

TABLES

OF THE

MOTION OF THE MOON

BY

ERNEST W. BROWN
professor of mathematics in yale university

WITH THE ASSISTANCE OF
HENRY B. HEDRICK
CHIEF COMPUTER

NEW HAVEN : YALE UNIVERSITY PRESS
LONDON : HUMPHREY MILFORD OXFORD UNIVERSITY PRESS

I9I9

ASTRONOMY
LIBRARY

CAMBRIDGE, ENGLAND: PRINTED

BY J. B. PEACE, M.A.,
AT THE UNIVERSITY PRESS

By votes of the Corporation of Yale University and of the Board of Directors of the Winchester Observatory, the expense of calculation, printing and publication of these Tables has been met by appropriations from the income of the funds of the Observatory.
-

PREFACE

THIS volume of Tables of the Motion of the Moon is the sequel to my theory printed in the Memoirs of the Royal Astronomical Society during the years rgor-8. The fundamental constants which have to be determined from observation are based mainly on the Greenwich meridian observations and the papers containing the discussions which lead to the values finally adopted are contained in the Monthly Notices of the same Society issued during the years 1913-15.

The first Tables of the Moon, founded on the law of gravitation, were published by Clairaut in 1752 . During the succeeding century several volumes of the same nature appeared, but the Tables de la Lune of Hansen, bearing the date 1857, were the first which permitted the position of the moon to be computed from theory with an accuracy comparable with that of observation. Their general excellence is sufficiently confirmed by the fact that they have been used for obtaining the ephemeris of the moon up to the present time* in most of the national almanacs and also for almost all researches which demand a knowledge of the moon's place. The only other set of tables which can be compared with them are those founded on Delaunay's theory, appearing in I9II under the final direction of Radau; these have been used for the ephemeris of the moon in the Connaissance des Temps since their publication.

The appearance of Hansen's work constitutes an epoch in the history of astronomical tables. Based on his own theory, which itself had an unusual and complicated form, it includes some three hundred periodic terms and contains devices for tabulation which abbreviate the work of the computer very considerably. The fundamental constants were determined from observation with a high degree of accuracy considering the data which Hansen had at his disposal and there are few constants obtainable from theory whose observed values are used. It is true that there are errors in both the theory and the tables, but these are sufficiently infrequent as to permit of correction. The portions of the theory due to solar action have required but little correction. The least satisfactory part is the set of perturbations produced by planetary action; the terms given are few in number and some of them are quite erroneous. Nevertheless, with one or two corrections supplied by Newcomb, Hansen's Tables have fulfilled the needs of navigation and astronomy for over half a century.

The large number of periodic terms in the expressions for the moon's position in terms of the time practically requires that tables of double-entry be used. In the ordinary form such tables demand a double interpolation and the labour of performing this detracts very greatly from their apparent efficiency. Hansen devised a plan by which the double interpolations with two variable arguments could be avoided or rendered quite simple: in fact, in actual use his double-entry

* The ephemeris computed from the tables in the present volume will be inserted for the first time in the Almanacs for 1923.
tables are but little more troublesome than those of single entry and with some alterations they can be made quite as simple. Like most of the Tables for the motions of the bodies in the solar system they are adapted for the calculation of an ephemeris at equidistant intervals.

The work of forming Tables based on the theory of Delaunay suffered from several difficulties. Although the theory in its extent and form is perhaps the most remarkable of all those which have dealt with the moon's motion and has formed a standard of comparison for all later work, its greatest value does not appear in a reduction to tabular form. It is algebraic throughout and the series representing many of the coefficients converge so slowly that the required degree of numerical accuracy is lacking. In some cases coefficients had to be estimated and in others to be taken bodily from later theories. Moreover the planetary terms had not been computed at Delaunay's death, so that these had to be supplied. The Tables themselves are so formed that the computation of an ephemeris requires nearly the same amount of work as that of as many separate positions. Arguments which do not vary uniformly with the time are used and there are some triple-entry tables.

The calculation and publication of new tables can not be justified unless they shall possess a theoretical and practical accuracy greater than that of those previously in existence. Further, their form and content should be such that the labour of computing from them shall not be excessive. Every effort has therefore been made to satisfy these desiderata. The theory itself has been extended so as to include the effects of every known force which acts on the moon, and such tests as have been made on the accuracy of the work by the author and others have so far given satisfactory results. The formation and calculation of the Tables have been performed under favourable circumstances. We have been able by various devices to include every known sensible term and also many that separately must be classed as insensible in comparison with modern observations, but which in the aggregate will occasionally show themselves. Although nearly 1500 terms are included-nearly five times as many as are contained in Hansen's Tables-the time needed to obtain the annual ephemeris is certainly not greater than, and is probably less than, that which the use of Hansen's Tables demands. Finally, the tests performed after the Tables were in proof give evidence of the very high accuracy of the work of Dr Hedrick and those who have also assisted in the calculations. My own part in the latter has been a minor one in general, but I have differenced all the proofs and tested each table to see that it corresponds to the terms it is supposed to contain. That some errors should have remained up to this stage in dealing with such large numbers of terms, many of which required two or three transformations before calculation was begun, is inevitable. But the fact that in these final searching tests, only three cases of wrong terms inserted were discovered and these so small as to be only worth mentioning as a matter of record, gives reason to hope that the tables are practically free from sensible errors.

The work of planning the Tables was begun in 1908 immediately after the completion of the theory. Arrangements had previously been made by which Yale

University undertook the cost of calculation, printing and publication. The first step required was a transformation of the latitude into a form which would diminish very considerably the number of tables and arguments. In the autumn of 1909 the general plans for the Tables had been outlined and calculation was started by Dr Hedrick who came to reside in New Haven shortly afterwards. Since that time to the summer of the present year the work has proceeded continuously with from one to four computers engaged according to the needs of the work. One portion, the final steps in the calculation of certain of the remainder tables from 1800-1900, is still in Dr Hedrick's hands; all the remainder tables for this period, not being needed for future ephemeris calculations, will be published separately at a later date.

When the Tables were started it was the intention to use the results of Cowell's extensive investigations into the comparison between observation and theory. A careful study of his work, however, showed that changes were needed if the highest degree of accuracy was to be obtained. His papers were completed some years before the new theory was finished and therefore his comparisons were mainly based on Hansen's Tables, with such corrections as were available at the time. Hence a new investigation was started. The differences between Hansen's theory, as used in his Tables, and the new theory were tabulated and applied to Cowell's results. Examination was also made of systematic errors in the observations. On the whole the earlier investigation was found to give values for the constants which differed very little from the corrected values. The final results were summarized in a paper to which reference is made in Chapter I, Section I. This explains how the three sets of constants which are involved in the work arose. The first set was used in reducing the theory to numerical form; the second set, to which the theory was transformed, was used in computing most of the tables; the third set, finally adopted, is that to which the Tables were reduced. The difference between the second and third sets is very small and all the necessary changes could be made through slight changes in the added constants. Hence the Tables, with their precepts, represent the theory with the finally adopted set of constants.

As stated above, the chief effort has been directed towards making the Tables convenient for the computation of the annual ephemeris, rather than for that of a single place. The latter is rarely required now, unless it be at the time of an eclipse or occultation, records of which have come down to us from the past. Hence uniformly changing arguments with values tabulated successively at the intervals chosen for the computation of the ephemeris are used throughout unless some considerable advantage could be gained by a variable argument. The rules and precepts to be followed by the ephemeris computer are all collected in Chapter V of the Introduction so that it is unnecessary for him to refer to any other part of Section I for information. In the following Chapter the few additional precepts necessary for the computation of a single place are given. In finding an ancient position of the moon a much lower degree of accuracy for purposes of comparison with observation can be adopted; this permits of a considerable abbreviation of the work. Precepts for such a case with an example are given in Chapter VI; these
also are intended to be complete in themselves in order that reference to Chapter V or to other parts of the Introduction for information may be avoided.

A full account of the methods used in the formation of the Tables is given in Section I so that it is unnecessary to describe them here in any detail. Certain features may, however, call for some notice, more particularly in a comparison with Hansen's Tables which necessarily form a standard. His device for utilizing double-entry tables has been adopted with only minor changes. Hansen printed the values for successive half-days in a line so that the formation of the differences for interpolation would be easy. Here they are printed in column and the differences, or rather the variations per unit change of the argument, are also printed: these changes materially assist in avoiding mistakes. Less space is used for a given division of the argument, since the values for the incervening quarter-days which Hansen prints are omitted here: their sole use was to diminish the maximum factor for the final interpolation from $\cdot 5$ to $\cdot 25$, and since second differences are sufficient and must be used in either case, there is little or no advantage in retaining this feature of Hansen's work. The use of the synodic instead of the anomalistic month is rather more efficient in permitting a larger number of terms to be placed in each double-entry table and thus in diminishing the number of such tables.

The method used for the tabulation of the larger terms in single-entry tables is quite different from that adopted by Hansen. He used the anomalistic month as a basis and the arguments have to be calculated for the beginning of each month; the tabulation has to extend over a period equal to the anomalistic month plus the period of the term without any use being made of the resulting subdivision of the argument. He also uses a decimal division of the argument where the interval of twelve hours is too great for convenient interpolation. The single-entry tables as constructed below have really no beginning or end; they are completely reentrant, so that wherever the start be made, the values for the half-day intervals can be continued indefinitely without recomputation of the argument or change of the interpolating factor. This is achieved by finding a suitable convergent to the ratio of half a day to the period of the term. The numerator of the fraction is the number of divisions of the half-day required for easy interpolation and replaces the decimal division of Hansen. The denominator is the number of values of the term actually tabulated. It is true that since a convergent can not completely represent the actual ratio, there is a gradual deviation of the argument from its true value; nevertheless, the change in all cases is so slow that it is a simple matter to account for it. In the few cases where this change has been sensible in the course of a year, the secular variations of the argument are also sensible and the two have been combined so that there is no additional work for the computer.

Two other new forms of tables are used. One is a table of double entry which requires only the same interpolation as a single-entry table and is also so constructed as to be completely re-entrant. The second is a device by which a number of terms of very short period are summed only at long intervals, the values at half-day intervals
being obtained by an auxiliary table which requires no interpolation. These are fully described in Chapter II.

The use of several different forms of tables is objectionable when it is necessary to pass frequently from one form of table to another. The objection disappears when the computer can continuously enter all the tables of one form for a whole year or for a series of years, as is the case here. The time taken in learning how to use the table is soon saved by the rapidity with which the work can be done when it is once started. It is not necessary either that one computer should do the whole of the work. It has been so arranged that the greater part of it is in blocks independent of one another and several of these blocks are separately tested by differences.

In Chapter I of the Introduction, the expressions for the coordinates of the moon in their final numerical form are given with some small corrections and additions which have been required since the theory was published. Every term placed in the Tables is given a reference number and the table in which it occurs is also indicated. In Chapter IV the terms are again listed under the table in which they occur and the reference numbers are also given, so that it is possible to trace any term without difficulty to its final destination, or conversely. Chapters II and III contain the methods of construction of the different kinds of tables and the general plans adopted so that all sensible terms might be included. Chapters V and VI contain the precepts with examples for the computation of the annual ephemeris and of a single place, including the abbreviated form useful for an ancient observation. Chapter VII contains the explanation of a new method for the transformation from longitude and latitude to right ascension and declination; it also includes precepts for the use of those tables in Section VI which have been constructed to simplify this computation. Dr Hedrick's method for interpolation to hours with explanations of the use of the corresponding tables in Section VI is given in Chapter VIII.

One of the most difficult problems has been that of the inclusion of large numbers of small terms which could not be conveniently placed in tables of single or double entry. These, which we have called 'remainder terms', would have required an amount of space in this volume and computation for the ephemeris quite out of proportion to their importance if they had been made part of the general plan. The solution of the problem which is explained in Chapter IX depends mainly on two methods of treatment. The great majority of the terms are of short period, and each of them is expressed in the form $a \cos A+b \sin A$, where A is of short period and is common to a large number of terms, while a, b are of comparatively long period and different for each term. All the terms a, b which are attached in this way to a given argument A are summed at ro-day (in one case 14-day) intervals from the year 1800 to 2050 and the results placed in tables. The sums thus obtained are incorporated in the ephemeris in different ways explained in Chapter V. This, unlike the other tables, is a limited tabulation and will therefore require extension after the year 2050. Lists for this purpose and precepts for
using them are given in Chapter IX; these are arranged either for computation during a series of years after 2050 and before 1800 , or for finding a single place.

While many efforts have been made in the past to represent the motion of the moon by gravitational theory alone, it is now admitted that this cannot be done completely. When we attempt to represent ancient and modern observations by the same set of constants, it is found that, whatever adjustments be made, there is some disagreement with theory. The same is true of the modern observations. There are oscillating differences which do not correspond to any theoretical gravitational terms, and they are large enough to exclude the possibility of being due to errors either in the theory or in the observations.

The former of these differences is principally concerned with the value which shall be attached to the secular acceleration of the moon's mean motion. While many doubts have been raised as to the trustworthiness of ancient records, the general concensus of opinion leads to a real difference of at least $2^{\prime \prime}$ per century, this being about 30 per cent. of the theoretical value. Some decision was necessary as to which value should be used. For the ephemeris during the next century it is not important since the mean motion-a constant determined by observationcan always be so adjusted as to satisfy the modern data, thus giving the same numerical values for some time to come whatever be the value of the acceleration adopted. Cowell has shown that there is also good evidence for a difference between theory and observation in the secular acceleration of the moon's node or in that of the earth's motion round the sun: it is the difference between these two angles for which a value is furnished by ancient observations. His results have been confirmed by Fotheringham. The cause or causes of these differences, if they have a real existence, are matters of conjecture. My object has been to retain only the results of known forces so far as this was possible and it was therefore decided that the theoretical values of the secular variations should be used, the mean motion being so adjusted as to satisfy modern observations as closely as possible.

To some extent involved in this question are the oscillating differences between theory and observation. Newcomb represented the principal portion of these by a term in the mean longitude with a coefficient of some $12^{\prime \prime}$ and a period of about 270 years. The neglect of this makes so considerable a difference that in spite of its empirical nature, for no explanation of it has yet been accepted, its retention seemed necessary. I have, however, changed its coefficient and period so as to conform with the adopted values of the mean motion and secular acceleration when comparison is made with the observations of the last 150 years. Still more puzzling are certain oscillations with smaller amplitudes and shorter periods. Harmonic analyses of past observations, seemingly successful in representing them by two or three harmonic terms, have failed in prediction in the last few years. Lately the difference from the mean has mounted to about $7^{\prime \prime}$. Since prediction of their future course has now little foundation, they have necessarily been left aside. All that can be done is to make an estimate of their magnitude from the observations of the past few years whenever it is desirable to predict the position
of the moon with high accuracy, as in the case of an eclipse of the sun, and alter the values obtained from the Tables accordingly.

The theoretical and observed values of the mean motions of the perigee and node do not quite agree. But here the differences are very close to the limits of accuracy of both theory and observation. Slight changes in certain constants, particularly in those connected with the figures of the earth and moon, will produce complete accordance, and these changes are within the range of doubt concerning the values of those constants. Hence the observed values have been used in the sense that the observational constants involved have received the values which will cause agreement. The number, $\mathrm{I} / 294^{\circ} \mathrm{O}$, thus resulting for the earth's figure, also produces agreement between the theoretical and observed values of the moon's mean distance, and does not interfere with the inequality in latitude produced by the earth's figure. This number is larger than that, $\mathrm{r} / 298$, determined by other methods and is outside the probable error of the latter. In spite of this disagreement and because of the consistency it brings to the portions involved in the moon's motion, it has been adopted.

The last word has not been yet said on the values of these constants and of others in which the differences do not call for special mention here. I have therefore in Chapter X given the data by means of which any probable changes in the adopted constants can be easily made, either in the computation of the ephemeris or in that of a single place. In particular it is hoped that this Chapter may be found useful to those who wish to test various hypotheses in the representation of the moon's place at the time of an ancient eclipse.

It is a pleasant duty to acknowledge the assistance which has been rendered by all those who have been connected with the preparation of the Tables. Much the heaviest part of the arrangement and performance of the calculations has been borne by Dr Henry B. Hedrick, whose services were secured at the outset and who has spent his whole time on the work for nearly nine years. Every part of it has passed through his hands. He has prepared and tested all calculations which were performed by others. Many of the devices which have been employed to simplify the use of the Tables are due to him, and no decisions have been made without frequent discussions in which his suggestions have given valuable aid. His familiarity with known methods of computation and ability to devise new ones have contributed in no small degree to such novel and useful features as the Tables may be found to possess. The method for interpolation to hours, already referred to, is, with the corresponding tables of Section VI, wholly contributed by him.

Mr George F. Murray was for four years engaged on the work of summing the numerous small terms placed in the planetary and 'remainder' tables of Section VI. His accuracy, faithfulness and ability to carry on his work with but little supervision lightened our task very materially. Miss M. Gundersen has from time to time carried out with accuracy and speed large masses of computations. In occasional calculations, particularly in those requiring something more than a knowledge of
routine computation, we have been fortunate in securing the services of Mrs H. F. M. Hedrick.

During his residence in New Haven, Professor K. Hirayama of the Observatory of Tokio volunteered his assistance at a time when serious delays seemed probable owing to pressure of work for which computers were not available. My thanks are due to him for his very substantial contribution towards the formation of the tables of Section II and also for assistance in the computation of an ephemeris.

The reading of the proof has been almost entirely directed to the detection of errors in the manuscript. That this has been possible is due to the remarkable record of the Cambridge University Press which in setting up over five hundred quarto pages of numerical tables has allowed less than a dozen printer's errors to pass its proof-readers and has, in addition, frequently queried our own mistakes. Few sheets have required a second proof and in the actual use of the Tables, as finally printed, for the calculation of the ephemeris for two years, no error of any kind has been detected. It is interesting to notice that although manuscript has been continuously sent across the Atlantic during the war, no part of it has failed to reach the printer and in only one case have returning proofs been lost.

Finally, I wish to express my appreciation of the co-operation of the Corporation and Administrative Officers of Yale University and of their willingness to prevent material difficulties from interfering with the plan to complete the work as thoroughly and rapidly as possible. No financial or other considerations have been allowed to prevent its continuation in the nine years during which it has been in progress.

This volume brings to a close the work started thirty years ago with a study of Hill's papers made at the suggestion of my former teacher and friend, George Darwin. The undertaking of a complete recalculation of the moon's motions and later of tables which should make the theory available for practical and scientific use was no ambitious plan formed at the beginning but grew naturally out of the desire to continue the work as each stage in it was reached. Some part of it has always been in progress and there have been long periods during which it has been my sole occupation outside of the duties connected with an academic position and of the hours given to recreation. The word 'finis' brings with it some feeling of regret. The time spent in actual calculation was often a relief from attempts to solve more difficult problems in other lines. To what extent it has been worth while as a contribution to the subject must be left to the future and to others for judgment. My hope is that it will give some aid in unravelling the tangled skein of problems which our nearest celestial neighbour has never failed to present, and that the satisfaction to myself in seeing the work finally brought to a conclusion will be shared by those who have been interested in watching its progress.

ERNEST W. BROWN.

[^0]
TABLE OF CONTENTS

PAGES
PREFACE v —xii
TABLE OF CONTENTS xiii
ERRATUM xiv
SECTION I. EXPLANATION OF THE TABLES I-I40
CHAP. I. The expressions for the position of the moon in terms of the time 3
Chap. II. Methods of tabulation and forms of the tables 29
Chap. III. On the manner of tabulation of the expressions in Chap. I 39
Chap. IV. Description of quantities contained in the tables 49
Chap. V. Precepts for the computation of the annual ephemeris, with examples 83
Chap. VI. The computation of a single place IOI
Chap. VII. Transformation to right ascension and declination Io8
CHAP. VIII. Interpolation of the half-daily values of the right ascension and declination to hourly values IIO
Chap. IX. Construction and continuation of the tables P_{39} - P49 of Section VI II4
Chap. X. Changes of the fundamental constants 138
SECTION II. TABLES OF ARGUMENTS AND MEAN LONGI- TUDES I-39
SECTION III. TABLES OF THE TRUE LONGITUDE I-223
SECTION IV. TABLES OF THE LATITUDE I-99
SECTION V. TABLES OF THE PARALLAX I-56
SECTION VI. TABLES OF PLANETARY AND OTHER PER- TURBATIONS AND AUXILIARY TABLES I-IO2

ERRATUM

Correction to Table P 44, Section VI.
Add to the values given in the table the following:

Years	Addition	Years	Addition
1900-1915	$\mathbf{+ 2}$	1966-1995	-2
1916-1932	+ I	1996-2015	-3
1933-1948	0	$2016-2045$	-2
1949-1965	- I	$2046-2050$	- I

SECTION I

EXPLANATION OF THE TABLES

CHAPTER I

THE EXPRESSIONS FOR THE POSITION OF THE MOON IN TERMS OF THE TIME

The expressions for the Longitude and Sine Parallax of the Moon referred to the Earth's centre and to the mean ecliptic of the date are taken from the Memoirs of the Royal Astronomical Society, the solar parts from vol. LviI, pp. 109-145, and the planetary and other parts from vol. LIX, pp. 94-IO3. The solar part of the Latitude is taken from the Monthly Notices of the Royal Astronomical Society, vol. Lxxi, pp. 656-660, this being a transformation from the expression for the latitude given in the memoir first quoted. Before setting down the complete values of the coordinates which are given in Lists $\mathrm{i} a-\mathrm{i} \theta$ below, a number of changes and additions have been made to the previously published expressions. In particular, certain of the fundamental constants have been altered. Three sets of values of these constants are to be distinguished. The first set is that used in working out the theory in the memoirs quoted above; the second set is that used in Lists $\mathrm{i} a-\mathrm{i} \theta$ of this chapter and therefore that used in the construction of the tables; the third set is that finally adopted, the changes necessary for the adoption of these final constants being incorporated in the precepts for the use of the tables (Chap. V).

The changes and additions referred to above are the following.
To the solar portions:
A few small terms in longitude depending on the characteristics $e^{6}, e^{5} e^{\prime}, e^{3} e^{\prime} \gamma^{2}$ have been added.

Terms in parallax with coefficients less than 0.0002 have been omitted.
The caption 'Parallax' on p. 142 of vol. Lvii, Mem. R. A. S., is changed to 'Sine Parallax' (correction of error).

The lunar eccentricity is changed to correspond to the coefficient $22639^{\circ} 500$ of the principal elliptic term in longitude (see p. 6).

The lunar inclination is changed to correspond to the coefficient 18461:350 of the principal term in latitude when the latter is expressed as a sum of harmonic terms (see p. 6).

The value $3422: 700$ of the constant term in the sine of the moon's equatorial horizontal parallax is retained unchanged in the expression for the sine parallax.

The parameter $a_{1}=(\mathrm{E}-\mathrm{M}) a \div(\mathrm{E}+\mathrm{M}) a^{\prime}$ (Mem. R. A.S. vol. LvII, p. Iog) is changed from 0.00250532 to 0.00251273 to correspond to the finally adopted values, $\mathrm{E} / \mathrm{M}=8 \mathrm{I} \cdot 5300$, the solar parallax $=8.80549^{*}$, and the constant term in the sine of the moon's equatorial horizontal parallax $=3422^{\circ} 540$.

[^1]The solar eccentricity has been brought up to the epoch 1900.
The portion S of the latitude (l.c. p. 660) contains a number of very small terms whose arguments contain $2 F$ and it is desired to diminish the errors caused by their omission from the tables as much as possible. A small term $a \sin (2 F+a)$ in S, where a is a multiple of l, l^{\prime}, D, gives rise to terms

$$
2 \gamma a \cos F \sin (2 F+a)=\gamma a \sin (F+a)+\gamma a \sin (3 F+a)
$$

in the latitude. The term $\gamma a \sin (F+a)$ gives rise to terms $\frac{1}{2} a \sin a$ in S and $\frac{1}{2} a \cos \alpha$ in C which may be combined with terms having the same arguments already present in S, C. The term $\gamma a \sin (3 F+a)$ is not inserted in the tables. The error in latitude so produced has a maximum value only one-half of that which would have been produced by the neglect of the original term in S . The terms which have been treated in this manner are marked by a star following the table number in List i β.

To the planetary parts:
The notations $L, w, \&$ are respectively substituted for $w_{1}, w_{2}, w_{3}+I^{\circ} 4 t_{c}$.
The coefficients of the terms with argument $w_{3}+I^{\circ} 4 t_{c}$, depending on the earth's ellipticity, have been changed to correspond to the value $1 / 294$ for this constant (l.c. p. 96).

The sign of the term $+0.840 \sin \left(w_{3}+276^{\circ} 2\right)$ in δw has been changed (correction of error on l.c. p. 96).

The portion ' + the ten periodic terms...' in δm has been changed to ' -2.5 times the ten periodic terms...' (correction of error on l.c. p. 96) and these terms have been listed as far as they are sensible.

To $\delta \&$ has been added ' $+\cdot 75$ times the ten periodic terms in δL whose arguments are independent of $L, \infty, \&$ ' (correction of error on l.c. p. 96) and these terms have been listed as far as they are sensible.

A number of planetary terms in parallax are inserted (addition not previously published).

The empirical term $+10^{\prime \prime} 7 \mathrm{I} \sin \left\{140^{\circ} \circ\left(t_{0}-18.5\right)+170^{\circ} 7\right\}$ is inserted (see Monthly Notices R. A. S. vol. Lxxv, p. 510).

The arguments of all the planetary terms are given for the epoch at which they were computed, namely, $1850 \cdot 0$.

The notations for the arguments are as follows:
$L, \infty, \&$, the geocentric mean longitudes of the Moon, of its perigee and of its node; L^{\prime}, m^{\prime}, the geocentric mean longitudes of the Sun and of its perigee;
T, V, J, M, Q, S_{n}, the heliocentric mean longitudes of the Earth, Venus, Jupiter, Mars, Mercury, Saturn, with the origin at the Sun;

$$
D=L-L^{\prime}, \quad l=L-\infty, \quad l^{\prime}=L^{\prime}-\varpi^{\prime}, \quad F=L-8, \quad T=L^{\prime}+180^{\circ} .
$$

The values of L, w, \& are taken from the Monthly Notices R. A.S. vol. Lxxv, p. 5IO, and those of the other arguments from the tables for the respective bodies published in the Washington Astronomical Papers for the use of the American Ephemeris. To these values must be added the periodic additions to the elements given in List i η below.

In the lists which follow, the composition of each argument which is not printed fully, is shown by the multiples of the fundamental arguments present in it.

Every term which has been included in the tables receives a reference number in italic type; terms with no reference number are not included.

The table or tables which include each term are exhibited in the final columns.
In the lists of solar terms, the principal characteristic, 'prin. char.,' shows the highest powers of the solar and lunar eccentricities (e, , e), of the lunar inclination $\left(2 \sin ^{-1} \gamma\right)$ and, except in the latitude, of the ratio of the parallaxes (a_{1}) contained in the coefficients when the latter are expressed in a literal form.

List ia. Solar terms in the true longitude. The table numbers are those of Section III except when prefixed by the letter P which indicates tables in Section VI.

List i β. Solar terms in the latitude. The latitude is expressed in the form

$$
(\mathrm{I}+\mathrm{C})\left(\gamma_{1} \sin \mathrm{~S}+\gamma_{2} \sin 3 \mathrm{~S}+\gamma_{3} \sin 5 \mathrm{~S}+\mathrm{N}\right) .
$$

The angle S is the sum of F and the periodic terms listed; in F are included the terms additive to $L,-\&$ shown in List $i \eta$.

The table numbers are those of Sect. IV, except when followed by the number III, when they are those of Sect. III, or prefixed by the letter P, when they are those of Sect. VI. The portions taken over from Sect. III can be seen by reference to Chap. V.

The stars attached to the table numbers of certain terms in S are explained above.

List $\mathrm{i} \gamma$. Solar terms in sine parallax. The table numbers refer to the tables of Sect. V.

List i8. Planetary and other perturbations additive to the true longitude. The terms are expressed in the respective forms

$$
\begin{array}{ll}
a \sin \{\theta+j T+i(T-V)+a\}, & a \sin \{\theta+j J+i(J-T)+a\} \\
a \sin \{\theta+j M+i(M-T)+a\}, & a \sin \left\{\theta+j S_{n}+i\left(S_{n}-T\right)+a\right\},
\end{array}
$$

the multiples of the angles present in any argument being shown under the respective headings; in the last eight terms the angles are independent of the planetary arguments.

In seven cases the number III after the table number indicates tables of Sect. III; otherwise, as shown by the letter P, they belong to Sect. VI.

Terms, or differences between terms in the list and those inserted in the tables, which have coefficients less than 0\%003 are not indicated.

List ic. Planetary and other perturbations additive to the latitude. The notations are the same as in List i8, the tables of Sect. IV being indicated by the number IV. The terms which have been taken into the latitude through the presence of planetary terms in the portion of S taken from the longitude are denoted by the signification (S) after the table number; to show these clearly it has in some cases been necessary to divide a coefficient into two parts but all differences of this kind less than o.003 are not shown.

List i ζ. Planetary and other perturbations in sine parallax. All terms which have reference numbers have been included by taking over from the longitude the sums of certain tables multiplied by suitable constants. As with List i_{ϵ}, it was necessary to divide certain coefficients in to two parts in order to indicate the portions included in the tables, but differences of this kind and terms with coefficients less than 0."0003 are not indicated.

List i η. Terms additive to the elements. These are divided into two classes. The first contains the terms of very long period which are tabulated with the secular portions of the arguments in Sect. II; those affected to a sensible degree by these terms and included are shown. The second class contains the remainder of the terms additive to the elements. Those additive to the mean longitude L are also additive to the true longitude and the tables which take account of this direct effect are given in the third column of the list. The last column gives the reference numbers of the periodic terms in the true longitude which are sensibly affected by the additions to the elements and the tables through which these effects are included. The effects on the latitude, produced by carrying over into S certain portions of the longitude and with them some of these planetary terms, are not noted; the tables thus carried over are shown in the scheme of Chap. V. But the terms which are directly additive to S through the presence in its secular part F of the mean longitude L are indicated. Finally the effects in parallax are not noted although included to a higher degree of accuracy than is necessary by the devices explained in Chap. III.

To this list should be added the effects of the secular change of the solar eccentricity. This is accounted for by multiplying all terms containing the multiple i of l^{\prime} by $\left\{\mathrm{I}-\cdot 00248\left(t_{c}-\mathrm{I} 9\right)\right\}|i|$; it is, however, sufficiently accurate to take i equal to unity in all terms whose arguments contain l^{\prime}. But the presence of $e^{\prime 2}$ in the coefficients of the terms in longitude which have the arguments $2 D, 2 D-l$, requires the addition to the true longitude of the terms

$$
\left(-2^{\prime \prime} 2\right)(+\cdot 00496)\left(t_{c}-19\right) \sin 2 D+\left(-\mathrm{I}^{\prime \prime} 6\right)(+\cdot 00496)\left(t_{c}-19\right) \sin (2 D-l) .
$$

These terms are included by certain instructions given in the precepts for the use of the tables (Chap. V).

List $\mathrm{i} \theta$. The fundamental arguments and constants. The arguments are expressed in Julian centuries of 36525 days (t_{c}), the epoch being 1900.0 except in the last block where the perihelia and nodes of the planets have the values for $1850 \cdot 0$.

The lunar eccentricity corresponds to a coefficient 22639 ". 550 of the principal elliptic term in longitude and is computed by using the purely elliptic expression for the coefficient of that term. The value used in computing the tables corresponds to a coefficient of $22639^{\prime \prime} .500$; the method for changing to the final value will be explained in Chap. IV.

The value of γ is the sine of half the lunar inclination when the purely elliptic value is used in the principal latitude term with a coefficient of 1846T"400, the
latitude being expressed as a sum of harmonic terms. The value used in computing the tables corresponds to a coefficient of $1846 \mathrm{r}^{\prime \prime} 350$; the method for changing to the final value will be explained in Chap. IV.

The mean distance of the moon used in computing the tables of the parallax corresponds to a value $3422^{\circ} 7000$ of the constant term in the sine parallax; the method for changing to the final value $3422^{\prime \prime} 5400$ will be explained in Chap. IV.

For the purpose of carrying the computations to more places of decimals than those given, zeros have been added to the fundamental values of the arguments wherever necessary.

List ia. Solar terms in the true longitude.

Prin. Char.		Multi	F			Coef. of \sin	Ref. No.	Table No.
I	0	0	0			O.'OOI		
				6	+	-127	I	33
				4	+	13.902	2	33
				2		$2369 \cdot 902$	3	31
e	I	0	0	6	$+$.023	4	16
				4	$+$	1.979	5	39
				2		191.953	6	35
				0		$22639 \cdot 500$	7	30
				-2		$4586 \cdot 426$	8	32
				-4	-	- $3^{8 \cdot 428}$	9	37
				-6	-	$\cdot 393$	IO	16
				-8	-	-004	$I I$	16
e^{\prime}	0	I	o		-	-004	12	1
				4	-	. 289	13	I
				2	-	$24^{*} 420$	14	24
				0	-	668.III	15	47
				-2	-	165.145	16	23
				-4	-	I.877	17	I
				-6	-	.024	18	1
a_{1}	0	0	0			. 004	19	33
				3	+	$\cdot 403$	20	33
				1	-	125.154	$2 I$	33
e^{2}	2	0	0	6	$+$. 004	22	16
				4	$+$. 213	23	16
				2	$+$	14.387	24	38
				\bigcirc	$+$	769.016	25	30
				-2		- 211.656	26	34
				-4	-	- 30.773	27	36
				-6	-	- 570	28	16
				-8	-	-009	29	16
$e e^{\prime}$	I	I	0	4	-	-051	30	2
				2		- 2.921	31	2
				-		- 109.667	32	25
				-2		- 205.962	33	27
				-4	-	$4 \cdot 391$	34	2
				-6		.072	35	2
				-8	-	.001		
	I	- I	0		$+$.005	36	3
				4		$\cdot 283$	37	3
				2	$+$	14.577	38	28
				\bigcirc	$+$	147.693	39	26
				-2	+	- 28.475	40	29
				-4		.636	$4 I$	3
				-6	$+$	-OII	42	3
$e^{\prime 2}$	0	2	0		-	-003		1
				2	-	-189	44	1
				0	-	$7 \cdot 486$	45	1
				-2	-	$8 \cdot 096$	46	1
				-4	-	$\cdot 151$	47	I
				-6		, 002	48	1

Listia (cont.).

List ia (cont.).

* The erroneous term $24 I$ is corrected by the tabulation of the term 241 a in Chap. V.

List ia (concl.).

Prin. Char.	${ }_{I}^{\text {Multiples of }}{ }_{F}$	Coef. of \sin	Ref. No.	Table No.
$e^{2} r^{2}$	$\begin{array}{llll}3 & 0 & -2 & 4 \\ & & 2 \\ & & 0 \\ & & -2 \\ & & -4 \\ & & -6\end{array}$	$\begin{aligned} & -0.001 \\ & =.033 \\ & =.055 \\ & =.005 \\ & +\quad .009 \\ & +\quad .003 \end{aligned}$	267 268 269 270	$\begin{aligned} & P_{46,} P_{47} \\ & P_{40}^{40,} P_{4 I}^{8} \\ & P_{46}, P_{47} \end{aligned}$
$e^{2} v^{\prime} \gamma^{2}$	21123	+.002		
	-	+.003 +.028 +.009	271 272	
	$2 \quad 1 \begin{array}{lll}-2 & 2 \\ & & \\ & \end{array}$	+.009 $+\quad .026$	273 274	$\mathrm{P}_{\mathbf{4 2}} \mathrm{P}_{\mathbf{3 9}} \mathrm{P}_{43}$
	-2	+ .022	275	$\mathrm{P}_{42}{ }^{\text {, P }} 43$
	-4 -6	+ 0.016 +.001	276	P48, P49
	$2-120$	- .009		
	10	-.053	277	$\mathrm{P}_{\mathrm{P}}^{48} \mathbf{8}$ P 49
	-2	+ 004	278	$\mathrm{P}_{42}, \mathrm{P}_{43}$
	$\begin{array}{llll}2 & -1 & -2 & 4 \\ & & \end{array}$	- .001	279	$\mathrm{P}_{42} \mathrm{P}_{39} \mathrm{P}_{43}$
	- ${ }^{0}$	-.024 -.000	280	P 39
	-4	- -002		
$e e^{\prime 2} \gamma^{2}$	$1 \begin{array}{llll}1 & 2 & 2 & 0\end{array}$	+ $\cdot 003$	281	P46, P 47
	-2	+.004	282	$\mathrm{P}_{4} \mathrm{o}, \mathrm{P}_{4} \mathrm{I}$
	$12-2 \begin{array}{r}-4 \\ 2\end{array}$	-.001 -.002		
	$1 \quad 2-20$	-.002		
	-2	+.015	283	P46, P47
	-4	+.01		
	$\begin{array}{llll}1 & -2 & 2 & 2 \\ & & & \end{array}$	-.003 -.005	284	P 46, P 47
	-2	+.007	285	$\mathrm{P}_{40}, \mathrm{P}_{4} \mathrm{I}$
	. $-2-2{ }^{-4}$	-		
	$\begin{array}{llll}1 & -2 & -2 & 4 \\ & & & \end{array}$	-.001 -.016	286	$\mathrm{P}_{4} \mathrm{O}, \mathrm{P}_{4} \mathrm{I}$
	-	. 000		
	-2	-.005		
$e^{2} \gamma^{2}$	- $3 \quad 2-2$	- .002		
	- 3^{-2-2}	+ 001		
$e \gamma^{4}$	$1 \quad 0 \quad 4 \quad 2$	+.003 +.090		
		+.090 +.009	288	P_{46}, P_{47}
	$\begin{array}{lllll}1 & 0 & -4 & 4 \\ & & & \end{array}$	+.001 +.001		
	\bigcirc	+.081	289	48
	-2	- .019		
$e^{\prime} \gamma^{4}$	1 140	- .001		
	or $\quad 1$-2	$\begin{aligned} & +\quad .003 \\ & +\quad .002 \end{aligned}$	290	$\mathrm{P}_{42} \mathrm{P}_{43}$
		$\cdot \infty$		
		-		

List i β. Solar terms in Latitude. Terms in S.

Prin. Char.		$\text { Multi }_{l^{\prime}}$	$\begin{gathered} \text { les of } \\ F \end{gathered}$	$\begin{aligned} & \text { Coef. of } \\ & \sin \end{aligned}$	Ref. No.	Table No.
e^{4}	4	-	○ $\begin{array}{r}2 \\ 0 \\ -2 \\ -4 \\ -6\end{array}$	$\begin{array}{lr}+ & 0.30 \\ + & 3.60 \\ - & 1.58 \\ + & .02 \\ - & .03\end{array}$	356 357 358	$\begin{gathered} 12 \\ 12,30 \mathrm{III} \\ 12 \end{gathered}$
e^{5}	5	\bigcirc	- $\begin{array}{r}2 \\ 0 \\ -2 \\ -4\end{array}$	$\begin{array}{ll}+ & .04 \\ + & .28 \\ - & .14 \\ + & .01\end{array}$	359 360	$\text { 12, }{\underset{12}{30 ~ I I I ~}}^{2}$
e^{\prime}	o	I	0 5 4 3 2 1 0 -1 -2 -3 -4 -6	- .06	361	I
				+ $+\quad \mathbf{O I}$ $-\quad \mathbf{5 9}$	362	1
				+ $\cdot 53$	363	1
				- 25.10	364	1, 24 III
				+ 17.93	365	1
				- 126.98	366	1
				+ 3.32	367	${ }_{\text {I }}$
				- 165.06	368	I, 23 III
				($+\quad .29$	369 370	I
				$-\quad 6 \cdot 46$ $-\quad .22$	370 371	I
$e^{\prime 2}$	o	2	○ $\begin{array}{r}4 \\ 2 \\ 1 \\ \\ 0 \\ -1 \\ -2 \\ -3 \\ -4\end{array}$	- .04	372	I
				- 1.68	373	
				- 04	374	1
				- .66	375	1
				- $\quad .04$	376	I
				- 16.35 $+\quad .01$	377	1
				- 65	378	I
$e^{\prime 3}$	0	3	○ $\begin{array}{r}-2 \\ -4\end{array}$	- $\cdot 57$	379	I
				- $\cdot 01$		
$e e^{\prime}$	I	I	$\begin{array}{r}0 \\ \hline\end{array}$	- .OI		
				- 50 $+\quad .08$	380 381	2
				- II.75	382	2
				+ 1.52	383	2
				- 115.18	384	2, 25 III
				- 112	385	2
				-182.36	386	2, 27 III
				$+\quad .36$ $+\quad 0.66$	387 388	2 2
				$\begin{array}{r}+\quad 9.66 \\ +\quad .01 \\ \hline\end{array}$	388	2
				- 37	389	2
$e^{2} e^{\prime 2}$	2	2	○ $\begin{array}{r}0 \\ -2 \\ -4 \\ -6\end{array}$	- $\quad .09$	390	
				$-\quad .27$ $-\quad .16$	391 392	$\begin{aligned} & 2 \\ & 2 \end{aligned}$
				- . 02		

List i β (cont.). Terms in S (cont.).

[^2]List i β (cont.). Terms in S (cont.).

* For explanation of the star, see p. 4 .
\dagger Included through the presence of term 3 in S containing terms in Tables P 42, P 43.

List i β (cont.). Terms in $\gamma_{1} \mathrm{C}$.

List i β (cont.). Terms in $\gamma_{1} \mathrm{C}$ (concl.). Terms in N. Principal terms.

Prin. Char.		$\text { Multip }{ }_{l^{\prime}}$	F		Coef. of \cos	Ref. No.	Table No.
$e e^{\prime}$	- I	I	o	6	+0.006	553	36
				5	-.001		
				4	+ .146	554	36
				3	- .006	555	36
				2	-. 443	556	36
				1	+ .021	557	36
				0	+.679	558	36
				- 1	+.016	559	36
				-2	- I. 540	560	36
				-3	+.004	561	36
				-4-6	-.111	562	36
					-.005	563	36
$e^{2} e^{\prime 2}$	-2	2	\bigcirc	2-2	-.003	564	36
					- . 010	565	36
$e^{2} e^{\prime}$	2	I	-	1	$+.006$	566	37
					+ .116	567	37
					-.003	568	37
					+ $\cdot 259$	569	37
				-2	+.078	570	37
				-3	-.002		
					+.022	571	37
				-4	-.014	572	37
	2	- I	-		- .or8	573	38
					-.212	574	38
				-	- $\cdot 151$	575	38
				-1	+.001 +.003	576	38
				-4	-. OI 2	577	38
				-6	+.003	578	38
$e^{3} e^{\prime}$	3	3	\bigcirc	$\begin{array}{r} 2 \\ 1 \\ 0 \\ -2 \\ -4 \\ -4 \end{array}$	+ -OII	579	41
					+.001 +.032	580	41
					+.005	581	41
					$+.003$	582	41
					- .001		
		- I	-		- .oor		
				2	-. 022	583	42
				-	-. 026	584	42
				- 1	+.002		
				-2 -6	+.003 $+\cdot 001$	585	42

Terms in N .

Term	Ref. No.	Table No.
$-526.069 \sin (F-2 D)$		
$-3.352 \sin (F-4 D)$	595	21
$+44 \cdot 297 \sin (F+l-2 D)$	596	22
$-6 \cdot 000 \sin (F+l-4 D)$	598	25
$+20 \cdot 599 \sin (F-l)$	599	24
$-30.598 \sin (F-l-2 D)$	600	26
$-24 \cdot 649 \sin (F-2 l)$	$60 T$	27
$-2.000 \sin (F-2 l-2 D)$	602	28
$-22.57 \mathrm{I} \sin \left(F+l^{\prime}-2 D\right)$	603	19
$+10.985 \sin \left(F-l^{\prime}-2 D\right)$	604	20

Principal terms.

Term	Ref. No.	Table No.
$\left\{+18518{ }^{\prime \prime} 511\right.$ sin S	605	33
$\{+\quad 1 \cdot 189 \sin$ S	606	\dagger
- $6 \cdot 24 \mathrm{r} \sin 3 S$	607	33
$+\quad .004 \sin 5 \mathrm{~S}$	$607 a$	33

\dagger Added in with the terms in C by means of the device explained on p. 42.

List i γ. Solar terms in sine Parallax.

Prin. Char.		Malti r^{\prime}	F	${ }^{\text {of }} \mathrm{D}$		Coef. of cos	Ref. No.	Table No.
1	0	0	0		+	0:0032	608	16
				4		$\cdot 2607$	609	16
				2		$28 \cdot 2333$	6 ro	16
				-		+3422•7000	671	24
*	1	0	0	6	$+$	$\cdot .0007$	6 ra	10
				4	$+$.0433	$6 \mathrm{F3}$	10
				2	+	3.0861	614	18
				-	$+$	186.5398	6×5	15
				-2	$+$	34.3117	616	17
				-4	+	.6008	6×7	22
				-6	$+$.0086	678	10
				-8	4	-0002	679	10
e^{\prime}	0	1			-	.0053	620	1
				2	-	$\cdot 3000$	627	1
				0	-	-3997	622	1
				-2	+	I.9178	623	19
				-4	$+$.0339	624	1
				-6	$+$. 0006	625	I
${ }_{1}$	-	O	0		$+$. 0023	6.26	
				1	-	$\cdot 9781$	627	16
e^{3}	2	0	0		$+$.0054	628	18
				2	$+$.2833	629	21
				0	+	10.1657	630	15
				-2	-	$\cdot 3039$	637	10
				-4	$+$	$\cdot 3722$	632	17
				-6	$+$. 0109	633	10
				-8	$+$. 0002	634	10
*e ${ }^{\prime \prime}$	1	1	0		-	. 0012	635	2
				2	-	.0484	636	2
				0	-	$\cdot 9490$	637	2
				-2	$+$	1.4437	638	2
				-4	$+$. 0673	639	2
				-6	$+$. 0015	640	2
	I	- 1	0		$+$. 0060	647	3
				2	$+$	$\cdot \cdot 2302$	642	3
				0	$+$	I-1528	643	3
				-2	-	$\cdot 2257$	644	3
				-4 -6	-	- 0102	645	3
				-6	-	$.0005$	646	3
e^{2}	0	2	0		-	-0028		I
				0	-	-0086	648	I
				-2	$+$	$\cdot .0918$	649	1
				-4	+	. 0028	650	19
γ^{2}	0	0			-	-0009		11
				0 -2	-	. 0124	652 653	II
				-2 -4	+	$\cdot 1052$ $\cdot 0031$	653	II
				-4	$+$.0031	654	II

LIST i $\gamma($ concl.).

List i8. Planetary terms in the true longitude.

List i δ (cont.).

List is (cont.).

Multiples of $T \quad T-V$	a	Coef. of \sin	Ref. No.	Table No.
$\theta=2 l-2 D$				
- - 2	\bigcirc	$0: 007$	928	P 39
- 1	180	- 005	929	*
3	180 $180 \cdot 0$	-003	930 931	".
4	-	-003	932	"
14	92	-004	933	"
$1 \quad-3$	268	-003	934	*
-2	268	-003	935	"
26	17.4	-062	936	"
$\theta=2 l-4 D$				
- 3	-	0:008	937	P 42, P 43
$\theta=3 l-2 D$				
- 3	180	o.003	938	P_{40}
$\theta=-4 D$				
- 3	-	0:007	939	$\mathrm{P}_{48} 8$ P 49
$\theta=-D$				
13	273	0.005	940	$\mathrm{P}_{40}, \mathrm{P}_{4} \mathrm{I}$
	$\theta=l-D$			
3	273	o\%ori	947	P 39
$\theta=8$				
-4	216	0.019	942	P 39
	255	-003	943	"
	255 75	-009	944	".
	75	-005	946	",
$\theta=8+2 F$				
$\begin{array}{rr}2 & 3 \\ -2 & -3\end{array}$	216 40	0.004 $\cdot 004$	947	$\mathrm{P}_{42,} \mathrm{P}_{43}$
$\theta=8 \pm l$				
23	216	0.003	949	P 40

Multiples of $J J-T$	a	Coef. of \sin	Ref. No.	Table No.
$\theta=0$				
$0 \quad 1$	178.8	0.643	950	P_{2}
2	$359 \cdot 6$	-187	951	-'
3	7	-010	952	.
-3	257	-006	953	..
-2	274	-018	954	.,
-	$289 \cdot 9$	-087	955	..
1	$241 \cdot 5$	- 165	956	..
2	$352 \cdot 0$	-052	957	"
$2 \begin{array}{rr}3 \\ -1\end{array}$	355 250	-. -004	958 959	".
$2 \quad 0$	324	-.005	959 960	".
1	238	. 025	96 I	.,
$3{ }^{2}$	344	-006	963	.,
3	230	-003	963	..
		$\theta=l$		
0 -2	180	0:036	964	P $5 . \mathrm{P} 8$
- 1	$1 \cdot 0$	$\cdot 144$	965	.
	179.0	-158	966	-
2	$180 \cdot 0$	- 190	967	.,
3	21	-005	968	"
$1 . \quad-2$	274	-006	969	*
0	$282 \cdot 3$	-062	970	*
1	242	-039	971	"
2	$352 \cdot 5$	-096	972	-
-1	188	-007	973	"
- 1	298	-035	974	"
\bigcirc	257.2	-063	975	"
2	273 286	-006	976	"
3	286	-008	977	-
$2 \quad 1$	326 238	-007	978	"
1	238	-005	979	"
$\begin{array}{lr} \\ -2 & -1\end{array}$	343 302	.004	980 985	"
$\begin{array}{rr}-2 & -1 \\ & 0\end{array}$	3122 214	-005	981 982	".
$\theta=2 D$				
$0 \quad \begin{aligned} & -3 \\ & -2\end{aligned}$	$\stackrel{0}{80}$	0:004	983	$\mathrm{PIIT}_{11} \mathrm{Pr}_{14}$
-2	$180 \cdot 0$	-070	984	"
-1	${ }_{178}{ }^{1} \cdot 5$	-. -163	985 986	"
2	$359 \cdot 2$. 085	987	".
- 3	13	-007	988	*
10	349	-027	989	,
1	237	-035	990	"
$-1 \quad 2$	352	-015	99 I	"
- 1	8	-030	992	*
	303 184	-006	993	"
0	184 273	-033	994	".
3	102	-006	996	"
2	236	-005	997	"
2	345	-003	998	"
$\begin{array}{ll}-2 & 0 \\ & 1\end{array}$	200 110	-003	999 rooo	"
1	110	-006	1000	"

LIst i δ (cont.).

List is (cont.).

Multiples of M M-T	a	Coef. of \sin	Ref. No.	Table No.
$\theta=1$ (cont.)				
$-1 \quad-3$	330	0.009	ros4	P 6, P9
- 1	327	-003	ros5	."
- 1	$306 \cdot 3$	-074	1086	"
2	245	-087	ros7	*
3	245	-005	1088	"
4	244	-003	1089	*
6	63	-006	rogo	"
$\begin{array}{ll}-2 & -4 \\ & -3\end{array}$	296	$\cdot 003$	rogr	",
-3 -2	295	-005	roga	"
$3 \begin{array}{rr}-2 \\ 3\end{array}$	295	-018	1093	"
3	277	-003	1094	*
$\begin{array}{ll}-3 & -4\end{array}$	276	$\cdot 003$	1095	*
$-3 \quad-4$	264	-003	1096	*
$\theta=2 D$				
-	0	0.005	$r 097$	$\mathrm{P}_{12} \mathrm{P}_{15}$
	180	-004	1098	"
	181	-044	$r 099$.
3	\bigcirc	-005	Iroo	.
${ }^{1}$	224	-023	ITOT	.
2	212	-006	1702	"
3	214	-008	1703	*
4	37	-003	Ir04	"
- 1	149 328	-003	1705	*
	328	. 003	1706	"
	317	. 023	1107	"
2 $\begin{aligned} & 3 \\ & 2\end{aligned}$	280	-003	Tr08	"
2	244	. 005	ITO9	*
	244	-004	IIIO	"
$-2 \quad-2$	246 297	-004	ITIT ITI2	*
	$\theta=2 D-l$			
0	180	$0: 003$		P18, P 21
	182	-020	III4	-
	\bigcirc	-005	IT15	.
	\bigcirc	-013	1716	"
	180°	-003	III ITIS	"
	$18 \mathrm{I} \cdot 0$.061	ITİ	"
	353	-005	1720	"
1	220	-031	tr2I	.
	212	- 011	1722	"
	214	-O14	1723	"
4	27	-003	1724	"
- 1	149	-003	1725	"
	151	$\cdot 043$	1126	"
	329 327	.003	1727	"
	327	.003	IT28	"
	328 320	-006	1729	"
- 1	320 280	-035	IT30 IT3I	".
2	244	0.011	r132	"
2	244	-006	IT33	"
	245	-005	II34	"
$\begin{array}{ll}-2 & -6 \\ & -3 \\ & -2\end{array}$	298 296	.033	IT35 II36	".
	297	-014	II37	".

Multiples of M M-T	a	Coef. of \sin	Ref. No.	Table No.
$\theta=2 D+l$				
-	180	0:006	1238	P46, P47
1 I	82	-003	II39	*
-1 -1	93	$\cdot 003$	II40	"
$\theta=2 l$				
- -2	0	0:\%03	II4	P6, P9
2	180	-003	1142	.
$1 \begin{array}{ll}1 & -1\end{array}$	232	-003	1743	"
-1 - 1	308	-003	1144	*
$\theta=2 l-2 D$				
1 - 2	-	0.004	1145	P 39
13	209	$\cdot 017$	II 46	"
26	244	-018	1147	-

LIst is (concl.).

Term	Ref. No.	Table No.
$+0.010 \sin 2 D$	$1 I 72$	31 III
$+.039 \sin (2 D-l)$	$1 I 73$	32 III
$+.004 \sin (2 F-l)$	$I I 74$	42 III
$-.035 \sin l^{\prime}$	$I I 75$	47 III

Term	Ref. No.	Table No.
$+0.004 \sin \left(2 l^{\prime}+228^{\circ}\right)$	$I I 76$	I III
$-.006 \sin \left(l+l^{\prime}\right)$	$1 I 77$	25 III
$-.006 \sin \left(l-l^{\prime}\right)$	1178	26 III
$-.038 \sin 28$	$1 I 79$	P 39

List i \boldsymbol{i}. Planetary terms in the latitude.

Multiples of $T \quad T-V$	a	Coef. of \sin	$\begin{aligned} & \text { Ref. } \\ & \text { No. } \end{aligned}$	Table No.
$\theta= \pm F$				
0 I	${ }^{\circ}$	o."009	1180	P 44
2	180	-004	1181	"
12	273	-006		"
$\theta= \pm F+l$				
0 -2	-	○."003	1183	$\mathrm{P}_{4}, \mathrm{P}_{7}(\mathrm{~S})$
- I	180	-004	1184	,
I	$\left\{\begin{array}{r}0 \\ 180\end{array}\right.$.007 .003	1185	"
2	180 180	. 003	1186	
3	180	-006	1187	,
$\theta=F+2 D$				
- -2	o	o."003	1188	P ıо, P 13 (S)
1	-	-005	1189	"
2	$\left\{\begin{array}{l}180 \\ 180\end{array}\right.$.006 .003	1190	,
$\theta=-F+2 D$				
$\begin{array}{ll}0 & -7 \\ -6 \\ & -5 \\ -4 \\ & -3 \\ & -2 \\ & -1\end{array}$	180	0."003 IT91		32 IV
	180	-005	1192	,
	180	-009	1193	
	180	-023	1194	",
	o	-045	1195	
	-	-021	1196	",
	180	-005	1197	
		-012	1198 1199	Prio, $\ddot{P}_{\text {r }}(\mathrm{S})$
2	- 180	-017	1199 1200	$\stackrel{32 \text { IV }}{-P_{10}, P_{\text {I3 }}(S)}$
	-180	-006	120I	
1	271	-009	1202	$\mathrm{P}_{44} \mathrm{P}_{44} \mathrm{P}_{45}$
$\begin{array}{rrr} \\ -1 & -5\end{array}$	272	-006	1203	
$\begin{array}{ll}-1 & -5 \\ & -2\end{array}$	$270 \cdot 0$ 269	. 068	1204	P $44, \mathrm{P}_{45}$
-2	269 199	-006	1205 1206	$\mathrm{P}_{44}{ }^{\text {a }}$
$\begin{array}{ll}-2 & -3\end{array}$	199 34	-005	1207	
$F+2 D-l$				
- -4	180	0.004	1208	P 16, P 19 (S)
-3	180	-029	1209	",
-2	-	-006	1210	
- 1	-	-005		"
1	-	-006	I2II	"
2	180	-008	1212	"
12	271	-003	1213	
$-2 \quad-6$	162	-004	1214	"

List ie (concl.).

Multiples of $T \quad T-V$	a	Coef. of \sin	Ref. No.	Table No.
	$\theta=L+l$			
$\begin{array}{rr}2 & 3 \\ -2 & -3\end{array}$	216 75	$0: 004$ (2,47a		$\mathrm{P}_{44}, \mathrm{P}_{45}$
	$\theta=L-l$			
$\begin{array}{rr}2 & 3 \\ -2 & -3\end{array}$	36 255	0.003 .004	12470	P_{44} P P_{45}
$\theta=L-2 D$				
23	36	0.004		

Multiples of M M-T	a	Coef. of \sin	Ref. No.	Table No.
	$\theta= \pm F$			
- 2		$0: 003$	1248	P 44
$\theta=F-2 D$				
- -2	-	0:008	1249	$\mathrm{P}_{12, \mathrm{P}_{15}}^{\mathrm{P}_{44}(\mathrm{~S})}$
${ }^{2}$	180	-003	1250	
1 I	223	-005	1251	$\mathrm{P}_{\mathrm{P}} 44$
-1 -1		-005	1252	
$\theta= \pm F+l-2 D$				
0 -2	-	0:003	1252a	P 18, P 21 (S)
$\theta=L$				
1 I	345	0.010	r25ab	$\mathrm{P}_{44}, \mathrm{P}_{45}$

B. I.

Term	Ref. No.	Table No.
$+0.005 \sin (2 D-F)$	1289	$12 \mathrm{rv}, 43 \mathrm{rv}$
- $017 \sin L$	1290	30 IV
$+.008 \sin \left(L-2 T+75^{\circ}\right)$	1297	31 IV
- $0007 \sin (L-2 D)$	1292	
$+.083 \sin (F+2 \Omega)$ $+.003 \sin (F-2 T)$	1293	$\mathrm{P}_{44} \mathrm{P}_{44} \mathrm{P}_{45}$
$+.003 \sin (F-2 T)$ $+.005 \sin (F+2 \Omega+l)$	1294	$\mathrm{P}_{44} \mathrm{P}_{45}$
- $-005 \sin (F+2 \Omega-l)$	1296	

Term	LIST i ζ Planetary terms in sine Parallax.				
	Ref. No.	Table No.	Term	Ref. No.	Table No.
$+0.10003 \cos (2 T-2 V)$			+0.0004 $\cos \left(l-2 J+2 T+180^{\circ}\right)$	1329	P 5, P 8
$+\cdot 0005 \cos (l-2 T+2 V)$	1298	$\mathrm{P}_{4}, \mathrm{P}_{7}$	$+\cdot \mathrm{ooric} \cos \left(l-J+T+\mathrm{I}^{\circ}\right)$	1330	"
$+.0012 \cos \left(l-T+V+180^{\circ}\right)$	1299	"	$+.0013 \cos \left(l+J-T+179^{\circ}\right)$	1331	,
$+.0012 \cos (l+T-V)$	1300	"	+ -0014 $\cos \left(l+2 J-2 T+180^{\circ}\right)$	1332	"
$+.0003 \cos \left(l+2 T-2 V+180^{\circ}\right)$	I3OI	"	$+.0005 \cos \left(l+J+337^{\circ}\right)$	1333	"
+ . 0 III $\cos \left(l+3 T-3 V+180^{\circ}\right)$	1302	,	$+.0003 \cos \left(l+2 J-T+242^{\circ}\right)$	1334	"
$+.0003 \cos \left(l+3 T-2 V+271^{\circ}\right)$	1303	"	$+.0007 \cos \left(l+3 J-2 T+353^{\circ}\right)$	1335	,
$+\cdot 0003 \cos \left(l+4 T-3 V+272^{\circ}\right)$	1304	,	$+.0003 \cos \left(l-2 J+T+298^{\circ}\right)$	1336	"
$+.0003 \cos \left(l-4 T+3 V+268^{\circ}\right)$	1305	"	$+.0005 \cos \left(l-J+204^{\circ}\right)$	1337	"
$+.0003 \cos \left(l-3 T+2 V+264^{\circ}\right)$	1306	",	+.0009 $\cos (2 D-2 J+2 T+180.0)$	1338	P II, P 14
$+\cdot 0003 \cos (2 D-7 T+7 V)$	1307	P io, P 13	$\left\{+\cdot 0004 \cos \left(2 D-J+T+\mathrm{r}^{\circ}\right)\right.$	1344	"
$+\cdot 0003 \cos (2 D-6 T+6 V)$	1308	"	$\left(+.0004 \cos \left(2 D-J+T+\mathrm{I}^{\circ}\right)\right.$		
$+.0004 \cos \left(2 D-3 T+3 V+180^{\circ}\right)$	1309	,"	+ .0018 $\cos \left(2 D+J-T+178^{\circ}\right)$	1345	"
$\left\{+.0003 \cos \left(2 D-T+V+180^{\circ}\right)\right.$	1310	"	+ .0009 $\cos \left(2 D+2 J-2 T+359^{\circ}\right)$	1346	,
+ $+.0008 \cos \left(2 D-T+V+180^{\circ}\right)$			$+.0003 \cos \left(2 D+2 J-T+237^{\circ}\right)$	1347	,"
+ -ooro $\cos (2 D+T-V)$	I3II	"	$+\cdot 0003 \cos \left(2 D-3 J+2 T+8^{\circ}\right)$	1348	"
+ .0017 $\cos \left(2 D+2 T-2 V+180^{\circ}\right)$	1312	,	$\left\{+\cdot 0004 \cos \left(2 D-J+184^{\circ}\right)\right.$	1349	"
$+\cdot 0003 \cos \left(2 D+3 T-2 V+27 \mathrm{I}^{\circ}\right)$	1313	"	$\left\{+.0007 \cos \left(2 D-J+184^{\circ}\right)\right.$		
$+.0004 \cos \left(2 D+4 T-3 V+27 \mathrm{I}^{\circ}\right)$	1314	"	$+\cdot 0003 \cos \left(2 D+J-2 T+273^{\circ}\right)$	1350	$\mathrm{P}_{17} \mathrm{I}_{1} \mathrm{P}_{20}$
$+.0008 \cos \left(2 D-3 T+2 V+271^{\circ}\right)$	1315	"	$\{+.0086 \cos (2 D-l-2 J+2 T+180.3)$	1351	"
$+.0003 \cos \left(2 D+T-2 V+28 \mathrm{r}^{\circ}\right)$	1316	"	$\{+.0009 \cos (2 D-l-2 J+2 T+180.3)$		
$+.0003 \cos \left(2 D-5 T+3 V+342^{\circ}\right)$	1317	"	$\left\{+ \text { oor } 6 \cos \left(2 D-l+J-T+178^{\circ}\right)\right.$	1352	"
$+.0004 \cos \left(2 D-l-5 T+5 V+180^{\circ}\right)$	1318	P 16, P 19	$\left\{- \text { oого } \cos \left(2 D-l+J-T+17^{\circ}\right)\right.$		
$+\cdot 0008 \cos \left(2 D-l-4 T+4 V+180^{\circ}\right)$	1319	,	$+.0004 \cos \left(2 D-l+J-7^{\circ}\right)$	1353	"
$\left\{+.0049 \cos \left(2 D-l-3 T+3 V+180^{\circ}\right)\right.$	1320	"	$+.0003 \cos \left(2 D-l+2 J-T+237^{\circ}\right)$	1354	,
$\left\{+.0006 \cos \left(2 D-l-3 T+3 V+180^{\circ}\right)\right.$			$+.0036 \cos \left(2 D-l-3 J+2 T+7^{\circ} 5\right)$	1355	"
$+.0012 \cos (2 D-l-2 T+2 V)$	1321	"	$+.0004 \cos \left(2 D-l-J+183^{\circ}\right)$	1356	"
$+.0005 \cos (2 D-l+T-V)$	1322	"	$+\cdot 000{ }_{+} \cos \left(2 D+l+J-T+178^{\circ}\right)$		
$+.0006 \cos \left(2 D-l+2 T-2 V+180^{\circ}\right)$	1323	"	$+.0003 \cos (l-2 M+2 T)$	1357	P 6, P 9
$+.0003 \cos \left(2 D-l+3 T-2 V+271^{\circ}\right)$	1324	,"	$+.0003 \cos \left(l+2 M-2 T+180^{\circ}\right)$	1358	"
$+.0003 \cos \left(2 D-l-6 T+5 V+269^{\circ}\right)$	1325	,	$+\cdot 0006 \cos \left(l+2 M-T+223^{\circ}\right)$	1359	"
$+.0003 \cos \left(2 D-l-5 T+4 V+89^{\circ}\right)$	1326	,	$+.0006 \cos \left(l-2 M+T+306^{\circ}\right)$	1360	"
$+.0003 \cos \left(2 D-l-3 T+2 V+268^{\circ}\right)$	1327	,	$+\cdot 0004 \cos \left(2 D+2 M-2 T+18 \mathrm{r}^{\circ}\right)$	${ }_{136}$ I	"
$+.0007 \cos \left(2 D-l-8 T+6 V+163^{\circ}\right)$	1328	"	$+.0008 \cos \left(2 D-2 M+T+317^{\circ}\right)$		
$+.0003 \cos \left(2 D+l+2 T-2 V+180^{\circ}\right)$			$+\cdot 0003 \cos \left(2 D-l+2 M-2 T+18 \mathrm{r}^{\circ}\right)$	1362	P 18, P 21
			$+.0003 \cos \left(2 D-l-6 M+5 T+{ }^{5} 5 \mathrm{I}^{\circ}\right)$	1363	"
			$+\cdot 0003 \cos \left(2 D-l-2 M+T+320^{\circ}\right)$	1364	"

List i η. Periodic terms additive to the elements.
Terms included in the Tables of Sect. II.

Element	Terms	Ref. No.	Args. of Sect. II in which the terms are included
L	$\left\{\begin{array}{l}+0.384 \sin \left\{20.2\left(t_{e}-18 \cdot 5\right)+4 \mathbf{1 r}^{\circ} \mathbf{1}\right\} \\ +\cdot 3 \mathrm{r} \sin \left\{l+3 T-10 V-2.6\left(t_{e}-\mathbf{1 8 \cdot 5}\right)+33^{\circ}\right\} \\ +\cdot 04 \sin \left(4 D-3 l+25 M-23 T+67^{\circ}\right)\end{array}\right.$	1365 1366 r367	$\begin{aligned} & \text { 23, 26, 27, 30, 31, 32, 33, 35, 55, 71, 72, 73, } L . \\ & \text { 30, 31, 32, 33, 71, 72, L. } \\ & \text { 30, 31, 32, 33, L. } \end{aligned}$
w	$-2 \cdot 10 \sin \left\{20.2\left(t_{c}-18.5\right)+4 \mathrm{I}^{\circ} \mathrm{I} \mathrm{r}\right\}$	1368	26, 27, 30, 32, 34, 35, 71, 72, 73, б.
8	+.63 ".	1369	55, 8.
T, l^{\prime}	-6.40 ",	1370	23, 26, 27, 31, 32, 33, 34, 35, 47, 55, 72, 73.
J	$+0.33 \sin \left\{38.5\left(t_{c}-18.5\right)+115{ }^{\circ}\right\}$	1371	80.
S_{n}	-0:83 ",	1372	In Arg. S_{n}.

List in (cont.).

Terms included in the Tables of Sects. III-VI.

Terms additive to L

$+10 \% 71 \sin \left\{140 \% 0\left(t_{4}-18 \cdot 5\right)+170 \% 7\right\}$	
$+7 \% 26 \mathrm{r} \sin 0$	
$\cdot 282 \sin \left\{\Omega-2{ }^{\circ} 3(t,-18 \cdot 5)+276,2\right\}$	
+	.04 $\sin \left\{119.0\left(t_{0}-18.5\right)+152^{\circ}\right\}$
$+\quad .003 \sin \left(Q-4 T+239^{\circ}\right)$	
$+\quad .075 \sin \left(2 D-1+T-3 Q+105^{\circ}\right)$	
$+.003 \sin \left(2 F-l+3 T-4 Q+67^{\circ}\right)$	
$+\quad .03 \sin \left(2 D-l+5 T-4 Q+113^{\circ}\right)$	
$\cdot 237 \sin (13 T-8 V+313 \cdot 9)$	
$\cdot 108 \sin (l+29 T-26 \mathrm{~V}+122.0)$	
$+\quad .030 \sin (l+21 T-21 V)$	
. $126 \sin \left(2 D-l+21 T-20 \mathrm{~V}+273{ }^{\circ} \mathrm{o}\right)$	
.033 $\sin \left(2 D-l+8 T-12 V+303^{\circ}\right)$	
-054 $\sin \left(2 F-2 D+6 T-5 V+270^{\circ}\right)$	
+ -oro $\sin (3 t-2 D+24 T-24 V)$	
-013 $\sin \left(D+12 T-15 V+262^{\circ}\right)$	
. $013 \sin \left(D+25 T-23 V+190^{\circ}\right)$	
$+$	-003 $\sin \left(F+24 T-23 V+285^{\circ}\right)$
$.008 \sin \left(D+l-F+17 T-18 V+75^{\circ}\right)$	
	-003 $\sin \left(8 M-4 T+310^{\circ}\right)$
	. $008 \sin \left(9 M-5 T+305^{\circ}\right)$
	-006 $\sin \left(11 \mathrm{M}-6 T+335^{\circ}\right)$
	-006 $\sin \left(13 M-7 T+19^{\circ}\right)$
	-026 $\sin \left(15 M-8 T+43^{\circ}\right)$
	.004 $\sin \left({ }^{2} 7 M-9 T+63^{\circ}\right)$
	$.017 \sin \left(D-F+2 M+165^{\circ}\right)$

Terms additive to w
$-0: 118 \sin \left\{t+16 T-18 V-1 \% 0\left(t_{0}-18 \cdot 5\right)+151 \% 1\right\}$
$-2: 076 \sin \Omega$
$-8.40 \sin \left\{0-2.3\left(t_{e}-18.5\right)+276: 2\right\} \quad 1402$
$-\quad 10 \sin \left\{119.0\left(t_{e}-18.5\right)+152^{\circ}\right\} \quad 1403$

- $-593 \sin \left(13 T-8 V+313^{\circ} 9\right) \quad 1404$
- $.065 \sin \left(15 M-8 T+43^{\circ}\right) \quad 1405$

Terms additive to Ω

$+0: 17 \sin \left\{t+16 T-18 V-1 \%\left(t_{e}-18 \cdot 5\right)+151: 1\right\}$	1406
$+95 \% 96 \sin \Omega$	1407

$+15: 58 \sin \left\{\Omega-2: 3\left(t_{n}-18 \cdot 5\right)+276 \% 2\right\}$
1408
$+1: 86 \sin \left\{\Omega-0.9\left(t_{e}-18.5\right)+290.1\right\}$
1377
1378
1379
1380
r38I
1382
r383
I384
1385
1386
1387
r388
r389
1390
r39I
r392
393
$r 394$
1395
1396
1397
r398
1399

Periodic terms affected and tables in which effects are included

 25 in $\mathrm{P}_{26 ;} 3$ in $\mathrm{P}_{29}: 8$ in $\mathrm{P}_{32 ;} 21,32,39,33$ in P_{40},
$\mathrm{P}_{41} ; 16,5 r$ in $\mathrm{P}_{42}, \mathrm{P}_{43} ; 6,9,99$ in $\mathrm{P}_{46}, \mathrm{P}_{47} ; 595$ through Arg. 55.
$\mathrm{P}_{24} \quad 7,25$ in $\mathrm{P}_{27} ; 3$ in $\mathrm{P}_{30} ; 8$ in P_{33}
(7, 25 in $\mathrm{P}_{25} ; 3$ in $\mathrm{P}_{28} 8 ; 8$ in P_{31}; 39 in $\mathrm{P}_{40}, \mathrm{P}_{41} ; 16$ in
$\mathrm{P}_{22} \quad\left\{\mathrm{P}_{42,} \mathrm{P}_{43}: 52\right.$ in P_{39}; 6 in $\mathrm{P}_{46}, \mathrm{P}_{47} ; 5 \mathrm{r}, 99$, ro4, 176 in
$49 \mathrm{II} ; 595$ in 29 rv ; in S through P_{34}.
$\mathrm{P}_{39} \quad 7,8$ in $\mathrm{P}_{40}, \mathrm{P}_{4} \mathrm{I} ; 3$ in $\mathrm{P}_{42} ;$ in S^{2} through $\mathrm{P}_{34}, \mathrm{P}_{35}$.

* $\quad 7$ in P_{4}.

Ref.	Table
No.	No.

No.

". 7 in P_{40},
"
"
" $\quad 7$ in $\mathrm{P}_{40} ; 8$ in $\mathrm{P}_{40}, \mathrm{P}_{4 \mathrm{I}} ; 3$ in P_{42}.
" $\quad 7$ in $\mathrm{P}_{4} 0$.
$" \quad 7$ in $\mathrm{P}_{4} \%$.
$"$
"
"
"
"
$"$
\mathbf{P}_{3}
P" 39
"
") $\quad 7$ in $\mathrm{P}_{40} ; 8$ in $\mathrm{P}_{40}, \mathrm{P}_{4} \mathrm{I}$.
"
"

LIst i η (concl.).

Terms additive to T and l^{\prime}	Ref. No.	Periodic terms affected and tables in which effects are included
-0. $2.27 \sin \left\{\mathrm{Ir9.0}\left(t_{c}-18.5\right)+152^{\circ}\right\}$	1410	3 in $\mathrm{P}_{42} ; 8$ in $\mathrm{P}_{40}, \mathrm{P}_{4} \mathrm{I}$.
-1.89 $\sin (13 T-8 V+313.9)$	I4II	3 in $\mathrm{P}_{42} ; 8$ in $\mathrm{P}_{40}, \mathrm{P}_{41} \mathbf{r} 595$ in $\mathrm{P}_{44}, \mathrm{P}_{45}$.
$+\cdot 20 \sin \left(15 M-8 T+216^{\circ}\right)$	1412	8 in $\mathrm{P}_{40}, \mathrm{P}_{4} \mathrm{I}$.

Terms additive to γ
$-4 "^{\prime \prime} 318 \cos 8$
(3 in $\mathrm{P}_{43} ; 8$ in $\mathrm{P}_{40}, \mathrm{P}_{4 \mathrm{I}} ; 50$ in $\mathrm{P}_{48}, \mathrm{P}_{49} ;{ }_{5 I}$ in $49 \mathrm{III}, \mathrm{P}_{42}, \mathrm{P}_{43} ; 52$ in P_{39}; 103 in $\mathrm{P}_{40}, \mathrm{P}_{4 \mathrm{I}}$; 105 in $\mathrm{P}_{46}, \mathrm{P}_{47} ; 595$ in $29 \mathrm{rv}, \mathrm{P}_{44}, \mathrm{P}_{45} ; 597,600$ in 29 Iv ; $601,603,604$ in $\mathrm{P}_{44}, \mathrm{P}_{45}$; in C through $\mathrm{P}_{36} ; 99$, ro4, 176 in 49 III.
$-.698 \cos \left\{8-2.3\left(t_{c}-18.5\right)+276.2\right\}$
$-.083 \cos \left\{8-0.9\left(t_{c}-18.5\right)+290\right.$? 1$\}$

List i日. The fundamental arguments and constants.

Epoch 1900.0.

$$
\begin{aligned}
& 8=259^{\circ} \text { 10' }^{\prime} 59^{\prime \prime} 79-\quad 5^{\mathrm{r}} \mathrm{I} 34^{\circ} 08^{\prime} 31 \mathrm{I}^{\prime \prime} 23 t_{c}+7^{\prime \prime} 48 t_{c}{ }^{2}+0.000 t_{c}{ }^{3} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{w}^{\prime}=281^{\circ} 13^{\prime} 15.004+\quad 1^{\circ} 43^{\prime} 9 \text { 9"03 } t_{c}+1 " 630 t_{c}{ }^{2} \text {. } \\
& V=342^{\circ} 46^{\prime} 1.39+162^{\mathrm{r}} 199^{\circ} 12^{\prime} 422^{\prime \prime} 88 t_{c} \text {. } \\
& J=23^{\circ} 3^{\prime} \circ . \prime 88+8^{\mathrm{r}} \mathrm{I}_{5} 6^{\circ} 18^{\prime} 11{ }^{\prime \prime} .52 t_{c} \text {. } \\
& M=293^{\circ} 44^{\prime}{ }_{51} I^{\prime \prime} 36+53^{r} 61^{\circ}{ }^{\circ} \mathrm{I}^{\prime} 57^{\prime \prime} 62 t_{c} \text {. } \\
& S_{n}=266^{\circ} 34^{\prime} 2^{\prime \prime} 76+3^{\mathrm{r}} 143^{\circ} 30^{\prime} 47^{\prime \prime} 333_{c} \text {. } \\
& Q=178^{\circ} 10^{\prime} 44^{\prime \prime} 68+415^{\mathrm{r}} 74^{\circ} 4^{\prime} 14^{\prime \prime} 80 \mathrm{t}_{c} \text {. } \\
& T=L^{\prime}+180^{\circ} \text {. }
\end{aligned}
$$

Whence

$D=350^{\circ} 44^{\prime} 23^{\prime \prime} 67+123^{6} 307^{\circ} 07^{\prime} 17^{\prime \prime} 93 t_{c}+6$." $^{\prime \prime} 5 t_{c}{ }^{2}+0 . \prime 0068 t_{c}{ }^{3}$.
$l=296^{\circ} 06^{\prime} 25^{\prime \prime} 3 \mathrm{I}+1325^{\mathrm{r}} 198^{\circ} 5 \mathrm{I}^{\prime} 23^{\prime \prime} 54 t_{c}+44^{\prime \prime} 3 \mathrm{I}_{c}{ }^{2}+0 .{ }^{\prime}$. $0518 t_{c}{ }^{3}$.

$F=11^{\circ} 15^{\prime} 11 I^{\prime \prime} 92+1342^{\mathrm{r}} 82^{\circ} 1^{\prime} 57^{\prime \prime} 29 t_{c}-0.34 t_{c}{ }^{2}-0 .{ }^{\prime \prime}$ oor $2 t_{c}{ }^{3}$.
$e=\cdot 054900489 ; \gamma=\cdot 044886967$; const. term in sine parallax $=3422 .{ }^{\prime \prime} .5400 ; E \div M=8 \mathrm{r} \cdot 53$;
$\boldsymbol{e}^{\prime}=\cdot 01675104-\cdot 00004180 t_{c} ;$ solar parallax $=8$!" $80549 ; a_{1}=\frac{\text { solar parallax }}{\text { lunar parallax }} \cdot \frac{E-M}{E+M}=\cdot 00251287 ; ~ \epsilon=\frac{I}{294}$.

Elements of the planets, epoch $1850 \cdot 0$.

	Perihelion		Node	Eccentricity	Inclination	Log. mean dist., $\oplus=1$	Inverse of mass, $\odot=1$

* Freed from precession.

CHAPTER II

METHODS OF TABULATION AND FORMS OF TABLES

The tabulation of harmonic functions of the time.

The value of a periodic term at any date is obtained by finding the value of its angle or argument on that date and then referring to the table in which the values of the term for different values of the argument are given. Any units may be used to express the argument provided they are the same in both cases. Since the main object of this work is to obtain the ephemeris of the moon at intervals half a day apart, the most convenient unit is, in general, the day.

A term having an argument which is a simple linear function of the time has a period which is measured by the constant number of days after the lapse of which all values of the term are repeated; this number is inversely proportional to the coefficient of the time in the argument. The expression of an argument in days consists in giving the number of days since the argument was zero. This form of expression can be transferred to degree measure by dividing by the period and multiplying by 360 ; the term can thus be tabulated by means of ordinary sinetables according to the values of the argument expressed in days. Whenever the number of days in the argument exceeds the period, the latter is to be subtracted. The principal reason for extensive tabulation of the arguments is to avoid the subtraction of many periods when the required dates are distant from the epoch.

When the argument is not a linear function of the time but contains t^{2}, t^{3}, the period is not constant. If the function has been tabulated for a certain constant period, the divisions will cease to correspond to half-days but will correspond to intervals of time which vary with the date. Fortunately the additional terms in the adopted arguments of the lunar theory are always small and by adding to the argument the fraction of the day which corresponds to the advance (or retardation) of the argument which these terms cause, we can always find from the table giving the term, the correct value of the latter corresponding to the argument at the given date. This additional portion of the argument is called the 'secular variation.'

It was assumed above that the period chosen for the tabulation of the term was that found by using the coefficient of t in the argument at some epoch-usually that from which all the angles are reckoned. But it is obvious that we can transfer the argument to any other epoch and use the new coefficient of t for the determination of the period. The same result can be obtained by using any period whatever and adding to the secular variation a term (with the proper coefficient) proportional to the time. This latter point of view is more convenient and will be adopted. The period chosen will be taken sufficiently near the period at the adopted epoch
so that the additional term in the secular variation proportional to t shall have a very small coefficient. The choice will be made in such a way as to simplify the use of the tables.

This plan is used for all tables containing a single argument. For those containing two arguments, it is necessarily modified, as will be seen below, but its essential features are retained.

Tables of single entry.

A single entry table is one which gives at suitable intervals the values of the Fourier series

$$
a_{0}+a_{1} \cos A+a_{2} \cos 2 A+\ldots+b_{1} \sin A+b_{2} \sin 2 A+\ldots
$$

the coefficients being constants and the argument A being approximately of the form $a_{0}+a_{1} t$. It is desired to tabulate this function in such a manner that the values for consecutive half-days shall follow one another and that the argument A shall not exceed 360°. The coefficients are in many cases so large and the period so short that interpolation between successive half-days would demand much labour. A further division of the argument is necessary. Usually this division is made by giving the values of the function for intermediate decimal fractions of a day. The plan adopted here has the same character but replaces the decimal fractions of a day by other divisions which can assist in simplifying the work for the ephemeris computer.

The number of parts into which the half-day is divided for the purpose of easy interpolation is so chosen that the adopted period of the argument contains an integral number of these same parts. (The method of finding this number of parts will be explained below.) Thus the 360° which includes the required range of values of any argument is divided into an integral number of parts and another integral number of the same parts is equivalent to that portion of the argument which is described in half a day. The rest is a matter of arrangement. Suppose, as in Arg. 40 , that there are $3 I I$ parts in the half-day and 8463 parts in the period; the latter is equivalent to $13^{d} .5+66$ parts. Suppose also that the function has been tabulated for every one of the 8463 parts. Beginning with the value for 0. 0 we choose the values for 0,3 II, $622, \ldots, 8397$ parts and place them in column opposite the arguments $0.0,0^{d} \cdot 5, \ldots, x 3^{d} \cdot 5$, with the number 0 at the head. The argument for the next half-day is $8708-8463=245$ and for the succeeding half-days 556 , $867, \ldots$ These are placed in column opposite the arguments 0.0 , $0.5, \ldots, 13.0$ with the number 245 at the head. The process is continued until 3 II columns are formed when all the values have been placed. Columns which have at their head a number greater than 66 will end with 13.0 since $13 \cdot 5+$ parts greater than 66 would exceed the period.

For interpolation, we obviously use columns with consecutive numbers at the head, for their values on the same line in consecutive columns differ only by one part. In order to facilitate interpolation, columns with consecutive part-numbers should follow one another in the table; this also has the advantage of permitting the differences to be economically printed, for one column of differences will serve
for several columns of the function. In order to avoid the computation of the new argument every time the end of the period is reached an extra line is added showing the number of the next column to be followed when the end of one column is reached; the word 'succession' (succ.) is used to denote this. Thus at the foot of column 0 in Table 40, Sect. III, the succession number 245 is found; at the end of column 245, the number $490-3 I I=179$; at the end of column 179 the number $179+245-3 I I=113$; and so on. We finally get to the column 3 II which is equivalent to column o when the whole process can be repeated.

Hence for a table arranged in this manner the argument is most conveniently given in two parts, one an integral number of half-days and the other a number of parts which will be always less than the number of parts in a half-day. The argument for the beginning of any year will therefore consist of an integral number of half-days, an integral number of parts and a fraction of a part. Since the period and the half-day contain integral numbers of parts it is evident that the fraction, i.e. the interpolating factor, will remain constant as long as the secular variation from the beginning of the year is insensible. In general, the number of parts has been so chosen that there is no sensible error in maintaining the same fraction for a run of a year. The cases of exception are considered below.

In a few cases no division of the half-day is given. A near integral multiple of the number of half-days in the period is then chosen as the period and interpolation is carried out between successive half-days with a decimal division of the day.

In the great majority of the tables only one or two places of decimals are necessary in the interpolating factors, and in no table more than three places. For the last, certain variable parts are added to the factors before interpolation and the latter is done as a step separate from the extraction of the function from the table.

In the majority of cases, the Fourier series for any table is confined to terms which can be expressed in the form

$$
a_{0}+a_{1} \cos A+a_{2} \cos 2 A+\ldots
$$

The property $\cos i\left(360^{\circ}-A\right)=\cos i A$ then enables us to give two arguments to each value of the function. The second set of arguments will be found at the right and foot of the table and the values for successive half-days are then read up instead of down; the succession number in these cases appears at the top. This is the case with the argument 245 in the example just given. The columns of differences have signs for reading up opposite to those printed.

In the case of Table 30, Sect. III, the function is

$$
a_{1} \sin A+a_{2} \sin 2 A+\ldots
$$

and the property $\sin i A=-\sin i\left(360^{\circ}-A\right)$ permits a similar abbreviation, the sign of the function being changed for the lower and right-hand arguments.

In the case of Table 33, Sect. IV, the function is

$$
a_{1} \sin A+a_{3} \sin 3 A+a_{5} \sin 5 A
$$

and the two properties, $\sin i(360-A)=-\sin i A, \sin i(180-A)=\sin i A$ for i odd, permit of four arguments for each value, with a change of sign.

A certain number of the tables in Sect. VI have their values tabulated for specific dates. Tables P 23, P 26, P 29, P 32 have the argument of the Great Venus term, the period of which is 270.95 years, while tables $\mathrm{P}_{24}, \mathrm{P}_{27}, \mathrm{P} 30, \mathrm{P} 33$ have that of the empirical term, the period of which is 257.14 years. In each case the tabulation is made annually through the period of the argument for a run of years which includes the epoch date $1900 \circ$. For other years it is a simple matter to subtract the necessary multiples of the period so that the given date shall correspond to one of those for which the function is tabulated.

The tables $\mathrm{P}_{39-\mathrm{P}}^{45}$ give the values of the sums of a number of periodic terms at intervals of 10 days for each year from 1900 to 2050. For convenience in use, each 'year' begins at the time when l ' is zero near the beginning of that year. These values are entered (with values from other similar tables) opposite the half-days of the year nearest to the dates when $l^{\prime}=0^{d}, 10^{d}, \ldots$, and then interpolations to twentieths give the values for the intervening half-days.

Tables of double entry.

A double-entry table is one designed for the tabulation of an expression of the form $\Sigma_{i, j} a_{i, j} \cos (i A+j B+a)$, where $i, j=0, \pm \mathrm{I}, \pm 2, \ldots$. In general such tables demand two interpolations, one for each argument. The labour of performing such double interpolations is avoided in the plan used by Hansen in his Tables de la Lune. The values from a number of such tables are to be added together; all of them have the common argument A but B differs in each case. The plan consists in extracting from the tables with a tabular value of A, interpolation being made for B alone. After the sums have been obtained, interpolation for A is made on the sums only. Since it is intended to extract values at intervals of 0.5 only, this plan demands that the variations of the sums during. $0^{d} \cdot 5$ shall not be so great that the latter interpolation is difficult. Hence the terms in such tables, if of short period, must have small coefficients. The advantage consists in the large number of terms which may be included in one such table as compared with the number in a single-entry table.

Four kinds of double-entry tables are used here. In the first of them the common argument is D , whose period is the synodic month; in these the values are tabulated at intervals of half a day. In the second, the common argument is l^{\prime}, the solar mean anomaly, and these are tabulated at intervals of ten days. In the third, the second argument is so far divided that no interpolation for it is necessary; interpolation for the first argument, when necessary, is made within its common interval of division, namely 0.5 . In the fourth class, the values are extracted without interpolation at intervals of ten days or fourteen days, the values for the intermediate times being obtained by simple rules and by auxiliary tables which demand no interpolation.

Double-entry tables of the first form with D as the common argument.
The function is tabulated for the values $-15^{d} \cdot 5,-15^{d} \cdot 0, \ldots,+15 \cdot 0,+15^{d} \cdot 5$ of D, the series of values going somewhat over the period $29 \cdot 53$ of D in order to furnish the second differences needed in the interpolation for this argument. The
360° through which the second argument may run is divided into an integral number of parts sufficient to permit of easy interpolation. The function would naturally be tabulated for each of these values of the second argument with each value of D, but as it is desired to avoid changing the second argument every half-day (since it also progresses while D is changing) a different plan is adopted. Starting with any one of the given values of the second argument, the function is tabulated at intervals of half a day from $D=0$ forward to $D=15 \cdot 5$ and backward to $D=-15 \cdot 5$, thus giving a range of values of the function for 63 consecutive half-days. This computation is made for each value of the second argument. The latter is thus defined by its value at the time when $D=0$. If we needed its value at any other time (which we do not), it would be necessary to add its change during that time to its value when $D=0$. If the values of the function corresponding to successive starting values of the second argument be placed in succeeding columns, interpolation for that argument must be made between successive numbers in the same line; the interpolating factor will be the same as at the time when $D=0$, since the change in the second argument from the time when $D=0$ is independent of its starting value. Hence, when we know the value of the second argument at the time when $D=0$ and the number of days from this time, the value of the function can be easily found.

As numerous negative arguments are troublesome, the plan is slightly modified by adding 15^{4} to D so that the argument actually used is not D but $\mathrm{D}=D+15 \%$; these 15^{4} must of course be also added in the tabulation of the argument itself in Sect. II. The only difference is that the tabular value of the second argument corresponds to the value 15% of D and that it is used for the fifteen and a half days preceding and following the value $\mathrm{D}=15.0$, i.e., from $\mathrm{D}=-0.5$ to $\mathrm{D}=30^{\circ} \cdot 5$. When D progresses beyond the latter value its period must be subtracted and then the tabular value of the second argument changes per saltum, the change being the amount of its motion during a period of D . The tables of the function are accordingly arranged so that a single column gives its values from $\mathrm{D}=-0.5$ to $\mathrm{D}=30.5$ for each tabular value of the second argument.

When all the values from the group of tables have been added, the sums are for times when D has the values mentioned. These sums are then interpolated so as to furnish the values of the functions on the required dates when D is not, in general, an integral multiple of a half-day. The interpolating factor remains constant through one period of D. If Bessel's formula be used, third differences are never necessary in carrying out this interpolation. There are, in general, one or two overlapping values as we go from one period of D to the next and the comparison of these constitutes a useful test of the work.

To assist those familiar with Hansen's tables, some differences of arrangement may be noted. Hansen uses the mean anomaly of the moon as the common argument instead of the synodic month; the new tables therefore contain four half-days in each 'month' more than Hansen's, but on the average about one less 'month' in a year. The values for the intermediate quarter-days given by Hansen are omitted here; their sole use is to diminish the maximum interpolating factor for the
common argument from 0.50 to 0.25 , and as second differences have to be used in any case, no sufficient advantage is gained by the resultant doubling of the space to be occupied by these tables. The space thus saved has been utilized in order to render the computer's work easier by printing the differences or, more exactly, the variations per unit change of the second argument, in all cases. Finally the consecutive half-daily values are printed in column instead of in line, so that the 'vertical argument' of these tables corresponds to the 'horizontal argument' of Hansen's and vice vers \hat{a} : it is less difficult to avoid the error of accidentally moving to an adjoining column than of moving to an adjoining line and the printing of the variations does away with the necessity for Hansen's arrangement in which the differences have to be found.

In the majority of the tables the change $30^{d}-\mathrm{D}$ for D and $180^{\circ}-B$ for B leaves the function unaltered so that they may be diminished to half the extent they would otherwise have by printing a double set of arguments. Further, by changing the signs throughout when necessary, one column of variations will serve for two columns of the function.

The number of parts into which the second argument is to be divided has been taken large enough in each case to render interpolation easy, the exact number being so chosen that the addition to it in changing from one 'month' to the next need not be taken to more places, for the sake of avoiding accumulated error during a year, than the number adopted in the tabulated value; this result was obtained by choosing the proper convergent of the ratio of the period of D to that of the second argument. There is an exception to this in the case of Argument I, but here the small difference in the last unit between the values in successive years can easily be distributed through the year by inspection. In other cases where such a difference is noticeable the error in the function may be neglected, but the difference in the argument can always be distributed in the same manner, if the computer prefers to do it.

Double-entry tables of the second form with l^{\prime} as the common argument.

The tables at ten-day intervals, P I-P 2I, Sect. VI, with l^{\prime} as the common argument, are constructed on the same plan. Two slight differences are to be noted. No addition is made to l^{\prime} similar to the 15^{d} added to D, the tabulated values of the second argument corresponding to $l^{\prime}=0$ and being taken from $l^{\prime}=o^{\alpha}$ to $l^{\prime}=370^{\alpha}$. For epochs near the twentieth century l^{\prime} is zero very near the beginning of each year, and to avoid changing the second argument during the year we define it by its value not at the time when l^{\prime} was last zero but by its value when l^{\prime} is zero near the beginning of the year considered. This is indicated in Table 3, Sect. II, where a negative value of l^{\prime} obviously denotes that l^{\prime} is zero after the beginning of the year and that the second argument corresponds to this particular year. The differences in the ten-day tables are not printed and they have to be formed between two consecutive numbers on the same line, but only 38 values

[^3]have to be extracted from each table for a year's ephemeris and few values extend beyond three digits. Each of the three second arguments $79,80,8 \mathrm{I}$ is divided into 73 parts, a number which considerably simplified the work of tabulation.

In other respects the procedure is the same as with the tables of the first form. It is, however, unnecessary to interpolate for the common argument in the previous manner. The half-days of the year nearest to the tabulated values of l^{\prime} are chosen and, as stated above, the interpolations are to twentieths to obtain the values for consecutive half-days.

Double-entry tables of the third form, requiring interpolation for one argument only.

The Tables 48, 49 of Sect. III and 29, 30, 31, 32 of Sect. IV are in reality doubleentry tables used on a single-entry plan. In fact, in the actual use made of them, the two arguments nearly correspond to the two parts of the arguments of the single-entry tables. There is no interpolation for the second argument and only a simple one, performed when the values are extracted, for the first argument.

A cycle is chosen which, as nearly as necessary, contains integral multiples of the periods of both arguments; it is chosen large enough for interpolation of the values for the second argument to be unnecessary. The cycle is also to contain an integral number of half-days. The first condition is obtained by finding a suitable convergent to the ratio of the period of the first argument to that of the second; and the second condition by taking the nearest integral number of halfdays in the cycle. The values of the function are then tabulated for every half-day through the latter period.

It remains to so arrange the values that no tabular argument shall exceed its period. In the convergent obtained, the numerator is the number of parts into which the second argument is divided and the denominator is the addition to the second argument whenever we proceed to the following period of the first argument. If the first argument contained an integral number of half-days, the tables would be arranged like the tables with common argument D ; the difference being that on reaching the foot of any column a succession number could be given showing the next column to be followed, since the second argument and its addition are always integral; in this respect it is like the single-entry tables. But since the first argument is not an integral number of half-days in any of the tables, some modification of the plan is necessary. The manner of arrangement is best illustrated by an example. In Table 48, Sect. III, the second argument is divided into 159 parts and its 'addition' for a period of the first argument is 4 parts. The period of the first argument is 27.555 . Suppose we start with Arg. $30=0$ and Arg. $48=0$. On reaching the foot of column o after running from the start for 27.5 , the next value required is that for 28.0 which gives a value $0.445(0.45)$ for Arg. 30 and a value 4 for Arg. 48. These are found at the top of col. 4 where the first (vertical) argument has the value 0.45 instead of the value o.o and the succeeding values progress by 0.5 from this value. At the foot of the column 4 , Arg. 30 has the value 27.445 ; the succeeding value is $27.945-27.555=\cdot 39$ and
the column number is $4+4=8$. We can thus proceed through the whole table. In starting with any other values, say Arg. $30=12.6 \mathrm{I}$, Arg. $48=12$, we note that in column 12 the nearest tabular argument to that given for Arg. 30 is 12.84 , hence we must interpolate for this argument with the factor 2 (I 2.6 I - I 2.84) $=-\cdot 46$, which gives the value 23 to the function. It will be noticed that we get the value 24 if we use Arg. $48=13$ with the factor $2(12 \cdot 6 \mathrm{I}-12 \cdot 70)=-\cdot 18$: a unit change in the second argument does not change the function as much as a unit in most cases. Since the values for successive half-days follow one another throughout the table, the interpolating factor remains constant as long as we follow the succession numbers in regular order, and no new argument need be computed except for testing purposes. The errors caused by using the integral instead of the exact periods are not sensible through a run of a year.

In other respects these tables are similar to those of the first form. The tabular second argument corresponds to a definite value of the first argument and it remains constant through a given column in the same manner.

Double-entry tables of the fourth form requiring auxiliary tables only.

The Tables P 46, P 47, P 48, P 49, Sect. VI, are designed to include a large number of small terms of approximately $10,10,7,7$ day periods respectively. It was desired to tabulate these for 250 years. If the necessary interval of 0.5 had been adopted, the space required would have been out of all proportion to the importance of the terms. The following scheme was devised and adopted.

Consider a term $a \sin B^{\prime}$ where B^{\prime} has a period of approximately ten days and express it in the form

$$
a \sin B \cos A+a \cos B \sin A, \quad B^{\prime}=B+A
$$

where A is an argument having a period of exactly ten days, and consequently B is of long period. Tabulate $a \sin B$ at intervals of ten days, so choosing the constant part of A that A is zero at the beginning of each interval. Consider any two consecutive values of $a \sin B$ and denote them by f_{1}, f_{2}. If second differences in the series of values of $a \sin B$ can be neglected, the intermediate values of $a \sin B \cos A$ are given by the formula

$$
\left\{f_{1}+\frac{1}{20} i\left(f_{2}-f_{1}\right)\right\} \cos i .18^{\circ}, \quad i=1,2, \ldots, 19
$$

For $i=10$ this becomes $-\frac{1}{2}\left(f_{1}+f_{2}\right)$ which can therefore be obtained immediately from the ten-day values.

Consider next the values given by $i=\mathrm{I}, 2,3,4,5$. Suppose that, in forming these it is possible to neglect the portions containing the factor $f_{2}-f_{1}$. The errors caused by this neglect are found to be

$$
\left(f_{2}-f_{1}\right)(\cdot 048, \cdot 08 \mathrm{I}, \cdot 088, \cdot 062, \cdot 000)
$$

respectively, or a maximum error of ${ }_{1}^{2}\left(f_{2}-f_{1}\right)$. If such an error may be neglected, the five values are given by the expression $f_{1} \cos i$. 18° where $i=1,2,3,4,5$.

For $i=6,7, \ldots, 15$, we may write the formula

$$
\left.-\left\{\frac{1}{2}\left(f_{2}+f_{1}\right)-\frac{1}{20}(10-i)\left(f_{2}-f_{1}\right)\right\} \cos \left(180^{\circ}-i .18^{\circ}\right)\right\},
$$

and we see that the same maximum error will be caused by the neglect of $f_{2}-f_{1}$. The formula is then $-\frac{1}{2}\left(f_{2}+f_{1}\right) \cos (10-i) 18^{\circ}$.

For $i=16,17,18,19$ we get in the same manner $f_{2} \cos (20-i) 18^{\circ}$, with the same maximum error.

If then we tabulate $a \sin B$ at intervals of ten days and supply an additional table giving the values of $f \cos 18^{\circ}, f \cos 36^{\circ}, f \cos 54^{\circ}, f \cos 72^{\circ}$, for all needed values of f, the four half-day values on either side of any ten-day or intermediate five-day value can be immediately read off. A glance at the Table P 46 shows that the neglected fraction of the difference will never produce an error of more than a unit in the last place given.

In order to avoid negative quantities, a constant C has been added to each tabular value. The intermediate five-day values are therefore given by

$$
C-\frac{1}{2}\left(f_{2}+f_{1}\right)=2 C-\frac{1}{2}\left(C+f_{2}\right)-\frac{1}{2}\left(C+f_{1}\right),
$$

that is, by twice the constant of the table less the mean of the two values.
The auxiliary Table $\mathrm{P} 46 a$ gives the values of

$$
C-C \cos i \cdot \mathrm{I} 8^{\circ}+(f+C) \cos i \cdot \mathrm{I} 8^{\circ}
$$

for $i=-4,-3,-2,-1$, o (Arg.), 1, 2, 3, 4 .
For economy of arrangement, the date is given in two parts. The argument A is zero at 1900.0 and is therefore zero at $1901+5^{d}$, and so on depending on the number of days in the year.

The tabulation of $a \cos B \sin A=a \cos B \cos \left(A-90^{\circ}\right)$ is made in the same manner, but $A-90^{\circ}$ is zero $2^{2} \cdot 5$ after the argument A; the same Table P $46 a$ can be used for the intermediate half-day values when the ten-day values have been found from Table P 47 .

In Tables $\mathrm{P}_{48}, \mathrm{P} 49$, the period of A is 7 days. The intermediate $3 \cdot 5$-values are again $-\frac{1}{2}\left(f_{2}+f_{1}\right)$ and the errors caused in the half-day values by the neglect of $f_{2}-f_{1}$ are $\left(f_{2}-f_{1}\right)(\cdot 064, \cdot 089, \cdot 047)$, giving again a maximum error of ${ }_{1}^{1}\left(f_{2}-f_{1}\right)$ which can be neglected. The auxiliary Table P $48 a$ gives the values of

$$
C-C \cos \frac{1}{14} i \cdot 360^{\circ}+(f+C) \cos \frac{1}{14} i \cdot 360^{\circ},
$$

for $i=-3,-2,-1$, o (Arg.), $\mathrm{I}, 2,3$.
For Table P 49, the epoch of $A-90^{\circ}$ is r $^{\prime} 75$ later than that of A. This is printed 2^{d} with sufficient accuracy. But we must form Table P $49 a$ from the formula last given with $i=-2.5,-1.5,-0.5,+0.5,+\mathrm{I} .5,+2.5$, using the values for ± 0.5 as the argument without sensible error.

It was found sufficient to tabulate the values in Tables P 48, P 49 at intervals of I4 days; the intermediate 7 -day values are obviously obtained by interpolation to halves, when the procedure outlined above can be applied.

These have been computed for the years 1900 to 2050^{*}. For their continuation before 1800 or after 2050 , the necessary materials and the methods by which the computations can be carried out, whether the object be to find them for a series of years or for a single place, are given in Chap. IX. The problem is simply that of the summation of a number of harmonic terms of different periods. Hence the necessary data are the periods and epoch values of the arguments and the coefficients. But these are supplemented by tabulation of each term and by certain other devices for the simplification of the work.

* The greater part of the computations for the years 1800 to $I 900$ has been completed and will be published separately.

CHAPTER III

ON THE MANNER OF TABULATION OF THE EXPRESSIONS IN CHAPTER I

Tabulation of the True Longitude.

The terms with large coefficients or terms with moderately large coefficients but of very short period are placed in single-entry tables. The great majority of the solar terms in longitude, latitude and parallax are placed in double-entry tables of the first form with D as the common argument. The planetary terms in longitude which depend on T and on one of the three arguments V, J, M only, are placed in double-entry tables ($\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$, Sect. VI) of the second form with common argument l^{\prime}. But there is still a large number of terms, chiefly in the planetary parts of the true longitude, which it is desirable to include. The great majority of them depend on T, on one of the three arguments V, J, M, and also on one of the three arguments $l, 2 D, 2 D-l$. In order to reduce the large number of double-entry tables which would have been required for these the following plan was adopted.

Consider a term $a \sin (l+A)$ in longitude. Here a is a small coefficient (except in one case, less than $\mathrm{I}^{\prime \prime}$) and A is an argument composed of l^{\prime}, one of the three arguments V, J, M, and a constant. This term may be written in the form

$$
a \sin A \cdot \cos l+a \cos A \cdot \sin l .
$$

Now we have a single-entry table in longitude containing the term $22639.5 \sin l$. The above term may therefore be included if we multiply the tabular value in this table by $\mathrm{I}+a \cos A \div 22639.5$ and add to the argument $a \sin A \div 22639 \cdot 5$, expressed in the proper units, since $\delta \cdot \sin l=\delta l \cdot \cos l$.

All terms of the form $a \sin A$ may be combined in double-entry tables with l^{\prime} as common argument and one of the three, V, J, M as second argument. The terms of the form $a \cos A$ may be similarly treated.

In the same manner, terms of the form $a \sin (2 D+A)$ may be attached to Table 3I, III, containing the term $2369^{\circ} 9 \sin 2 D$, and those of the form $a \sin (2 D-l+A)$ to the Table 32, III, containing the term $4586^{\prime \prime} 4 \sin (2 D-l)$.

The coefficients a are given in seconds of arc. To find the same coefficients for addition to the arguments, divide by the coefficients of the terms with arguments $l, 2 D, 2 D-l$, respectively, multiply by the number of parts into which the respective arguments are divided, and divide by 2π. The six factors are as follows:

Arg.	Coef.	No. of parts
l (arg. 30)	$22639: 5$	18186
$2 D$ (arg. 31)	2369.9	8682
$2 D-l$ (arg. 32)	4586.4	21314

Factor of a for factor part	Factor of a for arg. addition
$44 \mathrm{r} \cdot 7 \times 10^{-7}$	-1278
422.0×10^{-6}	-5830
218.0×10^{-6}	-7397

The tables for the factor parts are expressed in units of $10^{-7}, \mathrm{IO}^{-6}, \mathrm{IO}^{-6}$, respectively, and the tables for the additions to the arguments are expressed in units of o.001, o..01, o.01, where the letter c denotes a part or column number of the respective Arguments 30,3I, 32. These 18 tables are numbered $\mathrm{P}_{4}-\mathrm{P} 21$, Sect. VI.

Table 30, III, also contains the term $769^{\circ \prime 0} \sin 2 l$ and it is found that the planetary terms with argument $2 l+A$ are included through the inclusion of those with arguments $l+A$. This is a natural consequence of the theory.

There are several solar terms in longitude depending on the arguments $l, 2 F$ which have been placed in a double-entry table of the third form. (Table 48, Sect. III.)

The terms additive to the elements (List i η, Chap. I) have to be considered.
Three of them with periods of many hundred years are directly added to the arguments and to $L,-\infty, \infty$ in the tabulation of these quantities in Sect. II whenever they could produce sensible changes in the coordinates; they are thus completely accounted for.

In general, the terms additive to the mean longitude are also additive to the true longitude and therefore fall in with the plans for this coordinate. These terms additive to the arguments $l, 2 D, 2 D-l$ are left in that form so that after tabulation they may be added to the values from the double-entry tables for additions to Args. 30, 31, 32 just considered; their coefficients, being given in seconds of arc, must be multiplied by the respective factors $18186,8682,21314$ and divided by 1296000 .

The effects of the presence of the Great Venus term, the empirical term and the terms with arguments depending solely on $\&$, in these three arguments are placed in single-entry tables in Sect. VI.

All the terms, not so far included in tables, which arise from additions to the elements are expressed as additions to the true longitude. If $b \sin B$ be such a term present in the argument of an elliptic or solar term $a \sin A$ in longitude, where a, b are expressed in seconds of arc, the resulting addition to the true longitude (since a is always small) is

$$
\frac{1}{2} a b\{\sin (A+B)-\sin (A-B)\} \div 206265 .
$$

If $b \cos B$ be an addition to γ in the coefficient of the term $a \sin A$ in longitude, where a contains the factor γ^{2}, the addition to the true longitude is

$$
a b\{\sin (A+B)+\sin (A-B)\} \div(206265 \gamma), \quad \gamma=\cdot 04488
$$

Certain of the terms so arising have been placed in the double-entry Table 49, Sect. III, of the third form.

After all the larger terms (those over about $0^{\prime \prime} 4$, in general) have been included in these various tables, along with such smaller terms as could be included without altering the forms of the tables, there still remained a very considerable number of minute terms which it seemed desirable not to neglect but which would have required many tables. The plan adopted was their summation in blocks for a period of years sufficient to satisfy the needs of the ephemeris up to the year 2050.

These 'remainder' terms were first classified according to their periods-long, and approximately one month, a half, a third, ..., of a month.

The sums of the terms of long period were formed by a method explained in Chap. IX at ro-day intervals from the time when $l^{\prime}=0$ near the beginning of every year from 1800 to 2050 . The results from 1900 to 2050 are contained in the Table P 39.

A term $a \sin A$ with a period of about one month was expressed in the form $a \sin (A-l) \cos l+a \cos (A-l) \sin l$. The coefficients of $\sin l$, $\cos l$ were then expressed as a factor of Table 30, III, and an addition to the argument of that table, respectively, in the manner explained above for the planetary terms containing the argument l. The argument $A-l$ has a long period. All the terms in each of the two portions were then summed at Io-day intervals and the results are given in Tables P 4I, P 40 .

A term $a \sin A$ with a period of approximately half a month was expressed in the form $a \sin (A-2 D) \cos 2 D+a \cos (A-2 D) \sin 2 D$ and treated similarly with respect to Table 31, III; the results are given in Tables P 43, P 42.

The terms with periods approximating to a third and a quarter of a month were placed in double-entry tables of the fourth form. The two portions arising from the terms with periods of nearly ten days were summed at ro-day intervals from the epoch $1900 \cdot 0$ and the results placed in Tables P 46, P 47, Sect. VI. Those arising from the terms with periods of nearly seven days were summed at 14-day intervals from 1900.0 and the results placed in Tables P 48, P 49. It is to be noticed that Tables P 46-P 49 run continuously at the given intervals from $1900 \cdot 0$ and not from the time when $l^{\prime}=0$ in each year as with Tables $\mathrm{P} 39-\mathrm{P} 45$.

A few small terms with shorter periods were neglected. These can be found by noting the terms in the lists of Chap. I which have no reference numbers attached.

The tabulation of the mean longitude together with the three terms of very long period is explained below in the portion dealing with the arguments.

Tabulation of the Latitude.

The Latitude has three portions respectively denoted by S, N, and C; to be summed with N are the 'principal' terms having the arguments $\mathrm{S}, 3 \mathrm{~S}, 5 \mathrm{~S}$.

The division of the terms in latitude into these three parts was so made that all the large solar terms in S have coefficients which are nearly the same as those of a number of terms with the same arguments in longitude. The latter are contained in the single-entry Tables 23-39, Sect. III. The sums of the values from these tables are kept separate in the computation of the longitude so that they may be taken en bloc directly into S . After these large terms have been taken out of S , the remaining solar terms are placed in double-entry tables of the first form with D as the common argument, with the exception of two small terms which are placed in single-entry tables and two other terms which are expressed as an addition, depending on the day of the year, to the argument of Table 15, IV. With the tables from the longitude is also included the mean longitude. There
are still to be added to S the value of $-\Omega$, which is found amongst the tables of arguments, and certain terms arising from planetary and other sources (see below).

A single-entry table gives the values of the principal terms depending on the argument S . The solar terms contained in N are placed in single-entry tables of the same form as the single-entry tables in longitude. Also included in N are four double-entry tables of the third form containing certain terms arising from planetary and other sources (see below).

The sums of these are to be multiplied by $\mathrm{r}+\mathrm{C}$. The solar terms in C are all small and are placed in double-entry tables of the first form with D as the common argument. Further terms in C are dealt with below.

The methods of dealing with the terms due to planetary and other non-solar actions require some more detailed explanation.

In the first place a number of planetary terms in longitude have been included in the latitude through the additions to the arguments and coefficients of Tables 30, 31, 32, III, taken over from the longitude into S. If a small term $b \sin B$ has been added to the argument of the solar term in longitude, $a \sin A$ (where a, b are expressed in seconds of arc), it produces a term $(a b \div 206265) \sin B \cos A$ in the true longitude. Now the principal term in latitude is approximately 18519 " \sin ($F+$ portion from the true longitude). The small addition to the true longitude therefore causes an addition to the latitude of

$$
\frac{a b}{206265} \cdot \frac{18519}{206265} \sin B \cos A \cos (F+\text { portion from the true longitude }) .
$$

We may, with sufficient accuracy, here confine the portion from the true longitude to the terms $a_{1} \sin l+a_{2} \sin 2 D+a_{3} \sin (2 D-l)$, and $\cos (F+$ these terms $)$ is, also with sufficient accuracy,

$$
\cos F-\sin F\left[a_{1} \sin l+a_{2} \sin 2 D+a_{3} \sin (2 D-l)\right] .
$$

Here $a_{1}=22640^{\prime \prime}, a_{2}=2370^{\prime \prime}, a_{3}=4586^{\prime \prime}$, and each must be divided by 206265 . The products of sines and cosines are to be expressed as sums of sines and we then obtain the terms in latitude which have been included through the portion taken into S from the longitude. The presence of a term $b \cos B$ in the coefficient a is similarly treated; the corresponding terms in latitude will be obtained by replacing $\sin B \cos A$ in the above formula by $\cos B \sin A$. When both sets of terms thus found are subtracted from List $\mathrm{i} \epsilon$, which gives the planetary terms in latitude, it is found that a large number of these terms have been accounted for.

From this new list three groups were extracted, placed in double-entry tables of the third form (Tables 30, 3I, 32, Sect. IV) and included with the tables constituting N .

Of the terms added to the elements which have not been taken over from the longitude, the principal are the Great Venus, the empirical, and the terms depending on the argument 8 , in so far as these are additive to $F=L-\Omega$. For the first of these there is a small portion in -8 which is placed in Table P 44 , Sect. VI; apart from this portion the Great Venus and the empirical terms are additive to F in the same way as to L and therefore the Tables $\mathrm{P}_{23}, \mathrm{P}_{24}$, used in
the longitude, are also available here. But all the terms in $L,-8$ which depend on the argument \propto and are thus additive to F or S have been combined in Tables $\mathrm{P}_{34}, \mathrm{P}_{35}$ and in Arg. 83. The similar terms additive to γ and therefore to C have been combined in Tables $\mathrm{P}_{36}, \mathrm{P}_{37}$ and in Arg. 84; these have required the factor $2 \gamma / 18519$ in preparation for addition to C. The manner of formation of these tables containing the terms with argument $-\Omega$ is explained at the end of Chap. IV.

These same terms, present in the elements $L,-8, \gamma$, also sensibly affect certain of the terms in N . The largest of them have been placed in the doubleentry Table 29, Sect. IV, of the third form which is included with the tables constituting N .

Finally, from all sources, a number of very small terms still remain; these have been dealt with in a manner similar to that adopted for the remainder terms in longitude. They were first expressed as additions to the latitude when not so given, and separated into classes according to their periods. It was then seen that the great majority of them had periods of approximately a month, and that those of other periods could be neglected with very small resulting errors. The magnitude of the maximum error caused in the latitude by the neglect of any term in S or C can be found as follows: divide coefficients of terms in S by II and multiply those in C by 18000; the resulting coefficients are those of terms in the latitude expressed in seconds of arc. These remainder terms of monthly period are expressed in the form $a \sin A=a \sin (A-F) \cos F+a \cos (A-F) \sin F$, where a is given in seconds of arc. Then $a \sin (A-F)$ after division by $2 \gamma=\cdot 0898$ is an addition to S , while $a \cos (A-F)$ after division by 18519 is an addition to C. The argument $A-F$ is of long period and the two groups of such terms were summed at Io-day intervals from the time when $l^{\prime}=0$ in each year from 1800 to 2050 ; the results from 1900 to 2050 have been placed in Tables P 44, P 45, Sect. VI.

Tabulation of the Parallax.

The terms in sine parallax are those tabulated. All the solar terms not neglected, with four exceptions, are placed in single-entry tables and in doubleentry tables of the first form with D as the common argument. Two of these exceptions are accounted for by an addition depending on the day of the year to the argument of Table 13, V, and the other two by an addition to the factor of Table 15, V.

The planetary and other terms due to non-solar action are practically all accounted for in the following way. A term $b \cos B$ of period approximately a month can be expressed in the form $b \cos (B-l) \cos l-b \sin (B-l) \sin l$. The single-entry Table 15, V, contains the term $186^{\prime \prime} \cos l$. Hence $b \cos (B-l) \cos l$ can be treated as a factor, $b \cos (B-l) \div 186$, of this table and $-b \sin (B-l) \sin l$ as an addition, $b \sin (B-l) \div 186$, expressed in the proper units, to its argument. It is found then that if we take the portions which form additions to the factor and argument of Table 30, III, and apply them to Table 15, V, in the parallax, all the outstanding monthly terms from all sources are sufficiently accounted for.

The same is true of the terms containing the lunar arguments $2 D, 2 D-l$. The modifications for actual application are as follows. Arg. 30 of Table 30, III, and Arg. 70 of Table I5, V, are the same within the limits of error, but the former argument is divided into half as many more parts as the latter. Hence the addition to Arg. 30 must be multiplied by $2 / 3$ before application to Arg. 70 . In the same way the periods of Args. 32 (Table 32, III) and 7 I (Table 17, V) are the same, but the ratio of their division into parts is $335:$ Iog, so that the corresponding factor is Iog/335 or I/3 with sufficient accuracy. Finally, Arg. 3 I (Table 31, III) has half the period of Arg. 33 (Table 16, V), but an addition to D is an addition of twice the amount to 2 D , so that these changes cancel one another. However, the division of the arguments is in the ratio $3: I$ so that the factor to be applied is $1 / 3$.

The Empirical Term.

Mention must be made of a special treatment of the empirical term. It is applied directly to the mean longitude and to the arguments $l, 2 D, 2 D-l$ of Tables $30,3 I, 32$, III, and to $F=L-\&$ so far as this is additive to S. It is not applied directly to other terms in the coordinates although it affects them to a small amount, in fact, to nearly the same extent as the Great Venus term, which has been included to the degree of accuracy adopted throughout. Indirectly, it is carried into S with the tables from the longitude and into the parallax through the presence in Args. 70, 33, 7 I of the additions to Args. 30, 3I, 32. The omissions in any case are all of short period and no omitted coefficient is so large as 0.03 in longitude or latitude, and is insensible in the parallax to the adopted degree of accuracy.

The reason for these omissions, in comparison with many other smaller terms which have been included, arises from the facility with which any change shown to be desirable in this term may be made. Under the present plan, it is only necessary to change Table P_{24} and then to compute again Tables $\mathrm{P}_{27}, \mathrm{P}_{30}$, P_{33} which are deduced from P_{24} by constant factors, independent of the term, after the constants which are added to render those tables positive have been subtracted. (See Chap. X.)

Degrees of accuracy.

In the lists of Chap. I the coefficients in longitude are given to $0^{\circ} \mathrm{ool}$ and this degree of accuracy was adopted in computing the tables. In general, coefficients less than 0.003 were neglected. In printing, the last place has been cut off so that the unit for computation is o."or. These standards have been in general adopted for the arguments and for other portions which were not directly additive, that is, the number of places was such that the error should be less than 0.005 in any table for finding the true longitude. Some concessions were made in a few cases, but nowhere does the error exceed o. 02 .

The same degree of accuracy was adopted for the latitude. This demands that the terms in S be computed to $0^{\prime \prime}$.or and printed in units of $0^{\prime \prime} 1$; that the terms in C be given in units of 10^{-6} having been computed one place further; and that the terms in N be computed to o."oor and printed in units of o."or. The chief
concession consists in the fact that C is multiplied by the factor 18519 and that therefore the initial error of any one number is raised from o.005 to o.or.

In the parallax, the computations were made in units of $0 \% 001$ and printed in units of o.oor.

In order to utilize arguments which are common to two or more tables and at the same time to avoid unnecessary tabulation, in certain of the tables the values are given for every second and in others for every fourth value of the argument. In all cases, however, the variations printed are those for unit change of the argument, and these variations are given in the same units and to the same degree of accuracy as the function itself; since every terminal figure is liable to an error of half a unit, the maximum error in any interpolated value is a unit and a half in the last place for those tables in which the values are tabulated for every fourth value of the argument.

A slight loss of accuracy is also caused in some of the tables where one column of variations serves for several columns of the function. All these errors are unsystematic and can be treated as accidental. They fall in with the general scheme for such errors and are accounted for in a general manner in Chap. V which gives the probability of error for any single place computed from these tables, due to accumulations caused by the arithmetical operations. It is supposed that, in accordance with the usual practice, the last place in each coordinate will be cut off before publication in the Almanacs, so that the final longitude, latitude and parallax are printed to $0^{\circ} .1,0^{\circ} \mathrm{I}, 0^{\prime \prime} .01$, respectively.

Tabulation of the arguments of the single-entry tables.

Let any argument be expressed in the form

$$
a_{0}+a_{1} d+a_{2} d^{2}+a_{3} d^{3}-1296000^{\prime \prime} i
$$

where $a_{0}, a_{1}, a_{2}, a_{3}$ are given in seconds of arc, d is the number of days elapsed since the epoch 1900.0 and i is an integer so chosen that the argument is less than 360°. Divide by a certain number b, nearly equal to a_{1} and expressed in seconds of arc, and put

$$
A=\frac{a_{0}}{b}+d+\frac{a_{1}-b}{b} d+\frac{a_{2}}{b} d^{2}+\frac{a_{3}}{b} d^{3}-\frac{1296000}{b} i .
$$

The coefficient of i is the period expressed in days and we have seen above that it is to be so chosen that the ratio of this period to half a day is that of two integers and that $\left(a_{1}-b\right) / b$ shall be small. To find this ratio convert $1296000 / \frac{1}{2} a_{1}$ into a continued fraction; this is the ratio of the period at epoch to 0.5 . Amongst the convergents choose that one which gives the necessary division of the half-day as explained above. The numerator of the convergent is then the number of divisions of the argument for which the function is tabulated while the denominator is the number of parts into which the half-day is divided; half the ratio is the adopted period expressed in days. On division of 1296000 by this period we obtain the divisor b.

