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PREFACE

A book upon the teaching of geometry may be planned

in divers ways. It may be written to exploit a new
theory of geometry, or a new method of presenting the

science as we already have it. On the other hand, it

may be ultraconservative, making a plea for the ancient

teaching and the ancient geometry. It may be prepared

for the purpose of setting forth the work as it now is,

or with the tempting but dangerous idea of prophecy.

It may appeal to the iconoclast by its spirit of destruc-

tion, or to the disciples of laissez faire by its spirit of

conserving what the past has bequeathed. It may be

written for the few who always lead, or think they lead,

or for the many who are ranked by the few as followers.

And in view of < these varied pathways into the joint

domain of geometry and education, a writer may well

afford to pause before he sets his pen to paper, and

to decide with care the route that he will take.

At present in America we have a fairly well-defined

body of matter in geometry, and this occupies a fairly

well-defined place in the curriculum. There are not

wanting many earnest teachers who would change both

the matter and the place in a very radical fashion.

There are not wanting others, also many in number, who
are content with things as they find them. But by far

the largest part of the teaching body is of a mind to

welcome the natural and gradual evolution of geometry

toward better things, contributing to this evolution as

iii



iv PREFACE

much as it can, glad to know the best that others have

to offer, receptive of ideas that make for better teaching,

but out of sympathy with either the extreme of revolu-

tion or the extreme of stagnation.

It is for this larger class, the great body of progressive

teachers, that this book is written. It stands for vitaliz-

ing geometry in every legitimate way ; for improving the

subject matter in such manner as not to destroy the

pupil's interest ; for so teaching geometry as to make it

appeal to pupils as strongly as any other subject in the

curriculum ; but for the recognition of geometry for

geometry's sake and not for the sake of a fancied utility

that hardly exists. Expressing full appreciation of the

desirability of establishing a motive for all studies, so as

to have the work proceed with interest and vigor, it does

not hesitate to express doubt as to certain motives that

have been exploited, nor to stand for such a genuine,

thought-compelling development of the science as is in

harmony with the mental powers of the pupils in the

American high school.

For this class of teachers the author hopes that the

book will prove of service, and that through its peru-

sal they will come to admire the subject more and more,

and to teach it with greater interest. It offers no pana-

cea, it champions no single method, but it seeks to set

forth plainly the reasons for teaching a geometry of the

kind that we have inherited, and for hoping for a grad-

ual but definite improvement in the science and in the

methods of its presentation.

DAVID EUGENE SMITH
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THE TEACHING OF GEOMETRY

( HAPTER I

( ERTAIN QUES1 [ONS NOW AT [SSUE

It is commonly said at the present time

opening of the twentieth century Lb a period of nam
advancement in all that has to do with the schooL It

would be pleasant to feel that we are living in such aji

. but it Lb doubtful it' the future historian of educa-

tion will find this to be the case, or that biographers

will rank the leaders of our generation relatively 3

high as many who have passed away, or that an

: the present will be found that measure

up to certain ones that the world now
ch-making. E „ tion since the invention of

printing has been a period of agitation in educatii

matters, but out of all the noise and self-assertion, out

of all the pret< thronic revolutionist, out of all

the sham that le a little is remem-

d that we are apt to feel that the past had no prob-

lems and was content simply to accept its inheritance.

In one sense it is not a misfortune thus to V blin<

the dust of present agitation and to be deafened by

the noisy clamor of the agitator, since it stirs iu

action at finding om in the midst of the skirmish;

but in another sense it ia detrimental to our progi

1



2 THE TEACHING OF GEOMETRY

since we thereby tend to lose the idea of perspective,

and the coin comes to appear to our vision as large as

the moon.

In considering a question like the teaching of geome-

try, we at once find ourselves ~in the midst of a skirmish

of this nature. If we join thoughtlessly in the noise, we
may easily persuade ourselves that we are waging a

mighty battle, fighting for some stupendous principle,

doing deeds of great valor and of personal sacrifice. If,

on the other hand, we stand aloof and think of the

present movement as merely a chronic effervescence,

fostered by the professional educator at the expense of

the practical teacher, we are equally shortsighted. Sir

Conan Doyle expressed this sentiment most delightfully

in these words

:

The dead are such good company that one may come to

think too little of the living. It is a real and pressing danger

with many of ns that we should never find our own thoughts

and our own souls, but be ever obsessed by the dead.

In every generation it behooves the open-minded,

earnest, progressive teacher to seek for the best in the

way of improvement, to endeavor to sift the few grains

of gold out of the common dust, to weigh the values of

proposed reforms, and to put forth his efforts to know

and to use the best that the science of education has to

offer. This has been the attitude of mind of the real

leaders in the school life of the past, and it will be that

of the leaders of the future.

With these remarks to guide us, it is now proposed

to take up the issues of the present day in the teaching

of geometry, in order that we may consider them calmly

and dispassionately, and may see where the opportunities

for improvement lie.
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At the present time, in the educational circles of the

United States, questions of the following type are caus-

ing the chief discussion among teachers of geometry :

1. Shall geometry continue to be taught as an appli-

cation of logic, or shall it be treated solely with refer-

ence to its applications ?

2. If the latter is the purpose in view, shall the

propositions of geometry be limited to those that offer

an opportunity for real application, thus contracting the

whole subject to very narrow dimensions ?

3. Shall a subject called geometry be extended over

several years, as is the case in Europe, 1 or shall the

name be applied only to serious demonstrative geome-

try 2 as given in the second year of the four-year high-

school course in the United States at present ?

4. Shall geometry be taught by itself, or shall it be

either mixed with algebra (say a day of one subject

followed by a day of the other) or fused with it in the

form of a combined mathematics ?

5. Shall a textbook be used in which the basal propo-

sitions are proved in full, the exercises furnishing the

opportunity for original work and being looked upon as

the most important feature, or shall one be employed in

which the pupil is expected to invent the proofs for the

basal propositions as well as for the exercises ?

6. Shall the terminology and the spirit of a modified

Euclid and Legendre prevail in the future as they have

1 And really, though not nominally, in the United States, where
the first concepts are found in the kindergarten, and where an

excellent course in mensuration is given in any of our better class of

arithmetics. That we are wise in not attempting serious demonstrative

geometry much earlier seems to be generally conceded.
2 The third stage of geometry as defined in the recent circular

(No. 711) of the Britisli Board of Education, London, 1909.
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in the past, or shall there be a revolution in the use of

terms and in the general statements of the propositions ?

7. Shall geometry be made a strong elective subject,

to be taken only by those whose minds are capable of

serious work? Shall it be a required subject, diluted to

the comprehension of the weakest minds? Or is it now,

by proper teaching, as suitable for all pupils as is any

other required subject in the school curriculum ? And
in any case, will the various distinct types of high schools

now arising call for distinct types of geometry ?

This brief list might easily be amplified, but it is suffi-

ciently extended to set forth the trend of thought at the

present time, and to show that the questions before the

teachers of geometry are neither particularly novel nor

particularly serious. These questions and others of simi-

lar nature are really side issues of two larger questions

of far greater significance: (1) Are the reasons for teach-

ing demonstrative geometry such that it should be a

required subject, or at least a subject that is strongly

recommended to all, whatever the type of high school?

(2) If so, how can it be made interesting ?

The present work is written with these two larger

questions in mind, although it considers from time to

time the minor ones already mentioned, together with

others of a similar nature. It recognizes that the recent

growth in popular education has brought into the high

school a less carefully selected type of mind than was

formerly the case, and that for this type a different kind

of mathematical training will naturally be developed. It

proceeds upon the theory, however, that for the normal

mind,— for the boy or girl who is preparing to win out

in the long run,— geometry will continue to be taught as

demonstrative geometry, as a vigorous thought-compelling
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subject, and along the general lines that the experience

of the world has shown to be the best. Soft mathe-

matics is not interesting to this normal mind, and a sham

treatment will never appeal to the pupil; and this book

is written for teachers who believe in this principle,

who believe in geometry for the sake of geometry, and

who earnestly seek to make the subject so interesting

that pupils will wish to study it whether it is required

or elective. The work stands for the great basal proposi-

tions that have come down to us, as logically arranged

and as scientifically proved as the powers of the pupils

in the American high school will permit; and it seeks to

tell the story of these propositions and to show their

possible and their probable applications in such a way
as to furnish teachers with a fund of interesting material

with which to supplement the book work of their classes.

After all, the problem of teaching any subject comes

down to this : Get a subject worth teaching and then

make every minute of it interesting. Pupils do not

object to work if they like a subject, but they do

object to aimless and uninteresting tasks. Geometry

is particularly fortunate in that the feeling of accom-

plishment comes with every proposition proved ; and,

given a class of fair intelligence, a teacher must be

lacking in knowledge and enthusiasm who cannot foster

an interest that will make geometry stand forth as the

subject that brings the most pleasure, and that seems

the most profitable of all that are studied in the first

years of the high school.

Continually to advance, continually to attempt to

make mathematics fascinating, always to conserve the

best of the old and to sift out and use the best of the

new, to believe that " mankind is better served by
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nature's quiet and progressive changes than by earth-

quakes," x to believe that geometry as geometry is so val-

uable andso interesting that the normal mind may rightly

demand it, — this is to ally ourselves with progress.

Continually to destroy, continually to follow strange

gods, always to decry the best of the old, and to have no

well-considered aim in the teaching of a subject,— this is

to join the forces of reaction, to waste our time, to be

recreant to our trust, to blind ourselves to the failures

of the past, and to confess our weakness as teachers. It

is with the desire to aid in the progressive movement,

to assist those who believe that real geometry should

be recommended to all, and to show that geometry is

both attractive and valuable that this book is written.

1 The closing words of a sensible review of the British Board of

Education circular (No. 711), on "The Teaching of Geometry"
(London, 1909), by H. S. Hall in the School World, 1909, p. 222.



CHAPTER II

WHY GEOMETRY IS STUDIED

With geometry, as with other subjects, it is easier to

set forth what are not the reasons for studying it than

to proceed positively and enumerate the advantages.

Although such a negative course is not satisfying to

the mind as a finality, it possesses definite advantages

in the beginning of such a discussion as this. Whenever
false prophets arise, and with an attitude of pained

superiority proclaim unworthy aims in human life,

it is well to show the fallacy of their position before

proceeding to a constructive philosophy. Taking for a

moment this negative course, let us inquire as to what

are not the reasons for studying geometry, or, to be

more emphatic, as to what are not the worthy reasons.

In view of a periodic activity in favor of the utilities

of geometry, it is well to understand, in the first place,

that geometry is not studied, and never has been stud-

ied, because of its positive utility in commercial life or

even in the workshop. In America we commonly allow

at least a year to plane geometry and a half year to

solid geometry; but all of the facts that a skilled

mechanic or an engineer would ever need could be

taught in a few lessons. All the rest is either obvious

or is commercially and technically useless. We prove,

for example, that the angles opposite the equal sides of

a triangle are equal, a fact that is probably quite as

obvious as the postulate that but one line can be drawn
7
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through a given point parallel to a given line. We then

prove, sometimes by the unsatisfactory process of reductio

ad absurdum, the converse of this proposition,— a fact

that is as obvious as most other facts that come to our

consciousness, at least after the preceding proposition

has been proved. And these two theorems are perfectly

fair types of upwards of one hundred sixty or seventy

propositions comprising Euclid's books on plane geom-

etry. They are generally not useful in daily life, and

they were never intended to be so. There is an oft-

repeated but not well-authenticated story of Euclid that

illustrates the feeling of the founders of geometry as

well as of its most worthy teachers. A Greek writer,

Stobaeus, relates the story in these words

:

Some one who had begun to read geometry with Euclid, when
he had learned the first theorem, asked, " But what shall I get

by learning these things?" Euclid called his slave and said,

" Give him three obols, since he must make gain out of what he

learns.
,,

Whether true or not, the story expresses the senti-

ment that runs through Euclid's work, and not improb-

ably we have here a bit of real biography,— practically

all of the personal Euclid that has come down to us

from the world's first great textbook maker. It is well

that we read the story occasionally, and also such words

as the following, recently uttered 1 by Sir Conan Doyle,

— words bearing the same lesson, although upon a dif-

ferent theme

:

In the present utilitarian age one frequently hears the ques-

tion asked, " What is the use of it all ? " as if every noble deed

was not its own justification. As if every action which makps for

1 In an address in London, June 15, 1909, at a dinner to Sir Ernest

Shackelton.
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self-denial, for hardihood, and for endurance was not in itself a

most precions lesson to mankind. That people can be found to

ask such a question shows how far materialism has gone, and how
needful it is that we insist upon the value of all that is nobler

and higher in life.

An American statesman and jurist, speaking upon a

similar occasion, 1 gave utterance to the same sentiments

in these words

:

AVhen the time comes that knowledge will not be sought for

its own sake, and men will not press forward simply in a desire

of achievement, without hope of gain, to extend the limits of

human knowledge and information, then, indeed, will the race

enter upon its decadence.

There have not been wanting, however, in every age,

those whose zeal is in inverse proportion to their expe-

rience, who were possessed with the idea that it is the

duty of the schools to make geometry practical. We
have them to-day, and the world had them yesterday,

and the future shall see them as active as ever.

These people do good to the world, and their labors

should always be welcome, for out of the myriad of

suggestions that they make a few have value, and these

are helpful both to the mathematician and the artisan.

Not infrequently they have contributed material that

serves to make geometry somewhat more interesting, but

it must be confessed that most of their work is merely

the threshing of old straw, like the work of those who
follow the will-o'-the-wisp of the circle squarers. The
medieval astrologers wished to make geometry more

practical, and so thej^ carried to a considerable length

the study of the star polygon, a figure that they could

use in their profession. The cathedral builders, as their

1 Governor Hughes, now Justice Hughes, of New York, at the

Peary testimonial on February 8, 1910, at New York City.
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art progressed, found that architectural drawings were

more exact if made with a single opening of the com-

passes, and it is probable that their influence led to the

development of this phase of geometry in the Middle

Ages as a practical application of the science. Later, and

about the beginning of the sixteenth century, the revival

of art, and particularly the great development of paint-

ing, led to the practical application of geometry to the

study of perspective and of those curves 1 that occur

most frequently in the graphic arts. The sixteenth and

seventeenth centuries witnessed the publication of a large

number of treatises on practical geometry, usually relat-

ing to the measuring of distances and partly answering

the purposes of our present trigonometry. Such were

the well-known treatises of Belli (1569), Cataneo(1567),

and Bartoli (1589). 2

The period of two centuries from about 1600 to about

1800 was quite as much given to experiments in the

creation of a practical geometry as is the present time,

and it was no doubt as much by way of protest against

this false idea of the subject as a desire to improve

upon Euclid that led the great French mathematician,

Legendre, to publish his geometry in 1794,— a work

that soon replaced Euclid in the schools of America.

It thus appears that the effort to make geometry prac-

tical is by no means new. Euclid knew of it, the Mid-

dle Ages contributed to it, that period vaguely styled the

Renaissance joined in the movement, and the first three

centuries of printing contributed a large literature to the

1 The first work upon this subject, and indeed the first printed

treatise on curves in general, was written by the famous artist of

Nurnberg, Albrecht Durer.
2 Several of these writers are mentioned in Chapter IV.
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subject. Out of all this effort some genuine good remains,

but relatively not very much. 1 And so it will be with

the present movement ; it will serve its greatest purpose

in making teachers think and read, and in adding to

their interest and enthusiasm and to the interest of their

pupils ; but it will not greatly change geometry, because

no serious person ever believed that geometry was taught

chiefly for practical purposes, or was made more inter-

esting or valuable through such a pretense. Changes in

sequence, in definitions, and in proofs will come little by

little ; but that there will be any such radical change in

these matters in the immediate future, as some writers

have anticipated, is not probable. 2

A recent writer of much acumen 3 has summed up

this thought in these words

:

Not one tenth of the graduates of our high schools ever enter

professions in which their algebra and geometry are applied to

concrete realities ; not one day in three hundred sixty-five is a

high-school graduate called upon to " apply," as it is called, an

algebraic or a geometrical proposition. . . . Why, then, do we
teach these subjects, if this alone is the sense of the word " prac-

tical "
! . . . To me the solution of this paradox consists in boldly

confronting the dilemma, and in saying that our conception of

the practical utility of those studies must be readjusted, and that

we have frankly to face the truth that the " practical " ends we
seek are in a sense ideal practical ends, yet such as have, after all,

an eminently utilitarian value in the intellectual sphere.

1 If any reader chances upon George Birkbeck's English transla-

tion of Charles Dupin's " Mathematics Practically Applied," Halifax,

1854, he will find that Dupin gave more good applications of geometry
than all of our American advocates of practical geometry combined.

2 See, for example, Henrici's " Congruent Figures," London, 1879,

and the review of Borel's ''Elements of Mathematics," by Professor

Sisam in the Bulletin of the American Mathematical Society, J uly, 1910,

a matter discussed later in this work.
3 T. J. McCormack, "Why do we study Mathematics: a Philo-

sophical and Historical Retrospect," p. 9, Cedar Rapids, Iowa, 1910.
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He quotes from C. S. Jackson, a progressive contem-

porary teacher of mechanics in England, who speaks of

pupils confusing millimeters and centimeters in some

simple computation, and who adds

:

There is the enemy ! The real enemy we have to fight against,

whatever we teach, is carelessness, inaccuracy, forgetfillness, and

slovenliness. That battle has been fought and won with diverse

weapons. It has, for instance, been fought with Latin grammar
before now, and won. I say that because we must be very care-

ful to guard against the notion that there is any one panacea for

this sort of thing. It borders on quackery to say that elementary

physics will cure everything.

And of course the same thing maybe said for mathematics.

Nevertheless it is doubtful if we have any other subject

that does so much to bring to the front this danger of

carelessness, of slovenly reasoning, of inaccuracy, and of

forgetfulness as this science of geometry, which has been

so polished and perfected as the centuries have gone on.

There have been those who did not proclaim the utili-

tarian value of geometry, but who fell into as serious an

error, namely, the advocating of geometry as a means of

training the memory. In times not so very far past, and

to some extent to-day, the memorizing of proofs has been

justified on this ground. This error has, however, been

fully exposed by our modern psychologists. They have

shown that the person who memorizes the propositions

of Euclid by number is no more capable of memorizing

other facts than he was before, and that the learning of

proofs verbatim is of no assistance whatever in retaining

matter that is helpful in other lines of work. Geometry,

therefore, as a training of the memory is of no more value

than any other subject in the curriculum.

If geometry is not studied chiefly because it is prac-

tical, or because it trains the memory, what reasons can
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be adduced for its presence in the courses of study of

every civilized country ? Is it not, after all, a mere fetish,

and are not those virulent writers correct who see noth-

ing good in the subject save only its utilities ? x Of this

type one of the most entertaining is William J. Locke,2

whose words upon the subject are well worth reading

:

... I earned my living at school slavery, teaching to children

the .most useless, the most disastrous, the most soul-cramping

branch of knowledge wherewith pedagogues in their insensate

folly have crippled the minds and blasted the lives of thousands

of their fellow creatures— elementary mathematics. There is no

more reason for any human being on God's earth to be acquainted

with the binomial theorem or the solution of triangles, unless

he is a professional scientist,— when he can begin to specialize in

mathematics at the same age as the lawyer begins to specialize

in law or the surgeon in anatomy,— than for him to be expert in

Choctaw, the Cabala, or the Book of Mormon. I look back with

feelings of shame and degradation to the days when, for a crust

of bread, I prostituted my intelligence to wasting the precious

hours of impressionable childhood, which could have been filled

with so many beautiful and meaningful things, over this utterly

futile and inhuman subject. It trains the mind,— it teaches boys

to think, they say. It does n't. In reality it is a cut-and-dried sub-

ject, easy to fit into a school curriculum. Its sacrosanctity saves

educationalists an enormous amount of trouble, and its chief use

is to enable mindless young men from the universities to make a

dishonest living by teaching it to others, who in their turn may
teach it to a future generation.

To be fair we must face just such attacks, and we
must recognize that they set forth the feelings of many

1 Of the fair and candid arguments against the culture value of

mathematics, one of the best of the recent ones is that by G. F. Swain,

in the Atti del IV Congresso Internazionale del Matematici, Rome,
1909, Vol. Ill, p. 361. The literature of this school is quite exten-

sive, but Perry's "England's Neglect of Science," London, 1900,

and " Discussion on the Teaching of Mathematics," London, 1901,

are typical.
2 In his novel, "The Morals of Marcus Ordeyne."
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honest people. One is tempted to inquire if Mr. Locke

could have written in such an incisive style if he had not,

as was the case, graduated with honors in mathematics

at one of the great universities. But he might reply that

if his mind had not been warped by mathematics, he

would have written more temperately, so the honors in

the argument would be even. Much more to the point is

the fact that Mr. Locke taught mathematics in the schools

of England, and that these schools do not seem to the

rest of the world to furnish a good type of the teaching

of elementary mathematics. No country goes to England

for its model in this particular branch of education,

although the work is rapidly changing there, and Mr.

Locke pictures a local condition in teaching rather than

a general condition in mathematics. Few visitors to the

schools of England would care to teach mathematics as

they see it taught there, in spite of their recognition of

the thoroughness of the work and the earnestness of

many of the teachers. It is also of interest to note that

the greatest protests against formal mathematics have

come from England, as witness the utterances of such

men as Sir William Hamilton and Professors Perry,

Minchin, Henrici, and Alfred Lodge. It may therefore

be questioned whether these scholars are not uncon-

sciously protesting against the English methods and

curriculum rather than against the subject itself. When
Professor Minchin says that he had been through the

six books of Euclid without really understanding an

angle, it is Euclid's text and his own teacher that are

at fault, and not geometry.

Before considering directly the question as to why
geometry should be taught, let us turn for a moment to

the other subjects in the secondary curriculum. Why,
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for example, do we study literature ? " It does not lower

the price of bread," as Malherbe remarked in speaking

of the commentary of Bachet on the great work of

Diophantus. Is it for the purpose of making authors ?

Not one person out of ten thousand who study literature

ever writes for publication. And why do we allow pupils

to waste their time in physical education ? It uses valu-

able hours, it wastes money, and it is dangerous to life

and limb. Would it not be better to set pupils at sawing

wood ? And why do we study music ? To give pleas-

ure by our performances ? How many who attempt to

play the piano or to sing give much pleasure to any but

themselves, and possibly their parents ? The study of

grammar does not make an accurate writer, nor the study

of rhetoric an orator, nor the study of meter a poet, nor

the study of pedagogy a teacher. The study of geography

in the school does not make travel particularly easier,

nor does the study of biology tend to populate the earth.

