

WORKS OF

PROFESSOR CECIL H. PEABODY

PUBLISHED BY

JOHN WILEY & SONS.

Thermodynamics of the Steam-engine and other Heat-engines.

This work is intended for the use of students in technical schools, and gives the theoretical training required by engineers. Sixth Edition, Revised, vii + 543 pages, 119 tigures. 8vo, cloth, \$5.00.

Tables of the Properties of Steam and other Vapors, and Temperature-Entropy Table.

These tables were prepared for the use of students in technical schools and colleges, and of engineers in general. Eighth Edition, Rewritten. 8vo, vi + 133pages, cloth, \$1.00.

Valve-Gears for Steam-engines.

This book is intended to give engineering students instruction in the theory and practice of designing valve-gears for steam-engines. Second Edition, Revised and Enlarged. 8vo, v + 142 pages, 33 folding-plates, cloth, \$2.50.

Steam-boilers.

By Prof. Cecil H. Peabody and Prof. Edward F. Miller. Nearly 400 pages; 142 illustrations. 8vo, cloth, \$4.00.

Manual of the Steam-engine Indicator.

154 pages ; 98 figures. 12mo, cloth, \$1.50.

Naval Architecture.

v + 616 pages; 217 figures. 8vo, cloth, \$7.50.

TABLES OF THE PROPERTIES OF STEAM

AND OTHER VAPORS

AND

TEMPERATURE-ENTROPY TABLE

BY

CECIL H. PEABODY

PROFESSOR OF NAVAL ARCHITECTURE AND MARINE ENGINEERING MASSACHUSETTS INSTITUTE OF TECHNOLOGY

EIGHTH EDITION. REWRITTEN TOTAL ISSUE FIFTEEN THOUSAND

NEW YORK JOHN WILEY & SONS London: CHAPMAN & HALL, Limited

1

4

GENERAL

Copyright, 1888, 1907, 1909, by CECIL H. PEABODY.

> Stanbope Press F. H. GILSON COMPANY BOSTON. U.S.A.

PREFACE.

THE Tables of the Properties of Steam were published in 1888, to accompany the author's "Thermodynamics of the Steam Engine"; in 1907 they were revised, taking advantage of added information then available, and a Temperature-Entropy Table was added to facilitate calculations for steam turbines.

The properties of steam have recently been redetermined by new and refined methods, that are capable of great certainty and precision, so that computations based upon them show a satisfactory concordance. These tables have been recomputed with this information, and may, therefore, be used with confidence and may be expected to have permanence.

The Temperature-Entropy Table gives solutions of all adiabatic problems (and many others) both for saturated and for superheated steam with ease and precision, and permits us to make certain determinations not otherwise possible. For engineering purposes answers to such problems may in general be read directly from the table; greater refinement can be had by interpolation when necessary.

Original data are given in the Introduction, and methods of computation are given with such completeness that each one may decide for himself the degree of accuracy he shall attribute to the properties and methods presented.

The author desires to express his appreciation of assistance given by Mr. H. A. Everett, S.B., in the preparation of material, computation of tables and reading of proof.

C. H. P.

MAY 1st, 1909.

CONTENTS.

																rage
INTRODUCTIO	N.			•	• •			•	•	•	•	•	•			I
Table I.	Steam,	English	UNI	rs,	DEGRI	ZES		•	•	•	•		•	•	•	35
Table II.	STEAM,	ENGLISH	UNIT	`S , 1	Pouni	s					•			•		45
Table III.	STEAM,	FRENCH	AND	ENG	GLISH	UN	ITS		•	•	•				•	54
Table IV.	ETHER													•		66
Table V.	Ассоно	L									•	•			•	67
Table VI.	CHLORO	FORM .			• •											68
Table VII.	CARBON	BISULPH	IDE		÷ .											69
Table VIII.	CARBON	TETRAC	HLORI	DE							•				•	70
Table IX.	ACETON							•	•	•	•					71
Table X.	AMMON	IA							•	•	•					72
Table XI.	SULPHU	R DIOXII	DE .		• •			•	•	•		•				73
Table XII.	SPECIFIC	C VOLUM	ES OF	L	QUIDS			1		•	•					74
Table XIII.	VOLUME	es of He	T W	ATE	R.					•				•		74
Table XIV.	INCHES	OF MER	CURY	ANI	Pou	NDS										75
Table XV.	CORREC	TIVE FAC	CTORS,	Su	PERHI	EATE	ED	Ste	AM							76
TEMPERATUR	E-ENTRO	PY TABLI	Ξ.							•						77
NAPERIAN L	OGARITH	MS .														130
FOUR-PLACE	LOGARIT	THMS .							•	•						132

PROPERTIES OF STEAM AND OTHER VAPORS.

INTRODUCTION.

For engineering purposes steam is generated in a boiler which is partially filled with water, and arranged to receive heat from the fire in the furnace. The ebullition is usually energetic, and more or less water is mingled with the steam; but if there is a fair allowance of steam space over the water, and if proper arrangements are provided for withdrawing the steam, it will be found when tested to contain a small amount of water, usually between half a per cent and a per cent and a half. Steam which contains a considerable percentage of water is passed through a separator which removes almost all of it. Such steam is considered to be approximately dry.

If the steam is quite free from water it is said to be dry and saturated; steam from a boiler with a large steam space and which is making steam very slowly is nearly if not quite dry.

Steam which is withdrawn from the boiler may be heated to a higher temperature than that found in the boiler, and is then said to be superheated.

The physical properties of both saturated and superheated steam have now been determined by methods susceptible of certainty and precision so that computations based on them show satisfactory concordance. The results of these investigations will be quoted directly from the original authorities, together with their estimate of the degree of precision to be attributed to their results. This matter should be read with care, so that each one may determine for himself the confidence he can have in the following tables and the accuracy of computation made by their aid.

Saturated Steam. — The essential properties of saturated steam are heat of the liquid, heat of vaporization, specific pressure and specific volume; other properties dependent on these are heat equivalent of external work, heat equivalent of internal work, entropy of the liquid and entropy of vaporization. All these properties depend on the temperature only, and may conveniently be determined and tabulated for use in solving engineering problems. They are given by Tables I and III for each

I

degree Fahrenheit and each degree Centigrade, and by Table II for each pound per square inch. Properties of some other vapors are given in Tables IV to XI.

Thermometric Scales. — Temperatures are commonly measured by mercurial thermometers which may be graduated on the Fahrenheit or the centigrade scales. The centigrade scale has its zero at the freezingpoint of water, and the boiling-point is called 100 degrees. The Fahrenheit thermometer has its freezing-point numbered 32° F., and its boilingpoint 212 degrees. It is clear that

$$t_F = \frac{9}{5} t_C + 32$$
 and $t_C = \frac{5}{9} (t_F - 32)$.

Physicists base their heat measurements on a thermodynamic scale, which is determined from certain theoretical considerations of the properties of gases. For engineering purposes the difference between this scale and the scale of the mercurial thermometer is not important.

Standard Temperature. — It is customary to refer all calculations for gases to the standard conditions of the pressure of the atmosphere (760 mm. of mercury) and to the freezing-point of water. Formerly the freezing-point was taken as the standard temperature for water and steam as even now it is the initial point for tables of the properties of saturated vapors. But the investigation of the mechanical equivalent of heat by Rowland resulted in a determination of the specific heat of water with much greater delicacy than is possible by Regnault's method of mixtures, and showed that the freezing-point is not well adapted for the standard temperature for water. It is the habit of many physicists to take 15° C. as the standard temperature, and this corresponds substantially with 62° F., at which the English units of measure are standard.

Unit of Heat. — The unit for the measurement of heat is the amount of heat required to raise one unit of weight of water one degree from the standard temperature.

The calorie is the amount of heat required to raise the temperature of one kilogram of water from 15° to 16° C.

The British Thermal Unit is the amount of heat required to raise the temperature of one pound of water from 62° to 63° F.

These two definitions lead to a discrepancy of 0.03 of one per cent, which is insignificant for engineering purposes; in these tables the B.T.U. is taken as the standard, and the discrepancy noted is ignored.

Some physicists prefer to use for the unit of heat, one hundredth part of the heat required to raise a kilogram of water from freezing-point to boiling-point. Such a mean calorie is greater than those defined above, by 0.2 of one per cent. It requires also that a different value shall be assigned to the mechanical equivalent of heat than that given in the following section.

Mechanical Equivalent of Heat.—If mechanical energy or work is transformed into heat and applied to heating water, it will be found that 778 foot-pounds of work will be required to heat one pound of water from 62° to 63° F.; in other words, one B.T.U. is equivalent to that number of foot-pounds. This is known as the mechanical equivalent of heat. The most authoritative determination of this important constant appears to be that by Rowland,* who gives the value quoted, namely,

778 foot-pounds.

This is equivalent to

427 metre kilograms

in the metric system. Since his experiments were made, this important physical constant has been investigated by several experimenters, and also a recomputation of his results has been made after a recomparison of his thermometers. The conclusion appears to be that his results may be a little small, but the differences are not important, and it is not certain that the conclusion is valid. There seems, therefore, no sufficient reason for changing the accepted values given above.

Specific Heat is the number of thermal units required to raise a unit of weight of a given substance one degree of temperature. The specific heat of water at standard temperature is unity, and any specific heat is essentially a ratio.

Specific Heat of Water. — The most reliable determination of the specific heat of water is that by Dr. Barnes,[†] who used an electrical method devised by Professor Callendar and himself, and who extended the method to and below freezing-point by carefully cooling water without the formation of ice to -5° C. This method gives relative results with great refinement, and gives also a good confirmation of Rowland's determination of the mechanical equivalent of heat. Dr. Barnes reports values of the specific heat of water up to 95° C.

* Proc. Am. Acad., vol. xv (N. S. vii), 1879. † Physical Review, vol. xv, p. 71, 1902. For temperatures above boiling-point values of the specific heat of water have been determined by the author from Regnault's * experiments on the heat of the liquid, allowing for the correct specific heat of the water in his calorimeter from Barnes's work. The probable error of the heats of the liquid thus obtained, appears to be one-fourth of a per cent. But the heat of the liquid for temperatures above boiling-point is habitually associated with the heat of vaporization, and the above error is less than one-tenth per cent of their sum.

In the following table Barnes's results are quoted directly from o° to 55° C.; from 55 to 95 degrees his results have been slightly increased to join with results determined by recomputing Regnault's experiments on the heat of the liquid for water by allowing for the true specific heat at low temperature from Dr. Barnes's experiments. The maximum effect of modifying Dr. Barnes's results is to increase the heat of the liquid at 95 degrees by one-tenth of one per cent.

Temperature. Specific		Specific	Tempe		Specific	Temper	ature.	Specific		
C.	F.	Heat.	C.	F.	Heat.	C.	F.	Heat.		
0 5 10 15 20 25 30 35 40	32 41 50 59 68 77 86 95 104	$\begin{array}{c} 1.0094\\ 1.00530\\ 1.00230\\ 1.00030\\ 0.99895\\ 0.99806\\ 0.99759\\ 0.99735\\ 0.99735\\ 0.99735\\ \end{array}$	45 50 55 60 65 70 75 80 85	$113 \\ 122 \\ 131 \\ 140 \\ 149 \\ 158 \\ 167 \\ 176 \\ 188$	$\begin{array}{c} 0.99760\\ 0.99800\\ 0.99850\\ 0.99940\\ 1.00040\\ 1.00150\\ 1.00275\\ 1.00415\\ 1.00557\end{array}$	90 95 100 120 140 160 180 200 220	194 103 212 248 284 320 356 392 428	$\begin{array}{c} 1.00705\\ 1.00855\\ 1.01010\\ 1.01620\\ 1.02230\\ 1.02850\\ 1.03475\\ 1.04100\\ 1.04760\end{array}$		

The specific heats of water at high temperatures have been determined by Dieterici[†] using a method which does not appear to have the certainty of Barnes's method. His results appear to be systematically larger than Barnes's results, the discrepancy at 95° C. being four-tenths of a per cent. Should his specific heats be used to determine the heat of the liquid at 200° C., the results would appear to be four-tenths of a per cent larger than the tabular values of the heat of the liquid at 200° C., in Table III. Even so if this be compared with the sum of the heat of the liquid and the

* Mémoires de l'Institut de France, etc., tome xxvi.

† Annalen der Physik, vol. 16, part 4, p. 593. 1905.

heat of vaporization, the discrepancy becomes about one-tenth of a per cent.

Heat of the Liquid. — The heat required to raise one unit of weight of any liquid from freezing-point to a given temperature is called the heat of the liquid at that temperature.

If the specific heat of water were constant the heat of the liquid would be found by multiplying the increase of temperature by the specific heat. An approximate result can be obtained by using the mean specific heat. For example, the mean specific heat from 0° to 25° C. may be taken to be $\frac{1}{5}(\frac{1}{2} \times 1.0094 + 1.00530 + 1.00230 + 1.00030 + 0.99895 + \frac{1}{2} \times 0.99806)$ = 1.00212,

and

$$25 \times 1.00212 = 25.05,$$

which in this case corresponds exactly with the tabular value in Table III.

The integral calculus gives for a varying specific heat the expression

$$q = \int c \, dt$$

for the heat of the liquid. An equivalent of the operation represented by this equation is to draw a curve with temperatures and specific heats as coördinates and to measure the area under that curve. The fact that the specific heat does not vary much from unity suggests the following method:

where k is the difference between the specific heat and unity; it may be positive or negative as the case may be. Then

 $c = \mathbf{I} + k$

$$q = t + \int kd,$$

which leads to a convenient graphical method since k is always small, and the diagram may be drawn with a large scale for ordinates, and accurate results can be obtained. The values for the heat of the liquid in the tables were obtained in this way.

The following table gives equations for heats of the liquid for various substances as determined by Regnault:*

^{*} Mémoires de l'Institut de France, etc., tome xxvi.

HEAT OF THE LIQUID.

Alcohol	$q = 0.54754t + 0.0011218t^2 + 0.000002206t^3$
Ether	$q = 0.52901t + 0.0002959t^2$
Chloroform	$q = 0.23235t + 0.0000507t^2$
Carbon bisulphide	$q = 0.23523t + 0.0000815t^2$
Carbon tetrachloride	$q = 0.19798t + 0.0000906t^2$
Aceton	$q = 0.50643t + 0.0003965t^2$

Heat of Vaporization. — If a unit of weight of a liquid be at a certain temperature and subject to the corresponding pressure, then the amount of heat required to entirely vaporize it into dry saturated vapor at that temperature and against that pressure, is called the heat of vaporization. Henning* gives the following formula for the heat of vaporization of a kilogram of water in calories,

$$r = 94.210 \left(365 - t\right)^{0.31249} \tag{1}$$

He gives as the probable error of this equation one-tenth of one per cent. Other experiments by Dieterici,[†] Griffiths,[‡] and A. C. Smith§ are represented by this equation with nearly the same degree of precision.

The heat of vaporization of one pound of water in B.T.U. is given by the following equation, obtained by transforming equation (1).

$$r = 141.124 \ (689 - t)^{0.31249}. \tag{2}$$

Both of the above equations are applicable from freezing to boilingpoint; equation (1) from 0° to 100° C., and equation (2) from 32° to 212° F.

Total Heat. — The amount of heat required to raise a unit of weight of a liquid from freezing-point to a given temperature and to vaporize it into dry saturated vapor against the corresponding temperature is called the total heat.

The quantity is clearly equal to the sum of the heat of the liquid and the heat of vaporization; if the first is represented by q and the latter by r, then H, the total heat, is given by the following equation,

$$H = r + q. \tag{3}$$

Conversely, if H and q are known, the preceding equation will give r.

* Annalen der Physik, vol. 21, part 4, p. 849, 1906.

- † Annalen der Physik, vol. 16, part 4, p. 912, 1905.
- ‡ Phil. Trans. 186, p. 261, 1895; p. 593, 1905.
- § Physical Review, vol. xxv, 1907.

From an investigation of certain experiments on the superheating of steam by throttling, Dr. Harvey N. Davis* gives for the total heat of steam in B.T.U. per pound,

$$H = H_{212} + 0.3745 (t - 212) - 0.000550 (t - 212)^2,$$
(4)

in which H_{212} is the total heat at boiling point. Equation (2) gives for the heat of vaporization at boiling-point 969.7, and the method on page 5, for finding the heat of the liquid, gives 180.3 at that temperature, consequently the above equation may be written, for English units,

 $H = 1150 + 0.3745(t - 212) - 0.000550(t - 212)^{2}.$ (5)

For French units the equation takes the form

$$H = 638.9 + 0.3745 (t - 100) - 0.00099 (t - 100)^{2}.$$
 (6)

Dr. Davis gives one-tenth of one per cent for the probable error of this equation.

For other liquids the heats of vaporization are given by Regnault.

Ether	H		94	+	$0.45t - 0.00055556t^2$
Chloroform	H	=	67	+	0.1375 <i>t</i>
Carbon bisulphide	H	=	90	+	$0.14601t - 0.0004123t^{2}$
Carbon tetrachloride	H	=	52	+	$0.14625t - 0.000172t^2$
Aceton.	H	-	140.5	+	$0.36644t - 0.000516t^2$

Specific Pressure. — It is customary to develop theoretical thermodynamic equations with the specific pressure expressed in pounds per square foot, for English units. Engineers habitually express pressures in pounds per square inch.

For French units, specific pressures are expressed in kilograms per square meter. Engineers use kilograms per square centimeter, and on the other hand physicists commonly express pressure in millimeters of mercury.

One cubic decimeter (or one liter) of mercury weighs 13.5959 kilograms, and a cubic decimeter is one-thousandth of a cubic meter, consequently the pressure of a column of mercury one millimeter high, on a base one meter square, is 13.5959 kilograms.

The normal pressure of the atmosphere is taken to be 760 mm. of mercury (at 0° C.), which is equivalent to 10,333 kilograms per square meter. The normal pressure of the atmosphere is, therefore, 1.0333 kilograms per square centimeter. It was formerly the custom to graduate pressure gauges in atmospheres, for use in countries using the metric system. There is a tendency to confusion of units that are roughly approximate, and in some cases it is necessary to determine whether a pressure is intended to be in atmospheres or in kilograms per square centimeter.

Taking the meter to be equivalent to 39.37 inches, and the kilogram to weigh 2.20462 pounds, then one millimeter of mercury will be equivalent to

$$\frac{13.5959 \times 2.20462}{\overline{39.37}^2} = .019338$$

of a pound per square inch. The normal pressure of the atmosphere is 760 times this, or 14.696 pounds per square inch. The corresponding specific pressure is 2116 pounds per square foot.

Pressure of Saturated Steam. — Recent determinations of the pressure of saturated steam have been made by Holborn and Henning* with all the resources of modern physical methods including the platinum thermometer. Their results reduced to the thermometric scale are set down in Table III exactly as given in their original report. Their own tests covered the range of temperature from 50° C. to 200° C., but they extend their results to 205° C. The results which they give from freezing-point to 50° C. were deduced by them from experiments of Thiesen and Scheel. In Table III the pressures from 205° to 220° C. are extrapolated by the author by aid of a curve of corrections for Regnault's equation for the range 100° to 220° C.

Holborn and Henning attribute to their own experiments a precision of 1b0 of a degree Centigrade; this is far beyond technical requirements for direct application, but is needed in the computation of specific volumes, as will appear later. Thiesen and Scheel's experiments had a less degree of precision; and the extrapolation from 205° to 220° C. is open to some doubt.

Pressures of Other Vapors. — Regnault determined the pressures of various vapors and deduced for all of them equations having the form

$$\log p = a + b\alpha^n + c\beta^n. \tag{7}$$

* Annalen der Physik, vol. 26, part 4, p. 833,1908.

The following table gives the special forms of the equation and the constants for several vapors:

Alcohol Ether Chloroform. Carbon bisulphide Carbon tetrachloride	$\log \alpha.$ $a - b\alpha^n + c\beta^n$ $a + b\alpha^n - c\beta^n$ $a - b\alpha^n - c\beta^n$ $a - b\alpha^n - c\beta^n$ $a - b\alpha^n - c\beta^n$	a. 5.4562028 5.0286298 5.2253893 5.4011662 12.0962331	<i>b</i> . 4.9809960 0.0002284 2.9531281 3.4405663 9.1375180	, c. 0.0485397 3.1906390 0.0668673 0.2857386 1.9674890						
Alcohol Ether Chloroform Carbon bisulphide Carbon tetrachloride	$\begin{array}{c c} & & & \\ & & & \\ \hline & & & \\ 9.99708557-10 & 9.9 \\ 0.0145775 & 9.9 \\ 9.9974144 & -10 & 9.9 \\ 9.9977628 & -10 & 9.9 \\ 9.9997120 & -10 & 9.9 \\ \end{array}$	$\begin{array}{c c} \log \beta. \\ \hline \\ 409485 & = 10 \\ 96877 & -10 \\ 868176 & -10 \\ 911997 & -10 \\ 949780 & -10 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cimits. ^o , + 150° C. ^o , + 120° C. ^o , + 164° C. ^o , + 140° C. ^o , + 188° C.						

Zeuner * gives the following equation for aceton based on Regnault's work:

$$\begin{split} \log \quad p &= a - b\alpha^n + c\beta^n; \\ a &= 5.3085419; \\ \log b\alpha^n &= + 0.5312766 - 0.0026148\,t; \\ \log c\beta^n &= - 0.9645222 - 0.0215592\,t. \end{split}$$

Specific Volume of Saturated Vapor. — From the extreme difficulty of direct experimental determinations of the specific volume of saturated vapor it has been customary to compute this property by aid of the equation -

$$s = u + \sigma = \frac{r}{AT} \frac{1}{\frac{dp}{dt}} + \sigma, \qquad (8)$$

where s is the volume of the vapor and σ is the volume of the liquid; the other quantities are r the heat of vaporization, T the absolute temperature, $\frac{\mathbf{I}}{A}$ the mechanical equivalent of heat, and $\frac{dp}{dt}$ the differential coefficient of the pressure with regard to temperature. A close approximation to the differential coefficient may be had by the following process: choosing a temperature (for example 100° C), take the pressure at two degrees

* Mechanische Wärmetheorie.

higher (102° C.) and at two degrees lower (98° C.) and divide by 4. The pressures must be in kilograms per square meter. From Table III we deduce

$$\frac{\Delta p}{\Delta t} = \frac{1109.3 - 961.6}{4} = 36.92.$$

The pressures are 1000 times the tabular pressures in kilograms per square centimeter. The expression $\frac{\Delta p}{\Delta t}$ is taken to represent an operation of the nature explained above. This statement is given in hopes that it may make evident an important method to readers who are not conversant with calculus.

Equation (8) must be used for all other vapors than steam, and for steam at temperatures less than 100° C.; it probably gives the best values for the specific volume of steam at temperatures higher than 100° C., as will appear in the discussion of experimental results.

Laws of Thermodynamics. — Theoretical thermodynamics is based on two propositions or laws known as the first and second laws. The first law is stated on page 3, under the heading Mechanical Equivalent of Heat.

The second law cannot be stated so briefly and satisfactorily; it may perhaps be best represented by one of its consequences, which can be written

$$e = \frac{T - T'}{T},\tag{9}$$

where e is the efficiency of an ideal perfect heat engine and T and T' are • absolute temperatures at which the engine receives and rejects heat.

For our present purpose it may be sufficient to define the absolute temperature by the expressions

$$T = t + 273^{\circ} \text{ C.}$$
 (10)

$$T = t + 459.5^{\circ} \text{ F.}$$
 (11)

Derivation of Equation (8).—It is hoped that the following simple derivation of equation (8) may be evident even to those who are not familiar with theoretical thermodynamics. Suppose that we have a simple engine consisting only of a piston moving in a cylinder with a closed end, both being supposed to be made of a non-conducting substance. Let Fig. r represent the indicator diagram of a series of operations as follows. First assume that there is one pound of water at the temperature t in the cylin-

der at the beginning of operations which can be represented by a; to this let there be applied the heat r; it will entirely vaporize the water at constant pressure and the volume will increase \int_{p}^{p} from σ to s, the increase being

$$\iota = s - \sigma$$

The second operation is an expansion represented by bc. During the third operation, represented by cd, we must imagine that heat is withdrawn in some way and that the steam partially condenses. Finally we have a compression da, which closes the diagram.

(12)

The second law of thermodynamics, represented by equation (9), gives for the efficiency of the diagram

$$\frac{T - (T - \Delta T)}{T} = \frac{\Delta T}{T},$$

for the temperature at which heat is withdrawn is ΔT degrees less than T. Consequently the heat changed into work is

$$\frac{r\Delta T}{T}$$
.

But by the first law of thermodynamics this heat is equivalent to the work represented by the diagram. If $\frac{\mathbf{I}}{A}$ is the mechanical equivalent, then the work produced from the heat is

$$\frac{1}{A} \frac{r \Delta T}{T}$$
.

But the pressure is p pounds per square foot during the forward stroke and $p - \Delta p$ during the return stroke, so that the effective work is

$$\Delta p. u,$$

where u is the increase in volume. For example, the piston might have one square foot of area and move u feet. Equating the above expressions

$$u\Delta p = \frac{r\Delta T}{AT} \cdot$$

Now it can make no difference whether the change of temperature is measured in the usual way and written Δt or measured as above. Therefore r

$$u = \frac{r}{AT\frac{\Delta p}{\Delta t}}.$$
 (13)

The expression $\frac{\Delta p}{\Delta t}$ is that discussed on page 10. Those familiar with calculus will recognize that equation (13) leads to

$$u = \frac{r}{AT\frac{dp}{dt}}$$
 (14)

Specific Volume of Saturated Steam. — The relation of the pressure of saturated steam to the temperature is given by Holborn and Henning in the form of a table of results which are quoted directly in Table III, the pressure being expressed in millimeters of mercury. It is considered that the best way of dealing with the differential coefficient $\frac{dp}{dt}$ is to replace it by the ratio $\frac{\Delta p}{\Delta t}$, as discussed on page 10, using 4° C. for the interval of

temperatures Δt .

A number of elements enter into this consideration. If the relation of the pressure to the temperature could be represented by a second degree curve, that is, if such a curve were a parabola with its axis vertical, the ratio $\frac{\Delta p}{\Delta t}$ for any interval would be precisely equal to $\frac{dp}{dt}$. A table that could be represented by such a curve would have constant second differences; by second differences are meant the differences of the tabular differences as in Table III. An examination of second differences derived from Table III shows that they increase slowly, but that the increase is not perceptible for four degrees. For a six-degree interval the increase is barely perceptible, and for ten degrees it is very apparent. Now the precision claimed for the measurement of temperature is $\frac{1}{100}$ of a degree, so that a four-degree interval appears to give a precision of computation of $\frac{1}{400}$ for a single value of $\frac{\Delta p}{\Delta t}$. It may be noted in passing that the precision of observation of the height of the mercury column is better than the temperature determinations and therefore does not contribute to the probable error.

In order to diminish the effect of local variations of the nature of accidental errors, the values of the ratio $\frac{\Delta p}{\Delta t}$ were computed for each degree

of temperature from 0° C. to 220° C. The first and second differences were then computed, and the computed values of $\frac{\Delta p}{\Delta t}$ were changed when necessary to the amount of $_{10^{0}00}$ in order to make the second differences regular. This process is equivalent to drawing a smooth or fair curve to represent physical properties obtained by observation.

Having values of the ratio $\frac{\Delta p}{\Delta t}$ for each degree of temperature, the specific volumes were computed by equation (8). These values were then tested for fairness by taking second differences, and again the computed values were varied when necessary to the extent of $\tau_{0}^{\dagger}\sigma_{0}$ to make the second differences regular. The combined effect of both fairings is estimated not to exceed $\sigma_{0}^{\dagger}\sigma_{0}$, and it is believed that the probable error of the specific volumes thus determined is not greater than that amount for the range of temperature 50° C. to 200° C. covered by Holborn and Henning's experiments. This estimate carries with it the assumption that the methods of fairing give somewhat greater mean precision than can be attributed to a single computation of $\frac{\Delta p}{\Delta t}$

For the range of temperature from 0° C. to 50° C., and especially for temperatures less than 30° C. (86° F.), so small a probable error cannot be claimed for the specific volumes; but that range has less interest for engineers. For temperatures less than 30° C. the specific volumes were derived in the following way. In the first place the values A pu given in Table III were computed from the specific volumes, and a curve was drawn to represent them; above 30° C. the computed values varied from the curve less than $\frac{1}{500}$; in only a few cases was the variation greater than $\frac{1}{1000}$. Below 30° C. it was considered more correct to take values of A pu from the curve which was there appreciably straight, and values of the specific volume were obtained for Table III by inversion of the method of computing A pu. In passing it may be said that all values of A pu in Tables I and III were derived from the curve mentioned, which gave a greater degree of precision than needed for that purpose.

Since the pressures corresponding to temperatures above 200° C. are extrapolated, the specific volumes computed from them are affected by the same degree of uncertainty that attaches to the pressures.

Specific Volumes of Other Vapors. — In order to apply equation (8) to the computation of vapors for which Regnault's equations are given on page 9, we may derive the differential coefficient in the form

$$\frac{\mathbf{I}}{p}\frac{dp}{dt} = A\alpha^n + B\beta^n. \tag{15}$$

The following table gives values to be used for the factors that appear in that equation.

	SIGN.		$Log(Aa^n).$	$\log (B\beta^n).$			
	Aa ⁿ .	$B\beta^n$.					
Alcohol Ether Chloroform Carbon bisulphide Carbon tetrachloride Aceton	++++++	-+++++	$\begin{array}{c} -1.1720041-0.0029143 t\\ -1.3396624-0.0031223 t\\ -1.3410130-0.0025856 t\\ -1.4339778-0.0022372 t\\ -1.8611078-0.0002880 t\\ -1.3268535-0.0026148 t\\ t, temperature C. \end{array}$	$\begin{array}{c} -2.9992701-0.0590515t\\ -4.4616396+0.0145775t\\ -2.0667124-0.0131824t\\ -2.0511078-0.0088003t\\ -1.3812195-0.0050220t\\ -1.9064582-0.0215592t \end{array}$			

Experimental Determinations of Specific Volumes. — By far the best direct determinations of the specific volumes of saturated steam are those reported by Knoblauch,* Linde, and Klebe in connection with their determinations of the properties of superheated steam. These experiments determined the pressures at constant volume, and the results are so treated as to give the volume at saturation by extrapolation with great certainty. In their report they claim for their results, including volumes at saturation, a probable error not greater than $\frac{1}{500}$.

Tempera- ture.	V	olumes Cu.	м.	Tempera-	Volume Cu. M.				
	Experi- mental.	Computed.	Per Cent Deviation.	ture.	Experi- mental.	Computed.	Per Cent Deviation.		
$ \begin{array}{r} 100\\ 105\\ 110\\ 115\\ 120\\ 125\\ 130\\ 135\\ 140 \end{array} $	$\begin{array}{c} 1.674\\ 1.421\\ 1.211\\ 1.036\\ 0.8894\\ 0.7688\\ 0.6670\\ 0.5809\\ 0.5080\end{array}$	$\begin{array}{c} 1.671\\ 1.419\\ 1.209\\ 1.036\\ 0.8910\\ 0.7698\\ 0.6677\\ 0.5812\\ 0.5081\end{array}$	$\begin{array}{r} +0.18\\ +0.14\\ +0.17\\ 0\\ -0.18\\ -0.13\\ -0.10\\ -0.05\\ -0.02\\ \end{array}$	145 150 155 160 165 170 175 180	$\begin{array}{c} 0.4458\\ 0.3927\\ 0.3466\\ 0.3069\\ 0.2724\\ 0.2426\\ 0.2168\\ 0.1940\\ \end{array}$	$\begin{array}{c} 0.4457\\ 0.3921\\ 0.3463\\ 0.3063\\ 0.2729\\ 0.2423\\ 0.2164\\ 0.1941\\ \end{array}$	$\begin{array}{c} +0.02 \\ +0.15 \\ +0.09 \\ +0.20 \\ +0.18 \\ +0.12 \\ +0.19 \\ -0.05 \end{array}$		

COMPARISON OF EXPERIMENTAL AND COMPUTED VALUES OF THE SPECIFIC VOLUME OF SATURATED STEAM.

* Mitteilungen über Forschungsarbeiten, etc., Heft 21, S. 33, 1905.

These experimenters give 32 determinations of the volume of saturated steam. In order to make a comparison of these experimental values with computations in Table III, a large plot was made with temperatures for abscissæ and logarithms of volumes for ordinates, and a fair curve was drawn; from this curve the experimental values set down in the preceding table were deduced; the computed values are taken from Table III.

The greatest deviation is 0.2 of one per cent, which is the probable error assigned by the experimenters to their work. It may therefore be concluded that the claim of a probable error not in excess of $\frac{1}{560}$ for the computed values of the specific volume of saturated steam, and of a similar degree of precision for the experimental values, is warranted.

Now equation (8) includes explicitly the heat of vaporization, the absolute temperature and the mechanical equivalent of heat as well as the differential coefficient $\frac{dp}{dt}$. It also includes the heat of the liquid implicitly, since the heat of vaporization is derived from the total heat. Consequently the claim of a precision of $\frac{1}{\sigma b \sigma}$ for the specific volume attributes a like degree of precision to the first three named properties, and the same effective certainty to the heat of the liquid. It is true that we may independently attribute a greater precision to the three first properties named. Thus a probable error of $\frac{1}{1000}$ is claimed for the total heat by Dr. Davis, and Callendar * claims a probable error of $\frac{1}{2000}$ or better for the absolute temperature; the real value of the mechanical equivalent is even now slightly in question, but the value assigned is probably in error less than $\frac{1}{1000}$.

The conclusion appears to be that our knowledge of the properties of saturated steam is sufficient for engineering purposes, and that tables computed with available data will not require change.

Specific Volume of Liquids. — The coefficient of expansion of most liquids is large as compared with that of solids, but it is small as compared with that of gases or vapors. Again, the specific volume of a vapor is large compared with that of the liquid from which it is formed. Consequently the error of neglecting the increase of volume of a liquid with the rise of temperature is small in equations relating to the thermodynamics of a saturated vapor, or of a mixture of a liquid and its vapor when a considerable part by weight of the mixture is vapor. It is, therefore, customary to consider the specific volume of a liquid to be constant.

* Phil. Mag., Jan., 1903.

Table XII, giving the specific volumes of various liquids, was taken from the *Phys.-Chem*. Tabellen of Landolt and Börnstein.

Volume of Water. — Table XIII gives the volumes of water compared with its volume at 4°. From 0° to 100° C., the values are those given by Rossetti. Above 100°, the values are those calculated by Hirn's equation.

Volumes of Liquids. — The volumes of liquids at high temperatures compared with the volume at freezing-point, are represented by the following equations given by Hirn:* —

Water 100° C. to 200° C. (vol. at 4° C.=		Logs.
unity) $v=1$	1+0.00010867875t	6.0361445 - 10
	$+0.000030073653t^{2}$	4.4781862-10
	$+0.000000028730422t^{3}$	1.4583419 - 10
	$-0.00000000066457031t^{4}$	8.8225409 - 20
Alcohol 30° C, to 160° C, (vol. at 0° C.=		
unity) $v=1$	1+0.00073892265t	6.8685991 - 10
	$+0.00001055235t^{2}$	3.0233492 - 10
	$-0.00000092480842t^{3}$	2.9660517 - 10
	$+0.0000000040413567t^{4}$	0.6065278 - 10
Ether 30° C, to 130° C, (vol. at 0° C.=	,	010000000000000000000000000000000000000
unity) $n=1$	+0.0013489059t	7 1299817 - 10
	$+0.000065537t^{2}$	4 8164866-10
	$-0.00000034490756t^{3}$	2.5377028 - 10
	$+0.0000000033772062t^{4}$	0.5285571 - 10
Carbon bisulphide 30° to 160° C (vol. at	1 0.00000000000000000000000000000000000	0.0200011 10
$0^{\circ}C = unity$ $n = 1$	$\pm 0.0011680559t$	7 0674636-10
0 0 unity /	$\pm 0.000016489598t^2$	4 2172103 - 10
	-0.000000000101000000000000000000000000	0 0001220 - 10
	$\pm 0.000000000001110002t$	8 7849494 - 20
Carbon tetraheloride 30° to 160° C (vol	10.000000000000000000000000000000000000	0.1010101 20
$at 0^{\circ} C = unit v$	$\pm 0.0010671883t$	7 0282409 - 10
at 0 0 unity)	± 0.00100110001	4 5520763 - 10
	-0.00000000000000000000000000000000000	2 1746202 - 10
		0 0303404 - 20
	+0.000000000000000000000000000000000000	5.000191-20

Internal and External Latent Heat. — The heat of vaporization overcomes external pressure, and changes the state from liquid to vapor at constant temperature and pressure. Let the specific volume of the saturated vapor be s, and that of the liquid be σ , then the change of volume is $s - \sigma = u$, on passing from the liquid to the vaporous state. The external work is

 $p(s-\sigma)=pu,$

and the corresponding amount of heat, or the external latent heat, is

$$A \not p \ (s - \sigma) = A \not p u$$

A being the reciprocal of the mechanical equivalent of heat.

* Annales de Chimie et de Physique, 1867.

That part of the heat of vaporization which is not used in doing external work is considered to be used in changing the state from liquid to vapor. This work required to change the molecular arrangement is called disgregation work. The heat required to do the disgregation work is represented by

$$\rho = r - A p u. \tag{15}$$

Quality or Dryness Factor. — All the properties of saturated steam, such as pressure, volume, and heat of vaporization, depend on the temperature only, and are determinable either by direct experiment or by computation, and are commonly taken from tables like those assembled in this book.

Many of the problems met in engineering deal with mixtures of liquid and vapor, such as water and steam. In such problems it is convenient to represent the proportions of water and steam by a variable known as the quality or the dryness factor; this factor, x, is defined as that portion of each pound of the mixture which is steam; the remnant, I - x, is consequently water.

Specific Volume of Wet Steam. — If a pound of a homogeneous mixture of water and steam is x part steam, then the specific volume may be represented by

$$v = xs + (1 - x) \sigma = xu + \sigma,$$

where u is the increase of volume due to vaporization.

Intrinsic Energy. — When heat is applied to a substance, a part is expended in increasing the temperature, a part is required to do the external work, and the remainder is considered to be used up in changing the molecular arrangement or condition. It has been seen that these three portions can be separated for saturated vapor; they are represented by q, A pu, and ρ . In some cases the first and last cannot be separated and must be treated together; in any case it is convenient to consider them together. The mechanical equivalent of their sum is called the intrinsic energy and may be represented by

$$E = \frac{\mathbf{I}}{A} \left(\rho + q \right). \tag{16}$$

If only a portion of the liquid is vaporized the external work and the disgregation work may be obtained by multiplying the proper quantity by the dryness factor, and the heat equivalents will be

Axpu and xp.

In such case the intrinsic energy is

$$E = \frac{1}{A} \left(x\rho + q \right). \tag{17}$$

Entropy. — In the discussion of steam-engines or other heat engines, it is convenient to begin by considering the way in which steam (or other working substance) would behave if the cylinder were made of nonconducting material. Afterwards the effect of the actual material can be investigated. The expansion line which an indicator would draw under such conditions is called an adiabatic line. Calculations for adiabatic changes of steam can be made by aid of a special function devised for the purpose and called entropy. A discussion of adiabatic actions and of entropy can be found in any text-book on Thermodynamics; for example, on pages 17 and 31 of the "Thermodynamics of the Steam Engine" by the author. It is sufficient for our present purpose to consider that entropy can be expressed numerically and that the numerical values enter into the calculation of certain engineering problems.

It is customary to represent entropy in general by ϕ , but entropy may be represented by θ in dealing with a liquid.

To calculate the increase of entropy during any operation we may divide the heat added by the absolute temperature at which it is added. This leads to a very simple calculation in the case of vaporization of a liquid, as will be seen in the next paragraph. If the heat is added at a varying temperature, an approximation may be had by breaking the heat into small portions and dividing each by the mean temperature and then summing up.

Such an operation can be represented by the expression

$$\phi - \phi_0 = \int \frac{dQ}{T},\tag{18}$$

where dQ represents an infinitesimal amount of heat and T is the absolute temperature at which it is added.

Equation (18) is a consequence of the second law of thermodynamics, and that law is sometimes said to be represented by it.

Entropy of Vaporization. — If a pound of water at the temperature t (or absolute temperature T) is partially vaporized, the heat expended is xr. The method of calculating entropy in the preceding paragraph gives in this case

$$\phi - \phi_0 = \frac{xr}{T} = x \frac{r}{T}.$$
(19)

In Tables I, II, and III values of $\frac{r}{T}$ are given for each degree or each pound.

Entropy of the Liquid. — When water is heated the specific heat varies and the heat is added at a varying temperature. While an approximation can be had by breaking up the heat into small parts as indicated in the preceding paragraph, a satisfactory determination of the entropy of the liquid can be made only by aid of the methods of the integral calculus. These methods give for the entropy of the liquid

$$\theta = \int \frac{dq}{T} = \int \frac{cdt}{T}.$$
 (20)

It is shown on page 5 that the specific heat of water can be represented by

 $c = \mathbf{1} + k$,

and this expression introduced in the preceding equation gives

$$\theta = \int \frac{dt}{T} + \int \frac{kdt}{T} = \log_e \frac{T}{T_0} + \int_{t_0}^t k \, \frac{dt}{T},\tag{21}$$

in which t_0 and T_0 are the temperature by the thermometer of freezing, and the corresponding absolute temperature. The first part of the above expression for the entropy of the liquid can be computed readily, and the second part (which is small) can be determined graphically with great precision. This method was used for the tables of the properties of saturated steam.

To obtain the entropy of any liquid named on page 6, we may first differentiate the proper equation to obtain dq and then integrate as indicated by the equation

$$\theta = \int \frac{dq}{T} \cdot$$

The values given in Tables IV to IX were determined in this way.

Entropy of a Mixture of a Liquid and its Vapor. — The increase in entropy due to heating a unit of weight of a liquid from freezing-point to the temperature t and then vaporizing x portion of it is

$$\theta + \frac{xr}{T}$$
,

LIBRARD

19

where θ is the entropy of the liquid, r is the heat of vaporization, and T is the absolute temperature. For steam $\frac{r}{T}$ may be taken from the tables for other vapors it must usually be calculated.

For any other state determined by x_1 and t_1 we shall have, for the increase of entropy above that of the liquid at freezing-point,

$$\frac{x_1r_1}{T_1} + \theta_1$$

The change of entropy in passing from one state to another is

$$\phi - \phi_1 = \frac{xr}{T} + \theta - \frac{x_1r_1}{T_1} - \theta_1.$$

When the condition of the mixture of a liquid and its vapor is given by the pressure and the value of x, then Table II giving the properties at each pound may be conveniently used for this computation.

Adiabatic Equation for a Liquid and its Vapor. — During an adiabatic change the entropy is constant, so that the preceding equation gives

$$\frac{x_1 r_1}{T_1} + \theta_1 = \frac{x_2 r_2}{T_2} + \theta_2.$$
 (22)

When the initial state, determined by x_1 and t_1 or p_1 , is known and the final temperature t_2 , or the final pressure p_2 , the final value x_2 may be found by this equation. The initial and final volumes may be calculated by the equations

$$v_1 = x_1 u_1 + \sigma$$
 and $v_2 = x_2 u_2 + \sigma$.

Tables of the properties of saturated vapor commonly give the specific volume *s* but

$$s = u + \sigma$$
.

The value of σ for water is 0.016, and for other liquids will be found in Table XII.

For example, one pound of dry steam at 100 pounds absolute has the following properties found in Table II:

$$t_1 = 327^{\circ}.9 \text{ F.}$$
 $\frac{r_1}{T_1} = 1.1273;$ $\theta_1 = 0.4748;$
 $s_1 = 4.432;$ $x_1 = 1.$

If the final pressure is 15 pounds absolute, we have

$$t_2 = 213^{\circ}.0$$
 F. $\frac{r_2}{T_2} = 1.4409; \ \theta_2 = 0.3140; \ s_2 = 26.28,$

whence

1.6021 = 1.4409 x + 0.3140. $\therefore x_2 = .8939.$

The initial and final volumes are

$$v_1 = s_1 = 4.432,$$

 $v_2 = x_2u_2 + \sigma = 23.43.$

Such a problem cannot be solved inversely, that is, we cannot assume a final volume and determine directly the temperature and pressure corresponding. The Temperature-Entropy Table to be explained later will, however, give an approximate solution directly, and an exact solution by interpolation.

External Work during Adiabatic Expansion. — Since no heat is transmitted during an adiabatic expansion, all of the intrinsic energy lost is changed into external work, so that

$$W = E_1 - E_2 = \frac{I}{A} (q_1 - q_2 + x_1 \rho_1 - x_2 \rho_2).$$
 (23)

For example, the external work of one pound of dry steam in expanding adiabatically from 100 pounds to 15 pounds absolute is

 $W = 778 (298.5 - 181.3 + 1 \times 805.7 - 0.8939 \times 896.2),$ $W = 121.8 \times 778 = 94,760$ foot-pounds.

Attention should be called to the unavoidable defect of this method of calculation of external work during adiabatic expansion, in that it depends on taking the difference of quantities which are of the same order of magnitude. For example, the above calculation appears to give four places of significant figures, while, as a matter of fact, the total heat H from which ρ is derived is affected by a probable error of $\frac{1}{1000}$ or perhaps more. Both the quantities

 $q_1 + x_1 \rho_1$ and $q_2 + x_2 \rho_2$

have a numerical value somewhere near 1000, and an error of $10^{1}000$ is nearly equivalent to one thermal unit, so that the probable error of the above calculation is nearly one per cent. For a wider range of temperature the error is less; had the lower pressure been 1 pound the error would have been $\frac{1}{3}$ of a per cent. This matter should be borne in mind in considering the use of approximate methods of calculation, for example, by aid of a diagram like the temperature-entropy diagram.

Heat Contents. — The heat required to raise one pound of water from freezing-point to a given temperature t corresponding to a pressure p, and to vaporize a part x at that pressure, is represented by

$$xr + q;$$

this quantity may be called the heat contents.

Rankine's Cycle. — An important investigation for the steam-engine may be made by aid of the accompanying figure which represents the

indicator diagram from a steam-engine without clearance and with a non-conducting cylinder. Steam is admitted at an absolute pressure p_1 from *a* to *b*; adiabatic expansion follows from *b* to *c*; finally the steam

FIG. 2. is exhausted from c to d at the pressure p_2 . The external work during admission for one pound of steam having the quality x_1 is

$$p_1 v_1 = p_1 (x_1 u_1 + \sigma);$$

the external work during expansion is

$$E_1 - E_2 = \frac{I}{A} (q_1 - q_2 + x_1 \rho_1 - x_2 \rho_2);$$

and the external work during exhaust is

 $p_2 v_2 = p_2 (x_2 u_2 + \sigma),$

which must be subtracted since it is done by the piston on the steam. The effective work of the cycle is

$$p_1v_1 + E_1 - E_2 - p_2v_2,$$

or, substituting the proper values,

$$W = \frac{\mathbf{I}}{A} \left(q_1 + x_1 \rho_1 + A p_1 x_1 u_1 - q_1 - x_2 \rho_2 - A p_2 x_2 u_2 \right) + (p_1 + p_2) \sigma;$$

the last term is small and may be dropped.

Remembering that

$$r = \rho + A p u,$$

we have

$$W = \frac{I}{A} (q_1 + x_1 r_1 - q_2 - x_2 r_2).$$
INTRODUCTION.

The values of r and q may be taken from Tables I, II, or III, and the value of x_2 can be determined by aid of the equation

$$\frac{x_1r_1}{T_1} + \theta_1 = \frac{x_2r_2}{T_2} + \theta_2.$$

By the first law of thermodynamics the difference between the heat supplied to an engine and the heat rejected is equivalent to the work done, provided there are no losses; therefore,

$$Q_1 - Q_2 = x_1 r_1 + q_1 - (x_2 r_2 + q_2).$$

This most important conclusion can be stated as follows: the heat changed into work by a steam-engine working on Rankine's cycle is equal to the difference in the heat contents of the steam supplied to and exhausted by the engine.

This same expression is found in the discussion of steam-turbines.

Problems of this nature can be solved immediately by aid of the Temperature-Entropy Table.

Superheated Steam. — A dry and saturated vapor, not in contact with the liquid from which it is formed, may be heated to a temperature greater than that corresponding to the given pressure for the same vapor when saturated; such a vapor is said to be superheated. When far removed from the temperature of saturation, such a vapor follows the laws of perfect gases very nearly, but near the temperature of saturation the departure from those laws is too great to allow of calculations by them for engineering purposes.

All the characteristic equations that have been proposed have been derived from the equation

$$pv = RT,$$

which is very nearly true for the so-called perfect gases at moderate temperatures and pressures; it is, however, well known that the equation does not give satisfactory results at very high pressures or very low temperatures. To adapt this equation to represent superheated steam a corrective term is added to the right-hand side which may most conveniently be assumed to be a function of the temperature and pressure, so that calculations by it may be made to join on to those for saturated steam.

The most satisfactory characteristic equation of this sort is that given by Knoblauch,* Linde, and Klebe,

$$pv = BT - p (\mathbf{I} + ap) \left[C \left(\frac{373}{T} \right)^{\mathbf{s}} - D \right].$$
(24)

p the pressure is in kilograms per square metre, v is in cubic metres, and T is the absolute temperature by the Centigrade thermometer. The constants have the following values:

$$B = 47.10, a = 0.000002, C = 0.031, D = 0.0052.$$

In the English system of units, the pressures being in pounds per square foot, the volumes in cubic feet per pound, and the temperatures in the Fahrenheit scale, we have

$$pv = 85.85 T - p (1 + 0.00000976 p) \left(\frac{150,300,000}{T^3} - 0.0833\right)$$
(25)

The following equation may be used with the pressure in pounds per square *inch*:

$$pv = 0.5962 T - p(1 + 0.0014 p) \left(\frac{150,300,000}{T^3} - 0.0833\right).$$
⁽²⁶⁾

The labor of calculation is principally in reducing the corrective term, and especially in the computation of the factor containing the temperature. Table XV gives values of this factor for each five degrees from 100° to 600° F. For ordinary use the nearest value in the table may be selected without interpolation; when this is done the error in calculation of a volume will not exceed 0.2 of a per cent for pressures less than 150° ; for higher pressures and near saturation the error may be twice as much. By interpolation the corrective factor may be obtained with precision for all conditions.

Knoblauch attributes to his equation a probable error of 0.2 of a per cent within the range of his experiments which extends from 100° C. to 180° C., and to about 50° C. of superheating. It has been shown that a special treatment of his experimental values extrapolated to saturation shows at no place a greater discrepancy from the tabular values of Table III than 0.2 of a per cent. His equation when applied to saturated steam is nearly as good, the maximum discrepancy within his

^{*} Mitteilungen über Forschungsarbeiten, Heft 21, S. 33, 1905.

range being one-third of a per cent at 160° C. Below boiling-point the greatest discrepancy of his equation is half a per cent at 50° C.; toward freezing-point the discrepancy decreases to zero.

Specific Heat of Superheated Steam. — A very laborious investigation of the specific heat of superheated steam was made by Professor Knoblauch * and Dr. Jakob with the special object of avoiding the presence of moisture in the steam near saturation.

Professor Knoblauch's report gives the results of the investigations made, under his direction in the form of a table giving specific heats at various temperatures and pressures and in a diagram, which can be found in the original memoir, and he also gives a table of mean specific heats from the temperature of saturation to various temperatures at several pressures. This latter table is given here in both the metric system and in the English system of units.

p Kg. per Sq. Cm. p Lbs. per Sq. In. t ₈ Cent. t ₈ Fahr.	1 14.2 99° 210°	2 28.4 120° 248°	4 56.9 143° 289°	6 85.3 158° 316°.	8 113.8 169° 336°	10 142.2 179° 350°	12 170.6 187° 368°	14 199.1 194° 381°	16 227.5 200° 392°	18 156.0 206° 403°	20 284.4 211° 412°
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 0.463\\ 0.462\\ 0.462\\ 0.463\\ 0.464\\ 0.468\\ 0.473\\ \end{array}$	0.478 0.475 0.474 0.475 0.477 0.481	0.515 0.502 0.495 0.492 0.492 0.492 0.494	0.530 0.514 0.505 0.503 0.504	0.560 0.532 0.517 0.512 0.512	0.597 0.552 0.530 0.522 0.520	0.635 0.570 0.541 0.529 0.526	0.677 0.588 0.550 0.536 0.531	0.609 0.561 0.543 0.537	0.635 0.572 0.550 0.542	0.664 0.585 0.557 0.547

SPECIFIC HEAT OF SUPERHEATED STEAM.

Knoblauch and Jakob.

The construction of this table is readily understood from the following example: — *Required* the heat needed to superheat a kilogram of steam at 4 kilograms per square centimetre from saturation to 300° C. The saturation temperature (to the nearest degree) is 143° C.; so that the steam at 300 degrees is superheated 157 degrees, and for this is required the heat

$$157 \times 0.492 = 77.2$$
 calories.

The experiments of Professor Knoblauch were made at 2, 4, 6, and 8 kilograms per square centimetre; the remainder of the table was obtained

* Mitteilungen über Forschungsarbeiten, Heft 36, s. 109.

from his diagram, which was extended graphically to the extent indicated. Within the limits of the experimental work the table may be used with confidence, the greatest error being probably not more than one-third of one per cent.

Total Heat of Superheated Steam. — In the solution of problems that arise in engineering it is convenient to use the total amount of heat required to raise one pound of water from freezing-point to the temperature of saturated steam at the given pressure and to vaporize it and to superheat it at that pressure to the given temperature. This total heat may be represented by the expression

$$H = q + r + c_p (t - t_s),$$
(27)

where t is the temperature of the superheated steam, t_s is the temperature of saturated steam at the given pressure p, and q and r are the corresponding heat of the liquid and heat of vaporization. The mean specific heat c_p may usually be taken from the table on page 25 without interpolation, as a small variation does not have a very large effect.

The total heats or heat contents of superheated steam in the temperature-entropy table were obtained by the following method. From Professor Knoblauch's table of true specific heats as given in his report a diagram was drawn with degrees of superheating for abscissæ and true specific heats as ordinates; this diagram (which was substantially equivalent to Knoblauch's diagram) consisted of curves, which gave the specific heats at various constant pressures from I kilogram per square centimetre to 20 kilograms. His tabular values were taken directly for pressures from I kilogram to 10 kilograms, and the resultant diagram was faired by cross-curves, which were also used to extrapolate curves below I kilogram and above 10 kilograms; but in this extrapolation attention was given to his extrapolation, substantially the same results being obtained except near saturation for higher pressures. The diagram constructed, (which was better adapted for extension to saturation than Knoblauch's), indicated, at high pressure, the selection of smaller values of the specific heat at saturation, and there is reason to think that such values are more correct. The difference for pressures below 10 kilograms per square centimetre (140 pounds per square inch) in the resultant total heat computed by equation (27) is insignificant.

INTRODUCTION.

At 20 kilograms (280 pounds) the difference amounts to one thermal unit out of about 1200.

The diagram described furnished the basis of a diagram from which the heat required to superheat the steam at a given pressure and to a given degree could be obtained graphically for English units. Having values of the third term in equation (27) the total heat was readily obtained.

Entropy of Superheated Steam. — By the entropy of superheated steam is meant the increase of entropy due to heating water from freezing-point to the temperature of saturated steam at the given pressure, to the vaporization and to the superheating at that pressure. This operation may be represented as follows:

$$\theta + \frac{r}{T_s} + \int_{T_s}^T \frac{c_p dt}{T},$$

in which T is the absolute temperature of the superheated steam and T_s is the temperature of the saturated steam at the given pressure; θ and $\frac{r}{T}$ can be taken from Table I. The last term was obtained for the temperature-entropy table by graphical integration of curves plotted with values of $\frac{c_p}{T}$ derived from the curves of specific heats at various temperatures just described under the previous section.

Properties of Ammonia and Sulphur Dioxide. — One of the most interesting and important applications of the theory of superheated vapors is found in the approximate calculation of properties of certain volatile liquids which are used in refrigerating-machines, and for which we have not sufficient experimental data to construct tables in the manner followed for the fluids already discussed.

All attempts in this line have followed the example of Ledoux, who made the first attempt and who took for the basis of his investigations the form of equation proposed by Zeuner for superheated steam, namely, $bv = BT - Cb^a$.

Investigations by Knoblauch already discussed show that this equation can be considered only a crude approximation for steam, and consequently less confidence can be placed on investigations by its aid than we formerly thought. Nevertheless, in our present condition and until

more complete experimental data are available we are constrained to use some such approximate method, and it does not appear profitable to recompute tables at this time.

Fortunately Regnault determined the relation of temperature and pressure, and gave the following equations for pressure in millimetres of mercury, the temperature being on the Centigrade thermometer.

SULPHUR DIOXIDE.	AMMONIA.
$\log p = a - b\alpha^n - c\beta^n$	$\log p = a - b\alpha^n - c\beta^n$
a = 5.6663790	a = 11.5043330
b = 3.0146890	b = 7.4503520
c = 0.1465400	c = 0.9499674
$\log \alpha = 9.9972989 - 10$	$\log \alpha = 9.9996014 - 10$
$\log \beta = 9.9872900 - 10$	$\log \beta = 9.9939729 - 10$
n = t + 28	n = t + 22
Limits, -28 , $+62$.	Limits, -22 , $+82$.

The corresponding equations for pressures in pounds per square inch for temperatures Fahrenheit are:

SULPHUR DIOXIDE.	AMMONIA.							
$\log p = a - b\alpha^n - c\beta^n$	$\log p = a - b\alpha^n - c\beta^n$							
a = 3.9527847	a = 9.7907380							
$\log b = 0.4792425$	$\log b = 0.8721769 - 10$							
$\log c = 9.1659562 - 10$	$\log c = 9.9777087 - 10$							
$\log \alpha = 9.9984994 - 10$	$\log \alpha = 9.9997786 - 10$							
$\log \beta = 9.99293890 - 10$	$\log \beta = 9.9966516 - 10$							
$n = t + 18^{\circ}.4$ F.	$n = t + 7^{\circ}.6 \text{ F}.$							

In the "Thermodynamics of the Steam Engine" by the author, pages 117 to 126, this calculation has been carried out with the best ascertained properties of the superheated vapors of sulphur dioxide and ammonia with the following results:

SULPHUR DIOXIDE.AMMONIA.French units, $pv = 14.5 T - 48 p^{0.22}$; $pv = 54.3 T - 142 p_{\frac{1}{4}}^{1}$ English units, $pv = 26.4 T - 184 p^{0.22}$; $pv = 99 T - 710 p_{\frac{1}{4}}^{1}$

The application of these equations to the vapors when saturated gives the following results:

INTRODUCTION.

HEAT OF VAPORIZATION.

SULPHUR DIOXIDE.AMMONIA.French units, r = 98 - 0.27tr = 300 - 0.8tEnglish units, r = 176 - 0.27(t - 32)r = 540 - 0.8(t - 32)

SPECIFIC HEAT OF THE LIQUID.

SULPHUR DIOXIDE.	AMMONIA.
c = 0.4	<i>c</i> = 1.1

Tables X and XI were calculated by aid of the equations written, and may be of use for approximate calculations, in default of more reliable tables.

Other Data. - For convenience the following data are assembled: -

Length of the metre in inches	39-37.				
Weight of the kilogram in pounds	2.2046.				
Weight of 1 litre (1 cubic decimetre) of mercury	13.5959 kilos.				
One horsepower, in foot-pounds per second	550.				
Cheval à vapeur, in kilogrammetres per second	75.				
	760 mm. of mercury.				
	10,333 kilos per sq. m.				
Normal pressure of the atmosphere	14.7 lbs. per sq. in.				
	2116 lbs. per sq. ft.				
	29.921 in. of mercury.				
One inch of mercury is equivalent to	0.4912 pound.				
Absolute temperature of freezing point	273° C.				
Absolute temperature of freezing-point	491°.5 F.				
Machanical aquivalent of heat I	427 metre-kilograms.				
Micchanical equivalent of heat \overline{A}	778 foot-pounds.				

Explanation of Tables. — Table I gives the properties of saturated steam for each degree Fahrenheit, in English units. It is in part computed directly and in part derived from Table III by interpolation, but the interpolation was so guarded that the numerical accuracy is the same as would be possible by direct computation. The proper degree of precision to be attributed to any property may be judged from the preceding statements of data and transformation. In general, attention is given to this matter, each property being stated with the precision considered proper, avoiding superfluous figures. Exceptions are found in the cases of r, p and $\frac{r}{T}$, which are sometimes given to five places, while the data do not warrant more than four; but there are practical conveniences in keeping one decimal place for those properties.

Table II, which gives properties of steam for each pound pressure, is made by interpolation from Table I, the interpolation being so done that it has practically the same degree of accuracy.

Table III is the fundamental table because the pressures are quoted directly from the original authorities. These pressures in millimetres of mercury are directly converted into kilograms per square centimetre and into pounds per square inch. They also serve as the basis of computation of specific volumes which were computed both in cubic metres and in cubic feet. The degree of precision of interpolation for pressures at each degree Fahrenheit was readily made greater than that required in practice, and the degree of precision for volumes was quite as good as the data warranted. Consequently all these tables have the same degree of reliability.

This table gives properties for each degree Centigrade both in French and in English units, which frequently is of direct convenience. It also serves as a conversion table.

Tables IV to IX were taken from Zeuner's "Mechanische Wärmetheorie," making a correction for the true value of the mechanical equivalent of heat, instead of Joule's earlier value, and adding columns of entropy of the liquid.

Tables X and XI for sulphur dioxide and ammonia were calculated by the approximate method described earlier; though open to a considerable degree of error they may be used till better information can be obtained.

Tables XII and XIII do not appear to call for comment.

Table XIV has been computed to aid in reducing data from tests where pressures are recorded in inches of mercury. Pressures measured in inches of mercury are usually less than that of the atmosphere, and the reading gives the vacuum, which is to be subtracted from the barometric reading to find the absolute pressure in inches of mercury. The table then gives the pressure in pounds per square inch, which can be taken to Table II to find the properties of steam.

INTRODUCTION.

Table XV has been computed to reduce the labor of calculating the volume of superheated steam. It gives the value of the factor

$$\frac{150,300,000}{T^3} - 0.0833$$

in Knoblauch's equation on page 24 for English units. By aid of this table the volume for a given temperature and pressure can be readily computed. The inverse calculation assuming the volume cannot be made directly, but such problems can be resolved by trial without much labor. If the pressure and volume are assumed the temperature can be found neglecting the correction term, and this will enable us to enter the table at nearly the right place.

TEMPERATURE-ENTROPY TABLE.

This table has been made to facilitate the solution of problems involving adiabatic action for steam and some other problems.

It gives for each degree Fahrenheit and for each hundredth of a unit of entropy the quality, heat contents, and specific volume, both for moist and for superheated steam. For convenience the pressures corresponding to the temperatures are also given.

The properties named may be more exactly stated as follows:-

Moist Steam.

Quality, x; the portion of a pound which is steam. Heat contents, xr + q. Specific volume, $v = xu + \sigma$.

Superheated Steam.

Quality, $t - t_{sat}$; the number of degrees of superheating. Heat contents, $r + q + c_p (t - t_{sat})$. Specific volume, v.

The table is arranged in groups of eight triple columns, four on each of two pages, which face each other. Such a group is continued from the highest to the lowest temperature; then comes the next group of eight triple columns, etc. Commonly the solution of a given problem may be found in a single group or in two successive groups. It is important to note this feature of arrangement to avoid aimless search. For engineering purposes it will be found sufficient to take the nearest temperature of saturated steam and the nearest column of entropy, and to take from the corresponding place in the table the required quantities. At the highest temperature (420° F.), the variation of half a degree of temperature corresponds to a variation of a pound and a half in pressure; the other properties have the following variations: heat contents 0.15 of a B.T.U., and specific volume 0.008 of a cubic foot, which latter amounts to half of one per cent. At lower temperature the variation of pressure is progressively less, but the other two properties named are affected to about the same degree. Such variations if they were carried into computations and united with others in such a way as to occasion greater uncertainties would be liable to be inconvenient; but when found in the final results of computations and their limits known, are not likely to cause trouble.

On the other hand the variation of half a hundredth of a unit of entropy will at 400 degrees correspond to 0.5 of a per cent of priming or moisture in the steam, and will carry a like variation into all of the work.. This uncertainty of using the table without interpolation will be nearly the same throughout the table.

Should the variations named be considered to be too large in any case, greater accuracy can be had by interpolation. Direct interpolation for temperature or for entropy can be made with facility; cross-interpolation will be somewhat more troublesome.

The use of the tables can best be illustrated by a few examples.

Example 1. — Given the pressure by the gauge 150.3 pounds (165 absolute) and the priming 2.0 per cent (x = 0.980), to find the entropy, heat contents, and specific volume. This condition is found most nearly on page 80 and gives

$$\phi = 1.54$$
 $xr + q = 1176.8$ $v = 2.697.$

Example 2. — Given the pressure 150.3 pounds by the gauge and the temperature 508° F., to find the entropy, heat contents, and specific volume. The temperature of saturated steam corresponding to 165 pounds absolute is 366° F and the superheating is 142° . These conditions are found on page 95 and give

$$\phi = 1.65$$
 $r + q + c_p (t - t_s) = 1273.3$ $v = 3.396.$

Example 3.—Required the amount of heat changed into work per pound of steam for Rankine's cycle, the initial pressure being 150.3 pounds

INTRODUCTION.

by the gauge and the exhaust being under a vacuum of 26 inches of mercury. The steam initially has 1.0 per cent of priming, and the barometer stands at 30 inches of mercury.

The exhaust pressure is 4 inches of mercury, which by Table XIV corresponds to 1.96 pound. The initial absolute pressure is found by adding the equivalent of 30 inches of mercury or

14.7 pounds to 150.3, giving 165.0.

The solution of this problem is found in the column for entropy 1.55.

	p	t	x	xr + q	υ
Initial 10	65	366	.990	1185.0	2.723
Final	2	126	- 789	899.1	137.0
Heat changed into work B.T	.U.			285.9	

Example 4. — Required the velocity of discharge from a nozzle which takes steam at 150.3 pounds by the gauge and expands down to 26 inches of vacuum; the initial priming being .o1 and the barometer being at 30 inches.

The available heat is the same as that for the previous problem, namely, 285.9 B.T.U. for an adiabatic expansion. The velocity without friction would be

$$V = \sqrt{2 \times 32.2 \times 778 \times 285.9} = 3786.$$

If an allowance of ten per cent can be made for friction the velocity will be

 $V = \sqrt{2 \times 32.2 \times 778 \times 0.90 \times 285.9} = 3590.$

The specific volume at exit can be found as follows: The heat that would be changed into work with an allowance of ten per cent for friction will be

 $0.90 \times 285.9 = 257.2$ B.T.U.

Subtracting from the initial heat contents leaves

$$1185 - 257 = 928$$
 B.T.U.

for the heat contents at 126° F. at the discharge, and this property is found for the entropy 1.60; the corresponding specific volume is 142 cubic feet.

Example 5. — Suppose that the conditions of example 3 are applied to a steam-turbine which has four pressure stages. For adiabatic expansion the available heat per stage will be

$$285.9 \div 4 = 71.4$$
 B.T.U.

This quantity may be subtracted four times successively from the initial heat contents and the results will be the heat contents for the intermediate and final pressures. All the properties are to be located in the columns for entropy 1.55. The results are as follows: —

	INITIAL	SECOND	THIRD	FOURTH	DISCHARGE.
	STAGE.	STAGE.	STAGE.	STAGE.	
Heat contents	1185.0	1113.5	1042.1	970.6	899.1
Temperatures	366	299	237	180	126
Pressures	165	66.0	23.4	7.51	1.99

A full discussion of this method with allowance for friction and other losses together with its limitations will be found in the author's *Thermodynamics of the Steam Engine*.

TABLE I.

SATURATED STEAM.

ENGLISH UNITS.

emperature, Degrees Fahrenheit.	ressure, Pounds per Square Inch.	leat of the Liquid.	leat of Vap- orization.	feat Equiva- lent of Inter- nal Work.	leat Equiva- lent of Exter- nal Work.	Intropy of the Liquid.	Intropy of Vaporiza- tion.	pecific Vol- ume, Cubic Feet per Pound.	ensity, Pounds per Cubic Foot.	emperature, Degrees Fahrenheit.
E t	p p	ų g	i r	I P	A pu	9		V ^s	$\frac{1}{8}$	E t
32 33 34	0.0886 37 0.0923 37 0.0960 39	0.0 1.0 2.0	1071.7 1071.2 1070.7	1017.5 1016.9 1016.3	54.2 54.3 54.4	0.0000 0.0021 0.0041	2.1804 2.1749 2.1695	3308 3179129 3062117 3062112	$\begin{array}{r} 0.000302\\ 0.00031513\\ 0.00032712\\ 12\\ \end{array}$	32 33 34
35 36 37	${\begin{array}{c}0.0999\\0.1040\\0.1082\\44\end{array}} 41$	$3.0 \\ 4.0 \\ 5.0$	1070.2 1069.7 1069.2	1015.6 1015.0 1014.4	$54.6 \\ 54.7 \\ 54.8$	$\begin{array}{c} 0.0061 \\ 0.0082 \\ 0.0102 \end{array}$	$2.1642 \\ 2.1588 \\ 2.1535$	2950 2842 2737 103	${}^{0.000339}_{0.00035213}_{0.00036513}_{1.00036514}_{1.4}$	35 36 37
38 39 40	${\begin{array}{c} 0.1126\\ 0.1171\\ 0.1217\\ 46\\ 48 \end{array}}$	$ \begin{array}{r} 6.1 \\ 7.1 \\ 8.1 \end{array} $	1068.7 1068.2 1067.6	1013.8 1013.2 1012.5	$54.9 \\ 55.0 \\ 55.1$	$\begin{array}{c} 0.0122\\ 00142\\ 0.0163\end{array}$	$2.1481 \\ 2.1427 \\ 2.1373$	$2634_{96}\\2538_{92}\\2446_{88}$	$\begin{array}{r} 0.000379\\ 0.00039415\\ 0.00040915\\ 15\end{array}$	38 39 40
41 42 43	$\begin{array}{c} 0.1265 \\ 0.1315 \\ 0.1367 \\ 52 \\ 54 \end{array}$	9.1 10.1 11.1	1067.1 1066.6 1066.0	1011.9 1011.3 1010.6	$55.2 \\ 55.3 \\ 55.4.$	0.0183 0.0203 0.0223	$2.1321 \\ 2.1267 \\ 2.1214$	$2358\\227286\\219082\\80$	$\begin{array}{c} 0.000424\\ 0.00044016\\ 0.00045717\\ 0.00045717\\ 17\end{array}$	41 42 43
44 45 46	${\begin{array}{c}0.1421\\0.1476\\0.1533\\58\end{array}}55$	$12.1 \\ 13.1 \\ 14.1$	1065.5 1065.0 1064.4	1010.0 1009.4 1008.7	$55.5 \\ 55.6 \\ 55.7$	$\begin{array}{c} 0.0243 \\ 0.0262 \\ 0.0282 \end{array}$	$2.1162 \\ 2.1109 \\ 2.1057$	$2110 \\ 203575 \\ 1963 \\ 69$	$\begin{array}{c} 0.000474_{17} \\ 0.00049117 \\ 0.00050918 \\ 0.000509_{19} \end{array}$	44 45 46
47 48 49	${\begin{array}{c} 0.1591 \\ 0.1652 \\ 0.1715 \\ 65 \end{array}} {\begin{array}{c} 61 \\ 63 \\ 65 \end{array}}$	$15.1 \\ 16.1 \\ 17.1$	$1063.9 \\ 1063.4 \\ 1062.8$	$1008.1 \\ 1007.5 \\ 1006.8$	$55.8 \\ 55.9 \\ 56.0$	$\begin{array}{c} 0.0302 \\ 0.0322 \\ 0.0342 \end{array}$	$2.1005 \\ 2.0954 \\ 2.0902$	$1894_{1828}_{64}_{64}_{1764}_{61}$	${}^{0.000528}_{0.00054720}_{0.00056720}_{20}$	47 48 49
50 51 52	${\begin{array}{c}0.1780\\0.1848\\0.1918\\72\end{array}}68$	18.1 19.1 20.1	1062.3 1061.8 1061.3	$1006.2 \\ 1005.6 \\ 1005.0$	$56.1 \\ 56.2 \\ 56.3$	0.0361 0.0381 0.0401	$2.0850 \\ 2.0799 \\ 2.0748$	$1703_{1643}_{1643}_{57}_{1586}_{55}$	${}^{0.000587}_{0.00060822}_{0.00063022}_{23}$	50 51 52
53 54 55	$\begin{array}{c} 0.1990 \\ 0.2064 \\ 0.2140 \\ 79 \end{array}$	$21.1 \\ 22.1 \\ 23.1$	1060.7 1060.2 1059.7	1004.3 1003.7 1003.1	$56.4 \\ 56.5 \\ 56.6$	$\begin{array}{c} 0.0420 \\ 0.0440 \\ 0.0459 \end{array}$	$2.0697 \\ 2.0647 \\ 2.0596$	1531_{147950}_{142948}	${}^{0.000653}_{0.00067624}_{0.00070024}_{24}$	53 54 55
56 57 58	$\begin{array}{c} 0.2219 \\ 0.2301 \\ 0.2385 \\ 84 \\ 86 \end{array}$	$24.1 \\ 25.1 \\ 26.1$	1059.1 1058.6 1058.1	1002.4 1001.7 1001.1	$56.7 \\ 56.9 \\ 57.0$	$0.0479 \\ 0.0498 \\ 0.0517$	$2.0546 \\ 2.0496 \\ 2.0446$	$1381\\133546\\129144\\129143$	${}^{0.000724}_{0.000749}_{25}_{26}_{0.000775}_{26}_{26}$	56 57 58
59 60 61	$\begin{array}{c} 0.2471 \\ 0.2561 \\ 0.2654 \\ 93 \\ 96 \end{array}$	27.1 28.1 29.1	1057.6 1057.0 1056.5	1000.5 999.8 999.2	$57.1 \\ 57.2 \\ 57.3$	$\begin{array}{c} 0.0537 \\ 0.0556 \\ 0.0575 \end{array}$	$2.0396 \\ 2.0347 \\ 2.0298$	$1248 \\ 120741 \\ 116739$	$\begin{array}{c} 0.000801_{27} \\ 0.00082829 \\ 0.000857_{30} \end{array}$	59 60 61
62 63	$0.2750 \\ 98 \\ 0.2848 \\ 101 \\ 0.128 \\ 0.2848 \\ 0.101 \\ 0.001 $	30.1 31.1	1056.0 1055.5	998.6 998.0	57.4 57.5	0.0594 0.0614	2.0249 2.0201	$\frac{1128}{1091} \frac{37}{35}$	${}^{0.000887}_{0.00091730}_{-30}$	62 63

uture, es nheit.	is per e	f the	Vap- ion.	quiva- Inter- ork.	quiva- Exter- ork.	iquid.	riza-	Vol- Cubic per	ds per Foot.	ature, ses enheit.
Cempers Degre Fahre	Pounc Pounc Squar Inch.	Heat o Liquid	Heat of orizat	Heat Education Heat of International Wo	Heat E lent of nal Wo	Entropy the L	Entropy Vapo tion.	Specific ume, Feet Poun	Density Poun Cubic	remper Degre Fahre
t	p p	q	r	ρ	Apu	θ	$\frac{r}{\overline{T}}$	8	$\frac{1}{s}$	t
64 65 66	$0.2949\\0.3054105\\0.3161107\\0.3161111$	$32.1 \\ 33.1 \\ 34.1$	1055.0 1054.4 1053.9	997.4 996.7 996.1	57.6 57.7 57.8	0.0633 0.0652 0.0671	2.0152 2.0103 2.0055	${ \begin{smallmatrix} 1056 \\ 1021 \\ 33 \\ 988 \\ 32 \end{smallmatrix} }$	$0.000947\\0.00097932\\0.00101233\\34$	64 65 66
67 68 69	${}^{0.3272}_{0.3386119}_{0.3505122}_{122}$	$35.1 \\ 36.1 \\ 37.1$	$1053.4 \\ 1052.8 \\ 1052.3$	995.5 994.8 994.2	$57.9 \\ 58.0 \\ 58.1$	0.0690 0.0709 0.0728	$2.0007 \\ 1.9959 \\ 1.9911$	$956_{92529}\\896_{28}$	${}^{0.001046}_{0.00108135}_{0.00108135}_{0.00111636}_{36}$	67 68 69
70 71 72	$0.3627\\0.3752125\\0.3879127\\133$	$38.1 \\ 39.1 \\ 40.1$	$1051.8 \\ 1051.2 \\ 1050.7$	993.6 992.9 992.3	$58.2 \\ 58.3 \\ 58.4$	$\begin{array}{c} 0.0747 \\ 0.0766 \\ 0.0784 \end{array}$	$\begin{array}{c} 1.9863 \\ 1.9816 \\ 1.9769 \end{array}$	$\substack{868\\840}{28}\\813}{25}$	${}^{0.001152}_{0.001190}_{40}_{40}_{0.001230}_{39}_{39}$	70 71 72
73 74 75	$0.4012_{137}\\0.4149_{140}\\0.4289_{145}^{140}$	$\begin{array}{c} 41.1 \\ 42.1 \\ 43.1 \end{array}$	1050.2 1049.7 1049.2	991.7 991.1 990.5	$58.5 \\ 58.6 \\ 58.7$	0.0803 0.0822 0.0841	$\begin{array}{c} 1.9722 \\ 1.9675 \\ 1.9629 \end{array}$	$788_{763}_{24}_{739}_{22}_{22}$	${}^{0.001269}_{0.001311}{}^{42}_{42}_{0.001353}{}^{42}_{42}$	73 74 75
76 77 78	$0.4434\\0.4582148\\0.4736154\\158$	$44.1 \\ 45.1 \\ 46.1$	1048.7 1048.1 1047.6	989.8 989.1 988.5	$58.9 \\ 59.0 \\ 59.1$	0.0859 0.0878 0.0896	$\begin{array}{c} 1.9583 \\ 1.9536 \\ 1.9490 \end{array}$	$717_{695}_{21}_{674}_{20}$	${0.001395\atop 0.001439}_{45}_{45}$	76 77 78
79 80 81	$0.4894\\0.5056162\\0.5223167\\172$	47.1 48.1 49.1	1047.1 1046.5 1046.0	987.9 987.2 986.6	$59.2 \\ 59.3 \\ 59.4$	$\begin{array}{c} 0.0915 \\ 0.0934 \\ 0.0952 \end{array}$	$\begin{array}{c} 1.9444 \\ 1.9398 \\ 1.9352 \end{array}$	${}^{654}_{03420}_{19}_{19}_{615}_{19}$	$\begin{array}{c} 0.001529_{48} \\ 0.001577_{49} \\ 0.001626_{52} \end{array}$	79 80 81
82 83 84	$0.5395 \\ 0.5572 \\ 182 \\ 0.5754 \\ 188 \\ 188 \\$	$50.1 \\ 51.1 \\ 52.1$	1045.4 1044.9 1044.4	985.9 985.3 984.7	$59.5 \\ 59.6 \\ 59.7$	0.0971 0.0989 0.1007	$\begin{array}{c} 1.9306 \\ 1.9261 \\ 1.9216 \end{array}$	${ 596 \atop 578} \\ 578 \atop 17 \\ 561 \atop 17 \\ 17 \\ }$	${0.001678\atop 0.00173053\atop 0.00178353\atop 5.5}$	82 83 84
85 86 87	$0.5942\\0.6134192\\0.6332203$	$53.1 \\ 54.1 \\ 55.1$	1043.9 1043.3 1042.8	984.1 983.4 982.8	59.8 59.9 60.0	0.1026 0.1044 0.1062	1.9171 1.9126 1.9081	${544\atop528}{16}\\{513}{15}\\{513}{150}$	$\begin{array}{c} 0.001838_{56} \\ 0.001894_{56} \\ 0.001950_{58} \end{array}$	85 86 87
88 89 90	${}^{0.6535_{210}}_{0.6745_{215}}_{0.6960_{221}}$	$56.1 \\ 57.1 \\ 58.1$	$1042.3 \\ 1041.7 \\ 1041.2$	982.2 981.5 980.9	$ \begin{array}{r} 60.1 \\ 60.2 \\ 60.3 \end{array} $	0.1081 0.1099 0.1117	1.9037 1.8992 1.8948	$\substack{498.0\\483.4142\\469.2\\138}$	$\begin{array}{c} 0.002008\\ 0.002069\\ 62\\ 0.002131\\ 65\end{array}$	88 89 90
91 92 93	$0.7181_{0.7408234}\\0.7642_{240}^{234}$	$59.1 \\ 60.1 \\ 61.1$	1040.6 1040.1 1039.5	980.2 979.6 978.9	$\begin{array}{c} 60.4\\ 60.5\\ 60.6\end{array}$	$0.1135 \\ 0.1153 \\ 0.1171$	1.8903 1.8859 1.8815	$\begin{array}{r} 455.4\\442.0\\129\\429.1\\124\end{array}$	$\begin{array}{c} 0.002196\\ 0.00226268\\ 0.00233070\\ \end{array}$	91 92 93
94 95 96	$\begin{array}{r} 0.7882 \\ 0.8128 \\ 253 \\ 0.8381 \\ 259 \end{array}$	$62.1 \\ 63.1 \\ 64.1$	1039.0 1038.5 1037.9	978.3 977.7 977.0	$ \begin{array}{r} 60.7 \\ 60.8 \\ 60.9 \end{array} $	0.1189 0.1207 0.1225	$1.8771 \\ 1.8728 \\ 1.8684$	$\begin{array}{r} 416.7\\ 404.8\\ 115\\ 393.3\\ 112\\ \end{array}$	${ \begin{smallmatrix} 0.002400\\ 0.002470\\ 0.002542\\ 75 \end{smallmatrix} }$	94 95 96
97 98 99	$0.8640_{0.8907267}\\0.8907273_{0.9180281}$	$ \begin{array}{r} 65.0 \\ 66.0 \\ 67.0 \end{array} $	$1037.4 \\ 1036.8 \\ 1036.3$	976.4 975.7 975.1	$ \begin{array}{r} 61.0 \\ 61.1 \\ 61.2 \end{array} $	0.1243 0.1261 0.1279	$1.8641 \\ 1.8597 \\ 1.8554$	$382.1\\371.3108\\360.9101$	$\begin{array}{c} 0.002617_{76} \\ 0.002693_{78} \\ 0.002771_{80} \end{array}$	97 98 99
100 101 102	$0.9461_{290}\\0.9751_{296}\\1.0047_{304}$		$1035.7 \\ 1035.1 \\ 1034.6$	974.4 973.7 973.0	$\begin{array}{c} 61.3\\ 61.4\\ 61.6\end{array}$	$\begin{array}{c} 0.1297 \\ 0.1314 \\ 0.1332 \end{array}$	$\begin{array}{c} 1.8511 \\ 1.8468 \\ 1.8426 \end{array}$	$350.8_{97} \\ 341.1_{95} \\ 331.6_{92} \\ $	${}^{0.002851}_{0.00293284}_{0.00301686}$	100 101 102
103 104	${}^{1.0351}_{1.0663}{}^{312}_{322}$	71.0 72.0	$1034.0\\1033.5$	$972.3 \\ 971.7$	61.7 61.8	$0.1350 \\ 0.1368$	$1.8383 \\ 1.8341$	$322.4_{89}\ 313.5_{87}^{89}$	${}^{0.003102}_{0.003190}{}^{88}_{91}$	103 104

Cemperature, Degrees Fahrenheit,	Pressure, Pounds per Square Inch.	Teat of the Liquid.	Heat of Vap- orization.	feat Equiva- lent of Inter- nal Work.	Heat Equiva- lent of Ex- ternal Work.	Intropy of the Liquid.	Intropy of Vaporiza- tion.	specific Vol- ume, Cubic Feet per Pound.	Jensity, Pounds per Cubic Foot.	Temperature, Degrees Fahrenheit.
t	p p	q	r	ρ	Apu	θ	$\frac{r}{T}$	8	$\frac{1}{s}$	ť
105 106 107	${}^{1.098}_{1.13134}_{1.165}_{35}_{35}$	73.0 74.0 75.0	$1032.9 \\ 1032.4 \\ 1031.8$	971.0 970.4 969.7	61.9 62.0 62.1	$\begin{array}{c} 0.1385 \\ 0.1403 \\ 0.1421 \end{array}$	$1.8298 \\ 1.8256 \\ 1.8214$	304.8_{84} 296.482 288.280	$\begin{array}{c} 0.003281\\ 0.003374\\ 96\\ 0.003470\\ 99 \end{array}$	105 106 107
108 109 110	${}^{1.200}_{1.235}{}^{35}_{36}_{1.271}_{37}_{37}$	76.0 77.0 78.0	1031.2 1030.7 1030.1	969.0 968.4 967.7	$ \begin{array}{r} 62.2 \\ 62.3 \\ 62.4 \end{array} $	$\begin{array}{c} 0.1438 \\ 0.1456 \\ 0.1473 \end{array}$	$1.8172 \\ 1.8130 \\ 1.8088$	$280.276 \\ 272.676 \\ 265.272 \\ 72$	${}^{0.003569}_{0.003668}{}_{103}_{0.003771}{}^{103}_{105}$	108 109 110
111 112 113	${}^{1.308}_{1.347}{}^{39}_{1.386}_{40}$	79.0 80.0 81.0	1029.6 1029.0 1028.4	967.1 966.4 965.7	$ \begin{array}{r} 62.5 \\ 62.6 \\ 62.7 \end{array} $	$\begin{array}{c} 0.1491 \\ 0.1508 \\ 0.1526 \end{array}$	$1.8047 \\ 1.8005 \\ 1.7963$	$258.0_{69}\\251.1_{67}\\244.4_{64}$	${}^{0.003876}_{0.003983109}_{0.004092110}_{110}$	111 112 113
114 115 116	${}^{1.426}_{1.46742}_{1.50943}_{43}$	82.0 83.0 84.0	1027.8 1027.2 1026.7	965.0 964.3 963.7	$ \begin{array}{r} 62.8 \\ 62.9 \\ 63.0 \end{array} $	$\begin{array}{c} 0.1543 \\ 0.1560 \\ 0.1578 \end{array}$	1.7922 1.7881 1.7840	$238.0_{062}\\231.8_{61}\\225.7_{59}$	${}^{0.004202}_{0.004314116}_{0.004430116}_{120}$	114 115 116
117 118 119	${}^{1.552}_{1.59745}_{1.642}_{47}_{47}$	85.0 86.0 87.0	$1026.1 \\ 1025.5 \\ 1025.0$	963.0 962.3 961.7	$ \begin{array}{r} 63.1 \\ 63.2 \\ 63.3 \end{array} $	$0.1595 \\ 0.1612 \\ 0.1630$	$\begin{array}{c} 1.7799 \\ 1.7758 \\ 1.7717 \end{array}$	$219.8 \\ 214.058 \\ 208.456 \\ 208.454 $	$0.004550\\0.004673123\\0.004798125\\128$	117 118 119
120 121 122	${}^{1.689}_{1.737}{}^{48}_{48}_{1.785}{}^{50}_{50}$	88.0 89.0 90.0	1024.4 1023.8 1023.2	961.0 960.2 959.5	$ \begin{array}{r} 63.4 \\ 63.6 \\ 63.7 \end{array} $	$\begin{array}{c} 0.1647 \\ 0.1664 \\ 0.1682 \end{array}$	1.7677 1.7637 1.7597	$203.0 \\ 197.852 \\ 192.751 \\ 192.750 \\ 50$	${}^{0.004926}_{0.00506}_{130}_{0.00519}_{13}_{14}$	120 121 122
123 124 125	${}^{1.835}_{1.88652}_{1.93854}$	91.0 92.0 93.0	1022.7 1022.1 1021.5	958.9 958.2 957.5	63.8 63.9 64.0	0.1699 0.1716 0.1733	1.7557 1.7517 1.7477	$187.7_{182.948}_{182.946}_{178.345}$	$\begin{array}{c} 0.00533\\ 0.0054714\\ 0.0056114\\ 14 \end{array}$	123 124 125
126 127 128	${}^{1.992}_{2.04755}_{2.10356}_{2.10358}$	94.0 95.0 96.0	1021.0 1020.4 1019.8	956.9 956.2 955.5	$ \begin{array}{r} 64.1 \\ 64.2 \\ 64.3 \end{array} $	0.1750 0.1767 0.1784	1.7438 1.7398 1.7359	$^{173.8}_{169.442}_{165.241}_{41}$	$\begin{array}{c} 0.00575\\ 0.0059015\\ 0.0060515\\ 16 \end{array}$	126 127 128
129 130 131	2.161_{59} 2.220_{60} 2.280_{61}	97.0 98.0 99.0	1019.3 1018.7 1018.1	$954.9 \\ 954.2 \\ 953.5$	$ \begin{array}{r} 64.4 \\ 64.5 \\ 64.6 \end{array} $	0.1801 0.1818 0.1835	1.7320 1.7281 1.7242	$161.1_{40}\\157.1_{39}\\153.2_{37}^{39}$	$\begin{array}{c} 0.00621 \\ 0.0063716 \\ 0.0065316 \\ 16 \end{array}$	129 130 131
132 133 134	$2.341 \\ 2.40362 \\ 2.46764 \\ 2.46766$	100.0 101.0 102.0	1017.6 1017.0 1016.5	$952.9 \\ 952.2 \\ 951.6$	64.7 64.8 64.9	0.1852 0.1869 0.1886	1.7204 1.7165 1.7127	$^{149.5}_{145.837}_{142.236}_{142.234}$	$\begin{array}{c} 0.00669\\ 0.0068617\\ 0.0070317\\ 17\end{array}$	132 133 134
135 136 137	$2.533_{2.60069}_{2.66971}$	103.0 104.0 105.0	1015.9 1015.4 1014.8	950.9 950.3 949.6	$ \begin{array}{r} 65.0 \\ 65.1 \\ 65.2 \end{array} $	0.1902 0.1919 0.1936	1.7088 1.7050 1.7012	$^{138.8}_{135.434}_{132.132}_{32}$	0.00720 0.0073818 0.0075719 0.0075719	135 136 137
138 139 140	$2.740_{2.81273}\\2.81273_{2.88575}$	106.0 107.0 108.0	1014.2 1013.6 1013.1	$948.9 \\ 948.2 \\ 947.5$	$ \begin{array}{r} 65.3 \\ 65.4 \\ 65.6 \end{array} $	0.1952 0.1969 0.1986	1.6974 1.6936 1.6899	$^{128.9}_{\substack{125.830\\122.8}_{29}}$	$\begin{array}{c} 0.00776\\ 0.0079519\\ 0.0081420\\ \end{array}$	138 139 140
141 142 143	$2.960_{77}\\3.037_{79}\\3.116_{80}$	109.0 110.0 111.0	1012.5 1011.9 1011.4	$946.8 \\ 946.1 \\ 945.5$	65.7 65.8 65.9	0.2002 0.2019 0.2036	1.6861 1.6823 1.6786	$119.9\\117.128\\114.328\\114.327$	$\begin{array}{c} 0.00834_{20} \\ 0.00854_{21} \\ 0.00875_{21} \\ \end{array}$	141 142 143
144 145	$3.196 \\ 3.278 \\ 83 \\ 83 \\ 83 \\ 83 \\ 83 \\ 83 \\ 83 \\ $	112.0 113.0	1010.8 1010.2	944.8 944.1	66.0 66.1	0.2052 0.2069	L.6749 L.6711	$^{111.6}_{109.025}$	0.00896_{21} 0.00917_{22}	144 145

emperature, Degrees Fahrenheit.	ressure, Pounds per Square Inch.	eat of the Liquid.	eat of Vap- orization.	eat Equiva- ent of Inter- nal Work.	eat Equiva- ent of Exter- nal Work.	ntropy of the Liquid	ntropy of Vaporiza- tion.	pecific Vol- ume, Cubic Feet per Pound.	ensity, Pounds per Cubic Foot.	emperature, Degrees Fahrenheit.
Ľ t	ф. р	H Q	H r	μ ⁻ ι ρ	Apu	6 1	$\frac{r}{T}$	502 8		E t
146 147 148	$3.361 \\ 3.447 \\ 88 \\ 3.535 \\ 89$	114.0 115.0 116.0	1009.6 1009.0 1008.4	$943.4 \\ 942.7 \\ 942.0$	$ \begin{array}{r} 66.2 \\ 66.3 \\ 66.4 \end{array} $	$\begin{array}{c} 0.2085 \\ 0.2102 \\ 0.2118 \end{array}$	$1.6674 \\ 1.6636 \\ 1.6599$	${ \begin{smallmatrix} 106.5 \\ 104.0 \\ 24 \\ 101.6 \\ 24 \end{smallmatrix} }$	${}^{0.00939}_{0.0096123}_{0.0098423}_{23}_{24}$	146 147 148
149 150 151	$3.624_{91} \\ 3.715_{93} \\ 3.808_{95}^{93}$	117.0 118.0 119.0	$1007.8 \\ 1007.2 \\ 1006.7$	941.3 940.6 940.0	$\begin{array}{c} 66.5 \\ 66.6 \\ 66.7 \end{array}$	$\begin{array}{c} 0.2135 \\ 0.2151 \\ 0.2168 \end{array}$	$1.6563 \\ 1.6526 \\ 1.6490$	$\begin{array}{c} 99.2 \\ 96.9 \\ 22 \\ 94.7 \\ 22 \\ 22 \end{array}$	${}^{0.01008}_{0.01032}_{24}_{24}_{0.01056}_{25}$	149 150 151
152 153 154	$3.903_{97} \\ 4.000_{99} \\ 4.099_{101}^{91}$	$120.0 \\ 121.0 \\ 122.0$	$1006.1 \\ 1005.5 \\ 1004.9$	939.3 938.6 937.9	$ \begin{array}{r} 66.8 \\ 66.9 \\ 67.0 \end{array} $	$\begin{array}{c} 0.2184 \\ 0.2200 \\ 0.2217 \end{array}$	$1.6453 \\ 1.6416 \\ 1.6380$	$\begin{array}{c} 92.5 \\ 90.4 \\ 20 \\ 88.4 \\ 20 \end{array}$	${}^{0.01081}_{0.0110625}_{25}_{0.0113126}$	152 153 154
155 156 157	$\begin{array}{r} 4.200\\ 4.303103\\ 4.409106\\ 108\end{array}$	$123.0 \\ 124.0 \\ 125.0$	1004.3 1003.7 1003.1	$937.2 \\ 936.5 \\ 935.8$	$\begin{array}{c} 67.1 \\ 67.2 \\ 67.3 \end{array}$	$\begin{array}{c} 0.2233\\ 0.2249\\ 0.2265 \end{array}$	$1.6344 \\ 1.6307 \\ 1.6271$	$\begin{array}{r} 86.4 \\ 84.5 \\ 82.6 \\ 19 \\ 19 \end{array}$	${}^{0.01157}_{0.0118328}_{0.0121128}_{28}_{28}$	155 156 157
158 159 160	$\begin{array}{r} 4.517\\ 4.626109\\ 4.738112\\ 114 \end{array}$	$126.0 \\ 127.0 \\ 128.0$	$1002.5 \\ 1002.0 \\ 1001.4$	$935.1 \\ 934.4 \\ 933.7$	$67.4 \\ 67.6 \\ 67.7$	$\begin{array}{c} 0.2282 \\ 0.2298 \\ 0.2314 \end{array}$	$1.6235 \\ 1.6200 \\ 1.6164$	$\begin{array}{c} 80.7 \\ 78.9 \\ 77.2 \\ 18 \\ 18 \end{array}$	${}^{0.01239}_{0.0126729}_{29}_{0.01296_{30}}_{30}$	158 159 160
161 162 163	$\begin{array}{r} 4.852\\ 4.969117\\ 5.088119\\ 122\end{array}$	$129.0 \\ 130.0 \\ 131.0$	1000.8 1000.2 999.6	933.0 932.3 931.6	$67.8 \\ 67.9 \\ 68.0$	0.2330 0.2347 0.2363	1.6129 1.6093 1.6058	$\begin{array}{c} 75.4 \\ 73.7 \\ 72.1 \\ 15 \\ 15 \end{array}$	${}^{0.01326}_{0.01357}_{30}_{30}_{0.01387}_{30}_{30}$	161 162 163
164 165 166	$5.210 \\ 5.334 \\ 126 \\ 5.460 \\ 129 \\ 129$	$132.0 \\ 133.0 \\ 134.0$	999.0 998.4 997.9	930.9 930.2 929.6	$ \begin{array}{r} 68.1 \\ 68.2 \\ 68.3 \end{array} $	$\begin{array}{c} 0.2379 \\ 0.2395 \\ 0.2411 \end{array}$	$1.6023 \\ 1.5988 \\ 1.5953$	$\begin{array}{c} 70.6 \\ 69.1 \\ 67.7 \\ 15 \\ 15 \end{array}$	${}^{0.01417}_{0.01447}{}^{30}_{30}_{0.01477}{}^{30}_{33}$	164 165 166
167 168 169	$5.589_{131}\\5.720_{133}^{133}\\5.853_{137}^{133}$	$135.0 \\ 136.0 \\ 137.0$	997.3 996.7 996.1	928.9 928.2 927.5	$ \begin{array}{r} 68.4 \\ 68.5 \\ 68.6 \end{array} $	$\begin{array}{c} 0.2427 \\ 0.2443 \\ 0.2459 \end{array}$	$1.5918 \\ 1.5884 \\ 1.5849$	$\begin{array}{c} 66.2 \\ 64.8 \\ 63.4 \\ 14 \\ 14 \end{array}$	${}^{0.01510}_{0.0154334}_{0.0157734}_{30}_{36}$	167 168 169
170 171 172	$5.990 \\ 129 \\ 141 \\ 6.270 \\ 145 \\ 145$	$138.0 \\ 139.0 \\ 140.0$	995.5 994.9 994.3	$926.8 \\ 926.1 \\ 925.4$	68.7 68.8 68.9	$\begin{array}{c} 0.2475 \\ 0.2491 \\ 0.2506 \end{array}$	$1.5814 \\ 1.5780 \\ 1.5745$	$egin{array}{cccc} 62.0 & 14 \ 60.6 & 13 \ 59.3 & 12 \end{array}$	${\begin{array}{c} 0.01613_{37}\\ 0.01650_{36}\\ 0.01686_{36}\\ 36 \end{array}}$	170 171 172
173 174 175	$\begin{array}{r} 6.415 \\ 6.563 \\ 6.714 \\ 154 \end{array}$	$141.0 \\ 142.0 \\ 143.0$	993.7 993.1 992.5	924.7 924.0 923.3	$69.0 \\ 69.1 \\ 69.2$	$\begin{array}{c} 0.2522\\ 0.2538\\ 0.2554 \end{array}$	$1.5711 \\ 1.5677 \\ 1.5643$	$58.1 \\ 56.9 \\ 12 \\ 55.7 \\ 12 \\ 12$	${}^{0.01722}_{0.01758}{}^{36}_{37}_{0.01795}{}^{37}_{39}$	173 174 175
176 177 178	$\begin{array}{c} 6.868\\ 7.025160\\ 7.185161\end{array}$	$144.0 \\ 145.0 \\ 146.0$	991.9 991.3 990.7	922.6 921.9 921.2	$69.3 \\ 69.4 \\ 69.5$	$\begin{array}{c} 0.2570 \\ 0.2585 \\ 0.2601 \end{array}$	$\begin{array}{r} 1.5609\\ 1.5575\\ 1.5541 \end{array}$	$\begin{smallmatrix} 54.5 & 11 \\ 53.4 & 11 \\ 52.3 & 11 \\ 11 \end{smallmatrix}$	${}^{0.01834}_{0.0187339}_{0.0191239}_{0.0191241}$	176 177 178
179 180 181	$\begin{array}{c} 7.346 \\ 7.510164 \\ 7.678 \\ 171 \end{array}$	147.0 148.0 149.0	990.1 989.5 988.9	920.5 919.8 919.1	69.6 69.7 69.8	$\begin{array}{c} 0.2617 \\ 0.2633 \\ 0.2648 \end{array}$	$1.5507 \\ 1.5474 \\ 1.5440$	$51.2 \\ 50.2 \\ 49.13 \\ 102 \\ 102$	${}^{0.01953}_{0.01993}{}^{40}_{42}_{42}_{0.02035}{}^{43}_{43}$	179 180 181
182 183 184	$\begin{array}{c c} 7.849 \\ 8.024175 \\ 8.202178 \\ 8.202181 \end{array}$	$150.1 \\ 151.1 \\ 152.1$	988.3 987.7 987.1	918.4 917.7 917.0	69.9 70.0 70.1	$\begin{array}{c} 0.2664 \\ 0.2680 \\ 0.2696 \end{array}$	$1.5406 \\ 1.5373 \\ 1.5340$	$\begin{array}{r} 48.11\\ 47.1299\\ 46.1795\\ 94\end{array}$	${}^{0.02078}_{0.02122}_{44}_{44}_{0.02166}_{45}_{45}$	182 183 184
185 186	$\begin{array}{c} 8.383 \\ 8.568 \\ 188 \end{array}$	153.1 154.1	986.5	916.3 915.6	70.2 70.3	0.2711 0.2727	$1.5307 \\ 1.5273$	${}^{45.23}_{44.33}_{88}_{88}$	${}^{0.02211}_{0.02256}{}^{45}_{45}$	185 186

are, neit.	per	the	/ap-	iva- iter-	iva- tter-	of tid.	of a-	Vol- ubic per	per oot.	ure, neit.
grees	ure, unds iare	of luid.	of V zatio	Equ of In Work	Equ of Ex	by	ppy poriz	fic e, C et und.	ity, unds bic F	grees
remr De Fa	Press Po Squ Inc	Heat Lic	Heat ori	lent nal	Heat	Entro	Entro Va tion	Speci um Fe	Dens Po Cu	rem De Fa
t	p	q	r	ρ	Apu	θ	$\frac{r}{T}$	8	$\frac{1}{s}$	t
187	8.756.01	155.1	985.3	914.9	70.4	0.2742	1.5240	43.4500	0.0230147	187
188 189	8.947191 9.141194 198	156.1 157.1	984.7 984.0	914.2 913.4	$\begin{array}{c} 70.5\\ 70.6\end{array}$	$0.2758 \\ 0.2773$	$1.5207 \\ 1.5174$	42.59_{84}^{80} 41.75_{83}^{80}	$\begin{array}{c} 0.02348_{47}^{47} \\ 0.02395_{49}^{47} \end{array}$	188 189
190 191 192	$9.339 \\ 9.541 \\ 205 \\ 9.746 \\ 209 \\ 209 \\$	°158.1 159.1 160.1	983.4 982.8 982.2	912.7 912.0 911.3	70.7 70.8 70.9	$\begin{array}{c} 0.2789 \\ 0.2805 \\ 0.2820 \end{array}$	$\begin{array}{r} 1.5141 \\ 1.5108 \\ 1.5076 \end{array}$	$\begin{array}{r} 40.92 \\ 40.11 \\ 39.31 \\ 78 \end{array}$	${}^{0.02444}_{0.0249351}_{0.02544}_{51}_{51}$	190 191 192
193 194 195	9.955_{213} 10.168217 10.385220	161.1 162.1 163.1	981.5 980.9 980.3	910.5 909.8 909.1	71.0 71.1 71.2	$\begin{array}{c} 0.2835 \\ 0.2851 \\ 0.2866 \end{array}$	1.5043 1.5010 1.4978	$38.53 \\ 37.7774 \\ 37.0372$	${}^{0.02595}_{0.02647}_{53}_{0.02700}_{53}_{54}$	193 194 195
196 197 198	$10.605 \\ 10.830 \\ 229 \\ 11.059 \\ 232$	$164.1 \\ 165.1 \\ 166.2$	979.7 979.1 978.4	908.4 907.7 906.9	71.3 71.4 71.5	0.2882 0.2897 0.2912	1.4946 1.4913 1.4881	$36.31 \\ 35.61 \\ 34.93 \\ 66$	${}^{0.02754}_{0.0280855}_{0.02863}_{55}_{55}$	196 197 198
199 200 201	$11.291 \\ 11.528 \\ 240 \\ 11.768 \\ 245$	$167.2 \\ 168.2 \\ 169.2$	977.8 977.2 976.6	906.2 905.5 904.8	71.6 71.7 71.8	0.2928 0.2943 0.2958	1.4849 1.4817 1.4786	$34.27 \\ 33.6265 \\ 32.9963 \\ 62$	$\begin{array}{c} 0.02918\\ 0.0297456\\ 0.0303157\\ 0.0303158\end{array}$	199 200 201
202 203 204	$12.013 \\ 12.261 \\ 253 \\ 12.514 \\ 257 \\ 257 \\$	170.2 171.2 172.2	976.0 975.4 974.7	904.1 903.4 902.6	$71.9 \\ 72.0 \\ 72.1$	0.2973 0.2989 0.3004	$1.4754 \\ 1.4723 \\ 1.4691$	$32.37 \\ 31.7562 \\ 31.1560 \\ 31.1559$	${0.03089\atop 0.0314960\atop 0.03210}_{62}$	202 203 204
205 206 207	$12.771 \\ 13.033266 \\ 13.299271 \\ 271$	$173.2 \\ 174.2 \\ 175.2$	974.1 973.5 972.8	901.9 901.2 900.4	$72.2 \\ 72.3 \\ 72.4$	0.3019 0.3034 0.3049	$1.4659 \\ 1.4628 \\ 1.4596$	$30.56 \\ 29.9857 \\ 29.4157 \\ 55$	$\begin{array}{r} 0.03272\\ 0.0333563\\ 0.0339964\\ 0.0339966\end{array}$	205 206 207
208 209 210	$13.570 \\ 13.845 \\ 280 \\ 14.125 \\ 284$	176.2 177.2 178.3	972.2 971.6 970.9	899.7 899.0 898.3	72.5 72.6 72.6	0.3064 0.3079 0.3095	$1.4565 \\ 1.4534 \\ 1.4502$	$28.86 \\ 28.3252 \\ 27.80 \\ 51$	$0.03465\\0.0353166\\0.0359766\\67$	208 209 210
211 212 213	$14.409\\14.698294\\14.992294\\299$	179.3 180.3 181.3	970.3 969.7 969.1	897.6 896.9 896.2	72.7 72.8 72.9	$\begin{array}{c} 0.3110 \\ 0.3125 \\ 0.3140 \end{array}$	$1.4471 \\ 1.4441 \\ 1.4410$	$27.29 \\ 26.78 \\ 49 \\ 26.29 \\ 48 \\ 48 \\$	$0.03664_{70}\\0.03734_{70}\\0.03804_{70}$	211 212 213
214 215 216	$15.291 \\ 15.595 \\ 308 \\ 15.903 \\ 314$	182.3 183.3 184.3	968.5 967.8 967.2	895.5 894.7 894.0	73.0 73.1 73.2	$\begin{array}{c} 0.3155 \\ 0.3170 \\ 0.3185 \end{array}$	1.4380 1.4349 1.4318	$25.81_{47}\\25.34_{46}\\24.88_{45}$	${}^{0.03874}_{0.0394673}_{0.0401973}_{0.0401974}$	214 215 216
217 218 219	${}^{16.217}_{16.536}_{323}_{16.859}_{329}$	185.3 186.3 187.4	966.5 965.9 965.2	893.2 892.5 891.7	73.3 73.4 73.5	0.3200 0.3215 0.3230	$1.4287 \\ 1.4257 \\ 1.4226$	$24.43 \\ 23.99 \\ 43 \\ 23.56 \\ 42 \\ 42$	$0.04093_{75}\\0.04168_{76}\\0.04244_{77}$	217 218 219
220 221 222	$17.188 \\ 17.52335 \\ 17.523340 \\ 17.863345 \\ 345$	188.4 189.4 190.4	964.6 964.0 963.3	891.0 890.3 889.5	73.6 73.7 73.8	$\begin{array}{c} 0.3244 \\ 0.3259 \\ 0.3274 \end{array}$	$1.4196 \\ 1.4165 \\ 1.4135$	$23.14\\22.7340\\22.3340\\40$	${}^{0.04321}_{0.0439978}_{0.0439979}_{0.04478}_{82}$	220 221 222
223 224 225	$18.208 \\ 18.558 \\ 350 \\ 18.914 \\ 361 \\ 3$	191.4 192.4 193.4	962.7 962.0 961.4	888.8 888.1 887.4	73.9 73.9 74.0	0.3289 0.3304 0.3319	1.4105 1.4075 1.4045	$21.93_{39}\\21.54_{38}\\21.16_{38}^{38}$	${}^{0.04560}_{0.0464383}_{0.04726}_{83}_{85}$	223 224 225
226 227	$19.275_{368}\\19.643_{373}^{368}$	194.4 195.4	960.7 960.1	886.6 885.9	74.1 74.2	$ \begin{array}{c} 0.3333 \\ 0.3348 \end{array} $	1.4015 1.3985	$20.78\\20.42_{35}^{36}$	$0.04811 \\ 0.04897 \\ 86$	226 227

rature, rees renheit.	re, nds per are	of the	of Vap- ation.	Equiva- of Inter- /ork.	Equiva- of Ex- al Work.	oy of Liquid.	oriza-	c Vol- , Cubic nd. per	y, nds per ic Foot.	rature, rees renheit.
Tempe Degi Fahi	Pressu Poul Squi Inch	Heat Liq	Heat	Heat] lent o nal W	Heat] lent tern	Entrol	Entrol Vap tion.	Specifi ume Feet Pour	Densit Pour Cubi	Tempe Degi Fahi
t	p	g	r	ρ	Apu	θ	$\frac{r}{T}$	8	$\frac{1}{s}$	t
228 229 230	$20.02_{38}\\20.40_{38}\\20.78_{39}$	196.5 197.5 198.5	959.4 958.7 958.1	885.1 884.3 883.6	74.3 74.4 74.5	0.3363 0.3378 0.3392	$1.3955 \\ 1.3925 \\ 1.3895$	$20.07\\19.7235\\19.3735\\33$	${\begin{array}{c} 0.04983_{87}\\ 0.0507_{9}\\ 0.0516_{9}\\ 9\end{array}}$	228 229 230
231 232 233	${}^{21.17}_{21.5740}_{21.9740}_{21.9741}$	$199.5 \\ 200.5 \\ 201.5$	957.4 956.8 956.1	882.8 882.1 881.3	74.6 74.7 74.8	$\begin{array}{c} 0.3407 \\ 0.3422 \\ 0.3436 \end{array}$	$1.3866 \\ 1.3836 \\ 1.3806$	${}^{19.04}_{18.7132}_{18.39}_{31}$	${0.0525 \atop 0.0534} {9 \atop 0.0534} {9 \atop 0.0544} {9 \atop 9}$	231 232 233
234 235 236	$22.38_{41}\\22.79_{42}\\23.21_{43}$	202.5 203.6 204.6	955.4 954.8 954.1	880.6 879.9 879.1	74.8 74.9 75.0	$\begin{array}{c} 0.3451 \\ 0.3466 \\ 0.3480 \end{array}$	$\begin{array}{c} 1.3777 \\ 1.3748 \\ 1.3718 \end{array}$	$18.08\\17.7731\\17.4631\\30$	${0.0553\atop 0.056310\atop 0.057310\atop 0.057310}$	234 235 236
237 238 239	$23.64_{44}\\24.08_{44}\\24.52_{45}^{44}$	205.6 206.6 207.6	953.4 952.8 952.1	878.3 877.6 876.8	$75.1 \\ 75.2 \\ 75.3$	$\begin{array}{c} 0.3495 \\ 0.3509 \\ 0.3524 \end{array}$	$1.3689 \\ 1.3660 \\ 1.3631$	${}^{17.16}_{16.8728}_{16.5928}_{18}_{28}$	${}^{0.0583}_{0.059310}_{0.060310}_{10}_{10}$	237 238 239
240 241 242	$24.97 \\ 25.42 \\ 46 \\ 25.88 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ $	208.6 209.6 210.7	951.4 950.8 950.1	876.0 875.4 874.6	75.4 75.4 75.5	0.3538 0.3553 0.3567	$1.3602 \\ 1.3573 \\ 1.3544$	${}^{16.31}_{16.0427}_{15.7726}$	${0.0613\atop 0.062310\atop 0.0634{11\atop 11}}$	240 241 242
243 244 245	$26.35_{48}\\26.83_{48}\\27.31_{49}$	$211.7 \\ 212.7 \\ 213.7$	949.4 948.7 948.1	873.8 873.0 872.3	75.6 75.7 75.8	0.3582 0.3596 0.3611	$1.3515 \\ 1.3486 \\ 1.3457$	${}^{15.51}_{15.2625}_{15.0124}_{25}$	${0.0645\atop 0.065510\atop 0.066511\atop 0.0666{11}}$	243 244 245
246 247 248	$27.80_{49}\\28.29_{50}\\28.79_{51}$	214.7 215.7 216.7	947.4 946.7 946.0	871.5 870.7 870.0	75.9 76.0 76.0	$\begin{array}{c} 0.3625 \\ 0.3639 \\ 0.3654 \end{array}$	$1.3429 \\ 1.3401 \\ 1.3372$	${}^{14.77}_{14.5225}_{14.2824}_{23}$	${}^{0.0677}_{0.068911}_{0.070012}_{12}$	246 247 248
249 250 251	$29.30_{52}\\29.82_{53}\\30.35_{53}$	217.7 218.8 219.8	945.4 944.7 944.0	869.3 868.5 867.7	$76.1 \\ 76.2 \\ 76.3$	0.3668 0.3683 0.3697	$1.3343 \\ 1.3315 \\ 1.3286$	$\substack{14.05\\13.8223\\13.5923\\22}$	${ \begin{smallmatrix} 0.0712 \\ 0.0724 \\ 12 \\ 0.0736 \\ 12 \\ 12 \\ \end{smallmatrix} }$	249 250 251
252 253 254	$30.88_{54}\ 31.42_{55}\ 31.97_{56}^{55}$	220.8 221.8 222.8	943.3 942.6 941.9	866.9 866.1 865.3	76.4 76.5 76.6	$\begin{array}{c} 0.3711 \\ 0.3726 \\ 0.3740 \end{array}$	$1.3258 \\ 1.3229 \\ 1.3201$	$^{13.37}_{\substack{13.16\\22\\12.94\\21}}$	${}^{0.0748}_{0.0760}{}^{12}_{13}_{0.0773}{}^{13}_{12}$	252 253 254
255 256 257	$32.53_{56} \\ 33.09_{57} \\ 33.66_{58} \\ 33.$	223.8 224.9 225.9	941.2 940.5 939.8	864.5 863.7 863.0	76.7 76.8 76.8	$\begin{array}{c} 0.3754 \\ 0.3768 \\ 0.3782 \end{array}$	$1.3173 \\ 1.3145 \\ 1.3117$	${}^{12.73}_{12.5320}_{12.3320}_{12.3320}$	${ \begin{smallmatrix} 0.0785 \\ 0.0798 \\ 13 \\ 0.0811 \\ 13 \\ 13 \end{smallmatrix} }$	255 256 257
258 259 260	34.24_{59} 34.83_{59} 35.42_{60}	226.9 227.9 229.0	939.1 938.4 937.8	862.2 851.4 860.7	76.9 77.0 77.1	0.3797 0.3811 0.3825	1.3089 1.3062 1.3034	${}^{12.13}_{11.9419}_{11.75}_{18}$	$\begin{array}{c} 0.0824\\ 0.083713\\ 0.083714\\ 0.085113 \end{array}$	258 259 260
261 262 263	$\begin{array}{c} 36.02 \\ 36.6462 \\ 37.2663 \end{array}$	230.0 231.0 232.0	937.1 936.4 935.7	859.9 859.2 858.4	77.2 77.2 77.3	0.3839 0.3853 0.3867	$\begin{array}{c} 1.3006 \\ 1.2978 \\ 1.2950 \end{array}$	${}^{11.57}_{11.3918}_{11.21}_{17}_{17}$	${}^{0.0864}_{0.087814}_{0.087814}_{0.089214}_{14}$	261 262 263
264 265 266	$37.89_{38.5364}_{38.5364}_{39.1766}_{66}$	$233.0 \\ 234.0 \\ 235.0$	935.0 934.3 933.6	857.6 856.8 856.0	77.4 77.5 77.6	$\begin{array}{c} 0.3881 \\ 0.3895 \\ 0.3909 \end{array}$	$1.2923 \\ 1.2895 \\ 1.2868$	$^{11.04}_{10.8717}_{10.7017}_{17}^{17}_{17}$	${}^{0.0906}_{0.092014}_{0.093515}_{15}$	264 265 266
267 268	39.83 ₆₆ 40.49 ₆₇	236.1 237.1	932.9 932.1	855.3 854.4	77.6 77.7	0.3923 0.3937	1.2840 1.2813	${}^{10.53}_{10.37}{}^{16}_{16}$	${0.0950\atop 0.0964}{14\atop 15}$	267 268

ure, leit.	per	the	Vap- n.	niva- nter-	uiva- xter- c.	of iid.	of a-	Vol- ubic per	per oot.	ure, heit.
grees	ure, unds uare ch.	of quid.	of zatio	Equ of In Work	ef Equ	opy Liqu	opy poriz n.	ific ne, C et und.	ity, unds bic F	perat
rem De Fa	Press Po Sq Inc	Heat Lic	Heat ori	Heat lent nal	Heat lent nal	Entr	Entr Va tio	Speci un Fe Po	Dens Po Cu	Tem] De Fa
t	p.	q	r	ρ	Apu	θ :	$\frac{r}{\overline{T}}$	Ŧ	1 *	t
269 270 271	$\begin{array}{r} 41.16\\ 41.8470\\ 42.5470\\ 70\end{array}$	$238.1 \\ 239.1 \\ 240.2$	931.4 930.7 930.0	853.6 852.8 852.0	77.8 77.9 78.0	0.3951 0.3965 0.3979	$1.2786 \\ 1.2758 \\ 1.2731$	$10.21 \\ 10.05 \\ 15 \\ 9.901 \\ 152 \\$	$0.0979\\0.099516\\0.1010\\16$	269 270 271
272 273 274	$\begin{array}{r} 43.24_{71} \\ 43.95_{72} \\ 44.67_{72} \end{array}$	$241.2 \\ 242.2 \\ 243.2$	929.3 928.6 927.9	851.3 850.5 849.7	78.0 78.1 78.2	0.3993 0.4007 0.4021	$1.2704 \\ 1.2677 \\ 1.2650$	$9.749 \\ 9.599 \\ 146 \\ 9.453 \\ 144$	${0.1026\atop 0.104216\atop 0.105816}$	272 273 274
275 276 277	$\begin{array}{r} 45.39_{74} \\ 46.13_{75} \\ 46.88_{76} \end{array}$	$244.2 \\ 245.3 \\ 246.3$	927.2 926.5 925.7	848.9 848.1 847.3	78.3 78.4 78.4	0.4035 0.4049 0.4063	$1.2623 \\ 1.2596 \\ 1.2569$	$9.309 \\ 9.169 \\ 136 \\ 9.033 \\ 133 \\ 133 \\$	${0.1074\atop 0.1090}_{17}{0.1107}_{17}^{16}$	275 276 277
278 279 280	$\begin{array}{r} 47.64_{77} \\ 48.41_{78} \\ 49.19_{79} \end{array}$	247.3 248.3 249.4	925.0 924.3 923.6	846.5 845.7 844.9	78.5 78.6 78.7	0.4077 0.4091 0.4104	$1.2542 \\ 1.2516 \\ 1.2489$	$\begin{array}{r} 8.900 \\ 8.768 \\ 129 \\ 8.639 \\ 128 \end{array}$	$0.1124_{17}\\0.1141_{17}\\0.1158_{17}\\17$	278 279 280
281 282 283	$\begin{array}{r} 49.98 \\ 50.77 \\ 51.58 \\ 81 \end{array}$	250.4 251.4 252.4	922.9 922.1 921.4	844.2 843.3 842.5	78.7 78.8 78.9	0.4118 0.4132 0.4146	$1.2463 \\ 1.2436 \\ 1.2409$	$\begin{array}{r} 8.511 \\ 8.385 \\ 124 \\ 8.261 \\ 121 \end{array}$	$0.1175\\0.1193\\18\\0.1211\\18$	281 282 283
284 285 286	$52.39_{83}\\53.22_{84}\\54.06_{86}$	253.4 254.5 255.5	920.7 920.0 919.2	841.7 841.0 840.1	79.0 79.0 79.1	0.4160 0.4173 0.4187	$\begin{array}{r} 1.2383 \\ 1.2356 \\ 1.2330 \end{array}$	8.140 8.021 118 7.903 115	${0.1229\atop 0.124718\\ 0.124718\\ 0.1265_{19}}$	284 285 286
287 288 289	$\begin{array}{r} 54.92\\ 55.7886\\ 56.6587\\ 56.6588\end{array}$	256.5 257.5 258.6	918.5 917.7 917.0	839.3 838.5 837.7	79.2 79.2 79.3	$\begin{array}{c} 0.4201 \\ 0.4215 \\ 0.4228 \end{array}$	$1.2304 \\ 1.2277 \\ 1.2251$	$7.788 \\ 7.674 \\ 111 \\ 7.563 \\ 109 \\$	${0.1284\atop 0.130319\atop 0.132219\atop 19}$	287 288 289
290 291 292	$57.53_{89}\\58.42_{91}\\59.33_{91}$	259.6 260.6 261.6	916.3 915.5 914.8	836.9 836.0 835.3	79.4 79.5 79.5	$\begin{array}{c} 0.4242 \\ 0.4255 \\ 0.4269 \end{array}$	$1.2225 \\ 1.2199 \\ 1.2173$	$7.454 \\ 7.347 \\ 105 \\ 7.242 \\ 103 \\$	${0.1341\atop 0.136120\\ 0.136120\\ 0.138120\\ 20}$	290 291 292
293 294 295	$\begin{array}{c} 60.24 \\ 61.17 \\ 94 \\ 62.11 \\ 96 \end{array}$	262.7 263.7 264.7	914.1 913.3 912.6	834.5 833.6 832.8	79.6 79.7 79.8	0.4283 0.4297 0.4310	$1.2147 \\ 1.2121 \\ 1.2095$	$7.139 \\ 7.037 \\ 100 \\ 6.937 \\ 98 $	$0.1401 \\ 0.1421 \\ 20 \\ 0.1441 \\ 21$	293 294 295
296 297 298	$\begin{array}{c} 63.07_{96} \\ 64.03_{97} \\ 65.00_{98} \end{array}$	265.7 266.7 267.8	911.8 911.1 910.4	832.0 831.2 830.4	79.8 79.9 80.0	$\begin{array}{c} 0.4324 \\ 0.4337 \\ 0.4351 \end{array}$	1.2070 1.2044 1.2018	$\begin{array}{c} 6.839\\ 6.742\\ 95\\ 6.647\\ 93 \end{array}$	$0.1462_{21}\\0.1483_{21}\\0.1504_{22}$	296 297 298
299 300 301	$\begin{array}{c} 65.98\\ 66.98100\\ 67.99102\\ 102\end{array}$	268.8 269.8 270.8	909.6 908.9 908.1	829.6 828.8 827.9	80.0 80.1 80.2	$\begin{array}{c} 0.4364 \\ 0.4378 \\ 0.4391 \end{array}$	1.1992 1.1967 1.1942	$\begin{array}{c} 6.554 \\ 6.462 \\ 91 \\ 6.371 \\ 89 \end{array}$	$\substack{0.1526\\0.1547}\\0.1547}\\0.1569}\\23$	299 300 301
302 303 304	$\begin{array}{c} 69.01\\ 70.04103\\ 71.09106\\ 106\end{array}$	271.9 272.9 273.9	907.4 906.6 905.9	827.1 826.3 825.5	80.3 80.3 80.4	$\begin{array}{c} 0.4405 \\ 0.4418 \\ 0.4432 \end{array}$	1.1916 1.1891 1.1865	$\begin{array}{c} 6.282 \\ 6.195 \\ 6.109 \\ 85 \end{array}$	${ \begin{smallmatrix} 0.1592 \\ 0.1614 \\ 23 \\ 0.1637 \\ 23 \\ 23 \\ \end{smallmatrix} }$	302 303 304
305 306 307	$72.15 \\ 73.22 \\ 108 \\ 74.30 \\ 110 \\$	274.9 276.0 277.0	905.1 904.4 903.6	824.7 823.9 823.0	80.4 80.5 80.6	$\begin{array}{c} 0.4445 \\ 0.4458 \\ 0.4472 \end{array}$	1.1840 1.1814 1.1788	$\begin{array}{c} 6.024 \\ 5.941 \\ 5.859 \\ 81 \end{array}$	$0.1660_{23}\\0.1683_{24}\\0.1707_{24}^{24}$	305 306 307
308 309	$\begin{array}{c} 75.40 \\ 76.51 \\ 112 \\ \end{array}$	278.0 279.1	902.9 902.1	822.2 821.4	80.7 80.7	0.4485	1.1763 1.1738	5.778 5.699 79 77	$0.1731\\0.1755{24}\\24$	308 309

4I

42

.

