 0.139 | 1.00035 | 0.126 | 1.00032 | 0.114 |
| 0.6 | 1.00093 | 0.164 | 1.00084 | 0.148 | 1.00076 | 0.134 | 1.00069 | 0.121 | 1.00062 | 0.110 |
| 0.65 | 1.00137 | 0.153 | 1.001 24 | 0.139 | 1.00112 | 0.126 | 1.00101 | 0.114 | 1.00092 | 0.103 |
| 0.7 | 1.00177 | 0.139 | 1.00160 | 0.126 | 1.00145 | 0.114 | 1.00131 | 0.103 | 1.00118 | 0.094 |
| 0.75 | 1.00213 | 0.122 | 1.00193 | 0.110 | 1.00174 | 0.100 | 1.00158 | 0.090 | 1.00143 | 0.082 |
| 0.8 | 1.00244 | 0.101 | 1.00220 | 0.092 | 1.00199 | 0.083 | 1.00180 | 0.075 | 1.00163 | 0.068 |
| 0.85 | 1.00268 | 0.078 | 1.00243 | 0.071 | 1.00220 | 0.064 | 1.00199 | 0.058 | 1.00180 | 0.052 |
| 0.9 | 1.00286 | 0.053 | 1.00259 | 0.048 | 1.00234 | 0.044 | 1.00212 | 0.039 | 1.00192 | 0.036 |
| 0.95 | 1.00297 | 0.027 | 1.00269 | 0.024 | 1.00243 | 0.022 | 1.00220 | 0.020 | 1.00199 | 0.018 |
| 1.0 | 1.00301 | 0.00 | 1.00273 | 0.00 | 1.00246 | 0.00 | 1.00223 | 0.00 | 1.00202 | 0.0 |
| 1.05 | 1.00297 | 0.027 | 1.00269 | 0.024 | 1.00243 | 0.022 | 1.00220 | 0.020 | 1.00199 | 0.018 |
| I.I | 1.00286 | 0.053 | 1.00259 | 0.048 | 1.00234 | 0.044 | 1.00212 | 0.039 | 1.00192 | 0.036 |
| 1.15 | 1.00268 | 0.078 | 1.00243 | 0.071 | 1.00220 | 0.064 | 1.00199 | 0.058 | 1.00180 | 0.052 |
| I. 2 | 1.00244 | 0.101 | 1.00220 | 0.092 | 1.00199 | 0.083 | 1.00180 | 0.075 | 1.00163 | . 0.068 |
| 1.25 | 1.00213 | 0.122 | 1.00193 | 0.110 | 1.00174 | 0.100 | 1.00158 | 0.090 | I.OOI43 | 0.082 |
| 1.3 | 1.00177 | 0.139 | 1.00160 | 0.126 | 1.00145 | 0.114 | 1.00131 | 0.103 | 1.00118 | 0.094 |
| 1.35 | 1.00137 | 0.153 | 1.00124 | 0.139 | 1.001 12 | 0.126 | 1.00101 | 0.114 | 1.00092 | 0.103 |
| 1.4 | 1.00093 | 0.164 | 1.00084 | 0.148 | 1.00076 | 0.134 | 1.00069 | 0.121 | 1.00062 | 0.1 |
| 1.45 | 1.00047 | 0.170 | 1.00042 | 0.154 | 1.00039 | 0.139 | 1.00035 | 0.126 | 1.00032 | 0.11 |
| 1.5 | 1.00000 | 0.172 | 1.00000 | 0.156 | 1.00000 | 0.141 | 1.00000 | 0.128 | 1.00000 | 0.116 |
| 1.55 | 0.99953 | 0.170 | 0.99958 | 0.154 | 0.99962 | 0.139 | 0.99965 | 0.126 | 0.99968 | 0.114 |
| I. 6 | 0.99907 | 0.164 | 0.99916 | 0.148 | 0.99924 | 0.134 | 0.9993 I | 0.121 | 0.99938 | 0.110 |
| 1.65 | 0.99864 | 0.153 | 0.99877 | 0.139 | 0.99888 | 0.126 | 0.99899 | 0.114 | 0.99909 | 0.103 |
| 1.7 | 0.99823 | 0.139 | 0.99840 | 0.126 | 0.99855 | 0.114 | 0.99869 | 0.103 | 0.99882 | 0.094 |
| 1.75 | 0.99788 | 0.122 | 0.99807 | 0.110 | 0.99826 | 0.100 | 0.99843 | 0.090 | 0.99858 | 0.082 |
| 1.8 | 0.99757 | 0.101 | 0.99780 | 0.092 | 0.99801 | 0.083 | 0.99820 | 0.075 | 0.99837 | 0.068 |
| 1.85 | 0.99732 | 0.078 | 0.99758 | 0.071 | 0.99781 | 0.064 | 0.99802 | 0.058 | 0.99821 | 0.052 |
| 1.9 | 0.99714 | 0.053 | 0.99741 | 0.048 | 0.99766 | 0.044 | 0.99788 | 0.039 | 0.99809 | 0.036 |
| 1.95 | 0.99703 | 0.027 | 0.99732 | 0.024 | 0.99757 | 0.022 | 0.99780 | 0.020 | 0.99801 | 0.018 |
| 2.0 | 0.99700 | 0.00 | 0.99728 | 0.00 | 0.99754 | 0.00 | 0.99777 | 0.00 | 0.99799 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh (3.4+i \underline{0.7})=1.00131 / 0^{\circ} .103=1.00131 \angle 0^{\circ} .06^{\prime} .11^{\prime \prime}$.
$\operatorname { t a n h } ( 3 . 4 5 + i _ { \text { I.4 } } ) = 1 . 0 0 0 6 2 \longdiv { 0 ^ { \circ } . 1 1 0 } = 1 . 0 0 0 6 2 \longdiv { 0 ^ { \circ } . 0 6 ^ { \prime } \cdot 3 ^ { \prime \prime \prime } } .$

Table XII. HYPERBOLIC TANGENTS. $\tanh (x+i q)=r / \gamma$. Continued

|  | $x=3.5$ |  | $x=3.55$ |  | $x=3.6$ |  | $x=3.65$ |  | $x=3.7$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\gamma$ | ' | $\gamma$ | $r$ | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ |
|  |  | $\bigcirc$ |  | - |  |  |  |  |  |  |
| $\bigcirc$ | 0.99818 | 0.00 | 0.99835 | 0.00 | 0.99851 | 0.00 | 0.99865 | 0.00 | 0.99878 | 0.00 |
| 0.05 | 0.99820 | 0.016 | 0.99837 | 0.015 | 0.99853 | 0.013 | 0.99867 | 0.012 | 0.99879 | 0.011 |
| 0.1 | 0.99827 | 0.032 | 0.99843 | 0.029 | 0.99858 | 0.026 | 0.99872 | 0.024 | 0.99884 | 22 |
| 0.15 | 0.99838 | 0.047 | 0.99853 | 0.043 | 0.99867 | 0.039 | 0.99880 | 0.035 | 0.99891 | 0.032 |
| 0.2 | 0.99853 | 0.061 | 0.99867 | 0.055 | 0.99879 | 0.050 | 0.99891 | 0.046 | 0.99901 | 0.041 |
| 0.25 | 0.99871 | 0.074 | 0.99883 | 0.067 | 0.98894 | 0.06I | 0.99905 | 0.055 | 0.99914 | 0.050 |
| 0.3 | 0.99893 | 0.084 | 0.99903 | 0.076 | 0.99912 | 0.069 | 0.99921 | 0.063 | 0.99928 | 0.057 |
| 0.35 | 0.99917 | 0.093 | 0.99925 | 0.084 | 0.99932 | 0.076 | 0.99939 | 0.069 | 0.99945 | 0.063 |
| 0.4 | 0.99944 | 0.099 | 0.99949 | 0.090 | 0.99954 | 0.081 | 0.99958 | 0.074 | 0.99962 | 0.067 |
| 0.45 | 0.99972 | 0.103 | 0.99974 | 0.093 | 0.99977 | 0.085 | 0.99979 | 0.076 | 0.99981 | 0.069 |
| 0.5 | 1.00000 | 0.104 | 1.00000 | 0.095 | 1.00000 | 0.086 | 1.00000 | 0.077 | 1.00000 | 0.070 |
| 0.55 | 1.00028 | 0.103 | 1.00026 | 0.093 | 1.00023 | 0.085 | 1.00021 | 0.076 | 1.00019 | 0.069 |
| 0.6 | 1.00056 | 0.099 | 1.00051 | 0.090 | 1.00046 | 0.08I | 1.00042 | 0.074 | 1.00038 | 0.067 |
| 0.65 | 1.00083 | 0.093 | 1.00075 | 0.084 | 1.00068 | 0.076 | 1.00061 | 0.069 | 1.00056 | 0.063 |
| 0.7 | 1.00107 | 0.084 | 1.00097 | 0.076 | 1.00088 | 0.069 | 1.00079 | 0.063 | 1.00072 | 0.057 |
| 0.75 | 1.00129 | 0.074 | 1.00117 | 0.067 | 1.00106 | 0.061 | 1.00096 | 0.055 | 1.00087 | 0.050 |
| 0.8 | 1.00148 | 0.061 | 1.00134 | 0.056 | 1.00121 | 0.050 | 1.00109 | 0.046 | 1.00099 | 0.041 |
| 0.85 | 1.00163 | 0.048 | 1.00147 | 0.043 | 1.00133 | 0.039 | 1.00120 | 0.035 | 1.00109 | 0.032 |
| 0.9 | 1.00174 | 0.032 | 1.00157 | 0.029 | 1.00142 | 0.026 | 1.00129 | 0.024 | 1.00117 | 0.022 |
| 0.95 | 1.00180 | 0.016 | 1.00163 | 0.015 | 1.00148 | 0.013 | 1.00134 | 0.012 | 1.00121 | 0.011 |
| 1.0 | 1.00183 | 0.00 | 1.00165 | 0.00 | I.OOI49 | 0.00 | 1.00135 | 0.00 | 1.00122 | 0.00 |
| 1.05 | 1.00180 | 0.016 | 1.00163 | 0.015 | 1.00148 | 0.013 | 1.00134 | 0.012 | . 00121 | 0.011 |
| 1.1 | 1.00174 | 0.032 | 1.00157 | 0.029 | 1.00142 | 0.026 | 1.00129 | 0.024 | 1.00117 | 0.022 |
| 1.15 | 1.00163 | 0.048 | 1.00147 | 0.043 | 1.00133 | 0.039 | 1.00120 | 0.035 | 1.00109 | 0.032 |
| 1.2 | 1.00148 | 0.061 | 1.00134 | 0.056 | 1.00121 | 0.050 | 1.00109 | 0.046 | 1.00099 | 0.041 |
| 1.25 | 1.00129 | 0.074 | I.00117 | 0.067 | 1.00106 | 0.061 | 1.00096 | 0.055 | 1.00087 | 0.050 |
| 1.3 | 1.00107 | 0.084 | 1.00097 | 0.076 | 1.00088 | 0.069 | 1.00079 | 0.063 | 1.00072 | 0.057 |
| 1.35 | 1.00083 | 0.093 | 1.00075 | 0.084 | 1.00068 | 0.076 | 1.00061 | 0.069 | 1.00056 | 0.063 |
| 1.4 | 1.00056 | 0.099 | 1.00051 | 0.090 | 1.00046 | 0.08I | 1.00042 | 0.074 | 1.00038 | 0.067 |
| 1.45 | 1.00028 | 0.103 | 1.00026 | 0.093 | 1.00023 | 0.085 | 1.00021 | 0.076 | 1.00019 | 0.069 |
| 1.5 | 1.00000 | 0.104 | 1.00000 | 0.095 | 1.00000 | 0.086 | 1.00000 | 0.077 | 1.00000 | 0.070 |
| 1.55 | 0.99972 | 0.103 | 0.99974 | 0.093 | 0.99977 | 0.085 | 0.99979 | 0.076 | 0.99981 | 0.069 |
| 1. 6 | 0.99944 | 0.099 | 0.99949 | 0.090 | 0.99954 | 0.081 | 0.99958 | 0.074 | 0.99962 | 0.067 |
| 1.65 | 0.99917 | 0.093 | 0.99925 | 0.084 | 0.99932 | 0.076 | 0.99939 | 0.069 | 0.99945 | 0.063 |
| 1.7 | 0.99893 | 0.084 | 0.99903 | 0.076 | 0.99912 | 0.069 | 0.9992 I | 0.063 | 0.99928 | 0.057 |
| 1.75 | 0.99871 | 0.074 | 0.99883 | 0.067 | 0.99894 | 0.061 | 0.99905 | 0.055 | 0.99914 | 0.050 |
| 1. 8 | 0.99853 | 0.061 | 0.99867 | 0.055 | 0.99879 | 0.050 | 0.99891 | 0.046 | 0.99901 | 0.041 |
| 1.85 | 0.99838 | 0.047 | 0.99853 | 0.043 | 0.99867 | 0.039 | 0.99880 | 0.035 | 0.99891 | 0.032 |
| 1.9 | 0.99827 | 0.032 | 0.99843 | 0.029 | 0.99858 | 0.026 | 0.99872 | 0.024 | 0.99884 | 0.022 |
| 1.95 | 0.99820 | 0.016 | 0.99837 | 0.015 | 0.99853 | 0.013 | 0.99867 | 0.012 | 0.99879 | 0.011 |
| 2.0 | 0.99818 | 0.00 | 0.99835 | 0.00 | 0.99851 | 0.00 | 0.99865 | 0.00 | 0.99878 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\tanh (3.6+i 0)=0.99851 / 0^{\circ}$.
$\operatorname { t a n h } ( 3 . 7 + i _ { \underline { 1 . 7 } } ) = 0 . 9 9 9 2 8 \sqrt { 0 ^ { \circ } . 0 5 7 } = 0 . 9 9 9 2 8 \longdiv { 0 ^ { \circ } . 0 3 ^ { \prime } . 2 5 ^ { \prime \prime } } .$
[136]

Table XIİ. . HYPERBOLIC TANGENTS: $\tanh (x+i q)=r / \gamma$. Continued

|  | $x=3.75$ |  | $x=3.8$ |  | $x=3.85$ |  | $x=3.9$ |  | $x=3.95$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | r | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\gamma$ |
|  |  | - |  | $\bigcirc$ |  | - |  |  |  |  |
| $\bigcirc$ | 0.99889 | 0. | 0.99900 | 0.00 | 0.99909 | 0.00 | 0.99918 | 0.00 | 0.99926 | 0.00 |
| 0.05 | 0.99891 | 0.010 | 0.99901 | 0.009 | 0.99911 | 0.008 | 0.99919 | 0.007 | 0.99927 | 0.007 |
| 0.1 | 0.99895 | 0.020 | 0.99905 | 0.018 | 0.99914 | 0.016 | 0.99922 | 0.015 | 0.99930 | 0.013 |
| 0.15 | 0.99902 | 0.029 | 0.99911 | 0.026 | 0.99919 | 0.024 | 0.99927 | 0.021 | 0.99934 | 0.019 |
| 0.2 | 0.99911 | 0.037 | 0.99919 | 0.034 | 0.99927 | 0.031 | 0.99934 | 0.028 | 0.99940 | 0.025 |
| 0.25 | 0.99922 | 0.045 | 0.99929 | 0.041 | 0.99936 | 0.037 | 0.99942 | 0.033 | 0.99948 | 0.030 |
| 0.3 | 0.99935 | 0.051 | 0.99941 | 0.046 | 0.99947 | 0.042 | 0.99952 | 0.038 | 0.99956 | 0.034 |
| 0.35 | 0.99950 | 0.056 | 0.99955 | 0.051 | 0.99959 | 0.046 | 0.99963 | 0.042 | 0.99966 | 0.038 |
| 0.4 | 0.99966 | 0.060 | 0.99969 | 0.055 | 0.99972 | 0.049 | 0.99975 | 0.045 | 0.99977 | 0.040 |
| 0.45 | 0.99983 | 0.063 | 0.99984 | 0.057 | 0.99986 | 0.051 | 0.99987 | 0.046 | 0.99988 | 0.042 |
| 0.5 | 1.00000 | 0.063 | 1.00000 | 0.057 | 1.00000 | 0.052 | 1.00000 | 0.047 | 1.00000 | 0.043 |
| 0.55 | 1.00017 | 0.063 | 1.00016 | 0.057 | 1.00014 | 0.051 | 1.00013 | 0.046 | 1.00012 | 0.042 |
| 0.6 | 1.00034 | 0.060 | 1.00031 | 0.055 | 1.00028 | 0.049 | 1.00025 | 0.045 | 1.00023 | 0.040 |
| 0.65 | 1.00050 | 0.056 | 1.00045 | 0.051 | 1.00041 | 0.046 | 1.00037 | 0.042 | 1.00034 | 0.038 |
| 0.7 | 1.00065 | 0.051 | 1.00059 | 0.046 | 1.00053 | 0.042 | 1.00048 | 0.038 | 1.00044 | 0.034 |
| 0.75 | 1.00078 | 0.045 | 1.00071 | 0.04 I | 1.00064 | 0.037 | 1.00058 | 0.033 | 1.00052 | 0.030 |
| 0.8 | 1.00089 | 0.037 | 1.00081 | 0.034 | 1.00073 | 0.031 | 1.00066 | 0.028 | 1.00060 | 0.025 |
| 0.85 | 1.00099 | 0.029 | 1.00089 | 0.026 | I. 00081 | 0.024 | 1.00073 | 0.021 | 1.00066 | 0.019 |
| 0.9 | 1.00105 | 0.020 | 1.00095 | 0.018 | 1.00086 | 0.016 | 1.00078 | 0.015 | 1.00071 | 0.013 |
| 0.95 | 1.00109 | 0.010 | r.00099 | 0.009 | 1.00089 | 0.008 | 1.00081 | 0.007 | 1.00073 | 0.007 |
| 1.0 | 1.00111 | 0.0 | 1.00100 | 0.0 | 1.00090 | 0.00 | 1.00082 | 0.00 | 1.00074 | 0.00 |
| 1.05 | 1.00109 | 0.010 | 1.00099 | 0.009 | 1.00089 | 0.008 | 1.00081 | 0.007 | 1.00073 | 0.007 |
| I.I | 1.00105 | 0.020 | 1.00095 | 0.018 | I .00086 | 0.016 | 1.00078 | 0.015 | 1.00071 | 0.013 |
| 1.15 | 1.00099 | 0.029 ${ }^{\prime}$ | 1.00089 | 0.026 | I.0008I | 0.024 | 1.00073 | 0.021 | 1.00066 | 0.019 |
| 1.2 . | 1.00089 | 0.037 | I.0008I | 0.034 | 1.00073 | 0.031 | 1.00066 | 0.028 | 1.00060 | 0.025 |
| 1.25 | 1.00078 | 0.045 | 1.00071 | 0.041 | 1.00064 | 0.037 | $1.00058^{\circ}$ | 0.033 | 1.00052 | 0.030 |
| 1.3 | 1.00065 | 0.051 | 1.00059 | 0.046 | 1.00053 | 0.042 | 1.00048 | 0.038 | 1.00044 | 0.034 |
| 1.35 | 1.00050 | 0.056 | 1.00045 | 0.051 | 1.0004 I | 0.046 | $1.00037^{\circ}$ | 0.042 | 1.00034 | 0.038 |
| 1.4 | 1.00034 | 0.060 | 1.00031 | 0.055 | 1.00028 | 0.049 | 1.00025 | -0.045 | 1.00023 | 0.040 |
| 1.45 | 1.00017 | 0.063 | 1.00016 | 0.057 | 1.00014 | 0.051 | 1.00013 | 0.046 | 1.00012 | 0.042 |
| I. 5 | 1.00000 | 0.063 | 1.00000 | 0.057 | 1.00000 | 0.052 | 1.00000 | 0.047 | 1.00000 | 0.043 |
| 1.55 | 0.99983 | 0.063 | 0.99984 | 0.057 | 0.99986 | 0.051 | 0.99987 | 0.046 | 0.99988 | 0.042 |
| 1.6 | 0.99966 | 0.060 | 0.99969 | 0.055 | 0.99972 | 0.049 | 0.99975 | 0.045 | 0.99977 | 0.040 |
| 1.65 | 0.99950 | 0.056 | 0.99955 | 0.051 | 0.99959 | 0.046 | 0.99963 | 0.042 | 0.99966 | 0.038 |
| 1.7 | 0.99935 | 0.051 | 0.9994 I | 0.046 | 0.99947 | 0.042 | 0.99952. | 0.038 | 0.99956 | 0.034 |
| 1.75 | 0.99922 | -0.045 | 0.99929 | 0.041 | 0.99936 | 0.037 | 0.99942 | 0.033 | 0.99948 | 0.030 |
| 1.8 | 0.99911 | 0.037 | 0.99919 | 0.034 | 0.99927 | 0.031 | 0.99934 | 0.028 | 0.99940 | 0.025 |
| 1.85 | 0.99902 | 0.029 | 0.99911 | 0.026 | 0.99919 | 0.024 | 0.99927 | 0.021 | 0.99934 | 0.019 |
| 1.9 | 0.99895 | 0.020 | 0.99905 | 0.018 | 0.99914 | 0.016 | 0.99922 | 0.015 | 0.99930 | 0.013 |
| 1.95 | 0.99891 | 0.010 | 0.99901 | 0.009 | 0.999 I | 0.008 | 0.99919 | . 0.007 | 0.99927 | 0.007 |
| 2.0 | 0.99889 | 0.00 | 0.99900 | 0.00 | 0.99909 | 0.00 | 0.99918 | 0.00 | 0.99926 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\cdot \tanh (3.95+i \underline{0.9})=1.00071 / 0^{\circ} .013=1.00071 / 0^{\circ} .0^{\prime} .47^{\prime \prime}$.
$\operatorname { t a n h } ( 3 . 9 5 + i _ { \underline { 1 . 9 } } ) = 0 . 9 9 9 3 0 \longdiv { 0 ^ { \circ } . 0 1 3 } = 0 . 9 9 9 3 0 \longdiv { 0 ^ { \circ } . 0 ^ { \prime } . 4 7 ^ { \prime \prime } }$.

Table XIII. FUNCTIONS OF $4+i q . \quad f(4+i q)=u+i v$

|  | sinh |  | cosh |  | tanh |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $\boldsymbol{u}$ | $v$ | $u$ | ข | $\boldsymbol{u}$ | $v$ |
| $\bigcirc$ | 27.28992 | 0.00 | 27.30823 | 0.00 | 0.99933 | 0.00 |
| 0.05 | 27.20579 | 2.14258 | 27.22405 | 2.14114 | 0.99934 | 0.00010 |
| 0.1 | 26.95392 | 4.27195 | 26.97202 | 4.26908 | 0.99936 | 0.00021 |
| 0.15 | 26.53588 | 6.37498 | 26.55370 | 6.37071 | 0.99940 | 0.00030 |
| 0.2 | 25.95425 | 8.43871 | 25.97 566 | 8.43305 | 0.99946 | 0.00039 |
| 0.25 | 25.21260 | 10.45041 | 25.22951 | 10.44340 | 0.99953 | 0.00047 |
| 0.3 | 24.31551 | 12.39768 | 24.33 I8 1 | 12.38935 | 0.99961 | 0.00054 |
| 0.35 | 23.26848 | 14.26851 | 23.28410 | 14.25895 | 0.99970 | 0.00060 |
| 0.4 | 22.07800 | 16.05138 | 22.09282 | 16.04061 | 0.99979 | 0.00064 |
| 0.45 | 20.75141 | 17.73528 | 20.76534 | 17.72339 | 0.99989 | 0.00066 |
| 0.5 | 19.29688 | 19.30983 | 19.30983 | 19.29688 | 1.00000 | 0.00067 |
| 0.55 | 17.72339 | 20.76534 | 17.73528 | 20.75141 | 1.00011 | 0.00066 |
| 0.6 | 16.04061 | 22.09282 | 16.05138 | 22.07800 | 1.00021 | 0.00064 |
| 0.65 | 14.25895 | 23.28410 | 14.26851 | 23.26848 | 1.00030 | 0.00060 |
| 0.7 | 12.38935 | 24.33181 | 12.39768 | 24.3155I | 1.00039 | 0.00054 |
| 0.75 | 10.44340 | 25.22951 | 10.4504 I | 25.21260 | 1.00047 | 0.00047 |
| 0.8 | 8.43305 | 25.97166 | 8.43871 | 25.95425 | 1.00054 | 0.00039 |
| 0.85 | 6.37071 | 26.55370 | 6.37498 | 26.53588 | 1.00060 | 0.00030 |
| 0.9 | 4.26908 | 26.97202 | 4.27195 | 26.95392 | 1.00064 | 0.00021 |
| 0.95 | 2.14114 | 27.22405 | 2.14258 | 27.20579 | 1.00066 | 0.00011 |
| 1.0 | 0.00 | 27.30823 | 0.00 | 27.28992 | 1.00067 | 0.0 |
| 1.05 | 2.14114 | 27.22405 | 2.14258 | 27.20579 | 1.00066 | 0.00011 |
| 1.1 | 4.26908 | 26.97202 | 4.27195 | 26.95392 | I. 000064 | 0.0002 1 |
| 1.15 | 6.37071 | 26.55370 | 6.37498 | 26.53588 | 1.00060 | 0.00030 |
| 1.2 | 8.43305 | 25.97166 | 8.43871 | 25.95425 | 1.00054 | 0.00039 |
| 1.25 | 10.44340 | 25.22951 | 10.45041 | 25.21260 | 1.00047 | 0.00047 |
| 1.3 | 12.38935 | 24.33181 | 12.39768 | 24.31551 | I.00039 | , 0.00054 |
| 1.35 | 14.25895 | 23.28410 | 14.26851 | 23.26848 | 1.00030 | 0.00060 |
| 1.4 | 16.0406r | 22.09282 | 16.05138 | 22.07800 | 1.00021 | 0.00064 |
| 1.45 | 17.72339 | 20.76534 | 17.73528 | 20.75141 | 1.00011 | 0.00066 |
| 1.5 | 19.29688 | 19.30983 | 19.30983 | 19.29688 | I. 00000 | 0.00067 |
| 1.55 | 20.75141 | 17.73528 | 20.76534 | 17.723 .39 | 0.99989 | 0.00066 |
| 1. 6 | 22.07800 | 16.05138 | 22.09282 | 16.04061 | 0.99979 | 0.00064 |
| 1. 65 | 23.26848 | 14.2685I | 23.28410 | 14.25895 | 0.99970 | 0.00060 |
| 1.7 | 24.31551 | 12.39768 | 24.33181 | 12.38935 | 0.99961 | 0.00054 |
| 1.75 | 25.21260 | 10.45041 | 25.22951 | 10.44340 | 0.99953 | 0.00047 |
| 1.8 | 25.95425 | 8.43871 | 25.97166 | 8.43305 | 0.99946 | 0.00039 |
| 1.85 | 26.53588 | 6.37498 | 26.55370 | 6.37071 | 0.99940 | 0.00030 |
| 1.9 | 26.95392 | 4.27195 | 26.97202 | 4.26908 | 0.99936 | 0.0002 1 |
| 1.95 | 27.20579 | 2.14258 | 27.22405 | 2.14114 | 0.99934 | 0.00010 |
| 2.0 | 27.28992 | 0.00 | 27.30823 | 0.00 | 0.99933 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\sinh (4+i 0.7)=12.38935+i 24.33 \mathrm{I} 8 \mathrm{I}$.
$\cosh \left(4+i_{\underline{1.25}}\right)=-10.4504 \mathrm{I}+i_{25.21260}$.

Table XIII. FUNCTIONS OF $4+i q . \quad f(4+i q)=r / \boldsymbol{q}$

|  | $\sinh$ |  | cosh |  | tanh |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ | $r$ | $\boldsymbol{\gamma}$ |
|  |  | $\bigcirc$ |  | - |  | - |
| 0 | 27.28992 | 0.00 | 27.30823 | 0.00 | 0.99933 | 0.00 |
| 0.05 | 27.29002 | 4.503 | 27.30810 | 4.497 | 0.99934 | 0.006 |
| 0.1 | 27.29036 | 9.006 | 27.30780 | 8.994 | 0.99936 | 0.012 |
| 0.15 | 27.29090 | 13.509 | 27.30723 | 13.491 | 0.99940 | 0.018 |
| 0.2 | 27.29166 | 18.011 | 27.30650 | 17.989 | 0.99946 | 0.023 |
| 0.25 | 27.29260 | 22.514 | 27.30550 | 22.486 | 0.99953 | 0.027 |
| 0.3 | 27.29370 | 27.016 | 27.30445 | 26.984 | 0.99961 | 0.031 |
| 0.35 | 27.29492 | 31.517 | 27.30324 | 31.483 | 0.99970 | 0.034 |
| 0.4 | 27.29624 | 36.018 | 27.30190 | 35.982 | 0.99979 | 0.037 |
| 0.45 | 27.29764 | 40.519 | 27.30050 | 40.481 | 0.99990 | 0.038 |
| 0.5 | 27.29908 | 45.019 | 27.29908 | 44.981 | 1.00000 | 0.038 |
| 0.55 | 27.30050 | 49.519 | 27.29764 | 49.48 I | 1.00010 | 0.038 |
| 0.6 | 27.30190 | 54.018 | 27.29624 | 53.982 | 1.00021 | 0.037 |
| 0.65 | 27.30324 | 58.517 | 27.29492 | 58.483 | 1.00030 | 0.034 |
| 0.7 | 27.30445 | 63.016 | 27.29370 | 62.984 | 1.00039 | 0.031 |
| 0.75 | 27.30550 | 67.514 | 27.29260 | 67.486 | 1.00047 | 0.027 |
| 0.8 | 27.30650 | 72.011 | 27.29166 | 71.989 | 1.00054 | 0.023 |
| 0.85 | 27.30723 | 76.509 | 27.29090 | 76.49 I | 1.00060 | 18 |
| 0.9 | 27.30780 | 81.006 | 27.29036 | 80.994 | 1.00064 | 0.0 |
| 0.95 | 27.30810 | 85.503 | 27.29002 | 85.497 | 1.00066 | 0.006 |
| 1.0 | 27.30823 | 90 | 27.28992 | 90 | I. 00067 | 0.0 |
| 1.05 | 27.30810 | 94.497 | 27.29002 | 94.503 | 1.00066 | 0.006 |
| 1.1 | 27.30780 | 98.994 | 27.29036 | 99.006 | 1.00064 | 0.012 |
| 1.15 | 27.30723 | 103.491 | 27.29090 | $103.50{ }^{\circ}$ | 1.00060 | 0.018 |
| 1.2 | 27.30650 | 107.989 | 27.29166 | 108.011 | 1.00 | 0.023 |
| 1.25 | 27.30550 | 112.486 | 27.29260 | 112.514 | 1.00047 | 0.027 |
| 1.3 | 27.30445 | 116.984 | 27.29370 | 117.016 | 1.00039 | 0.031 |
| 1.35 | 27.30324 | 121.483 | 27.29492 | 121.517 | 1.00030 | 0.034 |
| 1.4 | 27.30190 | 125.982 | 27.29624 | 126.018 | 1.00021 | 0.037 |
| 1.45 | 27.30050 | I 30.48 I | 27.29764 | 130.519 | 1.00 | 0.038 |
| 1.5 | 27.29908 | 134.98I | 27.29908 | I35.019 | 1.00000 | 0.038 |
| 1.55 | 27.29764 | I 39.48 I | 27.30050 | 139.519 | 0.99990 | 0.038 |
| 1.6 | 27.29624 | 143.982 | 27.30190 | I44.018 | 0.99979 | 0.037 |
| 1. 65 | 27.29492 | 148.483 | 27.30324 | 148.517 | 0.99970 | 0.034 |
| 1.7 | 27.29370 | 152.984 | 27.30445 | 153.016 | 0.99961 | 0.03 |
| 1.75 | 27.29260 | 157.486 | 27.30550 | 157.514 | 0.99953 | 0.027 |
| 1.8 | 27.29166 | 161.989 | 27.30650 | 162.011 | 0.99946 | 0.023 |
| 1.85 | 27.29090 | 166.491 | 27.30723 | 166.509 | 0.99940 | 0.018 |
| 1.9 | 27.29036 | 170.994 | 27.30780 | 171.006 | 0.99936 | 0.012 |
| 1.95 | 27.29002 | 175.497 | 27.30810 | 175.503 | 0.99934 | 0.00 |
| 2.0 | 27.28992 | 180 | 27.30823 | 180 | 0.99933 | 0.00 |

Note. Negative quantities are in heavy type.
Examples. $\sinh \left(4+i_{1.0}\right)=27.30823 / 90^{\circ}$.
$\operatorname { t a n h } ( 4 + i \underline { 1 . 5 } ) = 1 . 0 0 0 0 \longdiv { 0 ^ { \circ } . 0 3 8 } = 1 . 0 0 0 0 \longdiv { 0 ^ { \circ } . 0 2 ^ { \prime } . 1 7 ^ { 7 } }$.

Table XIV. SEMI-EXPONENTIALS. $\frac{e^{x}}{2}$ and $\log _{10}\left(\frac{e^{x}}{2}\right)$

| $\boldsymbol{x}$ | $\frac{e^{x}}{2}$ | $\log _{10} \frac{e^{x}}{2}$ |  | $\frac{e^{x}}{2}$ | $\log _{10} \frac{e^{x}}{2}$ |  | $\frac{e^{x}}{2}$ | $\log _{10} \frac{e^{x}}{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4.00 | 27.299 | 1.4361479 | 4.50 | 45.009 |  | 5.00 | 74.207 | 1.8704424 |
| 4.01 | 27.573 | 1.4404909 | 4.51 | 45.461 | 1.6576381 | 5.01 | 74.952 | 1.8747854 |
| 4.02 | 27.851 | 1.4448338 | 4.52 | 45.918 | 1.6619811 | 5.02 | 75.706 | 1.8791283 |
| 4.03 | 28.130 | 1.4491768 | 4.53 | 46.379 | 1.6663240 | 5.03 | 76.467 | 1.8834712 |
| 4.04 | 28.413 | 1.4535197 | 4.54 | 46.845 | 1. 6706669 | 5.04 | 77.235 | 1.8878142 |
| 4.05 | 28.699 | 1.4578627 | 4.55 | 47.316 | 1.6750099 | 5.05 | 78.011 | 1.8921571 |
| 4.06 | 28.987 | 1.4622056 | 4.56 | 47.792 | 1.6793528 | 5.06 | 78.795 | 1.8965001 |
| 4.07 | 29.278 | 1. 4665485 | 4.57 | 48.272 | т.6836958 | 5.07 | 79.587 | 1.9008430 |
| 4.08 | 29.573 | 1.4708915 | 4.58 | 48.757 | 1.6880387 | 5.08 | 80.387 | 1.9051860 |
| 4.09 | 29.870 | 1. 4752344 | 4.59 | 49.247 | 1.6923817 | 5.09 | 8 I .195 | 1.9095289 |
| 4.10 | 30.170 | 1. 4795774 | 4.60 | 49.742 | 1. 6967246 | 5.10 | 82.011 | 1.9138719 |
| 11 | 30.473 | 1.4839203 | 4.61 | 50.242 | 1.7010676 | 5.11 | 82.835 | 1.9182148 |
| 4.12 | 30.780 | 1.4882633 | 4.62 | 50.747 | 1.7054105 | 5.12 | 83.668 | 1.9225577 |
| 4.13 | 31.089 | 1.4926062 | 4.63 | 51.257 | 1.7097535 | 5.13 | 84.509 | 1.9269007 |
| 4.14 | 3 I .401 | 1.4969492 | 4.64 | 51.772 | 1.7140964 | 5.14 | 85.358 | 1.9312436 |
| 4.15 | 31.717 | 1.5012921 | 4.65 | 52.292 | 1.7184393 | 5.15 | 86.216 | 1. 9355866 |
| 4.16 | 32.036 | 1.5056350 | 4.66 | 52.818 | 1.7227823 | 5.16 | 87.082 | 1.9399295 |
| 4.17 | 32.358 | 1.5099780 | 4.67 | 53.349 | 1.7271252 | 5.17 | 87.957 | 1.9442725 |
| 4.18 | 32.683 | 1.5143209 | 4.68 | 53.885 | 1.7314682 | 5.18 | 88.84 I | 1.9486154 |
| 4.19 | 33.011 | 1.5186639 | 4.69 | 54.427 | 1.7358111 | 5.19 | 89.734 | 1.9529584 |
| 4.20 | 33.343 | 1. 5230068 | 4.70 | 54.974 | 1.7401541 | 5.20 | 90.636 | 1.9573013 |
| 4.2 I | 33.678 | 1.5273498 | 4.71 | 55.526 | 1.7444970 | 5.21 | 91.547 | 1.9616443 |
| 4.22 | 34.017 | 1.5316927 | 4.72 | 56.084 | 1.7488400 | 5.22 | 92.467 | 1.9659872 |
| 4.23 | 34.359 | 1.5360357 | 4.73 | 56.648 | 1.7531829 | 5.23 | 93.396 | 1.9703301 |
| 4.24 | 34.704 | 1.5403786 | 4.74 | 57.217 | 1.7575258 | 5.24 | 94.335 | 1.9746731 |
| 4.25 | 35.053 | 1.5447215 | 4.75 | 57.792 | 1.7618688 | 5.25 | 95.283 | 1.9790160 |
| 4.26 | 35.405 | I. 5490645 | 4.76 | 58.373 | 1.7662117 | 5.26 | 96.241 | 1.9833590 |
| 4.27 | 35.761 | 1. 5534074 | 4.77 | 58.960 | 1.7705547 | 5.27 | 97.208 | 1.9877019 |
| 4.28 | 36.120 | I. 5577504 | 4.78 | 59.552 | 1.7748976 | 5.28 | 98.185 | 1.9920449 |
| 4.29 | 36.483 | 1. 5620933 | 4.79 | 60.151 | 1.7792406 | 5.29 | $99.17{ }^{2}$ | 1.9963878 |
| 4.30 | 36.850 | 1.5664363 | 4.80 | 60.755 | 1.7835835 | 5.30 | 100.168 | 2.0007308 |
| $4 \cdot 3$ I | 37.220 | 1.5707792 | 4.8 I | 61.366 | 1.7879265 | $5 \cdot 31$ | 101.175 | 2.0050737 |
| 4.32 | 37.594 | 1.5751222 | 4.82 | 61.983 | 1.7922694 | 5.32 | 102.192 | 2.0094166 |
| 4.33 | 37.972 | 1.5794651 | 4.83 | 62.605 | 1.79661 23 | $5 \cdot 33$ | 103.219 | 2.0137596 |
| $4 \cdot 34$ | 38.354 | 1.583808I | 4.84 | 63.235 | 1.8009553 | $5 \cdot 34$ | 104.256 | 2.0181025 |
| 4.35 | 38.739 | 1.5881510 | 4.85 | 63.870 | 1.8052982 | 5.35 | 105.304 | 2.0224455 |
| 4.36 | 39.129 | 1.5924939 | 4.86 | 64.512 | 1.8096412 | 5.36 | 106.362 | 2.0267884 |
| 4.37 | 39.522 | 1.5968369 | 4.87 | 65.160 | I.813984I | $5 \cdot 37$ | 107.43I | 2.0311314 |
| 4.38 | 39.919 | 1.6011798 | 4.88 | 65.815 | 1.8183271 | 5.38 | 108.511 | 2.0354743 |
| 4.39 | 40.320 | 1.6055228 | 4.89 | 66.477 | 1.8226700 | $5 \cdot 39$ | 109.602 | 2.0398173 |
| 4.40 | 40.725 | 1.6098657 | 4.90 | 67.145 | 1.8270130 | 5.40 | 110.703 | 2.0441602 |
| 4.41 | 41.135 | 1.6142087 | 4.91 | 67.820 | 1.8313559 | 5.41 | 111.816 | 2.0485031 |
| 4.42 | 41.548 | 1.6185516 | 4.92 | 68.501 | 1.8356989 | 5.42 | 112.940 | 2.0528461 |
| 4.43 | 41.966 | 1.6228946 | 4.93 | 69.190 | 1.8400418 | 5.43 | 114.075 | 2.0571890 |
| 4.44 | 42.387 | 1.6272375 | 4.94 | 69.885 | 1.8443847 | 5.44 | 115.22 I | 2.0615320 |
| 4.45 | 42.813 | 1.6315804 | 4.95 | 70.587 | 1.8487277 | $5.45{ }^{\circ}$ | 116.379 | 2.0658749 |
| 4.46 | 43.244 | 1. 6359234 | 4.96 | 71.297 | 1.8530706 | 5.46 | 117.549 | 2.0702179 |
| 4.47 | 43.678 | 1. 6402663 | 4.97 | 72.013 | 1.8574136 | 5.47 | 118.730 | 2.0745608 |
| 4.48 | 44.117 | 1. 6446093 | 4.98 | 72.737 | 1.8617565 | 5.48 | 119.923 | 2.0789038 |
| 4.49 | 44.561 | 1.6489522 | 4.99 | 73.468 | 1. 8660995 | 5.49 | 121.129 | 2.0832467 |
| 4.50 | 45.009 | 1. 6532952 | 5.00 | 74.207 | 1.8704424 | $5 \cdot 50$ | 122.346 | 2.0875897 |

Example. $\quad \frac{e^{4.20}}{2}=33.343 \quad \log _{10}\left(\frac{e^{4.20}}{2}\right)=1.5230068$.
[ 140 ]

Table XIV. SEMI-EXPONENTIALS. $\frac{e^{x}}{2}$ and $\log _{10}\left(\frac{e^{x}}{2}\right)$. Continued

| $\boldsymbol{x}$ | $\frac{e^{x}}{2}$ | $\log _{10} \frac{e^{x}}{2}$ |  | $\frac{e^{x}}{2}$ | $\log _{10} \frac{e^{x}}{2}$ |  | $\frac{e^{x}}{2}$ | $\log _{10} \frac{e^{x}}{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 122.346 | 2.0875897 | 6.00 | 201.714 | 2.3047369 | 6.50 | 332.571 |  |
| $5 \cdot 51$ | 123.576 | 2.0919326 | 6.01 | 203.742 | 2.3090785 | 6.51 | 335.913 | 2.5 |
| 5.52 | 124.818 | 2.0962755 | 6.02 | 205.789 | 2.3134222 | 6.52 | 339.289 | 2.5305699 |
| 5.53 | 126.072 | 2.1006185 | 6.03 | 207.858 | 2.3177667 | 6.53 | 342.699 | 2.53491 |
| $5 \cdot 54$ | 127.339 | 2.1049614 | 6.04 | 209.947 | 2.3221098 | 6.54 | 346.143 | 2.5392556 |
| 5.55 | 128.619 | 2.1093044 |  | 212.057 | 2.3264527 | 6.55 | 349.622 | 2. |
| 5.56 | 129.911 | 2.1136473 | 6.06 | 214.188 | 2.3307951 | 6.56 | 35.3.135 | 2.5479408 |
| 5.57 | 131.217 | 2.1179903 | 07 | 216.340 | 2.335136 | 6.57 | 356.685 | 2.5522849 |
| 5.58 | 132.536 | 2.1223332 | 6.08 | 218.514 | 2.3394793 | 6.58 | 360.270 | 2.556628 I |
| 5.59 | 133.868 | 2.1266762 | 6.09 | 220.711 | 2.3438220 | 6.59 | 363.890 | 2.5609701 |
| 5.60 | 135.213 |  | 6.10 |  | 2.3481666 | 6.60 | 367.547 |  |
| 5.61 | 136.572 | 2.13 | 6.11 | 225.169 | 2.3525086 | 6.61 | 371.241 | 2.5696560 |
| 5.62 | 137.945 | 2.1397050 | 6.12 | 227.432 | 2.3568516 | 6.62 | 374.973 | 2.5740000 |
| 5.63 | 139.331 | 2.1440479 | 6.13 | 229.718 | 2.3611951 | 6.63 | 378.741 |  |
| 5.64 | 140.731 | 2.1483909 | 6.14 | 232.027 | 2.3655386 | 6.64 | 382.547 | 2.5826849 |
| 5.65 | 142.146 | 2.1527338 | 6.15 | 234.359 | 2.3698817 | 6.65 | 386.391 | 2.5870270 |
| 5.66 | 143.574 | 2.1570768 | 6.16 | 236.714 | 2.3742240 | 6.66 | 390.275 | 2.5913708 |
| 5.67 | 145.017 | 2.1614197 | 6.17 | 239.093 | 2.3785669 | 6.67 | 394.197 | 2.5957134 |
| 5.68 | 146.475 | 2.1657627 | 6.18 | 241.496 | 2.3829100 | 6.68 | 398.160 | 2.6000576 |
| 5.69 | 147.947 | 2.1701056 | 6.1 | 243.923 | 2.3872527 | 6.69 | 402.161 | 2.6044000 |
| 5.70 | 149.434 | 2.1744485 | 6.20 | 246.375 | 2.3915966 | 6.70 | 406.202 | 2.6087420 |
| 71 | 150.936 | 2.1787915 | 6.21 | 248.851 | 2.3959394 | 6.71 | 410.285 | 2.6130856 |
| 2 | I52.452 | 2.1831344 | 6.22 | 251.352 | 2.4002824 | 6.72 | 414.409 | 2.6174292 |
| 5.73 | 153.985 | 2.1874774 | 6.23 | 253.877 | 2.4046234 | 6.73 | 418.574 | 2.6217721 |
| 5.74 | 155.532 | 2.1918203 | 6.24 | 256.429 | 2.4089672 | 6.74 | 422.780 | 2.6261144 |
| 5 | 157.095 | 2.1961633 | 6.25 | 259.006 | 2.4133099 | 6.75 | 427.030 |  |
| .76 | 158.674 | 2.2005062 | 6.26 | 261.600 | 2.4176526 | 6.76 | 431.321 | 2.6348006 |
| 5.77 | 160.269 | 2.2048492 | 6.27 | 264.239 | 2.4219970 | 6.77 | 435.656 | 2.6391436 |
| 5.78 | 161.880 | 2.2091921 | 6.28 | 266.894 | 2.4263388 | 6.78 | 440.034 | 2.6434862 |
| 5.79 | 163.507 | 2.2135351 | 6.29 | 269.576 | 2.4306813 | 6.79 | 444.457 |  |
| 5.80 | 165.150 | 2.2178780 | 6.30 | 272.285 | 2.4350237 | 6.80 | 448.923 |  |
| 5.81 | 166.810 | 2.2222209 | 6.31 | 275.022 | 2.4393675 | 6.81 | 433.435 | 2.6565151 |
| 5.82 | 168.486 | 2.2265639 | 6.32 | 277.786 | 2.4437104 | 6.82 | 457.993 | 2.6608589 |
| 5.83 | 170.179 | 2.2309068 | 6.33 | 280.578 | 2.4480536 | 6.83 | 462.595 | 2.6652009 |
| 5.84 | 171.890 | 2.2352498 | 6.34 | 283.398 | 2.452396 | 6.84 | 467.244 | 2.6995437 |
|  | 173.617 | 2.2395927 |  | 286.246 |  | 6.85 | 471.940 | 2.6738868 |
| 5.86 | 175.362 | 2.2439357 | 6.36 | 289.123 | 2.4610826 | 6.86 | 476.683 | 2.6782296 |
| 5.87 | 177.124 | 2.2482786 | 6.37 | 292.029 | 2.4654260 | 6.87 | 481.474 | 2.6825728 |
| 5.88 | 178.905 | 2.2526216 | 6.38 | 294.964 | 2.4697690 | 6.88 | 486.312 | 2.6869150 |
| 5.89 | 180.703 | 2.2569645 | 6.39 | 297.928 | 2.4741114 | 6.89 | 491.200 | 2.6912584 |
| O | 182.519 | 2.2613074 | 6.40 | 300.922 | 2.4784540 | 6.90 | 496.137 | 2.6956016 |
| 5.91 | 184.353 | 2.2656504 | 6.41 | 303.947 | 2.4827979 | 6.91 | 501.123 | 2.6999443 |
| 5.92 | 186.206 | 2.2699933 | 6.42 | 307.002 | 2.4871412 | 6.92 | 506.160 | 2.7042878 |
| 5.93 | 188.077 | 2.2743363 | 6.43 | 310.087 | 2.4914836 | 6.93 | 511.246 | 2.7086299 |
| 5 | 189.967 | 2.2786792 | 6.44 | 313.203 | 2.4958260 | 6.94 | 516.386 | 2.7129744 |
| 5.95 | 191.877 | 2.2830222 | 6.45 | 316.352 | 2.5001705 | 6.95 |  | 2.7173168 |
| 5.96 | 193.805 | 2.2873651 | 6.46 | 319.530 | 2.5045116 | 6.96 | 526.816 | 2.7216589 |
| 5.97 | 195.753 | 2.2917081 | 6.47 | 322.742 | 2.5088555 | 6.97 | 532.112 | 2.7260030 |
| 5.98 | 197.720 | 2.2960510 | 6.48 | 325.985 | 2.5131977 | 6.98 | 537.459 | 2.7303454 |
| 5.99 | 199.707 | 2.3003939 | 6.49 | 329.262 | 2.5175416 | 6.99 | 542:860 | 2.7346878 |
| 6.00 | 201.714 | 2.3047369 | 6.50 | 332.571 | 2.5218844 | 7.00 | 548.317 | 2.7390317 |

Example. $\frac{e^{5.60}}{2}=135.213 \quad \log _{10}\left(\frac{e^{5.60}}{2}\right)=2.1310191$.
[ I 4 II ]

