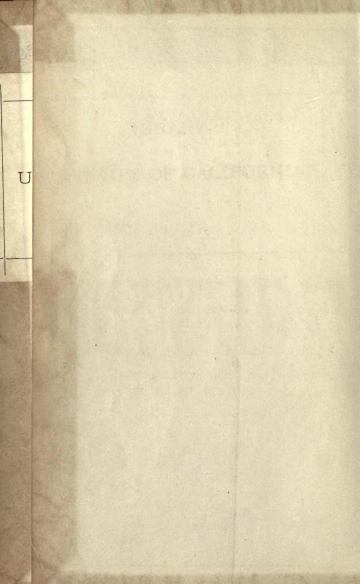

OSBORN'S TABLES.


06580 A >-

LIBRARY OF THE

UNIVERSITY OF CALIFORNIA.

Class

OSBORN'S TABLES

OF

MOMENTS OF INERTIA

AND

SQUARES OF RADII OF GYRATION

TO WHICH HAVE BEEN ADDED TABLES OF

THE WORKING STRENGTHS OF STEEL COLUMNS,

THE WORKING STRENGTHS OF TIMBER BEAMS AND COLUMNS.

STANDARD LOADS AND UNIT STRESSES,

AND CONSTANTS FOR DETERMINING STRESSES IN SWING BRIDGES.

FIFTH EDITION REVISED BY THE OSBORN ENGINEERING CO.

COPYRIGHT, 1905

TOTTAS OFNERAL STATES

MOMENTS OF INERTIA

TA 685 08 08 905

THE WORLING STRENG YES OF STREET DOLLARS

THE OSBORN ENGINEERING COMPANY. CLEVELAND

PREFACE TO FIFTH EDITION.

"Osborn's Tables" are now too well known among engineers and designers to require further introduction. The first edition, by Mr. Frank C. Osborn, appeared in 1886, and was followed in turn by three others in the next eight years. Since the publication of the fourth edition in 1894, the various mills have adopted uniform standards of shapes which nearly all varied somewhat from those used in the tables. This considerably decreased the usefulness of the tables as they then existed.

Believing, however, that the work still fills a want among designing engineers, the present edition has been prepared. The tables of moments of inertia and squares of radii of gyration have all been completely refigured, using the present standard mill sections and shapes, and combining them in accordance with present designing practice. It is believed that these tables will prove much more convenient than the earlier ones in this respect.

The tables of $\frac{L^2}{r^2}$, square root, swing bridges, rivets, web plates and timber beams, have all been preserved in the present edition. Some of the other matter, now obsolete, has been omitted and instead there have been included tables of the safe working strengths of soft steel and medium steel columns, of standard loads and unit stresses for bridges, of timber columns and of bridge weights.

There have also been included a few pages of historical and other statistics concerning the bridges of the world that it is hoped may prove of interest. Such information is not easily obtainable elsewhere.

It is earnestly hoped that this new work may have the same kind reception and may prove as useful a companion to the designing engineer as have its preceding editions.

THE OSBORN ENGINEERING COMPANY. CLEVELAND, MARCH, 1905.

CONTENTS.

Explanation	Page 6
Moments of Inertia, Rectangles	. 12
Squares of Radii of Gyration, Two Angles	14
" " " " " and One Top Plate	18
MOMENTS OF INERTIA AND SQUARES OF RADII OF GYRATION :	
One Web Plate and Two Angles	20
One Web Plate, Two Angles and Top Plate	. 24
Two Web Plates, Two Angles and Top Plate	26
Squares of Radii of Gyration, Four Angles	. 28
MOMENTS OF INERTIA AND SQUARES OF RADII AND GYRATION	
One Web Plate and Four Angles	32
Two Web Plates and Four Angles	. 42
Two Web Plates, Two Side Plates and Four Angles .	50
Three I Beams	. 53
Two Channels and One Separating I Beam	54
Two Web Plates, Four Angles and Top Plate	. 58
Two Channels and One Top Plate	75
Two Web Plates, Two Side Plates, Four Angles	
and Top Plate	. 78
Two Web Plates, Four Angles, Top Plate and	
Horizontal Flange Plates	82
Two Web Plates, Two Side Plates, Four Angles,	
Top Plate, and Horizontal Flange Plates	. 84
Values of $\frac{L^2}{r^2}$,	86
Working Strengths of Soft Steel Columns	97
" " Medium Steel Columns	100
Square Roots	103

SWING BRIDGES; SHEARS AND MOMENTS:	
Three Points of Support, Single Loads,	
Spans of Four to Twenty Panels 112	to 127
Three Points of Support, Symmetrical Loads,	ALL OF
Spans of Six to Twenty Panels 128	to 141
Four Points of Support, Symmetrical Loads,	
Spans of Seven to Nineteen Panels 142	to 153
Bearing and Shearing Values of Rivets	
per Poot Run	154
Safe Resistance Against Buckling of Girder Webs .	. 155
Centrifugal Force in Per Cent. of Weight	156
Chords Loaded Transversely	. 157
Portal Bracing	158
Camber	. 160
Length of Flange Plates, Girders	162
Bending Moments for Various Loads and Spans	. 163
Capacity of Timber Beams: 800 lbs, to 1500 lbs, per	
	to 167
	to 167 168
square inch fibre strain	1. 11.
square inch fibre strain	168
square inch fibre strain	168 . 168
square inch fibre strain . </td <td>168 . 168 169</td>	168 . 168 169
square inch fibre strain 164 Timber, Safe Working Stresses . Timber Columns, Working Strengths . Weights of Railway Bridges . Cooper's Standard Loading for Railway Bridges .	168 . 168 169
square inch fibre strain 164 Timber, Safe Working Stresses . Timber Columns, Working Strengths . Weights of Railway Bridges . Cooper's Standard Loading for Railway Bridges . The Osborn Engineering Company's Standard	168 . 168 169 . 170
square inch fibre strain 164 Timber, Safe Working Stresses . Timber Columns, Working Strengths . Weights of Railway Bridges . Cooper's Standard Loading for Railway Bridges . The Osborn Engineering Company's Standard . Loading for Electric Railway Bridges .	168 . 168 169 . 170 171
square inch fibre strain 164 Timber, Safe Working Stresses . Timber Columns, Working Strengths . Weights of Railway Bridges . Cooper's Standard Loading for Railway Bridges . The Osborn Engineering Company's Standard . Loading for Electric Railway Bridges . The Osborn Engineering Company's Standard	168 . 168 169 . 170 171
square inch fibre strain 164 Timber, Safe Working Stresses Timber Columns, Working Strengths Weights of Railway Bridges Cooper's Standard Loading for Railway Bridges The Osborn Engineering Company's Standard Loading for Electric Railway Bridges The Osborn Engineering Company's Standard Loading for Highway Bridges	168 . 168 169 . 170 171 . 172
square inch fibre strain 164 Timber, Safe Working Stresses	168 . 168 . 169 . 170 . 170 . 171 . 172 . 173
square inch fibre strain 164 Timber, Safe Working Stresses . Timber Columns, Working Strengths . Weights of Railway Bridges . Cooper's Standard Loading for Railway Bridges . The Osborn Engineering Company's Standard . Loading for Electric Railway Bridges . The Osborn Engineering Company's Standard . Loading for Highway Bridges . Impact Formulæ . Unit Stresses .	168 168 169 170 171 171 172 173 173
square inch fibre strain	168 . 168 169 . 170 171 . 172 173 . 173 174
square inch fibre strain	168 . 168 169 . 170 171 . 172 173 . 173 174 . 175

5

.

EXPLANATION.

The shapes used in the following tables are those manufactured by the Carnegie Steel Co., Pittsburg Pa. The moments of inertia will not, however, vary materially for shapes of same size and weight made by other manufacturers.

In all cases calculations have been based on the gross area, and if it is desired to use the sections as beams to resist direct bending, due allowance should be made for loss of section from rivet holes in tension flanges.

The following example will illustrate the general method pursued in obtaining the moment of inertia and square of radius of gyration for sections composed of two plates and four angles riveted as shown on page 43:

> 2 plates 12 × ¼=6.00 sq. ins. 4 angles 3½ × 2½ × ¾=8.44

> > Total, 14.44 sq. ins.

+12 × 12² 72.00 × 5.34^2 -240.71 4 × 1.09 - 4.36 I-317.07

317.07+14.44-21.96-22

The moment of inertia of the plates being $\frac{1}{12} bd^3 = \frac{1}{12} Ad^2$ in which b-breadth, d-depth, and A the area of the plates; and the moment of inertia of each angle being ad^2+i , in which a equals the area of the angle, d the distance of its center of gravity from the neutral axis of the section, and i, its moment of inertia about an axis through its own center of gravity parallel to that neutral axis. In the above example, 5.34 inches is the distance from center of gravity of angle to the neutral axis, and 1.09 is the moment of inertia of one angle about an axis through its center of gravity, as given in Carnegie's Pocket Companion.

For trough-shaped sections it is convenient to first determine the position of the neutral axis, which is done as follows; Multiply the area of the top plate, top angles, webs and bottom angles, each by the distance of its center of gravity from the lower edge of web. Divide the sum of these products by the total area of the section, and the result will be the distance of the neutral axis above the lower edge of the web:

Top plate 17 × 3/8= 6.38 × 14.19= 90.53	6.38 × 7.192-329.82
2 top angles 3 × 3 × 3/= 4.22 × 13.11= 55.32	4.22 × 6.112-157.54
2 web plates 14 × 3/8=10.50 × 7.00= 73.50	10.50+12×142-171.50
2 bot. angles 4 × 3 × 5%= 7.96 × 0.87- 6.92	7.96 × 6.13 ² =299.11
29.06 × 7.79-226.27	957-97
7.00	+ 9.36
and have been to see the set of a set of the	967 33
deduct, 29.06 × 0.79 ²	- 17.99
and a set of the second state of the second state of the	I-949 34

12-949.34+29.06-32.7

Find the moment of inertia of the section about an axis through the center of the web, as follows: Multiply the area of the top plate, top angles and bottom angles, each by the square of the distance of its center of gravity from the center of web; add to these results the moment of inertia of the webs, which may be taken from the table on page 12, and the moment of inertia of each angle about an axis through its center of gravity. From the result subtract the product of the area of the section by the square of the distance from the neutral axis to the center of the web, and the result will be the required moment of inertia of the section about an axis through the center of gravity perpendicular to the web.

The moment of inertia of the top plate about an axis through its center of gravity should, strictly speaking, be added to the above, but its value in the present instance is so small that the final result is not materially affected.

A somewhat easier method, especially when the operation has to be performed without the aid of a slide rule is the following:

Top plate 17 × 3/8- 6.38 × 7.19-45.87	× 7.19-329.82
2 top angles 3 × 3 × 3/8- 4.22 × 6.11-25.78	× 6.11=157.54
71.65	and elasticate for
2 web plates 14 × 3/8-10.50	171.50
2 bot. angles 4 × 3 × 5/8- 7.96 × 6.13-48.79	× 6.13-299.11
29.06 × 0.79-22.86	957·97 + 9.36
deduct, 29.06 × 0.79 ²	967.33 - 17.99
And the work of bearing briefly discord	I-949.34

This plan avoids the use of squares in getting the moment of inertia and saves one multiplication in getting the position of the neutral axis, The word *eccentricity* is used in the tables to denote the distance of the neutral axis of the section from the center of the web.

In the calculation of these sections for moments of inertia sideways, the distance out to out of webs was assumed equal to the width of top plates, less twice the nominal length of leg of top angle.

The table for two angles, page 14, is based on the assumption that the angles are attached to each other securely enough to act as one member; if the angles are not so connected, then the least value of r^2 for one angle should be used, and the column considered as two separate members.

STRENGTH OF COLUMNS.

By means of the table of values of $\frac{L^2}{r^2}$ the working strength of any column for which r^2 is known, can be readily obtained.

EXAMPLE: Required the working strength of a medium steel column 18 feet long, square at both ends, made up as section 81 on page 61.

The value of r^2 is 37.0 and the area 38.72 square inches.

Referring to the table of $\frac{L^2}{r^2}$ look down the column headed r^2 until we come to 37.0; then in the same horizontal line, under 18, find 9 for the value of $\frac{L^2}{r^2}$; referring now to the tables of working strength of medium steel columns we find opposite 9 the working strength per square inch of 14479 lbs. The total working strength of the column will then be:

14479 x 38.72 = 560626.82 lbs.

BEARING AND SHEARING VALUE OF RIVETS.

This table is designed to facilitate the calculation of pitch and diameter of rivets uniting flanges and web at the ends of stringers and beams. Assuming the shear as acting in lines of 45 degrees the total stress is transferred from web to flanges in a distance equal to the effective depth of the stringer or beam. If, therefore, we divide the total stress by the effective depth of beam we will obtain the shear per vertical foot of beam or its equivalents, the shear per horizontal running foot of beam. Dividing this *shear per foot run* by the allowed unit stress for bearing or shearing we obtain the required bearing or shearing area of rivets to be provided for each running foot, and an inspection of the table will show at once the necessary pitch, size of rivet and thickness of web required to give this area.

EXAMPLE: Given a stringer or beam with an effective depth of 3 feet and a shear at the end of 45,000 pounds. What pitch and diameter of rivet will be required to transmit the shear to the flanges without exceeding a bearing pressure of 12,000 pounds per square inch or a shearing strain of 8,000 pounds per square inch on the rivets?

45,000 lbs. + 3 = 15,000 lbs. per foot run. + 12,000 = 1.25 bearing area required. + 8,000 = 1.88 shearing area required.

Referring now to the table we find that for a $\frac{3}{10}$ web $\frac{3}{10}$ rivets would require a pitch of $\frac{3}{10}$, giving a bearing area of 1.31 square inches and 2.41 square inches for single shear, or 4.81 for double shear. With a $\frac{1}{16}$ web $\frac{3}{2}$ pitch would give the same bearing area and would give 2.06 square inches for single shear or 4.12 square inches for double shear.

Using $\frac{3}{4}$ " rivets, a $\frac{3}{6}$ " web would require a pitch of $\frac{2}{4}$ " giving 1.35 square inches for bearing and 2.12 square inches for single and 4.24 square inches for double shear. A $\frac{7}{16}$ " web would permit 3" pitch and give 1.31 square inches for bearing and 1.77 square inches for single or 3.53 square inches for double shear.

RESISTANCE OF GIRDER WEBS AGAINST BUCKLING.

This table will indicate, when the shear per foot run is known, whether stiffeners are necessary or not. If stiffeners are required the table will show the proper clear distance between them. The application of the table will be illustrated by the following:

EXAMPLE: Given a stringer or beam with an effective depth of 3 feet and a shear at the end of 45,000 pounds. Will stiffeners be required, and if so, how far apart should they be placed?

The shear per foot run equals 45,000 lbs. +3 = 15,000 lbs.

Referring now to the table and assuming that a 3%" web has been adopted we find that in the column headed "t equals 3%," that 15,000 falls between 14,360 and 16,500, corresponding to a spacing of stiffeners of 2 feet 6 inches and 2 feet 3 inches. This spacing being less than the clear vertical distance between horizontal angles indicates that stiffeners are necessary, and indicates, also, that the end stiffeners should be spaced apart a distance not exceeding 2 feet 3 inches.

Should this shear be produced by a concentrated load on the girder, then this spacing of stiffeners should be made uniform from the end of the girder to the point of application of the load. If this shear is produced by a uniformly distributed load the total shear, and consequently the shear per foot run, diminishes toward the center of the girder and consequently the stiffeners may be spaced farther apart until the clear distance between them equals the clear vertical distance between the horizontal angles of the girder. When the table shows a distance apart between stiffeners greater than the distance apart of the flange angles, stiffeners will not be required to prevent buckling of the webs. By referring to the column headed "t equals $\frac{7}{16}$ " it appears that if a $\frac{7}{16}$ web is used stiffeners would not be required, as their distance apart would just equal the clear vertical distance between flange angles. If a $\frac{5}{16}$ web were used stiffeners would be required 1 foot and 9 inches apart in the clear.

The several formulæ in use have for the numerator constants varying from 8,000 to 15,000. 10,000 has been adopted in the present case, partly because it will in ordinary cases give fair results and partly because in case it is desired to use another formula the present formula may be readily adapted to another constant by a ready percentage comparison.

CENTRIFUGAL FORCE.

This table shows, for various velocities and degrees of curvature, the amount of centrifugal force, expressed in the form of per cent. of weight. It will be found useful in determining the stresses in lateral bracing due to moving loads on bridges located on curves, and its application is as follows:

Obtain in the usual manner the maximum shearing stresses in the various panels of the truss, due to the specified rolling load, and in the same manner as if the truss were on a tangent. Multiply these shearing stresses by the tabular coefficient corresponding to the degrees of curvature and desired velocity and the results will be the shearing stresses due to the centrifugal force.

STRENGTH OF TIMBER BEAMS.

The use of the tables of bending moments and capacities of timber beams will be, perhaps, best illustrated by the following :

EXAMPLE: Required the size of joist to support a load of 100 lbs. per square foot, the length of span being 18 feet, the joists to be spaced 2 feet center to center and the unit stress not to exceed 1000 lbs. per square inch.

Assume the weight of joists and flooring to be 20 lbs, per square foot.

From the table of bending moments we find-

For 20 lbs. per square foot and 18 foot span, 1620 foot lbs. "100""" 18 "" 18 "" 8100

Total bending moment - 9720

Referring now to the table of capacities for 1000 lbs. fiber strain we find that $3^{"} \times 16^{"}$, $3^{!/2}_{"} \times 15^{"}$ or $4^{"} \times 14^{"}$ will answer the purpose, the $3^{"} \times 16^{"}$ being the most economical in material.

For other spacing of joists than 24 inches, obtain the load per lineal foot of joist and then select the corresponding bending moments and proceed as above. If, in the above example, the spacing of joists was 18 inches instead of 24, the operation would be as follows :

20 lbs. per square foot $\times I_{2}^{\prime}$ = 30 lbs. per lineal foot, And 100 """ " $\times I_{2}^{\prime}$ = 150 .""""

For 30 lbs. per lineal foot, and 18 ft. span the bending moment	= 1215 ft, lbs.
For 158 lbs per lineal foot, and 18 foot span the	
bending moment	- 6075 "

Total bending moment = 7290

This bending moment on the basis of 1000 lbs. fiber strain, would call for joists $2\frac{1}{2}$ " \times 15", 3" \times 14" or 4" \times 12", the deepest one being the stiffest as well as the most economical in material.

MOMENTS OF INERTIA.

.... RECTANGLES.

Depth													
Inches	-1/4	5	3/8	7	· 1/2	<u>9</u> 16	5/8						
3	0.56	0.70	0.84	0.98	1.13	1.27	1.41						
4	1.33	1.67	2.00	2.33	2.67	3.00	3.33						
5	2.60	3.26	3.91	4.56	5.21	5.86	6.51						
6 7	4.50	5.63	6.75	7.88	9.00	10.13 16.08	11.25						
8	7.15	8.93 13.33	10.72 16.00	12.51	14.29 21.33	24.00	17 86 26.67						
0	10.01	13.33	10.00	10.07	41.33	24.00	20.07						
9	15.19	18.98	22.78	26.58	30.38	34.17	37.97						
10	20.83	26.04	31.25	36.46	41.67	46.87	52.08						
12	36.00	45.00	54.00	63.00	72.00	81.00	90.00						
13	45.77	57.21	68.66	80.10	91.54	102.98	114.43						
14	57.17	71.46	85.75	100.04	114.33	128.63	142.92						
15	70.31	87.89	105.47	123.05	140.63	158.20	175.78						
10	85.33	106.67	128.00	149.33	170.67	192.00	010.00						
16 17	102.35	127.94	153.53	149.33	204.71	230.30	213.33 255.89						
18	121.50	151.88	182.25	212.63	243.00	273.38	303.75						
20	166.67	208.33	250.00	291.67	333.33	375.00	416.67						
21	192.94	241.17	289.41	337.64	385.88	434.11	482.34						
22	221.83	277.29	332.75	388.21	443.67	499.13	554.58						
	A PROPERTY.	par date	ACCOL, ST	11.838	A NAMES		State Sector						
23	253.48	316.85	380.22	443.59	506.96	570.33	633.70						
24	288.00	360.00	432.00	504.00	576.00	648.00	720.00						
25	325.52	406.90	488.28	569.66	651.04	732.42	813.80						
26	366.17	457.71	549.25		732.33	823.88	915.42						
27	410.06	512.58	615.09	717.61	820.13	922.64	1025.16						
28	457.33	571.67	686.00	800.33	914.67	1029.00	1143.33						
29	508.10	635.13	762.16	889 19	1016.21	1143.23	1270.26						
30	562.50				1125.00	1265.63	1406.25						
32	682.67		1024.00			1536.00	1706.67						
34	818.83				1637.67	1842.38	2047.08						
36		1215.00	1458.00	1701.00	1944.00	2187.00	2430.00						
38	1143.17	1428.96	1714.75	2000.54	2286.33	2572.13	2857.92 .						
40	1333.33	1666.67	2000.00	2333.33	2666.67	3000.00	3333.33						
44	1774.67		2662.00		3549.33	3993.00	4436.67						
46		2534.79			4055.67	4562.63	5069.58						
48		2880.00			4608.00	5184.00	5760.00						
50	2604.17	3255.21	3906.25	4557.29	5208.33	5859.38	6510.42						
60	4500.00	5625.00	6750.00	7875.00	9000.00	10125.00	11250.00						

MOMENTS OF INERTIA.-RECTANGLES.

(CONTINUED.)

Width of Rectangle in Inches												
11 18	3/4	13	7/8	15	1	in Inches						
1.55	• 1.69	1.83	1.97	2.11	2.25	3						
3.67	4.00	4.33	4.67	5.00	5.33	4						
7.16 12.38	7.81	8.46	9.11	9.77	10.42	.6						
19.65	21.44	23.22	25.01	26.80	28.58	7						
29.33	32.00	34.67	37.33	40.00	42.67	8						
41.77	45.56	49.36	53.16	56.95	60.75	9						
57.29	62.50	67.71	72.92	78.13	83.33	10						
99.00	108.00	117.00	126.00	135.00	144.00	12						
125.87	137.31	148.75	160.20	171.64	183.08	13						
157.21	171.50	185.79	200.08	214.38	228.67	14						
193.36	210.94	228.52	246.09	263.67	281.25	15						
234.67	256.00	277.33	298.67	320.00	341.33	16						
281.47	307.06	332.65	358.24	383.83	409.42	17						
334.13	364.50	394.88	425.25	455.63	486.00	18						
458.33	500.00	541.67	583.33	625.00	666.67	20						
530.58	578.81	627.05	675.28	723.52	771.75	21						
- 610.04	665.50	720.96	776.42	831.87	887.33	22						
697.07	760.44	823.81	887.18	950.55	1013.92	23						
792.00	864.00	936.00	1008.00	1080.00	1152.00	24						
895.18	976.56	1057.94	1139.32	1220.70	1302.08	25						
1006.96	1098.50	1190.04	1281.58	1373.13	1464.67	26						
1127.67	1230.19	1332.70	1435.22	1537.73	1640.25	27						
1257.67	1372.00	1486.33	1600.67	1715.00	1829.33	28						
1397.29	1524.31	1651.34	1778.36	1905.39	2032.42	29						
1546.88	1687.50	1828.13	1968.75	2109.38	2250.00	30						
1877.33	2048.00	2218.67	2389.33	2560.00	2730.67	32						
2251.79	2456.50	2661.21	2865.92	3070.63	3275.33	34						
2673.00 3143.71	2916.00 3429.50	3159.00 3715.29	3402.00	3645.00	3888.00	36						
3143.71	3429.50	3715.29	4001.08	4286.88	4572.67	38						
3666.67	4000.00	4333.33	4666.67	5000.00	5333.33	40						
4880.33	5324.00	5767.67	6211.33	6655.00	7098.67	44						
5576.54 6336.00	6083.50 6912.00	6590.46	7097.42	7604.38	8111.33	46						
7161.46	7812.50	7488.00	8064.00 9114.58	8640.00 9765.63	9216.00 10416.67	48 50						
12375.00				16875.00		60						
110/0.00	120000.00	11020.00	10/00.00	10070.00	110000.001	00						

	Aris C. Alis C	Augle Augle Ais Ais Augle Ais Ais Ais A A.1 2.32 0.61 0.64 0.79 A A.1 2.38 0.59 1.11 1.30 1.36 A A.5 3.46 0.57 1.11 1.30 1.36 A A.5 2.62 0.89 1.00 1.18 1.23 A A.5 2.82 0.89 1.00 1.18 1.23 A A.9 2.88 0.86 1.167 1.36 1.34 A A.9 2.88 0.86 1.167 1.36 1.34 A A.9 2.88 1.20 0.81 1.34 A A.9 2.88 1.22 0.91 1.18 A A.9 2.88 1.22 0.91 1.19 A A.9 1.21 0.94 1.18 A A.9 <th>ANC B</th> <th>X Names of r² for Distances in incluss hack to hack of the second second</th> <th>0.88 0.93 0.97 1.19 1.43 12.9 21.0 31.1 43.1 0.92 0.97 1.02 1.24 1.50 13.2 21.0 31.5 43.6</th> <th>1.41 1.47 1.53 1.79 2.08 14.4 22.9 33.3 45.8 1.47 1.53 1.59 1.86 2.16 14.7 23.2 33.8 46.3</th> <th>1.28 1.33 1.39 1.63 1.91 14.0 22.3 32.6 44.9 1.35 1.40 1.46 1.72 2.00 14.3 22.7 33.1 45.6 1.40 1.46 1.72 2.00 14.6 22.7 33.1 45.6 1.40 1.46 1.72 2.08 14.6 23.1 33.6 46.1</th> <th>1.96 1.98 2.05 2.34 2.66 15.6 24.3 35.0 47.7 1.99 2.06 2.13 2.43 2.76 16.0 24.7 35.5 48.3 2.06 2.13 2.43 2.76 16.0 24.7 35.5 48.3 2.06 2.13 2.20 2.51 2.85 16.3 36.1 48.3</th> <th>1.18 1.23 1.28 1.51 1.77 13.6 21.8 32.0 44.2 1.24 1.29 1.35 1.59 1.87 13.9 22.4 32.6 44.9 1.24 1.29 1.36 1.67 13.9 22.4 32.6 44.9 1.24 1.29 1.67 1.87 13.9 22.4 32.6 44.9</th>	ANC B	X Names of r ² for Distances in incluss hack to hack of the second	0.88 0.93 0.97 1.19 1.43 12.9 21.0 31.1 43.1 0.92 0.97 1.02 1.24 1.50 13.2 21.0 31.5 43.6	1.41 1.47 1.53 1.79 2.08 14.4 22.9 33.3 45.8 1.47 1.53 1.59 1.86 2.16 14.7 23.2 33.8 46.3	1.28 1.33 1.39 1.63 1.91 14.0 22.3 32.6 44.9 1.35 1.40 1.46 1.72 2.00 14.3 22.7 33.1 45.6 1.40 1.46 1.72 2.00 14.6 22.7 33.1 45.6 1.40 1.46 1.72 2.08 14.6 23.1 33.6 46.1	1.96 1.98 2.05 2.34 2.66 15.6 24.3 35.0 47.7 1.99 2.06 2.13 2.43 2.76 16.0 24.7 35.5 48.3 2.06 2.13 2.43 2.76 16.0 24.7 35.5 48.3 2.06 2.13 2.20 2.51 2.85 16.3 36.1 48.3	1.18 1.23 1.28 1.51 1.77 13.6 21.8 32.0 44.2 1.24 1.29 1.35 1.59 1.87 13.9 22.4 32.6 44.9 1.24 1.29 1.36 1.67 13.9 22.4 32.6 44.9 1.24 1.29 1.67 1.87 13.9 22.4 32.6 44.9
Image: 1 Image: 1						4.0	4.0.00	4 7 9.	31/2×21/2 1/4 4.9 3/8 7.2 1/2 9.4

TWO ANGLES-CONTINUED: Two Angles Angle						
Two Angles Two Angles Two Angles Two Angles Two Angles Size T all the set to the trans of the filter set to the filter set to the s		12	47.2 47.5 48.1 48.6	50.3 51.0 51.5	46.5 46.7 47.4 47.9	52.2 52.5 53.0 53.7
Two Angles The propertise of the properiment o		10				
Two Angles Anis (I, P. Values of r ² for the form that the f		8	24.0 24.1 24.6 25.0	26.3 26.7 27.1		
Two Angles Anis (I, P. Values of r ² for the form that the f		k to hac			14.9 15.1 15.4 15.7	18.5 18.7 19.0 19.3
TWO ANGLES-CONTINUE Two Angles Two Angles Anis (I, P. Values of r ² for the form that the form th	1220-1	iches bac	2.54 2.57 2.68 2.77 2.77			4.17 4.21 4.30 4.43
TWO ANGLES-CONTINUE Two Angles Two Angles Two Angles Anis (I, P. Values of r ² for the form that	414	34 In 19	2.22 2.25 2.36 2.43	3.08 3.18 3.27	2.08 2.10 2.19 2.27	3.79 3.82 3.90 4.02
Two Angles Ans Ans Two Angles Ans Ans Sine in Ans Ans Sine in Ans Ans Sine in Ans Ans Syx x3 Ans Ans Ans	UED.	for Dista	1.94 1.97 2.06 2.12	2.75 2.84 2.91	1.81 1.83 1.91 1.97	3.43 3.45 3.52 3.63
Two Angles Ans Ans Two Angles Ans Ans Sine in Ans Ans Sine in Ans Ans Sine in Ans Ans Syx x3 Ans Ans Ans	ONTIN					
Two Angles Image Anis Anis Two Angles Image Image Image Anis 3% X > 3% Image Image Image Image 3% X > 3% 10.2 6.00 1.16 1.148 1.66 3% X > 3% 10.2 6.00 1.16 1.148 1.66 3% X > 3% 11.1 6.50 1.12 1.67 1.184 4 × 4 15 1.12 2.18 2.46 1.16 4 × 4 15 1.11 6.50 1.12 2.23 2.56 3% 7.1 4.18 1.62 1.36 1.36 1.36 1.36 4 × 4 15 8.5 4.96 1.09 2.30 2.56 3% 11.1 6.50 1.	- S - O	20				26 25 35 45
Two Angles Image Anis Anis Two Angles Image Image Image Anis 3% X > 3% Image Image Image Image 3% X > 3% 10.2 6.00 1.16 1.148 1.66 3% X > 3% 10.2 6.00 1.16 1.148 1.66 3% X > 3% 11.1 6.50 1.12 1.67 1.184 4 × 4 15 1.12 2.18 2.46 1.16 4 × 4 15 1.11 6.50 1.12 2.23 2.56 3% 7.1 4.18 1.62 1.36 1.36 1.36 1.36 4 × 4 15 8.5 4.96 1.09 2.30 2.56 3% 11.1 6.50 1.	AGLE		1.75 1.77 1.85 1.91	52 60 67		
Two Angles Image Anis Anis Size in liches Image Image Anis Anis 3/4 × 3) Ja 6.6 3.86 1.21 1.49 3/4 × 3) Ja 6.6 3.86 1.21 1.49 3/4 × 3) Ja 6.6 3.86 1.12 1.49 3/4 × 3) Ja 6.6 1.18 1.49 1.49 3/4 × 3) Ja 6.6 1.18 1.49 1.49 3/4 × 3) Ja 1.0.2 7.34 1.12 1.60 1.38 4 × 4 Ja 8.5 4.96 1.16 2.18 1.49 4 × 4 Ja 7.1 4.18 1.62 1.37 1.48 4 × 4 Ja 8.5 4.96 1.60 1.38 2.30 4 × 4 Ja 8.2 4.96 1.162 1.48 1.48 1.48 1.48 4 × 4 Ja 8.2 4.96 1.52	1. 1997-10 1923 C. C. C. B.		1			
Two Angles The Angles The Angles The Angles Size in licks End of the fold and the fold	TWC	0		18 24 30	.37 .38 .38 .43 .43	80 82 95 95
Two Angles Two Angles Sine in Inclues Sine in Finitures Sine in Finitures 33, X × 3) 35, X × 3 33, X × 3) 36, G 33, 86 34, X × 3) 36, G 33, 86 37, X × 3) 36, G 33, 86 37, X × 3) 36, G 33, 86 4 × 4 56, G 33, 86 36, G 13 7 4 × 4 8 4 36, G 13 7 36, G 13 7 37, S 13 7 36, G 13 7	10.0	² . ² . ³ .				
Two Allefes Two Allefes Rize in lickness Size in lickness 8/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/2 × 3 3/3 × 3 3/3 × 3 3/3 × 3 3/3 × 3 3/3 × 3 3/3 × 3 3/3 × 3 3/3 × 3 3/3 × 3 3/3 × 3 3/3 × 3 3/3 × 3 3/3 × 3 3/3 × 3 3/3 × 3		A.A.				
Two Augles 1 Two Augles 8 Size in linches 3 ½ × 3 3 ½ × 3 3 ½ × 3 3 ½ × 3 3 ½ × 3 3 ½ × 3 3 ½ × 3 3 ½ × 3 3 ½ × 3 3 ½ × 3 3 ½ × 3 3 ½ × 3 3 ½ × 3 3 ½ × 3 3 ½ × 3 5 % % % % 5 % % % 6 % % % 7 % % % 7 % % % 8 % % % % 8 % % % % 8 % % % % % %		• • •	3.86 4.60 6.00 7.34	4.96 6.50 7.96	4.18 4.96 6.50 7.96	4.80 5.72 7.50 9.22
Two Size in Inches 3 ½ × 3 ½ 4 × 4					7.1 8.5 11.1 13.6	8.2 7.8 12.8 15.7
Two Size in Inches 3 ½ × 3 ½ 4 × 4	THE P	Thickness And	10 10 20 10 100	× 1/4 20	10/00 /4 %	10/20 /10/20
194muX 411111 1100 12022 22222 22222 22222 22222 22222 22222 2222	1	0		3 ½×3		
	- and and	Xumber	15 15 17	18 19 20	21 22 23 24	25 26 27 28 28

15

IBRARY

L

Contraction of the second of	1	1		10	~	-		~	~			~				
日本語の「草	10.19	12	45.4	45.6	46.3	46.9	48.1	48.8	49.3	47.1	47.6	48.3	49.5	50.2	50.7	
	10.00	10	33.0	33.2	33.8	34.3	35.4	35.9	36.4	34.5	34.9	35.5	36.6	37.2	37.6	
	k of	8	22.6	22.8	23.3	23.7	24.7	25.1	25.5	23.9	24.3	24.7	25.8	26.2	26.6	
SES BUS	ck to bac	9	14.3	14.4	14.8	15.1		16.3			15.6		16.9	17.2	17.5	
ES	Inches ba	1	2.12	2.15	2.25	2.35	2.89	3.00	3.08	2.64	2.71	2.82	3.43	3.54	3.62	
ANGLES	for Distances in Inches back to back	*	1.84	1.87	1.96	2.04	2.57	2.66	2.74	2.34	2.39	2.50	3.09	3.18	3.25	
		72	1.59	1.61	1.69	1.76	2.27	2.36	2.42	2.06	2.11	2.20	2.78	2.86	2.92	
P	Values of r ²	16 16	1.54	1.55	1.63	1.70	2.20	2.28	2.35	2.00	2.04	2.13	2.70	2.78	2.84	
00	D.	3/8	1.48	1.50	1.57	1.64	2.14	2.22	2.28	1.94	1.98	2.06	2.63	2.71	2.76	
X	Axis C.	56 16	1.43	1.44	1.51	1.57	2.07	2.15	2.20	1.87	1.91	1.99	2.56	2.63	2.69	
	100	14 A	1.38	1.39	1.46	1.52	2.01	2.08	2.14	1.82	1.85	1.93	2.49	2.56	2.61	
ONL	No.		0	1.19	1.20	1.25	1.30	1.78	1.84	1.88	1 60	.1.63	1.69	2.24	2.30	2.34
-	Aris	A. B. r ²		2.58			2.55	2.50	2.45	3 76	3.69	3.62	3.73	3.66	3.60	
Non He B		Total Are Square In	4.80	5.72	7.50	9.22		8.00		6 84	00.6	11.10	7.22	9.50	11.72	
TEENE !!	100	Lbs. Per Foot		9.8			10.4	13.6	16.8	7 1 7	15.3	18.9	12.3	16.2	20.0	
1. 1. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Angles	Thickness	-	300	24	120	36	10	120	72	8/1	22/20	3/6	0%	120	
	Two /	Size in Inches	5×3				5×316	*/	inter .	12/2	2/000	-	6×4			
	-	Todmuð	66	30	31	32	8	34	35	20	37	38	39	40	41	

TWO ANGLES-CONTINUED.

				and the second	1.11.2		(10) (10) (10) (10) (10) (10) (10) (10)
an stress of the line	8	00		03 14 23	37 37 45	32 36 56 56	36 36 56
1993252	0F 18	Axi	C. D.	32.03 32.14 32.23	32.22 32.37 32.45	38.38.38.38.38.38.38.38.38.38.38.38.38.3	9.81 1.19 35.29 11.71 1.21 35.36 15.50 1.27 35.56 19.21 1.33 35.67
	X				<u>ത</u> ത ത ത ത ത	00000	0000
「東京が内に日	BAC	Axis	A. B. r ²	0.60 0.64 0.68	0.88 0.93 0.98	∞ ∞ ∞ σ	1.19 1.21 1.27 1.33
The operation of the	BACK TO BACK	_		6.87 0.60 10.22 0.64 13.50 0.68	7.13 0.88 10.60 0.93 14.00 0.98	10.12 0.81 12.09 0.83 16.00 0.87 19.84 0.93	
NO DE CÓ CO DE	CK	at a	Area	6.87 10.22 13.50	7.13 10.60 14.00	1008	9.81 11.71 15.50 19.21
10 10 10 10 10 10	BA	E		10. 13.		1011	111 9 1 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9
PLATE	12 IN.	-	2 2	11.98 17×14 12.10 12.23 38	14/8/2	10/00 /10 X0	10/20 /n /n
4	12	Que of	Plate	× 2	17×	19×	18×
				1000	104	1040	41001
	Ls I	Axis	C. D. r ²	2.1 9	11.87 12.02 12.14	0.000	0.00.00
TOP	BACK TO BACK OF Ls	-	1000	0.71 11.98 0.78 12.10 0.80 12.23	222	0.93 15.61 0.95 15.67 1.00 15.84 1.05 15.97	
0	CK	X18	A. B. r ²	0.71 0.78 0.80	1.03 1.08 1.12	93 95 00	33 33 33
36 - 198	BA		-	000		0044	
ONE	F	-	Area	5.37 7.97 10.50	5.63 1.03 1 8.35 1.08 1 11.00 1.12 1	8.24 9.84 3.00 6.09	93 50 50
2	ACK	E	Ar		11.8.5	10.00	7.93 1.33 13.54 9.46 1.38 13.61 12.50 1.45 13.78 15.46 1.50 13.91
1.0.0		•		11×4 38 38	74 7%	10 100 Ju 200	20/00 /1 /0
	6 IN.	Si a af	Plate	X	11×	$13 \times \frac{13}{18}$	$12 \times \frac{12}{38}$
	_		2			13	13
1000		8 of	-	2.31 2.37 2.43	2.19 2.25 2.31	4.12 4.15 4.23 4.30	2.96 2.99 3.06 3.12
		Iche		010101	10 10 10	4444	01 01 00 m
Concentition		For Distance Back to Back of Angles in Inches of	-	6103	13	0000	76 79 86 86 91
00	12	sles	*	2.13 2.19 2.24	2.02 2.13 2.13	3.90 3.93 4.00 4.06	2.76 2.79 2.86 2.91
A	OF	An		808	9034	0000	0100
	LUE	k of	1/2	1.98 2.03 2.08	1.87 1.92 1.96	3.69 3.72 3.79 3.85	2.59 2.61 2.67 2.72
	AXIS C D VALUE OF r ²	Bac					
in the section in the	0 1	k to	3%	1.91 1.96 2.00	1.80 1.85 1.89	3.60 3.63 3.69 3.75	2.53 2.53 2.59 2.63
i	XIS	Bac					0 H Q O
	A	nce	X	1.84 1.89 1.93	1.74 1.78 1.82	3.51 3.53 3.59 3.65	2.45 2.55 2.55
	1	ista					
U	1	or D	0	1.73 1.76 1.80	1.63 1.67 1.70	3.35 3.37 3.42 3.47	2.30 2.31 2.36 2.40
TWO ANGLES	100	55	1 91				
A	p.	.A. 81	r2 Ax	4.12 0.82 6.09 0.86 8.00 0 89	4.38 1.17 6.47 1.21 8.50 1.25	6.68 1.05 7.96 1.06 10.50 1.11 12.96 1.15	6.37 1.52 7.59 1.54 10.00 1.59 12.34 1.64
0	u		1 100 - 22	000			
3	Tatal	rea	Inches	4.12 6.09 8.00	4.38 6.47 8.50	.68 .96 .96	6.37 7.59 0.00 2.34
Harris Harrison	E	A		4000	4000	10.12.	6. 10.
in an array in the	-	okness	Thi	74 % %	14/20/4	2 2 2 30 al	10 200 / 10 X
the and Theres	91	el¶ 10	ozis	e "	* 9	*	
and the second	-						12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
		of of	Siles	×2 ½	3	ŝ	×3
		Size of	All	^	3 14 × 2 14	3 1/2 × 3 1/2	^
Sal and				m			4
Card Hand and		No.	12.4	100	400	10 10	11 13 13
		-					

•

TWO ANGLES. ONE TOP PLATE. (CONTINUED.)

ONE PLATE

TWO ANGLES.

	One Plate,	TWO ANG	LES	Total	AXIS	A B		Axis
No.	Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r²	Eccen- tricity	C D r ²
1 2 3 4	6×¼	$ \begin{array}{c} 2 \frac{1}{2} \times 2 \\ 3 \times 2 \frac{1}{2} \\ 3 \frac{1}{2} \times 2 \frac{1}{2} \end{array} $	1/4 5/16 1/4 5/16	3.62 4.12 4.12 5.06	10.6 11.1 11.2 12.3	2.93 2.69 2.72 2.43	1.44 1.55 1.49 1.66	0.86 0.95 1.26 2.00
5 6 7 8	6× 3%	$ \begin{array}{c} 2 \frac{1}{2} \times 2 \\ 3 \times 2 \frac{1}{2} \\ 3 \frac{1}{2} \times 2 \frac{1}{2} \end{array} $	1/4 5/10/1/4 5/10	4.37 4.87 4.87 5.81	14.1 14.9 14.9 16.2	3.23 3.06 3.06 2.79	1.19 1.31 1.26 1.45	0.78 0.86 1.13 1.84
9 10 11 12	7×¥	$ \begin{array}{c} 2 \frac{1}{2} \times 2 \\ 3 \times 2 \frac{1}{2} \\ 3 \frac{1}{2} \times 2 \frac{1}{2} \end{array} $	1/4 5 16 1/4 5 16 1/4 5 16	3.87 4.37 4.37 5.31	16.3 17.2 17.1 18.6	4.21 3.94 3.91 3.50	1.62 1.76 1.70 1.92	0.80 0.89 1.19 1.90
13 14 15 16	7×3⁄8	2 1/2 ×2 3 ×2 1/2 3 1/2 ×2 1/2	1/4 5/6	4.75 5.25 5.25 6.19	21.8 22.9 22.8 25.1	4.59 4.36 4.34 4.05	1.32 1.47 1.42 1.64	0.72 0.80 1.05 1.73
17 18 19 20	8×¼	$ \begin{array}{c} 2 \frac{1}{2} \times 2 \\ 3 \times 2 \frac{1}{2} \\ 3 \frac{1}{2} \times 2 \frac{1}{2} \\ 4 \times 3 \end{array} $	5 16 1/4 5 10 3/8	4.62 4.62 5.56 6.96	25.0 24.9 27.0 29.4	5.41 5.39 4.86 4.22	1.95 1.89 2.15 2.29	0.84 1.13 1.82 2.56
21 22 23 24	8×3⁄8	$ \begin{array}{c} 2 \frac{1}{2} \times 2 \\ 3 \times 2 \frac{1}{2} \\ 3 \frac{1}{2} \times 2 \frac{1}{2} \\ 4 \times 3 \end{array} $	5 16 1/4 5 16 3/8	5.62 5.62 6.56 7.96	33.5 33.0 36.3 39.1	5.96 5.87 5.53 4.91	1.60 1.56 1.82 2.01	0.75 0.98 1.63 2.35
25 26 27 28	9×¼	$\begin{array}{c} 3 \times 2 \frac{1}{2} \\ 3 \frac{1}{2} \times 2 \frac{1}{2} \\ 4 \times 3 \end{array}$	1/4 16 3/8 7 16	4.87 5.81 7.21 7.99	34.4 37.7 40.4 41.6	7.06 6.49 5.60 5.21	2.07 2.36 2.56 2.66	1.07 1.74 2.47 2.60

с д...в

D

ONE PLATE. TWO ANGLES.

(CONTINUED.)

	One Plate,	TWO ANG	LES	Total	AXIS	A B	Dann	Axis
No.	Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r ²	Eccen- tricity	C D r ²
29 30 31 32	9×3⁄8	$\begin{array}{c} 3 \times 2 \frac{1}{2} \\ 3 \frac{1}{2} \times 2 \frac{1}{2} \\ 4 \times 3 \end{array}$	1/4 5/15/8 3/8 7/16	6.00 6.94 8.34 9.12	46.0 50.5 54.5 56.2	7.67 7.28 6.53 6.16	1.68 1.98 2.21 2.33	0.92 1.54 2.24 2.39
33 34 35 36	10×¼	$\begin{array}{c} 3 \\ 3 \\ 3 \\ 1/2 \\ 2 \\ 4 \\ 3 \end{array}$	1/4 5 1 3/8 7 16	5.12 6.06 7.46 8.24	46.4 50.7 54.1 57.6	9.06 8.37 7.25 6.99	2.22 2.56 2.81 2.93	1.02 1.67 2.38 2.52
37 38 39 40	10×3⁄8	$\begin{array}{c} 3 \times 2 \frac{1}{2} \\ 3 \frac{1}{2} \times 2 \frac{1}{2} \\ 4 \times 3 \end{array}$	1/4 5 16 3/8 7 16	6.37 7.31 8.71 9.49	61.7 68.0 73.3 75.7	9.69 9.30 8.42 7.98	1.79 2.12 2.40 2.54	0.88 1.46 2.15 2.30
41 42 43 44	12×¼	$\begin{array}{c}3\frac{1}{2}\times2\frac{1}{2}\\4\times3\\5\times3\\5\times3\\5\times3\frac{1}{2}\end{array}$	5-6- 3/8 3/8 3/8 3/8	6 56 7.96 8.72 9.10	84.6 90.9 95.2 95.2	12.90 11.42 10.92 10.46	2.91 3.25 3.48 3.45	1.54 2.24 3.89 3.75
45 46 47 48	12×3⁄8	$\begin{array}{c} 3 \frac{1}{2} \times 2 \frac{1}{2} \\ 4 \times 3 \\ 5 \times 3 \\ 5 \times 3 \frac{1}{2} \end{array}$	5 16 3/8 3/8 3/8 3/8	8.06 9.46 10.22 10.60	112.9 122.0 128.6 128.7	14.01 12.90 12.58 12.14	2.37 2.74 2.97 2.96	1.33 1.98 3.44 3.34
49 50 51 52	$14 \times \frac{5}{16}$	$\begin{array}{c} 3 \frac{1}{2} \times 2 \frac{1}{2} \\ 4 \times 3 \\ 5 \times 3 \\ 5 \times 3 \frac{1}{2} \end{array}$	3/8	7.94 9.34 10.10 10.48	152.9 165.5 173.9 173.9	19.26 17.72 17.22 16.59	2.85 3.30 3.57 3.57	1.31 1.95 3.43 3.31
53 54 55 56	14×3⁄8	$\begin{array}{c} 3 \frac{1}{2} \times 2 \frac{1}{2} \\ 4 \times 3 \\ 5 \times 3 \\ 5 \times 3 \frac{1}{2} \end{array}$	3/8	8.81 10.21 10.97 11.35	173.4 188.4 198.5 198.5	19.68 18.45 18.10 17.49	2.57 3.02 3.28 3.30	1.21 1.83 3.21 3.12

ONE PLATE.

TWO ANGLES.

.

с

b

The state	One Plate,	TWO ANG	LES	Total	AXIS	A B	- the	Axis
No.	Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r ²	Eccen- tricity	CD r ²
57 58 59 60	$15 \times \frac{5}{16}$	3×3 4×3 5×3 5×3 <u>1/2</u>	5 3/8 3/8 3/8 3/8	8.25 9.65 10.41 10.79	179.9 200.9 210.8 211.4	21.81 20.82 20.25 19.59	2.86 3.45 3.74 3.75	0.82 1.89 3.32 3.22
61 62 63 64	15×3⁄8	3×3 4×3 5×3 5×3 <u>1/2</u>	5 16 3/8 3/8 3/8 3/8	9.19 10.59 11.35 11.73	204.3 228.2 240.5 241.1	22.23 21.55 21.19 20.55	2.57 3.15 3.43 3.45	0.77 1.77 3.10 3.02
65 66 67 68	16×5 16	4×3 5×3 5×3 ½ 6×4	3/8 3/8 3/8 7 16 17 16	9.96 10.72 12.06 13.36	240.0 253.4 262.1 272.4	24.10 23.64 21.74 20.39	3.60 3.89 4.17 4.41	1.83 3.23 3.36 5.13
69 70 71 72	16×3⁄8	4×3 5×3 5×3 ¹ ⁄2 6×4	3/8 3/8 3/8 7 16 7 16	10.96 11.72 13.06 14.36	273.2 288.4 299.6 312.1	24.93 24.61 22.94 21.74	3.27 3.56 3.85 4.10	1.71 3.00 3.16 4.85
73 74 75 76	16×1⁄2	4×3 5×3 5×3 ½ 6×4	3/8 3/8 1/2 1/2	12.96 13.72 16.00 17.50	334.4 352.8 379.3 396.0	25.80 25.72 23.71 22.63	2.76 3.04 3.55 3.81	1.52 2.67 3.08 4.72
77 78 79 80	16×5⁄8	4×3 5×3 5×3 6×4	1/2 1/2 5/8 5/8	16.50 17.50 19.84 21.72	421.2 443.4 469.0 490.7	25.53 25.34 23.64 22.59	2.82 3.11 3.50 3.76	1.69 2.86 3.24 4.91
81 82 83 84	$18 \times \frac{5}{16}$	4×3 5×3 5×3 ½ 6×4	3/8 3/8 3/8 7/6 17/6	10.59 11.35 12.69 13.99	333.9 351.7 365.3 381.2	31.53 30.99 28.79 27.25	3.85 4.18 4.52 4.80	1.73 3.05 3.19 4.90

ONE PLATE. TWO ANGLES.

(CONTINUED.)