SATURATED STEAM - TABLE I.

erature, grees nrenheit.	ure, inds per iare h.	of the Juid.	of Vap- cation.	Equiva- of Inter- Work.	Equiva- of Exter- Work.	py of Liquid.	py of poriza- 1.	fic Vol- e, Cubic et per ind.	ty, inds per bic Foot.	erature, grees irenheit.
Temp Dei Fal	Press Pou Squ Inc	Heat Lic	Heat	Heat lent nal	Heat lent nal	Entro	Entro Vaj tioj	Specil um Fec Pou	Densi Pot Cul	Temp Der Fal
t	р	q	r	ρ	Apu	θ	$\frac{r}{T}$	8	$\frac{1}{s}$	t
310 311 312	$77.63 \\ 78.76113 \\ 79.91115 \\ 79.91116$	280.1 281.1 282.1	901.3 900.5 899.8	820.5 819.7 818.9	80.8 80.8 80.9	$\begin{array}{c} 0.4512 \\ 0.4525 \\ 0.4538 \end{array}$	$1.1713 \\ 1.1688 \\ 1.1663$	$5.622 \\ 5.54674 \\ 5.47273 $	$0.1779\\0.180324\\0.182725$	310 311 312
313 314 315	$\begin{array}{r} 81.07\\82.25\\119\\83.44\\120\end{array}$	283.2 284.2 285.2	899.1 898.3 897.6	818.1 817.3 816.5	81.0 81.0 81.1	$\begin{array}{c} 0.4552 \\ 0.4565 \\ 0.4578 \end{array}$	$1.1639 \\ 1.1614 \\ 1.1589$	${}^{5.399}_{\begin{array}{c}5.32673\\5.32672\\5.25472\\72\end{array}}$	${ \begin{smallmatrix} 0.1852 \\ 0.1877 \\ 26 \\ 0.1903 \\ 26 \end{smallmatrix} }$	313 314 315
316 317 318	$\begin{array}{r} 84.64 \\ 85.86 \\ 123 \\ 87.09 \\ 124 \end{array}$	$286.2 \\ 287.3 \\ 288.3$	896.8 896.0 895.2	815.6 814.8 813.9		$\begin{array}{c} 0.4592 \\ 0.4605 \\ 0.4618 \end{array}$	$1.1564 \\ 1.1539 \\ 1.1514$	$5.182 \\ 5.11269 \\ 5.04369 \\ 69$	${0.1929 \atop 0.1956 \atop 27 \atop 0.1983 \atop 27 \atop 27 }$	316 317 318
319 320 321	$\begin{array}{r} 88.33 \\ 89.59 \\ 128 \\ 90.87 \\ 129 \end{array}$	$289.3 \\ 290.4 \\ 291.4$	894.5 893.7 892.9	813.1 812.3 811.4	81.4 81.4 81.5	$\begin{array}{c} 0.4631 \\ 0.4644 \\ 0.4658 \end{array}$	$1.1490 \\ 1.1465 \\ 1.1440$	${}^{4.974}_{4.90766}_{4.841}_{66}_{64}$	${}^{0.2010}_{0.2038}{}^{28}_{27}_{0.2065}{}^{28}_{28}$	319 320 321
322 323 324	$92.16\\93.46130\\94.78132\\94.78134$	292.4 293.4 294.5	892.2 891.4 890.6	810.6 809.8 808.9	81.6 81.6 81.7	$\begin{array}{c} 0.4671 \\ 0.4684 \\ 0.4697 \end{array}$	$\begin{array}{c} 1.1416 \\ 1.1392 \\ 1.1367 \end{array}$	$\substack{4.777\\4.71463\\4.653}{_{59}}$	${0.2093\atop 0.212128\atop 0.214928\atop 28}$	322 323 324
325 326 327	$96.12 \\ 97.46 \\ 136 \\ 98.82 \\ 138 \\ 138 \\$	295.5 296.5 297.5	889.8 889.0 888.3	808.1 807.2 806.4	81.7 81.8 81.9	$\begin{array}{c} 0.4710 \\ 0.4723 \\ 0.4736 \end{array}$	$1.1343 \\ 1.1318 \\ 1.1294$	${}^{4.594}_{4.53757}_{4.480}_{56}$	${ \begin{smallmatrix} 0.2177\\ 0.220428\\ 0.223228\\ 28 \end{smallmatrix} }$	325 326 327
328 329 330	${ \begin{smallmatrix} 100.20\\ 101.58\\ 102.98\\ 142 \end{smallmatrix} }$	298.6 299.6 300.6	887.5 886.7 885.9	805.6 804.7 803.8	81.9 82.0 82.1	$\begin{array}{c} 0.4749 \\ 0.4762 \\ 0.4775 \end{array}$	$\begin{array}{c} 1.1269\\ 1.1245\\ 1.1221 \end{array}$	${}^{4.424}_{4.36856}_{4.312}_{55}_{55}$	${0.2260 \atop 0.2289 \atop 30 \atop 0.2319 \atop 30 }$	328 329 330
331 332 333	${}^{104.40}_{105.84146}_{107.30147}$	301.7 302.7 303.7	885.1 884.3 883.5	803.0 802.1 801.3	$\begin{array}{c} 82.1 \\ 82.2 \\ 82.2 \\ \end{array}$	$\begin{array}{c} 0.4789 \\ 0.4802 \\ 0.4815 \end{array}$	$1.1197 \\ 1.1173 \\ 1.1149$	$\substack{4.257\\4.20155\\4.146}_{54}$	${0.2349\atop 0.238031\atop 0.238032\atop 0.241232}$	331 332 333
334 335 336	${}^{108.77}_{110.25}_{148}_{111.74}_{152}$	304.8 305.8 306.8	882.8 882.0 881.2	800.5 799.6 798.8	$ \begin{array}{r} 82.3 \\ 82.4 \\ 82.4 \end{array} $	0.4828 0.4841 0.4854	$1.1125 \\ 1.1101 \\ 1.1077$	${}^{4.092}_{4.038}{}^{54}_{53}_{3.985}{}^{53}_{51}$	${0.2444\atop 0.2476_{33}\atop 0.2509_{33}^{33}}$	334 335 336
337 338 339	${}^{113.26}_{114.79}_{153}_{116.34}_{155}_{157}$	307.9 308.9 309.9	880.4 879.6 878.8	797.9 797.1 796.2		0.4867 0.4880 0.4892	$\begin{array}{c} 1.1053\\ 1.1029\\ 1.1006 \end{array}$	$3.934_{51}\ 3.883_{50}\ 3.833_{49}$	${0.2542\atop 0.2575_{34}\\ 0.2609_{33}^{34}}$	337 338 339
340 341 342	${}^{117.91}_{119.50160}_{121.10}_{161}$	310.9 312.0 313.0	878.0 877.2 876.4	795.3 794.5 793.6	82.7 82.7 82.8	0.4905 0.4918 0.4931	1.0982 1.0958 1.0934	$3.784 \\ 3.73746 \\ 3.69146 \\ 46$	${ \begin{smallmatrix} 0.2642 \\ 0.2676_{33} \\ 0.2709_{34}^{33} \end{smallmatrix} }$	340 341 342
343 344 345	${}^{122.71}_{124.35165}_{126.00}_{167}$	314.0 315.1 316.1	875.6 874.8 874.0	792.8 791.9 791.0	82.8 82.9 83.0	0.4944 0.4957 0.4970	1.0911 1.0887 1.0864	${}^{3.645}_{3.599}{}^{46}_{45}_{3.554}_{44}$	${ \begin{smallmatrix} 0.2743 \\ 0.2778 \\ 35 \\ 0.2813 \\ 36 \end{smallmatrix} }$	343 344 345
346 347 348	$127.67\\129.35168\\129.35171\\131.06\\172$	317.1 318.2 319.2	873.2 872.4 871.6	790.2 789.3 783.5	83.0 83.1 83.1	$\begin{array}{c} 0.4982 \\ 0.4995 \\ 0.5008 \end{array}$	$\begin{array}{c} 1.0840 \\ 1.0817 \\ 1.0793 \end{array}$	$3.510 \\ 3.467 \\ 42 \\ 3.425 \\ 42 \\ 42$	${ \begin{smallmatrix} 0.2849 \\ 0.2884 \\ 36 \\ 0.2920 \\ 36 \\ \end{smallmatrix} }$	346 347 348
349 350	$132.78\\134.52\\175$	320.2 321.3	870.8 870.0	8 787.6 786.8	83.2 83.2	$0.5021 \\ 0.5034$	$1.0770 \\ 1.0747$	$3.383_{41}\ 3.342_{40}^{41}$	${0.2956\atop 0.2992}{36}_{36}$	349 350

Temperature, Degrees Fahrenheit.	Pressure, Pounds per Square Inch.	Heat of the Liquid.	Heat of Vap- orization.	Heat Equiva- lent of Inter- nal Work.	Heat Equiva- lent of Exter- nal Work.	Entropy of the Liquid.	Entropy of Vaporiza- tion.	Specific Vol- ume, Cubic Feet per Pound.	Density, Pounds per Cubie Foot.	Temperature, Degrees Fahrenheit.
t	р	q	r	ρ	Apu	0	$\frac{r}{\overline{T}}$	8	1 3	t
351 352 353	$136.27\\138.04179\\139.83179\\181$	$322.3 \\ 323.3 \\ 324.4$	869.2 868.3 867.5	785.9 785.0 784.1	83.3 83.3 83.4	$0.5047 \\ 0.5059 \\ 0.5072$	1.0724 1.0700 1.0677	$3.302_{39} \\ 3.263_{39} \\ 3.224_{39}^{39}$	${ \begin{smallmatrix} 0.3028 \\ 0.3065 \\ 37 \\ 0.3102 \\ 38 \end{smallmatrix} } $	351 352 353
354 355 356	$^{141.64}_{143.46}_{182}_{143.30}_{187}$	$325.4 \\ 326.4 \\ 327.5$	866.7 865:9 865.1	783.3 782.4 781.5	83.4 83.5 83.6	0.5085 0.5097 0.5110	$1.0654 \\ 1.0631 \\ 1.0608$	$\substack{3.185\\3.147\\3.147\\3.109\\38}$	${0.3140\atop 0.3178{38\atop 0.3178{39\atop 0.3217{39\atop 39}}}$	354 355 356
357 358 359	$^{147.17}_{149.05}_{191}_{150.96}_{193}$	328.5 329.5 330.6	864.3 863.5 862.6	780.7 779.8 778.9	83.6 83.7 83.7	$\begin{array}{c} 0.5123 \\ 0.5135 \\ 0.5148 \end{array}$	${}^{1.0585}_{1.0562}_{1.0539}$	$3.071_{38} \\ 3.033_{37} \\ 2.996_{36} \\ 36$	${0.3256\atop 0.3297}{41\atop 0.3338}{40}$	357 358 359
360 361 362	$152.89 \\ 154.83 \\ 156.78 \\ 198 \\ 198 \\$	331.6 332.6 333.7	861.8 861.0 860.2	778.1 777.2 776.3	83.7 83.8 83.9	$\begin{array}{c} 0.5161 \\ 0.5173 \\ 0.5186 \end{array}$	$1.0516 \\ 1.0493 \\ 1.0470$	2.960_{35} 2.925_{35} 2.890_{34}	${0.3378\atop 0.3419}{41\atop 0.3460}{41\atop 42}$	360 361 362
363 364 365	$158.76_{160.76200}_{160.76201}_{162.77204}$	334.7 335.7 336.8	859.3 858.5 857.7	775.4 774.6 773.7	83.9 83.9 84.0	$\begin{array}{c} 0.5199 \\ 0.5211 \\ 0.5224 \end{array}$	$1.0448 \\ 1.0425 \\ 1.0403$	${}^{2.856}_{2.82134}_{2.787}_{33}$	${0.3502\atop 0.3545}_{43}\\ 0.3588}_{43}$	363 364 365
366 367 368	${}^{164.81}_{166.88}{}_{207}_{168.96}{}_{210}$	337.8 338.8 339.9	856.8 856.0 855.2	772.8 771.9 771.0	84.0 84.1 84.2	$\begin{array}{c} 0.5236 \\ 0.5249 \\ 0.5261 \end{array}$	1.0380 1.0357 1.0335	${}^{2.754}_{2.721}{}^{33}_{32}_{2.689}{}^{32}_{32}$	$0.3631 \\ 0.3675 \\ 44 \\ 0.3719 \\ 44 \\ 44$	366 367 368
369 370 371	$171.06\\173.17211\\175.31214\\216$	340.9 341.9 343.0	854.4 853.5 852.7	770.2 769.3 768.4	84.2 84.2 84.3	$\begin{array}{c} 0.5274 \\ 0.5286 \\ 0.5299 \end{array}$	$\begin{array}{c} 1.0312\\ 1.0289\\ 1.0267\end{array}$	${}^{2.657}_{2.626}{}^{31}_{30}_{2.596}{}^{30}_{30}$	${0.3763\atop 0.3808}{45\atop 0.3852}{44\atop 45}$	369 370 371
372 373 374	$177.47\\179.65220\\181.85223$	$344.0 \\ 345.0 \\ 346.1$	851.8 851.0 850.2	767.5 766.6 765.8	84.3 84.4 84.4	$\begin{array}{c} 0.5311 \\ 0.5324 \\ 0.5336 \end{array}$	$\begin{array}{c} 1.0245\\ 1.0222\\ 1.0200 \end{array}$	${}^{2.566}_{2.53629}_{2.50729}_{29}$	${ \begin{smallmatrix} 0.3897 \\ 0.3943 \\ 46 \\ 0.3989 \\ 46 \\ \end{smallmatrix} }$	372 373 374
375 376 377	$184.08 \\ 186.32 \\ 228 \\ 188.60 \\ 228 \\ 228 \\$	347.1 348.2 349.2	849.3 848.5 847.6	764.9 764.0 763.1	$84.4 \\ 84.5 \\ 84.5$	$\begin{array}{r} 0.5349 \\ 0.5361 \\ 0.5374 \end{array}$	$1.0178 \\ 1.0156 \\ 1.0134$	${}^{2.478}_{2.450}{}^{28}_{28}_{2.422}{}^{28}_{28}$	${0.4035\atop 0.4082}{47\atop 0.4129}{48}$	375 376 377
378 379 380	$190.88_{193.19}_{233}_{195.52}_{235}_{235}$	$350.2 \\ 351.3 \\ 352.3$	846.8 846.0 845.1	762.2 761.4 760.5	$ \begin{array}{r} 84.6 \\ 84.6 \\ 84.6 \end{array} $	$\begin{array}{c} 0.5386 \\ 0.5398 \\ 0.5411 \end{array}$	1.0112 1.0089 1.0066	${}^{2.394}_{2.366}{}^{28}_{27}\\{}^{2.339}_{27}{}^{27}_{27}$	${ \begin{smallmatrix} 0.4177 \\ 0.4226 \\ 49 \\ 0.4275 \\ 50 \end{smallmatrix} }$	378 379 380
381 382 383	$197.87 \\ 200.25 \\ 239 \\ 202.64 \\ 241 \\$	$353.3 \\ 354.4 \\ 355.4$	844.3 843.4 842.5	759.6 758.7 757.7	84.7 84.7 84.8	$\begin{array}{c} 0.5423 \\ 0.5435 \\ 0.5448 \end{array}$	$\begin{array}{c} 1.0045\\ 1.0022\\ 1.0000 \end{array}$	${}^{2.312}_{2.28526}_{2.259}_{25}_{25}$	${0.4325\atop 0.437650\ 0.4426}_{50}$	381 382 383
384 385 386	$205.05_{244}\\207.49_{247}\\209.96_{249}$	356.5 357.5 358.5	841.7 840.8 840.0	756.9 756.0 755.1	84.8 84.8 84.9	$\begin{array}{c} 0.5460 \\ 0.5473 \\ 0.5485 \end{array}$	0.9978 0.9957 0.9935	${}^{2.234}_{2.209}{}^{25}_{2.184}_{24}$	$0.4476 \\ 0.452751 \\ 0.452752 \\ 0.4579 \\ 51$	384 385 386
387 388 389	$212.45 \\ 214.96 \\ 254 \\ 217.50 \\ 255 \\ 255 \\ 312 \\ 325 \\ 3$	359.6 360.6 361.7	839.1 838.3 837.4	754.2 753.3 752.4	84.9 85.0 85.0	$\begin{array}{c} 0.5497 \\ 0.5509 \\ 0.5522 \end{array}$	0.9913 0.9891 0.9869	$\begin{array}{r} \cdot 2.160 \\ 2.13624 \\ 2.11224 \\ 2.11224 \end{array}$	${ \begin{smallmatrix} 0.4630 \\ 0.468252 \\ 0.473553 \\ 0.473554 \end{smallmatrix} }$	387 388 389
390 391	$220.05_{222.63}_{260}_{260}$	362.7 363.7	836.6 835.7	751.6 750.6	85.0 85.1	0.5534 0.5546	$0.9848 \\ 0.9826$	$2.088_{2.064_{23}}$	$0.4789 \\ 0.4845 \\ 55 \\ 55$	390 [,] 391

44

.

SATURATED STEAM-TABLE I.

emperature, Degrees Fahrenheit.	ressure, Pounds per Square Inch.	leat of the Liquid.	feat of Vap- orization.	feat Equiva- lent of Inter- nal Work.	feat Equiva- lent of Exter- nal Work.	intropy of the Liquid.	Intropy of Vaporiza- tion.	pecific Vol- ume, Cubic Feet per Pound.	ensity, Pounds per Cubic Foot.	emperature, Degrees Fohrenheit
L t	р р	а 	ч г	р р	Apu	θ		3 3	$\frac{1}{s}$	E t
392 393 394	$225.2_{27},926\\230.5_{27}$	$364.8 \\ 365.8 \\ 366.9$	$834.8 \\ 834.0 \\ 833.1$	749.7 748.9 747.9	$85.1 \\ 85.1 \\ 85.2$	0.5558 0.5571 0.5583	0.9804 0.9783 0.9761	${}^{2.041}_{2.01922}_{1.99722}_{22}$	${0.490\atop 0.495}\atop_{0.501}\atop5$	392 393 394
395 396 397	$233.2_{235.927}\\235.9_{27}\\238.6_{28}$	367.9 368.9 370.0	$832.2 \\ 831.4 \\ 830.5$	747.0 746.2 745.2		0.5595 0.5607 0.5619	$\begin{array}{c} 0.9740 \\ 0.9718 \\ 0.9696 \end{array}$	${}^{1.975}_{1.953}{}^{22}_{22}_{1.931}_{21}$	${0.506\atop 0.5126\atop 0.5186\atop 6}$	395 396 397
398 399 400	$241.4_{27} \\ 244.1_{28} \\ 246.9_{28} \\ 28$	371.0 372.0 373.1	829.7 828.8 827.9	744.4743.5742.6	$85.3 \\ 85.3 \\ 85.3 \\ 85.3$	$\begin{array}{c} 0.5632 \\ 0.5644 \\ 0.5656 \end{array}$	$\begin{array}{c} 0.9675 \\ 0.9654 \\ 0.9633 \end{array}$	${}^{1.910}_{1.88921}_{1.86821}_{1.86821}_{21}$	${0.524\atop 0.5295\atop 0.5356}$	398 399 400
401 402 403	$\substack{249.7\\252.629\\255.529\\255.529}$	$374.1 \\ 375.2 \\ 376.2$	827.0 826.1 825.2	741.6 740.7 739.8	$85.4 \\ 85.4 \\ 85.4$	0.5668 0.5680 0.5692	0.9611 0.9589 0.9568	${}^{1.847}_{1.826}{}^{21}_{20}_{1.806}{}^{20}_{20}$	${0.541\atop 0.548\atop 0.5546\atop 0.554_6}$	401 402 403
404 405 406	$258.4_{29} \\ 261.3_{30} \\ 264.3_{30} \\ 30$	377.3 378.3 379.4	824.4 823.5 822.6	739.0 738.1 737.1	$85.4 \\ 85.4 \\ 85.5$	$\begin{array}{c} 0.5704 \\ 0.5716 \\ 0.5728 \end{array}$	$\begin{array}{c} 0.9547 \\ 0.9525 \\ 0.9504 \end{array}$	${}^{1.786}_{1.76619}_{1.74719}$	${0.560\atop 0.5666\atop 0.572{6}\\ 0.572{7}$	404 405 406
407 408 409	$267.3_{30} \\ 270.3_{30} \\ 273.3_{30} \\ 30$	380.4 381.4 382.5	821.7 820.8 820.0	736.2 735.3 734.5	$85.5 \\ 85.5 \\ 85.5 \\ 85.5$	$\begin{array}{c} 0.5741 \\ 0.5753 \\ 0.5765 \end{array}$	$\begin{array}{c} 0.9483 \\ 0.9462 \\ 0.9441 \end{array}$	${}^{1.728}_{1.709}{}^{19}_{18}_{1.691}_{18}$	${0.579\atop 0.5856\atop 0.591{7}}$	407 408 409
410 411 412	$276.3_{31}\\279.4_{31}\\282.5_{32}$	383.5 384.6 385.6	819.1 818.2 817.3	733.6 732.7 731.7	$85.5 \\ 85.5 \\ 85.6$	$\begin{array}{c} 0.5777 \\ 0.5789 \\ 0.5801 \end{array}$	$\begin{array}{c} 0.9420 \\ 0.9399 \\ 0.9378 \end{array}$	${}^{1.673}_{1.655}{}^{18}_{1.637}_{18}$	${0.598\atop 0.604_7\\ 0.611_7}$	410 411 412
413 414 415	$285.7_{288.931}_{292.032}$	386.7 387.7 388.7	816.4 815.5 814.6	730.8 729.9 729.0	$85.6 \\ 85.6 \\ 85.6$	$\begin{array}{c} 0.5813 \\ 0.5825 \\ 0.5837 \end{array}$	$\begin{array}{c} 0.9357 \\ 0.9336 \\ 0.9315 \end{array}$	${}^{1.619}_{1.60117}_{1.584}_{17}$	${}^{0.618}_{0.625}_{6}_{6}_{0.631}_{7}_{7}$	413 414 415
416 417 418	$295.2_{33}\\298.5_{33}\\301.8_{33}$	389.8 390.8 391.9	813.7 812.8 811.9	728.1 727.2 726.3	85.6 85.6 85.6	0.5849 0.5861 0.5873	0.9294 0.9273 0.9253	${}^{1.567}_{1.550}{}^{17}_{1.533}{}^{17}_{17}$	$\begin{array}{c} 0.638_{7} \\ 0.645_{7} \\ 0.652_{8} \end{array}$	416 417 418
419 420 421	$305.1_{308.533}_{308.533}_{311.834}$	392.9 394.0 395.0	811.0 810.1 809.2	725.4 724.5 723.6		0.5885 0.5896 0.5908	0.9232 0.9211 0.9191	${}^{1.516}_{1.49916}_{1.48316}_{1.6}$	${}^{0.660}_{0.667}_{0.677}_{0.674}_{8}$	419 420 421
422 423 424	$315.2_{34} \\ 318.6_{35} \\ 322.1_{35}^{35}$	396.1 397.1 398.2	808.3 807.4 806.5	722.7 721.8 720.9	$85.6 \\ 85.6 \\ 85.6 \\ 85.6$	0.5920 0.5932 0.5944	$\begin{array}{c} 0.9170 \\ 0.9149 \\ 0.9128 \end{array}$	${}^{1.467}_{1.45216}_{1.436}_{1.436}_{15}$	${}^{0.682}_{0.6897}_{0.696}_{0.696}_{8}$	422 423 424
425 426 427	$\begin{array}{c} 325.6\\ 329.135\\ 332.635\\ 332.636\end{array}$	399.2 400.3 401.3	805.6 804.7 803.8	720.0 719.1 718.2	85.6 85.6 85.6	$\begin{array}{c} 0.5955 \\ 0.5967 \\ 0.5979 \end{array}$	$\begin{array}{c} 0.9108 \\ 0.9088 \\ 0.9067 \end{array}$	${}^{1.421}_{1.40615}_{1.391}_{15}$	$\begin{array}{c} 0.704 \\ 0.711 \\ 0.719 \\ 8 \end{array}$	425 426 427
428	336.2	402.3	802.9	717.3	85.6	0.5991	0.9047	1.376	0.727	428

TI,

TABLE II. SATURATED STEAM.

ENGLISH UNITS.

essure, Pounds per Square Inch.	mperature, Degrees Fahrenheit.	eat of the Liquid.	eat of Vap- orization.	eat Equiva- ent of Inter- al Work.	eat Equiva- ent of Exter- al Work.	itropy of he Liquid.	tropy of Vaporiza- tion.	ecific Vol- ume, Cubic Feet per Pound.	nsity, Pounds per Cubic Foot.	essure, Pounds per Square Inch.
Ч р	L t	H	H F	ο Η ο Ιο ο	H ^{-c} Apu	e Er	$\tilde{\Xi}$ $\frac{r}{T}$	1/8 1/8	Й <u>1</u> 8	p Pr
1 2 3	$101.84 \\ 126.152431 \\ 126.151537 \\ 141.5211537 \\ 1148$	69.8 94.2 109.6	1034.7 1021.9 1012.2	973.1 957.8 946.4	61.6 64.1 65.8	0.1329 0.1753 0.2011	-549 1.8433 1.7432 1.6841	333.1 1600 173.1 118.4 280	$\begin{array}{r} 0.00300 \\ 0.00578 \\ 267 \\ 0.00845 \\ 261 \end{array}$	1 2 3
4 5 6	153.00 926 162.26 781 170.07 677	121.0 130.3 138.1	1005.5 1000.0 995.5	938.6 932.1 926.8	66.9 67.9 68.7	0.2200 0.2351 0.2476	$1.6416 \\ 1.6084 \\ 1.5812$	$\begin{array}{c} 90.4 \\ 73.3 \\ 61.9 \\ 83 \end{array}$	$\begin{array}{c} 0.01106 \\ 0.01364 \\ 0.01616 \\ 250 \\ 250 \end{array}$	4 5 6
· 7 8 9	$\begin{array}{r} 176.84\\182.86\\188.27\\494\end{array}$	144.9 150.9 156.4	991.4 987.8 984.5	922.0 917.8 914.0	69.4 70.0 70.5	0.2583 0.2678 0.2762	$1.5580 \\ 1.5378 \\ 1.5198$	$\begin{array}{r} 53.6 & 63 \\ 47.26 \\ 42.36 \\ 399 \end{array}$	$\begin{array}{c} 0.01866\\ 0.02116\\ 0.02362\\ 246\\ 244 \end{array}$	7 8 9
10 . 11 . 12	$\begin{array}{r} 193.21 \\ 197.74 \\ 201.95 \\ 392 \end{array}$	161.3 165.9 170.1	981.4 978.6 976.0	910.4 907.1 904.1	71.0 71.5 71.9	0.2838 0.2908 0.2972	$\begin{array}{r} 1.5036 \\ 1.4889 \\ 1.4756 \end{array}$	$\begin{array}{r} 38.37\\35.11271\\32.40\\234\end{array}$	$\begin{array}{c} 0.02606 \\ 0.02848 \\ 0.03088 \\ 239 \end{array} \\ \begin{array}{c} 242 \\ 240 \\ 239 \end{array}$	10 11 12
13 14 15	$\begin{array}{c} 205.87\\ 209.55\\ 348\\ 213.03\\ 328\end{array}$	174.1 177.8 181.3	973.6 971.2 969.1	901.3 898.6 896.2	- 72.3 72.6 72.9	0.3032 0.3088 0:3140	$\begin{array}{c} 1.4632 \\ 1.4516 \\ 1.4409 \end{array}$	$\begin{array}{c} 30.06 \\ 28.03 \\ 26.28 \\ 154 \end{array}$	$\begin{array}{c} 0.03327\\ 0.03567\\ 0.03805\\ 238\\ 237\end{array}$	13 14 15
16 17 18	$\begin{array}{c} 216.31 \\ 219.43 \\ 222.40 \\ 284 \end{array}$	184.6 187.8 190.8	967.0 965.0 963.1	893.8 891.5 889.3	73.2 73.5 73.8	$\begin{array}{c} 0.3189 \\ 0.3236 \\ 0.3280 \end{array}$	1.4308 1.4213 1.4123	$24.74 \\ 23.38 \\ 121 \\ 22.17 \\ 110 $	$\begin{array}{c} 0.04042 \\ 0.04277 \\ 0.04511 \\ 235 \end{array}$	16 17 18
19 20 21	$\begin{array}{c} 225.24\\ 227.95\\ 230.56\\ 251 \end{array}$	193.7 196.4 199.1	961.2 959.4 957.7	887.2 885.1 883.1	74.0 74.3 74.6	$\begin{array}{c} 0.3322 \\ 0.3362 \\ 0.3401 \end{array}$	1.4038 1.3957 1.3879	$\begin{array}{c} 21.07 \\ 20.09 \\ 19.19 \\ 82 \end{array}$	${ \begin{smallmatrix} 0.04746 & 232 \\ 0.04978 & 23 \\ 0.0521 & 23 \\ 23 \\ \end{smallmatrix} }$	19 20 21
22 23 24	$\begin{array}{c} 233.07\\ 235.50\\ 237.82\\ 225\end{array}$	201.6 204.1 206.4	956.0 954.4 952.9	881.2 879.4 877.7	74.8 75.0 75.2	$\begin{array}{c} 0.3438 \\ 0.3473 \\ 0.3507 \end{array}$	$\begin{array}{r} 1.3804 \\ 1.3733 \\ 1.3665 \end{array}$	$\begin{array}{c} 18.37 \\ 17.62 \\ 16.92 \\ 63 \end{array}$	${}^{0.0544}_{0.056823}_{23}_{0.059123}_{23}$	22 23 24
25 26 27	$\begin{array}{c} 240.07\\ 242.26\\ 244.36\\ 205\end{array}$	208.7 210.9 213.0	951.4 949.9 948.5	876.0 874.4 872.8	75.4 75.5 75.7	0.3539 0.3571 0.3601	$1.3600 \\ 1.3536 \\ 1.3475$	$\begin{array}{c} 16.29 \\ 15.70 \\ 15.17 \\ 50 \\ 50 \end{array}$	${}^{0.0614}_{0.063722}_{0.065923}_{23}$	25 26 27
28 29 30	246.41 200 248.41 193 250.34 188	215.1 217.2 219.1	947.1 945.8 944.4	871.2 869.7 868.2	75.9 76.1 76.2	$\begin{array}{c} 0.3631 \\ 0.3660 \\ 0.3687 \end{array}$	1.3417 1.3360 1.3305	$\begin{array}{r} 14.67 \\ 14.19 \\ 13.74 \\ 42 \end{array}$	${}^{0.0682}_{0.070523}_{0.070523}_{0.072823}_{23}$	28 29 30
31 32	$252.22 \\ 254.05 \\ 179 \\ 179$	221.0 222.9	943.1 941.8	866.7 865.2	76.4 76.6	0.3714	1.3252 1.3200	$\begin{array}{c} 13.32\\12.93\\37\end{array}$	$0.0751_{0.0773_{23}}$	31 32

46

SATURATED STEAM - TABLE II.

Pressure, Pounds per Square Inch.	Temperature, Degrees Fahrenheit.	Heat of the Liquid.	Heat of Vap- orization.	Heat Equiva- lent of Inter- nal Work.	Heat Equiva- lent of Exter- nal Work.	Entropy of the Liquid.	Entropy of Vaporiza- tion.	Specific Vol- ume, Cubic Feet per Pound,	Density, Pounds per Cubic Foot.	Pressure, Pounds per Square Inch.
p	· t	q	r	ρ	A pu	θ	$\frac{r}{T}$	8	1 8	p
33 34 35	$255.84\\257.59\\170\\259.29\\167$	224.7 226.5 228.2	940.6 939.4 938.2	$863.8 \\ 862.5 \\ 861.2$	76.8 76.9 77.0	$0.3766 \\ 0.3791 \\ 0.3815$	$1.3149 \\ 1.3101 \\ 1.3054$	$\begin{array}{cccc} 12.56 & 35 \ 12.21 & 33 \ 11.88 & 30 \end{array}$	$0.0796_{23}\\0.0819_{23}\\0.0842_{22}^{23}$	33 34 35
36 37 38	$260.96 \\ 262.58 \\ 159 \\ 264.17 \\ 156 \\$	$229.9 \\ 231.6 \\ 233.2$	937.1 935.9 934.8	859.9 858.6 857.4	77.2 77.3 77:4	0.3838 0.3861 0.3883	1.3007 1.2962 1.2918	$\begin{array}{cccc} 11.58 & 29 \\ 11.29 & 28 \\ 11.01 & 26 \end{array}$	${}^{0.0864}_{0.088622}_{22}_{0.090822}_{22}$	36 37 38
39 40 41	$\substack{265.73\\267.26}_{150}_{268.76}_{147}$	$234.8 \\ 236.4 \\ 237.9$	933.7 932.6 931.6	856.2 855.0 853.8	77.5 77.6 77.8	0.3905 0.3927 0.3948	$1.2875 \\ 1.2833 \\ 1.2792$	$\begin{array}{cccc} 10.75 & 26 \\ 10.49 & 24 \\ 10.25 & 23 \end{array}$	${}^{0.0930}_{0.0953}{}^{23}_{23}_{0.0976}_{22}$	39 40 41
42 43 44	$270.23 \\ 271.66 \\ 141 \\ 273.07 \\ 139 \\$	239.4 240.8 242.3	930.6 929.5 928.5	852.7 851.5 850.4	77.9 78.0 78.1	0.3968 0.3988 0.4008	$1.2752 \\ 1.2713 \\ 1.2675$	${ \begin{smallmatrix} 10.02 & 22 \\ 9.801 & 22 \\ 9.589 & 202 \end{smallmatrix} } $	${0.0998\atop 0.102023\atop 0.104322}$	42 43 44
45 46 47	$274.46\\275.82\\134\\277.16\\131$	243.7245.1246.4	927.5 926.6 925.6	$849.3 \\ 848.2 \\ 847.2$	78.2 78.4 78.4	$\begin{array}{c} 0.4027 \\ 0.4046 \\ 0.4065 \end{array}$	$1.2638 \\ 1.2601 \\ 1.2565$	$9.387 \\ 9.195 \\ 195 \\ 19.012 \\ 174$	$0.1065 \\ 0.1087 \\ 22 \\ 0.1109 \\ 22$	45 46 47
48 49 50	$278.47 \\ 279.76 \\ 127 \\ 281.03 \\ 125 \\$	247.8 249.1 250.4	924.7 923.8 922.8	$846.2 \\ 845.1 \\ 844.1$	78.5 78.7 78.7	$\begin{array}{c} 0.4083 \\ 0.4101 \\ 0.4119 \end{array}$	$1.2530 \\ 1.2496 \\ 1.2462$	$\begin{array}{r} 8.838\\ 8.670\\ 8.507\\ 157\end{array}$	${ \begin{smallmatrix} 0.1131\\ 0.1153_{23}\\ 0.1176_{22} \end{smallmatrix} }$	48 49 50
51 52 53	$282.28\\283.52\\284.74\\119$	251.7 253.0 254.2	921.9 921.0 920.1	$\begin{array}{r} 843.1 \\ 842.1 \\ 841.1 \end{array}$	78.8 78.9 79.0	$\begin{array}{c} 0.4136 \\ 0.4153 \\ 0.4170 \end{array}$	$1.2428 \\ 1.2395 \\ 1.2363$	${}^{8.350}_{8.198146}_{152}_{8.052140}$	${0.1198\atop 0.122022\atop 0.124222}$	51 52 53
54 55 56	$285.93 \\ 287.09 \\ 116 \\ 288.25 \\ 115 \\$	255.4 256.6 257.8	919.3 918.4 917.6	840.2 839.2 838.3	79.1 79.2 79.3	$\begin{array}{c} 0.4186 \\ 0.4202 \\ 0.4218 \end{array}$	$1.2332 \\ 1.2302 \\ 1.2271$	$\begin{array}{c} 7.912 \\ 7.778 \\ 131 \\ 7.647 \\ 128 \end{array}$	${0.1264 \atop 0.128622 \atop 0.130822}$	54 55 56
57 58 59	$289.40 \\ 290.53 \\ 111 \\ 291.64 \\ 110 \\$	259.0 260.1 261.3	916.7 915.9 915.1	837.4 836.5 835.6	79.379.479.5	$\begin{array}{c} 0.4233 \\ 0.4249 \\ 0.4264 \end{array}$	$1.2241 \\ 1.2211 \\ 1.2182$	7.5197.3971227.2801177.280114	${ \begin{smallmatrix} 0.1330 \\ 0.1352 \\ 22 \\ 0.1374 \\ 21 \end{smallmatrix} }$	57 58 59
60 61 62	$292.74 \\ 293.82 \\ 106 \\ 294.88 \\ 105 \\ 105 \\$	262.4 263.5 264.6	914.3 913.5 912.7	834.7 833.8 832.9	79.6 79.7 79.8	$\begin{array}{c} 0.4279 \\ 0.4294 \\ 0.4308 \end{array}$	$1.2154 \\ 1.2126 \\ 1.2099$	$7.166 \\ 1.055 \\ 1.055 \\ 1.06 \\ 6.949 \\ 103 \\ 103 \\$	${0.1395\atop 0.141722\\ 0.141722\\ 0.143922}$	60 61 62
63 64 65	$295.93 \\ 296.97 \\ 103 \\ 298.00 \\ 102$	265.7 266.7 267.8	911.9 911.1 910.4	832.1 831.2 830.4	79.8 79.9 80.0	$\begin{array}{c} 0.4323 \\ 0.4337 \\ 0.4351 \end{array}$	$1.2072 \\ 1.2045 \\ 1.2018$	$\begin{array}{c} 6.846 \\ 6.745 \\ 98 \\ 6.647 \\ 95 \end{array}$	$0.1461 \\ 0.1483 \\ 21 \\ 0.1504 \\ 22$	63 64 65
66 67 68	$\begin{array}{c} 299.02\\ 300.02\\ 301.01\\ 98\end{array}$	268.8 269.8 270.9	909.6 908.9 908.1	829.6 828.8 827.9	80.0 80.1 80.2	$\begin{array}{c} 0.4365 \\ 0.4378 \\ 0.4391 \end{array}$	$\begin{array}{c} 1.1992 \\ 1.1966 \\ 1.1942 \end{array}$	$\begin{array}{c} 6.552\\ 6.460\\ 6.370\\ 87\end{array} \\ 90$	${ \begin{smallmatrix} 0.1526 \\ 0.1548 \\ 22 \\ 0.1570 \\ 22 \end{smallmatrix} }$	66 67 68
69 70 71	301.99 302.96 303.91 95	271.9 272.9 273.8	907.4 906.6 905.9	827.1 826.3 825.5	80.3 80.3 80.4	$\begin{array}{c} 0.4405 \\ 0.4418 \\ 0.4430 \end{array}$	1.1917 1.1892 1.1867	$\begin{array}{c} 6.283 \\ 6.199 \\ 6.117 \\ 81 \end{array} \\ 81 \end{array}$	${}^{0.1592}_{0.1613}{}^{10}_{22}_{0.1635}{}^{22}_{22}_{22}$	69 70 71
72 73	$304.86 \\ 305.79 \\ 93$	$274.8 \\ 275.8$	905.2 904.5	824.8 824.0	80.4 80.5	$0.4443 \\ 0.4456$	1.1843 1.1819	$ \begin{array}{c} 6.036 \\ 5.958 \\ 76 \end{array} $	$0.1657_{0.1678_{22}}^{0.1657_{21}}_{0.1678_{22}}$	72 73

ssure, ounds per oquare Inch.	nperature, Jegrees ahrenheit.	at of the Jiquid.	at of Vap- rization.	at Equiva- it of Inter- I Work.	at Equiva- nt of Exter- d Work.	tropy of he Liquid.	tropy of aporiza- ion.	scific Vol- ime, Cubic reet per ound.	asity. Pounds per Jubic Foot.	ssure, ounds per quare Inch.
Pre	Tei	HeI	He	Heler	Helen	En	En	Spe	Dei	Pre F
<i>p</i>	ť	<i>q</i>	<i>r</i>	ρ	Apu	0	T	8	8	<i>p</i>
74 75 76	$\begin{array}{r} 306.72\\ 307.6492\\ 308.5490\\ 308.5490 \end{array}$	276.7 277.7 278.6	903.8 903.1 902.4	823.2 822.4 821.7	80.6 80.7 80.7	0.4468 0.4480 0.4492	$1.1795 \\ 1.1772 \\ 1.1750$	5.882_{75} 5.807_{72} 5.735_{70}	$0.1700\\0.172222\\0.1724222\\0.174421$	74 75 76
77 78 79	$309.44_{89}\\310.33_{88}\\311.21_{87}$	279.5 280.4 281.3	901.8 901.1 900.4	821.0 820.3 819.6	80.8 80.8 80.8	$\begin{array}{c} 0.4504 \\ 0.4516 \\ 0.4528 \end{array}$	$1.1727 \\ 1.1705 \\ 1.1683$	$5.665 \\ 5.59767 \\ 5.53067 \\ 64$	${0.1765_{22}\atop 0.1787_{21}\atop 0.1808_{21}}$	77 78 79
80 81 82	${ 312.08\atop {312.9485\atop {313.79}} 85 } \\$	282.2 283.1 283.9	899.8 899.1 898.5	818.9 818.1 817.4	80.9 81.0 81.1	$\begin{array}{c} 0.4540 \\ 0.4551 \\ 0.4562 \end{array}$	$1.1661 \\ 1.1640 \\ 1.1619$	$5.466 \\ 5.40363 \\ 5.34261 \\ 61$	$0.1829\\0.1851\\21\\0.1872\\22$	80 81 82
83 84 85	$314.63\\315.47\\83\\316.30\\82$	$284.8 \\ 285.7 \\ 286.5$	897.8 897.2 896.6	816.7 816.1 815.4	81.1 81.1 81.2	$\begin{array}{c} 0.4573 \\ 0.4584 \\ 0.4595 \end{array}$	1.1598 1.1577 1.1557	$5.281 \\ 5.220 \\ 5.161 \\ 57 $	$\begin{array}{c} 0.1894 \\ 0.1916 \\ 22 \\ 0.1938 \\ 21 \\ \end{array}$	83 84 85
86 87 88	$317.12\\317.93\\317.93\\80\\318.73\\80$	287.4 288.2 289.0	895.9 895.3 894.7	814.7 814.0 813.3	81.2 81.3 81.4	0.4606 0.4617 0.4628	$\begin{array}{c} 1.1536 \\ 1.1516 \\ 1.1496 \end{array}$	$5.104 \\ 5.04856 \\ 4.993 \\ 54$	${0.1959\atop 0.1981_{22}\\ 0.2003_{22}}$	86 87 88
89 90 91	$\begin{array}{r} 319.53\\ 320.3279\\ 321.10\\ 78\end{array}$	289.9 290.7 291.5	894.1 893.5 892.9	812.7 812.1 811.4	81.4 81.4 81.5	0.4638 0.4649 0.4659	$\frac{1.1477}{1.1457}\\1.1438$	$\begin{array}{r} 4.939 \\ 4.88653 \\ 4.83551 \\ 4.83550 \end{array}$	${ \begin{smallmatrix} 0.2025\\ 0.2047_{21}\\ 0.2068_{22} \end{smallmatrix} } $	89 90 91
92 93 94	$\begin{array}{r} 321.88_{77} \\ 322.65_{76} \\ 323.41_{75} \end{array}$	292.3 293.1 293.9	892.3 891.7 891.1	810.7 810.1 809.5	81.6 81.6 81.6	0.4669 0.4679 0.4689	1.1419 1.1400 1.1382	$\begin{array}{r} 4.785_{49} \\ 4.736_{47} \\ 4.689_{45} \end{array}$	${0.2090\atop 0.2112{21\atop 0.2133{20\atop 20}}}$	92 93 94
95 96 97	$\begin{array}{r} 324.16_{75}\\ 324.91_{75}\\ 325.66_{74}\end{array}$	294.6 295.4 296.2	890.5 889.9 889.3	808.8 808.2 807.5	81.7 81.7 81.8	0.4699 0.4709 0.4719	$1.1363 \\ 1.1345 \\ 1.1327$	$\begin{array}{r} 4.644\\ \overline{4.599}43\\ 4.556\\ 42\end{array}$	${ \begin{smallmatrix} 0.2153 \\ 0.2174 \\ 21 \\ 0.2195 \\ 20 \end{smallmatrix} }$	95 96 97
98 99 100	$\begin{array}{r} 326.40_{73}\\ 327.13_{73}\\ 327.86_{72}\\ \end{array}$	296.9 297.7 298.5	888.7 888.2 887.6	806.9 806.3 805.7	81.8 81.9 81.9	0.4729 0.4738 0.4748	1.1309 1.1291 1.1273	${}^{4.514}_{4.473}_{41}_{4.432}_{41}_{41}_{41}$	${}^{0.2215}_{0.2236}{}^{21}_{20}_{20}_{0.2256}{}^{20}_{21}$	98 99 100
101 102 103	$\begin{array}{r} 328.58\\329.30\\71\\330.01\\71\end{array}$	299.2 299.9 300.6	887.0 886.5 885.9	805.1 804.5 803.8	81.9 82.0 82.1	$\begin{array}{c} 0.4757 \\ 0.4766 \\ 0.4776 \end{array}$	$\begin{array}{c} 1.1255 \\ 1.1238 \\ 1.1221 \end{array}$	${}^{4.391}_{4.351}_{40}_{4.311}_{39}_{39}$	${ \begin{smallmatrix} 0.2277 \\ 0.2298 \\ 22 \\ 0.2320 \\ 21 \end{smallmatrix} }$	101 102 103
104 105 106	$\begin{array}{r} 330.72\\ 331.4269\\ 332.1168\end{array}$	301.4 302.1 302.8	885.3 884.8 884.3	803.2 802.7 802.1	$82.1 \\ 82.1 \\ 82.2$	0.4785 0.4794 0.4803	1.1204 1.1187 1.1170	$\substack{4.272\\4.233}\\4.195}\\38$	${ \begin{smallmatrix} 0.2341 \\ 0.2362 \\ 22 \\ 0.2384 \\ 22 \\ 1 \end{smallmatrix} }$	104 105 106
107 108 109	$332.79\\333.4869\\334.1668\\67$	303.5 304.2 304.9	883.7 883.2 882.6	801.5 800.9 800.3	82.2 82.3 82.3	0.4812 0.4821 0.4830	$1.1154 \\ 1.1137 \\ 1.1121$	${}^{4.157}_{4.120}{}^{37}_{37}_{4.083}{}^{37}_{36}$	${ \begin{smallmatrix} 0.2406 \\ 0.2427 \\ 22 \\ 0.2449 \\ 22 \\ \end{smallmatrix} }$	107 108 109
110 111 112	$334.83_{67}\\335.50_{67}\\336.17_{66}$	305.6 306.3 307.0	882.1 881.6 881.0	799.7 799.2 798.6	82.4 82.4 82.4	0.4838 0.4847 0.4856	$1.1105 \\ 1.1089 \\ 1.1073$	$\begin{array}{r} 4.047_{36} \\ 4.011_{35} \\ 3.976_{33}^{33} \end{array}$	$0.2471 \\ 0.2493 \\ 22 \\ 0.2515 \\ 21$	110 111 112
113 114	$336.83_{65}_{337.48}_{66}_{66}$	307.7 308.3	880.5 880.0	798.0 797.5	82.5 82.5	0.4864 0.4873	$1.1057 \\ 1.1041$	$3.943_{34}_{3.909_{33}}$	$0.2536_{0.2558}_{22}_{22}$	113 114

SATURATED STEAM - TABLE II.

Hđ		e)	1	57	22	4	Ŧ	104	H .:	
pe	ure, leit	th	Vap n.	uiva ter	uive ktei	, id.	8-0	Vol	oot	per
re, re]	rati	of .	f	flu	of Ed	apr.	oriz	o o	y, ads	re]
Ino	ahi	iqu	rize	tt]	I W	e I	ap	cifi	oui	our
SPE	FD	L	Hea	Healer	Her ler na	Ent	Ent	PE	OPen	NPG
-		-	- -		4 m	-	r		<u>1</u>	
р	6	Ŷ		ρ	21.04	Ū	\overline{T}	0	8	Ρ
									0.0100	
115	338.14	309.0	879.5	797.0	82.5	0.4881	1.1026	3.87632	0.2580 0.260121	115
117	338.1864	310 3	878 5	790.4	82.6	0.4898	1 0996	3.81232	0.2601_{22}	117
	64	01010	010.0					31	21	
118	340.0663	311.0	878.0	795.3	82.7	0.4906	1.0981	3.78129	0.2644	118
119	340.6962	311.7	877.4	794.7	82.7	0.4914	1.0966	3.75229	0.266521	119
120	^{341.31} 63	312.3	870.9	194.4	04.6	0.4944	1.0901	5.12329	0.200021	120
121	341.94	312.9	876.4	793.6	82.8	0.4930	1.0936	3.69420	0.2707,99	121
122	342.5662	313.6	875.9	793.1	82.8	0.4938	1.0921	3.66528	0.2729_{21}^{22}	122
123	343.1861	314.2	875.4	792.6	82.8	0.4946	1.0907	3.63728	$0.2750_{21}^{}$	123
124	343.79	314.8	875.0	792.1	82.9	0.4954	1.0892	3.609.00	0.2771.00	124
125	344.3960	315.5	874.5	791.6	82.9	0.4962	1.0878	3.581_{27}^{28}	0.2793_{21}^{22}	125
126	345.0060	316.1	874.0	791.0	83.0	0.4970	1.0864	3.554_{27}^{27}	0.2814_{21}^{21}	126
197	345 60	316 7	873 5	700 5	83.0	0 4977	1 0850	3 527	0 2835	127
128	346.2060	317.3	873.0	790.0	83.0	0.4985	1.0836	3.50126	0.2856^{21}_{01}	128
129	346.7959	317.9	872.6	789.5	83.1	0.4993	1.0822	3.476_{25}^{25}	0.2877_{21}^{21}	129
100	0.45 00	010 0	070 1	700 0	0.9 1	0 2000	1 0000	9.451	0.0000	120
130	347.38 58	318.0	872.1	789.0	83.1	0.5000	1.0808	3.43124	0.289820	130
132	348.5559	319.8	871.1	788.0	831	0.5015	1.0780	3.40225	0.2939_{21}^{21}	132
	58				~~ ~			24	21	100
133	349.13	320.4	870.7	787.5	83.2	0.5023	1.0767	$3.378_{2.254}24$	0.2960 0.208121	133
135	350 2757	320.9	869.8	786.5	83.3	0.5030	1.0741	3.33123	0.300221	135
	57	0						23	21	
136	350.8457	322.1	869.3	786.0	83.3	0.5044	1.0728	3.308_{22}	0.3023_{20}	136
137	351.41 57	322.7	868.8	785.5	83.3	0.5052	1.0714	3.28022	0.3043_{21} 0.3064 ²¹	137
100	551. 50 56	020.0	000.0	100.0	00.0	0.0000	1.0101	0.20122	0.000121	100
139	352.54_{55}	323.9	867.9	784.5	83.4	0.5066	1.0688	3.242_{22}	0.308521	139
140	353.0956	324.4	867.4	784.0	83.4	0.5073	1.0675	$3.220_{21}^{$	0.3106_{-20}	140
141	353.0055	325.0	807.0	183.0	03.4	0.5080	1.0002	5.19922	0.312021	141
142	354.20 55	325.6	866.5	783.1	83.4	0.5087	1.0649	3.17721	0.314721	142
143	354.75_{54}	326.2	866.1	782.6	83.5	0.5094	1.0637	3.156_{20}^{21}	0.3168_{21}^{21}	143
144	355.2954	326.7	865.6	782.1	83.5	0.5101	1.0624	3.13621	0.3189_{21}^{-1}	144
145	355.83-	327.3	865.2	781.6	83.6	0.5108	1.0612	3.115.00	0.3210.1	145
146	356.3754	327.8	864.8	781.2	83.6	0.5115	1.0599	3.095_{21}^{20}	0.3231_{22}^{21}	146
147	356.91_{53}^{04}	328.4	864.3	780.7	83.6	0.5122	1.0587	3.074_{20}^{-1}	0.325321	147
148	357.44	328.9	863.9	780.3	83.6	0.5128	1.0575	3.054	0.3274	148
149	357.9753	329.5	863.5	779.8	83.7	0.5135	1.0563	3.034_{20}^{20}	0.329622	149
150	358.50_{52}^{55}	330.0	863.0	779.3	83.7	0.5142	1.0551	3.014_{19}^{20}	0.3318_{21}^{22}	150
151	359 02	330 6	862 6	778 0	83 7	0.5148	1.0539	2 995	0.3339	151
152	359.5452	331.1	862.2	778.5	83.7	0.5155	1.0527	2.97718	0.335920	152
153	360.06_{51}^{52}	331.6	861.8	778.1	83.7	0.5162	1.0515	2.958_{18}^{19}	0.3380_{21}^{21}	153
154	360 57	220 0	861 2	777 6	83 7	0 5169	1 0502	2 940	0.3401	154
155	361.09^{52}	332.7	860.9	777.1	83.8	0.5175	1.0491	2.92218	0.342221	155
	51							18	22	

Inch.	ure, s heit.	the	Vap- n.	niva- nter- k.	uiva- Ex- Work.	of Juid.	of 2a-	Vol- Subic per	Foot.	per Inch.
ssure, ounds quare	ahren	iquid.	tt of rizatio	tt Equit of I Wor	ut Equation	ropy te Lic	ropy aporio	cific me, (eet ound.	ounds bounds	ssure, ounds juare
Pre S S	Ten F	Heal	Hea	Healen	Hea le te	Ent	Ent V ti	Spe	Der C	Pre
р	t	q	T	ρ	Apu	θ	$\frac{r}{T}$	8	1 <u></u> 8	р
156	361.60	333.2	860.5	776.6	83.9	0.5181	1.0479	2.904	0.3444	156
158	362.62_{50}^{51}	334.3	859.6	775.7	83.9	0.5187	1.0468	$2.869_{17}^{2.869_{17}}$	0.3486_{21}^{21} 0.3486_{21}^{21}	158
159 160 161	$\begin{array}{r} 363.12\\ 363.6250\\ 364.1250\\ 364.1250\end{array}$	334.8 335.3 335.9	859.2 858.8 858.4	775.3 774.9 774.5	83.9 83.9 83.9	$\begin{array}{c} 0.5200 \\ 0.5206 \\ 0.5213 \end{array}$	$\begin{array}{c} 1.0445 \\ 1.0434 \\ 1.0422 \end{array}$	$2.852_{18} \\ 2.834_{17} \\ 2.817_{17}^{17}$	${ \begin{smallmatrix} 0.3507 \\ 0.3528 \\ 22 \\ 0.3550 \\ 21 \end{smallmatrix} }$	159 160 161
162	364.62_{49}	336.4	858.0	774.0	84.0	0.5219 0.5225	1.0411	$2.800 \\ 2.783 \\ 17$	0.3571_{22} 0.3593-2	162
164	365.60 ₄₉	337.4	857.2	773.2	84.0	0.5231	1.0389	2.767_{16}^{16}	0.3614_{21}^{21}	164
165 166 167	$366.09_{49}_{366.58_{48}}_{367.06_{48}}$	337.9 338.4 338.9	856.8 856.4 856.0	.772.8 772.3 771.9	84.0 84.1 84.1	$\begin{array}{c} 0.5237 \\ 0.5244 \\ 0.5250 \end{array}$	$\frac{1.0378}{1.0367}\\1.0356$	${}^{2.751}_{2.73516}_{2.71915}_{16}$	${ \begin{smallmatrix} 0.3635_{21} \\ 0.3656_{21} \\ 0.3677_{21}^{21} \end{smallmatrix} }$	165 166 167
168 169	$367.54_{48}_{368.0248}$	339.4 339.9	855.6 855.2	771.4	84.2 84.2	0.5256	$1.0345 \\ 1.0335$	$2.704_{2.68816}$	0.3698_{22} 0.3720_{21}	168 169
170	368.50 ⁴⁸ 47	340.4	854.8	770.6	84.2	0.5268	1.0324	2.673_{15}^{15}	0.374121	170
171 172 173	$368.97 \\ 369.45 \\ 45 \\ 369.92 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 4$	340.9 341.4 341.8	854.4 854.0 853.6	770.2 769.8 769.4	84.2 84.2 84.2	$\begin{array}{c} 0.5273 \\ 0.5279 \\ 0.5285 \end{array}$	$ \begin{array}{r} 1.0313 \\ 1.0302 \\ 1.0291 \end{array} $	$2.658_{15} \\ 2.643_{15} \\ 2.628_{14} $	${ \begin{smallmatrix} 0.3762 \\ 0.3784 \\ 21 \\ 0.3805 \\ 21 \end{smallmatrix} }$	171 172 173
174 175	370.39 ₄₇ 370.8647	$342.3 \\ 342.8$	853.2 852.8	769.0	84.2 84.3	0.5291	$1.0280 \\ 1.0270$	$2.614_{14}_{2.60014}$	$0.3826_{20} \\ 0.3846_{21}$	174 175
176	371.32 ⁴⁰ 46	343.3	852.4	768.1	84.3	0.5303	1.0260	2.586_{13}^{14}	0.386721	176
177 178 179	$371.78_{46} \\ 372.24_{46} \\ 372.70_{46} \\ $	343.8 344.2 344.7	852.0 851.6 851.3	767.7 767.3 766.9	84.3 84.3 84.4	$\begin{array}{c} 0.5309 \\ 0.5314 \\ 0.5320 \end{array}$	1.0250 1.0239 1.0229	$2.573 \\ 2.559 \\ 14 \\ 2.545 \\ 14 \\ 14$	$\begin{array}{c} 0.3887_{21} \\ 0.3908_{21} \\ 0.3929_{22} \\ \end{array}$	177 178 179
180 181	373.16 373.6145	345.2 345.7	850.9 850.5	766.5	84.4 84.4	0.5326	1.0219	$2.531 \\ 2.518 \\ 13$	$0.3951_{0.3972_{20}}$	180 181
182	374.0740	346.2	850.1	765.7	84.4	0.5337	1.0199	2.50513	0.399220	182
183 184 185	$\begin{array}{r} 374.52\\374.96\\45\\375.41\\45\end{array}$	$ \begin{array}{c c} 346.6 \\ 347.1 \\ 347.5 \end{array} $	849.7 849.4 849.0	765.3 764.9 764.5	84.4 84.5 84.5	$0.5343 \\ 0.5348 \\ 0.5354$	1.0189 1.0179 1.0169	$2.492 \\ 2.479 \\ 13 \\ 2.467 \\ 13 \\ 13$	${ \begin{smallmatrix} 0.4013_{21} \\ 0.4034_{20} \\ 0.4054_{21} \\ 1 \end{smallmatrix} }$	183 184 185
186 187 188	375.86 376.30 376.7444	348.0 348.5 348.9	848.6 848.2 847.8	764.1 763.7 763.3	84.5 84.5 84.5	$0.5359 \\ 0.5365 \\ 0.5370$	1.0159	2.454 2.44212 2.44213	$\begin{array}{c} 0.4075 \\ 0.4095 \\ 0.4116 \\ \end{array}$	186 187 188
189	377.18	349.4	847.5	763.0	84 5	0.5376	1.0130	2.417.	0.4137	189
190 191	$377.6143 \\ 378.0544 \\ 44$	349.8 350.3	847.1 846.8	762.6	84.5 84.6	0.5381	1.0121	$2.40512 \\ 2.39312 \\ 13$	$\begin{array}{c} 0.415821 \\ 0.417922 \\ 22 \end{array}$	190 191
192 193 194	378.49 378.9243 379.3543	350.7 351.2 351.6	846.4 846.0 845.7	761.8 761.4 761.1	84.6 84.6 84.6	$\begin{array}{c} 0.5392 \\ 0.5397 \\ 0.5403 \end{array}$	1.0101 1.0091 1.0081	2.380 2.36812 2.35712 12	$\begin{array}{c} 0.4201 \\ 0.422221 \\ 0.424321 \\ 0.424321 \end{array}$	192 193 194
195 196	379.78 380.20 43	352.1 352.5	845.3 844.9	760.7 760.3	84.6 84.6	0.5408 0.5413	1.0071	$2.345_{11}\\2.334_{12}^{11}$	$\begin{array}{c} 0.4264_{21} \\ 0.4285_{21}^{21} \end{array}$	195 196

50

SATURATED STEAM - TABLE II.

essure, Pounds per Square Inch	mperature, Degrees Fahrenheit.	eat of the Liquid.	eat of Vap- orization.	aat Equiva- ont of Inter- al Work.	eat Equiva- lent of Ex- ternal Work	tropy of the Liquid.	tropy of Vaporiza- tion.	ecific Vol- ume, Cubic Feet per Pound,	ansity, Pounds per Cubic Foot.	essure, Pounds per Square Inch.
br br	E t	Ŭ P H	Ŭ H r	ρ Π Γ	Ŭ A pu	θ	। च <i>r</i>	1. 1. 8	Ŭ 1.	p Pr
197 198 199	$380.63 \\ 381.05 \\ 42 \\ 381.47 \\ 42 \\ 42$	$353.0 \\ 353.4 \\ 353.8$	844.6 844.2 843.9	759.9 759.5 759.2	84.7 84.7 84.7	$\begin{array}{c} 0.5418 \\ 0.5424 \\ 0.5429 \end{array}$	$1.0053 \\ 1.0044 \\ 1.0034$	$2.322 \\ 2.311 \\ 2.299 \\ 11$	${ \begin{smallmatrix} 0.4306 \\ 0.432721 \\ 0.434922 \\ 0.434922 \\ \end{smallmatrix} }$	197 198 199
200 201 202	$\begin{array}{r} 381.89\\ 382.3142\\ 382.7342\\ 382.7342 \end{array}$	$354.3 \\ 354.7 \\ 355.1$	843.5 843.1 842.8	758.8 758.4 758.0	84.7 84.7 84.8	$\begin{array}{c} 0.5434 \\ 0.5439 \\ 0.5444 \end{array}$	${}^{1.0025}_{1.0015}_{1.0006}$	$2.288_{11} \\ 2.277_{11} \\ 2.266_{11} \\ 11$	${}^{0.4371}_{0.439221}_{0.441321}_{0.441321}$	200 201 202
203 204 205	$383.15\\383.56\\42\\383.98\\41$	$355.6 \\ 356.0 \\ 356.4$	$\begin{array}{r} 842.4 \\ 842.1 \\ 841.7 \end{array}$	757.6 757.3 756.9	84.8 84.8 84.8	$\begin{array}{c} 0.5450 \\ 0.5455 \\ 0.5460 \end{array}$	0.9997 0.9988 0.9979	$2.255 \\ 2.245 \\ 10 \\ 2.235 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ $	${}^{0.4434}_{0.4454{20\atop 0.4454{21\atop 0.4475{21\atop 21}}}$	203 204 205
206 207 208	$384.39\\384.80\\41\\385.21\\40$	$356.9 \\ 357.3 \\ 357.7$	$841.3 \\ 841.0 \\ 840.7$	756.5 756.2 755.8	84.8 84.8 84.9	$0.5465 \\ 0.5470 \\ 0.5475$	$\begin{array}{c} 0.9970 \\ 0.9961 \\ 0.9952 \end{array}$	$2.224 \\ 2.214 \\ 10 \\ 2.204 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	${}^{0.4496}_{0.4517}{}^{21}_{20}_{0.4537}{}^{20}_{21}$	206 207 208
209 210 211	$385.61\\386.0240\\386.4240\\40$	$358.1 \\ 358.6 \\ 359.0$	840.3 840.0 839.6	755.4 755.1 754.7	84.9 84.9 84.9	$\begin{array}{c} 0.5480 \\ 0.5485 \\ 0.5490 \end{array}$	$\begin{array}{c} 0.9944 \\ 0.9935 \\ 0.9926 \end{array}$	$2.194 \\ 2.18410 \\ 2.17410 \\ 2.17410 \\ 10$	${0.4558\atop 0.4579}_{21}\\ 0.4600 \\ 21$	209 210 211
212 213 214	$\begin{array}{c} 386.82\\ 387.2240\\ 387.6240\\ 387.6240 \end{array}$	$359.4 \\ 359.8 \\ 360.2$	839.3 839.0 838.6	754.4 754.1 753.7	$84.9 \\ 84.9 \\ 84.9 \\ 84.9$	$\begin{array}{c} 0.5495 \\ 0.5500 \\ 0.5505 \end{array}$	0.9917 0.9908 0.9899	$2.164 \\ 2.155 \\ 2.145 \\ 9$	${}^{0.4621}_{{0.4641}20}_{{0.4662}{21}}_{{20}}$	212 213 214
215 216 217	$\begin{array}{r} 388.02\\ 388.41\\ 388.40\\ 388.80\\ 40 \end{array}$	$360.6 \\ 361.0 \\ 361.4$	838.3 837.9 837.6	753.3 752.9 752.6		$\begin{array}{c} 0.5510 \\ 0.5514 \\ 0.5519 \end{array}$	$\begin{array}{c} 0.9891 \\ 0.9882 \\ 0.9873 \end{array}$	$2.136 \\ 2.126 \\ 9 \\ 2.117 \\ 10$	${}^{0.4682}_{0.470321}_{21}_{0.472422}_{22}$	215 216 217
218 219 220	$389.20 \\ 389.59 \\ 389.98 \\ 389.98 \\ 39$	$361.9 \\ 362.3 \\ 362.7$	837.2 836.9 836.6	752.2 751.9 751.6	$ \begin{array}{r} 85.0 \\ 85.0 \\ 85.0 \\ \end{array} $	$\begin{array}{c} 0.5524 \\ 0.5529 \\ 0.5534 \end{array}$	$\begin{array}{c} 0.9865 \\ 0.9857 \\ 0.9848 \end{array}$	$2.107 \\ 2.098 \\ 0.088 \\ 9$	${}^{0.4746}_{{}^{0.476721}}_{{}^{0.476722}}_{{}^{0.478921}}$	218 219 220
221 222 223	$\begin{array}{r} 390.37\\ 390.7639\\ 391.1438\\ 391.1439\end{array}$	363.1 363.5 363.9	836.2 835.9 835.6	751.2 750.8 750.5	$85.0 \\ 85.1 \\ 85.1$	$\begin{array}{c} 0.5538 \\ 0.5543 \\ 0.5548 \\ \end{array}$	$\begin{array}{c} 0.9840 \\ 0.9831 \\ 0.9823 \end{array}$	$2.079 \\ 2.070 \\ 9 \\ 2.061 \\ 9$	${0.4810\atop 0.483121\atop 0.485221\atop 21}$	221 222 223
224 225 226	$\begin{array}{c} 391.53\\ 391.91\\ 391.91\\ 392.29\\ 38\end{array}$	$364.3 \\ 364.7 \\ 365.1$	835.2 834.9 834.6	$750.1 \\ 749.8 \\ 749.5$	$85.1 \\ 85.1 \\ 85.1 \\ 85.1$	$\begin{array}{c} 0.5553 \\ 0.5557 \\ 0.5562 \end{array}$	$\begin{array}{c} 0.9814 \\ 0.9806 \\ 0.9798 \end{array}$	$2.052 \\ 2.043 \\ 8 \\ 2.035 \\ 9$	${0.4873\atop 0.489420\ 0.491421}$	224 225 226
227 228 229	$\begin{array}{c} 392.67\\ 393.04\\ 393.42\\ 38\\ 393.42\\ 38\end{array}$	$365.5 \\ 365.9 \\ 366.2$	834.3 833.9 833.6	749.2 748.8 748.5	$85.1 \\ 85.1 \\ 85.1 \\ 85.1$	$\begin{array}{c} 0.5566 \\ 0.5571 \\ 0.5576 \end{array}$	$\begin{array}{c} 0.9790 \\ 0.9782 \\ 0.9774 \end{array}$	$2.026 \\ 2.018 \\ 8 \\ 2.010 \\ 9$	${0.4935\atop 0.495620\\ 0.497620\\ 0.497621}$	227 228 229
230 231 232	$\begin{array}{c} 393.80\\ 394.1838\\ 394.5638\\ 394.5637\end{array}$	366.6 367.0 367.4	833.3 832.9 832.6	748.1 747.7 747.4	85.2 85.2 85.2	$\begin{array}{c} 0.5580 \\ 0.5585 \\ 0.5590 \end{array}$	$\begin{array}{c} 0.9765 \\ 0.9757 \\ 0.9749 \end{array}$	$2.001 \\ 1.993 \\ 8 \\ 1.985 \\ 8 \\ 8$	${ \begin{smallmatrix} 0.4997 \\ 0.502 \\ 0.504 \\ 2 \end{smallmatrix} } $	230 231 232
233 234 235	$\begin{array}{c c} 394.93\\ 395.30\\ 395.67\\ 395.67\\ 37\end{array}$	367.8 368.2 368.6	832.3 832.0 831.7	$\begin{array}{c} 747.1 \\ 746.8 \\ 746.5 \end{array}$	85.2 85.2 85.2	$\begin{array}{c} 0.5594 \\ 0.5598 \\ 0.5603 \end{array}$	$\begin{array}{c} 0.9741 \\ 0.9733 \\ 0.9725 \end{array}$	$\begin{array}{c} 1.977 \\ 1.968 \\ 1.960 \\ 8 \end{array}$	${ \begin{smallmatrix} 0.506 \\ 0.508 \\ 2 \\ 0.510 \\ 2 \\ 2 \end{smallmatrix} }$	233 234 235
236 237	$396.04_{37}_{396.41_{37}_{37}}$	369.0 369.4	831.3 831.0	746.1 745.8	85.2 85.2	0.5608	0.9717 0.9709	$\begin{array}{c}1.952\\1.944\\8\end{array}$	$\begin{smallmatrix}0.512\\0.514\\3\end{smallmatrix}$	236 237

re, nds per are Inch.	rature, rees renheit.	of the luid.	of Vap- ation.	Equiva- of Inter- /ork.	Equiva- of Ex- al Work.	oy of biquid.	py of oriza-	e Vol- , Cubic t per nd.	y, nds per ic Foot.	re, nds per tre Inch.
Pressu Pou Squi	Tempe Deg Fah	Heat	Heat	Heat lent o nal W	Heat lent tern	Entro]	Entrol Vap tion	Specifi ume Feet Pou	Densit Pou Cub	Pressu Poul Squi
р	t.	q	r	ρ	Apu	θ	$\frac{r}{T}$	8	1 <u>8</u>	р
238 239 240	396.78 397.1436 397.5036	369.7 370.1 370.5	830.7 830.4 830.1	745.4 745.1 744.8		$0.5617 \\ 0.5621 \\ 0.5625$	0.9701 0.9693 0.9686	${}^{1.936}_{1.9287}_{1.92187}_{1.9218}$	${ \begin{smallmatrix} 0.517 \\ 0.519 \\ 0.521 \\ 2 \end{smallmatrix} }$	238 239 240
241 242 243	$397.86\\398.2236\\398.5937\\398.5937$	370.9 371.2 371.6	829.8 829.5 829.1	744.5 744.2 743.8	$85.3 \\ 85.3 \\ 85.3 \\ 85.3$	$\begin{array}{c} 0.5630 \\ 0.5634 \\ 0.5639 \end{array}$	0.9678 0.9670 0.9663	${}^{1.913}_{1.9057}_{1.8988}$	${}^{0.523}_{0.5252}_{0.5272}_{2}_{2}$	241 242 243
244 245 246	$398.96_{36}\\399.32_{36}\\399.68_{36}$	372.0 372.4 372.8	828.8 828.5 828.2	743.5 743.2 742.9		$\begin{array}{c} 0.5643 \\ 0.5648 \\ 0.5652 \end{array}$	0.9655 0.9647 0.9640	${}^{1.890}_{1.8828}_{1.8827}_{1.8758}$	${ \begin{smallmatrix} 0.529 \\ 0.531 \\ 2 \\ 0.533 \\ 3 \end{smallmatrix} }$	244 245 246
247 248 249	$\substack{400.04\\400.3935\\400.7536\\35}$	373.1 373.5 373.9	827.8 827.5 827.2	742.5 742.2 741.8	$85.3 \\ 85.3 \\ 85.4$	$\begin{array}{c} 0.5656 \\ 0.5661 \\ 0.5665 \end{array}$	$\begin{array}{c} 0.9632 \\ 0.9624 \\ 0.9617 \end{array}$	${}^{1.867}_{1.860}_{8}_{1.852}_{7}_{7}$	${ \begin{smallmatrix} 0.536 \\ 0.538 \\ 2 \\ 0.540 \\ 2 \end{smallmatrix} }$	247 248 249
250 251 252	$\begin{array}{r} 401.10\\ 401.4535\\ 401.7934\\ 35\end{array}$	$374.2 \\ 374.6 \\ 375.0$	826.9 826.6 826.3	741.5 741.2 740.9	85.4 85.4 85.4	0.5669 0.5673 0.5678	0.9609 0.9601 0.9594	${}^{1.845}_{1.838}_{1.830}_{7}_{7}$	${ \begin{smallmatrix} 0.542 \\ 0.544 \\ 0.546 \\ 3 \end{smallmatrix} }$	250 251 252
253 254 255	$\begin{array}{r} 402.14\\ 402.4834\\ 402.8335\\ 402.8334\end{array}$	375.3 375.7 376.0	$826.0 \\ 825.7 \\ 825.4$	740.6 740.3 740.0	$85.4 \\ 85.4 \\ 85.4 \\ 85.4$	0.5682 0.5686 0.5690	0.9586 0.9579 0.9572	${}^{1.823}_{1.8167}_{1.809}_{1.809}_{6}$	${0.549 \atop 0.551 \atop 2 \\ 0.553 \atop 2 }$	253 254 255
256 257 258	$\substack{403.17\\403.5235\\403.8635}$	$376.4 \\ 376.8 \\ 377.1$	825.1 824.8 824.5	739.7 739.4 739.1	$85.4 \\ 85.4 \\ 85.4$	$\begin{array}{c} 0.5694 \\ 0.5699 \\ 0.5703 \end{array}$	0.9564 0.9557 0.9550	${}^{1.803}_{1.7967}_{1.7897}_{1.7897}$	${}^{0.555}_{0.5572}_{2}_{0.5592}_{2}$	256 257 258
259 260 261	$\begin{array}{r} 404.21 \\ 404.55 \\ 404.89 \\ 34 \end{array}$	377.5 377.8 378.2	824.2 823.9 823.6	738.8 738.5 738.2	$85.4 \\ 85.4 \\ 85.4 \\ 85.4$	$\begin{array}{c} 0.5707 \\ 0.5711 \\ 0.5715 \end{array}$	0.9542 0.9535 0.9527	${}^{1.782}_{1.7757}_{1.7686}_{1.7686}$	${0.561 \atop 0.563 \atop 0.566 \atop 2}$	259 260 261
262 263 264	$\begin{array}{r} 405.23\\405.5734\\405.9033\\405.9033\end{array}$	378.5 378.9 379.2	$\begin{array}{r} 823.3 \\ 823.0 \\ 822.7 \end{array}$	737.9 737.5 737.2	$85.4 \\ 85.5 \\ 85.5 \\ 85.5$	$\begin{array}{c} 0.5719 \\ 0.5723 \\ 0.5727 \end{array}$	$\begin{array}{c} 0.9520 \\ 0.9513 \\ 0.9506 \end{array}$	${}^{1.762}_{1.755}_{1.749}_{6}$	${ \begin{smallmatrix} 0.568 \\ 0.570 \\ 2 \\ 0.572 \\ 2 \end{smallmatrix} }$	262 263 264
265 266 267	$\begin{array}{r} 406.23\\ 406.5734\\ 406.9033\\ \end{array}$	379.6 379.9 380.3	$\begin{array}{r} 822.4 \\ 822.1 \\ 821.8 \end{array}$	736.9 736.6 736.3	$85.5 \\ 85.5 \\ 85.5 \\ 85.5$	$\begin{array}{c} 0.5731 \\ 0.5735 \\ 0.5739 \end{array}$	$\begin{array}{c} 0.9499 \\ 0.9492 \\ 0.9485 \end{array}$	${}^{1.743}_{1.736}_{1.730}_{6}_{6}_{6}$	${}^{0.574}_{0.576^2_2}_{0.578^2_2}$	265 266 267
268 269 270	$\begin{array}{r} 407.23\\407.5734\\407.9033\\407.9033\end{array}$	380.6 381.0 381.3	821.5 821.2 820.9	736.0 735.7 735.4		$\begin{array}{c} 0.5743 \\ 0.5747 \\ 0.5751 \end{array}$	$\begin{array}{c} 0.9478 \\ 0.9471 \\ 0.9464 \end{array}$	${}^{1.724}_{1.717}_{1.7116}_{1.7116}_{1.7116}$	${}^{0.580}_{0.582}_{2}_{2}_{0.584}_{3}_{3}$	268 269 270
271 272 273	$\begin{array}{r} 408.23\\ 408.57\\ 408.90\\ 33 \end{array}$	381.7 382.0 382.4	820.6 820.3 820.1	735.1 734.8 734.6	85.5 85.5 85.5	$\begin{array}{c} 0.5755 \\ 0.5759 \\ 0.5763 \end{array}$	$\begin{array}{c} 0.9457 \\ 0.9450 \\ 0.9443 \end{array}$	${}^{1.705}_{1.6996}_{1.6936}_{1.6936}$	${ \begin{smallmatrix} 0.587 \\ 0.589 \\ 2 \\ 0.591 \\ 2 \end{smallmatrix} }$	271 272 273
274 275 276	$\begin{array}{r} 409.23\\ 409.5734\\ 409.9033\\ \end{array}$	382.7 383.1 383.4	819.8 819.5 819.2	734.3 734.0 733.7	85.5 85.5 85.5	$\begin{array}{c} 0.5767 \\ 0.5771 \\ 0.5775 \end{array}$	$\begin{array}{c} 0.9436 \\ 0.9429 \\ 0.9422 \end{array}$	${}^{1.687}_{1.6816}_{1.6756}_{1.6756}$	${}^{0.593}_{0.5952}_{0.5972}_{2}$	274 275 276
277 278	$\substack{410.23\\410.55}_{32}$	383.8 384.1	818.9 818.6	733.4 733.1	85.5 85.5	0.5779 0.5783	0.9415 0.9408	${}^{1.669}_{1.663}{}^{6}_{6}$	${0.599 \atop 0.601 \atop 2}$	277 278

52

SATURATED STEAM-TABLE II.

essure, Pounds per Square Inch.	mperature, Degrees Fahrenheit.	at of the Liquid.	at of Vap- orization.	at Equiva- int of Inter- al Work.	eat Equiva- ent of Inter- al Work. eat Equiva- lent of Ex- ternal Work		tropy of Vaporiza- tion.	ecific Vol- ime, Cubic Feet per Pound.	nsity, Pounds per Jubic Foot.	ssure, ounds per quare Inch.
Pr	Te	He	Ħ	Hele	He	E	En r	Sp	Å,	Pre
<i>p</i>	£		<i>r</i>	ρ	A pu		<u> </u>	8		<i>p</i>
279 280 281	$\substack{410.87\\411.1933\\411.5233\\32}$	$384.4 \\ 384.8 \\ 385.1$	818.3 818.0 817.7	$732.8 \\ 732.5 \\ 732.1$	$85.5 \\ 85.5 \\ 85.6$	$\begin{array}{c} 0.5787 \\ 0.5791 \\ 0.5795 \end{array}$	0.9402 0.9395 0.9388	${}^{1.657}_{1.6526}_{1.646}_{1.646}$	${}^{0.603}_{0.605_3}_{0.608_2}$	279 280 281
282 283 284	$\substack{411.84\\412.1632\\412.4731\\412.4731}$	385.4 385.8 386.1	817.4 817.2 816.9	731.8 731.6 731.3	$ \begin{array}{r} 85.6 \\ 85.6 \\ 85.6 \\ 85.6 \end{array} $	0.5799 0.5803 0.5806	0.9381 0.9375 0.9368	${}^{1.640}_{1.6345}_{1.629}_{6}$	${}^{0.610}_{0.612}_{2}_{0.614}_{2}$	282 283 284
285 286 287	$\substack{412.78\\413.0931\\413.4132\\31}$	$386.4 \\ 386.7 \\ 387.1$	816.6 816.3 816.0	731.0 730.7 730.4	85.6 85.6 85.6	$\begin{array}{c} 0.5810 \\ 0.5814 \\ 0.5818 \end{array}$	$\begin{array}{c} 0.9362 \\ 0.9355 \\ 0.9348 \end{array}$	${}^{1.623}_{1.6175}_{1.612}_{6}$	${ \begin{smallmatrix} 0.616 \\ 0.618 \\ 2 \\ 0.620 \\ 3 \end{smallmatrix} }$	285 286 287
288 289 290	$\substack{413.72\\414.0331\\414.3532\\33}$	387.4 387.7 388.1	$815.8 \\ 815.5 \\ 815.2$	730.2 729.9 729.6		$\begin{array}{c} 0.5821 \\ 0.5825 \\ 0.5829 \end{array}$	0.9342 0.9335 0.9329	${}^{1.606}_{1.600}_{5}_{1.595}_{6}$	${ \begin{smallmatrix} 0.623\\ 0.625\\ 2\\ 0.627\\ 2 \end{smallmatrix} } $	288 289 290
291 292 293	$\substack{414.68\\415.0032\\415.31\\32}$	$388.4 \\ 388.7 \\ 389.1$	814.9 814.6 814.3	729.3 729.0 728.7		0.5833 0.5837 0.5840	0.9322 0.9315 0.9308	${}^{1.589}_{1.5845}_{1.579}_{6}$	${0.629\atop 0.6312\atop 0.633 \atop 3}$	291 292 293
294 295 296	$\substack{415.63\\415.94\\30\\416.24\\31}$	389.4 389.7 390.0	814.1 813.8 813.5	728.5 728.2 727.9	$ \begin{array}{r} 85.6 \\ 85.6 \\ 85.6 \\ 85.6 \\ \end{array} $	$\begin{array}{c} 0.5844 \\ 0.5848 \\ 0.5852 \end{array}$	0.9302 0.9295 0.9289	${}^{1.573}_{1.5685}_{1.5635}_{1.5635}_{5}$	${}^{0.636}_{0.638}_{2}_{2}_{0.640}_{2}$	294 295 296
297 298 299	$\begin{array}{r} 416.55_{30} \\ 416.85_{30} \\ 417.15_{30} \\ 30 \end{array}$	390.4 390.7 391.0	813.2 813.0 812.7	727.6 727.4 727.1	$ \begin{array}{r} 85.6 \\ 85.6 \\ 85.6 \\ \end{array} $	$\begin{array}{c} 0.5855 \\ 0.5859 \\ 0.5862 \end{array}$	0.9282 0.9276 0.9270	${}^{1.558}_{1.553}_{1.547}_{6}_{5}$	${}^{0.642}_{0.644^2_2}_{0.646^2_3}$	297 298 299
300 301 302	$\substack{417.45\\417.76_{30}\\418.06_{30}\\30}$	391.3 391.6 391.9	812.4 812.1 811.9	726.8 726.5 726.3	$ \begin{array}{r} 85.6 \\ 85.6 \\ 85.6 \end{array} $	$\begin{array}{c} 0.5866 \\ 0.5870 \\ 0.5873 \end{array}$	$\begin{array}{c} 0.9264 \\ 0.9258 \\ 0.9252 \end{array}$	${}^{1.542}_{1.5375}_{1.5325}_{1.5325}$	${}^{0.649}_{0.6512}_{0.6532}_{2}$	300 301 302
303 304 305	$\substack{418.36\\418.6730\\418.9729}$	392.3 392.6 392.9	811.6 811.3 811.1	726.0 725.7 725.5	$ \begin{array}{r} 85.6 \\ 85.6 \\ 85.6 \\ \end{array} $	$\begin{array}{c} 0.5877 \\ 0.5881 \\ 0.5884 \end{array}$	$\begin{array}{c} 0.9245 \\ 0.9239 \\ 0.9233 \end{array}$	${}^{1.527}_{1.5225}_{1.5175}_{1.5175}_{5}$	${}^{0.655}_{0.6572}_{2}_{0.6592}_{2}$	303 304 305
306 307 308	$\begin{array}{r} 419.26_{30} \\ 419.56_{29} \\ 419.85_{30} \\ 30 \end{array}$	393.2 393.5 393.8	810.8 810.5 810.3	725.2 724.9 724.7	85.6 85.6 85.6	0.5888 0.5891 0.5895	0.9227 0.9220 0.9214	${}^{1.512}_{1.5075}_{1.5025}_{1.5025}_{5}$	${}^{0.661}_{0.664}_{2}_{2}_{0.666}_{2}$	306 307 308
309 310 311	$\begin{array}{r} 420.15\\420.4530\\420.7631\\420.7630\end{array}$	$394.1 \\ 394.4 \\ 394.8$	810.0 809.7 809.5	724.4724.1723.9	$85.6 \\ 85.6 \\ 85.6 \\ 85.6 \\ $	0.5898 0.5902 0.5905	0.9208 0.9202 0.9196	${}^{1.497}_{1.4925}_{1.4875}_{1.4875}_{5}$	${}^{0.668}_{0.6702}_{2}_{0.6723}$	309 310 311
312 313 314	$\begin{array}{r} 421.06\\ 421.3529\\ 421.6529\\ 421.6529\end{array}$	395.1 395.4 395.7	809.2 808.9 808.7	723.6723.3723.1		$\begin{array}{c} 0.5909 \\ 0.5912 \\ 0.5916 \end{array}$	$\begin{array}{c} 0.9190 \\ 0.9184 \\ 0.9177 \end{array}$	${}^{1.482}_{1.477}_{1.477}_{4}_{1.473}_{5}$	${}^{0.675}_{0.6772}_{0.6792}_{2}$	312 313 314
315 316 317	$\substack{421.94\\422.24\\422.53\\29}$	396.0 396.3 396.6	808.4 808.1 807.9	722.8722.5722.3		$\begin{array}{c} 0.5919 \\ 0.5923 \\ 0.5926 \end{array}$	$0.9171 \\ 0.9165 \\ 0.9159$	${}^{1.468}_{1.463}_{4}_{4}_{1.459}_{4}_{4}$	${}^{0.681}_{0.6832}_{0.6852}_{2}$	315 316 317
318 319	$\substack{422.82\\423.11}_{29}$	396.9 397.2	807.6 807.3	722.0 721.7	85.6 85.6	0.5930 0.5933	0.9153 0.9147	$\begin{smallmatrix}1.455\\1.450\\4\end{smallmatrix}$	${}^{0.687}_{0.690}{}^{3}_{2}$	318 319

Pressure, Pounds per Square Inch.	Temperature, Degrees Fahrenheit.	A Heat of the Liquid.	Heat of Vap- orization.	 Heat Equiva- lent of Inter- nal Work. 	W Heat Equiva- the lent of Exter- n al Work.	• Entropy cf the Liquid.	Entropy of Vaporiza-	Specific Vol- ume, Cubic Feet per Pound.	∞ Im Pounds per Cubic Foot.	Pressure, & Pounds per Square Inch.
320 321 322	$\substack{423.40\\423.6928\\423.9729}$	397.5 397.8 398.1	807.1 806.8 806.6	721.5 721.2 721.0	85.6 85.6 85.6	0.5937 0.5940 0.5943	$\begin{array}{c} 0.9141 \\ 0.9135 \\ 0.9129 \end{array}$	${}^{1.446}_{1.4415}_{1.4365}_{1.4364}$	${0.692\atop 0.6942\atop 0.6962}$	320 321 322
323 324 325	$\substack{424.26\\424.5429\\424.8328}$	398.4 398.7 399.0	806.3 806.0 805.8	720.7 720.4 720.2	$ \begin{array}{r} 85.6 \\ 85.6 \\ 85.6 \end{array} $	0.5947 0.5950 0.5953	0.9123 0.9117 0.9111	${}^{1.432}_{1.428}_{4}_{1.424}_{5}_{5}$	${0.698\atop 0.7002\atop 0.7023}$	323 324 325
326 327 328	$\substack{425.11\\425.4029\\425.6928}$	399.3 399.6 399.9	805.5 805.3 805.0	719.9 719.7 719.4	$85.6 \\ 85.6 \\ 85.6$	$0.5957 \\ 0.5960 \\ 0.5964$	$0.9106 \\ 0.9100 \\ 0.9094$	${}^{1.419}_{1.415}_{4}_{1.411}_{5}_{4}$	${}^{0.705_{2}}_{0.707_{2}}_{0.709_{2}}$	326 327 328
329 330 331	$\substack{425.97\\426.26\\28\\426.54\\29}$	400.2 400.5 400.8	804.7 804.5 804.2	719.1 718.9 718.6	$ \begin{array}{r} 85.6 \\ 85.6 \\ 85.6 \end{array} $	$\begin{array}{c} 0.5967 \\ 0.5970 \\ 0.5974 \end{array}$	0.9089 0.9083 0.9077	${}^{1.406}_{1.4024}_{1.3984}_{4}$	${0.711 \\ 0.7132 \\ 0.7152 \\ 0.7152 }$	329 330 331
332 333 334	$\substack{426.83\\427.1128\\427.3928}\\28$	401.1 401.4 401.7	804.0 803.7 803.5	718.4 718.1 717.9		$\begin{array}{c} 0.5977 \\ 0.5980 \\ 0.5984 \end{array}$	0.9071 0.9065 0.9059	${}^{1.394}_{1.389}{}^{5}_{4}_{1.385}{}^{4}_{4}$	${ \begin{smallmatrix} 0.717 \\ 0.720 \\ 0.722 \\ 2 \end{smallmatrix} }$	332 333 334
335 336	$\substack{427.67\\427.94}$	$\begin{array}{c} 402.0\\ 402.2 \end{array}$	803.2 803.0	717.6 717.4	$\begin{array}{c} 85.6\\ 85.6\end{array}$	0.5987 0.5990	$0.9054 \\ 0.9048$	$\substack{1.381\\1.377}4$	$0.724 \\ 0.726^2$	335 336

TABLE III.

SATURATED STEAM.

FRENCH AND ENGLISH CONVERSION TABLES.*

							F	TRA	E OF		HEAT OF			HEAT EQUIVA-			1							
	nti				1	PRE	SSU	RE.				THI	EL	IQUI	D.	VAP	ORI	ZAT	ION.	LENT	I O	F IN- WORK		
é	S													_										re, eit.
tur	-		ers er-			ns	e .			per	>		ė.			a	;			τ. Ω		. •		es
ILB.	le.	har ar ar bet		d	. i		Ē		1.0			2	rie		D.		gre							
per	eg		film	in		ogr		nc		1	Ion			l le				alo		T.8		Dep		
en	A 20		Mil	0		3,		н		Pol	2 m	Č	Ď	۲ I	4	0	5			0		-		Lei
F			- 																					
	t		p			p		P		9	2		4				r	ρ		ρ		ı		
					-																	- -		
	0	4	579		0	00	623		0	088	6	0	00	0	0	59!	54	107	1.7	565	.3	1017.	5	32
	1	4	924	345	0	00	670	47	0.	095	2^{66}	1	01	Ĭ	.8	594	1.9	107	0.8	564	.7	1016.	4	33.8
	2	5	290	366	0.	00	719	49	0.	102	3 71	2	.02	3	.6	594	4.4	106	9.9	564	-0	1015.	3	35.6
	-	/		391				53			10													
	3	5.	681	416	0.	.00	772	57	0.	109	9 80	3	.03	5	. 5	593	3.9	106	9.0	563	.4	1014.	2	37.4
	4	6.	097	410	0.	.00	829	60	0.	117	9 86	4	.03	7	.3	593	3.3	106	8.0	562	.8	1013.	1	39.2
	б	6.	541	470	0	.00	889	64	0.	126	5 91	5	.04	9	.1	59:	2.8	106	7.1	562	.2	1011.	9	41
		-		110		~ ~		01		101			~ .		~			100			~	1010		40.0
	6	7	.011	500	0	.00	953	68	0.	135	6 97	6	.04	10	.9	592	2.3	106	16.1	561	.5	1010.		42.8
	7	7	. 511	531	0	. 01	021	72	0.	140	s 102		.05	12	.1	59.	1.8	100	10.2	500	. 9	1009.	D E	44.0
	8	8	.042	564	0	. 01	093	77	0.	100	¹⁹ 109	8	.05	14	. 0	59.	1.2	100	94.2	300	. 4	1008.	9	40.4
	0	0	606		0	01	170			166	4	0	05	16	3	500	17	106	2 2	550	6	1007	4	48 2
	9	0	205	599	0	01	252	82	0.	178	116	10	00.	18	1	500	12	106	2 3	559	0	1006	2	50
	11	Q	840	635	0	01	338	86	0.	190	3^{123}	111	00.	19	9	58	9.6	106	1.3	558	.3	1005.	ō	51.8
11		0	.010	673			000	91	0.		°130	11	.00	10		00.		100		000		1000.		01.0
	12	10	.513	810	0	. 01	429	0.7	0.	203	3	12	.06	21	.7	589	9.1	106	0.4	557	.7	1003.	9	53.6
	13	11	.226	713	0	.01	526	91	0.	217	1138	13	.06	23	.5	588	8.6	105	i9.4	557	.1	1002.	7	55.4
1	14	11	. 980	700	0	.01	629	100	0.	.231	7^{140}_{154}	14	.06	25	.3	58	8.1	105	68.5	556	.5	1001.	6	57.2
				199				100			104													
	15	12	.779	845	0	.01	737	115	0.	.247	$^{1}_{-164}$	15	.06		.1	58	7.6	105	7.6	555	.9	1000.	5	59
	16	13	. 624	893	0	.01	852	122	0.	263	$\frac{5}{172}$	16	.06	28	.9	58	7.0	105	6.6	555	.2	999.	4	60.8
	LY	14	. 517	943	0	. 01	974	128	0.	. 280	"183	17	.00	30	- 7	58	0.5	105	05.7	004	. 0	998.	3	62.6
Ι.	. 0	15	460		0	0.9	109		0	200	0	10	06	20	5	59	5 0	105	1 7	552	0	007	1	64 4
		10	400	996	0	02	104	135	0	219	2192	10	.00	34	.0	58	5.9 5.4	105	3 8	553	. 9	991.	0	66 2
	20	17	51	1054	0	02	281	144	0	338	204 a	20	.00	36	1	58	4 9	105	12.8	552	. 7	994	8	68
11	20	11	· [11	11	ľ	. 04	001	151	0.		215	20	.00	00			1.0	100		002	••	001.		00
9	21	18	. 62.		0	. 02	532		0.	. 360)1	21	.06	37	.9	58	4.4	105	51.9	552	.1	993.	7	69.8
	22	19	$.79^{1}$	17	0	. 02	691	159	0	.382	27220	22	.06	39	.7	58	3.9	105	51.0	551	.5	992.	6	71.6
	23	21	$.02^{1}_{1}$	23	0	. 02	858	107	0	. 406	35232	23	.06	41	.5	58	3.3	105	60.0	550	.8	991.	4	73.4
			1	30				111			201													
1	24	22	. 321	37	0	. 03	035	186	0	. 431	626	24	.06	43	.3	58	2.8	104	19.1	550	.2	990.	3	75.2
	25	23	. 69	44	0	. 03	221	196	0	. 458	31270	25	.05	45	.1	58	2.3	104	18.1	549	. 5	989.	1	77
	26	25	$.13_{1}^{1}$	52	0	.03	3417	206	0	. 486	294	26	.05	46	.9	58	1.8	104	£7.2	548	.9	988.	0	78.8
	27	00	er		0	0	600		0	511	4	07	05	40	7	EO	1 0	10	16 9	540	0	096	0	80 6
	41	20	.001	.60	0	.03	040	218	0	510	309	20	.00	40	. 5	50	1.2	104	15 9	547	.4	085	7	82 4
	20	20	. 23	.69	0	.03	041	230	0	570	30327	20	.03	59	.0	58	0.1	104	14 2	547	0	984	6	84.2
1	40	20	· • • 1	77	0	. 03	.011	240		.014	342	20	.01	02		00	0.2	10.		011		001.		
	30	31	71		0	04	311		0	.61	32.	30	.04	54	.1	57	9.6	104	13.3	546	.3	983.	4	86
1		101	1	.86	1	. 0 3		253			-360	100								1			1	

* NOTE: This table gives the Metric values for one kilogram and the English values for one pound at corresponding temperatures.

TABLE III.

SATURATED STEAM.