Table XIV. SEMI-EXPONENTIALS. $\frac{e^{x}}{2}$ and $\log _{10}\left(\frac{e^{x}}{2}\right)$. Continued

|  | $\frac{e^{x}}{2}$ | $\log _{10} \frac{e^{x}}{2}$ |  | $\frac{e^{x}}{2}$ | $\log _{10} \frac{e^{x}}{2}$ |  | $\frac{e^{x}}{2}$ | $\log _{10} \frac{e^{x}}{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .00 | 548.317 | 2.73 | 7.50 | 904.021 | 2.9561785 | . 0 | 1490.479 | 3.1733259 |
| 7.01 | 553.827 | 2.7433741 | 7.51 | 913.107 | 2.9605217 | 8.01 | 1505.457 | 3 |
| 7.02 | 559.393 | 2.7477170 | 7.52 | 922.284 | 2.9648647 | 8.02 | 1520.589 |  |
| 7.03 | 565.015 | 2.752 | 7.53 | 931.553 | 2.9692076 | 8.03 | I535.870 | 3.1863546 |
| 7.04 | 570.694 | 2.75 | 54 | 940.915 | 2.9735504 | 8.04 | 1551.306 | 3.1906976 |
| 7.05 | 576.429 | 2.76074 | 5 | 950.371 | 2.9778932 | 8.5 | 1566.895 | 3.195039 |
| 7.06 | 582.223 | 2.7650893 | $7 \cdot 56$ | 959.923 | 2.9822364 | 8.06 | 1582.645 |  |
| 07 | 588.074 | 2.7694320 | 57 | 969.570 | 2.9865792 | 8.07 | I598.552 | 3.2037268 |
| 7.08 | 593.984 | 2.773 | 7.58 | . 314 | 2.9909220 | 8.08 | 1614.617 | 64 |
| 7.09 | 599.954 | 2 77 | 7.59 | 89.157 | 2.995 | 8.09 | 630.841 |  |
| 7.10 | 605.984 | 2.7824612 | 7.60 | 999.098 | 2.9996080 | .10 |  |  |
| 1 | 612.074 | 2.7868039 | 7.61 | 1009.139 | 3.0039510 | 8.1 1 | 1663.789 | 3.2210981 |
| 12 | 618.225 | 2.7911467 | 7.62 | 1019.28I | 3.0082939 | 8.12 | 1680.510 | 12 |
| 13 | 624.439 | 2.7954 | 7.63 | 1029.525 | 3.012636 | 8.13 | 1697.400 | 3.2297842 |
| 14 | 630.714 | 2.7998 | 7.64 | 1039.872 | 3.0169799 | 8.14 | 1714.458 | 70 |
| 5 | 637.053 | 2.8041755 | 7.65 | 1050.323 | 3.021322 |  | 1731.690 | 3.2384703 |
| 6 | 643.456 | 2.8085189 | 7.66 | 1060.879 | 3.0256 | .16 | 1749.092 | 3.2428130 |
| 7.17 | 649.922 | 2.8128612 | 7.67 | 1071.541 | 3.0300 | .17 | 1766.672 | 3.2471560 |
| 7.18 | 656.454 | 2.8172043 | 7.58 | 1082.310 | 3.0343517 | 8.18 | 1784.427 | 3.2514988 |
| 7.19 | $663.05^{2}$ | 2.8215 | . 69 | 1093. | 3.0386944 | 8.19 | 1802.364 | 3.2558425 |
| 20 | 669.715 | 2.8258901 | 70 | 1104.174 | 3. | 8.20 | 1820.476 |  |
| 7.21 | 676.446 | 2.8302331 | 71 | 1115.27I | 3.0473806 | 8.21 | 1838.774 | 3.2645284 |
| 7.22 | 683.245 | 2.8345765 | 72 | I126.480 | 3.0517234 | 8.22 | 1857.251 | 3.2688706 |
| 7.23 | 690.111 | 2.8389189 | 7.73 | 1137.80 r | 3.0560663 | 8.23 | 1875.914 | 3.2732 I 29 |
| 7.24 | 697.047 | 2.8432620 | 7.74 | 1149.236 | 3.0604092 | 8.24 | 1894.770 | 3.2775566 |
| 7.25 | 704.052 | 2.847604 | 75 | 1160.786 | 3.0647523 | 8.25 | 1913.812 | 3.2188994 |
| 7.26 | 711.128 | 2.8519478 | 7.76 | 1172.452 | 3.0690950 | 8.26 | 1933.047 | 3.2862424 |
| 7.27 | 718.275 | 2.8562908 | 7.77 | I184.236 | 3.0734383 | 8.27 | I952.473 | 3.2905850 |
| 7.28 | 725.494 | 2.8606338 | 7.78 | 1196.137 | 3.0777810 | 8.28 | 1972 | 3.2949284 |
| 29 | 732.785 | 2.8649766 | 7.79 | I208.159 | 3.08 | 8.29 | I991.913 |  |
| 7.30 | 740.150 | 2.8693197 | 7.80 | 1220.301 | 3.086 | 8.30 | 2011 |  |
| 7.31 | 747.589 | 2.8736629 | 81 | 1232.565 | 3.0908098 | 8.31 | 2032.158 | $3 \cdot 3079575$ |
| $7 \cdot 32$ | 755.102 | 2.8780056 | 7.82 | 1244.953 | 3.095153 I | 8.32 | 2052.580 | 3.3123000 |
| 7.33 | 762.691 | 2.8823487 | 7.83 | 1257.465 | 3.099 | 8.33 | 2073.206 |  |
| $7 \cdot 34$ | 770.356 | 2.8866915 | 7.84 | 1270.102 | 3.10 | 8.34 | 2094.045 |  |
| 35 | 778.098 | 2.8910343 | 7.85 | 1282.867 | 3.1081818 | 8.35 | 2115.092 |  |
| 7.36 | 785.918 | 2.8953772 | 7.86 | 1295.760 | 3.1125246 | 8.36 | 2136.347 | $3 \cdot 3296718$ |
| $7 \cdot 37$ | 793.817 | 2.8997205 | 7.87 | 1308.783 | 3.1168677 | 8.37 | 2157.819 | 3.3340150 |
| 7.38 | 801. 795 | 2.9040633 | 7.88 | 1321.936 | 3.1212105 | 8.38 | 2179.505 | 3.3383578 |
| 7.39 | 809.853 | 2.9084062 | 7.89 | I 335.222 | 3.1255535 | 8.39 | 2201.409 | 3.3427008 |
| 40 | 817.992 | 2.9127491 | 7.90 | I348.64I | 3.1298964 | 8.40 | 2223.533 | , |
| 7.41 | 826.213 | 2.9170920 | .91 | 1362.195 | 3.1342394 | 8.41 | 2245.88I | $3 \cdot 3513868$ |
| 42 | 834.517 | 2.921435 | 7.92 | 1375.886 | 3.1385826 | 8.42 | 2268.452 | $3 \cdot 3557296$ |
| 7.43 | 842.904 | 2.9257782 | 7.93 | I389.713 | 3.1429254 | 8.43 | 2291. 250 | $3 \cdot 3600725$ |
| 7.44 | 851.375 | 2.9301209 | 7.94 | 1403.680 | 3.147268 | 8.44 | 2314.277 | $3 \cdot 3644154$ |
| 7.45 | 859.932 | 2.9344641 | 95 | 1417.787 | 3.1516110 | 8.45 | 2337.536 | 3687583 |
| 7.46 | 868.574 | 2.9388068 | 7.96 | 1432.036 | 3.1559539 | 8.46 | 2361.030 | $3 \cdot 3731014$ |
| 7.47 | 877.303 | 2.9431496 | 7.97 | 1446.429 | 3.160297 I | 8.47 | 2384.752 | 3.3774433 |
| 7.48 | 886.120 | 2.9474925 | 7.98 | 1460.966 | 3.1646402 | 8.48 | 2408.725 | 3.3817872 |
| 7.49 | 895.026 | 2.9518356 | 7.99 | 1475.648 | 3.1689827 | 8.49 | 2432.926 | $3 \cdot 3861290$ |
| 7.50 | 904.021 | 2.9561785 | 8.00 | 1490.479 | 3.1733259 | 8.50 | 2457.38 | .3904730 |

Example. $\quad \frac{e^{7.10}}{2}=605.984 \quad \log _{10}\left(\frac{e^{7.10}}{2}\right)=2.7824612$.
[142]

Table XIV. SEMI-EXPONENTIALS. $\frac{e^{x}}{2}$ and $\log _{10}\left(\frac{e^{x}}{2}\right)$. Continued
$x \quad \frac{e^{x}}{2} \quad \log _{10} \frac{e^{x}}{2} \quad x \quad \frac{e^{x}}{2} \quad \log _{10} \frac{e^{x}}{2} \quad x \quad \frac{e^{x}}{2} \quad \log _{10} \frac{e^{x}}{2}$
$8.50 \quad 2457.383 \quad 3.3904730$
$8.51 \quad 2482.082 \quad 3.3948162$
$8.52 \quad 2507.027 \quad 3.3991590$
$8.53 \quad 2532.221 \quad 3.4035016$
$8.54 \quad 2557.672 \quad 3.4078448$
$8.55 \quad 2583.380 \quad 3.4121882$
$8.56 \quad 2609.34 \mathrm{r} \quad 3.4165308$
$8.57 \quad 2635.562 \quad 3.4208732$
$8.58 \quad 2662.052 \quad 3.4252166$
$8.59 \quad 2688.8$ IO $\quad 3.4295601$
$\begin{array}{llll}8.60 & 2715.830 & 3.4339026\end{array}$
$8.61 \quad 2743.126 \quad 3.4382458$
$8.62 \quad 2770.693 \quad 3.4425884$
$\begin{array}{llll}8.63 & 2798.535 & 3.4469308\end{array}$
$\begin{array}{llll}8.64 & 2826.665 & 3-4512744\end{array}$
$\begin{array}{llll}8.65 & 2855.070 & 3.4556167\end{array}$
$\begin{array}{llll}8.66 & 2883.767 & 3.4599602\end{array}$
$\begin{array}{lll}8.67 & 2912.745 & 3.4643025\end{array}$
$8.68 \quad 2942.023 \quad 3.4686462$
$8.69 \quad 2971.592 \quad 3.4729891$
$8.703001 .456 \quad 3.4773320$
$8.71 \quad 3031.621 \quad 3.4816749$
$8.723062 .088 \quad 3.4860178$
$8.73 \quad 3092.852 \quad 3.4903592$
8.74 31 $23.948 \quad 3.494703^{8}$
$8.75 \quad 3155.337 \quad 3.4990458$
$8.76 \quad 3187.054 \quad 3.5033896$
$8.77 \quad 3219.085 \quad 3.5077325$
$8.78 \quad 3251.440 \quad 3.5120756$
$8.79 \quad 3284.1143 .5164182$
$\begin{array}{llll}8.80 & 3317.122 & 3.5207614\end{array}$
$\begin{array}{llll}8.81 & 3350.460 & 3.5251044\end{array}$
$8.82 \quad 3384.133 \quad 3.5294474$
$8.83 \quad 3418.14 \mathrm{I} \quad 3.5337900$
$\begin{array}{llll}8.84 & 3452.496 & 3.5381332\end{array}$
$\begin{array}{llll}8.85 & 3487.197 & 3.5424766\end{array}$
$8.86 \quad 3522.243 \quad 3.5468192$
$\begin{array}{llll}8.87 & 3557.631 & 3.5511609\end{array}$
$8.88 \quad 3593.395 \quad 3.5555050$
$\begin{array}{llll}8.89 & 3629.512 & 3.5598482\end{array}$
$\begin{array}{lll}8.90 & 3665.986 & 3.5641908\end{array}$
$8.91 \quad 3702.820 \quad 3.5685326$
$8.92 \quad 3740.045 \quad 3.5728768$
$8.93 \quad 3777.635 \quad 3.5772201$
8.94 3815.597 3.5815626
$8.95 \quad 3853.937 \quad 3.5859044$
$8.96 \quad 3892.678 \quad 3.5902486$
$8.97 \quad 3931.795 \quad 3.5945909$
$8.98 \quad 397 \mathrm{I} \cdot 3 \mathrm{I} 6 \quad 3.5989344$
$8.994011 .228 \quad 3.6032773$
$9.00 \quad 4051.543 \quad 3.6076204$
$\begin{array}{llll}9.00 & 4051.543 & 3.6076204\end{array}$ $\begin{array}{lll}9.01 & 4092.263 & 3.6 \text { I } 19636\end{array}$ $9.02 \quad 4133.388 \quad 3.6163062$ 9.034174 .9293 .6206491 $\begin{array}{lll}9.04 & 4216.889 & 3.6249922\end{array}$
$\begin{array}{lll}9.05 & 4259.264 & 3.6293345\end{array}$ $9.06 \quad 4302.076 \quad 3.6336780$ $9.074345 .302 \quad 3.6380200$ $\begin{array}{llll}9.08 & 4388.982 & 3.6423638\end{array}$ $\begin{array}{llll}9.09 & 4433.098 & 3.6467073\end{array}$
$9.10 \quad 4477.646 \quad 3.6510498$ $9.114522 .647 \quad 3.6553927$ 9.124568 .1006 .6597356 $9.13 \quad 4614.016 \quad 3.6640791$ $9.14 \quad 4660.383 \quad 3.6684216$
$\begin{array}{lll}9.15 & 4707.211 & 3.6727637\end{array}$ $9.16 \quad 4754.528 \quad 3.6771074$ $\begin{array}{lll}9.17 & 4802.308 & 3.6814500\end{array}$ $\begin{array}{lll}9.18 & 4850.577 & 3.6857934\end{array}$ $9.19 \quad 4899.328 \quad 3.6901365$
$9.20 \quad 4948.563 \quad 3.6944792$ $9.214998 .284 \quad 3.6988209$ $9.22 \quad 5048.532 \quad 3.7031652$ $9.23 \quad 5099.272 \quad 3.7075082$ $9.24 \quad 5150.519 \quad 3.7118510$
$9.25 \quad 5202.272 \quad 3.7161930$ $9.26 \quad 5254.569 \quad 3.7205370$ $9.27 \quad 5307.367 \quad 3.7248791$ $\begin{array}{llll}9.28 & 5360.716 & 3.7292228\end{array}$ $9.29 \quad 5414.587 \quad 3.7335654$
$\begin{array}{llll}9.30 & 5469.009 & 3.7379086\end{array}$
$\begin{array}{llll}9.31 & 5523.975 & 3.7422517\end{array}$
$\begin{array}{llll}9.32 & 5579.491 & 3.7465946\end{array}$
$9.33 \quad 5635.563 \quad 3.7509373$
$9.34 \quad 5692.203 \quad 3.7552804$
$\begin{array}{llll}9.35 & 5749.405 & 3.7596229\end{array}$
$9.36 \quad 5807.194 \quad 3.7639664$
$\begin{array}{llll}9.37 & 5865.555 & 3.7683091\end{array}$
$9.38 \quad 5924.507 \quad 3.7726522$
$9.39 \quad 5984.0543 .7769956$
$9.40 \quad 6044.191 \quad 3.7813382$
$9.416104 .922 \quad 3.7856801$
$9.42 \quad 6166.290 \quad 3.7900240$
$\begin{array}{llll}9.43 & 6228.269 & 3.7943674\end{array}$
$9.44 \quad 6290.860 \quad 3.7987100$
$\begin{array}{llll}9.45 & 6354.080 & 3.8030526\end{array}$
$9.46 \quad 6417.943 \quad 3.8073958$
$\begin{array}{llll}9.47 & 6482.450 & 3.8117392\end{array}$

| 9.48 | 6547.591 | 3.8 I 608 I 6 |
| :--- | :--- | :--- |

$\begin{array}{lll}9.49 & 6613.388 & 3.8204240\end{array}$
$\begin{array}{lll}9.50 & 6679.863 & 3.8247676\end{array}$
$\begin{array}{lll}9.50 & 6679.863 & 3.8247676\end{array}$
$\begin{array}{llll}9.51 & 6746.988 & 3.829 \text { IIOI }\end{array}$
$\begin{array}{llll}9.52 & 6814.805 & 3.8334534\end{array}$
$9.53 \quad 6883.295 \quad 3.8377964$
$\begin{array}{llll}9.54 & 6952.475 & 3.8421394\end{array}$
$\begin{array}{lll}9.55 & 7022.345 & 3.8464822\end{array}$
$9.56 \quad 7092.923 \quad 3.8508252$
$9.57 \quad 7164.203 \quad 3.8551679$ $9.58 \quad 7236.2$ 10 3.8595112 $\begin{array}{llll}9.59 & 7308.929 & 3.8638537\end{array}$
$\begin{array}{llll}9.60 & 7382.390 & 3.8681970\end{array}$ $9.61 \quad 7456.583 \quad 3.8725398$ $9.62 \quad 7531.526 \quad 3.8768830$ $9.63 \quad 7607.221 \quad 3.88 \mathrm{I} 2260$ $9.64 \quad 7683.672 \quad 3.8855688$

## $9.65 \quad 7760.882 \quad 3.8899$ III

 $9.66 \quad 7838.890 \quad 3.8942546$ 9.67 7917.680 3.8985980 $9.68 \quad 7997.247 \quad 3.9029406$ $9.69 \quad 8077.622 \quad 3.9072835$ $9.70 \quad 8158.802 \quad 3.9116264$ $\begin{array}{lll}9.71 & 8240.792 & 3.9159690\end{array}$ $\begin{array}{llll}9.72 & 8323.623 & 3.9203124\end{array}$ $\begin{array}{lll}9.73 & 8407.262 & 3.9246546\end{array}$ $9.74 \quad 8491.770 \quad 3.9289982$$9.75 \quad 8577.112 \quad 3.933341$ I $\begin{array}{llll}9.76 & 8663.316 & 3.9376842\end{array}$ $\begin{array}{llll}9.77 & 8750.384 & 3.9420270\end{array}$ $\begin{array}{llll}9.78 & 8838.326 & 3.9463700\end{array}$ $9.79 \quad 8927.154 \quad 3.9507131$ $9.80 \quad 9016.875 \quad 3.9550560$ 9.8I- $9107.48 \mathrm{I} \quad 3.9593983$ $\begin{array}{llll}9.82 & 9199.026 & 3.9637418\end{array}$ $9.83 \quad 9291.480 \quad 3.9680850$ $\begin{array}{llll}9.84 & 9384.860 & 3.9724278\end{array}$
$\begin{array}{lll}9.85 & 9479.163 & 3.9767701\end{array}$ $\begin{array}{llll}9.86 & 9574.444 & 3.98 \text { IIII36 }\end{array}$ $\begin{array}{llll}9.87 & 9670.678 & 3.9854569\end{array}$ $\begin{array}{llll}9.88 & 9767.860 & 3.9897994\end{array}$ $9.89 \quad 9866.020 \quad 3.9941420$ $9.90 \quad 9965.186 \quad 3.9984854$ $9.91 \quad 10065.350 \quad 4.0028289$ 9.92 10166.494 4.0071712 9.9310268 .6674 .0115141 9.94 10371.873 4.0158572
9.95 10476.107 4.0201999 9.96 10581. 3974.0245430 9.9710687 .7454 .0288860 9.98 10795.160 4.0332290 9.99 10903.652 4.0375721
10.00 IIOI3.233 4.0419148

Example.

$$
\begin{gathered}
\frac{e^{8.90}}{2}=3665.986 \quad \log _{10}\left(\frac{e^{8.90}}{2}\right)=3.5641908 . \\
{[143]}
\end{gathered}
$$

Table XV
REAL HYPERBOLIC FUNCTIONS. $f(x+i o)=u+i o$

| $\theta$ | $\operatorname{Sinh} \theta$ | $\operatorname{Cosh} \theta$ | Tanh $\theta$ | Coth $\theta$ | Sech $\theta$ | Cosech $\theta$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 0.00 | 1. | 0. | $\infty$ | 1.00 | $\infty$ | . 00 |
| 0.01 | 0.010000 | 1.000050 | 0.01000 | 100. | 0.9999 | 100. | . 01 |
| . 2 | 0.020001 | 1.000200 | 0.02000 | 50. | 0.9998 | 50. | 0.02 |
| 0.03 | 0.030005 | 1.000450 | 0.02999 | 33.34 | 0.9995 | 33.333 | 0.03 |
| 0.04 | 0.040011 | 1.000800 | 0.03998 | 25.013 | 0.9992 | 24.99 | 0.04 |
| 5 | 0.0500 | 1.001250 | 0.04996 | 20.016 | 0.9987 | 19.992 |  |
| 0.06 | 0.060036 | 1.001801 | 0.05993 | 16.686 | 0.9982 | 16.657 | 0.0 |
| 0.07 | 0.070057 | 1.002451 | 0.06989 | 14.308 | 0.9975 | 14.274 | 0.07 |
| 0.08 | 0.080085 | 1.003202 | 0.07983 | 12.527 | 0.9968 | 12.487 | 0.08 |
| 0.09 | 0.090122 | 1.004053 | 0.08976 | 11.141 | 0.9959 | 11.097 |  |
| 0.10 | 0.100167 | 1.005004 | 0.09967 | 10.033 | 0.9950 | 9.983 |  |
| 0.11 | 0.110222 | 1.006056 | 0.10956 | 9.128 | 0.9940 | 9.073 | 0.1 |
| 0.12 | 0.120288 | 1.007209 | 0.11943 | 8.373 | 0.9928 | 8.314 | 0.1 |
| 13 | 0.130366 | 1.008462 | 0.12927 | 7.735 | 0.9916 | 7.669 | 0.13 |
| 0.14 | 0.140458 | 1.009816 | 0.13909 | 7.189 | 0.9902 | 7.120 | - |
| 0.15 | 0.150563 | 1.011271 | 0.14888 | 6.716 | 0.9888 | 6.642 | 0.15 |
| 0.16 | 0.160684 | 1.012827 | 0.15865 | 6.303 | 0.9873 | 6.223 | 0.1 |
| 0.17 | 0.170820 | I.OI4485 | 0.16838 | 5.939 | 0.9857 | 5.854 | 0.17 |
| 0.18 | 0.180974 | I.016244 | 0.17808 | 5.615 | 0.9840 | 5.525 | .18 |
| 0.19 | 0.191145 | 1.018104 | 0.18775 | 5.325 | 0.9822 | 5.232 |  |
| 0.20 | 0.201336 | 1.020067 | 0.19737 | 5.067 | 0.9803 | 4.967 |  |
| 0.21 | 0.211547 | 1.022131 | 0.20696 | 4.832 | 0.9784 | 4.726 | 0.2I |
| 0.22 | 0.221779 | 1.024298 | 0.21652 | 4.618 | 0.9763 | 4.509 | 0.2 |
| 23 | 0.232033 | 1.026567 | 0.22603 | 4.425 | 0.9742 | 4.310 | 0.23 |
| 0.24 | 0.242311 | 1.028939 | 0.23549 | 4.246 | 0.9719. | 4.127 |  |
| 0.25 | 0.252612 | 1.031413 | 0.24492 | 4.083 | 0.9695 | 3.959 | 0.2 |
| 0.26 | 0.262939 | 1.033991 | 0.25430 | 3.932 | 0.967 I | 3.803 | 0.26 |
| 0.27 | 0.273292 | 1.036672 | 0.26363 | 3.793 | 0.9646 | 3.659 | 0.27 |
| 0.28 | 0.283673 | 1.039457 | 0.27290 | 3.664 | 0.9620 | 3.525 | 0.28 |
| 0.29 | 0.294082 | 1.042346 | 0.28214 | 3.544 | 0.9591 | 3.400 | 0.29 |
| 0.30 | 0.304520 | 1.045339 | 0.29131 | 3.433 | 0.9566 | 3.284 | 0.30 |
| 0.31 | 0.314989 | 1. 048436 | 0.30043 | 3.328 | 0.9537 | 3.175 | 0.31 |
| 0.32 | 0.325489 | 1.051638 | 0.30951 | 3.231 | 0.9511 | 3.072 | 0.32 |
| 0.33 | 0.336022 | I. 054946 | 0.31852 | 3.140 | 0.9479 | 2.976 | 0.33 |
| 0.34 | 0.346589 | 1.058359 | 0.32748 | 3.053 | 0.9447 | 2.885 |  |
| 0.35 | 0.357190 | 1.061878 | 0.33637 | 2.973 | 0.9416 | 2.800 | 5 |
| 0.36 | 0.367827 | 1.065503 | 0.34522 | 2.897 | 0.9385 | 2.719 | 0.36 |
| 0.37 | 0.378500 | 1.069234 | 0.35399 | 2.825 | 0.9353 | 2.642 | 0.37 |
| 0.38 | 0.389212 | 1.073073 | 0.36271 | 2.757 | 0.9319 | 2.569 | 0.38 |
| 0.39 | 0.399962 | 1.077019 | 0.37136 | 2.693 | 0.9285 | 2.500 | 0.3 |
| 0.40 | 0.410752 | 1.081072 | 0.37995 | 2.632 | 0.9250 | 2.434 | . 40 |
| 0.41 | 0.421584 | 1.085234 | 0.38847 | 2.574 | 0.9215 | 2.372 | 0.41 |
| 0.42 | 0.432457 | 1.089504 | 0.39693 | 2.519 | 0.9178 | 2.312 | 0.42 |
| 0.43 | 0.443374 | 1.093883 | 0.40532 | 2.467 | 0.9141 | 2.256 | 0.43 |
| 0.44 | 0.454335 | 1.098372 | 0.41365 | 2.417 | 0.9103 | 2.201 | 0.44 |
| 0.45 | 0.465342 | 1.102970 | 0.42190 | 2.370 | 0.9066 | 2.149 | 5 |
| 0.46 | 0.476395 | 1.107679 | 0.43009 | 2.325 | 0.0925 | 2.099 | 0.46 |
| 0.47 | 0.487496 | I.112498 | 0.43820 | 2.282 | 0.8988 | 2.051 | 0.47 |
| 0.48 | 0.498646 | 1.117429 | 0.44624 | 2.241 | 0.8949 | 2.006 | 0.48 |
| . 49 | 0.509845 | 1.122471 | 0.4542 I | 2.202 | 0.8909 | 1.961 | 0.49 |

Example. $\sinh 0.25=0.252612$.

Table XV
REAL HYPERBOLIC FUNCTIONS. $f(x+i o)=u+i o$. Continued

| $\theta$ | Sinh $\theta$ | $\operatorname{Cosh} \theta$ | Tanh $\theta$ | Coth $\theta$ | Sech $\theta$ | Cosech $\theta$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.50 | 0.521095 | 1.127626 | 0.46 |  | 0.88 |  | 0.50 |
| 0.51 | 0.532398 | 1.132893 | 0.46995 | 2.128 | 0.8827 | 1.8 | 0.51 |
| 0.52 | 0.543754 | 1.138274 | 0.47769 | 2.093 | 0.8785 | 1. 839 | 0.52 |
| 0.53 | 0.555164 | 1.143769 | 0.48538 | 2.060 | 0.8743 | 1.801 | 0.53 |
| 0.54 | 0.5666 | 1.149378 | 0.49299 | 2.028 | 0.8700 | 1.765 | 0.54 |
| 0.55 | 0.578152 | I.155101 | 0.50052 | 1.9 | 0.8658 |  | 5 |
| 0.56 | 0.589732 | I.1.60941 | . 5079 | 1.969 | 0.86 | I. 6 | . 5 |
| 0.57 | 0.601371 | 1.166896 | 0.51536 | I. 940 | 0.8570 | 1. 663 | . 57 |
| 0.58 | 0.6r3070 | 1.172968 | 0.52266 | 1.913 | 0.8525 | 1.63I | 0.58 |
| 0.59 | 0.62483 I | 1.179158 | 0.52990 | 1.887 | 0.84 | 1.601 | 0.59 |
| 0.60 | 0.636654 | 1.185465 | . 5 | 1.862 | 0.8 | 1.5 | 0.60 |
| 0.6 | 0.648540 | 1.191891 | 0.5441 | r. 838 | 0.83 | 1.542 | . 61 |
| 0.62 | 0.660492 | 1.198436 | 0.551 r 2 | r.814 | 0.83 | I.514 | . 62 |
| 0.63 | 0.672509 | 1.205101 | 0.55805 | 1.792 | 0.829 | 1.487 | 0.63 |
| 0.64 | 0.684594 | 1.211887 | 0.56 | . 770 | 0.8251 | 1.461 | 0.64 |
| . 65 | 0.696748 | 1.218 | 0.57166 | 1.74 |  | 1.43 |  |
| 6.66 | 0.708970 | 1.22582 | 0.57836 | 1.729 | 0.81 | 1.410 | . 66 |
| 0.67 | 0.721264 | 1.232973 | 0.58498 | r. 709 | 0.81 | I. 387 | . 67 |
| 0.68 | 0.733630 | I. 24024 | 0.59152 | 1.690 | 0.80 | I. 363 | . 68 |
| 0.69 | 0.746070 | 1. 24764 | 0.59798 | 1.672 | . 8 | I. 340 | 9 |
| 0.70 | 0.7585 | I. 25 | 0.6043 | 1. 655 | 0.7967 | 1.318 | . 70 |
| 0.71 | 0.7711 | I. 2 | 0.6106 | 1.637 | 0.7919 | 1.297 | . 71 |
| 0.72 | 0.783840 | 1.270593 | 0.6169 | 1.62I | 0.7870 | 1.276 | . 72 |
| 0.73 | 0.796586 | 1.278495 | 0.62306 | 1.605 | 0.7821 | 1.255 | 0.73 |
| 0.74 | 0.809411 | I | 0.62914 | 1.590 | 0.7773 | 1.235 | . 74 |
| 0.75 | 0.82 | 1.294683 | 0.6 | 1. 5744 | 0.77 | r. 216 | . 75 |
| 0.76 | 0.83530 | 1.302971 | 0.641 | 1.5599 | 0.7675 | . 197 | 0.76 |
| 0.77 | 0.848377 | I. 31139 | 0.64693 | I. 5457 | 0.7625 | 1.178 | 0.77 |
| 0.78 | 0.861533 | I.319939 | 0.65271 | 1. 5320 | 0.7576. | 1.1607 | 0.78 |
| 0.79 | 874776 | I. 32 | 6 | 1.5188 | 0.7527 | 1.143 | . 79 |
| 0.8 | 0.888106 | I. 337 | 0.664 | I. 5059 | 0.7477 | .12 | -.80 |
| 0.81 | 0.901525 | I. 3463 | 0.669 | 1.493 | 0.7427 | . 109 | .81 |
| 0.82 | 0.915034 | 1. 35546 | 0.6750 | 1.48 r | 0.7377 | 1.0928 | 0.82 |
| 0.83 | 0.928635 | I. 364684 | 0.6804 | 1.4696 | 0.7327 | 1.0768 | 83 |
| 0.84 | 0.94232 | I. 374039 | 0.68580 | 1.45 | 0. | 1.0612 |  |
| 0.8 | 0.956116 | I. 3835 | 0.6 | 1.44 | 0.7228 | . 04 | . 85 |
| 0.86 | 0.969999 | I. 393 I | 0.6962 | 1.4362 | 0.7178 | 1.0309 | . 86 |
| 0.87 | 0.983980 | 1.402931 | 0.70137 | \%. 4258 | 0.7128 | 1.0163 | . 87 |
| 0.88 | 0.998058 | I. 41284 | 0.70642 | 1.4156 | 0.7078 | 1.0020 | 0.88 |
| 0.89 | 1.012237 | 1.422893 | 0.71139 | I. 4057 | 0.7028 |  | 89 |
| 0.90 | 1.02651 | 1.433086 | 0.71629 | т.3961 | 0.6978 | , | 0.90 |
| 0.91 | 1.0408 | 1. 443423 | . 721 | I. 386 | 0.6928 | 0.9607 | 0.91 |
| 0.92 | 1.055386 | 1.453905 | 0.7259 x | 1. 3776 | 0.6878 | 0.9475 | 0.92 |
| 0.93 | 1.069978 | 1.46453 | 0.73060 | I. 3687 | 0.6828 | 0.9346 | 0.93 |
| 0.94 | 1.084677 | 1.475305 | 0.73522 | I. 360 | 0.677 | . 9219 | 0.94 |
|  | 1.099484 | 1.486225 | 73979 | 1.3518 | 0.6728 |  |  |
| 0.96 | I.114402 | 1.497295 | 0.74427 | 1.3436 | 0.6678 | 0.8973 | 0.96 |
| 0.97 | 1.12943I | 1.5085.14 | 0.74870 | 1.3356 | 0.6629 | 0.8854 | 0.97 |
| 0.98 | 1.144573 | 1.519884 | 0.75306 | 1.3279 | 0.6579 | 0.8737 | 0.98 |
| 0.99 | 1.159829 | 1.531406 | 0.75736 | 1. 3204 | 0.6529 | 0.8621 | 0.99 |

Example. $\quad$ cosh $0.55=1.155101$.

## Table XV

REAL HYPERBOLIC FUNCTIONS. $f(x+i o)=u+i o$. Continued

| $\theta$ | $\operatorname{Sinh} \theta$ | Cosh $\theta$ | Tanh $\theta$ | $\operatorname{Coth} \boldsymbol{\theta}$ | Sech $\theta$ | Cosech $\theta$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.00 | 1.175201 | 1.54308I | 0.76159 | 1.3130 | 0.6480 | 0.8509 | 1.0 |
| 1.01 | 1.190691 | 1.554910 | 0.76576 | 1.3059 | 0.6431 | 0.8395 | . 0 |
| 1.02 | 1.206300 | 1.566895 | 0.76987 | 1.2989 | 0.6382 | 0.8290 | 1.02 |
| 1.03 | 1.222029 | 1.579036 | 0.77391 | 1.2921 | 0.6333 | 0.8183 | . 03 |
| 1.04 | 1.23788I | I.591336 | 0.77789 | 1.2855 | 0.6284 | 0.8078 | . 0 |
| 1.05 | 1. 253857 | 1.603794 | 0.78181 | 1.2791 |  | 0.7975 | 1.05 |
| 1.06 | 1.269958 | 1.616413 | 0.78566 | 1.2728 | 0.6186 | 0.7874 | . 06 |
| 1.07 | 1.286185 | 1.629194 | 0.78946 | 1.2666 | 0.6138 | 0.7777 | 1.07 |
| 1.08 | 1.302542 | 1.642138 | 0.79320 | 1.2607 | 0.6090 | 0.7677 | . 08 |
| 1.09 | 1.319029 | 1. 655245 | 0.79688 | 1.2549 | 0.6042 | 0.7581 | . 09 |
| 1.10 | 1.335647 | 1.668519 | 0.80050 | 1.2492 | 0.5993 | 0.7487 | 1.10 |
| 1.11 | I. 352400 | 1.681959 | 0.80406 | 1.2437 | 0.5945 | 0.7393 | .1 |
| 1.12 | I.369287 | 1. 695567 | 0.80757 | 1.2382 | 0.5898 | 0.7302 | 1.12 |
| 1.13 | 1.386312 | 1.709345 | 0.81102 | 1.2330 | 0.5850 | 0.7215 | 1.13 |
| 1.14 | I. 403475 | 1.723294 | 0.81441 | I. 2279 | 0.5803 | 0.7125 | 1.14 |
| 1.15 | 1.420778 | 1.737415 | 0.81775 | 1.2229 | 0.5755 | 0.7038 | 15 |
| 1.16 | 1.438224 | 1.751710 | 0.82104 | 1.2180 | 0.5708 | 0.6953 | 1.16 |
| 1.17 | I.455813 | 1.766180 | 0.82427 | 1.2132 | 0.5662 | 0.6869 | 1.17 |
| 1.18 | 1.473548 | 1. 780826 | 0.82745 | 1.2085 | 0.5616 | 0.6786 | . 18 |
| I. 19 | I.491430 | 1.795651 | 0.83058 | 1.2040 | 0.5569 | 0.6705 | 1.19 |
| 1.20 | 1.50946I | 1.810656 | 0.83365 | 1.1995 | 0.5523 | 0.6625 | 1.20 |
| 1.21 | 1.527644 | 1.82584 I | 0.83668 | 1.1952 | 0.5477 | 0.6546 | 1.21 |
| 1.22 | I. 545979 | 1.841209 | 0.83965 | 1.1910 | 0.5431 | 0.6468 | 1.22 |
| 1.23 | 1.564468 | 1.856761 | 0.84258 | 1.1868 | 0.5385 | 0.6392 | 1.23 |
| 1.24 | I.583115 | 1. 872499 | 0.84546 | 1.1828 | 0.5340 | 0.6317 | 1.24 |
| 1.25 | 1.601919 | 1.888424 | 0.84828 | 1.1789 | 0.5296 | 0.6242 | 5 |
| 1.26 | 1.620884 | 1.904538 | 0.85106 | 1.1750 | 0.5251 | 0.6170 |  |
| 1.27 | 1.640010 | 1.920842 | 0.85380 | 1.1712 | 0.5206 | 0.6098 | 1.27 |
| 1.28 | 1.659301 | 1.937339 | 0.85648 | 1.1675 | 0.5162 | 0.6026 | 28 |
| 1.29 | 1. 678758 | 1.954029 | 0.85913 | 1.1640 | 0.5118 | 0.5957 | 1.2 |
| 1.30 | 1.698382 | 1.970914 | 0.86172 | 1.1605 | 0.5074 | 0.5888 | 1.30 |
| 1.31 | 1.718177 | 1.987997 | 0.86428 | 1.1570 | 0.5030 | 0.5820 | 1.31 |
| 1.32 | 1.738143 | 2.005278 | 0.86678 | 1.1537 | 0.4987 | 0.5753 | 1.32 |
| 1.33 | 1.758283 | 2.022760 | 0.86925 | 1.1504 | 0.4944 | 0.5687 | 1.33 |
| 1.34 | 1.778599 | 2.040445 | 0.87167 | 1.1472 | 0.4901 | 0.5623 | I. 34 |
| 1.35 | 1.799093 | 2.058333 | 0.87405 | 1.1441 | 0.4858 | 0.5559 | 1.35 |
| 1.36 | 1.819766 | 2.076427 | 0.87639 | 1.1410 | 0.4816 | 0.5495 | 1.36 |
| 1.37 | 1.840622 | 2.094729 | '0.87869 | 1.1380 | 0.4773 | 0.5433 | 1.37 |
| 1.38 | 1.861662 | 2.113240 | 0.88095 | 1.1351 | 0.4732 | 0.5372 | 1.38 |
| 1.39 | 1.882887 | 2.131963 | 0.88317 | I. 1323 | 0.4690 | 0.5311 | I. 39 |
| 1.40 | 1.904302 | 2.150898 | 0.88535 | 1.1295 | 0.4649 | 0.5252 | 1.40 |
| 1.41 | 1.925906 | 2.170049 | 0.88749 | 1.1268 | 0.4608 | 0.5192 | 1. 41 |
| 1.42 | 1.947703 | 2.189417 | 0.88960 | 1.1241 | 0.4568 | 0.5134 | 1.42 |
| 1.43 | 1.969695 | 2.209004 | 0.89167 | 1.1215 | 0.4527 | 0.5077 | 1.43 |
| 1.44 | 1.991884 | 2.228812 | 0.89370 | 1.1189 | 0.4486 | 0.5020 |  |
| 1.45 | 2.014272 | 2.248842 | 0.89569 | 1.1165 | 0.4446 | 0.4964 | . 45 |
| 1.46 | 2.036862 | 2.269098 | 0.89765 | 1.1140 | 0.4407 | 0.4909 | 1.46 |
| 1.47 | 2.059655 | 2.289580 | 0.89958 | I.1116 | 0.4367 | 0.4855 | 1.47 |
| 1.48 | 2.082654 | 2.310292 | 0.90147 | 1.1093 | 0.4329 | 0.4802 | 1.48 |
| 1.49 | 2.105861 | 2.331234 | 0.90332 | 1.1070 | 0.4290 | 0.4749 | 1. 49 |

Example. $\quad \tanh 1.25=0.84828$.

Table XV
REAL HYPERBOLIC FUNCTIONS. $f(x+i o)=u+i o$. CONTINUED

| $\theta$ | Sinh $\theta$ | osh $\theta$ | Tanh $\theta$ | Coth | Sech $\theta$ | Cosech $\theta$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.50 | 2.129279 | 2.35 |  | 1.1048 | 0.4251 | 0.4697 | 1.50 |
| 1.51 | 2.152910 | 2.373820 | 0.90694 | 1.1026 | 0.4212 | 0.4645 | 1.51 |
| 1.52 | 2.17675 | 2.39546 | 0.908 | I.10 | 0.4174 | 0.4594 | 1. 52 |
| I. 53 | 2.20 | 2.41735 | 0.9104 | 1.098 | 0.4137 | 454 | . 53 |
| I. 54 | 2.225105 | 2.43948 | 0.91212 | 1.09 | 0.409 | , | 1.5 |
| r. 55 | 2.249611 | 2.461859 | 0.91379 | 1. 0944 | 0.4062 | . 44 | I. 55 |
| I. 56 | 2.274343 | 2.484479 | 0.91542 | 1.0924 | 0.4025 | 0.439 | I. 56 |
| 1. 57 | 2.2993 | 2.507347 | 0.9170 | 1.090 | 0.398 | 0.4350 | . 5 |
| I. 58 | 2.324490 | 53046 | . 918 |  | 0.395 | . 430 | 5 |
| 1. 59 | 2.3499 | 2.55383 | 0.92015 | . 0868 | . 391 | 42 | . 59 |
| r. 60 | 2.375568 | 2.577464 | 0.9216 | 1.0850 | 0.3879 | 0.420 | . 60 |
| 1 | 2.401462 | 2.601349 | 0.92316 | 1.08 | 0.38 | 0.41 | . 61 |
| 1.6 | 2.42759 | . 625 | 0.9246 | 1.081 | 0.38 | 0.4119 | . 62 |
| 1. 63 | 2.453973 | 2.649902 | . 9260 | I. 079 | 0.3774 | . 407 | 1.63 |
| 1.64 | 2.48059 | 2.674575 | 0.92747 | 1.0782 | 0.3739 | . 403 | 1. 64 |
| 1. 65 | 2.507465 | 2.699515 | 0.92886 | r.0766 | 0.37 | 0.3988 | . 6 |
| I. 66 | 2.53458 | 2.724725 | 0.93022 | 1.0750 | 0.36 | 0. 3945 | 1.66 |
| 1.67 | 2.56196 | 2.750207 | .9315 | 1.073 | 0.36 | 0.3903 | . 67 |
| 1.68 | 2.58959 I | 2.77596 | . 932 | 1.0719 | 0. 36 | 0.386 | 1.68 |
| 1.69 | 2.617 | 2.80200 | 93 | 1.0704 | -. 35 | 0.3820 | 9 |
| . 70 | 2.645632 | 2.828315 | . 935 | 1.069 | 0.3536 | 0.3780 | 1.70 |
| . 71 | 2.674048 | 2.854914 | 0.936 | 1.067 | 0.3503 | 0.3740 | 1.71 |
| 1.72 | 2.702731 | 2.881797 | 0.9378 | 1.066 | 0.347 | . 370 | 1.72 |
| 1.73 | 2.73168 | 2.90896 | 9390 | 1.064 | 0.343 | 0.366 | 1.73 |
| . 7 | 2.7609 | 2.9364 | . 9402 | 1.06 | . 340 | 0.3 | 1.74 |
| 1.75 | 2.790 | 2.964188 | 0.94138 | 1.0623 | . 3373 | -. 3 | 5 |
| 1.76 | 2.82019 | 2.992241 | 0.9425 | 1.061 | 0. 3342 | 0.35 | I. 76 |
| 1.77 | 2.850260 | 3.020593 | 0.943 | t.05 | -.3310 | - 35 | 1.77 |
| 1. 78 | 2.88060 | 3.04924 | . 944 | I. 05 | . 327 | -. 347 | 1. 78 |
| 1.79 | 2.91124 | 3.078 | 0.9457 | 1.057 | 0. 3248 | -. 343 | 1.79 |
| 1.80 | .942174 | . 10747 | 0.94681 | 1.0562 | 0.321 | 0.339 | 80 |
| 1.81 | 2.973397 | 3.13705 | 0.94783 | 1.055 | 0.31 | 0.33 | 81 |
| 1.8 | 3.0049 | 3.166942 | 0.9488 | I. 053 | 0.315 | 0.332 | . 82 |
| 1.83 | . 036 | 3.19715 | 0.949 | I. 05 | 0.3128 | . 329 | 1.83 |
| 1.84 | 68 | 3.2276 | . 950 | 1.05 | 0.3098 | . 32 |  |
| 1. 8 | 3.101291 | 3.258528 | 0.95 | I. 0507 | 0.3069 | 0.3224 | 85 |
| 1. 86 | 3.134032 | 3.289705 | 0.952 | I. 049 | 0.3040 | 0.3191 | 86 |
| 1.87 | 3.167086 | 3.321210 | . 95359 | I. 048 | 0.3 | . 315 | . 8 |
| 1.88 |  | $3 \cdot 353$ | . 9544 | 1.04 | 0.298 | . 3125 | . 88 |
| 1. 89 | 3.234148 |  | 0.95537 | 1.04 | 0.295 | 309 |  |
| 1.90 | 3.268163 | 4177 | 0.95624 | 1.0458 | 0.2926 | 0.305 | . 90 |
| 1.91 | 3.302504 | 3.450585 | 0.95709 | 1.0448 | 0.2897 | 0.3028 | . 9 |
| 1.92 | 3.337176 | 3.483783 | 0.9579 | 1.0439 | 0.287 | 0. 299 | -9 |
| 1.93 | 3.372181 | 3.51732 | . 958 | 1.043 | 0.284 | 0.2965 | I. 93 |
| 1.94 | 7524 | 3.551227 | 0.95953 | 1.04 |  | 0.2935 | 1.94 |
|  | 3.443207 | 3.585481 | 0.96032 | 1.0413 | 0.2789 | 0.2904 |  |
| 1.96 | 3.479234 | 3.620093 | 0.96109 | 1.0405 | 0.2762 |  | 1.96 |
| 1.97 | 3.515610 | 3.655067 | 0.96185 | 1.0397 | 0.2736 | 0.2844 | 1.97 |
| 1.98 | 3.552337 | 3.69040 | 0.962 | 1.0389 | 0.2710 | 0.2815 | I. 98 |
| I. 9 | 3.589419 | 3.726115 | 0.96331 | 1.0380 | 0.2684 | 0.2786 | 1.99 |

Example. $\quad$ coth $1.70=1.0691$.

## Table XV

REAL HYPERBOLIC FUNCTIONS. $f(x+i o)=u+i o . \quad$ Continued

| $\theta$ | Sinh $\theta$ | $\operatorname{Cosh} \theta$ | Tanh $\theta$ | $\operatorname{Coth} \theta$ | Sech $\theta$ | Cosech $\theta$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.00 | 3.626860 | 3.762196 | 0.96403 | 1.0373 | 0.2658 | 0.2757 |  |
| 2.01 | 3.66466 | 3.79865 | 0.96473 | 1.0365 | 0.2632 | 0.2729 | . 01 |
| 2.02 | 3.70283 | 3.83549 | 0.9654 r | 1.0358 | 0.2607 | 0.2701 | 2.02 |
| 2.03 | 3.74138 | 3.8727 I | 0.96608 | 1.0351 | 0.2582 | 0.2673 | 2.0 |
| 2.04 | 3.78029 | 3.91032 | 0.96675 | 1. 0344 | 0.2557 | 0.2645 | 2.04 |
| 2.05 | 3.81958 | 3.94832 | 0.96740 | 1. 0337 | 0.2533 | 0.2618 |  |
| 2.06 | 3.85926 | 3.9867 I | 0.96803 | 1.0330 | 0.2508 | 0.2596 |  |
| 2.07 | 3.89932 | 4.02550 | 0.96865 | 1.0323 | 0.2484 | 0.2565 | 2.07 |
| 2.08 | 3.93977 | 4.06470 | 0.96926 | 1.0317 | 0.2460 | 0.2538 | 2.08 |
| 2.09 | 3.98061 | 4.10430 | 0.96986 | 1.0310 | 0.2436 | 0.2512 | 2.09 |
| 2.10 | 4.02186 | 4.14431 | 0.97045 | I. 0305 | 13 | 0.2486 | 2.10 |
| 2.11 | 4.06350 | 4.18474 | 0.97103 | 1.0298 | 0.2389 | 0.246 r |  |
| 2.12 | 4.10555 | 4.22558 | 0.97159 | 1.0293 | 0.2366 | 0.2436 | 2.12 |
| 2.13 | 4.14801 | 4.26685 | 0.97215 | 1.0286 | 0.2344 | 0.2411 | 2.13 |
| 4 | 4.19089 | 4.30855 | 0.97269 | 1.0280 | 0.2321 | 0.2386 | 2.14 |
| 2.15 | 4.23419 | 4.35067 | 0.97323 | 1.0275 | 0.2298 | 0.2362 |  |
| 2.16 | 4.27791 | 4.39323 | 0.97375 | 1.0269 | 0.2276 | 0.2338 | 2.16 |
| 7 | 4.32205 | 4.43623 | 0.97426 | 1.0264 | 0.2254 | 0.2314 | 2.1 |
| 8 | 4.36663 | 4.47967 | 0.97477 | 1.0259 | 0.2232 | 0.2290 | 2.18 |
| 2.19 | 4.41165 | 4.52356 | 0.97526 | 1.0254 | .22II | 0.2267 | 2.19 |
| 2.20 | 4.457 II | 4.56791 | 0.97574 | r. 0249 | 0.2189 | 0.2244 | 2.20 |
| 2.21 | 4.50301 | 4.61271 | 0.97622 | 1.0243 | 0.2168 | 0.222 I | 2.21 |
| 2. | 4.54936 | 4.65797 | 0.97668 | 1. 0239 | 0.2147 | 0.2198 | 2.22 |
| 2.23 | 4.59617 | 4.70370 | 0.97714 | 1.0234 | 0.2126 | 0.2176 | 2.23 |
| 2.24 | 4.64344 | 4.74989 | 0.97758 | 1.0229 | 0.2105 | 0.2154 | 2.24 |
| 2.25 | 4.69117 | 4.79657 | 0.97803 | 1.0225 | 0.2085 | 0.2132 | 2.25 |
| 2.26 | 4.73937 | 4.84372 | 0.97847 | 1.0220 | 0.2064 | 0.2110 | 2.26 |
| 2.27 | 4.78804 | 4.89136 | 0.97888 | 1.0216 | 0.2044 | 0.2089 | 2.27 |
| 2.28 | 4.83720 | 4.93948 | 0.97929 | 1.0211 | 0.2024 | 0.2067 | 2.28 |
| 2.29 | 4.88683 | 4.98810 | 0.97970 | 1.0207 | 0.2005 | 0.2047 | 2.29 |
| 2.30 | 4.93696 | 5.03722 | 0.98010 | 1.0203 | 0.1985 | 0.2026 | 2.30 |
| 2.31 | 4.98758 | 5.08684 | 0.98049 | 1.0199 | 0.1966 | 0.2005 | 2.31 |
| 2.32 | 5.03870 | 5.13697 | 0.98087 | 1.0195 | 0.1947 | 0.1985 | 2.32 |
| 2.33 | 5.09032 | 5.18762 | 0.98124 | 1.0191 | 0.1928 | 0.1965 | 2.33 |
| 2.34 | 5.14245 | 5.23879 | 0.98161 | 1.0187 | 0.1909 | 0.1945 | 234 |
| 2.35 | 5.19510 | 5.29047 | 0.98198 | 1.0184 | 0.1890 | 0.1925 |  |
| 2.36 | 5.24827 | $5 \cdot 34269$ | 0.98233 | 1.0180 | 0.1872 | 0.1905 | 2.36 |
| 2.37 | 5.30196 | 5.39544 | 0.98268 | 1.0177 | 0.1854 | 0.1886 | 2.37 |
| 2.38 | 5.356r8 | $5 \cdot 44873$ | 0.98302 | 1.01 73 | 0.1835 | 0.1867 | 2.38 |
| 2.39 | 5.41093 | 5.50256 | 0.98335 | 1.0169 | 0.1817 | 0.1848 | 2.39 |
| 2.40 | 5.46623 | 5.55695 | 0.98368 | 1.0166 | 0.1800 | 0.1829 | 2.40 |
| 2.41 | 5.52207 | 5.61189 | 0.98399 | 1.0163 | 0.1782 | 0.1811 | 2.41 |
| 2.42 | 5.57847 | 5.66739 | 0.9843 I | 1.0159 | 0.1765 | 0.1793 | 2.42 |
| 2.43 | 5.63542 | 5.72346 | 0.98462 | I.OI 56 | 0.1747 | 0.1775 | 2.43 |
| 2.44 | 5.69294 | 5.78010 | 0.98492 | 1.01 53 | 0.1730 | 0.1757 | , |
| 2.45 | 5:75103 | 5.83732 | 0.98522 | 1.0150 | 0.1713 | 0.1739 | 2.45 |
| 2.46 | 5.80969 | 5.89512 | 0.98551 | 1.0147 | 0.1696 | 0.1721 | 2.46 |
| 2.47 | 5.86893 | 5.95352 | 0.98579 | 1.0144 | 0.1680 | 0.1704 | 2.47 |
| 2.48 | 5.92876 | 6.01250 | 0.98607 | 1.0141 | 0.1663 | 0.1687 | 2.48 |
| 2.49 | 5.98918 | 6.07209 | 0.98635 | 1.0138 | 0.1647 | 0.1670 | 2.49 |

Example. $\quad$ sech $2.00=0.2658$.

