

Horence L. Baldurin 1909
15 Crage \&trect.
\square

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

Tables of Logarithms

TO

FIVE PLACES OF DECIMALS,

WITH AUXILIARY TABLES.

Edited by
EDWIN S. CRAWLEY, Рh.D.,

- THOMAS A. SCOTT PROFESSOR OF MATHEMATICS IN THE UNIVERSITY OF PENNSYLVANIA.

> E. S. CRAWLEY, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, 1905.

COPYRIGHT, 1890,
BY
Edwin S. Crawley.

Electrotyped and Printed by J. B. Lippincott Company, Philadelphia, U. S. A.

EDITOR'S NOTE.

This collection of logarithmic tables has been prepared to accompany the editor's Elements of Trigonometry, in response to the demand of a number of teachers using the latter, who prefer a text bound with tables. In commending the tables to the use of educational institutions and the mathematical public in general, the editor wishes to state that great care has been taken to secure accuracy. The proof has been compared twice, number by number, with different standard tables (Vega's seven-place Tables, the 74th edition, edited by W. L. F. Fischer; and Gauss's five-place Tables, the 20th edition), and the method of differences was applied as a further check. Besides these, other tests were applied to parts of the tables, as in the case of Table III., where the $\log \tan$ column was checked by taking the difference of $\log \sin$ and $\log \cos$, and the \log cot column was checked by taking the arithmetical complement of \log tan.

Should any errors be discovered, the editor will be glad to be informed of them.

EDWIN S. CRAWLEY.

University of Penngylitania, January, 1899.

TABLE OF CONTENTS.

Explanation of the Tables vii
Table I.-Logarithms of Numbers 1
" II.-Important Constants and their Logarithms 20
" III.-Logarithms of the Sine, Cosine, Tangent, Cotangentfor every Minute of the Quadrant 21" IV.-Table for Computing the Log Sin and Log Tan ofSmall Angles67
" V.-Natural Sines, Cosines, Tangents, and Cotangents 69
" VI.-Circular Arcs, expressed in Radians 74

- VII.-Napierian Logarithms of Numbers 75
-

EXPLANATION OF THE TABLES.

1. Definitions and Rules. If three numbers n, a, x have such values that the equation

$$
\begin{equation*}
n=a^{x} \tag{1}
\end{equation*}
$$

is true, then x is called the logarithm of n to the base a. If, without changing a, we give to n and x all possible values, consistent with this equation, the values of x thus obtained form a system of logarithms to the base a.

Hence:-The logarithm of a number to a given base is the exponent of the power to which the base must be raised to produce the number.

Suppose 9 is taken for the base, then
$\log 81=2$, because $9^{2}=81$
$" 729=3, \quad "$
$9^{3}=729$
$" \quad \frac{1}{9}=-1, \quad "$
$9^{-1}=\frac{1}{9}$
$" \quad 3=\frac{1}{2}, \quad "$
$9^{\frac{1}{2}}=3$
$" \quad 9=1, \quad "$
$9^{1}=9$
$" 1=0, \quad " \quad 9^{0}=1$

In every system the logarithm of the base is 1 , and the logarithm of 1 is 0 . This follows directly from the definition, or from (1); for if $n=a, x$ must be 1 ; and if $n=1, x$ must be 0 , without respect to the value of a.

It is plain, since any number will serve as the base of a system of logarithms, that the number of such systems is indefinite.

The systems of logarithms commonly used are:
(1.) The common or Briggian* system, with the base 10.
(2.) The natural or Napierian \dagger system with the base

$$
e=2.7182818285 \ldots
$$

defined by the convergent infinite series

$$
e=1+1+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\ldots
$$

Of these two systems, the first is used for all purposes of numerical computation, and the second for purely analytical purposes.

The logarithms of these tables (excépt in Table VII.) are common or Briggian logarithms.

The corresponding logarithms of any two systems are in a constant ratio to each other. Thus the relation between common and Napierian logarithms is

$$
\log _{10} n=\frac{1}{\log _{e} 10} \log _{e} n
$$

(This equation is read: "Logarithm of n to the base 10 equals the reciprocal of the logarithm of 10 to the base e, multiplied by the logarithm of n to the base $e . "$) The factor $\frac{1}{\log _{e} 10}$ is called the modulus of the common system. It is represented by M, and its value to ten places is 0.4342944819 .

The rules governing the use of logarithms in computation are the following:-
I. To multiply numbers, find the logarithm of each factor, and add them; the sum is the logarithm of the product.
II. To divide one number by another, subtract the logarithm of the divisor from the logarithm of the dividend; the difference is the logarithm of the quotient.
III. To raise a number to any power multiply the logarithm of the number by the exponent of the power; the product is the logarithm of the required power of the number.

[^0]IV. To extract any root of a number, divide the logarithm of the number by the index of the root; the quotient is the logarithm of the required root of the number.

These statements and rules are given without proof, as the purpose bere is simply to familiarize the student with the mechanism and use of the tables. The theory of logarithms is set forth in text-books on algebra, to which the student is referred. In the same place will be found an explanation of how logarithms are computed.

Table I. Common Logarithms of Numbers. (Pages 1-19.)
2. Characteristic and Mantissa. A logarithm consists, usually, of two parts : a whole number, called the characteristic, and an incommensurable decimal fraction, called the mantissa. The table gives only the mantissa; the characteristic, which may be positive, negative, or zero, must be supplied in every case by the computer. The mantissa is always positive, except in the logarithms of exact powers of 10 , when it is zero.

Since 10 is the base we have:

$\log 1000=3$	3, because $10^{3}=1000$			
$\log 100=2$,	2,	10^{2}		
$\log 10=1$,	1,			
$\log 1=0$	0,			
$\log \quad \backslash 1=-1$,		10	$=$	
$\log .01=-2$		10	2	
og $.001=-3$		10	=	. 001

This series of equations can be extended indefinitely in both directions.

Let us now consider two numbers which contain the same sequence of figures, with different positions of the decimal point, say 72.936 and .72936 . Now $72.936=100 \times .72936$. Hence, by Rule I, § $1 \quad \log 72.936=\log 100+\log .72936$, or, by (a) $\quad=2+\log .72936$.

Hence, since any change in the position of the decimal
point in a number is equivalent to multiplication or division by a power of 10 , the effect produced upon the logarithm of the number by a change of this kind is to increase it or diminish it by a whole number; that is, the characteristic is affected by such a change, but not the mantissa. We have, therefore, the following important fact:
I. The mantissa of the logarithm of a number depends only upon the sequence of figures in the number.

Referring again to (a), we note that for all numbers greater than 1 and less than 10 (all numbers with one significant figure before the decimal point) the logarithm is greater than 0 and less than 1 , that is, its characteristic is 0 ; for all numbers greater than 10 and less than 100 (all numbers with two significant figures before the decimal point) the logarithm is greater than 1 and less than 2 , that is, its characteristic is 1 ; for all numbers greater than 100 and less than 1000 (all -numbers with three significant figures before the decimal point) the logarithm is greater than 2 and less than 3, that is, its characteristic is 2 ; and so on. Hence, we have the following rule:
II. The characteristic of the logarithm of a number greater than unity is one less than the number of significant figures preceding the decimal point.

Again, from (a) it will be seen that if a number is greater than .1 and less than 1 , its logarithm is between 0 and -1 ; that is, using a positive mantissa, which we always do, it is $-1+$ the mantissa, hence the characteristic is -1 ; if the number is greater than .01 and less than .1 , the logarithm is between -1 and -2 , which is written $-2+$ the mantissa, that is, the characteristic is -2 ; if the number is greater than .001 and less than .01 , the logarithm is between - 2 and -3 , which is written - $3+$ the mantissa, that is, the characteristic is -3 , and so on. Hence, we have the following rule :
III. The characteristic of the logarithm of a number less than unity is negative, and is numerically one greater than the number of ciphers between the decimal point and the first significant figure.

Verify the following statements:

3. To Find the Logarithm of a Number of Four Figures or Less.

If the number has less than four figures add ciphers on the right until it has four figures, and then proceed in the manner described below.

If the number has four figures, enter the table in the left hand column of the page, the column marked N, with the first three figures (the first three significant figures if the number is a decimal fraction) and with the fourth figure in the line running across the page at the extreme top or bottom. Go across the page, in the line containing the first three figures, until the column marked by the fourth figure is reached. The three figures found at this point are the last three figures of the mantissa. The first two figures of the mantissa are printed only in the first column of the body of the table, and if they are not found in the same line with the last three figures they will be found a few lines above.

Suppose the number is 48.65 . We find 486 in the N column on page 9 ; and the column marked 5 at the top and bottom is the one to the right of the heavy line down the middle of the page. The three figures in this column and on the same line with 486 are 708, which are the last three figures of the mantissa; the first two figures are 68. Hence, mantissa of $\log 48.65$ is .68708. By II. $\S 2$ characteristic of $\log 48.65$ is 1 . Hence, $\log 48.65=1.68708$.

Find \log 6.2. Annexing two ciphers, this becomes 6.200.

Proceeding then as above, we find that the mantissa is 79239. Hence, $\log 6.2=0.79239$.

Find \log 431. Annexing one cipher this becomes 431.0. Hence, the mantissa is 63448; and $\log 431 .=2.63448$.

An important exception in one point of the usual procedure is exemplified below. Find $\log .07416$. Entering the table on page 14, line 741, we find in the column marked 6 , the figures *017. The asterisk is inserted to indicate that the first two figures of the mantissa are to be taken from the line below, instead of from above. Hence, the mantissa of $\log .07416$ is .87017 ; and by III. $\S 2 \log .07416=\overline{2} .87017$. The negative sign is written over the characteristic, instead of before it, as it applies to the characteristic only, the mantissa being positive.

The reason for placing this asterisk in the table is easily seen. The last logarithm that begins with 86 is 86999 . The next one in order is 87005 , but as this comes in the middle of the page there is not room to print 87 in the same column with 005 , so the asterisk is inserted to call the computer's attention to this fact and bid him take the first two figures from below.

Verify the following statements:

$\log 863.2=2.93611$	$\log 3=0.47712$
$\log 1.29=0.11059$	$\log 2758=3.44059$
$\log 18000=4.25527$	$\log 64.58=1.81010$
$\log .92=1.96379$	$\log .00006=5.77815$
$\log .04312=\overline{2} .63468$	$\log .00183=3.26245$

It is proper at this point to explain that in practical computation negative characteristics are very rarely used. Their use is avoided by adding 10 to the characteristic and writing -10 after the logarithm. In this way the true value of the logarithm is not changed. With this modification the four logarithms above with negative characteristics become

$$
\begin{array}{ll}
\log .92=9.96379-10 & \log .00006=5.77815-10 \\
\log .04312=8.63468-10 & \log .00183=7.26245-10
\end{array}
$$

This method will be used exclusively in the examples which follow. After a little practice the -10 's written after the logarithm may be omitted without danger of error in the final
result. Rule III. § 2 can be changed, therefore, to the following:

The characteristic of the logarithm of a number less than unity is formed by subtracting from 9 the number of ciphers between the decimal point and the first significant figure, and writing -10 after the logarithm.

Verify the following statements:

$$
\begin{array}{ll}
\log .3628=9.55967-10 & \\
\log .0026=7.41497-10 \\
\log .0796=8.90091-10 & \\
\log .007=7.84510-10
\end{array}
$$

4. To Find the Number to Four Figures which Corresponds to a Given Logarithm.

The method is best explained by an example. Given $\log x$ $=1.79683$, to find x. Disregarding the characteristic for the moment, we enter the table with the first two figures of the mantissa, 79, looking for them in the column headed with 0 . We find them on page 12. We then look in that part of the body of the table which contains the logarithms beginning with 79, for the number nearest to 683 ; we find 685.

The logarithm in the table nearest to our given logarithm is now located. The first three figures of the corresponding number are taken from the column N, on the same line with 685. They are 626. The fourth figure of the number is that which stands at the top of the column containing 685. It is 4. Hence, the number is 6264 . To insert the decimal point we note that the characteristic of the given logarithm is $\mathbf{1 ;}$ hence, we must have two figures before the decimal point. We have, therefore, $x=62.64$.

Given $\log x=7.14168-10$ find x. The nearest logarithm in the table is $\mathbf{1 4 1 7 6}$, on page 2 (notice the asterisk). The corresponding number is 1386 . The real value of the characteristic is $7-10=-3$. Hence by III. § 2 there must be two ciphers between the decimal point and the first significant figure. We can also obtain the number of ciphers by subtracting the augmented characteristic 7 , from 9 , according to the rule above. The result is, therefore, $x=.001386$.

Verify the following statements:

$\log x=1.73682$,	$x=54.55$	$\log x=9.74464-10, x=.5554$
$\log x=5.41621$,	$x=260700$	$\log x=4.48493, \quad x=30540$
$\log x=8.91929-10$	$x=.08304$	$\log x=3.14139, \quad x=1385$
$\log x=2.43625$,	$x=273.1$	$\log x=7.79012-10, x=.006168$
$\log x=.64443$,	$x=4.41$	$\log x=6.56822-10, x=.00037$

5. Exercises and Examples.

1. Compute the value of $(1.789)^{5}$.

By III. \& 1, we have $\log (1.789)^{5}=5 \times \log 1.789$.
$\log 1.789=.25261$

$$
\log (1.789)^{5}=1.26305 \quad \therefore \quad(1.789)^{5}=18.33
$$

2. Compute the value of $728 \times 63.86 \times .4792$

$$
\begin{aligned}
\log 728 & =2.86213 \\
\log 63.86 & =1.80523 \\
\log .4792 & =\frac{9.68052-1 \theta}{14.34788-10}
\end{aligned}
$$

$$
\therefore \quad \text { by I. } \& 1, \log (728 \times 63.86 \times .4792)=\left\{\begin{array}{l}
\overline{14.34788-10} \\
\text { or } 4.34788 .
\end{array}\right.
$$

Hence

$$
728 \times 63.86 \times .4792=22280
$$

3. Compute the value of $\sqrt[3]{73}$.

$$
\log 73=1.86332 .
$$

By IV. \& 1, $\quad \log \sqrt[23]{73}=\frac{1}{3} \log 73=.62111$, \therefore
In dividing $\log 73$ by 3 , the division is not exact. Such cases arise with great frequency in logarithmic work; and the student must carefully observe the two following rules:
(1.) Never carry the work beyond the number of decimal places given in the table, that is with this table, five places.
(2.) When the division is not exact, always take in the last place the figure that is nearest to the true result.

Thus, in the case just above, where we divide 1.86332 by 3 , the last step of the division is 2 divided by 3 . Now 3 goes into 2 more nearly once than no times; hence, we take 1 for the last figure. Sometimes, when the divisor is an even number, the result falls just half way between two integers in the last place. We then take at pleasure either the larger or smaller of these two figures for the last figure. The following example illustrates this:

> 4. Find $\sqrt{\overline{4711 .}}$
> $\therefore \quad \log \sqrt{4711}=\frac{\log 4711}{4}=3.67311$,
> $\frac{1}{2} \log 4711=1.83655$ or 1.83656.

Both of these logarithms give 68.64 as the result to four figures.
5. Find $\sqrt[7]{.06398}$.

$$
\log .06398=8.80604-10
$$

We cannot divide this logarithm by 7 without getting an awkward result. But if we add and subtract 60 , we have

$$
\log .06398=68.80604-70
$$

where the number subtracted from the logarithm is now ten times the number by which we must divide ; and hence, after the division, it will be reduced to 10 . This is the best practice for such cases. Performing the division, we have

$$
\log \sqrt[7]{.06398}=9.82943-10, \quad \therefore \sqrt[7]{.06398}=.6752
$$

6. $x=\frac{\sqrt{27}}{(9.261)^{\frac{3}{7}}}$, find x.
$\log \sqrt{27}=\frac{1}{2} \log 27=\frac{1}{2} \times 1.43136=.71568$
$\log (9.261)^{\frac{3}{7}}=\frac{3}{7} \log 9.261=\frac{3}{7} \times 0.96666=.41428$
By II. \& $1 \quad \log x=\overline{.30140}$
$\therefore \quad x=2.002$.
7. $x=\frac{68.96 \times \sqrt[3]{.4228}}{39 \times(8.642)^{\frac{5}{3}} \times(.96)^{2}}$, find x.

$$
\log 68.96=1.83860
$$

$\log \sqrt[2]{.4228}=\frac{1}{3} \log (.4228)=\frac{1}{3} \times 29.62613-30=9.87538-10$
\log of numerator $=11.71398-10$

$$
\log 39=1.59106
$$

$$
\log \quad(8.642)^{\frac{5}{3}}=\frac{\dot{5}}{3} \log 8.642=\frac{5}{3} \times 0.93661=1.56102
$$

$$
\log (.96)^{2}=2 \log (.96)=2 \times 9.98227-10=19.96454-20
$$

$$
\log \text { of denominator }=\left\{\begin{array}{l}
\text { or } 3.11662-20
\end{array}\right.
$$

$\log x=\log$ of numerator - \log of denominator $=8.59736-10$.

Hence

$$
x=.03957
$$

In order to explain clearly each step in working this example, the amount of written work set down is much greater than is allowable in ordinary practice. The work for the same example is arranged below in more concise form, and at the same time the -10's are omitted from the logarithms with negative characteristics.

$$
\begin{array}{rlrl}
\log 39 & =1.59106 & \log 68.96 & =1.83860 \\
\log (8.642)^{\frac{5}{3}} & =1.56102 & \log v^{3} .4228 & =9.87538 \\
\log (.96)^{2} & =9.96454 & \log \text { of num. } & =\underline{1.71398} \\
\log \text { of denom. } & =3.11662 & \\
\qquad x=.03957 \quad \log x & =\underline{3.11662}
\end{array}
$$

xvi

EXAMPLES.

Find the values of the following numerical expressions, and give the results to four significant figures :
$\begin{array}{lll}\text { 1. } 839.6 \times \sqrt{6129} . & \text { Ans. } 65730 & \text { 5. } \frac{21.38 \times 6.296 \times .412}{7 \times \sqrt[3]{41290}}\end{array} \quad$ Ans. 2292
2. $19.63 \times \sqrt[3]{689.2}$. Ans. 173.4
6. $\frac{4.19 \times 6.2 \times \sqrt[3]{3} \overline{.067}}{(3.339)^{3} \times 142.9}$. Ans. 001983
3. $2 \times \frac{3.641}{(2.962)^{\frac{B}{3}}} . \quad$ Ans. 3.796
4. $\frac{\sqrt{.04968}}{\sqrt[3]{12} \times \sqrt[4]{17}}$. Ans. 04795
7. $\frac{298.7 \times 563 \times \sqrt{11}}{(2.96)^{4}} . \quad$ Ans. 7266
6. The Arithmetical Complement of the Logarithm or Co-logarithm. To compute the value of $\frac{a}{b}$ by \log arithms, we may take either $\log a-\log b$, or $\log a+\log \frac{1}{b}$. $\log \frac{1}{b}=\log 1-\log b=0-\log b$ is called the co-logarithm of b. We have, therefore, the following rule:

To form the co-logarithm of a given number subtract the logarithm of the number from 0 .

It is customary in practice to subtract the logarithm from 10 instead of from 0 , and then to write -10 after the result; that is, the logarithm is subtracted from 0 , written in the form $10.00000-10$. If the logarithm is one which has been itself augmented by 10 , the two - 10 's, that in the subtrahend and that in the minuend, cancel each other.
Ex. Find colog 729.6. Log 729.6 $=2.86308$. Subtracting this from $10.00000-10$, the result is $\operatorname{colog} 729.6=7.13692-10$.
Ex. Find colog .0641. Log $.0641=8.80686-10$. Subtracting this from $10.00000-10$, the result is $\operatorname{colog} .0641=1.19314$.

Verify the following statements:

$$
\begin{array}{ll}
\operatorname{colog} 9986=6.00061, & \text { colog } 3.9=9.40894 \\
\operatorname{colog} 7.298=9.13680, & \text { colog } 380.6=7.41953 \\
\text { colog } 4682=.32957, & \text { colog } .005=2.30103
\end{array}
$$

With a little practice the student can write down the colog directly from the table, as readily as the log itself. The practical rule is to subtract each figure of the logarithm, beginning at the left, from 9 , except the last or right-hand figure, which must be subtracted from 10. When the characteristic of the logarithm is 0 , care must be taken not to forget to subtract this from 9 , just as any other characteristic would be subtracted.

The practical advantage of using cologs consists in the fact that thereby the number of separate operations required to obtain the \log of the result is reduced. For example, suppose we wish to calculate $\log \frac{a \times b \times c}{d \times e \times f}$. Without using co $=\log s$ three operations are required:
(1.) to find $\log a+\log b+\log c$,
(2.) " $\log d+\log e+\log f$,
(3.) to subtract (2) from (1).

If, on the other hand, cologs are used, these three operations are reduced to one, viz.: to find $\log a+\log b+\log c+$ $\operatorname{colog} d+\operatorname{colog} e+\operatorname{colog} f$.
Ex. By using cologs the work of Ex. 7, p. xv., may be arranged in the following concise form:

$$
\begin{array}{ll}
\log 68.96 & =1.83860 \\
\log \exists^{2} .4228 & =9.87538 \\
\operatorname{colog} 39 & =8.40894 \\
\operatorname{colog}(8.642) \frac{5}{5} & =8.43898 \\
\operatorname{colog}(.96)^{2} & =\underline{0.03546} \\
\log x & =8.59736
\end{array}
$$

7. To Find the Logarithm of a Number which Consists of Five Figures.

This is accomplished by the aid of the operation known as interpolation. Let the given number be 31.687. The table gives $\log 31.68=1.50079$ and $\log 31.69=1.50092$. To find $\log 31,687$ a small correction must either be added to $\log 31.68$ or subtracted from $\log 31.69$.

The whole difference between two consecutive logarithms in
the table is called the tabular difference. In this case the tabular difference is 13 . That is, the logarithm increases by 13 for a change of unity in the fourth place in the number. Hence, for 7 in the fifth place the proportional change in the logarithm will be seven-tenths of 13 , or 9.1 , the nearest integer to which is 9 ; hence, 9 is the correction to be added to log 31.68 to obtain 31.687. Therefore,

$$
\log 31.687=1.50079+.00009=1.50088
$$

This method of determining the correction for the fifth figure is not theoretically correct, for it assumes that logarithms vary proportionally with the corresponding numbers; but while this is not true, it is applied here for such a small interval that no appreciable error arises from its use.

The work of computing corrections for the fifth figure is performed in the little auxiliary tables in the column headed Prop. Pts. (Proportional Parts). On the same page with log 31.68 we find one of these tables headed by the tabular difference 13. In this table we look in the column to the left of the vertical line for the fifth figure, 7, of the given number. The corresponding number to the right of the vertical line, which is 9.1 , is the required correction, the nearest integer to which must be added to the logarithm corresponding to the first four figures of the given number.

The student should accustom himself to apply the correction for the fifth figure mentally, and to write nothing on the paper except the corrected logarithm.

Verify the following statements:

$$
\begin{array}{ll}
\log 414.23=2.61724, & \log 69.426=1.84152, \\
\log 3.8642=0.58706, & \log 1418.1=3.15171, \\
\log .43007=9.63354, & \log 85672 .=4.93284 .
\end{array}
$$

8. To Find the Number to Five Figures Corresponding to any Logarithm.

Let $\log x=2.38647$. Look in the table for the nearest mantissa that is less than 38647, not for that which is absolutely
nearest, as when only four figures are required. This is found to be 38632 , which corresponds to the natural number 2434. These are the first four figures of x. Next find the tabular difference, which is 18 . Then subtract the mantissa taken from the table (38632) from the mantissa of the given logarithm (38647); the difference is 15 . Hence, we have the problem: If a difference of 18 in the mantissæ makes a change of a unit in the fourth figure of the number, what change will be made by a difference of 15 in the mantissæ? Evidently we have the proportion

$$
18: 1=15: \text { difference required }
$$

or \quad difference $=\frac{15}{18}=\frac{5}{6}=8$;
that is, the correction is 8 of a unit in the fourth place, or 8 units in the fifth place. Hence, the figures in the number x are 24348, and inserting the point after the 3, because the characteristic is 2 , we bave $x=243.48$.

The work of determining the fifth figure is performed in the marginal tables of Prop. Pts. Find the one corresponding to the tabular difference 18, and look on the right of the vertical column for the number nearest to 15 , the difference between the given \log and the next smaller one in the table. We find 14.4 and the corresponding number on the left of the vertical line, which is 8 , is the required fifth figure.

Verify the following statements:

$\log x=3.28642$,	$x=1933.8$	$\log x=7.63419-10$,	$x=.0043072$
$\log x=1.46010$,	$x=28.847$	$\log x=2.31419$,	$x=206.15$
$\log x=9.38642-10, x=.24346$	$\log x=.76787$,	$x=5.8596$	

9. Exercises and Examples.

$$
\begin{aligned}
& x=\frac{(36.842)^{\frac{1}{3}} \times(1.6272)^{2} \times 87}{\sqrt{.062416} \times 72.983 \times \sqrt{8}_{189}^{189}}, \text { find } x . \\
& \log (36.842)^{\frac{3}{3}}=1.56634 \times \frac{1}{3}=.52211 \\
& \log (1.6272)^{2}=.21144 \times 2=.42288 \\
& \log 87 \quad=1.93952 \\
& \operatorname{colog} \sqrt{.062416}=1.20471 \div 2=.60235 \\
& \text { colog } 72.983 \quad=8.13678 \\
& \operatorname{colog} \sqrt[8]{189}=7.72354 \div 3=\underline{9.24118} \\
& x=7.3252 \quad \log x=.86482
\end{aligned}
$$

EXAMPLES.

In working these examples use cologs wherever necessary, and arrange the work as on preceding page.

1. $\frac{67.284 \times .10003}{\sqrt[3]{742.99} \times 6.7843}$.

Ans. 10953
2. $\frac{63.842 \times \sqrt[4]{.064}}{(42.32)^{4} \times(.02478)^{3} \div \sqrt{2}}$.

Ans. . 93038
3. $\frac{(7.2843)^{8} \times \sqrt[4]{.00067894}}{(620.01)^{\frac{1}{3}} \times 489.62}$
4. $\frac{1986.1 \times \sqrt[3]{92.836}}{\sqrt{11} \times \sqrt[3]{22} \times \sqrt[4]{33}}$.

Ans. 306.49
5. $.064219 \times \sqrt[3]{\frac{.98612 \times 14.612}{28 \div 39.6}}$.
6. $\frac{(57.643)^{\frac{3}{8}} \times \frac{79.631}{\sqrt[2]{124.37}}}{\sqrt[7]{1000000}}$.

Ans. ${ }^{17541}$
7. $\sqrt{10} \times \sqrt[3]{100} \times \sqrt[4]{1000}$.

Ans. 82.542
10. Numbers with Six Figures. As a general rule, we cannot work to six figures in natural numbers with a table of five-place logarithms, for when the correction for the sixth figure is applied it will usually be too small to make any difference in the logarithm. On the first page or two of the table, however, where the logarithms vary rapidly, it can be done with approximate accuracy.

The correction for the sixth figure is always one-tenth of the correction for the same figure in the fifth place.

Ex. To find $\log 13.9647$.

$$
\log 13.96=1.14489
$$

correction for fifth figure $=12.4$
" " sixth " $=2.17$
total correction $\quad=14.57$, nearest integer $=15$

$$
\log 13.9647=1.14504
$$

Ex. Find x, given $\log x=2.21647$,
nearest \log in table $=$.21643, corresponding to 1646
difference
$=4$
nearest smaller prop. $\}$
$\left.\begin{array}{c}\text { pt. under tab. diff. } 26 \\ \text { difference remaining }\end{array}\right\}=\frac{2.6}{1.4}\left\{\begin{array}{c}\text { corresponding to } 1 \\ \text { for the fifth fig. }\end{array}\right.$
1.4×10 (because sixth figure is required) $=14$, corresponding to 5 for the sixth figure. Hence, $x=164.615$.

Verify the following:
$\log 1219.35=3.08613 . \quad \log x=3.12964, \quad x=1347.84$.
$\log 10.7642=1.03198 . \quad \log x=0.06432, \quad x=1.15963$.

Table II. Constants and Their Logarithms. (Page 20.)
11. No description of this table is necessary. The logarithms are given to seven places, instead of five, in case a greater degree of accuracy should be required. If only the first five places are used, the fifth figure must be increased by 1 , if the sixth figure is 5 , or more.

Table III. Logarithmic Sines, Cosines, Tangents and Cotangents. (Pages 21-66.)

12. The logarithms of the trigonometric functions are used in computation much more frequently than the functions themselves, which are called natural functions. For this reason this table is given more prominence than that of the natural functions. The table gives the logarithms of the functions for each minute from 0° to 90°. The functions of angles not expressed evenly in minutes can be found by interpolation, as explained below.

Since sec and csc are the reciprocals of \cos and sin respectively, their logs can always be found by taking the cologs of the latter.

The sin and cos of all angles and the tan of angles less than 45° are less than unity; hence, their logarithms have negative characteristics. For this reason the characteristics of all these logarithms are increased by 10 in the tables.

13. To Find the Logarithmic Function of an Angle Less than 90°.

Enter the table with the given number of degrees, which will be found at the top of the page, if it is 44° or less, but at the bottom of the page, if it is greater than 44°. The function required is read at the top or bottom of the page, according as the number of degrees is at the top or bottom, and the required logarithm is taken from the corresponding column. The minutes are read in the left hand column of the page, if the degrees are read at the top, but in the extreme right hand column of the body of the table if the degrees are read at the bottom.

EXERCISES.

1. Find $\log \sin 24^{\circ} 38^{\prime} .24^{\circ}$ is at the top of page 46 , and the \log sin column for 24° is the first column of logarithms on the page. Running down the page until we come to 38^{\prime}, we find \log sin 24° $38^{\prime}=9.61994$.
2. Find $\log \tan 57^{\circ} 16^{\prime} .57^{\circ}$ is at the bottom of page 54. Running up the page in the column marked at the bottom \log tan, until we come to the line with 16^{\prime} on the right, we find $\log \tan$ $57^{\circ} 16^{\prime}=0.19192$.
Verify the following statements:

$\log \sin 39^{\circ} 16^{\prime}=9.80136$,	$\log \cos 8^{\circ} 19^{\prime}=9.99541$,
$\log \tan 63^{\circ} 24^{\prime}=0.30037$,	$\log \cot 54^{\circ} 9^{\prime}=9.85887$,
$\log \cos 41^{\circ} 31^{\prime}=9.87434$,	$\log \tan 82^{\circ} 56^{\prime}=0.90670$,
$\log \cot 26^{\circ} 12^{\prime}=0.30798$,	
$\log \cot 7^{\circ}=0.91086$,	
$\log \cos 31^{\circ}=9.93307$,	
$\log \sin 19^{\circ} 12^{\prime}=9.51702$.	

14. Interpolating for Seconds.

Find the logarithmic functions for the degrees and minutes as before; then apply a correction for the seconds, as explained below. This correction must be added if the function is sin or tan, and subtracted if the function is cos or cot.

Find $\log \sin 16^{\circ} 28^{\prime} 35^{\prime \prime}$.
$\log \sin 16^{\circ} 28^{\prime}=9.45249$, and the tabular difference is 43 ; that is, the $\log \sin$ increases by 43 , while the angle increases by 1^{\prime}. Hence, the proportional increase for $1^{\prime \prime}$ is $\frac{43}{60}$, and for $35^{\prime \prime}$ it is $\frac{43}{6} \times 35=\frac{301}{12}=25.08 \ldots$, the nearest integer to which is the required correction. Hence,

$$
\log \sin 16^{\circ} 28^{\prime} 35^{\prime \prime}=9.45249+.00025=9.45274
$$

The auxiliary table of proportional parts for tabular difference 43 will give the same result. The column to the left of the vertical line in these auxiliary tables gives the number of seconds, arranged in the order $6,7,8,9,10,20,30,40,50$. If the correction for $1,2,3,4$, or 5 seconds is required it is obtained by taking one-tenth of that for $10,20,30,40$, or 50 respectively. The work can be arranged concisely as follows, but it is desirable in actual practice to compute the correction mentally and to write only the complete logarithm :

$$
\begin{array}{rrr}
\log \sin 16^{\circ} 28^{\prime} & =9.45249 \\
\text { correction for } 30^{\prime \prime} & = & 21.5 \\
" 45^{\prime \prime} & = & 3.58 \\
\log \sin 16^{\circ} 28^{\prime} 35^{\prime \prime} & = & 9.45274
\end{array}
$$

Find \log cot $61^{\circ} 13^{\prime} 19^{\prime \prime}$.
$\log \cot 61^{\circ} 13^{\prime}=9.73987$
correction for $10^{\prime \prime}$ (tab. diff. 30) $=5.0$
" " 9 " " " $=4.5$
nearest integer to total correction $=\overline{\mathbf{1 0 . 0}}$
Subtract correction because function is cot,
10
$\therefore \quad \log \cot 61^{\circ} 13^{\prime} 19^{\prime \prime}=$
9.73977

On pages 22 to 27 of the table, on account of the large number of differences which occur, owing to the rapid variation of the logarithms, different arrangements of the tables of Prop. Pts. are made. If the logarithm required falls on pages 25 to 27 , and it happens that the tabular difference is one for which a table of proportional parts is given, the procedure is the same as above; otherwise as follows:

Find $\log \tan 3^{\circ} 51^{\prime} 26^{\prime \prime}$

$$
\log \tan 3^{\circ} 51^{\prime}=8.82799, \text { tab. diff. }=188
$$

This tabular difference is not given, so we use the auxiliary tables for 185 and 3 (because $185+3=188$) instead.

Hence, the total correction to be added is 82 and $\log \tan 3^{\circ}$ $51^{\prime} 26^{\prime \prime}=8.82881$.

In a case of this kind it is, perhaps, just as easy to compute the correction without using the auxiliary tables.

On pages 22 to 24 the Prop. Pt. is given for one second for each tabular difference for \log sin, $\log \tan$, and \log cot. Log cos varies so slowly in this part of the table that no auxiliary tables are necessary.
Find $\log \sin 1^{\circ} 48^{\prime} 53^{\prime \prime}$.

$$
\begin{aligned}
& \log \sin 1^{\circ} 48^{\prime}=8.49708 \text {, tab. diff. }=400 \\
& \text { Prop. pt. for } 1^{\prime \prime}(\text { tab. diff. } 400)=6.67 \\
& \text { "" } " 53^{\prime \prime}=6.67 \times 53=353.51 \\
& \therefore \text { correction to be added }=354 . \\
& \text { and } \log \sin 1^{\circ} 48^{\prime} 53^{\prime \prime}=8.49708+.00354=8.50062
\end{aligned}
$$

On account of the very rapid variation in the $\log \sin$ and $\log \tan$ at the beginning of the table, the theory that the variation of the log is proportional to that of the angle, leads to results which are sometimes appreciably in error. For this reason, when great precision is required, Table IV., pp. 67, 68, should be used in finding the $\log \sin$ and \log tan of angles less than 4°. An explanation of this table is given below, § 19.

Verify the following statements:
$\begin{array}{ll}\log \cos 17^{\circ} 38^{\prime} 42^{\prime \prime}=9.97907, & \log \tan 5^{\circ} 38^{\prime} 5^{\prime \prime}=8.99416, \\ \log \tan 84^{\circ} 9^{\prime} 13^{\prime \prime}=0.98972, & \log \sin 1^{\circ} 12^{\prime} 38^{\prime \prime}=8.39482, \\ \log \sin 61^{\circ} 41^{\prime} 31^{\prime \prime}=9.9469, & \log \cos 26^{\circ} 28^{\prime} 37^{\prime \prime}=9.95188, \\ \log \cos 87^{\circ} 6^{\prime} 14^{\prime \prime}=8.70351, & \log \cot 9^{\circ} 1^{\prime} 43^{\prime \prime}=0.79889, \\ \log \cot 86^{\circ} 53^{\prime} 34^{\prime \prime}=8.73467, & \log \sin 45^{\circ} 43^{\prime} 28^{\prime \prime}=9.85491 .\end{array}$

15. To Find the Logarithmic Function of an Angle $>90^{\circ}$.

According to the theorems demonstrated in Elements of Trigonometry $\S \S 28-31$, and the rules on page 40 , summarizing the results, the functions of any angle can be found if those of all angles less than 90° are known. These results are given here in the form of the following rules:
I. To find the function of an angle between 90° and 180° subtract the angle from 180° and look for the same function of the difference, or subtract 90° from the angle and look for the co-function of the difference.
II. To find a function of an angle between 180° and 270° subtract the angle from 270° and look for the co-function of the differ-
ence, or subtract 180° from the angle and look for the same function of the difference.
III. To find a function of an angle between 270° and 360° subtract the angle from 360° and look for the same function of the difference, or subtract 270° from the angle and look for the co-function of the difference.

The second alternative in cach of these rules is better if the angle has minutes and seconds, for there is less danger of making a mistake in taking the difference.

EXERCISES.

1. Find $\log \cos 117^{\circ} 19^{\prime} 35^{\prime \prime}$.

By rule I. $\log \cos 117^{\circ} 19^{\prime} 35^{\prime \prime}=\log \left(-\sin 27^{\circ} 19^{\prime} 35^{\prime \prime}\right)$.
Note.-In taking the logarithm of a negative quantity we proceed as if the quantity were positive. To the logarithm when found, we prefix the symbol (-) or annex the symbol n. Neither of these signs affect the operations to which the logarithm may be subjected, but are used merely to remind the computer that the corresponding numbers are negative.

$$
\begin{array}{lll}
& \log \sin 27^{\circ} 19^{\prime} 35^{\prime \prime}= & 9.66187, \\
\therefore \quad & \log \cos 117^{\circ} 19^{\prime} 35^{\prime \prime}=(-) & 9.66187 .
\end{array}
$$

2. Find $\log \tan 242^{\circ} \quad 20^{\prime} 17^{\prime \prime}$.

By rule II. $\log \tan 242^{\circ} 20^{\prime} 17^{\prime \prime}=\log \tan 62^{\circ} 20^{\prime} 17^{\prime \prime}=0.28054$.
Verify the following statements:
$\log \sin 300^{\circ} 24^{\prime}=(-) 9.93577 \quad \log \cot 200^{\circ} 30^{\prime} 30^{\prime \prime}=0.42707$
$\log \cos 216^{\circ} 14^{\prime} 33^{\prime \prime}=(-) 9.90662 \quad \log \sin 138^{\circ} 48^{\prime} 6^{\prime \prime}=9.81867$
$\log \tan 101^{\circ} 6^{\prime} 52^{\prime \prime}=(-) 0.70674 \quad \log \cos 342^{\circ} 38^{\prime} 15^{\prime \prime}=9.97975$

16. To Find an Angle Given one of its Logarithmic Functions.

A further glance at the general constitution of the table is first necessary. Upon each page of the table are four columns of logarithms, the first and fourth are logarithmic sines and cosines, the second and third are logarithmic tangents and cotangents. The logarithms increase, going toward the back of the table in the first and second columns, and then passing into the fourth and third columns respectively, they increase, going toward the front of the table. Remembering this, the place of any given logarithm in the table can be found readily.

The rules for finding an angle from its logarithmic function are as follows:

If the given function is log sin or log cos look for the nearest smaller logarithm in the first or fourth column; if it is log tan or log cot, look in the second or third column.

Read the degrees at the top or bottom of the page, according as the name of the given function is at the top or bottom of the column in which the given logarithm is located.

Read the minutes on the left or right according as the degrees are read at the top or bottom of the page, and in the same line with the nearest logarithm smaller than the given one.

Determine the number of seconds by proportion and add them to the degrees and minutes found, if the given function is $\log \sin$ or $\log \tan$, but subtract them if it is $\log \cos$ or \log cot.

EXERCISES.

1. Given $\log \sin \theta=9.86592$, what is θ ?

In the fourth column on p. 64 we find 9.86589 , and $\log \sin$ is read at the bottom. Hence, the degrees and minutes are $47^{\circ} 15^{\prime}$. The tabular difference is 11 and the difference between the given \log and $\log \sin 47^{\circ} 15^{\prime}$ is 3 . Hence, θ exceeds $47^{\circ} 15^{\prime}$ by $\frac{3}{1 T}$ of one minute. This fraction reduced to seconds is $\frac{3}{1 \mathrm{I}} \times 60=16^{\prime \prime}$. Hence, $\theta=47^{\circ} 15^{\prime} 16^{\prime \prime}$ 。
To use the auxiliary table to find the number of seconds, we arrange the work as follows, using table for tabular difference 11.

whole difference	$=3$	
nearest smaller prop. pt.	$=1.8$, corresponding to	$10 / \prime$
difference remaining	$=1.2$	$"$
whole number of seconds	$=$	$\frac{60^{\prime \prime}}{16^{\prime \prime}}$

Note.-The number of seconds corresponding to 1.2 under tabular difference 11 is, according to the table, either $6^{\prime \prime}$ or $7^{\prime \prime}$; but $6^{\prime \prime}$ is really a little nearer than $7^{\prime \prime}$, as we found above.
2. Given $\log \cot \theta=0.72654$, find θ.