An argument A expressed in this form can therefore always be obtained by adding to the value at epoch, expressed in days, the number of days since the
epoch, the secular variation which consists of the three small terms having as coefficients $\left(a_{1}-b\right) / b, a_{2} / b, a_{3} / b$, and by subtracting a sufficient number of multiples of the adopted period to render A positive and less than this period.

For the sake of brevity of notation put

$$
A=a_{0}+d+a_{1} d+a_{2} d^{2}+a_{3} d^{3}-p i
$$

so that p is the adopted period expressed in days. Divide d into three parts such that

$$
d=d_{1}+d_{2}+d_{3}
$$

Here d_{1} will denote the number of days contained in the maximum integral number of centuries present in d; d_{2} the number of days present in the maximum integral number of years present in $d-d_{1}$; and d_{3} is the remainder. If d be negative, d_{1} is to be so chosen that d_{2}, d_{3} are positive.

Substitute this expression for d in A and divide A into three parts such that

$$
A=A_{1}+A_{2}+A_{3}
$$

where
$A_{1}=d_{1}+a_{1} d_{1}+a_{2} d_{1}^{2}+a_{3} d_{1}^{3}+\left(2 a_{2} d_{1}+3 a_{3} d_{1}^{2}\right)\left(d_{2}+d_{3}\right)+3 a_{3} d_{1}\left(d_{2}+d_{3}\right)^{2}-i_{1} p$, $A_{2}=d_{2}+\alpha_{0}+a_{1} d_{2}+a_{2} d_{2}^{2}+\alpha_{3} d_{2}^{3}+\left(a_{1}+2 \alpha_{2} d_{2}+3 a_{3} d_{2}^{2}\right) d_{3}+\left(a_{2}+3 a_{3} d_{2}\right) d_{3}^{2}-i_{2} p$, $A_{3}=d_{3}+a_{3} d_{3}{ }^{3}-i_{3} p$, i_{1}, i_{2}, i_{3} being integers so chosen that A_{1}, A_{2}, A_{3} are each positive and less than p.

The tabulation of A_{1} is made by giving for the beginning of each century the portion of A_{1} independent of $d_{2}+d_{3}$ and giving separately the coefficients of $\left(d_{2}+d_{3}\right)$ and of $\left(d_{2}+d_{3}\right)^{2}$. The portion of A_{2} independent of d_{3} and the coefficients of $d_{3}, d_{3}{ }^{2}$ are given for the beginning of every year of the century 1goo-2000. And the values of A_{3} are given for the days from the beginning of any year. This is possible because d_{1} is zero during the twentieth century, while d_{3} is zero at the beginning of any year.

It is evident that, in finding the argument at any date, the first part of A_{1} will be constant during any given century while the second and third parts must be multiplied by the number of days and by the square of this number, respectively, elapsed since the beginning of the century. Similarly, the first part of A_{2} is constant during any year while the second and third parts are to be multiplied by the number of days and by the square of this number elapsed since the beginning of the year. The term $\alpha_{3} d_{3}{ }^{3}$ in A_{3} can always be neglected. In the tabulation it is convenient to express $d_{2}+d_{3}$ in A_{1} as a fractional part of a century: its coefficient must therefore be multiplied by 36525 and that of $\left(d_{2}+d_{3}\right)^{2}$ by 36525^{2}. Similarly d_{3} in A_{2} is expressed as a fractional part of a year so that its coefficient must be multiplied by 365.25 and that of $d_{3}{ }^{2}$ by $(365 \cdot 25)^{2}$.

Some terms of very long period are added to certain of the arguments, these terms being such that tabulation at century intervals is sufficient. Their coefficients, being given in seconds of arc, must be divided by b before addition to the argument A. Suppose these terms have been so tabulated and the first and second differences formed. Then the three parts additive to A_{1} are the coefficients of n^{0}, n^{1}, n^{2} in Bessel's formula of interpolation less the corresponding
coefficients for the twentieth century, and the part additive to A_{2} is the latter portion which has been subtracted from that additive to A; here n is the fraction of the century denoted above by $\left(d_{2}+d_{3}\right) \div 36525$. By this device we succeed in keeping the values and rates of change for the twentieth century wholly in A_{2}, and those for other centuries in A_{1}, but additive to A_{2}.

Tabulation of the arguments of the double-entry tables.

The tabulation of the arguments of the double-entry tables is made on the same plan as that of the single-entry. Let A be the first or vertical argument of such a table. Then A is expressed in days as before. There is, however, no advantage in any special period for the vertical argument of double-entry tables of the first three kinds; we therefore use the period at epoch and tabulate the argument by centuries, years of the twentieth century and days as before. Let

$$
A=a_{0}+d+a_{2} d^{2}+a_{0} d^{3}-p i .
$$

The second argument B is conveniently expressed in parts of the circumference through division by 1296000 . Thus

$$
B=\beta_{0}+\beta_{1} d+\beta_{2} d^{2}+\beta_{3} d^{3}-i^{\prime},
$$

where i^{\prime} is the number required to make B less than unity.
We desire the value of B when $A=0$. The latter equation leads to

$$
d=a_{0}^{\prime}+a_{1}^{\prime} i+a_{2}^{\prime} i^{2}+a_{3}^{\prime} i^{3} .
$$

Substituting in the expression for B we find

$$
B=\beta_{0}^{\prime}+\beta_{1}^{\prime} i+\beta_{2}^{\prime} i^{2}+\beta_{3}^{\prime} i^{3}-i^{\prime},
$$

where, in each case, we can stop at the third power of i.
The values of B are to be tabulated for integral values of i. This is done by centuries, years and days in exactly the same manner as the single-entry arguments. We put $i=i_{1}+i_{2}+i_{3}$ where i_{1} is the number of times A has passed through zero in an integral number of centuries from the epoch, i_{2} the number of times it has passed through zero in an integral number of years after ig00.0 and i_{3} the remainder ; i^{\prime} is always so chosen that B is positive and less than unity. The formulae are the same as those for the single entry tables if we replace d by i.

Each argument, however, is here expressed as a decimal fraction of four right angles. It is convenient to divide this circumference into an integral number of parts and to express B in the same way we must multiply it before tabulation by this number. The latter has been so chosen that the last tabulated unit of the coefficient of i shall differ from the true value by as small a quantity as possible. This number is found by converting $\beta_{1}{ }^{\prime}$, or Io $_{1}{ }^{\prime}$, or Io $^{2} \beta_{1}{ }^{\prime}, \ldots$, into a continued fraction. The denominator is then the 'period' of B expressed in parts, while the numerator is approximately the addition to be made to B whenever A passes through zero; the changes produced by the third and fourth terms of B are always insensible during a single period.

The special features of the arguments of the first three different kinds of doubleentry tables will be found in Chap. IV where the values of the argument are obtained.

The Calendar.

The arguments must be related to calendar dates, the centuries and years of which do not progress with a uniform number of days, since common years contain 365 days while leap years contain 366 days.

Following the usual practice, the day 0.0 of common years will be taken to be Greenwich noon of January o (i.e. the noon preceding January I) while day 0.0 of leap years will be Greenwich noon of January r. There are therefore 366 days in the years next preceding leap years and 365 days in other years. The numbering of the days in both kinds of years agrees in the months after February.

In the twentieth century, every fourth year from 1903 to 1999 inclusive will contain 366 days, the remaining years having only 365 days; there are therefore 36525 days in this century and the same is true concerning the centuries commencing with the years $\mathrm{I}_{5} 00,2300,2700$ in the Gregorian Calendar. All other centuries in this calendar will contain 36524 days. Since the extra day in the centuries containing 36525 days is always added at the end of the century we can still use the values for the twentieth century as additional to the values for all centuries.

In the Julian Calendar all the years divisible by 4 are leap years and every century contains 36525 days. The date 1900 in the Gregorian Calendar is the same as the date $1900 \cdot 0+13^{d}$ in the Julian Calendar.

If p be the (integral) number of centuries from 1900 and d_{1} the number of days in the p centuries, the values of d_{1} may be symbolically expressed as follows:

Julian Calendar, $\quad d_{1}=36525 p+13$,
Gregorian Calendar, $\quad d_{1}=36524 p+$ integral part of $\frac{1}{4}(p+3)$ or of $\frac{1}{4} p$, according as p is positive or negative.

If p^{\prime} be the number of years from the beginning of any century, the value of d_{2} is given by

$$
d_{2}=365 p^{\prime}+\text { integral part of } \frac{1}{4} p^{\prime}, \quad p^{\prime}=0, \mathrm{I}, \ldots 99 .
$$

The tabulation of the arguments for 366 days will serve for both kinds of years, the values for the last two half-days being used only in the years preceding leap years.

CHAPTER IV

DESCRIPTION OF QUANTITIES CONTAINED IN THE TABLES

The Tables of Sect. II.

Table I is for the conversion of calendar days into days of the year and decimal fractions of the year and for the conversion of hours, minutes and seconds to decimal parts of a day; the latter part of the table is not needed for the ephemeris.

Table 2 contains the portions to be added to the values of the arguments and of $\mathrm{L},-8, \infty$, given in Table 3, for centuries other than the twentieth.

Table 3 contains the values of the arguments and of $L,-8$, , for the beginnings of the years of the twentieth century. The periods and number of parts in $0^{d} 5$ of the single-entry arguments are shown, as well as the periods and 'additions' for the double-entry arguments.

Table 4 contains the portions to be added to the values of the arguments and of $L,-\Omega, m$, given in Table 3, for the days from the beginning of any year.

Table 5 is for the conversion of seconds of arc into degrees, minutes and seconds.

The general method by which the arguments and $\mathrm{L},-8, \infty$ are expressed in terms of the time has been explained in Chap. II. The numerical values of the quantities which have been used in the construction of Tables $2,3,4$ will now be given.

Arguments D, 1-22.
Arg. D. From List i θ, Chap. I,

$$
D=350^{\circ} 44^{\prime} 23^{\prime \prime} 67+1602961637^{\prime \prime} 93 t_{c}+6.05 t_{c}^{2}+0.0068 t_{c}^{3}-1296000^{\prime \prime} i,
$$

where t_{c} is the number of centuries of 36525 mean solar days from $1900 \cdot 0$ and i is an integer so chosen as to render D positive and less than 360°.

The adopted motion of D in a mean solar day is the coefficient of t_{c} divided by 36525 or 43886.6978215^{*}. The expression of D in days is obtained by dividing the above value of D by this motion. We find

$$
D=28^{d} \cdot 7709883+d+0^{d} .000137855 t_{c}^{2}+0^{d} 00000 \text { о1549 } 3 t_{c}^{3}-29^{d} \cdot 53058818123 i,
$$ where d is the number of days from I900.0. The coefficient of i is the period.

The argument of the tables is $\mathrm{D}=\mathrm{D}+15^{d}$. The value of D is tabulated in days and decimal parts of a day.

In order to obtain the arguments I-22 it is necessary to find the dates on which $\mathrm{D}=15^{d}$ or $D=0^{d}$. For this it is convenient to use $t=100 t_{c}$ so that t represents the number of years of 365.25 days from $1900 \cdot 0$, and to express the

[^4]coefficients as decimal fractions of the circumference or four right angles. From the equation $D=0$ we find, by continued approximation or otherwise, $t=-0.07877067+0.080850344097 i-2.4672 \times 10^{-13} i^{2}-2.242 \times 10^{-19} i^{3}$.
Args. I-22. These are combinations of the arguments $l-D, l^{\prime}, 2 F-2 D$. From the values in Chap. I, we find, expressed in terms of t and parts of the circumference,
\[

$$
\begin{aligned}
l-D & =0.848242006+0.88699263588 t+2.952 \mathrm{I} 60 \times \mathrm{IO}^{-9} t^{2}+3.4722 \times \mathrm{IO}^{-14} t^{3}, \\
l^{\prime} & =0.995766204+0.999973604 \mathrm{I} 7 t-4 . \mathrm{I} 6667 \times \mathrm{IO}^{-11} t^{2}-0.9259 \times \mathrm{IO}^{-14} t^{3}, \\
2 F-2 D & =0 . \mathrm{II} 3963349+2 . \mathrm{IO} 749505 \mathrm{I} 85 t-9.86 \mathrm{III} \times \mathrm{IO}^{-10} t^{2}-\mathrm{I} \cdot 2346 \times \mathrm{Io}^{-14} t^{3} .
\end{aligned}
$$
\]

Substituting the value of t in terms of i previously found we obtain the following values of these arguments when $D=0$:

$$
\begin{aligned}
l-D & =0.77837300+0.071713659785 i+\mathrm{I} .9079 \times \mathrm{IO}^{-11} i^{2}+\mathrm{I} .8 \mathrm{I} 5 \times \mathrm{IO}^{-17} i^{3}, \\
l^{\prime} & =0.9169976 \mathrm{I}+0.080848209985 i-0.05 \mathrm{I} 9 \mathrm{I} \times \mathrm{IO}^{-11} i^{2}-0.5 \mathrm{I} 2 \times \mathrm{Io}^{-17} i^{3}, \\
2 F-2 D & =0.94795455+0.17039 \mathrm{I} 700137 i-0.69659 \times \mathrm{Io}^{-11} i^{2}-0.700 \times \mathrm{IO}^{-17} i^{3} .
\end{aligned}
$$

The circumference of each argument is divided into a given number of parts. Hence after it has been formed from the above expressions according to the description given in col. 2 of List iia below, it must be multiplied by the number shown in col. 3. The results are given in the succeeding columns.

List ii α. Arguments I-22 expressed in terms of multiples of the period of D.

No.	Description	Per,	Const. Term	Coef. of i	Coef. of $10^{-9} i^{2}$	Coef. of $10^{-15} i^{3}$
		c	c	c	c	c
I	l^{\prime}	141	129.29666	I $1 \cdot 399597608$	-0.0732	-0.722
2	$l^{\prime}+l-D$	156	108.47782	23.799651684	+2.8954	$+2.033$
3	$l^{\prime}-l+D$	I 16	16.08046	1.05960 7823	-2.2734	-2.699
4	$2 l+l^{\prime}-2 D$	124	58.7442I	27-81016 5665	$+4.6672$	+3.866
5	$2 l-l^{\prime}-2 D$	128	81.88779	8-OIOI2 6027	$+4.9507$	$+5.302$
6	$2 l^{\prime}+l-D$	132	80.83261	$30 \cdot 810130528$	+2.3814	+1.044
7	$2 l^{\prime}-l+D$	100	$5 \cdot 56222$	8.998276019	-2.0117	-2.839
8	$3 l+l^{\prime}-3 D$	50	12.60583	14.799459467	$+2.8360$	$+2.465$
9	$3 l-l^{\prime}-3 D$	42	17.56110	5.640296314	+2.4259	$+2.503$
Io	$2 F+l^{\prime}-2 D$	80	69.19617	20.09919 2810	- 5988	- .970
IT	$2 F-l^{\prime}-2 D$	44	I-36211	3.939913567	- $\cdot 2837$	-.083
12	$2 F+l+l^{\prime}-3 D$	24	15.43980	$7 \cdot 750885678$	+.2783	$+.145$
13	$2 F-l+l^{\prime}-D$	44	3.80948	$7 \cdot 899155015$	- I.1688	- 1.332
14	$2 F+l-l^{\prime}-3 D$	32	25.89856	5-16022 8798	+.4042	+.521
15	${ }_{2} F-l-l^{\prime}-D$	28	7.07235	0.49923 5250	- 7147	-.56r
I6	$l-D$	251	195.37163	18.00012 8606	$+4.7888$	$+4.606$
17	$2 F-2 D$	51	$48 \cdot 34568$	$8 \cdot 689976707$	--3553	- 357
18	$2 F+l-3 D$	38	$27 \cdot 60045$	$9 \cdot 200003677$	$+.4603$	$+.424$
19	$2 F-l-D$	76	12.88820	$7 \cdot 499531067$	- $1 \cdot 9794$	- 1.911
20	$2 F+2 l-4 D$	94	$47 \cdot 44185$	29.498987852	$+2.9320$	$+2 \cdot 754$
$2 I$	$2 F-2 l$ $2 F+3 l-5 D$	56	$21 \cdot 90768$	$\begin{array}{r}1.510005312 \\ \hline 1.879176462\end{array}$	-2.5829	-2.425
22	$2 F+3 l-5 D$	36	10.19065	13.879176462	+ T .8098	$+\mathrm{r} \cdot 708$

To find the values of i for tabulation in Sect. II, we observe that they are those for which $D=\mathrm{o}^{d}$ or $\mathrm{D}=I 5^{d} \mathrm{o}$, and that the double-entry tables depending on this common argument have been tabulated from $D=-15^{d} \cdot 5$ to $D=+15^{d} \cdot 5$, that is, from $\mathrm{D}=-\mathrm{o}^{d} \cdot 5$ to $\mathrm{D}=+30^{d} \cdot 5$. Hence when D exceeds its period, we subtract the latter and add unity to i. Since D is $43^{d}+\ldots$ at $1900 \cdot 0$, the value of i at this epoch is unity.

To find the values for the beginnings of other centuries we note that either 1236 or 1237 zero values of D are passed over in each century according to its value at the beginning. The choice is obtained from the value of D in Table 2: when D increases from one century to the succeeding century the number is $\mathbf{1 2 3 6}$, when it décreases the number is 1237 .

Similarly for the years of the twentieth century. Turn to the value of D in Table 3: when D increases from one year to the next the number is 12, when it decreases the number is 13 .

In Table 4, where the interval is 30^{d}, every period of D is shown with the resulting additions to the arguments $\mathbf{I - 2 2}$.

Arguments 23-47, 51-62, 7x-78, 82-84.
These are the single-entry arguments. To a number of them have been added certain terms of very long period shown in List i η, Chap. I.

In List ii β are given the full descriptions of these arguments, together with the values used in the tabulation, expressed in parts of the circumference (indicated by the letter ' r ') and in Julian centuries of 36525 days. The notation used for the periodic terms is, at epoch 1850 ,

$$
\begin{aligned}
& s_{1}=\sin \left(20^{\circ} 2 t_{c}+4 \mathrm{r}^{\circ} \mathrm{I}\right), \\
& s_{2}=\sin \left(l+3 T-10 V-2^{\circ} 6 t_{c}+33^{\circ}\right)=\sin \left(76^{\circ} 0+16^{\circ} 23 t_{c}+0^{\circ} 012 t^{2}\right), \\
& s_{3}=\sin \left(4 D-3 l+25 M-23 T+67^{\circ}\right)=\sin \left(233^{\circ} 9-6^{\circ} 07 t_{c}-0^{\circ} 03 t_{c}^{2}\right) .
\end{aligned}
$$

The method for finding the period to be adopted is described in Chap. III. List ii γ gives the number of parts into which the half-day for each argument is divided, the adopted period expressed in days and parts and also in parts alone, and the addition to the adopted period necessary to find the period at the epoch 1900.0. In the cases of Args. 58, 78, 82, 83, 84 no division of the half-day was necessary, and the period is expressed in days only.

In order to obtain the arguments in forms ready for tabulation it is necessary to express them in days and parts of a day. The coefficients of t_{c}^{0} in List iis are the epoch values. The terms given involving $t_{c}^{1}, t_{c}^{2}, t_{c}^{3}$ and constituting the secular variations, are expressed in parts per century; the periodic additions are also shown. To get the values on any day we must further add the number of days since the epoch and subtract the necessary multiples of the adopted periods shown in List ii γ. This process was carried through with the arguments expressed wholly in terms of the parts of each, the final step being the conversion to integral multiples of a half-day and the remaining parts. But since Args. 58, 78, 82, 83, 84 require no division of the half-day, the process was carried through in days and decimal fractions of a day.

Arguments 83,84 contain functions of the time denoted by ϕ, ψ, respectively. An investigation at the end of this chapter shows how these are obtained.

LIst ii β ．Single－entry Arguments in terms of t_{0} and parts of the circumference．

No．	Description	Value．Coefficients of						
		$t_{c}{ }^{\circ}$	$t_{c}{ }^{1}$	$10^{-6} t_{c}^{2}$	$10^{-8} t_{c}{ }^{8}$	$10^{-6} s_{1}$	$10^{-6} 5_{3}$	$10^{-6} s_{8}$
		＋$+\stackrel{\square}{+} .70278884$	r +2373.708870957	＋				
23 24	$2 D-l^{\prime}+270^{\circ}+20.88 s_{1}$ $2 D+l^{\prime}+90^{\circ}$	+0.70278884 $+\quad 19432125$	+2373.708870957 +2573.703591791	＋ 9.75309 +8.91975	+1.9753 +0.1235	＋IG．II	－	－
25	$l+l^{\prime}+90^{\circ}$	＋ 0.06828573	＋1425．549739692	＋33．77314	＋3．0710	－	－	
26	$l-l^{\prime}+270^{\circ}-0^{\circ} \cdot 5+9^{*} 34 s_{1}$	＋ 57669425	＋I225．555018858	＋34．60648	＋4．9228	＋ 7.21	－	－
27	$2 D-l-l^{\prime}+270^{\circ}+17^{\prime \prime} 94 s_{1}$	＋．88026931	＋ $1048 \cdot 156491682$	－24．43672	－2．0216	＋13．84	－	－
28	$2 D+l-l^{\prime}+270^{\circ}$	＋ 52530837	＋3699．261250232	＋43．94290	＋5．9722	－	－	－
29	$2 D-l+l^{\prime}+90^{\circ}$	＋ 37180172	＋I248．151212516	－25．27006	－3．8734	－	－	－
30	$\begin{aligned} & l-0.7797+2.94 s_{1} \\ & +0.31 s_{2}+0.04 s_{3} \end{aligned}$	＋ 82247666	＋I3255523792747	＋34．1898I	＋3．9969	$+2 \cdot 27$	$+0.24$	＋0．03
31	$\begin{aligned} & 2 D+270^{\circ}-0^{c} \cdot 5-\mathrm{I} \cdot 3 \\ & +144^{N} 4^{8} s_{1}+0^{N} .62 s_{2}+0.08 s_{8} \end{aligned}$	$+.69834772$	＋2473．70623 13735	$+9.33642$	＋1．0494	＋11．17	$+0.48$	＋0．06
32	$\begin{aligned} & 2 D-l+270^{\circ}-3.407 \\ & +11.54 s_{1}+0.31 s_{2}+0.04 s_{2} \end{aligned}$	$+.87587567$	＋1148．15385 20988	-24.85339	－2．9475	＋ 8.90	＋0．24	＋0．03
33	$\begin{aligned} & D-0.5+7.24 s_{1}+0.31 s_{2} \\ & +0.04 s_{2} \end{aligned}$	＋974I9 114	＋1236．853II 5687	＋ $4 \cdot 66821$	＋0．5247	＋ $5 \cdot 59$	＋0．24	＋0．03
34	$2 l-2 D+90^{\circ}-8.60 s_{1}$	$+\cdot 19648401$	＋177．398527176	$+59.04320$	＋6．9444	－6．64	－	－
35	$2 D+l+270^{\circ}+17^{\prime \prime} 425_{1}$	＋ 52107458	＋3799．258610648	＋43．52623	＋5．0643	＋13．44	－	－
36	$4 D-2 l+270^{\circ}$	＋．00207103	＋3296．30770 4198	－49．70678	－5．8950	－	－	－
37	$4 D-l+270^{\circ}$ $2 D+2 l+270^{\circ}$	$+\quad 82459056$ $+\quad .3435911$	+3621.860083473 +5124.810989924	-15.51697 +77.71604	-1.8981 +0.0432	－	－	二
39	$4 D+l+270^{\circ}$	＋$\cdot 46962962$	＋6272．964842023	＋ +52.86265	+9.0432 +6.0957	－	－	－
40	$2 F+90^{\circ}$	＋31251840	＋2684．455736559	－ 0.52469	－0．1852	－	－	－
$4 T$	$2 F-2 D+90^{\circ}$	＋ 36396335	＋210．74950 5185	－9．86III	－I． 2346	－	－	－
42	$2 F-l+90^{\circ}$	＋ 48999887	＋1358．903357284	－34．71450	－4．1821	－	－	－－
43	$2 F+l+90^{\circ}$	＋－13503792	＋4010．00811 5834	＋33．66512	＋3．8117	－	－	
44	$2 F+2 D+90^{\circ}$	＋ 26 107 344	＋5158．161967933	＋8．81173	＋0．8642	－	－	
45	$2 F+2 D-l+90^{\circ}$	＋ 43855391	＋3832．609588658	-25.37808	-3.1327	－	－	
46	$2 F+2 l+90^{\circ}$	＋ 95755745	＋5335．560495109	＋67．85493	＋7．8086	－		
47	l l	$+\quad 24576620$ +.80000241	＋ 99.9973604167 +2861.854263735	＋ 0.41667 +58.51851	-0.9259 +6.7592	-4.94	二	
51 52	$2 F+2 l-2 D+90^{\circ}$ $2 F+l+l^{\prime}-2 D+90^{\circ}$	$+\quad .0090241$ +.18224908	$+2861 \cdot 854263735$ $+1636 \cdot 299244877$	+58.51851 +23.91203	+6.7592 +r .8364	仡		
53	$2 D-l^{\prime}-F+270^{\circ}$	＋．67152964	＋1031．48100 2678	＋ 10.01544	＋2．0679	－	二	
54	$2 D+l^{\prime}-F+90^{\circ}$	＋．16306205	＋1231475723512	＋9．18210	＋0．2161	－	－	
55	$2 D-F+270^{\circ}+14{ }^{\prime \prime} 27 s_{1}$	＋．66729585	＋1131．4783630941	＋9．59877	＋1．1420	＋II．OI	－	－
56	$4 D-F+270^{\circ}$ 。	＋ 61585089	＋3605．18459 4469	＋18．93519	＋2．1914	－		
57	$4^{D} D-F-b+270^{\circ}$	＋ 79333137	＋2279．632215194	－ 15.25462	－I．8055	－		
58	$F-l+270^{\circ}$	＋ 95887397	＋16．675489004	－34．45216	-4.0895	－		
59	$F+l-2 D+270^{\circ}$	＋ 65522368	＋194．074016180	＋24．59104	＋2．8549	－		
60	$2 D+l-F+270^{\circ}$	＋ 48981538	$+2457.030742370$	＋ 43.78858	＋5．1389	－		
61	$2 l-F+270^{\circ}{ }^{\circ}$	$+\quad 36377986$ $+\quad 3123391$	＋1308．87689 0271	＋68．64197	＋8．0864	－	－	
		＋ 31233491	＋3782．583121645	＋77．97839	＋9．1358			
$7{ }^{1}$	$\begin{gathered} l-0.5-0.5198+2 . .94 s_{1} \\ +0.3 I s_{2}+0.04 s_{2} \end{gathered}$	＋ 82243542	＋1325．5523792747	$+34 \cdot 1898 \mathrm{I}$	＋3．9969	$+2.27$	＋0．24	＋0．03
72	$\begin{gathered} 2 D-l-1 \cdot 1085+11 I^{n} 54 s_{1} \\ +0.31 s_{2}+0.04 s_{2} \end{gathered}$	＋ 12587568	＋1148．15385 20988	－24．85339	－2•9475	$+8.90$	＋0．24	＋0．03
73	$2 D+l+17^{*} 42 s_{1}$	＋．77107458	＋3799．258610648	＋43．52623	＋5．0643	＋13．44	－	－
74	$2 D-l^{\prime}$	＋ 95278884	＋2373．708870957	＋9．75309	＋1•9753	－	－	
75	$2 l+2 F-2 D+180^{\circ}$	＋ 2590024 I	＋2861．85426 3735	＋58．51851	＋6．7592	－	－	－
76	$2 l+2 D$	＋ 59355941 t	＋ 5124.810989924	＋77．71604	$+9.0432$	－	－	
	${ }^{4} D-l-2 F-2 D+180^{\circ}$	+.07459056 +.60972055	+3621.860083473 $+\quad 310.74686562$	-15.51697 -10.27778	-1.8981 -2.1605	－	－	
78 82	$l^{\prime}+2 F-2 D+180^{\circ}$ $-8+90^{\circ}$	$+\quad .60972955$ $+\quad .53004646$	Pr $+\quad 3107746865602$ $+\quad 5972616690$	-10.27778 $-\quad 57760$	-2.1605 -0.6173	－	二	－
83	$-8+280.78{ }^{8}+\phi$	＋ 05999090	－，	．＂	．，	$(+\phi)$	－	－
84	$-8+189: 95+\psi$	＋ 80768535	＂	＂	＂	$(+\psi)$	－	

List ii γ. Divisions and periods of the single-entry Arguments.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{No.} \& \multirow[b]{2}{*}{$$
\begin{aligned}
& \text { Parts } \\
& \text { in } 0.5
\end{aligned}
$$} \& \multicolumn{2}{|l|}{Adopted Period in} \& \multirow[b]{2}{*}{Per. at epoch less adopted period} \& \multirow{2}{*}{No.} \& \multirow[b]{2}{*}{$$
\begin{aligned}
& \text { Parts } \\
& \text { in } 0.5
\end{aligned}
$$} \& \multicolumn{2}{|l|}{Adopted Period in} \& \multirow[b]{2}{*}{Per. at epoch less adopted period}

\hline \& \& Parts \& Days and parts \& \& \& \& Parts \& Days and parts \&

\hline \& 599 \& 18.434 \& ${ }_{15}{ }^{\text {d }} 00+46{ }^{\text {c }}$ \& +0.00028 342 \& \& 25 \& 18263 \& $3{ }^{\text {d }}$ d $0+13$ \& -0.01793 337

\hline 23
24 \& 599
167 \& 18434
4740 \& $15 \cdot 0+464$
$14.0+64$ \& +0.00028342
$-\quad .00195247$ \& 47 \& 25
19 \& 18263
485 \& $365.0+13$
$12.5+10$ \& -0.01793337
$-\quad .0172329$

\hline 25 \& 189 \& 9655 \& $25 \cdot 5+46$ \& + .00054 090 \& 52 \& 3 \& 134 \& $22 \cdot 0+2$ \& - .06972979

\hline 26 \& 142 \& 8464 \& $29 \cdot 5+86$ \& + .00189 333 \& 53 \& 39 \& 2762 \& $35 \cdot 0+32$ \& - .00051324

\hline 27 \& 258 \& 17981 \& $34 \cdot 5+179$ \& - 000179071 \& 54 \& 47 \& 2788 \& $29 \cdot 5+15$ \& -.00350 567

\hline 28 \& 178 \& 3515 \& $9 \cdot 5+133$ \& - .00089 060 \& 55 \& 130 \& 8393 \& $32 \cdot 0+73$ \& + .00185470

\hline 29 \& 207 \& 12115 \& $29 \cdot 3+109$ \& - -00155400 \& 56 \& 80 \& 1629 \& 10.0 +28 \& - .00117266

\hline 30 \& 330 \& 18186 \& $27 \cdot 5+36$ \& + -003342388 \& 57 \& 112 \& 35^{89} \& $16 \cdot 0+5$ \& - -00000 892

\hline 37 \& 294 \& 8682 \& $14 \cdot 5+156$ \& - -007074722 \& 58 \& - \& - \& $2190 \cdot 5$ \& -0415945

\hline 32 \& 335 \& 21314 \& 31-5+209 \& - .001048320 \& 59 \& 5 \& 1882 \& $188.0+2$ \& +ofor392 020

\hline 33 \& 98 \& 5788 \& $29 \cdot 5+6$ \& -.00471648 \& 60 \& 171 \& 5084 \& $14 \cdot 5+125$ \& +.00232 223

\hline 34 \& 14 \& 5765 \& $205 \cdot 5+$ IT \& - -0141443 \& 6 I \& 53 \& 2958 \& $27 \cdot 5+43$ \& - .00599 096

\hline 35 \& 277 \& 5326 \& $9 \cdot 5+63$ \& - .00035805 \& 62 \& 205 \& 3959 \& $9 \cdot 5+64$ \& $+.0009045$

\hline 36 \& 117 \& 3722 \& $15 \cdot 5+95$ \& -.00316813 \& 71 \& 220 \& 12124 \& $27 \cdot 5+24$ \& + -002228259

\hline 37 \& 396 \& 7987 \& 10.0+67 \& +.00097003 \& 72 \& 109 \& 6935 \& $31 \cdot 5+68$ \& + .00264 398

\hline 38 \& 299 \& 4262 \& $7 \cdot 0+76$ \& +.00108510 \& 73 \& 277 \& 5326 \& $9 \cdot 5+63$ \& -.00035 805

\hline 39 \& 31 \& 36 r \& $5 \cdot 5+20$ \& +.00154 505 \& 74 \& 71 \& ${ }_{2185}$ \& $15 \cdot 0+55$ \& -.00163 586

\hline fo \& 311 \& 8463 \& $13 \cdot 5+66$ \& + 0.00041033 \& 75 \& 15 \& 383 \& $12 \cdot 5+8$ \& - 118868 \%

\hline 47 \& 21 \& 7279 \& $173 \cdot 0+13$ \& + .0206489 \& 76 \& 59 \& 841 \& $7 \cdot 0+15$ \& -.00313036

\hline 42 \& 152 \& 8171 \& $26 \cdot 5+115$ \& +.00049 130 \& 77 \& 65 \& 1311 \& $10 \cdot 0+11$ \& -.00236603

\hline 43 \& 189 \& 3443 \& $9 \cdot 0+4 \mathrm{I}$ \& -.00198 075 \& 78 \& - \& - \& 117.5 \& + Ofo3940

\hline 44 \& 179 \& 2535 \& $7 \cdot 0+29$ \& +.00182 454 \& 82 \& 二 \& - \& 6800-0 \& -1.63672

\hline 45 \& 133

68 \& 2535 \& $9 \cdot 5+8$ \& - .00399395 \& 83 \& - \& 二 \& ., \& ..

\hline 46 \& 68 \& 931 \& $6 \cdot 5+47$ \& -.00127840 \& 84 \& - \& - \& . \& ,

\hline
\end{tabular}

The remaining double-entry arguments.
The arguments not included in the lists are those of the double-entry tables which do not have D as one of their arguments.

Arg. 48 is the value of $2 F-2 l$ when $l=0$. It is sufficiently accurate to take Arg. 30 for l since the small constant and periodic terms which have been added to Arg. 30 exert no sensible effect. We can also omit the term depending on t_{c}^{3} in Arg. 48. Taking the value of Arg. 30 given in List ii β, putting it equal to i and solving for $t=100 t_{c}$, we find

$$
t=-0.062051+0.075440247827 i-1.47 \times 10^{-12} i^{2} .
$$

Whence, from the values of F, l given above,

$$
\text { Arg. } \begin{aligned}
4^{88} & =0^{!} 4 \mathrm{I} 7479+0^{!} 33350978009 t-6!890 \times 10^{-9} t^{2} \\
& =0^{!} 396784+0^{?} .02516006040 i-39^{!} 8 \times 10^{-12} i^{2} \\
& =63^{\epsilon} \cdot 0887+4!000449604 i-6!28 \times 10^{-9} i^{2}
\end{aligned}
$$

the circumference being divided into 159 parts. The 'addition' to Arg. 48 whenever Arg. 30 passes through zero is 4^{c} with sufficient approximation during a run of a year, and this addition is adopted in Table 48, Sect. III.

The period of Arg. 30 is $27^{d} \cdot 55455$ and 159 of these make $438 \mathrm{r}^{d} \cdot \mathrm{I} 7$. The halfday of Table 48 , III, is slightly increased so as to make this period appear to be 438 I .00 ; the accumulated error in a run of a year is less than od 02 and this produces no sensible change in the function.

LIST ii δ. Expressions for the single-entry arguments in parts of a half-day and centuries.
The number of days from the Epoch $1900 \cdot 0$ is to be added to each argument.

No.	Values of the coefficients of						
	$t_{c}{ }^{0}$	$t_{c}{ }^{1}$	$t_{c}{ }^{2}$	$t_{c}{ }^{3}$	s_{1}	s_{2}	s_{3}
	12955.209	- $\quad 0.67276$	c +0.1797889	c +0.00036413	+ ${ }^{\text {c }}$		
23	12955.209	$-\quad 0.67276$ $+\quad 5.02508$	+0.1797889	+0.00036413 +.0000058	+0.2970	-	-
24	$92 I \cdot 083$ $66 I \cdot 347$	$+\quad 5.02508$	+0.0422796 +.3270928	+.00000 585	-	-	-
25 26	$661 \cdot 347$ $488 \mathrm{I} \cdot 1400$	$+\quad 0.77108$ $-\quad 2.320386$	$+\quad .3270928$ $+\quad .2929093$	+ 000029743 +.00041667	+ .0610	-	-
26 27	$488 \mathrm{I} \cdot 1400$ $15828 \cdot 123$	$-\quad 2.320386$ $+\quad 1.87694$	+ $+\quad .2929093$ -.4393966	+.00041667 +.00036350	+.0610 $+\quad .2489$	-	-
28	$1846 \cdot 458$	1.29456	+ 1544593	+.00020 992	-	-	-
29	4504.377	+ 1.93963	- 30614 66	- 000046926	-	c-	-
30	$14957 \cdot 56045$	4.43051 I	+ .62177599	$+\cdot 000726876$	$+.0413$	+0.0044	+0.0005
37	6063.0549I	+ 17.500783	+ -98105 874	+.00009 II09	$+.0970$	$+.004 \mathrm{I}$	$+.0005$
32	18668.41401	+ I.203633	-.52972513	- 0000628230	$+\cdot \mathrm{I} 898$	$+.0051$	$+.0006$
33	$5638 \cdot 6183$	$+5.83360$	+.0270196	$+.00003037$	$+.0324$	$+\cdot 0014$	$+.0002$
34	$5456 \cdot 4803$	+ 2.50919	$+.3403832$	+ .00040 034	-.0383	-	-
35	$2775 \cdot 2432$	$+\quad 1.36031$	+ 2318207	+ :00026877	$+.0716$	-	-
36	7.708	+ 7.27501	- .1850085	-.0002I 94I	--	-	-
37	$6586 \cdot 005$	- 3.51328	-.1239341	-.00015 160	-	-	-
38	1464.398	- 5.56098	+ 3312257	+ .00038542	-	-	-
39	169.536	- 9.69207	+ -0190835	+ .00002 201	-	-	-
40	$2644 \cdot 8432$	- I.IOI50	- -0044405	- -00001 567	-	-	-
41	2709.290	- 4.35175	- .0717792	- .00008987	-	-	-
42	$4003 \cdot 781$	- 0.66763	- .2836522	- .00034172	-	-	-
43	$464 \cdot 935$	+ 7.94283	+ - II59089	+ 000013124	-	-	-
44	$661 \cdot 822$	- 9.41127	+ .0223378	+ .00002 191	-	-	-
45	IIII•734	+ 15.30727	-.0643333	- 000007941	-	-	-
46	$89 \mathrm{I} \cdot 486$	+ 6.82097	+.0631729	$+\cdot 00007270$	--	-	-
47	$4488 \cdot 4283$	+ I.793288	- .00760 964	- .00016 9097	-. 0902	-	-
51	$4 \cdot 37$	$+49.3180$	+ .028380	$+\quad .0000328$ $+\quad .0000025$		-	-
52 53	24.42 1854.765	+114.2102 $+\quad 0.52940$	+.003203 $+\quad .0276626$	$+\quad .0000025$ $+\quad .00005712$	-	-	-
54	454.617	$+\quad 4.31715$	+.02559 97	$+.00000602$	-	-	-
55	$5600 \cdot 6140$	- 2.098552	+ .08056250	+ .00009 5848	$+.0924$	-	-
56	998-295	$+4.22765$	$+.0306939$	+ •00003 552	-	-	-
57	2847. 266	+ 0.02034	- -0547488	- -00006480	-	-	-
58	2100 d1	+ 2.66	-0.075463	-0.0000896	-	-	-
59	1233 ${ }^{\text {c }}$ 1316	- 2\%70155	+0¢0462807	+0¢00005 373	-	-	-
60	$2490 \cdot 222$	- 5.70579	+ 2226212	+ . 00026126	-	-	-
$6 T$	$1076 \cdot 061$	+ 7.84144	$+\cdot 2030425$	+ .00023920	-	-	-
62	$1236 \cdot 53$	- 3.4213	+ 308716	+ .0003617	.	-	+-0003
71	9971.2070	- 2.953674	+ - 4145I 733	$+\cdot 000484584$	$+.0275$	+.0029	$+.0003$
72	$872 \cdot 9478$	- 3.035695	- •17235833	-.00020 4409	+ .0630	$+.0017$	$+\cdot 0002$
73	4106.743	$+\quad 1.36031$ $+\quad 3.88306$	$+\quad .2318207$ $+\quad .0213105$	$+\quad .00026877$ +.00004316	+.0716	-	-
74 75	2081.843 99.20	1 $+\quad 3.88306$ +340.1832	$+\quad .0213105$ $+\quad .022405$	$+\quad .00004316$ $+\quad .0000259$	-	-	-
76	$499 \cdot 213$	+ 16.04252	+.0653589	+.00007605	-	-	-
77	$97 \cdot 7^{88}$	+ 8.56943	- 0203427	- 00002488	-	-	-
78	71.64	- I2d2439	-0.00120 8	-0.00000 259	-	-	-
82	$3604 \cdot 32$	+ 8.79347	-.039238	- .00004 197	+	-	-
83	408.00	"	,	"	$(+\phi)$	-	-
84	$5492 \cdot 23$	"	"	"	$(+\psi)$	-	-

The argument is tabulated with reference to Arg． 30 in the same manner as Args．r－22 with reference to D ，the value of i at epoch being o ．

Args．49，50．By definition，and by the values in Chap．I，

$$
\begin{aligned}
& \text { Arg. } 49=2 F+8-0^{\circ} \mathrm{IIt} t_{e}-10^{\circ} 3+7^{d} \mathrm{o} \\
& =977004^{\prime \prime}+34720913^{\prime 2} 27^{t}+0.00068 t^{2}-1296000^{\prime \prime} i+7^{d} .0 \\
& =0^{!} 75386+26!79082814 t+6!05 \times 10^{-10} t^{2}-i+7^{d} \cdot 0 \\
& =10^{d} 2776+7^{d} \mathrm{o}+d+7^{d .2} \times \mathrm{Io}^{-5} t_{\mathrm{e}}{ }^{2}-13^{6} 63339715^{i} i \text {, }
\end{aligned}
$$

the argument being expressed in days by the methods previously used and the coefficient of t being used to find the period．The argument is tabulated from this expression in the same manner as D．

Arg． 50 is the value of l when Arg． $49=7.0$ ．From the third of the above expressions for Arg．49，we find

$$
t=-0.028139+0.037326207 \mathrm{I} i i-2.73 \times 10^{-14} i^{2},
$$

and thence from the given value of l ，

$$
\begin{aligned}
& \text { Arg. } 50=0: 82252+13^{!} \cdot 2555^{2} 37928 t+3!42 \times 10^{-9} t^{2} \\
& =0^{?} .44952+0^{?} .4947784264 i+4^{!} .42 \times 10^{-12} i^{2} \\
& =45^{〔} .402+49^{〔} 97262 \text { 107i }+4^{\frac{c}{4}} 46 \times 10^{-10} i^{2} \text {, }
\end{aligned}
$$

the circumference being divided into ior parts．The addition to Arg． 50 whenever Arg． 49 passes through zero is $50 \% 00$ with sufficient accuracy during a run of a year， and this addition is adopted in Table 49，III．

The period of Arg． 49 is $13^{d} .6334$ and ror of these make $1376!97$ ．The half－day of Table 49，III，is slightly diminished so as to make this period $1377^{d} .00$ with an insensible error in a run of a year．

Arg． 50 is tabulated in the same manner as Arg．48，the value at epoch being obtained with $i=\mathrm{I}$ ．

Args．63，64．By definition and by the values in Chap．I，
Arg． $63=2 D-F-8+0^{\circ} 1 t_{e}+9^{\circ} 7+16!0$

$$
\begin{aligned}
& =290675^{\circ} 63+14733592^{\prime \prime} 2980 t+0.000496 t^{2}-1296000^{\prime \prime} i+16{ }^{4} 0 \\
& =\mathrm{o}^{!} 224^{2} 87+\mathrm{II}^{!} 3685 \mathrm{I} 25757 t+3^{!} 82 \times \mathrm{IO}^{-10} t^{2}-i+\mathrm{I}^{d} \mathrm{o} \\
& =7^{d} \cdot 2059+\mathrm{I}^{d} \mathrm{o}+d+\mathrm{r}^{d} .23 \times 1 \mathrm{o}^{-8} t^{2}-32^{d} \cdot \mathrm{I} 282 \mathrm{I} 3569 i,
\end{aligned}
$$

which is tabulated like D．
Arg． 64 is the value of l when Arg． $63=16 d$. ．Proceeding，as before，with Arg． 63 we find

$$
t=-0.0197288+0.0879622548 i-2.6 \mathrm{I} \times 10^{-13} i^{2} .
$$

Whence，with the value of l previously given，and since we can always subtract any multiple of the circumference，

$$
\begin{aligned}
\text { Arg. } 64 & =0^{!} 561004+0!1659857613 i+2^{?} 19 \times 10^{-11} i^{2} \\
& =19^{9} 635 \mathrm{I}+5^{c} 80950165^{i}+7^{〔} 67 \times \mathrm{Io}^{-10} i^{2},
\end{aligned}
$$

the circumference being divided into 35 parts．The addition to Arg． 64 when Arg． 63 passes through zero is 6% with sufficient accuracy during a run of a year， this being adopted in Table 29，IV．

The period of Arg. 63 is $32^{d} \cdot 1282$ and 35 of these make $1124^{d} \cdot 49$. The half-day in the table is slightly diminished to make this II24. ${ }^{d} 50$ with an insensible error in a run of a year.

The value at epoch is obtained with $i=0$, and the argument is tabulated like other horizontal arguments.

Args. 65, 66. By definition and by the values in Chap. I,

$$
\begin{aligned}
\text { Arg. } 65 & =L+V-T=55^{2} \mathrm{II}^{\prime \prime}+\mathrm{I} 8 \mathrm{r} 36257^{\prime \prime} \cdot 7588 t-\mathrm{I} 29600^{\prime \prime} i \\
& =\mathrm{o}^{?} \cdot 42447 \mathrm{o}+\mathrm{I} 3^{?} \cdot 994026049 t-i \\
& =\mathrm{II} \cdot{ }^{d} \cdot 788+d-26^{d} \cdot \mathrm{IOO} 423047 i,
\end{aligned}
$$

which is tabulated like D.
Arg. 66 is the value of $V-T$ when Arg. $65=0$. Proceeding, as before, with Arg. 65 we find

$$
t=-0.030332+0.071459063785 i
$$

Hence

$$
\text { Arg. } \begin{aligned}
66 & =0^{?} \cdot 675 \mathrm{I} 96+0^{?}!6255 \mathrm{I} 23052 t=0^{?} 656222+0!04469852373 i \\
& =29^{!} \cdot 5300+2^{!} \text {OII43 3568i, }
\end{aligned}
$$

the circumference being divided into 45 parts. The addition to Arg. 66 when Arg. 65 passes through zero is 2.0 with sufficient accuracy during a run of a year, this being adopted in Table 30, IV.

The period of Arg. 65 is $26^{d} \cdot 1004$ and 45 of these make $1174^{d} \cdot 52$. The half-day of the table is slightly increased in order to make this $1174^{d} .50$ with an insensible error in a run of a year.

The value at epoch is obtained with $i=0$ and the argument is tabulated like other horizontal arguments.

Args. 67,68 . By definition and by the values in Chap. I,

$$
\begin{aligned}
\text { Arg. } 67 & =L+3 V-5 T=291428^{\prime \prime}+17165630^{\prime \prime} 7898 t-1296000^{\prime \prime} i \\
& =0 \cdot 224867+13^{\prime \prime} \cdot 24508549 t-i=6^{d} \cdot 2010+d-27^{d} \cdot 5762659582 i,
\end{aligned}
$$

which is tabulated like D.
Arg. 68 is the value of $V-T$ when Arg. $67=0$. Proceeding with Arg. 67 , as previously with Arg. 65, we find

$$
t=-0.0169774+0.0754997 \text { OI4 } 6 i .
$$

Hence, with the value for $V-T$ given above,

$$
\text { Arg. } 68=\mathrm{o}^{?} .664576+\mathrm{o}^{?} .0472259923 i=27^{〔} .912+\mathrm{I}^{〔} .98349 \mathrm{x} 68 i,
$$

there being 42 parts in the circumference. The addition to Arg. 68 when Arg. 67 passes through zero is 2.0 with sufficient accuracy in a run of a year, this value being adopted in Table 3I, IV.

The period of Arg. 67 is $27^{d} \cdot 5763$ and 42 of these make $115^{8}{ }^{d} \cdot 20$. The half-day of the table is slightly increased so as to make this $1158^{d} 00$, the error being insensible in a run of a year.

The value at epoch is obtained with $i=0$ and the argument is tabulated like other horizontal arguments.

Args．69，70．By definition and by the values in Chap．I，
which is tabulated like D．
Arg． 70 is the value of $V-T$ when Arg． $69=0$ ．Proceeding as before，with Arg．69，we find

$$
t=-0.07147746+0.07580742174 i
$$

Hence with the value for $V-T$ given above

$$
\text { Arg. } 70=0 \div 630486+0 \div 0474 \mathrm{I} 8475 \mathrm{I} 2 i=26 e_{4804}+1!991575955 i
$$

there being 42 parts in the circumference．The addition to Arg． 70 when Arg． 69 passes through zero is 2% with sufficient accuracy in a run of a year，this being adopted in Table 32，IV．

The period of Arg． 69 is $27^{d} \cdot 6887$ and 42 of these make $1162^{d} \cdot 93$ ．The half－day of the table is slightly decreased in order to make this $1163^{d} 00$ ，the error being insensible in a run of a year．

The value at epoch is obtained with $i=0$ and the argument is tabulated like other horizontal arguments．

Args．$l^{\prime}, 79,80,8 \mathrm{r}$ ．From Chap．I，in decimal parts of the circumference and in days，

$$
l^{\prime}=-\mathrm{o} .0042338+\left(\mathrm{I}^{\prime}-\mathrm{o} .000026396\right) t-i=-\mathrm{I}^{d} .546+d-365^{d} .25964 \mathrm{II} i .
$$

Args．79，80，8I are given their values at the times when $l^{\prime}=0$ nearest to the beginning of the year．Within the range of dates for which the arguments are tabulated，these times are obtained by giving to i values equal to the integral number of years from $1900 \cdot 0$ and l^{\prime} is tabulated with this in view．When $l^{\prime}=0$ we have

$$
t=0.0042339+\mathrm{r} .00002639653 i .
$$

The three arguments have their circumferences each divided into 73 parts，and to J is added the periodic term shown in Chap．I．From the values in that chapter we have

$$
\begin{aligned}
\text { Arg. } 79 & =V-T=0!6751955+0!6255 \mathrm{I} 23052 t=0!677844+0 \div 6255288 \mathrm{r} 66 i \\
& =49^{〔} \cdot 4826+45^{〔} 6636036 \mathrm{I} i,
\end{aligned}
$$

$$
\text { Arg. } 80=T-J-0^{\circ} 33 \sin \left(38 \div 3 t_{0}+134^{\circ}\right)
$$

$$
=0 \div 6156845+0 \div 9156796035 t+0.00092 \sin \left(38^{\circ} 3 t_{0}+314^{\circ}\right)
$$

$$
=0!61956 \mathrm{I}+\mathrm{o}^{\prime} 9157037742 i+0 \div 00092 \sin \left(38^{\circ} 3 t_{c}+314^{\circ}\right)
$$

$$
=45^{〔} 2280+66 \div 846375521 i+0 € 067 \sin \left(38^{\circ} 3 t_{0}+314^{\circ}\right),
$$

$$
=33^{e} \cdot 7955+34^{e} 18734906 i .
$$

These are tabulated with $i=0, \mathrm{I}, \ldots 99$ for the years of the twentieth century and with i in multiples of 100 and without the constant term，for the centuries． For the periodic term in Arg． 80 it is sufficient to take the value for the middle of

$$
\begin{aligned}
& \text { Arg. } 69=2 D-F+3^{2} V-3 T=1221975^{\prime \prime}+1709595 \text { r' }^{\prime \prime} 4282 t-1296000^{\prime \prime} i \\
& =0^{!} 942882+13^{!} \text {¹9132 } 0546 t-i=26!\text { 1071 }+d-27^{4} .6886607915 i,
\end{aligned}
$$

any century. Hence for the twentieth century we use the value 333° of its argument and for other centuries the value $0.067\left\{\sin \left(38^{\circ} 3 t_{c}+333^{\circ}\right)-\sin 333^{\circ}\right\}$. These arguments need no change during a run of a year.

$$
\text { The Mean Longitudes } \mathrm{L},-\Omega \text {, } \text {. }
$$

The Mean Longitude, L. To the adopted value of the mean longitude given in Chap. I must be added the three terms of very long period, namely,

$$
+0^{\prime \prime} 840 s_{1}+0^{\prime \prime} 3 \operatorname{los}_{2}+0.040 s_{3}
$$

where s_{1}, s_{2}, s_{3} have the significations given in the description of List ii β above. These terms were tabulated by centuries and the first and second differences computed in the manner explained in Chap. III. The values of the terms at the beginning of the century, and the portions to be multiplied by the fraction of the century and by the square of this fraction are, for the twentieth century, +0.03 I , $+0.1 \mathrm{I} 88,-0.056$. After the tabulation by centuries of the three terms, these quantities must be subtracted from the century values and from the parts multiplied by the fraction of the century and by the square of this fraction, since the value for a year in any century other than the twentieth is obtained by adding the value for that century in Table 2 to the value for the corresponding year of the twentieth century, and since in Table 2, all values for 1900 are to be zero.

It is also necessary to subtract the sum of the constants which have been added to the tables of Sect. III. This sum is

$$
398 \mathrm{I} 44^{\prime \prime} 369+1488.80\left(-0 \cdot 002480000 t_{c}\right)=398 \mathrm{I} 4^{\prime \prime} 369-3^{\prime \prime} 692224 t_{c} .
$$

Hence, for the purposes of tabulation in Table 2,

$$
\begin{aligned}
\mathrm{L}= & +\mathrm{I} 732564409.7752224 t_{c}+7^{\prime \prime \prime} 1400 t_{c}{ }^{2}+0.000680 t_{c}{ }^{3} \\
& +0^{\prime \prime} 840 s_{1}+0^{\prime \prime} 3 \mathrm{IOs}_{2}+\mathrm{o}^{\prime \prime} .040 s_{3}-0^{\prime \prime} .93 \mathrm{I}-0^{\prime \prime} \mathrm{I} 98 n+0^{\prime \prime} .056 n^{2},
\end{aligned}
$$

where n is the fraction of any century; and for tabulation in Table 3,

$$
\mathrm{L}=933758^{\prime \prime} 272+1732564409.950 t_{c}+7^{\prime \prime} 084 t_{\mathrm{c}}{ }^{2}+\mathrm{o}^{\prime \prime} 0068 t_{c}{ }^{3} .
$$

For tabulation in Table 4, the second term of the latter expression is alone used.

The node, 8. The node is only needed with the negative sign and therefore $-\infty$ is tabulated. The treatment is precisely the same as that of L but one less place of decimals is required. There is only one long period term, namely $-0.63 s_{1}$ and the three portions of this for the twentieth century are - $0^{\prime \prime} 49,-0^{\prime \prime} 14,+0^{\prime \prime} .03$. The sum of the constants to be subtracted from $-\Omega$ is

$$
-562.39-425^{\prime \prime} 80\left(-0.00248000 t_{c}\right)=-562^{\prime \prime} 39+\mathrm{I} " 05598 t_{c} .
$$

Hence, for the purposes of tabulation in Table 2,
 and for tabulation in Table 3,

$$
-8=363502^{\prime \prime} \mathrm{II}+6962910.03 t_{c}-7^{\prime \prime} 45 t_{c}{ }^{2}-0.008 t_{c}{ }^{3} .
$$

For tabulation in Table 4, the second term of the last expression is alone used.
The perigee, w. The longitude of perigee is not needed in finding the place of
the moon by these tables; but it is given in many almanacs and has therefore been tabulated here. The only addition made to it is the term of very long period, $-2^{\prime} \mathrm{Ios}_{1}$; the three portions of this for the twentieth century are $-\mathrm{I}^{*} 64,-0^{\prime \prime} 47$, $+\mathrm{o}^{\prime} \mathrm{II}$.

Hence, for Table 2,

$$
\varpi=1464^{8} 522^{\prime \prime} 52 t_{e}-37^{\prime \prime} 17 t_{0}{ }^{2}-0.045_{0}{ }^{3}-2^{\prime \prime} \mathrm{Ios}_{1}+\mathrm{I}^{\prime \prime} 64+0^{\prime \prime} 47 n-0^{\prime \prime} \mathrm{II} n^{2},
$$

and for Table 3,

$$
\omega=1203584^{\circ} 76+14648522^{\circ} 05 t_{0}-37^{\circ} 06 t_{0}^{2}-0.045 t_{e}{ }^{3} .
$$

The second term of this last expression is alone used in Table 4. The values are given to the nearest second.

The terms contained in the Tables of Sections III-VI.

Lists iii-vi which follow show the terms which have been included in the tables of the succeeding sections. The notations for the arguments of the terms are the same as those of Lists $\mathrm{i} a-\mathrm{i} \eta$. The reference numbers also correspond to those in the lists referred to so that the method of disposal of all terms can be found from either set. The constant which has been added to nearly all the tables so that the values may be always positive is shown. The arguments of terms which contain numerical angles are reckoned from the epoch for which they were computed, namely $1850^{\circ} 0$, except those in $\mathrm{P}_{22-\mathrm{P}} 38$ where the epoch is 1900.0 .

In List iii, the coefficients are given in seconds of arc. In the tables of Sect. III the unit is oor, the computations having been taken one place further. Certain terms in List $i \eta$ are to be added to the arguments and coefficients of certain terms in List ia; these produce the four terms shown in List iii under Table 49*; the epoch of the arguments of these four terms is 1850 .

In List iv, the coefficients of the terms in S, N are given in seconds of arc to one place further than in the tables, the latter being expressed in units of oir and oor, respectively. The coefficients of the terms in C and the tables included in C are expressed in units of IO^{-6}, the extra place to which the terms are carried in the list being indicated by the figure following the decimal point. Table $29 \dagger$ of the list is like Table 49 in List iii.

In List v , the coefficients are given in seconds of arc, the unit of the tables of Sect. V being o"oor.

In List vi, the coefficients of the terms in Tables $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ are given in seconds of arc, the tables being expressed in units of oor. The coefficients of the terms in Tables P 4, P 5, P6, and the tables themselves are given in units of ${ }_{0}$ o.oor of Arg. 30. Similarly terms in P 7, P 8, P 9 and the tables are given in units of 10^{-7} of the values in Table 30, Sect. III; terms in P io, $\mathrm{P}_{11}, \mathrm{P}_{12}$ and

[^5]the tables in units of $\mathrm{o}^{\circ} \mathrm{oI}$ of Arg. 3I; terms in $\mathrm{P}_{13}, \mathrm{P}_{14}{ }^{\prime}, \mathrm{P}_{15}$ and the tables in units of 10^{-6} of the values in Table 3I, Sect. III; terms in P I6, P I7, P I8 and the tables in units of o_{0} or of Arg. 32; terms in $\mathrm{P}_{19}, \mathrm{P}_{20}, \mathrm{P}_{21}$ and the tables in units of 10^{-6} of the values in Table 32, Sect. III.

The units of the coefficients of terms in Tables P 22 to P 33 are shown, the superscript letter ' c ' denoting, as usual, a division of the corresponding argument. Tables P 22-P 24 are in units of $0^{\prime \prime}$ or ; Tables $\mathrm{P}_{25}-\mathrm{P}_{27}$ in units of o^{c} oor of Arg. 30;
 0 o. OI of Arg. 32.

The method of formation of Tables P 34, P 35, P 36, P 37 and Args. 83, 84 requires special explanation. The Arg. F, the non-periodic part of S , contains the following terms added to the elements in $F=\mathrm{L}-\Omega$ (List i η):

$$
\begin{aligned}
& +7^{\prime \prime} 26 \sin 8-95^{\prime \prime} 96 \sin 8-15^{\prime \prime} 58 \sin \left(8-2 \cdot 3 t_{0}+276^{\circ} 2\right) \\
& -\mathrm{I}^{\prime \prime} 86 \sin \left(8-0^{\circ} 9 t_{0}+290^{\circ} \mathrm{I}\right) \text {, }
\end{aligned}
$$

where the epoch is $1850 \cdot 0$. These were expressed in the form $a \sin \&+b \cos \Omega$, where a, b vary slowly with the time and were tabulated by centuries. The final form of expression for tabulation was

$$
92^{\prime \prime} 3 \mathrm{I}\left(\mathrm{I}+\phi^{\prime}\right) \cos \left(-8+280^{\circ} 47^{\prime}+\phi\right)+100^{\prime \prime} .0,
$$

in which ϕ, ϕ^{\prime} vary slowly with the time and were tabulated by centuries, the constants being so taken that $\phi=\phi^{\prime}=0$ at 1900.0. The values of ϕ^{\prime} are contained in Table P 35; the term 92"31 cos (Arg. 83) + 100" being placed in Table P 34, the approximate period $6800^{d} .0$ being used.

The angle is tabulated like those of the single-entry tables and is added to the values in Table 2, Sect. II. The adopted period is the same as that of Arg. 82 $=-8+90^{\circ}$ and we have to add to the tabulated values of Arg. 82, $190^{\circ} 47^{\prime}+\phi$, or in days, since ϕ was supposed to be expressed in degrees, this quantity multiplied by $6800 / 360$. Hence Arg. $83=-8+280^{\circ} 47^{\prime}+\phi=$ Arg. $82+3602^{d} .8+\phi^{d}$.

The period to be added or subtracted is the same as that of Arg. 82, namely, $6798^{d} 36$.

The principal characteristic of $\sin \mathrm{S}$ is γ and the constant part of its coefficient is $18520^{\prime \prime}$ which is approximately 2γ. Amongst the terms added to the elements are the following, additive to $\gamma($ List i η):
$-4^{\prime \prime} 3 \mathrm{I} 8 \cos 8-0^{\prime \prime} 698 \cos \left(8-2^{\circ} 3 t_{c}+276^{\circ} 2\right)-0^{\circ \prime} 083 \cos \left(8-0^{\circ} 9 t_{c}+290^{\circ} \mathrm{I}\right)$.
These are treated like the corresponding terms in S and are finally expressed in the form

$$
4^{\prime \prime} 474\left(I+\psi^{\prime}\right) \cos \left(-\&+189^{\circ} 57^{\prime}+\psi\right),
$$

in which ψ, ψ^{\prime} vary slowly with the time and are tabulated by centuries, the constants being so taken that $\psi=\psi^{\prime}=0$ at 1900.0. The values of ψ^{\prime} are given in Table P 37.

The term is placed in C and therefore requires the factor $2 \times 10^{-6} / \mathbf{1 8 5 2 0}$. Table P 36 contains the term $483 \cdot 1 \cos$ (Arg. 84), expressed in units of 10^{-6}, the
approximate period 6800% being used. The angle is tabulated like Arg. 83 and we find in the same way,

$$
\text { Arg. } 84=-8+189^{\circ} 57^{\prime}+\phi=\text { Arg. } 82+1887^{d} \cdot 4+\psi^{d} .
$$

The period to be added or subtracted is the same as that of Arg. 82, namely 6798 ! 36 .

These are the only terms in which it is necessary to take account of the portions $-2 \cdot 3 t_{0},-0 \cdot 9 t_{0}$ in the arguments. Where these terms enter elsewhere these portions have been put equal to zero at $1900^{\circ} \mathrm{O}$. See, however, the footnotes on p. 59 of this chapter.

Table P_{34} is given in units of 0.1 r and the factor Table P_{35} in units of the values in P_{34}. The terms in P_{36} and the table itself are given in units of IO^{-6}, the factor Table P_{37} being given in units of the values in $\mathrm{P}_{3} 6$. The term in Table P 38 and the table itself are given in units of Io^{-4} of the values in Table 15, Sect. V.

In these last two groups of tables and in the tables $\mathrm{P}_{39}-\mathrm{P}_{49}$, terms which arise from substitution of terms added to the elements from List $i \eta$ in the arguments and coefficients of other terms are shown in the same manner as those in Table 49, Sect. III.

The terms constituting Tables $\mathrm{P}_{39}-\mathrm{P}_{45}$ and the tables themselves are expressed in the same manner and the same units as those of Tables $\mathrm{P}_{1}, \mathrm{P}_{4}, \mathrm{P}_{7}$, $\mathrm{P}_{\text {10 }}, \mathrm{P}_{13}, \mathrm{P}_{16}, \mathrm{P}_{19}$, respectively. Tables $\mathrm{P}_{46}-\mathrm{P}_{49} a$ are all expressed in units of 0 or. The terms in Tables P 46, P 47 are tabulated at intervals of 10 days, the manner of obtaining the values for the intervening half-days by means of Table P $46 a=$ P $47 a$ being explained in Chap. II and again in Chap. V. The terms in Tables P 48, P 49 are tabulated at intervals of 14 days, the values for the intervening half-days being obtained by means of Tables P $48 a$, P $49 a$ as explained in the same chapters. The days in the argument of Table 49 are properly $1 \cdot 75,15.75, \ldots$; these are printed and used as $2,16, \ldots$, with sufficient accuracy. Besides the reference number showing the origin of each term in the Tables P 39P 49 a signification letter (Sg .) is attached. The letters were used in the computation of the tables and are necessary when the extensions of the tables after 2050 or before 1800, according to the methods explained in Chap. XI, are to be made.

The Tables T $50, \mathrm{~T}_{51}, \mathrm{~T} 52$, for the transformation to right ascension and declination, are explained in Chap. VIII and Tables U 53-U 58, for interpolation to hours, are explained in Chap. IX.

List iii. Terms included in the Tables of Sect. III.

Table I. Args. D, I.

Ref.	
No.	Term
12	- o."O04 $\sin \left(l^{\prime}+6 D\right)$
59	$+\quad .002 \sin \left(l^{\prime}+5 D\right)$
13	- $\cdot 289 \sin \left(l^{\prime}+4 D\right)$
60	$+\cdot 150 \sin \left(l^{\prime}+3 D\right)$
61	$+18.023 \sin \left(l^{\prime}+D\right)$
62	$+.560 \sin \left(l^{\prime}-D\right)$
63	- . $066 \sin \left(l^{\prime}-3 D\right)$
17	- $1.877 \sin \left(l^{\prime}-4 D\right)$
18	- $.024 \sin \left(l^{\prime}-6 D\right)$
43	- $.003 \sin \left(2 l^{\prime}+4 D\right)$
132	- $\cdot 002 \sin \left(2 l^{\prime}+3 D\right)$
44	- $\cdot 189 \sin \left(2 l^{\prime}+2 D\right)$
133	- $\quad .039 \sin \left(2 l^{\prime}+D\right)$
45	$-7.486 \sin 2 l^{\prime}$
1176	$+.004 \sin \left(2 l^{\prime}+228^{\circ}\right)$
134	- $.042 \sin \left(2 l^{\prime}-D\right)$
46	- $8 \cdot 096 \sin \left(2 l^{\prime}-2 D\right)$
135	- $\cdot 006 \sin \left(2 l^{\prime}-3 D\right)$
47	- $\cdot 1515 \sin \left(2 l^{\prime}-4 D\right)$
48	- $.002 \sin \left(2 l^{\prime}-6 D\right)$
229	- $\cdot 002 \sin \left(3 l^{\prime}-D\right)$
95	- $\cdot 344 \sin \left(3 l^{\prime}-2 D\right)$
96	- - $010 \sin \left(3 l^{\prime}-4 D\right)$
173	- .OI3 $\sin \left(4 l^{\prime}-2 D\right)$
	$+40 \cdot 000$

Table 2. Args. D, 2.

- .05I $\sin \left(l^{\prime}+l+4 D\right)$
$+.023 \sin \left(l^{\prime}+l+3 D\right)$
$-2 \cdot 92 \mathrm{I} \sin \left(l^{\prime}+l+2 D\right)$
$+\mathrm{I} \cdot 267 \sin \left(l^{\prime}+l+D\right)$
$+\cdot 137 \sin \left(l^{\prime}+l-D\right)$
$+\quad \cdot 233 \sin \left(l^{\prime}+l-3 D\right)$
$-4.39 \mathrm{I} \sin \left(l^{\prime}+l-4 D\right)$
- $0.072 \sin \left(l^{\prime}+l-6 D\right)$
- $.067 \sin \left(2 l^{\prime}+2 l\right)$
- $\cdot 297 \sin \left(2 l^{\prime}+2 l-2 D\right)$
- $\cdot 16 \mathrm{I} \sin \left(2 l^{\prime}+2 l-4 D\right)$
- $.008 \sin \left(2 l^{\prime}+2 l-6 D\right)$
$+10 \cdot 000$
Table 3. Args. D, 3.

42	- - OII $\sin \left(l^{\prime}-l+6 D\right)$
131	$+.003 \sin \left(l^{\prime}-l+5 D\right)$
47	- ${ }^{6} 636 \sin \left(l^{\prime}-l+4 D\right)$
130	$+\cdot 276 \sin \left(l^{\prime}-l+3 D\right)$
129	$+\mathrm{I} \cdot 089 \sin \left(l^{\prime}-l+D\right)$
128	$+\cdot 122 \sin \left(l^{\prime}-l-D\right)$
127	- $0003 \sin \left(l^{\prime}-l-3 D\right)$
37	- $\cdot 283 \sin \left(l^{\prime}-l-4 D\right)$
36	-005 $\sin \left(l^{\prime}-l-6 D\right)$
166	- $.036 \sin \left(2 l^{\prime}-2 l+4 D\right)$
165	- $254 \sin \left(2 l^{\prime}-2 l+2 D\right)$
164	-197 $\sin \left(2 l^{\prime}-2 l\right)$
163	- . $062 \sin \left(2 l^{\prime}-2 l-2 D\right)$
162	- $.003 \sin \left(2 l^{\prime}-2 l-4 D\right)$
	$+2 \cdot 700$

Table 4. Args. D, 4.
Ref.
No.
$74-8.627 \sin \left(2 l+l^{\prime}-2 D\right)$
$219+.084 \sin \left(2 l+l^{\prime}-3 D\right)$
$75-2 \cdot 740 \sin \left(2 l+l^{\prime}-4 D\right)$
$220+.006 \sin \left(2 l+l^{\prime}-5 D\right)$
$76-\quad 09 \mathrm{r} \sin \left(2 l+l^{\prime}-6 D\right)$
$77-.003 \sin \left(2 l+l^{\prime}-8 D\right)$
$+20.000$

Table 5. Args. D, 5 .

$$
\begin{aligned}
& +\quad \cdot 033 \sin \left(2 l-l^{\prime}+4 D\right) \\
& +\quad \mathrm{I} \cdot \mathrm{I} 8 \mathrm{I} \sin \left(2 l-l^{\prime}+2 D\right) \\
& -\quad .014 \sin \left(2 l-l^{\prime}+D\right) \\
& +\quad 9 \cdot 703 \sin \left(2 l-l^{\prime}\right) \\
& -\quad .352 \sin \left(2 l-l^{\prime}-D\right) \\
& -2 \cdot 494 \sin \left(2 l-l^{\prime}-2 D\right) \\
& +\quad .042 \sin \left(2 l-l^{\prime}-3 D\right) \\
& +\quad .360 \sin \left(2 l-l^{\prime}-4 D\right) \\
& -\quad .003 \sin \left(2 l-l^{\prime}-5 D\right) \\
& +\quad .014 \sin \left(2 l-l^{\prime}-6 D\right) \\
& +\mathrm{I} 2 \cdot 000
\end{aligned}
$$

Table 6. Args. D, 6.

- or $4 \sin \left(2 l^{\prime}+l+2 D\right)$
- $\quad .008 \sin \left(2 l^{\prime}+l+D\right)$
- $\mathbf{~} \cdot \mathbf{I} 67 \sin \left(2 l^{\prime}+l\right)$
- $\quad .002 \sin \left(2 l^{\prime}+l-D\right)$
$-7.412 \sin \left(2 l^{\prime}+l-2 D\right)$
$+.012 \sin \left(2 l^{\prime}+l-3 D\right)$
$-\quad \cdot 31 \mathrm{I} \sin \left(2 l^{\prime}+l-4 D\right)$
- $.008 \sin \left(2 l^{\prime}+l-6 D\right)$
$+10.000$
Table 7. Args. D, 7.
- $.022 \sin \left(2 l^{\prime}-l+4 D\right)$
$-2.533 \sin \left(2 l^{\prime}-l+2 D\right)$
- $.003 \sin \left(2 l^{\prime}-l+D\right)$
- $2.580 \sin \left(2 l^{\prime}-l\right)$
- $\cdot 757 \sin \left(2 l^{\prime}-l-2 D\right)$
- $.024 \sin \left(2 l^{\prime}-l-4 D\right)$
$+6 \cdot 000$
Table 8. Args. D, 8.
- $.025 \sin \left(3 l+l^{\prime}+2 D\right)$
$+\quad .007 \sin \left(3 l+l^{\prime}+D\right)$
- $\cdot 55 \mathrm{I} \sin \left(3 l+l^{\prime}\right)$
- $\cdot 482 \sin \left(3 l+l^{\prime}-2 D\right)$
$+\quad .003 \sin \left(3 l+l^{\prime}-3 D\right)$
- $\cdot 100 \sin \left(3 l+l^{\prime}-4 D\right)$
$+\quad .002 \sin \left(3 l+l^{\prime}-5 D\right)$
- $.039 \sin \left(3 l+l^{\prime}-6 D\right)$
$+1 \cdot 300$

List iii (cont.).

Table 9. Args. D, 9.
Ref.

No.	Term
153	$+0: 003 \sin \left(3 t-r^{\prime}+4 D\right)$
153	$+.088 \sin \left(3^{\prime}-l^{\prime}+2 D\right)$
297	- $-002 \sin \left(3 l-l^{\prime}+D\right)$
154	$+\cdot 681 \sin \left(3 l-l^{\prime}\right)$
298	- $023 \sin \left(3 l-l^{\prime}-D\right)$
155	$-\cdot 183 \sin \left(3 l-l^{\prime}-2 D\right)$
299	$+.007 \sin \left(3 t-r^{\prime}-3 D\right)$
I 56	- $0.029 \sin \left(3 l-l^{\prime}-4 D\right)$
r 57	$+\cdot 005 \sin \left(3 l-l^{\prime}-6 D\right)$
	$+.800$

Table 10. Args. D, 10.

ros	$+\cdot 002 \sin \left(2 F+V^{\prime}+4 D\right)$
ro9	$+.066 \sin \left(2 F+l^{\prime}+2 D\right)$
238	- $-035 \sin \left(2 F+l^{\prime}+D\right)$
ITO	$+\cdot 415 \sin \left(2 F+l^{\prime}\right)$
239	+ -013 $\sin \left(2 F+l^{\prime}-D\right)$
ITI	$-2.152 \sin \left(2 F+l^{\prime}-2 D\right)$
240	$+\cdot 020 \sin \left(2 F+l^{\prime}-3 D\right)$
IT2	$-.007 \sin \left(2 F+l^{\prime}-4 D\right)$
	+3

Table 11. Args. D, in.
I76 - -011 $\sin \left(2 F-l^{\prime}+4 D\right)$
$I X 5-384 \sin \left(2 F-r^{\prime}+2 D\right)$
$242+-002 \sin \left(2 F-F^{\prime}+D\right)$
$\pi 14-076 \sin \left(2 F-l^{\prime}\right)$
$I I 3+1 \cdot 440 \sin \left(2 F-l^{\prime}-2 D\right)$
$24 r+\cdot 009 \sin \left(2 F-l^{\prime}-3 D\right)$ $+2 \cdot 000$
Table 12. Args. D, 12.

186	$+-012 \sin \left(2 F+l^{\prime}+l+2 D\right)$
$r 87$	$+-263 \sin \left(2 F+V^{\prime}+l\right)$
188	$+.059 \sin \left(2 F+l^{\prime}+l-2 D\right)$
$r 89$	$-.024 \sin \left(2 F+I^{\prime}+l-4 D\right)$
	+.400

Table 13. Args. D, 13.

204	$+.002 \sin \left(2 F+l^{\prime}-l+4 D\right)$
203	$+.065 \sin \left(2 F+l^{\prime}-l+2 D\right)$
202	$-.083 \sin \left(2 F+l^{\prime}-l\right)$
$20 I$	$+.372 \sin \left(2 F+l^{\prime}-l-2 D\right)$
200	$+.007 \sin \left(2 F+l^{\prime}-l-4 D\right)$
	+.600

Table 14. Args. D, 14.

$$
\begin{aligned}
& -\quad .002 \sin \left(2 F+l-l^{\prime}+4 D\right) \\
& --064 \sin \left(2 F+l-l^{\prime}+2 D\right) \\
& -\cdot 304 \sin \left(2 F+l-l^{\prime}\right) \\
& +-002 \sin \left(2 F+l-l^{\prime}-2 D\right) \\
& +-018 \sin \left(2 F+l-l^{\prime}-4 D\right) \\
& +-400
\end{aligned}
$$

Table 15. Args. D, 15.
194 - $-019 \sin \left(2 F-l-l^{\prime}+4 D\right)$
$193-\cdot 426 \sin \left(2 F-l-l^{\prime}+2 D\right)$
$r 92+.083 \sin \left(2 F-l-l^{\prime}\right)$
$197-.083 \sin \left(2 F-l-l^{\prime}-2 D\right)$
$190-.002 \sin \left(2 F-l-l^{\prime}-4 D\right)$ $+.600$

Table 16. Args. D, 16.
Ref.
No. Term
$+0: 023 \sin (l+6 D)$

- $\quad 002 \sin (l+3 D)$
$-8 \cdot 466 \sin (l+D)$
$+18 \cdot 609 \sin (l-D)$
$+3.215 \sin (l-3 D)$
$+\quad .014 \sin (l-5 D)$
- $\cdot 393 \sin (l-6 D)$
$.004 \sin (t-8 D)$
.004 $\sin (2 l+6 D)$
$\cdot 213 \sin (2 l+4 D)$
$-\quad .004 \sin (2 l+3 D)$
$\cdot 586 \sin (2 l+D)$
$1.750 \sin (2 l-D)$
$+1 \cdot 225 \sin (2 l-3 D)$
$+\quad .059 \sin (2 l-5 D)$
- $\quad .570 \sin (2 l-6 D)$
- $\quad .009 \sin (2 l-8 D)$
$+\quad .021 \sin (3 l+4 D)$
$+1 \cdot 060 \sin (3 l+2 D)$
$-\quad .042 \sin (3 l+D)$
$+\quad 130 \sin (3 l-D)$
$-13 \cdot 193 \sin (3 l-2 D)$
$+\quad .045 \sin (3 l-3 D)$
$-1 \cdot 187 \sin (3 l-4 D)$
$+\quad .016 \sin (3 l-5 D)$
- $.009 \sin (3 l-8 D)$
$+\quad .002 \sin \left(4^{l}+4 D\right)$
$+\quad .070 \sin (4 l+2 D)$
$-\quad .003 \sin (4 l+D)$
$+\quad .010 \sin (4 l-D)$
- $\quad 952 \sin (4 l-2 D)$
$+\quad .002 \sin (4 l-3 D)$
$+\quad .003 \sin (4 l-4 D)$
$-\quad .014 \sin (4 I-6 D)$
- $.004 \sin (4 l-8 D)$
$+\quad .005 \sin (5 l+2 D)$
- $.069 \sin (5 I-2 D)$
$+\quad .004 \sin (5 t-4 D)$
$-\quad .005 \sin (6 t-2 D)$
$+50 \cdot 000$
Table 17. Args. D, 17.

49	-
136	$+.085 \sin (2 F+4 D)$
137	$+.004 \sin (2 F+3 D)$
138	$+.58 \sin (2 F+D)$
139	$+.254 \sin (2 F-D)$
53	$+.025 \sin (2 F-3 D)$
209	$+.014 \sin (4 F+2 D)$
210	$+.418 \sin 4 F$
$2 I T$	$+.074 \sin (4 F-2 D)$
	+1.500

List iii (cont.).
Table 18. Args. D, 18.
Ref.
No.
97

- $\quad .992 \sin (2 F+l+2 D)$
$230+\quad .045 \sin (2 F+l+D)$
$23 I+\quad .024 \sin (2 F+l-D)$
100 - $179 \sin (2 F+l-2 D)$
$232+\quad 030 \sin (2 F+l-3 D)$
IOI - $301 \sin (2 F+l-4 D)$
$233+\quad \cdot 002 \sin (2 F+l-5 D)$
$+\quad 1 \cdot 600$
Table 19. Args. D, 19.
107 - $.003 \sin (2 F-l+6 D)$
106 - $\cdot 202 \sin (2 F-l+4 D)$
$237+$-OII $\sin (2 F-l+3 D)$
$236+\quad .016 \sin (2 F-l+D)$
$235+\quad .04 \mathrm{I} \sin (2 F-l-D)$
103 $+6 \cdot 382 \sin (2 F-l-2 D)$
$234+\quad$ oIO $\sin (2 F-l-3 D)$
$102+.067 \sin (2 F-l-4 D)$
$+\quad 7.000$
Table 20. Args. D, 20.

174	-	$\cdot 003 \sin (2 F+2 l+4 D)$
$I 75$	-	$\cdot 123 \sin (2 F+2 l+2 D)$
300	+	$\cdot 006 \sin (2 F+2 l+D)$
$30 T$	-	$\cdot 003 \sin (2 F+2 l-D)$
$I 77$	+	$.557 \sin (2 F+2 l-2 D)$
$I 78$	-	$.005 \sin (2 F+2 l-4 D)$
$I 79$	$-003 \sin (2 F+2 l-6 D)$	
	$+1 \cdot 000$	

Table 21. Args. D, 21.
185 - $.005 \sin (2 F-2 l+6 D)$
184 - ${ }^{1} 73 \sin (2 F-2 l+4 D)$
$302+\quad .003 \sin (2 F-2 l+3 D)$
$183-\quad .538 \sin (2 F-2 l+2 D)$
$182+1 \cdot 298 \sin (2 F-2 l)$
$181+\quad 459 \sin (2 F-2 l-2 D)$
I8O $+\quad$ OII $\sin (2 F-2 l-4 D)$ $+2.000$
Table 22. Args. D, 22. 263 - .003 $\sin (2 F+3 l+4 D)$
264 - \quad OII $\sin (2 F+3 l+2 D)$
$265-330 \sin (2 F+3 l)$
$\begin{aligned} 266 & +\quad .092 \sin (2 F+3 l-2 D) \\ + & .500\end{aligned}$
Table 23. Arg. 23.
$16+165 \cdot 145 \cos \left(2 D-l^{\prime}+270^{\circ}\right)$ $+170 \cdot 000$

Table 24. Arg. 24. $+24^{\circ} 420 \cos \left(2 D+l^{\prime}+90^{\circ}\right)$ $+25.000$
Table 25. Arg. 25. $+109.667 \cos \left(l+l^{\prime}+90^{\circ}\right)$ $+\quad .006 \cos \left(l+l^{\prime}+90^{\circ}\right)$ +110.000

Table 26. Arg. 26.

$$
\begin{aligned}
& +147.693 \cos \left(l-l^{\prime}+270^{\circ}\right) \\
& -\quad .006 \cos \left(l-l^{\prime}+270^{\circ}\right) \\
& +150.000
\end{aligned}
$$

Table 27. Arg. 27. $+205.962 \cos \left(2 D-l-l^{\prime}+270^{\circ}\right)$ $+209 \cdot 000$

Table 28. Arg. 28.

Ref.
No.

25
142
244

38

40

7

66

305
$+\quad .010 \cos \left(2 D+270^{\circ}\right)$
$+2400 \cdot 000$
Table 32. Arg. 32.
$+4586.426 \cos \left(2 D-l+270^{\circ}\right)$
$+4600 \cdot 000$
Table 33. Arg. 33.

Table 4I. Arg. 4 I .
$52+55^{2} 173 \cos \left(2 F-2 D+90^{\circ}\right)$
56.000

Table 42. Arg. 42.
Term
$+14^{\prime \prime} 577 \cos \left(2 D+l-l^{\prime}+270^{\circ}\right)$
$+15.000$
Table 29. Arg. 29.
$+28.475 \cos \left(2 D+l^{\prime}-l+90^{\circ}\right)$
$+30 \cdot 000$
Table 30. Arg. 30.
$+22639 \cdot 500 \sin l$
$+\quad 769 \cdot 016 \sin 2 l$
$+36 \cdot 124 \sin 3 l$
$1 \cdot 938 \sin 4 l$
-113 $\sin 5 l$
$\cdot 007 \sin 6 l$
Table 31. Arg. 31 .
$125 \cdot 154 \sin D$
$+\quad .403 \sin 3 D$
$13.902 \sin 4 D$
-004 $\sin 5 D$
-127 $\sin 6 D$
135.000

Table 34. Arg. 34.
+2 II $\cdot 656 \cos \left(2 l-2 D+90^{\circ}\right)$
$+220 \cdot 000$
Table 35. Arg. 35.
$+191.953 \cos \left(2 D+l+270^{\circ}\right)$
$+\quad 200 \cdot 000$
Table 36. Arg. 36.
$+30 \cdot 773 \cos \left(4 D-2 l+270^{\circ}\right)$
$+31.000$
Table 37. Arg. 37.
$+\quad 38 \cdot 428 \cos \left(4 D-l+270^{\circ}\right)$
$+\quad 40 \cdot 000$
Table 38. Arg. 38.
$4+14 \cdot 387 \cos \left(2 D+2 l+270^{\circ}\right)$
$+\quad 15.000$
Table 39. Arg. 39.
$+\quad 1 \cdot 979 \cos \left(4 D+l+270^{\circ}\right)$
$+\quad 2 \cdot 000$
Table 40. Arg. 40.
$39.532 \cos \left(2 F-l+90^{\circ}\right)$
$.004 \cos \left(2 F-l+90^{\circ}\right)$
$+40 \cdot 000$

List iii (concl.).
Table 43. Arg. 43.

Ref. No.	Term
99	$\begin{aligned} & +45: 099 \cos \left(2 F+l+90^{\circ}\right) \\ & +46 \cdot 000 \end{aligned}$
50	$\begin{aligned} & \text { TABLE 44. Arg. } 44 \text {. } \\ & +\quad 5 \cdot 74^{1} \cos \left(2 F+2 D+90^{\circ}\right) \\ & +\quad 6 \cdot 000 \end{aligned}$
105	$\begin{aligned} & \text { TABLE 45. Arg. } 45 \text {. } \\ & +\quad 9 \cdot 366 \cos \left(2 F+2 D-l+90^{\circ}\right) \\ & +10 \cdot 000 \end{aligned}$
176	$\begin{aligned} & \text { TABLE } 46 . \quad \text { Arg. } 46 . \\ & +\quad 3.996 \cos \left(2 F+2 l+90^{\circ}\right) \\ & +\quad 4.000 \end{aligned}$
15	Table 47. Arg. 47. $+668 \cdot 111 \cos \left(l^{\prime}+90^{\circ}\right)$
1275	$+\quad .035 \cos \left(l^{\prime \prime}+90^{\circ}\right)$
94	$\begin{aligned} & -\quad \cdot 103 \cos 3\left(l^{\prime}+90^{\circ}\right) \\ & +670 \cdot 000 \end{aligned}$

Table 48, Args. 30, 4^{8}.

Rel. No.
Term

268	$+0: 055 \sin \left(2 F-3{ }^{\text {a }}\right.$)
307	- $0.025 \sin (2 F+4)$
309	$+.007 \sin (2 F-4)$
287	$+\quad .090 \sin (4 F+h)$
289	$+\quad .080 \sin (4 F-\eta)$
3ro	+ -0II $\sin (4 F+2 l)$
	+ 268

Table 49. Args. 49, 50.

List iv. Terms included in the tables of Sect. IV.

Tables of terms in \mathbf{S}.

$$
\begin{aligned}
& \text { Table 1. Args. D, } 1 . \\
& \text { - } 0: 06 \sin \left(l^{\prime}+6 D\right) \\
& \text { - } 1.59 \sin \left(l^{\prime}+4 D\right) \\
& +\quad .53 \sin \left(l^{\prime}+3 D\right) \\
& .68 \sin \left(l^{\prime}+2 D\right) \\
& +17.93 \sin \left(l^{\circ}+D\right) \\
& -126.98 \sin l^{\prime} \\
& +\quad \cdot 32 \sin \left(l^{\prime}-D\right) \\
& +\quad .09 \sin \left(l^{\prime}-2 D\right) \\
& +\quad .29 \sin \left(l^{\prime}-3 D\right) \\
& 6 \cdot 46 \sin \left(l^{\prime}-4 D\right) \\
& \cdot 22 \sin \left(l^{\prime}-6 D\right) \\
& \cdot 04 \sin \left(2 l^{\prime}+4 D\right) \\
& 1.69 \sin \left(2 l^{3}+2 D\right) \\
& \text { - } \quad .04 \sin \left(2 l^{\prime}+D\right) \\
& -\quad .66 \sin 2 l^{\prime} \\
& \text { - } \quad .04 \sin \left(2 l^{\prime}-D\right) \\
& -16.40 \sin \left(2 l^{\prime}-2 D\right) \\
& -\quad .66 \sin \left(2 l^{\prime}-4 D\right) \\
& .57 \sin \left(3^{\prime}-2 D\right) \\
& +200 \cdot 00 \\
& \text { Table 2. Args. D, } 2 \\
& -\quad \cdot 50 \sin \left(l^{\prime}+l+4 D\right) \\
& .08 \sin \left(l^{\prime}+l+3 D\right) \\
& -11 \cdot 74 \sin \left(l^{\prime}+l+2 D\right) \\
& +\quad 1 \cdot 52 \sin \left(l^{\prime}+l+D\right) \\
& -5.52 \sin \left(l^{\prime}+l\right) \\
& \text { - } \quad 12 \sin \left(l^{\prime}+l-D\right) \\
& +23.63 \sin \left(l^{\prime}+l-2 D\right) \\
& +\quad .36 \sin \left(l^{\prime}+l-3 D\right) \\
& -9.68 \sin \left(l^{\prime}+l-4 D\right) \\
& \text { - } \quad \cdot 37 \sin \left(l^{\prime}+l-6 D\right) \\
& \text { - } \quad .09 \sin \left(2 l^{\prime}+2 l\right) \\
& \text { - } \quad .27 \sin \left(2 l^{\prime}+2 l-2 D\right) \\
& \cdot 16 \sin \left(2 l^{\prime}+2 l-4 D\right) \\
& +50 \cdot 00 \\
& \text { B. } 1 \text {. }
\end{aligned}
$$

Tables of terms in S (cont.).

$$
\text { Table 3. Args D, } 3 .
$$

$$
-0 \% 09 \sin \left(l^{\prime}-l+6 D\right)
$$

$$
-2 \cdot 27 \sin \left(l^{\prime}-l+4 D\right)
$$

$$
+\quad 3^{8} \sin \left(l^{\prime}-l+3 D\right)
$$

$$
+4.90 \sin \left(l^{\prime}-l+2 D\right)
$$

$$
-.55 \sin \left(l^{\prime}-l+D\right)
$$

$$
+8.94 \sin \left(l^{\prime}-l\right)
$$

$$
+\quad 33 \sin \left(l^{\prime}-l-D\right)
$$

$$
-17 \cdot 14 \sin \left(l^{\prime}-l-2 D\right)
$$

$$
+.04 \sin \left(l^{\prime}-l-3 D\right)
$$

$$
-1.53 \sin \left(l^{\prime}-l-4 D\right)
$$

$$
-\quad .06 \sin \left(l^{\prime}-l-6 D\right)
$$

$$
-\quad .04 \sin \left(2 l^{\prime}-2 l+4 D\right)
$$

$$
-\quad \cdot 21 \sin \left(2 l^{\prime}-2 l+2 D\right)
$$

$$
-\quad .22 \sin \left(2 l^{\prime}-2 l\right)
$$

$$
-\quad \cdot 20 \sin \left(2 l^{\prime}-2 l-2 D\right)
$$

$+30 \cdot 00$
Table 4. Args. D, 4.
$408-.07 \sin \left(2 l+l^{\prime}+4 D\right)$
$409-1 \cdot 45 \sin \left(2 l+l^{\prime}+2 D\right)$
$410+-14 \sin \left(2 l+l^{\prime}+D\right)$
$4 I I \quad-10.58 \sin \left(2 l+l^{\prime}\right)$
$4{ }^{2} 2+\cdot 02 \sin \left(2 l+l^{\prime}-D\right)$
$413-7.63 \sin \left(2 l+l^{\prime}-2 D\right)$
$414+.07 \sin \left(2 l+l^{\prime}-3 D\right)$
$425-2 \cdot 54 \sin \left(2 l^{\prime}+l^{\prime}-4 D\right)$
$416-25 \sin \left(2 l+l^{\prime}-6 D\right)$ $+25 \cdot 00$

List iv (cont.).
Tables of terms in S (cont.).
Table 5. Args. D, 5.
Ref.

No.	Term
417	$+0.22 \sin \left(2 l-l^{\prime}+4 D\right)$
418	$+3.33 \sin \left(2 l-l^{\prime}+2 D\right)$
419	$-.04 \sin \left(2 l-l^{\prime}+D\right)$
420	$+11 \cdot 69 \sin \left(2 l-l^{\prime}\right)$
$42 I$	$-.37 \sin (2 l-l-D)$
422	$-1 \cdot 17 \sin \left(2 l-l^{\prime}-2 D\right)$
423	$+.04 \sin \left(2 l-l^{\prime}-3 D\right)$
424	$+.20 \sin \left(2 l-l^{\prime}-4 D\right)$
425	$+.06 \sin \left(2 l-l^{\prime}-6 D\right)$
	$+20 \cdot 00$

Table 6. Args. D, 6.
$436-\quad 13 \sin \left(2 l^{\prime}+l+2 D\right)$
$437-1 \cdot 25 \sin \left(2 l^{\prime}+l\right)$
$438-6 \cdot 12 \sin \left(2 l^{\prime}+l-2 D\right)$
$439-.65 \sin \left(2 l^{\prime}+l-4 D\right)$ $+10 \cdot 00$
Table 7. Args. D, 7.
$440-.07 \sin \left(2 l^{\prime}-l+4 D\right)$
$44 . \quad-2.40 \sin \left(2 l^{\prime}-l+2 D\right)$
$44^{2} \quad-2 \cdot 32 \sin \left(2 l^{\prime}-l\right)$
$443-1 \cdot 82 \sin \left(2 l^{\prime}-l-2 D\right)$
444 - $\cdot 12 \sin \left(2 l^{\prime}-l-4 D\right)$ $+10 \cdot 00$

Table 8. Args. D, 8.

426	$-\cdot 17 \sin \left(3 l+l^{\prime}+2 D\right)$
427	$-\cdot 94 \sin \left(3 l+l^{\prime}\right)$
428	$-.57 \sin \left(3 l+l^{\prime}-2 D\right)$
429	$-\cdot 08 \sin \left(3 l+l^{\prime}-4 D\right)$
430	$-.06 \sin \left(3 l+l^{\prime}-6 D\right)$
	$+2 \cdot 00$

Table 9. Args. D, 9.

$43 I$	$+\cdot 36 \sin \left(3 l-l^{\prime}+2 D\right)$
432	$+\cdot 96 \sin \left(3 l-l^{\prime}\right)$
433	$-\cdot 23 \sin \left(3 l-l^{\prime}-2 D\right)$
	+2.00

Table 1o. Args. D, io.

470	$+\cdot 10 \sin \left(2 F+l^{\prime}\right)$
$47 I$	$-2 \cdot 26 \sin \left(2 F+l^{\prime}-2 D\right)$
472	$-\cdot 17 \sin \left(2 F+l^{\prime}-4 D\right)$
	$+3 \cdot 00$

Table if. Args. D, II

473	$+.04 \sin \left(2 F-l^{\prime}+2 D\right)$
474	$+.16 \sin \left(2 F-l^{\prime}\right)$
475	$-.06 \sin \left(2 F-l^{\prime}-D\right)$
476	$+1.30 \sin \left(2 F-l^{\prime}-2 D\right)$
477	$+.08 \sin \left(2 F-l^{\prime}-4 D\right)$
	+2.00

Table 12. Args. D, 16.

313	$+12.35 \sin D$
314	$+3.46 \sin 2 D$
1289	$+.05 \sin 2 D$
315	$-4.41 \sin 3 D$
316	$+.13 \sin 4 D$
317	$-.13 \sin 3 D$

Tables of terms in S (cont.).
TABLE I2 (cont.).
Ref.
No. Term
$318+0.47 \sin 6 D$
$320+\quad .25 \sin (l+6 D)$
$322+5 \cdot 00 \sin (l+4 D)$
$323-74 \sin (l+3 D)$
$324+\quad .76 \sin (l+2 D)$
$325-13.51 \sin (l+D)$
$326-30 \cdot 44 \sin l$
$327+3.59 \sin (l-D)$
$328+8 \cdot 30 \sin (l-2 D)$
$329+5.43 \sin (l-3 D)$
$330-20 \sin (l-4 D)$
$33 I+\quad .24 \sin (l-5 D)$
$1.43 \sin (l-6 D)$
.03 $\sin (l-8 D)$
$.03 \sin (2 l+6 D)$
I. or $\sin (2 l+4 D)$

- 10 $\sin (2 l+3 D)$
$\cdot 39 \sin (2 l+2 D)$
$\mathrm{I} \cdot 20 \sin (2 l+D)$
$\mathrm{I} \cdot 06 \sin 2 l$
2 - or $\sin (2 l-D)$
$59 \cdot 13 \sin (2 l-2 D)$
-91 $\sin (2 l-3 D)$
$3.28 \sin (2 l-4 D)$
- $12 \sin (2 l-5 D)$
$1 \cdot 40 \sin (2 l-6 D)$
. $07 \sin (2 l-8 D)$
- $16 \sin (3 l+4 D)$
$2.93 \sin (3 l+2 D)$
-09 $\sin (3 l+D)$
$14.56 \sin 3 l$
- $19 \sin (3 l-D)$
$16.44 \sin (3 l-2 D)$
$+\quad .05 \sin (3 l-3 D)$
$\cdot 70 \sin (3 l-4 D)$
- $30 \sin (4 l+2 D)$
$+\quad 1.68 \sin 4^{l}$
- $\quad 1 \cdot 58 \sin (4 l-2 D)$
$+\quad \cdot 17 \sin 5 l$
. $14 \sin (5 l-2 D)$
$+200 \cdot 00$
Table 13. Args. D, 17.

448	. $04 \sin (2 F+2 D)$
449	- $20 \sin 2 F$
450	$+\quad .84 \sin (2 F-D)$
451	- $52 \cdot 14 \sin (2 F-2 D)$
452	$+\quad .25 \sin (2 F-3 D)$
453	- $\mathbf{1} \cdot 67 \sin (2 F-4 D)$
454	- $\quad .03 \sin (2 F-6 D)$
	+100.0

Table 14. Args. D, 18.

455	$+\quad .07 \sin (2 F+l-D)$
456	$-9 \cdot 52 \sin (2 F+l-2 D)$
457	$+.04 \sin (2 F+l-3 D)$
458	$-\quad .33 \sin (2 F+l-4 D)$
459	$-04 \sin (2 F+l-6 D)$
	+10.00

List iv (cont.).

Tables of terms in S (concl.).
Table 15. Args. D, 19.
Ref.

No.	Term
460	- 0\%\% $71 \sin (2 F-l+2 D)$
46	$+\quad .06 \sin (2 F-I+D)$
462	$-85 \cdot 13 \sin (2 F-I)$
463	$+\quad .04 \sin (2 F-I-D)$
464	$+3 \cdot 37 \sin (2 F-i-2 D)$
465	$+\quad .04 \sin (2 F-l-4 D)$
	+100.00

Additions to Arg. 19.
$479.480+$ of o9 $1 \sin l^{\prime}$
Table 16. Args. D, 21.
$467-1: 14 \sin (2 F-2 l+2 D)$
$468-74 \sin (2 F-2 l)$
$469+\quad+38 \sin (2 F F-2 t-2 D)$
$+\quad 2.00$
Table 17. Arg. 51.
$466+\quad .75 \cos \left(2 F+2 l-2 D+90^{\circ}\right)$
$+\quad \cdot 75$
Table 18. Arg. 52.
$47^{8}+\quad 35 \cos \left(2 F+l+l^{\prime}-2 D+90^{\circ}\right)$
$+\quad .35$
Tables of terms in N .
Table 19. Arg. 53.
$603+22 \% 571 \cos \left(2 D-F-F^{\prime}+270^{\circ}\right)$
$+23.000$
Table 20. Arg. 54 -
$604+10.985 \cos \left(2 D+V^{\prime}-F+90^{\circ}\right)$ $+11 \cdot 000$
Table 21. Arg. 55 .
$595+526 \cdot 069 \cos \left(2 D-F+270^{\circ}\right)$ $+530 \cdot 000$
Table 22. Arg. 56.
$596+3 \cdot 352 \cos \left(4 D-F+270^{\circ}\right)$ $+4.000$
Table 23. Arg. 57.
$598+6 \cdot 000 \cos \left(4 D-F-1+270^{\circ}\right)$
$+6.000$
Table 24. Arg. 58.
$599+20.599 \cos \left(F-l+270^{\circ}\right)$
$+21 \cdot 000$
Table 25. Arg. 59.
$597+44.297 \cos \left(F+l-2 D+270^{\circ}\right)$ $+45.000$
Table 26. Arg. 60.
$600+30 \cdot 598 \cos \left(2 D-F+l+270^{\circ}\right)$ $+31 \cdot 000$

Table 27. Arg. 6r.
$60 I+24 \cdot 649 \cos \left(2 l-F+270^{\circ}\right)$
$+25.000$

Tables of terms in N (concl.).
Table 28. Arg. 62.
Ref. No.

Term

$$
\begin{aligned}
602 & +2: 000 \cos \left(2 l+2 D-F+270^{\circ}\right) \\
& +2 \cdot 000
\end{aligned}
$$

Table 29. Args. 63, 64.

Table 30. Args. 65, 66.

$r 226$	$+.003 \sin \left(L+6 V-6 T+285^{\circ}\right)$
1227	$+.005 \sin \left(L+5 V-5 T+285^{\circ}\right)$
$r 228$	$+.006 \sin \left(L+4 V-4 T+285^{\circ}\right)$
$r 229$	$+.009 \sin \left(L+3 V-3 T+285^{\circ}\right)$
1230	$+.014 \sin \left(L+2 V-2 T+285^{\circ}\right)$
1231	$+.027 \sin \left(L+V-T+285^{\circ}\right)$
1290	$-.017 \sin L$
1232	$+.015 \sin \left(L-V+T+105^{\circ}\right)$
1233	$+.006 \sin \left(L-2 V+2 T+105^{\circ}\right)$
1234	$+.003 \sin \left(L-3 V+3 T+105^{\circ}\right)$
	+.105

Table 31. Args. 67, 68.
r236 $+.003 \sin \left(L+7 V-9 T+255^{\circ}\right)$
$x 237+.005 \sin \left(L+6 V-8 T+255^{\circ}\right)$
$1238^{+}+.009 \sin \left(L+5 V-7 T+255^{\circ}\right)$
$1239+.025 \sin \left(L+4 V-6 T+255^{\circ}\right)$
r240 $+\cdot 074 \sin \left(L+3 V-5 T+51^{\circ} .6\right)$
$r 24 T+\cdot 018 \sin \left(L+2 V-4 T+75^{\circ}\right)$
$1242+$-oro $\sin \left(L+V-3 T+75^{\circ}\right)$
$129 \mathrm{r}+\cdot 008 \sin \left(L-2 T+75^{\circ}\right)$
$r 292+.007 \sin (L-2 T)$
$1243+\cdot 006 \sin \left(L-V-T+75^{\circ}\right)$
$1244+.004 \sin \left(L-2 V+75^{\circ}\right)$
$1245+.003 \sin \left(L-3 V+T+75^{\circ}\right)$ $+\cdot 169$
Table 32. Args. 69, 70.

$$
\begin{array}{ll}
I I 9 I & -.003 \sin (2 D-F+7 V-7 T) \\
I I 92 & -.005 \sin (2 D-F+6 V-6 T) \\
I I 93 & -.009 \sin (2 D-F+5 V-5 T) \\
I I 94 & -.023 \sin (2 D-F+4 V-4 T) \\
I I 95 & +.046 \sin (2 D-F+3 V-3 T) \\
I I 96 & +-019 \sin (2 D-F+2 V-2 T) \\
I I 97 & -.004 \sin (2 D-F+V-T) \\
I I 98 & +-012 \sin (2 D-F-V+T) \\
I 200 & -.017 \sin (2 D-F-2 V+2 T) \\
& +.138
\end{array}
$$

Principal terms.
Table 33. Arg. S.
$605+18518: 511 \sin S$
$607-6 \cdot 241 \sin 3 S$
$607 a+\quad .004 \sin 5 S$

Tables of terms in C.
Table 34. Args. D, i.
Ref.

No.	Term
527	$+0 \cdot 3 \cos \left(l^{\prime}+6 D\right)$
528	$+6 \cdot 6 \cos \left(l^{\prime}+4 D\right)$
529	$-1 \cdot 7 \cos \left(l^{\prime}+3 D\right)$
530	$+2 \cdot 1 \cos \left(l^{\prime}+2 D\right)$
$53 I$	$+\quad \cdot 4 \cos \left(l^{\prime}+D\right)$
532	$-70 \cdot 3 \cos l^{\prime}$
533	$+2 \cdot 9 \cos \left(l^{\prime}-2 D\right)$
534	$+1 \cdot 7 \cos \left(l^{\prime}-3 D\right)$
535	$-22 \cdot 5 \cos \left(l^{\prime}-4 D\right)$
536	$-\quad \cdot 9 \cos \left(l^{\prime}-6 D\right)$
537	$+\quad \cdot 2 \cos \left(2 l^{\prime}+4 D\right)$
538	$+7 \cdot 1 \cos \left(2 l^{\prime}+2 D\right)$
539	$-2 \cdot 0 \cos 2 l^{\prime}$
540	$-40 \cdot 1 \cos \left(2 l^{\prime}-2 D\right)$
$54 I$	$-2 \cdot 4 \cos \left(2 l^{\prime}-4 D\right)$
542	$-1 \cdot 4 \cos \left(3 l^{\prime}-2 D\right)$

Table 35. Args. D, 2.

543	+	$2 \cdot 2 \cos \left(l^{\prime}+l+4 D\right)$
544	-	$\cdot 4 \cos \left(l^{\prime}+l+3 D\right)$
545	$+42 \cdot 4 \cos \left(l^{\prime}+l+2 D\right)$	
546	$-1 \cdot 2 \cos \left(l^{\prime}+l+D\right)$	
547	$+24 \cdot 9 \cos \left(l^{\prime}+l\right)$	
548	+	$3 \cos \left(l^{\prime}+l-D\right)$
549	$+110 \cdot 9 \cos \left(l^{\prime}+l-2 D\right)$	
550	+	$6 \cos \left(l^{\prime}+l-3 D\right)$
$55 I$	$-25 \cdot 5 \cos \left(l^{\prime}+l-4 D\right)$	
552		$1 \cdot 5 \cos \left(l^{\prime}+l-6 D\right)$
	$+200 \cdot 0$	

Table 36. Args. D, 3

$$
\begin{array}{lr}
+ & \cdot 3 \cos \left(l^{\prime}-l+6 D\right) \\
+ & 7 \cdot 9 \cos \left(l^{\prime}-l+4 D\right) \\
- & \cdot 3 \cos \left(l^{\prime}-l+3 D\right) \\
- & 23 \cdot 8 \cos \left(l^{\prime}-l+2 D\right) \\
+ & 1 \cdot 1 \cos \left(l^{\prime}-l+D\right) \\
+ & 36 \cdot 7 \cos \left(l^{\prime}-l\right) \\
+ & \cdot 9 \cos \left(l^{\prime}-l-D\right) \\
- & 82 \cdot 6 \cos \left(l^{\prime}-l-2 D\right) \\
+ & \cdot 2 \cos \left(l^{\prime}-l-3 D\right) \\
-\quad 6 \cdot 0 \cos \left(l^{\prime}-l-4 D\right) \\
-\quad \cdot 3 \cos \left(l^{\prime}-l-6 D\right) \\
-\quad \cdot 2 \cos \left(2 l^{\prime}-2 l+2 D\right) \\
-\quad \cdot 5 \cos \left(2 l^{\prime}-2 l-2 D\right) \\
+200 \cdot 0
\end{array}
$$

Table 37. Args. D, 4.

Tables of terms in C (cont.).
Table 38. Args. D, 5.
Ref.

No.	Term
573	$-\mathrm{I} \cdot \mathrm{o} \cos \left(2 l-l^{\prime}+4 D\right)$
574	$-\mathrm{II} \cdot 5 \cos \left(2 l-l^{\prime}+2 D\right)$
575	$-8 \cdot 2 \cos \left(2 l-l^{\prime}\right)$
576	$-\quad \cdot 2 \cos \left(2 l-l^{\prime}-2 D\right)$
577	$-\quad .6 \cos \left(2 l-l^{\prime}-4 D\right)$
578	$+\quad .2 \cos \left(2 l-l^{\prime}-6 D\right)$
	$+30 \cdot 0$

Table 39. Args. D, 6.

586	$+\cdot 8 \cos \left(2 l^{\prime}+l+2 D\right)$
587	$+\cdot 4 \cos \left(2 l^{\prime}+l\right)$
588	$+6 \cdot 3 \cos \left(2 l^{\prime}+l-2 D\right)$
589	$-1 \cdot 7 \cos \left(2 l^{\prime}+l-4 D\right)$
	$+10 \cdot 0$

Table 40. Args. D, 7 .

590	$+\quad .3 \cos \left(2 l^{\prime}-l+4 D\right)$
$59 I$	-
592	$+1 \cdot 5 \cos \left(2 l^{\prime}-l+2 D\right)$
593	$-5 \cdot 7 \cos \left(2 l^{\prime}-l\right)$
594	$-5 \cos \left(2 l^{\prime}-l-2 D\right)$
	$+10 \cdot 0$

Table 4I. Args. D, 8.
$579{ }^{\prime}+6 \cos \left(3 l+l^{\prime}+2 D\right)$
$580+1 \cdot 7 \cos \left(3 l+l^{\prime}\right)$
$58 I+3 \cos \left(3 l+l^{\prime}-2 D\right)$
$582+\cdot 2 \cos \left(3 l+l^{\prime}-4 D\right)$
$+10 \cdot 0$

Table 42. Args. D, 9.

583	$-1 \cdot 2 \cos \left(3 l-l^{\prime}+2 D\right)$
584	$-1 \cdot 4 \cos \left(3 l-l^{\prime}\right)$
585	$+\cdot 2 \cos \left(3 l-l^{\prime}-2 D\right)$
	$+10 \cdot 0$

Table 43. Args. D, 16.

484	$-39 \cdot 2 \cos D$
485	$+32 \cdot 5 \cos 2 D$
1289	$-\cdot 3 \cos 2 D$
486	$+21 \cdot 3 \cos 3 D$
487	$+\cdot 6 \cos 5 D$
488	$-2 \cdot 3 \cos 6 D$
489	$-1 \cdot 0 \cos (l+6 D)$
490	$-24 \cdot 0 \cos (l+4 D)$
$49 I$	$+3 \cdot 7 \cos (l+3 D)$
492	$+1 \cdot 5 \cos (l+2 D)$
493	$+24 \cdot 6 \cos (l+D)$
494	$+4 \cdot 2 \cos l$
495	$-5 \cdot 1 \cos (l-D)$
496	$-4 \cdot 2 \cos (l-2 D)$
497	$+10 \cdot 4 \cos (l-3 D)$
498	$+1 \cdot 0 \cos (l-5 D)$
499	$-5 \cdot 0 \cos (l-6 D)$
500	$-\cdot 2 \cos (l-8 D)$

List iv (concl.).

Tables of terms in C (cont.).

Table 43 (cont.).

Ref.

No.	Term
sor	$-0 \cdot 2 \cos (2 l+6 D)$

$-\quad 3 \cdot 9 \cos (2 l+4 D)$
$+\quad .4 \cos (2 l+3 D)$
$-\quad .9 \cos (2 l+2 D)$
$+2 \cdot 9 \cos (2 l+D)$
$+\quad 5 \cdot 8 \cos 2 l$

- $1 \cdot 0 \cos (2 l-D)$
$+306 \cdot 7 \cos (2 l-2 D)$
- $1 \cdot 6 \cos (2 l-3 D)$
- $16.6 \cos (2 l-4 D)$
$+\quad .4 \cos (2 l-5 D)$
$-4.0 \cos (2 l-6 D)$
$-\quad \cdot 2 \cos (2 l-8 D)$

Tables of terms in C (concl.).

List v. Terms included in the tables of Sect. V.

Table 1. Args. D, 1.

620	-0:0053 $\cos \left(l^{\prime}+4 D\right)$
660	$+\cdot 0027 \cos \left(l^{\prime}+3 D\right)$
62 I	- $3000 \cos \left(l^{\prime}+2 D\right)$
66 I	$+\cdot 1494 \cos \left(l^{\prime}+D\right)$
6 az	- $3997 \cos l^{\prime}$
662	- -0037 $\cos \left(l^{\prime}-D\right)$
663	$+\cdot 0007 \cos \left(l^{\prime}-3 D\right)$
624	$+\cdot 0339 \cos \left(l^{\prime}-4 D\right)$
625	$+\cdot 0006 \cos \left(l^{\prime}-6 D\right)$
6.47	- $\cdot 0028 \cos \left(2 l^{\prime}+2 D\right)$
72	--0003 $\cos \left(2 l^{\prime}+\right.$ D)
6.48	- -0086 cos 2l ${ }^{\prime}$
713	$+\cdot 0003 \cos \left(2 l^{\prime}-D\right)$
649	$+\cdot 0918 \cos \left(2 l^{\prime}-2 D\right)$
69 r	- $+002 \mathrm{cos} 3 \mathrm{l}^{\prime \prime}$
692	$+\cdot 0036 \cos \left(3 l^{\prime}-2 D\right)$
693	$+\cdot 0002 \cos \left(3 l^{\prime}-4 D\right)$
	+1.000

Table 2. Args. D, 2.
-. .oor2 $\cos \left(l^{\prime}+l+4 D\right)$
$+.0003 \cos \left(l^{\prime}+l+3 D\right)$
$-.0484 \cos \left(l^{\prime}+l+2 D\right)$

+ -0164 $\cos \left(l^{\prime}+l+D\right)$
- $.9490 \cos \left(l^{\prime}+l\right)$
$+1 \cdot 4437 \cos \left(l^{\prime}+1-2 D\right)$
- $-0025 \cos \left(l^{\prime}+l-3 D\right)$
$+\cdot 0673 \cos \left(l^{\prime}+l-4 D\right)$
$+.0015 \cos \left(l^{\prime}+l-6 D\right)$
-. $0009 \cos \left(2 l^{\prime}+2 l\right)$
-. $0009 \cos \left(2 l^{\prime}+2 l-2 D\right)$
$+.0020 \cos \left(2 l^{\prime}+2 l-4 D\right)$ $+2 \cdot 5000$

Table 3. Args. D, 3 .

6.46	$-0.0005 \cos \left(l^{\prime}-l+6 D\right)$
645	$-\cdot 0102 \cos \left(l^{\prime}-l+4 D\right)$
$7 I I$	$+-0036 \cos \left(l^{\prime}-l+3 D\right)$
644	$-\cdot 2257 \cos \left(l^{\prime}-l+2 D\right)$
643	$+1 \cdot 1528 \cos \left(l^{\prime}-l\right)$
770	$-\cdot 014 \cos \left(l^{\prime}-l-D\right)$
642	$+\cdot 2302 \cos \left(l^{\prime}-l-2 D\right)$
647	$+-0060 \cos \left(l^{\prime}-l-4 D\right)$
734	$-.0005 \cos \left(2 l^{\prime}-2 l+4 D\right)$
733	$+\cdot 0024 \cos \left(2 l^{\prime}-2 l\right)$
732	$+-0013 \cos \left(2 l^{\prime}-2 l-2 D\right)$
	$+1 \cdot 5000$

Table 4. Args. D, 4 .
$747+\cdot 002 \cos \left(2 l+l^{\prime}+3 D\right)$
$67 x-0051 \cos \left(2 l+l^{\prime}+2 D\right)$
$748+\cdot 0015 \cos \left(2 l+l^{\prime}+D\right)$
$672-\cdot 1038 \cos \left(2 l+t^{\prime}\right)$
$749-.0002 \cos \left(2 l+l^{\prime}-D\right)$
673 - -or92 $\cos \left(2 l+l^{\prime}-2 D\right)$
$750-\cdot 0005 \cos \left(2 l+l^{\prime}-3 D\right)$
$674+\cdot 0324 \cos \left(2 l+V^{\prime}-4 D\right)$
$757-\cdot 0002 \cos \left(2 l+l^{\prime}-5 D\right)$
$675+\cdot 0017 \cos (2 l+l l-6 D)$ $+.6000$
Table 5. Args. D. 5.
$676+\cdot 0007 \cos \left(2 l-l^{\prime}+4 D\right)$
$677+\cdot 0213 \cos \left(2 l-l^{\prime}+2 D\right)$
$75 z \quad-.0005 \cos \left(2 l-l^{\prime}+D\right)$
$678+\cdot 1268 \cos \left(2 l-l^{\prime}\right)$
$753-\cdot 0028 \cos \left(2 l-l^{\prime}-D\right)$
$679-.0017 \cos \left(2 l-l^{\prime}-2 D\right)$
754 - .0005 $\cos \left(2 l-l^{\prime}-3 D\right)$
$680-.0043 \cos \left(2 l-l^{\prime}-4 D\right)$
$755+.0002 \cos \left(2 l-l^{\prime}-5 D\right)$
$68 I-.0002 \cos \left(2 l-l^{\prime}-6 D\right)$ $+.2000$

List v (cont.).

Table 6. Args. D, 6. Ref.

No.	Term
682	$-0.0106 \cos \left(2 l^{\prime}+l\right)$
683	$+\cdot .0484 \cos \left(2 l^{\prime}+l-2 D\right)$
684	$+\cdot 0044 \cos \left(2 l^{\prime}+l-4 D\right)$
685	$+\cdot 0002 \cos \left(2 l^{\prime}+l-6 D\right)$
	$+\cdot 1000$

Table 7. Args. D, 7.
$690-\cdot 0003 \cos \left(2 l^{\prime}-l+4 D\right)$
$689-.0212 \cos \left(2 l^{\prime}-l+2 D\right)$
$688+$ - $0196 \cos \left(2 l^{\prime}-l\right)$
$687+\cdot$ OII $2 \cos \left(2 l^{\prime}-l-2 D\right)$
$686+\cdot 0005 \cos \left(2 l^{\prime}-l-4 D\right)$ $+.0500$
Table 8. Args. D, 8.

720	$-0006 \cos \left(3 l+l^{\prime}+2 D\right)$
$72 I$	$-0097 \cos \left(3 l+l^{\prime}\right)$
722	$-.0045 \cos \left(3 l+l^{\prime}-2 D\right)$
723	$+.0006 \cos \left(3 i+l^{\prime}-4 D\right)$
724	$+.0005 \cos \left(3 l+l^{\prime}-6 D\right)$
	+.0200

TAble 9. Args. D, 9.

725	+ -0017 $\cos \left(3 l-l^{\prime}+2 D\right)$
726	+ -0115 $\cos \left(3 l-l^{\prime}\right)$
727	- -0017 $\cos \left(3 l-l^{\prime}-2 D\right)$
728	$+.0002 \cos \left(3 l-l^{\prime}-4 D\right)$

$+.0300$
Table io. Args. D, i6.
$6 I 2+\cdot 0007 \cos (l+6 D)$
$613+.0433 \cos (l+4 D)$
$655-$-0003 $\cos (l+3 D)$
656 - $1093 \cos (l+D)$
$657+$ - orr $8 \cos (l-D)$
658 -.0386 $\cos (l-3 D)$
$659-\cdot 0003 \cos (l-5 D)$
$618+\cdot 0086 \cos (l-6 D)$
$619+\cdot 0002 \cos (l-8 D)$
703 - $0100 \cos (2 l+D)$
$704+\cdot{ }^{2} 55 \cos (2 l-D)$
$63 I-3039 \cos (2 l-2 D)$
705 - $0088 \cos (2 l-3 D)$
706 - $0008 \cos (2 l-5 D)$
$633+$-0109 $\cos (2 l-6 D)$
$634+\cdot 0002 \cos (2 l-8 D)$
$664+\cdot 0007 \cos (3 l+4 D)$
$665+\cdot 0243 \cos (3 l+2 D)$
744 - $0009 \cos (3 l+D)$
$745+$-0017 $\cos (3 l-D)$
667 - $1187 \cos (3 l-2 D)$
$668+\cdot 0074 \cos (3 l-4 D)$
$746-\cdot 0002 \cos (3 l-5 D)$
$670+\cdot 0002 \cos (3 l-8 D)$
$716+\cdot 0018 \cos (4 l+2 D)$
718 - -0130 $\cos (4 l-2 D)$
$719+\cdot 0002 \cos (4 l-6 D)$
$763+\cdot 0002 \cos (5 l+2 D)$
$765-\cdot 0012 \cos (5 l-2 D)$
$+1 \cdot 0000$

Table II. Args. D, 17.
Ref.
No.
$65 I$

- o."0009 $\cos (2 F+2 D)$

652 - $0124 \cos 2 F$
$714+\cdot 0071 \cos (2 F-D)$
$653-\cdot 1052 \cos (2 F-2 D)$
715 - -0017 $\cos (2 F-3 D)$
$654+\cdot 003 I \cos (2 F-4 D)$
$+\quad .2000$
Table 12. Args. D, 18.
$756+\quad 0002 \cos (2 F+l+D)$
694 - - oovo $\cos (2 F+l)$
$757+$-ooIo $\cos (2 F+l-D)$
$695-\quad .0833 \cos (2 F+l-2 D)$
$75^{8}+\quad .0002 \cos (2 F+l-3 D)$
$696+\quad .0014 \cos (2 F+l-4 D)$
$759-\quad .0002 \cos (2 F+l-5 D)$
$697+\cdot 0002 \cos (2 F+l-6 D)$

Table 13. Args. D, 19.

762	$+\quad .0004 \cos (2 F-l+3 D)$
701	-
761	$+0112 \cos (2 F-l+2 D)$
700	$-0006 \cos (2 F-l+D)$
699	-
760	$-0486 \cos (2 F-l)$
698	$-0002 \cos (2 F-l-2 D)$
	$+0.005 \cos (2 F-l-3 D)$
	$+1 \cdot 0000$

(a) Addition to Arg. 19.
$741,743+0<09 \mathrm{r} \sin l^{\prime}$
Table I4. Args. D, 21 .