REAL HYPERBOLIC FUNCTIONS. $f(x+i o)=u+i o$. Continued

| $\theta$ | $\operatorname{Sinh} \theta$ | $\operatorname{Cosh} \theta$ | Tanh $\theta$ | Coth $\theta$ | Sech $\theta$ | Cosech $\theta$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.5 | 6.05020 | 6.13229 | 0.98661 | 1.0136 | 0.1631 | 0.1653 | 2.5 |
| 2.6 | 6.69473 | 6.76901 | 0.98903 | 1.0111 | 0.1477 | 0.1494 | 2.6 |
| 2.7 | 7.40626 | 7.47347 | 0.99101 | 1.0091 | 0.1338 | -.1350 | 2.7 |
| 2.8 | 8.19192 | 8.25273 | 0.99263 | 1.0074 | 0.1212 | 0.1221 | 2.8 |
| 2.9 | 9.05956 | 9.11458 | 0.99396 | 1.0061 | 0.1097 | 104 | 2.9 |
| 3.0 | 10.01787 | 10.06766 | 0.99505 | 1.0050 | 0.0937 | 0.09982 | 3.0 |
| 3.1 | 11.07645 | 11.12150 | 0.99595 | 1.0041 | 0.0899 | 0.0903 | 3.1 |
| 3.2 | 12.24588 | 12.28665 | 0.99668 | 1.0033 | 0.0814 | 0.0816 | 3.2 |
| 3.3 | 13.53788 | 13.57476 | 0.99728 | 1.0027 | 0.0736 | 0.0739 | 3.3 |
| 3.4 | 14.96536 | 14.99874 | 0.99778 | 1.0022 | 0.0667 | 0.0668 | 3.4 |
| 3.5 | 16.54263 | 16.57282 | 0.99818 | 1.0018 | 0.0604 | 0.0604 | 3.5 |
| 3.6 | 18.28546 | 18.31278 | 0.99851 | 1.0015 | 0.0546 | 0.0547 | 3.6 |
| 3.7 | 20.21129 | 20.23601 | 0.99878 | 1.0012 | 0.0494 | 0.0495 | 3.7 |
| 3.8 | 22.33941 | 22.36178 | 0.99900 | 1.0010 | 0.0447 | 0.0448 | 3.8 |
| 3.9 | 24.69110 | 24.71135 | 0.99918 | 1.0008 | 0.0405 | 0.0405 | 3.9 |
| 4.0 | 27.28992 | 27.30823 | 0.99933 | 1.0007 | 0.0366 | 0.0366 | 4.0 |
| 4.1 | 30.16186 | 30.17843 | 0.99945 | 1.0006 | 0.0331 | 0.0332 | 4.1 |
| 4.2 | 33.33567 | 33.35066 | 0.99955 | 1.0005 | 0.0300 | 0.0300 | 4.2 |
| 4.3 | 36.84311 | 36.85668 | 0.99963 | 1.0004 | 0.0271 | 0.0271 | 4.3 |
| 4.4 | 40.71930 | 40.73157 | 0.99970 | 1.0003 | 0.0245 | 0.0245 |  |
| 4.5 | 45.00301 | 45.01412 | 0.99975 | 1.0003 | 0.0222 | 0.0222 | 4.5 |
| 4.6 | 49.73713 | 49.74718 | 0.99980 | 1.0002 | 0.0201 | 0.0201 | 4.6 |
| 4.7 | 54.96904 | 54.97813 | 0.99983 | 1.0002 | 0.0182 | 0.0182 | 4.7 |
| 4.8 | 60.75109 | 60.75932 | 0.99986 | 1.0001 | 0.0165 | 0.0165 | 4. |
| 4.9 | 67.14117 | 67.14861 | 0.99989 | 1.0001 | 0.0149 | 0.0149 | 4.9 |
| 5.0 | 74.20321 | 74.20995 | 0.99991 | 1.0001 | 0.0135 | 0.0135 | 5.0 |
| 5.1 | 82.0079 | 82.0140 | 0.99993 | 1.00007 | 0.01219 | 0.01219 | 5.1 |
| 5.2 | 90.6334 | 90.6389 | 0.99993 | 1.00007 | 0.01103 | 0.01103 | 5. |
| $5 \cdot 3$ | 100.1659 | 100.1709 | 0.99994 | 1.00006 | 0.00998 | 0.00998 | $5 \cdot 3$ |
| 5.4 | 110.7009 | 110.7055 | 0.99995 | 1.00005 | 0.00903 | 0.00903 |  |
| 5.5 | 122.3439 | 122.3480 | 0.99996 | 1.00004 | 0.00818 | 0.00818 | 5. |
| 5.6 | 135.2114 | 135.2150 | 0.99997 | 1.00003 | 0.00740 | 0.00740 | 5. |
| 5.7 | 149.4320 | 149.4354 | 0.99998 | 1.00002 | 0.00669 | 0.00669 | 5 |
| 5.8 | 165.1483 | ${ }_{1}^{165.1513}$ | 0.99998 0.99998 | 1.00002 1.00002 |  |  | 5. |
| 5.9 | 182.5174 | 182.5201 | 0.99998 | 1.0 | 0.00548 | 0.00548 | . |
| 6.0 | 201.7132 | 201.7156 | 0.99999 | 1.00001 | 0.00496 | 0.00496 | 6.0 |
| 6.1 | 222.9278 | 222.9300 | 1.000 | 1.000 | 0.00449 | 0.00449 | 6. |
| 6.2 | 246.3735 | 246.3755 | . 000 | 1.000 | 0.00406 | 0.00406 | 6. |
| 6.3 | 272.2850 | 272.2869 | . 0 | 1.000 | 0.00367 | 0.00367 | 6. |
| 6.4 | 300.9217 | 300.9233 | 1.000 | 1.0 | 0.00332 | 0.00332 |  |
| 6.5 | 332.5701 | 332.5716 | 1.000 | 1.000 | 0.00301 | 0.00301 | 6. |
| 6.6 | 367.5469 | 367.5483 | 1.000 | 1.000 | 0.00272 | 0.00272 | 6. |
| 6.7 | 406.2023 | 406.2035 | 1.000 | 1.000 | 0.00246 | 0.00246 | 6.7 |
| 6.8 | 448.923 I | 448.9242 | 1.000 | 1.000 | 0.00223 | 0.00223 | 6.8 |
| 6.9 | 496.1369 | 496.1379 | 1.0 | 1.000 | 0.00202 | 2 |  |
| 7.0 | 548.3161 | 548.3170 | 1.000 | 1.000 | 0.00182 | 0.00182 | 7.0 |
| 7.1 | 605.9831 | 605.9839 | 1.000 | 1.000 | 0.00165 | 0.00165 | 7.1 |
| 7.2 | 669.7150 | 669.7158 | 1.000 | 1.000 | 0.00149 | 0.00149 | 7. |
| 7.3 | 740.1496 | 740.1503 | 1.000 | 1.00 | 0.00135 | 0.00135 | $7 \cdot$ |
| 7.4 | 817.9919 | 817.9925 | 1. | 1.000 | 0.00122 | 0.00122 |  |
| 7.5 | 904.0209 | 904.0215 | 1.000 | 1.000 | 0.001 | . 0 |  |

Example. $\operatorname{cosech} 2.50=0.1653$.

Table XVI. SUBDIVISIONS OF A DEGREE-AUXILIARY TABLE

| - | " | - | ' " | $\bigcirc$ |  | , | - | , | - | " | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| O.OI | 00.36 | 0.41 | 24.36 | 0.8 I | 48.36 | OI | 0.0167 . | 41 | 0.6833 | 21 | 0.0058 |
| 0.02 | 01.12 | 0.42 | 25.12 | 0.82 | 49.12 | 02 | 0.0333 | 42 | 0.7000 | 22 | 0.0061 |
| 0.03 | 01.48 | 0.43 | 25.48 | 0.83 | 49.48 | 03 | 0.0500 | 43 | 0.7167 | 23 | 0.0064 |
| 0.04 | 02.24 | 0.44 | 26.24 | 0.84 | 50.24 | 04 | 0.0667 | 44 | 0.7333 | 24 | 0.0067 |
| 0.05 | 03.00 | 0.45 | 27.00 | 0.85 | 51.00 | 05 | 0.0833 | 45 | 0.7500 | 25 | 0.0069 |
| 0.06 | 03.36 | 0.46 | 27.36 | 0.86 | 51.36 | 06 | 0.1000 | 46 | 0.7667 | 26 | 0.0072 |
| 0.07 | 04.12 | 0.47 | 28.12 | 0.87 | 52.12 | 07 | 0.1167 | 47 | 0.7833 | 27 | 0.0075 |
| 0.08 | 04.48 | 0.48 | 28.48 | 0.88 | 52.48 | 08 | 0.1333 | 48 | 0.8000 | 28 | 0.0078 |
| 0.09 | 05.24 | 0.49 | 29.24 | 0.89 | 53.24 | $\infty$ | 0.1500 | 49 | 0.8167 | 29 | 0.0081 |
| -. 10 | 06.00 | 0.50 | 30.00 | 0.90 | 54.00 | 10 | 0.1667 | 50 | 0.8333 | 30 | 0.0083 |
| 0.11 | 06.36 | 0.51 | 30.36 | 0.91 | 54.36 | II | 0.1833 | 51 | 0.8500 | 31 | 0.0086 |
| 0.12 | 07.12 | 0.52 | 31.12 | 0.92 | 55.12 | 12 | 0.2000 | 52 | 0.8667 | 32 | 0.0089 |
| 0.13 | 07.48 | 0.53 | 31.48 | 0.93 | 55.48 | 13 | 0.2167 | 53 | 0.8833 | 33 | 0.0092 |
| 0.14 | 08.24 | 0.54 | 32.24 | 0.94 | 56.24 | 14 | 0.2333 | 54 | 0.9000 | 34 | 0.0094 |
| 0.15 | 09.00 | 0.55 | 33.00 | 0.95 | 57.00 | 15 | 0.2500 | 55 | 0.9167 | 35 | 0.0097 |
| 0.16 | 09.36 | 0.56 | 33.36 | 0.96 | 57.36 | 16 | 0.2667 | 56 | 0.9333 | 36 | 0.0100 |
| 0.17 | 10.12 | 0.57 | 34.12 | 0.97 | 58.12 | 17 | 0.2833 | 57 | 0.9500 | 37 | 0.0103 |
| 0.18 | 10.48 | 0.58 | 34.48 | 0.98 | 58.48 | 18 | 0.3000 | 58 | 0.9667 | 38 | 0.0106 |
| 0.19 | II. 24 | 0.59 | 35.24 | 0.99 | 59.24 | 19 | 0.3167 | 59 | 0.9833 | 39 | 0.0108 |
| 0.20 | 12.00 | 0.60 | 36.00 | 1.00 | 60.00 | 20 | 0.3333 | 60 | 1.0000 | 40 | O.OIII |
|  |  |  |  |  |  |  |  | " | - |  |  |
| 0.21 | 12.36 | 0.61 | 36.36 |  |  | 21 | 0.3500 | OI | 0.0003 | 4 I | 0.0114 |
| 0.22 | 13.12 | 0.62 | 37.12 |  |  | 22 | 0.3667 | 02 | 0.0006 | 42 | 0.0117 |
| 0.23 | 13.48 | 0.63 | 37.48 |  |  | 23 | 0.3833 | 03 | 0.0008 | 43 | 0.0119 |
| 0.24 | 14.24 | 0.64 | 38.24 |  |  | 24 | 0.4000 | 04 | 0.0011 | 44 | 0.0122 |
| 0.25 | 15.00 | 0.65 | 39.00 |  |  | 25 | 0.4167 | 05 | 0.0014 | 45 | 0.0125 |
| 0.26 | 15.36 | 0.66 | 39.36 |  |  | 26 | 0.4333 | 06 | 0.0017 | 46 | 0.0128 |
| 0.27 | 16.12 | 0.67 | 40.12 |  |  | 27 | 0.4500 | 07 | 0.0019 | 47 | 0.0131 |
| 0.28 | 16.48 | 0.68 | 40.48 |  |  | 28 | 0.4667 | 08 | 0.0022 | 48 | 0.0133 |
| 0.29 | 17.24 | 0.69 | 41.24 |  |  | 29 | 0.4833 | 09 | 0.0025 | 49 | 0.0136 |
| 0.30 | 18.00 | 0.70 | 42.00 | ... |  | 30 | 0.5000 | 10 | 0.0028 | 50 | 0.0139 |
|  |  |  |  | - | , " |  |  |  |  |  |  |
| 0.31 | 18.36 | 0.71 | 42.36 | 0.001 | $\infty 0.03 .6$ | 3 I | 0.5167 | 11 | 0.0031 | 51 | 0.0142 |
| 0.32 | 19.12 | 0.72 | 43.12 | 0.002 | 00.07.2 | 32 | 0.5333 | 12 | 0.0033 | 52 | 0.0144 |
| 0.33 | 19.48 | 0.73 | $43 \cdot 48$ | 0.003 | 0.10 .8 | 33 | 0.5500 | 13 | 0.0036 | 53 | 0.0147 |
| 0.34 | 20.24 | 0.74 | 44.24 | 0.004 | 00.14 .4 | 34 | 0.5667 | 14 | 0.0039 | 54 | 0.0150 |
| 0.35 | 21.00 | 0.75 | 45.00 | 0.005 | $\infty .18$ | 35 | 0.5833 | 15 | 0.0042 | 55 | 0.0153 |
| 0.36 | 21.36 | 0.76 | $45 \cdot 36$ | 0.006 | $\infty .21 .6$ | 36 | 0.6000 | 16 | 0.0044 | 56 | 0.0156 |
| 0.37 | 22.12 | 0.77 | 46.12 | 0.007 | 0.25.2 | 37 | 0.6167 | 17 | 0.0047 | 57 | 0.0158 |
| 0.38 | 22.48 | 0.78 | 46.48 | 0.008 | -0.28.8 | 38 | 0.6333 | 18 | 0.0050 | 58 | 0.0161 |
| 0.39 | 23.24 | 0.79 | 47.24 | 0.009 | $\infty$ 0.32.4 | 39 | 0.6500 | 19 | 0.0053 | 59 | 0.0164 |
| 0.40 | 24.00 | 0.80 | 48.00 | 0.010 | 0.36 | 40 | 0.6667 | 20 | 0.0055 |  | 0.0167 |

Examples. $\quad \circ^{\circ} .4 \mathrm{r}=0^{\circ} .24^{\prime} .36^{\prime \prime} \quad 0^{\circ} .4 \mathrm{I}^{\prime} .00^{\prime \prime}=0^{\circ} .6833$.
$0^{\circ} .005=0^{\circ} .00^{\prime} .18^{\prime \prime} \quad 0^{\circ} .00^{\prime} .46^{\prime \prime}=0^{\circ} .0128$.
[ 150 ]

EXPLANATORY TEXT

## EXPLANATORY TEXT

## INTRODUCTION

The Tables in this book are designed primarily for presenting hyperbolic functions of a complex variable either in the rectangular coördinate form of that variable $(x+i y)$ or the polar coördinate form ( $\rho(\delta)$. They are also designed secondarily for presenting circular functions of a complex variable. A few formulas are added as aids to the conversion of such functions. The most extensive range offered is in Tables VII to XIV inclusive, between which, the functions $\sinh (x+i y), \cosh (x+i y), \tanh (x+i y)$, expressed in the result either in rectangular coördinates $u+i v$ or in polar coördinate quantities $r \underline{\gamma}$, may be obtained between the limits of $\circ$ and $\pm$ ro of $x$, and between the limits of $o$ and $\pm \propto$ for $y$. It is shown, moreover, to be an easy matter to extend the range of $x$ beyond the offered range of $\pm$ ro, should such an extension be required. The practical need for tabulated values of hyperbolic functions of $(x+i y)$ beyond the range of $x= \pm$ ro appears to be so small that any such extension is left to the reader.

As the author's applications for financial assistance in the computation of the Tables were unsuccessful, the steps in $x$ and $y$ ( 0.05 and 0.07854 respectively) are larger than were originally intended; i.e., for reducing the work of the user to the lowest practicable limits. Consequently, interpolation must ordinarily be resorted to, when three or more significant digits are needed in the results. Such interpolations require an appreciable amount of time to effect in two dimensions; i.e., for both $x$ and $y$. In order to render such interpolation unnecessary for ordinary engineering purposes, where three, or at most four, significant digits may be needed, a separate atlas of 23 large-scale charts, $45 \mathrm{~cm} . \times 45 \mathrm{~cm}$. over ruled areas, has been prepared, and is published as an adjunct to these Tables. The necessary interpolation can very swiftly be made on the charts, by inspection.

## COMPLEX QUANTITIES

The following brief outline of complex quantities is offered in view of their fundamental importance in connection with the Tables, for the assistance of those who have studied elementary mathematics, but who may not have become familiar with complex numbers. For a more comprehensive discussion of complex quantities, the reader must be referred to special treatises on the subject.

Ordinary numerical quantities, or the numbers dealt with in ordinary arithmetic, may be considered to range between zero and either positive or negative infinity, by indefinitely small gradations. Such numbers may be represented geometrically by distances, in either direction, from a zero point on an infinite straight line. Thus in Fig. r, we may consider that the straight line $-X O X$ extends from minus infinity on the left, to plus infinity on the right, $O$ being the zero point. The point $x_{1}$ would then represent +I , and so on. That is, the number +I may be regarded as represented on the line $-X O X$ either by the position of the point $x_{1}$ with respect to the zero point $O$;
or, as the vector $O x_{1} ; i e$. , the straight line drawn from the origin $O$ to the point $x_{1}$ and forming a part of the reference line $-X O X$. Under these assumptions, the ordinary numbers of arithmetic may be represented geometrically as vectors; but such vectors are confined to a single straight-line direction from $O$ towards $X$ for positive numbers, and from $O$ towards - $X$ for negative numbers.

Complex quantities, or complex numbers, cannot be completely represented by reference to a single direction, or to vectors along one and the same straight line. They may, however, be represented geometrically by the position, in an infinite plane, of a movable point with respect to a fixed point as origin. Thus, in Fig. r, the plane XOY is the plane of reference, and the fixed point $O$ is the origin. Then any point $P_{1}$ in the plane represents a complex number, and any complex number may be represented by a point on the plane.


Fig. r. - Complex quantity $1+i z$.


Fig. 2. - Plane Vector $2.236 \epsilon^{i i_{1.10 s}}$ or $\rho \epsilon^{i \delta}$, designated by $2.236 / 63^{\circ} .26^{\prime}$.

A complex number may be specified either in rectangular coördinates, or in polar coördinates, as may be preferred. Thus, the same vector $O P_{1}$ is represented in Fig. r to rectangular coördinates, and in Fig. 2 to polar coördinates. In Fig. i, the $X$ axis - XOX passing through the origin $O$ is the fundamental reference axis, and the $Y$ axis $-Y O Y$, perpendicular thereto in the reference plane, immediately follows. Then the point $P_{1}$, measuring +I along $O X$, and +2 along $O Y$, may be defined by the expression ( $\mathrm{I}+i_{2}$ ), where the symbol $i$ signifies measurement along the subordinate axis. It is shown in mathematical treatises that $i=\sqrt{-\mathrm{I}}$. The vector $O P_{1}$ of Fig. I may therefore be expressed as $(\mathrm{r}+\sqrt{-1} .2)$ and a vector from $O$ to any point in the plane may be represented by $x+\sqrt{-\mathrm{I}} y=x+i y$, where $x$ and $y$ may have any positive or negative numerical values, including zero.

In pursuance of time-honored terminology, the axis - XOX is sometimes called the "real" axis, and - YOY the "imaginary," axis; so that the $x$-component of a complex number becomes the "real component," and the $y$-component the "imaginary component." The symbol $i$ still stands for the imaginary component. In mathematics as applied to electrical engineering, the symbol $i$ commonly designates electric currentstrength, and so, in order to prevent the possibility of confusion, the symbol $j$ is frequently substituted as the sign of the imaginary. Under such a convention, the plane-vector, or complex quantity, $O P_{1}$, would be represented as $\mathrm{I}+j 2$. As, however, in this book we necessarily consider complex quantities from a broader viewpoint than that offered by electrical engineering, we shall use the symbol $i$ to denote the imaginary component, perpendicularly rotated with respect to the fundamental $X$ axis.

## EXPLANATORY TEXT

Complex quantities may also be expressed in polar coördinates, as in Fig. 2, where the fundamental reference axis $O X$ is drawn in the positive direction in the reference plane, from the origin $O$, and the circular angle $\delta_{1}$ is measured in the positive or counterclockwise direction from $O X$ to $O P_{1}$. The vector $O P_{1}$ is then specified in polar coordinates by its length $\rho_{1}$ and by its angle $\delta_{1}$. The length $\rho_{1}$ is called the modulus of the vector, and the angle $\delta_{1}$ is called the argument. This argument may be expressed in circular radians, in degrees-minutes-seconds, quadrants, or any other recognized unit of circular angle. Thus, in Fig. 2, the vector $O P_{1}$ may be represented to polar coordinates symbolically by $\rho_{1} / \delta_{1}$ or, using numbers, by $2.236 / 63^{\circ} .26^{\prime}$, where 2.236 is the modulus to the same scale of linear measure as in Fig. r, and $63^{\circ} .26^{\prime}$ is the argument.

If one and the same complex quantity be expressed both in rectangular and polar coördinates, as follows:

$$
\begin{equation*}
x+i y=\rho / \delta \tag{I}
\end{equation*}
$$

it is evident that $x=\rho \cos \delta, y=\rho \sin \delta, y / x=\tan \delta$, and $\rho=\sqrt{x^{2}+y^{2}}$, relations which enable the coc̈rdinates to be changed, at will, from one form to the other. Thus in Figs I and $2, x_{1}=1, y_{1}=2, \rho_{1}=\sqrt{5}=2.236$, and $\delta_{1}=\tan ^{-1}(2)=63^{\circ} .26^{\prime}$.


Fig. 3. - Complex quantity $-2-i$ r.


Fig. 4. - Plane-Vector $2.236 \epsilon^{i 3.608}$. or $2.236 / 206^{\circ} \cdot 34^{\prime}$.

Similarly, Figs. 3 and 4 represent the complex quantity or plane vector $O P_{2}$ to rectangular and polar coördinates respectively. Here $x_{2}=-2, y_{2}=-1, \rho_{2}=\sqrt{5}=2.236$ and $\delta_{2}=206^{\circ} \cdot 34^{\prime}$.

## Addition of Complex Quantities

One vector quantity is added to another, by drawing it in the reference plane from the extremity of the latter as origin, and then drawing a vector from the origin to its


Fig. 5. - Addition of two complex quantities $\left(\mathrm{x}+\mathrm{i}_{2}\right)+\left(-2-\mathrm{i}_{\mathrm{I}}\right)=-\mathrm{x}+\mathrm{ix}$.


Frg. 6. - Complex Addition, Polar coördinates. $\rho_{1} / \delta_{1}+\rho_{2} / \delta_{2}=\rho_{3} / \delta_{3}$
$2.236 / 63^{\circ} \cdot .26^{\prime}+2.236 / 206^{\circ} .34^{\prime}=1.414 / \boxed{35^{\circ}}$ $\mathrm{Op}+\mathrm{pP}=\mathrm{OP}$
free end. The last named vector is the required sum. Thus, in Fig. 5, the complex quantity $O P_{2}=-2-i_{1}$ of Fig 3 is added to the complex quantity $O P_{1}=1+i_{2}$

## EXPLANATORY TEXT

of Fig 1 , giving the resultant vector $O P=-1+i \mathrm{I}$. Fig. 6 shows the corresponding operation with polar coördinate vectors. Here $O P_{2}=2.236 / 206^{\circ} .34^{\prime}$ of Fig. 4 is added to $O P_{1}=2.236 / 63^{\circ} .26^{\prime}$ of Fig. 2, to produce $O P=1.414 / 135^{\circ}=\rho_{3} / \delta_{3}$ of Fig. 6.

On the drawing-board, the graphic process of adding vectors is as easily effected when they are expressed in polar as in rectangular coördinates. But the arithmetical addition is much more easily made with rectangular coördinates. The rule is: find the vector sum by taking first the sum of the reals, and then the sum of the imaginaries; or

$$
\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)+\ldots+\left(x_{n}+i y_{n}\right)=\left(x_{1}+x_{2}+\ldots+x_{n}\right)
$$

$$
\begin{equation*}
+i\left(y_{2}+y_{2}+\cdots \cdot+y_{n}\right)=\Sigma x+i \Sigma y \tag{2}
\end{equation*}
$$

In the case of Figs. 5 and 6:

$$
\left(\mathrm{I}+i_{2}\right)+(-2-i \mathrm{I})=(+\mathrm{I}-2)+i(2-\mathrm{I})=-\mathrm{I}+i_{\mathrm{I}}=\sqrt{2} / \mathrm{I} 35^{\circ} .
$$

## Subtraction of Complex Quantities

Reversing the sign of a rectangular complex quantity means reversing the sign of both its real and imaginary components. Reversing the sign of a polar complex quantity means changing its argument by $180^{\circ}$.

To subtract one complex quantity $A$ from another $B$, reverse the sign of $A$, and then add it thus reversed to $B$, by the rules of addition.


Fig. 7. - Complex Subtraction $\left(\mathrm{I}+\mathrm{i}_{2}\right)-\left(-2_{2}-\mathrm{i}_{\mathrm{I}}\right) \ldots 3+\mathrm{i}_{3}=\mathrm{OP}$.


Fig. 8. - Complex Subtraction, Polar Coördinates
$\rho_{1} / \delta_{1}-\rho_{2} / \delta_{2}=\rho_{3} / \delta_{3}$
$2.236 / 63^{\circ} .26^{\prime}-2.236 / 206^{\circ} .34^{\prime}=4.243 / 45^{\circ}$
$\mathrm{Op}_{1}+\mathrm{p}_{1} \mathrm{P}=\mathrm{OP}$.

In Figs. 7 and 8, the vector $P_{2}$ of Figs. 3 and 4 is subtracted from the vector $P_{1}$ of Figs. I and 2. In Fig. 7, we have

$$
\begin{aligned}
O P_{1}-O P_{2} & =O P . \\
\left(\mathrm{I}+i_{2}\right)-\left(-2-i_{\mathrm{I}}\right) & =\left(\mathrm{I}+i_{2}\right)+\left(2+i_{\mathrm{I}}\right) . \\
& =3+i_{3} . \\
\rho_{1} / \delta_{1}-\rho_{2} / \delta_{2} & =\rho_{3} / \delta_{3} \\
2.236 \angle 63^{\circ} .26^{\prime}-2.236 \angle 206^{\circ} \cdot 34^{\prime} & =2.236 / 63^{\circ} .26^{\prime}+2.236 / 26^{\circ} .34^{\prime} . \\
& =4.243 / 45^{\circ} .
\end{aligned}
$$

Here again the process of complex subtraction, which is only a slight modification of complex addition, is very easily made on the drawing board by purely geometric processes, whether the quantities are rectangular or polar. If, however, the process is to be conducted algebraically, it is much more easily conducted with rectangular coördinates.

## EXPLANATORY TEXT

## Multiplication of Complex Quantities

Two rectangular complex quantities may be multiplied algebraically by the ordinary rules of algebra, remembering that $i^{2}=-1$. Thus

$$
\begin{equation*}
\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right) . \tag{3}
\end{equation*}
$$

In Fig. 9, the vector $O P_{1}$ of Figs. 1 and 2 is multiplied by the vector $O P_{2}$ of Figs. 3 and 4. The product is the broken line $O P_{3}$.

$$
\text { For }\left(\mathrm{I}+i_{2}\right) \times\left(-2-i_{\mathrm{I}}\right)=(-2+2)-i(\mathrm{I}+4)=-i_{5}
$$



Fig. 9. - Product and Quotient of Complex Quantities Rectangular Coördinates
$\left(\mathrm{I}+\mathrm{i}_{2}\right) \times\left(-{ }_{2}-\mathrm{i}_{1}\right)=-\mathrm{i}_{5}=\mathrm{OP}_{3}$ $\left(-2+i_{1}\right) \div\left(+1+i_{2}\right)=-0.8+i 0.6=\mathrm{OP}_{4}$


Fig. io. - Product of two Complex Quantities, Polar Coördinates $2 . 2 3 6 \longdiv { 6 3 ^ { \circ } . 2 6 ^ { \prime } } \times 2 . 2 3 6 { } ^ { 2 0 6 ^ { \circ } . 3 4 ^ { \prime } } = 5 \longdiv { 2 7 0 ^ { \circ } } = \mathrm { OP } _ { 3 }$

If the two quantities to be multiplied are polar; then

$$
\begin{equation*}
\rho_{1} / \delta_{1} \times \rho_{2} / \delta_{2}=\rho_{1} \rho_{2} / \delta_{1}+\delta_{2} . \tag{4}
\end{equation*}
$$

Or the rule is form the product of the moduli and add the arguments. Thus in Fig. io, $O P_{1}=\sqrt{5} / 63^{\circ} .26^{\prime}$ and $O P_{2}=\sqrt{5} / 206^{\circ} .34^{\prime} \therefore O P_{3}=5 / 270^{\circ} .00^{\prime}$.

## Reciprocal of a Complex Quantity

The reciprocal of a rectangular complex quantity can be reduced to the standard algebraic form, by multiplying both numerator and denominator by the same complex quantity with reversed imaginary. Thus:

$$
\begin{equation*}
\frac{\mathbf{1}}{x+i y}=\frac{\mathrm{x} \times(x-i y)}{(x+i y)(x-i y)}=\frac{x-i y}{x^{2}+y^{2}}=\left(\frac{x}{x^{2}+y^{2}}\right)-i\left(\frac{y}{x^{2}+y^{2}}\right) \tag{5}
\end{equation*}
$$

For example if $x+i y=x+i 2$,

$$
\frac{\mathrm{I}}{\mathrm{I}+i_{2}}=\frac{\mathrm{I}}{\mathrm{I}+i_{2}}\left(\frac{\mathrm{I}-i_{2}}{\mathrm{I}-i_{2}}\right)=\frac{\mathrm{I}-i_{2}}{\mathrm{I}+4}=\frac{\mathrm{I}}{5}-\frac{i_{2}}{5}=0.2-i_{0.4}
$$

The reciprocal of a polar complex quantity is obtained by taking the reciprocal of its modulus, and reversing its argument. That is

$$
\begin{equation*}
\frac{\mathrm{I}}{\rho / \delta}=\frac{\mathrm{I}}{\rho} \frac{-\delta}{\left[1_{57}\right]}=\frac{\mathrm{I}}{\rho} \sqrt{\delta} . \tag{6}
\end{equation*}
$$

For example:

$$
\frac{1}{\sqrt{5} / 63^{\circ} \cdot 26^{\prime}}=\frac{1}{\sqrt{5}} \sqrt{63^{\circ} \cdot 26}
$$

## Quotient of Complex Quantities

To find the quotient of a complex quantity $A$ divided by another $B$, form the reciprocal of $B$ and then multiply this reciprocal by $A$.

Thus to find $\left(x_{1}+i y_{1}\right) /\left(x_{2}+i y_{2}\right)$

$$
\begin{equation*}
\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}}=\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}}\left(\frac{x_{2}-i y_{2}}{x_{2}-i y_{2}}\right)=\frac{\left(x_{1} x_{2}+y_{1} y_{2}\right)+i\left(y_{1} x_{2}-y_{2} x_{1}\right)}{x_{2}^{2}+y_{2}^{2}} \tag{7}
\end{equation*}
$$

For example:

$$
\begin{aligned}
\frac{O P_{2}}{O P_{1}} & =\frac{-2-i_{1}}{\mathrm{I}+i_{2}}=\frac{-2-i_{\mathrm{I}}}{\mathrm{I}+i_{2}}\left(\frac{\mathrm{I}-i_{2}}{\mathrm{I}-i_{2}}\right) \\
& =\frac{(-2-2)+i(4-\mathrm{I})}{\mathrm{I}+4}=\frac{-4+i_{3}}{5}=-0.8+i_{0} 0.6 .
\end{aligned}
$$

Thus, in Fig. 9, $\frac{O P_{2}}{O P_{1}}=O P_{4}$.
The quotient of two polar complex quantities is formed by taking the quotient of their moduli and the difference of their arguments. That is

$$
\begin{equation*}
\frac{\rho_{2} / \delta_{2}}{\rho_{1} / \delta_{1}}=\frac{\rho_{2}}{\rho_{1}} / \delta_{2}-\delta_{1} . \tag{8}
\end{equation*}
$$

Thus in Fig. In we have the quotient of $O P_{2}$ of Figs. 3 and 4 divided by $O P_{1}$ of Figs. 1 and 2 , or

$$
\frac{\sqrt{5} \angle 206^{\circ} \cdot 34^{\prime}}{\sqrt{5} \angle 63^{\circ} \cdot 26^{\prime}}=1 \angle 143^{\circ} .08^{\prime}
$$



Fig. 1y. - Quotient of two Complex Quantities, Polar Coördinates.
$2.236 \angle 206^{\circ} .34^{\prime} \div 2.236 / 63^{\circ} .26^{\prime}=1.0 / 143^{\circ} .08^{\prime}=O P P_{4}$
$\rho_{2} / \delta_{2} \div \rho_{1} / \delta_{1}=\rho_{4} / \delta_{2}-\delta_{1}$
It is thus evident that in order to find either the sums or the differences of complex quantities, it is desirable to have them expressed in rectangular coördinates; while, on the other hand, in order to find products, reciprocals, or quotients, it is preferable to have them expressed in polar coördinates.

## Powers and Roots of Complex Quantities

It will be evident from the foregoing that

$$
\begin{equation*}
(\rho / \delta)^{n}=\rho^{n} / n \delta: \text { and } \sqrt[n]{\rho / \delta}=\sqrt[n]{\rho} / \delta / n \tag{9}
\end{equation*}
$$

operations that are readily executed on polar complex quantities.

## Circular and Hyperbolic Functions Geometrically Compared

Since the Tables in this book are adapted for the evaluation of both circular and hyperbolic functions of a complex variable; that is, either of $\sin (x+i y), \cos (x+i y)$ and $\tan (x+i y)$; or of $\sinh (x+i y), \cosh (x+i y)$ and $\tanh (x+i y)$, it may be advisable to consider some propositions in the comparative geometry of the circular and hyperbolic functions, both real and complex.

## Real Circular and Hyperbolic Functions

The geometry of the real circular functions $\sin x, \cos x$ and $\tan x$ relates, as is well known, to the motion of a radius vector over a circle. The geometry of the real hyperbolic functions $\sinh x, \cosh x$ and $\tanh x$ relates to the motion of a radius vector over a rectangular hyperbola. In Fig. $12, A b c d E g$ is a circle $x^{2}+y^{2}=\mathrm{I}$, assumed to have unit radius, and center $O$. As the radius vector $O A$ rotates in the positive or counterclockwise direction about the center $O$, it describes a circular sector such as $A O E$, and a circular angle $\beta$, the tangent $E f$ being always perpendicular to the radius vector $O E$. The magnitude of the circular angle $\beta$ may be defined in either of two ways, namely: -
(1) By the ratio of the circular arc length $s$ described during the motion, by the vector's terminal E , to the constant length $\rho$ of the radius vector.
(2) By the area of the circular sector $A O E$ swept out by the radius vector during the motion.

According to definition ( r ), if the radius vector generates any infinitesimal angle $d \beta$ circular radians, by moving its terminal over an infinitesimally small circular arc $d s$
then

$$
\begin{equation*}
d \beta=\frac{d s}{\rho}=\frac{d s}{\mathrm{I}} \tag{io}
\end{equation*}
$$

since the constant radius vector $\rho$ has been taken equal to unity Consequently, in passing over any circular arc from distance $s_{1}$ to distance $s_{2}$, through a distance $s_{2}-s_{1}=s$, the total circular sector and circular angle generated will of course be: -

$$
\beta=\int_{\delta_{1}}^{s_{2}} \frac{d s}{\mathrm{I}}=\left(s_{2}-s_{1}\right)=s \quad \text { circular radians (II) }
$$

or the angle $\beta$, as is well known, becomes equal to the length of the circular arc described, when expressed in circular radians.

According to definition (2), if in Fig. 12, the radius vector of unit length moves from the initial position $O A$ to any position such as $O E$, it will sweep out a circular sector $O E A$.

## EXPLANATORY TEXT

If the $\operatorname{arc} A E^{1}$ be measured in the negative or clockwise direction equal in length to the $\operatorname{arc} A E$, then it is well known that the area of the double sector $E O E^{1}$ shaded in Fig. 12, is equal to $\beta$ units of area because the area of the whole circle is manifestly $\pi$. units, and the shaded area is $\frac{2 \beta}{2 \pi}$ that of the whole circle. Consequently, the magnitude of the angle $\beta$ expressed in circular radians is numerically twice the area of the circular sector $A O E$ which it covers when the circle has unit radius.


Fig. 12. - Circular Sector and Real Circular Functions.


Fig. 13. - Hyperbolic Sector and Real Hyperbolic Functions.

Turning now to the hyperbolic case, let $A b c d E$ Fig. I3, be an arc of a rectangular hyperbola $x^{2}-y^{2}=I$, assumed to have unit semi-diameter $O A$, and center $O$. As the radius vector $O A$ rotates in the positive or counterclockwise direction with center $O$, it describes a hyperbolic sector $A O E^{\prime \prime}$, and also what may conventionally be called for convenience a " hyperbolic angle " $\theta$.* The tangent Ef to the path of the moving terminal $E$ always makes a circular angle $\beta$ with the $Y$ axis; or a circular angle of $2 \beta$ with a perpendicular to the radius vector. The magnitude of the hyperbolic angle $\theta$ may be defined in either of two ways; namely: -
(i) By the ratio of the hyperbolic arc length $s$ described during the motion, by the terminal $E$, to the integrated mean length of the varying radius vector.
(2) By the area of the hyperbolic sector $A O E$ Fig. 13, swept out by the radius vector during the motion. $\dagger$

According to definition ( I ), if the variable radius vector $\rho$ generates any infinitesimal hyperbolic angle $d \theta$ by moving its terminal over an infinitesimally small hyperbolic arc $d s$; then $\ddagger$

$$
\begin{equation*}
d \theta=\frac{d s}{\rho} \quad \text { hyperbolic radians } \tag{I2}
\end{equation*}
$$

* It should be pointed out that a "hyperbolic angle" in the sense above defined is not the opening between two lines intersecting in a plane; but a quantity otherwise analogous to a circular angle, and the argument $x$ of the functions $\sinh x, \cosh x, \tanh x$, etc. The use of the term "hyperbolic angle" can only be justified by its convenience of analogy.
$\dagger$ Greenhill's "Differential and Integral Calculus," 1896 , p. то8.
$\ddagger$ A demonstration of this proposition has been given by the author in "The Application of Hyperbolic Functions to Electrical Engineering Problems." Appendix L, p. 250 . University of London Press, igri.


## EXPLANATORY TEXT

Consequently, in passing over any hyperbolic arc from distance $s_{1}$ to distance $s_{2}$ through a distance $s_{2}-s_{1}=s$, the total hyperbolic sector and hyperbolic angle generated will be

$$
\begin{equation*}
\theta=\int_{\delta_{1}}^{\delta_{2}} \frac{d s}{\rho}=\frac{s}{\rho^{1}} \quad \quad \text { hyperbolic radians } \tag{I3}
\end{equation*}
$$

where $\rho^{1}$ is the integrated mean value of $\rho$ as defined by the last equation. Any infinitesimally small angle, whether circular or hyperbolic, is therefore expressed in correponding radian measure by one and the same term $d s / \rho$; but whereas, in the case of circular angles, the constancy of the radius vector makes the integral simply $s / \rho$, in the case of hyperbolic angles, the variation of the radius vector makes the integral more complex. Fig. 14 represents a circular angle of I radian in five sections of 0.2 radian each; while Fig. 15 represents a hyperbolic angle of 1 radian correspondingly divided. The integrated mean radius vector of the full sector $A O F$ intersects the curve in the point $f$, the total length of the arc $A B C D E F$ being 1.3167 units.

## Sines, Cosines and Tangents of Circular and Hyperbolic Angles

If, with unit radius, we draw both a circular and a rectangular hyperbolic sector, as in Figs. 12 and 13, and take $O A$ as the initial line in each; then for any position


Fic. 14. - Circular Sector of I Radian Subdivided into Five Sectors of 0.2 Radian each.


Fig. 15. - Hyperbolic Sector of 1 Radian Subdivided into Five Sectors each of 0.2 Radian.
of the radius vector such as $O E$, we shall have in either case the following magnitude conditions: -

The sine will be equal to the length of the perpendicular from the terminal of the radius vector on to the $X$ axis.

The cosine will be equal to the length of the intercept on the $X$ axis made by the above-mentioned perpendicular.

The versed sine will be equal to the length $X A$, Fig. 12, and $A X$, Fig. 13, between the intercept on the $X$ axis, and the horizontal unit radius.

## EXPLANATORY TEXT

The tangent will be equal to the length of the perpendicular from the radius vector (or radius vector produced) on to unit radius point of the $X$ axis. Thus in

Fig. 12, $\sin \beta=X E$.
Fig. I3, $\sinh \theta=X E$.
Fig. 12, $\cos \beta=O X$.
Fig. 13, $\cosh \theta=O X$.
Fig. 12, $\tan \beta=A t$.
Fig. I3, $\tanh \theta=A t$.
Whereas the values of $\sin \beta, \cos \beta$ and $\tan \beta$ fluctuate periodically in $\operatorname{sign}$ as $\beta$ increases from $\circ$ to $\propto$, the values of $\sinh \theta, \cosh \theta$, and $\tanh \theta$ do not change $\operatorname{sign}$, the graphs of the real hyperbolic functions being indicated in Fig. 16, as far as $\theta=3.0$.

[162]

## Bisection of Circular and Hyperbolic Angles

If we take any circular angle $B O C$ Fig. 17 , we may of course bisect this angle in either of two ways: -


Fig. 17. - Bisection of a circular sector in the well-known manner by a radius vector through the intersection of terminal tangents, or through the midpoint of the chord between terminal points.
(1) By drawing tangents $b b, c c$, to the curve at the points $B, C$, respectively, and drawing the straight line $O d$ from the center $O$ through the point of intersection $d$.


Fig. 18. - Bisection of a hyperbolic sector by a radius vector through the intersection of terminal tangents, or through the midpoint of the chord between terminal points.
[ 163 ]
(2) By drawing the chord $B C$, and marking the radius $O D$ through the midpoint $\delta$ of this chord.

Similarly, if we take any hyperbolic angle $B D C$ Fig. 18, between the points $B$ and $C$ of a rectangular hyperbola, we may bisect this angle in either of two ways: -
(I) By drawing tangents $b b, c c$, to the curve at the points $B, C$, respectively, and drawing the straight line $O d$ from the center $O$ through the point of intersection $d$.
(2) By drawing the chord, $B C$, and marking the radius $O D$ through the midpoint $\delta$ of this chord.*

## Comparative Geometry of Complex Circular and Hyperbolic Functions

We have seen that the real circular functions $\sin x, \cos x$, may be derived from a circle diagram, and that the real hyperbolic functions $\sinh x, \cosh x$, may be similarly derived from a rectangular hyperbola diagram. We shall see that both the complex circular functions $\sin (x+i y), \cos (x+i y)$, and the complex hyperbolic functions $\sinh (x+i y), \cosh (x+i y)$, may be derived from a combination circle and hyperbola diagram.

## Complex Circular Functions

Construction for sin ( $x \pm i y$ ), and for $\sin ^{-1}(u \pm i v)$
In Fig. 19 , take $O A=1$ along the negative side of the $Y$ axis. From $O A$ as initial line, mark off the circular angle $x=A O B$. From $O B$ as initial line, mark off the hyperbolic angle $y$ and its sector $B O D$. Let $C$ be the foot of the perpendicular from $D$ on $O B$ produced. Drop perpendiculars from $C$ and $D$ on the axis of reals $O X$, at $c$ and $d$ respectively. About $c$ as center, rotate $c d$ positively through $90^{\circ}$ to $c Z$. Then will

[^3]the complex vector $O Z=O c+i c d$ be the required circular sine of the complex angle $x+i y$ radians. In the case represented, $\sin (1+i \mathrm{I})=1.299+i 0.635=1.446$ $\angle 26^{\circ} .05$. As $y$ varies, $Z$ moves along the hyperbola $b Z$ : -
\[

$$
\begin{equation*}
\frac{X^{2}}{\sin ^{2} x}-\frac{Y^{2}}{\cos ^{2} x}=\mathrm{I} \tag{14}
\end{equation*}
$$

\]

and as $x$ varies, $Z$ moves along the ellipse:-

$$
\begin{equation*}
\frac{X^{2}}{\cosh ^{2} y}+\frac{Y^{2}}{\sinh ^{2} y}=1 \tag{15}
\end{equation*}
$$

Both the hyperbola and the ellipse have as common foci $F F^{\prime}$, the points $X= \pm 1, Y=0$.


Fig. 19. - Constructions for $\sin (x+i y)$ and $\sin ^{-1}(u \pm i v)$.
From the same figure, we have also, if $O c=u$ and $c Z=i v$, $\sin ^{-1}(u \pm i v)=\sin ^{-1} O b \pm i \cosh ^{-1} O E$

$$
\begin{align*}
& =\sin ^{-1}\left\{\frac{\sqrt{(\mathrm{I}+u)^{2}+v^{2}}-\sqrt{(\mathrm{I}-u)^{2}+v^{2}}}{2}\right\} \\
& \pm i \cosh ^{-1}\left\{\frac{\sqrt{(\mathrm{I}+u)^{2}+v^{2}}+\sqrt{(\mathrm{I}-u)^{2}+v^{2}}}{2}\right\} \tag{16}
\end{align*}
$$

since $O b=\frac{F Z-F^{\prime} Z}{2}$ and $O E=\frac{F Z+F^{\prime} Z}{2}$.
Constructions for $\cos (x+i y)$ and for $\cos ^{-1}(u+i v)$
In Fig. 20, take $O A$ as unit distance along the real or $X$ axis, in the positive direction. From $O A$ as initial line, describe the circular angle $x$, or the circular sector $A O B$ of area $x / 2$. On $O B$ as initial line, describe the hyperbolic angle $y$, or the hyperbolic sector area $B O D$ of area $y / 2$. Let $C$ be the foot of the perpendicular from $D$ on $O B$ produced. Drop perpendiculars from $C$ and $D$ on the $X$ axis at $c$ and $d$ respectively. With $c$ as center, rotate the line $c d$ in the positive direction through $90^{\circ}$ into the position $c Z$; so that $\overline{c Z}=i . \overline{c d}$. Then the complex quantity. $O Z=O c+i . c d$ will be the required circular cosine of the complex angle $(x+i y)$ radians.

In the case represented, $\cos (\mathrm{r}+i \mathrm{x})=0.834-i 0.989=1.293 \backslash 49^{\circ} .866$. As $y$ varies, $Z$ moves along the hyperbola $b Z$ defined by

$$
\begin{equation*}
\frac{X^{2}}{\cos ^{2} x}-\frac{Y^{2}}{\sin ^{2} x}=\mathrm{I} \tag{17}
\end{equation*}
$$

and as $x$ varies, $Z$ moves along the ellipse $Z E$, defined by

$$
\begin{equation*}
\frac{X^{2}}{\cosh ^{2} y}+\frac{Y^{2}}{\sinh ^{2} y}=\mathrm{I} \tag{18}
\end{equation*}
$$

Both the hyperbola and the ellipse have as common foci $F F^{\prime}$, the points $X= \pm \mathrm{I}, Y=0$.