So we might pass in review the various subjects that

we study and ought to study, and in no case would we
find utility the moving cause, and in every case would

we find it difficult to state the one great reason for the

pursuit of the subject in question,— and so it is with

geometry.

What positive reasons can now be adduced for the

study of a subject that occupies upwards of a year in the

school course, and that is, perhaps unwisely, required of

all pupils ? Probably the primary reason, if we do not

attempt to deceive ourselves, is pleasure. We study

music because music gives us pleasure, not necessarily

our own music, but good music, whether ours, or, as is

more probable, that of others. We study literature

because we derive pleasure from books; the better the
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book the more subtle and lasting the pleasure. We
study art because we receive pleasure from the great

works of the masters, and probably we appreciate them
the more because we have dabbled a little in pigments

or in clay. We do not expect to be composers, or poets,

or sculptors, but we wish to appreciate music and letters

and the fine arts, and to derive pleasure from them and

to be uplifted by them. At any rate, these are the nobler

reasons for their study.

So it is with geometry. We study it because we derive

pleasure from contact with a great and an ancient body

of learning that has occupied the attention of master

minds during the thousands of years in which it has been

perfected, and we are uplifted by it. To deny that our

pupils derive this pleasure from the study is to confess

ourselves poor teachers, for most pupils do have positive

enjoyment in the pursuit of geometry, in spite of the

tradition that leads them to proclaim a general dislike

for all study. This enjoyment is partly that of the game,

— the playing of a game that can always be won, but that

cannot be won too easily. It is partly that of the aesthetic,

the pleasure of symmetry of form, the delight of fitting

things together. But probably it lies chiefly in the men-

tal uplift that geometry brings, the contact with abso-

lute truth, and the approach that one makes to the

Infinite. We are not quite sure of any one thing in

biology ; our knowledge of geology is relatively very

slight, and the economic laws of society are uncertain to

every one except some individual who attempts to set

them forth; but before the world was fashioned the

square on the hypotenuse was equal to the sum of the

squares on the other two sides of a right triangle, and it

will be so after this world is dead : and the inhabitant of
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Mars, if he exists, probably knows its truth as we know

it. The uplift of this contact with absolute truth, with

truth eternal, gives pleasure to humanity to a greater or

less degree, depending upon the mental equipment of the

particular individual; but it probably gives an appreciable

amount of pleasure to every student of geometry who
has a teacher worthy of the name. First, then, and fore-

most as a reason for studying geometry has always stood,

and will always stand, the pleasure and the mental uplift

that comes from contact with such a great body of human
learning, and particularly with the exact truth that it

contains. The teacher who is imbued with this feeling

is on the road to success, whatever method of presenta-

tion he may use; the one who is not imbued with it is

on the road to failure, however logical his presentation

or however large his supply of practical applications.

Subordinate to these reasons for studying geometry

are many others, exactly as with all other subjects of the

curriculum. Geometry, for example, offers the best devel-

oped application of logic that we have, or are likely to

have, in the school course. This does not mean that it

always exemplifies perfect logic, for it does not; but to

the pupil who is not ready for logic, per se, it offers an

example of close reasoning such as his other subjects do

not offer. We may say, and possibly with truth, that

one who studies geometry will not reason more clearly

on a financial proposition than one who does not ; but in

spite of the results of the very meager experiments of the

psychologists, it is probable that the man who has had

some drill in syllogisms, and who has learned to select

the essentials and to neglect the nonessentials in reach-

ing his conclusions, has acquired habits in reasoning that

will help him in every line of work. As part of this
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equipment there is also a terseness of statement and a

clearness in arrangement of points in an argument that

has been the subject of comment by many writers.

Upon this same topic an English writer, in one of the

sanest of recent monographs upon the subject, 1 has

expressed his views in the following words

:

The statement that a given individual has received a sound

geometrical training implies that he has segregated from the

whole of his sense impressions a certain set of these impressions,

that he has then eliminated from their consideration all irrelevant

impressions (in other words, acquired a subjective command of

these impressions), that he has developed on the basis of these

impressions an ordered and continuous system of logical deduc-

tion, and finally that he is capable of expressing the nature of

these impressions and his deductions therefrom in terms simple

and free from ambiguity. Now the slightest consideration will

convince any one not already conversant with the idea, that the

same sequence of mental processes underlies the whole career of

any individual in any walk of life if only he is not concerned

entirely with manual labor ; consequently a full training in the

performance of such sequences must be regarded as forming an

essential part of any education worthy of the name. Moreover,

the full appreciation of such processes has a higher value than is

contained in the mental training involved, great though this be,

for it induces an appreciation of intellectual unity and beauty

which plays for the mind that part which the appreciation of

schemes of shape and color plays for the artistic faculties ; or, again,

that part which the appreciation of a body of religious doctrine

plays for the ethical aspirations. Now geometry is not the sole

possible basis for inculcating this appreciation. Logic is an alter-

native for adults, provided that the individual is possessed of

sufficient wide, though rough, experience on which to base his

reasoning. Geometry is, however, highly desirable in that the

objective bases are so simple and precise that they can be grasped

at an early age, that the amount of training for the imagination is

very large, that the deductive processes are not beyond the scope of

1 G. W. L. Carson, " The Functions of Geometry as a Subject of

Education," p. 3, Tonbridge, 1910.
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ordinary boys, and finally that it affords a better basis for exer-

cise in the art of simple and exact expression than any other

possible subject of a school course.

Are these results really secured by teachers, however,

or are they merely imagined by the pedagogue as a justi-

fication for his existence ? Do teachers have any such

appreciation of geometry as has been suggested, and even

if they have it, do they impart it to their pupils ? In

reply it may be said, probably with perfect safety, that

teachers of geometry appreciate their subject and lead

their pupils to appreciate it to quite as great a degree as

obtains in any other branch of education. What teacher

appreciates fully the beauties of " In Memoriam," or of

" Hamlet," or of " Paradise Lost," and what one inspires

his pupils with all the nobility of these world classics ?

What teacher sees in biology all the grandeur of the

evolution of the race, or imparts to his pupils the noble

lessons of life that the study of this subject should sug-

gest ? What teacher of Latin brings his pupils to read

the ancient letters with full appreciation of the dignity

of style and the nobility of thought that they contain ?

And what teacher of French succeeds in bringing a pupil

to carry on a conversation, to read a French magazine,

to see the history imbedded in the words that are used,

to realize the charm and power of the language, or to

appreciate to the full a single classic ? In other words,

none of us fully appreciates his subject, and none of us

can hope to bring his pupils to the ideal attitude toward

any part of it. But it is probable that the teacher of

geometry succeeds relatively better than the teacher of

other subjects, because the science has reached a rela-

tively higher state of perfection. The body of truth in

geometry has been more clearly marked out, it has been



20 THE TEACHING OF GEOMETRY

more successfully fitted together, its lesson is more patent,

and the experience of centuries has brought it into a

shape that is more usable in the school. While, there-

fore, we have all kinds of teaching in all kinds of sub-

jects, the very nature of the case leads to the belief that

the class in geometry receives quite as much from the

teacher and the subject as the class in any other branch

in the school curriculum.

But is this not mere conjecture ? What are the results

of scientific investigation of the teaching of geometry ?

Unfortunately there is little hope from the results of

such an inquiry, either here or in other fields. We cannot

first weigh a pupil in an intellectual or moral balance,

then feed him geometry, and then weigh him again, and

then set back his clock of time and begin all over again

with the same individual. There is no " before taking
"

and " after taking " of a subject that extends over a year

or two of a pupil's life. We can weigh utilities roughly,

we can estimate the pleasure of a subject relatively, but

we cannot say that geometry is worth so many dollars,

and history so many, and so on through the curriculum.

The best we can do is to ask ourselves what the various

subjects, with teachers of fairly equal merit, have done

for us, and to inquire what has been the experience of

other persons. Such an investigation results in showing

that, with few exceptions, people who have studied

geometry received as much of pleasure, of inspiration,

of satisfaction, of what they call training from geometry

as from any other subject of study,— given teachers of

equal merit,— and that they would not willingly give up

the something which geometry brought to them. If this

were not the feeling, and if humanity believed that

geometry is what Mr. Locke's words would seem to
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indicate, it would long ago have banished it from the

schools, since upon this ground rather than upon the

ground of utility the subject has always stood.

These seem to be the great reasons for the study of

geometry, and to search for others would tend to weaken

the argument. At first sight they may not seem to justify

the expenditure of time that geometry demands, and

they may seem unduly to neglect the argument that

geometry is a stepping-stone to higher mathematics.

Each of these points, however, has been neglected pur-

posely. A pupil has a number of school years at his

disposal : to what shall they be devoted ? To literature ?

What claim has letters that is such as to justify the

exclusion of geometry ? To music, or natural science,

or language ? These are all valuable, and all should be

studied by one seeking a liberal education ; but for the

same reason geometry should have its place. What sub-

ject, in fine, can supply exactly what geometry does ?

And if none, then how can the pupil's time be better

expended than in the study of this science ? x As to the

second point, that a claim should be set forth that geom-

etry is a sine qua non to higher mathematics, this belief

is considerably exaggerated because there are relatively

few who proceed from geometry to a higher branch of

mathematics. This argument would justify its status as

an elective rather than as a required subject.

Let us then stand upon the ground already marked

out, holding that the pleasure, the culture, the mental

poise, the habits of exact reasoning that geometry brings,

*It may well be, however, that the growing curriculum may jus-

tify some reduction in the time formerly assigned to geometry, and
any reasonable proposition of this nature should be fairly met by
teachers of mathematics.
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and the general experience of mankind upon the subject

are sufficient to justify us in demanding for it a reason-

able amount of time in the framing of a curriculum.

Let us be fair in our appreciation of all other branches,

but let us urge that every student may have an oppor-

tunity to know of real geometry, say for a single year,

thereafter pursuing it or not, according as we succeed in

making its value apparent, or fail in our attempt to pre-

sent worthily an ancient and noble science to the mind

confided to our instruction.

The shortsightedness of a narrow education, of an

education that teaches only machines to a prospective

mechanic, and agriculture to a prospective farmer, and

cooking and dressmaking to the girl, and that would

exclude all mathematics that is not utilitarian in the

narrow sense, cannot endure.

The community has found out that such schemes may be well

fitted to give the children a good time in school, but lead them

to a bad time afterward. Life is hard work, and if they have

never learned in school to give their concentrated attention to that

which does not appeal to them and which does not interest them

immediately, they have missed the most valuable lesson of their

school years. The little practical information they could have

learned at any time; the energy of attention and concentration

can no longer be learned if the early years are wasted. However

narrow and commercial the standpoint which is chosen may be,

it can always be found that it is the general education which pays

best, and the more the period of cultural work can be expanded

the more efficient will be the services of the school for the prac-

tical services of the nation. 1

Of course no one should construe these remarks as

opposing in the slightest degree the laudable efforts that

are constantly being put forth to make geometry more

1 Professor Munsterberg, in the Metropolitan Magazine for July,

1910.
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interesting and to vitalize it by establishing as strong

motives as possible for its study. Let the home, the

workshop, physics, art, play,— all contribute their quota

of motive to geometry as to all mathematics and all other

branches. But kt us never forget that geometry has a

raison d'etre beyond all this, and that these applications

are sought primarily for the sake of geometry, and that

geometry is not taught primarily for the sake of these

applications.

When we consider how often geometry is attacked by

those who profess to be its friends, and how teachers who
have been trained in mathematics occasionally seem to

make of the subject little besides a mongrel course in

drawing and measuring, all the time insisting that they

are progressive while the champions of real geometry are

reactionary, it is well to read some of the opinions of the

masters. The following quotations may be given occa-

sionally in geometry classes as showing the esteem in

which the subject has been held in various ages, and at

any rate they should serve to inspire the teacher to

greater love for his subject.

The enemies of geometry, those who know it only imperfectly,

look upon the theoretical problems, which constitute the most
difficult part of the subject, as mental games which consume time

and energy that might better be employed in other ways. Such a

belief is false, and it would block the progress of science if it

were credible. But aside from the fact that the speculative prob-

lems, which at first sight seem barren, can often be applied to use-

ful purposes, they always stand as among the best means to

develop and to express all the forces of the human intelligence.

— Abbe Bossut.

The sailor whom an exact observation of longitude saves from
shipwreck owes his life to a theory developed two thousand years

ago by men who had in mind merely the speculations of abstract

geometry.— Condorcet.
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If mathematical heights are hard to climb, the fundamental

principles lie at every threshold, and this fact allows them to be

comprehended by that common sense which Descartes declared

was "apportioned equally among all men."— Collet.

It may seem strange that geometry is unable to define the

terms which it uses most frequently, since it defines neither

movement, nor number, nor space,— the three things with which it

is chiefly concerned. But we shall not be surprised if we stop to

consider that this admirable science concerns only the most sim-

ple things, and the very quality that renders tjiese things worthy

of study renders them incapable of being defined. Thus the very

lack of definition is rather an evidence of perfection than a

defect, since it comes not from the obscurity of the terms, but

from the fact that they are so very well known. — Pascal.

God eternally geometrizes. — Plato.

God is a circle of which the center is everywhere and the cir-

cumference nowhere.— Rabelais.

Without mathematics no one can fathom the depths of philos-

ophy. Without philosophy no one can fathom the depths of

mathematics. Without the two no one can fathom the depths

of anything.— Bordas-Demoulin.

We may look upon geometry as a practical logic, for the truths

wThich it studies, being the most simple and most clearly under-

stood of all truths, are on this account the most susceptible of

ready application in reasoning. — D'Alembert.

The advance and the perfecting of mathematics are closely

joined to the prosperity of the nation.— Napoleon.

Hold nothing as certain save what can be demonstrated.—
Newton.

To measure is to know.— Kepler.

The method of making no mistake is sought by every one.

The logicians profess to show the way, but the geometers alone

ever reach it, and aside from their science then' is no genuine

demonstration.— Pascal.

The taste for exactness, the impossibility of contenting one's

self with vague notions or of leaning upon mere hypotheses, the

necessity for perceiving clearly the connection between certain

propositions and the object in view,— these are the most precious

fruits of the study of mathematics.— Lacroix.
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CHAPTER III

A BRIEF HISTORY OF GEOMETRY

The geometry of very ancient peoples was largely the

mensuration of simple areas and solids, such as is taught

to children in elementary arithmetic to-day. They early

learned how to find the area of a rectangle, and in the

oldest mathematical records that have come down to us

there is some discussion of the area of triangles and the

volume of solids.

The earliest documents that we have relating to geom-

etry come to us from Babylon and Egypt. Those from

Babylon are written on small clay tablets, some of them

about the size of the hand, these tablets afterwards having

been baked in the sun. They show that the Babylonians

of that period knew something of land measures, and per-

haps had advanced far enough to compute the area of a

trapezoid. For the mensuration of the circle they later

used, as did the early Hebrews, the value it = 3. A tab-

let in the British Museum shows that they also used

such geometric forms as triangles and circular segments

in astrology or as talismans. ,

The Egyptians must have had a fair knowledge of

practical geometry long before the date of any mathe-

matical treatise that has come down to us, for the building

of the pyramids, between 3000 and 2400 B.C., required

the application of several geometric principles. Some

knowledge of surveying must also have been necessary

26
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to carry out the extensive plans for irrigation that were

executed under Amenemhat III, about 2200 B.C.

The first definite knowledge that we have of Egyp-

tian mathematics comes to us from a manuscript copied

on papyrus, a kind of paper used about the Mediterranean

in early times. This copy was made by one Aah-mesu

(The Moon-born), commonly called Ahmes, who prob-

ably flourished about 1700 B.C. The original from which

he copied, written about 2300 B.C., has been lost, but the

papyrus of Ahmes, written nearly four thousand years ago,

is still preserved, and is now in the British Museum. In

this manuscript, which is devoted chiefly to fractions and

to a crude algebra, is found some work on mensuration.

Among the curious rules are the incorrect ones that the

area of an isosceles triangle equals half the product of

the base and one of the equal sides ; and that the area of

a trapezoid having bases 6, b
!

, and the nonparallel sides

each equal to a, is \ a(b + 6'). One noteworthy advance

appears, however. Ahmes gives a rule for finding the

area of a circle, substantially as follows : Multiply the

square on the radius by (^g
6-)

2
, which is equivalent to

taking for it the value 3.1605. This papyrus also con-

tains some treatment of the mensuration of solids, par-

ticularly with reference to the capacity of granaries.

There is also some slight mention of similar figures, and

an extensive treatment of unit fractions,— fractions that

were quite universal among the ancients. In the line of

algebra it contains a brief treatment of the equation of

the first degree with one unknown, and of progressions. 1

1 It was published in German translation by A. Eisenlohr, "Ein
mathematisches Handbuch der alten Aegypter," Leipzig, 1877, and
in facsimile by the British Museum, under the title, " The Rhind
Papyrus," in 1898.
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Herodotus tells us that Sesostris, king of Egypt, 1

divided the land among his people and marked out the

boundaries after the overflow of the Nile, so that survey-

ing must have been well known in his day. Indeed, the

harpedonaptce, or rope stretchers, acquired their name
because they stretched cords, in which were knots, so as

to make the right triangle 3, 4, 5, when they wished to

erect a perpendicular. This is a plan occasionally used

by surveyors to-day, and it shows that the practical

application of the Pythagorean Theorem was known long

before Pythagoras gave what seems to have been the first

general proof of the proposition.

From Egypt, and possibly from Babylon, geometry

passed to the shores of Asia Minor and Greece. The

scientific study of the subject begins with Thales, one of

the Seven Wise Men of the Grecian civilization. Born

at Miletus, not far from Smyrna and Ephesus, about

640 B.C., he died there in 548 B.C. He spent his

early manhood as a merchant, accumulating the wealth

that enabled him to spend his later years in study. He
visited Egypt, and is said to have learned such elements

of geometry as were known there. He founded a school

of mathematics and philosophy at Miletus, known from

the country as the Ionic School. How elementary the

knowledge of geometry then was may be understood

from the fact that tradition attributes only about four

propositions to Thales,— (1) that vertical angles are

equal, (2) that equal angles lie opposite the equal sides

of an isosceles triangle, (3) that a triangle is determined

by two angles and the included side, (4) that a diameter

bisects the circle, and possibly the propositions about the

1 Generally known as Rameses II. He reigned in Egypt about

1350 b.c.
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angle-sum of a triangle for special cases, and the angle

inscribed in a semicircle. 1

The greatest pupil of Thales, and one of the most

remarkable men of antiquity, was Pythagoras. Born

probably on the island of Samos, just off the coast of

Asia Minor, about the year 580 B.C., Pythagoras set forth

as a young man to travel. He went to Miletus and

studied under Thales, probably spent several years in

Egypt, very likely went to Babylon, and possibly went

even to India, since tradition asserts this and the nature

of his work in mathematics suggests it. In later life he

went to a Greek colony in southern Italy, and at Cro-

tona, in the southeastern part of the peninsula, he founded

a school and established a secret society to propagate his

doctrines. In geometry he is said to have been the first

to demonstrate the proposition that the square on the

hypotenuse is equal to the sum of the squares upon

the other two sides of a right triangle. The proposition

was known in India and Egypt before his time, at any

rate for special cases, but he seems to have been the first

to prove it. To him or to his school seems also to have

been due the construction of the regular pentagon and

of the five regular polyhedrons. The construction of the

regular pentagon requires the dividing of a line in

extreme and mean ratio, and this problem is commonly

assigned to the Pythagoreans, although it played an

important part in Plato's school. Pythagoras is also

said to have known that six equilateral triangles, three

1 Two excellent works on Thales and his successors, and indeed the

best in English, are the following : G. J. Allman, " Greek Geometry
from Thales to Euclid," Dublin, 1889

; J. Gow, "A History of Greek
Mathematics, 1

' Cambridge, 1884. On all mathematical subjects the

best general history is that of M. Cantor, " Geschichte der Mathe-
matik," 4 vols, Leipzig, 1880-1908.
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regular hexagons, or four squares, can be placed about
a point so as just to fill the 360°, but that no other reg-

ular polygons can be so placed. To his school is also due
the proof for the general case that the sum of the angles

of a triangle equals two right angles, the first knowledge

of the size of each

angle of a regular

polygon, and the

construction of at

least one star-poly-

gon, the star-pen-

tagon, which be-

came the badge

of his fraternity.

The brotherhood

founded by Py-

thagoras proved

so offensive to the

government that

it was dispersed

before the death

of the master.

Pythagoras fled to

Megapontum, a sea-

port lying to the

north of Crotona,

and there he died

about 501 B.C. 1

For two centuries after Pythagoras geometry passed

through a period of discovery of propositions. The state

1 Another good work on Greek geometry, with considerable mate-
rial on Pythagoras, is by C. A. Bretschneider, " Die Geometrie und
die Geometer vor Eukleides," Leipzig, 1870.

Fanciful Portrait of Pythagoras

Calandri's Arithmetic, 1491
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of the science may be seen from the fact that CEnopides

of Chios, who flourished about 465 B.C., and who had

studied in Egypt, was celebrated because he showed

how to let fall a perpendicular to a line, and how to

make an angle equal to a given angle. A few years

later, about 440 B.C., Hippocrates of Chios wrote the

first Greek textbook on mathematics. He knew that the

areas of circles are proportional to the squares on their

radii, but was ignorant of the fact that equal central

angles or equal inscribed angles intercept equal arcs.

Antiphon and Bryson, two Greek scholars, flourished

about 430 B.C. The former attempted to find the area of

a circle by doubling the number of sides of a regular

inscribed polygon, and the latter by doing the same for

both inscribed and circumscribed polygons. They thus

approximately exhausted the area between the polygon

and the circle, and hence this method is known as the

method of exhaustions.

About 420 B.C. Hippias of Elis invented a certain

curve called the quadratrix, by means of which he

could square the circle and trisect any angle. This

curve cannot be constructed by the unmarked straight-

edge and the compasses, and when we say that it is

impossible to square the circle or to trisect any angle,

we mean that it is impossible by the help of these two

instruments alone.