On p. 32, in the third column, we find 0.72643 , and \log cot is read at the top; hence, the degrees and minutes are $10^{\circ} 38^{\prime}$. The tabular difference is 70 , and the difference between $\log \cot \theta$ and 0.72643 is 11 . Hence, using table of proportional parts, we have whole difference $\quad=11$
nearest smaller prop. pt. $=10.5$, corresponding to $9^{\prime \prime}$
difference remaining $=.5$,
as this is less than half the prop. pt. for $1^{\prime \prime}(1.17)$, the entire correction is $9^{\prime \prime}$, which is subtracted from $10^{\circ} 38^{\prime}$, giving $\theta=10^{\circ} 37^{\prime} 51^{\prime \prime}$.
3. Given $\log \tan \theta=8.61246$, find θ.

On page $24, \log \tan 2^{\circ} 20^{\prime}=8.61009$.
difference $\quad=237$, tab. diff. $=310$, prop. pt. for $1^{\prime \prime}=5.17$,
no. of seconds $=\frac{237}{5.17}=46^{\prime \prime} . \quad \therefore \theta=2^{\circ} 20^{\prime} 46^{\prime \prime}$.
In these three exercises the results are incomplete, because we know from Trigonometry that there are always two angles less than 360° corresponding to any given trigonometric function. The complete answers are as follows : $1 . \theta=47^{\circ} 15^{\prime} 16^{\prime \prime}$ and 180° $47^{\circ} 15^{\prime} 16^{\prime \prime}=132^{\circ} 44^{\prime} 44^{\prime \prime}$, because $\sin \theta$ is positive in the first and second quadrants. 2. $\theta=10^{\circ} 37^{\prime} 51^{\prime \prime}$ and $180^{\circ}+10^{\circ} 37^{\prime} 51^{\prime \prime}=190^{\circ}$ $37^{\prime} 51^{\prime \prime}$. 3. $\theta=2^{\circ} 20^{\prime} 46^{\prime \prime}$ and $180^{\circ}+2^{\circ} 20^{\prime} 46^{\prime \prime}=182^{\circ} 20^{\prime} 46^{\prime \prime}$, because $\tan \theta$ and $\cot \theta$ are positive in the first and third quadrants.
4. Given $\log \cos \theta=(-) 9.62983$, find θ.

Assume that $\cos \theta$ is positive and find the angle corresponding to i in the first quadrant. We find on $p .47 \log \cos 64^{\circ} 46^{\prime}=9.62972$.
whole difference $=11$
nearest smaller prop. pt. $=9.0$, corresponding to $20^{\prime \prime}$
difference remaining $=\overline{2.0}$
number of seconds to be subtracted,
Hence, $\log \cos 64^{\circ} 45^{\prime} 36^{\prime \prime}=9.62983$.
Since the cos is negative in the second and third quadrants, we have $\quad \theta=\left\{\begin{array}{l}180^{\circ}-64^{\circ} 45^{\prime} 36^{\prime \prime}=115^{\circ} 14^{\prime} 24^{\prime \prime} \\ 180^{\circ}+64^{\circ} 45^{\prime} 36^{\prime \prime}=244^{\circ} 45^{\prime} 36^{\prime \prime} .\end{array}\right.$

When one or both values of the required angle are not in the first quadrant, the following rules are to be followed:

To find an angle in the second quadrant, subtract the angle taken from the table from 180°.

To find an angle in the third quadrant, add the angle taken from the table to 180°.

To find an angle in the fourth quadrant, subtract the angle taken from the table from 360°.

Verify the following statements :

$\log \sin \theta=-9.2$	$\theta=11^{\circ} 9^{\prime}$
$\log \cos \theta=\quad 8.46321$,	$\theta=88^{\circ} 20^{\prime} 6^{\prime \prime}$ " $271^{\circ} 39^{\prime} 54^{\prime \prime}$.
$\log \tan \theta=\quad 0.12983$,	$\theta=53^{\circ} 26^{\prime} 22^{\prime \prime}$ " $233^{\circ} 26^{\prime} 22^{\prime \prime}$.
$\log \cot \theta=\quad 9.62412$,	$\theta=67^{\circ} 10^{\prime} 36^{\prime \prime}$ " $247^{\circ} 10^{\prime} 36^{\prime \prime}$.
$\log \sin \theta=(-) 9.96419$,	$\theta=247^{\circ} 3^{\prime} 0^{\prime \prime}$ " $292^{\circ} 57^{\prime} 0^{\prime \prime}$ 。
$\log \cos \theta=(-) 9.78416$,	$\theta=127^{\circ} 28^{\prime} 15^{\prime \prime}$ " $232^{\circ} 31^{\prime} 45^{\prime \prime}$.
$\log \tan \theta=(-) 9.42317$,	$\theta=165^{\circ} 9^{\prime} 36^{\prime \prime}$ " 345°
$\log \cot \theta=(-) 8.76432$,	$\theta=93^{\circ} 19^{\prime} 35^{\prime \prime}$ " $273^{\circ} 19^{\prime} 35$

17. Functions of Negative Angles. To find the logarithmic functions of negative angles, follow the formulæ given in §31, Elements of Trigonometry.
18. General Remarks. In using a five-place table of logarithmic functions the computer should remember that the seconds in his results will be, in general, only approximately correct. Nevertheless, angles can be determined in most parts of the table more closely than to tenths of a minute; so that it seems preferable to give tables of proportional parts for seconds, rather than for tenths of a minute.

Attention is here called to the fact that throughout all the tables a final five is sometimes marked with a small dash over it, thus $\overline{5}$, and sometimes it is not so marked. This mark is used to indicate that if, for any reason, the computer wishes to use a smaller number of decimal places than are given in the table, the 5 is to be dropped without increasing the preceding figure by unity. If the 5 is not marked in this way the preceding figure must be increased by unity if the 5 is dropped.

The student may vary somewhat the procedure in the matter of interpolation as he becomes accustomed to using the tables. For example: in finding $\log 18769$ he may take log 1877 from the tables and subtract the correction for 1, instead of taking $\log 1876$ and adding the correction for 9 . Again, in finding $\log \cos 78^{\circ} 38^{\prime} 56^{\prime \prime}$ he may take $\log \cos 78^{\circ} 39^{\prime}$ and add the correction for $4^{\prime \prime}$ instead of taking $\log \cos 78^{\circ} 38^{\prime}$ and subtracting the correction for $56^{\prime \prime}$. Numerous points of this kind, which in many cases will shorten the work, will suggest themselves, and need not be specified here.

EXAMPLES.

Find θ in each of the following examples :

1. $\tan \theta=\frac{6.2984 \sin ^{2} 63^{\circ} 18^{\prime} 20^{\prime \prime}}{7.5692 \cot 116^{\circ} 36^{\prime} 12^{\prime \prime}}$

$$
\theta= \begin{cases}127^{\circ} & 1^{\prime} \\ 3 \prime \prime \\ 307^{\circ} & 1^{\prime} \\ 7^{\prime \prime}\end{cases}
$$

2. $\cos \theta=-\frac{2.93 \tan 48^{\circ} 6^{\prime} 38^{\prime \prime}}{14.12 \sin 26^{\circ} 13^{\prime} 42^{\prime \prime}}$

$$
\theta=\left\{\begin{array}{l}
121^{\circ} 34^{\prime} \\
233^{\prime \prime} \\
25^{\prime} \\
57^{\prime \prime}
\end{array}\right.
$$

3. $\sin \theta=\sqrt{\frac{\sin ^{3} 146^{\circ} 12^{\prime} 19^{\prime \prime} \times \tan 78^{\circ} 12^{\prime} 32^{\prime \prime}}{\cot ^{3} 12^{\circ} 14^{\prime} 6^{\prime \prime} \times \cos 64^{\circ} 4^{\prime} 55^{\prime \prime}}} \theta=\left\{\begin{array}{r}7^{\circ} 58^{\prime} 17^{\prime \prime} \\ 172^{\circ} 1^{\prime} 43^{\prime \prime} \\ 187^{\circ} 58^{\prime} 17^{\prime \prime} \\ 352^{\circ} 1^{\prime} 43^{\prime \prime}\end{array}\right.$
4. $\cot \theta=\frac{.93862 \cos ^{2} 312^{\circ} 38^{\prime} 40^{\prime \prime}}{.86471 \tan ^{3} 214^{\circ} 26^{\prime} 31^{\prime \prime}} \quad \theta=\left\{\begin{array}{rr}32^{\circ} 55^{\prime} 19^{\prime \prime} \\ 212^{\circ} 55^{\prime} 19^{\prime \prime}\end{array}\right.$

Table IV. (Pages 67 and 68.)
19. Sine and Tangent of Small Angles. This table derives its usefulness from the fact that when an angle (a) is small the ratios $\frac{\sin \alpha}{\alpha}$ and $\frac{\tan a}{\alpha}$ vary but slowly. The quantities S and T in the table are the logarithms (increased by 10) of these ratios, where the angle is expressed in seconds. Hence, to find \log sin and \log tan of a small angle we have the formulæ

$$
\begin{aligned}
& \log \sin a=\log a^{\prime \prime}+S \\
& \log \tan a=\log a^{\prime \prime}+T
\end{aligned}
$$

and to find a small angle from its $\log \sin$ or \log tan we have

$$
\begin{aligned}
& \log a^{\prime \prime}=\log \sin a-S \\
& \log a^{\prime \prime}=\log \tan a-T
\end{aligned}
$$

$E x$. Find $\log \tan 0^{\circ} 26^{\prime} 51^{\prime \prime}$.

$$
\begin{aligned}
0^{\circ} 26^{\prime} 51^{\prime \prime}=1611^{\prime \prime} \quad \log 1611 & =3.20710 \\
T\left(\text { for } 0^{\circ} 27^{\prime}\right) & =4.68558 \\
\therefore \quad \log \tan 0^{\circ} 26^{\prime} 51^{\prime \prime} & =7.89268
\end{aligned}
$$

(the same calculated from Table III. is 7.89264, which is thus shown to be in error four units in the fifth place).
$E x$. Given $\log \sin \alpha=8.36892$, find α.
From Table III. we find that $\alpha=1^{\circ} 20^{\prime}$ approximately; hence, the proper value of S (from Table IV) is 4.68554. We have, therefore, . $\log \sin a-S=3.68338=\log a^{\prime \prime}$

$$
\therefore \quad a=4824^{\prime \prime}=1^{\circ} 20^{\prime} 24^{\prime \prime} .
$$

Verify the following statements, by means of Table IV:

$$
\begin{aligned}
& \log \sin 0^{\circ} 57^{\prime} 36^{\prime \prime}=8.22412 . \\
& \log \tan a=8.19632, a=0^{\circ} 54^{\prime} 1^{\prime \prime} .
\end{aligned}
$$

To find the cosine or cotagent of an angle nearly 90° use the same table, taking the sine or tangent, as the case may be, of the complement of the given angle.

Table V. Natural Functions. (Pages 69-73.)

20. By the terms natural sine, cosine, etc., are meant the actual values of these functions. The table is used comparatively seldom, and for that reason the functions are given for every five minutes only. To find the functions for intermediate minutes the process of interpolation by simple proportion is used. Thus, to find $\sin 51^{\circ} 18^{\prime}$, we have

$$
\begin{aligned}
& \sin 51^{\circ} 20^{\prime}=.78079 \\
& \sin 51^{\circ} 15^{\prime}=.77988
\end{aligned}
$$

difference for $5^{\prime}=\quad 91$
hence, correction for $3^{\prime}=\frac{3}{5}$ of $91=55$, and $\sin 51^{\circ} 18^{\prime}=.77988+.00055=.78043$.

The rules given above, for adding and subtracting corrections and for finding functions of angles greater than 90°, apply here the same as in the case of Table III.

The results of interpolating minutes in that part of the table which gives the cot of angles less than 15° and the tangents of angles between 75° and 90° will, in general, not be correct in the last place. Hence, when considerable precision is required in these cases the function should be found by taking the natural number corresponding to the logarithm found in Table III.

Table VI. Circular Arcs Expressed in Radians. (Page 74.)
This table gives to seven decimal places the number of radians for every degree up to 180°, with auxiliary tables for minutes and seconds.

EXERCISES

1. How many radians in $126^{\circ} 38^{\prime} 19^{\prime \prime}$? From the table we have

number of radians in	126°	$=2.1991149$	
"	$"$	38^{\prime}	$=.0110538$
"	$"$	$19^{\prime \prime}$	$=. .0000921$
$"$	$"$	$126^{\circ} 38^{\prime} 19^{\prime \prime}$	$=\mathbf{2 . 2 1 0 2 6 0 8}$

2. How many degrees, minutes and seconds in 4.6832964 radians? As this number of radians exceeds 180, we subtract the number of
radians in 180° and find the degrees, minutes and seconds in the remainder. This last added to 180° is the result:

Given number of radians		$=4.6832964$
Radians in	180°	$=3.1415927$
Difference		$=1.5417037$
Radians in	88°	$=1.5358897$
		. 0058140
Radians in	19^{\prime}	$=.0055269$
		. 0002871
Radians in	59/'	2860
Result =	$268^{\circ} 19^{\prime} 59^{\prime \prime}$. 0000011

The last difference, .0000011 , corresponds to less than half a second.

Table VII. Napierian Logarithms of Numbers. (Pages 75, 76.)

Although these logarithms are not used for purposes of practical computation, their values are sometimes required in calculating values of transcendental functions, and for other purposes. 'The table gives the logarithm of each number from 1 to 1000 . As the value of the characteristic does not depend upon the position of the decimal point, nor the value of the mantissa solely upon the sequence of figures in the corresponding number, we cannot use the table just as we do a table of common logarithms. If $\log 363.8$ is required we can find it by interpolating between $\log 363$ and $\log 364$; but if $\log 3638$ is required we must find $\log 363.8$ in the manner just indicated, and then add $\log 10$. The work is as follows:

$$
\begin{aligned}
& \log 363=5.89440 \\
& \log 364=5.89715 \\
& \text { difference }=275 \\
& .8 \text { of difference }=220 \\
& \text { adding this to } \log 363 \text { gives } \log 363.8=5.89660 \\
& \log 10=\underline{2.30259} \\
& \log 3638=8.19919
\end{aligned}
$$

To find the number corresponding to a given Napierian logarithm we first subtract as many times $\log 10$ as may be necessary to bring the logarithm within the limits of the
table. Then find the number corresponding to this difference and multiply it by the power of 10 , whose logarithm was subtracted at the beginning. Thus, to find the number whose Napierian logarithm is 9.62983 :

$$
\begin{aligned}
\log 100= & 2 \log 10=4.60517 \\
& 9.62983-4.60517=5.02466
\end{aligned}
$$

5.02466 is the logarithm of some number between 152 and 153.

Given log $\quad=5.02466$
$\log 152=5.02388$
difference $=78$
tabular difference $=656$
$78 \div 656=.12$.
$\therefore \quad 5.02466$ is the logarithm of 152.12 .
Hence, 9.62983 is the logarithm of $152.12 \times 100=15212$.

TABLE I.