Fig. 20. - Constructions for $\cos (x \pm i y)$ and $\cos ^{-1}(u \pm i v)$.
From Fig. 20 we obtain: -

$$
\begin{align*}
\cos ^{-1} O Z & =\cos ^{-1}(u \pm i v)=\cos ^{-1} O b \mp \cosh ^{-1} O E \\
& =\cos ^{-1}\left\{\frac{\sqrt{(1+u)^{2}+v^{2}}-\sqrt{(1-u)^{2}+v^{2}}}{2}\right\} \\
& \mp i \cosh ^{-1}\left\{\frac{\sqrt{(1+u)^{2}+v^{2}}+\sqrt{(1-u)^{2}+v^{2}}}{2}\right\} \tag{19}
\end{align*}
$$

since $O b=\frac{F Z-F^{\prime} Z}{2}$ and $O E=\frac{F Z+F^{\prime} Z}{2}$.

## Complex Hyperbolic Functions

Constructions for $\sinh (x \pm i y)$ AND $\sinh ^{-1}(u \pm i v)$
In Fig. 2I, take $O A$ as unit length along the real or $X$ axis in the positive direction. From $O A$ as initial line, describe the circular angle $y$, or the circular ector $A O B$ of area $y / 2$. From $O B$ as initial line describe the hyperbolic angle $x$, or the hyperbolic sector $B O D$ of area $x / 2$. Let $C$ be the foot of the perpendicular from $D$ on $O B$ pro-
duced. Drop perpendiculars from $C$ and $D$ on the $Y$ axis at $c$ and $d$ respectively. With $c$ as center, rotate the line $c d$ negatively, or clockwise, through $90^{\circ}$ to $c Z$. The complex quantity $O Z=O c-i . c d$ will be the required hyperbolic sine of the complex angle $(x+i y)$ radians.

In the case represented, $\sinh \left(\mathrm{I}+i_{\mathrm{I}}\right)=0.635+i_{1.2985}=1.446 \angle 63^{\circ} .95$. As $x$ varies, $Z$ moves along the hyperbola $Z b z$ : -

$$
\begin{equation*}
\frac{Y^{2}}{\sin ^{2} y}-\frac{X^{2}}{\cos ^{2} y}=\mathrm{I} \tag{20}
\end{equation*}
$$

and as $y$ varies, $Z$ moves along the ellipse $X E x y$

$$
\begin{equation*}
\frac{Y^{2}}{\cosh ^{2} x}+\frac{X^{2}}{\sinh ^{2} x}=\mathrm{I} \tag{2I}
\end{equation*}
$$

The hyperbola and ellipse are confocal at the points $F$ and $f$ defined by $X=0, Y= \pm \mathrm{I}$.


Fig. 21. - Constructions for $\sinh (x \neq i y)$ and $\sinh ^{-1}(u \neq i v)$.
From Fig. 21 we also obtain

$$
\begin{align*}
\sinh ^{-1}(u \pm i v) & =\sinh ^{-1}(c Z \pm O c)=\cosh ^{-1} O E \pm i \sin ^{-1} O b \\
& =\cosh ^{-1}\left\{\frac{\sqrt{(\mathrm{I}+v)^{2}+u^{2}}+\sqrt{(\mathrm{I}-v)^{2}+u^{2}}}{2}\right\} \\
& \pm i \sin ^{-1}\left\{\frac{\sqrt{(\mathrm{I}+v)^{2}+u^{2}}-\sqrt{(\mathrm{I}-v)^{2}+u^{2}}}{2}\right\} \tag{22}
\end{align*}
$$

since $O E=\frac{f Z+F Z}{2}$ and $O b=\frac{f Z-F Z}{2}$.

$$
\text { Constructions for } \cosh (x+i y) \text { and } \cosh ^{-1}(u+i v)
$$

In Fig. 22, take $O A$ as unit distance along the real or $X$ axis in the positive direction. From $O A$, as initial line, describe the circular angle $y$, or the circular sector $A O B$ of area $y / 2$. From $O B$, as initial line, describe the hyperbolic angle $x$, or the hyperbolic sector $B O D$ of area $x / 2$. Let $C$ be the foot of the perpendicular from $D$ on $O B$ produced. Drop perpendiculars from $C$ and $D$ on the $X$ axis at $c$ and $d$ respectively. About $c$, as


Fig. 22. - Constructions for $\cosh (x \pm i y)$ and $\cosh ^{-1}(u \pm i v)$.
center, rotate the line $c d$ negatively, or clockwise, through $90^{\circ}$ to $c Z$; so that $c Z=-i . c d$. Then the complex quantity $O Z=O c-i . c d$ will be the required cosine of the complex angle $(x+i y)$ radians.

In the case represented, $\cosh \left(\mathrm{r}+i_{\mathrm{I}}\right)=0.834+i 0.989=\mathrm{r} .293 \angle 49^{\circ} .866$. As $x$ varies, $Z$ moves along the hyperbola $Z b z$

$$
\begin{equation*}
\frac{X^{2}}{\cos ^{2} y}-\frac{Y^{2}}{\sin ^{2} y}=\mathrm{I} \tag{23}
\end{equation*}
$$

As $y$ varies, $Z$ moves along the ellipse $E Z e z$

$$
\begin{equation*}
\frac{X^{2}}{\cosh ^{2} x}+\frac{Y^{2}}{\sinh ^{2} x}=\mathbf{I} . \tag{24}
\end{equation*}
$$

The ellipse and hyperbola are confocal at the points $A, a$, defined by $X= \pm \mathrm{r}, Y=O$.

## EXPLANATORY TEXT

From the same figure. If $O c=u$ and $c Z=i v$ $\cosh ^{-1}(u \pm i v)=\cosh ^{-1}(O c \pm i . c Z)=\cosh ^{-1} O E \pm i \cos ^{-1} O b$

$$
\begin{aligned}
& =\cosh ^{-1}\left(\frac{r_{1}+r_{2}}{2}\right) \pm i \cos ^{-1}\left(\frac{r_{1}-r_{2}}{2}\right) \\
& =\cosh ^{-1}\left\{\frac{\sqrt{(\mathrm{I}+u)^{2}+v^{2}}+\sqrt{(\mathrm{I}-u)^{2}+v^{2}}}{2}\right\} \\
& \pm i \cos ^{-1}\left\{\frac{\sqrt{(\mathrm{I}+u)^{2}+v^{2}}-\left(\sqrt{\mathrm{I}-u)^{2}+v^{2}}\right.}{2}\right\} \cdot
\end{aligned}
$$

Constructions for $\tan (x \pm i y)$ AND $\tan ^{-1}(u \pm i v)$
In Fig. 23, lay off along the $X$ axis a point $A$ distant $\tan x$ from $O$, and also a point $B$ such that $O B=\cot x$. Draw a circle through $A$ and $B$ having its center on $O X$ at $C$. The distance $O C$ measures $\cot 2 x$ and the radius of the circle is cosec $2 x$. Any circle thus drawn will intersect the $Y$ axis at two points $e$ and $f$ which are at unit dis-


Fig. 23. - Constructions for $\tan (x \neq i y)$ and $\tan ^{-1}(u \neq i v)$.
tances from $O$. Then lay off the $Y$ axis two points $a$ and $b$, distant respectively $\tanh y$ and coth $y$ from $O$. With center $c$ on the $Y$ axis, draw a circle through $a$ and $b$. The distance $O c$ will be coth $2 y$, and the radius of the circle will be cosech $2 y$. Let $Z$ be the point of intersection of the two circles. Then $O Z$ is the required tangent of $(x+i y)$. If $x$ is kept constant but $y$ is varied, the point $Z$ moves over the circle $A Z B$. If on the other hand $y$ is kept constant, but $x$ is varied, $Z$ will move around the circle $a Z b$ and will make one complete revolution for each increase of $\pi$ units in $x$.

In the case represented, $\tan (\mathrm{I}+i \mathrm{r})=0.2718+i \mathrm{r} .084=1.1 \mathrm{r} 8 \angle 75^{\circ} .916$.
From Fig. 23 it is evident that the angle $A e O$ is equal to $x$, and angle $e A O$ is thus the complement of $x$. Hence half the angle between $r_{1}$ and $r_{2}$ is the complement of $x$. Moreover $y=\log _{e} \sqrt{r_{2} / r_{1}}$. Therefore, if $O Z=u+i v$,

$$
\begin{align*}
& \tan ^{-1}(u \pm i v)=\left\{\frac{\pi-\tan ^{-1}\left(\frac{u}{ \pm v-\mathrm{I}}\right)}{}+\tan ^{-1}\left(\frac{u}{ \pm v+\mathrm{I}}\right)\right. \\
& 2  \tag{26}\\
&+\frac{i}{2} \log _{e} \sqrt{\frac{(\mathrm{I} \pm v)^{2}+u^{2}}{(\mathrm{I} \mp v)^{2}+u^{2}}}
\end{align*}
$$

CONSTRUCTIONS FOR $\tanh (x \pm i y)$ and $\tanh ^{-1}(u \pm i v)$
In Fig. 24 mark off on the axis of reals $x O X$ two points $T$ and $X$ such that the former is distant by $\tanh x$ and the latter by $\operatorname{coth} x$ from the origin $O$. Find the point $C$ midway between $T$ and $X$. Incidentally, this point will be distant $\operatorname{coth} 2 x$ from $O$. With


FIg. 24. - Constructions for $\tanh (x \pm i y)$ and $\tanh ^{-1}(u \pm i v)$
center $C$ and radius $C T=C X=\operatorname{cosech} 2 x$, draw the circle $T X Z$. Mark off on the axis of imaginaries $y O Y$, two points $t$ and $y$ such that the former is distant by $\tan y$ and the latter by cot $y$ from the origin $O$. Find the point $c$ midway between them. Incidentally, this point will be distant $\cot 2 y$ from $O$. With center $c$ and radius $c t=$ $c y=\operatorname{cosec} 2 y$, draw the circle ByAt. This circle will cut the axis of reals at two points $A$ and $B$ distant each one unit from $O$. It will also intersect the circle $T X Z$ perpendicularly at $Z$. Connect $O Z$. This vector $O Z$ is the required hyperbolic tangent of the complex angle ( $x+i y$ ) radians.

In the case represented, $\tanh (\mathrm{I}+i \mathrm{I})=1.084+i 0.2718=1.118 / 14^{\circ} .084$. As $x$ varies, $Z$ moves along the circle $A t B$. As $y$ varies, $Z$ moves along the circle $T Z X$, performing one complete revolution for each $\pi$ units of increase in $y$.

From the same Figure, if $O Z=u \pm i v=o p \pm i p Z$, we have $\tanh ^{-1}(u \pm i v)=$ $x \pm i y$.

In this case $x=\log _{e} \sqrt{r_{1} / r_{2}}$

$$
\begin{equation*}
\text { or } x=\frac{1}{2} \log _{e}\left(r_{1} / r_{2}\right) . \tag{27}
\end{equation*}
$$

and $y=\frac{\pi-\alpha}{2}$ where $\alpha$ is the circular angle at $Z$ between the radii vectores $r$, and $r_{2}$. Also

$$
\begin{equation*}
\alpha=\tan ^{-1}\left(\frac{u+\mathrm{I}}{ \pm v}\right)-\tan ^{-1}\left(\frac{u-\mathrm{I}}{ \pm v}\right) \tag{28}
\end{equation*}
$$

Hence
$\tanh ^{-1}(u \pm i v)=\frac{1}{2} \log _{e} \sqrt{\frac{(\mathrm{I}+u)^{2}+v^{2}}{(1-u)^{2}+v^{2}}}+i\left\{\frac{\pi-\tan ^{-1}\left(\frac{u+1}{ \pm v}\right)+\tan ^{-1}\left(\frac{u-1}{ \pm v}\right)}{2}\right\}$

## DEGREE OF PRECISION OF TABLES

## Introduction

If a numerical quantity, freed from decimals, is correctly expressed to within say I part in rooo; i.e., I part in $10^{3}$, then this degree of precision may conveniently be described as precision of the third order. In general, therefore, if a numerical quantity be correctly expressed to within I part in $10^{n}$, where $n$ is any real positive number, its precision is of the $n$th order. The weekly statement of the financial assets of a bank might be expressed as $\$ 186,257,361.26$ which, assuming that it is to be taken as being numerically correct to a single cent, represents $18,625,736,126$ cents, an apparent precision of I in $10^{10.27}$, or of the 10.27 th order. Physical and astronomical precisions are less ostensibly pretentious, however, and rarely exceed the 6th order. Engineering computations are commonly satisfied with a precision of the third order; although, on rare occasions, the order required may be the highest that physics can attain.

The degree of precision corresponding to retaining a specified number of significant digits correct within unity, in Tables, can only be stated approximately; since it varies with the values of the digits. Thus, if we have tables containing entries each of three significant digits, correct to the last digit, the lowest entry may be 100 and the highest 999. The precision would therefore be $I$ in 100 in the former case, and practically I in 1000 in the latter. That is the order of precision would vary between the second and the third. The average precision might be stated as of the 2.5 th order. Such tables of $n$ significant digits lay claim to an average precision of the ( $n-\mathrm{I} / 2$ )th order.

Many tables are, however, employed in which the last digit is stated to be correct to the nearest digit; that is within half of unity. On that understanding, the precision of say a three-digit table would vary between $\mathrm{I} / 2$ in 100 to $\mathrm{I} / 2$ in 999 or between the 2.3 rd and the 3.3 rd order, with a mean of the 2.8 th order. Consequently, we may say that such tables, giving $n$ significant digits, lay claim to an average precision of the ( $n-0.2$ )th order.

## Degree of Precision Presented in the Following Tables

The tables of complex hyperbolic functions here presented have been propured with a view to giving five decimal places regularly. This means five significant digits when the values of the results lie between o.r and unity, six significant digits when they lie between r and 10 , four when they lie between 0.1 and 0.01 and so on. Tables I to VI inclusive were computed with the aid of five-figure logarithms of real hyperbolic functions, so that their degree of precision is necessarily limited to, and must on the average fall below that of such logarithm tables, which, as we have seen, is of the 4.8 th


Fig. 25. - $\sinh (\rho / \delta)$ expressed in polar coördinates.
order. Exclusive of such mistakes as may exist, they do not claim a degree of precision beyond the 4.5 th order.

Tables VII to XIII inclusive were, however, computed for the most part from Ligowski's gudermannian angles which are tabulated by him for each thousandth of a hyperbolic radian, to the nearest hundredth of a second of circular arc. The logarithms of the corresponding real hyperbolic functions were then found in the eight-place tables of Bauschinger and Peters, which offer such logarithms for each and every second of circular arc. The results were computed in the formulas to at least six significant

## EXPLANATORY TEXT

digits and the sixth was then frequently discarded to meet the needs of the five-decimal table. Consequently in this group of tables, excluding such errors as may exist, the precision is on the average of the 4.8 th order, and rises to the 5.8 th order, when the value of the result lies between I and ro . The average precision of the second group of tables is thus about half an order greater than that of the first group.

## Precision of the Charts in the Atlas

The charts of the accompanying Atlas have been prepared with a view to offering three digits in the deduced quantity, if reasonable care be taken in their use. This represents an average degree of precision of the 2.5 th order; or about equal to that fur-


Fig. 26. - $\sinh (\rho / \delta)$ expressed in polar coördinates.
wished by an ordinary 25 cm . slide rule. When a higher degree of precision than this is needed, arithmetical interpolation in the Tables must ordinarily be resorted to; but even then it is desirable to obtain a preliminary approximate value from the Atlas, in order to furnish a check against gross error.

## Graphic Representations

Figs. 25 and 26 present the results obtained from Table I to true polar coördinates. Each intersection of the curves corresponds to an entry in the table. Fig. 25 relates to pages 2, 3, and Fig. 26 to the rest of the table. The curves of constant $\rho$ intersect those of constant $\delta$ perpendicularly. That is, each intersection occurs theoretically at right angles. If, however, an attempt is made to prepare plates corresponding to Figs. 25 and 26 on a large scale, for a reasonable degree of precision, in rapid interpolation by graphical inspection, difficulties present themselves. Firstly, it has been found impracticable to procure polar coördinate ruled sheets large enough. Secondly, regular polar coördinate charts of the type presented in Figs. 25 and $26^{\circ}$ necessarily offer very little graphical interpolation precision at small radial distances from the origin of co-


Fig. 27. - Polar Coördinate Diagram Regular Presentation on Circular Sheet.
ordinates, where the radial lines, sharply converging, crowd the diagram. On the other hand, they offer relatively great apparent interpolation precision at large distances from the origin, as the radii diverge. In preparing interpolation charts, therefore, the author has devised the scheme of using squared paper sheets for presenting such polar coördinate quantities as appear in Figs. 25. and 26. Fig. 27 represents the regular polar coördinate $r / \gamma$ diagram, in which the lines of constant $r$ are circles concentric at $O$, and the lines of constant $\gamma$ are radii diverging from $O$. Fig. 28 represents the corresponding squared polar coördinate diagram, in which the lines of constant $r$ are the vertical straight lines I-I, 2-2, 3-3, and 4-4. The lines of constant $\gamma$ are the parallel horizontal lines, while the origin point $O$ in Fig. 27 becomes expanded into the original straight line o-o in Fig. 28. The straight, broken line $D U$ is transformed into the curved line $d u$, and, in general, orthogonally intersecting curves of one diagram do not transform into orthogonally intersecting curves on the other.

## Interpolation Charts

Plates $\mathrm{I}_{\mathrm{A}}, \mathrm{I}_{\mathrm{B}}$, and Ic of the Atlas correspond to Table I and present, to squared polar coördinates, the results in that table. Each intersection of curves in the plates corresponds to one entry in the table. Plate IA includes the entries on pages 2 and 3 of the table; while Plates $\mathrm{I}_{\mathrm{b}}$ and Ic include the entries in the remainder of the table. The curves of constant $\rho$ and constant $\delta$ intersect one another at various angles, but the method of interpolation requires little explanation. The entering quantity will fall within some particular curvilinear parallelogram. The respective opposite sides may be subdivided into tenths in any of the three following ways: (I) by direct inspectional estimate, (2) by graphical subdivision on a sheet of tracing paper laid over the chart, (3) by means of a radiating decimal scale of lines, prepared in advance, on tracing paper or thin celluloid. It is not, in general, worth the effort of attempting a closer subdivision than tenths of the sides of any parallelogram. The point of intersection of lines parallel to the sides, through the correct decimal points, is then to be marked on the covering tracing paper, or held with a blunt pointer, such as a knitting needle, on the chart itself, and the rectangular coördinates of this point read off from the parallel ruling or background of the plate. That is, the charts are always used with the entering variable on the curvilinear coördinates, and with the result found on the rectilinear framework in the background; except when inverse functions are sought, and the procedure consequently reversed.

## TABLE I <br> $$
\sinh (\rho / \delta)=r / \gamma
$$

## Polar Hyperbolic Sines of a Polar Variable

Table I, pages 2 to 7 , gives the hyperbolic sine of vectors up to 3.0 in modulus, by steps of 0.1, for each degree of argument from $45^{\circ}$ to $90^{\circ}$. The results are also expressed in polar coördinates, as plane vectors, corresponding to the relation:-
or

$$
\begin{align*}
& \sinh (\rho \underline{\delta})=r \underline{\gamma}  \tag{30}\\
& \rho \underline{\delta}=\sinh ^{-1}(r \underline{\gamma}) . \tag{3r}
\end{align*}
$$

The graphs of the results to true polar coördinates appear in Figs. 25 and 26, where the curves of constant $\rho$ always intersect orthogonally the curves of constant $\delta$; so that at any point of intersection the angles of intersection are right angles. In Plates IA, $\mathrm{I}_{\mathrm{B}}$, and Ic of the Atlas, the same graphs are given to squared polar coördinates, the disadvantages of the distortion being more than outweighed by the advantages in facility of graphic interpolation. In these charts the curves of constant $\rho$ do not intersect the curves of constant $\delta$ orthogonally.

## Interpolation. First Case. In Modulus only

If Table I is entered with a vector quantity of more than one decimal in modulus and of some exact degree of argument, such as $2.76 / 70^{\circ}$; then the result will lie nearly on the line between the results for $2.7 / 70^{\circ}$ and $2.8 / 70^{\circ}$; namely, between $1.2031 / 136.489$ and $1.2136 / 143^{\circ} .005$. A first approximation may be obtained by proportional parts between them, thus: -

$$
\begin{aligned}
& \text { Required } \sinh 2.76 \angle 70^{\circ} \\
& \text { by Table, } \sinh 2.80 \angle 70^{\circ}=1.2136 \angle 143^{\circ} .005 \\
& \text { by Table, } \sinh 2.70 \angle 70^{\circ}=1.2031 / 136^{\circ} .489 \\
& \hline \text { Difference } 0.10 \angle 70^{\circ}=0.0105 \angle 6^{\circ} .516 . \\
& \text { Proportion for } 0.06 \angle 70^{\circ}=0.0063 \angle 3^{\circ} .910 . \\
& \sinh 2.70 \angle 70^{\circ}=1.2031 / 136^{\circ} .489
\end{aligned} \quad \begin{aligned}
\text { Result } \sinh 2.76 \angle 70^{\circ}=1.2094 / 140^{\circ} .399 . \\
\text { The true value is }
\end{aligned}
$$

## Interpolation by the Use of Taylor's Theorem

When more precise interpolation is required than that by simple intermediate proportion, we may use Taylor's theorem in the following form; since

$$
\frac{d(\sinh \theta)}{d \theta}=\cosh \theta, \quad \frac{d^{2}(\sinh \theta)}{d \theta^{2}}=\sinh \theta, \quad \text { etc. }
$$

$$
\sinh (\theta+\Delta \theta)=\sinh \theta+\Delta \theta \cosh \theta+\frac{(\Delta \theta)^{2}}{2!} \sinh \theta+\frac{(\Delta \theta)^{3}}{3!} \cosh \theta+\ldots(32)
$$

Let $\theta=\rho \angle \delta$ and $\Delta \theta=\Delta \rho / \delta$.
Then
$\sinh \{(\rho+\Delta \rho) / \delta\}=\sinh (\rho / \delta)+\Delta \rho / \delta . \cosh (\rho / \delta)+\frac{(\Delta \rho)^{2}}{2!} \angle 2 \delta . \sinh (\rho / \delta)+\ldots$ (33)
The number of correction terms to be retained depends on the interval, and on the degree of precision desired. It is seldom that more than two correction terms have to be retained. Thus in the case already considered: $\sinh \left(2.76 \angle 70^{\circ}\right)=\sinh \left(2.7 \angle 70^{\circ}\right)+0.06 \angle 70^{\circ} \cdot \cosh \left(2.7 / 70^{\circ}\right)+0.0018 \angle 140^{\circ} \cdot \sinh \left(2.7 / 70^{\circ}\right)$. By Table II, page $13, \cosh \left(2.7 / 70^{\circ}\right)=1.3422 / 153^{\circ} .322$. Consequently dealing first with the first correction term only:

$$
\begin{aligned}
\sinh \left(2.76 \angle 70^{\circ}\right) & =1.203 \mathrm{I} / 136^{\circ} .489+0.06 \angle 70^{\circ} \times 1.3422 \angle 153^{\circ} .322 \\
& =1.2031 / 136^{\circ} .489+0.08053 / 223^{\circ} .322 \\
& =1.2031 \angle 136^{\circ} .489\left(\mathrm{I}+0.066937 / 86^{\circ} .833\right) \\
& =1.2031 / 136^{\circ} .489(\mathrm{I}+0.003698+i 0.06684) \\
& =12031 \angle 136^{\circ} .489\left(1.00592 \angle 3^{\circ} .810\right) \\
& =1.2102 \angle 140^{\circ} .299 .
\end{aligned}
$$

## EXPLANATORY TEXT

Taking next the second correction term into account.

$$
\begin{align*}
\sinh \left(2.76 / 70^{\circ}\right)= & 1.2102 \angle 140^{\circ} .299+0.0018 / 140^{\circ} \times 1.2031 / \mathrm{I} 36^{\circ} .489 \\
= & 1.2102 \angle 140^{\circ} .299+0.002166 / 276^{\circ} .489 \\
= & 1.2102 \angle 140^{\circ} .299 .\left(\mathrm{I}+0.001789 / \mathrm{I} 36^{\circ} .190\right) \\
= & 1.2102 \angle 140^{\circ} .299(\mathrm{I}-0.00129+i 0.00124) \\
= & 1.2102 \angle 140^{\circ} .299(0.9987 \mathrm{I}+i 0.00124) \\
= & 1.2102 \angle 140^{\circ} .299\left(0.99871 / 0^{\circ} .067\right) \\
= & 1.2086 \angle 140^{\circ} .366 . \tag{34}
\end{align*}
$$

Second and General Case. Interpolation both in Modulus and Argument
Let the entered quantity be $\sinh \left(\mathrm{r} .025 / 80.75^{\circ}\right.$ ).
We have from Table I the four nearest results as follows: -
$\sinh 1.0 / 80^{\circ}=0.85125 / 83^{\circ} .489$.
$\underline{\sinh 1.0 / 8 \mathrm{I}^{\circ}}=0.84940 / 84^{\circ} .156$.
Difference for $\mathrm{I}^{\circ}=-0.00185+0^{\circ} .667$.
Proportion for $0.75^{\circ}=-0.001388+0.500$.
$\sinh 1.0 / 80^{\circ} .75=0.84986 / 83^{\circ} .989$.
sinh I.I $/ 80.75=0.90233 / 84^{\circ} .729$.
Difference for $0.1=+0.05247 / 0^{\circ} .740$.
Proportion for $0.025=+0.01312 / 0^{\circ} .185$.
$\sinh 1.025 / 80^{\circ} .75=0.86298 / 84^{\circ} .174$.
The true value $=\quad 0.86372 / 84^{\circ} .166$.
$\sinh$ I.I $\angle 80^{\circ}=0.90416 / 84^{\circ} .286$.
$\sinh 1.1 / 8 \mathrm{I}^{\circ}=0.9017^{2} / 84^{\circ} .877$.
Diff. for $\mathrm{I}^{\circ}=-0.00244+0^{\circ} .59 \mathrm{I}$.
$-0.00183+0.443$.
$\sinh$ I.I $80^{\circ} .75=0.90233 / 84^{\circ} .729$.
$\qquad$

[^4]  .

## Dual Interpolation by the Use of Taylor's Theorem

Let the nearest tabular function be $\sinh \theta=\sinh (\rho / \delta)$ and the required function $\sinh (\theta+\Delta \theta)=\sinh \{(\rho+\Delta \rho) \delta \delta+\Delta \delta\}$.

Then $(\rho+\Delta \rho) / \delta+\Delta \delta=\rho / \delta+(\Delta \rho+i \rho \Delta \delta)$.
where the increment $\Delta \rho+i \rho \Delta \delta$ is taken with reference to the vector axis $\rho / \delta$. Referring this increment to the initial axis of reference,

$$
\theta+\Delta \theta=(\rho+\Delta \rho)<\delta+\Delta \delta=\rho / \delta+\sqrt{\left(\Delta \rho^{2}+(\rho \Delta \delta)^{2}\right.} / \delta+\tan ^{-1}\left(\frac{\rho \Delta \delta}{\Delta \rho}\right) .
$$

$$
\begin{equation*}
\text { So that } \Delta \theta=\sqrt{(\Delta \rho)^{2}+(\rho \Delta \delta)^{2}} / \delta+\tan ^{-1}(\rho \Delta \delta / \Delta \rho) \text {. } \tag{38}
\end{equation*}
$$

When, however, $\Delta \delta$ is not very small, the last formula may contain an appreciable error, and the following method of deducing $\Delta \theta$, using rectangular complex quantities, is to be preferred.

## EXPLANATORY TEXT

Let $\theta=\rho / \delta=x+i y$.
and

$$
\begin{aligned}
\theta+\Delta \theta=(\rho+\Delta \rho) \angle \delta+\Delta \delta & =x+\Delta x+i(y+\Delta y) \\
\text { Then } \Delta \theta & =\Delta x+i \Delta y \\
& =\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} / \tan ^{-1}(\Delta y / \Delta x)
\end{aligned}
$$

We then have by Taylor's theorem, as before,

$$
\sinh (\theta+\Delta \theta)=\sinh \theta+\Delta \theta \cdot \cosh \theta+\frac{(\Delta \theta)^{2}}{2} \cdot \sinh \theta+\frac{(\Delta \theta)^{3}}{3 \cdot 2} \cdot \cosh \theta+\ldots\left(4^{2}\right)
$$ a series in which two correcting terms only need ordinarily be retained. Thus, in the example last considered, $\theta=1.0 \angle 80^{\circ}$ and $\theta+\Delta \theta=1.025 / 80^{\circ} .75$. If we form $\Delta \theta$ by the use of (37), we have $\Delta \rho=0.025, \Delta \delta=0^{\circ} .75=0.01309$ radian, $\rho \Delta \delta=0.01309$.

$$
\begin{aligned}
\Delta \theta & =\sqrt{(0.025)^{2}+(0.01309)^{2}} / 80^{\circ}+\tan ^{-1}(0.01309 / 0.025) \\
& =0.02822 / 80^{\circ}+27^{\circ} .637 \\
& =0.02822 / 107^{\circ} .637 .
\end{aligned}
$$

If we form $\Delta \theta$ by the use of the rigid formula (4I)

$$
\begin{aligned}
\theta+\Delta \theta=\mathrm{I} .025 / 80^{\circ} .75 & =0.16476 \mathrm{I}+i \mathrm{I}_{1.0116715} \\
\theta=\mathrm{I} .0 / 80^{\circ} & =0.173648+i 0.9848078 \\
\Delta \theta & =-0.008887+i 0.0268637 \\
& =0.028295 / 108^{\circ} .306 .
\end{aligned}
$$

Entering now the correction formula (42), we find in the tables:

$$
\sinh 1.0 / 80^{\circ}=0.85125 / 83^{\circ} .489, \quad \cosh 1.0 / 80^{\circ}=0.57991 / 14^{\circ} .521
$$

so that

$$
\left.\left.\begin{array}{rl}
\sinh 1.025 \angle 80^{\circ} .75=\sinh 1.0 \angle 80^{\circ} & +0.028295 \angle 108^{\circ} .306 \times \cosh 1.0 \angle 80^{\circ} \\
& +\frac{(0.028295)^{2}}{2} \angle 216^{\circ} .612
\end{array}\right) \sinh 1.0 \angle 80^{\circ}\right]
$$

$$
\begin{aligned}
=0.85125 / 83^{\circ} .489 & +0.028295 \angle 108^{\circ} .306 \times 0.57991 / 14^{\circ} .52 \mathrm{I} \\
& +0.0004003 \angle 216^{\circ} .612 \times 0.85125 / 83^{\circ} .489 \\
& +0.000001 \angle 324^{\circ} .918 \times 0.57991 / 14^{\circ} .52 \mathrm{I}
\end{aligned}
$$

It is evident that in conformity with the precision of the tables, only the first two correction terms need be included. Taking the first into account, we have:

$$
\begin{aligned}
\sinh 1.025 \angle 80^{\circ} .75 & =0.85125 / 83^{\circ} .489+0.028295 / 108^{\circ} .306 \times 0.57991 / 14^{\circ} .52 \mathrm{I} \\
& =0.85125 / 83^{\circ} .489+0.016408 / 122^{\circ} .827 \\
& =0.85125 / 83^{\circ} .489\left(\mathrm{I}+0.019276 / 39^{\circ} .338\right) \\
& =0.85125 / 83^{\circ} .489(\mathrm{I}+0.014909+i 0.012219) \\
& =0.85125 / 83^{\circ} .489(\mathrm{I} .014909+i 0.012219) \\
& =0.85125 / 83^{\circ} .489 \times 1.01498 / 0^{\circ} .690 \\
& =0.86400 \angle 84^{\circ} .179 .
\end{aligned}
$$

Taking up the second correction term: -

$$
\begin{aligned}
\sinh 1.025 / 80^{\circ} .75 & =0.86400 / 84^{\circ} .179+0.0004003 / 216^{\circ} .612 \times 0.85125 / 83^{\circ} .489 \\
& =0.86400 / 84^{\circ} .179+0.0003405 / 300^{\circ} .101 \\
& =0.86400 / 84^{\circ} .179\left(1+0.000395 / 215^{\circ} .922\right) \\
& =0.86400 / 84^{\circ} .179(1-0.00032-i 0.000232) \\
& =0.86400 / 84^{\circ} .179(0.99968-i 0.000232) \\
& =0.86400 / 84^{\circ} .179 \times 0.99968 \sqrt{0^{\circ} .013} \\
& =0.863727 / 84^{\circ} .166 .
\end{aligned}
$$

## Conclusions

In general; dual interpolation by simple proportion, as in (35), will give a result of the third order of precision. In order to secure precision of the fourth order, interpolation by the use of Taylor's theorem as in (42) may be required.

## Extension of Table by Use of Formula for $2 \theta$

Although Table I is only carried as far as 3.0 in modulus ( $\rho=3$ ); yet it may be used with a little additional calculation in conjunction with Table II, for obtaining the hyp. sines of plane vector quantities of moduli up to 6.0 , by means of the formula:

$$
\begin{equation*}
\sinh 2 \theta=2 \sinh \theta \cosh \theta \tag{43}
\end{equation*}
$$

Example: Required $\sinh 5.0 / 77^{\circ}$, a quantity outside of Table I. Here $\theta=2.5 / 77^{\circ}$ is within the limits of the Table; so that

$$
\begin{aligned}
\sinh 5.0 \angle 77^{\circ} & =2 \times \sinh 2.5 \angle 77^{\circ} \times \cosh 2.5 / 77^{\circ} \\
& =2 \times 0.87843 / \mathrm{I} 20^{\circ} .891 \times 0.96459 / \mathrm{I} 56^{\circ} .524 \\
& =2 \times 0.87843 \times 0.96459 / 277^{\circ} .415 \\
& =1.75686 \times 0.96459 / 277^{\circ} .415 \\
& =1.69465 / 277^{\circ} .415 .
\end{aligned}
$$

This method ordinarily calls for interpolation both in $\sinh \theta$ and $\cosh \theta$. For this reason, it may be preferable to obtain the required result by the use of either Table VII or Table X , the limits of which are less restricted.

## TABLE II

$$
\cosh (\rho / \delta)=r \angle \gamma
$$

## Polar Hyperbolic Cosines of a Polar Variable

Table II gives the value of $\cosh \rho / \delta$ between the limits of $\rho=0$ and $\rho=3.0$ by steps of o.r, and the limits $\delta=45^{\circ}$ and $\delta=90^{\circ}$, by steps of $\mathrm{r}^{\circ}$. The graphs of these quantities, to squared polar coördinates, appear in Plates IIA and IIb of the Atlas.

## Interpolation by Simple Proportion

In general, as in the case of Table I, a very fair degree of precision in interpolation can be obtained by taking first simple proportional parts in argument, and then simple proportional parts in modulus.

Example: Required $\cosh \left(0.93105 / 57^{\circ} .518\right)$.
We have from Table II: -

$$
\begin{aligned}
& \cosh 0.9 / 57^{\circ}=0.88922 / 23^{\circ} .140 \\
& \cosh 0.9 / 58^{\circ}=0.87602 / 23^{\circ} .003 .
\end{aligned}
$$

Difference for $I^{\circ}=-0.01320 \angle 0^{\circ} .137$.
Diff. for $0.518^{\circ}=-0.00685 \angle 0^{\circ} .07 \mathrm{I}$.
$\cosh 0.9 / 57^{\circ} .518=0.88237 / 23^{\circ} .069$.

$$
\begin{aligned}
& \cosh 1.0 / 57^{\circ}=0.87976 / 28^{\circ} .917 \\
& \cosh 1.0 / 58^{\circ}=0.86350 / 28^{\circ} .823 .
\end{aligned}
$$

Difference for $1^{\circ}=-0.01626 \angle 0^{\circ} .094$.
Diff. for $0.518^{\circ}=-0.00844 \angle 0^{\circ} .049$.
$\cosh 1.0 / 57^{\circ} \cdot 518=0.87132 / 28^{\circ} .868$.
$\cosh 0.9 \angle 57.518=0.88237 \angle 23.069$.
Difference for $0.1=-0.01105 \angle 5^{\circ} .799$.
Diff. for $0.3105=-0.00343 \angle 1^{\circ} .800$.
$\cosh 0.93105 / 57^{\circ} .518=0.87894 / 24^{\circ} .869$.
The correct value is $\quad 0.87837 / 24.803$.

## Interpolation of Taylor's Theorem

When a higher degree of precision is required than can be expected from simple proportional parts, we may use Taylor's Theorem in the following form: -

$$
\cosh (\theta+\Delta \theta)=\cosh \theta+\Delta \theta \sinh \theta+\frac{(\Delta \theta)^{2}}{2!} \cosh \theta+\frac{(\Delta \theta)^{3}}{3!} \sinh \theta+\ldots
$$

Example: Required $\cosh 0.93105 / 57^{\circ} \cdot 518$ having given in Table II cosh $0.9 / 57^{\circ}=0.88922 / 23^{\circ} .140$ and in Table I $\sinh 0.9 / 57^{\circ}=0.85414 / 64^{\circ} .218$.

$$
\begin{aligned}
0.93105 / 57.518 & =0.500+i 0.785398 . \\
0.900 \angle 57^{\circ} & =0.49018+i 0.754804 . \\
\Delta \theta & =0.00982+i 0.030594 \\
& =0.03214 / 72^{\circ} .196 .
\end{aligned}
$$

$\cosh 0.93105 / 57^{\circ} .518=\cosh 0.9 / 57^{\circ}+0.03214 / 72^{\circ} .196 \times 0.85414 / 64^{\circ} .218$ $+0.0005^{2} / 144^{\circ} .392 \times 0.88922 / 23^{\circ} .140$.

It is evident that for the Tables here considered only two correction terms need be included. Taking up the first correction term,

$$
\begin{aligned}
\cosh 0.93105 / 57^{\circ} \cdot 518 & =0.88922 / 23^{\circ} \cdot 140+0.03214 / 72^{\circ} \cdot 196 \times 0.85414 \cdot / 64^{\circ} .218 \\
& =0.88922 / 23^{\circ} \cdot 140+0.02745 / 136^{\circ} .414 \\
& =0.88922 / 23^{\circ} .140\left(\mathrm{I}+0.03087 / 113^{\circ} .274\right) \\
& =0.88922 / 23^{\circ} \cdot 140(\mathrm{I}-0.01220+i 0.02835) \\
& =0.88922 / 23^{\circ} .140(0.98780+i 0.02835) \\
& =0.88922 / 23^{\circ} \cdot 140 \times 0.98780(\mathrm{I}+i 0.02870) \\
& =0.88922 / 23^{\circ} .140 \times 0.98780 \times 1.00041 / 1^{\circ} .645 \\
& =0.87873 / 24^{\circ} .785 .
\end{aligned}
$$

Taking up the second correction term: -

$$
\begin{aligned}
\cosh 0.93105 \angle 57^{\circ} \cdot 518 & =0.87873 / 24^{\circ} .785+0.0005^{2} / 144^{\circ} \cdot 392 \times 0.88922 / 23^{\circ} .140 \\
& =0.87873 / 24^{\circ} .785+0.00046 / 167^{\circ} .532 \\
& =0.87873 / 24^{\circ} \cdot 785\left(\mathrm{I}+0.0005^{24} / 142^{\circ} .747\right. \\
& =0.87873 / 24^{\circ} .785(\mathrm{I}-0.000416+i 0.000317) \\
& =0.87873 / 24^{\circ} .785(0.999584+i 0.000317) \\
& =0.87873 \times 0.999584 / 24^{\circ} .785(1+i 0.00032) \\
& =0.87837 / 24^{\circ} \cdot 785^{\circ} \times 1 / 0.018^{\circ} \\
& =0.87837 / 24^{\circ} .803 .
\end{aligned}
$$

## Graphical Interpolation

For rapid but less precise work, interpolation may be made by proportional parts on Plate $\mathrm{II}_{\mathrm{a}}$ or Plate $\mathrm{II}_{\mathrm{b}}$, without arithmetical computation.

## TABLE III

$$
\tanh (\rho / \underline{\delta})=r \underline{\gamma}
$$

## Polar Hyperbolic Tangents of a Polar Variable

Table III gives in polar coördinates the value of $\tanh \rho / \delta$ between the limits $\rho=0$ and $\rho=3.0$ by steps of o.r, and the limits $\delta=45^{\circ}$ and $\delta=90^{\circ}$, by steps of $\mathrm{I}^{\circ}$. The graphs of these quantities, to squared polar coördinates, appear in Plates IIIa and IIIb of the Atlas.

## Interpolation by Simple Proportion

In general, as in the cases of Tables I and II, a very fair degree of precision can be obtained by taking first simple proportional parts in argument and then simple proportional parts in modulus.

Example: Required $\tanh \left(0.93105 / 57^{\circ} .518\right)$.

We have from Table III: -
$\tanh 0.9 / 57^{\circ}=0.96056 / 41^{\circ} .078$.
$\tanh 0.9 / 58^{\circ}=0.97069 / 42^{\circ}$. 1 II.
Difference for $1^{\circ}=0.01013 \angle 1^{\circ} .033$.
Diff. for $0.518^{\circ}=0.005^{2} 5 \angle 0^{\circ} .535$.
$\underline{\tanh 0.9 / 57^{\circ} .518=0.96581 / 41^{\circ} .613}$.
$\tanh 1.0 \angle 57^{\circ}=1.06648 \angle 37^{\circ} .035$.
$\tanh 1.0 \angle 58^{\circ}=1.08054 \angle 38^{\circ} .004$.

Difference for $\mathrm{I}^{\circ}=0.01406 \quad 10^{\circ} .969$.
Diff. for $0.518^{\circ}=0.00728 \quad 10^{\circ} .502$.
$\tanh 1.0 \angle 57^{\circ} \cdot 518=1.07376 \angle 37^{\circ} \cdot 537$.
$\tanh 0.9 / 57.518=0.96581 / 4 \mathrm{I}^{\circ} .6 \mathrm{I}_{3}$.
Difference for 0.1 $=0.10795 /-4^{\circ} .076$.
" for $0.3105=0.0335^{2} /-1^{\circ} .266$.
Inferred value of $\tanh 0.93105 / 57^{\circ} .518=0.99933 \quad / 40^{\circ} .347$.
Correct value of $\tanh 0.93105 / 57^{\circ} .518=1.0000 / 40^{\circ} .395$.

## Interpolation by Taylor's Theorem

For a higher degree of interpolation precision than by simple proportion, we may use Taylor's theorem in the following form: -

$$
\begin{gather*}
\tanh (\theta+\Delta \theta)=\tanh \theta+\Delta \theta \operatorname{sech}^{2} \theta-\frac{(\Delta \theta)^{2}}{2!} \cdot 2 \operatorname{sech}^{2} \theta \tanh \theta \\
-\frac{(\Delta \theta)^{3}}{3!} 2 \operatorname{sech}^{2} \theta\left(\operatorname{sech}^{2} \theta-2 \tanh ^{2} \theta\right)+\ldots \tag{46}
\end{gather*}
$$

Example: Required $\tanh 0.93105 / 57^{\circ} .518$.
having given in Table $I \sinh 0.9 / 57^{\circ}=0.85414 / 64.218$.
II cosh $0.9 \angle 57^{\circ}=0.88922 \angle 23^{\circ} .140$.
III $\tanh 0.9 / 57^{\circ}=0.96056 / 41^{\circ} .078$.
Here $\Delta \theta=0.03214 / 72^{\circ} .196$, as given by (41). Hence by Taylor's theorem as far as the second correction term inclusive,

$$
\begin{aligned}
\tanh 0.93105 \angle 57^{\circ} .518 & =\tanh 0.9 \angle 57^{\circ}+\frac{0.03214 \angle 72.196}{(0.88922)^{2} \angle 46.280} \\
& -\frac{(0.03214)^{2} / 144^{\circ} .392}{(0.8892)^{2} \angle 46^{\circ} .280} \times 0.96056 \angle 41^{\circ} .078 .
\end{aligned}
$$

Taking up the first correction term: -

$$
\begin{aligned}
& \tanh 0.93105 \angle 57^{\circ} .518=0.96056 \angle 41^{\circ} .078+\frac{0.03214}{0.79071} \angle 25^{\circ} .916 \\
& =0.96056 \angle 4 \mathrm{I}^{\circ} .078+0.04065 / 25^{\circ} .916 \\
& =0.96056 / 41^{\circ} .078\left(\mathrm{x}+0.0423^{2} \sqrt{15^{\circ} .162}\right) \\
& =0.96056 / 4 \mathrm{I}^{\circ} .078 .(\mathrm{I}+0.04084-i 0.01107) \\
& =0.96056 / 4 \mathrm{I}^{\circ} .078(\mathrm{I} .04084-i 0.01107) \\
& =0.96056 / 41.078\left(1 . 0 4 0 9 0 \longdiv { 0 ^ { \circ } . 6 0 9 }\right) \\
& =0.99985 / 40^{\circ} .469 \text {. } \\
& \text { [182] }
\end{aligned}
$$

## EXPLANATORY TEXT

Taking up next the second correction term: -

$$
\begin{aligned}
\tanh 0.93105 / 57^{\circ} .518 & =0.99985 / 40^{\circ} .469-\frac{0.00103 / 144^{\circ} .392 \times 0.96056 / 41^{\circ} .078}{(0.88922)^{2} / 46^{\circ} .280} \\
& =0.99985 / 40^{\circ} .469
\end{aligned} \frac{0.00103 \times 0.96056 \sqrt{40^{\circ} .810}}{0.79071}
$$

When more than two correction terms have to be retained, it is often easier to determine $\sinh (\theta+\Delta \theta)$ and $\cosh (\theta+\Delta \theta)$ by Taylor's theorem, as already described, and then to take their ratio for $\tanh (\theta+\Delta \theta)$.

TABLE IV
Polar Ratio $\frac{\sinh \theta}{\theta}$ for Polar Values of $\theta$
Table IV has been prepared by dividing the values of $\sinh \theta$ found successively in Table I by their respective values of $\theta$. The object of the table is to facilitate the computation of the equivalent $T$ or $\Pi$ of any uniform alternating-current line of known electrical constants.* That is, the table pertains more particularly to the applications of hyperbolic functions than to the fundamental properties of those functions. The table gives the vector value of $\frac{\sinh (\rho / \delta)}{\rho / \delta}$ for the range $\rho=0$ to $\rho=3$ by steps of o.I, and for $\delta=45^{\circ}$ to $\delta=90^{\circ}$ by steps of $1^{\circ}$. The graphs of the values contained in the tables are plotted to squared polar coördinates in Charts IVA and IVb of the Atlas, for rapid graphic interpolation.

## Interpolation by Simple Proportion

A fair degree of precision in interpolation can ordinarily be obtained by first taking simple proportional parts in argument and then simple proportional parts in modulus.

Example: Required $\frac{\sinh \left(1.025 / 80^{\circ} .75\right)}{1.025 / 80^{\circ} .75}$.

[^5]We have from Table IV the following values of $\frac{\sinh \theta}{\theta}$ : -

| For $1.0 / 80^{\circ}$ | $=0.85125$ | $\angle 3^{\circ} .489$. | For 1.1 $/ 80^{\circ}=$ | 0.82196 | $\angle 4^{\circ} .286$. |
| ---: | :--- | ---: | :--- | ---: | :--- | ---: |
| $1.0 / 8 \mathrm{I}^{\circ}$ | $=0.84940$ | $\angle 3^{\circ} .156$. | $1.1 / 8 \mathrm{I}^{\circ}$ | $=0.81975$ | $\angle 3^{\circ} .877$. |

Difference for $\mathrm{I}^{\circ}=-0.00185 /-0^{\circ} .333$. Difference for $\mathrm{I}^{\circ}=-0.00221 /-0^{\circ} .409$.

$$
0.75^{\circ}=-0.00139 /-0^{\circ} .250 .
$$

For $1.0 / 80^{\circ} .75=0.84986 \quad / 3^{\circ} .239$.

| $0^{\circ} .75=-0.00166 /-0^{\circ} .30$ |  |  |
| :---: | :---: | :---: |
| For $1.1 / 80^{\circ} .75$ | . 8 | $\angle 3^{\circ} .979$ |
| For $1.0 / 80^{\circ}$. | 0.84986 | $13^{\circ}$. |
| Difference for $0.1=-0.02956$ " for $0.025=-0.00739$ |  |  |
|  |  |  |
| For $1.025 / 80^{\circ} .75=$ | 0.84247 | 3. 42 |
| Correct value | 0.84265 | /3. ${ }^{\circ} 4$ |

When a higher degree of precision is required than can be expected from proportional parts, the proper value of $\sinh (\theta+\Delta \theta)$ should be obtained by Taylor's theorem as already explained in connection with Table I, and this value divided by $(\theta+\Delta \theta)$; because the expansion of $\frac{\sinh (\theta+\Delta \theta)}{(\theta+\Delta \theta)}$ directly, by Taylor's theorem, does not lend itself conveniently for computation.

Extension for the Range of the Table by the Use of Formula for $2 \theta$
Although Table IV is only carried as far as 3.0 in modulus ( $\rho=3$ ); yet it may be used with a little additional calculation, in conjunction with Table II, for obtaining $\frac{\sinh \theta}{\theta}$, for vector values of $\theta$ with moduli up to 6.0 , by means of the formula: -
whence

$$
\begin{align*}
& \sinh 2 \theta=2 \sinh \theta \cdot \cosh \theta  \tag{47}\\
& \frac{\sinh 2 \theta}{2 \theta}=\frac{\sinh \theta}{\theta} \cdot \cosh \theta . \tag{48}
\end{align*}
$$

Consequently, to find $\frac{\sinh \theta}{\theta}$ for the double of any quantity within the range of Table IV, find the value of $\frac{\sinh \theta}{\theta}$ for the quantity, by interpolation directly in Table IV, and multiply the result by the hyperbolic cosine of the quantity as obtained from Table II. Corresponding steps may be taken with Charts II and IV.