3
$737+\quad .0004 \cos (2 F-2 l)$
736 - $\cdot 0053 \cos (2 F-2 l-2 D$ $+\quad .0200$

Table 15. Arg. 71. $+186.5398 \cos l$ $+10 \cdot 1657 \cos 2 l$ $+\quad .6215 \cos 3 l$ $+\quad .0401 \cos 4 l$ $+\quad .0026 \cos 5 l$ $+200 \cdot 0000$

Table 16. Arg. 33.
-9781 $\cos D$ $28 \cdot 2333 \cos 2 D$
$+\quad .0023 \cos 3 D$
$+\quad .2607 \cos 4 D$
-0032 $\cos 6 D$
30.0000

Table 17. Arg. 72.

```
+ 34.3117 cos(2D-l)
    -3722 cos 2 (2D --l)
    -0046 cos 3(2D-l)
    40.0000
```

List v (concl.).
Table 18. Arg. 73.

Ref.
No.
$6 r 4$
628
623
650
735
629

Term
$+3: 086 \mathrm{r} \cos (2 D+l)$
$+\cdot 0054 \cos 2(2 D+l)$
$+3 \cdot 1000$
TABLE 19. Arg. 74
$+1 \cdot 9178 \cos \left(2 D-l^{\prime}\right)$
$+\cdot 0028 \cos 2\left(2 D-l^{\prime}\right)$
$+2 \cdot 0000$

Table 20. Arg. 75.
$+.0090 \cos \left(2 l+2 F-2 D+180^{\circ}\right)$
$+.0090$
Table 21. Arg. 76.
$+\cdot 2833 \cos (2 l+2 D)$
$+\cdot 3000$

Table 22. Arg. 77.
Ref.
No. Term
$6{ }^{2} 7+0: 6008 \cos (4 D-\eta)$
$+.6100$
Table 23. Arg. 78.

$$
\begin{aligned}
702 & +.0066 \cos \left(l^{\prime}+2 F-2 D+180^{\circ}\right) \\
& +.0110
\end{aligned}
$$

Table 24. Arg. Sum of preceding inequalities. \sin II $+\frac{1}{4} \sin ^{2}$ II where
\sin II $=\left(\right.$ Arg: $\left.-284^{*}: 350\right)\left(\mathrm{I}-\mathbf{0 0 0 0 4}{ }^{8}\right)$
$6 I T+3422: 540$

List vi. Terms included in the Tables of Sect. VI.

Table P i. Args. $l^{\prime}, 79$.
$+0.822 \sin \left(V-T+180^{\circ}\right)$
$+\cdot 307 \sin (2 V-2 T+0.2)$
$+\cdot .042 \sin \left(3 V-3 T+180^{\circ} 7\right)$
$+.046 \sin \left(4 V-4 T+180^{\circ}\right)$
$+.033 \sin \left(5 V-5 T+180^{\circ}\right)$
$+.024 \sin \left(6 V-6 T+180^{\circ}\right)$
$+.017 \sin \left(7 V-7 T+180^{\circ}\right)$

+ or2 $\sin \left(8 V-8 T+180^{\circ}\right)$
$+.008 \sin \left(9 V-9 T+180^{\circ}\right)$
$+.006 \sin \left(10 V-10 T+180^{\circ}\right)$
$+.004 \sin \left(11 V-11 T+180^{\circ}\right)$
+ or $6 \sin \left(V-T+V^{\prime}+184^{\circ}\right)$
+ oro $\sin \left(2 V-2 T+l^{\prime}+354^{\circ}\right)$
$+.042 \sin \left(V-T-V^{\circ}+358^{\circ}\right)$
$+\cdot 34^{8} \sin \left(2 V-2 T-i^{\prime}+1660^{\circ} 7\right)$
$+-176 \sin \left(3 V-3 T-V^{\prime}+168 \%\right.$)
$+.004 \sin \left(5 V-5 T-V^{\prime}+169^{\circ}\right)$
$+.006 \sin \left(6 V-6 T-l^{\prime}+168^{\circ}\right)$
$+.004 \sin \left(7 V-7 T-l^{\prime}+168^{\circ}\right)$
$+.003 \sin \left(V-T+2 l^{\prime}+228^{\circ}\right)$
$+.005 \sin \left(V-T-2 l^{\prime}+314^{\circ}\right)$
$+.003 \sin \left(2 V-2 T-2 l^{\prime}+306^{\circ}\right)$
$+.092 \sin \left(3 V-3 T-2 l^{\prime}+140^{\circ} 3\right)$
$+.026 \sin \left(4 V-4 T-2 l^{\prime}+135^{\circ}\right)$
$+.009 \sin \left(5 V-5 T-2 l^{\prime}+322^{\circ}\right)$
$+.004 \sin \left(6 V-6 T-2 l^{\prime}+132^{\circ}\right)$
$+.026 \sin \left(5 V-5 T-3 l^{\prime}+125^{\circ}\right)$
$+1 \cdot 752$

Table P 2. Args. $l^{\prime}, 80$.
$+0.643 \sin (T-J+1: 2)$
$+-187 \sin (2 T-2 J+180.4)$

+ -oro $\sin \left(3 T-3 J+173^{\circ}\right)$
$+.018 \sin \left(T-J+V^{\prime}+14^{\circ}\right)$
$+.006 \sin \left(2 T-2 J+l^{\prime}+357^{\circ}\right)$
$+.087 \sin \left(T-J-l^{\prime}+149^{\circ} 7\right)$
$+\cdot 165 \sin \left(2 T-2 J-l^{\prime}+1980^{\circ} \mathrm{x}\right)$
$+\cdot 052 \sin \left(3 T-3 J-l^{\prime}+87^{\circ} .6\right)$
$+.004 \sin \left(4 T-4 J-l^{\prime}+85^{\circ}\right)$
$+\cdot 010 \sin \left(T-J-2 l^{\prime}+89^{\circ}\right)$
$+.005 \sin \left(2 T-2 J-2 l^{\prime}+15^{\circ}\right)$
$+.025 \sin \left(3 T-3 J-2 l^{\prime}+101^{\circ}\right)$
$+.006 \sin \left(4 T-4 J-2 V^{\prime}+355^{\circ}\right)$
$+.003 \sin \left(4 T-4 J-3 l^{\circ}+9^{\circ}\right)$
$+1 \cdot 103$
Table P 3. Args. $l^{\prime}, 8 \mathrm{r}$.

$$
+.0 I I \sin (T-M)
$$

1056
$1057+-195 \sin (2 T-2 M+359: 8)$
ros $8+.014 \sin \left(3 T-3 M+183^{\circ}\right)$
$1059+\cdot \cos \sin \left(4 T-4 M+191^{\circ}\right)$
ro6o $+\cdot 006 \sin \left(2 T-2 M+l^{\prime}\right)$
ro6r $+\cdot 327 \sin \left(2 T-2 M-V^{\prime}+215^{?} \cdot 2\right)$
ro62 $+.038 \sin \left(3 T-3 M-V^{\prime}+227^{\prime} \cdot 2\right)$
$1063+\cdot 048 \sin \left(4 T-4 M-V^{\prime}+227^{\circ} 1\right)$
$1064+$-010 $\sin \left(5 T-5 M-l^{\prime}+109^{\circ}\right)$

List vi (cont.).

Table P 3 (cont.).
Ref. No.
Term

1065	$+0.093 \sin \left(4 T-4 M-2 l^{\prime}+94^{\circ} 5\right)$
1066	$+.020 \sin \left(5 T-5 M-2 l^{\prime}+94^{\circ}\right)$
1067	$+.014 \sin \left(6 T-6 M-2 l^{\prime}+95^{\circ}\right)$
1068	$+.006 \sin \left(7 T-7 M-2 l^{\prime}+277^{\circ}\right)$
1069	$+.016 \sin \left(6 T-6 M-3 l^{\prime}+322^{\circ}\right)$
1070	$+.013 \sin \left(7 T-7 M-3 l^{\prime}+323^{\circ}\right)$
$107 T$	$+.006 \sin \left(8 T-8 M-3 l^{\prime}+324^{\circ}\right)$
1072	$+.003 \sin \left(9 T-9 M-3 l^{\prime}+145^{\circ}\right)$
1393	$+.003 \sin \left(8 T-8 M-4 l^{\prime}+189^{\circ}\right)$
1394	$+.008 \sin \left(9 T-9 M-4 l^{\prime}+194^{\circ}\right)$
	+.763

Table P 4. Args. $l^{\prime}, 79$.
801, $802+35.9 \sin \left(V-T+180^{\circ}\right)$
$800,803+13.9 \sin (2 V-2 T)$
$799,804+15 \cdot 2 \sin (3 V-3 T)$
$798,805+\cdot 7 \sin (4 V-4 T)$
797
$+\quad .8 \sin \left(5 V-5 T+180^{\circ}\right)$
$+\quad .7 \sin \left(6 V-6 T+180^{\circ}\right)$
$+.5 \sin \left(7 V-7 T+180^{\circ}\right)$
$795+\quad .5 \sin \left(7 V-7 T+180^{\circ}\right)$
$806,817+1 \cdot 4 \sin \left(2 V-2 T+l^{\prime}+358^{\circ}\right)$
818
$807,815+2.2 \sin \left(V-T-l^{\prime}+4^{\circ}\right)$
$808,814+11 \cdot 7 \sin \left(2 V-2 T-l^{\prime}+166.1\right)$
$809,813+9 \cdot 2 \sin \left(3 V-3 T-l^{\prime}+168^{\circ}\right)$
$810+7 \sin \left(4 V-4 T-l^{\prime}+168^{\circ}\right)$
$8 I I+.5 \sin \left(5 V-5 T-l^{\prime}+348^{\circ}\right)$
$820,826+3 \cdot 7 \sin \left(3 V-3 T-2 l^{\prime}+129^{\circ}\right)$
$821,825+\mathrm{I} \cdot \mathrm{O} \sin \left(4 V-4 T-2 l^{\prime}+134^{\circ}\right)$
$822,824+.8 \sin \left(5 V-5 T-2 l^{\prime}+320^{\circ}\right)$
$823+2 \cdot 0 \sin \left(6 V-6 T-2 l^{\prime}+14 \mathrm{I}^{\circ}\right)$
$827,828+\mathrm{I} \cdot \mathrm{O} \sin \left(5 V-5 T-3 l^{\prime}+124^{\circ}\right)$
$167,17 I+8.8 \sin \left(3 l^{\prime}+180^{\circ}\right)$
$+95 \cdot 6$
Table P 5. Args. $l^{\prime}, 80$.
$965,966+38.6 \sin \left(T-J+\mathbf{1}^{\circ}\right)$
$964,967+19.7 \sin (2 T-2 J)$
$968+\cdot 7 \sin \left(3 T-3 J+159^{\circ}\right)$
$969,976+\mathrm{I} \cdot 5 \sin \left(T-J+l^{\prime}+10^{\circ}\right)$
$977+1 \cdot 0 \sin \left(2 T-2 J+l^{\prime}+354^{\circ}\right)$
$970,975+16 \cdot 0 \sin \left(T-J-l^{\prime}+157^{\circ} \mathrm{I}\right)$
$971,974+9.4 \sin \left(2 T-2 J-l^{\prime}+198^{\circ}\right)$
$972,973+13 \cdot 2 \sin \left(3 T-3 J-l^{\prime}+87^{\circ} 1\right.$ 1)
$978,982+\mathbf{I} \cdot 8 \sin \left(2 T-2 J-2 l^{\prime}+13^{\circ}\right)$
$979,98 I+\mathrm{I} \cdot 3 \sin \left(3 T-3 J-2 l^{\prime}+101^{\circ}\right)$
$980+\cdot 5 \sin \left(4 T-4 J-2 l^{\prime}+356^{\circ}\right)$
$+94.0$
Table P 6. Args. $l^{\prime}, 8 \mathrm{r}$.
1075, 1076 $+\mathrm{I} \cdot \mathrm{I} \sin (T-M)$
1074, $1077+10.4 \sin (2 T-2 M)$
1073, 1078 $+.8 \sin \left(3 T-3 M+180^{\circ}\right)$
$1079+.4 \sin (4 T-4 M)$

Table P 6 (concl.).
Ref. No.

Term

1080, $1086+18.7 \sin \left(2 T-2 M-l^{\prime}+211 .{ }^{\circ}\right)$
108I, $1085+2 \cdot 3 \sin \left(3 T-3 M-l^{\prime}+228^{\circ}\right)$
1082,1084 $+2.8 \sin \left(4 T-4 M-l^{\prime} 228^{\circ}\right)$
$1083+1 \cdot 1 \sin \left(6 T-6 M-l^{\prime} 230^{\circ}\right)$
1087,1093 $+4.5 \sin \left(4 T-4 M-2 l^{\prime}+94^{\circ}\right)$
1088, 1092 $+1 \cdot 3 \sin \left(5 T-5 M-2 l^{\prime}+94^{\circ}\right)$
T089, IO9I $+.8 \sin \left(6 T-6 M-2 l^{\prime}+95^{\circ}\right)$
$1090+.8 \sin \left(8 T-8 M-2 l^{\prime}+276^{\circ}\right)$
$1094+.4 \sin \left(6 T-6 M-3 l^{\prime}+322^{\circ}\right)$
1095,1096 $+.8 \sin \left(7 T-7 M-3 l^{\prime}+323^{\circ}\right)$
$+41 \cdot 6$
Table P 7. Args. $l^{\prime}, 79$.
801,802 $+10 \cdot 0 \cos (V-T)$
$800,803+5 \cdot 6 \cos (2 V-2 T)$
$799,804+59.6 \cos \left(3 V-3 T+180^{\circ}\right)$
$798,805+7.6 \cos \left(4 V-4 T+180^{\circ}\right)$
$797+2.8 \cos \left(5 V-5 T+180^{\circ}\right)$
$796+2.4 \cos \left(6 V-6 T+180^{\circ}\right)$
$795+1 \cdot 6 \cos \left(7 V-7 T+180^{\circ}\right)$
$816+\mathbf{I} \cdot 2 \cos \left(V-T+l^{\prime}+358^{\circ}\right)$
$806,817+\mathbf{I} \cdot 2 \cos \left(2 V-2 T+l^{\prime}+178^{\circ}\right)$
$818+3.2 \cos \left(3 V-3 T+l^{\prime}+180^{\circ}\right)$
$808,8 I 4+\mathrm{T} \cdot 6 \cos \left(2 V-2 T-l^{\prime}+76^{\circ}\right)$
$809,813+3.6 \cos \left(3 V-3 T-l^{\prime}+34^{\circ}\right)$
$810+2.4 \cos \left(4 V-4 T-l^{\prime}+348^{\circ}\right)$
$8 I I+1 \cdot 6 \cos \left(5 V-5 T-l^{\prime}+168^{\circ}\right)$
$823+7 \cdot 2 \cos \left(6 V-6 T-2 l^{\prime}+321^{\circ}\right)$
I67, $17 I+14.4 \cos 3 l^{\prime}$
$+98 \cdot 4$
Table P 8. Args. $l^{\prime}, 80$.
$965,966+6 \cdot 0 \cos \left(T-J+\mathbf{1} 8 \mathbf{r}^{\circ}\right)$
$964,967+100 \cdot 0 \cos \left(2 T-2 J+180^{\circ}\right)$
$968+2.4 \cos \left(3 T-3 J+339^{\circ}\right)$
$977+3.6 \cos \left(2 T-2 J+l^{\prime}+174^{\circ}\right)$
$97 I, 974+\mathrm{I} \cdot 6 \cos \left(2 T-2 J-l^{\prime}+18^{\circ}\right)$
$97^{2,973}+39 \cdot 2 \cos \left(3 T-3 J-l^{\prime}+267^{\circ} \mathbf{1}\right)$
$980+1 \cdot 6 \cos \left(4 T-4 J-2 l^{\prime}+176^{\circ}\right)$
$+149 \cdot 6$
Table P 9. Args. $l^{\prime}, 8 \mathrm{r}$.

1074, 1077	$+2.4 \cos \left(2 T-2 M+180^{\circ}\right)$
1079	$+1 \cdot 2 \cos \left(4 T-4 M+180^{\circ}\right)$
1080,1086	$+6 \cdot 0 \cos \left(2 T-2 M-l^{\prime}+121^{\circ}\right)$
1082,1084	$+1 \cdot 6 \cos \left(4 T-4 M-l^{\prime}+48^{\circ}\right)$
1083	$+4.0 \cos \left(6 T-6 M-l^{\prime}+50^{\circ}\right)$
1090	$+2.8 \cos \left(8 T-8 M-2 l^{\prime}+96^{\circ}\right)$
1094	$+1 \cdot 2 \cos \left(6 T-6 M-3 l^{\prime}+142^{\circ}\right)$
	+16.8

List vi (cont.).

Table P 10. Args. $\boldsymbol{r}^{\prime}, 79$.

Ref. No.	Term
839, 840	$+7 \cdot 1 \sin \left(V-T+180^{\circ}\right)$
838,845	$+10 \cdot 0 \sin (2 V-2 T+0.4)$
837, 847	$+1 \cdot 2 \sin \left(3 V-3 T+179^{\circ}\right)$
836,843	$+\quad .7 \sin (4 V-4 T)$
835	$+.6 \sin (5 V-5 T)$
834	$+.6 \sin (6 V-6 T)$
833	$+.5 \sin (7 V-7 T)$
832	$+\quad \cdot 5 \sin (8 V-8 T)$
83 I	$+\quad .4 \sin (9 V-9 T)$
830	$+3 \sin (10 V-10 T)$
829	$+\cdot 2 \sin (11 V-11 T)$
859	$+\cdot 5 \sin \left(V-T+l^{\prime}+182^{\circ}\right)$
860	$+\quad .8 \sin \left(2 V-2 T+V^{\prime}+359^{\circ}\right)$
867	$+\quad \cdot 2 \sin \left(3 V-3 T+V^{\prime}+359^{\circ}\right)$
845	$+\quad \cdot 2 \sin \left(V-T-V^{\prime}+208^{\circ}\right)$
846,858	$+3.4 \sin \left(2 V-2 T-V^{\prime}+170^{\circ}\right)$
8.47	$+2 \cdot 2 \sin \left(3 V-3 T-l^{\prime}+168^{\circ} \mathrm{I}\right)$
848,857	$+\quad 7 \sin \left(4 V-4 T-V^{\prime}+343^{\circ}\right)$
856	$+\quad .4 \sin \left(5 V-5 T-V^{\prime}+344^{\circ}\right)$
855	$+\quad 3 \sin \left(6 V-6 T-V^{\prime}+338^{\circ}\right)$
854	$+3 \sin \left(7 V-7 T-l^{\prime}+338^{\circ}\right)$
853	$+\quad \cdot 2 \sin \left(8 V-8 T-l^{\prime}+338^{\circ}\right)$
852	$+\quad \cdot 2 \sin \left(9 V-9 T-l^{\prime}+338^{\circ}\right)$
857	$+\cdot 2 \sin \left(10 V-10 T-l^{\prime}+338^{\circ}\right)$
850	$+\quad \cdot 2 \sin \left(11 V-11 T-l^{\circ}+338^{\circ}\right)$
867	$+\cdot 2 \sin \left(2 V-2 T-2 l^{\prime}+166^{\circ}\right)$
862, 866	$+1 \cdot 5 \sin \left(3 V-3 T-2 l^{\prime}+141^{\circ}\right)$
863	$+\cdot 2 \sin \left(4 V-4 T-2 l^{\prime}+137^{\circ}\right)$
864	$+\cdot 2 \sin \left(5 V-5 T-2 l^{\prime}+319^{\circ}\right)$
865	$+.4 \sin \left(6 V-6 T-2 l^{\circ}+321^{\circ}\right)$
	+28.0

Table P If. Args. $\boldsymbol{r}^{\prime}, 80$.

985,986	$+\mathrm{IT} \cdot 6 \sin \left(T-J+\mathrm{r}_{4}^{\circ}\right)$
984,987	$+9 \cdot 1 \sin (2 T-2 J+180.4)$
983.988	$+\cdot 2 \sin \left(3 T-3 J+147^{\circ}\right)$
995	$+\quad .5 \sin \left(T-J+l^{\prime}+7^{\circ}\right)$
996	$+\quad .4 \sin \left(2 T-2 J+l^{\prime}+178^{\circ}\right)$
989,994	$+3.5 \sin \left(T-J-l^{\prime}+87^{\circ}\right)$
990, 993	$+2.4 \sin \left(2 T-2 J-l^{\prime}+203^{\circ}\right)$
991,992	$+\quad \cdot 9 \sin \left(3 T-3 J-l^{\prime}+268^{\circ}\right)$
1000	$+\quad .4 \sin \left(T-J-2 l^{\circ}+269^{\circ}\right)$
999	$+\quad-2 \sin \left(2 T-2 J-2 l^{\circ}+359^{\circ}\right)$
997	$+\quad 3 \sin \left(3 T-3 J-2 l^{\circ}+103^{\circ}\right)$
998	$+\quad \cdot 2 \sin \left(4 T-4 J-2 l^{\prime}+354^{\circ}\right)$
	$+26 \cdot 2$

Table P 12. Args. $l^{\prime}, 8 \mathrm{i}$.

rog8	$+\cdot 2 \sin (T-M)$
r097, 1099	$+2.9 \sin \left(2 T-2 M+359^{\circ}\right)$
rioo	$+\quad 3 \sin \left(3 T-3 M+180^{\circ}\right)$
08	$+\cdot 2 \sin \left(2 T-2 M+l^{\prime}\right)$
1701, 1107	$+2 \cdot 7 \sin \left(2 T-2 M-l^{\prime}+216^{\circ}\right.$
102, iİO6	$+\quad .5 \sin \left(3 T-3 M-l^{\prime}+228^{\circ}\right)$

B. 1.

Table P 12 (concl.).

Rel. No.		Term
ITOJ	$+$	$\cdot 5 \sin \left(4 T-4 M-V^{\circ}+226^{\circ}\right)$
1704	$+$	$\cdot 2 \sin \left(5 T-5 M-l^{\prime}+43^{\circ}\right)$
rios	+	$\cdot 2 \sin \left(6 T-6 M-l^{\prime}+49^{\circ}\right)$
rio9, itia	$+$. $8 \sin \left(4 T-4 M-2 b^{\prime}+96^{\circ}\right)$
ITİO	+	${ }^{2} 2 \sin \left(5 T-5 M-2 l^{\circ}+95^{\circ}\right)$
II	$+$	$\cdot 2 \sin \left(6 T-6 M-2 V^{\circ}+93^{\circ}\right)$
	$+$	$8 \cdot 1$

Table P 13. Args. $V^{\prime}, 79$.

839,840	$+32 \cdot 0 \cos (V-T)$
838,847	$+42 \cdot 0 \cos (2 V-2 T+180.4)$
837. 8.42	$+20 \cdot 0 \cos \left(3 V-3 T+180^{\circ}\right)$
836,843	$+1.6 \cos (4 V-4 T)$
835	$+4.8 \cos (5 V-5 T)$
834	$+4.8 \cos (6 V-6 T)$
833	$+3 \cdot 2 \cos (7 V-7 T)$
832	$+3 \cdot 2 \cos (8 V-8 T)$
837	$+2.4 \cos (9 V-9 T)$
830	$+2 \cdot 0 \cos (10 \mathrm{~V}-10 \mathrm{~T})$
829	$+1 \cdot 2 \cos (11 \mathrm{~V}-11 T)$
859	$+3.6 \cos \left(V-T+V^{\circ}+2^{\circ}\right)$
860	$+5.6 \cos \left(2 V-2 T+l^{\prime}+179^{\circ}\right)$
86 r	$+1 \cdot 2 \cos \left(3 V-3 T+V^{\prime}+1799^{\circ}\right)$
845	$+\mathrm{I} \cdot 2 \cos \left(V-T-l^{\prime}+28^{\circ}\right)$
846,858	$+8.8 \cos \left(2 V-2 T-V^{\prime}+347^{\circ}\right)$
847	$+15.6 \cos \left(3 V-3 T-V^{\prime}+34^{8.1}\right)$
848,857	$+\quad .8 \cos \left(4 V-4 T-V^{\prime}+32 I^{\circ}\right)$
856	$+2.8 \cos \left(5 V-5 T-I^{\prime}+344^{\circ}\right)$
855	$+2 \cdot 0 \cos \left(6 V-6 T-l^{\prime}+338^{\circ}\right)$
854	$+2 \cdot 0 \cos \left(7 V-7 T-V^{\prime}+338^{\circ}\right)$
853	$+1.6 \cos \left(8 V-8 T-V^{\prime}+338^{\circ}\right)$
852	$+\mathbf{1} \cdot 6 \cos \left(9 V-9 T-l^{\prime}+33^{8}\right)$
857	$+1.6 \cos \left(\mathrm{ro} V-\mathrm{to} T-l^{\prime}+338^{\circ}\right.$)
850	$+\mathrm{I} \cdot 2 \cos \left(\mathrm{II} V-11 T-l^{\prime}+338^{\circ}\right.$)
867	$+1 \cdot 2 \cos \left(2 V-2 T-2 l^{\prime}+166^{\circ}\right)$
86a, 866	$+1.6 \cos \left(3 V-3 T-2 l^{\prime}+141^{\circ}\right)$
863	$+1 \cdot 2 \cos \left(4 V-4 T-2 l^{\prime}+317^{\circ}\right)$
864	$+1.6 \cos \left(5 V-5 T-2 l^{\prime}+139^{\circ}\right)$
865	$+2.4 \cos \left(6 V-6 T-2 l^{\prime}+321^{\circ}\right)$
	+104.8

Table P 14. Args. $l^{\prime}, 80$.

985,986	$+56 \cdot 4 \cos \left(T-J+18 \mathrm{r}^{3} 6\right)$
984.987	$+6 \cdot 4 \cos \left(2 T-2 J+5^{\circ}\right)$
983.988	$+4^{.8} \cos \left(3 T-3 J+352^{\circ}\right)$
995	$+3.6 \cos \left(T-J+I^{\prime}+187^{\circ}\right)$
996	$+2 \cdot 4 \cos \left(2 T-2 J+l^{\prime}+358^{\circ}\right)$
989.994	$+2.8 \cos \left(T-J-I^{\prime}+56^{\circ}\right)$
990,993	$+12.4 \cos \left(2 T-2 J-r^{\prime}+23^{\circ}\right)$
997, 992	$+28 \cdot 8 \cos \left(3 T-3 J-l^{\prime}+268^{\circ}\right)$
rooo	$+2.4 \cos \left(T-J-2 l^{\prime}+269{ }^{\circ}\right)$
999	$+\mathbf{t} \cdot 2 \cos \left(2 T-2 J-2 l^{\prime}+359^{\circ}\right)$
997	$+2 \cdot 0 \cos \left(3 \bar{T}-3 J-2 V^{\prime}+283^{\circ}\right)$
998	$+1 \cdot 2 \cos \left(4 T-4 J-2 l^{\prime}+174^{\circ}\right)$
	+ 93 ${ }^{\circ}$

LIST vi (cont.).

Table P $15 . \quad$ Args. $l^{\prime}, 8 \mathrm{I}$.

Ref. No.	Term
1098	$+\mathrm{I} \cdot 6 \cos \left(T-M+180^{\circ}\right)$
1097, 1099	$+16.4 \cos \left(2 T-2 M+179^{\circ}\right)$
itoo	$+2 \cdot 0 \cos (3 T-3 M)$
ITO8	$+1 \cdot 2 \cos \left(2 T-2 M+l^{\prime}+180^{\circ}\right)$
1102, 1106	$+\mathrm{I} \cdot 2 \cos \left(3 T-3 M-l^{\prime}+48^{\circ}\right)$
1103	$+3 \cdot 2 \cos \left(4 T-4 M-l^{\prime}+46^{\circ}\right)$
IIO4	$+1 \cdot 2 \cos \left(5 T-5 M-l^{\prime}+223^{\circ}\right)$
TIO5	$+\mathrm{I} \cdot 2 \cos \left(6 T-6 M-l^{\prime}+49^{\circ}\right)$
ITO9, III2	$+\mathrm{I} \cdot 2 \cos \left(4 T-4 M-2 l^{\prime}+96^{\circ}\right)$
IIIO	$+1 \cdot 6 \cos \left(5 T-5 M-2 l^{\prime}+275^{\circ}\right)$
IIII	$+\quad 1.6 \cos \left(6 T-6 M-2 l^{\prime}+273^{\circ}\right)$
	+ 29.2

Table P 16. Args. $l^{\prime}, 79$.
$879,880+10.8 \sin \left(V-T+180^{\circ}\right)$
$878,88 I+2 I \cdot 8 \sin (2 V-2 T)$
$877,882+47.9 \sin \left(3 V-3 T+180^{\circ}\right)$
$876,883+5.9 \sin \left(4 V-4 T+180^{\circ}\right)$
$875+2.8 \sin \left(5 V-5 T+180^{\circ}\right)$
$874+1.6 \sin \left(6 V-6 T+180^{\circ}\right)$
$873+\cdot 9 \sin \left(7 V-7 T+180^{\circ}\right)$
$872+.6 \sin \left(8 V-8 T+180^{\circ}\right)$
$87 I+\quad .5 \sin \left(9 V-9 T+180^{\circ}\right)$
$870+\cdot 2 \sin \left(10 V-10 T+180^{\circ}\right)$
$886,896+\cdot 5 \sin \left(V-T+l^{\prime}+174^{\circ}\right)$
$885,897+\mathrm{I} \cdot 2 \sin \left(2 V-2 T+l^{\prime}+359^{\circ}\right)$
$887.895+7.6 \sin \left(2 V-2 T-l^{\prime}+168^{\circ} \mathrm{r}\right)$
$888+3.6 \sin \left(3 V-3 T-l^{\prime}+167^{\circ} \cdot 7\right)$
$889,894+2 \cdot 6 \sin \left(4 V-4 T-l^{\prime}+349^{\circ}\right)$
$893+1 \cdot 7 \sin \left(5 V-5 T-l^{\prime}+169^{\circ}\right)$
$892+\quad .6 \sin \left(6 V-6 T-l^{\prime}+169^{\circ}\right)$
$89 I+4 \sin \left(7 V-7 T-l^{\prime}+169^{\circ}\right)$
$890+\quad \cdot 2 \sin \left(8 V-8 T-l^{\prime}+169^{\circ}\right)$
$906+\cdot 2 \sin \left(2 V-2 T-2 l^{\prime}+165^{\circ}\right)$
$899,905+3 \cdot 1 \sin \left(3 V-3 T-2 l^{\prime}+139^{\circ}\right)$
$900+3 \sin \left(4 V-4 T-2 l^{\prime}+137^{\circ}\right)$
$901,904+\cdot 6 \sin \left(5 V-5 T-2 l^{\prime}+322^{\circ}\right)$
$903+5.8 \sin \left(6 V-6 T-2 l^{\prime}+32 \mathrm{I}^{\circ} 9\right)$
$902+\quad .2 \sin \left(7 V-7 T-2 l^{\prime}+139^{\circ}\right)$
$908+3 \sin \left(5 V-5 T-3 l^{\prime}+125^{\circ}\right)$
$168,17^{2}+18 \cdot 7 \sin \left(3 l^{\prime}+180^{\circ}\right)$
$262+\quad .5 \sin \left(4 l^{\prime}+180^{\circ}\right)$
$+116 \cdot 1$

Table P 17. Args. $l^{\prime}, 80$.

1004,1005	$+19 \cdot 4 \sin (T-J+1 ? 5)$
1003,1006	$+90 \cdot 7 \sin (2 T-2 J+180.3)$
1002,1007	$+2 \cdot 1 \sin \left(3 T-3 J+178^{\circ}\right)$
1001	$+3 \sin \left(4 T-4 J+180^{\circ}\right)$
1009,1017	$+2 \cdot 0 \sin \left(T-J+l^{\prime}+26^{\circ}\right)$

TAble P 17 (concl.).

Ref. No.	Term	
IOIO, IOI6	$+8.6 \sin \left(T-J-l^{\prime}+73^{\circ} .9\right)$	
IOII, IOI5	$+4.8 \sin \left(2 T-2 J-l^{\prime}+20 I^{\circ}\right)$	
IOI, IOIT4	$+30.8 \sin \left(3 T-3 J-l^{\prime}+267^{\circ}\right.$ I $)$	
IOI3	$+5 \sin \left(4 T-4 J-l^{\prime}+87^{\circ}\right)$	
IOIG, IO22	$+7 \sin \left(3 T-3 J-2 l^{\prime}+96^{\circ}\right)$	
		I50.7

Table P i8. Args. $l^{\prime}, 8 \mathrm{I}$.

$I I I T, I I I 8$	+	$\cdot 8 \sin (T-M)$
$I I I 6, I I I 9$	$+5 \cdot 5 \sin \left(2 T-2 M+359^{\circ}\right)$	
$I I I 4$	+	$I \cdot 5 \sin \left(4 T-4 M+182^{\circ}\right)$
$I I I 3$	+	$\cdot 2 \sin \left(5 T-5 M+180^{\circ}\right)$
$I I 3 I$	+	$\cdot 3 \sin \left(2 T-2 M+l^{\prime}\right)$
$I I 2 I, I I 3 O$	$+4 \cdot 9 \sin \left(2 T-2 M-l^{\prime}+220^{\circ}\right)$	
$I I 22, I I 29$	+	$I \cdot 3 \sin \left(3 T-3 M-l^{\prime}+228^{\circ}\right)$
$I I 23, I I 28$	+	$I \cdot 3 \sin \left(4 T-4 M-l^{\prime}+226^{\circ}\right)$
$I I 26$	+	$3 \cdot 1 \sin \left(6 T-6 M-l^{\prime}+51^{\circ}\right)$
$I I 25$	+	$\cdot 2 \sin \left(7 T-7 M-l^{\prime}+49^{\circ}\right)$
$I I 32, I I 37$	+	$I \cdot 9 \sin \left(4 T-4 M-2 l^{\prime}+96^{\circ}\right)$
$I I 33, I I 36$	+	$7 \sin \left(5 T-5 M-2 l^{\prime}+95^{\circ}\right)$
$I I 34$	+	$4 \sin \left(6 T-6 M-2 l^{\prime}+94^{\circ}\right)$
$I I 35$	$+2 \cdot 4 \sin \left(8 T-8 M-2 l^{\prime}+97^{\circ}\right)$	
	$+22 \cdot 2$	

Table P 19. Args. $l^{\prime}, 79$.

879,880	$+26 \cdot 2 \cos (V-T)$
878,88I	$+4.4 \cos \left(2 V-2 T+180^{\circ}\right)$
877,882	$+147.4 \cos \left(3 V-3 T+180^{\circ}\right)$
876,883	$+18.8 \cos \left(4 V-4 T+180^{\circ}\right)$
875	$+8 \cdot 2 \cos \left(5 V-5 T+180^{\circ}\right)$
874	$+4.8 \cos \left(6 V-6 T+180^{\circ}\right)$
873	$+2 \cdot 8 \cos \left(7 V-7 T+180^{\circ}\right)$
872	$+\quad 1 \cdot 8 \cos \left(8 V-8 T+180^{\circ}\right)$
871	$+\quad 1.4 \cos \left(9 V-9 T+180^{\circ}\right)$
870	$+\quad .6 \cos \left(10 V-10 T+180^{\circ}\right)$
886, 896	$+2 \cdot 6 \cos \left(V-T+l^{\prime}+2^{\circ}\right)$
885,897	$+2 \cdot 2 \cos \left(2 V-2 T+l^{\prime}+179^{\circ}\right)$
887, 895	$+5.8 \cos \left(2 V-2 T-l^{\prime}+348^{\circ}\right)$
888	$+10 \cdot 6 \cos \left(3 V-3 T-l^{\prime}+347^{\circ} 7\right)$
889,894	$+5.4 \cos \left(4 V-4 T-l^{\prime}+349^{\circ}\right)$
893	$+5.2 \cos \left(5 V-5 T-l^{\prime}+169^{\circ}\right)$
892	$+1.8 \cos \left(6 V-6 T-l^{\prime}+169^{\circ}\right)$
891	$+1 \cdot 0 \cos \left(7 V-7 T-l^{\prime}+169^{\circ}\right)$
890	$+\quad .6 \cos \left(8 V-8 T-l^{\prime}+169^{\circ}\right)$
906	$+\quad .6 \cos \left(2 V-2 T-2 l^{\prime}+165^{\circ}\right)$
899,905	$+\quad 1 \cdot 0 \cos \left(3 V-3 T-2 l^{\prime}+139^{\circ}\right)$
900	$+\quad .8 \cos \left(4 V-4 T-2 l^{\prime}+317^{\circ}\right)$
903	$+17.2 \cos \left(6 V-6 T-2 l^{\prime}+321.9\right)$
902	$+\quad .6 \cos \left(7 V-7 T-2 l^{\prime}+139^{\circ}\right)$
908	$+\quad .8 \cos \left(5 V-5 T-3 l^{\prime}+305^{\circ}\right)$
168, 172	$+53.8 \cos 3 l^{\prime}$
262	$+\quad \mathrm{r} \cdot 4 \cos 4 l^{\prime}$
	$+264.8$

Table P 20. Args. l', 8o.

Ref. No.	Term
roo4, 1005	$+34.8 \cos \left(T-J+18 \mathrm{r}^{2} 8\right)$
roo3, 1006	$+228 \cdot 6 \cos \left(2 T-2 J+180^{\circ} 3\right)$
1002, 1007	$+3.4 \cos \left(3 T-3 J+188^{\circ}\right)$
roor	$+\quad .8 \cos \left(4 T-4 J+180^{\circ}\right)$
roo9, ror7	$+2.4 \cos \left(T-J+l^{\prime}+135^{\circ}\right)$
roos, ror8	$+2 \cdot 6 \cos \left(2 T-2 J+l^{\prime}+1^{\circ}\right)$
roio, ror6	$+\quad .8 \cos \left(T-J-l^{\prime}+74^{\circ}\right)$
Iort, rors	$+6 \cdot 2 \cos \left(2 T-2 J-l^{\prime}+27^{\circ}\right)$
rora, 1014	$+99.4 \cos \left(3 T-3 J-l^{\prime}+267^{\circ} \mathrm{x}\right)$
ror3	$+1.4 \cos \left(4 T-4 J-l^{\prime}+87^{\circ}\right)$
ror9, 1022	$+\quad .6 \cos \left(3 T-3 J-2 l^{\prime}+276^{\circ}\right)$
roao, roar	$+1.8 \cos \left(4 T-4 J-2 l^{\prime}+176{ }^{\circ}\right)$
	$+382.4$

Table P 21. Args. $l^{\prime}, 81$.

ITI7, ITI8	$+\mathrm{I} \cdot 0 \cos \left(T-M+580^{\circ}\right)$
IIIT, III9	$+10.4 \cos \left(2 T-2 M+179^{\circ}\right)$
III5, TIE	$+2 \cdot 2 \cos \left(3 T-3 M+6^{\circ}\right)$
ITI4	$+4.4 \cos \left(4 T-4 M+182^{\circ}\right)$
III3	$+\quad .6 \cos \left(5 T-5 M+180^{\circ}\right)$
II3I	$+\quad .8 \cos \left(2 T-2 M+l^{\prime}+180^{\circ}\right)$
IT2T, IT30	$+\quad .8 \cos \left(2 T-2 M-l^{\prime}+220^{\circ}\right)$
1122, 1129	$+\quad 1 \cdot 0 \cos \left(3 T-3 M-l^{\prime}+48^{\circ}\right)$
T123, 1128	$+2 \cdot 4 \cos \left(4 T-4 M-l^{\prime}+46^{\circ}\right)$
IT24, 1127	$+1 \cdot 4 \cos \left(5 T-5 M-l^{\prime}+231^{\circ}\right)$
1726	$+9.4 \cos \left(6 T-6 M-l^{\prime}+51^{\circ}\right)$
1725	$+\quad .6 \cos \left(7 T-7 M-l^{\prime}+49^{\circ}\right)$
III32, II37	$+\quad .6 \cos \left(4 T-4 M-2 l^{\prime}+96^{\circ}\right)$
IT33, IT36	$+\quad .6 \cos \left(5 T-5 M-2 l^{\prime}+275^{\circ}\right)$
1734	$+1 \cdot 0 \cos \left(6 T-6 M-2 l^{\prime}+274^{\circ}\right)$
1135	$+7 \cdot 2 \cos \left(8 T-8 M-2 l^{\prime}+97^{\circ}\right)$
	$+3^{8 \cdot 4}$

Tables P 22, P 25, P 28, P 31, Arg. 82.
P 22. Addition to Longitude.

$$
\begin{aligned}
1375 & +7: 26 \mathrm{r} \cos \left(\Omega+270^{\circ}\right) \\
& +8 \cdot 000
\end{aligned}
$$

P 25. Addition to Arg. 30.
1375) in 7,25 +0 © 13 10 $\cos \left(\Omega+270^{\circ}\right)$
rior $+\quad+0.1444$
P28. Addition to Arg. 31.
$r 375$ in $3+0$. $097 \cos \left(\Omega+270^{\circ}\right)$
$+0.107$
P31. Addition to Arg. 32.
$1375)$ in $8+0\left\{085 \cos \left(\Omega+270^{\circ}\right)\right.$
$\left.x_{1401}\right\}+0.094$

List vi (cont.).
Tables P 23, P 26, P 29, P 32.
Ref. No.
Term
1373 P 23. Addition to Longitude. $+14: 270 \sin \left(346: 65+132: 86 t_{e}\right)$ $+15.000$
P 26. Addition to Arg. 30.
r373) in $7,25+$ of2019 $\sin \left(346.65+132.86 t_{6}\right)$
rifoo $+\quad .2124$
P 29. Addition to Arg. 3 .
1373 in $3+o f 191 \sin \left(346: 65+132: 86 t_{c}\right)$
$+\quad .200$
P 32. Addition to Arg. 32.
$\left.\begin{array}{rl} & 373 \\ \}\end{array}\right\}$ in $8+0\left\{233 \sin \left(346: 65+132: 86 f_{e}\right)\right.$
I400) $+\quad .242$

Tables $P_{24}, P_{27}, P_{30}, P_{33}$.
P_{24}. Addition to Longitude.
$1374+10.710 \sin \left(240^{\circ} .7+140.0 t_{e}\right)$
+1I.000
P 27. Addition to Arg. 30 .
1374 in $7,25+0$ § $_{1502} \sin \left(240^{\circ} .7+140 \% \mathrm{ot}_{\mathrm{c}}\right)$
$+\quad 1543$
P 30. Addition to Arg. 31.
1374 in $3+0 \varrho_{143} \sin \left(240.7+140,0 t_{e}\right)$
$+\quad 147$
P 33. Addition to Arg. 32. $+0 f_{176} \sin \left(240: 7+140.0_{e}\right)$ $+\quad .181$

1413.	$\left\{\begin{array}{l} \text { TABLE P } 36 . \quad \text { Arg. } 84 . \\ 483 \cdot 2 \cos (\Omega+170.05+\psi) \end{array}\right.$
1414,	Table P 37. Arg. Date. Factor of P 36

Table P 38. Arg. 78.
740,742
$0.317 \cos \left(l^{\prime}+2 F-2 D+180^{\circ}\right)$

Table P 39. Arg. Date.

Ref. No.	Term	Sg.
1048	+0. $284 \sin \left(3 J-2 T+2 l-2 D+172^{\circ} 5\right)$	A^{\prime}
1376	$+\cdot 282 \sin \left(-88+\mathrm{I}^{\circ} .4 t_{c}+264 . \mathrm{o}\right)$	B^{\prime}
1047	$+\cdot 240 \sin (2 T-2 J-2 l+2 D+0.1)$	C^{\prime}
1382	$+\cdot 237 \sin (8 V-13 T+226 \%$)	D^{\prime}
1385	$+\cdot 126 \sin \left(20 V-21 T+l-2 D+267^{\circ}\right)$	E^{\prime}
1383	$+\cdot 108 \sin \left(26 \mathrm{~V}-29 T-l+68^{\circ}\right)$	F^{\prime}
1379	$+.075 \sin \left(2 D-l+T-3 Q+105^{\circ}\right)$	G'
931	$+.073 \sin (3 V-3 T-2 l+2 D)$	H^{\prime}
207	$+.025 \sin \left(2 F-2 D-2 l^{\prime}\right)$	I^{\prime}
936	$+.062 \sin (8 T-6 V+2 l-2 D+17.4)$	J'
1387	$+.054 \sin \left(5 V-6 T+2 D-2 F+270^{\circ}\right)$	K'
1377	$+.040 \sin \left(119{ }^{\circ} t_{c}+152^{\circ}\right)$	L'
1779	$+.038 \sin (-28)$	M ${ }^{\prime}$
1386	$+.033 \sin \left(12 V-8 T+l-2 D+237^{\circ}\right)$	N^{\prime}
1384	$+.030 \sin (21 T-21 V+l)$	O^{\prime}
1397	$+.026 \sin \left(8 T-15 M+137^{\circ}\right)$	P^{\prime}
907	$+.025 \sin \left(13 T-15 V+2 D-l+151^{\circ}\right)$	Q'
1150	$+.021 \sin \left(S n+273^{\circ}\right)$	R^{\prime}
942	$+.019 \sin \left(5 T-3 V+8-1.4 t_{c}+216^{\circ}\right)$	S^{\prime}
1147	+ - $018 \sin \left(8 M-6 T+2 l-2 D+244^{\circ}\right)$	T'
1146	+ -017 $\sin \left(5 T-6 M-2 l+2 D+33 \mathrm{I}^{\circ}\right)$	U^{\prime}
1399	+ -017 $\sin \left(D-F+2 M+165^{\circ}\right)$	V^{\prime}
1389	$+.013 \sin \left(15 V-12 T-D+278^{\circ}\right)$	W^{\prime}
1390	+ -013 $\sin \left(23 V-25 T-D+350^{\circ}\right)$	X ${ }^{\prime}$
941	+ - orr $\sin \left(4 T-3 V+l-D+273^{\circ}\right)$	\mathbf{Y}^{\prime}
1388	+ -oro $\sin \left(24 T^{\prime}-24 V+3 l-2 D\right)$	Z^{\prime}
1392	$+.008 \sin \left(18 V-17 T+F-D-l+105^{\circ}\right)$	a
1395	$+.006 \sin \left(6 T-11 M+205^{\circ}\right)$	b
1396	$+.006 \sin \left(7 T-13 M+161^{\circ}\right)$	c
812	$+.006 \sin \left(23 V-24 T-l+268^{\circ}\right)$	d
1055	$+.006 \sin \left(2 J+8-1.4 t_{c}+168^{\circ}\right)$	e
1054	$+.005 \sin \left(J+8-\mathrm{r}^{\circ} 4 t_{c}+45^{\circ}\right)$	f
1398	$+.004 \sin \left(17 M-9 T+63^{\circ}\right)$	g
1378	$+.003 \sin \left(Q-4 T+239^{\circ}\right)$	h
1391	$+.003 \sin \left(24 T-23 V+F+285^{\circ}\right)$	i
1381	$+\cdot 003 \sin \left(4 Q-5 T+l-2 D+67^{\circ}\right)$	j
1380	$+.003 \sin \left(4 Q-3 T+l-2 F+113^{\circ}\right)$	k
898	$+.003 \sin \left(17 V-16 T-2 D+l+287^{\circ}\right)$	1
1049	$+.003 \sin \left(4 J-2 T+2 l-2 D+163^{\circ}\right)$	m
II 52	$+.003 \sin \left(2 S n+297^{\circ}\right)$	n
945	$+.016 \sin \left(5 T-3 V-8+1.4{ }^{t_{c}}+105^{\circ}\right)$	A
1148	$+.042 \sin (T-S n+0.4)$	B
1149	$+\cdot .008 \sin \left(2 T-2 S n+180^{\circ}\right)$	
884	$+\cdot 011 \sin (2 D-l+18 T-18 \mathrm{~V})$	C
928	$+.007 \sin (2 V-2 T+2 l-2 D)$	D
933	$+.004 \sin \left(5 T-4 V+2 l-2 D+92^{\circ}\right)$	E
258	+ oro $\sin \left(2 l-2 D+3 l^{\prime}+180^{\circ}\right)$	F
274	$+\cdot 026 \sin \left(2 l-2 F+l^{\prime}\right)$	G
1045	+ -OII $\sin \left(T-J+2 l-2 D+2^{\circ}\right)$	H
946	$+.005 \sin \left(4 T-2 V-8+1{ }^{\circ} 4 t_{c}+105^{\circ}\right)$	I
1046	$+.003 \sin (J-T+2 l-2 D)$	J

List vi (cont.).

Ref. No.	Term
280	$+0.024 \sin \left(2 F-2 l+l^{\prime}\right)$
944	$+.009 \sin \left(4 V-6 T+8-\mathrm{I}^{\circ} .4 t_{c}+255^{\circ}\right)$
I044	$+.005 \sin \left(2 T-2 J+2 l-2 D+180^{\circ}\right)$
206	$+.066 \sin \left(2 F-2 D+2 l^{\prime}+180^{\circ}\right)$
929	$+.005 \sin \left(V-T+2 l-2 D+180^{\circ}\right)$
930	$+.003 \sin \left(2 T-2 V+2 l-2 D+180^{\circ}\right)$
934	$+.003 \sin \left(3 V-4 T+2 l-2 D+268^{\circ}\right)$
932	$+.003 \sin \left(4 V-4 T-2 l+2 D+180^{\circ}\right)$
II5I	+ -OI3 $\sin \left(T-2 S n+283^{\circ}\right)$
943	$+.003 \sin \left(5 V-7 T+8-\mathrm{r}^{\circ} .4 t_{c}+255^{\circ}\right)$
304	$+.004 \sin \left(2 F-l-D+l^{\prime}\right)$
1145	$+.004 \sin (2 T-2 M+2 l-2 D)$
935	$+.003 \sin \left(2 V-3 T+2 l-2 D+268^{\circ}\right)$
1375, 1407,	
$\left.\begin{array}{c} 1408,1413 \\ 1414 \end{array}\right\} \text { in } 52$	$+.052 \sin \left(2 F+8-0.1 \mathrm{I} t_{c}-2 D+349.7\right)$

Term

Table P 40. Arg. Date.

786	$+6.3 \sin \left(18 V-16 T-l+209^{\circ}\right)$
1383 in 7	$+\mathrm{I} \cdot 6 \sin \left(26 V-29 T-l+68^{\circ}\right)$
940	$+\cdot 7 \sin \left(l+4 T-3 V-D+273^{\circ}\right)$
1379 in 7	$+\mathrm{r} \cdot \mathrm{r} \sin \left(2 D-l+T-3 Q+105^{\circ}\right)$
1053	$+\quad .7 \sin \left(2 l-2 D-2 T+3 J+172^{\circ}\right)$
1385 in 7, 849	$+2 \cdot 2 \sin \left(l+20 V-21 T-2 D+267^{\circ}\right)$
1156, II 59	$+3.2 \sin \left(S n+263^{\circ}\right)$
1376, 1402 in 7	$+15.6 \sin \left(8-1.8 t_{c}+276^{\circ}\right)$
1052	$+\cdot 9 \sin (2 T-2 J+2 D-2 l)$
949	$+.8 \sin \left(5 T-3 V+8-\mathrm{r} .4 t_{c}+216^{\circ}\right)$
868	$+.5 \sin \left(13 T-15 V+2 D-l+151^{\circ}\right)$
$877 a, 938$	$+\mathrm{I} \cdot \mathrm{r} \sin (3 V-3 T+2 D-2 l)$
285	$+\quad .9 \sin \left(2 F-2 D-2 l^{\prime}\right)$
777	$+.4 \sin (2 I T-2 I V+l)$
1170	$+\quad 7 \sin \left(2 T-3 S n+2 D-2 l+271^{\circ}\right)$
1382 in 7	$+11 \cdot 7 \sin \left(8 \mathrm{~V}-13 T+226^{\circ}\right)$
1403, 1377 in 7	$+\mathrm{I} \cdot 6 \sin \left(\mathrm{Ir} 9^{\circ} t_{c}+\mathrm{r} 52^{\circ}\right.$)
1405, 1397 in 7	$+\mathrm{I} \cdot \mathrm{I} \sin \left(8 T-15 M+\mathrm{I} 37^{\circ}\right.$)
II53, II54	$+2 \cdot 1 \mathrm{sin}(T-S n)$
II55	$+4 \sin 2(T-S n)$
IT65	$+2 \cdot 4 \sin \left(2 T-2 S n+2 D-2 l+180^{\circ}\right)$
844	$+\cdot 4 \sin (18 T-18 V+2 D-l)$
256	$+1.5 \sin \left(2 l^{\prime}+2 D-2 l+180^{\circ}\right)$
I375 in 32,39	$+\quad .4 \sin \left(l^{\prime}+8\right)$
$\left.\begin{array}{c} 1397,1405 \\ 1412 \end{array}\right\} \text { in } 8\{$	$\begin{aligned} & +\quad .5 \sin \left(15 M-8 T+2 l-2 D+36^{\circ}\right) \\ & +\quad .5 \sin \left(8 T-15 M+2 l-2 D+144^{\circ}\right) \end{aligned}$
1375, 1401 in 32,39	$+.4 \sin \left(l^{\prime}-8+180^{\circ}\right)$
1373 in 21	$+.5 \sin \left(16 T-18 V+2 l-D-1^{\circ} t_{c}+331^{\circ}\right)$
257	$+\cdot 5 \sin \left(4 l-4 D-2 l^{\prime}\right)$
1373 in 21	$+.5 \sin \left(18 V-16 T-D+\mathrm{r}^{\circ} t_{c}+209^{\circ}\right)$
1157, 1158	$+.8 \sin \left(T-2 S n+283^{\circ}\right)$
269	$+\quad 7 \sin \left(4 l-2 F-2 D+180^{\circ}\right)$

List vi (cont.).

Table P_{40} (conel.).

Ref. No.	Term
r382, 14 HI in 8	$+5.4 \sin \left(2 l-2 D+13 T-8 V+34^{\circ}\right)$
r376, 1402 in 8	$+\quad .8 \sin \left(2 l-2 D+9-1.4 t_{0}+96^{\circ}\right)$
1413 in 8	$+1 \cdot 2 \sin \left(2 l-2 D+a+180^{\circ}\right)$
rymo in 8	$+8 \sin \left(2 l-2 D-1199^{\circ} t_{e}+28^{\circ}\right)$
I382, 747 I in 8	$+5.4 \sin \left(2 l-2 D-13 T+8 V+226^{\circ}\right)$
II7I	$+\quad .8 \sin \left(2 l-2 D+S n+273^{\circ}\right)$
1373 in 33	$+\quad .9 \sin \left(l-2 D-16 T+18 V+l^{\prime}+1^{\circ} t_{2}+29^{\circ}\right)$
282, 286	$+2 \cdot 5 \sin \left(2 F-2 D+2 l^{\prime}\right)$
253	$+.8 \sin \left(4 l-4 D+2 l^{\prime}+180^{\circ}\right)$
1373 in 33	$+\quad 9 \sin \left(3 l-2 D+16 T-18 \mathrm{~V}+l^{\prime}-1{ }^{\circ} \%_{4}+151^{\circ}\right)$
1407, 1423 in roj	$+.8 \sin \left(2 F-2 D+a+180^{\circ}\right)$
Ir67	$+-5 \sin \left(2 l-2 D+2 T-2 S n+180^{\circ}\right)$
ruro in 8	$+-8 \sin \left(2 l-2 D+119^{\circ} t_{2}+152^{\circ}\right)$
869	$+1 \cdot 3 \sin \left(l-2 D+18 V-16 T+29^{\circ}\right)$
${ }_{1766}$	$+1.8 \sin (2 l-2 D+T-S n)$
252	$+2 \cdot 1 \sin \left(2 l-2 D+2 l^{\prime}+180^{\circ}\right)$
II69	$+\quad .4 \sin \left(2 l-2 D-2 S n+T+283^{\circ}\right)$
${ }_{1768}$	$+\quad .8 \sin \left(2 l-2 D-S n+269^{\circ}\right)$
r4r3 in 8	$+\mathrm{t} \cdot 2 \sin \left(2 l-2 D-8+180^{\circ}\right)$
1376, 1 400 in 8	$+\quad 8 \sin \left(2 l-2 D-9+1{ }^{3} \cdot 4^{t}{ }^{\prime}+84^{\circ}\right)$

Table P4I. Arg. Date.

786	$+22 \cdot 0 \cos \left(28 \mathrm{~V}-16 \mathrm{~T}-l+209^{\circ}\right.$)
940	$+2 \cdot 0 \cos \left(4 T-3 V+l-D+93^{\circ}\right)$
1053	$+2 \cdot 0 \cos \left(2 l-2 D-2 T+3 J+172^{\circ}\right)$
r385 in 7, 849	$+\mathrm{t} \cdot 2 \cos \left(2 \mathrm{O} V-2 \mathrm{~T} T+l-2 D+87^{\circ}\right)$
roga	$+3 \cdot 2 \cos \left(2 T-2 J+2 D-2 l+180^{\circ}\right)$
868	$+1.6 \cos \left(13 T-15 V+2 D-l+151^{\circ}\right)$
285	$+3 \cdot 2 \cos \left(2 F-2 D-2 l^{\prime}\right)$
777	$+\mathrm{I} \cdot 2 \cos \left(2 \pm T-2 x V+l+180^{\circ}\right)$
1170	$+2 \cdot 0 \cos \left(2 T-3 S n+2 D-2 l+271^{\circ}\right)$
1153, 1154	$+1.6 \cos \left(T-S m+180^{\circ}\right)$
r155	$+1 \cdot 2 \cos \left(2 T-2 S n+180^{\circ}\right)$
Ir65	$+8.4 \cos \left(2 T-2 S n+2 D-2 l+180^{\circ}\right)$
1373 in 32,39	$+4^{\circ} 0 \cos \left(18 V-16 T-l+l^{\prime}+1^{3} t_{e}+209^{\circ}\right)$
844	$+1 \cdot 2 \cos (18 T-18 \mathrm{~V}+2 \mathrm{D}-\mathrm{l})$
256	$+4.8 \cos \left(2 l^{\prime}+2 D-2 l^{\prime}\right)$
$r 375$ in 32, 39	$+\mathrm{i} \cdot 2 \cos \left(l^{\prime}+a+180^{\circ}\right)$
1373 in 32,39	$+4^{\circ} 0 \cos \left(16 T-18 \mathrm{~V}+l+l^{\prime}-1^{\circ} t_{e}+331^{\circ}\right)$
$\left.\underset{14 r^{2}}{1397,1405}\right\} \text { in } 8$	$\left\{\begin{array}{l} +1 \cdot 6 \cos \left(15 M-8 T+2 l-2 D+216^{\circ}\right) \\ +1 \cdot 6 \cos \left(8 T-15 M+2 l-2 D+324^{\circ}\right) \end{array}\right.$
r375 in 32, 39	$+1 \cdot 2 \cos \left(l^{\prime}-\Omega\right)$
$\begin{gathered} r 373 \text { in } 2 r \\ 257 \end{gathered}$	$\begin{aligned} & +1.6 \cos \left(16 T-18 V+2 l-D-1^{\circ} t_{z}+151^{\circ}\right) \\ & +1.6 \cos \left(4 l-4 D-2 l^{\prime}+180^{\circ}\right) \end{aligned}$
$\begin{gathered} 1373 \text { in } 2 I \\ 269 \end{gathered}$	$\begin{aligned} & +1.6 \cos \left(18 V-16 T-D+1^{\circ} \ell_{e}+29^{\circ}\right) \\ & +2.0 \cos \left(4^{I}-2 F-2 D\right) \end{aligned}$
32, I4II in 8	$+18.4 \cos \left(2 l-2 D+13 T-8 V+134^{\circ}\right)$
1376 in 8	$+2.8 \cos \left(2 l-2 D+\square-1.94_{e}+276^{\circ}\right)$
r4r3 in 8	$+4^{\circ} 0 \cos (2 l-2 D+a)$

Table P4 4^{1} (concl.).

Ref. No.	Term
raro in 8	$+2.8 \cos \left(2 l-2 D-119^{\circ} t_{e}+208^{\circ}\right)$
r38a, r4IT in 8	$+18 \cdot 4 \cos \left(2 l-2 D-13 T+8 V+46^{\circ}\right)$
1171	$+2.8 \cos \left(2 l-2 D+S n+93^{\circ}\right)$
1373 in 33	$+3 \cdot 2 \cos \left(l-2 D-16 T+18 V+V^{*}+1^{\circ} l_{e}+209^{\circ}\right)$
282, 286	$+5 \cdot 2 \cos \left(2 F-2 D+2 l^{\prime}+180^{\circ}\right)$
253	$+2 \cdot 8 \cos \left(4 l-4 D+2 l^{\prime}\right)$
1373 in 33	$+3 \cdot 2 \cos \left(3 l-2 D+16 T-18 V+l^{\prime}-1^{\circ} l_{e}+331^{\circ}\right)$
1407, 1483 in 203	$+2 \cdot 8 \cos (2 F-2 D+9)$
Ir67	$+\mathrm{t} \cdot 6 \cos (2 t-2 D+2 T-2 S n)$
14ro in 8	$+2.8 \cos \left(2 l-2 D+189^{\circ} t_{e}+332^{\circ}\right)$
869	$+4^{\prime} 4 \cos \left(l-2 D+18 V-16 T+209^{\circ}\right)$
1766	$+6 \cdot 0 \cos \left(2 l-2 D+T-S n+180^{\circ}\right)$
252	$+7 \cdot 2 \cos \left(2 l-2 D+2 l^{\prime}+180^{\circ}\right)$
1169	$+1 \cdot 2 \cos \left(2 l-2 D-2 S n+T+103^{\circ}\right)$
1168	$+2 \cdot 8 \cos \left(2 l-2 D-S n+89^{\circ}\right)$
1413 in 8	$+4 \cdot 0 \cos (2 l-2 D-8)$
1376 in 8	$+2.8 \cos \left(2 l-2 D-\Omega+14^{9} 4^{\prime}+264^{\circ}\right)$
	+157.3

Table P 42. Arg. Date.

* Two terms inserted by mistake.

List vi (concl.).

Table P 46. Arg. Date.
Tabulated every ten days from $\mathbf{1 9 0 0} \cdot \mathrm{O}$.

Ref. No.	Term
270	$+0.009 \sin \left(2 F+4 D-3 l+180^{\circ}\right)$
283	$+\cdot 015 \sin \left(2 F+2 D-l-2 l^{\prime}+180^{\circ}\right)$
913	+ .015 $\sin \left(2 T-2 V+2 D+1+180^{\circ}\right)$
rozo	$+\cdot 004 \sin \left(2 D+l-J+182^{\circ}\right)$
972	+ -011 $\sin (T-V+2 D+l)$
roas	$+.003 \sin \left(3 J-2 T+2 D+t+352^{\circ}\right)$
r373 in 6	$+.020 \sin \left(2 D+18 V-16 T+1^{\circ} t_{e}+29^{\circ}\right)$
r373 in 9 $\{$	$\begin{aligned} & +.004 \sin \left(4 D-2 l+18 V-16 T+1^{\circ} \xi_{4}+29^{\circ}\right) \\ & +.004 \sin \left(4 D-18 V+16 T-1^{\circ} \xi_{e}+151^{\circ}\right) \end{aligned}$
255	$+\cdot 016 \sin \left(3 l-2 l^{\prime}\right)$
284	$+\cdot 005 \sin \left(l+2 F-2 l^{\prime}+180^{\circ}\right)$
917	$+.003 \sin \left(2 V-3 T+2 D+l+269^{\circ}\right)$
roa6	$+.007 \sin \left(2 J-2 T+2 D+l+359^{\circ}\right)$
roa7	$+\cdots 04 \sin \left(J+2 D+l+353^{\circ}\right)$
989	$+\cdot 007 \sin (2 T-2 V+4 D-l)$
914	$+.003 \sin \left(3 T-3 V+2 D+l+180^{\circ}\right)$
rogr	$+.003 \sin \left(J-2 T+2 D+l+273^{\circ}\right)$
$9{ }^{8} 8$	$+.006 \sin \left(T-V+4 D-l+180^{\circ}\right)$
ro35	$+.003 \sin \left(2 T-3 J+4 D-l+7^{\circ}\right)$
1738	$+.006 \sin \left(2 M-2 T+2 D+l+180^{\circ}\right)$
916	$+.004 \sin \left(4 T-3 V+2 D+l+271^{\circ}\right)$
roas	$+.005 \sin \left(2 J-T+2 D+l+237^{\circ}\right)$
IT40	$+.003 \sin \left(T-2 M+2 D+l+93^{\circ}\right)$
1139	$+\cdots 03 \sin \left(2 M-T+2 D+l+82^{\circ}\right)$
$\left.\begin{array}{l} 1407,1408 \\ 1413,1414 \end{array}\right\} \text { in } 105$	$+\cdot 008 \sin \left(2 F+8-0.11 \mathrm{I} t_{e}+2 D-l+349.7\right)$
1413.14 ${ }^{169}$	$+.016 \sin \left(4 D-l-3 l^{\prime}\right)$
267	$+.033 \sin \left(3{ }^{l}-2 F+2 D+180^{\circ}\right)$
170	$+.032 \sin \left(2 D+l-3 l^{\prime}\right)$
312	$+.004 \sin \left(5{ }^{\prime}-2 D+l^{\prime}+180^{\circ}\right)$
1025	$+.021 \sin \left(J-T+2 D+l+178^{\circ}\right)$
281	$+.003 \sin \left(l+2 F+2 l^{\prime}\right)$
1373 in 99	$+.005 \sin \left(18 V-16 T+1^{\circ} t_{e}+2 F+209^{\circ}\right)$
1024	$+.005 \sin \left(T-J+2 D+l+1^{\circ}\right)$
288	$+\cdot 009 \sin (l+4 F-2 D)$
1373 in 99	$+\cdot 005 \sin \left(16 T-18 V-1^{\circ} t_{e}+2 F+2 l+331^{\circ}\right)$
ro33	$+.009 \sin \left(J-T+4 D-l+358^{\circ}\right)$
915	$+.005 \sin \left(3 T-2 V+2 D+l+271^{\circ}\right)$
971	$+.004 \sin (2 V-2 T+2 D+l)$
1375. 1 ¢0r in 6	+ -0Ir $\sin (\Omega+2 D+l)$
1373 in 6	+ -020 $\sin \left(16 T-18 V-1 \%_{c}+2 D+2 l+151^{\circ}\right.$
1375 in 6	+ -orisin $\left(2 D+l-8+180^{\circ}\right)$
ro3z	$+\cdot 007 \sin \left(2 T-2 J+4 D-l+180^{\circ}\right)$
9 O	$+.004 \sin (3 V-3 T+2 D+l)$
1023	$+.003 \sin \left(2 T-2 J+2 D+l+180^{\circ}\right)$
254	$+.003 \sin \left(6 D-3 l-2 l^{\prime}\right)$
1034	$+.005 \sin \left(2 J-2 T+4 D-l+179^{\circ}\right)$
909	$+\cdot 003 \sin (5 V-5 T+2 D+l)$
257	$+.003 \sin \left(3 l+2 l^{\prime}+180^{\circ}\right)$
	$+\cdot 392$

Table P 47. Arg. Date.
The same terms as in Table P 46 tabulated every ten days from $1900 \cdot 0+2^{d} 5$.

Table P48. Arg. Date.
Tabulated every fourteen days from $1900^{\circ} 0$.

Ref. No.

Term

$208+0$:or $6 \sin \left(2 F+2 D-2 l^{\prime}+180^{\circ}\right)$
$+\cdot 040 \sin \left(4 l+l^{\prime}+180^{\circ}\right)$
$+\cdot 016 \sin \left(2 F+4 D-2 l-l^{\prime}+180^{\circ}\right)$
$+\cdot 048 \sin \left(4^{l}-l^{\prime}\right)$
$+.053 \sin \left(2 l+2 F-l^{\prime}+180^{\circ}\right)$
$+\cdot 043 \sin \left(2 l+2 F+l^{\prime}\right)$
$+.003 \sin (4 F-2 l+2 D)$
$+.007 \sin \left(3 V-3 T+4 D+180^{\circ}\right)$
$+\cdot 010 \sin (4 l+2 F-2 D)$
$+.006 \sin \left(l+2 F+D+l^{\prime}+180^{\circ}\right)$
$+.003 \sin \left(2 t+2 D-3 t^{\prime}\right)$
$\left.\begin{array}{l}1407, r 408, \\ 1413, r 4)_{4}\end{array}\right\}$ in $50+.005 \sin \left(2 F+Q-0.11 t_{e}+2 D+349^{\circ} 7\right)$
$+\cdot 250$
Table P 49. Arg. Date.
The same terms as in Table $\mathbf{P}_{4} 8$ tabulated every fourteen days from $1900-0+1^{d} 75$.

Table $\mathrm{P}_{4} 6 a=\mathrm{P}_{47} a$.
(Arg. -39) $\cos d \cdot 36^{\circ}+39$
for $d=-2.0,-1.5,-1.0,-0.5$, 0.0 (Arg.),
$+0.5,+1.0,+1.5,+2.0,+2.5$.
Table P $48 a$.
(Arg. -25) $\cos +d \cdot 360^{\circ}+25$
for $d=-1.5,-1 \cdot 0,-0.5,0.0$ (Arg.),
$+0.5,+1.0,+15$.

Table P 49a.
(Arg. -25) $\cos \psi(d+0.25) 360^{\circ}+25$
for $d=-1 \cdot 5,-1 \cdot 0,-0 \cdot 5,0.0$ (Arg.),
$+0.5,+1.0,+1.5$.

Disposal of the Constants in the Tables of Sects. II-VI.

The constants which have been added in most of the tables must be subtracted in some manner. When the sum of the values extracted from the tables is to be added to an angle which requires tabulation, the sum of the constants can be subtracted from the angle before the latter is tabulated. Many of the tables require multiplication by a factor k proportional to the time; in these cases the sum of the constants multiplied by k is subtracted from the mean motion of the angle. Where there is no angle present in the sums, the constants must be subtracted by the computer; if any of the tables require the factor k, the constants of those tables must be subtracted before the values are multiplied by k.

List vii contains a summary of the constants which have been added and the manner of their disposal, the constant of each table having been given in Lists iii-vi. Table 30, Sect. III, contains no added constant, but since the instructions to the computer require the addition of 3000000 to each value in the table before entry, this constant must be included. The term Ref. No. 606, not hitherto included, is inserted as a constant in C , the coefficient given in List $\mathrm{i} \beta$ being divided by 18517 before insertion.

The change to the adopted constants of eccentricity, inclination and parallax.

It was pointed out in Chap. I, that the values of these constants used in constructing the tables were not the same as those finally adopted. It remains to show how the changes have been made.

Constant of eccentricity. The coefficient of the principal elliptic term in Longitude used in the tables is $226399^{\prime \prime} 500$ while that finally adopted is $22639^{\prime \prime} 550$. This term is contained in Table 30, Sect. III; the only other term which needs this correction is the evection, contained in Table 32, Sect. III. The factor for correction in both cases is $\mathrm{I}+{ }^{\circ} 05 \div 22640=\mathrm{I}+\cdot 0000022 \mathrm{I}$. The same factor is applied to the corresponding terms in the sine parallax. The changes have been included with the constants as shown in the Factors for these tables in List vii.

Constant of inclination. The coefficient of the principal term in Latitude (when expressed as a sum of harmonic terms) used in the tables is $1846 \mathrm{I}^{\prime \prime} 350$ while that finally adopted is $1846 I^{\prime \prime} 400$. To the required degree of accuracy, it is sufficient to add 0.050 to the coefficient of the principal term with argument S and therefore to add to $\mathrm{C}, \cdot 05 \div \mathrm{I} 85 \mathrm{I} 7=+\cdot 0000027$. This amount has been subtracted from the sum of the constants present in C as shown in List vii.

Constant of parallax. The tables for the sine parallax were constructed with the value $3422^{\prime \prime} 700$ for the constant term of this coordinate; the adopted value for this constant is $3422^{\prime \prime} .540$. These correspond respectively to the values $34 I 9^{\prime \prime} 596,3419^{\prime \prime} 437$ of $n^{-\frac{1}{2}}(\mathrm{E}+\mathrm{M})^{-\frac{1}{2}}=\mathrm{I} / a$, where n is the mean motion of the moon and E, M, the masses of the Earth and Moon.

Denote by $\delta(\sin \Pi)$ the portion of the sine parallax which is deduced from the Tables I-23 of Sect. V. The sum of the constants in $\delta(\sin \Pi)$ is $284^{\circ} 350$. Hence with the value of r / a used in the tables

$$
\sin \Pi=3138 \cdot 350+\delta(\sin \Pi)
$$

Hence with the adopted value of I / a,

$$
\sin \Pi=\{3138 \cdot 350+\delta(\sin \Pi)\} 3419.437 \div 3419.596
$$

The parallax is obtained from the equation $\Pi=\sin \Pi+\frac{1}{8} \sin ^{3} \Pi$. Table 24, Sect. V, is constructed from this and the previous equation with $\delta(\sin \Pi$) as argument and thus furnishes the parallax with the adopted value of I / a.

List vii. Disposal of the Constants in the Tables of Sections II-VI. $k=-0.0000248 t$. Table numbers prefixed by ' P ' are from Section VI.

True Longitude.	
Tables	Sums of Consts. Units of o., or
1-15, III	$10980 \cdot 0$ ($\mathrm{I}+k$)
16-22, III	$6360 \cdot 0$
23-29, III	$70900 \cdot 0(\mathrm{I}+k)$
30-39, III	$3764300 \cdot 0$
40-46, III	$57700 \cdot 0$
47, III	$67000 \cdot 0(\mathrm{x}+k)$
48, 49, III	$76 \cdot 8$
$\mathrm{P}_{46} \mathrm{P}^{49}$	128.4
$\mathrm{P}_{1}-\mathrm{P}_{3}$	$361 \cdot 8$
$\mathrm{P}_{22-\mathrm{P}}^{24}$	$3400 \cdot 0$
P 39	229.9
Sum	$\left\{\begin{array}{c} 398 \mathrm{r}_{43} 36 \cdot 9 \\ +\mathrm{I} 48880 \cdot \circ k \end{array}\right.$

This sum, with sign changed, has been included in L.

Latitude. Terms in S .

Tables	Sums of Consts. Units of o ." 1
r-ir, IV	$3540 \cdot 0(\mathrm{x}+k)$
12-16, IV	4120.0
17, 18, IV	11.0
$\mathrm{P}_{23} \mathrm{P}_{24}$	$260 \cdot 0$
P 34	$1000 \cdot$
P 44	$68 \cdot 8$
23-29, III	$7090 \cdot 0(\mathrm{x}+k)$
30-39, III	$376430 \cdot 0$
Consts.	$\{-398143 \cdot 7$
in $\mathrm{L} \quad\}$	$\left\{\begin{array}{l}\text { - } 14888.0 k\end{array}\right.$
Sum	$\left\{\begin{array}{l}-5623.9\end{array}\right.$
Sum	1-4258.0k

This sum, with sign changed, has been included in -8 .

Latitude. Terms in N .

Tables Uum of Consts.
Units of o."or
19-33, IV $6987 \mathrm{I} \cdot 3$
This sum is to be subtracted
from the sum of the values ex-
tracted from the tables.

Latitude.	Terms in C .
Tables	Sums of Consts. Units of 10^{-6}
34-43, IV	+1400.0
P $36, \mathrm{P}_{37}$	$0 \cdot 0$
P 45	+ 66.9
Ch. of inclin.	$2 \cdot 7$
Term No. 606	- 64.2
	m $+1400 \cdot 0$

This sum is to be subtracted from the sum of the values extracted from the tables.

Sine Parallax.

Tables	Sums of Consts. Units of o."oor
I-9, V	$6000 \cdot 0$
IO-14, V	$2320 \cdot 0$
15-23, V	Sum
	$\frac{276030 \cdot 0}{284350 \cdot 0}$

This sum is accounted for in Table 24, V.

Arguments 30, 70.
Sums of Consts.
Units of 0.001
of Arg. 30

Tables	Units of o $¢$ oor of Arg. 30
$\mathrm{P}_{4}-\mathrm{P}_{6}$	$23 \mathrm{I} \cdot \mathbf{2}$
$\mathrm{P}_{25}-\mathrm{P}_{27}$	$5 I \cdot \mathrm{I}$
P_{40}	Sum $\frac{37 \cdot 4}{779 \cdot 7}$

$-0^{c} .7797$ has been added in
Arg. 30 and $2 / 3$ of it, $-0{ }^{c} 5198$, in Arg. 70 .

Argument 3 I.

Tables	Sums of Consts. Units of ocor of Arg. 31
P 10-P 12	$62 \cdot 3$
$\mathrm{P}_{28} \mathrm{P}^{\text {P }} 30$	$45 \cdot 4$
P 42	$22 \cdot 3$
	Sum 130.0

- $1 \epsilon_{300}$ has been added in Arg. 31 and $x / 3$ of it, $0 \cdot 433$, is to be subtracted from Arg. 33 for use in Table 16, V.

Arguments 32,71.

Tables	Sums of Consts. Units of o $¢$ or of Arg. 32
${\text { P } 16-P_{18}}^{P_{3 I-P ~}^{33}}$	$289 \cdot 0$
	Sum $\frac{51 \cdot 7}{340 \cdot 7}$

$-3 \cdot 407$ has been added in Arg. 32 and 109/335 of it, $-1{ }^{c}$ © 1085 , in Arg. 7 II .

Factor of Tables 30, III; 15, V.	
Sums of Consts.	
Tables	Units of 10^{-2}
P 7-P 9	$264 \cdot 8$
P $_{4 \mathrm{I}}$	$-157 \cdot 3$
Ch. of ecc.	$-\frac{22 \cdot 1}{400 \cdot 0}$

This is to be subtracted from the sum of the values extracted from the tables.

Factor of Tables 31, III; 16, V.

Tables	Sums of Consts. Units of IO^{-6}
$\mathrm{P}_{\text {I 3-P }_{15}}$	227.2
P_{43}	$\frac{172.8}{400.0}$

This is to be subtracted from the sum of the values extracted from the tables.

Factor of Tables 32, III; 17, V. Sums of Consts.
Tables Units of 10^{-6}
P 19-P 21 $685 \cdot 6$
Ch . of ecc.

$$
685 \cdot 6
$$

$$
\mathrm{m} \frac{-2.2}{683.4}
$$

683 must be subtracted from the sum of the values extracted from the tables.

CHAPTER V

PRECEPTS FOR THE COMPUTATION OF THE ANNUAL EPHEMERIS, WITH EXAMPLES

The general procedure to be followed in order to find the Longitude, Latitude and Parallax of the Moon is shown under the heading 'Notation and Arrangement.' In this scheme the phrase 'sum of values from tables ...' is abbreviated to 'sum of tables ...,' and the number of the section in which the tables are contained follows each group, with the exception of those in Sect. VI all of which are prefixed by the letter P. The instructions to be followed in the use of the tables are contained in the succeeding paragraphs and are illustrated by examples from the ephemeris for the year 1923. At the end of the chapter, estimates are made of the accumulated errors to be expected.

Notation and Arrangement.

The computations at intervals of half a day.
$\mathrm{k}=-\cdot 0000248 \times$ number of years from $1900 \cdot 0$.
$\Sigma_{1}=$ sum of Tables I to 22, III $+k$ (sum of Tables I to 15, III) + Cor. to Table II, III.
$\Sigma_{2}=$ sum of Tables 23 to 29 , 3 I to 39 , III + (Table 30, 1 II +3000000) +k (sum of Tables 23 to 29 , III) $+\mathrm{L}+\mathrm{A}_{11}+\mathrm{A}_{12}+\mathrm{A}_{13}+\mathrm{A}_{14}+\mathrm{A}_{15}+\mathrm{A}_{16}$.
$\Sigma_{3}=$ sum of Tables 40 to 49 , III +k (Table 47 , III) $+\Sigma_{10}+\Sigma_{1}+$ sum of Tables P 46 to P 49, VI.

True Longitude $=\Sigma_{2}+\Sigma_{3}$, in units of o"or, + nutation*.
$\Sigma_{4}=$ sum of Tables I to I6, IV $+k$ (sum of Tables I to II, IV).
$\mathrm{S}=$ sum of Tables 17, 18, IV $+\frac{1}{10} \Sigma_{2}+\Sigma_{4}+\Sigma_{17}-8$, in units of o\%'I.
$\Sigma_{5}=$ sum of Tables 19 to 32 , IV +k (sum of Tables 19, 20, IV - 3400) - 6987r.
$\Sigma_{6}=$ sum of Tables 34 to 43, IV - 1400, in units of 10^{-6}.
$\Sigma_{7}=\Sigma_{5}+$ Table 33, IV.
Latitude $=\Sigma_{7}+\frac{\Sigma_{7}}{1000} \times \frac{\Sigma_{6}+\Sigma_{18}}{1000}$ in units of 0."or.
$\Sigma_{8}=$ sum of Tables I to I4, $\mathrm{V}+\mathrm{k}$ (sum of Tables I to $9, \mathrm{~V}-6000$).
$\Sigma_{9}=$ sum of Tables 15 to $23, V+k$ (Table 19, $V-2000$) $+\Sigma_{8}+\mathrm{B}_{11}+\mathrm{B}_{12}+\mathrm{B}_{13}$ $+\mathrm{B}_{14}+\mathrm{B}_{15}+\mathrm{B}_{16}$, in units of o.oor.

Equatorial horizontal parallax $=$ Table 24, V, Argument Σ_{9}.

* Tables for the nutation are not given; the values applied to the Sun should be used.

The computations at intervals of ten days.
$\Sigma_{10}=$ sum of Tables P 1, P 2, P 3, P 22, P 23, P 24, P $39+$ sec. var. L.
$\Sigma_{11}=\frac{1}{1000}$ (sum of Tables $\left.\mathrm{P}_{4}, \mathrm{P}_{5}, \mathrm{P}_{6}, \mathrm{P}_{25}, \mathrm{P}_{26}, \mathrm{P}_{27}, \mathrm{P}_{40}\right)+\mathrm{sec}$. var. Arg. $30+$ diff. from tab. Arg. 30.
$\Sigma_{11}^{\prime}=\frac{1}{1500}$ (sum of Tables P 4, P 5, P 6, P $25, \mathrm{P} 26, \mathrm{P}_{27}, \mathrm{P} 40$) + sec. var. Arg. $7 \mathrm{I}+$ diff. from tab. Arg. 7 I .
$\Sigma_{12}=\frac{1}{1000}($ sum of Tables P 7, P 8, P 9, P 4I) $-\cdot 400$.
$\Sigma^{\prime}{ }_{12}=$ Table P 38.
$\Sigma_{13}=\frac{1}{100}$ (sum of Tables P io, P II, P I2, P 28, P 29, P 30, P 42) + sec. var. Arg. $31+$ diff. from tab. Arg. 3 I.
$\Sigma_{13}^{\prime}=\frac{1}{300}$ (sum of Tables P io, P in, P 12, P 28, P $29, \mathrm{P}_{30}, \mathrm{P}_{42}-\mathrm{I} 30$) +sec. var. Arg. $33+$ diff. from tab. Arg. 33.
$\Sigma_{14}=\frac{1}{1000}$ (sum of Tables $\mathrm{P} \mathrm{I3}_{13}, \mathrm{P} \mathrm{I4}_{\text {I }}, \mathrm{P} \mathrm{I5}_{\text {I5 }}, \mathrm{P}_{43}$) $-400+\cdot 000045 \times$ no. of years from $1900 \cdot 0$.
$\Sigma^{\prime}{ }_{14}=\Sigma_{14}$.
$\Sigma_{15}=\frac{1}{100}$ (sum of Tables P 16, P 17, P 18, P 31, P 32, P 33) + sec. var. Arg. 32 + diff. from tab. Arg. 32.
$\Sigma_{15}^{\prime}=\frac{1}{300}$ (sum of Tables P 16, P 17, P 18, P 3I, P 32, P 33) + sec. var. Arg. 72 + diff. from tab. Arg. 72.
$\Sigma_{16}=\frac{1}{1000}($ sum of Tables P 19, P 20, P 21) $-\cdot 683+\cdot 000017 \times$ no. of years from 1900.
$\Sigma_{16}^{\prime}=\Sigma_{16}$.
$\Sigma_{17}=\frac{1}{10}$ (sum of Tables P 23, P 24) + sum of Tables P 34, P $44+$ (Table P 34 - 1000) \times Table P $35+$ sec. var. of ($L-8$).
$\Sigma_{18}=$ sum of Tables P 36, P $45+$ Table P $37 \times$ Table P 36.
The secular variations are those of Table 3, II.

At intervals of half a day.
$\mathrm{A}_{11}=\Sigma_{11} \times \mathrm{v}$, Table 30, III
$\mathrm{A}_{12}=\Sigma_{12} \times \frac{\text { Table 30; III }}{\text { IOOOO }}$
$\mathrm{A}_{13}=\Sigma_{13} \times \mathrm{v}$, Table 31, III
$\mathrm{A}_{14}=\Sigma_{14} \times \mathrm{f}$, Table 3I, III
$\mathrm{A}_{15}=\Sigma_{15} \times \mathrm{v}$, Table 32, III
$\mathrm{A}_{16}=\Sigma_{16} \times \mathrm{f}$, Table 32, III
$\Sigma_{11}, \Sigma_{12}, \Sigma_{14}, \Sigma_{16}$ are carried to three places of decimals, $\Sigma_{13}, \Sigma_{15}, \Sigma_{11}^{\prime}$ to Σ_{16}^{\prime} to two places. The $\mathrm{A}_{i}, \mathrm{~B}_{i}$ are computed to the nearest unit.

To find the Arguments from the Tables of Section II.

The values to be found from Tables 2, 3 are those for the beginning of any year always called day o.0; this day is Jan. 0.0 in common years and Jan. r.o in leap years (or Jan. $0 \cdot 5$, Jan. 1.5 if the beginning of the astronomical day shall be changed to midnight).

For the years 1900-1999, these values are found in Table 3.
For centuries other than the twentieth, turn to Table 2 and multiply the numbers in column (a) by the fraction of the century and those in column (b) by the square of this fraction and add to the value for the beginning of the century*; the sum is to be added to the value for the corresponding year of the twentieth century in Table 3. When these fractions change in the course of the year, any changes are to be added to the secular variations in the $\boldsymbol{\Sigma}_{i}$.

To the value D at the beginning of the year (Month o) add an integral number of half-days such that after the subtraction of a period of D , the value of D lies between ± 0.25; this gives the half-day of the year when Month I begins and the value of D on that date. To these add $29^{d} \cdot 5$ or $30^{d} .0$ and subtract a period of D from the resulting value of D , so choosing the added days that D again lies between $\pm 0^{d} 25$; this gives the half-day of the year when Month 2 begins and the value of D on that date. Continue the process to the end of the year, obtaining each value of D to three places of decimals.

Each time a period of D is subtracted, add to each of the Arguments I to 22 the 'addition for a period of D ' shown in the heading of Table 3, subtracting a period of the argument when the computed value exceeds the period; this gives the values of the arguments for the several months. In testing with the values for the beginning of the following year, differences of two units in the last decimal place may be neglected, except in the case of Arg. I where the difference of four, five, or six units (and, in fact, all such differences) may be distributed through the year by inspection.

The Arguments 23 to 47,5 I to 57,59 to 62,7 I to 77 are given in two parts, the first of which is an integral number of half-days and the second a 'column number'; in each argument, $0^{d} 5$ is equivalent to an integral column number which is given at the top of Table 3. If the computed column number for the beginning of the year exceeds the value for $0^{d} 5$, subtract this value and add $0^{d} 5$ to the first part; if, in subtracting a period, the column number becomes negative, add this value and subtract $0^{d} 5$ from the first part. No further computation of the arguments is needed, but in order to test them occasionally during the year, Table 4 (which is not otherwise needed for the arguments in the computation of the annual ephemeris) may be used to obtain the values at any intervals (I20 days will be found convenient). The value at any number of days from the beginning of the year given in this table is to be added to the value at the beginning of the year, previously found; the subtraction of a period and the adjustment of the column number is made as before.

* (a), (b) are always given in units of the last tabulated place of the argument.

The addition to Argument 55, given in a footnote on pp. I9, 28, II, is to be noticed.

Argument 78 is given to the nearest half-day.
For the double-entry Tables 48,49 of Sect. III and 29, 30, 3I, 32 of Sect. IV, the values of the arguments are needed only for the beginning of the year; for use in Table 48, Sect. III, the column number of Arg. 30 must be converted into fractions of a day through division by 660. The vertical arguments $49,63,65,67,69$ and the horizontal Arguments 48,50,64,66,68, 70 are obtained for the beginning of the year from the tables of Sect. II in the same manner as D and the doubleentry Arguments I to 22, respectively. The tables in which they are used are so arranged, however, that no further computation of the arguments is necessary. The testing at intervals is done by computing the arguments at intervals from the values in Table 4 to be added to those at the beginning of the year.

The horizontal Arguments 79, 80, 8I of the tables in which l^{\prime} is the vertical argument are tabulated to correspond to the dates when $l^{\prime}=0$ nearest to the beginnings of the years. If l^{\prime} is negative, $=-a$, at the beginning of any year, the horizontal arguments correspond to that period of l^{\prime} which begins a days after the beginning of the year. For centuries near the twentieth, l^{\prime} is small at the beginnings of the years and as its period is nearly a calendar year, no change of the Arguments 79, 80, 8r is needed during the year.

It is necessary to subtract the value of l^{\prime} at the beginning of the year from Arguments $82,83,84$, and 78 when used in Table P 38 , so that their initial values shall correspond to the time when $l^{\prime}=0$

The values of $L,-8$ at the beginning of the year are found in the same manner as the arguments. To these values are to be added the motions for successive half-days given in Table 4; these are used when the computation is made from Table 4, II, by writing the former on slips and adding directly to the latter on to the computing sheets. For performing the same process with an arithmometer, the half-daily additions are given to more places of decimals so that accumulated error may be avoided. The secular changes during the year are added separately in the computation of Σ_{10}, Σ_{17}.

In carrying Arguments 23 to 78 through the year and testing by comparison with the following year certain differences will always occur in certain of the arguments, because the periods used differ slightly from the actual periods, but in every case where this difference causes a sensible change in the function it has been included in the secular variations. The only arguments which may cause trouble are those in which only the nearest column number is given, namely $48,50,51,52,62,64,66,68,70,75$ or in Argument 78 which is given to the nearest half-day. In Argument 75 the difference may be four column numbers, in the others one or two; in Argument 78 a difference of a day may occur.

The Tables of Sections III, IV, V.
The tables may be entered on to the computing sheets in any order except $30,31,32$, III, and 15, 16, 17, V, which must await the formation of $\Sigma_{11}, \Sigma_{13}, \Sigma_{15}$, $\Sigma_{11}^{\prime}, \Sigma_{13}^{\prime}, \Sigma_{15}^{\prime}$, respectively.

The half-days of the year should be numbered consecutively on the computing sheets; transformation to calendar dates is made at the end of the work by means of Table I, Sect. II.

The four groups of Tables I to 22, Sect. III, I to 16 and 34 to 43 , Sect. IV, and I to 14, Sect. V, have the vertical Argument D and all or some of the horizontal Arguments I to $\mathbf{2 2}$. The computations are made for a period of D (synodic month) at a time; for interpolation purposes the period $\left(29^{d} \cdot 5306\right)$ is extended from $-\mathrm{o}^{d} \cdot 5$ to $30^{\frac{d}{5}}$. The headings for each month on the computing sheets are these 63 values of D ; the nearest days of the year may be put at the foot so that after the interpolation to date the values correspond to the proper days of the year.

Take out the values for each half-day of D , interpolating for the horizontal argument with the given variations; whether the function is tabulated for every value, for every alternate value or for every fourth value of the horizontal argument, the printed variations in all cases correspond to unit change of the argument. The horizontal arguments at the top are to be taken with the values of D at the left; and those at the bottom with the values of D at the right. Test the sign of the variation by comparison with an adjoining column, since the sign given corresponds to only one of the two columns for which its numerical value is the same. The last month of each year should be completed to save labour in the work for the next year.

Tables I_{5}, Sect. IV, and 13 , Sect. V, have additions to their arguments denoted in each case by (a) and tabulated according to the day of the year (properly the time since l^{\prime} was zero, but the difference is insensible for centuries near the twentieth); these additions merely alter the interpolating factor by o.or every few days.

The entries from each table may be tested by comparison of those at the end of one month with the corresponding values at the beginning of the succeeding month; for this purpose it may be noted that the change in the interpolating factor for D is only o.o6.

The correction for an error in Table II, III, is made in the following way.
The correction has the values $\pm 2, \pm 1,0$ in the adopted units. Insert on consecutive half-days, in the order $+2,12$ entries ; $+1,7$ entries; 0,6 entries; $-1,7$ entries; $-2,12$ entries; $-1,7$ entries; 0,6 entries $;+1,7$ entries $;+2$, 12 entries; and so on in cyclical order.

The starting place for these entries is obtained from the following table. Find in one of the columns with headings $-2,+2$, the horizontal argument for the month of Table II (Arg. II); the number on the same line in the column with heading D gives the value of D in that month on which the series of entries -2 or +2 begins. From this place the entries can be made backward and forward in the cyclical order given above.

Table for finding the correction to Table II, Sect. III.

-2	+2	
Arg. II	Arg. II	D
0	22	4^{d}
1,2	23,24	5
3	25	6
4	26,27	7
5,6	28	8
7	29	9

-2	+2	
Arg. II	Arg. II	D
8	$30,3 \mathrm{I}$	IO
9, IO	32	II
II	33	I2
I2	34,35	I_{3}
I3, I4	36	I_{4}
I5	37	I_{5}

-2	+2	
Arg. II	Arg. II	D
16	38,39	16^{d}
17,18	40	17
19	4 I	18
$20,2 \mathrm{I}$	42,43	19

Thus if Arg. $\mathrm{II}=28$ (the nearest integral value), the entry +2 begins on the day when $\mathrm{D}=8^{d}$, the entry +I when $\mathrm{D}=8^{d}-3^{d} \cdot 5=4^{d} \cdot 5$ and when $\mathrm{D}=8^{d}+6^{d}$ $=\mathrm{I} 4^{d}$, the entry o when $\mathrm{D}=4^{d} \cdot 5-3^{d}=\mathrm{I}^{d} \cdot 5$ and when $\mathrm{D}=\mathrm{I} 4^{d}+3^{d} \cdot 5=\mathrm{I} 7^{d} \cdot 5$, and so on.

Form the sums $\Sigma_{1}, \Sigma_{4}, \Sigma_{6}, \Sigma_{8}$ of the four groups in the manner shown by their definitions. Compute the first, second and, where necessary as a test, the third differences. Interpolate to the day of the year from the day of D by using as factor twice the value of D at the beginning of the month, this factor being constant through the month*. If Bessel's formula be used, third differences will not produce a sensible change.

The remaining tables of Sects. III, IV, V, both single and double-entry, are entered continuously for a year \dagger. Number the columns on the computing sheets $o^{d} 0, o^{d} \cdot 5, I^{d} 0, \ldots, 365^{d} \cdot \mathrm{o}$ and to $366^{d} .0$ in the years preceding leap years, and carry the work four or five half-days into the following year. The slight changes which occur in the interpolating factors are the only alterations in the arguments for the succeeding year and these can be adopted at any convenient day near the beginning of the year. The functions are all continuous from one year to the next except L in $\Sigma_{2},-8$ in S which change by the amounts of their secular variations for the year, these latter being added in Σ_{10} and Σ_{17} as shown in the scheme of arrangement. The discontinuities at various dates in the entries from Tables 30, 31,32 , III, and $15,16,17, V$, are explained below.

Turn to the table to be entered and note whether the tabulation is made for every value, every second or every fourth value; the interpolating factor will lie between $\pm 0.5, \pm I \cdot 0, \pm 2.0$ in the respective cases. Enter the day portion and the interpolating factor in the column for arguments on the first sheet for the year, and the integral part of the column number (in red ink) in the left-hand top corner of the space for $\mathrm{o}^{d} \mathrm{o}$.

The value in the table for $o^{d} .0$ is found in the line and column indicated by the two parts of the argument, the first part being at the left when the second

[^6]part is at the top and at the right when the second part is at the foot. The interpolating factor is to be multiplied by the value of v on the same line in the column headed ' v ' and the product added to the value for the half-day. The sign of v given in the table is that to be used when descending a column and is reversed on ascending; it should be tested by comparison with adjoining columns. The sign is always first plus and then minus throughout every column or vice versâ. The value of v is the rate of change per unit change of the column number.

The values for the successive half-days following day odo are obtained by following down when the column number is at the top and up when it is at the foot. When the end of the column is reached, the value for the next half-day is the first value in the column indicated by the succession number (abbreviated 'succ.'), the interpolating factor remaining the same. This column is followed down (or up) until its foot (or top) is reached when the succession number indicates the next column to be followed; and so on to the end of the year. Enter on the computing sheets (in red ink) each new column number, as it is reached, in the left-hand top corner of the space for the day on which it begins. A sufficient test against the accidental omission or repetition of any value may be made by comparing the argument at intervals of 120 days as explained in the precepts for finding the arguments.

In ascending to the top of the column headed o , the succession is down the same column; if the first value is placed in square brackets, it is not to be repeated on the return.

In tables where the column is too long for the page, the word 'cont.' indicates that the column in the next block with the same number is to be followed; this may be indicated by the letter c on the computing sheets.

In Table 24, Sect. IV, no column number is necessary and interpolation is made between successive half-days which follow one another continuously through the table.

In Table 28, Sect. IV, no variations are given since they are less than 0.5 per

Table unit change of the column number.

Tables $30,31,32$, Sect. III and $15,16,17$, Sect. V are entered on the sheets $30,34,32, \mathrm{II}$ for forming Σ_{2}, Σ_{9}, without interpolation with the integral portions of the column numbers. Before using the latter certain integral additions are made after the formation of $\Sigma_{11}, \Sigma_{13}, \Sigma_{15}, \Sigma_{11}^{\prime}, \Sigma_{13}^{\prime}, \Sigma_{15}^{\prime}$; the method for finding these additions is explained below. The values for successive half-days are then obtained as in the other single-entry tables except those in Table 30, Sect. III, which require the addition of 3×10^{6} to every value*. The columns in Tables 31, 32, Sect. III, ${ }^{31}$, 32 , III headed ' f ' are only needed in forming $\mathrm{A}_{14}, \mathrm{~A}_{16}$.

The double-entry Tables 48, 49, Sect. III and 29, 30, 31, 32, Sect. IV are different in construction and use from the other double-entry tables. First choose the column corresponding to the value of the horizontal argument for the beginning of the year; the tabular vertical argument nearest to that for the beginning of the year is obtained by taking the sum of the day portions at the

* Note the remark at the head of the table.
top and side and this gives the line for starting. Twice the difference between the computed and tabular vertical arguments is the factor for interpolation between successive values in a column; this factor is constant through the year. No horizontal interpolation is necessary or possible. The continuation for successive half-days is then made as with the single-entry tables. In testing with arguments formed at intervals, an error of a unit in the column number combined with an error of a small fraction of a day in the vertical argument may appear, but the functions should agree within a unit; this is due to the fact that in passing from one column to the next, the fraction of the day changes. If by changing at the outset to one of the two columns adjoining that given by the argument, the fraction of the day is rendered very small, no sensible error will be caused by the change.

The argument of Table 33, Sect. IV, is given in multiples of $100^{\prime \prime}$; the complete period of the table being the circumference of $1296000^{\prime \prime}$, this or a multiple of it must be subtracted from the computed value of S when necessary.

Enter Table 24, Sect. V, with Σ_{9} as argument, subtracting the tabular argument next below Σ_{9} from Σ_{9}; the difference divided by 10^{3} is the number of seconds to be added to the value of the parallax opposite the tabular argument.

The Tables of Section VI.

Table

P23. P 24
$\mathrm{P}_{26}, \mathrm{P}_{27}$,
P29, P30,
P32, P_{33}

P $39-$ P $_{45}$

The Tables P_{1} to P_{21} are double-entry with l^{\prime} as the vertical argument, tabulated at intervals of 10 days from $l^{\prime}=0^{d}$ to $l^{\prime}=370^{d}$.

Obtain the 38 values for the year with the horizontal Argunients 79, 80, 81, forming the differences between adjoining columns and interpolating for these arguments.

The interpolations to date for l^{\prime} and to half-days are not made until various other tables have been inserted in Σ_{10} to Σ_{18} and $\Sigma^{\prime}{ }_{11}$ to $\Sigma^{\prime}{ }_{16}$; hence all tables in these sums must commence at the time when $l^{\prime}=0$ nearest to the beginning of the year.

Tables P 22, P 25, P 28, P 31, P 34, P 36 are single-entry tables of ordinary form requiring interpolation between successive numbers in a column.

The factors obtained from Tables P 35, P 37 are constant through the year.
Table P 38 is given at 5 -day intervals and is to be added to Σ_{12} after the interpolation to halves has been performed. Since $\Sigma_{12}+\Sigma^{\prime}{ }_{12}$ is needed only to two places of decimals, $\mathrm{P} 38=\Sigma_{12}^{\prime}$ is only given to this degree of accuracy.

The values in Tables P 23, P 24, P 26, P 27, P 29, P 30, P 32, P 33 are given at intervals of a year beginning at o^{d} o of each year. For years other than those tabulated add or subtract the proper multiple of the period from the date. To find the values at intervals of io days, direct interpolation for the insertion of 36 values at equal intervals between those for successive years and the placing of these together with the end values under the dates $l^{\prime}=0^{d}, 10^{d}, \ldots 370^{d}$ is sufficiently accurate. For centuries very distant from the twentieth, choose these 38 values to correspond to the nearest dates when $l^{\prime}=0^{d}, 10^{d}, \ldots$.
The values in Tables P 39 to P 45 are given at ro-day intervals from the time, nearest to the beginning of each year, when $l^{\prime}=0$. No interpolation is required.

For dates outside the period 1800 to 2050^{*}, the values must be computed by the ${ }_{\text {Table }}$ methods given in Chap. IX.

The values in Tables P 46, P 47, P $_{4} 8$, P $_{49}$ are given for specific days in each $\mathrm{P}_{4} 6-\mathrm{P}_{49}$ year shown by the sum of the day arguments at the side and top. (For dates outside the period 1800 to 2050^{*} they must be computed by the methods given in Chap. IX.) These tables are of special form; the values at half-day intervals are obtained by means of the instructions which follow.

In Table P 46, the values are given at io-day intervals throughout the period ${ }_{4}{ }_{46}$ 1900-2050. Enter these on the computing sheets. To obtain the intermediate 5 -day values, subtract half the sum of the adjoining 10 -day values from 78 . To obtain the values for the five half-days before and after any 5 -day or ro-day value enter Table P $46 a$ with that value, the values before and after being the same. ${ }^{4}{ }_{46 a}$

Table P 47 is treated with the help of Table P $46 a$ precisely like Table P $46 .{ }^{\text {P }} 47$
In Table $P 48$ the values are given at intervals of 14 days. Enter these on the $P_{4} 8$ computing sheets under the proper days of the year. To obtain the values at intervals of 7 days, interpolate to halves. To obtain the intermediate $3 \cdot 5$-day values, subtract half the sum of the adjoining 7 -day values from 50 . To obtain the values for the three half-days before and after any 3.5 -day or 7 -day or 14 -day value, enter Table $48 a$ with that value; the values before and after are the same. P48a

Table P_{49} is treated with the help of Table $\mathrm{P}_{49} a$ precisely like Table $\mathrm{P}_{4} 8$; but the P_{49} values before and after that which constitutes the argument of $\mathrm{P}_{49} a$ are not the same. $\mathrm{P}_{49} a$

After the tables needed for the formation of Σ_{10} to $\Sigma_{17}, \Sigma_{11}^{\prime}$ to Σ_{16}^{\prime} have been entered the results are summed and interpolated to halves, with second differences if necessary, so as to give the values at 5 -day intervals from the time when $l^{\prime}=0$. To these are added the secular variations from the beginning of the year as shown in the scheme of arrangement, and in the cases of $\Sigma_{11}, \Sigma_{13}, \Sigma_{15}, \Sigma_{11}^{\prime}, \Sigma_{13}^{\prime}, \Sigma_{15}^{\prime}$ the fractional parts of the column numbers of Arguments 30, 31, 32, 71, 33, 72 respectively and finally negative integers sufficient to reduce the sums approximately within ± 0.5. Care should be taken to mark the place where the integer is changed. All the sums are then entered on to the proper half-day computing sheets. The value for the half-day of the year nearest to the date when $l^{\prime}=0$ may be taken with sufficient accuracy to be the value for $l^{\prime}=0$, and thereafter the values for successive 5 days follow one another to the end of the year. They are then interpolated to tenths in order to obtain the values for successive half-days.

Small discontinuities in some of the $\Sigma_{10} \ldots \Sigma_{18}$ may be noticed between the end of one year and the beginning of the following year, but the only sensible effect is in the Longitude and it is less than the average accumulated errors due to the numerous operations.

The integers subtracted from $\Sigma_{11}, \Sigma_{13}, \Sigma_{15}, \Sigma_{11}^{\prime}, \Sigma_{13}^{\prime}, \Sigma_{15}^{\prime}$ must be respectively added to the column numbers of Arguments $30,31,32,71,33,72$ before entry of Tables $30,3 \mathrm{I}, 32$, Sect. III, and Tables 15, 16,17 , Sect. V. These are the additions 30-32, III referred to in the precepts for those tables, which can then be entered without ${ }^{15-17, v}$ interpolation as previously explained.

* The tables contain the values for 1900 to 2050 . Those for $\mathbf{1 8 0 0} \mathbf{- 1 9 0 0}$ will be published later.

The six sums $\Sigma_{11}, \Sigma_{13}, \Sigma_{15}, \Sigma_{11}^{\prime}, \Sigma_{13}^{\prime}, \Sigma_{15}^{\prime}$ are factors of the variations in Tables 30, 31, 32, Sect. III, I5, I6, I7, Sect. V; these variations can be entered by the use of the arguments previously used to enter these tables.

The six sums $\Sigma_{12}, \Sigma_{14}, \Sigma_{16}, \Sigma_{12}+\Sigma_{12}^{\prime}, \Sigma_{14}^{\prime}, \Sigma_{16}^{\prime}$ are the factors of the values in the same tables, after the constants added to those values in forming the tables have been subtracted; the degree of accuracy needed is shown in the scheme of the definitions of A_{11} to $\mathrm{A}_{16}, \mathrm{~B}_{11}$ to B_{16}. Table 30, Sect. III, has no added constant; in Tables 3I, 32, Sect. III, the columns f (available for several columns of arguments) give the values to the needed degree of accuracy; the values needed from Tables $15, ~ 16, ~ I 7, ~ S e c t . ~ V, ~ a r e ~ o b t a i n e d ~ b y ~ s u b t r a c t i n g ~ t h e ~ p r o p e r ~ c o n s t a n t s ~ f r o m ~$ the numbers already entered on to the computing sheet for finding Σ_{9}, the proper number of digits being dropped.

After the pairs of values needed to find A_{11} to $\mathrm{A}_{16}, \mathrm{~B}_{11}$ to B_{16} have been entered the products may be found from Hedrick's Interpolation Tables and entered on the sheets for Σ_{2} and Σ_{9} respectively.

Cotsworth's Tables will be found to be more convenient for obtaining the products of 10 $^{-3} \Sigma_{7}$ by 10 ${ }^{-3}\left(\Sigma_{6}+\Sigma_{18}\right)$ since some of these factors contain more than three significant figures. Where the latter is the case, the first figure of the factor is I and the product may be found from the tables in the form $(a-1000) b+$ 1000 b, where a, b are the respective factors.

Accumulated Errors.

Every number printed in the tables is liable to an error ranging between plus and minus half the last unit tabulated; a similar error will occur in each interpolation. Hence in summing the entries from n tables, the accumulated error will in general range between $\pm \frac{1}{2}(2 n)= \pm n$, in the last digit of the sum. In testing for errors of computation by means of differences, it is desired to know the probability of an error of $\pm k$ units in the last place of a sum from n tables after interpolation. The following table is deduced from Schlesinger's solution* of the problem. An error of $\pm k$ units denotes an error lying between $k \pm \frac{1}{2}$ units or between $-k \pm \frac{1}{2}$ units; n is the number of tables used in the sum.

Number of errors equal to or greater than k units to be expected in rooo sums from n tables.

$\boldsymbol{n} \backslash k$	1	2	3	4	5	6	7	8	9
5	587	103	7						
10	699	246	53	7					
15	752	344	114	27	5				
20	785	412	172	56	14	3			
25	807	464	222	87	28	7			
30	823	503	265	118	45	14	4		
35	836	535	301	148	63	23	7		
40	847	562	334	176	82	34	12		
45	855	584	362	202	101	45	18	6	
50	863	604	387	226	120	57	25	ıо	3

* Astron. Jour. Vol. xxx, p. 183.

For $\Sigma_{1}, n=22$ and the average number of sums in which the error is ± 3 units or more is about I in 5 ; in Σ_{4}, I in 8 ; in Σ_{6}, I in 25 ; in Σ_{8}, I in 10. But these probabilities are somewhat increased by the use of every second and every fourth value of the argument in certain of the tables. If other sums be differenced for testing, their probabilities of error may be read off from the table.

An approximate value for the probability in the final result for the longitude will be obtained by taking $n=50$. This gives 1 error in 8 of 5 units or more and I in 18 of 6 units or more. Owing to the nature of the computations the same results will be approximately true for the latitude. For the parallax, we take $n=25$ and get errors of 4 units or more in every IIth sum and of 5 units or more in every 36 th sum, on the average.

These results can only be regarded as rough guides in testing for errors by means of differences up to the fifth, which should be formed for each coordinate except the parallax for which fourth differences will be found to be sufficient. As a matter of fact, the number of large errors will be found to be greater than that given by the table. Several causes contribute in producing large errors, besides that mentioned above. In certain of the tables the variations change rather rapidly, so that the error of half a unit assumed as the limit in the interpolations will occasionally rise to a little over a unit. In other cases as, for example, in the factors of the C terms in latitude, an accumulated error will be multiplied by a factor greater than unity. However they arise, these errors are all unsystematic and much smaller than those of observation. It is not always possible to judge whether an apparent large irregularity revealed by the differences is due solely to accumulation. Many terms of very short period are present in the tables and at times these may cause the higher differences to be apparently more irregular than would otherwise be expected.

The probable error of a single place in longitude, latitude and parallax is about $\pm 0.02, \pm 0 \% 02,0.0015$ respectively. After the last place in each coordinate has been cut off the probable errors may be taken to be $\pm 0.04, \pm 0.04, \pm 0.003$, respectively. These results are due solely to the actual computation of the quantities which have been placed in the tables. If we take account of the accumulation of similar errors in the theory and of doubtful values of certain of the constants, the respective probable errors may rise to $\pm 0^{\prime \prime} \mathrm{I}, \pm 0^{\prime \prime} \mathrm{I}, \pm 0^{\circ} \mathrm{O} 05$. These estimates refer only to the motion of the moon as affected by gravitation and by the great empirical term within about a century of the epoch.

Examples of the computations.

The following examples have been extracted from the computations for the year 1923. In selecting portions to be printed, it was desired to exhibit different features which arise rather than to give the whole work for a few dates. Thus the sums $\Sigma_{1}, \Sigma_{4}, \Sigma_{6}, \Sigma_{8}$ illustrate cases where the month does not start with $\mathrm{D}=-0^{d} .5$ and where the factor for interpolation to date changes sign through o or 0.5 . Every part of the necessary written work is illustrated, any computations not illustrated in the examples being performed mentally or by means of tables.

For the interpolations, Hedrick's Interpolation Tables have been found to save much time. They are also most convenient for finding the products $\mathrm{A}_{i}, \mathrm{~B}_{i}$. Cotsworth's Multiplication Tables should be used for the set of products mentioned on p. 92 above. No other Tables in addition to those printed in this volume are necessary. An Arithmometer can be efficiently used by any one in finding the half-daily values of $\mathrm{L},-\Omega$, while a Comptometer, in the hands of a practised operator*, will be of assistance in performing the numerous additions.

The longitude and latitude are left expressed in seconds of arc since they are easier to difference in this form for the purpose of testing the calculations. The transformations to degrees, minutes and seconds can be made directly on to the sheets for transformation to right ascension and declination by means of Table 5, Sect. II.

* A computer may make efficient use of the Comptometer without experience of the machine for adding long columns of figures. One column of digits should be added at a time, the 5, 4, 3 keys on which the first, second and third fingers of the right hand are placed, being alone used. The digit 6 is added as $3+3,7$ as $3+4$, etc. The digits $\mathrm{I}, 2$ are added in combination with the next following digit. After one column is finished, the fingers are passed to the 5, 4,3 keys on the next column of the machine and the same process is repeated. By proceeding in this way, the complete sum may be formed without taking the eye from the computing sheet.

Arguments, 1923. All arguments for ofo are found in Table 3. Sect. II. The second column of the first block gives the day of the year on which D is nearest to zero and the third column gives the value of D on that day. Month 13 is the same as month o of 1924 .

Month	Day of Year	Arguments			
		D	1	2	\cdots
-	$-27^{4} 5$	+.0534	135-182	27.38	\ldots
1	+2.0	+-0228	$5 \cdot 5^{82}$	51-18	\ldots
2	31.5	--0078	$16-981$	74.98	...
3	$61 \cdot 0$	--0384	28.381	98.78	...
4	$90 \cdot 5$	-.0690	39.780	122.58	...
5	120.0	--0995	$51 \cdot 180$	1 $46 \cdot 38$	\ldots
6	149.5	--1301	62.579	14.18	...
7	179.0	--1607	$73 \cdot 979$	37.98	\cdots
8	$208 \cdot 5$	--1913	85.379	$6 \mathrm{I} \cdot 78$	\ldots
9	$238 \cdot 0$	--2219	96.778	85.58	...
10	$268 \cdot 0$	+ 2475	108.178	109.38	\ldots
11	$297 \cdot 5$	+ 2169	119.577	$133 \cdot 18$...
12	$327 \cdot 0$	+-1863	130.977	-988	\ldots
13	356•5	+ 1557	1-377	$24 * 77$	\cdots

Day of year	Arguments									
	23		\cdots	30		31		32		\cdots
O-0	940	$409{ }^{4} 3$	\cdots	1845	764612	$8{ }^{4} 5$	211517	$29^{4} 5$	$7^{\text {c82 }}$	\cdots
1200°	$6 \cdot 0$	291.3	\cdots	0.5	166.612	$10 \cdot 5$	139-17	22.0	176.82	\ldots
2400	3.0	$173 \cdot 3$ $55 \cdot 3$...	10.5	22.612	12.5	67.17	15.0	10.82	\ldots
(192400)	-0.0	$55 \cdot 3$	\cdots	$20 \cdot 0$	208.612	14.0	289-17	$7 \cdot 5$	179.82	...
(1924.0)	$6 \cdot 0$	$55 \cdot 3$...	$26 \cdot 0$	208.571	$5 \cdot 5$	$133 \cdot 34$	$13 \cdot 5$	${ }^{1} 79.83$...

Day of year	Arguments								L	\cdots
	30	48	\cdots	r^{\prime}	79	...	$82-l^{\prime}$	\ldots		
0.0 1200	$18 d_{53}$ 0.76		\ldots	-2.52 +117.48	4.74	\ldots	$5209^{\text {d }}$ 5329	\ldots	21999666 72820006	\cdots
2400	0.76 10.54	31 47	\cdots	+117.48 +237.4	"	\cdots	5329 5449	\cdots	72820006 123640346	\ldots
360.0	$20 \cdot 32$	63	\ldots	+357.48	"'	\cdots	5449 5569	\cdots	123640346 44860686	\cdots
(1924.0)	$26 \cdot 32$	63	\cdots	- $1 \cdot 7^{8}$	$50 \cdot 41$...	5574	\ldots	73321707	\ldots

Ten-day sums. $l^{\prime}\left(=-2^{d} 52\right)$ is to be subtracted from Args. 82, 83, 84, 78. $l^{\prime}=0$ on day $\mathbf{2}^{d} 5$ of the year. s.v. is the sec. var. for the year.
δ is the difference between the actual and tabular arguments used. The sums at $l^{\prime}+5^{d}$ are obtained by interpolation of the sums to halves.

Tab.	Args.	o^{4}	10^{4}	20^{4}	\cdots	$37{ }^{\text {a }}$
PI	$l^{\prime}, 79=4.74$	110	109	107	\cdots	239
P_{2}	$l^{\prime}, 80=49.66$	38	40	44	.	37
P_{3}	$l^{\prime}, 81=17 \cdot 10$	107	102	96		82
P_{22}	$82-l^{\prime}=5209^{4}$	873	879	886		IIII
P_{23}	Date	1922	1923	1924		1954
P_{24}	Date	30	30	30		32
P 39	Date, l^{\prime}	250	256	258		251
$\mathrm{z}_{10}\left\{\begin{array}{l} \text { sums } \\ \text { s.v. of } \mathrm{L} \\ \text { sums at } l^{\prime}+5^{d} \end{array}\right.$		$\begin{array}{r} 3330 \\ 0 \\ 0335 \end{array}$	$\begin{array}{r} 3339 \\ 0 \\ \mathbf{3 3 4 2} \end{array}$	$\begin{array}{r} 3345 \\ 0 \\ 3346 \end{array}$	3706 +3
					$\begin{aligned} & +.06 * \\ & +.98 \\ & -1.00 \end{aligned}$	
Tab.	Args.		${ }^{4}$	10^{4}	20^{4}	\cdots
Pro	${ }^{r}, 79$		30		7	
$\mathrm{P}_{11} \mathrm{P}_{12}$	$l^{\prime \prime}, 80$		5	$\begin{array}{r}7 \\ \hline\end{array}$		9
P ${ }^{\text {P }} 12$	$l^{\prime}, 8 \mathrm{r}$ $8 \mathrm{r}-l^{\prime}$		11	11	10	...
P28	$82-l^{\prime}$		12	12	12	..
P 29	Date		26	26	26	6
P ${ }^{\text {P }} 30$	Date,		0	0		
P_{42}	Date, l^{\prime}		23	23	23	
$10^{2} \Sigma_{13}\left\{\left\{\begin{array}{l} \text { sums } \\ 10^{2}(\text { s.v. }+\delta) \\ \text { Arg. 3I } \\ \text { sums at } l^{\prime}+5^{d} \end{array}\right\}\right.$			$\begin{array}{r} 107 \\ -\quad 83 \\ 108 \end{array}$	$\begin{array}{r} 108 \\ -\quad 83 \\ 108 \end{array}$	$\begin{array}{r} 107 \\ -\quad 82 \\ 108 \end{array}$
$\mathrm{IO}^{2} \Sigma^{\prime}{ }_{13}\left\{\left\{\begin{array}{l} \frac{1}{2}(\text { sums }-130) \\ \mathrm{ro}^{2}(\mathrm{s.v.}+\delta), \\ \text { Arg. } 33 \\ \text { at } l^{\prime}+5^{8} \end{array}\right.\right.$			-8 $-\quad 2$ -7	-7 $-\quad 2$ $-\quad 7$	-8 $-\quad 2$ $-\quad 7$	

Tab.	Args.	l^{\prime}	${ }^{4}$	10^{4}	20^{4}	...
Pr9	Ir, 79		317	360	382	\cdots
$\mathrm{P}^{\mathrm{P}} 20$	$r^{\prime}, 80$		559	627	672	\ldots
P_{21}	$l^{\prime}, 8 \mathrm{I}$		45	46	47	\ldots
$10^{2} \Sigma_{16}\left\{\left\{\begin{array}{l}\text { sums } \\ -683+\text {-017 } \times 23 \\ \text { sums at } l^{\prime}+5^{d}\end{array}\right.\right.$			921	1033	Iror	\cdots
			$\begin{array}{r} -683 \\ 982 \end{array}$	$\begin{array}{r} -683 \\ -1072 \end{array}$	[$\begin{array}{r}1118 \\ -188\end{array}$	\ldots
$\mathrm{z}^{\prime}{ }_{60}=\mathrm{E}_{16}$						

Tab.	Arg	l^{\prime}	${ }^{\text {d }}$	10^{4}	20^{4}	...
$\begin{aligned} & \mathrm{P}_{36} 8_{4}-l^{\prime}=298 \\ & \mathrm{P}_{3} \times \mathrm{P} 36 \\ & \mathrm{P}_{45} \times \mathrm{Arg} . \text { Date, } l^{\prime} \end{aligned}$			$\begin{array}{r} +465 \\ -\quad 1 \\ 71 \end{array}$	$\begin{array}{r} +464 \\ -\quad 1 \\ 7^{2} \end{array}$	$\begin{array}{r} +462 \\ -\quad 1 \\ -\quad 72 \end{array}$	\ldots
$z_{13}\left\{\begin{array}{l}\text { sums } \\ \text { sums at } l^{\prime} \\ \text { sum }\end{array}\right.$			$\begin{array}{r} 535 \\ +535 \end{array}$	$\begin{aligned} & 535 \\ & 534 \end{aligned}$	$\begin{aligned} & 533 \\ & 532 \end{aligned}$	\cdots

* Annual value, to be multiplied by the fraction of the year.

Formation of $A_{11}, \ldots, A_{16}, B_{11}, \ldots, B_{16}$. Half-day values. In the first column of each pair are the values of $\Sigma_{11}, \Sigma_{11}^{\prime}, \ldots, \Sigma_{18}^{\prime}$ from the previous page interpolated to tenths; in the second columns are the quantities which they multiply to produce A_{11}, \ldots, B_{16}. Since $\Sigma_{16}^{\prime}, \Sigma_{16}^{\prime}$ are respectively equal to Σ_{16}, Σ_{18}, the latter are not repeated. Since the first value on the previous page is that for $2 d_{5}$, extrapolation is used to find the five previous values of the Σ, or they may be obtained from those of the previous year.

In the second columns, v stands for the variation in the respective tables, this variation being taken out with the arguments used for the respective tables in $\Sigma_{2}, \Sigma_{9} ; f$ stands for the values in the same tables with a number of figures cut off as shown by the negative power of ro and, where necessary, the constants of the tables subtracted, or elsc for the columns labled f in the tables.

The horizontal lines below the values for $42 \frac{d}{d}, 362 \frac{d}{0}$ in the column for A_{15} show two places where the column number of Arg. 32 has been changed by a unit.