18	One Plate.	TWO ANG	LES	Total	AXIS	A B	17	Axis
No.	Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r²	Eccen- tricity	CD r ²
85 86 87 88	18×3⁄8	$\begin{array}{ccc} 4 & \times 3 \\ 5 & \times 3 \\ 5 & \times 3 \\ 5 & \times 3 \\ 6 & \times 4 \end{array}$	3/8 3/8 7 16 76 16	11.77 12.47 13.81 15.11	379.4 399.4 417.2 434.7	32.40 32.03 30.21 28.77	3.48 3.81 4.15 4.45	1.60 2.83 2.99 3.48
89 90 91 92	18×1⁄2	$\begin{array}{cccc} 4 & \times 3 \\ 5 & \times 3 \\ 5 & \times 3 \frac{1}{2} \\ 6 & \times 4 \end{array}$	1/2 1/2 1/2	15.50 16.50 17.00 18.50	499.2 526.7 527.9 552.5	32.21 31.92 31.05 29.87	3.43 3.75 3.81 4.11	1.71 2.98 2.91 4.47
93 94 95 96	18×5%	$\begin{array}{cccc} 4 & \times 3 \\ 5 & \times 3 \\ 5 & \times 3 \frac{1}{2} \\ 6 & \times 4 \end{array}$	5/8 5/8 5/8 5/8	19.21 20.47 21.09 22.97	617.5 651.2 652.8 682.7	32.15 31.81 30.95 29.72	3.37 3.69 3.76 4.07	1.82 3.14 3.04 4.65
97 98 99	20×3⁄8	$\begin{array}{c} 3\frac{1}{2}\times3\frac{1}{2}\\ 5\times3\frac{1}{2}\\ 6\times4 \end{array}$	3/8 3/8 .3/8	12.46 13.60 14.72	496.9 537.4 562.2	39.88 39.51 38.19	3.58 4.10 4.44	1.04 2.60 4.06
100 101 102 103	20×½	$\begin{array}{c}3\frac{1}{2}\times3\frac{1}{2}\\5\times3\frac{1}{2}\\6\times4\\8\times6\end{array}$	1/2 1/2 1/2	16.50 18.00 19.50 23.52	655.6 708.6 741.4 795.9	39.73 39.37 38.02 33.84	3.52 4.04 4.39 4.90	1.13 2.74 4.24 8.04
104 105 106 107	20×5⁄8	$\begin{array}{c} 3\frac{1}{2} \times 3\frac{1}{2} \\ 5 \times 3\frac{1}{2} \\ 6 \times 4 \\ 8 \times 6 \end{array}$	5/8 5/8 5/8 5/8	20.46 22.34 24.22 29.38	810.8 876.5 918.4 984.4	39.63 39.23 37.92 33.51	3.46 3.99 4.34 4.87	1.22 2.87 4.41 8.37
108 109 110 111	20×3⁄4	$\begin{array}{c} 3\frac{1}{2} \times 3\frac{1}{2} \\ 5 \times 3\frac{1}{2} \\ 6 \times 4 \\ 8 \times 6 \end{array}$	3/4 3/4 3/4 3/4 3/4	24.38 26.62 28.88 34.88	961.1 1041.0 1090.0 1168.0	39.42 39.11 37.75 33.49	3.41 3.93 4.29 4.79	1.34 3.05 4.63 8.71

TWO PLATES

TWO ANGLES

Del Martin	Web Plate	Top Plate	TWO ANGLES	Total	AXIS .	A B	Eccen-	Axis
No.	Size in Inches	Size in Inches	Size in Inches	Area Square Inches	I	r²	tricity	CD r ²
1 2 3	6×¼	7×14 3/8 1/2	3×2 1/2×1/4 3/8 1/2	5.87 7.97 10.00	14.8 16.5 18.3	2.52 2.06 1.83	1.98 2.16 2.26	2.19 2.34 2.48
4 5 6	6×3⁄8	8×3/8 1/2 5/8	3×21/2×1/4 3/8 1/2	7.87 10.09 12.25	22.1 24.2 26.5	2.81 2.44 2.17	2.00 2.16 2.27	2.80 2.95 3.10
7 8 9	7×14	7×1/4 3/8 1/2	3×3 × 5 3/8 3/8 3/2	7.06 8.60 10.75	27.8	3.24 2.94 2.59	2.23 2.41 2.54	1.95 2.17 2.32
10 11 12	7×3⁄8	8×3/8 1/2 5/8	$\begin{array}{c} 3\times3 \times \frac{5}{16} \\ \frac{3}{8} \\ \frac{3}{2} \end{array}$	9.19 10.85 13.13	33.9 36.8 40.2	3.69 3.39 3.06	2.22 2.40 2.53	2.51 2.75 2.90
13 14 15	8×14	8×14 3/8 1/2	$3\times3\times\frac{5}{16}$	7.56 9.22 11.50	32.8 35.0 39.3	4.34 3.90 3.42	2.57 2.79 2.95	2.28 2.59 2.78
16 17 18 19	8×3⁄8	9×3/8 1/2 5/8	$\begin{array}{c} 3\times3 \times \frac{5}{16} \\ \frac{3}{8} \\ \frac{1}{2} \\ 4\times3 \times \frac{3}{8} \end{array}$	9.94 11.72 14.13	48.7 53.1 57.3 60 0	4.90 4.53 4.06 5.38	2.55 2.75 2.91 3.08	3.00 3.32 3.49 3.68
19 20 21 22	9×35 9×38	9×3/8 1/2 5/8 10×3/8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11.15 13.81 16.40 12.09	65.3 69.3 70.5	5.38 4.73 4.23 5.83	3.27 3.41 2.98	3.98 4.19
23 24 25	$10 \times \frac{5}{16}$	10×38 1/2 5/8 10×3/8	4×3 ×3/8 4×3 ×3/8	14.88	75.7 80.8 81.6	5.09 4.59 6.89	3.20 3.35 3.41	4.49 4.75 4.18
26 27 28	10×16	10×38 1/2 58 12×3/8	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	14.63 17.34 13.21	86.9 92.1 96.4	5.94 5.31 7.30	3.65 3.81 3.35	4.53 4.78 5.50
29 30 31	10×1/2	12×1/2 5/8 12×1/2	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	16.25 19.21 15.96	102.8 109.9 127.6	6.33 5.72 8.00	3.61 3.78 3.28	5.98 6.32 5.74
32 33		14/72 5/8 3/4	1/2 5/8	19.00	135.8 143.4	7.15	3.52	6.13 6.42

TWO PLATES. TWO ANGLES.

(CONTINUED.)

	Web Plate	Top Plate	TWO ANGLES	Total	AXIS .	A B		Axis
No.	Size in Inches	Size in Inches	Size in Inches	Area Square Inches	I	r²	Eccen- tricity	CD r ²
34 35 36	$12 \times \frac{5}{16}$	12× 3/8 1/2 5/8	5×3 ×3/8 1/2 5/8	13.97 17.25 20.47	139.2 148.3 156.8	9.97 8.59 7.66	4.17 4.46 4.65	6.31 6.86 7.24
37 38 39	78 12×3⁄8	14× 3/8 1/2 5/8	5×31/2×3/8 1/2 5/8	15.85 19.50 23.09	165.3	10.43 9.09 8.12	4.03 4.33 4.54	7.64 8.29 8.76
40 41 42 43	12×1⁄2	3/4 14×1 11/2 2	$ \frac{\frac{34}{14}}{5 \times 3 \frac{1}{2} \times \frac{3}{3}} \frac{34}{5} \frac{34}{5} $	26.62 26.10 35.00 43.84	195.5 257.9 298.3 339.1		5.21	9.13 10.17 11.21 11.84
44 45 46 47	14×3⁄8	14× 3/8 1/2 5/8 3/4	6×31/2×3/8 1/2 5/8 3/4	17.34 21.25 25.10 28.87	273.7	14.76 12.88 11.46 10.36	4.63 5.00 5.25 5.44	8.39 9.13 9.68 10.11
48 49 50	14×½	14×1 1½ 2	6×31/2×3/8 1/2 5/8	27.84 37.00 46.10	442.7 494.5	14.06 11.96 10.73	5.90 6.33	10.43 11.49 12.16
51 52 53 54	16×3⁄8	14× 3/8 1/2 5/8 3/4	6×4 × 3/8 1/2 5/8 3/4	18.47 22.50 26.47 30.38	395.9 417.1	17.60	5.09 5.53 5.83 6.07	7.88 8.64 9.18 9.62
55 56 57	16×1⁄2	1 1½ 2	6×4 ×3/8 1/2 5/8	29.22 38.50 47.72	634.1 700.9	14.69	6.99	9.94 11.05 11.75
58 59 60 61	18×3⁄8	14× 3/8 1/2 5/8 3/4	6×4 ×3/8 1/2 5/8 3/4	19.22 23.25 27.22 31.13	550.9	21.15	5.54 6.06 6.43 6.69	7.57 8.36 8.92 9.38
62 63 64	18×1⁄2	14×1 1½ 2	6×4 ×3/8 3/2 5/8	30.22 39.50 48.72	775.7 868.6 952.9	25.67 21.99 19.56	6.33 7.11 7.66	9.61 10.77 11.51
65 66 67	18×5⁄8	14×1 1½ 2	6×4 ×3/8 1/2 5/8	32.47 41.75 50.97	985.2	28. 36 23.60 22.25		9.01 10.26 11.07

>

THREE PLATES.

TWO ANGLES.

-B

-	Two Web Plates,	Top Plate.	TWO ANG	LES	Total Area,	AXIS	A. B.	Eccen-	Axis	Dis- tance
No.	Size in luches	Size in Inches	Size in Inches	Thick- ness	Square Inches	I.	r²	tricity	C. D. r ²	Betw'n Webs
1 2	9×¼	$12 \times \frac{1}{4}$ $12 \times \frac{5}{16}$	2 1/2×2 1/2	5 16	10.44	78.3 82.3	7.50	2.39	12.3 12.3	6.0″
23456	9× <u>5</u> 16	12×3/8	e met l	3/8	12.32 13.59	96.5 102.0	7.84 7.51	2.31 2.51	12.3 12.5	e gan
56	9×3/8	12×7	A CLEE	716	14.71 16.00	116.1 121.8	7.89	2.31	12.5	100
7 8 9	$9 \times \frac{7}{16}$ $9 \times \frac{1}{2}$	12×1⁄2	6 X02 #	1/2	17.13 18.38 19.50	135.9 141.7 155.7	7.94 7.71 7.98	2.32 2.45 2.31	12.7 12.9 13.0	14
10	11111	12×1⁄4	2 1/2×2 1/2	516	10.94	104.4	9.54	2.55	12.2	83 () 54
11 12	10 $\times \frac{5}{16}$	$12 \times \frac{5}{16}$	19.315 19.365		11.69 12.94	109.6 128.4	9.38	2.73	12.2	284 154
13 14 15	10×3⁄8	$12 \times \frac{3}{8}$ $12 \times \frac{7}{16}$	194 0	3/8 7	14.21 15.46 16.75	135.7 154.3 162.0	9.55 9.98 9.68	2.68 2.46 2.64	12.4 12.4 12.6	• # # • # #
	$10 \times \frac{7}{16}$	12×1/2	1.250	7 16 1/2	18.00	180.5	10.0 9.78	2.46	12.6	1.43
18 19	1000	5104 T	3 ×3	19787 12780	20.50	206.6 109.0	10.1 9.04	2.46	12.9 16.7	7.0″
19 20 21	10^{-4} 10^{-5} 10^{-5}	$14 \times \frac{14}{14}$ $14 \times \frac{5}{16}$	3 ×3	5 1 6	12.00	109.0 114.4 134.3	9.04 8.84 9.47	2.88	16.7 16.6	7.0"
22 23	10×3/8	14×3/8	1.528	3/8	15.72 16.97	141.8	9.02 9.52	2.84	16.9 16.9	and all
24 25	$10 \times \frac{7}{16}$	14×17	17-42.2	$\frac{7}{16}$	18.49 19.74	169.3 189.0	9.16 9.57	2.81	17.2 17.2	100
26 27 28	10×1/2	14×1⁄2 14×5⁄8	· 12	1/2 5/8	21.25 22.50 25.47	197.0 216.5 232.3	9.27 9.62 9.12	2.78 2.63 2.89	17.4 17.5 17.9	10
29	12×¼	15×14	3 ×3	78 5 16	13.31	181.7	13.7	3.10	20.3	8.0″
30 31 32	$12 \times \frac{5}{16}$	$15 \times \frac{5}{16}$	1 929,9 1 1 929,9	14.70	14.25 15.75 17.35	190.7 223.4 236.0	13.4 14.2 13.6	3.31 2.99 3.25	20.1 20.1 20.3	70
34	20.00	15×3/8	2018-11	3/8	117.35	230.0	13.0	3.25	20.3	28

ç

-----D

•	THREE PLATES. TWO ANGLES. . (continued.)												
No.	Two Web Plates, Size in	Top Plate, Size in	TWO AND Size in	LES Thick-	Total Area, Square	AXIS . I	A. B. r ²	Eccen- tricity	Axis C. D.	Dis- tance Betw'n			
-	Inches	Inches	Inches	ness	Inches		an de		r ²	Webs			
33	12×3/8	15×3/8	3 ×3	3/8	18.85 20.42	268.6 281.4	14.3 13.8	2.99 3.21	20.4	8.0″			
35	12×7	15×7		$\frac{7}{16}$	21.92	313.8	14.3	2.99	20.7	allax.			
36	EL.	15×1/2	1.000	16 1/2	23.50 25.00	327.1	13.9	3.18 2.99	20.9 21.0				
37	12×1⁄2	15×5%	194	5/8	28.10	359.4 385.2	14.4 13.7	3.31	21.4				
39	$14 \times \frac{5}{16}$	16×5	3 ×3	5 16 3/8	17.31	344.1	19.9	3.33	23.9	9.0//			
40	14×3/8	16×3/8	2 5 5 6	3/8	18.97	363.7	19.2	3.63	24.2	18153			
42	12 20	$16 \times \frac{7}{16}$	4/1/3 - 1	7	22.36	433.5	19.4	3.58	24.5	4.1			
43	$14 \times \frac{7}{16}$	16×1/2	A gradie	1/2	24.11 25.75	482.9	20.0	3.32 3.55	24.6 24.8				
45	14× 1/2	10.12	111 20 1	000	27.50	552.7	20.1	3.32	24.9	milday -			
46	14×5/8	16×5/8	19.82.77.17	5/8	30.72	592.6 692:7	19.3 20.2	3.70 3.32	25.2 23.8	8.5"			
48	15×5	$18 \times \frac{5}{16}$	3 ×3	5	18.57	425.6	22.9	3.59	31.0	10.5/			
49	10.12	18×3/8		5 16 3/8	20.35	449.9	22.1	3.92	31.2				
50 51	15×3/8	18×7	113.1	7	22.22 23.99	511.4 536.2	23.0	3.59 3.87	31.4 31.6				
52	$15 \times \frac{7}{16}$	53 M 107	TIME	1.1	25.87	597.3	23.1	3.59	31.7	-			
53	15×1/2	18×1⁄2	12222	1/2	27.63	622.8 683.8	22.5 23.2	3.83 3.59	31.9	615			
55		18×5/8	Call Sol Day 1 and	5/8	32.97	733.1	22.2	4.00	32.4				
56	15×5/8	20 7 5	3 1/2×3 1/2	5	36.72	857.2	23.3	3 59 3,93	32.8	11.5/			
58	in the second	$20 \times \frac{5}{16}$ $20 \times \frac{3}{8}$	5 1/2 ~ 5 1/2	5 16 3/8	22.46	553.3	24.6	4.28	38.0	11.0"			
59 60	16×3/8	- 09.95	言語言語	14 3	24.46	629.6 659.4	25.7	3.93	38.1 38.4				
61	$16 \times \frac{7}{16}$	20×7	Rang	716	28.49		24.9	4.22	38.4				
62	the second	20×1/2	1000	1/2	30.50	765.9	25.1	4.18	38.7				
63 64		20×5/8		5/8	32.50 36.46	841.5 901.2	25.9	3.92	38.9				
65		P. B. B.	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0	40.46	1055.	26.1	3.93	39.7				
66		$24 \times \frac{3}{8}$ $24 \times \frac{7}{16}$	4 ×4	3/8 7 16	28.22	909.1 951.7	32.1 31.1	4.52	55.0	14.0″			
68	18×7	See.	C. EL		32.87	1062.	32.3	4.52	55.5				
69 70		24×1/2		1/2	35.25	1106.	31.4	4.81	55.8				
71		24×5/8	- 25	5/8	42.22	1300.	30.8	5.01	56.4	1			
72		24×34		to a	46.72 51.38	1523.	32.6	4.53	56.9	1207			
10	1	107/34		3/4	101.00	1011.	101.4	14.54	01.5				

- a file a si	Falues of r ² for Distances in Inches back to back of-	12 14	29.6 41.5	28.9 40.6	03 1	29.7 41.6 29.2 40.9	5 40	28.0 39.5 27.5 38.9	1 40	28.5 40.1 28.1 39.6	6 41	40	0.0
	in Inches 1	10	19.8	0 03	20.2	19.4	18.9	18.6	4	18.9	00	19.4	o io
J NIXY	Distances	6	15.7	15.1	16.0	15.7	14.9	14.6	15.3	14.9		ú.	14.5
LES	of r ² for	8	12.0	11.5	12.	12.0	11.4	11.11	11.7	11.4	12	:::	<u></u>
ANGLES	Values	2	8.84	8.42		8.86	1	8.08	8.63	8.32 8.08	8.89	8.59	8.04
8	j0	1	1.56			2.36	-	2.16		3.08	ю.		4 21
	AXIS A. B. Values of r ² for Distances in Inches back to back of—	3/8	1.43	-		2.31		2.01 2.11		2.90		3.76	
00		. 34	1.30		67	2.04	1.79	1.95		2.64			3.66
	nces in li	5%	1.19		H	1.90	+	1.72	2.39	2.55	3.27	3.38	3.47
×	for Distanc	1/2	-1-	1.18	-	1.76	1.53	1.59	0	2.32			3.28
FOUR	les of r ²	3/8	0,	1.07	-	1.71		1.47	-	2.24	_		3.11
		0	1.03	0.79	1	1.28	н	1.15		1.83		24	2.02
	krea ii Area ii			6.24		6.20		6.92 9.00					13.44
		Peer	(m =	7 5.3	è i	3% 5.3 1% 6.8	4.	× 5.9	4	3% 6.6 % 8.5	4	8 7.2	56 11.4
Rame Andrea	Size in	Inches	2 ×2 ×1	16 16	2 1/2 ×2 ×1		2 1/2 ×2 1/2×1	3%	3 ×21/2×1		3 1/2 ×2 1/2×		
	nder	nX		m m		0 0	4	∞ の	10	11 12	13	14	10

FOUR ANGLES-DONTINUED.

- + 00 -00100 0000 200 of r² for Distances in Inches back to back of-16 52. 50. 52.52. 52. 54. 39.1 38.9 38.2 37.7 40.7 40.4 39.8 39.1 0 1 0 0 ~ 10 co m 14 39. 38.38.337. 0000 00000 3 000 0000 12 238. 26.32 27.227.26. 228. e 0 18.2 17.7 17.4 117.9 116.9 4004 00 -- 00 4000 AXIS 10 17. 18.118. 18.18. 0000 + 00 0 00000 m c3 co 4 6 13. 14 13. 14 14 134 15. 4 Values 0 10 01 0 co H co Lo 0000 0 0 0 0 8 010.0 10. H 10 11 11. = 7.76 7.76 97 97 97 64 68 81 91 4.77 4.90 -0 0 0 0 mmmm -2.49 2.59 2.68 2.79 3.45 3.45 3.48 3.61 3.71 7.15 7.31 7.48 of r² for Distances in Inches back to back .55 x 2.34 2.43 2.51 2.62 3.273.303.423.423.51 .29.34 6.83 6.89 7.04 7.20 * a' 2.19 2.36 2.45 3.10 3.12 3.23 3.32 6.58 6.63 6.78 6.94 A. 200 AXIS 2.93 2.95 3.05 3.14 05 20 20 29 3.90 3.94 4.05 10 NINN 0 0 00 00 1.92 1.99 2.06 2.14 2.79 2.89 2.96 3.72 3.76 3.85 3.95 6.10 6.14 6.28 6.42 38 Values (2.33 2.35 2.43 2.49 1.57 1.62 1.67 3.21 3.24 3.32 3.40 5.43 5.58 5.71 0 Square Inches 76 44 44 72 20 68 36 92 92 92 60 44 44 13.9.8 ni sona latol 11.0.1 P 0 0 4 11. 15. 0044 0 00 00 00 7.1 8.5 8.5 11.1 13.6 ~ ~ ~ ~ ~ Lbs. 12.1 12.08 4001 Four Angles 10 100 / 1 100 2 1/ 20 / 10 m 10/00/n /00 74 × 1/2 /4 × ×3×1 ×3× Size in Inches 3 ½ ×3× ×8× 3 S 113 1004 330 331 **Jadmuh**

												-
	back of-	18	65.0	63.6	1.00	66.5	65.8	64.3	68.4	67.7	66.0	65.4
	s back to	16	50.0	48.8		51.3	50.7	50.0	53.0		51.6	
	C. D. in Inches	14	37.0	36.0		38.1	37.6	36.5	39.5	39.0	37.7	
	AXIS C. Distances in	12	26.1	10 -		26.9	26.5	26.0	28.1	27.7	26.6	26.2
ES	. AXIS C. D. alues of r ² for Distances in Inches hack to hack of	10	17.1 16.6		1.01	17.7	17.4	17.0	18.7		17.5	
ANGLE	Values o	o	13.3	12.8			13.6		14.7	14.4	14.0	13.3
A 26 A 76 A 76 A 76		-	3.55	3.65		7.17	7.29	7.59	10.2	10.4	10.5	10.9
		3/8	3.26	3.46	0.0	6.90	7.02	7.31	9.90	0.0	10.2	0.6
00	es back t	34	3.08	3.27			6.76	6.92 7.04	9.59	9.72 1	9.90	0.2 1
	AXIS A. B. Distances in luches back to back	28	2.91 3.01	_				6.77	30	42	9.59	91 1
-ţ-	AX Distance	72	75 84		8 3		-	6.51	00.6	9.12	9.28	9.59
æ	of r ² for	3%	1.00	2.75			_	6.26	72	83	8.99	29
FOUR	alues	0	2.18	30		56	34	5.55			8.31 9	
1 100 100 100 100 100 100 100 100 100 1	an Arca in Inches		92	92		00	68	68	68	00	24	.20
10000 0 C	al Area in	Foot Fot	8.5 9	3.6 15.		13.6 16.		2.7 26.	1.7 13.		22.3 26.	5.7 30
terestand to	Angles	2	× 3%	58 13	1 9 I	2 20	5% 1	7% I	3%	12 1	3% 22%	7/8 2.
	Four Size in	исне	33 3 1/2 × 3 1/2 × 3/8 1/3 1			~2/0~			×3 14×			
Suza -	Zumber		33 31	35		38	39	41	42 6	43	44	46

80.4 80.0 79.3 77.3 83.4 82.5 81.7 80.8 80.1 Values of r² for Distances in Inches back to back of-00040 20 22 889. 10000 m 10 00 00 m 600000 18 20 63. 60. 666. 64. 63. 723. 57.4 57.0 55.3 54.8 00004 010010 16 18 51. D. 0 H 4 0 0 00 43.7 43.4 42.7 41.5 10400 AXIS 16 14 34. 36.33 255.4 24.7 23.6 23.6 04000 10000 12 14 226. 331.33 04400 **0000** 10 15. 17.117.117.116.116.117 ANGLES-CONTINUED. 8 M O 8 0 4.21 54 337 54 54 4.44 59 -1-10 10.01 00 00 00 00 00 Distances in Inches back to back 3.98 4.01 4.10 4.23 4.37 38 69 69 00 83 89 95 38 38 38 38 100 N 00 00 00 00000 9.09 9.25 9.38 9.56 9.56 7.63 7.68 7.83 7.98 8.10 3.79 3.82 3.90 4.03 4.16 * m. 60 63 71 83 83 96 81 96 39 39 39 7.38 7.57 7.72 7.72 7.83 Y. 30 000000 AXIS 7.14 7.18 7.32 7.56 3.43 3.45 3.52 3.64 3.76 53 68 96 96 96 FOUR Na 000000 for of r2 26 25 35 57 57 26 52 80 80 6.91 6.95 7.08 7.21 7.31 3% 000000 Values 80 87 96 05 .49 .62 .72 .86 .96 24 28 39 39 59 0 00000 00000 ~~~~~ Square Inches 60 44 44 36 36 44 00 44 76 96 24 24 76 96 11. 15. 23. Il Bork Istol 14.1323 33.233. 0000m 1 1 1 1 1 1 0 0 00 00 per per 15. 19. 19. 224. 333. 12.220.223.223. Four Angles 0000 10 00 00 000 1 10 × 10/20/4/20 10/n % /4/2 ×4×. Size in Inches × ×9× ×4× 9 9 53 60 61 549 554 553 yamper 1 l

FOUR ANGLES. C

D ONE PLATE.

	One Web	FOUR ANGLES		Total	AXIS	A. B.	AXIS	C. D.
No.	Plate, Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r ²	I	r²
1 2 3 4 5 6	6×¼	$2\frac{1}{2} \times 2$ $3 \times 2\frac{1}{2}$ $3\frac{1}{2} \times 2\frac{1}{2}$	1/4 3/8	5.74 7.70 6.74 9.18 7.26 9.94	31.6 42.9 36.2 48.9 40.5 55.1	5.51 5.57 5.37 5.33 5.58 5.54	6.2 9.3 10.3 15.7 16.0 24.2	1.07 1.21 1.53 1.71 2.21 2.43
7 8 9 10 11	6×3⁄8	$\begin{array}{c} 2 \frac{1}{2} \times 2 \\ 3 \times 2 \frac{1}{2} \\ 3 \frac{1}{2} \times 2 \frac{1}{2} \\ 3 \frac{1}{2} \times 2 \frac{1}{2} \end{array}$	3/8 1/2 3/8 3/8 3/8 3/8 1/2	12.50 8.45 9.93 10.69 13.25	68.1 45.1 51.2 57.4 70.4	5.45 5.34 5.15 5.37 5.31	32.3 10.1 16.8 25.6 34.2	2.59 1.19 1.69 2.40 2.58
12 13 14 15 16 17 18 19 20 21 22 23 24	7×14	$ \begin{array}{r} 2 \frac{1}{2} \times 2 \\ 3 \times 2 \frac{1}{2} \\ 3 \frac{1}{2} \times 2 \frac{1}{2} \\ 3 \frac{1}{2} \times 3 \\ 4 \times 3 \end{array} $	14 38 14 38 14 38 1/2 5 15 88 1/2 5 16 1/2 5 18 1/2 5 15 88 1/2 5 10 1/2 5 10 1/2 5 10 1/2 5 10 1/2 5 10 1/2 5 10 1/2 5 10 1/2 5 10 1/2 5 10 1/2 5 10 1/2 5 10 1/2 5 10 1/2 5 10 1/2 5 10 1/2 5 10 1/2 5 1/2 5 10 1/2 5 1/2 5 10 1/2	5.99 7.95 6.99 9.43 7.51 10.19 12.75 9.47 10.95 13.75 10.11 11.67 14.75	45.8 62.1 52.4 71.1 58.4 79.6 98.8 69.4 80.2 98.8 76.5 88.2 109.5	7.64 7.81 7.50 7.53 7.77 7.81 7.75 7.32 7.32 7.32 7.18 7.57 7.56 7.42	6.2 9.3 10.3 15.7 16.0 24.2 32.8 20.1 24.2 32.8 29.6 35.4 47.8	1.03 1.17 1.47 2.13 2.37 2.54 2.13 2.21 2.38 2.93 3.03 3.24
25 26 27	28.0 38 28.0 33 15.0 33	5 ×3	1/2 5/6/3/8 1/2 5/6/3/8 1/2	11.35 13.19 16.75	90.5 105.0 130.9	7.97 7.96 7.81	56.3 67.6 90.6	4.96 5.12 5.41
28 29 30 31	.7×3⁄8	$\begin{vmatrix} 2 \frac{1}{2} \times 2 \\ 3 \times 2 \frac{1}{2} \\ 3 \frac{1}{2} \times 2 \frac{1}{2} \end{vmatrix}$	3/8 3/8 3/8 3/8 1/2	8.83 10.31 11.07 13.63	65.7 74.6 83.2 102.4	7.44 7.24 7.52 7.51	10.1 16.8 25.6 34.2	1.15 1.63 2.32 2.51

FOUR ANGLES. ONE PLATE. (CONTINUED.)										
	One Web	FOUR ANG	LES	Total	AXIS	A. B.	AXIS C	. D.		
No.	Plate, Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r ²	I	r ²		
32 33 34 35 36 37 38 39 40	7×3⁄8	3 1/2×3 4 ×3 5 ×3	3/8 1/2 5/8 3/8 1/2 5/8 3/ 1/2 5/8 3/2 5/8	11.83 14.63 17.31 12.55 15.63 18.55 14.07 17.63 21.07	83.7 102.4 119.6 91.8 113.1 132.4 108.6 134.5 157.4	7.08 7.00 6.91 7.32 7.24 7.14 7.72 7.63 7.47	25.7 34.7 43.5 37.3 50.1 62.8 70.2 94.2 118.4	2.17 2.37 2.51 2.97 3.21 3.39 4.99 5.34 5.62		
41 42 43 44 45 46 47	7×1⁄2	$ \begin{array}{r} 3 \frac{1}{2} \times 2 \frac{1}{2} \\ 3 \frac{1}{2} \times 3 \\ 4 \\ 5 \\ \times 3 \\ 5 \\ \end{array} $	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	14.50 15.50 18.18 16.50 19.42 18.50 21.94	106.0 106.9 123.1 116.7 135.9 138.0 161.0	7.31 6.90 6.77 7.07 7.00 7.46 7.34	36.1 36.7 46.2 52.8 65.9 97.9 123.0	2.49 2.37 2.54 3.20 3.40 5.29 5.61		
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67	8×14	$2\frac{1}{2} \times 2$ $3 \times 2\frac{1}{2}$ $3\frac{1}{2} \times 2\frac{1}{2}$ $3\frac{1}{2} \times 3$ 4×3 5×3 $5 \times 3\frac{1}{2}$ $6 \times 3\frac{1}{2}$	14 38 14 38 12 56 8 12 56 8 12 5 138 12 5 138 12 38 12	6.24 8.20 7.24 9.68 7.76 10.44 13.00 9.72 11.20 14.00 10.36 11.92 15.00 11.60 13.44 17.00 14.20 13.68 20.00	62.9 85.3 72.1 97.9 80.0 109.2 135.9 95.6 110.5 136.8 105.1 121.2 151.0 123.5 143.4 179.4 143.7 179.6 164.9 208.6	10.1 10.4 9.966 10.1 10.3 10.5 10.5 9.87 9.77 10.1 10.2 10.1 10.6 10.7 10.6 10.7 10.6 10.1 9.98 10.5 10.4	6.2 9.3 10.3 15.7 16.0 24.2 32.3 20.1 24.2 32.8 29.6 35.4 47.8 56.3 67.6 90.6 67.9 91.0 115.6	$\begin{array}{c} 0.99\\ 1.12\\ 1.42\\ 2.06\\ 2.32\\ 2.49\\ 2.07\\ 2.16\\ 2.34\\ 2.84\\ 2.86\\ 5.03\\ 5.33\\ 4.86\\ 5.03\\ 5.33\\ 4.78\\ 5.06\\ 7.37\\ 7.69 \end{array}$		
68 69 70 71	8×3⁄8	$\begin{vmatrix} 2 \frac{1}{2} \times 2 \\ 3 \times 2 \frac{1}{2} \\ 3 \frac{1}{2} \times 2 \frac{1}{2} \end{vmatrix}$	3/8 3/8 3/8 1/2	9.20 10.68 11.44 14.00	90.6 103.3 114.6 141.2	9.85 9.67 10.0 10 1	10.1 16.8 25.6 34.2	1.10 1.57 2.24 2.45		

FOUR ANGLES. C

D ONE PLATE.

	One Web	FOUR ANG	LES	Total	AXIS	A. B.	AXIS C	. D.
No.	Plate, Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r ²	I	r ²
72 73 74 75 76 77 78 79 80 81 82	8×3⁄8	31/2×3 4 ×3 5 ×3 5 ×31/2	3/8 1/2 5/8 3/8 1/2 5/8 3/8 1/2 5/8 3/8 1/2 5/8 3/8 1/2	12.20 15.00 17.68 12.92 16.00 18.92 14.44 18.00 21.44 15.20 19.00	115.9 142.1 166.4 126.6 156.3 183.5 148.7 184.7 217.1 149.0 185.0	9.50 9.47 9.41 9.79 9.77 9.70 10.3 10.3 10.1 9.80 9.74	25.7 34.7 43.5 37.3 50.1 62.8 70.2 94.2 118.4 70.6 94.7	2.11 2.31 2.46 2.89 3.13 3.32 4.86 5.24 5.52 4.64 4.99
83 84 85 86 87 88	8×1⁄2	6 ×31/2	5/8 3/8 1/2 5/8 3/4 1/2	22.68 16.68 21.00 25.20 29.24 15.00	218.3 170.3 213.9 252.4 286.5 146.6	9.63 10.2 10.2 10.0 9.80 9.77	118.2 119.3 158.9 198.5 240.6 36.1	5.21 7.15 7.57 7.88 8.23 2.41
89 90 91 92 93 94 95 96 97 98		$3\frac{1}{12} \times 3$ 4×3 5×3 $5 \times 3\frac{1}{12}$ $6 \times 3\frac{1}{12}$	12 5% 1/2 5% 1/2 5% 1/2 5% 1/2 5%	16.00 18 68 17.00 19.92 19.00 22.44 20.00 23.68 22.00 26.20	147.4 171.7 161.7 188.8 190.1 222.4 190.3 223.7 219.2 257.8	9.21 9.19 9.51 9.48 10.00 9.91 9.52 9.44 9.97 9.81	36.7 46.2 52.8 65.9 97.9 123.0 98.4 123.0 164.2 204.9	2.29 2.47 3.10 3.31 5.15 5.48 4.92 5 19 7.46 7.82
99 100 101 102 103 104	9×¼	3 ×2 ½ 3 ½×2 ½	3/4 1/4 3/8 1/4 3/8 1/4 3/8 1/2	30.24 7.49 9.93 8.01 10.69 13.25	291.9 95.5 129.6 105.5 144.0 179.5	9.65 12.7 13.1 13.2 13.5 13.6	248.3 10.3 15.7 16.0 24.2 32.3	8.21 1.38 1.58 2.00 2.26 2.44

A

B

	0	ĒT	HE	
UN	IV	E	RS	TY

	FOUR ANGLES. ONE PLATE ALIFORNIA (CONTINUED.)											
	One Web	FOUR ANGI	ES	Total	AXIS	A. B.	AXIS C	. D.				
No.	Size in Inches	Size in Inches	Thick- ness	Square Inches	I	r²	I	r ²				
No. 1055 1066 107 108 109 111 112 113 114 155 166 177 18 199 120 121 122 123 124 125 126 127 128 129 130 311 32 144 155 136 137 138 139	<u>Inches</u> 9×1/4 9×3/8				I 2266.7 146.5 181.7 138.8 160.2 200.0 162.2 188.5 236.4 189.6 237.6 237.6 237.6 237.6 237.6 237.6 237.6 237.6 237.6 237.6 237.6 187.1 154.1 197.2 245.2 245.2 290.1 224.4 282.3 333.9 380.4	r ² 22.7 12.8 13.1 13.7 13.8 13.7 13.8 13.7 13.8 13.7 13.8 13.7 13.8 13.7 13.8 13.7 13.8 13.7 13.8 13.7 13.8 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.7 13.2 13.3 13.2 13.3 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	I 20.1 24 2 32.8 29.6 35.4 47.8 56.3 67.6 90.6 67.9 91.0 115.6 153.8 115.4 154.5 16.8 25.6 34.2 25.7 34.7 34.7 34.5 37.3 50.1 62.8 70.3 50.1 62.8 70.2 118.4 70.6 94.7 118.2 119.3 158.9 198.5	r ² 2.02 2.79 2.91 3.13 4.75 4.94 5.25 4.94 5.25 7.60 6.91 7.26 7.60 6.91 7.26 7.60 6.91 7.26 7.60 6.91 7.25 2.27 2.38 2.05 2.212 2.41 2.81 3.06 3.26 4.74 5.42 4.53 4.53 4.53 4.53 5.38 6.99 7.43 6.512				
140 141 142 143		6 ×4	3/8 1/2 5/8 3/4	17.78 22.38 26.82 31.14	225.4 281.9 335.1 382.3	12.7 12.6 12.5 12.3	119.3 159.7 199.6 240.8	6.71 7.14 7.44 7.73				
144 145 146	14	$\begin{array}{c} 3 \frac{1}{2} \times 2 \frac{1}{2} \\ 3 \frac{1}{2} \times 3 \end{array}$	1/2 1/2 5/8	15.50 16.50 19.18	194.7 196.9 229.6	12.6 11.9 12.0	36.2 36.7 46.2	2.33 2.22 2.41				

FOUR ANGLES. C

B

A

D ONE PLATE.

100.1	One Web	FOUR ANG	ILES	Total	AXIS	A. B.	AXIS	C. D.
No.	Plate, Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r ²	I	r ²
147 148 149 150 151 152 153 154 155 156 157 158 159	9×1⁄2	4 ×3 5 ×3 5 ×3 ½ 6 ×3 ½ 6 ×4	1/2 5/8 1/2 5/8	$17.50 \\ 20.42 \\ 19.50 \\ 22.94 \\ 20.50 \\ 24.18 \\ 27.74 \\ 22.50 \\ 26.70 \\ 30.74 \\ 23.50 \\ 27.94 \\ 32.26 \\ \end{cases}$	215.2 251.7 251.6 295.1 252.8 297.7 337.3 289.9 341.5 388.0 289.5 342.7 389.9	12.3 12.3 12.9 12.9 12.3 12.3 12.2 12.9 12.8 12.6 12.3 12.3 12.1	52.8 65.9 97.9 123.0 98.5 123.0 148.7 164.2 206.2 248.3 165.1 206.3 248.9	3.02 3.23 5.02 5.36 4.80 5.09 5.36 7.30 7.72 8.08 7.02 7.38 7.71
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	10×¥	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 14 3/8 1/2 5/5/8 1/2 5/5/8 1/2 8/2 /8 1/2 8/2 /8 1/2 8/2 /8 1/2 8/2 /8 1/2 8/2 /8 1/2 8/2 /8 1/2 8/2 /8 1/2	8.26 10.94 13.50 10.22 11.70 14.50 10.86 12.42 15.50 12.10 13.94 17.50 14.70 18.50 16.18 20.50 16.94 21.50	134.9 184.2 229.7 162.7 188.2 233.9 177.8 205.1 256.6 207.0 240.5 302.1 242.7 304.7 276.6 350.8 278.4 351.4	16.3 16.8 17.0 15.9 16.1 16.1 16.4 16.5 16.6 17.1 17.3 17.3 16.5 16.5 17.1 17.1 16.4 16.4	16.0 24.2 32.3 20.1 24.2 32.8 29.6 35.4 47.8 56.3 67.6 90.6 67.9 91.0 115.6 153.9 115.4 154.5	1.94 2.21 2.39 1.97 2.07 2.26 2.72 2.85 3.08 4.66 4.85 5.18 4.62 4.92 7.15 7.50 6.81 7.19
178 179	10×3⁄8	3 1/2 ×2 1/2	3/8 1/2	12.19 14.75	194.6 240.1	16.0 16.3	25.6 34.2	2.10 2.32

FOUR ANGLES. ONE PLATE. (CONTINUED.)										
	One Web	FOUR ANG	LES	Total	AXIS	A. B.	AXIS C	. D.		
No.	Plate, Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r²	I	r²		
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198	10×3⁄8	$3\frac{1}{2} \times 3$ 4×3 5×3 $5 \times 3\frac{1}{2}$ $6 \times 3\frac{1}{2}$ 6×4	38 12 38 38 12 18 38 12 18 18 12 18 12 18 14 18 14 18 12 18 12 18 12 18 14 18 14 18 14 18 14 18 14 18 14 18 14	$\begin{array}{c} 12.95\\ 15.75\\ 18.43\\ 13.67\\ 16.75\\ 19.67\\ 15.19\\ 18.75\\ 22.19\\ 15.95\\ 19.75\\ 23.43\\ 17.43\\ 21.75\\ 25.95\\ 29.99\\ 18.19\\ 22.75\\ 27.19\\ \end{array}$	198.6 244.3 286.7 215.5 267.0 314.3 250.9 312.5 368.8 253.1 315.1 373.3 287.0 361.3 428.3 428.3 428.2 288.8 361.8 430.8	$\begin{array}{c} 15.3\\ 15.5\\ 15.6\\ 15.8\\ 15.9\\ 16.0\\ 16.5\\ 16.7\\ 16.6\\ 15.9\\ 16.0\\ 15.9\\ 16.6\\ 16.5\\ 16.3\\ 15.9\\ 15.9\\ 15.8\\ \end{array}$	$\begin{array}{c} 25.7\\ 34.7\\ 43.5\\ 37.3\\ 501\\ 62.8\\ 70.3\\ 94.2\\ 118.4\\ 70.6\\ 94.7\\ 118.2\\ 119.3\\ 158.9\\ 198.5\\ 240.6\\ 119.3\\ 159.7\\ 199.6 \end{array}$	$\begin{array}{c} 1.99\\ 2.20\\ 2.36\\ 2.73\\ 2.99\\ 3.19\\ 4.62\\ 5.03\\ 5.33\\ 4.42\\ 4.80\\ 5.05\\ 6.85\\ 7.31\\ 7.65\\ 8.02\\ 6.56\\ 7.02\\ 7.34\\ \end{array}$		
199 200 201 202 203 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220	10×½ 12×¼	$ \begin{array}{r} 3\frac{1}{2}\times2\frac{1}{2}\times3\\ 4\times3\\ 5\times3\\ 5\times3\\ 5\times3\frac{1}{2}\times3\frac{1}{2}\times3\\ 6\times3\frac{1}{2}\\ 6\times4\\ 3\frac{1}{2}\times2\frac{1}{2}\\ 3\frac{1}{2}\times3\\ \end{array} $	* *************************************	31.51 16.00 17.00 19.68 18.00 20.92 20.00 23.44 21.00 24.68 23.00 27.20 31.24 24.00 28.44 32.76 8.76 11.44 14.00 10.72 12.20 015.00	492.7 250.5 254.7 297.2 277.4 324.7 322.9 379.2 325.6 383.7 371.7 438.6 499.6 372.3 441.2 503.1 206.4 281.1 350.4 250.3 289.3 359.8	$\begin{array}{c} 15.6\\ 15.6\\ 15.0\\ 15.1\\ 15.5\\ 16.1\\ 16.2\\ 15.5\\ 15.6\\ 16.2\\ 16.1\\ 16.0\\ 15.5\\ 15.5\\ 15.4\\ 23.6\\ 24.6\\ 25.0\\ 23.4\\ 23.4\\ 23.7\\ 24.0\\ \end{array}$	240.8 36.2 36.7 46.2 52.8 65.9 97.9 123.0 98.5 123.0 164.2 206.1 248.3 165.1 206.3 248.9 16.0 24.2 32.3 20.2 24.2 32.3	7.64 2.26 2.16 2.35 2.93 3.15 4.90 5.25 4.69 4.98 7.14 7.58 7.95 6.88 7.25 7.60 1.83 2.11 2.31 1.88 1.99 2.19		

FOUR ANGLES. C											
	One Web	FOUR ANG	LES	Total	AXIS	A. B.	AXIS (. D.			
No.	Plate, Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r ²	I	r ²			
221 222 223	12×¼	4 ×3	5 16 3/8 1/2	11.36 12.92 16.00	272.2 314.0 393.2	24.0 24.3 24.6	29.6 35.4 47.8	2.60 2.74 2.99			
224 225 226 227		5 ×3 5 ×3 ½	5 16 3/8 1/2 5 6 3/8 1/2 3/8 1/2 3/8	12.60 14.44 18.00 15.20	314.7 365.5 459.7 371.1	25.0 25.3 25.5 24.4	56.4 67.6 90.6 67.9	4.47 4.68 5.03 4.46			
228 229 230 231		6 ×3 ½ 6 ×4	1/2 3/8 1/2 3/8 1/2	19.00 16.68 21.00 17.44	466.8 420.6 534.2 425.3 538.0	24.6 25.2 25.4 24.4 24.5	91.0 115.6 153.9 115.4 154.6	4.79 6.93 7.33 6.62 7.03			
232 233 234 235	12×3⁄8	3 1/2 × 2 1/2 3 1/2 × 3	1/2 3/8 1/2 3/8	22.00 12.94 15.50 13.70	299.1 368.4 307.3	23.1 23.8 22.4	25.7 34.2 25.7	1.98 2.21 1.88			
236 237 238 239		4 ×3	1/2 5/8 3/8 1/2	16.50 19.18 14.42 17.50	377.8 443.9 332.0 411.2	22.9 23.2 23.0 23.5	34.7 43.5 37.3 50.2	2.10 2.27 2.59 2.87			
240 241 242 243 244	123.0 99.5 121.0	5 ×3	5/8 3/8 3/2 5/8	20.42 15.94 19.50 22.94 16.70	484.5 383.5 477.7 564.9 389.1	23.7 24.1 24.5 24.6 23.3	62.9 70.3 94.3 118.4 70.6	3.08 4.41 4.83 5.16 4.23			
245 246 247 248	1.010	6 ×3 1/2	3/8 1/2 5/8 3/8	20.50 24.18 18.18 22.50	484.8 575.1 438.6 552.2	23.6 23.8 24.1 24.5	94.7 118.2 119.3 158.9	4.62 4.89 6.56 7.06			
249 250 251 252	10.34 10.35 10.45	6 ×4	1/2 5/8 3/4 3/8 1/2	26.70 30.74 18.94 23.50	656.2 751.7 443.3 556.0	24.6 24.5 23.4 23.7	198.5 240.6 119.3 159.7	7.43 7.83 6.30 6.80			
253 254			1/2 5/8 3/4	27.94 32.26	663.1 760.8	23.7 23.6	199.7 240.8	7.15 7.46			

FOUR ANGLES. ONE PLATE. (CONTINUED.)										
	One Web	FOUR ANG		Total		A. B.	AXIS	B I		
v.	Plate,			Area,		A. D.		1		
No.	Size in Inches	Size in Inches	Thick- ness	Square	I	r ²	I	r ²		
		and the second second		Inches						
255	12×1/2	31/2×21/2	1/2	17.0	386.4	22.7	36.2	2.13		
256		31/2×3	1/2	18.0	395.8	22.0	36.7.			
257		4 ×3	5/8	20.68	461.9	22.3	46.2	2.23		
258		4 ×3	1/2	19.00	429.2	22.6	52.8	2.78		
259		5 ×3	5/8	21.92	502.5	22.9	66.0	3.01		
260 261		5 ×3	1/2	21.00	495.7	23.6	97.9	4.66		
261		5 ×31/2	5/8	24.44 22.00	582.9	23.9	98.5	5.04 4.48		
263		5 ×3 1/2	1/2	25.68	502.8 593.1	22.9	123.0	4.40		
264		6 ×31/2	5/8 1/2	24.00	570.2	23.8	164.2	6.84		
265		0 10 /2	72 5/8	28.20	674.2	23.9	206.1	7.31		
266		Lane a	1 18 3/4	32.24	769.7	23.9	248.3	7.70		
267		6 ×4	1/2	25.00	574.0	23.0	165.1	6.60		
268		U XI	5/8	29.44	681.1	23:1	206.3	7.01		
269		The second second	3/4	33.76	778.8	23.1	248.9	7.37		
270	14×1/4	4 ×3		11.86	389.3	32.8	29.6	2.49		
271	17~%	7 ~3	5 16 3/8	13.42	448.7	33.4	35.4	2.64		
272			1/2	16.50	561.8	34.0	47.8	2.90		
273		5 ×3	1/2	13.10	447.6	34.2	56.4	4.30		
274		0 10	5 16 3/8	14.94	519.4	34.8	67.6	4.52		
275		1. 8 6 6 6 10 1	1/2	18.50	653.4	35.3	90.6	4.90		
276		5 ×31/2	3/8	15.70	529.8	33.7	67.9	4.32		
277		1 10/2	1/2	19.50	666.8	34.2	91.0	4.67		
278		6 ×3 1/2	3/8	17.18	598.0	34.8	115.6	6.73		
279		12	1/2	21.50	759.4	35.3	153.9	7.16		
280		6 ×4	3/8	17.94	607.1	33.8	115.4	6.43		
281	16.831	0.2.169.17.842	1/2	22.50	768.6	34.2	154.6	6.87		
282	14×3/8	4 ×3	3/8	15.17	477.2	31.5	37.3	2.46 .		
283	-17.78		1/2	18.25	590.4	32.4	50.2	2.75		
284		REL DA	5/8	21.17	695.5	32.9	62.9	2.97		
285		5 ×3	3/8	16.69	548.0	32.8	70.3	4.21		
286	1.8.6.1	12.34 1 23	1/2	20.25	682.0	33.7	94.3	4.66		
287		NO. DO MAL	5/8	23.69	806.8	34.1	118.4	5.00		
288	1.52	5 ×3 1/2	3/8	17.45	558.4	32.0	70.6	4.04		
289	1. Call	BAR ST	1/2	21.25	695.3	32.7	94.7	4.46		
290	日本(日本)	123.9.0.0.1	5/8	24.93	825.4	33.1	118.2	4.74		
291	1.0.87.1	6 ×31/2	3/8	18.93	626.6	33.1	119.4	6.30		
292	18 801	1.24	1/2 5/8	23.25	788.0	33.9	158.9	6 84		
293	246.6 1	1.11.52 1.11	5/8	27.45	937.6	34.2	198.5	7.23		
294	17.511	A SAME	3/4	31.49	1075.9	34.2	240.6	7.64		
295	1.58.7	6 ×4	3/8	19.69	635.6	32.3	119.4	6.06		
296	1.4.641	1. 10. 1.8 2	1/2	24.25	797.1	32.9	159.7	6.59		
297	1 2 2 2 2	TE VA LO	5/8	28.69	951.2	33.2	199.7	6.96		
298		1.0.0	3/4	33.01	1093.4	33.1	240.8	7.29		

ar Car		LUCHUS MON	.37	NE PLA	BLES 0	RA AUO	1. 1.	
22. 1.	e-811			A	1.23			
	FOUR AN	GLES. C	ALAN AND			ONE P	PLATE.	11
		1 22 51		B			The state	
	.Y.96	0.02		4 112	2 13		•	
	One Web	FOUR ANG	ES	Total	AXIS	A. B.	AXIS C	. D.
No.	Plate, - Size in	Size in	Thick-	Area, Square	I	r ²	T	
1.4.1	Inches	Inches	ness	Inches	1		I	r ²
299	14×1/2	4 ×3	1/2	20.00	618.9	31.0	52.9	2.64
300 301	164,2 S	5 ×3	5/8	22.92	724.1 710.6	31.6 32.3	66.0 98.0	2.88
302	1 6.300	0 ~0	5/8	25.44	835.4	32.8	123.1	4.84
303	1 2 832	5 X31/2	1/2	23.00	723.9	31.5	98.5	4.28
304			5/8	26.68	854.0	32.0	123.1	4.61
305	-	6 ×3 1/2	1/2	25.00	816.5	32.7	164.3	6.57
306		in a constant	5/8	29.20	966.2	33.1	206.1	7.06
307 308		6 ×4	3/4	33.24	1104.5	33.2 31.8	248.3	7.47
309		0 ~4	12 5/8	26.00	979.8	32.2	206.3	6.35
310	56 4 4	\$ (\$PE) 81	34	34.76	1122.0	32.3	248.9	7.16
311	16×14	5 ×3 ·	5 16 3/8	13.60	606.7	44.6	56.4	4.14
312	214142	1 2013	3/8	15.44	703.1	45.5	67.6	4.38
313	81.0.18	-	1/2 3/8	19.00	884.1	46.5	90.6	4.77
314 315	· 新文司、西文法	5 ×3 1/2	3/8	16.20 20.00	720.0	44.4	67.9 91.0	4.19
316	1. 1. 2.	6 ×3 1/2	1/2 3/8	17.68	809.8	45.8	115.6	6.54
317	1 4 3 4 5	0 /10 /2	1/2	22.00	1027.6	46.7	153.9	6.99
318		6 ×4	3/8	18.44	824.6	44.7	115.4	6.26
319	2.5.07	2.26.12.	1/2	23.00	1043.9	45.4	154.6	6.72
320	16×3/8	5 ×3	3/8	17.44	745.8	42.8	70.3	4.03
321	9 6 8 8 ST	0 32.8	1/2	21.00	926.7	44.1	94.3	4.49
322	2 6 29	E VOI	5/8	24.44	1096.1	44.9	118.4	4.84
323	S Land	5 ×3 1/2	3/8	18.20	762.7 948.5	41.9 43.1	70.6 94.8	3.88
325	1 7.9 S	4.00 0	1/2 . 5/8	25.68	1125.5	43.8	118.3	4.61
326	1 5 874	6 ×31/2	3/8	19.68	852.5	43.3	119.4	6.07
327	3.4 4.810	12	1/2	24.00	1070.3	44.6	159.0	6.62
328	61.0.892	0 25.0	5/8	28.20	1273.7	45.2	198.5	7.04
329	5 13 322	2416 19.	3/4	32.24	1463.0	45.4	240.6	7 46
330	S. 6 2 2 2 2	6 ×4	3/8	20.44	867.3	42.4	119.4	5.84
331 332	2 4 922	Strate Pr	1/2	25.00	1086.6	43.5	159.7	6.39 6.78
332	1. 4 000		5/8	33.76	1492.0	44.1	240.8	7.13
			1 7/4	100.10	11452.0	1 77.4	1 470.0	17.15

	FOUR ANGLES. ONE PLATE. (CONTINUED.)										
	One Web	FOUR ANG	LES	Total AXIS A		A. B.	AXIS (J. D.			
No.	Plate, Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r²	I	r ²			
334 335 336 337 338 339 340 341 342 343 343	16×½	$5 \times 3 \\ 5 \times 3 \frac{1}{2} \\ 6 \times 3 \frac{1}{2} \\ 6 \times 4 \\ 6 \times 3 \frac{1}{2} \\ 7 \times 3 \frac{1}{2$	1/2 5/8 1/2 5/8 1/2 5/8 3/4 1/2 5/8 3/4 3/8	23.00 26.44 24.00 27.68 26.00 30.20 34.24 27.00 31.44 35.76 18.18	969.4 1138.8 991.2 1168.1 1112.9 1316.3 1505.6 1129.3 1339.5 1534.7 1057.0	42.1 43.1 41.3 42.2 42.8 43.6 44.0 41.8 42.6 42.9 58.1	98.0 123.1 98.5 123.1 164.3 206.1 248.4 165.2 206.3 248.9 115.6	4.26 4.66 4.11 4.45 6.32 6.83 7.25 6.12 6.56 6.96 6.36			
345 346 347		6 ×4 .	1/2 3/8 1/2	22.50 18.94 23.50	1340.0 1079.0 1366.0	59.6 57.0 58.1	153.9 115.4 154.6	6.84 6.09 6.58			
348 349 350 351 352 353 354 355 356 357 358 359 360	18×3⁄8	6 ×31/2 6 ×4 8 ×6	3/8 1/2 5/8 3/4 3/8 3/4 3/8 3/4 1/8 1	$\begin{array}{c} 20.43\\ 24.75\\ 28.95\\ 32.99\\ 21.19\\ 25.75\\ 30.19\\ 34.51\\ 33.79\\ 40.51\\ 46.51\\ 53.23\\ 60.39 \end{array}$	1118.0 1401. 1666. 1914. 1140. 1426. 1701. 1958. 1802. 2173. 2490. 2838. 3192.	54.7 56.6 57.6 53.8 55.4 56.4 56.8 53.3 53.7 53.4 53.3 53.7 53.4 53.3 53.3 53.2	119.4 159.0 198.5 240.7 119.4 159.7 199.7 240.8 368.9 468.7 563.1 672.2 811.6	5.84 6.42 6.86 7.29 5.63 6.20 6.61 6.98 10.9 11.6 12.1 12.6 13.4			
361 362 363 364 365 366 367 368 369 370 371	18×1⁄2	6 ×31/2 6 ×4 8 ×6	1/2 5/8 3/4 1/2 5/8 3/4 1/2 5/8 3/4 7/8 1	$\begin{array}{c} 27.00\\ 31.20\\ 35.24\\ 28.00\\ 32.44\\ 36.76\\ 36.04\\ 42.76\\ 48.76\\ 55.48\\ 62.64\\ \end{array}$	1462. 1727. 1975. 1487. 1762. 2019. 1863. 2234. 2551. 2899. 3253.	$54.1 \\ 55.4 \\ 56.1 \\ 53.1 \\ 54.3 \\ 54.9 \\ 51.7 \\ 52.3 \\ 52.3 \\ 52.3 \\ 51.9 \\$	164.3 206.2 248.4 165.2 206.4 249.0 377.8 479.9 576.7 688.2 830.7	$\begin{array}{c} 6.09\\ 6.61\\ 7.05\\ 5.90\\ 6.36\\ 6.77\\ 10.5\\ 11.2\\ 11.8\\ 12.4\\ 13.3\\ \end{array}$			

	TWO PLATES.											
	Two Web	FOUR ANG	ILES	Total	AXIS	A. B.	AXIS	C. D.				
No.	Plates, Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r ²	Out to Out of Webs	I				
1 2 3	8×1⁄4	2 ×2	1/4 5/6 3/8	7.76 8.60 9.44	66.5 75.9 84.7	8.57 8.82 8.97	5.4 5.4	68.5 89.0				
4 5 6	8×5 16	2 ×2	5 16 3/8 7 16	9.60 10.44 11.24	81.2 90.0 98.4	8.46 8.62 8.76	5.3 5.3	81.6				
7 8 9	9×14	2 1/2 ×2 1/2	1/4 1/4 1/6 3/8	9.26 10.38 11.42	101. 117. 131.	10.9 11.3 11.5	5.9	103. 135.				
10 11 12	9×5.5	2 ½×2 ½	5 16 3/8 7 16	11.51 12.55 13.63	124. 139. 153.	10.8 11.1 11.2	5.9 5.9	127. 160.				
13 14 15	10×¼	3 ×2 ½	1/4 1/4 1/6 3/8	10.24 11.48 12.68	143. 166. 187.	14.0 14.5 14.8	6.5 6.5	144. 191.				
16 17 18	10×5.	3 ×2 ½	3/8 7 16	12.73 13.93 15.13	177. 198. 219.	13.9 14.2 14.5	6.5 6.4	179. 221.				
19 20 21 22	10×3⁄8	3 ×2 ½	3/8 7 16 1/2 9 16	15.18 16.38 17.50 18.62	208. 229. 248. 267.	13.7 14.0 14.2 14.3	6.5 6.3	213. 268.				
23 24 25	12×¼	3 ×3	1/4 1/4 1/6 3/8	11.76 13.12 14.44	230. 265. 299.	19.6 20.2 20.7	8.1 8.1	235. 305.				
26 27 28 29	12×5 16	3 ×3	5 16 3/8 7 6 1/2	14.62 15.94 17.22 18.50	283. 317. 350. 382.	19.4 19.9 20.3 20.6	8.0	286, 387.				