FRENCH AND ENGLISH CONVERSION TABLES.*

.

ienti-	HEAT H LENT O TERNAL	Equiva- of Ex- Work.	the	the on.		VOLUME.	- Den	SITY.	
Temperature Degrees C	nd Calories.	B.T.U.	 Entropy of Liquid. 	e Entropy of Vaporizati	 Cubic Meters per Kilo. 	Cubic Feet per Pound.	L Kilos per Cubic Meter,	Pounds per Cubic Foot.	Temperature Degrees Fahrenheid
							8	8	
0 1 2	30.1 30.2 30.4	$54.2 \\ 54.4 \\ 54.6$	0.0000 0.0037 0.0074	$2.1804 \\ 2.1706 \\ 2.1609$	$206.3 \\ 192.7136 \\ 192.0127 \\ 180.0118 $	3304 3087217 2884203 190	$\begin{array}{c} 0.00485 \\ 0.00519 \\ 37 \\ 0.00556 \\ 39 \end{array}$	${}^{0.000303}_{0.000324}_{23}_{23}_{0.000347}_{24}_{24}$	32 33.8 35.6
3 4 5	$30.5 \\ 30.5 \\ 30.6$	$54.8 \\ 54.9 \\ 55.2$	0.0110 0.0146 0.0183	$2.1513 \\ 2.1416 \\ 2.1320$	${}^{168.2}_{157.2110}_{157.101}_{147.194}$	$2694 \\ 2518 \\ 162 \\ 2356 \\ 150 \\ 1$	$\begin{array}{c} 0.00595 \\ 0.00636 \\ 44 \\ 0.00680 \\ 46 \end{array}$	${}^{0.000371}_{0.00039727}_{0.000424}_{29}_{29}$	37.4 39.2 41
6 7 8	30.8 30.9 31.0	$55.4 \\ 55.6 \\ 55.7$	$\begin{array}{c} 0.0219 \\ 0.0256 \\ 0.0290 \end{array}$	$2.1225 \\ 2.1130 \\ 2.1036$	$\begin{array}{c} 137.7 \\ 129.0 \\ 120.9 \\ 75 \end{array} \\ 81$	2206 ₁₃₉ 2067130 1937121	$\begin{array}{c} 0.00726\\ 0.00775\\ 0.00827\\ 52\\ 55\end{array}$	${}^{0.000453}_{0.00048432}_{0.000516}_{35}$	42.8 44.6 46.4
9 10 11	$31.1 \\ 31.2 \\ 31.3$	$55.9 \\ 56.1 \\ 56.3$	0.0326 0.0361 0.0397	$2.0943 \\ 2.0850 \\ 2.0758$	$\begin{array}{c} 113.4 \\ 106.3 \\ 99.8 \\ 61 \end{array}$	$1816 \\ 1703 \\ 1703 \\ 104 \\ 1599 \\ 97 \\$	$\begin{array}{c} 0.00882\\ 0.00941\\ 0.01002\\ 65\end{array}$	${0.000551\atop 0.00058738\atop 0.000625{38\atop 41}}$	48.2 50 51.8
12 13 14	$31.4 \\ 31.5 \\ 31.6$	$56.5 \\ 56.7 \\ 56.9$	$\begin{array}{c} 0.0433 \\ 0.0467 \\ 0.0502 \end{array}$	$2.0667 \\ 2.0576 \\ 2.0486$	$\begin{array}{r} 93.7 \\ 88.1 \\ 82.9 \\ 50 \\ 50 \end{array}$	$\begin{array}{c} 1502\\ 1411\\ 1327\\ 79 \end{array} 91$	$\begin{array}{c} 0.01067\\ 0.01135\\ 0.01206\\ 77 \end{array} \\ 68\\ 71\\ 77 \end{array}$	${0.000666\atop 0.00070945\atop 0.00075445\atop 47}$	$53.6 \\ 55.4 \\ 57.2$
15 16 17	31.7 31.8 31.9	$57.1 \\ 57.3 \\ 57.4$	$\begin{array}{c} 0.0537 \\ 0.0571 \\ 0.0607 \end{array}$	$2.0396 \\ 2.0308 \\ 2.0220$	$\begin{array}{c} 77.9 \\ 73.3 \\ 69.1 \\ 40 \end{array}$	$\begin{array}{cccc} 1248 & 74 \\ 1174 & 69 \\ 1105 & 64 \end{array}$	$\begin{array}{c} 0.01283 \\ 0.01364 \\ 0.01447 \\ 89 \end{array} \\ 89 \end{array}$	${\begin{array}{r}0.000801\\0.00085253\\0.00090553\\56\end{array}}$	59 60.8 62.6
18 19 20	32.0 32.1 32.2	57.6 57.8 58.0	0.0641 0.0675 0.0709	2.0132 2.0045 1.9959	$\begin{array}{c} 65.1 \\ 61.3 \\ 57.8 \\ 33 \\ 33 \end{array}$	$\begin{array}{c} 1041 \\ 982 \\ 926 \\ 53 \\ 53 \end{array}$	$\begin{array}{c} 0.01536 \\ 9.01631 \\ 9.01730 \\ 105 \end{array}$	${}^{0.000961}_{0.00101857}_{0.00101862}_{0.001080}_{65}$	64.4 66.2 68
21 22 23	$32.3 \\ 32.4 \\ 32.5$	$58.2 \\ 58.4 \\ 58.6$	$\begin{array}{c} 0.0743 \\ 0.0776 \\ 0.0811 \end{array}$	$\begin{array}{r} 1.9873 \\ 1.9788 \\ 1.9703 \end{array}$	$\begin{array}{r} 54.5 & 30 \\ 51.5 & 29 \\ 48.60 \\ 268 \end{array}$	873 824 778 40 778 43	$\begin{array}{c} 0.01835\\ 0.01942107\\ 0.02058116\\ 120\end{array}$	$\begin{array}{c} 0.001145\\ 0.00121469\\ 0.00128672\\ 0.00128675\end{array}$	69.8 71.6 73.4
24 25 26	32.6 32.8 32.9	58.8 59.0 59.2	0.0845 0.0878 0.0911	$\begin{array}{c} 1.9620 \\ 1.9536 \\ 1.9453 \end{array}$	$\begin{array}{c} 45.92\\ 43.40\\ 235\\ 41.05\\ 222\end{array}$	$\begin{array}{c} 735 \\ 695 \\ 657 \\ 35 \\ 35 \end{array}$	$\begin{array}{c} 0.02178\\ 0.02304126\\ 0.02436132\\ 139\end{array}$	$\begin{array}{c} 0.001361\\ 0.00143983\\ 0.00152283\\ 86\end{array}$	75.2 77 78.8
27 28 29	33.0 33.1 33.2	59.3 59.5 59.7	0.0945 0.0978 0.1011	$\begin{array}{r} 1.9370 \\ 1.9288 \\ 1.9207 \end{array}$	38.83 36.74209 36.74196 34.78183	$\begin{array}{c} 622 \\ 589 \\ 557 \\ 29 \end{array}$	$\begin{array}{c} 0.02575\\ 0.02722147\\ 0.02722153\\ 0.02875160\end{array}$	$\begin{array}{c} 0.001608_{90} \\ 0.001698_{97} \\ 0.001795_{99} \end{array}$	80.6 82.4 84.2
30	33.3	59.9	0.1044	1.9126	32.95 ₁₇₁	528 27	0.03035166	0.001894102	86

* NOTE : This table gives the Metric values for one kilogram and the English values for one pound at corresponding temperatures. If refinement is desired Table I should be used.

nti-		PRESSURE		HEAT THE L	F OF IQUID.	HEAT VAPORI	F OF ZATION.	HEAT E		
Temperature, Degrees Ce grade.	Millimeters of Mer- cury.	Kilograms per Square Centi- meter.	Pounds per Square Inch.	Calories.	B.T.U.	Calories.	B.T.U.	Calories.	B.T.U.	Temperature, Degrees Fahrenheit.
t	р	р	р	q	q	r	r	ρ	ρ	t
31 32 33	$\begin{array}{r} 33.57\\ 35.53206\\ 37.59216\end{array}$	$0.04564_{266}\\0.04830_{281}\\0.05111_{293}$	$0.6492_{379}\\0.6871_{398}\\0.7269_{418}^{398}$	$31.04 \\ 32.04 \\ 33.04$	55.9 57.7 59.5	$579.1 \\ 578.6 \\ 578.0$	1042.4 1041.4 1040.4	545.7 545.1 544.4	982.2 981.0 979.9	87.8 89.6 91.4
34 35 36	$\begin{array}{r} 39.75 \\ 42.02237 \\ 44.40 \\ 250 \end{array}$	${}^{0.05404}_{0.05713}_{324}_{0.06037}_{339}_{339}$	$0.7687_{439}\\0.8126_{460}\\0.8586_{482}$	$34.03 \\ 35.03 \\ 36.03$	$ \begin{array}{r} 61.3 \\ 63.1 \\ 64.9 \end{array} $	577.4 576.9 576.4	1039.4 1038.5 1037.5	$543.7 \\ 543.1 \\ 542.5$	978.7 977.6 976.4	93.2 95 96.8
37 38 39	$\begin{array}{r} 46.90 \\ 49.51 \\ 275 \\ 52.26 \\ 287 \end{array}$	$\begin{array}{r} 0.06376_{355} \\ 0.06731_{374} \\ 0.07105_{390} \end{array}$	${0.9068\atop 0.9574}_{531}_{1.0105}_{556}$	$37.02 \\ 38.02 \\ 39.02$	$ \begin{array}{r} 66.6 \\ 68.4 \\ 70.2 \end{array} $	$575.8 \\ 575.3 \\ 574.7$	1036.5 1035.5 1034.5	$541.8 \\ 541.2 \\ 540.5$	975.2 974.0 972.8	98.6 100.4 102.2
40 41 42	$55.13_{301}\\58.14_{316}\\61.30_{329}^{316}$	${0.07495\atop 0.07905410\atop 0.07905429\atop 0.08334{448}}$	${}^{1.0661}_{1.1243}{}^{582}_{611}_{1.1854}{}^{611}_{638}$	$\begin{array}{r} 40.02 \\ 41.01 \\ 42.01 \end{array}$	72.0 73.8 '75.6	$574.2 \\ 573.6 \\ 573.1$	$1033.5 \\ 1032.5 \\ 1031.5$	$539.9 \\ 539.2 \\ 538.6$	971.7 970.5 969.3	104 105.8 107.6
43 44 45	$\begin{array}{r} 64.59\\68.05346\\71.66_{377}\end{array}$	$0.08782 \\ 0.09252 \\ 491 \\ 0.09743 \\ 513 \\ 513 \\$	${}^{1.2492}_{1.3159}{}^{667}_{699}_{1.3858}{}^{729}_{729}$	$\begin{array}{r} 43.01 \\ 44.01 \\ 45.00 \end{array}$	77.4 79.2 81.0	572.5 571.9 571.3	$1030.5 \\ 1029.4 \\ 1028.4$	$537.9 \\ 537.2 \\ 536.5$	968.2 966.9 965.7	109.4 111.2 113
46 47 48	$\begin{array}{c} 75.43\\79.38395\\83.50412\\430\end{array}$	$0.10256 \\ 0.10792536 \\ 0.11353561 \\ 0.11353584$	${}^{1.4587}_{1.5350797}_{1.6147}_{832}$	46.00 47.00 48.00	$82.8 \\ 84.6 \\ 86.4$	$570.8 \\ 570.2 \\ 569.6$	$1027.4 \\ 1026.4 \\ 1025.3$	$535.8 \\ 535.1 \\ 534.4$	964.5 963.3 962.0	114.8 116.6 118.4
49 50 51	$\begin{array}{r} 87.80\\92.30450\\96.99469\\489\end{array}$	${}^{0.11937}_{0.12549638}_{0.13187665}_{0.65}$	${}^{1.6979}_{1.7849907}_{1.8756945}$	48.99 49.99 50.99	88.2 90.0 91.8	$569.0 \\ 568.4 \\ 567.8$	$1024.3 \\ 1023.2 \\ 1022.2$	$533.7 \\ 533.0 \\ 532.3$	$960.8 \\ 959.6 \\ 958.4$	120.2 122 123.8
52 53 54	$101.88 \\ 106.99531 \\ 112.30555$	$\begin{array}{c} 0.13852\\ 0.14546722\\ 0.15268755 \end{array}$	${}^{1.9701}_{2.0689}{}_{103}_{103}_{2.172}{}_{107}^{10}$	51.99 52.99 53.98	93.6 95.4 97.2	$567.3 \\ 566.8 \\ 566.2$	1021.2 1020.2 1019.1	$531.7 \\ 531.1 \\ 530.4$	957.2 956.0 954.7	125.6 127.4 129.2
55 56 57	$117.85 \\ 123.61 \\ 602 \\ 129.63 \\ 626 \\$	$0.16023_{783}\\0.16806_{818}\\0.17624_{851}$	$\begin{array}{c} 2.279 \\ 2.390 \\ 2.506 \\ 121 \end{array}$	$54.98 \\ 55.98 \\ 56.98$	99.0 100.8 102.6	$565.6 \\ 565.1 \\ 564.5$	1018.1 1017.1 1016.1	$529.7 \\ 529.1 \\ 528.4$	953.5 952.3 951.1	131 132.8 134.6
58 59 60	$135.89\\142.41\\678\\149.19\\705$	$0.18475_{887}\\0.19362_{922}\\0.20284_{958}$	$\begin{array}{c} 2.627 \\ 2.754 \\ 2.885 \\ 136 \end{array}$	57.98 58.97 59.97	104.4 106.2 108.0	563.9 563.4 562.8	1015.1 1014.1 1013.1	527.7 527.1 526.4	949.9 948.7 947.5	136.4 138.2 140
61 62 63	$156.24\\163.58762\\171.20793$	${\begin{array}{*{20}c} 0.21242\\ 0.2224\\ 0.2328\\ 104\\ 0.2328\\ 107 \end{array}}$	$\begin{array}{c} 3.021 \\ 3.163 \\ 3.310 \\ 154 \end{array}$	$ \begin{array}{r} 60.97 \\ 61.97 \\ 62.97 \end{array} $	109.8 111.6 113.4	$562.2 \\ 561.7 \\ 561.1$	1012.0 1011.0 1009.9	525.7 525.1 524.4	$946.3 \\ 945.1 \\ 943.8$	141.8 143.6 145.4
64 65 66	$179.13\\187.36823\\195.92\\888$	$\begin{smallmatrix} 0.2435 \\ 0.2547 \\ 0.2664 \\ 120 \end{smallmatrix}$	$\begin{array}{r} 3.464 \\ 3.623 \\ 3.789 \\ 171 \end{array}$	63.98 64.98 65.98	$115.2 \\ 117.0 \\ 118.8$	560.5 559.9 559.3	1008.9 1007.8 1006.8	523.7 523.0 522.3	942.6 941.3 940.1	147.2 149 150.8
67 68 69	204.80 214.02922 223.58956	$\begin{array}{c} 0.2784 \\ 0.2910 \\ 0.3040 \\ 135 \end{array}$	$\begin{array}{r} 3.960 \\ 4.139 \\ 4.324 \\ 192 \\ 192 \end{array}$	66.98 67.98 68.98	$120.6 \\ 122.4 \\ 124.2$	558.8 558.2 557.6	1005.8 1004.7 1003.6	521.7 521.0 520.3	938.9 937.6 936.3	152.6 154.4 156.2
70	233.53103	0.3175 140	4.516 199	69.98	126.0	556.9	1002.5	519.5	935.0	158

ல் லீ	HE EQUIVA OF EX	HEAT EQUIVALENT OF EXTER-		ion.	SPECIFIC '	Volume.	Der	VSITY.	<u>د</u> ،
Temperature Degrees Centigrade	Calories.	D.T.U.	Entropy of Liquid.	Entropy of Vaporizat	Cubie Meters per Kilo.	Cubic Feet Per Pound.	Kilos per Cubic Meter.	Pounds per Cubic Foot.	Temperature Degrees Fahrenhei
t	Apu	Apu	θ	$\frac{r}{T}$	8	8		<u>1</u> 8	t
31 32 33	33.4 33.5 33.6	$ \begin{array}{r} 60.2 \\ 60.4 \\ 60.5 \end{array} $	$\begin{array}{c} 0.1077 \\ 0.1110 \\ 0.1142 \end{array}$	1.9046 1.8966 1.8886	$31.24\\29.62162\\28.08154\\146$	$501 \\ 474.7 \\ 250 \\ 449.7 \\ 232 \\ 32$	${\begin{array}{r}0.03201\\0.03376175\\0.03561185\\0.03561196\end{array}}$	$\begin{array}{c} 0.001996\\ 0.002107111\\ 0.002224_{121}^{117}\\ 121\end{array}$	87.8 89.6 91.4
34 35 36	33.7 33.8 33.9	$ \begin{array}{r} 60.7 \\ 60.9 \\ 61.1 \end{array} $	0.1175 0.1207 0.1239	$1.8806 \\ 1.8728 \\ 1.8650$	$26.62_{137}\\25.25_{127}\\23.98_{120}$	$\begin{array}{r} 426.5 \\ 404.7 \\ 205 \\ 384.2 \\ 193 \end{array}$	${ \begin{smallmatrix} 0.03757\\ 0.03960210\\ 0.04170220 \end{smallmatrix} }$	$0.002345\\0.002471132\\0.002603_{137}$	93.2 95 96.8
37 38 39	$34.0 \\ 34.1 \\ 34.2$	61.3 61.5 61.7	0.1272 0.1304 0.1336	$\begin{array}{c} 1.8572 \\ 1.8494 \\ 1.8417 \end{array}$	${ \begin{array}{c} 22.78 \\ 21.65 \\ 107 \\ 20.58 \\ 101 \end{array} } $	$364.9_{181} \\ 346.8_{171} \\ 329.7_{162} $	${}^{0.04390}_{0.04619240}_{0.04859240}_{25}$	$\begin{array}{r} 0.002740 \\ 0.002884149 \\ 0.003033157 \end{array}$	98.6 100.4 102.2
40 41 42	$34.3 \\ 34.4 \\ 34.5$	$ \begin{array}{r} 61.8 \\ 62.0 \\ 62.2 \end{array} $	0.1368 0.1399 0.1431	$\begin{array}{r} 1.8341 \\ 1.8265 \\ 1.8189 \end{array}$	$\begin{array}{r} 19.57 \\ 96 \\ 18.61 \\ 92 \\ 17.69 \\ 87 \end{array}$	$313.5_{298.0147}_{283.3138}$	${}^{0.0511}_{0.053728}_{28}_{0.056530}_{30}$	${0.003190\atop 0.003356174\\ 0.003530_{174}^{174}}$	104 105.8 107.6
43 44 45	$34.6 \\ 34.7 \\ 34.8$	$ \begin{array}{r} 62.3 \\ 62.5 \\ 62.7 \end{array} $	$\begin{array}{c} 0.1463 \\ 0.1494 \\ 0.1526 \end{array}$	1.8113 1.8038 1.7963	$\begin{array}{ccc} 16.82 & 81 \\ 16.01 & 76 \\ 15.25 & 71 \end{array}$	$269.5 \\ 256.5 \\ 121 \\ 244.4 \\ 114 \\$	${ \begin{smallmatrix} 0.0595 \\ 0.0625 \\ 0.0656 \\ 32 \end{smallmatrix} } $	$0.003711\\0.003899193\\0.004092200$	109.4 111.2 113
46 47 48	$35.0 \\ 35.1 \\ 35.2$	$ \begin{array}{r} 62.9 \\ 63.1 \\ 63.3 \end{array} $	0.1557 0.1588 0.1619	$1.7889 \\ 1.7815 \\ 1.7742$	$\begin{array}{r} 14.54 \\ 13.86 \\ 13.21 \\ 61 \end{array}$	$233.0_{109}\\222.1_{104}\\211.7_{98}$	${ \begin{smallmatrix} 0.0688 \\ 0.072235 \\ 0.075735 \\ 37 \end{smallmatrix} }$	$\begin{array}{c} 0.004292\\ 0.004502210\\ 0.004502222\\ 0.004724222\\ 229\end{array}$	114.8 116.6 118.4
49 50 51	$35.3 \\ 35.4 \\ 35.5$	63.5 63.6 63.8	0.1650 0.1682 0.1713	1.7669 1.7597 1.7525	$\begin{array}{r}12.60\\12.02\\55\\11.47\\51\end{array}$	201.9 192.6 183.8 83	${}^{0.0794}_{0.0832}{}^{38}_{40}_{0.0872}{}^{40}_{40}$	${ \begin{smallmatrix} 0.00495 \\ 0.0051925 \\ 0.0054425 \\ 26 \end{smallmatrix} }$	120.2 122 123.8
52 53 54	35.6 35.7 35.8	$ \begin{array}{r} 64.0 \\ 64.2 \\ 64.4 \end{array} $	0.1743 0.1774 0.1804	$\begin{array}{c} 1.7454 \\ 1.7383 \\ 1.7312 \end{array}$	$\begin{array}{c} 10.96 \\ 10.47 \\ 49 \\ 10.00 \\ 44 \end{array}$	$\begin{array}{c} 175.5 \\ 167.7 \\ 160.3 \\ 71 \end{array}$	${0.0912\atop 0.095543\atop 0.100046}$	${}^{0.00570}_{0.0059628}_{0.0062429}_{29}$	125.6 127.4 129.2
55 56 57	$35.9 \\ 36.0 \\ 36.1$	64.6 64.8 65.0	0.1835 0.1865 0.1895	$\begin{array}{c} 1.7242 \\ 1.7173 \\ 1.7104 \end{array}$	$9.56 \\ 9.14 \\ 40 \\ 8.74 \\ 38$	$\begin{array}{c} 153.2 \\ 146.5 \\ 64 \\ 140.1 \\ 61 \end{array}$	$0.1046_{48}\\0.1094_{50}\\0.1144_{52}$	$\begin{array}{c} 0.00653\\ 0.0068330\\ 0.0071330\\ 33 \end{array}$	131 132.8 134.6
58 59 60	$36.2 \\ 36.3 \\ 36.4$	$ \begin{array}{r} 65.2 \\ 65.4 \\ 65.6 \end{array} $	0.1925 0.1955 0.1986	1.7035 1.6967 1.6899	$\begin{array}{r} 8.36 \\ 8.00 \\ 7.66 \\ 32 \end{array} \\ 36$	$\begin{array}{c} 134.0 \\ 128.3 \\ 122.8 \\ 52 \\ 52 \end{array}$	${ \begin{smallmatrix} 0.1196 \\ 0.1250 \\ 55 \\ 0.1305 \\ 57 \end{smallmatrix} } $	${ \begin{smallmatrix} 0.00746 \\ 0.0077933 \\ 0.0081435 \\ 36 \end{smallmatrix} }$	136.4 138.2 140
61 62 63	$36.5 \\ 36.6 \\ 36.7$	$ \begin{array}{r} 65.7 \\ 65.9 \\ 66.1 \end{array} $	$\begin{array}{c} 0.2016 \\ 0.2046 \\ 0.2075 \end{array}$	1.6831 1.6764 1.6696	$\begin{array}{c} 7.34 \\ 7.03 \\ 6.74 \\ 28 \end{array} $	$\begin{array}{c} 117.6 \\ 112.7 \\ 108.0 \\ 45 \end{array}$	${}^{0.1362}_{0.142260}_{0.142262}_{0.1484}_{64}_{64}$	$\begin{array}{c} 0.00850\\ 0.0088737\\ 0.0092639\\ 0.0092640 \end{array}$	141.8 143.6 145.4
64 65 66	36.8 36.9 37.0	66.3 66.5 66.7	$\begin{array}{c} 0.2105 \\ 0.2135 \\ 0.2164 \end{array}$	$1.6629 \\ 1.6563 \\ 1.6497$	$\begin{array}{c} 6.46 \\ 6.19 \\ 25 \\ 5.94 \\ 24 \end{array}$	$\begin{array}{c} 103.5 \\ 99.2 \\ 95.1 \\ 38 \end{array}$	$0.1548 \\ 0.161567 \\ 0.1684 \\ 69 \\ 0.1684 \\ 70 \\ \end{array}$	${}^{0.00966}_{0.0100843}_{0.0105143}_{44}$	147.2 149 150.8
67 68 69	37.1 37.2 37.3	66.9 67.1 67.3	$\begin{array}{c} 0.2194 \\ 0.2223 \\ 0.2253 \end{array}$	$1.6431 \\ 1.6366 \\ 1.6300$	$5.70 \\ 5.47 \\ 22 \\ 5.25 \\ 21$	91.3 87.6 84.1 34	$\begin{array}{c} 0.1754\\ 0.182874\\ 0.182877\\ 0.190579 \end{array}$	${\begin{array}{c} 0.01095_{47}\\ 0.0114247\\ 0.01189_{50} \end{array}}$	152.6 154.4 156.2
70	37.4	67.4	0.2282	1.6235	5.04 20	80.7 32	0.198483	0.0123951	158

		PRESSURE.		HEAT THE L	F OF	HEAT	OF ZATION.	HEAT I		
Temperature, Degrees Centigrade.	Millimeters of Mer- cury.	Kilograms per Square Centi- meter.	Pounds per Square Inch.	Calories.	B.T.U.	Calories.	B.T.U.	Calories.	B.T.U.	Temperature, Degrees Fahrenheit.
t	p	p	р	q	q	r	r	ρ	ρ	t
71 72 73	$243.8\\254.5107\\265.6111\\265.6115$	$0.3315\\0.3460145\\0.3611151\\0.3611156$	$\begin{array}{r} 4.715 \\ 4.921 \\ 2.15 \\ 5.136 \\ 222 \end{array}$	70.98 71.99 72.99	$127.8 \\ 129.6 \\ 131.4$	556.4 555.8 555.2	1001.5 1000.4 999.4	518.8 518.1 517.4	933.9 932.6 931.4	159.8 161.6 163.4
74 75 76	$\begin{vmatrix} 277.1 \\ 289.0 \\ 123 \\ 301.3 \\ 127 \end{vmatrix}$	$0.3767\\0.3929162\\0.4096167\\173$	$5.358_{231} \\ 5.589_{237} \\ 5.826_{246}^{237}$	$73.99 \\ 74.99 \\ 76.00$	$133.2 \\ 135.0 \\ 136.8$	554.6 554.0 553.4	998.3 997.3 996.2	$516.7 \\ 516.0 \\ 515.3$	930.1 928.8 927.6	165.2 167 168.8
77 78 79	$\begin{vmatrix} 314.0 \\ 327.2132 \\ 327.2137 \\ 340.9137 \\ 142 \end{vmatrix}$	$0.4269\\0.4449\\180\\0.4635\\193$	${}^{6.072}_{6.327255}_{6.327265}_{6.592275}$	$77.00 \\ 78.00 \\ 79.01$	$138.6 \\ 140.4 \\ 142.2$	$552.9 \\ 552.3 \\ 551.7$	995.2 994.1 993.0	514.7 514.0 513.3	$926.4 \\ 925.2 \\ 923.9$	170.6 172.4 174.2
80, 81 82	$\begin{vmatrix} 355.1 \\ 369.7146 \\ 384.9152 \\ 156 \end{vmatrix}$	$0.4828\\0.5026198\\0.5233207\\0.5233212$	${}^{6.867}_{7.150293}_{7.443293}_{302}$	80.01 81.02 82.02	$144.0 \\ 145.8 \\ 147.6$	$551.1 \\ 550.5 \\ 549.9$	991.9 990.8 989.8	$512.6 \\ 511.9 \\ 511.2$	$922.6\\921.3\\920.1$	176 177.8 179.6
83 84 85	$\begin{array}{c} 400.5\\ 416.7162\\ 433.5168\\ 173\end{array}$	${}^{0.5445}_{0.5665220}_{229}_{0.5894235}$	$7.745 \\ 8.058313 \\ 8.383325 \\ 8.383334$	$83.03 \\ 84.03 \\ 85.04$	$149.4 \\ 151.2 \\ 153.1$	$549.3 \\ 548.7 \\ 548.1$	988.7 987.6 986.5	$510.5 \\ 509.8 \\ 509.1$	918.8 917.6 916.3	181.4 183.2 185
86 87 88	$\begin{array}{c} 450.8\\ 468.6178\\ 468.6185\\ 487.1190\end{array}$	${ \begin{smallmatrix} 0.6129 \\ 0.6371242 \\ 0.6623252 \\ 258 \end{smallmatrix} }$	$8.717 \\ 9.062345 \\ 9.419357 \\ 368$	$ \begin{array}{r} 86.04 \\ 87.05 \\ 88.06 \end{array} $	$154.9 \\ 156.7 \\ 158.5$	$547.4 \\ 546.8 \\ 546.2$	985.4 984.3 983.2	$508.3 \\ 507.6 \\ 506.9$	915.0 913.7 912.5	186.8 188.6 190.4
89 90 91	$\begin{array}{c} 506.1\\ 525.8203\\ 546.1203\\ 210\end{array}$	${}^{0.6881}_{0.7149268}_{0.7149276}_{0.7425285}$	$9.787 \\ 10.167380 \\ 10.560393 \\ 10.560406 \\ 406$	89.06 90.07 91.08	$160.3 \\ 162.1 \\ 163.9$	$545.6 \\ 544.9 \\ 544.3$	982.1 980.9 979.8	$506.2 \\ 505.4 \\ 504.7$	911.2 909.9 908.5	192.2 194 195.8
92 93 94	$\left \begin{array}{c} 567.1\\588.7216\\611.0230\\\end{array}\right $	${}^{0.7710}_{{}^{0.8004294}}_{{}^{0.8004303}}_{{}^{303}}_{{}^{313}}$	${ \begin{smallmatrix} 10.966 \\ 11.384 \\ 418 \\ 11.815 \\ 445 \\ 445 \\ \end{smallmatrix} }$	$92.08 \\ 93.09 \\ 94.10$	$165.7 \\ 167.5 \\ 169.3$	$543.7 \\ 543.1 \\ 542.5$	978.7 977.6 976.5	$504.0 \\ 503.3 \\ 502.6$	907.2 906.0 904.7	197.6 199.4 201 [.] 2
95 96 97	$\begin{array}{r} 634.0\\657.7237\\682.1244\\252\end{array}$	${}^{0.8620}_{{}^{0.8942322}}_{{}^{0.9274}332}_{{}^{332}}_{{}^{342}}$	$12.260 \\ 12.718 \\ 458 \\ 13.190 \\ 488 \\ 4$	$95.11 \\ 96.12 \\ 97.12$	$171.2 \\ 173.0 \\ 174.8$	$541.9 \\ 541.2 \\ 540.6$	975.4 974.2 973.1	$501.9 \\ 501.1 \\ 500.4$	903.4 902.1 900.8	203 204.8 206.6
98 99 100	$707.3_{260} \\ 733.3267 \\ 760.0275$	${}^{0.9616}_{0.9970363}_{1.0333363}_{374}$	$13.678 \\ 14.180 \\ 502 \\ 14.697 \\ 532 \\ 532 \\$	98.13 99.14 100.2	$176.6 \\ 178.5 \\ 180.3$	$539.9 \\ 539.3 \\ 538.7$	971.9 970.8 969.7	499.6 498.9 498.2	899.4 898.2 896.9	208.4 210.2 212
101 102 103	$787.5_{284}\\815.9_{292}\\845.1_{300}$	${}^{1.0707}_{1.1093397}_{1.1490397}_{408}$	$15.229 \\ 15.778549 \\ 16.342564 \\ 16.342581$	101.2 102.2 103.2	$182.1 \\183.9 \\185.7$	$538.1 \\ 537.4 \\ 536.8$	968.5 967.3 966.2	497.5 496.8 496.1	895.5 894.1 892.9	213.8 215.6 217.4
104 105 106	$\begin{array}{r} 875.1\\906.1310\\937.9318\\327\end{array}$	$1.1898 \\ 1.2319 \\ 433 \\ 1.2752 \\ 444$	$16.923 \\ 522599 \\ 17.522615 \\ 18.137615 \\ 632$	104.2 105.2 106.2	$187.6 \\ 189.4 \\ 191.2$	$536.2 \\ 535.6 \\ 534.9$	$965.1 \\ 964.0 \\ 962.8$	$\begin{array}{r} 495.4 \\ 494.7 \\ 493.9 \end{array}$	891.6 890.3 889.0	219.2 221 222.8
107 108 109	$970.6_{337}_{1004.3345}_{1038.8345}_{357}$	$1.3196 \\ 1.3653457 \\ 1.4123470 \\ 1.4123485$	$18.769 \\ 19.420 \\ 669 \\ 20.089 \\ 688 \\ 688 \\ 30.089 \\ 688 \\ 688 \\ 30.089 \\ 688 \\ 6$	107.2 108.2 109.3	193.0 194.8 196.7	$534.2 \\ 533.6 \\ 532.9$	$961.6 \\ 960.5 \\ 959.3$	$\begin{array}{r} 493.1 \\ 492.4 \\ 491.6 \end{array}$	887.6 886.3 885.0	224.6 226.4 228.2
110	1074.5366	1.4608498	20.777,709	110.3	198.5	532.3	958.1	490.9	883.6	230
SATURATED STEAM - TABLE III.

	HI EQUIV OF E	EAT ALENT XTER-	the	on.	SPECIFIC	VOLUME.	DE	NSITY.	
l'emperature, Degrees Centigrade.	Calories.	.D.T.a	Entropy of Liquid.	Entropy of Vaporizati	Cubic Meters per Kilo.	Cubic Feet Per Pound.	Kilos per Cubic Meter.	Pounds per Cubic Foot.	remperature Degrees Fährenheit
t	Apu	Apu	θ	$\frac{r}{T}$	8	8	1 8	<u>1</u> s	t
71 72 73	$37.6 \\ 37.7 \\ 37.8$	67.6 67.8 68.0	0.2311 0.2340 0.2369	1.6171 1.6107 1.6044	$\begin{array}{r} 4.838\\ 4.647191\\ 4.647181\\ 4.466172\end{array}$	$77.5_{31} \\ 74.4_{29} \\ 71.5_{27} $	$\begin{array}{c} 0.2067 \\ 0.2152 \\ 0.2239 \\ 90 \end{array}$	$\begin{array}{c} 0.01290 \\ 0.01344 \\ 0.01398 \\ 55 \end{array} 54$	159.8 161.6 163.4
74 75 76	37.9 38.0 38.1	$ \begin{array}{r} 68.2 \\ 68.5 \\ 68.6 \end{array} $	0.2398 0.2427 0.2456	1.5981 1.5918 1:5856	$\begin{array}{r} 4.294\\ 4.130\\ 157\\ 3.973\\ 151 \end{array}$	${}^{68.8}_{66.225}_{63.725}_{25}$	$\begin{array}{c} 0.2329\\ 0.2421\\ 96\\ 0.2517\\ 99\end{array}$	$\begin{array}{c} 0.01453 \\ 0.01510 \\ 0.01570 \\ 60 \\ 64 \end{array}$	165.2 167 168.8
77 78 79	38.2 38.3 38.4	68.8 68.9 69.1	$\begin{array}{c} 0.2484 \\ 0.2513 \\ 0.2541 \end{array}$	$1.5793 \\ 1.5731 \\ 1.5670$	$3.822 \\ 3.676139 \\ 3.537133 $	${}^{61.2}_{58.822}_{56.621}_{21}$	$0.2616 \\ 0.2720 \\ 107 \\ 0.2827 \\ 111 \\ 0.111$	$\begin{array}{c} 0.01634\\ 0.01700\\ 0.01767\\ 68\end{array}$	170.6 172.4 174.2
80 81 82	38.5 38.6 38.7	69.3 69.5 69.7	$\begin{array}{c} 0.2570 \\ 0.2598 \\ 0.2626 \end{array}$	1.5609 1.5548 1.5487	$3.404_{3.277127}_{3.277121}_{3.1561116}$	$54.5_{20}\\52.5_{19}\\50.6_{19}$	$0.2938\\0.3052114\\0.3168\\121$	$\begin{array}{c} 0.01835\\ 0.01905\\ 0.01905\\ 71\\ 0.01976\\ 77 \end{array}$	176 177.8 179.6
83 84 85	38.8 38.9 39.0	$69.9 \\ 70.0 \\ 70.2$	0.2654 0.2682 0.2711	$1.5426 \\ 1.5366 \\ 1.5307$	$3.040 \\ 2.929111 \\ 2.824105 \\ 2.824101$	$\begin{array}{r} 48.71\\ 46.92169\\ 45.23169\\ 161\end{array}$	$0.3289\\0.3414125\\0.3541\\131$	$\begin{array}{c} 0.02053\\ 0.02131\\ 0.02211\\ 80\\ 82 \end{array}$	181.4 183.2 185
86 87 88	39.1 39.2 39.3	70.4 70.6 70.7	0.2739 0.2767 0.2795	$1.5247 \\ 1.5187 \\ 1.5128$	$\begin{array}{r} 2.723 \\ 2.627 \\ 9.534 \\ 90 \end{array}$	$\begin{array}{r} 43.62\\ 42.08154\\ 40.59149\\ 144\end{array}$	$0.3672\\0.3807\\139\\0.3946\\145$	$\begin{array}{c} 0.02293\\ 0.02376\\ 0.02463\\ 91 \end{array} \\ 83$	186.8 188.6 190.4
89 90 91	39.4 39.5 39.6	70.9 71.0 71.3	0.2823 0.2851 0.2879	$1.5069 \\ 1.5010 \\ 1.4952$	$\begin{array}{c} 2.444 \\ 2.358 \\ 2.275 \\ 78 \end{array} \\ 80$	$39.15_{37.77138}_{37.77132}_{36.45126}$	$0.4091 \\ 0.4241 \\ 150 \\ 0.4395 \\ 157 \\ 157$	$\begin{array}{c} 0.02554\\ 0.02648\\ 9.002743\\ 99 \end{array}$	192.2 194 195.8
92 93 94	39.7 39.8 39.9	71.5 71.6 71.8	0.2906 0.2934 0.2961	$1.4894 \\ 1.4836 \\ 1.4779$	$\begin{array}{c} 2.197 \\ 2.122 \\ 2.050 \\ 70 \end{array}$	$\begin{array}{r} 35.19\\ 34.00\\ 114\\ 32.86\\ 111\end{array}$	$0.4552\\0.4713161\\0.4878_{172}^{165}$	$\begin{array}{r} 0.02842 \\ 9.02941 \\ 0.03043 \\ 106 \end{array} \\ 99$	197.6 199.4 201.2
95 96 97	$\begin{array}{c} 40.0 \\ 40.1 \\ 40.2 \end{array}$	$72.0 \\ 72.1 \\ 72.3$	0.2989 0.3016 0.3043	$1.4723 \\ 1.4666 \\ 1.4609$	${\begin{array}{c}1.980\\1.913\\1.849\\62\end{array}}67$	$31.75_{108} \\ 30.67_{104} \\ 29.63_{99}^{104}$	$0.505_{18} \\ 0.523_{18} \\ 0.541_{19} \\ 19$	${0.03149\atop 0.03260111\atop 0.03375115\atop 1.17}$	203 204.8 206.6
98 99 100	40.3 40.4 40.5	72.5 72.6 72.8	0.3070 0.3097 0.3125	1.4552 1.4496 1:4441	${\begin{array}{c}1.787\\1.728\\57\\1.671\\54\end{array}}$	$\begin{array}{c} 28.64 \\ 95 \\ 27.69 \\ 91 \\ 26.78 \\ 88 \end{array}$	${0.560 \atop 0.579 \atop 19 \atop 0.598 \atop 20}$	${}^{0.03492}_{0.03611123}_{0.03734123}_{127}$	208.4 210.2 212
101 102 103	$\begin{array}{c} 40.6 \\ 40.6 \\ 40.7 \end{array}$	73.0 73.2 73.3	$\begin{array}{c} 0.3152 \\ 0.3179 \\ 0.3205 \end{array}$	$1.4386 \\ 1.4330 \\ 1.4275$	${\begin{array}{c}1.617\\1.564\\50\\1.514\\49\end{array}}$	$\begin{array}{c} 25.90 \\ 25.06 \\ 24.25 \\ 78 \end{array} \\ 81$	${ \begin{smallmatrix} 0.618 \\ 0.639 \\ 22 \\ 0.661 \\ 22 \end{smallmatrix} }$	$\begin{array}{c} 0.03861\\ 0.03990129\\ 0.04124134\\ 137\end{array}$	213.8 215.6 217.4
104 105 106	40.8 40.9 41.0	73.5 73.7 73.8	$\begin{array}{c} 0.3232 \\ 0.3259 \\ 0.3286 \end{array}$	$\begin{array}{c} 1.4220 \\ 1.4165 \\ 1.4111 \end{array}$	$\begin{array}{r} 1.465 \\ 1.419 \\ 1.374 \\ 43 \end{array}$	$\begin{array}{c} 23.47\\ 22.73\\ 22.01\\ 70\end{array}$	${ \begin{smallmatrix} 0.683 \\ 0.705 \\ 23 \\ 0.728 \\ 23 \\ \end{smallmatrix} }$	$0.04261\\0.04400139\\0.04543143\\149$	219.2 221 222.8
107 108 109	41.1 41.2 41.3	74.0 74.2 74.3	$\begin{array}{c} 0.3312 \\ 0.3339 \\ 0.3365 \end{array}$	$1.4057 \\ 1.4003 \\ 1.3949$	$\begin{array}{c} 1.331 \\ 1.289 \\ 1.248 \\ 1.248 \\ 39 \end{array} $	$\begin{array}{c} 21.31 \\ 20.64 \\ 19.99 \\ 62 \end{array}$	${ \begin{smallmatrix} 0.751 \\ 0.776 \\ 25 \\ 0.801 \\ 26 \end{smallmatrix} }$	${0.04692\atop 0.04845153\atop 0.04845157\atop 0.0500\atop 16}$	224.6 226.4 228.2
110	41.4	74.5	0.3392	1.3895	1.209 37	19.37 60	0.82726	0.0516 ₁₇	230

SATURATED STEAM - TABLE III.

		PRESSURE.		HEAT OF THE LIQUID. HEAT OF VAPORIZATION			OF ZATION.	HEAT EQUIVA LENT OF IN- TERNAL WORK.		fah-
Temperature Degrees Centigrade	Millimeters of Mer- cury.	Kilograms per Square Centi- meter.	Pounds per Square Inch.	Calories.	B.T.U.	Calories.	B.T.U.	Calories.	B.T.U.	Temperature Degrees renheit.
t	<i>p</i>	p .	P	q	g	r	r	ρ	ρ	t
111 112 113	$^{1111.1}_{1148.7387}_{1187.4387}_{397}$	$1.5106\\1.5617511\\1.6144527\\1.6144540$ 2	$21.486_{728}\\22.214_{748}\\22.962_{767}$	$ 111.3 \\ 112.3 \\ 113.3 $	$200.3 \\ 202.1 \\ 203.9$	$531.6 \\ 530.9 \\ 530.3$	956.9 955.7 954.5	490.2 489.4 488.7	882.3 880.9 879.5	231.8 233.6 235.4
114 115 116	$1227.1\\1267.9\\419\\1309.8\\430$	${}^{1.6684}_{1.7238570}{}^{22}_{1.7808570}{}^{22}_{2385}$	23.729 24.518789 25.328810 832	$114.3 \\ 115.3 \\ 116.4$	205.8 207.6 209.4	529.6 528.9 528.2	953.3 952.1 950.8	487.9 487.1 486.3	878.2 876.8 875.4	237.2 239 240.8
117 118 119	$1352.8 \\ 1397.0 \\ 454 \\ 1442.4 \\ 465$	${}^{1.8393}_{1.8993}{}^{600}_{618}{}^{2}_{1.9611}{}^{2}_{632}{}^{2}_{2}$	26.160 27.015855 27.893878 27.893899	$117.4 \\ 118.4 \\ 119.4$	$211.2 \\ 213.0 \\ 214.9$	527.5 526.9 526.2	949.5 948.4 947.2	485.5 484.8 484.0	873.9 872.6 871.3	$242.6 \\ 244.4 \\ 246.2$
120 121 122	$^{1488.9}_{1536.6}_{491}_{1585.7}_{503}^{477}$	$\begin{array}{c} 2.0243 \\ 2.0891 \\ 665 \\ 2.1556 \\ 685 \end{array}$	$\begin{array}{r} 28.792 \\ 29.715923 \\ 30.664 \\ 973 \end{array}$	$120.4 \\ 121.4 \\ 122.5$	$216.7 \\ 218.5 \\ 220.4$	525.6 524.9 524.2	946.0 944.8 943.5	$\begin{array}{r} 483.4 \\ 482.6 \\ 481.8 \end{array}$	870.0 868.6 867.1	248 249.8 251.6
123 124 125	${}^{1636.0}_{1687.5}{}^{515}_{530}_{1740.5}{}^{530}_{542}$	$\begin{array}{c} 2.2241\\ 2.2943720\\ 2.3663720\\ 738\end{array}$	$\begin{array}{r} 31.637\\ 32.64\\ 33.66\\ 102\\ 105 \end{array}$	$123.5 \\ 124.5 \\ 125.5$	$222.2 \\ 224.1 \\ 225.9$	523.5 522.8 522.1	942.3 941.0 939.8	481.0 480.2 479.4	865.8 864.3 863.0	253.4 255.2 257
126 127 128	$1794.7\\1850.3556\\1907.3570\\1907.3585$	$\begin{smallmatrix} 2.4401\\ 2.5156755\\ 2.5931775\\ 795 \end{smallmatrix}$	$\begin{array}{r} 34.71 \\ 35.78 \\ 36.88 \\ 113 \end{array}$	$126.5 \\ 127.5 \\ 128.6$	$227.7 \\ 229.5 \\ 231.4$	$521.4 \\ 520.7 \\ 520.0$	938.6 937.3 936.1	478.6 477.8 477.0	861.6 860.2 858.8	258.8 260.6 262.4
129 130 131	${}^{1965.8}_{2025.6598}_{2025.6613}_{2086.9629}$	$\begin{array}{c} 2.6726\\ 2.7540814\\ 2.7540833\\ 2.8373853\\ 854 \end{array}$	$ \begin{array}{r} 38.01 \\ 39.17 \\ 40.36 \\ 121 \end{array} $	$129.6 \\ 130.6 \\ 131.6$	$233.3 \\ 235.1 \\ 236.9$	$519.3 \\ 518.6 \\ 517.9$	934.8 933.6 932.3	476.3 475.5 474.7	$857.4 \\ 856.0 \\ 854.6$	264.2 266 267.8
132 133 134	$2149.8\\2214.0\\660\\2280.0\\675$	$\begin{array}{c} 2.9227_{874}\\ 3.0101_{898}\\ 3.0999_{917}^{898} \end{array}$	41.57 42.81 124 44.09 130	$132.6 \\ 133.7 \\ 134.7$	$238.7 \\ 240.6 \\ 242.4$	$517.3 \\ 516.6 \\ 515.9$	931.1 929.8 928.5	474.0 473.3 472.5	853.2 851.8 850.4	269.6 271.4 273.2
135 136 137	$2347.5_{690}\\2416.5_{708}\\2487.3_{724}$	$\begin{array}{c} 3.1916\\ 3.2854938\\ 3.2854962\\ 3.3816985 \end{array}$	$\begin{array}{r} 45.39 \\ 46.73 \\ 137 \\ 48.10 \\ 140 \end{array}$	$135.7 \\ 136.7 \\ 137.7$	$244.2 \\ 246.0 \\ 247.9$	$515.1 \\ 514.4 \\ 513.7$	927.2 925.9 924.6	471.6 470.8 470.1	848.9 847.5 846.1	275 276.8 278.6
138 139 140	$2559.7_{741}\\2633.8_{757}\\2709.5_{776}$	$\begin{array}{c} 3.4801\\ 3.581 \\ 3.684 \\ 105 \end{array}$	$\begin{array}{r} 49.50 \\ 50.93 \\ 52.39 \\ 150 \\ 150 \end{array}$	138.8 139.8 140.8	$249.7 \\ 251.6 \\ 253.4$	$513.0 \\ 512.3 \\ 511.5$	923.3 922.1 920.7	$469.3 \\ 468.5 \\ 467.6$	$844.6 \\ 843.3 \\ 841.8$	280.4 282.2 284
141 142 143	$2787.1_{793}\\2866.4_{813}\\2947.7_{828}$	$\begin{array}{c} 3.789 \\ 3.897 \\ 4.008 \\ 113 \\ 113 \\ \end{array}$	$53.89 \\ 55.43 \\ 157 \\ 57.00 \\ 160$	$141.8 \\ 142.8 \\ 143.9$	$255.3 \\ 257.1 \\ 259.0$	510.7 510.1 509.3	919.3 918.1 916.7	$466.8 \\ 466.1 \\ 465.3$	840.2 838.9 837.4	285.8 287.6 289.4
144 145 146	$3030.5_{848}\\3115.3_{868}\\3202.1_{887}$	$\begin{array}{c} 4.121 \\ 4.236 \\ 4.354 \\ 120 \end{array} \begin{array}{c} 115 \\ 6 \\ 120 \end{array}$	$58.60 \\ 60.24 \\ 168 \\ 61.92 \\ 172$	$144.9 \\ 145.9 \\ 146.9$	260.8 262.7 264.5	508.6 507.8 507.1	915.4 914.1 912.8	464.4 463.6 462.8	$835.9 \\ 834.5 \\ 833.1$	291.2 293 294.8
147 148 149	$3290.8\\3381.3905\\3474.0927\\947$	$\begin{array}{c} 4.474 \\ 4.597 \\ 4.723 \\ 129 \\ 129 \end{array}$	$\begin{array}{r} 63.64 \\ 65.39 \\ 175 \\ 67.18 \\ 183 \end{array}$	$148.0 \\ 149.0 \\ 150.0$	$266.4 \\ 268.2 \\ 270.1$	$506.4 \\ 505.6 \\ 504.9$	911.5 910.1 908.8	462.0 461.2 460.4	831.6 830.1 828.7	296.6 298.4 300.2
150	3568.7966	4.852 132	69.01 187	151.0	271.9	504.1	907.4	459.5	827.2	302

бо

SATURATED STEAM __ TABLE III.

ۍ ه	HE. EQUIV OF E: NAL	AT ALENT XTER- WORK.	the	ion.	SPECIFIC V	Volume.	De	NSITY.	e, it.
Temperatur Degrees Centigrad	Calories.	B.T.U.	Entropy of Liquid.	Entropy of Vaporizat	Cubic Meters per Kilo.	Cubic, Feet Per Pound,	Kiloa per Cubic Meter.	Pounds per Cubic Foot.	Temperatur Degrees Fahrenhe
t	Apu	Apu	θ	$\frac{r}{\overline{T}}$	8	8		8	t
111 112 113	41.4 41.5 41.6	74.6 74.8 75.0	0.3418 0.3445 0.3471	$1.3842 \\ 1.3789 \\ 1.3736$	${}^{1.172}_{1.136}_{35}_{35}_{1.101}_{33}_{33}$	$18.77 \\ 18.2057 \\ 17.6456 \\ 17.6454 $	${ \begin{smallmatrix} 0.853 \\ 0.880 \\ 28 \\ 0.908 \\ 28 \\ 28 \\ \end{smallmatrix} }$	${}^{0.0533}_{0.0550}{}^{17}_{17}_{0.0567}_{18}$	231.8 233.6 235.4
114 115 116	41.7 41.8 41.9	75.1 75.3 75.4	$\begin{array}{c} 0.3498 \\ 0.3524 \\ 0.3550 \end{array}$	$1.3683 \\ 1.3631 \\ 1.3579$	${}^{1.068}_{1.036}{}^{32}_{31}_{1.005}_{30}$	${}^{17.10}_{16.5950}_{16.09}_{48}$	${ \begin{smallmatrix} 0.936 \\ 0.965 \\ 30 \\ 0.995 \\ 31 \end{smallmatrix} }$	${}^{0.0585_{18}}_{0.0603_{19}}_{0.0622_{19}}$	237.2 239 240.8
117 118 119	$\begin{array}{c} 42.0 \\ 42.1 \\ 42.2 \end{array}$	75.6 75.8 75.9	$\begin{array}{c} 0.3576 \\ 0.3602 \\ 0.3628 \\ \end{array}$	$\begin{array}{c} 1.3527 \\ 1.3475 \\ 1.3423 \end{array}$	$0.9746_{286}\\0.9460_{277}\\0.9183_{269}$	$15.61_{15.1645}_{15.1644}_{14.72}_{44}$	${}^{1.026}_{1.05732}_{1.089}_{33}^{31}_{33}$	${}^{0.0641}_{0.065920}_{0.067921}_{21}$	242.6 244.4 246.2
120 121 122	$\begin{array}{c} 42.2 \\ 42.3 \\ 42.4 \end{array}$	76.0 76.2 76.4	$\begin{array}{c} 0.3654 \\ 0.3680 \\ 0.3705 \end{array}$	1.3372 1.3321 1.3269	$\begin{array}{r} 0.8914 \\ 0.8653 \\ 252 \\ 0.8401 \\ 243 \end{array}$	${}^{14.28}_{13.86}_{40}_{13.46}_{39}$	${}^{1.122}_{1.15634}_{1.19036}_{36}$	${ \begin{smallmatrix} 0.0700 \\ 0.0721 \\ 22 \\ 0.0743 \\ 22 \\ \end{smallmatrix} }$	248 249.8 251.6
123 124 125	$\begin{array}{c} 42.5 \\ 42.6 \\ 42.7 \end{array}$	76.5 76.7 76.8	$\begin{array}{c} 0.3731 \\ 0.3756 \\ 0.3782 \end{array}$	$\begin{array}{r} 1.3218 \\ 1.3167 \\ 1.3117 \end{array}$	$0.8158_{0.7924234}\\0.7924226\\0.7698_{219}$	$13.07_{38}\\12.69_{36}\\12.33_{35}^{36}$	$1.226_{36}\\1.262_{37}\\1.299_{38}^{37}$	${ \begin{smallmatrix} 0.0765_{23} \\ 0.0788_{23} \\ 0.0811_{24} \end{smallmatrix} }$	253.4 255.2 257
126 127 128	42.8 42.9 43.0	77.0 77.1 77.3	0.3807 0.3833 0.3858	1.3067 1.3017 1.2967	$0.7479 \\ 0.7267212 \\ 0.7267204 \\ 0.7063196 \\ 196$	${}^{11.98}_{11.6434}_{11.3232}_{32}$	$1.337_{1.37640}\\1.416_{40}$	${}^{0.0835}_{0.085924}_{2.088326}_{2.088326}$	258.8 260.6 262.4
129 130 131	43.0 43.1 43.2	77.4 77.6 77.7	0.3884 0.3909 0.3934	1.2917 1.2868 1.2818	$0.6867\\0.6677190\\0.6677184\\0.6493\\178$	${}^{11.00}_{10.7030}_{10.4028}_{28}$	$1.456 \\ 1.498 \\ 42 \\ 1.540 \\ 43 \\ 43$	$\begin{array}{c} 0.0909_{26} \\ 0.0935_{26} \\ 0.0961_{27} \end{array}$	264.2 266 267.8
132 133 134	43.3 43.3 43.4	77.9 78.0 78.1	0.3959 0.3985 0.4010	1.27691.27201.2672	$\begin{array}{r} 0.6315\\ 0.6142168\\ 0.5974162\\ 162\end{array}$	${ \begin{smallmatrix} 10.12 \\ 9.839 \\ 9.569 \\ 260 \end{smallmatrix} }$	${}^{1.583}_{1.628}{}^{45}_{46}_{1.674}_{47}$	${}^{0.0988}_{0.101629}_{0.104529}_{0.104529}_{0.104529}$	269.6 271.4 273.2
135 136 137	$\begin{array}{c} 43.5 \\ 43.6 \\ 43.6 \\ 43.6 \end{array}$	78.3 78.4 78.5	0.4035 0.4060 0.4085	1.2623 1.2574 1.2526	$\begin{array}{c} 0.5812\\ 0.5656150\\ 0.5506_{145}^{150}\end{array}$	9.309 9.060240 8.820233	${}^{1.721}_{1.768}{}^{47}_{48}_{1.816}{}^{48}_{49}$	${ \begin{smallmatrix} 0.1074 \\ 0.1104 \\ 0.1134 \\ 31 \end{smallmatrix} }$	275 276.8 278.6
138 139 140	43.7 43.8 43.9	78.7 78.8 78.9	0.4110 0.4135 0.4160	$\begin{array}{c} 1.2479 \\ 1.2431 \\ 1.2383 \end{array}$	$\begin{array}{c} 0.5361\\ 0.5219\\ 138\\ 0.5081\\ 133\end{array}$	8.587 8.360220 8.140220	$1.865 \\ 1.91651 \\ 1.96852 \\ 1.96853$	$\begin{array}{c} 0.1165_{31} \\ 0.1196_{33} \\ 0.1229_{33}^{33} \end{array}$	280.4 282.2 284
141 142 143	43.9 44.0 44.0	79.1 79.2 79.3	0.4185 0.4209 0.4234	51.23351.22881.22881.2241	$\begin{array}{r} 0.4948 \\ 0.4819 \\ 125 \\ 0.4694 \\ 120 \end{array}$	7.926 7.719207 7.519200	$\begin{array}{c} 2.021 \\ 2.07554 \\ 2.13055 \\ 2.13056 \end{array}$	${ \begin{smallmatrix} 0.1262 \\ 0.1296 \\ 34 \\ 0.1330 \\ 35 \end{smallmatrix} }$	285.8 287.6 289.4 201.2
144 145 146	44.2 44.2 44.3	79.5 79.6 79.7	0.4259 0.4283 0.4307	$ \begin{array}{c} 1.2194 \\ 3.1.2147 \\ 1.2100 \\ 1.2100 \end{array} $	$\begin{array}{c} 0.4574 \\ 0.4457117 \\ 0.4457114 \\ 0.4343_{111}^{111} \end{array}$	$\begin{array}{c} 7.326\\7.139187\\6.957182\\177\end{array}$	$2.186 \\ 2.24459 \\ 2.303 \\ 60$	${ \begin{smallmatrix} 0.& 1365\\ 0.& 140136\\ 0.& 143736\\ 38 \end{smallmatrix} }$	293 294.8
147 148 149	44.4 44.4 44.5	79.9 80.0 80.1	0.4332 0.4356 0.4380	21.2054 31.2008 1.1962	$\begin{array}{c} 0.4232\\ 0.4125107\\ 0.4022103\\ 101\end{array}$	$\begin{array}{c} 6.780\\ 6.609166\\ 6.443161\end{array}$	$2.363 \\ 2.424_{62} \\ 2.486_{64}^{62}$	$0.1475_{38}\\0.1513_{39}\\0.1552_{40}^{2}$	296.6 298.4 300.2
150	44.6	80.2	0.4405	5 1.1916	0.3921 97	6.282156	2.55065	0.159240	302

SATURATED STEAM _ TABLE III.

tenti-		PRESSURE.		HEAT THE LI	OF QUID.	HEAT OF VAPORIZATION		N. HEAT EQUIVA LENT OF IN- TERNAL WORK		;
Temperature Degrees (grade.	Millimeters of Mer- cury.	Kilograms per Square Centi- meter.	Pounds per Square	Calories.	B.T.U.	Calories.	B.T.U.	Calories.	B.T.U.	Temperature Degrees Fahrenheid
t	р	р	р	q	q	r	r	ρ	ρ	t
151 152 153	$3665.3 \\ 3764.1 \\ 3864.9 \\ 1008 \\ 1031$	$\begin{array}{r} 4.984_{134} \\ 5.118_{137} \\ 5.255_{140} \end{array}$	$70.88 \\ 191 \\ 72.79 \\ 195 \\ 74.74 \\ 199 \\ 199 \\$	$152.1 \\ 153.1 \\ 154.1$	273.8 275.6 277.4	$503.4 \\ 502.6 \\ 501.9$	906.1 904.7 903.3	458.7 457.9 457.1	825.7 824.2 822.7	303.8 305.6 307.4
154 155 156	${}^{3968}_{4073}{}^{105}_{108}_{4181}{}^{109}_{109}$	$5.395_{143}\\5.538_{146}\\5.684_{149}$	$76.73_{203}\\78.76_{208}\\80.84_{212}$	$155.1 \\ 156.2 \\ 157.2$	$279.2 \\ 281.1 \\ 283.0$	$501.1 \\ 500.3 \\ 499.6$	901.9 900.5 899.2	$456.3 \\ 455.4 \\ 454.6$	821.2 819.6 818.2	309.2 311 312.8
157 158 159	$\substack{\substack{4290\\4402112\\4517\\116}}$	$5.833 \\ 5.985 \\ 156 \\ 6.141 \\ 159 \\ 159 \\$	$\begin{array}{r} 82.96 \\ 85.12 \\ 221 \\ 87.33 \\ 226 \end{array}$	$158.2 \\ 159.3 \\ 160.3$	284.8 286.7 288.5	498.8 498.1 497.3	897.8 896.5 895.1	453.8 453.0 452.1	816.7 815.3 813.7	314.6 316.4 318.2
160 161 162	$\substack{ 4633\\ 4752129\\ 4874122\\ 124 }$	${}^{6.300}_{6.462}_{166}_{168}_{168}$	$\begin{array}{r} 89.59\\91.89230\\94.25240\\\end{array}$	161.3 162.3 163.4	290.4 292.2 294.1	496.5 495.7 494.9	893.7 892.3 890.9	$451.2 \\ 450.4 \\ 449.5$	812.2 810.7 809.2	320 321.8 323.6
163 164 165	${}^{4998}_{5124129}_{5253131}_{131}$	$\begin{array}{r} 6.796 \\ 6.967 \\ 175 \\ 7.142 \\ 178 \end{array}$	$96.65_{99.09249}_{101.58253}$	$164.4 \\ 165.4 \\ 166.5$	295.9 297.7 299.6	494.2 493.4 492.6	889.5 888.1 886.7	448.7 447.9 447.0	807.7 806.2 804.7	325.4 327.2 329
166 167 168	${}^{5384}_{5518134}_{5655137}_{139}$	$\begin{array}{c} 7.320 \\ 7.502182 \\ 7.688186 \\ 7.688189 \end{array}$	${}^{104.11}_{106.71264}_{109.35269}$	$167.5 \\ 168.5 \\ 169.5$	301.5 303.3 305.1	491.9 491.1 490.3	885.4 883.9 882.5	$\begin{array}{r} 446.3 \\ 445.4 \\ 444.6 \end{array}$	803.3 801.7 800.1	330.8 332.6 334.4
169 170 171	$5794\\5937143\\6081144\\148$	$7.877 \\ 8.071 \\ 9.268 \\ 201 \\ 201$	${}^{112.04}_{114.79280}_{117.59280}_{286}$	170.6 171.6 172.6	307.0 308.9 310.7	489.5 488.7 487.9	881.0 879.6 878.3	$\begin{array}{r} 443.7 \\ 442.8 \\ 441.9 \end{array}$	798.5 797.0 795.6	336.2 338 339.8
172 173 174	${}^{6229}_{{6379}150}_{{6533}154}_{{156}}$	$\begin{array}{r} 8.469 \\ 8.673204 \\ 8.882209 \\ 8.882212 \end{array}$	$120.45_{291}\\123.36_{297}\\126.33_{302}$	173.7 174.7 175.7	$312.6 \\ 314.5 \\ 316.3$	487.1 486.3 485.5	876.9 875.4 873.9	441.1 440.2 439.4	794.1 792.5 790.9	341.6 343.4 345.2
175 176 177	${}^{6689}_{{6848159}\atop{6848162}\atop{7010}_{165}}$	$\begin{array}{r}9.094\\9.310\\221\\9.531\\224\end{array}$	${}^{129.35}_{132.43}_{308}_{135.56}_{319}$	176.8 177.8 178.8	$318.2 \\ 320.0 \\ 321.8$	484.7 483.9 483.1	872.4 871.0 869.5	438.5 437.7 436.8	789.3 787.8 786.2	347 348.8 350.6
178 179 180	$7175 \\7343 \\171 \\7514 \\174$	$9.755 \\ 9.983 \\ 233 \\ 10.216 \\ 237 \\ 237 \\$	$138.75_{142.00}_{330}_{330}_{145.30}_{337}$	179.9 180.9 181.9	323.7 325.6 327.5	482.3 481.4 480.6	868.1 866.6 865.1	436.0 435.0 434.2	784.7 783.1 781.5	352.4 354.2 356
181 182 183	7688 7866180 8046184	${ \begin{smallmatrix} 10.453 \\ 10.695 \\ 245 \\ 10.940 \\ 249 \\ \end{smallmatrix} }$	$^{148.67}_{152.11349}_{155.60355}$	183.0 184.0 185.0	329.3 331.2 333.0	479.8 479.0 478.2	863.6 862.2 860.7	433.3 432.5 431.6	779.9 778.4 776.9	357.8 359.6 361.4
184 185 186	8230 8417187 8608191 194	${}^{11.189}_{11.444259}_{11.703264}$	$159.15_{162.77362}_{162.77369}_{166.46_{375}}$	186.1 187.1 188.1	334.9 336.8 338.6	477.4 476.6 475.7	859.2 857.7 856.3	430.8 429.9 429.0	775.3 773.7 772.2	363.2 365 366.8
187 188 189	$\begin{array}{r} 8802\\8999201\\9200\\204\end{array}$	${}^{11.967}_{12.235268}_{273}_{12.508278}$	$170.21\\174.02381\\174.90388\\177.90395$	189.2 190.2 191.2	340.5 342.4 344.2	474.8 474.0 473.2	854.7 853.2 851.7	428.0 427.2 426.3	770.5 768.9 767.4	368.6 370.4 372.2
190	9404208	12.786282	181.85402	192.3	346.1	472.3	850.2	425.4	765.8	374

62

-

SATURATED STEAM-TABLE III.

enti-	HEAT EQUIVA	ALENT TER-	the	on.	SPECIFIC '	VOLUME.	De	NSITY.	. :
Temperature Degrees C grade.	Calories. M TEN	ORE. 	Entropy of Liquid.	Entropy of Vaporizati	Cubic Meters per Kilo.	Cubic Feet per Pound.	Kilos per Cubic Meter.	Pounds per Cubic Foot.	Temperature Degrees Fahrenheit
t	Apu	Apu	θ	$\frac{r}{T}$	8	8	<u>1</u> 8	<u>1</u> <u>s</u>	t
151 152 153	$44.6 \\ 44.7 \\ 44.8$	80.4 80.5 80.6	0.4429 0.4453 0.4477	1.1870 1.1824 1.1778	${}^{0.3824}_{0.372992}_{0.3637}_{89}$	${}^{6.126}_{5.974148}_{5.826143}_{143}$	$\begin{array}{c} 2.615 \\ 2.682 \\ 2.750 \\ 68 \\ 68 \end{array}$	${}^{0.1632}_{0.167442}, {}^{\circ}_{0.167442}_{0.171643}$	303.8 305.6 307.4
154 155 156	$44.8 \\ 44.9 \\ 45.0$	80.7 80.9 81.0	0.4501 0.4525 0.4549	$1.1733 \\ 1.1688 \\ 1.1644$	${0.3548\atop 0.3463}_{83}\\ 0.3380}_{82}$	$5.683_{137} \\ 5.546_{133} \\ 5.413_{131}^{131}$	$\begin{array}{c} 2.818 \\ 2.888 \\ 2.959 \\ 73 \end{array}$	$0.1759\\0.180344\\0.184746$	309.2 311 312.8
157 158 159	$45.0 \\ 45.1 \\ 45.2$	$81.1 \\ 81.2 \\ 81.4$	$\begin{array}{c} 0.4573 \\ 0.4596 \\ 0.4620 \end{array}$	$1.1599 \\ 1.1554 \\ 1.1509$	$0.3298 \\ 0.3218 \\ 0.3140 \\ 77$	$5.282_{128} \\ 5.154_{125} \\ 5.029_{123} $	$3.032 \\ 3.108 \\ 77 \\ 3.185 \\ 80$	${ \begin{smallmatrix} 0.1893 \\ 0.1940 \\ 0.1940 \\ 0.1988 \\ 50 \end{smallmatrix} }$	314.6 316.4 318.2
160 161 162	45.3 45.3 45.4	81.5 81.6 81.7	$\begin{array}{c} 0.4644 \\ 0.4668 \\ 0.4692 \end{array}$	$1.1465 \\ 1.1421 \\ 1.1377$	${0.3063\atop 0.298974\atop 0.292069\atop 0.292065}$	$\begin{array}{r} 4.906\\ 4.789\\ 112\\ 4.677\\ 106\end{array}$	$\begin{array}{c} 3.265 \\ 3.345 \\ 3.425 \\ 80 \\ 3.425 \\ 78 \end{array}$	${ \begin{smallmatrix} 0.2038 \\ 0.2088 \\ 0.2138 \\ 50 \\ 50 \\ \end{smallmatrix} }$	320 321.8 323.6
163 164 165	$45.5 \\ 45.5 \\ 45.6$	81.8 81.9 82.0	$\begin{array}{c} 0.4715 \\ 0.4739 \\ 0.4763 \end{array}$	$\begin{array}{c} 1.1333 \\ 1.1289 \\ 1.1245 \end{array}$	$0.2855 \\ 0.279263 \\ 0.272963 \\ 0.272963 \\ 63$	$\begin{array}{r} 4.571 \\ 4.469 \\ 101 \\ 4.368 \\ 100 \end{array}$	$\begin{array}{c} 3.503 \\ 3.582 \\ 3.664 \\ 87 \end{array}$	${ \begin{smallmatrix} 0.2188 \\ 0.223850 \\ 0.228951 \\ 0.228954 \end{smallmatrix} }$	325.4 327.2 329
166 167 168	$45.6 \\ 45.7 \\ 45.7 \\ 45.7$	$82.1 \\ 82.2 \\ 82.4$	0.4786 0.4810 0.4833	1.1202 1.1159 1.1115	$0.2666\\0.260363\\0.254063\\60$	$\begin{array}{r} 4.268 \\ 4.168 \\ 98 \\ 4.070 \\ 95 \end{array}$	$3.751 \\ 3.842 \\ 95 \\ 3.937 \\ 95 \\ 95$	${ \begin{smallmatrix} 0.2343 \\ 0.239956 \\ 0.245758 \\ 0.245759 \end{smallmatrix} }$	330.8 332.6 334.4
169 170 171	45.8 45.9 46.0	82.5 82.6 82.7	0.4857 0.4880 0.4903	1.1072 1.1029 1.0987	$0.2480 \\ 0.242357 \\ 0.236855 \\ 0.236854$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 4.032\\ 4.127\\ 9.6\\ 4.223\\ 99\end{array}$	${ \begin{smallmatrix} 0.2516\\ 0.257569\\ 0.263661\\ 0.263660 \end{smallmatrix} }$	336.2 338 339.8
172 173 174	46.0 46.1 46.1	82.8 82.9 83.0	0.4926 0.4949 0.4972	1.0944 1.0901 1.0859	${ \begin{smallmatrix} 0.2314 \\ 0.2262 \\ 50 \\ 0.2212 \\ 48 \end{smallmatrix} }$	$\begin{array}{c} 3.709 \\ 3.626 \\ 81 \\ 3.545 \\ 78 \end{array}$	$\begin{array}{r} 4.322 \\ 99 \\ 4.421 \\ 100 \\ 4.521 \\ 100 \end{array}$	$0.2696 \\ 0.275863 \\ 0.2821 \\ 63$	341.6 343.4 345.2
175 176 177	46.2 46.2 46.3	83.1 83.2 83.3	0.4995 0.5018 0.5041	1.0817 1.0775 1.0733	$0.2164 \\ 0.2117 \\ 45 \\ 0.2072 \\ 45 \\ 45 \\ $	$3.467 \\ 3.391 \\ 73 \\ 3.318 \\ 71$	$\begin{array}{r} 4.621\\ 4.724103\\ 4.826102\\ 107\end{array}$	$\begin{array}{r} 0.2884_{65} \\ 0.2949_{65} \\ 0.3014_{66} \end{array}$	347 348.8 350.6
178 179 180	46.3 46.4 46.4	83.4 83.5 83.6	0.5064 0.5087 0.5110	$\begin{array}{c} 1.0691 \\ 1.0649 \\ 1.0608 \end{array}$	$0.2027_{44}\\0.1983_{42}\\0.1941_{42}$	$\begin{array}{c} 3.247 \\ 3.177 \\ 3.109 \\ 68 \end{array}$	$\begin{array}{r} 4.933_{110} \\ 5.04_{11} \\ 5.15_{12} \end{array}$	${ \begin{smallmatrix} 0.3080 \\ 0.314869 \\ 0.321771 \end{smallmatrix} }$	352.4 354.2 356
181 182 183	$ \begin{array}{r} 46.5 \\ 46.5 \\ 46.6 \end{array} $	83.7 83.8 83.8	$\begin{array}{c} 0.5133 \\ 0.5156 \\ 0.5178 \end{array}$	$\begin{array}{r} 1.0567 \\ 1.0525 \\ 1.0484 \end{array}$	${0.1899\atop 0.185740\\ 0.181739}$	$ \begin{array}{r} 3.041 \\ 2.974 \\ 2.911 \\ 62 \end{array} $	$5.27\\5.38_{12}\\5.50_{12}\\12$	${ \begin{smallmatrix} 0.3288 \\ 0.3362 \\ 73 \\ 0.3435 \\ 75 \end{smallmatrix} }$	357.8 359.6 361.4
184 185 186	$\begin{array}{c} 46.6 \\ 46.7 \\ 46.7 \end{array}$	83.9 84.0 84.1	$\begin{array}{c} 0.5201 \\ 0.5224 \\ 0.5246 \end{array}$	$1.0443 \\ 1.0403 \\ 1.0362$	${ \begin{smallmatrix} 0.1778 \\ 0.1740 \\ 38 \\ 0.1702 \\ 36 \end{smallmatrix} }$	$\begin{array}{c} 2.849 \\ 2.787 \\ 2.727 \\ 58 \end{array} \begin{array}{c} 62 \\ 60 \\ 58 \end{array}$	$5.62 \\ 5.7513 \\ 5.88 \\ 12$	$0.3510\\0.358879\\0.366779\\79$	363.2 365 366.8
187 188 189	46.8 46.8 46.9	84.2 84.3 84.3	$\begin{array}{c} 0.5269 \\ 0.5291 \\ 0.5314 \end{array}$	$\begin{array}{c} 1.0321 \\ 1.0280 \\ 1.0240 \end{array}$	${\begin{array}{c}0.1666\\0.163234\\0.1598_{33}^{34}\end{array}}$	$\begin{array}{r} 2.669 \\ 2.614 \\ 5.560 \\ 53 \end{array}$	$\begin{smallmatrix} 6.00 \\ 6.1313 \\ 6.2613 \\ 13 \end{smallmatrix}$	$\begin{array}{c} 0.3746_{80} \\ 0.3826_{80} \\ 0.3906_{83} \end{array}$	368.6 370.4 372.2
190	46.9	84.4	0.5336	1.0200	0.156532	2.507 51	6.3913	0.398983	374

SATURATED STEAM - TABLE III.

Centi-	 	PRESSURE.	HEAT THE L	r of Iquid.	HEAT VAPOR	T OF	HEAT E LENT OF NAL W	QUIVA- INTER- ORK.	ند ،
Temperatur Degrees grade.	Millimeters of Mer- cury.	Kilograms per Square Centi- meter. Pounds per Square Inch.	Calories.	B.T.U.	Calories.	B.T.U.	Calories.	B.T.U.	Temperature Degrees Fahrenhei
t	<i>p</i>	<i>p p</i>	<i>q</i>	g	r	<i>r</i>	P	ρ	t
191 192 193	9612 9823211 9823215 10038215 218	$\begin{vmatrix} 13.068_{287} \\ 13.355_{292} \\ 13.647_{297} \\ 194.11_{42} \end{vmatrix}$	$\begin{array}{c}193.3\\194.4\\2&195.4\end{array}$	347.9 349.8 351.7	471.5 470.6 469.8	848.7 847.1 845.6	424.5 423.6 422.8	764.2 762.5 761.0	375.8 377.6 379.4
194 195 196	${}^{10256}_{10479}{}^{223}_{226}_{10705}{}^{226}_{229}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c}1 & 196.4 \\ 1 & 197.5 \\ 7 & 198.5 \\4\end{array}$	353.5 355.4 357.3	$\begin{array}{r} 468.9 \\ 468.1 \\ 467.2 \end{array}$	$844.1 \\ 842.5 \\ 841.0$	421.9 421.0 420.1	759.4 757.7 756.1	381.2 383 384.8
197 198 199	${}^{10934}_{11168}{}^{234}_{238}_{11406}{}^{238}_{241}$	$\begin{array}{c} 14.866_{318} \\ 15.184_{323} \\ 15.507_{328} \\ 220.56_{46} \end{array}$	$\begin{array}{c c}1 & 199.5\\200.6\\201.6\\7\end{array}$	$359.2 \\ 361.1 \\ 362.9$	466.4 465.6 464.7	839.5 838.0 836.4	419.2 418.4 417.4	754.6 753.0 751.3	386.6 388.4 390.2
200 201 202	${}^{11647}_{11893246}_{11893249}_{12142}_{253}$	$\begin{array}{c} 15.835\\ 16.169334\\ 16.508339\\ 234.8049\\ 234.8049\\ \end{array}$	$\begin{array}{c c} 202.7\\ 203.7\\ 204.7\\ 1\end{array}$	364.8 366.7 368.5	$463.8 \\ 462.9 \\ 462.1$	834.8 833.3 831.8	416.5 415.6 414.8	749.7 748.1 746.6	392 393.8 395.6
203 204 205	${}^{12395}_{12653}{}^{258}_{262}_{12915}{}^{266}_{266}$	$\begin{smallmatrix} 16.852\\ 17.202350\\ 17.558356\\ 249.7551\\ 249.7551\\ \end{smallmatrix}$	$\begin{array}{c c} 8 & 205.8 \\ 206.8 \\ 207.9 \\ \end{array}$	370.4 372.3 374.1	$461.2 \\ 460.3 \\ 459.4$	$830.2 \\ 828.6 \\ 827.0$	413.8 412.9 412.0	744.9 743.3 741.6	397.4 399.2 401
206 207 208	$13181_{13452}_{271}_{13452}_{275}_{13727}_{279}$	$\begin{array}{c} 17.921\\18.289368\\18.63374\\265.4553\\379\end{array} \begin{array}{c} 254.89\\260.1352\\265.4553\\265.4554\end{array}$	$\begin{array}{c c} & 208.9 \\ & 210.0 \\ & 211.0 \\ \end{array}$	376.0 377.9 379.8	458.6 457.7 456.8	825.4 823.8 822.2	411.1 410.2 409.3	740.0 738.3 736.7	402.8 404.6 406.4
209 210 211	$14006_{284}\\14290_{288}\\14578_{293}$	$\begin{array}{c} 19.042_{386}\\ 19.428_{392}\\ 19.820_{398}\\ 281.91_{56}\\ \end{array}$	$\begin{array}{c c}212.0\\213.1\\7\\214.1\end{array}$	381.6 383.5 385.4	$455.9 \\ 455.0 \\ 454.1$	820.6 819.1 817.4	$\begin{array}{r} 408.4 \\ 407.5 \\ 406.6 \end{array}$	$735.1 \\ 733.6 \\ 731.9$	408.2 410 411.8
212 213 214	$\substack{14871\\15168297\\15168302\\15470308}$	$\begin{array}{c} 20.218\\ 20.622404\\ 293.3157\\ 21.033\\ 419\\ 299.16\\ 59\\ \end{array}$	$\begin{array}{c c} 4 & 215.2 \\ 216.2 \\ 217.3 \\ \end{array}$	387.3 389.2 391.1	$\begin{array}{r} 453.2 \\ 452.4 \\ 451.5 \end{array}$	815.8 814.3 812.7	$\begin{array}{r} 405.7 \\ 404.9 \\ 404.0 \end{array}$	730.2 728.7 727.1	413.6 415.4 417.2
215 216 217	$15778_{16090}_{316}_{16406}_{322}$	$\begin{smallmatrix} 21.452\\ 21.876\\ 22.306\\ 437 \end{smallmatrix} \begin{smallmatrix} 305.10\\ 311.14\\ 61\\ 317.26\\ 62 \end{smallmatrix}$	$\begin{array}{c} 4 & 218.3 \\ 2 & 219.3 \\ 2 & 220.4 \end{array}$	392.9 394.8 396.7	$\begin{array}{r} 450.6 \\ 449.6 \\ 448.7 \end{array}$	811.0 809.3 807.7	403.1 402.1 401.2	725.4 723.7 722.1	419 420.8 422.6
218 219 220	16728 ₃₂₇ 17055 ₃₂₇ 17387 ³³²	$\begin{array}{c} 22.743 \\ 23.188 \\ 445 \\ 329.8163 \\ 23.639 \\ 451 \\ 336.24 \end{array}$	$\begin{array}{c c} 221.4 \\ 222.5 \\ 223.5 \end{array}$	398.5 400.4 402.3	447.8 446.9 446.0	806.1 804.5 802.9	400.3 399.4 398.5	720.5 718.9 717.3	424.4 426.2 428

SATURATED STEAM - TABLE III.

.

Jenti-	HE. EQUIN OF E	AT VALENT XTER-	the	on.	Specific	VOLUME.	Di	ENSITY.	ند م
Temperature Degrees (grade,	Calories.	D.L.B Apu	 Entropy of Liquid. 	al - Entropy of Vaporizati	 Cubio Meters per Kilo. 	« Cubic Feet » Per Pound.	Kilos per Cubic Meter.	In Pounds per Cubic Foot.	Temperature Degrees Fahrenhei
								8	
191 192 193	47.0 47.0 47.0	84.5 84.6 84.6	$\begin{array}{c} 0.5358 \\ 0.5381 \\ 0.5403 \end{array}$	1.0160 1.0120 1.0080	${ \begin{smallmatrix} 0.1533 \\ 0.1501 \\ 31 \\ 0.1470 \\ 30 \end{smallmatrix} }$	$2.456_{51}\\2.405_{50}\\2.355_{49}$	$\begin{array}{c} 6.52\\ 6.66\\ 14\\ 6.80\\ 14\\ \end{array}$	$\begin{array}{c} 0.4072\\ 0.415886\\ 0.424688\\ 0.424690\end{array}$	375.8 377.6 379.4
194 195 196	47.0 47.1 47.1	84.7 84.8 84.9	$\begin{array}{c} 0.5426 \\ 0.5448 \\ 0.5470 \end{array}$	1.0040 1.0000 0.9961	$0.1440_{29}\\0.1411_{29}\\0.1382_{28}$	${}^{2.306}_{2.259}{}^{47}_{45}_{2.214}_{45}$	${\begin{array}{r} 6.94\\ 7.0915\\ 7.2314\\ 15\end{array}}$	${ \begin{smallmatrix} 0.4336 \\ 0.4426 \\ 90 \\ 0.4516 \\ 94 \end{smallmatrix} }$	381.2 383 384.8
197 198 199	47.2 47.2 47.3	84.9 85.0 85.1	0.5492 0.5514 0.5536	0.9922 0.9882 0.9843	${ \begin{smallmatrix} 0.1354_{27} \\ 0.1327_{27} \\ 0.1300_{26} \end{smallmatrix} }$	${}^{2.169}_{{}^{43}}_{{}^{2.126}}{}^{43}_{{}^{43}}_{{}^{2.083}}{}^{42}_{{}^{42}}$	$7.38_{15} \\ 7.53_{16} \\ 7.69_{15}^{16}$	$0.4610 \\ 0.470494 \\ 0.480197 \\ 0.480199$	386.6 388.4 390.2
200 201 202	47.3 47.3 47.3	$85.1 \\ 85.2 \\ 85.2 \\ 85.2$	$\begin{array}{c} 0.5558 \\ 0.5580 \\ 0.5602 \end{array}$	0.9804 0.9765 0.9727	${ \begin{smallmatrix} 0.1274 \\ 0.1249 \\ 24 \\ 0.1225 \\ 24 \\ 24 \\ \end{smallmatrix} }$	${}^{2.041}_{2.001}{}^{40}_{39}_{1.962}{}^{39}_{39}$	$7.84_{16} \\ 8.00_{16}^{16} \\ 8.16_{17}^{17}$	${\begin{array}{*{20}c} 0.4900\\ 0.4998\\ 98\\ 0.510\\ 10 \end{array}}$	392 393.8 395.6
203 204 205	47.4 47.4 47.4	85.3 85.3 85.4	$\begin{array}{c} 0.5624 \\ 0.5646 \\ 0.5668 \end{array}$	0.9688 0.9650 0.9611	${ \begin{smallmatrix} 0.1201 \\ 0.1177 \\ 24 \\ 0.1153 \\ 23 \end{smallmatrix} }$	${}^{1.923}_{1.88538}_{1.847_{37}}_{37}$	$\substack{8.33\\8.50}_{17}\\8.67}_{18}$	${ \begin{smallmatrix} 0.520 \\ 0.531 \\ 0.541 \\ 11 \\ 11 \\ \end{smallmatrix} }$	397.4 399.2 401
206 207 208	47.5 47.5 47.5	85.4 85.5 85.5	0.5690 0.5712 0.5733	0.9572 0.9534 0.9496	${}^{0.1130}_{{}^{0.1108}22}_{{}^{0.1108}22}_{{}^{0.1086}21}$	${}^{1.810}_{1.77436}_{1.77435}_{1.739}_{34}_{34}$	$\begin{array}{r} 8.85_{18} \\ 9.03_{18} \\ 9.21_{18} \end{array}$	$\begin{array}{c} 0.552 \\ 0.564 \\ 0.575 \\ 12 \\ 12 \end{array}$	402.8 404.6 406.4
209 210 211	47.5 47.5 47.5	85.5 85.5 85.5	0.5755 0.5777 0.5799	0.9458 0.9420 0.9382	$\begin{array}{c} 0.1065_{21} \\ 0.1044_{20} \\ 0.1024_{20} \\ 20 \end{array}$	${}^{1.705}_{1.67332}_{1.67333}_{1.64032}_{32}$	$9.39_{9.5819}\\9.5819_{9.7719}$	$\begin{array}{c} 0.587 \\ 0.598 \\ 0.610 \\ 12 \\ 12 \end{array}$	408.2 410 411.8
212 213 214	47.5 47.5 47.5	85.6 85.6 85.6	0.5820 0.5842 0.5863	0.9344 0.9307 0.9269	$\begin{array}{c} 0.1004_{20} \\ 0.0984_{19} \\ 0.0965_{18} \end{array}$	${}^{1.608}_{1.57731}_{1.546}_{30}$	$9.96_{20}\\10.16_{20}\\10.36_{20}\\20$	$\begin{array}{c} 0.622 \\ 0.634 \\ 0.647 \\ 13 \\ 13 \end{array}$	413.6 415.4 417.2
215 216 217	47.5 47.5 47.5	85.6 85.6 85.6	0.5885 0.5906 0.5927	0.9232 0.9195 0.9157	$\begin{array}{c} 0.0947_{19} \\ 0.0928_{18} \\ 0.0910_{17} \end{array}$	${}^{1.516}_{1.48628}_{1.45828}_{28}$	${}^{10.56}_{10.78}{}^{22}_{21}_{10.99}{}^{21}_{21}$	$\begin{array}{c} 0.660 \\ 0.673 \\ 0.686 \\ 13 \\ 13 \end{array}$	419 420.8 422.6
218 219 220	47.5 47.5 47.5	85.6 85.6 85.6	0.5948 0.5969 0.5991	0.9120 0.9084 0.9047	$\begin{array}{c} 0.0893_{17} \\ 0.0876_{16} \\ 0.0860_{16} \end{array}$	$\begin{array}{c}1.430\\1.40327\\1.376\end{array}$	$\begin{array}{c}11.20\\11.4121\\11.62^{21}\\11.62\end{array}$	$\begin{array}{c} 0.699 \\ 0.713 \\ 0.727 \\ 14 \\ 0.727 \end{array}$	424.4 426.2 428

PROPERTIES OF STEAM AND OTHER VAPORS.

TABLE IV.

SATURATED VAPOR OF ETHER.

FRENCH UNITS.

Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	Weight, in Kilos, of One Cubic Meter.	Temperature, Degrees Centi . grade.
t	р	q	Н	r	ρ	Apu	θ	. 8	γ	t
0	184.39	0.00	94.00	94.00	86.45	7.55	0.0000	1.278	0.728	0
10	286.83	5.32	98.44	93.12	85.37	7.75	0.01909	0.8440	1.185	10
20	432.78	10.70	102.78	92.08	84.13	7.95	0.03772	0.5741	1.742	20
30	634.80	16.14	107.00	90.86	82.72	8.14	0.05593	0.4013	2.492	30
40	907 04	21 63	111 11	80 48	81 15	8 22	0 07374	0 2877	3 746	40
50	1264.8	27.19	115.11	87.92	79.41	8.51	0.09117	0.2108	4.744	50
60	1725.0	32.80	119.00	86.20	77.53	8.67	0.1083	0.1580	6.329	60
	0004 0	00.40	100 50						0.010	
80	2304.9	38.48	122.78	84.30	75.49	8.81	0.1250	0.1203	8.313	70
90	3898.3	50.00	130 00	80 00	71 03	8 97	0 1576	0 0731	13 68	90
	0000.0	00100	100.00	00.00	**.00	0.01	0.1010	0.0101	10.00	
100	4953.3	55.86	133.44	77.58	68.62	8.96	0.1735	0.0577	17.33	100
110	6214.6	61.77	136.78	75.01	66.13	8.88	0.1891	0.0459	21.79	110
120	1119.2	07.74	140.00	12.20	03.57	8.69	0.2045	0.0364	27.47	120
		1			1	1	1			

TABLE V.

SATURATED VAPOR OF ALCOHOL.

FRENCH UNITS.

Temperature, Degrees Centl- grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	Weight, in Kilos, of One Cubic Meter.	Temperature, Degrees Centi- grade.
t	р	q	Η	r	ρ	A pu	θ	8	γ	t
0	12.70	0.00	236.5	236.50	223.38	13.12	0.0000	32.21	0.03105	0
10	$24.23 \\ 44.46 \\ 78.52$	5.59	244 .4	238 .81	225 .29	13.52	0.01996	17 .39	0.05750	10
20		11.42	252 .0	240 .58	226 .56	14.02	0.04003	9 .847	0.1016	20
30		17.49	258 .0	240 .51	226 .03	14.48	0.06029	5 .753	0.1738	30
40	133.69	23 .71	262.0	238.29	223 .44	14.85	0.08073	3.465	0.2886	40
50	219.90	30 .21	264.0	233.79	218 .59	15.10	0.1014	2.143	0.4666	50
60	350.21	37 .37	265.0	227.63	212 .38	15.25	0.1223	1.359	0.7358	60
70 80 90	541 .15 812 .91 1189 .3	44 .58 52 .11 59 .97	$265.2 \\ 265.2 \\ 266.0$	220.62 213.09 206.03	205.28 197.69 190.54	$15.34 \\ 15.40 \\ 15.49$	0.1435 0.1650 0.1868	0.8855 0.5921 0.4073	1.129 1.689 2.455	70 80 90
100	1697.6	68.18	267.3	199.12	183.54	15.58	0.2090	0.2874	3.479	100
110	2367.6	76.74	269.6	192.86	177.15	15.71	0.2315	0.2083	4.801	110
120	3231.7	85.67	272.5	186.83	170.97	15.86	0.2544	0.1544	6.477	120
130	4323.0	94.98	276.0	181 .02	164.99	$16.03 \\ 16.25 \\ 16.45$	0.2776	0.1170	8.547	130
140	5674.6	104.70	280.5	175 .80	159.55		0.3013	0.0905	11.05	140
150	7318.4	114.82	285.3	170 .48	154.03		0.3254	0.0714	14.01	150

PROPERTIES OF STEAM AND OTHER VAPORS.

TABLE VI.

SATURATED VAPOR OF CHLOROFORM.

FRENCH UNITS.

Temperature, • Degrees Centi- grade.	be Millimeters of Mercury.	Heat of the Liquid.	H Total Heat.	Heat of Vaporization.	Heat equivalent • of Internal Work.	Heat equivalent of External Work.	• Entropy of the Liquid.	 Specific Volume. 	د Weight, in Kilos, of One Cubic Meter.	Temperature, Degrees Centi- grade.
0	59.72	0.00	67.00	67.00	62.45	4.55	0.00000	2.377	0.4207	0
10 20 30	$100.47 \\ 160.47 \\ 247.51$	2 .33 4 .67 7 .02	68 .38 69 .75 71 .12	$\begin{array}{c} 66.04 \\ 65.08 \\ 64.10 \end{array}$	61 .29 60 .14 59 .00	4.75 4.94 5.10	0.00836 0.01646 0.02432	1.475 0.9601 0.6437	$\begin{array}{c} 0.6780\ 1.042\ 1.554 \end{array}$	10 20 30
40 50 60	369 .26 535 .05 755 .44	9.37 11.74 14.12	72 .50 73 .87 75 .25	63.13 62.13 61.13	57 .87 56 .73 55 .60	5.26 5.40 5.53	0.03196 0.03940 0.04664	0.4449 0.3155 0.2291	$2.248 \\ 3.170 \\ 4.356$	40 50 60
70 80 90	1042.1 1407.6 1865.2	16 .51 18 .91 21 .32	76.62 78.00 79.37	60 .11 59 .09 58 .05	$54.45 \\ 53.31 \\ 52.16$	5.66 5.78 5.89	0.05369 0.06057 0.06729	0.1700 0.1286 0.0991	5.88 7.78 10.09	70 80 90
100 110 120	2428.5 3111.0 3925.7	$23.74 \\ 26.17 \\ 28.61$	80.75 82.12 83.50	57 .01 55 .95 54 .89	51.01 49.84 48.67	6.00 6.11 6.22	0.07386 0.08027 0.08655	0.0777 0.0618 0.0500	$12.87 \\ 16.18 \\ 20.00$	100 110 120
130 140 150	4885.1 6000.2 7280.6	31 .06 33 .52 35 .99	84.87 86.25 87.62	53.81 52.73 51.63	.47.48 46.30 45.10	$\begin{array}{c} 6.33 \\ 6.43 \\ 6.53 \end{array}$	0.09270 0.09872 0.10462	0.0410 0.0340 0.0286	24.39 29.4 35.0	130 140 150
160	8734.2	38.47	89.00	50.53	43.90	6.63	0.11041	0.0243	41.2	160

PROPERTIES OF STEAM AND OTHER VAPORS.

TABLE VII.

SATURATED VAPOR OF CARBON BISULPHIDE.

FRENCH UNITS.

Temperature, Degrees Centl- grade.	Pressure, Millimeters of Mercury.	A Heat of the Liquid.	H Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	^a Specific Volume.	Weight, in Kilos, of one Cubic Meter.	Temperature, Degrees Centi- grade.
0	127.91	0.00	90.00	90.00	82.76	7.24	0.00000	1.766	0.5662	0
10	198.46	2.36	91.42	89.06	81 .58	7.48	0.00847	1.177	0.8496	10
20	298.03	4.74	92.76	88.02	80 .31	7.71	0.01670	0.8071	1.239	20
30	434.62	7.13	94.01	86.88	78 .97	7.91	0.02472	0.5684	1.759	30
40	617.53	9.54	95.18	85.64	77.54	8.10	0.03252	0.4098	2.440	40
50	857.07	11.96	96.27	84.31	76.04	8.27	0.04013	0.3017	3.315	50
60	1164.5	14.41	97.28	82.87	74.45	8.42	0.04756	0.2264	4.417	60
70	1552.1	16.86	98.20	81 .34	72.78	8.56	0.05482	0.1726	5.794	70
80	2032.5	19.34	99.04	79 .70	71.03	8.67	0.06192	0.1338	7.473	80
90	2619.1	21.83	99.80	77 .97	69.20	8.77	0.06886	0.1052	9.51	90
100	3325.2	24.34	100.48	76.14	67 .29	8.85	0.07566	0.0837	11.95	100
110	4164.1	26.86	101.07	74.21	65 .31	8.90	0.08233	0.0674	14.84	110
120	5148.8	29.40	101.58	72.18	63 .24	8.94	0.08886	0.0549	18.21	120
130	6291.6	31.96	102.01	70.05	61.09	8.96	0.09527	0.0452	22.12	130
140	7604.0	34.53	102.36	67.83	58.88	8.95	0.10157	0.0375	26.7	140
150	9095.9	37.12	102.62	65.50	56.58	8.92	0.10775	0.0314	31.8	150

TABLE VIII.

SATURATED VAPOR OF CARBON TETRACHLORIDE.

FRENCH UNITS.

Temperature, Degrees Centi- grade.	Pressure, & Millimeters of Mercury.	Heat of the Liquid.	H Total Heat.	4 Heat of Vaporization.	Heat equivalent ه of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	« Specific Volume.	للا المالية المالية المالية والمالية المالية المالية المالية المالية المالية المالية المالية المالية المالية ال المالية المالية ا المالية المالية ا	Temperature, Degrees Centi- grade.
			<u> </u>							
0	32.95	0.00	52.00	52.00	48.54	3.46	0.00000	3.272	0.3056	0
10	55.97	1.99	53.44	51.45	47.85	3.60	0.00714	2.005	0.4987	10
30	90.99 142.27	3.99 6.02	54.80 56.23	50.87	47.13	3.74	0.01409	0.8510	0.7794	30
40	214 81	8.06	57 58	49 52	45 51	4 01	0 02749	0 5831	1 715	40
50	314.38	10.12	58.88	48.76	44.62	4.14	0.03396	0.4109	2.434	50
60	447.43	12.20	60.16	47.96	43.69	4.25	0.04028	0.2969	3.368	60
70	621.15	14.30	61.40	47.10	42.75	4.35	0.04648	0.2192	4.562	70
90	843.29 1122.3	16.42	62.60 63.77	46.18	41.74 40.50	4.44	0.04255	0.1263	6.061 7.92	80 90
100	1467 1	20 70	64 00	11 20	30 62	1 58	0 06/33	0 0080	10.20	100
110	1887.4	22.87	66.01	43.14	38.52	4.62	0.07006	0.0770	12.99	110
120	2393.7	25.06	67.07	42.01	37.36	4.65	0.07569	0.0611	16.37	120
130	2996.9	27.27	68.10	40.83	36.18	4.65	0.08122	0.0490	20.41	130
140	3709.0 4543.1	29.49	69.10 70.07	39.61	34.95	4.63	0.08666	0.0395	25.3 31.2	140
160	5513.1	34.00	71.00	37.00	32.47	4.53	0.09729	0.0262	38.2	160

PROPERTIES OF STEAM AND OTHER VAPORS.

TABLE IX.

SATURATED VAPOR OF ACETON.

FRENCH UNITS.

	Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of . the Liquid.	Specific Volume.	Weight, in Kilos, of One Cubic Meter,	Temperature, Degrees Centi- grade.
	t	P	q	H	r	ρ	Apu	θ	8	Ŷ	t
-	0	63.33	0.00	140.50	140.50	131.82	8.68	0.00000	4.275	0.2339	0
	10 20 30	$110.32 \\ 180.08 \\ 280.05$	5.10 10.29 15.55	144 .11 147 .62 151 .03	139 .01 137 .33 135 .48	129 .51 127 .16 124 .83	9.50 10.17 10.65	0.01832 0.03627 0.05389	2.686 1.758 1.187	0.3723 0.5688 0.8425	10 20 30
	40 50 60	419 .35 608 .81 860 .96	20.89 26.31 31.81	154.33 157.53 160.63	133 .44 131 .22 128 .82	121 .39 119 .86 117 .22	11.05 11.36 11.60	0.07119 0.08820 0.1049	0.8227 0.5830 0.4215	$\begin{array}{c} 1 \ .215 \\ 1 \ .715 \\ 2 \ .372 \end{array}$	40 50 60
	70 80 90	1189 .9 1611 .1 2140 .8	37.39 43.05 48.79	163.62 166.51 169.30	$126.23 \\ 123.46 \\ 120.51$	114.43 111.49 108.41	11 .80 11 .97 12 .10	0.1214 0.1376 0.1536	0.3106 0.2328 0.1773	3.220 4.296 5.640	70 80 90
	100 110 120	2796.2 3594.3 4552.0	$54.61 \\ 60.50 \\ 66.48$	171 .98 174 .56 177 .04	117.37 114.06 110.56	105.17 101.78 98.23	$12.20 \\ 12.28 \\ 12.33$	0.1694 0.1850 0.2004	0.1372 0.1076 0.0856	7.289 9.294 11.68	100 110 120
	130 140	5684.9 7007.6	72.54 78.67	179.42 181.69	106 .88 103 .02	94.53 90.67	12.35 12.35	0.2156 0.2306	0.0689 0.0561	14.51 17.83	130 140

.

TABLE X.

SATURATED VAPOR OF AMMONIA.

ENGLISH UNITS.

Temperature,	Degrees Fah- renheit.	Pressure, Pounds per Square Inch.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	Weight, in pounds, of One Cubic Foot.	Temperature, Degrees Fah- renheit.
	t	р	q	H	<i>r</i> .	Ρ	Apu	θ	8	γ	t
-	- 40 - 35 - 30	9.93 11.53 13.36	-79 -74 -68	519 520 522	598 594 590	550 546 541	48 48 49	$ \begin{array}{r} -0.1737 \\ -0.1607 \\ -0.1482 \end{array} $	26.1 22.6 19.7	0.0383 0.0442 0.0507	-40 -35 -30
	-25 -20 -15	15.40 17.70 20.25	$ -63 \\ -57 \\ -52 $	523 525 526	586 582 578	537 532 528	49 50 50	$ \begin{array}{r} -0.1354 \\ -0.1229 \\ -0.1102 \end{array} $	17.3 15.2 13.3	0.0580 0.0660 0.0750	-25 -20 -15
-	-10 -5 0	$23.10 \\ 26.25 \\ 29.74$	$-46 \\ -41 \\ -35$	528 529 531	574 570 566	524 519 515	50 51 51	$ \begin{array}{r} -0.0982 \\ -0.0859 \\ -0.0738 \end{array} $	11.8 10.5 9.32	0.0848 0.0956 0.108	-10 -5 0
	5 10 15	33 .58 37 .80 42 .43	$-30 \\ -24 \\ -19$	532 534 535	562 558 554	$511 \\ 506 \\ 502$	51 52 52	$\begin{array}{c} -\ 0\ .0619 \\ -\ 0\ .0501 \\ -\ 0\ .0386 \end{array}$	8.31 7.44 6.68	0.120 0.134 0.150	5 10 15
	20 25 30	47 .49 53 .01 59 .01	$-13 \\ -8 \\ -2$	537 538 540	$550 \\ 546 \\ 542$	497 493 489	53 53 53	$ \begin{array}{r} -0.0271 \\ -0.0157 \\ -0.0044 \end{array} $	$\begin{array}{c} 6.02\ 5.43\ 4.92 \end{array}$	0.166 0.184 0.203	20 25 30
	35 40 45	$\begin{array}{c} 65.53\ 72.59\ 80.21 \end{array}$	3 9 14	$541 \\ 543 \\ 544$	538 534 530	484 480 475	54 54 55	0.0067 0.0177 0.0287	4.46 4.06 3.70	0.225 0.247 0.270	35 40 45
	50 55 60	88 .44 97 .30 106 .82	20 25 31	546 547 549	526 522 518	471 467 462	55 55 56	0.0395 0.0502 0.0608	3.38 3.09 2.84	0.296 0.323 0.352	50 55 60
	65 70 75	117 .04 127 .98 139 .67	36 42 47	550 552 553	514 510 506	458 454 449	56 56 57	0.0713 0.0817 0.0921	$2.61 \\ 2.40 \\ 2.22$	0.383 0.416 0.451	65 70 75
	80 85 90	152.15165.47179.64	53 58 64	555 556 558	502 498 494	445 441 436	57 57 58	0.1023 0.1124 0.1224	$2.05 \\ 1.90 \\ 1.76$	0.488 0.527 0.568	80 85 90
	95 100	194.70 210.70	69 75	559 561	490 486	432 428	58 58	0.1324 0.1423	1.63 1.52	0.612 0.657	95 100

TABLE XI.

SATURATED VAPOR OF SULPHUR DIOXIDE.

ENGLISH UNITS.

Temperature, Degrees Fah- renheit.	Pressure, Pounds per Square Inch.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internai Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	Weight, in pounds, of One Cubic Foot.	Temperature, Degrees Fah- renheit.
t	р	q	H	r	ρ	Apu	θ	8	γ	t
-40 -35 -30	3.14 3.70 4.34	$-29 \\ -27 \\ -25$	166 167 168	195 194 193	182 180 179	13 14 14	$ \begin{array}{r} -0.0632 \\ -0.0584 \\ -0.0539 \end{array} $	23 .0 19 .7 17 .0	0.0434 0.0507 0.0590	- 40 - 35 - 30
-25 -20 -15	5.07 5.90 6.83		168 169 170	191 190 189	177 176 175	14 14 14	$\begin{array}{r} -0.0492 \\ -0.0447 \\ -0.0401 \end{array}$	14.7 12.7 11.1	0.0682 0.0785 0.0901	-25 -20 -15
-10 -5 0	7.88 9.05 10.35	$-17 \\ -15 \\ -13$	170 171 172	187 186 185	173 172 170	14 14 15	$\begin{array}{r} -0.0357 \\ -0.0312 \\ -0.0268 \end{array}$	9.73 8.56 7.54	0.103 0.117 0.133	-10 -5 0
5	11 .81	$-11 \\ -9 \\ -7$	172	183	168	15	-0.0225	6 .67	0.450	5
10	13 .41		173	182	167	15	-0.0182	5 .93	0.169	10
15	15 .19		174	181	166	15	-0.0140	5 .29	0.189	15
20 25 30	17.15 19.30 21.66	$-5 \\ -3 \\ -1$	174 175 176	179 178 177	164 163 162	15 15 15	$ \begin{array}{r} -0.0098 \\ -0.0057 \\ -0.0016 \end{array} $	4.72 4.23 3.81	0.212 0.236 0.263	20 25 30
35	24.24	1	176	175	160	15	0.0024	3 .43	0.291	35
40	27.06	3	177	174	158	16	0.0064	3 .10	0.322	40
45	30.12	5	177	172	156	16	0.0104	2 .81	0.356	45
50	33.45	7	178	171	155	16	0.0144	2.58	0.390	50
55	37.07	9	179	170	154	16	0.0182	2.32	0.430	55
60	40.98	11	179	168	152	16	0.0221	2.11	0.473	60
65	45.20	13	180	167	151	16	0.0259	1.94	0.516	65
70	49.75	15	181	166	150	16	0.0297	1.78	0.563	70
75	54.64	17	181	164	148	16	0.0334	1.63	0.614	75
80	59.90	19	182	163	146	17	$\begin{array}{c} 0.0372\\ 0.0409\\ 0.0445 \end{array}$	1 .50	0.668	80
85	65.54	21	183	162	145	17		1 .38	0.725	85
90	71.57	23	183	160	143	17		1 .27	0.786	90
95	78 .02	25	184	159	142	17	0.0482	1.18	0.849	95
100	84 .90	27	185	158	141	17	0.0518	1.09	0.917	100

PROPERTIES OF STEAM AND OTHER VAPORS.

TABLE XII.

SPECIFIC GRAVITY AND SPECIFIC VOLUME OF LIQUIDS.

Name of Liquid.	Specific Gravity, compared with Water at 4° C.	Specific Volume. Cubic Meters per Kilo.
$\begin{array}{c} Alcohol, C_2H_6O \ \ldots \ \ldots \ \ldots \ c \\ Ether, C_4H_{10}O \ \ldots \ \ldots \ \ldots \ c \\ Chloroform \ \ldots \ \ldots \ \ldots \ c \\ Carbon bisulphide, CS_2 \ \ldots \ \ldots \ c \\ Carbon tetrachloride, CCl_4 \ \ldots \ c \\ Aceton, C_3H_6O \ \ldots \ \ldots \ \ldots \ s \\ Sulphur Dioxide, SO_2 \ \ldots \ \ldots \ s \\ Ammonia, NH_3 \ \ldots \ \ldots \ \ldots \ \ldots \ \end{array}$	0.80625 [Mendelejeff, 1869] 0.736 [Kopp, 1860] 1.527 [Thorpe, 1880] 1.2922 [Thorpe, 1880] 1.6320 [Thorpe, 1880] 0.81 [Zander, 1882] 1.4336 [Andréeff, 1859] 0.6364 [Andréeff, 1859]	$\begin{array}{c} 0.001240\\ 0.001358\\ 0.000655\\ 0.000774\\ 0.000613\\ 0.00123\\ 0.0006981\\ 0.001571 \end{array}$

TABLE XIII.

VOLUME OF WATER.

Vol. at 4° C. = 1.

[Rossetti, 1871] and [Hirn, 1867].

Temper- ature.	Volume.	Temper- ature.	Volume.	Temper- ature.	Volume.	Temper- ature.	Volume.
10 20 30 40 50	1 .000253 1 .001744 1 .00425 1 .00770 = 1 .01195	60 70 80 90 100	$\begin{array}{c} 1 \ .01691 \\ 1 \ .02256 \\ 1 \ .02887 \\ 1 \ .03567 \\ 1 \ .04312 \end{array}$	110 120 130 140 150	1.05121.05991.06941.07951.0903	160 170 180 190 200	$1.1018 \\ 1.1139 \\ 1.1268 \\ 1.1403 \\ 1.1544$

TABLE XIV.

CONVERSION TABLE.

INCHES OF MERCURY AND POUNDS PER SQUARE INCH.

		1	2	3	4	5	6	7	8	9
0 1 2	0.00 0.49 0.98	$0.05 \\ 0.54 \\ 1.03$	0.10 0.59 1.08	0.15 0.64 1.13	0.20 0.69 1.18	0.25 0.74 1.23	0.29 0.79 1.28	$0.34 \\ 0.84 \\ 1.33$	0.39 0.88 1.38	$0.44 \\ 0.93 \\ 1.42$
3 4 5	$1.47 \\ 1.96 \\ 2.46$	$1.52 \\ 2.01 \\ 2.51$	1.57 2.06 2.55	$1.62 \\ 2.11 \\ 2.60$	$1.67 \\ 2.16 \\ 2.65$	$1.72 \\ 2.21 \\ 2.70$	$1.77 \\ 2.26 \\ 2.75$	1.82 2.31 2.80	$1.87 \\ 2.36 \\ 2.85$	$1.91 \\ 2.41 \\ 2.90$
6 7 8	$2.95 \\ 3.44 \\ 3.93$	$3.00 \\ 3.49 \\ 3.98$	$3.05 \\ 3.54 \\ 4.03$	$3.09 \\ 3.59 \\ 4.08$	$3.14 \\ 3.63 \\ 4.13$	3.19 3.68 4.18	3.24 3.73 4.22	$3.29 \\ 3.78 \\ 4.27$	$3.34 \\ 3.83 \\ 4.32$	3.39 3.88 4.37
9 10 11	$\begin{array}{r} 4.42 \\ 4.91 \\ 5.40 \end{array}$	$\begin{array}{r} 4.47 \\ 4.96 \\ 5.45 \end{array}$	$4.52 \\ 5.01 \\ 5.50$	$4.57 \\ 5.06 \\ 5.55$	$\begin{array}{c} 4.62\ 5.11\ 5.60 \end{array}$	$4.67 \\ 5.16 \\ 5.65$	$\begin{array}{r} 4.72 \\ 5.21 \\ 5.70 \end{array}$	$\begin{array}{c} 4.76 \\ 5.26 \\ 5.75 \end{array}$	4.81 5.30 5.80	4.86 5.35 5.85
12 13 14	5:89 6.39 6.88	$5.94 \\ 6.43 \\ 6.93$	$5.99 \\ 6.48 \\ 6.97$	$\begin{array}{c} 6.04 \\ 6.53 \\ 7.02 \end{array}$	$\begin{array}{c} 6.09 \\ 6.58 \\ 7.07 \end{array}$	$6.14 \\ 6.63 \\ 7.12$	$6.19 \\ 6.68 \\ 7.17$	$6.24 \\ 6.73 \\ 7.22$	6.29 6.78 7.27	6.34 -6.83 7.32
15 16 17	7.37 7.86 8.35	$7.42 \\ 7.91 \\ 8.40$	$7.47 \\ 7.96 \\ 8.45$	$7.52 \\ 8.01 \\ 8.50$	$7.56 \\ 8.06 \\ 8.55$	$7.61 \\ 8.10 \\ 8.60$	$7.66 \\ 8.15 \\ 8.64$	$7.71 \\ 8.20 \\ 8.69$	$7.76 \\ 8.25 \\ 8.74$	7.81 8.30 8.79
18 19 20	8.84 9.33 9.82	8.89 9.38 9.87	8.94 9.43 9.92	8.99 9.48 9.97	9.04 9.53 10.02	9.09 9.58 10.07	9.14 9.63 10.12	9.19 9.68 10.17	9.23 9.73 10.22	9.28 9.77 10.27
21 22 23	10.32 1 0 .81 11.30	10.37 10.86 11.35	10.41 10.90 11.40	$10.46 \\ 10.95 \\ 11.44$	10.51 11.00 11.49	$10.56 \\ 11.05 \\ 11.54$	10.61 11.10 11.59	$10.66 \\ 11.15 \\ 11.64$	10.71 11.20 11.69	$10.76 \\ 11.25 \\ 11.74$
24 25 26	$11.79 \\ 12.28 \\ 12.77$	$11.84 \\ 12.33 \\ 12.82$	11.89 12.38 12.87	$11.94 \\ 12.43 \\ 12.92$	11.99 12.48 12.97	$12.03 \\ 12.53 \\ 13.02$	$12.08 \\ 12.57 \\ 13.07$	$12.13 \\ 12.62 \\ 13.11$	$12.18 \\ 12.67 \\ 13.16$	$12.23 \\ 12.72 \\ 13.21$
27 28 29	$13.26 \\ 13.75 \\ 14.24$	$13.31 \\ 13.80 \\ 14.29$	$13.36 \\ 13.85 \\ 14.34$	13.41 13.90 14.39	13.46 13.95 14.44	$13.51 \\ 14.00 \\ 14.49$	$13.56 \\ 14.05 \\ 14.54$	$13.61 \\ 14.10 \\ 14.59$	$13.66 \\ 14.15 \\ 14.64$	$13.70 \\ 14.20 \\ 14.69$
30	14.74	14.78	14.83	14.88	14.93	14.98	15.03	15.08	15.13	15.18

PROPERTIES OF STEAM AND OTHER VAPORS.

TABLE XV.

CORRECTIVE FACTORS FOR SUPERHEATED STEAM.

Values of the factor $\frac{150,300,000}{T^{s}} - 0.0833$.

Tem	perature.	Value. of	Ten	perature.	Value. of	Tem	perature.	Value of
Fahr.	Abs.	Factor.	Fahr.	Abs.	Factor.	Fahr.	Abs.	Factor.
200 205 210	$\begin{array}{c} 659.5 \\ 664.5 \\ 669.5 \end{array}$	$\begin{array}{c} 0.441 \\ 0.429 \\ 0.417 \end{array}$	335 340 345	794.5 799.5 804.5	0.216 0.211 0.205	470 475 480	929 .5 934 .5 939 .5	0.104 0.101 0.098
215	674.5	0.405	350	809.5	0.200	485	944 .5	0.095
220	679.5	0.395	355	814.5	0.195	490	949 .5	0.092
225	684.5	0.385	360	819.5	0.190	495	954 .5	0.090
230	689.5	$\begin{array}{c} 0.375\ 0.365\ 0.356 \end{array}$	365	824.5	0.185	500	959.5	0.087
235	694.5		370	829.5	0.180	505	964.5	0.084
240	699.5		375	834.5	0.175	510	969.5	0.082
245	704.5	0.347	380	839.5	0.171	515	974.5	0.079
250	709.5	0.338	385	844.5	0.166	520	979.5	0.077
255	714.5	0.329	390	849.5	0.162	525	984.5	0.074
260	719.5	0.320	395	$854.5 \\ 859.5 \\ 864.5$	0.158	530	989.5	0.072
265	724.5	0.312	400		0.153	535	994.5	0.070
270	729.5	0.304	405		0.149	540	999.5	0.067
275	734.5	0.296	410	869.5	0.145	545	1004.5	0.065
280	739.5	0.288	415	874.5	0.141	550	1009.5	0.063
285	744.5	0.281	420	879.5	0.138	555	1014.5	0.061
290	749.5	0.274	425	884.5	0.134	560	1019.5	0.059
295	754.5	0.267	430	889.5	0.131	565	1024.5	0.057
300	759.5	0.260	435	894.5	0.127	570	1029.5	0.055
305	764.5	0.253	440	899.5	0.123	575	$1034.5 \\ 1039.5 \\ 1044.5$	0.053
310	769.5	0.247	445	904.5	0.120	580		0.051
315	774.5	0.240	450	909.5	0.117	585		0.049
320 325 330	779.5 784.5 789.5	0.234 0.228 0.222	455 460 465	914.5 919.5 924.5	0.113 0.110 0.107	590 595	1049 .5 1054 .5	0.047 0.045

THIS table gives the properties of moist and of superheated steam at each degree of temperature Fahrenheit, and for each hundredth of a unit of entropy.

At the left hand of each page are given the temperatures and the corresponding pressures of saturated steam; the lines across the tables are, therefore, constant pressure lines, and for moist steam are also constant temperature lines.

The table is divided by a broken line which corresponds roughly to the saturation line; properties to the left of that line are for moist steam and to the right are for superheated steam.

The triple-columns are headed with the entropy, and are constant entropy lines; they can be used for solving problems concerning adiabatic operations in a closed cylinder, and similar problems.

At any point in the table, determined by the entropy and the pressure (or the corresponding temperature of saturated steam), there are given three properties: —

(1) *The quality*, which for moist steam is the proportion of a pound that is steam, and for superheated steam is the number of degrees of superheating.

(2) The heat contents, or the number of thermal units required to change a pound of water at freezing into steam at the given pressure and with the given quality.

(3) The specific volume in cubic feet per pound.