Example: Required $\frac{\sinh \left(5.0 / 77^{\circ}\right)}{5.0 \angle 77^{\circ}}$, this being outside of the limits of Table IV; but not outside twice the value therein obtainable.

Here $\frac{\sinh \theta}{\theta}$ for $\theta=2.5 \angle 77^{\circ}$ is by Table IV $0.35137 \angle 43^{\circ} .89 \mathrm{I}$.
and $\cosh \theta$ " " " " " " " II $0.96459 ~ L 156^{\circ} \cdot 5^{24}$.

$$
\text { Hence } \begin{aligned}
\frac{\sinh \left(5.0 / 77^{\circ}\right)}{5.0 \angle 77^{\circ}} & =0.35137 \angle 43^{\circ} .891 \times 0.96459 \angle 156^{\circ} .524 \\
& =0.33893 \angle 200^{\circ} .415
\end{aligned}
$$

This procedure calls for interpolation both in $\frac{\sin \theta}{\theta}$ and in $\cosh \theta$. For this reason it may be preferable to obtain the required result by the use of either Table VII or Table X, the limits of which are less restricted.

## TABLE V

Polar Ratio $\frac{\tanh \theta}{\theta}$ for Polar Values of $\theta$
Table V, like Table IV, has been prepared for electrical engineering applications of hyperbolic functions, rather than for developing these functions alone. It gives the vector value of $\frac{\tanh (\rho / \delta)}{\rho L \delta}$ for the range $\rho=0$ to $\rho=3.0$ in modulus, by steps of 0.1 , and for the range $\delta=45^{\circ}$ to $\delta=90^{\circ}$ in argument, by steps of $1^{\circ}$. It was computed directly from Table III by dividing the resulting values successively by their respective values of $\theta$. The graphs of the values in Table V are presented to squared polar coördinates in Chart V, for rapid graphic interpolation.

## Interpolation by Simple Proportion

Except where a high degree of precision in interpolation is required, it is preferable to interpolate first by simple proportion in argument, and then by simple proportion in modulus; although this order of operations may be inverted.

Example: Required $\frac{\tanh \theta}{\theta}$ for $\theta=0.93 \operatorname{Io5} \angle 57^{\circ} \cdot 518$.
We have from Table V: -

$$
\begin{aligned}
\text { For } \theta & =0.9 \angle 57^{\circ} & =1.06729 \sqrt{15^{\circ} .922} . & \text { For } \theta
\end{aligned}=1.0 \angle 57^{\circ}=1.06648 \sqrt{19^{\circ} .965} .
$$

Difference for $\mathrm { r } ^ { \circ } = 0 . 0 1 1 2 5 \longdiv { - 0 . 0 3 3 }$.

$$
" \quad \text { for } 0 . 5 1 8 ^ { \circ } = 0 . 0 0 5 8 3 \longdiv { - 0 . 0 1 7 } .
$$

For $\theta = 0 . 9 / 5 7 ^ { \circ } . 5 1 8 = 1 . 0 7 3 1 2 \longdiv { I 5 ^ { \circ } . 9 0 5 } .$
Difference for $\mathrm { r } ^ { \circ } = 0 . 0 1 4 0 6 \longdiv { 0 ^ { \circ } . 0 3 1 }$.
" for $0^{\circ} .518=0.00728 \sqrt{0^{\circ} .016}$.
For $\theta = 1 . 0 / 5 7 ^ { \circ } . 5 1 8 = 1 . 0 7 3 7 6 \longdiv { 1 9 ^ { \circ } . 9 8 1 } .$

$$
\theta = 0 . 9 / 5 7 ^ { \circ } \cdot 5 1 8 = 1 . 0 7 3 1 2 \longdiv { 1 5 . 9 0 5 }
$$

Difference for 0.I $=0.00064 \sqrt{4^{\circ} .076}$.
"for $0 . 0 3 1 0 5 = 0 . 0 0 0 2 0 \longdiv { I ^ { 0 } . 2 6 6 }$
For $\theta = 0 . 9 3 1 0 5 \angle 5 7 ^ { \circ } . 5 1 8 = 1 . 0 7 3 3 _ { 2 } \longdiv { 1 7 ^ { \circ } . 1 7 1 } .$ Correct value,
$1 . 0 7 4 0 6 \longdiv { 1 7 ^ { \circ } . 1 2 3 } .$

## EXPLANATORY TEXT

When a higher degree of precision is needed than simple proportion can give, it is preferable to find the proper interpolated value for $\tanh \theta$ from preceding tables and then to divide by $\theta$; since the function $\frac{\tanh (\theta+\Delta \theta)}{(\theta+\Delta \theta)}$ does not lend itself to expansion by Taylor's theorem in a simple form.

Tables IV and V jointly, with their respective graphs in the Atlas, enable the equivalent T or $\Pi$ of any uniform alternating-current line in the steady state, at a single frequency, to be completely determined, provided $\theta$ does ṇot exceed six radians in modulus ( $\delta$ lying between $45^{\circ}$ and $90^{\circ}$ ); because although in both tables, $\theta$ is not carried beyond three radians; yet $\frac{\sinh \theta}{\theta}$ can be found by extension up to six radians, and in the formulas for deducing the equivalent T or $\Pi, \frac{\tanh \theta}{\theta}$ has only to be carried to half the modulus of $\frac{\sinh \theta}{\theta}$.

The following example may illustrate the use of Tables IV and V either with or without the aid of the graphic interpolation Charts IV and V of the Atlas. An alter-nating-current line of uniform electrical constants is 250 km . long and has, at a certain frequency, a total conductor impedance of $565.71 \mathrm{II} / 84^{\circ} .777$ ohms, associated with a total distributed insulation admittance of $4.3707 \times 10^{-3} / 90^{\circ}$ mhos. Its hyperbolic angle is therefore $\sqrt{5.6571 \mathrm{I} \times 4.3707 \times 10^{-1} \angle 174^{\circ} .777}=\mathrm{I} .5724 \angle 87^{\circ} .388$ hyperbolic radians. Interpolating either from the tables or the Charts IV and V, we obtain

$$
\frac{\sinh \theta}{\theta}=0.638 / 2^{\circ} .6 \text { and } \frac { \operatorname { t a n h } ( \frac { \theta } { 2 } ) } { ( \frac { \theta } { 2 } ) } = \frac { \operatorname { t a n h } 0 . 7 8 6 2 / 8 7 ^ { \circ } . 3 8 8 } { 0 . 7 8 6 2 / 8 7 ^ { \circ } \cdot 3 8 8 } = 1 . 2 7 \longdiv { I ^ { \circ } . 5 } .
$$

If we multiply the conductor impedance by $\frac{\sinh \theta}{\theta}$, we have $565.7 \mathrm{II} / 84^{\circ} .777 \times 0.638 / 2^{\circ} .6=360.69 / 87^{\circ} .377$ ohms, and if we multiply half the insulation admittance by $\frac{\tanh \left(\frac{\theta}{2}\right)}{\left(\frac{\theta}{2}\right)}$, we have

$$
2 . 1 8 5 4 \times 1 0 ^ { - 3 } \angle 9 0 ^ { \circ } \times 1 . 2 7 \longdiv { r ^ { \circ } . 5 } = 2 . 7 8 \times 1 0 ^ { - 3 } \underline { 8 8 ^ { \circ } . 5 } \text { mhos } = 3 5 9 . 7 7 \longdiv { 8 8 ^ { \circ } . 5 } \text { ohms. }
$$

If now we apply an artificial condenser leak of $2.78 \times 10^{-3} / 88^{\circ} .5 \mathrm{mhos}$ to each end of a localised impedance coil of $360.69 \angle 87^{\circ}: 377$ ohms, we obtain the "equivalent $\Pi$ " of the line at the frequency considered, and such a combination of localised impedance and admittances would behave exactly like the line, at its terminals, or outside them, so as to be capable of replacing the line in any electrical system, at that frequency.

## TABLE VI

## Polar Functions of Polar Semi-Imaginary Quantities

A semi-imaginary quantity is a complex numerical quantity which, when expressed in rectangular coördinates, has equal real and imaginary components; or, when expressed in polar coördinates, has an argument of $45^{\circ}$. That is $x / \pm 45^{\circ}=a \pm i a$. The interest of the table pertains primarily to the application of hyperbolic functions to uniform alternating-current lines of negligibly small linear inductance and leakance, a case approximated to by cabled lines at low frequencies. The table was first published by the author in the transactions of the International Electrical Congress of St. Louis (1904). The arguments of the results are given in degrees and minutes, and not in degrees and decimals like the rest of the tables.

The table gives the hyperbolic sine, cosine, tangent, cosecant, secant, and cotangent of the vector $x / 45^{\circ}$ for the range $x=0$ to $x=20.5$, by steps in $x$ of o.I up to $x=6$, and of 0.05 beyond that point. At $x=6$, the values of the hyp. sine and cosine so nearly coincide, that they are taken as equal in the table, thus bringing sech $x$ and cosech $x$ into equality as well as $\tanh x=\operatorname{coth} x=1$. Graphs of the functions are given in Chart VI as far as $x=4$, approximately.

## Interpolation by Simple Proportion

In general, interpolation may be quickly effected by simple proportional parts of modulus since the argument is constant at $45^{\circ}$. This procedure is sufficiently evident to require no exemplification.

## Interpolation of Taylor's Theorem

When precise interpolation is necessary, we have the following expansions for $\mathrm{f}(\theta+\Delta \theta)$

$$
\begin{aligned}
\sinh \left\{(x+\Delta x) \angle 45^{\circ}\right\}= & \sinh \left(x / 45^{\circ}\right)+(\Delta x) / 45^{\circ} \cdot \cosh \left(x / 45^{\circ}\right)+\frac{(\Delta x)^{2}}{2!} \angle 90^{\circ} . \\
& \sinh \left(x / 45^{\circ}\right)+\frac{(\Delta x)^{3}}{3!} \angle 135^{\circ} \cdot \cosh \left(x / 45^{\circ}\right)+\ldots \ldots(49) \\
\cosh \left\{(x+\Delta x) \angle 45^{\circ}\right\}= & \cosh \left(x / 45^{\circ}+(\Delta x) / 45^{\circ} \cdot \sinh \left(x / 45^{\circ}\right)+\frac{(\Delta x)^{2}}{2!} \angle 90^{\circ} .\right. \\
& \cosh \left(x / 45^{\circ}\right)+\frac{(\Delta x)^{3}}{3!} \angle 135^{\circ} \cdot \sinh \left(x / 45^{\circ}\right)+\ldots(50)
\end{aligned}
$$

$$
\tanh \left\{(x+\Delta x) \angle 45^{\circ}\right\}=\tanh \left(x \angle 45^{\circ}+(\Delta x) \angle 45^{\circ} \cdot \operatorname{sech}^{2}\left(x / 45^{\circ}\right)-\frac{(\Delta x)^{2}}{2!} \underline{/ 90^{\circ}} .\right.
$$

$$
2 \operatorname{sech}^{2}\left(x \angle 45^{\circ}\right) \cdot \tanh \left(x \angle 45^{\circ}\right)-\frac{(\Delta x)^{3}}{3!} \angle 35^{\circ} \cdot 2 \cdot \operatorname{sech}^{2}\left(x \angle 45^{\circ}\right) .
$$

$$
\begin{equation*}
\left\{\operatorname{sech}^{2}\left(x / 45^{\circ}\right)-2 \tanh ^{2}\left(x / 45^{\circ}\right)\right\}+\ldots \tag{51}
\end{equation*}
$$

Example: Required $\cosh \left(3.1 / 45^{\circ}\right)$, having given in Table VI

$$
\begin{aligned}
& \sinh \left(3.0 / 45^{\circ}\right)=4.1986 / 120^{\circ} .48^{\prime} . \\
& \cosh \left(3.0 / 45^{\circ}\right)=4.1443 / 122^{\circ} .16^{\prime} .
\end{aligned}
$$

[187]

Here $\cosh \left(3.1 / 45^{\circ}\right)=4.1443 / 122^{\circ} .16^{\prime}+0.1 / 45^{\circ} \times 4.1986 / 120^{\circ} .48^{\prime}$

$$
\begin{aligned}
&+ \frac{0.01 \angle 90^{\circ}}{2} \times 4.1443 \angle 122^{\circ} .16^{\prime}+\frac{0.001}{6} \angle 135^{\circ} \times 4.1986 \angle 120^{\circ} .48^{\prime} \\
&= 4.1443 \angle 122^{\circ} .16^{\prime}+4.1986 \angle 120^{\circ} .48\left(0.1 \angle 45^{\circ}+0.00017 \angle 135^{\circ}\right) \\
&+4.1443 \angle 122^{\circ} .16^{\prime}\left(0.005 \angle 0^{\circ}\right) \\
&=4.1443 / 122^{\circ} .16^{\prime}(1+i 0.005)+4.1986 \angle 165^{\circ} .48^{\prime}(0.1+i 0.00017) \\
&= 4.1443 / 122^{\circ} .16^{\prime}\left(1.0000 / 0^{\circ} .17^{\prime}\right)+4.1986 \angle 165^{\circ} .48^{\prime}\left(0.1 \angle 0^{\circ} .01^{\prime}\right) \\
&= 4.1443 \angle 122^{\circ} .33^{\prime}+0.4199 / 165^{\circ} .49^{\prime} \\
&= 4.1443 \angle 122^{\circ} .33^{\prime}\left(\mathrm{I}+0.10132 \angle 43^{\circ} .16^{\prime}\right) \\
&= 4.1443 / 122^{\circ} .33^{\prime}(\mathrm{I}+0.07378+i 0.06944) \\
&= 4.1443 \angle 122^{\circ} .33^{\prime}(1.07378+i 0.06944) \\
&= 4.1443 \angle 122^{\circ} .33^{\prime} \times 1.0760 \angle 3^{\circ} .42^{\prime} \\
&= 4.4590 \angle 126^{\circ} .15^{\prime} .
\end{aligned}
$$

which is in substantial agreement with the tabulated value of cosh 3.1.
Beyond $x=6$, the value of either $\sinh \left(x / 45^{\circ}\right)$ or $\cosh \left(x / 45^{\circ}\right)$ was computed from the formula: -

$$
\begin{equation*}
\sinh \left(x / 45^{\circ}\right)=\cosh \left(x / 45^{\circ}\right)=\frac{\epsilon^{\frac{x}{\sqrt{2}}}}{2} / \frac{x}{\sqrt{2}} \text { radians } \tag{2}
\end{equation*}
$$

where $\epsilon=2.71828 \ldots$
Thus, with $x=7, \frac{x}{\sqrt{2}}=4.9498, \frac{\epsilon^{\frac{x}{\sqrt{2}}}}{2}=\frac{141.14}{2}=70.57$ at the argument of 4.9498 circular radians $=283^{\circ} \cdot 36^{\prime}$; so that: -

$$
\sinh \left(7 / 45^{\circ}\right)=\cosh \left(7 / 45^{\circ}\right)=70.57 \angle 283^{\circ} \cdot 36^{\prime}
$$

which coincides with the tabulated value in Table VI.

## TABLE VII

$$
\sinh (x+i y)=u+i v
$$

## Rectangular Hyperbolic Sines of a Rectangular Variable,

Tables I to VI contain certain restrictions in range which limit their general application. They are primarily designed to cover particular applications of hyperbolic functions to electrical engineering. Tables VII to XIV, however, are free from such restrictions, and are intended to furnish the circular as well as the hyperbolic sine, cosine, and tangent of a complex angle, and to furnish this result either in the rectangular or polar form. That is, they furnish: -

$$
\begin{array}{r}
\left.\begin{array}{r}
\sinh (x+i y) \\
\text { or } \sin (x+i y)
\end{array}\right\} \text { in the form } u+i v \text {; also in the form } r \not \gamma \\
\left.\begin{array}{r}
\cosh (x+i y) \\
\text { or } \cos (x+i y)
\end{array}\right\} \text { in the form } u+i v \text {; also in the form } r\lfloor\gamma \\
\left.\begin{array}{r}
\tanh (x+i y) \\
\text { or } \tan (x+i y)
\end{array}\right\} \text { in the form } u+i v \text {; also in the form } r\lfloor\gamma
\end{array}
$$

## EXPLANATORY TEXT

between the limits, for the hyperbolic functions, $x=0$ and $x= \pm 10$, by steps of 0.05 and between the limits $y=0$ and $y= \pm \propto$, by steps of $0.07854=\pi / 40$.

## Periodic Properties of the Rectangular Complex Hyperbolic Sines and Cosines

It is well known that $\sinh \{x+i(y+2 n \pi)\}=\sinh \{x+i y\}$

$$
\begin{equation*}
\text { and } \cosh \{x+i(y+2 n \pi)\}=\cosh \{x+i y\} \tag{53}
\end{equation*}
$$

where $n$ is any integer.
This means that, keeping $x$ constant, the values of the hyp. sine and hyp. cosine repeat themselves as $i y$ passes through increments of $i .2 \pi$; or they are periodic functions of $i y$, having the period $2 \pi i$.

The matter may be visualised more clearly from geometrical reasoning. Considering the exponential form of the hyperbolic cosine,

$$
\begin{equation*}
\cosh (x+i y)=\frac{\epsilon^{x+i y}+\epsilon^{-(x+i y)}}{2} \tag{55}
\end{equation*}
$$

This may written in the form: $\frac{\epsilon^{x}}{2} . \epsilon^{i y}+\frac{\epsilon^{-x}}{2} \epsilon^{-i y}$. If $x$ be kept constant, we require to study the changes produced in this form of the hyp. cosine by varying $y$.


Fig. 29. - Geometrical constructions for $\cosh (x+i y)$ and $\sinh (x+i y)$.
In Fig. ${ }^{29}, O A$ is an initial line and $O P$ a radius vector of length or modulus $\epsilon^{x} / 2$, multiplied by $\epsilon^{i y}$; that is rotated positively about $O$, from $O A$ through a circular angle of $y$ radians. Similarly, $o p$ is a vector of length or modulus $\epsilon^{-x} / 2$ rotated negatively through a circular angle of $y$ radians from the initial line $O a$. The equation (55) states that the hyperbolic cosine is the plane vector sum of $O P$ and $o p$, or $O^{\prime} p^{\prime}$ in the Figure. If now we steadily increase the value of $y$, leaving $x$ constant, we cause $O P$ to rotate steadily counterclockwise, and also op to rotate steadily clockwise, through $\Delta y$ circular radians. When $\Delta y=2 \pi$, both $O P$ and $o p$ will have made one complete revolution and will have returned to their initial positions indicated. Consequently, the value of $\cosh \{x+i(y+2 \pi)\}$ repeats that of $\cosh \{x+i y\}$.

Since

$$
\begin{equation*}
\sinh (x+i y)=\frac{\epsilon^{x+i y}-\epsilon^{-(x+i y)}}{2} \tag{56}
\end{equation*}
$$

the same reasoning applies; but the vector op is added in the negative or reversed direction; so that $O^{\prime} q^{\prime}$ is the hyperbolic sine of $x+i y$.

The above mentioned periodic property of the hyp. sine and cosine has been utilized for shortening the tables of those functions by reducing the circular angle $y$ of Fig. 29

## EXPLANATORY TEXT

from radians to quadrants. That is, any complex angle $x+i y$ represented by a point $P$, and radius vector $O P$, in the complex plane $X Y$, Fig. 30 , is first transferred to a new complex plane $X Q$, Fig. 31, at the point $p=x, q$, by keeping $x$ the same in both planes, but making the points $\frac{\pi}{2}, \frac{2 \pi}{2}, \frac{3 \pi}{2}, \frac{4 \pi}{2}, \ldots$ etc., on the $Y$ axis of the $X Y$ diagram, become the points $1,2,3,4 \ldots$ etc., on the $Q$ axis of the $X Q$ diagram. Thus if

$$
\begin{aligned}
& x+i y=2.5+i 6.2832, \\
& x+i q=2.5+i \underline{4.00}
\end{aligned}
$$

where 4.00 is underscored to indicate quadrant measure, instead of the ordinary radian measure.


Fig. 30.


Fig 31.

Transference of a Complex Quantity from the XY to the XQ Plane.
In the case indicated by Fig. $30, x+i y=3+i 9$ and $x+i q=3+i_{5.74}$ in Fig. 3 I.
Consequently, after a complex angle has been transferred from the complex plane $X Y$ to the complex plane $X Q$, the values of either $\sinh (x+i q)$ or $\cosh (x+i q)$ exactly repeat themselves for each 4 units of increase in $q$; or with reference to Fig. 3I for each 4 quadrants of increase in the circular angle instead of 6.2832 . . radians. The operation of transferring the complex angle from the $X Y$ to the $X Q$ plane may therefore be described as quadranting $y$; i.e., changing the expression of $y$ from circular radian units to circular quadrant units.

All of the Tables VII to XIII inclusive require to be entered in terms of $x+i q$; so that the complex entering value has to be quadranted by dividing its imaginary or $y$-component by the numeric $\pi / 2=\mathrm{I} .57079 . \ldots$ This preliminary step occupies a certain extra time and effort; but it actually economises the total time and effort involved. If the tables were computed for $x+i y$, they would have to be repeated in bulk for each $\pi$ radians, or 2 quadrants, increase in $y$. In electrical engineering appli-

## EXPLANATORY TEXT

cations, $y$ frequently rises to 100 radians, and might easily be much greater than 100. In order to go up to 100 radians, the bulk of the Tables VII to XIII would have to be increased about thirty fold. Altogether, aside from the greatly increased bulk and expense of such tables, the extra time and effort consumed in turning over the numerous pages would be comparable with that saved by eliminating the preliminary step of quadranting the imaginary component or dividing it by $\pi / 2$.

## Rules for the Use of Table VII

Express the " angle" whose hyperbolic sine is required in the form of an ordinary rectangular complex quantity $x+i y$.

Quadrant the imaginary component $y$ through the process of dividing it by $\pi / 2$; i.e., transfer the quantity from the $X Y$ to $X Q$ plane; so that the new expression of the complex quantity is $x+i q$; where $q=y /$. 57079 . . .

If $q$ is greater than $4.0^{\circ}$, divide by 4 and retainonly the remainder. If the remainder exceeds 2 , subtract 2 therefrom, and apply a negative sign to the result found in the table. A change of 2 quadrants simply reverses the sign of the result. If the remainder on the other hand does not exceed 2, enter Table VII with it, and take out the result with unchanged sign.

- Example: Required the hyperbolic sine of $0.65+i 25.75$. Here $x=0.65$ and $y=25.75$. That is $y$ is 25.75 circular radians. Reduce this to quadrants through dividing by 1.57079 . . .

$$
\begin{aligned}
\frac{25.75}{*}_{1.57079 \cdots \cdot} \log _{25.75} & =1.4107772 . \\
\log \pi / 2 & =0.196 \mathrm{I} 199 . \\
\log 16.393 & =1.2146573 .
\end{aligned}
$$

The quadranted yalue $x+i q=0.65+i \underline{16.393}$
Note. - It is found convenient to underscore quadrantal quantities to distinguish them from radianal quantities.

Rejecting quadrant multiples of 4 , i.e., 16 in this case, we enter Table VII with $x+i q=0.65+i \underline{0.393}$. The nearest entry to this is $x=0.65, q=0.4$, for which the hyperbolic sine is $0.56368+i 0.71639$, an ordinary rectangular complex quantity on the $U V$ plane. Interpolation should be made in this result to meet the change from $q=0.40$ to $q=0.393$, as will be explained later.

Second Example: Required $\sinh (x+i y)=\sinh (1.15+i$ 10.10 $)$.
Quadranting the imaginary, $\sinh (x+i q)=\sinh \left(1.15+i \frac{10.10}{1.5708}\right)$

$$
=\sinh (1.15+i 6.430) .
$$

Rejecting 4's from the imaginary $=\sinh (1.15+i \underline{2.430})$.
Deducting 2 from the residual and chang-
ing the sign. ......................... $=-\sinh ($ (1.15 $+i \underline{0.430)}$ ).

[^6]We now enter Table VII with $x=1.15$ and $q=0.43$. The nearest entry is $x=1.15$ $q=0.45$, the result for which is $1.08037+i 1.12836$. But we must apply a negative sign to the whole of this result because of the 2 rejected in the quadrantal residuum. Hence,

$$
\begin{aligned}
\sinh \left(1.15+i_{10.10}\right) & =-\left(\mathrm{I} .08037+i_{1.12836}\right) \\
& =-1.08037-i_{1.12836=u+i v}
\end{aligned}
$$

except for the interpolation from $q=\underline{0.45}$ to $q=\underline{0.43}$. The operation of interpolation will be discussed later on.

Third Example: Required $\sinh (x+i y)=\sinh \left(3.60+i_{18.1}\right)$.
Quadranting the imaginary, $\begin{aligned} \sinh (x+i q) & =\sinh \left(3.60+i \frac{18.1}{1.5708}\right) \\ & =\sinh \left(3.60+i \frac{11.523)}{}\right.\end{aligned}$
Rejecting 4's from the quadrants $=\sinh (3.60+i \underline{3.523})$.
Deducting 2 from the residual imaginary
and changing the sign. . . . . . . . . . . . $=-\sinh \left(3.60+i_{\underline{1.523}}\right)$.
Entering Table VII with $x=3.6$ and $q=1.523$, the nearest entry is $x=3.6$ and $q=1.5$, for which the result is $-12.92978+i_{12.94910 \text {. But applying the negative }}$ sign to this result because of 2 deducted from the quadrantal imaginary, and we have finally: -

$$
\begin{aligned}
\sinh \left(3.60+i_{1} 8.1\right) & =-\left(-{ }_{12.9297} 8+i_{12} .94910\right) \\
& ={ }_{12} .92978-i_{12.94910}=u+i v
\end{aligned}
$$

except for the interpolated correction from $q=\underline{1.500}$ to $q=\underline{1.523}$, to be considered later.

## Range of the Table

Table VII extends by steps of 0.05 in $x$ up to $x=3.95$, and in Table XIII up to $x=4.0$. In $y$, the range is indefinitely great; because after dividing $y$ by $\pi / 2$ so as to reduce it to quadrant measure, all multiples of 4 are rejected. From 0 to 2, in the remainder, the table gives the result directly and from 2 to 4 , by change of sign in the total. Cases of $x$ greater than 4.0 are dealt with in connection with Table XIV.

## Repetitions in the Table

$$
\begin{equation*}
\text { If } \sinh \left\{x+i\left(\frac{\pi}{2}-a\right)\right\}=u+i v \tag{57}
\end{equation*}
$$

it is easy to show that:

$$
\begin{equation*}
\sinh \left\{x+i\left(\frac{\pi}{2}+a\right)\right\}=-u+i v \tag{58}
\end{equation*}
$$

It follows that in any column of Table VII, the entry for $q=(1-a)$ is the same as that for $q=\mathrm{I}+a$ except for a change in the sign of $u$. Consequently, the table might have been reduced to half its present size, if the responsibility for making this change of sign had been left to the reader. It was considered, however, that since the reader is al-, ready charged with the duty of applying a negative sign to the total result when the $q$

## EXPLANATORY TEXT

residuum lies between 2 and 4, the retention of the full size of the present table was warranted, especially as the duplication of the text in each column provides a certain check upon the numerical work of tabulation.

## Interpolation by Simple Proportion

As a first approximation, interpolation may be effected by simple proportion, first in regard to $x$ and second in regard to $q$.

Example: Required $\sinh (0.15+i \underline{0.25})$, having given:
$\sinh \left(0.2+i_{0.2}\right)=0.19148+i 0.31522 . \quad \sinh \left(0.2+i_{0.3}\right)=0.17939+i 0.46310$. $\sinh (0.1+i \underline{0.2})=0.095^{26}+i 0.31056 . \quad \sinh (0.1+i \underline{0.3})=0.08925+i 0.45626$.

Diff. for 0.1 $x=0.09622+i 0.00466$. Diff. for 0.1 $x=0.09014+i 0.00684$.
Diff. for $0.05 x=0.048 \mathrm{II}+i 0.00233$. Diff. for $0.05 x=0.04507+i 0.00342$. $\sinh (0.15+i 0.3)=0.13432+i 0.45968$.
$\sinh (0.15+i \underline{0.2})=0.14337+i 0.31289 . \sinh (0.15+i \underline{0.2})=0.14337+i 0.31289$.
Diff. for $q \underline{0.10}=-0.00905+i 0.14679$.
Diff. for $q 0.05=-0.00453+i 0.07340$.
$\sinh (0.15+i \underline{0.25})=0.13885+i 0.38629$.
Correct value
$=0.13910+i 0.38700$.

## Interpolation by Taylor's Theorem

When a higher degree of precision is desired than that which can be expected by simple proportion, we may use Taylor's theorem in the following form: -

$$
\sinh (\theta+\Delta \theta)=\sinh \theta+\Delta \theta \cosh \theta+\frac{(\Delta \theta)^{2}}{2!} \sinh \theta+\frac{(\Delta \theta)^{3}}{3!} \cosh \theta+\ldots \text { (59) }
$$

$\sinh \{(x+i y)+(\Delta x+i \Delta y)\}=\sinh (x+i y)+(\Delta x+i \Delta y) \cosh (x+i y)$

$$
\begin{equation*}
+\frac{(\Delta x+i \Delta y)^{2}}{2!} \sinh (x+i y)+\frac{(\Delta x+i \Delta y)^{3}}{3!} \cosh (x+i y)+\ldots \tag{60}
\end{equation*}
$$

Quadranting imaginaries on both sides; or transferring to the $X Q$ plane, $\sinh \{(x+i q)+(\Delta x+i \Delta q)\}=\sinh (x+i q)+\{\Delta x+i(\pi / 2) \Delta q)\} \cosh (x+i q)$ $+\frac{\{\Delta x+i(\pi / 2) \Delta y\}^{2}}{2} \sinh (x+i q)+\frac{\{\Delta x+i(\pi / 2) \Delta q\}^{3}}{3!} \cosh (x+i q)+\ldots$

$$
\begin{equation*}
=\sinh (x+i q)+\Delta^{\prime} \theta \cosh (x+i q)+\frac{\left(\Delta^{\prime} \theta\right)^{2}}{2!} \sinh (x+i q) \tag{6r}
\end{equation*}
$$

$$
+\frac{\left(\Delta^{\prime} \theta\right)^{3}}{3!} \cosh (x+i q)+\ldots
$$

$$
\begin{equation*}
\text { where } \Delta^{\prime} \theta=\Delta x+i \Delta y=\Delta x+i(\pi / 2) \Delta q \tag{62}
\end{equation*}
$$

Example (1): With $\Delta q=0$.
Required $\sinh (0.15+i \underline{0.2}$ ), having given in Table VII and in Table VIII:
$\sinh (0.1+i \underline{0.2})=0.09526+i 0.31056$.
$\cosh (0.1+i \underline{0.2})=0.955^{82}+i 0.03095$. Then by ( 60 );
$\sinh (0.15+i \underline{0.2})=\sinh (0.1+i \underline{0.2})+0.05 \cosh (0.1+i \underline{0.2})+\frac{0.0025}{2}$

$$
\begin{aligned}
& \sinh (0.1+i \underline{0.2})+\frac{0.00013}{6} \cosh (0.1+i \underline{0.2}) \\
= & 0.09526+i 0.31056+0.05(0.95582+i 0.03095) \\
& \quad+0.00125(0.09526+i 0.31056)+0.00002(0.95582+ \\
& i 0.03095) \\
= & 1.00125(0.09526+i 0.31056)+0.05002(0.95582+i 0.03095) \\
= & (0.09538+i 0.31095)+(0.04781+i 0.00155) \\
= & 0.14319+i 0.31250
\end{aligned}
$$

which is the correct tabular value of $\sinh (0.15+i 0.2)$ in Table VII.
Example (2): With $\Delta x=0$.
Required $\sinh (0.1+i \underline{0.25}$ ), having given in Table VII and in Table VIII:
$\sinh (0.1+i \underline{0.2})=0.095^{26}+i 0.31056$.
$\cosh (0.1+i \underline{0.2})=0.95582+i 0.03095$. Then by (62);
$\sinh (0.1+i \underline{0.25})=\sinh (0.1+i \underline{0.2})+i 0.05 \times 1.5708 \times \cosh (0.1+i \underline{0.2})$

$$
\begin{aligned}
& +i^{2} \frac{(0.05 \times 1.5708)^{2}}{2!} \sinh (1.0+i \underline{0.2}) \\
& +i^{3} \frac{(0.05 \times 1.5708)^{3}}{3!} \cosh (1.0+i \underline{0.2}) \\
& =0.09526+i 0.31056+i \times 0.07854(0.95582+i 0.03095) \\
& -\frac{0.00617}{2}(0.09526+0.31056) \\
& -i \frac{0.00048}{6}(0.95582+i 0.03095) \\
& =(0.09526+i 0.31056)(1-0.00309) \\
& +i(0.95582+i 0.03095)(0.07854-0.00006) \\
& =0.99691(0.09526+i 0.31056)+0.07848(-0.03095+i 0.95582) \\
& =0.09497+i 0.30960-0.00243+i 0.07501 \\
& =0.09254+i 0.3846 \mathrm{I} .
\end{aligned}
$$

The tabular value is $0.09254+i 0.38460$.
Example (3): Interpolation for both $\Delta x$ and $\Delta q$.
Required sinh ( $0.15+i \underline{0.25}$ ), having given
$\sinh (0.1+i 0.2)=0.09526+i 0.31056$ by Table VII and $\cosh (0.1+i \underline{0.2})=0.955^{2}+i 0.03095$ by Table VIII.
Here $\Delta \theta$ in formula $(59)=(0.05+i 0.05)$
and $\Delta^{\prime} \theta$ in formula $(62)=(0.05+i(\pi / 2) \times 0.05)=(0.05+i 0.07854)$.
[194]

## EXPLANATORY TEXT

Thus: -

$$
\begin{aligned}
& \sinh (0.15+i \underline{0.25})= \sinh (0.1+i 0.2)+\Delta^{\prime} \theta \cosh (0.1+i \underline{0.2}) \\
&+\frac{\left(\Delta^{\prime} \theta\right)^{2}}{2!} \sinh (0.1+i \underline{0.2)}+\ldots \\
& \Delta^{\prime} \theta= 0.05+i 0.07854 . \\
&\left(\Delta^{\prime} \theta\right)^{2}=+0.0025-0.00617+i 0.00785 \\
&=-0.00367+i 0.00785 . \\
& \frac{\left(\Delta^{\prime} \theta\right)^{2}}{2}=-0.00184+i 0.00393 . \\
&\left(\Delta^{\prime} \theta\right)^{3}=(0.05+i 0.07854)^{3}=-0.00080+i 0.00010 . \\
& \frac{\left(\Delta^{\prime} \theta\right)^{3}}{6}=-0.00013+i 0.00002 . \\
& \sinh (0.15+i \underline{0.25)=} \sinh (0.1+i 0.2)\left\{1+\frac{\left(\Delta^{\prime} \theta\right)^{2}}{2!}+\ldots\right\} \\
&+\cosh (0.1+i 0.2)\left\{\Delta^{\prime} \theta+\frac{\left(\Delta^{\prime} \theta\right)^{3}}{3!}+\cdots\right\} \\
&=\left(0.095^{26}+i 0.31056\right)(0.99816+i 0.00393)=0.09386+i 0.31036 \\
&+\left(0.955^{2} 2+i 0.03095\right)(0.04987+i 0.07856)=0.04524+i 0.07664 \\
&= 0.13910+i 0.38700 .
\end{aligned}
$$

## Effects of Changes of Sign in the Entering Quantity

Table VII expresses the relation

$$
\begin{equation*}
\sinh (x+i q)=u+i v \tag{63}
\end{equation*}
$$

(a) If $x$ be taken with negative sign, we have

$$
\begin{equation*}
\sinh (-x+i q)=-u+i v \tag{64}
\end{equation*}
$$

so that changing the sign of the real component entering the table changes the sign of the real component in the result; but leaves the sign of the imaginary component unchanged.
(b) If $q$ be taken with negative sign, we have

$$
\begin{equation*}
\sinh (x-i q)=u-i v \tag{65}
\end{equation*}
$$

so that changing the sign of the imaginary component in the entering quantity changes the sign of the imaginary component in the result, leaving the sign of the real component unchanged.
(c) If both $\dot{x}$ and $q$ be taken with negative sign, we have

$$
\begin{equation*}
\sinh (-x-i q)=\sinh \{-(x+i q)\}=-u-i v=-(u+i v) \tag{66}
\end{equation*}
$$

so that changing the sign of the total entering quantity changes the sign of the total result.

The facts may be summed up by saying that changes in the sign of the entering , :antity produce corresponding changes of sign in the result.

$$
[195]
$$

## Circular Sines of Complex "Angles"

Since, as is well known: -

$$
\begin{align*}
& \sin \theta=-i \sinh (i \theta)  \tag{67}\\
& \sin (x+i y)=-i \sinh (i x-y)  \tag{68}\\
&=i \sinh (y-i x) \tag{69}
\end{align*}
$$

we have

Consequently, in order to find the circular sine of the complex quantity ( $x+i y$ ), enter Table VII for $\sinh (y+i x)$, which on being quadranted, becomes $\sinh \{y+i x /(\pi / 2)\}$ and let the result be $(u+i v)$. Then $\sinh (y-i x)=u-i v$ and $\sin (x+i y)=v+i u$. In other words, invert the entering components, and then invert the components of the result.

Example: Required $\sin \left(\mathrm{I}+i_{2}\right)$ from Table VII. Here $\theta=\left(\mathrm{I}+i_{2}\right)$.
Enter the Table with $-\sinh (i \theta)=\sinh (-i \theta)=\sinh (2-i \mathrm{I})$.
Quadranting the imaginary, we enter the table with $(x-i q)=\left(2-i \underline{0}{ }^{6} 6_{366}\right)$. The nearest entry is $(2-i 0.65)$, for which the hyp. sine is given as $1.89503-i \frac{3.20780}{}$. Consequently, $\sin \left(1+i_{2}\right)=3.2078+i_{1.89503}$, except in so far as interpolation is needed to reduce $\sinh (2-i \underline{0.6366})$ from $\sinh (2-i \underline{0.65})$. In this way any circular sine of a complex quantity can always be obtained from the table of hyperbolic sines, between the limits of $\circ$ and $\pm 4$ in $y$, and of $\circ$ and $\pm \infty$ in $x$.

## Graphic Interpolation by Means of Charts VIIa, VIIb, VIIc

Charts VII-VIII A, B, and c , serve for the evaluation of either $\sinh (x+i q)$ or $\cosh (x+i q)$, according to the axis of reference selected. Thus, taking Chart VIIVIIIb, if this is held with the line $S S$ as the axis of reference or initial line; then by comparison with the entries in Table VII, it will be found that $\sinh (x+i q)$ can be read from it directly over the range $q=0$ to $q=4$, beyond which the values repeat themselves indefinitely. On the other hand, if the chart be turned through $90^{\circ}$, so as to bring the line $C C$ as the axis of reference, it will be found by comparison with the entries of Table VIII, that $\cosh (x+i q)$ can be read from it directly over the range $q=0$ to $q=4$.

Chart VII-VIIIA gives $\sinh (x+i q)$ and $\cosh (x+i q)$ for values of $x$ up to about o.9. Chart VII-VIIIb gives the corresponding results for values of $x$ up to about $x=2$. Finally, Chart VII-VIIIc provides for values of $x$ up to $x=4$. In all of these charts, interpolation can be made for both $x$ and $q$ to o.or, by direct inspection. The graphs on these charts are undistorted, since they give complex functions as results, in rectangular coördinates. The curves therefore always intersect orthogonally, and they represent a confocal system of ellipses and hyperbolas, the common foci being at two points at unit distances from the center, along one of the reference axes. The curvilinear rectangles into which the charts are divided have pairs of sides the ratio of whose lengths tends to the value $\pi / 2$.

If the preliminary process of quadranting the imaginary of the entering quantity were not adopted; that is, if the graphs were entered in terms of $(x+i y)$, instead of

## EXPLANATORY TEXT

$(x+i q)$; then it would be necessary* to have a new chart for each range of $2 \pi$ units in $y$; or some 16 sets of Charts A, B, and C, in order to reach $y=100$. That is, 48 charts would have to be computed, prepared, drawn, lithographed, bound, sold and operated instead of the 3 charts actually presented. Moreover, if $y$ were needed greater than 100, the set of 48 would fail; whereas, working with quadrant imaginaries, the three charts serve up to indefinitely great values of $q$ and $y$.

## Graphic Chart VII-VIIIa

This chart corresponds to Tables VII and VIII at least as far as $x=0.9$, or for pages 42 to 45 , and 58 to 61 of this book. To find hyperbolic sines from the chart, place it facing the observer with the axis $O O$ vertical. This is the major axis of all the ellipses shown. Starting from this central axis towards the right hand, the successive ellipses marked o.r, 0.2, 0.3, etc., represent values of $x$; while the successively rising hyperbolas 0.1, o.2, represent values of $q$. These values of $q$ will be found to extend over two quadrants. Enter the chart on the curvilinear coördinates for $x$ and $q$. At the proper intersection read off the $u$ and $v$ coördinates of the rectilinear ruling, $u$ being the abscissas and $v$ the ordinates.

Conversely, to find $\sinh ^{-1}(u+i v)$ within the limits $u=0$ and $u= \pm \mathrm{r}, v=0$ to $v=2.0$, enter the chart with the same aspect on the rectilinearly ruled coördinates and read off at the proper intersection the curvilinear values taking $x$ on the ellipses and $q$ on the hyperbolas.

To find hyperbolic cosines from the chart, rotate it clockwise $90^{\circ}$; so as to have the axis $O O$ horizontal. Then enter on the curvilinear coördinates with $x$ on the ellipses and $q$ on the hyperbolas. The first and fourth quadrants only will be presented to the observer; but from the symmetry of the diagram, it will be easy to reverse the chart, so as to present the second and third quadrants. Read off the result on the rectilinear background using $u$ for abscissas and $v$ for ordinates.

Conversely, to find $\cosh ^{-1}(u+i v)$ from the chart with the axis $O O$ horizontal, enter on the rectilinear background and read off at the proper intersection from the curvilinear coördinates in $x$ and $q$, taking the ellipses as parts of the $x$-system and the hyperbolas as part of the $q$-system.

## Graphic Chart VII-VIIIb

This chart gives the graph of the functions $\sinh (x+i q)$ and $\cosh (x+i q)$ from $x=0.8$ at least as far as $x=2.05$ along the ellipses and from $q=o$ to $q=\infty$ by virtue of successive rotations. In this and the following charts, the numerical values of $q$ are all underscored, an indication which may serve readily to distinguish the imaginaries $q$, from the reals, $x$.

[^7]In all of the Charts VII to IX inclusive, the curvilinear rectangles all tend to have sides in the ratio $\pi: 2$; that is the long side approximates to being 1.57 times the short side. In IXA exceptions are found; because extra curvilinear coördinates are supplied.

To find $\sinh (x+i q)$ from Chart VII-VIIIb, hold the minor axis $S S$ horizontal. Enter on the curvilinear coördinates with $x$ on ellipses and $q$ on hyperbolas. At the proper intersection read off on the rectilinear background in $u$ and $v$. Proceed inversely to find the inverse function $\sinh ^{-1}(u+i v)$.

To find $\cosh (x+i q)$ from the same chart, hold the major axis $C C$ horizontal. Enter on the curvilinear coördinates with $x$ on ellipses and $q$ on hyperbolas. Read off on the rectilinear background.

All four quadrants appear in this and the following chart, so that it is not necessary to limit the value of $q$ to less than 2 quadrants.

## Graphic Chart VII-VIIIc

This Chart gives the graph of $\sinh (x+i q)$ and $\cosh (x+i q)$ from $x=2.0$, at least as far as $x=3.90$. The procedure is precisely the same as that for VII-VIIIb already described.

## TABLE VIII

$$
\cosh (x+i q)=u+i v
$$

## Rectangular Hyperbolic Cosines of a Rectangular Variable

Table VIII may be regarded as an inversion of Table VII; because:

$$
\begin{equation*}
\cosh \theta=-i \sinh (\theta+i \pi / 2) \tag{70}
\end{equation*}
$$

or in quadrant imaginaries,

$$
\begin{equation*}
\cosh \theta=-i \sinh (\theta+i \underline{\underline{x}}) \tag{7I}
\end{equation*}
$$

That is the hyp. cosine of any complex quantity $(x+i q)$ is $-i$ times the hyp. sine of that quantity with an additional quadrant in the imaginary. Thus

$$
\begin{aligned}
\cosh (0.5+i 0.6) & =-i \sinh (0.5+i \mathrm{I} .6) \\
& =-i(-0.42158+i 0.66280) \\
& =+0.66280+i 0.42158
\end{aligned}
$$

All of the entries in Table VII thus reproduce themselves by inversion in corresponding parts of Table VIII, a fact which serves as a numerical check upon both.

In order to find the value of $\cosh (x+i y)$, quadrant the imaginary quantity $y$, by dividing it with $\pi / 2$, as in entering Table VII. The complex quantity $(x+i y)$ will now be expressed as $(x+i q)$; or will in effect have been transferred from the $X Y$ to the $X Q$ plane. Next throw out multiples of 4 from $q$, so as to leave a remainder less than 4. If this remainder exceeds 2 , deduct 2 from it, but change the sign of the total result thereupon deduced. - If the remainder, however, is not greater than 2, then, the result is taken directly from the table.

Example: To find $\cosh \left(1+i_{5}\right)=\cosh (x+i y)$. Quadranting, we have $\cosh (1+i 3.183)=\cosh (x+i q)$.
Deducting 2 from $q, \cosh \left(1+i{ }_{1.183}\right)$.

## EXPLANATORY TEXT

With this we enter Table VIII. The nearest entry is $x+i q=1+i_{\text {I.2 }}$, the result for which is $-0.47684+i_{\text {1.117 }} 68$. This has to be corrected by interpolation from $q=\underline{\text { r.2 }}$ to $q=\underline{\text { r.183. }}$. Reverse the sign of the result to $0.47684-i$ I.11768 for the deduction of 2 quadrants.

Example 2: Required $\cosh (0.25+i 30 \quad)=\cosh (x+i y)$. Quadranting, this becomes $\cosh (0.25+i \underline{19.099})=\cosh (x+i q)$.

$$
\begin{aligned}
\text { Rejecting imaginary quadruples } & =\cosh \left(0.25+i_{3.099}\right) \\
& =\cosh (x+i q) . \\
\text { Deducting } 2 \text { quadrants } & =\cosh \left(0.25+i_{1.099}\right) \\
& =-\cosh (x+i q) .
\end{aligned}
$$

The nearest entry is $0.25+i$ I.I for which the result is ( $-0.16 \mathrm{I} 35+i 0.24950$ ). Applying the negative sign on account of the two deducted quadrants, the final result is, neglecting interpolation,

$$
\cosh (0.25+i 30)=0.16135-i 0.24950=u-i v .
$$

## Interpolation by Simple Proportion

A first approximation can be obtained by interpolating according to simple proportion.

Example: Required $\cosh (0.55+i 0.55)=\cosh (x+i q)$ having given $\cosh (0.6+i 0.5)=0.83825+i 0.45018 . \quad \cosh (0.6+i 0.6)=0.69680+i 0.51506$. $\cosh (0.5+i \underline{0.5})=0.79735+i 0.36847$.

Diff. for $x 0.1=0.04090+i 0.0817 \mathrm{r}$.
Diff. for $x 0.05=0.02045+i 0.04086$.

$$
\cosh (0.55+i 0.5)=0.81780+i 0.40933 .
$$

$\qquad$ Diff. for $x 0.1=0.03400+i 0.09348$.
Diff. for $x 0.05=0.01700+i 0.04674$. $\cosh (0.55+i \underline{0.6})=0.67980+i 0.46832$. $\cosh (0.55+i \underline{0.5})=0.81780+i 0.40933$.
Diff. for $q$ 0.I $=-0.13800+i 0.05899$.
Diff. for $q \underline{\underline{0.05}}=-0.06900+i 0.02950$.
$\cosh (0.55+i \underline{0.55})=0.74880+i 0.43883$.
Correct value $=0.75018+i 0.43963$.