•

TWO PLATES. FOUR ANGLES. (CONTINUED.)										
1	Two Web	FOUR ANG	LES	Total	AXIS	A. B.	AXIS	C. D.		
No.	Plates, Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r ²	Out to Out of Webs	I		
30 31 32 33	12×3⁄8	3 ×3	3/8 7 1 1/2 9 16 /8	17.44 18.72 20.00 21.24	335. 368. 400. 430.	19.2 19.6 20.0 20.2	8.0	340.		
34				22.44	457.	20.4	7.9	464.		
· 35 36	12×1⁄2	3 ×3	1/2	23.00	436. 466.	18.9 19.2	8.0	445.		
37	1.	102.003	9 16 5/8	25.44	493.	19.4	7.9	502.		
38	12×5%	3 ×3	5/8	28.44	529.	18.6	7.9	536.		
39 40 41 42	12×¼	3 1/2×2 1/2	1/4 5 6 3/8 7 16	11.76 13.12 14.44 15.72	242. 280. 317. 352.	20.6 21.4 22.0 22.4	8.0	248.		
43 44 45	12×515	3 1⁄2 ×2 1⁄2	16 56 3/8 7 16 1/2	14.62 15.94 17.22	298. 335. 370.	20.4 21.0 21.5	7.9	301.		
46 47 48 49 50	12×3⁄8	3 ½×2 ½	1/2 3/8 10/2 1/2 5/8	18.50 17.44 18.72 20.00 22.44	404. 353. 388. 422. 485.	21.9 20.2 20.7 21.1 21.6	7.9 7.9 7.7	412. 358. 486.		
51 52 53	12×1⁄2	31/2×21/2	78 1/2 9 15/8	23.00 24.24 25.44	458. 490. 521.	19.9 20.2 20.5	7.8 7.8	459.		
54	12×5%	31/2×21/2	5/8	28.44	557.	19.6	7.8	566.		
55 56 57	14×5 16	3 1/2 × 3 1/2	5-6-3/8 3/8 1-6 1-/2	17.11 18.67 20.23	455. 510. 564.	26.6 27.3 27.9	9.4	461.		
58 59 60 61 62	14×3⁄8	31⁄2×31⁄2	1/2 3/8 1 8 1/2 5/8	21.75 20.42 21.98 23.50 26.42	616. 539. 592. 645. 743.	28.3 26.4 26.9 27.4 28.1	9.4 9.4 9.3	626. 549. 753.		
63 64 65	14×1⁄2	31/2×31/2	78 3/2 9 16 5/8	27.00 28.48 29.92	702. 752. 800.	26.0 26.4 26.7	9.3 9.3	710.		

TWO PLATES. AB FOUR ANGLES.											
	Two Web	FOUR ANG	LES	Total	AXIS	A. B.	AXIS C. D.				
No.	Plates, Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r²	Out to Out of Webs	I			
66	14×5/8	31/2×31/2	5/8	33.42	857.	25.7	9.2	857.			
67 68 69	14×34	31/2×31/2	1/2 9 16 5/8	34.00 35.48 36.92	816. 866. 914.	24.0 24.4 24.8	9.3 9.3	822. 927.			
70 71	$14 \times \frac{5}{16}$	4 ×3	78 5 16 3/8	17.11 18.67	475. 534.	24.8 27.8 28.6	9.2	482.			
72 73		1 11 1 0.12	9/8 7 16 1/2	20.23	593. 648.	29.3 29.8	9.2	650.			
74 75 76 77	14×3⁄8	4 ×3	3/8	20.42 21.98 23.50 26.42	563. 622. 676. 781.	27.6 28.3 28.8 29.6	9.2	563. 796.			
78 79 80	14×1⁄2	4 ×3	78 1/2 9 16 5/8	27.00 28.48 29.92	733. 787. 838.	29.0 27.2 27.6 28.0	9.2	790.			
81	14×5%	4 ×3	78 5/8	33.42	896.	26.8	9.1	897.			
82 83 84	14×34	4 ×3	1/2 9 16 5/8	34.00 35.48 36.92	848. 901. 953.	24.9 25.4 25.8	9.2	852.			
85 86 87 88	$15 \times \frac{5}{16}$	31/2×31/2	78 515 38 716 1/2	17.74 19.30 20.86 22.38	540. 605. 668. 729.	30.4 31.4 32.0 32.6	9.2	549. 737.			
89 90 91	15×3⁄8	3 ½×3 ½	1.00	21.17 22.73 24.25	640. 703. 765.	30.2 30.9 31.5	10.1	642.			
92 93	15×1/2	31/2×31/2	5/8 1/2	27.17	880. 835.	32.4	10.1	885.			

TWO PLATES. FOUR ANGLES. (CONTINUED.)

	Two Web	FOUR ANG	LES	Total	AXIS	A. B.	AXIS	C. D.
No.	Plates, Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r ²	Out to Out of Webs	I
96	15×5%	3 1/2×3 1/2	5/8	34.67	1021.	29.4	10.0	1023.
97	15×34	31/2×31/2	1/2	35.50	976.	27 5	10.1	992.
98 99			9 16 5/8	36.98 38.42	1035.	28.0 28.4	10.1	1111.
100	15×7⁄8	3 1/2×3 1/2	78 1/2	38.42	1091.	28.4	10.1	1059.
101	10/1/8	- /2 ~ 0 1/2	9 16	40.73	1105.	27.1		1.223
102			9 16 5/8	42.17	1162.	27.5	10.1	1179.
103	$15 \times \frac{5}{16}$	4 ×3	5 16 3/8	17.74	562.	31.7	10.1	571.
104 105	1. C.Q.E.	1,0291.00	3/8	19.30 20.86	631. 700.	32.7 33.5		AR I
105	And the lot		7	20.80	764.	33.5 34.1	10.1	774.
107	15×3/8	4 ×3	3/8	21.17	667.	31.5	10.0	668.
108	10	A. 40 1 48	16	22.73	735.	32.3		1 DAY
109	5 5 21	4-16-11-B1	1/2 5/8	24.25 27.17	799. 922.	33.0 33.9	10.0	931.
111	15×1/2	4 ×3	78 1/2	28.00	869.	31.1	10.0	880.
112	/2		9 16	29.48	932.	31.6	1000	14.8.4
113	TUR OF	7,85 1 1	916	30.92	993.	32.1	10.0	1009.
114	15×5%	4 ×3	5/8	34.67	1063.	30.7	9.9	1064.
115	15×34	4 ×3	1/2	35.50	1010.	28.5	10.0	1022.
116 117	(2.5.0)	5.22. 1.51	916	36.98	1073.	29.0 29.5	10.0	1151.
118	15×7/8	4 ×3	1/2	39.25	1080.	27.5	10.0	1089.
119	1.		9 16 5/8	40.73	1143.	28.1	1.8.8	di trat
120	1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.12 1 6		42.17	1203.	28.5	10.0	1218.
121 122	16×3/8	3 1/2×3 1/2	3/8	21.92	752. 825.	34.3 35.1	10.9	758.
122	I state	and the	7 16 1/2	23.48	825.	35.1		1000
124	And and a second se	1245 4 ba	5/8	27.92	1031.	36.9	10.9	1032.
125		3 1/2 ×3 1/2	1/2	29.00	982.	33.9	10.9	998.
126	C. S. PAN		1/2 9/16	30.48	1051.	34.5	10.0	1120
127 128	the second second	31/2×31/2	5/8 5/8	31.92	1200.	35.0 33.5	10.9	1133.
128	1	3 1/2 × 3 1/2 3 1/2 × 3 1/2		35.92	1155.	33.5	10.8	1210.
130		12~0 1/2	12 9 17	38.48	1220.	31.2	10.0	1100.
131			9 16 5/8	39.92	1285.	32.2	10.8	1295.
132		31/2×31/2	1/2	41.00	1240.	30.2	10.8	1250.
133		in the	9-16 5/8	42.48	1305. 1375.	30.8	10.8	1380.
104	1		1 78	1.0.04	1-0.0.	1 01.0	1 10.0	1.000.

TWO PLATES.

	Two Web	FOUR ANG	LES	Total	AXIS	A. B.	AXIS (). D.
No.	Plates, Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r ²	Out to Out of Webs	I
135 136 137	16×1	31⁄2×31⁄2	1/2 9 16 5/8	45.00 46.48 47.92	1325. 1390. 1460.	29.4 30.0 30.4	10.8 10.8	1330. 1460.
138 139 140 141	16×3⁄8	4 ×3	3/8 7 16 1/2 5/8	21.92 23.48 25.00 27.92	780. 860. 935. 1075.	35.6 36.6 37.4 38.6	10.8 10.8	785. 1080.
142 143 144	16×½	4 ×3	1/2 9 16 5/8	29.00 30.48 31.92	1020. 1090. 1160.	35.1 35.8 36.4	10.8 10.8	1035. 1180.
145	16×5%	4 ×3	5/8	35.92	1245.	34.7	10.7	1250.
146 147 148	16×3⁄4	4 ×3	1/2 9/6/8	37.00 38.48 39.92	1190. 1265. 1335.	32.2 32.8 33.4	10.7 10.7	1195. 1335.
149 150 151	16×7⁄8	4 ×3	1/2 9-16 5/8	41.00 42.48 43.92	1275. 1350. 1420.	31.1 31.7 32.3	10.7 10.7	1275. 1420.
152 153 154	16×1	4 ×3	1/2 9 16 15/8	45.00 46.48 47.92	1360. 1435. 1505.	30.2 30.8 31.4	10.8 10.8	1380. 1525.
155 156 157 158	18×3⁄8	3 1/2 × 3 1/2	3/8 1/0/2	23.42 24.98 26.50 29.42	1010. 1105. 1200. 1375.	43.1 44.2 45.2 46.8	12.4	1015. 1395.
159 160 161	18×1⁄2	3 ½×3 ½	1/2 9 16 5/8	31.00 32.48 33.92	1320. 1410. 1495.	42.6 43 4 44.1	12.4 12.4	1335. 1505.

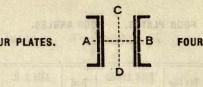
		TWO PL		F0 NTINUEI	UR ANG	BLES.		
	Two Web	FOUR ANG	LES	Total	AXIS	A. B.	AXIS	D. D.
No.	Plates, Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r²	Out to Out of Webs	I
162	18×5/8	3 1/2×3 1/2	5/8	38.42	1620.	42.1	12.3	1620.
163 164 165	18×¥	3 1/2 × 3 1/2	1/2 9 1 5/8	40.00 41.48 42.92	1565. 1655. 1740.	39.1 39.9 40.5	12.2 12.3	1565. 1755.
166 167 168	18×1	3 1/2 × 3 1/2	1/2 9 15/8	49.00 50.48 51.92	1805. 1895. 1985.	36.9 37.6 38.2	12.2 12.3	1815. 2005.
169 170 171 172	18×3⁄8	5 ×3 ½	3/8 7 0 1/2 5/8	25.70 27.62 29.50 33.18	1185. 1310. 1430. 1660.	46.1 47.4 48.4 50.0	12.0 12.0	1195. 1670.
173 174 175	18×1⁄2	5 ×3 ½	1/2 915 5/8	34.00 35.88 37.68	1550. 1670. 1780.	45.6 46.5 47.3	11.9 _. 11.9	1550. 1785.
176	18×5%	5 ×3 1/2	5/8	42.18	1900.	45.1	11.9	1915.
177 178 179	18×34	5 ×3 1/2	1/2 9 16 5/8	43.00 44.88 46.68	1790. 1910. 2025.	41.7 42.6 43.3	11.9 11.9	1805. 2040.
180 181 182	18×1	5 ×3 ½	1/2 9-15 1-5/8	52.00 53.88 55.68	2035. 2155. 2265.	39.1 40.0 40.7	11.9 11.9	2040. 2270.
183 184 185 186	21×3⁄8	4 ×4	3/8 7 6 1/2 5/8	27.19 28.99 30.75 34.19	1600. 1755. 1905. 2190.	58.8 60.5 61.9 64.1	14.5 14.7	1610. 2190.
187 188 189	21×1⁄2	4 ×4	1/2 9 16 5/8	36.00 37.72 39.44	2095. 2240. 2385.	58.3 59.4 60.4	14.5 14.6	2120. 2415.
190	21×5/8	4 ×4	5/8	44.69	2575.	57.6	14.4	2585.
191 192 193	21×3⁄4	4 ×4	1/2 9 16 5/8	46.50 48.22 49.94	2485. 2625. 2770.	53.4 54.4 55.5	14.3 14.4	2510. 2805.
194 195 196	21×1	4 ×4	1/2 9 16 5/8	57.00 58.72 60.44	2870. 3010. 3155.	50.3 51.3 52.2	14.2 14.3	2885. 3180.

TWO PLATES. + POUR ANGLES											
1000	TWO	PLATES.		C	R F	OUR AN	GLES				
Part .		EATEOT	A-		D	oon a	ullo.				
- OF			I								
	Two Web	FOUR AN	GLES	Total	AXIS	A. B.	AXIS	C. D.			
No.	Plates, Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	. I	r²	Out to Out of Webs	I			
197 198	21×1¼	4×4	1/2 9 16 5/8	67.50 69.22	3255. 3395.	48.2 49.1	14.2	3255.			
199 200	21×1 ½	4×4	3/8 1/2 9 10	70.94	3540. 3640. 3785.	49.9 46.7 47.5	14.3 14.3	3560. 3655.			
201 202			16 5/8 -	79.72 81.44	3785. 3925.	47.5	14.4	3970.			
203 204	$24 \times \frac{7}{16}$	4×4	1/2 9 16 5/8	36.00 37.72	2785. 2980.	77.4 79.0	16.8	2805.			
205		4×4	A State	39.44 39.00	3175. 2930.	80.5 75.1	16.9	3175. 2960.			
206 207 208	12	4.54	1/2 9 16 5/8	40.72	3125. 3320.	76.7 78.2	16.8	3330.			
209	24× 5/8	4×4	5/8	48.44	3605.	77.4	16.6	3615.			
210 211 212	1	4×4	1/2 9 16 5/8	51.00 52.72 54.44	3505. 3700. 3895.	66.8 70.2 71.5	16.4	3545. 3915.			
212 213 214	24×1	4×4	1/2	63.00 64.72	4080.	64.8 66.1	16.2	4090.			
215	Contraction of the second	0.12.1	9 16 5/8	66.44	4470.	67.3	16.4	4515.			
216 217 218	1 14	4×4	1/2 9 16 5/8	75.00 76.72 78.44	4660. 4850. 5045.	62.1 63.2 64.3	16.2	4670.			
210 219 220	24×11/2	4×4	1/2	87.00 88.72	5235. 5425.	60.2 61.2	16.3	5285.			
221	and the second se	1 bit	9 16 5/8	90.44	5620.	62.2	16.4	5675.			
222 223 224	12	4×4	1/2 9 16 5/8	42.00 43.72 45.44	3940. 4190. 4445	93.8 95.8 97.8	18.8	3960. 4460.			
224		4×4	78 5/8	52.19	4855.	93.0	18.8	4900.			

		TWO	PLATE	S. FO	UR AN	GLES.		
	Two Web	FOUR AN	GLES	Total	AXIS	A. B.	AXIS	C. D.
Xo.	Plates, Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r ²	Out to Out of Webs	I
226 227 228	27× 3⁄4	4×4	1/2 9 16 5/8	55.50 57.22 58.94	4760. 5010. 5265.	85.8 87.6 89.3	18.4	4790. 5295.
229 230	27×1	4×4	78 1/2 9 16 5/8	69.00 70.72	5580. 5830.	80.9 82.4	18.2	5605.
231	07.11/	4×4	1	72.44	6085.	84.0	18.4	6125.
232 233	27×1¼ 27×1¼	4×4 4×4	5/8 5/8	85.94	6905. 7725	80.3	18.3	6920. 7745.
234 235 236	27× 1/2	6×6	1/2 5/8	50.00 55.44 60.76	4935. 5675. 6390.	98.7 102.4 105.2	18.4	4965.
237	11.10		3/4 7/8	65.96	7080.	107.4	18.5	7090.
238 239 240 241	27× 5⁄8	6×6	5/8 3/4 7/8 1	62.19 67.51 72.71 77.75	6085. 6800. 7495. 8155.	97.9 100.7 103.1 104.9	18.3	6100. 8190.
242 243 244 245	27× 3⁄4	6×6	5/8 3/4 7/8 1	68.94 74.26 79.46 84.50	6495. 7210. 7905. 8565.	94.2 97.1 99.5 101.3	18.2	6515. 8595.
246 247 248 249	27× 3/8	6×6	5/8 3/4 7/8 1	75.69 81.01 86.21 91.25	6905. 7620. 8315. 8975.	91.3 94.1 96.4 98.3	18.1	6910. 9065.
250 251 252 253	27×1	6×6	5/8 3/4 7/8 1	82.44 87.76 92.96 98.00	7315. 8030. 8725. 9385.	88.8 91.5 93.8 95.8	18.1	7355. 9425.
254 255 256 257	27×14	6×6	5/8 3/4 7/8 1	95.94 101.26 106.46 111.50	8135. 8850. 9545. 10205.	84.8 87.4 89.6 91.5	18.1	8195. 10280.
258 259 260 261	27×1 ½	6×6	5/8 3/4 7/8 1	109.44 114.76 119.96	8955. 9670. 10365. 11025.	81.8 84.3 86.4 88.2	18.1	8995.

FOUR PLATES.

FOUR ANGLES.


1	Two Web	Two Side	FOUR AN	GLES	Total	AXIS I	A. B.	Out to Out
No.	Plates, Size in Inches	Plates, Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r ²	of Webs for Equal I
1 2 3 4 5	18×½ %	10 1/2 × 3/8 1/2 3/8 1/2 5/8	3 ½×3 ½	¥2 5/8	38.88 41.50 43.38 46.00 51.55	1392 1417 1514 1538 1739	35.8 34.1 34.9 33.4 33.7	11.3
6 7 8 9 10 11	18×34	10 1/2 × 3/8 1/2 5/8 3/8 1/2 5/8	3 ½ ×3 ½	¥2 5/8	47.88 50.50 53.13 50.80 53.42 56.05	1635 1660 1684 1812 1836 1861	34.1 32.9 31.7 35.7 34.4 33.2	11.4
12 13 14 15 16	21×1⁄2	12 1/2×3/8 1/2 3/8 1/2 3/8 1/2 5/8	4×4	1⁄2 5⁄8	45.38 48.50 48.82 51.94 55.07	2219 2260 2506 2546 2587	48.9 46.6 51.3 49.0 47.0	13.2 12.8
17 18 19 20 21 22	21×5%	12 1/2 × 3/8 1/2 5/8 3/8 1/2 5/8	4×4	¥2 5⁄8	50.63 53.75 56.88 54.07 57.19 60.32	2412 2453 2493 2699 2739 2780	47.6 45.6 43.8 49.9 47.9 46.1	13.2
23 24 25 26 27	21×34	12 1/2 × 3/8 1/2 5/8 3/4 3/8	4×4	¥2 5⁄8	55.88 59.00 62.13 65.25 59.32	2605 2646 2686 2727 2892	46.6 44.8 43.2 41.8 48.8	13.3

FOUR PLATES. FOUR ANGLES.

(CONTINUED.)

	Two Web	Plates,	FOUR AN	GLES	Total	AXIS I	I. B.	Out to Out of Webs	
No.	Plates, Size in Inches	Size in Inches	Size in Inches	Thick- ness	Area, Square Inches	I	r ²	for for Equal I	
28 29 30	21×34	12 <u>1/2</u> × 1/2 5/8 3/4	4×4	<u>5</u> /8	62.44 65.57 68.69	2932 2973 3014	47.0 45.3 43.9	12.6	
31 32 33	21×7⁄8	12 1/2 × 1/2 5/8 3/4	4×4	5/8	67.69 70.82 73.94	3125 3166 3206	46.2 44.7 43.4	13.1	
34 35 36 37	21×1	12 1/2 × 1/2 5/8 1/2 5/8	4×4	1/2 5/8	69.50 72.63 72.94 76.07	3032 3072 3318 3359	43.6 42.3 45.5 44.2	13.0	
38 39 40	24×1⁄2	15 1/2 × 3/8 1/2 5/8	4×4	1/2 5/8	50.63 54.50 61.82	3163 3241 3706	62.5 59.5 60.0	15.1	
41 42 43 44 45	24×5⁄8	15 1/2 × 3/8 1/2 5/8 1/2 5/8	4×4	1/2 5/8	56.63 60.50 64.38 63.94 67.82	3451 3529 3606 3916 3994	60.9 58.3 56.0 61.2 58.9	15.1	
46 47 48 49	24×34⁄	15 1/2 × 3/8 1/2 5/8 3/8	4×4	1/2 5/8	62.63 66.50 70.38 66.07	3739 3817 3894 4126	59.7 57.4 55.3 62.5	15.2	
50 51	24×3⁄4	15 1/2 × 1/2 5/8	4×4	5/8	69.94 7 <u>3</u> .82	4204 4282	60.1 58.0	14.8	
52 53 54	24×7⁄8	15 1/2 × 1/2 5/8 1/2	4×4	1/2	72.50 76.38 75.94	4105 4182 4492	56.6 54.8 59.2	14.9	

FOUR PLATES.

FOUR ANGLES.

TR	Two Web Plates,	Two Side Plates,	FOUR AN	GLES	Total Area,	AXIS .	A. B.	Out to Out of Webs	
No.	Size in Inches	Size in Inches	Size in Inches	Thick- ness	Square Inches	I	r ²	for Equal I	
55 56	24× 7/8	15 1/2 × 5/8 3/4	4×4	5/8	79.82 83.69	4570 4647	57.3 55.5	14.5	
57 58	24×1	15 1/2 × 1/2	4×4	1/2	78.50 82.38	4393 4470	56.0	14.9	
59 60) to be	5/8 1/2 5/8		5/8	81.94 85.82	4780 4858	58.3		
61 62	18 34 8 50	1/2 5/8 3/4		3⁄4	85.26 89.14	5150 5228	60.4 58.7	-	
63	1 6.64				93.01	5305	57.0	14.8	
64 65	59.5	151/2×1/2 5/8	4×4	5/8	93.94 97.82	5356 5434	57.0 55.5		
66 67	27× 1/2	18 1/2 × 3/8 1/2		1/2	55.88 60.50	4335 4467	77.6	17.1	
68 69	1 6.00 (_£2	3/8 1/2		5/8	59.32 63.94	4839 4971	81.6 77.7	16.9	
70 71	27× 5/8	18 1/2×3/8	4×4	1/2	62.63 67.25	4745	75.8	17.0	
72 73		¹ /2 3/8 1/2 5/8		5/8	66.07 70.69	5249 5381	79.4		
74	A A A A A A A A A A A A A A A A A A A	5/8			75.32	5513	73.2	16.5	
75 76	27× 3/4	18 1/2 × 1/2 1/2	4×4	1/2 5/8	74.00 77.44	5287 5791	71.4 74.8	16.7	
77 78	7/8	1/2 5/8 1/2 5/8		1/2	82.07 80.75	5923 5697	72.2	16.7	
79	1 7.00	1.8022 33	1.11	5/8	88.82	6333	71.3		
80 81	27×1 1¼	18 1/2 × 5/8	4×4	5/8	95.57 109.07	6743 7563	70.6 69.3	16.6 16 8	

THREE

I BEAMS.

B

	T	WO BE	AMS	(NE BEA	M	Total	1997.25	
No.	Depth in Ins.	Lbs. per Ft.	Area in Sq. Ins.	Depth in Inches	Lbs. per Ft.	Area in Sq. Ins.	Area, Sq. Ins.	I	r ²
1 2 3 · 4	9	21.0	12.62	7 8 9 10	15.0 18.0 21.0 25.0	4.42 5.33 6.31 7.37	17.04 17.95 18.93 19.99	172.5 173.6 175.0 176.7	10 12 9.67 9.25 8.84
5 6 7 8	10	25.0	14.74	8 9 10 12	18.0 21.0 25.0 31.5	5.33 6.31 7.37 9.26	20.07 21.05 22.11 24.00	248.0 249.4 251.1 253.7	12.36 11.85 11.36 10.57
9 10 11 12	12	31.5	18.52	9 10 12 15	21.0 25.0 31.5 42.0	6.31 7.37 9.26 12.48	24.83 25.89 27.78 31.00	436.8 438.5 441.1 446.2	17.59 16.94 15.88 14.39
13 14 15 16	15	42.0	24.96	9 10 12 15	21.0 25.0 31.5 42.0	6.31 7.37 9.26 12.48	31.27 32.33 34.22 37.44	637.5 798.4 892.9 898.0	20.39 24.70 26.09 23.98
17 18 19 20	18	55.0	31.86	10 12 15 18	25.0 31.5 42.0 55.0	7.37 9.26 12.48 15.93	39.23 41.12 44.34 47.79	993.5* 1452. * 1606. 1612.	25.33* 35.31* 36.22 33.73
21 22 23 24	20	65.0	38.16	12 15 18 20	31.5 42.0 55.0 65.0	9.26 12.48 15.93 19.08	47.42 50.64 54.09 57.24	1706. * 2354. 2360. 2367.	35.97* 46.49 43.64 41.36
25 26 27 28 29	24	80.0	46.64	12 15 18 20 24	31.5 42.0 55.0 65.0 80.0	9.26 12.48 15.93 19.08 23.32		2038. * 3243. * 4197. 4204. 4219. t Axis A. B.	36.46* 54.86* 67.08 63.98 60.31

C

D

A---

ð

TWO CHANNELS A B ONE I BEAM.

.

	TWO CH	IANNELS	ONE I	BEAM	Total	AXIS .	A. B.	AXIS	C. D.
No.	Depth in Inches	Lbs. per Foot	Depth in Inches	Lbs. per Foot	Area, Square Inches	I	r ²	I	r 2
1 2 3 4 5	6	8.0	4 5 6 7 8	7.5 9.75 12.25 15.0 18.0	6.97 7.63 8.37 9.18 10.09	26.8 27.2 27.9 28.7 29.8	3.84 3.57 3.33 3.12 2.95	37.6 56.8 82.1 114.4 155.4	5.40 7.44 9.81 12.5. 15.4
6 7 8 9 10	6	15.5	4 5 6 7 8	7.5 9.75 12.25 15.0 18.0	11.33 11.99 12.73 13 54 14.45	39.8 40.2 40.9 41.7 42.8	3.51 3.36 3.21 3.08 2.96	67.7 99.3 139.0 188.1 247.9	5.98 8.28 10.9 13.9 17.2
11 12 13 14 15	7	9.75	5 6 7 8 9	9.75 12.25 15.0 18.0 21.0	8.57 9.31 10.12 11.03 12.01	43.4 44.1 44.9 46.0 47 4	5.07 4.73 4.43 4.17 3.94	131.5	7.81 10.2 13.0 16.0 19.3
16 17 18 19 20	7	12.25	5 6 7 8 9	9.75 12.25 15.0 18.0 21.0	'10.07 10.81 11.62 12.53 13.51	49.6 50.3 51.1 52.2 53.6	4.93 4.65 4.39 4.16 3.96	80.5 113.8 155.4 206.9 269.3	7.99 10.5 13.4 16.5 19.9
21 22 23 24 25	7	14.75	5 6 7 8 9	9.75 12.25 15.0 18.0 21.0	11.55 12.29 13.10 14.01 14.99	55.6 56.3 57.1 58.2 59.6	4.82 4.58 4.36 4.15 3.97	94.9 133.1 180.3 238.2 307.8	8.22 10.8 13.8 17.0 20.5
26 27 28 29 30	7	19.75	5 6 7 8 9	9.75 12.25 15.0 18.0 21.0	14.49 15.23 16.04 16.95 17.93	67.6 68.3 69.1 70.2 71.6	4.67 4.48 4.31 4.14 3.99		8.71 11.5 14.6 18.0 21.7

54

.

TWO CHANNELS. ONE I BEAM.

(CONTINUED.)

and a

	TWO CI	IANNELS	ONE I	BEAM	Total Area,	AXIS .	A. B.	AXIS). D.		
No.	Depth in Inches	Lbs. per Foot	Depth in Inches	Lbs. per Foot	Square Inches	I	r ²	I	<u>r²</u>		
31 32 33 34 35	8	11.25	6 7 8 9 10	12.25 15.0 18.0 21.0 25.0	10.31 11.12 12.03 13.01 14.07	66.5 67.3 68.4 69.8 71.5	6.45 6.05 5.68 5.36 5.08	110.1 150.2 199.9 260.2 333.1	10.7 13.5 16.6 20.0 23 7		
36 37 38 39 40	8	13.75	6 7 8 9 10	12.25 15.0 18.0 21.0 25.0	11.69 12.50 13.41 14.39 15.45	73.9 74.7 75.8 77.2 78.9	6.32 5.97 5.65 5.36 5.11	127.1 172.3 227.8 294.7 374.7	10.9 13.8 17.0 20.5 24.3		
41 42 43 44 45	8	16.25	6 7 8 9 10	12.25 15.0 18.0 21.0 25.0	13.17 13.98 14.89 15.87 16.93	81.7 82.5 83.6 85.0 86.7	6.20 5.90 5.61 5.35 5.12	146.2 197.0 258.9 332.9 420.8	11.1 14.1 17.4 21.0 24.9		
46 47 48 49 50	8	21.25	6 7 8 9 10	12.25 15.0 18.0 21.0 25.0	16.11 16.92 17.83 18.81 19.87	97.5 98.3 99 4 100.8 102.5	6.05 5.81 5.57 5.36 5.16	187.1 249.5 324.4 412.9 516.8	11.6 14.7 18.2 22.0 26.0		
51 52 53 54 55	9	13.25	6 7 8 9 10	12.25 15.0 18.0 21.0 25.0	11.39 12.20 13.11 14.09 15.15	96.5 97.3 98.4 99.8 101.5	8.47 7.97 7.50 7.08 6.70	126.6 171.0 225.6 291.4 370.2	11.1 14.0 17.2 20.7 24.4		
56 57 58 59 60	9	15.0	6 7 8 9 10	12.25 15.0 18.0 21.0 25.0	12.43 13.24 14.15 15.13 16.19	103.7 104.5 105.6 107.0 108.7	8.34 7.89 7 46 7.07 6.71	139.4 187.7 246.6 317.3 401.6	11.2 14.2 17.4 21.0 24.8		

TWO CHANNELS A ...

ONE I BEAM.

	TWO CH	ANNELS	ONEI	BEAM	Total	AXIS .	A. B.	AXIS (. D.
No.	Depth in Inches	Lbs. per Foot	Depth in Inches	Lbs. per Foot	Area, Square Inches	I	r ²	I	r ²
61 62 63 64 65	9	25.0	6 7 8 9 10	12.25 15.0 18.0 21.0 25.0	18.31 19.12 20.03 21.01 22.07	143.3 144.1 145.2 146.6 148.3	7.82 7.54 7.25 6.98 6.72	219.8 291.1 375.9 475.5 591.5	12.0 15.2 18.8 22.6 26 8
66 67 68 69 70	10	15.0	6 7 8 9 10	12.25 15.0 18.0 21.0 25.0	12.53 13.34 14.25 15.23 16.29	135.7 136.5 137.6 139.0 140.7	10.8 10.2 9.65 9.12 8.64	144.5 193.6 253.5 325.1 410.3	11.5 14.5 17.8 21.3 25.2
71 72 73 74 75	10	20.0	6 7 8 9 10	12.25 15.0 18.0 21.0 25.0	15 37 16.18 17.09 18.07 19.13	159.3 160.1 161.2 162.6 164.3	10.4 9.89 9.43 9.00 8.59	180.7 240.5 312.4 397.6 497.8	11.8 14.9 18.3 22.0 26.0
76 77 78 79 80	10	35.0	6 7 8 9 10	12.25 15.0 18.0 21.0 25.0	24.19 25.00 25.91 26.89 27.95	232.9 233.7 234.8 236.2 237.9	9.63 9.35 9.06 8.78 8.51	312.1 407.7 519.9 649.7 798.9	12.9 16.3 20.1 24.2 28.6
81 82 83 84 85	12	20.5	7 8 9 10 12	15.0 18.0 21.0 25.0 31.5	16.48 17.39 18.37 19.43 21.32	258.9 260.0 261.4 263.1 265.7	15.7 15.0 14.2 13.5 12.5	257.2 331.6 419.3 522.3 765.7	15.6 19.1 22.8 26.9 35.9
86 87 88 89 90	12	25.0	7 8 9 10. 12	15.0 18.0 21.0 25.0 31.5	19.12 20.03 21.01 22.07 23.96	294.9	15.2 14.6 14.0 13.4 12.4	301.9 387.7 488.1 605.1 880.4	15.8 19.4 23.2 27.4 36.8

¢

--B

TWO CHANNELS. ONE I BEAM.

(CONTINUED.)

	TWO CH	ANNELS	ONE I	BEAM	Total Area,	AXIS .	A. B.	AXIS (. D.
No.	Depth in Inches	Lbs. per Foot	Depth in Inches	Lbs. per Foot	Square Inches	I	r ²	I	r ²
91 92 93 94 95	12	30.0	7 8 9 10 12	15.0 18.0 21.0 25.0 31.5	22.06 22.97 23.95 25.01 26.90	326.1 327.2 328.6 330.3 332.9	14.8 14.2 13.7 13.2 12.4	354.4 453.2 568.1 701.1 1013.	16.1 19.7 23.7 28.0 37.6
96 97 98 99 100	12	35.0	8 9 10 12 15	18.0 21.0 25.0 31.5 42.0	25.91 26.89 27.95 29.84 33.06	362.4 363.8 365.5 368.1 373.2	14.0 13.5 13.1 12.3 11.3	522.1 651.9 801.1 1150. 1835.	20.2 24.2 28.7 38.5 55.5
101 102 103 104 105	15	33.0	8 9 10 12 15	18.0 21.0 25.0 31.5 42.0	25.13 26.11 27.17 29.06 32.28	629.0 630.4 632.1 634.7 639.8	25.0 24.1 23.3 21.8 19.8	528.4 656.3 803.2 1146. 1820.	21.0 25.1 29.6 39.4 56.4
106 107 108 109 110	15	35.0	8 9 10 12 15	18.0 21.0 25.0 31.5 42.0	25.91 26.89 27.95 29.84 33.06	643.8 645.2 646.9 649.5 654.6	24.9 24.0 23.1 21.8 19.8	545.9 677.6 828.7 1181. 1873.	21.1 25.2 29.6 39.6 56.6
111 112 113 114 115	15	40.0	8 9 10 12 15	18.0 21.0 25.0 31.5 42.0	28.85 29.83 30.89 32.78 36.00	698.8 700.2 701.9 704.5 709.6	24.2 23.5 22.7 21.5 19.7	613.8 760.1 927.4 1317. 2074.	21.3 25.5 30.0 40.2 57.6
116 117 118 119 120	15	55.0	8 9 10 12 15	18.0 21.0 25.0 31.5 42.0	37.69 38.67 39.73 41.62 44.84	864.2 865.6 867.3 869.9 875.0	22.9 22.4 21.8 20.9 19.5	834.D 1026. 1244. 1747. 2708.	22 1 26.5 31.3 42.0 60.4

.

The count	AXIS C. D.	Im	237.3	0	N. I.	13	in the	利う	10	375.0	281.8		A CARLEN		Service and			
	AXIS A. B.	r²	13.4	13.6	13.1	12.8	13.0	12.7	12.7	12.7	16.5	16.8	16.2	16.4	16.3	15.8	15.3	15.4
Ч	AXIS	I	178.7	201.1	214.7	216.2	232.3	240.1	258.3	271.2	249.4	271.3	282.0	303.0	317.2	327.8	324.8	346.6
ANGLES.	Eccen-	tricity	0.48	0.43	0.35	0.49	0.43	0.40	0.43	0.44	0.54	0.49	0.45	0.43	0.39	0.36	0.47	0.44
FOUR	Total Area.	Square Inches	13.38	15.37	16.35	16.88	17.81	18.93	20.31	21.36	15.13	16.19	17.44	18.46	19.44	20.69	21.30	22.50
	NOLES	Thickness	7.0	16	1/2	1/2	24		9 16		1/2	1/2					1.0	1/2
	BOTTOM ANGLES	Size in Inches Thickness	2 1/2 ×2 1/2	3 ×2 1/2		2 1/2 ×2 1/2	3 ×2 ½		10 10 10 10 10 10 10 10 10 10 10 10 10 1		2 1/2 ×2 1/2	3 ×2 1/2	Carl State	2 1/2×3 1/2			Y D. H.	
ý	LES	Thickness	*	5 16	3%	14	5 16		16	16	14	16		3%	*	17.12 III	A Maril	16
PLATES.	TOP ANGLES	Size in Inches Thickness	2 ×2	8.61 8.41 8.41 8.41		2 ×2		Sector Profiles	2 (K &)		2 1/2×2 1/2			ST. D. M. M.		and the state	「日本のない」	A STATISTICS
THREE	Ton Plate.	Size in Inches	12×14	日本日日の日日の日日の日日の日日の日日の日日の日日の日日の日日の日日の日日の日日		$12 \times \frac{5}{16}$		日本のなど	林田山 (1)	3% 1	13×14	A	No and the		1.6	The second	ST. M. M. M. M.	1 1 1 1 1
You ding we had she e that set of	Two Web	riates, Size in Inches	9×14	3	16	9×3%		16	後にの山田	1/2	10×14		1.6		3%	16	1/2	
		N0.		~ ~	94	Ŋ	9	2	00	6	10	11	12	13	14	15	16	17

NOV/28			111																				
439.3	421.0	480.4	505.5	516.9	540.5	563.5	507.5	541.0	590.4	637.6	629.6	682.7	700.9	782.9	767.2	799.1	800.5	833.2	883.3	902.5	832.1	882.7	933.9
15.0 14.7	23.9	22.3	21.7	21.1	20.6	20.2	28.2	28.6	27.9	28.1	27.1	27.4	27.3	28.2	27.3	27.4	26.5	25.9	26.1	26.1	25.0	25.3	25.6
357.3 367.9	427.6 446.3	455.6	474.1	510.2	528.9	547.7	506.5	526.2	591.7	631.2	610.5	653.1		757.4	741.1	765.7	764.3	787.5	826.9	841.4	784:0	824.8	864.8
0.41 0.39	0.51	0.54	0.51	0.74	0.69	0.65	0.49	0.33	0.53	0.48	0.54	0.47	0.58	0.48	0.50	0.35	0.48	0.45	0.40	0.49	0.56	0.51	0.47
23.75 25.00	17.94 19.44	20.40	21.90	24.18	25.68	27.18	17.93	18.37	21.20	22.44	22.56	23.88	24.40	26.80	27.19	27.91	28.81	30.44	31.68	32.22	31.32	32.58	33.84
32	1/2	3/8		1'6	1		72	14	12	6	12	22		38	6	22	6	10	5%	~	1/2	6	200
3 ½×2 ½	3 ×3	4 ×3	0) 0				3 1/× 3	4 ×3	3 1/2 × 3		4 ×3	100 EX 2	- 1 × 3 × 1	and a second	4 ×3	A BOLLON		a and a stress		And all all and		and the first	0
$\frac{5}{16}$	$\frac{5}{16}$			10	175		14	t		5	1/0	(10 k	3%		22	10			3/8	24	22	34	10
2 1/2 ×2 1/2	2 1/2×2 1/2						2 1%×2 1%	1/ 1/	Contraction in the						214×216	10 /0					BUATE		•
$13\times_{\overline{1}^{\overline{b}}}$	14×14			et.	01		15×14	t	22 A	01		The second		3/8	15×36	0/	and the second		2000		東京四里市		
$10 \times \frac{9}{58}$	12×¼	378	16	1/2	6	16 58	13×1/	t	5	91	3%	0/	The second	and a state	13×7_	16	71	26	16		56	0/	
18 19	20	22	23	42	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44

	V D SIXY	I	723.0	A CAS		Safe and	A PAY 2	and the second		2/185	See Por	alle and	-Q.V.BA	103 2 30		and a star		130 3 -	
「日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	B.	r ²	-	33.9	32.4	32.2	32.5	31.6	32.4	32.7	30.7	31.0	31.4	32.1	29.4	30.7	32.0	29.9	31.0
В	AXIS A.	I	704.0	758.2	734.0	751.9	806.0					1	945.7	1024.		957.	-	1005.	
ANGLES.	Reen.	tricity	0.96	0.88	0.88	1.04	0.96	0.76	0.84	0.79	0.71	0.67	0.90	0.96	0.85	0.74	1	0.81	
FOUR /	Tatal Area	Square Inches	20.93	22.37	22.68	23.36	24.78	25.87	27.68	29.06	27.62	29.02	30.09	31.87	28.61	31.18	35.40	33.59	36.43
	NGLES	Thickness	16	12	16		12	1/2	9 16	88	22	IG		58	14	6 H	11	16	3%
	BOTTOM ANGLES	Size in Inches	4×3	A CALLER OF	and the second		and the second	4×3							4×3	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		and the second second	Not State
ij	ILES	Thickness	*	16	*	16	3%	16		3%	10	3%			5 16		3/8	124	
PLATES	TOP ANGLES	Size in Inches	3×3			1	The second	3×3							3×3	たのうなの		and the second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
THREE	Top Plate.	Size in Inches	$17 \times \frac{5}{16}$		ATT ANY	ALL IN		$17 \times {}^{5}_{1^{\tilde{d}}}$	3%		16		8%	16	$17 \times \frac{5}{16}$	3%	20	3%	1/2
	Two Web	riates, Size in Inches	14×14	s	16		1210	14×3/8		F	16 ·	「「「「「「		100	14×1/2	ANNA A		16	
10,20 au	N	N0.	45	40	4 4 8	40	2	20	10			+ 4	0.4	000	57	28	29	0.9	19

1320	607	- Hull	000	788	1003	「北京」「三			TEAN	Contractory P			なもう人にい	- Lasser		下にないと、其間の	No. of Street, or Stre				- ADDA		のある
30.4 29.3	35.5 35.8	36.5	36.9	36.7	37.4	36.2	36.6	37.4	35 1	35.5	36.4	37.3	37.7	34.1	35.5	36.8	37.0	33.3	34.6	35.9	36.2	32.5	33.5
1160 1220	944 996	1059	1118	1137	938	975	1036	1130	1011	1072	1166	1266	1323	1047	1203	1360	1434	1083	1239	1396	1471	1120	1237
1.01 0.93	1.00	0.94	0.88	66.0	0.93	0.86	0.81	0.89	0.81	0.76	0.84	0.65	0.88	0.76	0.80	0.84	1.14	0.72	0.75	0.80	1.09	0.68	0.85
38.18 41.68	26.56 27.82	28.98	30.34	30.96	25.07	26.94	28.34	30.18	28.82	30.22	32.06	33.96	35.09	30.69	33.93	36.96	38.72	32.57	35.81	38.84	40.60	34.44	36.96
3%	0 L 12	19,00	%	- AL	1/2		16	%	24	16	28	5%		1/2	28	58		27	3%	28		12	9 16
4×3	3×3	4×3	いたという		4×3				「ショーター」	19 Kg	ANA	5×3	THE STREET	4×3		5×3		4×3		5×3		4×3	C
3/8	210°	I.e	7° a	16	16		3/8		16	3%		74		5 TR	30	14	X	5	3%	TA	24	15 T.R	38
3×3	3×3	- Barris		A REAL	3×3		No. No. No.			1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Star Star	3×3	TOPAL OF	Unite An estimation		16, 32	and the second	3×3	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a line	以下なった		
17×1/2	15×3%				$18 \times \frac{5}{16}$			3%	Ig		3%	18×3%	7	1.4	38	15	12/2	$18 \times \frac{5}{7\pi}$	3%	18	14	5 16	86
$14 \times \frac{56}{34}$	15×3%	San		The second second	$15 \times \frac{5}{1^6}$	3%	A REAL PROPERTY AND		16	and the second		$15 \times \frac{7}{1^8}$		24	- Indel	ANT ARE	Section and the	15×3		ALL NOT		3%	
62 63	64 65	99	69	00	69	02	10	201	73	74	15	76	27	78	64	80	81	82	83	84	85	86	87

	-	-	12.77	-	-	-	-	-	-				-		1	1	-0.9		1213
5	AXIS C. D.	I				1000	LUBI	866		A COLORED BUILDE	1. Longer	N. S. S. S. C.	1164	979	1043	1150	1092	1106	1213
2012 2012 2012 2012 2012 2012 2012 2012	A. B.	r ²	34.2	35.5	31.8	33.0	0. +0	40.3	40.2	40.7	41.1	40.9	42.0	41.6	40.2	41.2	41.2	39.0	40.0
ů.	AXIS A. B.	I	1351	1508	1270	1425	COCT	1252	1275	1347	1416	1436	1552	1038	1083	1214	1306	1128	1260
ANGLES.	Rean.	tricity	1.01	1.04	0.91	0.93	00.0	1.17	1.29	1.21	1.15	1.25	1.04	1.20.	1.11	1.31	1.10	1.04	1.23
FOUR A	Tatal Iran	Square Inches	39.45	42.47	39.97	43.20	10.44	31.06	31.72	33.10	34.46	35.08	36.94	24.93	26.93	29.47	31.67	28.93	31.47
I ⊾ ⊕́ _]	NGLES	Thickness	58	5%	22	8/2	28	12		16	28		28	7.4		12	5%	7	1/2
	BOTTOM ANGLES	Size in Inches	4×3	5×3	4×3	5×3		4×3	121		143		5×3	4×3		19/19	3 ½×3 ½	4×3	
vi vi	SEL	Thickness	18	Xe.	38	18	2	16	3%	16	1/2	16	58	200		3/8	3%	16	3/8
PLATES	TOP ANGLES	Size in Inches	3×3					3×3	The share	1000				3×3			31/2×31/2	3×3	
THREE	Ton Plate.	Size in Inches	$18 \times \frac{7}{16}$	10.	3%	1/8 1/2	2	$16 \times \frac{7}{16}$		10.25	- 12-12-1			$18 \times \frac{5}{16}$		3%	A Start	16	3/8
at Tarih	Two Web	riates, Size in Inches	15×56		*	- 13		$16 \times \frac{7}{16}$		and a				$16 \times \frac{5}{16}$	3/8			16	
48 48 88	0.0	N0.	88	68	6	16		63	94	95	36	1.6	28	66	100	101	102	103	104

		-	-								-									_	-					
1144	1361	1389	1167	1274	1195	1422	1440	1624	1227	1334	1244	1482	1489	1285	1393	1292	1541	1538	1743	1603	1505	1384	1652	1699	1715	1746
40.1	41.4	42.2	37.9	39.0	39.1	40.4	38.7	41.9	37.0	38.1	38.2	39.5	40.3	36.1	37.2	37.4	36.2	39.4	40.1	39.8	35.8	36.0	37.2	37.9	37.6	38.8
1351	1438	1991	1173	1305	1396	1483	1526	1663	1218	1350	1440	1529	1670	1262	1395	1484	1474	1714	1753	1803	1485	1572	1663	1856	1746	1948
1.04	1.22	96.0	0.97	1.15	.0.98	1.16	0.90	1.17	0.91	1.09	0.93	1.10	0.85	0.86	1.03	0.88	1.04	0.82	1.06	1.10	0.94	0.80	0.95	0.93	1.21	0.87
33.67	34.70	37.46	30.93	33.47	35.67	36.70	39.46	39.72	32.93	35.47	37.67	38.70	41.46	34.93	37.47	39.67	40.70	43.46	43.72	45.34	41.47	43.67	44.70	48.96	46.46	50.24
85	*	88	1 <u>7</u>	12	***	**	2%	200	74	22	1.28	*	100	72	2	1.25	*	%	200	200	7	:*	. %	2%	%	191
3 1/2 ×3 1/2	4 ×3	5 ×31/2	4 ×3	4 ×3	3 1/2 × 3 1/2	4 ×3	5 ×31%	5 ×3	4 ×3	Ditter and	3 1/2 ×3 1/2	4 ×3	5 ×31/2	4 ×3	1 . N.N.	31%×31%	4 ×3	5 ×31/2	5 ×3	5 ×31/2	4 ×3	3 1% × 3 1%	4 ×3	5 ×31%	4 ×3	5 ×31/2
3%	16	16	5 TR	3%	3%	24	· .	2%	202	34	3%	12	14	-35.	3%	3%	2ª	12	1	1/2	3/8	30	27	0 1 0 I	22	1.74
3 1/2 × 3 1/2	5 × 5	3 1/2 × 3 1/2	3 ×3	いろうくいろ	3 1/2 × 3 1/2	3 ×3	3 1%×3 1%	3 ×3	3 ×3		3 1/2 × 3 1/2	3 ×3	3 1/2 × 3 1/2	3 ×3	10. 1	3 1%×3 1%	3 ×3	3 ½×3 ½	3 ×3	3 1/2 ×3 1/2	3 ×3	31%×31%	3 ×3	31%×31%	3 ×3	3 ½×3 ½
18×3%	1'8	- service -	34	3%		72	•	12/2	$18 \times \frac{5}{3}$	3%	2	7	9	18× 5	36		72	4	1/2		18×3%			0.1	72	
$16 \times {}_{1}^{7}$		- text	1/2			1 × 1		- William	$16 \times \frac{9}{4^2}$	01		Charles A		16×5%			Sinche Inden	- Aller	- AN OWN		16×34			A Contraction of the		
105	100	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131