$\begin{aligned} & \text { Day } \\ & \text { of } \\ & \text { year } \end{aligned}$	A_{11}		B_{11}		A_{12}		B_{18}		A_{18}		B_{13}		A_{16}			A_{18}		B_{15}		A_{16}		
	Σ_{11}	$30,{ }^{v} 111$	$\Sigma^{\prime}{ }_{11}$	[${ }_{5}^{0}$, v	Σ_{12}	10^{-4} 30,111	$\begin{gathered} \Sigma_{12}^{\prime} \\ \Sigma_{12}^{\prime} \\ \Sigma_{12} \end{gathered}$	$\begin{aligned} & 10^{-8} f \\ & -20 \\ & 15 . \mathrm{v} \end{aligned}$		$\stackrel{\varepsilon}{3 \mathrm{I}, 1 \mathrm{II}}$		[${ }^{v, v}$	${ }_{31}{ }^{\prime} 111$	Σ_{14}	$\begin{array}{r} 10^{-3} f \\ -30 \\ 16, v \end{array}$	Σ_{15}	$\stackrel{v}{32,111}$		$\stackrel{v}{17}$	${ }_{32,111}^{f}$	Σ_{18}	$\begin{aligned} & 10^{-8} f \\ & -40 \\ & 17, \mathrm{v} \end{aligned}$
odo	+-341	-393	+.06	+77	+-090	-194	+ $\cdot 39$	-9	+ 23	+101	- - 10	$+51$	-192	-.02 I	+17	-. 51	+ 59	- - I	-28	+412	+. 205	+15
$\cdot 5$	$\cdot 340$	322	,	82	-094	205				128	"	42	158	"	22	$\cdot 50$	47	,	30	430	-212	12
$1 \cdot 0$	-339	245	"	88	$\cdot 097$	215	-38			149	,	32	117	\cdots	26	$\cdot 50$	34		30	444	-218	8
$\cdot 5$	- 338	163	,	92	- ras	221	,		"	164	"	19	7 I	"	28	$\cdot 50$			31	453	-225	5
$2 \cdot 0$	- 337	-78		95	-104	225		- 2	.,	171	,	+6	- 22	"	29	-49	+ 8		31	458	-23I	+ 2
$\cdot 5$	- 336	+ II	-06	97	-108	227	$\cdot 37$	T I	+ $\cdot 24$	170	,	8	+ 29	"	29	-49	- 5		31	45^{8}	-238	- 2
$3 \cdot 0$	- 335	IOT	"	98	-III	225	,"		.,	162	,	21	78	"	28	-48	19		31	454	-244	5
$\cdot 5$	-334	192	",	98	-114	220		5	,"	146	,'	33	123	"	25	-48	32	",	30	446	-250	8
$4 \cdot 0$	- 333	283	"	96	-117	212	$\cdot 36$		"	124	,	44	163	"	21	$\cdot 47$	45	"	29	433	-256	12
$\cdot 5$	-332	371	"	92	-120	201	,	9	,	97	"	52	196	"	17	$\cdot 47$	57	"	28	416	-262	15
$5 \cdot 0$	-332	457	"	87	-124	187	"	15	"		"	58	220	"	1 I	$\cdot 46$	69	-. 13	26	395	-269	18
$\cdot 5$	-331	537	"	81	-127	171		13	"	+ 29	"	6 I	233	"	+ 5	-45	80	,	25	370	-275	20
$6 \cdot 0$	-330	611	"	73	-130	152	-35	15	,	- 7	,	62	237	,	- I	$\cdot 44$	90	,"	23	342	-281	23
-5	-329	676	"	63	-133	131	"	16	,	43	"	60	229	,	7	$\cdot 44$	100	,"	20	310	-287	25
$7 \cdot 0$	-328	732	,	53	-136	ro8		17		77		55	212	,	12	43	108		18	275	-293	27
$8 \cdot 5$	-327	77^{8}	,"	41	-139	83	-34	18	$+\cdot 25$	108	-.09	48	185	,	17	$\cdot 43$	116	--12	16	237	-299	29
$8 \cdot 0$	$\cdot 326$	8 II	,	28	-142	56	,	19	,	133	,	39	149	,	22	42	122	,	13	197	-304	3 I
...	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots
$40 \cdot 0$	+-266	+ 554	+.03	-79	+-197	+167	--07	+13	+ 29	-160	--08	+20	- 86	+.032	-26	$+\cdot 72$	-124	$+\cdot 27$	- 12	$+182$	+ 432	-3I
$\cdot 5$	- 265	475	,"	86	-196	184	. 08	11	,,	143	,	32	130	-032	24	$\cdot 75$	129	- 28	9	139	-430	32
41.0	- 264	391	,"	91	-195	198		9		120	",	42	169	.033	20	$\cdot 77$	132	-28	6	95	-429	33
$\cdot 5$	-263	303	,	95	-195	210	-09		-30	91	,'	50	200	.034	16	. 80	134	$\cdot 29$	- 3	5 I	-427	34
$42 \cdot 0$	- 262	212	",	97	-194	218	,'	5	,,	59	",	56	223	-034	10	$+82$	$\underline{155}$	-30	3	+ 5	-426	34
$\cdot 5$	- 261	121	-02	98	-193	224	- 10	3	-31	- 23	$\cdot 07$	60	235	-035	- 5	-. 15	135	$\cdot 31$	+	- 40	-424	34
$43 \cdot 0$	- 260	+ 31	,	97	-192	226	,	+1	,	+ 13	,	61	236	. 035	+ 1	-12	133	$\cdot 32$		85	$\cdot 422$	33
- 5	- 260	- 58	,	96	-191	226	,	I	"		"	59	227	-036	7	- 10	130	-33	9	129	-420	33
$44^{\circ} \mathrm{n}$	- 259	145	,	93	- 190	223	II	3	"	82	,	54	208	-036	13	$\cdot 07$	125	$\cdot 34$	1 I	172	$\cdot 417$	32
$\cdot 5$	- 258	227	,	89	-I89	216	,	5	"	112	,	47	179	-037	18	. 05	120	-35	14	213	415	30
...	\ldots
361.0	+ 356	+ 63	+-09	98	--180	-226	+ \quad Or	$+\cdots$	- 44	- $\quad 52$	+ \quad Or	- $\quad 39$	+ 226	+.077	- $\quad 8$	-. 59	-133	+ $\cdot 14$	+ 5	- 74	-. 239	-34
	,	154		98	-179	222	- O			86		53	205	+oy	14	. 61	131	-13	8	118	$\cdot 235$	33
$362 \cdot 0$	"	245	,	97	-177	216	or	6	,	115	,	45	176	"	19	-. 64	127	-12	10	161	-23I	32
	,	335	"	94	-175	206	-00	8	-45	139	"	36	138	$\cdot 078$	23	+-33	121	-1	13	203	-227	3 I
363.0	"	42 I	"	90	- 173	194	- 0	10	,	157	,'	25	95	",	26	$\cdot 30$	115	-10	16	242	- 223	29
	,	504	"	84	-170	178	--01	12	,	168	"	-13	+ 47	"	27	-28	107	-09	18	279	-219	27
364.0		581	"	76	- 168	160	-02	14	"	171	,		- 4	"	28	$\cdot 25$	99	-08	21	314	-215	25
	-357	650	,	67	-165	140	-02	15		167	"	+ 12	53	,	27	-23	89	-07	23	345	-211	23
$365{ }^{\circ}$	"	710	"	57	-163	118	-03	17	$\cdot 46$	155	,	24	101	-079	26	- 20	78	. 07	25	373	-207	20
	"	760	"	46	-16I	93	-04	18	,	136	"	35	144	,"	23	-17	67	.06	26	398	-203	17
$366 \cdot 0$	"	799	"	33	-158	67	. 04	19	"	III	,	45	181	"	19	- 15	55	. 05	28	$4{ }^{18}$	-198	14
	,	825	"	20	- 156	4 I	-05	19	,	8 I	,"	52	209	"	14	-13	43	. 04	29	435	-194	11
367.0	"	838	"	$+7$	- 153	- 13	- 05	20				57	228		9	- 10	30	- 03	30	447	-189	8
	"	838	.	-7	-151	+ 15	-06	20	$\cdot 47$	- 11	-oo	60	236	-080	- 3	-08	17	. 02	3 I	455	-185	5
$368 \cdot 0$	"	824	",	2 I	-148		-06	19		+ 25		60	234	.	+3	-06	- 4	+ 0 I	3 I	458	-180	- 1
-5	"	797	"	34	--146	69	-07	19	,		"	58	222	,	9	. 03	$+10$	-00	3 I	457	-176	+ 2

Computation of $\mathrm{\Sigma}_{1} . \quad \mathrm{k}=-\cdot 0002 \mathbf{4}^{8} \times 23=-\cdot 00057$. Day odo is Jan. o.0.
Month o. Int. fact. for $\mathrm{D}=+\cdot 0534 \times 2=+\cdot 107=n$.
Month I. Int. fact. for $\mathrm{D}=+\cdot 0228 \times 2=+\circ 46=n$.

Computation of Σ_{3}. The interpolating factors (constant through the year) for Tables $40-47$ are placed in the col. of Args.; the integral parts of the column numbers before the values for day odo and before the values of the days where they change. For the double-entry Tables 48,49 , the column numbers are the values of the 2nd arguments. The change from 74 to 73 in Arg. 50 is made to facilitate interpolation of the first argument, the loss of accuracy being negligible.

Tab.	Args.	Day of year		do	0.5	I'O	1-5	$2 \cdot 0$	$2 \cdot 5$...	8-0	$8 \cdot 5$	$9^{\circ} \mathrm{O}$	9.5	$10^{\circ} 0$	\cdots			
III	40	-0¢41	176 8	24495	33524	42976	52351	61150	68905	...	36293	27086	18646	11419	57^{87}	...			
41	415	$+\cdot 3$	8	8319	8406	849 I	8576	8660	8742	...	9579	9647	9715	978 I	9845	...			
42	42	- 4	81 87	7945	7890	7781	7621	7412	7156	\ldots	2603	2181	1784	1418	1087	\cdots			
43	43	- -2	87 97	1845	800	202	$44 \quad 123$	570	1493	...	5084	3540	2120	992	289	\cdots			
44	44	- 3	97 52	38	142	335	44580	828	1032	\cdots	299	539	790	1004	1140	\cdots			
45	45	$+3$	25	1598	1798	1914	1931	1848	1673	...	708	1012	1315	1583	1788	...			
46	46	$+\cdot \mathrm{I}$	25 15	794	723	586	410	232	89	*..	534	354	183	57	2	\ldots			
47	478	- 23	II	69896	69322	68747	68172	67597	67022	...	60707	60135	59564	15^{58993}	58422	\cdots			
48	$30=18$	$48=11^{e}$	74-1	I 35	30	28	28	30	34	***	37	$22 \quad 42$	46	$15 \quad 46$	41	**			
49	$49=$	$50=74^{e}$	74-1	I 28	34	4 I	49	57	66	***	58	2247	36	27	18	\cdots			
$\mathrm{P}_{4} 6$	Date			39	39	39	39	39	39	**	39	40	40	40	40	\ldots			
$\mathrm{P}_{4} 4$	"			39	40	41	41	42	42	...	35	36	37	38	39	\cdots			
P_{48}	..			26	26	26	25	25	24	...	26	25	25	24	23	\cdots			
P 49^{4}	,			25	25	24	24	24	24	**	24	24	24	24	25	\cdots			
Σ_{1}			18329 3327		18250 3328	18188 3328	$\begin{array}{r} \text { 18109 } \\ 3329 \end{array}$	$\begin{array}{r} 17996 \\ 3329 \end{array}$	$\begin{array}{r} 17826 \\ 3330 \end{array}$	**	$\begin{array}{r} 17341 \\ 3335 \end{array}$	$\begin{array}{r} 17686 \\ 3336 \end{array}$	$\begin{array}{r} 18034 \\ 3336 \end{array}$	$\begin{array}{r} 18383 \\ 3336 \end{array}$	18709 3337	\cdots			
			...																
$\mathrm{v}_{2}\left\{\begin{array}{l}\text { Sum } \\ \text { Tab. } 47 \times \mathrm{k}\end{array}\right.$					136778-40		144377-40	$\begin{array}{r} 152747 \\ -40 \end{array}$	$\begin{array}{r} 161408 \\ -39 \end{array}$	$\begin{array}{r} 169839 \\ -39 \end{array}$	$\begin{array}{r} 177497 \\ -39 \end{array}$	\cdots	$\begin{array}{r} 136702 \\ -35 \end{array}$	$\begin{array}{r} 125730 \\ -34 \end{array}$	$\begin{array}{r} 115695 \\ -34 \end{array}$	107165-34	$\begin{array}{r} 100592 \\ -33 \end{array}$	\cdots	

Comprtation of Σ_{2} and the Longitude. The arguments for $\mathrm{o}^{d} \mathrm{O}$ are shown as in Σ_{3}; the fractional parts of Args. $30,3 \mathrm{r}, 32$ are included in $\mathrm{A}_{11}, \mathrm{~A}_{13}, \mathrm{~A}_{13}$; the additions to their integral parts are obtained from inspection of $\Sigma_{11}, \Sigma_{13}, \Sigma_{16}$. To every value from Table 30 , the number 3000000 has been added. Those values of A_{11}, \ldots, A_{18} which are negative are placed for convenience of addition in the block to the left of the space for each half-day. The longitude is obtained in units of o.or

The change of column number in Table 32 on day 42.5 is shown by the ' +1 , changing the column number to 263 . With this, A_{15} changes from -111 to +20 .

Computation of Σ_{s}.
Month 9. Int. fact. for D, --444.
Month ro. Int, fact. for $\mathrm{D},+495$.

Tab.	Hor. Ar	gs. ${ }^{\text {D }}$	-od ${ }^{4}$	$0 \cdot 0$...	28.5	29°	$29 \cdot 5$	30.0	$30 \cdot 5$	$\begin{aligned} & \text { Hor. } \mathrm{D} \\ & \text { Args. } \end{aligned}$	$-o^{d} 5$	0.0	0.5	1.0	...
Iv	1	$96 \cdot 78$	3035	3044		3489	3494	3484	3458	3417	108.18	3494	3483	3456		
2	2	85.58	567	531	...	575	517	471	440	428	109.38	514	468	439	${ }_{427}$	\ldots
3	3	$95 \cdot 61$	291	251	\cdots	354	299	256	231	227	96.67	296	254	230	227	\cdots
4	4	$50 \cdot 93$	32	30	\ldots	213	239	267	295	321	78.74	241	269	297	323	...
5	5	4.9	148	187	...	162	201	242	279	310	12.9	203	244	281	311	...
6	6	31.0	160	156	...	155	160	154	166	168	$6 \mathrm{I} \cdot 8$	161	163	166	168	...
7	7	$51 \cdot 1$	107	112	...	69	70	74	80	85	60.1	70	75	80	86	...
8	8	13.7	27	31	...	35	34	31	27	22	28.5	34	31	26	21	...
9	9	37.8	31	30	\ldots	31	28	24	20	15	I.5	29	25	20	15	...
10	10	58.4	44	44	...	48	48	48	48	48	78.5	48	48	48	48	...
11	II	15.7	35	35	...	31	31	30	30	29	19.6	30	30	29	29	...
	ms		4477	4451	\ldots	5162	5121	5091	5074	5070		5120	5090	5072	5069	\cdots
12	16	216.41	1417	1445	...	1329	1384	1412	1414	1389	$234 \cdot 41$	1386	1413	1413	1387	
13	17	$2 \cdot 20$	1154	1148	...	618	610	604	599	595	10.89	610	${ }^{6} 04^{4}$	599	595	...
14	18	$34 \cdot 40$			\ldots	85	97	109	${ }_{-122}$	${ }^{134}$	5.60	99	111	123	${ }_{1}^{135}$	
15	$19+a$	13.67	1489	1569	...	1746	1783	1809	1824	1826	21.16	1786	1810	1824	1826	\ldots
16	21	17.9	5		...	4	5	6		ı0	19.4	5	6	7	10	...
$\Sigma_{5}\left\{\begin{array}{l}\text { Sums } \\ \text { Int. to date } \\ \mathrm{k} \times \text { Ist sums }\end{array}\right.$			8542	8619		8944				9024		9006		9038		
					...	-33	-22	-11	- I				+5	-5	- 16	...
					...				-3				-3	-3	- 3	...
Day of year					...	$266{ }^{\text {d }} 5$	267.0	267.5	268.0				268! ${ }^{\text {d }}$	$268 \cdot 5$	269.0	...

Compulation of Σ_{s}. The arguments are shown as in Σ_{g}. The letter ' c ' in Table 24 indicates the beginning of a fresh column in the printed table. Day $366{ }^{\circ} \mathrm{o}$ is day ofo (Jan. I'0) of 1924.

Computation of $\mathbf{\Sigma}_{8}$. Interpolating factors as in $\mathbf{\Sigma}_{\mathbf{1}}$.
Month 0 . Month I .

Computation of Σ_{7} and the Latitude. There is no interpolating factor for Tables 17,18 . The last figure of Σ_{2} is cut off before entry as shown by the divisor 10. The nearest tabular value corresponding to the Arg. \mathbf{S} is written separately, as is the variation on the last line but one; the products of the numbers in this line and the difference between the given and tabular values of S are shown below the tabular values from Table 33. The factor 10^{-3} attached to Σ, indicates the dropping of the last three figures of Σ_{7} before performing the multiplication by the last line. Multiples of $1296000^{\prime \prime}$ are to be subtracted from S when necessary. This is shown on days $8 \cdot 0,8 \cdot 5$ where $\overline{\mathbf{2}}_{704}$ on the first lines indicates $-20000000+7040000$.

Day of year	odo	0.5	1-0	\cdots	$8 \cdot 0$	$8 \cdot 5$	\cdots	$97^{\circ} \mathrm{O}$	$97 \cdot 5$	\cdots
$\begin{aligned} & \text { Tab. } 17, \text { Arg. } 51=2^{d} \\ & \mathrm{z}_{17}^{\prime \prime} 18, \quad \because \quad 52=11^{d} \\ & \Sigma_{4} \\ & \mathrm{z}_{2} \div 10 \\ & -8 \end{aligned}$	10 II I 0 1018 8793 2411519 6688280	$\begin{array}{r} 9 \\ 0 \\ 1017 \\ 87^{8} 7 \\ 2641888 \\ 6689233 \end{array}$	$\begin{array}{r} 7 \\ 0 \\ 1017 \\ 8776 \\ 2875099 \\ 6690186 \end{array}$	\ldots \cdots \cdots \cdots \cdots \cdots	$\begin{array}{r} 2704 \quad 10 \\ 6 \\ 1010 \\ 7238 \\ 6360874 \\ 6703531 \end{array}$	$\begin{array}{r} \overline{2} 704 \begin{array}{r} 12 \\ 6 \\ 1005 \\ 7168 \\ 6616133 \\ 6704484 \end{array} ~ \end{array}$		$\begin{array}{r} \overline{2} 704 \quad 9 \\ \\ \\ 930 \\ 9813 \\ 4889373 \\ 9873196 \end{array}$	$\begin{array}{r} 10404 \\ 6 \\ 930 \\ 937 \\ 4731 \\ 10228698 \\ 6874149 \end{array}$	\ldots \cdots \cdots \cdots \cdots \cdots
Sum $=$ S	910962. I	$934093 \% 4$	$957508: 5$...	11266:9	36881.12	\cdots	390832.6	$414852: 4$	\cdots
$\begin{aligned} & \Sigma_{7}\left\{\begin{array}{l} \text { Tab. 33. } \\ \text { Arg. S } \\ \Sigma_{s} . \end{array}\right. \\ & \mathrm{IO}_{\mathrm{o}}^{-\mathrm{a}} \mathrm{\Sigma}_{,} \times \text {last line } \end{aligned}$	$\begin{array}{rr}- & 1771852 \\ + & 99 \\ + & 35647 \\ - & 302\end{array}$	$\begin{array}{lr} \hline & 1821210 \\ + & 11 \\ + & 38931 \\ - & 305 \end{array}$	$\begin{array}{lr}- & 1847888 \\ - & 5 \\ + & 41925 \\ - & 305\end{array}$... \cdots \cdots	$\begin{array}{rr}+ & 101299 \\ + & 297 \\ + & 35611 \\ + & 15\end{array}$	$\begin{array}{rr}+ & 329206 \\ + & 166 \\ + & 31449 \\ + & 29\end{array}$	\cdots	$\begin{array}{rr} + & 1755936 \\ + & 94 \\ +\quad 45156 \\ +\quad 2048 \end{array}$	$\begin{array}{lr} + & 1675070 \\ + & 182 \\ + & 48171 \\ + & 1964 \end{array}$. \cdots \cdots \cdots
Sum = Latitude	- 17364\% 08	- 17825:73	-18062\%73	...	+ $1366: 28$	$+3605.18$	***	+18030:46	+17253:87	\cdots
Variation of Tab. 33 $\left(\Sigma_{8}+\Sigma_{18}\right) 10^{-3}$	$\begin{array}{r}262 \\ +\end{array}$	$\begin{array}{lr}- & 165 \\ + & 171\end{array}$	6 $+\quad 169$	\cdots	896 $+\quad .109$	$+\quad 883$ $+\quad .081$	\cdots	$\begin{array}{rr}- & 287 \\ +\quad \mathbf{1} 137\end{array}$	$\begin{array}{r}383 \\ \hline+\quad 1.140\end{array}$	\cdots

Computation of Σ_{8}.

Month I. Int. fact. for $D,+\cdot 046$.
Month 2. Int. fact. for D, -.or6.

Computation of Σ_{9} and of the equatorial horizontal Parallax. The next lower Arg. of Table 24 gives the minutes and tens of seconds of the parallax; this Arg. subtracted from Σ_{9} gives the seconds and decimals of a second expressed in units of o."oor. The left-hand blocks of the first seven lines contain the negative values. The arguments are exhibited as in $\Sigma_{2}: 7 \mathrm{I}, 33,72$ corresponding to $30,31,32$ in Σ_{2}. In passing to 1924 , the B are here continued from the 1923 group, but the arguments are given their new values: there is no sensible break.

CHAPTER VI

THE COMPUTATION OF A SINGLE PLACE.

The construction of the annual ephemeris of the Moon requires the arguments to be calculated only on day o of the year and at certain other dates specified in the instructions of Chap. V. In this chapter, precepts are given for obtaining the arguments and thence, the place of the Moon at any date. For a modern place, these precepts are additional to those of Chap. V. For the computation of an ancient place for which a much lower degree of accuracy may be adopted, the precepts of this chapter are intended to be complete, so that reference to other parts of the introduction should be unnecessary.

Illustrations of the computations are afforded by an example in which the arguments needed for a certain ancient place are computed to their full degree of accuracy in order to illustrate the additional work necessary for a modern single place. But the values extracted from the tables of Sects. III to VI are only taken out to the degree of accuracy needed for the ancient place.

Precepts for the formation of the Arguments at any date.

Transform the calendar date and the time of day to days of the year and a fraction of a day and to a fraction of a year by Table I, Sect. II. Transform also the years and fraction of a year after the beginning of the century to a fraction of a century.

From Table 2, II, take out the values of the arguments and of $L,-\Omega$ for the beginning of the century, noting that for centuries B.C., as well as A.D., the remaining number of years must be positive (e.g. $-38 \mathrm{I}=-400+\mathrm{I} 9$); multiply the numbers in column (a)* by the fraction of the century, and those in column (b)* by the square of this fraction. To the sum of these add, from Table 3, II, the values for the beginning of the corresponding year of the twentieth century, multiplying the numbers in column $(a)^{*}$ by the fraction of the year and adding in the results.

Add further to Arguments D, 23 to 47,30 (p. 37), 49, 5 I to $63,65,67,69$, 7 I to $78, \mathrm{~L},-8$, the values from Table 4, II, for the integral number of half-days of the year to date. From the same table add to Arguments I to 22, the values on the same line as that used for D. Similarly to Arg. 48, add the value on the same line as that used for Arg. 30 in the preceding column. Argument 50 is to be similarly treated with respect to Arg. 49; Arg. 64 to Arg. 63; Arg. 66 to Arg. 65 ; Arg. 68 to Arg. 67 ; Arg. 70 to Arg. 69 . To Argument l^{\prime}, add the days of the year and the fraction of the day to date, and to Args. 82, 83, 84 add the number of days and fraction of the day to date since l^{\prime} was zero.

* These are expressed in units of the last tabulated place of the argument.

Add further to Arguments D, 49, 58, 63, 65, $67,69,78$, the fraction of the day to the nearest decimal place required in each, and to Arguments 23 to 47,5 I to 57, 59 to $62,7 \mathrm{r}$ to 77 , this fraction of the day, reduced to column number and decimals of a column number by multiplying twice the fraction of the day by the number of parts in half a day for each of these arguments as shown in the headings of the columns of Table 3, II.

If necessary, subtract one or more periods of D from that argument, so that it may become less than the period of D. To each of the Arguments 1 to 22, add the same multiple of 'Addition for a Period of D' given in the headings of Table 3, II. The pairs of Arguments 30 and 48, 49 and 50, 63 and 64, 65 and 66, 67 and 68, 69 and $70, l^{\prime}$ and $82,83,84$, are treated in the same manner as D and any one of the Arguments I to 22 . When necessary subtract multiples of the periods of the second arguments so as to render their computed values less than their periods.

From the single-entry arguments subtract the necessary multiples of their periods. If, in any argument, the resulting column number is negative, add, from the heading of Table 3, II, the value for $0^{d} .5$ (or a multiple of it) and subtract $0^{d} .5$ (or the same multiple of 0.5). Similarly if the resulting column number is greater than the value for $0{ }^{d} 5$, subtract the necessary multiple of that value and add the same multiple of $\mathrm{o}^{d} 5$. These adjustments are required to bring the argument within the values for which the function is tabulated.

When the arguments for the date have been obtained, the tables of Sects. III to VI are entered and the results are computed in the manner explained in Chap. V, for finding the place at day o of any year. One change is to be noticed. Since the secular variations of $L,-8$, and of Arguments $30,31,32,71,72$ from the beginning of the year have already been accounted for in the formation of these quantities, they must be omitted from $\Sigma_{10}, \Sigma_{17}, \Sigma_{11}, \Sigma_{13}, \Sigma_{15}, \Sigma_{11}^{\prime}, \Sigma_{15}^{\prime}$, respectively.

The precepts given in Chap. V for continuation for successive half-days are not needed in the computation for a single place unless it be required to find also the variation for a small change of the time. To obtain this variation, extract from the tables of Sects. III to V, the values for the half-days preceding and following the given date. Four consecutive values should be extracted from the double-entry tables which have D as the vertical argument so as to permit of the interpolation from the tabular to the computed value of D . Three consecutive values from the tables of Sect. VI are sufficient for all purposes. In the single-entry tables of Sects. III to V, if the value at the date is that for odo in any table containing succession numbers, the value for the previous half-day will be obtained by finding the computed column number of the argument amongst the succession numbers and using the value next to that succession number. If the value at the date is the last of any column, the value for the following half-day is obtained by means of the succession number as explained in Chap. V. The additional labour of finding the values for the two extra half-days is very small compared with the rest of the work. The variation of any coordinate for a small change in the time is obtained by multiplying the mean of the final first differences for that coordinate by the ratio of the change to half a day.

The Computation of an Ancient Place.

The probable errors of ancient observations are so large that considerable abbreviations may be made in computing a position from the Tables for comparison. If the aim be to obtain the Longitude, Latitude and Parallax with probable errors due solely to computation and omission of about $5^{\prime \prime}, 0^{\circ} .5,0^{\circ} .05$, respectively, we can omit coefficients of terms or of groups of terms which are respectively less than $2^{\prime \prime}, 0.2,0.02$. Errors of $10^{\prime \prime}, 1^{\prime \prime}, 0^{\prime \prime} 1$ will be rare and indeed much larger errors will not interfere with the accuracy of a comparison with such observations.

Omissions of certain tables require changes in the constants in order to avoid systematic errors. The precepts which follow are so arranged that the respective coordinates may be computed in units of $\mathrm{I}^{\prime \prime}, \mathrm{O}^{\prime \prime} \mathrm{I}$ and o."or, instead of the units employed in the Tables.

Precepts.

Form the arguments and $\mathrm{L},-\Omega$, as explained in the earlier part of this chapter, omitting Args. 8 to II, 13 to 15,20 to 22,48 to 52,63 to $70,75,78, l^{\prime}, 79$ to 8 r. Two places of decimals may be dropped in the arguments up to 47 inclusive and one place in the remainder, but mistakes are more easily avoided if they are all computed to the full number given in Sect. II. The additions to Arg. I9 on p. 46 of Sect. IV and p. 33 of Sect. V may be omitted.
 in order to account for the constants of omitted tables.

Compute the Longitude, Latitude and Parallax from the following scheme, which is constructed on the plan that the last two digits of every entry from the tables of Sect. III and the last digit of every entry from the tables of Sects. IV, V, will be dropped. The dropping of digits from the tables of Sect. VI is indicated by the divisors 10 or 100 . The last two digits of L and the last digit of -8 are also dropped. The phrase 'sum of Tables...' is an abbreviation for 'sum of values from Tables'

Notation and Arrangement.

$\mathrm{k}=-.0000248 \times$ time in years from $1900 \cdot 0$.
$\Sigma_{1}=$ Sum of Tables I to $7,16,19$, III +k (Sum of Tables I to 7 , III),
$\boldsymbol{\Sigma}_{2}=$ Sum of Tables 23 to 29, 3I to 39, III + (Table 30, III +30000) +k (Sum of Tables 23 to 29, III) + L,
$\Sigma_{3}=$ Sum of Tables 40 to 47 , III +k (Table 47, III) $+\frac{1}{100}$ (Sum of Tables P 22, $\left.\mathrm{P}_{23}, \mathrm{P} 24, \mathrm{VI}\right)+\Sigma_{1}+24+9 \mathrm{k}$,
in which formulae the last two digits of the values from all the tables of Sect. III and of L are supposed to have been dropped;

True Longitude ${ }^{*}=\Sigma_{2}+\Sigma_{3}$ in units of $\mathrm{I}^{\prime \prime}$.
$\Sigma_{4}=$ Sum of Tables I to 7, I2 to I5, IV +k (Sum of Tables I to 7, IV),

* The Nutation is not included.
$\mathrm{S}=\Sigma_{2}+\Sigma_{4}+\frac{1}{100}\left(\right.$ Sum of Tables P 23, P 24, VI) $+\frac{1}{10}$ Table P 34, VI
$+\frac{1}{10}$ Tables P 35 (P 34 - IOOO), VI $-8+19+9 k$,
in units of $\mathrm{I}^{\prime \prime}$;
$\Sigma_{5}=$ Sum of Tables 19 to 28 , IV +k (Sum of Tables I9, 20, IV - 340) - 6980,
$\Sigma_{6}=$ Sum of Tables 34 to 38, 43, IV - I29,
$\Sigma_{7}=\Sigma_{5}+$ Table 33, IV,
in which the last digit of all values from the tables of Sect. IV and of $-\Omega$, has been dropped;

Latitude $=\Sigma_{7}+\frac{1}{100} \Sigma_{7} \times \frac{1}{1000}\left(\Sigma_{6}+\frac{1}{10}\right.$ Table P $36+\frac{1}{10}$ Tables P $36 \times$ P 37) in units of O ". I .
$\Sigma_{8}=$ Sum of Tables I to 7 , Io to $13, \mathrm{~V}+\mathrm{k}$ (Sum of Tables I to $7, \mathrm{~V}-595$),
$\Sigma_{9}=$ Sum of Tables 15 to I9, 2I, 22, V +k (Table I9, $\left.\mathrm{V}-200\right)+\Sigma_{8}+9$,
Equatorial Horizontal Parallax $=$ Table 24, V, Arg. Σ_{9},
in units of o."or; the last digit of all values from the tables of Sect. V has been dropped.

The following tables have been omitted: 8 to $15,17,18,20$ to $22,48,49$, Sect. III; 8 to II, I6, 29 to 32, 39 to 42, Sect. IV; 8, 9, I4, 20, 23, Sect. V; and all of Sect. VI except P 22, P 23, P 24, P 34, P 35, P 36, P 37.

Digits in the Arguments may be dropped to correspond with those dropped from the Tables.

Most of the tables contain two sets of arguments: arguments at the top are used with those on the left and arguments at the bottom with those on the right. The succession numbers are not needed except when the variations for a small change in the time are to be computed as explained in the earlier part of this chapter.

In entering the double-entry tables which have D as the vertical argument, take as vertical arguments three half-day values nearest to the computed value of D, preceding and following, and interpolate, when necessary, for the horizontal arguments with the given variations. After summing the four groups Σ_{1}, Σ_{4}, Σ_{6}, Σ_{8}, interpolate the sums to the computed value of D, by using as factor twice the difference between the computed and tabular values of D.

Each single-entry table is entered on the line given by the integral number of days and half-day and in the column given by the column number of its Argument. Interpolation is made between adjacent columns by means of the printed variations. In tables where no column number is used, interpolation is made between successive values.

Table 30 , III, requires the addition of 3×10^{6} to each value or 3×10^{4} after the last two digits have been dropped. The sign to be used is shown in a note at the head of the table.

The printed variations for both double- and single-entry tables are always those for unit change of the argument whether every value, every second or every fourth value of the argument is tabulated. The sign of the interpolated portion should be checked by comparison with an adjoining column.

The argument of Table 33, IV, is given in multiples of $100^{\prime \prime}$; the complete period of the table being $1296000^{\prime \prime}$, this, or a multiple of it, must be subtracted from the computed value of S when necessary. The sign of the value is shown by a note at the head of the table.

Table 24, V, is entered with Σ_{9} as argument by subtracting the tabular argument next smaller than Σ_{9} from Σ_{9}; the difference divided by 10^{3} (or by 10^{2} when the last digit of the argument is dropped) is the number of seconds to be added to the parallax opposite the tabular argument.

The method of obtaining the variation for a small change of the time is explained on p. 102.

Example.

The example which follows gives the complete computation of the Longitude, Latitude and Parallax of the Moon for the date of a lunar eclipse recorded by Ptolemy in the Almagest. It is the same date as that adopted by Newcomb as an example for finding an ancient place of the Sun in his Tables of the Sun.

Example. The Moon's place at - 38 I , Dec. 12, $6^{h} 56^{m}$.
Date $=-400 y+19^{y} 34^{6 d^{d}} 6^{h} 56^{m}=-400+19^{y} 346 d^{2} \dot{8}=-400 y+19 y 94^{8}$ (Table 1, II). Computation of the Arguments: the tables are in Sect. II.

Tab.	Arg.	D	1	2	3	4	5	6	7	12	16	17	18	19
2	-400	$24^{\text {d }} 2436$	$4^{¢} 205$	145 ¢80	14. ${ }^{\text {c }}$	104¢09	$99: 82$	127.31	15.48	$15 ¢ 03$	$227^{\text {c }} 112$	35¢26	22.66	$9 \div 78$
2	s.v.	- 12	$+\quad 1$	- 4	+ 3	6	- 7	- 3	$+\quad 3$	\bigcirc	- 65		- I	$+\quad 3$
3	1919	13.5522	$140 \cdot 602$	109.20	34-15	$49 \cdot 94$	$52 \cdot 28$	92.02	29.16	$20 \cdot 65$	${ }^{1} 76.402$	8.18	32.80	$34 \cdot 78$
4	$346{ }^{2889}$	2I•4524	125.396	105.80	II. 66	57.91	88.11	74.91	98.98	13.26	198.001	44.59	25.20	6.49
3 3	- 2 Periods	-59.0612	$\begin{aligned} & 22 \cdot 800 \\ & -282 \end{aligned}$	- $477 \cdot 60$	$2 \cdot 12$	$55 \cdot 62$ -248	${ }_{-256} \begin{aligned} & 16.02\end{aligned}$	$61 \cdot 62$ -264	- 18.00	$15 \cdot 50$ -48	- $\begin{gathered}36 \cdot 000 \\ -502\end{gathered}$	$17 \cdot 38$ -102	18.40 -76	15.00 -76
3														-76
	Sums	$0 \cdot 1858$	11.004	$96 \cdot 36$	$62 \cdot 46$	19.50	0.16	91.83	61.65	$16 \cdot 44$	135.450	$3 \cdot 41$	23.05	$40 \cdot 08$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Tab. \& Arg. \& \multicolumn{2}{|r|}{31} \& \multicolumn{2}{|r|}{32} \& \multicolumn{2}{|c|}{33} \& \multicolumn{2}{|c|}{34} \& \multicolumn{2}{|r|}{35} \& \multicolumn{2}{|r|}{36} \& \multicolumn{2}{|c|}{37}

\hline 2 \& -400 \& 9do \& 281 $¢ 10$ \& $27^{d} \mathrm{O}$ \& 18 I 44 \& 24.0 \& 47:70 \& 190 ${ }^{\text {d }} 5$ \& $12 c^{c}$ \& $4^{\text {d }}$ O \& 55\%96 \& $\mathrm{II}^{\text {d }}$ O \& 85.5 \& $5^{d} 0$ \& $27!5$

\hline 2 \& s.v. \& \& - $\quad 72$ \& \& + 4.68 \& \& - .24 \& \& - 3.01 \& \& - $2 \cdot 05$ \& \& + 1.6 \& \& + I-I

\hline 3 \& 1919 \& $9 \cdot 5$ \& $72 \cdot 64$ \& \& $32 \cdot 78$ \& $28 \cdot 0$ \& 15.81 \& 133.5 \& $0 \cdot 94$ \& 2.5 \& 224.57 \& 4.0 \& $7^{7.1}$ \& $9 \cdot 0$ \& $89 \cdot 3$

\hline 4 \& $346{ }^{\text {d }}$ \& $6 \cdot 0$ \& 234.8 \& $27 \cdot 5$ \& 255 \& 21.0 \& 32
56.62 \& $140 \cdot 0$ \& 3.0 \& $9 \cdot 5$ \& ${ }_{111}^{160.04}$ \& 11.5 \& 111
67.6 \& $3 \cdot 0$ \& 98

228.8

\hline 3 \& od 28 \& \& 169.87
-156 \& \& $193 \cdot 56$ \& \& 56.62 \& \& -8.09 \& \& 160.04 \& \& 67.6 \& \& 228.8

\hline 3
3 \& - Pdjer. \& -14.5
+1.0 \& -156
-588 \& -31.5
$+\quad 0.5$ \& -209
-335 \& -59.0
$+\quad 0.5$ \& -12
-98 \& -4II•0 \& \& -9.5
+0.5 \& 163
-277 \& -15.5

+0.5 \& $$
\begin{aligned}
& -95 \\
& -117
\end{aligned}
$$ \& -10.0 \&

\hline \& Sums \& II•O \& 12.89 \& 23.5 \& 123.46 \& 14.5 \& $4 \mathrm{I} \cdot 89$ \& 53.0 \& -0.44 \& $7^{\circ} 0$ \& 109*52 \& 11.5 \& 60.8 \& 7.0 \& $377 \cdot 3$

\hline
\end{tabular}

Tab.	Arg.	38	39	40	4^{1}	42	43	44	45
2	-400 s.v.	$\mathrm{I}^{d_{5}} \begin{array}{r} \\ \\ \hline\end{array}$	0do $\begin{array}{r}24 c_{7} 7 \\ -\quad .2\end{array}$	$6{ }^{1} 00{ }^{273}{ }^{\text {c }} 18$	144% d ${ }^{\frac{d}{3}}+\begin{array}{r}c_{2} \\ \hline 6\end{array}$	${ }^{18 d^{d}} 5+\begin{aligned} & 2 c^{2} \\ & 2 \cdot 5\end{aligned}$	2\% $0 \quad \begin{array}{r}132 \% 0 \\ -\quad 1 \cdot 0\end{array}$		$3{ }^{d_{0}}+\begin{array}{r}39 \\ +\quad .6\end{array}$
3	1919	$6.5 \quad 172.4$	$1.0 \quad 11 \cdot 7$	$4.0 \quad 84.63$	$69 \cdot 5 \quad 7 \cdot 5$	$17.5 \quad 21.6$	$8 \cdot 5 \quad 72 \cdot 4$	1.0 164	$5 \cdot 0 \quad 78 \cdot 6$
4	$346 d$	$1 \mathrm{I} \cdot \mathrm{O} \quad 16$	$8 \cdot 0 \quad 18$	$\begin{array}{lll}19.0 & 282 \\ & 179.69\end{array}$	172.58 12.1	$\begin{array}{cc}23.0 & 140 \\ & 87.8\end{array}$	$\begin{array}{ll}8.5 & 184 \\ & 109.2\end{array}$	$\begin{array}{cc}6.0 & 40 \\ & 103.4\end{array}$	$2.5 \quad \begin{aligned} 111 \\ 76.8\end{aligned}$
3 3	ode - Per -	$-14.0-172 \cdot 8$	-5.5 ${ }^{-17.9}$	$-27.0-179.69$	$-346 \cdot 0-26^{12 \cdot 1}$	-53.0-230 ${ }^{-27.8}$	$-18.0-8{ }^{1092}$	- $-7.0-29.4$	$-9 \cdot 5-\begin{gathered}76 \cdot 8 \\ 8\end{gathered}$
3	Adj.		+0.5-31	$+\mathrm{I} \cdot 0-622$			+ 1.0-378	+ + $0-35^{8}$	+1.0-266
	Sums	5*O 209\% 7	$4^{\circ} \mathrm{O} \quad 2 \mathrm{I} \cdot \mathrm{I}$	$3 \cdot 0 \quad 65 \cdot 54$	$40 \cdot 0 \quad 5 \cdot 4$	$6 \cdot 0 \quad 24.4$	$2 \cdot 0 \quad 36 \cdot 6$	$1.5 \quad 33 \cdot 2$	$2.0 \quad 32 \cdot 9$

Tab.	Arg.			77	82	83	84	L	-	For Tab, P 23 VI	
2	S.v. ${ }_{\text {- }}$		097 $-\quad .6$		2915	2813 $+\quad 1$	2822 $+\quad 1$	$\begin{array}{r} 1046924^{*} \\ -\quad 64 \end{array}$	$\begin{array}{r} 555686^{\circ} \\ +\quad 66 \end{array}$	Date -380-05 9 Per. $\quad 2438.55$ Arg. 2058.5	$\begin{aligned} k & =-0000248 \\ & x-2280 \\ & =+\cdot 0565 \end{aligned}$
3	1919	1.0	$52 \cdot 3$	$1.5 \quad 6.4$	3745	549	5634	901420	390312		
4	34^{68}	11.0		$3.0 \quad 16.0$	346	346	346	860520	65959	For Tab. $\mathrm{P}_{24} \mathrm{VI}$	
3 3 3	of 28 - Per.	$-7 \cdot 0$	${ }_{-15}^{34^{1}}$	$37 \cdot 6$	-6800		-6800	$\begin{array}{r} 13703 \\ -2592000 \end{array}$	55	Date -380.05	
3	Adj.	+0. 5		+0.5-65						$\begin{array}{ll} 9 \text { Per. } & 2314.26 \\ \text { Arg. } & 1934^{\prime 2} \end{array}$	
	Sums	$7 \cdot 0$	15.5	$10.0-0.4$	206	3709	2003	230503	1012078		

Computation of the Longitude, Latitude and Parallax.

$\underset{\mathrm{Tab}}{\mathrm{III}}$	Arg.	-of 5	Date ofo	of 5		
1	${ }_{96}^{11.0}$	28° 8	28 8 8	28 8 8		
3	62	2	2	2		
4	20	16	15	13		
5	-	7	9	12		
6	92	5	5	6		
7	62	3	3	3		
	m	69	70	72		
16	135.5	46	48	49		
19	40	7	6			
Sum		122	124	127		
Int. fact., + 37 k \times ist sum			$\begin{aligned} & +1 \\ & +4 \end{aligned}$			
$\mathrm{E}_{1}=$ sum			129			
	${ }^{4} 0$			471		
4 I	40.0					
42	$6 \cdot 0$	24	46			
43	$2 \cdot 0$	37	52			
44	$1 \cdot 5$	33	7			
45	$2 \cdot 0$	33	12			
46	1.5	12	$\begin{array}{r} 4 \\ 514 \end{array}$			
47	105°	-				
Σ_{10}			52			
$\mathrm{s}_{2}\left\{\begin{array}{l} \text { Sum } \\ \text { Tab. } 47 \times k \end{array}\right.$			$\begin{array}{r} 1349 \\ +29 \end{array}$			

III		at date	Value
23	rod 5	$494{ }^{e}$	128*
24	4°	11	20
25		158	83
26	21.0		117
$\stackrel{27}{28}$	24.5	74	${ }^{154}$
28 29	7.0		11 24
Sum			537
30	$0 \cdot 0$	$35 \cdot 8+\cdot 8$	30307
31	I2\%	$12 \cdot 9+1 \cdot 3$	2350
32	23.5	$123 \cdot 5+3 \cdot 4$	4446
33	14.5	42	133
34	$53^{\circ} \mathrm{O}$	-	210
35	7.0	110	199
36	11.5	61	29
37	7.0	377	38
38	5.0	210	15
39	$L^{4 *}$		2 230503
$\begin{aligned} & \Sigma_{\mathrm{a}}\left\{\begin{array}{l} \text { Sum } \\ \mathrm{z}_{\mathrm{k} \times 1 \text { st sum }} \end{array}\right. \end{aligned}$			268769
			+30 1378
			1378
Longitude $=$ sum ${ }_{\text {Sab. 5, }}$ (II			270177
			$75^{\circ} 2^{\prime} 57^{\prime \prime}$

$\begin{gathered} \text { IV } \\ \text { Tab. } \end{gathered}$	Arg.	-od 5	Date ofo	of 5
1	11.0	$153 *$	$154{ }^{*}$	$156{ }^{\circ}$
2	96.4	55	50	46
3	62	22	26	31
4	19.5	23	20	17
5	-	12	15	19
6	92	6	6	6
7	62	6	7	7
Sum		277	278	282
12	135.5	184	196	210
13	3.4	108	107	106
14	23	13	12	10
15	$40 \cdot 1$	126	116	106
Sum		708	709	714
Int. fact., +37 k \times Ist sum		$\begin{aligned} & +1 \\ & +16 \end{aligned}$		
$\begin{aligned} & Z_{4}=\text { sum } \\ & Z_{2} \\ & P_{34} \div 10 \\ & P_{35}\left(\mathbf{P} 34-10^{2}\right) \\ & \div 10 \\ & 19+9 k \\ & -\mathbb{Q} \end{aligned}$		$\begin{array}{r} 726 \\ 268799 \\ \text { II } \end{array}$		
		-1		
		$\begin{array}{r} 20 \\ 1012078 \end{array}$		
$\mathbf{S}=$ sum		1281633		

$\begin{gathered} \text { IV } \\ \text { Tab. } \end{gathered}$	Arg.	-od 5	$\begin{aligned} & \text { Date } \\ & \text { ofo } \end{aligned}$	ofs
34	11.0	10	9	8
35	96	35	35	35
36	62	15	13	13
37	20	5	5	5
38	-	1	I	I
43	$135 \cdot 5$	92	90	90
Sum		158	153	152
Int. fact., + 37			- 1	
-Consts.			- 129	
			-14$-\quad 2$	
Sum $=\mathrm{C}$			+ 7	

VI Tab.	Arg.	Value
P $22 \div 100$	$206{ }^{\text {d }}$	15
P $23 \div 100$	2058y5	11
$\mathrm{P}_{24} \div 100$	1934.2	1
$24+9 \mathrm{k}$		25
$\mathrm{z}_{10}=$ sum		52

$\begin{gathered} \text { IV } \\ \text { Tab. } \end{gathered}$	Arg. at date	Value
19	$25^{d} 5-0!1$	188
20	$8.5 \quad 23.6$	79
21	$24.0 \quad 118.2$	5550
22	$7.5 \quad 22.6$	4 I
23	12.0 $11 \cdot 9$	61
24	$1614^{\frac{d}{6}}$	193
25	140io 1fi	435
26	$11.0 \quad 99.7$	328
27	$21 \cdot 0 \quad 36 \cdot 5$	273
28	$7 \cdot 0145$	21
Sum - Consts. \mathbf{k} (ist two lines -340)		$\begin{array}{r} 7169 \\ -\quad 6980 \end{array}$
		- 4
$\begin{aligned} & \Sigma_{5}=\text { sum } \\ & \text { Tab. 33, Arg. S } \end{aligned}$		185 $+\quad 12875$
$\begin{aligned} & \sum_{\Sigma_{1}}=\text { sum } \times C \div 10^{8} \end{aligned}$		- 12690
		- 1
$\begin{aligned} & \text { Latitude }=\text { sum } \\ & . \quad \text { Tab. 5. II } \end{aligned}$		-12691
		21'9: 1

$\begin{gathered} \mathbf{V} \\ \mathrm{Tab} . \end{gathered}$	Arg.	$-\mathrm{d} 5$	Date ofo	of 5
1	11.0	24	26	30
2	96	288	295	302
3	62.5	252	260	265
4	20	50	50	51
5	-	32	34	35
6	92	13	14	14
7	62	5	6	6
Sum		664		
10	135.5	77	80	80
11	$3 \cdot 4$	8	8	8
12	$23 \cdot 1$	2	2	2
13	$40 \cdot 1$	26	24	23
Sum		777	799	816
Int. fact., +37 k ((st sum -595)			$\begin{array}{r} +\quad 7 \\ +\quad 5 \end{array}$	
$\Sigma_{8}=\mathrm{su}$			811	

$14-2$

CHAPTER VII

TRANSFORMATION TO RIGHT ASCENSION AND DECLINATION
 (TABLES T 50, T 5 I, T 52, SECT. VI.)

Let λ, β denote the longitude and latitude of the Moon, α, δ its right ascension and declination and ω the obliquity of the ecliptic at date. We have

$$
\begin{aligned}
\sin \delta & =\sin \omega \sin \lambda \cos \beta+\cos \omega \sin \beta, \\
\cos \delta \sin \alpha & =\cos \omega \sin \lambda \cos \beta-\sin \omega \sin \beta, \\
\cos \delta \cos \alpha & =\cos \beta \cos \lambda .
\end{aligned}
$$

The first and second of these may be written

$$
\begin{aligned}
\sin \delta & =\sin \omega \cos \beta(\sin \lambda+\tan \beta \cot \omega), \\
\cos \delta \sin \alpha & =\cos \dot{\omega} \cos \beta(\sin \lambda-\tan \beta \tan \omega) .
\end{aligned}
$$

Put $\omega=\omega_{0}+d \omega$ and $\omega_{\beta}=d \omega \sin 2 \beta \operatorname{cosec} 2 \omega_{0}$. Then if we neglect squares of $d \omega$ and ω_{β}, it is easy to show that

$$
\begin{array}{r}
\sin \delta=\sin \omega \cos \beta\left\{\sin \lambda+\tan \left(\beta-\omega_{\beta}\right) \cot \omega_{0}\right\} \ldots \ldots \ldots \\
\sin \alpha=\cos \omega \cos \beta\left\{\sin \lambda-\tan \left(\beta+\omega_{\beta}\right) \tan \omega_{0}\right\} \sec \delta \tag{2}\\
\cos \alpha=\cos \beta \cos \lambda \sec \delta \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{array}
$$

which with
constitute the three equations to be used.
Equation (I) furnishes δ. Equation (2) is used to find α when λ, and therefore approximately a, lies between 0° and $45^{\circ}, \mathrm{I} 35^{\circ}$ and 225°, or 315° and 360°. Equation (3) is used to find α when λ lies outside of these limits. The loss of accuracy which results from attempting to find an angle from its sine when the latter is near + I or $-I$ is thus avoided.

In order to shorten the computations three tables are given in Sect. VI, Table T 50 gives ω_{β} with arguments β, $d \omega$; Table T_{5} I gives $\tan \left(\beta-\omega_{\beta}\right) \cot \omega_{0}$ with argument $\beta-\omega_{\beta}$; and Table T 52 gives $\tan \left(\beta+\omega_{\beta}\right) \tan \omega_{0}$ with argument $\beta+\omega_{\beta}$. The value $\omega_{0}=23^{\circ} 27^{\prime} 0^{\prime \prime} 00$ has been chosen as convenient for the present century. Table T 50 has a range of $\pm 50^{\prime \prime}$ for $d \omega$; since the sign of ω_{β} is equal to the product of the signs of $d \omega, \beta$, this range makes the table available for about ± 80 years from 1918 which may be extended to ± 190 years by adding the line for $d \omega=50^{\prime \prime}$ whenever $d \omega$ exceeds $50^{\prime \prime}$. For dates outside of these limits, the tables must be recomputed with another value of ω_{0}.

The double-entry Table T_{50} is so arranged that an easy interpolation for the argument β is alone necessary. In Tables $\mathrm{T}_{5 \mathrm{I}}, \mathrm{T} 52$ practically the whole interpolation is performed by adding two numbers present in the tables.

For the transformation of a single place this method has no special advantages.

Precepts.

From Table T 50 find ω_{β} with the latitude as horizontal argument and the difference $d \omega$ between the obliquity at date and $23^{\circ} 27^{\prime} 0^{\prime \prime}$ oo as vertical argument, disregarding signs; attach to ω_{β} the sign of the product of the signs of the arguments;
ω_{β} is printed in units of o"or. Interpolate for β between the numbers corresponding to the even seconds of $d \omega$ and add on, from the upper part of the table, the number corresponding to the nearest tenth of a second in the first decimal place of $d \omega$. Errors of two or three units in ω_{β} are unimportant.

From Table T 5 I find the function, which is expressed in units of the seventh decimal place, with $\beta-\omega_{\beta}$ as argument, attaching to it the sign of $\beta-\omega_{\beta}$. The difference table permits of interpolation to hundredths of a second of arc of the argument without difficulty. Errors of two or three units in the function are unimportant. Add the natural sine of the longitude λ and take the logarithm of the sum. To this logarithm add $\log \cos \omega, \log \cos \beta$. The sum is $\log \sin \delta$, from which the declination δ is obtained.

From Table T 52 find the function which is expressed in units of the seventh decimal place, with $\beta+\omega_{\beta}$ as argument, attaching to it the sign opposite to that of the argument. This table is to be used only for dates when λ lies between 0° and 45°, or between 135° and 225°, or between 315° and 360°. The nearest unit in the function can be obtained from the difference table without difficulty. Add $\sin \lambda$ and take the logarithm of the sum. To this logarithm add $\log \cos \omega, \log \cos \beta$ and subtract $\log \cos \delta$. The sum is $\log \sin \alpha$ from which a, the right ascension, can be found.

When λ is not between the limits mentioned add $\log \cos \lambda, \log \cos \beta$ and subtract $\log \cos \delta$ to find $\log \cos \alpha$, from which α is found.

Gifford's Table of Natural Sines to every second of arc is convenient for finding $\sin \lambda$, and Shortrede's Tables of Logarithmic Trigonometrical Functions to every second of arc for obtaining δ in degree measure and α in time. Little extra labour is caused and accumulating errors are avoided by using λ, β to the computed degree of accuracy, namely, o."or.

In the following examples, which are arranged in forms convenient for the ephemeris, the figures in italic type remain unchanged through the year; $d \omega$ changes slowly. The sign of $\sin \alpha$ is that of line 4 , the sign of δ is that of line 5 , and the quadrants in which a, λ lie are close enough to prevent confusion.

Examples.

CHAPTER VIII

INTERPOLATION OF THE HALF-DAILY VALUES OF THE RIGHT ASCENSION AND

 OF THE DECLINATION TO HOURLY VALUES. (TABLES U 53 TO U 58, SECT. VI.)An interpolation to twelfths with fourth differences is required.
Denote two consecutive half-daily values of either coordinate by F_{0} and F_{1}, the first, third and fifth differences between $\mathrm{F}_{0}, \mathrm{~F}_{1}$ by $\Delta^{\prime}, \Delta^{\prime \prime \prime}, \Delta^{\mathrm{v}}$ and the second and fourth differences lying on the same lines as $\mathrm{F}_{0}, \mathrm{~F}_{1}$ by $\Delta_{0}{ }^{\prime \prime}, \Delta_{1}{ }^{\prime \prime}, \Delta_{0}{ }^{\text {iv }}, \Delta_{1}{ }^{\text {iv }}$. Bessel's formula for any value F_{n} lying between $\mathrm{F}_{0}, \mathrm{~F}_{1}$ may be written

$$
\begin{array}{r}
\mathrm{F}_{n}=\mathrm{F}_{0}+n \Delta^{\prime}+\frac{1}{4} n(n-\mathrm{I})\left\{\Delta_{0}{ }^{\prime \prime}+\Delta_{1}^{\prime \prime}-\frac{1}{12}(n+\mathrm{I})(2-n)\left(\Delta_{0}^{\mathrm{Iv}}+\Delta_{1}{ }^{\mathrm{IV}}\right)\right\} \\
+\frac{1}{6} n(n-\mathrm{I})\left(n-\frac{1}{2}\right)\left\{\Delta^{\prime \prime \prime}-\frac{1}{20}(n+\mathrm{I})(2-n) \Delta^{\mathrm{v}}\right\}
\end{array}
$$

as far as fifth differences inclusive.
The required values of n are $\mathrm{I} / \mathrm{I} 2,2 / \mathrm{I} 2, \ldots, \mathrm{II} / \mathrm{I} 2$. For the first six of these, $(n+I)(2-n) / I 2$ has the values

$$
\frac{2999}{1728}, \frac{308}{1728}, \frac{315}{1728}, \frac{320}{1728}, \frac{328}{1728}, \frac{324}{1728},
$$

and the same values for the latter six, taken in reverse order. Their range is small. If we use the value $318 / 1728$ instead of any one of them, the errors of the whole coefficient of $\Delta_{0}^{\text {iv }}+\Delta_{1}{ }^{\text {iv }}$ will be

$$
\frac{209}{995328}, \frac{200}{995328}, \frac{81}{99532 \overline{8}},-\frac{64}{995328},-\frac{175}{995328},-\frac{216}{995.328} .
$$

The largest of these produces an error less than $\left(\Delta_{0}{ }^{\text {iv }}+\Delta_{1}{ }_{1}^{\mathrm{iv}}\right) / 4600$, and this produces errors which are never greater than 0.0015 in right ascension or than $\mathrm{o}^{\prime \prime} \mathrm{O} 2$ in declination.

The coefficient of Δ^{v} is always less than •oor and the corresponding maximum errors caused by the neglect of Δ^{v} are always less than o.soor and o"or, respectively*.

The formula may therefore be written

$$
\begin{aligned}
\mathrm{F}_{n}=\mathrm{F}_{0}+n \Delta^{\prime}+\frac{1}{4} n(n-\mathrm{I})\left\{\Delta_{0}^{\prime \prime}+\Delta_{1}^{\prime \prime}-\mathrm{o} \cdot \mathrm{I} 84\right. & \left.\left(\Delta_{0}^{\mathrm{fv}}+\Delta_{\left.1^{\mathrm{Iv}}\right)}\right)\right\} \\
& +\frac{1}{6} n(n-\mathrm{I})\left(n-\frac{1}{2}\right) \Delta^{\prime \prime \prime} .
\end{aligned}
$$

Put $n=p / 12$ and replace F_{n} by F_{p}. We easily find

$$
\mathrm{F}_{p+1}-\mathrm{F}_{p}=\frac{1}{12} \Delta^{\prime}+\frac{I I-2 p}{576}\left\{\Delta_{0}^{\prime \prime}+\Delta_{1}^{\prime \prime}-0 \cdot \mathrm{I} 84\left(\Delta_{0}^{\mathrm{iv}}+\Delta_{1}^{\mathrm{iv}}\right)\right\}+\frac{3 p^{2}-33 p+55}{\text { Io368 }} \Delta^{\prime \prime \prime}
$$

By giving to p the values $\mathrm{o}, \mathrm{I}, \ldots$, II, we obtain the twelve hourly first differences which, by continuous addition to F_{0}, yield the hourly values.

The terms involving $\Delta^{\prime}, \Delta^{\prime \prime \prime}$ are combined in the double-entry Table U 57, Sect. VI, which has, as arguments, $\Delta^{\prime \prime \prime}$ and the remainder after Δ^{\prime}, expressed in units of o.OI or O"I, has been divided by I2. In this table, the sums of the two terms for $p=0, \mathrm{I}, 2,3,4,5$ are given for each pair of arguments, the values for

[^7]$p=\operatorname{II}, 10,9,8,7,6$ being respectively the same. The second term is placed in the single-entry Table U 58, Sect. VI, having $\Delta_{0}{ }^{\prime \prime}+\Delta_{1}{ }^{\prime \prime}-0 \cdot 184\left(\Delta_{0}{ }^{\text {tv }}+\Delta_{1}{ }^{\text {tv }}\right)$ as argument; the values of this term, for $p=0,1,2,3,4,5$, are given, those for $p=$ II, 10, $9,8,7,6$ being numerically the same but having opposite signs. The Tables U 53 to U 56 are constructed to facilitate the division of Δ^{\prime} by 12 and the multiplication of $\Delta_{0}^{\mathrm{tv}}+\Delta_{1}^{\text {tv }}$ by o•184.

Precepts.

Table U 53, Sect. VI, gives the minutes and integral number of seconds of the quotient after division of $\Delta^{\prime *}$ in right ascension by 12. The division of the remainder of Δ^{\prime}, expressed in units of ooro, is obtained from Table U 55. Denote the whole quotient by q and the remainder after the second division by r.

Table U 54 gives the minutes and tens of the seconds of the quotient after division of Δ^{\prime} in declination by $\mathbf{1 2}$. The units and tenths of a second in the quotient q and the remainder r are furnished by Table U_{55}, the units in this table being o.I for the declination.

Table U 56 gives the product of $\Delta_{0}{ }^{\text {tv }}+\Delta_{1}{ }^{\text {tv }}$ by o.I84, the units of the argument and of the product being osor and 0.1 for right ascension and declination, respectively. This table is so constructed that when the given argument is not found in the table, the value opposite the next lower tabular argument is to be used.

The arguments of Table U 57 are $\Delta^{\prime \prime \prime}$, expressed in units of $0: 1$ or of $\mathrm{I}^{\prime \prime}$, and r. The former is tabulated in multiples of 5 and that nearest to the given argument is to be chosen (see below under the sub-head Accumulated Errors). The positive set of horizontal arguments is to be used when $\Delta^{\prime}, \Delta^{\prime \prime \prime}$ have the same sign, and the negative set when they have opposite signs. The values in the body of the table are expressed in units of o.oor or of o.or.

The argument of Table U 58 is $\Delta_{0}{ }^{\prime \prime}+\Delta_{1}{ }^{\prime \prime}-0.184\left(\Delta_{0}{ }^{\text {tv }}+\Delta_{1}{ }^{\text {tv }}\right)$, expressed in units of $\mathrm{I} \%$ or of $\mathrm{I}^{\prime \prime}$. The values in the body of the table are expressed in units of o:oor or of o.or. For brevity in printing, these values are divided into two parts: the first two digits are given in one of the first six columns and the last two in one of the succeeding fifteen columns. The Arguments are printed in Clarendon type on every seventh line and the corresponding values are on the six following lines. To obtain any set of six values, choose the argument next smaller than the given argument in the first six columns and that column amongst the succeeding fifteen columns which has as argument the difference between the chosen tabular argument and the given argument. As usual, a star preceding a value in the second set of columns indicates that the value on the same line in the first set is to be increased by unity (e.g., the argument $517,=510+7$, furnishes the six values $987,808,628,449,269,90$). Interpolation between adjacent columns in the second set is possible but unnecessary. Give a sign to each of the six values opposite to that of the argument.

The half-daily values of the right ascension and declination are supposed to be given to 0.01 and 0.1 , respectively, but the computations for the hourly values

[^8]are carried through to 0.001 and $\mathrm{O}^{\prime \prime} \mathrm{OI}$, in order to avoid accumulating errors. Hence, after finding q and r from Tables U 53 to U 56 , write a zero after the last digit of q.

Add numerically the six values obtained from Table U 57 to q when they have positive signs and subtract them numerically from q when they have negative signs, and give the sign of q to the results (unless, in subtracting, the value from the table is numerically greater than q, when the opposite sign is required).

To these six values add algebraically the six values obtained from Table U 58 in order. The results are the first six hourly first differences. The second six hourly first differences are obtained by subtracting algebraically the six values obtained from Table U 58 from the six values found in the previous paragraph, and reversing the order of the results.

The hourly values are obtained by continuous addition of the twelve interpolated first differences to the half-daily value on the line with $\Delta_{0}{ }^{\prime \prime}$.

Tests and Abbreviations of the Computations.

Form the second differences of the hourly values, that is, the first differences of the computed hourly first differences; they should differ by an amount which changes very slowly. Also, the last addition of the twelve first differences should give F_{1} exactly to o.OoI in right ascension and to o."OI in declination, that is, the last digit in the computed value of F_{1} should always be zero. This arises from the construction of Table U_{57}, the last units of the values in this table having been so adjusted that the sum of each six has the theoretical value which is a multiple of 5 .

In writing down the sums of the values from Table U 57 and q, it is not necessary to write the minutes, seconds and tenths of a second except for the first value in right ascension; the same statement applies to the minutes and seconds in declination. Likewise in using Table U 58, the one or two digits obtained from the first six columns need to be written for the first value only. In forming the sums and differences of the six pairs, the last two digits need only be considered except for the first pair. The test differences are next formed and then the complete values of the hourly first differences are easily filled in. An exception to this abbreviation only occurs in the declination when the hourly first difference changes sign. In right ascension, the number of minutes in columns I and 2 of the example need never be entered; if the number of seconds is less than 40 the number of minutes is 2 and if greater, it is I. Each operation should be carried through the whole year before the next is begun.

Accumulated Errors.

In passing from one half-day to the next, accumulated errors of two or three units in the hourly first differences as revealed by the hourly second differences will be frequent; cases where the errors are greater than four units should be examined. Errors of more than two units between two hourly values within those for a given half-day should also be examined.

The maximum errors in the hourly values arising from the method of interpolation and the tables will never exceed $0: 007$ or 0.07 , and will rarely be greater than 0.003 or 0.03 . This is a higher degree of accuracy than that to which the half-daily values themselves are obtained.

Examples.

In the two examples which follow all the written work which is necessary is exhibited. The figures printed in italic type in the second columns are omitted in the actual computations while those so printed in the third columns are written in after the $\Delta_{p}{ }^{\prime \prime}$ have been formed. In adding to obtain the hourly values, the last digit is to be dropped; it is convenient to mark first the places where the penultimate digit is to be increased by unity owing to the accumulation in the sum of the last digits; this is shown in the examples by the sign + . A comma in the value of q separates the added digit zero.

Day	$\left.\begin{array}{r}q+\text { Tab. U } \\ \text { Tab. } \\ 5\end{array}\right\}$	$\Delta_{p}{ }^{\prime}$	$\Delta_{p}{ }^{\prime \prime}$	δ
$4^{4} 12^{\text {b }}$	$-7^{\prime} 13{ }^{\prime \prime} 26$)			$+14^{\circ} 5 \mathrm{I}^{\prime} 39: 6$
13	+ 29.30$\}$	$\begin{array}{r} -6^{\prime} 43: 96+ \\ 49 \cdot 52 \end{array}$	-5:56	$4455 \cdot 6$
14	-7 $13 \cdot 49$	$\begin{aligned} & 49 \cdot 52 \\ & 55 \cdot 04 \end{aligned}$. 52	$386 \cdot 1$
15	+ 23.97 \}	$\begin{gathered} 55.04 \\ 0.49+ \end{gathered}$	$\cdot 45$	$31.11 \cdot 1$
16	7 $13 \cdot 68$	$\begin{array}{ll} 7 & 0.49+ \\ 5.92 \end{array}$. 43	2410.6
17	+ 18.64$\}$	$\begin{gathered} 5 \cdot 92 \\ I I \cdot 29+ \end{gathered}$	-37	$17 \quad 4.7$
18	-7 13.81	$16 \cdot 61$	$\cdot 32$	$\begin{array}{lll}9 & 53 \cdot 4\end{array}$
19	+ 13.32	$2 I \cdot 90$	- 29	$236 \cdot 8$
20	-7 13.91)	$27 \cdot 13+$	- 23	$13 \quad 5514.9$
21	+ 7.99]	$\begin{aligned} & 27 \cdot 13+ \\ & 32.32 \end{aligned}$	-19	$4747 \cdot 7$
22	-7 13.95	$\begin{aligned} & 32 \cdot 32 \\ & 37 \cdot 46 \end{aligned}$	- 14	4015.4
$\begin{array}{r}23 \\ \hline\end{array}$	$+2.66\}$	$42 \cdot 56+$	-10	$32 \quad 38 \cdot 0$
50				2455.4

CHAPTER IX

CONSTRUCTION AND CONTINUATION OF THE TABLES P 39 TO P 49 OF SECT. VI.

These tables have been completed and printed for 150 years from 1900; their continuation for the century 1800 to 1900 will be published separately. This chapter contains an explanation of the methods used in their construction together with precepts for their continuation after 2050 and before 1800 and the additional precepts necessary when a single place of the moon is to be computed for any date outside of the period 1800 to 2050 .

Construction of the Tables P 39 to P 49, Sect. VI.
As explained in Chap. III the 'remainder' terms have been so arranged that tabulation at intervals of ten or fourteen days is sufficient. It was explained also that Tables P_{39} to P_{45} were more convenient to use if tabulated from the time when $l^{\prime}=\mathrm{o}$ near the beginning of each year.

The period of l^{\prime} is $365^{d} \cdot 26$ and two periods are therefore equal to $730^{d} \cdot 52$. The method of formation of the tables demands that only integral multiples of ten days be used. If we do this, there will be a break of half a day at the end of every two years. Although this is rarely sensible in the function, since it is only onetwentieth of the interval, a correction to the argument of each term would be required in order to avoid accumulation after several such periods. This break is avoided by making the interval $1 / 73$ of two periods of l^{\prime}, that is, 10.007 . It is true that the intervals of tabulation do not then exactly correspond to multiples of ten or five days after the time when l^{\prime} was last zero. But if we take them to so correspond, the maximum error is only one-fortieth of the interval and the first differences of the function are never so large as to make this error sensible. In the first year of each biennial period, the computed values can therefore be taken to correspond with the values for each ten days after $l^{\prime}=0$; in the second year, these values fall half-way between the ten-' day' intervals from $l^{\prime}=0$, and have therefore to be interpolated to halves before being placed in the tables.

In the explanation which follows, the phrase ten 'days' means the interval of $10^{d} .007$ and a ' year' means a period of l '.

The terms placed in the remainder tables (List vi, Chap. IV) have such small coefficients that the secular variations of their arguments can be neglected. Each argument therefore contains a constant part and a part proportional to the time. Let its change in ten 'days' be denoted by m (in degrees) and form the convergents of the fraction $m / 360$. A convergent is to satisfy two conditions: it must be sufficiently near to $m / 360$ so that no sensible error shall be caused by its use for two 'years,' and it must furnish a sufficient number of divisions of the angle so that every value of the term shall be represented within the required degree of
accuracy, since in the method used to form the tables no interpolation of any term is to be required. Suppose the coefficient contains a of the adopted units. The maximum rate of change of a sine is 2π times the rate at which the angle, expressed in parts of 360°, is described. Hence if every unit of change of the term is to be represented there must be $2 \pi a$ or $6 a$ divisions of the 360° which constitute the range of the angle. In general, this extent of division has been adopted, but since the computations were made to one place further than that given in the tables, a division into fewer parts was made for certain of the terms in order to abbreviate the computations.

Suppose that the adopted convergent is p / q. This means that in a run of q ten-' day' intervals, p periods of the argument are described, and since p, q are prime to one another, it also means that there are q divisions of the circumference; thus the above criterion for q is its near equality to $6 a$. The other conditionthat there shall be no sensible error in a run of two 'years'-requires that $73(360 p / q-m)$, which is the error of the argument in degrees in two 'years,' shall give an error of less than a unit in the term.

Let the term be tabulated for each one of these q divisions of 360°. It is required to so rearrange them that there shall be a ten-'day' interval between successive values. Since p divisions are equivalent to ten 'days,' they must be arranged in the order o, p th, $2 p$ th, \ldots, subtracting q from this ordinal number whenever the multiple of p exceeds q. Since p is prime to q, all the q values will be placed. In this new arrangement, the values are numbered $0,1,2, \ldots, q-1$. These will be called the 'index numbers'; an addition of a unit to the index number advances the argument by ten 'days,' the index q being equivalent to o.

It will be necessary to know what is the change in the index number for a change from one of the q divisions to the next. This is the value of j obtained by finding the least pair of positive integers j, s which satisfy the indeterminate equation $j p-s q=1$; for p divisions are equivalent to ten 'days,' and some multiple of the p divisions, less a multiple of the whole period, is to be equivalent to one division. Since p is generally small, this is most easily solved by inspection. In particular, if $p=\mathrm{I}$ then $s=0, j=\mathrm{I}$; and if $p=2, q$ is odd and $s=\mathrm{I}, j=\frac{1}{2}(q+\mathrm{I})$.

The computation of the arguments is carried out in terms of the q divisions arranged in their original order, that is, according to the increase of the argument expressed in q parts of 360°. Any given argument will consist of an integral number of these parts plus a fraction of a part. Fractions not being admissible, we take the nearest integral number of parts and multiply it by j to get the index number, subtracting integral multiples of q if necessary.

In carrying the argument forward beyond the biennial period, there will be an accumulation of error owing to the use of the convergent instead of the actual motion. The fraction of a part will therefore alter and at certain dates will pass through 0.5 ; when this happens, one part is to be added to (or subtracted from) the argument and therefore the index number is to be changed by addition (or subtraction) of the integer j. The dates when this will happen are easily found. After finding a date when the fraction is passing through $0 \cdot 5$, we compute from the
difference between the convergent and the actual motion the number of biennial periods before it will happen again and thence all the dates at which an addition of j units must be made to the index number. At all other dates the index number changes regularly, the number q - I being followed by the number 0 . This method, however, ceases to be useful if the index number has to be adjusted frequently. It is better in such cases to enter a multiplication table with the error of the motion at the end of each biennial table as argument and to note where the multiples of the fraction of a part pass through 0.5 and thus to obtain the dates at which the index number is to be increased or diminished by j units.

For performing the summation, the special device elsewhere described* was used. The method of adaptation of this device, which avoids the continual rewriting of the tabular values of the terms, is described in the precepts below.

It will be noticed that several terms have been divided into two parts. This was rendered necessary because no suitable convergent gave a value of q small enough to be conveniently placed on the frame. Two devices were adopted. In one of them, different convergents, one less and one greater than the actual motion, were used, the combination being so taken as to give the needed accuracy. In the other, the same convergent was used, but when the fraction of q was between $\cdot 25$ and $\cdot 75$, for one this fraction was put equal to unity and for the other it was neglected. When the period of any term is very long, the number q becomes too large for convenient use. Hence for one group of terms a twenty-‘day' interval was used and the convergent for the motion was so chosen that 73 of such values (covering four periods of l^{\prime}) could be computed without adjustment of the index number. A similar device is used in the formation of Tables P46, P 47. The sums were interpolated to halves before addition to those with a ten-' day' interval. For groups of terms having very long periods, a 400-' day' interval was adopted and the values at these intervals were computed directly from a traverse table. After summation and interpolation to fortieths, they were added in with the previous groups.

The Tables P 46 to P_{49} differ from P 39 to P 45 in the fact that they are computed for calendar dates, instead of from the time when $l^{\prime}=0$. Hence the ten-day intervals of P 46, P 47 and the I4-day intervals of P 48 , P 49 are intervals of true mean solar days and their values run continuously at the given intervals throughout the whole period of computation.

The convergents of certain of the terms of Tables P 46, P 47 are so chosen that the values for 50 of the ten-day intervals can be computed without adjustment of the index number. Another group has a 20 -day interval with convergents which also permit a run of 50 such intervals without adjustment; this group after summation is interpolated to halves and then added to the previous group. A single term is computed at intervals of 500 days: the term can be summed with the former group by putting its values at intervals of 500 days on a band and keeping the same value throughout the run of 50 intervals. The convergents of the terms of Tables P 48, P 49 are so chosen that the values for 50 of the I4-day intervals can be summed without adjustment of the index number.

* Monthly Notices, R.A.S., vol. Lxxir, pp. 454-463.

The terms which have been used to form Tables P 39 to \mathbf{P}_{49} are given in List vi of Chap. IV. Besides the reference number showing the origin of each term, a signification letter (Sg.) is attached to each term present in a table. These letters also indicate the interval of tabulation: A to Z and a to γ indicate terms tabulated originally at ten-'day' or ten-day or 14 -day intervals; $\mathrm{A}^{\prime \prime}$ to $\mathrm{Y}^{\prime \prime}$ at double these intervals; and A^{\prime} to Z^{\prime}, a to n at the long intervals.

The coefficients given in List vi of Chap. IV are expressed in the same units as those of the actual Tables P 39 to P 49. Partly to avoid loss of accuracy due to accumulation of errors without greatly increasing the work, and partly owing to a change of plan in the course of the work, the units used in the calculations and given in Lists viii, ix are not all the same as those of List vi, Chap. IV. These units are shown by the factor which each set of sums requires before insertion in the tables; the factors are given in the precepts below.

Each term before tabulation has had a constant equal to its coefficient added in order that all the tabulated values may be positive with certain exceptions noted below. Table P_{40} has had $419 \times \cdot \mathrm{I}_{3}=55 \cdot 3$ subtracted from each sum*; in Table P 4 4 the amount subtracted is $45 \times 0.4=18 \cdot 0$. In Table P_{43} the two terms in A (see List ix) which have 15 as the sum of their coefficients have had 8 instead of 15 added, these numbers referring to the units used in List ix; and, in the same units, 90 has been added to the term W. In the Table P 44 the sum of the coefficients of the two terms constituting K (see List ix) is 29 in the units of that list; the constant used is 25 instead of 29 . Also in the same units, 5 has been added to the term Y of this table (to take the place of the constant of the two small terms η in List vi, Chap. IV, which have been erroneously included in the values for 1900 to 2050).

Precepts for the continuation of Tables P 39 to P 49, Sect. VI.
In Tables P_{39} to P_{45} the 'year' begins at the time when l ' $=0$ nearest to the beginning of the calendar year and the 'day' is $1 / 365$ of the period of l '. These 'days' are, however, entered as calendar days after the nearest calendar half-day when $l^{\prime}=0$, the error thus caused being insensible. There are three intervals used, one of io 'days,' one of 20 'days' and one of 400 'days,' the sums in the two latter groups being interpolated to $10-{ }^{\prime}$ day' intervals.

Table P 39.

Group A^{\prime} to Z^{\prime}, a to n . The third column of the data for this group in List viii at the end of this chapter contains the angles at the commencement of the 'year' 2050. By adding multiples of the motions in the fourth column, the angles at intervals of 400 days from this epoch are obtained. The last column gives the coefficients of the sines of these angles whence, by a traverse table or by direct calculation, the value of every term at each date is obtained. Add to each value the coefficient of the term, so that every value is positive and lies between o and

[^9]twice the coefficient. Sum the values for each date, interpolate to halves with second differences and then to twentieths, so as to get the sums at ro-'day' intervals. The same procedure is used to obtain the sums before 1800 , but the multiples of the motions must be subtracted.

Group A to Y. The period of any term of this group is divided into q / p parts where q, p are shown in the second and third columns of the table for this group in List viii; this means that p periods of the term are divided into q parts. The argument in terms of these q parts at the beginning of the 'year' 2050 is given in the fifth column and the motion in two 'years,' in terms of the same units, is in the sixth column. The index number i is the argument required and it is computed 'every two 'years.' To find it at multiples of two 'years' from 2050 add the same multiples of the motion in two 'years' or periods of l ' to the value at 2050 in the fifth column, subtract such multiples of q as will render the result positive and less than q; choose the integer nearest to this result and multiply this integer by the value of j shown in the seventh column. After again subtracting multiples of q, the index number for the date is obtained.

The same procedure is followed for the 'years' preceding I8oo, except that the motions must be subtracted instead of added. In order to assist the computer, the index numbers for 1800,2050 are given in the last two columns of the list.

Example. The value of the argument when $l^{\prime}=0$ nearest the beginning of the year 2050 for the term K is $36 ? 6 \mathrm{r}$. The motion in two periods of l^{\prime} is $54^{?} 697$. The values at $l^{\prime}=0$ for $2050,2052,2054, \ldots$ are $36 ? 6 \mathrm{I}, 9^{?} 3 \mathrm{I}, 64 ? 00, \ldots$. The nearest integers to these are $37,9,64, \ldots$. Hence the index numbers are $67,3,76, \ldots$.

The terms are tabulated according to index number in List ix, the first value under the letter always corresponding to the index number o, and the succeeding values to the index numbers $x, 2, \ldots, q-x$. An unbroken column of this list contains 70 values. To assist in finding the value corresponding to any index number of any term, the second head-line (in Clarendon type) gives the index number of the value immediately below it.

The value of the term (with its added constant) is obtained by choosing the value in List ix corresponding to the index number. The values for the succeeding 72 ten-' day' intervals are the succeeding values in order from this one, the last under the letter being always followed by the first. The sums of the values for each ro-' day' interval are then formed and are added to the values of the previous group.

Example. The index numbers of the term K at 2050, 2052, 2054 were found to be $67,3,76, \ldots$. The values of the term at 2050 and at 1o-'day' intervals thereafter are $3 \mathrm{I}, 26, \ldots, 3 \mathrm{I}, 36$. The values at 2052 and at ro-day intervals thereafter are $39,43, \ldots, I, o$. The values at 2054 and at ro-day intervals thereafter are $0,2, \ldots$. It will be noticed that though there is a break in the index number between the end of the biennial period 2050-2052 and the beginning of 2052 the values of the term run continuously within the limits of error.

Owing to the use of a convergent, small discontinuities will sometimes occur between the end of one two-'year' period and the beginning of the next, but the errors thus produced may either be neglected or may be nearly eliminated by taking
the mean of the summation forward and a summation backward in time as was done for testing in performing the tabulation from 1800 to 2050 .

After the sums of all the terms in the table, have been formed, the first 38 values of each two-' year' period are entered under the arguments $0^{4}, 10^{d}, \ldots, 370^{4}$ of that year, the values having been first multiplied by 0.1 and the nearest integer taken. The values for the corresponding arguments of the second year are obtained by interpolating the last 37 values to halves, that to be put under the argument o^{d} being midway between the 37 th and 38 th values, the last digit being cut off as before. It is advisable to sum the 74 th set (which is really the first set of the next two-' year' period) both before and after the adjustment of the index numbers, as a test. It is also useful in the interpolation to halves.

The continual rewriting of the values in List ix for the formation of the sums is avoided by the device referred to earlier in this chapter. The q values of each term with their index numbers are written in order on cards mounted on an endless band containing q cards. All the bands constituting the group can then be placed on the ruler and the frame, and they are then so adjusted that the index number of each term for the beginning of any two-' year' period shows on the face of the ruler. After summation of the values on the face of the ruler, the latter is turned so as to carry all the bands to the succeeding index numbers. The values are again summed and the process continued until all the 73 sums have been obtained. At the end of any two-year period certain of the index numbers will require change for the beginning of the next period, which is treated in the same way. The device is not used for the terms summed at intervals of 400 'days.'

Certain pairs of terms in List viii are bracketed. When these terms have the same values of q, p and the same initial values expressed in parts, the same index numbers are to be used if the fraction of a part lies between $\pm \cdot 25$. If, however, the fraction lies outside these limits, the index number of one term is computed by taking the fraction equal to unity and the other by neglecting it.

Tables P 40, P 4 I .
Group A^{\prime} to R^{\prime}. The arguments at intervals of 400 days are obtained in the same way as those of the first group of Table P 39. For Table P 40 , use the coefficients given in the fifth column of the data for Tables P 40, P 4 I in List viii with the sines of the angles. For Table P 4I, use the coefficients given in the sixth column of the data with the cosines of the angles. From the terms in Table P 40, subtract the constant 419 and from those in P 4I subtract the constant 45. Then proceed with each set as with the first group of Table $\mathbf{P} 39$, up to the interpolation to intervals of Io 'days.'

Group $\mathrm{A}^{\prime \prime}$ to $\mathrm{O}^{\prime \prime}$. The index numbers are obtained in the same way as those of the second group of Table P 39. The interval is, however, 20 'days,' and the index numbers are found at intervals of four 'years' so that there are still 73 values which may be obtained without a recomputation of the index numbers. For Table P 40, these values are obtained from the tabulation of these terms under the heading for this table in List ix; and similarly for Table P 4I. They are found
and summed in the same manner as those in the second group of Table P 39. After the summation, interpolation must be made to halves, with second differences if necessary; the sums for each table are thus obtained at intervals of ten 'days.' As the first epoch is 2052, the 37 values back to 2050 are obtained by going backwards from the epoch values in List ix.

Group A to V. The index numbers are obtained from List viii and the values for each table from the tabulations in List ix, precisely like those of the second group of Table P 39. A missing term in any of the groups in List ix indicates that the coefficient of that term is insensible in that particular group.

The three groups for each table are then summed. Multiply each sum for Table P 40 by $0 \cdot 132$, choose the nearest integer to the result and enter for the continuation of Table P_{40} as explained for Table P_{39}. Multiply each sum for Table P 4 I by 0.4 , choose the nearest integer to the result and enter for the continuation of Table P 4r.

$$
\text { Tables P 42, P } 43 .
$$

The computation for these tables is similar to that for Tables $\mathrm{P}_{40}, \mathrm{P} 4 \mathrm{x}$. There is, however, no group with terms at intervals of 20 days. After the sums of the two groups for each table have been formed, those for Table P_{42} are to be multiplied by 0.0588 and the nearest integer chosen before entry; those for Table P 43 are to be multiplied by 0.4 and the nearest integer chosen before entry.

Tables P 44, P 45.

The two groups in these tables are treated like the first and third groups of Tables P 40, P 4I. The constant 4 II is to be added to Table P 45. After the sums of the two groups for each table have been obtained, each sum is to be multiplied by $0 \cdot I$ and the nearest integer chosen before entry. The error noted in the Errata does not occur in List viii.

Tables P 46, P 47.
In these tables the tabulation is made continuously at intervals of mo mean solar days, the epochs for Table P 46 being I3 days after the beginning of the calendar year 2050 and 4 days after that of 1800 , these being the times at which exact multiples of ten days from the original epoch, $\mathbf{~} 900 \cdot 0$, occur. For Table P 47, the epochs are $2 \cdot 5$ later in each case.

The index numbers for the two tables as found from List viii are different, but the tabulation in List ix is the same. This arises from the fact that the coefficients and periods of terms present in both tables are the same but that the epochs differ by 90°, and by the motions in $2^{d} \cdot 5$.

There is one term in each table as shown in List viii computed directly at intervals of 500 days. The coefficient of this is so small that the term may be kept constant during this period and added as a constant to the Group A to X during the run of 50 ten-day intervals which can be summed in this group without recomputation of the index number.

The Group $\mathrm{B}^{\prime \prime}$ to $\mathrm{Y}^{\prime \prime}$ is computed at intervals of 20 days, the index numbers being computed at intervals of 1000 days, so that 50 sums are obtained after each computation of the index numbers. The work is otherwise the same as that for the second group of Table P 39. After the sums have been obtained, interpolation to halves gives them at intervals of ten days.

The Group A to X is computed at intervals of ten days, the index numbers being computed at intervals of 500 days. The long period term $A^{\prime \prime}$ is added in with this group as explained above.

After the addition of the groups for each table, the sums are multiplied by $0 \cdot 1$ and the nearest integers chosen. The results are then entered under the proper days of the years, these being at intervals of ten days from the epochs.

Tables P 48, P 49.
The interval used in these tables is 14 mean solar days and the index numbers are computed at intervals of 700 days. There is only one group of terms for each table. The epochs for Table P 48 are 9^{d} after the beginning of 2050 and 2^{d} before that of 1800 . The epochs for Table P 49 are $I^{d} \cdot 75$ later; this addition, to the degree of accuracy required, is written and used as 2^{d}. In other respects the computation is the same as that for Tables P 46, P 47. After the sums have been formed, they are multiplied by $0 \cdot 1$, the nearest integer chosen, and then entered under the proper days of the calendar year.

Additional Precepts for the computation of a single place.

Find from the tables of Sect. II the calendar date when l^{\prime} was last zero before the given date and compute the number of days to the date since this time; this number may be taken to be either calendar days or the 'days' equal to the $1 / 365$ part of the period of l '. Compute also the number of 'days' and calendar days from the various epochs near 2050 or near 1800, used in List viii.

The arguments and values of the groups of terms which are tabulated at intervals of 400 'days' and 500 calendar days are then found from the data of List viii in the manner explained above.

Find the index numbers for the beginning of the next preceding two-' year' period. Add to each index number the integer i^{\prime}, where the number of days at the beginning of this period is put equal to $10 i^{\prime}+d^{\prime}$. Find the sums for these index numbers of the terms in List ix and obtain at the same time the sums for the preceding and following index numbers. Interpolate for d^{\prime} days.

For the groups in Tables $\mathrm{P}_{40}, \mathrm{P}_{4} \mathrm{I}$ which are computed at intervals of 20 days the method is the same except that the number of days from the beginning of the preceding four-'year' period is put equal to $20 i^{\prime}+d^{\prime}$.

For Tables $\mathrm{P}_{4} 6$ to $\mathrm{P}_{4} 4$ a similar procedure with the respective intervals of Io days, 20 days and 14 days and respective periods of 500 days, 1000 days and 700 days is followed, but no interpolation between the final Io-day or 14-day sums is to be made.

The rest of the work, including the various constants to be added and the factors to be used, is the same as that given in the preceding precepts.

List viii. Data for Tables of Remainder Terms.
The symbol d^{\prime} stands for $\mathrm{I} / 365$ of the period of l^{\prime}.

Data for Table P 39.

Sg.	Args. at $l^{\prime}=0$ for		Motion in $400 d^{\prime}$	Coef. of \sin
	1800	2050		
A^{\prime}	328.9	231.6	10.6246	284
B^{\prime}	$230 \cdot 0$	29.0	21.2120	282
C^{\prime}	286.5	51.0	22.6357	240
D^{\prime}	84.9	101.8	1.6513	237
E^{\prime}	$349 \cdot 6$	55.4	II.3331	126
F^{\prime}	112.0	$98 \cdot 4$	3.0966	108
G^{\prime}	$240 \cdot 2$	$12 \cdot 1$	10.0466	75
H^{\prime}	$26 \cdot 6$	$256 \cdot 5$	$40 \cdot 4598$	73
I^{\prime}	132.4	92.0	42.4309	25
J^{\prime}	$56 \cdot 3$	135.2	૪.2366	62
K^{\prime}	$262 \cdot 2$	269.9	$7 \cdot 9238$	54
L^{\prime}	$92 \cdot 5$	$30 \cdot 0$	I.304I	40
M^{\prime}	293.4	244.4	$42 \cdot 3931$	38
N^{\prime}	$100 \cdot 9$	r49.8	$9 \cdot 68 \mathrm{I} 8$	33
O^{\prime}	$240 \cdot 5$	219.3	$47 \cdot 2510$	30
P^{\prime}	323.0	29.1	9.7596	26
Q',	$352 \cdot 6$	$252 \cdot 6$	39.0144	25
R^{\prime}	$35 \cdot 9$	$212 \cdot 3$	13.3934	21
S^{\prime}	315.5	$105 \cdot 3$	$27 \cdot 4844$	19
T^{\prime}	I 75.5	129.7	10.8452	18
U^{\prime}	$45 \cdot 5$	$34 \cdot 4$	14.1551	17
V^{\prime}	$24 \cdot 8$	169.1	3.7884	17
W^{\prime}	122.5	311.8	$5 \cdot 5636$	13
X^{\prime}	$53 \cdot 2$	259.5	7.2148	13
Y^{\prime}	292.5	151.9	4.1182	1 I
Z'	213.9	$322 \cdot 8$	6.7912	10
a	$76 \cdot 0$	$205 \cdot 0$	$22 \cdot 6571$	8
b	$42 \cdot 7$	$355 \cdot 3$	59.7602	6
c	352.8	$2 \cdot 2$	34.7598	6
d	17.2	312.8	$5 \mathrm{I} \cdot 7928$	6
e	$7 \cdot 7$	$262 \cdot 8$	$45 \cdot 3084$	6
f	16I.8	29.9	12.0482	5
g .	$243 \cdot 0$	120.1	15.2407	4
h	$305 \cdot 4$	313.7	60.0036	3
i	7.8	$320 \cdot 4$	13.9972	3
j	$358 \cdot 2$	234.6	49.9570	3
k	$112 \cdot 1$	$30 \cdot 7$	7.5331	3
1	$75 \cdot 1$	$89 \cdot 7$	$60 \cdot 0293$	3
m	$42 \cdot 2$	$33 \mathrm{I} \cdot 9$	$43 \cdot 8848$	3
n	182.9	175.6	$26 \cdot 7869$	3

Data for Table P 39

Sg.	q	p	Args. at $l^{\prime}=0$ for		Motion in 2 per. of l^{\prime}	j	i at $l^{\prime}=0$ for	
			1800	2050			1800	2050
A	206	1	$78 \cdot 1$	$1 \begin{gathered} q \\ 139 \cdot 7 \end{gathered}$	$\begin{gathered} q \cdot q \\ 73^{\circ} \cdot 0057 \end{gathered}$	1	78	140
B	189	5	$177 \cdot 3$	$85 \cdot 1$	${ }^{1} 76 \cdot 17$	38	111	17
C	164	1	122.0	$52 \cdot 9$	72.92	1	122	53
D	157	13	86.46	129.26	7.8784	145	67	22
E	I 34	1	$44 \cdot 89$	$42 \cdot 41$	72.876	1	45	42
F	130	17	104.11	$40 \cdot 17$	$7 \mathrm{I} \cdot 248$	23	52	10
G	109	2	101.70	$60 \cdot 33$	$36 \cdot 29$	55	51	30
H	95	7	33.69	75.03	$36 \cdot 050$	68	32	65
I	9 I	2	$45 \cdot 87$	16.90	$55 \cdot 096$	46	23	54
J	85	2	$2 \mathrm{I} \cdot 95$	$7 \mathrm{I} \cdot 35$	60.912	43	11	78
K	82	3	5.49	$36 \cdot 61$	$54 \cdot 697$	55	29	67
L	8 I	1	13.16	19.87	72.6276	1	13	20
M	8 I	8	$72 \cdot 69$	21.01	17.082	71	80	33
N	80	9	69.43	$60 \cdot 44$	17.2082	9	61	60
O	80	9	$69 \cdot 43$	$60 \cdot 44$	17.2082	9	70	69
P	76	5	$70 \cdot 36$	62.03	60.7332	61	14	58
Q	70	1	$38 \cdot 57$	20.63	3.2164	1	39	21
R	55	4	$7 \cdot 79$	43.69	16.56	14		11
S	50	I	34.95	35.98	22.8084	I	35	36
T	39	1	14.87	15.75	33.71	I	15	16
U	34	1	$9 \cdot 77$	25.58	5.0226	1	10	26
V	33	2	$7 \cdot 17$	Ir. 58	14.5554	17	20	6
W	27	2	15.20	$6 \cdot 23$	11.3762	14	21	3
X	18	1	0.30	$5 \cdot 17$	0.9029	I	0	5
Y	160	9	$69 \cdot$ го	$14 \mathrm{I} \cdot 9 \mathrm{I}$	17.2231	89	61	158

Data for Tables P 40, P 4 r.

Sg.	Args. at $l^{\prime}=0$ for		Motion in $400 d^{\prime}$	Coef. of	
	1800	2050		\sin	\cos
A^{\prime}	34%	4.0	${ }^{1} .4452$	48	$+55$
B^{\prime}	112.0	$98 \cdot 4$	3.0966	12	0
C^{\prime}	$292 \cdot 5$	I5I'9	4.1182	5	- 5
D^{\prime}	$240 \cdot 2$	12.I	$10 \cdot 0466$	8	0
E^{\prime}	$328 \cdot 4$	$231 \cdot 1$	$10 \cdot 6246$	5	+ 5
F^{\prime}	$349 \cdot 6$	$55 \cdot 4$	11.333	17	- 3
G^{\prime}	$25 \cdot 9$	$202 \cdot 3$	I $3 \cdot 3934$	24	0
H^{\prime}	$230 \cdot 0$	29•1	21.2120	118	0
I^{\prime}	286.4	$50 \cdot 9$	22.636	7	-8
J^{\prime}	$315 \cdot 5$	$105 \cdot 2$	$27 \cdot 4844$	6	0
K^{\prime}	$352 \cdot 6$	$252 \cdot 6$	39.0144	4	+ 4
L^{\prime}	$26 \cdot 6$	$256 \cdot 5$	$40 \cdot 460$	8	-
M^{\prime}	132.4	$92 \cdot 0$	$42 \cdot 43 \mathrm{I}$	7	+ 8
N^{\prime}	$240 \cdot 5$	$219 \cdot 3$	$47 \cdot 251$	3	- 3
O^{\prime}	354.3	$\begin{array}{r}3 \cdot 8 \\ \hline 8\end{array}$	$48 \cdot 976$	5	+ 5
P^{\prime}	84.9	IOI. 8	I.6513	89	0
Q'	$92 \cdot 5$	$30 \cdot 0$	I.304	12	0
R^{\prime}	323.0	$29^{\circ} 0$	9.760	8	0

List viii (cont.).

Data for Tables $\mathrm{P}_{40}, \mathrm{P}_{4} \mathrm{I}$.

Sg.	q	p	Args. at $l^{\prime}=0$ for		Motion in 4 per. of l^{\prime}	j	i at $l^{\prime}=0$ for	
			1800	2052			1800	2052
$\mathrm{A}^{\prime \prime}$	189	10		$72 \cdot 1$	$163 \cdot 34$	19	150	45
$\mathrm{B}^{\prime \prime}$	115	1		104.14	72.71	1	8	104
$\mathrm{C}^{\prime \prime}$	109	6	10.18	$2 \cdot 6$	1-61	97	38	55
$\mathrm{D}^{\prime \prime}$	82	1	6 r -	62.9	72-92	1	61	63
$\mathrm{E}^{\prime \prime}$	81	1	16.13	11.6	73-22	1	16	12
$\mathrm{F}^{\prime \prime \prime}$	77	4	7-13	$42 \cdot 9$	$60 \cdot 46$	58	2 r	30
$\mathrm{G}^{\prime \prime}$	73	4	$66 \cdot 2$	71.8	$71 \cdot 92$	55	53	36
$\mathrm{H}^{\prime \prime}$	73	7	64^{6}	51.6	$72 \cdot 80$	21	51	70
$\mathrm{I}^{\prime \prime}$	71	7	15.4	$36 \cdot 0$	13.85	61	63	66
$\mathrm{J}^{\prime \prime \prime}$	69	4	28.1	$65 \cdot 6$	14.84	52	7	51
$\mathrm{K}^{\prime \prime}$	62	3	34.57	$9 \cdot 6$	33.06	21	53	24
$\mathbf{L}^{\prime \prime \prime}$	59	5	35.50	$42 \cdot 13$	11.35	12	5	32
$\mathrm{M}^{\prime \prime \prime}$	41	2	100	$28 \cdot 78$	23.07	21	5	35
$\mathrm{N}^{\prime \prime}$	39	2	14.98	10.45	28.42	20	27	5
$\mathrm{O}^{\prime \prime}$	3^{8}	3	27.88	$28 \cdot 25$	$28 \cdot 96$	13	22	22

Data for Tables $\mathrm{P}_{4} \mathbf{0}, \mathrm{P}_{4} \mathrm{I}$.

Sg.	q	p	Args, at $l^{\prime}=0$ for		Motion in 2 per. of l^{\prime}	j	i at $l^{\prime}=0$ for	
			1800	2050			1800	2050
A	165	8	$93^{!} \cdot 27$	4.41	89.05	62	156	83
B	106	5	70-17	$77 \cdot 22$	$46 \cdot 695$	85	14	79
C	106	5	94:70	102.78	$46 \cdot 705$	85	19	63
D	103	5	56.0	23.23	$55 \cdot 77$	62	73	87
E	103	5	55-26	$9 \cdot 37$	57.31	62	II	43
F	102	5	54.71	$9 \cdot 28$	56.72	4 I	11	63
G	101	5	$40 \cdot 45$	40.25	$62 \cdot 21$	8 8	8	8
H	92	7	82.26	29.92	51-10	79	38	70
1	80	9	29.43	20.44	17.208	9	21	20
J	79	12	$8 \cdot 02$	9.33	$7 \cdot 60$	33	27	60
k	79	6	16.40	62.63	$42 \cdot 71$	66	29	50
L	71	4	$68 \cdot 18$	29.55	7.64	18	17	43
M	69	7	$46 \cdot 56$	14.31	28.44	10	56	2
N	4 I	2	22.86	36.58	22.74	21	32	39
O	41	2	$36 \cdot 70$	13.13	22.77	21	39	27
P	40	3	9.51	10.33	19.21	37	30	30
\% 8	29	3	23.23	8.96	15.895	10	27	3
1 R	29	3	23.23	$8 \cdot 96$	$15 \cdot 895$	10	27	3
S	27	2	18.4	$5 \cdot 75$	${ }_{11} 13$	14	9	3
T	21	1	${ }^{1} 4.85$	15.23	10.087	1	15	15
U	20	I	14.17	12.97	13.11	1	14	13
V	20	I	8 80	$7 \cdot 79$	$13 \cdot 12$	1	9	8

Data for Tables P 42, P 43.

Sg .	Args. at $l^{\prime}=0$ for		Motion in $400 d^{\prime}$	Coef. of	
	1800	2050		\sin	cos
A^{\prime}	84.84	101:59	1.65	44	-
B^{\prime}	$92 \cdot 5$	29'99	1.30	6	-
C^{\prime}	326.7	122.19	28.20	-	$+32$
D^{\prime}	2300	28.9	21-21	6	-
E^{\prime}	39.94	$216 \cdot 33$	13.39	8	o
F^{\prime}	329.43	232.03	10.62	7	-7
G^{\prime}	106.40	230.90	$22 \cdot 64$	9	$+9$
H^{\prime}	$206 \cdot 6$	$76 \cdot 5$	40.46	5	$+12$

Data for Tables P 42, P 43.

Sg.	q	p	Args. at $l^{\prime}=0$ for		Motion in 2 per. of l^{\prime}	j	i at $l^{\prime}=0$ for	
			1800	2050			1800	2050
A	189	5	$177{ }^{\circ} \mathrm{O} 8$	84.89	$176 \cdot 17$	38	111	17
B	169	21	17.21	19.94	16.24	161	33	9
C	157	21	105.00	10.12	119.815	15	5	150
D	130	17	104.11	40-17	$71 \cdot 248$	23	52	10
E	121	7	55-80	$32 \cdot 87$	$26 \cdot 92$	52	8	22
F	119	4	23.70	$82 \cdot 25$	53.78	30	6	80
G	109	2	101'70	60.33	$36 \cdot 29$	55	51	30
H	109	3	64.70	$56 \cdot 26$	0.80	73	58	55
I	82	3	$5 \cdot 49$	36.61	54.697	55	29	67
J	80	9	29.43	20.44	17.208	9	21	20
K	77	2	7-13	50.87	$68 \cdot 72$	39	42	64
L	73	2	66.18	71.82	72.47	37	33	36
M	69	2	$28 \cdot 12$	57.92	7.42	35	14	29
N	67	4	16.35	$36 \cdot 72$	23.74	17	4	26
10	52	3	40-27	38.45	10.80	35	48	30
iP	52	3	40:27	38.45	10.80	35	31	13
9	43	3	$4 \cdot 38$	5.07	4.13	29	30	16
R	4 I	2	16.20	33-61	22.77	21	8	17
S	39	1	14.87	15.75	33.70	${ }_{1}^{1}$	15	16
T	38	3	25.41	2.45	$29^{\circ} \mathrm{O}$	13	21	26
U	19	1	$7 \cdot 42$	18.62	16.36	1	5	0
V	7	1	5.15	3.58	3-012	1	5	4
W	152	9	41-80	90-44	49.029	17	106	10

Data for Tables P 44, P 45.

Sg.	Args. at $l^{\prime}=0$ for		Motion in $400 d^{\prime}$	Coef. of	
	1800	2050		\sin	\cos
A^{\prime}	113.4	64.4	42.393	92	-45
B^{\prime}	315.09	104.88	27.484	86	+42
C^{\prime}	262.23	269.92	$7 \cdot 924$	76	+37
D^{\prime}	$7 \cdot 68$	$262 \cdot 89$	$45 \cdot 308$	39	+ 19
E^{\prime}	119.83	146.94	33.259	20	o
F^{\prime}	148.4	51.0	10.625	18	-
G^{\prime}	$34^{\circ} \mathrm{O}$	4°	1.445	17	o
H^{\prime}	$24 \cdot 89$	$169 \cdot 14$	3.788	11	+ 5
I^{\prime}	105.3	$230 \cdot 9$	22.635	9	+ 4
J^{\prime}	25.25	$191 \cdot 90$	$29 \cdot 136$	8	+ 4
K'	${ }^{153.84}$	18.94	12.048	8	+ 4

Data for Tables P 44, P 45

Sg.	q	p	Args. at $l^{\prime}=0$ for		Motion in 2 per. of l^{\prime}	j	i at $l^{\prime}=\mathrm{o}$ for	
			1800	2050			1800	2050
A	201	1	$\stackrel{q}{1} 0^{q} \cdot 43$	$\begin{gathered} q \\ 39 \cdot 04 \end{gathered}$	$72 \cdot{ }_{9}^{q} 8$	1	170	39
B	169	14	$70 \cdot 32$	38.99	7.86	157	5	39
C	164		131.06	$64 \cdot 18$	72.938	I	13 I	64
D	145	1	103.41	68.94	$72 \cdot 805$	I	103	69
E	132	1	101. 82	106.27	72.90	I	102	106
F	73		4.14	4.47	$0 \cdot 0025$	55	1	${ }_{5}^{1}$
G	73	8	$3 \mathrm{I} \cdot 84$	$18 \cdot 47$	$3 \cdot 397$	64	4	57
H	62	5	1.71	47.55	54.43	25	50	22
I	6 I	,	$50 \cdot 0$	47.59	23.405	31	25	24
J	59	3	$8 \cdot 80$	16.20	42.067	20	3	25
K	58	I	$36 \cdot 24$	$0 \cdot 42$	14.5614	I	36	\bigcirc
L	57	1	15.78	$9 \cdot 69$	15.9107	1	16	10
M	50	3	29.76	27.90	19.18	${ }^{1} 7$	10	26
N	50	3	$\bigcirc \cdot 18$	$36 \cdot 68$	17.09	17	8	29
O	49	3	$5 \cdot 02$	4I.55	22.635	33	18	14
P	49	4	10.23	$1 \mathrm{II} \cdot 80$	47.4405	37	27	3
Q	40	I	1.93	39.01	33.257	1		39
R	39	1	10.22	16.45	34.06	1	10	16
S	37	2	4.93	$6 \cdot 03$	$35 \cdot 82$	19	21	3
T	37	4	$35 \cdot 67$	$26 \cdot 12$	32.483	28	9	25
U	31	2	$2 \cdot 69$	22.82	22.23	16	17	27
V	18	I	II.98	$8 \cdot 60$	0.837	I	12	9
W	18	I	4.13	$4 \cdot 94$	1.5905	I	4	
(X	12	1	$7 \cdot 56$	$8 \cdot 13$	1.0606	I	7	
IY	12	I	$7 \cdot 56$	$8 \cdot 13$	1.0606	I	8	8
a	130	1	17.0	$10 \cdot 2$	72.746	1	17	10
β	239	20	103.115	212.04	25.7273	12	4 I	I54
γ	104	3	$96 \cdot 87$	$40 \cdot 27$	II•195	35	67	48
δ	152	9	118.14	14.71	49.0285	17	30	IO3
ϵ	52	3	$32 \cdot 87$	24.61	$10 \cdot 75$	35	11	43
ζ	121	7	73.00	65.07	27.04	52	45	II3

Data for Table P 46.

Sg.	Args. at			
	1800 $+4^{d}$	2050 $+13^{d}$	Motion in 500^{d}	Coef. of sin
$\mathrm{A}^{\prime \prime}$	101.3	$21^{\circ} .4$	13.360	9

List viii (cont.)

Sg.	q	p	Args. at		$\begin{aligned} & \text { Motion } \\ & \text { in } \text { IOOO }^{d} \end{aligned}$	j	i at	
			$\begin{aligned} & 1800 \\ & +4^{d} \end{aligned}$	$\begin{aligned} & 2050 \\ & +13{ }^{d} \end{aligned}$			$\begin{aligned} & 1800 \\ & +4^{d} \end{aligned}$	$\begin{aligned} & 2050 \\ & +13{ }^{d} \end{aligned}$
$\mathrm{B}^{\prime \prime}$	92	1	$8{ }^{9} \cdot 7$	$5{ }_{5}{ }^{\text {a }} 7$	${ }_{50}{ }^{\text {¢ }}$. 888	1	85	59
$\mathrm{C}^{\prime \prime}$	84	I	$22 \cdot 5$	$34 \cdot 7$	49.805	1	22	35
$\mathrm{D}^{\prime \prime}$	66	5	20.3	10.4	$5 \mathrm{I} \cdot 956$	53	4	2
$\mathrm{E}^{\prime \prime}$	65	3	$58 \cdot 5$	$28 \cdot 3$	19.856	22	63	31
$\mathrm{F}^{\prime \prime}$	65	I	24.5	16.5	$49 \cdot 735$	I	24	16
$\mathrm{G}^{\prime \prime}$	62	5	38.8	29.5	I.745	25	45	43
$\mathrm{H}^{\prime \prime}$	60	I	II.8	$52 \cdot 8$	$49 \cdot 726$	1	12	53
$\mathrm{I}^{\prime \prime}$	59	1	$52 \cdot 1$	24.3	50.087	1	52	24
$\mathrm{J}^{\prime \prime}$	59	4	19.5	$45^{\circ} \mathrm{O}$	23.570	15	5	26
K'ı	58	5	$52 \cdot 3$	$41 \cdot 7$	18.128	35	22	20
$\mathrm{L}^{\prime \prime}$	53	5	$40 \cdot 0$	23.7	37.386	32	8	26
$\mathrm{M}^{\prime \prime}$	50	1	29.4	$27^{\circ} \mathrm{O}$	$49 \cdot 798$	1	29	27
$\mathrm{N}^{\prime \prime}$	47	4	11.5	11.7	11.698	12	38	3
$\mathrm{O}^{\prime \prime}$	47	4	2.6	$20 \cdot 8$	12.410	12	36	17
$\mathrm{P}^{\prime \prime}$	45	I	16.4	27.5	$5 \cdot 384$	1	I6	28
Q'"	41	1	$2 \cdot 4$	3.6	9.300	I	2	
$\mathrm{R}^{\prime \prime}$	39	2	$16 \cdot 4$	16.4	21.508	20	8	8
$\mathrm{S}^{\prime \prime}$	38	3	23.5	$30 \cdot 9$	35.883	13	33	23
$\mathrm{T}^{\prime \prime}$	34	1	8.8	0.4	15.426	I	9	-
$\mathrm{U}^{\prime \prime}$	31	I	21.0	$14^{\circ} \mathrm{O}$	19.163	1	21	14
$\mathrm{V}^{\prime \prime}$	29	I	25.0	$26 \cdot 9$	2I.514	1	25	27
$\mathrm{W}^{\prime \prime}$	13	1	$3 \cdot 6$	$4 \cdot 6$	10.979	I	4	5
$\mathrm{X}^{\prime \prime}$	12	1	$3 \cdot 3$	$\cdot 5$	2.298	I	3	5
$\mathrm{Y}^{\prime \prime}$	21	2	$3 \cdot 5$	1.0	16.464	II	12	11

Data for Table P 46.

Sg.	q	p	Args. at		Motion in 500^{d}	j	i at	
			$\begin{aligned} & 1800 \\ & +4^{d} \end{aligned}$	$\begin{array}{r} 2050 \\ +13{ }^{d} \end{array}$			$\begin{aligned} & 1800 \\ & +4^{d} \end{aligned}$	$\begin{array}{r} 2050 \\ +13^{d} \end{array}$
A	232	21	$\stackrel{q}{\text { 2 }}$ 191	109.98	$\begin{gathered} q \\ 122.057 \end{gathered}$	221	208	182
B	161	5	74.36	- 75	88.947	129	47	129
C	143	6	$72 \cdot 04$	88.45	13.964	24	12	110
D	85	14	16.07	16.65	19.959	79	74	68
E	66	I	$30 \cdot 88$	30.03	$49 \cdot 864$	I	31	30
F	59	9	26.55	19.00	37.276	46	3	48
G	5 I	5	$26 \cdot 49$	14.60	$45 \cdot 853$	4 I	46	3
H	46	3	$4 \cdot 36$	$44 \cdot 24$	12.076	31	32	30
I	45	7	36.86	$26 \cdot 10$	$35 \cdot 056$	13	31	23
J	4 I	4	34.13	30.90	36.448	3 I	29	18
K	30		25.63	12.01	$20 \cdot 188$	I	26	12
L	30	1	24.32	29.17	19.961	1	24	29
M	27	2	$8 \cdot 04$	- 19	19.483	14	4	-
N	26	1	3.24	16.09	$24 \cdot 322$,	3	16
1 O	25	1	23.49	23.60	-0.099	1	23	23
1 P	25	1	23.49	23.60	0.099	1	24	24
Q	24	1	10.58	19.22	1.982	I	11	19
R	24	1	$7 \cdot 90$	14.46	$2 \cdot 101$	I	8	14
S	11	I	$4 \cdot 75$	$5 \cdot 83$	$6 \cdot 356$	I	5	6
T	11	I	$7 \cdot 15$	5.05	$5 \cdot 677$	I	7	5
U	9	I	$1 \cdot 23$	$2 \cdot 73$	$5 \cdot 27 \mathrm{I}$	I		3
V	17	1	$6 \cdot 97$	15.26	15.750	I	7	15
W	8	1	$5 \cdot 57$	$4 \cdot 62$	$2 \cdot 323$	1	6	5
X	7	I	6.16	$2 \cdot 58$	1.227	I	6	3

LIST viii (concl.).
Data for Table P 47.

Sg.	Args, at		Motion in 500^{1}	Coef. of\sin
	$\begin{aligned} & 1800 \\ & +6 t 5 \end{aligned}$	$\begin{aligned} & 2050 \\ & +155 \end{aligned}$		
\mathbf{A}^{\prime}	191.4	111:5	$13^{\circ} \cdot 360$	9

Data for Table P47.

Sg.	q	p	Args. at		Motion in 1000^{d}	j	i at	
			$\begin{array}{r} 1800 \\ +6 d 5 \end{array}$	$\begin{array}{r} 2059 \\ +154 \end{array}$			$\begin{array}{r} 1800 \\ +6 f^{5} \end{array}$	$\begin{array}{r} 2050 \\ +15^{d} 5 \end{array}$
$\mathrm{B}^{\prime \prime}$	92	1	$6{ }^{1} \cdot 8$	$35^{7} 8$	$50^{\circ} \cdot 088$	1	62	36
$\mathrm{C}^{\prime \prime}$	84	1	$43 \cdot 6$	55^{-8}	49.805	1	44	56
$\mathrm{D}^{\prime \prime}$	66	5	$37 \cdot 4$	$27 \cdot 5$	$51 \cdot 956$	53	47	32
$\mathrm{E}^{\prime \prime}$	65	3	10.1	$45^{\circ} \mathrm{O}$	19.856	22	25	15
$\mathrm{F}^{\prime \prime \prime}$	65	I	8.4	$0 \cdot 4$	49•735	1	8	0
$\mathrm{G}^{\prime \prime}$	62	5	54.9	45.7	$1 \cdot 745$	25	11	34
$\mathrm{H}^{\prime \prime}$	60	I	$56 \cdot 9$	$37 \cdot 9$	$49 \cdot 726$	1	57	38
$\mathrm{I}^{\prime \prime \prime}$	59	1	$37 \cdot 5$	977	$50 \cdot 087$	${ }_{1}^{15}$	38	10
$\mathrm{J}^{\prime \prime}$	59	4	$34 \cdot 8$	1-3	23.570	15	53	15
$\mathrm{K}^{\prime \prime}$	58	5	$9 \cdot 4$	56.8	18.128	35	25	23
$\mathrm{L}^{\prime \prime}$	53	5	0.8	$37 \cdot 6$	$37 \cdot 386$	32	32	50
$\mathrm{M}^{\prime \prime}$	50	1	17.1	14.6	49.798	1	17	15
$\mathrm{N}^{\prime \prime \prime}$	47	4	23.7	23.9	11-698	12	6	6
$\mathrm{O}^{\prime \prime}$	47	4	$38 \cdot 3$	$9 \cdot 5$	12.410	12	33	26
$\mathrm{p}^{\prime \prime \prime}$	45	1	$5 \cdot 3$	$16 \cdot 3$	$5 \cdot 384$	1	5	16
Q"	41	1	$33 \cdot 3$	34.5	$9 \cdot 300$	1	33	35
R' ${ }^{\prime \prime}$	39	2	$\begin{array}{r}359 \\ \\ \hline\end{array}$	6.8	$2 \mathrm{I} \cdot 508$	20	23	23
$\mathrm{S}^{\prime \prime}$	38	3	$33 \cdot 3$	$2 \cdot 8$	$35 \cdot 883$	13	11	1
$\mathrm{T}^{\prime \prime}$	34	1	17.4	$9 \cdot 1$	15.426	1	17	9
$\mathrm{U}^{\prime \prime \prime}$	31	I	28.9	$2 \mathrm{I} \cdot 8$	19.163	1	29	22
V"'	29	I	$3 \cdot 4$	$5 \cdot 2$	21.514	t	3	5
W"'	13	$\stackrel{1}{1}$	$6 \cdot 9$	$8 \cdot 0$	$10 \cdot 979$	1	7	8
$\mathrm{X}^{\prime \prime}$	12	1	$6 \cdot 5$	$3 \cdot 7$	$2 \cdot 298$	1	6	4
$\mathrm{Y}^{\prime \prime}$	21	2	$9 \cdot 1$	6.5	16.464	17	15	14

Data for Table P_{47}.

Sg.	q	p	Args. at		Motion in 500^{2}	j	i at	
			$\begin{array}{r} 1800 \\ +6 \frac{d}{5} \end{array}$	$\begin{array}{r} 2050 \\ +15{ }^{d} 5 \end{array}$			$\begin{aligned} & 1800 \\ & +6 d_{5} \end{aligned}$	$\begin{gathered} 2050 \\ +155 \end{gathered}$
A	232	21	138.80	$57^{q} \cdot 22$	$122^{\circ} \cdot 057$	221	95	69
B	161	5	115.87	42.24	88.947	129	152	105
C	143	6	$37 \cdot{ }^{6}$	54.21	13.964	24	54	9
D	85	14	40.83	41.41	19.959	79	9	9
E	66	I	$47 \cdot 64$	$46 \cdot 78$	$49 \cdot 864$	1	48	47
F	59	9	$43 \cdot 55$	35-99	$37 \cdot 276$	46	18	4
G	51	5	$40 \cdot 49$	28.59	45.853	4 T	8	16
H	46	3	16.62	10.48	12.076	31	21	34
I	45	7	$4 \cdot 86$	$39 \cdot 10$	35-056	13	20	12
J	4 I	4	4.38	1-15	$36 \cdot 448$	3 I	1	31
K	30	I	18.38	$4 \cdot 76$	20-188	1	18	5
L	30	I	$2 \cdot 07$	6.92	19-961	I	2	7
M	27	2	15.29	$7 \cdot 50$	19.483	14	21	4

Sg.	9	p	Args. at		Motionin 500^{d}	j	i at	
			$\begin{aligned} & 1800 \\ & +645 \end{aligned}$	$\begin{array}{r} 2059 \\ +155 \end{array}$			$\begin{aligned} & 1800 \\ & +645 \end{aligned}$	$\begin{array}{r} 2059 \\ +159 \end{array}$
N	26	I	9'99	$22 \cdot 84$	24:322	,	10	23
1 O	25	1	4.99	5-09	-0.099	1	5	5
1 P	25	I	4.99	5.09	-0099	$\underline{1}$	5	5
Q	24	1	16.83	$1 \cdot 47$	1-982	1	17	I
R	24	1	14.15	20.71	2-101	1	14	21
S	11	1	$7 \cdot 72$	8.84	6.356	1	8	9
T	11	I	10.13	8.05	$5 \cdot 677$	1	10	8
U	9	I	$8 \cdot 23$	0.73	5.271	1	8	${ }_{1}^{1}$
V	17	1	$2 \cdot 98$	11.27	15.750	1	3	11
W	8	1	7.82	$6 \cdot 87$	$2 \cdot 323$	1	-	7
X	7	1	1.16	$4 \cdot 58$	1-227	1	1	5

Data for Table P 48 .

Sg.	q	p	Args. at		Motion in 700^{d}	j	i at	
			$\begin{aligned} & 1800 \\ & -2^{d} \end{aligned}$	$\begin{gathered} 2050 \\ +9^{4} \end{gathered}$			$\begin{gathered} 1800 \\ -2^{d} \end{gathered}$	$\begin{gathered} 2050 \\ +9^{4} \end{gathered}$
A	221	22	62.5	$127 \cdot 5$	215	211	33	46
B	184	13	79.4	$65 \cdot 2$	98.081	85	91	5
C	178	23	103.3	70.4	81.940	3 I	167	34
D	167	1	$93 \cdot 6$	112.9	50.072	1	94	113
E	147	1	74°	1144°	49.882	${ }_{1}^{1}$	74	114
(F)	121	10	120.7	$36 \cdot 9$	20.839	109	-	40
¢G	119	10	118.6	$36 \cdot 3$	$20 \cdot 495$	12	\bigcirc	75
H	99	1	$71 \cdot 9$	58.6	49.984	${ }^{1}$	72	59
I	63	2	17.9	17.8	$36 \cdot 961$	32	9	9
J	53	6	15.6	6.6	34.748	9	38	10
K	20	1	7.0	17.7	$9 \cdot 446$	1	7	18
L	20	3	16.9	$10 \cdot 9$	10.651	7	19	17
M	40		$9 \cdot 1$	$36 \cdot 5$	9.88 I	1	9	37

Data for Table P 49.