## Interpolation by Taylor's Theorem

For a higher degree of precision than simple proportion affords, reference may be had to Taylor's theorem in the following form: -

$$
\begin{gather*}
\cosh (\theta+\Delta \theta)=\cosh \theta+\Delta \theta \sinh \theta+\frac{(\Delta \theta)^{2}}{2!} \cosh \theta+\frac{(\Delta \theta)^{3}}{3!} \sinh \theta+\ldots \\
\cosh \{(x+i y)+(\Delta x+i \Delta y)\}=\cosh (x+i y)+(\Delta x+i \Delta y) \sinh (x+i y) \\
+\frac{(\Delta x+i \Delta y)^{2}}{2!} \cosh (x+i y)+\frac{(\Delta x+i \Delta y)^{3}}{3!} \sinh (x+i y)+\ldots \tag{71а}
\end{gather*}
$$

## EXPLANATORY TEXT

Quadranting imaginaries on both sides, or transferring to the $X Q$ plane,
$\cosh \{(x+i q)+(\Delta x+i \Delta q)\}=\cosh (x+i q)+(\Delta x+i \Delta q \pi / 2) \sinh (x+i q)$

$$
\begin{aligned}
& \quad+\frac{(\Delta x+i \Delta q \pi / 2)^{2}}{2!} \cosh (x+i q) \\
& \quad+\frac{(\Delta x+i \Delta q \pi / 2)^{3}}{3!} \sinh (x+i q)+\ldots \\
& =\cosh (x+i q)+\Delta^{\prime} \theta \sinh (x+i q) \\
& \quad+\frac{\left(\Delta^{\prime} \theta\right)^{2}}{2!} \cosh (x+i q)+\ldots
\end{aligned}
$$

$$
\begin{equation*}
\text { where } \Delta^{\prime} \theta=(\Delta x+i \Delta y)=(\Delta x+i \Delta q \pi / 2) \tag{7rb}
\end{equation*}
$$

Example: Required $\cosh (0.5+i 0.55)=\cosh (x+i q)$

$$
\text { having given } \cosh (0.5+i \underline{0.5})=0.79735+i 0.36847 \text { in Table VIII }
$$

$$
\text { and } \sinh (0.5+i \underline{0.5})=0.36847+0.79735 \text { in Table VII. }
$$

$$
\text { Here } \Delta x=0, \quad \Delta q=i \underline{0.05}, \quad \Delta^{\prime} \theta=i \underline{0.05} \times 1.5708=i 0.07854
$$

$$
\begin{aligned}
& \cosh (0.5+i \underline{0.55})= \cosh \left(0.5+i \underline{0.5)}\left\{1+\frac{\left(\Delta^{\prime} \theta\right)^{2}}{2!}+\frac{\left(\Delta^{\prime} \theta\right)^{4}}{4!}+\ldots\right\}\right. \\
& \quad+\sinh (0.5+i 0.5)\left\{\Delta^{\prime} \theta+\frac{\left(\Delta^{\prime} \theta\right)^{3}}{3!}+\ldots\right\} \\
& \Delta^{\prime} \theta= i 0.07854 . \\
&\left(\Delta^{\prime} \theta\right)^{2}=-0.00617 . \quad \frac{\left(\Delta^{\prime} \theta\right)^{2}}{2!}=-0.00309 . \\
&\left(\Delta^{\prime} \theta\right)^{3}=-i 0.00048 . \frac{\left(\Delta^{\prime} \theta\right)^{3}}{3!}=-i 0.00008 . \\
&\left(\Delta^{\prime} \theta\right)^{4}=+0.00004 . \frac{\left(\Delta^{\prime} \theta\right)^{4}}{4!}=0.00000 .
\end{aligned}
$$

$\cosh (0.5+i \underline{0.55})=(0.79735+i 0.36847)(1-0.00309)$

$$
+(0.36847+i 0.79735)(i 0.07854-i 0.00008)
$$

$$
=(0.79735+i 0.36847) 0.9969 \mathrm{r}
$$

$$
+(0.36847+i 0.79735) i 0.07846
$$

$$
=0.79489+i 0.36733+i 0.02891-0.06256
$$

$$
=0.73233+i 0.39624
$$

The tabulated value $=0.73233+i 0.39624$.
In view of the similarity of the interpolation operations by Taylor's theorem to those already discussed in relation to Table VII, further examples are probably not needed.

| Effects of Changes of Sign in the Entering Quantity |  |  |
| ---: | :--- | ---: |
| Since if | $\cosh (x+i y)=u+i v$ |  |
|  | $\cosh (-x+i y)=u-i v$ |  |
|  | $\cosh (-x-i y)=u-i v$ | $(72)$ |
|  | $\cosh (-x-i y)=u+i v$ | $(73)$ |

changing the sign of either the real or imaginary entering component only changes the sign of the imaginary component in the result; while changing the sign of the entering quantity as a whole, has no effect on the sign of the result.

## Circular Cosines of Complex "Angles"

It is well known that if $\theta$ be any angle, real or complex,

$$
\begin{equation*}
\cos \theta=\cosh (i \theta) \tag{76}
\end{equation*}
$$

$$
\begin{equation*}
\cos (x+i y)=\cosh (-y+i x) \tag{77}
\end{equation*}
$$

Consequently,
or, quadranting the imaginary component,

$$
\begin{equation*}
\cos (x+i y)=\cosh (-y+i 2 x / \pi)=u+i v \tag{78}
\end{equation*}
$$

To find the circular cosine of any complex quantity $x+i y$, we enter Table VIII with ( $-y+i x / \mathrm{I} .5708$ ). The result is the desired cosine.
Example: Required $\cos \left(0.4+i_{\text {I. } 2}\right.$ ).
Thus we require $\cosh (-1.2+i \underline{0.2546}$ ).
We now enter Table VIII with $x=-1.2$ and $q=0.2546$ the nearest entry being $x=-\mathrm{r} .2$ and $q=0.25$, for which the result is $\mathrm{r} .67283-i 0.57765$.

Hence $\cos (0.4+i \mathbf{1} .2)=1.67283-i 0.57765$ neglecting interpolation from $q=0.25$ to $q=0.2546$.

## Graphic Chart Interpolations

The use of the Graphic Charts VII-VIIIA, b, c, for hyperbolic cosines has already been described in connection with sines, on pages 197-198.

$$
\begin{gathered}
\text { TABLE IX } \\
\tanh (x+i q)=u+i v
\end{gathered}
$$

## Rectangular Hyperbolic Tangents of a Rectangular Variable <br> Entering Process

Let $\tanh (x+i y)$ be the required function. Quadrant the imaginary component, as described under Tables VII and VIII; that is, divide $y$ by $\pi / 2$; so that $y /(\pi / 2)=q$. The required function is now expressed in the form $\tanh (x+i q)$. Throw out multiples of 2 from $q$ and retain only the remainder as $q$. Enter Table IX with $(x+i q)$, and find the result directly as $u \pm i v$. It is a well-known property of $\tanh (x+i y)$, that it is periodic in $i y$, and that the period is $i . \pi$ circular radians; or, in quadrants, i.2. That is

$$
\begin{equation*}
\tanh \{x+i(y+n \pi)\}=\tanh (x+i y) . \tag{79}
\end{equation*}
$$

where $n$ is any integer; or, in quadrant measure of the imaginary,

$$
\begin{equation*}
\tanh \{x+i(q+\underline{2 n})\}=\tanh (x+i q) . \tag{80}
\end{equation*}
$$

Example: Required $\tanh (0.25+i 30)=\tanh (x+i y)$.
Quadranting, $\quad \tanh (0.25+i \underline{19.099})=\tanh (x+i q)$.
Rejecting multiples of $2, \tanh (0.25+i \underline{I .099})=\tanh (x+i q)$.
We now enter Table IX with $x=0.25$ and $q=\underline{1.099}$, the nearest entry to which $x=0.25, q=\underline{\text { I.1. }}$. The result is $2.95122-i$ 1.7501 1 .

## Interpolation

Interpolation may be approximately effected by simple proportion, first in $x$ and then in $q$, as indicated in connection with Tables VII and VIII; or, when a higher degree of precision is required, recourse may be had to Taylor's theorem in the following form: -

$$
\begin{gather*}
\tanh (\theta+\Delta \theta)=\tanh \theta+\Delta \theta \operatorname{sech}^{2} \theta-\frac{(\Delta \theta)^{2}}{2!} 2 \operatorname{sech}^{2} \theta \tanh \theta \\
+\frac{(\Delta \theta)^{3}}{3!} 2 \operatorname{sech}^{2} \theta\left(2 \tanh ^{2} \theta-\operatorname{sech}^{2} \theta\right)+\ldots \tag{8I}
\end{gather*}
$$

or

$$
\begin{align*}
& \tanh \{(x+i y)+(\Delta x+i \Delta y)\}=\tanh (x+i y)+\frac{(\Delta x+i \Delta y)}{\cosh ^{2}(x+i y)} \\
& \quad-\frac{(\Delta x+i \Delta y)^{2}}{\cosh ^{2}(x+i y)} \tanh (x+i y)+\ldots \tag{82}
\end{align*}
$$

and quadranting,

$$
\begin{align*}
\tanh & \{(x+i q)+(\Delta x+i \Delta q)\}=\tanh (x+i q)+\frac{\{\Delta x+i \Delta q(\pi / 2)\}}{\cosh ^{2}(x+i q)} \\
& -\frac{\{\Delta x+i \Delta q(\pi / 2)\}^{2}}{\cosh ^{2}(x+i q)} \tanh (x+i q)+\ldots \tag{83}
\end{align*}
$$

so that as far as the second correction term: -

$$
\begin{align*}
& \tanh \{(x+i q)+(\Delta x+i \Delta q)\}=\tanh (x+i q)+\frac{\Delta^{\prime} \theta}{\cosh ^{2}(x+i q)} \\
&-\frac{\left(\Delta^{\prime} \theta\right)^{2} \tanh (x+i q)}{\cosh ^{2}(x+i q)}+\ldots  \tag{84}\\
& \text { where } \Delta^{\prime} \theta=(\Delta x+i \Delta y)=\{\Delta x+i \Delta q(\pi / 2)\} \tag{85}
\end{align*}
$$

Example: Required $\tanh (0.5+i 0.55)=\tanh (x+i q)$
having given $\cosh (0.5+i \underline{0.5})=0.79735+i 0.36847$ by Table VIII

$$
=0.87837 / 24^{\circ} .803 \text { by Table XI }
$$

and $\tanh (0.5+i 0.5)=0.76159+i 0.64805$ by Table IX
$=1.0 \angle 40^{\circ} .395$ by Table XII.
Here $\Delta^{\prime} \theta=(0+i 0.05 \times 1.5708)=(0+i 0.07854)$.
$\tanh (0.5+i \underline{0.55})=0.76159+i 0.64805+\frac{i 0.07854}{(0.87837)^{2} \angle 49^{\circ} .606}+\frac{0.00617 \times 1 / 40^{\circ} .395}{(0.87837)^{2} / 49^{\circ} .606}$
$=0.76159+i 0.64805+\frac{0.07854 / 40^{\circ} .394}{0.77153}+\frac{0.00617 \sqrt{9^{\circ} .211}}{0.77153}$
$=0.76$ I $_{59}+i 0.64805+0.10180 \angle 40^{\circ} .394+0.00800 \sqrt{9^{\circ} .2 \mathrm{II}}$
$=0.76 \mathrm{r} 59+i 0.64805+0.07753+i 0.06597+0.00790-i 0.00 \mathrm{I} 28$
$=0.84702+i 0.71274$.
The correct value is $0.84752+i 0.71229$.
As the third correction term is inconvenient for computation, it is often preferable to obtain a precise interpolation of $\tanh (x+i y)$ in working out the correct interpolations of $\sinh (x+i y)$ and $\cosh (x+i y)$ by the methods already illustrated, and then to take their ratio.

## Efrects of Changes of Sign in the Entering Quantity

If
then
and

$$
\begin{array}{ll}
\tanh (x+i y) & u+i v \\
\tanh (x-i y) & =u-i v \\
\tanh (-x+i y) & =-u+i v \\
\tanh (-x-i y) & =-(u+i v) \tag{89}
\end{array}
$$

Consequently, changes in the sign of the entering quantity produce corresponding changes of sign in the result.


Fig. 32. - Graphs of $x+i y$ and $\tanh (x+i y)$ in the $X Y$ and $U V$ planes respectively.

## Circular Tangents of Complex "Angles"

Since

$$
\begin{equation*}
\tan \theta=-i \tanh (i \theta) \tag{90}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\tan (x+i y)=-i \tanh (-y+i x) \tag{9I}
\end{equation*}
$$

or, quadranting the imaginary: -

$$
\begin{align*}
\tan (x+i y) & =-i \tanh (-y+i 2 x / \pi)=-i \tanh (-y+i q) \\
& =-i(-u+i v) \\
& =v+i u \tag{92}
\end{align*}
$$

Consequently, to find $\tan (x-i y)$ from Table IX, enter it with $y$ as $x$ and with $x /(\pi / 2)$ as $q$. Invert the components of the result and the required function is obtained. Thus

$$
[203]
$$

required $\tan \left(\mathrm{I}+i_{2}\right)$. We enter with $x=2$ and $q=0.6366$. The nearest entry is $x=2.0$ and $q=0.65$ for which $u+i v=1.01623+i 0.03318$. Therefore, inverting,

$$
\tan \left(\mathrm{I}+i_{2}\right)=0.03318+i_{1.01623}
$$

neglecting the interpolation from $q=\underline{0.65}$ to $q=0.6366$.
Graphic Interpolation by Means of Charts IXa, IXb, and IXc
These charts contain all of the entries in Table IX, and also a certain number of additional results. They present circles intersecting circles orthotomically; i.e., by rectangular intersection. It is clear that for values of $x$ less than o.ro, the curves run off Chart IXA. In fact the first curve shown of $x=0.01$ extends as far as $u=100$. By taking $x$ small enough, the corresponding values of $u$ and $v$ may become indefinitely great. The entire $U V$ plane is covered to infinity once between $x=0$ and $x=\infty$, $q=0$ and $q=2$. It is covered once more for each 2 quadrants increase in $q$.

When entering for $\tanh (-x \pm i q)$; or for the inverse operation $\tanh ^{-1}(-u \pm v)$, it must be remembered that the confocal conic-section diagrams VII and VIII are complete for negative as well as for positive values of $x$ and $q$; but that only half of the $U V$ plane is presented in Charts IX. The full graph is indicated in Fig. 32, by the aid of which the functions corresponding to negative real values are readily apprehended.

$$
\begin{gathered}
\text { TABLE X } \\
\sinh (x+i q)=r \underline{\gamma}
\end{gathered}
$$

## Polar Hyperbolic Sines of a Rectangular Variable

This table corresponds completely to Table VII, already considered, except that it offers results in polar instead of rectangular coördinates.

To find $\sinh (x+i y)$ expressed in polar coördinates, quadrant the imaginary, and express the entering variable as $(x+i q)$. Reject multiples of 4 in $q$, and if the remainder exceeds 2 , reject 2 but change the sign of the total result.

## Interpolation by Simple Proportion

Required $\sinh (0.15+i \underline{0.25}$ ) having given
$\sinh (0.2+i \underline{0.2})=0.36882 / 58^{\circ} .723 . \quad \sinh (0.2+i \underline{0.3})=0.49663 / 68^{\circ} .825$.
$\sinh (0.1+i \underline{0.2})=0.32485 / 72^{\circ} .947 . \quad \sinh (0.1+i \underline{0.3})=0.46491 / 78^{\circ} .932$.
Diff. for $0.1 x=+0.04397 /-14^{\circ} .224$.
Diff. for 0.1 $x=+0.03172 /-10^{\circ} .107$.
Diff. for $0.05 x=0.02199 /-7^{\circ} .112$.
Diff. for $0.05 x=0.01586 L-5^{\circ} .054$.
$\sinh (0.15+i 0.3)=0.48077 \angle 73^{\circ} .878$.
$\sinh (0.15+i \underline{0.2})=0.34684 / 65^{\circ} .835$.
$\operatorname { s i n h } ( 0 . 1 5 + i \underline { 0 . 2 } ) = 0 . 3 4 6 8 4 \longdiv { 6 5 ^ { \circ } . 8 3 5 } .$
Diff. for $i 0.1=0.13393 / 8^{\circ} .043$.
Diff. for $i 0.05=0.06697 \angle 4^{\circ} .022$.
$\sinh (0.15+i \underline{0.25})=0.4138 \mathrm{I} / 69^{\circ} .857$.
Correct Value $\quad 0 . 4 1 1 2 4 \longdiv { 7 0 ^ { \circ } . 2 2 9 } .$

## Interpolation by Taylor's Theorem

For a higher degree of precision than is obtainable by simple proportion, it is convenient to use rectangular coördinates and apply formula (62). Thus, required sinh ( $0.15+i 0.25$ ). Here referring to Table VII and to the work on page 195, we find for the result $u+i v=0.13911+i 0.3870 \mathrm{r}$.
Here $\quad \log 0.38701=1.5877110 \quad 70^{\circ} \cdot 13^{\prime} \cdot \frac{78}{200}=70^{\circ} .229$

$$
\log 0.1391 \mathrm{II}=\frac{1.1433584}{0.4443526}
$$

$$
\log \sec .70^{\circ} .229=0.4707400
$$

$\log \tan 70^{\circ} .13^{\prime}=0.4440674$

$$
\log 0.41124=\overline{1.6140984}
$$

$0.72=\frac{2853}{3968}$
Result $\quad 0.41124 / 70^{\circ} .229$.
Correct Value $0.41124 / 70^{\circ} .229$.

## Interpolation by Charts X-XIa and X-XIb

These charts present the polar coördinate results on rectangular coördinate sheets, so that they are not true graphs, but are merely to be regarded as interpolation diagrams.

To find $\sinh (x+i y)$, proceed as in the use of the tables and quadrant the imaginary so as to obtain the entering quantity in the form $(x+i q)$. Enter with the curvilinear coördinates, taking the more nearly vertical wavy lines for $x$ and the more nearly horizontal lines for $q$, starting from the line $S S$ as the zero of $q$. Read off the result on the rectangular background to the left-hand scale of ordinates.

When we leave $\mathrm{X}-\mathrm{XI}_{\mathrm{A}}$ and enter $\mathrm{X}-\mathrm{XI}_{\mathrm{B}}$, it is noticeable that the curves of constant $x$ approach vertical straight lines and the curves of constant $q$ approach horizontal straight lines. At and beyond $x=3.0$, we may approximate to the modulus $r$ at any required $q$, by taking the value of $r$ at $q=0.5$ and simple proportional parts between this and $r$ at $q=0$ or $r$ at $q=1$.0. The change in modulus $r$ between $q=0.5$, and either of the above limits is very nearly $\epsilon^{-x / 2}$. Thus at $x=3.5$ and $q=0.5, r$ by the tables is 16.55774 . At $q=0, r=16.54263$, a change of -0.0151 I , and at $q=1.0$ $r=16.57282$, a change of +0.01508 . The value of $\epsilon^{-3.5} / 2$ will be found to be 0.01510 , and over the entire range of $q$ from $\circ$ to 1.0, the change in $r$ follows in nearly simple proportion.

Beyond $x=3.2$, the limit of Chart $\mathrm{X}-\mathrm{XIb}$, the values of $r$ can be obtained by the above rule applied to Table X and with the aid of Chart VII-VIIIc. The values of the amplitude $\gamma$ beyond $x=3$ closely approximate to $q$ quadrants. That is $\sinh (x+i q)$ approximates to $\frac{\epsilon^{x}}{2} \angle q$, with $q$ in quadrant measure.

## TABLE XI

$$
\cosh (x+i q)=r \not \underline{\gamma}
$$

## Polar Hyperbolic Cosines of a Rectangular Variable

Table XI corresponds completely with Table VIII, except that it gives results expressed in polar instead of rectangular coördinates. It is entered with $(x+i q)$ just as in Table VIII.

Interpolation may be effected by simple proportion, as in the case of Table X , or when a higher degree of precision is required, it may be carried on by Taylor's theorem. In the latter case, it is more convenient to refer to the corresponding entries in Table VIII, interpolating according to formula ( $7 \mathrm{r} b$ ). The rectangular coördinates duly interpolated are then transformed into polar coördinates, as in the last example on page 225 .

## Interpolation by Charts X -XIa and X -XIb

When Charts X-XI are used to find $\cosh (x+i y)$, the imaginary is first quadranted by dividing with $\pi / 2$, so as to obtain the entering variablé in the form $\cosh (x+i q)$. Starting then from $q=0$ at the horizontal line $C C$, near the middle of the chart, the underscored figures correspond to $q$ for a little more than the first quadrant. The manifest repetition of the curves enables the lower half of the sheet, however, to be used for the second quadrant. The result is read off on the rectangular background to the right-hand scale of argument.

Beyond $x=3.2$, the limit of Chart X-XIb reference may be had to Chart VIIVIIIs; or the approximate formula may be used:

$$
\begin{equation*}
\cosh (x+i q)=\frac{\epsilon^{x}}{2} / q \tag{93}
\end{equation*}
$$

the argument $q$ of the result being interpreted in quadrant measure and converted into degrees.

$$
\begin{gathered}
\text { TABLE XII } \\
\tanh (x+i q)=r \underline{/ \gamma}
\end{gathered}
$$

## Polar Hyperbolic Tangents of a Rectangular Variable

Table XII corresponds completely with Table IX, except that it gives results expressed in polar instead of rectangular coördinates.

If we desire to find $\tanh (x+i y)$, we must first divide $y$ by $\pi / 2$ so as to obtain the entering quantity in the form $(x+i q)$. Multiples of 2 are then rejected in $q$ leaving a remainder less than 2. With this remainder the table is entered.

Interpolation may be made by simple proportion to a moderate degree of precision.

## Graphic Interpolation by Means of Charts XIIa, b, c, d

These charts cover between them the full range of Table XII. To find $\tanh (x+i q)$ from them with $q$ less than 2 , find the proper chart, and enter on the curvilinear coordinates keeping the underscored number for $q$. Read off the result on the rectilinear background.

For $\tan (x+i y)$ and also for the effects of changes of sign, see directions in the discussion on Table IX.

To find $\tanh ^{-1}(r / \gamma)$, enter immediately on the rectangular background of $r$ and $\gamma$ in the proper chart, and read off at the correct intersection the corresponding values on the curvilinear coördinates. The result will appear in terms of $(x+i q)$. The imaginary $q$ must be dequadranted, or multiplied by $\pi / 2$, in order to be expressed in terms of $(x+i y)$.

## TABLE XIII

$$
f(4+i q)=u+i v \text { or } r \underline{/ \gamma}
$$

Rectangular and Polar Functions of the Rectangular Variable ( $4+i q$ )
In this table the hyperbolic sine, cosine and tangent of $(4+i q)$ are collected from $q=0$ to $q=2.0$. The results are expressed both in rectangular coördinates $(u+i v)$, and in polar coördinates $\boldsymbol{r} / \boldsymbol{\gamma}$.

It will be seen that the moduli of the tangents vary between 0.99933 and 1.00067 , or differ from unity by two thirds of one per mil, at most. The arguments also differ from $0^{\circ}$ by less than $0.04^{\circ}$, or about $2^{\prime} .17^{\prime \prime}$ of arc.

Beyond $x=4$, it is evident that the hyp. sine and cosine differ by so small a percentage, that no tabulation of these differences would ordinarily be required.

## TABLE XIV

## $e^{x} / 2$ and $\log _{10}\left(e^{x} / 2\right)$ <br> Semi-Exponentials

This table enables the hyp. sine or cosine of any rectangular variable ( $x+i q$ ) to be found for values of $x$ greater than 4 and less than io. It is shown in the preceding table that when $x$ reaches 4 , the ratio of the sine to the cosine never differs from unity by more than two-thirds of i per mil. This deviation from unity rapidly diminishes as $x$ is further increased. Consequently, the sine and cosine may each be computed from the formula.

$$
\begin{equation*}
\sinh (x+i q)=\cosh (x+i q)=\frac{\epsilon^{x}}{2} \angle q \tag{94}
\end{equation*}
$$

Example: Required the value of $\sinh \left(8.5 \mathrm{I}+i_{25} 5 \mathrm{~F}\right)$. The first step is to quadrant the imaginary by dividing with $\pi / 2$, as on page 191 . This gives the required function in the form $\sinh \left(8.5 \mathrm{I}+i_{16.393}\right)$. Rejecting multiples of 4.0 in $q$, we may then write it $\sinh (8.5 \mathrm{I}+i 0.393)$. Turning to the top of page 143, we find $\epsilon^{x} / 2=2482.082$ for $x=8.5 \mathrm{I}$; so that the result is $2482.082 / 0.393$ quadrant. Expressing the argument in .degrees by multiplying with 90 and we have $0.393 \times 90=35.37^{\circ}$. Thus

$$
\sinh \left(8.5 \mathrm{I}+i_{\underline{16.393}}\right)=\cosh \left(8.5 \mathrm{I}+i_{16.393}\right)=2482.082 \angle 35^{\circ} .37
$$

Interpolation in $x$
Since

$$
\begin{equation*}
\frac{\epsilon^{x+\Delta x}}{2}=\frac{\varepsilon^{x}}{2} \epsilon^{\Delta x}=\frac{\epsilon^{x}}{2}\left\{\mathrm{I}+\Delta x+\frac{(\Delta x)^{2}}{2!}+\frac{(\Delta x)^{3}}{3!}+\ldots \cdot\right\} \tag{95}
\end{equation*}
$$

it follows that when $\Delta x$ is a small quantity, it suffices to multiply the tabular value of $\epsilon^{x} / 2$ by $(1+\Delta x)$ in order to arrive at the interpolated result unless $(\Delta x)^{2} / 2!$ the second correction term, is of sufficient magnitude to need consideration.

Example: To find $\sinh (8.5 \mathrm{x}+i q)$, having given that $\sinh (8.50+i q)=2457.383 / q$. Here $\Delta x=$ o.or.

$$
\begin{array}{rlc}
2457.383 \times \quad \text { I } & =\mathbf{I} & 2457.383 \\
2457.383 \times \Delta x & =0.0 \mathrm{I} & 24.574 \\
2457.383 \times \frac{(\Delta x)^{2}}{2} & =0.00005 & \frac{.123}{2482.080} \\
& & 2482.080 \angle q . \\
\text { Result } & & 2482.082 \angle q .
\end{array}
$$

$$
\begin{gathered}
\text { TABLE XV } \\
f(x+i \text { o })
\end{gathered}
$$

## Real Hyperbolic Functions

This is a short table of real, as distinguished from complex hyperbolic functions for convenience of reference. It was prepared and published by the author in 1903 in relation to continuous-current electric circuit applications, taking the sines, cosines, and tangents from Ligowski's tables, and adding the corresponding computed reciprocals for the cosecants, secants, and cotangents. Much more extensive tables of real hyperbolic functions are, however, available. See Bibliography, page 2 II.

## TABLE XVI

## Subdivisions of a Degree

This is a short table for convenience in changing the expression of a circular angle from decimals of a degree to minutes and seconds, or inversely. By its aid, threedecimal subdivisions of a degree may be converted into minutes and seconds of arc, by direct inspection; or minutes and seconds may be read off as decimals of a degree ta three-digit accuracy.

## Methods Employed in Computation

Tables I to V, inclusive, were computed as one group, and Tables VII to XIII, inclusive, as a separate group.

Tables I to V were computed, at first, by using the formulas: -

$$
\begin{align*}
& \sinh (x+i y)=\sqrt{\sinh ^{2} x+\sin ^{2} y} / \tan ^{-1}(\tan y / \tanh x)=r_{1} \angle \gamma_{1}  \tag{96}\\
& \cosh (x+i y)=\sqrt{\cosh ^{2} x-\sin ^{2} y / \tan ^{-1}(\tan y \cdot \tanh x)}=r_{2} / \gamma_{2}  \tag{97}\\
& \tanh (x+i y)=\left(r_{1} / r_{2}\right) \angle \gamma_{1}-\gamma_{2} \tag{98}
\end{align*}
$$

At a later stage of the work, the following formulas, kindly suggested by Professor Bouton, were substituted: -

$$
\begin{aligned}
\sinh (x+i y) & =\sqrt{\cosh 2 x} \cdot \sin z / \tan ^{-1}(\tan y / \tanh x)=r_{1} / \gamma_{1} . \\
\cosh (x+i y)=\sqrt{\cosh 2 x} \cdot \cos z \angle \tan ^{-1}(\tan y \cdot \tanh x) & =r_{2} \angle \gamma_{2 .} \\
\tanh (x+i y) & =\tan z \angle \gamma_{1}-\gamma_{2}
\end{aligned}
$$

Where the auxiliary circular angle $z$ is defined by:

$$
\begin{equation*}
\frac{\cos 2 y}{\cosh 2 x}=\cos 2 z \tag{102}
\end{equation*}
$$

The arithmetical work was conducted with the aid of five-place logarithms, and was checked by tabulating successive first and second differences in the tabulated results.

Tables VII to XII were computed by means of the following formulas: -

$$
\begin{align*}
& \sinh (x+i y)=\sinh x \cos y+i \cosh x \sin y \\
& \cosh (x+i y)=\cosh x \cos y+i \sinh x \sin y  \tag{104}\\
& \tanh (x+i y)=\frac{\sinh 2 x}{\cosh 2 x+\cos 2 y}+i \frac{\sin 2 y}{\cosh 2 x+\cos 2 y} \tag{ro5}
\end{align*}
$$

A standard schedule was prepared and seven-place logarithms used in the computation. The value of $\tanh (x+i y)$ was arrived at in two ways, first by dividing (ro3) by (104), and second by the independent formula (105). If these two methods did not give identical results for $\tanh (x+i y)$ to five decimal places, when expressed both in rectangular and polar coördinates, the steps of the computation were gone over afresh.* Complete agreement being secured, leads to the inference that the values of sinh, cosh, and $\tanh (x+i y)$ are correct, at least as far as their logarithms.

Finally, all of the tables have been reduced to graphic form in the Atlas, each entry of the tables being marked off on its proper chart with a sharp needle, and the ruling pen drawn through the successive punctures. In this process a certain number of errors were discovered and rectified. The tables were then set up in type from the MSS. used in making the charts, and were proofread three times. By this procedure it is hoped that the outstanding errors are neither large nor numerous.

## Bibliography and Applications of Hyperbolic Functions

Hyperbolic functions of a real variable are employed extensively in mathematics generally. In particular, they are used in the solution of cubic equations.

In navigation, real hyperbolic functions enter in connection with Mercator sailing.
In cartography, real hyperbolic functions are used in preparing maps on certain projections, especially on Mercator's projection, which appears to have been the first application of hyperbolic functions.

In statics, real hyperbolic functions naturally present themselves in relation to the properties of the catenary and of the funicular polygon; also in the discussion of the forms and stresses of elastic bodies.

In dynamics, the same functions present themselves in the theory of vibrations, and in the motion of bodies through a resisting medium.

[^8]A good summary of the historical development of real hyperbolic functions is given in Becker and van Orstrand's "Hyperbolic Functions," Smithsonian Mathematical Tables, 1909, together with a fine compendium of formulas involving these functions.*

In electrical engineering, the earliest published application of real hyperbolic functions is perhaps in T. H. Blakesley's "Alternating Currents of Electricity," London, r889, which also appends a short table of these (real) functions. The real functions were also introduced by Sir J. J. Thomson, in "The Electrician," Vol. XXVIII, page 599, 1891. "On the Heat Produced by Eddy Currents in an Iron Plate Exposed to an Alternating Magnetic Field."

The fundamental differential equation of the alternating potential-current, steadystate distribution along a uniform conductor, involving hyperbolic functions, nominally real, seems to have been first published by O. Heaviside in 1893, "Electromagnetic Theory," Vol. I, page 450.

The first published application of complex hyperbolic functions to the last-named problem was by the author, "On the Fall of Pressure in Long-Distance AlternatingCurrent Conductors," Electrical World, N. Y., Vol. XXIII, page 17, January, 1894, and "The Electrician," London (abstract), Vol. XXXII, page 239, January 5, 1894.

Complex hyperbolic functions also present themselves in the discussion of Hertzianwave reflections, and in other branches of electrical engineering. They naturally enter the subject of confocal ellipses and hyperbolas, such as Captain Weir's Azimuth diagram of these confocals, for indicating the azimuth of a celestial object in terms of the hourangle, latitude and declination. (Godfray's "Astronomy," § 222.)

The mathematical discussion of hyperbolic functions is found in Greenhill's "Differential and Integral Calculus," Macmillan and Co., 1896; Ligowski's "Tafeln der Hyperbelfunctionen und der Kreisfunctionen," Berlin, Ernst \& Korn, 1890; McMahon’s "Hyperbolic Functions," Wiley and Sons, N. Y., 1896; Becker and van Orstrand's "Hyperbolic Functions," Smithsonian Institution, 1909; Vassall's "Nouvelles Tables des Logarithmes," Paris, Gauthier-Villars, 1872; as well as other text-books.

Works dealing with the applications of hyperbolic functions to electrical engineering are: "The Application of Hyperbolic Functions to Electrical Engineering Problems," by the author, The University of London Press, rgrr, and Fleming's "The Propagation of Electrical Currents in Telephone and Telegraph Conductors," Constable \& Co., London, 19 II.

A three-dimensional complex-angle geometrical model, $\dagger$ from which the hyperbolic sines and cosines of complex angles can be presented projectively, has ${ }^{\circ}$ been constructed and described.

## Brief Bibliography of Tables of Hyperbolic Functions

(1) "Tafeln der Hyperbelfunctionen und der Kreisfunctionen," by Dr. W. Ligowski, Berlin, 1890 , Ernst and Korn, 104 pages, giving five-figure logarithms of $\sinh \theta, \cosh \theta$, and $\tanh \theta$ up to $\theta=9$, by steps of o.001 up to $\theta=2$ and from 2.0 to 9.0 by steps of

[^9]o.or; also the Gudermannian angle to two or more decimals of a second of arc, and other tables.
(2) Smithsonian Mathematical Tables, "Hyperbolic Functions," by George F. Becker, and C. E. van Orstrand, Smithsonian Institute, Washington, D.C., 1909, 32 I pages, giving five-figure logarithms of $\sinh \theta, \cosh \theta$, and $\tanh \theta$, by steps of 0.000 r up to 0.1 , by steps of 0.001 from 0.1 to 3.0 , and by steps of 0.0 from 3.0 to 6.0 ; also similar five-figure tables of natural real hyperbolic functions, and various other tables.
(3) "Alternating-Current Phenomena in Parallel Conductors," Vol. I by F. E. Pernot, John Wiley, New York, 19r8, containing a Table of six-decimal logarithms of hyperbolic functions, up to 2.0 by steps of 0.00 I . These present a higher order of precision by one unit, than have been previously available for real hyperbolic functions.

The following is a list of all the tables of Complex Hyperbolic Functions known to the present writer, in the order of date of publication: -
(4) Chrystal's "Algebra," Edinburgh, 1889, briefly discusses the theory of $\sinh \theta$, $\cosh \theta$, and $\tanh \theta$ where $\theta$ is complex; or of the form $x+i y$. Graphs are given in outline for these functions, from which a few numerical values may be read.
(5) The paper on "Resonance in Alternating-Current Lines," by E. J. Houston and A. E. Kennelly, Transactions A. I. E. E., April, 1895, Vol. XII, pages 133-169, contains a Plate for the graphical evaluation of $\sinh \theta$ and of $\cosh \theta, \theta$ being a complex variable $x+i q$, between the limits of $x=0$ and $x=1.25 ; q=0$ and $q=\propto$, by steps of 0.05 in $x$ and $q$. The Plate is $40 \mathrm{~cm} . \times 34 \mathrm{~cm}$. and corresponds to Plates VIIVIIIA of the Atlas prepared from tables in this book, except that it gives the result in regular polar coördinates instead of regular rectangular coördinates. It was produced, by a graphical process, for a precision of the 2.5 th order.
(6) The first tables of complex hyperbolic functions were a short set published by Dr. James McMahon in his Chapter IV, entitled "Hyperbolic Functions," of a book by Merriam and Woodward on "Higher Mathematics," pages 107-r68. The tables gave $\sinh (x+i y)$ and $\cosh (x+i y)$ from $x=0$ to $x=1.5$, by steps of o.1, and also from $y=0$ to $y=1.5$, by steps of 0.1 , Wiley \& Sons, New York, 1896. The chapter has since been issued as a separate volume by the same publishers.
(7) A table of hyperbolic functions of semi-imaginaries or sinh, cosh, tanh, coth, sech and cosech of $x / 45^{\circ}$, by steps of o.1 in $x$ up to $x=20.5$, was published by the present writer in a paper on "The Alternating-Current Theory of Transmission Speed over Submarine Telegraph Cables," in the Proceedings of The International Electrical Congress of St. Louis, Section A, Vol. I, pages 68-105, 1904. This table is reproduced in Table VI of this volume.
(8) Some short tables of sinh, cosh, tanh, coth, sech, and cosech $\rho / \delta$ by steps of o.I in $\rho$, up to $\rho=1.5$, for five particular values of $\delta$, published by the present writer in an article on "The Distribution of Pressure and Current over Alternating-Current Circuits," in the Harvard Engineering Journal, 1905-06.

## EXPLANATORY TEXT

(9) Short three-digit tables of $\sinh$ and $\cosh (x+i y)$ up to $x=1$, and $y=1$, by W. E. Miller, in a paper "Formulae, Constants, and Hyperbolic Functions for Trans-mission-Line Problems" in the General Electrical Review, Schenectady, N. Y., May, igio. Supplement.
(io) "Tables of Hyperbolic Functions in Reference to Long Alternating-Current Transmission Lines," published by the present writer in the Transactions of the American Institute of Electrical Engineers, December 1911, pages 2495-2506. These give sinh, cosh, and $\tanh \rho / \delta$ from $\rho=0$ to $\rho=0.5$, by steps of $0 . \mathrm{I}$, and from $\delta=60^{\circ}$ to $\delta=90^{\circ}$ by steps of $\mathrm{I}^{\circ}$. These tables are incorporated in Tables I, II, and III of this volume.
(ir) "Tables of Sines, Cosines, Tangents, Cosecants, Secants, and Cotangents of Real and Complex Hyperbolic Angles," published by the present writer in The Harvard Engineering Journal," 1912. These gave sinh, cosh, and $\tanh \rho \delta \delta$ from $\rho=0$ to $\rho=\mathrm{r}$ by steps of o.r, and from $\delta=45^{\circ}$ to $\delta=90^{\circ}$ by steps of $\mathrm{r}^{\circ}$; also corresponding tables of $(\sinh \theta) / \theta$ and of $(\tanh \theta) / \theta$. These tables are published in separate form by the Harvard Engineering Journal. They are incorporated in tables I, II, III, IV, and V of this volume.

## New Tables introduced in the Second Edition

Tables I to V in this volume were computed for the range of $45^{\circ}$ to $90^{\circ}$ in the slope or argument $\delta$ of the entering vector quantity; because at that time it did not appear that there would be any need for the range from $0^{\circ}$ to $45^{\circ}$. Alternating-current lines used for the transmission or distribution of power have linear hyperbolic angles $a$, the slope of which is commonly between $80^{\circ}$ and $90^{\circ}$, rarely falling as low as $45^{\circ}$. It has been shown during recent years, however, that railway-signal engineers employ tracksignaling circuits, formed of the rails. These are metallic circuits of low frequency, small linear capacitance and large distributed linear leakance. The linear hyperbolic angles $a$ of such circuits develop slopes lying within the range $\delta=0^{\circ}$ to $45^{\circ}$. It has therefore become desirable to cover this range, at least as far as $\rho=\mathrm{r}$. For that purpose, Tables XVII to XXI have been inserted. They run by steps of 0.05 in $\rho$, from $\circ$ to I .0 , and by steps of $5^{\circ}$ in $\delta$, from $\circ^{\circ}$ to $45^{\circ}$. This new tabulated material is available for use in track-signaling and similar computations. It is hoped to incorporate it graphically into the associated Chart Atlas at the first opportunity.

Table XVII presents $\sinh \rho / \delta$ as a polar planevector. It corresponds to and may be regarded as an extension of Table I. Similarly Tables XVIII, XIX, XX and XXI correspond respectively to Tables II, III, IV and V. Whereas, however, Tables I to V are carried to five decimal places in the sizes and three decimal places in the slopes of the evaluated quantities, the new tables are carried to six decimal places in sizes and four decimal places in slopes. They thus aim at one higher order of precision.*

Table XXII is similar to Table XI and expands the region covered by the first six entries of the latter into a correspondingly magnified field. It has been found that in

[^10]
## EXPLANATORY TEXT

dealing with short lengths of alternating-current line, having negligible linear inductance as well as negligible linear leakance, and therefore having a semi-imaginary linear angle, there is frequent need for a magnified table of this kind. It may be noted that whereas Table VI expresses slopes in degrees and minutes, Table XXII expresses them as degrees, and four-place decimals of a degree.

Table XXIII is a useful collection of 238 formulas, with a few insertions, taken from Becker and van Orstrand's book of Tables of real hyperbolic functions, referred to in the footnote on page 210.

Table XVII. HYPERBOLIC SINES. $\sinh (\rho / \delta)=r / \gamma$.

|  | 0 |  | 0.05 |  | 0.10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | $\bigcirc$ |  | - |  | $\bigcirc$ |
| $\bigcirc$ | 0.000000 | 0.0000 | 0.050021 | 0.0000 | 0.100167 | 0.0000 |
| 5 | 0.000000 | 5.0000 | 0.050020 | 5.0042 | 0.100164 | 5.0167 |
| 10 | 0.000000 | 10.0000 | 0.050020 | 10.0081 | 0.100157 | 10.0325 |
| 15 | 0.000000 | 15.0000 | 0.050019 | 15.0119 | 0.100144 | 15.0478 |
| 20 | 0.000000 | 20.0000 | 0.050016 | 20.0153 | 0.100128 | 20.0614 |
| 25 | 0.000000 | 25.0000 | 0.050014 | 25.0183 | 0.100107 | 25.0730 |
| 30 | 0.000000 | 30.0000 | 0.050011 | 30.0208 | 0.100083 | 30.0828 |
| 35 | 0.000000 | 35.0000 | 0.050006 | 35.0222 | 0.100057 | 35.0897 |
| 40 | 0.000000 | 40.0000 | 0.050003 | 40.0236 | 0.100029 | 40.0942 |
| 45 | 0.000000 | 45.0000 | 0.05000 | 45.0236 | 0.10000 | 45.9952 |
|  | 0.35 |  | 0.40 |  | 0.45 |  |
| - |  | - | $\bigcirc$ |  | - |  |
| $\bigcirc$ | 0.357190 | 0.0000 | 0.410752 | 0.0000 | 0.465342 | 0.0000 |
| 5 | 0.357081 | 5.2014 | 0.410589 | 5.2625 | 0.465109 | 5.3314 |
| 10 | 0.356757 | 10.3969 | 0.410105 | 10.5172 | 0.464420 | 10.6531 |
| 15 | 0.356228 | 15.5808 | 0.409316 | 15.7569 | 0.463294 | 15.9558 |
| 20 | 0.355512 | 20.7472 | 0.408245 | 20.9742 | 0.461767 | 21.2303 |
| 25 | 0.354628 | 25.8908 | 0.406925 | 26.1625 | 0.459886 | 26.4686 |
| 30 | 0.353606 | 31.0089 | 0.405397 | 31.3161 | 0.457709 | 31.6630 |
| 35 | 0.352475 | 36.0961 | 0.403709 | 36.4305 | 0.455303 | 36.8086 |
| 40 | 0.351270 | 41.1503 | 0.401910 | 41.5017 | 0.452741 | 41.8997 |
| 45 | 0.35003 | 46.1694 | 0.40006 | 46.5278 | 0.45010 | 46.9338 |
|  | 0.70 |  | 0.75 |  | 0.80 |  |
| - | $0.758584 \quad 0.0000$ |  | - |  | - |  |
| - |  |  | 0.822317 | 0.0000 | 0.888106 | 0.0000 |
| 5 | 0.757700 | 5.7875 | 0.821227 | 5.9000 | 0.886780 | 6.0192 |
| 10 | 0.755078 | 11.5533 | 0.817993 | 11.7753 | 0.882843 | 12.0108 |
| 15 | 0.750800 | 17.2755 | 0.812719 | 17.6019 | 0.876425 | 17.9481 |
| 20 | 0.745004 | 22.9344 | 0.805576 | 23.3567 | 0.867734 | 23.8044 |
| 25 | 0.737873 | 28.5103 | 0.796787 | 29.0175 | 0.857048 | 29.5561 |
| 30 | 0.729632 | 33.9861 | 0.786636 | 34.5647 | 0.844710 | 35.1800 |
| 35 | 0.720538 | 39.3467 | 0.775439 | 39.9811 | 0.831105 | 40.6567 |
| 40 | 0.710872 | 44.5800 | 0.763544 | 45.2525 | 0.816660 | 45.9697 |
| 45 | 0.700934 | 49.6767 | 0.751317 | 50.3678 | 0.801819 | 51.1064 |

$\begin{array}{ll}\text { Examples. } & \sinh \left(0.35 / 35^{\circ}\right)=0.352475 / 36^{\circ} .0961 . \\ & \sinh \left(0.80 / 5^{\circ}\right)=0.886780 / 6^{\circ} .0192 .\end{array}$

Table XVII. HYPERBOLIC SINES. $\sinh (\rho / \delta)=r / \gamma$. Continued

|  | 0.15 |  | $0.20{ }^{-}$ |  | 0.25 |  | 0.30 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | $\bigcirc$ |  | $\bigcirc$ |  | $\bigcirc$ |  | - |
| $\bigcirc$ | 0.150563 | 0.0000 | 0.201336 | 0.0000 | 0.252612 | 0.0000 | 0.304520 | 0.0000 |
| 5 | 0.150554 | 5.0372 | 0.201316 | 5.0661 | 0.252573 | 5.1033 | 0.304452 | 5.1483 |
| 10 | 0.150529 | 10.0733 | 0.201256 | 10.1303 | 0.252455 | 10.2033 | 0.304248 | 10.2922 |
| 15 | 0.150488 | 15.0172 | 0.201157 | 15.1906 | 0.252263 | 15.2972 | 0.303915 | 15.4275 |
| 20 | 0.150432 | 20.1380 | 0.201024 | 20.2450 | 0.252002 | 20.3825 | 0.303465 | 20.5500 |
| 25 | 0.150362 | 25.1644 | 0.200859 | 25.2919 | 0.251680 | 25.4561 | 0.302909 | 25.6558 |
| 30 | 0.150282 | 30.1858 | 0.200669 | 30.3303 | 0.251308 | 30.5158 | 0.302265 | 30.7419 |
| 35 | 0.150193 | 35.2017 | 0.200458 | 35.3586 | 0.250896 | 35.5600 | 0.301553 | 35.8058 |
| 40 | 0.150098 | 40.2114 | - 0.200233 | 40.376I | 0.250457 | 40.5872 | 0.300795 | 40.8456 |
| 45 | 0.15000 | 45.2146 | 0.20000 | 45.3817 | 0.25001 | 45.5965 | 0.30001 | $45.859^{2}$ |
|  | 0.50 |  | 0.55 |  | 0.60 |  | 0.65 |  |
| - | - |  | 0 |  | - |  | - |  |
| - | 0.521095 | 0.0000 | 0.578152 | 0.0000 | 0.636654 | 0.0000 | 0.696748 | 0.0000 |
| 5 | 0.520776 | 5.4078 | 0.577726 | 5.4919 | 0.636100 | 5.5833 | 0.696042 | 5.6819 |
| 10 | 0.519829 | 10.8039 | 0.576463 | 10.9697 | 0.634456 | 11.1500 | 0.693947 | 11.3477 |
| 15 | 0.518282 | 16.1767 | 0.574400 | 16.4197 | 0.631774 | 16.6842 | 0.690530 | 16.9694 |
| 20 | 0.516184 | 21.5153 | 0.571604 | 21.8286 | 0.628138 | 22.1700 | 0.685898 | 22.5386 |
| 25 | 0.513601 | 26.8094 | 0.568162 | 27.1844 | 0.623662 | 27.5933 | 0.680199 | 28.0355 |
| 30 | 0.510612 | 32.0503 | 0.564179 | 32.4764 | 0.618485 | 32.9414 | 0.673609 | 33.4450 |
| 35 | 0.507309 | 37.2305 | 0.559779 | 37.6956 | 0.612769 | 38.2036 | 0.666335 | 38.7539 |
| 40 | 0.503794 | 42.3439 | 0.555099 | 42.8344 | 0.606689 | 43.3705 | 0.658601 | 43.9525 |
| 45 | 0.50017 | 47.3872 | 0.550279 | 47.8880 | 0.600432 | 48.4369 | 0.650644 | 49.0330 |


|  | 0.85 |  | 0.90 |  | 0.95 |  | 1.00 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | - |  | - |  | $\bigcirc$ |  | $\bigcirc$ |
| $\bigcirc$ | 0.956116 | 0.0000 | 1.026517 | 0.0000 | 1.099484 | 0.0000 | 1.175201 | 0.0000 |
| 5 | 0.954520 | 6.1447 | 1.024615 | 6.2767 | 1.097239 | 6.4147 | 1.172573 | 6.5592 |
| 10 | 0.949784 | 12.2592 | 1.018975 | 12.5200 | 1.090583 | 12.7928 | 1.164779 | 13.0775 |
| 15 | 0.942064 | 18.3131 | 1.009783 | 18.6967 | 1.079736 | 19.0986 | 1.152083 | 19.5180 |
| 20 | 0.931612 | 24.2775 | 0.997344 | 24.7753 | 1.065062 | 25.2969 | 1.134913 | 25.8417 |
| 25 | 0.918768 | 30.1255 | 0.982060 | 30.7253 | 1.047043 | 31.3544 | 1.113841 | 32.0122 |
| 30 | 0.903942 | 35.8314 | 0.964429 | 36.5183 | 1.026266 | 37.2400 | 1.089558 | 37.9955 |
| 35 | 0.887604 | 41.3730 | 0.945011 | 42.1294 | 1.003398 | 42.9253 | 1.062847 | 43.7603 |
| 40 | 0.870267 | 46.7314 | 0.924414 | $47 \cdot 5372$ | 0.979156 | 48.3864 | I. 034550 | 49.2789 |
| 45 | 0.852463 | 51.8917 | 0.903276 | 52.7242 | 0.954292 | 53.6033 | 1.005545 | 54.5292 |

[^11]Table XVIII. HYPERBOLIC COSINES. $\cosh (\rho / \delta)=r / \gamma$.

|  | - |  | 0.05 |  | 0.10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | $\bigcirc$ |  | - |  | $\bigcirc$ |
| $\bigcirc$ | 1.000000 | 0.0000 | 1.001250 | 0.0000 | 1.005004 | 0.0000 |
| 5 | 1.000000 | 0.0000 | 1.001231 | 0.0125 | 1.004929 | 0.0497 |
| 10 | 1.00000 | 0.0000 | 1.001175 | 0.0244 | 1.004703 | 0.0978 |
| 15 | 1.000000 | 0.0000 | 1.001083 | 0.0358 | 1.004335 | 0.1428 |
| 20 | 1.000000 | 0.0000 | 1.000958 | 0.0461 | 1.003836 | 0.1836 |
| 25 | 1.000000 | 0.0000 | 1.000804 | 0.0547 | 1.003221 | 0.2189 |
| 30 | 1.000000 | 0.0000 | 1.000626 | 0.0619 | 1.002507 | 0.2478 |
| 35 | 1.000000 | 0.0000 | 1.000428 | 0.0672 | 1.001718 | 0.2689 |
| 40 | 1.000000 | 0.0000 | 1.000218 | 0.0705 | 1.000876 | 0.2820 |
| 45 | 1.000000 | 0.0000 | 1.00000 | 0.0716 | 1.00001 | 0.2864 |
|  | 0.35 |  | 0.40 |  | 0.45 |  |
| - |  | - |  | - |  | $\bigcirc$ |
| - | 1.061878 | 0.0000 | 1.081072 | 0.0000 | 1.102970 | 0.0000 |
| 5 | 1.060965 | 0.5861 | 1.079886 | 0.7567 | 1.101477 | 0.9453 |
| 10 | 1.058252 | 1.1561 | 1.076361 | I. 4933 | 1.097041 | 1.8669 |
| 15 | 1.053819 | 1.6950 | 1.070598 | 2.1911 | 1.089786 | 2.74 II |
| 20 | 1.047791 | 2.1872 | 1.062762 | 2.8303 | 1.079919 | 3.5450 |
| 25 | 1.040347 | 2.6189 | 1.053079 | 3.3936 | 1.067721 | 4.2567 |
| 30 | 1.031702 | 2.9772 | 1.041829 | 3.8639 | 1.053539 | 4.8550 |
| 35 | 1.022112 | 3.2506 | 1.029339 | 4.2264 | 1.037782 | 5.3208 |
| 40 | 1.011859 | 3.4295 | 1.015974 | 4.4678 | 1.020908 | 5.6375 |
| 45 | 1.00125 | 3.5071 | 1.00213 | 4.5784 | 1.00341 | 5.7906 |


|  | 0.70 |  | 0.75 |  | 0.80 |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\circ$ | 1.255169 | 0.0000 | 1.294683 | 0 | 0.0000 | 1.337435 |
| 0 | 1.251669 | 2.1083 | 1.290690 | 2.3744 | 0.0000 |  |
| 5 | 1.232918 | 2.6483 |  |  |  |  |
| 10 | 1.241264 | 4.1750 | 1.278820 | 4.7044 | 1.319493 | 5.2500 |
| 15 | 1.224242 | 6.1581 | 1.259402 | 6.9456 | 1.297535 | 7.7578 |
| 20 | 1.201069 | 8.0155 | 1.232970 | 9.0520 | 1.267648 | 10.1236 |
|  | 1.172378 | 9.7039 | 1.200241 | 10.9775 | 1.230648 | 12.2978 |
| 25 | 1.138949 | 11.1803 | 1.162104 | 12.6747 | 1.187536 | 14.2294 |
| 30 | 1.101690 | 12.4000 | 1.119583 | 14.0942 | 1.139459 | 15.8644 |
| 35 | 1.061615 | 13.3186 | 1.073820 | 15.1850 | 1.087691 | 17.1458 |
| 40 | 1.019823 | 13.8911 | 1.026048 | 15.8947 | 1.033602 | 18.0136 |

Examples. $\cosh \left(0.10 / 25^{\circ}\right)=1.003221 / 0^{\circ} .2189$. $\cosh \left(0.75 / 40^{\circ}\right)=1.073820 / 15^{\circ} .1850$.