For examples, solved by aid of the table, see page 32.

e, ahr.	e		1.52			1.53			1.54			1.55	
Temperatur Degrees F	Pressure, Pc per Squar Inch.	Quality.	Heat Con- tents.	Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
420 419 418	$308.5 \\ 305.1 \\ 301.8$	$10.7 \\ 9.7 \\ 8.6$	$\begin{array}{c} 1212.5 \\ 1211.5 \\ 1210.5 \\ 1. \end{array}$	535 548 562	$23.1 \\ 22.0 \\ 21.0$	$1221.2 \\ 1220.3 \\ 1219.3$	$1.569 \\ 1.584 \\ 1.599$	$36.5 \\ 35.4 \\ 34.3$	$1230.4 \\ 1229.4 \\ 1228.4$	$1.609 \\ 1.622 \\ 1.637$	$50.7 \\ 49.6 \\ 48.4$	$1239.6\\1238.5\\1237.5$	$1.651 \\ 1.665 \\ 1.679$
417 416 415	298.5 295.2 292.0	$7.6 \\ 6.6 \\ 5.5$	$\begin{array}{c} 1209.5 \\ 1208.6 \\ 1207.6 \\ 1 \end{array}$	576 589 603	$19.9 \\ 18.8 \\ 17.7$	$\begin{array}{c} 1218.4 \\ 1217.5 \\ 1216.5 \end{array}$	$1.612 \\ 1.626 \\ 1.640$	$33.1 \\ 32.0 \\ 30.8$	$1227.4\\1226.4\\1225.4$	$1.652 \\ 1.667 \\ 1.681$	$47.2 \\ 45.9 \\ 44.7$	$1236.5 \\ 1235.5 \\ 1234.5$	$1.694 \\ 1.709 \\ 1.723$
414 413 412	288.9 285.7 282.5	$4.5 \\ 3.4 \\ 2.4$	$1206.61.\\1205.61.\\1204.71.$	617 632 645	$16.6 \\ 15.4 \\ 14.3$	$1215.5 \\ 1214.4 \\ 1213.4$	$1.655 \\ 1.670 \\ 1.685$	$29.7 \\ 28.5 \\ 27.3$	$1224.4\\1223.4\\1222.4$	$1.696 \\ 1.711 \\ 1.724$	$43.5 \\ 42.3 \\ 41.2$	$1233.5 \\ 1232.5 \\ 1231.5$	$1.738 \\ 1.753 \\ 1.768$
411 410 409	279.4 276.3 273.3	$ \begin{array}{r} 1.3 \\ 0.3 \\ 9994 \end{array} $	$\begin{array}{c} 1203.8 \\ 1202.9 \\ 1. \\ 1201.9 \\ 1. \\ \end{array}$	660 674 690	$13.2 \\ 12.2 \\ 11.1$	$1212.4 \\ 1211.5 \\ 1210.5$	$1.700 \\ 1.715 \\ 1.730$	$26.2 \\ 25.1 \\ 23.9$	1221.51220.51219.5	$1.740 \\ 1.754 \\ 1.770$	$ \begin{array}{r} 40.0 \\ 38.8 \\ 37.6 \end{array} $	$1230.5 \\ 1229.5 \\ 1228.4$	$1.783 \\ 1.799 \\ 1.814$
4C3 407 406	270.3 267.3 264.3	9984 9974 9966	$\begin{array}{c} 1201.0 \\ 1200.0 \\ 1199.2 \\ 1 \end{array}$	706 723 741	$10.0 \\ 9.0 \\ 7.9$	$1209.6\\1208.7\\1207.7$	$1.745 \\ 1.760 \\ 1.776 \\ 1.776$	$22.7 \\ 21.6 \\ 20.5$	$1218.5 \\ 1217.5 \\ 1216.5$	$1.786 \\ 1.802 \\ 1.819$	$36.4 \\ 35.1 \\ 33.9$	$1227.4 \\ 1226.4 \\ 1225.4$	$1.830 \\ 1.845 \\ 1.861$
405 404 403	$261.3 \\ 258.4 \\ 255.5$	9956 9947 9937	$1198.21.\\1197.31.\\1196.31.$	759 777 795	$6.8 \\ 5.7 \\ 4.6$	$1206.7 \\ 1205.7 \\ 1204.7$	$1.791 \\ 1.808 \\ 1.823$	$19.3 \\ 18.2 \\ 17.1$	$1215.5 \\ 1214.6 \\ 1213.7$	$1.834 \\ 1.850 \\ 1.865$	$32.7 \\ 31.5 \\ 30.3$	$1224.4\\1223.4\\1222.4$	$1.877 \\ 1.894 \\ 1.910$
402 401 400	$252.6 \\ 249.7 \\ 246.9$	9928 9918 9907	$1195.31.\\1194.31.\\1193.41.$	813 832 851	$3.5 \\ 2.4 \\ 1.3$	$1203.8 \\ 1202.9 \\ 1202.0$	$1.839 \\ 1.856 \\ 1.873$	$16.0 \\ 14.9 \\ 13.8$	$1212.7\\1211.8\\1210.8$	$1.882 \\ 1.899 \\ 1.915$	$\begin{array}{c} 29.1\\ 27.9\\ 26.7\end{array}$	$1221.4 \\ 1220.4 \\ 1219.4$	$1.927 \\ 1.944 \\ 1.961$
399 398 397	244.1 241.4 238.6	9899 9889 9881	1192.4 1. 1191.5 1. 1190.6 1.	870 889 908	0.2 9993 9984	$\frac{1201.0}{1200.0}\\1199.1$	$\frac{1.890}{1.909}$ $\frac{1.928}{1.928}$	$12.7 \\ 11.5 \\ 10.4$	1209.8 1208.8 1207.9	$\begin{array}{c} 1.931 \\ 1.950 \\ 1.968 \end{array}$	$25.5 \\ 24.3 \\ 23.1$	$1218.4 \\ 1217.4 \\ 1216.4$	$1.978 \\ 1.995 \\ 2.013$
396 395 394	$235.9 \\ 233.2 \\ 230.5$	9871 9862 9852	$\begin{array}{c} 1189.6 \\ 1188.6 \\ 1187.7 \\ 1\end{array}$	928 948 967	9974 9965 9955	$1198.1 \\ 1197.2 \\ 1196.3$	$1.948 \\ 1.968 \\ 1.988$	$9.3 \\ 8.1 \\ 7.0$	$1206.9\\1206.0\\1205.0$	$1.985 \\ 2.002 \\ 2.020$	$21.9 \\ 20.7 \\ 19.5$	$1215.4 \\ 1214.4 \\ 1213.4$	$2.030 \\ 2.049 \\ 2.068$
393 392 391	$227.9 \\ 225.2 \\ 222.6$	9843 9835 9825	$\begin{array}{c} 1186.7 \\ 1185.8 \\ 1184.8 \\ 2. \end{array}$	987 007 028	9945 9937 9927	$1195.3 \\ 1194.3 \\ 1193.3$	$2.008 \\ 2.028 \\ 2.049$	$5.9 \\ 4.8 \\ 3.7$	$1204.0 \\ 1203.0 \\ 1202.0$	$2.039 \\ 2.058 \\ 2.076$	$ \begin{array}{r} 18.3 \\ 17.1 \\ 15.9 \end{array} $	$1212.4\\1211.4\\1210.4$	$2.087 \\ 2.105 \\ 2.124$
390 389 388	$220.1 \\ 217.5 \\ 215.0$	9816 9806 9798	$1183.9 2. \\1182.9 2. \\1181.9 2.$	049 071 093	9917 9907 9899	$1192.3 \\ 1191.4 \\ 1190.4$	$2.071 \\ 2.092 \\ 2.114$	$\begin{array}{r} 2.6\\ 1.5\\ 0.3\end{array}$	$1201.0 \\ 1200.0 \\ 1198.9$	$2.095 \\ 2.115 \\ 2.135$	$14.7 \\ 13.5 \\ 12.3$	$^{1209.3}_{1208.3}_{1207.3}$	$2.144 \\ 2.163 \\ 2.183$
387 386 385	$212.5 \\ 210.0 \\ 207.5$	9788 9779 9769	$\begin{array}{c} 1180.9 \\ 2. \\ 1179.9 \\ 2. \\ 1179.0 \\ 2. \end{array}$	114 136 158	9889 9879 9870	$\frac{1189.4}{1188.4}\\1187.4$	$2.136 \\ 2.158 \\ 2.180$	9990 9980 9970	$\begin{array}{c} 1197.8 \\ 1196.8 \\ 1195.8 \end{array}$	$2.158 \\ 2.180 \\ 2.202$	$11.1 \\ 9.9 \\ 8.7$	$1206.3 \\ 1205.3 \\ 1204.3$	$2.203 \\ 2.223 \\ 2.244$
384 383 382	$205.1 \\ 202.6 \\ 200.3$	9761 9752 9743	$\begin{array}{c} 1178.0 \\ 2. \\ 1177.1 \\ 2. \\ 1176.1 \\ 2. \end{array}$	181 203 226	9861 9852 9843	$1186.5 \\ 1185.5 \\ 1184.4$	$2.203 \\ 2.226 \\ 2.249$	$9962 \\ 9952 \\ 9943$	$1194.8 \\ 1193.9 \\ 1192.9$	$2.225 \\ 2.248 \\ 2.272$	$7.5 \\ 6.3 \\ 5.1$	$1203.3 \\ 1202.3 \\ 1201.3$	$2.265 \\ 2.286 \\ 2.308$
381 380 379	$197.9 \\ 195.5 \\ 193.2$	9734 9724 9716	$\begin{array}{c} 1175.1 \\ 2.1 \\ 1174.2 \\ 1173.2 \\ 2.1 \end{array}$	251 274 299	9833 9823 9815	$1183.5 \\ 1182.6 \\ 1181.6$	$2.274 \\ 2.298 \\ 2.322$	9933 9923 9914	$1191.9\\1190.9\\1190.0$	$2.297 \\ 2.321 \\ 2.346$	$3.9 \\ 2.7 \\ 1.5$	$\begin{array}{c} 1200.3 \\ 1199.3 \\ 1198.3 \end{array}$	$2.329 \\ 2.351 \\ 2.373$
378 377 376	190.9 188.6 186.3	9705 9696 9687	$\begin{array}{c} 1172.2 \\ 2.1 \\ 1171.2 \\ 1170.2 \\ 2.1 \end{array}$	323 348 374	9804 9795 9786	1180.6 1179.6 1178.6	$2.347 \\ 2.372 \\ 2.397$	9903 9893 9884	1189.0 1188.0 1187.0	$2.371 \\ 2.396 \\ 2.422 $	0.3 9992 9983	$\frac{1197.3}{1196.3}\\1195.3$	2.394 2.420 2.446
375 374 373	184.1 181.9 179.7	9679 9671 9661	$\begin{array}{c} 1169.2 \\ 1168.3 \\ 1167.3 \\ 2.4 \end{array}$	399 426 451	9777 9769 9759	$1177.5 \\ 1176.5 \\ 1175.5$	$2.423 \\ 2.449 \\ 2.475$	9876 9867 9857	1185.'9 1184.9 1183.9	$2.447 \\ 2.474 \\ 2.500$	$9974 \\ 9965 \\ 9955$	$1194.2 \\ 1193.2 \\ 1192.2$	$2.472 \\ 2.498 \\ 2.524$

es, ahr.	e.		1.56			1.57			1.58			1.59	. 1
Temperatur Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
420 419 418	308.5 305.1 301.8	$\begin{array}{c} 66.1 \\ 64.9 \\ 63.6 \end{array}$	1248.811247.711246.71	1.692 1.705 1.720		$1258.3 \\ 1257.2 \\ 1256.2$	$1.739 \\ 1.753 \\ 1.768$	$100.5 \\ 99.0 \\ 97.5$	$1267.8 \\ 1266.7 \\ 1265.6$	$1.784 \\ 1.799 \\ 1.814$	$118.9 \\ 117.4 \\ 115.9$	1277.7 1276.6 1275.6	$1.830 \\ 1.845 \\ 1.861$
417 416 415	298.5 295.2 292.0	${62.3 \atop 61.0 \atop 59.7}$	$\begin{array}{c} 1245.6\\ 1244.6\\ 1243.5\end{array}$	$1.735 \\ 1.750 \\ 1.765 \\ 1.765$	78.7 77.3 76.0	$1255.1 \\ 1254.1 \\ 1253.1$	$1.783 \\ 1.799 \\ 1.814$	$96.0 \\ 94.6 \\ 93.1$	1264.5 1263.4 1262.3	$\substack{1.829\\1.844\\1.859}$	$114.4 \\ 112.9 \\ 111.4$	$1274.5 \\ 1273.5 \\ 1272.4$	$1.877 \\ 1.893 \\ 1.909$
414 413 412	$288.9 \\ 285.7 \\ 282.5$	$58.4 \\ 57.1 \\ 55.9$	$\begin{array}{c} 1242.5\\ 1241.5\\ 1240.5\end{array}$	1.781 1.796 1.812	74.7 73.3 72.0	$1252.0\\1251.0\\1250.0$	$1.829 \\ 1.844 \\ 1.859$	91.7 90.3 88.9	$1261.3 \\ 1260.3 \\ 1259.3$	$1.875 \\ 1.890 \\ 1.906$	$109.9\\108.3\\106.8$	$1271.3 \\ 1270.2 \\ 1269.1$	$\begin{array}{c} 1.926 \\ 1.942 \\ 1.958 \end{array}$
411 410 409	$279.4 \\ 276.3 \\ 273.3$	$54.6 \\ 53.3 \\ 52.1$	$\begin{array}{c} 1239.5 \\ 1238.4 \\ 1237.4 \end{array}$	$1.827 \\ 1.843 \\ 1.858$	$70.7 \\ 69.4 \\ 68.0$	$1248.9\\1247.9\\1246.9$	$1.875 \\ 1.891 \\ 1.906$	87.4 86.0 84.6	$\begin{array}{r} 1258.2 \\ 1257.2 \\ 1256.1 \end{array}$	$\begin{array}{r} 1.922 \\ 1.939 \\ 1.954 \end{array}$	$105.3 \\ 103.9 \\ 102.4$	$1268.1 \\ 1267.1 \\ 1266.0$	$1.975 \\ 1.992 \\ 2.009$
408 407 406	270.3 267.3 264.3	$50.8 \\ 49.5 \\ 48.3$	1236.411235.411234.41	1.874 1.891 1.907	$ \begin{array}{r} 66.6 \\ 65.3 \\ 64.0 \end{array} $	$1245.8\\1244.8\\1243.8$	$1.923 \\ 1.940 \\ 1.956$		$1255.1 \\ 1254.1 \\ 1253.1$	$1.971 \\ 1.988 \\ 2.003$	$100.9 \\ 99.4 \\ 97.9$	$1264.9\\1263.8\\1262.7$	$2.025 \\ 2.043 \\ 2.060$
405 404 403	$261.3 \\ 258.4 \\ 255.5$	$46.9 \\ 45.6 \\ 44.4$	$\begin{array}{c} 1233.4\\ 1232.3\\ 1231.3\end{array}$	1.924 1.940 1.957	$\begin{array}{c} 62.6 \\ 61.3 \\ 59.9 \end{array}$	$1242.6\\1241.5\\1240.4$	$1.972 \\ 1.989 \\ 2.006$	$78.9 \\ 77.5 \\ 76.0$	$1252.1 \\ 1250.9 \\ 1249.7$	$2.021 \\ 2.039 \\ 2.056$	$96.4 \\ 94.9 \\ 93.4$	$1261.6 \\ 1260.5 \\ 1259.4$	$2.078 \\ 2.095 \\ 2.113$
402 401 400	$252.6 \\ 249.7 \\ 246.9$	43.1 41.8 40.6	$1230.31\\1229.31\\1228.32$	$1.974 \\ 1.991 \\ 2.009$	$58.5 \\ 57.1 \\ 55.8$	$1239.4\\1238.3\\1237.3$	$2.023 \\ 2.040 \\ 2.058$	$74.5 \\ 73.0 \\ 71.6$	$1248.6 \\ 1247.5 \\ 1246.4$	$2.074 \\ 2.093 \\ 2.110$	91.9 90.4 88.9	$1258.4 \\ 1257.3 \\ 1256.2$	$2.131 \\ 2.150 \\ 2.168$
399 398 397	$244.1 \\ 241.4 \\ 238.6$	$39.3 \\ 38.0 \\ 36.7$	$\begin{array}{c} 1227.2\\ 1226.2\\ 1225.1\end{array}$	$2.027 \\ 2.045 \\ 2.064$	$\begin{array}{c} 54.5\\53.1\\51.8\end{array}$	$1236.3 \\ 1235.2 \\ 1234.2$	$2.077 \\ 2.095 \\ 2.113$	70.3 68.9 67.5	$1245.3 \\ 1244.3 \\ 1243.3$	$2.129 \\ 2.148 \\ 2.167$	$87.5 \\ 86.0 \\ 84.5$	$1255.2 \\ 1254.1 \\ 1253.0$	$2.187 \\ 2.205 \\ 2.224$
396 395 394	$235.9 \\ 233.2 \\ 230.5$	$35.5 \\ 34.3 \\ 33.0$	$\begin{array}{c} 1224.1\\ 1223.1\\ 1222.1 \end{array}$	$2.082 \\ 2.101 \\ 2.120$	$50.4 \\ 49.1 \\ 47.8$	$1233.2 \\ 1232.1 \\ 1231.0$	$2.131 \\ 2.150 \\ 2.169$	$ \begin{array}{r} 66.0 \\ 64.7 \\ 63.3 \end{array} $	$1242.3\\1241.2\\1240.2$	$2.186 \\ 2.205 \\ 2.224$	$83.0 \\ 81.5 \\ 80.1$	$1251.9\\1250.8\\1249.7$	$2.243 \\ 2.263 \\ 2.282$
393 392 391	$227.9 \\ 225.2 \\ 222.6$	$31.8 \\ 30.6 \\ 29.3$	$\begin{array}{c} 1221.1\\ 1220.1\\ 1219.0 \end{array}$	$2.138 \\ 2.157 \\ 2.178 \\ 2.178 \\ $	$46.4 \\ 45.0 \\ 43.7$	$1230.0\\1229.0\\1227.9$	$2.188 \\ 2.208 \\ 2.227$	$ \begin{array}{r} 61.9 \\ 60.5 \\ 59.2 \end{array} $	$1239.1 \\ 1238.0 \\ 1237.0$	$2.244 \\ 2.263 \\ 2.283$	78.6 77.1 75.7	$1248.6 \\ 1247.5 \\ 1246.4$	$2.303 \\ 2.323 \\ 2.343$
390 389 388	$220.1 \\ 217.5 \\ 215.0$	$28.0 \\ 26.7 \\ 25.5$	$\begin{array}{c} 1218.0\\ 1217.0\\ 1216.0 \end{array}$	2.198 2.217 2.236	$42.4 \\ 41.1 \\ 39.8$	$1226.9\\1225.9\\1224.8$	2.247 2.268 2.289	$57.9 \\ 56.5 \\ 55.0$	$1235.9\\1234.8\\1233.8$	$2.304 \\ 2.325 \\ 2.346$	$\begin{array}{c} 74.2 \\ 72.7 \\ 71.2 \end{array}$	$1245.3 \\ 1244.2 \\ 1243.1$	$2.363 \\ 2.384 \\ 2.405$
387 386 385	212.5 210.0 207.5	$24.3 \\ 23.0 \\ 21.8$	$\begin{array}{c} 1215.0\\ 1213.9\\ 1212.8 \end{array}$	$2.257 \\ 2.278 \\ 2.299$	$38.4 \\ 37.0 \\ 35.7$	$1223.7 \\ 1222.7 \\ 1221.6$	$2.310 \\ 2.331 \\ 2.352$	$53.6 \\ 52.3 \\ 50.9$	1232.7 1231.6 1230.6	$2.367 \\ 2.389 \\ 2.410$	$ \begin{array}{r} 69.8 \\ 68.3 \\ 66.8 \end{array} $	$1242.0\\1240.9\\1239.8$	2.427 2.449 2.470
384 383 382	205.1 202.6 200.3	$20.5 \\ 19.3 \\ 18.0$	$\begin{array}{c} 1211.8\\ 1210.8\\ 1209.8\end{array}$	$2.320 \\ 2.341 \\ 2.362$	$34.4 \\ 33.0 \\ 31.7$	1220.5 1219.5 1218.4	$2.374 \\ 2.395 \\ 2.418$	49.6 48.1 46.7	1229.61228.51227.4	$2.432 \\ 2.454 \\ 2.476$	$ \begin{array}{r} 65.3 \\ 63.8 \\ 62.3 \end{array} $	$1238.7\\1237.6\\1236.5$	$2.493 \\ 2.516 \\ 2.539$
381 380 379	$197.9 \\ 195.5 \\ 193.2$	$16.8 \\ 15.6 \\ 14.3$	$1208.7 \\ 1207.7 \\ 1206.7 \\ 1206.7 \\ 1206.7 \\ 1206.7 \\ 1206.7 \\ 1000 \\ $	$2.384 \\ 2.406 \\ 2.429$	$30.4 \\ 29.1 \\ 27.8$	1217.4 1216.3 1215.3	2.440 2.463 2.486	$\begin{array}{c} 45.4 \\ 43.9 \\ 42.6 \end{array}$	$1226.4\\1225.3\\1224.2$	$2.500 \\ 2.523 \\ 2.546$	$ \begin{array}{r} 60.8 \\ 59.4 \\ 57.9 \end{array} $	$1235.4 \\ 1234.3 \\ 1233.2$	$2.561 \\ 2.585 \\ 2.609$
378 377 376	190.9 188.6 186.3	$13.0 \\ 11.8 \\ 10.5$	1205.61204.61203.6	$2.452 \\ 2.474 \\ 2.497$	$26.4 \\ 25.1 \\ 23.8$	$1214.2 \\ 1213.1 \\ 1212.1$	2.509 2.533 2.557	41.3 39.9 38.5	$1223.2 \\ 1222.1 \\ 1221.0 \\$	$2.570 \\ 2.594 \\ 2.619$	$56.4 \\ 55.0 \\ 53.5$	$1232.1\\1230.9\\1229.7$	$2.633 \\ 2.658 \\ 2.682$
375 374 373	184.1 181.9 179.7	$9.3 \\ 8.0 \\ 6.8$	$1202.6\\1201.6\\1200.6$	$2.520 \\ 2.544 \\ 2.568$	$22.5 \\ 21.1 \\ 19.8$	$1211.1 \\ 1210.1 \\ 1209.0$	$2.581 \\ 2.605 \\ 2.630$	$37.1 \\ 35.7 \\ 34.3$	$1219.9\\1218.8\\1217.6$	$2.643 \\ 2.668 \\ 2.694$	$52.0 \\ 50.6 \\ 49.1$	$1228.6 \\ 1227.5 \\ 1226.4$	2.707 2.732 2.758

e, ahr.	e		1.52			1.53			1.54			1.55	
Temperatur Degrees F	Pressure, Poper Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
372 371 370	$177.5 \\ 175.3 \\ 173.2$	9653 9644 9635	$ \begin{array}{r} 1166.3 \\ 1165.3 \\ 1164.3 \end{array} $	$2.478 \\ 2.504 \\ 2.531$	9751 9741 9732	1174.6 1173.6 1172.6	$2.502 \\ 2.529 \\ 2.556$	9848 9838 9830	$1182.9\\1181.9\\1180.9$	$2.527 \\ 2.554 \\ 2.581$	9946 9936 9927	1191.2 1190.2 1189.1	$2.552 \\ 2.579 \\ 2.607$
369 368 367	$171.1 \\ 169.0 \\ 166.9$	9626 9617 9608	$^{1163.3}_{1162.3}_{1161.3}$	$2.559 \\ 2.587 \\ 2.615$	9723 9714 9705	$1171.6 \\ 1170.6 \\ 1169.5$	$2.583 \\ 2.612 \\ 2.641$	9820 9811 9801	$1179.9 \\ 1178.9 \\ 1177.8$	$2.609 \\ 2.638 \\ 2.667$	9917 9908 9898	$1188.1 \\ 1187.1 \\ 1186.0$	$2.635 \\ 2.664 \\ 2.693$
366 365 364	$164.8 \\ 162.8 \\ 160.8$	9600 9590 9582	$\begin{array}{c} 1160.3 \\ 1159.3 \\ 1158.3 \end{array}$	$2.645 \\ 2.674 \\ 2.704$	9696 9686 9678	$\frac{1168.6}{1167.6}\\ 1166.5$	$2.670 \\ 2.701 \\ 2.731$	9792 9783 9774	$\frac{1176.8}{1175.8}\\1174.8$	$2.697 \\ 2.726 \\ 2.757$	9889 9879 9870	$1185.0\\1184.0\\1183.0$	$2.723 \\ 2.753 \\ 2.784$
363 362 361	$158.8 \\ 156.8 \\ 154.8$	9572 9564 9556	$^{1157.3}_{1156.3}_{1155.3}$	$2.735 \\ 2.765 \\ 2.796$	9668 9660 9651	$1165.5 \\ 1164.5 \\ 1163.5$	$2.762 \\ 2.793 \\ 2.824$	9764 9755 9746	$\begin{array}{c} 1173.7 \\ 1172.7 \\ 1171.7 \end{array}$	$2.789 \\ 2.819 \\ 2.851$	9860 9851 9841	$\frac{1182.0}{1181.0}\\1179.9$	$2.816 \\ 2.847 \\ 2.879$
360 359 358	$152.9 \\ 151.0 \\ 149.1$	9546 9538 9529	$1154.3 \\ 1153.3 \\ 1152.3$	$2.826 \\ 2.859 \\ 2.891$	9641 9633 9624	$1162.5 \\ 1161.5 \\ 1160.5$	$2.855 \\ 2.887 \\ 2.920$	9736 9728 9719	$1170.7 \\ 1169.7 \\ 1168.6$	$2.883 \\ 2.914 \\ 2.948$	9832 9823 9813	$1178.9 \\ 1177.9 \\ 1176.8$	$2.910 \\ 2.943 \\ 2.976$
357 356 355	$147.2 \\ 145.3 \\ 143.5$	9520 9512 9503	$1151.3 \\ 1150.3 \\ 1149.3$	$2.925 \\ 2.958 \\ 2.992$	9614 9606 9597	$1159.5 \\ 1158.4 \\ 1157.4$	$2.954 \\ 2.987 \\ 3.021$	9709 9700 9692	$1167.6 \\ 1166.6 \\ 1165.6$	$2.982 \\ 3.016 \\ 3.050$	9803 9795 9786	$1175.8 \\ 1174.7 \\ 1173.7$	$3.011 \\ 3.045 \\ 3.080$
354 353 352	$141.6 \\ 139.8 \\ 138.0$	9494 9486 9477	$^{1148.3}_{1147.3}_{1146.2}$	$3.025 \\ 3.059 \\ 3.093$	9588 9579 9571	$1156.4 \\ 1155.4 \\ 1154.3$	$3.055 \\ 3.089 \\ 3.124$	9682 9673 9664	$1164.6 \\ 1163.5 \\ 1162.5$	$3.085 \\ 3.120 \\ 3.154$	$9776 \\ 9767 \\ 9758$	$\frac{1172.7}{1171.7}\\1170.6$	$3.114 \\ 3.149 \\ 3.184$
351 350 349	$136.3 \\ 134.5 \\ 132.8$	9468 9459 9451	$^{1145.2}_{1144.2}_{1143.2}$	$3.127 \\ 3.162 \\ 3.198$	9561 9552 9544	$1153.3 \\ 1152.3 \\ 1151.3$	$3.158 \\ 3.193 \\ 3.230$	$9654 \\ 9645 \\ 9637$	$1161.4 \\ 1160.4 \\ 1159.3$	$3.189 \\ 3.224 \\ 3.261$	9748 9739 9730	$1169.5 \\ 1168.5 \\ 1167.4$	$3.219 \\ 3.254 \\ 3.291$
348 347 346	$131.1 \\ 129.4 \\ 127.7$	9443 9434 9426	$^{1142.2}_{1141.2}_{1140.2}$	$3.235 \\ 3.272 \\ 3.310$	9535 9527 9518	$1150.3 \\ 1149.3 \\ 1148.2$	$3.267 \\ 3.304 \\ 3.342$	9628 9619 9611	$\frac{1158.3}{1157.3}\\1156.2$	3.299 3.336 3.374	9721 9712 9703	$1166.4 \\ 1165.4 \\ 1164.3$	$3.329 \\ 3.367 \\ 3.406$
345 344 343	$126.0 \\ 124.4 \\ 122.7$	9417 9408 9400	$^{1139.1}_{1138.1}_{1137.1}$	$3.348 \\ 3.387 \\ 3.427$	9509 9500 9492	$^{1147.2}_{1146.2}_{1145.1}$	$3.380 \\ 3.420 \\ 3.461$	9601 9592 9583	$1155.2 \\ 1154.2 \\ 1153.1$	$3.413 \\ 3.453 \\ 3.494$	9693 9684 9675	$1163.2 \\ 1162.2 \\ 1161.1$	$3.445 \\ 3.486 \\ 3.527$
342 341 340	$121.1 \\ 119.5 \\ 117.9$	9391 9383 9375	${}^{1136.1}_{1135.0}_{1134.0}$	$3.467 \\ 3.507 \\ 3.548$	9483 9474 9466	$1144.1\\1143.0\\1142.0$	$3.501 \\ 3.542 \\ 3.583$	9574 9566 9557	$1152.1 \\ 1151.0 \\ 1150.0$	$3.535 \\ 3.576 \\ 3.617$	$9666 \\ 9657 \\ 9648$	${}^{1160.1}_{1159.0}_{1158.0}$	$3.569 \\ 3.610 \\ 3.652$
339 338 337	$116.3 \\ 114.8 \\ 113.3$	9366 9357 9349	$1133.0\\1131.9\\1130.9$	$3.591 \\ 3.634 \\ 3.679$	9457 9448 9439	$1140.9\\1139.9\\1138.8$	$3.626 \\ 3.669 \\ 3.714$	9548 9538 9530	$\frac{1148.9}{1147.9}\\1146.8$	$3.661 \\ 3.705 \\ 3.750$	9639 9629 9620	$1156.9\\1155.8\\1154.8$	3.696 3.740 3.786
336 335 334	$111.7 \\ 110.3 \\ 108.8$	9340 9332 9323	$\begin{array}{c} 1129.8 \\ 1128.8 \\ 1127.8 \end{array}$	$3.723 \\ 3.769 \\ 3.816$	9430 9422 9413	$1137.8 \\ 1136.8 \\ 1135.8 \\ 1$	$3.759 \\ 3.805 \\ 3.853$	9521 9512 9503	$1145.7 \\ 1144.7 \\ 1143.7$	$3.795 \\ 3.842 \\ 3.890$	9611 9602 9593	$1153.7 \\ 1152.6 \\ 1151.6$	$3.831 \\ 3.878 \\ 3.926$
333 332 331	$107.3 \\ 105.8 \\ 104.4$	9315 9306 9298	$\begin{array}{c} 1126.7\\ 1125.7\\ 1124.7\end{array}$	$3.863 \\ 3.911 \\ 3.959$	9405 9396 9387	$1134.7 \\ 1133.6 \\ 1132.6$	$3.900 \\ 3.948 \\ 3.997$	9494 9485 9477	$\frac{1142.6}{1141.5}\\1140.5$	$3.937 \\ 3.986 \\ 4.035$	9584 9575 9566	1150.51149.41148.4	$3.975 \\ 4.023 \\ 4.073$
330 329 328	$103.0 \\ 101.6 \\ 100.2$	9291 9282 9274	$\begin{array}{c} 1123.7\\ 1122.6\\ 1121.6 \end{array}$	$\begin{array}{r} 4.007 \\ 4.055 \\ 4.104 \end{array}$	9380 9370 9363	1131.51130.51129.5	$\begin{array}{r} 4.046 \\ 4.094 \\ 4.143 \end{array}$	9469 9459 9451	$1139.4 \\ 1138.4 \\ 1137.4$	$\begin{array}{r} 4.084 \\ 4.133 \\ 4.182 \end{array}$	9558 9548 9540	$\frac{1147.3}{1146.2}\\1145.2$	$\begin{array}{c} 4.122 \\ 4.172 \\ 4.222 \end{array}$
327 326 325	$98.8 \\ 97.5 \\ 96.1$	9265 9257 9248	$1120.5\\1119.5\\1118.4$	$\begin{array}{c} 4.152 \\ 4.201 \\ 4.250 \end{array}$	9354 9345 9337	$1128.4\\1127.3\\1126.3$	$\begin{array}{c} 4.192 \\ 4.241 \\ 4.290 \end{array}$	9442 9434 9425	$1136.3 \\ 1135.2 \\ 1134.1$	$\begin{array}{c} 4.231 \\ 4.281 \\ 4.331 \end{array}$	9531 9522 9513	$1144.1 \\ 1143.0 \\ 1142.0$	4.271 4.321 4.371

ahr.	e		1.56		1.57			1.58			1.59	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
372 371 370	177.5 175.3 173.2	$5.5 \\ 4.2 \\ 3.0$	$\begin{array}{c} 1199.5 \\ 2.592 \\ 1198.5 \\ 2.610 \\ 1197.4 \\ 2.640 \end{array}$	18.5 17.2 15.9	$1207.9\\1206.8\\1205.8$	$2.655 \\ 2.680 \\ 2.706$	$32.9 \\ 31.5 \\ 30.0$	1216.5 1215.4 1214.3	$2.720 \\ 2.746 \\ 2.772$	47.7 46.1 44.7	$1225.3 \\ 1224.1 \\ 1222.9$	$2.783 \\ 2.810 \\ 2.836$
369 368 367	171.1 169.0 166.9	$ \begin{array}{r} 1.7 \\ 0.4 \\ \overline{9994} \end{array} $	$\begin{array}{c} 1196.4 \\ 2.663 \\ 1195.4 \\ 2.690 \\ 1194.3 \\ 2.719 \end{array}$	14.6 13.3 12.0	$1204.7 \\ 1203.7 \\ 1202.7$	$2.732 \\ 2.759 \\ 2.785$	$28.6 \\ 27.3 \\ 25.9$	$1213.2 \\ 1212.2 \\ 1211.1$	$2.798 \\ 2.824 \\ 2.852$	43.3 41.8 40.4	1221.9 1220.8 1219.7	$2.864 \\ 2.891 \\ 2.919$
366 365 364	$164.8 \\ 162.8 \\ 160.8$	9985 9975 9966	$\begin{array}{c} 1193.3 \\ 1192.3 \\ 1192.2 \\ 1191.2 \\ 2.81 \end{array}$	$ \begin{array}{c} 10.7 \\ 9.4 \\ 8.1 \end{array} $	$1201.6\\1200.5\\1199.5$	$2.811 \\ 2.838 \\ 2.865$	$24.5 \\ 23.2 \\ 21.8$	$1210.0\\1209.0\\1207.9$	$2.879 \\ 2.906 \\ 2.935$	$39.0 \\ 37.5 \\ 36.1$	$\begin{array}{r} 1218.6 \\ 1217.5 \\ 1216.4 \end{array}$	$2.946 \\ 2.974 \\ 3.002$
363 362 361	$158.8 \\ 156.8 \\ 154.$	9955 9946 9937	$\begin{array}{c} 1190.2 \\ 2.843 \\ 1189.2 \\ 2.874 \\ 1188.1 \\ 2.900 \end{array}$	6.8 5.5 4.2	$1198.4 \\ 1197.4 \\ 1196.4$	$2.894 \\ 2.920 \\ 2.949$	$20.4 \\ 19.0 \\ 17.6$	$1206.7 \\ 1205.6 \\ 1204.5$	$2.964 \\ 2.993 \\ 3.021$	$34.6 \\ 33.2 \\ 31.8$	$1215.3 \\ 1214.2 \\ 1213.0$	$3.030 \\ 3.060 \\ 3.089$
360 359 358	$152.9\\151.0\\149.1$	9927 9917 9908	$\begin{array}{c} 1187.1 \\ 2.938 \\ 1186.1 \\ 2.97 \\ 1185.0 \\ 3.008 \end{array}$	2.9 1.6 0.4	1195.3 1194.3 1193.3	2.978 3.007 3.037	$16.3 \\ 14.9 \\ 13.6$	$1203.4\\1202.3\\1201.2$	$3.050 \\ 3.081 \\ 3.111$	$30.3 \\ 28.9 \\ 27.4$	$1211.9\\1210.9\\1209.8$	$3.119 \\ 3.148 \\ 3.178$
357 356 355	$147.2 \\ 145.3 \\ 143.5$	9898 9889 9880	1183.9 3.04 1182.9 3.07 1181.9 3.10	9992 9983 9974	1192.2 1191.1 1190.0	$3.069 \\ 3.104 \\ 3.139$	$12.2 \\ 10.9 \\ 9.5$	$1200.2 \\ 1199.1 \\ 1198.1$	$3.141 \\ 3.171 \\ 3.201$	$26.0 \\ 24.6 \\ 23.2$	$1208.7 \\ 1207.6 \\ 1206.5$	$3.209 \\ 3.240 \\ 3.270$
354 353 352	141.6 139.8 138.0	9870 9860 9851	1180.9 3.143 1179.8 3.179 1178.7 3.213	8 9963 9954 9945	$1189.0\\1187.9\\1186.8$	$3.173 \\ 3.209 \\ 3.245$	$8.1 \\ 6.8 \\ 5.4$	1197.0 1196.0 1195.0	$3.232 \\ 3.264 \\ 3.296$	21.8 20.4 19.0	$1205.4\\1204.3\\1203.3$	$3.302 \\ 3.334 \\ 3.367$
351 350 349	$136.3 \\ 134.5 \\ 132.8$	9841 9832 9822	$\begin{array}{c} 1177.6\\ 3.249\\ 1176.6\\ 3.28\\ 1175.5\\ 3.32\end{array}$	99934 99925 9915	1185.71184.71183.6	$3.280 \\ 3.317 \\ 3.354$	$4.0 \\ 2.7 \\ 1.3$	1193.9 1192.8 1191.7	3.328 3.360 3.392	17.5 16.0 14.6	1202.1 1201.0 1199.9	$3.400 \\ 3.433 \\ 3.466$
348 347 346	$131.1 \\ 129.4 \\ 127.7$	9813 9804 9795	$\begin{array}{c} 1174.5 & 3.36 \\ 1173.5 & 3.39 \\ 1172.4 & 3.43 \end{array}$	9906 9897 9887 9887	$1182.6\\1181.6\\1180.5$	$3.393 \\ 3.431 \\ 3.470$	9999 9989 9979	1190.6 1189.6 1188.5	$3.425 \\ 3.463 \\ 3.503$	$13.2 \\ 11.8 \\ 10.4$	$1198.8 \\ 1197.7 \\ 1196.7$	$3.499 \\ 3.534 \\ 3.570$
345 344 343	126.0 124.4 122.7	9785 9776 9766	$\begin{array}{c} 1171.3 & 3.47 \\ 1170.3 & 3.51 \\ 1169.2 & 3.56 \end{array}$	7 9877 8 9868 9858	$1179.4\\1178.3\\1177.2$	$3.510 \\ 3.551 \\ 3.593$	9969 9959 9950	1187.4 1186.3 1185.2	$5.543 \\ 3.584 \\ 3.627$	8.9 7.5 6.0	1195.51194.41193.3	$3.606 \\ 3.641 \\ 3.679$
342 341 340	121.1 119.5 117.9	9757 9748 9739	$\begin{array}{c} 1168.1 \\ 3.60 \\ 1167.1 \\ 3.64 \\ 1166.0 \\ 3.68 \end{array}$	9849 9839 9830	$1176.1 \\ 1175.1 \\ 1174.0$	3.635 3.677 3.720	9940 9931 9921	1184.1 1183.0 1182.0	$3.669 \\ 3.711 \\ 3.754$	4.6 3.2 1.8	1192.2 1191.1 1190.1	$3.716 \\ 3.754 \\ 3.792$
339 338 337	116.3 114.8 113.3	9730 9720 9710	$\begin{array}{c} 1164.9 & 3.729 \\ 1163.8 & 3.779 \\ 1162.7 & 3.829 \end{array}$	9 9820 9 9810 9801	$1172.9\\1171.8\\1170.7$	$3.764 \\ 3.809 \\ 3.856$	9911 9901 9891	1180.9 1179.8 1178.7	3.799 3.845 3.891	0.3 9992 9982	1189.0 1187.8 1186.7	3.832 3.880 3.927
336 335 334	111.7 110.3 108.8	9701 9692 9683	$\begin{array}{c} 1161.6 \\ 3.86 \\ 1160.6 \\ 3.91 \\ 1159.6 \\ 3.96 \end{array}$	5 9791 9782 9773	1169.6 1168.5 1167.5	$3.902 \\ 3.950 \\ 3.999$	9882 9872 9863	1177.61176.51175.4	$3.938 \\ 3.986 \\ 4.036$	9972 9962 9953	1185.6 1184.5 1183.4	$3.974 \\ 4.023 \\ 4.073$
333 332 331	$107.3 \\ 105.8 \\ 104.4$	9674 9664 9655	$\begin{array}{c} 1158.5 \\ 1157.4 \\ 1156.3 \\ 4.11 \end{array}$	2 9763 9754 9745	$1166.4\\1165.3\\1164.2$	$\begin{array}{r} 4.048 \\ 4.098 \\ 4.148 \end{array}$	9853 9843 9834	$1174.3 \\ 1173.2 \\ 1172.1$	$\begin{array}{r} 4.085 \\ 4.135 \\ 4.186 \end{array}$	9943 9933 9923	1182.3 1181.1 1180.0	$\begin{array}{r} 4.122 \\ 4.173 \\ 4.224 \end{array}$
330 329 328	$103.0 \\ 101.6 \\ 100.2$	9646 9637 9629	$\begin{array}{c} 1155.2 \\ 1154.1 \\ 1153.1 \\ 4.26 \end{array}$	9736 9726 9718	1163.1 1162.1 1161.0	$4.198 \\ 4.249 \\ 4.299$	9825 9815 9806	$1171.0\\1170.0\\1168.9$	$\begin{array}{r} 4.237 \\ 4.287 \\ 4.338 \end{array}$	9914 9904 9895	1178.9 1177.8 1176.7	$4.275 \\ 4.326 \\ 4.378$
327 326 325	98.8 97.5 96.1	9620 9610 9601	$\begin{array}{c} 1152.0 \\ 1150.9 \\ 1149.8 \\ 4.41 \end{array}$	1 9708 9699 2 9689	$1159.9\\1158.8\\1157.7$	$ \begin{array}{r} 4.349 \\ 4.400 \\ 4.451 \end{array} $	9797 9787 9777	$1167.8\\1166.6\\1165.5$	$ \begin{array}{r} 4.389 \\ 4.440 \\ 4.492 \end{array} $	9885 9876 9866	1175.6 1174.5 1173.4	$\begin{array}{r} 4.429 \\ 4.481 \\ 4.532 \end{array}$

e, ahr.	e		1.52			1.53			1.54	_		1.55	
Temperatur Degrees F	Pressure, Poper Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific. Volume.
324 323 322	$94.8 \\ 93.5 \\ 92.2$	9239 9231 9223	$1117.3 \\ 1116.3 \\ 1115.2$	$\begin{array}{r} 4.300 \\ 4.352 \\ 4.407 \end{array}$	9327 9319 9311	$1125.2 \\ 1124.1 \\ 1123.1$	$\begin{array}{r} 4.341 \\ 4.394 \\ 4.449 \end{array}$	9415 9407 9398	$1133.0\\1131.9\\1130.9$	$\begin{array}{r} 4.382 \\ 4.435 \\ 4.491 \end{array}$	9503 9495 9486	$1140.8 \\ 1139.8 \\ 1138.7$	4. 4 23 4.477 4.532
321 320 319	$90.9 \\ 89.6 \\ 88.3$	9215 9207 9199	$1114.2\\1113.2\\1112.1$	$4.462 \\ 4.519 \\ 4.576$	9302 9294 9286	$1122.0\\1121.0\\1119.9$	$4.504 \\ 4.562 \\ 4.620$	9389 9382 9373	$^{1129.8}_{1128.8}_{1127.7}$	$\begin{array}{r} 4.546 \\ 4.605 \\ 4.663 \end{array}$	9477 9469 9460	$1137.6\\1136.6\\1135.5$	$\begin{array}{r} 4.589 \\ 4.647 \\ 4.706 \end{array}$
318 317 316	$87.1 \\ 85.9 \\ 84.6$	9190 9182 9173	$1111.1\\1110.0\\1108.9$	$\begin{array}{r} 4.636 \\ 4.695 \\ 4.755 \end{array}$	9277 9269 9260	$^{1118.8}_{1117.8}_{1116.6}$	$\begin{array}{r} 4.679 \\ 4.739 \\ 4.799 \end{array}$	9364 9355 9346	$1126.6 \\ 1125.5 \\ 1124.4$	$\begin{array}{r} 4.723 \\ 4.783 \\ 4.844 \end{array}$	9451 9442 9433	${}^{1134.4}_{1133.3}_{1132.1}$	$\begin{array}{r} 4.767 \\ 4.828 \\ 4.889 \end{array}$
315 314 313	$83.4 \\ 82.3 \\ 81.1$	9166 9157 9149	$^{1107.9}_{1106.8}_{1105.8}$	$\begin{array}{r} 4.817 \\ 4.878 \\ 4.941 \end{array}$	9252 9243 9235	$1115.6 \\ 1114.6 \\ 1113.5$	4.862 4.924 4.987	9338 9330 9321	$1123.4\\1122.3\\1121.2$	$\begin{array}{r} 4.907 \\ 4.970 \\ 5.033 \end{array}$	9425 9416 9407	$^{1131.1}_{1130.0}_{1128.9}$	$\begin{array}{r} 4.953 \\ 5.016 \\ 5.080 \end{array}$
312 311 310	79.9 78.8 77.6	9141 9133 9125	$1104.7\\1103.6\\1102.5$	$5.003 \\ 5.066 \\ 5.131$	9227 9219 9210	$ \begin{array}{r} 1112.4 \\ 1111.3 \\ 1110.2 \end{array} $	$5.050 \\ 5.114 \\ 5.179$	9313 9304 9295	$1120.1\\1119.0\\1117.9$	$5.097 \\ 5.161 \\ 5.227$	9399 9390 9381	$^{1127.8}_{1126.7}_{1125.6}$	$5.144 \\ 5.209 \\ 5.275$
309 308 307	76.5 75.4 74.3	9116 9109 9100	$^{1101.5}_{1100.4}_{1099.3}$	$5.196 \\ 5.264 \\ 5.333$	9201 9194 9185	$^{1109.2}_{1108.1}_{1107.0}$	$5.245 \\ 5.313 \\ 5.383$	9287 9279 9270	$ \begin{array}{r} 1116.8 \\ 1115.7 \\ 1114.6 \end{array} $	$5.293 \\ 5.362 \\ 5.432$	9372 9364 9355	$1124.5\\1123.4\\1122.3$	$5.342 \\ 5.411 \\ 5.482$
306 305 304	$73.2 \\ 72.2 \\ 71.1$	9093 9084 9076	$1098.2 \\ 1097.1 \\ 1096.0$	$5.403 \\ 5.473 \\ 5.545$	9177 9169 9160	$1106.0\\1104.8\\1103.7$	$5.453 \\ 5.524 \\ 5.597$	9262 9253 9244	$1113.6 \\ 1112.4 \\ 1111.3$	$5.503 \\ 5.575 \\ 5.648$	9347 9337 9329	$1121.3 \\ 1120.1 \\ 1118.9$	$5.554 \\ 5.626 \\ 5.700$
303 302 301	$70.0 \\ 69.0 \\ 68.0$	9068 9059 9052	$\begin{array}{c} 1095.0\\ 1093.9\\ 1092.8 \end{array}$	$5.620 \\ 5.693 \\ 5.769$	9152 9143 9136	$\begin{array}{c} 1102.7\\ 1101.6\\ 1100.4 \end{array}$	$5.671 \\ 5.745 \\ 5.821$	9236 9227 9219	$\frac{1110.3}{1109.2}\\1108.0$	$5.723 \\ 5.798 \\ 5.875$	9320 9311 9303	$\begin{array}{c} 1117.9 \\ 1116.8 \\ 1115.6 \end{array}$	$5.775 \\ 5.850 \\ 5.928$
300 299 298	$\begin{array}{c} 67.0 \\ 66.0 \\ 65.0 \end{array}$	9043 9036 9027	$1091.7\\1090.7\\1089.6$	$5.846 \\ 5.924 \\ 6.002$	9127 9119 9111	1099.3 1098.3 1097.2	$5.899 \\ 5.978 \\ 6.057$	9210 9203 9194	$1106.9\\1105.9\\1104.8$	$5.953 \\ 6.032 \\ 6.112$	9294 9286 9277	$1114.5\\1113.5\\1112.3$	$\begin{array}{c} 6.007 \\ 6.087 \\ 6.167 \end{array}$
297 296 295	$64.0 \\ 63.1 \\ 62.1$	9020 9011 9004	$1088.5 \\ 1087.4 \\ 1086.3$	$\begin{array}{c} 6.083 \\ 6.165 \\ 6.248 \end{array}$	9103 9094 9086	1096.1 1095.0 1093.9	$\begin{array}{c} 6.138 \\ 6.220 \\ 6.304 \end{array}$	9186 9177 9169	$1103.7\\1102.5\\1101.4$	$\begin{array}{c} 6.194 \\ 6.277 \\ 6.361 \end{array}$	9269 9260 9252	$\begin{array}{c} 1111.2 \\ 1110.0 \\ 1108.9 \end{array}$	$\begin{array}{c} 6.250 \\ 6.334 \\ 6.419 \end{array}$
294 293 292	$\begin{array}{c} 61.2 \\ 60.2 \\ 59.3 \end{array}$	8995 8987 8980	$1085.2\\1084.1\\1083.1$	$\begin{array}{c} 5.332 \\ 5.418 \\ 5.505 \end{array}$	9077 9070 9062	1092.8 1091.7 1090.6	$ \begin{array}{r} 5.389 \\ 5.476 \\ 5.564 \end{array} $	9160 9152 9144	1100.3 1099.2 1098.1	$\begin{array}{c} 6.447 \\ 6.535 \\ 6.623 \end{array}$	9242 9234 9226	1107.8 1106.7 1105.6	$\begin{array}{c} 6.505 \\ 6.593 \\ 6.682 \end{array}$
291 290 289	$58.4 \\ 57.5 \\ 56.7$	8972 8963 8956	$1082.0\\1080.9\\1079.8$	$5.594 \\ 5.683 \\ 5.775$	9054 9045 9037	1089.5 1088.4 1087.3	$ \begin{array}{r} 6.654 \\ 5.744 \\ 5.837 \end{array} $	9136 9127 9119	1097.0 1095.9 1094.8	$6.713 \\ 6.804 \\ 6.898$	9218 9209 9201	$1104.5\\1103.4\\1102.2$	$ \begin{array}{r} 5.773 \\ 5.865 \\ 5.959 \\ \end{array} $
288 287 286	$55.8 \\ 54.9 \\ 54.1$	8947 8940 8932	$\begin{array}{c} 1078.7 \\ 1077.6 \\ 1076.5 \end{array}$	5.868 5.964 7.061	9029 9021 9013	$1086.2 \\ 1085.1 \\ 1084.0 \\ 7$	3.931 7.027 7.125	9110 9102 9094	1093.6 1092.5 1091.4	6.992 7.090 7.188	9192 9183 9175	1101.1 1100.0 1098.9	7.055 7.153 7.252
285 284 283	$53.2 \\ 52.4 \\ 51.6$	8924 8916 8908	$\begin{array}{c} 1075.4\\ 1074.3\\ 1073.2 \end{array}$	7.160 7.259 7.361	9005 8996 8988	$\begin{array}{c} 1082.9\\ 1081.7\\ 1080.6\\ 7\end{array}$	7.225 7.325 7.427	9086 9077 9069	1090.3 1089.1 1088.0	7.289 7.390 7.493	9167 9158 9150	1097.7 1096.5 1095.4	7.354 7.455 7.559
282 281 280	$50.8 \\ 50.0 \\ 49.19$	8900 8892 8885	$\begin{array}{c} 1072.1\\ 1071.0\\ 1069.9\\ \end{array}$	7.465 7.570 7.677	8980 8973 8965	$\begin{array}{c} 1079.5\\ 1078.4\\ 1077.3\\ 7\end{array}$	7.532 7.639 7.746	9061 9053 9045	1086.9 1085.8 1084.7	7.600 7.707 7.816	9141 9133 9125	1094.3 1093.2 1092.1	7.666 7.774 7.884
279 278 277	$\begin{array}{r} 48.41 \\ 47.64 \\ 46.88 \end{array}$	8876 8868 8860	$\begin{array}{c} 1068.8\\ 1067.6\\ 1066.5\\ \end{array}$	7.784 7.895 8.006	8956 8948 8940	1076.27 1075.07 1073.98	7.854 7.966 8.077	9036 9028 9020	1083.6 1082.4 1081.3	7.924 3.037 3.149	9116 9107 9099	1090.97 1089.78 1088.68	. 994 . 106 . 220

ahr.	e		1.56			1.57		-	1.58			1.59	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
324 323 322	94.8 93.5 92.2	9591 9583 9573	$1148.7 \\ 1147.6 \\ 1146.5$	4.464 4.518 4.574	9679 9670 9661	1156.5 1155.4 1154.3	$4.505 \\ 4.559 \\ 4.616$	9767 9758 9749	1164.3 1163.2 1162.1	$\begin{array}{r} 4.545 \\ 4.600 \\ 4.657 \end{array}$	9855 9846 9836	1172.2 1171.1 1169.9	4.586 4.641 4.699
321 320 319	90.9 89.6 88.3	9564 9556 9547	$1145.4 \\ 1144.4 \\ 1143.2$	$\begin{array}{r} 4.631 \\ 4.690 \\ 4.750 \end{array}$	9652 9643 9634	$\begin{array}{c} 1153.2 \\ 1152.2 \\ 1151.0 \end{array}$	$\begin{array}{r} 4.673 \\ 4.733 \\ 4.793 \end{array}$	9739 9730 9721	1161.0 1160.0 1158.8	$\begin{array}{r} 4.715 \\ 4.775 \\ 4.835 \end{array}$	9827 9818 9808	$1168.8 \\ 1167.8 \\ 1166.6$	$\begin{array}{r} 4.757 \\ 4.818 \\ 4.879 \end{array}$
318 317 316	87.1 85.9 84.6	9538 9528 9519	$\begin{array}{c} 1142.2 \\ 1141.0 \\ 1139.9 \end{array}$	4.811 4.872 4.934	9625 9615 9606	1149.9 1148.8 1147.6	$\begin{array}{r} 4.855 \\ 4.916 \\ 4.979 \end{array}$	9711 9702 9692	1157.7 1156.6 1155.4	$\begin{array}{r} 4.897 \\ 4.960 \\ 5.022 \end{array}$	9798 9788 9779	$1165.5 \\ 1164.4 \\ 1163.1$	$\begin{array}{r} 4.941 \\ 5.004 \\ 5.067 \end{array}$
315 314 313	$83.4 \\ 82.3 \\ 81.1$	9511 9502 9493	$1138.9\\1137.8\\1136.7$	$4.998 \\ 5.062 \\ 5.126$	9597 9588 9579	1146.6 1145.5 1144.4	$5.043 \\ 5.108 \\ 5.172$	9684 9674 9665	$1154.3 \\ 1153.2 \\ 1152.1$	$5.088 \\ 5.152 \\ 5.218$	9770 9760 9750	1162.1 1161.0 1159.8	$5.133 \\ 5.198 \\ 5.264$
312 311 310	79.9 78.8 77.6	9484 9475 9466	$1135.5 \\ 1134.4 \\ 1133.3$	$5.191 \\ 5.256 \\ 5.323$	9570 9561 9552	$1143.2 \\ 1142.1 \\ 1141.0$	$5.238 \\ 5.303 \\ 5.370$	9656 9646 9637	1151.0 1149.8 1148.7	$5.284 \\ 5.350 \\ 5.419$	9742 9732 9722	$1158.7 \\ 1157.5 \\ 1156.4$	$5.331 \\ 5.397 \\ 5.466$
309 308 307	76.5 75.4 74.3	9457 9449 9439	$1132.2 \\ 1131.1 \\ 1130.0$	$5.391 \\ 5.460 \\ 5.532$	9542 9534 9524	1139.9 1138.8 1137.6	$5.439 \\ 5.510 \\ 5.581$	9627 9619 9609	1147.6 1146.4 1145.3	$5.488 \\ 5.559 \\ 5.631$	9713 9704 9694	$1155.3 \\ 1154.1 \\ 1153.0$	$5.535 \\ 5.607 \\ 5.680$
306 305 304	73.2 72.2 71.1	9431 9422 9413	$1128.9\\1127.7\\1126.6$	$5.604 \\ 5.677 \\ 5.751$	9516 9506 9497	$1136.6 \\ 1135.3 \\ 1134.2$	$5.654 \\ 5.728 \\ 5.803$	9600 9591 9581	$\begin{array}{c} 1144.2 \\ 1143.0 \\ 1141.8 \end{array}$	$5.705 \\ 5.779 \\ 5.854$	9685 9675 9666	$\frac{1151.9}{1150.6}\\1149.5$	$5.755 \\ 5.829 \\ 5.906$
303 302 301	$70.0 \\ 69.0 \\ 68.0$	9404 9395 9387	$^{1125.5}_{1124.4}_{1123.2}$	$5.827 \\ 5.903 \\ 5.981$	9488 9479 9471	1133.2 1132.0 1130.8	$5.879 \\ 5.956 \\ 6.035$	9573 9563 9554	$1140.8 \\ 1139.6 \\ 1138.5$	$5.931 \\ 6.008 \\ 6.088$	9657 9647 9638	$\frac{1148.4}{1147.2}\\1146.1$	$5.983 \\ 6.061 \\ 6.141$
300 299 298	$ \begin{array}{r} 67.0 \\ 66.0 \\ 65.0 \end{array} $	9378 9369 9360	$1122.1\\1121.1\\1119.9$	$\begin{array}{c} 6.061 \\ 6.142 \\ 6.223 \end{array}$	9461 9453 9443	$1129.7 \\ 1128.6 \\ 1127.5$	$\begin{array}{c} 6.115 \\ 6.196 \\ 6.278 \end{array}$	9545 9536 9527	$1137.3 \\ 1136.2 \\ 1135.0$	$\begin{array}{c} 6.169 \\ 6.251 \\ 6.333 \end{array}$	9628 9620 9610	$1144.9\\1143.8\\1142.6$	$\begin{array}{c} 6.223 \\ 6.306 \\ 6.389 \end{array}$
297 296 295	$\begin{array}{c} 64.0 \\ 63.1 \\ 62.1 \end{array}$	9352 9343 9334	1118.8 1117.6 1116.5	$\begin{array}{c} 6.306 \\ 6.390 \\ 6.476 \end{array}$	9435 9426 9417	$1126.4 \\ 1125.2 \\ 1124.1$	$\begin{array}{c} 6.362 \\ 6.447 \\ 6.534 \end{array}$	9518 9508 9500	$1133.9\\1132.7\\1131.6$	$\begin{array}{c} 6.418 \\ 6.504 \\ 6.591 \end{array}$	9601 9591 9582	$1141.5 \\ 1140.3 \\ 1139.1$	$\begin{array}{c} 6.474 \\ 6.560 \\ 6.648 \end{array}$
294 293 292	$ \begin{array}{r} 61.2 \\ 60.2 \\ 59.3 \end{array} $	9325 9317 9308	$ \begin{array}{r} 1115.4 \\ 1114.3 \\ 1113.1 \end{array} $	$\begin{array}{c} 6.563 \\ 6.652 \\ 6.742 \end{array}$	9407 9399 9390	1122.9 1121.8 1120.6	$\begin{array}{c} 6.621 \\ 6.711 \\ 6.801 \end{array}$	9490 9481 9473	$1130.5 \\ 1129.4 \\ 1128.2$	$\begin{array}{c} 6.679 \\ 6.770 \\ 6.861 \end{array}$	9572 9564 9555	$1138.0 \\ 1136.9 \\ 1135.7$	$\begin{array}{c} 6.737 \\ 6.828 \\ 6.920 \end{array}$
291 290 289	$58.4 \\ 57.5 \\ 56.7$	9300 9291 9282	1112.0 1110.9 1109.7	$\begin{array}{c} 6.834 \\ 6.926 \\ 7.021 \end{array}$	9382 9372 9364	$1119.5 \\ 1118.4 \\ 1117.2$	6.894 6.987 7.083	9464 9454 9445	$1127.1 \\ 1125.9 \\ 1124.7$	$6.954 \\ 7.048 \\ 7.145$	9546 9536 9527	$1134.6 \\ 1133.4 \\ 1132.2$	7.014 7.109 7.206
288 287 286	$55.8 \\ 54.9 \\ 54.1$	9273 9265 9256	$1108.5 \\ 1107.4 \\ 1106.3$	$7.117 \\ 7.216 \\ 7.316$	9355 9346 9337	1116.0 1114.9 1113.8	7.180 7.280 7.380	9436 9427 9418	$1123.5 \\ 1122.4 \\ 1121.2$	7.242 7.343 7.444	9517 9508 9499	$1131.0 \\ 1129.9 \\ 1128.7$	7.305 7.406 7.508
285 284 283	$53.2 \\ 52.4 \\ 51.6$	9248 9239 9230	$1105.2 \\ 1104.0 \\ 1102.9$	7.419 7.521 7.626	9329 9319 9311	1112.6 1111.4 1110.3	7.483 7.587 7.693	9410 9400 9391	1120.0 1118.9 1117.7	$7.548 \\ 7.653 \\ 7.759$	9490 9481 9472	1127.5 1126.3 1125.2	7.613 7.718 7.826
282 281 280	50.8 50.0 49,19	9222 9213 9205	1101.8 1100.7 1099.5	7 733 7.842 7.953	9302 9293 9285	1109.2 1108.1 1106.9	7.801 7.911 8.022	9382 9374 9365	1116.6 1115.5 1114.3	7.868 7.979 8.091	9463 9454 9445	1124.0 1122.9 1121.7	7.936 8.047 8.161
279 278 277	48.41 47.64 46.88	9195 9187 9179	$1098.2 \\ 1097.1 \\ 1096.0$	8.064 8.177 8.292	9275 9267 9258	1105.7 1104.5 1103.3	$ \begin{array}{r} 8.134 \\ 8.248 \\ 8.364 \end{array} $	9355 9347 9338	1113.1 1111.9 1110.7	$8.204 \\ 8.319 \\ 8.436$	9435 9426 9417	1120.5 1119.2 1118.0	

e, ahr.	e		1.52			1.53			1.54			1.55	
Temperatur Degrees F	Pressure, Poper Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
276 275 274	$46.13 \\ 45.39 \\ 44.67$	8853 8845 8837	$1065.4 \\ 1064.3 \\ 1063.2$	$8.119 \\ 8.236 \\ 8.356$	8932 8924 8916	$1072.8 \\ 1071.7 \\ 1070.5$	$8.192 \\ 8.310 \\ 8.431$	9011 9003 8995	1080.2 1079.0 1077.8		9091 9083 9074	1087.5 1086.4 1085.2	
273 272 271	$\begin{array}{r} 43.95 \\ 43.24 \\ 42.54 \end{array}$	8829 8822 8814	$1062.1 \\ 1061.0 \\ 1059.9$	$8.477 \\ 8.602 \\ 8.728$	8908 8900 8892	$1069.4 \\ 1068.3 \\ 1067.2$		8987 8979 8971	$1076.7 \\ 1075.6 \\ 1074.5$	$8.629 \\ 8.756 \\ 8.884$	9066 9058 9049	$1084.1 \\ 1082.9 \\ 1081.8$	$8.704 \\ 8.832 \\ 8.962$
270 269 268	$\begin{array}{r} 41.84 \\ 41.16 \\ 40.49 \end{array}$	8806 8798 8790	$1058.7 \\ 1057.6 \\ 1056.5$	$8.852 \\ 8.985 \\ 9.117$	8884 8876 8868	$1066.0 \\ 1064.9 \\ 1063.8$	$8.931 \\ 9.065 \\ 9.198$	8963 8955 8946	$1073.3 \\ 1072.2 \\ 1071.0$	$9.009 \\ 9.144 \\ 9.279$	9041 9033 9024	$1080.6 \\ 1079.5 \\ 1078.3$	$9.088 \\ 9.224 \\ 9.360$
267 266 265	$39.83 \\ 39.17 \\ 38.53$	8782 8774 8767	$1055.4 \\ 1054.2 \\ 1053.1$	$9.250 \\ 9.390 \\ 9.532$	8860 8851 8844	$1062.6 \\ 1061.4 \\ 1060.3$	$9.332 \\ 9.473 \\ 9.616$	8938 8929 8922	$1069.9 \\ 1068.7 \\ 1067.6$	$9.414 \\ 9.556 \\ 9.700$	9016 9007 8999	$1077.1 \\ 1075.9 \\ 1074.8$	$9.496 \\ 9.639 \\ 9.784$
264 263 262	$37.89 \\ 37.26 \\ 36.64$	8759 8751 8743	$1051.9\\1050.8\\1049.7$	$9.672 \\ 9.812 \\ 9.961$	8836 8828 8820	$\frac{1059.2}{1058.1}\\1056.9$	$9.757 \\ 9.899 \\ 10.05$	8914 8906 8897	$1066.4 \\ 1065.3 \\ 1064.1$	$9.843 \\ 9.985 \\ 10.13$	8991 8983 8975	$1073.6 \\ 1072.5 \\ 1071.3$	$9.928 \\ 10.07 \\ 10.22$
261 260 259	$36.02 \\ 35.42 \\ 34.83$	8735 8728 8720	$1048.6 \\ 1047.4 \\ 1046.3$	$10.11 \\ 10.25 \\ 10.41$	8812 8804 8796	$1055.8 \\ 1054.6 \\ 1053.4$	$\begin{array}{c} 10.20 \\ 10.35 \\ 10.50 \end{array}$	8889 8881 8873	1063.0 1061.8 1060.6	$10.28 \\ 10.44 \\ 10.59$	8966 8958 8949	$1070.2 \\ 1069.0 \\ 1067.8$	$10.37 \\ 10.53 \\ 10.69$
258 257 256	$34.24 \\ 33.66 \\ 33.09$	8712 8705 8697	$1045.1\\1044.0\\1042.9$	$10.57 \\ 10.73 \\ 10.90$	8788 8781 8773	$1052.2 \\ 1051.1 \\ 1050.0$	$10.66 \\ 10.83 \\ 10.99$	8865 8857 8849	$1059.4 \\ 1058.3 \\ 1057.2$	$10.75 \\ 10.92 \\ 11.09$	8941 8933 8925	$1066.6 \\ 1065.5 \\ 1064.3$	$10.85 \\ 11.01 \\ 11.18$
255 254 253	$32.53 \\ 31.97 \\ 31.42$	8689 8681 8673	$1041.7 \\ 1040.5 \\ 1039.4$	${}^{11.06}_{11.23}_{11.41}$	8765 8757 8749	$1048.8 \\ 1047.6 \\ 1046.5$	$11.16 \\ 11.33 \\ 11.51$	8841 8832 8824	$1056.0 \\ 1054.7 \\ 1053.6$	$11.25 \\ 11.43 \\ 11.61$	8917 8908 8900	$1063.1 \\ 1061.9 \\ 1060.8$	$11.35 \\ 11.53 \\ 11.71$
252 251 250	$30.88 \\ 30.35 \\ 29.82$	$\begin{array}{c} 8666 \\ 8658 \\ 8650 \end{array}$	$1038.2 \\ 1037.1 \\ 1035.9$	$11.59 \\ 11.77 \\ 11.95$	8741 8733 8725	$1045.4 \\ 1044.2 \\ 1043.0$	$11.69 \\ 11.87 \\ 12.06$	8817 8808 8800	$1052.5 \\ 1051.3 \\ 1050.1$	$11.79 \\ 11.97 \\ 12.16$	8892 8884 8875	$\begin{array}{c} 1059.6 \\ 1058.4 \\ 1057.2 \end{array}$	$11.89\\12.07\\12.27$
249 248 247	$29.30 \\ 28.79 \\ 28.29$	$\begin{array}{r} 8643 \\ 8635 \\ 8628 \end{array}$	$1034.8 \\ 1033.6 \\ 1032.5$	$12.14 \\ 12.33 \\ 12.53$	8718 8710 8702	$1041.9\\1040.7\\1039.6$	$12.25 \\ 12.44 \\ 12.64$	8792 8784 8777	$1048.9\\1047.7\\1046.6$	$12.35 \\ 12.54 \\ 12.74$	8867 8859 8851	$1056.0\\1054.8\\1053.7$	${}^{12.46}_{12.65}_{12.85}$
246 245 244	$27.80 \\ 27.31 \\ 26.83$	8620 8612 8604	$1031.3 \\ 1030.2 \\ 1029.0$	$12.73 \\ 12.93 \\ 13.13$	8694 8686 8679	$1038.4 \\ 1037.3 \\ 1036.1$	$12.84 \\ 13.04 \\ 13.24$	8768 8760 8753	$1045.4 \\ 1044.3 \\ 1043.1$	$12.95 \\ 13.15 \\ 13.36$	8843 8835 8827	$1052.5 \\ 1051.3 \\ 1050.1$	$13.06 \\ 13.26 \\ 13.47$
243 242 241	$26.35 \\ 25.88 \\ 25.42$	8597 8589 8581	$1027.9\\1026.8\\1025.6$	$13.33 \\ 13.55 \\ 13.76$	$\begin{array}{r} 8671 \\ 8663 \\ 8655 \end{array}$	$1035.0\\1033.8\\1032.6$	$13.45 \\ 13.66 \\ 13.88$	8745 8737 8729	$1042.0\\1040.8\\1039.6$	$13.56 \\ 13.78 \\ 14.00$	8819 8811 8802	$1049.0\\1047.8\\1046.6$	$13.68 \\ 13.89 \\ 14.12$
240 239 238	$24.97 \\ 24.52 \\ 24.08$	8574 8566 8559	$1024.4 \\ 1023.2 \\ 1022.0$	$13.98 \\ 14.21 \\ 14.44$	8647 8639 8632	$\begin{array}{c} 1031.4\\ 1030.2\\ 1029.0 \end{array}$	$14.10 \\ 14.33 \\ 14.56$	8721 8713 8705	$1038.3 \\ 1037.2 \\ 1036.0$	$14.22\\14.45\\14.69$	8794 8786 8778	$1045.3 \\ 1044.2 \\ 1043.0$	$14.34\\14.58\\14.81$
237 236 235	$23.64 \\ 23.21 \\ 22.79$	8551 8543 8535	$1020.9\\1019.7\\1018.5$	$14.67 \\ 14.92 \\ 15.17$	$\begin{array}{r} 8624 \\ 8616 \\ 8608 \end{array}$	$\begin{array}{c} 1027.9 \\ 1026.7 \\ 1025.5 \end{array}$	$14.80 \\ 15.04 \\ 15.30$	8697 8689 8681	$1034.8 \\ 1033.6 \\ 1032.4$	$^{14.92}_{15.17}_{15.43}$	8770 8762 8754	${}^{1041.8}_{1040.6}_{1039.4}$	$15.05 \\ 15.30 \\ 15.56$
234 233 232	$22.38 \\ 21.97 \\ 21.57$	8528 8521 8513	$1017.3 \\ 1016.1 \\ 1014.9$	$15.42 \\ 15.67 \\ 15.93$	8601 8593 8585	$1024.2 \\ 1023.1 \\ 1021.9$	$15.55 \\ 15.80 \\ 16.06$	8673 8666 8657	$1031.2 \\ 1030.0 \\ 1028.8 \\ \cdot \cdot \cdot$	$15.68 \\ 15.94 \\ 16.20$	8746 8738 8729	$1038.1 \\ 1036.9 \\ 1035.7$	$15.81 \\ 15.07 \\ 16.33$
231 230 229	$21.17 \\ 20.78 \\ 20.40$	8505 8498 8490	$1013.8 \\ 1012.7 \\ 1011.4$	$16.19 \\ 16.46 \\ 16.74$	8577 8570 8562	$1020.8 \\ 1019.6 \\ 1018.3$	$16.33 \\ 16.60 \\ 16.88$	8649 8642 8633	$1027.7 \\ 1026.5 \\ 1025.2$	$16.47 \\ 16.74 \\ 17.02$	8722 8714 8705	$1034.5 \\ 1033.3 \\ 1032.1$	16.61 16.88 17.17

ahr.	e		1.56			1.57			1.58			1.59	-
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
276 275 274	$46.13 \\ 45.39 \\ 44.67$	9170 9162 9153	1094.9 1093.7 1092.5	$ \begin{array}{r} 8.409 \\ 8.530 \\ 8.654 \end{array} $	9250 9241 9232	1102.2 1101.1 1099.9	8.482 8.604 8.729	9329 9320 9312	$1109.6 \\ 1108.4 \\ 1107.2$	8.555 8.677 8.803	9408 9400 9391	$1116.9 \\ 1115.7 \\ 1114.5$	$8.628 \\ 8.751 \\ 8.878$
273 272 271	$\begin{array}{r} 43.95 \\ 43.24 \\ 42.54 \end{array}$	9145 9136 9128	$1091.4 \\ 1090.3 \\ 1089.1$	8.779 8.908 9.039	9224 9215 9206	$1098.8 \\ 1097.6 \\ 1096.4$	$ 8.855 \\ 8.985 \\ 9.116 $	9303 9294 9285	$1106.1 \\ 1104.9 \\ 1103.7$	8.931 9.062 9.194	9382 9373 9364	$1113.4 \\ 1112.2 \\ 1111.0$	$9.006 \\ 9.138 \\ 9.272$
270 269 268	41.84 41.16 40.49	9119 9111 9102	$1087.9\\1086.8\\1085.6$	9.166 9.303 9.439	9198 9189 9180	$1095.2 \\ 1094.1 \\ 1092.9$	$9.245 \\ 9.383 \\ 9.520$	9276 9267 9258	1102.5 1101.3 1100.1	$9.324 \\ 9.463 \\ 9.601$	9355 9346 9336	$1109.8 \\ 1108.6 \\ 1107.4$	$9.402 \\ 9.543 \\ 9.682$
267 266 265	$39.83 \\ 39.17 \\ 38.53$	9094 9085 9077	$1084.4\\1083.2\\1082.1$	9.577 9.721 9.868	9172 9162 9155	1091.7 1090.4 1089.3	9.659 9.805 9.952	9250 9240 9232	$1098.9 \\ 1097.7 \\ 1096.5$	$9.741 \\ 9.888 \\ 10.04$	9328 9318 9310	1106.2 1104.9 1103.8	$9.823 \\ 9.971 \\ 10.12$
264 263 262	$37.89 \\ 37.26 \\ 36.64$	9069 9060 9052	1080.9 1079.7 1078.5	$10.01 \\ 10.16 \\ 10.31$	9146 9137 9129	1088.1 1087.0 1085.8	$10.10 \\ 10.24 \\ 10.40$	9223 9215 9206	$1095.3 \\ 1094.2 \\ 1093.0$	$10.18 \\ 10.33 \\ 10.49$	9301 9292 9283	1102.6 1101.4 1100.2	$10.27 \\ 10.42 \\ 10.57$
261 260 259	$36.02 \\ 35.42 \\ 34.83$	9043 9035 9026	$1077.4\\1076.2\\1075.0$	$10.46 \\ 10.62 \\ 10.78$	9120 9111 9103	1084.6 1083.4 1082.2	$10.55 \\ 10.71 \\ 10.87$	9197 9188 9179	$1091.8 \\ 1090.6 \\ 1089.4$	$10.64 \\ 10.80 \\ 10.96$	9274 9265 9256	$1099.0 \\ 1097.8 \\ 1096.6$	$10.73 \\ 10,89 \\ 11.05$
258 257 256	$34.24 \\ 33.66 \\ 33.09$	9017 9010 9001	$1073.8 \\ 1072.7 \\ 1071.5$	$10.94 \\ 11.11 \\ 11.28$	9094 9086 9077	$1080.9 \\ 1079.8 \\ 1078.6$	$11.03 \\ 11.20 \\ 11.37$	9170 9162 9153	$1088.1 \\ 1087.0 \\ 1085.8$	$11.12 \\ 11.30 \\ 11.47$	9247 9238 9229	$1095.3 \\ 1094.1 \\ 1092.9$	$11.22 \\ 11.39 \\ 11.56$
255 254 253	$32.53 \\ 31.97 \\ 31.42$	8993 8984 8975	$1070.3 \\ 1069.0 \\ 1067.9$	$11.45 \\ 11.63 \\ 11.81$	9068 9060 9051	1077.4 1076.1 1075.0	$11.54 \\ 11.72 \\ 11.91$	9144 9135 9127	1084.6 1083.3 1082.1	$11.64 \\ 11.82 \\ 12.01$	9220 9211 9202	$1091.7 \\ 1090.4 \\ 1089.2$	$11.74 \\ 11.92 \\ 12.11$
252 251 250	$30.88 \\ 30.35 \\ 29.82$	8967 8959 8950	1066.7 1065.5 1064.3	$11.99 \\ 12.18 \\ 12.37$	9043 9034 9025	$1073.8 \\ 1072.6 \\ 1071.4$	$12.09 \\ 12.28 \\ 12.47$	9118 /9109 9101	$1080.9\\1079.7\\1078.5$	$\substack{12.19\\12.38\\12.58}$	9194 9185 9176	1088.0 1086.8 1085.6	$12.29 \\ 12.48 \\ 12.68$
249 248 247	$29.30 \\ 28.79 \\ 28.29$	8942 8934 8926	$1063.1 \\ 1061.9 \\ 1060.7$	$12.56 \\ 12.76 \\ 12.96$	9017 9009 9001	1070.2 1069.0 1067.8	$12.67 \\ 12.86 \\ 13.07$	9092 9084 9075	1077.3 1076.0 1074.8	$12.77 \\ 12.97 \\ 13.18$	9167 9158 9150	$1084.4\\1083.1\\1081.9$	$12.88 \\ 13.08 \\ 13.29$
246 245 244	$27.80 \\ 27.31 \\ 26.83$	8917 8909 8901	1059.5 1058.4 1057.2	$13.17 \\ 13.37 \\ 13.58$	8992 8983 8975	1066.6 1065.4 1064.2	$13.28 \\ 13.48 \\ 13.70$	9066 9058 9049	$1073.6 \\ 1072.5 \\ 1071.3$	$13.39 \\ 13.60 \\ 13.81$	9141 9132 9124	$1080.7 \\ 1079.5 \\ 1078.3$	$13.50 \\ 13.71 \\ 13.92$
243 242 241	$26.35 \\ 25.88 \\ 25.42$	8893 8885 8876	$1056.0 \\ 1054.8 \\ 1053.6$	$13.79 \\ 14.01 \\ 14.24$	8967 8958 8950	$1063.0 \\ 1061.8 \\ 1060.6$	$13.91 \\ 14.13 \\ 14.36$	9041 9032 9023	1070.1 1068.8 1067.6	$14.02 \\ 14.24 \\ 14.47$	9114 9106 9097	1077.1 1075.9 1074.6	$14.14 \\ 14.36 \\ 14.59$
240 239 238	$24.97 \\ 24.52 \\ 24.08$	8868 8859 8851	$1052.3 \\ 1051.1 \\ 1049.9$	$14.46\\14.70\\14.93$	8942 8933 8925	$1059.3 \\ 1058.1 \\ 1056.9$	$14.58 \\ 14.82 \\ 15.06$	9015 9006 8998	$1066.3 \\ 1065.1 \\ 1063.9$	$14.70 \\ 14.94 \\ 15.18$	9089 9080 9071	$1073.3 \\ 1072.1 \\ 1070.9$	$14.82 \\ 15.06 \\ 15.30$
237 236 235	$23.64 \\ 23.21 \\ 22.79$	8843 8835 8826	$\begin{array}{r} 1048.7 \\ 1047.5 \\ 1046.3 \end{array}$	$15.17 \\ 15.43 \\ 15.68$	8916 8908 8899	$1055.7 \\ 1054.5 \\ 1053.3$	$15.30 \\ 15.55 \\ 15.81$	8989 8981 8972	$1062.7 \\ 1061.5 \\ 1060.2$	$15.42 \\ 15.68 \\ 15.94$	9062 9054 9044	$1069.7 \\ 1068.4 \\ 1067.1$	$15.55 \\ 15.81 \\ 16.07$
234 233 232	$22.38 \\ 21.97 \\ 21.57$	8818 8810 8802	$1045.0\\1043.8\\1042.6$	$15.94 \\ 16.20 \\ 16.47$	8891 8883 8874	$1052.0 \\ 1050.8 \\ 1049.5$	$16.07 \\ 16.34 \\ 16.60$	8963 8955 8946	1058.9 1057.7 1056.4	$16.21 \\ 16.47 \\ 16.74$	9036 9028 9018	$1065.8 \\ 1064.6 \\ 1063.3$	$16.34 \\ 16.60 \\ 16.87$
231 230 229	$21.17 \\ 20.78 \\ 20.40$	8794 8786 8777	$1041.4 \\ 1040.2 \\ 1039.0$	$16.74 \\ 17.02 \\ 17.31$	8866 8858 8849	$1048.3 \\ 1047.1 \\ 1045.9$	$16.88 \\ 17.16 \\ 17.45$	8938 8930 8921	$1055.2 \\ 1054.0 \\ 1052.8$	$17.02 \\ 17.30 \\ 17.59$	9010, 9002 8992	1062.1 1060.9 1059.6	$17.16 \\ 17.44 \\ 17.73$

es, ahr.	e		1.52			1.53			1.54			1.55	
Temperatur Degrees F	Pressure, Pc per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
228 227 226	$20.02 \\ 19.64 \\ 19.28$	8482 8475 8468	$1010.2 \\ 1009.1 \\ 1007.9$	$17.02 \\ 17.31 \\ 17.60$	$8553 \\ 8546 \\ 8540$	$1017.1 \\ 1015.9 \\ 1014.7$	$17.17 \\ 17.45 \\ 17.75$	8625 8618 8611	$1024.0\\1022.8\\1021.6$	$17.31 \\ 17.60 \\ 17.89$	8697 8689 8682	$1030.8 \\ 1029.6 \\ 1028.4$	$17.45 \\ 17.74 \\ 18.04$
225 224 223	$18.91 \\ 18.56 \\ 18.21$	8459 8452 8445	$1006.7\\1005.5\\1004.4$	$17.90 \\ 18.21 \\ 18.52$	8531 8523 8515	$1013.5 \\ 1012.3 \\ 1011.2$	$18.05 \\ 18.36 \\ 18.67$	8602 8594 8586	$1020.4 \\ 1019.2 \\ 1018.0$	$18.20 \\ 18.51 \\ 18.83$	8673 8665 8657	$1027.2 \\ 1026.0 \\ 1024.8$	$18.35 \\ 18.66 \\ 18.99$
222 221 220	$17.86 \\ 17.52 \\ 17.19$	8437 8430 8422	$1003.2\\1002.0\\1000.8$	$18.84 \\ 19.16 \\ 19.49$	8508 8500 8493	$1010.0 \\ 1008.8 \\ 1007.6$	$19.00 \\ 19.32 \\ 19.65$	8579 8571 8563	$1016.8 \\ 1015.6 \\ 1014.4$	$19.16 \\ 19.48 \\ 19.81$	8649 8642 8634	$1023.6 \\ 1022.4 \\ 1021.2$	$19.31 \\ 19.64 \\ 19.98$
219 218 217	$16.86 \\ 16.54 \\ 16.22$	8414 8406 8399	$999.6 \\ 998.3 \\ 997.1$	$19.82 \\ 20.17 \\ 20.52$	8484 8477 8469	$1006.4 \\ 1005.1 \\ 1003.9$	$19.99 \\ 20.34 \\ 20.69$	8555 8547 8539	$1013.1 \\ 1011.8 \\ 1010.6$	$20.15 \\ 20.50 \\ 20.86$	8625 8617 8609	$1019.9 \\ 1018.6 \\ 1017.4$	$20.32 \\ 20.67 \\ 21.03$
216 215 214	$15.90 \\ 15.60 \\ 15.29$	8392 8384 8377	$\begin{array}{r} 995.9 \\ 994.7 \\ 993.5 \end{array}$	$20.88 \\ 21.25 \\ 21.62$	$\begin{array}{r} 8461 \\ 8454 \\ 8446 \end{array}$	1002.7 1001.5 1000.3	$21.05 \\ 21.42 \\ 21.80$	$\begin{array}{r} 8531 \\ 8524 \\ 8516 \end{array}$	$1009.4 \\ 1008.2 \\ 1007.0$	$21.23 \\ 21.60 \\ 21.98$	8601 8593 8585	1016.2 1015.0 1013.7	$21.40 \\ 21.78 \\ 22.16$
213 212 211	$14.99 \\ 14.70 \\ 14.41$	8369 8361 8354	$992.3 \\ 991.1 \\ 989.9$	$22.00 \\ 22.39 \\ 22.80$	8438 8431 8424	999.1 997.9 996.7	$22.18 \\ 22.58 \\ 22.99$	8508 8500 8493	$1005.8\\1004.6\\1003.4$	$22.37 \\ 22.76 \\ 23.18$	8577 8569 8562	1012.5 1011.3 1010.1	$22.55 \\ 22.95 \\ 23.36$
210 209 208	$14.13 \\ 13.85 \\ 13.57$	8347 8340 8332	988.7 987.5 986.3	$23.20 \\ 23.62 \\ 24.05$	8416 8409 8401	995.4 994.2 993.0	$23.40 \\ 23.81 \\ 24.25$	8485 8478 8470	$1002.1 \\ 1000.9 \\ 999.6$	$23.59 \\ 24.01 \\ 24.44$	8554 8546 8538	$1008.8 \\ 1007.5 \\ 1006.3$	$23.78 \\ 24.20 \\ 24.64$
207 206 205	$13.30 \\ 13.03 \\ 12.77$	8325 8317 8309	985.1 983.8 982.6	$24.48 \\ 24.93 \\ 25.39$	8393 8385 8378	991.7 990.5 989.3	$24.68 \\ 25.14 \\ 25.60$	$\begin{array}{r} 8462 \\ 8454 \\ 8446 \end{array}$	998.4 997.2 995.9	$24.89 \\ 25.34 \\ 25.81$	8530 8522 8514	$1005.1 \\ 1003.8 \\ 1002.6$	$25.09 \\ 25.55 \\ 26.02$
204 203 202	$12.51 \\ 12.26 \\ 12.01$	8302 8294 8287	981.4 980.2 979.0	$25.86 \\ 26.33 \\ 26.83$	8370 8362 8355	988.0 986.8 985.6	$26.07 \\ 26.55 \\ 27.05$	8438 8430 8423	994.7 993.4 992.2	$26.28 \\ 26.76 \\ 27.26$	8506 8498 8491	$1001.3 \\ 1000.1 \\ 998.9$	$26.50 \\ 26.98 \\ 27.48$
201 200 199	$11.77 \\ 11.53 \\ 11.29$	8280 8272 8265	977.8 976.5 975.3	$27.31 \\ 27.81 \\ 28.32$	8347 8340 8332	984.4 983.1 981.9	$27.54 \\ 28.04 \\ 28.55$	8415 8407 8399	991.0 989.7 988.5	$27.76 \\ 28.26 \\ 28.78$	8483 8475 8467	997.6 996.3 995.1	$27.98 \\ 28.49 \\ 29.01$
198 197 196	$11.06 \\ 10.83 \\ 10.61$	8257 8250 8242	$\begin{array}{c} 974.1 \\ 972.8 \\ 971.5 \end{array}$	$28.84 \\ 29.38 \\ 29.93$	8325 8317 8309	980.7 979.4 978.1	$29.08 \\ 29.62 \\ 30.17$	8392 8384 8376	987.3 985.9 984.7	$29.31 \\ 29.85 \\ 30.41$	8459 8451 8443	993.9 992.5 991.2	$29.55 \\ 30.09 \\ 30.65$
195 194 193	$10.39 \\ 10.17 \\ 9.96$	8235 8227 8220	970.4 969.1 967.9	$30.49 \\ 31.07 \\ 31.67$	8302 8294 8286	976.9 975.6 974.4	$30.74 \\ 31.33 \\ 31.93$	8368 8360 8353	983.4 982.2 981.0	$30.99 \\ 31.58 \\ 32.18$	8435 8427 8419	990.0 988.7 987.5	$31.24 \\ 31.83 \\ 32.44$
192 191 190	$9.75 \\ 9.54 \\ 9.34$	8212 8204 8197	$\begin{array}{r} 966.7 \\ 965.4 \\ 964.2 \end{array}$	$32.28 \\ 32.91 \\ 33.54$	8278 8270 8263	973.2 971.9 970.7	$32.54 \\ 33.17 \\ 33.81$	8345 8336 8329	979.7 978.4 977.2	$32.80 \\ 33.44 \\ 34.08$	8411 8403 8395	986.2 984.9 983.7	$33.06 \\ 33.70 \\ 34.35$
189 188 187	$9.14 \\ 8.95 \\ 8.76$	8190 8182 8174	$\begin{array}{c} 963.0\\ 961.7\\ 960.5 \end{array}$	$34.19 \\ 34.85 \\ 35.52$	8256 8247 8240	969.5 968.2 967.0	$34.47 \\ 35.13 \\ 35.80$	8321 8313 8306	976.0 974.7 973.4	$34.74 \\ 35.41 \\ 36.09$	8387 8379 8371	982.4 981.1 979.9	$35.02 \\ 35.69 \\ 36.37$
186 185 184		8166 8159 8151	950.2 958.0 956.7	$36.20 \\ 36.90 \\ 37.63$	8232 8224 8216	965.7 964.5 963.2	$36.49 \\ 37.20 \\ 37.93$	8297 8290 8282	972.1 970.9 969.6	$36.78 \\ 37.49 \\ 38.24$	8363 8355 8347	978.6 977.4 976.0	$37.07 \\ 37.79 \\ 38.54$
183 182 181	$8.02 \\ 7.85 \\ 7.68$	8144 8137 8130	955.5 954.3 953.0	$38.37 \\ 39.15 \\ 39.94$	8209 8202 8194	961.9 960.7 959.4	$38.68 \\ 39.46 \\ 40.26$	8274 8267 8259	968.4 967.1 965.8	$38.99 \\ 39.77 \\ 40.58$	8339 8332 8324	974.8 973.5 972.2	$39.29 \\ 40.08 \\ 40.90$

+

X

86

.

s, ahr.	ands		1.56		1.57			1.58			1.59	
Temperature Degrees Fi	Pressure, Pol per Square Inch.	Quality.	Heat Con- tents. Specific	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
228 227 226	$20.02 \\ 19.64 \\ 19.28$	8768 8761 8754	$\begin{array}{c} 1037.7 \\ 1036.5 \\ 1035.3 \\ 18.1 \end{array}$	0 8840 9 8832 9 8825	$1044.6\\1043.4\\1042.2$	$17.74 \\ 18.04 \\ 18.34$	8912 8904 8896	1051.5 1050.3 1049.0	$17.89 \\ 18.18 \\ 18.49$	8983 8975 8968	1058.3 1057.1 1055.9	$18.03 \\ 18.33 \\ 18.63$
225 224 223	$18.91 \\ 18.56 \\ 18.21$	8744 8736 8728	$\begin{array}{c} 1034.1 \\ 1032.8 \\ 1031.6 \\ 19.1 \end{array}$	0 8815 2 8807 4 8799	$1041.0\\1039.7\\1038.5$	$18.65 \\ 18.97 \\ 19.30$	8887 8878 8870	$1047.8 \\ 1046.5 \\ 1045.3$	$18.80 \\ 19.12 \\ 19.45$	8958 8949 8941	$1054.6 \\ 1053.3 \\ 1052.1$	$18.95 \\ 19.28 \\ 19.61$
222 221 220	$17.86 \\ 17.52 \\ 17.49$	8720 8712 8704	1030.4 19.4 1029.2 19.8 1028.0 20.1	7 8791 0 8783 4 8774	$1037.2 \\ 1036.0 \\ 1034.8$	$19.63 \\ 19.96 \\ 20.30$	8862 8853 8845	$1044.0\\1042.8\\1041.6$	$19.79 \\ 20.12 \\ 20.47$	8932 8924 8915	$1050.9 \\ 1049.7 \\ 1048.4$	$19.95 \\ 20.28 \\ 20.63$
219 218 217	$16.86 \\ 16.54 \\ 16.22$	8695 8687 8679	$\begin{array}{c} 1026.7 \\ 1025.4 \\ 1024.2 \\ 21.2 \\ \end{array}$	9 8765 4 8757 0 8749	$1033.5 \\ 1032.2 \\ 1031.0$	$20.65 \\ 21.01 \\ 21.37$	8836 8827 8819	$1040.3 \\ 1039.0 \\ 1037.7$	$20.82 \\ 21.18 \\ 21.54$	8906 8897 8889	$1047.1 \\ 1045.8 \\ 1044.5$	$20.98 \\ 21.34 \\ 21.72$
216 215 214	$15.90 \\ 15.60 \\ 15.29$	$8671 \\ 8663 \\ 8655$	$\begin{array}{c} 1022.9 \\ 1021.7 \\ 1020.5 \\ 22.3 \end{array}$	7 8741 5 8733 4 8724	$1029.7\\1028.5\\1027.2$	$21.75 \\ 22.13 \\ 22.52$	8811 8802 8794	$1036.4 \\ 1035.2 \\ 1033.9$	$21.92 \\ 22.30 \\ 22.70$	8880 8872 8863	$1043.2\\1042.0\\1040.7$	$22.09 \\ 22.48 \\ 22.88$
213 212 211	$14.99 \\ 14.70 \\ 14.41$	8647 8638 8631	1019.3 22.7 1018.0 23.7 1016.8 23.8	3 8716 3 8708 5 8700	$1026.0\\1024.7\\1023.5$	$22.91 \\ 23.32 \\ 23.74$	8785 8777 8769	$1032.7\\1031.4\\1030.2$	$23.10 \\ 23.50 \\ 23.93$	8855 8846 8838	$1039.4\\1038.1\\1036.9$	$23.28 \\ 23.69 \\ 24.12$
210 209 208	$14.13 \\ 13.85 \\ 13.57$	8623 8615 8607	$\begin{array}{c} 1015.5 \\ 23.9 \\ 1014.2 \\ 24.4 \\ 1013.0 \\ 24.8 \end{array}$	7 8692 0 8684 4 8676	$1022.2\\1020.9\\1019.7$	$24.16 \\ 24.59 \\ 25.04$	$8761 \\ 8753 \\ 8744$	$1028.9\\1027.6\\1026.3$	$24.35 \\ 24.79 \\ 25.24$	8830 8822 8813	$1035.6\\1034.3\\1033.0$	$24.55 \\ 24.98 \\ 25.43$
207 206 205	$13.30 \\ 13.03 \\ 12.77$	8599 8590 8582	$\begin{array}{c} 1011.7 \\ 1010.5 \\ 1009.2 \\ 26.2 \end{array}$	9 8667 5 8659 3 8651	1018.4 1017.1 1015.9	$25.49 \\ 25.96 \\ 26.44$	8736 8727 8719	$1025.1\\1023.8\\1022.5$	$25.69 \\ 26.16 \\ 26.64$	8804 8796 8787	$1031.7 \\ 1030.4 \\ 1029.1$	$25.89 \\ 26.37 \\ 26.85$
204 203 202	$12.51 \\ 12.26 \\ 12.01$	8574 8566 8558	1007.9 26.1 1006.7 27.2 1005.5 27.1	$\begin{smallmatrix}1&8642\\0&8634\\0&8626\end{smallmatrix}$	1014.6 1013.3 1012.1	$26.92 \\ 27.41 \\ 27.92$	8710 8702 8694	$1021.2 \\ 1019.9 \\ 1018.7$	$27.13 \\ 27.63 \\ 28.14$	8778 8770 8762	1027.8 1026+6 1025.3	$27.34 \\ 27.84 \\ 28.36$
201 200 199	$11.77 \\ 11.53 \\ 11.29$	8550 8542 8534	1004.2 28.2 1002.9 28.2 1001.7 29.2	1 8618 2 8610 5 8601	$1010.8\\1009.5\\1008.3$	$28.43 \\ 28.94 \\ 29.48$	8685 8677 8669	$1017.4 \\ 1016.1 \\ 1014.8$	$28.65 \\ 29.17 \\ 29.71$	8753 8745 8736	$1024.0 \\ 1022.7 \\ 1021.4$	$28.88 \\ 29.40 \\ 29.94$
198 197 196	$11.06 \\ 10.83 \\ 10.61$	8526 8518 8509	1000.4 29.1 999.1 30.3 997.8 30.9	8 8593 3 8585 0 8576	$1007.0\\1005.6\\1004.3$	$30.02 \\ 30.57 \\ 31.14$	8661 8652 8643	$1013.6\\1012.2\\1010.9$	$30.25 \\ 30.81 \\ 31.38$	8728 8719 8710	$1020.2 \\ 1018.7 \\ 1017.4$	$30.49 \\ 31.05 \\ 31.63$
195 194 193	$10.39 \\ 10.17 \\ 9.96$	8502 8494 8486	$\begin{array}{c} 996.5 \\ 995.2 \\ 994.0 \\ 32.7 \end{array}$	8 8569 8 8560 0 8552	$1003.1 \\ 1001.8 \\ 1000.5$	$31.73 \\ 32.33 \\ 32.95$	8635 8627 8619	$1009.6\\1008.3\\1007.1$	$31.98 \\ 32.58 \\ 33.21$	8702 8693 8685	$1016.2 \\ 1014.9 \\ 1013.6$	$32.22 \\ 32.83 \\ 33.46$
192 191 190	$9.75 \\ 9.54 \\ 9.34$	8477 8469 8461	992.7 33.3 991.4 33.9 990.2 34.6	2 8544 7 8535 2 8527	999.2 997.9 996.7	$33.58 \\ 34.23 \\ 34.89$	8610 8601 8593	1005.7 1004.4 1003.2	$33.85 \\ 34.50 \\ 35.16$	8676 8667 8659	$1012.3 \\ 1010.9 \\ 1009.7$	$34.11 \\ 34.76 \\ 35.43$
189 188 187	$9.14 \\ 8.95 \\ 8.76$	8453 8445 8437	988.9 35.2 987.6 35.9 986.4 36.0	9 8519 7 8510 6 8502	995.4 994.1 992.8	35.57 36.25 36.94	8585 8576 8568	1001.9 1000.6 999.3	$35.84 \\ 36.53 \\ 37.23$	8651 8642 8634	$1008.4 \\ 1007.0 \\ 1005.8$	$36.12 \\ 36.81 \\ 37.51$
186 185 184		8428 8420 8412	985.1 37.3 983.8 38.0 982.5 38.8	6 8494 8 8486 4 8477	991.5 990.2 988.9	37.65 38.38 39.14	8559 8551 8542	998.0 996.7 995.3	$37.94 \\ 38.68 \\ 39.44$	8625 8616 8607	1004.4 1003.1 1001.8	$38.23 \\ 38.97 \\ 39.74$
183 182 181	8.02 7.85 7.68	8404 8397 8389	981.2 39.6 979.9 40.4 978.6 41.2	0 8469 0 8461 1 8453	987.6 986.4 985.0	$39.91 \\ 40.71 \\ 41.53$	8534 8526 8518	994.1 992.8 991.4	$\begin{array}{r} 40.21 \\ 41.02 \\ 41.85 \end{array}$	8599 8591 8583	1000.5 999.2 997.8	$\begin{array}{r} 40.52 \\ 41.33 \\ 42.17 \end{array}$

e, ahr.	ound		1.52			1.53			1.54			1.55	
Temperatur Degrees I	Pressure, Po per Squan Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
180 179 178	7.51 7.35 7.19	8122 8114 8107	$951.7 \\ 950.4 \\ 949.2$	$\begin{array}{r} 40.77 \\ 41.55 \\ 42.40 \end{array}$	8186 8179 8171	958.1 956.8 955.6	$\begin{array}{r} 41.09 \\ 41.88 \\ 42.74 \end{array}$	8251 8243 8236	$964.5 \\ 963.2 \\ 961.9$	$\begin{array}{r} 41.42 \\ 42.21 \\ 43.07 \end{array}$	8316 8308 8300	$970.8 \\ 969.6 \\ 968.3$	$\begin{array}{r} 41.74 \\ 42.54 \\ 43.41 \end{array}$
177 176 175	$\begin{array}{c} 7.03 \\ 6.87 \\ 6.71 \end{array}$	8100 8092 8084	$\begin{array}{r} 947.9 \\ 946.6 \\ 945.4 \end{array}$	$\begin{array}{r} 43.25 \\ 44.10 \\ 45.03 \end{array}$	$8164 \\ 8156 \\ 8148$	$954.3 \\ 953.0 \\ 951.7$	43.59 44.45 45.39	8228 8220 8212	$\begin{array}{c} 960.7 \\ 959.3 \\ 958.1 \end{array}$	$\begin{array}{r} 43.94 \\ 44.80 \\ 45.74 \end{array}$	8292 8284 8276	967.0 965.7 964.4	$\begin{array}{r} 44.28 \\ 45.15 \\ 46.10 \end{array}$
174 173 172	$\begin{array}{c} 6.56 \\ 6.42 \\ 6.27 \end{array}$	8077 8070 8062	$\begin{array}{r} 944.1 \\ 942.9 \\ 941.6 \end{array}$	$45.96 \\ 46.88 \\ 47.81$		$950.5 \\ 949.2 \\ 947.9$	$\begin{array}{r} 46.32 \\ 47.25 \\ 48.19 \end{array}$	8205 8197 8189	$956.8 \\ 955.5 \\ 954.3$	$\begin{array}{r} 46.68 \\ 47.62 \\ 48.56 \end{array}$	$8268 \\ 8261 \\ 8253$	$963.1 \\ 961.9 \\ 960:6$	$\begin{array}{r} 47.05 \\ 47.99 \\ 48.94 \end{array}$
171 170 169	$ \begin{array}{r} 6.13 \\ 5.99 \\ 5.85 \end{array} $	8054 8047 8039	$\begin{array}{r} 940.3 \\ 939.0 \\ 937.8 \end{array}$	$\begin{array}{r} 48.81 \\ 49.89 \\ 51.0 \end{array}$	8117 8110 8102	$946.6 \\ 945.3 \\ 944.1$	$49.19 \\ 50.3 \\ 51.4$	$\begin{array}{r} 8181 \\ 8173 \\ 8165 \end{array}$	$952.9 \\ 951.6 \\ 950.3$	$\begin{array}{r} 49.58 \\ 50.7 \\ 51.8 \end{array}$	8244 8236 8228	$959.2 \\ 957.9 \\ 956.6$	${}^{49.96}_{51.1}_{52.2}$
168 167 166	$5.72 \\ 5.59 \\ 5.46$	8032 8024 8017	$\begin{array}{r} 936.5 \\ 935.2 \\ 934.0 \end{array}$	$52.0 \\ 53.1 \\ 54.3$	8095 8087 8079	$942.8 \\ 941.5 \\ 940.2$	$52.5 \\ 53.5 \\ 54.7$	$8158 \\ 8150 \\ 8142$	$\begin{array}{r} 949.1 \\ 947.8 \\ 946.5 \end{array}$	$\begin{array}{c} 52.9\\54.0\\55.1\end{array}$	8221 8212 8205	$955.3 \\ 954.0 \\ 952.7$	$53.3 \\ 54.4 \\ 55.5$
165 164 163	$5.33 \\ 5.21 \\ 5.09$	8009 8002 7994	$\begin{array}{r} 932.7 \\ 931.4 \\ 930.1 \end{array}$	$55.3 \\ 56.5 \\ 57.6$	$\begin{array}{r} 8072 \\ 8064 \\ 8057 \end{array}$	938.9 937.6 936.3	$55.8 \\ 56.9 \\ 58.1$	8134 8127 8119	$\begin{array}{r} 945.2 \\ 943.9 \\ 942.6 \end{array}$	$56.2 \\ 57.4 \\ 58.5$	8197 8189 8181	$951.4 \\ 950.1 \\ 948.8$	$56.6 \\ 57.8 \\ 59.0$
162 161 160	$\begin{array}{r} 4.969 \\ 4.852 \\ 4.738 \end{array}$	7987 7979 7972	$928.8 \\ 927.6 \\ 926.3$	$58.9 \\ 60.2 \\ 61.5$	$\begin{array}{r} 8049 \\ 8041 \\ 8034 \end{array}$	$935.0 \\ 933.8 \\ 932.5$	$59.3 \\ 60.6 \\ 62.0$	$\begin{array}{r} 8111 \\ 8103 \\ 8096 \end{array}$	$\begin{array}{c} 941.2 \\ 940.0 \\ 938.7 \end{array}$	59.8 61.1 62.5	8173 8165 8157	947.5946.2944.9	${60.2 \\ 61.6 \\ 63.0}$
159 158 157	$\begin{array}{r} 4.626 \\ 4.517 \\ 4.409 \end{array}$	7964 7957 7950	$925.0 \\ 923.7 \\ 922.4$	$\begin{array}{c} 62.8 \\ 64.2 \\ 65.7 \end{array}$	8026 8018 8011	$\begin{array}{r} 931.2 \\ 929.9 \\ 928.6 \end{array}$	$63.3 \\ 64.7 \\ 66.2$	8088 8080 8072	$\begin{array}{r} 937.4 \\ 936.0 \\ 934.8 \end{array}$	$\begin{array}{c} 63.8 \\ 65.2 \\ 66.7 \end{array}$	8150 8142 8134	943.5942.2940.9	$\begin{array}{c} 64.3 \\ 65.7 \\ 67.2 \end{array}$
156 155 154	$\begin{array}{r} 4.303 \\ 4.200 \\ 4.099 \end{array}$	7942 7934 7926	$921.1 \\ 919.8 \\ 918.5$	67.1 68.5 70.1	8003 7995 7987	$927.3 \\ 926.0 \\ 924.6$	$67.6 \\ 69.1 \\ 70.6$	$ \begin{array}{r} 8065 \\ 8056 \\ 8048 \end{array} $	$\begin{array}{r} 933.4 \\ 932.1 \\ 930.8 \end{array}$	$\begin{array}{c} 68.1 \\ 69.6 \\ 71.1 \end{array}$	8126 8118 8109	$939.6 \\ 938.3 \\ 936.9$	68.7 70.1 71.7
153 152 151	$\begin{array}{r} 4.000 \\ 3.903 \\ 3.808 \end{array}$	7919 7911 7903	$917.2 \\ 915.9 \\ 914.6$	71.6 73.2 74.8	7980 7972 7964	$923.4 \\ 922.0 \\ 920.7$	$72.1 \\ 73.7 \\ 75.4$	8041 8033 8024	$\begin{array}{r} 929.5 \\ 928.2 \\ 926.8 \end{array}$	72.7 74.3 76.0	8102 8093 8085	$935.6 \\ 934.3 \\ 932.9$	73.274.976.6
150 149 148	$3.715 \\ 3.624 \\ 3.535$	7896 7888 7881	$913.3 \\ 912.0 \\ 910.7$	76.5 78.3 80.1	7957 7949 7941	$919.4 \\ 918.1 \\ 916.8$	$77.1 \\ 78.8 \\ 80.7$	8017 8009 8002	$925.5 \\ 924.2 \\ 922.9$	77.7 79.4 81.3	8078 8069 8062	$931.6 \\ 930.3 \\ 929.0$	78.3 80.0 81.9
147 146 145	$3.447 \\ 3.361 \\ 3.278$	7873 7866 7858	909.4 908.1 906.8	81.9 83.8 85.6	7933 7926 7917	915.5914.2912.8	$ \begin{array}{r} 82.5 \\ 84.4 \\ 86.3 \end{array} $	7993 7986 7977	$\begin{array}{c} 921.5\\ 920.2\\ 918.9\end{array}$	83.1 85.0 87.0	8053 8046 8037	927.6 926.3 924.9	83.8 85.7 87.6
144 143 142	$3.196 \\ 3.116 \\ 3.037$	7850 7842 7835	905.5 904.1 902.8	87.6 89.6 91.7	$7910 \\ 7902 \\ 7894$	911.5 910.2 908.9	88.3 90.3 92.4	7970 7961 7954	$917.6 \\ 916.2 \\ 914.9$	88.9 91.0 93.1	8029 8021 8013	923.6922.2920.9	89.6 91.7 93.8
141 140 139	$2.960 \\ 2.885 \\ 2.812$	7827 7820 7812	901.5 900.2 898.9	93.9 96.0 98:3	7887 7879 7871	907.5906.2904.9	94.6 96.8 99.0	7946 7938 7930	913.5912.2910.8	95.3 97.5 99.8 7	005 997 989	$\begin{array}{c}919.6\\918.2\\916.8\\1\end{array}$	96.0 98.2 00.5
138 137 136	$2.740 \\ 2.669 \\ 2.600$	7805 7797 7789	$\begin{array}{c} 897.6\\ 896.2\\ 894.9\\ 1\end{array}$	00.6 03.0 05.5	7864 7855 7848	903.5 902.2 900.8	$\begin{array}{c} 01.4 \\ 03.8 \\ 06.3 \end{array}$	7923 7914 7907	$\begin{array}{r} 909.5 \\ 908.1 \\ 906.8 \\ 1 \end{array}$	$\begin{array}{c c}02.1 \\ 7\\04.5 \\ 7\\07.1 \end{array}$	982 973 965	915.51914.11912.71	02.9 05.3 07.8
135 134 133	$2.533 \\ 2.467 \\ 2.403$	7782 7774 7766	$\begin{array}{c} 893.6\\ 892.2\\ 890.9\\ 1\end{array}$	08.0 10.5 13.2	7840 7832 7825	899.5 898.1 896.8	08.8 11.4 14.1	7899 7890 7883	$\begin{array}{c} 905.5\\904.1\\902.7\\1\end{array}$	$\begin{array}{c c}09.6\\12.2\\14.9\end{array}$	957 949 941	911.4 910.0 908.6 1	10.4 13.0 15.8

88

8

.

ahr.	e		1.56		1.57			1.58			1.59	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
180 179 178	7.51 7.35 7.19	8380 8372 8364	977.2 42.07 976.0 42.87 974.7 43.75	8445 8437 8429	983.6 982.3 981.1	$\begin{array}{r} 42.39 \\ 43.20 \\ 44.08 \end{array}$	8509 8501 8493	990.0 988.7 987.4	$\begin{array}{r} 42.72 \\ 43.53 \\ 44.42 \end{array}$	8574 8566 8557	996.4 995.1 993.8	$\begin{array}{r} 43.04 \\ 43.86 \\ 44.76 \end{array}$
177 176 175	$7.03 \\ 6.87 \\ 6.71$	8357 8348 8340	973.4 44.62 972.1 45.50 970.8 46.45	8421 8412 8404	979.8 978.4 977.1	$\begin{array}{r} 44.97 \\ 45.85 \\ 46.81 \end{array}$	8485 8476 8468	986.1 984.8 983.5	$45.31 \\ 46.19 \\ 47.17$	8549 8540 8532	992.5 991.1 989.8	$\begin{array}{r} 45.65 \\ 46.54 \\ 47.52 \end{array}$
174 173 172	$\begin{array}{c} 6.56 \\ 6.42 \\ 6.27 \end{array}$	8332 8324 8316	$\begin{array}{c} 969.5 \\ 968.2 \\ 966.9 \\ 49.32 \end{array}$	8396 8388 8380	975.8 974.5 973.2	47.77 48.73 49.69	8460 8452 8443	982.1 980.8 979.5	$48.14 \\ 49.10 \\ 50.1$	8524 8515 8507	988.5 987.2 985.8	$48.50 \\ 49.47 \\ 50.4$
171 170 169	6.13 5.99 5.85	8308 8300 8291	$\begin{array}{c} 965.5 \\ 964.2 \\ 962.9 \\ 52.6 \end{array} $	8371 8363 8355	$971.8 \\ 970.5 \\ 969.2$	$50.7 \\ 51.8 \\ 53.0$	8434 8426 8418	978.1 976.8 975.5	$51.1 \\ 52.2 \\ 53.4$	8498 8489 8481	984.4 983.1 981.8	$51.5 \\ 52.6 \\ 53.8 $
168 167 166	$5.72 \\ 5.59 \\ 5.46$	8284 8275 8267	$\begin{array}{c} 961.6 \\ 53.7 \\ 960.3 \\ 54.8 \\ 959.0 \\ 56.0 \end{array}$	8347 8338 8330	967.9 966.6 965.2	$54.1 \\ 55.2 \\ 56.4$	8410 8401 8393	974.2 972.8 971.5	$54.5 \\ 55.6 \\ 56.8$	8473 8464 8455	980.4 979.1 977.7	$54.9 \\ 56.0 \\ 57.2$
165 164 163	$5.33 \\ 5.21 \\ 5.09$	8259 8251 8243	$\begin{array}{c} 957.7 \\ 956.3 \\ 955.0 \\ 59.4 \end{array}$	8322 8314 8306	963.9 962.6 961.2	57'.5 58.7 59.9	8385 8376 8368	970.1 968.8 967.5	$57.9 \\ 59.1 \\ 60.3$	8447 8439 8430	976.4 975.0 973.7	$58.4 \\ 59.6 \\ 60.8$
162 161 160	$\begin{array}{r} 4.969 \\ 4.852 \\ 4.738 \end{array}$	8235 8227 8219	$\begin{array}{c} 953.7 \\ 952.4 \\ 951.1 \\ 63.5 \end{array}$	8297 8289 8281	959.9 958.6 957.3	$ \begin{array}{r} 61.2 \\ 62.5 \\ 63.9 \end{array} $	8359 8351 8343	966.1 964.8 963.5	$ \begin{array}{r} 61.6 \\ 63.0 \\ 64.4 \end{array} $	8421 8413 8405	972.3 971.0 969.7	$ \begin{array}{r} 62.1 \\ 63.4 \\ 64.9 \end{array} $
159 158 157	4.626 4.517 4.409	8211 8203 8195	$\begin{array}{r} 949.7 \\ 948.4 \\ 66.2 \\ 947.1 \\ 67.7 \end{array}$	8273 8265 8257	955.9 954.6 953.3	$\begin{array}{c} 65.3 \\ 66.7 \\ 68.2 \end{array}$	8335 8326 8318	962.1 960.7 959.4	$ \begin{array}{r} 65.8 \\ 67.2 \\ 68.7 \end{array} $	8396 8388 8380	968.3 966.9 965.6	$ \begin{array}{r} 66.2 \\ 67.7 \\ 69.2 \end{array} $
156 155 154	4.303 4.200 4.099	8187 8179 8170	$\begin{array}{c} 945.8 \\ 944.4 \\ 70.7 \\ 943.0 \\ 72.2 \end{array}$	8248 8240 8231	951.9 950.5 949.2	$69.7 \\ 71.2 \\ 72.8$	8310 8301 8293	958.1 956.7 955.3	$70.2 \\ 71.7 \\ 73.3$	8371 8362 8354	964.2 962.8 961.5	70.7 72.3 73.8
153 152 151	4.000 3.903 3.808	8163 8154 8146	$\begin{array}{c} 941.7 \\ 940.4 \\ 75.4 \\ 939.0 \\ 77.1 \end{array}$	8224 8215 8206	947.9 946.5 945.1	$74.3 \\ 76.0 \\ 77.7$	8284 8276 8267	954.0 952.6 951.2	74.9 76.5 78.3	8345 8336 8328	960.1 958.7 957.3	75.4 77.1 78.9
150 149 148	3.715 3.624 3.535	8138 8130 8122	$\begin{array}{c} 937.7 \\ 936.3 \\ 935.0 \\ 82.5 \end{array}$	8199 8190 8182	943.8 942.4 941.1	79.4 81.2 83.1	8259 8250 8243	949.9 948.5 947.2	80.0 81.8 83.7	8320 8311 8303	956.0 954.6 953.3	80.6 82.4 84.4
147 146 145	3.447 3.361 3.278	8114 8106 8097	$\begin{array}{c} 933.7\\932.3\\930.9\\88.3\end{array}$	8174 8165 8157	939.7 938.4 937.0	85.0 87.0 88.9	8234 8225 8217	945.8 944.4 943.0	85.6 87.6 89.6	8294 8285 8276	951.8 950.5 949.1	86.3 88.2 90.2
144 143 142	3.196 3.116 3.037	8089 8081 8073	$\begin{array}{c} 929.6 \\ 928.2 \\ 926.9 \\ 94.5 \end{array}$	8149 8140 8132	935.7 934.3 932.9	90.9 93.0 95.2	8208 8200 8192	941.7 940.3 938.9	91.6 93.7 95.9	8268 8259 8251	947.3 946.3 944.9	$\begin{array}{c} 92.3 \\ 94.4 \\ 96.6 \end{array}$
141 140 139	2.960 2.885 2.812	8065 8056 8048	925.6 96.7 924.2 98.9 922.8 101.3	8124 8115 8107	931.6 930.2 928.8	97.4 99.7 102.0	8183 8175 8166	937.6 936.1 934.8	98.1 100.4 102.8	8243 8234 8226	943.0 942.1 940.8	8 98.8 101.1 103.5
138 137 136	2.740 2.669 2.600	8041 8032 8024	921.5 103. 920.1 106. 918.7 108.	6 8099 1 8091 6 8083	927.4 926.0 924.7	104.4 106.9 109.4	8158 8149 8141	933.4 932.0 930.0	105.2 107.7 110.2	8217 8208 8200	939.4 938.0 936.0	4 105.9 108.4 111.0
135 134 133	2.533 2.467 2.403	8 8016 8007 7999	917.3 111. 915.9 113. 914.6 116.	8 8075 8066 8058	923.3 921.9 920.3	$\begin{array}{c}3 \\ 112.1 \\ 114.7 \\ 117.5 \end{array}$	8133 8124 8116	929.2 927.8 926.4	2 112.9 3 115.5 118.3	8192 8182 8174	935. 933. 932.	$\begin{array}{c}2 \\ 113.7 \\ 116.4 \\ 3 \\ 119.2 \end{array}$

e, ahr.	bund		1.52			1.53		-	1.54		-	1.55	
Temperatur Degrees F	Pressure, Poper Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
132 131 130	$2.341 \\ 2.280 \\ 2.220$	7759 7751 7744	889.5 888.2 886.9	$116.0 \\ 118.7 \\ 121.7$	7817 7809 7802	895.4 894.1 892.8	$116.9 \\ 119.6 \\ 122.6$	7875 7867 7860	901.4 900.0 898.7	$117.7 \\ 120.5 \\ 123.5$	7933 7925 7917	$907.3 \\ 905.9 \\ 904.6$	$118.6 \\ 121.4 \\ 124.4$
129 128 127	$2.161 \\ 2.103 \\ 2.047$	7736 7729 7721		${}^{124.6}_{127.7}_{130.8}$	7794 7786 7778	891.4 890.1 888.8	$125.6\\128.6\\131.8$	7852 7844 7836	897.3 895.9 894.6	$126.5 \\ 129.6 \\ 132.7$	7909 7901 7893	903.2 901.8 900.5	$127.4 \\ 130.5 \\ 133.7$
126 125 124	$1.992 \\ 1.938 \\ 1.886$	7713 7705 7698	881.5 880.2 878.8	$^{134.1}_{137.4}_{140.8}$	7770 7763 7755		$135.0 \\ 138.4 \\ 141.8$	7828 7820 7812	893.2 891.9 890.5	$136.0 \\ 139.4 \\ 142.9$	7885 7877 7869		$137.0 \\ 140.4 \\ 143.9$
123 122 121	$1.835 \\ 1.785 \\ 1.737 \\ 1.737 \\ \end{array}$	$7690 \\ 7682 \\ 7675$	877.5 876.1 874.8	$144.3 \\ 148.0 \\ 151.8$	7747 7739 7732		$145.4 \\ 149.1 \\ 152.9$	7804 7796 7788		$146.5 \\ 150.2 \\ 154.1$	$7861 \\ 7853 \\ 7845$		$147.5 \\ 151.3 \\ 155.2$
120 119 118	$1.689 \\ 1.642 \\ 1.597$	7667 7659 7652	$873.4 \\ 872.1 \\ 870.7$	$155.6 \\ 159.6 \\ 163.7$	7724 7716 7708	$879.2 \\ 877.9 \\ 876.5$	$156.8 \\ 160.8 \\ 164.9$	7780 7772 7764	885.0 883.7 882.3	$157.9\\162.0\\166.2$	7837 7828 7821	890.8 889.4 888.0	$159.1 \\ 163.1 \\ 167.4$
117 116 115	$1.552 \\ 1.509 \\ 1.467$	$7644 \\ 7636 \\ 7628$	869.3 867.9 866.6	$168.0 \\ 172.3 \\ 176.8$	$7700 \\ 7692 \\ 7684$	$875.1 \\ 873.7 \\ 872.4$	$169.2 \\ 173.6 \\ 178.1$	7756 7748 7740	$880.9 \\ 879.4 \\ 878.1$	$170.5 \\ 174.9 \\ 179.4$	7812 7804 7796	886.6 885.2 883.8	$171.7 \\ 176.1 \\ 180.7$
114 113 112	$1.426 \\ 1.386 \\ 1.347$	$7620 \\ 7612 \\ 7605$	$ \begin{array}{r} 865.2 \\ 863.9 \\ 862.5 \end{array} $	$181.4 \\ 186.0 \\ 190.9$	$7676 \\ 7668 \\ 7660$	871.0 869.6 868.2	$182.7 \\ 187.4 \\ 192.3$	$\begin{array}{c} 7732 \\ 7724 \\ 7716 \end{array}$	876.7 875.3 873.9	$184.0\\188.8\\193.7$	7788 7779 7771		$185.3 \\ 190.1 \\ 195.1$
111 110 109	$1.308 \\ 1.271 \\ 1.235$	7597 7589 7581	$ \begin{array}{r} 861.2 \\ 859.8 \\ 858.4 \end{array} $	$196.0 \\ 201.3 \\ 206.7$	$7652 \\ 7644 \\ 7636$	$ \begin{array}{r} 866.8 \\ 865.4 \\ 864.1 \end{array} $	$207.4 \\ 202.7 \\ 208.2$	$7707 \\ 7699 \\ 7691$	$872.5 \\ 871.1 \\ 869.7$	$198.8 \\ 204.2 \\ 209.7$	$7763 \\ 7755 \\ 7746$	878.2 876.8 875.4	$200.3 \\ 205.7 \\ 211.2$
108 107 106	$1.200 \\ 1.165 \\ 1.131$	7573 7565 7558		$212.2 \\ 218.0 \\ 224.0$	7629 7620 7612		$213.7 \\ 219.6 \\ 225.6$	7684 7675 7667	868.3 866.9 865.5	$215.3 \\ 221.2 \\ 227.3$	7739 7730 7722	$874.0 \\ 872.6 \\ 871.2$	$216.8 \\ 222.8 \\ 228.9$
105 104 103	$1.098 \\ 1.066 \\ 1.035$	7550 7542 7534	$852.8 \\ 851.4 \\ 850.1$	$230.1 \\ 236.4 \\ 242.9$	7605 7596 7589	858:5 857.1 855.7	$231.8 \\ 238.1 \\ 244.7$	$7659 \\ 7651 \\ 7643$	864.1 862.7 861.3	$233.5 \\ 239.9 \\ 246.4$	$7714 \\ 7705 \\ 7697$	869.8 868.3 866.9	$235.1 \\ 241.5 \\ 248.2$
102 101 100	$\begin{array}{c} 1.005 \\ 0.975 \\ 0.946 \end{array}$	$7526 \\ 7519 \\ 7511$	$ \begin{array}{r} 848.7 \\ 847.3 \\ 845.9 \end{array} $	$249.6 \\ 256.5 \\ 263.5$	7581 7573 7565	$854.3 \\ 852.9 \\ 851.5$	$251.4 \\ 258.3 \\ 265.4$	$7635 \\ 7627 \\ 7619$	859.9 858.5 857.1	$253.2 \\ 260.2 \\ 267.3$	7689 7681 7673	$ \begin{array}{r} 865.5 \\ 864.1 \\ 862.7 \end{array} $	$255.0 \\ 262.0 \\ 269.2$
99 98 97	$\begin{array}{c} 0.918 \\ 0.891 \\ 0.864 \end{array}$	7503 7495 7487	844.5 843.1 841.8	$270.8 \\ 278.3 \\ 286.1$	7557 7549 7541	850.1 848.7 847.4	$272.7 \\ 280.3 \\ 288.1$	$7611 \\ 7603 \\ 7595$	855.7 854.2 852.9	$274.7 \\ 282.3 \\ 290.2$	$7665 \\ 7656 \\ 7648$	861.3 859.8 858.5	$276.6 \\ 284.3 \\ 292.2$
96 95 94	$\begin{array}{c} 0.838 \\ 0.813 \\ 0.788 \end{array}$	7480 7472 7464	840.4 839.0 837.6	$294.2 \\ 302.5 \\ 311.0$	7533 7525 7517	$ \begin{array}{r} 846.0 \\ 844.6 \\ 843.1 \end{array} $	$296.3 \\ 304.6 \\ 313.2$	7587 7579 7571	$851.5 \\ 850.1 \\ 848.7$	$298.4 \\ 306.8 \\ 315.5$	$7640 \\ 7632 \\ 7624$	$857.1 \\ 855.7 \\ 854.2$	$300.5 \\ 308.9 \\ 317.7$
93 92 91	$\begin{array}{c} 0.764 \\ 0.741 \\ 0.718 \end{array}$	7456 7448 7440	836.2 834.8 833.4	$319.9 \\ 329.2 \\ 338.8$	$7509 \\ 7501 \\ 7493$	$ \begin{array}{r} 841.7 \\ 840.3 \\ 838.9 \end{array} $	$322.2 \\ 331.6 \\ 341.2$	$7563 \\ 7554 \\ 7546$	$847.3 \\ 845.8 \\ 844.4$	$324.5 \\ 333.9 \\ 343.7$	7616 7607 7599	$852.8 \\ 851.3 \\ 849.9$	$326.8 \\ 336.2 \\ 346.1$
90 89 88	$\begin{array}{c} 0.696 \\ 0.675 \\ 0.654 \end{array}$	7433 7425 7417	832.0 830.6 829.1	$348.7 \\ 358.9 \\ 369.4$	7485 7477 7469	837.5 836.1 834.6	$351.2 \\ 361.5 \\ 372.0$	7538 7530 7522	$ \begin{array}{r} 843.0 \\ 841.6 \\ 840.1 \end{array} $	353.7 364.0 374.6	7591 7583 7574	$848.4 \\ 847.0 \\ 845.5$	$356.2 \\ 366.5 \\ 377.2$
87 86 85	$\begin{array}{c} 0.633 \\ 0.613 \\ 0.594 \end{array}$	7409 7401 7393	827.7 826.3 824.9	$380.1 \\ 390.8 \\ 402.2$	7462 7454 7446	833.2 831.8 830.3	$382.8 \\ 393.5 \\ 405.0$	$7514 \\ 7506 \\ 7498$	838.7 837.2 835.8	$385.5 \\ 396.3 \\ 407.9$	7567 7558 7550	$844.1 \\ 842.7 \\ 841.2$	$388.2 \\ 399.1 \\ 410.7$