5378231	AXIS C. D.	I	1546	A Social		1211-1	a store	39	T- SOME	Stations -	Test T	いいいたた	1 1213	little T		100 CA 47	ant N	cl of the	
		r²	-	42.0	41.4	41.0	40.8	40.0	40.3	39.8	39.4	41.8	40.9	42.0	41.6	38.9	39.1	40.4	40.0
ů.	AXIS A. B.	I			_	1323	_	1317			1434	-	_				1505		1658
ANGLES.	Recon-	tricity	1.16	1.28	1.26	1.09	1.20	1.24	1.20	1.14	1.13	1.03	1.23	1.35	1.37	1.07	1.02	1.14	1.18
FOUR /	Total Area.	Square Inches	30.30	30.96	32.42	32.30	32.96	32.92	34.42	34.96	36.42	38.83	39.43	40.72	42.34	36.96	38.46	39.97	41.43
IL @ J	NGLES	Thickness	9		58	101	120	14 14	3%	64	25	3%	1 A	85	%	8	1.10	16	1 a
	BOTTOM ANGLES	Size in Inches	4 ×3	41 NO	31/2×31/2	4 ×3	Part and	3 1/2 × 3 1/2		4 ×3	3 1/2 × 3 1/2	5 ×3	5 ×31/2		5 ×31/2		5 ×3 1/2	5 ×3	5 ×3 ½
ui .	ILES	Thickness	5	38	3%	16	3/8	16 T6	38					2/1	1/2	3/8	3/8	16	7.4
PLATES.	TOP ANGLES	Size in Inches	3 X3	30 312	3 ½×3 ½	3 X3	1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 × 3 1/2		3 ×3	31/2×31/2	3 ×3	3 1/2×3 1/2	3 ×3	31/2×31/2	3 ×3	3 1/2 × 3 1/2	3 ×3	31/2×31/2
THREE	Top Plate.	Size in Inches	20×3/8	- JEST				L'ANNE ST		20×3/8		74		X		20×3%		18	
1. 1.	Two Web	Size in Inches	16×3/8	the group of		IG		1	The second second	16×1/2					1 William	$16 \times \frac{9}{14}$		Contraction of the second	and the second second
astica i		N0.	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148

	2737	669	788
41.1 40.8 37.5 36.7 38.9	38.6 40.3 34.9 38.6 40.5	50.6 51.6 51.6 51.3 51.3 51.3 51.5 51.5	46.7 46.4 48.6 48.6 45.5 47.4
1757 1808 1433 1431 1599	1641 1803 1853 1473 1473 2291	1253 1353 1353 1324 1421 1418 1418 1418 1547 1547 1622	1362 1387 1546 1546 1615 1371 1452 1611
1.29 1.31 1.17 1.17 1.31 1.31	1.30 1.23 1.26 1.33 1.33 1.16	1.38 1.26 1.28 1.28 1.28 1.28 1.20 1.19	$\begin{array}{c} 1.22\\ 1.33\\ 1.34\\ 1.30\\ 1.32\\ 1.23\\ 1.25\\ 1.25\end{array}$
42.72 44.34 38.22 38.96 41.11	42.49 44.72 46.34 44.20 50.34 56.58	24 77 26.21 26.17 27.71 27.71 27.03 28.42 30.22 30.22	29.17 29.89 31.71 33.21 30.78 32.14 33.96
20 20 10 10 10 10	14 X X 10 X 14	% + 10 + 10 / 10 / 10 / 10 / 10 / 10 / 10	r 20% r 20 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /
5 ×3 5 ×3 4 ×3 3 /2 ×3 /2 5 ×3	5 × 3 ½ 5 × 3 ½ 5 × 3 ½ 5 × 3 ½ 6 × 3 ½	4 ×3 3/2×3/2 4 ×3 3/2×3/2 4 ×3 5 ×3/2	3 × 3 3 × 3 × 3 4 × 3 × 3 × 3 3 × 3 × 3 × 3 3 × 3 × 3 4 × 3 × 3
12 20 % % 1 1	212/12/20 20 20 20 20 20 20 20 20 20 20 20 20 2	2000 100 100 100 100 00 00 00 00 00 00 00	whand who whand
3 ×3 3 ×3 ×3 3 ×3 ×3 3 ×3 ×3 3 ×3 ×3	3½×3½ 3×3 3½×3⅓ 3½×3⅓	3 ×3 3½×3½ 3½×3½ 3½×3½ 3½×3½	3 × 3 3 × 3 × 3 3 × 3 × 3 3 × 3 × 3 3 × 3 ×
20×1/2 3/8 1/3	20×15 13 13 13 13 13 13	$16 \times_{16}^{5}$	16×15 38 38 15 15 38
16×18 56	16×5% 34	18×18 3%	18×1 ⁷ 5 15
149 150 151 151 152 152	154 155 155 156 157 158 159	160 161 162 163 163 164 165 165 165	168 169 171 171 172 173 173

The second second	11		1													~			
P. F.	AXIS C. D	I		1			1.82	1 DAMS		987		31.1.1.T						1031	
	AXIS A. B.	r ²	47.4	48.8	49.1	43.5	43.1	46.3	46.4	46.8	46.8	48.0	48.4	41.7	42.2	43.9	44.5	45.8	45.0
ы ы	AXIS	I	1679	1742	1817	1436	1450	1675	1730	1741	1810	1872	1947	1443	1514	1651	1746	1806	1809
ANGL	Recon	tricity	1.22	1.28	1.27	1.23	1.36	1.17	1.21	1.39	1.36	1.42	1.40	1.32	1.28	1.33	1.25	1.31	1.46
FOUR ANGLES.	Total Area	Square Inches	35.46	35.72	37.02	33.03	33.61	36.21	37.31	37.21	38.71	38.97	40.27	34.62	35.86	37.58	39.20	39 46	40.20
l ⊂ ∞ _]	NGLES	Thickness	1/2	1/2	16	3%	16	75	38	16	12	12	16	5	16	76.	16	16	75
	BOTTOM ANGLES	Size in Inches Thickness	31/2×31/2	4 ×3	5 ×31/2	3 ×3	3 1/2 × 3 1/2			4 ×3	31/2×31/2	4 ×3	5 ×31/2	3 ×3	3 1/2 × 3 1/2	3 ×3	31/2×31/2	4 ×3	3 1/2 × 3 1/2
in the second	GLES	Thickness	3/8	3%	3%	16	16	3/8	3/8	3/8	3/8	3%	3/8	° 5 16	16	3/8	3/8	3/8	3/8
PLATES	TOP ANGLES	Size in Inches	31/2×31/2	3 ×3	3 1/2 × 3 1/2	3 ×3	31/2×31/2	3 ×3	31/2×31/2	3 ×3	31/2×31/2	3 ×3	31/2×31/2	3 ×3	31/2×31/2	3 ×3.	31/2×31/2	3 ×3	31/2×31/2
THREE	Top Plate.	Size in Inches	16×3/8	76		3 I		16×3%	100	1'6		12	100 H	$16 \times \frac{5}{16}$		3%		IB	and the second second
ar	Two Web	Size in Inches	18×1/2		đ	16		$18 \times \frac{9}{16}$				- Aler and		18×5%		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1. 7. X . X	
141 141 141 141 141 141 141 141 141 141	-	2	175	176	177	0/1	R/T	180	181	1 82	103	104	COT	186	187	188	183	19.1	IAL

	1780	
47.0 47.3 41.6 42.2 44.5 43.9	51.9 52.2 52.1 52.1 50.4 50.3 50.6	48.2 49.0 50.2 50.5 50.6 47.1 47.2 49.1 49.1
1938 2013 1724 1810 2002 2005	1632 1703 1728 1728 1788 1693 1695 1695 1727 1802	1696 1762 1793 1868 1942 2033 2033 1853 1853 1933 2008 2098 2098
1.34 1.32 1.33 1.33 1.28 1.36	1.54 1.45 1.45 1.45 1.43 1.43 1.58 1.58	1.55 1.46 1.46 1.46 1.48 1.48 1.48 1.48 1.43 1.43 1.43 1.43 1.46
41.22 42.52 41.44 42.92 44.96 45.70	31.44 32.62 32.84 34.30 34.30 34.31 34.35 34.35 35.65	35.18 36.56 36.60 37.90 37.43 37.43 37.43 38.41 38.41 38.45 38.41 38.85 40.15 42.40
70 2 10 8 2 10 10	Narloologo ranararo	Landra Lastra Lastra
4 ×3 5 ×352 3 ×352 3 ×33 3 ×33 4 ×3 3 ×33 2 ×33 5 ×33 5 ×33 5 ×33 5 ×33 5 ×33 5 ×33 5 ×33 5 ×3 5 ×	4 ×3 5 ×3% 4 ×3 3%×3% 3%×3% 4 ×3 4 ×3 4 ×3 5 ×3%	4 × 3 3/2×3/2 4 × 3 2 × 3/2 5 × 3/2 6 × 3/2 7 × 3/2 6 × 3/2 6 × 3/2 7 × 3/2 6 × 3/2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2000 100 100 100 100 100 100 100 100 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3 × 3 3 × 3 3 × 3 × 3 3 × 3 × 3 3 × 3 ×	3 × 3 3 × 3 × 3 3 × 3 × 3 × 3 3 × 3 × 3	3 3 3 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
16× ½ % %	21×3% 21 3%	21×3% 1 ⁷ 21×3% 1 ⁷
18×5% ¾	$18 \times \frac{3}{3}$ $18 \times \frac{1}{16}$	18×1⁄2 18×1 ³
192 193 194 195 195 196	198 199 200 201 201 203 203 204	206 207 208 208 210 211 212 213 215 215 215 215 215

Contraction of the states of the	11	The second second second		
1	AXIS C. D. I	2095		
Ś	AXIS A. B. I r ²	50.1 50.7 45.1 46.2 46.0 45.9	48.0 47.6 49.1 48.9 50.3 50.1	44.3 44.4 46.4 47.1
	I I	21-28 2265 1756 1879 1879 1903	2073 2082 2195 2195 2247 2358 2415 2415 2636	1987 2042 2245 2378
NGL	Eccen- tricity	1.64 1.45 1.45 1.56 1.38 1.48 1.48	1.39 1.53 1.55 1.57 1.60 1.60	1.33 1.36 1.58 1.43
FOUR ANGLES.	Total Area, Square Inches	42.47 44.65 38.90 40.66 40.65 41.44	43.15 43.71 44.72 45.96 46.99 48.21 51.55	44.84 45.94 48.34 50 46
	NGLES Thickness	100 00 00 00 00 00 00 00 00 00 00 00 00	00000000000000000000000000000000000000	0 1/2/20 1/2/2
	BOTTOM ANGLES Size in Inches   Thickn	5×3 5×3 5×3 4×3 5×3 72 4×3 5×3 72 6×3 72	4X3 5X3 5X3 5X3 5X3 5X3 5X3 5X3 2 5X3 2 5X3 2 5 5 3 2 5 5 3 2 5 5 3 2 5 5 3 2 5 5 3 2 5 5 5 5	4×3 5×3 ½ 5×3 5×3
ij	LES	8 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	~ <u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>
PLATES	TOP ANGLES Size in Inches Thic	3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 ×	3 ×3 3 ×3 ×3 3 ×3 ×3 3 ×3 ×3 3 ×3 ×3 3 ×3 ×3	3 × 3 3 × 3 × 3 3 × 3 × 3 3 × 3 × 3
THREE	Top Plate, Size in Inches	21×1/2 3/8	$21 \times \frac{1}{16}$	21×3% 1/2
g ABI	Two Web Plates, Size in Inches	18× 1 ⁸	18× 5%	18×¾
	No.	218 219 220 221 223 223 223	224 225 226 226 226 228 228 228 229 229	231 232 233 233 233

-	and the second of the second sec	
2933	1175	1911 3042
49.5 49.4 49.7	61.7 63.1 59.8 60.1 56.8 56.3 56.3 56.3 56.3 56.3 56.3 56.3 56.3	51.7 55.7 59.2 59.2 65.7 65.7 63.1 63.0 61.6 64.2 64.2
2652 2713 2853	1915 2131 2131 2113 2203 2399 2391 2471 2471 2667 2471 2667 2953	2413 2844 3232 3412 3412 2412 2801 2801 2891 3108 3347 3347
1.51 1.50 1.53	1.56 1.45 1.45 1.63 1.52 1.52 1.43 1.44 1.44 1.44 1.46 1.57 1.57	1.47 1.42 1.48 1.48 1.48 1.48 1.48 1.47 1.51 1.51 1.51 1.51 1.51
53.57 54.93 57.37	31.05 33.77 33.77 35.31 37.81 37.81 39.90 40.31 44.46 43.45 44.46 43.45 45.02 49.44	46.67 51.02 55.15 57.59 42.80 44.40 44.40 46.08 46.08 46.08 46.90 46.90 46.90 46.90
11 8/5/ 191	The part of the particular and the particular	Sound of a contraction of the co
5 ×3 5 ×3½	4 ×3 5 ×3% 5 ×3% 5 ×3% 5 ×3% 5 ×3%	3,1 <u>x</u> 3, <u>x</u> 5 x 3, <u>x</u> 6 x 3, <u>x</u> 6 x 3, <u>x</u>
18/80/20	10 10 10 10 10 10 10 10 10 10 10 10 10 1	20, 20 10 10 10 10 10 10
3 ×3 3½×3½	3 ×3 3½×3½ 3½×3½	3½×3½ 3½×3½ 3½×3½
21×5%	18 × 3% 18 × 1 18 × 1 2% 2% 2%	18×3% % 56 58 24×1 ⁻³ %
18×¾	20×3%	20×34 20×34 20×348 20×348
235 236 237 237	2338 240 241 241 242 243 244 244 244 244 244 244 244 244	250 251 252 253 255 255 255 255 255 255 255 255

	D.																	
	AXIS C. D.	I	it's the			No.		1 P C					1		111	1 8 2	10.11	5498
1885093	A. B.	r²	60.3	61.7	62.9	63.7	66.0	57.2	58.6	59.3	62.4	62.8	57.4	59.6	60.1	55.1	58.1	58.7
, Й	AXIS A.	I	2979	3197	3436	3476	3769	3055	3277	3458	4012	4201	3637	4027	4257	3717	4216	4446
ANGLES.	Eccen-	tricity	1.44	1.52	1.47	1.51	1.52	1.48	1.55	1.58	1.53	1.52	1.45	1.65	1.57	1.48	1.54	1.46
FOUR A	Total Area.	Square Inches	49.40	51.80	54 60	54,56	57.12	53.46	55.90	58.34	64.32	66.84	63.34	67.60	70.78	67.44	72.60	75.78
	NGLES	Thickness	9 T.R	58	86	「二」	11	77	64	8	11	4	3%	**	11	9 7 A	198	11
	BOTTOM ANGLES	Size in Inches	5 ×31/2		6 ×31/2	I no was	二、気いか	5 ×31/2		147 X 24	6 ×4	A State	5 ×31/2	6 ×3 ½		5 ×31/2	6 ×31/2	
vi	BLES	Thickness	38	10 18	10.	3/8	2%	3%		27		%	12		3%	1/2		3%
PLATES.	TOP ANGLES	Size in Inches	3 1/2 × 3 1/2	NGOLD NO.		14. 191	TORAL	3 1/2 × 3 1/2		でののない	ALL SALVES	NACH ZAGE	3 1/2 × 3 1/2	CENSURA D	1 4 4 5	3 1/2 ×3 1/2	Contraction in the	2. 22 M
THREE	Ton Plate.	Size in Inches	$24 \times T_{R}$	12	2	IB	1. 66	24×74	2/1	A State of the	. 56		24×1/2	3%	- TENAC	24×1/2	3%	1100
	Two Web	Fiates, Size in Inches	20×56		の人気の		CT PON S	20×34		中にきの			20×7/8		icxac.	20×1	The second	HE W
		N0.	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276

1240		2595 4394	
75.4 73.0 69.5 69.3 67.8 69.9 69.9	65.2 68.4 71.3 73.4 61.7 67.5 72.1	59.7 64.0 68.8 72.3 80.7 80.5	78.4 75.6 75.4 75.4 75.4
2660 2777 2766 3181 3181 2885 3176 3176 3176	2929 3293 3703 4034 4034 3063 3813 4564	3296 3917 4666 5389 3766 3821	3748 3937 4336 3865 3918 3918 4454
1.52 1.41 1.59 1.59 1.49 1.48 1.48 1.63	1.51 1.54 1.54 1.54 1.53 1.53 1.51 1.51	$\begin{array}{c} 1.37\\ 1.54\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\ 1.53\\$	1.55 1.45 1.45 1.47 1.47 1.60
35.27 35.27 38.02 39.81 43.62 45.43 49.19	44.95 48.18 51.94 54.93 54.93 56.50 63.31	55.17 61.24 67.77 74.50 46.69 47.47	48.40 50.22 51.15 51.03 57.07
	KXXXado alo alo alo	% % % ° % ° %	1999 191 191 191 191
5 ×31/2 5 ×31/2	3.7 5 3.7 6 3.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3 <u>1/</u> × 3 <u>1/</u> 6 × 3 <u>1/</u> 6 × 3 <u>1/</u> 2	6 ×4 6 ×3 ½ 6 ×4
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	XXXX20X 2-XX	%%%% % % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2-1-2 12 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-1-22 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-12 2-
3½×3½ 3½×3½	3½×3½	3 ½ × 3 ½ 3 ½ × 3 ½	3 <i>1</i> /2×3 <i>1/</i> 2
18×3% 16×3% 18×3% 18×3%	18 ×X 8 ×X 8 ×X 8 ×X 8 ×X 8 ×X 8 ×X 8 ×X	18×3% % % 26×13	26×12 18 18
22×34 22×34 23×15 22×15	}6 22×56 ∛4	$22 \times \gamma_8$ $22 \times T_6$	22×1/2 16
277 278 279 280 281 281 282 283	284 285 286 287 287 289 289 289	291 292 293 294 295 295 295	297 298 300 301 302 302

	6													1		7	
1	AXIS C. D.	-	A GAR														7863
3303 33	AXIS A. B.	r,	72.7	73.8	77.8	71.6	6.9.9	72.6	75.0	76.2	67.5	70.2	73.1	75.4	66.4	70.3	73.3
ES.	AXIS	1	3843	4035	4919	4178	4131	4620	5154	5499	4365	4853	5600	6283	4812	5644	6451
ANGLES.	Eccen-	11111	1.62	1.52	1.57	1.47	1.58	1.55	1.44	1.59	1.45	1.43	1.63	1.88	1.65	1.75	1.85
FOUR /	Total Arca,	solution a rectices	52.84	54.68	63.25	58.34	59.12	63.60	68.75	7,2.15	64.62	69.10	76,59	83.36	72.50	80.33	87.98
	NGLES	Inickness	1/2	16	%%	1/2		58	×4°	List	22	8	316	1%	1/2	-1 -1 -1	3/8
	BOTTOM ANGLES	DIZE IN INCHES   ILICKNESS	6×3 ½	6 V A	1	6×31/2		Prove of	6×4	Contraction of the second	6×31/2		0×4		6×31/2		The state
• • •	NOLES .	INICKBESS	3/8	16	201	3/8	16	22	16	8%	16	2%	16	34	1/2	5%	34
PLATES	TOP ANGLES	DIZ6 IN INCRES	3 1/2 × 3 1/2	NEWS .		31/2×31/2	States"	No Xo		Surger Surger	3 1/2 × 3 1/2	日本のである	大なな大な			The states	NAL ST
THREE	Top Plate,		$26 \times_{1^{\frac{1}{6}}}$	1	2 6 1 16	$26 \times T_{g}$	111	1/2	16	<u>}</u>	$26 \times \frac{7}{1^6}$	20	200	32	1/2/	3%	34
	Two Web Plates,	Size in Inches	22×5%	- SEVES		22×34		1-25×2			22×7/8		- the second		22×1		「日本の日間の
leges se	No.		303	304	306	307	308	309	310	311	312	313	315	316	317	318	319

-

1956		3100	4725	And and a
93.7 94.9 94.7 90.9 92.1	87.0 88.3 89.5 84.8 86.2 87.3	81.5 84.2 78.4 80.9 85.2	94.0 95.2 91.5 87.5 885.6 91.4 91.4 91.4 91.4 91.4 91.4 91.4	09.0
3929 4137 4197 4197 4082 4289 4353	4084 4300 4505 4237 4453 4658	4240 4668 4546 4973 5755	4152 4364 4312 4523 4523 4523 4528 4984 4984 4984 4984 4984 4984	0410
1.86 1.76 1.74 1.74 1.79	1.88 1.77 1.69 1.77 1.69 1.67 1.67	1.89 1.71 1.70 1.70 1.74	2.38 2.27 2.23 2.13 2.13 2.13 2.35 2.35 2.33 2.33 2.33 2.33 2.33 2.3	12.2
41.90 43.58 44,34 44,90 46.58 47.34	46.96 48.68 50.34 51.68 51.68 53.34	52.02 55.44 58.02 61.44 67.56	44.15 45.83 45.83 48.15 49.21 50.93 51.56 52.21 53.93 53.93 57.56	00.10
8210 8210 8608	10 0 10 2 10 0 10 0 10 00 10 00 10 10 10 10 10 10	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	agaZabaZZabaZzaa	Tõ
5×3 1/2	5×31⁄2	5×31/2 6×31/2	5 × 3 ½ 5 × 3 ½ 5 × 3 ½	2/000
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	% 1/2 / % 1/2 / / / / / / / / / / / / / / / / / /	%.76%.76%	% 198 198 19 8 19 8 19 19 19 19 19 19 19 19 19 19 19 19 19	/2
3 ½×3 ½	31 <b>4</b> ×31 <u>6</u>	3 ½ × 3 ½	3½×3½	Name and Association
20×1/2	20×1/2	20×½. %	288×14	%
24×3⁄8 16	24×1/2 16	24×58 ¾	24×3% 175 1/5	
320 321 321 323 323 324 325	326 328 328 328 329 330 331	332 333 334 335 335 335 335	3337 3339 3340 341 342 3442 3443 3445 3445	0+0

I ......TY

	AXIS C. D.	T	0000	ALL ALL					True -	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a line and a	The second second			10 10 10 10 10 10 10 10 10 10 10 10 10 1			9701
**************************************	A. B.	<b>r</b> ²	92.4	82.2	83.7	89.3	91.0	77.8	79.2	83.0	84.8	87.9	76.9	80.0	84.2	76.8	80.8	84.9
ES.	AXIS A. B.	I	5740	4462	4684 5118	5721	6210	4612	4838	5437	5857	6532	5153	5718	6668	5873	6796	7830
IDN	Eccen-	tricity	2.22	2.32	2.39	2.33	2.38	2.30	2.20	2.17	2.33	2.18	2.00	2.01	2.19	2.01	2.21	2.28
FOUR ANGLES	Total Area,	Square Inches	62.11	54.27	59.50	64.09	68.28	59.31	61.05	65.50	69.05	74.28	67.05	71.44	79.18	76.50	84.08	92.26
		<b>Fhickness</b>	16	16	247	1.7	16	3%	15	20	64	11	78	16	28	10/10/	9 16	34
	BOTTOM ANGLES	Size in Inches	6×31/2	5×31/2	6×31%	•	6×4	5×31/2		6×31/2	5000	6×4	5×31/2	E CONTRACTOR	6×4	5×31/2	6×4	N. S. S. S. S.
v	ILES	Inickness	9 16	3/8	10×1	64	3%	3/8	15	1/2	16	5/8	16	22	2%	12/	58	34
PLATES	TOP ANGLES	DIZE IN INCHES	31/2×31/2			Ser and a second		3 1/2×3 1/2					3 1/2×3 1/2				ちょうちょう	
THREE	Top Plate, Siza in Inches	SONULI III DALIO	$28 \times \frac{9}{1.6}$	1'6	24	16 16	3%	$28 \times \frac{7}{16}$	and the second	1/2	14	• . 85	$28 \times \frac{7}{16}$ 3	12/2	3%	14	5% 8%	34
	Two Web Plates,	Size in Inches	$24 \times \frac{9}{16}$	38				24×34	- North All		and the second s		$24 \times 7/_{8}$	N. T. I.		1	Contraction of	
	No.	-	347	340	350	351	352	353	354	355	905	357	358	359	360	361	202	303

TWO CHANNELS A-

D

C JBRMARD OF

ONE PLATE.

	TWO CI	HANNELS	Dist.	Top Plate,	Total Area,	Eccen-	AXIS	A. B.	AXIS C. D.
No.	Depth in Inches	Lbs. per Foot	b. to b. [s	Size in Inches	Square Inches	tricity	I	r ²	I
1	5	6.5	4.0	8×1/4	5.90	0.89	23.9	4.05	35.8
2	51 (Bet		6.0	10X1/4	6.40	1.03	25.3	3.95	69.3
3	22 3 2:0	9.0	4.0	8×14	7.30	0.72	27.8	3.81	44.6
4	12/2/3		6.0	10×1/4	7.80	0.84	29.5	3.78	86.3
5		11.5	35	8X1/4	8.76	0.60	31.5	3.59	46.8
6	56 118 P		5.5	10×1/4	9.26	0.71	33.4	3.61	94.2
7	6	8.0	6.0.	10×1/	7.26	1.08	42.0	5.79	81.1
8			8.0	12×1/	7.76	1.21	44.0	5 67	134.5
9	12924	10.5	5.5	10×1/4	8.68	0.90	47.6	5.48	88.0
10	10		7.5	12×1/4	. 9.18	1.02	49.9	5 44	149.6
11	8.6 23	13.0	5.5	10×1/4	10.14	0.77	53.0	5.23	104.5
12	1.71.35		7.5	12×14	10.64	0 88	55.7	5.23	177.2
13	2.8 36	15.5	5.0	10×1/4	11.62	0.67	58.2	5.01	108.0
14	医门后口		7.0	12×1/4	12.12	0.77	61.1	5.04	187.9
15	7	9.75	5.5	10×1/4	8.20	1.11	65.1	7.93	84.7
16			7.5	12×1/	8.70	1.25	68.1	7.82	143.2
17	1.12.1	12.25	5.5	10×1/	9.70	0.93	72.8	7.51	100.6
18	1.1 2.0	58.4 10	7.5	12×1/	10.20	1.07	76.2	7.47	170.1
19	0 F. 18 C	14.75	5.0	10×1/4	11.18	0.81	79.9	7.15	103.6
20	51101	\$ A 64	7.0	12×14	11.68	0.93	83.7	7.17	180.1
21	24 [B.A	17.25	5.0	10×1/4	12.64	0.72	86.8	6.86	118.7
22	ab. 19.5	8 8 8 8	7.0	12×1/4	13.14	0.83	90.8	6.91	206.0
23	10-14-1	19.75	4.5	10×1/4	14.12	0.64	93.5	6.62	117.8
24	SE 8.0	S1 6-03	6.5	12×14	14.62	0.74	97.8	6.69	210.4
25	8	11.25	5.0	10×1/4	. 9.20	1.12	95.6	10.4	86.9
26	94 J. C	29.8.81	7.0	12×14	9.70	1.28	100.0	10.3	150.0
27	16 38.8	13.75	5.0	10×14	10.58	0.97	104.5	9.88	99.4
28	1.4 48	8 8.83	7.0	12×1/4	11.08	1.12	109.2	9.86	172.1
29	as last	16.25	5.0	$10 \times \frac{5}{16}$	12.69	1.03	120.6	9.50	118.9
30	ET RG	21 1-03	7.0	12× 5	13.31	1.17	126.4	9.49	205.8
31	0.16 97.0	18.75	4.5	10×3/8	14.77	1.06	136.7	9.26	122.7
32	26.16.1	18.83	6.5	12×3/8	15.52	1.21	143.7	9.26	218.6
33	10114.0	21.25	4.5	10×3/8	16.25	0.97	146.2	9.00	136.4
34	- or all	1 1.21	6.5	12×3/8	17.00	1.11	153.7	9.04	242.6

## TWO CHANNELS. ONE PLATE.

(CONTINUED.)

					m	1	1		
	TWO CH	IANNELS	Dist.	Top Plate,	Total Area,	Eccen-	AXIS A	A. B.	AXIS
No.	Depth in Inches	Lbs. per Fooi	b. to b. [8	Size in Inches	Square Inches	tricity	I	r ²	C. D. I
35	9	13.25	7.0	12×1/4	10.78	1.29	140.9	13.1	170.8
36 37	W. STW	15.0	9.0 7.0	14×¼ 12×¼	11.28 11.82	1.44 1.17	146.3	13.0 12.7	263.6 187.5
38	1	10.0	9.0	14×1/	12.32	1.31	155.4	12.6	289.6
39		20.0	6.5	12X 5	15.51	1.13	183.3	11.8	222.9
40 41		25.0	8.5 6.0	$14 \times \frac{5}{16}$ $12 \times \frac{3}{8}$	16.14 19.20	1.26	190.8	11.8 11.3	351.3
42		40.0	8.0	14×3/8	19.95	1.23	226.5	11.4	404.8
43	10	15.0	6.5	12×1/4	11.92	1.29	192.8	16.2	175.5
44	1000		8.5	14×1/4	12.42	1.44	199.8	16 1	275.0
45 46	in the	20.0	6.5 8.5	$12 \times \frac{5}{16}$ $14 \times \frac{5}{16}$	15.51 16.14	1.25	233.0 242.3	15.0	225.8 354.8
47	12.100	1000	10.5	16×5	16.76	1.54	250.7	15.0	516.1
48	10100	25.0	6.0	12×3/8	19.20	1.22	274.8	14.3	253.4
49 50	3 . 39	111	8.0	14×3/8 16×3/8	19.95 20.70	1.37	286.2 296.8	14.4	406.3 599.1
51	12	20.5	8.0	14×1/	15.56	1.38	358.0	23.0	331.9
52	CHARLEN A	25.0	7.5	14×1/	18.20	1.18	394.1	21.7	354.4
53		31.2.5	7.5	14× 5	19.08	1.41	415.9	21.8	368.7
54 55			7.5	$14 \times \frac{3}{8}$ $16 \times \frac{5}{16}$	19.95 19.70	1.63 1.56	436.2 429.4	21.9 21.8	383.0 548.8
56			9.5	16×3/8	20.70	1.79	441.2	21.3	570.2
57	WALLA.	116	11.5	18×3/8	21.45	1.95	465.2	21.7	798.5
58	527. 23	30.0	7.5	$14 \times \frac{5}{16}$	22.02	1.22	456.4	20.7	427.6
59 60	SELC	2 10 1	7.5	$14 \times \frac{3}{8}$ $14 \times \frac{7}{16}$	22.89	1.42	478.4 499.4	20.9	441.9 456.2
61	100 105	a 8.85	9.5	$16 \times \frac{16}{16}$	22.64	1.36	471.1	20.8	636.6
62	198 29	2-1-2004	9.5	16×3/8	23.64	1.57	494.9	20.9	657.9
63 64	7250-102		9.5 11.5	$16 \times \frac{7}{16}$ 18×38	24.64 24.39	1.77	517.3 510.4	21.0	679.3 921.3
65	10. 11		11.5	$18 \times \frac{7}{16}$	25.52	1.92	534.2	20.9	951.8
66	Sills.	35.0	7.0	14×3/8	25.83	1.26	518.8	20.1	469.6
67		0 0 - + 0	7.0	$14 \times \frac{7}{16}$	26.71	1.43	541.4	20.3	473.8
68 69		1 2.25	7.0	14×1/2 16×3/8	27.58 26.58	1.59	562.8 536.6	20.4	488.1 695.0
70.	10.2 19.6	8. 4. 2	9.0	16×7	27.58	1.58	560.7	20.3	716.3
71			9.0	16× 1/2	28.58	1.75	583.8	20.4	737.7 983.6
72 73		1128	11.0 11.0	$18 \times \frac{3}{8}$ $18 \times \frac{7}{16}$	27.33 28.46	1.53	553.3 579.1	20.3	983.6
. 74	38 9.	F1-530	11.0	18×1/2	29.58	1.90	603.4	20.4	

Ċ

	TWO CH	ANNELS	Dist.	Top Plate,	Total Area,	Eccen-	AXIS A	. B.	AXIS C. D.
No.	Depth in Inches	Lbs. per Foot	b. to b. [s	Size in Inches	Square Inches	tricity	I	r²	I
75	15	33.0	9.0	$16 \times \frac{5}{16}$	24.80	1.54	859.2	34.6	
76			9.0	16×3/8	25.80	1.79	897.4	34.8	
77	Section 2.		11.0	18×3/8	26.55	1.96	922.8	34.8	983.1
78	1242	05.0	13.0	20×3/8	27.30	2.11	946.8	34.7	
79	Bank	35.0	9.0	$16 \times \frac{5}{16}$	25.58	1.50	875.8 914.7	34:2	699.3 720.6
80 81	Service's	1.00	9.0	$16 \times \frac{3}{8}$ $16 \times \frac{7}{16}$	26.58	1.96	914.7	34.4 34.5	
82		1000	11.0	18×3/8	27.33	1.90	940.5	34.4	
83	10111		11.0	$18 \times \frac{7}{16}$	28.46	2.14	979.7	34.4	
84	1.0.00		13.0	20×3/8	28.08	2.05	965.0		1360.
85	Successive Providence	· ·····	13.0	20×7	29.33	2.30	1006.		1402.
10.5	ALC: ALC				A Contraction	1.4	Sec. 14	1.1	
86		40.0	8.5	16×3/8	29.52	1.56	977.6	33.1	
87	Saute		8.5	$16 \times \frac{7}{16}$	30.52	1.77	1017.	33.3	
88 89	1 T.		8.5 10.5	16×1/2	31.52	1.97	1054. 1005.	33.4 33.2	785.2
90			10.5	$18 \times \frac{3}{8}$ $18 \times \frac{7}{16}$	30.27 31.40	1.94	1005.	33.3	1087.
91	A. A.	100	10.5	18×1/2	32.52	2.15	1086.		1118.
92	An to	126 1 2	12.5	20×3/8		1.86	1031.		1432.
93	100	Contraction of the second	12.5	$20 \times \frac{7}{16}$	32.27	2.09	1075.		1474.
94	12		12.5	20×1/2	33.52	2.31	1117.		1515.
95		45.0	8.5	16×3/8		1.42	1039.	32.0	821.0
96		1911	8.5	$16 \times \frac{7}{16}$	33.48	1.61	1080.	32.3	842.0
97			8.5	16×1/2	34.48	1.80	1119.	32.5	863.3
98 99	5. 22. 22	1-120	8.5 10.5	$16 \times \frac{5}{8}$ $18 \times \frac{3}{8}$	36.48 33.23	2.14	1194. 1068.	32.7 32.2	906.0 1168.
100		Same.	10.5	$10 \times \frac{7}{8}$ $18 \times \frac{7}{16}$	34.36	1.77	1112.	32.4	1199.
101	9-1-1-49		10.5	18×1/2	35.48	1.97	1154.	32.5	1229.
102			10.5	18×5/8	37.73	2.33	1233.	32.7	1290.
103			12.5	20×3/2	33.98	1.70	1096.		1582.
104	Ne		12.5	20×7	35.23	1.92	1142:		1624.
105	1		12.5	20×1/	36.48	2.12	1186.	32.5	1666.
106			12.5	20×5%	38.98	2.51	1269.	32.6	1749.
107	and -	-	16,5	24×1/2	38.48	2.42	1246.	32.4	2760.
108		Section 1	16.5	24×5/8	41.48	2.83	1335.	32.2	2904.

						-	-					-	-
1 Page	AXIS C D	I	2385	0.0			10						
ATE	A. B.	r2	42.7	43.2	42.0	43.4	41.9	43.2	44.3	39.5	40.9	43.8	42.5
	AXIS A. B.	I	1953	2133	2169 2183	2336	2364	2534	2750	2127	2493	2971	2999
SILES	Eccen-	tricity	1.20	1.21	1.27	1.34	1.28	1.31	1.21	1.16	1.18	1.29	1.24
FOUR ANGLES.	Total Area,	Inches	45.78	49.34	. 51.59 52.90	53.84	56.46	58.71	62 05	53.82	60.96	67.87	70.50
FOUI	Sec.	Thickness	16	74 %	16	74		ĬĞ	11	%	12	11	
	BOTTOM ANGLES	Size in Inches	5×31/2			5×3 1/2				5×31/2		「たい日本のの	
	LES	Thickness	3/8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3%		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/2	3/8		1/2	
LES.	TOP ANGLES	Size in Inches	3 1/2×3 1/2	日本市田		31/2×31/2	20.0			3 1/2 × 3 1/2		「たりた湯	
E PLATES.		Size in Inches	10 1/2×3/8	10 m	2	10 1/2 × 3/8	74%	% <u>%</u>		10 1/2×3/8	7	•	%
FIVE	Top Plate,	Size in Inches	21×3%	216 8 8	16	21×1/2		16		21×3/8	<i>¹</i>	3%	an The
1217 121 221 121 2311 121 2311 121 2311 121 2311 121 2311 121 2311 121	Two Web Plates		18×1/2	*		18×5%		No. Contraction		18×34		and in lot of	
22.4 27777	Na	2.01-6.1		ca co	4 10	9	6	0 0	10	11	13	14	15

1				
3977.		e se	「日間」	
54.7 52.5 53.2 51.1	54.6 52.6 50.9	50.8 49.1 51.5 49.9	54.7 53.1 53.8 52.3	50.4 52.0 48.8 51.2
2943 2988 3117 3162	3338 3383 3429 3429	3195 3240 3646 3691	4174 4213 4400 4440	3822 4458 3903 4645
1.32 1.32 1.25 1.15	1.28 1.22 1.16	1.26 1.20 1.25	1.32 1.28 1.29 1.25	1.21 1.34 1.25 1.26
53.78 56.90 58.78 61.90	61.18 64.30 67.43	62.84 65.96 70.84 73.97	76.32 79.32 81.84 84.84	75.84 85.78 79.94 90.78
16 B	<u>3</u> 8	% %	1-1 5 7	20-140 - 14-14-1 20-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-14-00-
5×31⁄2	5×3 ½	5×31/2	6X4	5×31⁄2 6×4 5×31⁄2 6×4
**	*	3% 12	% %	XXXX
3½X3%	3 ½×3 ½	3 ½ × 3 ½	3 1/2 × 3 1/2	3 <i>1</i> 4×3 <i>1</i> /2
12 ½× ¾	12 ½ × 3/8 12 5/2	12 ½×3% ½ 5%	12 × ½ % %	12 ½ × ½ 12 × 5% 12 × 5% 12 × 5% 12 × 5%
$24 \times_{1^{\tilde{d}}}^{7_{\tilde{d}}}$	24×1/2	24×17 15 1/2	24×5%	24 × % % %
20×1/2 56	20×5%	20×¾	20×34	20×7% 1
16 17 18 19	20 21 22	23 25 26 26	27 28 29 30	31 32 33 34

				-						-	-
	AXIS	I	5492								
なな時代	B.	r²	66.8	67.2	63.7	64.4	60.0 62.8	60.8	64.8	59.6	61.4
and the second s	AXIS A. B.	I	3959	4593	4058	4683 4744	4414 4903	4971	5810	4610	5132
ILES	Eccen-	tricity	1.27	1.22	1.34	1.29	1.27	1.21	1.33	1.21	1.18
FOUR ANGLES.	Total Area,	Inches	59.28	68.32	63.72	72.72	73.62 78.10	81.73	89.65	18.77	83.60
FOUI	NGLES	Thickness	$\frac{9}{16}$	$\frac{11}{16}$	1/2	3%	10.10	2	16	1/2	*
	BOTTOM ANGLES	Size in Inches	6×3 ½	6×4	6×31/2	6×4	6×31/2		6×4	6×31/2	
	SELES	Thickness	3/8	7%	3/8	12	r#2	•	3%	7. 7.6	20
л В С	TOP ANGLES	Size in Inches	3 1/2 × 3 1/2		3 1/2 × 3 1/2		31/2×31/2		3 ½×3 ½	Six Six	
E PLATES.	Side Plates,	Size in Inches	14 ½× 3/8	14 ×1/2	14 1/2×3/8	14 × 1/2 × 5/2	14 ½× ½	%	14 × 5%	$14 \frac{14}{12} \times \frac{7}{16}$	12
FIVE	Top Plate,		$26 \times \frac{7}{16}$	12	$26 \times \frac{7}{16}$	22	$26 \times \frac{7}{16}$	•	26×5%	14	2
T .	Two Web	Size in Inches	22× 1/2		22×36		22×34	- North	22×¾	3/2	
****	No		35	37	38	6 4 0 4 1 4 1	42	44	45	47	48

1886	6603	12-1-12	
62.8 58.6 61.0 62.8	75.4 72.3 76.4 73.2 73.2 75.0	69.0 71.7 74.4 67.8 63.9 63.9 72.1	69.7 67.8 71.8 70.0 74.1 72.4
5911 5100 6009 6893	4641 4749 5430 4797 5566 6709	4948 5875 7017 5527 6147 7154	6197 6303 7188 7286 8323 8421
1.38 1.37 1.42 1.48	1.88 1.76 1.84 1.84 1.89 1.89	1.90 1.73 1.77 1.65 1.65 1.63	1.73 1.65 1.90 1.90 1.83 1.92 1.86
94.09 87.00 98.46 109.73	61.59 65.71 71.06 66.65 76.00 88.28	71.69 82.00 94.28 87.94 87.94 99.18	88.88 93.00 100.08 104.08 112.26 116.26
XXIIX	76 00 10 10 10 10	100 10 100 100 100 100 100 100 100 100	2 ¹³⁰ 2 2
6×4 6×3 ½	5×3 <i>1</i> /2 6×3 <i>1</i> /2 6×3 <i>1</i> /2 6×4	5×3 <i>1</i> 2 6×3 6×4 5×3 5×3 2 6×4 6×4	5×3½ 6×4
×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	× 1 × × × × ×	XXXX 42.4%	72 36 34
3 1/2 × 3 1/2	3½×3½ 3½×3½	3½×3½ 3½×3½	3 ½ × 3 ½
$14 \times 58$ $14 y_2 \times y_2$ 34 34	$16 \frac{1}{2} \times \frac{3}{2}$ $16 \frac{1}{2} \times \frac{3}{2}$ $16 \frac{1}{2} \times \frac{3}{2}$ $16 \times \frac{3}{2}$	$16 \frac{1}{5} \frac$	16 ½ × 38 16 × ½ 16 × ½ 36
26 × 35 * 35 * 35 * 35 * 35 * 35 * 35 * 35 *	28×17 28×17 28×17 %	28X 7.7 88 7.7 88 75 88 75 88 75 88	28×15 58 34
$22 \times \frac{1}{1}$	24× 1/2 24× 5/8	24×34 24×7/8	24×1
52 52 52	555 555 555 555 585 585 585 585 585 585	59 60 63 64 64	65 66 66 66 70 70

. 76	FIVE	PLATES	.s	- 4	æ.	FOUR	ANGLES.	LEG.			
Two Web Plates,	Top Plate, Siza in Inchae	TOP ANGLES	ILES	BOTTOM ANGLES	Notes	Flange Plates,	Total Area, Sumare	AXIS A. 1		Becen-	AXIS C. D.
in Inches	STATI III DTIC	Size in Inches	Thickness	Size in Inches	Thickness	Size in Inches	Inches	I	r 2		I
18×1/2	21×1/2	31/2×31/2	38	3 ½×3 ½	24	4 × 58	44.96	2524		0.86	2328
*	16	No. 1		4 ×4	28/2	4 ½× 5%	49.62	2656	57.8	0.51	2657 2572
2	16	12. 1		2.3	1 28	2.20	54.12	2993		0.47	2831
20× 1/2	24×1/2	31/2×31/2	3%	4 ×4	74:	5 × 1/2	49.46	3403		1.01	3667
3%	12 X	N. Y	10.1.2		\$ 70		54.46	3574	3 40	0.92	
	1 <u>6</u>		74	-	38	*	57.68 60.47	3869 4129	67.1 68.3	0.86	
21× 1/2	24×1%	3 1%×3 1%	3/8	4 ×4	71	5 ×14	50.46	3797	75.2	1.04	3735
1			203	2	28	***	54.97	4256		0.68	4195
	٦ٌð		%% %	5 ×31%	*	6 × 5%	58.34	4694	80.5	0.54	4657

	and the second second		State of the		
4365 4968 5422	4519 5120 5573	5193 5443 5716 6186 6518	5066	1	5275 6095 6521 7275 8038
0.61 0.50 0.22	0.59 0.48 0.21	0.23 0.21 0.21 0.20 0.20 0.16	0.88 1.03 1.21	0.68 0.39 0.39	0.92 0.77 1.00 0.07 0.07
73.8 76.9 79.4	72.1 75.3 77.8	72.9 75.1 76.3 78.1 79.1	84.7 80.7 85.6	86.5 79.9 83.6	99.2 96.4 99.5 98.9
4220 4888 5426	4317 4985 5523	4911 5282 5619 5989 6365	4573 4921 5920	5974 5578 6386	5553 6266 6965 7078 8115
57.21 63.59 68.37	59.84 66.22 71.00	67.34 70.34 73.62 76.72 80.38	53.96 61.00 69.22	69.09 69.84 76.37	55.96 65.00 70.09 82.26 82.26
6×% %%	6×% %	6×5% 34 7×34	6×1/2 5%	6×34 5% 3%	6×% % 7×9 13
74%X	XXX	* ***	72 38	58 34	X X XX X
5×31/2	5×31/2	5×3 ½ 6×4	5×3 ½	5×31/2	5×3 ½ 6×4
%%%	%%%~	<u>%</u>	×8.74	27	×8.72
3 1/2 × 3 1/2	31/2×31/2	3 ½ × 3 ½	3 ½ × 3 ½	31/2×31/2	3 ½ × 3 ½
24× 1/2 9 58	24×1/2 16 38	24 × 1/2 24 × 1/2 56 36 34 34	26×1/2	26×58 %2 %8	26×%
21×5%	$21 \times \frac{1}{16}$	21×¾	22× ½ \$6	22×5% 34	24×% % %
14 15 16	17 18 19	20 23 23 23 24	25 26 27	0 70 88 0 70 88	31 32 32 32 32 32 32 32 32 32 32 32 32 32

and the second s				10 M 1				in the second
	AXIS C. D.		2735	3357	4347	6113 9213-	4471	
	Eccen- tricity			0.67		0.83 0.78 0.76		0.63
· · · · · · · · · · · · · · · · · · ·	A. B.		49.2 51.4	47.3 48.0	60.1 59.9	58.1 57.6 59.0	65.3	66.0
ES.	AXIS	-	2601 2933	2720 3077	3515 3847	3685 4016 4277	3940 4440	4486 4902
ANGLES	Total Area, Sumare	Inches	52.84 57.12	57.46 64.12	58.46 64.68	63.46 69.68 72.47	60.21 67.97	67.93 71.84
FOUR	Flange Plates,	Size in Inches	4 × 5% 4 ½× 5%	11.20	5 ×1/2	<u>%</u>	5 × 1/2 5%	6 ×5%
	Thick-	nese	14%	74 76	74%	27779	76.76	*
U0	BOTTOM ANGLES		312×312 4 ×4		4 ×4	1	4 ×4	5 ×31/2
	ES Thick-	ness	3%		3%	X	20 10	× 100
E S	TOP ANGLES	Size in Incnes	3 ½×3 ½		31/2×31/2	22.20	3 1/2 × 3 1/2	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -
V PLATES.	Side Plates, Size in Inches	SOUNT IN DOILD	$10 \frac{1}{2} \times \frac{3}{3}$ 10 $\times \frac{3}{3}$	12	12 × 3/8 1/	1×8×1/2	13 × 3%	13 1/2 × 1/2
SEVEN	Top Plate,	SOMANT III DZIG	21×1/2 9	10 22	24×1/2	2°2	24×14	9 16
N. Maria	Two Web Plates,	Size in Inches	18×1/2	<u>}</u>	20×1/2	<u>}</u>	21×1/2	HAND
机装饰复数 清	No.	N.B.	10	ω <del>4</del>	n cu	0000	10	13

Carlos and the second second	1.6		A STATISTICS	and the second second	and the second states of the
•	ala da	6777	6444	1 10 21	6844 10381
0.50 0.39 0.18	0.48 0.38 0.17	0.18 0.17 0.17 0.21 0.21	0.69 0.83 0.96	0.54 0.32 0.32	0.71 0.60 0.77 0.11 0.06
62.6 64.0 66.7	61.7 63.1 65.8	61.4 63.5 64.9 66.9 68.2	70.6 68.7 71.6	72.2 69.2 71.0	81.9 81.6 82.1 78.8 81.2 81.2
4428 5148 5684	4526 5244 5780	5169 5539 5876 6218 6594	4836 5188 6258	6300 5834 6706	5937 6650 7443 7495 8628
70.71 80.47 85.25	73.34 83.10 87.88	84.22 87.22 90.50 92.97 96.63	68.46 75.50 87.35	87.22 84.34 94.50	72.46 81.50 90.72 95.10 106 26
6 *% %	6×% 8×%	6×5% 7×34	6×1/2 5%	6×4 8%	6× % 55 56 56 56 56 56 56 56 56 56
79.3% 74	76%%	% % % % %	74 7%	3% %	× ×××
5×3 1/2	5×31/2	5×31/2 6×4	5×31/2	5×31/2	5×3 1/2 6×4
× × ×	18 74 18 74	74	%%	74	X6.X4
3 ½ × 3 ½	3 14×3 1/2	3 1/2 × 3 1/2	3 ½×3 ½	3 ½×3 ½	3 1 <u>/</u> × 3 1/2
13 1/2 × 1/2 56	13 1/2 × 1/2 5/6	13 ½ × 5% 13 × 5%	14 ½× ½ 56	14 × 3%	16 ½ × ½ 16 × 5%
24× 1/2 16 56	$24 \times \frac{9}{16}$	24 4 7 7 7 7 7 7 8 7 7 8 7 7 8 7 7 8 7 8	26×1/2 16	26×%	26× % %%
21×5%	$21 \times \frac{1}{2} \frac{1}{6}$	21×34	22×1/2 36	22×58 34	24×% %
14 15 16	17 18 19	22 23 24	25 26 27	28 29 30	31 32 35 35

10022	VA	LUES		-	1111	gth in us of		on in	Inches	1.				
r ² in	00		-	L	ENGT	H IN	FEET		land) Listi	Đầ	100 E			
Inches	8	10	12	14	15	16	18	20	22	24	26			
0.0 0.1 0.2 0.3 0.4	640 320 213 160	1000 500 333 250	1440 720 480 360	1960 980 653 490	750 562	640	1010		2000 1000 30 0000					
0,5 0.6 0.7 0.8 0.9	128 107 91 80 71	200 167 143 125 111	288 240 206 180 160	392 327 280 245 218	450 375 321 281 250	512 427 366 320 284	648 540 463 405 360	667 572 500 444	692 605 538	720 640	751			
1.0 1.1 1.2 1.3 1.4	64 58 53 49 46	100 91 83 77 71	144 131 120 111 103	196 178 163 151 140	225 205 187 173 161	256 233 213 197 183	324 295 270 249 231	400 364 333 308 286	484 440 403 372 346	576 524 480 443 411	676 615 563 520 483			
1.5 1.6 1.7 1.8 1.9	43 40 38 36 34	40         62         90         122         141         160         202         250         302         360           38         59         85         115         132         151         191         235         285         339           36         56         80         109         125         142         180         222         269         320           34         53         76         103         118         135         171         211         255         303           32         50         72         98         112         128         162         200         242         288												
2.0 2.1 2.2 2.3 2.4	32 30 29 28 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
2.5 2.6 2.7 2.8 2.9	26 25 24 23 22	40 38 37 36 34	58 55 53 51 50	78 75 73 70 68	90 87 83 80 78	102 98 95 91 88	130 125 120 116 112	160 154 148 143 138	194 186 179 173 167	230 222 213 206 199	270 260 250 241 233			
3.0 3.1 3.2 3.3 3.4	21 21 20 19 19	33 32 31 30 29	48 46 45 44 42	65 63 61 59 58	75 73 70 68 66	85 83 80 78 75	108 105 101 98 95	133 129 125 121 118	161 156 151 147 142	192 186 180 175 169	225 218 211 205 199			
3.5 3.6 3.7 3.8 3.9	18 18 17 17 16	29 28 27 26 26	41 40 39 38 37	56 54 53 52 50	64 62 61 59 58	73 71 69 67 66	93 90 88 85 83	114 111 108 105 103	138 134 131 127 124	165 160 156 152 148	193 188 183 178 173			
4.0 4.1 4.2 4.3 4.4	16 16 15 15 15	25 24 24 23 23	36 35 34 34 33	49 48 47 46 45	56 55 54 52 51	64 62 61 60 58	81 79 77 75 74	100 98 95 93 91	121 118 115 113 110	144 141 137 134 131	169 165 161 157 154			
		12.55		-	N				-					