Table XVIII. HYPERBOLIC COSINES. $\cosh (\rho / \delta)=r \not r$. Continued

|  | 0.15 |  | 0.20 |  | 0.25 |  | 0.30 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | - |  | - |  | $\bigcirc$ |  | - |
| 0 | 1.011271 | 0.0000 | I. 020067 | 0.0000 | 1.031413 | 0.0000 | 1.045339 | 0.0000 |
| 5 | I.OIIIOI | 0.1111 | 1.019765 | 0.1964 | 1.030943 | 0.3047 | 1.044665 | 0.4350 |
| 10 | 1.010595 | 0.2189 | 1.018868 | 0.3872 | 1.029547 | 0.6006 | 1.042663 | 0.8578 |
| 15 | 1.009769 | 0.3203 | 1.017404 | 0.5664 | 1.027265 | 0.8794 | 1.039390 | 1.2567 |
| 20 | 1. 008648 | 0.4119 | 1.015415 | 0.7292 | 1.024167 | 1.1328 | 1.034944 | 1.6200 |
| 25 | 1.007265 | 0.4914 | 1.012961 | 0.8703 | 1.020343 | 1.3533 | 1.029455 | 1.9375 |
| 30 | 1.005662 | 0.5561 | 1.010116 | 0.9858 | 1.015908 | 1.5344 | 1.023084 | 2.1994 |
| 35 | 1.003887 | 0.6042 | 1.006966 | 1.0719 | 1.010992 | 1.6703 | 1.016021 | 2.3975 |
| 40 | 1.001995 | 0.6339 | 1.003604 | 1.1258 | 1.005746 | 1.7567 | 1.008476 | 2.5253 |
| 45 | 1.00005 | 0.6445 | 1.00013 | 1.1458 | 1.00033 | 1.7901 | 1.00068 | 2.5773 |
|  | 0.50 |  | 0.55 |  | 0.60 |  | 0.65 |  |
| - |  | - |  | - |  | $\bigcirc$ |  | $\bigcirc$ |
| - | 1.127626 | 0.0000 | 1.155101 | 0.0000 | 1.185465 | 0.0000 | 1.218793 | 0.0000 |
| 5 | I. 125794 | 1.1506 | 1.152899 | 1.3711 | 1.182861 | 1.6053 | I. 215756 | 1.8514 |
| 10 | 1.120349 | 2.2736 | I.14635 | 2.7108 | 1.175118 | 3.1753 | 1. 206728 | 3.6644 |
| 15 | I.111445 | 3.3411 | 1.13564 | 3.9872 | 1.162452 | 4.6750 | I.191956 | 5.4000 |
| 20 | 1.099330 | 4.3264 | 1.121066 | 5.1694 | 1.145211 | 6.0689 | 1.171848 | 7.0194 |
| 25 | 1.084345 | 5.2028 | 1.103034 | 6.2267 | 1.123873 | 7.3222 | 1.146955 | 8.4836 |
| 30 | 1.066914 | 5.9453 | I. 082045 | 7.1292 | 1.099026 | 8.4006 | 1.117959 | 9.7533 |
| 35 | 1.047534 | 6.5297 | I. 058692 | 7.8481 | 1.071363 | 9.2700 | 1.085656 | 10.7894 |
| 40 | 1.026760 | 6.9350 | 1.033637 | 8.3566 | 1.041655 | 9.8980 | 1.050938 | 11.5539 |
| 45 | 1.00520 | 7.1424 | 1.007598 | 8.6311 | 1.010745 | 10.2544 | 1.014773 | 12.0094 |


\left.|  | 0.85 |  | 0.90 |  | 0.95 |  | 1.00 |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| 0 | 0 |  | 0 | 0 | 0 | 0 |  |  |
| 0 | 1.383531 | 0.0000 | 1.433086 | 0.0000 | 1.486225 | 0.0000 | 1.543081 |  |$\right) 0.0000$

Examples. $\quad \cosh \left(0.25 \angle 30^{\circ}\right)=1.015908 \angle 1^{\circ} .5344$. $\cosh \left(1.00 / 40^{\circ}\right)=1.162611 / 25^{\circ} .7689$.

Table XIX. HYPERBOLIC TANGENTS. $\tanh (\rho / \delta)=r / \underline{\gamma}$.

|  | 0 |  | 0.05 |  | 0.10 |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0.000000 | 0.0000 | 0.049958 | 0 | 0.0000 | 0.099668 |
| 0 | 0.000000 | 5.0000 | 0.049959 | 4.9917 | 0.0000 |  |
| 5 | 0.000000 | 10.0000 | 0.049961 | 9.9837 | 0.099673 | 4.9670 |
| 10 | 0.000000 | 15.0000 | 0.049965 | 14.976 I | 0.099712 | 9.9347 |
| 15 | 0.000000 | 20.0000 | 0.049968 | 19.9692 | 0.099745 | 19.8778 |
| 20 | 0.000000 | 25.0000 | 0.049974 | 24.9636 | 0.099786 | 24.8541 |
| 25 | 0.000000 | 30.0000 | 0.049980 | 29.9589 | 0.099833 | 29.8350 |
| 30 | 0.000000 | 35.0000 | 0.049985 | 34.9550 | 0.099886 | 34.8208 |
| 35 | 0.000000 | 40.0000 | 0.049992 | 39.9531 | 0.099941 | 39.8122 |
| 40 | 0.000000 | 45.0000 | 0.05000 | 44.9520 | 0.10000 | 44.8087 |


|  | 0.35 |  |
| ---: | :--- | ---: |
| $\circ$ | 0 |  |
| 0 | 0.336375 | 0.0000 |
| 5 | 0.336562 | 4.6153 |
| 10 | 0.337119 | 9.2408 |
| 15 | 0.338036 | 13.8858 |
| 20 | 0.339296 | 18.5600 |
|  | 0.340875 | 23.2719 |
| 25 | 0.342740 | 28.0317 |
| 30 | 0.344849 | 32.8455 |
| 35 | 0.347153 | 37.7208 |
| 40 | 0.34959 | 42.6623 |

Table XIX. HYPERBOLIC TANGENTS. $\tanh (\rho / \delta)=r \not \underline{\gamma}$. Continued .

|  | $0.15{ }^{\circ}$ |  | 0.20 |  | 0.25 |  | 0.30 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | - |  | - |  | $\bigcirc$ |  | - |
| - | 0.148885 | 0.0000 | 0.197375 | 0.0000 | 0.244919 | 0.0000 | 0.291312 | 0.0000 |
| 5 | 0.148901 | 4.9261 | 0.197414 | 4.8697 | 0.244992 | 4.7986 | 0.291435 | 4.7133 |
| 10 | 0.148951 | 9.8544 | 0.197529 | 9.7431 | 0.245210 | 9.6027 | 0.291799 | 9.4344 |
| 15 | 0.149032 | 14.7869 | 0.197718 | 14.6242 | 0.245567 | 14.4178 | 0.292398 | 14.1708 |
| 20 | 0.149142 | 19.7261 | 0.197972 | 19.5158 | 0.246055 | 19.2497 | 0.293219 | 18.9300 |
| 25 | 0.149277 | 24.6730 | 0.198289 | 24.4216 | 0.246663 | 24.1028 | 0.294242 | 23.7183 |
| 30 | 0.149436 | 29.6297 | 0.198659 | 29.3445 | 0.247373 | 28.9814 | 0.295445 | 28.5425 |
| 35 | 0.149611 | 34.5975 | 0.199071 | 34.2867 | 0.248168 | 33.8897 | 0.296798 | 33.4083 |
| 40 | 0.149799 | 39.5775 | 0.199514 | 39.2503 | 0.249027 | 38.8305 | 0.298267 | 38.3203 |
| 45 | 0.14999 | 44.5701 | 0.19997 | 44.2359 | 0.24993 | 43.8064 | 0.29981 | 43.2819 |
|  | 0.50 |  | 0.55 |  | 0.60 |  | 0.65 |  |
| - |  | - |  | - |  | $\bigcirc$ |  | - |
| $\bigcirc$ | 0.462117 | 0.0000 | 0.500521 | 0.0000 | 0.537049 | 0.0000 | 0.571669 | 0.0000 |
| 5 | 0.462586 | 4.2572 | 0.501107 | 4.1208 | 0. 537764 | 3.9780 | 0.572518 | 3.8305 |
| 10 | 0.463988 | 8.5303 | 0.502867 | 8.2589 | 0.539908 | 7.9747 | 0.575065 | 7.6803 |
| 15 | 0.466314 | 12.8356 | 0.505793 | 12.4325 | 0.543484 | 12.0092 | 0.579325 | 11.5694 |
| 20 | 0.469545 | 17.1889 | 0.509875 | 16.6592 | 0.548491 | 16.1011 | 0.585313 | 15.5192 |
| 25 | 0.473651 | 21.6066 | 0.515090 | 20.9577 | 0.554922 | 20.2711 | 0.593047 | 19.5519 |
| 30 | 0.478587 | 26.1050 | 0.521400 | 25.3472 | 0.562757 | 24.5408 | 0.602535 | 23.6917 |
| 35 | 0.484289 | 30.7008 | 0.528746 | 29.8475 | 0.571953 | 28.9336 | 0.613763 | 27.9645 |
| 40 | 0.490664 | 35.4089 | 0.537034 | 34.4778 | 0.582428 | 33.4725 | 0.626679 | 32.3986 |
| 45 | 0.49759 | 40.2448 | 0.546130 | 39.2569 | 0.594049 | 38.1825 | 0.641172 | 37.0236 |


|  | 0.85 |  | 0.90 |  | 0.95 |  | $1 . \infty$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | - |  | - |  | - |  | $\bigcirc$ |
| $\bigcirc$ | 0.691070 | 0.0000 | 0.716298 | 0.0000 | 0.739782 | 0.0000 | 0.761595 | 0.0000 |
| 5 | 0.692454 | 3.2158 | 0.717804 | 3.0617 | 0.741402 | 2.9094 | 0.763317 | 2.7603 |
| 10 | 0.696634 | 6.4500 | 0.722358 | 6.1406 | 0.746304 | 5.8339 | 0.768533 | 5.5300 |
| 15 | 0.703692 | 9.7217 | 0.730063 | 9.2539 | 0.754611 | 8.7900 | 0.777391 | 8.3322 |
| 20 | 0.713763 | 13.9522 | 0.741095 | 12.4228 | 0.76654 I | 11.7964 | 0.790146 | 11.1764 |
| 25 | 0.727041 | 16.4666 | 0.755702 | 15.6708 | 0.782407 | 14.8755 | 0.807174 | 14.0855 |
| 30 | 0.743766 | 19.9939 | 0.774215 | 19.0269 | 0.802627 | 18.0556 | . 0.828989 | 17.0858 |
| 35 | 0.764227 | 23.6700 | 0.797038 | 22.5275 | 0.827737 | 21.3722 | 0.856264 | 20.2120 |
| 40 | 0.788737 | 27.5378 | 0.824642 | 26.2180 | 0.858389 | 24.8722 | 0.889851 | 23.5100 |
| 45 | 0.817596 | 31.6506 | 0.857537 | 30.1556 | 0.895343 | 28.6161 | 0.930795 | 27.0422 |

Examples. $\tanh \left(0.25 \angle 25^{\circ}\right)=0.246663 \angle 24^{\circ} .1028$.
$\tanh \left(0.90 / 30^{\circ}\right)=0.774215 / 19^{\circ} .0269$.

Table XX. CORRECTING FACTOR. $\frac{\sinh \theta}{\theta}=r \not r$.

|  | 0 |  | 0.05 |  | 0.10 |  |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| 0 |  | 0 |  | 0 | 0 |  |
| 0 | 1.000000 | 0.0000 | 1.000420 | 0.0000 | 1.001670 | 0.0000 |
| 5 | 1.000000 | 0.000 | 1.000404 | 0.0042 | 1.001638 | 0.0167 |
| 10 | 1.000000 | 0.000 | 1.000398 | 0.008 I | 1.001570 | 0.0325 |
| 15 | 1.000000 | 0.0000 | 1.000373 | 0.0119 | 1.001442 | 0.0478 |
| 20 | 1.000000 | 0.000 | 1.000317 | 0.0153 | 1.001279 | 0.0614 |
|  |  |  |  | 1.000279 | 0.0183 | 1.001071 |
| 25 | 1.000000 | 0.000 | 0.0730 |  |  |  |
| 30 | 1.000000 | 0.000 | 1.000216 | 0.0208 | 1.000834 | 0.0828 |
| 35 | 1.000000 | 0.0000 | 1.000134 | 0.0222 | 1.000571 | 0.0897 |
| 40 | 1.000000 | 0.0000 | 1.000061 | 0.0236 | 1.000290 | 0.0942 |
| 45 | 1.00000 | 0.0000 | 1.00000 | 0.0236 | 1.00000 | 0.0952 |

$\circ$
0
5
10
15
20
25
30
35
40
45

Table XX. CORRECTING FACTOR. $\frac{\sinh \theta}{\theta}=r \nsim$. Continued

|  | O. 15 |  | 0.20 |  | 0.25 |  | 0.30 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | - |  | $\bigcirc$ |  | $\bigcirc$ |  | $\bigcirc$ |
| $\bigcirc$ | 1.003753 | 0.0000 | 1.006680 | 0.0000 | 1.010448 | 0.0000 | 1.015067 | 0.0000 |
| 5 | 1.003696 | 0.0372 | 1.006579 | 0.0661 | I.010291 | 0.1033 | LoI 4839 | 0.1483 |
| 10 | 1.003527 | 0.0733 | 1.006278 | 0.1303 | 1.009820 | 0.2033 | 1.01416I | 0.2922 |
| 15 | 1.003253 | 0.0172 | 1.005784 | 0.1906 | 1.009051 | 0.2972 | 1.013051 | 0.4275 |
| 20 | 1.002878 | 0.1380 | 1.005119 | 0.2450 | 1.008007 | 0.3825 | 1.OI 1549 | 0.5500 |
| 25 | 1.002412 | 0.1644 | 1.004296 | 0.2919 | 1.006722 | 0.4561 | 1.009696 | 0.6558 |
| 30 | 1.001878 | 0.1858 | 1.003343 | 0.3303 | 1.005233 | 0.5158 | 1.007550 | 0.7419 |
| 35 | 1.001 287 | 0.2017 | 1.002290 | 0.3586 | 1.003584 | 0.5600 | 1.005177 | 0.8058 |
| 40 | 1.000653 | 0.2114 | 1.001167 | 0.3761 | 1.001830 | 0.5872 | 1.002651 | 0.8456 |
| 45 | 1.00000 | 0.2146 | 1.00001 | 0.3817 | 1.00003 | 0.5965 | 1.00005 | 0.8592 |


|  | 0.50 |  | 0.55 | 0.60 | 0 | 0.65 |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 0 |  | 0 |  | 0 |  |
| 0 | 1.042190 | 0.0000 | 1.051185 | 0.0000 | 1.061090 | 0.0000 | 1.071920 | 0.0000 |
| 5 | 1.041552 | 0.4078 | 1.050411 | 0.4919 | 1.060167 | 0.5833 | 1.070833 | 0.6819 |
| 10 | 1.039657 | 0.8039 | 1.048114 | 0.9697 | 1.057426 | 1.1500 | 1.067611 | 1.3477 |
| 15 | 1.036664 | 1.1767 | 1.044363 | 1.4197 | 1.052956 | 1.6842 | 1.062354 | 1.9694 |
| 20 | 1.032369 | 1.5153 | 1.039280 | 1.8286 | 1.046896 | 2.1700 | 1.055228 | 2.5386 |
| 25 | 1.027202 | 1.8094 | 1.033021 | 2.1844 | 1.039436 | 2.5933 | 1.046459 | 3.0355 |
| 30 | 1.021223 | 2.0503 | 1.025779 | 2.4764 | 1.030808 | 2.9414 | 1.036322 | 3.4450 |
| 35 | 1.014618 | 2.2305 | 1.017780 | 2.6956 | 1.021281 | 3.2036 | 1.025131 | 3.7539 |
| 40 | 1.007587 | 2.3439 | 1.009270 | 2.8344 | 1.011148 | 3.3705 | 1.013232 | 3.9525 |
| 45 | 1.00035 | 2.3872 | 1.000508 | 2.8880 | 1.000720 | 3.4369 | 1.000991 | 4.0330 |


| $\bigcirc$ | 0.85 |  | 0.90 |  | 0.95 |  | 1.00 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | - |  | $\bigcirc$ |  | - |  | - |
|  | 1.124842 | 0.0000 | I. 140574 | 0.0000 | 1.157352 | 0.0000 | 1.175201 | 0.0000 |
| 5 | 1.122964 | 1.1447 | 1.138461 | 1.2767 | 1.154989 | 1.4147 | 1.172573 | I. 5592 |
| 10 | 1.117393 | 2.2592 | I.I32194 | 2.5200 | r.147982 | 2.7928 | 1.164779 | 3.0775 |
| 15 | 1.108311 | 3.3131 | I.121981 | 3.6967 | I.I 36564 | 4.0986 | I. 152083 | 4.5180 |
| 20 | 1.096014 | 4.2775 | 1.108160 | 4.7753 | 1.121117 | 5.2969 | I.I34913 | 5.8417 |
| 25 | 1.080904 | 5.1255 | 1.091177 | 5.7253 | 1.102151 | 6.3544 | 1.11384I | 7.0122 |
| 30 | 1.06346I | 5.8314 | 1.071587 | 6.5183 | 1.080280 | 7.2400 | 1.089558 | 7.9955 |
| 35 | 1.04424I | 6.3730 | 1.050012 | 7.1294 | 1.056208 | 7.9253 | 1.062847 | 8.7603 |
| 40 | 1.023843 | 6.7314 | 1.027127 | 7.5372 | 1.030691 | 8.3864 | 1.034550 | 9.2789 |
| 45 | 1.002897 | 6.8917 | 1.003640 | 7.7242 | 1.004518 | 8.6033 | 1.005545 | 9.5292 |

Example. $\frac{\sinh \left(0.95 \angle 25^{\circ}\right)}{0.95 \angle 25^{\circ}}=1.102151 / 6^{\circ} .3544$.

TABLE XXI. CORRECTING FACTOR. $\frac{\tanh \theta}{\theta}=r<\underline{L}$.

|  | - |  | 0.05 |  | 0.10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | $\bigcirc$ |  | $\bigcirc$ |  | $\bigcirc$ |
| $\bigcirc$ | 1.000000 | 0.0000 | 0.999160 | 0.0000 | 0.996680 | 0.0000 |
| 5 | 1.000000 | 0.0000 | 0.999177 | 0.0083 | 0.996732 | 0.0330 |
| 10 | 1.000000 | 0.0000 | 0.999223 | 0.0163 | 0.996882 | 0.0653 |
| 15 | 1.000000 | 0.0000 | 0.999291 | 0.0239 | 0.997119 | 0.0950 |
| 20 | 1.000000 | 0.0000 | 0.999359 | 0.0308 | 0.997448 | 0.1222 |
| 25 | 1.000000 | 0.0000 | 0.999475 | 0.0364 | 0.997858 | 0.1459 |
| 30 | 1.000000 | 0.0000 | 0.999591 | 0.0411 | 0.998331 | 0.1650 |
| 35 | 1.000000 | 0.0000 | 0.999707 | 0.0450 | 0.998856 | 0.1792 |
| 40 | 1.000000 | 0.0000 | 0.999844 | 0.0469 | 0.999414 | 0.1878 |
| 45 | 1.000000 | 0.0000 | 1.00000 | 0.0480 | 0.99999 | 0.1913 |
|  | 0.35 |  | 0.40 |  | 0.45 |  |
| - |  | - |  | $\bigcirc$ |  | - |
| $\bigcirc$ | 0.951071 | 0.0000 | 0.949872 | 0.0000 | 0.937553 | 0.0000 |
| 5 | 0.961606 | 0.3847 | 0.950538 | 0.4942 | 0.938355 | 0.6139 |
| 10 | 0.963197 | 0.7592 | 0.952528 | 0.9761 | 0.940753 | 1.2138 |
| 15 | 0.965817 | 1.1142 | 0.955812 | 1.4342 | 0.944719 | 1.7853 |
| 20 | 0.969419 | 1.4400 | 0.960338 | I.856I | 0.950209 | 2.3147 |
| 25 | 0.973929 | 1.7281 | 0.966036 | 2.2311 | 0.957150 | 2.7881 |
| 30 | 0.979258 | 1.9683 | 0.972801 | 2.5478 | 0.965442 | 3.1920 |
| 35 | 0.985284 | 2.1545 | 0.980505 | 2.7959 | 0.974949 | 3.5122 |
| 40 | 0.991867 | 2.2792 | 0.988977 | 2.9661 | 0.985487 | 3.7378 |
| 45 | 0.99883 | 2.3377 | 0.99800 | 3.0506 | 0.99684 | 3.8568. |
|  | 0.70 |  | 0.75 |  | 0.80 |  |
| - |  | $\bigcirc$ |  | $\bigcirc$ |  | - |
| - | 0.863381 | 0.0000 | 0.846867 | 0.0000 | 0.830046 | 0.0000 |
| 5 | 0.864789 | 1.3208 | 0.848360 | 1.4744 | 0.831615 | 1.6291 |
| 10 | 0.869019 | 2.6217 | 0.852862 | 2.9291 | 0.836347 | 3.2392 |
| 15 | 0.876111 | 3.8826 | 0.860428 | 4.3437 | 0.844318 | 4.8097 |
| 20 | 0.886121. | 5.0811 | 0.871150 | 5.6953 | 0.855654 | 6.3192 |
| 25 | 0.899117 | 6.1936 | 0.885142 | 6.9600 | 0.870525 | 7.7417 |
| 30 | 0.915169 | 7.1942 | 0.902542 | 8.1100 | 0.889141 | 9.0494 |
| 35 | 0.934328 | 8.0533 | 0.923485 | 9.1131 | 0.911732 | 10.2078 |
| 40 | $0.95659^{2}$ | 8.7386 | 0.948072 | 9.9325 | 0.938525 | 11.1761 |
| 45 | 0.981870 | 9.2144 | 0.976325 | 10.5269 | 0.969690 | 11.9072 |

Note. Negative quantities are in heavy type.
Example. $\frac { \operatorname { t a n h } ( 0 . 7 5 / 2 5 ^ { \circ } ) } { 0 . 7 5 \angle 2 5 ^ { \circ } } = 0 . 8 8 5 1 4 2 \longdiv { 6 ^ { \circ } . 9 6 0 0 . }$

Table XXI. CORRECTING FACTOR. $\frac{\tanh \theta}{\theta}=r \nsim$. Continued

|  | 0.15 |  | 0.20 |  | 0.25 |  | 0.30 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | - |  | $\bigcirc$ |  | - |  | $\bigcirc$ |
| 0 | 0.992567 | 0.0000 | 0.986875 | 0.0000 | 0.979676 | 0.0000 | 0.971040 | 0.0000 |
| 5 | 0.992676 | 0.0739 | 0.987069 | 0.1303 | 0.979968 | 0.2014 | 0.971449 | 0.2867 |
| 10 | 0.993006 | 0.1456 | 0.987642 | 0.2569 | 0.980839 | 0.3973 | 0.972665 | 0.5656 |
| 15 | 0.993547 | 0.2131 | 0.988588 | 0.3758 | 0.982269 | 0.5822 | 0.974660 | 0.8292 |
| 20 | 0.994280 | 0.2739 | 0.989860 | 0.4842 | 0.984222 | 0.7503 | 0.977396 | 1.0700 |
| 25 | 0.995182 | 0.3270 | 0.991446 | 0.5784 | 0.986650 | 0.8972 | 0.980807 | 1.2817 |
| 30 | 0.996237 | 0.3703 | 0.993295 | 0.6555 | 0.989493 | 1.0186 | 0.984817 | 1.4575 |
| 35 | 0.997410 | 0.4025 | 0.995357 | 0.7133 | 0.992673 | 1.1103 | 0.989327 | 1.5917 |
| 40 | 0.998660 | 0.4225 | 0.997571 | 0.7497 | 0.996106 | 1.1695 | 0.994224 | 1.6797 |
| 45 | 0.99995 | 0.4299 | 0.99987 | 0.7641 | 0.99971 | 1.1936 | 0.99937 | 1.718I |
|  | 0.50 |  | 0.55 |  | 0.60 |  | 0.65 |  |
| - |  | $\bigcirc$ |  | $\bigcirc$ |  | 0 |  | $\bigcirc$ |
| - | 0.924234 | 0.0000 | 0.910038 | 0.0000 | 0.895082 | 0.0000 | 0.879491 | 0.0000 |
| 5 | 0.925172 | 0.7428 | 0.911104 | 0.8792 | 0.896274 | 1.0220 | 0.880796 | 1.1695 |
| 10 | 0.927976 | 1.4697 | 0.914304 | 1.7411 | 0.899847 | 2.0253 | 0.884716 | 2.3197 |
| 15 | 0.932627 | 2.1644 | 0.919624 | 2.5675 | 0.905806 | 2.9908 | 0.891269 | 3.4306 |
| 20 | 0.939089 | 2.8111 | 0.927046 | 3.3408 | 0.914151 | 3.8989 | 0.900482 | 4.4808 |
| 25 | 0.947302 | 3.3934 | 0.936527 | 4.0423 | 0.924870 | 4.2289 | 0.912380 | 5.4481 |
| 30 | 0.957174 | 3.8950 | 0.948001 | 4.6528 | 0.937928 | 5.4592 | 0.926976 | 6.3083 |
| 35 | 0.968577 | 4.2992 | 0.961356 | 5.1525 | 0.953254 | 6.0664 | 0.944250 | 7.0355 |
| 40 | 0.981327 | 4.5911 | 0.976426 | 5.5222 | 0.970713 | 6.5275 | 0.964122 | 7.6014 |
| 45 | 0.99516 | 4.7552 | 0.992963 | 5.7431 | 0.990081 | 6.8175 | 0.986419 | 7.9764 |


|  | 0.85 |  | 0.90 |  | 0.95 |  | 1.00 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ |  | $\bigcirc$ |  | $\bigcirc$ |  | $\bigcirc$ |  | $\bigcirc$ |
| $\bigcirc$ | 0.813024 | 0.0000 | 0.795887 | 0.0000 | 0.778718 | 0.0000 | 0.761595 | 0.0000 |
| 5 | 0.814651 | 1.7842 | 0.797560 | 1.9383 | 0.780424 | 2.0906 | 0.763317 | 2.2397 |
| 10 | 0.819569 | 3.5500 | 0.802620 | 3.8594 | 0.785583 | 4.166I | 0.768533 | 4.4700 |
| 15 | 0.827873 | 5.2783 | 0.811181 | 5.7461 | 0.794327 | 6.2100 | 0.777391 | 6.6678 |
| 20 | 0.839722 | 6.9478 | 0.823438 | 7.5772 | 0.806886 | 8.2036 | 0.790146 | 8.8236 |
| 25 | 0.855342 | 8.5334 | 0.839669 | 9.3292 | 0.823586 | 10.1245 | 0.807174 | 10.9145 |
| 30 | 0.875019 | 10.0061 | 0.860239 | 10.9731 | 0.844870 | II. 9444 | 0.828989 | 12.9142 |
| 35 | 0.899091 | 11.3300 | 0.885598 | 12.4725 | 0.871302 | 13.6278 | 0.856264 | 14.7880 |
| 40 | 0.927926 | 12.4622 | 0.916269 | 13.7820 | 0.903567 | 15.1278 | 0.889851 | 16.4900 |
| 45 | 0.961877 | 13.3494 | 0.952819 | 14.8444 | 0.942466 | 16.3839 | 0.930795 | 17.9578 |

Note. Negative quantities are in heavy type.
Example. $\frac { \operatorname { t a n h } ( 1 . 0 / 1 0 ^ { \circ } ) } { 1 . 0 / 1 0 ^ { \circ } } = 0 . 7 6 8 5 3 3 \longdiv { 4 ^ { \circ } . 4 7 0 0 }$.

# Table XXII. FUNCTIONS OF SEMI-IMAGINARIES 

Complex Variable $\theta / 45^{\circ}$ (slope constant).

| $\theta$ | $\operatorname{Sinh} \theta / 45^{\circ}$ |  |
| :---: | :---: | :---: |
| hyp. <br> rads. | Size numeric | Slope degrees |
| 0.00 | 0.00000 | 45.0000 |
| 0.01 | 0.01000 | 45.0009 |
| 0.02 | 0.02000 | 45.0037 |
| 0.03 | 0.03000 | 45.0084 |
| 0.04 | 0.04000 | 45.0151 |
| 0.05 | 0.05000 | 45.0236 |
| 0.06 | 0.06000 | 45.0342 |
| 0.07 | 0.07000 | 45.0465 |
| 0.08 | 0.08000 | 45.0608 |
| 0.09 | 0.09000 | 45.0770 |
| 0.10 | 0.10000 | $45.095^{2}$ |
| 0.11 | 0.11000 | 45.1152 |
| 0.12 | 0.12000 | 45.1372 |
| 0.13 | 0.13000 | 45.1611 |
| 0.14 | 0.14000 | 45.1869 |
| 0.15 | 0.15000 | 45.2146 |
| 0.16 | 0.16000 | 45.2442 |
| 0.17 | 0.17000 | 45.2757 |
| 0.18 | 0.18000 | 45.3092 |
| 0.19 | 0.19000 | 45.3445 |
| 0.20 | 0.20000 | $45 \cdot 3817$ |
| 0.21 | 0.21000 | 45.4208 |
| 0.22 | 0.22000 | 45.4619 |
| 0.23 | 0.23000 | 45.5048 |
| 0.24 | 0.24000 | 45.5497 |
| 0.25 | 0.25001 | 45.5965 |
| 0.26 | 0.26001 | 45.6453 |
| 0.27 | 0.27001 | 45.6959 |
| 0.28 | 0.28001 | 45.7485 |
| 0.29 | 0.29001 | 45.8029 |
| 0.30 | 0.30001 | 45.8592 |
| 0.31 | 0.31002 | 45.9174 |
| 0.32 | 0.32002 | 45.9775 |
| 0.33 | 0.33002 | 46.0396 |
| 0.34 | 0.34002 | 46.1036 |
| 0.35 | 0.35003 | 46.1694 |
| 0.36 | 0.36003 | 46.2372 |
| 0.37 | 0.37004 | 46.3069 |
| 0.38 | 0.38004 | 46.3786 |
| 0.39 | 0.39005 | 46.4522 |
| 0.40 | 0.40006 | 46.5278 |
| 0.41 | 0.41006 | 46.6053 |
| 0.42 | 0.42007 | 46.6846 |
| 0.43 | 0.43008 | 46.7658 |
| 0.44 | 0.44009 | 46.8489 |
| 0.45 | 0.45010 | 46.9338 |
| 0.46 | 0.46012 | 47.0206 |
| 0.47 | 0.47013 | 47.1093 |
| 0.48 | 0.48014 | 47.2000 |
| 0.49 | 0.49016 | 47.2926 |
| 0.50 | 0.50017 | $47 \cdot 3872$ |


| Cosh | $\theta / 45^{\circ}$ |
| :---: | :---: |
| Size | Slope |
| numeric | degrees |
| 1.00000 | 0.0000 |
| 1.00000 | 0.0028 |
| 1.00000 | 0.0114 |
| 1.00000 | 0.0257 |
| 1.00000 | 0.0458 |
| 1.00000 | 0.0716 |
| 1.00000 | 0.1031 |
| 1.00000 | 0.1403 |
| 1.00000 | 0.1833 |
| 1.00001 | 0.2320 |
| 1.00001 | 0.2864 |
| 1.00001 | 0.3466 |
| 1.00002 | 0.4125 |
| 1.00003 | 0.4841 |
| 1.00004 | 0.5614 |
| 1.00005 | 0.6445 |
| 1.00006 | 0.7333 |
| 1.00008 | 0.8278 |
| 1.00009 | 0.9281 |
| 1.00011 | 1.0341 |
| 1.00013 | 1.1458 |
| 1.00016 | 1.2632 |
| 11.00020 | 1.3864 |
| 1.00024 | 1.5152 |
| 1.00028 | 1.6498 |
| 1.00033 | 1.7901 |
| 1.00038 | 1.9361 |
| 1.00044 | 2.0878 |
| 1.00051 | 2.2452 |
| 1.00060 | 2.4084 |
| 1.00068 | 2.5773 |
| 1.00077 | 2.7520 |
| 11.00087 | 2.9323 |
| 1.00098 | 3.1833 |
| 1100111 | 3.3099 |
| 1.00125 | 3.5071 |
| 1.00140 | 3.7100 |
| 1.00156 | 3.9185 |
| 1.00174 | 4.1328 |
| 1.00193 | 4.3528 |
| 1.00213 | 4.5784 |
| 1.00235 | 4.8096 |
| 1.00259 | 5.0464 |
| 1.00285 | 5.2889 |
| 1.00312 | 5.5369 |
| 1.00341 | 5.7906 |
| 1.00372 | 6.0498 |
| 1.00406 | 6.3146 |
| 1.00442 | 6.5850 |
| 1.00480 | 6.8609 |
| 1.00520 | 7.1424 |
|  |  |


| $\tanh \theta$ | $\angle 45^{\circ}$ | Cosech $\theta / 45^{\circ}$ |  |
| :---: | :---: | :---: | :---: |
| Size | Slope | Size |  | Slope

Note. Negative quantities are in heavy type.
Examples. $\sinh 0.13 \angle 45^{\circ}=0.13000 / 45^{\circ}$. 1611 .
$\cosh 0.26 \angle 45^{\circ}=1.0003^{8} /$ 1. $^{\circ} 9361$.

Table XXII. FUNCTIONS OF SEMI-IMAGINARIES. Continued
Complex Variable $\theta \angle 45^{\circ}$ (slope constant).

| $\theta$ | Sech $\theta \angle 45^{\circ}$ |  | Coth $\theta \angle 45^{\circ}$ |  | $\operatorname{Sinh} \theta \angle 45^{\circ} / \theta \angle 45^{\circ}$ |  | $\tanh \theta \angle 45^{\circ} / \theta \angle 45^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hyp. rads. | Size numeric | Slope degrees | Size numeric | Slope degrees | Size numeric | Slope degrees | Size numeric | Slope degrees |
| 0.00 | 1.00000 | 0.0000 | $\propto$ | 45.0000 | 1.00000 | 0.0000 | 1.00000 | 0.0000 |
| 0.01 | 1.00000 | 0.0028 | 100.00000 | 44.9981 | 1.00000 | 0.0009 | 1.00000 | 0.0019 |
| 0.02 | 1.00000 | 0.0114 | 50.00000 | 44.9923 | 1.00000 | 0.0037 | 1.00000 | 0.0077 |
| 0.03 | 1.00000 | 0.0257 | 33.33333 | 44.9827 | 1.00000 | 0.0084 | 1.00000 | 0.0173 |
| 0.04 | 1.00000 | 0.0458 | 25.00000 | 44.9693 | 1.0000 | 0.0151 | 1.00000 | 0.0307 |
| 0.05 | 1.00000 | 0.0716 | 20.00000 | 44.9520 | 1.00000 | 0.0236 | 1.00000 | 0.0480 |
| 0.06 | 1.00000 | 0.103 I | 16.66667 | 44.9310 | 1.00000 | 0.0342 | 1.00000 | 0.0690 |
| 0.07 | 1.00000 | 0.1403 | 14.28571 | 44.9062 | 1.00000 | 0.0465 | 0.99999 | 0.0938 |
| 0.08 | 1.00000 | 0.1833 | 12.50000 | 44.8775 | 1.00000 | 0.0608 | 0.99999 | 0.1225 |
| 0.09 | 0.99999 | 0.2320 | IT.IIIII | 44.8450 | 1.00000 | 0.0770 | 0.99999 | 0.1550 |
| 0.10 | 0.99999 | 0.2864 | 10.00000 | 44.8087 | 1.0000 | 0.0952 | 0.99999 | 0.1913 |
| 0.11 | 0.99999 | 0.3466 | 9.09091 | 44.7686 | 1.00000 | 0.1152 | 0.99998 | 0.2314 |
| 0.12 | 0.99998 | 0.4125 | 8.33333 | 44.7247 | 1.00000 | 0.1372 | 0.99998 | 0.2753 |
| 0.13 | 0.99997 | 0.4841 | 7.69231 | 44.6770 | 1.00000 | 0.1611 | 0.99997 | 0.3230 |
| 0.14 | 0.99996 | 0.5614 | 7.14337 | 44.6255 | 1.00000 | 0.1869 | 0.99996 | 0.3745 |
| 0.15 | 0.99995 | 0.6445 | 6.66712 | 44.5701 | 1.00000 | 0.2146 | 0.99995 | 0.4299 |
| 0.16 | 0.99994 | 0.7333 | 6.25039 | 44.5109 | 1.00000 | 0.2442 | 0.99994 | 0.4891 |
| 0.17 | 0.99992 | 0.8278 | 5.88271 | 44.4479 | 1.00001 | 0.2757 | 0.99992 | 0.552 I |
| 0.18 | 0.99991 | 0.928I | 5.55618 | 44.3811 | 1.0001 | 0.3092 | 0.99991 | 0.6189 |
| 0.19 | 0.99989 | 1.0341 | 5.26371 | 44.3104 | 1.00001 | 0.3445 | 0.99989 | 0.6896 |
| 0.20 | 0.99987 | 1.1458 | 5.00050 | 44.2359 | 1.00001 | 0.3817 | 0.99987 | 0.7641 |
| 0.21 | 0.99984 | 1.2632 | 4.76258 | 44.1576 | 1.00002 | 0.4208 | 0.99984 | 0.8424 |
| 0.22 | 0.99980 | 1. 3864 | 4.54628 | 44.0755 | 1.00002 | 0.4619 | 0.9998 I | 0.9245 |
| 0.23 | 0.99976 | 1.5152 | 4.34878 | 43.9896 | 1.00002 | 0.5048 | 0.99978 | 1.0104 |
| 0.24 | 0.99972 | 1.6498 | 4.16771 | 43.8999 | 1.00002 | 0.5497 | 0.99975 | 1.1001 |
| 0.25 | 0.99967 | 1.7901 | 4.00112 | 43.8064 | I. 00003 | 0.5965 | 0.99971 | 1.1936 |
| 0.26 | 0.99962 | 1.9361 | 3.84748 | 43.7092 | 1.00003 | 0.6453 | 0.99966 | 1.2908 |
| 0.27 | 0.99956 | 2.0878 | 3.70521 | 43.6081 | 1.00003 | 0.6959 | 0.99960 | 1.3919 |
| 0.28 | 0.99949 | 2.2452 | 3.57309 | 43.5032 | 1.00004 | 0.7485 | 0.99953 | 1.4968 |
| 0.29 | 0.99940 | 2.4084 | 3.45018 | 43.3945 | 1.00004 | 0.8029 | 0.99945 | 1.6055 |
| 0.30 | 0.99932 | 2.5773 | 3.33544 | 43.2819 | 1.00005 | $0.859^{2}$ | 0.99937 | 1.7881 |
| 0.31 | 0.99923 | 2.7520 | 3.22810 | 43.1654 | 1.00005 | 0.9174 | 0.99928 | 1.8346 |
| 0.32 | 0.99913 | 2.9323 | 3.12754 | 43.0452 | 1.00006 | 0.9775 | 0.99919 | 1.9548 |
| 0.33 | 0.99902 | 3.1183 | 3.03305 | 42.9213 | 1.00006 | 1.0396 | 0.99908 | 2.0787 |
| 0.34 | 0.99889 | 3.3099 | 2.9442 I | 42.7937 | 1.00007 | 1.1036 | 0.99896 | 2.2063 |
| 0.35 | 0.99875 | 3.5071 | 2.86049 | 42.6623 | 1.00008 | I. 1694 | 0.99883 | 2.3377 |
| -. 36 | 0.99860 | 3.7100 | 2.78141 | 42.5272 | 1.00009 | 1. 2372 | 0.99869 | 2.4728 |
| 0.37 | 0.99844 | 3.9185 | 2.70665 | 42.3884 | 1.00010 | 1.3069 | 0.99854 | 2.6116 |
| 0.38 | 0.99826 | 4.1328 | 2.63580 | 42.2458 | 1.00011 | 1.3786 | 0.99837 | 2.7542 |
| 0.39 | 0.99807 | 4.3528 | 2.56870 | 42.0994 | 1.00013 | 1.4522 | 0.99819 | 2.9006 |
| 0.40 | 0.99788 | 4.5784 | 2.50494 | 42.9494 | 1.00014 | 1.5278 | 0.99800 | 3.0506 |
| 0.41 | 0.99766 | 4.8096 | 2.44438 | 41.7957 | 1.00016 | 1. 6053 | 0.99780 | 3.2043 |
| 0.42 | 0.99742 | 5.0464 | 2.38668 | 41.6382 | 1.00017 | 1. 6846 | 0.99759 | 3.3618 |
| 0.43 | 0.99716 | 5.2889 | 2.33174 | 41.4778 | 1.00019 | 1.7658 | 0.99736 | 3.5230 |
| 0.44 | 0.99689 | 5.5369 | 2.27935 | 41.3120 | 1.0002I | 1. 8489 | 0.99711 | 3.6880 |
| 0.45 | 0.99660 | 5.7906 | 2.22930 | 41.1432 | 1.00023 | 1.9338 | 0.99684 | 3.8568 |
| 0.46 | 0.99629 | 6.0498 | 2.18145 | 40.9708 | 1.00025 | 2.0206 | 0.99655 | 4.0292 |
| 0.47 | 0.99596 | 6.3146 | 2.13571 | 40.7947 | 1.00027 | 2.1093 | 0.99624 | 4.2053 |
| 0.48 | 0.99560 | 6.5850 | 2.09190 | 40.6150 | 1.00030 | 2.2000 | 0.99591 | 4.3850 |
| 0.49 | 0.99522 | 6.8609 | 2.04995 | 40.4317 | 1.00032 | 2.2926 | 0.99555 | 4.5683 |
| 0.50 | 0.99483 | 7.1424 | 2.00969 | 40.2448 | 1.00035 | 2.3872 | 0.99516 | 4.7552 |

Note. Negative quantities are in heavy type.
Examples. $\frac{\tanh 0.39 ~}{0.45^{\circ}} 0.39 \angle 45^{\circ}$.
$\operatorname { c o t h } 0 . 5 0 / 4 5 ^ { \circ } = 2 . 0 0 9 6 9 \longdiv { 4 0 ^ { \circ } . 2 4 4 8 }$.

TABLE XXIII. HYPERBOLIC FUNCTION FORMULAS
(from Smithsonian Mathematical Tables No. 1871 of 1909, Becker and van Orstrand's "Hyperbolic Functions," by permission.)

## A. Relations between Hyperbolic and Circular Functions

1. $\sinh u=-i \sin i u=\tan g d u$.
2. $\cosh u=\cos i u=\sec g d u$.
3. $\tanh u=-i \tan i u=\sin g d u$.
4. $\tanh \frac{1}{2} u=\tan \frac{1}{2} g d u$.
5. $e^{u}=(\mathrm{r}+\sin g d u) \div \cos g d u$, $=\left[\mathrm{r}-\cos \left(\frac{1}{2} \pi+g d u\right)\right] \div \sin \left(\frac{1}{2} \pi+g d u\right)$, $=\tan \left(\frac{1}{4} \pi+\frac{1}{2} g d u\right)$.
6. $\sinh i u=i \sin u$.
7. $\cosh i u=\cos u$.
8. $\quad \tanh i u=i \tan u$.

8a. $\sin u=-i \sinh i u=\tanh \left(g d^{-1} u\right)$.
$8 \mathrm{~b} . \cos u=\cosh i u=\operatorname{sech}\left(\mathrm{gd}^{-1} u\right)$.
8c. $\tan u=-i \tanh i u=\sinh \left(g d^{-1} u\right)$.
9. $\quad \sinh (u \pm i v)= \pm i \sin (v \mp i u)$,
$=\sinh u \cos v \pm i \cosh u \sin v$.
10. $\cosh (u \pm i v)=\cos (v \mp i u)$, $=\cosh u \cos v \pm i \sinh u \sin v$.
roa. $\sin (u \pm i v)= \pm i \sinh (v \pm i u)=\sin u \cosh v \pm i \cos u \sinh v$.
ıob. $\cos (u \pm i v)=\cosh (v \mp i u)=\cos u \cosh v \mp i \sin u \sinh v$.
II. $\cosh (m i \pi)=\cos m \pi$. ( $m$ is an integer.)
12. $\quad \sinh (2 m+1) \frac{1}{2} i \pi=i \sin (2 m+1) \frac{1}{2} \pi$. ( $m$ is an integer.)

## B. Relations among the Hyperbolic Functions

13. $\sinh u=\frac{1}{2}\left(e^{u}-e^{-u}\right)=-\sinh (-u)=(\operatorname{csch} u)^{-1}$,

$$
=2 \tanh \frac{1}{2} u \div\left(\mathrm{I}-\tanh ^{2} \frac{1}{2} u\right)=\tanh u \div\left(\mathrm{I}-\tanh ^{2} u\right)^{\frac{1}{2}} .
$$

14. $\cosh u=\frac{1}{2}\left(e^{u}+e^{-u}\right)=\cosh (-u)=(\operatorname{sech} u)^{-1}$,

$$
=\left(\mathrm{I}+\tanh ^{2} \frac{1}{2} u\right) \div\left(\mathrm{I}-\tanh ^{2} \frac{1}{2} u\right)=\mathrm{I} \div\left(\mathrm{I}-\tanh ^{2} u\right)^{\frac{1}{2}}
$$

15. $\tanh u=\left(e^{u}-e^{-u}\right) \div\left(e^{u}+e^{-u}\right)=-\tanh (-u)$,

$$
=(\operatorname{coth} u)^{-1}=\sinh u \div \cosh u=\left(1-\operatorname{sech}^{2} u\right)^{\frac{1}{2}} .
$$

16. $\operatorname{sech} u=\operatorname{sech}(-u)=\left(\mathrm{I}-\tanh ^{2} u\right)^{\frac{2}{2}}$.

## FORMULAS

17. $\operatorname{csch} u=-\operatorname{csch}(-u)=\left(\operatorname{coth}^{2} u-1\right)^{\frac{1}{2}}$.
18. $\operatorname{coth} u=-\operatorname{coth}(-u)=\left(\operatorname{csch}^{2} u+1\right)^{3}$.
19. $\cosh ^{2} u-\sinh ^{2} u=1$.
20. $\sinh \frac{1}{2} u=\sqrt{\frac{1}{2}(\cosh u-1)}$.
21. $\cosh \frac{1}{2} u=\sqrt{\frac{1}{2}(\cosh u+1)}$.
22. $\tanh \frac{1}{2} u=(\cosh u-1) \div \sinh u$,

$$
=\sinh u \div(1+\cosh u)=\sqrt{(\cosh u-1) \div(\cosh u+1)}
$$

23. $\sinh 2 u=2 \sinh u \cosh u=2 \tanh u \div\left(1-\tanh ^{2} u\right)$.
24. $\cosh 2 u=\cosh ^{2} u+\sinh ^{2} u=2 \cosh ^{2} u-\mathrm{I}$,

$$
=\mathrm{I}+2 \sinh ^{2} u=\left(\mathrm{I}+\tanh ^{2} u\right) \div\left(\mathrm{I}-\tanh ^{2} u\right)
$$

25. $\tanh 2 u=2 \tanh u \div\left(\mathrm{I}+\tanh ^{2} u\right)$.
26. $\sinh 3 u=3 \sinh u+4 \sinh ^{3} u$.
27. $\cosh 3 u=4 \cosh ^{3} u-3 \cosh u$.
28. $\quad \tanh 3 u=\left(3 \tanh u+\tanh ^{3} u\right) \div\left(\mathrm{r}+3 \tanh ^{2} u\right)$.