During this period the great philosophic school of

Plato (429-348 B.C.) flourished at Athens, and to this

school is due the first systematic attempt to create exact

definitions, axioms, and postulates, and to distinguish be-

tween elementary and higher geometry. It was at this

time that elementary geometry became limited to the

use of the compasses and the unmarked straightedge,
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which took from this domain the possibility of construct-

ing a square equivalent to a given circle (" squaring the

circle "), of trisecting any given angle, and of construct-

ing a cube that should have twice the volume of a given

cube ("duplicating the cube''), these being the three

famous problems of antiquity. Plato and his school

interested themselves with the so-called Pythagorean

numbers, that is, with numbers that would represent

the three sides of a right triangle and hence fulfill the

condition that cc+ h
2 = r. Pythagoras had already given

a rule that would be expressed in modern form, as

i (m2+ l)
2 = m2 + 1

( nr — I) 2
. The school of Plato found

that [(l™)2+ l]2=m2+ [(i>>0'
2 -lj2

- By giving vari-

ous values to m, different Pythagorean numbers may be

found. Plato's nephew, Speusippus (about 350 B.C.),

wrote upon this subject. Such numbers were known,

however, both in India and in Egypt, long before this

time.

One of Plato's pupils was Philippus of Mende, in

Egypt, who flourished about 380 B.C. It is said that he

discovered the proposition relating to the exterior angle

of a triangle. His interest, however, was chiefly in

astronomy.

Another of Plato's pupils was Eudoxus of Cnidus

(408-355 B.C.). He elaborated the theory of proportion,

placing it upon a thoroughly scientific foundation. It is

probable that Book V of Euclid, which is devoted to

proportion, is essentially the work of Eudoxus. By means

of the method of exhaustions of Antiphon and Bryson

he proved that the pyramid is one third of a prism, and

the cone is one third of a cylinder, each of the same base

and the same altitude. He wrote the first textbook

known on solid geometry.
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The subject of conic sections starts with another pupil

of Plato's, Menaechmus, who lived about 350 B.C. He
cut the three forms of conies (the ellipse, parabola, and

hyperbola) out of three different forms of cone,— the

acute-angled, right-angled, and obtuse-angled,— not notic-

ing that he could have obtained all three from any form

of right circular cone. It is interesting to see the far-

reaching influence of Plato. While primarily interested

in philosophy, he laid the first scientific foundations for

a system of mathematics, and his pupils were the lead-

ers in this science in the generation following his great-

est activity.

The great successor of Plato at Athens was Aristotle,

the teacher of Alexander the Great. He also was more

interested in philosophy than in mathematics, but in

natural rather than mental philosophy. With him comes

the first application of mathematics to physics in the

hands of a great man, and with noteworthy results. He
seems to have been the first to represent an unknown
quantity by letters. He set forth the theory of the

parallelogram of forces, using only rectangular compo-

nents, however. To one of his pupils, Eudemus of

Rhodes, we are indebted for a history of ancient geome-

try, some fragments of which have come down to us.

The first great textbook on geometry, and the

greatest one that has ever appeared, was written by

Euclid, who taught mathematics in the great university

at Alexandria, Egypt, about 300 B.C. Alexandria was
then practically a Greek city, having been named in

honor of Alexander the Great, and being ruled by the

Greeks.

In his work Euclid placed all of the leading proposi-

tions of plane geometry then known, and arranged them
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in a logical order. Most geometries of any importance

written since his time have been based upon Euclid,

improving the sequence, symbols, and wording as occa-

sion demanded. He also wrote upon other branches of

mathematics besides elementary geometry, including a

work on optics. He was not a great creator of mathe-

matics, but was rather a compiler of the work of others,

an office quite as difficult to fill and quite as honorable.

Euclid did not give much solid geometry because not

much was known then. It was to Archimedes (287-212

B.C.), a famous mathematician of Syracuse, on the island

of Sicily, that some of the most important propositions

of solid geometry are due, particularly those relating to

the sphere and cylinder. He also showed how to find the

approximate value of ir by a method similar to the one

we teach to-day, proving that the real value lay between

31 and 3i^. The story goes that the sphere and cylin-

der were engraved upon his tomb, and Cicero, visiting

Syracuse many years after his death, found the tomb by

looking for these symbols. Archimedes was the great est

mathematical physicist of ancient times.

The Greeks contributed little more to elementary

geometry, although Apollonius of Perga, who taught at

Alexandria between 250 and 200 B.C., wrote extensively

on conic sections, and Hypsicles of Alexandria, about

190 B.C., wrote on regular polyhedrons. Hypsicles was

the first Greek writer who is known to have used sexa-

gesimal fractions,— the degrees, minutes, and seconds

of our angle measure. Zenoclorus (180 B.C.) wrote on

isoperimetric figures, and his contemporary, Nicomedes

of Gerasa, invented a curve known as the conchoid, by

means of which he could trisect any angle. Another con-

temporary, Diodes, invented the cissoicl, or ivy-shaped
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curve, by means of which he solved the famous problem

of duplicating the cube, that is, constructing a cube that

should have twice the volume of a given cube.

The greatest of the Greek astronomers, Hipparchus

(180-125 B.C.), lived about this period, and with him

begins spherical trigonometry as a definite science. A
kind of plane trigonometry had been known to the

ancient Egyptians. The Greeks usually employed the

chord of an angle instead of the half chord (sine), the lat-

ter having been preferred by the later Arab writers.

The most celebrated of the later Greek physicists was

Heron of Alexandria, formerly supposed to have lived

about 100 B.C., but now assigned to the first century a.d.

His contribution to geometry was the formula for the

area of a triangle in terms of its sides a, J, and c, with s

standing for the semiperimeter ^ (a + b -f- <?)• The for-

mula is Vs (s — a) (s — 6) (s — c).

Probably nearly contemporary with Heron was Mene-

laus of Alexandria, who wrote a spherical trigonometry.

He gave an interesting proposition relating to plane

and spherical triangles, their sides being cut by a trans-

versal. For the plane triangle ABC, the sides a, ?>, and

e being cut respectively in X, Y, and Z, the theorem

asserts substantially that

AZ BX CY_.
~BZ'~CX~AY~

The most popular writer on astronomy among the

Greeks was Ptolemy (Claudius Ptolemaeus, 87-165 A.D.),

who lived at Alexandria. He wrote a work entitled

" Megale Syntaxis " (The Great Collection), which his

followers designated as Megiste (greatest), on which ac-

count the Arab translators gave it the name " Almagest

"
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(al meaning "the"). He advanced the science of trigo-

nometry, but did not contribute to geometry.

At the close of the third century Pappus of Alexandria

(295 A.D.) wrote on geometry, and one of his theorems,

a generalized form of the Pythagorean proposition, is

mentioned in Chapter XVI of this work. Only two

other Greek writers on geometry need be mentioned.

Theon of Alexandria (370 A.D.), the father of the

Hypatia who is the heroine of Charles Kingsley's well-

known novel, wrote a commentary on Euclid to which

we are indebted for some historical information. Proclus

(410-485 A.D.) also wrote a commentary on Euclid, and

much of our information concerning the first Book of

Euclid is due to him.

The East did little for geometry, although contribut-

ing considerably to algebra. The first great Hindu writer

was Aryabhatta, who was born in 476 A.D. He gave the

very close approximation for 7r, expressed in modern

notation as 3.1416. He also gave rules for finding the

volume of the pyramid and sphere, but they were incor-

rect, showing that the Greek, mathematics had not yet

reached the Ganges. Another Hindu writer, Brahma-

gupta (born in 598 A.D.), wrote an encyclopedia of

mathematics. He gave a rule for finding Pythagorean

numbers, expressed in modern symbols as follows

:

V/>^..V_V/>

He also generalized Heron's formula by asserting that

the area of an inscribed quadrilateral of sides a, b, c, dy

and semiperimeter s, is V(s — a) (s — V) (s — c ) (s — d).

The Arabs, about the time of the "Arabian Nights

Tales" (800 a.d.), did much for mathematics, translating
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the Greek authors into their language and also bringing

learning from India. Indeed, it is to them that modern

Europe owed its first knowledge of Euclid. They con-

tributed nothing of importance to elementary geometry,

however.

The greatest of the Arab writers was Mohammed ibn

Musa al-Khowarazmi (820 A.D.). He lived at Bagdad and

Damascus. Although chiefly interested in astronomy, he

wrote the first book bearing the name "algebra" (
aAl-jabr

wa'1-muqabalah," Restoration and Equation), composed

an arithmetic using the Hindu numerals, 1 and paid much

attention to geometry and trigonometry.

Euclid was translated from the Arabic into Latin in

the twelfth century, Greek manuscripts not being then

at.hand, or being neglected because of ignorance of the

language. The leading translators were Athelhard of

Bath (1120), an English monk; Gherard of Cremona

(1160), an Italian monk ; and Johannes Campanus

(1250), chaplain to Pope Urban IV.

The greatest European mathematician of the Middle

Ages was Leonardo of Pisa 2 (ca. 1170-1250). He was

very influential in making the Hindu-Arabic numer-

als known in Europe, wrote extensively on algebra, and

was the author of one book on geometry. He contrib-

uted nothing to the elementary theory, however. The
first edition of Euclid was printed in Latin in 1482, the

first one in English appearing in 1570.

Our symbols are modern, + and — first appearing in

a German work in 1489 ; = in Recorde's " Whetstone of

Witte" in 1557; > and < in the works of Harriot (1560-

1621) ; and x in a publication by Oughtred (1574-1660).

1 Smith and Karpinski, "The Hindu-Arabic Numerals," Boston, 1911.
2 For a sketch of his life see Smith and Karpinski, loc. cit.
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The most noteworthy advance in geometry in modern
times was made by the great French philosopher Des-

cartes, who published a small work entitled u La Geo-

metrie "in 1637. From this springs the modern analytic

geometry, a subject that has revolutionized the methods

of all mathematics. Most of the subsequent discoveries

in mathematics have been in higher branches. To the

great Swiss mathematician Euler (1707-1783) is due,

however, one proposition that has found its way into

elementary geometry, the one showing the relation

between the number of edges, vertices, and faces of a

polyhedron.

There has of late arisen a modern elementary geom-

etry devoted chiefly to special points and lines relating

to the triangle and the circle, and many interesting prop-

ositions have been discovered. The subject is so extensive

that it cannot find any place in our crowded curriculum,

and must necessarily be left to the specialist. 1 Some idea

of the nature of the work may be obtained from a men-

tion of a few propositions :

The medians of a triangle are concurrent in the cen-

troid, or center of gravity of the triangle.

The bisectors of the various interior and exterior angles

of a triangle are concurrent by threes in the incenter or

in one of the three excenters of the triangle.

The common chord of two intersecting circles is a

special case of their radical axis, and tangents to the

circles from any point on the radical axis are equal.

1 Those who care for a brief description of this phase of the sub-

ject may consult J. Casey, " A Sequel to Euclid," Dublin, fifth edi-

tion, 1888 ; W. J. M'Clelland, "A Treatise on the Geometry of the

Circle," New York, 1891; M. Simon, " Uber die Entwicklung der

Elementar-Geometrie im XIX. Jahrhundert," Leipzig, 1906.
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If is the orthocenter of the triangle ABC, and

X, Y, Z are the feet of the perpendiculars from A, B, C
respectively, and P, Q, B are the mid-points of a, b, c

respectively, and X, Ji, i\^are the mid-points of OA, OB,

OC respectively; then the points L, M, JV; P, Q, B ; X,

Y, Z all lie on a circle, the " nine points circle."

In the teaching of geometry it adds a human interest

to the subject to mention occasionally some of the his-

torical facts connected with it. For this reason this brief

sketch will be supplemented by many notes upon the

various important propositions as they occur in the sev-

eral books described hi the later chapters of this work.



CHAPTER IV

DEVELOPMENT OF THE TEACHING OF GEOMETRY

We know little of the teaching of geometry in very

ancient times, but we can infer its nature from the

teaching that is still seen in the native schools of the

East. Here a man, learned in any science, will have a

group of voluntary students sitting about him, and to

them he will expound the truth. Such schools may still

be seen in India, Persia, and China, the master sitting

on a mat placed on the ground or on the floor of a

veranda, and the pupils reading aloud or listening to

his words of exposition.

In Egypt geometry seems to have been in early times

mere mensuration, confined largely to the priestly caste.

It was taught to novices who gave promise of success

in this subject, and not to others, the idea of general

culture, of training in logic, of the cultivation of exact

expression, and of coming in contact with truth being

wholly wanting.

In Greece it was taught in the schools of philosophy,

often as a general preparation for philosophic study.

Thus Thales introduced it into his Ionic school, Pythag-

oras made it very prominent in his great school at

Crotona in southern Italy (Magna Graecia), and Plato

placed above the door of his Academia the words, "Let

no one ignorant of geometry enter here,"— a kind of

entrance examination for his school of philosophy. In

40
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these gatherings of students it is probable that geometry

was taught in much the way already mentioned for the

schools of the East, a small group of students being

instructed by a master. Printing was unknown, papyrus

was dear, parchment was only in process of invention.

Paper such as we know had not yet appeared, so that

instruction was largely oral, and geometric figures were

drawn by a pointed stick on a board covered with fine

sand, or on a tablet of wax.

But with these crude materials there went an abun-

dance of time, so that a number of great results were

accomplished in spite of the difficulties attending the

study of the subject. It is said that Hippocrates of Chios

(
ex. 440 B.C.) wrote the first elementary textbook on

mathematics and invented the method of geometric re-

duction, the replacing of a proposition to be proved by

another which, when proved, allows the first one to be

demonstrated. A little later Eudoxus of Cnidus (ca.

375 B.C.), a pupil of Plato's, used the re<hi<'fi<> ad ab-

surdum, and Plato is said to have invented the method

of proof by analysis, an elaboration of the plan used by

Hippocrates. Thus these early philosophers taught their

pupils not facts alone, but methods of proof, giving them

power as well as knowledge. Furthermore, they taught

them how to discuss their problems, investigating the

conditions under which they are capable of solution.

This feature of the work they called the diorismus, and

it seems to have started with Leon, a follower of Plato.

Between the time of Plato (ca. 400 B.C.) and Euclid

(ca. 300 B.C.) several attempts were made to arrange the

accumulated material of elementary geometry in a text-

book. Plato had laid the foundations for the science, in

the form of axioms, postulates, and definitions, and he
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had limited the instruments to the straightedge and the

compasses. Aristotle (ca. 350 B.C.) had paid special at-

tention to the history of the subject, thus finding out

what had already been accomplished, and had also made

much of the applications of geometry. The world was

therefore ready for a good teacher who should gather

the material and arrange it scientifically. After several

attempts to find the man for such a task, he was dis

covered in Euclid, and to his work the next chapter is

devoted.

After Euclid, Archimedes (ca. 250 B.C.) made his great

contributions. He was not a teacher like his illustrious

predecessor, but he was a great discoverer. He has left

us, however, a statement of his methods of investiga-

tion which is helpful to those who teach. These methods

were largely experimental, even extending to the weigh-

ing of geometric forms to discover certain relations, the

proof being given later. Here was born, perhaps, what

has been called the laboratory method of the present.

Of the other Greek teachers we have but little in-

formation as to methods of imparting instruction. It is

not until the Middle Ages that there is much known

in this line. Whatever of geometry was taught seems

to have been imparted by word of mouth in the way of

expounding Euclid, and this was done in the ancient

fashion.

The early Church leaders usually paid no attention

to geometry, but as time progressed the quadrivium^ or

four sciences of arithmetic, music, geometry, and astron-

omy, came to rank with the trivium (grammar, rhet-

oric, dialectics), the two making up the " seven liberal

arts." All that there was of geometry in the first thou-

sand years of Christianity, however, at least in the great
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majority of Church schools, was summed up in a few

definitions and rules of mensuration. Gerbert, who
became Pope Sylvester II in 999 a.d., gave a new
impetus to geometry by discovering a manuscript of

the old Roman surveyors and a copy of the geometry of

Boethius, who paraphrased Euclid about 500 a.d. He
thereupon wrote a brief geometry, and his elevation to

the papal chair tended to bring the study of mathe-

matics again into prominence.

Geometry now began to have some place in the

Church schools, naturally the only schools of high rank

in the Middle Ages. The study of the subject, however,

seems to have been merely a matter of memorizing.

Geometry received another impetus in the book written

by Leonardo of Pisa in 1220, the " Practica Geometriae."

Euclid was also translated into Latin about this time

(strangely enough, as already stated, from the Arabic

instead of the Greek), and thus the treasury of elemen-

tary geometry was opened to scholars in Europe. From
now on, until the invention of printing (ca. 1450), numer-

ous writers on geometry appear, but, so far as we know,

the method of instruction remained much as it had always

been. The universities began to appear about the thir-

teenth century, and Sacrobosco, a well-known medieval

mathematician, taught mathematics about 1250 in the

University of Paris. In 1336 this university decreed

that mathematics should be required for a degree. In

the thirteenth century Oxford required six books of

Euclid for one who was to teach, but this amount of

work seems to have been merely nominal, for in 1450

only two books were actually read. The universities of

Prague (founded in 1350) and Vienna (statutes of

1389) required most of plane geometry for the teacher's
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license, although Vienna demanded but one book for the

bachelor's degree. So, in general, the universities of the

thirteenth, fourteenth, and fifteenth centuries required

less for the degree of master of arts than we now require

from a pupil in our American high schools. On the other

hand, the university students were younger than now,

and were really doing only high-school work.

The invention of printing made possible the stud}' of

geometry in a new fashion. It now became possible for

any one to study from a book, whereas before this time

instruction was chiefly by word of mouth, consisting of

an explanation of Euclid. The first Euclid was printed

in 1482, at Venice, and new editions and variations of

this text came out frequently in the next century.

Practical geometries became very popular, and the re-

action against the idea of mental discipline threatened

to abolish the old style of text. It was argued that

geometry Avas uninteresting, that it was not sufficient in

itself, that boys needed to see the practical uses of the

subject, that only those propositions that were capable

of application should be retained, that there must be a

fusion between the demands of culture and the demands

of business, and that every man who stood for mathe-

matical ideals represented an obsolete type. Such writers

as Fiiueus (155(3), Bartoli (1589), Belli (1569), and

Cataneo (1567), in the sixteenth century, and Capra

(1673), (iargiolli (1655), and many others in the seven-

teenth century, either directly or inferentially, took this

attitude towards the subject,— exactly the attitude that

is being taken at the present time by a number of

teachers in the United States. As is always the case,

to such an extreme did this movement lead that there

was a reaction that brought the Euclid type of book
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again to the front, and it has maintained its prominence

even to the present.

The study of geometry in the high schools is rela-

tively recent, The Gymnasium (classical school prepar-

atory to the university) at Niirnberg, founded in 1526,

and the Cathedral school in Wiirttemberg (as shown by

the curriculum of 155G) seem to have had no geometry

before 1600, although the Gymnasium at Strassburg

included some of this branch of mathematics in 1578,

and an elective course in geometry was offered at

Zwickau, in Saxony, in 1521. In the seventeenth cen-

tury geometry is found in a considerable number of

secondary schools, as in Coburg (1(305), Kurfalz (1615,

elective), Erfurt (1643), Gotha (1605), Giessen (1605),

and numerous other places in Germany, although it

appeared but rarely in the secondary schools of France

before the eighteenth century. In Germany the Real-

schulen— schools with more science and less classics

than are found in the Gymnasium— came into being in

the eighteenth century, and considerable effort was made

to construct a course in geometry that should be more

practical than that of the modified Euclid. At the open-

ing of the nineteenth century the Prussian schools were

reorganized, and from that time on geometry has had

a firm position in the secondary schools of all Germany.

In the eighteenth century some excellent textbooks on

geometry appeared in France, among the best being thai

of Legendre (1794), which influenced in such a marked

degree the geometries of America. Soon after the open-

ing of the nineteenth century the lyeees of France

became strong institutions, and geometry, chiefly based

on Legendre. was well taught in the mathematical divi-

sions. A worthy rival of Legendre \s geometry was the
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work of Lacroix, who called attention continually to the

analogy between the theorems of plane and solid geometry,

and even went so far as to suggest treating the related

propositions together in certain cases.

In England the preparatory schools, such as Rugby,

Harrow, and Eton, did not commonly teach geometry

until quite recently, leaving this work for the universi-

ties. In Christ's Hospital, London, however, geometry

was taught as early as 1681, from a work written by

several teachers of prominence. The highest class at

Harrow studied k * Euclid and vulgar fractions" one

period a week in 1829, but geometry was not seriously

studied before 1837. In the Edinburgh Academy as

early as 1835, and in Rugby by 1839, plane geometry

was completed.

Xot until 1844 did Harvard require any plane geom-

etry for entrance. In 1855 Yale required only two

books of Euclid. It was therefore from 1850 to 1875

that plane geometry took a definite place in the Amer-

ican high school. Solid geometry has not been gener-

ally required for entrance to any eastern college, although

in the' West this is not the case. The East teaches plane

geometry more thoroughly, but allows a pupil to enter

college or to go into business with no solid geometry.

Given a year to the subject, it is possible to do little

more than cover plane geometry : with a year and a half

the solid geometry ought easily to be covered also.

Bibliography. Stamper, A History of the Teaching of Elemen-

tary Geometry, New York. 1909, with a very full bibliography

oi the subject ; Cajori, The Teaching of Mathematics in the

United States, Washington. 1890 : Cantor. Geschichte der Mathe-

matik. Vol. IV. p. 321, Leipzig, 1908; Schotten, Tnhalt nnd
Methode dea planimetrischen I nterrichts, Leipzig, 1890.



CHAPTER V

EUCLID

It is fitting that a chapter in a book upon the teach-

ing of this subject should be devoted to the life and labors

of the greatest of all textbook writers, Euclid,— a man
whose name has been, for more than two thousand years,

a synonym for elementary plane geometry wherever the

subject has been studied. And yet when an effort is

made to pick up the scattered fragments of his biogra-

phy, we are surprised to find how little is known of

one whose fame is so universal. Although more editions

of his work have been printed than of any other book
save the Bible,1 we do not know when he was born,

or in what city, or even in what country, nor do we
know his race, his parentage, or the time of his death.

We should not feel that we knew much of the life of

a man who lived when the Magna Charta was wrested
from King John, if our first and only source of in-

formation was a paragraph in the works of some his-

torian of to-day: and yet this is about the situation in

respect to Euclid. Proclus of Alexandria, philosopher,

teacher, and mathematician, lived from 410 to 485 a.d.,

and wrote a commentary on the works of Euclid. In
his writings, which seem to set forth in amplified form
his lectures to the students in the Neoplatonist School

a Riceardi. Saggio tli una bibliografia Euclidea. Part I. p. 3. Bo-
logna, 1887. Riccardi lists well towards two thousand editions.