ahr.	ands		1.56	=		1.57			1.58			1.59	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
132 131 130	$2.341 \\ 2.280 \\ 2.220$	7991 7983 7975	913.2 911.8 910.4	119.5 122.3 125.3	8049 8041 8033	919.1 917.7 916.3	$120.3 \\ 123.2 \\ 126.2$	8108 8099 8091	925.0 923.6 922.2	$121.2 \\ 124.1 \\ 127.1$	8166 8157 8149	$930.9 \\ 929.5 \\ 928.1$	$122.1 \\ 125.0 \\ 128.0$
129 128 127	$2.161 \\ 2.103 \\ 2.047$	7967 7959 7951	909.1 907.7 906.3	$128.3 \\ 131.5 \\ 134.7$	8025 8017 8008	915.0 913.6 912.2	$129.3 \\ 132.4 \\ 135.7$	8083 8074 8066	920.8 919.4 918.0	$130.2 \\ 133.4 \\ 136.6$	8140 8132 8123	926.7 925.3 923.9	$131.1 \\ 134.3 \\ 137.6$
126 125 124	$1.992 \\ 1.938 \\ 1.886$	7942 7934 7926	904.9 903.6 902.1	$138.0 \\ 141.5 \\ 145.0$	8000 7991 7983	910.8 909.4 908.0	$139.0 \\ 142.5 \\ 146.0$	8057 8049 8040	916.6 915.3 913.8	140.0 143.5 147.1	8115 8106 8097	922.5 921.1 919.6	$141.0 \\ 144.5 \\ 148.1$
123 122 121	$1.835 \\ 1.785 \\ 1.737$	7918 7910 7902	900.8 899.3 898.0	$148.6 \\ 152.4 \\ 156.3$	7975 7966 7958	906.6 905.1 903.8	149.7 153.5 157.4	8032 8023 8015	912.5 911.0 909.6	$150.8 \\ 154.6 \\ 158.5$	8088 8080 8072	918.3 916.8 915.4	151.8 155.7 159.7
120 119 118	$1.689 \\ 1.642 \\ 1.597$	7893 7885 7877	896.6 895.2 893.8	$160.2 \\ 164.3 \\ 168.6$	7950 7941 7933	902.4 901.0 899.6	$161.4 \\ 165.5 \\ 169.8$	8007 7998 7990	908.2 906.8 905.4	$162.5 \\ 166.7 \\ 171.0$	8063 8054 8046	914.0 912.6 911.1	$163.7 \\ 167.8 \\ 172.2$
117 116 115	$1.552 \\ 1.509 \\ 1.467$	7869 7860 7852	892.4 890.9 889.6	$172.9 \\ 177.4 \\ 182.0$	7925 7916 7908	898.2 896.7 895.3	174.2 178.7 183.3	7981 7972 7964	903.9 902.4 901.0	$175.4 \\ 179.9 \\ 184.6$	8037 8028 8020	909.7 908.2 906.8	$176.7 \\ 181.2 \\ 185.9$
114 113 112	$1.426 \\ 1.386 \\ 1.347$	7843 7835 7827	888.2 886.8 885.4	$186.7 \\ 191.5 \\ 196.5$	7899 7891 7882	893.9 892.5 891.1	188.0 192.8 197.9	7955 7946 7938	899.6 898.2 896.8	$189.3 \\ 194.2 \\ 199.3$	8011 8002 7993	905.4 904.0 902.5	$190.7 \\ 195.6 \\ 200.7$
111 110 109	$1.308 \\ 1.271 \\ 1.235$	7818 7810 7801	884.0 882.5 881.1	$201.7 \\ 207.1 \\ 212.7$	7874 7866 7857	889.7 888.2 886.8	$203.1 \\ 208.6 \\ 214.2$	7929 7921 7912	895.4 893.9 892.5	204.6 210.1 215.7	7984 7976 7967	901.1 899.6 898.2	$206.0 \\ 211.5 \\ 217.2$
108 107 106	$1.200 \\ 1.165 \\ 1.131$	7794 7785 7777	879.7 878.3 876.8	$218.4 \\ 224.4 \\ 230.5$	7849 7840 7831	885.4 884.0 882.5	$219.9 \\ 225.9 \\ 232.1$	7904 7895 7886	891.0 889.6 888.1	221.5 227.5 233.7	7959 7950 7941	896.7 895.3 893.8	$223.0 \\ 229.1 \\ 235.4$
105 104 103	1.098 1.066 1.035	7769 7760 7752	875.4 874.0 872.6	$236.8 \\ 243.3 \\ 249.9$	7823 7814 7806	881.1 879.6 878.2	$238.4 \\ 245.0 \\ 251.7$	7878 7869 7861	886.7 885.2 883.8	$240.1 \\ 246.7 \\ 253.4$	7933 7923 7915	892.4 890.9 889.5	$241.8 \\ 248.4 \\ 255.2$
102 101 100	$\begin{array}{c} 1.005 \\ 0.975 \\ 0.946 \end{array}$	7744 7735 7727	871.1 869.7 868.3	$256.8 \\ 263.9 \\ 271.0$	7798 7790 7781	876.8 875.3 873.8	258.6 265.7 272.9	7852 7844 7835	882.4 880.9 879.4	260.4 267.5 274.8	7906 7898 7889	888.0 886.5 885.0	$262.2 \\ 269.4 \\ 276.7$
99 98 97	$\begin{array}{c} 0.918 \\ 0.891 \\ 0.864 \end{array}$	7718 7710 7702	866.9 865.4 864.0	$278.6 \\ 286.3 \\ 294.3$	7772 7764 7756	872.4 871.0 869.6	280.5 288.3 296.3	7826 7818 7809	878:0 876.5 875.1	$282.5 \\ 290.3 \\ 298.4$	7880 7872 7863	883.6 882.1 880.7	284.4 292.3 300.4
96 95 94	0.838 0.813 0.788	7694 7685 7677	862.6 861.2 859.7	$302.6 \\ 311.1 \\ 319.9$	7747 7739 7730	868.2 866.8 865.3	$304.7 \\ 313.3 \\ 322.1$	7801 7792 7784	873.7 872.3 870.8	$306.8 \\ 315.4 \\ 324.3$	7854 7846 7837	879.3 877.9 876.4	$308.9 \\ 317.6 \\ 326.6$
93 92 91	$\begin{array}{c} 0.764 \\ 0.741 \\ 0.718 \end{array}$	7669 7660 7652	858.3 856.9 855.4	$329.1 \\ 338.6 \\ 348.5$	7722 7713 7705	863.9 862.4 860.9	$331.4 \\ 340.9 \\ 350.9$	7775 7766 7758	869.4 867.9 866.4	333.6 343.3 353.3	7828 7819 7811	874.9 873.4 871.9	$335.9 \\ 345.6 \\ 355.7$
90 89 88	$\begin{array}{c} 0.696 \\ 0.675 \\ 0.654 \end{array}$	7644 7635 7627	853.9 852.5 851.0	358.6 369.1 379.8	7696 7688 7679	859.4 858.0 856.5	$361.1 \\ 371.6 \\ 382.4$	7749 7741 7732	864.9 863.5 862.0	$363.6 \\ 374.2 \\ 385.0$	7802 7793 7785	870.4 868.9 867.4	366.0 376.7 387.7
87 86 85	$\begin{array}{c} 0.633 \\ 0.613 \\ 0.594 \end{array}$	7619 7610 7602	849.5 848.1 846.7	$390.9 \\ 401.8 \\ 413.5$	7671 7663 7654		$393.5 \\ 404.6 \\ 416.4$	7724 7715 7706	860.5 859.0 857.5	$396.2 \\ 407.4 \\ 419.2$	7776 7767 7759	866.0 864.5 863.0	398.9 410.1 422.1

ahr.	e		1.60			1.61	1		1.62			1.63	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
420 419 418	$308.5 \\ 305.1 \\ 301.8$	$138.3 \\ 136.6 \\ 135.0$	$1287.8\\1286.7\\1285.6$	1.881 1.895 1.912	$158.4 \\ 156.7 \\ 155.0$	$1298.3 \\ 1297.1 \\ 1295.9$	$1.931 \\ 1.946 \\ 1.963$	$179.8 \\ 178.0 \\ 176.2$	$1309.0 \\ 1307.8 \\ 1306.7$	$1.983 \\ 2.000 \\ 2.016$	$201.4 \\ 199.5 \\ 197.7$	$1320.0\\1318.7\\1317.5$	$2.031 \\ 2.048 \\ 2.065$
417 416 415	$298.5 \\ 295.2 \\ 292.0$	$133.4 \\ 131.9 \\ 130.3$	$^{1284.5}_{1283.4}_{1282.3}$	$1.927 \\ 1.944 \\ 1.959$	$153.4 \\ 151.8 \\ 150.1$	$1294.7\\1293.6\\1292.5$	$1.979 \\ 1.996 \\ 2.013$	174.5 172.7 171.0	$1305.5 \\ 1304.3 \\ 1303.1$	$2.033 \\ 2.050 \\ 2.066$	$195.9\\194.0\\192.2$	$1316.2 \\ 1315.0 \\ 1313.7$	$2.082 \\ 2.099 \\ 2.116$
414 413 412	$288.9 \\ 285.7 \\ 282.5$	$128.7 \\ 127.1 \\ 125.5$	$\begin{array}{c} 1281.2 \\ 1280.1 \\ 1279.0 \end{array}$	$1.975 \\ 1.991 \\ 2.008$	$148.4 \\ 146.7 \\ 145.0$	$1291.3 \\ 1290.2 \\ 1289.0$	$2.030 \\ 2.047 \\ 2.064$	$169.2 \\ 167.5 \\ 165.8$	$1301.9\\1300.7\\1299.6$	$2.084 \\ 2.100 \\ 2.118$	$190.4 \\ 188.6 \\ 186.8$	$1312.5 \\ 1311.3 \\ 1310.2$	$2.133 \\ 2.150 \\ 2.168$
411 410 409	$279.4 \\ 276.3 \\ 273.3$	$124.0\\122.3\\120.8$	$\begin{array}{c} 1277.9\\ 1276.7\\ 1275.5 \end{array}$	$2.025 \\ 2.043 \\ 2.060$	$143.4 \\ 141.7 \\ 140.1$	$1287.9\\1286.7\\1285.6$	$2.081 \\ 2.098 \\ 2.116$	$164.0\\162.2\\160.5$	$1298.4\\1297.2\\1296.0$	$2.135 \\ 2.154 \\ 2.172$	$184.9\\183.0\\181.2$	$1308.9 \\ 1307.7 \\ 1306.5$	$2.187 \\ 2.205 \\ 2.224$
408 407 406	$270.3 \\ 267.3 \\ 264.3$	$119.2 \\ 117.7 \\ 116.1$	$\begin{array}{c} 1274.4 \\ 1273.3 \\ 1272.2 \end{array}$	$2.077 \\ 2.095 \\ 2.112$	$138.4 \\ 136.8 \\ 135.1$	$^{1284.5}_{1283.3}_{1282.1}$	$2.133 \\ 2.152 \\ 2.170$	$158.7 \\ 157.0 \\ 155.3$	$1294.8\\1293.6\\1292.4$	$2.190 \\ 2.208 \\ 2.226$	$179.4 \\ 177.6 \\ 175.7$	$1305.3 \\ 1304.0 \\ 1302.8$	$2.243 \\ 2.261 \\ 2.280$
405 404 403	$261.3 \\ 258.4 \\ 255.5$	$114.5 \\ 112.9 \\ 111.3$	$\begin{array}{c} 1271.1\\ 1270.0\\ 1268.9 \end{array}$	$2.130 \\ 2.148 \\ 2.167$	$133.4 \\ 131.8 \\ 130.1$	$1281.0\\1279.9\\1278.7$	$2.188 \\ 2.206 \\ 2.225$	$153.5 \\ 151.8 \\ 150.0$	$1291.3 \\ 1290.1 \\ 1288.9$	$2.244 \\ 2.263 \\ 2.282$	174.0 172.2 170.3	$1301.6 \\ 1300.4 \\ 1299.1$	$2.299 \\ 2.318 \\ 2.337$
402 401 400	$252.6 \\ 249.7 \\ 246.9$	$109.7 \\ 108.2 \\ 106.7$	$\begin{array}{c} 1267.8\\ 1266.7\\ 1265.6\end{array}$	$2.185 \\ 2.203 \\ 2.223$	$128.6 \\ 126.9 \\ 125.3$	$1277.6 \\ 1276.4 \\ 1275.3$	$2.243 \\ 2.261 \\ 2.280$	$148.3 \\ 146.6 \\ 144.9$	$1287.8 \\ 1286.6 \\ 1285.4$	$2.302 \\ 2.321 \\ 2.340 \\ $	$168.5 \\ 166.8 \\ 164.9$	$1297.9\\1296.7\\1295.5$	$2.356 \\ 2.377 \\ 2.398$
399 398 397	$244.1 \\ 241.4 \\ 238.6$	$105.2 \\ 103.6 \\ 102.0$	$\begin{array}{c} 1264.4\\ 1263.3\\ 1262.2 \end{array}$	$2.241 \\ 2.260 \\ 2.279$	$123.6\\122.0\\120.4$	$1274.2 \\ 1273.1 \\ 1271.9$	$2.301 \\ 2.320 \\ 2.340$	$143.0 \\ 141.4 \\ 139.6$	$^{1284.2}_{1283.0}_{1281.8}$	$2.360 \\ 2.380 \\ 2.400$	$163.1 \\ 161.3 \\ 159.5$	$1294.3 \\ 1293.1 \\ 1291.9$	$2.418 \\ 2.438 \\ 2.459$
396 395 394	$235.9 \\ 233.2 \\ 230.5$	$100.5 \\ 99.0 \\ 97.5$	$\begin{array}{c} 1261.1\\ 1260.1\\ 1259.0 \end{array}$	$2.300 \\ 2.320 \\ 2.340$	$118.6 \\ 117.0 \\ 115.4$	$1270.7 \\ 1269.6 \\ 1268.4$	$2.360 \\ 2.380 \\ 2.400$	$137.9 \\ 136.1 \\ 134.5$	$1280.7 \\ 1279.4 \\ 1278.3$	$2.420 \\ 2.440 \\ 2.461$	$157.7 \\ 155.9 \\ 154.1$	$1290.7 \\ 1289.6 \\ 1288.4$	$2.479 \\ 2.500 \\ 2.521$
393 392 391	$227.9 \\ 225.2 \\ 222.6$	95.9 94.4 92.8	$\begin{array}{c} 1257.9\\ 1256.8\\ 1255.6\end{array}$	$2.361 \\ 2.382 \\ 2.403$	$113.8 \\ 112.2 \\ 110.5$	$1267.3 \\ 1266.1 \\ 1265.0$	$2.421 \\ 2.441 \\ 2.462$	$132.9 \\ 131.1 \\ 129.4$	$\begin{array}{c} 1277.1 \\ 1276.0 \\ 1274.8 \end{array}$	$2.482 \\ 2.504 \\ 2.525$	$\begin{array}{c} 152.3 \\ 150.6 \\ 148.8 \end{array}$	$1287.2 \\ 1286.0 \\ 1284.8$	$2.543 \\ 2.565 \\ 2.587$
390 389 388	$220.1 \\ 217.5 \\ 215.0$	$91.3 \\ 89.8 \\ 88.2$	$\begin{array}{c} 1254.5\\ 1253.4\\ 1252.3\end{array}$	$2.424 \\ 2.444 \\ 2.466$	$108.9 \\ 107.3 \\ 105.7$	$1263.9\\1262.8\\1261.6$	$2.483 \\ 2.505 \\ 2.527$	$127.7 \\ 126.0 \\ 124.3$	$\begin{array}{c} 1273.6 \\ 1272.5 \\ 1271.3 \end{array}$	$2.546 \\ 2.569 \\ 2.591$	$147.0\\145.2\\143.4$	$1283.6\\1282.4\\1281.2$	$2.610 \\ 2.632 \\ 2.654$
387 386 385	$212.5 \\ 210.0 \\ 207.5$	$ 86.6 \\ 85.0 \\ 83.5 $	$\begin{array}{c} 1251.2\\ 1250.0\\ 1248.9 \end{array}$	$2.488 \\ 2.510 \\ 2.532 $	$104.1 \\ 102.4 \\ 100.8$	$^{1260.4}_{1259.2}_{1258.1}$	$2.549 \\ 2.571 \\ 2.594$	$122.5 \\ 120.9 \\ 119.1$	$1270.1\\1268.9\\1267.7$	$2.613 \\ 2.636 \\ 2.660$	$141.6 \\ 139.9 \\ 138.1$	$1280.0\\1278.8\\1277.6$	$2.677 \\ 2.701 \\ 2.725$
384 383 382	$205.1 \\ 202.6 \\ 200.3$	$81.9 \\ 80.4 \\ 78.9$	$\begin{array}{c} 1247.8 \\ 1246.6 \\ 1245.4 \end{array}$	$2.554 \\ 2.577 \\ 2.600$	$99.2 \\ 97.6 \\ 95.9$	$\begin{array}{c} 1257.0 \\ 1255.8 \\ 1254.6 \end{array}$	$2.617 \\ 2.640 \\ 2.664$	$117.5 \\ 115.7 \\ 114.0$	$1266.5 \\ 1265.4 \\ 1264.2$	$2.684 \\ 2.707 \\ 2.730$	$136.3 \\ 134.5 \\ 132.6$	$1276.3 \\ 1275.0 \\ 1273.8 \\ 1273.8 \\ 1273.8 \\ 1273.8 \\ 1273.8 \\ 1273.8 \\ 1273.8 \\ 1273.8 \\ 1000 \\ 1$	$2.750 \\ 2.773 \\ 2.799$
381 380 379	$197.9 \\ 195.5 \\ 193.2$	77.4 75.8 74.3	$\begin{array}{c} 1244.3\\ 1243.2\\ 1242.1 \end{array}$	$2.623 \\ 2.646 \\ 2.671$	$94.3 \\ 92.6 \\ 91.0$	$1253.4\\1252.3\\1251.1$	$2.688 \\ 2.713 \\ 2.737$	112.3 110.7 109).0	$1263.0\\1261.8\\1260.6$	$2.755 \\ 2.780 \\ 2.805$	$130.9 \\ 129.1 \\ 127.3$	$1272.6\\1271.4\\1270.2$	$2.823 \\ 2.849 \\ 2.873$
378 377 376	190.9 188.6 186.3	72.7 71.2 69.7	$\begin{array}{c} 1241.0\\ 1239.9\\ 1238.7\end{array}$	$2.696 \\ 2.720 \\ 2.745$	89.4 87.8 86.1	$1249.9\\1248.7\\1247.5$	$2.761 \\ 2.787 \\ 2.813$	$107.3 \\ 105.7 \\ 104.0$	$1259.5 \\ 1258.4 \\ 1257.2$	$2.830 \\ 2.856 \\ 2.883$	$125.5 \\ 123.7 \\ 122.0$	$1268.9\\1267.7\\1266.5$	$2.899 \\ 2.925 \\ 2.952$
375 374 373	184.1 181.9 179.7		$1237.5\\1236.3\\1235.2$	$2.770 \\ 2.795 \\ 2.821$	$ \begin{array}{r} 84.5 \\ 83.0 \\ 81.4 \end{array} $	$1246.4 \\ 1245.3 \\ 1244.2$	$2.839 \\ 2.864 \\ 2.891$	$102.3 \\ 100.7 \\ 99.0$	$1256.0 \\ 1254.8 \\ 1253.6$	$2.909 \\ 2.935 \\ 2.962$	$120.1 \\ 118.4 \\ 116.7$	$1265.3 \\ 1264.1 \\ 1262.9$	2.979 3.005 3.033

ahr.	e		1.64		1	1.65	-		1.66			1.67	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
420 419 418	308.5 305.1 301.8	223.6 221.7 219.8	$1331.1\\1329.9\\1328.6$	$2.086 \\ 2.103 \\ 2.120$	$245.1 \\ 243.2 \\ 241.3$	$1341.7 \\ 1340.4 \\ 1339.2$	$2.140 \\ 2.157 \\ 2.174$	$267.4 \\ 265.4 \\ 263.4$	1353.3 1352.0 1350.6	$2.193 \\ 2.210 \\ 2.229$	289.7 287.7 285.7	$1364.4 \\ 1363.1 \\ 1361.8$	$2.243 \\ 2.261 \\ 2.280$
417 416 415	298.5 295.2 292.0	$217.9 \\ 216.0 \\ 214.1$	$1327.3 \\ 1326.0 \\ 1324.7$	$2.138 \\ 2.156 \\ 2.174$	$239.4 \\ 237.5 \\ 235.5$	$1337.9\\1336.7\\1335.5$	$2.191 \\ 2.210 \\ 2.228$	$261.4 \\ 259.4 \\ 257.4$	$1349.2 \\ 1347.8 \\ 1346.6$	$2.246 \\ 2.264 \\ 2.282$	$283.8 \\ 281.9 \\ 279.9$	$1360.5 \\ 1359.2 \\ 1357.9$	2.299° 2.318° 2.337°
414 413 412	288.9 285.7 282.5	212.2 210.3 208.4	$1323.5 \\ 1322.3 \\ 1321.0$	$2.191 \\ 2.209 \\ 2.227$	$233.6 \\ 231.7 \\ 229.8$	$1334.2 \\ 1333.0 \\ 1331.7$	$2.246 \\ 2.263 \\ 2.282$	$255.4 \\ 253.5 \\ 251.5$	$1345.3 \\ 1344.0 \\ 1342.6$	$2.300 \\ 2.319 \\ 2.338$	$277.9 \\ 275.9 \\ 273.9 \\ 273.9$	$1356.6 \\ 1355.3 \\ 1354.0$	$2.356 \\ 2.375 \\ 2.394$
411 410 409	279.4 276.3 273.3	$206.5 \\ 204.6 \\ 202.7$	$1319.8 \\ 1318.5 \\ 1317.3$	$2.245 \\ 2.263 \\ 2.282$	227.9 226.0 224.0	1330.51329.21327.9	$2.301 \\ 2.320 \\ 2.339$	$249.5 \\ 247.5 \\ 245.6$	$1341.3 \\ 1340.1 \\ 1338.8$	$2.356 \\ 2.376 \\ 2.395$	$271.9 \\ 269.9 \\ 267.9$	$1352.7\\1351.4\\1350.0$	$2.414 \\ 2.433 \\ 2.454$
408 407 406	270.3 267.3 264.3	200.8 198.9 197.0	$1316.1 \\ 1314.8 \\ 1313.6$	$2.301 \\ 2.320 \\ 2.339$	$\begin{array}{c} 222.0 \\ 220.1 \\ 218.2 \end{array}$	$1326.7 \\ 1325.4 \\ 1324.2$	$2.358 \\ 2.377 \\ 2.396$	$243.7 \\ 241.8 \\ 239.9$	$1337.5 \\ 1336.3 \\ 1335.0$	$2.414 \\ 2.434 \\ 2.455$	$265.9 \\ 263.9 \\ 261.9$	$1348.7 \\ 1347.4 \\ 1346.1$	$2.474 \\ 2.494 \\ 2.514$
405 404 403	$261.3 \\ 258.4 \\ 255.5$	$195.1 \\ 193.2 \\ 191.4$	$1312.3 \\ 1311.0 \\ 1309.8$	$2.359 \\ 2.378 \\ 2.398$	$216.3 \\ 214.4 \\ 212.5$	$1322.9\\1321.6\\1320.3$	$2.415 \\ 2.435 \\ 2.456$	237.9 235.9 233.9	$1333.7 \\ 1332.4 \\ 1331.1$	$2.475 \\ 2.495 \\ 2.516$	$259.9 \\ 257.9 \\ 255.9$	$1344.8 \\ 1343.4 \\ 1342.1$	$2.535 \\ 2.556 \\ 2.577$
402 401 400	252.6 249.7 246.9	$189.5 \\ 187.6 \\ 185.7$	1308.5 1307.3 1306.0	$2.418 \\ 2.437 \\ 2.457$	$210.5 \\ 208.5 \\ 206.6$	$1319.0 \\ 1317.7 \\ 1316.4$	$2.477 \\ 2.497 \\ 2.518$	$231.9 \\ 230.0 \\ 228.0$	$1329.8\\1328.5\\1327.2$	$2.536 \\ 2.558 \\ 2.580 $	$253.9 \\ 251.9 \\ 249.9$	$1340.9 \\ 1339.6 \\ 1338.3$	$2.599 \\ 2.620 \\ 2.642$
399 398 397	$244.1 \\ 241.4 \\ 238.6$	183.8 182.0 180.1	$1304.8 \\ 1303.5 \\ 1302.3$	$2.478 \\ 2.499 \\ 2.520$	$204.7 \\ 202.8 \\ 200.9$	$1315.1 \\ 1313.9 \\ 1312.6$	$2.538 \\ 2.560 \\ 2.581$	$226.0 \\ 224.0 \\ 222.0$	$1325.9\\1324.6\\1323.3$	$2.601 \\ 2.623 \\ 2.645$	$248.0 \\ 246.0 \\ 244.0$	1337.0 1335.7 1334.4	$2.664 \\ 2.687 \\ 2.709$
396 395 394	$235.9 \\ 233.2 \\ 230.5$	$178.2 \\ 176.3 \\ 174.5$	$1301.0\\1299.7\\1298.5$	$2.541 \\ 2.563 \\ 2.585$	$199.0 \\ 197.1 \\ 195.2$	$1311.4 \\ 1310.1 \\ 1308.9$	$2.603 \\ 2.625 \\ 2.648$	$220.0 \\ 218.0 \\ 216.0$	$1321.9\\1320.6\\1319.3$	$2.667 \\ 2.690 \\ 2.713$	$242.0 \\ 240.0 \\ 238.0$	$1333.1\\1331.8\\1330.4$	$2.731 \\ 2.755 \\ 2.779$
393 392 391	227.9 225.2 222.6	172.7 170.8 168.9	$1297.3 \\ 1296.0 \\ 1294.8$	$2.607 \\ 2.630 \\ 2.652$	$193.3 \\ 191.4 \\ 189.5$	$1307.7 \\ 1306.5 \\ 1305.2$	$2.670 \\ 2.694 \\ 2.718$	214.1 212.1 210.1	$1318.0 \\ 1316.7 \\ 1315.3$	$2.736 \\ 2.759 \\ 2.784$	$236.0 \\ 234.0 \\ 232.0$	$1329.1 \\ 1327.8 \\ 1326.5$	$2.803 \\ 2.827 \\ 2.851$
390 389 388	220.1 217.5 215.0	$167.0 \\ 165.2 \\ 163.3$	$1293.6\\1292.4\\1291.2$	$2.675 \\ 2.699 \\ 2.721$	187.6 185.6 183.7	$1304.0 \\ 1302.7 \\ 1301.4$	$2.741 \\ 2.764 \\ 2.789$	208.2 206.3 204.4	$1314.1 \\ 1312.8 \\ 1311.6$	$2.808 \\ 2.832 \\ 2.856$	230.0 228.0 225.9	$1325.1 \\ 1323.8 \\ 1322.5$	$2.876 \\ 2.901 \\ 2.927$
387 386 385	212.5 210.0 207.5	$161.4 \\ 159.6 \\ 157.7$	$1289.9\\1288.6\\1287.4$	$2.746 \\ 2.769 \\ 2.793$	$181.8 \\ 179.9 \\ 178.0$	$1300.1 \\ 1298.8 \\ 1297.5$	$2.813 \\ 2.839 \\ 2.863$	202.4 200.4 198.4	$1310.3 \\ 1309.1 \\ 1307.8$	$2.881 \\ 2.907 \\ 2.931$	223.9 221.9 219.9	$1321.2\\1319.9\\1318.5$	$2.951 \\ 2.978 \\ 3.003$
384 383 382	205.1 202.6 200.3	$155.9 \\ 154.0 \\ 152.2$	$1286.1 \\ 1284.9 \\ 1283.7$	$2.819 \\ 2.843 \\ 2.869$	$176.1 \\ 174.1 \\ 172.2$	$1296.3 \\ 1295.0 \\ 1293.7$	$2.888 \\ 2.914 \\ 2.940$	196.5 194.5 192.6	1306.51305.21303.9	$2.958 \\ 2.984 \\ 3.010$	217.9 215.9 213.9	$1317.2 \\ 1315.9 \\ 1314.6$	$3.030 \\ 3.057 \\ 3.084$
381 380 379	$197.9 \\ 195.5 \\ 193.2$	$150.3 \\ 148.5 \\ 146.6$	$1282.5\\1281.2\\1280.0$	$2.893 \\ 2.920 \\ 2.946$	$170.3 \\ 168.4 \\ 166.5$	$1292.4\\1291.1\\1289.9$	$2.967 \\ 2.994 \\ 3.020$	190.7 188.8 186.9	1302.6 1301.4 1300.2	$3.037 \\ 3.065 \\ 3.093$	211.9 209.8 207.7	$1313.2 \\ 1311.9 \\ 1310.5$	$3.111 \\ 3.139 \\ 3.167$
378 377 376	190.9 188.6 186.3	144.8 143.0 141.2	1278.8 1277.6 1276.4	2.973 2.999 3.026	164.6 162.7 160.9	$1288.6\\1287.4\\1286.1$	$3.046 \\ 3.074 \\ 3.102$	184.9 183.0 181.0	$1298.9\\1297.6\\1296.3$	$3.120 \\ 3.148 \\ 3.176$	205.7 203.7 201.7	$1309.2 \\ 1307.9 \\ 1306.6 \\$	$3.195 \\ 3.223 \\ 3.251$
375 374 373	184.1 181.9 179.7	$139.4 \\ 137.6 \\ 135.8$	$1275.2 \\ 1273.9 \\ 1272.7$	$3.053 \\ 3.081 \\ 3.109$	159.0 157.1 155.2	$1284.9\\1283.6\\1282.3$	$3.130 \\ 3.158 \\ 3.187$	179.1 177.2 175.3	1295.01293.71292.4	$3.204 \\ 3.233 \\ 3.261$	199.7 197.7 195.7	$1305.3 \\ 1304.0 \\ 1302.7$	$3.281 \\ 3.311 \\ 3.340$

.

e, ahr.	e e		1.60		1.61			1.62			1.63		
Temperatur Degrees F	Pressure, Pc per Squar Inch.	Quality.	Heat Con- tents. Specific	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	
372 371 370	$177.5 \\ 175.3 \\ 173.2$	$\begin{array}{c} 63.6\\ 62.0\\ 60.6 \end{array}$	$1234.1 2.8 \\ 1233.0 2.8 \\ 1231.9 2.9$	48 79.8 74 78.2 01 76.6	1243.0 1241.8 1240.6	2.919 2.945 2.974	$97.3 \\ 95.7 \\ 94.0$	$1252.3\\1251.2\\1250.0$	$2.989 \\ 3.018 \\ 3.045$	$115.0 \\ 113.2 \\ 111.5$	$1261.6 \\ 1260.3 \\ 1259.1$	$3.061 \\ 3.090 \\ 3.118$	
369 368 367	$171.1 \\ 169.0 \\ 166.9$	$59.0 \\ 57.5 \\ 56.0$	$1230.82.9\\1229.62.9\\1228.52.9$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1239.5\\1238.3\\1237.1$	$3.000 \\ 3.030 \\ 3.059$	$92.3 \\ 90.6 \\ 88.9$	$1248.8 \\ 1247.6 \\ 1246.4$	$3.073 \\ 3.102 \\ 3.130$	$109.7 \\ 108.0 \\ 106.3$	$1257.9\\1256.7\\1255.5$	$3.147 \\ 3.175 \\ 3.205$	
366 365 364	$164.8 \\ 162.8 \\ 160.8$	$54.5 \\ 53.0 \\ 51.4$	$\begin{array}{c} 1227.4 \\ 3.0 \\ 1226.2 \\ 3.0 \\ 1225.1 \\ 3.0 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1235.9\\1234.7\\1233.6$	$3.087 \\ 3.116 \\ 3.145$		$1245.2 \\ 1244.0 \\ 1242.8$	$3.160 \\ 3.190 \\ 3.220$	$104.5 \\ 102.9 \\ 101.1$	$1254.3 \\ 1253.0 \\ 1251.8$	$3.235 \\ 3.265 \\ 3.295$	
363 362 361	$158.8 \\ 156.8 \\ 154.8 \\$	$\begin{array}{r} 49.9 \\ 48.4 \\ 46.9 \end{array}$	$\begin{array}{c} 1224.0 \\ 1222.9 \\ 1221.7 \\ 3.1 \\ 3.1 \end{array}$	$\begin{array}{c ccccc} 00 & 65.4 \\ 80 & 63.9 \\ 60 & 62.2 \end{array}$	$1232.4\\1231.3\\1230.1$	$3.175 \\ 3.205 \\ 3.236$		$1241.6\\1240.4\\1239.2$	$3.250 \\ 3.280 \\ 3.312$	$99.4 \\ 97.6 \\ 95.9$	$1250.6 \\ 1249.4 \\ 1248.2$	$3.325 \\ 3.357 \\ 3.389$	
360 359 358	$152.9 \\ 151.0 \\ 149.1$	$45.4 \\ 43.9 \\ 42.3$	$\begin{array}{c} 1220.6 \\ 1219.5 \\ 3.2 \\ 1218.3 \\ 3.2 \end{array}$	$\begin{array}{c c} 0 & 60.6 \\ 21 & 59.0 \\ 52 & 57.5 \end{array}$	$1228.9\\1227.7\\1226.6$	$3.267 \\ 3.299 \\ 3.330$	$77.2 \\ 75.6 \\ 74.0$	$1238.0\\1236.9\\1235.7$	$3.343 \\ 3.375 \\ 3.407$	$94.3 \\ 92.5 \\ 90.9$	$1247.0\\1245.7\\1244.5$	$3.421 \\ 3.453 \\ 3.486$	
357 356 355	$147.2 \\ 145.3 \\ 143.5$	40.9 39.5 37.9	$\begin{array}{c} 1217.2 \\ 3.2 \\ 1216.1 \\ 3.3 \\ 1215.0 \\ 3.3 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1225.5\\1224.3\\1223.1$	$3.362 \\ 3.395 \\ 3.428$	$\begin{array}{c} 72.4\\ 70.7\\ 69.0 \end{array}$	$^{1234.5}_{1233.3}_{1232.2}$	$3.440 \\ 3.474 \\ 3.507$		$1243.3 \\ 1242.0 \\ 1240.8$	$3.519 \\ 3.554 \\ 3.588$	
354 353 352	$141.6\\139.8\\138.0$	$\begin{array}{r} 36.4\\ 34.9\\ 33.4\end{array}$	$\begin{array}{c} 1213.9\\1212.8\\1211.7\\3.4\end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1222.0\\1220.8\\1219.6$	$3.461 \\ 3.495 \\ 3.530$	$ \begin{array}{r} 67.4 \\ 65.8 \\ 64.2 \end{array} $	$1231.0\\1229.8\\1228.6$	$3.540 \\ 3.576 \\ 3.610$	84.0 82.4 80.8	$1239.6\\1238.4\\1237.3$	$3.622 \\ 3.658 \\ 3.693$	
351 350 349	$136.3 \\ 134.5 \\ 132.8$	$31.9 \\ 30.4 \\ 29.0$	$\begin{array}{c}1210.6\\1209.4\\3.5\\1208.3\\3.5\end{array}$	$\begin{array}{cccc} 4 & 46.4 \\ 0 & 44.9 \\ 5 & 43.4 \end{array}$	$1218.4\\1217.3\\1216.2$	$3.564 \\ 3.599 \\ 3.636$	$ \begin{array}{r} 62.6 \\ 61.0 \\ 59.4 \end{array} $	$1227.5\\1226.3\\1225.1$	3.648 3.685 3.720	$79.1 \\ 77.6 \\ 75.9$	$1236.2 \\ 1235.0 \\ 1233.8 \\$	$3.730 \\ 3.766 \\ 3.804$	
348 347 346	$131.1 \\ 129.4 \\ 127.7$	$27.5 \\ 26.0 \\ 24.5$	$\begin{array}{c} 1207.2 \\ 1206.1 \\ 1205.0 \\ 3.6 \\ \end{array}$	$\begin{array}{c} 0 & 41.9 \\ 6 & 40.4 \\ 3 & 38.9 \end{array}$	$1215.1\\1214.0\\1212.8$	$3.672 \\ 3.710 \\ 3.748$	$57.7 \\ 56.1 \\ 54.5$	$\begin{array}{c} 1223.9\\ 1222.7\\ 1221.5\end{array}$	$3.758 \\ 3.796 \\ 3.834$	$74.2 \\ 72.5 \\ 70.9$	$1232.6\\1231:4\\1230.2$	$3.842 \\ 3.881 \\ 3.920$	
345 344 343	$126.0 \\ 124.4 \\ 122.7$	$23.0 \\ 21.5 \\ 20.0$	$\begin{array}{c} 1203.9 \\ 1202.8 \\ 3.7 \\ 1201.6 \\ 3.7 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1211.6\\1210.5\\1209.4$	$3.786 \\ 3.824 \\ 3.863$	$52.9 \\ 51.3 \\ 49.7$	$\begin{array}{c} 1220.3 \\ 1219.2 \\ 1218.1 \end{array}$	$3.874 \\ 3.914 \\ 3.954$	$ \begin{array}{r} 69.3 \\ 67.6 \\ 66.0 \end{array} $	$1229.0\\1227.9\\1226.7$	$3.960 \\ 4.000 \\ 4.042$	
342 341 340	$121.1 \\ 119.5 \\ 117.9$	$ \begin{array}{r} 18.5 \\ 17.0 \\ 15.5 \end{array} $	$\begin{array}{c} 1200.5 \\ 3.8 \\ 1199.3 \\ 3.8 \\ 1198.2 \\ 3.8 \end{array}$	$\begin{array}{cccc} 5 & 32.7 \\ 3 & 31.2 \\ 3 & 29.7 \end{array}$	$1208.3 \\ 1207.1 \\ 1206.0$	$3.903 \\ 3.943 \\ 3.984$	$48.0 \\ 46.5 \\ 44.9$	$\begin{array}{c} 1216.9\\ 1215.8\\ 1214.7\end{array}$	3.995 4.036 4.079	$ \begin{array}{r} 64.4 \\ 62.6 \\ 61.0 \end{array} $	$1225.6\\1224.4\\1223.2$	$\begin{array}{r} 4.085 \\ 4.128 \\ 4.171 \end{array}$	
339 338 337	$116.3 \\ 114.8 \\ 113.3$	$14.0 \\ 12.5 \\ 11.0$	$\begin{array}{c} 1197.1 \\ 3.93 \\ 1196.0 \\ 3.97 \\ 1194.8 \\ 4.07 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1204.8\\1203.7\\1202.6$	$4.026 \\ 4.067 \\ 4.110$	$43.3 \\ 41.7 \\ 40.1$	$1213.5\\1212.4\\1211.2$	4.120 4.164 4.207	$59.3 \\ 57.7 \\ 56.0$	$1222.0\\1220.8\\1219.6$	$\begin{array}{c} 4.215 \\ 4.260 \\ 4.304 \end{array}$	
336 335 334	$111.7 \\ 110.3 \\ 108.8$	$9.6 \\ 8.1 \\ 6.6$	$\begin{array}{c} 1193.7 \\ 1192 \\ 1192 \\ 1191.4 \\ 4.14 \end{array}$	$\begin{array}{ccc} 6 & 23.4 \\ 8 & 21.9 \\ 0 & 20.3 \end{array}$	$1201.4\\1200.2\\1199.0$	$\begin{array}{r} 4.151 \\ 4.194 \\ 4.238 \end{array}$	$38.5 \\ 36.9 \\ 35.4$	$1210.0\\1208.9\\1207.6$	4.250 4.294 4.339	$54.3 \\ 52.7 \\ 51.0$	$1218.4 \\ 1217.2 \\ 1216.0$	$\begin{array}{r} 4.350 \\ 4.395 \\ 4.442 \end{array}$	
333 332 331	$107.3 \\ 105.8 \\ 104.4$	5.1 3.6 2.1	$\begin{array}{c} 1190.3 \\ 1189.2 \\ 1188.1 \\ 4.2 \end{array}$	$\begin{array}{cccc}1 & 18.8 \\ 5 & 17.3 \\ 8 & 15.7\end{array}$	$1197.9\\1196.8\\1195.6$	$\begin{array}{r} 4.283 \\ 4.328 \\ 4.372 \end{array}$	$33.8 \\ 32.2 \\ 30.5$	$1206.4\\1205.2\\1204.1$	4.383 4.429 4.473	$49.3 \\ 47.7 \\ 46.0$	$1214.7 \\ 1213.5 \\ 1212.4$	$\begin{array}{r} 4.489 \\ 4.536 \\ 4.584 \end{array}$	
330 329 328	103.0 101.6 100.2	0.5 9993 9984	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1194.5 \\ 1193.4 \\ 1192.3$	$\begin{array}{r} 4.417 \\ 4.461 \\ 4.509 \end{array}$	28.9 27.3 25.7	$\begin{array}{c} 1203.0 \\ 1201.8 \\ 1200.6 \end{array}$	4.520 4.566 4.613	$\begin{array}{r} 44.3 \\ 42.7 \\ 41.0 \end{array}$	1211.2 1210.0 1208.8	4.631 4.680 4.730	
327 326 325	$ \begin{array}{r} 98.8 \\ 97.5 \\ 96.1 \end{array} $	9974 9964 9954	$1183.4 \\ 1182.3 \\ 1182.3 \\ 1181.2 \\ 4.5$	8 9.6 1 8.0 3 6.5	1191.1 1190.0 1189.0	$\begin{array}{r} 4.557 \\ 4.603 \\ 4.650 \end{array}$	$24.1 \\ 22.5 \\ 20.9$	1199.4 1198.2 1197.0	4.661 4.710 4.760	$39.3 \\ 37.7 \\ 36.0$	1207.6 1206.4 1205.3	4.780 4.830 4.880	
ahr.	e		1.64		_	1.65			1.66			1.67	
--------------------------	--	---	---	--	---	------------------------------	--	---------------------------	------------------------------	--	---	------------------------------	--
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
372 371 370	177.5 175.3 173.2	133.9 132.1 130.3	1271.4 1270.1 1268.9	$3.138 \\ 3.167 \\ 3.196$	$153.3 \\ 151.4 \\ 149.5$	1281.0 1279.8 1278.5	$3.215 \\ 3.245 \\ 3.275$	$173.4 \\ 171.5 \\ 169.6$	$1291.2 \\ 1289.9 \\ 1288.6$	3.293 3.323 3.354	193.7 191.7 189.7	1301.4 1300.1 1298.8	$3.370 \\ 3.400 \\ 3.432$
369 368 367	$171.1 \\ 169.0 \\ 166.9$	$128.5 \\ 126.7 \\ 124.9$	$1267.7 \\ 1266.5 \\ 1265.3$	$3.225 \\ 3.254 \\ 3.284$	$147.6 \\ 145.7 \\ 143.8 \end{cases}$	$1277.2 \\ 1275.9 \\ 1274.6$	$3.305 \\ 3.335 \\ 3.365$	$167.7 \\ 165.7 \\ 163.8$	$1287.4\\1286.1\\1284.8$	$3.384 \\ 3.415 \\ 3.447$	$187.7 \\ 185.7 \\ 183.$	$1297.5 \\ 1296.2 \\ 1294.9$	$3.464 \\ 3.495 \\ 3.527$
366 365 364	$164.8 \\ 162.8 \\ 160.8$	123.1 121.3 119.5	$1264.0\\1262.8\\1261.6$	$3.314 \\ 3.344 \\ 3.376$	$142.0\\140.0\\138.2$	$1273.3 \\ 1272.1 \\ 1270.9$	$3.396 \\ 3.428 \\ 3.460$	161.9 160.0 158.0	$1283.5\\1282.2\\1280.9$	$3.479 \\ 3.511 \\ 3.545$	$181.7 \\ 179.7 \\ 177.7$	$1293.6\\1292.3\\1291.0$	$3.559 \\ 3.593 \\ 3.626$
363 362 361	$158.8 \\ 156.8 \\ 154.8$	$117.7 \\ 115.9 \\ 114.1$	$1260.3 \\ 1259.0 \\ 1257.8$	$3.408 \\ 3.440 \\ 3.472$	$136.3 \\ 134.4 \\ 132.5$	$1269.6 \\ 1268.3 \\ 1267.0$	$3.490 \\ 3.524 \\ 3.557$	$156.0 \\ 154.0 \\ 152.0$	$1279.6 \\ 1278.3 \\ 1277.0$	$3.579 \\ 3.612 \\ 3.647$	175.7 173.8 171.8	$1289.7 \\ 1288.4 \\ 1287.0$	3.660 3.695 3.730
360 359 358	$152.9 \\ 151.0 \\ 149.1$	$112.3 \\ 110.5 \\ 108.8$	$1256.6 \\ 1255.3 \\ 1254.1$	$3.504 \\ 3.537 \\ 3.570$	$130.6 \\ 128.8 \\ 127.0$	$1265.7 \\ 1264.5 \\ 1263.2$	$3.590 \\ 3.624 \\ 3.660$	$150.0 \\ 148.1 \\ 146.2$	$1275.7 \\ 1274.4 \\ 1273.1$	$3.682 \\ 3.716 \\ 3.750$	$169.8 \\ 167.9 \\ 166.0$	$1285.6\\1284.3\\1283.0$	$3.765 \\ 3.801 \\ 3.839$
357 356 355	$147.2 \\ 145.3 \\ 143.5$	$107.1 \\ 105.3 \\ 103.6$	$\begin{array}{r} 1252.9 \\ 1251.7 \\ 1250.5 \end{array}$	$3.605 \\ 3.640 \\ 3.675$	$125.1 \\ 123.2 \\ 121.4$	$1262.0\\1260.7\\1259.4$	$3.695 \\ 3.730 \\ 3.765$	$144.3 \\ 142.4 \\ 140.5$	$1271.8 \\ 1270.5 \\ 1269.2$	$3.786 \\ 3.822 \\ 3.860$	$164.0 \\ 162.0 \\ 160.0$	$1281.7\\1280.4\\1279.0$	$3.874 \\ 3.913 \\ 3.950$
354 353 352	$141.6 \\ 139.8 \\ 138.0$	$101.8 \\ 100.1 \\ 98.4$	$1249.3 \\ 1248.0 \\ 1246.8$	$3.713 \\ 3.749 \\ 3.787$	119.6 117.8 115.9	$1258.2 \\ 1257.0 \\ 1255.8$	3.803 3.840 3.878	$138.7 \\ 136.9 \\ 135.0$	$1268.0 \\ 1266.7 \\ 1265.4$	$3.898 \\ 3.936 \\ 3.975$	$158.0 \\ 156.0 \\ 154.0$	$1277.7 \\ 1276.4 \\ 1275.0$	$3.990 \\ 4.029 \\ 4.068$
351 350 349	$136.3 \\ 134.5 \\ 132.8$	$96.5 \\ 94.7 \\ 93.0$	$1245.6\\1244.3\\1243.0$	$3.824 \\ 3.861 \\ 3.900$	114.1 112.4 110.6	$1254.6\\1253.3\\1252.0$	$3.915 \\ 3.955 \\ 3.994$	$133.1 \\ 131.2 \\ 129.4$	$1264.2 \\ 1262.9 \\ 1261.6$	$\begin{array}{r} 4.014 \\ 4.052 \\ 4.091 \end{array}$	$152.0\\150.1\\148.2$	$1273.7 \\ 1272.4 \\ 1271.1$	4.108 4.149 4.190
348 347 346	$131.1 \\ 129.4 \\ 127.7$	91.3 89.5 87.8	$1241.8 \\ 1240.6 \\ 1239.3$	$3.940 \\ 3.980 \\ 4.020$	$108.8 \\ 107.0 \\ 105.1$	$1250.8\\1249.6\\1248.3$	$\begin{array}{r} 4.033 \\ 4.075 \\ 4.115 \end{array}$	$127.5 \\ 125.6 \\ 123.7$	$1260.3 \\ 1259.0 \\ 1257.8$	$\begin{array}{r} 4.132 \\ 4.172 \\ 4.213 \end{array}$	$146.2 \\ 144.2 \\ 142.2$	$1269.8 \\ 1268.5 \\ 1267.2$	4.230 4.273 4.314
345 344 343	$126.0 \\ 124.4 \\ 122.7$	$ \begin{array}{r} 86.0 \\ 84.1 \\ 82.4 \end{array} $	$1238.0\\1236.8\\1235.6$	$4.062 \\ 4.104 \\ 4.148$	$103.3 \\ 101.5 \\ 99.7$	$1247.0\\1245.8\\1244.6$	$4.157 \\ 4.200 \\ 4.241$	$121.9\\120.0\\118.0$	$1256.5 \\ 1255.2 \\ 1253.9$	$4.255 \\ 4.297 \\ 4.340$	$140.3 \\ 138.4 \\ 136.4$	$1265.8\\1264.5\\1263.2$	4.357 4.400 4.443
342 341 340	$121.1 \\ 119.5 \\ 117.9$	80.7 79.0 77.1	$1234.3 \\ 1233.0 \\ 1231.8$	$\begin{array}{r} 4.190 \\ 4.232 \\ 4.276 \end{array}$	$97.9 \\ 96.1 \\ 94.3$	$1243.3 \\ 1242.0 \\ 1240.8$	$4.285 \\ 4.329 \\ 4.373$	$116.1 \\ 114.2 \\ 112.3$	$1252.6\\1251.3\\1250.0$	4.384 4.428 4.473	$134.5 \\ 132.5 \\ 130.6$	$1261.9\\1260.6\\1259.3$	4.488 4.533 4.579
339 338 337	$ \begin{array}{r} 116.3 \\ 114.8 \\ 113.3 \end{array} $	75.4 73.6 71.9	$1230.6\\1229.3\\1228.0$	$\begin{array}{r} 4.320 \\ 4.364 \\ 4.409 \end{array}$	$92.5 \\ 90.7 \\ 89.0$	$1239.6\\1238.3\\1237.0$	4.417 4.461 4.507	$110.4 \\ 108.6 \\ 106.7$	$1248.8 \\ 1247.5 \\ 1246.3$	$4.519 \\ 4.564 \\ 4.610$	$128.7 \\ 126.7 \\ 124.8$	$1258.0 \\ 1256.7 \\ 1255.4$	4.625 4.672 4.720
336 335 334	$111.7 \\ 110.3 \\ 108.8$	$70.1 \\ 68.4 \\ 66.7$	$1226.8\\1225.6\\1224.3$	$4.455 \\ 4.500 \\ 4.548$		$1235.8\\1234.6\\1233.3$	$4.553 \\ 4.599 \\ 4.648$	104.8 103.0 101.1	$1245.0\\1243.7\\1242.4$	4.657 4.705 4.754	$122.9\\120.9\\119.0$	$1254.1 \\ 1252.7 \\ 1251.4$	4.768 4.817 4.865
333 332 331	$107.3 \\ 105.8 \\ 104.4$	$ \begin{array}{r} 65.0 \\ 63.2 \\ 61.4 \end{array} $	$1223.1\\1221.9\\1220.7$	$\begin{array}{r} 4.595 \\ 4.642 \\ 4.692 \end{array}$	$ \begin{array}{r} 81.9 \\ 80.2 \\ 78.4 \end{array} $	$1232.1 \\ 1230.9 \\ 1229.7$	4.697 4.744 4.793	$99.3 \\ 97.4 \\ 95.6$	$1241.1 \\ 1239.8 \\ 1238.6$	$\begin{array}{r} 4.803 \\ 4.850 \\ 4.900 \end{array}$	$117.0 \\ 115.0 \\ 113.0$	$1250.1 \\ 1248.7 \\ 1247.4$	$\begin{array}{r} 4.916 \\ 4.967 \\ 5.019 \end{array}$
330 329 328	$103.0 \\ 101.6 \\ 100.2$	$59.8 \\ 58.0 \\ 56.3$	1219.4 1218.2 1217.0	4.740 4.790 4.840	76.6 74.9 73.1	$1228.4 \\ 1227.2 \\ 1226.0$	4.845 4.895 4.947	93.7 91.9 90.0	$1237.3 \\ 1236.0 \\ 1234.7$	4.953 5.005 5.057	111.1 109.2 107.3	$1246.0 \\ 1244.7 \\ 1243.4$	$5.070 \\ 5.123 \\ 5.180$
327 326 325	98.8 97.5 96.1	$54.6 \\ 52.9 \\ 51.1$	$1215.7 \\ 1214.5 \\ 1213.2$	4.890 4.941 4.994	$71.4 \\ 69.5 \\ 67.7$	$1224.7\\1223.5\\1222.2$	4.998 5.050 5.105	88.1 86.3 84.5	$1233.4\\1232.1\\1230.7$	$5.109 \\ 5.163 \\ 5.218$	$105.4 \\ 103.5 \\ 101.7$	$1242.1 \\ 1240.8 \\ 1239.5$	$5.233 \\ 5.290 \\ 5.345$

ahr.	e		1.60		1.61			1.62			1.63	
Temperature Degrees F	Pressure, Po per Squar, Inch.	Quality.	Heat Con- tents. Specific Volume	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
324 323 322	94.8 93.5 92.2	9943 9934 9924	$\begin{array}{c} 1180.0 \\ 1178.9 \\ 1177.8 \\ 4.74 \end{array}$		1187.9 1186.7 1185.5	$\begin{array}{r} 4.700 \\ 4.747 \\ 4.797 \end{array}$	$19.3 \\ 17.7 \\ 16.1$	$1195.8 \\ 1194.7 \\ 1193.5$	$4.810 \\ 4.860 \\ 4.910$	$34.3 \\ 32.7 \\ 31.0$	1204.0 1202.8 1201.6	$\begin{array}{r} 4.934 \\ 4.987 \\ 5.040 \end{array}$
321 320 319	90.9 89.6 88.3	9914 9905 9895	$\begin{array}{c} 1176.6 \\ 4.79 \\ 1175.6 \\ 4.86 \\ 1174.4 \\ 4.92 \end{array}$	9 0.3 0 9992 2 9982	$ \begin{array}{r} 1184.4 \\ 1183.3 \\ 1182.1 \\ \end{array} $	$\frac{4.845}{4.903}$ $\frac{4.965}{4.965}$	$14.4 \\ 12.9 \\ 11.3$	1192.3 1191.2 1190.1	$\begin{array}{r} 4.965 \\ 5.018 \\ 5.073 \end{array}$	$29.3 \\ 27.7 \\ 26.0$	$\frac{1200.4}{1199.2}\\1198.0$	$5.093 \\ 5.146 \\ 5.200$
318 317 316		9885 9875 9865	$\begin{array}{c} 1173.3 \\ 1172.1 \\ 1170.9 \\ 5.11 \end{array}$	5 9972 8 9962 2 9952	$1181.0 \\ 1179.8 \\ 1178.6$	$5.029 \\ 5.092 \\ 5.157$	$9.7 \\ 8.1 \\ 6.5$	$\frac{1188.9}{1187.7}\\1186.5$	$5.128 \\ 5.182 \\ 5.239$	$24.4 \\ 22.7 \\ 21.0$	$\frac{1196.9}{1195.7}\\1194.5$	$5.257 \\ 5.314 \\ 5.370$
315 314 313	$83.4 \\ 82.3 \\ 81.1$	9856 9846 9836	$\begin{array}{c} 1169.8 \\ 5.17 \\ 1168.7 \\ 5.24 \\ 1167.6 \\ 5.31 \end{array}$	8 9942 4 9932 1 9922	1177.5 1176.4 1175.3	$5.224 \\ 5.290 \\ 5.357$	$4.9 \\ 3.3 \\ 1.6$	$\frac{1185.3}{1184.2}\\1183.0$	$5.296 \\ 5.351 \\ 5.410$	$19.3 \\ 17.6 \\ 16.0$	$1193.4 \\ 1192.2 \\ 1191.0$	$5.429 \\ 5.487 \\ 5.545$
312 311 310	79.9 78.8 77.6	9827 9817 9808	1166.45.371165.35.441164.15.51	8 9913 5 9903 4 9893	$1174.1\\1173.0\\1171.8$	$5.424 \\ 5.492 \\ 5.562$	9999 9989 9978	$\frac{1181.8}{1180.6}\\1179.4$	$5.471 \\ 5.540 \\ 5.610$	$14.3 \\ 12.6 \\ 11.0$	$1189.8 \\ 1188.6 \\ 1187.4$	$5.605 \\ 5.665 \\ 5.725$
309 308 307	$76.5 \\ 75.4 \\ 74.3$	9798 9789 9779	$\begin{array}{c} 1163.0 \\ 5.58 \\ 1161.8 \\ 5.65 \\ 1160.6 \\ 5.72 \end{array}$	4 9883 6 9874 9 9864	$1170.6 \\ 1169.5 \\ 1168.3$	$5.632 \\ 5.705 \\ 5.779$	9968 9959 9948	$1178.3 \\ 1177.1 \\ 1175.9$	$5.681 \\ 5.754 \\ 5.829$	$9.3 \\ 7.6 \\ 5.8$	$1186.2 \\ 1184.9 \\ 1183.6$	$5.788 \\ 5.850 \\ 5.915$
306 305 304	$73.2 \\ 72.2 \\ 71.1$	9770 9760 9750	$\begin{array}{c} 1159.5 \\ 5.80 \\ 1158.3 \\ 5.87 \\ 1157.1 \\ 5.95 \end{array}$	4 9854 9 9844 6 9834	$1167.2 \\ 1165.9 \\ 1164.8$	$5.855 \\ 5.930 \\ 6.008$	9939 9929 9918	$1174.8\\1173.6\\1172.4$	$5.905 \\ 5.981 \\ 6.059$	$\begin{array}{r} 4.0\\2.2\\0.4\end{array}$	$1182.4\\1181.2\\1180.0$	$5.980 \\ 6.047 \\ 6.110$
303 302 301	$70.0 \\ 69.0 \\ 68.0$	9741 9731 9722	$\begin{array}{c} 1156.0 \\ 1154.9 \\ 1153.7 \\ 6.19 \\ \end{array}$	4 9825 3 9815 4 9806	$1163.7 \\ 1162.5 \\ 1161.3$	$\begin{array}{c} 6.086 \\ 6.166 \\ 6.247 \end{array}$	9909 9899 9889	$1171.3 \\ 1170.1 \\ 1168.9$	$\begin{array}{c} 6.139 \\ 6.218 \\ 6.300 \end{array}$	9993 9983 9973	$1178.9 \\ 1177.7 \\ 1176.5$	$\begin{array}{c} 6.191 \\ 6.271 \\ 6.353 \end{array}$
300 299 298	$\begin{array}{c} 67.0 \\ 66.0 \\ 65.0 \end{array}$	9712 9703 9693	$\begin{array}{c} 1152.5 & 6.27 \\ 1151.4 & 6.35 \\ 1150.2 & 6.44 \end{array}$	6 9795 9 9786 3 9776	$1160.1 \\ 1159.0 \\ 1157.8$	$\begin{array}{c} 6.330 \\ 6.414 \\ 6.498 \end{array}$	9879 9870 9859	$1167.7 \\ 1166.6 \\ 1165.4$	$\begin{array}{c} 6.384 \\ 6.469 \\ 6.554 \end{array}$	9963 9953 9943	$\frac{1175.3}{1174.1}\\1172.9$	$\begin{array}{c} 6.438 \\ 6.523 \\ 6.609 \end{array}$
297 296 295	$\begin{array}{c} 64.0 \\ 63.1 \\ 62.1 \end{array}$	9684 9674 9665	$\begin{array}{c} 1149.0 \\ 6.53 \\ 1147.8 \\ 6.61 \\ 1146.7 \\ 6.70 \end{array}$	0 9767 7 9757 6 9748	$1156.6 \\ 1155.4 \\ 1154.3$	$\begin{array}{c} 6.585 \\ 6.673 \\ 6.762 \end{array}$	9850 9840 9830	$\frac{1164.2}{1162.9}\\1161.8$	$\begin{array}{c} 6.641 \\ 6.729 \\ 6.819 \end{array}$	9933 9923 9913	$1171.7 \\ 1170.5 \\ 1169.3$	$\begin{array}{c} 6.697 \\ 6.786 \\ 6.877 \end{array}$
294 293 292	$ \begin{array}{r} 61.2 \\ 60.2 \\ 59.3 \end{array} $	9655 9646 9637	$\begin{array}{c} 1145.5 & 6.79 \\ 1144.4 & 6.88 \\ 1143.2 & 6.98 \end{array}$	5 9737 7 9728 0 9719	$1153.1 \\ 1151.9 \\ 1150.7$	$\begin{array}{c} 6.852 \\ 6.945 \\ 7.038 \end{array}$	9820 9811 9801	$\frac{1160.6}{1159.4}\\1158.2$	6.910 7.004 7.098	9902 9893 9883	$\frac{1168.1}{1166.9}\\1165.7$	$\begin{array}{c} 6.968 \\ 7.063 \\ 7.157 \end{array}$
291 290 289	$58.4 \\ 57.5 \\ 56.7$	$9628 \\ 9618 \\ 9609$	$\begin{array}{c} 1142.0 & 7.07 \\ 1140.9 & 7.16 \\ 1139.7 & 7.26 \end{array}$	5 9710 9 9700 8 9690	$1149.6 \\ 1148.4 \\ 1147.2$	$7.134 \\ 7.229 \\ 7.329$	9792 9782 9772	$^{1157.1}_{1155.9}_{1154.7}$	$7.194 \\ 7.290 \\ 7.390$	9874 9863 9854	$1164.5 \\ 1163.3 \\ 1162.1$	$7.254 \\ 7.351 \\ 7.452$
288 287 286	$55.8 \\ 54.9 \\ 54.1$	9599 9590 9581	$\begin{array}{c}1138.5\\1137.3\\1136.2\\7.57\end{array}$	7 9680 9 9671 2 9662	$1146.0\\1144.8\\1143.6$	$7.430 \\ 7.533 \\ 7.637$	9762 9752 9743	$ \begin{array}{r} 1153.5 \\ 1152.3 \\ 1151.1 \end{array} $	$7.491 \\ 7.595 \\ 7.700$	9843 9834 9824	$1160.9 \\ 1159.7 \\ 1158.5$	7.554 7.658 7.764
285 284 283	$53.2 \\ 52.4 \\ 51.6$	$9571 \\ 9562 \\ 9553$	$\begin{array}{c}1135.0\\1133.8\\1132.6\\7.89\end{array}$	8 9652 4 9642 2 9633	$1142.4 \\ 1141.2 \\ 1140.0$	$7.743 \\ 7.850 \\ 7.959$	9733 9723 9714	$^{1149.9}_{1148.6}_{1147.4}$	$7.807 \\ 7.915 \\ 8.024$	9814 9804 9794	$1157.3 \\ 1156.1 \\ 1154.9$	7.872 7.980 8.091
282 281 280	50.8 50.0 49.19	9543 9534 9525	$\begin{array}{c} 1131.4 \\ 1130.3 \\ 1129.1 \\ 8.23 \end{array}$	396246961409605	$\frac{1138.8}{1137.6}\\1136.5$	$8.071 \\ 8.184 \\ 8.299$	9704 9695 9685	$1146.2 \\ 1145.1 \\ 1143.9$	$8.137 \\ 8.251 \\ 8.368$	9784 9775 9765	$1153.7 \\ 1152.5 \\ 1151.3$	$8.204 \\ 8.319 \\ 8.436$
279 278 277	$\begin{array}{r} 48.41 \\ 47.64 \\ 46.88 \end{array}$	9515 9506 9497	$\begin{array}{c} 1127.9\\1126.6\\1125.4\\8.58\end{array}$	4 9595 1 9586 0 9576	$\frac{1135.2}{1134.0}\\1132.8$	$8.414 \\ 8.532 \\ 8.651$	9675 9665 9656	$1142.6\\1141.4\\1140.2$	$8.484 \\ 8.603 \\ 8.723$	9755 9745 9736	$1150.0\\1148.7\\1147.5$	$8.553 \\ 8.673 \\ 8.794$

ahr.	e č		1.64		1.65			1.66			1.67	
Temperature Degrees F	Pressure, Pou per Squar Inch.	Quality.	Heat Con- tents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
324 323 322	94.8 93.5 92.2	49.4 47.8 46.0	$\begin{array}{c} 1212.0 \\ 5.048 \\ 1210.8 \\ 5.100 \\ 1209.6 \\ 5.155 \end{array}$	66.0 64.2 62.4	$1220.9 \\ 1219.6 \\ 1218.3$	$5.160 \\ 5.216 \\ 5.270$	82.6 80.8 78.9	1229.51228.21226.9	$5.273 \\ 5.330 \\ 5.389$	99.9 98.0 96.1	$1238.3 \\ 1237.0 \\ 1235.7$	$5.400 \\ 5.459 \\ 5.518$
321 320 319	90.9 89.6 88.3	$44.3 \\ 42.6 \\ 40.9$	$1208.4 5.210 \\ 1207.2 5.265 \\ 1206.0 5.322$	$ \begin{array}{r} 60.6 \\ 58.8 \\ 57.0 \end{array} $	$1217.1 \\ 1215.9 \\ 1214.6$	$5.327 \\ 5.384 \\ 5.440$	77.0 75.1 73.3	$1225.6\\1224.3\\1223.0$	$5.446 \\ 5.506 \\ 5.565$	$94.2 \\ 92.4 \\ 90.5$	$1234.4 \\ 1233.1 \\ 1231.8 \\$	$5.575 \\ 5.635 \\ 5.697$
318 317 316		$39.1 \\ 37.5 \\ 35.7$	1204.85.3801203.65.4351202.45.495	$55.1 \\ 53.3 \\ 51.5$	$\begin{array}{c} 1213.3 \\ 1212.0 \\ 1210.8 \end{array}$	$5.500 \\ 5.560 \\ 5.623$	$71.4 \\ 69.6 \\ 67.8$	$1221.7\\1220.4\\1219.1$	$5.625 \\ 5.685 \\ 5.750$		1230.51229.21227.9	$5.759 \\ 5.820 \\ 5.885$
315 314 313	$83.4 \\ 82.3 \\ 81.1$	$34.0 \\ 32.3 \\ 30.5$	$1201.25.554 \\ 1200.05.614 \\ 1198.85.673$	49.8 48.0 46.2	$1209.6 \\ 1208.3 \\ 1207.1$	$5.685 \\ 5.745 \\ 5.810$	$ \begin{array}{r} 66.0 \\ 64.1 \\ 62.3 \end{array} $	$\begin{array}{c} 1217.8 \\ 1216.5 \\ 1215.2 \end{array}$	$5.813 \\ 5.875 \\ 5.940$	$83.0 \\ 81.1 \\ 79.2$	$1226.6\\1225.3\\1224.0$	$5.949 \\ 6.02 \\ 6.09$
312 311 310	79.9 78.8 77.6	$28.8 \\ 27.0 \\ 25.4$	1197.65.7341196.45.7981195.25.863	44.4 42.7 40.9	$1205.9 \\ 1204.7 \\ 1203.5$	$5.873 \\ 5.937 \\ 6.00$	$ \begin{array}{r} 60.4 \\ 58.6 \\ 56.8 \end{array} $	$1214.0\\1212.8\\1211.6$	$\begin{array}{c} 6.00 \\ 6.07 \\ 6.14 \end{array}$	77.3 75.4 73.4	$1222.7\\1221.4\\1220.1$	$\begin{array}{c} 6.16 \\ 6.23 \\ 6.30 \end{array}$
309 308 307	76.5 75.4 74.3	$\begin{array}{c} 23.7\\21.9\\20.1 \end{array}$	$\begin{array}{c} 1193.9 \\ 5.928 \\ 1192.7 \\ 5.990 \\ 1191.5 \\ 6.06 \end{array}$	$39.1 \\ 37.3 \\ 35.5$	$1202.2 \\ 1200.9 \\ 1199.7$	$\begin{array}{c} 6.07 \\ 6.14 \\ 6.21 \end{array}$	$55.0 \\ 53.1 \\ 51.3$	$1210.3 \\ 1209.0 \\ 1207.7$	$\begin{array}{c} 6.20 \\ 6.27 \\ 6.34 \end{array}$	$71.5 \\ 69.6 \\ 67.7$	$1218.7 \\ 1217.4 \\ 1216.1$	$\begin{array}{c} 6.37 \\ 6.44 \\ 6.51 \end{array}$
306 305 304	$73.2 \\ 72.2 \\ 71.1$	$18.5 \\ 16.8 \\ 15.0$	$1190.3 \begin{array}{c} 6.12 \\ 1189.1 \\ 1187.9 \\ 6.26 \end{array}$	$33.8 \\ 32.0 \\ 30.1$	1198.5 1197.3 1196.0	$\begin{array}{c} 6.27 \\ 6.34 \\ 6.41 \end{array}$	49.4 47.5 45.7	$1206.5 \\ 1205.2 \\ 1203.9$	$\begin{array}{c} 6.41 \\ 6.48 \\ 6.55 \end{array}$	$\begin{array}{c} 65.8 \\ 63.9 \\ 62.0 \end{array}$	$1214.8\\1213.5\\1212.2$	$\begin{array}{c} 6.58 \\ 6.65 \\ 6.73 \end{array}$
303 302 301	70.0 69.0 68.0	$13.3 \\ 11.6 \\ 9.9$	$\begin{array}{c} 1186.7 & 6.33 \\ 1185.5 & 6.40 \\ 1184.3 & 6.48 \end{array}$	$28.3 \\ 26.5 \\ 24.8$	1194.7 1193.4 1192.2	$\begin{array}{c} 6.49 \\ 6.56 \\ 6.64 \end{array}$	$43.9 \\ 42.0 \\ 40.1$	$1202.6\\1201.3\\1200.0$	$\begin{array}{c} 6.62 \\ 6.70 \\ 6.78 \end{array}$	${60.1 \atop 58.2 \atop 56.3}$	$1210.9\\1209.6\\1208.3$	6.80 6.88 6.96
300 299 298	$\begin{array}{c} 67.0 \\ 66.0 \\ 65.0 \end{array}$	$8.1 \\ 6.4 \\ 4.7$	$1183.1 \\ 6.56 \\ 1181.9 \\ 6.64 \\ 1180.7 \\ 6.71$	$23.0 \\ 21.2 \\ 19.4$	1191.0 1189.8 1188.5	$\begin{array}{c} 6.71 \\ 6.79 \\ 6.87 \end{array}$	$38.3 \\ 36.4 \\ 34.5$	1198.7 1197.4 1196.2	6.86 6.94 7.01	$54.4 \\ 52.5 \\ 50.5$	1207.0 1205.7 1204.4	7.04 7.12 7.20
297 296 295	64.0 63.1 62.1	2.9 1.2 9996	$1179.4 \begin{array}{c} 6.78 \\ 1178.1 \\ 6.86 \\ 1176.8 \\ 6.934 \end{array}$	17.6 15.8 14.0	$1187.2 \\ 1185.9 \\ 1184.6$	6.95 7.02 7.10	$32.6 \\ 30.8 \\ 29.0$	1194.9 1193.6 1192.3	7.09 7.17 7.25	48.6 46.7 44.8	1203.1 1201.8 1200.5	7.28 7.37 7.45
294 293 292	61.2 60.2 59.3	9985 9975 9965	1175.67.0261174.47.1211173.27.217	$12.2 \\ 10.4 \\ 8.6$	1183.4 1182.2 1181.0	7.18 7.27 7.35	$27.1 \\ 25.3 \\ 23.4$	1191.0 1189.7 1188.4	$7.34 \\ 7.43 \\ 7.51$	$42.9 \\ 41.0 \\ 39.0$	1199.2 1197.9 1196.6	7.53 7.62 7.70
291 290 289	58.4 57.5 56.7	9956 9945 9935	1172.07.3141170.87.4121169.57.514	$ \begin{array}{r} 6.8 \\ 5.0 \\ 3.2 \end{array} $	1179.7 1178.5 1177.2	$7.44 \\ 7.52 \\ 7.61$	$21.5 \\ 19.7 \\ 17.9$	$1187.1 \\ 1185.9 \\ 1184.7$	7.60 7.69 7.78	$37.0 \\ 35.0 \\ 33.1$	1195.3 1194.0 1192.7	7.80 7.89 7.99
288 287 286	$55.8 \\ 54.9 \\ 54.1$	9925 9915 9905	$1168.3 7.616 \\ 1167.1 7.722 \\ 1166.0 7.828$	1.3 9996 9986	$\frac{1176.0}{1174.6}\\1173.4$	7.70 7.785 7.892	$ \begin{array}{c} 16.0 \\ 14.1 \\ 12.3 \end{array} $	1183.5 1182.2 1180.9	7.88 7.97 8.06	$31.2 \\ 29.3 \\ 27.4$	1191.4 1190.1 1188.8	8.08 8.17 8.27
285 284 283	$53.2 \\ 52.4 \\ 51.6$	9895 9885 9875	1164.77.9371163.48.0461162.28.158	9976 9965 9955	1172.1 1170.8 1169.6	8.002 8.112 8.224	$10.4 \\ 8.5 \\ 6.7$	1179.7 1178.5 1177.3	$8.15 \\ 8.25 \\ 8.35$	$25.5 \\ 23.6 \\ 21.7$	1187.5 1186.2 1184.9	$ \begin{array}{r} 8.36 \\ 8.45 \\ 8.55 \\ \end{array} $
282 281 280	50.8 50.0 49.19	9865 9855 9845	$\begin{array}{c} 1161.1 \\ 8.272 \\ 1159.9 \\ 8.388 \\ 1158.7 \\ 8.505 \end{array}$	9945 9935 9925	1168.5 1167.3 1166.1	8.339 8.456 8.575	4.9 3.0 1.1	1176.0 1174.7 1173.4	8.45 8.55 8.65	19.8 17.9 16.0	1183.6 1182.3 1181.0	8.65 8.76 8.86
279 278 277	48.41 47.64 46.88	9835 9825 9815	$\begin{array}{c} 1157.4 \\ 8.623 \\ 1156.1 \\ 8.744 \\ 1154.9 \\ 8.866 \end{array}$	9915 9905 9895	$1164.8 \\ 1163.5 \\ 1162.3$	8.693 8.815 8.938	9994 9984 9974	1172.2 1170.9 1169.7	8.763 8.886 9.010	$14.0 \\ 12.1 \\ 10.1$	1179.7 1178.4 1177.1	8.97 9.07 9.18

e, ahr.	e		1.60			1.61			1.62			1.63	
Temperatur Degrees F	Pressure, Poper Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
276 275 274	$46.13 \\ 45.39 \\ 44.67$	9488 9479 9470	$1124.3\\1123.1\\1121.9$	$8.701 \\ 8.825 \\ 8.953$	9567 9558 9549	$1131.7 \\ 1130.5 \\ 1129.2$	$8.773 \\ 8.899 \\ 9.027$	9647 9637 9628	$1139.0\\1137.8\\1136.5$	$8.846 \\ 8.972 \\ 9.102$	9726 9716 9707	$1146.4 \\ 1145.2 \\ 1143.9$	8.9189.0459.176
273 272 271	$\begin{array}{r} 43.95 \\ 43.24 \\ 42.54 \end{array}$	9461 9451 9442	$1120.79\\1119.59\\1118.39$	9.082 9.215 9.350	9539 9530 9521	$1128.0\\1126.8\\1125.6$	$9.158 \\ 9.292 \\ 9.427$	9618 9609 9599	$1135.3 \\ 1134.1 \\ 1132.9$	$9.234 \\ 9.369 \\ 9.505$	9697 9687 9678	$\frac{1142.7}{1141.5}\\1140.2$	$9.308 \\ 9.445 \\ 9.583$
270 269 268	$\begin{array}{r} 41.84 \\ 41.16 \\ 40.49 \end{array}$	9433 9424 9414	$1117.1\\1115.9\\1114.7$	9.481 9.623 9.763	9511 9502 9492	$\begin{array}{c} 1124.3 \\ 1123.2 \\ 1122.0 \end{array}$	$9.560 \\ 9.703 \\ 9.844$	9590 9580 9570	$1131.6\\1130.4\\1129.2$	$9.639 \\ 9.782 \\ 9.925$	$9668 \\ 9658 \\ 9648$	$^{1138.9}_{1137.7}_{1136.5}$	$9.717 \\ 9.862 \\ 10.00$
267 266 265	$39.83 \\ 39.17 \\ 38.53$	9406 9395 9387	$\begin{array}{c} 1113.5\\ 1112.2\\ 1111.0\\ \end{array}$	$9.905 \\ 10.05 \\ 10.20$	9483 9473 9465	$1120.8 \\ 1119.5 \\ 1118.3$	$9.987 \\ 10.14 \\ 10.29$	$9561 \\ 9551 \\ 9542$	$^{1128.0}_{1126.7}_{1125.5}$	$10.07 \\ 10.22 \\ 10.37$	9639 9629 9620	$1135.3 \\ 1134.0 \\ 1132.8$	$10.15 \\ 10.30 \\ 10.46$
264 263 262	$37.89 \\ 37.26 \\ 36.64$	9378 9369 9360	1109.8 1108.6 1107.4	$10.35 \\ 10.50 \\ 10.66$	$9456 \\ 9446 \\ 9437$	$1117.0\\1115.8\\1114.6$	$10.44 \\ 10.59 \\ 10.75$	9533 - 9523 9514	$1124.3 \\ 1123.1 \\ 1121.8$	$10.52 \\ 10.68 \\ 10.84$	$9610 \\ 9601 \\ 9591$	$1131.5 \\ 1130.3 \\ 1129.1$	$10.61 \\ 10.76 \\ 10.92$
261 260 259	$36.02 \\ 35.42 \\ 34.83$	9351 9341 9332	$1106.2\\1105.0\\1103.8$	$10.82 \\ 10.98 \\ 11.14$	9428 9418 9409	$1113.4 \\ 1112.2 \\ 1110.9$	$10.91 \\ 11.07 \\ 11.23$	9504 9495 9485	$\frac{1120.6}{1119.4}\\1118.1$	$11.00 \\ 11.16 \\ 11.33$	$9581 \\ 9572 \\ 9562$	$1127.9\\1126.6\\1125.3$	$11.09 \\ 11.25 \\ 11.42$
258 257 256	$34.24 \\ 33.66 \\ 33.09$	9323 9315 9305	$1102.5\\1101.3\\1100.1$	$11.31 \\ 11.48 \\ 11.66 \\ 11.66 \\ 11.66 \\ 11.66 \\ 11.66 \\ 11.66 \\ 10.00 \\ 10.0$	9399 9391 9381	$1109.6\\1108.5\\1107.3$	$11.40 \\ 11.58 \\ 11.75$	9476 9467 9458	$1116.8 \\ 1115.6 \\ 1114.4$	$11.49 \\ 11.67 \\ 11.85$	9552 9543 9534	$1124.0\\1122.8\\1121.6$	$11.59 \\ 11.77 \\ 11.95$
255 254 253	$32.53 \\ 31.97 \\ 31.42$	9296 9287 9278	1098.8 1097.6 1096.4	$11.83 \\ 12.02 \\ 12.21 \\ 12.2$	9372 9363 9353	$1106.0 \\ 1104.7 \\ 1103.5$	${}^{11.93}_{12.12}_{12.31}$	9448 9438 9429	$ \begin{array}{r} 1113.1 \\ 1111.8 \\ 1110.6 \end{array} $	$12.03 \\ 12.21 \\ 12.41$	$9524 \\ 9514 \\ 9505$	$1120.3 \\ 1119.0 \\ 1117.8$	$12.12 \\ 12.31 \\ 12.51$
252 251 250	$30.88 \\ 30.35 \\ 29.82$	9269 9260 9251	$1095.2\\1094.0\\1092.7$	$12.39 \\ 12.58 \\ 12.7$	9345 9335 9326	$1102.3 \\ 1101.1 \\ 1099.8$	${}^{12.49}_{12.69}_{12.89}$	9420 9410 9401	$1109.4 \\ 1108.2 \\ 1106.9$	$12.60 \\ 12.79 \\ 12.99$	$9495 \\ 9486 \\ 9476$	$1116.5 \\ 1115.3 \\ 1114.0$	$12.70 \\ 12.89 \\ 13.10$
249 248 247	$29.30 \\ 28.79 \\ 28.29$	9242 9233 9225	1091.5 1090.2 1089.0	12.99 13.18 13.39	9317 9308 9299	$1098.6 \\ 1097.3 \\ 1096.1$	$13.09 \\ 13.29 \\ 13.50$	9392 9383 9374	$1105.6\\1104.3\\1103.1$	$\begin{array}{r} 13.20 \\ 13.40 \\ 13.61 \end{array}$	9467 9457 9448	$1112.7 \\ 1111.4 \\ 1110.2$	$13.30 \\ 13.51 \\ 13.72$
246 245 244	$27.80 \\ 27.31 \\ 26.83$	9215 9206 9198	$\begin{array}{c} 1087.8\\ 1086.6\\ 1085.3 \end{array}$	13.61 13.82 14.04	9290 9280 9272	$1094.8\\1093.6\\1092.4$	$13.72 \\ 13.93 \\ 14.15$	9364 9355 9346	$1101.9\\1100.7\\1099.4$	$13.83 \\ 14.04 \\ 14.26$	9439 9429 9420	$1108.9 \\ 1107.7 \\ 1106.4$	$13.94 \\ 14.15 \\ 14.38$
243 242 241	$26.35 \\ 25.88 \\ 25.42$	9188 9180 9171	$1084.1\\1082.9\\1081.6$	$14.25 \\ 14.48 \\ 14.71$	$9262 \\ 9254 \\ 9244$	$1091.2 \\ 1089.9 \\ 1088.6$	$14.37 \\ 14.59 \\ 14.83$	9336 9328 9318	$1098.2 \\ 1096.9 \\ 1095.6$	$14.48 \\ 14.71 \\ 14.95$	9410 9401 9392	$1105.2 \\ 1103.9 \\ 1102.6$	$14.60\\14.83\\15.06$
240 239 238	$24.97 \\ 24.52 \\ 24.08$	9162 9153 9144	$1080.3\\1079.1\\1077.8$	$14.94 \\ 15.18 \\ 15.43$	9236 9226 9217	$1087.3 \\ 1086.1 \\ 1084.8$	$15.06 \\ 15.31 \\ 15.55$	9309 9300 9291	$1094.3 \\ 1093.1 \\ 1091.8$	$15.18 \\ 15.43 \\ 15.67$	9383 9373 9364	$1101.3 \\ 1100.1 \\ 1098.8$	$15.30 \\ 15.55 \\ 15.80$
237 236 235	$23.64 \\ 23.21 \\ 22.79$	9135 9127 9117	$1076.6\\1075.4\\1074.1$	$15.68 \\ 15.93 \\ 16.20$	9208 9199 9190	$1083.6\\1082.3\\1081.0$	$15.80 \\ 16.06 \\ 16.33$	9281 9272 9263	$^{1090.6}_{1089.3}_{1088.0}$	$15.93 \\ 16.19 \\ 16.46$	9354 9345 9335	$1097.5\\1096.2\\1094.9$	$16.05 \\ 16.32 \\ 16.59$
234 233 232	$22.38 \\ 21.97 \\ 21.57$	9109 9100 9091	$\begin{array}{c} 1072.8\\ 1071.6\\ 1070.3 \end{array}$	$16.47 \\ 16.74 \\ 17.01$	9181 9173 9163	$1079.7 \\ 1078.5 \\ 1077.2$	$16.60 \\ 16.87 \\ 17.14$	9254 9245 9235	$1086.6 \\ 1085.4 \\ 1984.1$	$16.73 \\ 17.00 \\ 17.28$	9326 9317 9308	$1093.6\\1092.3\\1091.0$	$16.86 \\ 17.13 \\ 17.41$
231 230 229	$21.17 \\ 20.78 \\ 20.40$	9082 9074 9064	1069.1 1067.8 1066.5	17.29 17.58 17.87	9154 9146 9136	$1076.0 \\ 1074.7 \\ 1073.4$	$17.43 \\ 17.72 \\ 18.02$	9226 9218 9208	$1082.9\\1081.6\\1080.3$	$17.57 \\ 17.85 \\ 18.16$	9299 9290 9280	$1089.8\\1088.5\\1087.2$	$17.70 \\ 17.99 \\ 18.30$

e, ahr.	e		1.64		1.65			1.66			1.67	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
276 275 274	$46.13 \\ 45.39 \\ 44.67$	9805 9796 9786	$\begin{array}{c} 1153.7 \\ 8.99 \\ 1152.5 \\ 9.11 \\ 1151.2 \\ 9.25 \end{array}$	9885 9875 9865	1161.1 1159.8 1158.5	$9.063 \\ 9.193 \\ 9.325$	9964 9954 9944	1168.51167.21165.9	$9.136 \\ 9.266 \\ 9.400$	$8.2 \\ 6.3 \\ .4.3$	$1175.9\\1174.6\\1173.3$	$9.29 \\ 9.40 \\ 9.51$
273 272 271	$\begin{array}{r} 43.95 \\ 43.24 \\ 42.54 \end{array}$	9776 9766 9756	$\begin{array}{c} 1150.0 & 9.384 \\ 1148.8 & 9.521 \\ 1147.5 & 9.660 \end{array}$	9855 9845 9835	1157.3 1156.1 1154.8	$9.460 \\ 9.598 \\ 9.737$	9934 9924 9913	$1164.6 \\ 1163.4 \\ 1162.1$	$9.536 \\ 9.675 \\ 9.815$	$\begin{array}{r} 2.4\\ 0.6\\ 9992\end{array}$	1172.0 1170.7 1169.4	9.63 9.76 9.89
270 269 268	41.84 41.16 40.49	9746 9737 9726	$\begin{array}{c} 1146.2 \\ 9.793 \\ 1145.0 \\ 9.943 \\ 1143.8 \\ 10.09 \end{array}$	9825 9815 9804	$1153.5 \\ 1152.3 \\ 1151.1$	$9.874 \\ 10.02 \\ 10.17$	9903 9893 9882	$1160.8 \\ 1159.6 \\ 1158.3$	$9.953 \\ 10.10 \\ 10.25$	9982 9971 9960	$1168.1 \\ 1166.9 \\ 1165.6$	$10.03 \\ 10.18 \\ 10.33$
267 266 265	$39.83 \\ 39.17 \\ 38.53$	9717 9706 9697	$\begin{array}{c} 1142.5 \\ 1141.2 \\ 1140.0 \\ 10.54 \end{array}$	9795 9784 9775	$1149.8\\1148.5\\1147.3$	$10.31 \\ 10.47 \\ 10.63$	9873 9861 9852	1157.0 1155.7 1154.5	$10.40 \\ 10.55 \\ 10.71$	9950 9937 9930	$1164.3 \\ 1163.0 \\ 1161.8$	$10.48 \\ 10.64 \\ 10.79$
264 263 262	$37.89 \\ 37.26 \\ 36.64$	9688 9678 9668	$\begin{array}{c} 1138.7 \\ 1137.5 \\ 1136.3 \\ 11.0 \end{array}$	9765 9755 9745	$1146.0 \\ 1144.8 \\ 1143.5$	$10.78 \\ 10.94 \\ 11.10$	9842 9832 9822	$\frac{1153.2}{1152.0}\\1150.7$	$10.87 \\ 11.02 \\ 11.19$	9920 9910 9899	$1160.5 \\ 1159.2 \\ 1157.9$	$10.95 \\ 11.11 \\ 11.28$
261 260 259	$36.02 \\ 35.42 \\ 34.83$	9658 9648 9639	$\begin{array}{c} 1135.1 \\ 1133.8 \\ 1132.5 \\ 11.5 \end{array}$	9735 9725 9715	$1142.3 \\ 1141.0 \\ 1139.7$	$11.26 \\ 11.43 \\ 11.60$	9812 9802 9792	1149.51148.21146.9	$11.35 \\ 11.52 \\ 11.69$	9889 9878 9868	$1156.7 \\ 1155.4 \\ 1154.1$	$11.44 \\ 11.61 \\ 11.78$
258 257 256	$34.24 \\ 33.66 \\ 33.09$	9629 9620 9610	$\begin{array}{c} 1131.2 \\ 1130.0 \\ 1128.7 \\ 12.04 \end{array}$	9705 9696 9686	$1138.3 \\ 1137.1 \\ 1135.9$	$11.77 \\ 11.95 \\ 12.14$	9781 9772 9762	$1145.5 \\ 1144.3 \\ 1143.0$	$11.86 \\ 12.05 \\ 12.23$	9858 9848 9838	$1152.7 \\ 1151.5 \\ 1150.2$	$11.96 \\ 12.14 \\ 12.33$
255 254 253	$32.53 \\ 31.97 \\ 31.42$	9600 9590 9580	$\begin{array}{c} 1127.4 \\ 1126.1 \\ 1124.9 \\ 12.6 \end{array}$	9676 9666 9656	$1134.6 \\ 1133.2 \\ 1132.0$	$12.32 \\ 12.51 \\ 12.71$	9752 9741 9731	$1141.7 \\ 1140.4 \\ 1139.2$	$12.41 \\ 12.61 \\ 12.81$	9828 9817 9807	$\frac{1148.9}{1147.5}\\1146.3$	$12.51 \\ 12.70 \\ 12.91$
252 251 250	$30.88 \\ 30.35 \\ 29.82$	9571 9561 9551	$\begin{array}{c} 1123.6\\ 1122.4\\ 122.1\\ 1121.1\\ 13.20\end{array}$	9646 9636 9626	$1130.7 \\ 1129.5 \\ 1128.2$	$12.90 \\ 13.10 \\ 13.30$	9722 9712 9701	$1137.9 \\ 1136.6 \\ 1135.3$	$13.00 \\ 13.20 \\ 13.41$	9797 9787 9776	$1145.0 \\ 1143.7 \\ 1142.4$	$13.10 \\ 13.30 \\ 13.51$
249 248 247	$29.30 \\ 28.79 \\ 28.29$	9542 9532 9523	$\begin{array}{c} 1119.8 \\ 1118.5 \\ 1117.3 \\ 13.8 \end{array}$	9617 9607 9598	$1126.9\\1125.6\\1124.3$	$13.51 \\ 13.72 \\ 13.94$	9692 9682 9672	$1134.0 \\ 1132.6 \\ 1131.4$	$13.62 \\ 13.83 \\ 14.04$	9767 9757 9747	$\frac{1141.1}{1139.7}\\1138.4$	$13.72 \\ 13.93 \\ 14.15$
246 245 244	$27.80 \\ 27.31 \\ 26.83$	$9513 \\ 9503 \\ 9494$	$\begin{array}{c} 1116.0 \\ 1114.8 \\ 14.20 \\ 1113.5 \\ 14.49 \end{array}$	9588 9578 9569	$1123.0\\1121.8\\1120.5$	$14.16 \\ 14.38 \\ 14.60$	9662 9652 9643	$1130.1\\1128.8\\1127.5$	$14.27 \\ 14.49 \\ 14.71$	9737 9726 9717	$1137.1 \\ 1135.9 \\ 1134.6$	$14.38 \\ 14.60 \\ 14.83$
243 242 241	$26.35 \\ 25.88 \\ 25.42$	9484 9475 9465	$\begin{array}{c} 1112.2 \\ 1110.9 \\ 1109.6 \\ 15.18 \end{array}$	9558 9549 9539	$1119.2 \\ 1117.9 \\ 1116.6$	$14.83 \\ 15.06 \\ 15.30$	9632 9623 9613	$1126.3\\1125.0\\1123.7$	$14.94 \\ 15.18 \\ 15.42$	9706 9697 9686	$1133.3 \\ 1132.0 \\ 1130.7$	$15.05 \\ 15.29 \\ 15.54$
240 239 238	$24.97 \\ 24.52 \\ 24.08$	$9456 \\ 9446 \\ 9437$	$\begin{array}{c} 1108.3 \\ 1107.0 \\ 1105.7 \\ 15.92 \end{array}$	9530 9520 9510	$1115.3 \\ 1114.0 \\ 1112.7$	$15.54 \\ 15.79 \\ 16.04$	9603 9593 9584	$1122.3 \\ 1121.0 \\ 1119.7$	$15.66 \\ 15.91 \\ 16.17$	9677 9666 9657	$\begin{array}{c} 1129.3 \\ 1128.0 \\ 1126.7 \end{array}$	$15.78 \\ 16.04 \\ 16.29$
237 236 235	$23.64 \\ 23.21 \\ 22.79$	9427 9418 9408	$\begin{array}{c} 1104.5 \\ 1103.2 \\ 1101.9 \\ 16.75 \end{array}$	9500 9491 9481	$1111.4\\1110.1\\1108.8$	$16.30 \\ 16.57 \\ 16.85$	$9573 \\ 9564 \\ 9554$	$1118.4 \\ 1117.1 \\ 1115.8$	$16.43 \\ 16.70 \\ 16.98$	9646 9637 9626	$1125.4\\1124.0\\1122.7$	$16.55 \\ 16.83 \\ 17.11$
234 233 332	$22.38 \\ 21.97 \\ 21.57$	9399 9390 9380	$\begin{array}{c} 1100.5 \\ 1099.2 \\ 1097.9 \\ 17.5 \end{array}$	9472 9462 9452	1107.4 1106.1 1104.8	$17.12 \\ 17.40 \\ 17.68$	9544 9535 9524	$1114.4 \\ 1113.1 \\ 1111.8$	$17.26 \\ 17.53 \\ 17.82$	9617 9607 9597	$\frac{1121.3}{1120.0}\\1118.7$	$17.39 \\ 17.67 \\ 17.96$
231 230 229	$21.17 \\ 20.78 \\ 20.40$	9371 9362 9351	$1096.7 17.84 \\1095.4 18.13 \\1094.1 18.44$	9443 9434 9423	$1103.6 \\ 1102.3 \\ 1100.9$	$17.98 \\ 18.27 \\ 18.58$	9515 9505 9495	1110.5 1109.2 1107.8	$18.12 \\ 18.41 \\ 18.72$	9587 9577 9567	$1117.4 \\ 1116.1 \\ 1114.7$	$\frac{18.25}{18.55}\\18.87$

0

.

ahr.	e		1.60			1.61			1.62			1.63	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
228 227 226	$20.02 \\ 19.64 \\ 19.28$	9055 9047 9039	$1065.2 \\ 1064.0 \\ 1062.7$	$18.17 \\ 18.47 \\ 18.78 \\ 18.78 \\ 18.78 \\ 18.78 \\ 18.78 \\ 18.78 \\ 18.78 \\ 100 $	9127 9118 9110	$1072.1 \\ 1070.9 \\ 1069.6$	$18.32 \\ 18.62 \\ 18.93$	9198 9190 9182	1079.0 1077.7 1076.4	$18.46 \\ 18.77 \\ 19.08$	9270 9261 9253	$1085.8 \\ 1084.6 \\ 1083.3$	$18.60 \\ 18.91 \\ 19.23$
225 224 223	$18.91 \\ 18.56 \\ 18.21$	9029 9020 9012	$1061.5 \\ 1060.2 \\ 1059.0$	$19.11 \\ 19.43 \\ 19.76$	9100 9091 9083	$1068.3 \\ 1067.0 \\ 1065.8$	$19.26 \\ 19.58 \\ 19.92$	$9171 \\ 9162 \\ 9154$	$1075.1 \\ 1073.8 \\ 1072.6$	$19.41 \\ 19.74 \\ 20.07$	9243 9234 9224	$1082.0 \\ 1080.7 \\ 1079.4$	$19.56 \\ 19.89 \\ 20.23$
222 221 220	$17.86 \\ 17.52 \\ 17.19$	9003 8995 8986	1057.7 1056.5 1055.2	$20.10 \\ 20.44 \\ 20.79$	9074 9065 9056	$1064.5 \\ 1063.3 \\ 1062.0$	$20.26 \\ 20.60 \\ 20.96$	$9145 \\ 9136 \\ 9127$	$1071.3 \\ 1070.1 \\ 1068.8$	$20.42 \\ 20.77 \\ 21.12$	9215 9206 9197	$1078.1 \\ 1076.9 \\ 1075.6$	$20.58 \\ 20.93 \\ 21.28$
219 218 217	$16.86 \\ 16.54 \\ 16.22$	8976 8968 8959	$1053.9 \\ 1052.6 \\ 1051.3$	$21.15 \\ 21.51 \\ 21.89$	9047 9038 9029	1060.7 1059.2 1058.0	$21.31 \\ 21.68 \\ 22.06$	9117 9108 9099	1067.4 1066.0 1064.8	$21.48 \\ 21.85 \\ 22.23$	9187 9178 9169	$1074.2 \\ 1072.8 \\ 1071.5$	$21.65 \\ 22.02 \\ 22.40$
216 215 214	$15.90 \\ 15.60 \\ 15.29$	8950 8942 8933	1050.0 1048.7 1047.4	22.27 22.66 23.06	$9020 \\ 9011 \\ 9002$	$1056.7 \\ 1055.4 \\ 1054.1$	22.44 22.83 23.24	9090 9081 9072	$1063.5 \\ 1062.2 \\ 1060.0$	22.62 25.01 23.41	9160 9151 9141	1070.2 1068.9 1067.6	$22.79 \\ 23.19 \\ 23.59$
213 212 211	$14.99 \\ 14.70 \\ 14.41$	8924 8915 8907	$1046.2 \\ 1044.9 \\ 1043.6$	$23.46 \\ 23.88 \\ 24.31$	8994 8985 8976	$1052.9\\1051.6\\1050.3$	$23.64 \\ 24.06 \\ 24.50$	9063 9054 9045	1059.6 1058.3 1057.0	$23.33 \\ 24.25 \\ 24.68$	9132 9123 9115	1066.3 1065.0 1063.7	$24.01 \\ 24.43 \\ 24.87$
210 209 208	$14.13 \\ 13.85 \\ 13.57$	8899 8890 8882	$1042.3 \\ 1041.0 \\ 1039.7$	$24.74 \\ 25.18 \\ 25.63$	8968 8959 8950	1049.0 1047.7 1046.4	$24.93 \\ 25.37 \\ 25.83$	9037 9028 9019	1055.7 1054.3 1053.0	$25.12 \\ 25.57 \\ 26.03$	9106 9097 9088	1062.4 1061.0 1059.7	$25.31 \\ 25.76 \\ 26.23$
207 206 205	$13.30 \\ 13.03 \\ 12.77$	8873 8864 8855	$1038.4 \\ 1037.1 \\ 1035.8$	$26.09 \\ 26.57 \\ 27.06$	8941 8932 8923	$1045.0\\1043.7\\1042.4$	$26.30 \\ 26.78 \\ 27.27$	9010 9001 8992	1051.7 1050.4 1049.1	$26.50 \\ 26.98 \\ 27.48$	9078 9069 9060	1058.4 1057.1 1055.7	$26.70 \\ 27.19 \\ 27.69$
204 203 202	$\begin{array}{c} 12.51 \\ 12.26 \\ 12.01 \end{array}$	8846 8837 8830	$1034.5 \\ 1033.2 \\ 1031.9$	$27.56 \\ 28.06 \\ 28.58$	8914 8905 8897	1041.1 1039.8 1038.6	27.77 28.27 28.80	8983 8973 8965	$1047.8\\1046.4\\1045.2$	27.98 28.49 29.02	9051 9041 9033	1054.4 1053.1 1051.8	$28.19 \\ 28.71 \\ 29.24$
201 200 199	$ \begin{array}{c} 11.77 \\ 11.53 \\ 11.29 \end{array} $	8821 8812 8803	$1030.6\\1029.3\\1028.0$	$29.10 \\ 29.63 \\ 30.17$	8888 8879 8871	1037.2 1035.9 1034.6	$29.32 \\ 29.85 \\ 30.40$	8956 8947 8938	$1043.8\\1042.5\\1041.2$	29.55 30.08 30.63	9024 9014 9005	1050.4 1049.1 1047.7	$\begin{array}{c} 29.77 \\ 30.31 \\ 30.86 \end{array}$
198 197 196	$ \begin{array}{c} 11.06\\ 10.83\\ 10.61 \end{array} $	8795 8786 8777	$1026.7\\1025.3\\1024.0$	$30.72 \\ 31.29 \\ 31.87$	8862 8853 8844	1033.31031.91030.51031	$30.96 \\ 31.53 \\ 32.11$	8929 8920 8911	$1039.9\\1038.4\\1037.1$	31.19 31.76 32.36	8997 8987 8978	$1046.3\\1045.0\\1043.0$	$31.43 \\ 32.00 \\ 32.60$
195 194 193	$ \begin{array}{c c} 10.39 \\ 10.17 \\ 9.96 \end{array} $	8769 8760 8752	$1022.7\\1021.4\\1020.1$	32.47 33.09 33.72	8836 8827 8818	1029.31027.91026.6	32.72 33.34 33.98	8902 8893 8885	1035.8 1034.5 1033.2	32.97 33.59 34.23	8969 8960 8951	$1042.4\\1041.0\\1039.7$	$33.21 \\ 33.84 \\ 34.49$
192 191 190	9.75 9.54 9.34	8743 8734 8725	$1018.8 \\ 1017.4 \\ 1016.2$	$ \begin{array}{r} 34.37 \\ 35.03 \\ 35.70 \\ \end{array} $	8809 8800 8791	$1025.3\\1023.9\\1022.6$	34.63 35.30 35.97	8875 8866 8857	1031.81030.41029.1	34.89 35.56 36.24	8942 8932 8923	$1038.3 \\ 1037.0 \\ 1035.0 \\$	35.15 35.83 36.51
189 188 187	9.14 8.95 8.76	8717 8708 8699	$1014.9\\1013.5\\1012.2$	$36.39 \\ 37.09 \\ 37.80$	8783 8774 8765	$1021.4\\1020.0\\1018.7$	36.67 37.37 38.08	8849 8839 8830	$1027.8\\1026.5\\1025.2$	36.94 37.65 38.37	8915 8905 8896	$1034.3\\1032.9\\1031.6$	37.22 37.93 38.65
186 185 184	8.57 8.38 8.20	8690 8682 8673	$1010.9\\1009.6\\1008.2$	$38.52 \\ 39.27 \\ 40.04$	8756 8747 8738	$\begin{array}{c} 1017.3 \\ 1016.0 \\ 1014.6 \end{array}$	38.81 39.56 40.34	8821 8812 8803	1023.8 1022.5 1021.1	39.10 39.86 40.64	8887 8878 8868	$1030.2\\1028.9\\1027.5$	$39.39 \\ 40.15 \\ 40.94$
183 182 181	8.02 7.85 7.68	8664 8656 8648	$1006.9\\1005.4\\1004.2$	$\begin{array}{r} 40.83 \\ 41.64 \\ 42.49 \end{array}$	8729 8721 8712	$1013.3 \\ 1012.0 \\ 1010.6 \\$	$\begin{array}{c} 41.13 \\ 41.96 \\ 42.80 \end{array}$	8795 8786 8777	1019.8 1018.4 1017.0	$ \begin{array}{c} 41.44\\ 42.27\\ 43.12 \end{array} $	8860 8851 8842	1026.2 1024.8 1023.4	41.75 42.58 43.44

.

e, ahr.	e	-	1.64			1.65			1.66			1.67	
Temperatur Degrees F	Pressure, Pc per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
228 227 226	$20.02 \\ 19.64 \\ 19.28$	9342 9333 9324	1092.7 1091.4 1090.1	18.75 19.06 19.38	9413 9404 9396	1099.6 1098.3 1097.0	18.89 19.20 19.52	9485 9476 9467	$1106.5 \\ 1105.2 \\ 1103.9$	19.04 19.35 19.67	9557 9547 9539	$1113.3 \\ 1112.0 \\ 1110.7$	19.18 19.50 19.82
225 224 223	$18.91 \\ 18.56 \\ 18.21$	9314 9305 9295	$1088.8 \\ 1087.5 \\ 1086.2$	$19.71 \\ 20.04 \\ 20.38$	9385 9376 9366	1095.7 1094.3 1093.1	$19.86 \\ 20.20 \\ 20.54$	9456 9447 9437	1102.6 1101.2 1099.9	$20.01 \\ 20.35 \\ 20.70$	9527 9518 9508	1109.4 1108.0 1106.7	$20.16 \\ 20.50 \\ 20.85$
222 221 220	17.86 17.52 17.19	9286 9277 9268	$1084.9 \\ 1083.6 \\ 1082.3$	$20.74 \\ 21.09 \\ 21.45$	9357 9347 9338	1091.8 1090.5 1089.1	$20.89 \\ 21.25 \\ 21.61$	9428 9418 9408	1098.6 1097.3 1095.9	$21.05 \\ 21.41 \\ 21.77$	9498 9489 9479	1105.4 1104.1 1102.7	$21.21 \\ 21.57 \\ 21.93$
219 218 217	$16.86 \\ 16.54 \\ 16.22$	9258 9248 9239	1081.0 1079.6 1078.3	$21.81 \\ 22.19 \\ 22.57$	9328 9318 9309	$1087.8 \\ 1086.4 \\ 1085.1$	$21.98 \\ 22.35 \\ 22.74$	9398 9388 9379	$1094.5 \\ 1093.1 \\ 1091.8$	$22.14 \\ 22.52 \\ 22.91$	9468 9459 9449	1101.3 1099.9 1098.6	$22.31 \\ 22.69 \\ 23.08$
216 215 214	$15.90 \\ 15.60 \\ 15.29$	9230 9220 9211	$1077.0\\1075.7\\1074.4$	$22.96 \\ 23.36 \\ 23.77$	9300 9290 9281	1083.7 1082.4 1081.1	$23.14 \\ 23.54 \\ 23.95$	9369 9360 9350	1090.5 1089.2 1087.8	$23.31 \\ 23.72 \\ 24.13$	9439 9430 9420	1097.2 1095.9 1094.6	$23.48 \\ 23.89 \\ 24.31$
213 212 211	14.99 14.70 14.41	9202 9192 9184	$1073.1 \\ 1071.7 \\ 1070.4$	$24.19 \\ 24.62 \\ 25.06$	9271 9262 9253	1079.8 1078.4 1077.1	$24.37 \\ 24.80 \\ 25.25$	9341 9331 9322	$1086.5 \\ 1085.1 \\ 1083.8 \\$	$24.56 \\ 24.99 \\ 25.44$	9410 9400 9391	1093.3 1091.9 1090.6	$24.74 \\ 25.17 \\ 25.63$
210 209 208	14.13 13.85 13.57	9174 9166 9156	$1069.1 \\ 1067.7 \\ 1066.4$	$25.51 \\ 25.96 \\ 26.42$	9243 9234 9225	$1075.8 \\ 1074.4 \\ 1073.1$	$25.70 \\ 26.15 \\ 26.62$	9312 9303 9294	1082.5 1081.1 1079.7	25.89 26.35 26.82	9381 9372 9362	$1089.2 \\ 1087.8 \\ 1086.4$	$26.08 \\ 26.54 \\ 27.02$
207 206 205	$ \begin{array}{c} 13.30\\ 13.03\\ 12.77 \end{array} $	9147 9137 9128	$1065.0\\1063.7\\1062.4$	$26.90 \\ 27.39 \\ 27.90$	9215 9206 9196	$1071.7 \\ 1070.4 \\ 1069.0$	$27.10 \\ 27.60 \\ 28.10$	9284 9274 9265	$1078.4 \\ 1077.0 \\ 1075.7$	$27.30 \\ 27.80 \\ 28.31$	9352 9342 9333	1085.0 1083.7 1082.3	$27.51 \\ 28.01 \\ 28.52$
204 203 202	$12.51 \\ 12.26 \\ 12.01$	9119 9109 9101	1061.0 1059.7 1058.4	$28.40 \\ 28.92 \\ 29.46$	9187 9177 9168	1067.7 1066.3 1065.0	$28.62 \\ 29.14 \\ 29.68$	9255 9245 9236	$1074.3 \\ 1072.9 \\ 1071.6$	28.83 29.35 29.90	9323 9313 9304	1080.9 1079.6 1078.2	$29.04 \\ 29.57 \\ 30.12$
201 200 199	$ \begin{array}{c} 11.77 \\ 11.53 \\ 11.29 \end{array} $	9091 9082 9073	1057.01055.71054.3	29.99 30.53 31.09	9159 9149 9140	1063.6 1062.3 1060.9	$30.21 \\ 30.76 \\ 31.32$	9227 9217 9207	$1070.3 \\ 1068.9 \\ 1067.5$	$30.44 \\ 30.99 \\ 31.55$	9294 9284 9275	$1076.9 \\ 1075.5 \\ 1074.1$	$30.66 \\ 31.21 \\ 31.78$
198 197 196	11.06 10.83 10.61	9064 9054 9045	$1053.0\\1051.6\\1050.2$	31.66 32.24 32.84	9131 9121 9112	1059.6 1058.1 1056.8	$31.89 \\ 32.48 \\ 33.08$	9198 9188 9179	1066.2 1064.7 1063.3	$32.13 \\ 32.72 \\ 33.33$	9265 9255 9245	1072.8 1071.3 1069.9	$32.36 \\ 32.96 \\ 33.57$
195 194 193	10.39 10.17 9.96	9036 9026 9018	$1048.9\\1047.5\\1046.2$	$33.46 \\ 34.09 \\ 34.74$	9103 9093 9084	1055.4 1054.1 1052.7	$33.71 \\ 34.34 \\ 35.00$	9170 9160 9151	1062.0 1060.6 1059.3	$33.95 \\ 34.60 \\ 35.26$	9236 9226 9217	1068.5 1067.1 1065.8	$34.20 \\ 34.85 \\ 35.51$
192 191 190	9.75 9.54 9.34	9008 8998 8989	$1044.8\\1043.5\\1042.1$	35.41 36.09 36.78	9074 9065 9055	1051.41050.01048.6	35.67 36.36 37.05	9141 9131 9121	$1057.9 \\ 1056.5 \\ 1055.1$	$35.93 \\ 36.62 \\ 37.32$	9207 9197 9188	1064.4 1063.0 1061.6	$36.19 \\ 36.89 \\ 37.60$
189 188 187	9.14 8.95 8.76	8980 8971 8962	1040.8 1039.4 1038.1	37.49 38.21 38.94	9046 9037 9027	$1047.3 \\ 1045.9 \\ 1044.6$	37.77 38.49 39.22	9112 9102 9093	$1053.8 \\ 1052.4 \\ 1051.0 \\ 0$	38.04 38.77 39.51	9178 9168 9159	1060.3 1058.8 1057.5	$38.32 \\ 39.05 \\ 39.79$
186 185 184	8.57 8.38 8.20	8954 8943 8933	1036.71035.41034.0	39.68 40.45 41.25	9018 9008 8999	1043.1 1041.8 1040.4	$39.97 \\ 40.74 \\ 41.55$	9083 9074 9064	1049.6 1048.2 1046.8	$\begin{array}{r} 40.27 \\ 41.04 \\ 41.85 \end{array}$	9149 9139 9129	1056.1 1054.7 1053.2	40.56 41.33 42.15
183 182 181	8.02 7.85 7.68	8925 8916 8907	1032.61031.31029.8	$\begin{array}{c} 42.05 \\ 42.89 \\ 43.76 \end{array}$	8990 8981 8972	1039.01037.71036.2	$\begin{array}{r} 42.36 \\ 43.21 \\ 44.08 \end{array}$	9055 9046 9036	1045.5 1044.1 1042.6	$\begin{array}{r} 42.67 \\ 43.52 \\ 44.40 \end{array}$	9120 9111 9101	1051.9 1050.5 1049.0	42.97 43.83 44.71