28a, $m \cosh u+n \sinh u=\frac{1}{2}(m+n) e^{u}+\frac{1}{2}(m-n) e^{-u}$.
28b. $m e^{u} \pm n e^{-u}=(m \pm n) \cosh u+(m \mp n) \sinh u$.
29. $\sinh n u=$

$$
n \cosh ^{n-1} u \sinh u+\frac{(n)(n-1)(n-2)}{6} \cosh ^{n-3} u \sinh ^{3} u+\ldots
$$

30. $\quad \cosh n u=\cosh ^{n} u+\frac{n(n-1)}{2} \cosh ^{n-2} u \sinh ^{2} u+\ldots$
3.1. $\sinh u+\sinh v=2 \sinh \frac{1}{2}(u+v) \cosh \frac{1}{2}(u-v)$.
31. $\sinh u-\sinh v=2 \cosh \frac{1}{2}(u+v) \sinh \frac{1}{2}(u-v)$.
32. $\cosh u+\cosh v=2 \cosh \frac{1}{2}(u+v) \cosh \frac{1}{2}(u-v)$.
33. $\cosh u-\cosh v=2 \sinh \frac{1}{2}(u+v) \sinh \frac{1}{2}(u-v)$.
34. $\sinh u+\cosh u=\left(1+\tanh \frac{1}{2} u\right) \div\left(1-\tanh \frac{1}{2} u\right)$.
35. $(\sinh u+\cosh u)^{n}=\cosh n u+\sinh n u$.

36a. $a \sinh u+b \cosh u=\sqrt{a^{2}-b^{2}} \sinh \left(u+\tanh ^{-1} \frac{b}{a}\right) . \quad a>b$

$$
=\sqrt{b^{2}-a^{2}} \cosh \left(u+\operatorname{coth}^{-1} \frac{b}{a}\right) . \quad b>a
$$

36b. $a \cosh u \pm b \sinh u=\sqrt{a^{2}-b^{2}} \cosh \left(u \pm \tanh ^{-1} \frac{b}{a}\right)$.
37. $\tanh u+\tanh v=\sinh (u+v) \div \cosh u \cosh v$.
38. $\tanh u-\tanh v=\sinh (u-v) \div \cosh u \cosh v$.
39. $\operatorname{coth} u+\operatorname{coth} v=\sinh (u+v) \div \sinh u \sinh v$.

## FORMULAS

40. $\operatorname{coth} u-\operatorname{coth} v=-\sinh (u-v) \div \sinh u \sinh v$.
41. $\quad \sinh (u \pm v)=\sinh u \cosh v \pm \cosh u \sinh v$.
42. $\cosh (u \pm v)=\cosh u \cosh v \pm \sinh u \sinh v$.
43. $\tanh (u \pm v)=(\tanh u \pm \tanh v) \div(1 \pm \tanh u \tanh v)$.
44. $\operatorname{coth}(u \pm v)=(\operatorname{coth} u \operatorname{coth} v \pm 1) \div(\operatorname{coth} v \pm \operatorname{coth} u)$.
45. $\sinh (u+v)+\sinh (u-v)=2 \sinh u \cosh v$.
46. $\sinh (u+v)-\sinh (u-v)=2 \cosh u \sinh v$.
47. $\cosh (u+v)+\cosh (u-v)=2 \cosh u \cosh v$.
48. $\cosh (u+v)-\cosh (u-v)=2 \sinh u \sinh v$.
49. $\quad \tanh \frac{1}{2}(u+v)=(\sinh u+\sinh v) \div(\cosh u+\cosh v)$.
50. $\tanh \frac{1}{2}(u-v)=(\sinh u-\sinh v) \div(\cosh u+\cosh v)$.
51. $\operatorname{coth} \frac{1}{2}(u+v)=(\sinh u-\sinh v) \div(\cosh u-\cosh v)$.
52. $\operatorname{coth} \frac{1}{2}(u-v)=(\sinh u+\sinh v) \div(\cosh u-\cosh v)$.
53. $\frac{\tanh u+\tanh v}{\tanh u-\tanh v}=\frac{\sinh (u+v)}{\sinh (u-v)}$.
54. $\frac{\operatorname{coth} u+\operatorname{coth} v}{\operatorname{coth} u-\operatorname{coth} v}=-\frac{\sinh (u+v)}{\sinh (u-v)}$.
55. $\quad \sinh (u+v)+\cosh (u+v)=(\cosh u+\sinh u)(\cosh v+\sinh v)$.
56. $\quad \sinh (u+v) \sinh (u-v)=\sinh ^{2} u-\sinh ^{2} v$, $=\cosh ^{2} u-\cosh ^{2} v$.
57. $\cosh (u+v) \cosh (u-v)=\cosh ^{2} u+\sinh ^{2} v$, $=\sinh ^{2} u+\cosh ^{2} v$.
58. $\quad \sinh (m i \pi)=0 . \quad$ ( $m$ is an integer.)
59. $\cosh (m i \pi)=(-1)^{m}$.
60. $\tanh (m i \pi)=0$.
61. $\sinh (u+m i \pi)=(-\mathrm{I})^{m} \sinh u$.
62. $\cosh (u+m i \pi)=(-1)^{m} \cosh u$.
63. $\sinh (2 m+1) \frac{1}{2} i \pi= \pm i$.
64. $\cosh (2 m+1) \frac{1}{2} i \pi=0$.
65. $\sinh \left(\frac{i \pi}{2} \pm u\right)=i \cosh u$.
66. $\cosh \left(\frac{i \pi}{2} \pm u\right)= \pm i \sinh u$.

## FORMULAS

66a. $\sinh \left\{(u+i v)+i \frac{\pi}{2}\right\}=\sinh \{(u+i v)+i \underline{I}\}=i \cosh (u+i v)$.
66b. $\cosh \left\{(u+i v)+i \frac{\pi}{2}\right\}=\cosh \{(u+i v)+i \underline{I}\}=i \sinh (u+i v)$.
66c. $\tanh \left\{(u+i v)+i \frac{\pi}{2}\right\}=\tanh \{(u+i v)+i \underline{I}\}=\operatorname{coth}(u+i v)$.
66d. $\sinh \{(u+i v)+i \pi\}=\sinh \{(u+i v)+i \underline{2}\}=-\sinh (u+i v)$.
$66 \mathrm{e} . \cosh \{(u+i v)+i \pi\}=\cosh \{(u+i v)+i \underline{2}\}=-\cosh (u+i v)$.
66f. $\tanh \{(u+i v)+i \pi\}=\tanh \{(u+i v)+i \underline{2}\}=\tanh (u+i v)$.
67. $\tanh (u+i \pi)=\tanh u$.

67a. If $\sinh \{(u+i(\underline{I}-q)\}=x+i y$; then $\sinh \{u+i(\underline{I}+q)\}=-x+i y$.
67 b. If $\cosh \{(u+i(\mathrm{I}-q)\}=x+i y$ : then $\cosh \{u+i(\mathrm{I}+q)\}=-x+i y$. 67c. If $\tanh \{u+i(\underline{\underline{I}}-q)\}=x+i y$ : then $\tanh \{u+i(\underline{\underline{I}}+q)\}=x-i y$.

## C. Inverse Hyperbolic Functions

68. $\sinh ^{-1} u=\log \left(u+\sqrt{u^{2}+\mathrm{I}}\right)=\cosh ^{-1} \sqrt{u^{2}+\mathrm{I}}=\int \frac{d u}{\left(u^{2}+\mathrm{I}\right)^{\frac{1}{2}}}$.
69. $\cosh ^{-1} u=\log \left(u+\sqrt{u^{2}-\mathrm{I}}\right)=\sinh ^{-1} \sqrt{u^{2}-\mathrm{I}}=\int \frac{d u}{\left(u^{2}-\mathrm{I}\right)^{\frac{1}{2}}}$.
70. $\tanh ^{-1} u=\frac{1}{2} \log (1+u)-\frac{1}{2} \log (1-u)=\int \frac{d u}{x-u u^{2}}$.
71. $\operatorname{coth}^{-1} u=\frac{1}{2} \log (\mathrm{I}+u)-\frac{1}{2} \log (u-\mathrm{I})=\int \frac{d u}{\mathrm{I}-u^{2}}=\tanh ^{-1} \frac{\mathrm{I}}{u}$.
72. $\operatorname{sech}^{-1} u=\log \left(\frac{\mathrm{I}}{u}+\sqrt{\frac{\mathrm{I}}{u^{2}}-\mathrm{I}}\right)=-\int \frac{d u}{u\left(\mathrm{I}-u^{2}\right)^{\frac{1}{2}}}=\cosh ^{-1} \frac{\mathrm{I}}{u}$.
73. $\operatorname{csch}^{-1} u=\log \left(\frac{\mathrm{I}}{u}+\sqrt{\frac{\mathrm{I}}{u^{2}}+\mathrm{I}}\right)=-\int \frac{d u}{u\left(\left(u^{2}+\mathrm{I}\right)^{\frac{1}{2}}\right.}=\sinh ^{-1} \frac{\mathrm{I}}{u}$.
74. $\sin ^{-1} u=-i \sinh ^{-1} i u=-i \log \left(i u+\sqrt{I-u^{2}}\right)$.
75. $\cos ^{-1} u=-i \cosh ^{-1} u=-i \log \left(u+i \sqrt{\left.I-u^{2}\right)}\right.$.
76. $\tan ^{-1} u=-i \tanh ^{-1} i u=\frac{\mathrm{I}}{2 i} \log (\mathrm{I}+i u)-\frac{\mathrm{I}}{2 i} \log (\mathrm{x}-i u)$.
77. $\cot ^{-1} u=i \operatorname{coth}^{-1} i u=\frac{1}{2 i} \log (i u-1)-\frac{1}{2 i} \log (i u+1)$.
78. $\sin ^{-1} i u=i \sinh ^{-1} u=i \log \left(u+\sqrt{I+u^{2}}\right)$.
79. $\cos ^{-1} i u=-i \cosh ^{-1} i u=\frac{\pi}{2}-i \log \left(u+\sqrt{\left.\mathrm{I}+u^{2}\right)}\right.$.

## FORMULAS

So. $\tan ^{-1} i u=i \tanh ^{-1} u=\frac{i}{2} \log (\mathrm{I}+u)-\frac{i}{2} \log (\mathrm{I}-u)$.
81. $\cot ^{-1} i u=-i \operatorname{coth}^{-1} u=-\frac{i}{2} \log (u+\mathrm{r})+\frac{i}{2} \log (u-\mathrm{r})$.
82. $\cosh ^{-1} \frac{1}{2}\left(u+\frac{\mathrm{r}}{u}\right)=\sinh ^{-1} \frac{1}{2}\left(u-\frac{\mathrm{r}}{u}\right)=\tanh ^{-1} \frac{u^{2}-\mathrm{I}}{u^{2}+\mathrm{I}}$,

$$
=2 \tanh ^{-1} \frac{u-I}{u+1}=\log u .
$$

83. $\tanh ^{-1} \tan u=\frac{1}{2} g d 2 u$.
84. $\tan ^{-1} \tanh u=\frac{1}{2} g d^{-1} 2 u$.
85. $\cosh ^{-1} \csc 2 u=-\sinh ^{-1} \cot 2 u=-\tanh ^{-1} \cos 2 u=\log \tan u$.
86. $\tanh ^{-1} \tan ^{2}\left(\frac{1}{4} \pi+\frac{1}{2} u\right)=\frac{1}{2} \log \csc u$.
87. $\tanh ^{-1} \tan ^{2} \frac{1}{2} u=\frac{1}{2} \log \sec u$.
88. $\cosh ^{-1} u \pm \cosh ^{-1} v=\cosh ^{-1}\left[u v \pm \sqrt{\left.\left(u^{2}-\mathrm{I}\right)\left(v^{2}-\mathrm{I}\right)\right]}\right.$.
89. $\sinh ^{-1} u \pm \sinh ^{-1} v=\sinh ^{-1}\left[u \sqrt{\mathrm{I}+v^{2}} \pm v \sqrt{\left.\mathrm{I}+u^{2}\right]}\right.$.

## D. Series

90. $\quad e^{u}=\mathrm{I}+u+\frac{u^{2}}{2!}+\frac{u^{3}}{3!}+\frac{u^{4}}{4!}+\ldots$

$$
\left(u^{2}<\propto\right)
$$

91. $\log u=(u-\mathrm{I})-\frac{\mathrm{I}}{2}(u-\mathrm{I})^{2}+\frac{\mathrm{I}}{3}(u-\mathrm{I})^{3}-\ldots$
92. $\log u=\frac{u-\mathrm{I}}{u}+\frac{\mathrm{I}}{2}\left(\frac{u-\mathrm{I}}{u}\right)^{2}+\frac{\mathrm{I}}{3}\left(\frac{u-\mathrm{I}}{u}\right)^{3}+\ldots$
93. $\log u={ }_{2}\left[\frac{u-\mathrm{I}}{u+\mathrm{I}}+\frac{\mathrm{I}}{3}\left(\frac{u-\mathrm{I}}{u+\mathrm{I}}\right)^{3}+\frac{\mathrm{I}}{5}\left(\frac{u-\mathrm{I}}{u+\mathrm{I}}\right)^{5}+\ldots\right]$
94. $\log (\mathrm{I}+u)=u-\frac{1}{2} u^{2}+\frac{\mathrm{I}}{3} u^{3}-\frac{\mathrm{I}}{4} u^{4}+\ldots$
95. $\log \left(\frac{\mathrm{I}+u}{\mathrm{I}-u}\right)=2\left[u+\frac{\mathrm{I}}{3} u^{3}+\frac{\mathrm{I}}{5} u^{5}+\frac{\mathrm{I}}{7} u^{7}+\ldots\right]$
96. $\log \left(\frac{u+\mathrm{r}}{u-\mathrm{I}}\right)=2\left[\frac{\mathrm{I}}{u}+\frac{\mathrm{I}}{3}\left(\frac{\mathrm{I}}{u}\right)^{3}+\frac{\mathrm{I}}{5}\left(\frac{\mathrm{I}}{u}\right)^{5}+\ldots\right]$
97. $\quad \sinh u=u+\frac{u^{3}}{3!}+\frac{u^{5}}{5!}+\frac{u^{7}}{7!}+\ldots$
$=u\left(\mathrm{I}+\frac{u^{2}}{\pi^{2}}\right)\left(\mathrm{I}+\frac{u^{2}}{2^{2} \pi^{2}}\right)\left(\mathrm{I}+\frac{u^{2}}{3^{2} \pi^{2}}\right) \cdots$
[230]

## FORMULAS

98. $\quad \cosh u=\mathrm{I}+\frac{u^{2}}{2!}+\frac{u^{4}}{4!}+\frac{u^{6}}{6!}+\ldots$.

$$
=\left(\mathrm{I}+\frac{4 u^{2}}{\pi^{2}}\right)\left(\mathrm{I}+\frac{4 u^{2}}{3^{2} \pi^{2}}\right)\left(\mathrm{I}+\frac{4 u^{2}}{5^{2} \pi^{2}}\right) \ldots
$$

$$
\begin{aligned}
& \left(u^{2}<\alpha\right) \\
& \left(u^{2}<\alpha\right)
\end{aligned}
$$

99. $\tanh u=u-\frac{1}{3} u^{3}+\frac{2}{15} u^{5}-\frac{17}{315} u^{7}+\ldots$

$$
\begin{equation*}
\left(u^{2}<\frac{1}{4} \pi^{2}\right) \tag{2}
\end{equation*}
$$

100. $u \operatorname{coth} u=\mathrm{I}+\frac{\mathrm{I}}{3} u^{2}-\frac{\mathrm{I}}{45} u^{4}+\frac{2}{945} u^{6}-\ldots$
101. $\operatorname{sech} u=\mathrm{I}-\frac{1}{2} u^{2}+\frac{5}{24} u^{4}-\frac{6 \mathrm{I}}{720} u^{6}+\ldots$
102. $u \operatorname{csch} u=1-\frac{1}{6} u^{2}+\frac{7}{360} u^{4}-\frac{31}{15120} u^{6}+\ldots$
103. $g d u=\phi=u-\frac{\mathrm{I}}{6} u^{3}+\frac{\mathrm{I}}{24} u^{5}-\frac{6 \mathrm{I}}{5040} u^{7}+\ldots$
( $u$ small)

$$
=\frac{\pi}{2}-\operatorname{sech} u-\frac{1}{2} \frac{\operatorname{sech}^{3} u}{3}-\frac{1}{2} \frac{3}{4} \frac{\operatorname{sech}^{5} u}{5}-\ldots
$$

( $u$ large)
104. $u=g d^{-1} \phi=\phi+\frac{\mathrm{I}}{6} \phi^{3}+\frac{\mathrm{I}}{24} \phi^{5}+\frac{6 \mathrm{I}}{5040} \phi^{7}+\ldots$
105. $\sinh ^{-1} u=u-\frac{1}{2} \frac{u^{3}}{3}+\frac{1}{2} \frac{3}{4} \frac{u^{5}}{5}-\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{u^{7}}{7}+\ldots$.

$$
\begin{equation*}
=\log 2 u+\frac{\mathrm{I}}{2} \frac{\mathrm{I}}{2 u^{2}}-\frac{\mathrm{I}}{2} \frac{3}{4} \frac{\mathrm{I}}{4 u^{4}}+\frac{\mathrm{I}}{2} \frac{3}{4} \frac{5}{6} \frac{\mathrm{I}}{6 u^{6}}-\ldots \tag{2}
\end{equation*}
$$

106. $\cosh ^{-1} u=\log 2 u-\frac{1}{2} \frac{1}{2 u^{2}}-\frac{1}{2} \frac{3}{4} \frac{1}{4 u^{4}}-\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6 u^{6}}-\ldots$
107. $\tanh ^{-1} u=u+\frac{1}{3} u^{3}+\frac{1}{5} u^{5}+\frac{1}{7} u^{7}+\ldots$
108. $\operatorname{coth}^{-1} u=\tanh ^{-1} \frac{1}{u}=\frac{1}{u}+\frac{1}{3 u^{3}}+\frac{1}{5 u^{5}}+\frac{1}{7 u^{7}}+\ldots$
$\left(u^{2}>1\right)$
109. $\operatorname{sech}^{-1} u=\cosh ^{-1} \frac{\mathrm{I}}{u}=\log \frac{2}{u}-\frac{1}{2} \frac{u^{2}}{2}-\frac{1}{2} \frac{3}{4} \frac{u^{4}}{4}-\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{u^{6}}{6}-\ldots$
110. $\operatorname{csch}^{-1} u=\sinh ^{-1} \frac{1}{u}=\frac{1}{u}-\frac{1}{2} \frac{1}{3 u^{3}}+\frac{1}{2} \frac{3}{4} \frac{1}{5 u^{5}}-\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{\mathrm{I}}{7 u^{7}}+\ldots \quad\left(u^{2}>\mathrm{I}\right)$

$$
\begin{equation*}
=\log \frac{2}{u}+\frac{1}{2} \frac{u^{2}}{2}-\frac{1}{2} \frac{3}{4} \frac{u^{4}}{4}+\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{u^{6}}{6}-\ldots \tag{2}
\end{equation*}
$$

## E. Derivatives

III. $\frac{d e^{u}}{d u}=e^{u}$.

I12. $d \frac{\log _{e} u}{d u}=\frac{1}{u}$.
II3. $\frac{d a^{v}}{d u}=a^{v} \cdot \frac{d v}{d u} \cdot \log _{e} a^{\prime}$.
II4. $\frac{d u^{u}}{d u}=u^{u}\left(\mathrm{I}+\log _{e} u\right)$.
115. $\frac{d \sinh u}{d u}=\cosh u$.

II6. $\frac{d \cosh u}{d u}=\sinh u$.
II7. $\frac{d \tanh u}{d u}=\operatorname{sech}^{2} u$.
118. $\frac{d \operatorname{coth} u}{d u}=-\operatorname{csch}^{2} u$.

II9. $\frac{d \operatorname{sech} u}{d u}=-\operatorname{sech} u . \tanh u$.
120. $\frac{d \operatorname{csch} u}{d u}=-\operatorname{csch} u . \operatorname{coth} u$.
121. $\frac{d \sinh ^{-1} u}{d u}=\frac{\mathrm{I}}{\sqrt{u^{2}+\mathrm{I}}}$.
122. $\frac{d \cosh ^{-1} u}{d u}=\frac{\mathrm{I}}{\sqrt{u^{2}-\mathrm{I}}}$.
123. $\frac{d \tanh ^{-1} u}{d u}=\frac{\mathrm{I}}{\mathrm{I}-u^{2}}$.
124. $\frac{d \operatorname{coth}^{-1} u}{d u}=\frac{\mathrm{I}}{\mathrm{I}-u^{2}}$.
125. $\frac{d \operatorname{sech}^{-1} u}{d u}=\frac{-\mathrm{I}}{u \sqrt{\mathrm{I}-u^{2}}}$.
126. $\frac{d \operatorname{csch}^{-1} u}{d u}=\frac{-\mathrm{I}}{u \sqrt{u^{2}+\mathrm{I}}}$.
127. $\frac{d \operatorname{gd} u}{d u}=\operatorname{sech} u$.
128. $\frac{d \mathrm{gd}^{-1} u}{d u}=\sec u$.

## F. Integrals. (Integration Constants are Omitted.)

129. $\int \sinh u d u=\cosh u$.
130. $\int \cosh u d u=\sinh u$.

13I. $\int \tanh u d u=\log \cosh u$.
132. $\int \operatorname{coth} u d u=\log \sinh u$.
133. $\int \operatorname{sech} u d u=2 \tan ^{-1} e^{u}=\operatorname{gd} u$.
134. $\int \operatorname{csch} u d u=\log \tanh \frac{u}{2}$.
135. $\int \sinh ^{n} u d u=\frac{1}{n} \sinh ^{n-1} u$. $\cosh u-\frac{n-1}{n} \int \sinh ^{n-2} u d u$,

$$
=\frac{\mathrm{I}}{n+\mathrm{I}} \sinh ^{n+\mathrm{t}} u \cosh u-\frac{n+2}{n+1} \int \sinh ^{n+2} u d u .
$$

136. $\int \cosh ^{n} u d u=\frac{\mathrm{I}}{n} \sinh u$. $\cosh ^{n-1} u+\frac{n-\mathrm{I}}{n} \int \cosh ^{n-2} u d u$,

$$
=-\frac{\mathrm{I}}{n+\mathrm{I}} \sinh u \cosh ^{n+1} u+\frac{n+2}{n+1} \int \cosh ^{n+2} u d u
$$

137. $\int u \sinh u d u=u \cosh u-\sinh u$.
138. $\int u \cosh u d u=u \sinh u-\cosh u$.
139. $\int u^{2} \sinh u d u=\left(u^{2}+2\right) \cosh u-2 u \sinh u$.
140. $\int u^{n} \sinh u d u=u^{n} \cosh u-n u^{n-1} \sinh u+n(n-1) \int u^{n-2} \sinh u d u$.
141. $\int \sinh ^{2} u d u=\frac{1}{2}(\sinh u \cosh u-u)$.
142. $\int \sinh u \cdot \cosh u d u=\frac{1}{4} \cosh (2 u)$.
143. $\int \cosh ^{2} u d u=\frac{1}{2}(\sinh u \cosh u+u)$.

## FORMULAS

144. $\int \tanh ^{2} u d u=u-\tanh u$.
145. $\int \operatorname{coth}^{2} u d u=u-\operatorname{coth} u$.
146. $\int \operatorname{sech}^{2} u d u=\tanh u$.
147. $\int \operatorname{sech}^{3} u d u=\frac{1}{2} \operatorname{sech} u \tanh u+\frac{1}{2} \operatorname{gd} u$.
148. $\int \operatorname{csch}^{2} u d u=-\operatorname{coth} u$.
149. $\int \sinh ^{-1} u d u=u \sinh ^{-1} u-\left(\mathrm{I}+u^{2}\right)^{\frac{1}{2}}$.
150. $\int \cosh ^{-1} u d u=u \cosh ^{-1} u-\left(u^{2}-1\right)^{\frac{1}{2}}$.
151. $\int \tanh ^{-1} u d u=u \tanh ^{-1} u+\frac{1}{2} \log \left(1-u^{2}\right)$.
152. $\int u \sinh ^{-1} u d u=\frac{1}{4}\left[\left(2 u^{2}+\mathrm{I}\right) \sinh ^{-1} u-u\left(\mathrm{I}+u^{2}\right)^{\frac{1}{3}}\right]$.
153. $\int u \cosh ^{-1} u d u=\frac{1}{4}\left[\left(2 u^{2}-1\right) \cosh ^{-1} u-u\left(u^{2}-1\right)^{\frac{1}{2}}\right]$.
154. $\int(\cosh a+\cosh u)^{-1} d u=2 \operatorname{csch} a \cdot \tanh ^{-1}\left(\tanh \frac{1}{2} u . \tanh \frac{1}{2} a\right)$, $=\operatorname{csch} a\left[\log \cosh \frac{1}{2}(u+a)-\log \cosh \frac{1}{2}(u-a)\right]$.
155. $\int(\cos a+\cosh u)^{-1} d u=2 \csc a . \tan ^{-1}\left(\tanh \frac{1}{2} u . \tan \frac{1}{2} a\right)$.
156. $\int(\mathrm{I}+\cos a \cdot \cosh u)^{-1} d u=2 \csc a . \tanh ^{-1}\left(\tanh \frac{1}{2} u . \tan \frac{1}{2} a\right)$.
157. $\int \sinh u \cos u d u=\frac{1}{2}(\cosh u \cdot \cos u+\sinh u \cdot \sin u)$.
158. $\int \cosh u . \cos u d u=\frac{1}{2}(\sinh u . \cos u+\cosh u . \sin u)$.
159. $\int \sinh u . \sin u d u=\frac{1}{2}(\cosh u . \sin u-\sinh u . \cos u)$.
160. $\int \cosh u . \sin u d u=\frac{1}{2}(\sinh u . \sin u-\cosh u . \cos u)$.

## FORMULAS

161. $\int \sinh (m u) \sinh (n u) d u$

$$
=\frac{1}{m^{2}-n^{2}}[m \sinh (n u) \cosh (m u)-n \cosh (n u) \sinh (m u)]
$$

162. $\int \cosh (m u) \sinh (m u) d u$

$$
=\frac{1}{m^{2}-n^{2}}[m \sinh (n u) \sinh (m u)-n \cosh (n u) \cosh (m u)]
$$

163. $\int \cosh (m u) \cosh (n u) d u$

$$
=\frac{\mathrm{I}}{m^{2}-n^{2}}[m \sinh (m u) \cosh (n u)-n \sinh (m u) \cosh (m u)]
$$

164. $\int \sinh u \tanh u d u=\sinh u-g d u$.
165. $\int \cosh u \operatorname{coth} u d u=\cosh u+\log \tanh \frac{u}{2}$.
166. $\int \sec u d u=\operatorname{gd}^{-1} u$.
167. $\int \sec ^{3} \phi d \phi=\int\left(\mathrm{I}+\tan ^{2} \phi\right)^{\frac{1}{2}} d \tan \phi=\frac{1}{2} \sec \phi \tan \phi+\frac{1}{2} \mathrm{gd}^{-1} \phi$, $=\frac{1}{2} \tan \phi\left(\mathrm{I}+\tan ^{2} \phi\right)^{\frac{1}{2}}+\frac{1}{2} \sinh ^{-1}(\tan \phi)$. Here $\phi=g d u$.
168. $\int \frac{d u}{\left(u^{2}+a^{2}\right)^{\frac{1}{2}}}=\sinh ^{-1} \frac{u}{a}$.

$$
\int \frac{d u}{\left(a^{2}-u^{2}\right)^{\frac{2}{2}}}=\sin ^{-1} \frac{u}{a} .
$$

169. $\int \frac{d u}{\left(u^{2}-a^{2}\right)^{\frac{1}{2}}}=\cosh ^{-1} \frac{u}{a}$. $\quad \int \frac{-d u}{\left(a^{2}-u^{2}\right)^{\frac{1}{2}}}=\cos ^{-1} \frac{u}{a}$.
170. $\int \frac{d u}{\left(a^{2}-u^{2}\right)_{u<a}}=\frac{\mathrm{I}}{a} \tanh ^{-1} \frac{u}{\dot{a}} . \quad \int \frac{d u}{a^{2}+u^{2}}=\frac{\mathrm{I}}{a} \tan ^{-1} \frac{u}{a}$.
171. $\int \frac{-d u}{\left(u^{2}-a^{2}\right)_{u>a}}=\frac{\mathrm{I}}{a} \operatorname{coth}^{-1} \frac{u}{a} . \quad \int \frac{-d u}{a^{2}+u^{2}}=\frac{\mathrm{I}}{a} \cot ^{-1} \frac{u}{a}$.
172. $\int \frac{-d u}{u\left(a^{2}-u^{2}\right)^{\frac{1}{2}}}=\frac{\mathrm{I}}{a} \operatorname{sech}^{-1} \frac{u}{a} . \quad \int \frac{d u}{u\left(u^{2}-a^{2}\right)^{\frac{1}{2}}}=\frac{\mathrm{I}}{a} \sec ^{-1} \frac{u}{a}$.
173. $\int \frac{-d u}{u\left(a^{2}+u^{2}\right)^{\frac{1}{2}}}=\frac{\mathrm{I}}{a} \operatorname{csch}^{-1} \frac{u}{a} . \quad \int \frac{-d u}{u\left(u^{2}-a^{2}\right)}=\frac{\mathrm{I}}{a} \csc ^{-1} \frac{u}{a}$.
174. $\int \frac{d u}{\left(a u^{2}+2 b u+c\right)^{\frac{1}{2}}}=\frac{\mathbf{I}}{\sqrt{a}} \sinh ^{-1} \frac{a u+b}{\left(a c-b^{2}\right)^{\frac{1}{2}}}$, $a$ positive, $a c>b^{2}$;

$$
\begin{array}{lr}
=\frac{\mathrm{I}}{\sqrt{a}} \cosh ^{-1} \frac{a u+b}{\left(b^{2}-a c\right)^{\frac{1}{3}}}, & a \text { positive, } a c<b^{2} ; \\
=\frac{\mathrm{I}}{\sqrt{-a}} \cos ^{-1} \frac{a u+b}{\left(b^{2}-a c\right)^{\frac{3}{2}}}, & a \text { negative. }
\end{array}
$$

## FORMULAS

175. $\int \frac{d u}{\left(a u^{2}+2 b u+c\right)}=\frac{1}{\left(a c-b^{2}\right)^{\frac{1}{2}}} \tan ^{-1} \frac{a u+b}{\left(a c-b^{2}\right)^{\frac{3}{3}}}$,

$$
\begin{aligned}
& =\frac{-1}{\left(b^{2}-a c\right)^{\frac{1}{2}}} \tanh ^{-1} \frac{a u+b}{\left(b^{2}-a c\right)^{\frac{2}{2}}}, \\
& =\frac{-1}{\left(b^{2}-a c\right)^{\frac{2}{2}}} \operatorname{coth}^{-1} \frac{a u+b}{\left(b^{2}-a c\right)^{\frac{1}{2}}},
\end{aligned}
$$

$$
\begin{aligned}
a c & <b^{2}, \\
a u+b & <\left(b^{2}-a c\right)^{\frac{3}{2}} . \\
a c & <b^{2}, \\
a u+b & >\left(b^{2}-a c\right)^{\frac{3}{2}} .
\end{aligned}
$$

176. $\int \frac{d u}{(a-u)(u-b)^{\frac{1}{2}}}=\frac{2}{(a-b)^{\frac{2}{3}}} \tanh ^{-1} \sqrt{\frac{u-b}{a-b}}$,

$$
\begin{aligned}
& \text { or } \frac{-2}{(b-a)^{\frac{2}{3}}} \tan ^{-1} \sqrt{\frac{u-b}{b-a}}, \\
& \text { or } \frac{2}{(a-b)^{\frac{1}{2}}} \operatorname{coth}^{-1} \sqrt{\frac{u-b}{a-b}} \text {. } \text { (The real form is to be taken.) }
\end{aligned}
$$

177. $\int \frac{d u}{(a-u)(b-u)^{\frac{1}{2}}}=\frac{2}{(b-a)^{\frac{1}{2}}} \tanh ^{-1} \sqrt{\frac{b-u}{b-a}}$,

$$
\begin{aligned}
& \text { or } \frac{2}{(b-a)^{\frac{1}{2}}} \operatorname{coth}^{-1} \sqrt{\frac{b-u}{b-a}}, \\
& \text { or } \frac{-2}{(a-b)^{\frac{2}{2}}} \tan ^{-1} \sqrt{\frac{b-u}{a-b}} \text {. (The real form is to be taken.) }
\end{aligned}
$$

178. $\int\left(u^{2}-a^{2}\right)^{\frac{1}{2}} d u=\frac{1}{2} u\left(u^{2}-a^{2}\right)^{\frac{1}{2}}-\frac{1}{2} a^{2} \cosh ^{-1} \frac{u}{a}$.
179. $\int\left(a^{2}-u^{2}\right)^{\frac{1}{2}} d u=\frac{1}{2} u\left(a^{2}-u^{2}\right)^{\frac{1}{2}}+\frac{1}{2} a^{2} \sin ^{-1} \frac{u}{a}$.
180. $\int\left(u^{2}+a^{2}\right)^{\frac{1}{2}} d u=\frac{1}{2} u\left(u^{2}+a^{2}\right)^{\frac{1}{2}}+\frac{1}{2} a^{2} \sinh ^{-1} \frac{u}{a}$.
181. $\int e^{a u} d u=\frac{e^{a u}}{a}$.
182. $\int u e^{a u} d u=\frac{e^{a u}}{a^{2}}(a \dot{u}-1)$.
183. $\int u^{m} \cdot e^{a u} d u=\frac{u^{m} e^{a u}}{a}-\frac{m}{a} \int u^{m-1} e^{a u} d u$.
184. $\int \frac{e^{a u} d u}{u^{m}}=\frac{\mathrm{I}}{m-\mathrm{I}}\left[-\frac{e^{a u}}{u^{m-1}}+a \int \frac{e^{a u} d u}{u^{m-1}}\right]$.
185. $\int a^{b u} d u=\frac{a^{b u}}{b \log a}$.

FORMULAS
186. $\int u^{n} a^{u} d u=\frac{a^{u} u^{n}}{\log a}-\frac{n a^{u} u^{n-1}}{(\log a)^{2}}+\frac{n(n-1) a^{u} u^{n-2}}{(\log a)^{3}} \ldots$

$$
\pm \frac{n(n-1)(n-2) \cdot \cdots 2.1 a^{u}}{(\log a)^{n+1}}
$$

187. $\int \frac{a^{u} d u}{u^{n}}=\frac{a^{u}}{n-\mathrm{I}}\left[-\frac{\mathrm{I}}{u^{n-1}}-\frac{\log a}{(n-2) u^{n-2}}-\frac{(\log a)^{2}}{(n-2)(n-3) u^{n-3}}\right.$

$$
\left.-\cdots+\frac{(\log a)^{n-1}}{(n-2)(n-3) \cdots 2.1} \int \frac{a^{u}}{u}\right]
$$

188. $\int \frac{a^{u} d u}{u}=\log u+u \log a+\frac{(u \log a)^{2}}{2 \cdot 2!}+\frac{(u \log a)^{3}}{3 \cdot 3!}+\cdots$
189. $\int \frac{\cdot d u}{I+e^{u}}=\log \frac{e^{u}}{I+e^{u}}$.
190. $\int \frac{d u}{a+b e^{m u}}=\frac{\mathrm{I}}{a m}\left[m u-\log \left(a+b e^{m u}\right)\right]$.
191. $\int \frac{d u}{a e^{m u}+b e^{-m u}}=\frac{1}{m(a b)^{\frac{2}{2}}} \tan ^{-1}\left(e^{m u} \sqrt{\frac{a}{b}}\right)$.
192. $\int \frac{d u}{\left(a+b e^{m u}\right)^{\frac{1}{2}}}=\frac{1}{m \sqrt{a}}\left[\log \left(\sqrt{a+b e^{m u}}-\sqrt{a}\right)\right.$

$$
\left.-\log \left(\sqrt{a+b e^{m u}}+\sqrt{a}\right)\right]
$$

193. $\int \frac{u e^{u} d u}{(\mathrm{I}+u)^{2}}=\frac{e^{u}}{\mathrm{I}+u}$.
194. $\int e^{a u} \log u d u=\frac{e^{a u} \log u}{a}-\frac{\mathrm{I}}{a} \int \frac{e^{a u} d u}{u}$.
195. $\int \log u d u=u \log u-u$.
196. $\int u^{m} \log u d u=u^{m+1}\left[\frac{\log u}{m+1}-\frac{\mathrm{I}}{(m+\mathrm{I})^{2}}\right]$.
197. $\int(\log u)^{n} d u=u(\log u)^{n}-n \int(\log u)^{n-1} d u$.
198. $\int u^{m}(\log u)^{n} d u=\frac{u^{m+1}(\log u)^{n}}{m+1}-\frac{n}{m+1} \int u^{m}(\log u)^{n-1} d u$.
199. $\int \frac{(\log u)^{n} d u}{u}=\frac{(\log u)^{n+1}}{n+1}$.
200. $\int \frac{d u}{\log u}=\log (\log u)+\log u+\frac{(\log u)^{2}}{2.2!}+\frac{(\log u)^{3}}{3 \cdot 3!}+\cdots \cdot$
[237]

## FORMULAS

201. $\int \frac{d u}{(\log u)^{n}}=-\frac{u}{(n-\mathrm{I})(\log u)^{n-1}}+\frac{\mathrm{I}}{n-\mathrm{I}} \int \frac{d u}{(\log u)^{n-1}}$.
202. $\int \frac{u^{m} d u}{(\log u)^{n}}=-\frac{u^{m+1}}{(n-\mathrm{I})(\log u)^{n-1}}+\frac{m+\mathrm{I}}{n-\mathrm{I}} \int \frac{u^{m} d u}{(\log u)^{n-1}}$.
203. $\int \frac{u^{m} d u}{\log u}=\int \frac{e^{-y}}{y} d y$, where $y=-(m+\mathrm{I}) \log u$.
204. $\int \frac{d u}{u \log u}=\log (\log u)$.
205. $\int \frac{d u}{u(\log u)^{n}}=-\frac{\mathrm{I}}{(n-\mathrm{I})(\log u)^{n-1}}$.
206. $\int(a+b u)^{m} \log u d u=$

$$
\frac{\mathrm{x}}{b(m+\mathrm{I})}\left[(a+b u)^{m+1} \log u-\int \frac{(a+b u)^{m+1} d u}{u}\right]
$$

207. $\int u^{m} \log (a+b u) d u=$

$$
\frac{\mathrm{I}}{m+\mathrm{I}}\left[u^{m+1} \log (a+b u)-b \int \frac{u^{m+1} d u}{a+b u}\right]
$$

208. $\int \frac{\log (a+b u) d u}{u}=$

$$
\begin{aligned}
& \log a \cdot \log u+\frac{b u}{a}-\frac{\mathrm{I}}{2^{2}}\left(\frac{b u}{a}\right)^{2}+\frac{\mathrm{I}}{3^{2}}\left(\frac{b u}{a}\right)^{3}-\cdots, \\
= & \frac{\mathrm{I}}{2}(\log b u)^{2}-\frac{a}{b u}+\frac{\mathrm{I}}{2^{2}}\left(\frac{a}{b u}\right)^{2}-\frac{\mathrm{I}}{3^{2}}\left(\frac{a}{b u}\right)^{3}+\cdots
\end{aligned}
$$

209. $\int \frac{\log u d u}{(a+b u)^{m}}=\frac{1}{b(m-1)}\left[-\frac{\log u}{(a+b u)^{m-1}}+\int \frac{d u}{u(a+b u)^{m-1}}\right]$.
210. $\int \frac{\log u d u}{a+b u}=\frac{\mathrm{I}}{b} \log u$. $\log (a+b u)-\frac{\mathrm{I}}{b} \int \frac{\log (a+b u)}{u} d u$.

21I. $\int(a+b u) \log u d u=\frac{(a+b u)^{2}}{2 b} \log u-\frac{a^{2} \log u}{2 b}-a u-\frac{1}{4} b u^{2}$.
212. $\int \frac{\log u d u}{(a+b u)^{\frac{1}{2}}}=$

$$
\begin{gathered}
\frac{2}{b}[(\log u-2) \sqrt{(a+b u)}+\sqrt{a} \log (\sqrt{a+b u}+\sqrt{a)} \\
-\sqrt{a} \log (\sqrt{a+b u}-\sqrt{a})], \text { if } a>0, \\
=\frac{2}{b}\left[(\log u-2) \sqrt{(a+b u)}+2 \sqrt{-a} \tan ^{-1} \sqrt{\frac{a+b u}{-a}}, \text { if } a<0 .\right.
\end{gathered}
$$

## FORMULAS

213. $\int_{0}^{\infty} e^{-a q^{2} u z} d u=\frac{\sqrt{\pi}}{2 a}=\frac{\mathrm{I}}{2 a} \Gamma\left(\frac{1}{2}\right)$.
214. $\int_{0}^{\infty} u^{n} e^{-a u} d u=\Gamma \frac{(n+1)}{a^{n+1}}=\frac{n!}{a^{n+1}}$.
215. $\int_{0}^{\infty} u^{2 n} e^{-a u^{2}} d u=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n+1} a^{n}} \sqrt{\frac{\pi}{a}}$.
216. $\int_{0}^{\infty} e^{-u 2-\frac{a^{2}}{u^{2}}} d u=\frac{e^{-2 a}}{2} \sqrt{\pi}$.
217. $\int_{0}^{\infty} e^{-n u} \sqrt{u} d u=\frac{1}{2 n} \sqrt{\frac{\pi}{n}}$.
218. $\int_{0}^{\infty} \frac{e^{-n u}}{\sqrt{u}} d u=\sqrt{\frac{\pi}{n}}$.
219. $\int_{0}^{\infty} \frac{d u}{\sinh (n u)}=\frac{\pi}{2 n}$.
220. $\int_{0}^{\infty} \frac{u d u}{\sinh (n u)}=\frac{\pi^{2}}{4 n^{2}}$.
221. $\int_{0}^{i \pi} \sinh (m u) \cdot \sinh (n u) d u=\int_{0}^{i \pi} \cosh (m u) \cdot \cosh (n u) d u$ $=0$, if $m$ is different from $n$.
222. $\int_{0}^{i \pi} \cosh ^{2}(m u) d u=-\int_{0}^{i \pi} \sinh ^{2}(m u) d u=\frac{i \pi}{2}$.
223. $\int_{-i \pi}^{+i \pi} \sinh (m u) d u=0$.
224. $\int_{0}^{i \pi} \cosh (m u) d u=0$.
225. $\int_{-i \pi}^{i \pi} \sinh (m u) \cosh (n u) d u=0$.
226. $\int_{0}^{i \pi} \sinh (m u) \cosh (m u) d u=0$.
227. $\int_{0}^{1} \frac{\log u}{1-u} d u=-\frac{\pi^{2}}{6}$.
228. $\int_{0}^{1} \frac{\log u}{1+u} d u=-\frac{\pi^{2}}{12}$.
229. $\int_{0}^{1} \frac{\log u}{1-u^{2}} d u=-\frac{\pi^{2}}{8}$.

## FORMULAS

230. $\int_{0}^{1} \log \left(\frac{1+u}{I-u}\right) \cdot \frac{d u}{u}=\frac{\pi^{2}}{4}$.
231. $\int_{0}^{1} \frac{\log u d u}{\left(\mathrm{I}-u^{2}\right)^{\frac{1}{2}}}=-\frac{\pi}{2} \log 2$.
232. $\int_{0}^{1} \frac{\left(u^{p}-u^{q}\right) d u}{\log u}=\log \frac{p+1}{q+1}$, if $p+1>0, q+\mathrm{I}>0$.
233. $\int_{0}^{1}(\log u)^{n} d u=(-\mathrm{I})^{n} . n$ !.
234. $\int_{0}^{1}\left(\log \frac{\mathrm{I}}{u}\right)^{\frac{2}{2}} d u=\frac{\sqrt{\pi}}{2}$.
235. $\int_{0}^{1}\left(\log \frac{\mathrm{I}}{u}\right)^{n} d u=n$ !.

- 236. $\int_{0}^{1} \frac{d u}{\left(\log \frac{\mathrm{x}}{u}\right)^{\frac{1}{2}}}=\sqrt{\pi}$.

237. $\int_{0}^{1} u^{m} \log \left(\frac{\mathrm{I}}{u}\right)^{n} d u=\frac{\Gamma(n+\mathrm{I})}{(m+\mathrm{I})^{n+1}}$, if $m+\mathrm{I}>0, n+\mathrm{I}>0$.
238. $\int_{0}^{\infty} \log \left(\frac{e^{u}+1}{e^{u}-1}\right) d u=\frac{\pi^{2}}{4}$.
Engineering \&


K 39.
1921

## AUN゙こんにK <br> sTACK

Jut 72
＂it．


[^0]:    Examples. $\sinh \left(1.0 / 90^{\circ}\right)=0.84147 \angle 90^{\circ}$.
    $\sinh ^{-1}\left(0.87947 \angle 76^{\circ} .469\right)=1.0 \angle 70^{\circ}$.

[^1]:    Examples. $\quad \cosh \left(2.8 \angle 85^{\circ}\right)=0.97041 \angle 174^{\circ} .973=0.97041 / 174^{\circ} .58^{\prime} .23^{\prime \prime}$.
    $\cosh ^{-1}\left(1.5420 \angle 165^{\circ} .528\right)=3.0 \angle 70^{\circ}$.

[^2]:    Examples. $\quad \tanh \left(1.4 / 64^{\circ}\right)=1.5990 / 20^{\circ} .562=1.5990 / 20^{\circ} .33^{\prime} .43^{\prime \prime}$.
    $\tanh ^{-1}\left(1.755^{\circ} / 62^{\circ} .538=1.1 / 79^{\circ}\right.$.

[^3]:    * This proposition is proved in Greenhill's " Differential and Integral Calculus," Macmillan \& Co., 1896 , page 67 , Fig. 16, for the particular case when the angle $A O B$, in our Fig. 18, is zero. The demonstration of proposition (I) for the general case of Fig. 18 is not difficult; but that found by the author is rather lengthy. The demonstration of the general proposition (2) is, however, brief and direct, as follows:-

    Let $\theta_{1}$ be the hyperbolic angle of the sector $A O B$.
    Let $\theta_{2}$ be the hyperbolic angle of the sector $A O C$.
    Then it is required to show that

    $$
    \frac{\delta f}{O f}=\frac{h}{O} A=\frac{h A}{\mathrm{I}}=\tanh \frac{\left(\theta_{1}+\theta_{2}\right)}{2} .
    $$

    But from an inspection of the Figure,
    so that
    and

    $$
    \begin{aligned}
    & B e=\sinh \theta_{1}, \quad C g=\sinh \theta_{2}, \\
    & O e=\cosh \theta_{1}, \quad O g=\cosh \theta_{2}, \\
    & \dot{f \delta}=\frac{e B+g C}{2}=\frac{\sinh \theta_{1}+\sinh \theta_{2}}{2} . \\
    & O f=\frac{O e+O g}{2}=\frac{\cosh \theta_{1}+\cosh \theta_{2}}{2} . \\
    & \frac{f \delta}{O f}=\frac{\sinh \theta_{1}+\sinh \theta_{2}}{\cosh \theta_{1}+\cosh \theta_{2}}
    \end{aligned}
    $$

    Thus
    which is a known equivalent expression for $\tanh \frac{\left(\theta_{1}+\theta_{2}\right)}{2}$, see Becker and Van Orstrand's "Hyperbolic Func'tions," 1909, p. XIV, Formula (49).

[^4]:    $\qquad$

[^5]:    *"The Application of Hyperbolic Functions to Electrical Engineering Problems," by A. E. Kennelly, University of London Press, 1914, Chap. III.

[^6]:    * This operation would ordinarily be effected with the slide-rule, when a high degree of precision is not aimed at.

[^7]:    * A single set of charts entered in terms of $(x+i y)$ could be used up to $y=6.2832$ in one revolution, and could be used for all larger values by throwing out multiples of $2 \pi$. This operation of dividing $y$ by $2 \pi$ would, however, take as much time as the operation of quadranting, and would also lead to a dissymmetrical chart in the hyperbolas.

[^8]:    * The author desires to express his acknowledgement of the care and painstaking effort of his assistants engaged in computation, namely,

    > Miss Ethel Smith, A.B. Radclife, r911. Miss A. F. Daniell, A.B. Radclife, 191 r. Miss Mary M. Devlin, A.B. Radclife, 1912. Miss Hope M. Hearn, A.B. Radcliffe, ig12.

[^9]:    * This compendium has, by permission, been included in this book at its second edition, as Table XXIII.
    $\dagger$ "A new geometrical model for the orthogonal projection of the cosines and sines of complex angles" by A. E. Kennelly, Proc. Am. Ac. of Arts and Sciences, Vol. 54, April, 1919, pp. 371-378.

[^10]:    * The author desires to express his acknowledgment of the painstaking assistance, on these tables, by Miss Lillian L. Hodgdon, of the Harvard Observatory computing staff.

[^11]:    Examples. $\sinh \left(0.90 / 20^{\circ}\right)=0.997344 / 24^{\circ} .7753$. $\sinh \left(1.0 / 0^{\circ}\right)=1.175201 / 0^{\circ}$.