47
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of Alexandria, Proclus makes this statement, and of

Euclid's life we have little else:

Not much younger than these 1 is Euclid, who put together

the " Elements," collecting many oi the theorems of Eudoxus,
perfecting many of those oi Theaetetus, and also demonstrating

with perfect certainty what his predecessors had but insufficiently

proved. He flourished in the time of the first Ptolemy, for

Archimedes, who closely followed this ruler,8 speaks of Euclid.

Furthermore it is related that Ptolemy one time demanded of

him if there was in geometry no shorter way than that oi the

" Elements," to whom he replied that there was no royal road

to geometry.3 lie was therefore younger than the pupils of

Plato, hut older than Eratosthenes and Archimedes; for the

latter were contemporary with one another, as Eratosthenes

somewhere says. 4

Thus we have in a few lines, from one who lived per-

haps seven or eight hundred years after Euclid, nearly

all that is known of the most famous teacher of ereom-

etrv that ever lived. Nevertheless, even this little tells

us about when he flourished, for llermotimus and Phi-

lippus were pupils of Plato, who died in 847 B.C.,

whereas Archimedes was horn about 287 B.C. and was

writing- about 250 B.C. Furthermore, since Ptolemy I

reigned from 306 to 283 B.C., Euclid must have been

teaching about 300 B.C., and this is the date that is

generally assigned to him.

Euclid probably studied at Athens, for until he him-

self assisted in transferring the center of mathematical

1 llermotimns oi Colophon and Philippus of Mende.
- Literally. " Who closely followed the first,'

1
i.e. the first Ptolemy.

Memechmus is said to have replied to a similar question of Alex-

ander the Great: "O King, through the country there are royal

roads and roads for common citizens, but in geometry there is one

road for all."

4 This is also shown in a letter from Archimedes to Eratosthenes,

recently discovered by Heiberg.
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culture to Alexandria, it had long been in the Grecian

capital, indeed since the time of Pythagoras. Moreover,

numerous attempts had been made at Athens to do ex-

actly what Euclid succeeded in doing,— to construct a

logical sequence of propositions ; in other words, to write

a textbook on plane geometry. It was at Athens, there-

fore, that he could best have received the inspiration to

compose his " Elements." x After finishing his education

at Athens it is quite probable that he, like other savants

of the period, was called to Alexandria by Ptolemy

Soter, the king, to assist in establishing the great school

which made that city the center of the world's learning

for several centuries. In this school he taught, and here

he wTote the " Elements " and numerous other works,

perhaps ten in all.

Although the Greek writers who may have known

something of the life of Euclid have little to say of him,

the Arab writers, who could have known nothing save

from Greek sources, have allowed their imaginations the

usual latitude in speaking of him and of his labors.

Thus Al-Qifti, who wrote in the thirteenth century,

has this to say in his biographical treatise "Ta'rikh al-

ii ukama":

Euclid, son of Xaucrates, grandson of Zenarchus, called the

author of geometry, a Greek by nationality, domiciled at Damascus,

horn at Tyre, most learned in the science of geometry, published

a most excellent and most useful work entitled "The Foundation

or Elements of Geometry," a subject in which no more general

treatise existed before among the Greeks; nay, there was no one

even of later date who did not walk in his footsteps and frankly

profess his doctrine.

1 0n this phase of the subject, and indeed upon Euclid and his

propositions and works in general, consult T. L. Heath, " The Thirteen

Books of Euclid's Elements," 3 vols., Cambridge, 1908, a masterly

treatise of which frequent use has been made in preparing this work.
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This is rather a specimen of the Arab tendency to

manufacture history than a serious contribution to the

biography of Euclid, of whose personal history we have

only the information given by Proclus.

<
^

Euclid

From an old print

Euclid's works at once took high rank, and they are

mentioned by various classical authors. Cicero knew of

them, and Capella (ca. 470 A.D.), Cassiodorius (ca. 515

A.D.), and Boethius (ca. 480-524 a.d.) were all more
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or less familiar with the " Elements." With the advance

of the Dark Ages, however, learning was held in less and

less esteem, so that Euclid was finally forgotten, and

manuscripts of his works were either destroyed or buried

in some remote cloister. The Arabs, however, whose

civilization assumed prominence from about 750 a.d. to

about 1500, translated the most important treatises of

the Greeks, and Euclid's " Elements " among the rest.

One of these Arabic editions an English monk of the

twelfth century, one Athelhard (iEthelhard) of Bath,

found and translated into Latin (ea. 1120 A.D.). A little

later Gherard of Cremona (1114-1187) made a new
translation from the Arabic, differing in essential fea-

tures from that of Athelhard, and about 1260 Johannes

Campanus made still a third translation, also from

Arabic into Latin. 1 There is reason to believe that

Athelhard, Campanus, and Gherard may all have had

access to an earlier Latin translation, since all are quite

alike in some particulars while diverging noticeably in

others. Indeed, there is an old English verse that relates :

The clerk Euclide on this wyse hit fonde

Thys craft of gemetry yn Egypte londe . . .

Thys craft com into England, as y yow say,

Yn tyme of good Kyng Adelstone's day. *

If this be true, Euclid was known in England as early

as 921-940 a.d.

Without going into particulars further, it suffices to

say that the modern knowledge of Euclid came first

through the Arabic into the Latin, and the first printed

1 A contemporary copy of this translation is now in the library of

George A. Plimpton, Esq., of New York. See the author's "Kara
Arithmetic^" p. 433, Boston, 1909.
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edition of the "Elements" (Venice, 14^iv ) was the

Campanus translation. Greek manuscripts now began

to appear, and at the present time several are known.
There is a manuscript of the ninth century in the Bod-
leian library at Oxford, one of the tenth century in the

Vatican, another of the tenth century in Florence, one

of the eleventh century at Bologna, and two of the

twelfth century at Paris. There are also fragments con-

taining bits (A Euclid in Greek, and going bark as far as

the second and third century a.i>. The first modern
translation from the Greek into the Latin was made bv
Zamberti (or Zamberto),1 and was printed at Venice in

1513. The first translation into English was made by Sir

Henry Billingsley and was printed in 1570, sixteen

years before he became Lord Mayor of London.

Proclus, in his commentary upon Euclid's work,
remark- :

hi the whole of geometry there are certain leading theorems.

bearing to those which follow the relation of a principle, all-per-

vading, and furnishing proofs oi many properties. Such theorems
are called by the name fc, and their function may he

compared to that oi the letters of the alphabet in relation to

language, letters being indeed called by the same name in Greek
[oTor^ui. stoieheia].-

This characterizes the work of Euclid, a collection of

the basic propositions of geometry, and chiefly of plane

geometry, arranged in logical sequence, the proof of

each depending upon some preceding proposition, defi-

nition, or assumption (axiom or postulate). The number

A beautiful vellum manuscript of this translation is in the

library oi George A. Plimpton. Es ... : N w V .... Sec the aut":

"Ran Arithmetica," p. 481, Boston, 19

-Heath, loc. cit.. Vol. I. p. 114.
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of the propositions o( plane geometry included in the

u Elements" is not entirely certain, owing to some dis-

agreement in the manuscripts, but it was between one

hundred sixty and one hundred seventy-live. It is

possible to reduce this number by about thirty or forty,

because Euclid included a certain amount of geo-

metric algebra; but beyond this we cannot safely go

in the way o( elimination, since from the very nature of

the - Elements " these propositions are basic. The efforts

at revising Euclid have been generally confined, there-

fore, to rearranging his material, to rendering more mod-

ern his phraseology, and to making a book that is more

usable with beginners if not more logical in its presen-

tation of the subject. While there has been an improve-

ment upon Euclid in the art of bookmaking, and in

minor matters of phraseology and sequence, the educa-

tional gain has not been commensurate with the effort

put forth. With a little modification of Euclid's semi-

algebraic Book II and of his treatment of proportion, with

some scattering oi the definitions and the inclusion of

well-graded exercises at proper places, and with atten-

tion to the modern science of bookmaking, the "Ele-

ments" would answer quite as well for a textbook to-

day as most of our modern substitutes, and much better

than some of them. It would, moreover, have the advan-

tage o( being a classic,— somewhat tin 1 same advantage

that comes from reading Homer in the original instead

oi from Pope's metrical translation. This is not a plea

for a return to the Euclid text, but for a recognition of

tin 1 excellence o( Euclid's work.

The distinctive feature oi Euclid's "Elements," com-

pared with the modern American textbook, is perhaps

this: Euclid begins a book with what seems to him the
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easiest proposition, be it theorem or problem ; upon this

he builds another ; upon these a third, and so on, con-

cerning himself but little with the classification of prop-

ositions. Furthermore, he arranges his propositions so

as to construct his figures before using them. We, on

the other hand, make some little attempt to classify our

propositions within each book, and we make no attempt

to construct our figures before using them, or at least

to prove that the constructions are correct. Indeed, we

go so far as to study the properties of figures that we

cannot construct, as when we ask for the size of the

angle of a regular heptagon. Thus Euclid begins Book I

by a problem, to construct an equilateral triangle on a

given line. His object is to follow this by problems on

drawing a straight line equal to a given straight line,

and cutting off from the greater of two straight lines a

line equal to the less. He now introduces a theorem,

which might equally well have been his first proposition,

namely, the case of the congruence of two triangles, hav-

ing given two sides and the included angle. By means of

his third and fourth propositions he is now able to prove

thepons asinorum,th&t the angles at the base of an isosceles

triangle are equal. We, on the other hand, seek to group

our propositions where this can conveniently be done,

putting the congruence propositions together, those about

inequalities by themselves, and the propositions about

parallels in one set. The results of the two arrangements

are not radically different, and the effect of either upon

the pupil's mind does not seem particularly better than

that of the other. Teachers who have used both plans

quite commonly feel that, apart from Books II and V,

Euclid is nearly as easily understood as our modern

texts, if presented in as satisfactory dress.
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The topics treated and the number of propositions in

the plane geometry of the "Elements" are as follows:

Book I. Rectilinear figures 48

Book II. Geometric algebra 14

Book III. Circles 37

Book IY. Problems about circles 16

Book V. Proportion 25

Book VI. Applications of proportion 33

173

Of these we now omit Euclid's Book II, because we
have an algebraic symbolism that was unknown in his

time, although he would not have used it in geometry

even had it been known. Thus his first proposition in

Book II is as follows

:

If there be two straight lines, and one of them be cut into any

number of segments whatever, the rectangle contained by the two

straight lines is equal to the rectangles contained by the uncut

straight line and each of the segments.

This amounts to saying that \ix = p + q + r + • • -, then

ax = ap + aq + ar-] . We also materially simplify

Euclid's Book V. He, for example, proves that "If

four magnitudes be proportional, they will also be pro-

portional alternately." This he proves generally for smy

kind of magnitude, while we merely prove it for num-
bers having a common measure. We say that we may
substitute for the older form of proportion, namely,

a : b = c : d,

the fractional form - = - •

o d

From this we have ad = be.

Whence - = - •

c d
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In this work we assume that we may multiply equals

by b and d. But suppose b and d are cubes, of which,

indeed, we do not even know the approximate numerical

measure ; what shall we do ? To Euclid the multipli-

cation by a cube or a polygon or a sphere would have

been entirely meaningless, as it always is from the

standpoint of pure geometry. Hence it is that our treat-

ment of proportion has no serious standing in geometry

as compared with Euclid's, and our only justification for

it lies in the fact that it is easier. Euclid's treatment

is much more rigorous than ours, but it is adapted to

the comprehension of only advanced students, while ours

is merely a confession, and it should be a frank confes-

sion, of the weakness of our pupils, and possibly, at

times, of ourselves.

If we should take Euclid's Books II and V for granted,

or as sufficiently evident from our study of algebra, we
should have remaining only one hundred thirty-four prop-

ositions, most of which may be designated as basal propo-

sitions of plane geometry. Revise Euclid as we will, we
shall not be able to eliminate any large number of his

fundamental truths, while we might do much worse than

to adopt these one hundred thirty-four propositions in

toto as the bases, and indeed as the definition, of elemen-

tary plane geometry.

Bibliography. Heath, The Thirteen Books of Euclid's Elements,

3 vols., Cambridge, 1908; Frankland, The First Book of Euclid,

Cambridge, 1906 ; Smith, Dictionary of Greek and Roman Biog-

raphy, article Eukleides; Simon, Euclid und die sechs plani-

metrischen Biicher, Leipzig, 11)01; Gow, History of Greek Mathe-

matics, Cambridge, 1884, and any of the standard histories of

mathematics. Both Heath and Simon give extensive bibliogra-

phies. The latest standard Greek and Latin texts are Heiberg's,

published by Teubner of Leipzig.



CHAPTER VI

EFFORTS AT IMPROVING EUCLID

From time to time an effort is made by some teacher,

or association of teachers, animated by a serious desire

to improve the instruction in geometry, to prepare a new

syllabus that shall mark out some "royal road," and it

therefore becomes those who are interested in teaching

to consider with care the results of similar efforts in

recent years. There are many questions which such an

attempt suggests : What is the real purpose of the move-

ment ? What will the teaching world say of the result ?

Shall a reckless, ill-considered radicalism dominate the

effort, bringing in a distasteful terminology and symbol-

ism merely for its novelty, insisting upon an ultra-

logical treatment that is beyond the powers of the learner,

rearranging the subject matter to fit some narrow notion

of the projectors, seeking to emasculate mathematics by

looking only to the applications, riding some little hobby

in the way of some particular class of exercises, and cut-

ting the number of propositions to a minimum that will

satisfy the mere demands of the artisan ? Such are some

of the questions that naturally arise in the mind of

every one who wishes well for the ancient science of

geometry.

It is not proposed in this chapter to attempt to answer

these questions, but rather to assist in understanding the

problem by considering the results of similar attempts.

57
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If it shall be found that syllabi have been prepared

under circumstances quite as favorable as those that

obtain at present, and if these syllabi have had lati-

no real influence, then it becomes our duty to see if

new plans may be worked out so as to be more successful

than their predecessors. If the older attempts have led to

some good, it is well to know what is the nature of this

good, to the end that new efforts may also result in

something of benerit to the schools.

It is proposed in this chapter to call attention to four

important syllabi, setting forth briefly their distinguish-

ing features and drawing- some conclusions that may be

helpful in other efforts of this nature.

In England two noteworthy attempts have been made

within a century, looking* to a more satisfactory sequence

and selection of propositions than is found in Euclid.

Each began with a list of propositions arranged in proper

sequence, and each was thereafter elaborated into a text-

book. Neither accomplished fully the purpose intended,

but each was instrumental in provoking healthy discus-

sion and in improving the texts from which geometry is

studied.

The first of these attempts was made by Profess i

Augustus de Morgan, under the auspices of the Society

for the Diffusion of Useful Knowledge, and it resulted

in a textbook, including - plane, solid, and spherical"

geometry, in six books. According to De Morgan's plan,

plane geometry consisted of three books, the numbei

propositions being as follows:

Book I. Rectilinear figures

Book H. Ratio, proportion, applications ....
Book 111. The circle

Total for plan _ .--try 194
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Of the 194 propositions De Morgan selected 114

with their corollaries as necessary for a beginner who
is teaching himself.

In solid geometry the plan was as follows

:

Book IV. Lines in different planes, solids con-

tained by planes ........ 52

Book V. Cylinder, cone, sphere 25

Book VI. Figures on a sphere 42

Total for solid geometry 119

Of these 119 propositions De Morgan selected 76* with

their corollaries as necessary for a beginner, thus making

190 necessary propositions out of 305 desirable ones,

besides the corollaries in plane and solid geometry. In

other words, of the desirable propositions lie considered

that about two thirds are absolutely necessary.

It is interesting to note, however, that he summed up

the results of his labors by saying

:

It will be found that the course just laid down, excepting the

sixth book of it only, is not of much greater extent, nor very dif-

ferent in point of matter from that of Euclid, whose " Elements "

have at all times been justly esteemed a model not only of easy

and progressive instruction in geometry, but of accuracy and

perspicuity in reasoning.

De Morgan's effort, essentially that of a syllabus-maker

rather than a textbook writer, although it was published

under the patronage of a prominent society with which

were associated the names of men like Henry Hallam,

Rowland Hill, Lord John Russell, and George Peacock,

had no apparent influence on geometry either in England

or abroad. Nevertheless the syllabus was in many respects

excellent ; it rearranged the matter, it classified the propo-

sitions, it improved some of the terminology, and it re-

duced the number of essential propositions ; it had the

assistance of De Morgan's enthusiasm and of the society
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with which he was so prominently connected, and it was

circulated with considerable generosity throughout the

English-speaking world: but in spite of all this it is

to-day practically unknown.

A second noteworthy attempt in England was made

about a quarter of a century ago by a society that was

organized practically for this very purpose, the Associa-

tion for the Improvement of Geometrical Teaching. This

society was composed of many of the most progressive

teachers in England, and it included in its membership

men of hkfh standing in mathematics in the universities.

As a result of their labors a syllabus was prepared, which

was elaborated into a textbook, and in 1889 a revised

syllabus was issued.

As to the arrangement of matter, the syllabus departs

from Euclid chiefly by separating the problems from the

theorems, as is the case in our American textbooks, and

in improving the phraseology. The course is preceded

by some simple exercises in the use of the compasses and

ruler, a valuable plan that is followed by many of the

best teachers everywhere. Considerable attention is paid

to logical processes before beginning the work, such

terms as " contrapositive " and " obverse,'' and such rules

as the "rule of conversion " and the "rule of identity"

being introduced before any propositions are considered.

The arrangement of the work and the number of

propositions in plane geometry are as follows

:

Book I. The straight line 51

Book II. Equality of areas 19

Book III. The circle 42

Book IV. Ratio and proportion 32

Book V. Proportion 21

Total for plane geometry 168
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Here, then, is the result of several years of labor by a

somewhat radical organization, fostered by excellent

mathematicians, and carried on in a country where ele-

mentary geometry is held in highest esteem, and where

Euclid was thought unsuited to the needs of the begin-

ner. The number of propositions remains substantially

the same as in Euclid, and the introduction of some

unusable logic tends to counterbalance the improvement

in sequence of the propositions. The report provoked

thought ; it shook the Euclid stronghold ; it was prob-

ably instrumental in bringing about the present upheaval

in geometry in England, but as a working syllabus it has

not appealed to the world as the great improvement upon

Euclid's "Elements" that was hoped by many of its early

advocates.

The same association published later, and republished

in 1905, a " Report on the Teaching of Geometry," in

which it returned to Euclid, modifying the " Elements "

by omitting certain propositions, changing the order and

proof of others, and introducing a few new theorems.

It seems to reduce the propositions to be proved in

plane geometry to about one hundred fifteen, and it

recommends the omission of the incommensurable case.

This number is, however, somewhat misleading, for

Euclid frequently puts in one proposition what we in

America, for educational reasons, find it better to treat

in two, or even three, propositions. This report, there-

fore, reaches about the same conclusion as to the geo-

metric facts to be mastered as is reached by our later

textbook writers in America. It is not extreme, and it

stands for good mathematics.

In the United States the influence of our early wars

with England, and the sympathy of France at that time,
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turned the attention of our scholars of a century ago

from Cambridge to Paris as a mathematical center. The
influx of French mathematics brought with it such works

as Legendre's geometry (1794) and Bourdon's algebra,

and made known the texts of Lacroix, Bertrand, and

Bezout. Legendre's geometry was the result of the

efforts of a great mathematician at syllabus-making, a

natural thing in a country that had early broken away
from Euclid. Legendre changed the Greek sequence,

sought to select only propositions that are necessary to

a good understanding of the subject, and added a good

course in solid geometry. His arrangement, with the

number of propositions as given in the Davies transla-

tion, is as follows

:

Book I. Rectilinear figures 31

Book II. Ratio and proportion 14

Book II I. The circle 48

Book IV. Proportions of figures and areas . . . 51

Book V. Polygons and circles 17

Total for plane geometry 161

Legendre made, therefore, practically no reduction in

the number of Euclid's propositions, and his improve-

ment on Euclid consisted chiefly in his separation of

problems and theorems, and in a less rigorous treatment

of proportion which boys and girls could comprehend.

D'Alembert had demanded that the sequence of propo-

sitions should be determined by the order in which they

had been discovered, but Legendre wisely ignored such

an extreme and gave the world a very usable book.

The principal effect of Legendre's geometry in Amer-

ica was to make every textbook writer his own syllabus-

maker, and to put solid geometry on a more satisfactory

footing. The minute we depart from a standard text
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like Euclid's, and have no recognized examining body,

every one is free to set up his own standard, always

within the somewhat uncertain boundary prescribed by

public opinion and by the colleges. The efforts of the

past few years at syllabus-making have been merely

attempts to define this boundary more clearly.

Of these attempts two are especially worthy of con-

sideration as having been very carefully planned and

having brought forth such definite results as to appeal

to a large number of teachers. Other syllabi have been

made and are familiar to many teachers, but in point of

clearness of purpose, conciseness of expression, and form

of publication they have not been such as to compare

with the two in question.

The first of these is the Harvard syllabus, which is

placed in the hands of students for reference when try-

ing the entrance examinations of that university, a plan

not followed elsewhere. It sets forth the basal proposi-

tions that should form the essential part of the student's

preparation, and that are necessary and sufficient for prov-

ing any " original proposition " (to take the common
expression) that may be set on the examination. The

propositions are arranged by books as follows

:

Book I. Angles, triangles, parallels 25

Book II. The circle, angle measure 18

Book III. Similar polygons 10

Book IV. Area of polygons 8

Book V. Polygons and circle measure . . . . 11

Constructions 21

Ratio and proportion 6

Total for plane geometry 99

The total for solid geometry is 79 propositions, or 178

for both plane and solid geometry. This is perhaps the
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most successful attempt that has been made at reaching

a minimum number of propositions. It might well be

further reduced, since it includes the proposition about

two adjacent angles formed by one line meeting another,

and the one about the circle as the limit of the inscribed

and circumscribed regular polygons. The first of these

leads a beginner to doubt the value of geometry, and

the second is beyond the powers of the majority of stu-

dents. As compared with the syllabus reported by a

Wisconsin committee in 1904, for example, here are 99

propositions against 132. On the other hand, a commit-

tee appointed by the Central Association of Science and

Mathematics Teachers reported in 1909 a syllabus with

what seems at first sight to be a list of only 59 propo-

sitions in plane geometry. This number is fictitious,

however, for the reason that numerous converses are

indicated with the propositions, and are not included

in the count, and directions are given to include

" related theorems " and " problems dealing with the

length and area of a circle," so that in some cases

one proposition is evidently intended to cover several

others. This syllabus is therefore lacking in definite-

ness, so that the Harvard list stands out as perhaps

the best of its type.