COMMON LOGARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.		
150	17609	638	667	696	725	754	782	8II	840	869			
51	898	926	955	984	*OI3	*04I	*070	*099	*127	${ }^{*} 5^{56}$		29	28
52	18184	213	241	270	298	327	355	384	412	44I		- 2.9	2.8
53	469	498	526	554	583	611	639	667	696	724		5.8	5.6
54	752	780	808	837	$86 \overline{5}$	893	92 I	949	977	*005		- 8.7	8.4
55	19033	06I	089	117	145	173	201	229	257	285	4	$4 \begin{aligned} & 11.6 \\ & 14.5\end{aligned}$	II. 2 14.0
56	312	340	368	396	424	45I	479	507	535	562	5	5 14.5 17.4	14.0 16.8
57	590	6 I 8	645	673	700	728	756	783	811	838		7	19.6
58	866	893	921	948	976	*003	*030	*058	*085	${ }^{*} 112$	8	23.2	22.4
59	20140	167	194	222	249	276	303	330	358	385		-26.1	25.2
160	412	439	466	493	520	548	$57 \overline{5}$	602	629	656			
61	683	710	737	763	790	817	844	87 I	898	925		27	26
62	952	978	*005	*032	*059	*085	*112	* 139	*165	* 192		2.7	2.6
63	21 219	245	272	299	325	352	378	405	43 I	458		5.4	5.2
64	484	511	537	564	590	617	643	669	696	722	3	8.1	7.8
65	748	$77 \overline{5}$	801	827	854	880	906	932	958	985		4 5	10.4 13.0
66	22 OII	O37	063	o89	115	141	167	194	220	246	5	5 13.8 16.2 16	13.0 15.6
67	272	298	324	350	376	401	427	453	479	505		18.9	18.2
68	53 I	557	583	608	634	660	686	712	737	763		21.6	20.8
69	789	814	840	866	891	917	943	968	994	* 19		924.3	23.4
170	$2304 \overline{5}$	070	096	121	147	172	198	223	249	274			
71	300	325	350	376	401	426	452	477	502	528			
72	553	578	603	629	654	679	704	729	754	779		1	. 5
73	-805	830	855	880	$90 \overline{5}$	930	$95 \overline{5}$	980	*005	* 030		25.	. 0
74	$2405 \overline{5}$	080	105	130	${ }^{1} 5 \overline{5}$	180	204	229	254	279		$3{ }^{7} 7$. 5
$75{ }^{\circ}$	- 304	329	353	378	403	428	452	477	502	527		4 10. 5 12.	
76	551	576	601	625	650	674	699	724	748	773		5 12.5 6 15.	
77	797	822	846	871	895	920	944	969	993	*O18		7 17.	
78	25042	066	091	115	139	164	188	212	237	261		820.	
79	285	310	334	35^{8}	382	406	43 I	455	479	503		922.	
180	527	551	575	600	624	648	672	696	720	744			
8 I	768	792	816	840	864	888	912	935	959	983			23
82	26007	O31	$05 \overline{5}$	O79	2	126	150	174	198	221			2.3
83	245	269	293	316	340	364	387	4II	435	458		4.8	4.6
84	482	505	529	553	576	600	623	647	670	694		7.2	
85	717	741	764	* 788	8II	834	*58	${ }_{*}^{88 \mathrm{I}}$	*905	* 928			9.2 II. 5
86	951	$97 \overline{5}$	998	* 02 I	*045	*068	*091	*114	*138	* 161	5	12.0 14.4	11.5 13.8
87	27184	207	231	254	277	300	323	346	370	393		16.8	16.1
88	416	439	462	485	508	53 I	554	577	600	623		19.2	18.4
89	646	669	692	715	738	761	784	807	830	852		91.6	20.7
190	875	898	921	944	967	989	*OI2	*035	*058	*081			
91	$2 8 \longdiv { 1 0 3 }$	126	149	171	194	217	240	262	$28 \overline{5}$	307		22	21
92	330	353	375	398	421	443	466	488	5II	533		2.2	2.1
93	556	578	601	623	646	668	691	713	735	758		4.4	4.2
94	780	803	$82 \overline{5}$	847	870	892	914	937	959	98I		6.6	. 3
95	29003	026	048	070	092	1 I 5	137	159	I81	203			8.4 10.5
96	226	248	270	292	314	336	358	380	403	425		13.2	10.5 12.6
97	447	469	49 r	513	$53 \overline{5}$	557	579	601	623	645		15.4	14.7
98	667 885	688	710	732	754	776	798	820	842	863		17.6	16.8
99	885	907	929	951	973	994	*016	*038	*060	*081		19.8	18.9
200	30103	I2 5	146	168	190	211	233	$25 \overline{5}$	276	298			
N.	0	1	2	3	4	5	6	7	8	9		Prop.	Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.		
200	30103	$12 \overline{5}$	146	168	190	2 II	233	$25 \overline{5}$	276	298			
OI	320	341	363	384	406	428	449	47 I	492	514		22	21
02	535	557	578	600	621	643	664	685	707	728	1	2.2	2.1
03	750	771	792	814	835	856	878	899	920	942	2	4.4	
04	963	984	*006	*027	*048	*069	*091	${ }^{*} 112$	${ }^{\text {I }} 333$	${ }^{\text { }}$ I 54	3	6.6	6.3
05	31175	197	218	239	260	281	302	323	345	366	4	8.8	8.4
06	387	408	429	450	47 I	49^{2}	513	534	555	576	5	11.0	10.5
07	597	618	639	660	68I	702	723	744	765	785	7	$\begin{array}{ll}13.2 & 1 \\ 15.4 & 1\end{array}$	12.6
08	806	827	848	869	890	911	931	952	973	994	8	17.6	16.8
09	32 OI5	035	056	077	098	118	139	160	181	201		19.8 I	18.9
210	222	243	263	284	$30 \overline{5}$	325	346	366	387	408			
11	428	449	469	490	510	531	552	572	593	613		20	
12	634	654	675	695	715	736	756	777	797	818		I 2.0	
13	838	858	879	899	919	940	960	980	* OOI	* 021		24.0	
14	33041	062	082	102	122	143	163	183	203	224		36.0	
15	244	264	284	304	325	345	365	385	405	425		$4{ }^{4} 8.0$	
16	445	465	486	506	526	546	566	586	606	626		510.0	
17	646	666	686	706	726	746	766	786	806	826		714.0	
18	846	866	885	905	925	945	965	985	*005	* $\mathrm{O} 2 \overline{5}$		816.0	
19	$34 \bigcirc 44$	064	084	104	124	143	163	183	203	223		918.0	
220	242	262	282	301	32 I	341	36I	380	400	420			
21	439	459	479	498	518	537	557	577	596	616		19	
22	635	655	674	694	713	733	753	772	792	8II		11.9	
23	830	850	869	889	908	928	947	967	986	*005		23.8	
24	35025	044	064	083	102	122	141	160	180	199		3 5.7 4 7.6	
25	218	238	257	276	295	315	334	353	372	392			
26	411	430	449	468	488	507	526	545	564	583		5 9.5 6 I 1.4	
27	603	622	641	660	679	698	717	736	755	774		713.3	
28	793	8 I 3	832	851	870	889	908	+927	946	965		815.2	
29	984	*003	* O 2 I	* 040	*059	*078	*097	*116	*135	${ }^{*} 154$		9 17.1	
230	$36 \quad 173$	192	211	229	248	267	286	305	324	342			
31	361	380	399	418	436	455	474	493	511	530			
32	549	568	586	$60 \overline{5}$	624	642	661	680	698	717		1 I .8	
33	736	754	773	791	810	829	847	866	884	903		23.6	
34	922	940	959	977	996	* 14	*033	*051	*070	*088		3 5.4 4 7.2	
35	37107	125	144	162	181	199	218	236	254	273		4 7.2 5 9.0	
36	291	310	328	346	365	383	401	420	438	457		6 10.8	
37	475	493	5II	530	548	566	585	603	621	639		7 12.6	
38	658	676	694	712	731	749	767	785	803	822		8814.4	
39	840	858	876	894	912	931	949	967	985	*003		9 16.2	
240	38021	039	057	075	093	112	130	148	166	184			
4 I	202	220	238	256	274	292	310	328	346	364		17	
42	382	399	417	435	453	471	489	507	$52 \overline{5}$	543		1 I .7	
43	561	578	596	614	632	650	668	686	703	721		23.4	
44	739	757	775	792	8 I	828	846	863	881	899		3 5.1 4 6.8	
45	917	934	952	970	987	*005	*023	*041	${ }^{*} 058$	*076		4 6.8 5 8.5	
46	39094	III	129	146	164	182	199	217	235	252		5 6 10.2	
47	270	287	$30 \overline{5}$	322	340	35^{8}	375	393	410	428		711.9	
48	445	463	480	498	515	533	550	568	585	602		813.6	
49	620	637	655	672	690	707	724	742	759	777		915.3	
250	- 794	8II	829	846	863	881	898	915	933	950			
N.	0	1	2	3	4	5	6	7	8	9		rop. P	Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
250	39794	8II	829	846	863	88I	898	915	933	950	
51	967	985	${ }^{*} \mathrm{OO2}$	*019	${ }^{\text {* }} 337$	*054	*071	*088	*106	${ }^{\text {* }}$ I23	18
52	40140	157	175	192	209	226	243	26 I	278	295	$1 \begin{array}{ll}1.8\end{array}$
53	312	329	346	364	381	398	415	432	449	466	23.6
54	483	500	518	535	552	569	586	603	620	637	3 5.4
55	654	67 I	688	705	722	739	756	773	790	807	4 7.2 5 9.0
56	824	841	858	875	892	909	926	943	960	976	5 9.0 6 10.8
57 58	41 $\begin{array}{r}993 \\ 162\end{array}$	*010	*027	* O 44	*06I	* ${ }^{\text {O }}$ + 8	*095	*111	* 128	* 145 313	7 12.6 8 12.8
58 59	$\begin{array}{r}41 \quad 162 \\ 330 \\ \hline\end{array}$	179 347	196 363	212 380	229 397	246	263 430	280	296	313 48 I	8 14.4 9 16.2
260	497	514	531	547	564	58I	597	614	631	647	
61	664	68 I	697	714	731	747	764	780	797	814	17
62	830	847	863	880	896	913	929	946	963	979	11.7
63	996	*O12	*029	*045	*062	*078	*095	*III	*127	*I44	2 3.4
64	42 160	177	193	210	226	243	259	275	292	308	3 5.1
65	$32 \overline{5}$	341	357	374	390	406	423	439	455	472	
66	488	504	521	537	553	570	586	602	619	635	5 8.5 6 10.2
67	65 I	667	684	700	716	732	749	765	781	797	711.9
68	813	830	846	862	878	894	911	927	943	959	813.6
69	975	991	*008	*024	*040	*056	* 072	*088	*IO4	* 120	9115.3
270	$4 3 \longdiv { 1 3 6 }$	152	169	$18 \overline{5}$	201	217	233	249	$26 \overline{5}$	28I	
71	297	313	329	$34 \overline{5}$	361	377	393	409	$42 \overline{5}$	44I	16
72	457	473	489	505	52 I	537	553	569	584	600	1 I .6
73	616	632	648	664	680	696	712	727	743	759	23.2
74	775	791	807	823	838	854	870	886	902	917	3 4.8
75	933	949	965	981	996	*OI2	*028	*044	*059	*075	
76	44 091	107	122	138	154	170	185	201	217	232	5 8.0 6 9.6
77	248	264	279	295	3 II	326	342	358	373	389	711.2
78	404	420	436	451	467	483	498	514	529	$54 \overline{5}$	812.8
79	560	576	592	607	623	638	654	669	685	700	914.4
280	716	731	747	762	778	793	809	824	840	855	
8 r	87 I	886	902	917	932	948	963	979	994	*OIO	15
82	45 025	040	056	071	086	102	117	133	148	163	$1 \begin{array}{ll}1.5\end{array}$
83	179	194	209	225	240	255	271	286	301	317	23.0
84	332	347	362	378	393	408	423	439	454	469	3 4.5 4 6.0
85	484	500	515	530	545	561	576	591	606	621	
86	637.	652	667	682	697	712	728	743	758	773	5 7.5 6 9.0
87 88	788	803	818	834	* 849	*64	879	894	+909	924	7 10.5
88	46939	954	969	984	*000	*O15	*030	* 045	*060	*075	812.0
89	46090	105	120	135	150	165	180	195	210	225	$9{ }_{9} 13.5$
290	240	$25 \overline{5}$	270	$28 \overline{5}$	300	315	330	$34 \overline{5}$	359	374	
91	389	404	419	434	449	464	479	494	509	523	14
92	538	553	568	583	598	613	627	642	657	672	$\begin{array}{ll}1 & 1.4\end{array}$
93	687	702	716	73I	746	761	776	790	805	820	22.8
94	835	850	864	879	894	*09	*23	+938	953	967	3 4.2 4 5.6
95	982	997	*OI2	*026	*041	*056	*070	*085	*Io	*I14	4 5.6 5 7.0
96	$47 \quad 129$	144	159	173	188	202	217	232	246	26I	5 7.0 6 8.4
97	276	290	$30 \overline{5}$	319	334	349	363	378	392	407	79.8
98	422 567	436 582	451 596	465	480 625	494 640	509 654	524 669	538 683	553 698	8811.2
300	567	582	596	6II	625	$\frac{648}{784}$	654	813	$\frac{683}{828}$	698	$9{ }^{9} 12.6$
N.	0	1	2	3	4	5					
						5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
400	$60 \quad 206$	217	228	239	249	260	271	282	293	304	
or	314	325	336	347	358	369	379	390	401	412	
02	423	433	444	455	466	477	487	498	509	520	
O3	53 I	541	552	563	574	584	595	606	617	627	
04	638	649	660	670	681	692	703	713	724	735	
-5	746	756	767	778	788	799	810	821	831	842	
06	853	863	874	885	895	906	917	927	938	949	II
07	-959	970	981	991	*002	*O13	*023	*O34	*045	*055	1 I.I
08	61 066	077	087	098	109	119	130	140	15 I	162	22.2
09	172	183	194	204	215	225	236	247	257	268	$\begin{array}{lll}3 & 3.3\end{array}$
410	278	289	300	310	321	33 I	342	352	363	374	4 4.4 5 5.5
11	384	395	. 405	416	426	437	448	458	469	479	5 5.5 6 6.6
12	490	- 500	-511	521	532	542	553	563	574	584	7 7.7
13	595	606	61!	627	637	648	658	669	679	690	88.8
14	700	711	721	731	742	752	763	773	784	794	919.9
15	$80 \overline{5}$	815	826	836	847	857	868	878	888	899	
16	909	920	930	941	951	962	972	982	993	* OO 3	
17	62 O14	024	034	045	055	066	076	086	097	107	
18	118	128	138	149	159	170	180	190	201	2 II	
19	221	232	242	252	263	273	284	294	304	315	
420	$32 \overline{5}$	335	346	356	366	377	387	397	408	418	
21	428	439	449	459	469	480	490	500	511	52 I	10
22	53.1	542	552	562	572	583	593	603	613	624	- 111.0
23	634	644	$65 \overline{5}$	665	675	685	696	706	716	726	22.0
24	737	747	757	767	778	788	798	808	818	829	3 3.0
25	839	849	859	870	880	890	900	910	921	931	$\begin{array}{lll}4 & 4.0 \\ 5 & \text { 5.0 }\end{array}$
26	94 I	95 I	961	972	982	992	* O 2	* OL 2	* 022	*O33	5 5.0 6 6.0
27	63043	053	063	073	${ }^{0} 83$	094	104	114	124	134	
28	144 246	155 256	165	175	185	195	205	215 317	225	236 337	88.0
430	347	357	367	377	387	397	407	417	428	438	
3 I	448	458	468	478	488	498	508	518	528	538	
32	548	558	568	579	589	599	609	619	629	639	
33	649	659	669	679	689	699	709	719	729	739	
34	749	759	769	779	789	799	809	819	829	839	
35	849	859	869	879	889	899	909	919	929	939	
36	949	959	969	979	988	998	*008	*O18	*028	*038	9
37	64048	058	068	078	088	098	108	118	128	137	1 l 0.9
38	147	157	167	177	187	197	207	217	227	237	21.8
39	246	256	266	276	286	296	306	316	326	335	32.7
440	345	355	365	375	$38 \overline{5}$	395	404	414	424	434	43.6
41	444	454	464	473	483	493	503	513	523	532	
42	542 640	552 650	562 660	572 670	582 680	591 689	601	611	621	631	6 5.4 7 6.3
43	640	650	660	670	680	689	699	709	719	729	 8 7.2
44		748	758	768	777		797	807	816	826	9 8.r
45 46	836 933	846	856	865 963	875 972	885 982	895 992	* C 024	* 914	+ 924	
47	65 031	040	050	060	070	079	089	099	108	118	
48	128	137	147	157	167	176	186	196	205	215	
49	225	234	244	254	263	273	283	292	302	312	
450	321	331	341	350	360	369	379	389	398	408	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
450	65321	331	34I	350	360	369	379	389	398	408	
51	418	427	437	447	456	466	475	485	495	504	
52	514	523	533	543	552	562	571	58 I	591	600	
53	610	619	629	639	648	658	667	677	686	696	
54	706	715	725	734	744	753	763	772	782	792	
55	801	8II	820	830	839	849	858	868	877	887	
56	896	906	916	925	935	944	954	963	973	982	10
57	992	*OOI	*OII	*020	*030	*039	*049	*058	*068	*077	11.0
58	66087	096	106	115	124	I34	143	153	162	172	22.0
59	181	191	200	210	219	229	238	247	257	266	$3{ }^{3} 3.0$
460	276	285	295	304	314	323	332	342	351	361	4 4.0 5 5.0
61	370	380	389	398	408	417	427	436	445	$45 \overline{5}$	66.0
62	464	474	483	492	502	511	521	530	539	549	77.0
63	558	567	577	586	596	605	614	624	633	642	88.0
64	652	66I	671	680	689	699	708	717	727	736	919.0
65	745	755	764	773	783	792	801	811	820	829	
66	839	848	857	867	876	885	894	904	913	922	
67	932	941	950	960	969.	978	987	997	*006	*OI5	
68	67025	O34	043	052	062	071	080	089	099	108	
69	117	127	136	145	154	164	173	182	191	201	
470	210	219	228	237	247	256	265	274	284	293	
71	302	3II	32I	330	339	348	357	367	376	385	9
72	394	403	413	422	43I	440	449	459	468	477	1 l 0.9
73	486	495	504	514	523	532	541	550	560	569	2 l 1.8
74	578	587	596	605	614	624	633	642	651	660	32.7
75	669	679	688	697	706	715	724	733	742	752	43.6
76	761	770	779	788	797	806	815	825	834	843	5 4.5 6 5.4
77	852	86I	870	879	888	897	906	916	*25	934	76.3
78	943	952	961	970	979	988	997	*006	*Or5	*024	87.2
79	$68 \quad 334$	043	052	06I	070	O79	088	097	106	115	98.1
480	124	133	142	151	160	169	178	187	196	205	
81	215	224	233	242	251	260	269	278	287	296	
82	305	314	323	332	34 I	350	359	368	377	386	
83	395	404	413	422	43I	440	449	458	467	476	
84	485	494	502	511	520	529	538	547	556	565	
85	574	583	592	601	610	619	628	637	646	655	
86	664	673	68I	690	699	708	717	726	735	744	8
87	753	762	771	780	789	797	806	815	824	833	10.8
88	842	851	860	869	878	886	895	904	+913	+ 922	21.6
89	931	940	949	958	966	975	984	993	*002	*OII	32.4
490	$69 \bigcirc$	028	037	046	055	064	073	082	090	099	43.2
91	108	117	126	135	144	152	161	170	179	188	
92	197	205	214	223	232	241	249	258	267	276	6 4.8 7 5.6
93	285	294	302	3 II	320	329	338	346	355	364	7 5.6 8 6.4
94	373	381	390	399	408	417	425	434	443	452	917.2
95	461	469	478	487	496	504	513	522	531	539	
96	548	557	566	574	583	592	601	609	618	627	
97	636	644	653	662	671	679	688	697	705	714	
98	723	732	740	749	758	767	775	784	793	801	
99	810	819	827	836	$84 \overline{5}$	854	862	87 I	880	888	
500	897	906	914	923	932	940	949	958	966	975	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
500	69897	906	914	923	932	940	949	958	966	975	
OI	984	992	*OOI	*OIO	*O18	*027	*036	*044	*053	*062	
02	70070	079	088	${ }^{\circ} 96$	$10 \bar{\square}$	II4	122	131	140	148	
03	157	165	174	183	191	200	209	217	226	234	
04	243	252	260	269	278	286	295	303	312	32 I	
05	329	338	346	355	364	372	381	389	398	406	
06	415	424	432	44 I	449	458	467	475	484	492	9
07	501	509	518	526	535	544	552	561	569	578	1 0.9 2
08	586	595	603	612	62I	629	638	646	$65 \overline{5}$	663	2 1.8 3 2.7
$\bigcirc 9$	672	680	689	697	706	714	723	731	740	749	3 2.7 4 3.6
510	757	766	774	783	791	800	808	817	825	834	4 3.6 5 4.5
11	842	851	859	868	876	885	893	902	910	919	6 5 5.4
12	927	935	944	952	961	969	978	986	995	*003	76.3
13	71 O12	020	029	037	046	054	063	071	079	088	87.2
14	o96	105	113	122	130	139	147	155	164	172	9 8. 1
15	181	189	198	206	214	223	231	240	248	257	
16	265	273	282	290	299	307	315	324	332	341	
17	349	357	366	374	383	391	399	408	416	$42 \overline{5}$	
18	433	44 I	$4 \overline{5}$	458	466	475	483	492	500	508	
19	517	525	533	542	550	559	567	575	584	592	
520	600	609	617	625	634	642	650	659	667	675	
21	684	692	700	709	717	725	734	742	750	759	${ }^{8}$
22	767	775	784	792	800	809	817	825	834	842	\bullet 1 0.8
23	850	858	867	875	883	892	900	908	917	$92 \overline{5}$	21.6
24	933	941	950	958	966	975	983	991	999	*008	3 2.4 4 3
25	72016	024	032	041	049	057	066	074	082	090	$4{ }^{4} 3.2$
26	099	107	II5	123	132	140	148	156	165	${ }^{5} 73$	5 4.0 6 4.8
27	181	189	198	206	214	222	230	239	247	255	75.6
28	263	272	280	288	296	304	313	321	329	337	86.4
29	346	354	362	370	378	387	395	403	4II	419	97.2
530	428	436	444	452	460	469	477	485	493	501	
3 I	509	518	526	534	542	550	558	567	575	583	
32	591	599	607	616	624	632	640	648	656	665	
33	673	681	689	697	705	713	722	730	738	746	
34	754	762	770	779	787	795	803	8 II	819	827	
35	835	843	852	860	868	876	884	892	900	908	
36	916	925	933	941	949	957	965	973	981	989	7
37	997	*006	*O14	* O 22	*030	*038	*046	*054	*062	*070	1 l 0.7
38	73078	086	094	102	111	119	127	${ }^{1} 35$	143	151	2 I .4
39	159	167	175	183	191	199	207	215	223	23 I	3 2.1
540	239	247	255	263	272	280	288	296	304	312	$4{ }^{4} 2.8$
4 I	320	328	336	344	352	360	368	376	384	392	5 3.5 6 4.2
42	400	408	416	424	432	440	448	456	464	472	6 4.2 7 4.9
43	480	488	496	504	512	520	528	536	544	552	7 4.9 8 5.6
44	560	568	576	584	592	600	608	616	624	632	96.3
45	640	648	656	664	672	679	687	695	703	7 II	
46	719	727	735	743	751	759	767	775	783	791	
47	799	807	815	823	830	838	846	854	862	870	
48	878	886	894	902	910	918	*926	* 933	*941	*949	
49	957	965	973	981	989	997	*005	*O13	* 220	*028	
550	$74 \quad 036$	044	052	060	068	076	084	092	099	107	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
550	74.036	044	052	060	068	076	084	092	099	107	
51	115	123	131	139	147	$15 \overline{5}$	162	170	178	186	
52	194	202	210	218	225	233	241	249	257	265	
53	273	280	288	296	304	312	320	327	335	343	
54	351	359	367	374	382	390	398	406	414	42 I	
55	429	437	$44 \overline{5}$	453	46 I	468	476	484	492	500	
56	507	515	523	53 I	539	547	554	562	570	578	
57	586	593	601	609	617	624	632	640	648	656	
58	663	671	679	687	695	702	710	718	726	733	
59	74 I	749	757	764	772	780	788	796	803	81I	
560	819	827	834	842	$8 \overline{5}$ O	858	865	873	881	889	
6 I	896	904	912	920	927	*935	*943	950	-958	*666	8
62	974	981	989	997	*005	*OI2	*020	*028	*035	* 043	1 8
63	75 051	059	066	074	082	089	097	Io $\overline{5}$	II3	120	1 0.8 2 1.6
64	128	136	143	151	159	166	174	182	189	197	2 1.6 3 2.4
65	$20 \overline{5}$	213	220	228	236	243	251	259	266	274	3 2.4 4 3.2
66	282	289	297	305	312	320	328	335	343	35I	5 4.0
67	358	366	374	381	389	397	404	412	420	427	64.8
68	$43 \overline{5}$	442	450	458	465	473	481	488	496	504	75.6
69	5II	519	526	534	542	549	557	565	572	580	86.4
570	587	595	603	610	618	626	633	64I	648	656	97 7.2
71	664	67 I	679	686	694	702	709	717	724	732	
72	740	747	755	762	770	778	785	793	800	808	
73	815	823	831	838	846	853	86I	868	876	884	
74	891	899	906	914	921	929	937	944	952	959	
75	967	974	982	989	997	* 005	*O12	* 020	*027	*035	
76	76042	050	057	065	072	080	087	095	103	110	
77	118	125	133	140	148	155	163	170	178	185	
78	193	200	208	215	223	230	238	245	253	260	
79	268	275	283	290	298	305	313	320	328	335	
580	343	350	358	365	373	380	388	395	403	410	
8 I	418	425	433	440	448	$45 \overline{5}$	462	470	477	485	
82	492	500	507	515	522	530	537	$54 \overline{5}$	552	559	
83	567	574	582	589	597	604	612	619	626	634	7
84	641	649	656	664	671	678	686	693	701	708	1 0.7
85	716	723	730	738	745	753	760	768	$77 \overline{5}$	782	
86	790	797	$80 \overline{5}$	812	819	827	834	842	849	856	3 2.1 4 2.8
87	864	871	879	886	893	901	908	916	923	930	4 3.8 5 3.5
88	938	945	953	960	967	975	982	989	997	*004	64.2
89	77 O12	-19	026	034	-41	048	056	063	070	078	74.9
590	085	093	100	107	II5	122	129	137	144	151	85.6
9 I	159	166	173	18I	188	195	203	210	217	225	96.3
92	232	240	247	254	262	269	276	283	291	298	
93	305	313	320	327	335	342	349	357	364	371	
94	379	386	393	401	408	415	422	430	437	444	
95	452	459	466	474	481	488	495	503	510	517	
96	$52 \overline{5}$	532	539	546	554	56 I	568	576	583	590	
97	597	605	612	619	627	634	64 I	648	656	663	
98	670	677	685	692	699	706	714	721	728	735	
99 600	743	$\frac{750}{822}$	757	$\frac{764}{837}$	$\frac{772}{84}$	$\frac{779}{851}$	$\frac{786}{859}$	$\frac{793}{866}$	801	808	
600	815	822	830	837	844	851	859	866	873	880	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
600	$77 \underline{815}$	822	830	837	844	851	859	866	873	880	
or	887	895	902	909	916	924	931	938	945	952	
02	960	967	974	981	988	996	*003	*OIO	* 017	${ }^{\circ} \mathrm{O} 25$	
03	78 032	039	046	053	06I	068	075	082	089	097	
04	104	III	118	125	I32	140	147	154	161	168	
05	176	183	190	197	204	211	219	226	233	240	
06	247	254	262	269	276	283	290	297	305	312	8
07	319	326	333	340	347	$35 \overline{5}$	362	369	376	383	1 0.8 2
08	390	398	405	412	419	426	433	440	447	455	2 1.6 3 2.4
$\bigcirc 9$	462	469	476	483	490	497	504	512	519	526	3 2.4 4 3.2
610	533	540	547	554	561	569	576	583	59°	597	4 3.2 5 4.0
11	604	611	618	625	633	640	647	654	661	668	5 4.0 4.8
12	675	682	689	696	704	711	718	725	732	739	
13	746	753	760	767	774	781	789	796	803	810	86.4
14	817	824	831	838	845	852	859	866	873	880	977
15	888	895	902	909	916	923	930	937	944	951	
16	958	965	972	979	986	993	*000	*007	*O14	*O2I	
17	79029	036	043	-5]	057	064	071	078	085	092	
18	099	106	113	120	127	134	141	148	155	162	
19	169	176	183	190	197	204	211	218	225	232	
620	239	246	253	260	267	274	28I	288	295	302	
2 I	309	316	323	330	337	344	351	358	365	372	
22	379	386	393	400	407	414	42 I	428	435	442	1 l 0.7
23	449	456	463	470	477	484	491	498	505	511	2 I. 4
24	518	525	532	539	546	553	560	567	574	581	3 2.1 4 2.8
25	588	595	602	609	616	623	630	637	644	650	4 2.8 5 3.5
26	657	664	671	678	685	692	699	706	713	720	5 3.5 6 4.2
27	727	734	741	748	754	761	768	775	782	789	
28	796	803	810	817	824	831	837	844	851	858	85.6
29	865	872	879	886	893	900	906	913	920	927	96.3
630	934	94I	948	$95 \overline{5}$	962	969	975	982	989	996	
31	80003	olo	017	024	030	037	044	051	058	065	
32	072	079	085	092	099	106	113	120	127	134	
33	140	147	154	16 I	168	$17 \overline{5}$	182	188	195	202	
34	209	216	223	229	236	243	250	257	264	271	
35	277	284	291	298	305	312	318	325	332	339	
36	346	353	359	366	373	380	387	393	400	407	6
37	414	42 I	428	434	44I	448	$45 \overline{5}$	462	468	475	$1{ }^{1} 0.6$
38	482	489	496	502	509	516	523	530	536	543	21.2
39	550	557	564	570	577	584	591	598	604	6II	3 I 1.8
640	618	$62 \overline{5}$	632	638	645	652	659	665	672	679	$4{ }^{4} 2.4$
41	686	693	699	706	713	720	726	733	740	747	5 3.0 6 3.6
42	754	760	767	774	781	787	794	801	808	814 882	
43	821	828	835	841	848	$85 \overline{5}$	862	868	875	882	7 4.2 8 4.8
44	889	895	902	909	916	922	929	*936	* 943	*949	915
45	956	963	969	976	983	990	996	*003	*010	*OI7 084	
46	81 023	030	037	043	050	057	064	070	077	084	
47	090	097	104	111	117	124	131	137	144	151	
48	158	164	171	178	184	19 I	198	204	211	218	
49	224	23 I	238	$24 \overline{5}$	251	258	$26 \overline{5}$	271	278	285	
650	291	298	305	311	318	$32 \overline{5}$	331	338	$34 \overline{5}$	351	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. P's.
300	84 510	516	522	528	535	541	547	553	559	566	
OI	572	578	584	590	597	603	609	615	621	628	
02	634	640	646	652	658	665	675	677	683	689	
O3	696	702	708	714	720	726	733	739	$74 \overline{5}$	751	
04	757	763	770	776	782	788	794	800	807	813	
05	819	825	831	837	844	850	856	862	868	874	
06	880	887	893	899	905	9II	917	924	930	936	7
07	942	948	954	960	967	973	979	985	991	997	10.7
08	85003	009	016	022	028	O34	040	046	052	058	2 l 1.4
09	065	071	077	083	089	095	Ior	107	114	120	$3{ }^{2.1}$
710	126	132	138	144	150	156	163	169	175	181	4 2.8 5 3.5
11	187	193	199	205	211	217	224	230	236	242	5 3.8 6 4.2
12	248	254	260	266	272	278	285	291	297	303	74.9
13	309	315	321	327	333	339	345	352	358	364	85.6
14	370	376	382	388	394	400	406	412	418	$42 \overline{5}$	96.3
15	43 I	437	443	449	455	461	467	473	479	485	
16	491	497	503	509	516	522	528	534	540	546	
17	552	558	564	570	576	582	588	594	600	606	
18	612	618	625	631	637	643	649	655	661	667	
19	673	679	685	691	697	703	709	715	721	727	
720	733	739	745	751	757	763	769	775	781	788	
21	794	800	806	812	818	824	830	836	842	848	.
22	854	860	866	872	878	884	890	896	902	908	- 10.6
23	914	920	926	932	938	944	950	956	962	968	21.2
24	974	980	986	992	998	*004	*010	*016	*022	*028	
25	86034	040	046	052	058	064	070	076	082	088	4 2.4 5 3.0
26	094	100	106	112	118	I24	130	136	141	147	5 3.0 6 3.6
27	153	159	165	171	177	183	189	195	201	207	74.2
28	213	219	225	23I	237	243	249	255	261	267	84.8
29	273	279	285	291	297	303	308	314	320	326	95
730	332	338	344	350	356	362	368	374	380	386	
31	392	398	404	410	415	42 I	427	433	439	445	
32	451	457	463	469	475	481	487	493	499	504	
33	510	516	522	528	534	540	546	552	558	564	
34	570	576	581	587	593	599	605	611	617	623	
35	629	635	641	646	652	658	664	670	676	682	
36	688	694	700	705	711	717	723	729	735	741	5
37	747	753	759	764	770	776	782	788	794	800	1 l 0.5
38	806	812	817	823	829	835	841	847	853	859	2 I. ${ }^{\text {a }}$
39	864	870	876	882	888	894	900	906	911	917	31.5
740	923	929	935	941	947	953	958	964	970	976	42.0
41	982	988	994	999	*005	*OII	*017	*O23	*029	* ${ }^{\text {O }} 5$	5 2.5 6 3.0
42	87040	046	052	058	064	070	075	081	087	093	
43	099	$10 \overline{5}$	III	116	122	128	134	140	146	151	84.0
44	157	163	169	$17 \overline{5}$	181	186	192	198	204	210	94.5
45	216	221	227	233	239	$24 \overline{5}$	251	256	262	268	
46	274	280	286	291	297	303	309	315	320	326	
47	332	338	344	349	355	361	367	373	379	384	
48	390	396	402	408	413	419	$42 \overline{5}$	43 I	437	442	
49	448	454	460	466	471	477	483	489	495	500	
750	506	512	518	523	529	535	541	547	552	558	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
750	87506	512	518	523	529	535	54I	547	552	558	
51	564	570	576	581	587	593	599	604	610	616	
52	622	628	633	639	$64 \overline{5}$	651	656	662	668	674	
53	679	685	691	697	703	708	714	720	726	731	
54	737	743	749	754	760	766	772	777	783	789	
55	795	800	806	812	818	823	829	835	841	846	
56	852	858	864	869	875	88I	887	892	898	904	
57	910	915	921	927	933	938	944	950	955	961	
58	967	973	978	984	990	996	* OOI	*007	*OI3	*or8	
59	$88 \bigcirc$	O30	O36	041	047	053	058	064	070	076	
760	081	087	093	098	104	110	116	121	127	133	
6I	138	144	150	156	16I	167	173	178	184	190	
62	195	201	207	213	218	224	230	235	241	247	1 l 0.6
63	252	258	264	270	275	28I	287	292	298	304	2 I .2
64	309	315	321	326	332	338	343	349	355	360	3 1.8 4 2.4
65	366	372	377	383	389	395	400	406	412	417	4 2.4 5 3.0
66	423	429	434	440	446	45I	457	463	468	474	5 3.0 6 3.6
67	480	485	491	497	502	508	513	519	$52 \overline{5}$	530	78.2
68	536	542	547	553	559	564	570	576	581	587	84.8
69	593	598	604	610	6I5	621	627	632	638	643	9 9.4
770	649	$65 \overline{5}$	660	666	672	677	683	689	694	700	
71	705	711	717	722	728	734	739	$74 \overline{5}$	750	756	
72	762	767	773	779	784	790	795	801	807	812	
73	8 I 8	824	829	835	840	846	852	857	863	868	
74	874	880	885	891	897	902	908	913	919	$92 \overline{5}$	
75	930	936	941	947	953	958	*964	+969	975	981	
76	986	992	997	*003	*009	*OI4	*020	*025	* 031	*037	
77	89042	048	053	059	064	070	076	081	087	092	
78	098	104	109	115	120	126	131	137	143	148	
79	154	159	165	170	176	182	187	193	198	204	
780	209	215	221	226	232	237	243	248	254	260	
8 I	265	271	276	282	287	293	298	304	310	315	5
82	321	326	332	337	343	348	354	360	365	371	10.5
83	376	382	387	393	398	404	409	415	421	426	21.0
84	432	437	443	448	454	459	465	470	476	481	31.5
85	487	492	498	504	509	515	520	526	531	537	42.0
86	542	548	553	559	564	570	575	581	586	592	5 2.5 6 3.0
87	597	603	609	614	620	625	631	636	642	647	$7 \begin{array}{ll}7 \\ 3.5\end{array}$
88	653	658	664	669	675	680	686	691	697	702	884.0
89	708	713	719	724	730	735	74I	746	752	757	94.5
790	763	768	774	779	$78 \overline{5}$	790	796	801	807	812	
91	818	823	829	834	840	845	85 I	856	862	867	
92	873	878	883	889	894	900	905	911	916	922	
93	927	933	938	944	949	$95 \overline{5}$	960	966	971	977	
94	982	988	993	998	*004	*009	*OI 5	*020	*026	*031	
95	90037	042	048	053	059	064	069	075	080	086	
96	091	097	102	108	II3	119	124	129	135	140	
97	146	151	157	162	168	173	179	184	189	195	
98	200	206	211	217	222	227	233	238	244	249	
99	$25 \overline{5}$	260	266	271	276	282	287	293	298	304	
800	309	314	320	325	331	336	342	347	352	358	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
800	$90 \quad 309$	314	320	325	331	336	342	347	352	358	
or	363	369	374	380	385	390	396	401	407	412	
02	417	423	428	434	439	$44 \overline{5}$	450	455	461	466	
03	472	477	482	488	493	499	504	509	515	520	
04	526	531	536	542	547	553	558	563	569	574	
05	580	585	590	596	601	607	612	617	623	628	
06	634	639	644	650	655	660	666	671	677	682	
07	687	693	698	703	709	714	720	725	730	736	
08	74 I	747	752	757	763	768	773	779	784	789	
$\bigcirc 9$	795	800	806	8II	816	822	827	832	838	843	
810	849	854	859	865	870	875	881	886	891	897	
11	902	907	913	918	924	929	934	940	$94 \overline{5}$	950	6
12	956	961	966	972	977	982	988	993	998	*004	
13	91 009	OI4	020	025	030	036	041	046	052	057	10.6
14	062	068	073	078	084	089	094	100	105	110	2 1.2 3 8
15	116	I2I	126	${ }^{1} 32$	137	142	148	153	158	164	3 1.8 4 2.4
16	169	174	180	185	190	196	201	206	212	217	4 2.4 5 3.0
17	222	228	233	238	243	249	254	259	265	270	63.6
18	275	28I	286	291	297	302	307	312	318	323	74.2
19	328	334	339	344	350	$35 \overline{5}$	360	365	37 I	376	8 8 4.8
820	38 I	387	392	397	403	408	413	418	424	429	915.4
21	434	440	$44 \overline{5}$	450	455	461	466	47 I	477	482	
22	487	492	498	503	508	514	519	524	529	$53 \overline{5}$	
23	540	545	551	556	56I	566	572	577	582	587	
24	593	598	603	609	614	619	624	630	635	640	
25	645	651	656	661	666	672	677	682	687	693	
26	698	703	709	714	719	724	730	735	740	745	
27	751	756	761	766	772	777	782	787	793	798	
28	803	808	814	819	824	829	834	840	845	850	
29	855	861	866	871	876	882	887	892	897	903	
830	908	913	918	924	929	934	939	944	950	$95 \overline{5}$	
31	960	965	971	976	981	986	991	997	*002	*007	
32	92 O12	or8	023	028	033	O38	044	049	054	059	
33	065	070	075	080	085	ogr	096	IOI	106	III	- 5
34	117	122	127	132	137	143	148	153	158	163	1 0.5 2 I. 0
35	169	174	179	184	189	195	200	205	210	215	2 1.0 3 1.5
36	221	226	231	236	241	247	252	257	262	267	3 1.5 4 2.0
37	273	278	283	288	293	298	304	309	314	319	52.5
38	324	330	335	340	345	350	355	361	366	371	63.0
39	376	38 I	387	392	397	402	407	412	418	423	73.5
840	428	433	438	443	449	454	459	464	469	474	84.0
4 I	480	485	490	495	500	505	511	516	521	526	914.5
42	531	536	542	547	552	557	562	567	572	578	
43	583	588	593	598	603	609	614	619	624	629	
44	634	639	645	650	655	660	665	670	675	681	
45	686	691	696	701	706	711	716	722	727	732	
46	737	742	747	752	758	763	768	773	778	783	
47	788	793	799	804	809	814	819	824	829	834	
48	840	845	850	$85 \overline{5}$	860	865	870	875	88I	886	
49	891	896	901	906	911	916	921	927	932	937	
850	942	947	952	957	962	967	973	978	983	988	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
850	92942	947	952	957	962	967	973	978	983	988	
5 I	993	998	*003	*008	*OI3	*018	*024	*029	${ }^{*} 034$	*039	
52	93.044	049	054	059	064	069	075	080	085	090	
53	095	100	105	110	115	120	125	131	136	141	
54	146	151	156	161	166	171	176	181	186	192	
55	197	202	207	212	217	222	227	232	237	242	
56	247	252	258	263	268	273	278	283	288	293	6
57	298	303	308	313	318	323	328	334	339	344	10.6
58	349	354	359	364	369	374	379	384	389	394	2 1.2 3 1.8
59 860	$\underline{399}$	404	409	414	420	425	430	435	440	$44 \overline{5}$	3 1.8 4 2.4
860	$4 \overline{5} 0$	$45 \overline{5}$	460	465	470	475	480	485	490	495	4 2.4 5 3.0
6 I	500	505	510	515	520	526	531	536	541	546	63.6
62	551 601	556	56 I	566	57 I	576	58I	586	591	596	74.2
63	601	606	611	616	62I	626	631	636	641	646	84.8
64	651	656	661	666	671	676	682	687	692	697	915.4
65	702	707	712	717	722	727	732	737	742	747	
66	752	757	762	767	772	777	782	787	792	797	
67	802	807	812	817	822	827	832	837	842	847	
68	852	857	862	867	872	877	882	887	892	897.	
69	902	907	912	917	922	927	932	937	942	947	
870	952	957	962	967	972	977	982	987	992	997	
71	94002	007	OI2	or 7	022	027	032	037	042	047	5
72	052	057	062	067	072	077	082	086	091	096	1 l 0.5
73	101	106	III	116	121	126	131	136	141	146	2 1.0
74	151	156	I6I	166	171	176	181	186	191	196	31.5
75	201	206	211	216	221	226	23 I	236	240	245	$4{ }^{4} \mathbf{2 . 0}$
76	250	255	260	265	270	275	280	285	290	295	5 2.5 6 3.0
77	300	305	310	315	320	325	330	335	340	$34 \overline{5}$	73.5
78	349	354	359	364	369	374	379	384	389	394	84.0
79	399	404	409	414	419	424	429	433	438	443	9 9.5
880	448	453	458	463	468	473	478	483	488	493	
8 r	498	503	507	512	517	522	527	532	537	542	
82	547	552	557	562	567	571	576	58 I	586	591	
83	596	601	606	611	616	621	626	630	635	640	
84	645	650	655	660	$66 \overline{5}$	670	675	680	685	689	
85	694	699	704	709	714	719	724	729	734	738	
86	743	748	753	758	763	768	773	778	783	787	4
87	792	797	802	807	${ }_{812}$	817	822	827	832	836	I 0.4
88	841	846	851	856	861	866	871	876	880	885	20.8
89	890	895	900	$90 \overline{5}$	910	915	919	924	929	934	31.2
890	939	944	949	954	959	963	968	973	978	983	4 1.6
91	988	993	998	*002	*007	*OI2	*017	*022	*027	* ${ }^{0} 32$	5 2.0 6 2.4
92	95036	041	046	051	056	06 I	066	071	075	080	6 2.4 7 2.8
93	085	090	095	100	$10 \overline{5}$	109	114	119	124	129	7 2.8 8 3.2
94	134	139	143	148	153	158	163	168	173	177	93.6
95	182	187	192	197	202	207	211	216	221	226	
96	231	236	240	245	250	255	260	265	270	274	
97	279	284	289	294	299	303	308	313	318	323	
98	328	332	337	342	347	352	357	361	366	37 I	
99 900	376	381	386	390	395	400	$40 \overline{5}$	410	415	419	
900	424	429	434	439	444	448	453	458	463	468	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.	
900	95424	429	434	439	444	448	453	458	. 463	468		
OI	472	477	482	487	492	497	501	506	5II	516		
02	52 I	525	530	535	540	$54 \overline{5}$	$5 \overline{5} 0$	554	559	564		
03	569	574	578	583	588	593	598	602	607	612		
04	617	622	626	631	636	641	646	650	655	660		
05	665	670	674	679	684	689	694	698	703	708		
06	713	718	722	727	732	737	742	746	751	756		
07	761	766	770	775	780	$78 \overline{5}$	789	794	799	804		
08	809	813	818	823	828	832	837	842	847	852		
09	856	861	866	871	875	880	885	890	895	899		
910	904	909	914	918	923	928	933	938	942	947		
II	952	957	961	966	971	976	980	985	990	$99 \overline{5}$		5
12	. 999	*OQ4	*009	*OI4	*O19	*023	*028	*O33	* 038	*042	I	0.5
13	96047	052	057	06I	066	07 I	076	080	085	090	2	1.0
14	095	099	104	109	II4	II8	123	128	133	137	3	1.5
15	142	147	152	156	161	166	171	175	180	$18 \overline{5}$	4	2.0 2.5
16	190	194	199	204	209	213	218	223	227	232	5	
17	237	242	246	251	256	26 I	265	270	$27 \overline{5}$	280	7	3.5
18	284	289	294	298	303	308	313	317	322	327	8	4.0
19	332	336	341	346	350	355	360	$36 \overline{5}$	369	374	9	
920	379	384	388	393	398	402	407	412	417	42 I		
2 I	426	43I	435	440	$44 \overline{5}$	$4 \overline{5} 0$	454	459	464	468		
22	473	478	483	487	492	497	501	506	511	515	-	
23	520	$52 \overline{5}$	530	534	539	544	548	553	558	562		
24	567	572	577	58 I	586	591	595	600	$60 \overline{5}$	609		
25	6 I 4	619	624	628	633	638	642	647	652	656		
26	66 I	666	670	675	680	$68 \overline{5}$	689	694	699	703		
27	708	713	717	722	727	731	736	741	745	750		
28	$75 \overline{5}$	759	764	769	774	778	783	788	792	797		
29	802	806	8II	816	820	$82 \overline{5}$	830	834	839	844		
930	848	853	858	862	867	872	876	881	886	890		
31	$89 \overline{5}$	900	904	909	914	918	923	928	932	937		4
32	942	946	951	956	960	$96 \overline{5}$	970	974	979	984	1	
33	988	993	997	*002	*007	*OII	*OI6	* 02 I	* 025	*030	2	
34	97 035	039	044	049	053	058	063	067	072	077	3	
35	08I	086	090	095	100	104	109	II4	118	123	4	1.6
36	128	132	137	142	146	151	155	160	$16 \overline{5}$	169	5	2.0
37	174	179	183	188	192	197	202	206	2 II	216		2.4 2.8
38	220	225	230	234	239	243	248	253	257	262	8	2.8 3.2
39	267	271	276	. 280	285	290	294	299	304	308		
940	313	317	322	327	331	336	340	345	350	354		
41	359	364	368	373	377	382	387	391	396	400		
42	405	410	414	419	424	428	433	437	442	447		
43	451	456	460	$46 \overline{5}$	470	474	479	483	488	493		
44	497	502	506	5 II	516	520	$52 \overline{5}$	529	534	539		
45	543	548	552	557	562	566	571	575	580	$58 \overline{5}$		
46	589	594	598	603	607	612	617	621	626	630		
47	$63 \overline{5}$	640	644	649	653	658	663	667	672	676		
48	681	685	690	695	699	704	708	713	717	722		
49	727	731	736	740	$74 \overline{5}$	749	754	759	763	768		
950	772	777	782	786	791	795	800	804	809	813		
N.	0	1	2	3	4	5	6	7	8	9	Prop	Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
950	$97 \underline{772}$	777	782	786	791	795	800	804	809	$8 \mathrm{I}_{3}$	
5 I	818	823	827	832	836	841	845	850	$85 \overline{5}$	859	
52	864	868	873	877	882	886	891	896	900	905	
53	909	914	918	923	928	932	937	941	946	950	
54	$95 \overline{5}$	959	964	968	973	978	982	987	991	996	
55	98000	005	009	O14	O19	023	028	032	037	041	
56	046	050	055	059	064	068	073	078	082	087	
57	091	-96	100	$10 \overline{5}$	109	114	118	123	127	132	
58	137	141	146	150	155	159	164	168	173	177	
59	182	186	191	195	200	204	209	214	218	223	
960	227	232	236	24I	245	$2 \overline{5}$	254	259	263	268	
61	272	277	281	286	290	295	299	304	308	313	
62	318	322	327	331	336	340	345	349	354	358	10.5
63	363	367	372	376	381	385	390	394	399	403	2 I. 0
64	408	412	417	421	426	430	$43 \overline{5}$	439	444	448	3 1.5 4 2.0
65	453	457	462	466	471	475	480	484	489	493	4 2.0 5 2.5
66	498	502	507	511	5 I 6	520	$52 \overline{5}$	529	534	538	63.0
67	543	547	552	556	56I	565	570	574	579	583	73.5
68	588	592	597	601	605	610	614	619	623	628	84.0
69	632	637	641	646	650	655	659	664	668	673	94.5
970	677	682	686	691	695	700	704	709	713	717	
71	722	726	731	735	740	744	749	753	758	762	
72	767	771	776	780	784	789	793	798	802	807	
73	811	816	820	$82 \overline{5}$	829	834	838	843	847	85I	
74	856	860	865	869	874	878	883	887	892	896	
75	900	905	909	914	918	923	927	932	936	94I	
76	$94 \overline{5}$	949	954	958	963	967	972	976	981	985	
77	989	994	998	*003	*007	*OI2	*016	*021	*025	*029	
78	99034	O38	043	047	052	056	06I	065	069	074	
79	078	083	087	092	096	100	$10 \overline{5}$	109	114	I18	
980	123	127	I31	136	140	$14 \overline{5}$	149	154	158	162	
8 I	167	171	176	180	$18 \overline{5}$	189	193	198	202	207	4
82	211	216	220	224	229	233	238	242	247	251	1 0.4
83	255	260	264	269	273	277	282	286	291	295	20.4
84	300	304	308	313	317	322	326	330	$33 \overline{5}$	339	3 1.2 4 1.6
85	344	348	352	357	361	366	370	374	379	383	4 1.6 5 2.0
86	388	392	396	401	405	410	414	419	423	427	5 2.0 6 2.4
87	432	436	44 I	$44 \overline{5}$	449	454	458	463	467	471	72.8
88	476	480	484	489	493	498	502	506	51I	515	83.2
89	520	524	528	533	537	542	546	550	$55 \overline{5}$	559	93.6
990	564	568	572	577	581	585	590	594	599	603	
91	607	612	616	621	$62 \overline{5}$	629	634	638	642	647	
92	651	656	660	664	669	673	677	682	686	691	
93	695	699	704	708	712	717	721	726	730	734	
94	739	743	747	752	756	760	765	769	774	778	
95	782	787	791	795	800	804	808	813	817	822	
96	826	830	835	839	843	848	852	856	861	865	
. 97	870	874	878	883	887	891	896	900	904	909	
98	913	917	922	926	930	935	939	944	948	952	
99	957	961	965	970	974	978	983	987	991	996	
1000	00000	004	009	O13	017	022	026	030	035	039	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

TABLE II.

CONSTANTS WITH THEIR LOGARITHMS.

	Number.	Logarithm.
π (ratio of circumference to diameter) .	3.14159265	0.4971499
π^{2}	9.86960440	0.9942997
$\sqrt{ } \bar{\pi}$	1.77245385	0.2485749
$\frac{\mathrm{I}}{\pi}$	0.31830989	9.50285 OI-10
$\frac{\mathrm{I}}{\pi^{2}}$	o. 10132118	9.00570 03-10
$\frac{\mathbf{I}}{\sqrt{\pi}}$.	0.56418958	$9.7514251-10$
Number of degrees in circumference .	360°	2.5563025
" minutes "	21600^{\prime}	4.3344538
" seconds "	$1296000^{\prime \prime}$	6.11260 50
Degrees in arc equal to radius	$57^{\circ} \cdot 2957795$	1.75812 26
Minutes " " ،	$3437^{\prime} .74677$	3.5362739
Seconds " "	206264' ${ }^{\prime \prime} .806$	5.3144251
Length of arc of I degree .	. 01745329	8.2418774 -10
" " I minute.	.00029089	6.46372 61-10
" " I second	. 000004848	4.68557 49-10
Napierian base	2.718281828	0.4342945
Modulus of common logarithms	0.434294482	9.6377843 -10
Hours in which earth revolves through arc equal to radius	3.8197186	0.5820314
Equat. radius of earth, miles (Clarke, 1878)	3963.296	3.5980565
Polar " ، " "	3949.790	3.5965740
Mean " "	3956.	3.5972563
Inches in I metre (U. S. Standard) .	39.37	I. 5951654
" I (British Standard) .	39.37079	I. 5951741
" I " (Clarke, 1866) . .	39.37043	r.59517 or
Feet in I mile	5280.	3.7226339
Feet in I nautical mile (U. S. Coast Survey)	6080.290	3.7839243
Feet per second in I mile per hour .	1. 466667	.1663315
Miles per hour in I foot per second	0.681818	9.83366 86-10

TABLE III.

LOGARITHMS

OF THE
SINE, COSINE, TANGENT, AND COTANGENT

FOR

EACH MINU̇TE OF THE QUADRANT.

2°

1	L. Sill.	d.	L. Tang.	c. d.	I. Cotg.	L. Cos.		Prop. Pts.			
0	8.84358		8.84464		1.15536	9.99894	60				
1	$8.8+539$	181	8.84646	182	1.15 354	9.99893	59		180	177	174
2	$8.8+718$	179	8.84826	180	1.15174	9.99892	58	6	18.0	17.7	17.4
3	8.84897	$\begin{array}{r}179 \\ 178 \\ \hline 17\end{array}$	8.85006	180	1.14 994	9.99891	57	8	21.0	20.7	20.3
4	8.85075	178	8.85185	179	1.14895	9.99891	56	8	24.0	23.6	23.2
5	8.85252	177	8.85363	178	1.14 637	9.99890	55	9	27.0	26.6	26.1
6	8.85429	177	8.85540	177	1.14460	9.99889	54	10	30.0	29.5	29.0
7	8.85605	${ }^{7} 76$	8.85, 717	177	1.14283	9.99888	53		60.0	59.0	58.0
8	8.85780	175	8.85893	176	1.14107	9.99887	52		90.0	88.5	87.0
9	8.85955	175	8.86069	176	1.13931	9.998886 9.998	51		120.0	118.0	116.0
10	8.86128	173	8.86243	$\mathbf{7 4}$	1.13 757	9.99885	50		0.	147	45.0
11	8.86301	173	8.86417	174	1.13 583	9.99884	49		171	169	167
12	8.86474	173	8.86591	174	I.13 409	9.99883	48	6	17.1	16.9	16.7
13	8.86645	171	8.86763	172	1.13 237	9.99882	47	7	20.0	19.7	19.5
14	8.86816	171	8.86935	172	1.13065	9.9988 I	46	8	22.8	22.5	22.3
15	8.86987	171	8.87106	17	1.12894	9.99880	45	9	25.7	25.4	25.1
16	8.87156	169 169	8.87277	171	1.12723	9.99879	$4+$		28.5	28.2	27.8
17	8.87325	169 169	8.87447	170 169	1.12 553	9.9988879	43	20	57.0 85.5	56.3	55.7
18	8.87494	169 167	8.87616	169 169	1.12384	9.99878	42		85.5 14.0	84.5 112.7	83.5 111.3
19	8.87661	167	8.87785	169 168	1.12215	9.99877	4 I		114.0	112.7	111.3 139.2
20	8.87829		8.87953		1.12047	9.99876	40		142.5	140.8	139.2
21	8.87995	166 166	8.88120	167 167	I.11 880	$9.9987 \overline{5}$	39		65	163	160
22	8.88 I 61	165	8.88287	167 166	I.11 713	9.99874	38	6	I6.5	16.3	16.0
23	8.88326	165	8.88453	166	1.11 547	9.99873	37	7	19.3	19.0	18.7
24	8.88490	164	8.88618	165	$1.11{ }^{882}$	9.99872	36	8	22.0	21.7	21.3
25	888654		8.88783		1.11217	9.99871	35	9	24.8	24.5	24.0
26	8.88 817	1	$8.889+8$	165	I.11 052	9.99870	34	10	27.5	27.2	26.7
27	8.88980	163	8.89 III	163	I.10 889	9.99869	33		55.0	54.3	53.3
28	8.89142	162	8.89274	163	1.10 726	9.99868	32	30	82.5	81.5	80.0
29	8.89304	162	8.89437	163	1.10 563	9.99867	31	40	110.0	108.7	106.7
30	8.89464		8.89598		1.10 402	9.99866	30		37.5	135.8	133.3
3 I	$8.8962 \overline{5}$	161	8.89760	162	1.10240	9.99865	29		157	155	153
32	8.89784	159	8.89920	160	1.10080	9.99864	28	6	15.7	15.5	15.3
33	8.89943	159	8.90080	160	1.09920	9.99863	27	7	18.3	18.1	17.9
34	8.90102	159	8.90240	160	1.09760	9.99862	26	8	20.9	20.7	20.4
35	8.90260	158	8.90399	58	1.09601	999861	25	9	23.6	23.3	23.0
36	8.90417	157	8.90557	158	1.09443	9.99860	24		26.2	25.8	25.5
37	8.90574	157	8.90715	158	1.09285	9.99859	23		52.3	51.7	51.0
38	8.90730	156	8.90872	157	1.09128	9.99858	22		78.5	77.5	76.5
39	8.90885	155	8.91029		1.08971	9.99857	21		104.7	103.3	102.0
40	8.91040		8.91185		1.08815	9.99856	20		30.8	129.2	27.5
41	8.91195	155	8.91340	155	1.08660	$9.9985 \overline{5}$	19		151	149	147
42	8.91349	154	8.91495	155	$1.0850 \overline{5}$	9.99854	18	6	15.1	14.9	14.7
43	8.91502	153	8.91650	155	1.08350	9.99853	17	7	17.6	17.4	17.2
44	8.91655	153	8.91803	53	1.08197	9.99852	16	8	20.	19.9	19.6
45	8.91807	152	8.91957	154	1.08043	9.99851	15	9	22.7	22.4	22.
46	8.91959	152	8.92110	$\times 53$	1.07890	9.99850	14		25.2	24.8	24.5
47	8.92 110	151	8.92262	152	1.07738	9.99848	13		50.3	49.7	49.0
48	8.92261	151	8.92414	152	1.07586	9.99847	12		75.5	74.5	73.5
49	8.92411	15	8.92565	51	1.07435	9.99846	II		100.7	99.3	98.0
50	8.92561		8.92716		1.07284	9.99845	10		25.8	12.	22.5
51	8.92710	149	8.92866	50	1.07134	9.99844	9		146		I
52	8.92859	149	8.93 о16	150	1.06984	9.99843	8		I 4.6	0.2	I
53	893007	148	8.93165	149	1.06835	9.99842	7		17.0	0.2	0.1
54	8.93154	147	8.93313	148	1.06687	9.99841			19.5	0.3	. 1
55	8.93301	147	8.93462	149	1.06538	9.99840	5		21.9	0.3	0.2
56	8.93448	147	8.93609	147	1.06391	9.99839			24.3	0.3	0.2
57	8.93594	146	8.93756	147	1.06244	9.99838			48.7	0.7	0.3
58	8.93740	146	8.93903	147	1.06097	9.99837	2		73.0	1.	0.5
59	8.93885	145	8.94049		1.05951	9.99836	1		97.3	1.3	7
60	8.94030		8.94195		1.05805	9.99834	0		121.7	1.7	
	L. Cos.	d.	I. Cotg.	c. d.	L. 'Tang.	I. Sin.	/		Prop	P't	

\prime	L. Sin.	d.	L. 'rang.	C. d.	L. Cotg.	L. Cos.		Prop. Pts.			
0	8.94030		8.94195		1.05805	9.99834	60				
1	8.94174	144	8.94340	145	1.05660	9.99833	59		145	143	141
2	8.94317	143	8.94485	145	1.05 515	9.99832	58	6	14.5	14.3	14.1
3	8.944^{61}	144	8.94630	145	1.05370	9.99831	57	7	16.9	16.7	16.5
4	8.94603	142	8.94773	143	1.05227	9.99830	56	8	19.3	19.1	18.8
5	8.94746	141	8.94917	144	1.05083	9.99829	55	9	21.8	21.5	1.2
6	8.94887	141	8.95060	143	1.04940	9.99828	54	10	24.2	23.8	23.5
7	8.95029	142	8.95202	142	1.04 798	9.99827	53	20	48.3	47.7	47.0
8	8.95170	141	8.95344	142	1.04 656	9.99825	52	30	72.5	71.5	70.5
9	8.95310	140	8.95486	142	1.04514	9.99824	51	40	96.7 120.8	95.3	94.0
10	$8.954 \overline{50}$		8.95627		1. 04373	9.99823	50	50	120	II9.2	117.5
II	8.95589	139	8.95767	140	1.04 233	9.99822	49		139	138	136
12	8.95728	139	8.95908	141	1.04092	9.99821	48	6	13.9	13.8	13.6
13	8.95867	139	8.96047	139	1.03953	9.99820	47	7	16.2	16.1	15.9
14	8.96005	138	8.96187	140	1.03813	9.99819	46	8	18.5	18.4	18.1
${ }^{1} 5$	8.96 143	1	8.96325	138	1.03675	9.99817	45	9	20.9	20.7	20.4
16	8.96280	137	8.96464	139	1.03536	9.998818	44	10	23.2	23.0	22.7
17	8.96417	137	8.96602	138	r.03 398	9.99815	43	20	46.3	46.0	45.3
18	8.96553	136	8.96739	137	1.03261	9.99814	43	30	69.5	69.0	68.0
19	8.96689	136	8.96877	138	1.03123	999813	4 I	40	92.7	92.0	90.7
20	8.96825		8.97 O13		1.02987	9.99 812	40		115.8	II5.0	113.3
21	8.96960	13	8.97 r 5 O	${ }^{3} 3$	1.02850	9.99810	39		135	133	131
22	8.97095	135	8.97285	135	1.02715	9.99809	38	6	13.5	13.3	13.1
23	8.97229	134	8.9742 T	136	1.02579	9.99808	37	7	15.8	15.5	15.3
24	8.97363	134	8.97556	135	1.02444	9.99807	36	8	18.0	17.7	17.5
25	8.97496		8.97 691		1.02309	9.99806	35	9	20.3	20.0	19.7
26	8.97629	133	8.97825	134	1.02175	9.99804	34	10	22.5	22.2	21.8
27	8.97762	133	8.97959	134	1.02041	9.99803	33	20	45.0	$44 \cdot 3$	43.7
28	8.97894	132	8.98092	133	1.01 908	9.99802	32	30	67.5	66.5	65.5
29	8.98026	132	8.98225	133	r.or 775	9.99801	3 r	40	90.0	88.7	87.3
30	8.98 157	13 I	8.98358	133	I.OI 642	9.99800	30	50	112.	110.8	109:2
31	8.98288	13 I	8.98490	13^{2}	I.OI 510	9.99798	29		129	28	126
32	8.98419	13 I	8.98622	132	1.01 378	9.99797	28	6	12.9	12.8	12.6
33	8.98549	130	8.98753	13 x	I.OI 247	9.99796	27	7	15.1	14.9	14.7
34	8.98679	130	8.98884	13 I	1.01 116	9.99795	26	8	17.2	17.1	16.8
35	8.98808	129	8.99 or $\overline{5}$	131	1.00985	9.99793	25	9	19.4	19.2	18.9
36	8.98937	129	8.99145	130	r.00 855	9.99792	24	10	21.5	21.3	21.0
37	8.99066	129	8.99275	130	1.00725	9.99791	23	20	43.0	42.7	42.0
38	8.99194	128	8.99405	130	1.00 595	9.99790	22	30	64.5	64.0	63.0
39	8.99322		8.99534	29	1.00 466	9.99788	21	40	86.0	85.3	84.0
40	$8.994 \overline{50}$		8.99662		1.00338	9.99787	20		107.5	106.7	105.0
41	8.99577	127	8.99791	128	1.00209	9.99786	19		125	123	122
42	8.99704	127	8.99 919	128	1.00 081	9.99785	18	6	12.5	12.3	12.2
43	8.99830	126	9.00046	127	0.99954	9.99783	17	7	14.6	14.4	14.2
44	8.99956	126	9.00174	128	0.99826	9.99782	16	8	16.7	16.4	16.3
45	9.00082		9.00301		0.99699	9.99781	15	9	18.8	18.5	18.3
46	9.00207	125	9.00427	126	0.99573	9.99780	14	10	20.8	20.5	20.3
47	9.00332	125	9.00553		0.99447	9.99778	13	20	4 L .7	41.0	40.7
48	9.00456	124 125	9.00679	126	0.99321	9.99777	12	30	62.5	6 r .5	61.0
49	9.0058 I	125	9.00805	26	0.99195	9.99776	II	40	83.3	82.0	81.3
50	9.00704	123	9.00930		0.99070	9.99775	10	50	104.2	102	101. 7
51	9.00828	124	9.01055	25	0.98945	9.99773	9			120	1
52	9.00951	123	9.01179	124	0.98821	9.99772	8	6	12.1	12.0	0.1
53	9.01074	123	9.01303	124	0.98697	9.99771		7	14.1	14.0	0.1
54	9.01 196		9.01427	124	0.98573	9.99769	6		16.1	16.0	0.1
55	9.01318		9.01 550		$0.984{ }^{\circ} \mathrm{O}$	9.99768	5	9	18.2	18	0.2
56	9.01440		9.01673	123	0.98327	9.99767	4	Io	20.2	20.0	0.2
57	9.01561	121	9.01796	123	0.98204	9.99765	3	20	40.3	40.0	0.3
58	9.01682	121	9.01918	122	0.98082	9.99764	3	30	60.5	60.0	0.5
59	9.01803	121	902040	122	097960	9.99763	I		80.7		0.7
60	9.01923		9.02162		0.97838	9.99761	0		100.8	100	0.8
	L. Cos.	d.	L. Cotg.	c. d.	L.Tang.	L. Sin.	$\boldsymbol{\prime}$		Pro	. Pts	