	99			LEN	IGTH	IN F	EET					r ²
28	30	32	34	36	38	40	42	44	46	48	50	in Inches
												0.0 0.1 0.2 0.3 0.4
			·	No. and						ALL PARTY		0.5 0.6 0.7 0.8 0.9
784 713 653 603 560	818 750 692 643	853 788 731	889 826	926	States -							10 1.1 1.2 1.3 1.4
523 490 461 436 413	600 562 529 500 474	683 640 602 569 539	771 723 680 642 608	864 810 762 720 682	963 903 849 802 760	941 889 842	980 928					1.5 1.6 1.7 1.8 1.9.
392 373 356 341 327	450 429 409 391 375	512 488 466 445 427	578 551 526 503 482	648 617 589 564 540	722 688 656 628 602	800 762 727 696 667	882 840 802 767 735	968 922 880 842 807	962 920 882	960	10004	20 2.1 2.2 2.3 2.4
314 302 290 280 270	360 346 333 321 310	410 394 379 366 353	462 445 428 413 399	518 498 480 463 447	578 555 535 516 498	640 615 593 571 552	706 678 653 630 608	774 745 717 691 668	846 814 784 756 730	922 886 853 823 795	962 926 893 862	2.5 2.6 2.7 2.8 2.9
261 253 245 238 231	300 290 281 273 265	341 330 320 310 301	385 373 361 350 340	432 418 405 393 381	481 466 451 438 425	533 516 500 485 471	588 569 551 535 519	645 625 605 587 569	705 683 661 641 622	768 743 720 698 678	833 806 781 758 735	3.0 3.1 3.2 3.3 3.4
224 218 212 206 201	257 250 243 237 231	293 284 277 269 263	330 321 312 404 296	370 360 350 341 332	413 401 390 380 370	457 444 433 421 410	504 490 477 464 452	-553 538 523 509 496	605 588 572 557 543	658 640 623 606 591	714 695 676 658 641	3.5 3.6 3.7 3.8 3.9
196 191 187 182 178	225 220 214 209 205	256 250 244 238 233	289 282 275 269 263	324 316 309 301 295	361 352 344 336 328	400 390 381 372 364	441 430 420 410 401	484 472 461 450 440	529 516 504 492 481	576 562 549 536 524	625 610 595 581 568	4 0 4.1 4.2 4.3 4.4

VALUES OF  $\frac{L^2}{r^2}$  L=Length in Feet. r=Radius of Gyration in Inches.

in				ĻĘ	NGT	H IN	FEE.	r.			
Inches	8	10	12	14	15	16	18	20	22	24	26
4.5 4.6 4.7 4.8 4.9	14 14 14 13 13	22 22 21 21 20	32 31 31 30 29	44 43 42 41 40	50 49 48 47 46	57 56 55 53 52	72 70 69 67 66	89 87 85 83 82	108 105 103 101 99	128 125 123 120 118	150 147 144 141 138
5.0 5 1 5.2 5.3 5.4	13 13 12 12 12 12	20 20 19 19 19	29 28 28 27 27	39 38 38 37 36	45 44 43 42 42	51 50 49 48 47	65 64 62 61 60	80 78 77 75 74	97 95 93 .91 90	115 113 111 109 107	135 133 130 128 125
5.5 5.6 5.7 5.8 5.9	12 11 11 11 11	18 18 18 17 17	26 26 25 25 24	36 35 34 34 33	41 40 39 39 38	47 46 45 44 43	59 58 57 56 55	73 71 70 69 68	88 86 85 83 82	105 103 101 99 98	123 121 119 117 115
6.0 6.1 6.2 6.3 6 4	11 10 10 10 10	17 16 16 16 16	24 24 23 23 23	33 32 32 31 31	37 37 36 36 35	43 42 41 41 40	54 53 52 51 51	67 66 65 63 62	81 79 78 77 76	96 94 93 91 90	113 111 109 107 106
6.5 6.6 6.7 6.8 6.9	10 10 10 9 9	15 15 15 15 14	22 22 21 21 21 21	30 30 29 29 28	35 34 34 33 33	39 39 38 38 38 37	50 49 48 48 48 47	62 61 60 59 58	74 73 72 71 70	89 87 86 85 83	104 102 101 99 98
7.0 7.1 7.2 7.3 7.4	99999	14 14 14 14 14	21 20 20 20 19	28 28 27 27 26	32 32 31 31 30	37 36 36 35 35	46 46 45 44 44	57 56 56 55 55 54	69 68 67 66 65	82 81 80 79 78	97 95 94 93 91
7.5 7.6 7.7 7.8 7.9	9888	13 13 13 13 13 13	19 19 19 18 18	26 26 25 25 25	30 30 29 29 28	34 34 33 33 32	43 43 42 42 42 41	53 53 52 51 51	65 64 63 62 61	77 76 75 74 73	90 89 88 87 86
8.0 8.1 8.2 8.3 8.4	8 8 8 8 8 8	12 12 12 12 12 12 12	18 18 18 17 17	25 24 24 24 23	28 28 27 27 27	32 32 31 31 30	41 40 40 39 39	50 49 49 48 48	61 60 59 58 58	72 71 70 69 69	85 83 82 81 80
8.5 86 8.7 8.8 8.9	8 7 7 7 7	12 12 11 11 11	17 17 17 16 16	23 23 23 22 22 22	26 26 26 26 25	30 30 29 29 29 29	38 38 37 37 36	47 47 46 45 45	57 56 56 55 55	68 67 66 65 65	80 79 78 77 76

	VA	LUES	OF	L² l r² r		ngth i dius c			in In	ches.	JAY	
				LEN	GTH	IN F	EET					<b>r</b> ² in
28	30	32	34	36	38	40	42	44	46	48	50	Inches
174	200	228	257	288	321	356	392	430	470	512	556	4.5
170	196	223	251	282	314	348	384	421	460	501	544	4.6
167	192	218	246	276	307	340	375	412	450	490	532	4.7
163	188	213	241	270	301	333	368	403	441	480	521	4.8
160	184	209	236	265	295	327	360	395	432	470	510	4.9
157	180	205	231	259	289	320	353	387	423	461	500	50
154	176	201	227	254	283	314	346	380	415	452	490	5.1
151	173	197	222	249	278	308	339	372	407	443	481	5.2
148	170	193	218	245	273	302	333	365	399	435	472	53
145	167	190	214	240	267	296	327	359	392	427	463	5.4
143	164	186	210	236	263	291	321	352	385	419	455	5.5
140	161	183	206	231	258	286	315	346	378	411	446	56
138	158	180	203	227	253	281	309	340	371	404	439	5.7
135	155	177	199	223	249	276	304	334	365	397	431	5.8
133	153	174	196	220	245	271	299	328	359	391	424	59
131	150	171	193	216	241	267	294	323	353	384	417	6 0
129	148	168	190	212	237	262	289	317	347	378	410	6.1
126	145	165	186	209	233	258	285	312	341	372	403	6.2
124	143	163	184	206	229	254	280	307	336	366	397	6.3
123	141	160	181	203	226	250	276	303	331	360	391	6.4
121	138	158	178	199	222	246	271	298	326	355	385	6.5
119	136	155	175	196	219	242	267	293	321	349	379	6.6
117	134	153	173	193	216	239	263	289	316	344	373	6.7
115	132	151	170	191	212	235	259	285	311	339	368	6.8
114	130	148	168	188	209	232	256	281	307	334	362	6.9
112	129	146	165	185	206	229	252	277	302	329	357	7.0
110	127	144	163	183	203	225	248	273	298	325	352	7.1
109	125	142	161	180	201	222	245	269	294	320	347	7.2
107	123	140	158	178	198	219	242	265	290	316	342	7.3
106	122	138	156	175	195	216	238	262	286	311	338	7.4
105	120	137	154	173	193	213	235	258	282	307	333	7.5
103	118	135	152	171	190	211	232	255	278	303	329	7.6
102	117	133	150	168	188	208	229	251	275	299	325	7.7
101	115	131	148	166	185	205	226	248	271	295 -	321	7.8
99	114	130	146	164	183	203	223	245	268	292	316	7.9
98	113	128	145	162	182	200	221	242	265	288	313	80
97	111	126	143	160	178	198	218	239	261	284	309	81
96	110	125	141	158	176	195	215	236	258	281	305	8.2
94	108	123	139	156	174	193	213	233	255	278	301	8.3
93	107	122	138	154	172	191	210	230	252	274	298	8.4
92	106	120	136	152	170	188	208	228	249	271	294	8 5
91	105	119	134	151	168	186	205	225	246	268	291	8.6
90	103	118	133	149	166	184	203	223	243	265	287	8.7
89	102	116	131	147	164	182	200	220	240	262	284	8.8
88	101	115	130	146	162	180	198	218	238	259	281	8.9
			1		-	_			0.1		1	

VALUES OF  $\frac{L^2}{r^2}$  L—Length in Feet. r—Radius of Gyration in Inches.

r ² in	LENGTH IN FEET.												
Inches	8	10	12	14	15	16	18	20	22	24	26		
9.0 9.1 9.2 9.3 9.4	7 7 7 7 7	11 11 11 11 11	16 16 16 15 15	22 22 21 21 21 21	25 25 24 24 24 24	28 28 28 28 28 27	36 36 35 35 35 34	44 44 43 43 43	54 53 53 52 52	64 63 63 62 61	75 74 73 73 72		
9.5 9.6 9.7 9.8 9.9	7 7 7 7 6	11 10 10 10 10	15 15 15 15 15	21 20 20 20 20	24 23 23 23 23 23	27 27 26 26 26	34 34 33 33 33	42 42 41 41 40	51 50 50 49 49	61 60 59 59 59 58	71 70 70 69 68		
10.0 10.1 10.2 10.3 10.4	6 6 6 6 6	10 10 10 10 10	14 14 14 14 14	20 19 19 19 19 19	23 22 22 22 22 22	26 25 25 25 25 25	32 32 32 31 31	40 40 39 39 38	48 48 47 47 47	58 57 56 56 55	68 67 66 66 65		
10.5 10.6 10.7 10.8 10.9	6 6 6 6	10 9 9 9 9	14 14 13 13 13	19 18 18 18 18	21 21 21 21 21 21 21	24 24 24 24 23	31 31 30 30 30	38 38 37 37 37	46 46 45 45 45	55 54 54 53 53	64 64 63 63 62		
11.0 11.1 11.2 11.3 11.4	6 6 6 6	9 9 9 9 9	13 13 13 13 13	18 18 18 17 17	20 20 20 20 20 20	23 23 23 23 23 22	29 29 29 29 29 29 28	36 36 36 35 35	44 44 43 43 42	52 52 51 51 51	61 61 60 60 59		
11 5 11.6 11.7 11.8 11.9	66555	9 9 9 8 8	13 12 12 12 12 12	17 17 17 17 17 16	20 19 19 19 19 19	22 22 22 22 22 22 22	28 28 28 27 27	35 34 34 34 34 34	42 42 41 41 41	50 50 49 49 48	59 58 58 57 57		
12.0 12.5 13.0 13.5 14.0	55555	8 8 7 7	12 12 11 11 11 10	16 16 15 15 14	19 18 17 17 16	21 20 20 19 18	27 26 25 24 23	33 32 31 30 29	40 39 37 36 35	48 46 44 43 41	56 54 52 50 48		
14.5 15.0 15.5 16.0 16.5	4 4 4 4	77666	10 10 9 9 9	14 13 13 12 12	16 15 15 14 14	,18 17 17 16 16	22 22 21 20 - 20	28 27 26 25 24	33 32 31 30 29	40 38 37 36 35	47 45 44 42 41		
17.0 17.5 18.0 18.5 19.0	44433	66655	8 8 8 8 8	12 11 11 11 11 10	13 13 13 12 12	15 15 14 14 14	19 19 18 18 18	24 23 22 22 21	28 28 27 26 25	34 33 32 31 30	40 39 38 37 36		

	v	ALUE	S OF		L=L r=R	ength adius			n in I	nche		
	-			LEN	GTH	IN F	EET				*	<b>r</b> ² in
28	30	32	34	36	38	40	42	44	46	48	50	Inches
87	100	114	128	144	160	178	196	215	235	256	278	9.0
86	99	113	127	142	159	176	194	213	233	253	275	9.1
85	98	111	126	141	157	174	192	210	230	250	272	9.2
84	97	110	124	139	155	172	190	208	228	248	269	9.3
83	96	109	123	138	154	170	188	206	225	245	266	9.4
83	95	108	122	136	152	168	186	204	223	243	263	9.5
82	94	107	120	135	150	167	184	202	220	240	260	9.6
81	93	106	119	134	149	165	182	200	218	238	258	9.7
80	92	104	118	132	147	163	180	198	216	235	255	9.8
79	91	103	117	131	146	162	178	196	214	233	253	9.9
78	90	102	116	130	144	160	176	194	212	230	250	10.0
78	89	101	114	128	143	158	175	192	210	228	248	10.1
77	88	100	113	127	142	157	173	190	207	226	245	10.2
76	87	99	112	126	140	155	171	188	205	224	243	10.3
75	87	98	111	125	139	154	170	186	203	222	240	10.4
75	86	98	110	123	138	152	168	184	202	219	238	10.5
74	85	97	109	122	136	151	166	183	200	217	236	10.6
73	84	96	108	121	135	150	165	181	198	215	234	10 7
73	83	95	107	120	134	148	163	179	196	213	231	10.8
72	83	94	106	119	132	147	162	178	194	211	229	10.9
71	82	93	105	118	131	145	160	176	192	209	227	11.0
71	81 [.]	92	104	11',	130	144	159	174	191	208	225	11.1
70	80	91	103	116	129	143	157	173	189	206	223	11.2
69	80	91	102	115	128	142	156	171	187	204	221	11.3
69	79	90	101	114	127	140	155	170.	186	202	219	11.4
68	78	89	101	113	126	139	153	168	184	200	217	11.5
68	78	88	100	112	124	138	152	167	182.	199	216	11.6
67	77	88	99	111	123	137	151	165	181.	197	214	11.7
66	76	87	98	110	122	136	149	164	179:	195	212	11.8
66	76	86	97	109	121	134	148	163	178	194	210	11.9
65	75	85	96	108	120	133	147	161	176	192	208	12.0
63	72	82	92	104	116	128	141	155	169	184	200	12.5
60	69	79	89	100	111	123	136	149	163	177	192	13.0
58	67	76	86	96	107	119	131	143	157	171	185	13.5
56	64	73	83	93	103	114	126	138	151	165	179	14.0
54.	62	71	80	89	100	110	122	134	146	159	172	14.5
52	60	68	77	86	96	107	118	129	141	154	167	15.0
51	58	66	75	84	93	103	114	125	137	149	161	15.5
49	56	64	72	81	90	100	110	121	132	144	156	16.0
48	55	62	70	79	88	97	107	117	128	140	152	16.5
46 45 44 42 41	53 51 50 49 47	60 59 57 55 54	68 66 64 62 61	76 74 72 70 68	85 83 80 78 76	94 91 89 86 86 84	104 101 98 95 93	114 111 108 105 102	124 121 118 114 111	136 132 128 125 121	147 143 139 135 132	17.0 17.5 18.0 18.5 19.0

VALUES OF  $\frac{L^2}{r^2}$  L=Length in Feet. r=Radius of Gyration in Inches.

r ² in					LENG	TH I	IN FE	ET.			
Inches	8	10	12	14	15	16	18	20	22	24	26
19.5 20.0 20.5 21.0 21.5	33333	55555	7 7 7 7 7	10 10 10 9 9	12 11 11 11 11 10	13 13 12 12 12 12	17 16 16 15 15	21 20 20 .19 19	25 24 24 23 23	30 29 28 27 27	35 34 33 32 31
22.0 22.5 23.0 23.5 24.0	333333	5 4 4 4 4	76666	999988	10 10 10 10 9	12 11 11 11 11 11	15 14 14 14 14 13	18 18 17 17 17	22 22 21 21 21 20	26 26 25 25 24	31 30 29 29 28
24.5 25.0 25.5 26.0 26.5	33322	4 4 4 4	6 6 6 6 5	8 8 8 8 7	999998	10 10 10 10 10	13 13 13 12 12	16 16 16 15 15	20 19 19 19 19	24 23 23 22 22	28 27 27 26 26
27.0 27.5 28.0 28.5 29.0	22222	4 4 4 4 3	55555	7 7 7 7 7 7	8888	99999	12 12 12 11 11	15 15 14 14 14	18 18 17 17 17	21 21 21 20 20	25 25 24 24 23
29.5 30.0 30.5 31 0 31.5	~~~~	***	5 5 5 5 5 5 5	7 7 6 6 6	8 8 7 7 7	99888	11 11 11 10 10	14 13 13 13 13	16 16 16 16 15	20 19 19 19 19 18	23 23 22 22 21
32.0 32.5 33.0 33.5 34.0	~~~~	33333	5 4 4 4 4	6 6 6 6 6	7 7 7 7 7 7	8 8 8 8	10 10 10 10 10	13 12 12 12 12 12	15 15 15 14 14	18 18 17 17 17	21 21 20 20 20
34.5 35.0 35.5 36.0 36.5	NNNNN	3 3 3 3 3 3	4 4 4 4 4	6 6 6 5 5 5	7 6 6 6	7 7 7 7 7 7	9999999	12 11 11 11 11 11	14 14 14 13 13	17 16 16 16 16	20 19 19 19 19
37.0 37.5 38.0 38.5 39.0	2222	3 3 3 3 3 3 3	4 4 4 4 4	55555	6 6 6 6 6 6	7 7 7 7 7 7	9 9 9 8 8	11 11 11 10 10	13 13 13 13 13 12	16 15 15 15 15	18 18 18 18 18 17
39.5 40.0 40.5 41.0 41.5	22222	3 3 2 2 2 2	4 4 4 4 3	5 5 5 5 5 5 5	6 6 6 5 5 5	6 6 6 6	8 8 8 8	10 10 10 10 10	12 12 12 12 12 12	15 14 14 14 14 14	17 17 17 16 16

1	v	ALUE	S OF	$\frac{L^2}{r^2}$		ength adius			on In	Inche	s.	
				LEN	IGTH	IN F	EET					r ² in
28	30	32	34	36	38	40	43	44	46	48	50	Inches
40 39 38 37 36	46 45 44 43 42	53 51 50 49 48	59 58 56 55 54	66 65 63 62 60	74 72 70 69 67	82 80 78 76 74	90 88 86 84 82	99 97 94 92 90	109 106 103 101 98	118 115 112 110 107	128 125 122 119 116	19.5 20.0 20.5 21.0 21.5
36 35 34 33 33	41 40 39 38 38	47 46 45 44 43	53 51 50 49 48	59 58 56 55 54	66 64 63 61 60	73 71 70 68 67	80 78 77 75 74	88 86 84 82 81	96 94 92 90 88	105 102 100 98 96	114 111 109 106 104	22.0 22.5 23.0 23.5 24.0
32 31 31 30 30	37 36 35 35 34	42 41 40 39 39	47 46 45 44 44	53 52 51 50 49	59 58 57 56 54	65 64 63 62 60	72 71 69 68 67	79 77 76 74 73	86 85 83 81 80	94 92 90 89 87	102 100 98 96 94	24.5 25.0 25.5 26.0 26.5
29 29 28 28 28 27	33 33 32 32 31	38 37 37 36 35	43 42 41 41 40	48 47 46 45 45	53 53 52 51 50	59 58 57 56 55	65 64 63 62 61	72 70 69 68 67	78 77 76 74 73	85 84 82 81 79	93 91 89 88 88 86	27.0 27.5 28.0 28.5 29.0
27 26 26 25 25	31 30 30 29 29	35 34 34 33 33	39 39 38 37 37	44 43 42 42 41	49 48 47 47 46	54 53 52 52 51	60 59 58 57 56	66 65 63 62 61	72 71 69 68 67	78 77 76 74 73	85 83 82 81 79	29.5 30.0 30.5 31.0 31,5
25 24 24 23 23	28 28 27 27 26	32 32 31 31 30	36 36 35 35 34	41 40 39 39 38	45 44 44 43 42	50 49 48 48 48 47	55 54 53 53 52	61 60 59 58 57	66 65 64 63 62	72 71 70 69 68	78 77 76 75 74	32.0 32.5 33.0 33.5 34.0
23 22 22 22 22 21	26 26 25 25 25	30 29 29 28 28	34 33 33 32 32	38 37 37 36 36	42 41 41 40 40	46 46 45 44 44	51 50 50 49 48	56 55 55 54 53	61 60 60 59 58	67 66 65 64 63	72 71 70 69 69	34.5 35.0 35.5 36.0 36.5
21 21 21 20 20	24 24 24 23 23	28 27 27 27 26	31 31 30 30 30	35 35 34 34 33	39 39 38 38 38	43 43 42 42 41	48 47 46 46 45	52 52 51 50 50	57 56 56 55 54	62 61 61 60 59	68 67 66 65 64	37.0 37.5 38.0 38.5 39.0
20 20 19 19 19	23 23 22 22 22 22	26 26 25 25 25	29 29 29 28 28	33 32 32 32 32 31	37 36 36 35 35	41 40 40 39 39	45 44 43 43	49 48 48 47 47	54 53 52 52 51	58 58 57 56 56	63 63 62 61 60	39.5 40.0 40.5 41.0 41.5
					1							

T ² in			1.5	LI	INGT	HIN	FEET				
Inches	8	10	12	14	15	16	18	20	22	24	26
42.0 42.5 43.0 43.5 44.0	2 2 1 1 1	2 2 2 2 2	33333	5 5 5 5 5 5 5 4	55555	66666	8 8 8 7 7	10 9 9 9 9	12 11 11 11 11 11	14 14 13 13 13 13	16 16 16 16 15
44.5 45.0 45.5 46.0 46.5	1 1 1 1	2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 4 4 4	55555	66655	7 7 7 7 7 7	99999	11 11 11 11 11 10	* 13 13 13 13 13 12	15 15 15 15 15
47.0 47.5 48.0 48.5 49.0	1 1 1 1	2 2 2 2 2 2		4 4 4 4 4	555555	55555	7 7 7 7 7	9 8 8 8	10 10 10 10 10	12 12 12 12 12 12	14 14 14 14 14
49.5 50.0 50.5 51.0 51.5	1 1 1 1	2 2 2 2 2 2	8 8 8 8 8 8 8 8 8 8 8	4 4 4 4 4	5 5 5 4 4	<u>ទ</u> ទ្ធ ទ្ធ ទ្ធ ទ្ធ	7 6 6 6	88888	9 9 9 9 9 9 9 9	12 12 11 11 11	14 14 13 13 13
52.0 52.5 53.0 53.5 54.0	1 1 1 1	2 2 2 2 2 2	33333	4 4 4 4 4	4 4 4 4	ភភភភភភ	6 6 6 6 6	8 8 8 7 7	9 9 9 9	11 11 11 11 11	13 13 13 13 13
54.5 55.0 55.5 56.0 56.5	1 1 1 1	22222222	33333	4 4 4 3 3	4 4 4 4 4	ភភភភភ	6 6 6 6	7 7 7 7 7	9 9 9 9	11 .10 10 10 10	12 12 12 12 12 12
57.0 57.5 58.0 58.5 59.0	1 1 1 1 1	2222222	3 3 2 2 2 2	• * * * * * * * * * * * * * * * * * * *	4 4 4 4	4 4 4 4 4	6 6 6 5	7 7 7 7 7	8 8 8 8	10 10 10 10 10	12 12 12 12 12 12
59.5 60,0 60.5 61.0 61.5	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2222	3 3 3 3 3 3 3 3 3	4 4 4 4 4	4 4 4 4 4	55555	77777	8 8 8 8	10 10 10 9 9	11 11 11 11 11
62.0 62.5 63.0 63.5 64.0	1 1 1 1	22222	.2 2 2 2 2 2 2 2 2 2	33333	4 4 4 4	4 4 4 4	55550	66666	8 8 8 8	9 9 9 9	11 11 11 11 11

		ALUE	3 01	$\frac{L^2}{r^2}$	r=R	adius	of G	ratio	n in I	nche	s.	
		1.000		LEN	GTH	IN F	EET					r ² in
28	30	32	34	36	33	40	42	44	46	48	50	Inch
19 18 18 18 18	21 21 21 21 21 21 20	24 24 24 24 23	28 27 27 27 27 26	31 30 30 30 29	34 34 34 33 33	38 38 37 37 36	42 42 41 41 40	46 46 45 45 44	50 50 49 49 48	55 54 54 53 52	60 59 58 57 57	42.0 42.1 43.0 43.1 44.0
18 17 17 17 17 17	20 20 20 20 19	23 23 23 22 22	26 25 25 25	29 29 28 28 28	32 32 32 31 31	36 36 35 35 34	40 39 39 38 38	44 43 43 42 42	48 47 47 46 45	52 51 51 50 50	56 56 55 54 54	44. 45. 45. 46. 46.
17 17 16 16 16	19 19 19 19 19 18	22 22 21 21 21 21	25 24 24 24 24 24	28 27 27 27 27 26	31 30 30 30 29	34 34 33 33 33	38 37 37 36 36	41 41 40 40 40	45 45 44 44 43	49 49 48 48 48	53 53 52 52 51	47. 47. 48. 48. 48.
16 16 16 15 15	18 18 18 18 18 17	21 20 20 20 20	23 23 23 23 23 22	26 26 26 25 25	29 29 29 28 28	32 32 32 31 31	36 35 35 35 35 34	39 39 38 38 38	43 42 42 41 41	47 46 46 45 45	51 50 50 49 49	49. 50. 50. 51. 51.
15 15 15 15 15	17 17 17 17 17 17	20 20 19 19 19	22 22 22 22 22 21	25 25 24 24 24 24	28 28 27 27 27 27	31 30 30 30 30	34 34 33 33 33	37 37 37 36 36	41 40 40 40 39	44 44 43 43 43	48 48 47 47 46	52. 52. 53. 53. 53. 54.
14 14 14 14 14	17 16 16 16 16	19 19 18 18 18	21 21 21 21 21 20	24 24 23 23 23	26 26 26 26 26	29 29 29 29 29 28	32 32 32 31 31	36 35 35 35 35 34	39 38 38 38 38 37	42 42 42 41 41	46 45 45 45 44	54. 55. 55. 56. 56.
14 14 14 13 13	16 16 16 15 15	18 18 18 18 18 17	20 20 20 20 20	23 23 22 22 22 22	25 25 25 25 25 24	28 28 28 27 27	31 31 30 30 30	34 34 33 33 33	37 37 36 36 36	40 40 40 39 39	44 43 43 43 42	57 57. 58. 58 59.
13 13 13 13 13	15 15 15 15 15	17 17 17 17 17 17	19 19 19 19 19	22 22 21 21 21 21	24 24 24 24 23	27 27 26 26 26	30 29 29 29 29 29	33 32 32 32 32 31	36 35 35 35 35 34	39 38 38 38 38 37	42 42 41 41 41 41	59. 60 60. 61. 61.
13 13 12 12 12	15 14 14 14 14	17 16 16 16 16	19 18 18 18 18	21 21 21 20 20	23 23 23 23 23 23	26 26 25 25 25	28 28 28 28 28 28	31 31 31 30 30	34 34 34 33 33	37 37 37 36 36	40 40 40 39 39	62. 62. 63. 63. 63. 64.

VALUES OF  $\frac{L^2}{r^2}$  L=Length in Feet.

r² r=Radius of Gyration in Inches.

	2 in									L	EN	GT	н	IN	FE	ET.					
	ches	14	15	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
65 65 66	1.5 5.0 5.5 5.0 5.5	000000	000000	44444	555555	666666	87777	999999	10 10 10 10 10	12 12 12 12 12	14 14 14 14 14	16 16 16 16 15	18 18 18 18 18	20 20 20 20 19	22 22 22 22 22 22 22	25 25 24 24 24 24	27 27 27 27 27 27	30 30 30 29 29	33 33 32 32 32 32	36 35 35 35 35	39 38 38 38 38
67 68 68	7 0 7.5 3.0 3.5 9.0	<b>თთთთ</b> თ	<b>თთთთ</b> თ	4 4 4 4 4	55555	000000	777777	99888	10 10 10 10 10	12 12 12 11 11	13 13 13 13 13	15 15 15 15 15	17 17 17 17 17	19 19 19 19 19	22 21 21 21 21 21 21	24 24 24 23 23	26 26 26 26 26	29 29 28 28 28	32 31 31 31 31	34 34 34 34 33	37 37 37 36 36
70 70 71	0.5 0.0 0.5 1.0	000000	000000	44444	പ്പാലാല	00000	777777	88888	10 10 10 10 9	11 11 11 11 11	13 13 13 13 13	15 15 15 14 14	17 17 16 16 16	19 19 18 18 18	21 21 20 20 20	23 23 23 23 23 22	25 25 25 25 25 25	28 28 27 27 27	30 30 30 30 30	33 33 33 32 32 32	36 36 35 35 35
73		000000	000000	44333	54444	65555	77766	888888	00000	11 11 11 10 10	13 12 12 12 12 12	14 14 14 14 13	16 16 16 15 15	18 18 18 17 17	20 20 20 19 19	22 22 22 21 21	25 24 24 24 23	27 27 26 26 25	29 29 29 28 28	32 32 31 31 30	35 34 34 33 33
77 78 79 80 81	.0	32	333333		4 4 4 4 4	55555	000000	777777	99988	10 10 10 10 10	12 12 11 11 11	13 13 13 13 13	15 15 15 14 14	17 17 16 16 16	19 19 18 18 18	21 21 20 20 20	23 23 22 22 22 22	25 25 25 24 24	27 27 27 26 26	30 30 29 29 28	32 32 32 31 31
82 84 86 88 90	.0 .0 .0	なるとう	3 3 3 3 3 3	*****	44444	55554	66665	77776	****	10 9 9 9	11 11 10 10 10	12 12 12 12 12 12	14 14 13 13 13	16 15 15 15 15 14	18 17 17 16 16	20 19 19 18 18	22 21 21 20 20	24 23 23 22 22	26 25 25 24 24	28 27 27 26 26	30 30 29 28 28
92 94 96 98 100	.0	あるい とう	2	33333	4 3 3 3 3 3	44444	55555	666666	77777	98888	10 10 9 9 9	11 11 11 10 10	13 12 12 12 12 12	14 14 14 13 13	16 15 15 15 14	17 17 17 16 16	19 19 18 18 18	21 21 20 20 19	23 23 22 22 22 21	25 25 24 24 23	27 27 26 26 26
102 104 106 108 110	.0 .0 .0			32	33333	44444	555544	665555	77666	87777	99888	10 10 10 9 9	11 11 11 11 11 11	13 12 12 12 12 12	14 14 14 13 13	16 15 15 15 15	17 17 17 16 16	19 19 18 18 18	21 20 20 20 19	23 22 22 21 21	25 24 24 23 23
112 114 116 118 120	.0	日本というと		South States	33333	443333	44444	55555	66666	77777	88888	999999	10 10 10 10 10	12 11 11 11 11	13 13 12 12 12	14 14 14 14 13	16 15 15 15 15	17 17 17 16 16	19 19 18 18 18	21 20 20 20 19	22 22 22 21 21
		-		-	-	1								1			1.1.		-	100	-

### WORKING STRENGTHS OF SOFT STEEL COLUMNS.

Square Bearing Pin and Square Bearing Pin Bearing 12500 12500 12500 S = -S = -S=-12 12 12 1+. 1+. I -36000 r2 24000 22 18000 22

Where :--

S = Working strengths in lbs. per square inch. L = Length in feet. l = Length in inches.

r = Least radius of gyration in inches.

L2		KING STREN os. per Sq. 1		L2		KING STREM bs. per Sq.	
r ²	Square	Pin and Square	Pin	r ²	Square	Pin and Square	Pin
1	12495	12426	12402	26	11323	10813	10348
2	12402	12352	12304	27	11282	10757	10280
3	12352	12280	12208	28	11241	10702	10213
4	12304	12208	12113	29	11201	10647	10146
5	12255	12137	12020	30	11161	10593	10081
6	12208	12067	11929	31	11121	10540	10016
7	12160	11997	11838	32	11082	10487	9952
8	12112	11928	11748	33	11043	10434	9889
9	12065	11860	11660	34	11004	10382	9827
10	12019	11793	11575	35	10965	10331	9766
11	11973	11726	11490	36	10927	10280	9705
12	11927	11660	11406	37	10888	10229	9645
13	11882	11596	11323	38	10851	10179	9586
14	11837	11532	11241	39	10813	10130	9527
15	11792	11468	11161	40	10776	10081	9469
16	11748	11405	11082	41	10739	10032	9412
17	11704	11343	11003	42	10702	9984	9355
18	11660	11282	10927	43	10666	9936	9301
19	11617	11221	10852	44	10629	9889	9246
20	11574	11161	10776	45	10592	9842	9191
21	11531	11102	10702	46	10557	9796	9137
22	11489	11043	10629	47	10522	9750	9084
23	11447	10984	10557	48	10486	9705	9032
24	11405	10927	10487	49	10451	9660	8980
25	11364	10870	10417	50	10416	9615	8928
25	11364	10870	10417	50	10416	9615	8928

## WORKING STRENGTHS OF SOFT STEEL COLUMNS.

#### (CONTINUED.)

<u>L²</u>		ING STRENG per Sq. Inch		L ²		ING STRENG per Sq. Inch	
<u>r</u> ²	Square	Pin and Square	Pin	r ²	Square	Pin and Square	Pin
51	10382	9571	8878	86	9300	8245	7405
52	10348	9528	8828	87	9273	8213	7370
53	10314	9484	8778	88	9246	8181	7335
54	10280	9441	8728	89	9219	8149	7301
55	10246	. 9398	8680	90	9192	8117	7267
56	10212	9355	8633	91	9165	8085	7233
57	10179	9314	8585	92	9138	8054	7200
58	10146	9273	8538	93	9111	8023	7168
59	10113	9232	8492	94	9084	7992	7135
60	10081	9191	8446	95	9058	7962	7102
61	10048	9151	8401	96	9032	7931	7070
62	10016	9111	8356	97	9006	7901	7038
63	9984	9071	8311	98	8980	7871	7007
64	9953	9032	8267	99	8954	7842	6975
65	9921	8993	8224	100	8928	7813	6944
66	9889	8954	8181	101	8903	7783	6914
67	9858	8916	8138	102	8878	7754	6883
68	9827	8878	8096	103	8853	7726	6853
69	9796	8840	8054	104	8828	7697	6823
70	9766	8803	8013	105	8803	7669	6793
71	9735	8766	7972	106	8778	7641	6764
72	9705	8729	7932	107	8753	7613	6735
73	9675	8693	7892	108	8729	7585	6706
74	9645	8657	7852	109	8705	7558	6678
75	9615	8621	7813	110	8680	7530	6649
76	9586	8585	7774	111	8656	7503	6621
77	9557	8550	7735	112	8633	7476	6593
78	9528	8515	7697	113	8609	7449	6565
79	9499	8480	7659	114	8585	7423	6538
80	9470	8446	7622	115	8562	7397	6510
81	9441	8412	7585	116	8538	7370	6483
82	9412	8378	7548	117	8515	7344	6457
83	9384	8344	7512	118	8492	7318	6430
84	9356	8311	7476	119	8469	7293	6404
85	9328	8278	7440	120	8446	7268	6378

					and the		
		ING STRENG		2001		(ING STRENG	
L2	Lbs	. per Sq. Inch		L2	Lbs	. per Sq. Inch	2.
r ²	Square	Pin and Square	Pin	τ ²	Square	Pin and Square	Pin
121	8423	7242	6352	180	7268	6010	5123
122	8401	7217	6326	185	7184	5924	5040
123	8378	7192	6300	190	7102	5842	4960
124	8356	7168	6275	195	7023	5760	4883
125	8333	7143	6250	200	6944	5682	4808
126	8311	7118	6225	205	6868	5605	4735
127	8289	7094	6200	210	6793	5531	4664
128	8267	7070	6176	215	6720	5458	4596
129	8245	7046	6152	220	6649	5388	4529
130	8224	7023	6127	225	6579	5319	4464
131	8202	6999	6103	230	6510	5252	4401
132	8181	6975	6080	235	6443	5187	4340
133	8159	6952	6056	240	6378	5123	4281
134	8138	6929	6033	245	6313	5061	4223
135	8117	6906	6010	250	6250	5000	4167
136	8096	6883	5987	255	6188	4941	4112
137	8075	6861	5964	260	6128	4883	4058
138	8054	6838	5941	265	6068	4826	4007
139	8033	6816	5918	270	6010	4771	3956
140	8013	6793	5896	275	5952	4717	3906
141	7992	6771	5874	280	5896	4664	3858
142	7972	6749	5852	285	5841	4612	3811
143	7952 7932	6728 6706	5830 5808	290	5787 5734	4562	37,65
144	and the second se		5808	300	Contraction of the second	4513	3720
145	7912 7892	6684 6633	5766	310	5682 5580	4464 4371	3677 3592
147	7872	6642	5744	320	5483	4281	3594
148	7852	6621	5723	330	5388	4195	3434
149	7832	6600	5702	340	5297	4112	3360
150	7813	6579	5682	350	5209	4032	3288
155	7716	6477	5580	360	5123	3956	3222
160	7622	6378	5482	370	5040	3882	3157
165	7530	6282	5388	380	4960	3811	3094
170	7441	6188	5297	390	4883	3742	3034
175	7353	6098	5208	400	4808	3676	2976

#### WORKING STRENGTHS OF MEDIUM STEEL COLUMNS.

Square Bearing Pin and Square Bearing Pin Bearing 15000 15000 15000 S=. S =  $S = \cdot$ 12 12 12 T -1+. 1+ 36000 22 24000 22 18000 22

Where :-

S = Working strengths in lbs. per square inch. L = Length in fect. l = Length in inches, r = Least radius of gyration in inches.

L²		KING STREN Ds. per Sq. In		L2		KING STREN .bs. per Sq.	
r ²	Square	Pin and Square	Pin	r ²	Square	Pin and Square	Pin
1	14940	14910	14881	26	13587	12976	12417
2	14881	14822	14764	27	13538	12909	12336
3	14822	14735	14649	28	13489	12843	12255
4	14764	14649	14535	29	13441	12777	12175
5	14706	14563	14423	30	13393	12712	12097
6	14648	14479	14313	31	13345	12648	12019
7	14591	14396	14205	32	13298	12584	11943
8	14535	14313	14098	33	13251	12521	11867
9	14479	14232	13992	34	13204	12459	11793
10	14423	14151	13889	35	13157	12397	11719
11	14368	14071	13787	36	13112	12336	11646
12	14313	13992	13686	37	13066	12275	11574
13	14259	13915	13587	38	13021	12215	11503
14	15205	13838	13489	39	12976	12155	11433
15	14151	13761	13393	40	12931	12097	11364
16	14098	13686	13298	41	12887	12039	11295
17	14045	13612	13204	42	12843	11981	11228
18	13992	13538	13112	43	12799	11924	11161
19	13940	13465	13021	44	12755	11867	11095
20	13889	13393	12931	45	12712	11811	11030
21	13838	13322	12843	46	12669	11756	10965
22	13787	13251	12755	47	12626	11700	10901
23	13736	13181	12669	48	12583	11646	10838
24	13686	13112	12584	49	12542	11592	10776
25	13637	13044	12500	50	12500	11538	10714
-	-			1	-		

	WORKIN	G STRENG		MEDI		. COLUMN	S.
		KING STRENG . per Sq. Incl		L2		UNG STRENG . per Sq. Inch	
r ²	Square	Pin and Square	Pin	r ²	Square	Pin and Square	Pin
51	12459	11486	10653	86	11161	9894	8886
52	12417	11433	10593	87	11128	9855	8844
53	12376	11381	10534	88	11095	9817	8803
54	12336	11329	10475	89	11062	9779	8762
55	12295	11278	10417	90	11030	9740	8721
56	12255	11227	10359	91	10997	9702	8680
57	12215	11177	10302	92	10965	9665	8640
58	12176	11128	10246	93	10933	9628	8601
59	12136	11078	10190	94	10901	9591	8562
60	12097	11030	10135	95	10870	9554	8523
61	12058	10981	10081	96	10838	9518	8484
62	12019	10933	10027	97	10807	9482	8446
63	11981	10886	9974	98	10776	9446	8408
64	11943	10838	9921	99	10745	9410	8370
65	11905	10791	9869	100	10714	9375	8333
66	11867	10745	9817	101	10684	9340	8297
67	11830	10699	9766	102	10653	9305	8260
68	11793	10653	9715	103	10623	9271	8224
69	11756	10608	9665	104	10593	9237	8188
70	11719	10563	9615	105	10563	9202	8152
71	11682	10519	9566		10534	9169	8117
72 73	11646 11610	10475	9518 9470	107	10504 10475	9135 9102	8082
74	11574	10431 10388	9470	100	10475	9069	8047 8013
75	11574	10385	9375	110	10440	9036	7979
76	11538	10345	9375	111	10417	9038	7979
77	11468	10260	9282	112	10359	8971	7945
78	11433	10218	9236	113	10330	8930	7878
79	11398	10210	9191	114	10302	8907	7845
80	11364	10135	9146	115	10274	8876	7812
81	11329	10094	9102	116	10246	8844	7780
82	11295	10053	9058	117	10218	8813	7748
83	11261	10013	9014	118	10190	8782	7716
84	11227	9973	8971	119	10163	8751	7685
85	11194	9934	8928	120	10135	8721	7653

		Street Said		1. 1. 2.			Diffs D
L ²	Transactory and	ING STRENG per Sq. Inch		L2		KING STRENG . per Sq. Inch	
<b>r</b> ²	Square	Pin and Square	Pin	<b>Γ</b> ²	Square	Pin and Square	Pin
121	10108	8691	7622	180	8721	7212	6143
122	10081	8661	7591	185	8621	7109	6048
123	10054	8631	7560	190	8523	7010	5952
124	10027	8601	7530	195	8427	6912	5859
125	10000	8571	7500	200	8333	6818	5769
126	9974	8542	7470	205	8242	6726	5682
127	9947	8513	7440	210	8152	6637	5597
128	9921	8484	7411	215	8064	6550	5515
129	9894	8456	7382	220	7979	6465	5435
130	9868	8427	7353	225	7895	6383	5357
131	9843	8399	7324	230	7812	6303	5282
132	9817	8370	7296	235	7732	6224	5208
133	9791	8343	7268	240	7653	6148	5137
134	9766	8315	7239	245	7575	6073	5067
135	9740	8287	7212	250	7500	6000	5000
136	9715	8260	7184	255	7426	5929	4934
137	9690	8233	7157	260	7353	5859	4870
138	9665	8206	7129	265	7281	5791	4808
139	9640	8179	7102	270	7212	5725	4747
140	9615	8152	7076	275	7143	5660	4668
141	9591	8126	7049	280	7076	5597	4630
142	9566	8099	7023	285	7010	5535	4573
143	9542	8073	6996	290	6945	5475	4518
144	9518	8047	6970	295	6881	5415	4464
145	9494	8021	6945	300	6818	5357	4412
146	9470	7996	6919	310	6696	5245	4311
147	9446	7970	6893	320	6579	5137	4214
148	9422	7945	6868	330	6465	5034	4121
149	9399	7919	6843	340	6356	4934	4032
150	9375	7895	6818	350	6250	4839	3947
155	9259	7772	6696	360	6147	4747	3866
160	9146	7653	6579	370	6048	4658	3788
165	9036	7538	6465	380	5952	4573	3713
170 175	8929 8823	7426	6356 6250	390	5859 5769	4491 4412	3641 3572

	T	ABL	EOF	s	UAR	ER	1001	s.	
Nos.	Roots								
1	1.00	51	7.14	101	10.05	151	12.29	201	14.18
2	1.41	52	7.21	102	10.10	152	12.33	202	14 21
3	1.73	53	7.28	103	10.15	153	12.37	203	14.25
4	2.00	54	7.35	104	10 20	154	12.41	204	14.28
5	2.24	55	7.42	105	10.25	155	12.45	205	14.32
6	2.45	56	7.48	106	10.30	156	12.49	206	14.35 •
7	2.65	57	7.55	107	10.34	157	12.53	207	14.39
8	2.83	58	7 62	108	10.39	158	12.57	208	14.42
9	3.00	59	7.68	109	10.44	159	12.61	209	14.46
10	3.16	60	7.75	110	10.49	160	12.65	210	14.49
11	3.32	61	7.81	111	10.54	161	12.69	211	14.53
12	3.46	62	7.87	112	10.58	162	12.73	212	14.56
13	3.61	63	7.94	113	10.63	163	12.77	213	14.59
. 14	3.74	64	8.00	114	10.68	164	12 81	214	14.63
15	3.87	65	8.06	115	10.72	165	12.85	215	14.66
16	4.00	66	8.12	116	10.77	166	12.88	216	14.70
17	4 12	67	8.19	117	10.82	167	12.92	217	14 73
18	4.24	68	8 25	118	10.86	168	12.96	218	14.76
19	4.36	69	8 31	119	10.91	169	13.00	219	14.80
20	4.47	70	8.37	120	10.95	170	13.04	220	14.83
21	4.58	71	8.43	121	11.00	171	13.08	221	14.87
22	4.69	72	8.49	122	11.05	172	13.11	222	14.90
23	4.80	73	8.54	123	11.09	173	13.15	223	14.93
24	4.90	74	8.60	124	11.14	174	13.19	224	14.97
25	5.00	75	8.66	125	11.18	175	13.23	225	15 00
26	5.10	76	8.72	126	11.22	176	13.27	226	15.03
27	5.20	77	8.77	127	11.27	177	13.30	227	15.07
28	5.29	78	8.83	128	11.31	178	13.34	228	15.10
29	5.39	79	8.89	129	11.36	179	13.38	229	15.13
30	5.48	80	8.94	130	11.40	180	13.42	230	15.17
31	5.57	81	9.00	131	11.45	181	13.45	231	15.20
32	5.66	82	9.06	132	11.49	182	13.49	232	15.23
33	5 74	83	9.11	133	11.53	183	13.53	233	15 26
34	5.83	84	9.17	134	11.58	184	13.56	234	15 30
35	5.92	85	9.22	135	11.62	185	13.60	235	15.33
36	6 00	-86	9.27	136	11.66	186	13.64	236	15.36
37	6 08	87	9.33	137	11.70	187	13.67	237	15 39
38	6 16	88	9.38	138	11.75	188	13.71	238	15 43
39	6 24	89	9 43	139	11.79	189	13.75	239	15.46
40	6 32	90	9.49	140	11.83	190	13.78	240	15 49
41	6 40	91	9 54	141	11.87	191	13 82	241	15.52
42	6.48	92	9.59	142	11 92	192	13.86	242	15.56
43	6 56	93	9 64	143	11.96	193	13.89	243	15.59
44	6 63	94	9.70	144	12 00	194	13 93	244	15.62
45	6.71	95	9.75	145	12.04	195	13.96	245	15.65
46	6 78	96	9 80	146	12.08	196	14.00	246	15 68
47	6 86	97	9.85	147	12.12	197	14.04	247	15.72
48	6.93	98	9.90	148	12.17	198	14.07	248	15.75
49	7 00	99	9 95	149	12.21	199	14.11	249	15.78
50	7.07	100	10.00	150	12.25	200	14.14	250	15.81

# TABLE OF SQUARE ROOTS.

		1.1.1.1.1.1.1.1		Sile Si	- Baul	1.11	N	12. 12.11	
Nos.	Roots	Nos.	Roots	Nos.	Roots	Nos.	Roots	Nos.	Roots
251	15.84	301	17.35	351	18.73	401	20 02	451	21.24
252	15 87	302	17.38	352	18.76	402	20 05	452	21.26
253	15.91	303	17.41	353	18.79	403	20.07	453	21.28
254	15 94	304	17.44	354	18.81	404	20 10	454	21.31
255	15 97	305	17.46	355	18.84	405	20.12	455	21.33
256	16 00	306	17.49	356	18.87	406	20.15	456	21 35
257	16 03	307	17.52	357	18.89	407	80.17	457	21.38
258	16.06	308	17.55	358	18 92	408	20.20	458	21 40
259	16.09	309	17.58	359	18.95	409	20.22	459	21 42
260	16.12	310	17.61	360	18.97	410	20.25	460	21.45
261	16 16	311	17 64	361	19.00	411	20.27	461	21.47
262	16 19	312	17.66	362	19.03	412	20 30	462	21.49
263	16.22	313	17 69	363	19.05	413	20.32	463	21 52
264	16 25	314	17.72	364	19.08	414	20.35	464	21 54
265	16.28	315	17.75	365	19.10	415	20.37	465	21 56
266	16 31	316	17.78	366	19.13	416	20.40	466	21.59
267	16 34	317	17.80	367	19.16	417	20.42	467	21.61
268	16.37	318	17.83	368	19.18	418	20.45	468	21.63
269	16.40	319	17.86	369	19.21	419	20.47	469	21.66
270	16.43	320	17.89	370	19.24	420	20.49	470	21.68
271	16.46	321	17.92	371	19.26	421	20.52	471	21.70
272	16.49	322	17.94	372	19 29	422	20.54	472	21 73
273	16.52	323	17.97	373	19.31	423	20.57	473	21.75
274	16 55	324	18.00	374	19.34	424	20 59	474	21 77
275	16.58	325	18.03	375	19.36	425	20.62	475	21.79
276	16.61	326	18.06	376	19.39	426	20 64	476	21.82
277	16 64	327	18.08	377	19.42	427	20.66	477	21.84
278	16.67	328	18.11	378	19.44	428	20.69	478	21.86
279	16.70	329	18.14	379	19.47	429	20.71	479	21.89
280	16.73	330	18.17	380	19.49	430	20.74	480	21.91
281	13.76	331	18.19	381	19.52	431	20.76	481	21.93
282	13.79	332	18 22	382	19.54	432	20.78	482	21.95
283	16 82	333	18.25	383	19.57	433	20.81	483	21.98
284	16 85	334	18.28	384	19.60	434	20.83	484	22.00
285	16.88	335	18.30	385	19.62	435	20.86	485	22.02
286	16 91	336	18 33	386	19.65	436	20,88	486	22.05
287	16 94	337	18 36	387	19.67	437	20.90	487	22.07
288	16.97	338	18.38	388	19.70	438	20.93	438	22.09
289	17.00	339	18.41	389	19.72	439	20.95	489	22.11
290	17.03	340	18 44	390	19.75	440	20.98	490	22.14
291	17.06	341	18.47	391	19.77	441	21.00	491	22.16
292	17.09	342	18.49	392	19.80	442	21.02	492	22.18
293	17.12	343	18.52	393	19.82	443	21.05	493	22.20
294	17.15	344	18.55	394	19.85	444	21.07	494	22.23
295	17.18	345	18.57	395	19.85	445	21.10	495	22.25
296	17.20	346	18.60	396	19.90	446	21.12	496	22.27
297	17.23	347	18.63	397	19.92	447	21.14	497	22.29
298	17.26	348	18.65	398	19.95	448	21.17	498	22.32
299	17.29	349	18.68	399	19.97	449	21.19	499	22.34
300	17.32	350	18.71	400	20.00	450	21.21	500	22.36