IOI

ahr.	e		1.60		1.61			1.62			1.63	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
180 179 178	$7.51 \\ 7.35 \\ 7.19$	8639 8630 8622	$\begin{array}{c} 1002.8 \\ 1001.5 \\ 44.19 \\ 1000.2 \\ 45.09 \end{array}$	8703 8695 8686	$1009.2 \\ 1007.9 \\ 1006.6$	$43.69 \\ 44.52 \\ 45.43$	8768 8759 8750	1015.6 1014.3 1012.9	$\begin{array}{r} 44.01 \\ 44.85 \\ 45.76 \end{array}$	8833 8824 8815	$1022.0\\1020.7\\1019.3$	$\begin{array}{r} 44.34 \\ 45.18 \\ 46.10 \end{array}$
177 176 175	$7.03 \\ 6.87 \\ 6.71$	$\begin{array}{r} 8613 \\ 8604 \\ 8596 \end{array}$	998.9 45.99 997.5 46.89 996.1 47.88		$1005.2 \\ 1003.8 \\ 1002.5$	$\begin{array}{r} 46.34 \\ 47.24 \\ 48.23 \end{array}$	8742 8732 8724	$1011.6\\1010.2\\1008.8$	$46.68 \\ 47.59 \\ 48.59$	8806 8796 8788	$1018.0 \\ 1016.5 \\ 1015.2$	$\begin{array}{r} 47.02 \\ 47.94 \\ 48.95 \end{array}$
174 173 172	$\begin{array}{c} 6.56 \\ 6.42 \\ 6.27 \end{array}$	8587 8579 8570	994.8 48.86 993.5 49.84 992.1 50.8	8651 8643 8634	1001.2 999.8 998.5	$49.22 \\ 50.2 \\ 51.2$	8715 8706 8697	1007.5 1006.1 1004.8	$49.59 \\ 50.6 \\ 51.6$	8779 8770 8761	$1013.8 \\ 1012.5 \\ 1011.1$	$49.95 \\ 51.0 \\ 52.0$
171 170 169	$\begin{array}{c} 6.13 \\ 5.99 \\ 5.85 \end{array}$	$8561 \\ 8552 \\ 8544$	$\begin{array}{c} 990.7 \\ 989.4 \\ 53.0 \\ 988.1 \\ 54.2 \end{array}$	8624 8616 8607	997.0 995.7 994.3	$52.3 \\ 53.4 \\ 54.6$	8688 8679 8670	$1003.4\\1002.0\\1000.6$	$52.6 \\ 53.8 \\ 55.0$	8751 8742 8733	$1009.7 \\ 1008.3 \\ 1006.9$	$53.0 \\ 54.2 \\ 55.4$
168 167 166	$5.72 \\ 5.59 \\ 5.46$	8536 8527 8518	$\begin{array}{c} 986.7 \\ 985.3 \\ 985.3 \\ 56.4 \\ 984.0 \\ 57.7 \end{array}$	8599 8589 8581	993.0 991.6 990.2	$55.7 \\ 56.9 \\ 58.1$	$\begin{array}{r} 8662 \\ 8652 \\ 8644 \end{array}$	999.3 997.9 996.5	$56.1 \\ 57.3 \\ 58.5$	$8725 \\ 8715 \\ 8706$	$1005.5 \\ 1004.1 \\ 1002.8$	$56.5 \\ 57.7 \\ 58.9$
165 164 163	$5.33 \\ 5.21 \\ 5.09$	$8510 \\ 8501 \\ 8492$	$\begin{array}{c} 982.6 \\ 981.3 \\ 979.9 \\ 61.2 \end{array}$	8572 8563 8555	988.9 987.5 986.1	$59.2 \\ 60.5 \\ 61.7$		$995.1 \\ 993.7 \\ 992.4$	$59.7 \\ 60.9 \\ 62.1$	8697 8688 8679	$1001.4 \\ 1000.0 \\ 998.6$	$\begin{array}{c} 60.1\\ 61.3\\ 62.6\end{array}$
162 161 160	$\begin{array}{r} 4.969 \\ 4.852 \\ 4.738 \end{array}$	$\begin{array}{r} 8484 \\ 8475 \\ 8467 \end{array}$	$\begin{array}{c} 978.5 \\ 977.2 \\ 975.8 \\ 65.4 \end{array}$	8546 8537 8529	$984.7 \\ 983.4 \\ 982.0$	$ \begin{array}{r} 63.0 \\ 64.4 \\ 65.8 \end{array} $	8608 8599 8590	$991.0 \\ 989.6 \\ 988.2$	$ \begin{array}{r} 63.4 \\ 64.8 \\ 66.3 \end{array} $	$\begin{array}{c} 8670 \\ 8661 \\ 8652 \end{array}$	$997.2 \\ 995.8 \\ 994.4$	$\begin{array}{c} 63.9 \\ 65.3 \\ 66.8 \end{array}$
159 158 157	$\begin{array}{r} 4.626 \\ 4.517 \\ 4.409 \end{array}$	$\begin{array}{r} 8458 \\ 8449 \\ 8441 \end{array}$	$\begin{array}{c} 974.5 \\ 973.1 \\ 971.8 \\ 69.7 \end{array}$	8520 8511 8503	980.7 979.3 977.9	67.2 68.7 70.2	$8582 \\ 8573 \\ 8564$	$986.8 \\ 985.4 \\ 984.1$	67.7 69.2 70.7	$\begin{array}{r} 8643 \\ 8634 \\ 8626 \end{array}$	993.0 991.6 990.3	${68.2 \atop 69.7 \atop 71.2}$
156 155 154	$\begin{array}{r} 4.303 \\ 4.200 \\ 4.099 \end{array}$	8432 8424 8415	$\begin{array}{c} 970.4 \\ 969.0 \\ 967.6 \\ 74.4 \end{array}$	8494 8485 8476	$976.5 \\ 975.1 \\ 973.7$	71.8 73.3 74.9		$982.7 \\ 981.3 \\ 979.9$	72.3 73.8 75.5	8616 8607 8598	$988.8 \\ 987.4 \\ 986.0$	$72.8 \\ 74.4 \\ 76.0$
153 152 151	$\begin{array}{r} 4.000 \\ 3.903 \\ 3.808 \end{array}$	8406 8397 8388	$\begin{array}{c} 966.2 \\ 964.8 \\ 77.7 \\ 963.4 \\ 79.4 \end{array}$	8467 8458 8449	$972.4 \\ 971.0 \\ 969.5$	76.5 78.2 80.0	8528 8519 8510	$978.5 \\ 977.1 \\ 975.7$	77.1 78.8 80.6	8589 8580 8570	$984.6 \\ 983.2 \\ 981.8$	$\begin{array}{c} 77.6\\79.4\\81.2\end{array}$
150 149 148	$3.715 \\ 3.624 \\ 3.535$	8380 8371 8363	$\begin{array}{c} 962.1 \\ 960.7 \\ 959.3 \\ 85.0 \end{array}$	8441 8432 8423	$968.2 \\ 966.8 \\ 965.4$	81.8 83.6 85.6	8501 8492 8483	$974.3 \\ 972.9 \\ 971.5$	$\begin{array}{c} 82.4 \\ 84.2 \\ 86.2 \end{array}$	$8562 \\ 8552 \\ 8544$	$980.4 \\ 978.9 \\ 977.6$	
147 146 145	$3.447 \\ 3.361 \\ 3.278$	$8354 \\ 8345 \\ 8336$	$\begin{array}{c} 957.9 \\ 956.6 \\ 955.1 \\ 90.9 \end{array}$	8414 8405 8396	$964.0 \\ 962.6 \\ 961.2$	87.5 89.5 91.5	8474 8465 8456	970.0 968.7 967.2	$88.1 \\ 90.2 \\ 92.2$		$976.1 \\ 974.7 \\ 973.3$	
144 143 142	$3.196 \\ 3.116 \\ 3.037$	8328 8319 8311	$\begin{array}{c} 953.8 \\ 92.9 \\ 952.3 \\ 951.0 \\ 97.3 \end{array}$	8388 8378 8370	$959.8 \\ 958.4 \\ 957.0$	93.6 95.8 98.0	8447 8438 8429	$965.8 \\ 964.4 \\ 963.0$	94.3 96.4 98.7	8507 8498 8489	$971.9 \\ 970.4 \\ 969.0$	$94.9 \\ 97.1 \\ 99.4$
141 140 139	$2.960 \\ 2.885 \\ 2.812$	8302 8293 8285	$\begin{array}{c} 949.6 \\ 948.1 \\ 948.1 \\ 946.8 \\ 104.3 \end{array}$	8361 8352 8344	$955.6 \\ 954.1 \\ 952.7$	$100.3 \\ 102.6 \\ 105.0$	8421 8411 8403	$961.6 \\ 960.1 \\ 958.7$	$101.0\\103.3\\105.8$	8480 8470 8462	$967.6 \\ 966.1 \\ 964.7$	$101.7 \\ 104.0 \\ 106.5$
138 137 136	$2.740 \\ 2.669 \\ 2.600$	8276 8267 8258	$\begin{array}{c} 945.4 \\ 943.9 \\ 942.5 \\ 111.8 \end{array}$	8335 8326 8317	$951.3 \\ 949.9 \\ 948.5$	$107.4 \\ 110.0 \\ 112.6$	8394 8384 8376	$957.3 \\ 955.8 \\ 954.4$	$108.2 \\ 110.8 \\ 113.4$	8453 8443 8434	$963.3 \\ 961.8 \\ 960.4$	$109.0\\111.5\\114.2$
135 134 133	$2.533 \\ 2.467 \\ 2.403$	8250 8241 8232	$\begin{array}{c} 941.1\\939.7\\117.2\\938.3\\120.0\end{array}$	8309 8299 8291	$947.1 \\ 945.6 \\ 944.2$	$115.3 \\ 118.0 \\ 120.9$	8367 8358 8349	953.0 951.5 950.1	$116.1 \\ 118.8 \\ 121.7$	8426 8416 8407	959.0 957.5 956.0	$116.9 \\ 119.7 \\ 122.6$

ahr.	unds		1.64		-	1.65			1.66			1.67	
Temperature Degrees Fi	Pressure, Po per Square Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
180 179 178	$7.51 \\ 7.35 \\ 7.19$	8897 8888 8879	1028.4 1027.0 1025.7	$44.66 \\ 45.51 \\ 46.44$	8962 8953 8944	$1034.8 \\ 1033.4 \\ 1032.1$	$\begin{array}{r} 44.99 \\ 45.84 \\ 46.77 \end{array}$	9026 9017 9008	$1041.2 \\ 1039.8 \\ 1038.4$	$45.31 \\ 46.17 \\ 47.11$	9091 9082 9072	$1047.6 \\ 1046.2 \\ 1044.8$	$45.64 \\ 46.50 \\ 47.45$
177 176 175	$7.03 \\ 6.87 \\ 6.71$	8870 8860 8852	$\begin{array}{c} 1024.3\\ 1022.9\\ 1021.5 \end{array}$	47.37 48.29 49.30	8934 8925 8916	$1030.7 \\ 1029.3 \\ 1027.9$	$47.71 \\ 48.64 \\ 49.66$	8999 8989 8979	$1037.1 \\ 1035.6 \\ 1034.2$	$\begin{array}{r} 48.05 \\ 48.99 \\ 50.0 \end{array}$	9063 9053 9043	$1043.4\\1042.0\\1040.6$	$\begin{array}{r} 48.39 \\ 49.34 \\ 50.4 \end{array}$
174 173 172	$\begin{array}{c} 6.56 \\ 6.42 \\ 6.27 \end{array}$	8843 8833 8824	$\begin{array}{c} 1020.2\\ 1018.8\\ 1017.4 \end{array}$	$50.3 \\ 51.3 \\ 52.3$	8906 8897 8888	$1026.5 \\ 1025.1 \\ 1023.7$	$50.7 \\ 51.7 \\ 52.7$	8970 8961 8951	$1032.8 \\ 1031.4 \\ 1030.0$	$51.0 \\ 52.1 \\ 53.1$	9034 9024 9015	$1039.2 \\ 1037.8 \\ 1036.4$	$51.4 \\ 52.4 \\ 53.5$
171 170 169	$ \begin{array}{r} 6.13 \\ 5.99 \\ 5.85 \\ \end{array} $	8815 8805 8796	$\begin{array}{c} 1016.0\\ 1014.6\\ 1013.2 \end{array}$	53.4 54.6 55.8	8878 8869 8859	$1022.3 \\ 1020.9 \\ 1019.5$	$53.8 \\ 55.0 \\ 56.2$	8941 8932 8922	$\begin{array}{c} 1028.6 \\ 1027.2 \\ 1025.8 \end{array}$	$54.2 \\ 55.4 \\ 56.6$	9005 8995 8986	$1034.9\\1033.5\\1032.0$	$54.6 \\ 55.8 \\ 57.0$
168 167 166	$5.72 \\ 5.59 \\ 5.46$	8788 8778 8769	1011.8 1010.4 1009.0	56.9 58.1 59.4	8851 8841 8832	$1018.1 \\ 1016.7 \\ 1015.3$	$57.4 \\ 58.5 \\ 59.8$	8914 8904 8894	$1024.4 \\ 1022.9 \\ 1021.6$	$57.8 \\ 58.9 \\ 60.2$	8977 8966 8957	$1030.6\\1029.2\\1027.8$	$58.2 \\ 59.4 \\ 60.6$
165 164 163	$5.33 \\ 5.21 \\ 5.09$	8760 8751 8742	$1007.6\\1006.2\\1004.8$	$ \begin{array}{r} 60.5 \\ 61.8 \\ 63.0 \end{array} $	8822 8813 8804	$1013.9 \\ 1012.4 \\ 1011.0$	$\begin{array}{c} 61.0 \\ 62.2 \\ 63.5 \end{array}$	8885 8876 8866	1020.1 1018.7 1017.3	$ \begin{array}{r} 61.4 \\ 62.7 \\ 63.9 \end{array} $	8948 8938 8928	$1026.3 \\ 1024.9 \\ 1023.5$	$ \begin{array}{r} 61.8 \\ 63.1 \\ 64.4 \end{array} $
162 161 160	4.969 4.852 4.738	8732 8723 8714	$1003.4\\1002.0\\1000.6$	$ \begin{array}{r} 64.4 \\ 65.8 \\ 67.3 \end{array} $	8794 8785 8776	1009.6 1008.2 1006.8	$ \begin{array}{r} 64.8 \\ 66.2 \\ 67.8 \end{array} $	8856 8847 8838	$1015.8 \\ 1014.5 \\ 1013.0$	$ \begin{array}{r} 65.3 \\ 66.7 \\ 68.2 \end{array} $	8919 8909 8900	$1022.0\\1020.7\\1019.2$	$ \begin{array}{r} 65.7 \\ 67.2 \\ 68.7 \end{array} $
159 158 157	$\begin{array}{r} 4.626 \\ 4.517 \\ 4.409 \end{array}$	8705 8696 8687	999.2 997.8 996.4	68.7 70.2 71.8	8767 8757 8748	$1005.4 \\ 1004.0 \\ 1002.6$	$69.2 \\ 70.7 \\ 72.3$	8829 8819 8810	1011.6 1010.1 1008.8	$69.7 \\ 71.2 \\ 72.8$	8890 8881 8871	$1017.8 \\ 1016.3 \\ 1014.9$	$70.1 \\ 71.7 \\ 73.3$
156 155 154	4.303 4.200 4.099		$995.0 \\ 993.6 \\ 992.1$	$73.3 \\ 74.9 \\ 76.5$	8739 8729 8720	1001.1 999.7 998.3	$73.8 \\ 75.4 \\ 77.1$	8800 8791 8781	$1007.3 \\ 1005.9 \\ 1004.4$	74.4 76.0 77.6	8862 8852 8842	$1013.5 \\ 1012.0 \\ 1010.5$	$74.9 \\ 76.5 \\ 78.2$
153 152 151	4.000 3.903 3.808	8650 8640 8631	990.7 989.3 987.9	78.2 79.9 81.7	8711 8701 8692	996.9 995.4 994.0	$78.7 \\ 80.5 \\ 82.3$	8772 8762 8752	1003.0 1001.5 1000.1	$79.3 \\ 81.0 \\ 82.9$	8833 8823 8813	1009.1 1007.7 1006.2	79.8 81.6 83.5
150 149 148	$3.715 \\ 3.624 \\ 3.535$	$ \begin{array}{r} 8622 \\ 8613 \\ 8604 \end{array} $	986.5 985.0 983.6	83.5 85.4 87.4	8683 8673 8664	992.6 991.1 989.7	$ \begin{array}{r} 84.1 \\ 86.0 \\ 88.0 \\ \end{array} $	8743 8733 8724	998.7 997.2 995.8		8804 8794 8785	1004.8 1003.3 1001.9	85.3 87.2 89.3
147 146 145	3.447 3.361 3.278	8594 8585 8576	982.2 980.8 979.3	$89.4 \\ 91.4 \\ 93.5$	8654 8645 8636	988.2 986.8 985.4	$90.0 \\ 92.1 \\ 94.1$	8715 8705 8695	994.3 992.9 991.4	$90.6 \\ 92.7 \\ 94.8$	8775 8765 8755	1000.4 998.9 997.4	$91.3 \\ 93.3 \\ 95.4$
144 143 142	$3.196 \\ 3.116 \\ 3.037$	8567 8557 8548	$977.9 \\ 976.4 \\ 975.0$	$95.6 \\ 97.8 \\ 100.1$	8626 8617 8608	983.9 982.5 981.0	96.3 98.5 100.8	8686 8676 8667	990.0 988.5 987.0	$96.9 \\ 99.2 \\ 101.5$	8746 8736 8727	996.0 994.5 993.1	97.6 99.9 102:2
141 140 139	2.960 2.885 2.812	8539 8530 8521	$973.6 \\ 972.1 \\ 970.7$	$102.4 \\ 104.7 \\ 107.3$	8598 8589 8580	979.6 978.1 976.7	$103.1 \\ 105.5 \\ 108.0$	8658 8648 8639	985.6 984.1 982.7	$103.8 \\ 106.2 \\ 108.7$	8717 8707 8698	991.6 990.1 988.6	$104.5 \\ 106.9 \\ 109.5$
138 137 136	$2.740 \\ 2.669 \\ 2.600$	8512 8502 8493	969.3 967.8 966.3	$109.7 \\ 112.3 \\ 115.0$	8571 8561 8552	975.2 973.7 972.3	$110.5 \\ 113.1 \\ 115.8$	8630 8620 8610	981.2 979.7 978.3	$ \begin{array}{r} 111.2 \\ 113.9 \\ 116.6 \end{array} $	8689 8678 8669	987.2 985.7 984.2	112.0 114.6 117.4
135 134 133	$2.533 \\ 2.467 \\ 2.403$	8484 8474 8465	964.9 963.4 962.0	$117.8 \\ 120.5 \\ 123.4$	8543 8533 8524	970.9 969.3 967.9	$118.6 \\ 121.3 \\ 124.3$	8601 8591 8582	976.8 975.3 973.8	$119.4 \\ 122.2 \\ 125.1$	8660 8649 8640	982.7 981.2 979.7	$120.2 \\ 123.0 \\ 126.0$

e, ahr.	e		1.60			1.61			1.62			1.63	
Temperatur Degrees F	Pressure, Pc per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
132 131 130	$2.341 \\ 2.280 \\ 2.220$	8224 8215 8207	936.9 935.4 934.0	$122.9\\125.9\\128.9$	8282 8273 8265	$942.8 \\ 941.3 \\ 939.9$	$123.8 \\ 126.7 \\ 129.8 \\ $	8340 8331 8323	$948.7 \\ 947.3 \\ 945.8$	$124.7 \\ 127.6 \\ 130.7$	8398 8389 8380	$954.6 \\ 953.2 \\ 951.7$	$125.6\\128.5\\131.7$
129 128 127	$2.161 \\ 2.103 \\ 2.047$	8198 8189 8181	932.6 931.2 929.8	$132.1\\135.3\\138.6$	8256 8247 8238	$938.5 \\ 937.1 \\ 935.7$	$133.0 \\ 136.2 \\ 139.6$	8314 8305 8296	$944.4 \\ 942.9 \\ 941.5$	$133.9 \\ 137.2 \\ 140.5$	8371 8362 8353	$950.3 \\ 948.8 \\ 947.4$	$134.9\\138.1\\141.5$
126 125 124	$1.992 \\ 1.938 \\ 1.886$	$8172 \\ 8163 \\ 8154$	928.3 926.9 925.5	$142.0\\145.5\\149.1$	8229 8220 8211	$934.2 \\ 932.8 \\ 931.3$	$143.0 \\ 146.6 \\ 150.2$	8287 8278 8268	$940.0 \\ 938.6 \\ 937.1$	$144.0\\147.6\\151.2$	8344 8335 8326	$945.9 \\ 944.5 \\ 943.0$	$145.0 \\ 148.6 \\ 152.3$
123 122 121	$ \begin{array}{r} 1.835 \\ 1.785 \\ 1.737 \end{array} $	8145 8137 8129	$\begin{array}{c} 924.1 \\ 922.6 \\ 921.2 \end{array}$	$152.9 \\ 156.8 \\ 160.8 $	8202 8194 8185	$929.9 \\ 928.4 \\ 927.0$	$154.0 \\ 157.9 \\ 161.9$	8259 8250 8242	$935.7 \\ 934.2 \\ 932.8$	$155.0 \\ 159.0 \\ 163.0$	8316 8307 8299	$941.6 \\ 940.1 \\ 938.6$	$156.1 \\ 160.1 \\ 164.1$
120 119 118	$1.689 \\ 1.642 \\ 1.597$	8120 8111 8102	919.8 918.4 916.9	164.8 169.0 173.4	8176 8167 8159	$925.6 \\ 924.2 \\ 922.7$	$166.0 \\ 170.2 \\ 174.6$	8233 8224 8215	$931.3 \\ 929.9 \\ 928.5$	$167.1 \\ 171.4 \\ 175.8$	8289 8280 8271	$937.1 \\ 935.7 \\ 934.2$	$168.3 \\ 172.6 \\ 177.0$
117 116 115	$1.552 \\ 1.509 \\ 1.467$	8093 8084 8076	915.51914.01912.61	177.9 182.5 187.2	8149 8140 8132	$921.2 \\ 919.7 \\ 918.3$	$179.1 \\ 183.7 \\ 188.5$	8206 8196 8188	$927.0 \\ 925.5 \\ 924.1$	$180.4 \\ 185.0 \\ 189.8$	$\begin{array}{r} 8262 \\ 8253 \\ 8244 \end{array}$	$932.7 \\ 931.2 \\ 929.8$	$181.6 \\ 186.3 \\ 191.1$
114 113 112	${}^{1.426}_{1.386}_{1.347}$	8067 8058 8049	911.1 909.7 908.2	192.0 196.9 202.1	8122 8113 8104	$916.8 \\ 915.4 \\ 913.9$	$193.3 \\ 198.3 \\ 203.5$	8178 8169 8160	$922.6 \\ 921.1 \\ 919.6$	$194.6 \\ 199.6 \\ 204.9$	8234 8225 8216	$928.3 \\ 926.9 \\ 925.4$	$196.0 \\ 201.0 \\ 206.3$
111 110 109	${}^{1.308}_{1.271}_{1.235}$	8040 8031 8022	906.8 905.3 903.9	207.4 213.0 218.7	8095 8087 8077	$912.5 \\ 911.0 \\ 909.6$	$208.9 \\ 214.5 \\ 220.2$	8151 8142 8132	$918.2 \\ 916.7 \\ 915.2$	$210.3 \\ 215.9 \\ 221.7$	8206 8197 8188	$923.9 \\ 922.4 \\ 920.9$	$211.7 \\ 217.4 \\ 223.2$
108 107 106	$1.200 \\ 1.165 \\ 1.131$	8014 8004 7996	902.4 901.0 899.5	224.5 230.7 237.0	8069 8059 8051	908.1 906.6 905.1	$226.1 \\ 232.3 \\ 238.6$	8124 8114 8105	913.7 912.3 910.8	$227.6 \\ 233.9 \\ 240.2$	8179 8169 8160	919.4 917.9 916.4	$229.2 \\ 235.4 \\ 241.9$
105 104 103	$1.098 \\ 1.066 \\ 1.035$	7987 7978 7969	898.0 896.5 895.1	$243.4 \\ 250.1 \\ 256.9$	8042 8032 8024	$903.6 \\ 902.1 \\ 900.7$	$245.1 \\ 251.8 \\ 258.7$	8096 8087 8078	909.3 907.8 906.3	$246.8 \\ 253.5 \\ 260.4$	8151 8142 8133	914.9 913.4 911.9	$248.4 \\ 255.2 \\ 262.2$
102 101 100	$\begin{array}{c} 1.005 \\ 0.975 \\ 0.946 \end{array}$	7961 7952 7943	893.6 892.1 890.6	$264.0 \\ 271.2 \\ 278.6$	8015 8006 7997	899.2 897.7 896.2	$265.8 \\ 273.1 \\ 280.5$	8069 8060 8051	904.8 903.3 901.8	$267.6 \\ 274.9 \\ 282.4$	8123 8115 8105	910.4 908.9 907.4	$269.4 \\ 276.8 \\ 284.3$
99 98 97	$\begin{array}{c} 0.918 \\ 0.891 \\ 0.864 \end{array}$	7934 7925 7917	889.2 887.7 886.3	$286.4 \\ 294.3 \\ 302.5$	7988 7979 7970	$894.8 \\ 893.3 \\ 891.9$	$288.3 \\ 296.3 \\ 304.5$	8042 8033 8024	900.3 898.8 897.4	$290.2 \\ 298.3 \\ 306.6$	8096 8087 8077	$905.9 \\ 904.4 \\ 903.0$	292.2 300.3 308.6
96 95 94	$\begin{array}{c} 0.838 \\ 0.813 \\ 0.788 \end{array}$	7908 7899 7890	884.9 883.4 881.9	$311.0 \\ 319.8 \\ 328.8$	7961 7952 7943		$313.1 \\ 321.9 \\ 331.0$	8015 8006 7997		$315.2 \\ 324.1 \\ 333.2$	8068 8059 8050	901.5 900.0 898.5	$317.3 \\ 326.2 \\ 335.4$
93 92 91	$\begin{array}{c} 0.764 \\ 0.741 \\ 0.718 \end{array}$	7882 7872 7864	880.4 878.9 877.4	$338.2 \\ 348.0 \\ 358.1$	7935 7925 7917		$340.5 \\ 350.3 \\ 360.5$	7988 7978 7969		$342.8 \\ 352.6 \\ 362.9$	8041 8031 8022		$345.0 \\ 355.0 \\ 365.3$
90 89 88	$\begin{array}{c} 0.696 \\ 0.675 \\ 0.654 \end{array}$	7855 7846 7837	875.9 874.4 872.9	368.5 379.3 390.3	7908 7899 7890	881.4 879.9 878.4	$371.0 \\ 381.8 \\ 392.9$	7960 7951 7942		373.5 384.4 395.5	8013 8004 7995	892.4 890.9 889.3	$376.0\\386.9\\398.1$
87 86 85	$\begin{array}{c} 0.633 \\ 0.613 \\ 0.594 \end{array}$	7829 7820 7811	871.4 869.9 868.4	$401.6\\412.9\\424.9$	7881 7872 7863	876.9 875.4 873.9	$\begin{array}{r} 404.3 \\ 415.6 \\ 427.7 \end{array}$	7933 7924 7915	882.4 880.9 879.3	$407.0 \\ 418.4 \\ 430.6$	7986 7976 7967		$409.7 \\ 421.2 \\ 433.4$

ahr.	ands		1.64			1.65			1.66			1.67	
Temperature Degrees F	Pressure, Po per Square Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
132 131 130	$2.341 \\ 2.280 \\ 2.220$	8456 8447 8438	960.5 959.1 957.6	$126.4 \\ 129.4 \\ 132.6$	8515 8505 8496	$966.4 \\ 965.0 \\ 963.5$	$127.3 \\ 130.3 \\ 133.5$	8573 8563 8554	972.3 970.9 969.4	$128.2 \\ 131.2 \\ 134.4$	8631 8621 8612	978.3 976.8 975.3	$129.0 \\ 132.1 \\ 135.3$
129 128 127	$2.161 \\ 2.103 \\ 2.047$	8429 8420 8411	$956.2 \\ 954.7 \\ 953.3$	$135.8 \\ 139.1 \\ 142.5$	8487 8478 8468	962.0 960.6 959.1	$136.7 \\ 140.0 \\ 143.4$	8544 8535 8526	$967.9 \\ 966.4 \\ 965.0$	$137.7 \\ 141.0 \\ 144.4$	8602 8593 8583	973.8 972.3 970.8	$138.6 \\ 142.0 \\ 145.4$
126 125 124	$1.992 \\ 1.938 \\ 1.886$	8401 8392 8383	951.8 950.4 948.8	$146.0 \\ 149.6 \\ 153.3$	8459 8449 8440	$957.6 \\ 956.2 \\ 954.6$	$147.0 \\ 150.6 \\ 154.4$	8516 8506 8497	$963.5 \\ 962.1 \\ 960.5$	$148.0 \\ 151.7 \\ 155.4$	8573 8564 8554	969.3 967.7 966.3	$149.0 \\ 152.7 \\ 156.4$
123 122 121	$1.835 \\ 1.785 \\ 1.737$	8373 8364 8355	$\begin{array}{r} 947.4 \\ 945.9 \\ 944.4 \end{array}$	$157.2 \\ 161.2 \\ 165.3$	8430 8421 8412	953.2 951.7 950.2	$158.2 \\ 162.3 \\ 166.4$	8487 8478 8469	959.1 957.5 956.0	$159.3 \\ 163.4 \\ 167.5$	8544 8535 8525	964.9 963.3 961.8	$160.4 \\ 164.5 \\ 168.6$
120 119 118	$1.689 \\ 1.642 \\ 1.597$	8346 8336 8328	$942.9 \\ 941.5 \\ 940.0$	$169.4 \\ 173.7 \\ 178.2$	8403 8393 8384	$948.7 \\ 947.3 \\ 945.8$	170.6 174.9 179.4	8459 8449 8440	954.5 953.0 951.5	$171.7 \\ 176.1 \\ 180.6$	8516 8506 8496	960.3 958.8 957.3	$172.9 \\ 177.3 \\ 181.8$
117 116 115	$1.552 \\ 1.509 \\ 1.467$	8318 8309 8300	$938.5 \\ 937.0 \\ 935.5$	$182.8 \\ 187.5 \\ 192.4$	8374 8365 8355	$944.3 \\ 942.8 \\ 941.3$	$184.1 \\ 188.8 \\ 193.7$	8430 8421 8411	950.0 948.5 947.0	$185.3 \\ 190.1 \\ 195.0$	8487 8477 8467	955.8 954.2 952.8	$186.5 \\ 191.3 \\ 196.3$
114 113 112	$1.426 \\ 1.386 \\ 1.347$	8290 8280 8271	$934.0 \\ 932.6 \\ 931.1$	$197.3 \\ 202.4 \\ 207.7$	8346 8336 8327	939.8 938.3 936.8	$198.6 \\ 203.7 \\ 209.1$	8401 8392 8382	$945.5 \\ 944.0 \\ 942.5$	$200.0 \\ 205.1 \\ 210.5$	8457 8447 8438	951.3 949.8 948.2	$201.3 \\ 206.4 \\ 211.9$
111 110 109	$1.308 \\ 1.271 \\ 1.235$	8261 8253 8243	$\begin{array}{r} 929.6 \\ 928.1 \\ 926.6 \end{array}$	$213.1 \\ 218.9 \\ 224.7$	8317 8308 8298	935.3 933.8 932.3	$214.6 \\ 220.3 \\ 226.2$	8372 8363 8353	941.0 939.5 938.0	216.0 221.8 227.7	8428 8418 8408	946.7 945.2 943.7	$217.4 \\ 223.3 \\ 229.2$
108 107 106	$1.200 \\ 1.165 \\ 1.131$	8234 8224 8215	$\begin{array}{c} 925.1 \\ 923.6 \\ 922.1 \end{array}$	$230.7 \\ 237.0 \\ 243.5$	8289 8279 8270	930.8 929.3 927.7	$232.3 \\ 238.6 \\ 245.1$	8344 8334 8324	936.4 934.9 933.4	$233.8 \\ 240.2 \\ 246.7$	8399 8389 8379	942.1 940.6 939.0	$235.3 \\ 241.8 \\ 248.4$
105 104 103	$1.098 \\ 1.066 \\ 1.035$	8206 8196 8187	920.6 919.1 917.6	$250.1 \\ 256.9 \\ 263.9$	8260 8251 8241	926.2 924.7 923.2	$251.8 \\ 258.7 \\ 265.7$	8315 8305 8296	931.9 930.3 928.8	$253.4 \\ 260.4 \\ 267.5$	8370 8360 8350	937.5 936.0 934.5	$255.1 \\ 262.1 \\ 269.2$
102 101 100	$\begin{array}{c} 1.005 \\ 0.975 \\ 0.946 \end{array}$	8178 8169 8159	$916.1 \\ 914.5 \\ 913.0$	$271.2 \\ 278.6 \\ 286.2$	8232 8223 8213	921.7 920.2 918.6	$273.0 \\ 280.5 \\ 288.1$	8286 8277 8267	927.3 925.8 924.2	$274.8 \\ 282.3 \\ 290.0$	8341 8331 8321	$932.9 \\ 931.4 \\ 929.8$	$276.6 \\ 284.2 \\ 291.9$
99 98 97	$\begin{array}{c} 0.918 \\ 0.891 \\ 0.864 \end{array}$	8150 8140 8131	$\begin{array}{c} 911.5 \\ 910.0 \\ 908.5 \end{array}$	$294.1 \\ 302.3 \\ 310.7$	8205 8194 8185	917.1 915.6 914.1	$296.1 \\ 304.2 \\ 312.7$	8257 8248 8238	922.7 921.2 919.7	$298.0 \\ 306.2 \\ 314.8$	8311 8302 8292	$928.3 \\ 926.7 \\ 925.2$	$300.0 \\ 308.2 \\ 316.8$
96 95 94	0.838 0.813 0.788	8122 8113 8103	$\begin{array}{c} 907.1 \\ 905.5 \\ 904.0 \end{array}$	319.4 328.4 337.7	8175 8166 8157	$912.6 \\ 911.1 \\ 909.6$	$321.5 \\ 330.6 \\ 339.9$	8229 8219 8210	918.2 916.7 915.1	$323.6 \\ 332.7 \\ 342.1$	8282 8273 8263	$923.7 \\ 922.2 \\ 920.6$	$325.7 \\ 334.9 \\ 344.3$
93 92 91	$\begin{array}{c} 0.764 \\ 0.741 \\ 0.718 \end{array}$	8094 8085 8075	902.5 901.0 899.4	$347.3 \\ 357.3 \\ 367.7$	8147 8138 8128	908.1 906.5 905.0	$349.6 \\ 359.7 \\ 370.2$	8200 8191 8181	$913.6 \\ 912.0 \\ 910.5$	$351.9 \\ 362.0 \\ 372.6$	8254 8244 8234	919.1 917.5 916.0	$354.2 \\ 364.4 \\ 375.0$
90 89 88	$\begin{array}{c} 0.696 \\ 0.675 \\ 0.654 \end{array}$	8066 8057 8047	897.9 896.4 894.8	$378.5 \\ 389.5 \\ 400.7$	8119 8109 8100	903.4 901.9 900.3	$380.9 \\ 392.0 \\ 403.4$	8171 8162 8152	908.9 907.4 905.8	$383.4 \\ 394.5 \\ 406.0$	8224 8215 8205	914.4 912.9 911.2	$385.9 \\ 397.1 \\ 408.6$
87 86 85	$\begin{array}{c} 0.633 \\ 0.613 \\ 0.594 \end{array}$	8038 8029 8019	893.3 891.8 890.2	$412.4 \\ 423.9 \\ 436.2$	8091 8081 8072	898.8 897.2 895.7	$\begin{array}{r} 415.0 \\ 426.7 \\ 439.1 \end{array}$	8143 8133 8124	904.3 902.7 901.1	$\begin{array}{r} 417.7 \\ 429.4 \\ 441.9 \end{array}$	8195 8186 8176	909.7 908.1 906.5	420.4 432.2 444.8

e, ahr.	e		1.68			1.69			1.70			1.71	
Temperatur Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
420 419 418	$308.5 \\ 305.1 \\ 301.8$	 		· · · · · · ·		••• <u>·</u>			 	 	•••	· · · · · · ·	· · · · · · ·
417 416 415	$298.5 \\ 295.2 \\ 292.0$	· · · · · · ·	 	· · · · · · ·	•••	· · · · · · ·	•••	•••	••••	•••	•••	•••	•••
414 413 412	$288.9 \\ 285.7 \\ 282.5$	$300.9 \\ 298.7 \\ 296.6$	$1368.3 \\ 1366.8 \\ 1365.4$	$2.410 \\ 2.430 \\ 2.450$	•••	· · · · · · · ·		•••		 	 	· · · · · · ·	• • • • • •
411 410 409	279.4 276.3 273.3	294.5 292.4 290.4	$1364.0 \\ 1362.6 \\ 1361.3$	$2.470 \\ 2.490 \\ 2.510$		•••	· · · · · · ·	•••		· · · · · · ·	 	· · · · · · ·	
408 407 406	270.3 267.3 264.3	$288.3 \\ 286.2 \\ 284.1$	$1359.9\\1358.6\\1357.3$	$2.530 \\ 2.551 \\ 2.572$	•••		 	 	•••	· · · · · · ·	•••	· · · · · · ·	•••
405 404 403	$261.3 \\ 258.4 \\ 255.5$	282.0 280.0 277.9	$1355.9 \\ 1354.6 \\ 1353.3$	$2.593 \\ 2.614 \\ 2.636$	 301.0	 1364.9	2.697	•••		· · · · · · ·		1	
402 401 400	$252.6 \\ 249.7 \\ 246.9$	$275.9 \\ 273.8 \\ 271.7$	$1351.9\\1350.5\\1349.1$	$2.658 \\ 2.680 \\ 2.703$	$298.9 \\ 296.7 \\ 294.5$	$1363.5 \\ 1362.1 \\ 1360.7$	$2.720 \\ 2.742 \\ 2.765$		 	· ·	 	 	· · · · · · ·
399 398 397	$244.1 \\ 241.4 \\ 238.6$	$269.6 \\ 267.6 \\ 265.5$	$1347.8 \\ 1346.4 \\ 1345.0$	$2.725 \\ 2.748 \\ 2.770$	$292.3 \\ 290.2 \\ 288.1$	$1359.3 \\ 1357.9 \\ 1356.5$	$2.788 \\ 2.811 \\ 2.835$	• • • • • •	· · · · · · ·	 	· · · · · · ·		• • • • • •
396 395 394	$235.9 \\ 233.2 \\ 230.5$	$263.5 \\ 261.4 \\ 259.4$	$1343.7 \\ 1342.4 \\ 1341.0$	$2.794 \\ 2.820 \\ 2.843$	$286.0 \\ 283.9 \\ 281.9$	$1355.2 \\ 1353.9 \\ 1352.6$	$2.859 \\ 2.884 \\ 2.909$	•••		· · · · · · ·	· · · · · · ·	•••	•••
393 392 391	$227.9 \\ 225.2 \\ 222.6$	$257.3 \\ 255.3 \\ 253.3 \\$	$1339.7 \\ 1338.3 \\ 1337.0$	$2.868 \\ 2.892 \\ 2.917$	$279.8 \\ 277.7 \\ 275.5$	$1351.2 \\ 1349.8 \\ 1348.3$	$2.933 \\ 2.958 \\ 2.983$	299.9 297.6	1361.0 1359.6	3.030 3.056	•••		· · · · · · ·
390 389 388	$220.1 \\ 217.5 \\ 215.0$	$251.2 \\ 249.2 \\ 247.1$	$1335.7\\1334.3\\1333.0$	$2.941 \\ 2.967 \\ 2.993$	$273.3 \\ 271.1 \\ 269.0$	$1346.9 \\ 1345.5 \\ 1344.0$	3.009 3.036 3.061	$295.4 \\ 293.2 \\ 291.1$	$1358.2 \\ 1356.8 \\ 1355.4$	$3.083 \\ 3.109 \\ 3.136$		 	· · · · · · ·
387 386 385	$212.5 \\ 210.0 \\ 207.5$	$245.0 \\ 243.0 \\ 241.0$	$1331.7 \\ 1330.4 \\ 1329.0$	$3.019 \\ 3.045 \\ 3.071$	$266.9 \\ 264.8 \\ 262.6$	$1342.6 \\ 1341.2 \\ 1339.8$	$3.089 \\ 3.116 \\ 3.144$	289.0 287.0 284.9	$1354.0 \\ 1352.6 \\ 1351.2$	$3.164 \\ 3.191 \\ 3.219$	•••	 	· · · · · · ·
384 383 382	$205.1 \\ 202.6 \\ 200.3$	$238.9 \\ 236.9 \\ 234.8$	$1327.7 \\ 1326.4 \\ 1325.0$	$3.099 \\ 3.126 \\ 3.153$	$260.4 \\ 258.3 \\ 256.1$	$1338.4\\1337.0\\1335.7$	$3.171 \\ 3.200 \\ 3.229$	$282.7 \\ 280.5 \\ 278.3$	$1349.7 \\ 1348.2 \\ 1346.7$	$3.246 \\ 3.275 \\ 3.304$	300.9	 1358.4	 3.386
381 380 379	197.9 195.5 193.2	$232.7 \\ 230.6 \\ 228.5$	$1323.6\\1322.3\\1320.9$	$3.181 \\ 3.210 \\ 3.237$	254.0 251.9 249.8	$1334.3 \\ 1332.9 \\ 1331.6$	$3.258 \\ 3.287 \\ 3.316$	276.1 273.9 271.8	$1345.3 \\ 1343.8 \\ 1342.4$	$3.333 \\ 3.362 \\ 3.392$	$298.6 \\ 296.3 \\ 294.1$	$1356.9 \\ 1355.4 \\ 1354.0$	$3.415 \\ 3.445 \\ 3.476$
378 377 376	$190.9\\188.6\\186.3$	226.5 224.4 222.4	$1319.5 \\ 1318.1 \\ 1316.8$	$3.267 \\ 3.297 \\ 3.325$	$247.7 \\ 245.6 \\ 243.5$	$1330.2 \\ 1328.9 \\ 1327.5$	$3.346 \\ 3.376 \\ 3.408$	$269.6 \\ 267.4 \\ 265.2$	$1340.9 \\ 1339.5 \\ 1338.1$	$3.421 \\ 3.452 \\ 3.482$	$292.0 \\ 289.8 \\ 287.7$	$\begin{array}{r} 1352.7 \\ 1351.2 \\ 1349.8 \end{array}$	$3.506 \\ 3.537 \\ 3.568$
375 374 373	$184.1 \\181.9 \\179.7$	$220.3 \\ 218.2 \\ 216.2$	$1315.5 \\ 1314.1 \\ 1312.8$	$3.354 \\ 3.384 \\ 3.415$	$241.4 \\ 239.3 \\ 237.1$	$1326.1 \\ 1324.7 \\ 1323.3$	$3.438 \\ 3.469 \\ 3.501$	$263.0 \\ 261.0 \\ 258.9$	$1336.8 \\ 1335.4 \\ 1334.1$	$3.513 \\ 3.545 \\ 3.578$	$285.5 \\ 283.3 \\ 281.1$	$1348.3 \\ 1346.8 \\ 1345.3$	$3.599 \\ 3.631 \\ 3.663$

e,ahr.	e e		1.72			1.73			1.74			1.75	
Temperatur Degrees F	Pressure, Pc per Squar Inch.	Quality.	Heat Con- tents.	Specific - Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
420 419 418	$308.5 \\ 305.1 \\ 301.8$		•••	 		•••• •••	· · · · · · ·	••••		 	••••		•••• •••
417 416 415	298.5 295.2 292.0	· · · ·		 	 	 	 	••••	•••	· · · · · · ·		•••• •••	
414 413 412	288.9 285.7 282.5	•••	•••	 	•••	•••• •••	 	•••• •••	•••	•••		•••• •••	· · · · · · ·
411 410 409	279.4 276.3 273.3	• • • • • • •	•••	 		· · · · · · ·	•••• •••	· · · · · · ·	•••	· · · ·	•••• •••	•••	••••
408 407 406	270.3 267.3 264.3		•••	· · · · · · · ·	•••	•••	···· ····	••••	•••	••••	· · · · · · ·		· · · · · · ·
405 404 403	261.3 258.4 255.5	••• •••	•••	•••	•••• •••	•••	•••• •••	•••	•••• •••	· · · · · · ·	· · ·	•••	
402 401 400	$\begin{array}{c c} 252.6 \\ 249.7 \\ 246.9 \end{array}$	• • • • • •	· · · · · · ·	···· ···	•••	•••	•••• •••	•••	•••	· · · · · · ·	•••	•••	· · · · · · ·
399 398 397	$\begin{array}{c c} 244.1 \\ 241.4 \\ 238.6 \end{array}$	•••	· · · · · · ·	•••	· · · · · · ·	•••	••••	 	 	•••	•••		
396 395 394	235.9 233.2 230.5	•••	· · · · · · ·	•••	•••• •••	• • • • • •	•••	•••• •••		· · · · · · ·	· · · · · · ·		· · · · · · ·
393 392 391	$\begin{array}{c c} 227.9 \\ 225.2 \\ 222.6 \end{array}$	•••	••••	•••	• • • • • • •	•••	· · · · · · ·	•••• •••	 	 	•••	· · · · · · ·	
390 389 388	$\begin{array}{c c} 220.1 \\ 217.5 \\ 215.0 \end{array}$	•••	•••• •••	••••	•••	•••	•••	 	••• •••	· · · · · · ·	•••	· · · · · · ·	· · · · ·
387 386 385	$\begin{array}{c} 212.5 \\ 210.0 \\ 207.5 \end{array}$			· · · · ·	•••	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·		· · · ·	• • •	· · ·	· · · · · · ·
384 383 382	$\begin{array}{c} 205.1 \\ 202.6 \\ 200.3 \end{array}$	•••		· · · ·	· · · · · · ·	•••	•••	· · · ·		· · · · · · ·	•••	•••	
381 380 379	197.9 195.5 193.2	•••	••••	•••	•••	•••	•••	•••	• • •	•••	•••	•••	
378 377 376	190.9 188.6 186.3	· · · · · · ·	•••	••••	•••	•••	•••	•••	•••	••••	•••		
375 374 373	184.1 181.9 179.7	••••	••••	•••	••••	•••	••••	•••	• • •		•••	•••	···· ···

ahr.	e		1.68		1.69			1.70			1.71	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
372 371 370	$177.5 \\ 175.3 \\ 173.2$	214.1 212.1 210.0	$\begin{array}{c}1311.5 \\1310.2 \\3.47 \\1308.8 \\3.50\end{array}$	$\begin{array}{c ccccc} 6 & 235.0 \\ 232.9 \\ 230.8 \end{array}$	$1321.9\\1320.6\\1319.2$	$3.533 \\ 3.565 \\ 3.599$	256.7 254.5 252.3	$1332.7 \\ 1331.2 \\ 1329.8$	$3.608 \\ 3.642 \\ 3.676$	$279.0 \\ 276.8 \\ 274.5$	$1344.0\\1342.5\\1341.0$	$3.698 \\ 3.730 \\ 3.765$
369 368 367	$171.1 \\ 169.0 \\ 166.9$	$208.0 \\ 206.0 \\ 204.0$	$\begin{array}{c} 1307.5 \\ 3.54 \\ 1306.2 \\ 3.57 \\ 1304.9 \\ 3.60 \end{array}$	$\begin{array}{c c} 0 & 228.8 \\ 3 & 226.7 \\ 5 & 224.6 \end{array}$	$1317.8 \\ 1316.5 \\ 1315.1$	$3.631 \\ 3.666 \\ 3.700$	$250.1 \\ 248.0 \\ 245.9$	$1328.4 \\ 1327.0 \\ 1325.6$	$3.709 \\ 3.743 \\ 3.779$	$272.2 \\ 270.0 \\ 267.8 \end{cases}$	$1339.5\\1338.0\\1336.5$	$3.799 \\ 3.834 \\ 3.870$
366 365 364	$164.8 \\ 162.8 \\ 160.8$	$202.0 \\ 200.0 \\ 198.0$	$\begin{array}{c} 1303.5 \\ 3.64 \\ 1302.2 \\ 3.67 \\ 1300.9 \\ 3.70 \end{array}$	$\begin{array}{c c} 222.5 \\ 220.4 \\ 218.3 \end{array}$	$1313.7 \\ 1312.4 \\ 1311.1$	$3.734 \\ 3.768 \\ 3.804$	$243.7 \\ 241.5 \\ 239.4$	$1324.2 \\ 1322.8 \\ 1321.4$	$3.814 \\ 3.849 \\ 3.885$	265.6 263.4 261.1	$1335.1\\1333.7\\1332.2$	$3.905 \\ 3.940 \\ 3.979$
363 362 361	$158.8 \\ 156.8 \\ 154.8$	$195.9 \\ 193.9 \\ 191.9$	$\begin{array}{c} 1299.5 \\ 3.74 \\ 1298.2 \\ 3.78 \\ 1296.9 \\ 3.81 \end{array}$	$\begin{array}{c} 4 \\ 216.2 \\ 214.1 \\ 5 \\ 212.0 \end{array}$	$1309.8 \\ 1308.4 \\ 1307.1$	3.840 3.875 3.912	$237.2 \\ 235.0 \\ 232.9$	$1320.0\\1318.6\\1317.2$	$3.921 \\ 3.959 \\ 3.997$	$258.9 \\ 256.7 \\ 254.5$	$1330.8 \\ 1329.4 \\ 1328.0$	$\begin{array}{r} 4.015 \\ 4.053 \\ 4.092 \end{array}$
360 359 358	$152.9 \\ 151.0 \\ 149.1$	$189.9\\187.9\\185.8$	$\begin{array}{c} 1295.5 \\ 3.85 \\ 1294.2 \\ 3.89 \\ 1292.9 \\ 3.92 \end{array}$	3 210.1 208.1 7 206.0	$1305.7 \\ 1304.3 \\ 1302.9$	$3.948 \\ 3.986 \\ 4.023$	$230.8 \\ 228.7 \\ 226.6$	$1315.8 \\ 1314.4 \\ 1313.0$	$\begin{array}{r} 4.035 \\ 4.074 \\ 4.113 \end{array}$	$252.3 \\ 250.1 \\ 247.9$	$1326.6\\1325.1\\1323.7$	$\begin{array}{r} 4.131 \\ 4.170 \\ 4.210 \end{array}$
357 356 355	$147.2 \\ 145.3 \\ 143.5$	$183.8 \\ 181.7 \\ 179.7$	$\begin{array}{c} 1291.6 \\ 3.96 \\ 1290.3 \\ 4.00 \\ 1288.9 \\ 4.04 \end{array}$	$5 204.0 \\ 201.9 \\ 199.8 $	$1301.5\\1300.1\\1298.8$	$\begin{array}{r} 4.061 \\ 4.100 \\ 4.140 \end{array}$	$224.4 \\ 222.3 \\ 220.1$	$1311.6\\1310.3\\1308.9$	$\begin{array}{r} 4.152 \\ 4.193 \\ 4.232 \end{array}$	$245.7 \\ 243.5 \\ 241.3$	$1322.3 \\ 1320.8 \\ 1319.4$	$\begin{array}{c} 4.250 \\ 4.292 \\ 4.334 \end{array}$
354 353 352	$141.6 \\ 139.8 \\ 138.0$	177.7 175.7 173.7	$\begin{array}{c} 1287.6\\ 1286.3\\ 1284.9\\ 4.16\end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1297.4 \\ 1296.0 \\ 1294.6$	$\begin{array}{r} 4.180 \\ 4.220 \\ 4.260 \end{array}$	$218.0 \\ 216.0 \\ 213.9$	$1307.5 \\ 1306.1 \\ 1304.8$	$\begin{array}{r} 4.275 \\ 4.315 \\ 4.358 \end{array}$	$239.1 \\ 236.9 \\ 234.7$	$1318.0 \\ 1316.7 \\ 1315.4$	$\begin{array}{r} 4.376 \\ 4.418 \\ 4.460 \end{array}$
351 350 349	$136.3 \\ 134.5 \\ 132.8$	$171.6 \\ 169.6 \\ 167.6$	$1283.5 \\ 1282.1 \\ 1280.7 \\ 4.28$	4 191.4 5 189.3 8 187.2	$\begin{array}{r} 1293.2 \\ 1291.8 \\ 1290 5 \end{array}$	$\begin{array}{r} 4.303 \\ 4.346 \\ 4.388 \end{array}$	$211.9 \\ 209.8 \\ 207.7$	$1303.4 \\ 1302.1 \\ 1300.7$	$\begin{array}{r} 4.400 \\ 4.442 \\ 4.486 \end{array}$	$232.4 \\ 230.2 \\ 228.1$	$1314.1 \\ 1312.6 \\ 1311.1$	$\begin{array}{r} 4.502 \\ 4.546 \\ 4.591 \end{array}$
348 347 346	$131.1 \\ 129.4 \\ 127.7$	$165.5 \\ 163.5 \\ 161.4$	$1279.3 \\ 1277.9 \\ 1276.6 \\ 4.41$	0 185.1 3 183.1 6 181.0	$1289.2 \\ 1287.8 \\ 1286.5$	$\begin{array}{r} 4.430 \\ 4.474 \\ 4.519 \end{array}$	205.5 203.4 201.2	$1299.3 \\ 1297.9 \\ 1296.5$	$\begin{array}{r} 4.530 \\ 4.575 \\ 4.620 \end{array}$	$226.0 \\ 223.9 \\ 221.7$	$1309.6 \\ 1308.1 \\ 1306.6$	$\begin{array}{r} 4.638 \\ 4.684 \\ 4.730 \end{array}$
345 344 343	$126.0 \\ 124.4 \\ 122.7$	$159.4 \\ 157.4 \\ 155.4$	$\begin{array}{c} 1275.3 \\ 1274.0 \\ 1272.7 \\ 4.54 \end{array}$	$\begin{array}{c} 9 \\ 179.0 \\ 4 \\ 177.0 \\ 9 \\ 175.0 \end{array}$	$1285.1\\1283.8\\1282.5$	$\begin{array}{r} 4.562 \\ 4.609 \\ 4.656 \end{array}$	199.1 197.0 194.9	$^{1295.1}_{1293.6}_{1292.2}$	$\begin{array}{r} 4.668 \\ 4.713 \\ 4.760 \end{array}$	$219.5 \\ 217.3 \\ 215.1$	$1305.1 \\ 1303.7 \\ 1302.3$	$\begin{array}{r} 4.779 \\ 4.825 \\ 4.873 \end{array}$
342 341 340	$121.1 \\ 119.5 \\ 117.9$	$153.4 \\ 151.3 \\ 149.3$	$1271.3 \\ 4.59 \\ 1270.0 \\ 4.64 \\ 1268.6 \\ 4.68 $	$\begin{array}{c cccc} 4 & 172.9 \\ 0 & 170.9 \\ 8 & 168.8 \end{array}$	$1281.1 \\ 1279.7 \\ 1278.3$	$\begin{array}{r} 4.701 \\ 4.750 \\ 4.800 \end{array}$	$192.8 \\ 190.6 \\ 188.5$	$1290.8\\1289.4\\1288.0$	$\begin{array}{r} 4.810 \\ 4.857 \\ 4.907 \end{array}$	$213.0 \\ 210.9 \\ 208.8$	$1300.9 \\ 1299.5 \\ 1298.1$	$\begin{array}{c} 4.920 \\ 4.970 \\ 5.020 \end{array}$
339 338 337	$116.3 \\ 114.8 \\ 113.3$	$147.3 \\ 145.3 \\ 143.3$	$\begin{array}{c} 1267.2 \\ 1265.9 \\ 1264.5 \\ 4.83 \end{array}$	$\begin{array}{c c}4 & 166.7 \\2 & 164.6 \\0 & 162.5\end{array}$	$1277.0\\1275.6\\1274.2$	$\begin{array}{r} 4^{\circ}.848 \\ 4.896 \\ 4.946 \end{array}$	$186.4 \\ 184.2 \\ 182.0$	$1286.6\\1285.2\\1283.8$	$\begin{array}{r} 4.957 \\ 5.008 \\ 5.059 \end{array}$	$206.7 \\ 204.5 \\ 202.3$	$1296.6\\1295.2\\1293.8$	$5.071 \\ 5.123 \\ 5.177$
336 335 334	$\frac{111.7}{110.3}\\108.8$	$141.3 \\ 139.3 \\ 137.3$	$\begin{array}{c} 1263.2\\ 1261.8\\ 1260.5\\ 4.98\end{array}$	$\begin{array}{c c}0 & 160.4\\0 & 158.4\\0 & 156.3\end{array}$	$1272.8\\1271.4\\1270.0$	$\begin{array}{r} 4.998 \\ 5.048 \\ 5.099 \end{array}$	$179.9 \\ 177.9 \\ 175.7$	$1282.4\\1281.0\\1279.6$	$5.110 \\ 5.165 \\ 5.220$	$200.1 \\ 197.9 \\ 195.7$	$1292.3\\1290.9\\1289.5$	$5.230 \\ 5.285 \\ 5.340$
333 332 331	$107.3 \\ 105.8 \\ 104.4$	$135.3 \\ 133.3 \\ 131.3$	$\begin{array}{c}1259.2\\1257.9\\5.08\\1256.6\\5.13\end{array}$	$\begin{array}{c c}0 & 154.3\\3 & 152.2\\7 & 150.2\end{array}$	$1268.6 \\ 1267.2 \\ 1265.9$	$5.150 \\ 5.203 \\ 5.257$	$173.5 \\ 171.4 \\ 169.3$	$1278.2 \\ 1276.8 \\ 1275.4$	$5.274 \\ 5.330 \\ 5.385$	$193.5 \\ 191.3 \\ 189.1$	$1288.1 \\ 1286.7 \\ 1285.2$	$5.395 \\ 5.450 \\ 5.510$
330 329 328	$103.0 \\ 101.6 \\ 100.2$	$129.3 \\ 127.3 \\ 125.3$	$\begin{array}{c} 1255.2 \\ 5.19 \\ 1253.8 \\ 5.24 \\ 1252.5 \\ 5.30 \end{array}$	$\begin{array}{c}0 & 148.1\\5 & 146.0\\0 & 144.0\end{array}$	$1264.5 \\ 1263.2 \\ 1261.9$	$5.310 \\ 5.366 \\ 5.421$	$167.2 \\ 165.0 \\ 162.9$	$1274.0\\1272.5\\1271.1$	$5.444 \\ 5.500 \\ 5.560$	$187.0 \\ 184.9 \\ 182.7$	$1283.8\\1282.4\\1280.9$	$5.567 \\ 5.625 \\ 5.684$
327 326 325	98.8 97.5 96.1	$123.3 \\ 121.3 \\ 119.3$	$\begin{array}{c} 1251.2 \\ 5.35 \\ 1249.8 \\ 5.41 \\ 1248.4 \\ 5.47 \end{array}$	$\begin{array}{c c}8 & 142.0 \\3 & 139.9 \\0 & 137.9 \end{array}$	$1260.5\\1259.1\\1257.8$	$5.479 \\ 5.537 \\ 5.595$	$160.8 \\ 158.7 \\ 156.5$	$1269.7 \\ 1268.3 \\ 1266.9$	$5.617 \\ 5.676 \\ 5.735$	$180.5 \\ 178.3 \\ 176.1$	$1279.5 \\ 1278.0 \\ 1276.6$	$5.743 \\ 5.805 \\ 5.865$

•

ahr.	spune		1.72			1.73			1.74			1.75	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
372 371 370	177.5 175.3 173.2	300.3 298.0 295.7	1354.6 1353.1 1351.6	3.783 3.817 3.850		•••	· · · · · · ·	••••		••••	••••	•••	•••
369 368 367	$171.1 \\ 169.0 \\ 166.9$	$293.6 \\ 291.4 \\ 289.2$	$1350.1 \\ 1348.6 \\ 1347.2$	3.886 3.922 3.959	•••	••••	••••	••••	••••	· · · · ·	••••	···· ···	····
366 365 364	$164.8 \\ 162.8 \\ 160.8$	287.0 284.9 282.7	$1345.8 \\ 1344.4 \\ 1343.0$	$3.995 \\ 4.031 \\ 4.070$		•••	····	···· ···	••••	· · · · · · · ·		••••	· · · · · · ·
363 362 361	$158.8 \\ 156.8 \\ 154.8$	$280.5 \\ 278.3 \\ 276.0$	$1341.6 \\ 1340.2 \\ 1338.7$	$\begin{array}{r} 4.107\\ 4.145\\ 4.185\end{array}$	300.3 298.0	$1351.3 \\ 1349.7$	$4.240 \\ 4.283$	••••	•••	•••	•••	···· ···	•••
360 359 358	$152.9 \\ 151.0 \\ 149.1$	273.7 271.4 269.2	$1337.3 \\ 1335.8 \\ 1334.3$	$\begin{array}{r} 4.225 \\ 4.265 \\ 4.305 \end{array}$	295.6 293.3 291.0	$1348.1 \\ 1346.5 \\ 1345.0$	$\begin{array}{r} 4.324 \\ 4.365 \\ 4.407 \end{array}$	•••	•••	•••• •••• ••••	•••	 	
357 356 355	$147.2 \\ 145.3 \\ 143.5$	$267.0 \\ 264.7 \\ 262.4$	$1332.8 \\ 1331.4 \\ 1330.0$	$\begin{array}{r} 4.348 \\ 4.390 \\ 4.430 \end{array}$	$288.7 \\ 286.4 \\ 284.1$	$1343.5 \\ 1342.0 \\ 1340.5$	$\begin{array}{r} 4.450 \\ 4.490 \\ 4.534 \end{array}$	••••	••••		···· ···	···· ····	· · · · · · ·
354 353 352	$141.6 \\ 139.8 \\ 138.0$	$260.1 \\ 258.0 \\ 255.8$	$1328.5 \\ 1327.0 \\ 1325.6$	$\begin{array}{r} 4.474 \\ 4.519 \\ 4.562 \end{array}$	$281.8 \\ 279.5 \\ 277.2$	$1339.0 \\ 1337.5 \\ 1336.0$	$\begin{array}{r} 4.579 \\ 4.623 \\ 4.667 \end{array}$	 299.6		 4.777	•••	••••	
351 350 349	$136.3 \\ 134.5 \\ 132.8$	$253.5 \\ 251.3 \\ 249.0$	$1324.1 \\ 1322.6 \\ 1321.1$	$\begin{array}{r} 4.608 \\ 4.653 \\ 4.699 \end{array}$	$274.9 \\ 272.6 \\ 270.4$	$1334.5 \\ 1333.0 \\ 1331.5$	$\begin{array}{r} 4.713 \\ 4.760 \\ 4.805 \end{array}$	$297.2 \\ 294.9 \\ 292.6$	$1345.5 \\ 1344.0 \\ 1342.5$	$\begin{array}{r} 4.823 \\ 4.870 \\ 4.918 \end{array}$	•••	· · · · · · ·	
348 347 346	$131.1 \\ 129.4 \\ 127.7$	$246.7 \\ 244.4 \\ 242.2$	$1319.7 \\ 1318.2 \\ 1316.7$	$\begin{array}{r} 4.744 \\ 4.790 \\ 4.838 \end{array}$	$268.1 \\ 265.9 \\ 263.7$	$1330.1 \\ 1328.7 \\ 1327.2$	4.852 4.900 4.948	$290.3 \\ 288.0 \\ 285.6$	1341.0 1339.5 1338.0	$\begin{array}{r} 4.966 \\ 5.014 \\ 5.063 \end{array}$	•••	· · · · · · ·	
345 344 343	$126.0 \\ 124.4 \\ 122.7$	$240.0 \\ 237.7 \\ 235.4$	$1315.2 \\ 1313.8 \\ 1312.3$	$\begin{array}{r} 4.888 \\ 4.935 \\ 4.983 \end{array}$	$261.4 \\ 259.1 \\ 256.9$	$1325.8 \\ 1324.3 \\ 1322.9$	4.996 5.046 5.098	$283.3 \\ 281.0 \\ 278.6$	$1336.5 \\ 1335.0 \\ 1333.5$	$5.113 \\ 5.165 \\ 5.215$	 299.7	 1343.9	5.323
342 341 340	$\begin{array}{c} 121.1 \\ 119.5 \\ 117.9 \end{array}$	$233.1 \\ 230.9 \\ 228.7$	$1310.8 \\ 1309.3 \\ 1307.8$	$5.031 \\ 5.082 \\ 5.135$	$254.6 \\ 252.3 \\ 250.1$	$1321.4\\1320.0\\1318.5$	$5.150 \\ 5.203 \\ 5.255$	$276.2 \\ 273.8 \\ 271.5$	$1332.0\\1330.5\\1329.0$	$5.269 \\ 5.320 \\ 5.376$	$297.4 \\ 295.0 \\ 292.6$	$1342.4 \\ 1340.9 \\ 1339.4$	$5.381 \\ 5.430 \\ 5.486$
339 338 337	$ \begin{array}{r} 116.3 \\ 114.8 \\ 113.3 \end{array} $	$226.4 \\ 224.1 \\ 221.9$	$1306.3 \\ 1304.8 \\ 1303.3$	$5.186 \\ 5.239 \\ 5.293$	$247.8 \\ 245.5 \\ 243.3$	$1317.0\\1315.5\\1314.0$	$5.308 \\ 5.363 \\ 5.419$	$269.2 \\ 266.8 \\ 264.4$	$1327.5 \\ 1325.9 \\ 1324.4$	$5.430 \\ 5.485 \\ 5.540$	290.2 287.9 285.5	$1337.8 \\ 1336.3 \\ 1334.7$	$5.540 \\ 5.598 \\ 5.654$
336 335 334	$111.7 \\ 110.3 \\ 108.8$	219.7 217.6 215.4	$1301.9\\1300.5\\1299.1$	$5.345 \\ 5.400 \\ 5.455$	241.0 238.8 236.5	$1312.6 \\ 1311.1 \\ 1309.6$	$5.474 \\ 5.529 \\ 5.588$	$262.1 \\ 259.8 \\ 257.4$	$1322.9\\1321.4\\1319.9$	$5.596 \\ 5.652 \\ 5.710$	$283.1 \\ 280.7 \\ 278.3$	$1333.1\\1331.6\\1330.0$	$5.710 \\ 5.768 \\ 5.829$
333 332 331	$107.3 \\ 105.8 \\ 104.4$	213.1 211.1 208.9	$1297.6\\1296.2\\1294.8$	$5.510 \\ 5.567 \\ 5.626$	$234.2 \\ 231.9 \\ 229.6$	$1308.1 \\ 1306.6 \\ 1305.1$	$5.643 \\ 5.700 \\ 5.760$	$255.1 \\ 252.8 \\ 250.5$	$1318.3 \\ 1316.8 \\ 1315.3$	5.767 5.825 5.884	$275.9 \\ 273.5 \\ 271.1$	$1328.4 \\ 1326.9 \\ 1325.3$	5.889 5.949 6.009
330 329 328	$103.0 \\ 101.6 \\ 100.2$	206.6 204.3 202.1	$1293.4\\1292.0\\1290.5$	$5.683 \\ 5.740 \\ 5.800$	$227.3 \\ 225.0 \\ 222.7$	$1303.6\\1302.1\\1300.5$	$5.820 \\ 5.880 \\ 5.940$	$248.2 \\ 245.8 \\ 243.4$	$1313.8 \\ 1312.3 \\ 1310.8$	$5.945 \\ 6.006 \\ 6.068$	268.7 266.3 263.9	$1323.8 \\ 1322.3 \\ 1320.8$	$\begin{array}{c} 6.071 \\ 6.139 \\ 6.205 \end{array}$
327 326 325	$98.8 \\ 97.5 \\ 96.1$	199.9 197.6 195.4	$1289.0\\1287.5\\1286.0$	$5.863 \\ 5.925 \\ 5.987$	$\begin{array}{r} 220.4 \\ 218.1 \\ 215.8 \end{array}$	$1299.0\\1297.5\\1296.0$	6.000 6.063 6.128	$241.1 \\ 238.7 \\ 236.4$	1309.3 1307.8 1306.3	$ \begin{array}{r} 6.130 \\ 6.192 \\ 6.255 \end{array} $	$261.6 \\ 259.2 \\ 256.8$	1319.3 1317.8 1316.3	6.270 6.337 6.403

ahr.	e		1.68			1.69			1.70			1.71	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
324 323 322	$94.8 \\ 93.5 \\ 92.2$	$117.3 \\ 115.3 \\ 113.3$	$\begin{array}{c} 1247.05.\\ 1245.65.\\ 1244.35.\end{array}$	528 588 646	$135.9\\133.8\\131.8$	$1256.4 \\ 1255.0 \\ 1253.7$	$5.653 \\ 5.713 \\ 5.777$	154.4 152.2 150.0	$1265.5 \\ 1264.0 \\ 1262.6$	$5.795 \\ 5.857 \\ 5.919$	174.0 171.9 169.7	$1275.2 \\ 1273.8 \\ 1272.4$	$5.928 \\ 5.988 \\ 6.05$
321 320 319	90.9 89.6 88.3	$111.3 \\ 109.4 \\ 107.4$	$1242.95.\\1241.65.\\1240.25.$	705 768 832	$129.7 \\ 127.7 \\ 125.$	$1252.3 \\ 1250.9 \\ 1249.5$	$5.839 \\ 5.905 \\ 5.969$	$148.0 \\ 145.9 \\ 143.7$	$1261.2 \\ 1259.8 \\ 1258.4$	$5.980 \\ 6.05 \\ 6.11$	$167.5 \\ 165.3 \\ 163.1$	$1271.0 \\ 1269.6 \\ 1268.1$	$ \begin{array}{r} 6.11 \\ 6.18 \\ 6.25 \\ \end{array} $
318 317 316	$ \begin{array}{r} 87.1 \\ 85.9 \\ 84.6 \end{array} $	$105.4 \\ 103.4 \\ 101.4$	$\begin{array}{c} 1238.9 \\ 1237.4 \\ 1236.1 \\ 6 \end{array}$	898 960 03	$123.7 \\ 121.7 \\ 119.7$	$1248.2 \\ 1246.8 \\ 1245.5$	$\begin{array}{c} 6.03 \\ 6.10 \\ 6.17 \end{array}$	$141.7 \\ 139.6 \\ 137.5$	$1257.1 \\ 1255.7 \\ 1254.3$	$ \begin{array}{r} 6.18 \\ 6.25 \\ 6.32 \end{array} $	$161.0 \\ 158.8 \\ 156.6$	$1266.7 \\ 1265.3 \\ 1263.8$	$\begin{array}{c} 6.32 \\ 6.40 \\ 6.46 \end{array}$
315 314 313	$ \begin{array}{r} 83.4 \\ 82.3 \\ 81.1 \end{array} $	$99.5 \\ 97.5 \\ 95.5$	$\begin{array}{c} 1234.8 \\ 1233.5 \\ 1232.1 \\ 6. \end{array}$	10 17 23	$117.7 \\ 115.6 \\ 113.6$	$1244.1\\1242.7\\1241.3$	$\begin{array}{c} 6.24 \\ 6.30 \\ 6.37 \end{array}$	$135.4 \\ 133.3 \\ 131.2$	$1252.9\\1251.6\\1250.2$	$ \begin{array}{c} 6.39 \\ 6.46 \\ 6.53 \end{array} $	$154.4 \\ 152.2 \\ 150.0$	$1262.3 \\ 1260.9 \\ 1259.4$	$\begin{array}{c} 6.54 \\ 6.60 \\ 6.67 \end{array}$
312 311 310	79.9 78.8 77.6	$93.5 \\ 91.6 \\ 89.7$	$\begin{array}{c} 1230.8 \\ 1229.5 \\ 1228.2 \\ 6. \end{array}$	30 37 44	$\frac{111.6}{109.6}\\107.5$	$1240.0\\1238.6\\1237.2$	$ \begin{array}{r} 6.44 \\ 6.51 \\ 6.58 \end{array} $	$129.1 \\ 127.0 \\ 125.0$	$1248.8 \\ 1247.4 \\ 1246.0$	6.60 6.67 6.75	$147.9\\145.7\\143.5$	$1258.0\\1256.5\\1255.0$	$\begin{array}{c} 6.75 \\ 6.83 \\ 6.90 \end{array}$
309 308 307	$76.5 \\ 75.4 \\ 74.3$	87.7 85.7 83.8	$\begin{array}{c} 1226.9 \\ 1225.6 \\ 1224.2 \\ 6. \end{array}$	51 58 65	$105.5 \\ 103.5 \\ 101.5$	$1235.9\\1234.5\\1233.2$	6.65 6.73 6.80	$122.9 \\ 120.9 \\ 118.9$	$1244.6\\1243.2\\1241.8$	$\left[\begin{array}{c} 6.81 \\ 6.89 \\ 6.97 \end{array} \right]$	$141.3 \\ 139.1 \\ 137.0$	$1253.6\\1252.2\\1250.8$	$\begin{array}{c} 6.97 \\ 7.05 \\ 7.13 \end{array}$
306 305 304	73.272.271.1	$ 81.9 \\ 79.9 \\ 78.0 $	$\begin{array}{c} 1222.9 \\ 1221.6 \\ 1220.3 \\ 6. \end{array}$	73 80 88	$99.5 \\ 97.5 \\ 95.4$	$1231.9\\1230.5\\1229.1$	6.88 6.96 7.04	$116.8 \\ 114.7 \\ 112.6$	$1240.4 \\ 1239.0 \\ 1237.6$	7.04 7.12 7.20	$134.9 \\ 132.7 \\ 130.5$	$1249.4 \\ 1248.0 \\ 1246.6$	$7.21 \\ 7.29 \\ 7.37$
303 302 301	$70.0 \\ 69.0 \\ 68.0$	$76.0 \\ 74.0 \\ 72.1$	$\begin{array}{c} 1218.9 \\ 1217.6 \\ 1216.2 \\ 7. \end{array}$	96 03 11	93.4 91.4 89.4	$1227.7 \\ 1226.3 \\ 1225.0$	7.11 7.20 7.28	$110.5 \\ 108.4 \\ 106.3$	$1236.2 \\ 1234.8 \\ 1233.4$	7.28 7.37 7.45	$128.4 \\ 126.3 \\ 124.1$	$1245.1\\1243.8\\1242.3$	$7.45 \\ 7.54 \\ 7.63$
300 299 298	$\begin{array}{c} 67.0 \\ 66.0 \\ 65.0 \end{array}$	$70.2 \\ 68.3 \\ 66.3$	$\begin{array}{c} 1214.97.\\ 1213.67.\\ 1212.37. \end{array}$	20 28 36		$1223.6\\1222.2\\1220.8$	7.36 7.45 7.54	$104.2 \\ 102.1 \\ 100.0$	$1232.0\\1230.7\\1229.4$	7.54 7.62 7.70	$122.0\\119.9\\117.7$	$1240.9\\1239.4\\1238.0$	$7.71 \\ 7.80 \\ 7.89$
297 296 295	$64.0 \\ 63.1 \\ 62.1$	$\begin{array}{c} 64.4\\ 62.4\\ 60.5 \end{array}$	$\begin{array}{c} 1211.0 \\ 1209.7 \\ 1208.4 \\ 7. \end{array}$	44 53 61	$ \begin{array}{r} 81.2 \\ 79.2 \\ 77.2 \end{array} $	$1219.4 \\ 1218.0 \\ 1216.6$	7.62 7.70 7.80	$98.0 \\ 96.0 \\ 94.0$	$^{1228.0}_{1226.6}_{1225.2}$	7.80 7.89 7.99	$115.5 \\ 113.4 \\ 111.3$	$1236.6\\1235.2\\1233.8$	7.98 8.07 8.17
294 293 292	$ \begin{array}{r} 61.2 \\ 60.2 \\ 59.3 \end{array} $	$58.6 \\ 56.7 \\ 54.7$	$\begin{array}{c} 1207.1\\ 1205.8\\ 1204.5\\ 7\end{array}$	70 79 88	$75.2 \\ 73.1 \\ 71.1$	$1215.3 \\ 1213.9 \\ 1212.6$	7.89 7.99 8.08	$91.9\\89.9\\87.8$	$1223.9\\1222.5\\1221.1$	$8.07 \\ 8.16 \\ 8.26$	$109.1 \\ 107.0 \\ 104.9$	$1232.4\\1231.0\\1229.5$	8.26 8.35 8.45
291 290 289	$58.4 \\ 57.5 \\ 56.7$	$52.7 \\ 50.8 \\ 48.9$	1203.17. 1201.88. 1200.58.	98 08 17	$69.0 \\ 67.0 \\ 65.0$	$1211.3 \\ 1209.9 \\ 1208.6$	8.17 8.27 8.37	$ \begin{array}{r} 85.7 \\ 83.6 \\ 81.5 \end{array} $	$\begin{array}{c} 1219.7 \\ 1218.3 \\ 1216.9 \end{array}$	8.36 8.46 8.55	$102.7 \\ 100.6 \\ 98.4$	$1228.0 \\ 1226.6 \\ 1225.1$	8.55 8.65 8.75
288 287 286	$55.8 \\ 54.9 \\ 54.1$	$46.9 \\ 44.9 \\ 43.0$	1199.18. 1197.88. 1196.58.	26 35 45	$ \begin{array}{r} 63.0 \\ 61.0 \\ 58.9 \end{array} $	$1207.3 \\ 1206.0 \\ 1204.6$	$8.46 \\ 8.56 \\ 8.66$	$79.4 \\ 77.4 \\ 75.3$	$1215.5 \\ 1214.1 \\ 1212.7$	8.65 8.75 8.86	$96.3 \\ 94.1 \\ 92.0$	$1223.6\\1222.2\\1220.8$	8.85 8.96 9.07
285 284 283	$53.2 \\ 52.4 \\ 51.6$	$41.0 \\ 39.0 \\ 37.0$	$\begin{array}{c} 1195.2 \\ 1193.8 \\ 1192.5 \\ 8. \end{array}$	55 65 75	$56.9 \\ 54.9 \\ 52.9$	$1203.2 \\ 1201.9 \\ 1200.5$	8.76 8.87 8.98	$73.2 \\ 71.1 \\ 69.1$	$\begin{array}{c} 1211.3 \\ 1209.9 \\ 1208.5 \end{array}$	8.96 9.07 9.18	89.9 87.8 85.7	$\begin{array}{c} 1219.4 \\ 1218.0 \\ 1216.5 \end{array}$	9.18 9.28 9.40
282 281 280	50.8 50.0 49.19	$35.0 \\ 33.1 \\ 31.1$	$\begin{array}{c} 1191.2 \\ 1189.9 \\ 1188.6 \\ 9. \end{array}$	85 96 06	$50.9 \\ 48.8 \\ 46.8$	$1199.2 \\ 1197.8 \\ 1196.4$	9.08 9.20 9.30	$67.0 \\ 65.0 \\ 62.9$	$1207.1 \\ 1205.7 \\ 1204.4$	$9.29 \\ 9.40 \\ 9.51$		$1215.1\\1213.7\\1212.3$	9.50 9.62 9.74
279 278 277	$\begin{array}{r} 48.41 \\ 47.64 \\ 46.88 \end{array}$	$29.2 \\ 27.3 \\ 25.3 $	$1187.39. \\ 1186.09. \\ 1184.69. \\$	17 28 40	$\begin{array}{r} 44.7 \\ 42.7 \\ 40.7 \end{array}$	$1195.0 \\ 1193.7 \\ 1192.3$	$\begin{array}{c} 9.41 \\ 9.52 \\ 9.63 \end{array}$	$ \begin{array}{r} 60.9 \\ 58.8 \\ 56.8 \end{array} $	$1203.0\\1201.7\\1200.3$	$9.62 \\ 9.74 \\ 9.86$	77.2 75.0 73.0	$\begin{array}{c}1211.0\\1209.6\\1208.2\end{array}$	9.85 9.97 10.10

e, ahr.	e e		1.72			1.73			1.74			1.75	
Temperatur Degrees F	Pressure, Pc per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents,	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
324 323 322	94.8 93.5 92.2	193.2 191.0 188.8	1284.51283.01281.6	6.06 6.12 6.18	213.5 211.2 208.9	$1294.5 \\ 1293.0 \\ 1291.5$	6.20 6.26 6.33	$234.0 \\ 231.6 \\ 229.3$	1304.7 1303.1 1301.5	$ \begin{array}{r} 6.33 \\ 6.40 \\ 6.47 \end{array} $	254.4 252.1 249.7	$1314.7 \\ 1313.2 \\ 1311.6$	$6.47 \\ 6.54 \\ 6.60$
321 320 319	90.9 89.6 88.3	186.5 184.3 182.0	$1280.1\\1278.7\\1277.3$	$\begin{array}{c} 6.25 \\ 6.32 \\ 6.38 \end{array}$	206.6 204.3 202.0	$1290.0\\1288.5\\1287.0$	$\begin{array}{c} 6.40 \\ 6.47 \\ 6.54 \end{array}$	$226.9 \\ 224.5 \\ 222.2$	$1299.9\\1298.4\\1296.8$	$ \begin{array}{r} 6.55 \\ 6.61 \\ 6.69 \\ \end{array} $	$247.4 \\ 245.0 \\ 242.6$	$1310.1 \\ 1308.5 \\ 1306.9$	$6.67 \\ 6.75 \\ 6.82$
318 317 316	87.1 85.9 84.6	179.9 177.6 175.4	$1275.9\\1274.5\\1273.0$	$ \begin{array}{r} 6.45 \\ 6.53 \\ 6.60 \\ \end{array} $	$199.7 \\ 197.4 \\ 195.1$	$1285.5 \\ 1284.0 \\ 1282.5$	$ \begin{array}{r} 6.60 \\ 6.67 \\ 6.74 \end{array} $	$219.9 \\ 217.5 \\ 215.1$	$1295.3 \\ 1293.8 \\ 1292.3$	$ \begin{array}{r} 6.76 \\ 6.83 \\ 6.90 \end{array} $	$240.3 \\ 238.0 \\ 235.6$	$1305.4 \\ 1303.9 \\ 1302.4$	$\begin{array}{c} 6.89 \\ 6.97 \\ 7.04 \end{array}$
315 314 313	$83.4 \\ 82.3 \\ 81.1$	173.1 171.0 168.8	$1271.6\\1270.1\\1268.6$	$\begin{array}{r} 6.67 \\ 6.74 \\ 6.81 \end{array}$	$192.8 \\ 190.5 \\ 188.2$	$1281.0 \\ 1279.5 \\ 1278.0$	$ \begin{array}{r} 6.81 \\ 6.89 \\ 6.98 \end{array} $	$212.8 \\ 210.4 \\ 208.0$	$1290.7\\1289.2\\1287.6$	6.98 7.05 7.13	$233.3 \\ 230.9 \\ 228.5$	1300.8 1299.3 1297.8	$7.12 \\ 7.20 \\ 7.28$
312 311 310	79.9 78.8 77.6	$166.6 \\ 164.3 \\ 162.1$	$1267.1 \\ 1265.7 \\ 1264.2$	$6.89 \\ 6.97 \\ 7.04$	$185.9 \\ 183.6 \\ 181.3$	$1276.5 \\ 1275.0 \\ 1273.5$	$7.05 \\ 7.13 \\ 7.20$	$205.6 \\ 203.2 \\ 200.8$	$1286.1 \\ 1284.5 \\ 1283.0$	$7.21 \\ 7.29 \\ 7.37$	$226.1 \\ 223.7 \\ 221.4$	$1296.3 \\ 1294.8 \\ 1293.3$	$7.36 \\ 7.44 \\ 7.53$
309 308 307	76.5 75.4 74.3	$159.9 \\ 157.6 \\ 155.3$	$1262.7 \\ 1261.2 \\ 1259.8$	$7.12 \\ 7.20 \\ 7.28$	179.0 176.7 174.4	$1272.0 \\ 1270.5 \\ 1269.0$	$7.28 \\ 7.36 \\ 7.44$	198.5 196.1 193.7	$1281.5 \\ 1280.0 \\ 1278.4$	$7.45 \\ 7.54 \\ 7.62$	219.0 216.7 214.3	1291.8 1290.3 1288.8	$7.61 \\ 7.69 \\ 7.78$
306 305 304	$73.2 \\ 72.2 \\ 71.1$	$153.1 \\ 150.9 \\ 148.6$	$^{1258.3}_{1256.8}_{1255.3}$	$7.36 \\ 7.44 \\ 7.52$	172.1 169.8 167.6	$1267.5 \\ 1266.0 \\ 1264.5$	$7.52 \\ 7.61 \\ 7.70$	191.4 189.1 186.7	$1276.9 \\ 1275.4 \\ 1273.9$	7.70 7.79 7.88	211.9 209.5 207.1	$1287.2 \\ 1285.6 \\ 1284.0$	$7.87 \\ 7.96 \\ 8.05$
303 302 301	70.0 69.0 68.0	$146.5 \\ 144.2 \\ 142.0$	$^{1253.9}_{1252.4}_{1251.0}$	$7.61 \\ 7.70 \\ 7.79$	$165.3 \\ 163.0 \\ 160.7$	$1262.9 \\ 1261.4 \\ 1259.9$	$7.79 \\ 7.88 \\ 7.97$	184.4 182.1 179.8	$1272.3 \\ 1270.8 \\ 1269.3$	7.97 8.06 8.15	$204.7 \\ 202.3 \\ 199.9$	$1282.4\\1280.8\\1279.2$	8.15 8.24 8.34
300 299 298	$ \begin{array}{r} 67.0 \\ 66.0 \\ 65.0 \end{array} $	139.8 137.7 -135.4	$1249.5 \\ 1248.1 \\ 1246.6$	$7.88 \\ 7.97 \\ 8.06$	$158.4 \\ 156.1 \\ 153.8$	$1258.4 \\ 1256.9 \\ 1255.4$	$8.06 \\ 8.15 \\ 8.25$	177.4 175.1 172.8	$1267.8 \\ 1266.2 \\ 1264.7$	$8.24 \\ 8.34 \\ 8.43$	197.5 195.1 192.7	1277.6 1276.0 1274.5	$8.43 \\ 8.52 \\ 8.61$
297 296 295	$64.0 \\ 63.1 \\ 62.1$	$133.2 \\ 131.0 \\ 128.9$	$^{1245.1}_{1243.6}_{1242.2}$	$8.15 \\ 8.24 \\ 8.34$	151.6 149.3 147.0	$1253.9\\1252.4\\1250.9$	$8.34 \\ 8.44 \\ 8.53$	$170.5 \\ 168.2 \\ 165.9$	$1263.2 \\ 1261.7 \\ 1260.1$	$8.53 \\ 8.63 \\ 8.73$	190.3 187.9 185.5	$1272.9\\1271.4\\1269.9$	$8.71 \\ 8.81 \\ 8.91$
294 293 292	$ \begin{array}{r} 61.2 \\ 60.2 \\ 59.3 \end{array} $	$126.7 \\ 124.5 \\ 122.2$	$\begin{array}{r} 1240.7 \\ 1239.2 \\ 1237.7 \end{array}$	$8.43 \\ 8.53 \\ 8.63$	$144.7 \\ 142.5 \\ 140.3$	$1249.4 \\ 1247.9 \\ 1246.5$		$163.6 \\ 161.3 \\ 158.9$	$1258.6 \\ 1257.1 \\ 1255.6$	8.83 8.93 9.03	$183.1 \\ 180.8 \\ 178.4$	$1268.4 \\ 1266.9 \\ 1265.3$	$9.02 \\ 9.12 \\ 9.23$
291 290 289	$58.4 \\ 57.5 \\ 56.7$	120.0 118.0 115.8	$1236.2 \\ 1234.8 \\ 1233.4$	$8.73 \\ 8.84 \\ 8.94$	$138.0 \\ 135.7 \\ 133.5$	$1245.0\\1243.5\\1242.1$	$8.93 \\ 9.04 \\ 9.15$	$156.6 \\ 154.3 \\ 152.0$	1254.0 1252.5 1251.0	$9.14 \\ 9.24 \\ 9.35$	$176.0 \\ 173.6 \\ 171.3$	$1263.8\\1262.2\\1260.7$	$9.34 \\ 9.46 \\ 9.57$
288 287 286	$55.8 \\ 54.9 \\ 54.1$	113.6 111.4 109.2	$^{1232.0}_{1230.6}_{1229.2}$	$9.04 \\ 9.15 \\ 9.26$	$131.2 \\ 129.0 \\ 126.8$	$1240.7 \\ 1239.3 \\ 1237.9$	$9.25 \\ 9.36 \\ 9.47$	$149.6 \\ 147.3 \\ 145.0$	$1249.5 \\ 1248.0 \\ 1246.5$	$9.46 \\ 9.57 \\ 9.68$	$168.9 \\ 166.6 \\ 164.2$	$1259.1\\1257.6\\1256.1$	$9.67 \\ 9.79 \\ 9.90$
285 284 283	$53.2 \\ 52.4 \\ 51.6$	107.0 104.8 102.7	$1227.7 \\ 1226.3 \\ 1224.8$	$9.37 \\ 9.49 \\ 9.60$	$124.6 \\ 122.3 \\ 120.0$	$1236.4 \\ 1235.0 \\ 1233.5$	$9.58 \\ 9.70 \\ 9.82$	$142.7 \\ 140.4 \\ 138.1$	$1245.0\\1243.5\\1242.0$	$9.80 \\ 9.92 \\ 10.04$	161.8 159.4 157.0	$1254.5\\1253.0\\1251.4$	10.03 10.15 10.27
282 281 280	$50.8 \\ 50.0 \\ 49.19$	100.5 98.3 96.1	$1223.4\\1222.0\\1220.6$	$9.71 \\ 9.83 \\ 9.95$	$117.8 \\ 115.6 \\ 113.4$	$1232.0\\1230.5\\1229.0$	9.94 10.06 10.18	$135.8 \\ 133.5 \\ 131.2$	1240.51239.11237.7	$10.16 \\ 10.29 \\ 10.41$	154.6 152.3 149.9	$1249.8\\1248.2\\1246.7$	$10.39 \\ 10.51 \\ 10.64$
279 278 277	48.41 47.64 46.88	94.0 91.8 89.6	$\begin{array}{c} 1219.2\\ 1217.8\\ 1216.4 \end{array}$	10.07 10.19 10.31	111.1 108.9 106.7	1227.51226.11224.6	$10.30 \\ 10.43 \\ 10.56$	$128.9 \\ 126.7 \\ 124.4$	$1236.3 \\ 1234.8 \\ 1233.3$	$10.53 \\ 10.67 \\ 10.80$	$147.5 \\ 145.1 \\ 142.8$	$1245.1 \\ 1243.6 \\ 1242.1$	$10.77 \\ 10.90 \\ 11.04$

III

e, ahr.	e		1.68			1.69			1.70		_	1.71	
Temperatur Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
276 275 274	$46.13 \\ 45.39 \\ 44.67$	$23.3 \\ 21.3 \\ 19.3$	$1183.4 \\ 1182.1 \\ 1180.8$	$9.51 \\ 9.62 \\ 9.73$	$38.6 \\ 36.6 \\ 34.5$	$1191.0\\1189.6\\1188.3$	9.75 9.87 10.00	$54.7 \\ 52.6 \\ 50.5$	$1199.0 \\ 1197.6 \\ 1196.2$	$9.98 \\ 10.10 \\ 10.22$	$70.9 \\ 68.8 \\ 66.7$	$1206.8 \\ 1205.4 \\ 1204.0$	$10.22 \\ 10.34 \\ 10.47$
273 272 271	$\begin{array}{r} 43.95 \\ 43.24 \\ 42.54 \end{array}$	$17.4 \\ 15.4 \\ 13.4$	$1179.6\\1178.3\\1177.0$	$9.85 \\ 9.97 \\ 10.10$	$32.5 \\ 30.5 \\ 28.4$	$1187.0 \\ 1185.7 \\ 1184.3$	$10.11 \\ 10.23 \\ 10.36$	$ \begin{array}{r} 48.4 \\ 46.3 \\ 44.2 \end{array} $	$1194.8 \\ 1193.4 \\ 1192.0$	$10.34 \\ 10.47 \\ 10.60$	$ \begin{array}{r} 64.5 \\ 62.4 \\ 60.3 \end{array} $	$1202.6\\1201.2\\1199.8$	$10.60 \\ 10.73 \\ 10.86$
270 269 268	$\begin{array}{r} 41.84 \\ 41.16 \\ 40.49 \end{array}$	$11.5 \\ 9.5 \\ 7.5$	$^{1175.7}_{1174.4}_{1173.1}$	$10.23 \\ 10.35 \\ 10.48$	$26.4 \\ 24.3 \\ 22.3$	1183.0 1181.7 1180.3	$10.49 \\ 10.61 \\ 10.75$	$\begin{array}{c} 42.1 \\ 40.0 \\ 38.0 \end{array}$	$1190.6\\1189.2\\1187.9$	$10.74 \\ 10.88 \\ 11.01$	$58.2 \\ 56.1 \\ 54.0$	$1198.4 \\ 1197.0 \\ 1195.7$	$10.99 \\ 11.13 \\ 11.27$
267 266 265	$39.83 \\ 39.17 \\ 38.53$	5.6 3.6 1.6	$1171.8 \\ 1170.5 \\ 1169.2$	$10.61 \\ 10.75 \\ 10.89$	$20.3 \\ 18.3 \\ 16.2$	$1178.9 \\ 1177.5 \\ 1176.1$	$10.89 \\ 11.02 \\ 11.16$	$36.0 \\ 33.9 \\ 31.9$	$1186.5 \\ 1185.2 \\ 1183.8$	$11.14 \\ 11.29 \\ 11.42$	$51.9 \\ 49.8 \\ 47.7$	$1194.3 \\ 1192.9 \\ 1191.6$	$11.41 \\ 11.55 \\ 11.70$
264 263 262	$37.89 \\ 37.26 \\ 36.64$	9997 9987 9976	$1167.8 \\ 1166.5 \\ 1165.1$	$11.04 \\ 11.20 \\ 11.36$	$14.2 \\ 12.1 \\ 10.1$	$1174.8 \\ 1173.5 \\ 1172.2$	$11.30 \\ 11.44 \\ 11.58$	$29.8 \\ 27.7 \\ 25.7$	$\frac{1182.5}{1181.1}\\1179.8$	$11.57 \\ 11.70 \\ 11.86$	$45.5 \\ 43.4 \\ 41.3$	$\frac{1190.2}{1188.8}\\1187.5$	$11.85 \\ 12.00 \\ 12.15$
261 260 259	$36.02 \\ 35.42 \\ 34.83$	9966 9955 9945	$1163.9\\1162.6\\1161.3$	$11.53 \\ 11.70 \\ 11.87$	$8.0 \\ 6.0 \\ 4.0$	$\frac{1170.9}{1169.6}\\1168.3$	$11.71 \\ 11.87 \\ 12.02$	$23.6 \\ 21.6 \\ 19.5$	1178.4 1177.1 1175.8	${}^{12.01}_{12.16}_{12.31}$	$39.3 \\ 37.2 \\ 35.1$	$1186.1 \\ 1184.8 \\ 1183.5$	$12.30 \\ 12.46 \\ 12.62$
258 257 256	$34.24 \\ 33.66 \\ 33.09$	9934 9925 9914	$\begin{array}{c} 1159.9 \\ 1158.6 \\ 1157.3 \end{array}$	$12.05 \\ 12.24 \\ 12.42$	2.0 0.0 9990	$1166.9 \\ 1165.6 \\ 1164.4$	$12.18 \\ 12.33 \\ 12.52$	$17.4 \\ 15.3 \\ 13.2$	$1174.4 \\ 1173.0 \\ 1171.7$	$12.48 \\ 12.63 \\ 12.80$	$33.0 \\ 30.9 \\ 28.8$	1182.1 1180.7 1179.4	$12.79 \\ 12.95 \\ 13.11$
255 254 253	$32.53 \\ 31.97 \\ 31.42$	9903 9893 9882	$1156.0 \\ 1154.6 \\ 1153.4$	$12.61 \\ 12.80 \\ 13.01$	9979 9969 9958	$1163.1 \\ 1161.7 \\ 1160.4$	$12.70 \\ 12.90 \\ 13.10$	$\begin{array}{c} 11.0\\ 8.9\\ 6.8\end{array}$	1170.3 1168.9 1167.5	$12.96 \\ 13.13 \\ 13.30$	$26.7 \\ 24.5 \\ 22.4$	$1178.0 \\ 1176.6 \\ 1175.2$	$13.29 \\ 13.46 \\ 13.63$
252 251 250	$30.88 \\ 30.35 \\ 29.82$	9873 9862 9852	$^{1152.1}_{1150.8}_{1149.5}$	$13.20 \\ 13.40 \\ 13.61$	9948 9937 9927	$1159.1 \\ 1157.8 \\ 1156.5$	$13.30 \\ 13.50 \\ 13.72$	$\begin{array}{r} 4.7\\ 2.6\\ 0.6\end{array}$	$1166.1 \\ 1164.8 \\ 1163.5$	$13.47 \\ 13.65 \\ 13.83$	$20.3 \\ 18.1 \\ 16.0$	$1173.9 \\ 1172.6 \\ 1171.2$	$13.81 \\ 14.00 \\ 14.17$
249 248 247	$29.30 \\ 28.79 \\ 28.29$	9842 9831 9822	$^{1148.2}_{1146.8}_{1145.5}$	$13.83 \\ 14.04 \\ 14.26$	9917 9906 9896	$1155.2\\1153.9\\1152.6$	$13.93 \\ 14.15 \\ 14.37$	9992 9981 9971	$1162.3 \\ 1161.0 \\ 1159.7$	$14.04 \\ 14.25 \\ 14.48$	$\begin{array}{c}13.9\\11.7\\9.6\end{array}$	$1169.9 \\ 1168.5 \\ 1167.2$	$14.36 \\ 14.54 \\ 14.73$
246 245 244	$27.80 \\ 27.31 \\ 26.83$	9811 9801 9791	$^{1144.2}_{1142.9}_{1141.6}$	$14.49\\14.71\\14.94$	9885 9875 9865	$1151.3 \\ 1150.0 \\ 1148.6$	$\frac{14.60}{14.82}\\15.05$	9960 9949 9939	$1158.4 \\ 1157.1 \\ 1155.7$	$14.71 \\ 14.93 \\ 15.17$	$7.5 \\ 5.3 \\ 3.1$	$1165.8 \\ 1164.4 \\ 1163.0$	$\frac{14.92}{15.11}\\15.31$
243 242 241	26.35 25.88 25.42	9780 9771 9760	$\begin{array}{c} 1140.3 \\ 1139.0 \\ 1137.7 \end{array}$	$15.17 \\ 15.41 \\ 15.66$	9854 9844 9834	$1147.3 \\ 1146.0 \\ 1144.7$	15.28 15.52 15.77	9928 9918 9907	$1154.4 \\ 1153.0 \\ 1151.7$	15.40 15.64 15.89	0.8 9992 9981	1161.5 1160.0 1158.7	$\frac{15.52}{15.76}\\16.01$
240 239 238	$24.97 \\ 24.52 \\ 24.08$	9750 9740 9730	$^{1136.3}_{1135.0}_{1133.6}$	$15.90 \\ 16.16 \\ 16.39$	9824 9813 9803	$1143.3 \\ 1142.0 \\ 1140.6$	$16.02 \\ 16.28 \\ 16.54$	9897 9887 9876	$1150.3 \\ 1149.0 \\ 1147.6$	$16.14 \\ 16.40 \\ 16.66$	9971 9960 9950	$1157.3 \\ 1156.0 \\ 1154.6$	$\frac{16.26}{16.52}\\16.78$
237 236 235	$23.64 \\ 23.21 \\ 22.79$	9719 9710 9699	$1132.3 \\ 1131.0 \\ 1129.7$	$16.68 \\ 16.95 \\ 17.24$	9793 9783 9772	$1139.3 \\ 1138.0 \\ 1136.6$	16.80 17.08 17.36	9866 9856 9845	$1146.3 \\ 1144.9 \\ 1143.5$	$16.93 \\ 17.21 \\ 17.49$	9939 9928 9917	$1153.3 \\ 1151.9 \\ 1150.5$	$17.05 \\ 17.33 \\ 17.62$
234 233 232	$22.38 \\ 21.97 \\ 21.57$	9689 9680 9669	$^{1128.3}_{1127.0}_{1125.6}$	$17.52 \\ 17.80 \\ 18.09$	9762 9752 9741	$1135.2 \\ 1133.9 \\ 1132.5$	$17.65 \\ 17.93 \\ 18.23$	9834 9824 9814	$1142.1 \\ 1140.8 \\ 1139.4$	$17.78 \\ 18.07 \\ 18.36$	9907 9897 9886	$1149.1 \\ 1147.7 \\ 1146.3$	$17.91 \\ 18.20 \\ 18.50$
231 230 229	$21.17 \\ 20.78 \\ 20.40$	9659 9649 9639	$1124.3 \\ 1123.0 \\ 1121.6$	18.39 18.69 19.01	9731 9721 9711	$1131.2 \\ 1129.9 \\ 1128.5$	$18.53 \\ 18.83 \\ 19.15$	9803 9793 9782'	$1138.1 \\ 1136.8 \\ 1135.4$	$18.67 \\ 18.97 \\ 19.29$	9876 9865 9854	$1145.0 \\ 1143.7 \\ 1142.3$	18.80 19.11 19.43

I	I	3
		~

ahr.	e		1.72	-	1.73			1.74			1.75	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
276 275 274	46.13 45.39 44.67	87.5 85.3 83.1	$\begin{array}{c} 1215.0 \\ 1213.5 \\ 1212.1 \\ 10.70 \end{array}$	104.4 102.1 99.9	$1223.2 \\ 1221.8 \\ 1220.3$	$10.69 \\ 10.81 \\ 10.96$	$122.1 \\ 119.8 \\ 117.5$	$1231.8 \\ 1230.4 \\ 1228.9$	$10.93 \\ 11.06 \\ 11.20$	140.4 138.0 135.7	$1240.6 \\ 1239.0 \\ 1237.5$	$11.16 \\ 11.30 \\ 11.44$
273 272 271	$\begin{array}{r} 43.95 \\ 43.24 \\ 42.54 \end{array}$	81.0 78.8 76.6	1210.7 10.83 1209.3 10.97 1207.8 11.10	97.7 95.5 93.3	$\begin{array}{r} 1218.8 \\ 1217.3 \\ 1215.8 \end{array}$	$11.09 \\ 11.22 \\ 11.37$	$115.2 \\ 113.0 \\ 110.7$	$1227.4 \\ 1225.9 \\ 1224.4$	$ \begin{array}{r} 11.33 \\ 11.48 \\ 11.61 \end{array} $	$133.3 \\ 131.0 \\ 128.6$	$1236.0\\1234.5\\1233.0$	$11.59 \\ 11.72 \\ 11.88$
270 269 268	41.84 41.16 40.49	$74.5 \\ 72.3 \\ 70.1$	$\begin{array}{c} 1206.4 \\ 1204.9 \\ 1203.5 \\ 11.52 \end{array}$	91.0 88.8 86.6	$1214.4\\1213.0\\1211.5$	$11.50 \\ 11.65 \\ 11.80$	108.4 106.1 103.8	$1222.9\\1221.4\\1220.0$	$11.77 \\ 11.90 \\ 12.05$	$126.2 \\ 123.9 \\ 121.5$	$1231.5 \\ 1230.0 \\ 1228.4$	$12.03 \\ 12.18 \\ 12.33$
267 266 265	$39.83 \\ 39.17 \\ 38.53$		1202.1 11.67 1200.7 11.81 1199.3 11.96	84.3 82.1 79.9	1210.1 1208.6 1207.2	$11.95 \\ 12.10 \\ 12.26$	101.6 99.3 97.0	$\begin{array}{c} 1218.5 \\ 1217.1 \\ 1215.6 \end{array}$	$12.21 \\ 12.37 \\ 12.53$	$119.1 \\ 116.8 \\ 114.5$	$1226.9\\1225.4\\1223.9$	$12.49 \\ 12.64 \\ 12.80$
264 263 262	$37.89 \\ 37.26 \\ 36.64$	$61.5 \\ 59.4 \\ 57.2$	1197.9 12.11 1196.5 12.27 1195.1 12.42	77.7 75.5 73.2	$1205.8\\1204.3\\1202.9$	$12.41 \\ 12.56 \\ 12.73$	94.8 92.5 90.2	$1214.2 \\ 1212.7 \\ 1211.3$	$12.70 \\ 12.85 \\ 13.01$	112.1 109.8 107.5	$1222.4\\1220.9\\1219.4$	$\begin{array}{r} 12.97 \\ 13.14 \\ 13.30 \end{array}$
261 260 259	$36.02 \\ 35.42 \\ 34.83$	$55.0 \\ 52.8 \\ 50.6$	$\begin{array}{c} 1193.7 \\ 1192.3 \\ 1192.9 \\ 1190.9 \\ 12.90 \end{array}$	71.0 68.8 66.6	1201.5 1200.1 1198.7	$12.90 \\ 13.07 \\ 13.24$		$1209.8 \\ 1208.3 \\ 1206.8$	$13.20 \\ 13.36 \\ 13.54$	105.1 102.7 100.4	$\begin{array}{c} 1217.9 \\ 1216.5 \\ 1215.0 \end{array}$	$13.48 \\ 13.65 \\ 13.82$
258 257 256	$34.24 \\ 33.66 \\ 33.09$	$ \begin{array}{r} 48.4 \\ 46.2 \\ 44.0 \end{array} $	1189.5 13.08 1188.1 13.25 1186.7 13.41	64.4 62.1 59.9	1197.3 1195.9 1194.4	$13.40 \\ 13.58 \\ 13.76$	81.0 78.7 76.4	$1205.3 \\ 1203.8 \\ 1202.4$	$13.70 \\ 13.89 \\ 14.08$	98.1 95.8 93.4	$\begin{array}{c} 1213.5 \\ 1212.0 \\ 1210.5 \end{array}$	$14.00 \\ 14.19 \\ 14.39$
255 254 253	$32.53 \\ 31.97 \\ 31.42$	41.9 39.7 37.5	1185.3 13.59 1183.9 13.78 1182.5 13.95	57.7 55.5 53.3	1193.0 1191.5 1190.1	$13.94 \\ 14.12 \\ 14.31$	74.1 71.8 69.5	$1200.9\\1199.4\\1197.9$	$14.25 \\ 14.44 \\ 14.63$	91.1 88.7 86.3	$1209.0 \\ 1207.5 \\ 1206.0$	$14.57 \\ 14.76 \\ 14.96$
252 251 250	$30.88 \\ 30.35 \\ 29.82$	$35.3 \\ 33.1 \\ 31.0$	$\begin{array}{c} 1181.1 \\ 1179.7 \\ 14.33 \\ 1178.3 \\ 14.51 \end{array}$	51.1 49.0 46.7	$\frac{1188.7}{1187.2}\\1185.8$	$14.50 \\ 14.70 \\ 14.90$	$67.2 \\ 64.9 \\ 62.6$	1196.5 1195.0 1193.5	$14.82 \\ 15.02 \\ 15.22$	84.0 81.6 79.3	$1204.5 \\ 1203.0 \\ 1201.5$	$15.15 \\ 15.35 \\ 15.56$
249 248 247	$29.30 \\ 28.79 \\ 28.29$	$28.8 \\ 26.6 \\ 24.4$	$\begin{array}{c} 1177.0 \\ 1175.6 \\ 1175.2 \\ 1174.2 \\ 15.09 \end{array}$	44.5 42.3 40.1	1184.4 1183.0 1181.6	$15.09 \\ 15.29 \\ 15.49$	60.3 58.0 55.7	1192.0 1190.6 1189.1	$15.42 \\ 15.63 \\ 15.83$	77.0 74.6 72.2	$1200.0 \\ 1198.5 \\ 1197.0$	$15.77 \\ 15.99 \\ 16.20$
246 245 244	$27.80 \\ 27.31 \\ 26.83$	$22.2 \\ 20.0 \\ 17.8$	$\begin{array}{c} 1172.8 \\ 1171.4 \\ 15.49 \\ 1170.0 \\ 15.70 \end{array}$	37.9 35.7 33.4	1180.1 1178.7 1177.2	$15.70 \\ 15.90 \\ 16.11$	53.4 51.1 48.8	1187.6 1186.1 1184.7	$16.04 \\ 16.26 \\ 16.48$	69.9 67.5 65.1	1195.5 1194.0 1192.5	$16.40 \\ 16.62 \\ 16.85$
243 242 241	26.35 25.88 25.42	$15.7 \\ 13.5 \\ 11.3$	$\begin{array}{c} 1168.6 \\ 1167.2 \\ 1167.8 \\ 1165.8 \\ 16.33 \end{array}$	31.1 28.8 26.5	$1175.7 \\ 1174.3 \\ 1172.8$	$16.32 \\ 16.55 \\ 16.78$	46.4 44.1 41.8	$1183.2 \\ 1181.7 \\ 1180.2$	$16.70 \\ 16.93 \\ 17.15$	$ \begin{array}{r} 62.7 \\ 60.4 \\ 58.0 \end{array} $	1191.0 1189.5 1188.0	$17.08 \\ 17.30 \\ 17.54$
240 239 238	$24.97 \\ 24.52 \\ 24.08$	$9.1 \\ 6.9 \\ 4.7$	1164.416.561163.016.791161.617.00	24.2 21.9 19.7	$1171.4 \\ 1170.0 \\ 1168.6$	$17.00 \\ 17.23 \\ 17.45$	$39.5 \\ 37.2 \\ 35.0$	$1178.8 \\ 1177.4 \\ 1176.0$	$17.38 \\ 17.61 \\ 17.85$	$55.6 \\ 53.3 \\ 51.0$	$1186.5 \\ 1185.0 \\ 1183.5$	$17.78 \\ 18.02 \\ 18.28$
237 236 235	$23.64 \\ 23.21 \\ 22.79$	2.5 0.1 9990	1160.2 17.23 1158.9 17.46 1157.4 17.75	17.5 15.2 12.9	$1167.2 \\ 1165.8 \\ 1164.4$	17.69 17.94 18.17	$32.8 \\ 30.5 \\ 28.3$	1174.6 1173.1 1171.6	$18.10 \\ 18.34 \\ 18.59$	48.6 46.2 43.8	1182.0 1180.5 1179.0	18.52 18.78 19.04
234 233 232	22.38 21.97 21.57	9980 9969 9958	$\begin{array}{c} 1156.0 \\ 1154.6 \\ 1153.2 \\ 18.63 \end{array}$	10.7 8.5 6.3	1163.0 1161.6 1160.2	18.42 18.67 18.93	$26.0 \\ 23.7 \\ 21.4$	1170.2 1168.7 1167.3	18.84 19.10 19.39	41.5 39.1 36.8	1177.5 1176.0 1174.6	19.30 19.57 19.84
231 230 229	21.17 20.78 20.40	9948 9937 9926	1151.9 18.94 1150.6 19.25 1149.2 19.57	4.1 1.8 9998	1158.8 1157.4 1156.0	19.19 19.45 19.71	19.1 16.9 14.7	1165.8 1164.4 1163.0	19.64 19.92 20.20	$34.5 \\ 32.2 \\ 30.0$	1173.2 1171.7 1170.3	20.11 20.40 20.69

e, ahr.	e		1.68			1.69			1.70	-		1.71	
Temperatur Degrees F	Pressure, Pc per Squar Inch.	Quality.	Heat Con- tents.	Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
228 227 226	$20.02 \\ 19.64 \\ 19.28$	9628 9619 9609	$\begin{array}{c} 1120.2 \\ 1118.9 \\ 1117.6 \\ 19 \\ 1117.6 \\ 19 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$).32).64).97	9700 9690 9680	1127.1 1125.8 1124.4	$19.47 \\ 19.79 \\ 20.12$	9772 9762 9752	$1134.0\\1132.7\\1131.3$	$19.61 \\ 19.93 \\ 20.27$	9843 9833 9823	$1140.8 \\ 1139.5 \\ 1138.1$	$19.76 \\ 20.08 \\ 20.41$
225 224 223	$18.91 \\ 18.56 \\ 18.21$	9599 9589 9579	$\begin{array}{c}1116.3\\1114.9\\1113.6\end{array}$).31).65 1.01	9670 9660 9650.	$1123.1\\1121.7\\1120.4$	$20.46 \\ 20.81 \\ 21.16$	9741 9731 9721	$1129.9\\1128.5\\1127.2$	$20.61 \\ 20.96 \\ 21.32$	9812 9802 9792	$1136.8 \\ 1135.4 \\ 1134.0$	$20.76 \\ 21.11 \\ 21.47$
222 221 220	$17.86 \\ 17.52 \\ 17.19$	$9569 \\ 9559 \\ 9549$	1112.2211110.9211109.521	.37 .73 2.10	9640 9630 9620	$1119.0\\1117.7\\1116.3$	$21.53 \\ 21.89 \\ 22.26$	9711 9700 9690	$1125.8 \\ 1124.5 \\ 1123.1$	$21.68 \\ 22.05 \\ 22.42$	9781 9771 9761	$1132.6\\1131.3\\1129.9$	$21.84 \\ 22.21 \\ 22.59$
219 218 217	$16.86 \\ 16.54 \\ 16.22$	9539 9529 9519	$\begin{array}{c}1108.1\\1106.7\\1105.4\\2\end{array}$	2.47 2.86 3.25	9609 9599 9589	$1114.9\\1113.5\\1112.1$	$22.64 \\ 23.03 \\ 23.43$	9679 9669 9659	$\begin{array}{c} 1121.7 \\ 1120.3 \\ 1118.9 \end{array}$	$22.80 \\ 23.20 \\ 23.60$	9750 9739 9729	$1128.5 \\ 1127.0 \\ 1125.6$	$22.97 \\ 23.36 \\ 23.77$
216 215 214	$15.90 \\ 15.60 \\ 15.29$	9509 9499 9489	$1104.023 \\ 1102.724 \\ 1101.324$	8.66 1.07 1.49	9579 9569 9559	$1110.7\\1109.4\\1108.0$	$23.83 \\ 24.25 \\ 24.67$	9649 9639 9628	$\frac{1117.5}{1116.2}\\1114.8$	$24.01 \\ 24.42 \\ 24.85 \\$	9719 9708 9698	$1124.3 \\ 1122.9 \\ 1121.5$	$24.18 \\ 24.60 \\ 25.03$
213 212 211	$14.99 \\ 14.70 \\ 14.41$	9479 9469 9460	1100.024 1098.622 1097.32	1.92 5.36 5.82	9549 9539 9529	$1106.7 \\ 1105.3 \\ 1103.9$	$25.10 \\ 25.54 \\ 26.01$	$9618 \\ 9608 \\ 9598$	$1113.4\\1112.0\\1110.6$	$25.29 \\ 25.73 \\ 26.19$	9688 9677 9667	$\frac{1120.1}{1118.7}\\1117.3$	$25.47 \\ 25.92 \\ 26.38$
210 209 208	$14.13 \\ 13.81 \\ 13.57$	9450 9441 9431	1095.9 20 1094.4 20 1093.1 22	$5.27 \\ 5.74 \\ 7.22$	9519 9510 9500	1102.5 1101.1 1099.8	$26.46 \\ 26.93 \\ 27.42$	9588 9579 9568	$1109.2 \\ 1107.8 \\ 1106.4$	$26.66 \\ 27.13 \\ 27.61$	9657 9647 9637	$1115.9\\1114.5\\1113.1$	$26.85 \\ 27.32 \\ 27.81$
207 206 205	$13.30 \\ 13.03 \\ 12.77$	9421 9411 9401	1091.7 22 1090.3 22 1088.9 28	$7.71 \\ 8.21 \\ 8.73 $	9489 9479 9469	$1098.4 \\ 1097.0 \\ 1095.6$	$27.91 \\ 28.42 \\ 28.93$	9558 9548 9537	1105.0 1103.6 1102.2	$28.11 \\ 28.62 \\ 29.15$	$9626 \\ 9616 \\ 9606$	$\frac{1111.7}{1110.3}\\1108.9$	$28.31 \\ 28.83 \\ 29.35$
204 203 202	$12.51 \\ 12.26 \\ 12.01$	9391 9381 9372	1087.629 1086.229 1084.930).25).78).34	9459 9449 9440	$1094.2 \\ 1092.8 \\ 1091.5$	$29.46 \\ 30.00 \\ 30.56$	9527 9517 9507	1100.8 1099.4 1098.1	$29.68 \\ 30.22 \\ 30.78$	9595 9585 9575	1107.5 1106.1 1104.7	$29.89 \\ 30.43 \\ 30.99$
201 200 199	$11.77 \\ 11.53 \\ 11.29$	9362 9352 9342	$\begin{array}{c}1083.5\\1082.1\\1080.7\end{array}$).88 1.44 2.02	9429 9419 9409	$1090.1 \\ 1088.7 \\ 1087.3$	$31.11 \\ 31.67 \\ 32.25$	9497 9487 9477	$1096.7\\1095.3\\1093.8$	$31.33 \\ 31.89 \\ 32.48$	$9565 \\ 9554 \\ 9544$	$1103.3 \\ 1101.9 \\ 1100.4$	$31.55 \\ 32.12 \\ 32.71$
198 197 196	$11.06\\10.83\\10.61$	9333 9323 9312	$\begin{array}{c} 1079.3 \\ 1077.8 \\ 1076.4 \\ 3 \end{array}$	2.60 3.20 3.81	9400 9390 9379	$1085.9\\1084.4\\1083.0$	$32.83 \\ 33.44 \\ 34.06$	9467 9457 9446	$\begin{array}{c} 1092.5 \\ 1091.0 \\ 1089.5 \end{array}$	$33.07 \\ 33.67 \\ 34.30$	$9534 \\ 9524 \\ 9513$	$1099.1 \\ 1097.5 \\ 1096.1$	$33.30 \\ 33.91 \\ 34.54$
195 194 193	$10.39 \\ 10.17 \\ 9.96$	9303 9293 9284	$\begin{array}{c}1075.1\\1073.7\\1072.3\end{array}$	$4.45 \\ 5.10 \\ 5.77$	9370 9360 9350	$1081.6\\1080.2\\1078.8$	$34.70 \\ 35.35 \\ 36.03$	9437 9426 9416	$1088.2 \\ 1086.7 \\ 1085.4$	$34.94 \\ 35.60 \\ 36.28$	9503 9493 9483	$1094.7 \\ 1093.3 \\ 1091.9$	$35.19 \\ 35.85 \\ 36.54$
192 191 190	$9.75 \\ 9.54 \\ 9.34$	9273 9263 9254	$\begin{array}{c} 1070.9\\ 1069.5\\ 1068.1\\ 3\end{array}$	6.45 7.15 7.87	9340 9329 9320	$1077.4\\1076.0\\1074.6$	$36.71 \\ 37.42 \\ 38.14$	9406 9395 9386	$1083.9\\1082.5\\1081.1$	$36.97 \\ 37.68 \\ 38.41$	$\begin{array}{r} 9472 \\ 9462 \\ 9452 \end{array}$	$1090.4\\1089.0\\1087.6$	$37.24 \\ 37.95 \\ 38.68$
189 188 187	$9.14 \\ 8.95 \\ 8.76$	9244 9234 9224	1066.8 38 1065.3 39 1063.9 40	8.59 9.33).08	9310 9300 9290	$1073.2 \\ 1071.8 \\ 1070.4$	$38.87 \\ 39.61 \\ 40.36$	9376 9365 9355	$1079.7 \\ 1078.3 \\ 1076.9$	$39.14 \\ 39.89 \\ 40.65$	9442 9431 9421	$1086.2 \\ 1084.7 \\ 1083.3$	$39.42 \\ 40.17 \\ 40.93$
186 185 184	8.57 8.38 8.20	9214 9204 9194	$1062.5 \\ 1061.1 \\ 1059.7 \\ 42$).85 1.63 2.45	9280 9270 9259	1069.0 1067.6 1066.1	$\begin{array}{r} 41.14 \\ 41.93 \\ 42.75 \end{array}$	9345 9335 9325	$1075.4 \\ 1074.0 \\ 1072.6$	$\begin{array}{r} 41.43 \\ 42.22 \\ 43.05 \end{array}$	9410 9400 9390	1081.9 1080.5 1079.0	$\begin{array}{r} 41.72 \\ 42.52 \\ 43.35 \end{array}$
183 182 181	$ \begin{array}{r} 8.02 \\ 7.85 \\ 7.68 \\ \end{array} $	9185 9175 9166	1058.3431056.9441055.445	3.28 1.14 5.03	$9250 \\ 9240 \\ 9231$	$1064.7 \\ 1063.3 \\ 1061.8$	$43.59 \\ 44.45 \\ 45.35$	9315 9305 9295	$1071.2 \\ 1069.8 \\ 1068.2$	$\begin{array}{r} 43.89 \\ 44.77 \\ 45.67 \end{array}$	9380 9370 9360	$1077.6\\1076.2\\1074.7$	$\begin{array}{r} 44.20 \\ 45.08 \\ 45.99 \end{array}$