84°

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 \& L. Sin. \& d. \& \multicolumn{3}{|l|}{L.'Tang.|c. d. L. Cotg.} \& L. Cos. \& \& \multicolumn{4}{|c|}{Prop. Pts.} \\
\hline \multirow[t]{5}{*}{1
1
2} \& 9.01923 \& \multirow[b]{5}{*}{\[
\begin{aligned}
\& 120 \\
\& 120 \\
\& 120 \\
\& 1 \times 9
\end{aligned}
\]} \& \multirow[t]{5}{*}{\begin{tabular}{l}
9.02162 \\
9.02283 \\
9.02404 \\
9.02525 \\
9.02645
\end{tabular}} \& \multirow[b]{5}{*}{\[
\begin{aligned}
\& 121 \\
\& 121 \\
\& 121 \\
\& 120 \\
\& 121
\end{aligned}
\]} \& \multirow[t]{5}{*}{0.97838
0.97717
0.97596
0.97475
0.97355} \& \multirow[t]{5}{*}{\[
\begin{aligned}
\& 9.9976 \mathrm{I} \\
\& 9.99760 \\
\& 9.99759 \\
\& 9.99757 \\
\& 9.99756 \\
\& \hline
\end{aligned}
\]} \& \multirow[t]{5}{*}{\[
\begin{array}{|c}
\hline \mathbf{6 0} \\
59 \\
58 \\
57 \\
56 \\
\hline
\end{array}
\]} \& \multicolumn{4}{|r|}{\multirow[b]{2}{*}{\begin{tabular}{|l|l|l|}
121 \& 120 \& 119
\end{tabular}}} \\
\hline \& 9.02043 \& \& \& \& \& \& \& \& \& \& \\
\hline \& 9.02163 \& \& \& \& \& \& \& 6 \& 12.1 \& 12. \& 11.9 \\
\hline \& 9.02283 \& \& \& \& \& \& \& 7 \& 14.1 \& 14. \& 13.9 \\
\hline \& 9.02402 \& \& \& \& \& \& \& \& 16.1 \& \& \\
\hline 5 \& 9.02520 \& \& 9.02766 \& \& 0.97234 \& 9.99755 \& \& 10 \& 18.2
20.2 \& 18.0
20.0 \& \\
\hline 6 \& 9.02639 \& 119
118 \& 9.02885 \& 120 \& 0.97115 \& 9.99753 \& 54 \& 10 \& 20.2
40.3 \& 20.0 \& \\
\hline 8 \& \begin{tabular}{l}
9.02757 \\
9.02874 \\
\hline .0298
\end{tabular} \& 117 \& 9.03005
9.03124 \& 119 \& 0.96995 \& 9.99752
9.99751 \& 53 \& \& 40.3
60.5 \& 40.0
60.0 \& 39.7
59.5 \\
\hline 9 \& 9.02992 \& 18 \& 9.03242 \& 118 \& 0.96758 \& 9.99751
9.99749 \& 52
51 \& 40 \& 80.7 \& 80. \& 79.3 \\
\hline 10 \& 9.03109 \& \multirow[b]{2}{*}{117} \& 9.03 361 \& \& 0.96639 \& 9.99748 \& 50 \& 50 \& \multicolumn{2}{|l|}{} \& \multirow[t]{2}{*}{99.2
116} \\
\hline 11 \& 9.03226 \& \& 9.03479 \& 118 \& 0.96521 \& 9.99747 \& 49 \& \& 118 \& 117 \& \\
\hline 12 \& 9.03342 \& 116 \& 9.03597 \& 118 \& 0.96403 \& 9.99745 \& 48 \& 6 \& 11.8 \& 11.7 \& . 6 \\
\hline 13 \& 9.03458 \& 116 \& 9.03714 \& 17 \& 0.96286 \& 9.99744 \& 47 \& \& 13.8 \& 13.7 \& 13.5 \\
\hline 14 \& 9.03574 \& \& 9.03832 \& \& 0.96168 \& 9.99742 \& 46 \& \& 15.7 \& 15.6 \& 15.5 \\
\hline 15 \& 9.03690 \& \& 9.03948 \& \& 0.96052 \& 9.99741 \& 45 \& 9 \& 7.7 \& 17.6 \& 17.4 \\
\hline 16 \& 9.03805 \& 115 \& 9.04065 \& 17 \& \(0.9593 \overline{5}\) \& 9.99740 \& 44 \& 10 \& 19.7 \& 19.5 \& 19.3 \\
\hline 17 \& 9.03920 \& 12 \& 9.04 181 \& 16 \& 0.95819 \& 9.99738 \& 43 \& 20 \& 39.3 \& 39.0 \& 38.7 \\
\hline 18 \& 9.04034 \& \& 9.04297 \& \& 0.95703 \& 9.99737 \& 42 \& 30 \& 59.0 \& 58.5 \& 58.0 \\
\hline 19 \& 9.04149 \& \multirow[b]{2}{*}{13} \& 9.04413 \& \& 0.95587 \& 9.99736 \& 41 \& \multirow[b]{2}{*}{50} \& 78.7 \& 78.0 \& 77.3 \\
\hline 20 \& 9.04262 \& \& 9.04528 \& 115 \& 0.95472 \& 9.99734 \& 40 \& \& 88.3 \& 97.5 \& 96.7 \\
\hline 21 \& 9.04376 \& \& 9.04643 \& 15 \& 0.95357 \& 9.99733 \& 39 \& \& 115 \& 114 \& 113 \\
\hline 22 \& 9.04490 \& \& 9.04758 \& 125 \& 0.95242 \& 9.9973 I \& 38 \& 6 \& 11.5 \& 11.4 \& 11.3 \\
\hline 23 \& 9.04603 \& 12 \& 9.04873 \& 15 \& 0.95127 \& 9.99730 \& 37 \& \& 13.4 \& 13.3 \& 13.2 \\
\hline 24 \& 9.04715 \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{9.04987} \& 1 \& 0.95013 \& 9.99728 \& 36 \& 8 \& 15.3 \& 15.2 \& 15.1 \\
\hline 25 \& 9.04828 \& \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 114 \\
\& 113
\end{aligned}
\]} \& 0.94899 \& 9.99727 \& 35 \& \multirow[t]{2}{*}{9} \& 17.3 \& \multirow[t]{2}{*}{17.1} \& \multirow[t]{2}{*}{17.0
18.8} \\
\hline 26 \& 9.04940 \& \multirow[t]{2}{*}{112} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 9.05214 \\
\& 9.05328
\end{aligned}
\]} \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 0.94786 \\
\& 0.94672
\end{aligned}
\]} \& \multirow[t]{2}{*}{9.99726
9.99724} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 34 \\
\& 33
\end{aligned}
\]} \& \& \multirow[t]{2}{*}{38.3} \& \& \\
\hline 27 \& 9.05052 \& \& \& 113 \& \& \& \& \multirow[t]{2}{*}{20} \& \& 38.0 \& 37.7 \\
\hline 28 \& 9.05164 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 112 \\
\& 111
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
\[
9.05441
\] \\
9.05553
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 113 \\
\& 112
\end{aligned}
\]} \& \multirow[t]{2}{*}{0.94559} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 9.99723 \\
\& 9.9972 \mathrm{I} \\
\& \hline
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 33 \\
\& 32 \\
\& 31
\end{aligned}
\]} \& \& \multirow[t]{2}{*}{57.5
76.7} \& \multirow[t]{2}{*}{57.0} \& \multirow[t]{2}{*}{56.5} \\
\hline 29 \& 9.05275 \& \& \& \& \& \& \& 30
40
50 \& \& \& \\
\hline 30 \& 9.05 \& \& 9.05666 \& 13 \& 0.94334 \& \multicolumn{2}{|l|}{9.99720} \& \& \multicolumn{2}{|l|}{95.8} \& 94.2 \\
\hline 31 \& 9.05497 \& \& 9.05778 \& \& 0.94222 \& 9.99718 \& 29 \& \& 112 \& III \& 110 \\
\hline 32 \& 9.05607 \& 110 \& 9.05890 \& \& 0.94110 \& 9.99717 \& 28 \& 6 \& 11.2 \& 11.1 \& 11.0 \\
\hline 33 \& 9.05717 \& \& 9.06002 \& \& 0.93998 \& 9.99716 \& 27 \& 7 \& 13.1 \& 13.0 \& 12.8 \\
\hline 34 \& 9.05827 \& \& 9.06113 \& \& 0.93887 \& 9.99714 \& 26 \& \& \multirow[t]{2}{*}{14.9
16.8} \& \multirow[t]{2}{*}{14.8
16.7} \& \multirow[t]{2}{*}{14.7
16.5} \\
\hline 35 \& 9.05937 \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{9.06224
9.06335} \& \multirow[t]{2}{*}{III} \& 0.93776 \& 9.99713 \& 25 \& \multirow[t]{2}{*}{} \& \& \& \\
\hline 36 \& 9.06046 \& \& \& \& \multirow[b]{2}{*}{-0.93 555} \& 9.997 II \& 24 \& \& 18.7 \& 18.5 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 18.3 \\
\& 36.7
\end{aligned}
\]} \\
\hline 37 \& 9.06155 \& \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 9.06445 \\
\& 9.06556
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { Yo } \\
\& \text { III }
\end{aligned}
\]} \& \& 9.99711 \& 23 \& \multirow[t]{2}{*}{20
30} \& \multirow[t]{2}{*}{37.3
56.0} \& \multirow[t]{2}{*}{37.0
55.5} \& \\
\hline 38 \& 9.06264 \& 109 \& \& \& \multirow[b]{2}{*}{0.93444
0.9334} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 9.99708 \\
\& 9.99707 \\
\& \hline
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 22 \\
\& 21
\end{aligned}
\]} \& \& \& \& \[
35.7
\] \\
\hline 39 \& 9.06372 \& \& 9.06666 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 110 \\
\& 100
\end{aligned}
\]} \& \& \& \& \multirow[t]{2}{*}{40} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 74.7 \\
\& 03.3
\end{aligned}
\]} \& 74.0 \& \multirow[t]{2}{*}{73.3} \\
\hline 40 \& 9.06 481 \& \& 9.06775 \& \& 0.93225 \& 9.99705 \& 0 \& \& \& \& \\
\hline 41 \& 9.06589 \& 108 \& 9.06885 \& \& 0.93115 \& 9.99704 \& 19 \& \& 109 \& 108 \& 107 \\
\hline 42 \& 9.06696 \& 107 \& 9.06994 \& 109 \& 0.93006 \& 9.99702 \& 18 \& \& 10.9 \& 10.8 \& 10.7 \\
\hline 43 \& 9.06804 \& 108 \& 9.07103 \& 109 \& 0.92897 \& 9.99701 \& 17 \& \& 12.7 \& 12.6 \& 12.5 \\
\hline 44 \& 9.06 9II \& \& 9.07211 \& \& 0.92789 \& 9.99699 \& 16 \& 8 \& 14.5 \& 14.4 \& 14.3 \\
\hline 45 \& 9.07 O18 \& \& 9.07320 \& \& 0.92680 \& 9.99698 \& 15 \& \& 16.4 \& 16.2 \& 16.1 \\
\hline 46 \& 9.07124 \& \& 9.07428 \& \& 0.92572 \& 9.99696 \& 14 \& 0 \& 18.2 \& 18.0 \& 17.8 \\
\hline 47 \& 9.07231 \& 107 \& 9.07536 \& 108 \& 0.92464 \& 9.99695 \& 13 \& 20 \& 36.3 \& 36.0 \& 35.7 \\
\hline 48 \& 9.07337 \& 106 \& 9.07643 \& 107 \& 0.92357 \& 9.99693 \& 12 \& 30 \& 54.5 \& 54.0 \& 53.5 \\
\hline 49 \& 9.07442 \& \& 9.07751 \& \& 0.92249 \& 9.99692 \& 11 \& \& 72.7 \& 72.0 \& 71.3 \\
\hline 50 \& 9.07548 \& \& 9.07858 \& \& 0.92142 \& 9.99690 \& 10 \& \& \& 90.0 \& 89.2 \\
\hline 51 \& 9.07653 \& 105 \& 9.07964 \& 10 \& 0.92036 \& 9.99689 \& \& \& 106 \& 105 \& 104 \\
\hline 52 \& 9.07758 \& 105 \& 9.08071 \& 107

106 \& 0.91929 \& 9.99687 \& 8 \& 6 \& 10.6 \& 10.5 \& 10.4

\hline 53 \& 9.07863 \& 105 \& 9.08177 \& \& 0.91823 \& 9.99686 \& 7 \& 7 \& 12.4 \& 12.3 \& I

\hline 54 \& 9.07968 \& \& 9.08283 \& \& 0.91717 \& 9.99684 \& 6 \& \& 14.1 \& 14.0 \& 13.9

\hline 55 \& 9.08072 \& \& 9.08389 \& \& 0.91611 \& 9.99683 \& \& 9 \& 15. \& 15.8 \& 15.6

\hline 56 \& 9.08176 \& \& 9.08495 \& \& 0.91505 \& 9.99 681 \& 4 \& 10 \& 17.7 \& 17.5 \& 17.3

\hline 57 \& 9.08280 \& 104 \& 9.08600 \& 105 \& 0.91400 \& 9.99680 \& 3 \& 20 \& 35 \& 35. \& 34.7

\hline 58 \& 9.08383 \& 103 \& 9.08705 \& 105 \& 0.91295 \& 9.99678 \& 2 \& 30 \& \& 52. \& . 0

\hline 59 \& 9.08486 \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| .08810 | 105 |
| :--- | :--- |
| 08914 | |}} \& 0.91190 \& 9.99677 \& \& \& \& 70.0 \& 69.3

\hline \multirow[t]{2}{*}{60} \& 9.08589 \& \& \& \& 0.91086 \& 9.99675 \& 0 \& \multicolumn{4}{|l|}{}

\hline \& L. Cos. \& d. \& \multicolumn{3}{|l|}{L. Cotg. c. d. L.Tang.} \& L. Sin. \& , \& \multicolumn{4}{|c|}{Prop. Pts.}

\hline
\end{tabular}

,	L. Sin.	d.	L.'Tang.\|c. d. L. Cotg.			L. Cos.	d.		Prop. Pts.	
0	9.28 060	$\begin{aligned} & 65 \\ & 65 \\ & 64 \\ & 65 \\ & 65 \end{aligned}$	9.28865	$\begin{aligned} & 68 \\ & 67 \\ & 67 \\ & 67 \\ & 67 \end{aligned}$	$0.71 \times 3 \overline{5}$	$9.9919 \overline{5}$	3	60		
1	9.28125 .28190		9.28933		0.71067	$9.99 \text { I92 }$		59	6 68 18	
2 3	9.28190 9.28254		9.29000 9.29067		$\begin{aligned} & 0.71000 \\ & 0.70933 \end{aligned}$	9.99190 9.99187	2 3	58 57	6 6.8 7 7.9	6.7
4	9.28319		9.29134		-0.70 866	9.99185	2	56		8.9
5	9.28384		9.29201		0.70799	9.99 182	3	55	9	0.1
6	9.2844^{8}	64 64	9.29268	67	0.70732	9.99180	2	54	10	. 2
7	9.28512	64	9.29335	${ }_{6}^{67}$	0.70665	9.99177	3	53	2022.	22.3
8	9.28577	65	9.29402	67	0.70598	9.99175	2	52	3034.	33.5
9	$9.286_{4} \mathrm{I}$	64	9.29468	66	0.70532	9.99172	3	5	4045.3	44.7
10	9.28705	64	9.29535	67	0.70465	9.99170		50	50156	55.8
11	9.28769	64 64	9.29601	66	. 0.70399	9.99167	3	49	66	65
12	9.28833	64 63	9.29668	67	$\bigcirc 0.70332$	9.99165	2	48	$6 \quad 6.6$	6.5
13	9.28896	63	9.29734	66	0.70266	9.99162	3	47	$7 \quad 7.7$	7.6
14	9.28960	64	9.29800	66 66	0.70200	9.99 I 60	2	46	88.8	8.7
15	9.29024		9.29866	66	0.70	9.99157	2	45	9.9 .9	9.8
16	9.29087	63	9.29932	66 66	0.70068	$9.9915 \overline{5}$		44	10 11.0	10.8
17	9.29150	63	9.29998	66 66	0.70002	9.99152	3	43	20	21.7
18	9.29214	64	9.30064	66	0.69 936	9.99 r 50	$\stackrel{2}{2}$	42	30	32.5
19	9.29277	63	9.30130	66	0.69870	9.99147	3	41	40.44 .0	3.3
20	9.29340		9.30195	66	0.69805	$9.99 \times 4 \overline{5}$		40	50155.0	54.2
21	9.29403	63	9.30261		0. 69739	9.99142		39	64	63
22	9.29466	63	9.30326	65	0.69674	9.99140	2	38	$6 \quad 6.4$	6.3
23	9.29529	63	9.30391	65	0.69609	9.99137	3	37	$7{ }^{7} 7.5$	7.4
24	9.29591	62	9.30457	66	0.69543	9.99135	2	36	8.8 .5	8.4
25	9.29654	${ }^{2}$	9.30522	65	0.69478	9.99132	3	35	9	9.5
26	9.29716	62	9.30587	65	0.69413	9.99130	2	34	10 10.	10.5
27	9.29779	63	9.30652	65	0.69348	9.99127	3	33	20.21 .3	21.0
28	9.2984 I	62	9.30717	65	0.69283	9.99124	3	32	30	31.5
29	9.29903	62	9.30782	65	0.69218	9.99122	2	3 I	40	42.0
30	9.29966	${ }^{6}$	9.30846		0.69154	9.99 I19		30	50153.3	52.5
31	9.30028	62	9.30911	65	0.69089	9.99117	2	29	62	61
32	9.30090	62	9.30975	64	0.69025	9.99 II4	3	28	6.6 .2	6.1
33	9.30151	6 r	9.31040	65	0.68960	9.99112	2	27	7.2	7.1
34	9.30213	62	9.31 104	64	0.68896	9.99 109	3	26	8.3	8.1
35	9.30275	6	9.31 168	6	0.68832	9.99106	3	25	$9 \quad 9.3$	9.2
36	9.30336	62	9.31233	65	0.68767	9.99104	2	24	1010.3	10.2
37	9.30398	62	9.31 297	64	0.68703	9.99 IOI	3	23	20.20 .7	20.3
38	9.30459	${ }_{6}^{61}$	9.31 361	64	0.68639	9.99099	2	22	3031.0	30.5
39	9.30521	62	9.31425	64	0.68575	9.99096	3	2 I	4041	40.7
40	9.30582		9.31489		0.68 5II	9.99093	3	20	50151.7	50.8
41	9.30643	6	9.35552	63	0.68448	9.99 O9I	2	19	60	59
42	9.30704	$6 \mathrm{6x}$	9.31616	64	0.68384	9.99088	3	18	66.0	5.9
43	9.30765	${ }_{6 x}^{6 x}$	9.31 679	63	0.6832 I	9.99086	2	17	77.0	6.9
44	9.30826	61 61	9.31743		0.68257	9.99083	3	16		7.9
45	9.30887		9.31806	6	0.68194	9.99080	3	15	989.0	8.9
46	9.30947	61	9.31870	64	0.68130	9.99078		14	10 10.0	9.8
47	$9.3{ }^{1} 008$	61	9.31 933	63	0.68067	9.99075	3	13	20.20 .0	19.7
48	9.31068	60	9.31996	63	0.68004	9.99072	3	12	3030.0	29.5
49	9.31129	$6 \mathrm{6r}$	9.32059	63	0.67941	9.99070		II	40	39.3
50	9.31189		9.32122	63	0.67878	9.99067	3	10	50150.	49.2
51	9.31 25 O	6 x	9.32185	63	0.67815	9.99064	3		- 3	2
52	9.31310	60	9.32248	63	0.67752	9.99062		8	60.3	0.2
53	9.31370	60	9.32311	63	0.67689	9.99059	3	7	70.4	0.2
54	9.31430		9.32373		0.67627	9.99056	3 2	6	8 0.4	0.3
55	9.31490		9.32436		0.67564	9.99054		5	90.5	0.3
56	9.31 549	60	9.32498	62	0.67502	9.99051		4	10.5	0.3
57	9.31609	60	9.32561	63	0.67439	9.99048	3		201.0	0.7
58	9.31669	60	9.32623	62	0.67377	9.99046	2	2	301.5	1.0
59	9.31728	59 60	9.32685		0.67315	9.99043	3	1		I. 3
60	9.31788		9.32747		0.67253	9.99040		0		
	L. Cos.	d.	L. Cotg.	c. d	. Tang	L. Sin.	d.	,	Prop.	ts.

1	L. Sin.	d.	L. 'Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.		
0	9.35209		9.36336		0.63664	9.98872		60			
I	9.35263	54	9.36394	58	0.63606	9.98869	3	59		58	57
2	9.35318	55	9.36452	58	0.63548	9.98867	2	58	6	5.8	5.7
3	9.35373	55	9.36509	57	0.63491	9.98864	3	57	7	6.8	6.7
4	9.35427	54	9.36566	57	0.63 434	9.98861	3	56	8		7.6
5	9.3548 I	54	9.36624		0.63376	9.98858	3	55	9	8.7	8.6
6	9.35536	55	9.36681	57	0.63 319	$9.9885 \overline{5}$	3	54	10	9.7	9.5
7	9.35590	54	9.36738	57	0.63262	9.98852	3	53	20	19.3	19.0
8	9.35644	54	9.36795	57	0.63205	9.98849	3	52	30 40	29.0 38.7	28.5 38.0
9	9.35698	54	9.36852	57	0.63148	9.98846	3	51	40	38.7	38.0
10	9.35752	54	9.36909	57	0.63091	9.98843	3	50	50	3	47.5
II	9.35806	54	9.36966	57	0.63034	9.98840	3	49		56	55
12	9.35860	54	9.37023	57	0.62977	9.98837	3	48	6	5.6	5.5
13	9.35914	54 54	9.37080	57 57	0.62920	9.98834	3 3	47	7	6.5	6.4
14	9.35968	54	9.37137	57 56	0.62863	9.9883 I	3 3	46	8	$7 \cdot \overline{5}$	$7 \cdot 3$
15	9.36022	53	9.37 I93		0.62807	9.98828	3	45	9	8.4	8.3
16	9.36075	54	9.37250	57 56	0.62750	9.98825	3	44	10	9.3	$9 \cdot 2$
17	9.36129	54 53	9.37306	56	0.62694	9.98822	3	43	20	18.7	18.3
18	9.36182	53	$9.373^{6} 3$	57	0.62637	9.98 819	3	42	30	28.0	27.5
19	9.36236	54	9.37419	56	0.62581	9.988 I 6	3	4 I	40	37.3	36.7 458
20	9.36289	53	9.37476	57	0.62524	9.98 813	3	40		46.7	45.8
21	9.36342	53 53	9.37532	56	0.62468	9.98 810	3	39		- 54	
22	9.36395	53 54	9.37588	56	0.62412	9.98807	3	38		6.5	. 4
23	9.36449	54 53	9.376 .44	56	0.62356	9.98804	3	37		76	3
24	9.36502	53	9.37700	56	0.62300	9.98 801	3	36		87	. 2
25	9.36555	53	9.37756		0.62244	9.98798	3	35		98.	I
26	9.36608	53 52	9.37812	56	0.62188	9.98795	3	34		9.	-
27	9.36660	52	9.37868	56	0.62 I32	9.98792	3	33		18.	
28	9.36713	53 53	9.37924	56	0.62076	9.98789	3	32		27.	
29	$9 \cdot 36766$	53	9.37980	56	0.62020	9.98786	3	31		36	
30	9.36819	53	9.38035		0.61 965	9.98783	3	30		45	
31	9.36871	52	9.38 o91	56	0.61909	9.98780	3	29		53	52
32	9.36924	53 52	9.38147	56	0.61 853	9.98777	3	28	6	$5 \cdot 3$	5.2
33	9.36976	52	9.38202	55	0.61 798	9.98774	3	27	7	6.2	6.1
34	9.37028	52	9.38257		0.61 743	9.98771	3	26	8	7.1	6.9
35	9.37 081	52	9.38313		0.61 687	9.98768	3	25	9	8.0	7.8
36	9.37133	52	9.38368	55	0.61 632	$9.9876 \overline{5}$	3	24	10	8.8	8.7
37	$9 \cdot 37185$	52	9.38423	55	0.61 577	9.98762	3	23			17.3
38	9.37237	52 52	9.38479	56	0.61521	9.98759	3	22		26.5	26.0
39	9.37289	52	9.38534	55	0.61 466	9.98756	3	21	40	35.3	34.7
40	9.37341	52	9.38589	55	0.61 4II	9.98753	3	20		44.2	$43 \cdot 3$
4 I	9.37393	52 52	9.38644	55	0.6ı 356	9.98750	3	19		5 I	4
42	9.37445	52	9.38699	55	0.61301	9.98746	4	18	6		0.4
43	9.37497	52 52	9.38754	55	0.6I 246	9.98743	3	17	7	6.0	0.5
44	9.37549	52 51	9.38808	54	0.61 192	9.98740	3	16	8	6.8	0.5
45	9.37600	52	9.38863	55	0.61137	9.98737	3	15	9	7.7	0.6
46	9.37652	52 5	9.38918	55	0.61 082	9.98734	3	14	10	8.5	0.7
47	9.37703	51	9.38972	54	0.61028	9.98731	3	13	20	17.0	1.3
48	$9.3775 \overline{5}$	52	9.39027	55	0.60973	9.98728	3	12	30		2.0
49	9.37806	51	9.39082	55	0.60918	$9.9872 \overline{5}$	3	II	40	34.0	2.7
50.	9.37858	5	9.39 136	54	0.60864	9.98722	3	10		42.5	$3 \cdot 3$
51	9.37909	51	9.39190	54	0.60810	9.98719	3	9		3	2
52	9.37960	5 I	9.39245	55	0.60755	9.98715	4	8	6	0.3	0.2
53	9.38 OII	51 51	9.39299	54	0.60701	9.98712	3	7	7	0.4	0.2
54	9.38062	51	9.39353	54	0.60647	9.98709	3	6	8	0.4	0.3
55	9.38 II3	51	9.39407	54	0.60593	9.98706	3	5	9	0.5	0.3
56	9.38 164	51	9.3946 I	54	0.60539	9.98703	3	4	10	0.5	0.3
57	9.38215	5 I	9.39515	54	0.60 485	9.98700	3	3	20	1.0	0.7
58	9.38266	51 51	9.39569	54 54	0.6043 I	9.98697	3	2	30	1.5	1.0
59	9.38317	51 51	9.39623	54	0.60377	998694	3	I		2.0	1.3
60	9.38368		9.39677	5	0.60323	9.98690	4	0		2.	
-	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	'	Pr	p. \mathbf{P}	ts.

,	L. Sin.	d.	L. 'Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.	
0	9.38368		9.39677		0.60323	9.98		60		
	$9.38{ }^{18}$	50	9.39731	54	0.60269	9.98687	3	59		
2	9.38469	51	9.39785	54 53 53	0.60215	9.98684	3	58	54	53
3	9.38519	50	9.39838	53	0.60162	9.98 681	3 3 3	57	$6 \quad 5.4$	
4	9.38570	51 50	9.39892	54 53	0.60 108	9.98678	3	56	7 5.4	
5	9.38620	50	9.39945	54	0.60055	9.98675	3	55	8 7.2 	
6	9.38670	50	9.39999	54	0.60 OOI	9.98671	4 3 3	54	98.1	
7	9.38721	51 50	9.40052	53 54	0.59948	9.98668	3	53	109.0	
8	9.38771	50 50	9.40106	54 53	0.59894	9.98665	3	52	20.18 .0	17.7
9	9.38821	50	9.40159	53	$0.598{ }^{\text {8 }}$ I	9.98662	3	51	3027.0	26.5
10	9.38871	50	9.40212	5	0.59788	9.98659	3	50	4036.0	35.3
II	9.38921	50	$9 \cdot 40266$	54 53	0.59734	9.98656	3	49	50145.0	44.2
12	9.38971	50	9.40319	53	0. 5968 I	9.98652	4	48		
13	9.39021	50	9.40372	53	0.59628	9.98649	3	47		
14	9.39071	50	9.40425	53	0.59575	998646	3	46	52	51
15	9.39 I21	50	9.40478	5	0.59522	9.98643	3	45	6 5.2	5.1
16	9.39170	50	9.4053 I	53	0.59469	9.98640	3	44	76.1	6.0
17	9.39220	50	9.40584	53	0.59416	9.98636	4	43	$8 \quad 6.9$	
18	9.39270	50	9.40636	52	0.59364	9.98633	3	42	978.8	
19	9.39319	49	9.40689	53	0.59 3II	9.98630	3	4 I	1088	
20	9.39369	50	9.40742		0.59258	9.98627		40	20.17 .3	. 0
21	9.39418	49	9.40795	53 52	-0.59 205	9.98623	4	39	3026.0	25.5
22	9.39467	49	9.40847	52 53 5	-. 59153	9.98620	3	38	40 34.7 50	34.0
23	9.39517	50	9.40900	53	-. 59 100	9.98617	3	37	$50 \mid 43.3$	42.5
24	9.39566	49	9.40952	52	0.59048	9.98614		36		
25	9.39 615	49	9.41 00 $\overline{5}$	5	0.58995	9:98 610		35		
26	9.39664	49 49	9.41057	52 52	0.58943	9.98607	3	34		49
27	9.39713	49	9.41109	52	0.58891	9.98604	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	33	6 5.0 7 5.8	
28	9.39762	49	9.41 161	52	0.58839	9.98601		32	$\begin{array}{ll}7 & 5.8 \\ 8 & 6.7\end{array}$	
29	9.39811	49	9.41214	53 52	0.58786	998597	4	3 I	8 6.7	
30	9.39860	49	9.41 266		0.58734	9.98594		30	9 7.5 10 8.3	
3 3	9.39909	49	9.41318	52 52	0.58682	9.98591	3	29	$\begin{array}{rrr}10 & 8.3 \\ 20 & 16.7\end{array}$	
32	9.39958	49	9.41370	52	0.58630	9.98588	3	28	$\begin{array}{ll}30 & 25.0\end{array}$	
33	9.40006	48	9.41 422	52 52 52	0.58578	9.98584		27	$\begin{array}{lll}30 \\ 40 & 35.0 \\ & 33.3\end{array}$	
34	$9.4005 \overline{5}$	48	9.41474	52	0.58526	9.98581		26	 50 4 l 1.7	
35	9.40103		9.41526		0.58474	9.98578		25		
36	9.40152	48	9.41578	52 51	0.58422	9.98574		24		
37	9.40200	48	9.41629	52	0.58371	9.98571		23		
38	9.40249	49	9.41 681	52	0.58319	9.98568		22	48	47
39	9.40297	48	9.41733	52 51 51	0.58267	9.9856	3	21		
40	9.40346	48	9.41784		0.58216	9.98 561		20	7 5.6 8 6.4	
4 I	9.40394	48	9.41836	51	0.58164	9.98558		19	 9 7.2	
42	9.404^{42}	48	9.41887	51 52	0.58113	$9.9855 \overline{5}$		18	10 8.0	7.8
43	9.40490	48	9.41939	52	0.58 061	9.98551		17	2016.0	15.7
44	9.40538	48	9.41990	51 51	0.58010	9.98548	3	16	3024.0	23.5
45	9.40586	48	9.42 O4I	52	0.57959	9.98545		15	4032.0	3 I .3
46	9.40634	48	9.42093	5	0.57907	9.98541		14	$50 \mid 40.0$	39.2
47	9.40682	48	9.42 I44	${ }_{51}^{51}$	0.57856	9.98538	3	13		
48	9.40730	48	9.42195	51	0.57805	9.98535	3	12		
49	9.40778	48	9.42246	51	0.57754	9.9853 I	4	11		
50	9.40825		9.42297		0.57703	9.98528		10	$6{ }^{6} 0.4$	0.3
51	9.40873	48	9.42348	51 51 1	0.57652	9.98525	3	9	$7{ }^{7} 0.5$	-0.4
52	9.40921	48	9.42399	51	0.57601	9.98521	4	8	80.5	0.4
53	9.40968	47	9.42450	51 51 51	0.57550	9.98518	3	7	90.6	0.5
54	9.41 O16	48	9.42501		0.57499	9.98515		6	10.0 .7	0.5
55	9.41063		9.42552		0.5744^{8}	9.98511		5	2012	I. 0
56	9.41111	48	9.42603	5 5	0.57397	9.98508		4	30.20	1. 5
57	9.41158	47	9.42653	50	0.57347	9.98505	4	3	40	2.0
58	9.41205	47	9.42704	5	0.57296	9.98501	4	2	$50 \mid 3.3$	2.5
59	9.41252	47	9.42755	5	0.57245	9.98498	4	1		
60	9.41300		9.42805		0.57195	9.98494		0		
	L. Cos.	d.	I. . Cotg.	. d	L. .Tang	L. Sin.	d.	,	Prop.	ts.

\digamma	L. Sin.	d.	L. 'Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.		
0	9.41300		9.42805		0.57195	9.98494		60			
1	9.41347	47	9.42856	5 x	0.57144	9.98491	3	59			
2	9.41394	47	9.42906	50	0.57094	9.98488	3	58		51	50
3	9.41 441	47	9.42957	50	0.57043	9.98484	4	57	6	5.1	5.0
4	9.41488	47	9.43007	50	0.56993	9.9848 I	3	56	7	6.0	5.8
5	9.41 $53 \overline{5}$	47	9.43057	51	0.56943	9.98477	3	55	8	6.8	6.7
6	9.41582	47	9.43108	51	0.56892	9.98474	3	54	9	7.7	7.5
7	9.41628	46	9.43158	50	0.56842	9.98471	3	53	10	8.5	8.3
8	9.41675	47	9.43208	50	0.56792	9.98467	4	52	20	17.0	16.7
9	9.41722	47	9.43258	50	0.56742	9.98464	3	51	30	25.5	25.0
10	9.41768		9.43308	50	0.56692	9.98460	4	50	40	34.0	$33 \cdot 3$
II	9.41815	47	9.43358	50	0.56642	9.98457	3	49		42.5	41.7
12	9.41861	46	9.43408	50	0.56592	9.98453	4	48			
13	9.41908	47	9.43458	50	0.56542	9.98450	3	47			
14	9.41954	46	943508	50	0.56492	9.98447	3	46		49	48
15	9.42 OOI	46	9.43558		0.56 442	9.98443	4	45	6	4.9	4.8
16	9.42047	46	9.43607	49	0.56393	9.98440	3	44	7	5.7	5.6
17	9.42093	46	9.43657	50	0.56343	9.98436	4	43	8	6.5	6.4
18	9.42 I40	47 46	9.43707	50	0.56293	9.98433	3	42	9	7.4	7.2
19	9.42186	46	9.43756	49	0.56244	998429	4	4 I	10	8.2	8.0
20	9.42232	46	9.43806		0.56194	9.98426	3	40		16.3	16.0
21	9.42278	46	9.43855	49	0.56145	9.98422	4	39		24.5	24.0
22	9.42324	46	9.43905	50	0.56095	9.98419	3	38		32.7	32.0
23	9.42370	46	9.43954	49	0.56046	9.98415	4	37	50	40.8	40.0
24	9.42 416	46	9.44004	50	0.55996	9.98412	3	36			
25	$9.42{ }^{461}$	46	9.44053		0.55947	9.98409	4	35			
26	9.42507	46	9.44102	49	0.55898	9.98405	4	34		47	46
27	9.42 .553	46	9.44 151	49	0.55849	9.98402	3	33	6	4.7	4.6
28	9.42599	46	9.44 201	50	0.55799	9.98398	4	32	7	$5 \cdot \overline{5}$	5.4
29	9.42644	45	9.44230	49	0.55750	$9.9839 \overline{5}$	3	31	8	6.3	6.1
30	9.42690		9.44299		0.55701	9.98391	4	30	9	7.1	6.9
31	9.42735	45	9.44348	49	0.55652	9.98388	3	29	10	7.8	7.7
32	9.42781	46	9.44397	49	0.55603	9.98384	4	28		15.7	15.3
33	9.42826	45	9.44446	49	0.55554	9.98381	3	27	30	23.5	23.0
34	$9.42872{ }^{\circ}$	46	9.44495	49	0.55505	9.98377	4	26	40	31.3	30.7
35	9.42917		9.44544	48	0.55456	9.98373	4	25		39.	. 3
36	9.42962	45	9.44592	48	0.55408	9.98370	3	24			
37	9.43008	45	9.4464 I	49	0.55359	9.98366	4	23			
38	9.43053	45	9.44690	49	0.55310	9.98363	3	22		45	44
39	$9.43 \quad 098$	45	9.44738		0.55262	9.98359	4	21	6	$4 \cdot 5$	4.4
40	9.43 I 43		9.44787		0.55213	9.98356	4	20	7	$5 \cdot 3$	5.1
41	9.43188	45	9.44836	49	0.55164	998352	4	19	8	6.0	5.9
42	9.43233	45	9.44884	48	0.55116	9.98349	3	18	9	6.8	6.6
43	9.43278	45	9.44933	49	0.55067	9.98345	4	17	10	7.5	7.3
44	9.43323	45	9.44981	48	0.55 or9	9.98342	3	16	20	15.0	14.7
45	9.43367		9.45029		0.54971	9.98338	4	15		22.5	22.0
46	9.43 412	45	9.45078	49	0.54922	9.98334	4	14		30.0	29.3
47	9.43457	45	9.45 126	48	0.54874	9.9833 I	3	13		37.5	36.7
48	9.43502	45	9.45174	48	0.54826	9.98327	4	12			
49	9.43546	44	9.45222	48	0.54778.	9.98324	3	II			
50	9.43591	45	9.45 271	48	0.54729	9.98320	4	10			0.3
51	9.43635	44	9.45319	48	0.54 681	9.98317	3	9	6	0.4	0.3 0.4
52	9.43680	45	9.45367	48	0.54633	9.98 313	4	8		0.5	0.4
53	9.43724	44	9.45415	48	0.54585	9.98309	4	7	8	0.5	
54	9.43769	45	9.45463	48	0.54537	9.98306	3	6	9	0.6	0.5
55	9.43813	44	9.45 511	48	0.544^{89}	9.98302	4	5	20		1.0
56	9.43857	44	9.45559	48	0.5444 I	9.98299	3	4	30	2.0	1.5
57	9.43901	44	9.45606	47	0.54394	9.98295	4	3	40	2.7	2.0
58 59	9.43946	45	9.45654		0.54346	9.98291	3	2			2.5
59	9.43990	44	9.45702	48	0.54298	9.98288	3	I			
60	9.44034		9.45750		0.54250	9.98284		0			
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	H. Sin.	d.	\digamma		p.	Pts.