	т	ABL	E OF	s	UAR	EF	1001	s.	
Nos.	Roots	Nos.	Roots	Nos.	Roots	Nos.	Roots	Nos.	Roots
501	22.38	551	23.47	601	24.52	651	25.51	701	26.48
502	22.41	552	23.49	602	24.54	652	25.53	702	26.50
503	22.43	553	23.52	603	24.56	653	25.55	703	26.51
504	22.45	554	23.54	604	24.58	654	25.57	704	26.53
505	22.47	555	23.56	605	24.60	655	25.59	705	26.55
506	22.49	556	23.58	606	24.62	656	25.61	706	26.57
507	22.52	557	23.60	607	24.64	657	25 63	707	26 59
508	22.54	558	23.62	608	24.66	658	25.65	708	26 61
509	22 56	559	23.64	609	24.68	659	25.67	709	26.63
510	22.58	560	23.66	610	24.70	660	25 69	710	26 65
511	22.61	561	23 69	611	24.72	661	25.71	711	26 65
512	22.63	562	23.71	612	24.74	662	25.73	712	26 68
513	22.65	563	23.73	613	24.76	663	25.75	713	26 70
514	22.67	564	23.75	614	24.78	664	25.77	714	26.72
515	22.69	565	23.77	615	24.80	665	25.79	715	26.74
516 517 518 519 520	22 72 22 74 22.76 22.78 22.80	566 567 568 569 570	23.79 23.81 23 83 23.85 23.85 23.87	616 617 618 619 620	24.82 24.84 24.86 24.88 24.90	666 667 668 669 670	25.81 25.83 25.85 25.87 25.88	716 717 718 719 720	26.76 26.78 25.80 26.81 26.83
521	22.83	571	23.90	621	24.92	671	25.90	721	26.85
522	22.85	572	23.92	622	24.94	672	25.92	722	26.87
523	22 87	573	23.94	623	24.96	673	25 94	723	26 89
524	22.89	574	23.96	624	24.98	674	25.96	724	26.91
525	22.91	575	23.98	625	25.00	675	25.98	725	26.93
526	22.93	576	24.00	626	25.02	676	26.00	726	26.94
527	22.96	577	24.02	627	25.04	677	26.02	727	26.96
528	22.98	578	24 04	623	25.06	678	26 04	728	26.98
529	23.00	579	24.06	629	25.08	679	26.06	729	27.00
530	23.02	580	24.08	630	25.10	680	26 08	730	27.02
531	23.04	581	24.10	631	25.12	681	26 10	731	27.04
532	23.07	582	24.12	632	25.14	682	26 12	732	27.06
533	23.09	583	24.15	633	25.16	683	26.13	733	27.07
534	23.11	584	24.17	634	25.18	684	26 15	734	27 09
535	23.13	585	24.19	635	25.20	685	26.17	735	27 11
536 537 538 539 540	23.15 23 17 23.19 23.22 23.24	586 537 588 589 590	24.21 24.23 24.25 24.27 24.29	636 637 633 639 .640	25.22 25.24 25 26 25 28 25 30	686 687 688 689 690	26.19 26 21 26 23 26.25 26.27	736 737 738 739 740	27.13 27.15 27.17 27.17 27 18 27.20
541 542 543 544 545	23.26 23.28 23.30 23 32 23 35	591 592 593 594 595	24.31 24.33 24.35 24.35 24.37 24.39	641 642 643 644 645	25.32 25.34 25.36 25.38 25.40	691 692 693 694 695	26.29 26.31 26.32 26.34 26-36	741 742 743 744 745	27.22 27.24 27.26 27.28 27.29
546 547 548 549 550	23 37 23 39 23 41 23.43 23.45	596 597 598 599 600	24.41 24.43 24.45 24.45 24.47 24.49	646 647 648 649 °650	25 42 25 44 25.46 25 48 25 50	696 697 698 699 700	26.38 26 40 26.42 26 44 26.46	746 747 748 749 750	27.31 27.33 27 35 27 37 27.39

	. т/	ABL	E OF	sc	UAR	ER	юот	s.	
Nos.	Roots	Nos.	Roots	Nos.	Roots	Nos.	Roots	Nos.	Roots
751 752 753 754 755	27.40 27.42 27.44 27.46 27.48	801 802 803 804 805	28.30 28 32 28.34 28.35 28.37	851 852 853 854 855	29.17 29.19 29.21 29.22 29.22 29.24	901 902 903 904 905	30.02 30.03 30.05 30.07 30.08	951 952 953 954 955	30.84 30.85 30.87 30.89 30.90
756 757 758 759 760	27.50 27.51 27.53 27.55 27.55 27.57	806 807 808 809 810	28.39 28.41 28.43 28.44 28.44 28.46	856 857 858 859 860	29.26 29.27 29.29 29.31 29.33	906 907 908 909 910	30.10 30.12 30.13 30.15 30.17	956 957 958 959 960	30.92 30.94 30.95 30.97 30.98
761 762 763 764 765	27.59 27.60 27 62 27.64 27.66	811 812 813 814 815	28.48 28.50 28.51 28.53 28.55	861 862 863 864 865	29.34 29.36 29.38 29.39 29.41	911 912 913 914 915	30.18 30.20 30.22 30.23 30.25	961 962 963 964 965	31.00 31.02 31.03 31.05 31.06
766 767 768 769 770	27.68 27.69 27.71 27.73 27.75	816 817 818 819 820	28.57 28.58 28.60 28.62 28.64	866 867 868 869 870	29.43 29.44 29.46 29.48 29.50	916 917 918 919 920	30.27 30.28 30.30 30.32 30.33	966 967 968 969 970	31.08 31.10 31.11 31.13 31.14
771 772 773 774 775	27.77 27 78 27.80 27.82 27.84	821 822 823 824 825	28.65 28.67 28.69 28.71 28.72	871 872 873 874 875	29.51 29.53 29.55 29.56 29.58	921 922 923 924 925	30.35 30.36 30.38 30.40 30.41	971 972 973 974 975	31.16 31.18 31.19 31.21 31.22
776 777 • 778 '779 780	27.86 27.87 27.89 27.91 27.93	826 827 828 829 830	28.74 28.76 28.77 28.79 28.81	876 877 878 879 880	29.60 29.61 29.63 29.65 29.66	926 927 928 929 930	30.43 30.45 30.46 30.48 30.50	976 977 978 979 980	31.24 31.26 31.27 31.29 31.30
781 782 783 784 785	27.95 27.96 27.98 28.00 28.02	831 832 833 834 835	28.83 28.84 28.86 28.88 28.88 28.90	881 882 883 884 885	29.6° 29.70 29.72 29.73 29.75	931 932 933 934 935	30.51 30.53 30.55 30.56 30.58	981 982 983 984 985	31.32 31.34 31.35 31.37 31.38
786 787 788 789 790	28.04 28.05 28.07 28.09 28.11	836 837 838 839 840	28.91 28.93 28.95 28.95 28.97 28.98	886 887 888 889 890	29.77 29.78 29.80 29.82 29.83	936 937 938 939 940	30.59 30.61 30.63 30.64 30.66	986 987 988 989 990	31.40 31.42 31.43 31.45 31.45 31.46
791 792 793 794 795	28.12 28.14 28.16 28.18 28.20	841 842 843 844 845	29.00 29.02 29.03 29.05 29.07	891 892 893 894 895	29.85 29.87 29.88 29.90 29.92	941 942 943 944 945	30.68 30.69 30.71 30.72 30.74	991 992 993 994 995	31.48 31.50 31.51 31.53 31.54
796 797 798 799 800	28.21 28.23 28.25 28.27 28.27 28.28	846 847 848 849 850	29.09 29.10 29.12 29.14 29.15	896 897 898 899 900	29 93 29.95 29.97 29.98 30.00	946 947 948 949 950	30.76 30.77 30 79 30 81 30.82	996 997 998 999 1000	31 56 31.58 31.59 31.61 31.62

	TA	BL	E OF	sq	UAR	ER	оот	S.	
Nos.	Roots	Nos.	Roots	Kos.	Roots	Nos.	Ruots	Nos.	Roots
1001 1002 1003 1004 1005	31.64 31.65 31.67 31.69 31.70	1051 1052 1053 1054 1055	32.42 32 43 32.45 32.47 32.48	1101 1102 1103 1104 1105	33.18 33.20 33 21 33.23 33.24	1151 1152 1153 1154 1155	33.93 33.94 33.96 33.97 33.99	1201 1202 1203 1204 1205	34.66 34.67 34.68 34.70 34.71
1006 1007 1008 1009 1010	31.72 31.73 31.75 31.76 31.78	1056 1057 1058 1059 1060	32.50 32.51 32.53 32.54 32.56	1106 1107 1108 1109 1110	33.26 33.27 33.29 33.30 33.32	1156 1157 1158 1159 1160	34.00 34.01 34.03 34.04 34.06	1206 1207 1208 1209 1210	34.73 34.74 34.76 34.77 34.79
1011 1012 1013 1014 1015	31.80 31.81 31.83 31.84 31.84 31.86	1061 1062 1063 1064 1065	32.57 32.59 32.60 32.62 32.63	1111 1112 1113 1114 1115	33.33 33.35 33.36 33.38 33.39	1161 1162 1163 1164 1165	34.07 34.09 34.10 34.12 34.13	1211 1212 1213 1214 1215	34.80 34.81 34.83 34.84 34.86
1016 1017 1018 1019 1020	31.87 31.89 31.91 31.92 31.94	1066 1067 1068 1069 1070	32 65 32.66 32 68 32.70 32.71	1116 1117 1118 1119 1120	33.41 33.42 33.44 33.45 33.45 33.47	1166 1167 1168 1169 1170	34.15 34.16 34.18 34 19 34.21	1216 1217 1218 1219 1220	34.87 34.89 34.90 34.91 34.93
1021 1022 1023 1024 1025	31.95 31 97 31.98 32.00 32.02	1071 1072 1073 1074 1075	32.73 32.74 32 76 32.77 32.79	1121 1122 1123 1124 1125	33.48 33.50 33.51 33.53 33.54	1171 1172 1173 1174 1175	34.22 34.23 34.25 34.26 34.28	1221 1222 1223 1224 1225	34.94 34 96 34.97 34.99 35.00
1026 1027 1028 1029 1030	32.03 32.05 32.06 32.08 32.09	1076 1077 1078 1079 1080	32.80 32.82 32.83 32.85 32.85 32.86	1126 1127 1128 1129 1130	33.56 33.57 33.59 33.60 33.62	1176 1177 1178 1179 1180	34.29 34.31 34.32 34.34 34.35	1226 1227 1228 1229 1230	35.01 35.03 35.04 35.06 35.07
1031 1032 1033 1034 1035	32.11 32.12 32.14 32.16 32.17	1081 1082 1083 1084 1085	32.88 32.89 32.91 32.92 32.94	1131 1132 1133 1134 1135	33.63 33.65 33.66 33.67 33.69	1181 1182 1183 1184 1185	34.37 34.38 34.39 34.41 34.42	1231 1232 1233 1234 1235	35.09 35.10 35.11 35.13 35.14
1036 1037 1038 1039 1040	32.19 32.20 32.22 32.23 32.23 32.25	1086 1087 1088 1089 1090	32.95 32.97 32.98 33 00 33.02	1136 1137 1138 1139 1140	33.70 33.72 33.73 33.75 33.76	1186 1187 1188 1189 1190	34.44 34.45 34.47 34 48 34.50	1236 1237 1238 1239 1240	35.16 35.17 35.19 35.20 35.21
1041 1042 1043 1044 1045	32.26 32.28 32.30 32.31 32.33	1091 1092 1093 1094 1095	33.03 33.05 33.06 33.08 33.09	1141 1142 1143 1144 1145	33.78 33 79 33.81 33.82 33.84	1191 1192 1193 1194 1195	34.51 34.53 34.54 34.55 34.55 34.57	1241 1242 1243 1244 1245	35.23 35.24 35.26 35.27 35.28
1046 1047 1048 1049 1050	32.34 32.36 32.37 32.39 32.40	1096 1097 1098 1099 1100	33.11 33.12 33.14 33.15 33.17	1146 1147 1148 1149 1150	33.85 33.87 33 88 33.90 33.91	1196 1197 1198 1199 1200	34.58 34.60 34.61 34 63 34.64	1246 1247 1248 1249 1250	35 30 35.31 35.33 35.34 35.36

### TABLE OF SQUARE ROOTS.

		N.	D ( )	w	<b>D</b>	w 1	D ( ]	. I	
Nos.	Roots	Nos.	Roots	Nos.	Roots	Nos.	Roots	Nos.	Roots
1251	35.37	1301	36.07	1351	36.76	1401	37.43	1451	38.09
1252	35.38	1302	36 08	1352	36.77	1402	37.44	1452	38.11
1253	35.40	1303	36.10	1353	36.78	1403	37 46	1453	38.12
1254	35.41	1304	36.11	1354	26 80	1404	37 47	1454	38 13
1255	35.43	1305	36.12	1355	36.81	1405	37.48	1455	38.14
1256	35.44	1306	36.14	1356	36 82	1406	37 50	1456	38.16
1257	35 45	1307	36.15	1357	36.84	1407	37.51	1457	38.17
1258	35.47	1308	36.17	1358	36 85	1408	37.52	1458	38.18
1259	35.48	1309	36.18	1359	36 86	1409	37 54	1459	38 20
1260	35 50	1310	36.19	1360	36.88	1410	37.55	1460	38.21
1261	35.51	1311	36.21	1361	36 89	1411	37.56	1461	38.22
1262	35.52	1312	36.22	1362	36 91	1412	37.58	1462	38.24
1263	35.54	1313	36.24	1363	36 92	1413	37.59	1463	38.25
1264	35 55	1314	36.25	1364	36.93	1414	37.60	1464	38.26
1265	35 57	1315	36.26	1365	36.95	1415	37.62	1465	38.28
1266	35.58	1316	36 28	1366	36.96	1416	37.63	1466	38.29
1267	35 59	1317	36.29	1367	36.97	1417	37.64	1467	38.30
1268	35.61	1318	36.30	1368	36 99	1418	37.66	1468	38.31
1269	35 62	1319	36.32	1369	37.00	1419	37 67	1469	38.33
1270	35.64	1320	36.33	1370	37.01	1420	37 68	1470	38.33
1271	35 65	1321	36 35	1371	37.03	1421	37.70	1471	38.35
1272	35.67	1322	36.36	1372	37.04	1422	37.71	1472	38 37
1273	35.68	1323	36.37	1373	37.05	1423	37.72	1473	38.38
1274	35.69	1324	36.39	1374	37.07	1424	37.74	1474	38.39
1275	35.71	1325	36.40	1375	37.08	1425	37.75	1475	38.41
1276	35.72	1326	36.41	1376	37.09	1426	37.76	1476	38.42
1277	35.74	1327	36.43	1377	37.11	1427	37.78	1477	38 43
1278	35.75	1328	36.44	1378	37.12	1428	37.79	1478	38.44
1279	35.76	1329	36.46	1379	37.13	1429	37 80	1479	38 46
1280	35.78	1330	36.47	1380	37.15	1430	37.82	1480	38 47
1281	35.79	1331	36.48	1381	37.16	1431	37.83	1481	38 48
1282	35 81	1332	36.50	1382	37.18	1432	37.84	1482	38.50
1283	35 82	1333	36.51	1383	37.19	1433	37.85	1483	38 51
1284	35.83	1334	36.52	1384	37.20	1434	37.87	1484	38 52
1285	35.85	1335	36.54	1385	37.22	1435	37.88	1485	38.54
1286	35.86	1336	36.55	1386	37.23	1436	37.89	1486	38 55
1287	35.87	1337	36.57	1387	37.24	1437	37.91	1487	38 56
1288	35.89	1339	36.58	1388	37.26	1438	37 92	1488	38.57
1289	35.90	1339	36.59	1389	37 27	1439	37 93	1489	38.59
1290	35.92	1340	36.61	1390	37.28	1440	37.95	1490	38.60
1291	35.93	1341	36.62	1391	37.30	1441	37.96	1491	33 61
1292	35.94	1342	36 63	1392	37.31	1442	37.97	1492	38 63
1293	35.96	1343	36 65	1393	37 32	1443	37.99	1493	38.64
1294	35.97	1344	36.66	1394	37.34	1444	38.00	1494	38.65
1295	35.99	1345	36.67	1395	37.35	1445	38.01	1495	38.67
1296	36.00	1346	36 69	1396	37.36	1446	38 03	1496	38 68
1297	36.01	1347	36.70	1397	37.38	1447	38 04	1497	38.69
1298	36.03	1348	36.72	1398	37.39	1448	38.05	1498	38 70
1299	36.04	1349	36 73	1399	37.40	1449	38 07	1499	38.72
1300	36.06	1350	36 74	1400	37.42	1450	33 08	1500	38.73

	TA	BL	E OF	sq	UAR	ER	001	s.	
Nos.	Roots	Nos.	Roots	Nos.	Roots	Nos.	Roots	Nos.	Roots
1501	38.74	1551	39.38	1601	40.01	1651	40.63	1701	41.24
1502	38 76	1552	39.40	1602	40.02	1652	40.64	1702	41.26
1503	38.77	1553	39.41	1603	40.04	1653	40.66	1703	41.27
1504	38.78	1554	39.42	1604	40.05	1654	40.67	1704	41.28
1505	38.79	1555	39.43	1605	40.06	1655	40.68	1705	41.29
1506 1507 1508 1509 1510	38.81 38.82 38.83 38.85 38.85 38.86	1556 1557 1558 1559 1560	39.45 39.46 39.47 39.48 39.50	1606 1607 1608 1609 1610	40.07 40.09 40.10 40.11 40.12	1656 1657 1658 1659 1660	40.69 40.71 40.72 40.73 40.74	1706 1707 1708 1709 1710	41.30 41.32 41.33 41.34 41.35
<b>1511</b> 1512 1513 1514 1515	38.87 38.88 38.90 38.91 38.92	1561 1562 1563 1564 1565	39.51 39.52 39.53 39.55 39.55 39.56	1611 1612 1613 1614 1615	40.14 40.15 40.16 40.17 40.19	1661 1662 1663 1564 1665	40.76 40.77 40.78 40.79 40.80	1711 1712 1713 1714 1715	41.36 41.38 41.39 41.40 41.41
1516	38.94	1566	39.57	1616	40.20	1666	40.82	1716	41.42
1517	38.95	1567	39.59	1617	40.21	1667	40.83	1717	41.44
1518	38.96	1568	39.60	1618	40 22	1668	40.84	1718	41.45
1519	38.97	1569	39.61	1619	40 24	1669	40.85	1719	41.46
1520	38.99	1570	39.62	1620	40.25	1670	40.85	1720	41.47
1521	39.00	1571	39.64	1621	40.26	1671	40.88	1721	41.48
1522	39.01	1572	39.65	1622	40.27	1672	40 89	1722	41.50
1523	39 03	1573	39.66	1623	40.29	1673	40.90	1723	41.51
1524	39.04	1574	39.67	1624	40.30	1674	40.91	1724	41.52
1525	39.05	1575	39.69	1625	40.31	1675	40.93	1725	41.53
1526	39.06	1576	39.70	1626	40.32	1676	40.94	1726	41.55
1527	39.08	1577	39.71	1627	40.34	1677	40.95	1727	41.56
1528	39.09	1578	39.72	1628	40.35	1678	40.96	1728	41.57
1529	39.10	1579	39.74	1629	40.36	1679	40.98	1729	41.58
1530	39.12	1580	39.75	1630	40.37	1680	40.99	1730	41 59
1531	39.13	1581	39.76	1631	40.39	1681	41.00	1731	41.61
1532	39.14	1582	39.77	1632	40.40	1682	41.01	1732	41.62
1533	39.15	1583	39.79	1633	40.41	1683	41.02	1733	41.63
1534	39.17	1584	39.80	1634	40.42	1684	41.04	1734	41.64
1535	39.18	1585	39.81	1635	40.44	1685	41.05	1735	41.65
1536	<b>39.19</b>	1586	39.82	1636	40.45	1686	41.06	1736	41.67
1537	<b>39.20</b>	1587	39.84	1637	40.46	1687	41.07	1737	41.68
1538	<b>39.22</b>	1588	39.85	1638	40.47	1688	41.09	1738	41.69
1539	<b>39.23</b>	1589	39.86	1639	40 48	1689	41.10	1739	41.70
1540	<b>39.24</b>	1590	39.87	1640	40.50	1690	41.11	1740	41.71
1541	39.26	1591	39.89	1641	40.51°	1691	41.12	1741	41.73
1542	39.27	1592	39.90	1642	40.52	1692	41.13	1742	41.74
1543	39.28	1593	39.91	1643	40.53	1693	41.15	1743	41.75
1544	39.29	1594	39.92	1644	40.55	1694	41.16	1744	41.76
1545	39.31	1595	39.94	1645	40.56	1695	41.17	1745	41.77
1546	39.32	1596	39.95	1646	40.57	1696	41.18	1746	41.79
1547	39.33	1597	39 96	1647	40.58	1697	41.19	1747	41 80
1548	39.34	1598	39 97	1648	40.60	1698	41.21	1648	41.81
1549	39.36	1599	39.99	1649	40.61	1699	41.22	1749	41.82
1550	39.37	1600	40.00	1650	40.62	1700	41.23	1750	41.83

## TABLE OF SQUARE ROOTS.

Nos.	Roots	Nos.	Roots	Nos.	Roots	Nos.	Roots	Nos.	Roots
1751	41.85	1801	42.44	1851	43.02	1901	43.60	1951	44.17
1752	41.86	1802	42.45	1852	43.03	1902	43.61	1952	44.18
1753	41.87	1803	42.46	1853	43.05	1903	43 62	1953	44.19
1754	41.88	1804	42.47	1854	43.06	1904	43 63	1954	44.20
1755	41.89	1805	42.49	1855	43.07	1905	43.65	1955	44.22
1756 1757 1758 1759 1760	41.90 41 92 41.93 41 94 41.95	1806 1807 1808 1809 1810	42.50 42.51 42.52 42.53 42.53 42.54	1856 1857 1858 1859 1860	43.08 43 09 43.10 43.12 43 13	1906 1907 1908 1909 1910	43.66 43.67 43.68 43.69 43.70	1956 1957 1958 1959 1960	44.23 44 24 44.25 44.26 44.27
1761	41.96	1811	42 56	1861	43 14	1911	43.71	1961	44.28
1762	41.98	1812	42 57	1862	43 15	1912	43.73	1962	44.29
1763	41 99	1813	42 58	1863	43.16	1913	43.74	1963	44.31
1764	42.00	1814	42.59	1864	43.17	1914	43.75	1964	44.32
1765	42.01	1815	42.60	1865	43.19	1915	43.76	1965	44.33
1766	42.02	1816	42.61	1866	43.20	1916	43.77	1966	44.34
1767	42 04	1817	42.63	1867	43.21	1917	43.78	1967	44.35
1768	42.05	1818	42.64	1868	43.22	1918	43.79	1968	44.36
1769	42.06	1819	42.65	1869	43.23	1919	43 81	1969	44.37
1770	42.07	1820	42.66	1870	43.24	1920	43 82	1970	44.38
1771	42.08	1821	42.67	1871	43.26	1921	43.83	1971	44.40
1772	42.10	1822	42.68	1872	43.27	1922	43.84	1972	44.41
1773	42.11	1823	42.70	1873	43.28	1923	43.85	1973	44.42
1774	42.12	1824	42.71	1874	43 29	1924	43.86	1974	44.43
1775	42.13	1825	42.72	1875	43.30	1925	43.87	1975	44.44
1776	42.14	1826	42.73	1876	43.31	1926	43.89	1976	44.45
1777	42.15	1827	42.74	1877	43.32	1927	43.90	1977	44.46
1778	42.17	1828	42 76	1878	43.34	1928	43.91	1978	44.47
1779	42.18	1829	42.77	1879	43.35	1929	43.92	1979	44.49
1780	42.19	1830	42.78	1880	43.36	1930	43.93	1980	44.50
1781	42.20	1831	42.79	1881	43.37	1931	43.94	1981	44.51
1782	42.21	1832	42.80	1882	43.38	1932	43.95	1982	44.52
1783	42 23	1833	42.81	1883	43.39	1933	43.97	1983	44.53
1784	42.24	1834	42.83	1884	43.41	1934	43.98	1984	44.54
1785	42.25	1835	42.84	1885	43.42	1935	43.99	1985	44.55
1786	42 26	1836	42.85	1886	43.43	1936	44.00	1986	44.56
1787	42 27	1837	42.86	1887	43.44	1937	44.01	1987	44 58
1788	42.28	1838	42.87	1888	43.45	1938	44 02	1988	44 59
1789	42 30	1839	42.88	1889	43 46	1939	44.03	1989	44.60
1790	42.31	1840	42.90	1890	43.47	1940	44 05	1990	44.61
1791	42.32	1841	42.91	1891	43.49	1941	44.06	1991	44.62
1792	42.33	1842	42 92	1892	43.50	1942	44.07	1992	44 63
1793	42.34	1843	42.93	1893	43.51	1943	44.08	1993	44.64
1794	42.36	1844	42.94	1894	43.52	1944	44.09	1994	44.65
1795	42.37	1845	42.95	1895	43.53	1945	44.10	1995	44.67
1796	42.38	1846	42.97	1896	43.54	1946	44.11	1996	44.68
1797	42.39	1847	42 98	1897	43.55	1947	44.12	1997	44.69
1798	42 40	1848	42.99	1898	43.57	1948	44.14	1998	44.70
1799	42.41	1849	43.00	1899	43.58	1949	44.15	1999	44.71
1800	42.43	1850	43.01	1900	43.59	1950	44.16	2000	44.72

### TABLE OF SQUARE ROOTS.

		11			A.S.		T.K. A		E.C.
Nos.	Roots	Nos.	Roots	Nos.	Roots	Nos.	Roots	Nos.	Roots
2001	44.73	2051	45.29	2101	45.84	2151	46.38	2201	46 92
2002	44.74	2052	45.30	2102	45.85	2152	46.39	2202	46.93
2003	44.75	2053	45 31	2103	45.86	2153	46.40	2203	46.94
2004	44.77	2054	45.32	2104	45 87	2154	46.41	2204	46 95
2005	44.78	2055	45.33	2105	45.88	2155	46.42	2205	46.96
2006 2007 2008 2009 2010	44.79 44.80 44.81 44.82 44.83	2056 2057 2058 2059 2060	45.34 45.35 45.37 45.38 45.38 45.39	2106 2107 2108 2109 2110	45.89 45.90 45.91 45.92 45.93	2156 2157 2158 2159 2160	46.43 46.44 46.45 46.47 46.48	2206 2207 2208 2209 2210	46 97 46.98 46.99 47.00 47.01
2011	44.84	2061	45.40	2111	45.95	2161	46.49	2211	47.02
2012	44.85	2062	45.41	2112	45 96	2162	46.50	2212	47.03
2013	44.87	2063	45.42	2113	45.97	2163	46.51	2213	47.04
2014	44.88	2064	45.43	2114	45.98	2164	46.52	2214	47.05
2015	44.89	2065	45.44	2115	45.99	2165	46.53	2215	47.06
2016	44.90	2066	45.45	2116	46.00	2166	46.54	2216	47.07
2017	44.91	2067	45.46	2117	46.01	2167	46 55	2217	47.09
2018	44.92	2068	45.48	2118	46.02	2168	46 56	2218	47.10
2019	44.93	2069	45.49	2119	46.03	2169	46.57	2219	47.11
2020	44.94	2070	45.50	2120	46.04	2170	46.58	2220	47.12
2021 2022 2023 2024 2025	44 95 44.97 44.98 44.99 45.00	2071 2072 2073 2074 2075	45.51 45 52 43 45.54 45.55	2121 2122 2123 2123 2124 2125	46.05 46.07 46 08 46.09 46.10	2171 2172 2173 2174 2175	46.59 46 60 46.62 46.63 46.64	2221 2222 2223 2224 2225	47.13 47.14 47.15 47.16 47.17
2026	45 01	2076	45.56	2126	46.11	2176	46 65	2226	47 18
2027	45.02	2077	45.57	2127	46.12	2177	46.66	2227	47.19
2028	45.03	2078	45.59	2128	46.13	2178	46.67	2228	47.20
2029	45.04	2079	45 60	2129	46.14	2179	46.68	2229	47.21
2030	45.06	2080	45.61	2130	46.15	2180	46.69	2230	47.22
2031	45.07	2081	45 62	2131	46.16	2181	46.70	2231	47.23
2032	45.08	2082	45.63	2132	46.17	2182	46.71	2232	47.24
2033	45 09	2083	45.64	2133	46.18	2183	46.72	2233	47.25
2034	45.10	2084	45.65	2134	46.19	2184	46.73	2234	47.26
2035	45.11	2085	45.66	2135	46.21	2185	46.74	2235	47.28
2036 2037 2038 2039 2040	45.12 45.13 45.14 45.16 45.17	2086 2087 2088 2089 2090	45.67 45.68 45.69 45.71 45.72	2136 2137 2138 2139 2140	46.22 46.23 46.24 46.25 46.25 46.26	2186 2187 2188 2189 2190	46.76 46.77 46 78 46.79 46.80	2236 2237 2238 2239 2240	47.29 47.30 47.31 47.32 47.33
2041	45.18	2091	45.73	2141	46.27	2191	46.81	2241	47.34
2042	45 19	2092	45 74	2142	46 28	2192	46.82	2242	47.35
2043	45.20	2093	45.75	2143	46.29	2193	46.83	2243	47.36
2044	45.21	2094	45.76	2144	46.30	2194	46.84	2244	47.37
2045	45.22	2095	45.77	2145	46.31	2195	46.85	2245	47.38
2046	45.23	2096	45.78	2146	46 32	2196	46.86	2246	47.39
2047	45.24	2097	45.79	2147	46.34	2197	46.87	2247	47.40
2048	45.25	2098	45.80	2148	46.35	2198	46.88	2248	47 41
2049	45 27	2099	45.82	2149	46.36	2199	46.89	2249	47 42
2050	45.28	2100	45.83	2150	46.37	2200	46.90	2250	47.43

.

# SWING BRIDGES.

# THREE POINTS OF SUPPORT. TWO EQUAL ARMS.

#### REACTIONS, SHEARING STRESSES AND BENDING MOMENTS.

Single Loads, -Symmetrical Loads, pages 113 to 128. " 128 to 142.

The following Tables are based on the assumption of a panel load and panel length of unity. The actual shear will, therefore, be obtained by multiplying the actual panel load by the tabular shear, and the actual moment will be found by multiplying the actual panel load by the actual panel length and by the proper tabular coefficient.

If the chords are not parallel the web stresses may be obtained by the method of moments, or by a combination of the method of moments and graphics.

As the coefficients are based on unity both for load and panel length, the tables are applicable to any system of measurement and apply with equal facility to pounds, tons or kilogrammes and feet, inches or metres.

The coefficients are derived from the formulæ of the "Theorem of Three Moments" and are therefore applicable for the conditions upon which the theory was developed.

Nore:-Shear in panel $ab = reaction at a$ . Nore:-Shear in panel $ab = reaction at a$ . Nore:-Shear in panel $ab = reaction at a$ . Navimum $\begin{cases} -0.094 & -0.688 \\ -0.094 & -0.088 \\ -0.094 & -0.688 \end{cases}$		•		
		F		
<b>6 1 1 4 6 . 8</b>	0<	100		
SHEAR IN PANEL:       ab     bc       +0.406     -0.594       +0.406     -0.094       +0.406     -0.094       +0.406     -10.688       um     -0.094	4  PANELS $ab = reaction at  a.$	ALL EQUAL.	a due.	11 9 4 1 9 4
ab     bc       +0.406     -0.594       -0.094     -0.094       +0.406     -0.094       +0.406     -       +0.608     -	SHEAR IN PANEL:	REACTION AT:	MOMENT AT:	NT AT:
+0.406 -0.594 -0.094 -0.094 +0.406 -0.688	1 2 4 6 6 1	c   c	9	c
-0.094 -0.094 +0.406 -0.094 -0.688		+0.688 -0.094	+0.406	-0.188
+0.406 -0.688	1	+0.688 +0.406	-0.094	-0.188
-0.094	+0.406	+1.376 +0.406	+0.406	
		-0.094	-0.094	-0.376
( +0.500 · · · ·	+0.500	+0.500 +0.500	+0.500	· ·
As a Simple Span {0.500 .	0.500		•	•

SHEAR IN PANEL: ab bc cd	REAC	REACTION : d g	9 VC	MOMENT AT	AT: d
	d	8	9	C	d
			The second se		and the second second
-	+0.481	-0.074	+0.593	+0.185	-0.222
+0.241 -0.759	+0.852	-0.093	+0.241	+0.482	-0.278
-0.093 -0.093	+0.852	+0.241	-0.093	-0.185	-0.278
-0.074 -0.074	+0.481	+0.593	-0.074	-0.148	-0.222
+0.241	+2.666	+0.834	+0.834	+0.667	
-0.574 -1.333	( ) ·	-0.167	-0.167	-0.333	-1.000
+0.333	+1.000	+1.000	+1.000	+1.000	:
-0.333 -1.000	ρ	•	••••		• • •
		+0.481 +0.852 +0.852 +0.481 +2.666 · · · · +1.000 · · · ·	200 C 200 C	-0.074 -0.093 +0.241 +0.241 +0.593 +0.834 +1.000 +1.000	-0.074         +0.593           -0.093         +0.593           -0.093         +0.241           +0.241         -0.093           +0.593         -0.074           +0.593         -0.074           +0.834         +0.834           +0.834         +0.834           +1.000         +1.000

Norg :Shear in panel $ab = reaction at a.$	n panel a	b = reac	c D c d 8 PANELS	8 <b>8 6</b> 8	F C	W P			1 1 1 1 1 1 1 1	
LOAD AT:	SH	SHEAR IN PANEL:	I PANE	: H	REACTION:	: NOI1	10 0	MOMENT	NT AT:	
	ab	bc	cd	de	e	1	9	0	d	•
9	+0.691	-0.309	-0.309		-0.309 +0.367	-0.059 +0.691	+0.691	+0.383	+0.074	-0.234
q c	+0.168	+0.168	+0.168	-0.832	-0.832 +0.914	-0.094	-0.094 +0.406 -0.082 +0.168	+0.336	+0.219	-0.328
s 20	-0.082	-0.082	-0.082	-0.082	+0.914 +0.688	+0.168 -0.082 +0.406 -0.094	-0.082	-0.164	-0.247	-0.328
ų	-0.059	-0.059	-0.059	-0.059	-0.059 +0.367	+0.691	-0.059	-0.117	-0.176	-0.234
Maximum {	+1.265	+0.574	+0.168		+3.938	+1.265	+1.265 +1.265	+1 531	+0.797	.
	-0.235	-0.544	-1.138	-1.970	• • •	-0.235	-0.235	-0.469	-0.704	-1.874
As a Simple Span {	+1.500	+0.750 -0.250	+0.750 +0.250	-1.500	+1.500	+1.500	+1.500	+2.000	+1.500	· · ·

and Marie ash	R		5 4	H L	**	1.940 Lan	
Provident and		6			4		
	0 0 V	c , d .e	\$ \$	*	* *		1000
	20 0 1 2EU	IO PANELS	•	ALL EQUAL.	2 2 7		
NOTE:-Shear in panel $ab =$ reaction at $a_{\bullet}$ .	anel $ab = r$	eaction at a	10+ 101 - 01				11 -0.338
1		SHEAR	AR IN PANEL:	ABL :		REACTI	REACTION AT:
LOAD AT :	ab	bc	cď	de	ef	J	1
9	+0.752	-0.248	-0.248	-0.248	-0.248	+0.296	-0.048
2040 C	+0.516	+0.516	-0.484	-0.484	-0.484	+0.568	-0.084
đ	+0.304	+0.304	+0.304	-0.696	-0.696	+0.793	-0.096
0 0	+0.128	+0.128	+0.128	+0.128	-0.872	+0.944	-0.072
8-4 4	-0.096	-0.096	-0.096	-0 096	-0.096	+0.792	+0.304
. 6.	-0.084	-0.084	-0.084	-0.084	-0.084	+0.568	+0.516
k	-0.048	-0.048	-0.048	-0.048	-0.048	+0.296	+0.752
Maximum {	+1.700	+0.948	+0.432	+0.128		+5.200	+1.700
	-0.300	-0.548	-1.033	-1 728	-2.600	• • •	-0.300
As a Simple Span {	+2.000	+1.200	+0.600	+0.200	-2.000	+2.000	+2.000
					000.0		•

endo stapeio a re-	D R	C D E F	G H I	Ŕ	
	C	Sector 1 and 1	State of the state	/	
		4 i i	20 V F	1 *	0 741 14 103
	*00.0-	10 PANELS	ALL EQUAL.		145 04 188 0
	per or	60101 - 0108	MOMENT AT:		
. 12 7701	9	1 000 C 000	q	e	1 5 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9	+0.752	+0.504	+0.256	+0.008	-0.240
C	+0.516	+1.032	+0.548	+0.064	-0.420
q	+0.304	+0.608	+0.912	+0.216	-0.480
6	+0.128	+0.256	+0.384	+0.512	-0.360
8	-0.072	-0.144	-0.216	-0.288	-0.360
h	-0.096	-0.192	-0.288	-0.384	-0.480
;	-0.084	-0.168	-0.252	-0.336	-0.420
k k	-0.048	960.0-	0.144	-0.192	-0.240
Af a	+1.700	+2.400	+2.100	+0.800	
Munuten M	-0.300	-0.600	-0.900	-1.200	-3.000 :
As a Simple Span	+2.000	+3.000	+3.000	+2.000	

-

mode shquite is the	B C	DE	F G	H I	K L	W		
anemier shis	-		and the			4		Lunga e
	6 C	d c	* CO	P .	2 4	L E		0
л. 12 РАИЕL: Norm:Shear in panel ab = reaction at a.	mel <i>ab</i> =	12 PANELS reaction at a.	iels ta.	ALL EQUAL.	ų			
	100.04	01	HEAR II	SHEAR IN PANEL:		517.9°	REAC	REACTION :
. 15 400	ab	bc	cd	de	ef	fg	8	u
9	+0.793	-0.207	-0.207	-0.207	-0.207	-0.207	+0.247	-0.040
c	+0.592	+0.593	-0.407	-0.407	-0.407	-0.407	+0.482	-0.074
q	+0.406	+0.406	+0.406	-0 594	-0.594	-0.594	+0.687	-0.094
TOND CT	+0.241	+0.241	+0.241	+0.241	-0.759	-0.759	+0.852	-0.093
· · ·	+0.103	+0.103	+0.103	+0.103	+0.103	-0.897	+0.961	-0.064
ų	-0.064	-0.064	-0.064	-0.064	-0.064	-0.064	+0.961	+0.103
2 9	-0.094	-0.094	-0.093	-0.093	-0.093	-0.093	+0.852	+0.241
1	-0.074	-0.074	-0.074	-0.074	-0.074	-0.074	+0.482	+0.592
m	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	+0.247	+0.793
Maximum {	+2.135	+1.343 -0.572	+0.750 -0 979	+0.344	+0.103		+6.458	+2.135
	+2.500	+1 667	+1 000	TO EDD	10 167	699.0		600°.0-
As a Simple Span {		-0.167	-0.500	-1.000	-1.167	-2.500		· · ·

R R R R R R R R R R R R R R R R R R R						
	a -	E	C H S	K L	26	
					/	129 01 1
	c q	e J	1 4 50 W	k l		10 10 10 10 10 10 10 10 10 10 10 10 10 1
	12	12 PANELS	ALL EQUAL	L		
	1440 - 144		MOME	MOMENT AT:		
LOAD AT:	9	0	q	e	f	20
P 9	+0.793	+0.586	+0.378	+0.171	-0.036	-0.243
r 2	+0.592	+1.185	+0.778	+0.370	-0.037	-0.444
+ q +	+0.406	+0.813	+1.219	+0.625	+0.032	-0.563
•	+0.241	+0.481	+0.722	+0.963	+0.204	-0.556
+ /	+0.103	+0.206	+0.309	+0.412	+0.515	-0.382
- <b>u</b>	-0.064	-0.127	-0.191	-0.255	-0.319	-0.382
- Store - separe in parts	-0.093	-0.185	-0.278	-0.371	-0.463	-0.556
4	-0.094	-0.188	-0.281	-0.375	-0.469	-0.563
- 1 1	-0.074	-0.148	-0.222	-0.296	-0.371	-0.444
	-0.040	-0.081	-0.122	-0.162	-0.203	-0.243
-	+2.135	+3.271	+3.406	+2.541	+0.751	
- } mumtmum	-0.365	-0.729	+60.1	-1.459	-1.898	-4.376
As a Simple Span +	+2.500	+4.000	+4.500	+4.000	+2.500	

NAMES AND	B	C D	EF	G H	IK	LM	O N	1 ··· 1	
num.	7		4.00	14			É	/	
M	•	6 0	5 0	* *	· ×	# 7	, o	124	0.541
14 PANEL NOTE:-Shear in panel $ab =$ reaction at $a$ .	iear in pa	nel ab = 1	14 PANELS reaction at a.	IELS .a.	ALL EQUAL.	QUAL.		•	
	Salar Salar	Tan tan tan	SHEA	SHEAR IN PANEL:	NEL :	114.01		REAC	REACTION :
TA TANA	ab	bc	cd	de	ef	fg	gh	ų	d
9	+0.822	-0.178	-0.178	-0.178	-0.178	-0.178	-0.178	+0.213	-0.035
c	+0.649	+0.649	-0.351	-0.351	-0.351	-0.351	-0.351	+0.417	-0.066
d	+0.484	+0.484	+0.484	-0.516	-0.516	-0.516	-0.516	+0.603	-0.087
e	+0.332	+0.332	+0.332	+0.332	-0.668	-0.668	-0.668	+0.764	960.0-
· 1	+0.198	+0.198	+0.198	+0.198	+0.198	-0.802	-0.802	+0.889	-0.087
20	+0.086	+0.086	+0.086	+0.086	+0.086	+0.086	-0.914	+0.971	-0.057
.69 .	-0.057	-0.057	-0.057	-0 057	-0.057	-0.057	-0.057	+0.971	+0.086
8	-0.087	-0.087	-0.087	-0.087	-0.087	-0.087	-0.087	+0.889	+0.198
1	-0.096	-0.096	-0.096	-0.096	-0.096	-0.096	-0.096	+0.764	+0.332
. m	180.0-	-0.087	-0.087	-0.087	-0.087	-0.087	-0.087	+0.603	+0.484
<i>u</i>	-0.066	-0.066	-0.066	-0.066	-0.066	-0.066	-0.066	+0.417	+0.649
0	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035	+0.213	+0.822
Marinum S	+2.571	+1.749	+1.100	+0.616	+0.284	+0.086	1.1.	+7.714	+2.571
1 mmmmmmm	-0.428	-0.606	-0.957	-1.473	-2.141	-2.943	-3.857		-0.428
As a Simple {	+3.000	+2.143	+1.429	+0.857	+0.429	+0.143			• • • •
Span 1		-0.143	-0.429	-0.857	-1.429	-2.143	-3.000		

*	C P	8	G H I	K L	N W	~	
	- 8 - 0					1.	
		14 PANELS	NIC OF	ALL EQUAL.	and and	0.042	
			W	MOMENT AT	T :	and and	
LOAD AT:	9	c	q	e	f	8	ų
9	+0.822	+0.644	+0.467	+0.289	+0.111	-0.067	-0.245
c	+0 649	+1.297	+0.946	+0.595	+0.243	-0.108	-0.459
d	+0.484	+0.968	+1.452	+0.936	+0.420	960.0-	-0.612
6	+0.332	+0.665	+0.997	+1.329	+0.662	-0.006	-0.674
f	+0.198	+0.397	+0.595	+0.793	+0.992	+0.190	-0.612
. 00	+0.086	+0.172	+0.258	+0.344	+0.430	+0.516	-0.398
TOVE IL F	-0.057	-0.114	-0.171	-0 227	-0.285	-0.341	-0.398
k	-0.087	-0.175	-0.262	-0.350	-0.438	-0.525	-0.612
Marine Conservation 10	-0.087	-0.195	-0.263	-0.350	-0.437	- 0.525	-0.612
14	-0.066	-0.131	-0.197	-0.262	-0.328	-0.394	-0.459
0	-0.035	-0.070	-0.105	-0.140	-0.175	-0.210	-0.245
74	+2.571	+4.143	+4.715	+4.286	+2.858	+0.706	• •
wumuxum	-0.428	-0.857	-1.286	-1.714	-2.144	-2.849	-6.000
As a Simple Span	+3.000	+5.000	+6.000	+6.000	+5.000	+3.000	• • • •
and adding more							

L									4	
	C			CH North	-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	- AND CAR	TO NOT	/	
		2 1 1	140			1.6.2	32.00	1 20.0	1	New York
0 0 0	q	e J	ø	h i	Y Y	u	o u	d	r 8	100
•		. 16	18 PANELS	•	ALLE	ALL EQUAL.			<	
NoTE : Shear in pauel ab =-	panel a	b = reaction	reaction at a.			0.55	11 88T	10 mm		-
. H	1000	DBA 1	SH	SHEAR IN	PANEL:	L :	1.23	0	REAC	REACTION:
TA UAD	ab	bc	cd	de	ef	fg	gh	hi	2	r
9	+0.844	-0.156	-0.156	-0.156	-0.156	-0.156	-0.156	-0.156	+0.187	-0.031
	+0.691	+0.691	-0.309	-0.309	-0.309	-0.309	-0.309	-0.309	+0.367	-0.058
d	+0.544	+0.544	+0.544	-0.456	-0.456	-0.456	-0.456	-0.456	+0.537	-0.081
•	+0.406	+0.406	+0.406	+0.406	-0.594	-0.594	-0 594	-0.594	+0.688	-0.094
f f	+0.280	+0.280	+0.280	+0.280	+0.280	-0.720	-0.720	-0.720	+0815	-0.095
, 24	+0.168	+0.168	+0.168	+0.168	+0.168	+0.168	-0.832	-0.832	+0.914	-0.082
4	+0.074	+0.074	+0.074	+0.074	+0.074	+0.074	+0.074	-0.926	+0.977	-0.051
* *	-0.051	-0 051	-0.051	-0.051	-0.051	-0.051	-0.051	-0.051	+0.977	+0.074
· the second	-0.082	-0.082	-0.082	-0.082	-0.082	-0.082	-0.082	-0.082	+0.914	+0.168
m	-0.095	-0.095	-0.095	-0.095	-0.095	-0.095	-0.095	-0.095	+0.815	+0.280
	-0.094	-0.094	-0.094	-0.094	-0.094	-0.094	-0.094	-0.094	+0.688	+0.406
0	-0.081	-0.081	-0.081	-0.081	-0.081	-0.081	-0.081	-0.081	+0.537	+0.544
, d	-0.058	-0.058	-0.058	-0.058	-0.058	-0.058	-0.058	-0.058	+0.367	+0.691
6	-0.031	-0.031	-0.031	-0.031	-0.031	-0.031	-0.031	-0.031	+0.187	+0.844
2	+3.007	+2.163	+1.472	+0.928	+0.522	+0.242	+0.074		+8.970	+3.007
- Unmurphi	-0.492	-0.648	-0.957	-1.413	-2.007	-2.727	-3.559	-4.485		-0.492
As a Cimile Chan	+3.500	+2.625	+1.875	+1.250	+0.750	+0.375	+0.125	• • • •		• • • •
Il unde siduie psy	• • •	-0.125	-0.375	-0.750	-1.250	-1.875	-2.625	-3.500		

	*		H I	K L	M M	0 P	0	
1	12.1.2			1			4	All all
0	e p	5 5	~	7 4	2	d o	6	
		IB PANELS	ELS	ALL EQUAL.	11.			に開発
				MOME	MOMENT AT:			
LOAD AT:	9	c	q	e	S	8	ų	i
9	+0.844	+0.688	+0.533	+0.377	+0.221	+0.065	-0.090	-0.246
	+0.691	+1.383	+1.074	+0.766	+0.457	+0.148	-0.160	-0.469
q	+0.544	+1.089	+1.633	+1.177	+0.723	+0.266	-0.189	-0.645
•	+0.406	+0.813	+1.219	+1.625	+1.031	+0.438	-0.156	-0.750
1	+0.280	+0.560	+0.839	+1.119	+1.399	+0.679	-0.041	-0.762
2	++0.168	+0.336	+0.504	+0.672	+0.840	+1.008	+0.176	-0.656
ų	+0.074	+0.147	+0.221	+0.295	+0.369	+0.442	+0.516	-0.410
k	-0.051	-0.103	-0.154	-0.205	-0.257	-0.308	-0.359	-0.410
any the results I - printing	-0.082	-0.164	-0.246	-0.328	-0.410	-0.492	-0.574	-0.656
W	-0.095	-0.190	-0.286	-0.381	-0.476	-0.571	-0.666	-0.762
u	-0.094	-0.188	-0.281	-0.375	-0.469	-0.562	-0.656	-0.750
0	-0.081	-0.161	-0.242	-0.322	-0.403	-0.484	-0.564	-0.645
4	-0.058	-0.117	-0.176	-0.234	-0.293	-0.352	-0.410	-0.469
0	-0.031	-0.062	-0.092	-0.123	-0.154	-0.185	-0.216	-0.246
	+3.007	+5.016	+6.023	+6.031	+5.039	+3.046	+0.692	
Maximum {	-0.492	-0.985	-1.477	-1.968	-2.463	-2.954	-4.081	-7.876
As a Simple Span	+3.500	+6.000	+7.500	+8.000	+7.500	+6.000	+3.500	

g         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         h         i         i         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j         j	
AL A	
AR IN PAI AR IN PAI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	cd de ef
+0.553         +0.553         +0.553         +0.563         +0.461         +0.461           +0.466         +0.461         +0.341         +0.341         +0.341         +0.341           +0.346         +0.341         +0.341         +0.341         +0.341         +0.341           +0.346         +0.341         +0.341         +0.341         +0.341         +0.341           +0.345         +0.346         +0.341         +0.341         +0.341         +0.341           +0.345         +0.346         +0.341         +0.341         +0.341         +0.341           +0.345         +0.045         +0.045         +0.045         +0.045         +0.045           +0.047         -0.047         -0.047         -0.047         -0.047         -0.047           -0.047         -0.047         -0.047         -0.047         -0.047         -0.047           -0.048         -0.048         -0.048         -0.048         -0.048         -0.048         -0.048           -0.049         -0.049         -0.049         -0.049         -0.049         -0.049         -0.046           -0.048         -0.048         -0.048         -0.048         -0.049         -0.049         -0.046         -0.046	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
+0.488 +0.488 +0.381 +0.486 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0.381 +0	+0.593 -0.407 -0.407 -0.407 -0.407 -0.407 -0.407 +0.481
-0.31         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.241         +0.242         +0.242         +0.242 </th <th>+0.466 $+0.466$ $-0.534$ $-0.534$ $-0.534$ $-0.534$ $-0.534$ $+0.523$ $+0.521$ $-0.562$ $-0.652$ $-$</th>	+0.466 $+0.466$ $-0.534$ $-0.534$ $-0.534$ $-0.534$ $-0.534$ $+0.523$ $+0.521$ $-0.562$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-0.652$ $-$
+0.065 +0.065 +0.065 +0.065 +0.065 -0.077 -0.077 -0.077 -0.077 -0.077 -0.077 -0.077 -0.077 -0.065 -0.089 -0.083 -0.033 -0.033 -0.089 -0.089 -0.039 -0.033 -0.083 -0.033 -0.039 -0.033 -0.073 -0.074 -0.074 -0.074 -0.074 -0.074 -0.073 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0	+0.241 $+0.241$ $+0.241$ $+0.241$ $+0.241$ $-0.759$ $-0.759$ $-0.759$
-0.077 -0.077 -0.077 -0.077 -0.077 -0.079 -0.089 -0.083 -0.083 -0.083 -0.066 -0.086 -0.089 -0.083 -0.033 -0.089 -0.089 -0.089 -0.093 -0.033 -0.071 -0.077 -0.077 -0.077 -0.073 -0.073 -0.073 -0.073 -0.071 +2.553 +1.556 +0.799	
-0.036 -0.0035 -0.033 -0.033 -0.033 -0.039 -0.039 -0.039 -0.039 -0.033 -0.037 -0.039 -0.039 -0.039 -0.033 -0.037 -0.037 -0.037 -0.033 -0.033 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -	
-0.089 -0.089 -0.089 -0.089 -0.089 -0.089 -0.089 -0.089 -0.078 -0.078 -0.078 -0.078 -0.078 -0.078 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0	-0.096 -0.096 -0.096 -0.096 -0.096 -0.096 -0.096 -0.097 -0.097
-0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.027 -0.027 -0.027 -0.027 -0.027 +3.444 +2.563 +1.566 +0.799	-0.089 -0.089 -0.089 -0.089 -0.089 -0.089 -0.089 -0.089 +0.623 -0.074 -0.074 -0.074 +0.481
{ +3.444 +2.583 +1.858 +1.265 +0.799	-0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.057 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027
116.1- 1/2.1- 0/6.0- 060.0- 0000.0-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
+3.111 +2.333 +1.667 +1.111 -0.111 -0.333 -0.667 -1.111	+2.333 +1.667 +1.111 +0.667 +0.333 +0.111

BCD	E. F	H D	I K	L M	N O	P	Q R	S	-1616-0
								1	
9 0 0 Q	5 0	8 h	24	e 7	0 2	d	2 8	104	
		18 PANELS	SLS	ALL EQUAL.	UAL.				
				OM	MOMENT .	AT :			1000
LOAD AT:	9	0	q	v	S	840	ų	<b>.</b>	¥
9	+0.861	+0.723	+0.584	+0.446	+0.307	+0.168	+0.030	-0.109	-0.247
q	+0.593	+1.450 +1.185	+1.778	+1.370	696.0+	+0.565	141.0+	-0.260	6/4.0-
	-0.466	+0.933	+1.399	+1.866	+1.332	+0.798	+0.265	-0.269	0.802
- 24	+0.241	10.481	+0.722	10 963	+1.204	+1.444	+0.685	-0.074	0.833
¥.,	+0.145	10.291	+0.436	+0 582	10.727	+0.873	+1.018	+0.163	-0.692
	-0.047	0.093	-0 140	-0.186	-0.233	-0.280	-0.326	-0.373	-0.420
# #	1.0.0-	0.185	-0.278	-0.370	-0.463	-0.556	0.648	10.741	-0.833
•	-0.096	-0.192	-0.288	-0.384	-0.480	-0.576	-0.672	-0.768	-0.864
A 0	40.0-	0.148	-0.222	-0.296	-0.371	-0.444	-0.519	-0.593	-0.667
	-0.053	-0.106	-0.158	-0.211	-0.264	-0.317	10.370	-0.422	-0.475
	0,001		200.0	NTT-N					
Maximum	1 +3.444	+5.889	+7.333	+7.779	+7.223	+5.666	+ 3.110	+0.679 -5.569	-10.000
As a Simple Span	4.000	47.000	To on	110 000	1-10 000	1-9 000	47 000	14 000	