The second noteworthy recent attempt in America is

that made by a committee of the Association of Mathe-

matical Teachers in New England. This committee was

organized in 1904. It held sixteen meetings and carried

on a great deal of correspondence. As a result, it pre-

pared a syllabus arranged by topics, the propositions of

solid geometry being grouped immediately after the

corresponding ones of plane geometry. For example, the

nine propositions on congruence in a plane are followed
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by nine on congruence in space. As a result, the follow-

ing summarizes the work in plane geometry

:

Congruence in a plane 9

Equivalence 3

Parallels and perpendiculars 9

Symmetry 20

Angles 15

Tangents 1

Similar figures 18

Inequalities 8

Lengths and areas 17

Loci 2

Concurrent lines 5

Total for plane geometry 110

Not so conventional in arrangement as the Harvard

syllabus, and with a few propositions that are evidently

not basal to the same extent as the rest, the list is never-

theless a very satisfactory one, and the parallelism shown

between plane and solid geometry is suggestive to both

student and teacher.

On the whole, however, the Harvard selection of basal

propositions is perhaps as satisfactory as any that has

been made, even though it appears to lack a " factor of

safety," and it is probable that any further reduction

would be unwise.

What, now, has been the effect of all these efforts ?

What teacher or school would be content to follow any

one of these syllabi exactly? What textbook writer

would feel it safe to limit his regular propositions to

those in any one syllabus ? These questions suggest

their own answers, and the effect of all this effort seems

at first thought to have been so slight as to be entirely

out of proportion to the end in view. This depends,

however, on what this end is conceived to be. If the
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purpose has been to cut out a very large number of the

propositions that are found in Euclid's plane geometry,

the effort has not been successful. We may reduce this

number to about one hundred thirty, but in general,

whatever a syllabus may give as a minimum, teachers

will favor a larger number than is suggested by the

Harvard list, for the purpose of exercise in the read-

ing of mathematics if for no other reason. The French

geometer, Lacroix, who wrote more than a century ago,

proposed to limit the propositions to those needed to

prove other important ones, and those needed in prac-

tical mathematics. If to this we should add those that

are used in treating a considerable range of exercises, we
should have a list of about one hundred thirty.

But this is not the real purpose of these syllabi, or at

most it seems like a relatively unimportant one. The

purpose that has been attained, is to stop the indefinite

increase in the number of propositions that would fol-

low from the recent developments in the geometry of

the triangle and circle, and of similar modern topics, if

some such counter-movement as this did not take place.

If the result is, as it probably will be, to let the basal

propositions of Euclid remain about as they always have

been, as the standards for beginners, the syllabi will

have accomplished a worthy achievement. If, in addi-

tion, they furnish an irreducible minimum of proposi-

tions to which a student may have access if he desires

it, on an examination, as was intended in the case of the

Harvard and the New England Association syllabi, the

achievement may possibly be still more worthy.

In preparing a syllabus, therefore, no one should hope

to bring the teaching world at once to agree to any great

reduction in the number of basal propositions, nor to
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agree to any radical change of terminology, symbolism,

or sequence. Rather should it be the purpose to show

that we have enough topics in geometry at present, and

that the number of propositions is really greater than

is absolutely necessary, so that teachers shall not be

led to introduce any considerable number of proposi-

tions out of the large amount of new material that has

recently been accumulating. Such a syllabus will always

accomplish a good purpose, for at least it will provoke

thought and arouse interest, but any other kind is bound

to be ephemeral. 1

Besides the evolutionary attempts at rearranging and

reducing in number the propositions of Euclid, there

have been very many revolutionary efforts to change his

treatment of geometry entirely. The great French math-

ematician, D'Alembert, for example, in the eighteenth

century, wished to divide geometry into three branches:

(1) that dealing with straight lines and circles, appar-

ently not limited to a plane
; (2) that dealing with sur-

faces; and (3) that dealing with solids. So Meray in

France and De Paolis 2 in Italy have attempted to fuse

plane and solid geometry, but have not produced a sys-

tem that has been particularly successful. More recently

Bourlet, Grevy, Borel, and others in France have produced

several works on the elements of mathematics that may
lead to something of value. They place intuition to the

front, favor as much applied mathematics as is reasonable,

to all of which American teachers would generally agree,

1 The author is a member of a committee that has for more than a

year been considering a syllabus in geometry. This committee will

probably report sometime during the year 1911. At the present

writing it seems disposed to recommend about the usual list of

basal propositions.
,,

2u Elementi di Geometrta," Milan, 1884.
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but they claim that the basis of elementary geometry in

the future must be the " investigation of the group of

motions." It is, of course, possible that certain of the

notions of the higher mathematical thought of the nine-

teenth century may be so simplified as to be within the

comprehension of the tyro in geometry, and we should be

ready to receive all efforts of this kind with open mind.

These writers have not however produced the ideal

work, and it may seriously be questioned whether a work

based upon their ideas will prove to be educationally any

more sound and usable than the labors of such excellent

writers as Henrici and Treutlein, and H. Muller, and

Schlegel a few years ago in Germany, and of Veronese

in Italy. All such efforts, however, should be welcomed

and tried out, although so far as at present appears there

is nothing in sight to replace a well-arranged, vitalized,

simplified textbook based upon the labors of Euclid

and Legendre.

The most broad-minded of the great mathematicians

who have recently given attention to secondary prob-

lems is Professor Klein of Gottingen. He has had the

good sense to look at something besides the mere ques-

tion of good mathematics. 1 Thus he insists upon the

psychologic point of view, to the end that the geometry

shall be adapted to the mental development of the pupil,

— a thing that is apparently ignored by Meray (at least

for the average pupil), and, it is to be feared, by the

other recent French writers. He then demands a careful

selection of the subject matter, which in our American

schools would mean the elimination of propositions that

are not basal, that is, that are not used for most of the

1 See his " Elementarniathematik vom hoheren Standpunkt aus,"

Part II, Leipzig, 1909.
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exercises that one naturally meets in elementary geom-

etry and in applied work. He further insists upon a

reasonable correlation with practical work, to which

every teacher will agree so long as the work is really

or even potentially practical. And finally he asks that

we look with fj^or upon the union of plane and solid

geometry, and of algebra and geometry. He does not

make any plea for extreme fusion, but presumably he

asks that to which every one of open mind would agree,

namely, that whenever the opportunity offers in teaching

plane geometry, to open the vision to a generalization

in space, or to the measurement of well-known solids, or

to the use of the algebra that the pupil has learned, the

opportunity should be seized.



CHAPTER VII

THE TEXTBOOK IN GEOMETRY

In considering the nature of the textbook in geometry

we need to bear in mind the fact that the subject is being

taught to-day in America to a class of pupils that is not

composed like the classes found in other countries or in

earlier generations. In general, in other countries, geom-

etry is not taught to mixed classes of boys and girls.

Furthermore, it is generally taught to a more select

group of pupils than in a country where the high school

and college are so popular with people in all the walks

of life. In America it is not alone the boy who is in-

terested in education in general, or in mathematics in

particular, who studies geometry, and who joins with

others of like tastes in this pursuit, but it is often the

boy and the girl who are not compelled to go out and

work, and who fill the years of youth with a not over-

strenuous school life. It is therefore clear that we can-

not hold the interest of such pupils by the study of

Euclid alone. Geometry must, for them, be less formal

than it was half a century ago. We cannot expect to

make our classes enthusiastic merely over a logical

sequence of proved propositions. It becomes necessary

to make the work more concrete, and to give a much

larger number of simple exercises in order to create

the interest that comes from independent work, from a

feeling of conquest, and from a desire to do something
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original. If we would " cast a glamor over the multipli-

cation table," as an admirer of Macaulay has said that the

latter could do, we must have the facilities for so doing.

It therefore becomes necessary in weighing the merits

of a textbook to consider: (1) if the number of proved

propositions is reduced to a safe minimum ; (2) if there

is reasonable opportunity to apply the theory, the actual

applications coming best, however, from the teacher as

an outside interest; (3) if there is an abundance of

material in the way of simple exercises, since such mate-

rial is not so readily given by the teacher as the seem-

ingly local applications of the propositions to outdoor

measurements ; (4) if the book gives a reasonable amount

of introductory work in the use of simple and inexpen-

sive instruments, not at that time emphasizing the formal

side of the subject ; (5) if there is afforded some oppor-

tunity to see the recreative side of the subject, and to

know a little of the story of geometry as it has devel-

oped from ancient to modern times.

But this does not mean that there is to be a geometric

cataclysm. It means that we must have the same safe,

conservative evolution in geometry that we have in other

subjects. Geometry is not going to degenerate into mere

measuring, nor is the ancient sequence going to become

a mere hodge-podge without system and with no incen-

tive to strenuous effort. It is now about fifteen hundred

years since Proclus laid down what he considered the

essential features of a good textbook, and in all of our

efforts at reform we cannot improve very much upon his

statement. " It is essential," he says, " that such a treat-

ise should be rid of everything superfluous, for the super-

fluous is an obstacle to the acquisition of knowledge ; it

should select everything that" embraces the subject and
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brings it to a focus, for this is of the highest service to

science ; it must have great regard both to clearness and

to conciseness, for their opposites trouble our understand-

ing ; it must aim to generalize its theorems, for the divi-

sion of knowledge into small elements renders it difficult

of comprehension."

It being prefaced that we must make the book more

concrete in its applications, either directly or by suggest-

ing seemingly practical outdoor work ; that Ave must in-

crease the number of simple exercises calling for original

work ; that we must reasonably reduce the number of

proved propositions ; and that we must not allow the

good of the ancient geometry to depart, let us consider

in detail some of the features of a good, practical, com-

mon-sense textbook.

The early textbooks in geometry contained only the

propositions, with the proofs in full, preceded by lists of

definitions and assumptions (axioms and postulates).

There were no exercises, and the proofs were given in

essay form. Then came treatises with exercises, these

exercises being grouped at the end of the work or at the

close of the respective books. The next step was to the

unit page, arranged in steps to aid the eye, one proposi-

tion to a page whenever this was possible. Some effort

was made in this direction in France about two hundred

years ago, but with no success. The arrangement has so

much to commend it, however, the proof being so much

more easily followed by the eye than was the case in the

old-style works, that it has of late been revived. In this

respect the Wentworth geometry was a pioneer in Amer-

ica, and so successful was the effort that this type of

page has been adopted, as far as the various writers were

able to adopt it, in all successful geometries that have
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appeared of late years in this country. As a result, the

American textbooks on this subject are more helpful and

pleasing to the eye than those found elsewhere.

The latest improvements in textbook-making have

removed most of the blemishes of arrangement that re-

mained, scattering the exercises through the book, grad-

ing them with greater care, and making them more

modern in character. But the best of the latest works

do more than this. They reduce the number of proved

theorems and increase the number of exercises, and they

simplify the proofs whenever possible and eliminate the

most difficult of the exercises of twenty-five years ago.

It would be possible to carry this change too far by put-

ting in only half as many, or a quarter as many, regular

propositions, but it should not be the object to see how
the work can be cut down, but to see how it can be

improved.

What should be the basis of selection of propositions

and exercises ? Evidently the selection must include the

great basal propositions that are needed in mensuration

and in later mathematics, together with others that are

necessary to prove them. Euclid's one hundred seventy-

three propositions of plane geometry were really upwards

of one hundred eighty, because he several times com-

bined two or more in one. These we may reduce to about

one hundred thirty with perfect safety, or less than one

a day for a school year, but to reduce still further is

undesirable as well as unnecessary. It would not be

difficult to dispense with a few more ; indeed, we might

dispense with thirty more if we should set about it,

although we must never forget that a goodly number in

addition to those needed for the logical sequence are

necessary for the wide range of exercises that are offered.
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But let it be clear that if we teach 100 instead of 130,

our results are liable to be about \^ as satisfactory. We
may theorize on pedagogy as we please, but geometry

will pay us about in proportion to what we give.

And as to the exercises, what is the basis of selection ?

In general, let it be said that any exercise that pretends

to be real should be so, and that words taken from science

or measurements do not necessarily make the problem

genuine. To take a proposition and apply it in a man-

ner that the world never sanctions is to indulge in deceit.

On the other hand, wholly to neglect the common appli-

cations of geometry to handwork of various kinds is to

miss one of our great opportunities to make the subject

vital to the pupil, to arouse new interest, and to give a

meaning to it that is otherwise wanting. It should always

be remembered that mental discipline, whatever the

phrase may mean, can as readily be obtained from a genu-

ine application of a theorem as from a mere geometric

puzzle. On the other hand, it is evident that not more

than 25 per cent of propositions have any genuine appli-

cations outside of geometry, and that if we are to attempt

any applications at all, these must be sought mainly in

the field of pure geometry. In the exercises, therefore,

we seek to-day a sane and a balanced book, giving equal

weight to theory and to practice, to the demands of the

artisan and to those of the mathematician, to the applica-

tions of concrete science and to those of pure geometry,

thus making a fusion of pure and applied mathematics,

with the latter as prominent as the supply of genuine

problems permits. The old is not all bad and the new is

not all good, and a textbook is a success in so far as it

selects boldly the good that is in the old and rejects with

equal boldness the bad that is in the new.
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Lest the nature of the exercises of geometry may be

misunderstood, it is well that we consider for a moment
what constitutes a genuine application of the subject. It

is the ephemeral fashion just at present in America to

call these genuine applications by the name of a real

problems." The name is an unfortunate importation,

but that is not a matter of serious moment. The impor-

tant thing is that we should know what makes a prob-

lem " real " to the pupil of geometry, especially as the

whole thing is coming rapidly into disrepute through

the mistaken zeal of some of its supporters.

A real problem is a problem that the average citizen

may sometime be called upon to solve ; that, if so called

upon, he will solve in the manner indicated ; and that is

expressed in terms that are familiar to the pupil.

This definition, which seems fairly to state the condi-

tions under which a problem can be called " real " in the

schoolroom, involves three points: (1) people must be

liable to meet such a problem
; (2) in that case they

will solve it in the way suggested by the book
; (3) it

must be clothed in language familiar to the pupil. For

example, let the problem be to find the dimensions of a

rectangular field, the data being the area of the field and

the area of a road four rods wide that is cut from three

sides of the field. As a real problem this is ridiculous,

since no one would ever meet such a case outside the

puzzle department of a schoolroom. Again, if by any

stretch of a vigorous imagination any human being should

care to find the area of a piece of glass, bounded by the

arcs of circles, in a Gothic window in York Minster, it is

fairly certain that he would not go about it in the way
suggested in some of the earnest attempts that have been

made by several successful teachers to add interest to
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geometry. And for the third point, a problem is not real

to a pupil simply because it relates to moments of inertia

or the tensile strength of a steel bar. Indeed, it is unreal

precisely because it does talk of these things at a time

when they are unfamiliar, and properly so, to the pupil.

It must not be thought that puzzle problems, and

unreal • problems generally, have no value. All that is

insisted upon is that such problems as the above are not

" real," and that about 90 per cent of problems that go

by this name are equally lacking in the elements that

make for reality in this sense of the word. For the other

10 per cent of such problems we should be thankful, and

we should endeavor to add to the number. As for the

great mass, however, they are no better than those that

have stood the test of generations, and by their pretense

they are distinctly worse.

It is proper, however, to consider whether a teacher is

not justified in relating his work to those geometric forms

that are found in art, let us say in floor patterns, in domes

of buildings, in oilcloth designs, and the like, for the

purpose of arousing interest, if for no other reason. The

answer is apparent to any teacher : It is certainly justi-

fiable to arouse the pupil's interest in his subject, and to

call his attention to the fact that geometric design plays

an important part in art ; but we must see to it that our

efforts accomplish this purpose. To make a course in

geometry one on oilcloth design would be absurd, and

nothing more unprofitable or depressing could be imag-

ined in connection Avith this subject. Of course no one

would advocate such an extreme, but it sometimes seems

as if we are getting painfully near it in certain schools.

A pupil has a passing interest in geometric design. He
should learn to use the instruments of geometry, and
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he learns this most easily by drawing a few such pat-

terns. But to keep him week after week on questions

relating to such designs of however great variety, and

especially to keep him upon designs relating to only one

or two types, is neither sound educational policy nor

even common sense. That this enthusiastic teacher or

that one succeeds by such a plan is of no significance

;

it is. the enthusiasm that succeeds, not the plan.

The experience of the world is that pupils of geometry

like to use the subject practically, but that they are

more interested in the pure theory than in any fictitious

applications, and this is why pure geometry has endured,

while the great mass of applied geometry that was brought

forward some three hundred years ago has long since

been forgotten. The question of the real applications of

the subject is considered in subsequent chapters.

In Chapter VI we considered the question of the

number of regular propositions to be expected in the

text, and we have just considered the nature of the exer-

cises which should follow those propositions. It is well

to turn our attention next to the nature of the proofs of

the basal theorems. Shall they appear in full ? Shall

they be merely suggested demonstrations ? Shall they

be only a series of questions that lead to the proof ?

Shall the proofs be omitted entirely ? Or shall there be

some combination of these plans ?

The natural temptation in the nervous atmosphere of

America is to listen to the voice of the mob and to pro-

ceed at once to lynch Euclid and every one who stands

for that for which the " Elements " has stood these two

thousand years. This is what some who wish to be con-

sidered as educators tend to do; in the language of the

mob, to "smash things"; to call reactionary that which
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does not conform to their ephemeral views. It is so easy

to be an iconoclast, to think that cut bono is a conclusive

argument, to say so glibly that Raphael was not a great

painter,— to do anything but construct. A few years

ago every one must take up with the heuristic method
developed in Germany half a century back and contain-

ing much that was commendable. A little later one who
did not believe that the Culture Epoch Theory was vital

in education was looked upon with pity by a consider-

able number of serious educators. A little later the man
who did not think that the principle of Concentration in

education was a regula aurea was thought to be hopeless.

A little later it may have been that Correlation was the

saving factor, to be looked upon in geometry teaching as

a guiding beacon, even as the fusion of all mathematics

is the temporary view of a few enthusiasts to-day. 1

And just now it is vocational training that is the catch

phrase, and to many this phrase seems to sound the

funeral knell of the standard textbook in geometry. But
does it do so ? Does this present cry of the pedagogical

circle really mean that we are no longer to have geom-

etry for geometry's sake ? Does it mean that a panacea

has been found for the ills of memorizing without under-

standing a proof in the class of a teacher who is so ineffi-

cient as to allow this kind of work to go on ? Does it

mean that a teacher who does not see the human side of

1 For some classes of schools and under certain circumstances

courses in combined mathematics are very desirable. All that is here

insisted upon is that any general fusion all along the line would result

in weak, insipid, and uninteresting mathematics. A beginning, inspi-

rational course in combined mathematics has a good reason for being

in many high schools in spite of its manifest disadvantages, and such

a course may be developed to cover all of the required mathematics

given in certain schools.
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geometry, who does not know the real uses of geometry,

and who has no faculty of making pupils enthusiastic

over geometry,— that this teacher is to succeed with

some scrappy, weak, pretending apology for a real work

on the subject ?

No one believes in stupid teaching, in memorizing a

textbook, in having a book that does all the work for a

pupil, or in any of the other ills of inefficient instruction.

On the other hand, no fair-minded person can condemn

a type of book that has stood for generations until some-

thing besides the mere transient experiments of the

moment has been suggested to replace it. Let us, for

example, consider the question of having the basal prop-

ositions proved in full, a feature that is so easy to con-

demn as leading to memorizing.

The argument in favor of a book with every basal

proposition proved in full, or with most of them so

proved, the rest having only suggestions for the proof,

is that the pupil has before him standard forms exhibit-

ing the best, most succinct, most clearly stated demon-

strations that geometry contains. The demonstrations

stand for the same thing that the type problems stand

for in algebra, and are generally given in full in the same

way. The argument against the plan is that it takes

away the pupil's originality by doing all the work for

him, allowing him to merely memorize the work. Now
if all there is to geometry were in the basal propositions,

this argument might hold, just as it would hold in algebra

in case there were only those exercises that are solved

in full. But just as this is not the case in algebra, the

solved exercises standing as types or as bases for the

pupil's real work, so the demonstrated proposition forms

a relatively small part of geometry, standing as a type,
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a basis for the more important part of the work. More-

over, a pupil who uses a syllabus is exposed to a danger

that should be considered, namely, that of dishonesty.

Any textbook in geometry will furnish the proofs of

most of the propositions in a syllabus, whatever changes

there may be hi the sequence, and it is not a healthy con-

dition of mind that is induced by getting the proofs

surreptitiously. Unless a teacher has more time for the

course than is usually allowed, he cannot develop the

new work as much as is necessary with only a syllabus,

and the result is that a pupil gets more of his work from

other books and has less time for exercises. The ques-

tion therefore comes to this: Is it better to use a book

containing standard forms of proof for the basal propo-

sitions, and have time for solving a large number of

original exercises and for seeking the applications of

geometry? Or is it better to use a book that requires

more time on the basal propositions, with the danger of

dishonesty, and allows less time for solving originals?

To these questions the great majority of teachers answer

in favor of the textbook with most of the basal proposi-

tions fully demonstrated. In general, therefore, it is a

good rule to use the proofs of the basal propositions as

models, and to get the original work from the exercises.

Unless Ave preserve these model proofs, or unless we

supply them with a syllabus, the habit of correct, succinct

self-expression, which is one of the chief assets of geom-

etry, will tend to become atrophied. So important is this

habit that " no system of education in which its perform-

ance is neglected can hope or profess to evolve men and

women who are competent in the full sense of the word.

So long as teachers of geometry neglect the possibilities

of the subject in this respect, so long will the time devoted
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to it be in large part wasted, and so long will their pupils

continue to imbibe the vicious idea that it is much more

important to be able to do a thing than to say how it can

be done." *

It is here that the chief danger of syllabus-teaching

lies, and it is because of this patent fact that a syllabus

without a carefully selected set of model proofs, or with-

out the unnecessary expenditure of time by the class, is

a dangerous kind of textbook.