,	L. Sin.	d.	L. TTang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.	
0	9.46594		9.48534		0.51 466	9.98060		60		
	9.46635	41	9.48579	45	0.51421	9.98056	4	59		
2	9.46676	4 I 4 I	9.48624	45	0.51 376	9.98052	4	58	45	44
3	9.46717	4 4 4	9.48669	45	0.51 331	$9.98{ }^{\circ} \mathrm{O} 8$	4	57	$6{ }^{6} 4.5$	4.4
4	9.46758	4 4 4	9.48714	45	0.51 286	9.98044	4	56	$7 \quad 5$	5.I
5	9.46800	42	9.48759		0.51241	9.98040	4	55	8 8 6.0	5.9
6	9.4684 I	41 4 I	9.48804	45	0.51196	$9.98{ }^{\circ} \mathrm{O} 6$	4	54	9 6.8	
7	9.46882	$4 \mathrm{4I}$	9.48849	45	0.51151	$9.98{ }^{\circ} \mathrm{O} 2$	4	53		7.3
8	9.46923	4 I 4 I	9.48894	45 45	0.51106	9.98029	3	52	20.15 .0	14.7
$9{ }^{\text {9 }}$	9.46964	$4 \mathrm{4I}$	9.48939	45	0.51061	9.98025	4	51	30.22 .5	22.0
10	9.47 O०5	$4{ }^{41}$	9.48984	45	0.51016	9.98021	4	50	40	29.3
II	9.47045	40	9.49029	45	0.50971	998017	4	49	$50 \mid 37.5$ \| 3	36.7
12	9.47086	$4 \mathrm{4I}$	9.49073	44	0.50927	998 о13	4	48		
13	9.47127	4 4	9.49 I18	45	0.50882	9.98009	4	47		
14	9.47168	$4{ }_{4}^{41}$	9.49163	45	0.50837	9.98005	4	46	43	
15	9.47209	40	9.49207		0.50793	9.98 OoI	4	45		
16	9.47249	$4{ }_{4}^{40}$	9.49252	45	0.50748	9.97997	4	44		
17	9.47290	41	9.49296	44	0.50704	9.97993	4	43	8 5.7	
18	9.47330	40	9.49 341	45	0.50659	9.97989	4	42		
19	9.47371	4 4	9.49385	44 45	0.50615	9.97986	3	4 I	107.2	
20	9.474 II		9.49430	45	0.50570	9.97982	4	40	14.3	
21	947452	4 I	9.49474	44	0.50526	9.97978		39	30.21 .5	
22	9.47492	40	9.49519	45	0.5048 r	9.97974	4	38	40 28.7 50 35.8	
23	9.47533	41	9.49563	44 44	0.50437	9.97970	4	37	50	
24	9.47573	40	9.49607	44 45	0.50393	9.97966	4	36		
25	9.47613		9.49652		0.50348	9.97962	4	35		
26	9.47654	41 40 0	9.49696	44 44	0.50304	9.97958	4	34	42	
27	9.47694	40	9.49740	44 44	0.50260	9.97954	4	33	6 4.2	
28	9.47734	40	9.49784	44	0.50216	9.97950	4	32	78.9	4.8
29	9.47774	40	9.49828	44	0.50172	9.97946	4	3 I	5.6	5.5
30	9.47814	40	9.49872		0.50128	9.97942	4	30	9 6.3 10 7.0	
31	9.47854	40	9.49916	44 44	0.50084	9.97938	4	29		
32	9.47894	40 40	9.49960	44	0.50040	9.97934	4	28		
33	9.47934	40	9.50004	44 44	0.49996	9.97930	4	27	$\begin{array}{llll}30 & 21.0 & 20.5 \\ 40 & 28.0 & 27 .\end{array}$	
34	9.47974	40	9.50048	44	0.49952	9.97926	4	26		
	$9.48{ }^{\circ} \mathrm{O} 4$		9.50092		0.49908	9.97922	4	25		
36	9.48054	40	9.50136	44	0.49864	9.97918	4	24		
37	9.48094	40	9.50180	44	- 49820	9.97914	4	23		
38	9.48133	39	9.50223	43	0.49777	9.979 910	4	22	40	39
39	9.48173	40	9.50267	44	0.49733	9.97906	4	21	4.0	3.9
40	9.48213	40	9.50311	44	0.49689	9.97902	4	20	4.7	4.6
4 I	9.48252	39	9.50355	44	0.49645	9.97898	4	19	5.3	5.2
42	9.48292	40	9.50398	43	0.49602	9.97894	4	18	9 6.0 0 6.7	
43	9.48332	40	9.50442	44	0.49558	9.97890	4	17	10 6.7 1 20 13.3 1	
44	9.48371	39	9.50485	43 44	- 49 515	9.97886	4	16	$\begin{array}{lllll}20 & 13.3 & 13 . \\ 30 & 20.0 & 1\end{array}$	
45	9.48411		9.50529		0.49 471	9.97882		15	40 26.7 2	26.0
46	9.48450	39	9.50572	43 44	0.49428	9.97878		14	$50\|33.3\| 3$	32.5
47	9.48490	40	9.50616	44	0.49384	9.97874	4	13		
48	9.48529	39	9.50659	43	0.49 341	9.97870	4	12		
49	9.48568	39	9.50703	43 43	0.49297	9.97866	4	II		
50	9.48607	39	9.50746	43	0.49254	9.97861	5	10		
51	9.48647	$4{ }^{4}$	9.50789	43	0.49211	9.97857		9	6 0.5 4 7 0.6 0.4 0.5	0.3 0.4
52	9.48686	39	9.50833	44 43	0.49167	9.97853		8		
53	9.48725	39 39	9.50876	43 43	0.49124	9.97849	4 4	7	9 0.8 0.5	
54	9.48764	39	9.50919	43	0.49 081	9.97845	4		10 0.8 0.7	
55	9.48803	39	9.50962	4	0.49038	9.9784 I		5	1.7 1.3	1.0
56	9.48842	39	9.51 005	43 43	0.48995	9.97837		4	2.5 2.0	1.5
57	9.4888 r .48 m	39	9.51 048	44	0.48952	9.97833		3	0.3 3.3 2.7	
$\begin{array}{r}58 \\ 59 \\ \hline\end{array}$	9.48920 9.48959	39 39	9.51092 9.51115	4	0.48908 0.48865	$\begin{aligned} & 9.97829 \\ & 9.97825 \end{aligned}$	4	1		
60	9.48998	39	9.51 178		0.48822	9.9782 I		0		
	L. Cos.	d.	L. Cotg.	c. d	. Tang	L. Sin.	d.	,	Prop. Pt	

18°

/	L. Sin.	d.	L. 'Tang.	c. ${ }^{\text {d. }}$	L. Cotg.	L. Cos.	d.		Prop. 1'ts.	
0	9.53405		9.56107		0.43893	9.97299		60		
1	9.53440	35 35	9.56146	39	0.43854	9.97294	5	59		
2	9.53475	35 34	9.56185	39	0.43 815	$9.97{ }^{289}$	5	58	40	
3	9.53509	34	9.56224	39	0.43776	9.97285	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	57	6.4 .0	
4	9.53544	35	9.56264	40	0.43736	9.97280	5 4	56	7 4.0	
5	9.53578	35	9.56303	39	0.43697	9.97276	4	55	8 8.3	
6	9.53613	35 34	9.56342	39	0.43658	9.97271	5	54	966.0	
7	9.53647	34	9.56 381	39 39	-0.43 619	9.97266	5	53	106	
8	9.53682	35	9.56420	39	0.43580	9.97262	4	52	20.13 .3	
9	9.53716	34	9.56459	39	0.4354 I	9.97257		51	3020.0	19.5
10	9.53 751	35	9.56498	39	0.43502	9.97252		50	4026	6.0
11	9.53785	34	9.56537	39	0.43463	$9.972{ }^{24} 8$	4	49	50133.3	32.5
12	9.53819	34	9.56576	39	-. 43424	9.97243	5	48		
13	9.53854	35	9.56615	39	0.43385	9.97238	5	47		
14	9.53888	34.	9.56654	39	0.43346	9.97234	4	46	38	37
15	9.53922	34	9.56693	39	0.43307	9.97229		45	6 3.8	3.7
16	9.53957	35	9.56732	39	0.43268	9.97224	5	44	$\begin{array}{lll}7 & 4.4\end{array}$	
17	9.53 991	34	9.56771	39	0.43229	9.97220	4	43	8 5.1	4.9
18	$9.5402 \overline{5}$	34	9.56 810	39	0.43190	9.97215	5	42	$\begin{array}{ll}9 & 5.7\end{array}$	
19	9.54059	34	9.56849	39	0.43151	9.97210	5	41	10.6	
20	9.54093	34	9.56887		0.43113	9.97206	4	40	20	12.3
21	9.54127	34	9.56926	39	0.43074	9.97201	5	39	3019.0	18.5
22	9.54 I6I	34 34	9.56965	39	0.43035	9.97196	5	38	40	24.7
23	9.54195	34	9.57004	39	0.42996	9.97192	4	37	50131.7	
24	9.54229	34	9.57042	${ }^{38}$	0.42958	9.97187	5	36		
25	9.54263	34	9.57 081	39	0.42919	9.97182	5	35		
26	9.54297	34	9.57120	39	0.42880	9.97178	4	34	35	
27	9.54 33I	34 34 34	9.57158	${ }^{38}$	0.42842	9.97173	5	33	$6 \quad 3$.	
28	9.54365	34	9.57197	39	0.42803	9.97168	5	32	7 4.	
29	9.54399	34	9.57235	3^{8}	0.42765	$9.97{ }^{9} 163$	5	3 I	84.7	
30	9.54433	34	9.57274	39	0.42726	9.97159		30	9	
31	9.54466	33	9.57312	${ }^{38}$	0.42688	9.97154	5	29	ro	
32	9.54500	34	9.57351	39	0.42649	9.97149	5	28	2011.7	
33	9.54534	34	9.57389	3^{88}	0.42611	9.97145		27		
34	9.54567	33 34	9.57428	39 38 8	0.42572	9.97140	5	26	O 23.	
35	9.54 601	34	9.57466		0.42534	9.97135	5			
36	9.54635	34	9. 57504	${ }^{38}$	0.42496	9.97130	5	24		
37	9.54668	33	9.57543	39	0.42457	9.97 I26	4	23		
38	$9.5+702$	34	9.5758 I	38 38 38	0.42419	9.97121	5	22	34	33
39	9.54735	33	9.57619	3^{8}	0.42 381	9.97116	5	21	6 3.4	
40	9.54769	34	9.57658	38	0.42342	9.97 III	5	20	74.0	
4 I	9.54802	33	9.57696	3^{88}	0.42304	9.97107	4	19	8 8.5	
42	9.54836	34	9.57734	${ }^{38}$	0.42266	9.97102	5	18	9 5.1	
43	9.54869	33	9.57772	${ }^{38}$	0.42228	9.97097	5	17	10.5 .7	
44	9.54903	34	9.57810	3^{8}	0.42190	9.97092	5	16	2011.3	
45	9.54936	33	9.57849	39	0.42 I5I	9.97087	5	15	30 17.0 40 22.7	
46	9.54969	33	9.57887	38 38 38	0.42 II3	9.97083		14		
47	9.55003	34	9.57925	38 38 38	0.42075	9.97078	5	13		
48	9.55036	33	9.57963	${ }^{38}$	0.42037	9.97073	5	12		
49	9.55069	33	9.58 oor	3^{8}	0.41999	9.97068	5	II		
50	9.55102	33	9.58039	3^{88}	0.41961	9.97063		10	6	
51	9.55136	34	$9.58 \bigcirc 77$	${ }^{38}$	0.41923	9.97059		9	60.5	
52	9.55169	33 33	9.58 II5	3^{88}	0.41885	9.97054	5	8	7 8 0.6 0.7	
53	9.55202	33	9.58153	3^{88}	0.41847	9.97049	5	7		
54	9.55 235	33	9.58 191	3^{88}	0.41809	9.97044	5	6		
	9.55268	33	9.58229		0.41771	9.97039	5	5	20.1 .7	I. 3
56	9.55301	33	9.58267	${ }^{38}$	0.41733	9.97035		4	$\begin{array}{lll}30 & 2.5\end{array}$	
57	9.55334	33	9.58304	37 38 8	0.41696	$9.97{ }^{\circ} \mathrm{O} 0$		3	40	2.7
58	9.55367	33	9.58342	${ }^{38}$	0.41658	9.97025	5	2	$50\|4.2\|$	
59	9.55400	33	9.58380	${ }^{38}$	1620	9.97020	5	I		
60	9.55433		9.58418		0.41582	$9.97{ }^{\circ} 15$		0		
	L. Cos.	d.	I. Cotg.	.	L. Tang.	L. Sin.	d.	,	Prop. 1	ts.

\prime	L. Sin.	d.	L.'I'ang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.			
0	9.55433		9.58418		0.41582	9.97 O15		60				
1	9.55466	33	9.58455	37 38	0.41545	9.97010	5	59				
2	9.55499	33 33	9.58493	38 38	0.41507	9.97005	4	58				
3	9.55532	33 32	9.5853 I	38 38	0.41469	9.97001	4	57	6	3.8	3.7	
4	9.55564	32	9.58569	38	0.41431	$\begin{aligned} & 9.96996 \\ & \hline \end{aligned}$	5	56	7	4.4	4.3	
5	9.55597	33	9.58606	38	0.41394	9.96991	5	55	8	5.1	4.9	
6	9.55630	33	9.58644	38	0.41356	9.96986	5	54	9	5.7	5.6	
7	9.55663	33 32	9.58681	37	0.41319	9.96981	5	53	10	6.3	6.2	
8	9.55695	32	9.58719	38 38	0.41281	9.96976	5	52	20	12.7	12.3	
9	9.55728	33	9.58757	38	0.41243	9.96971	5	51	30	19.0	18.5	
10	9.55761	33	9.58794	37	0.41206	9.96966	5	50		25.3	24.7	
II	9.55793	32 33	9.58832	38	0.41168	9.96962	4	49		31.7	30.8	
12	9.55826	33	9.58869	37	0.41131	9.96957	5	48				
13	9.55858	32	9.58907	38	0.41093	9.96952	5	47				
14	9.55891	33	9.58944	37	0.41056	9.96947	5	46		36	33	
15	9.55923	32 33	9.5898 I	38	0.41019	9.96942	5	45	6	3.6	3.3	
16	9.55956	33	9.59 O19	38	0.40 98I	9.96937	5	44	7	4.2	3.9	
17	9.55988	32 33	9.59056	37 38	0.40944	9.96932	5	43	8	4.8	4.4	
18	9.56021	33	9.59094	38	0.40906	9.96927	5	42	9	5.4	5.0	
19	9.56053	32	9.59 I31	37	0.40869	9.96922	5	4 I		6.0	5.5	
20	9.56085	32	9.59 168	37	0.40832	9.96917	5	40		12.0	11.0	
2 I	9.56 II8	33 32	9.59205	37 38	$0.4079 \overline{5}$	9.96912	5	39		18.0	16.5	
22	9.56150	32 32 32	9.59243	38	0.40757	9.96907	5	38		24.0	22.0	
23	9.56182	32 33	9.59280	37 37	0.40720	9.96903	5	37			27.5	
24	9.56 215	33	9.59317	37	0.40683	9.96898	5	36				
25	9.56247	32	9.59354	37	0.40646	9.96893	5	35				
26	9.56279	32	9.59391	37	0.40609	9.96888	5	34		$1{ }^{3}$		
27	9.56311	32 32	9.59429	38 37	0.40571	9.96883	5	33		63.		
28	9.56343	32 32	9.59466	37	0.40534	9.96878	5	32		73.		
29	9.56375	32 33	9.59503	37	0.40497	9.96873	5	3 I				
30	9.56408	32	9.59540	37	0.404^{60}	9.96868	5	30		9		
31	9.56440	32	9.59577	37	0.40423	9.96863	5	29		5. 10.7		
32	9.56472	32 32	9.59614	37	0.40386	9.96858	5	28		12.		
33	9.56504	32 32	9.59651	37 37	0.40349	9.96853	5	27		\|l	l	
34	9.56536	32	9.59688	37	0.40312	9.96848	5	26		121		
35	9.56568	32 32	$9.5972 \overline{5}$	37	0.40275	9.96843	5	25				
36	9.56599	3 x	9.59762	37	0.40238	9.96838	5	24				
37	9.56631	32	9.59799	37	0.40201	9.96833	5	23				
38	9.56663	32	9.59835	36	0.40165	9.96828	5	22		I		
39	9.56695	32	9.59872	37	0.40128	9.96823	5	2 I	6	3.1	0.6	
40	9.56727	32 32		37	0.40091		5	20	7	3.6 4.1	0.7 0.8	
4 4	9.56759 9.56790	32 38 38	9.59946	37 37	0.40054	9.96813	5	19	8	4.1	0.8	
42	9.56790	32 32	9.59983	37 36	0.40017	9.96808	5	18	r 9	4.7 5.2	0.9 1.0	
43 44	9.56822 9.56854	32 32	9.60 019 9.60 056	36 37	0.39 981	9.96803	5	17 16		10.3	2.0	
44	9.56854	32 32	9.60056	37	0.39944	9.96798	5	16		15.5	3.0	
45	9.56886		9.60093		0.39907	9.96793	5	15		20.7	4.0	
46	9.56917	31 32	9.60130	37	0.39870	9.96788	5	14		25.8		
47	9.56949	32	9.60166	36	0.39834	9.96783	5	13				
48	9.56980	$3{ }^{31}$	9.60203	37	0.39797	9.96778	5	12				
49	9.57 O12	32	9.60240	37	0.39760	9.96772	6	II				
50	9.57044	32	9.60276	37			5	10				
51	9.57075	31 32	9.60313	37 36	0.39687	9.96762	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	9	7	0.5 0.6	0.4	
52	9.57107	32 31	9.60349	36 37	0.39651	9.96757	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	8	8	0.6	0. 5	
53	9.57138	$3 \mathrm{3I}$ 3 I	9.60386	37 36	0.39614	9.96752	5	7 6	9	0.8	0. 6	
54	9.57169	3 3	9.60422	36	0.39578	9.96747	5	6	r0	0.8	0.7	
	9.57201	32 3 l	9.60 459	36			5	5	20	1.7	I. 3	
56	9.57232	3 x 32	9.60495	36 37	$0.3950 \overline{5}$	9.96737	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	4	30	2.5	2.0	
57	9.57264	32 31	9.60532	37 36	0.39468	9.96732	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3	40	$3 \cdot 3$	2.7	
58	9.57295	3 I 3 I	9.60568	36 37	0.39432	9.96727	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	2		4.2	3.3	
59	9.57326	$3 \mathrm{3I}$ 32	9.60605	37 36	0.39395	9.96722	5	1				
60	9.57358		9.60641		0.39359	9.96717		0				
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Pro	p. \mathbf{P}	ts.	

1	L. Sin.	d.	L. Tang.	c. d.	I. Cotg.	L. Cos.	d.		Irop. Pts.	
0	9.57358		9.6064 I		0.39359	9.96717		60		
1	9.57389	31	9.60677	36	0.39323	$9.967 \mathrm{II}$	6	59		
2	9.57420	3 I	9.60714	37	0.39286	9.96706	5	58	37	36
3	9.57451	31 31	9.60750	36	0.39250	9.96701	5	57	6 3.7	
4	9.574^{82}	31 32	9.60786	36	0.39214	9.96696	5	56	7 $4 \cdot 3$	
5	9.575^{14}	32	9.60823	36	0.39177	9.96691	5	55	$8 \quad 4.9$	
6	$9.5754 \overline{5}$	3 I	9.60859	36	0.39141	9.96686	5	54	$9 \quad 5.6$	
7	9.57576	31 $3 x$	9.60895	36	0.39 105	9.96681	5	53	$10 \quad 6.2$	
8	9.57607	31 31	9.60931	36 36	0.39069	9.96676	5	52	20	12.0
9	9.57638	31	9.60967	36	0.39033	9.96670	6	51	3018.5	18.0
10	9.57669	3 3	9.61004	37	0.38996	9.96665	5	50	40	24.0
II	9.57700	31	9.61040	36	0.38960	9.96660	5	49	5030.8	30.0
12	9.57731	31	9.61076	36	0.38924	9.96655	5	48		
13	9.57762	31	9.61 I12	36 36	0. 38888	9.96650	5	47		
14	9.57793	$3{ }^{1}$	9.61 148	36	0.38852	$9.9664 \overline{5}$	5	46		
15	9.57824	3 B	9.61184	36	0.38816	9.96640	5	45	6	
16	9.57855	31	9.61220	36	0.38780	9.96634	6	44		
17	9.57885	30	9.61 256	36	0.38744	9.96629	5	43	8	
18	9.57916	3 I	9.61292	36	0.38708	9.96624	5	42	9	
19	9.579 .47	3 I	9.61328	36	0.38672	9.96619	5	41	10	
20	9.57978	3	9.61364		0.38636	9.96614	5	40	2011	
21	9.58008	30	9.61400	36	0.38600	9.96608	6	39	3017	
22	9.58039	31	9.61436	36	0.38564	9.96603	5	38	40	
23	9.58070	3 I	9.61472	6	0.38528	9.96598	5	37	50	
24	9.58 IOI	$3{ }^{1}$	9.61508	36	0.38492	9.96593	5	36		
25	9.58 131	$3{ }^{1}$	9.61544		0.38456	9.96588	6	35		
26	9.58162	3I	9.61579	35	0.38421	9.96582	5	34	${ }^{32}$	
27	9.58192	30	9.61 615	36	0.38385	9.96577	5	33	6 3.2	
28	9.58223	$3{ }^{17}$	9.61651	36	0.38349	9.96572	5	32	7 3.7	
29	9.58253	30	9.61687	36	0.38313	9.96567	5	31	8 4.3	
30	9.58284	31	9.61722	36	0.38278	9.96562	5	30	9 4.8	4.7
31	9.58314	30	9.61758	36	0.38242	9.96556	6	29	$10 \quad 5.3$	
32	$9.5834 \overline{5}$	$3{ }^{1}$	9.61794	36	0.38206	9.96551	5	28	20 10.7	10.3
33	9.58375	30	9.61830	36	0.38170	9.96546	5	27	30	15.5
34	9.58406	3 I	9.61865	35	0.38135	9.96541	5	26	21.3	
35	9.58436	30	9.61901		0.38099	9.96535	6	25	$50,26.7$	
36	9.58467	$3{ }^{1}$	9.61936	35	0.38064	9.96530	5	24		
37	9.58497	30	9.61972	36	0.38028	9.96525	5	23		
38	9.58527	30	9.62008	36	0.37992	9.96520	5	22	30	29
39	9.58557	30	9.62043	35 36	0.37957	9.96514	6	21		
40	9.58588	31	9.62079	36	0.37921	9.96509	5	20	7 3.5 8 4.0	$3 \cdot 4$
41	9.58618	30	9.62114	35	0.37886	9.96504	6	19	8 4.0	
42	9.586 .48	30	9.62 150	36	0.37850	9.96498	6	18	9 4.5 10 50	
43	9.58678	30	9.62185	35 36	0.37 815	9.96493	5	17	10 5.0 20 10.0	. 7
44	9.58709	31	9.62221	36	0.37779	9.96488	5	16	30 15.0	
45	9.58739	30	9.62256	36	0.37744	9.96483	6	15	40 20.0	19.3
46	9.58769	30	9.62292	36	0.37708	. 9.96477	5	14	$50 \mid 25.0$	24.2
47	9.58799	30	9.62327	35.	0.37673	. 9.96472	5	13		
48	9.58829	30	9.62362	35 36	0.37638	9.96467	5	12		
49	9.58859	30	9.62398	36	0.37602	9.96461	6	II		
50	9.58889	30		35	0.37567		5	10	60.6	0.5
51	9.58919	30 30	9.62468	35 36	0.37532	9.96451	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	9	780.7	0.6
52	9.58949	30 30	9.62504	36 35	0.37496	9.96445	6	8	80.8	0.7
53	9.58979	30	9.62539	35	0.37461	9.96440	5	7	90.9	0.8
54	9.59009	30	9.62574	35	0.37426	9.96435	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	6	101.0	0.8
55	9.59039	30	9.62609	36	0.37391	9.96429			202.0	1.7
56	9.59069	30 29	9.62645	36 35	0.37355	9.96424	5	4	30	2.5
57	9.59098	29 30	9.62680	35 35	0.37320	9.96419	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	3	40	$3 \cdot 3$
58	9.59128	30	9.62715	35	0.37285	9.96413	5	2	5015.0	
59	9.59158	30	9.62750	35	0.37250	9.96408	5	1		
60	9.59188		9.62785		0.37215	9.96403		0		
	I.. Cos.	d.	I.. Cotg.	c. d.	L. Tang.	L. Sin.	d.	'	Prop.	t8.

\digamma	L. Sin.	d.	$\frac{\text { L.Tang. }}{9.62785}$	c. d.	I. Cotg.	L. Cos.	d.		Prop. Pts.	
0	9.59188	3029303029		35	$0.3721 \overline{5}$	9.96403	6			
I	9.59218		9.62820		0.37180	9.96397		59		
2	9.59247		9.62855	35	0.37145	9.96392	5	58		36 35
3	9.59277		9.62890	35	0.37 IIO	9.96387	6	57	6	3.6 35 .5
4	9.59307		9.62926	36	0.37074	9.96381	6	56	7	$\begin{array}{lll}3.6 & 3.5 \\ 4.2 & 4.1\end{array}$
5	9.59336	29 30	9.62961	35	0.37039	9.96376	6	55	8	$\begin{array}{lll}4.8 & 4.7\end{array}$
6	9.59366	30	9.62996	35	0.37004	9.96370	6	54	9	$5.45 \cdot 3$
7	9.59396	30	9.63031	35	0.36969	9.96365	5	53	10	6.05
8	9.59425	29	9.63066	35	0.36934	9.96360	5	52	20	12.0 11.7
9	9.59455	30	9.63 IOI	35	0.36899	9.96354	6	51	30	18.0 17.5
10	9.59484	29 30	9.63135	35	$0.3686 \overline{5}$	9.96349	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	50		24.0 23.3
11	9.59514	30 29	9.63170	35	0.36830	9.96343	5	49		30.0 29.2
12	9.59543	29 30	9.63205	35	0.36795	9.96338	5	48		
13	9.59573	30	9.63240	35 35	0.36760	9.96333	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	47		
14	9.59602	29	9.63275	35	0.36725	9.96327		46		34
15	9.59632	29	9.63310	35	0.36690	9.96322	6	45		$3 \cdot 4$
16	9.59661	29	9.63345	35	0.36655	9.96316	5	44		4.0
17	9.59690	29	9.63379	34	0.36621	996311	5	43		84.5
18	9.59720	30	9.63414	35	0.36586	9.96305	6	42		951
19	9.59749	29	9.63449	35	0.36551	9.96300	5	41		- 5.7
20	9.59778	29 30	9.63484	35	0.36516	9.96294	5	40		11.3
21	9.59808	30 29	9.63519	35 34	0.36481	9.96289	5	39		17.0
22	9.59837	29 29	9.63553	34 35	0.36447	9.96284	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	38		22.7
23	9.59866	29 29	9.63588	35 35	0.36412	9.96278	6	37		28.3
24	9.59895	29 29	9.63623	35	0.36377	9.96273	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	36		
25	9.59924	30	9.63657		0.36343	9.96267		35		
26	9.59954	30 29	9.63692	35	0.36308	9.96262	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	34		30 29
27	9.59983	29 29	9.63726	34	0.36274	9.96256	5	33	6	$\begin{array}{lll}3.0 & 2.9\end{array}$
28	9.60012	29	9.63 761	35	- 36239	9.96 251	5	32	7	$\begin{array}{lll}3.5 & 3.4\end{array}$
29	9.60041	29	9.63796	35	0.36204	9.96245		31	8	4.0
30	9.60070	29	9.63830	34	0.36170	9.96240		30	9	$4.5 \quad 4.4$
31	9.60099	29	9.63865	35	0.36135	9.96234	6	29		$\begin{array}{lll}5.0 & 4.8\end{array}$
32	9.60128	29	9.63899	34	0.36 101	996229	5	28		10.0 9.7
33	9.60157	29	9.63934	35	0.36066	9.96223	6	27		15.0
34	9.60186	29	9.63968	34	0.36032	9.96218	5	26		20.0 19.3
35	$9.6021 \overline{5}$	29	9.64003	35	0.35997	9.96212	6	25		25.0
36	9.60244	29	9.64037	34	0.35963	9.96207	5	24		
37	9.60273	29	9.64072	35	0.35928	9.96201	6	23		
38	9.60302	29	9.64106	34	0.35894	9.96196	6	22		
39	9.60331	29	9.64140	34	0.35860	9.96190	6	21		2.8
40	9.60359	28 29	$9.6417 \overline{5}$	35	0.35825	9.96185	5	20		3.3
41	9.60388	29	9.64209	34	0.35791	9.96179	6	19		3.7
42	9.60417	29	9.64243	34	0.35757	9.96174	6	18		- 4.2
43	9.60446	29	$9.6+278$	35	0.35722	9.96168	6	17		4.7
44	9.60474	28	9.64312	34	0.35688	9.96162	6	16		
45	9.60503	29	9.64346	35	0.35654	9.96157	6	15		18.7
46	9.60532	29	9.64381	35	0.35619	996151	6	14		23.3
47	9.60561	29	9.64 415	34	0.35585	9.96146	5	13		
48	9.60589	28	9.64449	34	0.35551	9.96140	6	12		
49	9.60618	29	9.64483	34	- 35517	$9.9613 \overline{5}$	5	II		
50		28 29	9.64517	35	0.35483	9.96129	6	10	6	0.6 5 0.6 0.5
51	9.60675	29 29	9.64552	35 34	0.35448	9.96123	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	9	7	0.6 0.5 0.7 0.6
52	9.60704 9.60732	29 28	9.64586	34	0.35414	9.96 I 18	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	8	8	0.7 0.7 0.8 0.7
53	9.60732 9.60761	28 29	9.64620	34	0.35380	9.96112	5	7	9	0.9 0.8
54	9.60761	29 28	9.64654	34	0.35346	9.96107	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	6	10	0.9 0.8 1.0 0.8
55	9.60789	28	9.64688	34	0.35312	9.96 IOI	6	5	20	1.0 1.7
56	9.60818	29 28	9.64722	34	0.35278	9.96095		4	30	$\begin{array}{lll}3.0 & 2.5\end{array}$
57	9.60846	28 29	964756	34 34	0.35244	9.96090	6	3	40	$\begin{array}{lll}4.0 & 3.3\end{array}$
58	9.60875	28	9.64790	34	0.35210	9.96084		2		5.0 4.2
59	9.60903	28	9.64824	34	0.35176	9.96079	5 6	1		
60	9.60931		9.64858		0.35142	9.96073		0		
	L. Cos.	d.	L. Cotg.	c.	L. Tang.	L. Sin.	d.	/		p. Pts.

\prime	L. Sin.	d.	L. 'Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.		
0	9.60931		9.64858		0.35142	9.96073		60			
1	9.60960	29	9.64892	34	0.35108	9.96067	6	59			
2	9.60988	28	9.64926	34	0.35074	9.96062	5	58		34	33
3	9.61 O16	28	9.64960	34	0.35040	9.96056	6	57	6	3.4	3.3
4	9.61 O +3	29	$9.6+994$	34	0.35006	9.96050	5	56	7	4.0	
5	9.6I 073	28	9.65028	34	0.34972	$9.960 .4 \overline{5}$	6	55	8	4.5	
6	9.61 IOI	28	9.65062	34	$0.3+938$	9.96039	5	54	9	5.1	
7	9.61 I29	28	9.65096	34	0.34904	9.96034	5	53	10	5.7	5.5
8	9.61158	29 28	9.65130	34	0.34870	9.96028	6	52		II. 3	II. O
9	9.61 186	28	9.65164	34	0.34836	9.96022	5	5 I	30	17.0	16.5
10	9.61 214	28	9.65197	33	0.34803	9.96017	5	50		22.7	22.0
II	9.61242	28 28	9.65231	34	0.34769	9.96 OII	6	49		28.3	27.5
12	9.61270	28	9.65265	34	0.34735	9.96005	5	48			
13	9.61298	28	9.65299	34	0.34701	9.96000	5	47			
14	9.61326	28	9.65333	34	$0.3+667$	9.95994	6	46		29	
15	9.61354	28	9.65366	33	0.34634	9.95988	6	45		6	
16	9.61382	28	9.65400	34	0.34600	9.95982	5	44		7	
17	9.61 411	29	9.65434	34	0.34566	9.95977	5	43		83	
18	9.61 438	27	9.65467	33	0.34533	9.95971	6	42		9	
19	9.61 466	28	9.65 501	34	0.34499	9.95965	6	41		4	
20	9.61 494		$9.6553 \overrightarrow{5}$	34	0.34465	9.95960	6	40		I	
21	9.61 522	28	9.65568	33	0.34432	9.95954	6	39		I4.	
22	9.6I 550	28	9.65602	34	0.34398	9.95948	6	38		(19.3	
23	9.61 578	28 28	9.65636	34	0.34364	9.95942	6	37		, 24.	
24	9.61 606	28	9.65669	33	0.34331	9.95937	5	36			
25	9.61 634	28	9.65703	34 33	0.34297	9.95931	6	35			
26	9.6I 662	28	9.65736	33	0.34264	9.95925	6	34		-	
27	9.61 689	27 28	9.65770	34	0.34230	9.95920	5 6	33		6.2 .8	
28	9.61 717	28	9.65803	33	0.34197	9.95914	6	32		7	
29	9.61 745	28	9.65837	34	0.34163	9.95908	6	3 I		8.3	
30	9.61773	28	9.65870	33	0.34130	9.95902	6	30		9	
31	9.61800	27	9.65904	34	0.34096	9.95897	5	29		4	
32	9.61828	28	9.65937	33	0.34063	9.95891	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	28		- 9.3	
33	9.61856	28	9.65971	34	0.34029	9.95885	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	27		(14. 18.	
34	9.61 88.3	27 28	9.66004	33	0.33996	9.95879	6	26			
35	9.61 911		9.66038	34 33	0.33962	9.95873	5	25			
36	9.6I 939	28	9.66071	33	0.33929	9.95868	5 6	24			
37	9.61966	27	9.66 IO4	33	0.33896	9.95862.	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	23			
38	$9.6199+$	28	9.66138	34	0.33862	9.95856°	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	22			
39	9.62021	27	9.66 I71	33	0.33829	9.95850	6	21		6	
40	9.62049		9.66204	33	0.33796	9.95844	5	20		8	
4 I	9.62076	27	9.66238	34	0.33762	9.95839	5	19		9	
42	9.62 10.4	28	9.66271	33	0.33729	9.95833	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	18		9	
43	9.62 I3I	27	9.66304	33	0.33696	9.95827	6	17		-	
44	9.62159	28	9.66337	33	0.33663	9.95821	6	16		13.	
45	9.62185	28	9.66371	34 33	0.33629	$9.95{ }^{\text {815 }}$	5	15		18.	
46	9.62214	28	9.66404	33	0.33596	9.95810	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	14		22.	
47	9.62241	27	9.66437	33	0.33563	9.95804		13			
48	9.62268	27	9.66470	33	0.33530	9.95798	6	12			
49	9.62295	28	9.66503	33	0.33497	9.95792	6	11			
50	9.62323	27	9.66537	33	0.33463	9.95786	6	10	6		
5 I	9.62350	27 27	9.66570	33	0.33430	9.95780	5	9	7	0.6	0.5
52	9.62377	27	9.66603	33	0.33397	$9.9577 \overline{5}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	8	8	0.7	
53	9.62405	27	9.66636	33 33	0.33364	9.95769	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	7	9	0.9	
54	9.62432	27	9.66669	33	0.33331	9.95763	6	6	10	1.0	0.8
55	9.62459	27	9.66702	33	0.33298	9.95757	6	5	20	2.0	1.7
56	9.62486	27 27	9.66735	33	0.33265	9.95751	6	4		3.0	2.5
57	9.62513	27 28	9.66768	33	0.33232	9.95745	6	3		4.0	$3 \cdot 3$
58	9.62541	28	9.66801	33 33	0.33199	9.95739	6	2		5.0	
59	9.62568	27 27	9.66834	33 33	0.33166	9.95733	5	1			
60	9.62595		9.66867		0.33133	9.95728		0			
	I. Cos.	d.	I. Cotg.	c. d.	L. Tang.	L. Sin.	d.	/	Pr	1. 1	ts.