B     C     D     E       Ioab     AT     A     C     E       Ioab     A     C     B     C       Ioab     C     B     C     B       Ioab     C     D     B     C       Ioab     C     D     B     C       Ioab     C     D     C     B       Ioab     C     D     C     B       Ioab     C     D     C     B       Ioab     C     D     C     B	F         G         H           20         PANELS         20           21         36         h           22         20         PANELS           23         11.554         11.555           24         11.555         11.555           25         26         PANELS           26         11.535         11.535           27         20.085         -0.1235           28         11.535         -0.138           29         11.535         -0.138           20.0496         -0.0149         -0.2281           27         -0.0496         -0.0149           28         -0.0149         -0.2281           29         -0.0148         -0.0148           20         -0.0148         -0.0148           20         -0.0148         -0.0148           20         -0.0148         -0.0148           20         -0.0148         -0.0148           20         -0.0148         -0.0148           20         -0.0148         -0.0148           20         -0.0148         -0.0148		<b>X X X X X X X X X X</b>	M N 0 M N 0 M N 0 MOMENT ALL E 0 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.2246 0.224 0.224 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2246 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.2046 0.204	<b>AT:</b> <b>AT:</b> <b>AT:</b> <b>AT:</b> <b>AT:</b> <b>AT:</b> <b>AT:</b> <b>B.</b> <b>AT:</b> <b>AT:</b> <b>D.</b> <b>AT:</b> <b>D.</b> <b>D.</b> <b>D.</b> <b>D.</b> <b>D.</b> <b>D.</b> <b>D.</b> <b>D.</b>	<b>A A A A A A A A A A</b>	S         T         S         T           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--	----------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--	--

B     C     D       NOTE:-Shear in panel $ab = reaction at a.$ 6 PANEL6       NOTE:-Shear in panel $ab = reaction at a.$ SHEAR IN PANEL4:       LOAD AT : $ab = reaction at a.$ A $b = reaction at a.$ SHEAR IN PANEL4: $ab = reaction at a.$ LoAD AT : $ab = reaction at a.$ A $b = reaction at a.$ B $ab = reaction at a.$ B $and f = 0.481$ b $and f = 0.148$ b $and f = 0.148$ c $e = -0.481$ Maximum $+0.667$ A $-0.481$ $a = 0.333$ $-1.00$
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

· Water and the Asia			E.							
			5 5	a a a a a a a a a a a a a a a a a a a	R	5	/	-		
	10<	9	0	• 4	-	4	1. <	7		
		8	8 PANELS		ALL EQUAL.	UAL.	ALL ST	110		
Norg:-Shear in panel $ab =$ reaction at $a$ .	n panel a	b = reaction	ction at a							
	HS	SHEAR IN PANEL:	I PANE	L:	REACTION:	: NOI		MOMEN	MOMENT AT:	
LOAD AT:	ab	bc	cd	de	e	.2	9	0	q	e
b and h	+0.633	-0.367	-0.367	-0.367	-0.367 +0.734	+0.633	+0.633	+0.266	-0.102	-0.469
c :: S d :: J	+0.312 +0.086	+0.312 +0.086	-0.688 +0.086	-0.688 +1.375 -0.914 +1.828	+1.375 +1.828	+0.312 +0.086	+0.312 +0.086	+0.624 +0.172	-0.062	-0.750
	+1.031	+0.398	+0.086	1:	+3.937	+1.031	+1.031	+1.062	+0.257	:
Maxımum {	2	-0.367	-0.367 -1.055 -1.969	-1.969		:	· · · ·	:	-0.164	-1.875
12 2 Cimile Chan	+1.500	+0.750	+0.250		+1.500	+1.500	+1.500	+2.000	+1.500	:
under andmire n er	:	-0.250	-0.750	-1.500	:	:		· · · ·	:	:

well a quote a sh	D R	D E					10 - 11 - 1
A 10 PANELS North - Shear in panel ob = reaction at a	A A a a a a a a a a a a a a a a a a a a	10 PANEL8	~*	ALL EQUAL		1 000 +2 14 14	141 1 10 100
		SHEA	SHEAR IN PANEL:	IEL:		REACTI	REACTION AT:
LOAD AT:	ab	bc	cd	de	ef	2	1
b and k	+0.704 +0.432	-0.296	0.296 0.568	-0.296	-0.296	+0.592 +1.136	+0.704 +0.432
a :: o s	+0.208	+0.208 +0.056	+0.208 +0.056	-0.792 +0.056	-0.792 0.944	+1.58 <b>4</b> +1.888	+0.208 +0.056
Maximum {	+1.400	+0.696 -0.296	+0.264 -0.864	+0.056 -1.656	-2.600	+5.200	+1.400
As a Simple Span	+2.000	+1.200 0.200	+0.600 -0.600	+0.200 -1.200	-2.000	+2.000	+2.000

B     C     D     F     G     H     K       A     O     O     O     O     O     F     F       A     O     O     O     O     O     F     F     F       A     O     O     O     O     O     F     F     F     F       A     O     O     O     O     O     F     O     F       A     O     O     O     O     O     F     O     F       A     O     O     O     O     O     O     F     O       A     O     O     O     O     O     O     O     O       B     O     O     O     O     O     O     O       C     O     O     O     O     O     O     O       C     O     O     O     O     O     O     O       A     O     O     O     O     O     O     O       C     O     O     O     O     O     O     O     O       A     O     O     O     O     O     O     O       A     O     O </th
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

d       e       f       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h <th< th="">       h       h</th<>	mod?, shquai?, a sh	U R	D E	F C	H P	7 X	24		
b     c     d     c     f     h     h     h     h       12 PANELS     ALL EQUAL.       panel $ab = reaction at a.$ ab     bc     cd     de     f     fg     g       ab     bc     cd     de     fg     fg     g       ab     bc     cd     de     fg     fg     g       ab     bc     cd     de     fg     fg     g       10.519     +0.519     -0.248     -0.248     -0.248     +0.491       +0.519     +0.519     -0.248     -0.248     -0.248     +0.491       +0.519     +0.519     -0.248     -0.248     -0.248     +0.491       +0.148     +0.148     +0.148     +0.148     +0.148     +0.393       +0.148     +0.148     +0.148     -0.687     -0.687     -0.852       +0.148     +0.148     +0.148     -0.687     -0.852     +1.703       +1.771     +1.019     +0.039     +0.039     -0.039     -0.951       +1.771     +1.019     +0.550     +0.187     -0.951     +1.921       +1.771     +1.019     +0.550     +0.187     -0.951     +1.921       +1.771     +1.019     +0	ARRELEND.						/		644
I2 PANELS       ALL EQUAL.         panel $ab = reaction$ at $a$ .       ALL EQUAL. $ab = reaction$ at $a$ .       SHEAR IN PANEL.:       REACT $ab = bc$ $cd$ $de$ $cf$ $fg$ $g$ $ab = bc$ $cd$ $de$ $cf$ $fg$ $g$ $g$ $ab = bc$ $cd$ $de$ $cf$ $fg$ $g$ $g$ $ab = bc$ $-0.248$ $-0.248$ $-0.248$ $-0.248$ $-0.248$ $+0.491$ $p$ $g$ $g$ $ab = bc$ $cd$ $de$ $cf$ $fg$ $g$	8 <		d d	8 8	h i	x .			
SHEAR IN PANEL:     REACT       ab     bc     cd     de     cf     fg     g $+0.753$ $-0.248$ $-0.248$ $-0.248$ $-0.248$ $+0.495$ g $+0.753$ $-0.248$ $-0.248$ $-0.248$ $-0.248$ $+0.495$ g $+0.519$ $+0.519$ $-0.248$ $-0.248$ $-0.248$ $+0.495$ g $+0.519$ $+0.513$ $-0.481$ $-0.481$ $-0.481$ $+0.495$ g $+0.519$ $+0.513$ $-0.687$ $-0.687$ $-0.687$ $+0.695$ $+1.775$ $+0.148$ $+0.148$ $+0.148$ $-0.687$ $-0.687$ $+1.703$ $+0.039$ $+0.039$ $+0.039$ $+0.039$ $-0.961$ $+1.921$ $+1.771$ $+1.019$ $+0.500$ $+0.187$ $+0.039$ $-0.961$ $+1.921$ $+1.771$ $+1.019$ $+0.500$ $+0.187$ $+0.039$ $-0.323$ $-1.703$ $+1.771$ $+1.019$ $+0.500$ $+0.187$ $-0.950$ $-1.416$ $-1.903$ $+1.771$ $+1.000$ $+0.500$ $+0.167$ $-1.903$ $-0.950$ $-1.416$	Nora:Shear in pa	nel $ab = r$	12 PANELS eaction at	a.	ALL EQ	UAL.	Hatter La TEA		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L State 5	and a second	S	HEAR IN	A PANEL			REAC	TION :
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LOAD AT:	ab	bc	cd	de	ef	fg	8	*
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	b and m	+0.752	-0.248	-0.248	-0.248	-0.248	-0.248	+0.495	+0.752
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 ,, 2	+0.519	+0.519	-0.481	-0.481	-0.481	-0.481	+0.963	+0.519
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d " k	+0.313	+0.313	+0.313	-0.687	-0.687	-0.687	+1.375	+0.313
$\left\{\begin{array}{cccccccccccccccccccccccccccccccccccc$	e "	+0,148	+0.148	+0.148	+0.148	-0.852	-0.852	+1.703	+0.148
$\left\{\begin{array}{cccccccccccccccccccccccccccccccccccc$		+0.039	+0.039	+0.039	+0.039	+0.039	-0.961	+1.921	+0.039
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$		+1.771	+1.019	+0.500	+0.187	+0.039	-	+6.457	+1.771
$\left\{\begin{array}{cccccccccccccccccccccccccccccccccccc$	mmmirnar		-0.248	-0.729	-1.416	-3.268	-3.229		••••
10.167 -0.500 -1.000 -1.667 -2.500	And Cimila Chan	+2.500	+1.667	+1.000	+0.500	+0.167	••••		
	under andmise in sur	• • •	-0.167	-0.500	-1.000	-1.667	-2.500	•	

A CAD AT:		E F e f PANELB	G H I g h i MOMEN	R L AT:	ee 5
b and m b and m c t d k e i f h Maximum As a Simple Span	+0.752 +0.519 +0.313 +0.148 +0.039 +1.771 +1.771 +1.771 +2.500	+0.505 +1.037 +0.625 +0.296 +0.079 +2.542 +4.000	+0.257 +0.556 +0.938 +0.444 +0.118 +2.313 - · ·	+0.009 +0.074 +0.250 +0.592 +0.157 +1.082 +1.082 +1.082 +1.082 +1.082	-0.239         -0.486           -0.408         -0.486           -0.438         -1.125           -0.260         -1.111           +0.197         -0.764           +0.197         -0.764           +1.345         -4.374           +2.500         -1.12

Nork:Shear in panel $ab = reaction$ at $a$ .	<b>D E</b> <b>d</b> • <b>i</b> •	E F I I I I I I I I I I I I I I I I I I	C HEAL	SHEAR IN PANEL:	L C C C C C C C C C C C C C C C C C C C	2 e 2 e	· A.	REAC	REACTION:
LOAD AT :	ab	bc	cd	de	ef	fg	ЧŚ	ų	d
b and o c n	+0.787 +0.583	-0.213	-0.213	-0.213	-0.213	-0.313	-0.213	+0.425 +0.834	+0.787 +0.583
a a	+0.397 +0.236	+0.397	+0.397 +0.236	-0.603 +0.236	-0.603	-0.603	-0.603	+1.207 +1.528	+0.397
2 . e 2 . e 2 . e	+0.111 +0.029	+0.111 +0.029	+0.111 +0.029	+0.111 +0.029	+0.111 +0.029	-0.889	-0.889	+1.778 +1.943	+0.111
Marimun	+2.143	+1.356	+0.773	+0.376	+0.140	+0.029		+7.714	+2.143
ammurnur		-0.213	-0.630	-1.233	-1.997	-2.886	-3.857	:	
As a Cintle Chan	+3.000	+2.143	+1.429	+0.857	+0.429	+0.143		::	::.
under andmise n er		-0.143	-0.429	-0.857	-1.429	-2.143	-3.000	:	:

	• j • j 14 panel		i Å l all equal. Moment at:	e 1 - E		
8		**. 8	à l Lequal. Oment a'	121	1.	
a a a a a a a a a a a a a a a a a a a	14 PANEL	g	L EQUAL.			
	c +0 574		OMENT A		100 F	10.022
A State Party of the Party of t		d		r:	1.14   118.16	11   162
LOAD AT: b	40 574	Post Par Mose		f	8	ų
b and o +0.787		+0.362	+0.149	-0.064	-0.277	-0.490
c ** n +0.583	+1.166	+0.749	+0.332	-0.085	-0.502	-0.918
d " m . +0.397	+0.793	+1.190	+0.586	-0.018	-0.621	-1.234
e " l +0.236	+0.472	+0.709	+0.945	+0.181	-0.583	-1.347
f " k +0.111	+0.223	+0.332	+0.443	+0.554	-0.335	-1.225
g " i · +0.029	+0.058	+0.087	+0.116	+0.146	+0.175	-0.796
× × × + +2.143	+3.285	+3.429	+2.571	+0.881	+0.175	
Maximum {				-0.167	-2 318	-6.000
As a Simple Span +3.000	+5.000	+6.000	+6.000	+5.000	+3.000	:

Norre:-Shear in panel $ab = reaction at a$	c d c d n panel a	<b>E F</b> <b>e f</b> <b>h</b> = react	f G J f S J IB PANELS	H 4	R L	ALL EQUAL.	0 0 R	4		-1 8 . 8
		1	SH	SHEAR IN PANEL:	PANE	1:1	HE LOSA	The second	REAC	REACTION :
LOAD AT:	ab	bc	cd	de	ef	fg	gh	hi	z.	*
b and q	+0.813	-0.187	-0.187	-0.187	-0.187	-0.187	-0.187	-0.187	+0.373	+0.813
c p	+0.633	+0.633	-0.367	-0.367	-0.367	-0.367	-0.367	-0.367	+0.734	+0.633
0 p	+0.464	+0.464	+0.464	-0.536	-0.536	-0.536	-0.536	-0.536	+1.072	+0.464
e n	+0.313	+0.313	+0.313	+0.313	-0.687	-0.687	-0.687	-0.687	+1.375	+0.313
J M	980 04	+0 086	980 0+	980 0+	+0 086	-0.086	410 0-	T10.0-	+1 828	10 086
h k	+0.022	+0.022	+0.022	+0.022	+0.022	+0.022	+0.022	-0.978	+1.955	+0.022
"." (	+2.516	+1.703	+1.070	+0.606	+0.293	+0.108	+0.022		+8.968	+2.516
Maximum	a	-0.187	-0.554	-1.090	-1.777	-2.592	-3.506	-4.484	•	:
As a Simple	+3.500	+2.625	+1.875	+1.250	+0.750	+0.375	+0.125	2	:	:.
Span	3	-0.125	-0.375	-0.750	-1.250	-1.875	-2.625	-3.500	• • •	:

B C	D E	E C	Н Г	K T	N W	0		
0	d e 181	e f g 18 PANELS	-	ALL	L I I I	-0	- 6	
				MOME	MOMENT AT:	* 132 - 14		
LOAD AT:	9	C	q	e	ſ	g	ų	100 creation
b and q	+0.813	+0.627	+0.441	+0.254	+0.067	-0.120	-0.306	-0.492
c b	+0.633	+1.266	+0.898	+0.531	+0.164	-0.203	-0.570	-0.938
d :: 0	+0.464	+0.928	+1.391	+0.855	+0.319	-0.217	-0.753	-1.289
n i u , o	+0.313	+0.625	+0.938	+1.250	+0.563	-0.125	-0.812	-1.500
f " m	+0.185	+0.369	+0.554	+0.738	+0.923	+0.108	-0.708	-1.524
1 8	+0.086	+0.172	+0.258	+0.344	+0.430	+0.516	-0.398	-1.313
N K	+0.022	+0.045	+0.067	+0.090	+0.112	+0.134	+0.157	-0.820
Manimum	+2.516	+4.032	+4.547	+4.062	+2.578	+0.758	+0.157	
unuurnur	12	N. O	N K	- X - X	N O	-0.665	-3.547	-7.876
As a Simple Span	+3.500	+6.000	+7.500	+8.000	+7.500	+6.000	+3.500	
								Contraction of the second

	REACTION	1	+0.058 +0.057 +0.057 +0.058 +0.058 +0.069 +2.888 +2.888 +2.888
S a s	REA	k	$\begin{array}{c} \begin{array}{c} + 0.332 \\ + 0.352 \\ + 0.353 \\ + 0.353 \\ + 10.353 \\ + 1.366 \\ + 1.366 \\ + 1.964 \\ + 1.964 \\ + 1.0223 \\ + 1.0223 \\ + 1.0223 \\ + 1.0223 \\ + 1.0223 \\ + 1.0223 \\ + 1.0223 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.026 \\ + 1.02$
0 8	0.303	ık	-0.166 -0.328 -0.482 -0.6823 -0.6823 -0.931 -0.931 -0.982 -0.982 -0.982 -0.982 -0.982 -0.982 -1.112
	0.1.0	hi	-0.166 -0.328 -0.482 -0.623 -0.623 -0.623 -0.623 -0.623 -0.618 +0.018 +0.018 -4.130
M N m n ALL EQUAL.		gh	-0.166 -0.328 -0.482 -0.482 -0.63 +0.069 +0.018 +0.018 -3.199 -3.33
VIL E	SHEAR IN PANEL:	fg	-0.166 -0.328 -0.328 -0.482 -0.482 +0.148 +0.018 +0.018 +0.018 +0.018
*	IN P	ef	-0.166 -0.328 -0.482 -0.482 +0.252 +0.148 +0.018 +0.018 +0.018 +0.487 -1.599
at a.	HEAF	de	-0.166 -0.328 -0.482 +0.377 +0.252 +0.148 +0.018 +0.018 +0.018 +0.018 +0.018
GH gh BPANELS	01	cd	-0.166 -0.328 +0.518 +0.518 +0.252 +0.148 +0.018 +0.018 +0.018 +0.494 +2.333
ab = re	593	bc	-0.166 +0.572 +0.518 +0.518 +0.518 +0.252 +0.148 +0.018 +0.018 +0.018 +0.018 +0.018
<b>D E</b> <b>d</b> <del>o</del> panel a		ab	+0.834 +0.572 +0.572 +0.518 +0.018 +0.018 +0.018 +0.018 +2.888 +2.888 +4.000
$\begin{bmatrix} B & C & D & E & F & G & H \\ \hline & & & & & & & \\ \hline & & & & & & & \\ A & & & & & & & & \\ A & & & &$	TA TAAT		b and s c r c p e p k m Maximum As a Simple Span

	and the second	The second	11 and 1961	- United -		100000000	A State of the		
BCDE	E. F	H D	IK	L M	N O	P	Q R	S	
			101			in the		4	
		8	- 2<	E 2	- 2	a	8	1~	tint.
		18 PANELS		ALL	ALL EQUAL.				128
				MO	MOMENT AT	AT :		THE PARTY	
LOAD AT:	9	c	q	e	5	8	ų	i	k
h and s	+0.834	+0.668	+0.502	+0.336	+0.170	+0.004	-0.162	-0.328	-0.494
= =	+0.672 +0.518	+1.344 +1.037	+1.017 +1.555	+0.689 +1.074	+0.361 +0.592	+0.033 +0.110	-0.295	-0.622	-0.950
¢	+0.377	+0.754	+1.132	+1.509	+0.886	+0.263	-0.360	-0.982	-1.604
0 :	+0.148	+0.296	+0.444	+0.592	+0.741	+0.889	+0.037	-0.815	-1.667
h '' m i ''	+0.069	+0.137 +0.036	+0.206 +0.054	+0.274	+0.343 +0.090	+0.412 +0.107	+0.480 +0.125	+0.143	-0.840
Maximum {	+2.888	+4.777	+5.667	+5.556	+4.445	+2.332	+0.642 -1.421	+0.143 -5.032	-10.000
As a Simple Span	+4.000		+9.000	+9.000 +10.000 +10.000 +9.000	+10.000	+9.000		+4.000	

OPORSTU	n o p g r s l u v ALL EQUAL.	REACTIC	gh hi ik kl l v	0.149 -0.149 -0.149 -0.149 -0.299 -0.851 0.286 -0.286 -0.286 -0.582 -0.582 0.587 -0.588 -0.588 -1.136 -0.432 0.587 -0.587 -0.687 -0.587 -0.583 -0.432 0.587 -0.687 -0.687 -1.136 -0.432 0.772 -0.792 -0.792 -0.792 -1.158 -0.210 0.072 -0.792 -0.792 -0.792 -1.158 -0.210 0.015 +0.015 -0.044 -0.944 +1.888 -0.056 0.016 +0.015 -0.044 -0.944 -1.188 -0.056	2.929 -0.071 +0.015 +11.475 +3.263 2.929 -3.808 -4.722 -5.737 +11.475
- 9 L 2 2	and and the second			1	
1 1 1 1 1	100000		k	999999999	
6 B.R.	10		ik	-0.149 -0.296 -0.437 -0.568 -0.5687 -0.6879 -0.879 +0.015	+0.015 -4.752 +0.100
and the second se	1 .	:	in	-0.149 -0.296 -0.687 -0.687 -0.687 -0.879 +0.015	+0.071 -3.808 +0.300
P Provent	LL EQU	EL:	us-	-0.149 -0.296 -0.437 -0.5687 -0.587 -0.587 +0.121 +0.0156	+0.192 -2.929
×	2 7 E	SHEAR IN PANEL:	J8 -	-0.149 -0.296 -0.437 -0.568 -0.587 -0.587 -0.587 -0.587 -0.056 -0.056	+0.400 -2.137 +1.000
K L	¥ ~	AR IN	ef	-0.149 -0.296 -0.568 +0.313 +0.121 +0.015	+0.713 -1.450 +1.500
I H	h i NELS on at a.	SHE	ae	-0.149 -0.296 -0.437 +0.437 +0.313 +0.313 +0.208 +0.121 +0.056	+1.145 -0.882 +2.100
	g h 1 20 PANELS reaction at	2	ca	-0.149 -0.296 -0.2563 -0.432 +0.432 +0.313 +0.208 +0.121 +0.015	+1.708 -0.445 +2.800
14	.e f el ab =		00	-0.149 -0.704 -0.704 -0.432 -0.432 -0.432 -0.121 -0.121 -0.015	+2.412 -0.149 +3.600
	c d in pane	ah a	011	+0.851 +0.704 +0.432 +0.432 +0.432 +0.121 +0.121 +0.015	+3.263
	a $b$ $c$ $d$ $e$ $f$ $g$ $h$ $i20 PANELSNOTE:-Shear in panel ab = reaction at a.$	LOAD AT:		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Maximum As a Simple Span

	9 9 B	5 07 07 64 ~ ~	H I K h i h	2 2	M N O m n o All Equal	a-a .	2 - L			DGES.
LOAD AT :	9	0	p	0	MOMENT AT	r at:	ų		k	1
6 and u c c i f f i c f h i c f h i c f k i m h i m Maximum {	+0.851 +0.704 +0.704 +0.432 +0.432 +0.432 +0.432 +0.432 +0.432 +0.131 +0.131 +0.056 +0.015 +0.015	+0.701 +1.408 +1.408 +1.137 +0.865 +0.625 +0.625 +0.112 +0.112 +0.029 +0.029	+0.552 +1.112 +1.296 +1.296 +0.238 +0.638 +0.168 +0.168 +0.043 +0.043	+0.402 +0.816 +1.254 +1.254 +1.258 +0.832 +0.486 +0.486 +0.486 +0.234 +0.058	+0.253 +0.520 +0.520 +1.60 +1.60 +1.60 +1.608 +0.608 +0.073 +0.073 +0.73	+0.102 +0.224 +0.234 +0.532 +0.532 +0.535 +0.729 +0.739 +0.735 +0.087 +0.087 +0.087	-0.047 -0.072 -0.072 +0.056 +0.188 +0.456 +0.456 +0.1851 +0.392 +0.103 +0.135	-0.196 -0.368 -0.493 -0.504 -0.504 -0.336 -0.336 +0.448 +0.448 +0.116 +0.564 -2.464	-0.345 -0.664 -0.664 -1.112 -1.112 -1.128 -1.128 -1.128 -1.128 -1.128 -0.906 +0.496 +0.131 -6.768	-0.495 -0.960 -1.680 -1.680 -1.875 -1.875 -1.440 -0.855 -1.440 -0.855
As a Simple Span	+4.500	+8.000	+10.500	+12.000	+8.000 +10.500 +12.000 +12.500 +12.000 +10.500	+12.000	+10.500	+8.000	+4.500	2:

# SWING BRIDGES.

FOUR POINTS OF SUPPORT. PARTIAL CONTINUITY. TWO EQUAL ARMS. SYMMETRICAL LOADS.

# REACTIONS, SHEARING STRESSES AND BENDING MOMENTS.

The following tables are based on the assumption of a panel load and panel length of unity. The actual shear will, therefore, be obtained by multiplying the actual panel load by the tabular shear, and the actual moment will be found by multiplying the actual panel load by the actual panel length and by the proper tabular coefficient.

If the chords are not parallel the web stresses may be obtained by the method of moments, or by a combination of the method of moments and graphics.

If the length of the center panel should differ to some extent from the others, the tabular coefficient will not be sensibly changed.

#### EXAMPLE.

For shear in cd, with loads at b and g, multiply  $w_b (= w_g)$  by -0 432.

For moment at c, and loads at b and g, multiply  $w_{\rm b} (= w_{\sigma})$  by panel length and by + 0.136.

		а 0	R R	04	100 t+ 040		
	~ ~	- 74 - 0	- ²	200	64.91 10.00		-
7 PANELS ALL EQUAL. Norr:-Shear in panel $ab =$ reaction at $a$ , and Shear $cd =$ reaction at $d$ .	$\frac{7}{10}$	7 PANEL8 eaction at a, and	ALL EQUAL. Shear <i>cd</i> = reacti	eaction at d.	191 - 10 243		
TOADG AM.	SHE	SHEAR IN PANEL:	EL:	2	MOMENT AT:		
. 10 67004	ab	bc	cd	9	0	q	
b and g	+0.568	-0.432	-0.432	+0.568	+0.136	-0.296	1
c ,, f	+0.210	+0.210	062.0	+0.210	+0.420	-0.370	CAI
Maximum	+0.778	+0.210	VIT ED	+0.778	+0.556	· ·	FORN
A Cimilo Chun	+1.000	-0.432 +0.333	-1.222	+1.000	+1.000	-0.666	IN
under and unce n er	3	-0.333	-1.000	N. Y			-

143

UNIVERSITY

Sta Balts Date			£1	- C	H		I g	64
<b>₩</b> ₿ <	0	e e	- 0<	2	-4	1.		
9 PANEL8 ALL EQUAL. Norr:Shear in panel $ab =$ reaction at $a$ , and Shear $de =$ reaction at $e$ .	nel ab = 1	9 PANEL8 reaction at	a, and Sh	ALL EQUAL. Iear de = reacti	QUAL. reaction a	te.		and a
TOTTO IM.	01	SHEAR IN PANEL:	N PANEL	: Server	1000	MOME	MOMENT AT:	- Charles
TA SUDA	ab	bc	cd	de	9	c	d	e
b and i	+0.665	-0.335	-0.335	-0.335	+0.665	+0.330	-0.005	-0.340
c '' h	+0.364	+0.364	-0.636	-0.636	+0.364	+0.728	+0.092	-0.544
g ., p	+0.131	+0.131	+0.131	-0.869	+0.131	+0.262	+0.393	-0.476
Merrin	+1.160	+0.495	+0.131	1	+1.160	+1.320	+0.485	:
aunuarnur	1.	-0.335	-0.971	-1.840			-0.005	-1.360
As a Simple Shan {	+1.500	+0.750	+0.250		+1.500	+2.000	+1.500	3
		-0.250	-0.750	-1.500	••••			• • •

and strength in	7	U B	DE	A.	н 5	I K	44	-table		-8
anninot.	7.4	- 0	- 0 7	_~<	- 4	1 K		ant n-	They may	480
11PANEL8ALL EQUALNOTE :Shear in panel $ab =$ reaction at $a$ , and Shear $ef =$ reaction at $f$ .	1 panel a	b = reac	reaction at a	, and Sh	ALL ear ef =	ALL EQUAL = reaction	at J.	900,0 P		
To Berg		SHEAI	SHEAR IN PANEL:	ANEL :	10 250	10	MOI	MOMENT AT	AT:	1010
LOADS AT:	ab	bc	cd	de	ef	9	c	q	e	ſ
b and l	+0.726	-0.274	-0.274	-0.274	-0.274 +0.726 +0.452	+0.726	+0.452	+0.178	+0.178 -0.095	-0.369
c k	+0.471	+0.471	-0.529	-0.529	-0.529 +0.471 -0.748 +0.252	+0.471	+0.942		-0.117	-0.646
4 ., <i>2</i>	+0.089	+0.089	680.0+	+0.089	-0.911	-0.911 +0.089	+0.178		+0.268 +0.357	-0.554
	+1.538	+0.812	+0.341	+0.089		+1.538	+2.077	+2.077 +1.615 +0.366	+0.366	
Maximum {		-0.274	-0.274 -0.803	-1.551	1		1. 1. 1.	:	-0.212	-2.307
1	+2.000	+1.200	+0.600	+0.200		+ 2.000	+3.000	+3.000 +2.000	+2.000	• • •
under andmie n et		-0.200	-0.200 -0.600 -1.200 -2.000	-1.200	-2.000			:	:	••••

B     C     D     E     F     G     H     I     M     N       a     b     c     d     e     f     g     h     i     N     n       A     13     PANELS     ALL     EQUAL.	A C D a b c d 13 F 13 F	$\begin{array}{c c} D & E & F & G \\ \hline & & & \\ d & e & f & \\ d & e & f & \\ 13 \text{ PANELS} \\ \end{array}$	H I K A i A A ALL	K L M N A l m n All EQUAL.	1.0<	15 000 9 212 9 212 10 200
NULA	1c1 u0 = 1cau	10H at 4, and	SHEAR I	SHEAR IN PANEL:		
1.0ADS AT :	ab	bc	cd	de	ef	fg -
b and n	+0.768	-0.232	-0.232	-0.232	-0.232	-0.232
c " "	+0.350	+0.350	+0.350	-0.650	-0.650	-0.650
e :: k	+0.185	+0.185	+0.185	+0.185	-0.815 +0.06 <b>5</b>	-0.815 -0.935
Maximum {	+1.916	+1.148	+0.600	+0.250	+0.065 -2.149	
As a Simple Span	+2.500	+1.667 -0.167	+1.000	+0.500	+0.167 -1.667	

	C D E c d e i3 PANEL8	EL8	H I K L A A i A i n A all equal	K L M N A L m n A L m n	194 194 194	
LOADS AT:			MOMEI	MOMENT AT:	A	518 Oct
1	9	c	p	e	5	8
ť n	+0.768	+0.537	+0.305	+0.074	-0.158	-0.390
<i>c</i> " <i>m</i> +0.	+0.548	+1.097	+0.645	+0.193	-0.259	-0.710
a :: 6 +0.	+0.350	+0.700	+1.050	+0.400	-0.250	-0.900
f " i +0.	+0.065	+0.129	+0.194	+0.259	+0.323	-0.612
		1 2 1				
Maximum f +1.	+1.916	+2.833	+2.750	+1.667	+0.323	
-			•••••	1.1.1	-0.741	-3.501
As a Simple Span +2.	+2.500	+4.000	+4.500	+4,000	+2.500	••••

B C D E F G H I K L M N O P a b c d e f g h i k l m n o p q h b c d e f g h i k l m n o p q	a, and Shear $gh$ = reaction at $h$ . SHEAR IN PANEL:	ab bc cd de ef fg gh	+0.799 $-0.201$ $-0.201$ $-0.201$ $-0.201$ $-0.201$ $-0.201$ $-0.201$	+0.606 -0.394 -0.394 -0.394	+0.427 +0.427 -0.573 -0.573 -0.573 -0.573 -	+0.270 $+0.270$ $+0.270$ $+0.270$ $-0.730$ $-0.730$ $+0.142$ $+0.142$ $-0.858$ $-0.858$	+0.049 +0.049 +0.049 +0.049 +0.049 +0.049 -0.951	+2.233 +1.494 +0.888 +0.461 +0.191 +0.049	-0.201 -0.595 -1.168 -1.898	+3.000 +2.143 +1.429 +0.857 +0.429 +0.143	····   -0.143   -0.429   -0.857   -1.429   -2.143   -3.000
C D E	anel $ab =$ reaction at	1.881		100			2	1		4	
source and	North:Shear in p	LOADS AT :	b and p	0 11 2	u ., p	e '' m f '' L	8 8	Junearing	Maximum	As a Simple Shan	and address n art

B       C       D       E       C       H       K       L       N       O         a       b       c       d       e       f       h       k       l       m       o         a       b       c       d       e       f       h       k       l       m       o         is panels       A       A       A       A       A       a       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o       o	K         L         M·N           k         l         m         n           ALL         e         -         -           40.198         +0.425         -         -
a $b$ $c$ $d$ $e$ $f$ $h$ </th <th>k $l$ $n$ $o$ $p$ $q$ $k$ $l$ $n$ $o$ $p$ $q$       All EQUAL     All     $e$ $f$ $g$       40.031     -0.003     -0.203     -0.203       +0.425     +0.031     -0.363</th>	k $l$ $n$ $o$ $p$ $q$ $k$ $l$ $n$ $o$ $p$ $q$ All EQUAL     All $e$ $f$ $g$ 40.031     -0.003     -0.203     -0.203       +0.425     +0.031     -0.363
a       b       c       d       c       f       f       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h       h	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
a       b       c       d       e       f       h       h       h       h       n       all Equal.         I5 PANEIS       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
I5 PANELS         ALL EQUAL.           b         MOMENT AT:           b         C         d         e           b         C         d         e         e           h0.799         H0.600         H0.398         H0.198         e           h0.799         H0.600         H0.398         H0.198         e           h0.427         H0.855         H1.282         H0.198         e         e           h0.427         H0.855         H1.282         H0.709         e         e           h0.427         H0.855         H1.282         H0.709         e         e           h0.428         H0.811         H1.081         H1.081         e         e         e           h0.143         H0.283         H0.425         H0.709         e         e         e         e           h0.143         H0.098         H0.148         H0.197         e         e         e         e	ALL EQUAL. 40MENT AT: 
b         c         d         e           40.509         +0.600         +0.3398         +0.198           +0.799         +0.600         +0.3398         +0.198           +0.606         +1.212         +0.819         +0.425           +0.427         +0.855         +1.282         +0.709           +0.427         +0.855         +1.282         +0.709           +0.431         +0.633         +0.425         +0.709           +0.143         +0.283         +0.425         +0.709           +0.143         +0.283         +0.148         +0.197	IOMENT AT:     Image: Second state       e     f     f       +0.198     -0.003     -0.203       +0.425     +0.031     -0.363
b         c         d         e           +0.799         +0.600         +0.398         +0.198           +0.606         +1.212         +0.819         +0.425           +0.427         +0.855         +1.282         +0.709           +0.370         +0.540         +0.811         +1.081           +0.143         +0.283         +0.425         +0.706           +0.143         +0.283         +0.148         +0.197	- e J S -0.003 -0.203 +0.425 +0.031 -0.363
and p +0.799 +0.600 +0.398 +0.198 " o +0.606 +1.212 +0.819 +0.425 " n +0.427 +0.855 +1.282 +0.709 " n +0.270 +0.540 +0.811 +1.081 " k +0.143 +0.283 +0.425 +0.566 " k +0.049 +0.098 +0.148 +0.197	+0.198 -0.003 -0.203 +0.425 +0.031 -0.363
and $p$ $+0.799$ $+0.600$ $+0.398$ $+0.198$ $i'$ $o$ $+0.606$ $+1.212$ $+0.819$ $+0.425$ $i'$ $n$ $+0.427$ $+0.855$ $+1.282$ $+0.709$ $i'$ $n$ $+0.427$ $+0.855$ $+1.282$ $+0.709$ $i'$ $n$ $+0.270$ $+0.540$ $+0.811$ $+1.081$ $i''$ $t$ $+0.143$ $+0.283$ $+0.425$ $+0.566$ $i''$ $t$ $+0.049$ $+0.098$ $+0.148$ $+0.197$	+0.198 -0.003 -0.203 +0.425 +0.031 -0.363
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.425 +0.031 -0.363
"         n         +0.427         +0.855         +1.282         +0.709           "         n         +0.270         +0.540         +0.811         +1.081           "         1         +0.270         +0.540         +0.811         +1.081           "         1         +0.270         +0.540         +0.425         +0.566           "         k         +0.049         +0.098         +0.148         +0.197	
**         **         **         +0.270         +0.540         +0.811         +1.081         *1.081           ** <i>I</i> +0.143         +0.283         +0.425         +0.566         *0.197           ** <i>k</i> +0.049         +0.098         +0.148         +0.197	
···         /·         /·         /·         /·         /·         /·         /·         /·         /·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         · </th <th>1</th>	1
<b>* &amp;</b> +0.049 +0.098 +0.148 +0.197	222
a a a a a a a a a a a a a a a a a a a	
and the second sec	the set of the state of the sta
<i>Mariania</i> ( +2.293 +3.588 +3.883 +3.176 +1	
As a Simple Span +3.000 +5.000 +6.000 +6.000 +1	-

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e f § 17 PANEL8 on at a, an bc -0.177 -0.651	h i h A A d Shear / SI SI cd	$\begin{array}{c c} l & m & n \\ ALL & \\ ALL & \\ ii = reacti \\ IEAR IN \\ \hline de \\ -0 & 177 \end{array}$		q r s		- 1 000 - 1 000 - 1 000 hi
NoTH:-Shear in panel $ab ==$ reaction at $a$ Itoms at:	n at a, an bc	d Shear / SH SH cd -0.177	ii = react IEAR IN de -0 177	tion at <i>i</i> . <i>i</i> PANEL <i>ef</i> -0.177	4 98 0 m		hi
LOADS AT :			HEAR IN de -0 177	FANEL ef	200		hi
		cd -0.177	de -0 177	ef -0.177	fg		hi
ab		-0.177	-0 177	-0.177		8n	
b and r +0.823 -0.177					-0.177	-0.177	-0.177
	1	-0.349	-0.349	-0.349	-0.349	-0.349	-0.349
-		+0.489	-0.511	-0.511	-0.511	-0.511	-0.511
-	4	+0.342	+0.342	-0.658	-0.658	-0.658	-0.658
		+0.215	+0.215	+0.215	-0.785	-0.785	-0.785
" <i>m</i> +0.112		+0.112	+0.112	+0.112	+0.112	-0.888	- 0.888
<i>h i l</i> +0.039 +0.039		+0.039	+0.039	+0.039	+0.039	+0.039	- 0.961
$Maximum \int +2.671 +1.848$	-	+1.197	+0.708	+0.366	+0.151	+0.039	.
-0.177		-0.526	-1.037	-1.695	-2.480	-3.368	-4.329
As a Simple Span { +3.500 +2.625		+1.875	+1.250	+0.750	+0.375	+0.125	
		-0.375	-0.750	-1.250	-1.875	-2.625	-3.500

	0 0	D E F G d e f g 17 PANEL8	H I K L M h i k l m h	V W 7	r N O P O t n o p q all equal.	Re 1 .		
	10-03-03	000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MOMENT	NT AT:	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		
LOADS AT :	9	c	đ	e	S	20	Ч	<i>:</i> 2
b and r c '' o	+0.823	+0.646 +1.303	+0.470 +0.954	+0.293 +0.605	+0.116 +0.257	-0.061	-0.238	-0.415
d :: 0	+0.489	+0.979	+1.468 +1.026	+0.957	+0.447	+0.064	-0.575	-1.086
f " n o " m	+0.215	+0.430	+0.644	+0.859	+1.074	+0.289	-0.497	-1.282
1 , 4	+0.039	+0.077	+0.116	+0.155	+0.193	+0.232	+0.271	169.0-
Maximum {	+2.671	+4.343	+5.014	+4.686	+3.357	+1.245	+0.271	
	:	:	•••••		:	-0.217	-2.573	-6.631
As a Simple Span	+3.500	+6.000	+7.500	+8.000	+7.500	+6.000	+3.500	••••

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.0			A	100	10 · ·
: ab	$\begin{array}{cccc} h & i & h \\ h & i & h \\ h & h \\ \hline h & h \\ at a, and Sh \end{array}$	ALL ALL	n n o p ALL EQUAL. ik = reaction	9 r 3 natk.	2 ×		
: ab	A 1 11 100	SHEAR	SHEAR IN PANEL:	NEL :	009	the set of	
1 +0.842	cd :	de	ef	fg	gh	hi	it
	.58 -0.158	-0.158	-0.158	-0.158	-0.158	0.158	-0.158
c " s +0.687 +0.687	387 -0.313	-0.313	-0.313	-0.313	-0.313	-0.313	-0.313
d " r +0.540 +0.540	-	-0.460	-0.460	-0.460	-0.460	-0.460	-0.460
		+0.403	-0.597	-0.597	-0.597	-0.597	-0.597
<i>f ii p</i> +0.280 +0.280	76 40.280	+0.280	+0.280	-0.720	-0.720	-0.720	-0.825
	-	160.0+	160.0+	160.0+	+0.091	-0.909	606.0-
<i>i</i> " <i>m</i> +0.031 +0.031	131 +0.031	+0.031	+0.031	+0.031	+0.031	+0.031	696.0
, ( +3.049 +2.207	207 +1.520	+0.980	+0.577	+0.297	+0.122	+0.031	••••
$Maximum$ { $-0.158$	158 -0.471	-0.931	-1.528	-2.248	-3.073	-3.982	-4.951
de a Simple Shan \$ +4.000 +3.111	111 +2.333	+1.667	+1.111	+0.667	+0.333	+0.111	:
	111 -0.333	-0.667	-1.111	-1.667	-2.333	-3.111	-4.000

d         e           +0.526         +0.36           +1.061         +0.74           +1.620         +1.16				k -0.423
and t +0.842 +0.684 +0.526 " s +0.687 +1.374 +1.061 " r +0.540 +1.080 +1.620	+0.368 +0.210 +0.748 +0.435 +1 160 +0.700		7	-0.423
S         +0.687         +1.374         +1.061           **         *         +0.540         +1.080         +1.620	+0.748 +0.435 +1.160 +0.700			-0 814
1 +0.540 +1.080 +1.620	+1.160 +0.700		2.8	110.0
e " n +1 403 +0 806 +1 209 +1 612	+1 612 +1 015	40 -0.220	-0.680	-1.142
+0.560 +0.840	+1.120 +1 400			-1.482
· · · 0 +0.175		50 +0.225	-0.600 -	-1.428
h " n +0.091 +0.182 +0.273 +0.364		46 +0.637	-0.272 -	-1.184
<i>i</i> " <i>m</i> +0.031 +0.062 +0.093 +0.124		86 +0.217	+0.248 -	-0.719
Maximum { +3.049 +5.098 +6.147 +6.196		94 +1.079	+0.248	
		0.736	-3.856 -	-8.567
As a Simple { +4.000 +7.000 +9.000 +10.000 +	-	000 + 1.000	+4.000	••••

100	Pitch	0f	VILLER	Inches	63	2%	3 1/2	4 10	9 9		234	31/2	و ما
RUN.			THICKNESS OF PLATE IN INCHES	2 1 ⁹	88 2.11	1.25 1.41	07 1.21	0 94 1.05	63 0.70		91 2.15 75 1.97		05 1.18 88 0.98
		IG	LE IN I	8 1/2	.64 1.88			.82 0 94 66 0.75			67 1.91	31 1.50 15 1.31	
FOOT	ş	BEARING	F PLAT	3/8 1/8	1.41 1.0		0	0.70 0.1	0	s	1.43 1.67 1.31 1.53		
PER	RIVETS	B	NESS 0	16 3	1.17 1.			0.59 0.		RIVETS		0.94 1.	
	58" R	188	THICK	14 3				0.47 0.0		7/8" R	0.95 1.		53
RIVETS	The last	-	5	Double		2.95 0			23	471 al	5.25 0 4.81 0		00
9F			SHRAKING	Single D	1.84	-	-	-			2.62		100
AREA		1994	2.5	16 16	2.25			0.68	10		2.03 1.84	-	
			THICKNESS OF PLATE IN INCHES	1/2	2.00		tests within	0.75			1.80 1.64	29	
SHEARING		DNI	LATE I	1 ⁷	1.75	1.05	0.75	0.66	0.44	Mure	1.58	1.13	0.79
HE	RIVETS	BRARING	S OF P	3/8	1.13	0.90	0.64	0.56	0.38	RIVETS	1.35 1.23 1.13	0.96	0.56
AND S	RIV	30.01	ICKNES	16	1.25	0.75	0.54	0.47	0.31	100000		0.80	
	12.	1	TH	*	1.00		distant in	0.38	0.25	34."	0.90 0.83 0.75	0.64	0.45
BEARING			SHRAKING	Double	3.14 2.36	1.88	1.35	1.18	64.0		4.24 3.86 3.53	3.03	2.13
BEA			SHAR	Single	1.57	0.94	0.67	0.59	0.39		2.12 1.93	1.51	1.06
12. 6 XM	Pitch	of	kivels	Inches	11/2	2000	3%	4 1	0 0		000 %%	3%	e a

- WEB	o center of	$t = \frac{1}{2}$	- Safe Shear	4 50340	0 46160	6 41900				0 27270	-	101	17900	-	8 12280	10340	日本	1 7580	
OF	ter to	03	1	2	30	36	4	48	5	60	66	22	84	96	108	120	132	144	168
BUCKLING	in which $l =$ thickness of web in inches, and $d =$ horizontal or vertical distance center to center of flanges in inches. tal shear $\rightarrow$ depth c. to c. flanges in feet.	$= \frac{7_6}{1^6}$	Safe Shear	42000	37720	33590	29700	26190	23140	20450	18140	16120	12890	10480	8640	7220	6110	5230	3950
ST BU	of web ertical ( c. flang	1	$\frac{d}{t}$	27.4	34.3	41.1	48.0	54.9	61.7	68.6	75.4	82.3	96.0	109.7	123.4	137.2	150.9	164.6	192.0
AGAINST RUN.	in which $l =$ thickness of web in inches, and $d =$ horizontal or vertical distance of flanges in inches. tal shear $\rightarrow$ depth c. to c. flanges in feet.	= 3/8 "	Safe Shear	33550	29350	25470	22020	19030	16500	14360	12570	11050	8690	6970	5690	4720	3970	3390	2540
ANCE	$\begin{array}{l} \text{lich } t = \\ t = \text{hor} \\ \text{es in in} \\ \text{lear } - \\ \text{lear } - \end{array}$	1	$\frac{1}{l}$	32	40	48	56	64	72	80	88	96	112	128	144	160	176	192	224
RESISTANCE PER FOOT	5	$= \frac{5}{16}n$	Safe Shear	25140	21220	17810	14970	12640	10750	9210	7950	6920	5340	4230	3420	2820	2360	2010	1490
SAFE R	$\frac{10000 \times 12l}{1 + \frac{d^2}{3000 l^3}}$ foot run =	1	$\frac{d}{l}$	38.4	48.0	57.6	67.2	76.8	86.4	96.0	105.6	115.2	134.4	153.6	172.8	192.0	211,3	230.4	268.8
TABLE GIVING SI	Safe shear per foot run = Shear per	= 14 "	Safe Shear	16970	13640	11000	8950	7370	6140	5170	4410	3790	2880	2260	1810	1490	1240	1050	780
E GI	ear per	1	<u>1</u>	48	60	73	84	96	108	120	132	144	168	192	216	240	264	288	336
TABI	Safe sh	Hor. or Vert.	of Flanges	1,0"	1'-3"	1'-6"	1'-9"	2'-0"	2'-3"	2'-6"	2'-9"	3'-0"	3' - 6"	4'-0"	4'-6"	5, - 0"	-	9, - 0	.0-,2

1-10-10-10-10-10-10-10-10-10-10-10-10-10	and the second s	Yalı	<b>CENTRIFUGAL FORCE.</b> Values in per cent. of Weight for Various Velocities and Degrees of Ourvalure.	CEN.	FRIF eight for	<b>CENTRIFUGAL</b> cent. of Weight for Various Veloc	FO locities an	FORCE.	of Curvatu	ro.	1	100	
VEL	VELOCITY	18107	1 525		а.	DEGREE	E OF		CURVATURE	E	35 II	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5281 1 201 2
Miles per Hour	Feet per Second	10	20	30	40	50	e9	70	80	o6	100	11°	120
10	14.67	0.12	0.23	0.35	0.47	0.58	0.70	0.82	0.94	1.05	1.17	1.29	1.40
15	22.00	0.26	0.53	64.0	1.05	1.31	1.57	1.84	2.10	2.36	2.62	2.88	3.14
07	29.33	0.47	0.33	1.40	1.80	2.33	61.7	3.20	3.72	4.10	4.00	11.0	10.0
25	36.67	0.73	1.46	2.19	2.92	3.65	4.37	5.11	5.82	6.56	7.29	8.00	8.75
30	44.00	1.05	2.10	3.15	4.20	5.25	6.30	7.34	8.39	9.43	10.48	11.55	12.57
35	51.33	1.43	2.86	4.28	5.70	7.13	8.57	9.98	11.40	12.82	14.25	15.70	17.09
40	58.67	1.87	3.73	5.60	7.47	9.34	11.19	13.06	14.90	16.79	18.65	20.50	22.37
45	66.00	2.36	4.72	7.08	9.44	11.80	14.20	16.52	18.90	21.23	23.58	25 90	28.28
50	73.33	2.91	5.83	8.74	11.65	14.56	17.50	20.37	23.30	26.18	29.09	32.00	34.88
55	80.67	3.53	7.05	10.60	14.12	17.65	21.20	24.69	28.20	31.73	35.25	38.70	42.28
60	88.00	4.20	8.39	12.60	16.79	20.98	25.20	29.36	33.60	37.73		46.10	50.28
FORA	FORMULA: C=	20.02	in whic	h c = c	entrifu	igal for	.ce, 20 =	= weigi	ht, v =	velocit	ty in fe	et per	in which $c =$ centrifugal force, $w =$ weight, $v =$ velocity in feet per second,
Free		17		9	11.11	100	RUN	1000					
and $r = 1$ Veloc	and $r =$ radius of curve. Velocity in miles per hour $\times 1.4667 =$ velocity in feet per second.	ve. per ho	ur × 1.	4667 ==	velocit	ty in fe	et per	second	SUB.	KUN	0.01	F WE	9

#### TOP CHORD LOADED TRANSVERSELY.

To proportion chord sections which are subjected to a bending load in addition to direct compression let M = the bending moment in inch pounds,

- C = direct compression due to position as a truss member,
- A = required area of section,
- I = moment of inertia of section,
- d =distance from neutral axis to extreme top fibre; then

 $\frac{C}{A}$  = Direct compression per square inch,

 $\frac{Md}{I} = \text{compression per square inch in extreme}$ fibre due to bending.

 $f = \frac{C}{A} + \frac{M d}{I} = \text{resultant fibre stress.....(I)}$ 

But  $I = A r^2$ , and substituting in equation (1),

$$f = \frac{C}{A} + \frac{M d}{Ar^2} \text{ from which}$$
$$A = \frac{C r^2 + M d}{fr^2}.$$

If the specified unit stresses for bending, live and dead loads have different values, then let,

Januar Contractor

 $f_{\rm t} = {\rm unit\ stress\ for\ transverse\ load},$ 

 $f_1 = \text{unit stress for live load},$ 

 $f_d = unit$  stress for dead load, then

 $A_t = \frac{M}{f_t} \frac{d}{r^2}$  = area required for bending,

A1 =  $\frac{C1}{f_1}$  = area required for live load stress,

 $A_d = \frac{C_d}{f_d}$  = area required for dead load stress,

and  $A = A_t + A_1 + A_d = total area required.$ 

# PORTAL BRACING.

Direct stresses and bending moments due to a load W applied at B; assuming the reactions at C and D to be equal to  $\frac{1}{2}$ W, and assuming that the members AD and BC are free to rotate at C and D.

In Fig. I AB and EF are struts and AF and EB tensions members.

In Fig. 2 AB and EF are tension members and AF and EB are struts.

In Fig. 3 all members are struts.