Sg.	q	p	Args. at		Motion in 700^{2}	j	i at	
			$\begin{gathered} 1800 \\ o^{4} \end{gathered}$	$\begin{gathered} 2050 \\ +11^{d} \end{gathered}$			$\begin{gathered} 1800 \\ \sigma^{d} \end{gathered}$	$\begin{aligned} & 2050 \\ & +11^{d} \end{aligned}$
A	221	22	$10 \cdot 2$	75°	$215 \cdot 905$	211	121	134
B	184	13	$127{ }^{\circ} \mathrm{O}$	112.8	98.081	85	123	37
C	178	23	$6 \mathrm{I} \cdot 8$	28.8	$8 \mathrm{I} \cdot 940$	31	142	9
D	167	1	$52 \cdot 0$	$71 \cdot 3$	50.072	1	52	71
E	147	1	111.1	$3 \cdot 9$	49.882	${ }_{1}^{1}$	111	4
(F)	121	10	$31 \cdot 1$	$68 \cdot 4$	20.839	109	112	31
1 G	119	10	$30 \cdot 6$	$67 \cdot 3$	20.495	12	15	7^{8}
H	99	1	$47 \cdot 3$	$34 \cdot 1$	49.984	1	47	34
I	63	2	2.4	$2 \cdot 3$	$36 \cdot 961$	32	1	1
J	53	6	29.6	20.6	34.748	9	5	30
K	20	1	$12 \cdot 1$	2.8	9.446	1	12	3
L	20	3	12.3	$6 \cdot 2$	10.651	7	4	2
M	40	1	$39 \cdot \mathrm{I}$	26.5	$9 \cdot 88 \mathrm{I}$	1	39	27

List ix. Tabulation of Remainder Terms according to Index Number.
Terms in Table P 39.

A	A	A	B	B	B	C	C	C	D	D	E	E	F	F	G	H	H	I	J	K	K	L	M	NO	P
0	70	140	0	70	140	15	85	155	55	125	35	105	35	105	40	0	70	40	15	0	70	55	40	25	10
16	30	2	50	8	14	17	10	7	5	13.	8	0	5	o	-	11	20	2	5	24	15	I	3	3	I
16	29	1	60	13	10	17	9	8	2	10	8	o	0	2	o	16	22	2	5	29	10	I	7	18	o
17	29	1	69	18	7	18	9	8	-	6	8	-	2	10	-	20	21	3	5	35	6	-	9	4 I	\bigcirc
17	29	1	77	26	6	18	8	8	-	3	8	-	8	17	1	22	19	3	4	39	3	-	10	60	I
18	28	1	84	35	5	18	8	9	2	1	8	o	16	20	2	22	14	4	4	43	I	-	9	66	3
18	28	$\underline{1}$	89	44	7	19	8	9	6	0	8	0	20	17	3	19	9	5	4	46	\bigcirc	\bigcirc	7	56	5
19	28	1	92	54	10	19	7	10	9	1	8	-	18	9	4	15	5	5	3	48	-	-	4	36	7
19	27	-	94	63	15	19	7	10	12	4	8	1	10	2	6	Io	1	6	3	48	2	-	1	14	8
20	27	-	95	72	21	19	7	II	14	8	8	1	3	-	8	5	o	7	2	47	5	o	o	1	10
20	27	-	93	80	30	20	6	-	14	11	8	I	-	5	10	2	I	7	2	45	9	-	1	4	10
21	26	\bigcirc	91	86	39	20	6		12	13	7	1	3	12	13	0	4	8	1	42	13	0	3	20	ro
21	26	-	86	91	48	20	5		9	14	7	1	11	19	16	1	9	8	1	38	19	1	6	43	8
22	26	-	82	93	58	20	5		5	13	7	1	18	20	19	4	14	9	1	33	-	1	9	61	7
22	25	-	78	95	67	21	5		2	10	7	1	20	14	22	8	18	9	-	28		1	10	66	5
23	25	0	72	94	75	21	4	D	-	7	7	1	15	6	25	13	21	10	\bigcirc	22	L	2	9	54	3
23	24	0	68	92	83	21	4	7	0	3	7	2	8	1	28	18	22	10	\bigcirc	${ }^{1} 7$	9	2	7	33	1
23	24	0	63	89	88	21	4	10	2	1	7	2	1	1	30	21	20	10	-	12	10	3	4	12	-
24	23	o	58	85	92	21	3	13	5	0	7	2	0	7	33	22	17	10	o	7	10	3	1	-	o
24	23	o	54	80	94	21	3	14	9	1	6	2	6	15	36	21	12	10	o	4	II	4	o	5	1
25	23	0	50	76	95	22	3	13	12	4	6	2	14	20	39	17	7	10	-	I	12	4	I	23	2
25	22	0	45	71	94	22	3	II	14	7	6	2	19	18	42	13	3	10	\bigcirc	-	12	5	3	46	4
26	22	0	41	66	91	22	2	7	14	11	6	3	19	11	44	8	0	9	1	-	13	6	6	62	6
26	21	0	36	61	87	22	2	4	12	13	6	3	13	4	46	3	0	9	1	1	14	6	8	65	8
26	21	1	31	56	83	22	2	I	9	14	6	3	5	-	48	1	2	8	1	4	14	7	10	52	9
27	20	1	26	52	78	22	2	o	5	13	5	3	0	3	49	0	6	8	2	7	15	8	Io	30	10
27	20	1	22	48	73	22	I	1	2	10	5	3	2		50	2		7	2	12	15	8	7	10	10
27	19	1	17	44	69	22	I	4	-	7	5	3	9		51	5		7	2	17	16	-	4	\bigcirc	9
28	19	1	12	39	64	22	1	7	-	3	5	4	16		52	10		6	3	22	16		2	6	7
28	18	1	9	34	59	22	1	10	2	1	5	4	20		52	15 19		5	3	28	17 17		\bigcirc	25	5
28	18	2	6	29	54	22	1	13	5	-	5	-	17	G	52	19	I	4	4	33	17	M	-	48	3
29	17	2	5	25	50	22	1	14	9	I	4		10	26	51	22	5	4	4	38	17	5	2	63	I
29	17	2	6	20	46	22	-	13	12	4	4		3	29	51	22	6	3	4	42	18	8	5	64	o
29	16	2	8	15	42	22	o	II	14	-	4		0	32	50	20	6	3	5	45	18	10	8	50	o
30	16	2	12	II	37	22	-	7	14		4		4	35	48	16	7	2	5	47	18	10	10	28	1
30	16	3	17	8	32	21	-	4	12	E	4	F	11	38	46	II	8	I	5	48	18	8	10	8	2
30	15	3	24	6	27	21	\bigcirc	1	9	4	3	10	18	40	44	6	8	I	6	48	18	5	8	${ }_{8}$	
30	${ }^{1} 5$	3	33	5	23	21	-	o	5	4	3	17	20	43	42	2	9	1	6	46	18	2	5	8	6
30	14	4	42	7	18	21	-	1	2	4	3	20	15	45	40	0	9	\bigcirc	6	43	18	0	2	28	8
31	14	4	52	9	13	21	\bigcirc	3	-	5	3	16	7	47	37	1	9	\bigcirc	6	39	18	o	-	50	9
31	13	4	61	14	9	21	o	6	0	5	3	9	I	48	34	3	10	-	6	35	18	2	o	64	10
31	13	5	70	20	7	20	0	10	2	5	2	2		50	31	7	10	\bigcirc	6	29	17	5	2	63	10
31	12	5	78	28	5	20	-	13	5	5	2	0	6	51	28	12	10	-	6	24	17	8	-	48	9
31	12	5	85	37	6	20	-	14	8	5	2	5	14	52	25	17	10	-	6	19	17	10		25	7
31	II	6	90	46	8	20	-	13	12	5	2	13	20	52	22	21	10	1	5	13	16	10	N	6	5
32	II	6	93	56	II	19	0	II	14	6	2	19	19	52	19	22	10	1	5	9	16	8	O	-	3
32	10	6	95	65	16	19	0	8	14	6	2	19	12	52	17	21	9	1	5	5	16	6	33	10	2
32	10	7	94	74	22	19	1	4	12	6	2	14	5	51	14	18	9	2	4	2	15	3	54	30	\bigcirc
32	9	7	93	81	31	19	1	I	9	6	1	6	-	50	11	14	9	2	4	-	15	0	66	52	o
32	9	8	90	87	40	18	1	o	6	6	1	-	2	49	9	8	8	3	3	-	14	0	61	65	0
32	9	8	86	92	-	18	1	I	2	6	1	1	9	47	7	4	7	4	3	I	13	2	43	62	2
32	8	9	8 I	94		18	1	3	-	7	1	8	17	45	5	1	7	4	2	3	13	4	20	46	3
32	8	9	77	95		17	1	6	-	7	1	15	20	43	3	-	6	-	2	6	12	7	4	23	5
32	7	9	72	94		17	2	10	2	7	1	20	17	4 I	2	1	6		2	10	II	9	1	5	7
32	7	10	67	92		17	2	13	5	7	1	18	10	38	1	5	5		I	15 20	II	10	14 36	O	9
32	6	10	62	88	C	16	2	14	8	7	I	II	2	35	0	10	4	J	I	20	IO	9	36	12	10
32	6	11	57	84	II	16	2	13	II	7	0	3	\bigcirc	33	-	15	3	3	\mathbf{r}	26	9	6	56		10
32	6	11	53	79	11	15	3	11	14	7	-	0	4	30	-	19	3	3	o	31	9	3	66		9
32	5	12	49	74	12	15	3	8	14	7	0	3	12	27	\bigcirc	21	2	4	\bigcirc	36	8	1	60		8
32	5	12	44	70	12	15	3	4	12	8	o	10	18	24	1	22	2	4	\bigcirc	4 I	7	O	4 I		6
32	5	13	40	65	13	14	3	2	10	8	0	18	20	21	2	20	1	5	0	44	7	I	18	P	4
31	4	13	35	60	13	14	4	-	6	8	0	20	15	18	4	16	1	5	\bigcirc	47	6	4	3	5	2
31	4	14	30	55	14	14	4	-	3	8	o	16	7	15	5	11	o	5	o	48	5	7	2	7	I
3 I	4	14	26	5 5	14	13	4	3	1	8	o	8	1	12	7	6	o	6	o	48	5	9	16	9	-
3 I	3	15	21	47	14	13	5	6	-	8	o	2	1	10	9	2	o	6	o	47	4	10	38	10	o
31	3	15	16	43	15	12	5	9	I	8	-	0	7	8	12	o	o	6	1	44	3	9	58	10	I
3 I	3	16	12	38	15	12	5	12	4	8	0	5	15	6	14	o	o	6	$\underline{1}$	41	3	6	66.	9	3
30	2	-	8	33	15	11	6	14	8	8	0	13	20	4	17	3	o	6	1	36	2	3	58	8	
30	2		6	28	16	11	6	14	11	8	-	19	18	2	20	7	-	6	2	31	2	1	38	6	
30	2		5	24	16	11	7	12	13	8	o	19	12	$\underline{1}$	23	12	1	6	2	26	2	-	16	4	
30	2		6	19	17	10	7	8	14	8	0	13	4	1	-	17	I	6	3	20	I	I	2	2	

List ix (cont.).

Terms in Table P 39 (concl.).

Q	R	S	T	V	X	\mathbf{Y}	\mathbf{Y}
0	0	10	25	10	15	65	135
3	3	6	3	2	-	9	23
3	4	6	2	1	1	2	10
4	5	6	1	0	2	0	2
4	6	6	0	-	\bar{Y}	6	0
4	6	6	-	1	\mathbf{Y}	17	5
4	5	6	-	2	52	32	45
5	4	6	1	3	79	50	30
5	3	6	I	5	86	68	48
5	2	5	2	6	97	84	66
5	1	5	4	7	103	96	83
5	-	5	5	8	103	103	95
6	-	4	7	8	96	103	102
6	$\underline{1}$	4	9	7	84	97	104
6	2	4	11	6	68	86	98
6	3	3	-	5	50	70	87
6	5	3		4	32	52	72
6	6	3		2	17	34	54
6	6	2		1	6	18	36
6	6	2		-	-	7	20
6	5	2	U	-	2	1	8
6	4	1	3	1	9		1
6	2	${ }_{1}$	4	3	21	8	1
6	${ }^{1}$	1	4	-	38	20	7
6	-	-	5		56	36	18
6	-	0	5	W	74	54	34
5	-	-	5	4	89	72	
5	1	\bigcirc	6	6	99	87	
5	2	\bigcirc	6	7	104	98	
5	4	\bigcirc	6	8	102	104	
5	5	0	6	8	94	102	
4	6	-	6	7	8 I	95	
4	6	\bigcirc	6	5	64	83	
4	6	\bigcirc	5	4	46	66	
4	5	$\underline{1}$	5	2	29	48	
3	4	1	5	1	14	30	
3	2	1	4	0	4	15	
3	1	2	4	0	0	5	
2	-	2	3	1	3	0	
2	-	2	2	3	11	2	
2	-	3	2	5	25	10	
2	1		1	7	42	23	
1	3		1	8	60	40	
1	4		1	8	77	58	
I	5		-	7	92	75	
1	6	T	-	6	101	90	
T	6	13	-	4	104	100	
0	5	15	-	3	101	104	
\bigcirc	4	17	-	1	92	Ior	
0	3	19	-	-	77	93	
0	2	21	1	-	60	79	
-	1	22	1	1	42	62	
0	-	24	1	3	25	44	
0	-	25	2	-	II	27	
0	1	25	2		3	12	
-	2	26	-	X	-	3	
-		26		3	4	0	
-		26		4	14	3	
0		25		5	29	12	
-		24		5	46	27	
0	S	23	V	6	64	44	
1	3	22	4	6	8 I	62	
1	3	20	5	6	94	79	
T	4	18	7	5	102	93	
1	4	16	8	4	104	101	
1	4	14	8	3	99	104	
2	5	12	8	2	89	100	
2	5	10	7	1	74	90	
2	5	8	6	$\stackrel{ }{\circ}$	56	75	
2	6	6	4	-	38	58	
3	6	4	3	0	2 I	40	

Terms in Table P 40.

$\mathrm{A}^{\prime \prime}$	$\mathbf{A}^{\prime \prime}$	$\mathrm{A}^{\prime \prime}$	B"	$\mathrm{B}^{\prime \prime}$	$\mathrm{D}^{\prime \prime}$	E"	$\mathrm{F}^{\prime \prime}$	$\mathrm{F}^{\prime \prime}$	$\mathbf{H}^{\prime \prime}$	$\mathrm{I}^{\prime \prime}$	$\mathbf{J}^{\prime \prime}$	$\mathbf{K}^{\prime \prime}$	L"	$\mathrm{N}^{\prime \prime}$
0	70	140	15	85	35	20	5	75	65	60	55	50	55	15
19	6	25	31	-	4	22	6	1	8	2	6	6	1	0
26	3	21	32	-	4	22	6	2	8	4	6	5	0	1
32	2	18	32	-	4	22	5	-	6	7	6	4	I	2
35	4	15	33	0	4	22	5		3	8	5	2	2	3
36	8	II	34	-	3	22	4	$\mathrm{H}^{\prime \prime}$	1	8	4	1	-	5
34	15	7	34	0	3	21	3	4	0	6	3	1		7
32	22	4	35	I	3	21	2	6	-	4	2	-		9
28	28	2	35	1	3	21	1	8	2	2	1	-		10
24	33	2	35	1	3	20	-	8	$\overline{\prime \prime}$	-	-	-		11
20	35	5	35	1	2	20	-	7	$\mathrm{I}^{\prime \prime}$	0	-	1	$\mathrm{M}^{\prime \prime}$	12
17	36	11	36	2	2	19	0	5	4	2	-	2	4	12
14	34	18	36	2	2	18	0	2	6	-	0	3	5	11
10	30	25	36	3	2	18	1	-	8		1	-	6	10
6	26	31	36	4	1	17	2	-	8		2		7	8
3	22	35	36	4	1	16	3	1	6	$\mathrm{J}^{\prime \prime}$	-	$\mathrm{L}^{\prime \prime}$	8	6
2	19	36	36	5	I	16	4	3		3				5
3	16	35	36	6	1	15	5	5	2	4		6	8	3
7	12	32	36	6	$\underline{5}$	I4	5	7	-	5		7	7	${ }^{1}$
12	9	28	36 35	7	1	13	6	8	${ }^{\circ}$	6		8	6	\bigcirc
20	5	24	35	8	-	12	6	7	1	6	$\mathrm{K}^{\prime \prime}$	7	5	0
27	2	21	35	9	0	II	6	5	4	6	4	6	4	0
32	2	18	35	10	0	II	5	3	8	5	5	4	3	1
36	4	14	34	10	-	10	5	1	8	5	6	2	2	2
36	8	11	34	11	-	9	4	\bigcirc	8	4	7	-	1	4
34	15	7	33	12	-	8	3	-	7	3	8	-	0	-
31	23	4	33	13	o		2	2	5	2		1	0	
27	30	2	32	14	0	6	1	4	2	1	8	2	o	
24	34	2	31	15	0	6	0	7	-	0	7	4	o	
20	36	6	31	16	-	5	-	8	-	-	7	6	1	
17	36	II	30	17	-	4	-	8	1	-	6	8	2	$\mathrm{O}^{\prime \prime}$
14	33	18	29		0	4	0	6	3	1	4	8	3	5
10	29	26	29		o	3	1	4	6	2	3	7	5	7
6	26	31	28		-	2	2	2	7	3	2	5	6	9
3	22	35	27		-	2	3	-	8	4	1	3	7	10
2	19	36	26	$\mathrm{D}^{\prime \prime}$	-	1	3	-	7	5	-	1	8	10
3	16	35	25	3	1	I	4	1	5	6	-	-	8	8
7	12	32	24	3	1	1	5	3	2	6	0	-	8	6
13	8	28	23	3	$\underline{1}$	0	6	6	1	6	0	I	8	3
20	4	24	22	4	1	-	6	7	-	6	1	3	7	1
27	2	21	21	4	1	-	6	8	1	5	2	5	6	-
33	3	18	20	4	1	-	6	7	3	4	3	7	5	0
36	5	14	19	4	2	0	5	5	5	3	4	8	4	1
36	10	10	18	5	2	-	4	3	7	2	6	8	3	3
34	16	6	18	5	2	-	3	1	8	1	7	7	2	6
31	23	4	17	5	2	-	2	-	7	-	7	5	1	8
27	30	2	16	5	3	1	1	1	5	-	8	3	-	10
23	34	3	15	5	3	1	1	2	3	-	8	1	0	10
20	36	6	14	5	-	1	0	5	1	1	8	-	-	9
${ }^{1} 7$	35	12	13	6		2	-	7	-	1	7	-	1	7
13	32	-	12	6	$\mathrm{E}^{\prime \prime}$	2	0	8	I	2	6	1	2	5
9	29		11	6	11	3	1	8	3	4	5	3	3	3
6	25		10	6	12	3	1	6	5	5	4	5	-	1
3	21		9	6	13	4	2	4	7	5	3	7		\bigcirc
2	18		8	6	14	5	3	2	8	6	2	8		0
4	15	$\mathrm{B}^{\prime \prime}$	7	6	14	5	4	-	7	6	1	8	$\mathrm{N}^{\prime \prime}$	2
7	12	18	7	6	15	6	5	0	6	6	-		6	4
14	8	19	6	6	16	7	6	1	3	5	0	5	8	7
22	4	20	5	6	17	8	6	4	1	4	-	3	10	9
28	2	21	5	6	17	8	6	6	-	3	1	1	11	10
33	3	22	4	6	18	9	6	8	1	2	1	-	12	10
35	5	23	3	6	19	10	5	8	2	1	2		12	
36	10	24	3	6	19	-	4	7	5	0	4	2	12	7
34	16	25	2	6	20		3	5	3	0	5	4	11	4
30	24	26	2	6	20		2	3	8	0	6	6	9	2
26	31	26	1	5	21	$\mathrm{F}^{\prime \prime}$	1	1	8	0	7	7	7	0
23	34	27	1	5	21	3	1	-	6	1	8	8	6	0
20	36	28	1	5	21	4	-	1	3	2	8	8	4	1
17	35	29	-	5	22	5	-	3	1	3	8	6	2	3
13	32	30	-	5	22	5	\bigcirc	5	\bigcirc	4	8	4	1	-
9	29	30	-	5	22	6	I	7	-	5	7	2	-	

Terms in Table P 40 (concl.).

A	A	A	B	C	C	D	D	E	F	F	G	H	I	I	J	K	L	M	N	P	Q	S	V
0	70	140	40	0	70	30	100	65	30	100	65	30	5	75	60	45	30	25	20	0	25	25	15
4 I	66	1	2	9	17	8	1	38	24	8	12	14	12	26	10	10	o	3	5	14	4	1	0
53	56	6	4	12	16	6	3	41	18	14	12	12	2	13	12	7	-	I	7	20	I	2	-
64	43	14	5	14	14	4	4	42	12		11	10	,	3	9	4	-	-	9	25	-	-	1
73	31	24	7	16	12	2		41	7		10	7	8	-	3	1	1	1	10	28	3		2
79	19	36	9	17	10	1	E	38	3	G	9	3	20	7	0	-	3	3	II	27	3	T	4
82	10	49	10	18	7	0	21	34	0	6	7	I	32		2	0	5	5	12	24		6	
81	3	60	11	18	4	-	27	28	0	8	5	-	38		7	2	7	7	12	18		8	
76	-	70	12	17	2	-	33	22	2	9	4	1	34		II	5	9	8	11	12		9	
68	1	78	12	15	I	1	38	15	5	11	2	3	23		II	8	II	7	10	6		II	
57	5	8 I	12	13	0	2	4 I	Io	9	12	I	6	Io	J	7	11	12	5	9	2	R	12	
45	13	82	11	II	-	4	42	5	15	12	-	9	1	6	2	13	12	3	7	0	8	12	
32	23	78	9	8	I	6	4 I	1	21	12	\bigcirc	12	1	11	0	14	12	1	6	2	13	12	
21	35	71	7	5	2	7	39	-	27	11	-	14	9	12	4	13	II	-	4	6	16	11	
II	47	61	6	3	4	9	35	I	33	10	I	14	22	8	9	11	9	I	2	12	15	10	
4	59	50	5	1	7	11	29	3	37	8	3	13	33	2	12	8	7	3	1	18	12	9	
\bigcirc	69	37	3	-	10	12	23	7	39	6	5	10	38	\bigcirc	10	5	5	5	0	24	7	7	
1	77	25	1	\bigcirc	12	12	17	12	40	4	6	7	33	3	4	2	3	7	-	27	3	5	
4	8 r	14	-	\bigcirc	14	12	11	18	39	3	8	4	22	8	-	-	1	8	0	28	-	3	
12	82	6	-	2	16	11	6	25	36	1	10	1	9	12	I	-	-	7	1	25	I	2	
22	79	1	-	4	17	10	2	31	32	-	II	0	I	Iо	-	2	-	5	3	20	5	I	
33	72	-	1	6	18	9	-	36	26	-	12	0	1	5		5	1	2	4	14	10	o	
46	63	3	2	8	18	7	-	40	20	-	12	2	10	I		8	2	I		8	14	-	
58	51	9	3	11	17	5	2	42	14	1	12	5	23	I		II	3	o		3	16	-	
68	39	18	5	14	15	3	6	42	8	2	II	8	34	5		13	5	I		-	15	I	
76	26	29	7	16	13	2	II	40	4	4	9	II	38	Io	K	14	7	3	0	I	II	3	
8 I	16		8	17	10	1	17	36	1	6	8	13	32	12	7	13	9	6	10	4	5	4	
82	7		10	18	7	-	24	31	-	7	6	14	20	9	10	II	11	8	13	10	1	4	
79	2		II	18	5	-	30	25	1	9	4	13	8	3	13	8	12	8	16	16	0		
73	0		11	17	3	1	35	19	3	II	2	II	1	-	14	5	12	7	18	22	2		
64	2	B	12	16	1	2	39	13	7	12	1	7	2	2	14	2	1 I	5	19	26	6	U	
53	8	6	12	14	\bigcirc	3	4 I	7	13	12	-	4	12	7	12	\bigcirc	10	2	20	28	II	9	
40	16	7	11	11	o	5	42	3	19	12	-	2	25	12	9	-	8	o	20	26	15	12	
28	27	9	10	8	1	6	41	1	25	11	-	-	35	II	6	1	6	-	18	22	16	14	
17	39	11	8	6	2	8	37	o	31	Io	1	-	38	6	3	4	4	I	16	16	13	16	
8	52	12	6	4	4	10	32	I	35	8	3	2	31	I	1	-	2	4	14	10	9	18	
2	63	12	5	2	6	II	27	4	38	7	4	5	19	\bigcirc	o		1	6	11	4	4	18	
-	72	12	3	1	-	12	20	9	40	5		8	7	4	1		-	8	8	I	I	18	
2	79	11	2	o		12	14	15	40	3		11	-	10	3		-	8	5	-	-	16	
7	82	10	1	o		12	8	-	37	2		13	3	12	6		I	7	3		3	14	
I_{5}	81	9	-	I	D	II	4	F	33	I	H	14	13	9	10	L	2	4	1	8		12	
			0						28			13	26		12		4		0				
38	69	5	1	5	8	8	-	26	22	\bigcirc	10	IT	36	-	14	8	4	0	-			6	
50	58	4	2	8	9	6	1	32	16	1	13	8	37	1	14	10		-	1			4	
62	46	2	3	11	11	4	4	36	11	2	14	5	30	6	12	II		2	3			2	
71	34	I	5	13	12	3	8	39	6	3	14	2	18	II	9	12	M	-	6	Q	S	-	
	22			15	12	1	13	40	2		12	0	6	II	6				9	8	3	\bigcirc	
82	12	\bigcirc	8	17	12	-	20	39	-	7	9	0	0	7	3	II	6		12	13	4	-	
81	5	-	10	18	II	\bigcirc	26	37	\bigcirc	9	6	2	4	2	1	10	8		15	16	5	2	
77	1	1	11	18	10	-	32	33	2	ro	3	4	15	o	-	8	8		17	15	6	4	
70	0	2	12	17	8	I	37	27	6	II	1	7	28	3	I	6	6	N	19	12	6	6	
60	4	4	12	16	7	2	40	21	II	12	0	II	37	9	3	4	4	6	20	7	5		
48	11	6	11	14	5	4	42	15	16	12	1	13	37	12	6	2	1	8	20	3	4		
36	20	7	II	12	3	5	42	9	22	II	3	14	29	10	9	1	-	9	19	1	3		
24	32	9	IO	9	2	7	39	5	28	10	7	13	16	5	12	\bigcirc	0	11	17	o	1		
13	44	10	8	6	1	9	35	2	33	9	10	II	5	1	14	0	2	12	15	5	-	V	
5	56	11	7	4	-	10	30	-	37	7	12	8	0	1	14	1	4	12	12	10	0	6	
1	67	12	5	2	-	II	24	0	40	5	14	5	5	6	13	3	7	12	9	14	0	8	
o	75	12	3	1	1	12	18	3.	40	3	14	2	16	11	10	5	8	11	6	16	I	10	
3	80	11	2	0	2	12	12	7	38	2	12	-	29	12	7	7	8	10	4	15	2	11	
10	82	10	I	0	3	II	7	12	35	I	9	\bigcirc	37	8	4	9	6	8	2	II	4	12	
19	80	9	0	1	5	10	3	18	31	0	6	I	37	3	1	10	3	6	o	5	5	12	
30	74	7	-	3		9	-	24	25	0	3	4.	28	-	-	11	1	5	-	1	6	12	
43	65	6	\bigcirc	5	8	7	0	29	I9	1	1	-	15	2	-	12	\bigcirc	3	1	0	6	11	
55	54	4	1	7	10	5	2	34	13	2	-		4	8	2	12	-	2	2	2	6	10	
66	42	2	3	10	II	4	5	38	7	3	I	I	-	12	5	II	2	1	4	6	5	8	
74	29	1	5	13	12	2	10	40	3	5	3	19	6	II	9	9	5	0	7	11	3	6	
80	18	-	-	15	12	1	16	40	1	7	6	3 I	18	6	12	7	7	-	-	15	2	4	
82	9	-		17	12	-	22	38	o	9	9	38	30	1	14	5	8	1		16	1	2	
80	3	1		18	11	-	29	34	I	10	12	35	37	-	14	3	7	2		13	0	1	
75	-	I		18	9	-	34	29	4	II	14	25	36	5	13	I	6	3		9	-	0	

List ix (cont.).
Terms in Table P 4 I .

$\mathrm{A}^{\prime \prime}$	$\mathrm{A}^{\prime \prime}$	$\mathrm{A}^{\prime \prime}$	$\mathrm{B}^{\prime \prime}$	$\mathrm{B}^{\prime \prime}$	$\mathrm{C}^{\prime \prime}$	$\mathrm{C}^{\prime \prime}$	$\mathrm{D}^{\prime \prime}$	$\mathrm{E}^{\prime \prime}$	$\mathbf{F}^{\prime \prime}$	$\mathrm{G}^{\prime \prime}$	$\mathrm{H}^{\prime \prime}$	$1^{\prime \prime}$	$\mathbf{J}^{\prime \prime}$	$\mathrm{K}^{\prime \prime}$	L' ${ }^{\prime \prime}$	$\mathrm{M}^{\prime \prime}$	$\mathrm{O}^{\prime \prime}$	A	A	A	B	C	C	D	D
0	70	140	15	85	35	105	60	45	30	20	15	10	5	0	5	10	35	0	70	140	40	0	70	30	100
0	11	9	35	20	19	12	3	23	6	2	8	0	4	0	8	8	4	0	82	35	2	-	13	14	3
1	10	8	34	21	20	15	3	23	5	4	8	I	5	-	8	8	2	2	89	22	I	0	16	14	3
3	8	8	34	22	20	18	3	22	5	7	7	3	5	1	7	7	1	8	92	12	0	2	18	14	0
6	5	9	33	23	18 16	19	3	22	4	11	5	5	6	2	6	7	-	18	91	4	-	4	19	13	$\overline{\mathrm{E}}$
9	3	10	32	24	16	-	4	21	3	14	2	7	6	3	4	6		30	85	0	1	6	20	11	E
10	0	11	31	26	13		4	21	2	17	1	8	6	4	2	4		44	76	1	2	9	20	9	0
11	-	11	30	27	10		4	20	1	19	0	8	5	5	0	3		58	64	6	4	12	19	7	1
10	1	9	29	28	6		4	20	0	20	1	6	4	6	-	2		70	51	14	6	15	17	5	4
9	4	7	28	29	3		4	19	0	20	3	3	3	7	1	1		81	37	25	8	17	14	3	9
8	7	4	27	30	I	$\mathrm{D}^{\prime \prime}$	5	18	0	18	5	1	2	8	2	0		88	24	39	10	19	II	2	15
8	10	1	26	31	0	6	5	17	0	16	7	o	1	8	4	0		92	13	53	12	20	9	1	22
8	11	-	24	32	0	6	5	16	1	13	8	-	0	8	6	0		9 9	5	66	13	20	6	0	29
10	10	-	23	33	1	6	5	15	2	10	7	2	-	7	8	-		86	1	77	14	19	3	0	35
${ }_{10}$	9	3	22	34 34	4	6	5	15	3	6	6	4	O	7	8	1		77	1	86	14	18	1	1	41
10	9	6	21	34	7	6	5	14	4	3	3	7	I	6	7	2		66	5	91	14	15	0	2	44
9	8	8	20	35	10	6	6	13	5	1	1	8	1	5	5	3		53				13	0	4	46
6	9	10	18	36	14	6	6	12	5	-	-	8	2	3	3	4		39	24	88	12	10	1	6	45
3	9	10	17	37	17	6	6	11	6	0	0	6	3	2	1	6		25	37	81	10	7	2	8	43
1	10	10	16	38 38	19	5	6	10	6	1	2	4	4	1	-	7		14	51	70	8	4	4	10	39
0	11	9	15	38	20	5	6	9	6	3	4	2	5	1	0	7		6	64	58	6	2	7	12	33
1	10	8	14	39	20	5	6	8	5	6	6	-	6	-	1	8		1	76	44	4	1	10	13	26
3	7	8	13	40	19	5	6	7	5	10	8	0	6	-	3	8		0	85	30	2	-	13	14	19
6	4	9	12	40	17	5	-	6	4	13	8	2	6	-	5	8		4	91	18	1	o	15	14	12
9	1	10	11	40	14	5		5	3	16	6	4	5	1	7	7		12	92	8	0	1	18	13	6
10	0	11	10	41	10	4	$\mathrm{E}^{\prime \prime}$	5	2	18	4	6	4	2	8	6		22	89	2	0	3	19	12	3
11	0	10	9	41	7	4	-	4	1	20	2		3	3	8	5		35	82		1	6	20	10	0
10	1	9	8	41	4	4	0	3	0	20	0	8	2	4	7	4		49	72		2	9	20	8	0
9	4	6	7	42	1	4	0	3	0	19	0	6	1	5	5	3		63	59		3	11	19	6	2
8	7	3	6	42	-	4	-	2	0	17	1	4	-	6	3	2		75	46		5	14	17	4	6
8	10	1	5	42	0	3	1	2	0	14	3	2	0	7	1	1		84	32	B	7	17	15	2	11
9	11	-	5		1	3	1	1	1	11	6	-	-	8	-	-		90	19	0	9	19	12	1	18
10	10	1	4		3	3	1	1	2	7		o		8	0	-		92	9	-	11	20	9	0	25
10	9	3	3		6	3	2	1	2	4	8	2	1	8	1			90	3	1	13	20	6	0	32
10		6	2		10	2	2	-	3	2	7	4	2	7	3			83	-	2	14	19	4	1	3^{8}
8	8	9	2	$\mathrm{C}^{\prime \prime}$	13	2	3	-	4	-	5	6	3	6	5	$\mathrm{O}^{\prime \prime}$		73	2	4	14	18	2	2	42
6	9	10	2	20	16	2	3	0	5	-	3	8	4	5	7	0		61	7	6	14	16	0	3	45
3	9	11	1	19	18	2	4	-	6	1	1	8	5		8	1		47	17	8	13	13	-	5	46
0	10	10	1	18	20	2	5		6	3	0	7	6	3	8	2		33	29	10	12	10		7	45
-	11	8	1	15	20	1	6		6	6	1	4	6	2	6	4		21	42	12	10	7		9	41
1	10	8	0	12	19	1	6	$\mathrm{F}^{\prime \prime}$	0	9	2	2	6	I	4	7		10	56	13	8	5	D	II	36
4	7	8	-	8	17	1	7	-	5	12	5	0	5	0	2	9		3	69	14	6	2	\bigcirc	13	30
7	4	9	0	5	14	$\underline{1}$	8	0	4	15	7	-	4	-	1	10		0	80	14	4	1	-	14	23
9	1	10	-	2	11	1	9	1	3	18	8	1	3	-	-	10		1	88	13	2	0		14	16
11	0	11	0	1	7	1	10	1	2	20	8	3	2	1	0	8		6	92	12	1	0	3	14	10
11	0	10	0	0	4	0	11	2	1	20	6	6	1	1	2	6		15	91	II	0	1	5	13	5
10	3 .	9						3								4		27	87	9	-	3	7	12	2
9	5	6	0	2	-	-	13	4	0	17	2	8	-	3	6	2		40	79	7	-	5	9	10	0
8	8	3	1	5	-	0	14	5	-	15	-	7	-	5	7	-		54	67	5	1	8	11	8	1
8	10	1	1	8	1	\bigcirc	15	6		12	0	5	o	6	8	-		67	54	3	3	11	12	5	3
9	II	-	1	II	3	-	15	6	$\mathrm{G}^{\prime \prime}$	8	1	3	I	7		I		79	40	1	5	14	13	3	8
10	10		2	14	6	\bigcirc	16	6	\bigcirc	5	4	1	2	8	6	3		87	27	0	7	16	14	2	14
10	9		2	17	9	0	17	6	1	2	6	0	3	8	4	6		91	15	-	9	18	14	1	21
10	8		3	19	12	-	18	5	2	1	8	\mathbf{I}	4	8	2	8		92	6	0	11	20	13	-	28
8	8		3	20	15	\bigcirc	19	4	5	$\overline{H^{\prime \prime}}$	8	3	5	8	1	9		88	1	1	12	20	12	-	34
6	9	$\mathrm{B}^{\prime \prime}$	4	20	18	0	20	3	8	$\mathrm{H}^{\prime \prime}$	7	5	6	7		10		80	0	2	13	20	10	1	40
3	10	42	5	18	20	0	20	2	12	-	5	7	6	6		9		69	3	4	14	18	8	2	44
0	11	42	5	15	20	0	21	2	15	1	3	8	6	5		8		56	ro	6	14	16	6	4	46
0	11	42	6	12	19	-	21	1	17	3	1	7	5	4		6		42	21	8	13	14	4	6	46
1	9	42	7	9	17	0	22	-	19	5	I'	5	5	3		3		2.9	33	10	12	11	2	8	44
4	7	4 I	8	6	14	1	22	0	20	7	$\mathrm{I}^{\prime \prime}$	3	4	2	$\mathrm{M}^{\prime \prime}$	1		17	47	12	10	8	1	10	40
7	4	4 I	9	3	11	1	23	0	20		-	I	3	1	-	0		7	61	13	8	5	0	12	34
9	1	41	10	1	8	1	23	-	18	8	1	-	2	0	\bigcirc	0		2	73	14	6	3	0	13	28
II	0	40	11	0	5	1	24	1	15	6	3		1	-	1	2		-	83	14	4	1	1	14	21
11	-	40	12	0	2	$\underline{1}$	24	2	12	4	5		0		2	4		3	90	14	2	\bigcirc	2	14	14
10	3	40	13	2	\bigcirc	1	24	3	9	1	7	$\mathrm{J}^{\prime \prime}$	-	L"	3	6		9	92	13	1	\bigcirc	3	13	8
	6	39	14	4	0		24					0				8		19		11	-	1	5	12	3
8	8	38	15	7	1	2	24	5	3	0	7	-		1	5	10		32	84	9	-	2	8	11	1
8	10	38	16	11	2	2	24	5	1	2	5	1		2	6	10		46	75	7		5	10	9	0
9	10	37	17	14	5	2	24	6	0	4	3	2		4	7	9		59	63	5		7	12	7	2
10	10	36	18	17	8	2	24	6	-	6	1	3		6	8	7		72	49	3		ro	13	5	5

Terms in Table P 4 I （concl．）．
Terms in Table P 42

E	F	F	G	H	I	I	J	K	L	M	N	P	Q	S	V
65	30	100	65	30	5	75	60	45	30	25	20	0	25	25	15
10	46	4	6	10	25	25	2	15	10	8	－	o	1	1	7
16	46	1	8	13	19	25	8	16	7	7	－	2	6	－	5
23	44	－	10	15	10	20	13	I5	5	4	I	6	11	－	3
30	40		12	16	2	11	13	13	3	2	2	13	16		1
36	34	G	13	15	－	3	8	9	1	－	4	20	－	T	0
4 I	28	0	14	12	4		2	6	－	0	6	26		\bigcirc	
45	21	－	14	9	12		0	2	\bigcirc	2	8	29		－	
46	14	1	13	5	21		4	－	1	4	10	30		I	
45	8	3	12	2	26		10	－	3	6	12	27		2	
42	3	5	II	－	25	J	14	2	5	8	13	22	R	4	
38	1	7	9	\bigcirc	18	－	12	4	7	8	14	15	18	7	
32	－	9	6	2	9	3	5	8	10	6	14	8	16	9	
25	2	11	4	5	2	9	1	12	12	4	13	3	11	11	
18	5	13	2	9	－	14	1	15	13	2	12	－	6	12	
II	10	14	1	13	5	12	7	16	14	o	II	I	I	13	
6	I_{7}	14	\bigcirc	15	13	7	12	15	14	0	9	4	0	14	
2	24	14	－	16	21	1	14	13	13	2	7	10	2	14	
－	31	13	1	15	26	1	9	10	II	4	5	17	8	13	
－	37	11	2	13	24	5	3	6	9	7	3	24	13	12	
3	42	9	3	9	17	12	－	3	7	8	1	28	17	11	
6	45	7	5	5	8	14		1	4	8	0	30	18	9	
12	46	5	7	2	1	10		\bigcirc	2	6	－	28	15	7	
19	45	3	9	\bigcirc	o	4		I	1	4		24	9	4	
26	42	2	11	－	5	－		4	－	1		17	4	2	
33	37	1	13	2	14	2	K	7	－	－	0	10	－	1	
39	3 I	－	14	5	22	8	－	II	1	0	－	4	－	o	
43	24	0	14	9	26	13	1	14	3	2	1	1	4	－	
45	$\begin{array}{r}17 \\ \mathbf{1} \\ \hline\end{array}$	1	14	12	24	13	3	16	5	5	2	－	9		
46	10	2	13 IT	15 16	16	8	1 ${ }^{7}$	I6	8 ro	7 8	4	3	I5	U	
44	5	4			7	2		14	10		7	8	18	U	
4 I	2	6	9	15	1	\bigcirc	14	II	12	8	II	15	17	－	
35	0	9	7	13	1	4	16	7	13	6	14	22	13	－	
29	1	11	5	10	6	11	16	3	14	3	17	27	8	2	
22	3	12	3	6	15	14	14	1	14	1	19	30	2	4	
15	8	13	I	3	23	II	II	－	13	0	21	29	0	7	
9	14	14	－	－	26	5	7		11	1	22	26	1	ro	
4	21	14	－	o	23	－	4		8	2	22	20	6	13	
1	28	13		1	15	1	1		6	5	20	13	11	16	
F	34	12		4	6	7	－		4	7	18	6	16	18	
F	40	10	H	8	1	13	I	L	2	8	15	2	－	20	
o	44	8	－	12	1	14	3	o	－	7	12			20	
1	46	6	1	15	7	9	6	\bigcirc	－	5	9			20	
4	46	4	3	16	16	3	10	2		3	6			18	
9	43	2	7	16	24	0	13	4		I	3			16	
15	39	I	11	13	26	3	15	6	M	－	I	Q	S	13	
22	33	0	14	10	22	10	16	8	－		－	18	－	10	
29	27	\bigcirc	16	6	14	14	15	II	1		－	16	－	7	
36	20	1	16	3	5	12	12	13	3		1	11	1	4	
41	13	2	14	1	o	6	8	14	5		3	6	2	2	
44	7	4	II	0	1	1	4	14	7	N	6	I	4	\bigcirc	
46	3	6	7	1	8	1	2	13	8	0	9	\bigcirc	5		
45	0	8	4	4	17	6	o	12	7	0	12	2	6		
43	0	10	1	7	24	12	－	10	5	1	15	8	6		
38	2	12	\bigcirc	11	26	14	2	8	2	3	18	13	5		
32	6	13	1	14	21	10	6	5	1	5	20	17	4	V	
25	12	14	3	16	13	3	9	3	－	7	22	18	3	0	
18	18	14	6	16	5	0	13	1	1	9	22	15	2	－	
12	25	13	10	14	－	3	15	－	3	11	21	9	1	1	
6	32	12	13	11	2	9	16	0	6	12	19	4	0	3	
2	38	10	16	7	9	14	15	I	8	13	17	－	－	5	
－	43	8	16	3	18	13	12	2	8	14	14	0	1	7	
－	45	6	15	1	25	7	9	4	7	14	11	4	2	9	
3	46	4	12	－	26	1	5	7	5	13	7	9	3	11	
7	44	2	8		21	－	2	9	2	12	4	15	4	13	
13	41	1	4	I	12	5	0	11	－	10	2	18	5	14	
20	36	－	1	－	4	II	0	13	－	8	1	17	6	14	
27	29	－	0	3	－	14	2	14	1	6	－	13	6	14	
33	22	1	－	II	2	II	5	14	4	4		8	5	13	
39	15	2	3	20	10	4	9	13	6	2		2	4	11	
43	9	4	6	25	19	－	12	12	8	I		0	2	9	

$\infty \square \sim \omega$	HOOmA	QoNHm	NNNNNO				NHHOの	ANHOH	HNAVO	NMGHNN	NNONON	NNOCHM		\bigcirc	$>$
OOHNG	骨HさN	NNNONON	NNNNON	H゙GHAH		H N Oncer	WHHOO	の0 H	HMNNNON	NONONONON		岕岂出出	H゙心HHM	\bigcirc	\bigcirc
－HWNO	MN0 000	$\mathrm{wN}_{\mathrm{N}} \mathrm{Ocm}$	tod	$\mid \underset{\omega N}{ }$	Hosmos	No	$N+\sim{ }^{\text {H／}}$	GHENN	NNNNN			NHHHOL	NUWNO	出	$>$
AGCめNべ		¢0¢ Nown	NWurg	$\stackrel{N}{H} \rightarrow H$ How	GIGAN	－HwCrgig	oñoror	wurusif	rowwr	8かへの○	HWCr 8 ¢	NへOHWN	Mgicin	$\stackrel{\sim}{6}$	\square
MWHON	N	HoのNo ${ }^{\text {N }}$	OUTHO	QNAN O		大亏guvis	$\mathrm{H} \rightarrow \stackrel{N}{N}+$		N $\ddagger \mathrm{rrgow}_{0}$	H゙нW	Mrytrn	$\omega \mathrm{N}$	$\mathrm{HCNNO}^{\mathrm{H}}$	∞_{0}^{0}	\square
Ofucum	Hoow why	UNTHN	N－NGMO	\bigcirc OHWNH	जnimen	$\mathrm{NHOCHON}^{\text {N }}$	$\infty 0 \mathrm{HW}_{\sim}^{\text {Hen }}$	जロッN＋	NAGOON	\bigcirc	1000 No	Moinch	$0 \infty \times \infty$	＇r	\square
－munde	Ğoñicth	Hw̧ccu		जू合等＋H	GWemucucu	NOVNか	GUNNA	HGuccis	Ho	M刀N H W	HOUNMN	Ho mug	G゙心 Nown	cror	\bigcirc
OHOM H	－${ }^{\text {H }}$ N OW	○¢゙NO	Hour ${ }^{\text {H }}$	$\mathrm{HHO}_{\mathrm{O}}^{\mathrm{H}} \mathrm{OH}$		$\forall 1 \sim \circ$	${ }_{N}^{\text {Hactuc }}$	$\stackrel{H}{O} \rightarrow \rightarrow{ }_{\sim}^{N}$	Mitinao	${ }_{\text {Hucurcm}}^{\text {cus }}$	जrmin	びさNの○	HWMuccur	－	\bigcirc
GHMGN			$\sim N O \rightarrow H$	M゙Hum	MoN＇H゙H	OWON	$\stackrel{\text { H゙びい }}{+}$	$0 \rightarrow \mathrm{OH}^{\mathrm{H}} \mathrm{H}$	HGOma	－${ }^{\text {H OHOW }}$	$\bigcirc \mathrm{NOH}$	WOMOA	H心弋゙心	¢	\forall
N゙NのMO	$\omega \bigcirc{ }_{\sim}^{\sim}$	＋ocrover		NONVH゙	Nưucus	Mu゙boucN	（x）	NOWOH		ज ${ }_{\text {H }}^{\text {ch＊}}$	＋ONVH	H゙さかNO	W ${ }^{\text {OHOHN}}$	$\stackrel{\circ}{8}$	\forall

List ix（cont．）．
Terms in Table P_{42}（concl．）．

E	E	F	G	G	H	H	I	J	K	L	M	N	0	P	Q	S	T	W	W
35	105	50	0	70	25	95	50	35	20	10	0	0	0	15	30	10	35	30	100
33	42	o	31	61	1	4	4	2	5	22	6	4	15	4	29	6	0	0	7
43	50	－	35	60	0	2	7	5	4	22	7	5	20	7	35	6	1	2	12
51	56	－	38	59	－	$\underline{1}$	12	7	3	21	8	7	25	12	38	6	2	5	17
56	58	－	42	57	－	1	18	8	3	20	9	8	28	17	37	6	U	10	22
58	56	－	45	55	－	0	25	7	2	18	10	8	30	22	33	5	U	15	26
56	51	1	48	53	1	－	3 I	4	1	17	11	8	30	26	26	5	4	20	28
50	43	1	51	50	2	－	3^{8}	1	1	15	11	7	27	28	18	5	5	24	28
41	33	2	53	47	4	1	44	－	0	13	12	6	23	28	10	4	6	27	26
31	23	3	56	44	5	2	49	1	－	11	12	5	19	26	4	4	7	28	23
21	13	4	58	41	7	3	53	3	0	10	12	3	13	23	0	3	8	27	18
11	5	4	59	37	8	4	56	6	0	8	12	＇2	8	19	1	3	8	24	13
4	1	5	60	34	10	6	58	8	0	6	11	1	4	14	4	2	8	20	8
1	0	6	67	30	12	7	58	8	I	4	11	－	1	9	11	2	7	15	4
0	3	7	62	27	14	9	56	6	1	3	10	－	0	5	$\overline{8}$	1	6	10	1
4	10	7	62	23	16	－	53	4	2	2	9	I	I	2	R	1	5	5	0
11	19	8	62	20	18		49	1	3	1	8	2	4	－	3	1	3	2	1
20	－	8	61	16	19		44	0	4	0	7	3	8	－	4	0	2	0	4
30		8	60	13	20		38	1	5	0	6	4	13	2	5	0	1	0	8
41		8	58	11	21		31	3	6	－	5	6	19	6	5	－	－	2	13
49	F	8	56	8	22	I	25	6	6	0	4	7	23	II	6	－	－	6	18
55	4	7	54	6	22	29	18	8	7	1	3	8	27	16	6	0	0	11	23
58	5	7	51	4	22	36	12	8	8	2	2	8	30	21	6	－	1	16	26
57	6	6	49	2	22	42	7	6	9	3	I	8	30	24	6	－	2	21	28
52	6	5	46	1	21	47	4	3	10	5	1	7	28	27	5	1	3	25	28
44	7	4	42	－	20	52	1	1	11	6	0	6	25	28	4	1	－	27	26
34	7	3	39	\bigcirc	19	55	0	－	11	8	0	4	20	27	3	1		28	22
24	8	3	35	0	17	57	1	1	12	10	－	3	15	24	2	2		27	17
14	8	2	32	1	16	58	3	3	12	12	－	1	10	21	1	2		24	12
6	8	1	28	2	14	57	6	6	12	14	－	0	5	16	1	3		19	7
1	8	1	25	3	12	54	11	8	12	16	1	0	2	11	0	－	V	15	3
0	7	0	21	4		51	16	8	12	17	2	0	－	6	－		3	10	1
3	7	0	18	6	8	46	22	6	11	19	2	1	－	2	0		5	5	0
9	6	\bigcirc	15	9	6	40	－	3	11	20	3	2	3	－	－		6	2	1
17	6	0	12	11	5	33		2	10	21	4	3	7	0	1		4	－	4
28	5	0	9	14	3	27	J	0	9	22	5	5	11	2	2	T	2	－	9
3^{8}	4	1	7	17	2	20	4	1	9	22	7	6	17	5	3	4	0	3	13
47	3	1	5	20	1	14	7	4	8	22	8	7	22	9	3	6	1	6	18
54	2	2	3	24	0	9	8	6	7	22	9	8	26		4	7	－	11	23
58	2	3	2	27	0	5	7	8	6	21	10	8	29		5	8		16	26
57	1	4	1	－	－	2	5	8	5	20	10	8	30	Q	6	8	W	21	28
54	0	5	－		－	0	2	6	4	19	11	7	29	19	6	6	14	25	28
47	0	5	0		1	0	0	3	3	18	12	5	26	27	6	5	19	27	25
37	－	6	0		2	2	0	1	2	16	12	4	22	34	6	3	24	28	22
27	－	7	1		3	5		0	1	14	12	2	17	37	5	1	27	27	17
17	0	7	2	H	4	9	4	1	1	12	12	1	11	38	5	－	28	24	12
8	1	8	3	11	6	14	7		0	11	12	－	7	34	4	0	27	19	7
2	1	8	5	13	8	20	8		0	9	11	－	3	28	3		25	14	3
0	2	8	7	15	10	27	7		0	7	II	－	0	20	2	3	21	9	1
2	3	8	10	16	12	33	5		0	5	10	1	－	12	1	5	16	4	0
7	3	8	13	18	14	40	2	K	0	4	9	2	2	5	0	6	11	1	1
15	4	7	16	19	15	46	－	6	1	2	8	4	5	1	0	8	6	－	4
25	5	6	19	20	17	51	0	7	1	1	7	5	10	－	－	8	3	1	9
35	6	6	22	21	18	54	2	8	2	0	6	6	－	3	－	7	－	3	－
45	7	5	26	22	20	57	5	9	2	0	5	7		9	1	6	0	7	
52	7	4	29	22	21	58	7	10	3	0	4	8	P	16	1	4	2	12	
57	8	3	33	22	22	57	8	10	4	0	3	8	14	24	2	2	5	17	
58	8	2	36	21	22	55	7	11	5	1	2	7	19	32	－	1	10	22	
55	8	2	40	21	22	52	5	11	－	2	1	6	23	36		0	15	25	
49	8	1	43	20	22	47	2	12		3	1	5	26	38		0	19	28	
40	8	1	46	18	21	42	0	12	L	4	－	3	28	36	S	2	24	28	
30	7	0	49	17	20	36	0	12	11	6	0	2	28	31	3	3	27	26	
20	7	－	52	15	19	29	2	12	13	7	0	1	26	23	3	5	28	23	
10	6	\bigcirc	55	13	18	22	5	12	15	9	0	0	22	15	4	7	27	18	
4	5	\bigcirc	57	11	16	16	7	11	16	$\underline{\square}$	1	－	17	7	4	8	25	13	
0	5	1	59	9	14	II	8	II	18		1	0	12	2	5	8	21	9	
1	4	1	60	8	13	6	7	10	19		2	1	7	0	5	7	16	4	
5	3	2	61	6	11	3	4	9	20		3	3	4	2	5	5	11	1	
12	2	2	62	4	9	1	2	8	21		4	－	1	6	6	3	6	0	
22	1	3	62	3	7	0	－		22		5		－	14	6	2	2	1	
32	1	－	62	2	5	1	0	6	22		－		I	22	6	0	0	3	

Terms in Table P 43.

－minu゙u	∞ ¢゙びづ	N N N WNON					NmOmm	0 N		氙䍐县答こ	－vt	\cdots	－Nacole co	－	$>$
	N NWNWNON	号式云动	umano	N N N	ω \％	NmONm	\％		N NNOCNOT	むotvum	＊	Nan Nowlo	Nammme	3	$>$
\％\times O	l	－Minus	6	N No	N	\bigcirc N゙心	SNNNN	${ }_{\sim}^{N}$ N ${ }_{\text {ONJ }}$	－	－	W We	$N \mathrm{Hmm}$	OM6uv	会	$>$
N ${ }_{0} \pm 9$ N	せ NんN＊＊	むの日大思		\％	ज゙大 80\％	uncu゙s	M，\％						\＃sucgin	\cdots	x
ज9usum	－vi̛nc	咸思ON	Numouncu		$\mathrm{SOCNOHOH}_{0}$		$\breve{y y y}_{\text {cumい }}$	＋0．68＊	$m \rightarrow \stackrel{N}{\omega}$	8゙ちごNい			somt	8	tox

17－2

LIST ix (cont.).
Terms in Table P 43 (concl.).

B	C	C	D	D	E	E	F	G	G	H	H	I	J	K	L	M	N	O	P	Q	S	T	W	W
155	50	120	30	100	35	105	50	0	70	25	95	50	35	20	10	0	0	0	15	30	10	35	30	100
30	18	57	1	1	60	57	6	-	17	17	21	16	8	12	14	-	8	30	25	37	3	4	109	120
8	42	41	\bigcirc	6	56	50	5	-	19	r 5	20	10	8	12	16	-	8	29	28	30	4	6	II4	12
-	57	17	5	12	49	4 I	4	-	20	I3	18	5	6	11	18	-	7	26	30	22	4	8	II9	122
II	54	1	II	16	40	30	3	I	21	ro	16	2	3	11	19	1	6	22	30	14	4	-	121	119
34	34	4	16	14	29	20	2	I	23	8	14	0	I	10	21	2	4	17	27	6	5	U	122	115
56	11	24	15	9	18	10	2	2	24	7	12	0	\bigcirc	10	22	2	3	II	24	I	5	8	120	109
64	-	47	10	3	9	4	I	3	25	5	10	I	1	9	23	3	2	6	19	o	6	8	117	103
54	8	58	4	-	3	0	1	4	26	3	8	4	3	8	24	4	1	3	13	3	6	7	II2	98
31	30	50	-	2	-	1	o	6	27	2	6	8	6	7	24	5	-	-	8	8	6	6	106	93
9	52	28	2	8	I	5	-	7	27	I	4	14	8	6	24	6	-	-	4	16	6	5	100	91
\bigcirc	58	7	7	14	6	13	\bigcirc	8	28	0	3	20	8	5	23	7	I	2	1	25	6	4	95	90
10	45	-	13	16	14	23	-	10	28	-	2	27	6	4	23	8	2	5	-	33	6	2	92	92
32	21	13	16	13	24	34	1	11	28	-	1	33	3	3	22	9	3	10	1	38	6	1	90	95
55	3	36	14	7	35	44	1	13	28	-	0	40	1	2	20	10	5	15	4		6	o	91	100
	2	55	8	I	46	52	2	15	28	,	-	46	0	2	19	II	6	20	8	R	5	\bigcirc	93	106
	19	56	2	0	53	58	2	16	27	2		52	I	I	17	12	7	25	13	6	5	0	98	112
	43	40	o	4	59	5	3	18	26	4		56	4	-	15	12	8	28	19	6	4	\bigcirc	103	117
	57	16	3	10	60		4	19	26	5		59	6	-	13	12	8	30	24	5	4	I	109	120
	53	I	9	15	57		5	21	25	7		60	8	-	II	12	8	30	27	5	4	2	115	122
C	33	5	15	15	51	F	6	22	23	9	I	60	8	-	9	12	7	27	30	4	3	4	119	121
58	10	25	16	II	42	0	6	23	22	II	0	58	6	0	7	II	5	24	30	3	3	5	122	119
48	-	47	12	4	32	\bigcirc	7	25	21	13	1	55	3	-	5	11	4	19	28	2	2	6	122	114
26	9	58	6	-	21	0	8	26	19	15	3	50	1	1	3	10	2	13	25	1	2	7	120	109
5	32	49	1	1	12	1	8	26	18	17	7	44	-	2	2	9	I	8	20	1	I	8	116	103
1	52	27	1	6	4	1	8	27	16	19	12	38	I	2	I	8	-	4	15	-	1	-	110	97
15	57	6	5	13	O	2	8	28	15	21	18	31	4	3	0	7	-	1	10	o	1		105	93
38	44	-	12	16	-	3	8	28	13	22	24	24	7	4	-	6	-	0	5	o	-		100	90
56	20	14	16	14	4	4	7	28	11	23	31	18	8	5	-	5	1	1	2	-	-		95	90
55	3	37	15	9	12	4	7	28	10	24	38	12	7	6	-	4	2	4	-	I	-		9 I	92
37	3	55	10	3	21	5	6	28	8	24	44	7	5	7	I	3	4	8	-	2	-	V	90	96
14	20	56	3		32	6	5	27	7	24	50	3	2	8	2	2	5	13	3	3		6	91	101
-	44	38	0		42	7	5	27	6	24	55	I	-	9	3	1	6	19	6	4		5	94	107
6	57	15	2		51	7	4	26	4	23	58	-	-	10	5	1	7	24	11	4		5	98	112
27	52	1	7		57	8	3	25	3	22	60		2	ro	7	o	8	27	17	5		-	104	117
49	32	5	13	E	60	8	2	24	2	21	60	J	4	II	9	0	8	30	22	6	T	-	110	121
58	9	26	16	60	59	8	2	23	I	19		8		II	II	0		30	26	6	8	2	II5	122
47	0	48	13	58	53	8	1	21	1	17	56	7	8	12	13	0	6	28	29	6	8	5	119	121
25	10		7	52	46	8	0	20	-	15	52	5	7	12	15	I	5	25		6	6	5	122	118
5	33		2	44	35	7	o	19	0	13	46	2	5	12	17	1	4	20		5	4		122	114
1	53	D	0	34	24	7	0	17	-	11	40	o	2	12	19	2	2	15	Q	4	2	W	120	108
16	57	o	3	23	14	6	o	15		9		o	o	12	20	3	1	10		4	1	122	115	102
40	43	3	10	13	6	5	-	14		7	27.	2	-	11	22	4	o	5	38	3	-	121	IIO	97
56	19	9	15	5	I	4	I	12		5	20	5	2	11	23	5	-	2	33	2	-	118	105	93
55	2	14	16	1	o	3	1	11		4	14	7	5	Io	23	6	o	-	25	1	1	I13	99	90
36	3	16	12	-	3	3	2	9	H	2	8	8	7	9	24	7	I	-	16	-	3	107	94	90
13	21	13	5	4	9	2	3	8	-	I	4	7		8	24	8	2	3	8	0	5	102	91	92
o	45	6	1	10	18	1	3	6	0	0	1	4		7	24	9	4	6	3	-	7	97	90	97
7	58	1	1	20	29	1	4	5	1	-	o	2		6	23	Io	5	II	-	0	8	92	91	102
28	52	-	6	30	40	\bigcirc	5	4	2	\bigcirc	\bigcirc	0		5	22	11	7	${ }^{1} 7$	6	I	8	90	94	107
50	30	4	12	41	49	-	6	3	3	0	2	o	K	$\cdot 4$	21	II	8	22	6	1	7	90	99	II3
58	8	11	16	50	56	\bigcirc	7	2	4	1	5	2	\bigcirc	4	19	12	8	26	14	2	6	93	105	118
47	-	15	15	57	60	o	7	$\underline{1}$	6	2	10	5	\bigcirc	3	18	12	8	29	22	3	4	97	110	121
24	II	15	9	60	59	-	8	1	8	3	16	7	0	2	16	12	7	-	30	4	2	102	115	-
4	34	10	3	59	55	1	8	0	10	5	22	8	1	I	14	12	6		37	5	0	108	120	
1	54	4	0	54	48	2	8	0	12	7	29	7	I	I	12	12	5	P	40	5	0	114	122	
17	57	0	2	47	38	2	8	0	14	8	36	4	2	-	10	11	3	30	39	6	0	118	122	
41	42	1	8	37	27	3	8	0	16	10	42	1	3	0	8	10	2	29	35	-	2	121	II9	
57	18	7	14	26	17	4	7	I	18	13	48	-	4	-	6	9	1	26	28		4	122	115	
54	2	13	16	15	8	5	7	1	20	15	53	1	4		4	8	-	22	19		6	121	110	
35	4	16	13	7	2	5	6	2	21	17	57	3	5	L	3	7	0	17	II	S	7	117	104	
12	22	14	7	2	0	6	5	3	22	18	59	6	6	0	2	6	I	II	4	-	8	112	98	
-	46	8	2	-	2	7	4	4	23	20	60	8	7	o	1	5	2	6	0	-	8	107	94	
8	58	2	0	2	7	7	4	5	24	21	59	8	8	1	-	4	3	3	-	-	7	IOI	91	
29	51	0	4	8	15	8	3	6	24	22	57	6	9	2	-	3	4	-	4	-	5	96	90	
51	29	3	10	17	26	8	2	8	24	23	53	4	10	3		2	6	-	11	I	3	92	91	
58	8	9	15	27	37	8	I	9	23	24	48	I	11	4		2		2	19	I	1	90	95	
46	-	14	16	38	47	8	1	11	22	24	42	o	11	6		1	8	5	28	1	-	90	100	
22	12	16	11	48	54	8	0	12	21	24	36	I	12	8		-	-	10	35	2	o	93	105	
4	35	12	5	55	59	7	0	14	20	23	29	3	12	10		0		15	39	2	1	97	111	
2	54	6	0	59	60	6	-	15	18	22	22	6	12	12		-		20	40	3	2	103	116	

List ix (cont.).
Terms in Table P 44.

A	A	A	B	B	B	C	C	D	D	E	E	F	G	G	I	J	K	L.	M	N	P	Q	S	T	W
0	70	140	5	75	145	40	110	10	80	0	70	5	0	70	0	5	10	20	30	45	5	20	0	30	5
33	60	2	35	45	25	40	2	18	9	22	18	6.	3	-	6	12	50	11	0	-	6	20	3	18	8
34	59	2	23	45	36	40	2	19	8	23	17	6	5	-	7	12	50	10	1	-	4	17	4	16	7
35	59	1	12	39	44	40	2	19	8	24	16	5	6	I	8	11	49	10	2	-	2	14	5	II	6
36	58	1	3	28	46	40	1	20	7	25	15	4	6	H	9	9	48	9	3	1	1	11	6°	5	5
37	57	1	0	17	42	40	1	20	7	26	14	3	4	H	10	8	46	9	4	3	0	8	6	1	4
38	57	1	3	7	33	40	I	21	6	27	13	2	2	4	11	6	44	8	5		0	6	6	0	3
39	56	-	11	1	22	40	1	21	6	28	12	1	\bigcirc	6	12	4	42	8	6		2	4	6	3	2
40	55	-	22	$\underline{1}$	10	39	1	22	5	29	11	-	\bigcirc	7	12	2	40	7	6		4	2	5	-	1
41	54	-	34	7	3	39 39	\bigcirc	22	5	30	10	\bigcirc	1	8	12	1	38 36	6	6		6	1	4		0
42	54	-	42	17	-	39	o	23	4	31	9	-	3	8	12	0	36	6	6	0	7	0	3	U	0
43	53	0	46	29	4	39	-	23	4	32	8	-	5	6	II	\bigcirc	34	5	5	4	8	0	2	8	1
44	52	-	43	39	12	39	-	23	4	33	8	1	6	4	11	0	32	4	4	6	8	0	1	II	2
45	51	\bigcirc	36	45	24	38	\bigcirc	24	3	34	7	2	6	2	10	1	30	4	3	7	7	$\underline{1}$	-	14	3
46	50	\bigcirc	24	45	35	38	\bigcirc	24	3	35	6	3	4	1	8	3	28	3	2	8	5	2	-	16	-
47	49	-	13	39	43	38	-	24	3	36	5	4	2	-	8	5	27	3	1	8	3	4	-	16	
48	48	-	4	29	46	37	0	24	2	36	5	5	1	o	6	7	26	2	-	8	1	6	0	15	
49	48	-	0	18	43	37	-	25	2	37	4	5	0	1	5	8	26	2	\bigcirc	7	0	8	1	13	
+ 50	47	1	2	7	34	36	-	25	2	38	3	6	1	3	4	10	25	1	-	6	0	11	2	10	
+51	46	1	10	I	23	36	-	25	1	39	3	6	2	5	3	11	25	1	1	4	1	14	3	7	
51	45	1	21	1	11	35	1	25	1	39	2	6	4	7	2	12	25	I	2	3	3	17	3	4	X
52	44	I	33	6	3	35		26	1	40	2	5	6	8	1	12	25	-		${ }^{1}$	5		4	2	5
53	43	2	42	16	0	34	I	26	1	41	,	4	6	8	-	11	25	-		-	7		5	0	7
54	42	2	46	28	3	34	1	26	1	41	1	3	5	7	-	10	24	-		o	8		6	-	9
55	41	2	44	39	12	33	1	26	-	42	$\underline{1}$	2	3	5	-	9	24	-		0	8		6	1	10
55.	40	3	36	45	-	33	2	26	0	42	1	1	1	3	0	7	23	-	N	I	7	R	6	3	9
56	39	3	25	45		32	2	26	-	42	-	1	-	1	I	5	22	-	4	2	5	7	5	6	7
57	38	4	13	40		31	2	26	-	43	-	-	1	0	1	3	20	o	5	3	3	8	5	10	5
58	37	4	4	30		31	3	26	-	43	-	-	2	\bigcirc	2	2	18	I	7	5	1	9	4	13	3
58 59	36 35	5	2	18 8		30 30	3 4	26 26	\bigcirc	43 44	-	1	4	1	3	-	16	I	8	6 7	\bigcirc	10	3 2	15	1
59	35	5	2	8	C	30	4	26	0	44	-	1	6	2	4	-	14	I	8	7	0	II			0
60	34	6	9	1	20	29	4	26	0	44	0	2	6	4	5	-	12	2	8	8	I	12	1	16	1
60	32	6	20	-	21	28	5	26	-	44	\bigcirc	2	5	6	8	2	10	2	7	8	2	13	o	14	3
61	3 I	7	32	6	22	27	5	26	-	44	-	4	3	8	8	2	8	3	6	7	4	13	\bigcirc	12	-
61	30	8	41	15	22	27	6	25	-	44	-	4	1	8	9	4	6	3	5	6	6	14	-	9	
62	29	8	46	27	23	26	6	25	-	44	I	5	0	7	10	5	4	4	3	5	8	14	0	6	
62	28	9	44	38	24	25	7	25	0	44	I	6	0	6	11	7	2	5	2	3	8	14		3	
63	27	10	37	45	25	25	7	25	1	44	1	6	2	4	11	9	1	5	1	2	7	14	2	1	
63	26	11	26	46	25	24	8	25	1	44	2	6	4	2	12	11	\bigcirc	-	\bigcirc	1	6	14	-	\bigcirc	
64	25	11	14	41	26	23	9	24	1	43	2	5	6	-	12	12	\bigcirc		1	O	4	13 12		${ }^{\circ}$	
64	24	12	5	31	27	22	9	24	1	43	2	5	6	-	12	12	0	M	1	0	2	12	T	2	Y
64	23	13	0	19	27	22	10	24	2	43	3		5	\bigcirc	12	12	1	3	2	1	-	12		5	9
65	22	14	2	8	28	21	10	23	2	42	3	3	3	2	11	11	2	4	3	2	0	11	15 18		11
65	21	15	9	1	29	20	11	23	2	42	4	2	1	4	10	10 8	4	5	5	3	1	10	18 17		12
65	20	15	20	0	30	19	12	23	2	42	5	I	\bigcirc	6	8	8	$1{ }^{7}$	6	6	5	$\underline{2}$	8	17 13		13
65	19	16	31	5	30	18	13	22	3	41	5	0	0	7	8	6	10	6	7	6	-	8	13	V	12
66	18	17	4 I	15	31	18	13	22	3	41	6	-	2	8	7	4	14	6	8	7		6	7	7	11
66	18	18	46	26	31	17	14	22	3	40	7	-	4	8	6	3	17	5	8	8		5		9	9
66	17	19	45	37	32	16	15	21	4	39	8	I	5	7	4	1	21	4	8	8		4	0	11	7
66 66	16	20	38	44	33	15 15	15	21 20	4	39 38	8	I 2	6	5	3 2	\bigcirc		3 2	7 5	8		3	2	13 14	6
66	15	21	27	46	33	15	16	20	5	38	9	2	5	3	2	0	L	2	5	7	Q	2	7	14	5
66	14	22	15	41	34	14	17	20	5	37	10	3	3	1	1	\bigcirc	6	1	4	5	20	2	13	14	6
66	13	23	5	32	34	13	18	19	6	36	11	4	1	o	1	1	7	0	3	4	23	1	17	13	7
66	12	24	-	20	35	13	19	19	6	36	12	5	\bigcirc	\bigcirc	\bigcirc	2	8	0	1	2	26	0	18	11	-
66	12	25	1	9	35	12	19	18	7	35	13	6	0	1	\bigcirc	4	8	-	0	1	29	-	14	9	
66	11	26	8	2	36	II		18	7	34	14	6	2	3	-	-	9	0	0	0	32	0	8	7	
66	10	27	19	-	36	10		17	8	33	15	6	4	5	\bigcirc		9	1	\bigcirc	\bigcirc	34	\bigcirc	3	5	
65	9	28	31	5	37	ro		17	8	32	16	6	5	8	1		10	2	2	1	36 38 38	I	1	3 1	
65	9	29	40	14 18	37	9		16	9	31	17	5	6	8	2		10	3	2	$\underline{1}$	38 39	I	$\underline{1}$	1	
65	8	30	46	26	38	8		16	9	30	18 19	4	5	8	3		11	4	3 5	${ }^{2}$	39 40	1	12	\bigcirc	
65	7	31	45	37	38	8	D	15	10	29	19	3	4	7	4	K	11	5	5	-	40	2	12	0	
64	7	32	38	44	38	7	13	14	10	28	20	2	2	6	5	25	11	6	6		40	3	17	${ }^{1}$	
64	6	-	28	46	39	7	14	14	II	27	21	1	\bigcirc	4	-	29	12	6	8		40	4	18	3	
63	5		16	42	39	6	14	13	11	26	-	-	\bigcirc	2		33	12	6	8		39	5	15	5	
63	5		6	33	39	6	15	13	12	25		\bigcirc	1	0		36	12	5	8		38	6	10	W	
63	4	B	1	21	39	5	15	12	12	24	F	0	3	0	J	40	12	4	7	P	36	-	4	W	
63	4	23	1	10	39	5	16	12		23	3	0													
62	3	34	7	2	40	4	16	11		22	4	1	6	2	8	46	12	2	5	6	32		1	5	
62	3	43	18	-	40	4	17	10		21	5	2	6	-	10	48	12	1	3	8	29		5	6	
61	3	46	30	4	40	3	17	10		20	6	-	4		11	49	11	-	2	8	26		11	8	
61	2	43	40	13	40	3	18	9		19	6		2		12	50	11	O	1	8	23		16		

a	a	β	β	β	β	γ	δ	δ	δ	ζ	ζ	A	A	A	B	B	B	C	C	E	E	I	J	L	T
0	70	0	70	140	210	35	0	70	140	0	70	0	70	140	5	75	145	40	110	10	80	15	20	25	35
13	10	12	3	o	7	6	10	18	20	6	8	-	25	21	20	8	o	10	15	I	20	6	-	O	3
14	9	18	8	1	2	7	14	19	18	8	10	-	26	21	22	14	2	10	14	1	19	6	-	\bigcirc	1
14	9	22	14	4	0	8	17	20	15	10	11	-	26	20	21	19	6	10	14	2	19	6	I	-	-
15	8	24	20	9	1	9	19	19	12	11	12	-	26	20	17	22	12	II	14	2	19	6	2	-	
15	8	22	23	16	5	10	20	17	8	12	12	0	27	19	II	22	17	II	13	2	18	5	2	\bigcirc	U
16	7	18	24	21	11	11	19	14	5	12	II	\bigcirc	27	19	6	19	21	12	13	3	18	5	3	o	0
17	6	12	21	24	17	II	18	10	2	II	10	-	28	18	2	14	22	12	13	3	17	4	4	-	0
17	6	6	16	23	22	12	15	6	1	9	8	-	28	18	-	8	20	12	12	3	17	4	5	O	I
18	5	2	10	20	24	12	12	3	o	7	6	o	28	17	1	3	16	13	12	4	16	3	6	o	3
18	5	0	4	14	23	12	8	1	I	5	4	I	29	17	5	-	10	13	12	4	16	2	6	1	4
19	4	2	1	8	18	12	5	\bigcirc	3	3	2	$\underline{1}$	29	16	10	-	5	13	11	5	16	2	6	1	6
20	4	6	o	3	12	11	2	1	6	1	0	I	29	16	16	3	I	14	11	5	15	I	6	1	7
20	3	12	3	-	6	II	-	2	-	o	o	I	29	15	20	8	-	14	10	6	${ }_{5}$	1	5	1	8
21	3	18	8	1	2	10	o	5		o	-	I	30	15	22	14	2	14	10	6	14	0	4	2	8
21	3	23	14	4	-	9	I	8	ϵ	o	1	2	30	14	21	19	6	15	10	6	14	-	3	2	7
22	2	24	20	10	1	8	4	12	6	2	3	2	30	14	17	22	II	15	9	7	13	-	2	2	6
22	2	22	23	16	6	7	7	15	8	3	5	2	30	13	12	22	17	15	9	7	13	0	2	2	5
23	2	18	24	21	12	6	10	18	10	5	7	2	31	13	6	19	21	16	8	8	12	o	1	3	3
23	1	12	21	24	18	5	14	20	11	8	9	2	31	12	2	14	22	16	8	8	12	o	0	3	2
23	1	6	16	23	22	4	17	20	12	10	II	3	31	12	-	8	20	16	8	9	II	1	-	3	1
24	I	I	10	20	24	3	19	19	12	11	12	3	31	II	I	3	16	${ }^{1} 7$	7	9.	10	1	0	4	-
24	1	-	4	14	22	2	20	16	II	12	12	3	31	11	5	-	II	17	7	$10 \cdot$	10	2	0	4	-
24	o	2	1	8	18	1	19	13	9	12	11	4	31	10	10	-	5	17	7	10	9	2	1	4	1
25	-	7	-	3	12	1	18	10	7	11	10	4	32	10	16	3	I	17	6	II	9	3	2	5	2
25	-	13	3	o	6	0	15	6	5	10	8	4	32	10	20	8	-	18	6	12	8	4	3	5	3
25	\bigcirc	19	8	1	2	0	II	3	3	8	6	5	32	9	22	13		18	6	12	8	4	4	5	
25	o	23	15	4	o	o	8	1	1	6	4	5	32	9	21	18		18	5	13	7	5	5	5	6
26	-	24	20	10	2	-	4	-	o	4	2	5	32	8	17	21		18	5	13	7	5	5	6	7
26	o	22	23	16	6	1	2	1	o	2	1	6	32	8	12	22		19	5	14	6	6	6	6	8
26	0	17	24	21	-	1	0	2	o	1	0	6	32	7	7	19	C	19	4	14	6	6	6	6	8
26	o	11	21	24		2	-	5	1	-	0	7	32	7	2	15	0	19	4	15	6	6	6	6	7
26	o	5	16	23		3		9	3	o	1	7	32	7	-	9	-	19	4	15	5	6	5	6	6
26	-	1	9	19		4	4	12	5	1	2	7	32	6	1	4	-	19	3	16	5	6	5	-	4
26	o	o	4	14		5	7	16	7	3	4	8	32	6	4	I	-	19	3	16	4	6	4		3
26	1	2	1	8	γ	6	II	18	9	5	7	8	32	5	10	o	-	20	3	16	4	5	3	T	I
26	1	7	0	3	6	7	14	20	11	7	9	9	32	5	15	3	\bigcirc	20	3	17	3	5	2	0	0
26	1	13	3	-	7	8	17	20	12	9	10	9	32	5	20	7	o	20	2	17	3	4	$\underline{1}$	1	-
26	1	19	9	1	8	9	19	19	12	11	12	10	32	4	22	13	-	20	2	18	3	4	-	3	
26	2	23	15	5	9	10	20	16	11	12	12	10	32	4	21	18	-	20	2	18	2	3	-	6	
25	2	24	20	10	10	10	19	13	10	12	12	Io	31	4	18	2 I	1	20	2	19	2	3	-	8	V
25	2	22	24	17	II	11	17	9	8	12	11	II	3 I	3	13	22	1	20	1	19	2	2		8	-
25	3	17	24	22	11	12	14	6	6	10	9	II	31	3	7	20	I	20	1	19	1	1		6	0
25	3	11	21	24	12	12	11	3	4	8	7	12	31	3	2	15	I	20	1	20	1	1		4	1
24	3	5	15	23	12	12	7	1	2	6	5	12	3 I	2	o	9	1	20	1	20	1			1	1
24	4	1	9	19	12	12	4	0	1	4	3	13	3 I	2	I	4	1	20	1	20	1	0	L	0	2
24	4	0	4	13	12	12	1	1	o	2	1	13	30	2	4	1	2	20	1	21	1	0	6	1	3
23	5	2	0	7	11	11	-	3	0	1	0	14	30	2	9	\bigcirc	2	20	-	21	-	-	6	3	4
23	5	7	-	2	11	10	-	6	1	0	-	14	30	2	15	2	2	20	-	21	-		6	5	5
23	6	13	3	-	10	10	2	9	3	0	1	15	30	I	20	7	2	20	\bigcirc	21	-		6	7	6
22	6	19	9	1	9	9	4	13	5	1	2	15	29	1	22	13	3	20	-	21	-	J	6	8	6
22	7	23	15	5	8	8	8	16	7	2	4	16	29	I	21	18	3	20	0	22	\bigcirc	\bigcirc	6	7	6
21	8	24	21	11	7	7	11	19	9	4	-	16	29	1	18	21	3	19	-	22	o	-	5	5	5
21	8	22	24	17	6	6	15	20	11	6		17	29	1	13	22	3	19	-	22	-	1	5	2	5
20	9	17	24	22	5	5	18	20	12	8		17	28	-	7	20	4	19	-	22		1	5	-	4
20	9	II	20	24	4	4	19	18	12	10		18	28	-	3	15	4	19	-	22	I	2	5	-	3
19	10		15	23	3	3	20	16	12	II		18	28	-	-	10	4	19		22	0	3	4	2	2
18	II	1	9	19	2	2	19	12	11	12		19	27	-	I	4	5	19		22	-	4	4	5	1
18	11	-	3	13	2	1	17	9	9	12		19	27	0	4	1	5	18		22	o	5	4	7	-
17	12	2	-	7	1	1	14	5	7	II		20	26	-	9	-	5	18		22	1	5	3	8	-
17	12	7	-	2	0	0	10	2	5	9		20	26	-	15	2	6	18	E	22	I	6	3	7	
16		14	4	0	0	0	7	1		7		21	26	0	19	7	6	18	O	22	1	6	3	5	
15		19	9	1	-	0	4	0	1	5		21	-25	-	22	12	6	17	0	22	2	6	2	3	
15		23	15	5	-	-	1	1	0	3		22	25		21	17	7	17	-	22	3	5	2	1	
14		24	2 L	11	0	I	-	3	0	$\underline{1}$		22	24		18	21	7	17	0	21	3	5	2	o	
14		21	24	17	1	1	0	6	1	-		23	24	B	13	22	7	17	0	21	4	4	2	I	
13		16	23	22	2	2	2	10	2	\bigcirc		23	24	0	8	20	8	${ }^{16}$	0	21	4	3	$\underline{1}$	4	
12		10	20	24	2	3	5	13	4	I		24	23	1	3	16	8	16	-	21	5	2	1		
12		5	15	23	3	4	8	16	-	3		24	23	5	0	10	8	16	$\underline{1}$	21	5	1	I	8	
11		1	8	19	4	5	12	19		4		24	22	II	o	5	9	15	1	20	6	-	I	8	
II		0	3	13	5	-	15	20		6		25	22	16	3	1	9	15	1	20	6	0	0	6	

List ix (cont.).

Terms in Table P 45 (concl.).
Terms in Tables P 46, P 47.

XY	a	a	β	β	β	$\boldsymbol{\gamma}$	γ	${ }^{3}$	8	*	5	$\mathrm{B}^{\prime \prime}$	$\mathrm{B}^{\prime \prime}$	$\mathrm{C}^{\prime \prime}$	$\mathrm{D}^{\prime \prime}$	$\mathrm{E}^{\prime \prime}$	$\mathrm{F}^{\prime \prime}$	$\mathrm{G}^{\prime \prime}$	$\mathrm{H}^{\prime \prime}$	$\mathrm{I}^{\prime \prime}$	$\mathrm{J}^{\prime \prime}$	$\mathrm{K}^{\prime \prime}$	$\mathrm{M}^{\prime \prime}$	$\mathrm{N}^{\prime \prime}$
0	55	125	60	130	205	25	95	55	125	40	55	0	70	45	25	25	25	25	30	35	40	45	0	15
-	II	0	0	2	6	4	3	5	9	4	2	15	-	12	2	20	5	22	4	2	-	2	7	8
1	11	0	1	0	3	4	3	7	10	5	3	16	-	11	3	21	5	31	4	1	-	4	8	7
2	12	-	4	-	1	3	2	9	10	6	4	± 7	-	\%	5	22	5	38	3	1	3	7	9	5
4	12	-	7	2	-	2	2	10	9	6	5	18	1	9	7	22	4	40	3	1	8	9	10	3
6	12	-	10	5	1	I	1	10	8	6	6	19	1	8	8	20	4	37	2	1	14	10	го	1
7	12		12	8	3	I	1	10	7	5	6	20	\%	7	8	18	4	30	2	0	21	10	It	-
8	12		12	10	6	I	-	9	5	5	6	21	2	6	7	16	3	20	2	-	27	8	12	-
7	12		IT	12	9	-	0	7	3	4	6	22	2	5	6	13	3	10	1	-	3	6	12	$\underline{1}$
6	12		8	12	11	-	-	6	1	3	5	23	3	4	4	9	3	3	1	-	32	3	13	3
4	12	β	5	10	12	-	-	4	-	2	4	24	3	3	2	6	3	-	1	0	30	1	13	5
2	12	-	2	7	11	-		2	-	1	3	24	4	3	1	4	2	2	\pm	-	26	\bigcirc	14	7
$\underline{1}$	12	1	0	4	9	0		1	-	-	2	25	5	2	-	2	2	9	-	-	20	1	14	8
-	12	3	-	2	6	-		-	1	-	1	26	6	I	-	-	2	18	-	-	13	2	14	8
	12	6	1	-	3	1		-	3		-	27	6	1	1	-	1	28	-	-	7	-	14	7
a	12	9	4	0	1	I	${ }^{3}$	1	4	5	-	27	7	1	3	1	1	36	-	1	2	L' ${ }^{\prime \prime}$	14	5
0	12	II	7	2	-	1	-	2	8	-	-	28	8	o	5	2	1	40	-	1	\bigcirc	3	14	3
-	12	12	10	5	1	2	o	4	8	-	1	28	9	-	6	4	1	39	-	1	1	5	13	1
o	12	11	12	8	3	2	I	5	9	1	2	29	10	-	8	7	1	33	-	1	4	6	13	-
-	12	9	12	10	6	3	3	7	10	2	3	29	11	-	8	10	-	24	-	2	9	6	12	o
-	II	6	11	12	9	3	5	9	10	3	4	29	12	0	7	13	-	14	-	2	-	5	12	1
0	II	3	8	12	11	4	6	10	8	4	5	30	13	-	6	16	-	6	1	2		4	11	3
0	II	1	5	10	12	4	8	10	8	5	5	30	14	o	5	19	\bigcirc	1	1	3		2	10	5
-	II	-	2	7	11	5	9	10	6	5	6	30	-	1	3	21	-	6	1	3		\bigcirc	10	7
0	II	1	0	4	9	5	10	9	5	6	6	30		$\underline{1}$	1	22	-	6	1	4		o	8	8
1	II	3	-	1	6	6	10	7	3	6	6	30	$\mathrm{C}^{\prime \prime}$	1	0	22	-	14	2	-	$\mathrm{K}^{\prime \prime}$	1	8	
1	10	6	1	-	3	6	9	5	1	6	5	30	15	2	-	21	-	24	2		5	2	7	6
I	10	9	4	-	1	6	8	4	-	5	4	30	16	3	1	20	-	33	2			4	6	4
I	10	11	7	2	-	6	6	2	-	4	3	29	17	3	3	18	-	39	3		9	5	5	2
I	10	12	10	5	$\underline{1}$	6	4	${ }_{0}$		3	$\stackrel{2}{1}$	29	18	4	4	15 15	\bigcirc	40 36	3		10 9	6 6	4	I
1	10	11	12	8	3	6	3	0	-	2	1	29	19	5	6	12	0	36	4	$\mathrm{J}^{\prime \prime}$	9	6	4	0
2	9	9	12	11	6	6	1	\bigcirc	\bigcirc	I^{*}	\bigcirc	28	20	6	7	8	1	28		16	7	5	3	\bigcirc
2	9	6	10	12	9	5	-	1	o	\bigcirc	-	28	21	7	8	5	1	18		23	4	3	2	2
2	9	3	8	12	${ }^{19}$	5	\bigcirc	2	1	\bigcirc	\bigcirc	27	22	8	8	3	1	9		28	2	1	2	-
2	9	1	5	10	12	4	-	4	2	-	\bigcirc	27	23	9	6	1	1	2		31	\bigcirc	\bigcirc	1	
2	8	-	2	7	11	4	1	6	3	I	1	26	24	10	5	0	1	-	$\mathrm{I}^{\prime \prime}$	32	-	0	1	$O^{\prime \prime}$
3	8	,	\bigcirc	4	6	3	3	7	5	2	2	25	25	11	3	-	2	3	4	30	3	3	\bigcirc	7 11
3	8	3	-	1	6	3	5	9	5	2	3	24	26	12	1	1	2	10	4	25	3	3	0	
3	8	6	2	-	3	2	7	10	5	3	4	23	27	13	-	3	2	-	5	19	8	4	0	13
3	7	9	4	-	1	2	8	10	6	4	5	23	27	14	${ }_{5}$	5	2		5	12 6	80	6	\bigcirc	14 13
4	7	11	7	2	-	1	9	10	6	5	6	22	28	-	1	8	3	H^{\prime}	6	6	10	6	0	13
4	6	12	10	5		1	10	9	6	6	6	21	29		2			4	6	2	10	5	\bigcirc	10
4	6	11	12	8		1	10	7	5	6	6	20	29		-			4	6	-	8	4	I	7
4	6	9	12	11		-	9	5	4	6	5	19	29					5	7	1	6	2	1	3
5	6	6	10	12		-	8	3	3	5	4	18	30					5	7	5	3	1	2	1
5	6	3	8	12	γ	0	6	2	2	4	3	17	30	$\mathrm{D}^{\prime \prime}$	$\mathbf{E}^{\prime \prime}$	$\mathrm{F}^{\prime \prime}$	$\mathrm{G}^{\prime \prime}$	6	7	11	1	-	2	-
		1	5	10	-	\bigcirc	4	1	1	3	2	16	30	4	11	3	20	6	7	18	-	0	3	1
6	5	-	2	7	-	-	2	-	-	2	1	15	30	6	14	3	30	6	8	24	0	2	4	4
6	5	T	-	4	-	-	$!$	-	-	1	1	14	30	7	17	4	37	7	8	29	2	3	4	8
6	4	3	-	1	-	I	-	1	-	-	-	13	30	8	19	4	40	7	8	32	4	5	5	11
6	4	6	2	0	1	1	-	2	1	-	-	12	30	8	21	4	38	7	8	32	7	6	6	14
	4	9	4	-		1	1	4	1		0	11	29	7	22	4	31	3	8	29	9	6		14
7	4	11	7	2	2	2	2	6	2	o	1	Io	29	5	22	5	22	8	8	23	10	5		12
7	3	12	10	5	2	2	3	8	3	1	2	9	29	3	21	5	12	8	8	17	9	3		9
8	3	11	12	8	3	3	5	9	4	2	3	8	28	2	19	5	4	8	8	10	8	1		6
8	3	8	12	II	3	4	7	10	5	3	4	7	27	-	17	5	-	8	8	5	5	-	$\mathrm{N}^{\prime \prime}$	2
8	3	5	10	12	4	4	8	10	6	4	5	6	27	-	14	5	1	8	7	1	2	0	4	-
8	2	2	8	12	4	5	9	9	6	5	6	6	26	1	10	6	\%	8	7	\bigcirc	1	1	8	\bigcirc
9	2	1	5	10	5	5	10	8	6	6	6	5	25	2	7	6	16	8	7	2	\bigcirc	2	8	2
9	2	-	2	7	5	5	10	7	5	6	6	4	24	4	4	6	26	8	7	7	1	4	8	5
9	2	I	-	4	5	6	9	5	4	6	5	3	23	5	2	6	34	8	6	13	3	5	7	9
9	2	4	-	1	6	6	8	3	3	5	5	3	22	7	1	6	39	7	6	19	6	6	6	12
10	1	7	2	-	6	6	6	2	2	5	4	2	21	8	0	6	39	7	5	25	8	6	4	14
10	1	10	5	1	6	6	4	1	1	4	3	2	20	8	\bigcirc	6	34	7	5	30	10	4	2	14
10	1	12	8	2	6	6	2	-	1	3	2	1	19	7	1	6	26	7	5	32	10	2	\bigcirc	12
10	1	12	10	5	6	6	1	-	-	2	1	1	18	5	3	6	16	6	4	31	9	1	-	8
10	1	11	12	8	6	5	-	1	-	1	-	1	17	3	6	6	7	6	4	27	7	-	1	5
II	1	8	12	11	5	5	\bigcirc	2	-	-	-	-	16	2	9	6	1	6	3	22	4	0	3	2
11	-	5	10	12	5	5	1	4	1	\bigcirc		-	15	1	12	6	-	5	3	15	2	1	5	-
II	-	2	7	11	5	4	2	6	2	-		-	14	-	15	5	4	5	3	9	-	-	8	-
II	-	-	4	9	4	4	3	8	3	1		0	13	\bigcirc	18	5	12	4	2	3	0		8	3

List ix (cont.).
Terms in Tables P 46, P 47 (concl.).

$\mathrm{O}^{\prime \prime}$	Q'	$\mathrm{R}^{\prime \prime}$	$\mathrm{T}^{\prime \prime}$	$\mathrm{V}^{\prime \prime}$	$\mathrm{Y}^{\prime \prime}$	A	A	A	A	B	B	C	C	D	E	F	G	H	I	K	M	P	R	V
35	5	30	15	10	15	0	70	140	210	45	115	20	90	15	0	0	5	20	40	15	15	0	10	5
6	5	5	8	9	11	16	30	2	17	53	19	5	0	5	21	3	5	10	18	9	7	10	II	10
10	5	3	7	8	7	25	23	o	25	47	13	10	3	1	23	5	2	9	15	7	8	13	9	
13	6	1	6	8	3	31	14	3	31	41	8	17	7	-	25	6	-	7	7		8	15	7	8
14	6	-	5	7	o	32	6	II	32	35	5	25	14	3	27	4	-	5	I	4	7	17	5	6
13	6	-	4	6	1	28	I	19	28	28	2	33	21	7	29	1	2	3	2	2	6	19	3	4
11	6	0	3	4	3	21	\bigcirc	27	20	22	0	42	29	8	31	o	4	I		1	4	20	2	2
7	6	1	2	3	-	12	5	32	11	16	-	49	38	5	32	1	7.	-		-	3	20	1	I
4	6	2	I	2		4	13	31	4	II	I	56	46	1	34	4	9	-		-	1	20	-	o
1	6	4	1	2		o	22	26	o	7	3	60	53	-	35	6	10	1		-	0	19	-	0
o	5	-	0	I		I	29	17	2	3	6	63	58	3	37	5	9	2	J	-	0	18	-	I
1	5		\bigcirc	\bigcirc		$\begin{array}{r}7 \\ \hline 1\end{array}$	32	9	8	-	11	64	62	7	38	3	6	4	5	1	2	16	1	2
3	5		0	O		16	30	2	16	-	16	62	64	8	39	-	3	6	8	2	2	14	2	3
-	5		0	\bigcirc		24	23	o	25	0	22	59	63	5	40	o	1	8	10	4	-	11	3	
$\mathrm{P}^{\prime \prime}$	4 4	$S^{\prime \prime}$	1	I		30 32	15 6	10	31 32	4	28 34	53 46	61 56	1	$4 \mathrm{4I}$	3 5	I	9 10	10	5 7	N	8	5	W
3	3	3	2	1		28	I	19	28	8	41	38	50	3	42	6	4	10	5		11	4		3
3	3	4	3	2		21	-	27	20	13	47	30	42	6	42	4	7	9	2		14	2		5
4	2	5	4	3		12	5	32	11	18	52	22	34	8	42	1	9	8	-		16	1		6
4	2	6	5	4		4	13	31	4	24	57	14	26	6	42	o	10	6	-		18	-		5
5	1	6	-	-		0	21	26	0	30	61	8	18	2	4 I	I	9	4	2	L	20	0	S	3
5	1	5				1	29	18	I	37	64	3	11	-	4 I	4	7	2	4	5	21	\bigcirc	4	I
5	$\underline{1}$	3				7	32	9	7	43	66	1	5	2	40	6	3	1	7	6	22	1	6	o
5	1	2				15	30	2	-	49	66	0	2	6	39	5	1	-	9	7	22	3	8	1
6	-	1				24	24	o		54	65	2	o	8	38	3	o	-	10	8	21	5	8	-
6	-	-	$\mathrm{U}^{\prime \prime}$	$\mathrm{W}^{\prime \prime}$		30	15	3	B	59	63	6	I	6	37	0	1	I	9	9	20	7	7	
6	-	-	4	3		32	7	10	33	62	60	II	4	2	35	0	3	3	6	9	18		5	
6	-	1	5	4		29		19	39	65	56	18	8	o	34	2	6	-	3	10	16		3	
6	-	2	6	5		22	0	27	46	66	51	26	15	2	32	5	9		1	10	14			
6	-	3	6	6		13	4	3 I	51	66	45	35	22	6	31	6	10		-	10	II		o	
6	0	5	7	6		5	12	31	56	65	39	43	31	8	29	4	9	I	I	10	8	Q	o	X
6	I	6	7	5		0	21	26	60	62	32	50	39	6	27	2	7	9	3	9	6	11	2	3
5	I	6	8	4		1	28	18	63	58	26	57	47	2	25	o	4	16	7	9	4	14	-	5
5	1	5	8	2		6	32	9	65	54	20	61	54	0	23	1	I	17	9	8	2	17		
5	2	4	8	1		15	30	3	66	48	14	64	59	2	21	4	o	11	10	7	1	19		4
4	2	3	8	-		23	24	-	65	42	9	64	63	6	19	6	1	3	9	6	\bigcirc	21	T	2
4	3	2	8	-		30	16	3	64	36	5	62	64	8	17	6	3	\bigcirc	7	5	0	22	3	\bigcirc
4		1	7	1		32	7	9	61	30	2	58	63	6	15	3	6	5	4	4	1	22	5	I
3		0	7	2		29	I	18	57	24	1	52	60	2	13	I	8	14	1	3	2	22	6	-
3		o	6	- ${ }^{\prime \prime}$		22	-	26	52	18	-	45	55	-	11	-	10	18	o	2	4	21	6	
2	$\mathrm{R}^{\prime \prime}$	I	5	$\mathrm{X}^{\prime \prime}$		13	4	31	46	12	I	37	49	2	10	2	10	14	I	I	6	19	5	
2	6	2	4	3		5	12	31	40	8	3	28	41	5	8	5	8	6	3	0	8	17	4	
2	8	4	4	5		0	21	27	34	4	6	20	33	8	7	6	5	-	6	0	-	14	2	
I	10	5	3	6		1	28	19	27	I	10	13	24	7	5	5	2	2	8	0		11	1	
1	II	6	2	6		6	32	10	21	-	15	7	16	3	4	2	-	10	10	-		8	-	
1	12	6	1	6		14	31	3	15	\bigcirc	20	3	10	0	3	0	-	17	10	I	O	5	-	
0	12	5	1	5		23	25	0	10	1	27	0	5	1	2	1	2	17	8	1	10	3	I	
-	12	4	o	3		30	16	2	6	4		-	1	5	1	3	-	10	5	2	12	1	-	
o	II	3	-	1		32	7	9	3	7		2	-	8	1	6		2	2	3	15	o		
-	9	1	\bigcirc	\bigcirc		29	1	18	1	12		6	1	7	0	6		-	-	4	17	-		
\bigcirc	7	0	-	-		22	-	26	-	17	C	12	4	3	-	3	H	7	-	-	18	0	U	
-	6	0	0	-		13	4	31	0	23	32	20	9	o	0	1	5	15	2		19	1	3	
\bigcirc	4	1	I	I		5	11	32	2	29	40	28	16	I	-	o	7	18	-		20	3	5	
-	2	2	1	-		1	20	27	5	36	48	36	24	5	1	2	9	13			20	5	6	
1	1	"	2			1	28	19	9	42	55	44	-	8	1	5	10	5			19	8	6	
1	0	T'	2	$\mathbf{Y}^{\prime \prime}$		6	32	10	14	48	60	52	D	7	2	6	10	-	K	M	17	-	4	
1	-	6	3	8		14	31	3	19	53	63	58	4	3	3	5	9	3	9	4	16		2	
1	1	7	-	13		23	25	0	25	58	64	62	7	0	4	2	8	11	11	6	14		-	
2	2	8		15		29	16	2	32	62	63	64	8	1	5	-	6	18	13	7	11		-	
2	3	9		16		32	8	9	38	64	59	64	4	5	7	1	4	16	14	8	9		I	
3	5	10	$\mathrm{V}^{\prime \prime}$	13		29	2	17	44	66	54	61	I	8	8	-	2	8	16	8	6	R	-	
	7	11		9		23	-	26	50	66	48	57	-	7	10		1	1	17	7	4	7		
	9	11	6	5		14	4	31	55	65	40	51	4	4	11		-	8	18	5	3	9		
	10	12	7	1		6	II	32	60	63	31	44	7	o	13		0	8	18	4	I	II		
	II	12	8	-		I	20	27	63	59	23	36	8	1	15		1	16	18	2	-	12		
Q ${ }^{\prime \prime}$	12	12	9	2		I	28	19	65	55	15	27	4	4	17	G	2	18	18	I	0	13	V	
3	12	12	9	6		5	32	11	66	50	9	19	I	8	19	5	4	12	17	0		14	5	
3	11	II	10	10		13	31	3	66	44	4	12	-	7	-	8	6	4	16	-	2	14	7	
4	10	11	10	14		22	25	0	64	38	1	6	3	4		10	8	0	14	1	3	14	8	
4	8	10	10	16		29	17	2	61	31	-	2	7	o		10	9	4	13	3	5	13	9	
5	6	9	10	15		32	8	8	58	25	I	-	8	1		8	10	I3	II	5	8	12	10	

List ix (concl.).
Terms in Tables P48, $\mathbf{P}_{4} 9$.

A	A	A	A	B	B	C	C	C	D	D	E	E	E	F	G	G	H	H	I	K	M
0	70	140	210	55	125	5	75	145	35	105	5	75	145	65	10	80	25	95	60	10	30
16	13	10	7	14	5	3	1	0.	94	13	64	50	48	38	3	0	6	2	3	6	10
25	23	20	16	29	17	0	2	4	95	12	66	47	51	28	11	1	6	2	4	4	10
31	30	28	26	47	33	7	11	15	95	II	69	45	-	17	22	8	6	3	6	2	\%
31	32	32	31	63	51	19	24	27	95	10	71	43		7	33	18	6	3	-	1	9
26	28	30	31	75	66	30	31	32	96	9	73	41	F	1	40	29	6		J	0	9
16	19	22	25	8o	77	31	30	27	96	8	75	38	22	1	42	37	6		10	-	8
7	10	13	16	7^{8}	80	24	19	15	96	7	77	36	33	6	38	42	6		17	0	8
1	2	4	6	67	76	11	7	4	96	6	79	34	41	15	30	41	6		20	1	7
$\underline{1}$	0	-	$\underline{1}$	52	64	2	0	\bigcirc	96	5	81	32	44	27	19	34	6		18	2	7
6	4	2	1	35	48	1	3	7	96	4	83	30	41	37	9	24	5	I	13	4	6
16	12	9	7	18	31	10	14	19	96	4	85	28	33	43	2	13	5	7	6		
25	22	19	-	6	15	23	26	29	95	3	87	26	23	44	0	4	5	8	1		
31	30	28		-	4	31	32	32	95	2	88	24	12	39	4	0	5	10	0		
31	32	32		2	-	30	28	24	95	2	90	22	3	29	12	2	5	11	4		
26	28	30	B	12	4	20	16	12	94	1	91	20	-	18	23	9	5	12	11	L	
${ }^{1} 7$	20	23	40	27	15	8	4	2	94	1	93	19	2	8	33	19	5	13	17	3	
7	10	13	57	44	31	0	0	1	93	1	94	17	10	1	40	30	5	14	20	5	
1	2	4	71	61	4^{8}	3	6	9	92	-	96	15	21	0	42	38	4	14	18	6	
1	-	-	79	73	64	13	18	22	92	-	97	14	32	5	38	42	4	14	12	4	
6	4	2	79	80	76	25	29	31	91	-	98	12	40	14	29	40	4	14	5	1	
15	12	9	72	78	80	32	32	30	90	0	99	11	44	25	18	33	4	13	1	\bigcirc	
25	22	19	58	69	77	28	25	21	89	0	100	10	42	36	8	23	4	13	1	1	
3 T	29	27	4 I	55	66	17	13	8	88	0	101	8	34	42	1	12	3	12	5	4	
31	32	32	24	37	51	5	2	1	87	-	102	7	24	44	-	4	3	11	12	6	
26	28	30	10	20	33	0	1	2	86	1	103	6	13	39	5	-	3	9	18	5	
17	20	23	1	7	17	5	8	13	85	1	104	5	4	30	13	2	3	8	20	3	
8	10	13	1	$\underline{1}$	5	17	21	25	84	1	104	4	0	19	24	9	3	7	17	1	
1	3	5	7	1	-	28	30	32	83	2	105	3	2	9	34	20	3	5	11	0	
0	0	-	20	10	2	32	31	29	81	2	105	2	9	2	41	31	2	4	4	2	
6	3	2	37	24	13	26	22	18	80	3	106	2	20	0	42	39	2	3	0	5	
	12		55	48	28	14	9	6	79	3	106	1	31	4	37	42	2	2	1	6	
24	21	18	69	58	45	3	1	0	77	4	106	1	40	13	28	40	2	1	7	5	
31	29	27	7^{8}	72	62	-	2	4	76	5	106	1	44	24	17	32	2	-	13	2	
32	32	32	80	79	74	7	12		74	5	106	-	42	35	7	22	1	-	19	-	
27	29	30	73	79	80	20	24	D	73	6	106	-	35	42	1	II	1	0	20	1	
18	21	24	6 I	71	78	30	32	4^{8}	71	7	105	0	25	44	0	3	1	0	16		
8	11	14	44	57	68	31	29	50	70	8	105	-	14	40	5	0	1	I	9		
1	3	5	27	40	53	23	19	52	68	9	105	0	5	31	14	3	$\underline{1}$	2	3		
0	0	0	12	23	36	10	7	53	66	10	104	-	0	20	25	10	1	3	-		
5	3	1	2	9	19	1	-	55	65	II	104	I	2	10	35	-	1	4	2	M	
14	II	8	0	1	7	1	4	57	63	13	104	1	8	2	4 I		1	5	8	5	
24	21	18	6	1	-	10	15	59	61	14	103	2	19	-	41		0	6	15	4	
31	29	27	18	8	2	23	27	60	60	15	102	2	30	4	36		0	8	19	3	
32	32	32	35	22	11	31	32	62	58	16	IOI	3	39	12	26		\bigcirc	9	19	3	
27	29	32	52	39	25	30	27	64	56	18	99	4	44	23	16	H	0	10	15	2	
18	21	24	67	56	43	20	15	66	54	19	98	5	43	34	7	3	0	11	8	2	
8	11	14	7^{8}	70	60	7	4	67	53	21	96	6	36	42	1	3	-	12	2	1	
2	3	5	80	79	73	-	-	69	51	22	95	7	26	44	1	3	-	13	0	1	
-	0	-		79	79	3	6	70	49	24	94	8	15	41	6	4	-	14	3	-	
5	3	1	63	73	79	14	18	72	47	26	92	9	5	32	16	4	0	14	9	-	
14	11	8	47	60	70	26	29	74			91	10	0	21	26	4	0	14	16	\bigcirc	
23	20	17	29	43	56	32	32	75	43	29	89	12	1	11	36	4	0	14	20	0	
30	29	26	14	25	39	28	25	77	42	30	87	13	7	3	41	4	-	13	19	0	
32	32	32	3	11	22	17	12	78	40	32	86	15	17	0	41	4	-	12	14	$\underline{1}$	
27	29	31	-	2	8	5	2	80	38	34	84	16	29	3	35	5	-	II	7	1	
18	22	24	4	0	1	0	1	81	36	36	82	18	38	11	26	5	-	10	2	2	
9	12	15	16	7	1	5	9	82	35	37	80	19	43	-	15	5	0	9	0	2	
2	4	6	32	19	9	17	22	83	33	39	78	21	43		6	5	0	7	3	3	
0	-	-	49	36	23	28	31	85	31	41	76	23	37		1	5	-	6	K	3	
5	3	1	65	53	-	32	32	86	30	43	74	25	27	G	I	5	1	5	K	4	
13	10	7	76	68		25	21	87	28	44	72	27	16	21	7	5	$\stackrel{7}{7}$	3	6	5	
23	20	17	80	7^{8}		13	9	88	26	46	70	29	6	32	17	6	I	2	8	6	
30	28	26	76	80		3	1	89	25	-	68	3 3	${ }_{1}$	39	28	6	$\underline{1}$	$\underline{1}$	10	7	
32	32	31	65	74		-	2	90	23		65	33	1	42	37	6	$\underline{1}$	1	11	7	
28	30	31	49	62	C	8	12	91	22	E	63	35	7	39	42	6	1	-	12	8	
19	22	25	32	45	16	20	25	9 I	20	53	61	37	16	31	41	6	1	0	12	8	
9	12	15	16	28	28	30	32	92	19	55	59	40	28	20	35	6	2	0	12	9	
2	4	6	4	13	32	31	29	93	17	58	56	42	37	10	25	6	2	0	11	9	
-	0	1	-	2	26	23	18	93	16	60	54	44	43	2	14	6	2	1	10	10	
4	2	1	3	0	14	Io	6	94	15	62	52	46	43	-	5	6	2		8	10	

CHAPTER X

CHANGES OF THE FUNDAMENTAL CONSTANTS

Future observations or investigations of past observations may demand small changes in the values of the constants which have been adopted in this work. The following precepts have been devised to facilitate the computations.

Arguments I to 22 .

The total change in any one of these arguments is equal to
Direct change in the Arg. $-\frac{\text { motion of Arg. in a per. of } \mathrm{D}}{\text { period of } \mathrm{D}} \times$ change in D .
Suppose that one of the Arguments L, $\varpi, 8, L^{\prime}$ or ϖ^{\prime} receives an addition $f\left(t_{c}\right)$ expressed in seconds of arc and Julian centuries. Then the direct changes in D and in any one of the horizontal arguments I to 22 are $\mu f\left(t_{c}\right), \mu^{\prime} f\left(t_{c}\right)$, where μ has the values $\mathrm{I}, \mathrm{o}, \mathrm{o},-\mathrm{I}$ or o according as the addition is to $\mathrm{L}, ~ w, ~ \&, L^{\prime}$ or m^{\prime}, and μ^{\prime} is the corresponding integer for the horizontal argument, according to its composition. To express the change in the units used for Arguments I to 22, we must divide by 1296000 and multiply by the number of parts into which the argument is divided. Hence the formula for the change in the argument is
$f\left(t_{c}\right)\left\{\mu^{\prime} \times\right.$ no. of parts in Arg. $-\mu \times$ 'addition for a period of $\left.\mathrm{D}^{\prime}\right\} \div$ I2g6000.
In the precepts which follow, the factors of $f\left(t_{c}\right)$ have been tabulated ready for use. The factor 1000 has been introduced in order to avoid numerous zeros after the decimal point.

Precepts. Let the addition to $\mathrm{L}, \infty, \Omega, \mathrm{L}^{\prime}$ or ϖ^{\prime} be denoted by

$$
1000\left(a_{0}+a_{1} t_{c}+a_{2} t_{c}^{2}+a_{3} t_{o}^{3}\right)
$$

where $a_{0}, a_{1}, a_{2}, a_{3}$ are expressed in seconds of arc and t_{c} is the number of Julian centuries from 1900.0. Then the change in any one of the Arguments I to 22 is given by

$$
q\left(a_{0}+a_{1} t_{c}+a_{2} t_{c}^{2}+a_{3} t_{c}^{3}\right),
$$

where q has the values given in List $\mathrm{x} \alpha$, according as the change is in $\mathrm{L}, \infty, \Omega$, L^{\prime} or m^{\prime}. If more than one of these angles are changed, add the corresponding changes in the arguments.

List $\mathrm{x} \alpha$. Values of q for Arguments I to 22 , due to a change in $\mathrm{L}, \boldsymbol{m}, 8, \mathrm{~L}^{\prime}, \varpi^{\prime}$.

Arg.	L	ш	8	L'	ϖ^{\prime}
1	-0¢009	-	-	+0 0 ¢ 100	-0¢ 109
2	- .018	-0¢120	-	$+\cdot 222$	- 120
3	- .001	$+.090$	-	-.001	- 090
4	- .022	- .191	-	$+\cdot 266$	-.096
5	-.006	- . 198	-	$+.093$	+ 099
6	-. 024	- . 102	-	$+.282$	- 204
	- .007	$+.077$	-	+.070	- 154
8	- . 011	- .116	-	$+\cdot 143$	-.039
9	-.004	-.097	\bigcirc	$+.060$	$+.032$
10	-.016	-	-0¢123	+ 170	-.062
11	-.003	-	-. 068	+.03I	+.034

Arg.	L	w	8	L'	ϖ^{\prime}
12	-0\%006	-0¢018	-0¢037	+o؟o68	-0¢018
13	-.006	+.034	- . 068	+.062	- . 034
14	- .004	-. 025	-.049	+.045	$+.025$
15	- . 000	+ . 022	-. 043	- 000	$+.022$
16	-.014	- $\cdot 194$	0	+ . 180	o
17	-.007	-	-. 079	+.072	-
18	- . 007	-. 029	-.059	+.081	\bigcirc
19	-.006	+.059	- -117	+.053	\bigcirc
20	-. 023	-. 145	-. 145	+ $\cdot 266$	\bigcirc
21	- .001	+.086	-. 086	--001	-
22	- ori	-.083	-.056	+ 128	\bigcirc

Arguments $\mathrm{D}, 23$ to $47,5 \mathrm{I}$ to $62,7 \mathrm{I}$ to $78, l^{\prime}, 82,83,84$.
For an argument expressed in days and parts, the change, expressed in seconds of arc, must be multiplied by the number of parts in a period and divided by 1296000. For those arguments expressed in days only, the change is multiplied by the period in days and divided by 1296000 . In the precepts with the List $\mathrm{x} \beta$, the change is made by means of the product of two factors.

Precepts. Let the addition to $\mathrm{L}, \mathrm{m}, \infty, \mathrm{L}^{\prime}$ of m^{\prime} be denoted as before. Then the corresponding change in any argument is given by

$$
q i\left(a_{0}+a_{1} t_{\mathrm{e}}+a_{2} t_{0}^{2}+a_{3} t_{0}^{3}\right),
$$

where q, i have the values given in List $\times \beta$. If more than one of the five fundamental arguments are changed, multiply the changes by the proper factors i and add; then multiply by the factor q. The results will be found expressed in parts except for those arguments which are expressed in days only.

List $\times \beta$. Values of q, i for D, l^{\prime} and the single-entry arguments.

Arg.	q	Values of i for change in				
		L				
D	$0{ }^{1} 023$	I	0	0	- 1	0
23	14 ¢224	2	0	0	-3	I
24	3.657	2	-	0	- 1	- 1
25	7.473	1	- I	0	I	- I
26	$6 \cdot 531$	1	- I	0	- 1	1
27	I3.874	1	I	0	-3	I
28	2.712	3	- I	0	-3	1
29	9.348	1	I	0	- 1	- 1
30	r4.0324	1	- I	0	0	0
31	$6 \cdot 6991$	2	0	0	-2	0
32	16.4460	1	I	0	-2	0
33	$4^{\cdot} \cdot 466$	1	0	0	-1	0
34	$4^{\prime} 44^{8}$	0	-2	0	2	0
35	4. 110	3	- 1	\bigcirc	-2	0
36	2.872	2	2	0	-4	0
37	6. 163	3	1	\bigcirc	-4	0
38	3.289	4	-2	0	-2	0
39	--279	5	- 1	0	-4	0
40	6.530	2	0	-2	0	0
41	5.616	0	0	-2	2	0
42	$6 \cdot 305$	1	1	-2	0	0
43	$2 \cdot 657$	3	-1	-2	0	0
44	I•956	4	0	-2	-2	0
45	I•956	3	1	-2	-2	0
46	$0 \cdot 718$	4	-2	-2	0	0

Arg.	q	Values of i for change in				
		L	జ	8		
47	$14^{\text {fo92 }}$	0	0	0	I	- 1
51	0.374	2	-2	-2	2	0
52	$0 \cdot 103$	1	- 1	-2	3	- I
53	2.131	1	0	1	-3	I
54	2•151	1	0	I	- I	-I
55	$6 \cdot 476$	I	0	1	-2	0
56	I'25I	3	0	I	-4	0
57	2.769	2	I	1	-4	0
58	1.690	0	I	-1	0	0
59	If452	0	- I	- I	2	0
60	$3 \cdot 923$	2	-I	I	-2	0
61	$2 \cdot 282$	I	-2	1	-	0
62	3.055	3	-2	1	-2	0
71	9.355	I	- I	0	0	0
72	5.351	1	I	0	-2	0
73	4.110	3	- I	0	-2	0
74	I-686	2	0	0	-3	I
75	0.296	2	-2	-2	2	0
76	0.649	4	-2	0	-2	0
77	I-012	3	7	0	-4	0
78	ofogr	0	0	-2	3	- I
$l^{\prime \prime}$	0.282	0	0	0	1	- I
82	5.247	0	0	- I	0	\bigcirc
83	*	0	0	- I	0	0
84	"	0	0	- I	0	0

Arguments $48,49,50,63$ to $7 \mathrm{o}, 79,8 \mathrm{o}, 8 \mathrm{r}$.
Any probable changes will not sensibly affect the tables in which these arguments are used.

$$
\text { Changes in } \mathrm{L},-\infty \text {, } \text {. }
$$

The actual changes in these elements, expressed in seconds of arc, are to be added to the values given in Sect. II after multiplication by 100, Io, I, respectively, since the respective units there adopted are $0^{\prime \prime} .01,0^{\prime \prime} \mathrm{I}, \mathrm{I}^{\prime \prime}$.

Change of the Moon's Eccentricity.
An addition of $\mathrm{I}^{\prime \prime}$ to the adopted coefficient of the principal elliptic term in longitude (22639.550) requires an addition to the factors of the tables for this term and for the evection (the only term affected by any probable change) of $I / 22640=\cdot 0000442$. Hence the Precept: Add 442 per $I^{\prime \prime}$ of change in the
coefficient of the principal elliptic term in longitude to the sum $1000 \Sigma_{12}$, in the notation of Chap. V, which constitutes a factor of Tables 30, Sect. III, 15, Sect. V, and add 44 per $\mathrm{I}^{\prime \prime}$ of change to the terms, $1000 \Sigma_{16}, 1000 \Sigma^{\prime}{ }_{16}$, which constitute the factors of Tables 32 , III and $17, V$, respectively.

Change of the Moon's Inclination.
An addition of $I^{\prime \prime}$ to the adopted coefficient of the principal term in latitude (1846 I " 400 , when the latitude is expressed as a sum of harmonic terms) requires an addition to the factor of the principal term with Arg. S of $\mathrm{I} / \mathrm{I} 8520=\cdot 000054$.

Hence the Precept: Add 54 to Σ_{6} (Chap. V) for each second of change in the coefficient of the principal term in latitude.

Change of the Constant of Parallax.
The adopted constant of sine parallax is $3419^{\prime \prime} 4363$, corresponding to the value $3422^{\prime \prime} 5400$ of the constant term in the sine of the Moon's equatorial horizontal parallax. Any change is made by multiplying the computed parallax by the ratio of the new constant to the adopted constant.

Changes of the Constants of the Parallactic Terms.
These are computed with

$$
a_{1}=\frac{a}{a^{\prime}} \cdot \frac{E-M}{E+M}=\cdot 0025 \text { I273 with } \frac{\mathrm{I}}{a}=34 \mathrm{I}^{\prime \prime} \cdot 4363, \frac{\mathrm{I}}{a^{\prime}}=8.80549, \frac{E}{M}=8 \mathrm{I} \cdot 53 .
$$

Any probable change will affect only Table 47, Sect. III. After the new α_{1} has been computed, multiply the values in this table by the new $\alpha_{1} \div 0.00251273$, subtract 67000 times this fraction and add 67000 .

Change of the Ellipticity of the Earth's Figure.
The adopted value is $1 / 294$. An addition of a units to the denominator of this fraction is approximately accounted for if we multiply the coefficients of the terms affected by I $-2 a / 294$. The tables which require this factor are $\mathrm{P}_{22}, \mathrm{P}_{25}, \mathrm{P} 28, \mathrm{P} 3 \mathrm{I}$, P 34, P 36, Sect. VI, with sufficient accuracy. After the products have been formed, the constants $5 \cdot 4 a, \mathrm{I} \cdot \mathrm{oa}, \mathrm{o} \cdot \mathrm{I} a, \mathrm{o} \cdot \mathrm{I} a, 6 \cdot 8 a, \mathrm{o}$, must be added to the respective tables.

Changes in the Masses of Venus, Jupiter or Mars.
The adopted masses are respectively $\mathrm{I} / 408000, \mathrm{I} / \mathrm{IO} 47 \cdot 35, \mathrm{I} / 3093500$ that of the Sun. The first is a factor of Tables $\mathrm{P}_{1}, \mathrm{P}_{4}, \mathrm{P}_{7}, \mathrm{P}_{10}, \mathrm{P}_{13}, \mathrm{P}_{16}, \mathrm{P}_{19}, \mathrm{P}_{23}$, P 26, P 29, P 32, Sect. VI, the second a factor of Tables P 2, P 5, P 8, P II, P I4, $\mathrm{P}_{17}, \mathrm{P}_{20}$ and the third a factor of $\mathrm{P}_{3}, \mathrm{P}_{6}, \mathrm{P}_{9}, \mathrm{P}_{12}, \mathrm{P}_{15}, \mathrm{P}_{18}, \mathrm{P}_{21}$. If C be the constant added to any one of these tables (see Chap. IV, List vi), m_{0}, one of the adopted masses, m_{1}, the new value of the same, the value in the table is to be changed by means of the formula

$$
\text { New value }=\frac{m_{1}}{m_{0}} \text { printed value }+\frac{m_{0}-m_{1}}{m_{0}} \mathrm{C}
$$

Change of the Empirical Term.
Substitute for Table P 24, Sect. VI, a table of the new term in units of o"or with the added constant IIOO (11 I"00). For Tables P 27, P 30, P 33, substitute the new table multiplied by the respective factors $0.1403,0.0134,0.0164$.

SECTION II

TABLES
OF
ARGUMENTS AND MEAN LONGITUDES

Table r. Conversion of Calendar Dates.