48	26°								
,	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.64184	2626262625	9.68818	3^{2}	0.31182	9.95366	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 7 \\ & 6 \end{aligned}$		
1	9.64210		9.68850		0.31150	9.95360		59	
2	9.64236		9.68882	3232	0.311180.31086	9.95354		$\begin{aligned} & 58 \\ & 57 \end{aligned}$	$32{ }^{31}$
3	9.64262 9.64288		9.68914			9.95348			6 3.2 3.1
4	9.6. 288		9.68946	$\begin{aligned} & 32 \\ & 32 \\ & 32 \end{aligned}$	0.31054	$\frac{9.95341}{9.95335}$		$\frac{5}{55}$	$\begin{array}{lllll}7 & 3.7 & 3.6\end{array}$
5	$9.6+313$	25 26	9.68978		0.31022		6		$\begin{array}{llll}8 & 4.3 & 4.1\end{array}$
6	9.64339	26	9.69 O10	32	0.309900.30958	9.95329	6	54	$\begin{array}{llll}9 & 4.8 & 4.7\end{array}$
7	$96+365$	26 26	$9.69{ }^{\circ} \mathrm{O} 2$	323232		9.95317			10 5.3 5.2
8	$96+391$	26	9.69074 9.69106		0.30926		6	$\begin{aligned} & 52 \\ & 52 \\ & 51 \end{aligned}$	 20 10.7 10.3
9	9.64417	26	9.69106	32 32 32	0.30894	9.95310	7		$\begin{array}{lllll}30 & 16.0 & 15.5\end{array}$
10	9.6444^{2}	25	9.69138	3^{2}	0.30862	9.95304		50	40 21.3 20.7 50 26.7 25.8
II	9.64468	26 26	9.69170	32 32 32	0.30 062	9.95298	6	48	
12	9.64 494	26 25	9.69202	32	- 0.30798	9.95292			
13	9.64519	25 26	9.69234		$\begin{aligned} & 0.30766 \\ & 0.30734 \end{aligned}$	$\begin{aligned} & 9.95286 \\ & 9.95279 \\ & \hline \end{aligned}$	7	$\begin{aligned} & 47 \\ & 46 \end{aligned}$	
14	$9.645+5$	26	9.69266	$\begin{aligned} & 3^{2} \\ & 32 \end{aligned}$					$6 \|$26 2.6
15	9.64571	25	9.69298	32	0.30702	9.95273		45	
16	9.64596	25 26	9.69329	313232	0.30671	9.95267		44	7 7 3.0
17	9.64622	26	9.69 361		0.306390.30607	$9.95{ }^{261}$	6	43	8 3.5
18	9.64647	26 26	9.69393			$\begin{aligned} & 9.95254 \\ & 9.95248 \end{aligned}$	7	4241	$9 \quad 3.9$
19	9.64673	26	9.69425		$\begin{aligned} & 0.30607 \\ & 0.30575 \end{aligned}$				10 4.3 20 8.7
20	9.64698	25 26	9.69457	32	0.30543	9.95248		40	
21	9.64724	26	9.69488	323232	0.30512	9.95242 9.95236	6	3938	$\begin{array}{rrrr}20 & 8.7 \\ 30 & 13.0\end{array}$
22	9.64749	25 26	9.69520		0.30480	$\begin{aligned} & 9.95236 \\ & 9.95229 \end{aligned}$	7666		4017.3
23	9.64775	26	9.69552	323232	0.304480.30416	$\begin{aligned} & 9.95223 \\ & 9.95217 \\ & \hline \end{aligned}$		3736	50121.7
24	9.6. 800	25	9.69584						
25	9.64826		9.69615	$3{ }^{31}$	0.30385	9.95211		35	
26	9.64851	25 26	9.69647	323232	0.30353	9.95204	$\begin{aligned} & 7 \\ & 6 \end{aligned}$	34	2.5
27	9.64877	26	9.69679		$\begin{aligned} & 0.30321 \\ & 0.30290 \end{aligned}$	$\begin{aligned} & 9.95198 \\ & 9.95192 \end{aligned}$		33	
28	9.64902	25	9.69710	32 31 32 32			6	32 32	6 2.5 7 2.9
29	9.64927	25	9.69742	32	$\begin{array}{r} 0.30258 \\ \hline \end{array}$	$\begin{aligned} & 9.95192 \\ & 9.95 \mathrm{I} 85 \\ & \hline \end{aligned}$	7	32 31	3.3
30	9.649 .53		9.69774	31	0.30226	9.95179		30	104.2
3 I	9.64978	25 25	9.69805		$0.3019 \overline{5}$$0.30163$	$\begin{aligned} & 9.95173 \\ & 9.95 \mathrm{I} 7 \end{aligned}$	6	2928	
32	9.65003	25 26	9.69837	31					20 8.3 30 12.5
33	9.65029	26	9.69868	32 32 3	$\begin{aligned} & 0.30163 \\ & 0.30132 \end{aligned}$	$\begin{aligned} & 9.95167 \\ & 9.95160 \end{aligned}$	676	27	30 12.5 40 16.7
34	9.65054	25	9.69900	${ }^{32}$	0.30100	9.95154		26	
35	9.65079	25	9.69932	32 3 l 3	0.30068	9.95148		25	50120.8
36	9.65104	25 26	9.69963	$3 \mathrm{3x}$32	0.30037 0.30005	$\begin{aligned} & 9.95141 \\ & 9.95135 \end{aligned}$	76	24	
37	9.65130	26	9.69995					23	24
38	9.65155	25	9.70026	$3{ }^{31}$	0.29974	9.95129	6	22	
39	9.65180	25	9.70058	3^{2}	0.29942	9.95122	7	2 I	
40	9.65205	25	9.70089	32	0.29911	9.95116		20	$\begin{array}{lll}7 & 2.8 \\ 8 & 3.2\end{array}$
41	9.65230	25	9.70121	32 31 32	0.29879	9.95110	6	19	8 3.2 9 3.6
42	9.65255	25 26	9.70152	32 32 32	0.29848	9.95103	7	18	$\begin{array}{rrr}9 & 3.6 \\ 10 & 4.0\end{array}$
43	9.65 281	26	9.70184	32 31 32	0.29816	9.95097	7	17	2088
44	9.65306	25 25	9.70215	32 32 32	0.29785	9.95090	7	16	30 12.0
45	9.6533 I	25 25	9.70247	32 31 31	0.29753	9.95084		15	4016.0
46	9.65336	25	9.70278	31 $3 \mathrm{3x}$	0.29722	9.95078		14	5020.0
47	9.65 381	25 25	9.70309	$3{ }^{31}$	0.29691	9.95071		13	
48	9.65406	25	9.7034 I	${ }^{32}$	0.29659	9.95065		12	
49	9.65431	25	9.70372	3^{31}	0.29628	9.95059	6	II	
50	9.65456	25	9.70404		0.29596	9.95052		10	6 0.7 0.6
51	9.654^{81}	25	9.70435	$3 \mathrm{3I}$ $3 \mathrm{3I}$	0.29565	9.95046		9	0.7 0.8 0.7
52	9.65506	25 25	$9.70{ }^{666}$	$3 \mathrm{3x}$ 32 3	0.29534	$9.95{ }^{\circ} \mathrm{O} 9$		8	7 0.8 0.7 8 0.9 0.8
53	9.65 531	25	9.70498	${ }^{32}$	0.29502	9.95033		7	 9 0.9 1.9 0.8 1.1 0.9
54	9.65 .556	25	9.70529	$3 \mathrm{3I}$	0.29471	9.95027		6	90 10 1.2 1.0
55	9.65580	2	9.70560		0.29440	9.95020		5	$\begin{array}{llll}20 & 2.3 & 2.0\end{array}$
56	9.65605	25 25	9.70592	32 31 32	0.29408	9.95014		4	$\begin{array}{lllll}30 & 3.5 & 3.0\end{array}$
57	9.65630	25 25	9.70623	32 3 31	0.29377	9.95007	7	3	40 4.7 4.0
58	9.65655	25 25	9.70654	31 31 31	0.29346	9.95 OOI	6	2	5015.8 5.0
59	9.65680	25 25	9.70685	31 32 32	0.29315	9.94995			
60	9.65705		9.70717		0.29283	9.94988		0	
	L. Cos.	d.	I., Cotg.	d	L. Tang	L. Sin.	d.	,	Prop. Pts.

r	L. Sin.	d.	L.'Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.	
0	9.65705		9.70717		0.29283	9.94988		60		
1	9.65729	24	9.70748	$3 \mathrm{3I}$	0.29252	9.94982	6	59		
2	9.65754	25	9.70779	3 I 3 r	0.29221	9.94975	7	58	32	
3	9.65779	25	9.70810	31 31 31	0.29190	9.94969	6	57	$6 \quad 3.2$	
4	9.65804	25	9.70841	3^{11}	0.29159	9.94962	7	56	$\begin{array}{lll}7 & 3.7\end{array}$	
5	9.65828	2	9.70873	3	0.29127	9.94956		55	84.3	4.1
6	9.65853	25 25	9.70904	31 31	0.29096	9.94949	7	54	94.8	4.7
7	9.65878	25 24 24	9.70935	31 3 ya	0.29065	9.94943		53	$10 \quad 5.3$	5.2
8	9.65902	24 25	9.70966	31 3 y	0.29034	9.94936	7 6	52	20.10 .7	10.3
9	9.65927	25 25	9.70997	31 31 31	0.29003	9.94930		51	3016.0	15.5
10	9.65952	25	9.71028	31	0.28972	9.94923	$\begin{aligned} & 7 \\ & 6 \end{aligned}$	50	40	20.7
II	9.65976	24	9.71059	$3 \mathrm{3I}$ 3 y	'0.28 941	9.94917	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	49	$50 \mid 26.7$	
12	9.66 001	25	9.71090	31 $3 \mathrm{3x}$	0.28910	9.949 II	6	48		
13	9.66025	24 25 25	9.71121	31 32 3	0.28879	9.94904	7	47		
14	9.66050	25 25	971153	${ }^{32}$	0.28847	9.94898	6	46		
15	$9.6607 \overline{5}$	25	9.71184	$3{ }^{31}$	0.28816	9.94891	7	45	6	
16	$9.66 \bigcirc 99$	24 25	9.71215	$3{ }^{31}$	0.28785	9.94885	6	44	7 3.5	
17	9.66124	25	9.71246	3^{31}	0.28754	9.94878	7	43	84.0	
18	$9.66{ }^{1} 48$	24 25 25	9.71277	$3^{3 \mathrm{x}}$	0.28723	9.94871	7	42	94.5	
19	9.66173	25	9.71308	${ }^{31}$	0.28692	9.94865	6	41	10	
20	$9.66{ }^{197}$	24	9.71339	${ }^{31}$	0.28661	9.94858		40	20	
21	9.66221	24 25	9.71370	31 31	0.28630	9.94852	6	39	3015.0	
22	9.66246	25	9.71401	$3 \mathrm{3I}$	0.28599	9.94845	7	38	40 20.0	
23	9.66270	24	9.71431	30	0.28569	9.94839	6	37	50125.0	
24	9.66295	25	9.71462	3 3	0.28538	9.94832	7	36		
25	9.66319	24	9.71493	$3{ }^{31}$	0.28507	9.94826				
26	9.66343	24	9.71524	$3 \mathrm{3I}$	0.28476	9.94819	7	34	25	24
27	9.66368	25	9.71555	$3 \mathrm{3x}$	$0.2844 \overline{5}$	9.94813	6	33	$6{ }^{6}$	
28	9.66392	24	9.71586	$3 \mathrm{3I}$ 3 y	0.28414	9.94806	7	32	7 2.9	
29	$9.66{ }_{4} 16$	24	9.71617	$3{ }^{31}$	0.28383	9.94799	7	3 I	8 3.3	
30	9.66 44I	24 24	$9.71{ }^{648}$	$3{ }^{31}$	0.28352	9.94793		30		
31	9.66465	24	9.71679	$3{ }^{31}$	0.2832 I	9.94786	7	29	$\begin{array}{ll}\text { IO } & 4.2 \\ 20 & 8.3\end{array}$	
32	9.66489	24	9.71709	30	0.28291	9.94780	6	28	20 8.3 30 12.5	
33	9.66513	24	9.71740	$3 \mathrm{3x}$	0.28260	9.94773	7	27	30 12.5 40 16.7 40	
34	9.66537	24	9.71771	3 x 3 y	0.28229	9.94767	6	26	40 16.7 50 20.8 	
35	9.66562	25	9.71802	${ }^{31}$	0.28198	9.94760		25		
36	9.66586	24	9.71833	$3 \mathrm{3x}$	0.28167	9.94753	7	24		
37	9.66 610	24	9.71863	30	0.28137	9.94747	6	23		
38	9.66634	24	9.71894	$3{ }^{31}$	0.28106	9.94740	7	22	23	
39	9.66658	24 24 24	9.71925	${ }^{31}$	0.28075	9.94734	6	21	$6{ }^{6} 2.3$	
40	9.66682	24 24 24	9.71955	30	0.28 045	9.94727	7	20	7 2.7 8 3.1	
41	9.66706	24	9.71986	$3{ }^{35}$	0.28 O14	9.94720	7	19	8 3.1	
42	9.66731	25	9.72017	3^{1}	0.27983	9.94714	6	18	9 3.5 10 3.8	
43	9.66755	24	9.72048	$3{ }^{31}$	0.27952	9.94707	7	17	10	
44	9.66779	24	9.72078	30 31	0.27922	9.94700	7	16		
45	9.66803	24 24 24	9.72 Io9	$3 \mathrm{3x}$	0.2789 r	9.94694		15		
46	9.66827	24 24 24	9.72140	30	0.27860	9.94687	7	14		
47	9.66851 9.66875	24 24	9.72170 9.72201	30 $3 \mathrm{3I}$	0.27830	9.94680	7	13		
48	9.66875 9.66899	24 24	9.72201 9.72231	31 30 30	0.27799	9.94674	7	12 11		
49	9.66899	24	9.72231	30	0.27769	9.94667	7	II		
50	9.66922	2	9.72262	3 x	0.27738	9.94660		10		
51	9.66946	24	9.72293	$3 \mathrm{3x}$ 30	0.27707	9.94654	7		7 0.7 0.8	0.6
52	9.66970	24	9.72323	30	0.27677	9.94647	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	8		0.7
53	9.66994	24	9.72354	31 30 30	0.27646	9.94640		7		0.8
54	9.67 O18	24	9.72384	30 3 3	0.27616	9.94634	7	6	10 10 1.2 1 10	1.0
55	9.67042	24	9.72415		0.27585	9.94627		5	202.3	2.0
56	9.67066	24 24 24	9.72445	30	0.27555	9.94620	$\begin{aligned} & 7 \\ & 6 \end{aligned}$	4	$\begin{array}{lll}30 & 3.5 & 3\end{array}$	3.0
57	9.67090	23	9.72476	31 30	0.27524	9.94614	7	3	404.7	4.0
58	9.67113	24 24 24	9.72506	30	0.27494	9.94607	7	$\underline{2}$	5015	
59	9.67137	24	9.72537	$\begin{array}{r}31 \\ 30 \\ \hline\end{array}$	0.27463	9.94600	7	I		
60	9.67 I6I		9.72567		0.27433	9.94593		0		
	L. Cos.	d.	L. Cotg.	. d.	L. Tang.	L. Sin.	d.	,	Prop. P	ts.

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.68557		9.74375		0.25625			60	
1	9.68580	23	9.74405	30	0.25595	9.94175	7	59	
2	9.68603	23	9.74435	30	0.25565	9.94168	7	58	30
3	9.68625	22	9.74465	30	0.25535	9.94 161	7	57	$6 \quad 3.0$
4	9.68648	23 23	9.74494	29	0.25506	9.94154	7		77 3.5
5	9.68671	23 23	9.74524		0.25476	9.94147	7	55	84.0
6	9.68694	23	9.74554	30 20	0.25446	9.94140	7	54	$9 \quad 4.5$
7	9.68716	22	9.74583	29	0.25417	9.94133	7	53	105.0
8	9.68739	23 23	9.74 613	30	0.25387	9.94126	7	52	2010.0
9	9.68762	23 22	9.74643	30	0.25357	9.94119	7	51	3015.0
10	9.68784	22 23	9.74673	29	0.25327	9.94 II2	7	50	4020.0
II	9.68807	23	9.74702	29	0.25298	9.94 105	7	49	5025.0
12	9.68829	22	9.74732	30	0.25268	9.94098	7	48	
13	9.68852	23	9.74762	30	0.25238	9.94090	8	47	
14	9.68875	23	9.74791	29	0.25209	9.94083	7	46	29
15	9.68897	23	9.74821	30	0.25179	9.94076	7	45	$6 \quad 2.9$
16	9.68920	23	9.74 851	30	0.25 I49	9.94069	7	44	$7 \quad 3.4$
17	9.68942	22	9.74880	29	0.25120	9.94062	7	43	$8 \quad 3.9$
18	9.68965	23	9.74910	30	0.25090	9.94055	7	42	$9 \quad 4.4$
19	9.68987	22	9.74939	29	0.25061	9.94048	7	41	104.8
20	9.69010	23	9.74969	30	0.2503 I	9.94041	7	40	$20 \quad 9.7$
21	9.69032	22	9.74998	29	0.25002	9.94034	7	39	30
22	9.69055	23	9.75028	30	0.24972	9.94027	7	38	40 19.3
23	9.69077	22	9.75058	30	0.24942	9.94020	7 8	37	
24	9.69100	23	9.75087	29	0.24913	9.94012	8	36	
25	9.69122		9.75 II7	30 29	0.24883	9.94005	7	35	
26	9.69144	22	9.75146	29	0.24854	9.93998	7	34	23
27	9.69167	23	9.75176	30	0.24824	9.93991	7	33	6 2.3
28	9.69189	22	9.75205	29 30	0.24795	9.93984	7	32	7 2.7
29	9.69212	23	$9.7523 \overline{5}$	30	0.24765	9.93977	7	31	8 3.1
30	9.69234	22	9.75264	30	0.24736	9.93970	7	30	9 3.5 10 3.8
-31	9.69256	22	9.75294	30 29	0.24706	9.93963	8	29	1083.
32	9.69279	23 22	9.75323	29 30	0.24677	9.93955	8	28	20 7.7 30 11.5
33	9.69301	22	9.75353 9.75382	30 29	0.24647 0.24618	9.93948 9.93941	7	27 26	30 11.5 40 15.3
34	9.69323	22	9.75382	29 29	0.24618	9.93941	7	26	50 15.3 50 19.2
35	9.69345		9.754 II	30	0.24589	9.93934	7	25	
36	9.69368	23 22	9.75441	30 29	0.24559	9.93927	7	24	
37	9.69390	22	9.75470	29 30	0.24530	9.93920	7 8	23	
38	9.69412	22	9.75500	30	0.24500	9.93912	8	22	$6{ }^{22}$
39	9.69434	22	9.75529	29	0.24471	9.93905	7	21	$6{ }^{6} 2.2$
40	9.69456	22	9.75558	29 30	0.24442	9.93898	7	20	7 2.6 8 2.9
41	9.69479	23	9.75588	30	0.24412	9.93891	7	19	8 2.9 9 3.3
42	9.69501	22	9.75617	29 30	0.24383	9.93884	7 8	18	9 3.3 10 3.7
43	9.69523	22	9.75647	30 29	0.24353	9.93876	7	17 16	10 3.7
44	9.69545	22	9.75676	29 29	0.24324	9.93869	7	16	20 7.3 30 11.0
45	9.69567		9.75705	30	0.24295	9.93862	7	15	40 14.7
46	9.69589	22	9.75735 9.75764	30 29	0.24265	$9.9385 \overline{5}$	7 8	14	50118.3
47	9.69611	22	9.75764	29 29	0.24236	9.93847	8	13	
48	9.69633	22	9.75793	29	0.24207	9.93840	7	12	
49	9.69655	22	9.75822	29	0.24178	9.93833	7	11	
50	9.69677	22	9.75852	29	0.24148		7	10	
51	9.69699	22	9.75 881	29	0.24119	9.93 819	7 8	9	6 0.8 0.7 7 0.9 0.8
52	9.69721	22	9.75910	29 29	0.24090	9.93811	7	8	7 0.9 0.8 8 1.1 0.9
53	9.69743	22	9.75939	29 30	0.24061	9.93804	7	7	9 I .2 1.1
54	9.69765	22	9.75969	30	0.24031	9.93797	8	6	90 1.2 1.1 10 1.3 1.2
55	9.69787	22	9.75998	29	0.24002	9.93789	7	5	20 2.7 2.3
56	9.69809	22	9.76027	29 29	0.23973	9.93782	7	4	30 4.0 3.5
57 58	9.69831 9.69853	22	9.76056 9.76086	30	0.23944 0.23914	9.93775 9.93768	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	3	40 5.3 4.7
58 59	9.69853 9.69875	22	9.76086 9.76 I15	29	0.23914 0.23885	9.93768 9.93760	8	2	50 $6.7 \mid 5.8$
60	9.69897		9.76144		0.23856	9.93753	7	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

30°

\digamma	L. Sin.	d.	L. 'I'ang.c. d. L. Cotg.			L. Cos.	d.		Prop. Pts.		
0	9.69897	$\begin{aligned} & 22 \\ & 22 \\ & 22 \\ & 21 \\ & 22 \end{aligned}$	9.76 I44	29	0.23856	9.93753	7	60			
1	9.69919		9.76173		0.23827	9.93746		58			
2	$9.699+1$		9.76202	29 29	0.23798	9.93738			30 29		
3	9.69963		9.76231	29 30	0.23769	9.93731	7	$\begin{aligned} & 57 \\ & 56 \\ & \hline \end{aligned}$	6 3.0 2.9		
4	$9.6998+$		9.76261		$0.23739 \quad 9.93724$		7		7 3.5 3.4 8 4.0 3.9		
5	9.70006	22	9.76290	29	0.23710	9.93717 8 55 9.93709 54					
6	9.70028	22	9.76319		0.23 681				$\begin{array}{llll}9 & 4.5 & 4.4\end{array}$		
7	9.70 ०50	22	9.76348	29	0.23652	$9.93702 \quad 7$		53	10 5.0 4.8		
8	9.70072	22	9.76377	29	0.23623	9.93695	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	52		10.0	
9	9.70093	21	$9.76+06$		$0.2359+$	9.93687		I	30 15.0 14.5		
10	9.70 I15	22	9.76435	o.		9.936		50	40 20.0 50 25.0		19.3
II	9.70137	22	9.7646 .4	29	0.23536	9.93673		789			
12	9.70159	22	9.76493	29	0.23507	9.93665		49	48		
13	9.70 I80	21	9.76522	29	0.23478	9.93658	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	47			
14	9.70202	22	9.76551	$\begin{aligned} & 29 \\ & 29 \end{aligned}$	0.23449	9.93650		46			
15	9.70224		9.76580		0.23420	9.93643	7	45			
16	9.70245	21	9.76609	29	0.23 391	9.93636		44			
17	9.70267	22	9.76639	30	0.23 361	9.93628	8	43			
18	9.70288	21	9.76668	29	0.23332		42		94.2		
19	9.70310	22	9.76697	29	0.23303	$\begin{aligned} & 9.93621 \\ & 9.93614 \end{aligned}$	$\begin{aligned} & 7 \\ & 0 \end{aligned}$	41	0		
20	9.70332	22	9.76725		$0.2327 \overline{5}$	9.93606		40	\bigcirc		
21	9.70353	22	9.76754	29	0.23246	9.93595 7 9.939 8		39	3014.0		
22	9.70375	22	9.76783	29	$\begin{array}{ll} 0.23 & 217 \\ 0.23 & 188 \end{array}$	9.93591		8	40		
23	9.70396	2 L	9.76 812	29		9.93584	7	37	$50 \mid 23.3$		
24	9.70418	22	9.76841	29 29	0.23159	9.93577		36			
25	9.70439		9.76870	29	0.23130	9.93569		35			
26	9.70461	22	9.76899	29	0.23101	9.93562	7 8	34	22		
27	9.70482	21	9.76928	29	0.23072	9.93554	8		6.2		
28	9.70504	22	9.76957	29	$\begin{array}{ll} 0.23 & 0.43 \\ 0.23 & 014 \\ \hline \end{array}$	$\begin{aligned} & 9.93547 \\ & 9.93539 \\ & \hline \end{aligned}$	7	32	$7 \quad 2.6$		
29	9.70525	21	9.76986					3 I	82.9		
30	9.70547	22	9.77 O15	29	$\begin{aligned} & 0.22985 \\ & 0.22956 \end{aligned}$	9.93532	7	30		9	
31	9.70568	22	9.77044	29			8	29	10		
32	9.70590	22	9.77073	2928	$\begin{aligned} & 0.22927 \\ & 0.22899 \end{aligned}$	9.93517	8	28	20		
33	9.70611	21	9.77 101			$\begin{aligned} & 9.93510 \\ & 9.93502 \end{aligned}$	7	27		II	
34	9.70633	22	9.77130	29	$\begin{aligned} & 0.22899 \\ & 0.22870 \end{aligned}$			26		1	14
35	9.70654	21	9.77 I59	29	0.22841	9.935	7	25			
36	9.70675	21	9.77188	29	0.22812	9.93487	8	24			
37	9.70697	22	9.77217	39	0.22783	9.93480	8	23			
38	9.70718	21	9.77246	29	0.22754	9.93472	8	22			
39	9.70739	21	9.77274	28	0.22726	9.93465	7 8	21		62	
40	9.70761	22	9.77303	29	0.22697	9.93457	8	20		8	
4 I	9.70782	21	9.77332	29	0.22668	$9.934 \overline{5} 0$	8	19		8	
42	9.70803	21	9.77 361	29	0.22639	9.93442	8	18		0	
43	9.70824	21	9.77390	29	0.22610	$9.9343 \overline{5}$	8	17		- 7.	
44	9.70846	22	9.774 I 8		0.22582	9.93427	8	16		10.	
45	9.70867	21	9.77447	29	0.22553	9.93420	8	15		14.	
46	9.70888	21	9.77476	29	0.22524	9.93412	8	14		17.	
47	9.70909	21 22	9.77505	29	0.22495	9.93405	7 8	13			
48	9.70931	22	9.77533	28	0.22467	9.93397	8	12			
49	9.70952	21	9.77562	29	0.22438	9.93390	8	11			
50	9.70973		9.77591	28	0.22409		7		6	0.8	
51	9.70994	21	9.77619	28 29	0.22381	9.93375	8	8	7	0.8	0.8
52	9.71015	21	9.77648	29 29	0.22352	9.93367	7	8	8	I. 1	
53	9.71036	21	9.77677	29 29	0.22323	9.93360	7 8	7	8	1.1 1.2	
54	9.71058	22	9.77706	29 28	0.22294	9.93352	8	6	10	1.3	
55	9.71079	21	9.77734	28	0.22266	9.93344		5	20	2.7	2.3
56	9.71100	21	9.77763	29 28	0.22237	9.93337	8	4	30	4.0	$3 \cdot 5$
57	9.71121	21	9.77791	28	0.22209	9.93329	7	3		$5 \cdot 3$	4.7
58	9.71142	21	9.77820	29 29	0.22180	9.93322	8	2		6.7	
59	9.71163	21 21	9.77849	29 28	0.22151	9.93314	8	1			
60	9.71184		9.77877		0.22123	9.93307		0			
	L. Cos.	d.	I. Cotg.	c.	I. Tang.	L. Sin.	d.	\bigcirc	Pro	pp. 1	t8.

\digamma	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Irop. Pts.		
0	9.76922		9.86 I26		0.13 874	9.90796		60			
1	9.76939	17 18	9.86 I53	27 26	-.13 847	9.90787	9 10	59			
2	9.76957	18	9.86179	26	0.13821	9.90777	10	58			26
3	9.76974	18 17	9.86206	27 26	0.13794	9.90768	9	57		2.7	2.6
4	9.76991	17 18	9.86232	26	0.13768	9.90759	9			3.2	
5	9.77009		9.86259	26	0.13741	$9.907 \overline{5} 0$	9	55		3.6	3.5
6	9.77026	17	9.86285	26	0.13 715	9.90741	9	54		4.I	3.9
7	9.77043	17	9.86312	27	0.13688	9.90731	10	53		4.5	4.3
8	9.77 061	18	9.86338	26	0.13 662	9.90722	9	52		9.0	8.7
9	9.77078	17	9.86365	27	0.13 $63 \overline{5}$	9.90713	9	51		13.5	13.0
10	9.77095	17	9.86392	27	0.13608	9.90704	9	50		18.0	17.3
1	9.77112	17 18	9.86418	26	0.13 582	9.90694	10	49		22.5	21.7
12	9.77130	18	$9.8644 \overline{5}$	27	0.13 555	9.90685	9	48			
13	9.77 147	17	9.86471	26	0.13 529	9.90676	9	47			
14	9.77164	17	9.86498	27	0.13502	9.90667	9	46			
15	9.77 181	17 18	9.86524		0.13 476	9.90657	9	45		6	
16	9.77 I99	18	9.86551	27	-.I3 449	9.90648	9	44			
17	9.77216	17	9.86577	26	0.13423	9.90639	9	43		8	
18	9.77233	17	9.86603	26	0.13 397	9.90630	9	42		9	
19	9.77250	17	9.86630	27	0.13370	9.90620	10	4I			
20	9.77268	18	9.86656		0.13344	9.90611	9	40			
2 I	$9.7728 \overline{5}$	17	9.86683	27	0.13317	9.90602	9	39		0	
22	9.77302	17	9.86709	26	0.13291	9.90592	10	38		1	
23	9.77319	17	9.86736	27	-.13 264	9.90583	9	37		15	
2.4	9.77336	17	9.86762	26	0.13238	9.90574	9	36			
25	9.77353	17	9.86789	26	0.13211	$9.9056 \overline{5}$	10	35			
26	9.77370	17	9.86815	26	$0.1318 \overline{5}$	9.90555	10	34		${ }^{17}$	
27	$9.773^{38} 7$	17 18	9.86842	27	-.13 158	9.90546	9	33		6	
28	9.77405	18	9.86868	26	0.13 132	9.90537	10	32		7	
29	9.77422	17	9.86894	26	0.13106	9.90527	10	3 I		8	
30	9.77439	17	9.86921	27	0.13079	9.90518	9	30			
31	9.77456	17	9.86947	26	0.13053	9.90509	10	29		0	
32	9.77473	17	9.86974	27	0.13026	9.90499	10	28			
33	9.77490	17	9.87000	26	0.13000	9.90490	10	27 26			
34	9.77507	17	9.87027	27 26	0.12973	9.90480	10	26		1	
35	9.77524	17	9.87053		0.12947	9.90471	9	25			
36	9.77541	17	9.87079	26	0.12921	9.90462	10	24			
37	9.77558	17	9.87106	27	0.12894	9.90452	10	23			
38	9.77575	17	9.87132	26	0.12868	9.90443	9	22			
39	9.77592	17 17	9.87158	26	0.12842	9.90434	10	21			
40	9.77609	17	$9.8718 \overline{5}$	27	0.12815	9.90424	10	20			
4 I	9.77626	17	9.87211	26	0.12789	$9.9041 \overline{5}$	9 10	19			
42	9.77643	17 17	9.87238	27 26	0.12762	9.90405	10 9	18		9	
43	9.77660	17 17	9.87264	26 26	0.12736 0.12710	9.90396 9.90386	9	17		0	
44	9.77677	17	9.87290	26 27	0.12710	9.90386	10	16			
45	9.77694	17	9.87317	26	0.12683	9.90377	9	15		10	
46	9.77711	17 17	9.87343	26 26	0.12657	9.90368	10	14		13	
47	9.77728	17 16	9.87369	27	0.12631	9.90358	9	13			
48	9.77744	16 17	9.87396	27 26	0.12604	9.90349	9 10	12			
49	9.77761	17	9.87422	26	0.12578	9.90339		II			
50	9.77778	17	9.87448	26	0.12552	9.90330	10		6	1.0	
51 52	9.77795 9.77812	17 17	9.87475 9.87501		0.12525 0.12499	9.90320 9.90311	9	9 8	7	1.2	
52	9.77 812	17	9.87501	26 26	0.12499	9.90311	$\begin{array}{r} 9 \\ 10 \end{array}$	8	8	1.3	
53	9.77829	17 17	9.87527 9.87554	27	0.12473 0.12446	9.90301 9.90292	9	7 6	9	1.5	
54	9.77846	17	9.87554	27 26	0.12446	9.90292	10	6	Io	1.7	1.5
55	9.77862		9.87580	26	0.12420	9.90282	9	5	20	3.3	
56	9.77879	17	9.87606	27	0.12394	9.90273	$\begin{array}{r} 9 \\ \text { 10 } \end{array}$	4		5.0	4.5
57	9.77896	17 17	9.87633	27	0.12367	9.90263	9	3		6.7	6.0
58	9.77913	17 17	9.87659 9.87685	26 26	0.12341 0.12315	9.90254 9.90244	10	2		8.3	
59	9.77930	17	9.87685	26	0.12315	9.90244	9	1			
60	9.77946		9.87711		0.12289	$9.9023 \overline{5}$		0			
	I. Cos.	d.	L. Cotg.	c. d.	L. 'Iang.	L. Sill.	d.	,	1 ro	1. 1	ts.

\prime	L. Sin.	d.	L.Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.77946		9.87711		0.12289	$9.9023 \overline{5}$		60	
I	9.77963	17	9.87738	27	0.12262	9.90225	10	59	
2	9.77980	17	9.87764	26	0.12236	9.90216	9 10	58	27
3	9.77997	17 16	9.87790	26	0.12210	9.90206	9	57	$6{ }_{6} \quad 2.7$
4	9.78 O13	16	9.87817	27 26	0. 12183	9.90197	9		7 3.2
5	9.78030	17	9.87843	26	0.12157	9.90187	10	55	$8 \quad 3.6$
6	9.78047	17 16	9.87869	26	0.12 I3I	9.90178	9 10	54	9 4.1
7	9.78063	16	9.87895		0.12105	9.90 I68	0	53	104.5
8	9.78080	17	9.87922	27	0.12078	9.90 I59	9	52	209.0
9	$9.78 \quad 097$	17	9.87948	26	0.12052	9.90 I49	0	51	30
10	9.78 II3		9.87974		0.12026	9.90 I39		50	40
II	9.78 I30	17	9.88000	26	0.12000	9.90130	9 10	49	$50 \mid 22.5$
12	9.78147	17 16	9.88027	27 26	O.II 973	9.90120	10	48	
13	9.78163	16	9.88053	26	O.II 947	9.90 III	9 10	47	
14	9.78 180	17	9.88079	26	0.11921	9.90 IOI	10	46	26
15	9.78 I97	16	9.88 IO5	26	0.11895	9.90 091	10	45	$6{ }^{6} 2.6$
16	9.78213	17	9.88 I3I	26	O.II 869	9.90082	9	44	783.0
17	9.78230	17 16	9.88 I58	27 26	O.11 842	9.90072	10	43	8 8-5.5
18	9.78246	16	9.88 I84	26	0.11816	9.90063	9 10	42	$9 \quad 3.9$
19	9.78263	17 17	9.88210	26	0.11790	9.90053	10	4 I	10 4.3
20	9.78280	17	9.88236	26	0.11764	9.90043	10	40	2088
21	9.78296	16	9.88262	26	0.11738	9.90034	9	39	3013.0
22	9.78313	17	9.88289	27	0.11711	9.90024	10	38	40
23	9.78329	16	9.88315	26	O.II 685	9.90014	10	37	$50 \mid 21.7$
24	9.78346	17	9.8834 I	26	0.11 659	9.90005	9	36	
25	9.78362		9.88367	26	0.11633	9.89995	10	35	
26	9.78379	17 16	9.88393	26	O.II 607	9.89985	10	34	17
27	9.78395	17	9.88420	27 26	0.11580	9.89976	9	33	6 1.7
28	9.78412	17 16	9.88446	26	O.II 554	9.89966	10	32	7 8
29	9.78428	16	9.88472	26	0.11 528	9.89956	10	31	8
30	$9.7844 \overline{5}$	16	9.88498	26	0.11502	9.89947	10	30	9 2.6 10 2.8
31	$9.78{ }^{461}$	17	9.88524	26	0.11476	9.89937	10	29	10 2. 20 5
32	9.78478	17 16	9.88550	26 27	$0.114 \overline{5} 0$	9.89927	10	28	20 5.7 30 8.5
33	9.78494	16	9.88577	27 26	O.II 423	9.89918 9.89008	10	27 26	40 11.3
34	9.78510	16	9.88603	26	0.11 397	9.89908	10	26	40 11.3 50 14.2
35	9.78527	17	9.88629	26	0.11371	9.89898	10	25	
36	9.78543	17	9.88655	26	0.11 345	9.89888	10	24	
37	9.78560	17 16	9.88 681	26	O.II 319	9.89879	'9	23	
38	9.78576	16	9.88707	26	O.II 293	9.89869	10	22	616
39	9.78592	16	9.88733	26	0.11267	9.89859	10	21	
40	9.78609	ェ6	9.88759	27	O.II 24I		9	20	
41	9.78625	16	9.88786	27 26	O.II 214	9.89840	9 10	19	8 2.1 9 2.4
42	9.78642	17 16	9.88 812	26 26	O.II 188	9.89830	10	18	9 2.4 10 2.7
43	9.78658	16 16	9.88838	26 26	0.11162	9.89820	10	17 16	
44	9.78674	16	9.88864	26	0.11 136	9.89810	10	16	20 5.3 30 8.0
45	9.78691	16	9.88890	26	O.II IIO	9.89 801	10	15	40 10.7
46	9.78707	16 16	9.88916	26	0.11084	9.89791	10	14	50113.3
47	9.78723	16 16	9.88942	26	0.11058	9.89781	10	13	
48	9.78739	16	9.88968	26	0.11032	9.89771	10	12	
49	9.78756	17 16	9.88994	26	0.11006	9.89761	10	II	
50	9.78772		9.89020	26	0.10 980	9.89752	9 10	10	
51	9.78788	16	9.89046	27	0.10954	9.89742	10	9	7 I. 2 I.
52 53	9.78805 9.78821	17 16	9.89073 9.89099	27 26	0.10927 0.10901	9.89732	10	8	7 1.2 1.1 8 1.3 1.2
53	9.78821	16 16	9.89099	26 26	0.10901	9.89722	10	7	9 I .5 I .4
54	9.78837	16 16	9.89125	26	0.10875	9.89712	10	6	IO 1.7 1.5
55	9.78853 9.78869	16	9.89 I5I	26	O.IO 849	9.89702		5	20.30 .3 3.0
56	9.78869 9.78886	17	9.89177 9.89203	26	0.10823 0.10797	9.89693 9.89683	9 10	4 3	30 5.0 4.5
57	9.78886	16	9.89203	26	0.10797	9.89683	10	3	40 6.7 6.0
58 59	9.78902 9.78918	16	9.89229 9.89255	26	0.10771 0.10745	9.89673 9.89663		1	$50 \mid 8.3: 7.5$
60	9.78934		9.89 28I		0.10719	9.89653	10	0	
	L. Cos.	d.	I. Cotg.	c. d	L. Tang.	L. Sin.	d.	γ	Prop. Pts.

38°

7	L. Sin.	d.	L.Tang.	c. d.	L. Cutg.	L. Cos.	d.		Prop. Pts.
0	9.79887		9.90837		0.09163	9.89050		60	
1	9.79903	16	9.90863	26	0.09137	9.89040	10	59	
2	9.79918	15	9.90889	26	0.09111	9.89030	10	58	
3	9.79934	16	9.90914	25 26	0.09086	9.89020	10	57	6.2 .6
4	9.79950	16	9.90940	26	0.09060	9.89009	II		7 3.0
5	9.79965	16	9.90966	26	0.09034	9.88999		55	8 3.5
6	9.7998 I	16	9.90992	26	0.09008	9.88989	11	54	$9 \quad 3.9$
7	9.79996	15	9.91 or8	26	0.08982	9.88978	11	53	$10 \quad 4.3$
8	9.80 O12	16 15	9.91043	25 26	0.08957	9.88968	10	52	$20 \quad 8.7$
9	9.80027	15 16	9.91069	26	0.08931	9.88958	10	51	3013.0
10	$9.80^{\circ} 043$	15	9.91095	26	$0.0890 \overline{5}$	9.88948	II	50	40
II	9.80058	15 16	9.91121	26	0.08879	9.88937	11	49	50 21.7
12	9.80074	16	9.91147	26	0.08853	9.88927	10	48	
13	9.80089	15 16	9.91172	25	0.08828	9.88917	11	47	
14	9.80 105	16	9.91198	26	0.08802	9.88906	11	46	25
15	9.80120	16	9.91224	26	0.08776	9.88896	10	45	$6 \quad 2.5$
16	9.80×36	15	9.91250	26	0.08750	9.88886	10	44	7 2.9
17	9.80151	15 15	9.91276	26	0.08724	9.88875	11	43	$8 \quad 3.3$
18	9.80166	15 16	9.91301	25 26	0.08699	9.88865	10	42	93.8
19	9.80182	16	9.91327	26	0.08673	$9.8885 \overline{5}$	10	41	104.2
20	9.80197	16	9.91353		0.08647	9.88844	10	40	$20 \quad 8.3$
21	9.80213	16	9.91379	26	0.08621	9.88834	10	39	30 12.5 40 16.7
22	9.80228	15 16	9.91404	25 26	0.08596	9.88824	10	38	40 16.7 50 20.8
23	9.80244	15	9.91430	26	0.08570	9.88 813	11	37	50\|20.8
24	9.80259	15 15	9.91456	26	0.08544	9.88803	10	36	
25	9.80274	16	9.91482		0.08518	9.88793		35	
26	9.80290	16	9.91507	25 26	0.08493	9.88782	11	34	
27	9.80305	15 15	9.91533	26	0.08467	9.88772	10	33	6 1. 6
28	9.80320	15 16	9.91559	26	0.0844 I	9.88761	110	32	$7 \quad 1.9$.
29	9.80336	16	9.91585	26	0.084 I 5	9.8875 I	10	31	8 2.1
30	9.80 351-		9.91 610		0.08390	9.8874 I		30	$9 \quad 2.4$
31	9.80366	15 16	9.91636	26	0.08364	9.88730	11	29	10 2.7 20 5.7
32	9.80382	16	9.91662	26	0.08338	9.88720	10	28	20 5.3 30 8.0
33	9.80397	15	9.91688	26	0.08312	9.88709	11	27	
34	9.80412	16	9.91713		0.08287	9.88699	10	26	40
35	9.80428	15	9.91739	26	0.08261	9.88688		25	
36	9.80443	15	9.91765	26	0.08235	9.88678		24	
37	9.80458	15	9.91791	26	0.08209	9.88668	10	23	
38	9.80473	15	9.91816	25	0.08184	9.88657	11	22	15
39	9.80489	16	9.91842	26	0.08158	9.88647	10	21	$6{ }^{6}$ 1.5
40	9.80504	15	9.91868		0.08132	9.88636	10	20	7 1.8 8 2.0
41	9.80519	15	9.91893	25	0.08107	9.88626	10	19	8 2.0 9 2.3
42	9.80534	15 16	9.91919	26 26	0.08081	9.88615	110	18	9 2.3 10 2.5
43	9.80550	16	9.91945	26 26	0.08055	9.88605	11	17 16	205
44	9.80565	15	9.91971	26	0.08029	9.88594	11	16	30 7.5
45	9.80580	15	9.91996	25	0.08004	9.88584	11	15	40 10.0
46	9.80595 9.80610	15	9.92022	26 26	0.07978	9.88573	11	14	5012.5
47	9.80610	15	9.92048	25	0.07952	9.88563	11	13	
48	9.80625	15 16	9.92073	25 26	0.07927	9.88552	11	12	
49	9.80641	16	9.92099	26	0.07901	9.88542	10	11	
50	9.80656	15	9.92125		0.07875	9.8853 I	10	10	
51	9.80671	15 15	9.92150	25 26	0.07850	9.88521	11	9	6 1.1 1.0 7 1.3 1.2
52	9.80686	15 15	9.92176	26 26	0.07824	9.88510	II	8	
53	9.80701	15 15	9.92232 9.92227	25	0.07798 0.07773	9.88499 9.88489	10	7	$9 \mathrm{I} .7 \begin{aligned} & \text { 1. }\end{aligned}$
54	9.80716	15 15	9.92227	26	0.07773	9.88489	11	6	10 1.8 1.7
55	9.80731	15	9.92253	26	0.07747		10	5	20 3.7 3.3
56	9.80746	16	9.92279	25	0.07721	9.88468	II	4	30 5.5 5.0
57 58	9.80762 9.80777	16 15	9.92304 9.92330	25 26	0.07696 0.07670	9.88457	10	3	40 7.3 6.7
58 59	9.80777	15 15	9.92330	26	0.07670	9.88447	II	2	
59	9.80792	15	9.92356	25	0.07644	9.88436	II	1	
60	9.80807		9.92381		0.07 619	9.88425		0	
	L. Cos.	d.	L. Cotg.	c. d.	L.Tang.	L. Sin.	d.	1	Prop. Pts.