What shall then be said of those books that merely

suggest the proofs, or that give a series of questions that

lead to the demonstrations ? There is a certain plausi-

bility about such a plan at first sight. But it is easily

seen to have only a fictitious claim to educational value.

In the first place, it is merely an attempt on the part of

the book to take the place of the teacher and to " develop "

every lesson by the heuristic method. The questions are

so framed as to admit, in most cases, of only a single

answer, so that this answer might just as well be given

instead of the question. The pupil has therefore a proof

requiring no more effort than is the case in the standard

form of textbook, but not given in the clear language of

a careful writer. Furthermore, the pupil is losing here,

as when he uses only a syllabus, one of the very things

that he should be acquiring, namely, the habit of reading

mathematics. If he met only syllabi without proofs, or

" suggestive " geometries, or books that endeavored to

question every proof out of him, he would be in a sorry

plight when he tried to read higher mathematics, or even

other elementary treatises. -It is for reasons such as these

that the heuristic textbook has never succeeded for any

great length of time or in any wide territory.

1 Carson, loc. cit., p. 15.
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And finally, upon this point, shall the demonstrations

be omitted entirely, leaving only the list of propositions,

— in other words, a pure syllabus ? This has been suffi-

ciently answered above. But there is a modification of

the pure syllabus that has much to commend itself to

teachers of exceptional strength and with more confidence

in themselves than is usually found. This is an arrange-

ment that begins like the ordinary textbook and, after

the pupil has acquired the form of proof, gradually

merges into a syllabus, so that there is no temptation to

go surreptitiously to other books for help. Such a book,

if worked out with skill, would appeal to an enthusiastic

teacher, and would accomplish the results claimed for

the cruder forms of manual already described. It would

not be in general as safe a book as the standard form,

but with the right teacher it would bring good results.

In conclusion, there are two types of textbook that

have any hope of success. The first is the one with all

or a large part of the basal propositions demonstrated in

full, and with these propositions not unduly reduced in

number. Such a book should give a large number of

simple exercises scattered through the work, with a rel-

atively small number of difficult ones. It should be mod-

ern in its spirit, with figures systematically lettered, with

each page a unit as far as possible, and with every proof

a model of clearness of statement and neatness of form.

Above all, it should not yield to the demand of a few who

are always looking merely for something to change, nor

should it in a reactionary spirit return to the old essay

form of proof, which hinders the pupil at this stage.

The second type is the semisyllabus, otherwise with

all the spirit of the first type. In both there should be

an honest fusion of pure and applied geometry, with no
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exercises that pretend to be practical without being so,

with no forced applications that lead the pupil to meas-

ure things in a way that would appeal to no practical

man, with no merely narrow range of applications, and

with no array of difficult terms from physics and engi-

neering that submerge all thought of mathematics in the

slough of despond of an unknown technical vocabulary.

Outdoor exercises, even if somewhat primitive, may be

introduced, but it should be perfectly understood that

such exercises are given for the purpose of increasing the

interest in geometry, and they should be abandoned if

they fail of this purpose.

Bibliography. For a list of standard textbooks issued prior to

the present generation, consult the bibliography in Stamper, His-

tory of the Teaching of Geometry, New York, 1908.



CHAPTER VIII

THE RELATION OF ALGEBRA TO GEOMETRY

From the standpoint of theory there is or need be no

relation whatever between algebra and geometry. Alge-

bra was originally the science of the equation, as its name 1

indicates. This means that it was the science of rinding

the value of an unknown quantity in a statement of

equality. Later it came to mean much more than this,

and Newton spoke of it as universal arithmetic, and

wrote an algebra with this title. At present the term is

applied to the elements of a science in which numbers

are represented by letters and in which certain functions

are studied, functions which it is not necessary to specify

at this time. The work relates chiefly to functions involv-

ing the idea of number. In geometry, on the other hand,

the work relates chiefly to form. Indeed, in pure geom-

etry number plays practically no part, while in pure

algebra form plays practically no part.

In 1637 the great French philosopher, Descartes, wish-

ing t<> picture certain algebraic functions, wrote a work

of about a hundred pages, entitled "La Geometric.** and

in this he showed a correspondence between the num-

bers of algebra (which may be expressed by letters ) and

the concepts of geometry. This was the first great step

in the analytic geometry that finally rave us the graph

1 Al-jabr v:a l-muqabalah : " restoration and equation" is a fairly

I translation of the Arabic.

84
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in algebra. Since then there have been brought out from

time to time other analogies between algebra and geom-

etry, always to the advantage of each science. This has

led to a desire on the part of some teachers to unite

algebra and geometry into one science, having simply a

class in mathematics without these special names.

It is well to consider the advantages and the disad-

vantages of such a plan, and to decide as to the rational

attitude to be taken by teachers concerning the question

at issue. On the side of advantages it is claimed that

there is economy of time and of energy. If a pupil is

studying formulas, let the formulas of geometry be stud-

ied ; if he is taking up ratio and proportion, let him do

so for algebra and geometry at the same time ; if he is

solving quadratics, let him apply them at once to certain

propositions concerning secants ; and if he is proving that

(a + by equals a
1 + 2 ah -\- V\ let him do so by algebra

and by geometry simultaneously. It is claimed that not

only is there economy in this arrangement, but that the

pupil sees mathematics as a whole, and thus acquires

more of a mastery than comes by our present " tandem

arrangement."

On the side of disadvantages it may be asked if the

same arguments would not lead us to teach Latin and

Greek together, or Latin and French, or all three simul-

taneously ? If pupils should decline nouns in all three

languages at the same time, learn to count in all at the

same time, and begin to translate in all simultaneously,

would there not be an economy of time and effort, and

would there not be developed a much broader view of

language ? Now the fusionist of algebra and geometry

does not like this argument, and he says that the cases

are not parallel, and he tries to tell why they are not.
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He demands that his opponent abandon argument by
analogy and advance some positive reason why algebra

and geometry should not be fused. Then his opponent

says that it is not for him to advance any reason for

what already exists, the teaching of the two separately

;

that he has only to refute the fusionist's arguments, and

that he has done so. He asserts that algebra and geom-

etry are as distinct as chemistry and biology ; that they

have a few common points, but not enough to require

teaching them together. He claims that to begin Latin

and Greek at the same time has always proved to be

confusing, and that the same is true of algebra and

geometry. He grants that unified knowledge is desirable,

but he argues that when the fine arts of music and color

work fuse, and when the natural sciences of chemistry

and physics are taught in the same class, and when we
follow the declension of a German noun by that of a

French noun and a Latin noun, and when we teach draw-

ing and penmanship together, then it is well to talk of

mixing algebra and geometry.

It is well, before deciding such a question for our-

selves (for evidently we cannot decide it for the world),

to consider what has been the result of experience. Alge-

bra and geometry were always taught together in early

times, as were trigonometry and astronomy. The Ahmes
papyrus contains both primitive algebra and primitive

geometry. Euclid's " Elements " contains not only pure

geometry, but also a geometric algebra and the theory of

numbers. The early works of the Hindus often fused

geometry and arithmetic, or geometry and algebra. Even

the first great printed compendium of mathematics, the

"Suma" of Paciuolo (1494) contained all of the branches

of mathematics. Much of this later attempt was not,
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however, an example of perfect fusion, but rather of as-

signing one set of chapters to algebra, another to geome-

try, and another to arithmetic. So fusion, more or less

perfect, has been tried over long periods, and abandoned

as each subject grew more complete in itself, with its own

language and its peculiar symbols.

But it is asserted that fusion is being carried on suc-

cessfully to-day by more than one enthusiastic teacher,

and that this proves the contention that the plan is a

good one. Books are cited to show that the arrangement

is feasible, and classes are indicated where the work is

progressing along this line.

What, then, is the conclusion ? That is a question

for the teacher to settle, but it is one upon which a

writer on the teaching of mathematics should not fear

to express his candid opinion.

It is a fact that the Greek and Latin fusion is a fair

analogy. There are reasons for it, but there are many
more against it, the chief one being the confusion of

beginning two languages at once, and the learning simul-

taneously of two vocabularies that must be kept sepa-

rate. It is also a fact that algebra and geometry are

fully as distinct as physics and chemistry, or chemistry

and biology. Life may be electricity, and a brief cessa-

tion of oxidization in the lungs brings death, but these

facts are no reasons for fusing the sciences of physics,

biology, and chemistry. Algebra is primarily a theory

of certain elementary functions, a generalized arithmetic,

while geometry is primarily a theory of form with a highly
rrefined logic to be used in its mastery. They have a few

things in common, as many other subjects have, but they

have very many more features that are peculiar to the

one or the other. The experience of the world has led
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it away from a simultaneous treatment, and the contrary

experience of a few enthusiastic teachers of to-day proves

only their own powers to succeed with any method. It

is easy to teach logarithms in the seventh school year,

but it is not good policy to do so under present condi-

tions. So the experience of the world is against the plan

of strict fusion, and no arguments have as yet been

advanced that are likely to change the world's view. No
one has written a book combining algebra and geometry

in this fashion that has helped the cause of fusion a

particle ; on the contrary, every such work that has

appeared has damaged that cause by showing how unsci-

entific a result has come from the labor of an enthusiastic

supporter of the movement.

But there is one feature that has not been considered

above, and that is a serious handicap to any effort at

combining the two sciences in the high school, and this

is the question of relative difficulty. It is sometimes said,

in a doctrinaire fashion, that geometry is easier than

algebra, since form is easier to grasp than function, and

that therefore geometry should precede algebra. But

every teacher of mathematics knows better than this.

He knows that the simplest form is easier to grasp than

the simplest function, but nevertheless that plane geom-

etry, as we understand the term to-day, is much more

difficult than elementary algebra for a pupil of fourteen.

The child studies form in the kindergarten before he stud-

ies number, and this is sound educational policy. He
studies form, in mensuration, throughout his course in

arithmetic, and this, too, is good educational policy.

This kind of geometry very properly precedes algebra.

But the demonstrations of geometry, the study by pupils

of fourteen years of a geometry that was written for
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college students and always studied by them until about

fifty years ago,— that is by no means as easy as the

study of a simple algebraic symbolism and its applica-

tion to easy equations. If geometry is to be taught for

the same reasons as at present, it cannot advantageously

be taught earlier than now without much simplification,

and it cannot successfully be fused with algebra save by

some teacher who is willing to sacrifice an undue amount

of energy to no really worthy purpose. When great

mathematicians like Professor Klein speak of the fusion

of all mathematics, they speak from the standpoint of

advanced students, not for the teacher of elementary

geometry.

It is therefore probable that simple mensuration will

continue, as a part of arithmetic, to precede algebra, as

at present ; and that algebra into or through quadratics

will precede geometry, 1 drawing upon the mensuration

of arithmetic as may be needed ; and that geometry will

follow this part of algebra, using its principles as far as

possible to assist in the demonstrations and to express

and manipulate its formulas. Plane geometry, or else a

year of plane and solid geometry, will probably, in this

country, be followed by algebra, completing quadratics

and studying progressions ; and by solid geometry, or a

supplementary course in plane and solid geometry, this

work being elective in many, if not all, schools. 2 It is

also probable that a general review of mathematics,

where the fusion idea may be carried out, will prove to

be a feature of the last year of the high school, and one

1 Or be carried along at the same time as a distinct topic.

2 With a single year for required geometry it would be better from
every point of view to cut the plane geometry enough to admit a fair

course in solid geometry.
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that will grow in popularity as time goes on. Such a

plan will keep algebra and geometry separate, but it

will allow each to use all of the other that has preceded

it, and will encourage every effort in this direction. It

will accomplish all that a more complete fusion really

hopes to accomplish, and it will give encouragement to

all who seek to modernize the spirit of each of these

great branches of mathematics.

There is, however, a chance for fusion in two classes

of school, neither of which is as yet well developed in

this country. The first is the technical high school that

is at present coming into some prominence. It is not prob-

able even here that the best results can be secured by

eliminating all mathematics save only what is applicable

in the shop, but if this view should prevail for a time,

there would be so little left of either algebra or geometry

that each could readily be joined to the other. The ac-

tual amount of algebra needed by a foreman in a machine

shop can be taught in about four lessons, and the geom-

etry or mensuration that he needs can be taught in eight

less< >ns at the most. The necessary trigonometry may take

eight more, so that it is entirely feasible to unite these

three subjects. The boy who takes such a course would

know as much about mathematics as a child who had read

ten pages in a primer would know about literature, but he

would have enough for his immediate needs, even though

he had no appreciation of mathematics as a science. If

any one asks if this is not all that the school should give

him, it might be well to ask if the school should give

only the ability to read, without the knowledge of any

good literature ; if it should give only the ability to sing,

without the knowledge of good music ; if it should give

only the ability to speak, without any training in the use
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of good language ; and if it should give a knowledge of

home geography, without any intimation that the world

is round,— an atom in the unfathomable universe about us.

The second opportunity for fusion is possibly (for it

is by no means certain) to be found in a type of school

in which the only required courses are the initial ones.

These schools have some strong advocates, it being

claimed that every pupil should be introduced to the

large branches of knowledge and then allowed to elect

the ones in which he finds himself the most interested.

Whether or not this is sound educational policy need

not be discussed at this time; but if such a plan were

developed, it might be well to offer a somewhat super-

ficial (in the sense of abridged) course that should em-

body a little of algebra, a little of geometry, and a little

of trigonometry. This would unconsciously become a

bait for students, and the result would probably be some

good teaching in the class in question. It is to be hoped

that we may have some strong, well-considered text-

books upon this phase of the work.

As to the fusion of trigonometry and plane geometry

little need be said, because the subject is in the doctri-

naire stage. Trigonometry naturally follows the chapter

on similar triangles, but to put it there means, in our

crowded curriculum, to eliminate something from geom-
etry. Which, then, is better,— to give up the latter por-

tion of geometry, or part of it at least, or to give up
trigonometry ? Some advocates have entered a plea for

two or three lessons in trigonometry at this point, and
this is a feature that any teacher may introduce as a bit

of interest, as is suggested in Chapter XVI, just as he

may give a popular talk to his class upon the fourth

dimension or the non-Euclidean geometry. Trje lasting
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impression upon the pupil will be exactly the same as

that of four lessons in Sanskrit while he is studying

Latin. He might remember each with pleasure, Latin

being related, as it is, to Sanskrit, and trigonometry being

an outcome of the theory of similar triangles. But that

either of these departures from the regular sequence is

of any serious mathematical or linguistic significance

no one would feel like asserting. Each is allowable on

the score of interest, but neither will add to the pupil's

power in any essential feature.

Each of these subjects is better taught by itself, each

using the other as far as possible and being followed by a

review that shall make use of all. It is not improbable

that we may in due time have high schools that give less

extended courses in algebra and geometry, adding brief

practical courses in trigonometry and the elements of the

calculus; but even in such schools it is likely to be found

that geometry is best taught by itself, making use of all

the mathematics that has preceded it.

It will of course be understood that the fusion of al-

gebra and geometry as here understood has nothing to

do with the question of teaching the two subjects simul-

taneously, sa)^ two days in the week for one and three

days for the other. This plan has many advocates, al-

though on the whole it has not been well received in this

country. But what is meant here is the actual fusing of

algebra and geometry day after day,— a plan that has

as yet met witli only a sporadic success, but which may

be developed for beginning classes in due time.



CHAPTER IX

THE INTRODUCTION TO GEOMETRY

There are two difficult crises in the geometry course,

both for the pupil and for the teacher. These crises are

met at the beginning of the subject and at the beginning

of solid geometry. Once a class has fairly got"into Book I,

if the interest in the subject can be maintained, there are

only the incidental difficulties of logical advance through-

out the plane geometry. When the pupil who has been

seeing figures in one plane for a year attempts to visual-

ize solids from a flat drawing, the second difficult place

is reached. Teachers going over solid geometry from

year to year often forget this difficulty, but most of them

can easily place themselves in the pupil's position by look-

ing at the working drawings of any artisan,— usually sim-

ple cases in the so-called descriptive geometry. They
will then realize how difficult it is to visualize a solid

from an unfamiliar kind of picture. The trouble is usually

avoided by the help of a couple of pieces of heavy card-

board or box board, and a few knitting needles with

which to represent lines in space. If these are judiciously

used in class for a few days, until the figures are under-

stood, the second crisis is easily passed. The continued

use of such material, however, or the daily use of either

models or photographs, weakens the pupil, even as a

child is weakened by being kept too long in a perambu-

lator. Such devices have their place ; they are useful

93



94 THE TEACHING OF GEOMETRY

when needed, but tliey are pernicious when unnecessary.

Just as the mechanic must be able to make and to vis-

ualize his working drawings, so the student of solid

geometry must be able to get on with pencil and paper,

representing his solid figures in the flat.

But the introduction to plane geometry is not so easily

disposed of. The pupil at that time is entering a field

that is entirely unfamiliar. He is only fourteen or fifteen

years of age, and his thoughts are distinctly not on geom-

etry. Of logic he knows little and cares less. He is not

interested in a subject of which he knows nothing, not

even the meaning of its name. He asks, naturally and

properly, what it all signifies, what possible use there is

for studying geometry, and why he should have to prove

what seems to him evident without proof. To pass him

successfully through this stage has taxed the ingenuity of

every real teacher from the time of Euclid to the present

;

and just as Euclid remarked to King Ptolemy, his patron,

that there is no royal road to geometry, so we may affirm

that there is no royal road to the teaching of geometry.

Nevertheless the experience of teachers counts for a

great deal, and this experience has shown that, aside from

the matter of technic in handling the class, certain sugges-

tions are of value, and a few of these will now be set forth.

First, as to why geometry is studied, it is manifestly

impossible successfully to explain to a boy of fourteen

or fifteen the larger reasons for studying anything what-

ever. When we confess ourselves honestly we find that

these reasons, whether in mathematics, the natural sci-

ences, handwork, letters, the vocations, or the fine arts,

are none too clear in our own minds, in spite of any pre-

tentious language that we may use. It is therefore most

satisfactory to anticipate the question at once, and to set
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the pupils, for a few days, at using the compasses and

ruler in the drawing of geometric designs and of the

most common figures that they will use. This serves

several purposes : it excites their interest, it guards

against the slovenly figures that so often lead them to

erroneous conclusions, it has a genuine value for the

future artisan, and it shows that geometry is something

besides mere theory. Whether the textbook provides

for it or not, the teacher will find a few days of such

work well spent, it being a simple matter to supplement

the book in this respect. There was a time when some

form of mechanical drawing was generally taught in the

schools, but this has given place to more genuine art

work, leaving it to the teacher of geometry to impart

such knowledge of drawing as is a necessary prelimi-

nary to the regular study of the subject.

Such work in drawing should go so far, and only so

far, as to arouse an interest in geometric form without

becoming wearisome, and to familiarize the pupil with

the use of the instruments. He should be counseled

about making fine lines, about being careful in setting

the point of his compasses on the. exact center that he

wishes to use, and about representing a point by a very

fine dot, or, preferably at first, by two crossed lines.

Unless these details are carefully considered, the pupil

will soon find that the lines of his drawings do not fit

together, and that the result is not pleasing to the eye.

The figures here given are good ones upon which to

begin, the dotted construction lines being erased after

the work is completed. They may be constructed with

the compasses and ruler alone, or the draftsman's

T-square, triangle, and protractor may be used, although

these latter instruments are not necessary. We should
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constantly remember that there is a danger in the slav-

ish use of instruments and of such helps as squared paper.

Just as Euclid rode roughshod over the growing intellects of

boys and girls, so may instruments ride roughshod over their

growing perceptions by interfering with natural and healthy intui-

tions, and making them the subject of laborious measurement. 1

The pupil who cannot see the equality of vertical angles

intuitively better than by the use of the protractor is

abnormal. Nevertheless it is the pupil's interest that

is at stake, together with his ability to use the instru-

ments of daily life. If, therefore, he can readily be

1 Carson, loc. cit., p. 13.
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supplied with draftsmen's materials, and is not com-

pelled to use them in a foolish manner, so much the

better. They will not hurt his geometry if the teacher

does not interfere, and they will help his practical draw-

ing ; but for obvious reasons we cannot demand that the

pupil purchase what is not really essential to his study

of the subject. The most valuable single instrument of

the three just mentioned is the protractor, and since a

paper one costs only a few cents and is often helpful

in the drawing of figures, it should be recommended

to pupils.

There is also another line of work that often arouses

a good deal of interest, namely, the simple held meas-

ures that can easily be made about the school grounds.

Guarding against the ever-present danger of doing too

much of such work, of doing work that has no interest

for the pupil, of requiring it done in a way that seems

unreal to a class, and of neglecting the essence of geom-

etry by a line of work that involves no new principles,

— such outdoor exercises in measurement have a posi-

tive value, and a plentiful supply of suggestions in this

line is given- in the subsequent chapters. The object is

chiefly to furnish a motive for geometry, and for many
pupils this is quite unnecessary. For some, however,

and particularly for the energetic, restless boy, such

work has been successfully offered by various teachers

as an alternative to some of the book work. Because

of this value a considerable amount of such work will

be suggested for teachers who may care to use it, the

textbook being manifestly not the place for occasional

topics of this nature.

For the purposes of an introduction only a tape line

need be purchased. Wooden pins and a plumb line can
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easily be made. Even before he comes to the proposi

tions in mensuration in geometry the pupil knows, from

his arithmetic, how to find ordinary areas and volumes,

and lie may therefore be set at work to find the area of

the school ground, or of a field, or of a city block. The
following are among the simple exercises for a beginner:

1. Drive stakes at two corners, A and P, of the school

grounds, putting a cross on top of each; or make the

crosses on the sidewalk, so as to get two points between

which to measure. Measure from A to B by holding the

tape taut and level, dropping perpendiculars when nec-

essary by means of the

plumb line, as shown in

the figure. Check the

work by measuring from

B back to A in the same way. Pupils will find that their

work should always be checked, and they will be sur-

prised to see how the results will vary in such a simple

measurement as this, unless very great care is taken. If

they learn the lesson of accuracy thus early, they will

have gained much.

2. Take two stakes, X, F, in a field, preferably two

or three hundred feet apart, always marked on top with

crosses so as to have exact points from which to work.

Let it then be required to stake out or " range " the line

from X to Y by plac-
,

, ,

ing stakes at specified
x F Q E

distances. One boy stands at Y and another at X, each

with a plumb line. A third one takes a plumb line and

stands at P, the observer at X motioning to him to

move his plumb line to the right or the left until it is

exactly in line with X and Y. A stake is then driven

at P, and the pupil at X moves on to the stake P. Then
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Q is located in the same way, and then P, and so on.