Let a, b, c, d and e represent the length of the several members as indicated in Figs. I, 2 and 3, and let the + sign represent a compressive stress and the - sign tensile stress : then

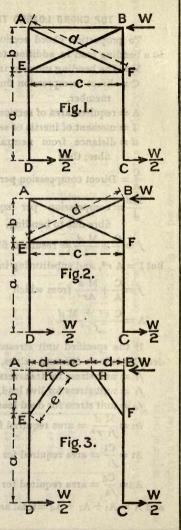



Fig. 1. Stress 
$$AB = + W \left(\frac{a}{2b} + 1\right)$$
  
"  $EF = + W \left(\frac{a}{2b} + \frac{1}{2}\right)$   
"  $AED = + W \left(\frac{a+b}{c}\right)$   
"  $FC = - W \left(\frac{a+b}{c}\right)$   
"  $AF = - W \left(\frac{a+b}{c}\right)$ 

eisel T

BF has no direct stress, but BFC and AED are both subjected to bending moments, varying uniformly from

M = O at A, B, C and D to M =  $\frac{Wa}{2}$  at F and E. Fig. 2. Stress AB =  $-W\frac{a}{zb}$ " EF =  $-W(\frac{a}{zb} + \frac{1}{2})$ " ED =  $+W(\frac{a+b}{c})$ " BFC =  $-W(\frac{a+b}{c})$ " BE =  $+W\frac{(a+b)d}{bc}$ 

A E has no direct stress, but A E D and B F C are both subjected to bending moments, varying uniformly from

$$M = O \text{ at } A, B, C \text{ and } D \text{ to}$$

$$M = \frac{Wa}{2} \text{ at } E \text{ and } F.$$
Fig. 3. Stress BH = + W  $\left(\frac{a}{2b} + 1\right)$ 
"  $AK = -W \frac{a}{2b}$   
"  $HK = + \frac{W}{2}$   
"  $ED = + W \frac{(a+b)}{(c+2d)}$   
"  $FC = -W \frac{(a+b)}{(c+2d)}$   
"  $EK = + \frac{W}{2} \frac{(a+b)e}{bd}$   
"  $HF = -\frac{W}{2} \frac{(a+b)e}{bd}$   
"  $BF = + \frac{W}{2} \frac{(a+b)e}{(c+2d)d}$   
ing moments at E and  $F = \frac{Wa}{2}$   
"  $K \text{ and } H = \frac{W}{2} \frac{(a+b)e}{(c+2d)}$ 

Bend " Theoretically a truss should have just sufficient camber to bring the joints of the compression chords to a true square bearing when the truss is fully loaded. The most perfect way of accomplishing this is to calculate the lengths of the various members in the position they are expected to assume when the truss is fully loaded; then calculate the stresses in the web members for the same condition of loading; calculate the elongations of the various tension members and the shortening of the compression members due to the stresses under full load and the actual sections used; then diminish the lengths of the tension members and increase the lengths of the compression members by these amounts.

While this method accomplishes the desired purpose, it does not give directly the amount of camber which the truss will assume when erected and unloaded. This, however, may be calculated if desired.

A shorter method, and the one more generally used, is as follows:

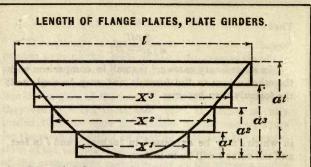
Assume the amount of camber to be given to the truss; that is, the versed sine of the camber curve of the chord; then assume the chords to be arcs of concentric circles and the posts to be intercepts of radii. Knowing the length of bottom chord panel and the depth of truss, the length of top chord panel and the length of diagonal members may be readily obtained.

Let c = camber desired

- d = depth of truss
- l =length of span
- n = number of panels in truss
  - i = increase of top chord panel over bottom chord panel,

all values being expressed in inches or all in feet.

Then:


$$i = \frac{8 \, cdl}{n \, (4c^2 + l^2)}$$

In all ordinary cases  $4c^2$  is small in comparison with the other values in the formula and may be neglected; the formula then becomes

 $i = \frac{8cd}{ln}$ 

in which c may be expressed in inches, d and l in feet, and the value i will be in inches.

Having now the length of top and bottom chord panels the diagonal may be computed as the hypothenuse of a right angled triangle of which one side is the depth of truss and the other a mean of the top and bottom chord panel lengths.



The lengths of flange plates for girders with parallel flanges may be readily obtained analytically, as follows; let

 $a_1 =$  area of first flange plate

 $a_2$  = area of first and second plate

 $a_1 =$  area of first, second and third plate

 $a_t =$ total area of flange

 $x_r =$ length of first flange plate

 $x_2 =$ length of second flange plate

 $x_1 =$ length of third flange plate

l = length of span.

From the equation of the parabola

 $a_1:a_2:a_t::x_1^2:x_2^2:l^2$ 

but  $a_1, a_2, a_t$  and l being known

$$\mathbf{x}_{1}^{2} = l_{2} \frac{a_{1}}{a_{t}} \text{ or } \mathbf{x}_{1} = l \sqrt{\frac{a_{1}}{a_{t}}}$$
$$\mathbf{x}_{2}^{2} = l^{2} \frac{a_{2}}{a_{t}} \text{ or } \mathbf{x}_{2} = l \sqrt{\frac{a_{2}}{a_{t}}}$$
$$\mathbf{x}_{3}^{2} = l^{2} \frac{a_{3}}{a_{t}} \text{ or } \mathbf{x}_{3} = l \sqrt{\frac{a_{3}}{a_{t}}}$$

These values of  $x_1$ ,  $x_2$ , and  $x_3$  may all be obtained by one setting of the slide rule, as follows:

Set  $a_t$  on the slide to

l on scale of squares; then

opposite  $a_1$ ,  $a_2$  and  $a_3$  on the slide read  $x_1$ ,  $x_2$  and  $x_3$  on the scale of squares.

Loads	Loads		for Variou	rious Loads and Leng	nd Lengths of Span, assuming Joists Spaced L.H.NGTH OF SPAN IN	s of Span	, assumin NGTH O	g Joists Sp DF SPAN	For Farious Loads and Lengths of Span, assuming Joists Spaced 24 Inches Center to Center. L.K.NGTH OF SPAN IN FEBST.	les Center t	o Center.	10.1	
Sq. Foot	per Lin. Foot	10	11	12	13	14	15	16	17	18	19	20	22
15	30	375 500	454 605	540 720	634 845	735 980	844	960 1280	1084 1445	1215 1620	1354 1805	1500	1815 3420
25 30	50	625 750	756 908	900 1080	1056 1268	1225 1470	1406 1688	1600 1920	1806 2168	2025 2430	2256 2708	2500	3025 3630
40 50	80 100	1000	1210 1513	1440 1800	1690 2113	1960 2450	2250 2813	2560 3200	2890 3613	3240 4050	3610 4513	4000 5000	4840 6050
60 70	120 140	1500	. 1815 2118	2160 2520	2535 2958	2940 3430	3375 3938	3840 4480	4335 5058	4860 5670	5415 6318	6000	7260 8470
75 80	150 160	1875 2000	2269 2420	2700 2880	3169 3380	3675	4219.	4800 5120	5419 5780	, 6075 , 6480	6769 7220	7500 8000	9075 9680
125	200 250	2500 3125	3025 3781	3600 4500	4225 5281	4900 6125	5625 7031	6400 8000	7225 9031	8100 10125	9025 11281	10000 12500	12100
175	300	3750 4375	4538 5294	5400 6300	6338 7394	7350 8575	8438 9844	9600 11200	10838 12644	12150 14175	13538 15794	15000	18150 21175
200 250	400	5000 6250	6050 7563	7200	8450 10563	9800 12250	11250	12800 16000	14450 18063	16200 20250	18050 22563	20000 25000	24200 30250

			cilitenes :	888	8888	000
ALC: NO.	151	24		25600 28800 32000	35200 38400 44800 51200	57600 64000 76800
SE.SET	bude -	20		15556 17778 20000 22222	24444 26667 31111 35556	40000 44444 53333
Tain.		18	10800	12600 14400 16200 18000	19800 21600 25200 28800	32400 36000 43200
S. Ich, Fiber St		16	7111 8533	9956 11378 12800 14222	15644- 17067 19911 22756	25600 28444 34133
TIMBER BEAMS OR JOISTS. Capacity in Bending Moments (Foot Pounds) for 800 Pounds per Square Inch, Fiber Strain.	DEPTH OF BEAM IN INCHES.	15	5000 6250 7500	8750 10000 11250 12500	13750 15000 17500 20000	22500 25000 30000
S OR .	BEAM IN	14	4356 5444 6533	7622 8711 9800 10889	11978 13067 15244 17423	19600 21778 26133
BEAMS of Pounds) for 800	PTH OF	12	3200 4000 4800	5600 6400 7200 8000	8800 9600 11200 12800	14400 16000 19200
TIMBER E nding Moments (Foot	DF	10	2222 2778 3333	3889 4444 5000 5555	6111 6667 7778 8889	10000
TIME ending Mo		6	1800 2250 2700	3156 3600 4050 4500	4950 5400 6300 7200	8100
acity in B	200	8	1422 1778 2133	2489 2844 3200 3556	3911 4267 4978 5689	иде
Cal	0 20	7	1089 1361 1633	1906 2178 2450 2722	2994 3267 3811	
		9	800 1000 1200	1400 1600 1800 2000	2200 2400	
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Width, Labor	INCHES	2 2 ½ 3	37 4 4 2 2 2 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2	8 4 6 A	9 10 12

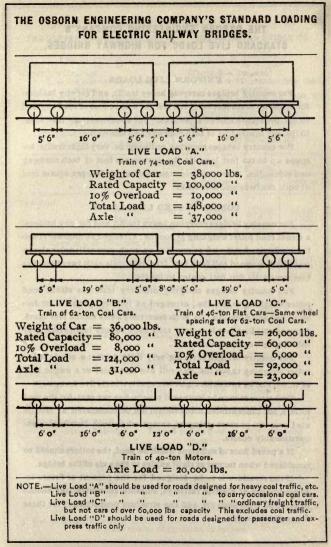
		Capa	acity in Be	TIMI ending Mon	TIMBER BEAMS OR JOISTS. ling Moments (Foot Pounds) for 1000 Pounds per Square Inch	Pounds) for 1	spuned 000	Capacity in Bending Moments (Foot Pounds) for 1000 Pounds per Square Inch, Fiber Strain.	o. Ich, Fiber St	rain.		To And
Width,	- Puls	AAOU AAOU	2460	4555 90.13	DE	PTH OF	BEAM IN	DEPTH OF BEAM IN INCHES.	1925			
Inches	9	2	8	6	10	12	14	15	16	13	. 20	24
2	000	1361	1778	2250	2778	4000	5444	6250	T 4.19 L	100000	CD922	100
22 A	1250	1701	2222	2813	3472	5000	6806	7813	8889	13500		
	3			200	INTE	2000	010	200	10001	00001		
2% 4 2% 4	1750	2382	3111 3556	<b>3</b> 938 4500	4861 5556	7000 8000	9528 10889	12500	12444	15750 18000	19444	32000
	2250	3062	4000	5063	6250	0006	12250	14063	16000	20250	25000	36000
	2500	3403	4444	5625	6944	10000	13611	15625	17778	22500	27778	40000
5 1/2 2	2750	3743	4889	6188	7639	11000	14972	17188	19556	24750	30556	44000
1		4083	5333	6750	8333	12000	16333	18750	21333	27000	33333	48000
~ 8		47.04	7111	C/8/	9722	14000	19056	21875	24889 28444	31500	38889 44444	56000 64000
σ		-		10125	12500	1 8000	24500	98195	32000	40500	FOOD	00004
10					13889	20000	27222	31250	35556	45000	55556	80000
12						24000	32667	37500	42667	54000	66667	00096

Midth, Inches 3 3/2 3 3/2	6 6 1200 1500 1800 2100	7 1633 2042 2450 2858	8 8 2133 2667 3200 3733	ending Mon 9 33750 4725 4725	DE [Foot ] DE 3333 4167 5000 5833	Perth OF 12 12 12 12 12 12 7200 7200 8400	Capacity in Bending Moments (Foot Pounds) for 1200 Pounds Per Square Inch, Fiber Strain.           DEFPTH OF BHAM IN INCHES.           DEFPTH OF BHAM IN INCHES.           3         10         12         14         15         16           3         2133         2700         3333         4800         6533         7500         10667           3         3200         4050         5000         7200         9800         11250         12800         16           8         3733         4705         5000         7200         9800         11433         13125         14933         18	Per Square I I INCHES 15 7500 9375 11250 13125	16 1667 12800 14933	Itain. 18 16200 18900	23333	24
5 4 1	2400 2700 3000	3267 3675 4083	4267 4800 5333	5400 6075 6750	6667 7500 8333	9600 10800 12000	13067 14700 16333	15000 16875 18750	17067 19200 21333	21600 24300 27000	26667 30000 33333	38400 43200 48000
5 % 6 %	3300 3600	4492 4900 5717	5867 6400 7467 853 <b>3</b>	7425 8100 9450 10800	9167 10000 11667 13333	13200 14400 16800 19200	17967 19600 22867 26133	20625 22500 26250 30000	23467 25600 29867 34133	29700 32400 37800 43200	36667 40000 46667 53333	52800 57600 67200 76800
9 10 12				12150	15000 16667	21600 24000 28800	29400 32667 39200	33750 37500 45000	38400 42667 51200	48600 54000 64800	60000 666667 80000	86400 96000 115200

Width,		Cap	acity in Be	adding Moments (Foot Pounds) for 1500 Pounds per Square Inch DRPTH OF BRAM IN INCHES.	ents (Foot DE	Capacity in Bending Moments (Foot Pounds) for 1500 Pounds per Square Inch, Fiber Strain. DRPTH OF BRAM IN INCHES.	1500 Pounds 3EAM IN	per Square INCHES.	nch, Fiber S	strain.		20007 20
Inches	9	2	∞	σ	10	12	14	15	16	18	20	24
3 %	1500 1875 2250	2042 2552 3063	2667 3333 4000	3375 4219 5063	4167 5208 6250	6000 7500 9000	8167 10208 12250	9375 11719 14063	13333 16000	20250		02 939 1 107 0 00
10 4 4 10 10 10 10	2625 3000 3375 3750	3573 4083 4594 5104	4667 5333 6000 66667	5906 6750 7594 8438	7292 8333 9375 10417	10500 12000 13500 15000	14292 16333 18375 20417	16406 18750 21094 23438	18667 21333 24000 26667	23625 27000 30375 33750	29167 33333 37500 41667	48000 54000 60000
5 % 8 4 6 %	4125	5615 6125 7146	7333 8000 9333 10667	9281 10125 11813 13500	11458 12500 14583 16667	16500 18000 21000 24000	22458 24500 28583 32667	25781 28125 32813 37500	29333 32000 37333 42667	37125 40500 47250 54000	45833 50000 58333 66667	66000 72000 84000 96000
9 12 12	「日本」			15188	18750 20833	<b>2</b> 7000 30000 36000	36750 40833 49000	42188 46875 56250	48000 53333 64000	60750 67500 81000	· 75000 83333 100000	108000 120000 144000

	SAFE WORKIN Deno			SQ. IN. F Timber Colum		BER.
Class	Typical Species	For Transverse Loading	For End Bearing	For Short Columns when Z ≥ 12 d	For Bearing Across Fibre	For Shear Along Fibre
1	White Oak	1400	1300	1000	550	300
2	Long Leaf Pine White Pine	1600 1100	1300 900	1000	350 200	200
4	Hemlock	950	900 850	650	200	100

### TIMBER COLUMNS.


Table giving values of factor  $\frac{1}{1 + \frac{l^2}{1000 d^2}}$  in Column Formula  $F = S \frac{1}{1 + \frac{l^2}{1000 d^2}}$ 1  $1 + \frac{1}{1000 d^2}$ 

 $\begin{array}{l} F = {\rm Safe \ load \ per \ sq. in. for \ column \ of \ length \ l,} \\ S = \underbrace{a \ a \ a \ a \ a \ a \ b \ show}_{a \ column, \ ta \ show}_{a \ column, \ show}_{a \ colum$ 

Length	22	L,I	EAS'	r si	DE	OF	OLI	UMN	IIN	INC	HE	$\mathbf{s} = d$	The
of Columu in Feet	4	5	6	7	8	9	10	11	12	13	14	15	16
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 24 26 28 30 32 32 34 36 38 40 42 44 46 48	.87 .75 .63 .52 .43	.91 .82 .73 .63 .54 .46	.87 .79 .71 .63 .56 .49 .43	90 .35 .78 .70 .63 .57 .51 .46 .41	.87 .80 .75 .69 .63 .57 .52 .47 .43	.89 .84 .79 .74 .68 .53 .53 .53 .49 .45	.87 .82 .77 .73 .68 .63 .58 .54 .50 .46 .42	.89 .85 .81 .76 .67 .59 .55 .51 .48 .45	.87 .83 .79 .75 .63 .59 .562 .49 .46 .43	.89 .85 .81 .78 .77 .63 .60 .67 .57 .53 .50 .47 .44 .42	.87 .84 .81 .77 .74 .70 .67 .63 .60 .57 .54 .51 .49 .46 .44	.88 .86 .83 .79 .73 .69 .67 .63 .60 .57 .55 .52 .49 .47 .45 .43	.87 .852 .78 .76 .72 .66 .63 .55 .530 .47 .46 .44

No. Store				
	TRACK	Total Weight With End Struts	261100 2841000 307000 307000 3307000 3305000 3755000 3755000 3755000 5550000 5580000 5580000 5580000 5580000 5580000 5580000 5772000 6174000 6174000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 5772000 57720000 57720000 57720000 57720000 57720000 57720000 57720000 57720000000000	
-	DOUBLE	Length Center to Center Bearings	2009 2009 2009 2009 2009 2009 2009 2009	
	D	Kind	Through Pin Spans Through Lattice Spans	3
VY BRIDGES. Coopers E-50 Loading.		Total Weight with Kud Struts	132000 143000 165000 165000 165000 187000 2213000 2233000 2233000 2233000 2233000 2233000 2338000 2338000 2338000 2338000 2338000 2338000 2338000 2338000 2338000 2338000 2338000 2338000 2338000 2338000 2338000 2338000 2338000 2338000 2338000 2338000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2389000 2380000 2380000 2380000 2380000 2380000 2380000 2380000 2380000 2380000 2380000 2380000 2380000 2380000 2380000 2380000 2380000 2380000 2380000 2380000 2380000000000	Nore:Weights given are for Structural Steel only, and do not include Weight of tiack.
1 3		Length Center to Center Bearings	100 100 1110 1110 1110 1110 1110 1110	IOL INCINGE
ID RA ions, 19 STEEL		Kind	Through Pin Spans Lattice Spans	I OD DI
WEIGHTS OF STANDARD RAILWAY BRIDGES. American Bridge Company's Specifications, 1900. Coopers E-50 Load MEDIUM STEEL.	TRACK	Total Weight With End Struts	24500 24500 37000 37000 57500 53500 53500 53500 53500 102500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 113500 1135000 1135000 1135000 1135000 1135000 1135000 1135000 1135000 1135000 1135000 1135000 1135000 1135000 1135000 1135000 1135000 1135000 1135000 1135000 1135000 1135000 1135000 1150000 1150000 1150000 11500000 1150000 11500000000	steel only, ar
EIGHTS ( an Bridge Co.	SINGLE,	Length Out to Out Rod String	\$88998888888888888888899991	structural
Americ	S	Kind	THROUGH PLATE GIRDER SPANS	e tor
		Total Weight	5200 7800 111900 111900 111900 111900 273300 273300 273300 273300 273300 59300 59300 59300 59300 59300 114100 75300 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114100 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 114000 1140000 1140000 1140000 11400000000	ghts given at
1		Length Out to Out	10000000000000000000000000000000000000	OTE:-Wei
		Kind	DECK PLATE GIRDER SPANS	Z

COOPE			BRIDO		ING
Load	5000 Ibs. per lia. ft.	4500 lbs. per lin. ft.	4000 lbs. per lin. ft.	3000 lbs. per lin. ft.	
DISTANCES IN FRET.	32500 32500 32500 32500 50000 50000 50000 32500 32500 32500 32500 50000 50000 50000 50000	29250 29250 29250 45000 45000 45000 22500 29250 29250 29250 29250 45000 45000 45000 45000 22500	26000 26000 26000 40000 40000 40000 20000 26000 26000 26000 26000 26000 40000 40000 40000 20000	19500 19500 19500 30000 30000 30000 15000 19500 19500 19500 30000 30000 30000 30000	Another American Andrew Andrew Andrew American Americ
Class	E 50	E 45	E 40	E 30	E



### THE OSBORN ENGINEERING COMPANY'S Standard Live Loads for Highway Bridges.

#### UNIFORM LIVE LOADS

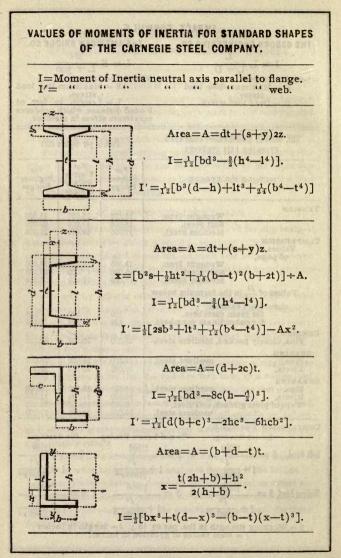
For country bridges carrying heavy traffic, and for city bridges: for spans up to 150 feet long, 100 lbs. per square foot of roadway and 80 lbs. per square foot of sidewalks. For spans over 150 feet long, 80 lbs. per square foot of both roadway and sidewalks.

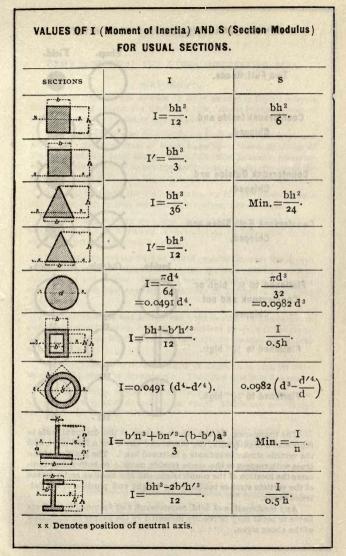
For country bridges carrying ordinary or very light traffic: for spans up to 150 feet long, 80 lbs. per square foot of both roadway and sidewalks. For spans over 150 feet long, 60 lbs. per square foot of both roadway and sidewalks.

#### CONCENTRATED LIVE LOADS.

For country bridges carrying heavy traffic, and for city bridges: a steam road roller weighing 35,000 lbs., arranged as follows: 15 000 lbs. on forward roll and 10,000 lbs. on each rear roll; axles eleven feet apart, forward roll four feet face, rear rolls each twenty inches face, rear rolls five feet center to center.

For country bridges carrying ordinary traffic: a steam road roller weighing 21,000 lbs., arranged as follows: 9,000 lbs. on forward roll and 6,000 lbs. on each rear roll; axles eleven feet apart, forward roll four feet face, rear rolls each twenty inches face, rear rolls five feet center to center.


For country bridges carrying very light traffic: a single horse roller weighing 12,000 lbs., the roll five feet face; or a wagon load of 10,000 lbs. on two axles eight feet apart, wheels five feet gauge.


Unit stresses may be increased twenty-five per cent, for the road rollers, but concentrated loads should not be considered as distributed over two or more stringers, except when such distribution unquestionably occurs.

If a paved floor of sufficient width be used, the rollers should be considered when turned at right angles to the axis of the bridge.

If the structure is to be designed for the present or future accommodation of electric railways, suitable concentrations should be selected from page 171, and the structure proportioned for these concentrations also.

IMPACT FORMULÆ.				
THE OSBORN ENGINEERING CO. THE AMERICAN BRIDGE CO.				
$I = L \frac{L}{L+D} \qquad \qquad I = S \frac{300}{L+300}$				
where I = Impact. I = Maximum live load Where I = Impact. S = Maximum live load				
stress, stress,				
D = Dead load stress. L = Length in feet of loaded distance which produces				
maximum stress in member.				
THE OSBORN ENGINEERING COMPANY'S STANDARD UNIT STRESSES Pounds per Square Inch				
NATURE OF STRESS		For Railroad Bridges	For Electric Railway Bridges	For Highway Bridges
TENSION				1.20 Mars
Contraction of the second	Wrought Iron, Soft Steel,	13,000 15,000	15,000 17,000	18,000 20,000
Contractory of the	Medium Steel,	17,000	19,000	22,000
COMPRESSION Values of C: of page,	in formulæ at bottom			71-4 
or helled	Wrought Iron, Soft Steel,	13,000	15,000	18,000
「「「「「「」」」	Medium Steel	15,000 17,000	17,000 19,000	20,000 22,000
Values of $\frac{72}{12}$	in the formulæ below	A STATISTICS		
should not	AL LAN	eep 10 4	1712.274	
for main members, for subordinate members,		100 120	100 120	125 150
BENDING				
Pins, closely packed, medium steel,		25,000	25,000	25,000
BEARING Pins.	medium steel,	22,000	24,000	24,000
Rivets,	rivet steel,	20,000	22,000	22,000
SHEARING Pins.	medium steel.	11,000	12,000	12,000
Rivets,	rivet steel,	10,000	11,000	11,000
Webs of plate	girders, soft steel, " medium steel,	9,000 10,000	10,000 11,000	10,000
Compression Formulæ:				
Square Bearing. Pin and Square Bearing. Pin Bearing.				
Soft Steel, $S = \frac{12500}{12500}$ $S = \frac{12500}{12500}$ $S = \frac{12500}{12500}$				
$l^2$ $l^2$ $l^2$				
$1 + \frac{1}{36000r^2}$ $1 + \frac{1}{24000r^2}$			States.	18000 2
Medium Steel, S = 15000 S = 15000 S =				15000
$1 + \frac{1}{36000 r^2} \qquad 1 + \frac{1}{24000 r^2} \qquad 1 + \frac{1}{18000 r^2}$				
S = Working strength in lbs. per sq. in.; $l = $ length in inches; r =  least radius of gyration in inches.				
		and the second	the second	A summer of





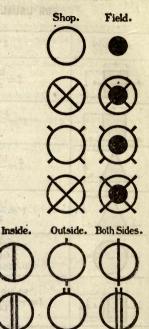
## CONVENTIONAL SIGNS FOR BRIDGE RIVETS.

Two Full Heads.

Countersunk Inside and Chipped.

Countersunk Outside and Chipped.

Countersunk Both Sides and Chipped.


Flattened to 1/8" high or Countersunk and not Chipped.

Flattened to 1/1 high.

Flattened to 3/8" high.

The foundation of the above system is the diagonal cross to represent a countersink, the blackened circle for a field rivet, and the verticle stroke to indicate a flattened head. The position of the cross with respect to the circle (inside, outside or both sides) indicates the location of the countersink, and the number and position of the verticle strokes indicate the height and position of the flattened heads.

Any combination of field, countersunk and flattened head rivets liable to occur may be readily indicated by the proper combination of the above signs.



### BRIDGES.

#### SOME HISTORICAL AND OTHER INTERESTING DATA.

#### HISTORICAL.

Ancient bridges are known to have existed in China, Assyria and India long before the Christian Era. Stone bridges, built of slabs on piers, were built by the Greeks.

The origin of the arch may be traced back to the Chaldeans and Assyrians. Crude arches of brick have been found in ruins of Thebes, probably built about 2900 B. C. The Romans, however, were probably the first to use the arch understandingly, about the second century B. C.

The first bridge in the United States, so far as known, was a pile trestle, built in 1660, across Charles River, near Boston.

A noted long wooden span was the bridge "Colossus," 340' 33''long, built by Louis Wernwag, about 1812, at Philadelphia, on the site of the present Callowhill bridge.

The first iron bridge in the world was built over the Severn River at Ironbridge, England, in 1779. It was a cast iron arch of 100'6'' span and 40' rise. The next was the "Buildwas Bridge," a similar structure, built over the same river by Telford in 1796; span 130', rise 17'.

The first iron railway bridge was built in 1823, for the Stockton and Darlington Railway, over the Gaundless River, a tributary of the Wear River, in England, a cast iron trestle consisting of four spans 13' 6" each.

The first plate girders were made in England in 1846, by Fairbairn, from designs by Stephenson. They had cast iron flanges.

The first bridge across the Mississippi River was a suspension bridge, built 1855, at Minneapolis, 620' span. There are now fortysix bridges across that river.

Suspension bridges are said to have been built in China over 2000 years ago. Such structures were built in Europe as early as 1615.

The first chain bridge in England was a foot bridge of 70' span built about 1741, over Tees River.

The first chain bridge in the United States was built by Finlay, in 1796, over Jacob's Creek, near Uniontown, Pa. The first wire suspension bridge in the United States was built in 1816, over the Schuylkill River, in Philadelphia. The first suspension bridge over the Niagara River was built by Charles Ellet, in 1848. The only railway suspension bridge in the world was built by Roebling at Niagara, in 1855.

Wooden cantilever bridges were built by the Assyrians as early as 2000 B. C.

The first cantilever bridge of importance to be built in the United States was the Kentucky River Bridge, built by C. Shaler Smith, in 1877. Total length, 1125'; being three equal spans of 375'. The second was the Minnehaha Bridge over the Mississippi River at St. Paul, built in 1880, with center span of 324'. The third was the Niagara cantilever, built in 1883, with center span of 420'.

The Romans built cement arches; remains of them still exist. Since their times the earliest was a concrete arch of 31' span, built by John C. Goodrich in 1871, in Prospect Park, Brooklyn, known as the Cleftridge Bridge.

Reinforced concrete was first used by Monier in 1876.

The first reinforced concrete bridge in the United States was built according to the Ransome system, in 1889, at Golden Gate Park, San Francisco. Span 20'.

### EVOLUTION OF TYPES IN THE UNITED STATES.

The first known patent for a bridge was granted to Chas. W. Prale, Jan. 2, 1797.

Patents were also granted to Timothy Palmer, Dec. 17, 1797; to Thomas Pope, April 18, 1807; to Louis Wernwag, and several others; but the Patent Office records were burned in 1836 and could not be restored.

The first patent for a truss bridge was granted to Theodore Burr, in 1817. The designs consisted of trusses reinforced with wood arches.

Three noted names connected with early bridge building in the United States are Theodore Burr, Timothy Palmer and Louis Wernwag.

Ithiel Towne patented the lattice girder bridge in 1820.

Long patented his types in 1830 and 1839.

The first iron truss bridge was patented in 1833, by Augustus Canfield. The first one built was over the Erie Canal at Frankfort, N. Y., in 1840, by Earl Trumbull. It was a combination of cast iron segments and suspension rods, with an anchored top chord in tension.

Wm. Howe patented his type in 1840.

Squire Whipple built his first bridge in 1840. It was a bowstring truss with cast iron compression members and wrought iron tension members. He secured a patent on the type April 24, 1841. Thos. W. and Caleb Pratt patented the Pratt truss April 4, 1841.

Wendell Bollman's first bridge was built over the Potomac River at Harper's Ferry, in 1852. It was a 124' span.

Albert Fink built a three span bridge over the Monongahela River in 1852.

The first pin connected span was built by John W. Murphy in 1859, over a canal at Phillipsburg, N. J. It was a 165' span and was called a "Whipple-Murphy" bridge.

The first bridge in which wrought iron was used for both tension and compression members was built by Murphy over the Lehigh River, at Mauchchunk, for the Lehigh Valley R. R.

The first riveted lattice girders were built in 1859 for the New York Central R. R., by Howard Carroll.

S. S. Post built the first bridge of his type in 1865, for the Erie R. R., at Washingtonville.

In 1874, James B. Eades built the Mississippi River Bridge at St. Louis. It consists of three trussed arches, one of 520' and two of 502' span.

### THE LONGEST BRIDGE STRUCTURES.

Longest wooden structure—a pile trestle across Lake Pontchartrain near New Orleans, La., 21 miles long.

Longest metal structure-the Tay Viaduct, Scotland, 10,800 feet long, iron lattice girders. The bridge across the St. Lawrence River at Montreal has a total length of 8,791 feet.

Longest masonry structure-the Lion Bridge in China, across an arm of the Yellow Sea, 22,968 feet long, composed of 300 arches.

Name	Country	Length, Feet	Height Feet
St. Giustina	Switzerland	197	460
Garabit	France	1852	406
Du Viaur	France	1508	382
Stoney Creek	British Columbia	336	340
Loa	Bolivia	800	336
Pecos River	United States	2180	328
Gokteik	Burmah	2260	320
Kinzna	United States	2052	302

### THE HIGHEST BRIDGE STRUCTURES.

·····································	et Remarks	Highway Highway and 2 track railway 1 track railway Highway and 2 track railway 2 track railway 1 track railway 1 track railway 1 track railway		et Remarks	Highway and 2 track railway 2 track railway 1 track railway Highwayand 2 track railway Highway and 2 track railway		Depth, Remarks Inches	Tubular Tubular 114 2 track deck 108 1 track through 114 2 track deck 114 2 track through
ANS.	Span, Feet	585 550 546% 542% 533 533 533 507 456 507 420	ANS.	Span, Feet	520 503 500 474	3 SPANS	Span, Feet	460 400 119 114 ½
USS SP	Date	1905 1995 1898 1894 1896 1896 1890 1886 1886 1889	AW SP	Date	1893 1890 1889 1900 1900	GIRDEN	Date	1850 1848 1904 1902 1902 1902
SOME OF THE LONGEST TRUSS SPANS.	Over	Great Miami River Ohio River Ohio River Ohio River Delaware River Ohio River Tamar River	SOME OF THE LONGEST DRAW SPANS.	Over	Missouri River Thames River Arthur Kill St. Louis River Drainage Canal	THE LONGEST PLATE GIRDER SPANS.	Over	Menai Straits Pine Creek Okaw River Mill Race P. R. R. & Morris Canal
SOME	Location	Elizabethtown, O. Elicatnatt, O. Louisville, Ky. Cincinnatt, O. Pitiaburgh, Pa. Plymouth, Eng. India Australia	SOME	Location	Omaha, Neb. New London, Conn. Staten Island, N.Y. Duluth, Minn. Chicago, III.	SOME OF	Location	England England Jersey Shore, Pa. Carmi, III. Janesville, Wis, Phillipsburg, N. J.
	* Name	C. &. O. R. R. L'ville & Jeffville Ohio River Penn'a R. R. Ohio Conn. Leck Saltash Hoogly Hawkabury		Name	Interstate Thames Arthur Kill C., M. & N. R'y.		Name	Britannia Conway N. Y.C. & H. R. R. R. L. & N. R. R. C., M. & St. P. R. R. I. V. R. R.

and a straight and ha	SOME OF THE LONGEST SUSPENSION BRIDGE SPANS.	HE LONG	EST SUSPI	ENSION B	RIDGE 8	PANS.		
Location	Over	Date	Channel Span, Feet	Location		Over	Date	Channel Span, Feet
New York New York Niagara Palls Cincinnati	Hast River Hast River Niagara River Ohio River	188 <b>3</b> 1869 1866	1600 1595% W 1268 1268 N	Queenstown Wheeling Priburg, Switz, Niagara Palls	itz.	Niagara River Ohio River Niagara River	er 1848 1834 er 1855	1040 - 1010 870 821
the state	SOME OF	THE LO	SOME OF THE LONGEST CANTILEVER BRIDGES.	NTILEVER	RIDGI	ES.	cieto Cieto	
Name	Location	Tanan I	Over	Date	Channel Span, Feet	Total Length not including Approaches, Feet	Remarks	2
Ouebec Forth Blackwell's Island	Canada Scotland New York	St. Lawren Firth of Fo East River	St. Lawrence River Firth of Forth East River	1890	1800 1710 1182	3300 8098	Highway & 2 track Ky. 2 track railway	track Ry.
Wabash Wemphis	Pittsburg, Pa. Memphis, Tenn.	Monoi Missis	Monougahela River Mississippi River	r 1892	820 812 790	2597	2 track railway 1 track railway	y y
(NUMBERSON AND AND AND AND AND AND AND AND AND AN	SOME	OF THE	OF THE LONGEST METAL ARCHES.	METAL A	RCHES.	BUG VOI	equite	
Name	Location	Aques Aques	Over	Date	Span, Feet	Rise, Feet	Remarks	8¥
Clifton Viaur Bonn	Niagara Falls France	Viaur	Niagara River Viaur River	1899	840.0 721.6	137.0	Steel	
Southwark Wearmouth St. Louis Poor Creek	London, Eng. Sunderland, Eng. Paris, Prance	Thames River Wear River Seine River	Thames River Wear River Seine River	1896 1796 1862	240.0 236.0 210.0	24.0 34.0	1 I	<b>1</b> 01
WULL LICCA	Wasnington, D. C.	KOCK Creek	Creek	1858	200.0	20.0		

article 5, sub- bit: 2, sub- distribution distribution article 1, sub- article 1, sub-	SOME	E NOTABLE MASONRY ARCHES.	IRY AR	CHES.		
Name	Location	Over	Date	Span, Feet	Rise, Feet	Remarks
Luxemburg Trezzo Cabin John Jaremeze Bourbonnais	Germany Italy Washington, D. C. Austria France	Petrusse River Adda River Cabin John Creek Pruth River	1903 1380 1864 1893	277.7 251.0 220.0 213.0 124.0	101.7 87.8 57.3 59.0 6.9	The longest span Destroyed 1416 Aqueduct Flattest masonry arch
, gut view providence and a second se	SOME NOTABLE	SOME NOTABLE CONCRETE AND CONCRETE-STEEL ARCHES.	ONCRE-	TE-STEI	EL ARC	HES.
Name	Location	Over	Date	Span, Feet	Rise, Feet	Remarks
Munderkingen Chatellerault Vauxhall Inzigkofen	Wurtemburg France London, Eng. Germany	Danube River Vienne River Thames River Danube River	1893 1899 1900 1896	164.0 164.0 144.6 141.0	16.4 15.8 18.6 14.4	Concrete Hennebique Concrete Concrete
I. C. R. R. Y Bridge Schwimmschul	Grand Tower, U. S. Zanesville, U. S. Sleyer, Hungary	Big Muddy River Muskingum River	1903 1901 1897	140.0 99.0 138.4	30.0 6.3 9.4	Concrete [arch Thatcher: Flattest concrete Melan : Second flattest
Although the abc en in compiling the y have been overloo a in future editions,	Although the above bridge data are the result of diligent search and inquiry, and although the gate and incompiling the same, it is possible that some errors may still exist, or that some long spans may have been overlooked. The author would greatly appreciate any information that will lead to data in future editions, either regarding other notable structures or concerning the statements above.	result of diligent searc tesult of diligent searc at some errors may st id greatly appreciate a r notable structures or	h and in ill exist, any infoi concerni	quiry, ar or that rmation ng the st	id altho some lo that wi atemen	Although the above bridge data are the result of diligent search and inquiry, and although the greatest care has been taken in compiling the same, it is possible that some errors may still exist, or that some long spans of the various types may have been overlooked. The author would greatly appreciate any information that will lead to the correction of the data in future editions, either regarding other notable structures or concerning the statements above.

## THE OSBORN ENGINEERING CO.

(INCORFORATED)

OSBORN BUILDING

CLEVELAND

# CONSULTING ENGINEERS

CIVIL MECHANICAL ELECTRICAL STRUCTURAL

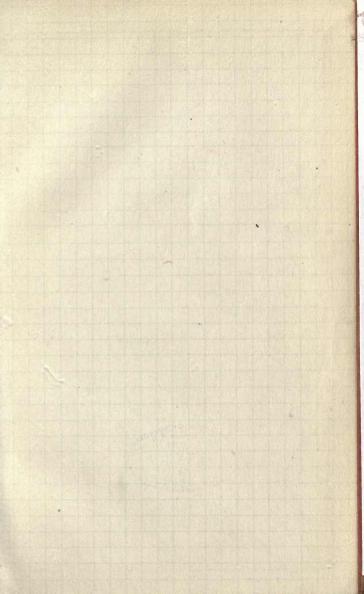
Supernicuctures (1971)

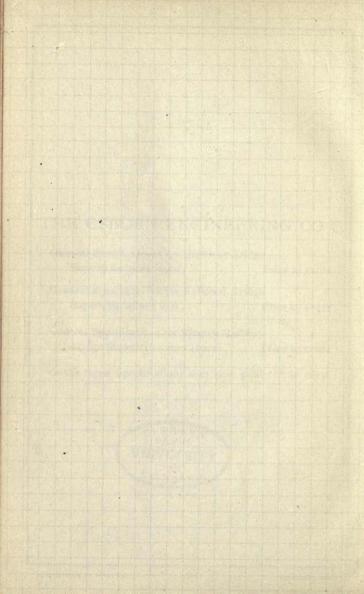
PLANS, SPECIFICATIONS,

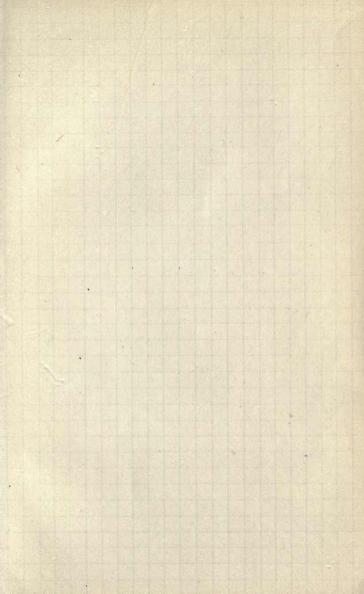
SUPERINTENDENCE OF CONSTRUCTION BRIDGES, BUILDINGS, MANUFACTURING PLANTS OF ALL KINDS, CONCRETE AND CONCRETE-STEEL CONSTRUCTION. INSPECTION AND TESTS OF MATERIAL.

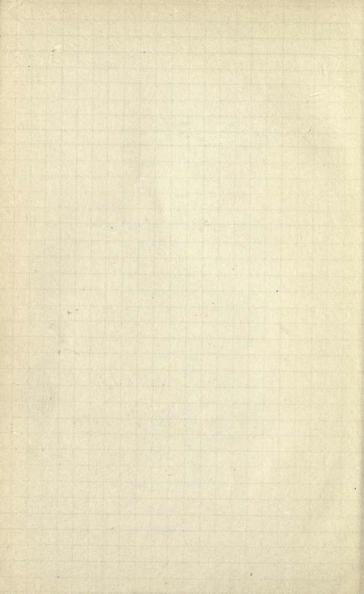
## THE OSBORN ENGINEERING CO.'S

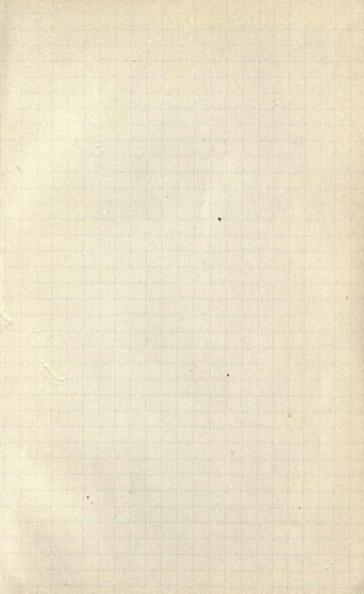
THE OSBORN ENGINEERING CO

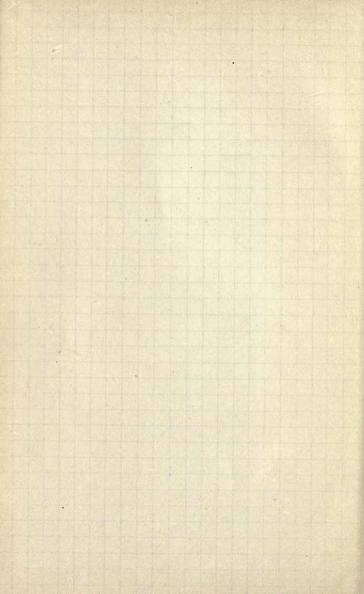

General Specifications for Highway Bridge Superstructures (1902) Price 25 cents

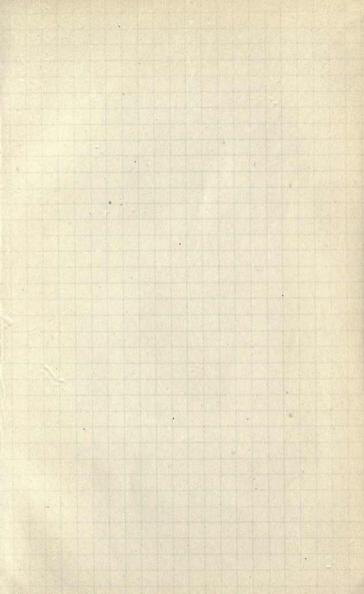

General Specifications for Railroad Bridge Superstructures (1903) Price 25 cents

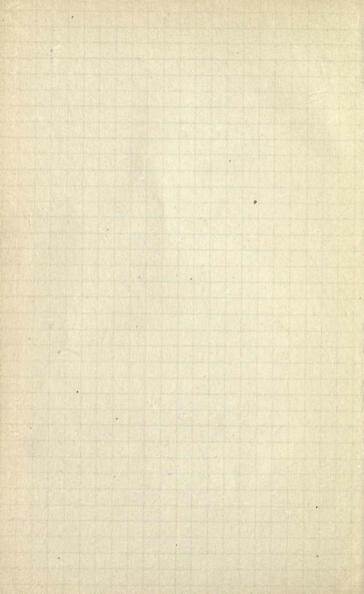

General Specifications for Electric Railway Bridge Superstructures (1903) Price 25 cents

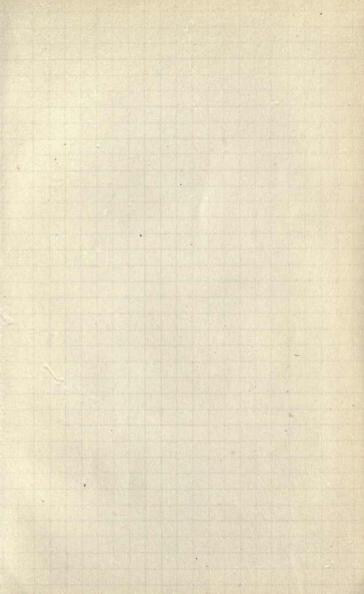

Or the three Specifications sent post paid for 60 cents

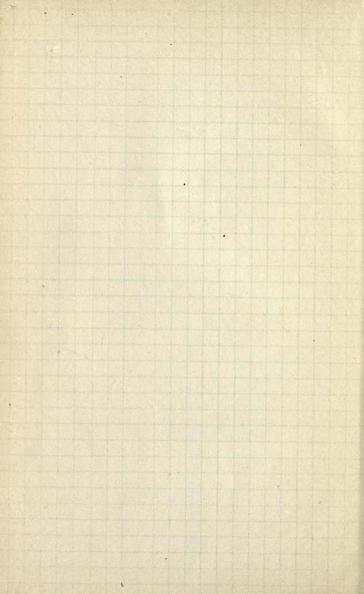


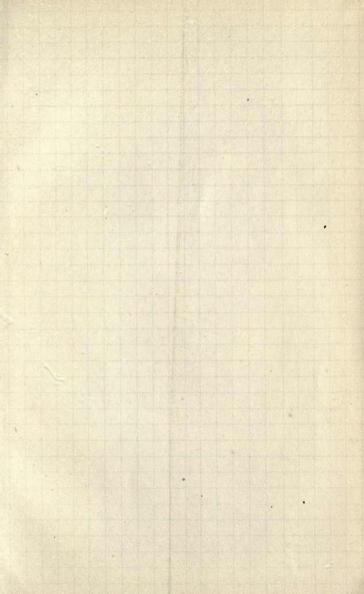



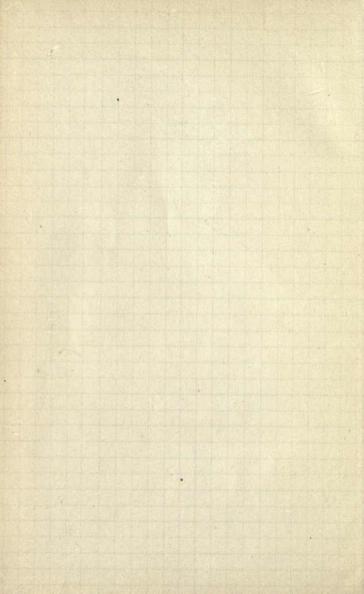



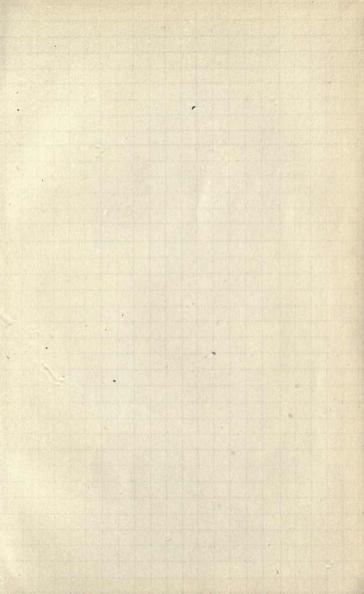



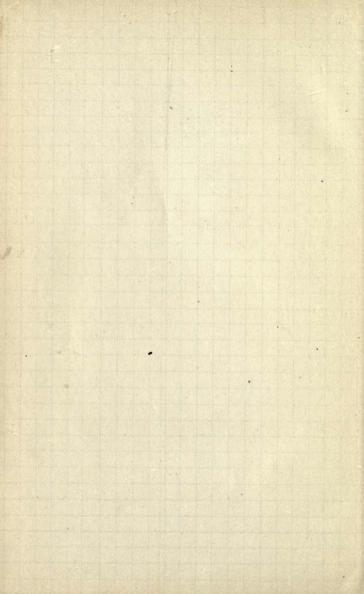



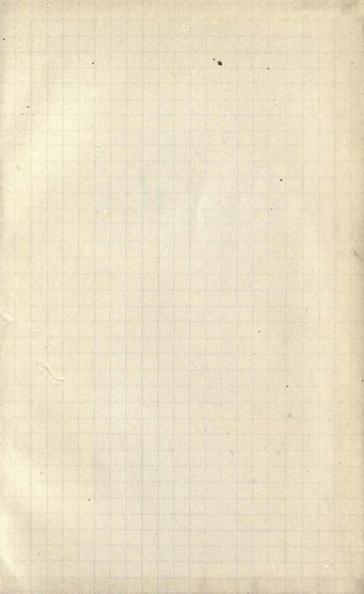



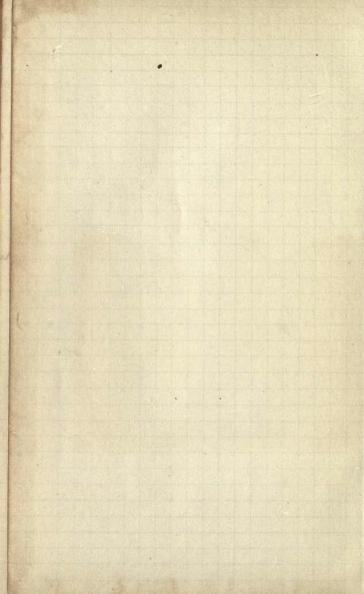



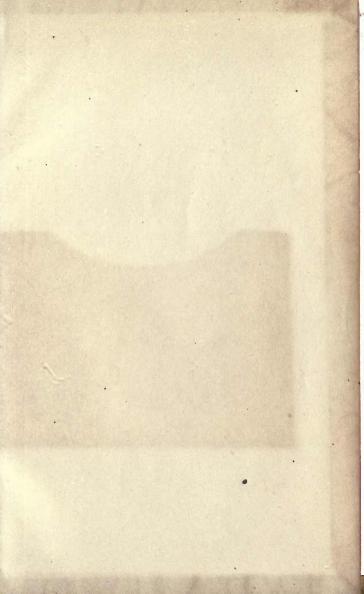





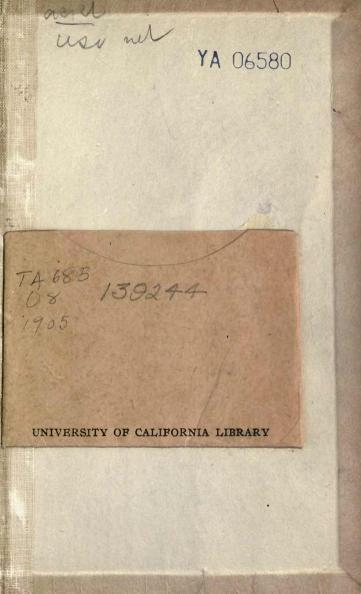









# ETURN TO: CIRCULATION DEPARTMENT 198 Main Stacks


DAN PERIOD Home Use	1	2	3
	4	5	6

### L BOOKS MAY BE RECALLED AFTER 7 DAYS.

newals and Recharges may be made 4 days prior to the due date. oks may be renewed by calling 642-3405.

### JE AS STAMPED BELOW.

JAN 0 2 201	03	
RM NO. DD 6 4 5-02		ALIFORNIA, BERKELEY California 94720–6000