\%	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.80807		9.92381		0.07619	9.88425		60	
1	9.80822	15	9.92407	26	0.07593	9.88415	10	59	
2	9.80837	15	9.92433	26	0.07567	9.88404	11	58	26
3	9.80852	15 15 15	9.92458	25 26	0.07542	9.88394	10	57	$6{ }_{6} 2.6$
4	9.80867	15	9.92484	26 26	0.07516	9.88383	11	56	73.0
5	9.80882		9.92510	25	0.07490	9.88372		55	8 3.5
6	9.80897 9.80912	15	9.92535	25 26	0.07465	9.88362	11	54	$9 \quad 3.9$
7	9.80912 9.80927	15 15	9.9256 x 9.92587	26 26	0.07439 0.07413	9.88351	11	53	10.4 .3
8	9.80927 9.80942	15	9.92587 9.92612	25	0.07413 0.07388	$9.8834{ }^{\circ}$ 9.883	11	52 51 51	20 8.7 30 13.0
10	9.80957	15	9.92638	26 25	0.07362	9.88319	${ }_{1}$	50	4017.3
11	9.80972	15 15	9.92663	25 26	0.07337	9.88308	11	49	50 21.7
12	9.80987	15	9.92689	26 26	0.07311	9.88298	10	48	
13	9.81 I 002	15 15	9.92715	26	0.07285	9.88287	11	47	
14	9.8 I O17	15 15	9.92740	25 26	0.07260	9.88276	11 10	46	
15	9.8 I 032	15	9.92766	26	0.07234	9.88266		45	$6{ }^{6} 2.5$
16	9.8 I 047	15	9.92792	26 25	0.07208	9.88255	1	44	$7 \quad 2.9$
17	9.8I 06I	14	9.92817	25 26	0.07183	9.88244	11	43	8 3.3
18	9.81 076	15	9.92843		0.07157	9.88234	10	42	3.8
19	9.8I 09I	15	9.92868	25	0.07132	9.88223	11	4 I	10 4.2
20	9.8 I 106	15	9.92894		0.07106	9.88212		40	20.8 .3
21	9.81121	$\begin{array}{r}15 \\ 15 \\ \hline\end{array}$	9.92920	26	0.07080	9.88 201	1 I	39	3012.5
22	9.81 136	15 15	9.92945	25	$0.0705 \overline{5}$	9.88 191	${ }^{11}$	38	4016.7
23	9.81 151	15	9.92971	26	0.07029	9.88180	${ }^{11}$	37	$50 \mid 20.8$
24	9.81 166	15	9.92996	25	0.07004	9.88169	11	36	
25	9.81180	15	9.93022	26	0.06978	9.88158		35	
26	9.81195	15	9.93048	2	0.06952	9.88148	10	34	15
27	9.81210	15	9.93073	25	0.06927	9.88137	11	33	6 1.5
28	9.81 225	15	9.93099		0.06901	9.88126	${ }_{11}^{11}$	32	71.8
29	9.81240	15	9.93124	25	0.06876	9.88115	11	31	82.0
30	9.81254	15	9.93 I50		0.06850	9.88 105		30	$9{ }^{9} 2.3$
31	9.81269	15 15	9.93175	25 26	0.06825	9.88094	${ }^{11}$	29	10.5
32	9.8I 284	15	9.93201		0.06799	9.88083	11	28	20.5
33	9.81 299	15	9.93227	26	0.06773	9.88072	11	27	
34	9.81 314	15	9.93252	25 26	0.06748	9.88 o6r	11	26	40 10.0
35	9.81328	14	9.93278		0.06722	9.88 051		25	5012.5
36	9.81 343	15	9.93303	25	0.06697	$9.88{ }^{\circ} \mathrm{O} 0$	${ }^{11}$	24	
37	9.81 358	15	9.93329		0.06671	9.88 O29	${ }^{11}$	23	
38	9.81372	$\begin{array}{r}14 \\ 15 \\ \hline\end{array}$	9.93354	25	0.06646	9.88 о18	11	22	14
39	9.81 387	$\begin{array}{r}15 \\ 15 \\ \hline\end{array}$	9.93380	26	0.06620	9.88007		21	
40	9.81402	15	9.93406		0.06594	9.87996		20	7 7. ${ }^{\text {¢ }}$
41	9.81 417	15	9.93431	25 26	0.06569	9.87985	11	19	8 1.9
42	9.81 43	$\begin{array}{r}14 \\ 15 \\ \hline\end{array}$	9.93457	26	0.06543	9.87975	10	18	9 2.1 10 2.3
43	9.81446	15	9.93482	25	0.06518	9.87964	11	17	$\begin{array}{ll}10 & 2.3 \\ 20 & 4.7\end{array}$
44	9.81 461	15	9.93508	26	0.06492	9.87953	${ }^{11}$	16	20.4 .7
45	9.81 475	14	9.93533	26	0.06467	9.87942		15	$\begin{array}{lll}30 & 7.0 \\ 40 & 9.3\end{array}$
46	9.81490	15	9.93559		0.06441	9.8793 I		14	50 11.7
47	9.81 505	15	9.93584	25 26	0.06416	9.87920	11 11	13	
48	9.81519	14 15	9.93610 9.93636	26 26	0.06390 0.06364	9.87909	11	12	
49	9.81 534	15	9.93636	25	0.06364	9.87898		11	
50	9.81 549	4	9.93 661	26	0.06339	9.87887		10	
51	9.81 563	15	9.93687	26 25	0.06313 0.06288 0			8	6 1.1 1.0 7 1.3 1.2
52	9.81 578	15 14	9.93712 9.93738	25 26	0.06288 0.06262	$\begin{aligned} & 9.87866 \\ & 9.87855 \end{aligned}$	II	8	
53 54	$\begin{aligned} & 9.8 \mathrm{II} 592 \\ & 9.8 \mathrm{I} 607 \end{aligned}$	14 15	$\begin{aligned} & 9.93738 \\ & 9.93763 \\ & \hline \end{aligned}$	26 26	0.06262 0.06237	$\begin{aligned} & 9.87855 \\ & 9.87844 \end{aligned}$	1	7 6	
	9.81 622	15	9.93789	26	0.06211	9.87833	11	5	10 1.8 1.7 20 3
56	9.81 636	14	9.93814	25	0.06186	9.87822	${ }^{18}$	4	20 3.7 3.3 30 5.5 5.0
57	9.81 651	15	9.93840	26	0.06160	9.87811	II	3	30 5.5 5.0 40 7.3 6.7
58	9.81 665	14	9.93865	25	0.06135	9.87800	11		
59	9.81 680	15	9.93891		0.06109	9.87789	${ }^{11}$	1	
60	9.81 694		9.93916		0.06084	9.87778		0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

厂	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.81694		9.93916		0.06084			60	
1	9.81709	15 14	9.93942	26	0.06058	9.87767	11	59	
2	9.81 723	14 15	9.93967	25 26	0.06033	9.87756	II	58	${ }_{6} 26$
3	9.81 738	15 14	9.93993	26 25	0.06007 0.05082	9.87745	11	57	$6{ }_{6} 2.6$
4	9.81752	14	9.94 о18	25 26			II		7 3.0
5	9.81 767	15	9.94044	25	0.05956	9.87723	,	55	83.5
6	9.81 78 I	15	9.94069	26	0.0593 I	9.87712	${ }_{1}$	54	93.9
7	9.81 9.81 796 810	15 14 15	9.94095 9.94120	26 25	0.05905 0.05880	9.87701 9.87690	11	53	10 4.3 0 8.7
9	9.81825	15	9.94 146	26	0.05884 0.05854	9.87679	11	52 51	20 8.7 30 13.0
10	9.81 839	$\begin{array}{r}14 \\ 15 \\ \hline\end{array}$	9.94 I7I	26	0.05829	9.87668	${ }_{\text {II }}$	50	4017.3
II	9.81 854	15	9.94197	26	0.05803	9.87657	${ }^{11}$	49	50121.7
12	9.81 868	14	9.94222	25	0.05778	9.87646	II	48	
13	9.81 882	14 15	9.94248	26	0.05752	9.87635	11	47	
14	9.81 897	15	9.94273	25 26	0.05727	9.87624	II II	46	25
15	9.8191 I		9.94299		0.05701	9.87613		45	$6{ }^{6} 2.5$
16	9.8I 926	15 14	9.94324	25 26	0.05676	9.87601	12	44	$7 \quad 2.9$
17	9.81 940	14	9.94350	26	0.05650	9.87590	II	43	83.3
18	9.81 $95 \overline{5}$	15	9.94375	25	0.05625	9.87579	II	42°	93.8
19	9.81 969	14 14 14	9.94401	26	0.05599	9.87568	11 11	4 I	10.4 .2
20	9.81 983	14	9.94426	25	0.05574	9.87557	II	40	2088
21	9.81 998	15	9.94452	26	0.05548	9.87546	II	39	3012.5
22	9.82012	14	9.94477	25 26	0.05523	$9.8753 \overline{5}$	II	38	40 16.7
23	9.82026	14 15	9.94503		0.05497	9.87524	11	37	$50 \mid 20.8$
24	9.820 .41	15	9.94528	25	0.05472	9.87513	11	36	
25	$9.8205 \overline{5}$		9.94554		0.05446	9.87 501		35	
26	9.82069	14	9.94579	25 25	0.0542 I	9.87490	${ }_{\text {II }}$	34	15
27	9.82084	15	9.94604	25 26	0.05396	9.87479	${ }_{\text {II }}$	33	6 1.5
28	9.82098	14	9.94630	26	0.05370	9.87468	II	32	7 1.8
29	$9.82 \mathrm{II2}$	14 14 14	9.94655	25 26	0.05345	9.87457	II	31	8.2 .0
30	9.82126	14	9.94 68I		0.05319	9.87446	11	30	9 2.3 10 2.5
3 I	9.82 I41	15	9.94706	25 26	0.05294	9.87434	${ }_{12}^{12}$	29	10 2.5 20 50
32	$9.8215 \overline{5}$	14	9.94732		0.05268	9.87423	11	28	2058.0
33	9.82169	14	9.94757	25 26	0.05243	9.87412	II	27	30 7.5 40 10.0
34	9.82184	15	9.94783	26 25	0.05217	9.87401	11	26	4010.0
35	9.82198	14	9.94808	26	0.05192	9.87390	12	25	
36	9.82212	14	9.94834	26 25	0.05166	9.87378	11	24	
37 38	9.82226 9.82240	14	9.94859 9.94884	25 25	0.05141 0.05116	9.87367	11	23	
39	9.82240 9.82255 9	15	9.94894 9.94	26	0.05 090	9.87356 9.87345 9	11	22 21	$6 \xrightarrow{1.4}$
40	9.82269	14	9.94935	25 26	0.05065	9.87334	11	20	7 7. 6
41	9.82283	14 14 14	9.9496 I	26	0.05039	9.87322	12	19	8 1.9
42	9.82297	14 14 14	9.94985	25 26 26	0.05014	9.87311	11	18	9 2.1 10 2.3
43	9.82311	14	9.95012	26	0.04988	9.87300	11	17	10 2.3
44	9.82326	15	9.95037	25	0.04963	9.87288	12	16	204.7
45	9.82340	14	9.95062	26	0.04938	9.87277	11	15	40 9.3
46	9.82354 9.82368	14	9.95088	25	0.04912	9.87266	II	14	50111.7
	9.82368 9.82382	14	9.95113 9.95139	26 26	0.04 887	9.87255	12	13	
49	9.82382 9.82	${ }^{4}$	9.95139 9.95164	25	0.04861 0.04836	9.87243 9.87232	11	12	
50	9.82 410	14	9.95190		0.04810	9.87221	${ }^{11}$	10	6 I. ${ }^{\text {I }}$
51	9.82424	14	9.95215	25	0.04785	9.87209	12		
52	9.82439	15	9.95240	25 26	0.04760	9.87198	${ }^{\text {II }}$		7 1.4 1.3 8 1.6 1.5
53	9.82453	124	9.95266	26	0.04734	9.87187	11	7	8 1.6 1.5 9 1.8 1.7
54	9.82467	14	9.95291	25 26	0.04709	9.87175	12	6	9 1.8 1.7 10 2.0 1.8
55	$9.824^{8 \mathrm{I}}$	14	9.95317		0.04683	9.87164		5	20 4.0 3.7
56	9.82495	14	9.95342	25 26	0.04658	9.87153	12	4	20 4.0 3.7 30 6.0 5.5
57	9.82509	14	9.95368		0.04632	9.87141	12	3	
58	9.82523	14	9.95393 9.95418	25 25	0.04607	9.87130	11	2 1	50\|10.0 9.2
59	9.82537	14	9.95418	25 26	0.04582	9.87119	12	1	
60	9.82551		9.95444		0.04556	9.87107		0	
	L. Cos.	d.	L. Cotg.	c. d	L. Tang.	L. Sin.	d.	,	Prop. Pts.

,	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.82551		9.95444		0.04556	9.87107		60	
1	9.82565	14	9.95469	25	0.0453 I	9.87096	11	59	
2	9.82579	14 14 14	9.95495	26 25	0.04505	9.87085	11	58	26
3	9.82593	14	9.95520	25 25	0.04480	9.87073	12 11	57	$6{ }^{6} 2$
4	9.82607	14	9.95545	25 26	0.04455	9.87062	1 I	56	6 2.6 7 3.0
5	9.82621	14	9.95571		0.04429	9.87050		55	8 3.5
6	9.82635	14	9.95596	25 26	0.04404	9.87039	II II	54	9 3.9
7	9.82649 0.82663	14 14 14	9.95622 9.95647	26 25	0.04378 0.04353		12	53	10
8	9.82663 9.82677	14 14	9.95647 9.95672	25 25	0.04353 0.04328	9.87016 9.87005	12 11	52 51 51	2088
9	9.82677	14	$\frac{9.95672}{9.95698}$	25 26	0.04328	9.870 .05	12		30 40 13.0 17.3
10	9.82691	14	9.95698 9.95723	25	0.04302 0.04277	9.86993	11	50	40 17.3 50 21.7
12	9.82705 9.82719	14	9.95723 9.95748	25	0.04277 0.04252	9.86982 9.86970	12	49	$50 \mid 21.7$
r_{3}	9.82733	14	9.95774	26	0.04 226	9.86959	11	47	
14	9.82747	14	9.95799	25	0.04201	9.86947	12	46	25
15	9.82761	14 14 14	$9.9582 \overrightarrow{5}$		0.04175	9.86936	11 12 1	45	$6{ }^{6} 2.5$
16	9.82775	14	9.95850	25 25	0.04150	9.86924	12	44	7
17	9.82788	13	9.95875	25 26	0.04125	9.86913	11	43	8 3.3
18	9.82802	14	9.95901	26	0.04099	9.86902	11	42	933.8
19	9.82816	14	9.95926	25	0.04074	9.86890	12	4 I	1048
20	9.82830	14	9.95952		0.04048	9.86879	12	40	208
2	9.82844	14	9.95977	25 25	0.04023	9.86867	12	39	3012.5
22	9.82858	14 14	9.96002	25 26	0.03998	9.86855	12	38	40 16.7 50 20.8
23	9.82872	14	9.96 O28	26	0.03972	9.86844	1 II	37	$50 \mid 20.8$
24	9.82885	13	9.96053	25	0.03947	9.86832	12	36	
25	9.82899	14	9.96078	26	0.03922	9.86821		35	
26	9.82913	14	9.96104	26 25	0.03896	9.86809	12 12	34	14
27	9.82927	14	9.96129	25 26	0.03871	9.86798		33	6 1.4
28	9.82941	14	9.96155		0.03845	9.86786	12	32	7 1.6
29	9.82955	14	9.96180	25	0.03820	$9.8677 \overline{5}$	11	3 I	1.9
30	9.82968	1	9.96205	26	0.03795	9.86763	12	30	2.
31	9.82982	14	9.9623 I	26	0.03769	9.86752	11	29	10
32	9.82996	14	9.96256	25	0.03744	9.86740	12	28	20.4 .7
33	9.83 ого	14	9.96 281	25	0.03719	9.86728	12	27	30
34	9.83023	13	9.96307	26	0.03693	9.86717	11	26	40
35	9.83037	14	9.96332	25	0.03668	9.86705	12	25°	
36	9.83051	14	9.96357	25 26	0.03643	9.86694	12	24	
37	9.83065	14	9.96383	26	0.03617	9.86682	12	23	
38	9.83078	13	9.96408	25	0.03592	9.86670	12	22	13
39	$9.83 \quad 92$	14	9.96433	25 26	0.03567	9.86659		21	I. 3
40	9.83106	14	9.96459		0.03541	9.86647		20	7 l
41	9.83120	14	9.96484	25 26	0.03516	9.86635	12	19	8 1.7
42	9.83133	13	9.96510	26	0.03490	9.86624	11	18	92.0
43	9.83147	14	9.96535	25	0.03465	9.86612	12 12 12	17	10 2.2 20 4.3
44	9.83 I 61	14	9.96560	25 26	0.03440	9.86600	12	16	20 4.3 30 6.5
45	9.83174	13	9.96586		0.03414	9.86589	12	15	408.7
46	9.83188	14	9.96611	25	0.03389	9.86577	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	14	50 10.8
47	9.83202	14	9.96636	25 26	0.03364	9.86565 9.86554		13	
48	9.83215	${ }^{1}$	9.96662	26	0.03338	9.86554	1 I	12	
49	9.83229	14	9.96687	26 25 25	0.03313	9.86542	12	II	
50	9.83242	13	9.96712		0.03288	9.86530		10	
51	9.83256	14	9.96738	26 25	0.03262	9.86518 96507			6 1.2 1.1 7 1.4 1.3
52	9.83270	14	9.96763	25 25	0.03237 0.03212	9.86507 0.86495	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & 8 \\ & 7 \end{aligned}$	7 1.4 1.3 8 1.6 1.5
53	9.83283	13	9.96788	25 26	0.03212	$\begin{aligned} & 9.86495 \\ & 9.86483 \end{aligned}$	12 12	$\begin{aligned} & 7 \\ & 6 \end{aligned}$	8 1.6 1.5 9 1.8 1.7
54	9.83297	14	9.96814	26	0.03186	9.86483	12	6	9 10 2.0 1.8
55	9.83310	13	9.96839		0.03161	9.86472		5	20.4 .0
56	9.83324	14 14 1	9.96864		0.031136	9.86460	12	4	30.6 .0
57	9.83338	14	9.96890	26 25	0.03110 0.03085	9.86448	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	3 2 2	40 8.0 7.3
58 59	9.83351	13 14 1	9.96915	25 25	0.03085 0.03060	$\begin{aligned} & 9.86436 \\ & 9.8642 \overline{5} \end{aligned}$	12 11	$\underline{2}$	$50110.0{ }^{1} 9.2$
59	9.83365	13	9.96940	25 26	0.03060	9.86425	12		
60	9.83378		9.96966		$0.03 \bigcirc 34$	9.86413		0	
	L. Cos.	d.	I. Cotg.	c. d	L. Tang.	L. Sin.	d.	,	Prop. Pts.

1	L. Sin.	d.	L.'Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.83378		9.96966		0.03034	9.86413		60	
1	9.83392	14	9.96991	25	0.03009	9.86401	12	59	
2	9.83405	13	9.97 O16	25 26	0.02984	9.86389	12	58	
3	9.83419	14	9.97042	26	0.0295^{8}	9.86377	12	57	62.6
4	9.83432	13	9.97067	25	0.02933	9.86366	11	56	$7 \quad 3.0$
6	9.83446		9.97092	26	0.02908	9.86354	12	55	8 8-5
6	9.83459	14	9.97118	26	0.02882	9.86342	12	54	93.9
7	9.83473	14	9.97143	25	0.02857	9.86330	12	53	104.3
8	9.83486	13	9.97168	25	0.02832	9.86318	12	52	208.7
9	9.83500	14	9.97193	25	0.02807	9.86306	12	51	3013.0
10	9.83513	13	9.97219		0.02781	$9.8629 \overline{5}$		50	4017.3
II	9.83527	14	9.97244	25	0.02756	9.86283	2	49	50121.7
12	9.83540	13	9.97269	25	0.02731	9.86271	12	48	
13	9.83554	14	9.97295	26	0.02705	9.86259	12	47	
14	9.83567	13	9.97320	25	0.02680	9.86247	12	46	25
15	9.8358 I	13	9.97345	26	$0.0265 \overline{5}$	9.86235	12	45	$6{ }^{6} \quad 2.5$
16	9.83594	13	9.97371	26	0.02629	9.86223	12	44	$7{ }^{7} 2.9$
17	9.83608	14	9.97396	25	0.02604	9.86211	12	43	$8 \quad 3.3$
18	9.83621	13	9.9742 I	25	0.02579	9.86200	11	42	$\begin{array}{lll}9 & 3.8\end{array}$
19	9.83634	13	9.97447	26	0.02553	9.86188	12	41	104.2
20	9.83648	14	9.97472	25	0.02528	9.86176	12	40	208.3
21	9.83661	13	9.97497	25	0.02503	9.86164	12	39	3012.5
22	9.83674	13	9.97523	26	0.02477	9.86152	12	38	40 16.7 50
23	9.83688	14	9.97548	25	0.02452	9.86140	12	37	$50 \mid 20.8$
24	9.83701	13	9.97573	25	0.02427	9.86128	12	36	
25	9.83715	14	9.97598	25	0.02402	9.86 II6		35	
26	9.83728	13	9.97624	26	0.02376	9.86104	12	34	14
27	9.8374 I	13	9.97649	25.	0.02351	9.86092	12	33	6 $\mathbf{1 . 4}$
28	$9.8375 \overline{5}$	14	9.97674	25	0.02326	9.86080	12	32	$7{ }^{7}$ 1. 6
29	9.83768	13	9.97700	26	0.02300	9.86068	12	31	8 1.9
30	9.8378 I	13	9.97725	25	0.02275	9.86056	12	30	9 2.1
31	9.83795	14	9.97750	25	0.02250	9.86044	12	29	102.3
32	9.83808	13	9.97776	26	0.02224	9.86032	12	28	20.4 .7
33	9.83821	13	9.97 801	25	0.02199	9.86020	12	27	30 7.0 40 9.3
34	9.83834	13	9.97826	25	0.02174	9.86008	12	26	40 9.3 50 Ir.
35	9.83848	14	9.9785 I	25	0.02149	9.85996		25	5011.
36	9.83861	13	9.97877	26	0.02123	9.85984	12	24	
37	9.83874	13	9.97902	25	0.02098	9.85972	12	23	
38	9.83887	13	9.97927	25	0.02073	9.85960	12	22	13
39	9.83901	14	9.97953	26	0.02047	9.85948	12	21	6 1.3
40	9.83914	13	9.97978	25	0.02022	9.85936	12	20	7 1.5 8 1.7
4 I	9.83927	13	9.98003	25	0.01 997	9.85924	12	19	8 1.7 9 2.0
42	9.83940	13	9.98029	26	0.01 971	9.85912	12	18	9 2.0 10 2.2
43	9.83954	14 13	9.98054	25	O.OI 946	9.85900	12	17	20
44	9.83967	13	9.98079	25	0.01 921	9.85888	12	16	20 4.3 30 6.5
45	9.83980	13	9.98 IO4	25	O.OI 896	9.85876	12	15	40 8.7
46	9.83993	13	9.98130	26	O.OI 870	9.85864	12	14	5010.8
47	9.84006	13	9.98 I55	25	O.OI $84 \overline{5}$	9.85851	13	13	
48	9.84020	14	9.98180	25	O.OI 820	9.85839	12	12	
49	9.84033	13	9.98206	26	0.01 794	9.85827	12	II	
50	9.84046	13	9.98231	25	0.01769		12	10	
51	9.84059	13	9.98256	25 25	0.01 744	9.85803	12	9	6 1.2 1.1 7 1.4 1.3
52	9.84072	13 13	9.98 281	25 26	0.01719	9.85791	12	8	88
53	9.84085	13	9.98307	26	O.OI 693	9.85779	12		9 1.8 1.7
54	9.84098	13	9.98332	25	O.OI 668	9.85766	13 12	6	10 2.0 1.8
55	9.84 II2	13	9.98357	25	O.OI 643	9.85754	12	5	20 4.0 3.7
56	$9.8412 \overline{5}$	13	9.98383	26	0.01 617	9.85742	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	4	30 6.0 5.5
57 58		13 13	9.98408	25 25	O.OI 592	9.85730	12	3	40 8.0 7.3
58 59	9.84151 9.84 I64	13 13	9.98433 9.98458	25 25	O.OI 567	9.85718	12	2	50 10.0 9.2
59	9.84164	13 13	9.98458	25 26	O.OI 542	9.85706	12	1	
60	9.84177		9.98484		O.O1 516	9.85693		0	
	L. Cos.	d.	L. Cotg.	c. d.	L.Tang.	L. Sin.	d.	1	Prop. Pts.

\prime	L. Sin.	d.	L.'Tang.\|	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.84177		9.98484		0.01516	9.85693		60	
1	9.84190	13	9.98509	25	0.01 491	9.85681	12	59	
2	9.84203	13	9.98534	25 26	O.OI 466	9.85669	12	58	26
3	$9.8+216$	13 13	998560	26	O.OI 440	9.85657	12	57	$6 \quad 2.6$
4	$9.8+229$	13	9.98585	25	0.01 415	9.85645	12	56	7 7-3.0
5	$9.8+24^{2}$	13	9.98610	25 25	O.O1 390	9.85632	12	55	8 - $3 . \overline{5}$
6	9.84255	13	9.98635	25	0.01 365	9.85620	12	54	$9 \quad 3.9$
7	9.84269	14	9.98661	26	-.01 339	9.85608	12	53	$10 \quad 4.3$
8	9.84282	13	9.98686	25	0.01 3I4	9.85596	12	52	20 8.7
9	$9.8+295$	13 13	9.98711	25 26	0.01 289	9.85583	13	5 I	3013.0
10	9.84308	13	9.98737		0.01 263	9.85571	12	50	40 17.3
II	9.84321	13	9.98762	25 25	0.01 238	9.85559	12	49	50\|21.7
12	9.84334	13	9.98787	25 25	0.01213	9.85547	12	48	
13	9.84347	13	9.98 812	25	0.01188	9.85534	13	47	
14	9.84360	13	9.98838	26	0.01162	9.85522	12	46	25
15	9.84373	13	9.98863	25	0.01137	9.85510		45	$6 \quad 2.5$
16	9.84385	12	9.98888	25 25	0.01112.	9.85497	13	44	7 2.9
17	984398	13	9.98913	25 26	0.01087	9.85485	12	43	8 3-3
18	9.8441 I	13 13	9.98939	26	0.01061	9.85473	12	42	$9 \quad 3.8$
19	984424	13 13	9.98964	25	0.01036	9.85460	13	4 I	$10 \quad 4.2$
20	9.84437	13	9.98989	25	0.01 OII	9.85448	12	40	$20 \quad 8.3$
21	9.84450	13	9.99 O15	26	0.00985	9.85436	12	39	30
22	9.84463	13	9.99040	25	0.00960	9.85423	13	38	40 16.7
23	9.84476	13	9.99065	25	$0.0093 \overline{5}$	9.854 II	12	37	$50 \mid 20.8$
24	9.84489	13	9.99090	25	0.00910	9.85399	12	36	
25	9.84502	13	9.99 I 16		0.00884	9.85386	3	35	
26	9.84515	13 13	9.99 141	25	0.00859	9.85374	13	34	14
27	9.84528	13	9.99 166	25	0.00834	9.85361	13	33	$6 \quad 1.4$
28	9.84540	12	9.99 I91	25	0.00809	9.85349	12	32	78
29	9.84553	13	9.99217	26	0.00783	9.85337	12	3 I	81.9
30	9.84566	13	9.99242	25	0.00758	9.85324	13	30	92.1
31	9.84579	13	9.99267	25 26	0.00733	9.85312	13	29	10 2.3 20 4.7
32	$9.8+592$	13	9.99293	26	0.00707	9.85299	13	28	20 4.7 30 7.0
33	9.84605	13 13	9.99318	25	0.00682	9.85287	12	27	30 7.0 40 9.3
34	9.84618	13	9.99343	25	0.00657	9.85274	13	26	40 9.3 50 11.7
35	9.84630	12 13	9.99368	26	0.00632	9.85262	12	25	
36	9.84643	13 13	9.99394	26	0.00606	$9.852 \overline{5} 0$	12	24	
37	$9.8+656$	13 13 13	9.99419	25	0.0058 I	9.85237	13	23	
38	9.84669	13 13	9.99444	25 25	0.00556	$9.8522 \overline{5}$	12	22	13
39	9.84682	13 12	9.99469	25 26	0.00531	9.85212	13	21	$6{ }^{6}$ I. 3
40	9.84694	13	9.99495		0.00505	9.85200		20	7 1.5 8 1.7
4 I	9.84707	13 13	9.99520	25 25	0.00480	9.85187	13 12	19	$\begin{array}{lll} \\ 9 & 1.7 \\ & 2.0\end{array}$
42	$9.8+720$	13 13	9.99545	25 25	$0.0045 \overline{5}$	9.85175	12 13	18	10 2.2
43	9.84733	13 12	9.99570	25 26	0.00430	9.85162	13 12	18 16	204
44	9.84745	12	9.99596		0.00404	9.85150	12	16	$30 \quad 6.5$
45	9.84758	13	9.99621		0.00379	9.85137	12	15	40 8.7
46	9.84771	13	9.99646	25	0.00354	$9.8512 \overline{5}$	12	14	5010.8
47	9.84784	13	9.99672	26	0.00328	9.85112	13	13	
48	9.84796	12	9.99697	25	0.00303	9.85100	12	12	
49	9.84809	13	9.99722	25	0.00278	9.85087	13	II	
50	9.84822	13	9.99747	26	0.00253	9.85074	13	10	$6{ }^{6} \mathrm{I} .2$
51	$9.8483 \overline{5}$	13	9.99773	26	0.00227	9.85062	12	9	7 1.2
52	9.84847	12	9.99798	25	0.00202	9.85049	13	8	$\begin{array}{ll}7 & 1.4 \\ 8 & 1.6\end{array}$
53	9.84860	13	9.99823	25	0.00177	9.85037	12 13	7	9 1.8
54	9.84873	13	9.99848	25	0.00152	9.85024	13	6	9 1.8 10 2.0
55	9.84885		9.99874		0.00126	9.85 O12		5	204.0
56	9.84898	13	9.99899	25	0.00 IOI	9.84999	13	4	306.0
57	9.84911	13	9.99924	25	0.00076	9.84986	13	3	408.0
58	9.84923	13	9.99949	25 26	0.00051	9.84974	12	2	5010.0
59	9.84936	13	9.99975	25	0.00025	9.84961	13 12	I	
60	9.84949		0.00000		0.00000	9.84949		0	
	L. Cos.	d.	L. Cotg.	c. d.	L.Tang.	L. Sin.	d.	\digamma	Prop. Pts.

		O°				1°	
'1	'	S	'T	/ $/$	\prime	S	T
\bigcirc	\bigcirc	4.68557	4.68557	3600	\bigcirc	4.68555	4.68562
60	I	. 68557	. 68557	3660	1	. 68555	. 68562
120	2	. 68557	. 68557	3720	2	. 68555	. 68562
180	3	. 68557	. 68557	3780	3	. 68555	. 68562
240	4	. 68557	. 68558	3840	4	. 68555 .	. 68563
300	5	4.68557	4.68558	3900	5	4.68555	4.68563
360	6	. 68557	. 68558	3960	6	. 68555	. 68563
420	7	. 68557	. 68558	4020	7	. 68555	. 68563
480	8	. 68557	. 68558	4080	8	. 68555	. 68563
540	9	. 68557	. 68558	4140	9	. 68555	. 68563
600	10	4.68557	4.6855^{8}	4200	10	4.68554	4.68563
660	II	. 68557	. 68558	4260	II	. 68554	. 68564
720	12	. 68557	. 68558	4320	12	. 68554	. 68564
780	13	. 68557	. 68558	4380	13	. 68554	. 68564
840	14	. 68557	. 68558	4440	14	. 68554	. 68564
900	15	4.68557	4.6855^{8}		15	4.68554	4.68564
960	r6	. 68557	. 68558	4560	16	. 68554	. 68565
1020	17	. 68557	. 68558	4620	17	. 68554	. 68565
1080	18	. 68557	. 68558	4680	18	. 68554	. 68565
1140	19	. 68557	. 68558	4740	19	. 68554	. 68565
1200	20	4.68557	4.68558	4800	20	4.68554	4.68565
1260	21	. 68557	. 68558	4860	21	. 68553	. 68566
1320	22	. 68557	. 68558	4920	22	. 68553	. 68566
1380	23	. 68557	. 68558	4980	23	. 68553	. 68566
1440	24	. 68557	. 68558	5040	24	. 68553	. 68566
1500	25	4.68557	4.68558	5100	25	4.68553	4.68566
1560	26	. 68557	. 68558	5160	26	. 68553	. 68567
1620	27	. 68557	. 68558	5220	27	. 68553	. 68567
1680	28	. 68557	. 68558	5280	28	. 68553	. 68567
1740	29	. 68557	. 68559	5340	29	. 68553	. 68567
1800	30	4.68557.	4.68559	5400	30	4.68553	4.68567
1860	3 I	. 68557	. 68559	5460	3 I	. 68552	. 68568
1920	32	. 68557	. 68559	5520	32	. 68552	. 68568
1980	33	. 68557	. 68559	5580	33	. 68552	. 68568
2040	34	. 68557	. 68559	5640	34	. 68552	. 68568
2100	35	4.68557	4.68559	5700	35	4.68552	4.68569
2160	36	. 68557	. 68559	5760	36	. 68552	. 68569
2220	37	. 68557	. 68559	5820	37	. 68552	. 68569
2280	38	. 68557	. 68559	5880	38	. 68552	. 68569
2340	39	. 68557	. 68559	5940	39	. 68551	. 68569
2400	40	4.68557	4.68559	6000	40	4.6855 I	4.68570
2460	4 I	. 68556	. 68560	6060	4 I	. 68551	. 68570
2520	42	. 68556	. 68560	6120	42	. 68551	. 68570
2580	43	. 68556	. 68560	6180	43	.68551	. 68570
2640	44	. 68556	. 68560	6240	44	. 6855 I	. 6857 I
2700	45	4.68556	4.68560	6300	45	4.6855 I	4.68571
2760	46	. 68556	. 68560	6360	46	. 6855 I	.6857I
2820	47	. 68556	. 68560	6420	47	. 68550	. 68572
2880	48	. 68556	. 68560	6480	48	. 68550	. 68572
2940	49	. 68556	. 68560	6540	49	. 68550	. 68572
3000	50	4.68556	4.68561	6600	50	4.68550	4.68572
3060	5 I	. 68556	. 68561	6660	51	. 68550	. 68573
3120	52	. 68556	.68561	6720	52	. 6855 O	. 68573
3180	53	. 68556	. 68561	6780	53	. 68555	. 68573
3240	54	. 68556	.68561	6840	54	. 68550	. 68573
3300	55	4.68556	4.68561	6900	55	4.68549	4.68574
3360	56	. 68556	. 68561	6960	56	. 68549	. 68574
3420	57	. 68555	. 68561	7020	57	. 68549	. 68574
3480	58	. 68555	. 68562	7080	58	. 68549	. 68575
3540	59	. 68555	. 68562	7140	59	. 68549	. 68575
3600	60	4.68555	4.68562	7200	60	4.68549	4.68575

ノノ	\digamma	\mathbf{S}	T
7200	\bigcirc	4.68549	4.68575
7260	1	． 68549	． 68575
7320	2	． 68548	． 68576
7380	3	． 68548	． 68576
7440	4	． 68548	． 68576
7500	5	4.68548	4.68577
7560	6	． 68548	． 68577
7620	7	． 68548	． 68577
7680	8	． 68547	． 68578
7740	9	． 68547	． 68578
7800	10	4.68547	4.68578
7860	II	． 68547	． 68579
7920	12	． 68547	． 68579
7980	13	． 68547	． 68579
8040	14	． 68546	． 68579
8100	15	4.68546	4.68580
8160	16	． 68546	． 68580
8220	17	． 68546	． 68580
8280	18	． 68546	． 6858 I
8340	19	． 68546	．68581
8400	20	4.68545	4.68582
8460	21	． 68545	． 68582
8520	22	． 68545	． 68582
8580	23	． 68545	． 68583
8640	24	． 68545	． 68583
8700	25	$4.6854 \overline{5}$	4.68583
8760	26	． 68544	． 68584
8820	27	． 68544	． 68584
8880	28	． 68544	． 68584
8940	29	． 68544	． 68585
9000	30	4.68544	4.68585
9060	31	． 68544	． 68585
9120	32	． 68543	． 68586
9180	33	． 68543	． 68586
9240	34	． 68543	． 68587
9300	35	4.68543	4.68587
9360	36	． 68543	． 68587
9420	37	． 68542	． 68588
9480	38	． 68542	． 68588
9540	39	． 68542	． 68588
9600	40	4.68542	4.68589
9660	41	． $6854{ }^{2}$	． 68589
9720	42	． 6854 I	． 68590
9780	43	．68541	． 68590
98.40	44	．6854I	． 68590
9900	45	4.68541	4.68591
9960	46	．6854I	． 68591
10020	47	． 68540	． 68592
10080	48	． 68540	． 68592
10140	49	． 68540	． 68592
10200	50	4.68540	4.68593
10260	51	． 68540	． 68593
10320	52	． 68539	． 68594
10380	53	． 68539	． 68594
10440	54	． 68539	． 68595
10500	55	4.68539	4.68595
10560	56	． 68539	． 68595
10620	57	． 68538	． 68596
10680	58	． 68538	． 68596
10740	59	． 68538	． 68597
10800	60	4.68538	4.68597

ノ／	\checkmark	\mathbf{S}	T
10800	\bigcirc	4.68538	4.68597
10860	1	． 68537	． 68598
10920	2	． 68537	． 68598
10980	3	． 68537	． 68599
11040	4	． 68537	． 68599
11100	5	4.68537	4.68599
11160	6	． 68536	． 68600
11220	7	． 68536	． 68600
11280	8	． 68536	．68601
11340	9	． 68536	．68601
11400	10	4.68535	4.68602
11460	II	． 68535	． 68602
11520	12	． 68535	． 68603
11580	13	． 68535	． 68603
11640	14	． 68534	． 68604
11700	15	4.68534	4.68604
11760	16	． 68534	． $6860 \overline{5}$
11820	17	． 68534	． 68605
11880	18	． 68533	． 68606
11940	19	． 68533	． 68606
12000	20	4.68533	4.68607
12060	21	． 68533	． 68607
12120	22	． 68532	． 68608
12180	23	． 68532	． 68608
12240	24	． 68532	． 68609
12300	25	4.68532	4.68609
12360	26	． 68531	． 68610
12420	27	．6853I	．68610
12480	28	．68531	．686II
12540	29	． 6853 I	．686II
12600	38	4.68530	4.68612
12660	31	． 68530	．68612
12720	32	． 68530	．68613
12780	33	． 68530	．68613
12840	34	． 68529	．68614
12900	35	4.68529	4.68614
12960	36	． 68529	．68615
13020	37	． 68529	．68615
13080	38	． 68528	．68616
13140	39	． 68528	．68616
13200	40	4.68528	4.68617
13260	41	． 68528	．68617
13320	42	． 68527	．68618
13380	43	． 68527	．68618
13440	44	． 68527	．68619
13500	45	4.68526	4.68620
13560	46	． 68526	． 68620
13620	47	． 68526	． 68621
13680	48	． 68526	．68621
13740	49	． 68525	． 68622
13800	50	4.68525	4.68622
13860	51	． 68525	． 68623
13920	52	． 68525	． 68623
13980	53	． 68524	． 68624
14040	54	． 68524	． $6862 \overline{5}$
14100	55	4.68524	4.68625
14160	56	． 68523	． 68626
14220	57	． 68523	． 68626
14280	58	． 68523	． 68627
14340	59	． 68522	． 68628
14400	60	4.68522	4.68628

TABLE V.

NATURAL

SINES, COSINES, TANGENTS, AND COTANGENTS.

$\bigcirc 1$	N. Sin.	N. Tan.	N. Cot.	N. Cos.			N. Sin.	N. Tan.	N. Cot.	N. Cos.	
0 O	. 00000	. 00000	Infinity.	Unity.	90 -	230	. 04362	. 04366	22.904	. 99 905	8730
	145	145	687.55		55	35	507	512	22.164	898	25
I\%	29 I	291	343.77		50	40	653	658	21.470	892	20
15	436	436	229.18	. 99999	45	45	798	803	20.819	885	15
20	582	582	171.89	-998	40	50	. 04943	. 04949	20.206	878	10
25	727	727	137.51	997	35	55	. 05088	. 05095	19.627	870	5
30	. 00873	. 00873	114.59	. 99996	30	3 o	. 05234	. 05 241	19.08 I	. 9986	87
35	.or or8	. Or or 8	98.218	995	25	5	379	387	18.564	855	55
40	164	164	85.940	993	20	10	524	533	18.075	847	50
45	309	309	76.390	991	15	15	669	678	17.611	839	45
50	454	455	68.750	989	10	20	814	824	17.169	831	40
55	600	600	62.499	987	5	25	. 05960	. 05970	16.750	822	35
	. 17445	.or 746	57.290	. 99985	89	30	. 06 105	. 06116	16.350	. 99813	30
5	.or 891	.or 891	52.882	982	55	35	250		15.969	804	25
10	. 02036	. 02036	49.104	979	50	40	395	408	. 605	795	20
15	181	182	45.829	976	45	45	540	554	15.257	786	15
20	327	328	42.964	973	40	50	685	700	14.924	776	10
25	472	473	40.436	969	35	55	83 I	847	. 606	766	5
30	. 02618	. 02619	38.188	. 99966	30	4 -	. 06976	.06993	14.301	. 99756	-
35	763	764	36.178	962	25	5	. 07121	. 07139	14.008	746	55
40	. 02908	. 02910	34.368	958	20	10	266	285	13.727	736	50
45	. 03054	. 03055	32.730	953	15	15	4 II	43 I	. 457	725	45
50	199	201	31.242	949	10	20	556	578	13.197	714	40
55	345	346	29.882	944	5	25	701	724	12.947	703	35
20	. 03490	. 03492	28.636	. 99939	88 -	30	. 07846	. 07870	12.706	. 99692	30
5	635	638	27.490	934	55	35	. 07991	. 08017	. 474		25
10	781	783	26.432	929	50	40	. 08136	163	.25I	668	20
15	. 03926	. 03929	25.452	923	45	45	281	309	12.035	657	15
20	. 04071	. 04075	24.542	917	40	50	426	456	11.826	644	10
25	217	220	23.695	9 II	35	55	571	602	. 625	632	5
230	. 04362	. 04366	22.904	. 99 905	8730	5	. 08716	. 08749	11.430	. 99619	85
	N. Cos.	N. Cot.	N. Tan.	N. Sin.			N. Cos.	N. Cot.	N. Tan.	N. Sin.	