The work is checked by ranging back from Y to X. In

some of the simple exercises suggested later it is neces-

sary to range a line so that this work is useful in making

measurements. The geometric principle involved is that

two points determine a straight line. A
3. To test a perpendicular or to draw

one line perpendicular to another in a

field, we may take a stout cord twelve

feet long, having a knot at the end of

every foot. If this is laid along four feet,

the ends of this part being fixed, and it

is stretched as here shown, so that the

next vertex is five feet from one of these ends and three

feet from the other end, a right angle will be formed.

A right angle can also be run

by making a simple instru-

ment, such as is described in

Chapter XV. Still another

plan of drawing a line per-

pendicular to another line

AB, from a point P, consists

in swinging a tape from P, cutting AB at X and I7, and

then bisecting XY by doubling the tape. This fixes the

foot of the perpendicular.

4. It is now possible to find

the area of a field of irregu-

lar shape by dividing it into

triangles and trapezoids, as

shown in the figure. Pupils

know from their work in arithmetic how to find the area

of a triangle or a trapezoid, so that the area of the iield

is easily found. The work may be checked by comparing

Y,

M
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the results of different groups of pupils, or by drawing

another diagonal and dividing the field into other tri-

angles and trapezoids.

These are about as many types of field work as there

is any advantage in undertaking for the purpose of secur-

ing the interest of pupils as a preliminary to the work in

geometry. Whether any of it is necessary, and for what

pupils it is necessary, and how much it should trespass

upon the time of scientific geometry are matters that can

be decided only by the teacher of a particular class.

A second difficulty of the pupil is seen in his attitude

of mind towards proofs in general. He does not see why
vertical angles should be proved equal when he knows

that they are so by looking at the figure. This difficulty

should also be anticipated by giving him some opportu-

nity to know the weakness of his judg- A^ ^B

<r
x

^ment, and for this purpose figures like

the following should be placed before

him. He should be asked which of these

lines is longer, AB or XT. Two equal

lines should then be arranged in the form

of a letter T, as here shown, and he should

be asked which is the longer, AB or CD.

A figure that is very deceptive, par-

ticularly if drawn larger and with

heavy cross lines, is this one in which

AB and CD are really parallel, but

do not seem to be so. Other inter-

esting deceptions have to do with

producing lines, as in these

figures, where it is quite w x
difficult in advance to tell whether AB and CD are in

the same line, and similarly for WX and YZ. Equally

D
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deceptive is this figure, in which it is difficult to tell

which line AB will lie along when produced. In the

next figure AB appears to be curved

when in reality it is straight, and CD
appears straight when in reality it is

curved. The first of the following

circles seems to be slightly

flattened at the points P,

Q, i2, /S, and in the second

one the distance BD seems

greater than the distance

AC. There are

many equally

deceptive fig-

ures, and a

few of them

will convince

the beginner

that the proofs

are necessary

features of geometry.

It is interesting, in connection with the tendency to

feel that a statement is apparent without proof, to recall

an anecdote related by the French mathematician, Biot,

concerning the great scientist, Laplace

:

Once Laplace, having been asked about a certain point in his

" Celestial Mechanics/' spent nearly an hour in trying to recall the

chain of reasoning which he had carelessly concealed by the

words " It is easy to see."

A third difficulty lies in the necessity for putting a con-

siderable number of definitions at the beginning of geom-

etry, in order to get a working vocabulary. Although

practically all writers scatter the definitions as much as
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possible, there must necessarily be some vocabulary at

the beginning. In order to minimize the difficulty of

remembering so many new terms, it is helpful to mingle

with them a considerable number of exercises in which

these terms are employed, so that they may become fixed

in mind through actual use. Thus it is of value to have

a class find the complements of 27°, 32° 20', 41° 32' 48",

26.75°, 331°, and 0°. It is true that into the pure geom-

etry of Euclid the measuring of angles in degrees does

not enter, but it has place in the practical applications,

and it serves at this juncture to fix the meaning of a new
term like "complement."

The teacher who thus anticipates the question as to

the reason for studying geometry, the mental opposition

to proving statements, and the forgetfulness of the mean-

ing of common terms will find that much of the initial

difficulty is avoided. If, now, great care is given to the

first half dozen propositions, the pupil will be well on his

way in geometry. As to these propositions, two plans of

selection are employed. The first takes a few preliminary

propositions, easily demonstrated, and seeks thus to intro-

duce the pupil to the nature of a proof. This has the

advantage of inspiring confidence and the disadvantage

of appearing to prove the obvious. The second plan dis-

cards all such apparently obvious propositions as those

about the equality of riglitjmgles, and the sum of two

adjacent angles formed by BBthe meeting another, and

begins at once on things that seem to the pupil as worth

the proving. In this latter plan the introduction is usu-

ally made with the proposition concerning vertical angles,

and the two simplest cases of congruent triangles.

Whichever plan of selection is taken, it is important

to introduce a considerable number of one-step exercises
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immediately, that is, exercises that require only one sig-

nificant step in the proof. In this way the pupil acquires

confidence in his own powers, he finds that geometry is

not mere memorizing, and he sees that each proposition

makes him the master of a large field. To delay the

exercises to the end of each book, or even to delay

them for several lessons, is to sow seeds that will result

in the attempt to master geometry by the sheer process

of memorizing.

As to the nature of these exercises, however, the mis-

take must not be made of feeling that only those have

any value that relate to football or the laying out of a

tennis court. Such exercises are valuable, but such ex-

ercises alone are one-sided. Moreover, any one who
examines the hundreds of suggested exercises that are

constantly appearing in various journals, or who, in the

preparation of teachers, looks through the thousands of

exercises that come to him in the papers of his students,

conies very soon to see how hollow is the pretense of

most of them. As lias already been said, there are rela-

tively few propositions in geometry that have any prac-

tical applications, applications that are even honest, in

their pretense. The principle that the writer has so often

laid down in other works, that whatever pretends to lie

practical should really be so, applies with much force to

these exercises. When we can find the genuine applica-

tion, if it is within reasonable grasp of the pupil, by all

means let us use it. But to put before a class of girls

some technicality of the steam engine that only a skilled

mechanic would be expected to know is not education,

— it is mere sham. There is a noble dignity to geometry ,

a dignity that a large majority of any class conies to

appreciate when guided by an earnest teacher ; but the
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best way to destroy this dignity, to take away the appre-

ciation of pure mathematics, and to furnish weaker can-

didates than now for advance in this field is to deceive

our pupils and ourselves into believing that the ultimate

purpose of mathematics is to measure things in a way in

which no one else measures them or has ever measured

them.

In the proof of the early propositions of plane geom-

etry, and again at the beginning of solid geometry, there

is a little advantage in using colored crayon to bring out

more distinctly the equal parts of two figures, or the

lines outside the plane, or to differentiate one plane from

another. This device, however, like that of models in

solid geometry, can easily be abused, and hence should

be used sparingly, and only until the purpose is accom-

plished. The student of mathematics must learn to grasp

the meaning of a figure drawn in black on white paper,

or, more rarely, in white on a blackboard, and the sooner

he is able to do this the better for him. The same thing

may be said of the constructing of models for any con-

siderable number of figures in solid geometry ; enough

work of this kind to enable a pupil clearly to visualize

the solids is valuable, but thereafter the value is usually

more than offset by the time consumed and the weakened

power to grasp the meaning of a geometric drawing.

There is often a tendency on the part of teachers in

their first years of work to overestimate the logical pow-

ers of their pupils and to introduce forms of reasoning

and technical terms that experience has proved to be

unsuited to one who is beginning geometry. Usually but

little harm is done, because the enthusiasm of any teacher

who would use this work would carry the pupils over

the difficulties without much waste of energy on their
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part. In the long run, however, the attempt is usually

abandoned as not worth the effort. Such a term as "con-

trapositive," such distinctions as that between the logical

and the geometric converse, or between perfect and par-

tial geometric conversion, and such pronounced formal-

ism as the " syllogistic method,"— all these are happily

unknown to most teachers and might profitably be

unknown to all pupils. The modern American textbook

in geometry does not begin to be as good a piece of logic

as Euclid's " Elements," and yet it is to be observed that

none of these terms is found in this classic work, so that

they cannot be thought to be necessary to a logical treat-

ment of the subject. We need the word " converse," and

some reference to the law of converse is therefore per-

missible ; the meaning of the reductio ad absurdum, of a

necessary and sufficient condition, and of the terms " syn-

thesis " and " analysis " may properly form part of the

pupil's equipment because of their universal use ; but

any extended incursion into the domain of logic will be

found unprofitable, and it is liable to be positively harm-

ful to a beginner in geometry.

A word should be said as to the lettering of the fig-

ures in the early stages of geometry. In general, it is a

great aid to the eye if this is carried out with some sys-

tem, and the following suggestions are given as in accord

with the best authors who have given any attention

to the subject:

1. In general, letter a figure counterclockwise, for

the reason that we read angles in this way in higher

mathematics, and it is as easy to form this habit now as

to form one that may have to be changed. Where two

triangles are congruent, however, but have their sides

arranged in opposite order, it is better to letter them so
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that their corresponding parts appear in the same order,

although this makes one read clockwise.

2. For the same reason, read angles counterclockwise.

Thus A A is read UBAC" the reflex angle on the outside

of the triangle being read "CAB" Of course this is not

vital, and many authors pay no

attention to it ; but it is conven-

ient, and if the teacher habitually

does it, the pupils will also tend

to do it. It is helpful in trigo-

nometry, and it saves confusion

in the case of a reflex angle in

a polygon. Designate an angle by a single letter if

this can conveniently be done.

3. Designate the sides opposite angles A, B, C, in a

triangle, by a, J, c, and use these letters in writing proofs.

4. In the case of two congruent triangles use the let-

ters A, B, C and A\ B\ C\ or X, Y, Z, instead of letters

chosen at random, like D, /i, L. It is easier to follow a

proof where some system is shown in lettering the fig-

ures. Some teachers insist that a pupil at the blackboard

should not use the letters given in the textbook, hoping

thereby to avoid memorizing. While the danger is prob-

ably exaggerated, it is easy to change with some system,

using P, Qj B and P\ Q\ B !

, for example.

5. Use small letters for lines, as above stated, and

also place them within angles, it being easier to speak of

and to see Am than ADEF. The Germans have a

convenient system that some American teachers follow

to advantage, but that a textbook has no right to require.

They use, as in the following figure, A for the point, a for

the opposite side, and the Greek letter a (alpha) for

the angle. The learning of the first three Greek letters,
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alpha (#), beta (/3), and gamma (7), is not a hardship,

and they are worth using, although Greek is so little

known in this country to-day that

the alphabet cannot be demanded of

teachers who do not care to use it.

6. Also use small letters to repre-

sent numerical values. For example,

write c = 2 irr instead of C = 2 irR.
A.

This is in accord with the usage in

algebra to which the pupil is accustomed.

7. Use initial letters whenever convenient, as in the

case of a for area, b for base, c for circumference, d for

diameter, h for height (altitude), and so on.

Many of these suggestions seem of slight importance

in themselves, and some teachers will be disposed to

object to any attempt at lettering a figure with any regard

to system. If, however, they will notice how a class

struggles to follow a demonstration given with reference

to a figure on the blackboard, they will see how helpful

it is to have some simple standards of lettering. It is

hardly necessary to add that in demonstrating from a

figure on a blackboard it is usually better to say "this

line," or " the red line," than to say, without pointing to

it, "the line AB." It is by such simplicity of statement

and by such efforts to help the class to follow demon-

strations that pupils are led through many of the initial

discouragements of the subject.



CHAPTER X

THE CONDUCT OF A CLASS IN GEOMETRY

No definite rules can be given for the detailed conduct

of a class in any subject. If it were possible to formu-

late such rules, all the personal magnetism of the teacher,

all the enthusiasm, all the originality, all the spirit of

the class, would depart, and we should have a dull, dry

mechanism. There is no one best method of teaching

geometry or anything else. The experience of the schools

lias shown that a few great principles stand out as gen-

erally accepted, but as to the carrying out of these prin-

ciples there can be no definite rules.

Let us first consider the general question of the em-

ployment of time in a recitation in geometry. We might

all agree on certain general principles, and yet no two

teachers ever would or ever should divide the period

even approximately in the same way. First, a class should

have an opportunity to ask questions. A teacher here

shows his power at its best, listening sympathetically to

any good question, quickly seeing the essential point,

and either answering it or restating it in such a way
that the pupil can answer it for himself. Certain ques-

tions should be answered by the teacher; he is there

for that purpose. Others can at once be put in such a

light that the pupil can himself answer them. Others

may better be answered by the class. Occasionally, but

more rarely, a pupil may be told to " look that up for

108
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to-morrow," a plan that is commonly considered by stu-

dents as a confession of weakness on the part of the

teacher, as it probably is. Of course a class will waste

time in questioning a weak teacher, but a strong one need

have no fear on this account. Five minutes given at the

opening of a recitation to brisk, pointed questions by the

class, with the same credit given to a good question as

to a good answer, will do a great deal to create a spirit

of comradeship, of frankness, and of honesty, and will

reveal to a sympathetic teacher the difficulties of a class

much better than the same amount of time devoted to

blackboard work. But there must be no dawdling, and

the class must feel that it has only a limited time, say

five minutes at the most, to get the help it needs.

Next in order of the division of the time may be the

teacher's report on any papers that the class has 1 landed

in. It is impossible to tell how much of this paper work

should be demanded. The local school conditions, the

mental condition of the class, and the time at the dis-

posal of the teacher are all factors in the case. In general,

it may be said that enough of this kind of work is nec-

essary to see that pupils are neat and accurate in setting

down their demonstrations. On the other hand, paper

work gives an opportunity for dishonesty, and it con-

sumes a great deal of the teacher's time that might bet-

ter be given to reading good books on the subject that

he is teaching. If, however, any papers have been sub-

mitted, about five minutes may well be given to a rapid

review of the failures and the successes. In general, it is

good educational policy to speak of the errors and fail-

ures impersonally, but occasionally to mention by name
any one who has done a piece of work that is worthy of

special comment. Pupils may better be praised in public
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and blamed in private. There is such a thing, however,

as praising too much, when nothing worthy of note has

been done, just as there is danger of blaming too much,

resulting in mere " nagging."

The third division of the recitation period may profit-

ably go to assigning the advance lesson. The class ques-

tions and the teacher's report on written work have

shown the mental status of the pupils, so that the teacher

now knows what he may expect for the next lesson.

If he assigns his lesson at the beginning of the period, he

does not have this information. If he waits to the end,

lie may be too hurried to give any u development " that

the new lesson may require. There can be no rule as to

how to assign a new lesson
; it all depends upon what

the lesson is, upon the mental state of the class, and not

a little upon the idiosyncrasy of the teacher. The Ger-

man educator, Herbart, laid down certain formal steps in

developing a new lesson, and his successors have elabo-

rated these somewhat as follows

:

1. Aim. Always take a class into your confidence.

Tell the members at the outset the goal. No one likes

to be led blindfolded.

2. Preparation, A few brief questions to bring the

class to think of what is to be considered.

3. Presentation of the raw. Preferably this is done by

questions, the answers leading the members of the class

to discover the new truth for themselves.

-4. App< reeption. Calling attention to the fact that this

new fact was known before, in part, and that it relates

to a number of things already in the mind. The more

the new can be tied up to the old the more tenaciously

it will be held.

5. Generalization and application.
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It is evident at once that a great deal of time may be

wasted in always following such a plan, perhaps in ever

following it consciously. But, on the other hand, prob-

ably every good teacher, whether he has heard of Her-

bart or not, naturally covers these points in substantially

this order. For an inexperienced teacher it is helpful to

be familiar with them, that he may call to mind the

steps, arranged in a psychological sequence, that he

would do well to follow. It must always be remembered

that there is quite as much danger in " developing " too

much as in taking the opposite extreme. A mechanical

teacher may develop a new lesson where there is need

for only a question or two or a mere suggestion. It

should also be recognized that students need to learn to

read mathematics for themselves, and that always to

take away every difficulty by explanations given in

advance is weakening to any one.

Therefore, in assigning the new lesson we may say

" Take the next two pages," and thus discourage most

of the class. On the other hand, we may spend an unnec-

essary amount of time and overdevelop the work of those

same pages, and have the whole lesson lose all its zest.

It is here that the genius of the teacher comes forth to

find the happy mean.

The fourth division of the hour should be reached, in

general, in about ten minutes. This includes the recita-

tion proper. But as to the nature of this work no definite

instructions should be attempted. To a good teacher

they would be unnecessary, to a poor one they would be

harmful. Part of the class may go to the board, and as

they are working, the rest may be reciting. Those at the

board should be limited as to time, for otherwise a pre-

mium is placed on mere dawdling. They should be so
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arranged as to prevent copying, but the teacher's eye is

the best preventive of this annoying feature. Those at

their seats may be called upon one at a time to demon-

strate at the blackboard, the rest being called upon for

quick responses, as occasion demands. The European

plan of having small blackboards is in many respects

better than ours, since pupils cannot so easily waste

time. They have to work rapidly and talk rapidly, or

else take their seats.

What should be put on the board, whether the fig-

ure alone, or the figure and the proof, depends upon

the proposition. In general, there should be a certain

number of figures put on the board for the sake of rapid

work and as a basis for the proofs of the day. There

should also be a certain amount of written work for the

sake of commending or of criticizing adversely the proof

used. There are some figures that are so complicated as

to warrant being put upon sheets of paper and hung

before the class. Thus there is no rule upon the subject,

and the teacher must use his judgment according to the

circumstances and the propositions.

If the early " originals " are one-step exercises, and a

pupil is required to recite rapidly, a habit of quick

expression is easily acquired that leads to close attention

on the part of all the class. Students as a rule recite

slower than they need to, from mere habit. Phlegmatic

as we think the German is, and nervous as is the Amer-

ican temperament, a student in geometry in a German

school will usually recite more quickly and with more

vigor than one with us. Our extensive blackboards have

something to do with this, allowing so many pupils to

be working at the board that a teacher cannot attend to

them all. The result is a habit of wasting the minutes
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that can only be overcome by the teacher setting a defi-

nite but reasonable time limit, and holding the pupil

responsible if the work is not done in the time specified.

If this matter is taken in hand the first day, and special

effort made in the early weeks of the year, much of the

difficulty can be overcome.

As to the nature of the recitation to be expected from

the pupil, no definite rule can be laid down, since it varies

so much with the work of the day. In general, however,

a pupil should state the theorem quickly, state exactly

what is given and what is to be proved, with respect

to the figure, and then give the proof. At first it is

desirable that he should give the authorities in full,

and later give only the essential part in a few words. It

is better to avoid the expression u by previous proposi-

tion," for it soon comes to be abused, and of course the

learning of section numbers in a book is a barbarism. It

is only by continually stating the propositions used that

a pupil comes to have well fixed in his memory the basal

theorems of geometry, and without these he cannot make
progress in his subsequent mathematics. In general, it is

better to allow a pupil to finish his proof before asking

him any questions, the constant interruptions indulged

in by some teachers being the cause of no little confusion

and hesitancy on the part of pupils. Sometimes it is well

to have a figure drawn differently from the one in the

book, or lettered differently, so as to make sure that the

pupil has not memorized the proof, but in general such

devices are unnecessary, for a teacher can easily discover

whether the proof is thoroughly understood, either by

the manner of the pupil or by some slight questioning.

A good textbook has the figures systematically lettered

in some helpful way that is easily followed by the class
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that is listening to the recitation, and it is not advisable

to abandon this for a random set of letters arranged in

no proper order.

It is good educational policy for the teacher to com-

mend at least as often as he finds fault when criticiz-

ing a recitation at the blackboard and when discussing

the pupils' papers. Optimism, encouragement, sympathy,

the genuine desire to help, the putting of one's self in the

pupil's place, the doing to the pupil as the teacher would

that he should do in return,— these are educational policies

that make for better geometry as they make for better life.

The prime failure in teaching geometry lies unques-

tionably in the lack of interest on the part of the pupil,

and this has been brought about by the ancient plan of

simply reading and memorizing proofs. It is to get away

from this that teachers resort to some such development

of the lesson in advance, as has been suggested above.

It is usually a good plan to give the easier propositions

as exercises before they are reached in the text, where

this can be done. An English writer has recently con-

tributed this further idea:

It might be more stimulating to encourage investigation than

to demand proofs of stated facts ; that is to say, " Here is a figure

drawn in this way, find out anything you can about it." Some
such exercises having been performed jointly by teachers and

pupils, the lust of investigation and healthy competition which is

present in every normal boy or girl might be awakened so far as

to make such little researches really attractive ;
moreover, the

training thus given is of far more value than that obtained by

proving facts which are stated in advance, for it is seldom, if ever,

that the problems of adult life present themselves in this man-

ner. The spirit of the question, " What is true ? " is positive and

constructive, but that involved in " Is this true ? " is negative and

destructive. 1

1 Carson, loc. cit., p. 12.
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When the question is asked, " How shall I teach ?
"

or " What is the Method ?
' :

there is no answer such as

the questioner expects. A Japanese writer, Motowori,

a great authority upon the Shinto faith of his people,

once wrote these words :
" To have learned that there is

no way to be learned and practiced is really to have

learned the way of the gods."



CHAPTER XI

THE AXIOMS AND POSTULATES

The interest as well as the value of geometry lies

chiefly in the fact that from a small number of assump-

tions it is possible to deduce an unlimited number of

conclusions. With the truth of these assumptions we are

not so much concerned as with the reasoning by which

we draw the conclusions, although it is manifestly desir-

able that the assumptions should not be false, and that

they should be as few as possible.

It would be natural, and in some respects desirable, to

call these foundations of geometry by the name u assump-

tions," since they are simply statements that are assumed

to be true. The real foundation principles cannot be

proved; they are the means by which we prove other

statements. But as with most names of men or things,

they have received certain titles that are time-honored,

and that it is not worth the while to attempt to change.

In English we call them axioms and postulates, and there

is no more reason for attempting to change these terms

than there is for attempting to change the names of

geometry 1 and of algebra.2

1 From the Greek 777, ge (earth), + ^pelv, metrcin (to measure),

although the science has not had to do directly with the measure of

the earth for over two thousand years.