Day		Date	Part of year	Min.	Part of day	Sec.	$\begin{gathered} \text { Part } \\ \text { of } \\ \text { day } \end{gathered}$
d		$C \quad B$					d
0		$\bigcirc 1$	0.000	1	0.0006944	1	-00116
10		10 II	$0 \cdot 027$	2	0.0013889	2	0.0000231
20		$20 \quad 21$	-055	3	$0 \cdot 0020833$	3	$0 \cdot 0000347$
30		$30 \quad 31$	0.082	4	0.0027778	4	$0 \cdot 0000463$
40	Feb.	910	- -110	5	0.0034722	5	0.0000579
50		$19{ }^{20}$	$0 \cdot 137$	6	$0 \cdot 0041667$	6	$0 \cdot 0000694$
60	Mar.	I	O.164	7	$0 \cdot 00486 \mathrm{rI}$	7	0.0000810
70		11	0.192		0.0055556		$0 \cdot 0000926$
80	April	21	0.219	9	0.0062500	9	0.0001042
90		3 I	0.246		$0 \cdot 0069444$	10	0.0001157
100		10	0.274		0.0076389		0.0001273
IIO		20	$0 \cdot 301$		0.0083333	12	$0 \cdot 0001389$
120	May	30	$0 \cdot 329$		0.0090278	13	0.0001505
130		10	$0 \cdot 356$		$0 \cdot 0097222$	14	$0 \cdot 0001620$
140		20	0.383		$0 \cdot 0104167$		$0 \cdot 0001736$
150		30	0.411		0 -011IIII	16	0-0001852
160	June		0.438		0.0118056	17	-0001968
170		19	$0 \cdot 465$	18	$0 \cdot 0125000$	18	-0.0002083
180	July	29	$0 \cdot 493$	19	0.0131944	19	0.0002199
190		9	0.520	20	-0.0138889	20	$0 \cdot 0002315$
200	Aug.	19	0.548	2 I	0.0145833	21	0.0002431
210		29	0.575	22	0.0152778	22	$0 \cdot 0002546$
220			0.602	23	$0 \cdot 0159722$	23	0.0002662
230		18	0.630	24	0.0166667	24	$0 \cdot 000277^{8}$
240	Sept.	28	0.657	25	0.0173611	25	0.0002894
250			0.684	26	-.0180556	26	0.0003009
260		17	0.712		-.0187500		0.0003125
270		27	$0 \cdot 739$	28	-.0194444	28	$0 \cdot 0003241$
280	Oct.		0.767	29	0.0201389	29	-.0003356
290		17	0.794	30	0.0208333	30	0.0003472
300	Nov.	27	0.821	31	0.0215278	31	$0 \cdot 0003588$
310			0.849	32	0.0222222	32	0.0003704
320	Dec.	16	0.876	33	0.0229167	33	-.0003819
330		26	0.904	34	0.0236111	34	$0 \cdot 0003935$
340			0.93 I	35	0.0243056	35	$0 \cdot 0004051$
350		16	$0 \cdot 958$	36	0.0250000	36	0.0004167
360		26	0.986	37	0.0256944	37	0.0004282
370		36	1 -013	38	0.0263889	38	$0 \cdot 0004398$
				39	0.0270833	39	$0 \cdot 0004514$
				40	0.027777^{8}	40	$0 \cdot 0004630$
				41	0.0284722	41	$0 \cdot 0004745$
				42	0.0291667	42	$0 \cdot 0004861$
				43	0.02986 II	43	$0 \cdot 0004977$
				44	0.0305556	44	$0 \cdot 0005093$
Hour	Part of day				0.0312500	45	
				46	0.0319444	46	$0 \cdot 0005324$
	d			47	-0326389	47	-00005440
					-0333333		,
1	-0.0416667			49	0.0340278	49	0-0005671
2		.0833333		50	0.0347222	50	0.0005787
3	0.1250000			51	$0 \cdot 0354167$	51	$0 \cdot 0005903$
4	--1666667			52	0.0361111	52	$0 \cdot 0006019$
5	0.20833330.2500000			53	-.0368056	53	--0006134
6				54	-0375000	54	$0 \cdot 0006250$
7	0.2916667			55	-0.0381944	55	$0 \cdot 0006366$
	0.3333333			56	-.0388889	56	$0 \cdot 000648 \mathrm{I}$
9	0.37500000.4166667				-0.0395833		
10					0.0402778	58	-0006713
11	$0 \cdot 4583333$			59	0.0409722	59	$0 \cdot 0006829$
		-5000000		60	0.0416667	60	$0 \cdot 0006944$

Table 2. Additions to the Arguments for the Centuries of the Julian and Gregorian Calendars.

Table 2 (cont.). Additions to the Arguments for the Centuries of the Julian and Gregorian Calendars.

Arg.	4 (a)	5 (a)	6 (a)	7 (a)	8 (a)	9 (a)	10 (a)	11 (a)	12 (a)	Arg.
Julian	${ }^{c}$	${ }^{6}$	c^{6}	${ }^{6}$	${ }^{6}$	6	c	${ }^{6}$	${ }^{6}$	Julian
-2000	$87 \cdot 46-52$	58.48-54	5.16-28	$45 \cdot 80+22$	24:80-32	10.39-27	$73 \cdot 95+6$	$29^{\prime} 74+3$	17-16-3	- 2000
- 1900	$16 \cdot 12 \quad 51$	$110 \cdot 4653$	$101.02 \quad 27$	76.88 21	$31 \cdot 4183$	$15 \cdot 17 \quad 26$	56.72	19.44	4.973	- 1000
-1800	40.9850	$26.45 \quad 52$	$34.07 \quad 26$	$98 \cdot 96$ 21	23.2430	14.3226	19.38	$5 \cdot 213$	9.04	- 1800
-1700	$93 \cdot 67 \quad 49$	$78 \cdot 47 \quad 51$	$129.95 \quad 25$	30.0320	$29.87 \quad 29$	$19 \cdot 12 \quad 25$	$2 \cdot 14$	38.913	$20.85 \quad 3$	- 1700
- 1600	22-36 47	2.4949	$93 \cdot 83$	61.09 20	36.5129	$23 \cdot 92 \quad 24$	64.90	$28 \cdot 62$	8.67	- 1600
-1500	75.0746	$54.53 \quad 48$	57.71	92.15 19	43•16 28	$28.73 \quad 24$	$47 \cdot 66$	$18 \cdot 323$	$20 \cdot 49$	-1500
- 1400	$3.79 \quad 45$	106.5847	$21.61 \quad 23$	23.2119	$49 \cdot 82$	$33.54 \quad 23$	30.41	$8-02$	8.30	- 1400
-1300	$56 \cdot 52 \quad 43$	$30.65 \quad 45$	$\begin{array}{ll}17751 & 23\end{array}$	$54^{26} \quad 18$	$6 \cdot 4^{8} \quad 26$	$38 \cdot 36 \quad 22$	$13 \cdot 17$	$41 \cdot 72$	$20 \cdot 12$	- 1300
- 1200	$81.46 \quad 42$	74.7244	50.61 22	76.31 18	$48 \cdot 36 \quad 26$	$37 \cdot 55 \quad 22$	$55 \cdot 82$	27.48	$0 \cdot 19$	- 1200
- 11000	$10 \cdot 22 \quad 41$	126.81	14.52 21	$7 \cdot 35 \quad 17$	5.04 25	\bigcirc	38.58	17.18	12.01	- 1100
- 1000	62.9940	50.9141	110.44	$38 \cdot 3816$	11.7324	$5.22 \quad 20$	21.33	6.88	23.83	- 1000
- 900	$115.78{ }^{88}$	103.0340	$74 \cdot 3720$	$69.41 \quad 16$	18.42 l	10.0620	4^{-08}	$40 \cdot 58$	11.66	- 900
- 800	$44 \cdot 58$	27-17 39	$38.31 \quad 19$	0.4315	$25 \cdot 12 \quad 22$	$14.92 \quad 19$	$66 \cdot 82$	30-27	23.48	- 800
- 700	$97 \cdot 3936$	$79 \cdot 3137$	$2 \cdot 25 \quad 19$	$31.45 \quad 15$	$31.83 \quad 22$	$19.78 \quad 18$	$49 \cdot 57$	19.97	11.30	- 700
- 600	$26 \cdot 2134$	$3.47 \quad 36$	$98 \cdot 20 \quad 18$	62.4714	$38.55 \quad 21$	24.6518	$32 \cdot 32$	$9 \cdot 66$	23.13	- 600
- 500	$51 \cdot 2433$	$47.63 \quad 35$	$\begin{array}{ll}31 \cdot 35 & 17\end{array}$	84.4814	$30 \cdot 4820$	$23.88 \quad 17$	74.96	$39 \cdot 42$	3.20	- 500
- 400	104.0932	$99.82 \quad 33$	127.31 16	$15.48{ }^{8} 13$	$37 \cdot 2219$	28.76	57\%70	29.11	15.032	- 400
- 300	$32 \cdot 9630$	24.0232	91.2816	$46 \cdot 48$	43.9618	$33 \cdot 65 \quad 16$	40'44	18.80	$2 \cdot 85 \quad 2$	- 300
- 200	$85.84 \quad 29$	$76 \cdot 2330$	55.2615	$77.47 \quad 12$	0.71	$38.54 \quad 15$	$23 \cdot 18$	8.50	14.68	- 200
- 100	14.7328	$0 \cdot 46 \quad 29$	19.2414	$8 \cdot 46 \quad 12$	7478	1.4414	$5 \cdot 92$	$42 \cdot 19$	$2.51 \quad 2$	- 100
0	$67.63 \quad 26$	52.70 28	115.2314	39.44	14.24 16	6.3514	68.65	31.88	14.342	
$+100$	120.55	104.9626	79.2313	70.42 II	21.015	11.2613	51.38	21.56	$2 \cdot 17 \quad 2$	+ 100
200	$21.68 \quad 24$	21-22 25	$12.43 \quad 12$	$92 \cdot 39$ 10	$\begin{array}{ll}13.00 & 14\end{array}$	$10.54{ }^{12}$	$14{ }^{-02}$	$7 \cdot 31$	$6 \cdot 25$	200
300	$74 \cdot 62 \quad 22$	$73.50 \quad 23$	108.44	$23 \cdot 35 \quad 9$	19.7914	$15.47 \quad 12$	76.75	$4{ }^{1.00}$	18 -08	300
400	3.58 21	125.80	72.46 II	54.31	26.5913	20.40 II	59.48	30-69	5.91	400
500	56.55 20	$50 \cdot 11 \quad 21$	36.49 Iо	85'26	$33 \cdot 40 \quad 12$	25.34 10	$42 \cdot 20$	$20 \cdot 37$	17.751	500
600	109.5418	102.4419	$0 \cdot 52 \quad 9$	16.21	40-22 11	30-29 9	24.93	10.06	$5 \cdot 58$ I	600
700	$\begin{array}{ll}38 \cdot 54 & 17\end{array}$	$26.78 \quad 18$	$96 \cdot 56$	47^{115}	$47^{\circ} \mathrm{O} 410$	35-25	$7 \cdot 65$	$43 \cdot 74$	$17 \cdot 42$	700
800	91.5515	$79 \cdot 1416$	60-61	78-09	3.87	40.21	70.37	$33 \cdot 42$	5.25	800
900	116.77	123.50 15	125.867	$0 \cdot 026$	45.91	39.547	32.99	19.17	$9 \cdot 34$	900
1000	$45 \cdot 81$	$47.88 \quad 13$	89.927	$30-95$	$2 \cdot 76$	$2 \cdot 52 \quad 7$	$15 \cdot 71$	8.85	21.18	1000
1100	98.86 II	$100 \cdot 28 \quad 12$	53.996	$6 \mathrm{I}-87 \quad 5$	$9.62 \quad 7$	7.506	$78 \cdot 43$	$42 \cdot 53$	$9-01$	1100
1200	27.93 10	24:70 10	18.07	92.78	16.49	12.495	61.14	$32 \cdot 21$	20.85 I	1200
1300	8 I - II	$77 \cdot 13 \quad 9$	114.15	$23 \cdot 68$ 4	$23 \cdot 375$	17.49	43.86	$21.89+1$	8.69-1	1300
1400	10.11	1-57 7	$78 \cdot 24 \quad 4$	$54 \cdot 58$	30-25 4	22.50 4	$26 \cdot 57$	11.56 o	20.53 O	1400
1500	$63 \cdot 22-6$	54-03-6	42•34-3	$85 \cdot 48+2$	37-14-3	27.51-3	$9 \cdot 28+1$	1-24 0	$8 \cdot 38$ 0	1500
Gregorian										Gregorian
1500	$35 \cdot 4 \mathrm{I}-6$	46-02-6	11.53-3	$76 \cdot 48+2$	22.34-3	21-87-3	$69 \cdot 18+1$	41.300	0.620	1500
1600	88.54 4	98.495	107.64	7.37	$29 \cdot 24$	$26.89 \quad 2$	$51 \cdot 89+1$	30.98 ○	12.47 0	1600
1700	17.68 3	$22 \cdot 98$ -	71.75 1	$38 \cdot 25$ I	$36 \cdot 15$	$31.92 \quad 1$	34.59	$20 \cdot 65$ -	0.31 0	1700
1800	70.83-1	$75 \cdot 48$ - 2	$35 \cdot 87-1$	$69 \cdot 13+1$	43.07-1	$36 \cdot 96-1$	17.30	10.330	12.16 0	1800
1900	0.00	$0 \cdot 00$	0.00	0.000	0.00 -	0.00	$0 \cdot 00$	0.00	$0 \cdot 00$	1900
2000	$25 \cdot 37+1$	$44 \cdot 52+2$	$65 \cdot 32+1$	21.87-1	$42 \cdot 14+1$	$4 \mathrm{~F} \cdot 4 \mathrm{I}+1$	42.60	29.73 ○	4.10	2000
2100	$78.57 \quad 3$	97.073	29.47	52.73 I	$49.08 \quad 2$	$4 \cdot 47$ I	25.300	19.40 -	15.94 0	2100
2200	7×78	21.645	$125.62 \quad 2$	83.58	$6 \cdot 033$	$9.53 \quad 2$	8-00-1	9.08 -	$3 \cdot 79$ -	2200
2300	61.006	74.22	89.77	14.42	13.003	14.60	70.69	42.75	15.64 -	2300
2400	114.24 7	126-81 8	53.94	45.26	19.974	19.68 4	53.38	32.41 o	3.49 -	2400
2500	$15.69 \quad 9$	$43 \cdot 4 \mathrm{I} \quad 9$	119.30	67.10 4	12.15 5	$19 \cdot 134$	$15 \cdot 98$	18.14-1	7*59+1	2500
2600	$68 \cdot 9610$	96.04 II	83.48	$97 \times 92 \quad 4$	$19 \cdot 136$	24.235	78-67	$7 \cdot 81 \quad 1$	19.44 I	2600
2700	122-24 12	$20.68 \quad 12$	$47^{-67} 6$	28.745	$26 \cdot 13$?	29.336	$6 \mathrm{I} \cdot 36$ I	$4 \mathrm{~T} \cdot 48$ I	7291	2700
2800	$51.54 \quad 13$	73.3314	11.86 7	59.56	33.14 8	34.44 ?	$44^{-04} \quad 2$	$3 \mathrm{~F} \cdot 14$	19.14	2800
2900	104:85+15	126.01 + 15	$108 \cdot 06+7$	90336-6	40-15+9	$39 \cdot 56+8$	26.72-2	20.81-1	$7.00+1$	2900

Table 2 (cont.). Additions to the Arguments for the Centuries of the Julian and Gregorian Calendars.

Arg.	13 (a)	14 (a)	15 (a)	16 (a)	17 (a)	18 (a)	19 (a)	20 (a)	21 (a)	22 (a)	Arg.
Julian	c	c	c			c	c	c	c	c	Juliza
-2000	$5 \cdot 89+13$	14.93-4	$24 \cdot 79+8$	198.428-532	$40 \cdot 8 \mathrm{I}+4$	22.45-5	$0 \cdot 73+22$	35.84-33	$12 \cdot 27+28$	$6 \cdot 18-20$	-2000
- 1900	$9 \cdot 27 \quad 12$	30.094	$26 \cdot 428$	125.061 519	29.354	$2 \cdot 805$	5.87 21	$53.76 \quad 32$	$32.42 \quad 27$	$2.53 \quad 20$	- 1900
- 1800	$4.75 \quad 12$	8.094	$27 \cdot 55$	33.707507	$9 \cdot 20$	11.96	3.50 21	42.20 31	51.0627	21.0019	- 1800
-1700	$8 \cdot 1312$	23.254	$1 \cdot 18 \quad 7$	211-366 494	$48 \cdot 73 \quad 4$	$30 \cdot 315$	$8.63 \quad 20$	$60 \cdot 1430$	15.2026	17.3519	- 1700
- 1600	11.50 12	6.41	. 1	138.037481	37.27	10.675	13.7520	78.0929	35.3312	13.7018	- 1600
-1500	14.87 II	2157	4.447	64.722468	25.81	29.03	18.86	$2.05 \quad 29$	55.46	10.0618	- 1500
- 1400	18.23 II	4.74	6.067	242.419455	14.34	$9 \cdot 39$	$23.97 \quad 19$	20.0128	19.5824	6.43 I7	- 1400
- 1300	$2 \mathrm{I} \cdot 60$ II	19.904	$7 \cdot 68 \quad 7$	169.129 442	2.88	27.75	29.0818	$37.98 \quad 27$	$39 \cdot 69 \quad 23$	$2 \cdot 80$ I7	- 1300
- 1200	17.0610	29.914	8.80	$77 \cdot 852429$	$33 \cdot 72$	36.91	26.6818	26.46 26	$2.29 \quad 23$	21.30 16	- 1200
- 1100	20.42 Io	13.083	$10 \cdot 42$	4.589416	22.25	17.28	$31.77 \quad 17$	$44 * 45$	$22.39 \quad 22$	17.6816	- 1100
- 1000	23.77 10	$28 \cdot 25$ 3	12.04	182.338403	10.78	35.64	36.8617	$62.45 \quad 25$	42.48 21	$14.07 \quad 15$	- 1000
- 900	27.12 9	11.423	13.65	IO9.100 390	$50 \cdot 3 \mathrm{r} 3$	16.01	41.9516	$80 \cdot 46 \quad 24$	$6.57 \quad 21$	10.4615	- 900
- 800	30.46	26.59	15.26	$35 \cdot 876377$	$38 \cdot 84$	$34 \cdot 37$	47.0316	4.4723	26.6520	$6 \cdot 8614$	- 800
- 700	33.81	9.76	16.87	$213 \cdot 665 \quad 363$	27.37	14.74	52.10 15	$22.49 \quad 22$	$46 \cdot 72 \quad 19$	3.2614	- 700
- 600	37	24.943	18.48	140.467350	15.90	33-11	57.17 14	$40 \cdot 52 \quad 21$	$10 \cdot 78$ 18	35.6613	- 600
- 500	32.59	$2 \cdot 953$	$19.59 \quad 5$	$49.283 \quad 337$	$46 \cdot 74$	$4 \cdot 29$	54.73 14	29.0621	29.3318	18.2013	- 500
- 400	35.92	18.13	21.19	227 112 323	35.26	$22 \cdot 66$	59.7813	47.10 20	$49 \cdot 38 \quad 17$	14.61	400
-	$39 \cdot 25$	$1 \cdot 30$	22.79 5	153.955 310	23.79	3.03	$64.83 \quad 13$	$65 \cdot 16 \quad 19$	13.42 16	11.03 12	- 300
-	$42 \cdot 58$	16.48	$24 * 394$	$80 \cdot 811296$	12.31	21.41	$69.88 \quad 12$	83.2218	$33 \cdot 4616$	$7 \cdot 46$ II	- 200
- 100	$1 \cdot 91$	31.66	25.994	$7 \cdot 680 \quad 283$	83	$1 \cdot 78$	$74.92 \quad 12$	7.2917.	53.4915	3.89 II	100
-	5	14.84	27.58	$185.563 \quad 269$	$40 \cdot 36$	$20 \cdot 16$	$3 \cdot 95$ II	$25.37 \quad 16$	17.5114	$0 \cdot 33$	0
$+100$	$8 \cdot 556$	30.02	1-18 4	II2.460 255	28.88	. 54	8.98 II	43.46	37.5313	$32 \cdot 77$ 10	$+100$
0	3.966	$8 \cdot 04$	274	21.371 242	$8 \cdot 71$	$9 \cdot 72$	$6 \cdot 5010$	32.0515	0.0213	$15.34 \quad 9$	200
300	$7 \cdot 276$	23.232	3.863	199.295228	48.22	28.10	11.52 9	50.16 14	$20 \cdot 02 \quad 12$	II•79 9	300
400	$10 \cdot 58$	$6 \cdot 41$	$5 \cdot 45$	126.233214	36.74	8.49	16.53	$\begin{array}{lll}68.27 & 13\end{array}$	40.01 II	$8 \cdot 258$	400
500	13.895	21.60	$7.03 \quad 3$	$53 \cdot 185200$	25.26	26.87	21.54	86.39 12	4.00 II	4.718	500
60	17.195	4.78	$8 \cdot 613$	231-151 186	13.77	$7 \cdot 26$	26.54	$10 \cdot 52$ II	23.98 10	I•18 7	600
700	20*49 4	19.97	$10 \cdot 193$	$158 \cdot 131172$	$2 \cdot 29$	$25 \cdot 65$	31.537	28.66 II	$43 \cdot 959$	$33 \cdot 66 \quad 6$	700
800	23.78	3.16	11.77	$85.125 \quad 158$	$4 \mathrm{I} \cdot 80$	6.03	$36 \cdot 52$	46.81 10	$7 \cdot 92$	30.14	800
900	19.18	13.19	12.852	245.133 144	21.	15.22	34.006	$35.46 \quad 9$	$26 \cdot 36$	12.74	900
1000	22.46	28.38	14.432	172.156 130	$10 \cdot 14$	$33 \cdot 62$	$38 \cdot 98$	53.638	$46 \cdot 31$	9.235	1000
1100	25.75 3	11.57 I	16.002	99-192 116	$49 \cdot 6$	14.01	43.955	71-80 7	$10 \cdot 256$	$5 \cdot 724$	1100
1200	29.03	$26 \cdot 77$	17.572	26.243 IoI	38.16	32.40	48.9 I	89.98	30.19	2.22	1200
1300	$32 \cdot 3 \mathrm{I}$	9.96 I	19.14	204.308 87	26.66	12.80	53.87	14.17	$50 \cdot 11$	34.73	1300
1400	35.58	25•16-1	20.70 I	$131+38773$	$15.17+1$	31.19	58.82	$32 \cdot 37$	14.034	$3 \mathrm{I} \cdot 243$	1400
1500	38.85 +	$8 \cdot 36$ -	$22 \cdot 27+1$	$58 \cdot 480-58$	3.68 -	11.59-1	$63 \cdot 77+2$	50.58-4	$33 \cdot 94+3$	27.76-2	1500
Gregorian											Gregorian
1500	30.95 +	$3 \cdot 20$ -	21.77+1	40.480-58	45.99	$2 \cdot 39$ - I	$56 \cdot 27+2$	2I•08-4	$32 \cdot 43+3$	13.88-2	1500
1600	34.22 1	18.40 -	$23.33+1$	218.58844	34.49	20.79	61.21	39.30	$52 \cdot 34 \quad 2$	10.40	1600
1700	$37 \cdot 48+$	1.60	24.890	$145 \cdot 71129$	23.00	I•19	$66 \cdot 15$	57.53	$16.23 \quad 2$	$6 \cdot 93$	1700
1800	40.74 -	16.80 -	26.44 -	72.848-15	11.50	19.60	$71.08+$	75.76 -	$36 \cdot 12+1$	$3 \cdot 46-1$	1800
1900	. 00	0.00 0	0.000	0.0000	0.00	0.00	0.00	$0 \cdot 00$	$0 \cdot 00$	$0 \cdot 00$	1900
2000	39.35 -	10.040	1.050	$160 \cdot 166+15$	30.81	9.21	$73 \cdot 42$ -	$82 \cdot 75+$	18.36-1	$18.66+$	2000
210	$42 \cdot 60$ -	25.250	$2 \cdot 60$ o	87.34729	19.31	27.610	$2 \cdot 33$	7.01	$38 \cdot 23 \quad 2$	15.21	2100
2200	$1.85 \quad 1$	8.45 -	4.15-1	14.54344	7.81 -	8.02	$7 \cdot 23$	25.283	$2 \cdot 082$	11.77	22
2300	$5 \cdot 09$	23.660	$5 \cdot 70$	192.75459	47.31	$26.43+1$	12*13	$43 \cdot 56$	21.93	$8 \cdot 33 \quad 2$	2300
2400	$8 \cdot 33$	$6 \cdot 87+$ r	$7 \cdot 24$ I	119.980 74	35.80-1	$6 \cdot 84$	17.023	61.85	41'77	4.903	2400
2500	$3 \cdot 67$	16.92	$8 \cdot 29$ I	$29.220 \quad 89$	15.61	16*05	14.41	$50 \cdot 65$	4.10 5	23.59	2500
2600	6.903	$0 \cdot 13$ I	$9.83 \quad 2$	$207.475 \quad 104$	$4 \cdot 10$	$34 \cdot 47$	19.294	$68 \cdot 96$	23.925	$20 \cdot 174$	2600
2700	10.12	15.34	11.36 2	134.746119	43.59	14.88	24.16	$87.27 \quad 7$	$43 \cdot 746$	16.75	2700
2800	13.35	30.56 1	12.902	62.031134	32.09 I	33.30 I	29.036	11.60 8	$7 \cdot 557$	13.34	2800
2900	16.57-4	$13.77+1$	$14^{4} 43-2$	$240 \cdot 332+149$	20.58 - 1	$13.72+1$	33•89-6	$29.94+9$	27.35-8	$9.93+$	2900

Table 2 (cont.). Additions to the Arguments for the Centuries of the Julian and Gregorian Calendars.

Arg.		23	(a)			(a)		25	(a)		26	(a)		87	(a)		28	(a)	Arg.
Julian	d	${ }^{\text {c }}$		d	c		d	c		d	c		$\begin{array}{r} d \\ 8 \cdot 0 \\ 13 \cdot 5 \end{array}$	c		$\underset{r-5}{d}$	${ }^{c}$		$\begin{aligned} & \text { Jullian } \\ & \text { - } 20000 \end{aligned}$
-2000	3.0	323-8-	-124	$6 \cdot 5$	149\%-33		3.0	0-0-242		25°	71-22-2098			$77 \cdot 8+326$			138-0-111		
- 2900	140	201.0	121	$2 \cdot 5$	$76 \cdot 8$	32	17%	$8 \cdot 3$	236	11'5	$58 \cdot 22$	2049		86.0	318	4°	155.3 108		-2000-1900-1800
-1800	$9 \cdot 5$	213.5	119	$12 \cdot 5$	68.6	$3{ }^{1}$	5%	$160 \cdot 3$	230	28.0	49.71	2000	$19{ }^{\circ}$	$93 \cdot 3$	3 10	6.5	$172 \cdot 9$	106	
- 1700	$5{ }^{\circ}$	226-2	116	8 -	163.6	30	19°	169.8	224	14.5	$97 \cdot 69$	1951	24.5	999	302	$9 \cdot 5$	12.8	103	- 1700
-1600	0.5	$239 \cdot 2$	113	4°	91.7	29	$7 \cdot 5$	133 ${ }^{-9}$	218	$1 \cdot 5$	$4^{\cdot 16}$	1902	30%	105-6	294	$2 \cdot 0$	$75 \cdot 9$	100	- 1600
-1500	11.5	117.5	III	-\%	19.8	29	21.5	$1.44{ }^{6}$	212	17.5	139.13	1852	$0 \cdot 5$	189.5	286	45	$94 \cdot 3$	98	- 1500
-1400	$7^{\circ} \mathrm{O}$	1310	108	10-0	12\%	28	100	\%100	206	$4 \cdot 5$	46.58	1802	6 -0	193.6	278	$7{ }^{\circ}$	112-9	95	- 1400
-1300	$2 \cdot 5$	$144{ }^{\circ} 7$	106	$5 \cdot 5$	107*3	27	24°	121-9	200	21.0	$40 \cdot 53$	1752	115	19609	269	9.5	131*9	92	-1300
- 1200	13.5	23.7	103	I-5	$35 \cdot 7$	26	$12 \cdot 5$	88.4	194	7.5	90'99	1702	${ }^{1} 7{ }^{\circ}$	$199 \cdot 3$	261	$2 \cdot 5$	18-7	90	- 1200
-1100	970	$38 \cdot 0$	100	11-5	$28 \cdot 1$	23	1.0	$55 \cdot 5$	188	$24^{\circ} \mathrm{O}$	85.95	1653	$22 \cdot 5$	$200 \cdot 9$	253	5\%	$37 \cdot 5$	87	- 21000
-1000	4.5	$52 \cdot 6$	97	$7{ }^{\circ}$	123.7	24	15.0	$69 \cdot 2$	182	$10 \cdot 5$	237.41	1594	28.0	20177	245	$7 \cdot 5$	$57 \cdot 2$	84	- 2000
- 900	00	$67 \cdot 4$	94	$3{ }^{\circ}$	52'3	24	$3 \cdot 5$	$37 \cdot 5$	176	$27^{\circ} \mathrm{O}$	${ }^{1} 33 \cdot 46$	1555	$33 \cdot 5$	201-6	237	-0	122.2	82	- 900
- 800	$10 \cdot 5$	54.6	91	13*	45\%	23	17.5	52.4	170	$14^{\circ} \mathrm{O}$	$43^{88} 9$	1495	4.5	21.8	229	$2 \cdot 5$	$142 \cdot 5$	79	- 800
- 700	6%	$562 \cdot 0$	87	$8 \cdot 5$	$140 \cdot 8$	23	6.0	21.9	164	0.5	96-91	1443	10-0	$20 \cdot 1$	221	$5^{\circ} \mathrm{O}$	163.1	76	- 700
- 600	1.5	$57^{8 \circ}$	84	$4 \cdot 5$	69.7	21	$20 \cdot 0$	$3_{8 \cdot 8}^{8 \cdot 1}$	${ }_{1}^{158}$	$17^{\circ} \mathrm{O}$	94.47	1390	15.5	${ }^{1} 777$	213	8.0	$5 \cdot 9$	73	- 600
- 500	12.5	459.2	81	0%	$165 \cdot 7$	20	$8 \cdot 5$	8.8	152	4°	$6 \cdot 54$	1337	21.0	14.5	205	$0 \cdot 5$	72%	71	- 500
- 400	8.0	475'7	78	$10^{\circ} 0$	158.7	19	22.5	$26 \cdot 1$	146	$20 \cdot 5$	$5 \cdot 15$	1284	26.5	10.4	197	$3 \cdot 0$	93.4	68	- 400
- 300	$3 \cdot 5$	492.5	74	$6-0$	87.8	19	$10 \cdot 5$	$\mathbf{1 8}_{7} \cdot \mathbf{1}$	140	$7{ }^{\circ}$	60.30	1230	32.0	$5 \cdot 6$	188	$5 \cdot 5$	$115{ }^{\circ}$	65	- 300
- 200	14.5	374'7	71 68	20	17.1	18	25°	$16 \cdot 7$	133	23.5	59.98	1176	$2 \cdot 5$	$78 \cdot 9$	180	8.0	ז 37°	62	- 200
- 100	10\%	$392 \cdot 3$	68	12.0	$10 \cdot 4$	17	$13^{\circ} \mathrm{O}$	$178{ }^{8} 9$	127	10%	116.20	1122	8 -	$72 \cdot 4$	172	10	$26 \cdot 2$	59	- 100
0	$5 \cdot 5$	$410 \cdot 1$	65	7×5	$106 \cdot 7$	16	1.5	152.7	121	$26 \cdot 5$	116.95	1069	13.5	$65 \cdot 1$	163	3.5	$4^{8 \cdot 7}$	56	0
+ 100	10	428-2	62	$3 \cdot 5$	$36 \cdot 2$	15	15.5	173. 1	115	13.5	$32 \cdot 24$	10,6	19\%	$57^{\circ} \mathrm{O}$	155	6.0	71.5	54	+ 100
200	12.0	3117	59	$13 \cdot 5$	$29 \cdot 8$	14	$4^{\circ} \mathrm{O}$	148	109	-0	90.06	962	24.5	47.9	146	8.5	94.6	51	200
300	$7 \cdot 5$	$330 \cdot 4$	56	$9{ }^{\circ}$	126.4	13	18.0	169*9	102	16.5	92.42	908	$30^{\circ} 0$	$3^{8.0}$	137	50	$163{ }^{\circ}$	43	300
400	3.0	$349 \cdot 4$	53	$5{ }^{\circ}$	$56 \cdot 1$	13	6.5	$14^{6 \cdot 2}$	96	3.5	9.37	854	0.5	106-3	128	4°	$8 \cdot 6$	45	400
500	14°	$233 \cdot 7$	50	$0 \cdot 5$	152-9	12	20.5	$169 \cdot 1$	90	200	12.75	799	$6 \cdot$	$94 \cdot 6$	120	6.5	$32 \cdot 6$	42	500
600	9.5	$253 \cdot 3$	47	$10 \cdot 5$	146.8	${ }^{17}$	9.0	146-6	84	$6 \cdot 5$	$72 \cdot 74$	744	II-5	$82 \cdot 7$	İI	$9^{\circ} \mathrm{O}$	56.8	39	800
700	5\%	273.2	44	$6 \cdot 5$	$76 \cdot 8$	10	$23^{\circ} \mathrm{O}$	$170 \cdot 8$	77	23°	$77 \cdot 27$	688	$17^{\circ} \mathrm{O}$	$68 \cdot 7$	103	I-5	$126 \cdot 3$	36	700
800	0.5	293.4	40	2.5	$6 \cdot 8$	9	11-5	149.7	71	9.5	138.35	632	$22 \cdot 5$	54.4	94	4°	151-2	33	800
900	I1-5	$179{ }^{\circ}$	37	12.5	10	8	$0 \cdot 0$	129.1	65	26.5	2.00	575	28.0	39.3	86	$6 \cdot 5$	$176 \cdot 3$	30	900
1000	$7{ }^{-0}$	199.9	33	8.0	$9^{88 \cdot 2}$	8	$14^{\circ} \mathrm{O}$	\$55.2	58	\%30	$64 \cdot 21$	518	$33 \cdot 5$	23.4	77	$9 \cdot 5$	23.7	27	1000
1100	$2 \cdot 5$	221-2	29	4°	$28 \cdot 5$	7	$2 \cdot 5$	$135 * 9$	52	29.5	70-99	461	4°	85.6	69	$2 \cdot 0$	94.4	24	1100
1200	13.5	107*9	25	$14^{\circ} \mathrm{O}$	22.9	6	16.5	163.3	45	16%	134:34	404	$9 \cdot 5$	68.0	6 t	4.5	120.4	21	1200
1300	9.0	129*9	22	$9 \cdot 5$	120'4	5	$5{ }^{\circ} \mathrm{O}$	145.3	39	3.0	$56 \cdot 27$	347	15%	$49 \cdot 6$	52	$7{ }^{\circ}$	146-7	18	1300
1400	4.5	152.4	18	$5 \cdot 5$	$50 \cdot 9$	4	19\%	174*	32	19.5	$64^{\prime 7}{ }^{8}$	289	$20 \cdot 5$	$30 \cdot 3$	44	-0.0	$40 \cdot 4$	15	1400
1500	O-O	175 ${ }^{-2}$ -	15	1.0	$148 \cdot 6$ -	3	$7 \cdot 5$	157*3-	26	$6 \cdot$	129.87-	232	$26 \cdot 0$	$10 \cdot 2+$	35	$2 \cdot 5$	$67 \cdot 3$ -		1500
Gregorian																			Gregorian
1500	$5 \cdot 5$	40.2-	15	$5 \cdot 5$	45^{-6} -	3	23.5	14.3 -	26	26\%	$73 \cdot 87-$		16\%	$10 \cdot 2+$	35	$2 \cdot 5$	$22 \cdot 3$		1500
1600	1.0	63.3	11	10	$1.43 \cdot 3$	3	11.5	187.2	20	12.5	139.53	175	21.0	247^{-2}	26	$5{ }^{\circ}$	$49 \cdot 5$	9	1600
1700	10.5	550.9	7	10.0	$138 \cdot 1$	2	$25^{\circ} \mathrm{O}$	28.8	13	28.5	777	${ }^{117}$	25.5	$225 \cdot 3$	18	$6 \cdot 5$	77°	6	1700
1800	$5{ }^{\circ}$	574*8-	4	$5{ }^{\circ}$	$69^{\circ} \mathrm{O}$	I	12.5	$14^{1} \mathrm{I}-$	7	14°	$74.60-$	58	30%	$202 \cdot 6+$	9	8 -0	104*9 -	3	1800
1900	$0 \times$	-\%	0	\bigcirc	-\%	,	-0	0-0	\bigcirc	0%	-00	-	$\bigcirc 0$	\bigcirc	-	-0	$0 \cdot 0$	-	1900
2000	$10 \cdot 5$	$488.6+$	- 3	9.5	$162 \cdot 1+$	I	$14^{\circ} \mathrm{O}$	$32 \cdot 6+$	7	16.5	${ }^{11} \cdot 98+$	59	$5{ }^{\circ}$	233.5 -	9	$2 \cdot 5$	$28.4+$	6	2000
2100	$5{ }^{\circ} \mathrm{O}$	513.4	7	$4 \cdot 5$	$93 \cdot 2$	2	$1 \cdot 5$	19.8	13	2.0	80.55	118	9.5	208\%	18	$4{ }^{4}$	$57^{\circ 2}$	6	2700
2200	15°	$403 \cdot 6$	10	13.5	88.5	3	14.5	$53 \cdot 6$	20	${ }^{2} 7.5$	93-70	176	14°	181.7	27	$5 \cdot 5$	$86 \cdot 3$	9	2200
2300	$9 \cdot 5$	429.2	13	$8 \cdot 5$	19.8	3	2.0	42.2	26	3.5	21.43	235	18.5	$154 \cdot 5$	37	7*o	1157	12	2300
2400	$5{ }^{\circ}$	455 ${ }^{\text {I }}$	17	4°	118.2	4	16.0	$77 \cdot 4$	33	20.0	$35 \cdot 76$	294	$24^{\circ} \mathrm{O}$	126.3	46	-	$12 \cdot 4$	16	2400
2500	$15^{\circ} \mathrm{O}$	$346 \cdot 3$	25	T3*0	T13.7	6	3.5	$67 \cdot 2$	40	$5 \cdot 5$	106.67	354	28.5	97° 67%	55	1-5	$42 \cdot 4$	19	2500
2600	9.5	372*9	25	$8 \cdot 0$	$45 \cdot 3$	6	16.5	103.7	46	21.0	122-19	415	$33^{\circ} \mathrm{O}$	67^{2}	64	3°	$72 \cdot 7$	22	2600
2700	$4^{\circ} \mathrm{O}$	399*9	28	2.5	143.9	7	4°	94.9	53	7.0	$52 \cdot 32$	476	$2 \cdot 5$	115*4	73	4.5	103.3		2700
2800	15°	292-3		12.5	139.6		18.0	$132 \cdot 8$	60	23.5	69.05	537	.	$83^{\circ 6}$	81	78	${ }^{134.3}$		2800
2900	$9 \cdot 5$	$320 \cdot 1+$	$+36$	$7 \cdot 5$	$71 \cdot 5+$		$5 \cdot 5$	$125 \cdot 3+$		$9 \cdot 5$	$0.40+$	598	12.5	5 T -	90	$8 \cdot 5$	$165.6+$	+32	2900

Table 2 (cont.). Additions to the Arguments for the Centuries of the Julian and Gregorian Calendars.

Table 2 (cont.). Additions to the Arguments for the Centuries of the Julian and Gregorian Calendars.

Arg.		35	(a)	36		(a)	37			38			39			40			41			Arg.			
Julian	d	c		$\xrightarrow[\text { II-5 }]{\text { d }}$	c		$\frac{d}{7^{\circ} 0}$	c		$\underset{2 \circ 0}{d}$	c					$\underset{2 \cdot 0}{d}$	c		d c			Julian			
-2000	3\%	$93 \cdot 52-1687$			$80 \cdot 9+134$			$233 \cdot 5+90$			117-8-241		$3 \cdot 5 \quad 28 \cdot 7-14$				$288 \cdot 13+27$		$143 \cdot 5 \quad 14.9+52$			$\begin{aligned} & -2000 \\ & -1900 \\ & -1800 \end{aligned}$			
- 1900	$5 \cdot 5$	$69^{\prime 2}$	1647	0.5	$91 \cdot 4$	131	$5 \cdot 5$	312.9	88	$0 \cdot 5$	$185 \cdot 4$	235	$3 \cdot 5$	14.6 1	14	$8 \cdot 5$	102.30	27	$100 \cdot 5$	$2 \cdot 7$	51				
- 1800	80	45*39	1607	$5 \cdot 5$	$79 \cdot 7$	128	4%	$392 *$	85	$6 \cdot 5$	30-7	229	$3 \cdot 5$	$0 \cdot 6$	13	1-0	161-47	26	$57^{\circ} \mathrm{O}$	17-3	49				
-1700	$0 \cdot 5$	235*92	1567	10.5	$67 \cdot 6$	125	3\%	$74 \times$	83	5*	$99 \cdot 5$	224	$3^{\circ} \mathrm{O}$	17.6	13	$7{ }^{\circ}$	$286 \cdot 63$	26	13.5	19.8	48	- 1700			
-1600	$3^{\circ} 0$	212.85	1527	$15 \cdot 5$	55^{-2}	121	1-5	$153 \cdot 6$	81	$3 \cdot 5$	168-8	218	30	3'7	13	0	34*78	25	143'5	$20^{\circ} 2$	47	- 1600			
-1500	$5 \cdot 5$	190-18	1.487	$4 * 5$	64.4	118	O-O	232'1	79	20	$238 \cdot 8$	212	$2 \cdot 5$	$20 \cdot 7$	12	$6 \cdot$	$\mathbf{1 5 9} 93$	25	$100 \cdot 5$	$7 \cdot 5$	46	- 1500			
-1400	$8 \cdot 0$	167.91	1447	$9 \cdot 5$	$51 \cdot 3$	II5	$8 \cdot 5$	$377 \cdot 4$	77	1-0	$10 \cdot 4$	206	$2 \cdot 5$	6.8	12	12.0	285.08	24	$57^{\circ} \mathrm{O}$	$15 \cdot 7$	44	- 1400			
-1300	1-0	$83 \cdot 05$	1406	14:5	37.9	112	$7 \cdot 5$	59.5	75	$6 \cdot 5$	$157 \cdot 5$	200	$2{ }^{\circ} 0$	$24^{\circ} 0$	12	$5 *$	$33 \cdot 22$	24	$14^{\circ} \mathrm{O}$	2'7	43	-1300			
- 1200	$3 \cdot 5$	6r-58	1365	$3 \cdot 5$	$46 \cdot 2$	$\underline{108}$	$6 \cdot 0$	137*3	72	5\%	$229 \cdot 2$	194	20	$10^{\prime} 1$	11	11.0	158.35	23	144*	2.6	42	- 1200			
-1100	6%	40.53	1324	$8 \cdot 5$	$32 \cdot 2$	105	45	$214{ }^{\circ} 9$	70	4°	$2 \cdot 5$	188	I-5	$27 \cdot 3$	II	$3 \cdot 5$	217.47	22	100-5	$10 \cdot 4$	41	1100			
- 1000	$8 \cdot 5$	19.89	1282	$13 \cdot 5$	17.8	102	3*0	$292 \cdot 3$	68	$2 \cdot 5$	$75 \cdot 4$	182	I-5	13*6	11	10*0	37.59	22	$57^{\circ} \mathrm{O}$	18-0	39	1000			
- 900	I\%	$213 \cdot 67$	12.40	$2 \cdot 5$	25^{-1}	98	I-5	$369 \cdot 5$	66	I-0	1489	176	1*O	$30 * 9$	10	$2 \cdot 5$	90:70	21	14°	4*5	3^{8}	-900			
- 800	3*	$193 \cdot 87$	1197	$7 \cdot 5$	10*0	95	$0 \cdot 5$	50.5	64	$7^{\circ} 0$	0×0	170	10	17*2	10	. 5	$215 \cdot 8 \mathrm{t}$	21	$144^{\circ} \mathrm{O}$	3*9	37	-800			
-7	$6 \cdot$	174.49	1154	12\%	IIT-6	92	$9 \cdot 0$	194*2	67	$5 \cdot 5$	747	164	I-0	$3 \cdot 5$	9	I*	$274{ }^{\circ 91}$	20	$100 \cdot 5$	II-2	36	- 700			
- 600	$8 \cdot 5$	155*55	1111	$1 \cdot 5$	- 9	88	$7 \cdot 5$	$270^{\circ} 7$	59	$4^{\circ} \mathrm{O}$	150\%0	158	0.5	$20 \cdot 9$	9	$7 \cdot 5$	89\%01	19	$57^{\circ} 0$	$18 \cdot 3$	34	- 600			
-500	I'5	74.04	1068	6%	TOT-9	85	$6 \cdot 0$	$347^{\circ} \mathrm{O}$	57	$2 \cdot 5$	$225 * 9$	152	$0 \cdot 5$	$7 \cdot 3$	9	-*	$148 \cdot 10$	19	$14^{\circ} 0$	$4 * 3$	33	-500			
- 400	$4{ }^{\circ}$	$55 \cdot 96$	1025	1100	$85 \cdot 5$	82	$5^{\circ} \mathrm{O}$	$27^{\prime 1}$	55	I'5	$3 \cdot 4$	146	O'O	$24 \cdot 7$	8	$6{ }^{\circ}$	$273 \cdot 18$	18	$144^{\circ} 0$	3^{-2}	32	-400			
- 300	$6 \cdot 5$	38-37	98 I	\bigcirc	$90 \cdot 7$	78	$3 \cdot 5$	102*9	52	$0 \cdot 0$	$80 \cdot 5$	140	$0 \cdot 0$	II-2	8	$12 \cdot 5$	$87 \cdot 25$	17	$100 \cdot 5$	10\%	30	- 300			
- 200	$9 \cdot 0$	27-10	938	$5{ }^{\circ}$	73•7	75	$2 \cdot 0$	178-5	50	$5 \cdot 5$	234*3	134	$5 \cdot 5$	17\%7	8	$5^{\circ} \mathrm{O}$	146.32	17	57*0	$16 \cdot 6$	29	- 200			
- 100	I'5	218.32	895	10\%	$56 \cdot 3$	71	$0 \cdot 5$	$253 * 9$	4^{8}	45	$13 \cdot 6$	128	$5 \cdot 5$	$4 \cdot 3$	7	II'O	$271 \cdot 38$	16	14°	$2 \cdot 0$	28	- 100			
0	4	$201 \cdot 97$	852	15°	$38 \cdot 5$	68	$9 \cdot 5$	$0 \cdot 1$	45	$3^{\circ} 0$	$92 \cdot 6$	122	$5^{\circ} \mathrm{O}$	$21-9$	7	4°	- 19.43	15	144*O	. 4	26	0			
+ 100	$6 \cdot 5$	186.05	809	4°	$42 \cdot 4$	64	$8 \cdot 0$	$75^{\circ} \mathrm{O}$	43	1.5	172-2	115	5.0	$8 \cdot 5$	7	10.0	1.44.48	14	100'5	$6 \cdot 6$	25	+ 100			
200	9°	$170 \cdot 56$	766	9°	23.9	61	$6 \cdot 5$	149*7	4 T	$0 \cdot 0$	$252 \cdot 4$	109	$4 \cdot 5$	$26 \cdot 2$	6	$2 \cdot 5$	$203 \cdot 52$	14	$57^{\circ} \mathrm{O}$	$12 \cdot 7$	24	200			
300	2*	$92 \cdot 49$	723	14°	$5 \cdot 1$	58	$5 \cdot 0$	224*1	3^{8}	6*0	110'2	103	$4 \cdot 5$	12'9	6	$9 \cdot 0$	17*55	13	13.5	18.6	22	300			
40	$4 \cdot 5$	77.86	680	3°	$8 \cdot 0$	55	$3 \cdot 5$	298•3	36	4.5	191-6	97	4°	$30 \cdot 6$	6	1-5	$76 \cdot 58$	12	143.5	16.4	21	400			
50	$7^{\circ} \mathrm{O}$		637	$7 \cdot 5$	105.5	51	2-0	$372 \cdot 3$	34	3\%	$273 \cdot 7$	90	4°	$17 \cdot 4$	5	$7 \cdot 5$	201-59	12	$100 \cdot 5$	1-1	20	500			
600	$9 \cdot 5$	$49 \cdot 88$	593	T2.5	$85 \cdot 6$	47	10	50*1	3 3	2\%	57.4	84	4°	4^{-2}	5	$0 \cdot 0$	$260 \cdot 60$	17	$57^{\circ} \mathrm{O}$	$6 \cdot 6$	18	600			
700	2\%	$250 \cdot 55$	549	1-5	$87 \cdot 4$	43	$9 \cdot 5$	190-6	29	$0 \cdot 5$	$140 \cdot 8$	78	$3 \cdot 5$	22\%	4	$6 \cdot 5$	74.60	10	13.5	12\%	17	700			
800	$4 \cdot 5$	$237-66$	504	6,5		40	O	263.9	27	$6 \cdot 5$	1-7	71	$3 \cdot 5$		4	$12 \cdot 5$	199.60	9	$143 \cdot 5$	$9 \cdot 3$	15	100			
900	$7^{\circ} 0$	225'22	459	11-5		36	$6 \cdot 5$	$336 \cdot 9$	24	$5 \cdot 0$	$86 \cdot 3$	65	3°	26.8	4	$5 \cdot 0$	$258 \cdot 59$	8	100*0	14.4	14	900			
1000	0-0	150.23	414	0.5	$46 \cdot 7$	33	$5 \cdot 5$	$13 \cdot 7$	22	$3 \cdot 5$	171.6	59	3 -0	13-8	3	IT-5	$72 \cdot 57$	8	$56 \cdot 5$	19.4	${ }^{1}$	1000			
1100	$2 \cdot 5$	$138 \cdot 69$	368	5*5	$25^{\prime} \mathrm{I}$	29	4°	$86 \cdot 2$	20	$2 \cdot 0$	$257 \cdot 5$	52	$3 \cdot 0$	0.7	3	4°	131-54	7	13.5	$3 \cdot 3$	IT	1100			
1200	5%	127-62	322	$10 \cdot 5$	$3 \cdot 1$	26	$2 \cdot 5$	158-6	17	I-O	$45^{\circ} \mathrm{O}$	46	$2 \cdot 5$	18.8	3	10*0	256-50	6	$143 \cdot 5$	$0 \cdot 0$	10	1200			
1300	$7 \cdot 5$	117.00	275	$15{ }^{\circ}$	$97 \cdot 7$	22	1*0	$230^{\circ} 6$	15	$6 \cdot 5$	208-2	39	$2 \cdot 5$	$5 \cdot 8$	2	3*	4.45	5	100*0	$4 \cdot 5$	9	1300			
1400	$0 \cdot 5$	$43 \cdot 85$	229	$4{ }^{\circ}$	97°	18	$9 \cdot 5$	$369 \cdot 5$	12	$5 \cdot 0$	$296 \cdot 0$	33	2.0	$23^{\prime} 9$	2	$9{ }^{\circ}$	129*40	4	56.5	$9{ }^{\circ}$		1400			
1500	30	$34^{\prime 16}$	183	9.0	74°	15	$8 \cdot 5$	$45^{\prime} \mathrm{I}$	IO	4°	$85 \cdot 5$ -	-26	2.0	II'I	2	1-5	$188 \cdot 34+$	+ 3	$13^{\circ} \mathrm{O}$	13*3	6	1500			
Gregorian				$15 \% \quad 52.0+15$			$8 \cdot 5 \quad 112 \cdot 1+10$						$3 \cdot 5 \quad 20 \cdot 1-2$						$3 \circ \quad 13 \cdot 3+6$			Gregorian 1500			
1500	$2 \cdot 5$	$97 \cdot 16$	183				I*O	161.5-	-26	5*	$254 * 34+$	$+3$													
1600	$5{ }^{\circ}$	$87 \cdot 93$	137	4°	$50 \cdot 5$	II				$7{ }^{\circ}$	$183 \cdot 4$	7	$7^{\circ} 0$	$27 \cdot 7$	20	$3 \cdot 5$	$7 \cdot 3$,	II-5	68-27	3	133°	$9 \cdot 4$	4	1600
1700	$6 \cdot 5$	79'16	91	8.0	$26 \cdot 7$		$4 \cdot 5$	$254 \cdot 5$	5	$4 \cdot 5$	117.4	13	$2 \cdot 0$	25*5	1	$3^{\circ} \mathrm{O}$	127*19	2	88.5	13*4	3	1700			
1800	$8 \circ$	$70 \cdot 85-$	45	12\%	$2 \cdot 5+$	+ 4	2.0	$325 \cdot 4+$	$+2$	$2 \cdot 0$	207*9 -	-7	I-O	12'7		8*0	$252 \cdot 10$	I	44°	17*3	I	1800			
1900	$0{ }^{\circ}$	0-00	0	$0 \cdot 0$	O*O	0		0-0		0×0	-0	0	O-O	$0 \cdot 0$	0	-	-00	0	0×0		0	1900			
2000	2.0	$269 \cdot 60+$	46	$4 \cdot 5$	92•1 -	- 4	$8 \cdot 5$	$137 \cdot 4$	2	$5 \cdot 5$	$\mathbf{1 6 7 - 8}+$	+ 7	5*5	$7 \cdot 3$		6*0	124.89		85	$16 \cdot 6$	1	2000			
2100	$3 \cdot 5$	$262 \cdot 66$	92	$8 \cdot 5$	$66 \cdot 8$	7	$6{ }^{\circ}$	$207 \cdot 5$	5	$3{ }^{\circ} 0$	$260 \cdot 2$	13	$4^{\circ} 0$	$25 \cdot 7+$	+	11*O	2.49 .78		85%	$20 \cdot 0$	3	2100			
2200	$5^{\circ} \mathrm{O}$	$256 \cdot 18$	138	12.5	41'2		$3 \cdot 5$	$277 \cdot 3$		I-O	$54 * 3$		$3^{\circ} \mathrm{O}$	$13^{1} 1$		$2 \cdot 5$	308.66	3	4^{170}	$2 \cdot 3$	4	2200			
2300	$6 \cdot 5$	250-16	185	$0 \cdot 5$	$37^{*} \mathbf{I}$	15	1.0	$347^{\circ} \mathrm{O}$		5*5	224* ${ }^{\text {I }}$	27	$2 \cdot 0$	$0 \cdot 5$	2	8-0	122*52	4	$169 \cdot 5$	$18 \cdot 4$	6	2300			
2400	9*\%	244.61	231	$5 \cdot 5$	$10 \cdot 7$	19	$0 \cdot 0$	$20 \cdot 3$	13	$4 \cdot 5$	19.5	33	I-5	19*0	2	$0 \cdot 5$	r8r-38	5	$126 \cdot 5$	$0 \cdot 4$	7	2400			
2500	I'O	176.52	278	9^{-0}	$100 \cdot 9$	22	$7 \cdot 5$	156.4	15	2*0	114.6	40	$0 \cdot 5$	$6 \cdot 5$	2	$5 \cdot 5$	$306 \cdot 23$	5	82\%	$3 \cdot 3$	9	2500			
2600	$2 \cdot 5$	171.90	326	$13^{\circ} \mathrm{O}$	$73 \cdot 8$	26	5°	$225 \cdot 3$		$6 \cdot 5$	$286 \cdot 4$	47	5°	$14^{\circ 1}$	3	ITO	120*07	6	$37 \cdot 5$	$6{ }^{\circ}$		2600			
	$4^{\circ} 0$	$167^{*} 76$	374	1*0	$68 \cdot 2$	30	$2 \cdot 5$	293*9		$4 \cdot 5$	83.9		4°	1*7	3	$2 \cdot 5$	$178 \cdot 90$		166.5	$0 \cdot 5$		2700			
2800	$6 \cdot 5$	$164 \cdot 10$	423	60	$40 \cdot 3$	34	1-0	$362 \cdot 2$		3°	$181 \cdot \mathrm{I}$	67	$3 \cdot 5$	$20 \cdot 3$	3	$8 \cdot 5$	303•72		123*0		13	2800			
2900	80	$160 \cdot 93+$	+ 473	10*0	12\% -	- 3^{8}	$9^{\circ} \mathrm{O}$	IOT'3	-25	0.5	$27^{8 \cdot 9}+$	$+67$	$2 \cdot 5$	$8 \cdot 0+$	$+4$	0.5	$5 \mathrm{~T} \cdot 53-$	-9	$78 \cdot 5$	$5 \cdot 2$	- 15	2900			

Table 2 (cont.). Additions to the Arguments for the Centuries of the Julian and Gregorian Calendars.

Arg.	42		43		44 (a)		45		46		47		48	Arg.
Julian	d	c	d	c	d	c	d	c	d	c	d	c		Julian
-2000	$5 \cdot 0$	$133 \cdot 9+206$	I-O	171•7-84	$3 \cdot 5$	95*7-16	$5^{\circ} 0$	$72 \cdot 9+47$	0.5	60.8-46	$50 \cdot 5$	3.61-17	31	-2000
- 1900	$2 \cdot 5$	124.5201	$1 \cdot 5$	$2 \cdot 3 \quad 82$	$4 \cdot 5$	$146 \cdot 716$	1.5	$18 \cdot 845$	$4 \cdot 5$	34.0	$49 \cdot 5$	$5 \cdot 2115$	89	- 1900
-1800	0.0	114.7196	$1 \cdot 5$	22.1 80	60	$18 \cdot 7 \quad 16$	$7 \cdot 0$	$105 \cdot 644$	I'5	28.444	$48 \cdot 5$	$6.83 \quad 12$	148	-1800
-1700	24.5	67.4 191	I•5	$42 \cdot 2 \quad 78$	0.0	$40.7 \quad 15$	$3 \cdot 5$	$51 \cdot 3 \quad 43$	$5 \cdot 5$	$1 \cdot 943$	47.5	$8 \cdot 48$ IO	43	- 1700
- I600	22.0	$56.6 \quad 186$	I•5	$62 \cdot 4 \quad 76$	1.0	91.8 15	$9 \cdot 5$	$4^{\circ 8} 42$	2.0	64.542	$46 \cdot 5$	$10 \cdot 157$	102	- 1600
- I500	19.5	$45 \cdot 2 \quad 181$	I•5	82.874	$2 \cdot 0$	142.914	$5 \cdot 5$	$83 \cdot 3$ 41	$6 \cdot 0$	$38 \cdot 3 \quad 40$	$45 \cdot 5$	11.864	156	- 1500
- 1400	17.0	33.4176	I. 5	$103 \cdot 472$	3+5	$15 \cdot 114$	$2 \cdot 0$	$28 \cdot 740$	$3 \cdot 0$	$33 \cdot 139$	$44 \cdot 5$	$13.59-1$	55	- I400
- I300	14.5	2I•1 171	I•5	124.270	$4 \cdot 5$	$66 \cdot 314$	$7 \cdot 5$	114939	$0 \cdot 0$	$28 \cdot 0 \quad 38$	$43 \cdot 5$	$15 \cdot 36+1$	110	- 1300
- I200	12.0	8.3 $\quad 166$	I'5	$145 \cdot 368$	$5 \cdot 5$	117.613	4.0	$60 \cdot 0 \quad 38$	4.0	$2 \cdot 137$	$42 \cdot 5$	17.154	9	- I200
- I100	$9 \cdot 0$	$147^{\circ} \mathrm{O}$ 161	I'5	$166 \cdot 566$	$6 \cdot 5$	$168 \cdot 913$	$0 \cdot 5$	$5 \cdot 036$	$0 \cdot 5$	$65 \cdot 3 \quad 36$	$41 \cdot 5$	$18 \cdot 976$	63	- 1100
- I000	$6 \cdot 5$	133.2156	I•5	187.964	I'0	$12 \cdot 2$ I2	$6 \cdot 0$	$90 \cdot 935$	$4 \cdot 5$	$39 \cdot 635$	$40 \cdot 5$	20.80 7	I2I	- 1000
- 900	4°	118.8151	2.0	$20 \cdot 6,62$	2.0	$63 \cdot 6$ I2	$2 \cdot 5$	$35 \cdot 734$	I.5	$35^{\circ} \mathrm{O} \quad 34$	$39 \cdot 5$	22.648	21	- 900
-800	1.5	$104 * 146$	$2 \cdot 0$	$42 \cdot 5 \quad 60$	$3 \cdot 0$	II5.0 12	$8 \cdot 0$	121.433	$5 \cdot 5$	$9 \cdot 5 \quad 33$	$38 \cdot 5$	$24 \cdot 509$	75	-800
- 700	26.0	5I•6 141	$2 \cdot 0$	$64 \cdot 558$	4°	$166 \cdot 4$ II	$4 \cdot 5$	$65 \cdot 93$	$2 \cdot 5$	$5 \cdot 131$	$38 \cdot 0$	I•36 9	133	- 700
- 600	$23 \cdot 5$	$35 \cdot 8135$	$2 \cdot 0$	$86 \cdot 855$	$5 \cdot 5$	$38 \cdot 9$ II	I.O	$10 \cdot 431$	$6 \cdot 0$	$47 \cdot 830$	$37 \cdot 0$	$3 \cdot 219$	28	- 600
- 500	210	19.4130	$2 \cdot 0$	109.353	$6 \cdot 5$	$90 \cdot 410$	$6 \cdot 5$	$95 \cdot 729$	$3 \cdot 0$	$43 \cdot 7 \quad 29$	$36 \cdot 0$	$5 \cdot 079$	86	- 500
-400	$18 \cdot 5$	2.5125	$2 \cdot 0$	$132 \cdot 051$	0.5	II3.0 10	$3 \cdot 0$	$39 \cdot 9 \quad 28$	$0 \cdot 0$	$39 \cdot 7 \quad 28$	$35 \cdot 0$	$6 \cdot 939$	140	-400
- 300	15.5	$137^{\circ} \mathrm{O} \quad 120$	2.0	155.0 49	$1 \cdot 5$	164.6 Io	$8 \cdot 5$	125.027	$4^{\circ} 0$	14.727	$34^{\circ} 0$	$8 \cdot 79 \quad 9$	40	- 300
- 200	$13^{\circ} \mathrm{O}$	II9.I II5	$2 \cdot 0$	$178 \cdot 147$	$3 \cdot 0$	$37 \cdot 39$	$5 \cdot 0$	$68 \cdot 926$	I.O	10.9 25	33°	10.649	94	- 200
- 100	10.5	$100 \cdot 6109$	$2 \cdot 5$	12.445	4.0	89.09	$1 \cdot 5$	$12.8 \quad 25$	$4 \cdot 5$	$54 \cdot 3 \quad 24$	$32 \cdot 0$	12.5010	152	- 100
0	$8 \cdot 0$	81.6 104	$2 \cdot 5$	$36 \cdot 0 \quad 43$	$5 \cdot 0$	$140 \cdot 78$	$7 \cdot 0$	97.5 24	I•5	50.7 23	31.0	14.37 II	47	0
+ 100	$5 \cdot 5$	62.1 99	$2 \cdot 5$	59.840	$6 \cdot 5$	13.5 8	$3 \cdot 5$	41•1 22	$5 \cdot 5$	$26 \cdot 3 \quad 22$	$30 \cdot 0$	$16.25 \quad 12$	105	$+100$
200	$3 \cdot 0$	$42 \cdot 193$	$2 \cdot 5$	83.838	$0 \cdot 5$	$36 \cdot 37$	$9 \cdot 0$	125.6 21	$2 \cdot 5$	$22^{\circ} 921$	$29^{\circ} 0$	$18 \cdot 1313$	4	200
300	0.5	2I•5 88	$2 \cdot 5$	$108 \cdot 036$	1. 5	$88 \cdot 27$	$5 \cdot 5$	69.020	$6 \cdot 0$	$66 \cdot 720$	$28 \cdot 0$	20.0314	58	300
400	$24^{\circ} 5$	115.383	$2 \cdot 5$	$132 \cdot 534$	$2 \cdot 5$	$140 \cdot 17$	$2 \cdot 0$	$12 \cdot 2$ I9	3.0	63.718	$27^{\circ} 0$	21.94 I5	116	400
500	$22 \cdot 0$	$93 \cdot 777$	$2 \cdot 5$	$157 \cdot 232$	$4{ }^{\circ}$	$13 \cdot 16$	$7 \cdot 5$	$96 \cdot 3 \quad 18$	$0 \cdot 0$	$60 \cdot 7 \quad 17$	$26 \cdot 0$	$23 \cdot 8716$	10	500
600	$19 \cdot 5$	$71 \cdot 572$	$2 \cdot 5$	182.159	$5 \cdot 0$	65.1 6	$4{ }^{\circ}$	$39 \cdot 3 \quad 16$	4°	$36 \cdot 8 \quad 16$	$25 \cdot 5$	0.8016	68	600
700	$17^{\circ} 0$	$48 \cdot 867$	$3 \cdot 0$	$18 \cdot 2 \quad 27$	$6 \cdot 0$	117.1 5	$0 \cdot 0$	115*2 15	1.0	$34^{\prime} \mathrm{I} \quad 15$	24.5	$2 \cdot 7316$	122	700
800	$14 * 5$	$25 \cdot 5$ 6I	$3 \cdot 0$	$43 \cdot 5 \quad 25$	0.0	140.2 5	$6 \cdot 0$	$66 \cdot 014$	5.0	10.514	23.5	$4 \cdot 6616$	21	800
900	$12 \cdot 0$	1+7 56	$3 \cdot 0$	$69^{\circ} \mathrm{O} \quad 23$	1.5	$13 \cdot 34$	$2 \cdot 5$	8.6 I3	$2 \cdot 0$	$8 \cdot 012$	$22 \cdot 5$	$6 \cdot 5915$	75	900
1000	$9{ }^{\circ}$	$129 \cdot 350$	$3 \cdot 0$	$94.8 \quad 21$	$2 \cdot 5$	$65 \cdot 54$	$8 \cdot 0$	92.1 II	$5 \cdot 5$	$52 \cdot 7$ II	21.5	8.51 13	133	1000
1100	$6 \cdot 5$	104*4 45	3.0	120.8 18	$3 \cdot 5$	1177 7	$4 \cdot 5$	34.5 IO	$2 \cdot 5$	$50 \cdot 410$	$20 \cdot 5$	$10 \cdot 4 \mathrm{II}$	32	1100
1200	$4^{\circ} 0$	$78 \cdot 939$	3.0	$147^{\circ} \mathrm{O}$ 16	$4 \cdot 5$	$170 \cdot 03$	$0 \cdot 5$	109*7 9	$6 \cdot 5$	27.3 9	19.5	12.299	85	1200
1300	$1 \cdot 5$	$52 \cdot 934$	3.0	173.514	$6 \cdot 0$	$43 \cdot 33$	$6 \cdot 5$	$59 \cdot 98$	$3 \cdot 5$	$25 \cdot 37$	$18 \cdot 5$	14.167	143	1300
1400	$25 \cdot 5$	14I•3 28	$3 \cdot 5$	II'2 11	0.0	$66 \cdot 62$	$3 \cdot 0$	$1 \cdot 96$	0.5	$23 \cdot 56$	$17 \cdot 5$	$16 \cdot 005$	38	1400
1500	23.0	$114 \cdot 2+23$	$3 \cdot 5$	$3^{8 \cdot 1}-9$	I. 0	II9.0-2	$8 \cdot 5$	$84 \cdot 8+5$	$4 \cdot 5$	0.7-5	16.5	$17.83+4$	95	1500
Gregorian														Gregorian
1500	13.0	$114.2+23$	$2 \cdot 5$	79•1-9	$5 \cdot 0$	177.0-2	$8 \cdot 0$	$92 \cdot 8+5$	1.0	47.7-5	$6 \cdot 5$	$17.83+4$	91	1500
1600	$10 \cdot 5$	$86 \cdot 5 \quad 17$	$2 \cdot 5$	$106 \cdot 27$	$6 \cdot 5$	$50 \cdot 4$ I	$4 \cdot 5$	$34 \cdot 5 \quad 4$	$5 \cdot 0$	$25 \cdot 1$	$5 \cdot 5$	19.643	149	1600
1700	$7^{\circ} \mathrm{O}$	58.2 II	I.5	$133 \cdot 65$	$6 \cdot 5$	102.9-1	9°	117*1 3	I*O	$23 \cdot 63$	$3 \cdot 5$	21.44	44	1700
1800	$3 \cdot 5$	$29.4+6$	$0 \cdot 5$	16I•2-2	$6 \cdot 5$	155.4 0	4.5	$58 \cdot 6+1$	40	I $2-\mathrm{I}$	I'5	$23.22+1$	IOI	1800
1900	$0 \cdot 0$	0.00	$0 \cdot 0$	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0	1900
2000	$24^{\circ} 0$	$85 \cdot 0-6$	0.0	$28 \cdot 1+2$	1.0	$52 \cdot 6$	$5 \cdot 5$	82.2 - 1	$3 \cdot 5$	$45 \cdot 9+1$	$364{ }^{\circ}$	$14.77-1$	54	2000
2100	$20 \cdot 5$	$54^{\circ} 5$ II	$8 \cdot 0$	97.45	$1 \cdot 0$	$105+3+1$	I-0	$23 \cdot 3 \quad 3$	$6 \cdot 5$	$23 \cdot 93$	$362 \cdot 0$	I6.53 I	III	2100
2200	17.0	23.4 I7	$7 \cdot 0$	125.97	1.0	I 58.0 I	$5 \cdot 5$	105.3	$2 \cdot 5$	$23 \cdot 0 \quad 4$	$360 \cdot 0$	18.292	6	2200
2300	$13 \cdot 0$	$143 \cdot 8 \quad 23$	$6 \cdot 0$	$154 \cdot 6 \quad 9$	I. 5	31*7 2	I'0	$46 \cdot 25$	$5 \cdot 5$	I•3 5	$358 \cdot 0$	20.04 3	63	2300
2400	10.5	III.5 29	$6 \cdot 0$	$183.6 \quad 12$	$2 \cdot 5$	84.5	$6 \cdot 5$	127.96	$2 \cdot 5$	$0 \cdot 76$	$357{ }^{\circ}$	$21 \cdot 78$	117	2400
2500	$7{ }^{\circ} 0$	$78 \cdot 7 \quad 34$	$5 \cdot 5$	23.814	$2 \cdot 5$	$137 \cdot 3$	2.0	68.58	$5 \cdot 0$	$47 \cdot 28$	355°	23.517	15	2500
2600	$3 \cdot 5$	$45^{\circ} 340$	$4 \cdot 5$	$53 \cdot 316$	$3 \cdot 0$	II. 23	$7 \cdot 0$	17.09	I-O	$46 \cdot 9 \quad 9$	$353 \cdot 5$	0.219	69	2600
2700	$0 \cdot 0$	II•3 46	$3 \cdot 5$	$83.0 \quad 19$	$3 \cdot 0$	$64 \cdot 1 \quad 4$	$2 \cdot 0$	$90 \cdot 3 \quad 10$	$4 \cdot 0$	25.6 10	351•5	$1.89 \quad 12$	126	2700
2800	24°	91.8 52	$3 \cdot 5$	113.021	4°	II7.1 4	$8 \cdot 0$	$38 \cdot 5 \quad 12$	1.0	$25 \cdot 6 \quad 12$	$350 \cdot 5$	$3.54 \quad 15$	20	2800
2900	20*5	$56 \cdot 6-58$	2.5	$143 \cdot 2+24$	4°	$170 \cdot 1+5$	$3 \cdot 0$	III•6-13	$4 \cdot 0$	$4 \cdot 6+13$	$348 \cdot 5$	$5 \cdot 16-18$	78	2900

Table 2 (cont.). Additions to the Arguments for the Centuries of the Julian and Gregorian Calendars.

Arg.	49	50	51 (a)		52		53		54		55		56		57		Arg.
Julian	d	c	d	6	d	c	d	c	d	c	d	c	d	c	4	c	Julian
-2000	9*98	63	10.0	2-2	210	1	22.0	2.0-19	$26 \cdot 5$	15-2-20	24.5	$12 \cdot 59-583$	1.0	20*7-22	2.0	$28 \cdot 8+40$	-2000
- 1900	11-10	13	$8 \cdot 0$	52	5.5	-	$3 \cdot 5$	$9 \cdot 7 \quad 19$	11.0	$8-619$	$7 \cdot 5$	$48 \cdot 75 \quad 570$	2'5	$77^{\prime} 712$	120	$6 \mathrm{x} \cdot 7 \quad 39$	-1900
- 1800	12'22	64	$6 \cdot$	82	12%	I	$20 \cdot 5$	$10 \cdot 418$	25*0	$17^{\circ} 019$	23*	$28 \cdot 04556$	$4 \cdot 5$	$54.8 \quad 21$	$6 \cdot 0$	$89 \cdot 6 \quad 38$	- 1800
- 1700	$13 \cdot 35$	15	4°	122	$18 \cdot 5$	2	20	18*1 18	$9 \cdot 5$	$10 \cdot 518$	6%	$64 \cdot 48543$	$6 \cdot 5$	31*9 21	$0 \cdot 5$	$5 \cdot 3 \quad 37$	- 1700
- 1600	0.84	15	2%	152	O	-	$19^{\circ} 0$	18.917	$23 \cdot 5$	19\% 18	21-5	$44^{\circ} 04530$	$8 \cdot 5$	$9^{\prime \prime} 120$	$10 \cdot 5$	$38 \cdot 0 \quad 36$	- 1600
-1500	1-97	67	$0 \cdot 5$	- 2	$9 \cdot 5$	1	0.5	$\begin{array}{lll}26 \cdot 7 & 17\end{array}$	$8 \cdot$	$\begin{array}{ll}12 \cdot 6 & 17\end{array}$	$4 * 5$	$80 \cdot 73 \quad 517$	$0 \cdot 0$	$45 \cdot 3 \quad 20$	$4 \cdot 5$	$65 \cdot 6$	- 1500
- 1400	3-09	17	11.0	$13 \quad 2$	16.0	2	$17 \cdot 5$	$27 \cdot 6$	22*0	$\begin{array}{ll}21 \cdot 2 & 17\end{array}$	$20 \cdot 0$	$60 \cdot 56 \quad 504$	2*0	$22 \cdot 619$	14.5	$98 \cdot 0$	- 1400
-1300	$4 \cdot 21$	69	$9^{\circ} \mathrm{O}$	172	$0 \cdot 5$	1	34.5	$28 \cdot 5 \quad 16$	$6 \cdot 5$	$14 \% 9$	$3^{\circ} \mathrm{O}$	97*51 491	4°	0\% 19	$9{ }^{\circ}$	$13 \cdot 433$	-1300
- 1200	$5 \cdot 34$	19	$7 \cdot 5$	12	O	2	16*0	$36 \cdot 5 \quad 16$	$20 \cdot 5$	23.616	$18 \cdot 5$	$77 \cdot 60 \quad 477$	$5 \cdot 5$	57.4 18	3°	$40^{-7} 7 \quad 32$	- 1200
- 1100	$6 \cdot 46$	70	- 5	5	$14^{\circ} \mathrm{O}$	0	$33^{\circ} 0$	$37 \cdot 5 \quad 15$	$5{ }^{\circ}$	$\begin{array}{lll}17 \% 4 & 15\end{array}$	$1 \cdot 5$	11482	$7 \cdot 5$	34.817	$13^{\circ} \mathrm{O}$	$72 \cdot 931$	- 1100
- 1000	7*59	21	$3 \cdot 5$	92	$20 \cdot 5$	1	15%	5 515	19.0	$26 \cdot 215$	$17^{\circ} \mathrm{O}$	95.19448	$9 \cdot 5$	$\begin{array}{ll}12 \cdot 3 & 17\end{array}$	7°	\% $100 \% 30$	- 1000
- 900	8-71	72	1.5	132	-	-	$32 \cdot 0$	$6 \begin{array}{ll}6 & 14\end{array}$	$3 \cdot 5$	20:1 14	$0 \cdot 5$	2*70 433	I-O	$4^{8 \cdot 9} \quad 16$	1.5	$14 * 99$	- 900
- 800	9.84	23	12.5	7 I	11*5	1	13.5	15.714	17:5	$29^{\circ} \mathrm{O} \quad 14$	15.5	II3.37 418	$3^{\circ} 0$	$26 \cdot 516$	11.5	6.828	- 800
-	10-96	74	10	11	18.0	2	$30 \cdot 5$	$16 \cdot 913$	-	$23^{\circ} \mathrm{O} 13$	31.0	94.18 4 72	-	$4^{* 2} \quad 15$	$5 \cdot 5$	$73 \cdot 6$	- 700
- 600	12.09	25	5	15	-5	1	12.0	$\begin{array}{ll}25 \cdot 1 & 13\end{array}$	$16 \cdot 0$	$32 \cdot 013$	14.5	$2 \cdot 15 \quad 386$. 5	$61 * 915$	$15 \cdot 5$	$105 \cdot 326$	- 600
-500	13^{-21}	76	7°	0 I	9°	1	29°	$26 \cdot 4 \quad 12$	$0 \cdot 5$	$26 \cdot 112$	$29 \cdot 5$	113.28 370	$8 \cdot 5$	$39 \cdot 7 \quad 14$	10\%	$19 * 95$	-500
- 400		76	O	4 I	15.5	2	$10 \cdot 5$	$34^{\circ} 7 \quad 12$	14.5	$35^{\circ 2} \quad 12$	$13^{\circ} \mathrm{O}$	21-57 355	$0 \cdot 0$	$76 \cdot 6$ I4	$4^{\circ} \mathrm{O}$	$46 \cdot 4 \quad 24$	-400
- 300	1.83	27	O	8 I	$0 \cdot 0$	1	$27 \cdot 5$	$36 \cdot 111$	$28 \cdot 5$	$44^{\circ} 4 \mathrm{II}$	$28 \cdot 5$	3.02340	$2 \cdot 0$	$54 \cdot 5 \quad 13$	$14^{\circ} \mathrm{O}$	$77 * 7$	-300
- 200	$2 \cdot 96$	79	I'0	13	. 5	2	$9 \cdot 5$	5.5 II	$13^{\circ} \mathrm{O}$	$38 \cdot 6$ I1	11.5	$4 \mathrm{4} \cdot 62 \quad 325$	4°	$32 \cdot 412$	$8 \cdot$	104\% 22	- 200
-100	4'08	29	12.0	8 I	13.5	0	$26 \cdot 5$	- 10	$27 \cdot 5$	$0 \cdot 910$	$27^{\circ} \mathrm{O}$	$23 \cdot 37 \quad 310$	6*	$10 \cdot 412$	$2 \cdot 5$	$18 \cdot 21$	- 100
0		81	10	12 I	20*0	1	8	15.510	11.5	$42 \cdot 210$	10*0	$62 \cdot 27 \quad 295$	$7 \cdot 5$	$68 \cdot 5$ II	$12 \cdot 5$	$49 \cdot 3 \quad 20$	0
$+100$	$6 \cdot 34$	31	O	16	$4 \cdot 5$	O	25°	$\mathbf{1 7} \mathbf{1} 9$	2	$4^{\circ 6} \quad 9$	$25 \cdot 5$	44*31 280	$9 \cdot 5$	$46 \cdot 6$ II	$6 \cdot 5$	$75 \cdot 3 \quad 19$	+ 100
200	$7 \cdot 46$	83	5	2 I	11*O	I	$6 \cdot 5$	25.79	10*0	$46 \cdot 09$	$8 \cdot 5$	$83 \cdot 50266$	I-5	$3 \cdot 810$	$0 \cdot 5$	$\begin{array}{ll}101 & 18\end{array}$	200
300	8.59	33	$4 \cdot 5$	6 I	17*5	2	$23 \cdot 5$	27.48	24.5	$8 \cdot 58$	$24^{\circ} \mathrm{O}$	$65.83 \quad 252$	$3 \cdot 0$	$62 \cdot 110$	II'O	19×17	300
0	$9^{27} 7$	85	2	II I		1	5*0	$36 \cdot 1 \quad 8$	$9^{\circ} 0$	3.0 8	$7^{\circ} 0$	105.30 238	$5 \cdot 0$	$40 \cdot 4$	$5^{\circ} 0$	45-6 16	400
500	$10 \cdot 84$	36	$0 \cdot 5$	15 I	8	2	22.0	37.97	23*0	$12 \cdot 6$	$22 \cdot 5$	$\begin{array}{r}87 \cdot 91 \\ \hline 127\end{array}$	7°	$18 \cdot 78$	15*	$76 \cdot 2$ 15	500
600	11.97	87	11-5	II I	$15 \cdot 5$	o	0	$7 \cdot 77$	$7 \cdot 5$	27	$5 \cdot 5$	$127 \cdot 66209$	$8 \cdot 5$	$77^{*} \mathrm{~T} \quad 8$	$9^{\circ} 0$	101-6 14	600
700	$13 \cdot 10$	38	5	15 I	22.0	1	21*0	$9 \cdot 56$	$2 \mathrm{~T} \cdot 5$	$16 \cdot 96$	21.0	$110 \cdot 56194$	$0 \cdot 5$	34.6	$3 \cdot 5$	$15 * 13$	700
800	0.59	38		1 I	5	0	$2 \cdot 5$	46	$6 \cdot 0$	11-6 6	$4 * 5$	$20 \cdot 62 \quad 178$	$2 \cdot 5$	$13 \cdot 27$	13.5	45*2 12	300
900	1-72	90	0	6-1	13*0	1	$19 \cdot 5$	45	20.0	45	20%	$3 \cdot 83162$	4°	$71 \cdot 86$	$7 \cdot 5$	$70 \cdot 4$ 11	900
1000	$2 \cdot 85$	40	0	100	19.5	2	180	$20^{\prime} 45$	5	$16 \cdot 25$	30	$44 \cdot 20 \quad 146$	$6 \cdot$	$50 \cdot 4 \quad 5$	$1 \cdot 5$	95*4 10	1000
1100	$3 \cdot 97$	92	$2{ }^{\circ} \mathrm{O}$	150	4°	1	18.0	$3 \mathrm{~T} \cdot 54$	$18 \cdot 5$	$26 \cdot 1$	$18 \cdot 5$	27:74 129	$8 \cdot$	$29 \cdot 1 \quad 5$	12.0	13.49	1100
1200		43	$0 \cdot 5$	16	1	2	O\%	. 64	$3^{\circ} \mathrm{O}$	21004	1-5	$68 \cdot 44 \quad 112$	10'0	7'9 4	O	$38 \cdot 2 \quad 8$	1200
1300	$6 \cdot 23$	94	11*0	160	$17 \cdot 5$	1	${ }^{1} 7^{\circ} 0$	-8 3	$17^{\circ} \mathrm{O}$	$31.0 \quad 3$	$17^{\circ} 0$	52.31 95	$1 \cdot 5$	$45 \cdot 7 \quad 4$	O-O	$62 \cdot 96$	1300
1400	$7 \cdot 36$	45	$9 \cdot 5$	20	-	0	34°	$6 \cdot 0 \quad 3$	I•5	$26 \cdot 1 \quad 3$	-	93.35 78	$3 \cdot 5$	$24^{66} 3$	10*0	$92 \cdot 5+5$	1400
1500	$8 \cdot 49$	96	7*5	70	$8 \cdot 5$	1	15.5	15.3-2	$15 \cdot 5$	-2	I5*5	$77 \cdot 56-62$	$5 \cdot 5$	3-6-2	$4 \cdot 5$	$5^{\circ}+4$	1500
Gregorian																	Gregorian
1500	12.12	46	10-0	170	21.0	0	$5 \cdot 5$	15*3-2	5*5	$36 \cdot 2-2$	$5 \cdot 5$	$77 \cdot 56-62$	$5 \cdot 5$	$24 \cdot 6-2$	$10 \cdot 5$	$10 * 0+4$	1500
1600	13.25	98	$8 \cdot 5$	30	5\%O	2	$22 \cdot 5$	17.7 2	19.5	$46 \cdot 3 \quad 2$	21-0	$61-93 \quad 46$	$7 \cdot 5$	$3 \cdot 6 \quad 2$	$4 \cdot 5$	$34 \cdot 4$	1600
1700	13.38	49	$5 \cdot 5$	80	11.0	0	$3 \cdot 0$	27-1 $\quad 1$	$3^{\circ} \mathrm{O}$	$41 \cdot 5$	3.0	$103 \cdot 4630$	$8 \cdot 0$	$62 \cdot 7$	13.5	$63 \cdot 7$ 2	1700
1800	13.50	100	$2 \cdot 5$	140	$16 \cdot 5$	I	19*0	$29.5-\mathrm{I}$	16.5	4*7- 1	17*5	88-15-15	$9 *$	4I-8-I	$6 \cdot 5$	$87 \cdot 9+$ I	1800
1900	0-00	0	-0\%	00	-0	0	\bigcirc	-0 0	$0 \cdot 0$	$0 \cdot 0$	0	0.000	$0 \cdot 0$	O\% 0	0\%	0\% 0	1900
2000	1.13	52	10.5	150	$6 \cdot 5$	1	$17^{\circ} \mathrm{O}$	$2 \cdot 6+1$	$14^{\circ} \mathrm{O}$	$10 \cdot 3+1$	15\%	$115.00+15$	I-5	$59 \cdot 3+1$	$10^{\circ} 0$	$29^{\circ} \mathrm{O}-1$	2000
2100	I-26	2	$8{ }^{\circ}$	20	12.0	2	33°	$5 \cdot 2 \quad 1$	$27^{\circ} 0$	$20 \cdot 7$ I	29.5	$100 \cdot 1530$	$2 \cdot 5$	$38 \cdot 6$ I	3\%0	$52 \cdot 8$ 81.6	2100
2200	1*39	54	$5^{\circ} 0$	70	18.0	0	13.5	14.92	$10 \cdot 5$	$16 \cdot 2$	12*0	$12 \cdot 4546$	$3 \cdot 5$	18%	$12^{\circ} \mathrm{O}$	8 I -6 3	2200
2300	1*52		2.0	130	O	2	29.5	$17 * 6$	23.5	$26 \cdot 7 \quad 2$	26*0	127.90 6I	4°	77×4	5°	105-2 4	2300
2400	$2 \cdot 65$	56	$0 \cdot 0$	180	$8 \cdot 0$	1	11.0	$27 \cdot 4$	$8 \cdot 0$	$22 \cdot 23$	$9 \cdot 5$	40-50 77	$6 \cdot 0$	$56 \cdot 9$	$15 \cdot 5$	$21 \cdot 76$	2400
2500	$2 \cdot 78$	7	10\%0	150	$13 \cdot 5$	2	27°	$30 \cdot 23$	21.0	$32 \cdot 83$	$24^{\circ} \mathrm{O}$	$26 \cdot 27 \quad 93$	7%	$36 \cdot 54$	$8 \cdot 5$	$45 \cdot 17$	2500
2600	2*91	59	$7 \cdot 5$	20	19.5	0	8-0	I'T 4	475	$28 \cdot 5 \quad 4$	$6 \cdot 0$	$69 \cdot 20$ 110	$8 \cdot 0$	$16 \cdot 1 \quad 4$	$1 \cdot 5$	$68 \cdot 4 \quad 8$	2600
2700	3.04	9	$4 \cdot 5$	70	$2 \cdot 5$	2	$24^{\circ} 0$	$4^{\circ} 0 \quad 5$	17×5	$39^{\prime 2} \quad 4$	$20 \cdot 5$	$55 \cdot 30 \quad 127$	$8 \cdot 5$	$75 \cdot 8 \quad 5$	10*5	$96 \cdot 6 \quad 9$	2700
2800	$4^{\circ 17}$	61	$2 \cdot 5$	$13+1$	$9 \cdot 5$	0	$5 \cdot 5$	14*O 5	2*0	$34^{\prime} 9$ 5	$3 \cdot 5$	$98 \cdot 56$ 145	$0 \cdot 5$	$34^{-6} 6$	$5{ }^{\circ} \mathrm{O}$	77710	2800
2900	4*30	12	$0 \cdot 0$	$0+1$	15°	1	21-5	$\mathbf{I} 7^{\prime} \mathbf{I}+6$	$15{ }^{\circ}$	$45 \cdot 7+5$	18.0	$85-01+162$	1-5	$1.4 .4+6$	14°	35*7-11	2900

Table 2 (cont.). Additions to the Arguments for the Centuries of the Julian and Gregorian Calendars.

TAbLe 2 (cont.). Additions to the Arguments for the Centuries of the Julian and Gregorian Calendars.

TAble 2 (concl.). Additions to $L,-\Omega$, w for the Centuries of the Julian and Gregorian Calendars.

Table 3. Values of the Arguments for the beginnings of the years 1900 to 1950.

Arg.	D	1	2	3	4	5	6	7	8	9	10	Arg.
Period	$\stackrel{d}{29 \cdot 530588}$	$14 I^{c}$	$156{ }^{\text {c }}$	$116^{\text {c }}$	124^{c}	$128{ }^{\text {c }}$	132^{c}	$100{ }^{\text {c }}$	50^{c}	$42^{\text {c }}$	80°	Period
Addition for Period of D		$\stackrel{c}{\text { II• } 400}$	$\begin{gathered} c \\ 23 \cdot 80 \end{gathered}$	$\stackrel{c}{c}$	$\begin{gathered} c \\ 27 \cdot 8 \mathrm{I} \end{gathered}$	$\stackrel{c}{8 \cdot 01}$	$\begin{gathered} c \\ 30 \cdot 8 I \end{gathered}$	$\begin{gathered} c \\ 9 \cdot 00 \end{gathered}$	$\begin{gathered} c \\ 14 \cdot 80 \end{gathered}$	$\stackrel{c}{5 \cdot 64}$	$\begin{gathered} c \\ 20 \cdot 10 \end{gathered}$	Addition for Period of D
	d	${ }^{6}$	${ }^{6}$	${ }^{6}$	${ }^{c}$	${ }^{c}$	${ }^{c}$	c	c	c	c	
1900	14.2404	$140 \cdot 696$	$132 \cdot 28$	17.14	$86 \cdot 55$	89.90	111.64	14.56	27.41	23.20	$9 \cdot 30$	1900
1901	24.8733	136.491	105.87	29.86	$48 \cdot 28$	$58 \cdot 02$	$85 \cdot 36$	$22 \cdot 54$	5\%0	$6 \cdot 88$	$10 \cdot 49$	1901
1902	5.9757	$2 \cdot 686$	103.27	$43 \cdot 63$	37.81	$34 \cdot 15$	89.90	39.52	$47 \cdot 39$	38.21	31-78	1902
1903	16.6086	139.481	76.86	$56 \cdot 35$	123.53	$2 \cdot 27$	63.62	47.50	24.99	21.89	$32 \cdot 97$	1903
1904 B	28.2416	135.277	$50 \cdot 46$	69.06	85.25	98.39	37.34	$55 \cdot 48$	$2 \cdot 58$	$5 \cdot 58$	34.16	1904 B
1905	9.34.39	1.471	$47 \cdot 86$	$82 \cdot 84$	$74 \cdot 78$	74.53	41.87	$72 \cdot 45$	44.97	36.90	$55 \cdot 45$	1905
1906	19.9769	138.266	21.45	95.55	36.51	$42 \cdot 65$	15.59	S0.43	$22 \cdot 57$	20.58	$56 \cdot 64$	1906
1907	1.0792	$4 \cdot 461$	18.85	109.33	26.04	18.78	20.12	97.41	14.96	9.91	77.93	1907
1908 B	12.7122	0.256	148.44	$6 \cdot 04$	$111 \cdot 76$	114.90	125.85	5•39	$42 \cdot 55$	$35 \cdot 59$	79.12	1908 B
1909	23.3451	137.052	122.04	$18 \cdot 76$	$73 \cdot 48$	83.02	99.57	13.37	$20 \cdot 15$	19.27	$0 \cdot 31$	1909
1910	4.4475	3.246	119.43	$32 \cdot 53$	63.01	59.15	104.10	$30 \cdot 35$	12.54	$8 \cdot 60$	21.60	1910
1917	15.0804	$140 \cdot 042$	93.03	$45 \cdot 25$	24.74	$27 \cdot 28$	$77 \cdot 82$	$38 \cdot 33$	$40 \cdot 13$	$34 \cdot 28$	22.79	1911
1912 B	26.7134	135.837	66.63	57.96	$110 \cdot 46$	123.40	51.54	$46 \cdot 31$	17.73	17.97	23.98	$1912 B$
1913	7.8157	2.031	64.02	71×74	99.99	99.53	$56 \cdot 7$	63.28	10.12	7.29	$45 \cdot 27$	1913
1914	18.4486	138.827	$37 \cdot 62$	84.45	6エ*71	67.65	29.80	$71 \cdot 26$	$37 \cdot 71$	32.97	$46 \cdot 46$	1914
1915	29.0816	134.622	11.2I	$97 \cdot 17$	23.44	35.77	$3 \cdot 52$	$79 \cdot 24$	15.31	16.66	$47 \cdot 65$	1915
1916 B	11.1839	0.817	$8 \cdot 61$	110.94	12.97	11.90	8.05	96.22	7×70	$5 \cdot 98$	$68 \cdot 94$	1916 B
1917	21.8169	137.612	138.20	$7 \cdot 66$	98.69	108.02	113.77	4.20	35.29	31.66	$70 \cdot 13$	1917
1918	2.9192	$3 \cdot 807$	135.60	21.43	88.22	$84 \cdot 16$	118.30	21.18	$27 \cdot 68$	20.99	11.42	1918
1919	13.5522	$140 \cdot 602$	109.20	$34 \cdot 15$	49.94	52.28	92.02	29.16	5.28	$4 \cdot 67$	12.61	1919
1920 B	$25 \cdot 1851$	136.397	$82 \cdot 79$	$46 \cdot 86$	11.67	$20 \cdot 40$	65.75	37.13	32.87	$30 \cdot 35$	13.80	$1920 B$
1921	$6 \cdot 2875$	$2 \cdot 592$	$80 \cdot 19$	$60 \cdot 64$	1.20	124.53	$70 \cdot 28$	54.11	25.26	19.68	$35 \cdot 09$	1921
1922	16.9204	${ }^{1} 39.387$	53.78	$73 \cdot 35$	$86 \cdot 92$	92.65	$44^{\circ} 00$	62.09	2.86	$3 \cdot 36$	$36 \cdot 28$	1922
1923	27.5534	$135 \cdot 182$	$27 \cdot 38$	86.07	$48 \cdot 64$	$60 \cdot 77$	$17 \cdot 72$	70.07	$30 \cdot 45$	29.05	37.47	1923
$1924 B$	$9 \cdot 6557$	1-377	24.77	99.84	38.17	$36 \cdot 91$	$22 \cdot 25$	87.05	$22 \cdot 84$	18.37	$58 \cdot 76$	1924 B
1925	20.2887	138.172	154.37	112.56	123.90	5.03	127.97	95.03	0.44	2.05	59.95	1925
1926	1.3910	4.367	$151 \cdot 77$	$10 \cdot 33$	II3.43	109.16	$0 \cdot 51$	12.01	$42 \cdot 83$	$33 \cdot 38$	1.24	1926
1927	12.0240	- 162	125.36	23.05	75-15	77.28	$106 \cdot 23$	19.98	$20 \cdot 43$	I 7.06	$2 \cdot 43$	1927
1928 B	$23 \cdot 6569$	136.957	$98 \cdot 96$	$35 \cdot 76$	$36 \cdot 87$	$45 \cdot 40$	79.95	27.97	48.02	$0 \cdot 74$	$3 \cdot 62$	1928 B
1929	4.7593	3.152	$96 \cdot 35$	$49 \cdot 54$	26.40	21.53	84.48	44.94	$40 \cdot 41$	32.07	24.91	1929
1930	15.3922	139.947	69.95	62.25	I $12 \cdot 13$	117.66	$58 \cdot 20$	$52 \cdot 92$	18.01	15.75	$26 \cdot 10$	1930
1931	26.0251	135.742	$43 \cdot 54$	74.97	73.85	85.78	31.92	$60 \cdot 90$	$45 \cdot 60$	41.44	27.29	1931
1932 B	$8 \cdot 1275$	$1 \cdot 937$	$40 \cdot 94$	83.74	63.38	61.9]	$36 \cdot 45$	77.88	37.99	30.76	48.58	1932 B
1933	18.7604	138.732	14.54	101.46	$25 \cdot 10$	30.03	$10 \cdot 18$	85.86	15.59	14.44	49.77	1933
1934	29.3934	1 34.527	144.13	114.17	110.82	126.15	115.90	$93 \cdot 84$	43-18	40•13	50.96	1934
1935	$10 \cdot 4957$	0.722	141.53	11.95	100.36	102.28	$120 \cdot 43$	10.81	35.57	29.45	$72 \cdot 25$	1935
1936 B	22.1287	137.517	115.12	24.67	62.08	$70 \cdot 40$	94*15	$18 \cdot 79$	13.17	$13 \cdot 13$	73.44	1936 B
1937	3.2310	3.712	112.52	$38 \cdot 44$	$51 \cdot 61$	$46 \cdot 54$	98.68	$35 \cdot 77$	$5 \cdot 56$	$2 \cdot 46$	14.73	1937
1938	13.8640	$140 \cdot 507$	86.II	51.16	I 3.33	14.66	$72 \cdot 40$	$43 \cdot 75$	$33 \cdot 15$	$28 \cdot 14$	15.92	1938
1939	24.4969	136.302	59.71	63.87	99.06	$110 \cdot 78$	$46 \cdot 13$	$51 \cdot 73$	10.75	11.83	17.11	1939
1940 B	$6 \cdot 5993$	$2 \cdot 497$	57.11	$77 \cdot 65$	88.59	86.91	$50 \cdot 66$	$68 \cdot 71$	$3 \cdot 14$	$1 \cdot 15$	$38 \cdot 40$	1940 B
1941	17.2322	139.292	$30 \cdot 70$	$90 \cdot 36$	$50 \cdot 31$	55.03	24.38	$76 \cdot 69$	$30 \cdot 73$	26.83	39.59	1941
1942	27.8652	135.087	$4 \cdot 30$	103.08	12.03	$23 \cdot 15$	$130 \cdot 10$	84.67	$8 \cdot 33$	10.52	$40 \cdot 78$	1942
1943	$8 \cdot 9675$	1-282	1.69	0.85	$1 \cdot 56$	127.29	2.63	I•64	$0 \cdot 72$	41.84	62.07	1943
1944 B	$20 \cdot 6005$	138.077	131.29	13.57	87.29	$95 \cdot 41$	108.35	$9 \cdot 62$	$28 \cdot 31$	25.52	63.26	1944 B
1945	$1 \cdot 7028$	4.272	128.68	27.34	$76 \cdot 82$	$7 \mathrm{I} \cdot 54$	112.89	$26 \cdot 60$	$20 \cdot 71$	I 4.85	$4 \cdot 55$	1945
1946	12.3358	0.067	102.28	40.06	$38 \cdot 54$	39.66	86.61	34.58	$48 \cdot 30$	$40 \cdot 53$	$5 \cdot 74$	1946
1947	22.9687	136.862	$75 \cdot 88$	$52 \cdot 77$	0.26	$7 \cdot 78$	$60 \cdot 33$	$42 \cdot 56$	25.89	24.21	$6 \cdot 93$	1947
1948 B	5.0711	3.057	73.27	$66 \cdot 55$	113.79	111.91		59.54	18.29	13.54	$28 \cdot 22$	1948 B
1949	15.7040	139.852	$46 \cdot 87$	$79 \cdot 26$	$75 \cdot 52$	$80 \cdot 04$	38.58	67.51	45.88	39:22	29.41	1949
1950	26.3369	135.648	20.46	91*98	$37 \cdot 24$	$4^{8 \cdot 16}$	$12 \cdot 30$	$75 \cdot 49$	23.47	22.91	$30 \cdot 60$	1950

Table 3 (cont.). Values of the Arguments for the beginnings of the years 1900 to 1950.

Table 3 (cont.). Values of the Arguments for the beginnings of the years 1900 to 1950.

Arg.	23		24		25		26		27		28		29		30		(a)	Arg.
Period	$\begin{gathered} d \\ 15^{\circ} \end{gathered}$	464^{c}	$\begin{gathered} d \\ 14^{\circ} \mathrm{O} \end{gathered}$		$\begin{gathered} d \\ 25 \cdot 5 \end{gathered}$		$\begin{gathered} d \\ 29 \cdot 5 \end{gathered}$		$\begin{gathered} d \\ 34 \cdot 5 \end{gathered}$	1799^{c}	$\begin{gathered} d \\ 9 \cdot 5 \end{gathered}$	133^{c}	$\begin{gathered} d \\ 29 \cdot 0 \end{gathered}$	109^{c}	$\begin{gathered} d \\ 27 \cdot 5 \end{gathered}$	36^{c}		Period
Half day		$599{ }^{\text {c }}$		$\underline{167}{ }^{\text {c }}$		1889		$142{ }^{\text {c }}$		$258{ }^{\text {c }}$		$1788^{\text {c }}$		$207{ }^{\text {c }}$		330^{c}		Half day
	d	c	d	c	d	c	d	c	d	c	d	c	d	c	d	c		
1900	$10 \cdot 5$	$376 \cdot 4$	$2 \cdot 5$	$86 \cdot 1$	$\underline{1} 5$	$94 \cdot 3$	$17^{\circ} \mathrm{O}$	53.19	$30 \cdot 5$	$90 \cdot 3$	$5 \cdot 0$	$66 \cdot 5$	$10 \cdot 5$	157.4	22.5	$107 \cdot 596$	-44	1900
1901	$6 \cdot 5$	22.4	12.5	156.1	$8 \cdot 0$	17.3	24.5	15.17	12.0	185.3	$4 \cdot 5$	129.5	24.5	91.4	1.5	$263 \cdot 552$	44	1901
1902	$2 \cdot 0$	267.4	$8 \cdot 5$	162.2	$14^{\circ} \mathrm{O}$	129.3	$2 \cdot 0$	33.14	28.5	201.4	$4 \cdot 5$	14.5	$9 \cdot 0$	123.4	$8 \cdot 5$	125.508	44	1902
1903	13.0	377×4	$5 \cdot 0$	1.2	20.5	$52 \cdot 3$	$9 \cdot 0$	137.12	10.5	$38 \cdot 4$	4°	$77 \cdot 6$	23°	$57 \cdot 4$	15.0	317.464	44	1903
1904 B	$10 \cdot 0$	23.4	$2 \cdot 0$	$7 \cdot 3$	$2 \cdot 0$	118.3	17.5	99•10	28.0	54.4	4.5	140.6	$8 \cdot 5$	89.5	23.0	179.421	44	$1904 B$
1905	$5 \cdot 5$	268.4	12.0	$77 \cdot 3$	$8 \cdot 5$	$4 \mathrm{I} \cdot 3$	$25^{\circ} \mathrm{O}$	$6 \mathrm{I} \cdot 07$	$9 \cdot 5$	149.4	$4 \cdot 5$	25.6	22.5	23.5	$2 \cdot 5$	$5 \cdot 377$	44	1905
1906	$1 \cdot 0$	513.4	$8 \cdot 0$	83.4	14.5	153.3	$2 \cdot 5$	79.05	$26 \cdot 0$	165.4	4.0	88.7	$7 \cdot 0$	55.5	$9 \cdot 0$	197.333	44	1906
1907	12.5	24.4	$4^{\circ} 0$	89.4	21.0	$76 \cdot 3$	$10 \cdot 0$	$4 \mathrm{I} \cdot 03$	$8 \cdot 0$	2.5	3.5	151.7	20.5	196.5	$16 \cdot 0$	59.290	43	1907
1908 B	$9 \cdot 0$	269.4	1.0	95.5	$2 \cdot 5$	142.3	18.5	3.01	$25^{\circ} 5$	$18 \cdot 5$	4.5	$36 \cdot 7$	6.5	21.5	23.5	251.247	43	$1908 B$
1909	$4 \cdot 5$	514.4	11.0	165.5	$9 \cdot 0$	$65 \cdot 3$	25.5	106.98	7.0	113.5	4.0	99.8	20.0	162.6	3.0	77-204	43	1909
1910	0.5	$160 \cdot 4$	$7 \cdot 5$	$4 \cdot 6$	$15^{\circ} \mathrm{O}$	177.3	3.0	124.96	23.5	129.5	3.5	162.8	4.5	194.6	9.5	269.161	43	1910
1911	11.5	$270 \cdot 4$	$3 \cdot 5$	$10 \cdot 6$	21.5	$100 \cdot 3$	10.5	86.94	$5 \cdot 0$	224.5	3.5	47.8	18.5	128.6	$16 \cdot 5$	13 I -118	43	1911
$1912 B$	$8 \cdot 0$	515.4	0.5	${ }^{16 \cdot 7}$	3.0	$166 \cdot 3$	19.0	$48 \cdot 92$	22.5	$240 \cdot 5$	4.0	110.9	$4{ }^{\circ}$	160.6	$24^{\circ} \mathrm{O}$	323.075	43	$1912 B$
1913	4.0	168.4	10.5	$86 \cdot 7$	$9 \cdot 5$	89.3	$26 \cdot 5$	10.89	4.5	77.6	$3 \cdot 5$	173.9	18.0	94.6	$3 \cdot 5$	149.032	43	1913
1914	15°	271.4	$6 \cdot 5$	$92 \cdot 8$	$16 \cdot 0$	$12 \cdot 2$	4.0	$28 \cdot 87$	21.0	$93 \cdot 6$	$3 \cdot 5$	$58 \cdot 9$	$2 \cdot 5$	126.6	10.5	10.990	43	1914
1915	10.5	516.4	$2 \cdot 5$	98.8	22.0	124.2	II*O	132.85	$2 \cdot 5$	188.6	3.0	122.0	16.5	$60 \cdot 7$	17.0	$202 \cdot 947$	42	1915
1916 B	$7 \cdot 5$	162.3	14°	-9	4.0	2	19.5	94.83	20.0	204.6	4.0	$7 \cdot 0$	$2 \cdot 0$	92.7	$25^{\circ} \mathrm{O}$	64.905	42	1916 B
1917	$3 \cdot 0$	$407 \cdot 3$	$10 \cdot 0$	$7 \cdot 9$	$10 \cdot 0$	113.2	27.0	$56 \cdot 8 \mathrm{I}$	$2 \cdot 0$	$4 \mathrm{I} \cdot 6$	3.5	70°	16.0	$26 \cdot 7$	$4^{\circ} \mathrm{O}$	$220 \cdot 863$	42	1917
1918	$14^{\circ} \mathrm{O}$	517.3	$6 \cdot 0$	$14^{\circ} \mathrm{O}$	16.5	$36 \cdot 2$	4.5	74.78	18.5	57.6	3.0	$133 \cdot 1$	0.5	$58 \cdot 7$	11.0	$82 \cdot 821$	42	1918
1919	$10 \cdot 0$	163.3	$2 \cdot 0$	20.0	22.5	$148 \cdot 2$	12.0	$36 \cdot 76$	$0 \cdot 0$	152.7	3.0	18.1	$14^{\circ} \mathrm{O}$	199.7	17.5	274.779	42	1919
1920 B	$6 \cdot 5$	$408 \cdot 3$	13.0	$90 \cdot 1$	$4 \cdot 5$	25.2	20.0	$140 \cdot 74$	17.5	168.7	$3 \cdot 5$	81.I	0.0	24.8	25.5	$136 \cdot 737$	42	1920 B
1921	$2 \cdot 5$	$54 \cdot 3$	9.0	$96 \cdot 1$	10.5	137.2	$27 \cdot 5$	$102 \cdot 72$	34°	184.7	$3 \cdot 0$	144.2	13.5	$165 \cdot 8$	4.5	292.695	42	1921
1922	13.5	164.3	5.0	102.2	17.0	60.2	5%	120.69	16.0	21.7	3.0	29.2	27.5	99.8	11.5	154.654	41	1922
1923	9.0	409.3	I.O	108.2	23.0	172.2	12.5	$82 \cdot 67$	$32 \cdot 5$	$37 \cdot 7$	$2 \cdot 5$	92.2	12.0	131.8	18.5	16.612	41	1923
1924 B	$6 \cdot 0$	$55 \cdot 3$	12.5	11.3	$5 \cdot 0$	49.2	21.0	$44 \cdot 65$	$15^{\circ} \mathrm{O}$	132.8	3.0	155.3	$27^{\circ} \mathrm{O}$	$65 \cdot 8$	26.0	208.571	4 I	$1924 B$
1925	1.5	$300 \cdot 3$	$8 \cdot 5$	17.3	11.0	161.2	$28 \cdot 5$	6.63	3 I 5	148.8	3.0	$40 \cdot 3$	115	97.8	$5 \cdot 5$	34.530	41	1925
1926	12.5	$410 \cdot 3$	$4 \cdot 5$	23.4	17.5	$84^{\circ} 2$	$6 \cdot 0$	24.6 I	13.0	$243 \cdot 8$	$2 \cdot 5$	103.3	$25 \cdot 5$	31.9	12.0	226.489	41	1926
1927	$8 \cdot 5$	$56 \cdot 3$	$0 \cdot 5$	29.4	24.0	$7 \cdot 2$	13.0	128.59	$30 \cdot 0$	1.8	2.0	166.4	$10 \cdot 0$	63.9	19.0	$88 \cdot 44^{8}$	41	1927
1928 B	$5 \cdot 0$	$301 \cdot 3$	IT.5	$99 \cdot 5$	$5 \cdot 5$	73.2	21.5	$90 \cdot 57$	12.5	96.8	$3 \cdot 0$	51.4	24.5	204.9	26.5	$280 \cdot 407$	41	1928 B
1929	0.5	$546 \cdot 3$	7.5	105.5	11.5	18.51	$29^{\circ} \mathrm{O}$	52.55	$29^{\circ} \mathrm{O}$	112.8	$2 \cdot 5$	114.4	$9 \cdot 5$	29.9	$6 \cdot 0$	106.366	41	1929
1930	$12 \cdot 0$	57.3	3.5	111.6	$18 \cdot 0$	108.1	$6 \cdot 5$	$70 \cdot 52$	$10 \cdot 5$	207.9	$2 \cdot 0$	177.5	$23^{\circ} \mathrm{O}$	170.9	12.5	298.326	40	1930
1931	$7 \cdot 5$	$302 \cdot 3$	$14^{\circ} \mathrm{O}$	14.6	24.5	$31 \cdot 1$	$14^{\circ} \mathrm{O}$	32.50	$27 \cdot 0$	223.9	$2 \cdot 0$	62.5	$7 \cdot 5$	$202 \cdot 9$	19.5	160.286	40	1931
1932 B	$4^{\circ} \mathrm{O}$	$547 \cdot 3$	110	$20 \cdot 7$	$6 \cdot 0$	$97 \cdot 1$	$22 \cdot 0$	$136 \cdot 48$	10.0	60.9	$2 \cdot 5$	125.5	$22 \cdot 5$	137°	$27 \cdot 5$	22.245	40	$1932 B$
1933	0.0	193.3	$7 \cdot 0$	26.7	12.5	$20 \cdot 1$	0.0	12.46	$26 \cdot 5$	$76 \cdot 9$	$2 \cdot 5$	10.6	$7 \cdot 0$	$169{ }^{\circ}$	$6 \cdot 5$	$178 \cdot 205$	40	1933
1934	Ifoo	303.3	3.0	$32 \cdot 8$	18.5	$132 \cdot 1$	$7 \cdot 0$	116*44	8.0	$171 \cdot 9$	2.0	$73 \cdot 6$	21.0	103.0	13.5	$40 \cdot 165$	40	1934
1935	$6 \cdot 5$	$548 \cdot 2$	$13^{\circ} \mathrm{O}$	102.8	25°	55^{1}	14.5	$78 \cdot 42$	24.5	187.9	I•5	136.6	$5 \cdot 5$	$135{ }^{\circ}$	20.0	$232 \cdot 125$	40	1935
1936 B	3.5	194*2	10\%	108.9	$6 \cdot 5$	121.I	$23^{\circ} \mathrm{O}$	40*40	$7 \cdot 5$	$25^{\circ} \mathrm{O}$	$2 \cdot 5$	21.7	$20 \cdot 5$	$69 \cdot 0$	0.5	$58 \cdot 085$	40	1936 B
1937	14.5	304*2	6.0	114.9	13.0	$44^{\circ} \mathrm{I}$	$0 \cdot 5$	$58 \cdot 37$	$24^{\circ} \mathrm{O}$	$41^{\circ} 0$	$2 \cdot 0$	84.7	$5 \cdot 0$	101.I	$7 \cdot 0$	250.046	40	1937
1938	10.0	549.2	2.0	121.0	19.0	156.I	$8 \cdot 0$	20.35	$5 \cdot 5$	136.0	I.5	$147 \cdot 7$	19.0	35^{1} I	$14^{\circ} \mathrm{O}$	112.006	39	1938
1939	$6 \cdot 0$	195.2	12.5	24°	$0 \cdot 0$	$33 \cdot 1$	$15^{\circ} \mathrm{O}$	124.33	22.0	152°	I-5	$32 \cdot 8$	$3 \cdot 5$	67.1	20.5	303.967	39	1939
1940 B	2.5	$440 \cdot 2$	$9 \cdot 5$	$30 \cdot 1$	$7 \cdot 0$	145.I	23.5	86.3I	4.5	247.0	$2 \cdot 0$	95.8	18.5	I•I	1.0	129.927	39	1940 B
1941	13.5	$550 \cdot 2$	$5 \cdot 5$	$36 \cdot 1$	13.5	68.I	$1 \cdot 0$	104.29	21.5	$5{ }^{\circ}$	$1 \cdot 5$	158.8	$3 \cdot 0$	$33 \cdot 1$	$7 \cdot 5$	321.888	39	1941
1942	9.5	196.2	I.5	$42 \cdot 2$	19.5	180.1	$8 \cdot 5$	$66 \cdot 27$	3.0	1000	1.5	$43 \cdot 9$	16.5	174.1	14.5	183.849	39	1942
1943	$5 \cdot 0$	44I•2	$\underline{115}$	112.2	0.5	$57 \cdot 1$	16.0	$28 \cdot 25$	19.5	116.1	I'0	$106 \cdot 9$	I-O	$206 \cdot 2$	21.5	$45^{8} \mathbf{1 0}$	39	1943
1944 B	2.0	87.2	$8 \cdot 5$	118.3	$7 \cdot 5$	169.1	$24^{\circ} \mathrm{O}$	132.23	2.0	$211 \cdot 1$	1.5	169.9	16.0	140.2	1.5 8.5	$201 \cdot 771$	39	1944 B
1945	$13^{\circ} \mathrm{O}$	197.2	$4 \cdot 5$	124.4	${ }^{1} 4^{\circ} \mathrm{O}$	$92 \cdot 1$	$2 \cdot 0$	$8 \cdot 21$	18.5	227.1	I. 5	55°	0.5	172.2	$8 \cdot 5$	63.732	39	1945
1946	$8 \cdot 5$	$442 \cdot 2$	0.5	130.4	20.5	${ }^{15} 5$	$9 \cdot 0$	112.19	0.5	$64 \cdot 1$	1.0	$118{ }^{\circ}$	14.5	106.2	15°	255.694	38	1946
1947	$4 \cdot 5$	$88 \cdot 2$	11.0	33.5	10	$8 \mathrm{I} \cdot \mathrm{I}$	16.5	74.17	17.0	$80 \cdot 1$	I 0	$3 \cdot 0$	28.5	$40 \cdot 2$	$22 \cdot 0$	$117 \cdot 655$	38	1947
1948 B	$1 \cdot 0$	$333 \cdot 2$	$8 \cdot 0$	$39 \cdot 5$	8.5	$\begin{array}{r}40 \\ \hline 16\end{array}$	25.0	$36 \cdot 15$	34.5	96•1	I.5	66•I			$2 \cdot 0$	273.617		$1948 B$
1949	12.0 8.0	$443 \cdot 2$ 89.2	4.0 0.0	$45 \cdot 6$ 51.6	14.5 21.0	116.0 39.0	2.5 10.0	$54 \cdot 13$ 16.11	16.0 32.5	191.2 207.2	I.O I	$129 \cdot 1$ 14.1	28.0	$6 \cdot 3$ $38 \cdot 3$	9.0 15.5	135.579 327.541	38 -38	$\begin{aligned} & 1949 \\ & 1950 \end{aligned}$
1950	$8 \cdot 0$	89.2	$0 \cdot 0$	5x.6	21.0	39°	$10 \cdot 0$	16.11	$32 \cdot 5$	207.2	1.0	$14^{\circ} \mathrm{I}$	12.5	$38 \cdot 3$	15.5	327.541	-38	1950

Table 3 (cont.). Values of the Arguments for the beginnings of the years 1900 to 1950.