$\bigcirc 1$	N. Sin.	N. Tan.	N. Cot.	N. Cos.		- 1	N. Sin.	N. Tan.	N. Cot.	N. Cos.	
5 -	. 08716	. 08749	II. 430	. 99 619	85 o	10 o	.17365	. 17633	5.6713	. 9848 I	80
5	. 08860	. 08895	. 242	607	55	5	508	783	. 6234	455	55
10	. 09005	. 09042	11.059	594	50	10	651	. 17933	. 5764	430	50
15	150	189	10.883	580	45	15	794	. 18083	. 5301	404	45
20	295	335	. 712	567	40	20	. 17937	233	. 4845	378	40
25	440	482	. 546	553	35	25	.18 081	384	. 4397	352	35
30	. 09585	. 09629	10.385	. 99540	30	30	. 18224	.18 534	$5 \cdot 3955$. 98325	30
35	729	776	. 229	526	25	35	367	684	. 3521	299	25
40	. 09874	. 09923	10.078	511		40	509	- 835	. 3093	272	20
45	.10 or9	.10 069	9.9310	497	15	45	652	. 18986	. 2672	245	15
50	164	216	. 7882	482	10	50	795	. 19136	. 2257	218	10
55	308	363	. 6493	467	5	55	. 18938	287	. 1848	190	5
60	.10 453	. 10510	9.5144	. 99452	84 o	110	.19 081	. 19438	5.1446	.98163	790
5	597	657	. 3831	437	55	5	224	- 589	. 1049	135	55
10	742	805	. 2553	421	50	10	366	- 740	. 0658	107	50
15	.10 887	. 10952	. 1309	406	45	15	509	. 19891	5.0273	079	45
20	.11 031	. 11099	9.0098	390	40	20	652	. 20042	4.9894	050	40
25	176	246	8.8919	374	35	25	794	194	. 9520	. 98021	35
30	. 11320	. II 394	8.7769	. 99357	30	30	.19 937	. 20345	4.9152	7992	30
35	465	541	. 6648	34 I	25	35	. 20079	497	. 8788	963	25
40	609	688	. 5555	324	20	40	222	648	. 8430	934	20
45	754	836	. 4490	307	15	45	364	800	. 8077	905	15
50	.II 898	.II 983	. 3450	290	10	50	507	. 20952	. 7729	875	10
55	. $120+3$.12 131	. 2434	272	5	55	649	. 21104	. 7385	845	5
$7 \quad 0$.12187	. 12278	8.1443	. $9925 \overline{5}$	83 o	120	. 20791	.21 256	4.7046	. 97815	780
5	331	426	8.0476	237	55	5	. 20933	408	. 6712	784	55
IO	476	574	7.9530	219	50	10	. 21076	560	. 6382	754	50
15	620	722	. 8606	0	45	15	218	712	. 6057	723	45
20	764	. 12869	. 7704	182	40	20	360	. 21864	. 5736	692	40
25	. 12908	.13 017	.6821	163	35	25	502	. 22017	. 5420	661	35
30	. 13053	.13 165	7.5958	. 99144	30	30	.21 644	. 22169	4.5107	. 97630	30
35	197	313	.5113	125	25	35	786	322	. 4799	598	25
40	34 I	461	. 4287	106	20	40	. 21928	475	. 4494	566	20
45	485	609	. 3479	087	15	45	. 22070	628	. 4194	534	15
50	629	758	. 2687	067	10	50	212.	781	. 3897	502	
55	773	. 13906	.1912	047	5	55	353	. 22934	.3604	470	5
8 \%	.13 917	.14 054	7.1154	.99027	82 o	13 -	. 22495	. 23087	4.3315	. 97437	70
5	.14061	202	7.0410	. 99006	55	5	637	240	. 3029	404	55
10	205	351	6.9682	. 98986	50	10	778	393	. 2747	371	50
15	349	499	. 8969	965	45	15	. 22920	547	. 2468	338	45
20	493	648	. 8269	944	40	20	. 23062	700	. 2193	304	40
25	637	796	. 7584	923	35	25	203	. 23854	. 1922	271	35
30	.14781	.14945	6.6912	. 98902	30	30	$.2334 \overline{5}$. 24008	4.1653	. 97237	30
35	.14 $92 \overline{5}$. 15094	. 6252	880	25	35	486	162	. 1388	203	25
40	. 15069	243	. .5606	858	20	40	627	316	. 1126	169	20
45	212	391	. 4971	836	15	45	769	470	. 0867	134	15
50	356	540	. 4348	814	10	50	.23910	624	.06II	100	10
55	500	689	. 3737	791	5	55	. 24051	778	. 0358	065	5
90	.15 643	. 15838	6.3138	.98769	810	140	. 24192	. 24933	4.0108	. 97030	760
5	787	.15 988	. 2549	746	55	5	333	. 25087	3.986 I	. 96994	55
10	.15931	. 16137	. 1970	723	50	10	474	242	. 9617	959	50
15	. 16074	286	. 1402	700	45	15	615	397	. 9375	923	45
20	218	435	. 0844	676	40	20	756	552	.9136	887	40
25	361	585	6.0296	652	35	25	. 24897	707	. 8900	851	35
30	. 16505	. 16734	5.9758	. 98629	30	30	. 25038		3.8667	$.9681 \overline{5}$	30
35	648	. 16884	. 9228	604	25	35	179	. 26017	. 8436	778	25
40	792	.17033	. 8708	580	20	40	320	172	. 8208	742	20
45	. 16935	183	.8197	556	15	45	460	328	. 7983	705	15
50	. 17078	333	. 7694	531	10	50	601	483	. 7760	667	10
55	222	483	. 7199	506	5	55	741	639	. 7539	630	5
10 o	.17365	.17633	5.6713	.98481	80 -	15 ○	. 25882	.26795	3.732 I	. 96593	750
	N. Cos.	N. Cot.	N. Tan.	N. Sin.	\bigcirc		N. Cos.	N. Cot.	N. Tan.	N. 8 in .	01

	N. Sin.	N. Tan.	N.	N.			N. Sin.	N.	N. Cot.	N. Cos.	
15 o	. 2	. 26	3.73	. 9659	75 o	20 o	. 342	. 36397	2.7475	. 93969	70 o
	. 26					5		56	8	919	55
		. 27107	. 6	517	-	10	75	727	. 7228	869	50
20	303	263	. 66	479	45	15	12	. 36892	.7106	819	5
20	443 584	419 576	$\begin{array}{r}.6470 \\ .6264 \\ \hline\end{array}$	440	35	25	748 .34884	$\begin{array}{\|r} 37 \\ \hline 275 \\ 223 \end{array}$. 69885	769 718	40 35
30	. 26724	. 27732	3.605	.96363	30	30	. 3502	. 37388	2.6746	. 93667	30
35	. 26864	. 27889	. 5	,		35	157	554	-. 6628	616	5
40	. 27004	. 28046	. 5656	285	20	40	293	720	. 6511	565	20
45	144	203	. 5457	246	15	45	429	. 37887	. 6395	514	5
50	284	360	. 526 5	206	10	50	565	. 38053	. 6279	462	10
55	424	517	. 5067	166	5	55	701	220	. 6165	410	5
16 O	. 27564	. 28675	3.48	. 96126	740	21 o	. 3583	8386	2.6051	358	69 o
	704	832	. 468	- 086	55	5	. 35973	553	. 5938	306	55
10	843	. 28990	. 449	046	50	10	. 36108	721	. 5826	253	50
15	. 27983	. 29147	. 43	. 96005	45	15	244	. 38888	. 5715	201	45
20	. 28123	305	. 4124	. 95964	40	20	37	. 39055	. 5605	148	40
25	262	463	. 394	923	35	25	515	223	. 5495	$09 \overline{5}$	35
30	. 28402	. 29621	3.3759	882	30	30	. 36650	9391	2.5386	042	30
35	54 I	78	. 35	841	25	35	785	55	. 5279	. 92988	25
40	680	. 29938	. 34	799	20	40	. 3692 I	72	. 5172	935	20
45	820	. 30097	. 32	757	15	45	. 37056	. 39896	. 5065	881	15
	. 2895	255	. 30	715	10	50		. 40065	. 4960	827	10
55	. 290	414	. 28	673	5	55	326	234	. 4855	773	5
170	. 2923	. 3	3.2	. 95630	73 o	22 o	. 37461	403	47	18	68 -
5	37			588	55	5	595		4648		55
10	515	. 3089	. 2371	545	50	10	730	74 I	. 4545	9	O
15	654	.31051	. 2205	502	45	15	865	. 4091 II	. 4443	54	45
20	793	210	. 2041	459	40	20	. 37999	.41 081	. 43	499	O
25	. 29932	370	. 18	415	35	25	. 38134	251	. 4242	444	35
30	. 30071		$\begin{array}{r}3.171 \\ .155 \\ \hline\end{array}$	$\begin{array}{r}95372 \\ 328 \\ \hline\end{array}$	30	30	. $3^{8} 268$.41 421	2.41	88	30
35	348	690 .31850	.1556 .1397			35	403			32	25
45	348 486	. 31850	.1397 .1240	284	20	45	537	763 .41933	. 3945	276	20
45	486	- 32 Oro	. 1240	240	15 10	45	671	. 41933	. 38	220 164	5
55	763	33 I	. 093	15	5	55	. 38939	276	. 3654	107	5
18 O	. 30902	. 32492	3.0777	. 95	72 o	23 o	. 39073	. 42447	2.35	2050	-
	-31040			-		5		619	-34	I 994	55
10		814		. 95015	5	10	34	791	. 33	936	50
20	316	. 32975	. 03	. 94970	45	15	474	.42963	. 3276		45
20	454	$\begin{array}{r}\text {. } 33136 \\ \hline 188 \\ \hline\end{array}$. 0178	924 878 8	40	20	608	$\begin{array}{r} 43 \text { 136 } \\ 308 \\ \hline \end{array}$.3183 .3090	822 764	40 35
30			2.9887			30	. 398	. 43 481	2.	706	30
35	-31 86	621	. 97	78	25	35	. 40008	-	. 2907	648	25
5	. 32006	783	. 960		20	40	141	. 43828	. 2817	590	20
45	14	. 33945	. 9459	69	15	45	275	. 44001	. 2727	531	15
5	282	. 34108	. 9315	646	10	50	408	175	. 2637	472	10
55	419	270	. 918	599	5	55	54 I	349	. 2549	41	5
190		53		552	71	24 o	. 40674		2.24	355	66
		596	. 89			5			228	295	55
10	832	758	. 877	45	50	10	. 40939	.44872	. 2286	236	50
15	. 32969	. 34922	. 8636	409	45	15	. 41072	. 45047	. 2199	176	45
20	. 33106	. 35085	. 850	361	40	20	204	222	. 2113	116	45
25	244	248	.8370	313	35	25	337	397	. 20	. 91056	35
	.33 381		2.82	. 94264		30				996	
35		57	. 8	215	25	35	602	748	. 1775	936	25
4	655	740	. 798	1	20	40	734	. 45924	. 1775	875	
45	792	. 35904	. 785	118	15	45	866	.46 101	.16	814	15
	. 33929	. 36068		068	10	50	.41998	277	. 1609	53	10
55	. 34065	232	. 7600	O1	5	55	. 42130	454	. 1527	69	5
20	.34202	36 397	2.7475	. 93969	70 -	25	26	.4663 I	2.14	63 I	65 -
	N. Cos	N. Cot.	N. Tan.	N Sin			Cos	N. Cot.	KTan	N. Sin.	

$\bigcirc 1$	N. Sin.	N. Tan.	N. Cot.	N. Cos.		- 1	N. Sin.	N. Tan.	N. Cot.	N. Cos.	
25 o	. 42262	.46631	2.1445	.90631	65 -	30 o	. 50000	. 57735	1.7321	. 86603	60 o
5	394	808	. 1364	569	55	5	12	. 57929	. 7262	530	55
10	525	.46985	. 1283	507	50	10	252	. 58124	$.720 \overline{5}$	457	50
15	657	.47163	. 1203	446	45	15	377	318	. 7147	384	45
20	788	34 I	. 1123	383	40	20	503	513	. 7090	310	40
25	. 42920	519	.1044	321	35	25	628	709	. 7033	237	35
30	. 43 051	. 47698	2.0965	259	30	30	54	. $5890 \overline{5}$	1.6977	. 86163	30
35	182	:47876	. 0887	196	25	35	. 50879	.59101	. 6920	089	25
40	313	.48055	.0809	133	20	40	. 51004	297	. 6864	. 86 O15	20
45	$44 \overline{5}$	234	. 0732	070	15	45	129	494	. 6808	. 8594 I	15
50	575	414	. 0655	. 90007	10	50	254	691	. 6753	866	10
55	706	593	. 0579	. 89943	5	55	379	. 59888	. 6698	792	5
26 o	. 43837	. 48773	2.05	. 89879	640	310	4	. 60086	1.6643	. 85717	590
5	. 43968	. 48953	. 0428	816	55	5	628	284	. 6588	642	55
10	. $44 \quad 098$.49134	.0353	68	50	10	753	483	.6534	567	50
15	229	315	. 0278	687	45	15	.51 877	68I	. 6479	491	45
20	359	495	. 0204	623	40	20	. 52002	.60 88ı	. 6426	416	40
25	490	677	. 0130	558	35	25	126	.61080	. 6372	340	35
30	.44620	. 49858	2.0057	.89 493	30	30	. $522 \overline{5} 0$.61 280	1.6319	. 85264	30
35	750	. 50040	I. 9984	428	25	35	374	480	. 6265	188	25
40	. 44880	222	. 9912	363	20	40	498	681	. 6212	112	20
45	. 45 Oro	404	. 9840	298	15	45	621	.61 882	.6160	. 85035	15
50	140	587	. 9768	232	10	50	745	. 62083	. 6107	. 84959	10
55	269	769	. 9697	167	5	55	869	$28 \frac{5}{5}$. 6055	882	5
270	. 45399	. 50953	1.9626	. 89 IOI	63	32 o	. 52992	62487	1.6003	$\overline{5}$	80
5		. 51136	. 9556	. $8903 \overline{5}$	55	5	. 53 II5	. 689	. 5952	728	55
10	658	319	. 9486	. 88968	50	10	238	. 62892	. 5900	650	50
15	787	503	. 9416	902	45	15	361	. $63 \quad 95$. 5849	573	45
20	. 45917	688 -872	. 9347	835	40	20	484	299	. 5798	495	40
25	. 46046	. 51872	. 9278	768	35	25	607	503	. 5747	417	35.
30	. 46175	. 52057	1.92	. 88701	30	30	. 53730	. 63707	1.5697	4339	30
35	304	242	. 91	634	25	35	853	. 63912	. 5647	261	25
40	433	427	. 9074	566	20	40	. 53975	. 64117	. 5597	182	0
45	561	613	. 9007	499	15	45	. 54097	322	. 5547	${ }^{104}$	15
50	690	798	. 8940	43 I	10	50	220	528	. 5497	. 84025	10
55	819	. $5298 \overline{5}$. 8873	363	5	55	342	734	. 5448	. 83946	5
280	. 46	. 53171	1.88	. 88295	62 o	330	. 54464	. 64941	1.5399	. 83867	-
5	. 47076	358	.874I	226	55	5	586	. 65148	. 5350	788	55
10	204	545	. 8676	158	50	10	708	355	. 5301	708	50
15	332	732	.86II	-089	45	15	829	563	. 5253	629	45
20	460	. 53920	. 8546	. 88020	40	20	. 54951	771 68	. 5204	549	40
25	588	. 54107	. 8482	. 87951	35	25	. 55072	. 65980	. 5156	469	35
30	. 47716	. 54296	1.8418	. 87882	30	30	. 55194	. 66189	1.5108	. 83389	30
35	844	484	. 8354	812	25	35	315	398	. 5061	308	25
40	. 47971	673	. 8291	743	20	40	436	608	. 5013	228	20
45	. $48 \quad 099$.54862	. 8228	673	15	45	557	. 66818	. 4966	147 8366	15
50	226	. 55051	.8165	603	ro	50	678	.67028	. 4919	. 83066	10
55	354	241	.8103	532	5	55	799	239	.4872	.82985	5
290	. 4848 I	. 55431	1.8040	. 87462	61 o	340	. 55919	. 67451	1.4826	. 82904	6
5	O8	621	. 7979	391	55	5	. 56040	$\begin{array}{r}663 \\ 67 \\ \hline\end{array}$. 4779	822	55
10	735	. 55812	.7917	321	50	10	160	. $6787 \overline{5}$.4733	741	50
15	862	.56003	.7856	250	45	15	280	. 68088	. 4687	659	45
20	. 48989	194	.7796	178	40	20	4 OI	301	.4641	577	40
25	. 49116	385	. 7735	107	35	25	52 I	514	. 4596	$49 \overline{5}$	35
30	. 49242	. 56577	1.7675	.87036	30	30	641	. 68728	1.4550	. 82413	30
35	369	- 769	.7615	. 86964	25	35	760	. 68942	. $450 \overline{5}$	330	25
40	495	. 56962	. 7556	892	20	40	. 56880	. 69157	. 4460	248	
45	622	. 57155	. 7496	820	15	45	. 57000	372	. 4415	$16 \overline{5}$	15
50	748	348	. 7437	748	10	50	119	588	. 4370	. 82082	
55	.49874	54 I	. 7379	675	5	55	238	. 69804	. 4326	.81 999	5
30 -	. 50000	. 57735	1.7321	. 86603	60 -	350	$.5735^{8}$.70021	1.4281	.81915	55 -
	N. Cos.	N. Cot.	N. Tan.	N. Sin.	- 1		N. Cos.	N. Cot.	N. Tan.	N. Sin.	- 1

\bigcirc	N. Sin.	N. Tan.	N. Cot.	N. Cos.		$\bigcirc 1$	N. Sin.	N. Tan.	N. Cot.	N. Cos.	
350	.57358	. 70021	I. 428 I	.81 9I5	55 -	40 ○	. 64279	. 83910	1.1918	.76604	50 -
5	477	238	. 4237	832	55	5	390	. 84158	. 1882	5 II	55
Io	596	455	. 4193	748	50	10	501	407	. 1847	417	50
15	715	673	.4150	664	45	15	612	656	. 1812	323	45
20	833	. 70891	. 4106	580	40	20	723	. 84906	. 1778	229	40
25	. 57952	. 71110	. 4063	496	35	25	834	. 85157	. 1743	135	35
30	. 58070	.71 329	1.4019	.81 412	30	30	. $6494 \overline{5}$.85408	1.1708	.76 041	30
35	189	549	. 3976	327	25	35	. 65055	660	. 1674	. 75946	25
40	307	769	. 3934	242	20	40	166	. 85912	.1640	851	20
45	425	71990	. 3891	157	15	45	276	. 86166	. 1606	756	15
50	543	. 72211	. 3848	.81 072	10	50	386	419	. 1571	661	10
55	661	432	.3806	. 80987	5	55	496	674	. 1538	566	5
36	. 58779	. 72654	1. 3764	. 80902	54 o	410	. 65606	. 86929	1.1504	. 75471	490
5	. 58896	. 72877	. 3722	8ı6	55	5	716	. 87184	. 1470	375	55
10	. 59 Or 4	. 73100	. 3680	73	50	10	825	441	. 1436	280	50
15	131	323	. 3638	64	45	15	. 65935	698	. 1403	184	45
20	248	547	. 3597	558	40	20	. 66044	. 87955	. 1369	. 75088	40
25	365	771	. 3555	472	35	25	153	. 88214	.1336	. 74992	35
30	. 59482	. 73996	1.3514	. 80386	30	30	. 66262	. 88473	1.1303	.74 896	30
35	599	. 74221	. 3473	299	25	35	371	732	. 1270	799	25
40	716	447	. 3432	212	20	40	480	. 88992	. 1237	703	20
45	832	674	. 3392	125	15	45	588	. 89253	. 1204	606	15
50	. 59949	. 74900	.335I	. 80038	10	50	697	515	.1171	509	10
55	. $60 \quad 065$.75128	.33II	. 79951	5	55	805	. 89777	.1139	412	5
370	. 60182	. 75355	1.3270	. 79864	53 -	420	. 66913	.90040	1.1106	. 74314	48 o
5	298	584 75	. 3230	77	55	5	. 67021	304	. 1074	217	55
10	414	.75812	. 3190	688	50	10	129	569	.104I	120	50
15	529	.76042	.3151	600	45	15	237	. 90834	. 1009	. 74022	45
20	645	272	.3III	512	40	20	344	.91 099	. 0977	. 73924	40
25	761	502	. 3072	424	35	25	452	366	. 0945	826	35
30	876	. 76733	1.3032	. 79335	30	30	. 67559	.91 633	1.0913	. 73728	30
35	. 60991	. 76964	. 2993	247	25	35	666	.91901	.0881	629	25
40	.61 107	. 77 196	. 2954	158	0	40	773	. 92170	. 0850	531	20
45	222	428	.2915	. 79069	15	45	880	439	.0818	432	15
50	337	66I	. 2876	. 78980	10	50	. 67987	709	. 0786	333	10
55	451	. 77895	. 2838	891	5	55	. 68093	. 92980	. 0755	234	5
380	.61 566	.78 129	1.2	. 78801	520	430	. 68200	.93 252	1.07	.73 135	70
5	81	363	. 276	711	55	5	306	. 524	. 0692	. 73036	55
10	6795	$\begin{array}{r}598 \\ \hline 88\end{array}$.2723	622	50	10	412	.93797	.0661	. 72937	50
15	.61 909	. 78834	. 2685	532	45	15	518	. 94071	.0630	837	45
20	. 62024	. 79070	. 2647	442	40	20	624	345	. 0599	737	40
25	138	306	. 2609	351	35	25	730	620	. 0569	637	35
30	. 6225 I	. 79544	1. 2572	. 78 261	30	30	. 68835	. 94896	1.0538	. 72537	30
35	365	. 7978 I	. 2534	170	25	35	. 68941	.95173	. 0507	437	25
40	479	. 80020	. 2497	. 78079	20	40	. 69046	451	. 0477	337	20
45	592	258	. 2460	. 77988	15	45	151	. 95729	. 0446	236	15
50	706	498	. 2423	897	10	50	256	. 96008	. 0416	136	10
55	819	738	. 2386	806	5	55	361	288	. 0385	. 72035	5
390	. 62932	.80 978	1.2349	. 77715	510	440	. 69466	.96569	1.0355	.71 934	46
5	. 63045	.81 220	. 2312	623	55	5	570	. 96850	. 0325	833	55
10	158	461	. 2276	531	50	10	675	.97133	.0295	732	50
15	271	703	. 2239	439	45	15	779	416	. 0265	630	45
20	383	.81 946	. 2203	347	40	20	883	700	. 0235	529	40
25	496	. 82190	. 2167	$25 \overline{5}$	35	25	. 69987	. 97984	. 0206	427	35
30	. 63608	. 82434	1.213I	. 77162	30	30	.70091	. 98270	1.0176	.71 325	30
35	720	678	. 2095	. 77070	25	35	195	556	. 0147	223	25
40	832	. 82923	. 2059	.76977	20	40	298	. 98843	. 0117	121	20
45	. 63944	.83 169	. 2024	884	15	45	401	. 99 I31	. 0088	. 71019	15
50	1.64056	415	. 1988	791	10	50	505	420	. 0058	. 70916	10
55	167	662	. 1953	698	5	55	608	. 99710	. 0029	813	5
40 o	. 64279	. 83910	1.1918	. 76604	50 -	45 -	. $707 \mathrm{7I}$	1.00000	1.0000	. 70711	450
	N. Cos.	N. Cot	N. Tan.	N. Sin.	\bigcirc		N. Cos.	N. Cot.	N. Tan.	N. Sin.	- 1

DEGREES.						Minutes.		SECONDS.	
0°	0.0	60	1.0471976	12	2.0943951	$0^{\prime \prime}$	0.0000000	0 '	0.0000000
1	0.0174533	61	1.0646508	121	2.1118484	1	0.0002909		48
2	0.0349	62	1.0821041	122	2.1293017	2	0.0005818	2	97
3	0.0523599	63	1.0995574	123	$2.14675 \overline{5} 0$	3	0.0008727	3	0.00001 45
4	0.06981	64	1.11701 07	124	2.1642083	4	0.0011636	4	0.00001 94
5	0.0872665	65	1.13446 40	125	2.18166 16	5	0.0014544		0.0000242
6	0.1047198	66	1.1519173	126	2.1991149	6	0.0017453	6	0.0000291
7	0.1221730	67	1.16937 06	127	2.2165682	7	0.0020362	7	0.0000339
8	0.1396263	68	1.1868239	128	2.2340214	8	0.0023271	8	0.0000388
9	0.1570796	69	1.2042772	129	2.2514747	9	0.0026I 80	9	0.0000436
10	0.1745329	70	1.2217305	130	2.2689280	10	0.0029089	10	0.0000485
11	-. 19198	71	I. 2391838	131	2.2863813	II	0.0031998	II	0.0000533
12	0.2094395	72	1.2566371	132	2.3038346	12	$0.00349 \bigcirc 9$	12	0.0000582
13	0.22689	73	1.2740904	133	2.3212879	13	0.0037815	13	0.0000630
14	0.24434 61	74	1.2915436	134	2.3387412	14	0.0040724	14	0.0000679
15	0.2617994	75	I. 3089969	135	2.3561945	15	0.0043633	15	0.0000727
16	0.2792527	76	1.32645 02	136	2.3736478	16	0.0046542	16	0.0000776
17	0.2967060	77	1.34390 35	137	2.39110	17	0.00494	17	0.0000824
18	0.3141593	78	1.3613568	138	2.4085544	18	0.0052360	18	0.0000873
19	0.33161 26	79	1.37881 о1	139	2.4260077	19	0.0055269	19	0.0000921
20	0.3490659	80	1.3962634	140	2.44346 10	20	0.0058178	20	0.0000970
2 I	0.3665191	81	1.41371 67	141	2.4609142	21	0.0061087	21	0.0001018
22	0.3839724	82	1.4311700	142	2.4783675	22	0.0063995	22	0.0001067
23	0.4014257	83	I. 4486233	143	2.4958	23	0.0066904	23	0.0001115
24	0.41887	84	1. 4660766	144	2.5132	24	0.0069813	24	0.00011 64
25	0.4363323	85	I. 4835299	145	2.5307274	25	0.0072722	25	0.0001212
26	0.45378	86	I. 5009832	146	2.5481807	26	0.0075631	26	0.00012 61
27	0.4712389	87	1.5184364	147	2.5656340	27	0.0078540	27	09
28	0.4886922	88	1.5358897	148	2.5830873	28	0.0081449	28	0.00013 57
29	0.5061455	89	1.5533430	49	2.6005406	29	0.0084358	29	0.0001406
30	0.5235988	90	1.5707963	150	2.6179939	30	0.0087	30	0.0001454
31	0.5410	91	1.5882496	151	2.6354	31	0.00901 75	3 r	0.0001503
32	0.55850	92	1.6057029	152	2.6529005	32	0.0093084	32	0.00015 5I
33	0.5759587	93	1.6231562	153	2.6703538	33	0.0095993	33	0.0001600
34	0.5934119	94	1.6406095	154	2.6878070	34	0.0098902	34	0.0001648
35	0.6108652	95	1. 6580628	155	2.7052603	35	0.0101811	35	0.0001697
36	0.6283185	96	I.67551 6r	156	2.7227136	36	0.0104720	36	0.0001745
37	0.6457718	97	1.69296 94	157	2.7401669	37	0.0107629	37	0.0001794
38	0.6632251	98	1.7104227	158	2.7576202	38	0.0110538	38	0.0001842
39	0.6806784	99	1.72787	159	2.7750735	39	0.0113446	39	0.0001891
40	0.6981317	10	1.7453293	160	2.7925268	40	0.0116355	40	0.0001939
4 I	0.71558 50	IOI	1.7627825	161	2.80998 OI	41	0.0119264	41	0.0001988
42	0.7330383	102	1.78023 58	162	2.8274334	42	0.0122173	42	0.0002036
43	0.75049	103	1.7976891	163	2.8448867	43	0.0125082	43	0.0002085
44	0.76794	104	1.8151424	164	2.8623400	44	0.0127991	44	0.0002133
45	0.7853982	105	1. 8325957	165	2.8797933	45	0.0130900	45	0.0002182
46	0.80285 I 5	106	1.8500490	166	2.8972466	46	0.0133809	46	0.0002230
47	0.8203047	107	1.8675023	167	2.9146999	47	0.0136717	47	0.0002279
48	0.8377580	108	1.8849556	168	2.9321531	48	0.0139626	48	0.0002327
49	0.8552113	109	1. 9024089	169	2.9496064	49	0.0142535	49	0.0002376
50	0.8726646	110	1.9198622	170	2.9670597	50	0.0145444	50	0.0002424
51	0.8901179	III	$1.937315 \overline{5}$	171	2.9845130	51	0.0148353	51	0.0002473
52	0.9075712	112	I. 9547688	172	3.00196	52	0.0151262	52	0.0002521
53	0.9250245	113	1.97222 2I	173	3.0194196	53	0.0154171	53	0.0002570
54	0.9424778	114	1.9896753	174	3.0368729	54	0.0157080	54	0.0002618
55	0.95993 II	115	2.0071286	175	3.0543262	55 56	0.0159989	55 56	0.0002666
56	0.9773844	116	2.0245819	176	3.0717795	56	0.0162897	56	0.0002715
57	0.9948377	118	2.0420352	177	3.0892328	57	0.0165806		
58	1.0122910 1.0297443	118	2.0594885 2.0769418	178	3.1066861 3.1241394	58 59	0.0168715 0.0171624	58 59	0.0002812 0.0002860
60	$\frac{1.0297443}{1.0471976}$	1120	$\frac{2.0769418}{2.0943951}$	180	$\frac{3.12415927}{}$	60	0.0174533	60	. 00029

TABLE VII.
Napierian Logarithms of Numbers.

N.	Log.								
1	0.00000	21	3.04452	4 I	3.71357	61.	4.11087	81	$4.3944 \overline{5}$
2	0.69315	22	3.09104	42	3.73767	$62 \text {. }$	4.12713	82	4.40672
3	1.09861	23	3.13549	43	3.76120	63.	4.14313	83	4.41884
4	1. 38629	24	3.17805	44	3.78419	64	4.15888	84	4.43082
5	1.60944	25	3.21888	45	3.80666	65	4.17439	85	4.44265
6	1.79176	26	3.25810	46	3.82864	66	4.18965	86	$4.4543 \overline{5}$
7	1.94591	27	3.29584	47	3.85015	67	4.20469	87	4.46591
8	2.07944	28	3.33220	48	3.87120	68	4.21951	88	4.47734
9	2.19722	29	3.36730	49	3.89182	69	4.23411	89	4.48864
10	2.30259	30	3.40120	50	3.91202	70	$4.248 \overline{5} 0$	90	4.49981
II	2.39790	31	3.43399	51	3.93183	71	4.26268	91	4.51086
12	2.48491	32	3.46574	52	3.95124	72	4.27667	92	4.52179
13	2.56495	33	3.49651	53	3.97029	73	4.29046	93	4.53260
14	2.63906	34	3.52636	54	3.98898	74	4.30407	94	4.54329
15	2.70805	35	3.55535	55	4.00733	75	4.31749	95	4.55388
16	2.77259	36	3.58352	56	4.02535	76	4.33073	96	4.56435
17	2.83321	37	3.61092	57	4.04305	77	$4 \cdot 3438 \mathrm{I}$	97	4.57471
18	2.89037	38	3.63759	58	4.06044	78	4.35671	98	4.58497
19	2.94444	39	3.66356	59	4.07754	79	$4.3694 \overline{5}$	99	4.59512
20	2.99573	40	3.68888	60	4.09434	80	4.38203	100	4.60517

N.	0	1	2	3	4	5	6	7	8	9
10	4.60517	1512	2497	3473	4439	5396	6344	7283	8213	$913 \overline{5}$
II	4.70048	0953	1850	2739	3620	4493	5359	6217	7068	7912
12	8749	9579	*0402	*1218	*2028	${ }^{*} 2831$	*3628	*4419	*5203	*5981
13	4.86753	7520	8280	9035	9784	*0527	${ }^{*}$ I265	*1998	*2725	*3447
14	4.94164	4876	5583	6284	6981	7673	8361	9043	9721	*0395
15	5.01064	1728	2388	3044	3695	4343	4986	5625	6260	6890
16	7517	8140	8760	9375	9987	*0595	*i199	* ${ }^{\text {I }} 799$	*2396	*2990
17	5.13580	4166	4749	. 5329	5906	6479	7048	7615	8178	8739
18	9296	$98 \overline{50}$	*0401	*0949	*) 494	*2036	*2575	*3111	*3644	*4175
19	5.24702	5227	5750	6269	6786	7300	7811	8320	8827	9330
20	$5 \cdot 39832$	*0330	*0827	*)32I	*1812	*2301	${ }^{*} 2788$	*3272	*3754	* 4233
21	5.34711	5186	5659	6129	6598	7064	7528	7990	8450	8907
22	9363	9816	*0268	*0717	*1165	*i610	*2053	*2495	*2935	*3372
23	5.43808	4242	4674	5104	5532	5959	6383	6806	7227	$\begin{array}{r}7646 \\ \\ \hline\end{array}$
24	- 8064	8480	8894	9306	9717	*0126	*0533	*0939	${ }^{*}$ 1343	* ${ }^{1} 745$
25	5.52146	2545	2943	3339	3733	4126	4518	4908	5296	5683
26	6068	6452	6834	7215	7595	7973	8350	$872 \overline{5}$	+9099	947 I
27	-9842	*0212	*0580	*0947	*i3I3	* 1677	*2040	*2402	*2762	*3121
28	5.63479	3835	4191	4545	4897	5249	5599	5948	6296	6643
29	6988	7332	7675	8017	8358	8698	9036	9373	9709	*0044
30	5.70378	0711	1043	1373	1703	2031	2359	2685	3010	3334
31	3657	3979	4300	4620	4939	5257	5574	5890	6205	6519
32	6832	7144	+ 7455	7765	8074	8383	8690	8996	9301	-9606
33	89909	*0212	*0513	*0814	*III4	*1413	*I7II	*2008	*2305	*2600
34	5.82895	3188	348I	3773	4064	4354	4644	4932	5220	5507
35	5.85793	6079	6363	6647	6930	7212	7493		8053	8332
36	8610	8888	9164	9440	9715	9990	*0263	*0536	\%0808	告1080
37	5.91350	1620	1889	2158	2426	2693	2959	$322 \overline{5}$	3489	3754
38	4017	4280	4542	4803	5064	5324	5584	5842	6101	6358
39	6615	6871	7126	7381	7635	7889	8141	8394	8645	8896
40	5.99146	9396	9645	9894	*O14 1	*0389	\%0635	*0881	*1127	*1372
N.	0	1	2	3	4	5	6	7	8	9

N．	0	1	2	3	4	5	6	7	8	9
40	5.99146	9396	9645	9894	＊OI4 1	＊0389	＊0635	\％o881	\％ 1127	＊1372
41	6.01616	1859	2102	$234 \overline{5}$	2587	2828	3069	3309	3548	3787
42	4025	4263	4501	4737	4973	5209	5444	5678	5912	6146
43	6379	66 II	6843	7074	7304	7535	7764	7993	8222	$84 \overline{5}$ O
44	8677	8904	9131	9357	9582	9807	\％0032	\％${ }^{\text {\％}} 02256$	＊0479	＊\％702
45	6.10925	1147	1368	1589	1810	2030	2249	2468	2687	2905
46	3123	3340	3556	3773	3988	4204	4419	4633	4847	5060
47	5273	5486	5698	5910	6121	6331	6542	6752	6961	7170
48	7379	7587	7794	8002	8208	8415	－8621	8826	9032	9236
49	944 I	9644	9848	＊0051	＊0254	察0456	＊0658	＊0859	\％ 106	＊ 1261
50	6.21461	1661	1860	2059	2258	2456	2654	2851	3048	$324 \overline{5}$
51	344 I	3637	3832	4028	4222	4417	4611	4804	4998	5190
52	5383	5575	5767	5958	6149	6340	6530	6720	6910	7099
53	7288	7476	7664	7852	8040	8227	8413	8600	8786	8972
54	9157	9342	9527	9711	$989 \overline{5}$	＊ 0079	＊0262	＊0445	＊ 0628	＊0810
55	6.30992	1173	$135 \overline{5}$	1536	1716	1897	2077	2257	2436	2615
56	2794	2972	3150	3328	3505	3683	3859	4036	4212	4388
57	4564	4739	4914	5089	5263	5437	5611	5784	5957	6130
58	6303	6475	6647	6819	6990	7161	7332	7502	7673	7843
59	8012	8182	8351	8519	8688	8856	9024	9192	9359	9526
60	6.39693	9859	＊0026	＊0192	\％0357	蔡0523	\％0688	＊0853	＊1017	＊1182
61	6.41346	1510	1673	1836	1999	2162	2325	2487	2649	2811
62	2972	3 I 33	3294	$345 \overline{5}$	3615	3775	3935	4095	4254	4413
63	4572	4731	4889	50.47	$520 \overline{5}$	5362	5520	5677	5834	5990
64	6147	6303	6459	6614	6770	6925	7080	7235	7389	7543
	6.47697	7851	8004	8158	8311	8464	8616	8768	8920	9072
66	9224	9375	9527	9677	9828	9979	＊O129	＊0279．	\％0429	䇣0578
67	6.50728	0877	1026	$117 \overline{5}$	1323	1471	1619	1767	1915	2062
68	2209	2356	2503	2649	2796	2942	3088	3233	3379	3524
69	3669	38I4	3959	4103	4247	4391	$453 \overline{5}$	4679	4822	4965
70	6.55108	5251	5393	5536	5678	5820	5962	6103	6244	6386
71	6526	6667	6808	6948	7088	7228	7368	7508	7647	7786
72	7925	8064	8203	8341	8479	8617	8755	8893	9030	9167
73	6.9304	944 I	9578	9715	9851	9987	＊O123	＊0259	\％0394	＊${ }^{\text {＋}}$ 530
74	6.60665	0800	$093 \overline{5}$	1070	1204	1338	1473	1607	1740	1874
	6.62007	2141	2274	2407	2539	2672	2804	2936	3068	3200
76	3332	3463	3595	3726	3857	3988	4118	4249	4379	4509
77	4639	4769	4898	5028	5157	5286	5415	5544	5673	5801
78	5929	6058	6185	6313	6441	6568	6696	6823	6950	7077
79	7203	7330	7456	7582	7708	7834	7960	8085	8211	8336
80	6.68461	8586	8711	8835	8960	9084	9208	9332	9456	9580
81	－ 9703	9827	9950	＊0073	＊oig6	＊0319	＊044	涼0564	＊0686	察0808
82	6.70930	1052	1174	1296	1417	1538	1659	1780	1901	2022
83	2143	2263	2383	2503	2623	2743	2863	2982	3102	3221
84	3340	3459	3578	3697	3815	3934	4052	4170	4288	4406
	6.74524	464 I	4759	4876		5110			5460	
86	5693	5809	5926	6041	6157	6273	6388	6504	6619	6734
87	6849	6964	7079	7194	7308	7422	7537	7651	7765	7878
88	7992	8106	8219	8333	8446	8559	8672	8784	8889	9010
89	9122	9234	9347	9459	9571	9682	9794	9906	＊＊0017	＊OI 28
90	6.80239	0351	046I	0572	0683	0793	0904	1014	1124	1235
91	1344	1454	1564	1674	1783	1892	2002	2111	2220	2329
92	2437	2546	$265 \overline{5}$	2763	2871	2979	3087	3195	3303	3411
93	3518	3626	3733	3841	3948	$405 \overline{5}$	4162	4268	4375	4482
94	4588	4694	4801	4907	5013	5118	5224	5330	5435	5541
95	6.85646	5751	5857	5961	6066	6171	6276	6380	6485	6589
96	6693	6797	6901	7005	7109	7213	7316	7420	7523	7626
97 98	7730 8755	7833 8857	7936 8959	8038 9061	8141 9163	8244 9264	8346 9366	8449 9467	8551	8653 9669
99	9770	9871	9972	＊0073	＊O174	${ }^{6} 0274$	－0375	＊0475	葉0575	＊0675
100	6.90776	0875	0975	1075	1175	1274	1374	1473	1572	1672
N．	0	1	2	3	4	5	6	7	8	9

UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY

Return to desk from which borrowed.
This book is DUE on the last date stamped below.

LD 21-100m-11,'49(B7146s16)476

YC 102260

QA55

$$
-188
$$

[^0]: * Named for Henry Briggs (1556-1631), who first suggested the use of the base 10 .
 \dagger Named for John Napier, Baron of Merchiston, in Scotland (15501617), the inventor of logarithms.