ahr.	unds		1.72	-	1.73			1.74			1.75	
Temperature Degrees Fi	Pressure, Po per Square Inch.	Quality.	Heat Con- tents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
228 227 226	$20.02 \\ 19.64 \\ 19.28$	9915 9905 9894	$\begin{array}{c} 1147.7 \\ 1146.4 \\ 20.23 \\ 1145.0 \\ 20.56 \end{array}$	9987 9977 9966	1154.6 1153.2 1151.8	$20.04 \\ 20.37 \\ 20.71$	$12.4 \\ 10.1 \\ 7.9$	1161.5 1160.0 1158.6	$20.48 \\ 20.77 \\ 21.06$	$27.7 \\ 25.4 \\ 23.0$	1168.8 1167.4 1166.0	$21.00 \\ 21.29 \\ 21.59$
225 224 223	$18.91 \\ 18.56 \\ 18.21$	9883 9873 9863	$\begin{array}{c} 1143.6 \\ 20.91 \\ 1142.2 \\ 21.27 \\ 1140.9 \\ 21.63 \end{array}$	9955 9944 9933	1150.4 1149.0 1147.7	$21.06 \\ 21.42 \\ 21.78$	$5.6 \\ 3.4 \\ 1.1$	1157.2 1155.8 1154.4	$21.37 \\ 21.68 \\ 22.00$	$20.7 \\ 18.3 \\ 16.0$	$1164.5 \\ 1163.0 \\ 1161.6$	$21.89 \\ 22.19 \\ 22.51$
222 221 220	$17.86 \\ 17.52 \\ 17.19$	9852 9842 9831	$1139.5 22.00 \\ 1138.1 22.37 \\ 1136.7 22.75$	9923 9912 9902	$1146.3 \\ 1144.9 \\ 1143.5$	$22.16 \\ 22.53 \\ 22.91$	9994 9983 9972	1153.0 1151.6 1150.2	$22.32 \\ 22.69 \\ 23.08$	$13.7 \\ 11.3 \\ 9.0$	$1160.1 \\ 1158.6 \\ 1157.2$	$22.83 \\ 23.17 \\ 23.50$
219 218 217	$16.86 \\ 16.54 \\ 16.22$	9820 9809 9799	$1135.3 23.14 \\ 1133.8 23.53 \\ 1132.4 23.94$	9890 9879 9869	1142.1 1140.6 1139.2	$23.30 \\ 23.70 \\ 24.11$	9960 9950 9939	1148.8 1147.3 1145.9	$23.47 \\ 23.87 \\ 24.28$	$6.6 \\ 4.2 \\ 1.9$	$1155.7 \\ 1154.2 \\ 1152.8$	$23.83 \\ 24.16 \\ 24.50$
216 215 214	$15.90 \\ 15.60 \\ 15.29$	9788 9778 9767	$1131.0 24.35 \\ 1129.6 24.78 \\ 1128.2 25.21$	9858 9848 9837	$1137.8 \\ 1136.4 \\ 1135.0$	$24.53 \\ 24.95 \\ 25.39$	9928 9917 9906	$1144.5 \\ 1143.1 \\ 1141.7$	$24.70 \\ 25.13 \\ 25.57$	9998 9987 9976	$1151.3 \\ 1149.8 \\ 1148.4$	$24.87 \\ 25.31 \\ 25.75$
213 212 211	$14.99\\14.70\\14.41$	9757 9746 9737	$1126.8 25.65 \\ 1125.4 26.10 \\ 1124.0 26.57$	9826 9816 9806	$1133.6 \\ 1132.2 \\ 1130.8$	$25.83 \\ 26.29 \\ 26.76$	9896 9885 9875	1140.3 1138.9 1137.5	$26.02 \\ 26.47 \\ 26.95$	9965 9955 9944	$1147.0 \\ 1145.6 \\ 1144.2$	$26.20 \\ 26.66 \\ 27.14$
210 209 208	$14.13 \\ 13.85 \\ 13.57$	9726 9716 9705	$\begin{array}{c} 1122.6\\1121.2\\1121.8\\27.52\\1119.8\\28.01\end{array}$	9795 9785 9774	$1129.3 \\ 1127.9 \\ 1126.5$	$27.23 \\ 27.71 \\ 28.21$	9864 9854 9843	$1136.0 \\ 1134.6 \\ 1133.1$	$27.42 \\ 27.91 \\ 28.41$	9933 9923 9911	$1142.7 \\ 1141.2 \\ 1139.8$	$27.61 \\ 28.10 \\ 28.60$
207 206 205	$13.30 \\ 13.03 \\ 12.77$	9695 9684 9674	$1118.4 28.51 \\ 1116.9 29.03 \\ 1115.5 29.56$	9763 9753 9742	$1125.0 \\ 1123.6 \\ 1122.2$	$28.71 \\ 29.24 \\ 29.77$	9832 9821 9810	1131.7 1130.3 1128.8	$28.92 \\ 29.44 \\ 29.98$	9900 9889 9878	$1138.4 \\ 1136.9 \\ 1135.5$	$29.12 \\ 29.65 \\ 30.19$
204 203 202	$12.51 \\ 12.26 \\ 12.01$	9663 9653 9643	$1114.1 \\ 30.10 \\ 1112.7 \\ 30.65 \\ 1111.3 \\ 31.21$	9731 9720 9711	1120.7 1119.3 1117.9	$30.31 \\ 30.86 \\ 31.43$	9799 9788 9778	1127.4 1125.9 1124.5	$30.52 \\ 31.08 \\ 31.65$	9867 9856 9846	$1134.0 \\ 1132.6 \\ 1131.2$	$30.74 \\ 31.29 \\ 31.87$
201 200 199	$11.77 \\ 11.53 \\ 11.29$	9632 9622 9611	$1109.9 31.78 \\ 1108.4 32.35 \\ 1107.0 32.94$	9700 9689 9679	$ \begin{array}{r} 1116.5 \\ 1115.0 \\ 1113.6 \end{array} $	$32.00 \\ 32.58 \\ 33.17$	9768 9757 9746	$1123.1 \\ 1121.6 \\ 1120.2$	$32.22 \\ 32.80 \\ 33.40$	9835 9824 9813	$1129.7 \\ 1128.2 \\ 1126.8$	$32.45 \\ 33.03 \\ 33.63$
198 197 196	$11.06 \\ 10.83 \\ 10.61$	9601 9591 9580	$1105.6 \\ 33.54 \\ 1104.1 \\ 34.15 \\ 1102.6 \\ 34.78 \\$	9669 9658 9647	1112.2 1110.7 1109.2	$33.77 \\ 34.39 \\ 35.03$	9736 9725 9714	1118.8 1117.2 1115.8	$34.01 \\ 34.63 \\ 35.27$	9803 9792 9781	$1125.4 \\ 1123.8 \\ 1122.3$	$34.24 \\ 34.87 \\ 35.51$
195 194 193	$10.39 \\ 10.17 \\ 9.96$	9570 9559 9549	$1101.3 \\ 35.44 \\ 1099.8 \\ 36.11 \\ 1098.4 \\ 36.79$	9637 9626 9616	1107.8 1106.3 1104.9	$35.69 \\ 36.36 \\ 37.05$	9704 9693 9682	$1114.3 \\ 1112.9 \\ 1111.5$	$35.93 \\ 36.61 \\ 37.31$	9770 9759 9749	1120.9 1119.4 1118.0	$36.18 \\ 36.86 \\ 37.56$
192 191 190	$9.75 \\ 9.54 \\ 9.34$	9539 9528 9518	$\begin{array}{c} 1097.0 \\ 1095.5 \\ 1094.1 \\ 38.95 \end{array}$	9605 9594 9584	$1103.5 \\ 1102.0 \\ 1100.6$	$37.76 \\ 38.48 \\ 39.22$	9671 9660 9650	1110.0 1108.5 1107.1	$38.02 \\ 38.75 \\ 39.49$	9738 9726 9716	1116.5 1115.0 1113.6	38.28 39.01 39.76
189 188 187	$9.14 \\ 8.95 \\ 8.76$	9508 9497 9487	$\begin{array}{c} 1092.7 \\ 1091.2 \\ 1089.8 \\ 41.22 \end{array}$	9574 9563 9552	$1099.2 \\ 1097.7 \\ 1096.3$	$39.97 \\ 40.73 \\ 41.50$	9639 9628 9618	$1105.7 \\ 1104.2 \\ 1102.7$	$\begin{array}{r} 40.24 \\ 41.01 \\ 41.79 \end{array}$	9705 9694 9683	$1112.1 \\ 1110.6 \\ 1109.2$	$\begin{array}{r} 40.52 \\ 41.29 \\ 42.07 \end{array}$
186 185 184		9476 9466 9455	$\begin{array}{c} 1088.3 \\ 1086.9 \\ 42.81 \\ 1085.4 \\ 43.65 \end{array}$	9541 9531 9520	1094.8 1093.4 1091.9	$\begin{array}{r} 42.30 \\ 43.11 \\ 43.95 \end{array}$	9607 9596 9585	$1101.2 \\ 1099.8 \\ 1098.3$	42.59 43.40 44.26	9672 9662 9650	1107.7 1106.3 1104.7	$\begin{array}{r} 42.88 \\ 43.70 \\ 44.56 \end{array}$
183 182 181	8.02 7.85 7.68	9445 9435 9425	$1084.0 \\ 1082.6 \\ 1081.1 \\ 46.30$	9510 9499 9490	1090.4 1089.0 1087.5	$\begin{array}{r} 44.81 \\ 45.70 \\ 46.62 \end{array}$	9575 9565 9555	$1096.9\\1095.4\\1093.9$	$\begin{array}{r} 45.12 \\ 46.02 \\ 46.94 \end{array}$	9640 9630 9619	1103.3 1101.8 1100.3	45.42 46.33 47,26

e, ahr.	e		1.68	1.69		-		1.70			1.71	1
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
180 179 178	7.51 7.35 7.19	9156 9146 9137	$\begin{vmatrix} 1054.0 & 45.96 \\ 1052.6 & 46.83 \\ 1051.2 & 47.78 \end{vmatrix}$	9220 9211 9201	$1060.4 \\ 1059.0 \\ 1057.6$	$\begin{array}{r} 46.29 \\ 47.16 \\ 48.12 \end{array}$	9285 9275 9265	$1066.8 \\ 1065.4 \\ 1063.9$	$\begin{array}{r} 46.61 \\ 47.49 \\ 48.46 \end{array}$	9350 9340 9330	$1073.2 \\ 1071.7 \\ 1070.3$	$\begin{array}{r} 46.93 \\ 47.82 \\ 48.79 \end{array}$
177 176 175	$\begin{array}{c} 7.03 \\ 6.87 \\ 6.71 \end{array}$	9127 9117 9107	$\begin{array}{c} 1049.8 \\ 1048.3 \\ 1048.3 \\ 1046.9 \\ 50.7 \end{array}$	9191 9181 9171	$1056.1 \\ 1054.7 \\ 1053.3$	$49.08 \\ 50.10 \\ 51.1$	9255 9245 9235	$1062.5 \\ 1061.0 \\ 1059.6$	$49.42 \\ 50.4 \\ 51.4$	9320 9309 9299	$1068.9 \\ 1067.4 \\ 1065.9$	$\begin{array}{r} 49.77 \\ 50.7 \\ 51.8 \end{array}$
174 173 172	$ \begin{array}{r} 6.56 \\ 6.42 \\ 6.27 \end{array} $	9098 9088 9078	$\begin{array}{c} 1045.5 \\ 1044.1 \\ 1042.7 \\ 53.8 \end{array}$	9161 9152 9142	$1051.8 \\ 1050.4 \\ 1049.0$	$52.1 \\ 53.2 \\ 54.2$	9225 9215 9205	$1058.2 \\ 1056.7 \\ 1055.3$	$52.5 \\ 53.5 \\ 54.6$	9289 9279 9269	$1064.5 \\ 1063.1 \\ 1061.6$	$52.9 \\ 53.9 \\ 55.0$
171 170 169	$\begin{array}{c} 6.13 \\ 5.99 \\ 5.85 \end{array}$	9068 9058 9049	$\begin{array}{c} 1041.2 \\ 55.0 \\ 1039.8 \\ 56.2 \\ 1038.3 \\ 57.4 \end{array}$	9131 9122 9112	1047.5 1046.1 1044.6	$55.3 \\ 56.6 \\ 57.8$	9195 9185 9175	$1053.8 \\ 1052.3 \\ 1050.9$	$55.7 \\ 56.9 \\ 58.2$	9258 9248 9238	$1060.1 \\ 1058.6 \\ 1057.2$	$56.1 \\ 57.3 \\ 58.6$
168 167 166	$5.72 \\ 5.59 \\ 5.46$	9040 9029 9020	$\begin{array}{c} 1036.9 \\ 1035.5 \\ 1034.0 \\ 61.1 \end{array}$	9103 9092 9082	$1043.2 \\ 1041.7 \\ 1040.3$	$59.0 \\ 60.2 \\ 61.5$	$9165 \\ 9155 \\ 9145$	$\begin{array}{c} 1049.5 \\ 1048.0 \\ 1046.5 \end{array}$	$59.4 \\ 60.6 \\ 61.9$	9228 9218 9208	$1055.7\\1054.3\\1052.8$	$59.8 \\ 61.0 \\ 62.3$
165 164 163	$5.33 \\ 5.21 \\ 5.09$	9010 9000 8991	$\begin{array}{c} 1032.6 \\ 0.1031.1 \\ 0.1029.7 \\ 0.1029.7 \\ 0.1029 \\$	9073 9063 9053	$1038.8 \\ 1037.4 \\ 1035.9$	$\begin{array}{c} 62.7 \\ 64.0 \\ 65.3 \end{array}$	9135 9125 9115	$1045.1\\1043.6\\1042.2$	$\begin{array}{c} 63.1 \\ 64.4 \\ 65.7 \end{array}$	9198 9188 9177	$1051.3 \\ 1049.9 \\ 1048.4$	$\begin{array}{c} 63.6 \\ 64.9 \\ 66.2 \end{array}$
162 161 160	$\begin{array}{r} 4.969 \\ 4.852 \\ 4.738 \end{array}$	8981 8971 8962	$\begin{array}{c} 1028.3 \\ 1026.9 \\ 1025.4 \\ 69.2 \end{array}$	9043 9033 9023	$1034.5 \\ 1033.1 \\ 1031.6$	$\begin{array}{c} 66.6 \\ 68.1 \\ 69.7 \end{array}$	9105 9095 9085	$1040.7 \\ 1039.3 \\ 1037.8$	$\begin{array}{c} 67.1 \\ 68.6 \\ 70.1 \end{array}$	9167 9157 9147	$1046.9\\1045.5\\1044.0$	$\begin{array}{c} 67.6\\ 69.0\\ 70.6 \end{array}$
159 158 157	$\begin{array}{r} 4.626 \\ 4.517 \\ 4.409 \end{array}$	8952 8942 8933	$\begin{array}{c} 1023.9 \\ 1022.5 \\ 1021.1 \\ 73.8 \end{array}$	9014 9004 8994	$1030.1 \\ 1028.6 \\ 1027.2$	$71.1 \\ 72.7 \\ 74.3$	9075 9065 9056	$1036.3 \\ 1034.8 \\ 1033.4$	$71.6 \\ 73.2 \\ 74.8$	9137 9127 9117	$1042.5 \\ 1041.0 \\ 1039.6$	$72.1 \\ 73.7 \\ 75.3$
156 155 154	$\begin{array}{r} 4.303 \\ 4.200 \\ 4.099 \end{array}$	8923 8913 8903	$\begin{array}{c} 1019.6\\ 1018.1\\ 1018.1\\ 77.0\\ 1016.7\\ 78.7\end{array}$	8984 8974 8964	$1025.8\\1024.3\\1022.8$	$75.9 \\ 77.5 \\ 79.2$	9046 9035 9025	$1031.9\\1030.4\\1028.9$	76.4 78.1 79.8	9107 9097 9086	$1038.1 \\ 1036.6 \\ 1035.1$	77.0 78.6 80.3
153 152 151	4.000 3.903 3.808	8894 8883 8873	$\begin{array}{c} 1015.2 \\ 1013.8 \\ 1012.3 \\ 84.0 \end{array}$	8955 8944 8934	1021.4 1019.9 1018.4	$ \begin{array}{r} 80.9 \\ 82.7 \\ 84.6 \end{array} $	9015 9005 8995	$\begin{array}{c} 1027.5 \\ 1026.0 \\ 1024.5 \end{array}$	$ \begin{array}{r} 81.5 \\ 83.3 \\ 85.2 \\ \end{array} $	9076 9066 9055	$1033.6\\1032.1\\1030.6$	$ \begin{array}{r} 82.0 \\ 83.9 \\ 85.8 \end{array} $
150 149 148	$3.715 \\ 3.624 \\ 3.535$	8864 8854 8845	$\begin{array}{c} 1010.8 \\ 1009.4 \\ 1007.9 \\ 89.9 \end{array}$	8925 8915 8905	$1017.0\\1015.4\\1014.0$	$ 86.5 \\ 88.4 \\ 90.5 $	8985 8975 8965	$1023.0\\1021.5\\1020.1$	$87.1 \\ 89.0 \\ 91.1$	9046 9035 9026	$1029.1 \\ 1027.6 \\ 1026.2$	$ \begin{array}{r} 87.7 \\ 89.6 \\ 91.7 \\ \end{array} $
147 146 145	$3.447 \\ 3.361 \\ 3.278$	8835 8825 8815	$1006.491.9\\1005.094.0\\1003.596.1$	8895 8885 8875	$1012.5 \\ 1011.0 \\ 1009.5$	$92.5 \\ 94.6 \\ 96.7$	8955 8945 8935	$1018.6 \\ 1017.1 \\ 1015.6$	$93.1 \\ 95.3 \\ 97.4$	9015 9005 8995	$1024.6 \\ 1023.2 \\ 1021.6$	93.8 95.9 98.0
144 143 142	$3.196 \\ 3.116 \\ 3.037$	8805 8795 8786	$1002.098.3\\1000.5100.5\\999.1102.9$	8865 8855 8845	$1008.1 \\ 1006.6 \\ 1005.1$	$98.9 \\ 101.2 \\ 103.6$	8925 8915 8905	$1014.1 \\ 1012.6 \\ 1011.1$	$99.6\\101.9\\104.3$	8985 8974 8964	$1020.1\\1018.6\\1017.1$	$100.3 \\ 102.6 \\ 105.0$
141 140 139	$2.960 \\ 2.885 \\ 2.812$	8776 8766 8757	997.6 105.2 996.1 107.7 994.6 110.2	8836 8826 8816	1003.6 1002.1 1000.6	$105.9 \\ 108.4 \\ 111.0$	8895 8885 8875	1009.6 1008.1 1006.6	$106.7 \\ 109.1 \\ 111.7$	8954 8944 8934	$1015.6 \\ 1014.1 \\ 1012.6$	$107.4 \\ 109.8 \\ 112.5$
138 137 136	$2.740 \\ 2.669 \\ 2.600$	8747 8737 8728	993.2 112.8 991.6 115.4 990.2 118.2	8806 8796 8786	999.1 997.6 996.1	$113.5 \\ 116.2 \\ 119.0$	8865 8855 8845	$1005.1 \\ 1003.6 \\ 1002.1$	$114.3 \\ 117.0 \\ 119.8$	8924 8913 8904	$\frac{1011.1}{1009.5}\\1008.0$	$115.0 \\ 117.7 \\ 120.6$
135 134 133	$2.533 \\ 2.467 \\ 2.403$	8718 8708 8698	$\begin{array}{c} 988.7\\987.1\\987.1\\985.7\\126.8\end{array}$	8777 8766 8757	994.6 993.1 991.6	$121.8 \\ 124.7 \\ 127.7$	8835 8825 8815	1000.6 999.0 997.5	$122.6\\125.5\\128.6$	8894 8883 8873	1006.51005.01003.4	$123.4 \\ 126.3 \\ 129.4$

ahr.	e		1.72	4	1.73 1.74				1.75			
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents. Specific	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
180 179 178	$7.51 \\ 7.35 \\ 7.19$	9414 9404 9394	1079.6 47.1 1078.1 48. 1076.7 49.	26 9479 5 9469 3 9458	1086.0 1084.5 1083.1	$47.58 \\ 48.48 \\ 49.47$	9543 9533 9523	1092.4 1090.9 1089.4	47.91 48.81 49.80	9608 9598 9587	1098.7 1097.3 1095.8	$\begin{array}{r} 48.23 \\ 49.14 \\ 50.1 \end{array}$
177 176 175	$7.03 \\ 6.87 \\ 6.71$	9384 9373 9363	$\begin{array}{c} 1075.2 \\ 1073.7 \\ 1072.3 \\ 52.3 \end{array}$	9448 9437 9427	1081.6 1080.1 1078.6	$50.5 \\ 51.4 \\ 52.5$	9512 9501 9491	1088.0 1086.4 1085.0	$50.8 \\ 51.8 \\ 52.9$	9576 9565 9555	1094.3 1092.8 1091.3	$51.1 \\ 52.1 \\ 53.2$
174 173 172	$\begin{array}{c} 6.56 \\ 6.42 \\ 6.27 \end{array}$	9353 9343 9332	$\begin{array}{c} 1070.8 \\ 53.1 \\ 1069.4 \\ 54.1 \\ 1067.9 \\ 55.1 \end{array}$	9417 9406 9396	$1077.2 \\ 1075.7 \\ 1074.2$	$53.6 \\ 54.7 \\ 55.7$	9480 9470 9459	1083.5 1082.0 1080.6	$53.9 \\ 55.0 \\ 56.1$	9544 9534 9523	$1089.8 \\ 1088.4 \\ 1086.9$	$54.3 \\ 55.4 \\ 56.5$
171 170 169	$ \begin{array}{r} 6.13 \\ 5.99 \\ 5.85 \\ \end{array} $	9322 9311 9301	1066.4 56. 1064.9 57. 1063.5 59.	9385 9375 9364	$1072.7 \\ 1071.2 \\ 1069.8 \\$	$56.9 \\ 58.1 \\ 59.4$	9448 9438 9427	1079.0 1077.5 1076.0	$57.3 \\ 58.5 \\ 59.8 $	9512 9501 9490	1085.3 1083.8 1082.3	$57.6 \\ 58.9 \\ 60.2$
168 167 166	$5.72 \\ 5.59 \\ 5.46$	9291 9280 9270	$\begin{array}{c} 1062.0 \\ 1060.5 \\ 1059.1 \\ 62. \end{array}$	9354 9343 9333	$1068.3 \\ 1066.8 \\ 1065.3$	$ \begin{array}{r} 60.6 \\ 61.9 \\ 63.2 \end{array} $	9417 9406 9396	1074.6 1073.1 1071.6	$ \begin{array}{r} 61.0 \\ 62.3 \\ 63.6 \end{array} $	9480 9469 9458	$1080.8 \\ 1079.3 \\ 1077.8$	$ \begin{array}{r} 61.4 \\ 62.7 \\ 64.0 \end{array} $
165 164 163	$5.33 \\ 5.21 \\ 5.09$	9260 9250 9240	$\begin{array}{c} 1057.6 \\ 1056.1 \\ 1054.6 \\ 66. \end{array}$	9323 9312 9302	$1063.8\\1062.3\\1060.8$	$ \begin{array}{r} 64.4 \\ 65.7 \\ 67.1 \end{array} $	9385 9375 9364	$1070.1 \\ 1068.6 \\ 1067.1$	$ \begin{array}{r} 64.9 \\ 66.2 \\ 67.5 \end{array} $	9448 9437 9427	$1076.3 \\ 1074.8 \\ 1073.3$	$ \begin{array}{r} 65.3 \\ 66.6 \\ 68.0 \end{array} $
162 161 160	4.969 4.852 4.738	9229 9219 9209	1053.1 68. 1051.7 69. 1050.2 71.	9291 9281 9271	$1059.3 \\ 1057.9 \\ 1056.4$	$ \begin{array}{r} 68.5 \\ 70.0 \\ 71.6 \end{array} $	9354 9343 9333	1065.5 1064.1 1062.6	$ \begin{array}{r} 68.9 \\ 70.4 \\ 72.0 \end{array} $	9416 9405 9395	$1071.8 \\ 1070.3 \\ 1068.8$	69.4 70.9 72.5
159 158 157	$4.626 \\ 4.517 \\ 4.409$	9199 9189 9179	1048.7 72. 1047.2 74. 1045.7 75.	9261 9250 9240	1054.9 1053.4 1051.9	$73.1 \\ 74.6 \\ 76.3$	9322 9312 9302	$1061.1 \\ 1059.5 \\ 1058.1$	73.6 75.1 76.8	9384 9373 9363	$1067.2 \\ 1065.7 \\ 1064.2$	74.0 75.6 77.3
156 155 154	4.303 4.200 4.099	9168 9158 9147	$\begin{array}{c} 1044.2 \\ 1042.7 \\ 1041.2 \\ 80. \end{array}$	9230 9219 9208	1050.4 1048.9 1047.3	78.0 79.7 81.4	9291 9280 9269	1056.5 1055.0 1053.5	$78.5 \\ 80.2 \\ 81.9$	9352 9341 9330	$1062.7 \\ 1061.2 \\ 1059.6$	79.0 80.7 82.5
153 152 151	$\begin{array}{r} 4.000 \\ 3.903 \\ 3.808 \end{array}$	9137 9127 9116	$\begin{array}{c} 1039.7\\ 1038.2\\ 1036.7\\ 86. \end{array}$	9198 9187 9187 9177	$1045.9\\1044.3\\1042.8$	83.2 85.0 86.9	9259 9248 9237	1052.0 1050.5 1048.9		9320 9309 9298	$1058.1 \\ 1056.6 \\ 1055.0$	$ \begin{array}{r} 84.3 \\ 86.1 \\ 88.1 \end{array} $
150 149 148	3.715 3.624 3.535	9106 9096 9086	$\begin{array}{c} 1035.2 \\ 1033.7 \\ 1032.2 \\ 92. \end{array}$	9167 9156 9146	1041.3 1039.8 1038.3	88.8 90.8 92.9	9227 9216 9206	$1047.4 \\ 1045.9 \\ 1044.4$	$ \begin{array}{r} 89.4 \\ 91.4 \\ 93.5 \end{array} $	9288 9277 9267	$1053.5 \\ 1052.0 \\ 1050.5$	90.0 92.0 94.1
147 146 145	3.447 3.361 3.278	9075 9065 9054	$\begin{array}{c} 1030.7 \\ 94. \\ 1029.2 \\ 96. \\ 1027.7 \\ 98. \end{array}$	9135 9125 9114	$1036.8\\1035.3\\1033.7$	95.0 97.2 99.3	9195 9185 9174	1042.8 1041.3 1039.8	95.6 97.8 100.0	9256 9245 9234	$1048.9 \\ 1047.4 \\ 1045.8$	96.3 98.5 100.6
144 143 142	3.196 3.116 3.037	9044 9034 9024	$\begin{array}{c}1026.2\\1024.6\\103\\1023.1\\105\end{array}$	9 9104 3 9093 7 9083	1032.2 1030.7 1029.2	101.6 103.9 106.4	9164 9153 9143	$1038.3 \\ 1036.7 \\ 1035.2$	$102.3 \\ 104.6 \\ 107.1$	9223 9212 9202	$1044.3 \\ 1042.7 \\ 1041.2$	$102.9 \\ 105.3 \\ 107.8$
141 140 139	2.960 2.885 2.812	9014 9003 8993	$1021.6 108 \\ 1020.1 110 \\ 1018.6 113$	$\begin{array}{c c}1 & 9073 \\ 6 & 9062 \\ 2 & 9052 \end{array}$	1027.6 1026.1 1024.6	108.8 111.3 114.0	9132 9121 9111	1033.6 1032.1 1030.5	$109.5 \\ 112.0 \\ 114.7$	9192 9181 9170	$1039.7 \\ 1038.1 \\ 1036.5$	$110.2 \\ 112.7 \\ 115.5$
138 137 136	2.740 2.669 2.600	8983 8972 8962	$\begin{array}{c} 1017.1 \\ 1015.5 \\ 1014.0 \\ 121 \end{array}$.8 9042 5 9031 .3 9021	1023.0 1021.5 1019.9	116.6 119.3 122.1	9101 9090 9080	$1029.0\\1027.4\\1025.9$	$117.3 \\ 120.1 \\ 122.9$	9160 9149 9138	1035.0 1033.4 1031.8	$118.1 \\ 120.9 \\ 123.7$
135 134 133	$\begin{array}{c c} 2.533 \\ 2.467 \\ 2.403 \end{array}$	8952 8941 8931	$\begin{array}{c} 1012.5 \\ 1010.9 \\ 127 \\ 1009.4 \\ 130 \end{array}$	3 9011 1 9000 2 8990	1018.4 1016.8 1015.3	125.1 128.0 131.1	9069 9058 9048	$1024.4 \\ 1022.8 \\ 1021.2$	$125.9 \\ 128.8 \\ 131.9$	9128 9117 9106	$1030.3 \\ 1028.7 \\ 1027.1$	$126.7 \\ 129.6 \\ 132.8$

LIBRARD .

ahr.	e		1.68		1.69			1.70			1.71	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents. Specific	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
132 131 130	$2.341 \\ 2.280 \\ 2.220$	8689 8679 8670	984.2 129 982.7 133 981.2 136	$\begin{array}{c}9 & 8747 \\0 & 8737 \\2 & 8728\end{array}$	990.1 988.6 987.1	$130.8 \\ 133.9 \\ 137.1$	8805 8795 8786	996.0 994.5 993.0	$131.6 \\ 134.7 \\ 138.0$	8863 8853 8843	$1001.9 \\ 1000.4 \\ 998.9$	$132.5 \\ 135.6 \\ 138.9$
129 128 127	$2.161 \\ 2.103 \\ 2.047$	8660 8650 8641	$\begin{array}{c} 979.7 \\ 978.2 \\ 976.7 \\ 146 \end{array}$	5 8718 9 8708 4 8698	985.6 984.1 982.6	$140.4 \\ 143.9 \\ 147.3$	8775 8766 8756	991.5 989.9 988.4	$141.4 \\ 144.8 \\ 148.3$	8833 8823 8813	$997.3 \\ 995.8 \\ 994.3$	$142.3 \\ 145.8 \\ 149.3$
126 125 124	$1.992 \\ 1.938 \\ 1.886$	8631 8621 8611	$\begin{array}{c} 975.2\\973.7\\972.2\\157\end{array}$	0 8688 7 8678 5 8668	981.0 979.5 978.0	$151.0 \\ 154.7 \\ 158.5$	8745 8735 8725	986.9 985.4 983.8	$152.0 \\ 155.8 \\ 159.6$	8803 8793 8782	$992.7 \\ 991.2 \\ 989.7$	$153.0 \\ 156.8 \\ 160.6$
123 122 121	$1.835 \\ 1.785 \\ 1.737$	8601 8591 8582	$\begin{array}{c} 970.7 \\ 969.1 \\ 967.6 \\ 169 \end{array}$	4 8658 6 8648 8 8639	976.5 974.9 973.4	$162.5 \\ 166.7 \\ 170.9$	$8715 \\ 8705 \\ 8695$	982.3 980.7 979.2	$163.6 \\ 167.7 \\ 172.0$	8772 8762 8752	$988.2 \\ 986.6 \\ 985.1$	$164.6\\168.8\\173.1$
120 119 118	${}^{1.689}_{1.642}_{1.597}$	8572 8562 8553	$\begin{array}{c} 966.1\\964.6\\178\\963.1\\183\end{array}$	0 8629 4 8619 0 8609	971.9 970.4 968.9	$175.2 \\ 179.6 \\ 184.2$		977.7 976.2 974.7	$176.3 \\ 180.8 \\ 185.4$	8742 8732 8722	983.5 982.0 980.4	$177.5 \\ 182.0 \\ 186.6$
117 116 115	$1.552 \\ 1.509 \\ 1.467$	8543 8533 8523	961.6 187. 960.0 192. 958.5 197.	8 8599 6 8589 6 8579	967.4 965.8 964.3	$189.0 \\ 193.8 \\ 198.9$		$973.1 \\ 971.5 \\ 970.0$	$190.2 \\ 195.1 \\ 200.2$	8711 8701 8691	978.9 977.3 975.8	$191.5 \\ 196.4 \\ 201.5$
114 113 112	${}^{1.426}_{1.386}_{1.347}$	8513 8503 8493	957.0202. 955.5207. 953.9213.	6 8569 8 8559 3 8549	962.7 961.2 959.7	$203.9 \\ 209.2 \\ 214.7$	$\begin{array}{r} 8625 \\ 8614 \\ 8604 \end{array}$	$968.5 \\ 967.0 \\ 965.4$	$205.3 \\ 210.5 \\ 216.1$	8680 8670 8660	$974.2 \\ 972.7 \\ 971.1$	$206.6 \\ 211.9 \\ 217.4$
111 110 109	${}^{1.308}_{1.271}_{1.235}$	8483 8474 8463	952.4 218. 950.9 224. 949.4 230.	9 8539 7 8529 7 8518	$\begin{array}{c} 958.2 \\ 956.6 \\ 955.1 \end{array}$	$220.3 \\ 226.2 \\ 232.2$	8594 8584 8574	$963.9 \\ 962.2 \\ 960.7$	$221.7 \\ 227.7 \\ 233.7$	$\begin{array}{r} 8649 \\ 8640 \\ 8629 \end{array}$	$969.6 \\ 968.0 \\ 966.4$	$223.2 \\ 229.1 \\ 235.2$
108 107 106	$1.200 \\ 1.165 \\ 1.131$	8454 8444 8434	$\begin{array}{c} 947.8 \\ 946.3 \\ 944.7 \\ 250. \end{array}$	9 8509 3 8499 0 8489	953.5 952.0 950.4	$238.4 \\ 244.9 \\ 251.6$	8564 8554 8544	$959.1 \\ 957.6 \\ 956.0$	$240.0 \\ 246.5 \\ 253.2$	$\begin{array}{c} 8619 \\ 8608 \\ 8598 \end{array}$	$964.8 \\ 963.3 \\ 961.7$	$241.5 \\ 248.1 \\ 254.9$
105 104 103	$1.098 \\ 1.066 \\ 1.035$	8424 8414 8405	$\begin{array}{c} 943.2 \\ 941.6 \\ 263. \\ 940.1 \\ 271. \end{array}$	8 8479 8 8469 0 8459	948.8 947.2 945.7	$258.4 \\ 265.5 \\ 272.7$	8534 8523 8513	$954.5 \\ 952.9 \\ 951.4$	$260.1 \\ 267.2 \\ 274.5$	8588 8578 8568	$960.1 \\ 958.5 \\ 957.0$	$261.8 \\ 268.9 \\ 276.2$
102 101 100	$\begin{array}{c} 1.005 \\ 0.975 \\ 0.946 \end{array}$	8395 8385 8375	$\begin{array}{c} 938.5 \\ 937.0 \\ 935.4 \\ 293 \\ \end{array}$	4 8449 0 8439 8 8429	944.1 942.6 941.0	$280.2 \\ 287.9 \\ 295.7$	8503 8494 8483	$\begin{array}{r} 949.8 \\ 948.2 \\ 946.6 \end{array}$	$282.0 \\ 289.7 \\ 297.6$	8558 8548 8537	$955.4 \\ 953.8 \\ 952.2$	283.8 291.6 299.5
99 98 97	$\begin{array}{c} 0.918 \\ 0.891 \\ 0.864 \end{array}$	8365 8356 8346	933.9 301. 932.3 310. 930.8 318.	9 8419 2 8409 9 8399	939.5 937.9 936.4	$303.8 \\ 312.2 \\ 320.9$	8473 8463 8453	$945.0 \\ 943.4 \\ 941.9$	$305.8 \\ 314.2 \\ 323.0$	8527 8517 8507	$950.6 \\ 949.0 \\ 947.5$	$307.7 \\ 316.2 \\ 325.0$
96 95 94	$\begin{array}{c} 0.838 \\ 0.813 \\ 0.788 \end{array}$	8336 8326 8316	929.3 327. 927.8 337. 926.2 346.	9 8389 0 8380 5 8370	$934.8 \\ 933.3 \\ 931.7$	$330.0 \\ 339.2 \\ 348.8$	8443 8433 8423	$940.4 \\ 938.8 \\ 937.2$	$332.1 \\ 341.4 \\ 351.0$	8497 8486 8476	$946.0 \\ 944.4 \\ 942.8$	$334.2 \\ 343.5 \\ 353.2$
93 92 91	$\begin{array}{c} 0.764 \\ 0.741 \\ 0.718 \end{array}$	8307 8297 8287	$\begin{array}{c} 924.6 \\ 923.0 \\ 921.5 \\ 377. \end{array}$	4 8360 8350 4 8340	$930.1 \\ 928.5 \\ 927.0$	$358.7 \\ 369.1 \\ 379.8$	8413 8403 8393	$935.7 \\ 934.1 \\ 932.5$	$361.0 \\ 371.4 \\ 382.2$	$\begin{array}{r} 8466 \\ 8456 \\ 8446 \end{array}$	$941.3 \\ 939.6 \\ 938.0$	363.3 373.7 384.6
90 89 88	$\begin{array}{c} 0.696 \\ 0.675 \\ 0.654 \end{array}$	8277 8267 8257	919.9 388. 918.3 399. 916.7 411.	4 8330 5 8320 2 8310	$925.4 \\ 923.8 \\ 922.2$	$390.8 \\ 402.2 \\ 413.8$	8383 8373 8362	$930.9 \\ 929.3 \\ 927.7$	$393.3 \\ 404.7 \\ 416.4$	8435 8425 8415	936.4 934.8 933.1	$395.8 \\ 407.3 \\ 419.1$
87 86 85	$\begin{array}{c} 0.633 \\ 0.613 \\ 0.594 \end{array}$	8248 8238 8228	$\begin{array}{c} 915.2\\913.6\\435.\\912.0\\447. \end{array}$	1 8300 0 8290 6 8280	920.6 919.0 917.4	$\begin{array}{r} 425.8 \\ 437.7 \\ 450.4 \end{array}$	8353 8342 8332	$926.1 \\ 924.5 \\ 922.9$	$\begin{array}{c} 428.5 \\ 440.5 \\ 453.3 \end{array}$	8405 8395 8384	931.6 930.0 928.3	$\begin{array}{c} 431.2\\ 443.2\\ 456.1 \end{array}$

ahr.	e	-	1.72			1.73			1.74			1.75	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
132 131 130	$2.341 \\ 2.280 \\ 2.220$	8921 8911 8901	1007.8 1006.3 1004.8	$133.4 \\ 136.5 \\ 139.8$	8980 8969 8959	1013.7 1012.2 1010.7	$134.2 \\ 137.4 \\ 140.7$	9038 9027 9017	1019.6 1018.1 1016.6	$135.1 \\ 138.3 \\ 141.7$	9096 9085 9075	1025.6 1024.0 1022.5	$136.0 \\ 139.2 \\ 142.6$
129 128 127	$2.161 \\ 2.103 \\ 2.047$	8891 8881 8870	$1003.2 \\ 1001.7 \\ 1000.2$	$143.2 \\ 146.7 \\ 150.3$	8949 8938 8928	$1009.1 \\ 1007.6 \\ 1006.1$	$144.2 \\ 147.7 \\ 151.2$	9006 8996 8985	1015.0 1013.4 1011.9	$145.1 \\ 148.6 \\ 152.2$	9064 9054 9043	1020.9 1019.3 1017.8	$146.0 \\ 149.6 \\ 153.2$
126 125 124	$1.992 \\ 1.938 \\ 1.886$	8860 8850 8839	998.6 997.1 995.5	$154.0 \\ 157.8 \\ 161.7$	8917 8907 8896	$1004.5 \\ 1003.0 \\ 1001.3$	155.0 158.8 162.7	8975 8964 8953	$1010.3 \\ 1008.8 \\ 1007.2$	156.0 159.8 163.8	9032 9021 9011	$1016.2 \\ 1014.7 \\ 1013.0$	157.0 160.9 164.8
123 122 121	$1.835 \\ 1.785 \\ 1.737$	8829 8819 8809	994.0 992.4 990.9	$165.7 \\ 169.9 \\ 174.2$	8886 8876 8866	999.8 998.2 996.7	$166.8 \\ 171.0 \\ 175.4$	8943 8932 8922	1005.6 1004.0 1002.5	$167.9 \\ 172.1 \\ 176.5$	9000 8989 8979	1011.4 1009.8 1008.3	$168.9 \\ 173.2 \\ 177.6$
120 119 118	$1.689 \\ 1.642 \\ 1.597$	8799 8788 8778	989.3 987.8 986.2	$178.6\\183.1\\187.8$	8855 8844 8834	995.1 993.6 992.0	$179.8 \\ 184.3 \\ 189.0$	8912 8901 8891	1000.9 999.4 997.8	$180.9 \\ 185.5 \\ 190.2$	8968 8957 8947	$1006.7 \\ 1005.1 \\ 1003.5$	$182.1 \\ 186.7 \\ 191.4$
117 116 115	$1.552 \\ 1.509 \\ 1.467$	8767 8757 8747	$984.6 \\ 983.0 \\ 981.5$	$192.7 \\ 197.6 \\ 202.8$	8824 8813 8803	990.4 988.8 987.3	$193.9\\198.9\\204.0$	8880 8869 8859	996.2 994.5 993.0	$195.2 \\ 200.2 \\ 205.3$	8936 8925 8915	1001.9 1000.3 998.7	$196.4 \\ 201.4 \\ 206.6$
114 113 112	$1.426 \\ 1.386 \\ 1.347$	8736 8726 8715	$979.9 \\ 978.4 \\ 976.8$	$207.9 \\ 213.3 \\ 218.8$	8792 8781 8771	985.7 984.1 982.5	$209.2 \\ 214.6 \\ 220.2$	8848 8837 8826	991.4 989.8 988.2	$210.6 \\ 216.0 \\ 221.6$	8904 8893 8882	997.1 995.5 993.9	$211.9 \\ 217.3 \\ 223.0$
111 110 109	$1.308 \\ 1.271 \\ 1.235$	8705 8695 8684	975.3 973.7 972.1	$224.6 \\ 230.6 \\ 236.7$	8760 8750 8739	980.9 979.3 977.8	$226.0 \\ 232.1 \\ 238.2$	8816 8805 8794	986.6 985.0 983.4	$227.4 \\ 233.5 \\ 239.7$	8871 8861 8849	992.3 990.7 989.1	$228.9 \\ 235.0 \\ 241.2$
108 107 106	$1.200 \\ 1.165 \\ 1.131$	$8674 \\ 8663 \\ 8653$	970.5 968.9 967.3	$243.0 \\ 249.7 \\ 256.5$	8729 8718 8708	$976.2 \\ 974.6 \\ 973.0$	$244.6 \\ 251.3 \\ 258.1$	8784 8773 8763	981.8 980.2 978.6	$246.1 \\ 252.8 \\ 259.7$	8839 8828 8817	987.5 985.9 984.3	$247.7 \\ 254.4 \\ 261.3$
105 104 103	$1.098 \\ 1.066 \\ 1.035$	8643 8632 8622	$965.7 \\ 964.1 \\ 962.6$	$263.4 \\ 270.6 \\ 278.0$	8698 8687 8677	971.4 969.8 968.2	$265.1 \\ 272.3 \\ 279.7$	8752 8741 8731	977.0 975.4 973.8	$266.8 \\ 274.0 \\ 281.5$	8807 8796 8785	982.7 981.0 979.4	$268.4 \\ 275.7 \\ 283.2$
102 101 100	$1.005 \\ 0.975 \\ 0.946$	8612 8602 8591	961.0 959.4 957.8	285.6 293.4 301.4	8666 8656 8645	$966.6 \\ 965.0 \\ 963.4$	$287.4 \\ 295.3 \\ 303.3$	8720 8710 8699	972.2 970.6 969.0	$289.2 \\ 297.1 \\ 305.2$	8775 8764 8753	977.8 976.2 974.6	291.0 298.9 307.1
99 98 97	$\begin{array}{c} 0.918 \\ 0.891 \\ 0.864 \end{array}$	8581 8571 8560	$956.2 \\ 954.6 \\ 953.1$	$309.7 \\ 318.2 \\ 327.1$	8635 8624 8614	961.8 960.2 958.5	311.6 320.2 329.1	8689 8678 8668	967.4 965.8 964.2	$313.6 \\ 322.2 \\ 331.2$	8743 8732 8721	973.0 971.3 969.8	$315.5 \\ 324.2 \\ 333.2$
96 95 94	0.838 0.813 0.788	8550 8540 8529	951.5 949.9 948.3	336.3 345.7 355.4	8604 8593 8583	957.0 955.4 953.8	$338.4 \\ 347.9 \\ 357.6$	8657 8647 8636	962.6 961.0 959.4	$340.5 \\ 350.0 \\ 359.9$	8711 8700 8689	$968.2 \\ 966.6 \\ 964.9$	$342.6 \\ 352.2 \\ 362.1$
93 92 91	0.764 0.741 0.718	8519 8509 8498	946.7 945.1 943.5	$365.6 \\ 376.1 \\ 387.0$	8572 8562 8551	$952.2 \\ 950.6 \\ 949.0$	$367.8 \\ 378.4 \\ 389.4$	8626 8615 8604	957.8 956.1 954.5	$370.1 \\ 380.8 \\ 391.8$	8679 8668 8657	963.3 961.6 960.0	$372.4 \\ 383.1 \\ 394.2$
90 89 88	$0.696 \\ 0.675 \\ 0.654$	8488 8478 8467	941.9 940.3 938.6	$398.3 \\ 409.8 \\ 421.7$	8541 8531 8520	947.4 945.8 944.1	$400.7 \\ 412.4 \\ 424.3$	8594 8583 8572	952.9 951.3 949.6	$\begin{array}{r} 403.2 \\ 414.9 \\ 426.9 \end{array}$	8646 8636 8625	958.3 956.7 955.0	$\begin{array}{r} 405.7 \\ 417.5 \\ 429.5 \end{array}$
87 86 85	$\begin{array}{c} 0.633 \\ 0.613 \\ 0.594 \end{array}$	8457 8447 8437	937.0 935.4 933.8	433.9 446.0 458.9	8510 8499 8489	942.5 940.9 939.2	$436.6 \\ 448.8 \\ 461.8$	8562 9552 8541	948.0 946.3 944.7	$439.2 \\ 451.5 \\ 464.6$	8615 8604 8593	953.4 951.8 950.1	441.9 454.3 467.5

e, ahr.	e		1.76			1.77			1.78			1.79	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Sperific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
324 323 322	$94.8 \\ 93.5 \\ 92.2$	276.0 273.4 271.0	$1325.4\\1323.7\\1322.1$	$\begin{array}{c} 6.60 \\ 6.67 \\ 6.75 \end{array}$	$297.5 \\ 295.0 \\ 292.5$	$1336.1 \\ 1334.4 \\ 1332.7$	$\begin{array}{c} 6.77 \\ 6.84 \\ 6.92 \end{array}$	 	· · · · · · ·	 		· · · · · · ·	
321 320 319	90.9 89.6 88.3	$268.4 \\ 266.0 \\ 263.5$	$1320.4\\1318.8\\1317.1$	$\begin{array}{c} 6.82 \\ 6.90 \\ 6.97 \end{array}$	$289.9 \\ 287.4 \\ 284.9$	$1331.1 \\ 1329.5 \\ 1327.8$	$6.99 \\ 7.06 \\ 7.14$	••••	••••	 	· · · · · · ·	 	•••• •••
318 317 316	$ \begin{array}{r} 87.1 \\ 85.9 \\ 84.6 \end{array} $	$260.9 \\ 258.4 \\ 255.9$	$1315.5 \\ 1313.9 \\ 1312.2$	$7.04 \\ 7.11 \\ 7.19$	$282.3 \\ 279.8 \\ 277.3$	$1326.2 \\ 1324.5 \\ 1322.9$	$7.21 \\ 7.29 \\ 7.37$	300.8 298.3	$1335.0\\1333.3$	$\frac{1}{7}, \frac{1}{44}$ 7, 52	•••	 	•••• •••
315 314 313	$83.4 \\ 82.3 \\ 81.1$	$253.4 \\ 250.9 \\ 248.4$	$1310.6 \\ 1309.0 \\ 1307.4$	$7.28 \\ 7.35 \\ 7.44$	$274.7 \\ 272.1 \\ 269.6$	$\frac{1321.2}{1319.5}\\1317.8$	$7.45 \\ 7.53 \\ 7.62$	$295.7 \\ 293.1 \\ 290.5$	$1331.6\\1329.9\\1328.3$	$7.60 \\ 7.69 \\ 7.77$	···· ···	 	· · · · · · ·
312 311 310	79.9 78.8 77.6	$245.9 \\ 243.4 \\ 241.0$	$1305.8 \\ 1304.2 \\ 1302.6$	$7.52 \\ 7.60 \\ 7.68$	$267.1 \\ 264.5 \\ 262.0$	$1316.2 \\ 1314.6 \\ 1313.0$	$7.70 \\ 7.79 \\ 7.88$	288.0 285.5 283.0	$1326.6\\1324.9\\1323.3$	$7.86 \\ 7.95 \\ 8.03$	···· ···	 	· · · · · · ·
309 308 307	76.5 75.4 74.3	$238.5 \\ 236.0 \\ 233.6$	$1301.0\\1299.4\\1297.8$	7.77 7.86 7.95	$259.5 \\ 257.0 \\ 254.4$	$1311.4 \\ 1309.7 \\ 1308.1$	$7.97 \\ 8.05 \\ 8.14$	$280.5 \\ 278.0 \\ 275.5$	$1321.7 \\ 1320.0 \\ 1318.3$	$8.12 \\ 8.21 \\ 8.30$	299.1 296.5	$1330.3 \\ 1328.6$	
306 305 304	$73.2 \\ 72.2 \\ 71.1$	$231.2 \\ 228.8 \\ 226.4$	$1296.3 \\ 1294.7 \\ 1293.1$	$8.04 \\ 8.13 \\ 8.22$	$251.9 \\ 249.3 \\ 246.9$	$1306.4 \\ 1304.8 \\ 1303.2$	$8.23 \\ 8.33 \\ 8.42$	$273.0 \\ 270.5 \\ 267.9$	$1316.7 \\ 1315.0 \\ 1313.4$	$8.40 \\ 8.49 \\ 8.59$	294.0 291.4 288.8	$1326.9\\1325.3\\1323.6$	$8.59 \\ 8.69 \\ 8.79$
303 302 301	$70.0 \\ 69.0 \\ 68.0$	$224.0 \\ 221.7 \\ 219.2$	$1291.5\\1289.9\\1288.4$	$ \begin{array}{r} 8.31 \\ 8.40 \\ 8.50 \\ \end{array} $	$244.4 \\ 241.9 \\ 239.4$	$1301.6 \\ 1300.0 \\ 1298.3$	$ \begin{array}{r} 8.51 \\ 8.60 \\ 8.70 \\ \end{array} $	$265.3 \\ 262.8 \\ 260.1$	$1311.7 \\ 1310.0 \\ 1308.3$	8.69 8.79 8.89	$286.2 \\ 283.5 \\ 281.0$	$^{1321.9}_{1320.2}_{1318.5}$	8.89 8.99 9.09
300 299 298	$\begin{array}{c} 67.0 \\ 66.0 \\ 65.0 \end{array}$	$216.7 \\ 214.2 \\ 211.8$	$1286.8 \\ 1285.2 \\ 1283.6$	$8.60 \\ 8.70 \\ 8.80$	$236.9 \\ 234.4 \\ 231.9$	$1296.7 \\ 1295.1 \\ 1293.5$	$8.80 \\ 8.91 \\ 9.01$	$257.6 \\ 255.0 \\ 252.5$	$1306.6 \\ 1304.9 \\ 1303.3$	$8.99 \\ 9.09 \\ 9.20$	$278.4 \\ 275.9 \\ 273.2$	$1316.8 \\ 1315.1 \\ 1313.4$	$9.19 \\ 9.29 \\ 9.40$
297 296 295	$64.0 \\ 63.1 \\ 62.1$	$209.3 \\ 206.8 \\ 204.4$	$1282.0\\1280.4\\1278.8$	$8.90 \\ 9.00 \\ 9.10$	$229.4 \\ 227.0 \\ 224.6$	$1291.9 \\ 1290.3 \\ 1288.7$	$9.11 \\ 9.22 \\ 9.33$	$250.0 \\ 247.4 \\ 244.9$	$1301.7 \\ 1300.1 \\ 1298.4$	$9.30 \\ 9.41 \\ 9.51$	$270.5 \\ 268.0 \\ 265.4$	$\begin{array}{c} 1311.7 \\ 1310.1 \\ 1308.5 \end{array}$	$9.50 \\ 9.61 \\ 9.72$
294 293 292	$ \begin{array}{r} 61.2 \\ 60.2 \\ 59.3 \end{array} $	$202.0 \\ 199.5 \\ 197.1$	$1277.2 \\ 1275.6 \\ 1274.0$	$9.21 \\ 9.33 \\ 9.44$	$222.1 \\ 219.6 \\ 217.2$	$1287.1 \\ 1285.5 \\ 1283.9$	$9.44 \\ 9.55 \\ 9.66$	$242.3 \\ 239.8 \\ 237.3$	$1296.8 \\ 1295.2 \\ 1293.6$	$9.62 \\ 9.73 \\ 9.85$	$262.9 \\ 260.3 \\ 257.7$	$1306.8 \\ 1305.2 \\ 1303.5$	$9.83 \\ 9.95 \\ 10.06$
291 290 289	58.4 57.5 56.7	$194.7 \\ 192.3 \\ 189.8$	$1272.5 \\ 1271.0 \\ 1269.4$	$9.55 \\ 9.66 \\ 9.78$	$214.7 \\ 212.1 \\ 209.6$	$1282.3 \\ 1280.6 \\ 1279.0$	$9.77 \\ 9.88 \\ 10.00$	$234.7 \\ 232.1 \\ 229.6$	$1291.8\\1290.2\\1288.5$	$9.97 \\ 10.09 \\ 10.20$	$255.1 \\ 252.6 \\ 250.0$	$1301.9\\1300.2\\1298.5$	$10.18 \\ 10.30 \\ 10.42$
288 287 286	$55.8 \\ 54.9 \\ 54.1$	$187.4 \\ 185.0 \\ 182.6$	$1267.9\\1266.4\\1264.8$	9.89 10.01 10.13	$207.0 \\ 204.4 \\ 201.9$	$1277.4 \\ 1275.8 \\ 1274.2$	$10.12 \\ 10.24 \\ 10.36$	$227.0 \\ 224.5 \\ 222.0$	$1286.9 \\ 1285.2 \\ 1283.6$	$10.32 \\ 10.45 \\ 10.58$	$247.3 \\ 244.7 \\ 242.1$	$1296.9\\1295.2\\1293.5$	$10.56 \\ 10.68 \\ 10.80 \\ 10.8$
285 284 283	$53.2 \\ 52.4 \\ 51.6$	$180.2 \\ 177.8 \\ 175.4$	$1263.3 \\ 1261.7 \\ 1260.1$	$10.25 \\ 10.37 \\ 10.50$	$199.4 \\ 196.9 \\ 194.4$	$1272.6\\1271.0\\1269.4$	10.48 10.61 10.74	219.4 216.9 214.4	$1282.0\\1280.4\\1278.8$	$10.70 \\ 10.83 \\ 10.97$	$239.5 \\ 236.9 \\ 234.3$	1291.8 1290.2 1288.5	$10.94 \\ 11.06 \\ 11.20$
282 281 280	$50.8 \\ 50.0 \\ 49.19$	$173.0 \\ 170.6 \\ 168.2$	$\begin{array}{c} 1258.5 \\ 1257.0 \\ 1255.4 \end{array}$	$10.62 \\ 10.75 \\ 10.88$	$191.9\\189.5\\187.0$	$1267.8 \\ 1266.2 \\ 1264.6$	$10.87 \\ 11.00 \\ 11.14$	$211.9 \\ 209.4 \\ 206.8$	$1277.2 \\ 1275.6 \\ 1274.0$	$11.10 \\ 11.23 \\ 11.36 \\ $	$231.7 \\ 229.1 \\ 226.5$	1286.8 1285.2 1283.5	11.34 11.47 11.62
279 278 277	$\begin{array}{r} 48.41 \\ 47.64 \\ 46.88 \end{array}$	$165.8 \\ 163.4 \\ 161.0$	$\begin{array}{c} 1253.9 \\ 1252.4 \\ 1250.9 \end{array}$	$11.02 \\ 11.15 \\ 11.29 $	$184.6\\182.2\\179.7$	1263.1 1261.6 1260.0	$11.28 \\ 11.42 \\ 11.56$	$204.4 \\ 202.0 \\ 199.5$	$\begin{array}{c} 1272.4 \\ 1270.9 \\ 1269.3 \end{array}$	$11.50 \\ 11.65 \\ 11.80 \\ 11.8$	$224.0 \\ 221.4 \\ 218.8$	1281.8 1280.2 1278.6	1.76 1.90 2.05

ahr.	e		1.80			1.81			1.82			1.83	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con-	Specific Volume.
324 323 322	94.8 93.5 92.2	···· ····		 	 	· · · · · · ·	 	···· , · ·	•••	•••• •••	••••	· · · · · · ·	••••
321 320 319	90.9 89.6 88.3	••••	•••	 	···· ···	···• ····	 	· · · · · · ·	•••	 	· · · · · · ·	· · · · · · ·	••••
318 317 316		••••	•••• •••	 	· · · · · · ·	· · · · · · ·	 	••••	•••	 		••••	
315 314 313	83.4 82.3 81.1	· · · · · · ·	· · · ·	 			 	· · · · · · ·	· · · · · · ·	····	· · · · · · ·	· · · · · · ·	
312 311 310	79.9 78.8 77.6	····	•••	· · · · · · ·		· · · · · · ·	···· ····		· · · · · · ·	· · · · · · ·	•••		
309 308 307	76.5 75.4 74.3		•••	···· ···	•••		 	· · · · ·			• • •	•••	
306 305 304	$73.2 \\ 72.2 \\ 71.1$				•••		 				•••	•••	
303 302 301	70.0 69.0 68.0				•••	•••		• • •				•••	
300 299 298	67.0 66.0 65.0	299.0 296.3 293.7	1326.7 1325.0 1323.3	9.37 9.48 9.60	•••			•••			•••		
297 296 295	64.0 63.1 62.1	291.0 288.4 285.8	1321.6 1319.9 1318.2	9.70 9.81 9.92	•••	 	· · · · · · · · · · · · · · · · · · ·	· · · ·					
294 293 292	$ \begin{array}{r} 61.2 \\ 60.2 \\ 59.3 \end{array} $	283.1 280.5 277.8	1316.4 1314.7 1313.0	$10.03 \\ 10.15 \\ 10.27$	301.5 298.7	1325.2 1323.4	10.36 10.48	•••	•••				
291 290 289	58.4 57.5 56.7	275.1 272.4 269.8	1311.4 1309.7 1308.0	$10.39 \\ 10.52 \\ 10.65$	296.0 293.3 290.6	1321.7 1320.0 1318.3	$10.60 \\ 10.73 \\ 10.86$	•••			•••		
288 287 286	55.8 54.9 54.1	$267.2 \\ 264.5 \\ 261.9$	1306.4 1304.7 1303.0	$10.77 \\ 10.90 \\ 11.03$	288.0 285.3 282.5	1316.6 1314.8 1313.1	10.99 11.11 11.25	•••					
285 284 283	$53.2 \\ 52.4 \\ 51.6$	$259.3 \\ 256.7 \\ 254.0$	1301.4 1299.7 1298.0	$11.16 \\ 11.29 \\ 11.43$	279.8 277.1 274.4	1311.4 1309.7 1308.0	$ \begin{array}{r} 11.39 \\ 11.53 \\ 11.67 \end{array} $	301.0 298.3 295.5	1321.9 1320.1 1318.3	$11.64 \\ 11.78 \\ 11.93$	•••		
282 281 280	50.8 50.0 49.19	251.4 248.7 246.0	$1296.4 \\ 1294.7 \\ 1293.0$	$11.57 \\ 11.72 \\ 11.86$	271.7 269.0 266.3	$1306.3 \\ 1304.6 \\ 1302.9$	11.81 11.96 12.10	292.8 290.0 287.2	$1316.5 \\ 1314.8 \\ 1313.0$	$12.07 \\ 12.22 \\ 12.37$			
279 278 277	48.41 47.64 46.88	243.3 240.7 238.1	$1291.4\\1289.7\\1288.0$	$12.00 \\ 12.15 \\ 12.30$	263.6 261.0 258.3	$1301.2 \\ 1299.5 \\ 1297.8$	$12.25 \\ 12.40 \\ 12.56$	284.5 281.7 279.0	1311.2 1309.5 1307.7	$12.53 \\ 12.69 \\ 12.84$	301.5 298.8	1319.0 1317.3	12.95 13.10

ahr.	ands		1.76			1.77			1.78			1.79	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
276 275 274	$46.13 \\ 45.39 \\ 44.67$	$158.6 \\ 156.2 \\ 153.8$	$1249.3 \\ 1247.8 \\ 1246.3$	$11.43 \\ 11.57 \\ 11.72$	$177.3 \\ 174.8 \\ 172.3$	$1258.4 \\ 1256.8 \\ 1255.2$	$11.70 \\ 11.84 \\ 11.99$	$197.0 \\ 194.4 \\ 191.9$	$1267.7 \\ 1266.0 \\ 1264.4$	$11.94 \\ 12.09 \\ 12.24$	$216.2 \\ 213.6 \\ 211.0$	$1277.0\\1275.3\\1273.6$	$12.20 \\ 12.35 \\ 12.50$
273 272 271	$\begin{array}{r} 43.95 \\ 43.24 \\ 42.54 \end{array}$	$151.4 \\ 149.0 \\ 146.6$	$1244.7\\1243.2\\1241.7$	$11.86 \\ 12.01 \\ 12.16$	$169.9 \\ 167.4 \\ 165.0$	$1253.6 \\ 1252.0 \\ 1250.4$	$12.13 \\ 12.29 \\ 12.44$	$189.4 \\ 186.9 \\ 184.3$	$1262.8 \\ 1261.2 \\ 1259.6$	$12.39 \\ 12.54 \\ 12.70$	208.4 205.8 203.2	$1271.9\\1270.3\\1268.6$	$12.66 \\ 12.82 \\ 12.99$
270 269 268	$\begin{array}{r} 41.84 \\ 41.16 \\ 40.49 \end{array}$	$144.2 \\ 141.8 \\ 139.4$	$^{1240.2}_{1238.7}_{1237.2}$	$12.32 \\ 12.47 \\ 12.63$	$162.5 \\ 160.0 \\ 157.5$	$1248.8\\1247.2\\1245.7$	$12.60 \\ 12.76 \\ 12.92$	$181.7 \\ 179.1 \\ 176.5$	$1258.0 \\ 1256.4 \\ 1254.8$	$12.86 \\ 13.02 \\ 13.20$	200.6 198.0 195.4	$1266.9\\1265.3\\1263.7$	$13.15 \\ 13.31 \\ 13.49$
267 266 265	$39.83 \\ 39.17 \\ 38.53$	$137.0 \\ 134.5 \\ 132.1$	$^{1235.7}_{1234.2}_{1232.6}$	$12.79 \\ 12.95 \\ 13.12$	$155.0 \\ 152.6 \\ 150.1$	$1244.1\\1242.6\\1241.0$	$13.08 \\ 13.25 \\ 13.42$	$174.0 \\ 171.5 \\ 169.0$	$1253.2 \\ 1251.6 \\ 1250.0$	$13.36 \\ 13.53 \\ 13.70$	$192.8 \\ 190.2 \\ 187.7$	$1262.0\\1260.4\\1258.8$	$13.66 \\ 13.83 \\ 14.01$
264 263 262	$37.89 \\ 37.26 \\ 36.64$	$129.7 \\ 127.3 \\ 124.9$	$^{1231.0}_{1229.5}_{1228.0}$	$13.29 \\ 13.46 \\ 13.64$	$147.7 \\ 145.2 \\ 142.8$	$1239.5 \\ 1237.9 \\ 1236.4$	$13.58 \\ 13.76 \\ 13.94$	$166.4 \\ 163.9 \\ 161.3$	$1248.4 \\ 1246.7 \\ 1245.1$	$13.88 \\ 14.06 \\ 14.23$	$185.1 \\ 182.5 \\ 179.9$	$1257.2 \\ 1255.6 \\ 1254.0$	$14.19\\14.38\\14.56$
261 260 259	$36.02 \\ 35.42 \\ 34.83$	$122.5 \\ 120.1 \\ 117.7$	$1226.4\\1224.9\\1223.3$	$13.81 \\ 13.99 \\ 14.17$	$140.3 \\ 137.8 \\ 135.3$	$1234.8\\1233.2\\1231.7$	$14.11 \\ 14.30 \\ 14.49 \\ 14.49 \\ 14.10 \\ 14.1$	$158.8 \\ 156.2 \\ 153.6$	$1243.5\\1241.9\\1240.3$	$14.41\\14.60\\14.79$	$177.3 \\ 174.7 \\ 172.1$	$1252.4\\1250.8\\1249.1$	$14.75 \\ 14.95 \\ 15.14$
258 257 256	$34.24 \\ 33.66 \\ 33.09$	$115.3 \\ 112.9 \\ 110.5$	$\begin{array}{c} 1221.7 \\ 1220.2 \\ 1218.6 \end{array}$	$14.35 \\ 14.54 \\ 14.74$	$^{132.9}_{130.4}_{128.0}$	$1230.1\\1228.6\\1227.0$	$14.67 \\ 14.86 \\ 15.05$	$151.0 \\ 148.4 \\ 145.8$	$1238.7 \\ 1237.0 \\ 1235.4$	$14.99 \\ 15.18 \\ 15.38$	$169.5 \\ 166.9 \\ 164.3$	$\begin{array}{c} 1247.4 \\ 1245.8 \\ 1244.2 \end{array}$	$15.33 \\ 15.53 \\ 15.74$
255 254 253	$32.53 \\ 31.97 \\ 31.42$	$108.1 \\ 105.7 \\ 103.3$	$\begin{array}{c} 1217.1 \\ 1215.6 \\ 1214.1 \end{array}$	$14.93 \\ 15.11 \\ 15.31$	$125.4\\123.0\\120.4$	$1225.5\\1224.0\\1222.4$	$15.25 \\ 15.44 \\ 15.65$	$^{143.2}_{140.6}_{138.1}$	$1233.8\\1232.1\\1230.5$	$15.58 \\ 15.78 \\ 15.99$	$161.8 \\ 159.2 \\ 156.5$	$1242.6\\1241.0\\1239.3$	$15.94 \\ 16.15 \\ 16.36$
252 251 250	$30.88 \\ 30.35 \\ 29.82$	$100.9 \\ 98.5 \\ 96.1$	$\begin{array}{c} 1212.5\\ 1211.0\\ 1209.4 \end{array}$	$15.52 \\ 15.72 \\ 15.94$	$ \begin{array}{r} 118.0 \\ 115.5 \\ 113.0 \end{array} $	$1220.8 \\ 1219.2 \\ 1217.6$	$15.86 \\ 16.06 \\ 16.27$	$135.5 \\ 133.0 \\ 130.4$	$\begin{array}{c} 1228.9 \\ 1227.3 \\ 1225.7 \end{array}$	$16.20 \\ 16.40 \\ 16.62$	$153.9 \\ 151.3 \\ 148.7$	$1237.7 \\ 1236.1 \\ 1234.4$	$16.58 \\ 16.80 \\ 17.02$
249 248 247	$29.30 \\ 28.79 \\ 28.29$	$93.7 \\ 91.3 \\ 88.9$	1207.9 1206.4 1204.8	$16.14 \\ 16.36 \\ 16.57$	$110.5 \\ 108.0 \\ 105.6$	$1216.0 \\ 1214.4 \\ 1212.9$	$16.49 \\ 16.70 \\ 16.92$	$127.9\\125.4\\122.9$	$1224.1\\1222.6\\1221.0$	$16.84 \\ 17.06 \\ 17.29$	$146.1 \\ 143.5 \\ 140.9$	$1232.8\\1231.2\\1229.6$	$17.24 \\ 17.47 \\ 17.70$
246 245 244	$27.80 \\ 27.31 \\ 26.83$	$ \begin{array}{r} 86.5 \\ 84.0 \\ 81.6 \end{array} $	1203.3 1201.8 1200.3	16.79 17.01 17.23	$^{103.1}_{100.6}_{98.2}$	$1211.4 \\ 1209.9 \\ 1208.3$	$17.14 \\ 17.35 \\ 17.60$	$120.4 \\ 117.8 \\ 115.3$	$\begin{array}{c} 1219.5 \\ 1217.9 \\ 1216.3 \end{array}$	$17.51 \\ 17.75 \\ 17.99$	$138.3 \\ 135.7 \\ 133.1$	$1227.9\\1226.3\\1224.7$	$17.93 \\ 18.17 \\ 18.41$
243 242 241	$26.35 \\ 25.88 \\ 25.42$	$79.2 \\ 76.8 \\ 74.4$	1198.8 1197.3 1195.8	17.47 17.70 17.94	$95.7 \\ 93.3 \\ 90.9$	$1206.7 \\ 1205.1 \\ 1203.6 \\ $	$17.83 \\ 18.07 \\ 18.30 \\ 18.30 \\ 18.30 \\ 18.30 \\ 18.30 \\ 10$	112.8 110.3 107.8	$\begin{array}{c} 1214.7 \\ 1213.1 \\ 1211.5 \end{array}$	$18.23 \\ 18.48 \\ 18.72$	$130.5 \\ 127.9 \\ 125.3$	$1223.1\\1221.4\\1219.8$	18.67 18.91 19.17
240 239 238	$24.97 \\ 24.52 \\ 24.08$	$72.0 \\ 69.6 \\ 67.2$	1194.3 1192.8 1191.3	$18.18 \\ 18.41 \\ 18.67 \\ 18.67 \\ 18.67 \\ 18.67 \\ 18.67 \\ 18.67 \\ 18.67 \\ 18.67 \\ 18.67 \\ 18.67 \\ 10.01 \\ 10.0$		$1202.0\\1200.5\\1198.9$	18.56 18.80 19.06	$105.2 \\ 102.7 \\ 100.2$	$1209.9\\1208.3\\1206.8$	$18.99 \\ 19.23 \\ 19.50$	$122.6\\120.0\\117.5$	$\begin{array}{c} 1218.2 \\ 1216.6 \\ 1215.0 \end{array}$	$19.43 \\ 19.70 \\ 19.97 \\ 19.97 \\$
237 236 235	$23.64 \\ 23.21 \\ 22.79$	$ \begin{array}{r} 64.8 \\ 62.4 \\ 60.0 \end{array} $	$\begin{array}{c}1189.7\\1188.2\\1186.6\\\end{array}$	18.93 19.19 19.44	$ \begin{array}{r} 81.0 \\ 78.5 \\ 76.0 \end{array} $	$\frac{1197.4}{1195.8}\\1194.3$	$19.31 \\ 19.59 \\ 19.85 \\ 19.85 \\ 19.85 \\ 19.85 \\ 19.85 \\ 19.85 \\ 19.85 \\ 10.8$	$97.7 \\ 95.2 \\ 92.7$	$1205.2 \\ 1203.6 \\ 1202.0$	$19.76 \\ 20.04 \\ 20.30 \\$	$115.0 \\ 112.4 \\ 109.7$	$\begin{array}{c} 1213.4 \\ 1211.8 \\ 1200.1 \end{array}$	20.24 20.50 20.80
234 233 232	$22.38 \\ 21.97 \\ 21.57$	57.6 55.2 52.8	$\frac{1185.1}{1183.6}$ $\frac{1}{1182.1}$	19.70 19.99 20.26	73.5 71.0 68.6	$\frac{1192.7}{1191.2}\\1189.6$	$20.12 \\ 20.40 \\ 20.69$	$90.1 \\ 87.6 \\ 85.1$	1200.4 1198.8 1197.3	$20.60 \\ 20.89 \\ 21.17$	$107.1 \\ 104.5 \\ 101.9$	$\begin{array}{c} 1208.5 \\ 1206.9 \\ 1205.3 \end{array}$	21.10 21.39 21.69
231 230 229	$21.17 \\ 20.78 \\ 20.40$	$50.4 \\ 48.0 \\ 45.7$	1180.6 1179.1 1177.6	$20.54 \\ 20.83 \\ 21.11$	$\begin{array}{c} 66.1 \\ 63.6 \\ 61.2 \end{array}$	1188.0 1186.4 1184.9	20.99 21.29 21.58		$\frac{1195.8}{1194.3}\\1192.8$	$21.47 \\ 21.77 \\ 22.10$	$99.3 \\ 96.8 \\ 94.3$	$1203.7\\1202.1\\1200.5$	22.00 22.30 22.61

ahr.	spune		1.80		1.81			1.82			1.83	
Temperature Degrees Fi	Pressure, Po per Square Inch.	Quality.	Heat Con- tents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
276 275 274	$46.13 \\ 45.39 \\ 44.67$	$235.4 \\ 232.8 \\ 230.2$	$1286.3 12.45 \\ 1284.7 12.60 \\ 1283.0 12.76 \\$	255.5 252.8 250.1	$1296.1 \\ 1294.4 \\ 1292.7$	$12.71 \\ 12.87 \\ 13.03$	276.3 273.5 270.8	$1306.0 \\ 1304.2 \\ 1302.5$	$13.00 \\ 13.16 \\ 13.33$	296.0 293.2 290.4	1315.6 1313.8 1312.0	$13.26 \\ 13.43 \\ 13.60$
273 272 271	$\begin{array}{r} 43.95 \\ 43.24 \\ 42.54 \end{array}$	227.6 224.9 222.2	$\begin{array}{c} 1281.3 \\ 1279.6 \\ 1277.9 \\ 1277.9 \\ 13.26 \end{array}$	$247.4 \\ 244.7 \\ 242.0$	$1291.0\\1289.3\\1287.6$	$13.20 \\ 13.36 \\ 13.54$	268.0 265.2 262.5	$1300.7 \\ 1299.0 \\ 1297.3$	$13.50 \\ 13.67 \\ 13.84$	287.7 284.9 282.1	$1310.2 \\ 1308.5 \\ 1306.7$	$13.77 \\ 13.95 \\ 14.13$
270 269 268	41.84 41.16 40.49	$219.5 \\ 216.9 \\ 214.3$	$\begin{array}{c} 1276.2 \\ 1274.5 \\ 1272.8 \\ 13.60 \\ 1272.8 \\ 13.78 \end{array}$	$\begin{array}{c} 239.4 \\ 236.7 \\ 234.0 \end{array}$	$1285.9\\1284.2\\1282.5$	$13.70 \\ 13.89 \\ 14.06$	259.7 257.0 254.2	1295.51293.71292.0	$14.02 \\ 14.20 \\ 14.39$	$279.3 \\ 276.5 \\ 273.8$	1304.9 1303.2 1301.4	$14.31 \\ 14.50 \\ 14.68$
267 266 265	$39.83 \\ 39.17 \\ 38.53$	$211.6 \\ 209.0 \\ 206.3$	$\begin{array}{c} 1271.1 \\ 1269.4 \\ 1267.7 \\ 1267.7 \\ 14.31 \end{array}$	231.3 228.6 225.9	$1280.8 \\ 1279.1 \\ 1277.4$	$14.24 \\ 14.43 \\ 14.60$	$251.4 \\ 248.7 \\ 246.0$	$1290.3 \\ 1288.5 \\ 1286.8$	$14.57 \\ 14.76 \\ 14.94$	271.0 268.2 265.5	$1299.7\\1297.9\\1296.1$	$14.87 \\ 15.06 \\ 15.26$
264 263 262	$37.89 \\ 37.26 \\ 36.64$	$203.6 \\ 200.9 \\ 198.3$	$1266.0 14.50 \\ 1264.3 14.70 \\ 1262.6 14.89 $	223.2 220.5 217.8	$1275.7 \\ 1274.0 \\ 1272.3$	$14.80 \\ 15.00 \\ 15.19$	$243.3 \\ 240.5 \\ 237.7$	$1285.1 \\ 1283.3 \\ 1281.6$	$15.13 \\ 15.33 \\ 15.53$	$262.7 \\ 260.0 \\ 257.2$	$1294.4\\1292.6\\1290.9$	$15.45 \\ 15.65 \\ 15.86$
261 260 259	$36.02 \\ 35.42 \\ 34.83$	195.6 193.0 190.4	$\begin{array}{c} 1261.0\\ 1259.4\\ 15.27\\ 1257.7\\ 15.47\end{array}$	215.1 212.4 209.7	1270.6 1268.9 1267.1	$15.39 \\ 15.58 \\ 15.79$	$235.0 \\ 232.2 \\ 229.5$	$1279.8 \\ 1278.1 \\ 1276.4$	$15.73 \\ 15.94 \\ 16.15$	254.4 251.6 248.9	$1289.2 \\ 1287.4 \\ 1285.6$	$16.07 \\ 16.27 \\ 16.49$
258 257 256	$34.24 \\ 33.66 \\ 33.09$	$187.9 \\ 185.4 \\ 182.9$	$\begin{array}{c} 1256.1\\ 1254.5\\ 1252.9\\ 16.09 \end{array}$	207.0 204.3 201.5	$1265.4 \\ 1263.6 \\ 1261.9$	$16.00 \\ 16.20 \\ 16.41$	$226.7 \\ 224.0 \\ 221.2$	$1274.7 \\ 1273.0 \\ 1271.2$	$16.36 \\ 16.57 \\ 16.79$	$246.1 \\ 243.3 \\ 240.5$	$1283.9\\1282.2\\1280.5$	$16.70 \\ 16.93 \\ 17.15$
255 254 253	$32.53 \\ 31.97 \\ 31.42$	$180.2 \\ 177.6 \\ 174.9$	$\begin{array}{c} 1251.3 \\ 1249.6 \\ 1247.9 \\ 16.73 \end{array}$	198.8 196.1 193.4	$1260.2 \\ 1258.5 \\ 1256.8$	$16.62 \\ 16.84 \\ 17.06$	$218.5 \\ 215.7 \\ 213.0$	$1269.5 \\ 1267.8 \\ 1266.1$	$17.01 \\ 17.23 \\ 17.46$	$237.8 \\ 235.0 \\ 232.3$	$1278.7 \\ 1277.0 \\ 1275.2$	$17.39 \\ 17.60 \\ 17.84$
252 251 250	$30.88 \\ 30.35 \\ 29.82$	$172.2 \\ 169.5 \\ 166.8$	$\begin{array}{c} 1246.2 \\ 1244.5 \\ 1242.9 \\ 17.40 \end{array}$	190.7 188.0 185.3	$1255.1\\1253.3\\1251.6$	$17.29 \\ 17.52 \\ 17.75 \\ 17.75 \\ 17.75 \\ 17.75 \\ 17.75 \\ 17.75 \\ 17.75 \\ 17.75 \\ 17.75 \\ 17.75 \\ 10.00 \\ 10.0$	$210.3 \\ 207.5 \\ 204.7$	$1264.3 \\ 1262.6 \\ 1260.9$	$17.69 \\ 17.92 \\ 18.16$	$229.5 \\ 226.7 \\ 224.0$	$1273.5 \\ 1271.7 \\ 1269.9$	$18.09 \\ 18.32 \\ 18.56$
249 248 247	$29.30 \\ 28.79 \\ 28.29 \\ .$	$164.2 \\ 161.5 \\ 158.8$	$\begin{array}{c} 1241.2 \\ 1239.5 \\ 1237.8 \\ 18.10 \end{array}$	$182.5 \\ 179.8 \\ 177.1$	$1249.9\\1248.2\\1246.6$	$18.00 \\ 18.23 \\ 18.48$	$202.0 \\ 199.2 \\ 196.4$	$1259.2 \\ 1257.4 \\ 1255.7$	$18.40 \\ 18.65 \\ 18.90$	$221.2 \\ 218.4 \\ 215.7$	$1268.2 \\ 1266.5 \\ 1264.8$	18.80 19.06 19.32
246 245 244	$27.80 \\ 27.31 \\ 26.83$	$156.1 \\ 153.4 \\ 150.7$	$\begin{array}{c} 1236.2 \\ 1234.6 \\ 1232.9 \\ 18.84 \end{array}$	174.4171.7169.0	$1244.9\\1243.2\\1241.5$	$18.73 \\ 18.99 \\ 19.23$	$193.6 \\ 190.9 \\ 188.1$	1254.0 1252.3 1250.5	$19.14 \\ 19.40 \\ 19.66$	$213.0 \\ 210.2 \\ 207.4$	$1263.1 \\ 1261.3 \\ 1259.6$	$19.59 \\ 19.84 \\ 20.11$
243 242 241	$26.35 \\ 25.88 \\ 25.42$	148.0 145.4 142.8	$\begin{array}{c} 1231.2\\1229.5\\1227.8\\19.61\end{array}$	166.3 163.7 161.0	$1239.8 \\ 1238.1 \\ 1236.4$	$19.49 \\ 19.76 \\ 20.03$	$185.3 \\ 182.6 \\ 179.9$	$1248.8 \\ 1247.1 \\ 1245.4$	$19.93 \\ 20.20 \\ 20.47$	$204.6 \\ 201.9 \\ 199.1$	$1257.9\\1256.2\\1254.5$	$20.39 \\ 20.67 \\ 20.95$
240 239 238	$24.97 \\ 24.52 \\ 24.08$	$140.1 \\ 137.3 \\ 134.5$	$\begin{array}{c} 1226.1 \\ 1224.4 \\ 1222.7 \\ 20.42 \end{array}$	$158.3 \\ 155.6 \\ 152.9$	$1234.7\\1233.0\\1231.4$	$20.31 \\ 20.59 \\ 20.87$	$177.1 \\ 174.3 \\ 171.5$	$1243.7 \\ 1242.0 \\ 1240.3$	$20.76 \\ 21.03 \\ 21.32$	$196.3 \\ 193.5 \\ 190.7$	$1252.8\\1251.1\\1249.3$	$21.25 \\ 21.53 \\ 21.82$
237 236 235	$23.64 \\ 23.21 \\ 22.79$	$131.8 \\ 129.1 \\ 126.5$	$\begin{array}{c} 1221.1\\1219.4\\20.99\\1217.7\\21.29\end{array}$	$150.2 \\ 147.4 \\ 144.7$	$1239.7 \\ 1228.0 \\ 1226.3$	$21.16 \\ 21.45 \\ 21.76$	$168.8 \\ 166.0 \\ 163.2$	$1238.6 \\ 1236.9 \\ 1235.2$	$21.62 \\ 21.93 \\ 22.23$	$188.0 \\ 185.2 \\ 182.4$	$1247.6\\1245.9\\1244.2$	$22.13 \\ 22.44 \\ 22.76$
234 233 232	$22.38 \\ 21.97 \\ 21.57$	$123.8 \\ 121.1 \\ 118.4$	$\begin{array}{c} 1216.1\\1214.5\\1212.8\\22.19\end{array}$	142.0 139.3 136.6	$1224.6\\1222.9\\1221.2$	$22.06 \\ 22.38 \\ 22.69$	$160.4 \\ 157.6 \\ 154.9$	$1233.5 \\ 1231.7 \\ 1230.0$	$22.54 \\ 22.86 \\ 23.20$	179.6 176.9 174.1	$1242.4 \\ 1240.7 \\ 1238.9$	$23.09 \\ 23.41 \\ 23.74$
231 230 229	$21.17 \\ 20.78 \\ 20.40$	$ \begin{array}{r} 115.8 \\ 113.2 \\ 110.7 \end{array} $	$\begin{array}{c} 1211.2\\1209.6\\22.83\\1208.0\\23.17\end{array}$	$133.9\\131.2\\128.5$	$\begin{array}{r} 1219.5 \\ 1217.8 \\ 1216.1 \end{array}$	$23.02 \\ 23.35 \\ 23.68$	$152.1 \\ 149.3 \\ 146.6$	$1228.2 \\ 1226.4 \\ 1224.7$	$23.52 \\ 23.87 \\ 24.20$	$171.3 \\ 168.5 \\ 165.7$	$1237.2 \\ 1235.4 \\ 1233.7$	24.10 24:45 24.79

e, ahr.	e		1.76		1.77			1.78			1.79	
Temperature Degrees F	Pressure, Pc per Squar Inch.	Quality.	Heat Con- tents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
228 227 226	$20.02 \\ 19.64 \\ 19.28$	$43.3 \\ 40.9 \\ 38.5$	$\begin{array}{c} 1176.1 \\ 1174.6 \\ 21.7 \\ 1173.1 \\ 22.0 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1183.3 \\ 1181.8 \\ 1180.3$	$21.90 \\ 22.20 \\ 22.53$	$75.2 \\ 72.7 \\ 70.2$	$1191.2\\1189.6\\1188.0$	$22.40 \\ 22.74 \\ 23.06$	$91.8 \\ 89.2 \\ 86.6$	$1198.9 \\ 1197.2 \\ 1195.6$	$22.94 \\ 23.29 \\ 23.61$
225 224 223	$18.91 \\ 18.56 \\ 18.21$	$\begin{array}{r} 36.1\\ 33.7\\ 31.3 \end{array}$	$\begin{array}{c} 1171.6\\ 1160.1\\ 122.6\\ 1168.6\\ 22.9 \end{array}$	$\begin{array}{c}2 & 51.5 \\4 & 49.0 \\8 & 46.6\end{array}$	$1178.8 \\ 1177.3 \\ 1175.8$	$22.87 \\ 23.20 \\ 23.54$	$\begin{array}{c} 67.7 \\ 65.2 \\ 62.7 \end{array}$	$1186.4 \\ 1184.9 \\ 1183.3$	$23.40 \\ 23.74 \\ 24.09$	$ \begin{array}{r} 84.0 \\ 81.4 \\ 78.8 \end{array} $	$1194.0\\1192.4\\1190.8$	$23.96 \\ 24.30 \\ 24.67$
222 221 220	$17.86 \\ 17.52 \\ 17.19$	$29.0 \\ 26.6 \\ 24.2$	$\begin{array}{c} 1167.1 \\ 23.3 \\ 1165.6 \\ 23.6 \\ 1164.1 \\ 24.0 \end{array}$	$\begin{array}{cccc} 2 & 44.2 \\ 41.8 \\ 39.4 \end{array}$	$1174.3 \\ 1172.8 \\ 1171.3$	$23.90 \\ 24.25 \\ 24.60$	$\begin{array}{c} 60.2 \\ 57.7 \\ 55.1 \end{array}$	$\frac{1181.7}{1180.1}\\1178.6$	$24.44 \\ 24.80 \\ 25.17$	$76.2 \\ 73.6 \\ 71.0$	$1189.2 \\ 1187.6 \\ 1186.0$	25.01 25.40 25.79,
219 218 217	$16.86 \\ 16.54 \\ 16.22$	$21.7 \\ 19.3 \\ 16.9$	$\begin{array}{c} 1162.6 \\ 24.3 \\ 1161.1 \\ 24.7 \\ 1159.6 \\ 25.1 \end{array}$	$\begin{array}{c cccc} 7 & 37.0 \\ 3 & 34.6 \\ 0 & 32.2 \end{array}$	$1169.8 \\ 1168.3 \\ 1166.8$	$24.96 \\ 25.33 \\ 25.72$	$52.6 \\ 50.1 \\ 47.6$	$1177.0\\1175.5\\1174.0$	$25.55 \\ 25.93 \\ 26.31$	$ \begin{array}{r} 68.5 \\ 65.9 \\ 63.4 \end{array} $	$\frac{1184.4}{1182.8}\\1181.2$	$26.15 \\ 26.55 \\ 26.94$
216 215 214	$15.90 \\ 15.60 \\ 15.29$	$14.5 \\ 12.1 \\ 9.8$	$\begin{array}{c} 1158.2 \\ 1156.7 \\ 1155.2 \\ 26.2 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1165.3 \\ 1163.8 \\ 1162.3$	$26.10 \\ 26.50 \\ 26.90$	$45.1 \\ 42.7 \\ 40.3$	$1172.4 \\ 1170.9 \\ 1169.4$	$26.72 \\ 27.13 \\ 27.54$	${60.9 \atop 58.3 \atop 55.7}$	$1179.7 \\ 1178.1 \\ 1176.5$	$27.35 \\ 27.77 \\ 28.20$
213 212 211	$14.99\\14.70\\14.41$	$\begin{array}{c} 7.4\\ 5.0\\ 2.6\end{array}$	$\begin{array}{c} 1153.8 \\ 26.6 \\ 1152.3 \\ 26.9 \\ 1150.8 \\ 27.3 \end{array}$	$\begin{array}{c c}0&22.6\\8&20.2\\8&17.9\end{array}$	$1160.8 \\ 1159.3 \\ 1157.8$	$27.31 \\ 27.73 \\ 28.16$	$37.9 \\ 35.5 \\ 33.0$	$1167.9 \\ 1166.3 \\ 1164.8$	$27.95 \\ 28.38 \\ 28.80 \\ \end{array}$	$53.1 \\ 50.6 \\ 48.0$	$1174.9\\1173.3\\1171.7$	$28.61 \\ 29.04 \\ 29.47$
210 209 208	$14.13 \\ 13.85 \\ 13.57$	0.2 9991 9980	$\begin{array}{r} 1149.4 \\ 27.8 \\ 1148.0 \\ 28.2 \\ 1146.5 \\ 28.8 \end{array}$	0 15.5 9 13.1 0 10.7	$1156.3 \\ 1154.9 \\ 1153.4$	28.59 29.00 29.43	$30.5 \\ 28.1 \\ 25.6$	1163.3 1161.8 1160.3	$29.23 \\ 29.67 \\ 30.11$	$45.5 \\ 43.0 \\ 40.5$	1170.1 1168.6 1167.0	29.92 30.38 30.83
207 206 205	$13.30 \\ 13.03 \\ 12.77$	9969 9958 9947	$\begin{array}{c} 1145.1 \\ 29.3 \\ 1143.6 \\ 29.8 \\ 1142.1 \\ 30.4 \end{array}$	2 8.3 5 5.9 3.5	$1151.9\\1150.4\\1148.9$	$29.87 \\ 30.30 \\ 30.75$	$23.2 \\ 20.7 \\ 18.2$	1158.7 1157.2 1155.7	$30.59 \\ 31.05 \\ 31.51$	$38.0 \\ 35.6 \\ 33.1$	1165.5 1164.0 1162.5	$31.30 \\ 31.79 \\ 32.28$
204 203 202	$12.51 \\ 12.26 \\ 12.01$	9936 9924 9914	$1140.6 30.9 \\1139.2 31.5 \\1137.8 32.0$	5 0.7 1 9992 9 9982	1147.4 1145.9 1144.4	31.20 31.72 32.31	15.8 13.3 10.8	1154.2 1152.7 1151.2	31.99 32.48 32.97	$30.6 \\ 28.1 \\ 25.6$	1161.0 1159.4 1157.8	32.78 33.27 33.78
201 200 199	$11.77 \\ 11.53 \\ 11.29$	9903 9892 9881	$1136.3 32.6 \\ 1134.8 33.2 \\ 1133.4 33.8 $	7 9971 6 9959 6 9948	$1142.9\\1141.4\\1139.9$	$32.89 \\ 33.48 \\ 34.09$	$8.3 \\ 5.9 \\ 3.4$	1149.6 1148.0 1146.5	$33.46 \\ 33.98 \\ 34.48$	$23.1 \\ 20.6 \\ 18.1$	$1156.2 \\ 1154.7 \\ 1153.2$	$34.30 \\ 34.82 \\ 35.35$
198 197 196	11.06 10.83 10.61	9870 9859 9848	$1131.9 34.4 \\1130.4 35.1 \\1128.9 35.7$	8 9937 1 9926 6 9915	1138.5 1136.9 1135.4	$34.71 \\ 35.35 \\ 36.00$	1.0 9993 9981	$ \begin{array}{r} 1145.0 \\ 1143.5 \\ 1142.0 \\ \end{array} $	35.00 35.59 36.24	$15.6 \\ 13.1 \\ 10.7$	1151.8 1150.3 1148.8	35.90 36.45 37.02
195 194 193	$10.39 \\ 10.17 \\ 9.96$	9837 9826 9815	$\begin{array}{c} 1127.4 \\ 36.4 \\ 1125.9 \\ 37.1 \\ 1124.5 \\ 37.8 \end{array}$	3 9904 1 9893 2 9882	$1134.0\\1132.5\\1131.0$	$36.67 \\ 37.36 \\ 38.07$	9971 9959 9948	1140.5 1139.0 1137.6	36.92 37.62 38.33	$8.2 \\ 5.7 \\ 3.2$	$1147.3 \\ 1145.7 \\ 1144.2$	37.60 38.18 38.78
192 191 190	9.75 9.54 9.34	9804 9793 9782	1123.0 38.5 1121.5 39.2 1120.1 40.0	4 9870 8 9859 3 9848	1129.5 1128.0 1126.6	38.80 39.54 40.30	9937 9925. 9914	1136.0 1134.5 1133.1	39.06 39.81 40.57	0.6 9991 9980	1142.7 1141.1 1139.6	39.39 40.07 40.84
189 188 187	9.14 8.95 8.76	9771 9760 9749	$\begin{array}{c} 1118.6 \\ 40.7 \\ 1117.1 \\ 41.5 \\ 1115.7 \\ 42.3 \end{array}$	9 9837 7 9826 6 9815	$1125.1\\1123.6\\1122.1$	41.07 41.85 42.64	9903 9891 9880	1131.6 1130.1 1128.6	$41.35 \\ 42.13 \\ 42.93$	9969 9957 9946	$1138.1 \\ 1136.5 \\ 1135.1$	$\begin{array}{c} 41.62 \\ 42.41 \\ 42.21 \end{array}$
186 185 184	8.57 8.38 8.20	9738 9727 9716	$\begin{array}{c} 1114.2 \\ 1112.7 \\ 1111.2 \\ 44.8 \end{array}$	7 9803 9 9792 6 9781	1120.6 1119.1 1117.6	$\begin{array}{r} 43.46 \\ 44.29 \\ 45.16 \end{array}$	9869 9858 9846	$1127.1 \\ 1125.6 \\ 1124.0$	$43.75 \\ 44.59 \\ 45.46$	9934 9923 9911	$1133.5 \\ 1132.0 \\ 1130.5$	$\begin{array}{r} 44.04 \\ 44.88 \\ 45.76 \end{array}$
183 182 181	8.02 7.85 7.68	9705 9695 9684	$\begin{array}{c} 1109.7 \\ 1108.2 \\ 1106.7 \\ 47.5 \end{array}$	3 9770 4 9760 8 9749	1116.1 1114.7 1113.1	46.04 46.95 47.90	9835 9824 9814	1122.6 1121.1 1119.5	$\begin{array}{r} 46.34 \\ 47.27 \\ 48.21 \end{array}$	9900 9889 9878	$1129.0\\1127.5\\1125.9$	$\begin{array}{r} 46.65 \\ 47.58 \\ 48.53 \end{array}$

e, ahr.	e		1.80		1.81	•		1.82			1.83	
Temperatur Degrees F	Pressure, Pc per Squar Inch.	Quality.	Heat Con- tents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
228 227 226	$20.02 \\ 19.64 \\ 19.28$	108.1 105.5 103.0	$\begin{array}{c} 1206.3 \\ 1204.6 \\ 1203.0 \\ 24.19 \end{array}$	125.9 123.2 120.5	$1214.4 \\ 1212.7 \\ 1211.1$	$24.01 \\ 24.37 \\ 24.73$	$143.9 \\ 141.2 \\ 138.4$	$1223.1 \\ 1221.4 \\ 1219.7$	$24.55 \\ 24.90 \\ 25.27$	162.9 160.1 157.2	$1232.0 \\ 1230.2 \\ 1228.4$	25.13 25.50 25.89
225 224 223	$18.91 \\ 18.56 \\ 18.21$	100.4 97.8 95.2	$\begin{array}{c} 1201.4 \\ 24.53 \\ 1199.8 \\ 24.90 \\ 1198.2 \\ 25.26 \end{array}$	117.8 115.1 112.4	1209.51207.91206.3	$25.09 \\ 25.45 \\ 25.82$	$135.5 \\ 132.7 \\ 129.9$	$1217.9\\1216.2\\1214.4$	$25.64 \\ 26.02 \\ 26.40$	154.4 151.5 148.7	$1226.6 \\ 1224.9 \\ 1223.2$	$26.28 \\ 26.65 \\ 27.04$
222 221 220	$17.86 \\ 17.52 \\ 17.19$	92.6 90.0 87.4	$\begin{array}{c} 1196.6 \\ 25.64 \\ 1195.0 \\ 26.01 \\ 1193.3 \\ 26.40 \end{array}$	109.8 107.2 104.5	$1204.7 \\ 1203.0 \\ 1201.3$	$26.20 \\ 26.60 \\ 26.99$	$127.1 \\ 124.4 \\ 121.6$	$1212.7 \\ 1211.0 \\ 1209.3$	$26.80 \\ 27.20 \\ 27.60$	$145.9 \\ 143.1 \\ 140.3$	$1221.4\\1219.7\\1218.0$	$27.43 \\ 27.83 \\ 28.25$
219 218 217	$16.86 \\ 16.54 \\ 16.22$	84.8 82.1 79.5	$\begin{array}{c} 1191.7 \\ 26.80 \\ 1190.1 \\ 27.20 \\ 1188.5 \\ 27.60 \end{array}$	101.9 99.3 96.7	1199.7 1198.1 1196.5	$27.39 \\ 27.80 \\ 28.20$	118.9 116.2 113.5	$1207.6 \\ 1205.9 \\ 1204.3$	$28.00 \\ 28.43 \\ 28.86$	$137.5 \\ 134.7 \\ 131.9$	$\frac{1216.3}{1214.5}\\1212.8$	$28.67 \\ 29.10 \\ 29.53$
216 215 214	$15.90 \\ 15.60 \\ 15.29$	$76.9 \\ 74.4 \\ 71.9$	$\begin{array}{c} 1186.9 \\ 1185.3 \\ 1183.8 \\ 28.88 \end{array}$	94.0 91.4 88.8	1194.9 1193.3 1191.7	$28.61 \\ 29.05 \\ 29.49$	110.8 108.1 105.4	1202.6 1201.0 1199.3	$29.30 \\ 29.73 \\ 30.18$	$129.1 \\ 126.2 \\ 123.4$	$1211.0\\1209.3\\1207.5$	29.98 30.43 30.89
213 212 211	$14.99 \\ 14.70 \\ 14.41$	$ \begin{array}{r} 69.4 \\ 66.9 \\ 64.3 \end{array} $	$\begin{array}{c} 1182.2 \\ 1180.7 \\ 29.75 \\ 1179.1 \\ 30.20 \end{array}$	86.2 83.6 81.0	1190.0 1188.4 1186.8	$29.93 \\ 30.39 \\ 30.85$	102.8 100.1 97.4	1197.7 1196.0 1194.4	$30.63 \\ 31.10 \\ 31.56$	$120.5 \\ 117.7 \\ 114.9$	$1205.8 \\ 1204.1 \\ 1202.3$	$31.35 \\ 31.83 \\ 32.30$
210 209 208	$14.13 \\ 13.85 \\ 13.57$	$ \begin{array}{r} 61.7 \\ 59.1 \\ 56.5 \end{array} $	$\begin{array}{c} 1177.5 \\ 30.66 \\ 1175.9 \\ 31.11 \\ 1174.3 \\ 31.60 \end{array}$	78.4 75.8 73.2	$\frac{1185.2}{1183.6}\\1182.0$	$31.31 \\ 31.80 \\ 32.29$	94.8 92.1 89.4	$\begin{array}{c} 1192.7 \\ 1191.1 \\ 1189.5 \end{array}$	$32.05 \\ 32.51 \\ 33.00$	$112.1 \\ 109.3 \\ 106.5$	1200.7 1199.0 1197.3	32.79 33.30 33.80
207 206 205	$13.30 \\ 13.03 \\ 12.77$	$53.9 \\ 51.3 \\ 48.7$	$\begin{array}{c} 1172.7 \\ 32.08 \\ 1171.1 \\ 32.56 \\ 1169.5 \\ 33.05 \end{array}$	$70.6 \\ 68.0 \\ 65.3$	1180.4 1178.8 1177.2	$32.77 \\ 33.29 \\ 33.78$	$ \begin{array}{r} 86.8 \\ 84.1 \\ 81.5 \end{array} $	$\frac{1187.8}{1186.2}\\1184.6$	$33.51 \\ 34.02 \\ 34.56$	$103.8 \\ 101.0 \\ 98.2$	$1195.6 \\ 1193.9 \\ 1192.2$	$34.31 \\ 34.84 \\ 35.39$
204 203 202	$12.51 \\ 12.26 \\ 12.01$	46.2 43.6 41.0	$\begin{array}{c} 1168.0 \\ 33.55 \\ 1166.4 \\ 34.06 \\ 1164.8 \\ 34.58 \end{array}$	$ \begin{array}{r} 62.6 \\ 60.0 \\ 57.4 \end{array} $	$1175.6 \\ 1174.0 \\ 1172.3$	$34.30 \\ 34.83 \\ 35.39$	78.9 76.3 73.6	1183.0 1181.4 1179.7	$35.10 \\ 35.63 \\ 36.19$	95.5 92.8 90.0	$1190.5 \\ 1188.8 \\ 1187.2$	$35.93 \\ 36.49 \\ 37.06$
201 200 199	$11.77 \\ 11.53 \\ 11.29$	38.4 35.8 33.2	$\begin{array}{c} 1163.2 \\ 35.10 \\ 1161.7 \\ 35.66 \\ 1160.1 \\ 36.20 \end{array}$	54.8 52.1 49.4	$1170.7 \\ 1169.0 \\ 1167.4$	$35.94 \\ 36.51 \\ 37.10$	$71.0 \\ 68.3 \\ 65.6$	1178.0 1176.3 1174.7	$36.78 \\ 37.37 \\ 37.92$	$ \begin{array}{r} 87.3 \\ 84.6 \\ 82.0 \\ \end{array} $	$1185.5\\1183.8\\1182.2$	$37.63 \\ 38.21 \\ 38.80$
198 197 196	$11.06 \\ 10.83 \\ 10.61$	$30.7 \\ 28.1 \\ 25.6$	$\begin{array}{c} 1158.5 \\ 1156.9 \\ 37.33 \\ 1155.4 \\ 37.92 \end{array}$	46.8 44.1 41.5	$1165.8 \\ 1164.2 \\ 1162.6$	37.69 38.30 38.90	$62.9 \\ 60.1 \\ 57.4$	1173.0 1171.3 1169.7	38.56 39.18 39.80	79.3 76.7 74.1	1180.6 1179.0 1177.4	$39.40 \\ 40.04 \\ 40.67$
195 194 193	$10.39 \\ 10.17 \\ 9.96$	$23.0 \\ 20.5 \\ 18.0$	$\begin{array}{c} 1153.8 \\ 1152.3 \\ 1152.3 \\ 39.11 \\ 1150.8 \\ 39.72 \end{array}$	38.9 36.3 33.7	1161.0 1159.4 1157.8	$39.52 \\ 40.17 \\ 40.83$	$54.7 \\ 52.0 \\ 49.3$	$1168.1 \\ 1166.5 \\ 1164.9$	$\begin{array}{r} 40.43 \\ 41.07 \\ 41.75 \end{array}$	$71.4 \\ 68.8 \\ 66.2$	$1175.8 \\ 1174.2 \\ 1172.6$	$\begin{array}{r} 41.30 \\ 41.95 \\ 42.60 \end{array}$
192 191 190	9.75 9.54 9.34	15.5 13.0 10.4	$1149.3 40.39 \\1147.7 41.00 \\1146.2 41.65$	31.0 28.3 25.7	1156.2 1154.6 1153.1	41.48 42.12 42.83	46.6 44.0 41.3	1163:3 1161.7 1160.1	$\begin{array}{r} 42.43 \\ 43.10 \\ 43.78 \end{array}$	$63.6 \\ 61.0 \\ 58.3$	1171.0 1169.4 1167.8	43.30 44.00 44.70
189 188 187	°9.14 8.95 8.76	$7.9 \\ 5.3 \\ 2.7$	$\begin{array}{c} 1144.7 \\ 1143.2 \\ 1143.7 \\ 42.99 \\ 1141.7 \\ 43.68 \end{array}$	23.1 20.5 17.9	$ \begin{array}{r} 1151.5 \\ 1149.9 \\ 1148.3 \end{array} $	$\begin{array}{r} 43.52 \\ 44.22 \\ 44.95 \end{array}$	$38.6 \\ 36.0 \\ 33.3$	$1158.5 \\ 1156.9 \\ 1155.3$	$\begin{array}{r} 44.50 \\ 45.20 \\ 45.90 \end{array}$	55.5 52.7 50.0	$1166.1 \\ 1164.5 \\ 1162.8$	45.40 46.10 46.90
186 185 184	8.57 8.38 8.20	0.1 9988 9976	1140.0 44.33 1138.4 45.18 1136.9 46.00	15.3 12.7 10.1	1146.7 1145.2 1143.7	45.68 46.40 47.15	30.6 28.0 25.3	1153.7 1152.1 1150.5	46.65 47.40 48.15	47.2 44.4 41.6	1161.1 1159.4 1157.7	47.70 48.50 49.30
183 182 181	8.02 7.85 7.68	9965 9954 9943	$\begin{array}{c} 1135.3 \\ 1133.8 \\ 1132.2 \\ 48.85 \end{array}$	7.5 4.9 2.2	1142.1 1140.5 1138.9	47.90 48.70 49.45	$22.6 \\ 20.0 \\ 17.3$	1148.8 1147.2 1145.6	$ \begin{array}{r} 48.90 \\ 49.65 \\ 50.40 \end{array} $	38.8 36.0 33.2	1156.1 1154.5 1152.8	50.15 51.05 51.95

e, ahr.	e		1.76			1.77			1.78			1.79	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
180 179 178	$7.51 \\ 7.35 \\ 7.19$	9673 9662 9651	$1105.1\\1103.7\\1102.25$	8.56 9.47 50.4	9737 9727 9716	$1111.5 \\ 1110.0 \\ 1108.6$	$\begin{array}{r} 48.88 \\ 49.80 \\ 50.8 \end{array}$	9802 9791 9780	$1117.9\\1116.4\\1114.9$	$49.21 \\ 50.1 \\ 51.1$	$9867 \\ 9856 \\ 9844$	$1124.3 \\ 1122.8 \\ 1121.3$	$49.53 \\ 50.5 \\ 51.5$
177 176 175	$7.03 \\ 6.87 \\ 6.71$	9641 9629 9619	$\begin{array}{c} 1100.7\\ 1099.2\\ 1097.7\\ 5\end{array}$	51.5 52.5 53.6	9705 9693 9683	$1107.1 \\ 1105.5 \\ 1104.0$	$51.8 \\ 52.8 \\ 53.9$	9769 9757 9747	$1113.4\\1111.9\\1110.4$	$52.2 \\ 53.2 \\ 54.3$	9833 9821 9811	$1119.8 \\ 1118.2 \\ 1116.7$	$52.5 \\ 53.5 \\ 54.6$
174 173 172	$ \begin{array}{r} 6.56 \\ 6.42 \\ 6.27 \end{array} $	9608 9597 9587	$\begin{array}{c} 1096.2\\ 1094.7\\ 1093.2 \end{array}$	54.7 55.8 56.8	$9672 \\ 9661 \\ 9650$	1102.5 1101.0 1099.5	$55.0 \\ 56.1 \\ 57.2$	9736 9725 9714	$1108.8 \\ 1107.3 \\ 1105.8$	$55.4 \\ 56.5 \\ 57.6$	9799 9788 9777	$1115.2 \\ 1113.7 \\ 1112.1$	$55.8 \\ 56.9 \\ 58.0$
171 170 169	$ \begin{array}{r} 6.13 \\ 5.99 \\ 5.85 \end{array} $	9575 9564 9553	$\begin{array}{c} 1091.6\\ 1090.1\\ 1088.6\\ \end{array}$	58.0 59.3 50.6	9638 9627 9616	$1097.9 \\ 1096.4 \\ 1094.9$	$58.4 \\ 59.7 \\ 61.0$	9702 9691 9680	$1104.2 \\ 1102.7 \\ 1101.2$	$58.8 \\ 60.1 \\ 61.4$	$9765 \\ 9754 \\ 9743$	$1110.5 \\ 1109.0 \\ 1107.5$	$59.2 \\ 60.5 \\ 61.8$
168 167 166	$5.72 \\ 5.59 \\ 5.46$	9543 9532 9521	$1087.1 \\ 1085.6 \\ 1084.1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	51.8 53.1 54.5	$9606 \\ 9595 \\ 9584$	$1093.4\\1091.9\\1090.3$	$ \begin{array}{r} 62:2 \\ 63.5 \\ 64.9 \end{array} $	$9669 \\ 9657 \\ 9646$	$1099.7 \\ 1098.1 \\ 1096.6$	$\begin{array}{c} 62.7 \\ 63.9 \\ 65.3 \end{array}$	9732 9720 9709	$1105.9\\1104.4\\1102.8$	$\begin{array}{c} 63.1 \\ 64.3 \\ 65.7 \end{array}$
165 164 163	$5.33 \\ 5.21 \\ 5.09$	9510 9500 9489	$\begin{array}{c} 1082.6\\ 1081.0\\ 1079.5 \end{array}$	65.7 67.1 68.4	9573 9562 9551	$1088.8 \\ 1087.3 \\ 1085.7$	$\begin{array}{c} 66.1 \\ 67.5 \\ 68.9 \end{array}$	9636 9624 9613	1095.0 1093.5 1092.0	$\begin{array}{c} 66.6 \\ 67.9 \\ 69.3 \end{array}$	9698 9687 9676	$1101.3 \\ 1099.7 \\ 1098.2$	$ \begin{array}{r} 67.0 \\ 68.4 \\ 69.8 \end{array} $
162 161 160	4.969 4.852 4.738	9478 9467 9457	$\begin{array}{c} 1078.0\\ 1076.5\\ 1075.0\end{array}$	69.9 71.4 73.0	9540 9529 9518	$1084.2 \\ 1082.7 \\ 1081.2$	$70.3 \\ 71.9 \\ 73.5$	9602 9591 9580	1090.4 1088.9 1087.4	$70.8 \\ 72.3 \\ 74.0$	$9664 \\ 9653 \\ 9642$	1096.6 1095.1 1093.6	$71.2 \\ 72.8 \\ 74.4$
159 158 157	4.626 4.517 4.409	9446 9435 9425	$1073.4\\1071.9\\1070.4$	74.5 76.1 77.8	9508 9497 9486	$1079.6 \\ 1078.1 \\ 1076.6$	75.0 76.6 78.4	9569 9558 9547	1085.8 1084.2 1082.7	$75.5 \\ 77.1 \\ 78.9$	9631 9620 9609	1092.0 1090.4 1088.9	76.0 77.6 79.4
156 155 154	4.303 4.200 4.099	9414 9402 9391	1068.9 1067.3 1065.7	$79.5 \\ 81.2 \\ 83.0$	9475 9464 9453	1075.0 1073.4 1071.9	$ \begin{array}{r} 80.1 \\ 81.8 \\ 83.6 \end{array} $	9536 9525 9514	1081.2 1079.6 1078.0	$ \begin{array}{r} 80.6 \\ 82.3 \\ 84.1 \end{array} $	9598 9586 9575	1087.3 1085.7 1084.2	
153 152 151	4.000 3.903 3.808	9381 9370 9359	$1064.2\\1062.7\\1061.1$	84.8 86.7 88.6	9442 9431 9419	1070.4 1068.8 1067.2	85.4 87.2 89.2	9503 9491 9480	1076.5 1074.9 1073.3	85.9 87.8 89.8	9564 9552 9541	1082.6 1081.0 1079.4	86.5 88.4 90.3
150 149 148	3.715 3.624 3.535	9348 9337 9327	$\begin{array}{c} 1059.6 \\ 1058.0 \\ 1056.5 \end{array}$	$90.6 \\ 92.6 \\ 94.8$	9409 9398 9387	1065.7 1064.1 1062.6	$91.2 \\ 93.2 \\ 95.4$	9469 9458 9447	1071.8 1070.2 1068.7	$91.8 \\ 93.8 \\ 96.0$	9530 9518 9508	1077.91076.31074.8	$92.3 \\ 94.4 \\ 96.6$
147 146 148	3.447 3.361 3.278	9316 9305 9294	$1055.0\\1053.4\\1051.8$	96.9 99.1 101.3	9376 9365 9354	1061.0 1059.5 1057.9	97.599.7102.0	9436 9425 9413	1067.1 1065.5 1063.9	$98.1 \\ 100.4 \\ 102.6$	9496 9485 9473	1073.1 1071.6 1070.0	98.8 101.0 103.3
144 143 149	3.196 3.116 3.037	5 9283 9272 9262	$1050.3 \\ 1048.7 \\ 1047.2$	$103.6\\106.0\\108.5$	9343 9332 9321	1056.4 1054.8 1053.2	104.3 106.7 109.1	9403 9391 9380	1062.4 1060.8 1059.2	104.9 107.3 109.8	9462 9451 9440	1068.4 1066.8 1065.2	105.6 108.0 110.5
14: 14(139	2.960 2.885 2.812	$\begin{array}{c c} 9251 \\ 9240 \\ 9229 \end{array}$	$1045.7\\1044.1\\1042.5$	$110.9 \\ 113.5 \\ 116.2$	9310 9299 9288	1051.7 1050.1 1048.5	111.6 114.2 117.0	9369 9358 9347	1057.7 1056.0 1054.5	$ \begin{array}{c} 112.3 \\ 114.9 \\ 117.7 \end{array} $	9429 9417 9406	1063.7 1062.0 1060.5	$113.1 \\ 115.6 \\ 118.5$
138 137 130	3 2.740 2.669 2.600	9219 9207 9197	$1041.0\\1039.4\\1037.8$	$118.8 \\ 121.6 \\ 124.5$	9278 9266 9256	1047.01045.31043.8	$\begin{array}{c}119.6\\122.4\\125.3\end{array}$	9337 9325 9314	1053.01051.31049.7	120.3 123.2 126.1	9396 9384 9372	1058.9 1057.3 1055.7	$121.1 \\ 124.0 \\ 126.9$
13 13 13	5 2.533 1 2.467 3 2.403	3 9186 7 9175 8 9164	$1036.2\\1034.6\\1033.1$	$127.5 \\ 130.5 \\ 133.6 \\$	9245 9233 9223	1042.2 1040.6 1039.0	2128.3 131.3 134.5	9303 9292 9281	1048.1 1046.5 1044.9	$129.1 \\ 132.1 \\ 135.3$	9362 9350 9339	$1054.1 \\ 1052.4 \\ 1050.8 \\$	$129.9\\133.0\\136.2$

ahr.	apune		.1.80	-	1.81			1.82			1.83	
Temperature Degrees F	Pressure, Po per Squari Inch.	Quality.	Heat Con- tents. Specific	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
180 179 178	$7.51 \\ 7.35 \\ 7.19$	9931 9920 9909	$\begin{array}{c} 1130.7 \\ 1129.2 \\ 1127.7 \\ 51. \end{array}$	35 9996 79 9985 32 9973	1137.2 1135.6 1134.1	50.1 51.1 52.2	$14.6 \\ 12.0 \\ 9.3$	$1144.0 \\ 1142.5 \\ 1140.9$	$51.2 \\ 52.0 \\ 52.8$	$30.4 \\ 27.6 \\ 24.7$	1151.1 1149.4 1147.8	$52.9 \\ 53.8 \\ 54.6$
177 176 175	$7.03 \\ 6.87 \\ 6.71$	9897 9886 9874	$\begin{array}{cccc} 1126.2 & 52 \\ 1124.6 & 53 \\ 1123.0 & 55 \end{array}$	9 9962 9 9950 0 9938	1132.5 1130.9 1129.4	53.2 54.2 55.4	$6.6 \\ 3.9 \\ 1.1$	$1139.3 \\ 1137.7 \\ 1136.0$	$53.5 \\ 54.3 \\ 55.1$	21.8 18.9 16.0	$1146.0 \\ 1144.3 \\ 1142.6$	$55.6 \\ 56.5 \\ 57.5$
174 173 172	$\begin{array}{c} 6.56 \\ 6.42 \\ 6.27 \end{array}$	9863 9852 9841	$\begin{array}{cccc} 1121.5 & 56 \\ 1120.0 & 57 \\ 1118.4 & 58 \end{array}$	$\begin{array}{c ccccc} 1 & 9927 \\ 2 & 9916 \\ 4 & 9904 \end{array}$	$1127.9\\1126.3\\1124.8$	$56.5 \\ 57.6 \\ 58.7$	9991 9979 9968	$1134.3 \\ 1132.6 \\ 1131.1$	$56.8 \\ 58.0 \\ 59.1$	$13.1 \\ 10.2 \\ 7.3$	$1140.9 \\ 1139.2 \\ 1137.5$	$58.4 \\ 59.4 \\ 60.4$
171 170 169	$ \begin{array}{r} 6.13 \\ 5.99 \\ 5.85 \end{array} $	9829 9817 9806	1116.8 59 1115.3 60 1113.8 62	6 9892 9 9880 2 9869	1123.1 1121.6 1120.0	59.9 61.3 62.6	9955 9944 9932	1129.5 1127.9 1126.3	$ \begin{array}{r} 60.3 \\ 61.6 \\ 63.0 \end{array} $	4.4 1.5 9995	1135.8 1134.2 1132.6	$ \begin{array}{r} 61.4 \\ 62.4 \\ 63.4 \end{array} $
168 167 166	$5.72 \\ 5.59 \\ 5.46$	9795 9783 9772	1112.2 63 1110.6 64 1109.1 66	5 9858 8 9846 2 9835	1118.5 1116.9 1115.3	63.9 65.2 66.6	. 9921 9909 9897	1124.8 1123.2 1121.6	$ \begin{array}{r} 64.3 \\ 65.6 \\ 67.0 \end{array} $	9984 9971 9960	1131.0 1129.4 1127.9	$ \begin{array}{r} 64.7 \\ 66.0 \\ 67.4 \end{array} $
165 164 163	$5.33 \\ 5.21 \\ 5.09$	9761 9749 9738	1107.5 67 1106.0 68 1104.4 70	4 9823 8 9812 2 9800	1113.8 1112.2 1110.6	67.9 69.3 70.7	9886 9874 9862	1120.0 1118.4 1116.9	$ \begin{array}{r} 68.3 \\ 69.7 \\ 71.1 \end{array} $	9948 9936 9925	$1126.3 \\ 1124.7 \\ 1123.1$	
162 161 160	$4.969 \\ 4.852 \\ 4.738$	9726 9715 9704	$\begin{array}{cccc} 1102.8 & 71 \\ 1101.3 & 73 \\ 1099.7 & 74 \end{array}$	7 9789 3 9777 9 9766	1109.0 1107.5 1105.9	$72.1 \\ 73.7 \\ 75.4$	9851 9839 9828	$1115.3 \\ 1113.7 \\ 1112.1$	72.6 74.2 75.9	9913 9901 9890	$1121.5 \\ 1119.9 \\ 1118.3$	73.1 74.7 76.3
159 158 157	$4.626 \\ 4.517 \\ 4.409$	9693 9681 9670	1098.2 1096.6 1095.1 79	5 9755 1 9743 9 9732	1104.4 1102.8 1101.2	77.0 78.6 80.4	9816 9805 9793	1110.5 1108.9 1107.4	77.4 79.1 80.9	9878 9866 9855	1116.7 1115.1 1113.6	77.9 79.6 81.4
156 155 154	$\begin{array}{r} 4.303 \\ 4.200 \\ 4.099 \end{array}$	9659 9647 9636	1093.5 81 1091.9 83 1090.3 85	6 9720 4 9708 2 9697	1099.6 1098.0 1096.4	82.1 83.9 85.7	9782 9770 9758	$1105.8 \\ 1104.2 \\ 1102.6$		9843 9831 9819	$^{1111.9}_{1110.3}_{1108.7}$	83.2 84.9 86.8
153 152 151	$\begin{array}{r} 4.000 \\ 3.903 \\ 3.808 \end{array}$	9625 9613 9601	1088.7 87 1087.1 88 1085.5 90	0 9685 9 9674 9 9662	1094.9 1093.3 1091.6	87.6 89.5 91.5	9746 9734 9722	1101:0 1099.4 1097.8		9807 9795 9783	$1107.1 \\ 1105.5 \\ 1103.9$	88.7 90.6 92.6
150 149 148	$3.715 \\ 3.624 \\ 3.535$	9590 9579 9568	1084.0 92 1082.4 95 1080.8 97	9 9651 0 9639 2 9628	$1090.1\\1088.5\\1086.9$	93.5 95.6 97.8	9711 9700 9688	$1096.2 \\ 1094.6 \\ 1093.0$	$94.1 \\ 96.2 \\ 98.4$	9772 9760 9749	1102.3 1100.6 1099.1	94.7 96.8 99.0
147 146 145	$3.447 \\ 3.361 \\ 3.278$	9556 9545 9533	1079.2 99. 1077.7 101. 1076.0 103.	4 9616 7 9605 9 9593	$1085.3 \\ 1083.7 \\ 1082.1$	$100.0 \\ 102.3 \\ 104.6$	9676 9665 9653	$1091.3 \\ 1089.8 \\ 1088.1$	$100.6 \\ 102.9 \\ 105.2$	9736 9725 9713	$1097.4 \\ 1095.8 \\ 1094.2$	$101.3 \\ 103.6 \\ 105.9$
144 143 142	$3.196 \\ 3.116 \\ 3.037$	9522 9510 9499	$\begin{array}{c} 1074.5 \\ 1072.8 \\ 1071.3 \\ 111. \end{array}$	3 9582 7 9570 2 9559	$1080.5\\1078.9\\1077.3$	106.9 109.4 111.9	9641 9630 9618	$1086.5 \\ 1084.9 \\ 1083.3$	107.6 110.1 112.6	9701 9689 9678	$1092.6\\1090.9\\1089.3$	108.3 110.7 113.3
141 140 139	$2.960 \\ 2.885 \\ 2.812$	9488 9476 9465	1069.7 113. 1068.0 116. 1066.5 119.	8 9547 4 9536 2 9524	$1075.7 \\ 1074.0 \\ 1072.4$	$114.5 \\ 117.1 \\ 120.0$	9607 9595 9584	$1081.7 \\ 1080.0 \\ 1078.4$	$115.2 \\ 117.8 \\ 120.7$	9666 9654 9643	$1087.7\\1086.0\\1084.4$	$115.9\\118.6\\121.5$
138 137 136	$2.740 \\ 2.669 \\ 2.600$	9454 9443 9431	$\begin{array}{c} 1064.9 \\ 1063.2 \\ 124. \\ 1061.6 \\ 127. \end{array}$	9 9513 7 9501 7 9490	$1070.8 \\ 1069.2 \\ 1067.6$	$122.6\\125.5\\128.5$	9572 9560 9549	$1076.8 \\ 1075.1 \\ 1073.5$	123.4 126.3 129.3	9631 9619 9607	1082.8 1081.1 1079.5	124.1 127.1 130.1
135 134 133	$2.533 \\ 2.467 \\ 2.403$	9420 9409 9397	1060.0 130. 1058.4 133. 1056.8 137.	8 9479 8 9467 9456	$1066.0 \\ 1064.3 \\ 1062.7$	$131.6 \\ 134.6 \\ 137.9$	9538 9525 9514	$1071.9\\1070.2\\1068.6$	$132.4 \\ 135.4 \\ 138.7$	9596 9584 9572	1077.9 1076.2 1074.5	133.2 136.3 139.6