Arg.			32		33		34		35		36		37		38		Arg.			
Period	$\begin{gathered} d \\ 14 \cdot 5 \end{gathered}$	$156{ }^{c}$	$\underset{31 \div 5}{d}$	109^{c}	d $29 \cdot 5$		d 205		d $9 \cdot 5$	$63{ }^{\text {c }}$	d 15.5	$95{ }^{\text {c }}$	${ }_{10 \cdot 0}^{d}$	$67{ }^{\text {c }}$	${ }_{7}^{\text {d }}$	$76{ }^{\circ}$	Period			
Half day	$294{ }^{\text {c }}$			$335{ }^{\text {c }}$	$98^{\text {c }}$		$14{ }^{c}$		$277{ }^{\text {c }}$		$117{ }^{\text {c }}$		$396{ }^{\text {e }}$		2996		Half day			
	${ }^{2}$	c	${ }^{4}$	${ }^{6}$	5	${ }^{c}$	$d{ }^{\circ}$		$d \quad c$		$d \quad c$		$d \quad c$		$d{ }^{-}$		1900			
1900	10.0	$183 \cdot 13+18$	27.5	243.57	$28 \cdot 5$	$52 \cdot 64+6$	194.5	10.45	5*	${ }_{5}^{6} 30$	0.0 7.7		$8.0250{ }^{\circ}$		$\begin{array}{ll}2 \cdot 0 & 268.4\end{array}$					
1901	$6 \cdot 0$	105.31	11%	80.58	$9 \cdot 5$	$\begin{array}{rr} 72 \cdot 70 & 6 \\ 0 \cdot 76 & 6 \end{array}$	$148.0 \quad 2.47$		4.5104 .31		$\begin{array}{lll}150 & 23.8\end{array}$		$00147{ }^{\circ} \mathrm{O}$		$3 \cdot 5 \quad 279 \cdot 3$		1900			
1902	$2 \cdot 0$	27.48	26-0	126.59	20-5		101.0	8.50	4°	$203 \cdot 33$	$14^{\circ} \mathrm{O}$	61-9	2.0	${ }^{110} 9$	5°	$290 \cdot 3$	1902			
1903	12.5	$105-6618$	$9{ }^{\circ}$	298.60	1-5	20.826	54.5	$0 \cdot 52$	4°	$25 \cdot 34$	13°	99.9	4°	749	$7{ }^{\circ}$	$2 \cdot 2$	1903			
$1904 B$	$9 \cdot 5$	27-84	$25.5 \quad 9 \cdot 62$		13.0		8.5 6.55		4.5124 .35		$13.5 \quad 21.0$				$\begin{array}{ll}2-0 & 236-2\end{array}$		${ }_{1904}^{1905}$			
1905	$5{ }^{\circ}$	$\begin{array}{ll}244^{\circ} 1 & 18 \\ 166.19 & 18\end{array}$	8.5 ${ }^{181} 5$		$\begin{array}{rrr} 23 \cdot 5 & 72.93 & 6 \\ 4 \cdot 5 & 92 \cdot 99 & 6 \end{array}$		$\begin{array}{rr}167 \cdot 5 & 9.58 \\ 121.0 & 1.60 \\ 74.0 & 7.63\end{array}$		$\begin{array}{ll} 4^{\circ} & 223.37 \\ 4^{\circ} & 45 \cdot 38 \end{array}$		$12.5 \quad 59.1$				$3 \cdot 5 \quad 247 \cdot 1$					
1906	10		23.5	227-64			11.5	${ }^{97} \cdot 1$			$\begin{array}{cc} 9.0 & 2.8 \\ 0.5 & 295.8 \end{array}$		$5 \cdot$	258-1	1905 1906					
1907	11.5	244*36 18	$\begin{array}{cc}7.0 & 64.65\end{array}$		$\begin{array}{llll}15.5 & 21.05 & 6\end{array}$				$\begin{array}{lll}3.5 & 144.40\end{array}$		11.018 .2		$\begin{array}{ll}2 \cdot 5 & 259.8\end{array}$		$6.5 \quad 2690$		1907			
1908 B	8.5	$166.54 \quad 18$	23.0 110.66		27 7% 6711 6				$\begin{array}{rr}28.0 & 13.65 \\ 187.5 & 2.68\end{array}$		4.0 243.41 4.0 65.43 35		11.0		$5 \cdot 5$	$223 \cdot 7$	2.0 204.0		1908 B	
1909	$4 \cdot 5$	$\begin{array}{cc}88-71 & 18 \\ 10.89\end{array}$	60	$282 \cdot 67$ 328.69	8.0 18.5	$\begin{array}{ll}67 \cdot 17 & 6\end{array}$	$10 \cdot 0$	94.4			$7 \cdot 5$	1877 15	3.5	214.9	1909					
1910	$0 \cdot 5$	$\begin{array}{ll}10.89 \\ 89.06 & 18\end{array}$	21.0	$328 \cdot 69$ $165 \cdot 9$	18.5	$\begin{array}{ll}93 \cdot 22 & 6 \\ 15 \cdot 28 & 6\end{array}$	$94^{\circ} \mathrm{O} \quad 0.73$		3.0263 .45				$8.5 \quad 53.5$		$\begin{array}{ll}1.5 & 4^{8.6}\end{array}$		5.0	$225 \cdot 8$ 236.8	1910	
1911	11%	89.0618	4.5165 .70		$\begin{array}{lll}0.0 & 15 \cdot 28\end{array}$				$\begin{array}{lll}6.5 & 236.8\end{array}$	1911										
$1912 B$	8.0	11-24 18	$20.5 \quad 211.71$		$\begin{array}{lll} 11 \cdot 5 & 41 \cdot 34 & 6 \\ 22 \cdot 0 & 67 \cdot 40 & 6 \end{array}$		$\begin{array}{rrr}48 \cdot 0 & 6 \cdot 76 \\ 1.0 & 12 \cdot 78\end{array}$				4.088 .47		$8 \cdot 5981.6$		$\begin{array}{lr}4.5 & 12.6\end{array}$		$\begin{array}{ll}2.0 & 171.7\end{array}$		$1912 B$1913	
1913	3.5 14.5	$\begin{array}{r}227.41 \\ 11.59 \\ 18 \\ \hline 18\end{array}$	$19^{\circ} 0 \quad 94 \cdot 73$				$\begin{array}{rr} 3.5 & 184.48 \\ 3.5 & 6.50 \end{array}$		8.0		$\begin{array}{lll}6 \cdot 0 & 372 \cdot 5\end{array}$		$\begin{array}{lll}3.5 & 182.7\end{array}$							
1914 1915	14.5 100	227×76			$3.0 \quad 87.46 \quad 6$				$160 \cdot 5 \quad 1.81$		$\begin{array}{ll}7^{\circ} & 50.7 \\ 60 & 88.8\end{array}$		$\begin{array}{ll}0.0 & 233.5\end{array}$		6.51204 .6		1915			
$1916 B$	$7{ }^{\circ}$	149.94	18.0 312.75		$\begin{array}{rr}25 \cdot 5 & 41 \cdot 57 \\ 6 \cdot 5 & 61.63\end{array}$		$\begin{array}{lll}67.5 & 13.86\end{array}$		$3.5 \quad 204.53$		$\begin{array}{ll}6.5 & 9.9\end{array}$		3.0197 .4		$\begin{array}{ll}2.0 & 139.5\end{array}$		1916 B			
1917	3.0	$72 \cdot 12 \quad 18$	1.5	14976			21.0	$5 \cdot 89$	3.5	26.54	$5 \cdot 5$	$47^{9} 9$	$5{ }^{\circ}$	161.4	3.5	150.5	1917			
1918	13.5	$150 \cdot 2918$	16.5	$195 \cdot 77$	17°	87.696	180.0	8.91	$3{ }^{3} 0$	125.55	4.5	86°	$7{ }^{\circ}$	$125 \cdot 4$	5°	161.4	1918			
1919	9.5	72.4718	00	$32 \cdot 78$	28.0	15.756	133.5	-'94	$2 \cdot 5$	22.457	$4^{\circ} \mathrm{O}$	$7 \cdot 1$	$9{ }^{\circ} \mathrm{O}$	89.3	$6 \cdot 5$	172.4	1919			
1920 B	6 -	288.644	$\begin{array}{ll}16-0 & 78.79\end{array}$		10-0 $35 \cdot 81$		$87 \cdot 5 \quad 6 \cdot 96$		3.546 .58		4.085 .2		$\begin{array}{lll}1.5 & 382.3\end{array}$		$2 \% 1073$		$\begin{aligned} & 1920 B \\ & 1921 \end{aligned}$			
1921	$2 \cdot 0$	$\begin{array}{ll} 288-99 & 18 \\ 211-17 & 18 \end{array}$	$\begin{array}{ll}31.0 & 124.80 \\ 14^{\circ} 0 & 296.81\end{array}$		$\begin{array}{rrr} 20 \cdot 5 & 6 I \cdot 87 & 6 \\ 1 \cdot 5 & 81 \cdot 93 & 6 \end{array}$		$\begin{array}{rr} 40^{\circ} 5 & 12.99 \\ 200 \cdot 0 & 2.02 \\ \hline \end{array}$		$\begin{array}{rr} 3 \cdot 0 & 145 \cdot 60 \\ 2 \cdot 5 & 244 \cdot 61 \\ 2 \cdot 5 & 66 \cdot 63 \end{array}$		$\begin{array}{rr} 3.0 & 83 \cdot 2 \\ 2 \cdot 5 & 4.3 \end{array}$		$\begin{array}{ll} 3 \cdot 5 & 346 \cdot 3 \\ 5 \cdot 5 & 310 \cdot 2 \end{array}$		3.51188					
1922	$12 \cdot 5$					129.2			$\begin{aligned} & 1921 \\ & 1922 \end{aligned}$											
1923	8.5		$29.5 \quad 7.82$				$\begin{array}{lll}12.5 & 9.98 & 6\end{array}$				153* ${ }^{\circ} \mathrm{O}$-04		$\begin{array}{rr} 2.5 & 4.3 \\ 1.5 & 42.4 \end{array}$		$7 \cdot 5 \quad \mathbf{2 7 4} \cdot \mathbf{2}$		$6.5 \quad 140 \cdot 1$		1923	
1924 B	$5 \cdot 5$	$\begin{array}{rr} 133^{\prime} 34 & 18 \\ 55^{\circ} \cdot 52 & 18 \\ 133^{\prime 70} & 18 \\ 55^{\prime} 87 & 18 \end{array}$	$\begin{array}{rr} 13.5 & 179 \cdot 83 \\ 28.5 & 225 \cdot 84 \\ 12.0 & 62.85 \\ 27.0 & 108.86 \end{array}$		$\begin{array}{r} 24^{\circ} 0 \\ 5 \circ \\ 15 \cdot 5 \\ 26.5 \end{array}$	$\begin{array}{ll} 36 \cdot 04 & 6 \\ 56 \cdot 10 & 6 \\ 82 \cdot 16 & 6 \end{array}$	$\begin{array}{\|rr} 107.5 & 0.07 \\ 60.5 & 6.10 \\ 13.5 & 12.12 \\ 173.0 & 1.15 \end{array}$				$\begin{array}{rr} 3 \cdot 0 & 165 \cdot 64 \\ 2 \cdot 5 & 264 \cdot 66 \\ 2 \cdot 5 & 86 \cdot 67 \\ 2 \cdot 0 & 185 \cdot 69 \end{array}$		1.5	$80 \cdot 4$	0.5	171-2	2	75^{1}	1924 B	
1925	1.5				1.0				1-5	2.5			$135 \cdot 1$	$3 \cdot 5$	86.0	1925				
1926	12.0				$0 \cdot 0$				39.6	4.5			99^{1}	$5{ }^{\circ}$	97\%	1926				
1927	8.0				$10 \cdot 22 \quad 6$	15°			$55 \cdot 7$	6.5			63°	$6 \cdot 5$	107'9	1927				
1928 B	$4 \cdot 5$	$\begin{array}{ll}272.05 & 18 \\ 194.22 & 18\end{array}$	$11 \cdot 0$ $280 \cdot 87$ $26 \cdot 0$ 326.88 9.5 163.89 24.5 209.90			$\begin{array}{rrr} 8 \cdot 5 & 30 \cdot 28 & 6 \\ 19 \cdot 0 & 56 \cdot 34 & 6 \\ 0 \cdot 0 & 76 \cdot 40 & 6 \\ 1 \mathrm{I} \cdot & 4 \cdot 45 & 6 \end{array}$		$\begin{array}{rr} 127.0 & 7.18 \\ 80.0 & 13.20 \\ 33.5 & 5.23 \\ 192.5 & 8.26 \end{array}$		$3 \cdot 0$ 7.70 2.5 $106 \cdot 72$ 2.0 $205 \cdot 73$ 2.0 27.75		15.0		$9.5 \quad 27.0$		2-0 42-9		1928 B		
1929	0.5				14.5			14.8	1.0			$320 \cdot 0$	3.5	53.8	1929					
1930	11.0	$272.40 \quad 18$			13.5			$52 \cdot 9$	$3{ }^{\circ}$			$283 \cdot 9$	$5{ }^{\circ}$	64^{-8}	1930					
1931	$7 \times$	$194.57 \quad 18$			12.5			$90 \cdot 9$	$5{ }^{\circ}$			$247 \% 9$	6.5	$75 \cdot 7$	1931					
1932 B	4.0	$\begin{array}{rr}116 \cdot 75 & 18 \\ 38.93 & 18\end{array}$	$\begin{array}{rr} 9^{\circ} 0 & 46 \cdot 91 \\ 24^{\circ} 0 & 92^{-92} \end{array}$			22.5 30.51 6 3.5 50.57 6				$\begin{array}{ll} 147.0 & 0.29 \\ 10000 & 6.31 \end{array}$		2.5	126-76	$13^{\circ} \mathrm{O}$	12.0	8 -o	211.9	$2 \cdot 0$	$10 \cdot 7$	$1932 B$
1933	$0 \cdot 0$				20			225-78	12.0			$50 \cdot 1$	$0 \cdot 0$	108.8	3.5	21.6	1933			
1934	$10 \cdot 5$	117.1018	70	264.93		$14^{\circ} \mathrm{O}$	$76 \cdot 636$			$53^{\circ} \mathrm{O}$	$12 \cdot 34$	2.0	47779	11.0	$88 \cdot 2$	$2 \cdot 0$	72.8	$5{ }^{\circ}$	$32 \cdot 5$	1934
1935	$6 \cdot 5$	$39.28 \quad 18$	22.0	310.94	25°	4.696	$6 \cdot 5$			$4 \cdot 37$	1.5	146-81	10.5	9^{-2}	4°	36.8	6.5	43.5	1935	
1936 B	3.0	255.4518	6.5	$147 \cdot 94$	$7^{\circ} \mathrm{O}$	24.756	166.5	$7 \cdot 40$	2.0	$245 \cdot 82$	$10 \cdot 5$	473	7.0	$0 \cdot 7$	1.5	277.4	1936 B			
1937	14°	$39.63 \quad 18$	21.5	193.95	17.5	50.806	119.5	13.42	$2{ }^{2} 0$	67.84	9.5	85.4	8.5	$360 \cdot 7$	30	288.4	1937			
1938	$9 \cdot 5$	255-80 18	$5{ }^{\circ}$	30.96	28.0	76.866	$73^{\circ} \mathrm{O}$	5.45	1.5	$166-85$	$9{ }^{\circ}$	$6 \cdot 4$	0.5	2577	$5{ }^{\circ}$	0.3	1938			
1939	$5 \cdot 5$	$177 \cdot 9818$	20\%	76-97	-	$96 \cdot 926$	26-0	11.48	10	$265 \cdot 87$	8 -0	44^{5}	$2 \cdot 5$	221.6	6.5	11.3	1939			
1940 B	2.5	$\begin{array}{cc}100 \cdot 16 & 18\end{array}$	4°	248.98	21.0	24.986	186.5	0.51	2.0	87.89	8.0	82.6	$5 \cdot 5$	185-6	1.5	245.2	$1940 B$			
1941	$13^{\circ} \mathrm{O}$	178.3318	19.0	294.99	2.0	45.046	139.5	6.53	1.5	186-90	7.5	$3 \cdot 7$	$7 \cdot 5$	$149 \cdot 5$	$3{ }^{\circ} \mathrm{O}$	$256 \cdot 2$	1941			
1942	$9^{9} 5^{\circ}$	$\begin{array}{rrr}100 \cdot 51 & 18 \\ 22.68 & 18\end{array}$	2.5 17.5	132.00 178.00	12.5 23.0	$71 \cdot 10$ $97 \cdot 15$	92.5 46.0	12.56 4.59	1.5 1.0	$8-92$ 107.93	$6 \cdot 5$ $5 \cdot 5$	41-7 79.8	9.5 1.5	113.5 10.5	4.5 $6-0$	$267 \cdot 1$ $278 \cdot 1$	1942 1943			
1943	$5{ }^{\circ}$	22.68 18	17.5	178.00	23°	$97^{15} 6$	$46 \cdot$	4.59	1.0	107.93		$79 \cdot 8$	1.5	$10 \cdot 5$	60	$278 \cdot 1$	1943			
1944 B	1.5	238-86 18	2.0	15.01	$5 \cdot 5$	19.21 6	$0 \cdot 0$	10-62	1.5	206-95	$6 \cdot 0$	-099	4°	$370 \cdot 4$	1.5	$213{ }^{\circ}$	1944 B			
1945	12.5	23.0318	$17^{\circ} \mathrm{O}$	$6 \mathrm{I}^{\circ} \mathrm{OL}$	16-0	45-27 6	$159{ }^{\circ} \mathrm{O}$	13.65	1.5	28.96	$5{ }^{\circ}$	$3^{8 \cdot 9}$	60	334.4	3^{-0}	224°	1945			
1946	8.0	$239 \cdot 2118$	$0 \cdot 0$	233.03	$26 \cdot 5$	$71 \cdot 336$	112.5	$5 \cdot 67$	1.0	127.98	40	$77^{\circ} \mathrm{O}$	8.0	$298 \cdot 4$	$4 \cdot 5$	2349	1946			
1947	4°	161.3918	15%	$279{ }^{\circ} \mathrm{O}$	$7 \cdot 5$	91.39 6	$65 \cdot 5$	11.70	0.5	227-00	$3{ }^{\circ}$	115.1	$0 \cdot 0$	$195 \cdot 3$	6.0	$245 * 9$	1947			
1948 B	1.0	83.56	31.0	325.04	19.5	19.456	200	3.73	$1 \cdot 5$	49.01	3.5	$36 \cdot 2$	3.0	159.3	1.5	180.8	1948 B			
1949	11.5	$161 \cdot 7418$	14.5	162.05	0.5	$39 \cdot 516$	${ }^{179}{ }^{\circ} \mathrm{O}$	6.76	1.0	148.03	$2 \cdot 5$	$74 \cdot 2$	5.0	123.3	$3^{\circ} \mathrm{O}$	191.8	1949			
1950	$7 \cdot 5$	$83.91+18$	29.5	208.06	110	$65 \cdot 57+6$	132.0	$12 \cdot 79$	-. 5	$247^{\circ} \mathrm{O} 4$	$1 \cdot 5$	112.3	$7{ }^{\circ}$	87.2	4.5	$202 \cdot 7$	1950			

Table 3 (cont.). Values of the Arguments for the beginnings of the years 1900 to 1950.

Arg.	39		40		41		42		43		44		45		46		47		Arg.
Period			$\begin{gathered} d \\ 13 \cdot 5 \end{gathered}$	66^{c}	$\begin{gathered} d \\ 173^{\circ} 0 \end{gathered}$		$\begin{gathered} d \\ 26 \cdot 5 \end{gathered}$	115^{c}	${ }_{9}^{d}$	$4 I^{c}$	${ }^{\text {7 }}$ -	29	d $9 \cdot 5$	8.		$47{ }^{c}$	$\begin{gathered} d \\ 365^{\circ} 0 \end{gathered}$	$13{ }^{c}$	Yeriod
Half day		31^{6}		$31 I^{c}$		$21{ }^{c}$		152^{c}		189^{c}		$179{ }^{c}$		133^{c}		68^{c}		25^{c}	Half day
	d	c	d	c	d	c	d	c	d	c	d	c	d	c	d	c	d	c	
1900	$2 \cdot 5$	14.5	4.0	156.84	63.0	$3 \cdot 3$	13.0	51.8	1.0	$86 \cdot 9$	I'5	124.8	$4^{\circ} \mathrm{O}$	47*7	6.5	$7 \cdot 5$	89.5	13.36	1900
IgaI	0.5	25.4	1.5	$240 \cdot 83$	81.0	$19 \cdot 3$	1.5	113.8	I.5	$14^{8.0}$	$5 \cdot 5$	$77 \cdot 7$	$7 \cdot 0$	9×9	1.5	$53 \cdot 6$	89.5	0.38	1901
1902	$4 \cdot 5$	$25 \cdot 3$	$13^{\circ} \mathrm{O}$	79.82	99.5	$14^{\circ} 2$	17.0	$138 \cdot 8$	$2 \cdot 5$	$20 \cdot 1$	2.5	I. 6	0.0	97.0	4.0	10.6	890	12.39	1902
1903	$3 \cdot 0$	$5 \cdot 2$	10.5	163.81	118.0	$9 \cdot 2$	$6 \cdot 0$	$48 \cdot 8$	$3 \cdot 0$	8I•2	$6 \cdot 0$	133.5	3.0	59.2	$6 \cdot 0$	$35 \cdot 7$	88.5	24.41	1903
$1904 B$	$2 \cdot 0$	16.2	9°	$247 \cdot 80$	137.5	4.I	22.5	$73 \cdot 8$	$4 \cdot 5$	$142{ }^{\circ}$	4.0	57.4	$7 \cdot 0$	$2 \mathrm{I} \cdot 3$	$2 \cdot 5$	13.8	89.5	II 43	1904 B
1905	0.0	$27 \cdot 1$	$7^{\circ} 0$	$20 \cdot 79$	155.5	20.1	11.0	135.7	$5 \cdot 5$	14.3	$0 \cdot 5$	160.4	$0 \cdot 0$	108.5	$4 \cdot 5$	$38 \cdot 8$	89°	23.45	1905
1906	$4^{\circ} \mathrm{O}$	$27^{\circ} \mathrm{O}$	4.5	104*78	1.0	2.0	$0 \cdot 0$	45.7	$6 \cdot 0$	$75 \cdot 4$	$4 \cdot 5$	$113 \cdot 3$	3.0	$70 \cdot 7$	$0 \cdot 0$	I 6.9	89.0	10.46	1906
1907	$2 \cdot 5$	$6 \cdot 9$	$2 \cdot 0$	188.77	$19^{\circ} 0$	18.0	15.5	$70 \cdot 7$	$6 \cdot 5$	$136 \cdot 5$	I. 5	$37 \cdot 2$	$6 \cdot 0$	32.8	$2 \cdot 0$	$42 \cdot 0$	88.5	$22 \cdot 48$	1907
1908 B	1.5	17.8	0.5	$272 \cdot 75$	$38 \cdot 5$	$12 \cdot 9$	5.0	$132 \cdot 7$	$8 \cdot 5$	$8 \cdot 6$	$6 \cdot 0$	169.1	0.0	120.0	$5 \cdot 0$	$67 \cdot 0$	89.5	$9 \cdot 50$	1908 B
1909	$5 \cdot 5$	$17 \cdot 7$	12.0	III'74	$57^{\circ} \mathrm{O}$	$7 \cdot 9$	21.0	$5 \cdot 7$	$0 \cdot 0$	$28 \cdot 6$	$3 \cdot 0$	93.0	3.0	82.1	0.5	$45^{1} 1$	$89^{\circ} 0$	21.52	1909
1910	$3 \cdot 5$	$28 \cdot 6$	$9 \cdot 5$	195\%73	$75 \cdot 5$	$2 \cdot 9$	$9 \cdot 5$	$67 \cdot 7$	0.5	89.7	$0 \cdot 0$	$16 \cdot 9$	$6 \cdot 0$	44*3	$3 \cdot 0$	$2 \cdot 2$	$89^{\circ} 0$	$8 \cdot 54$	1910
I9II	$2 \cdot 0$	$8 \cdot 5$	$7 \cdot 0$	279.72	93.5	18.8	$25^{\circ} 0$	$92 \cdot 7$	I'O	$150 \cdot 8$	$3 \cdot 5$	148.8	$9 \cdot 0$	6.4	$5^{\circ} \mathrm{O}$	$27 \cdot 2$	88.5	$20 \cdot 55$	1911
$1912 B$	I'0	19.4	$6 \cdot 0$	53*71	I 13.0	13.8	I $5 \cdot 0$	$2 \cdot 7$	3.0	$22 \cdot 9$	1.5	$72 \cdot 7$	3.0	$93 \cdot 6$	I.5	5•3	89.5	$7 \cdot 57$	$1912 B$
1913	$5 \cdot 0$	19.3	$3 \cdot 5$	$136 \cdot 70$	$13 \mathrm{I} \cdot 5$	$8 \cdot 7$	$3 \cdot 5$	$64^{\circ} 7$	$3 \cdot 5$	$84^{\circ} \mathrm{O}$	$5 \cdot 5$	25.6	$6 \cdot 0$	$55 \cdot 7$	$3 \cdot 5$	$30 \cdot 4$	$89 \cdot 0$	19.59	1913
1914	$3 \cdot 0$	$30 \cdot 2$	I.O	$220 \cdot 69$	150.0	$3 \cdot 7$	19.0	$89 \cdot 7$	4°	$145^{\circ} \mathrm{O}$	$2 \cdot 0$	128.5	9.0	17.9	$5 \cdot 5$	$55 \cdot 4$	89.0	$6 \cdot 61$	1914
1915	1.5	10.1	12.5	$59 \cdot 68$	168.0	19.7	$7 \cdot 5$	151.7	$5 \cdot 0$	17.1	$6 \cdot 0$	81.4	2.0	$105 \cdot 0$	1.0	33.5	$88 \cdot 5$	18.62	1915
$1916 B$	$0 \cdot 5$	21.0	11.0	143.67	14.5	I. 6	24.5	$24^{\circ} 7$	$6 \cdot 5$	$78 \cdot 2$	$4^{\circ} 0$	$5 \cdot 3$	$6 \cdot 0$	$67 \cdot 2$	$4^{\circ} 0$	$58 \cdot 6$	89.5	5.64	$1916 B$
1917	$4 \cdot 5$	$20 \cdot 9$	$8 \cdot 5$	$227 \cdot 66$	$32 \cdot 5$	17.6	$13^{\circ} \mathrm{O}$	86.7	7.0	$139 \cdot 3$	$0 \cdot 5$	$109 \cdot 2$	$9^{\circ} 0$	$29 \cdot 3$	$6 \cdot 5$	15.6	$89^{\circ} 0$	17.66	1917
1918	$3 \cdot 0$	0.8	$6 \cdot 5$	0.64	51.0	12.5	I.5	148.7	$8 \cdot 0$	II.4	$4 \cdot 5$	6I.I	$2 \cdot 0$	116.5	$1 \cdot 5$	$61 \cdot 7$	89.0	$4 \cdot 68$	1918
1919	$1 \cdot 0$	11•7	$4 \cdot 0$	$84 \cdot 63$	69.5	$7 \cdot 5$	17.5	21.6	$8 \cdot 5$	72.4	I.O	$164{ }^{\circ}$	$5 \cdot 0$	$78 \cdot 6$	4°	18.8	$88 \cdot 5$	16.69	1919
1920 B	$0 \cdot 0$	$22 \cdot 6$	2.5	168.62	$89^{\circ} 0$	$2 \cdot 4$	$7 \cdot 0$	83.6	I 0	$92 \cdot 5$	$6 \cdot 0$	116.9	9.0	$40 \cdot 8$	$0 \cdot 0$	64.9	89.5	$3 \cdot 71$	1920 I3
1921	4.0	$22 \cdot 5$	$0 \cdot 0$	252.61	107.0	$18 \cdot 4$	22.5	108.6	1.5	$153 \cdot 6$	$3 \cdot 0$	$40 \cdot 8$	$2 \cdot 0$	127.9	$2 \cdot 5$	2 I.9	89°	15*73	1921
1922	$2 \cdot 5$	$2 \cdot 4$	11.5	91.60	125.5	$13 \cdot 3$	II.5	$18 \cdot 6$	$2 \cdot 5$	$25 \cdot 7$	$6 \cdot 5$	172.8	$5{ }^{\circ}$	90•1	$4 \cdot 5$	47°	89.0	$2 \cdot 75$	1922
1923	$0 \cdot 5$	13.3	$9 \cdot 0$	$175 \cdot 59$	$144^{\circ} 0$	$8 \cdot 3$	$0 \cdot 0$	$80 \cdot 6$	3.0	$86 \cdot 8$	$3 \cdot 5$	96.7	$8 \cdot 0$	$52 \cdot 3$	$0 \cdot 0$	$25^{1} 1$	$88 \cdot 5$	14.77	1923
$1924 B$	$5 \cdot 5$	$13^{\circ} 2$	$7 \cdot 5$	259.58	163.5	$3 \cdot 3$	16.5	$105 \cdot 6$	$4 \cdot 5$	$147 \cdot 8$	I.5	$20 \cdot 6$	$2 \cdot 5$	$6 \cdot 4$	$3 \cdot 0$	50•1	$89 \cdot 5$	I. 78	$1924 B$
1925	$3 \cdot 5$	24.1	$5 \cdot 5$	32.57	$8 \cdot 5$	$6 \cdot 2$	$5 \cdot 5$	$15 \cdot 6$	$5 \cdot 5$	19.9	$5 \cdot 0$	152.5	$5 \cdot 0$	IOI. 6	$5 \cdot 5$	$7 \cdot 2$	89.0	13.80	1925
1926	$2 \cdot 0$	$4^{\circ} 0$	$3^{\circ} \mathrm{O}$	116.56	$27^{\circ} 0$	$1 \cdot 2$	21.0	$40 \cdot 6$	$6 \cdot 0$	81.0	$2 \cdot 0$	$76 \cdot 4$	$8 \cdot 0$	$63 \cdot 7$	$0 \cdot 5$	$53 \cdot 3$	89°	0.82	1926
1927	$0 \cdot 0$	14.9	0.5	$200 \cdot 55$	45\%	17.1	$9 \cdot 5$	102.6	$6 \cdot 5$	142.1	6.0	29.3	I'5	17.9	$3 \cdot 0$	10.3	$88 \cdot 5$	12.84	1927
$1928 B$	$5 \cdot 0$	14.8	$13^{\circ} \mathrm{O}$	39*53	$64 \cdot 5$	12.1	26.0	127.6	$8 \cdot 5$	$14^{\circ} 2$	$3 \cdot 5$	$132 \cdot 2$	$5 \cdot 0$	113.0	$6 \cdot 0$	$35 * 4$	$89^{\circ} 0$	24.85	1928 B
1929	$3 \cdot 0$	$25 \cdot 7$	10.5	123.52	83.0	$7 \cdot 0$	$15 \cdot 0$	37.6	$0 \cdot 0$	$34^{\circ} 2$	0.5	$56 \cdot 1$	$8 \cdot 0$	$75 \cdot 2$	$1 \cdot 5$	13.5	89.0	11.87	1929
1930	$1 \cdot 5$	$5 \cdot 6$	$8 \cdot 0$	$207 \cdot 51$	IOI*5	$2 \cdot 0$	$3 \cdot 5$	$99^{\cdot 6}$	0.5	$95 \cdot 3$	$4 \cdot 5$	$9 \cdot 0$	1.5	$29 \cdot 3$	$3 \cdot 5$	38.5	$88 \cdot 5$	$23 \cdot 89$	1930
1931	$5 \cdot 5$	$5 \cdot 5$	$5 \cdot 5$	291.50	119.5	17.9	19.0	124.5	I 0	156.4	I'O	I I I'9	4.0	124.5	$5 \cdot 5$	$63 \cdot 6$	$88 \cdot 5$	10.91	1931
1932 B	4.5	$16 \cdot 4$	4.5	64.49	$139^{\circ} 0$	$12 \cdot 9$	$9 \cdot 0$	34.5	$3 \cdot 0$	$28 \cdot 5$	$6 \cdot 0$	$64 \cdot 8$	$8 \cdot 0$	$86 \cdot 6$	$2 \cdot 0$	41×7	$89^{\circ} 0$	22.93	1932 R
1933	$2 \cdot 5$	$27 \cdot 3$	$2 \cdot 0$	148.48	157.5	$7 \cdot 9$	24.5	$59^{\circ} 5$	$3 \cdot 5$	89.6	$2 \cdot 5$	$167{ }^{\circ} 7$	I. 5	40•8	4.0	$66 \cdot 7$	89°	$9 \cdot 94$	1933
1934	1.0	$7 \cdot 2$	$13^{\circ} \mathrm{O}$	$298 \cdot 47$	$2 \cdot 5$	10.8	$13^{\circ} \mathrm{O}$	121.5	4°	150.6	$6 \cdot 5$	$120 \cdot 6$	$4 \cdot 5$	$2 \cdot 9$	$6 \cdot 5$	$23 \cdot 8$	$88 \cdot 5$	21.96	1934
1935	$5 \cdot 0$	$7 \cdot 1$	II*O	$71 \cdot 46$	21.0	$5 \cdot 8$	$2 \cdot 0$	31.5	5.0	$22 \cdot 7$	$3 \cdot 5$	44.5	$7 \cdot 0$	$98 \cdot 1$	$2 \cdot 0$	I•9	$88 \cdot 5$	$8 \cdot 98$	1935
1936 B	$4^{\circ} \mathrm{O}$	$18 \cdot 1$	$9 \cdot 5$	155.45	$40 \cdot 5$	$0 \cdot 7$	$18 \cdot 5$	$56 \cdot 5$	$6 \cdot 5$	$83 \cdot 8$	$1 \cdot 0$	$147^{\circ} 4$	I. 5	$52 \cdot 2$	$5{ }^{\circ}$	$27^{\circ} 0$	89.0	21.00	$1936 B$
1937	$2 \cdot 0$	29°	$7 \cdot 0$	239.44	$58 \cdot 5$	$16 \cdot 7$	$7 \cdot 0$	118.5	7.0	144.9	$5 \cdot 0$	$100 \cdot 3$	$4 \cdot 5$	14.4	$0 \cdot 5$	$5 \cdot 0$	80.0	$8 \cdot \mathrm{OI}$	1937
1938	0.5	$8 \cdot 9$	$5 \cdot 0$	12.42	$77^{\circ} \mathrm{O}$	II. 6	22.5	143.5	$8 \cdot 0$	$17 \cdot 0$	$2 \cdot 0$	24^{-2}	7.0	109.5	$2 \cdot 5$	$30 \cdot 1$	$88 \cdot 5$	20.03	1938
1939	$4 \cdot 5$	$8 \cdot 8$	$2 \cdot 5$	$95 \cdot 41$	95.5	$6 \cdot 6$	11.5	$53 \cdot 5$	$8 \cdot 5$	$78 \cdot 0$	$5 \cdot 5$	156.2	0.5	$63 \cdot 7$	$4 \cdot 5$	$55 \cdot 2$	88.5	$7 \cdot 0.5$	1939
1940 B	$3 \cdot 5$	$19 * 7$	I'O	180.40	$115{ }^{\circ}$	I'5	1.0	115.5	I'O	98.1	$3 \cdot 5$	$80 \cdot 1$	4.5	$25 \cdot 8$	I.O	$33 \cdot 2$	89.0	$19 \cdot 07$	$1940 B$
1941	$1 \cdot 5$	$30 \cdot 6$	12.5	19.39	$133^{\circ} \mathrm{O}$	17.5	$16 \cdot 5$	$140 \cdot 5$	I•5	159.2	0.5	$4{ }^{\circ}$	7.0	121.0	$3 \cdot 0$	$58 \cdot 3$	89.0	6.08	1941
1942	$0 \cdot 0$	10.5	10.0	$103 \cdot 38$	151.5	12.5	$5 \cdot 5$	$50 \cdot 5$	$2 \cdot 5$	$3 \mathrm{I} \cdot 3$	4.0	$135 \cdot 9$	0.5	$75 \cdot 2$	$5 \cdot 5$	$15 \cdot 4$	$88 \cdot 5$	18.10	1942
1943	$4^{\circ} 0$	10.4	$7 \cdot 5$	$187 \cdot 37$	$170 \cdot 0$	$7 \cdot 4$	21.0	$75 \cdot 4$	$3 \cdot 0$	$92 \cdot 4$	I'O	$59 \cdot 8$	$3 \cdot 5$	$37 \cdot 3$	$0 \cdot 5$	$61 \cdot 4$	$88 \cdot 5$	5.12	1943
$1944 B$	$3 \cdot 0$	2I•3	$6 \cdot 0$	271.36	$16 \cdot 0$	10.4	10.5	137.4	$4 \cdot 5$	153.4	$6 \cdot 0$	12.7	$7 \cdot 0$	132.5	$4^{\circ} \mathrm{O}$	18.5	89.0	17.14	19448
1945	1.5	I-2	4°	$44 \cdot 35$	$34 \cdot 5$	$5 \cdot 3$	$26 \cdot 5$	$10 \cdot 4$	$5 \cdot 5$	25.5	$2 \cdot 5$	$115 \cdot 6$	0.5	$86 \cdot 6$	$6 \cdot 0$	$43 \cdot 6$	89.0	4.16	1945
1946	$5 \cdot 5$	I•I	I. 5	$128 \cdot 34$	$53^{\circ} \mathrm{O}$	$0 \cdot 3$	$15 \cdot 0$	$72 \cdot 4$	$6 \cdot 0$	$86 \cdot 6$	$6 \cdot 5$	68.5	$3 \cdot 5$	$4^{8 \cdot 8}$	I•5	$2 \mathrm{I} \cdot 6$	$88 \cdot 5$	16.17	1946
1947	$3 \cdot 5$	12\%0	12.5	$278 \cdot 32$	$71 \cdot 0$	16.2	$3 \cdot 5$	134.4	$6 \cdot 5$	$147{ }^{\circ} 7$	3.0	171*4	6.5	$10 \cdot 9$	$3 \cdot 5$	$46 \cdot 7$	$88 \cdot 5$	3.19	1947
1948 B	$2 \cdot 5$	22.9	11.5	5I•3I	$90 \cdot 5$	I I 2	$20 \cdot 5$	$7 \cdot 4$	$8 \cdot 5$	19.8	I'O	$95 \cdot 3$	0.5	98•1	0.0	24^{+8}	89°	15.21	1948 B
1949	1.0	$2 \cdot 8$	9.0	$135 \cdot 30$	109*0	$6 \cdot 2$	$9 \cdot 0$	69.4	0%	$39^{\circ} 9$	$5 \cdot 0$	$4^{8 \cdot 2}$	$3 \cdot 5$	$60 \cdot 2$	$2 \cdot 0$	$4 \cdot 3$	80.0	$2 \cdot 23$	1949
1950	$5 \cdot 0$	$2 \cdot 7$	$6 \cdot 5$	219.29	127.5	I•I	24.5	94.4	0.5	$100 \cdot 9$	I'5	151'1	$6 \cdot 5$	22.4	$4 * 5$	$6 \cdot 9$	88.5	14.24	1950

Table 3 (cont.). Values of the Arguments for the beginnings of the years 1900 to 1950.

Arg.	48	49	50	51		52		53		54		55^{*}		56		57		Arg.
Period	159^{c}	$\stackrel{d}{13.63}$	$101{ }^{\text {c }}$	$\underset{12 \cdot 5}{d}$		$\underset{22 \%}{\text { d }}$	2^{c}	$\stackrel{\text { d }}{35^{\circ}}$	32^{c}	$\underset{29}{\text { d }}$		$\underset{32 \cdot 0}{\text { d }}$	73^{c}	$\underset{10}{\text { d }}$	21^{6}	$\underset{16-0}{d}$	5^{c}	Period
Addition for Per. of Vert. Arg.	$4{ }^{6}$		50°	Half day	19		${ }^{c}$		$39{ }^{c}$		47^{c}		$130{ }^{c}$		80^{6}		$112{ }^{6}$	Half day
	c	d	c	d	c	d	c	d	c	d	${ }^{6}$	d	c	d	${ }^{6}$	d	c	
1900	63	$3 \cdot 64$	95	$0 \cdot 0$	4	4°	-	23.5	21.8	4.5	31-6	21.5	$10 \cdot 69$	$6 \cdot$	38-3	12.5	$47 \cdot 3$	1900
1901	119	$0 \cdot 54$	31	$7 \cdot 5$	10	120	0	34.5	$13^{18} 8$	13.5	39.7	31.0	117.67	6.5	$2 \cdot 3$	$9{ }^{\circ}$	44.3	1901
1902	12	11507	17	$2 \cdot 5$	5	19.5	2	10%	12.8	$23^{\circ} \mathrm{O}$	$0 \cdot 7$	$9{ }^{\circ}$	21.64	$6 \cdot 5$	$46 \cdot 4$	$5 \cdot 5$	$4 \mathrm{I} \cdot 3$	1902
1903	64	7×97	53	10.0	11	$5{ }^{\circ}$	2	21.0	4^{8}	20	40\%7	18.5	128.62	$7{ }^{\circ}$	10.4	$2 \cdot 0$	$3^{8 \cdot 3}$	1903
$1904 B$	116	$5 \cdot 87$	89	$6 \cdot 0$	6	$14^{\circ} \mathrm{O}$	1	$32 \cdot 5$	$35 \cdot 8$	12.5	1.8	29.5	105*60	8.0	54.5	15.5	$40 \cdot 3$	1904 B
1905	13	$2 \cdot 77$	25	$1 \cdot 0$	2	22.0	-	8 \%	34^{-8}	21.5	$9 \cdot 8$	$7 \cdot 5$	$9 \cdot 58$	8.5	18.5	12.0	$37 \cdot 3$	1905
1906	65	13.30	11	$8 \cdot 5$	7	$7 \cdot 5$	-	19.0	26.8	I\%	$2 \cdot 9$	$17{ }^{\circ} \mathrm{O}$	116.56	$8 \cdot 5$	$62 \cdot 5$	$8 \cdot 5$	$34 \cdot 3$	1906
1907	117	10-20	47	3.5	3	15°	2	30.0	18.8	100	$10 \cdot 9$	27°	93.54	$9{ }^{\circ}$	26.6	5%	$31 \cdot 3$	1907
1908 B	10	$8 \cdot 10$	84	12.0	8	2.0	0	6.5	17.8	20.0	19\%	$5 \cdot 5$	127.52	$0 \cdot 0$	49.6	2.5	$28 \cdot 3$	1908 B
1909	66	5.00	19	7.0	4	9.5	2	17.5	$9 \cdot 8$	$29^{\circ} \mathrm{O}$	27.0	15.5	104.50	0.5	13.7	$15^{\circ} \mathrm{O}$	$30 \cdot 3$	1909
1910	118	1.89	55	1.5	18	17.5	1	28.5	1.8	$8 \cdot 5$	$20^{\circ} 0$	25.5	81.48	0.5	57.7	11.5	$27 \cdot 3$	1910
1911	11	12.43	41	$9 \cdot 5$	5	$3{ }^{\circ}$	I	4°	0.8	17.5	$28 \cdot 1$	$3{ }^{\circ}$	115.46	1.0	21.8	8.0	24.3	1917
1912 B	63	10.32	78	$5 \cdot 5$	0	12.0	-	15.5	31.8	27.5	$36 \cdot 1$	$14^{\circ} \mathrm{O}$	92.44	2.0	65.8	5.5	$21 \cdot 3$	1912 B
1913	119	$7 \cdot 22$	13	$0 \cdot 0$	15	19.5	2	26.5	23.8	7.0	$29^{\prime 2}$	$24^{\circ} \mathrm{O}$	$69 \cdot 42$	$2 \cdot 5$	29.8	2.0	$18 \cdot 3$	1913
1914	12	4.12	49	8.0	1	$5{ }^{\circ}$	2	2.0	22.8	16.0	$37 \cdot 2$	1.5	103.40	$2 \cdot 5$	$73 \cdot 9$	14.5	$20 \cdot 3$	1914
1915	64	1.02	85	$2 \cdot 5$	16	130	2	$13^{\circ} \mathrm{O}$	14^{-8}	$25^{\circ} \mathrm{O}$	$45 \cdot 3$	11.5	80.38	3.0	37×9	11.0	$17 \cdot 3$	1915
1916 B	116	$12 \cdot 55$	72	11.5	2	22.0	1	$25^{\circ} \mathrm{O}$	$6 \cdot 9$	5.5	$38 \cdot 3$	22.5	57*36	4.5	2.0	8.5	14.3	1916 B
1917	13	$9 \cdot 45$	7	6.0	17	$7 \cdot 5$	1	0. 5	$5 \cdot 9$	14.5	$46 \cdot 4$	$0 \cdot 0$	$91 \cdot 33$	4.5	46.0	$5{ }^{\circ}$	$11 \cdot 3$	1917
1918	65	$6 \cdot 35$	43	1.0	12	15.5	-	11.0	$36 \cdot 9$	$24^{\circ} \mathrm{O}$	$7 \cdot 4$	10.0	$68 \cdot 31$	$5{ }^{\circ}$	10-1	1.5	$8 \cdot 3$	1918
1919	117	$3 \cdot 24$	79	$8 \cdot 5$	18	10	-	22.0	28.9	3.5	0.4	20.0	45'29	$5{ }^{\circ}$	$54^{\prime 1}$	14°	10.3	1919
1920 B	10	1.14	15	45	13	9.5	2	$34^{\circ} \mathrm{O}$	$20 \cdot 9$	13.5	$8 \cdot 5$	31.0	$22 \cdot 27$	6.5	18-1	11.5	$7 \cdot 3$	1920 B
1921	66	11-67	,	12.5	,	17.5	1	$9 \cdot 5$	19.9	22.5	16.5	$8 \cdot 5$	$56 \cdot 25$	6.5	62'2	8.0	43	1921
1922	118	$8 \cdot 57$	37	$7{ }^{\circ}$	14	3.0	2	20.5	11-9	2.0	9.6	18.5	33.23	$7{ }^{\circ} \mathrm{O}$	26-2	4.5	$1 \cdot 3$	1922
1923	11	$5 \cdot 47$	74	2.0	10	11\%	1	31.5	3.9	11.0	17.6	28.5	10-21	$7{ }^{\circ}$	70.3	0.5	$110 \cdot 3$	1923
${ }_{1924}{ }^{\text {a }}$	63	$3 \cdot 37$	9	$10 \cdot 5$	15	20.0	\bigcirc	8.0	$2 \cdot 9$	21.0	$25 \cdot 7$	$7{ }^{\circ}$	$44 \cdot 19$	$8 \cdot 5$	34.3	14.5	$0 \cdot 3$	$1924 B$
1925	119	$0 \cdot 27$	45	$5 \cdot 5$	11	$5 \cdot 5$	\bigcirc	18.5	33.9	0.5	$18 \cdot 7$	$17^{\circ} \mathrm{O}$	$21 \cdot 17$	$8 \cdot 5$	78.4	$10 \cdot 5$	1093	1925
1926	12	10-80	31	-5 5	6	13.0	2	29.5	$25-9$	9.5	$26 \cdot 7$	$26 \cdot 5$	128.15	9.0	$42 \cdot 4$	7.0	$106 \cdot 3$	1926
1927	64	770	68	8 -	12	21.0	1	$5{ }^{\circ}$	$24^{\prime 9}$	$18 \cdot 5$	34^{-8}	4.5	$32 \cdot 13$	9.5	6.4	3.5	$103 \cdot 3$	1927
1928 B	116	$5 \cdot 60$	3	4°		75	1	$17^{\circ} \mathrm{O}$	16.9	28.5	$42 \cdot 8$	15.5	9-11	0.5	$29 \cdot 5$	1.0	$100 \cdot 3$	$1928 B$
1929	13	$2 \cdot 49$	39	$11 \cdot 5$	13	15.5	1	28.0	8.9	$8{ }^{\circ} \mathrm{O}$	$35 \cdot 9$	25°	116.09	$0 \cdot 5$	73.5	13.5	$102 \cdot 3$	1929
1930	65	13.03	25	6.5	8	10	1	$3 \cdot 5$	$7{ }^{7} 9$	$17^{\circ} \mathrm{O}$	43.9	$3 \cdot 0$	20.07	to	$37 \cdot 6$	10-0	$99 \cdot 3$	1930
1931	117	9.92	62	1-5	4	9.0	-	$14^{\circ} \mathrm{O}$	$38 \cdot 9$	26.5	5°	$12 \cdot 5$	127.05	1-5	$1 \cdot 6$	6.5	$96 \cdot 3$	193I
$1932 B$	10	7.82	98	10.0	9	17.5	2	26-0	30.9	$6 \cdot 5$	45\%	23.5	104.03	2.5	$45^{*} 6$	4%	$93 \cdot 3$	1932 B
1933	66	4.72	33	$5{ }^{\circ}$	5	$3{ }^{\circ}$	2	1.5	29.9	16.0	6.0	1.5	8 8-01	3.0	97	0.5	$90 \cdot 3$	1933
1934	118	1.62	69	-0	6	110	1	12.5	21.9	25°	14.1	11.0	114.99	$3 \cdot 0$	53.7	13.0 9.5	$882 \cdot 3$	1934
1935	11	$12 \cdot 15$	56	7.5	6	19\%	0	23.5	$14^{\circ} \mathrm{O}$	4.5	$7 \cdot 1$	21.0	91.97	3.5	17*8	$9 \cdot 5$	$89 \cdot 3$	1935
1936 B	67	10.05	92	3.5	1	5.5	1	$0 \cdot 0$	$13^{\circ} \mathrm{O}$	14.5	15.2	32\%	68 -95	4.5	6r-8	$7{ }^{\circ}$	$86 \cdot 3$	1936 B
1937	119	6.95	27	11.0	7	13.5	0	11.0	$5{ }^{\circ} \mathrm{O}$	23.5	23-2	$9 \cdot 5$	102-93	$5{ }^{\circ}$	$25 \cdot 9$	3.5	$83 \cdot 3$	1937
1938	12	$3 \cdot 85$	64	6.0	2	21.0 6.5	2	21.5 32.5	36\%	+3.0	$16 \cdot 3$ $24 * 3$	19.5 29.5	79.91 56.89	5.0 5.5	69.9 $33 \cdot 9$	0.0 12.5	$80 \cdot 3$ $82 \cdot 3$	1938 1939
1939	64	$0 \cdot 74$	100	0.5	17	$6 \cdot 5$	2	32.5	28.0	12.0	24.3	29.5	56.89	$5 \cdot 5$	33*9	$12 \cdot 5$	82.3	1939
1940 B	120	12-28	86	9.5	3	15.5	1	9.0	$27^{\circ} \mathrm{O}$	22.0	32.3	8 -0	90.87	6.5	78 -o	10-0	79.3	1940 B
1941	13	9.17	21	4.0	18	10	1	20.0	19\%	1.5	$25 \cdot 4$	18 -0	67.85	$7{ }^{\circ}$	42%	$6 \cdot 5$	$76 \cdot 3$	1941
1942	65	6.07	58	12.0	4	$9{ }^{\circ}$	0	31.0	11.0	10.5	33.4	28.0	44^{-83}	$7 \cdot 5$	$6 \cdot 1$	3.0	73•3	1942
1943	117	$2 \cdot 97$	94	7.0	0	$17^{\circ} \mathrm{O}$	-	6.5	10-0	19.5	4^{1-5}	$5 \cdot 5$	$78 \cdot 81$	$7 \cdot 5$	$50 \cdot 1$	15.5	$75 \cdot 3$	1943
1944 B	14	- 887	29	$2 \cdot 5$	14	3.5	0	18.5	$2{ }^{20}$	$0 \cdot 0$	34.5	16-5	55.79	$9 \cdot 0$	${ }^{14} 4.2$	13.0		$1944{ }^{\text {B }}$
1945	$\begin{array}{r}66 \\ \hline 18\end{array}$	11.40 8.30	15	10.5	1	11.0	2	$29^{\circ} \mathrm{C}$	$33^{3} 0$	$9-0$ 18.5	$42-6$ 3.6	26.5	$32 \cdot 77$ 66.75	9.0	$58-2$ $22-2$	9.5	$69 \cdot 3$ $66 \cdot 3$	1945 1946
1946 1947	118 II	$8 \cdot 30$ $5 \cdot 20$	52 88	5\%	15	19.0 4.5	1	4.5 15.5	32.0 24.0	18.5 27.5	11-7	4.0 14.0	$66 \cdot 75$ $43 \cdot 73$	9.5	$22 \cdot 2$ $66 \cdot 3$	$6 \cdot 0$ $2 \cdot 5$	$66 \cdot 3$ $63 \cdot 3$	1946
1947	11	5:20	88	$0 \cdot 0$	11	4.5	1	15.5	24°	27.5	1177	$14^{\circ} \mathrm{O}$	$43 \cdot 73$	9.5	$66 \cdot 3$	$2 \cdot 5$	$63 \cdot 3$	1947
1948 B	67	3.10	23	$8 \cdot 5$	16	13.5	0	27.5	16.0	8.0	$4 \cdot 7$	25\%	20.71	I\%	$9 \cdot 3$	$0 \cdot 0$	$60 \cdot 3$	1948 B
1949	119	0×0	59	3.5	12	21.0	2	3.0	$15{ }^{\circ}$		12.7	2.5 12.5	54.69	10	53.4	12.5	62•3	1949
1950	12	10.53	46	11.0	17	$7{ }^{\circ}$	0	14°	$7{ }^{\circ}$			12.5	$31 \cdot 67$	$1 \cdot 5$	17*4	$9{ }^{\circ}$	59.3	1950

* Add ${ }^{2}+5$ of the value for the year from table, P 29, Sect. VI and subtract 0.10 .

Table 3 (cont.). Values of the Arguments for the beginnings of the years 1900 to 1950.

Arg.	58	59		60		61		62		63	64	65	66	67	68	Arg.
Period	$\begin{gathered} d \\ 2190 \cdot 5 \end{gathered}$	$\begin{gathered} d \\ 188 \cdot 0 \end{gathered}$	2_{2}^{c}	$\begin{gathered} d \\ 14.5 \end{gathered}$		$\begin{gathered} d \\ 27 \cdot 5 \end{gathered}$		$\begin{gathered} d \\ 9 \cdot 5 \end{gathered}$		$\begin{gathered} d \\ 32 \cdot 13 \end{gathered}$	$\begin{gathered} c \\ 35 \end{gathered}$	$\underset{2 \sigma \cdot 1}{d}$	45^{c}	$\begin{gathered} d \\ 27 \cdot 6 \end{gathered}$	42°	Period
Half day		5^{c}				$53{ }^{\text {c }}$		205		Addition for Per. of Vert. Arg.	6^{6}	${ }_{2}{ }^{c}$		2^{6}		Addition for Per. of Vert. Arg.
	d	d	c	d	c	d	c	d	c	d	c	d	c	d	${ }^{\circ}$	
1900	2100.1	123°	$3 \cdot 13$	7.0	$96 \cdot 2$	10.0	$16 \cdot 1$		6	23.21	20	II•I	30	$6 \cdot 2$	28	1900
1901	$274 \cdot 6$	III.5	4.11	0.5	$49^{\circ} 2$	12.0	$40 \cdot 1$		34	2.67	19	10.7	13	12.7	12	1901
1902	639×7	$100 \cdot 5$	0.08	$8 \cdot 5$	127.1	14.5	11.2	$8 \cdot 5$	126	14.26	1.3	$10 \cdot 3$	41	19.2	37	1902
1903	1004.7	89.0	$1 \cdot 05$	2.0	$80 \cdot 1$	16.5	$35 \cdot 3$		154	25.85	7	$9 \cdot 9$	24	$25 \cdot 7$	21	1903
$1904 B$	$1370 \cdot 7$	78.5	2.02	It ${ }^{\circ}$	158.0	$20 \cdot 0$	6.4		182	$6 \cdot 31$	7	10.5	7	$5 \cdot 7$	7	1904 B
1905	1735.8	67.0	3.00	4.5	I 10*9	22.0	$30 \cdot 5$	4.0	5	17.90	1	$10 \cdot 0$	35	12.2	33	1905
1906	$2100 \cdot 8$	55.5	3.97	13.0	17.9	24.5	1.5	$2 \cdot 0$	33	29.49	30	$9 \cdot 6$	18	18.7	17	1906
1907	$275 \cdot 3$	$44^{\circ} \mathrm{O}$	4.94	$6 \cdot 0$	14 1 - 8	$26 \cdot 5$	$25 \cdot 6$	$0 \cdot 0$	61	$8 \cdot 95$	29	$9 \cdot 2$	2	25°	-	1907
1908 B	$641 \cdot 3$	$34^{\circ} \mathrm{O}$	0.92	0.5	$94 \cdot 8$	2.0	$6 \cdot 7$	$8 \cdot 5$	153	21.54	23	9.8	30	$5 \cdot 1$	28	1908 B
1909	$1006 \cdot 4$	$22 \cdot 5$	1.89	9.0	1.7	$4{ }^{\circ}$	30.8		181	$1 \cdot 00$	23	$9 \cdot 4$	13	11.6	12	1909
1910	$1371 \cdot 4$	11.0	$2 \cdot 86$	$2 \cdot 0$	1257	$6 \cdot 5$	I.8	$5 \cdot 0$	4	12.59	17	$9 \cdot 0$	$4{ }^{1}$	18.1	38	1910
1911	$1736 \cdot 4$	188.0	0.83	10.5	$32 \cdot 6$	$8 \cdot 5$	25.9		32	24.18	II	$8 \cdot 6$	24	24.6	22	1915
$1912 B$	2102.4	177.5	1.81	4.5	156.5	11.5	$50 \cdot 0$	2.0	60	$4 \cdot 64$	11	9.2	7	$4 \cdot 6$	7	$1912 B$
1913	277°	166.0	$2 \cdot 78$	$13^{\circ} \mathrm{O}$	63.5	$14^{\circ} \mathrm{O}$	2 I•I	$0 \cdot 0$	88	16.23	4	$8 \cdot 8$	36	II•I	33	1913
1914	642.0	154.5	$3 \cdot 75$	$6 \cdot 5$	16.4	16.0	$45^{\prime 2}$	$7 \cdot 5$	180	27.82	33	$8 \cdot 4$	19	17.6	17	1954
1915	1007.0	I43.0	473	14.5	94.4	18.5	$16 \cdot 2$		3	7.28	33	$8 \cdot 0$	2	$24^{\prime} 1$	1	1915
1916 B	1373.0	133.0	0.70	$9 \cdot 0$	$47 \cdot 3$	21.5	$40 \cdot 3$	5.0	31	19.87	27	$8 \cdot 6$	30	4.0	28	$1916 B$
1917	$1738 \cdot 1$	121.5	1.67	$2 \cdot 5$	$0 \cdot 3$	$24^{\circ} \mathrm{O}$	11.4	3.0	59	31.46	21	$8 \cdot 2$	13	$10 \cdot 5$	12	1917
1918	2103.1	1100	$2 \cdot 65$	10.5	$78 \cdot 2$	26.0	$35 \cdot 5$	I-O	87	10.92	21	$7 \cdot 8$	4 I	17.0	38	1918
1919	$277 \cdot 6$	98.5	$3 \cdot 62$	4°	$31 \cdot 1$	$0 \cdot 5$	16.6	$8 \cdot 5$	179	$22 \cdot 51$	14	$7 \cdot 4$	25	23.6	22	1919
$1920 B$	$64.3 \cdot 7$	88.0	4.59	13.0	109.1	3.5	$40 \cdot 6$	8.0	2	$2 \cdot 97$	14	$8 \cdot 0$	8	$3 \cdot 5$	8	1920 B
1921	$1008 \cdot 7$	77°	0.57	$6 \cdot 5$	62.0	$6 \cdot 0$	11.7		30	14.56	8	$7 \cdot 6$	36	$10 \cdot 0$	33	1921
1922	1373.7	$65 \cdot 5$	I•54	\bigcirc	15.0	$8 \cdot 0$	$35 \cdot 8$	$4{ }^{\circ}$	58	$26 \cdot 15$	2	$7 \cdot 1$	19	$16 \cdot 5$	17	1922
1923	1738.7	$54^{\circ} \mathrm{O}$	$2 \cdot 51$	8.0	$92 \cdot 9$	10.5	$6 \cdot 9$	$2 \cdot 0$	86	$5 \cdot 61$	2	$6 \cdot 7$	2	23.0	1	1923
$1924 B$	2104.8	43.5	3.49	$2 \cdot 5$	$45^{\circ} 9$	13.5	$31^{\circ} 0$	I'0	114	18.20	3 I	7.3	30	$3 \cdot 0$	29	1924 B
1925	279.3	$32 \cdot 0$	$4 \cdot 46$	10.5	123.8	$16 \cdot 0$	$2 \cdot 0$	9.0	1	29.79	25	$6 \cdot 9$	14	$9 \cdot 5$	12	1925
1926	$644 \cdot 3$	21.0	$0 \cdot 43$	4.0	76.8	18.0	$26 \cdot 1$	7.0	29	$9 \cdot 25$	24	$6 \cdot 5$	42	$16 \cdot 0$	38	1926
1927	1009.3	$9 \cdot 5$	1415	12.0	154.7	20.0	$50 \cdot 2$	$5 \cdot 0$	57	20.84	18	$6 \cdot 1$	25	22.5	22	1927
1928 B	1375.4	187.0	4.38 0.35	6.5	107.6	23.5	21.3	$4^{\circ} 0$	85	1.30 12.00	18	$6 \cdot 7$	8	2.4 8.9	8	1928 B
1929	$1740 \cdot 4$ 1054	176.0 164.5	$0 \cdot 35$ +133	$0 \cdot 0$ 8.0	60.6 138.5	25.5 0.0	$45 \cdot 4$	2.0 0.0	113	12.90	12 6	$6 \cdot 3$	36	8.9 15.4	34	1929
1930	2105.4 279.9	164.5 153.0	133 2.30	$8 \cdot 0$ 1.5	138.5 91.5	0.0 2.0	$26 \cdot 4$ 50.5	0.0 8.0	141 28	24.49 3.95	6 5	$5 \cdot 9$	19 2	15.4 21.9	$\begin{array}{r}17 \\ \hline\end{array}$	1930 1931
1932 B	646.0	142.5	$3 \cdot 27$	10.5	169.4	. $5 \cdot 5$	21.6	7.0	55		34	$6 \cdot 1$	31	I.9	29	1932 B
1933	1011.0	131.0	4.25	4.0	122.4	$7 \cdot 5$	$45 \cdot 7$	5°	83	28.13	28	$5 \cdot 7$	14	$8 \cdot 4$	${ }^{1} 3$	1933
1934	$1376{ }^{\circ}$	120.0	0.22	12.5	$29 \cdot 3$	$10 \cdot 0$	16.8	3.0	III	$7 \cdot 59$	28	$5 \cdot 3$	42	14.9	38	1934
1935	$1741{ }^{\circ}$	108.5	I•19	$5 \cdot 5$	153.3	12.0	$40 \cdot 8$		I 39	19.18	22	4.9	25	21.4	22	1935
1936 B	2107.1	98.0	$2 \cdot 17$	0.0	106.2	15.5		0.0	167	31.77	16	$5 \cdot 5$	8	$1 \cdot 3$	8	1936 B
1937	281.6	86.5	3.14	$8 \cdot 5$	$13 \cdot 1$	17.5	$36 \cdot 0$		54	11.23	15	$5 \cdot 1$	36	$7 \cdot 8$	34	1937
1938	$646 \cdot 6$	75°	4-II	I. 5	137.1	20.0	$7 \cdot 1$	$6 \cdot 0$	82	22.82	9	$4 \cdot 7$	20	14.3	18	1938
1939	1011.6	64°	$0 \cdot 09$	10.0	44°	22.0	$31 \cdot 2$	$4{ }^{\circ}$	IIo	$2 \cdot 28$	9	$4 \cdot 2$	3	20.8	1	1939
1940 B	1377×7	$53 \cdot 5$	1.06	4°	168.0	25.5		$3 \cdot 0$	138	14.87	3	$4 \cdot 8$	31	0.8	29	1940 B
1941	$1742 \cdot 7$	42.0	$2 \cdot 03$	$12+5$	74.9	27.5	$26 \cdot 3$	1.0	166	26.46	32	$4 \cdot 4$	14	$7 \cdot 3$	13	1941
1942	2107.7	$30 \cdot 5$	$3 \cdot 01$	$6 \cdot 0$	27.9	2.0	$7 \cdot 4$	9.0	53	5.92	32	$4^{\circ} \mathrm{O}$	42	13.8	39	1942
1943	$282 \cdot 3$	19.0	$3 \cdot 98$	14°	105.8	4.0	$31 \cdot 5$	7.0	8 I	17.51	25	3.6	25	$20 \cdot 3$	23	1943
1944 B	$648 \cdot 3$	$8 \cdot 5$	4.95	$8 \cdot 5$	58.8	$7 \cdot 5$	$2 \cdot 6$	$6 \cdot 0$	109	30.10	19	4.2	9	0.2	8	1944 B
1945	$1013 \cdot 3$	185.5	$2 \cdot 93$	$2 \cdot 0$	${ }_{8} 11 \cdot 7$	$9 \cdot 5$	$26 \cdot 6$	4.0	137	$9 \cdot 56$	19	$3 \cdot 8$	37	$6 \cdot 7$	34	1945
1946	$1378 \cdot 3$	$174{ }^{\circ}$	$3 \cdot 90$	$10 \cdot 0$	$89 \cdot 6$	II'5	$50 \cdot 7$	$2 \cdot 0$	165	21.15	13	$3 \cdot 4$	20	I 3.3	18	1946
1947	$1743 \cdot 4$	162.5	4.87	$3 \cdot 5$	$42 \cdot 6$	14.0	21.8	0.0	193	0.61	13	$3 \cdot 0$	3	19.8	2	1947
1948 B	2109.4	152.5	0. 85	12.5	120.5	$17^{\circ} 0$	45.9	$9{ }^{\circ} \mathrm{O}$	80	13.20	7	$3 \cdot 6$	31	27.3	27	1948 B
1949	283.9	141.0	$\underline{1.82}$	$6 \cdot 0$	$73 \cdot 5$	19.5	17.0	$7 \cdot 0$	108	24.79	1	$3 \cdot 2$	14	$6 \cdot 2$	13	1949
1950	648.9	129.5	$2 \cdot 79$	14°	1514	21.5	41.0	$5 \cdot 0$	136	4.25	0	$2 \cdot 8$	43	$12 \cdot 7$	39	1950

Table 3 (cont.). Values of the Arguments for the beginnings of the years 1900 to 1950.

Arg.	69	70	71		72		73		74		75		76		77		78	Arg.
Period	$\begin{gathered} d \\ 27 \cdot 7 \end{gathered}$	4^{c}	$\begin{gathered} d \\ 27 \cdot 5 \end{gathered}$	$24{ }^{c}$	$\underset{31-5}{\text { d }}$	68^{c}	$\underset{9}{\text { d }}$	$63{ }^{c}$	${ }_{15}^{d}$	55^{c}	$\underset{12 \cdot 5}{d}$	${ }_{8}^{c}$	$\underset{7 * 0}{d}$	15^{6}	$\begin{gathered} d \\ 10 \div 0 \end{gathered}$	11^{c}	$\underset{1 \times 7 \cdot 5}{d}$	Period
Addition for Per. of Vert. Arg.		${ }^{c}$	Half day	220^{c}		$109{ }^{\text {c }}$		277^{c}		71^{c}		15°		$59{ }^{c}$		65^{c}		Half day
	d	c	d	c	d	c	d	c	d	c	d	c	d	c	d	c	d	
1900	26•1	26	22.5	71-23	$4{ }^{\circ}$	1-00	700	$228 \cdot 8$	14.5	22.8	3.0	9	$4^{\circ} \mathrm{O}$	$27^{\prime 2}$	0.5	32.8	71.5	1900
1901	3.5	12	I-5	175-20	19.0	15.97	$7{ }^{\circ}$	$50 \cdot 8$	10.0	51.9	10.5	14	$5 \cdot 5$	29.4	$2 \cdot 5$	26-9	84%	1908
1902	$8 \cdot 5$	38	$8 \cdot 5$	83.17	2%	$71 \cdot 94$	$6 \cdot 5$	1498	$6 \cdot 0$	$9{ }^{9} 9$	$5 \cdot 5$	10	00	$16 \cdot 5$	4.5	21.0	$96 \cdot 5$	1902
1903	13.6	22	15%	211-14	$17{ }^{\circ} \mathrm{O}$	86.91	6.0	$248 \cdot 8$	$1 \cdot 5$	39°	$0 \cdot 5$	6	1.5	$18 \cdot 7$	6.5	15°	109\%	1903
1904 B	19.6	6	$23^{\circ} \mathrm{O}$	119.11	1-3	$33 \cdot 88$	$7{ }^{70}$	70-8	13.5	52.0	$9{ }^{\circ}$	11	$4{ }^{\circ}$	$20 \cdot 9$	$9 \cdot 5$	$9 \cdot 1$	4.5	$-1904 B$
1905	24.7	32	$2 \cdot 5$	3-08	$16 \cdot 5$	$48 \cdot 85$	$6 \cdot 5$	169.9	$9 \cdot 5$	$10 \cdot 1$	$4{ }^{\circ}$	7	$5 \cdot 5$	23°	10	57.2	${ }^{1} 7^{\circ} \mathrm{O}$	1905
1906	20	18	$9{ }^{\circ}$	131.05	31.5	63.82	6 -0	268 -9	$5{ }^{\circ}$	$39 \cdot 1$	11.5	12	-00	10-2	$3{ }^{\circ}$	$51 \cdot 3$	29.5	1906
1907	7'1	2	160	$39^{\circ} \mathrm{O}$	15%	$10 \cdot 79$	6-0	$90 \cdot 9$	$0 \cdot 5$	$68 \cdot 1$	$6 \cdot 5$	8	1.5	$12 \cdot 3$	$5{ }^{\circ}$	$45 \cdot 4$	42%	1907
1908 B	13.1	28	23.5	167.00	$31 \cdot 0$	$25 \cdot 76$	$6 \cdot 5$	189-9	13.0	10'2	2.5	4	4.0	14.5	8 -0	39.5	55°	1908 B
1909	$18 \cdot 2$	11	3.0	50-97	14.0	81.73	6.5	11-9	$8 \cdot 5$	$39 \cdot 2$	10.0	9	$5 \cdot 5$	$16 \cdot 7$	-\%	$22 \cdot 6$	$67 \cdot 5$	1909
1910	23.2	37	$9 \cdot 5$	178.94	$29^{\circ} \mathrm{O}$	$96 \cdot 70$	6 -0	110-9	$4^{\circ} \mathrm{O}$	$68 \cdot 2$	$5{ }^{\circ}$	5	-0	3.8	2.0	16.6	80.0	1910
1911	0.6	23	16.5	86-91	12.5	$43 \cdot 67$	$5 \cdot 5$	$210{ }^{\circ}$	$0 \cdot$	$26 \cdot 3$	-\%	2	1.5	6.0	4°	$10 \cdot 7$	92.5	1911
$1912 B$	6.6	7	$24^{\circ} \mathrm{O}$	214.88	28.5	58.63	6.5	$32^{\circ} \mathrm{O}$	$12^{\circ} \mathrm{O}$	$39 \cdot 3$	$8 \cdot 5$	6	$4^{\circ} \mathrm{O}$	8.1	7×0	4.8	105.5	1912 B
1913	11.6	33	$3 \cdot 5$	$98 \cdot 85$	12.0	$5 \cdot 60$	6.0	131.0	$7 \cdot 5$	$68 \cdot 3$	$3 \cdot 5$	2	$5 \cdot 5$	$10 \cdot 3$	$8 \cdot 5$	63.9	$0 \cdot 5$	1913
1914	16.7	17	$10 \cdot 5$	6.83	$27^{\circ} \mathrm{O}$	$20 \cdot 57$	$5 \cdot 5$	$230{ }^{\circ}$	3.5	$26 \cdot 4$	11-0	.	$7{ }^{\circ} 0$	$12 \cdot 5$	0.5	$47^{\circ} \mathrm{O}$	$13^{\circ} \mathrm{O}$	1914
1915	21.7	${ }_{7}$	${ }^{1} 7^{\circ}$	134.80	10\%	$76 \cdot 54$	$5 \cdot 5$	52.0	14.5	39.4	$6 \cdot$	3	10	$58 \cdot 6$	$2 \cdot 5$	$4^{1 / 1}$	25.5	1915
$1916 B$	$0 \cdot 1$	29	25.0	42.77	26\%	91-51	6-0	151.0	1100	68.5	$2 \cdot 0$	0	4°	1-8	5.5	35*2	38.5	1916 B
1917	$5 \cdot 2$	13	40	146.74	$9 \cdot 5$	$38 \cdot 48$	$5 \cdot 5$	250%	7.0	26.5	$9 \cdot 5$	4	$5 \cdot 5$	3.9	$7 \cdot 5$	29.2	51.0	1917
1918	$10 \cdot 2$	3^{8}	11.0	54^{71}	24.5	53.45	$5 \cdot 5$	$72 \cdot 1$	$2 \cdot 5$	$55 \cdot 5$	4.5	o	$7{ }^{\circ} \mathrm{O}$	$6 \cdot 1$	9.5	23.3	63.5	1918
1919	15.2	22	$17 \cdot 5$	182.69	$8{ }^{\circ}$	$0 \cdot 42$	5%	171*1	13.5	$68 \cdot 6$	12.0	5	Io	$52 \cdot 3$	$1 \cdot 5$	$6 \cdot 4$	$76 \cdot$	1919
1920 B	21.3	6	$25 \cdot 5$	90.66	$24^{\circ} \mathrm{O}$	15.39	5.5	$270 \cdot 1$	10.5	26.6	8-0	1	3.5	54.4	4.5	0.5	89.0	1920 B
1921	26.3	32	4.5	194.63	$7{ }^{\circ}$	$71 \cdot 36$	5.5	92'I	6.0	55.7	$2 \cdot 5$	13	5.0	56.6	6.0	59.6	101.5	1921
1922	$3 \cdot 7$	18	11.5	102.60	22.0	86.33	$5{ }^{\circ}$	191.I	2.0	${ }^{1} 3.7$	$10 \cdot 5$	2	6.5	$58 \cdot 7$	8.0	53.7	114°	1922
1923	$8 \cdot 7$,	18.5	10.58	$5 \cdot 5$	$33 \cdot 30$	5%	13'1	$13^{\circ} \mathrm{O}$	$26 \cdot 7$	$5{ }^{\circ}$	13	1.0	45'9	$0 \times$	36.8	$9^{\circ} \mathrm{O}$	1923
1924 B	14^{-8}	28	$26 \cdot 0$	138.55	21.5	$48 \cdot 26$	5.5	112.I	$9 \cdot 5$	55^{-8}	$1{ }^{\circ} \mathrm{O}$	10	3.5	$48 \cdot \mathrm{I}$	$3{ }^{\circ}$	$30 \cdot 8$	22.0	1924 B
1925	19.8	12	$5 \cdot 5$	22.52	4.5	104.23	$5{ }^{\circ}$	$211 \cdot 2$	5.5	13.8	8.5	14	5.0	50.2	50	$24^{\prime} 9$	$34 \cdot 5$	1925
1926	24^{-9}	3^{8}	12.0	150.50	20\%	$10 \cdot 20$	$5{ }^{\circ}$	$33^{\prime 2}$	10	$42 \cdot 8$	$3 \cdot 5$	11	$6 \cdot 5$	52.4	$7{ }^{\circ}$	19°	$47^{\circ} \mathrm{O}$	1926
1927	$2 \cdot 2$	23	19%	58.47	$3{ }^{\circ}$	$66 \cdot 17$	$4 \cdot 5$	132.2	12.0	55.9	I1-5	0	I\%	$39 \cdot 6$	9°	$13 \cdot 1$	59.5	1927
1928 B	$8 \cdot 3$	7	$26 \cdot 5$	186.44	19\%	$8 \mathrm{I} \cdot \mathrm{I} 4$	$5{ }^{\circ}$	231-2	$9{ }^{\circ}$	13.9	7.0	1 I	3.5	41-7	1.5	$6 \mathrm{r} \cdot 2$	72.5	1928 B
1929	13.3	33	6.0	70.41	2.5	$28 \cdot 11$	$5{ }^{\circ}$	53.2	4.5	43°	$2 \cdot 0$	8	$5{ }^{\circ} \mathrm{O}$	43.9	$3 \cdot 5$	55.3	85°	1929
1930	18.4	17	12.5	198.39	$17 \cdot 5$	43.08	4.5	152.2	0.5	1\%	9.5	12	$6 \cdot 5$	46\%	$5 \cdot 5$	49.4	$97 \cdot 5$	$193{ }^{\circ}$
1931	23.4	1	19.5	106. 36	0.5	$99^{\circ} \mathrm{O}$	4°	251.2	11.5	$14^{\circ} \mathrm{O}$	4.5	9	Io	$33^{\prime 2}$	$7 \cdot 5$	43.4	1100	1931
1932 B	1.8	29	27.5	14.33	${ }^{17}{ }^{\circ} \mathrm{O}$	5.02	$5{ }^{\circ}$	$73 \cdot 3$	8.0	43.1	0.5	5	3.5	$35 \cdot 4$	0.5	26.5	$5 \cdot 5$	1932 B
1933	8	13	6.5	118.30	$0 \cdot 0$	60.98	$4 \cdot 5$	172.3	$4^{\circ} \mathrm{O}$	I-I	$8 \cdot 0$	9	$5{ }^{\circ}$	$37 \cdot 5$	2.5	$20 \cdot 6$	18.0	1933
- 1934	11.9	39	13.5	26.28	15°	$75 \cdot 95$	4°	$271 \cdot 3$	15°	$14^{\prime 2}$	$3 \cdot 0$	6	6.5	$39 \cdot 7$	4.5	14.7	$30 \cdot 5$	1934
1935	$17^{\circ} \mathrm{O}$	23	20.0	154.25	30°	90-92	4°	$93 \cdot 3$	$10 \cdot 5$	43^{2}	$10 \cdot 5$	Io	10	26.8	6.5	$8 \cdot 8$	43°	1935
1936 B	23.0 0.3	34	0.5	$38 \cdot 22$ $166 \cdot 20$	14.5 29.5	37.89 52.86	4.5	192.3 14.3	7.5 3.0	$1 / 2$ $30 \cdot 3$	6.5 t.5	7	3.5 5.0	29.0 $31 \cdot 2$	9.5 1.0	2.9 $51-9$	56.0 68.5	
1937	0.3	34	70 400	$166 \cdot 20$ 74.17	29.5 12.5	52.86 108.83	4.5	14.3 113.4	${ }^{3.0}$	$30 \cdot 3$ $43 \cdot 3$	1-5 9.0	3	5.0	$31 \cdot 2$ $33 \cdot 3$	10 3.0	51\%	68.5 81.0	1937
1938 1939	5.4 10.4	18 2	140 20.5	$74 \cdot 17$ $202 \cdot 14$	12.5 28.0	108.83 14.80	4.0 3.5	113.4 212.4	14.0 10%	43.3 1.4	4^{90}	7	6.5 1.0	$33 \cdot 3$ $20 \cdot 5$	30 50	${ }^{45} 5^{\circ} \mathrm{I}$	81.0 93.5	1938 1939
1939	$10 \cdot 4$	2	$20 \cdot 5$	202'14	28.0	14.80	3.5	212.4	10%	$1 \cdot 4$	4°	4	10	$20 \cdot 5$	$5{ }^{\circ}$	39^{1}	93.5	1939
1940 B	16.5	28	1.0	86.12	12.0	$70 \cdot 76$	4.5	34.4	$6 \cdot 5$	30.4	- 0	0	3.5	$22 \cdot 6$ 24.8	8 -0	3.2 16.2	107.0	1940 B
1941	21.5	12	$7 \cdot 5$	$214^{\circ} \mathrm{O} 9$	$27^{\circ} \mathrm{O}$	85.73	4^{-0}	133.4	2.0	59.4	7.5	5	$5{ }^{\circ}$	24^{-8}	$0 \cdot$	16.3	1.5	1941
1942	26.6	3^{8}	14.5	122.06	$10 \cdot 5$	$32 \cdot 70$	3.5	$232 \cdot 4$	13.5	1.5	2.5	I	6.5	$27^{\circ} \mathrm{O}$	20	${ }^{10} 4$	$14^{\circ} \mathrm{O}$	1942
1943	4°	24	$2 \mathrm{I} \cdot 5$	30.04	25.5	47^{-67}	3.5	54.4	9.0	30-5	100	5	10	${ }^{14}{ }^{17}$	4°	$4 \cdot 5$	26.5	1943
1944 B	10\%	8	T-5	134*01	9.5	103.64	$4^{\circ} \mathrm{O}$	153.4	$5 \cdot 5$	59.6	6 -0	2	3.5	$16 \cdot 3$	6.5	63.6	40.0	1944 B
1945	15\%	33	$8 \cdot 5$	41.99	$25^{\circ} \mathrm{O}$	9.60	3.5	$252 \cdot 5$	I-5	17.6	$0 \cdot 5$	13	$5 \cdot 0$	18.4	$8 \cdot 5$	$57^{6} 6$	52\%	1945
1946	20.1	17	15°	169.96	$8{ }^{\circ}$	65.57	3.5	74.5	12.5	$30 \cdot 6$	$8 \cdot 5$	3	6.5	20.6	0.5	40\%7	64.5	1946
1947	$25^{\prime} 1$	1	$22^{\circ} \mathrm{O}$	77×94	23°	80-54	3.0	${ }^{173.5}$	8.0	59.7	$3{ }^{\circ}$	14	10	7×8	2.5	34^{-8}	77°	1947
1948 B		29	$2 \cdot 0$	181-91			3.5	$272 \cdot 5$	50	17.7	12.0	4	3.5	$9 \cdot 9$	$5 \cdot 5$	28.9	90.5	1948 B
1949	$8 \cdot 5$	13	$9{ }^{\circ}$	89.89	22.5	42.48	3.5	94.5	0.5	46.7	$7{ }^{\circ}$	0	$5{ }^{\circ}$	12-1	$7 \cdot 5$	23°	$102 \cdot 5$	1949
1950	13.6	39	15.5	217.86	5'5	$98 \cdot 44$	$3^{\circ} \mathrm{O}$	193.5	11-5	59.8	$1 \cdot 5$	11	6.5	14.3	9.5	${ }^{17} 71$	$115{ }^{\circ}$	1950

Table 3 (cont.). Values of the Arguments and of $L,-\Omega$, wor the beginnings of the years 1900 to 1950 .

Arg.	l^{\prime}	79	80	81	82	83	84	1 (a)	$-8 \quad(a)$	x	Arg.
Period	$\begin{gathered} d \\ 365 \cdot 26 \end{gathered}$	73^{c}	73^{c}	73^{c}	6800^{d}	6800^{d}	6800^{d}	129600000	12960000	1296000	Period
Addition for Period of l^{\prime}		$\begin{gathered} c \\ 45 \cdot 66 \end{gathered}$	$\stackrel{c}{c} 66 \cdot 85$	$\stackrel{c}{c}$				(units of 0.'0r)	(units of o.' ${ }^{\text {c }}$)	(units of I")	
	d	c	c	c	d	d	d				
1900	-1.55	49.48	$45 \cdot 20$	$33 \cdot 80$	3604	408	5492	93375827 o	36350210	1203585	1900
1901	-1.81	$22 \cdot 15$	39.04	67.98	3969	773	5857	10354362 o	4330835	53970	1901
1902	-2.07	67.81	32.89	$29 \cdot 17$	4335	1138	6222	56932896 -	5026650	200355	1902
1903	$-2 \cdot 32$	$40 \cdot 47$	26.74	$63 \cdot 36$	4700	1503	6588	1035 I1431 o	5722464 -	346740	1903
$1904 B$	-1.58	13.14	$20 \cdot 58$	24.54	5066	1869	154	25233468 +1	64201850	493526	$1904 B$
1905	-1.84	$58 \cdot 80$	14.43	58.73	5431	2234	519	71812003 I	71159990	639911	1905
1906	-2.10	$31 \cdot 46$	$8 \cdot 28$	19.92	5796	2600	884	118390538	7811814	786296	1906
1907	$-2 \cdot 36$	$4 \cdot 13$	$2 \cdot 12$	54-11	6161	2965	1249	35369073 I	8507628 o	932680	1907
1908 B	- 1.62	$49 \cdot 79$	68.97	15.29	6527	3331	1615	866911111	9205349	1079466	1908 B .
1909	-1.88	22.46	62.82	$49 \cdot 48$	92	3696	1980	3669647 I	9901163	1225851	1909
1910	-2.14	68.12	56.66	10.67	457	4061	2345	50248182	10596977	76236	1910
1911	-2.40	$40 \cdot 78$	$50 \cdot 51$	$44 \cdot 86$	822	4426	2711	968267182	11292791 -	222621	1911
$1912 B$	- 1.66	13.45	44.35	6.04	1188	4792	3077	185487572	11990512	369407	$1912 B$
1913	- $1 \cdot 92$	59.11	$38 \cdot 20$	$40 \cdot 23$	1553	5157	3442	$65127293 \quad 2$	12636326	515792	1913
1914	-2.18	31.77	$32 \cdot 05$	$1 \cdot 42$	1919	5522	3807	111705829	422140	662177	1914
1915	-2.44	$4 \cdot 44$	25.89	35.6I	2284	5888	4172	$28684365 \quad 2$	III 7955 o	808562	1915
1916 B	-1.70	50.10	19.74	69.79	2650	6254	4538	800064052	1815675 o	955347	1916 B
1917	-1.96	22.76	13.59	30.98	3015	6619	4903	1265849412	25114890	1101732	1917
1918	-2.22	68.43	7.43	$65 \cdot 17$	3380	184	5268	43563478	3207304	1248117	1918
1919	-2.48	4 ${ }^{\circ} 09$	1-28	$26 \cdot 36$	3745	549	5634	901420153	3903118 -	98502	1919
1920 B	-1.74	13.75	68.13	60.54	4111	915	6000	11864055	4600838 o	245288	1920 B
1921	-2.00	$59 \cdot 42$	61.97	21-73	4476	1280	6365	584425923	5296652 ○	391673	1921
1922	-2.26	$32 \cdot 08$	55.82	55.92	4841	1645	6730	1050211293	5992466 -	538057	1922
1923	-2.52	4.74	$49 \cdot 66$	$17 \cdot 10$	5206	2010	295	219996663	6688280	684442	1923
1924 B	-1.78	$50 \cdot 41$	43.51	51.29	5572	2376	661	733217073	7386001	831228	$1924 B$
1925	-2.04	$23 \cdot 07$	$37 \cdot 36$	12.48	5937	2742	1026	1199002454	8081815 -	977613	1925
1926	-2.30	68.74	$31 \cdot 20$	46.67	6303	3107	1391	368787824	8777629 -	1123998	1926
1927	-2.56	41.40	25.05	7.85	6668	3472	1756	$83457320 \quad 4$	9473443 ○	1270382	1927
1928 B	- 1.82	14.06	18.90	42.04	234	3838	2122	${ }^{51} 79361$	10171163	121168	1928 B
1929	-2.08	59.73	12.74	3.23	599	4203	2487	517579004	10866977	267553	1929
1930	-2.34	$32 \cdot 39$	$6 \cdot 59$	$37 \cdot 42$	964	4568	2852	983364384	115627910	413938	1930
1931	-2.59	$5 \cdot 05$	0.44	$71 \cdot 60$	1329	4933	3218	153149774	122586050	560322	1931
1932 B	- 1.85	50.72	$67 \cdot 28$	32.79	1695	5299	3584	666370185	12956325 -	707108	$1932 B$
1933	-2.11	23.38	61.13	66.98	2060	. 5664	3949	1132155575	692139-1	853493	1933
1934	-2.37	69.04	54.97	$28 \cdot 17$	2425	6030	4314	30194096	1387953 I	999878	1934
1935	-2.63	4177	$48 \cdot 82$	$62 \cdot 35$	2790	6395	4679	767726355	2083767	1146262	1935
1936 B	- 1.89	14.37	$42 \cdot 67$	23.54	3156	6761	5045	128094677	2781487	1293048	1936 B
1937	-2.15	60.04	$36 \cdot 51$	57.73	3521	326	5410	450732175	3477301	143433	1937
1938	-2.41	$32 \cdot 70$	$30 \cdot 36$	18.91	3887	691	5775	916517565	41731151	289817	1938
1939	-2.67	$5 \cdot 36$	24.21	53.10	4252	1056	6141	86302966	4868929	436202	1939
1940 B	- 1.93	51.03	18.05	14.29	4618	1422	6507	599523396	5566649	582988	1940 B
1941	-2.19	23.69	11.90	48.48	4983	$17^{8} 7$	72	1065308796	6262463	729372	1941
1942	-2.45	69.35	$5 \cdot 75$	$9 \cdot 66$	5348	2152	437	235094196	6958277	875757	1942
1943	-2.71	42.02	72.59	43.85	5713	2518	802	700879596	7654091	1022142	1943
1944 B	- 1.97	14.68	66.44	$5 \cdot 04$	6079	2884	1168	1214100026	8351811	I 168927	1944 B
1945	-2.23	$60 \cdot 34$	60.28	$39 \cdot 23$	6444	3249	1533	383885436	9047625	19312	1945
1946	-2.49	33.01	$54 \cdot 13$	0.41	9	3614	1898	849670847	9743438	165696	1946
1947	-2.75	$5 \cdot 67$	$47 \cdot 98$	$34 \cdot 60$	375	3979	2263	19456247	10439252	312081	1947
1948 B	-2.01	$51 \cdot 34$	$41 \cdot 82$	$68 \cdot 79$	741	4345	2629	532676687	11136972 I	458867	1948 B
1949	-2.27	24.00	$35 \cdot 67$	29.98	1106	4710	2994	998462097	11832786 I	605251	1949
1950	-2.53	$69 \cdot 66$	$29 \cdot 52$	$64 \cdot 16$	1471	5075	3359	$16824750+7$	12528599 - I	751636	1950

Table 3 (cont.). Values of the Arguments for the beginnings of the years 1950 to 2000.

Arg.	D	1	2	3	4	5	6	7	8	9	10	Arg.
Period	$\underset{29 \cdot 530588}{d}$	$\mathrm{I}_{4} \mathrm{I}^{c}$	$156{ }^{\text {c }}$	116	$124{ }^{\text {c }}$	$128{ }^{\text {c }}$	132^{6}	$100{ }^{\text {c }}$	$50{ }^{\text {c }}$	$4^{2}{ }^{6}$	80°	Period
Addition for Period of D		$\stackrel{c}{\mathrm{II} \cdot 400}$	$\begin{gathered} c \\ 23 \cdot 80 \end{gathered}$	$\underset{\text { I-06 }}{c}$	$\stackrel{c}{27 \cdot 81}$	$\stackrel{c}{8 \cdot \mathrm{OI}}$	$\stackrel{c}{30 \cdot 81}$	$\underset{9 \cdot 00}{c}$	$\begin{gathered} c \\ 14.80 \end{gathered}$	$\stackrel{c}{5^{6} 64}$	$\underset{20 \cdot 10}{e}$	Addition for Period of D
1950	$\stackrel{d}{26 \cdot 3369}$		$\stackrel{c}{20 \cdot 46}$	91-98	37-24	48-16	12.30	$75 \cdot 49$	23.47	22.91	$30 \cdot 6$	1950
1951	7.4393	1.842	17.86	105*75	36.77	24.29	$12 \cdot 30$	75.49	23.4	22.9	$30 \cdot 6$	195
$1952 B$	19-0722	138.637	177.45	9275 2.47	12677 112.49	24.29 120.41	16.84 122.56	92.47 0.45	$15 \cdot 87$ $43 \cdot 4$	12.23 37.91	51.89 53.08	${ }_{1951}^{195}$
1953	0.1746	4^{-832}	144.85	16.24	102-03	96-54	127.09	17.43	$35 \cdot 85$	$27 \cdot 24$	74.37	1953
1954	10-8075	0.627	118.45	28-96	$63 \cdot 75$	$64 \cdot 66$	100.81	$25 \cdot 41$	13.45	10-92	75.56	1954
1955	21.4405	$137 \cdot 423$	92 -04	41-67	$25 \cdot 47$	$32 \cdot 79$	$74 \cdot 53$	33.39	41.04	36.60	$76 \cdot 75$	1955
1956 B	3.5428	3.6ı7	89.44	55.45	15.00	$8-92$	79.06	$50 \cdot 36$	33.43	25.93	18.04	1956 B
1957	$14^{17} 75^{8}$	$140 \cdot 413$	63.03	68-16	100.72	105\%4	52-79	58-34	II^{-03}	9.6)	19.23	1957
1958	24-8087	136.208	36.63	80.88	62.45	$73 \cdot 16$	26.51	66.32	38-62	$35 \cdot 30$	20.42	1958
1959	5.9111	$2 \cdot 402$	34.02	94^{-65}	$51 \cdot 98$	49.29	$3 \mathrm{r} \cdot 04$	83.30	31 -01	24.62	$4 \mathrm{I} \cdot 7 \mathrm{x}$	1959
1960 B	${ }^{17} 7.544^{\circ}$	139-198	7.62	107-37	13.70	17.41	4776	91-28	8-6!	$8 \cdot 30$	42.90	1960 B
1961	28-1770	$134 * 993$	137*22	4^{-08}	99.42	113.54	$110 \cdot 48$	99'26	36-20	$33 \cdot 99$	$44^{\circ} 99$	1961
1962	9-2793	1-188	134.61	17.86	88.95	89.67	$115{ }^{\circ} \mathrm{O}$	16.24	28.59	23.3I	$65 \cdot 38$	1962
1963	19.9123	$137 \cdot 983$	108-21	30.57	50.68	57.79	88.74	24.22	$6 \cdot 19$	6.99	66.57	1963
1964 B	2.0146 12.6476	4.178	105.60	44.35	$40 \cdot 25$	$33 \cdot 92$	93-27	41-19	$4^{8 \cdot 58}$	$38 \cdot 32$	7.86	1964 B
1965	12.6476	$140 \cdot 973$	79.20	57.06	I-93	2.04	66.99	49'17	26-17	$22 \cdot 00$	9.05	1965
1966	23-2805	136.768	52.80	69.78	87.65	98-16	40.71	$57 \cdot 15$	$3 \cdot 77$	$5 \cdot 68$	10.24	1966
1967 B	4.3829 $46-0158$	2.963 139.758	$50 \cdot 19$	83.55	77.18	74.30	45-24	74.13 $82 \cdot 15$	$46 \cdot 16$	37-01	31.53	1967
1968 B	16 -0158	139.758	$23 \cdot 79$	96-27	$38 \cdot 91$	$42 \cdot 42$	18.96	$82 \cdot \mathrm{II}$	23.75	$20 \cdot 69$	$32 \cdot 72$	1968 B
1969	26.6487	$135 \cdot 553$	153.38	108-98	0.63	10.54	124.69	90.09	$1 \cdot 35$	43^{8}	33-91	1969
1970	77511	1-748	150.78	$6 \cdot 76$	114.16	114.67	129.22	$7 \cdot 07$	$43 \cdot 74$	357\%	55.20	1970
1971	18.3840	138.543	124.37	19.47	75.88	82.79	102.94	15.05	21.33	19.38	56.39	1971
1972 B	0.4864	4.738	121-77	33-25	$65 \cdot 42$	58.92	107.47	32.02	13.73	8-71	$77 \cdot 68$	1972 B
1973	II-II93	0.533	$95 \cdot 37$	$45 \cdot 96$	27-14	27.05	8 I -19	$40 \cdot 00$	$4^{1 / 32}$	$34 \cdot 39$	$78 \cdot 87$	1973
1974	21.7523	137.328	68 -96	58-68	112.86	123.17	54.91	47.98	18.91	18.07	0.06	1974
1975	2.8546	$3 \cdot 523$	$66 \cdot 36$	72.45	102.39	99.30	59.45	64.96	11.31	$7 \cdot 40$	21.35	1975
1976 B	14.4876	140.318	39.95	$85 \cdot 17$	64.11	$67 \cdot 42$	33-17	72.94	38.90	33.08	22.54	1976 B
1977	25-1205	$136 \cdot 113$	13.55	97-88	$25 \cdot 84$	$35 \cdot 54$	$6 \cdot 89$	80.92	16.49	16.77	23.73	1977
1978	6.2229	2.308	10.94	III-66	15.37	11.67	11.42	$97 \cdot 89$	8.89	6.09	45-02	1978
1979	16.8558	139.103	$140 \cdot 54$	$8 \cdot 37$	101.09	107.80	117.14	$5 \cdot 87$	36.48	$31 \cdot 77$	46.21	1979
1980 B	28.4888	134-898	$\mathrm{II}^{1 / 14}$	21.09	$62 \cdot 81$	75.92	90.86	± 3.85	14.07	15.46	47.40	1980 B
1981	9.5911	1-093	111-53	$34 \cdot 86$	52.35	52.05	$95 \cdot 40$	30.83	$6 \cdot 47$	47^{8}	68.69	1981
1982	20.224I	137.888	85.13	47.58	14.07	$20 \cdot 17$	69.12	38.8 x	34.06	$30 \cdot 46$	69.88	1982
1983	I 3264	4^{-083}	82.52	6i-35	$3 \cdot 60$	124.30	$73 \cdot 65$	55.79	26.45	19.79	11.17	1983
1984 B	12.9594	$140 \cdot 878$	56-12	74.07	89.32	92.42	$47 \cdot 37$	63.77	4.05	3.47	12.36	$1984{ }_{4}$ B
1985	$23 \cdot 5923$	136.673	29.71	86•79	51.04	$60 \cdot 55$	$2 \mathrm{I} \cdot 09$	71.75	31-64	29-16	13.55	1985
1986	4.6947	2.868	$27 \cdot 11$	100-56	40.58	36.68	$25 \cdot 62$	88.72	24.03	18.48	34.84	1986
1987	15.3276	${ }^{1} 39.663$	0.71	113.28	$2 \cdot 30$	4.80	$13 \mathrm{I} \cdot 35$	96.70	1.63	$2 \cdot 16$	36.03	1987
1988 B	26.9606	135.458	130.30	9.99	88 -02	100-92	$105 \% 7$	4.68	29.22	27.85	$37 \cdot 22$	1988 B
1989	8-0629	- 653	127.70	23.77	$77 \cdot 55$	77.05	109.60	$21 \cdot 66$	21-61	$17 \cdot 17$	58-51	1989
1990	18-6959	138.448	101-29	36.48	39.27	$45 \cdot 17$	83.32	29.64	49.21	0.85	597\%	1990
1991	29.3288	$134 \cdot 243$	74.89	49:20	1-00	13.30	57.04	$37 \cdot 62$	$26 \cdot 80$	26.54	60.89	1991
1992 B	11.4312	0.438	72-28	62.97	114.53	117.43	6r $\cdot 57$	$54^{.60}$	19.19	15.86	2.18	1992 B
1993	22.0641	137/233	45.88	$75 \cdot 69$	$76 \cdot 25$	85.55	$35 \cdot 30$	$62 \cdot 58$	46'79	41.55	3.37	1993
1994	3-1665	$3 \cdot 428$	43.28	$89 \cdot 46$	$65 \cdot 78$	6r-68	39.83		39-18	30.87	24.66	1994
1995	13.7994	$140 \cdot 223$	16.87	102.18	27.51	29.80	13.55	87.53	16.77	14.55	$25 \cdot 85$	1995
1996 B	25.4324 6.5347	136-b18	$\begin{array}{r}146.47 \\ \\ \hline\end{array}$	114.89	173.23 102.76	125.92	119.27 123.80	95.51	$44 \cdot 37$	40.24	27.04 48.33	1996 B
1997	$6 \cdot 5347$	2-213	143.86	12.67	102.76	102.06	123.80	12.49	$36 \cdot 76$	29.56	$4^{8 \cdot 33}$	1997
1998	$17 \cdot 1677$	139-008	117.46	$25 \cdot 38$	64.48	70-18	97:52	$20 \cdot 47$	14.35	13.24	49.52	1998
1999	27-8006	$134 \cdot 804$	91.06	$38 \cdot 10$	26.20	$38 \cdot 30$	71.25	28.45	41.95	$38 \cdot 93$	50.71	1999
2000 B	9.9030	0-998	88.45	$5 \mathrm{r} \cdot 87$	15.74	14.43	$75 \cdot 7^{8}$	$45 \cdot 42$	$34 \cdot 34$	$28 \cdot 25$	72.00	2000 B

Table 3 (cont.). Values of the Arguments for the beginnings of the years 1950 to 2000.

Arg.	11	12	13	14	15	16	17	18	19	20	21	22	Arg.
Period	$44{ }^{\text {c }}$	$24{ }^{\text {c }}$	44^{c}	$32^{\text {c }}$	$28^{\text {c }}$	$251{ }^{\text {c }}$	$5_{51}{ }^{\text {c }}$	$38^{\text {c }}$	$76^{\text {c }}$	$94{ }^{\text {c }}$	$56^{\text {c }}$	36^{c}	Period
Addition for Period of D	$\stackrel{c}{c} 3.94$	$\stackrel{c}{c} 7.75$	$\begin{gathered} c \\ 7.90 \end{gathered}$	$\stackrel{c}{5 \cdot 16}$	$\begin{gathered} c \\ 0.50 \end{gathered}$	$\stackrel{c}{c}$	${ }_{8.69}^{c}$	$\begin{gathered} c \\ 9 \cdot 20 \end{gathered}$	$\stackrel{c}{7 \cdot 50}$	$\stackrel{c}{29 \cdot 50}$	$\stackrel{c}{\mathrm{a}} \mathrm{5I}$	$\begin{gathered} c \\ 13.88 \end{gathered}$	Addition for Period of D
	c	c	c	${ }^{c}$	${ }^{c}$	c	c	c	c	c	c	c	
1950	20•17	13.24	$9 \cdot 39$	20.08	8.10	42.453	21.44	22.40	$19 \cdot 10$	71.32	$4 \cdot 60$	$33 \cdot 40$	1950
1951	27.39	18.00	24.07	$23 \cdot 16$	14.59	25.455	$32 \cdot 41$	$28 \cdot 00$	$40 \cdot 59$	78.80	24.23	33.83	1951
1952 B	30.67	15.01	$30 \cdot 86$	21.09	$20 \cdot 58$	241.456	$34 \cdot 69$	24.40	54.59	$56 \cdot 79$	$42 \cdot 35$	$20 \cdot 38$	$1952 B$
1953	$37 \cdot 89$	19.77	1-55	24.17	27.07	224.458	$45 \cdot 66$	30.00	0.08	64.28	5.98	20.81	1953
1954	4 1-16	16.78	$8 \cdot 34$	22.09	5.06	189.460	47.94	26.40	14.07	$42 \cdot 27$	$24 \cdot 10$	$7 \cdot 36$	1954
1955	0.44	13.79	15.13	20.01	11.05	154.461	$50 \cdot 22$	$22 \cdot 80$	28.07	20.25	$42 \cdot 22$	29.91	1955
1956 B	$7 \cdot 66$	18.56	29.82	$23 \cdot 10$	17.54	137.463	10.19	28.40	$49 \cdot 56$	27.74	$5 \cdot 85$	30.34	1956 B
1957	10.94	15.57	36.6I	21.02	23.53	102.465	12.47	24.80	63.56	5.73	23.97	16.89	1957
1958	14.22	12.58	43.40	18.94	1.52	67.466	14.75	21.20	1.55	$77 \cdot 72$	42.09	3.44	1958
1959	21.44	17.34	14.09	22.03	$8 \cdot 01$	$50 \cdot 468$	25.72	$26 \cdot 80$	23.04	85.20	$5 \cdot 72$	$3 \cdot 87$	1959
1960 B	24.72	14.35	20.88	19.95	14.00	15.470	28.00	23.20	37.04	$63 \cdot 19$	23.84	$26 \cdot 42$	1960 B
1961	28.00	11*36	27.67	17.87	20.00	231.471	$30 \cdot 28$	19.60	51.03	$4^{1 / 18}$	$41 \cdot 96$	12.97	1961
1962	35.22	$16 \cdot 12$	$42 \cdot 36$	$20 \cdot 95$	26.49	214.473	$41 \cdot 25$	$25 \cdot 20$	72.53	$48 \cdot 67$	$5 \cdot 59$	13.40	1962
1963	38.49	13.13	$5 \cdot 15$	18.88	$4 \cdot 48$	179.475	$43 \cdot 53$	$2 \mathrm{I} \cdot 60$	$10 \cdot 52$	26.65	23.71	35.95	1963
$1964 B$	$1 \cdot 71$	17.89	19.84	21.96	$10 \cdot 97$	162.477	$3 \cdot 50$	$27 \cdot 20$	32.02	$34 \cdot 14$	43.34	$0 \cdot 38$	1964 B
1965	$4 \cdot 99$	14.90	26.63	19.88	16.96	127.478	$5 \cdot 78$	$23 \cdot 60$	$46 \cdot 01$	12.13	$5 \cdot 46$	22.93	1965
1966	$8 \cdot 27$	11.92	$33 \cdot 42$	17.81	22.95	92.480	$8 \cdot 06$	$20 \cdot 00$	60.00	$84 \cdot 12$	23.58	$9 \cdot 48$	1966
1967	15.49	16.68	$4 \cdot 11$	20.89	1.44	$75 \cdot 482$	19.02	25.60	$5 \cdot 50$	91.60	43.21	$9 \cdot 91$	1967
1968 B	18.77	13.69	10.90	18.81	$7 \cdot 43$	40.483	21.31	22.00	19.49	69.59	$5 \cdot 33$	$32 \cdot 46$	1968 B
1969	22.05	10.70	17.69	16.73	r3.42	$5 \cdot 485$	23.59	18.40	33.49	47.58	23.45	19.01	1969
1970	29.27	15.46	32.38	19.82	19.91	239.487	34.56	24.00	54.98	55.07	43.08	19.44	1970
1971	$32 \cdot 55$	12.47	39.17	17.74	25.90	204.488	36.83	20.40	68.97	33.05	$5 \cdot 20$	$5 \cdot 99$	1971
1972 B	$39 \cdot 76$	17.23	$9 \cdot 85$	20.82	$4 \cdot 39$	187.490	47.80	$26 \cdot 00$	14.47	$40 \cdot 54$	24.83	$6 \cdot 42$	1972 B
1973	43.04	14.24	16.64	18.75	$10 \cdot 38$	152.492	$50 \cdot 08$	22.40	$28 \cdot 46$	18.53	$42 \cdot 95$	28.97	1973
1974	$2 \cdot 32$	II. 25	23.43	16.67	16.37	117.493	$1 \cdot 36$	18.80	42.46	$90 \cdot 52$	$5 \cdot 07$	15.52	1974
1975	9.54	16.02	$38 \cdot 12$	19.75	22.86	$100 \cdot 495$	12.33	24.40	$63 \cdot 95$	4.00	24.70	15.95	1975
1976 B	12.82	13.03	0.91	17.67	0.85	$65 \cdot 497$	14.61	$20 \cdot 80$	I•95	75.99	42.82	$2 \cdot 50$	1976 B
1977	$16 \cdot 10$	10.04	$7 \cdot 7^{\circ}$	15.60	$6 \cdot 84$	$30 \cdot 499$	16.89	17.20	15.94	53.98	$4 \cdot 94$	25.05	1977
1978	23.32	14.80	$22 \cdot 39$	18.68	13.33	13.500	27.86	$22 \cdot 80$	$37 \cdot 43$	61.47	24.57	25.48	1978
1979	26.60	11.81	29.18	$16 \cdot 60$	19.32	229.502	$30 \cdot 14$	19.20	51.43	39.45	$42 \cdot 69$	12.03	1979
1980 B	29.88	8.82	35.97	14.53	25.31	194.504	$32 \cdot 42$	15.60	65.42	17.44	4.81	34.58	1980 B
1981	$37 \cdot 10$	13.58	$6 \cdot 66$	17.61	$3 \cdot 80$	177.505	$43 \cdot 39$	21.20	10.92	24.93	24.44	35.01	1981
	$40 \cdot 37$	10.59	13.45	15.53	$9 \cdot 80$	142.507	$45 \cdot 67$	17.60	24.91	$2 \cdot 92$		21.56	1982
1983	3.59	15.35	28.14	18.61	16.29	125.509	$5 \cdot 64$	23.20	$46 \cdot 40$	$10 \cdot 40$	$6 \cdot 19$	21.99	1983
1984 B	$6 \cdot 87$	12.36	34.93	$16 \cdot 54$	22.28	90.511	$7 \cdot 92$	19.60	$60 \cdot 40$	82.39	24.31	$8 \cdot 54$	$1984 B$
1985	10.15	$9 \cdot 37$	41*72	14.46	0.27	55.512	10.20	16.00	74.39	60.38	42.43	31.09	1985
1986	17.37	14.14	12.41	17.54	6.76	38.514	21.17	$21 \cdot 60$	19.89	67.87	6.06		1986
1987	20.65	11.15	19.20	15.47	12.75	3.516	23.45	18.00	33.88	45.86	24.18	18.07	1987
1988 B	23.93	$8 \cdot 16$	25.99	13.39	18.74	219.517	$25 \cdot 73$	14.40	47.88	23.84	$42 \cdot 30$	$4 \cdot 62$	1988 B
1989	31-15	12.92	$40 \cdot 68$	$16 \cdot 47$	$25 \cdot 23$	202.519	36.70	20.00	69.37	31.33	$5 \cdot 93$	$5 \cdot 05$	1989
1990	34.43	9.93	$3 \cdot 47$	14.39	$3 \cdot 22$	167.521	38.98		$7 \cdot 36$	$9 \cdot 32$	24.05	27.60	1990
1991	$37 \cdot 70$	$6 \cdot 94$	10.26	12.32	$9 \cdot 21$	132.523	$41 \cdot 26$	12.81	$21 \cdot 36$	81.31	$42 \cdot 17$	14.15	1991
1992 B	$0 \cdot 92$	11.70	24.95	$15 \cdot 40$	15.70	115.524	1.23	18.41	42.85	$88 \cdot 79$	$5 \cdot 80$	14.58	1992 B
1993	$4 \cdot 20$	$8 \cdot 71$	31.74	13.32	21.69	$80 \cdot 526$	3.51	14.81	56.85	$66 \cdot 78$	23.92	$1 \cdot 13$	1993
1994	11.42	13.47	2.42	16.41	- 118	63.528	14.48	20.41	2.34	74.27	43.55	1-55	1994
1995	14.70	10.49	9.21	14.33	$6 \cdot 17$	28.530	16.76	16.81	16.33	52.26	5.67	24.10	1995
1996 B	17.98	$7 \cdot 50$	16.00	12.25	12.16	244.531	19.04	13.21	$30 \cdot 33$	$30 \cdot 24$	23.79	10.65	1996 B
1997	$25^{\circ} 20$	12.26	$30 \cdot 69$	15.33	18.65	227.533	30.01	18.81	51-82	37.73	43.42	11.08	1997
1998	28.48	9.27	37.48	13.26	24.64	192.535	32.29	15.21	65.82	15.72	$5 \cdot 54$	33.63	1998
1999	31.76	6.28	$0 \cdot 27$	11.18	$2 \cdot 63$	157.536	34.57	11.61	3.81	$87 \cdot 71$	23.66	20.18	1999
2000 B	$38 \cdot 97$	11.04	14.96	14.26	9.12	140.538	45.54	17.21	25.30	1-19	43.29	20.61	$2000 B$

Table P 12 (concl.).
Vert. Arg. l^{\prime}.
Hor. Arg. 81.

Arg.	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	Arg.
10	8	8	8	8	8	8	8	8	8	9	9 9	9 9	9	10	9			8	10
20	8	8	8	8	8	8	8	8	8	8	9	9	8	8	8	8	8	8	20
30	9	9	9	9	9	9	8	8	8	8	8	8	8	8	7	7	7	7	30
40	9	9	9	9	9	9	9	8	8	8	8	7	7	7	7	6	6	7	40
50	10	10	9	9	9	9	8	8	8	8	7	7	6	6	6	6	6	6	50
60	10	10	10	9	9	9	8	8	8	7	7	6	6	5	5	5	5	6	60
70	10	10	10	9	9	9	8	8	7	7	6	5	5	5	5	5	5	6	70
80	11	10	10	9	9	8	8	7	7	6	5	5	4	4	4	4	5	5	80
90	11	10	10	9	9	8	8	7	6	5	5	4	4	4	4	4	4	5	90
100	11	10	10	9.	8	8	7	6	6	5	4	4	3	3	3	4	5	6	100
110	10	10	9	9	8	8	7	6	5	4	,	3	3	3	3	4	5	6	110
120	10	10	9	8	8	7	6	5	5	4	3	3	2	2	3	4	5	6	120
130	10	10	9	8	8	7	6	5	4	3	3	2	2	2	3	4	5	6	130
140	10	9	9	8	7	6	5	4	3	3	2	2	2	2	3	4	5	6	140
150	10	9	8	8	7	6	5	4	3	2	2	1	2	,	3	4	5	7	150
160	9	9	8	7	6	5	5	4	3	2	1	1	2	2	3	4	6	7	160
170	9	8	8	7	6	5	4	3	2	2	1	1	2	2	3	5	6	7	
180	9	8	7	7	6	5	4	3	2	I	1	1	2	3	4	5	6	8	180
190	8	8	7	6	5		3	2	2	1	1	1	2	3	4	5	7	8	190
200	8	7	7	6	5	4	3	2	2	1	1	1	2	3	4	6	7	8	200
210	8	7	6	6	5	4	3	2	2	1	1	2	2	3	5	6	7	9	210
220	7	7	6	5	4	3	3	2	2	1	1	2	3	4	5	6	8	9	220
230	7	6	6	5	4	3	3	2	2	2	2	2	3		5	7	8	10	230
240	7	6	5	5	4	3	3	2	2	2	2	2	3	4	6	7	9	10	240
250	6	6	5	4	4	3	3	2	2	2	2	3	4	5	6	8	9	11	250
260	6	5	5	4	4	3	3	2	2	2	3	3	4	5	7	8	9	11	260
270	6	5	5	4	4	3	3	3	2	2	3	3	4	6	7	9	10	11	270
280	6	5	5	4	4	3	3	3	3	3	3	4	5	6	7	9	10	12	280
290	6	5	5	4	4	4	3	3	3	3	4	4	5	6	8	9	II	12	290
300	5	5	5	4	4	4	4	4	4	4	4	5	6	7	8	10	11	12	300
310	5	5	5	5	5	4	4	4	4	4	5	5	6	7	9	10	11	13	310
320	5	5	5	5	5	5	5	5	5	5	5	6	7	8	9	10	12	13	320
330	6	6	6	5	5	5	5	5	5	5	5	6	7	8	9	11	12	13	330
340	6	6	6	6	6	6	6	5	5	5	6	6	7	9	10	11	12	13	340
350	6	6	6	6	6	6	6	6	6	6	6	7	8	9	10	11	12	12	350
360	7	7	7	7	7	7	6	6	6	6	6	7	8	9	10	11	12	12	360
370	7	7	7	7	7	7	7	6	6	6	7	7	8	9	10	11	11	12	370

Arg.	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	Arg.
$\begin{aligned} & d \\ & 0 \end{aligned}$							9	8	8	8				6	6					${ }_{0}$
10	8	8	8	8	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	8	8	8	8	7	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	7	7	7	7	8	8	10
20	8	8	8	8	8	8	8	8	8	8	7	7	7	7	7	7	8	8	8	20
30	7	7	8	8	8	9	9	8	8	8	8	7	7	7	8	8	8	8	9	30
40	7	7	8	8	8	9	9	9	8	8	8	8	8	8	8	8	9	9	9	40
50	7	7	8	8	9	9	9	9	8	8	8	8	8	8	9	9	9	10	9	50
60	6	7	8	8	9	9	9	9	9	8	8	8	8	9	9	9	10	10	10	60
70	6	7	8	9	9	9	9	9	9	9	9	9	9	9	10	10	10	10	10	70
80	6	7	8	9	9	10	10	9	9	9	9	9	9	10	10	10	10	10	10	80
90	6	7	8	9	10	10	10	10	10	9	9	10	10	10	10	10	11	10	10	90
100	7	8	9	9	10	10	10	10	10	10	10	10	10	11	11	II	11	11	10	100
110	7	8	9	10	10	10	10	10	10	10	10	10	II	11	II	II	11	10	10	110
120	7	8	9	10	10	II	11	II	II	11	II	11	II	11	11	II	11	10	10	120
130	7	8	9	10	11	II	11	II	11	II	11	11	11	11	11	11	11	10	10	130
140	7	8	10	11	II	11	11	11	11	11	11	11	11	11	11	11	11	10	10	140
150	8	9	10	II	11	12	12	12	12	12	12	12	12 *	II	11	II	11	10	10	150
160	9	10	II	11	12	12	12	12	12	12	12	12	12	II	11	II	10	10	9	160
170	9	10	II	12	12	12	12	12	12	12	12	12	12	11	11	11	10	10	9	170
180	9	10	II	12	12	13	13	13	13	12	12	12	12	II	11	10	10	10	9	180
190	9	II	12	12	13	13	13	13	13	13	12	12	12	II	11	10	10	9	9	190
200	10	II	12	13	13	13	13	13	13	13	12	12	12	11	11	10	10	9	8	200
210	10	11	12	13	13	14	14	13	13	13	12	12	II	II	10	10	9	9	8	210
220	11	12	13	13	14	14	14	13	13	13	12	12	11	11	10	10	9	8	8	220
230	II	12	13	I4	14	14	14	14	13	13	12	11	11	10	10	9	9	8	8	230
240	11	13	13	14	14	14	14	14	13	12	12	11	10	10	9	9	8	8	7	240
250	12	13	14	14	14	14	14	13	13	12	11	II	10	10	9	9	8	7	7	250
260	12	13	14	14	14	14	I4	13	13	12	11	10	10	9	9	8	8	7	7	260
270	13	13	14	14	14	14	14	13	12	II	11	10	9	9	8	8	7	7	6	270
280	13	14	14	15	14	14	13	13	12	II	10	10	9	9	8	7	7	6	6	280
290	13	14	14	14	14	14	13	12	11	11	10	9	9	8	8	7	7	6	6	290
300	13	14	14	14	14	13	13	12	11	10	9	9	8	8	7	7	6	6	5	300
310	13	14	14	14	13	13	12	11	11	10	9	8	8	7	7	6	6	6	5	310
320	13	14	14	14	13	12	12	11	10	9	9	8	8	7	7	6	6	6	5	320
330	13	14	13	13	12	12	11	10	9	9	8	8	7	7	6	6	6	5	5	330
340	13	13	13	12	12	11	10	10	9	8	8	7	7	7	6	6	6	6	6	340
350	13	13	12	12	11	10	10	9	9	8	7	7	7	6	6	6	6	6	6	350
360	12	12	12	11	11	10	9	9	8	8	7	7	7	6	6	6	6	6	6	360
370	12	II	II	10	10	9	9	8	8	7	7	7	7	6	6	6	6	6	7	370

Table P 13. (Factor of Table 3I, Sect. III.)
Vert. Arg. l^{\prime}.
Hor. Arg. 79.

Arg.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Arg.
$\begin{aligned} & d \\ & 0 \end{aligned}$	132	129	116	100	88	90	99	114	129	140	146	150	155	160	162	160	154	147	${ }_{\text {d }}$
10	129	116	IOI	93	95	107	121	135	144	148	154	I 58	165	161	159	151	143	135	10
20	115	102	97	102	II4	128	140	148	153	r 56	161	163	163	158	149	140	130	123	20
30	105	102	108	122	136	146	152	158	160	162	164	162	156	146	135	126	II8	110	30
40	107	116	130	143	152	156	160	162	164	164	I6I	153	144	131	121	113	105	98	40
50	122	137	149	156	161	164	165	165	164	161	151	141	128	117	109	101	92	86	50
60	143	155	162	165	165	168	168	164	157	148	137	124	114	104	96	88	82	78	60
70	161	166	168	170	169	168	165	156	146	134	121	110	100	90	83	77	72	70	70
80	170	173	171	170	168	164	155	144	131	118	108	98	87	78	72	68	66	66	80
90	175	174	172	169	165	153	143	130	117	104	94	84	76	69	65	62	63	63	90
100	177	173	170	163	152	141	127	115	104	92	81	72	66	62	61	60	61	62	100
110	175	170	162	152	138	126	112	102	90	80	72	64	59	58	58	59	61	62	110
120	171	161	150	137	125	112	100	89	78	69	63	57	55	54	57	60	62	64	120
130°	161	151	137	125	112	99	88	78	70	61	56	54	53	54	57	60	64	68	130
140	150	136	124	111	99	88	78	70	62	58	54	52	53	55	59	64	68	71	140
150	139	125	112	99	89	79	71	62	58	53	50	51	55	57	63	68	71	73	150
160	124	112	100	90	80	72	64	58	53	51	51	52	57	62	67	7 I	72	73	160
170	112	102	91	81	73	65	59	54	52	51	51	56	61	67	71	72	73	72	170
180	102	93	84	75	67	60	55	5 I	50	51	55	60	64	69	73	74	72	70	180
190	94	84	77	69	62	56	53	50	50	54	57	64	68	72	74	73	69	65	190
200	87	78	71	62	57	52	51	50	53	57	61	66		73	72	70	66	62	200
210	80	73	63	58	53	51	50	52	55	58	64	68	69	71	70	67	64	62	210
220	73	65	58	54	52	51	52	54	57	61	65	68	69	69	66	64	63	61	220
23°	66	60	55	52	51	50	51	54	58	62	66	67	68	66	65	65	63	62	230
240	60	56	52	50	50	50	52	56	59	63	64	66	66	66	66	65	65	64	240
250	56	52	5 x	48	48	50	53	57	60	62	64	65	66	66	67	67	67	69	250
260	52	50	48	47	48	50	54	57	60	62	65	67	68	70	70	69	72	77	260
270	50	47	45	46	49	52	55	57	60	64	67	70	72	72	73	76	80	86	270
280	46	46	45	47	49	52	54	58	63	68	7 I	73	75	76	80	84	91	100	280
290	44	44	46	46	50	52	- 56	62	67	73	76	78	80	84	89	95	103	III	290
300	43	44	46	48	51	56	61	68	73	78	81	84	88	94	101	108	115	124	300
310	43	44	46	50	54	61	69	76	80	84	89	94	99	107	113	120	128	139	310
320	44	44	48	55	62	70	77	82	87	93	99	106	112	I19	125	132	142	151	320
330	45	49	55	63	71	79	85	92	98	104	110	118	123	130	137	146	154	161	330
340	50	56	64	72	80	88	96	102	109	117	124	130	134	142	150	157	161	162	340
350	58	65	75	83	90	99	106	II4	122	129	134	139	146	153	161	162	162	158	350
360	68	78	85	94	Ior	110	119	128	134	139	144	150	155	161	163	161	156	150	360
370	80	87	96	106	115	124	133	141	145	149	I 54	158	164	162	159	152	146	140	370

Arg.	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	Arg.
${ }_{\text {d }}$	138	132	127	122	116	108	IOI	94	86	8 x	7 I	61	52	45	40	39	37	37	${ }^{\text {d }}$
10	128	122	115	108	103	97	92	86	78	68	60	51	45	40	38	38	36	36	o
20	116	Ifo	103	98	93	88	83	77	68	60	51	44	40	38	36	34	34	36	20
30	104	98	93	89	84	81	76	66	60	52	44	4 I	38	36	34	34	37	40	30
40	92	88	83	81	78	72	66	60	53	47	43	38	36	36	36	36	40	44	40
50	81	78	77	75	71	65	60	55	49	44	41	38	35	36	37	40	44	49	50
60	74	73	72	69	66	61	56	52	48	43	40	38	37	38	41	45	50	55	60
70	70	69	67	66	6I	57	54	50	46	42	40	39	39	42	45	50	56	63	70
80	66	66	64	62	60	58	54	49	45	40	40	41	42	45	50	56	63	73	80
90	64	64	62	62	60	58	53	48	44	41	41	43	47	5 I	57	64	74	83	90
100	63	64	64	62	60	56	52	48	44	43	45	46	51	58	66	75	84	93	100
110	64	66	65	64	60	56	50	47	44	45	46	51	58	66	75	84	92	102	110
120	67	68	67	63	58	54	49	47	46	48	52	58	66	75	84	94	103	111	120
130	70	69	65	62	58	53	50	47	51	53	58	65	75	83	92	103	112	122	${ }^{1} 30$
140	71	69	65	60	55	5 I	50	50	53	58	65	74	82	92	IOI	III	122	133	140
150	70	68	64	58	54	51^{*}	51	52	58	64	72	81	91	101	III	123	134	144	150
160	70	66	60	56	52	52	55	57	63	70	80	90	100	109	121	133	144	156	160
170	68	64	57	54	53	54	58	63	69	78	88	98	108	121	132	143	154	166	${ }^{1} 70$
180	64	59	55	54	54	57	63	69	76	86	97	108	120	132	143	155	165	174	180
190	60	58	55	56	59	61	68	76	86	95	107	119	131	142	156	165	174	178	$\underline{90}$
200	60	57	56.	58	62	68	75	84	95	105	118	130	142	155	164	173	176	180	200
210	60	58	59	61	68	76	84	94	107	117	130	142	156	164	172	176	179	177	210
220	61	61	64	69	76	84	94	106	118	130	144	156	165	171	174	178	${ }^{1} 78$	174	220
230	62	64	68	76	85	96	106	118	131	145	155	164	170	174	175	175	${ }^{1} 73$	166	230
240	66	70	77	86	96	107	119	131	145	156	165	168	172	173	173	171	165	154	240
250	73	81	88	98	109	120	133	I 46	157	165	168	170	171	${ }^{1} 70$	168	162	150	136	250
260	83	91	roi	111	122	135	147	158	166	167	168	168	168	166	158	146	130	117	260
270	95	103	II4	125	138	149	160	164	167	167	166	165	162	155	140	125	II4	109	270
280	r07	116	127	140	150	160.	164	166	166	164	162	158	149	135	121	110	108	II2	280
290	120	130	143	152	162	164	164	164	161	158	153	144	129	II4	108	106	115	123	290
300	134	145	156	162	164	164	161	159	155	148	137	122	110	104	106	117	126	126	300
310	r 48	158	152	164	162	159	156	152	142	130	116	104	100	106	119	130	132	116	310
320	159	163	162	159	157	153	147	138	123	108	98	97	106	120	131	129	117	96	320
330	163	162	158	153	148	142	131	117	102	92	92	104	121	132	131	116	96	78	330
340	160	155	$\underline{50}$	144	137	125	110	95	88	91	105	122	132	130	116	96	80	76	340
350	152	147	141	132	119	103	88	83	89	105	123	133	130	II4	96	82	81	90	350
360	143	136	128	112	96	83	79	87	105	123	133	129	115	97	86	86	98	112	360
370	132	121	106	90	77	75	86	104	123	132	129	114	98	90	94	105	120	133	370

Table P 13 (concl.).
Vert. Arg. l^{\prime}.
Hor. Arg. 79.

Arg.	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	arg.
																			${ }_{0}^{\text {d }}$
20	$\begin{array}{r}37 \\ 37 \\ 40 \\ \hline 1\end{array}$	40	43	${ }_{48}^{46}$	$\begin{aligned} & \frac{44}{48} \\ & 53 \end{aligned}$	$\begin{aligned} & \text { 30 } \\ & 58 \end{aligned}$	65	62	$\gamma_{82}^{2,}$	80	88	$\begin{aligned} & 97 \\ & 110 \\ & 10 \end{aligned}$	106	$\begin{gathered} 115 \\ 130 \\ 130 \end{gathered}$	123 139	135	141 150 150	$\begin{array}{r} 146 \\ 146 \end{array}$	20
30	40 4 4	$4{ }_{4}^{46}$	${ }_{50}^{40}$	${ }_{54}^{48}$	${ }_{60}$	${ }^{58}$	75	${ }_{84}$	${ }_{93}$	${ }_{103}$		123	135	$\xrightarrow{144}$	${ }_{151}$	155	${ }_{158}$	160	30
40	4^{8}	52	57	63	70	8	8	96	106	${ }^{116}$	127		147	$\underset{\substack{154 \\ 161}}{ }$	$\xrightarrow{158} 1$	162 166 168	15	${ }^{166}$	40
${ }_{60}$		- 68	6	${ }^{74}$	${ }_{93}^{82}$	\% 102	${ }_{12}^{100}$	$\xrightarrow{128}$	119 133		[12	1 150	${ }_{1}^{157}$	168	106	1	16	164 154	\%
70	71	79	88	96	104	114	125	136	148	156	163	168	171	173	170	164	156	144	\bigcirc
80	${ }_{81}^{81}$	${ }^{9}$	-988	107	120	126	138		18	166	172 175 178	1172 175 1	$\xrightarrow{174}$	171 164 16	$1 \begin{aligned} & 165 \\ & 155\end{aligned}$	155	143 129	113	8
\%o	${ }_{102}^{92}$	101	1198	138	129 142	${ }_{154}^{15}$	${ }_{162}$	169		174	175	${ }_{172}$	172	154	145	127	${ }_{12} 12$		\%
110	110	120	132	144	154	163	171	176	179	177	174	165	154	140	126	13	101	80	110
120	2	133	144	155	164	${ }^{172}$	${ }^{176}$	$\xrightarrow{180}$	179	174	${ }_{1}^{165}$	154	${ }_{128}^{120}$	124	10	${ }^{94}$	79	65	120
${ }^{130}$	${ }^{133}$	153	154	174	179	188	${ }_{180}$	175	167		148	124	128	${ }_{92}^{198}$	${ }_{76}$			54	120
150	155	166	173	180	181	181	177	157	156	140	124	106	89	75	6_{4}	57	56	${ }_{58}^{88}$	150
160	166	174	180	(182	${ }_{188}^{188}$	177	169	${ }^{158}$	${ }^{142}$	125	107	89	${ }_{7}^{76}$	65	${ }^{61}$	60		62	${ }^{150}$
-	$\xrightarrow{174}$	189 181	1818181	${ }_{178}^{181}$	178	159	${ }_{144}^{157}$	${ }_{126}$	108			${ }_{73}$	70		61 64	603	${ }_{58}$	¢88	${ }^{17}$
190	180	182	177	172	159	144	126	108	92	83	76	74	72	66	60	55	54	59	190
${ }^{200}$	179	${ }^{178}$	171	180	144	${ }^{125}$	${ }_{9} 9$	${ }_{9}^{95}$	86	${ }_{82}^{82}$	$8{ }^{81}$	75	68	60	58	51	57	${ }^{76}$	${ }^{200}$
-	15	158	$1{ }_{12}$	${ }_{125}^{124}$	${ }_{10}$			${ }_{92}$	89	${ }_{82}^{84}$	${ }_{70}^{79}$	59	5	49	57	71	86	${ }_{102}$	${ }_{220}^{2210}$
230	156	${ }^{142}$	123	110	102	100	98	95	${ }^{87}$	71	58	47	49	59	73	89	104	$1{ }^{18}$	230
	138	122 110	106	$\xrightarrow{104}$	$\xrightarrow{104}$	${ }_{103}^{104}$	${ }_{91}^{99}$	87 72 7	72 56	57 49	+ ${ }_{5}^{48}$	S0	${ }_{78}^{60}$	${ }_{95}^{76}$	${ }_{109}^{91}$	120	119 138 1	131	240 250
260	109	109	${ }_{113}$	113	107	92	74	${ }^{38}$	48	54	(68	${ }^{83}$	${ }^{98}$	11 1126	123	134	145	15	${ }^{260}$
270	111	117	119	110	94	73	56	53	58	72		103	115	126	${ }^{136}$	147	156	16	270
280 290	120	122	112	95	593	(58	56	83	77	${ }_{113}^{93}$	${ }_{122}^{108}$	118	$\xrightarrow{129}$	${ }_{151}^{138}$	1	15	15	162	${ }_{290}^{280}$
300	${ }_{112}^{12}$	${ }_{95}^{114}$	${ }_{74}^{96}$	${ }_{61}$	62	${ }_{72}$	88	104	117	127	135	143	${ }_{152}$	${ }^{158}$	162	152	160	157	300
-	95	73	63	66	7^{8}	95	111	121	${ }^{131}$	${ }^{138}$	148	155	${ }^{160}$	162	159	157	153	15	${ }^{310}$
320	76	${ }_{6}^{63}$	${ }_{71}^{71}$	5	101	${ }^{116}$	${ }^{126}$	135	142	150	157	(161	$\xrightarrow{162}$	157	54	149	147	43	330
330	74	97	${ }_{114}$	${ }_{127}$	123	${ }_{142}^{132}$	150	156	160	162	158	153	148	142	138	134	127		${ }_{340}$
350	105	2	${ }^{132}$	140	146	152	159	165	162	157	150	${ }^{144}$	${ }^{138}$	134	130	122	14	108	${ }^{350}$
360 370	${ }_{141}^{127}$	${ }_{148}$		158	155	163	$\begin{aligned} & 162 \\ & 159 \end{aligned}$	$\begin{aligned} & 16 \mathrm{r} \\ & 152 \end{aligned}$	$\begin{aligned} & 154 \\ & { }_{445} \end{aligned}$	148 135	139 129	(134 12	118	(123	$\begin{aligned} & 118 \\ & 104 \end{aligned}$	109 99	$\begin{gathered} \mathbf{1 0 2} \\ 92 \end{gathered}$	88	360 370

rg.	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	7	72	
${ }_{\text {d }}$	142	145	152	157	162	16	160	155	149	142	135	25	$1{ }^{12}$			7^{6}	84	101		
${ }_{20}^{10}$	150	$1 \begin{aligned} & 155 \\ & 162\end{aligned}$	158	163 162	${ }_{157}^{162}$	${ }_{149}^{158}$	${ }_{142}^{152}$	145 135	139 125	130	98	${ }_{104}^{104}$	7		${ }_{82}^{72}$	-82	$\xrightarrow{122}$		130	
30	15	5	16	15	147	138	${ }_{130}$	120	107	1	76	5	68	84	15	t20	128	125	114	
40	164	${ }^{160}$	153	143 130 115	134	12	115	${ }_{7}^{101}$	85	71	62	${ }_{8}^{66}$	${ }_{\text {81 }}^{81}$	116	117	126 11	$1 \begin{aligned} & 122 \\ & 113\end{aligned}$		${ }_{\text {rin }}^{112}$	
50	15	151 136	139	$1 \begin{aligned} & 130 \\ & 115\end{aligned}$	${ }_{103}^{120}$	${ }_{88}^{108}$	95 74 7	$6{ }^{1}$	¢59	9		818	101 11	116	$1 \begin{aligned} & 124 \\ & 116\end{aligned}$	${ }_{112}^{112}$	${ }_{111}^{113}$	${ }_{117}^{109}$	${ }_{129}^{122}$	50
70	133	122	11	97	8_{3}	67	57	54			98	${ }_{11}$	116	114	111	113	121	${ }^{13}$	150	
					6		54	63 78 7	80	94	108	112	111	111	116	${ }^{126}$	141	155	${ }_{1}^{106}$	
100	${ }_{84}^{103}$			(50	53	${ }^{3}$		${ }_{90}$	${ }_{98} 9$	102	10	1	119	134		164	${ }^{172}$	\%	${ }_{178} 7^{8}$	边
15	66	54	50	53	63	75		94	96	101	10	120	137	153	166	${ }^{7} 76$	179	180	${ }^{178}$	10
	54			63	73				98	108		${ }^{138}$	r	16	178	18	1882	181	${ }^{172}$	${ }^{120}$
析			${ }_{68}$	71 74 74	7			${ }_{105}$	r2i	${ }^{139}$	156	175	$1{ }_{1}^{178}$	183	188	${ }_{18} 18$	${ }_{178}$	${ }_{171}^{17}$	${ }_{161}$	
	62					89	104	121	140	155	169	179	184	186	${ }^{183}$	180	172	162	14^{8}	150
160						ro2	11	138	15		179	18 185 185		$\xrightarrow{183}$	180	$\xrightarrow{177}$	161	149	136 125 125	160
				102	102			154		${ }_{182}^{17}$	${ }_{184}$	182	17	178	178	149	149 137 18	ris	114	80
9	9	84	101	11	135	150	163	174	${ }_{181}$	183	182	177	170	160	148	137	${ }^{125}$	114	103	90
	84	101	118	133	148	162	${ }_{178}^{17}$	178	${ }^{182}$	${ }^{181}$	175	159	158	148 137	138 125 125	126	113	104	96	200
20	${ }_{\substack{102 \\ 117}}$	${ }_{132}^{117}$	182	147 158	${ }_{169}$	178	177	${ }_{178}$		174	158 158	$\xrightarrow{159}$	$1{ }_{137}^{148}$	237	${ }_{113}^{125}$	${ }_{105}^{14}$			\%	210
230	130	145	158	167	173	${ }_{17}$	175	172	16	156	149	136	123	113	104		88	81	72	${ }^{23}{ }^{\circ}$
	${ }^{144}$	${ }^{156}$	186	172	1174	$1 \begin{aligned} & 173 \\ & 168 \\ & 180\end{aligned}$	17015	156	155	147	1325	$\substack{123 \\ 110}$	${ }_{102}^{112}$	${ }^{103}$	${ }_{88}^{96}$	88 80 80	81 ${ }_{72}$	74	66	240
$6{ }^{\circ}$	156	168	169	${ }_{168}$	176	160	153	144	5	120	170	101	${ }_{92}$	86		71			56	260
	T6	167	166	162	158	153	14	131	${ }_{118}$	108	${ }^{100}$		85						52	78
	164	${ }^{164}$	${ }^{150}$	${ }^{156}$	148	140	129	${ }^{11}$	10											
300		157	15	${ }_{136}^{147}$	${ }_{123}^{138}$	${ }_{112}^{126}$	12		${ }_{85}$			62				4^{8}			4	300
310	147	140	132	120	110	100	91	81	72	63		52	51		4^{8}	45	43	42	43	3^{10}
320	${ }^{136}$	127	118	108							a	47			4			43	43	320 330
	${ }_{11}^{12}$	ror	10	${ }_{84}{ }_{8}^{4}$				${ }_{48}^{88}$			42	${ }_{4}^{4}$							4	330
		90	8	72	62	54	46	42	40	4	${ }^{\circ}$	9		40	43	43		46		${ }^{35}$
	88 78 8	79 69	${ }_{58}^{78}$	$\underset{51}{61}$		45	41 37		38 38	37 36	37 37	39 40	${ }_{43}^{40}$	${ }_{4}^{43}$	4	50	488	62	59 70	360

Table P 14, (Factor of Table 3I, Sect. III.)
Vert. Arg. l^{\prime}.
Hor. Arg. 80.

Arg.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Arg.
d 0	59	63	67	70	72	72	72	69	66	62	57	52	47	44	42	40	41	44	d
10	64	68	71	72	73	72	70	67	63	59	54	51	47	46	45	46	50	56	10
20	69	71	73	73	72	71	68	64	61	57	54	52	50	49	52	56	62	70	20
30	71	73	74	74	72	70	67	64	61	57	56	55	56	58	62	68	76	85	30
40	74	75	75	74	72	69	66	64	62	60	60	61	64	68	75	82	92	103	40
50	76	76	76	75	73	70	68	67	66	66	67	70	74	80	88	98	107	118	50
60	79	78	78	76	75	74	72	72	71	74	76	81	87	94	102	112	122	133	60
70	82	82	81	80	79	78	78	78	80	82	86	92	98	107	115	125	135	145	70
80	86	86	84	84	83	83	84	86	88	92	97	104	110	118	128	137	146	154	80
90	92	90	90	89	89	89	91	93	96	101	106	113	120	129	138	146	I 54	162	90
100	96	95	95	95	96	97	98	101	104	110	116	123	130	138	146	${ }^{1} 53$	160	165	100
110	101	Ior	100	100	102	103	105	108	II 3	118	124	131	I 39	146	152	158	162	166	110
120	106	105	106	106	106	108	III	115	121	126	132	139	145	152	157	160	163	164	120
130	110	110	110	110	111	114	117	122	126	132	138	144	150	155	159	161	161	160	130
140	113	112	112	113	116	119	123	128	133	138	144	149	154	157	159	159	158	156	140
150	II4	II5	116	118	120	125	129	133	138	144	149	152	156	157	158	156	153	149	150
160	117	118	119	122	125	130	134	139	144	148	153	155	156	156	154	151	145	140	160
170	119	121	124	127	130	135	140	145	149	152	155	156	154	152	149	143	137	128	170
180	122	125	129	133	137	142	146	150	152	154	155	154	151	146	141	134	126	116	180
190	126	130	134	13^{8}	142	146	150	154	155	154	152	${ }^{1} 49$	144	138	131	122	113	104	190
200	132	136	140	144	146	152	154	155	154	152	148	142	± 35	128	119	109		90	200
210	137	142	146	149	153	${ }^{1} 54$	154	154	150	145	139	132	124	114	105	95	86	78	210
220	144	146	150	153	155	153	152	148	143	136	129	120	111		91	82	74	66	220
230	149	151	153	${ }^{1} 54$	152	150	146	140	133	124	116	106	96	86	78	70	62	58	230
240	151	152	152	151	148	142	136	128	120	110	101	90	82	73	66	60	55	52	240
250	151	150	148	144	139	131	124	114	105	95	86	77	68	62	57	52	50	49	250
260	147	144	140	134	126	117	109	99	90	80	71	64	58	53	50	49	48	50	260
270	140	135	128	120	111	102	92	84	75	66	60	55	51	48	48	49	50	52	270
280	128	121	113	105	95	86	77	69	62	56	51	49	47	48	49	51	54	57	280
290	114	106	97	88	79	72	63	58	52	48	47	46	47	50	52	55	58	6 I	290
300	98	90	81	72	65	58	53	49	46	46	46	48	50	53	57	6 I	64	65	300
310	82	74	66	60	53	49	46	44	44	46	48	51	54	59	62	65	68	68	310
320	67	60	54	49	45	43	42	43	45	48	52	56		64	67	69	69	68	320
330	54	49	45	42	40	40	42	45	49	53	58	62	66	69	70	70	69	66	330
340	44	42	40	39	40	42	45	50	54	59	63	66	70	71	72	70	67	63	340
350	39	38	38	39	41	46	50	55	59	64	68	70	72	72	70	67	64	59	350
360	36	37	39	42	46	51	56	60	64	68	71	73	72	71	68	64	60	54	360
370	36	39	42	47	51	56	6 I	66	69	71	73	73	71	68	65	61	56	51	370

Arg.	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	Arg
d 0	50	57	66	78	92	105	118	132	145	156	166	175	180	184	185	184	181	177	d
10	63	73	85	98	110	124	138	150	160	170	178	I83	186	187	184	182	177	170	10
20	80	91	104	II7	130	142	154	165	173	181	185	188	187	185	181	176	$\underline{1} 68$	16 I	20
30	97	109	122	134	146	158	168	176	182	186	188	187	185	180	174	166	159	151	30
40	115	127	139	150	161	170	177	182	186	186	186	182	177	171	164	155	147	139	40
50	130	14 I	152	162	170	176	182	185	186	183	180	174	168	161	153	145	136	129	50
60	144	154	162	${ }^{1} 7$	176	180	183	183	181	177	172	164	157	149	$\mathrm{r}_{4}{ }^{\text {I }}$	132	124	117	60
70	154	163	170	175	178	181	180	178	174	167	160	153	144	136	128	120	112	107	70
80	162	168	173	176	177	176	174	169	163	156	149	140	131	123	116	108	102	97	80
90	167	171	174	175	174	170	I 66	159	152	144	139	126	118	111	103	97	92	88	90
100	169	170	170	170	166	160	155	147	140	130	122	114	106	100	94	89	84	80	100
110	167	167	165	162	157	150	143	135	126	118	IIO	102	96	89	84	81	77	74	110
120	164	161	158	153	146	138	130	122	113	105	98	91	84	80	77	74	7 I	69	120
130	158	155	149	142	134	126	I18	109	101	93	87	81	77	73	70	68	66	65	130
140	151	145	138	130	122	113	105	97	89	83	77	73	70	67	64	64	63	62	140
150	142	135	127	118	110	101	93	85	78	74	69	66	64	61	60	60	60	59	150
160	132	123	114	106	98	89	80	75	70	66	63	60	59	58	58	58	58	56	160
170	120	111	102	93	85	78	71	67	63	60	58	57	56	56	56	56	55	54	170
180	107	98	90	81	74	68	63	59	58	56	55	54	54	54	54	54	52	51	180
190	94	85	77	71	65	60	57	55	54	53	53	54	54	53	52	52	50	48	190
200	82			60	57	55	53	52	52	52	53	53		52	51	49	48	44	200
210	70	63	58	55	53	52	51	5 I	52	52	53	53	52	50	48	46	42	38	210
220	60	56	52	52	49	51	52	52	52	53	52	52	50	48	44	41	37	32	220
230	54	51	50	50	51	52	52	52	54	54	52	50	47	44	40	35	31	27	230
240	50	50	50	51	52	53	54	54	55	53	50	47	43	38	34	30	26	23	240
250	50	50	52	53	54	56	57	55	53	51	46	42	38	34	28	24	22	20	250
260	51	53	55	57	58	58	57	54	5 I	46	42	3^{8}	32	27	23	20	19	21	260
270	54	57	59	60	60	58	56	52	47	42	37	32	26	22	20	19	21	24	270
280	59	61	61	61	60	57	52	48	43	37	3 I	26	22	19	19		25	30	280
290	63	64	63	61	58	54	49	43	36	32	26	22	20	20	22	26	33	42	290
300	66	64	63	60	55	49	43	37	31	27	23	21	22	24	29	36	46	57	300
310	66	64	61	56	50	43	38	32	27	24	22	23	27	33	40	50	62	74	310
320	66	62	56	50	44	38	33	29	25	25	25	30	36	44	55	67	80	94	320
330	63	57	51	44	39	34	30	28	28	29	34	40	50	60	73	86	101	115	330
340	58	52	46	40	36	33	31	31	34	38	45	55	66	80	93	107	122	${ }^{1} 35$	340
350	54	4^{8}	43	38	36	34	35	38	44	51	6 I	72	85	100	II4	128	14 I	153	350
360	49	45	4 I	39	38	40	43	49	57	67	79	92	106	121	134	147	157	168	360
370	48	44	42	43	45	49	54	63	74	85	99	113	126	140	151	162	171	178	370

Table P I4 (concl.).
Vert. Arg. l^{\prime}.
Hor. Arg. 80.

Arg.	36	37	38	39	40	41	48	43	44	45	46	47	48	49	50	51	52	53	Arg.
$\begin{aligned} & d \\ & 0 \end{aligned}$	170	164	157	150	142	137	131	126	121	119	116	114	111	110	108	105	102	98	${ }_{0}^{d}$
10	163	154	148	141	135	129	123	119	115	112	109	107	105	102	99	96	93	87	10
20	153	146	139	132	126	120	115	112	108	105	102	100	97	95	91	88	83	78	20
30	143	136	128	122	117	112	108	104	102	98	95	92	90	87	83	78	73	68	30
40	132	125	118	113	108	104	100	97	95	91	88	86	82	79	74	69	64	59	40
50	121	115	109	103	100	96	93	90	87	84	82	79	75	70	66	62	57	52	50
60	111	104	100	96	92	90	86	84	81	78	76	72	68	64	60	55	50	46	60
70	101	96	92	88	86	83	80	78	76	72	69	66	62	58	54	50	46	42	70
80	92	88	85	82	80	77	75	72	70	68	64	59	57	53	49	44	41	38	80
90	84	81	78	76	75	72	71	68	66	63	59	56	52	49	45	41	39	37	90
100	78	75	74	72	69	68	66	64	6!	58	54	51	48	44	42	39	37	36	100
110	72	70	68	67	66	64	62	60	57	54	51	47	44	41	39	37	36	36	110
120	67	66	65	63	62	61	58	56	52	49	46	43	40	39	37	36	36	37	120
130	64	63	62	60	60	57	54	51	48	45	43	40	38	36	36	36	38	40	130
140	60	60	59	57	55	53	50	47	44	42	38	37	36	35	36	38	41	44	140
150	58	58	56	54	51	49	46	43	40	38	36	35	35	36	38	41	45	51	150
160	55	54	52	50	47	44	41	38	36	34	34	34	35		42		52	59	160
$17{ }^{\circ}$	52	51	48	46	42	40	36	34	33	33	33	34	38	42	47	54	60	69	170
180	50	47	44	40	37	35	32	31	31	32	34	38	42	48	55	64	72	80	180
190	45	42	38	35	32	31	29	30	30	33	37	44	50	58	65	75	84	94	190
200	40	36	32	31	28	28	28	30	33	38	43	51	59	68	77	88	98	106	200
210	34	31	28	26	26	26	28	32	38	44	53	61	71	81	92	101	111	118	210
220	30	26	24	24	25	27	32	3^{8}	47	54	64	74	85	95	105	114	122	130	220
230	24	23	23	24	27	32	39	47	57	66	78	88	99	109	118	126	133	138	230
240	21	22	24	27	33	39	49	59	70	81	92	103	114	122	130	136	142	144	240
250	21	23	27	33	42	51	62	73	86	97	108	118	127	135	141	145	147	148	250
260	23	28	35	43	54	65	77	90	101	112	123	132	139	145	148	150	151	150	260
270	29	36	45	57	68	81	94	106	117	128	137	144	149	152	153	154	152	150	270
280	39	49	60	73	86	98	111	123	133	142	148	153	156	156	156	154	152	148	280
290	53	64	78	91	104	117	128	139	146	154	158	159	160	159	157	154	150	146	290
300	69	82	96	110	122	134	${ }^{1} 45$	153	158	162	164	163	162	159	156	152	146	143	300
310	88	102	116	129	140	150	157	163	166	168	167	165	162	15^{8}	153	14^{8}	142	139	310
320	109	123	135	146	155	162	168	171	171	170	168	164	159	154	148	143	138	136	320
330	128	141	152	160	168	172	175	175	174	170	166	161	155	149	143	138	134	130	330
340	147	158	166	172	177	178	178	176	${ }^{1} 72$	167	162	156	150	143	138	133	130	126	340
350	163	171	176	180	182	181	178	173	168	162	156	148	143	138	132	128	124	122	350
360	${ }^{1} 75$	180	183	184	183	179	175	168	162	155	148	141	135	130	126	122	118	117	360
370	184	186	186	184	180	174	168	161	154	14^{6}	14°	133	128	123	118	116	113	110	370

Arg.	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	Arg
$\begin{aligned} & d \\ & 0 \end{aligned}$	93	89	83	76	69	63	57	51	46	41	39	37	36	36	38	41	45	50	54	d
10	82	78	71	64	59	53	47	43	39	36	35	35	36	38	42	46	50	55	60	10
20	72	66	60	54	49	44	40	37	35	33	34	36	38	42	46	51	55	60	65	20
30	62	57	5 I	46	42	38	36	34	34	34	35	39	42	47	51	56	60	65	68	30
40	54	48	44	40	36	34	33	33	34	36	39	42	48	52	57	62	66	70	72	40
50	47	42	40	37	34	34	34	35	37	39	43	48	52	57	62	66	69	73	75	50
60	42	38	36	34	34	34	36	37	40	44	48	53	58	62	66	70	74	76	78	60
70	39	36	35	35	35	36	3^{8}	4 T	44	49	53	59	63	68	72	76	78	80	81	70
80	36	35	35	35	36	38	42	46	50	55	60	65	70	74	77	81	83	85	86	80
90	35	35	35	37	39	41	46	51	56	61	66	70	76	81	85	88	89	90	91	90
100	36	36	37	40	44	48	53	58	63	68	74	78	84	88	91	92	94	96	96	100
110	37	38	42	45	50	54	60	66	71	77	82	87	91	95	98	100	101	101	101	110
120	40	43	46	51	56	62	68	74	80	86	91	96	100	103	105	106	106	106	106	120
130	44	4^{8}	52	59	64	71	78	84	89	96	100	104	108	110	111	112	112	III	110	130
140	49	54	61	67	74	81	88	94	100	106	110	112	115	116	116	116	116	115	113	140
150	57	63	70	78	84	92	98	106	110	114	118	119	120	121	121	120	118	117	115	150
160	66	74	81	89	96	103	110	115	119	122	124	124	125	125	123	121	120	118	117	160
170	77	86	93	101	108	114	120	123	126	128	129	128	127	126	123	121	120	119	119	170
180	89	98	105	112	119	124	127	130	132	132	131	130	127	125	124	122	121	120	121	180
190	102	110	117	122	128	131	133	134	134	134	132	129	126	126	123	122	122	122	124	190
200	114	121	127	131	135	137	138	136	135	133	130	128	126	124	124	124	124	125	129	200
210	126	130	135	138	1.20	140	139	136	134	132	129	127	125	124	125	126	127	130	134	210
220	134	138	141	141	141	140	137	134	133	130	128	127	126	125	127	130	132	136	140	220
230	142	143	144	143	141	138	136	133	130	129	128	126	127	128	131	134	137	141	145	230
240	146	146	144	142	139	136	134	131	129	128	128	129	130	132	135	139	142	146	149	240
250	148	146	144	140	138	134	132	130	129	129	129	132	134	136	140	144	146	148	150	250
260	148	145	142	138	135	132	131	130	129	130	132	135	137	140	143	146	148	149	149	260
270	146	143	139	136	134	131	130	130	130	132	134	137	140	142	145	146	147	145	143	270
280	144	140	137	134	132	130	130	131	132	134	137	139	141	1.42	143	143	141	138	134	280
290	142	138	135	132	131	131	131	132	134	136	137	139	140	140	13^{8}	136	133	128	121	290
300	139	135	133	131	130	130	132	132	134	135	136	136	135	133	130	126	121	114	107	300
310	136	132	130	129	130	130	131	132	132	132	132	130	128	12.4	119	113	107	99	91	310
320	132	130	129	128	128	128	128	128	127	126	124	121	117	112	105	99	92	84	75	320
330	129	127	126	125	124	124	124	122	120	118	114	110	104	99	91	84	76	68	61	330
340	125	123	122	121	120	119	117	116	112	108	103	97	91	84	77	68	62	56	49	340
350	120	II9	118	116	114	112	109	106	101	96	90	84	77	70	63	56	50	45	41	350
360	115	113	111	109	106	104	100	95	89	84	77	71	64	58	51	46	42	38	37	360
370	108	107	104	IOI	97	93	89	84	7^{8}	71	66	59	52	47	42	38	36	36	35	370

Table P I5. (Factor of Table 3I, Sect. III.) Vert. Arg. l^{\prime}. Hor. Arg. 8r.

Arg.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Arg.
$\begin{aligned} & d \\ & 0 \end{aligned}$	15	15	15	14	14	14	15	16	18	21	24			38					d 0
10	15	15	15	16	16	16	17	18	21	24	28	32	34 37	42	42 46	47	50 51	51 52	0 10
20	16	16	16	16	17	18	20	21	24	28	31	36	40	44	48	51	52	53	20
30	16	17	18	18	19	20	22	24	27	30	33	38	42	46	50	53	53	52	30
40	18	18	20	21	21	23	24	28	29	32	36	40	44	49	5 I	52	53	52	40
50	18	20	21	23	24	26	28	29	32	34	38	42	46	50	52	53	53	51	50
60	20	22	24	25	27	28	30	31	34	37	40	44	48	50	52	53	52	49	60
70	23	25	27	27	29	30	32	34	36	39	42	45	50	51	52	52	51	48	70
80	25	27	28	30	31	32	33	35	38	40	44	47	49	51	51	51	48	44	80
90	28	29	31	32	33	34	36	38	38	42	45	47	49	51	51	49	45	41	90
100	30	32	33	34	35	35	36	38	40	42	44	48	49	50	49	46	42	37	100
110	32	34	35	36	36	37	38	39	41	44	45	48	49	48	46	44	39	34	110
120	34	36	36	38	37	38	39	40	41	43	46	47	47	47	44	40	36	30	120
130	36	38	38	38	38	39	39	41	42	43	45	47	46	44	42	37	32	26	130
140	3^{8}	40	40	40	39	39	40	40	42	43	44	44	44	42	38	34	28	22	140
150	39	40	40	40	40	39	39	40	42	43	43	44	42	39	35	30	25	20	150
160	4 I	42	41	40	40	40	40	41	4 I	42	42	4 I	39	36	32	26	21	16	160
170	43	42	42	4 I	40	39	39	41	40	41	40	38	37	33	28	23	18	14	170
180	43	43	41	40	40	39	40	40	40	39	38	36	33	29	24	20	15	12	180
190	44	43	42	40	39	39	38	38	38	38	36	34	30	26	20	17	13	11	190
200	44	43	42	40	39	37	38	38	37	36	34	30	26	22	18	14	12	10	200
210	44	42	41	40	38	37	36	36	35	33	31	27	23	19	15	12	10	10	210
220	44	42	41	38	37	36	35	34	33	30	27	24	20	16	12	10	10	11	220
230	44	42	39	37	35	35	34	33	30	27	24	20	16	14	10	10	Io	12	230
240	42	4 I	38	36	34	33	32	29	27	24	20	18	14	11	10	10	II	14	240
250	42	38	36	34	34	31	30	27	25	21	18	14	12	10	10	10	14	17	250
260	40	37	35	32	31	29	26	24	22	18	14	12	9	9	10	12	16	20	260
270	37	36	33	31	29	27	24	2 I	18	15	12	9	9	9	12	14	19	24	270
280	36	33	31	30	27	24	22	18	15	12	10	8	8	10	13	18	22	27	280
290	34	31	29	26	24	21	19	16	13	8	9	8	9	12	16	21	26	31	290
300	32	29	27	24	21	18	15	12	11	8	8	8	12	15	20	25	30	34	300
310	29	26	24	22	19	16	14	10	9	8	8	10	13	18	23	28	33	38	310
320	27	24	22	19	17	14	12	10	8	8	9	12	16	22	27	32	38	41	320
330	24	22	20	17	14	12	10	8	8	9	II	15	20	26	32	37	42	44	330
340	22	20	18	16	12	11	10	8	9	10	14	18	24	30	36	40	44	47	340
350	20	18	16	14	12	10	9	10	II	13	17	22	28	34	40	44	48	49	350
360	18	16	15	13	11	10	10	11	13	16	20	26	33	38				50	360
370	18	16	14	13	12	II	II	13	16	20	25	3 I	36	42	47	49	52	52	370
Arg.	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	Arg.
$\begin{aligned} & d \\ & 0 \end{aligned}$							38					26		22	21	20	18	16	d 0
10	52	51	48	45	43	38	35	31	29	26	24	22	21	20	20	19	17	16	10
20	52	50	47	43	39	34	30	27	25	23	21	20	19	18	18	17	16	15	20
30	52	49	45	40	36	32	28	24	22	20	19	19	18	18	18	17	I6	15	30
40	50	47	42	38	32	28	24	22	19	18	I 7	17	17	18	17	17	16	16	40
50	48	44	39	33	29	25	21	18	17	16	16	16	17	17	17	17	17	17	50
60	46	40	35	30	26	21	18	16	14	15	16	16	17	18	18	18	18	18	60
70	42	37	32	26	21	17	16	14	13	14	15	16	17	18	19	20	19	21	70
80	39	33	28	23	18	15	13	12	13	14	15	16	18	19	20	21	22	22	80
90	35	30	24	20	15	14	12	12	13	14	16	18	19	20	21	22	24	25	90
100	32	26	20	16	12	11	11	11	13	14	17	18	21	22	22	25	26	26	100
110	28	22	17	13	12	10	10	12	14	16	18	20	22	24	25	26	28	30	110
120	24	18	14	12	10	10	11	12	16	17	19	22		26	26	28	30	32	120
130	2 I	16	12	10	9	10	12	14	16	19	22	24	26	28	29	31	32	34	130
140	18	13	11	10	10	10	13	16	18	21	23	26	27	29	37	33	35	37	I40
150	15	12	10	10	10	12	15	18	20	22	25	27	29	30	33	34	37	39	150
160	13	10	9	10	12	14	17	20	22	25	27	28	30	33	35	37	39	41	160
170	11	10	10	11	13	16	19	21	24	27	28	30	32	35	37	39	4 I	42	170
180	10	10	11	12	15	19	22	24	26	28	30	32	34	36	39	40	43	43	180
190	10	10	12	15	18	21	24	26	28	30	32	34	36	38	40	41	43	44	190
200	10	12	14	17	20			28	29	32	33	35	38	40	42	44	45	44	200
210	12	14	17	20	23	26	28	30	3 I	33	35	37	40	41	44	45	45	45	210
220	12	16	19	22	25	27	29	31	33	34	36	38	41	43	44	45	46	44	220
23°	15	18	22	26	28	30	32	32	34	36	38	40	42	44	46	46	45	43	23°
240	18	22	25	28	30	32	33	34	36	37	39	41	43	45	46	46	44	42	240
250	20	24	29	32	32	34	35	36	37	38	40	43	44	45	46	45	44	4 I	250
260	24	28	3 I	34	35	35	37	37	38	40	42	44	45	46	46	43	42	40	260
270	28	31	34	36	38	37	38	39	39	4 I	42	44	45	45	44	43	40	3^{8}	270
280	30	35	37	38	39	40	39	39	40	42	44	44	45	44	43	41	38	35	280
290	35	37	40	40	40	40	40	40	41	42	43	43	43	42	42	39	36	33	290
300	38	40	42	42	42	40	40	41	42	42	43	43	43	42	39	36	33	30	300
310	4 I	43	44	43	42	42	42	42	42	42	42	42	41	40	37	34	31	28	310
320		45	45	44	43	42	42	42	41	4 I	41	41	40	37	34	31	28	26	320
330	46	46	46	45	44	42	42	41	40	40	40	39	37	34	31	29	26	23	330
340	48	47	46	45	44	42	41	39	38	39	38	36	34	32	29	26	24	22	340
350	50	48	47	45	42	41	39	38	37	36	35	34	31	28	26	24	21	19	350
360	50	50	47	44	42	39	38	36	36	34	32	31	28	26	24	22	19	18	360
370	50	48	46	43	40	37	36	34	32	32	30	28	26	24	22	19	18	17	370

Table P 15 (concl.).
Vert. Arg. l^{\prime}.
Hor. Arg. 8 r .

Arg.	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	Arg.
-	14	13	12	10	11	11	14	18	22	28	33	40		48					${ }_{0}^{d}$
10	14	13	12	12	13	14	17	22	27	32	38	44	48	${ }_{51}$	5	51	5	48	$1{ }^{\circ}$
20	14	13	13	14	14	17	20	25	38	37	42	46	49	52	53	${ }_{52}$	50	48	20
$3{ }^{\circ}$	14	15	14	16	17	20	24	29	34	39	45	49	51	53	53	52	49	45	30
40	16	16	17	${ }^{18}$	20	23	28	32	38	43	4^{8}	51	52	53	53	51	48	43	40
50	17	18	19	${ }^{21}$	23	27	32	36	41	46	49	52	53	53	52	49	45	41	
60	19	${ }_{22}$	${ }^{21}$	24	28	31	35	41	44	48	50	53	53	52	so	47	43		60
70	${ }^{21}$	22	24	28	30	34	3^{88}	42	46	49	52	52	52	51	4^{8}	45	41	36	70
80	23	26	27	30	34	37	40	44	47	50	52	52	51	49	46	42	38	33	80
90	${ }^{26}$	38	30	33 36	37 38 38	$4{ }_{4}{ }^{1}$	42	45	${ }^{48}$	50	51 50	51	49	46	43	40	35	30	90
100	${ }^{29}$	31	34	36	${ }^{38}$	41	44	46	48	50	50	49		44		37		26	100
110	32	34	36	39	41	42	44	47	4^{8}	49	48	47	46	42	${ }^{38}$	34	29	24	120
120	34	36	3^{8}	40	42	44	46	46	47	47	47	45	43	40	35	31	26	21	120
130	${ }^{36}$	38	40	4 4	43	44	45	46	46	46	45	43	$4{ }^{40}$	36	33	27	23	18	130
140	3^{88}	40	41	42	43	44	44	44	44	44	43	4 4	3^{88}	34	30	25	20	16	140
150	40	4 I	42	43	44	44	44	42	42	42	41	38	36	32	26	23	18	14	150
160	42	42	43	43	44	42	42	42	42	4 4	39	36	32	29	24	20	16	12	160
17 c	43	44	43	43	42	4 4	40	40	40	38	36	34	30	26	22	18	14	10	17%
180	44	43	42	42	40	${ }^{40}$	40	38	3^{8}	37	34	32	28	23	19	15	12	10	180
190	45	43	42	40	40	38	38	37	36	34	32	30	26	21	17	13	10	9	190
200	44	42	41	39	38	38	36	36	34	33	31	27	23	19	15	12		8	200
210	44	41	40	38	37	36	34	34	3^{2}	$3{ }^{31}$	${ }^{28}$	25	28	16	13	10		8	210
220	42	40	39	37	35	34	33	33	31	29	26	23	18	14	11	9	8	8	230
230	4 I	39	37	35	34	33	32	30	30	27	23	19	16	12	9	8	8	8	230
240	40	38	35	33	32	31	30	29	27	24	22	18	13	10	8		8	10	240
250	3^{8}	36	33	3 3	30	30	${ }^{28}$	26	24	22	19	16	12	9	7	7	8	12	250
260	36	34	32	30	28	${ }^{28}$	26	25	23	20	16	13	10	8	7	8	${ }^{10}$	13	260
270	34	32	29	28	27	26	25	23	20	18	14	12	9	7	7	9	12	15	${ }^{27}$
280	32	30	27	26	26	24	23	21	${ }^{18}$	16	13	10	8	7	8	10	13	17	${ }^{280}$
290	30	27	26	24	23 23	${ }_{21}^{22}$	20	19	16	14	1 II	9	7	8	10	12	16	21	290
300	${ }^{27}$	24	24	23	22	21	19	17	15	12	10	8	8	9	10	14	19	23	300
310	26	23	22	21	20	20	17	16	13	12	10	8	9	10	13	17	22	26	310
320	23	22	20	20	18	17	16	14	12	10	10	9	11	13	16	20	25	30	320
330	${ }^{21}$	20	18	${ }^{18}$	17	16	14	14	12	11	10	10	12	15	19	23	28	33	330
340	19	18	18	16	16	16	14	12	12	12	11	12	15	18	22	27	32	36	340
350	18	17	16	15	15	15	14	13	12	12	13	15	18	21	25	30	35	39	350
360	17	16	15	15	15	15	14	14	13	14	15	17	20	24	29	33	38	42	360
370	16	15	15	15	14	16	15	15	15	16	18	20	24	27	31	36	41	45	370

	\%
	\%
	¢
	악
	¢
	당
	8
	9
	名
	\%
	\%
	\%
	9
	\%
	8
	O
	\pm
	앙
18888	3

Table P 16. (Addition to Arg. 32.)
Vert. Arg. l^{\prime}.
Hor. Arg. 79.

Arg.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Arg.
${ }_{0}^{d}$		102								84		103	116	129					${ }_{\text {d }}$
10	18	${ }_{78}{ }^{8}$	69	65	64	65	68	7^{2}	7^{8}	86	95	107	I18	130	141 139	159	148	146	${ }^{\circ}$
20	69	62	59	59	62	65	70	75	82	91	ror	III	121	129	135	137	136	130	20
30	59	58	60	63	67	72	78	84	91	100	109	117	124	12	131	130	124	115	30
40	62	65	69	4	79	85	91	97	104	III	118	124	128	130	128	122	113	2	40
50	73	79	86	92	97	103	109	114	120	125	129	132	133	131	125	116	105	92	
60	92	99	106	112	118	123	127	131	134	137	138	138	136	130	121	110	97	85	60
70	113	21	127	133	137	140	142	144	145	145	144	141	135	126	115	103	90	79	70
80	130	${ }_{40}$	145	149	151	152	152	151	150	147	143	137	129	118	06	94	83	74	80
90	147	154	157	158	158	156	153	150	147	142	135	127	116	105	94	83	75		90
oo	157	160	161	159	156	152	147	142	136	128	120	110	99	88	78	71	66	65	00
110	158	159	156	152	146	139	132	125	118	109	99	89	79	70	63	58	58	62	IIO
120	154	151	${ }_{45}$	138	130	121	113	rog	96	86	76	67	59	52	49	49	53	61	120
130	145	139	130	121	III	101	92	82	73	64	55	47	42	39	39	43	52	64	130
140	134	124	113	102	91	81	71	62	53	45	39	34	32	32	37	46	58	73	140
150	122	110	98	86	74	64	55	47	40	34	30	29	30	35	44	56	72	89	150
160	112	99	85	73	62	53	45	39	34	32	31	33	38	47	59	75	92	ı10	160
170	104	89	76	65	55	48	43	39	37	37	40	46	55	67	82	99	117	134	170
180	96	82	70	61	54	49	47	46	47	51	57	66	78	93	109	127	144	159	180
190	88	76	67	60	56	55	55	58	62	69	78	90	104	121	138	154	169	181	190
200	81	71	65	62	62	63	67	72	80	89	101	115	130	147	163	177	189	197	200
21	72	66	64	65	67	72	79	87	97	108	122	137	152	168	181	193	200	204	210
220	63	61	63	67	73	81	90	100	112	125	139	153	168	181	192	199	202	201	220
230	54	57	62	70	79	89	100	111	124	137	151	164	176	186	193	195	194	189	230
240	48	55	64	74	85	97	108	120	133	145	157	169	177	183	185	184	178	170	240
250	46	56	68	80	92	104	116	128	139	150	160	168	173	174	172 156	166	158	147	250
260	50	63	76	90	102	114	125	135	145	153	159	163	164	162	156	146	135	122	260
270	61	76	90	104	115	125	135	143	150	${ }^{155}$	158	158	155	148	139	127	114	102	270
280	80	96	109	121	131	139	146	152	155	157	156	152	145	136	124	III	98	87	280
290	106	120	132	142	149	155	159	168	${ }^{161}$	5	155	147	137	126	112	100	88	80	290
300	134	146	156	162	167	169	169	168	165	r60	152	142	130	117	105	93	85	80	300
310	161	171	177	180	181	180	177	173	166	158	148	136	124	III	100	91	86	85	310
320	184	190	192	192	189	185	179	172	163	153	141	129	116	106	97	92	91	93	320
330	199	201	199	195	189	182	173	164	154	142	130	118	108	100	94	93	96	103	33°
340	204	201	195	188	179	170	160	150	138	127	116	106	98	93	91	94	101	112	340
350	198	191	183	172	162	151	142	129	II8	108	99	91	87	85	88	95	106	119	350
360	183	173	162	150	139	28	117	107	97	88	81		76	79	86	97	110	125	360
370	163	150	138	126	114	103	93	85	77	71	67	66	69	76	87	100	115	129	370

Arg.	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	Ar
d	158	153	144	133	120	107	95	84	75	66		52	50	49	52	58	69	83	${ }_{0}^{\text {d }}$
10	140	131	120	107	94	82	71	62	55	49	46	43	43	47	53	64	78	95	10
20	121	109	96	83	71	61	52	46	42	39	39	40	45	52	62	76	92	110	20
30	103	90	77	65	54	47	42	39	38	39	42	47	55	65	78	94	111	129	30
40	89	76	63	53	46	42	40	41	44	4^{8}	55	63	74	86	101	117	134	150	40
50	79	67	57	50	47	46	48	53	59	67	76	87	99	113	128	144	159	172	50
60	73	63	57	54	55	58	64	72	81	91	102	114	128	142	156	170	182	191	60
70	70	64	62	63	68	75	84	95	106	117	130	143	156	169	182	192	200	203	70
80	69	67	69	75	83	94	106	118	130	143	155	167	179	190	200	206	209	208	80
90	69	71	78	87	99	12	125	138	151	163	175	185	195	203	209	211	209	202	90
100	68	76	86	99	113	127	141	154	166	177	187	195	202	206	207	205	197	186	100
10	69	81	94	109	125	139	153	164	175	183	191	196	199	199	196	189	178	163	110
120	72	87	103	119	134	148	160	170	177	183	187	189	188	185	177	166	152	136	20
130	79	95	113	128	143	154	164	171	176	179	179	177	173	166	155	141	125	107	130
140	90	108	124	139	151	160	166	170	172	171	168	163	155	145	131	116	99	83	140
150	06	123	138	150	159	165	168	168	167	163	158	149	139	126	III	95	80	66	150
160	127	142	154	163	168	170	170	167	162	156	14^{8}	137	125	111	96	82	68	57	160
170	149	${ }^{168}$	17°	175	176	175	171	166	158	150	r_{40}	128	115	101	88	75	64	57	178
180	171	180	184	185	183	178	172	164	155	145	134	122	109	97	85	75	68	65	180
190	189	193	194	191	185	178	169	160	150	139	129	118	106	96	87	80	77	78	190
200	201	200	197	191	82	173	163	154	144	134	124	114	105	97	91	88	89	94	200
210	203	199	192	183	173	163	153	144	135	126	118	111	104	99	96	97	102	110	210
220	196	189	${ }^{1} 79$	169	158	148	$\underline{139}$	131	124	117	111	106	102	100	101	105	113	123	220
230	181	171	159	148	138	129	122	116	111	107	103	100	99	101	105	112	121	132	230
240	159	147	136	125	117	110	106	102	99	97	96	96	98	102	108	117	127	137	240
250	134	122	$1{ }_{11}$	103	9	92	91	90	90	98	92	94	98	104	112	121	130	138	250
260	110	99	91	85	82	81	82	83	8	88	92	96	102	108	${ }^{116}$	124	132	137	260
270	90	82	77	74	75	77	80	84	88	93	98	ro3	109	116	123	129	133	134	270
280	79	73	71	72	76	81	86	92	98	104	109	115	120	126	131	134	134	129	280
290	75	73	75	79	85	93	100	107	114	120	125	130	134	${ }^{3} 8$	140	138	133	122	290
300	78	80	$\begin{array}{r}86 \\ 102 \\ \hline\end{array}$	93	102	111	120	127	133	138	143	146	149	149	146	139	127	112	300 310
310	87	93	02	112	123	133	141	148	153	${ }^{1} 57$	160	169	160	156	147	134	119	103	310
320	100	109	120	132	144	153	160	166	170	172	172	169	163	154	140	125	109	94	320
330	113	125	138	150	161	$1{ }^{169}$	175	178	180	179	175	168	157	143	127	111	988	88	330
340	125	138	151	163	172	178	182	183	18I	176	167	155	140	124	110	87	88 80 80	83 80	340
350	133	147	159	169	176	180	181	178	172	161	148	132	117	r03	92	84	80	80	350
360	139	152	162	170	174	174	171	163	152	137	121	106	93	83		74	74	77	360
370	143	153	162	166	166	162	153	141	125	109	94	82	73	68	67	68	71	76	370

Table 4 (cont.). Additions to $L,-\Omega$ for the days of the year.

Day	L	-8	Day	L	-8	Day	L	-8	Day	L	-8
120.0	50820340	228761	150.0	63525425	285951	180-0	76230510	343141	210\%	88935595	400332
	53192091	229714	5	65897176	286904		78602261	344095	5	91307346	401285
121.0	55563843	230667	151.0	68268928	287857	181.0	80974013	345048	2110	93679098	40223^{8}
5	57935594	231620	, 5	70640679	288811	5	83345764	346001	5	96050849	403191
122.0	60307346	232574	152.0	73012431	289764	182.0	85717516	346954	212.0	984 22601	404144
. 5	62679097	233527	. 5	75384182	290717	. 5	88089267	347907	${ }^{212}$	100794352	405097
123.0	65050849	2344^{80}	153.0	77755934	291670	183.0	90461019	348860	213.0	103166104	40 6051
$\cdot 5$	67422600	235433	$\cdot 5$	80127685	292623	-5	92832770	349814	5	105537855	407004
124.0	69794351	236386	154.0	82499436	293576	184.0	95204521	350767	214.0	107909606	407957
- 5	72166103	237339	- 5	84871188	294530	. 5	97576273	351720	5	110281358	408910
125*	74537854	238293	155.0	87242939	295483	$185{ }^{\circ}$	99948024	352673	$215{ }^{\circ}$	112653109	409863
- 5	76909606	239246	'5	89614691	296436	$\cdot 5$	102319776	353626	. 5	115024861	410816
126-0	79281357	240199	156.0	91986442	297389	186.0	104691527	354579	216.0	117396612	411770
5	81653108	241152	-5	94358193	298342	5	107063278	355533	5	119768363	412723
127.0	84024860	242105	157.0	96729945	299296	187.0	109435030	356486	217.0	122140115	$4^{1} 3676$
'5	863966 II	243058	$\cdot 5$	99101696	300249	5	111806781	357439	5	124511866	$4^{11} 4629$
128-0	88768363	244012	$15^{8.0}$	10147344^{8}	301202	188.0	114178533	358392	218 -0	126883618	415582
. 5	91140114	244965	$\cdot 5$	103845199	302155	. 5	116550284	359345	5	129255369	416535
129.0	93511866	245918	159.0	106216951	303108	189.0	118922036	360298	219.0	2027121	417489
5	95883617	246871	-	108588702	304061	5	121293787	361252	5	4398872	4^{18442}
130.0	98255368	247824	160.0	110960453	305015	190.0	123665538	362205	220.0	6770623	419395
. 5	100627120	248777	-5	113332205	305968	5	126037290	363158	5	9142375	420348
131.0	102998871	249731	161.0	115703956	306921	191.0	128409041	3641115	221.0	11514126	421301
-5	105370623	250684	5	118075708	307874	-5	1180793	365064	5	13885878	422255
$132 \cdot 0$	107742374	251637	162.0	120447459	308827	192.0	3552544	366017	222.0	16257629	423208
. 5	1101 14125	252590	. 5	122819210	309780	- 5	5924295	366971	, 5	18629380	424161
133.0	112485877	253543	163.0	125190962	310734	193.0	8296047	367924	223.0	21001132	425114
$\cdot 5$	114857628	254497	$\cdot 5$	127562713	311687	$\cdot 5$	10667798	368877	-5	23372883	426067
134.0	117229380	255450	164.0	334465	312640	194.0	13039550	369830	224.0	25744635	427020
. 5	119601131	256403	. 5	2706216	313593	. 5	15411301	370783	. 5	28116386	427974
135.0	121972883	257356	165.0	5077968	314546	195.0	17783053	371736	225.0	30488138	428927
$\cdot 5$	124344634	258309	-5	7449719	315499	$\cdot 5$	20154804	372690	$\cdot 5$	32859889	-429880
136.0	126716385	259262	166.0	9821470	316453	196.0	22526555	373643	226-0	35231640	430833
-5	129088137	260216	. 5	12193222	317406	-5	24898307	374596	-5	37603392	431786
137.0	1859888	261169	167.0	14564973	318359	197.0	27270058	375549	227.0	39975143	432739
-5	4231640	262122	$\cdot 5$	16936725	319312	$\cdot 5$	29641810	376502	-	42346895	433693
138.0	6603391	263075	168.0	19308476	320265	198.0	32013561	377455	228.0	44718646	434646
-5	8975142	264028	-5	21680227	321218	- 5	34385312	378409	$\cdot 5$	47090397	435599
139.0	113 46894	26 4981	169.0	24051979	322172	199.0	36757064	379362	229.0	49462149	436552
$\cdot 5$	13718645	265935	$\cdot 5$	26423730	323125	$\cdot 5$	39128815	$3^{88} 0315$	5	51833900	437505
140.0	16090397	266888	170.0	28795482	324078	$200 \cdot 0$	41500567	381268	230.0	54205652	438458
. 5	18462148	26784 I	. 5	31167233	325031	. 5	43872318	382221	$\cdot 5$	56577403	439412
141.0	20833900	268794	171.0	33538985	325984	201.0	46244070 46615821	383175 38 38128	231.0	58949155 61320906	440365
-5	23205651	269747	$\cdot 5$	35910736	326937	5	48615821	384^{128}	5	61320906	44^{1318}
142.0	25577402	270700	172.0	38282487	327891	$202 \cdot 0$	50987572	385081	2320	63692657	442271
. 5	27949154	271654	. 5	40654239	328844	. 5	53359324	386034	. 5	66064409	443224
143.0	30320905	272607	173.0	43025990	329797	203.0	55731075	386987	${ }^{233} \cdot{ }^{\circ}$	68436160 70807912	444177
-	32692657	273560	$\cdot 5$	45397742	330750	$\cdot 5$	58102827	$3^{88} 7940$	5	70807912	4451^{131}
144.0	35064408	274513	174.0	47769493	331703	204.0			234.0		
${ }^{-5}$	37436159	275466		50141244	332656	-5	62846329	389847 390800	${ }^{235} \cdot 5$	75551414	447037
145. ${ }^{\circ}$	39807911	276419	1755°	52512996	333610 334563	205.0	65218081 67589832	390800 391753	$\begin{array}{r}235 \\ \hline\end{array}$	77923166 80294917	447990 448943
$\cdot 5$	42179662	277373	$\cdot 5$	54^{884747}	334563	$\cdot 5$	67589832	391753	'5	80294917	448943
146-0	44551414	278326	176-0	57256499	335516	206.0	69961584	392706	$236-0$	82666669	449896
	46923165	279279		59628250	336469	- 5	72333335	393659		85038420	450850
147.0	49294917	280232	177.0	62000002	337422	207.0	74705087	394613	${ }^{237}{ }^{\circ} \cdot$	87410172	451803
$\cdot 5$	51666668	281185	- 5	64371753	338376	-5	77076838	395566	5	89781923	452756
148-0	54038419	282138	178.0			208.0	79448589	396519	23^{8-0}	92153674	453709
	564 10171	283092	${ }^{17} 5$	69115256	340282	-5	8182034 I	397472	. 5	94525426	454662
149.0	58781922	284045	179.0	71487007	341235	209.0	84192092	398425	239.0	96897177	455615
-5	6II 53674	284998	'5	73858759	342188	$\cdot 5$	86563844	399378	$\cdot 5$	99268929	456569

Table 4 (cont.). Additions to $L,-\Omega$ for the days of the year.

Day	L	-8	Day	L	- 8	Day	L	- 8	Day	L	-8
$240 \cdot 0$	IOI6 40680	457522	270.0	II4345765	514712	$300 \cdot 0$	127050850	571902	$330 \cdot 0$	IOI 55935	629092
- 5	104012431	458475	- 5	116717516	515665	- 5	129422601	572855	. 5	12527687	630046
241.0	IO6384183	459428	271.0	II9089268	516618	$301 \cdot 0$	2194353	573809	$331 \cdot 0$	14899438	630999
$\cdot 5$	108755934	460381	-5	121461019	517572	$\cdot 5$	4566104	574762	. 5	17271189	631952
$242 \cdot 0$	I III 27686	461334	27200	123832771	${ }_{51} 1852$	302:0	6937856	575715	$332 \cdot 0$	19642941	632905
-5	II3499437	462288	- 5	126204522	519478	- 5	9309607	576668	- 5	22014692	633858
$243 \cdot 0$	115871189	463241	$273 \cdot 0$	128576274	520431	$303 \cdot 0$	IT681359	577621	$333 \cdot 0$	24386444	634812
-5	118242940	464194	-5	1348025	521384	$\cdot 5$	14053110	578574	$\cdot 5$	26758195	635765
244.0	120614691	465147	2740	3719776	522337	304.0	16424861	579528	$334 \cdot 0$	29129946	636718
. 5	122986443	466100	${ }^{\cdot} 5$	6091528	523291	-5	18796613	580481	. 5	31501698	637671
$245 \cdot 0$	125358194	467054	$275 \cdot 0$	8463279	524244	305.0	21168364	581434	$335 \cdot 0$	33873449	638624
- 5	127729946	468007	$\cdot 5$	10835031	525197	$\cdot 5$	23540116	582387	$\cdot 5$	36245201	639577
$246 \cdot 0$	501697	468960	$276 \cdot 0$	I 3206782	526150	306.0	25911867	583340	$336 \cdot 0$	38616952	640531
. 5	2873448	469913	. 5	15578533	527103	. 5	28283618	584293	. 5	40988704	64 I 484
247.0	5245200	470866	$277 \cdot 0$	17950285	528056	307.0	30655370	585247	$337 \cdot 0$	43360455	642437
-5	7616951	471819	$\cdot 5$	20322036	529010	$\cdot 5$	33027121	586200	-5	45732206	643390
$248 \cdot 0$	9988703	472773	$278 \cdot 0$	22693788	529963	308.0	35398873	587153	$338 \cdot 0$	48103958	644343
-5	12360454 ,	473726	. 5	25065539	530916	-5	37770624	588106	. 5	50475709	645296
$249 \cdot 0$	14732206	474679	2790	27437291	531869	309.0	40142376	589059	$339^{\circ} 0$	5284746 I	646250
. 5	17103957	475632	$\cdot 5$	29809042	532822	-5	42514127	590013	-5	55219212	647203
$250 \cdot 0$	19475708	476585	$280 \cdot 0$	32180793	533775	310.0	44885878	590966	$340 \cdot 0$	57590963	648156
. 5	21847460	477538	${ }^{-5}$	34552545	534729	. 5	47257630	591919	. 5	59962715	649109
$251 \cdot 0$	242 I92II	478492	281.0	36924296	535682	311.0	49629381	592872	$341 \cdot 0$	62334466	650062
-5	26590963	479445	-5	39296048	536635	-5	520 O1 133	593825	-5	64706218	651015
$252 \cdot 0$	28962714	480398	282.0	41667799	537588	312.0	54372884	594778	$342 \cdot 0$	67077969	651969
-5	31334465	481351	. 5	44039550	538541	. 5	56744636	595732	. 5	69449721	652922
253.0	33706217	482304	$283^{\circ} 0$	46411302	539494	313.0	59116387	596685	$343 \cdot 0$	71821472	$653^{8} 75$
$\cdot 5$	36077968	483257	$\cdot 5$	48783053	540448	.5	61488138	597638	. 5	74193223	654828
254.0	38449720	484211	284.0	5 II 54805	541401	314*0	63859890	598591	$344 \cdot 0$	76564975	655781
${ }^{5} 5$	40821471	485164	-5	53526556	542354	-5	66231641	599544	. 5	78936726	656734
$255 \cdot 0$	43193223	486117	$285 \cdot 0$	55898308	543307	315.0	68603393	600497	$345 \cdot 0$	81308478	657688
- 5	45564974	$4^{87} 7070$	- 5	58270059	544260	-5	70975144	601451	. 5	83680229	658641
$256 \cdot 0$	47936725	488023	$286 \cdot 0$	60641810	545213	316.0	73346895	602404	$346 \cdot 0$	86051980	659594
. 5	50308477	488976	-5	63013562	546167	.5	75718647	603357	. 5	88423732	660547
$257 \cdot 0$	52680228	489930	$287 \cdot 0$	65385313	547120	317.0	78090398	604310	$347 \cdot 0$	90795483	66 I 500
$\cdot 5$	55051980	490883	-5	67757065	548073	-5	80462150	605263	$\cdot 5$	93167235	662453
$258 \cdot 0$	57423731	491836	288.0	70128816	549026	318.0	82833901	606216	348.0	95538986	663407
. 5	59795482	492789	${ }^{-5}$	72500567	549979	.5	85205653	607170	. 5	97910738	664360
259.0	62167234	493742	289.0	74872319	550933	319.0	87577404	608123	$349 \cdot 0$	100282489	665313
$\cdot 5$	64538985	494695	-5	77244070	551886	-5	89949155	609076	-5	102654240	666266
260.0	66910737	495649	$290 \cdot 0$	79615822	552839	$320 \cdot 0$	92320907	610029	$350 \cdot 0$	105025992	667219
. 5	69282488	496602	. 5	81987573	553792	. 5	94692658	610982	. 5	107397743	668172
261.0	71654240	497555	291.0	84359325	554745	$321 \cdot 0$	97064410	611935	351.0	109769495	669126
-5	74025991	498508	-5	86731076	555698	-5	994 36I6I	612889	-5	112141246	670079
262.0	76397742	49946 I	$292 \cdot 0$	891 02827	556652	$322 \cdot 0$	101807912	61 3842	$352 \cdot 0$	II45 12997	671032
	78769494	500414	-5	91474579	557605	-5	104179664	6 I 4795	-5	I 16884749	671985
263.0	8II 41245	501368	293.0	93846330	558558	$323 \cdot 0$	106551415	615748	$353 \cdot 0$	I 19256500	672938
$\cdot 5$	83512997	502321	-5	96218082	559511	-5	108923167	616701	$\cdot 5$	121628252	673892
264.0	85884748	503274	$294{ }^{\circ}$	98589833	560464	324.0	III294918	617654	$354 \cdot 0$	124000003	674845
	88256499	504227	-5	100961584	561417	. 5	II 3666670	6ı 8608	-5	126371755	675798
265.0	90628251	505180	295.0	103333336	562371	$325 \cdot 0$	IT60 3842I	619561	$355 \cdot 0$	128743506	676751
$\cdot 5$	93000002	506134	$\cdot 5$	105705087	563324	-5	II84 IOI72	620514	-5	1515257	677704
$266 \cdot 0$	95371754	507087	296.0	108076839	564277	$326 \cdot 0$	120781924	621467	$356 \cdot 0$	3887009	678657
${ }^{\cdot 5}$	97743505	508040	-5	110448590	565230	-5	123153675	622420	-5	6258760	679611
267.0	1001 15257	508993	297.0	112820342	566183	327.0	125525427	623373	357.0	8630512	680564
$\cdot 5$	102487008	509946	-5	115192093	567136	-5	127897178	624327	. 5	I 1002263	68 1517
268*0	104858759	510899	298.0	II7563844	568090	$328 \cdot 0$	668929	625280	$358 \cdot 0$	13374014	682470
$\cdot 5$	107230511	5 I 1853	. 5	I19935596	569043	-5	3040681	626233	-5	r 5745766	683423
$269 \cdot 0$	109602262	5I 2806	29900	122307347	569996	329.0	5412432	627186	359.0	18117517	684376
$\cdot 5$	111974014	513759	$\cdot 5$	124679099	570949	-5	7784184	628139	$\cdot 5$	20489269	685330

Table 4 (cont.). Additions to $L,-\Omega$, w and to the Arguments for the days of the year.

Day	L	-8
360.0	22861020	686283
	25232772	687236
361.0	27604523	688189
-5	29976274	689142
362-0	3234^{8026}	690095
${ }^{.5}$	34719777	691049
363.0	37091529	692002
'5	39463280	692955
364.0	41835031	
${ }^{-5}$	44206783	694861
365°	46578534	695814 696768
${ }^{-5}$	48950286	696768
$366 \cdot 0$	51322037	697721

Day	*	Day	*	Day	*
0	-	130	52137	260	$1 \mathrm{IO}_{4} 274$
10	4011	140	56×48	270	108285
20	802 I	150	60158	280	112295
30	12032	160	64169	290	116306
40	16042	170	68179	300	120316
50	20053	180	72190	310	124327
60	24063	190	76200	320	128338
70	28074	200	80211	330	132348
80	32084	210	84221	340	
90	36095	220	88232	350	140369
100	40105	230	92243	360	144380
110	44116	240	96253	370	148390
120	4^{8127}	250	100264		

Arg.	D	1	2	3	4	5	6	7	8	9	10	Arg.
d	d	c	c	c	c	c	c	c	c	c	c	d
0	0.0000	0.000	0.00	0.00	$0 \cdot 00$	$0 \cdot 00$	0.00	$0 \cdot 00$	$0 \cdot 00$	$0 \cdot 00$	$0 \cdot 00$	0
30	0.4694	11.400	$23 \cdot 80$	1.06	27.81	8 -or	30.81	9.00	14.80	5.64	$20 \cdot 10$	30
60	--9388	22'799	47^{60}	$2 \cdot 12$	$55 \cdot 62$	16.02	$61 \cdot 62$	18.00	29.60	11-28	$40 \cdot 20$	60
90	1.4082	34-199	71.40	$3 \cdot 18$	83.43	24.03	92.43	26.99	44.40	16.92	$60 \cdot 30$	90
120	1.8776	45.598	95.20	$4^{2} 24$	111.24	32.04	123.24	35*99	9.20	22.56	0.40	120
150	2.3471	$56 \cdot 998$	119.00	5.30	15.05	40.05	22.05	44.99	$24^{\circ 00}$	28.20	20.50	150
180	2.8165	68-398	142.80	6.36	$42 \cdot 86$	48 -06	52.86 8.67	53.99	38.80	$33 \cdot 84$	40.59	180
210	$3 \cdot 2859$	79•797	10.60	$7 \cdot 42$	$70 \cdot 67$	56.07	$83 \cdot 67$	$62 \cdot 99$	$3 \cdot 60$	$39 \cdot{ }^{8}$	60.69	210
240	3.7553	91-197	34.40	8.48	98.48	64.08	114.48	$71 \cdot 99$	18.40	3.12 8.76	0.79	240
270	4.2247	102.596	58-20	$9 \cdot 54$	2.29	72.09	13.29	80.98	33-20	$8 \cdot 76$	20.89	270
300	4.6941	113.996	82.00	10.60	30.10	80.10 88.15	44^{10}	89.98 98.98	47799	14.40	40.99	300
330	5.1635	125.396	105.80	II \mathbf{H}^{6}	57*91	88.11	74*91	98-98	12-79	20.04	61.09	330
360	5-6329	136.795	129-60	12.72	$85 \cdot 72$	96-12	105\%72	7.98	27:59	$25 \cdot 68$	1-19	360

Arg.	11	12	13	14	15	16	17	18	19	20	21	22	Arg.
0^{d}	$\begin{gathered} c \\ 0.00 \end{gathered}$	$\underset{0.00}{c}$	$\stackrel{c}{c}$	$\underset{0.00}{c}$	$\underset{0.00}{c}$	$\underset{0.000}{c}$	$\underset{0}{c}$	$\begin{gathered} c \\ 0-\infty \end{gathered}$	$\underset{0.00}{c}$	${ }_{0}^{c}$	c	${ }_{0}^{c}$	${ }^{d}$
	3.94	7.75	7.90	$5 \cdot 16$	0.50	18.000	8.69	$9 \cdot 20$	7.50	29.50	1-51	13.88	30
60	7.88	15.50	15.80	10.32	1.00	36-000	17.38	18.40	15.00	59.00	3.02	27.76	60
90	11.82	23.25	23.70	$15 \cdot 48$	$1 \cdot 50$	$54^{\circ} 000$	26-07	27.60	22-50	88-50	4.53	$5 \cdot 64$	90
120	15.76	7.00	31.60	20.64	2.00	72.001	$34 \cdot 76$	36.80	30.00	24*00	6.04	19.52	120
150	19:70	14.75	39.50	25.80	2.50	90.001	43.45	8.00	$37 \cdot 50$	53.49	$7 \cdot 55$	$33 \cdot 40$	150
180	$23 \cdot 64$	$22 \cdot 51$	$3 \cdot 39$	30-96	3.00	108-001	$1 \cdot 14$	${ }^{1} 7 \cdot 20$	45.00	88.99	9.06	12-28	180
210	27.58	$6 \cdot 26$	11.29	4^{112}	3.49	126-001	9.83	26.40	52.50	18.49	10.57	$25 \cdot 15$	210
240	31.52	14.01	19:19	9.28	3'99	$144^{\circ} \mathrm{OOT}$	18.52	$35 \cdot 60$	60.00	47*99	12-08	3-03	240
270	$35 \cdot 46$	21.76	27.09	14.44	4.49	162.001	27.21	$6 \cdot 80$	67.50	77.49	13.59	16-91	270
3 ¢00	39.40	$5 \cdot 51$	34.99	19.60	4.99	180.001	$35 \cdot 90$	16.00	$75 \cdot 00$	12.99	15.10 16.65	30.79	300
330	$43 \cdot 34$	$13^{3 / 26}$	42.89	24.76	$5 \cdot 49$	198.001	$44 \cdot 59$	25:20	$6 \cdot 49$	$42 \cdot 49$	16.61	$8 \cdot 67$	330
360	$3 \cdot 28$	21.01	$6 \cdot 79$	29.92	$5 \cdot 99$	216.002	2.28	$34 \cdot 40$	13.99	71-99	18.12	22-55	360

Table 4 (cont.). Additions to the Arguments for the days of the year.

Arg.	23		24		25		26		27		28		29		30		31		Arg.
${ }_{0}^{d}$	d $0 \cdot 0$	c	$\stackrel{d}{\text { d }}$		d 0.0		$\stackrel{d}{\text { d }}$		d		d	c	d	c	d	c	d	${ }^{c}$	d
10	10.0 10.0	\bigcirc	O.O 10.0	${ }^{\circ}$	10 100	\bigcirc	0% 100	\bigcirc	$0 \cdot 0$ 10.0		$0 \cdot 0$	\bigcirc	$0 \cdot 0$	\bigcirc	0	\bigcirc	$0 \cdot 0$	\bigcirc	0
20	4.5	135	$5 \cdot 5$	103	20.0	0	$20 \cdot 0$	-	$20 \cdot 0$	0	$0 \cdot 0$	90	$20 \cdot 0$	-	10.	\bigcirc	10	-	10
30	14.5	135	I. 5	39	4°	143	$0 \cdot 0$	56	$30 \cdot 0$	-	$0 \cdot 0$	135	0.5	98	$2 \cdot 0$	294		138	20
40	$9 \cdot 0$	270	II.5	39	$14^{\circ} \mathrm{O}$	143	10%	56	$5 \cdot$	79	$0 \cdot 5$	2	$10 \cdot 5$	98	12.0	294	$10 \cdot 0$		
50	3.5	405	$7 \cdot 0$	142	$24^{\circ} \mathrm{O}$	143	20.0	56	15.0	79	0.5	47	$20 \cdot 5$	98	22.0	294	$5 \cdot 5$	120	50
60	13.5	405	$3 \cdot 0$	78	$8 \cdot 5$	97	$0 \cdot 0$	112	25°	79	0.5	92	$1 \cdot 0$	196	4.5	258	0. 5	258	60
70	$8 \cdot 0$	540	13.0	78	18.5	97	10.0	112	$\bigcirc \cdot$	158	$0 \cdot 5$	137	11.0	196	14.5	258	10.5	258	70
80	$3 \cdot 0$	76	9.0	14	$3 \cdot 0$	51	20.0	112	$10 \cdot 0$	158	$1 \cdot 0$	4	21.0	196	$24 \cdot 5$	258	$6 \cdot 0$	102	80
90	$13^{\circ} \mathrm{O}$	76	4.5	117	13.0	51	$0 \cdot 5$	26	$20 \cdot 0$	158	$1 \cdot 0$	49	$2 \cdot 0$	87		222	1.0	240	90
100	$7 \cdot 5$	211	0.5	53	23.0	51	10.5	26	$30 \cdot 0$	158	1.0	94	12.0	87	17.0	222	11.0	240	100
110	$2 \cdot 0$	346	10.5	53	7.5	5	20.5	26	5.0	237	$1 \cdot 0$	139	$22 \cdot 0$	87	27°	222	6.5	84	110
120	12.0	346	$6 \cdot 0$	156	17.5	5	0.5	82	$15^{\circ} \mathrm{O}$	237	1.5	6	$2 \cdot 5$	185	9.5	186	$1 \cdot 5$	222	120
130	$6 \cdot 5$	481	$2 \cdot 0$	92	1.5	148	10.5	82	25°	237	1.5	51	12.5	185	19.5	186	11.5	222	130
140	$1 \cdot 5$	17	12.0	92	11.5	148	20.5	82	- 0.5	58	1.5	96	22.5	185	$2 \cdot 0$	150	$7 \cdot 0$	66	140
150	11.5	17	$8 \cdot 0$	28	21.5	148	$0 \cdot 5$	138	$10 \cdot 5$	58	1.5	141	3.5	76	12.0	150	$2 \cdot 0$	204	150
160	$6 \cdot 0$	152	3.5	131	$6 \cdot 0$	102	10.5	138	20.5	58	2.0	8	13.5	76	$22 \cdot 0$	150	12.0	204	160
170	0.5	287	13.5	131	$16 \cdot 0$	102	$20 \cdot 5$	138	$30 \cdot 5$	58	$2 \cdot 0$	53	23.5	76	4.5	II4	$7 \cdot 5$	48	170
180	$10 \cdot 5$	287	9.5	67	0.5	56	1.0	52	5.5	137	$2 \cdot 0$	98	4°	174	14.5	114	$2 \cdot 5$	186	180
190	5*0	422	$5 \cdot 5$	3	10.5	56	II.O	52	15.5	137	$2 \cdot 0$	143	14°	174	24.5	114	12.5	186	190
200	15.0	422	$1 \cdot 0$	106	$20 \cdot 5$	56	21.0	52	25.5	137	$2 \cdot 5$	10	24°	174	7.0	7^{8}	$8 \cdot 0$	30	200
210	$9 \cdot 5$	557	11.0	106	5°	10	1.0	108	$0 \cdot 5$	216	2.5	55	$5^{\circ} \mathrm{O}$	65	17.0	78	$3 \cdot 0$	168	210
220	4.5	93	$7 \cdot 0$	42	15.0	10	$1 \mathrm{I}^{\circ} \mathrm{O}$	108	10.5	216	$2 \cdot 5$	100	15.0	65	27°	78	13.0	168	220
230	14.5	93	$2 \cdot 5$	145	25°	10	21.0	108	$20 \cdot 5$	216	$2 \cdot 5$	145	25.0	65	$9 \cdot 5$	42	$8 \cdot 5$	12	230
240	$9 \cdot 0$	228	12.5	145	9.0	153	$1 \cdot 5$	22	$30 \cdot 5$	216	$3 \cdot 0$	12	$5 \cdot 5$	163	19.5	42	$3 \cdot 5$	150	240
250	3.5	363	$8 \cdot 5$	81	19.0	153	11.5	22	$6 \cdot 0$	37	$3 \cdot 0$	57	15.5	163	2.0	6	13.5	150	250
260	13.5	363	$4 \cdot 5$	17	3.5	107	21.5	22	16.0	37	3.0	102	25.5	163	12.0	6	8.5	288	260
270	$8 \cdot 0$	498	$0 \cdot 0$	120	13.5	107	1.5	78	26.0	37	3.0	147	6.5	54	22.0	6	$4{ }^{\circ}$	132	270
280	$3 \cdot 0$	34	10.0	120	23.5	107	11.5	78	$1 \cdot 0$	116	3.5	14	16.5	54	$4{ }^{\circ}$	300	$14^{\circ} \mathrm{O}$		280
290	13.0	34	$6 \cdot 0$	56	$8 \cdot 0$	61	21.5	78	11.0	116	3.5	59	26.5	54	14.0	300	9.0	270	290
300	$7 \cdot 5$	169	$1 \cdot 5$	159	$18 \cdot 0$	61	1.5	134	21.0	116	3.5	104	$7 \cdot 0$	152	24°	300	$4 \cdot 5$	114	300
310	$2 \cdot 0$	304	11.5	159	$2 \cdot 5$	15	11.5	134	31.0	116	$3 \cdot 5$	149	17.0	152	$6 \cdot 5$	264	14.5	114	310
320	12.0	304	$7 \cdot 5$	95	12.5	15	21.5	134	$6 \cdot 0$	195	$4 \cdot 0$	16	27°	152	16.5	264	9.5	252	320
330	$6 \cdot 5$	439	$3 \cdot 5$	3 I	22.5	15	$2 \cdot 0$	48	16.0	195	4°	61	$8 \cdot 0$	43	$26 \cdot 5$	264	$5 \cdot 0$	96	330
340	1.0	574	r3.5	3 I	$6 \cdot 5$	158	$12 \cdot 0$	48	26.0	195	4°	106	18.0	43	$9{ }^{\circ} \mathrm{O}$	228	$0 \cdot 0$	234	340
350	If 0	574	$9 \cdot 0$	134	16.5	158	$22 \cdot 0$	48	$1 \cdot 5$	16	4°	151	$28 \cdot 0$	43	19.0	228	10.0	234	350
360	$6 \cdot 0$	110	$5 \cdot 0$	70	I 0	112	$2 \cdot 0$	104	11.5	16	$4 \cdot 5$	18	$8 \cdot 5$	14 I	1.5	192	$5 \cdot 5$	78	360

Arg.	32		33		34		35		36		37		38		39		40		Arg.
d		c	d	c	d	c		c		c	d	c	d	c	d	c	d	c	d
0	$0 \cdot 0$	0	$0 \cdot 0$	0	0.0	0	$0 \cdot 0$	0	$0 \cdot 0$	0	$0 \cdot 0$	0	$0 \cdot 0$	0	$0 \cdot 0$	0	$0 \cdot 0$	0	0
10	100	0	$10 \cdot 0$	0	$10 \cdot 0$	0	$0 \cdot 0$	214	$10 \cdot 0$	0	$10 \cdot 0$	0	$2 \cdot 5$	223	4.0	II	$10 \cdot 0$	0	10
20	20.0	0	20\%	0	$20 \cdot 0$	0	0.5	151	4°	22	$9 \cdot 5$	329	$5 \cdot 5$	147	$2 \cdot 5$	2	$6 \cdot 0$	245	20
30	$30 \cdot 0$	0	$0 \cdot 0$	92	$30 \cdot 0$	0	I ${ }^{\circ}$	88	$14^{\circ} \mathrm{O}$	22	$9 \cdot 5$	262	$1 \cdot 0$	294	$0 \cdot 5$	24	$2 \cdot 5$	179	30
40	$8 \cdot 0$	126	$10 \cdot 0$	92	$40 \cdot 0$	\bigcirc	I'5	25	$8 \cdot 0$	44	$9 \cdot 5$	195	$4^{\circ} 0$	218	$5 \cdot 0$	4	12.5	179	40
50	$18 \cdot 0$	126	$20 \cdot 0$	92	$50 \cdot 0$	0	1.5	239	$2 \cdot 0$	66	$9 \cdot 5$	128	$0 \cdot 0$	66	$3 \cdot 0$	26	9.0	II3	50
60	$28 \cdot 0$	126	0.5	86	$60 \cdot 0$	0	2.0	176	12.0	66	$9 \cdot 5$	61	$2 \cdot 5$	289	I. 5	17	$5 \cdot 5$	47	60
70	$6 \cdot 0$	252	10.5	86	$70 \cdot 0$	0	$2 \cdot 5$	II3	$6 \cdot 0$	88	9.0	390	$5 \cdot 5$	213	$0 \cdot 0$	8	1.5	292	70
80	16.0	252	$20 \cdot 5$	86	$80 \cdot 0$	0	$3 \cdot 0$	50	$0 \cdot 0$	110	9.0	323	1.5	61	$4^{\circ} \mathrm{O}$	19	I I'5	292	80
90	$26 \cdot 0$	252	$1 \cdot 0$	80	$90 \cdot 0$	0	$3 \cdot 0$	264	$10 \cdot 0$	110	$9 \cdot 0$	256	$4{ }^{\circ}$	284	$2 \cdot 5$	10	$8 \cdot 0$	226	90
100	$4 \cdot 5$	43	11.0	80	$100 \cdot 0$	-	$3 \cdot 5$	201	$4 \cdot 5$	15	9°	189	$0 \cdot 0$	132	I. 0	I	$4 \cdot 5$	160	100
110	14.5	43	21.0	80	$110 \cdot 0$	\bigcirc	4°	138	14.5	15	9°	122	$3 \cdot 0$	56	$5 \cdot 0$	12	I'O	94	110
120	24.5	43	$1 \cdot 5$	74	120.0	0	$4 \cdot 5$	75	$8 \cdot 5$	37	$9 \cdot 0$	55	$5 \cdot 5$	279	$3 \cdot 5$	3	I I 0	94	120
130	$2 \cdot 5$	169	11.5	74	130.0	\bigcirc	$5^{\circ} \mathrm{O}$	12	$2 \cdot 5$	59	$8 \cdot 5$	$3^{8} 4$	$1 \cdot 5$	127	1.5	25	$7 \cdot 5$	28	130
140	$12 \cdot 5$	169	21.5	74	$140 \cdot 0$	0	$5 \cdot 0$	226	12.5	59	$8 \cdot 5$	317	$4 \cdot 5$	51	$0 \cdot 0$	16	$3 \cdot 5$	273	140
150	$22 \cdot 5$	169	2.0	68	150.0	0	$5 \cdot 5$	163	$6 \cdot 5$	81	$8 \cdot 5$	250	$0 \cdot 0$	198	$4^{\circ} 0$	27	$0 \cdot 0$	207	150
160	0.5	295	12.0	68	160.0	0	$6 \cdot 0$	100	$0 \cdot 5$	103	$8 \cdot 5$	183	$3 \cdot 0$	122	2.5	18	$10 \cdot 0$	207	160
170	$10 \cdot 5$	295	22.0	68	$170 \cdot 0$	\bigcirc	$6 \cdot 5$	37	$10 \cdot 5$	103	$8 \cdot 5$	116	$6 \cdot 0$	46	$1 \cdot 0$	9	$6 \cdot 5$	14 I	170
180	$20 \cdot 5$	295	$2 \cdot 5$	62	$180 \cdot 0$	0	$6 \cdot 5$	251	5\%	8	$8 \cdot 5$	49	1.5	193	$5 \cdot 0$	20	$3 \cdot 0$	75	180
190	$30 \cdot 5$	295	12.5	62	$190 \cdot 0$	0	$7{ }^{\circ}$	188	15%	8	$8 \cdot 0$	37^{8}	$4 \cdot 5$	I17	$3 \cdot 5$	I I	$13^{\circ} \mathrm{O}$	75	190
200	$9^{\circ} 0$	86	22.5	62	$200 \cdot 0$	-	$7 \cdot 5$	125	9°	30	$8 \cdot 0$	311	$0 \cdot 0$	264	$2 \cdot 0$	2	$9 \cdot 5$	9	200
210	19.0	86	$3{ }^{\circ} \mathrm{O}$	56	4°	3	$8 \cdot 0$	62	3.0	52	$8 \cdot 0$	244	$3 \cdot 0$	$\underline{188}$	$0 \cdot 0$	24	$5 \cdot 5$	254	210
220	29.0	86	13.0	56	14.0	3	$8 \cdot 0$	276	$13^{\circ} \mathrm{O}$	52	$8 \cdot 0$	177	$6 \cdot 0$	112	$4 \cdot 5$	4	$2 \cdot 0$	188	220
230	7*0	212	$23^{\circ} 0$	56	24°	3	$8 \cdot 5$	213	$7 \cdot 0$	74	$8 \cdot 0$	110	$1 \cdot 5$	259	2.5	26	12.0	188	230
240	17.0	212	$3 \cdot 5$	50	$34^{\circ} \mathrm{O}$	3	$9{ }^{\circ} 0$	150	I'O	96	$8 \cdot 0$	43	$4 \cdot 5$	183	$1 * 0$	17	$8 \cdot 5$	122	240
250	$27^{\circ} \mathrm{O}$	212	13.5	50	$44^{\circ} \mathrm{O}$	3	$0 \cdot 0$	24	II•O	96	$7 \cdot 5$	372	$0 \cdot 5$	31	$5 \cdot 0$	28	$5 \cdot 0$	56	250
260	5.5	3	$23 \cdot 5$	50	54°	3	$0 \cdot 0$	238	5.5	1	$7 \cdot 5$	305	$3 \cdot 0$	254	$3 \cdot 5$	19	1.0	301	260
270	15.5	3	4°	44	64°	3	$0 \cdot 5$	175	I $5 \cdot 5$	1	$7 \cdot 5$	238	$6 \cdot 0$	178	$2 \cdot 0$	10	11.0	301	270
280	$25^{\circ} 5$	3	14.0	44	$74^{\circ} \mathrm{O}$	3	$1 \cdot 0$	112	$9 \cdot 5$	23	$7 \cdot 5$	171	$2 \cdot 0$	26	$0 \cdot 5$	1	$7 \cdot 5$	235	280
290	3.5	129	$24^{\circ} \mathrm{O}$	44	84°	3	1.5	49	$3 \cdot 5$	45	$7 \cdot 5$	104	$4 \cdot 5$	249	$4 \cdot 5$	12	$4 \cdot 0$	169	290
300	13.5	129	4.5	38	94°	3	1.5	263	$\pm 3 \cdot 5$	45	$7 \cdot 5$	37	$0 \cdot 5$	97	3°	3	$0 \cdot 5$	103	300
310	23.5	129	14.5	38	104%	3	2.0	200	$7 \cdot 5$	67	$7 \cdot 0$	366	$3 \cdot 5$	21	1.0	25	$10 \cdot 5$	103	310
320	I•5	255	24.5	38	$114{ }^{\circ} \mathrm{O}$	3	$2 \cdot 5$	137	I $\cdot 5$	89	$7{ }^{\circ}$	299	$6 \cdot 0$	244	5.5	5	$7{ }^{\circ}$	37	320
330	II'5	255	$5{ }^{\circ}$	32	$124^{\circ} \mathrm{O}$	3	$3 \cdot 0$	74	II• 5	89	$7 \cdot 0$	232	$2 \cdot 0$	92	$3 \cdot 5$	27	$3 \cdot 0$	282	330
340	21.5	255	15%	32	$134^{\circ} \mathrm{O}$	3	$3 \cdot 5$	11	$5 \cdot 5$	111	$7{ }^{\circ}$	165	$5 \cdot 0$	16	2.0	18	13.0	282	340
350	$0 \cdot 0$	46	$25 \cdot 0$	32	$144^{\circ} 0$	3	$3 \cdot 5$	225	$0 \cdot 0$	16	$7 \cdot 0$	98	0.5	163	$0 \cdot 5$	9	$9 \cdot 5$	216	350
360	$10^{\circ} 0$	46	$5 \cdot 5$	26	$154^{\circ} \mathrm{O}$	3	$4^{\circ} \mathrm{O}$	162	10.0	16	$7{ }^{\circ}$	31	$3 \cdot 5$	87	$4 \cdot 5$	20	$6 \cdot 0$	150	360

Table 4 (cont.). Additions to the Arguments for the days of the year.

Arg.	41		42		43		44		45		46		47		30	48	49	50	Arg.
d	d		d									c	d	c	d	e	d	c	
0	0.0	0	0%	0	O-O	-	0%	0		0		0	O\%	0	O-00	0	O-00	0	-
10	10\%	0	10-0	0	0.5	148	2-5	150	O-O	125	30	21	10\%	-	$10 \cdot 00$	0	$10 \cdot 00$	0	10
20	20%	0	$20 \cdot 0$	-	1.5	107	5'5	121	$0 \cdot 5$	117	60	42	$20 \cdot 0$	-	$20 \cdot 00$	0	$6 \cdot 37$	50	20
30	$30^{\circ} 0$	0	$3 \cdot 0$	37	$2 \cdot 5$	66	I'5	63	100	109	$2 \cdot 5$	16	30%	-	$2 \cdot 45$	4	2'73	100	30
40	$40^{\circ} \mathrm{O}$	0	13°	37	$3 \cdot 5$	25	$4 * 5$	34	I'5	IOI	$5 \cdot 5$	37	40\%	-	$12 \cdot 45$	4	$12 \cdot 73$	100	40
50	50%	-	23°	37	$4{ }^{\circ}$	173	O\%	155	$2 * 0$	93	20	11	$50 \cdot 0$	0	$22 \cdot 45$	4	$9 \cdot 10$	49	50
60	60%	0	6%	74		132		126	$2 \cdot 5$	85	5*	32	60%	-	4.89	8	$5 \cdot 47$	99	60
70	70\%	0	16\%	74	6%	91	60	97	3.0	77	1-3	6	$70 \cdot 0$	0	14.89	8	1.83	48	70
80	80%	0	26.0	74	$7{ }^{\circ}$	50	$2 \cdot 0$	39	$3 \cdot 5$	69	45	27	80%	-	$24 \cdot 89$	8	12-83	48	80
90	90\%	0	$9^{\circ} \mathrm{O}$	III	$8 \cdot 0$	9	5*O	10	40	61	I-0	I	90%	0	$7 \cdot 34$	12	$8 \cdot 20$	98	90
100	100\%	0	$19^{\circ} 0$	III	$8 \cdot 5$	157	$0 \cdot 5$	131	4.5	53	4°	22	100\%	0	17×34	12	$4 \cdot 56$	47	100
110	110%	-	2%	148	$0 \cdot 5$	75	3'5	102	5\%	45	- 0	64	110%	-	27*34	12	$0 \cdot 93$	97	120
120	$120{ }^{\circ}$	0	12%	148	1-5	34	$6 \cdot 5$	73	$5 \cdot 5$	37	$3 \cdot 5$	17	120\%	-	$9 \cdot 79$	16	10×93	97	120
130	130%	0	22.0	148	2%	182	$2 \cdot 5$	15	60	29	$6 \cdot 5$	38	130%	\bigcirc	$19 \cdot 79$	16	7*30	46	130
140	140°	0	$5 \cdot 5$	33	$3{ }^{\circ}$	141	5%	165	$6 \cdot 5$	21	$3 \cdot 0$	12	$140^{\circ} 0$	\bigcirc	2*23	20	$3 \cdot 66$	96	140
150	150%	0	$15 \cdot 5$	33	4°	100	1*O	107	7*	13	$6 \cdot$	33	150%	0	12-23	20	-.03	45	150
160	160%	0	$25 \cdot 5$	33	5\%	59	4°	78	$7 \cdot 5$	5	$2 \cdot 5$	7	160%	0	$22 \cdot 23$	20	10.03	45	160
170	$170 \cdot 0$	0	$8 \cdot 5$	70	6\%0	18 $\times 66$	-\%	20	$7 \cdot 5$	130	$5 \cdot 5$	28	${ }^{1} 70^{\circ} 0$	0	4.68 +4.68	24	$6 \cdot 40$	95	170
180	$6 \cdot 5$	8	$18 \cdot 5$	70	$6 \cdot 5$	166	$2 \cdot 5$	170	$8 \cdot 0$	122	2.0	2	180\%	0	1.4 .68	24	2•76	44	180
190	16.5	8	I'5	107	$7 \cdot 5$	125	$5 \cdot 5$	141	$8 \cdot 5$	II4	$5^{\circ} \mathrm{O}$	23	$190{ }^{\circ}$	0	2.4 .68	24	12•76	44	190
200	$26 \cdot 5$	8	II*5	107	$8 \cdot 5$	84	$1 \cdot 5$	83	$9^{\circ} 0$	106	1.0	65	200%	-	7-13	28	$9 \cdot 13$	94	200
210	$36 \cdot 5$	8	$21 \cdot 5$	107	$0 \cdot 5$	2	$4 \cdot 5$	54	-\%	90	4.5	18	210%	O	$17 \cdot 13$	28	$5 \cdot 50$	43	210
220	$46 \cdot 5$	8	$4 \cdot 5$	144	1.0	150	O\%	175	$0 \cdot 5$	82	$0 \cdot 5$	60	$220^{\circ} 0$	O	27*13	28	1.86 1.	93	220
230	$56 \cdot 5$	8	1.4.5	144	$2 \cdot 0$	109	$3{ }^{\circ} 0$	146	I'0	74	4°	13	$230 \% 0$	0	$9 \cdot 57$	32	11-86	93	230
240	$66 \cdot 5$	8	24.5	144	3%	68	6%	117	I-5	66	$0 \cdot 0$	55	$240^{\circ} 0$	0	19.57	32	$8 \cdot 23$	42	240
250	$76 \cdot 5$	8	$8 \div 0$	29	4°	27	$2{ }^{\circ} \mathrm{O}$	59	2%	58	$3 \cdot 5$	8	$250^{\circ} 0$	0	2.02	36	$4 \cdot 59$	92	250
260	$86 \cdot 5$	8	18.0	29	$4 \cdot 5$	175	50	30	$2 \cdot 5$	50	$6 \cdot 5$	29	260°	0	12.02	36	$0 \cdot 96$	4 I	260
270	$96 \cdot 5$	8	1.0	66	$5 \cdot 5$	134	0.5	151	3.0	42	3-0	3	$270^{\circ} 0$	0	22.02	36	$10 \cdot 96$	41	270
280	106*5	8	11.O	66	$6 \cdot 5$	93	$3 \cdot 5$	122	$3 \cdot 5$	34	$6 \cdot$	24	280\%	O	$4 \cdot 47$	40	$7 \cdot 33$	91	280
290	$116 \cdot 5$	8	21.0	66	$7 \cdot 5$	52	$6 \cdot 5$	93	$4^{\circ} \mathrm{O}$	26	$2{ }^{\circ} \mathrm{O}$	66	$290{ }^{\circ}$	-	1447	40	$3 \cdot 69$	40	290
300	$126 \cdot 5$	8	4°	103	$8 \cdot 5$	II	$2 \cdot 5$	35	$4 \cdot 5$	18	$5 \cdot 5$	19	$300^{\circ} 0$	0	24.47	40	. 0.06	90	300
310	$136 \cdot 5$	8	$14^{\circ} \mathrm{O}$	103	$0 \cdot 0$	118	$5 \cdot 5$	6	$5^{\circ} \mathrm{O}$	10	1-5	61	310%	0	$6 \cdot 91$	44	10.06	90	310
320	$146 \cdot 5$	8	24°	103	$1 \cdot 0$	77	1.0	127	$5 \cdot 5$	2	5°	14	320%	0	$16^{\circ} 91$	44	6.43	39	320
330	$156 \cdot 5$	8	$7{ }^{\circ} \mathrm{O}$	140	2.0	36	$4^{\circ} \mathrm{O}$	98	$5 \cdot 5$	127	10	56	$330^{\circ} 0$	0	$26 \cdot 91$	44	$2 \cdot 79$	89	330
340	$166 \cdot 5$	8	$17^{\circ} \mathrm{O}$	140	$2 \cdot 5$	184	\bigcirc	40	$6-0$ $6 \cdot 5$	119	4.5	9	$340^{\circ} 0$	0	$9 \cdot 36$	48	$12 \cdot 79$ $9 \cdot 16$	89 38	340 350
350	3%	16	0.5	25	$3 \cdot 5$	143	300	II	$6 \cdot 5$	III	0.5	51	$350 \cdot 0$	-	$19 \cdot 36$	48	$9 \cdot 16$	38	350
360	$13^{\circ} \mathrm{O}$	16	$10 \cdot 5$	25	4.5	102	$5 \cdot 5$	161	7°	103	4°	4	360\%	0	1-80	52	$5 \cdot 53$	88	360

Arg.	51		52		53		54		55		56		57		58	59		Arg.
d	d	c	d	c	d	c	d	c	d		d		- d		d	d	c	d
0	0%	0	0.0	0	$0 \cdot 0$	0	$0 \cdot 0$	0	$0 \cdot 0$	0		0		0	$0 \cdot 0$	$0 \cdot 0$	0	-
10	10\%	0	10%	-	10\%	0	10\%	0	10.0	0	10%	0	10%	0	10\%	10%	0	10
20	7*	9	20\%	0	20\%	0	20\%	0	20\%	0	$9 \cdot 5$	59		107	$20^{\circ} 0$	$20^{\circ} 0$	0	20
30	4°	18	$7 \cdot 5$	1	$30^{\circ} 0$	0	$0 \cdot 0$	32	30%	0	$9 \cdot 5$	38	13.5	107	$30^{\circ} 0$	$30^{\circ} 0$	O	30
40	I*5	8	17.5	1	$4 \cdot 5$	7	$10^{\circ} 0$	32	$7 \cdot 5$	57	$9 \cdot 5$	17	$7 \cdot 5$	102	$40 \cdot 0$	$40^{\circ} \mathrm{O}$	O	40
50	11-5	8	5\%	2	14.5	7	20%	32	17.5	57	$9{ }^{\circ}$	76	1-5	97	$50^{\circ} \mathrm{O}$	$50 \cdot 0$	-	50
60	$8 \cdot 5$	17	$15^{\circ} 0$	2	24.5	7	0.5	17	$27 \cdot 5$	57	9°	55	11.5	97	60%	60\%	-	60
70	$6 \cdot 0$	7	3°	0	$34^{* 5}$	7	$10 \cdot 5$	17	$5{ }^{\circ}$	II4	$9{ }^{\circ}$	34	$5 \cdot 5$	92	70°	70*0	0	70
80	$3^{\circ} \mathrm{O}$	16	13*	0	$9^{\circ} \mathrm{O}$	14	$20 \cdot 5$	17	$15^{\circ} \mathrm{O}$	114	9*0	13	$15 \cdot 5$	92	80%	$80 \cdot 0$	\bigcirc	80
90	$0 \cdot 5$	6	0.5	I	19*0	14	1.0	2	25°	II4	$8 \cdot 5$	72	$9 \cdot 5$	87	90\%	90%	0	90
100	10.5	6	$10 \cdot 5$	1	29\%	14	11.0	2	3°	41	$8 \cdot 5$	51	$3 \cdot 5$	82	100\%	100\%	\bigcirc	100
110	$7 \cdot 5$	15	$20 \cdot 5$	1	$3 \cdot 5$	21	21.0	2	13.0	41	$8 \cdot 5$	30	13.5	82	110*0	1100	0	110
120	$5{ }^{\circ}$	5	$8 \cdot$	2	13.5	21	10	34	23°	41	$8 \cdot 5$	9	$7 \cdot 5$	77	$120^{\circ} 0$	120%	0	120
130	2.0	14	18.0	2	$23 \cdot 5$	21	11.0	34	$0 \cdot 5$	98	$8 \cdot 0$	68	1.5	72	130%	$130 \% 0$	0	130
140	12.0	14	$6 \cdot 0$	0	$33 \cdot 5$	21	21.0	34	$10 \cdot 5$	98	$8 \cdot$	47	11.5	72	$140^{\circ} 0$	$140{ }^{\circ}$	0	140
150	$9 \cdot 5$	4	16.0	0	8-0	28	$1 \cdot 5$	19	$20 \cdot 5$	98	$8 \cdot 0$	26	5'5	67	$150^{\circ} 0$	$150^{\circ} 0$	0	150
160	$6 \cdot 5$	13	$3 \cdot 5$	1	18.0	28	11.5	19	$30 \cdot 5$	98	$8 \cdot 0$	5	15.5	67	$160^{\circ} 0$	160\%	0	160
170	4°	3	13.5	1	28.0	28	$21 \cdot 5$	19	8-5	25	$7 \cdot 5$	64	$9 \cdot 5$	62	170°	1700° 1800	0	170
180	I-O	12	$1{ }^{\circ}$	2	$2 \cdot 5$	35	2.0	4	$18 \cdot 5$	25	$7 \cdot 5$	43	$3 \cdot 5$	57 57	$180^{\circ} \mathrm{O}$	180% 1.5	O	180
190	11-O	12	11.0	2	12.5	35	12.0	4	$28 \cdot 5$	25	$7 \cdot 5$	22	$13 \cdot 5$	57	190°	1-5	3	190
200	$8 \cdot 5$	2	21.0	2	$22 \cdot 5$	35	22\%	4	6.0	82	$7 \cdot 5$	$\underline{1}$	$7 \cdot 5$	52	$200^{\circ} \mathrm{O}$	IT.5	3	200
210	$5 \cdot 5$	11	$9^{\circ} 0$	0 -	$32 \cdot 5$	35	$2{ }^{2} 0$	36	16.0	82 82	$7^{\circ} \mathrm{O}$	60	T-5	47	$210^{\circ} \mathrm{O}$	21.5 31.5	3	210
220	3*0	1	19*0	0	$7 \cdot 5$	3	12.0	36	26\%0	82	7*0	39 18	11.5 5.5	47 42	2200° 230	$31 \cdot 5$ $41 \cdot 5$	3	220 230
230	O-O	10	$6 \cdot 5$	1	17.5	3	22.0	36	4°	9	7°	18	5'5	42	$230^{\circ} 0$	41.5	3	230
240	10\%	10	16.5	1	$27 \cdot 5$	3	2.5 12.5	21	$14^{\circ} \mathrm{O}$	9	$6 \cdot 5$ $6 \cdot 5$	77 56	$15 \cdot 5$ $9 \cdot 5$	42 37	$240^{\circ} 0$ 250%	5I'5	3 3	240 250
250	$7 \cdot 5$	0	$4^{\circ} \mathrm{O}$	2	2%	10	12.5	21	$24^{\circ} \mathrm{O}$	9 66	$6 \cdot 5$ $6 \cdot 5$	56 35	9.5	37	250% 260%	61'5	3 3	250 260
260	$4 \cdot 5$	9 18	14% 2%	2	12% 22.0	10	$22 \cdot 5$ 3.0	21 6	1.5 II.5	66 66	$6 \cdot 5$ $6 \cdot 5$	35 14	3.5 13.5	32 32	260% 2700°	$71 \cdot 5$ $81 \cdot 5$	3 3	260 270
270	I-5	18	2.0	0	22.0	10	3.0	6	II'5	66	$6 \cdot 5$	14 7	13.5	32	$270^{\circ} 0$ 280%	$81 \cdot 5$ $91 \cdot 5$	3	270 280
280	11-5	18	12.0	0	$32 \cdot 0$	10	13*	6	21.5	66	$6 \cdot$	73	$7 \cdot 5$	27	280\%0	$91 \cdot 5$ 土	3	280
290	$9^{\circ} \mathrm{O}$	8	22.0	0	6.5	17	$23^{\circ} \mathrm{O}$	6 38	31.5 9.0	66 123	$6{ }^{6} 0$	52 31	1.5 11.5	22	290% 300%	IOI-5 III-5	3	290 300
300	$6 \cdot 0$	17	$9 \cdot 5$	I	$16 \cdot 5$ 26.5	17	3.0 13°	38 38	9% 190	123 123	6*0	31 10	11.5 5.5	12	300% 310%	$111 \cdot 5$ I2I'5	3 3	300 310
310	$3 \cdot 5$	7	19.5	1	$26 \cdot 5$	17	13°	38	$19^{\circ} \mathrm{O}$	123	6.0	10	$5 \cdot 5$ $5 \cdot 5$	17	$310{ }^{-0}$	121.5	3	320
320	$0 \cdot 5$	16	$7^{\circ} \mathrm{O}$	2	I\%	24	23.0 $3 \cdot 5$	38	29\%0	123 50	$5 \cdot 5$ $5 \cdot 5$	69 48	15.5 9.5	17	$320 \% 0$ 330%	$131 \cdot 5$ $141 \cdot 5$	3	320 330
330	10.5	16	$17^{\circ} \mathrm{O}$	2	11.0	24	$3 \cdot 5$ 13.5	23	$7 \circ$ $\times 1$	50 50	$5 \cdot 5$ $5 \cdot 5$	48 27	$9 \cdot 5$ $3 \cdot 5$	12	330% 340%	$141 \cdot 5$ $151 \cdot 5$	3	330 340
340	$8{ }^{\circ} \mathrm{O}$	6	5% 150	0	21.0 31.0	24	13.5 23.5	23 23	17% 27%	50	5.5	${ }^{27}$	3.5 13.5	7	$33^{\circ} \mathrm{O}$	16\%-5	3	350
350	5°	15	15°	0	31.0	24	23.5	23 8	27.0 4.5	50 107		65	13.5 7.5	2	360*0		3	360
360	$2 \cdot 5$	5	$2 \cdot 5$	1	$5 \cdot 5$	31	$4^{\circ} \mathrm{O}$	8	4.5	107	5.	65	$7 \cdot 5$	2	$360{ }^{\circ}$	171.5	3	360

Table 4 (concl.). Additions to the Arguments for the days of the year.

Arg.	60		61		62		63	64	65	66	67	68	69	70	71		Arg.
d	d	c	d	c	d	c	d	c	d	c	d	c	d	c	d	c	d
0	$0 \cdot 0$	0	$0 \cdot 0$	-	$0 \cdot 0$	0	$0 \cdot 00$	\bigcirc	$0 \cdot 0$	-	-0	0	$0 \cdot 0$	0	$0 \cdot 0$	-	0
10	10.0	0	10.0	-	$0 \cdot 0$	141	10.00	-	10.0	-	10.0	-	10.0	-	$10 \cdot 0$	-	10
20	5.0	46	$20 \cdot 0$	-	0.5	77	20.00	-	$20 \cdot 0$	\bigcirc	20.0	-	20.0	-	$20 \cdot 0$	-	20
30	0.0	92	$2 \cdot 0$	10	1.0	13	$30 \cdot 00$	-	$3 \cdot 9$	2	2.4	2	$2 \cdot 3$	2	$2 \cdot 0$	196	30
40	$10 \cdot 0$	92	12.0	10	1.0	154	$7 \cdot 87$	6	13.9	2	12.4	2	$12 \cdot 3$	2	12.0	196	40
50	5%	138	$22^{\circ} \mathrm{O}$	10	1.5	90	17.87	6	$23 \cdot 9$	2	22.4	2	- $22 \cdot 3$	2	22.0	196	50
60	0.5	13	4°	20	2.0	26	27.87	6	$7 \cdot 8$	4	$4 \cdot 9$	4	$4 \cdot 6$	4	$4 \cdot 5$	172	60
70	10.5	13	$14^{\circ} \mathrm{O}$	20	$2 \cdot 0$	167	$5 \cdot 74$	12	17.8	4	14.9	4	14.6	4	14.5	172	70
80	$5 \cdot 5$	59	$24^{\circ} \mathrm{O}$	20	$2 \cdot 5$	103	15.74	12	$1 \cdot 7$	6	24.9	4	$24 \cdot 6$	4	24.5	172	80
90	0.5	105	$6 \cdot 0$	30	$3 \cdot 0$	39	25.74	12	11.7	6	$7 \cdot 3$	6	$6 \cdot 9$	6	$7 \cdot 0$	148	90
100	$10 \cdot 5$	105	$16 \cdot 0$	30	3.0	180	$3 \cdot 62$	18	21.7	6	17×3	6	16.9	6	17.0	148	100
110	5.5	151	26.0	30	$3 \cdot 5$	II6	13.62	18	$5 \cdot 6$	8	27.3	6	$26 \cdot 9$	6	27°	148	110
120	1.0	26	$8 \cdot 0$	40	4°	52	23.62	18	15.6	8	$9 \cdot 8$	8	$9 \cdot 2$	8	$9 \cdot 5$	124	120
130	11.0	26	18.0	40	4°	193	$1 \cdot 49$	24	$25 \cdot 6$	8	19.8		19.2	8	19.5	124	130
140	$6 \cdot 0$	72	$0 \cdot 0$	50	$4 \cdot 5$	129	11.49	24	$9 \cdot 5$	10	$2 \cdot 2$	10	1.5	Io	2.0	100	140
150	1.0	I 18	10.0	50	$5 \cdot 0$	65	21.49	24	19.5	10	12.2	10	11.5	10	12.0	100	150
160	11.0	118	$20 \cdot 0$	50	$5 \cdot 5$	1	31.49	24	3.4	12	22.2	10	21.5	IO	22.0	100	160
170	6.0	164	$2 \cdot 5$	7	$5 \cdot 5$	142	$9 \cdot 36$	30	13.4	12	4.6	12	3.9	12	4.5	76	170
180	$1 \cdot 5$	39	12.5	7	$6 \cdot 0$	78	19.36	30	23.4	12	14.6	12	$13 \cdot 9$	12	14.5	76	180
190	11.5	39	22.5	7	$6 \cdot 5$	14	$29 \cdot 36$	30	$7 \cdot 3$	14	$24^{6} 6$	12	$23 \cdot 9$	12	24.5	76	190
200	$6 \cdot 5$	85	$4 \cdot 5$	17	$6 \cdot 5$	155	7.23	I	17.3	14	$7 \cdot 1$	14	$6 \cdot 2$	14	$7 \cdot 0$	52	200
210	1.5	13 I	14.5	17	7.0	91	17.23	I	$1 \cdot 2$	16	17.1	14	16.2	14	$17^{\circ} 0$	52	210
220	11.5	131	24.5	17	$7 \cdot 5$	27	27.23	1	11.2	16	27.1	14	$26 \cdot 2$	14	27°	52	220
230	7.0	6	$6 \cdot 5$	27	$7 \cdot 5$	168	5•10	7	21.2	16	$9 \cdot 5$	16	$8 \cdot 5$	16	$9 \cdot 5$	28	230
240	$2 \cdot 0$	52	$16 \cdot 5$	27	$8 \cdot 0$	104	15.10		$5 \cdot 1$	18	19.5	16	18.5	16	19.5	28	240
250	12.0	52	26.5	27	$8 \cdot 5$	40	25.10	7	15.1	18	I.9	18	0.8	18	2.0	4	250
260	7.0	98	$8 \cdot 5$	37	8.5	181	2.98	13	25.1	18	$11 \cdot 9$	18	10.8	18	12.0	4	260
270	$2 \cdot 0$	144	18.5	37	9.0	117	12.98	13	$9{ }^{\circ}$	20	21.9	18	20.8	18	22.0	4	270
280	12.0	144	0.5	47	9.5	53	22.98	13	19.0	20	4.4	20	$3 \cdot 1$	20	4.0	200	280
290	$7 \cdot 5$	19	$10 \cdot 5$	47	$0 \cdot 0$	130	0.85	19	$2 \cdot 9$	22	14.4	20	$13 \cdot 1$	20	$14^{\circ} \mathrm{O}$	200	290
300	2.5	65	$20 \cdot 5$	47	0.5	66	10.85	19	12.9	22	24.4	20	$23 \cdot 1$	20	24.0	200	300
310	12.5	65	$3 \cdot 0$	4	I 0	2	20.85	19	22.9	22	$6 \cdot 8$	22	5.4	22	$6 \cdot 5$	176	310
320	$7 \cdot 5$	111	13.0	4	10	143	30.85	19	$6 \cdot 8$	24	16.8	22	15.4	22	$16 \cdot 5$	176	320
330	2.5	157	23.0	4	I. 5	79	$8 \cdot 72$	25	16.8	24	26.8	22	25.4	22	$26 \cdot 5$	176	330
340	12.5	157	$5{ }^{\circ}$	14	$2 \cdot 0$	15	18.72	25	0.7	26	$9 \cdot 3$	24	$7 \cdot 7$	24	9.0	152	340
350	8.0	32	15.0	14	$2 \cdot 0$	156	28.72	25	$10 \cdot 7$	26	19.3	24	17.7	24	19.0	I 52	350
360	3.0	78	25°	14	$2 \cdot 5$	92	$6 \cdot 59$	31	$20 \cdot 7$	26	$1 \cdot 7$	26	$0 \cdot 0$	26	1.5	128	360

Arg.	72		73		74		75		76		77		78	Arg.
d	d	c	d	c	d	c	d	c			d	c	d	d
0	$0 \cdot 0$	\bigcirc	$0 \cdot 0$	0	$0 \cdot 0$	\bigcirc	0.0	\bigcirc	$0 \cdot 0$	-	0.0	\bigcirc	0.0	0
10	10.0	-	$0 \cdot 0$	214	$10 \cdot 0$	0	10.0	-	$2 \cdot 5$	44	$10 \cdot 0$	0	10.0	10
20	20.0	0	0.5	151	4.5	16	$7 \cdot 0$	7	$5 \cdot 5$	29	9.5	54	$20 \cdot 0$	20
30	$30 \cdot 0$	-	1.0	88	14.5	16	$4{ }^{\circ}$	14	$1 \cdot 0$	58	9.5	43	$30 \cdot 0$	30
40	$8 \cdot 0$	41	1.5	25	9.0	32	$1 \cdot 5$	6	$4 \cdot 0$	43	9.5	32	$40 \cdot 0$	40
50	$18 \cdot 0$	4 I	1.5	239	$3 \cdot 5$	48	11.5	6	$0 \cdot 0$	13	9.5	21	$50 \cdot 0$	50
60	$28 \cdot 0$	4 I	$2 \cdot 0$	176	13.5	48	$8 \cdot 5$	13	$2 \cdot 5$	57	$9 \cdot 5$	10	$60 \cdot 0$	60
70	$6 \cdot 0$	82	$2 \cdot 5$	113	$8 \cdot 0$	64	$6 \cdot 0$	5	$5 \cdot 5$	42	9.0	64	$70 \cdot 0$	70
80	16.0	82	$3 \cdot 0$	50	$3 \cdot 0$	9	$3 \cdot 0$	12	1.5	12	9.0	53	$80 \cdot 0$	80
90	26.0	82	$3 \cdot 0$	264	$13 \cdot 0$	9	0.5	4	4.0	56	$9{ }^{\circ}$	42	$90 \cdot 0$	90
100	4.5	14	3.5	201	7.5	25	10.5	4	$0 \cdot 0$	26	9.0	31	100\%	roo
110	14.5	14	$4{ }^{\circ}$	138	$2 \cdot 0$	41	$7 \cdot 5$	11	3.0	II	9.0	20	110.0	110
120	24.5	14	$4 \cdot 5$	75	12.0	41	$5 \cdot 0$	3	$5 \cdot 5$	55	$9 \cdot 0$	9	2.5	120
130	$2 \cdot 5$	55	5°	12	$6 \cdot 5$	57	$2 \cdot 0$	10	1.5	25	$8 \cdot 5$	63	12.5	130
140	12.5	55	5.0	226	1.5		12.0	10	4.5	10	$8 \cdot 5$	52	22.5	140
150	22.5	55	$5 \cdot 5$	163	11.5	2	$9 \cdot 5$	2	$0 \cdot 0$	39	$8 \cdot 5$	41	$32 \cdot 5$	150
160	$0 \cdot 5$	96	$6 \cdot 0$	100	6.0	18	$6 \cdot 5$	9	3.0	24	$8 \cdot 5$	30	$42 \cdot 5$	160
170	10.5	96	$6 \cdot 5$	37	0. 5	34	4.0	1	$6 \cdot 0$	9	$8 \cdot 5$	19	$52 \cdot 5$	170
180	20.5	96	6.5	251	10.5	34	1.0	8	15	38	$8 \cdot 5$	8	62.5	180
190	$30 \cdot 5$	96	$7{ }^{\circ}$	188	$5 \cdot 0$	50	11.0	8	4.5	23	$8 \cdot 0$	62	72.5	190
200	$9 \cdot 0$	28	7×5	125	15.0	50	$8 \cdot 5$	\bigcirc	$0 \cdot 0$	52	$8 \cdot 0$	51	$82 \cdot 5$	200
210	19%	28	8.0	62	9.5	66	$5 \cdot 5$	7	3.0	37	$8 \cdot 0$	40	92.5	210
220	29°	28	$8 \cdot 0$	276	4.5	II	2.5	14	6.0	22	$8 \cdot 0$	29	102.5	220
230	$7{ }^{\circ}$	69	$8 \cdot 5$	213	14.5	11	$0 \cdot 0$	6	1.5	51	$8 \cdot 0$	18	112.5	230
240	17.0	69	9.0	150	$9 \cdot 0$	27	$10 \cdot 0$	6	4.5	36	$8 \cdot 0$	7	5.0	240
250	27°	69	$0 \cdot 0$	24	$3 \cdot 5$	43	$7{ }^{\circ}$	13	0.5	6	$7 \cdot 5$	61	$15^{\circ} 0$	250
260	$5 \cdot 5$	1	$0 \cdot 0$	238	13.5	43	$4 \cdot 5$	5	3.0	50	7.5	50	25°	260
270	15	I	0.5	175	8.0	59	1.5	12	$6 \cdot 0$	35	$7 \cdot 5$	39	$35^{\circ} \mathrm{O}$	270
280	25.5	I	1.0	II2	3.0	4	11.5	12	2.0	5	$7 \cdot 5$	28	$45^{\circ} 0$	280
290	3.5	42	1.5	49	$13^{\circ} \mathrm{O}$	4	$9{ }^{\circ}$	4	$4 \cdot 5$	49	$7 \cdot 5$	17	55°	290
300	13.5	42	1.5	263	$7 \cdot 5$	20	$6 \cdot 0$	11	0.5	19	$7 \cdot 5$	6	65.0	300
310	23.5	42	$2 \cdot 0$	200	$2 \cdot 0$	36	3.5	3	$3 \cdot 5$	4	7.0	60	$75^{\circ} \mathrm{O}$	310
320	$1 \cdot 5$	83	$2 \cdot 5$	137	12.0	36	0.5	10	$6 \cdot 0$	48	$7 \cdot 0$	49	85.0	320
330	11.5	83	$3 \cdot 0$	74	$6 \cdot 5$	52	10.5	10	$2 \cdot 0$	18	7.0	38	95°	330
340	21.5	83	$3 \cdot 5$	11	1.0	68	$8 \cdot 0$	2	$5 \cdot 0$	3	7.0	27	105.0	340
350	$0 \cdot 0$	15	3.5	225	11.0	68	$5 \cdot 0$	9	0.5	32	$7{ }^{\circ}$	16	$115{ }^{\circ}$	35°
360	10.0	15	4°	162	$6 \cdot 0$	13	$2 \cdot 5$	1	$3 \cdot 5$	17	$7{ }^{\circ}$	5	$7 \cdot 5$	360

Table 5. Conversion of seconds of arc into degrees and minutes.

Deg.	Seconds	Deg.	Seconds	Deg.	Seconds	Deg.	Seconds	Deg.	Seconds	Deg.	Seconds	Min.	Seconds
0	00	60	216000	120	432000	180	648000	240	864000	300	1080000	0	00
1	3600	61	219600	121	435600	181	651600	241	867600	301	1083600	1	60
2	7200	62	223200	122	439200	182	655200	242	871200	302	1087200	2	120
3	10800	63	226800	123	44^{2800}	183	658800	243	874800	303	1090800	3	180
4	14400	64	230400	124	446400	184	662.400	244	878.400	304	1094400	4	240
5	18000	65	234000	125	450000	185	666000	245	882000	305	1098000	5	300
6	21600	66	237600	126	453600	186	669600	246	885600	306	1101600	6	360
7	25200	67	2.41200	127	457200	187	673200	247	889200	307	1105200	7	420
8	28800	68	244800	128	460800	188	676800	248	892800	308	1108800	8	480
9	32400	69	248400	129	464400	189	680400	249	896400	309	1112400	9	540
10	36000	70	252000	130	468000	190	684000	250	900000	310	1116000	10	600
11	39600	71	255600	131	471600	191	687600	251	903600	311	1119600	11	660
12	43200	72	259200	132	475200	192	691200	252	907200	312	1123200	12	720
13	46800	73	262800	133	478800	193	694800	253	910800	313	1126800	13	780
14	50400	74	266400	134	482400	194	698400	254	914400	314	1130400	14	840
15	54000	75	270000	I35	486000	195	702000	255	918000	315	I 134000	15	900
16	57600	76	273600	136	489600	196	705600	256	921600	316	1137600	16	960
17	61200	77	277200	137	493200	197	709200	257	925200	317	1141200	17	1020
18	64800	78	280800	138	496800	198	712800	258	928800	318	II44800	18	1080
19	68400	79	284400	139	500400	199	716400	259	932400	319	1148400	19	1240
20	72000	80	288000	140	504000	200	720000	260	936000	320	1152000	20	1200
21	75600	81	291600	141	507600	201	723600	261	939600	321	1155600	21	1260
22	79200	82	295200	142	511200	202	727200	262	943200	322	1159200	22	I320
23	82800	83	298800	143	514800	203	730800	263	946800	323	1162800	23	1380
24	86400	84	302400	144	518400	204	734400	264	950400	324	1166400	24	1440
25	90000	85	306000	145	522000	205	738000	265	954000	325	1170000	25	1500
26	93600	86	309600	146	525600	206	741600	266	957600	326	1173600	26	1560
27	97200	87	313200	147	529200	207	745200	267	961200	327	1177200	27	1620
28	100800	88	316800	148	532800	208	748800	268	964800	328	1180800	28	1680
29	104400	89	320400	149	536400	209	752400	269	968400	329	1184400	29	1740
30	108000	90	324000	150	540000	210	756000	270	972000	330	1188000	30	1800
31	111600	91	327600	151	543600	211	759600	271	975600	331	1191600	31	1860
32	115200	92	331200	152	547200	212	763200	272	979200	332	1195200	32	1920
33	118800	93	334800	153	550800	213	766800	273	982800	333	1198800	33	1980
34	122400	94	338400	154	554400	214	770400	274	986400	334	1202400	34	20.40
35	126000	95	342000	155	558000	215	774000	275	990000	335	1206000	35	2100
36	129600	96	345600	156	561600	216	777600	276	993600	336	1209600	36	2160
37	133200	97	349200	157	565200	217	781200	277	997200	337	1213200	37	2220
38	136800	98	352800	158	568800	218	784800	278	1000800	33^{8}	1216800	38	2280
39	140400	99	356400	159	572400	219	788400	279	1004400	339	1220400	39	2340
40	144000	100	360000	160	576000	220	792000	280	1008000	340	1224000	40	2,400
41	147600	101	363600	161	579600	221	795600	281	1011600	347	1227600	41	2.460
42	151200	102	367200	162	583200	222	799200	282	1015200	342	1231200	42	2520
43	154800	103	370800	163	586800	223	802800	283	1018800	343	1234800	43	2580
44	158400	104	374400	164	590400	224	806400	284	1022400	344	1238400	44	2640
45	162000 163600	105	378000 381600	165 166	594000 597600	225 226	810000 813600	285 286	1026000 1029600	345 346	1242000 1245600	45 46	2700 2760
46 47	163600 169200	106 107	381600 385200	166 167	597600 601200	226 227	813600 817200	286 287	1029600 1033200	346 347	1245600 1249200	46 47	2760 2820
47	169200	107	385200	167	601200	227	817200	287	1033200	347	1249200	47	2820
48	172800	108	388800	168	604800	228	820800	288	1036800	348	1252800	48	2880
49	176400	109	392400	169	608400	229	824400	289	1040400	349	1256400	49	2940
50	180000	110	396000	170	612000	230	828000 831600	290	1044000	350	1260000	50	3000
51	183600	III	399600	171	615600	231	831600	291	1047600	351	1263600	51	3060
52	187200	112	403200	172	619200	232	835200	292	1051200	352	1267200	52	3120
53	190800	113	406800	173	622800	233	838800	293	1054800	353	1270800	53	3180
54	194400	114	410.400	174	626400	234	842400 846000	294	1058400	354	1274400	54	32.40
55	198000	115	414000	175	630000	235	846000	295	1062000	355	1278000	55	3300
56	201600	116	417600	176	633600	236	849600	296	1065600	356	1281600	56	3360
57	205200	117	421200	177	637200	237	853200	297	1069200	357	1285200	57	3420
58	208800	118	424800	178	640800	238	856800	298	1072800	358	1288800	58	3480
59	212400	119	428400	179	644400	239	860400	299	1076400	359	1292400	59	3540
60	216000	120	432000	180	648000	240	864000	300	1080000	360	1296000	60	3600

- What \&

[^0]: xgI8 November 29.

[^1]: * Intended to be $8: 80600$. The tables involving a_{1} had been computed before the new values were obtained; the difference is much smaller than the probable error of this constant and therefore the tables were not changed.

[^2]: * For explanation of the star, see p. 4.
 \dagger Included through the presence of term 3 in S containing terms in Tables P 42, P 43.
 \ddagger Included through the presence of term 7 in S containing terms in Tables \mathbf{P}_{4}, P_{7}.

[^3]: * The year was actually divided into 36.5 parts, the small difference of a quarter of a day being insensible when applied to these tables.

[^4]: * Zeros are added to the initial values expressed in seconds of arc and centuries in order to carry the computations to the required number of significant figures.

[^5]: * For centuries very distant from the twentieth, each value f in this table requires the addition of $-(f-50) \times 0.0065 t_{e}$, where t_{e} is the number of centuries from $\mathbf{1 9 0 0} 0$.
 \dagger For centuries very distant from the twentieth, each value f in this table requires the addition of $-(f-30) \times 0.0062 t_{e}$, where t_{e} is the number of centuries from $\mathbf{1 9 0 0} 0$.

[^6]: * The portions factored by k and the correction to Table II in Σ_{1} may be added after this interpolation has been performed.
 \dagger Or for any number of years if the arguments have been previously obtained. The exceptions to this, explained below, are Tables 30,3 I, 32, III, and 15, 16, I7, V, and Tables 33, IV, 24, V.

[^7]: * The formula shows, nevertheless, that $\Delta^{\mathbf{v}}$ can be included with $\Delta^{\prime \prime \prime}$ by means of the common factor O•II.

[^8]: * The notations for the differences are explained above.

[^9]: * Owing to an error discovered too late to permit of a change in the sum of the constants of Table P 40, this subtracted constant has rendered a few of the values in this table negative.