e, ahr.	e		1.76		-	1.77			1.78			1.79	
Temperature Degrees F	Pressure, Pc per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
132 131 130	$2.341 \\ 2.280 \\ 2.220$	9154 9143 9133	1031.5 1029.9 1028.3	$136.9 \\ 140.1 \\ 143.5$	9212 9201 9191	$1037.4 \\ 1035.8 \\ 1034.2$	$137.7 \\ 141.0 \\ 144.4$	9270 9259 9248	$1043.3 \\ 1041.7 \\ 1040.1$	$138.6 \\ 141.9 \\ 145.3$	9328 9317 9306	$1049.2 \\ 1047.6 \\ 1046.0$	$139.5 \\ 142.7 \\ 146.2$
129 128 127	$2.161 \\ 2.103 \\ 2.047$	9122 9111 9100	$1026.8 \\ 1025.2 \\ 1023.6$	$147.0 \\ 150.5 \\ 154.2$	9180 9169 9158	$1032.7 \\ 1031.1 \\ 1029.5$	$147.9\\151.5\\155.1$	9237 9226 9215	$1038.5 \\ 1036.9 \\ 1035.3$	$148.8 \\ 152.4 \\ 156.1$	9295 9284 9273	$1044.4\\1042.8\\1041.2$	$149.7 \\ 153.4 \\ 157.1$
126 125 124	$\begin{array}{c} 1.992 \\ 1.938 \\ 1.886 \end{array}$	9089 9079 9068	$\begin{array}{c} 1022.0 \\ 1020.5 \\ 1018.8 \end{array}$	$158.0 \\ 161.9 \\ 165.8$	9147 9136 9125	$1027.9\\1026.3\\1024.7$	$159.0\\162.9\\166.9$	9204 9193 9182	$^{1033.7}_{1032.2}_{1030.5}$	$160.0 \\ 163.9 \\ 167.9$	9261 9250 9239	$1039.6\\1038.0\\1036.3$	$161.0 \\ 164.9 \\ 169.0$
123 122 121	$1.835 \\ 1.785 \\ 1.737$	9057 9046 9036	$1017.3 \\ 1015.6 \\ 1014.0$	$170.0 \\ 174.3 \\ 178.7$	9114 9103 9092	$1023.1 \\ 1021.4 \\ 1019.9$	$171.1 \\ 175.4 \\ 179.8$	$9171 \\ 9160 \\ 9149$	$1029.0\\1027.3\\1025.7$	$172.1 \\ 176.5 \\ 181.0$	9228 9217 9206	$1034.8\\1033.1\\1031.5$	$173.2 \\ 177.6 \\ 182.1$
120 119 118	$\begin{array}{r} 1.689 \\ 1.642 \\ 1.597 \end{array}$	9025 9014 9003	$\begin{array}{c} 1012.5 \\ 1010.9 \\ 1009.3 \end{array}$	$183.2 \\ 187.8 \\ 192.6$	9081 9070 9060	$1018.3 \\ 1016.7 \\ 1015.1$	$184.4 \\ 189.0 \\ 193.8$	9138 9127 9116	$1024.1\\1022.5\\1020.9$	$185.5 \\ 190.2 \\ 195.0$	9195 9183 9172	$1029.9\\1028.3\\1026.6$	$186.6 \\ 191.4 \\ 196.2$
117 116 115	$1.552 \\ 1.509 \\ 1.467$	8992 8981 8971	$1007.7 \\ 1006.1 \\ 1004.5$	197.6202.7207.9	9048 9037 9027	$1013.5 \\ 1011.8 \\ 1010.2$	$198.9 \\ 204.0 \\ 209.2$	9105 9093 9082	$\frac{1019.2}{1017.5}\\1015.9$	$200.1 \\ 205.2 \\ 210.5$	9161 9149 9138	$^{1025.0}_{1023.3}_{1021.7}$	$201.4 \\ 206.5 \\ 211.8$
114 113 112	${}^{1.426}_{1.386}_{1.347}$	8959 8948 8938	$1002.9 \\ 1001.3 \\ 999.7$	$213.2 \\ 218.7 \\ 224.4$	9015 9004 8993	$1008.6 \\ 1007.0 \\ 1005.4$	$214.6 \\ 220.1 \\ 225.8$	9071 9060 9049	$1014.3 \\ 1012.7 \\ 1011.1$	$215.9 \\ 221.4 \\ 227.2$	9127 9115 9104	$1020.1\\1018.4\\1016.8$	$217.2 \\ 222.8 \\ 228.6$
111 110 109	${}^{1.308}_{1.271}_{1.235}$	8926 8916 8905	$998.1 \\ 996.4 \\ 994.8$	$230.3 \\ 236.4 \\ 242.7$	8982 8971 8960	$1003.8 \\ 1002.1 \\ 1000.5$	$231.7 \\ 237.9 \\ 244.2$	9037 9027 9015	$1009.5 \\ 1007.8 \\ 1006.2$	$233.2 \\ 239.4 \\ 245.7$	9093 9082 9070	1015.2 1013.5 1011.9	$234.6 \\ 240.8 \\ 247.2$
108 107 106	${}^{1.200}_{1.165}_{1.131}$	8894 8883 8872	$993.2 \\ 991.6 \\ 989.9$	$249.2 \\ 256.0 \\ 263.0$	8949 8938 8927	$998.9 \\ 997.3 \\ 995.6$	$250.8 \\ 257.6 \\ 264.6$	9004 8993 8982	$1004.5\\1002.9\\1001.2$	$252.3 \\ 259.2 \\ 266.2$	9059 9048 9037	$\begin{array}{c} 1010.2 \\ 1008.6 \\ 1006.9 \end{array}$	$253.8 \\ 260.8 \\ 267.8$
105 104 103	${}^{1.098}_{1.066}_{1.035}$	8862 8850 8840	$988.3 \\ 986.7 \\ 985.1$	$270.1 \\ 277.5 \\ 285.0$	8916 8905 8894	$994.0 \\ 992.3 \\ 990.7$	$271.8 \\ 279.2 \\ 286.7$	8971 8959 8949	999.6 997.9 996.3	$273.4 \\ 280.9 \\ 288.5$	9026 9014 9003	$1005.3 \\ 1003.6 \\ 1002.0$	$275.1 \\ 282.6 \\ 290.3$
102 101 100	$\begin{array}{c} 1.005 \\ 0.975 \\ 0.946 \end{array}$	8829 8818 8807	$983.4 \\981.8 \\980.2$	292.8 300.8 309.0	8883 8873 8861	$989.1 \\ 987.4 \\ 985.7$	$294.6 \\ 302.6 \\ 310.8$	8938 8927 8915	994.7 993.0 991.3	$296.4 \\ 304.5 \\ 312.7$	8992 8981 8969	$1000.3 \\ 998.6 \\ 996.9$	$298.2 \\ 306.3 \\ 314.6$
99 98 97	$\begin{array}{c} 0.918 \\ 0.891 \\ 0.864 \end{array}$	8796 8786 8775	$978.6 \\ 976.9 \\ 975.3$	$317.5 \\ 326.2 \\ 335.3$	8850 8839 8828	$984.1 \\ 982.5 \\ 980.9$	$319.4 \\ 328.2 \\ 337.3$	8904 8893 8882	$989.7 \\ 988.0 \\ 986.4$	$321.4 \\ 330.2 \\ 339.4$	8958 8947 8936	$995.3 \\ 993.6 \\ 992.0$	$323.3 \\ 332.2 \\ 341.4$
96 95 94	$\begin{array}{c} 0.838 \\ 0.813 \\ 0.788 \end{array}$	8764 8753 8743	$973.7 \\ 972.1 \\ 970.4$	$344.7 \\ 354.3 \\ 364.3$	8818 8807 8796	$979.3 \\ 977.7 \\ 976.0$	$346.8 \\ 356.5 \\ 366.5$	8871 8860 8849	984.8 983.2 981.5	$348.9 \\ 358.7 \\ 368.7$	8925 8914 8902	$990.4 \\ 988.8 \\ 987.1$	$351.0 \\ 360.8 \\ 371.0$
93 92 91	$\begin{array}{c} 0.764 \\ 0.741 \\ 0.718 \end{array}$	8732 8721 8710	$968.8 \\ 967.2 \\ 965.5$	$374.7 \\ 385.5 \\ 396.7$	8785 8774 8763	974.4 972.7 971.0	377.0 387.8 399.1	8838 8827 8816	979.9 978.2 976.5	$379.2 \\ 390.1 \\ 401.5$	8891 8880 8869	985.4 983.7 982.0	$381.5 \\ 392.5 \\ 403.9$
90 89 88	$\begin{array}{c} 0.696 \\ 0.675 \\ 0.654 \end{array}$	8699 8688 8678	$963.8 \\ 962.2 \\ 960.5$	$408.2 \\ 420.0 \\ 432.1$	8752 8741 8730	$969.3 \\ 967.7 \\ 966.0$	$410.6\\422.5\\434.8$	8805 8794 8783	$974.8 \\ 973.2 \\ 971.5$	$\begin{array}{r} 413.1 \\ 425.1 \\ 437.4 \end{array}$	8858 8846 8835	980.3 978.6 976.9	$415.6 \\ 427.6 \\ 440.0$
87 86 85	$\begin{array}{c} 0.633 \\ 0.613 \\ 0.594 \end{array}$		958.9 957.2 955.6	444.6 457.0 470.3	8719 8708 8697	$964.4 \\ 962.7 \\ 961.0$	$447.3 \\ 459.8 \\ 473.1$	8772 8761 8750	969.8 968.1 966.4	$\begin{array}{c} 450.0\\ 462.6\\ 476.0 \end{array}$	8824 8813 8802	975.3973.6971.9	452.7 465.3 478.8

ahr.	e	-	1.80			1.81			1.82			1.83	
Temperature Degrees F	Pressure, Po per Squar Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
132 131 130	$2.341 \\ 2.280 \\ 2.220$	9386 9375 9364	$\begin{array}{c} 1055.2 \\ 1053.5 \\ 1051.9 \end{array}$	$140.3 \\ 143.6 \\ 147.1$	9445 9433 9422	$1061.1 \\ 1059.4 \\ 1057.8$	$141.2 \\ 144.5 \\ 148.0$	9503 9491 9480	1067.0 1065.4 1063.7	$142.1 \\ 145.4 \\ 148.9$	9561 9549 9538	$1072.9 \\ 1071.3 \\ 1069.6$	$142.9 \\ 146.3 \\ 149.8$
129 128 127	$2.161 \\ 2.103 \\ 2.047$	9353 9342 9330	$1050.3 \\ 1048.7 \\ 1047.1$	$150.7 \\ 154.3 \\ 158.1$	9411 9399 9388	$1056.2 \\ 1054.6 \\ 1053.0$	151.6 155.3 159.0	9468 9457 9445	$1062.1 \\ 1060.4 \\ 1058.8$	152.5 156.2 160.0	9526 9514 9503	$1068.0 \\ 1066.3 \\ 1064.7$	$153.5 \\ 157.2 \\ 161.0$
126 125 124	$1.992 \\ 1.938 \\ 1.886$	9319 9307 9296	$1045.4\\1043.8\\1042.2$	162.0 166.0 170.0	9376 9365 9353	$1051.3 \\ 1049.7 \\ 1048.0$	$163.0 \\ 167.0 \\ 171.1$	9433 9422 9410	$1057.1 \\ 1055.5 \\ 1053.8 \\$	$164.0 \\ 168.0 \\ 172.1$	9491 9479 9467	1063.0 1061.4 1059.7	$164.9 \\ 169.0 \\ 173.2$
123 122 121	$1.835 \\ 1.785 \\ 1.737$	9285 9273 9263	$1040.6\\1038.9\\1037.3$	$174.3 \\ 178.7 \\ 183.2$	9342 9330 9319	$1046.4 \\ 1044.7 \\ 1043.1$	$175.3 \\ 179.8 \\ 184.3$	9398 9387 9376	$\frac{1052.2}{1050.5}\\1048.9$	$176.4 \\ 180.9 \\ 185.5$	9455 9444 9433	$1058.1 \\ 1056.3 \\ 1054.7$	$177.5 \\ 182.0 \\ 186.6$
120 119 118	$1.689 \\ 1.642 \\ 1.597$	9251 9240 9229	$1035.7 \\ 1034.1 \\ 1032.4$	$187.8 \\ 192.6 \\ 197.4$	9308 9296 9285	$\frac{1041.5}{1039.9}\\1038.2$	188.9 193.7 198.6	9364 9352 9341	$1047.2 \\ 1045.6 \\ 1044.0$	190.1 194.9 199.8	9421 9409 9397	$1053.0 \\ 1051.4 \\ 1049.7$	$191.2 \\ 196.1 \\ 201.0$
117 116 115	$1.552 \\ 1.509 \\ 1.467$	9217 9205 9194	$1030.8\\1029.1\\1027.5$	202.6 207.8 213.1	9273 9262 9250	$1036.5 \\ 1034.8 \\ 1033.2$	$203.8 \\ 209.0 \\ 214.4$	9329 9318 9306	$1042.3 \\ 1040.6 \\ 1039.0$	$205.1 \\ 210.3 \\ 215.7$	9385 9374 9362	$1048.0 \\ 1046.3 \\ 1044.7$	$206.3 \\ 211.6 \\ 217.0$
114 113 112	$1.426 \\ 1.386 \\ 1.347$	9183 9171 9160	$1025.8\\1024.2\\1022.5$	218.5 224.1 230.0	9238 9227 9215	$1031.5 \\ 1029.9 \\ 1028.2$	$219.9 \\ 225.5 \\ 231.4$	9294 9282 9271	$1037.3 \\ 1035.6 \\ 1033.9$	$221.2 \\ 226.9 \\ 232.8$	9350 9338 9326	$1043.0 \\ 1040.4 \\ 1039.7$	$222.5 \\ 228.2 \\ 234.2$
111 110 109	$1.308 \\ 1.271 \\ 1.235$	9148 9137 9125	$\begin{array}{c} 1020.9\\ 1019.2\\ 1017.6 \end{array}$	$236.0 \\ 242.3 \\ 248.8$	9203 9192 9180	$1026.6 \\ 1024.9 \\ 1023.3$	$237.4 \\ 243.8 \\ 250.3$	9259 9248 9236	$1032.3 \\ 1030.6 \\ 1028.9$	$238.9 \\ 245.2 \\ 251.8$	9314 9303 9291	$1038.0 \\ 1036.3 \\ 1034.7$	$240.3 \\ 246.7 \\ 253.3$
108 107 106	$1.200 \\ 1.165 \\ 1.131$	9114 9103 9091	$1015.9\\1014.3\\1012.6$	$255.4 \\ 262.3 \\ 269.5$	9169 9157 9146	$1021.6 \\ 1019.9 \\ 1018.2$	$256.9 \\ 263.9 \\ 271.1$	9224 9212 9201	$\begin{array}{c} 1027.2 \\ 1025.6 \\ 1023.9 \end{array}$	$258.5 \\ 265.5 \\ 272.7$	9279 9267 9256	$1032.9\\1031.2\\1029.5$	$260.0 \\ 267.1 \\ 274.3$
105 104 103	$1.098 \\ 1.066 \\ 1.035$	9080 9068 9057	$1010.9\\1009.2\\1007.6$	$276.8 \\ 284.3 \\ 292.0$	9135 9123 9112	$1016.5 \\ 1014.8 \\ 1013.2$	$278.4 \\ 286.0 \\ 293.8 \\$	9189 9177 9166	$\begin{array}{c} 1022.2 \\ 1020.5 \\ 1018.8 \end{array}$	$280.1 \\ 287.7 \\ 295.5$	9244 9232 9221	$1027.8 \\ 1026.1 \\ 1024.5$	$281.8 \\ 289.4 \\ 297.3$
102 101 100	$\begin{array}{c} 1.005 \\ 0.975 \\ 0.946 \end{array}$	9046 9035 9023	$1005.9\\1004.2\\1002.5$	$300.0 \\ 308.2 \\ 316.5$	9100 9089 9077	1011.5 1009.8 1008.1	$301.8 \\ 310.0 \\ 318.4$	9155 9143 9131	1017.1 1015.4 1013.7	$303.6 \\ 311.9 \\ 320.3$	9209 9197 9185	$1022.8 \\ 1021.1 \\ 1019.3$	$305.4 \\ 313.7 \\ 322.2$
99 98 97	$\begin{array}{c} 0.918 \\ 0.891 \\ 0.864 \end{array}$	9012 9001 8989	1000.9 999.2 997.6	$325.2 \\ 334.2 \\ 343.5 \\ $	9066 9055 9043	$1006.5 \\ 1004.8 \\ 1003.2$	$327.2 \\ 336.2 \\ 345.5$	9120 9108 9097	$1012.0 \\ 1010.3 \\ 1008.7$	329.1 338.2 347.6	9174 9162 9150	$1017.6 \\ 1015.9 \\ 1014.3$	331.1 340.2 349.6
96 95 94	$\begin{array}{c} 0.838 \\ 0.813 \\ 0.788 \end{array}$	8978 8967 8956	996.0 994.3 992.6	353.1 363 [°] .0 373.2	9032 9020 9009	1001.5 999.8 998.1	$355.2 \\ 365.1 \\ 375.4$	9085 9074 9062	$1007.1 \\ 1005.4 \\ 1003.7$	357.3 367.3 377.6	9139 9127 9115	$1012.6 \\ 1010.9 \\ 1009.2$	359.4 369.5 379.8
93 92 91	$\begin{array}{c} 0.764 \\ 0.741 \\ 0.718 \end{array}$	8945 8933 8922	990.9 989.2 987.5	$383.8 \\ 394.8 \\ 406.3$	8998 8986 8975	$996.4 \\ 994.7 \\ 993.0$	$386.1 \\ 397.2 \\ 408.7$	9051 9039 9027	$1001.9\\1000.2\\998.5$	$388.4 \\ 399.5 \\ 411.1$	9104 9092 9080	$1007.5 \\ 1005.8 \\ 1004.1$	$390.6 \\ 401.9 \\ 413.5$
90 89 88	$\begin{array}{c} 0.696 \\ 0.675 \\ 0.654 \end{array}$	8910 8899 8888	985.8 984.1 982.4	$418.1 \\ 430.2 \\ 442.6$	8963 8952 8940	991.3 989.6 987.9	$\begin{array}{r} 420.6 \\ 432.7 \\ 445.2 \end{array}$	9016 9004 8993	996.8 995.1 993.4	$\begin{array}{r} 423.0 \\ 435.3 \\ 447.8 \end{array}$	9069 9057 9045	$1002.3 \\ 1000.6 \\ 998.8$	$\begin{array}{r} 425.5\\ 437.8\\ 450.4 \end{array}$
87 86 85	$\begin{array}{c} 0.633 \\ 0.613 \\ 0.594 \end{array}$	8877 8865 8854	980.7 979.0 977.3	$455.4 \\ 468.1 \\ 481.6$	8929 8918 8906	$986.2 \\ 984.5 \\ 982.8$	458.1 470.8 484.5	8982 8970 8958	991.7 990.0 988.2	460.8 473.6 487.3	9034 9022 9010	997.1 995.4 993.7	463.4 476.4 490.2

NAPERIAN LOGARITHMS.

е	-	2.	7	1	82	28	1	8	
					~~	~	-	~	

 $\log e = 0.4342945 = M$

	0	1	2	3	4	5	6	7	8	9
1.0	0.0000	0.00995	0.01980	0.02956	0.03922	0.04879	0.05827	0.06766	0.07696	0.08618
1.1 1.2 1.3	0.09531 0.1823 0.2624	$\begin{array}{c} 0.\ 1044 \\ 0.\ 1906 \\ 0.\ 2700 \end{array}$	$\begin{array}{c} 0.1133\\ 0.1988\\ 0.2776 \end{array}$	$\begin{array}{c} 0.\ 1222 \\ 0.\ 2070 \\ 0.\ 2852 \end{array}$	$\begin{array}{c} 0.\ 1310 \\ 0.\ 2151 \\ 0.\ 2927 \end{array}$	$\begin{array}{c} 0.\ 1398 \\ 0.\ 2231 \\ 0.\ 3001 \end{array}$	$\begin{array}{c} 0.\ 1484 \\ 0.\ 2311 \\ 0.\ 3075 \end{array}$	$\begin{array}{c} 0.\ 1570 \\ 0.\ 2390 \\ 0.\ 3148 \end{array}$	$\begin{array}{c} 0.\ 1655 \\ 0.\ 2469 \\ 0.\ 3221 \end{array}$	$\begin{array}{c} 0.1739 \\ 0.2546 \\ 0.3293 \end{array}$
1.4 1.5 1.6	$\begin{array}{c} 0.\ 3365 \\ 0.\ 4055 \\ 0.\ 4700 \end{array}$	$\begin{array}{c} 0.\ 3436 \\ 0.\ 4121 \\ 0.\ 4762 \end{array}$	$\begin{array}{c} 0.3507 \\ 0.4187 \\ 0.4824 \end{array}$	$\begin{array}{c} 0.3577 \\ 0.4253 \\ 0.4886 \end{array}$	$\begin{array}{c} 0.3646 \\ 0.4318 \\ 0.4947 \end{array}$	$\begin{array}{c} 0.3716 \\ 0.4382 \\ 0.5008 \end{array}$	$\begin{array}{c} 0.3784 \\ 0.4447 \\ 0.5068 \end{array}$	$\begin{array}{c} 0.3853 \\ 0.4511 \\ 0.5128 \end{array}$	$\begin{array}{c} 0.3920 \\ 0.4574 \\ 0.5188 \end{array}$	$\begin{array}{c} 0.3988 \\ 0.4637 \\ 0.5247 \end{array}$
1.7 1.8 1.9	$\begin{array}{c} 0.\ 5306 \\ 0.\ 5878 \\ 0.\ 6418 \end{array}$	$\begin{array}{c} 0.5365 \\ 0.5933 \\ 0.6471 \end{array}$	$\begin{array}{c} 0.5423 \\ 0.5988 \\ 0.6523 \end{array}$	$\begin{array}{c} 0.5481 \\ 0.6043 \\ 0.6575 \end{array}$	$\begin{array}{c} 0.5539 \\ 0.6098 \\ 0.6627 \end{array}$	$0.5596 \\ 0.6152 \\ 0.6678$	$\begin{array}{c} 0.5653 \\ 0.6206 \\ 0.6729 \end{array}$	$\begin{array}{c} 0.5710 \\ 0.6259 \\ 0.6780 \end{array}$	$\begin{array}{c} 0.5766 \\ 0.6313 \\ 0.6831 \end{array}$	$\begin{array}{c} 0.5822 \\ 0.6366 \\ 0.6881 \end{array}$
2.0	0.6931	0.6981	0.7031	0.7080	0.7129	0.7178	0.7227	0.7275	0.7324	0,7372
2.1 2.2 2.3	$\begin{array}{c} 0.7419 \\ 0.7884 \\ 0.8329 \end{array}$	$\begin{array}{c} 0.7467 \\ 0.7930 \\ 0.8372 \end{array}$	0.7514 0.7975 0.8416	$\begin{array}{c} 0.7561 \\ 0.8020 \\ 0.8459 \end{array}$	0.7608 0.8065 0.8502	0.7655 0.8109 0.8544	0.7701 0.8154 0.8587	0.7747 0.8198 0.8629	$0.7793 \\ 0.8242 \\ 0.8671$	$\begin{array}{c} 0.7839 \\ 0.8286 \\ 0.8713 \end{array}$
2.4 2.5 2.6	$\begin{array}{c} 0.8755 \\ 0.9163 \\ 0.9555 \end{array}$	$\begin{array}{c} 0.8796 \\ 0.9203 \\ 0.9594 \end{array}$	0.8838 0.9243 0.9632	0.8879 0.9282 0.9670	0.8920 0.9322 0.9708	0.8961 0.9361 0.9746	0.9002 0.9400 0.9783	$\begin{array}{c} 0.9042 \\ 0.9439 \\ 0.9821 \end{array}$	0.9083 0.9478 0.9858	$\begin{array}{c} 0.9123 \\ 0.9517 \\ 0.9895 \end{array}$
2.7 2.8 2.9	$\begin{array}{c} 0.9933 \\ 1.0296 \\ 1.0647 \end{array}$	$\begin{array}{c} 0.9969 \\ 1.0332 \\ 1.0682 \end{array}$	1.0006 1.0367 1.0716	1.0043 1.0403 1.0750	$\begin{array}{c} 1.0080 \\ 1.0438 \\ 1.0784 \end{array}$	1.0116 1.0473 1.0818	1.0152 1.0508 1.0852	$\begin{array}{c} 1.0188 \\ 1.0543 \\ 1.0886 \end{array}$	$\begin{array}{c} 1.0225 \\ 1.0578 \\ 1.0919 \end{array}$	$\begin{array}{c} 1.0260 \\ 1.0613 \\ 1.0953 \end{array}$
3.0	1.0986	1.1019	1.1053	1.1086	1.1119	1.1151	1.1184	1.1217	1.1249	1.1282
3.1 3.2 3.3	$\begin{array}{c} 1.1314 \\ 1.1632 \\ 1.1939 \end{array}$	$\begin{array}{c} 1.1346 \\ 1.1663 \\ 1.1969 \end{array}$	1.1378 1.1694 1.2000	1.1410 1.1725 1.2030	1.1442 1.1756 1.2060	$ \begin{array}{r} 1.1474 \\ 1.1787 \\ 1.2090 \end{array} $	1.1506 1.1817 1.2119	$\begin{array}{c} 1.1537 \\ 1.1848 \\ 1.2149 \end{array}$	$\begin{array}{c} 1.1569 \\ 1.1878 \\ 1.2179 \end{array}$	1.1600 1.1909 1.2208
3.4 3.5 3.6	${}^{1.2238}_{1.2528}_{1.2809}$	$\begin{array}{c}1.2267\\1.2556\\1.2837\end{array}$	$\begin{array}{c} 1.2296 \\ 1.2585 \\ 1.2865 \end{array}$. 2326 . 2613 . 2892	1.2355 1.2641 1.2920	1.2384 1.2669 1.2947	1.2413 1.2698 1.2975	1.2442 1.2726 1.3002	1.2470 1.2754 1.3029	$\begin{array}{c} 1.2499 \\ 1.2782 \\ 1.3056 \end{array}$
3.7 3.8 3.9	$\begin{array}{c} 1.3083 \\ 1.3350 \\ 1.3610 \end{array}$	$\begin{array}{c} 1.3110 \\ 1.3376 \\ 1.3635 \end{array}$	1.3137 1.3403 1.3661	. 3164 . 3429 . 3686	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.3218 1.3481 1.3737	1.3244 1.3507 1.3762	1.3271 1.3533 1.3788	1.3297 1.3558 1.3813	$\begin{array}{c} 1.3324 \\ 1.3584 \\ 1.3838 \end{array}$
4.0	1.3863	1.3888	1.3913	. 3938	1,3962 1	1.3987	1.4012	1.4036	1.4061	1.4085
4.1 4.2 4.3	${}^{1.4110}_{1.4351}_{1.4586}$	1.4134 1.4375 1.4609	1.4159 1 1.4398 1 1.4633 1	. 4183 . 4422 . 4656	1.4207 1.4446 1.4679	1.4231 1.4469 1.4702	. 4255 . 4493 . 4725	1.4279 1.4516 1.4748	. 4303 . 4540 . 4770	1.4327 1.4563 1.4793
4.4 4.5 4.6	$\begin{array}{c} 1.4816 \\ 1.5041 \\ 1.5261 \end{array}$	1.4839 1.5063 1.5282	1.4861 1 1.5085 1 1.5304 1	. 4884 . 5107 . 5326	1.4907 1 1.5129 1 1.5347 1	. 4929 1 . 5151 1 . 5369 1	. 4951 1 . 5173 1 . 5390 1	. 4974 . 5195 . 5412	. 4996 . 5217 . 5433	1.5019 1.5239 1.5454
4.7 4.8 4.9	$\begin{array}{c} 1.5476 \\ 1.5686 \\ 1.5892 \end{array}$	1.5497 1.5707 1.5913	1.5518 1.5728 1.5933	.5539 .5748 .5953	. 5560 1 . 5769 1 . 5974 1	.5581 1 .5790 1 .5994 1	$\begin{array}{c} .5602 \\ .5810 \\ .6014 \end{array} \begin{array}{c} 1 \\ 1 \\ 1 \end{array}$.5623 1 .5831 1 .6034 1	.5644 .5851 .6054	. 5665 . 5872 . 6074
5.0	1.6094	1.6114 1	. 6134 1	. 6154 1	. 6174 1	. 6194 1	. 6214 1	. 6233 1	. 6253 1	. 6273
5.1 5.2 5.3	$\begin{array}{c} 1.6292 \\ 1.6487 \\ 1.6677 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} .6332 \\ .6525 \\ .6715 \\ 1\end{array}$. 6351 . 6544 . 6734	$\begin{array}{c} .6371 \\ .6563 \\ .6752 \end{array} \begin{array}{c} 1 \\ 1 \\ 1 \end{array}$. 6390 . 6582 . 6771	. 6409 . 6601 . 6790	. 6429 . 6620 . 6808	. 6448 . 6639 . 6827	. 6467 . 6658 . 6845
5.4 5.5 5.6	1.6864 1.7047 1.7228	1.6882 1.7066 1.7246	. 6901 1 . 7884 1 . 7263 1	. 6919 . 7102 . 7281	. 6938 1 . 7120 1 . 7299 1	. 6956 1 . 7138 1 . 7317 1	$\begin{array}{c} .6974 \\ .7156 \\ .7334 \\ 1 \end{array}$	$\begin{array}{c} .6993 \\ .7174 \\ .7352 \\ 1 \end{array}$.7011 1 .7192 1 .7370 1	. 7029 . 7210 . 7387
PROPERTIES OF STEAM AND OTHER VAPORS. 131

NAPERIAN LOGARITHMS.

	0	1	2 .	3	4	5	6	7	8	9
5.7 5.8 5.9	$1.7405 \\ 1.7579 \\ 1.7750$	$1.7422 \\ 1.7596 \\ 1.7766$	1.7440 1.7613 1.7783	$1.7457 \\ 1.7630 \\ 1.7800$	$1.7475 \\ 1.7647 \\ 1.7817$	$1.7492 \\ 1.7664 \\ 1.7834$	1.7509 1.7681 1.7851	$1.7527 \\ 1.7699 \\ 1.7867$	$1.7544 \\ 1.7716 \\ 1.7884$	1.7561 1.7733 1.7901
6.0	1.7918	1.7934	1.7951	1.7967	1.7984	1.8001	1.8017	1.8034	1.8050	1.8066
6.1 6.2 6.3	${}^{1.8083}_{1.8245}_{1.8405}$	$\begin{array}{c} 1.8099 \\ 1.8262 \\ 1.8421 \end{array}$	${}^{1.8116}_{1.8278}_{1.8437}$	$\begin{array}{c} 1.8132 \\ 1.8294 \\ 1.8453 \end{array}$	$\begin{array}{c} 1.8148 \\ 1.8310 \\ 1.8469 \end{array}$	${}^{1.8165}_{1.8326}_{1.8485}$	$\begin{array}{c} 1.8181 \\ 1.8342 \\ 1.8500 \end{array}$	$\begin{array}{c} 1.8197 \\ 1.8358 \\ 1.8516 \end{array}$	${}^{1.8213}_{1.8374}_{1.8532}$	$\begin{array}{c} 1.8229 \\ 1.8390 \\ 1.8547 \end{array}$
6.4 6.5 6.6	$\begin{array}{c} 1.8563 \\ 1.8718 \\ 1.8871 \end{array}$	$1.8579 \\ 1.8733 \\ 1.8886$	$\begin{array}{c} 1.8594 \\ 1.8749 \\ 1.8901 \end{array}$	$\begin{array}{c} 1.8610 \\ 1.8764 \\ 1.8916 \end{array}$	$\begin{array}{c} 1.8625 \\ 1.8779 \\ 1.8931 \end{array}$	$\begin{array}{c} 1.8641 \\ 1.8795 \\ 1.8946 \end{array}$	$\begin{array}{c} 1.8656 \\ 1.8810 \\ 1.8961 \end{array}$	$\begin{array}{c} 1.8672 \\ 1.8825 \\ 1.8976 \end{array}$	$\begin{array}{c} 1.8687 \\ 1.8840 \\ 1.8991 \end{array}$	$1.8703 \\ 1.8856 \\ 1.9006$
6.7 6.8 6.9	$\begin{array}{c} 1.9021 \\ 1.9169 \\ 1.9315 \end{array}$	$\begin{array}{c} 1.9036 \\ 1.9184 \\ 1.9330 \end{array}$	$\begin{array}{c} 1.9051 \\ 1.9199 \\ 1.9344 \end{array}$	$\begin{array}{c} 1.9066 \\ 1.9213 \\ 1.9359 \end{array}$	$\begin{array}{c} 1.9081 \\ 1.9228 \\ 1.9373 \end{array}$	$\begin{array}{c} 1.9095 \\ 1.9242 \\ 1.9387 \end{array}$	$\begin{array}{c} 1.9110 \\ 1.9257 \\ 1.9402 \end{array}$	$\begin{array}{c} 1.9125 \\ 1.9272 \\ 1.9416 \end{array}$	$\begin{array}{c} 1.9140 \\ 1.9286 \\ 1.9430 \end{array}$	$1.9155 \\ 1.9301 \\ 1.9445$
7.0	1.9459	1.9473	1.9488	1.9502	1.9516	1.9530	1.9544	1.9559	1.9573	1.9587
7.1 7.2 7.3	$\begin{array}{c} 1.9601 \\ 1.9741 \\ 1.9879 \end{array}$	$\begin{array}{c} 1.9615 \\ 1.9755 \\ 1.9892 \end{array}$	$\begin{array}{c} 1.9629 \\ 1.9769 \\ 1.9906 \end{array}$	$\begin{array}{c} 1.9643 \\ 1.9782 \\ 1.9920 \end{array}$	$\begin{array}{c} 1.9657 \\ 1.9796 \\ 1.9933 \end{array}$	$\begin{array}{c} 1.9671 \\ 1.9810 \\ 1.9947 \end{array}$	$\begin{array}{c} 1.9685 \\ 1.9824 \\ 1.9961 \end{array}$	$\begin{array}{c} 1.9699 \\ 1.9838 \\ 1.9974 \end{array}$	$\begin{array}{c} 1.9713 \\ 1.9851 \\ 1.9988 \end{array}$	$\begin{array}{c} 1.9727 \\ 1.9865 \\ 2.0001 \end{array}$
7.4 7.5 7.6	$\begin{array}{c} 2.\ 0015\\ 2.\ 0149\\ 2.\ 0281 \end{array}$	$\begin{array}{c} 2.\ 0028\\ 2.\ 0162\\ 2.\ 0295 \end{array}$	$\begin{array}{c} 2.0042\\ 2.0176\\ 2.0308 \end{array}$	$2.0055 \\ 2.0189 \\ 2.0321$	$\begin{array}{c} 2.0069\\ 2.0202\\ 2.0334 \end{array}$	$\begin{array}{c} 2.0082\\ 2.0215\\ 2.0347 \end{array}$	$\begin{array}{c} 2.0096 \\ 2.0229 \\ 2.0360 \end{array}$	$\begin{array}{c} 2.0109 \\ 2.0242 \\ 2.0373 \end{array}$	$\begin{array}{c} 2.0122 \\ 2.0255 \\ 2.0386 \end{array}$	$\begin{array}{c} 2.0136 \\ 2.0268 \\ 2.0399 \end{array}$
7.7 7.8 7.9	$\begin{array}{c} 2.\ 0412\\ 2.\ 0541\\ 2.\ 0668 \end{array}$	$\begin{array}{c} 2.0425 \\ 2.0554 \\ 2.0681 \end{array}$	$2.0438 \\ 2.0567 \\ 2.0694$	$2.0451 \\ 2.0580 \\ 2.0707$	$\begin{array}{c} 2.0464 \\ 2.0592 \\ 2.0719 \end{array}$	2.0477 2.0605 2.0732	$2.0490 \\ 2.0618 \\ 2.0744$	2.0503 2.0631 2.0757	$\begin{array}{c} 2.\ 0516\\ 2.\ 0643\\ 2.\ 0769 \end{array}$	$2.0528 \\ 2.0656 \\ 2.0782$
8.0	2.0794	2.0807	2.0819	2.0832	2.0844	2.0857	2.0869	2.0881	2.0894	2.0906
8.1 8.2 8.3	$\begin{array}{c} 2.\ 0919\\ 2.\ 1041\\ 2.\ 1163 \end{array}$	$\begin{array}{c} 2.0931\\ 2.1054\\ 2.1175 \end{array}$	$\begin{array}{c} 2.0943\\ 2.1066\\ 2.1187 \end{array}$	2.0956 2.1078 2.1199	$2.0968 \\ 2.1090 \\ 2.1211$	$\begin{array}{c} 2.0980 \\ 2.1102 \\ 2.1223 \end{array}$	2.0992 2.1114 2.1235	$\begin{array}{c} 2.\ 1005\\ 2.\ 1126\\ 2.\ 1247 \end{array}$	$\begin{array}{c} 2.\ 1017 \\ 2.\ 1138 \\ 2.\ 1258 \end{array}$	$\begin{array}{c} 2.\ 1029 \\ 2.\ 1150 \\ 2.\ 1270 \end{array}$
8.4 8.5 8.6	$\begin{array}{c} 2.1282 \\ 2.1401 \\ 2.1518 \end{array}$	$\begin{array}{c} 2.1294 \\ 2.1412 \\ 2.1529 \end{array}$	$\begin{array}{c} 2.1306 \\ 2.1424 \\ 2.1541 \end{array}$	2.1318 2.1436 2.1552	$\begin{array}{c} 2.1330 \\ 2.1448 \\ 2.1564 \end{array}$	$\begin{array}{c} 2.1342 \\ 2.1459 \\ 2.1576 \end{array}$	2.1353 2.1471 2.1587	$\begin{array}{c} 2.1365 \\ 2.1483 \\ 2.1599 \end{array}$	2.1377 2.1494 2.1610	2.1389 2.1506 2.1622
8.7 8.8 8.9	$\begin{array}{c} 2.1633 \\ 2.1748 \\ 2.1861 \end{array}$	$2.1645 \\ 2.1759 \\ 2.1872$	2.1656 2.1770 2.1883	2.1668 2.1782 2.1894	2.1679 2.1793 2.1905	$\begin{array}{c} 2.1691 \\ 2.1804 \\ 2.1917 \end{array}$	2.1702 2.1815 2.1928	2.1713 2.1827 2.1939	2.1725 2.1838 2.1950	2.1736 2.1849 2.1961
9.0	2.1972	2.1983	2.1994	2.2006	2.2017	2.2028	2.2039	2.2050	2.2061	2.2072
9.1 9.2 9.3	$\begin{array}{c} 2.2083 \\ 2.2192 \\ 2.2300 \end{array}$	2.2094 2.2203 2.2311	2.2105 2.2214 2.2322	2.2116 2.2225 2.2332	2.2127 2.2235 2.2343	2.2138 2.2246 2.2354	2.2148 2.2257 2.2364	2.2159 2.2268 2.2375	2.2170 2.2279 2.2386	$\begin{array}{c} 2.2181 \\ 2.2289 \\ 2.2396 \end{array}$
9.4 9.5 9.6	2.2407 2.2513 2.2618	$\begin{array}{c} 2.2418 \\ 2.2523 \\ 2.2628 \end{array}$	$\begin{array}{c} 2.\ 2428\\ 2.\ 2534\\ 2.\ 2638 \end{array}$	$\begin{array}{c} 2.2439 \\ 2.2544 \\ 2.2649 \end{array}$	2.2450 2.2555 2.2659	$\begin{array}{c} 2.2460 \\ 2.2565 \\ 2.2670 \end{array}$	$2.2471 \\ 2.2576 \\ 2.2680$	2.2481 2.2586 2.2690	2.2492 2.2597 2.2701	2.2502 2.2607 2.2711
9.7 9.8 9.9	$\begin{array}{c} 2.2721 \\ 2.2824 \\ 2.2925 \end{array}$	$\begin{array}{c} 2.2732 \\ 2.2834 \\ 2.2935 \end{array}$	$\begin{array}{c} 2.2742 \\ 2.2844 \\ 2.2946 \end{array}$	$\begin{array}{c} 2.2752 \\ 2.2854 \\ 2.2956 \end{array}$	$\begin{array}{c} 2.2762 \\ 2.2865 \\ 2.2966 \end{array}$	$2.2773 \\ 2.2875 \\ 2.2976$	2.2783 2.2885 2.2986	2.2793. 2.2895 2.2996	2.2803 2.2905 2.3006	2.2814 2.2915 2.3016
10.0	2.3026									-

132 PROPERTIES OF STEAM AND OTHER VAPORS.

LOGARITHMS.

Nat										-		Proportional Parts.							
Nos.	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10 11 12 13 14	0000 0414 0792 1139 1461	0043 0453 0828 1173 1492	0086 0492 0864 1206 1523	0128 0531 0899 1239 1553	0170 0569 0934 1271 1584	0212 0607 0969 1303 1614	0253 0645 1004 1335 1644	0294 0682 1038 1367 1673	0334 0719 1072 1399 1703	0374 0755 1106 1430 1732	443333	8 8 7 6 6	12 11 10 10 9	17 15 14 13 12	21 19 17 16 15	25 23 21 19 18	29 26 24 23 21	33 30 28 26 24	37 34 31 29 27
15 16 17 18 19	1761 2041 2304 2553 2788	1790 2068 2330 2577 2810	1818 2095 2355 2601 2833	1847 2122 2380 2625 2856	1875 2148 2405 2648 2878	1903 2175 2430 2672 2900	1931 2201 2455 2695 2923	1959 2227 2480 2718 2945	1987 2253 2504 2742 2967	2014 2279 2529 2765 2989	3 3 2 2 2 2	65554	8 8 7 7 7	11 11 10 9 9	14 13 12 12 11	17 16 15 14 13	20 18 17 16 16	22 21 20 19 18	25 24 22 21 20
20 21 22 23 24	3010 3222 3424 3617 3802	3032 3243 3444 3636 3820	3054 3263 3464 3655 3838	3075 3284 3483 3674 3856	3096 3304 3502 3692 3874	3118 3324 3522 3711 3892	3139 3345 3541 3729 3909	3160 3365 3560 3747 3927	3181 3385 3579 3766 3945	3201 3404 3598 3784 3962	2 2 2 2 2 2 2	4 4 4 4 4 4	6 6 6 5	8 8 8 7 7	11 10 10 9 9	13 12 12 11 11	15 14 14 13 12	17 16 15 15 14	19 18 17 17 16
25 26 27 28 29	3979 4150 4314 4472 4624	3997 4166 4330 4487 4639	4014 4183 4346 4502 4654	4031 4200 4362 4518 4669	4048 4216 4378 4533 4683	4065 4232 4393 4548 4698	4082 4249 4409 4564 4713	4099 4265 4425 4579 4728	4116 4281 4440 4594 4742	4133 4298 4456 4609 4757	2 2 2 2 1	3 3 3 3 3	5 5 5 5 5 4	7 7 6 6 6	9 8 8 7	10 10 9 9	12 11 11 11 10	14 13 13 12 12	15 15 14 14 13
30 31 32 33 34	4771 4914 5051 5185 5315	4786 4928 5065 5198 5328	4800 4942 5079 5211 5340	4814 4955 5092 5224 5353	4829 4969 5105 5237 5366	4843 4983 5119 5250 5378	4857 4997 5132 5263 5391	4871 5011 5145 5276 5403	4886 5024 5159 5289 5416	4900 5038 5172 5302 5428	1 1 1 1 1	3 3 3 3 3	4 4 4 4 4 4	6 6 5 5 5	7 7 7 6 6	9 8 8 8 8	10 10 9 9 9	11 11 11 10 10	13 12 12 12 12
35 36 37 38 39	5441 5563 5682 5798 5911	5453 5575 5694 5809 5922	5465 5587 5705 5821 5933	5478 5599 5717 5832 5944	5490 5611 5729 5843 5955	5502 5623 5740 5855 5966	5514 5635 5752 5866 5977	5527 5647 5763 5877 5988	5539 5658 5775 5888 5999	5551 5670 5786 5899 6010	1 1 1 1 1	2 2 2 2 2	4 4 3 3 3	5 5 5 5 5 4	6 6 6 5	7 7 7 7 7	9 8 8 8	10 10 9 9 9	11 11 10 10 10
40 41 42 43 44	6021 6128 6232 6335 6435	6031 6138 6243 6345 6444	6042 6149 6253 6355 6454	6053 6160 6263 6365 6464	6064 6170 6274 6375 6474	6075 6180 6284 6385 6484	6085 6191 6294 6395 6493	6096 6201 6304 6405 6503	6107 6212 6314 6415 6513	6117 6222 6325 6425 6522	1 1 1 1 1	2 2 2 2 2 2	333333	4 4 4 4 4 4	5 5 5 5 5 5	6 6 6 6	8 7 7 7 7	9 8 8 8 8	10 9 9 9 9
45 46 47 48 49	6532 6628 6721 6812 6902	6542 6637 6730 6821 6911	6551 6646 6739 6830 6920	6561 6656 6749 6839 6928	6571 6665 6758 6848 6937	6580 6675 6767 6857 6946	6590 6684 6776 6866 6955	6599 6693 6785 6875 6964	6609 6702 6794 6884 6972	6618 6712 6803 6893 6981	1 1 1 1 1	2 2 2 2 2 2	3 3 3 3 3 3	4 4 4 4 4	5 5 5 4 4	66555 55	7 7 6 6 6	8 7 7 7 7	.9 8 8 8 8
50 51 52 53 54	6990 7076 7160 7243 7324	6998 7084 7168 7251 7332	7007 7093 7177 7259 7340	7016 7101 7185 7267 7348	7024 7110 7193 7275 7356	7033 7118 7202 7284 7364	7042 7126 7210 7292 7372	7050 7135 7218 7300 7380	7059 7143 7226 7308 7388	7067 7152 7235 7316 7396	1 1 1 1 1	2 2 2 2 2 2	3 3 2 2 2 2	3 3 3 3 3	4 4 4 4 4	5 5 5 5 5 5	6 6 6 6	7 7 7 6 6	8 8 7 7 7

PROPERTIES OF STEAM AND OTHER VAPORS.

LOGARITHMS.

Net												Pr	opor	tion	al I	Parts		
Nos.	0	1	2	3	4	5	6	7	8	9	1	23	4	5	6	7	8	9
55 56 57 58 59	7404 7482 7559 7634 7709	7412 7490 7566 7642 7716	7419 7497 7574 7649 7723	7427 7505 7582 7657 7731	7435 7513 7589 7664 7738	7443 7520 7597 7672 7745	7451 7528 7604 7679 7752	7459 7536 7612 7686 7760	7466 7543 7619 7694 7767	7474 7551 7627 7701 7774	1 1 1 1 1	$ \begin{array}{ccc} 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{array} $	33333	4 4 4 4 4 4	5 5 5 4 4	55555	6 6 6 6	777777
60 61 62 63 64	7782 7853 7924 7993 8062	7789 7860 7931 8000 8069	7796 7868 7938 8007 8075	7803 7875 7945 8014 8082	7810 7882 7952 8021 8089	7818 7889 7959 8028 8096	7825 7896 7966 8035 8102	7832 7903 7973 8041 8109	7839 7910 7980 8048 8116	7846 7917 7987 8055 8122	1 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3 3 3 3 3 3	4 4 3 3 3	4 4 4 4 4	5 5 5 5 5 5	6 6 5 5	6 6 6 6
65 66 67 68 69	8129 8195 8261 8325 8388	8136 8202 8267 8331 8395	8142 8209 8274 8338 8401	8149 8215 8280 8344 8407	8156 8222 8287 8351 8414	8162 8228 8293 8357 8420	8169 8235 8299 8363 8426	8176 8241 8306 8370 8432	8182 8248 8312 8376 8439	8189 8254 8319 8382 8445	1 1 1 1 1	1 2 1 2 1 2 1 2 1 2 1 2 1 2	3 3 3 3 2	3 3 3 3 3 3 3 3	4 4 4 4 4	555544	5 5 5 5 5 5 5	6 6 6 6
70 71 72 73 74	8451 8513 8573 8633 8692	8457 8519 8579 8639 8698	8463 8525 8585 8645 8704	8470 8531 8591 8651 8710	8476 8537 8597 8657 8716	8482 8543 8603 8663 8722	8488 8549 8609 8669 8727	8494 8555 8615 8675 8733	8500 8561 8621 8681 8739	8506 8567 8627 8686 8745	1 1 1 1 1	$ \begin{array}{c} 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{array} $	2 2 2 2 2 2	3 3 3 3 3	4 4 4 4 4 4	44444	5 5 5 5 5 5 5	65555 555
75 76 77 78 79	8751 8808 8865 8921 8976	8756 8814 8871 8927 8982	8762 8820 8876 8932 8987	8768 8825 8882 8938 8993	8774 8831 8887 8943 8998	8779 8837 8893 8949 9004	8785 8842 8899 8954 9009	8791 8848 8904 8960 9015	8797 8854 8910 8965 9020	8802 8859 8915 8971 9025	1 1 1 1 1	$ \begin{array}{c} 1 & 2 \\ $	2 2 2 2 2 2	3 3 3 3 3 3	3 3 3 3 3 3	4 4 4 4 4 4	5 5 4 4 4	555555
80 81 82 83 84	9031 9085 9138 9191 9243	9036 9090 9143 9196 9248	9042 9096 9149 9201 9253	9047 9101 9154 9206 9258	9053 9106 9159 9212 9263	9058 9112 9165 9217 9269	9063 9117 9170 9222 9274	9069 9122 9175 9227 9279	9074 9128 9180 9232 9284	9079 9133 9186 9238 9289	1 1 1 1 1	$ \begin{array}{ccc} 1 & 2 \\ $	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{array} $	3 3 3 3 3 3	3 3 3 3 3 3	4 4 4 4 4	4 4 4 4 4	5 5 5 5 5 5 5 5 5 5
85 86 87 88 89	9294 9345 9395 9445 9494	9299 9350 9400 9450 9499	9304 9355 9405 9455 9504	9309 9360 9410 9460 9509	9315 9365 9415 9465 9513	9320 9370 9420 9469 9518	9325 9375 9425 9474 9523	9330 9380 9430 9479 9528	9335 9385 9435 9484 9533	9340 9390 9440 9489 9538	1 1 0 0 0	$ \begin{array}{c} 1 & 2 \\ 1 & 2 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $		3 3 2 2 2	33333	4 4 3 3 3	4 4 4 4 4	55444
90 91 92 93 94	9542 9590 9638 9685 9731	9547 9595 9643 9689 9736	9552 9600 9647 9694 9741	9557 9605 9652 9699 9745	9562 9609 9657 9703 9750	9566 9614 9661 9708 9754	9571 9619 9666 9713 9759	9576 9624 9671 9717 9763	9581 9628 9675 9722 9768	9586 9633 9680 9727 9773	0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{array} $	2 2 2 2 2	3 3 3 3 3	3 3 3 3 3	4 4 4 4 4	44444
95 96 97 98 99	9777 9823 9868 9912 9956	9782 9827 9872 9917 9961	9786 9832 9877 9921 9965	9791 9836 9881 9926 9969	9795 9841 9886 9930 9974	9800 9845 9890 9934 9978	9805 9850 9894 9939 9983	9809 9854 9899 9943 9987	9814 9859 9903 9948 9991	9818 9863 9908 9952 9996	0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2	2 2 2 2 2 2	33333	33333	4 4 4 4 3	44444

SHORT-TITLE CATALOGUE

OF THE

PUBLICATIONS

JOHN WILEY & SONS

NEW YORK

LONDON: CHAPMAN & HALL, LIMITED

ARRANGED UNDER SUBJECTS

Descriptive circulars sent on application. Books marked with an asterisk (*) are sold at net prices only. All books are bound in cloth unless otherwise stated.

AGRICULTURE-HORTICULTURE-FORESTRY.

Armsby's Principles of Animal Nutrition	\$4	00
Budd and Hansen's American Horticultural Manual:		
Part I. Propagation, Culture, and Improvement	1	50
Part II. Systematic Pomology	1	50
Elliott's Engineering for Land Drainage	1	50
Practical Farm Drainage. (Second Edition, Rewritten)12mo,	1	50
Graves's Forest Mensuration	4	00
Green's Principles of American Forestry	1	50
Grotenfelt's Principles of Modern Dairy Practice. (Woll.)12mo,	2	00
* Herrick's Denatured or Industrial Alcohol	4	00
Kemp and Waugh's Landscape Gardening. (New Edition, Rewritten. In		
Preparation).		
* McKay and Larsen's Principles and Practice of Butter-making8vo,	1	50
Maynard's Landscape Gardening as Applied to Home Decoration 12mo,	1	50
Sanderson's Insects Injurious to Staple Crops	1	50
Sanderson and Headlee's Insects Injurious to Garden Crops. (In Prep-		
aration).		
* Schwarz's Longleaf Pine in Virgin Forests	1	25
Stockbridge's Rocks and Soils	2	50
Winton's Microscopy of Vegetable Foods	7	50
Woll's Handbook for Farmers and Dairymen16mo,	1	50

ARCHITECTURE.

Baldwin's Steam Heating for Buildings12mo,	2	50
Berg's Buildings and Structures of American Railroads4to,	5	00
Birkmire's Architectural Iron and Steel8vo,	3	50
Compound Riveted Girders as Applied in Buildings	2	00
Planning and Construction of American Theatres	3	00
Planning and Construction of High Office Buildings	3	50
Skeleton Construction in Buildings	3	00

Briggs's Modern American School Buildings	\$4	00
Bythe s inspection of Materials and Wormanship Employed in Constitution.	2	00
Conceptor a Heating and Ventilating of Buildings	0	00
Carpenter's freeing and ventilating of Durdnings	4	00
Cortien's Anovable Pressure on Deep Foundations	1	25
Freitag s Architectular Engineering	3	50
Fireprooning of Steel Buildings	2	50
Gerhard's Guide to Sanitary Inspections. (Fourth Edition, Entirely Re-		
vised and Enlarged)	1	50
* Modern Baths and Bath Houses	3	00
Sanitation of Public Buildings	1	50
Theatre Fires and Panics	1	50
Johnson's Statics by Algebraic and Graphic Methods	2	00
Kellaway's How to Lay Out Suburban Home Grounds	2	00
Kidder's Architects' and Builders' Pocket-book16mo, mor.,	5	00
Merrill's Stones for Building and Decoration	5	00
Monckton's Stair-building4to,	4	00
Patton's Practical Treatise on Foundations	5	00
Peabody's Naval Architecture	7	50
Rice's Concrete-block Manufacture	2	00
Richey's Handbook for Superintendents of Construction 16mo, mor.	4	00
Building Foreman's Pocket Book and Ready Reference. 16mo, mor.	5	00
* Building Mechanics' Ready Reference Series:	-	
* Carpenters' and Woodworkers' Edition	1	50
* Cement Workers' and Plasterers' Edition	î	50
* Plumbers', Steam-Fitters', and Tinners' Edition. , 16mo, mor	1	50
* Stone- and Brick-masons' Edition	î	50
Sabin's House Painting.	î	00
Siebert and Biggin's Modern Stone-cutting and Masonry.	1	50
Snow's Principal Species of Wood	3	50
Towne's Locks and Builders' Hardware	3	00
Wait's Engineering and Architectural Jurisprudence.	6	00
Sheen	6	50
Law of Contracts	2	00
Law of Operations Preliminary to Construction in Engineering and Arabi	0	00
testure		'n
Shop	5	50
Wilson's Air Conditioning	1	50
Worcester and Atkinson's Small Hospitals, Establishment and Maintenand	T	50
Suggestions for Hospital Architecture, with Plans for a Small Hospital	1.	

12mo, 1 25

ARMY AND NAVY.

Bernadou's Smokeless Powder, Nitro-cellulose, and the Theory of the Cellulose	121
Molecule	2 50
Chase's Art of Pattern Making	2 50
Screw Propellers and Marine Propulsion	3 00
* Cloke's Enlisted Specialists' Examiner	2 00
*Gunner's Examiner	1 50
Craig's Azimuth4to,	3 50
Crehore and Squier's Polarizing Photo-chronograph	3 00
* Davis's Elements of Law	2 50
* Treatise on the Military Law of United States	7 00
DeBrack's Cavalry Outpost Duties. (Carr.)	2 00
* Dudley s Military Law and the Procedure of Courts-martialLarge 12mo,	2 50
Durand's Resistance and Propulsion of Ships	5.00
* Dyer's Handbook of Light Artillery12mo.	3 00
Eissler's Modern High Explosives	4 00
* Fiebeger's Text-book on Field FortificationLarge 12mo,	2 00
Hamilton and Bond's The Gunner's Catechism	1 00
* Hoff's Elementary Naval Tactics	1 50
Ingalls's Handbook of Problems in Direct Fire	4 00
* Lissak's Ordnance and Gunnery	6 00

* Ludlow's Logarithmic and Trigonometric Tables	\$1	00
* Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and II 8vo, each,	6	00
* Mahan's Permanent Fortifications. (Mercur.)	7	50
Manual for Courts-martial	1	50
* Mercur's Attack of Fortified Places12mo,	2	00
* Elements of the Art of War8vo,	4	00
Nixon's Adjutants' Manual	1	00
Peabody's Naval Architecture 8vo,	7	50
* Phelps's Practical Marine Surveying	2	50
Putnam's Nautical Charts8vo,	2	00
Rust's Ex-meridian Altitude. Azimuth and Star-Finding Tables	5	00
Sharpe's Art of Subsisting Armies in War	1	50
* Tupes and Poole's Manual of Bayonet Exercises and Musketry Fencing.		
24mo, leather,		50
* Weaver's Military Explosives	3	00
Woodhull's Notes on Military Hygiene	1	50

ASSAYING.

Betts's Lead Refining by Electrolysis	4	00
Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe.		
16mo, mor.	1	50
Furman and Pardoe's Manual of Practical Assaying. (Sixth Edition, Re-		
vised and Enlarged)8vo,	3	00
Lodge's Notes on Assaying and Metallurgical Laboratory Experiments8vo,	3	00
Low's Technical Methods of Ore Analysis	3	00
Miller's Cyanide Process12mo,	1	00
Manual of Assaying	1	00
Minet's Production of Aluminum and its Industrial Use. (Waldo.)12mo,	2	50
O'Driscoll's Notes on the Treatment of Gold Ores8vo,	2	00
Ricketts and Miller's Notes on Assaying	3	00
Robine and Lenglen's Cyanide Industry. (Le Clerc.)	4	00
Ulke's Modern Electrolytic Copper Refining	3	00
Wilson's Chlorination Process	1	50
Cyanide Processes	1	50

ASTRONOMY.

Comstock's Field Astronomy for Engineers	2	50
Craig's Azimuth4to,	3	50
Crandall's Text-book on Geodesy and Least Squares	3	00
Doolittle's Treatise on Pracical Astronomy	4	00
Hayford's Text-book of Geodetic Astronomy	3	00
Hosmer's Azimuth16mo, mor.	1	00
Merriman's Elements of Precise Surveying and Geodesy8vo,	2	50
* Michie and Harlow's Practical Astronomy	3	00
Rust's Ex-meridian Altitude, Azimuth and Star-Finding Tables8vo,	5	00
* White's Elements of Theoretical and Descriptive Astronomy12mo,	2	00

CHEMISTRY,

* Abderhalden's Physiological Chemistry in Thirty Lectures. (Hall and.		
Defren)	5	00
* Abegg's Theory of Electrolytic Dissociation. (von Ende.)12mo,	1	25
Alexeyeff's General Principles of Organic Syntheses. (Matthews.)8vo,	3	00
Allen's Tables for Iron Analysis	3	00
Armsby's Principles of Animal Nutrition	4	00
Arnold's Compendium of Chemistry. (Mandel.)Large 12mo,	3	50
Association of State and National Food and Dairy Departments, Hartford		
Meeting, 1906	3	00
Jamestown Meeting, 1907	3	00

Austen's Notes for Chemical Students	\$1	50
Bernadou's Smokeless PowderNitro-cellulose, and Theory of the Cellulose		
Molecule	2	50
Svo.	3	00
* Blanchard's Synthetic Inorganic Chemistry	1	00
* Browning's Introduction to the Rarer Elements	1	50
* Classen's Beet-sugar Manufacture. (Hall and Rolfe.)	3	00
Cohn's Indicators and Test-papers. (Boltwood.).8vo,	3	00
Tests and Reagents	3	00
* Danneel's Electrochemistry. (Merriam.)	1	25
Dannerth's Methods of Textile Chemistry12mo,	2	00
Duhem's Thermodynamics and Chemistry. (Burgess.)	•4	00
Eisront's Enzymes and their Applications. (Prescott.)	3	00
Erdmann's Introduction to Chemical Preparations. (Dunlap.)	1	25
* Fischer's Physiology of Alimentation Large 12mo,	2	00
Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe.		
Paralada Caraca Wester Andreas 12mo, mor.	1	50
Fowler's Sewage Works Analyses	2	00
Manual of Qualitative Chemical Analysis. [Wells.]	3	00
Quantitative Chemical Analysis. (Cohn.) 2 vols	12	50
When Sold Separately, Vol. I, \$6. Vol. II, \$8.		
Fuertes's Water and Public Health	1	50
Furman and Pardoe's Manual of Practical Assaying. (Sixth Edition,	9	00
* Getman's Exercises in Physical Chemistry 12mo	3	00
Gill's Gas and Fuel Analysis for Engineers	1	25
* Gooch and Browning's Outlines of Qualitative Chemical Analysis.		
Large 12mo,	1	25
Grotentelt's Principles of Modern Dairy Practice. (Woll.)	2	00
Hammarsten's Text-book of Physiological Chemistry (Marshall)	4	20
Hanausek's Microscopy of Technical Products. (Winton.)	5	00
* Haskins and Macleod's Organic Chemistry12mo,	2	00
Hering's Ready Reference Tables (Conversion Factors)16mo, mor.	2	50
* Herrick's Denatured or Industrial Alcohol	4	00
* Laboratory Manual for Students	3	00
* Holleman's Laboratory Manual of Organic Chemistry for Beginners.	-	00
(Walker.)12mo,	1	00
Text-book of Inorganic Chemistry. (Cooper.)	2	50
Text-book of Organic Chemistry. (Walker and Mott.)	2	50
Holley and Ladd's Analysis of Mixed Paints Color Pigments and Varnishes	э	00
Large 12mo,	2	50
Hopkins's Oil-chemists' Handbook8vo,	3	00
Jackson's Directions for Laboratory Work in Physiological Chemistry 8vo,	1	25
Johnson's Rapid Methods for the Chemical Analysis of Special Steels, Steel-	0	00
making Alloys and GraphiteLarge 12mo,	3	00
* Langworthy and Austen's Occurrence of Aluminum in Vegetable Prod-	0	00
ucts, Animal Products, and Natural Waters	2	00
Lassar-Cohn's Application of Some General Reactions to Investigations in		
Organic Chemistry. (Tingle.)	1	00
Control	7	50
Löb's Electrochemistry of Organic Compounds. (Lorenz.)	3	00
Lodge's Notes on Assaying and Metallurgical Laboratory Experiments8vo,	3	00
Low's Technical Method of Ore Analysis	3	00
Lunge's Techno-chemical Analysis. (Cohn.)	1	00
Maire's Modern Pigments and their Vehicles	2	00
	-	

Markette Hardhach for Dischamigel Laboratory 1986		50
Mandel's Handbook for Bio-chemical Laboratory	\$T	30
* Martin's Laboratory Guide to Qualitative Analysis with the Blowpipe		
12mo	, 0	60
Mason's Examination of Water. (Chemical and Bacteriological.)12mo,	1	25
Water-supply, (Considered Principally from a Sanitary Standpoint.)		
840	4	00
* Matheman's Pirst Drinsiples of Chemical Theory	1	00
* Mathewson's First Finiciples of Chemical Theory	1	00
Matthews s Laboratory Manual of Dyeing and Textile Chemistry8vo,	3	50
Textile Fibres. 2d Edition, Rewritten	4	00
* Meyer's Determination of Radicles in Carbon Compounds. (Tingle.)		
Third Edition	1	25
Miller's Cvanide Process	1	00
Manual of Assaving 12mo	1	00
Minet's Deschartion of Aluminum and its Industrial Use (Wolds) 12mg	0	50
Minet's Frontection of Atuminum and its industrial Use. (Waldo.)12mo,	4	30
Mixter's Elementary Text-book of Chemistry	1	50
Morgan's Elements of Physical Chemistry	3	00
Outline of the Theory of Solutions and its Results	1	00
* Physical Chemistry for Electrical Engineers	1	50
Morse's Calculations used in Cane-sugar Factories	1	59
* Muir's History of Chemical Theories and Laws	4	00
Wulliken's General Method for the Identification of Pure Organic Compounds	~	00
Will Kell S Contrar Method for the recent the function of r the Organic Compounds.	~	00
vol. 1. Compounds of Carbon with Hydrogen and Oxygen. Large 8vo,	Э	00
Vol. 11. Nitrogenous Compounds. (In Preparation).		
Vol. III. The Commercial Dyestuffs. (In Press).		
O'Driscoll's Notes on the Treatment of Gold Ores	2	00
Ostwald's Conversations on Chemistry. Part One. (Ramsey.)12mo.	1	50
" " " Part Two. (Turnbull) 12mo	2	00
Owen and Standage's Dueing and Cleaning of Textile Fabrics 12mo	2	00
* Delmar's Denotical Tast Book of Chamister	1	00
Trainer's Fractical Test book of Chemistry. (12:1)	1	00
- Pauli s Physical Chemistry in the Service of Medicine. (Fischer.). 12mo,	1	25
Penfield's Tables of Minerals, Including the Use of Minerals and Statistics		
of Domestic Production	1	00
Pictet's Alkaloids and their Chemical Constitution. (Biddle,)	5	00
Poole's Calorific Power of Fuels	3	00
Prescott and Winslow's Elements of Water Bacteriology with Special Refer-		00
and to Sopie my Water Analyzia	1	50
Price to Santary water Analysis	1	30
- Reisig's Guide to Piece-Dyeing	25	00
Richards and Woodman's Air, Water, and Food from a Sanitary Stand-		
point	2	00
Ricketts and Miller's Notes on Assaying	3	00
Rideal's Disinfection and the Preservation of Food	4	00
Sewage and the Bacterial Purification of Sewage 8vo	4	00
Rigg's Elementary Manual for the Chemical Laboratory Syc	1	95
Debias and London's Cranital Inductory (La Clark)	1	20
Robine and Lengten's Cyande Industry. (Le Clerc.)	4	00
Ruddiman's Incompatibilities in Prescriptions	2	00
Whys in Pharmacy12mo,	1	00
Ruer's Elements of Metallography. (Mathewson). (In Press.)		
Sabin's Industrial and Artistic Technology of Paint and Varnish8vo,	3	00
Salkowski's Physiological and Pathological Chemistry. (Orndorff.)8vo.	2	50
Schimpf's Essentials of Volumetric Analysis.	1	25
Manual of Volumetric Analysis (Fifth Edition Rewritten) Syo	5	00
* Avalitative Chamical Analysis. (This Datable, Rewritten)	1	25
Grith's Least of Vistor of Charles for Dental Caulton for Dental Caulton	-1	20
Smith's Lecture Notes on Chemistry for Dental Students	2	50
Spencer's Handbook for Cane Sugar Manufacturers	3	00
Handbook for Chemists of Beet-sugar Houses	3	00
Stockbridge's Rocks and Soils	2	50
Stone's Practical Testing of Gas and Gas Meters	3	50
* Tillman's Descriptive General Chemistry	3	00
* Elementary Lessons in Heat	1	50
Treadwell's Qualitative Analysis (Hall)	2	00
Quantitative Analysis (Hall)	0	00
Turner and Duggell's Dublic Water supplier	4	00
Van Dependent's Display of the state of the	5	00
van Deventer's Physical Chemistry for Beginners. (Boltwood.)12mo,	1	50
venable's Methods and Devices for Bacterial Treatment of Sewage8vo,	3	00
Ward and Whipple's Freshwater Biology. (In Press.)		
Ware's Beet-sugar Manufacture and Refining. Vol. I	4	00
66 66 44 61 61 Vol II 800	5	00

Washington's Manual of the Chemical Analysis of Rocks	\$2	00
* Weaver's Military Explosives	3	00
Wells's Laboratory Guide in Qualitative Chemical Analysis	1	50
Short Course in Inorganic Qualitative Chemical Analysis for Engineering	-	00
Students	1	50
Text-book of Chemical Arithmetic	1	25
Whipple's Microscopy of Drinking-water	3	50
Wilson's Chlorination Process12mo,	ĩ	50
Cyanide Processes	1	50
Winton's Microscopy of Vegetables Food	7	50
Zsigmondy's Colloids and the Ultramicroscope. (Alexander), Large 12mo,	3	00

CIVIL ENGINEERING.

BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEER-ING. RAILWAY ENGINEERING.

Baker's Engineers' Surveying Instruments	3 00
Bixby's Graphical Computing TablePaper 191×241 inches.	25
Breed and Hosmer's Principles and Practice of Surveying. Vol. I. Elemen-	
tary Surveying	3 00
Vol. II. Higher Surveying	2 50
* Burr's Ancient and Modern Engineering and the Isthmian Canal 8vo	3 50
Comstock's Field Astronomy for Engineers	2 50
* Corthell's Allowable Pressure on Deep Foundations	1 25
Crandall's Text-book on Geodesy and Least Squares.	3 00
Davis's Elevation and Stadia Tables	1 00
Elliott's Engineering for Land Drainage	1 50
Practical Farm Drainage. (Second Edition Rewritten) 12mo	1 50
* Fiebeger's Treatise on Civil Engineering	5 00
Flemer's Photographic Methods and Instruments	5 00
Folwell's Sewerage (Designing and Maintenance)	2 00
Frais a's Architectural Engineering	3 00
Coodbus's Municipal Improvements	3 30
* Hauch and Rice's Tables of Quantities for Preliminary Estimator 12mo	1 00
Hauford's Toxt book of Goodotia Astronomy	1 20
Having's Deady Deformance Tables (Conversion Rattors)	3 00
Hermy's Ready Reference Tables (Conversion Factors)	2 30
Hossiler's Azimuth	1 00
Howe Retaining wais for Earth	1 25
¹ Ives s'Adjustments of the Engineer's Transit and Level 10000, Dds.	25
Johnson's (J. B.) Theory and Fractice of Surveying Large 12mo,	4 00
Jonnson's (L. J.) Statics by Algebraic and Graphic Methods	2 00
Kinnicutt, Winslow and Pratt's Purification of Sewage. (In Preparation).	
Manan's Descriptive Geometry	1 50
Merriman's Elements of Precise Surveying and Geodesy	2 50
Merriman and Brooks's Handbook for Surveyors	2 00
Nugent's Plane Surveying	3 50
Ogden's Sewer Construction	3 00
Sewer Design	2 00
Parsons s Disposal of Municipal Refuse	2 00
Patton's Treatise on Civil Engineering	7 50
Reed's Topographical Drawing and Sketching4to,	5 00
Rideal's Sewage and the Bacterial Purification of Sewage	4 00
Riemer's Shaft-sinking under Difficult Conditions. (Corning and Peele.).8vo,	3 00
Siebert and Biggin's Modern Stone-cutting and Masonry	1 50
Smith's Manual of Topographical Drawing. (McMillan,)	2 50
Soper's Air and Ventilation of Subways12mo,	2 50
* Tracy's Exercises in Surveying	1 00
Tracy's Plane Surveying	3 00
* Trautwine's Civil Engineer's Pocket-book	5 00
Venable's Garbage Crematories in America	2 00
Methods and Devices for Bacterial Treatment of Sewage 8vo	3 00

Wait's Engineering and Architectural Jurisprudence	\$6	00
Sheep,	6	50
Law of Contracts	3	00
Law of Operations Preliminary to Construction in Engineering and		
Architecture	5	00
Sheep,	5	50
Warren's Stereotomy-Problems in Stone-cutting	2	50
* Waterbury's Vest-Pocket Hand-book of Mathematics for Engineers.		
2½×5% inches, mor.	1	00
Webb's Problem's in the Use and Adjustment of Engineering Instruments.		
16mo, mor.	1	25
Wilson's Topographic Surveying	3	5 0

BRIDGES AND ROOFS.

Boller's Practical Treatise on the Construction of Iron Highway Bridges8vo,	2	00
* Thames River BridgeOblong paper,	5	00
Burr and Falk's Design and Construction of Metallic Bridges	5	00
Influence Lines for Bridge and Roof Computations	3	00
Du Bois's Mechanics of Engineering. Vol. II	10	00
Foster's Treatise on Wooden Trestle Bridges	5	00
Fowler's Ordinary Foundations	3	50
Greene's Arches in Wood. Iron. and Stone	2	50
Bridge Trusses	2	50
Roof Trusses	1	25
Grimm's Secondary Stresses in Bridge Trusses	2	50
Heller's Stresses in Structures and the Accompanying Deformations8vo.	3	00
Howe's Design of Simple Roof-trusses in Wood and Steel	2	00
Symmetrical Masonry Arches	2	50
Treatise on Arches	4	00
Johnson, Bryan and Turneaure's Theory and Practice in the Designing of		
Modern Framed StructuresSmall 4to.	10	00
Merriman and Jacoby's Text-book on Roofs and Bridges:		
Part I. Stresses in Simple Trusses	2	50
Part II. Graphic Statics	2	50
Part III. Bridge Design	2	50
Part IV. Higher Structures	2	50
Morison's Memphis Bridge	10	00
Sondericker's Graphic Statics, with Applications to Trusses, Beams, and		
Arches 8vo	2	00
Waddell's De Pontibus, Pocket-book for Bridge Engineers, 16mo, mor.	2	00
* Specifications for Steel Bridges	-	50
Waddell and Harringtoon's Bridge Engineering. (In Preparation.)		
Wright's Designing of Draw-spans. Two parts in one volume	3	50
Waddell and Harringtoon's Bridge Engineering. (In Preparation.) Wright's Designing of Draw-spans. Two parts in one volume	3	50

HYDRAULICS.

Barnes's Ice Formation	3	00
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from		
an Orifice. (Trautwine.)	2	00
Bovey's Treatise on Hydraulics	5	00
Church's Diagrams of Mean Velocity of Water in Open Channels.		
Oblong 4to, paper,	1	50
Hydraulic Motors	2	00
Coffin's Graphical Solution of Hydraulic Problems	2	50
Flather's Dynamometers, and the Measurement of Power	3	00
Folwell's Water-supply Engineering	4	00
Prizell's Water-power	5	00
Fuertes's Water and Public Health	1	50
Water-filtration Works	2	50
Ganguillet and Kutter's General Formula for the Uniform Flow of Water in		
Rivers and Other Channels. (Hering and Trautwine.)8vo,	4	00

Hazen's Clean Water and How to Get ItLarge 12mo,	\$1	50
Filtration of Public Water-supplies	3	00
Hazelhurst's Towers and Tanks for Water-works	2	50
Herschel's 115 Experiments on the Carrying Capacity of Large, Riveted, Metal		
Conduits	2	Ò0
Hoyt and Grover's River Discharge	2	00
Hubbard and Kiersted's Water-works Management and Maintenance.		
8vo,	4	00
* Lyndon's Development and Electrical Distribution of Water Power.		
8vo,	3	00
Mason's Water-supply. (Considered Principally from a Sanitary Stand-		
point.)	4	00
Merriman's Treatise on Hydraulics	5	00
* Molitor's Hydraulics of Rivers, Weirs and Sluices	2	00
* Richards's Laboratory Notes on Industrial Water Analysis		50
Schuyler's Reservoirs for Irrigation, Water-power, and Domestic Water-		
supply. Second Edition, Revised and EnlargedLarge 8vo,	6	00
* Thomas and Watt's Improvement of Rivers4to,	6	00
Turneaure and Russell's Public Water-supplies	5	00
Wegmann's Design and Construction of Dams. 5th Ed., enlarged4to,	6	00
Water-Supply of the City of New York from 1658 to 18954to,	10	00
Whipple's Value of Pure WaterLarge 12mo,	1	00
Williams and Hazen's Hydraulic Tables	1	50
Wilson's Irrigation Engineering	4	00
Wood's Turbines	2	50

MATERIALS OF ENGINEERING.

Baker's Roads and Pavements	5	00
Treatise on Masonry Construction	5	00
Black's United States Public WorksOblong 4to,	5	00
Blanchard's Bituminous Roads. (In Press.)		
Bleininger's Manufacture of Hydraulic Cement. (In Preparation.)		
* Bovey's Strength of Materials and Theory of Structures	7	50
Burr's Elasticity and Resistance of the Materials of Engineering	7	50
Byrne's Highway Construction	5	00
Inspection of the Materials and Workmanship Employed in Construction.		
16mo.	3	00
Church's Mechanics of Engineering	6	00
Du Bois's Mechanics of Engineering.		
Vol. I. Kinematics, Statics, Kinetics,	7	50
Vol. II. The Stresses in Framed Structures. Strength of Materials and		00
Theory of Flexures	10	00
* Eckel's Cements, Limes, and Plasters,	6	00
Stone and Clay Products used in Engineering. (In Preparation)	Ŭ	00
Fowler's Ordinary Foundations	3	50
* Greene's Structural Mechanics	2	50
* Holley's Lead and Zinc Pigments.	3	00
Holley and Ladd's Analysis of Mixed Paints Color Pigments and Varnishes	0	00
Large 12mo	2	50
Johnson s (C. M.) Rapid Methods for the Chemical Analysis of Special Steels	~	00
Steel-making Allovs and Graphite	3	00
Johnson's (I_B) Materials of Construction Large Svo	6	00
Keep's Cast Iron	2	50
Lanza's Applied Mechanics	7	50
Maire's Modern Pigments and their Vehicles.	5	00
Martens's Handbook on Testing Materials (Henning) 2 vols 8vo	- F	50
Maurer's Technical Mechanics.	4	00
Merrill's Stones for Building and Decoration	5	00
Merriman's Mechanics of Materials	5	00
* Strength of Materials 12mo	1	00
Metcalf's Steel. A Manual for Steel-users. 12mo,	2	00
Morrison's Highway Engineering.	2	50
Patton's Practical Treatise on Foundations	5	00
Rice's Concrete Block Manufacture	2	00

Richardson's Modern Asphalt Pavements	\$3	00
Richey's Building Foreman's Pocket Book and Ready Reference. 10mo, mor.	5	00
* Cement workers and Plasterers Edition (Building Mechanics Ready		FO
Reference Series)	1	50
Handbook for Superintendents of Construction	4	00
* Stone and Brick Masons Edition (Building Mechanics Ready		-
* Divis Clause Their Occurrence Despection and Here	1	50
* Ries s clays: Their Occurrence, Properties, and Uses	Э	00
* Ries and Leighton's history of the Clay-working industry of the United		FO
States	2	50
Sacht Standard and Artistic Technology of Faint and Varnish	3	00
Smith's Strength of Material	0	50
Snow S Principal Species of Wood	3	00
Tart hook on Ponds and Payaments	20	00
Toulor and Thompson's Treatise on Concrete Plain and Reinforced	4 5	00
Thurston's Motorials of Engineering In Three Parts	0	00
Dort I Non-metallic Materials of Engineering and Metallurgy Suc	00	00
Part II Iron and Steel	2	50
Part III A Treatise on Brasses Bronzes and Other Allovs and their	0	00
Constituents	2	50
Tilleon's Street Pavements and Paving Materials	Ã	00
Turpequre and Maurer's Principles of Reinforced Concrete Construction	x	00
Second Edition Revised and Enlarged	3	50
Waterbury's Cement Laboratory Manual 12mo	1	00
Wood's (De V) Treatise on the Resistance of Materials and an Appendix on	-	00
the Preservation of Timber 8vo	2	00
Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and	-	00
Steel 8vo	4	00

RAILWAY ENGINEERING.

Andrews's Handbook for Street Railway Engineers 3×5 inches, mor.	1	25
Berg's Buildings and Structures of American Railroads4to,	5	00
Brooks's Handbook of Street Railroad Location16mo, mor.	1	50
Butts's Civil Engineer's Field-book16mo, mor.	2	50
Crandall's Railway and Other Earthwork Tables	1	50
Transition Curve	1	50
* Crockett's Methods for Earthwork Computations	*	50
Dredge's History of the Pennsylvania Railroad. (1879)Paper	5	00
Fisher's Table of Cubic YardsCardboard,		25
Godwin's Railroad Engineers' Field-book and Explorers' Guide. 16mo, mor.	2	50
Hudson's Tables for Calculating the Cubic Contents of Excavations and Em-		
bankments	1	00
Ives and Hilts's Problems in Surveying, Railroad Surveying and Geodesy		
16mo, mor.	1	50
Molitor and Beard's Manual for Resident Engineers	1	00
Nagle's Field Manual for Railroad Engineers16mo, mor.	3	00
* Orrock's Railroad Structures and Estimates	3	00
Philbrick's Field Manual for Engineers16mo, mor.	3	00
Raymond's Railroad Engineering. 3 volumes.		
Vol. I. Railroad Field Geometry. (In Preparation.)		
Vol. II. Elements of Railroad Engineering	3	50
Vol. III. Railroad Engineer's Field Book. (In Preparation.)		
Searles's Field Engineering	3	00
Railroad Spiral	1	50
Taylor's Prismoidal Formulæ and Earthwork8vo,	1	50
* Trautwine's Field Practice of Laying Out Circular Curves for Railroads.		
12mo, mor.	2	50
* Method of Calculating the Cubic Contents of Excavations and Em-		
bankments by the Aid of Diagrams8vo,	2	00
Webb's Economics of Railroad ConstructionLarge 12mo,	2	50
Railroad Construction16mo, mor.	5	00
Wellington's Economic Theory of the Location of RailwaysLarge 12mo,	5	00
Wilson's Elements of Railroad-Track and Construction	2	00

DRAWING.

Barr's Kinematics of Machinery8vo,	\$2	50
* Bartlett's Mechanical Drawing8vo,	3	00
* " " Abridged Ed8vo,	1	5 0
Coolidge's Manual of Drawing	1	00
Coolidge and Freeman's Elements of General Drafting for Mechanical Engi-		
neersOblong 4to,	2	50
Durley's Kinematics of Machines	4	00
Emch's Introduction to Projective Geometry and its Application	2	50
French and Ives' Stereotomy	2	50
Hill's Text-book on Shades and Shadows, and Perspective	2	00
Jamison's Advanced Mechanical Drawing	2	00
Liements of Mechanical Drawing	2	50
Jones's Machine Design.	1	FO
Part I. Kinematics of Machinery	1	00
Kimball and Barr's Machine Design (In Press.)	3	00
MacCord's Elements of Descritoive Geometry	2	00
Kinematics: or Practical Mechanism	5	00
Mechanical Drawing 4to	4	00
Velocity Diagrams	1	50
McLeod's Descriptive Geometry Large 12mo	î	50
* Mahan's Descriptive Geometry and Stone-cutting.	î	50
Industrial Drawing. (Thompson.)	3	50
Mover's Descriptive Geometry	2	00
Reed's Topographical Drawing and Sketching	5	00
Reid's Course in Mechanical Drawing	2	00
Text-book of Mechanical Drawing and Elementary Machine Design8vo.	3	00
Robinson's Principles of Mechanism	3	00
Schwamb and Merrill's Elements of Mechanism	3	00
Smith (A. W.) and Marx's Machine Design	3	00
Smith's (R. S.) Manual of Topographical Drawing. (McMillan)8vo,	2	50
* Titsworth's Elements of Mechanical DrawingOblong 8vo,	1	25
Warren's Drafting Instruments and Operations	1	25
Elements of Descriptive Geometry, Shadows, and Perspective8vo,	3	50
Elements of Machine Construction and Drawing	7	50
Elements of Plane and Solid Free-hand Geometrical Drawing12mo,	1	00
General Problems of Shades and Shadows	3	00
Manual of Elementary Problems in the Linear Perspective of Forms and		~~
Manual of Elevantere Deviction Device 12mo,	1	00
Manual of Elementary Projection Drawing	1	00
Problems Theorems and Exemples in Descriptive Coomstry	1	20
Weisbach's Vinematics and Bower of Transmission (Hormonn and	4	30
Klein)	5	00
Wilson's (H M) Topographic Surveying 8vo	3	50
* Wilson's (V T) Descriptive Geometry 8vo	1-	50
Free-hand Lettering.	î	00
Free-hand Perspective	2	50
Woolf's Elementary Course in Descriptive GeometryLarge 8vo,	3	00

ELECTRICITY AND PHYSICS.

* Abegg's Theory of Electrolytic Dissociation. (von Ende.)12mo,	1	25
Andrews's Hand-book for Street Railway Engineering3×5 inches, mor.	1	25
Anthony and Brackett's Text-book of Physics. (Magie.)Large 12mo,	3	00
Anthony and Ball's Lecture-notes on the Theory of Electrical Measure-		
ments	1	00
Benjamin's History of Electricity8vo,	3	00
Voltaic Cell8vo,	3	00

Betts's Lead Refining and Electrolysis	\$4	00
Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.).8vo.	3	00
* Collins's Manual of Wireless Telegraphy and Telephony 12mo	ī	50
Crebore and Squier's Polarizing Photo-chronograph	3	00
* Danneel's Electrochemistry. (Merriam.). 12mo	1	25
Dawson's "Engineering" and Electric Traction Pocket-book 16mo mor	5	00
Dolezalek's Theory of the Lead Accumulator (Storage Battery) (von Ende)	0	00
19ma	2	50
Duben's Thermodynamics and Chemistry (Burgess)	A	00
Flather's Dynamometers and the Measurement of Power 19mo	2	00
Catman's Introduction to Physical Science 12000	0	00
Gilhart's De Magnete (Mottelay)		50
When the first Alternating Currents 1900		00
Haring's Deady Reference Tables (Conversion Factors)		50
* Hohest and Filis's High speed Dynamo Floatric Machinery	6	00
Johnsk's Designer of Messurements	0	00
Tolescole Minor scale Method Adjustments and Tasts Large Sus	4	00
Pelescopic Minifol-scale Method, Adjustments, and Tests Large 8vo,	0	10
"Karapeton's Experimental Electrical Engineering	0	00
Kinzbrunner's Testing of Continuous-current Machines	2	00
Landauer's Spectrum Analysis. (Tingle),	3	00
Le Chatener's rightemperature Measurements. (Doudouard-Burgess.)12mo	, 3	00
Lob s Electrochemistry of Organic Compounds. (Lorenz)	3	00
"Lyndon's Development and Electrical Distribution of water Power 8vo,	3	00
" Lyons s freatise on Electromagnetic Phenomena. vois, 1 and 11. 8vo, each,	0	00
Michie's Elements of Wave Motion Relating to Sound and Light8vo,	4	00
Morgan's Outline of the Theory of Solution and its Results	1	00
* Physical Chemistry for Electrical Engineers	1	50
* Norris's Introduction to the Study of Electrical Engineering	2	50
Circuits and Machines. (In Press.)		
* Parshall and Hobart's Electric Machine Design4to, half mor.	12	50
Reagan's Locomotives: Simple, Compound, and Electric. New Edition.		
Large 12mo.	3	50
* Rosenberg's Electrical Engineering, (Haldane Gee-Kinzbrunner.), 8vo.	2	00
Rvan, Norris, and Hoxie's Electrical Machinery, Vol. I	2	50
Schapper's Laboratory Guide for Students in Physical Chemistry12mo.	1	00
* Tillman's Elementary Lessons in Heat	ĩ	50
Tory and Pitcher's Manual of Laboratory Physics Large 12mo	2	00
Ulke's Modern Electrolytic Copper Refining	3	00
	-	00

LAW.

*]	Brennan's Hand-book of Useful Legal Information for Business Men.		
	16mo, mor.	5	00
*]	Davis's Elements of Law8vo,	2	50
	* Treatise on the Military Law of United States	7	00
*]	Dudley's Military Law and the Procedure of Courts-martial. Large 12mo,	2	50
Ma	anual for Courts-martial16mo, mor.	1	50
W	ait's Engineering and Architectural Jurisprudence	6	00
	Sheep,	6	50
	Law of Contracts	3	00
	Law of Operations Preliminary to Construction in Engineering and		
	Architecture	5	00
	Sheep,	5	50

MATHEMATICS.

.

Baker's Elliptic Functions	1	50
Briggs's Elements of Plane Analytic Geometry. (Bôcher)12mo,	1	00
* Buchanan's Plane and Spherical Trigonometry8vo,	1	00

Byerley's Harmonic Functions	\$1	00
Chandler's Elements of the Infinitesimal Calculus	2	00
* Coffin's Vector Analysis	2	EO
Commiss Vector Analysis.	4	00
compton's Manual of Logarithmic Computations	1	50
* Dickson's College AlgebraLarge 12mo,	1	50
* Introduction to the Theory of Algebraic EquationsLarge 12mo,	1	25
Emch's Introduction to Projective Geometry and its Application	2	50
Riske's Europions of a Complex Variable	ĩ	00
Take 3's Planctons of a Complex's Caracteria	1	50
Haisted's Elementary Synthetic Geometry	1	50
Elements of Geometry	1	75
* Rational Geometry	1	50
Synthetic Projective Geometry	1	00
Hyde's Grassmann's Space Analysis	1	00
* Johnson's (I. B.) Three place I agentithmic Tables: Vest postet size paper	-	15
Johnson's (J. D.) Three-place Dogartennice Tables. Vest-pocket size, paper,	-	10
100 copies,	Э	00
* Mounted on heavy cardboard, 8 × 10 inches,		25
*10 copies,	2	00
Johnson's (W. W.) Abridged Editions of Differential and Integral Calculus.		
Large 12mo 1 vol	2	50
Curve Tracing in Contacion Co ordinates	1	00
Curve Tracing in Cartesian Co-ordinates	1	00
Differential Equations	T	00
Elementary Treatise on Differential CalculusLarge 12mo,	1	50
Elementary Treatise on the Integral CalculusLarge 12mo,	1	50
* Theoretical Mechanics	3	00
Theory of Errors and the Method of Least Squares 12mo	1	50
Theory of Entries and the Method of Least Squares	1	00
Treatise on Differential Calculus Large 12mo,	3	00
Treatise on the Integral CalculusLarge 12mo,	3	00
Treatise on Ordinary and Partial Differential EquationsLarge 12mo.	3	50
Karapetoff's Engineering Applications of Higher Mathematics		
(In Preparation)		
I and a Different's Description Dest at 1974 and The second at the second secon	0	00
Laplace's Philosophical Essay on Probabilities. (Iruscott and Emory.). 12mo,	2	00
* Ludlow and Bass's Elements of Trigonometry and Logarithmic and Other		
Tables	3	00
* Trigonometry and Tables published separately Each	2	00
* Luding's Longeithmic and Trigonometric Tables	1	00
Ludiow's Logarithmic and Trigonometric Tables	1	00
Maciarlane's Vector Analysis and Quaternions	1	00
McMahon's Hyperbolic Functions8vo,	1	00
Manning's Irrational Numbers and their Representation by Sequences and		
Series 12mo	1	25
Mathematical Manageman Edited by Mansfeld Marriman and Pahor	-	20
mathematical Monographis. Edited by Mansheld Mertiman and Robert		~ ~
S. WoodwardOctavo, each	1	00
No. 1. History of Modern Mathematics, by David Eugene Smith.		
No. 2. Synthetic Projective Geometry, by George Bruce Halsted.		
No. 3 Determinants by Laenas Gifford Weld No. 4 Hyper-		
bolia Functions, by Lamas MaMahan, No. 5, Harmonia Func		
in the functions, by James Memanon. No. 5. Harmonic Func-		
tions, by William E. Byerly. No. 6. Grassmann's Space Analysis,		
by Edward W. Hyde. No. 7. Probability and Theory of Errors,		
by Robert S. Woodward. No. 8. Vector Analysis and Quaternions,		
by Alexander Macfarlane, No. 9. Differential Equations, by		
William Woolsey Johnson No. 10 The Solution of Equations		
the Main Wookey Johnson. No. 10. The Solution of Equations,		
by Mansheld Merriman. No. 11. Functions of a Complex Variable,		
by Thomas S. Fiske.		
Maurer's Technical Mechanics	4	00
Merriman's Method of Least Squares	2	00
Solution of Equations	1	00
Diagonal Laborary's Differential and Integral Calculus 2 yes in and		00
Nice and Johnson's Differential and Integral Calculus. 2 vols, in one.		
Large 12mo,	1	50
Elementary Treatise on the Differential Calculus Large 12mo,	3	00
Smith's History of Modern Mathematics8vo.	1	00
* Veblen and Lennes's Introduction to the Real Infinitesimal Analysis of One		
Variable	9	00
Wether the Det Hand has been fully the section for Det The Story	4	00
waterbury's vest Pocket Hand-book of Mathematics for Engineers.		
$2\frac{1}{8} \times 5\frac{3}{8}$ inches, mor.	1	00
Weld's Determinants8vo.	1	00
Wood's Elements of Co-ordinate Geometry.	2	00
Woodward's Probability and Theory of Errors.	1	00
TTOGATION OF A A A A A A A A A A A A A A A A A A	-	00

MECHANICAL ENGINEERING.

MATERIALS OF ENGINEERING, STEAM-ENGINES AND BOILERS.

Bacon's Forge Practice	\$1	50
Baldwin's Steam Heating for Buildings12mo,	2	50
Barr's Kinematics of Machinery	2	50
* Bartlett's Mechanical Drawing	3	00
* " " " Abridged Ed	1	50
* Burr's Ancient and Modern Engineering and the Isthmian Canal 8vo,	3	50
Carpenter's Experimental Engineering	6	00
Heating and Ventilating Buildings	4	00
Clerk's Gas and Oil Engine. (New edition in press.)		
Compton's First Lessons in Metal Working	T	50
Compton and De Groodt's Speed Lathe. 12mo	1	50
Coolidge's Manual of Drawing Svo paper	î	00
Coolidge and Freeman's Elements of Geenral Drafting for Mechanical En-	-	00
ainers About the and t	2	50
Cromwell's Treatise on Balts and Pulleys	1	50
Tractice on Decis and 1 uneys	1	50
Discours's Machinery Dattern Making	- 0	00
Dingley's Machinery Pattern Making	4	00
Durley's Kinematics of Machines.	*	00
Flanders & Gear-cutting Machinery.	3	00
Flather's Dynamometers and the Measurement of Power	3	00
Rope Driving	2	00
Gill's Gas and Fuel Analysis for Engineers	1	25
Goss's Locomotive Sparks.	2	00
Greene's Pumping Machinery. (In Preparation.)		
Hering's Ready Reference Tables (Conversion Factors)16mo, mor.	2	50
* Hobart and Ellis's High Speed Dynamo Electric Machinery	6	00
Hutton's Gas Engine	5	00
Jamison's Advanced Mechanical Drawing	2	00
Elements of Mechanical Drawing	2	50
Jones's Gas Engine	4	00
Machine Design:		
Part I. Kinematics of Machinery	1	50
Part II. Form, Strength, and Proportions of Parts	3	00
Kent's Mechanical Engineer's Pocket-Book16mo, mor.	5	00
Kerr's Power and Power Transmission	2	00
Kimball and Barr's Machine Design. (In Press.)		
Levin's Gas Engine, (In Press.)		
Leonard's Machine Shop Tools and Methods	4	00
* Lorenz's Modern Refrigerating Machinery, (Pope, Haven, and Dean)., 8vo.	4	00
MacCord's Kinematics: or. Practical Mechanism	5	00
Mechanical Drawing. 4to	4	00
Velocity Diagrams	T	50
MacFarland's Standard Reduction Factors for Gases	1	50
Mahan's Industrial Drawing (Thompson). 8vo	3	50
Mehrtens's Gas Engine Theory and Design Large 12mo	2	50
Oberg's Handbook of Small Tools Large 12mg	3	00
* Parchall and Hohart's Electric Machine Design Small 4to half leather	12	50
Pasis's Compressed Air Plant for Mines	2	00
Poole's Calorifa Dever of Fuela	0	00
* Dorte's Calofine Fower of Fuels.	0	00
Poid's Course in Machanical Drawing	0	00
The back of Machanical Drawing and Elementary Machine Davier Suc	4	00
Disharda's Compressed Air	0	50
Richards S. Compressed Air	1	00
Robinson's Frinciples of Mechanism	3	00
Schwand and Merrin's Elements of McChanism	3	00
Smith (A. W.) and Marx's Machine Design	3	00
Smith s (0.) Press-working of Metals	3	00
Sorel's Carbureting and Combustion in Alcohol Engines. (Woodward and	-	~~
Preston.)Large 12mo,	3	00
Stone's Practical Testing of Gas and Gas Meters	3	50

Thurston's Animal as a Machine and Prime Motor, and the Laws of Energetics.		
12mo,	\$1	00
Treatise on Friction and Lost Work in Machinery and Mill Work 8vo,	3	00
* Tillson's Complete Automobile Instructor16mo,	1	50
* Titsworth's Elements of Mechanical DrawingOblong 8vo,	1	25
Warren's Elements of Machine Construction and Drawing	7	50
* Waterbury's Vest Pocket Hand-book of Mathematics for Engineers.		
$2\frac{1}{5} \times 5\frac{3}{5}$ inches, mor.	1	00
Weisbach's Kinematics and the Power of Transmission. (Herrmann-		
Klein.)	5	00
Machinery of Transmission and Governors. (Hermann-Klein.)8vo,	5	00
Wood's Turbines	2	50

MATERIALS OF ENGINEERING.

* Bovey's Strength of Materials and Theory of Structures	7	50
Burr's Elasticity and Resistance of the Materials of Engineering8vo,	7	50
Church's Mechanics of Engineering	6	00
* Greene's Structural Mechanics	2	50
* Holley's Lead and Zinc PigmentsLarge 12mo	3	00
Holley and Ladd's Analysis of Mixed Paints, Color Pigments, and Varnishes.		
Large 12mo,	2	50
Johnson's (C. M.) Rapid Methods for the Chemical Analysis of Special		
Steels, Steel-Making Alloys and GraphiteLarge 12mo,	3	00
Johnson's (J. B.) Materials of Construction	6	00
Keep's Cast Iron	2	50
Lanza's Applied Mechanics	7	50
Maire's Modern Pigments and their Vehicles	2	00
Martens's Handbook on Testing Materials. (Henning.)	7	50
Maurer's Techincal Mechanics8vo.	4	00
Merriman s Mechanics of Materials	5	00
* Strength of Materials	1	00
Metcalf's Steel. A Manual for Steel-users	2	00
Sabin's Industrial and Artistic Technology of Paint and Varnish 8vo.	3	00
Smith's ((A. W.) Materials of Machines	1	00
Smith's (H. E.) Strength of Material		
Thurston's Materials of Engineering	8	00
Part I. Non-metallic Materials of Engineering,	2	00
Part II. Iron and Steel	3	50
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their		
Constituents	2	50
Wood's (De V.) Elements of Analytical Mechanics	3	00
Treatise on the Resistance of Materials and an Appendix on the		
Preservation of Timber	2	00
Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and		
Steel	4	00

STEAM-ENGINES AND BOILERS.

Berry's Temperature-entropy Diagram	2 00
Carnot's Reflections on the Motive Power of Heat. (Thurston.)12mo,	1 50
Chase's Art of Pattern Making12mo,	2 50
Creighton's Steam-engine and other Heat Motors	5 00
Dawson's "Engineering" and Electric Traction Pocket-book 16mo, mor.	5 00
Ford's Boiler Making for Boiler Makers	1 00
* Gebhardt's Steam Power Plant Engineering	6 00
Goss's Locomotive Performance	5 00
Hemenway's Indicator Practice and Steam-engine Economy12mo,	2 00
Hutton's Heat and Heat-engines	5 00
Mechanical Engineering of Power Plants	5 00
Kent's Steam boiler Economy	4 00

Kneass's Practice and Theory of the Injector	\$1	50
MacCord's Slide-valves	2	00
Meyer's Modern Locomotive Construction4to,	10	00
Moyer's Steam Turbine	4	00
Peabody's Manual of the Steam-engine Indicator	1	50
Tables of the Properties of Steam and Other Vapors and Temperature-		
Entropy Table	1	00
Thermodynamics of the Steam-engine and Other Heat-engines 8vo,	5	00
Valve-gears for Steam-engines	2	50
Peabody and Miller's Steam-boilers	4	00
Pupin's Thermodynamics of Reversible Cycles in Gases and Saturated Vapors.		
(Osterberg.)	1	25
Reagan's Locomotives: Simple, Compound, and Electric. New Edition.		
Large 12mo,	3	50
Sinclair's Locomotive Engine Running and Management	2	00
Smart's Handbook of Engineering Laboratory Practice	2	50
Snow's Steam-boiler Practice	3	00
Spangler's Notes on Thermodynamics	1	00
Valve-gears	2	50
Spangler, Greene, and Marshall's Elements of Steam-engineering8vo,	3	00
Thomas's Steam-turbines	4	00
Thurston's Handbook of Engine and Boiler Trials, and the Use of the Indi-		
cator and the Prony Brake	5	00
Handy Tables	1	50
Manual of Steam-boilers, their Designs, Construction, and Operation 8vo,	5	00
Manual of the Steam-engine	10	00
Part I. History, Structure, and Theory	6	00
Part II. Design, Construction, and Operation	6	00
Steam-boiler Explosions in Theory and in Practice	1	50
Wehrenfennig's Analysis and Softening of Boiler Feed-water. (Patterson).		
Svo,	4	00
weisbach's Heat, Steam, and Steam-engines. (Du Bois.)	5	00
Whitham's Steam-engine Design	5	00
wood s I nermodynamics, neat motors, and Refrigerating Machines 8vo.	a	00

MECHANICS PURE AND APPLIED.

Church's Mechanics of Engineering.	8vo,	6	00
Notes and Examples in Mechanics		2	00
Dana's Text-book of Elementary Mechanics for Colleges and	Schools .12mo,	1	50
Du Bois's Elementary Principles of Mechanics:			
Vol. I. Kinematics.		3	50
Vol. II. Statics.		4	00
Mechanics of Engineering, Vol. I.	Small 4to	7	50
Vol. II.	Small 4to	10	00
* Greene's Structural Mechanics	8vo	2	50
James's Kinematics of a Point and the Rational Mechanics of	a Particle	~	00
Junes 3 atmentatics of a 2 only and the automatist of	Large 12mo	2	00
* Johnson's (W. W.) Theoretical Mechanics	12mo	2	00
Lanza's Applied Mechanics	810	7	50
* Martin's Text Book on Mechanics Vol I Statics	19mo	1	95
* Vol II Kinematics and I	Kinotics 12mo	1	20
Maurar's Technical Machanica	Rinetics. 12mo,	1	00
* Marriman's Flomanta of Mashanias	19.000	4	00
Methinal S Elements of Methics		1	00
Mechanics of Materials	ðvo,	5	00
* Michie's Elements of Analytical Mechanics	8vo,	4	00
Robinson's Principles of Mechanism.		3	00
Sanborn's Mechanics Problems.	Large 12mo,	1	50
Schwamb and Merrill's Elements of Mechanism		3	00
Wood's Elements of Analytical Mechanics.		3	00
Principles of Elementary Mechanics	12mo,	1	25

MEDICAL.

* Abderhalden's Physiological Chemistry in Thirty Lectures. (Hall and		
Defren.)	\$5	00
von Behring's Suppression of Tuberculosis. (Bolduan.)12mo,	1	00
Bolduan's Immune Sera	1	50
Bordet's Studies in Immunity. (Gay). (In Press.)		
Davenport's Statistical Methods with Special Reference to Biological Varia-		
tions16mo, mor.	1	50
Ehrlich's Collected Studies on Immunity. (Bolduan.)8vo,	6	00
* Fischer's Physiology of AlimentationLarge 12mo,	2	00
de Fursac's Manual of Psychiatry. (Rosanoff and Collins.)Large 12mo,	2	50
Hammarsten's Text-book on Physiological Chemistry. (Mandel.) 8vo,	4	00
Jackson's Directions for Laboratory Work in Physiological Chemistry8vo,	1	25
Lassar-Cohn's Practical Urinary Analysis. (Lorenz.)12mo,	1	00
Mandel's Hand-book for the Bio-Chemical Laboratory12mo,	1	50
* Pauli's Physical Chemistry in the Service of Medicine. (Fischer.)12mo,	1	25
* Pozzi-Escot's Toxins and Venoms and their Antibodies. (Cohn.) 12mo,	1	00
Rostoski's Serum Diagnosis. (Bolduan.)12mo,	1	00
Ruddiman's Incompatibilities in Prescriptions	2	00
Whys in Pharmacy12mo,	1	00
Salkowski's Physiological and Pathological Chemistry. (Orndorff.)8vo,	2	50
* Satterlee's Outlines of Human Embryology12mo,	1	25
Smith's Lecture Notes on Chemistry for Dental Students	2	50
* Whipple's Tyhpoid Fever Large 12mo,	3	00
Woodhull's Notes on Military Hygiene16mo,	1	50
* Personal Hygiene	1	00
Worcester and Atkinson's Small Hospitals Establishment and Maintenance,		
and Suggestions for Hospital Architecture, with Plans for a Small		
Hospital12mo,	1	25

METALLURGY.

Betts's Lead Refining by Electrolysis8vo,	4	00
Bolland's Encyclopedia of Founding and Dictionary of Foundry Terms used		
in the Practice of Moulding	3	00
Iron Founder	2	50
" " Supplement	2	50
Douglas's Untechnical Addresses on Technical Subjects	1	00
Goesel's Minerals and Metals: A Reference Book16mo, mor.	3	00
* Iles's Lead-smelting	2	50
Johnson's Rapid Methods for the Chemical Analysis of Special Steels,		
Steel-making Alloys and GraphiteLarge 12mo,	3	00
Keep's Cast Iron	2	50
Le Chatelier's High-temperature Measurements. (Boudouard-Burgess.)		
12mo,	3	00
Metcalf's Steel. A Manual for Steel-users	2	00
Minet's Production of Aluminum and its Industrial Use. (Waldo.) 12mo,	2	50
Ruer's Elements of Metallography. (Mathewson)8vo,		
Smith's Materials of Machines	1	00
Tate and Stone's Foundry Practice12mo,	2	00
Thurston's Materials of Engineering. In Three Parts	8	00
Part I. Non-metallic Materials of Engineering, see Civil Engineering,		
page 9.		
Part II. Iron and Steel8vo,	3	50
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their		
Constituents	2	50
Ulke's Modern Electrolytic Copper Refining	3	00
West's American Foundry Practice12mo,	2	50
Moulders' Text Book12mo,	2	50

MINERALOGY.

Baskerville's Chemical Elements. (In Preparation.).		
Boyd's Map of Southwest VirginiaPocket-book form.	\$2	00
* Browning's Introduction to the Rarer Elements	1	50
Brush's Manual of Determinative Mineralogy. (Penfield.)	4	00
Butler's Pocket Hand-book of Minerals	3	00
Chester's Catalogue of Minerals	1	00
Cloth.	1	25
* Crane's Gold and Silver	5	00
Dana's First Appendix to Dana's New "System of Mineralogy". Large 8vo.	1	00
Dana's Second Appendix to Dana's New "System of Mineralogy."		
Large 8vo.		
Manual of Mineralogy and Petrography	2	00
Minerals and How to Study Them	1	50
System of MineralogyLarge 8vo. half leather.	12	50
Text-book of Mineralogy	4	00
Douglas's Untechnical Addresses on Technical Subjects	1	00
Eakle's Mineral Tables	1	25
Eckel's Stone and Clay Products Used in Engineering. (In Preparation).	-	
Goesel's Minerals and Metals: A Reference Book	3	00
Groth's Introduction to Chemical Crystallography (Marshall)	1	25
* Haves's Handbook for Field Geologists	1	50
Iddings's Igneous Bocks	5	00
Rock Minerals Svo	5	00
Johannsen's Determination of Rock-forming Minerals in Thin Sections 8vo.	~	
With Thump Index	5	00
* Martin's Laboratory Guide to Qualitative Analysis with the Blow-	0	00
nine		60
Merrill's Non-metallic Minerals Their Occurrence and Uses 8vo	4	00
Stones for Building and Decoration 8vo	5	00
* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests	0	00
Svo paper		50
Tables of Minerals Including the Use of Minerals and Statistics of		00
Domestic Production	1	00
* Pirsson's Rocks and Rock Minerals. 12mo	2	50
* Richards's Synopsis of Mineral Characters	1	25
* Riss's Clavs' Their Occurrence Properties and Uses. 8vo	5	00
* Ries and Leighton's History of the Clay-working Industry of the United	0	00
States	2	50
* Tillman's Text-book of Important Minerals and Rocks	2	00
Washington's Manual of the Chemical Analysis of Rocks 8vo	2	00

MINING.

* Beard's Mine Gases and Explosions Large 12mo,	3	00
Boyd's Map of Southwest Virginia Pocket-book form,	2	00
* Crane's Gold and Silver8vo.	5	00
* Index of Mining Engineering Literature	4	00
* 8vo. mor.	5	00
Douglas's Untechnical Addresses on Technical Subjects	1	00
Eissler's Modern High Explosives	4	00
Goesel's Minerals and Metals: A Reference Book16mo, mor.	3	00
Ihlseng's Manual of Mining	5	00
* Iles's Lead Smelting	2	50
Peele's Compressed Air Plant for Mines	3	00
Riemer's Shaft Sinking Under Difficult Conditions. (Corning and Peele).8vo.	3	00
* Weaver's Military Explosives	3	00
Wilson's Hydraulic and Placer Mining. 2d edition rewritten12mo,	2	50
Treatise on Practical and Theoretical Mine Ventilation 12mo.	1	25

SANITARY SCIENCE.

Association of State and National Food and Dairy Departments, Hartford		
Meeting, 1906	\$3	00
Jamestown Meeting, 19078vo,	3	00
* Bashore's Outlines of Practical Sanitation	1	25
Sanitation of a Country House12mo,	1	00
Sanitation of Recreation Camps and Parks	1	00
Folwell's Sewerage. (Designing, Construction, and Maintenance.)8vo,	3	00
Water-supply Engineering	4	00
Fowler's Sewage Works Analyses	2	00
Fuertes's Water-filtration Works12mo,	2	50
Water and Public Health	1	50
Gerhard's Guide to Sanitary Inspections12mo,	1	50
* Modern Baths and Bath Houses	3	00
Sanitation of Public Buildings12mo,	1	50
Hazen's Clean Water and How to Get It Large 12mo,	1	50
Filtration of Public Water-supplies	3	00
Kinnicut, Winslow and Pratt's Purification of Sewage. (In Preparation.)		
Leach's Inspection and Analysis of Food with Special Reference to State		
Control	7	50
Mason's Examination of Water. (Chemical and Bacteriological)12mo,	1	25
Water-supply. (Considered principally from a Sanitary Standpoint).		
8vo,	4	00
* Merriman's Elements of Sanitary Enigneering	2	00
Ogden's Sewer Construction	3	00
Sewer Design12mo,	2	00
Parsons's Disposal of Municipal Refuse	2	00
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer-		
ence to Sanitary Water Analysis	1	50
* Price's Handbook on Sanitation	1	50
Richards's Cost of Cleanness	1	00
Cost of Food. A Study in Dietaries	1	00
Cost of Living as Modified by Sanitary Science	1	00
Cost of Shelter	1	00
* Richards and Williams's Dietary Computer	1	50
Richards and Woodman's Air, Water, and Food from a Sanitary Stand-	~	~~
point	2	00
* Richey's Plumbers', Steam-fitters', and Tinners' Edition (Building		
Mechanics Ready Reference Series)	1	50
Rideal's Disinfection and the Preservation of Food	4	00
Sewage and Bacterial Purification of Sewage	4	00
Soper's Air and Ventilation of Subways	z	50
Turneaure and Russell's Public Water-supplies	5	00
venable s Garbage Crematories in America	2	00
Method and Devices for Bacterial Treatment of Sewage	3	00
Which and whipple's Freshwater Biology. (In Press.)	0	50
* Turcheid Perer	3	00
Value of Burge Wester	3	00
Winslow's Systematic Relationship of the Cossesson Large 12mo,	2	50
THINKING STALLIGHT, REALITING OF THE COULDCEE,	- 4	111

MISCELLANEOUS.

Emmons's Geological Guide-book of the Rocky Mountain Excursion of the		
International Congress of Geologists Large 8vo.	1	50
Ferrel's Popular Treatise on the Winds	4	00
Fitzgerald's Boston Machinist	1	00
Gannett's Statistical Abstract of the World		75
Haines's American Railway Management	2	50
Hanausek's The Microscopy of Technical Products, (Winton)8vo,	5	00

Jacobs's Betterment Briefs. A Collection of Published Papers on Or-		
ganized Industrial Efficiency	\$3	50
Metcalfe's Cost of Manufactures, and the Administration of Workshops8vo,	5	00
Putnam's Nautical Charts	2	00
Ricketts's History of Rensselaer Polytechnic Institute 1824-1894.		
Large 12mo,	3	00
Rotherham's Emphasised New Testament Large 8vo,	2	00
Rust's Ex-Meridian Altitude, Azimuth and Star-finding Tables8vo,	5	00
Standage's Decoration of Wood, Glass, Metal, etc	2	00
Thome's Structural and Physiological Botany. (Bennett)	2	25
Westermaier's Compendium of General Botany. (Schneider)8vo.	2	00
Winslow's Elements of Applied Microscopy12mo,	1	50

HEBREW AND CHALDEE TEXT-BOOOKS.

Gesenius's Hebrew and Chaldee Lexicon to the Old Testament Scriptures.		
(Tregelles.)Small 4to, half mor,	5	00
Green's Elementary Hebrew Grammar12mo,	1	25

LIBRARP UNIVERSITY OF CALIFORNIA

THE UNIVERSITY OF CALIFORNIA LIBRARY

196479

TJ270

1909

73