2 From the Arabic al (the) + jabr (restoration), referring to taking

a quantity from one side of an equation and then restoring the bal-

ance by taking it from the other side (see page 37).
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Since these terms are likely to continue, it is neces-

sary to distinguish between them more carefully than is

often done, and to consider what assumptions we are

justified in including under each. In the first place, these

names do not go back to Euclid, as is ordinarily sup-

posed, although the ideas and the statements are his.

"Postulate " is a Latin form of the Greek atrrj/jLa (aitemct),

and appears only in late translations. Euclid stated in

substance, "Let the following be assumed." "Axiom"
(h^iMixa, axioma) dates perhaps only from Proclus (fifth

century A.D.), Euclid using the words " common notions
"

(/coeval evvoiai, koinai ennoiai) for "axioms," as Aristotle

before him had used " common things," " common prin-

ciples," and " common opinions."

The distinction between axiom and postulate was not

clearly made by ancient writers. Probably what was in

Euclid's mind was the Aristotelian distinction that an

axiom was a principle common to all sciences, self-evi-

dent but incapable of proof, while the postulates were

the assumptions necessary for building up the particular

science under consideration, in this case geometry. 1

We thus come to the modern distinction between

axiom and postulate, and say that a general statement

admitted to be true without proof is an axiom, while a

postulate in geometry is a geometric statement admitted

to be true, without proof. For example, when we say

" If equals are added to equals, the sums are equal," we
state an assumption that is taken also as true in arith-

metic, in algebra, and in elementary mathematics in gen-

eral. This is therefore an axiom. At one time such a

1 One of the clearest discussions of the subject is in W. B. Frank-
land, "The First Book of Euclid's 'Elements,' " p. 26, Cambridge,
1905.
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statement was defined as " a self-evident truth," but this

has in recent years been abandoned, since what is evi-

dent to one person is not necessarily evident to another,

and since all such statements are mere matters of as-

sumption in any case. On the other hand, when we say,

"A circle may be described with any given point as a

center and any given line as a radius," we state a special

assumption of geometry, and this assumption is therefore

a geometric postulate. Some few writers have sought to

distinguish between axiom and postulate by saying that

the former was an assumed theorem and the latter an

assumed problem, but there is no standard authority for

such a distinction, and indeed the difference between a

theorem and a problem is very slight. If we say, " A
circle may be passed through three points not in the

same straight line," we state a theorem ; but if we say,

" Required to pass a circle through three points," we

state a problem. The mental process of handling the two

propositions is, however, practically the same in spite of

the minor detail of wording. So with the statement,

"A straight line may be produced to any required

length." This is stated in the form of a theorem, but it

might equally well be stated thus : "To produce a straight

line to any required length." It is unreasonable to call

this an axiom in one case and a postulate in the other.

However stated, it is a geometric postulate and should

be so classed.

What, now, are the axioms and postulates that we are

justified in assuming, and what determines their number

and character? It seems reasonable to agree that they

should be as few as possible, and that for educational

purposes they should be so clear as to be intelligible to

beginners. But here we encounter two conflicting ideas.
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To get the " irreducible minimum " of assumptions is to

get a set of statements quite unintelligible to students

beginning geometry or any other branch of elementary

mathematics. Such an effort is laudable when the results

are intended for advanced students in the university, but

it is merely suggestive to teachers rather than usable

with pupils when it touches upon the primary steps of

any science. In recent years several such attempts hav.e

been made. In particular, Professor Hilbert has given a

system * of congruence postulates, but they are rather

for the scientist than for the student of elementary

geometry.

In view of these efforts it is well to go back to Euclid

and see what this great teacher of university men 2

had to suggest. The following are the five "common
notions " that Euclid deemed sufficient for the purposes

of elementary geometry.

1. Things equal to the same thing are also equal to each

other. This axiom has persisted in all elementary text-

books. Of course it is a simple matter to attempt criticism,

— to say that — 2 is the square root of 4, and + 2 is also

the square root of 4, whence — 2 = -f- 2 ; but it is evident

that the argument is not sound, and that it does not in-

validate the axiom. Proclus tells us that Apollonius at-

tempted to prove the axiom by saying, " Let a equal #,

and b equal c. I say that a equals c. For, since a equals

5, a occupies the same space as b. Therefore a occupies

1 " Grundlagen cler Geometric," Leipzig, 1899. See Heath's
" Euclid," Vol. I, p. 229, for an English version ; also D. E. Smith,

''Teaching of Elementary Mathematics," p. 266, New York, 1900.
2 We need frequently to recall the fact that Euclid's " Elements"

was intended for advanced students who went to Alexandria as young
men now go to college, and that the book was used only in university

instruction in the Middle Ages and indeed until recent times.
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the same space as c. Therefore a equals e." The proof is

of no value, however, save as a curiosity.

2. And if to equals equals are added, the wholes are equal.

3. If equals are subtracted from equals, the remainders

are equal.

Axioms 2 and 3 are older than Euclid's time, and are

the only ones given by him relating to the solution of

the equation. Certain other axioms were added by later

writers, as, " Things which are double of the same

thing are equal to one another," and " Things which are

halves of the same thing are equal to one another." These

two illustrate the ancient use of duplatio (doubling) and

mediatio (halving), the primitive forms of multiplication

and division. Euclid would not admit the multiplication

axiom, since to him this meant merely repeated addition.

The partition (halving) axiom he did not need, and if

needed, he would have inferred its truth. There are also

the axioms, " If equals are added to unequals, the wholes

are unequal," and "If equals are subtracted from un-

equals, the remainders are unequal," neither of which

Euclid would have used because he did not define " un-

equals." The modern arrangement of axioms, covering

addition, subtraction, multiplication, division, powers,

and roots, sometimes of unequals as well as equals, comes

from the development of algebra. They are not all needed

for geometry, but in so far as they show the relation of

arithmetic, algebra, and geometry, they serve a useful

purpose. There are also other axioms concerning un-

equals that are of advantage to beginners, even though

unnecessary from the standpoint of strict logic.

4. Things that coincide with one another are equal to one

another. This is no longer included in the list of axioms.

It is rather a definition of " equal," or of " congruent,"
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to take the modern term. If not a definition, it is certainly

a postulate rather than an axiom, being purely geometric

in character. It is probable that Euclid included it to

show that superposition is to be considered a legitimate

form of proof, but why it was not placed among the

postulates is not easily seen. At any rate it is unfortu-

nately worded, and modern writers generally insert the

postulate of motion instead,— that a figure may be

moved about in space without altering its size or shape.

The German philosopher, Schopenhauer (1844), criticized

Euclid's axiom as follows : " Coincidence is either mere

tautology or something entirely empirical, which belongs

not to pure intuition but to external sensuous experi-

ence. It presupposes, in fact, the mobility of figures.

"

5. The ivhole is greater than the part. To this Clavius

(1574) added, "The whole is equal to the sum of its

parts," which may be taken to be a definition of " whole,"

but which is helpful to beginners, even if not logically

necessary. Some writers doubt the genuineness of this

axiom.

Having considered the axioms of Euclid, we shall now
consider the axioms that are needed in the study of

elementary geometry. The following are suggested, not

from the standpoint of pure logic, but from that of the

needs of the teacher and pupil.

1. If equals are added to equals, the sums are equal.

Instead of this axiom, the one numbered 8 below is often

given first. For convenience in memorizing, however, it

is better to give the axioms in the following order:

(1) addition, (2) subtraction, (3) multiplication, (4)
division, (5) powers and roots,— all of equal quantities.

2. If equals are subtracted from equals, the remainders

are equal.
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3. If equals are multiplied by equals, the products are

equal.

4. If equals are divided by equals, the quotients are equal,

5. Like powers or like positive roots of equals are equal.

Formerly students of geometry knew nothing of algebra,

and in particular nothing of negative quantities. Now,

however, in American schools a pupil usually studies

algebra a year before he studies demonstrative geometry.

It is therefore better, in speaking of roots, to limit them

to positive numbers, since the two square roots of 4

(+ 2 and — 2), for example, are not equal. If the pupil

had studied complex numbers before he began geometry,

it would have been advisable to limit the roots still further

to real roots, since the four fourth roots of 1 (+1, —1,

+V— 1, —V— 1), for example, are not equal save in

absolute value. It is well, however, to eliminate these

fine distinctions as far as possible, since their presence

only clouds the vision of the beginner.

It should also be noted that these five axioms might

be combined in one, namely, If equals are operated on by

equals in the same ivay, the results are equal. In Axiom 1

this operation is addition, in Axiom 2 it is subtraction,

and so on. Indeed, in order to reduce the number of

axioms two are already combined in Axiom 5. But there

is a good reason for not combining the first four with

the fifth, and there is also a good reason' for combining

two in Axiom 5. The reason is that these are the axioms

continually used in equations, and to combine them

all in one would be to encourage laxness of thought

on the part of the pupil. He would always say "by

Axiom 1 " whatever he did to an equation, and the

teacher would not be certain whether the pupil was

thinking definitely of dividing equals by equals, or had
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a hazy idea that he was manipulating an equation in

some other way that led to an answer. On the other

hand, Axiom 5 is not used as often as the preceding

four, and the interchange of integral and fractional expo-

nents is relatively common, so that the joining of these

two axioms in one for the purpose of reducing the total

number is justifiable.

6. If unequals are operated on by positive equals in the

same way, the results are unequal in the same order. This

includes in a single statement the six operations men-

tioned in the preceding axioms; that is, if a>b and if

x = y, then a + x > b + y, a — x > b — y, ax> by, etc.

The reason for thus combining six axioms in one in the

case of inequalities is apparent. They are rarely used in

geometry, and if a teacher is in doubt as to the pupil's

knowledge, he can easily inquire in the few cases that

arise, whereas it would consume a great deal of time

to do this for the many equations that are met. The
axiom is stated in such a way as to exclude multiplying

or dividing by negative numbers, this case not being

needed.

7. If unequals are added to unequals in the same order,

the sums are unequal in the same order; if unequals are

subtracted from equals, the remainders are unequal in the

reverse order. These are the only cases in which unequals

are necessarily combined with unequals, or operate upon

equals in geometry, and the axiom is easily explained to

the class by the use of numbers.

8. Quantities that are equal to the same quantity or to

equal quantities are equal to each other. In this axiom the

word " quantity " is used, in the common manner of the

present time, to include number and all geometric mag-

nitudes (length, area, volume).
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9. A quantity may be substituted for its equal in an

equation or in an inequality. This axiom is tacitly assumed

by all writers, and is very useful in the proofs of geom-

etry. It is really the basis of several other axioms, and

if we were seeking the " irreducible minimum," it would

replace them. Since, however, we are seeking only a

reasonably abridged list of convenient assumptions that

beginners will understand and use, this axiom has much
to commend it. If we consider the equations (1) a — x

and (2) b = .r, we see that for x in equation (1) we may
substitute b from equation (2) and have a = b; in other

words, that Axiom 8 is included in Axiom 9. Further-

more, if (1) a = b and (2) x = y, then since a + x is the

same as a + x, we may, by substituting, say that

a + x = a + x = b + x = b + y. In other words, Axiom 1

is included in Axiom 9. Thus an axiom that includes

others has a legitimate place, because a beginner would

be too much confused by seeing its entire scope, and

because he will make frequent use of it in his mathe-

matical work.

10. If the first of three quantities is greater than the

second, and the second is greater than the third, then the

first is greater than the third. This axiom is needed sev-

eral times in geometry. The case in which a>b and

b = 6j

, therefore a > e, is provided for in Axiom 9.

11. The whole is greater than any of its jparte and is

equal to the sum of all its parts. The latter part of this

axiom is really only the definition of "whole," and it

would be legitimate to state a definition accordingly and

refer to it where the word is employed. Where, how-

ever, we wish to speak of a polygon, for example, and

wish to say that the area is equal to the combined areas

of the triangles composing it, it is more satisfactory to
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have this axiom to which to refer. It will be noticed

that two related axioms are here combined in one, for a

reason similar to the one stated under Axiom 5.

In the case of the postulates we are met by a problem

similar to the one confronting us in connection with the

axioms,— the problem of the " irreducible minimum" as

related to the question of teaching. Manifestly Euclid

used postulates that he did not state, and proved some

statements that he might have postulated. 1

The postulates given by Euclid under the name
airrj^ara (aitemata) were requests made by the teacher

to his pupil that certain things be conceded. They were

five in number, as follows

:

1. Let the following be conceded : to draw a straight Vine

from any point to any point

Strictly speaking, Euclid might have been required to

postulate that points and straight lines exist, but he evi-

dently considered this statement sufficient. Aristotle

had, however, already called attention to the fact that a

mere definition was sufficient only to show what a con-

cept is, and that this must be followed by a proof that

the thing exists. We might, for example, define x as a

line that bisects an angle without meeting the vertex,

but this would not show that an x exists, and indeed it

does not exist. Euclid evidently intended the postulate

to assert that this line joining two points is unique,

which is only another way of saying that two points

determine a straight line, and really includes the idea

iFor example, he moves figures without deformation, but states

no postulate on the subject ; and he proves that one side of a triangle

is less than the sum of the other two sides, when he might have postu-

lated that a straight line is the shortest path between two points.

Indeed, his followers were laughed at for proving a fact so obvious as

this one concerning the triangle.
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that two straight lines cannot inclose space. For pur-

poses of instruction, the postulate would be clearer if

it read, One straight line, and only one, can be draivn

through tivo given points.

2. To produce a finite straight line continuously in a

straight line.

In this postulate Euclid practically assumes that a

straight line can be produced only in a straight line ; in

other words, that two different straight lines cannot have

a common segment. Several attempts have been made to

prove this fact, but without any marked success.

3. To describe a circle with any center and radius.

4. That all right angles are equal to one another.

While this postulate asserts the essential truth that a right

angle is a determinate magnitude so that it really serves as an inva-

riable standard by which other (acute and obtuse) angles may be

measured, much more than this is implied, as will easily be seen

from the following consideration. If the statement is to be proved,

it can only be proved by the method of apjDlying one pair of right

angles to another and so arguing their equality. But this method
would not be valid unless on the assumption of the invariability of

figures, which would have to be asserted as an antecedent postu-

late. Euclid preferred to assert as a postulate, directly, the fact

that all right angles are equal ; and hence his postulate must be

taken as equivalent to the principle of invariability offigures, or its

equivalent, the homogeneity of space.1

It is better educational policy, however, to assert this

fact more definitely, and to state the additional assump-

tion that figures may be moved about in space without

deformation. The fourth of Euclid's postulates is often

given as an axiom, following the idea of the Greek

philosopher Geminus (who flourished in the first century

B.C.), but this is because Euclid's distinction between

IT. L. Heath, "Euclid," Vol. I, p. 200.
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axiom and postulate is not always understood. Proclus

(410-485 a.d.) endeavored to prove the postulate, and

a later and more scientific effort was made by the Ital-

ian geometrician Saccheri (1667-1733). It is very com-

monly taken as a postulate that all straight angles are

equal, this being more evident to the senses, and the

equality of right angles is deduced as a corollary. This

method of procedure has the sanction of many of our

best modern scholars.

5. That, if a straight line falling on two straight lines

make the interior angle on the same side less than two right

angles, the two straight lines, ifproduced indefinitely, meet

on that side on which are the angles less than the two right

angles.

This famous postulate, long since abandoned in teach-

ing the beginner in geometry, is a remarkable evidence of

the clear vision of Euclid. For two thousand years math-

ematicians sought to prove it, only to demonstrate the

wisdom of its author in placing it among the assump-

tions. 1 Every proof adduced contains some assumption

that practically conceals the postulate itself. Thus the

great English mathematician John Wallis (1616-1703)

gave a proof based upon the assumption that " given a

figure, another figure is possible which is similar to the

given one, and of any size whatever." Legendre (1752-

1833) did substantially the same at one time, and offered

several other proofs, each depending upon some equally

unprovable assumption. The definite proof that the

postulate cannot be demonstrated is due to the Italian

Beltrami (1868).

1 For a resume of the best known attempts to prove this postulate,

see Heath, " Euclid," Vol. I, p. 202
; W. B. Frankland, " Theories of

Parallelism," Cambridge, 1910.
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Of the alternative forms of the postulate, that of

Proclus is generally considered the best suited to begin-

ners. As stated by Playfair (1795), this is, "Through a

given point only one parallel can be drawn to a given

straight line"; and as stated by Proclus, "If a straight

line intersect one of two parallels, it will intersect the

other also." Playfair's form is now the common "pos-

tulate of parallels," and is the one that seems destined

to endure.

Posidonius and Geminus, both Stoics of the first cen-

tury B.C., gave as their alternative, " There e?:ist straight

lines everywhere equidistant from one another." One
of Legendre's alternatives is, " There exists a triangle

in which the sum of the three angles is equal to two

right angles." One of the latest attempts to suggest a

substitute is that of the Italian Ingrami (1904), "Two
parallel straight lines intercept, on every transversal

which passes through the mid-point of a segment included

between them, another segment the mid-point of which

is the mid-point of the first."

Of course it is entirely possible to assume that through

a point more than one line can be drawn parallel to a

given straight line, in which case another type of geom-

etry can be built up, equally rigorous with Euclid's.

This was done at the close of the first quarter of the

nineteenth century by Lobachevsky (1793-1856) and

Bolyai (1802-1860), resulting in the first of several

" non-Euclidean" geometries. 1

1 For the early history of this movement see Engel and Stackel,

"Die Theorie der Parallellinien von Euklid bis anf Gauss, 1
' Leipzig,

1895 ; Bonola, Sulla teoria delle parallele e sulle geometrie non-

euclidee, in his "Questioni riguardanti la geometria elementare,"

1900 ; Karagiannides, " Die nichteuklidische Geometrie voin Alter-

thum bis zur Gegenwart," Berlin, 1893.
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Taking the problem to be that of stating a reasonably

small number of geometric assumptions that may form a

basis to supplement the general axioms, that shall cover

the most important matters to which the student must

refer, and that shall be so simple as easily to be under-

stood by a beginner, the following are recommended

:

1. One straight line, and only one, can be drawn through

tivo given points. This should also be stated for conven-

ience in the form, Two points determine a straight line.

From it may also be drawn this corollary, Two straight

lines can intersect in only one point, since two points

would determine a straight line. Such obvious restate-

ments of or corollaries to a postulate are to be com-

mended, since a beginner is often discouraged by having

to prove what is so obvious that a demonstration fails

to commend itself to his mind.

2. A straight line may beproduced to any required length.

This, like Postulate 1, requires the use of a straightedge

for drawing the physical figure. The required length is

attained by using the compasses to measure the distance.

The straightedge and the compasses are the only two

drawing instruments recognized in elementary geometry. 1

While this involves more than Euclid's postulate, it is a

better working assumption for beginners.

3. A straight line is the shortest path between two points.

This is easily proved by the method of Euclid 2 for the

case where the paths are broken lines, but it is needed

as a postulate for the case of curve paths. It is a better

statement than the common one that a straight line is

the shortest distance between two points; for distance is

1 This limitation upon elementary geometry was placed by Plato

(died 347 B.C.), as already stated.
2 Book I, Proposition 20.
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measured on a line, but it is not itself a line. Further-

more, there are scientific objections to using the word
" distance " any more than is necessary.

4. A circle may he described with any given point as a

center and any given line as a radius. This involves the

use of the second of the two geometric instruments, the

compasses.

5. Any figure may be moved from one place to another

without altering the size or shape. This is the postulate

of the homogeneity of space, and asserts that space is

such that Ave may move a figure as we please without

deformation of any kind. It is the basis of all cases of

superposition.

6. All straight angles are equal. It is possible to prove

this, and therefore, from the standpoint of strict logic, it

is unnecessary as a postulate. On the other hand, it is

poor educational policy for a beginner to attempt to

prove a thing that is so obvious. The attempt leads to

a loss of interest in the subject, the proposition being

(to state a paradox) hard because it is so easy. It is, of

course, possible to postulate that straight angles are equal,

and to draw the conclusion that their halves (right

angles) are equal ; or to proceed in the opposite direction,

and postulate that all right angles are equal, and draw

the conclusion that their doubles (straight angles) are

equal. Of the two the former has the advantage, since

it is probably more obvious that all straight angles are

equal. It is well to state the following definite corol-

laries to this postulate: (1) All right angles are equal;

(2) From a pjoint in a line only one perpendicular can be

drawn to the line, since two perpendiculars would make
the whole (right angle) equal to its part; (3) Equal

angles have equaljjornplements, equal supplements, and equalfornpieim
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conjugates ; (4) The greater of two angles has the less com-

plement, the less supplement, and the less conjugate. All

of these four might appear as propositions, but, as already

stated, they are so obvious as to be more harmful than

useful to beginners when given in such form.

The postulate of parallels may properly appear in con-

nection with that topic in Book I, and it is accordingly

treated in Chapter XIV.
There is also another assumption that some writers

are now trying to formulate in a simple fashion. We
take, for example, a line segment AB, and describe cir-

cles with A and B respectively as centers, and with a

radius AB. We say that the circles will intersect as at

C and D. But how do we know that they intersect ? We
assume it, just as we assume that an indefinite straight

line drawn from a point inclosed by a circle will, if pro-

duced far enough, cut the circle twice. Of course a

pupil would not think of this if his attention was not

called to it, and the harm outweighs the good in doing

this with one who is beginning the study of geometry.

With axioms and with postulates, therefore, the con-

clusion is the same : from the standpoint of scientific

geometry there is an irreducible minimum of assump-

tions, but from the standpoint of practical teaching this

list should give place to a working set of axioms and

postulates that meet the needs of the beginner.
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CHAPTER XII

THE DEFINITIONS OF GEOMETRY

When we consider the nature of geometry it is evident

that more attention must be paid to accuracy of defini-

tions than is the case in most of the other sciences. The

essence of all geometry worthy of serious study is not

the knowledge of some fact, but the proof of that fact;

and this proof is always based upon preceding proofs,

assumptions (axioms or postulates), or definitions. If

we are to prove that one line is perpendicular to another,

it is essential that we have an exact definition of " per-

pendicular," else we shall not know when we have reached

the conclusion of the proof.

The essential features of a definition are that the term

defined shall be described in terms that are simpler than,

or at least better known than, the thing itself; that this

shall be done in such a way as to limit the term to the

thing defined ; and that the description shall not be

redundant. It would not be a good definition to say that

a right angle is one fourth of a perigon and one half of

a straight angle, because the concept " perigon" is not so

simple, and the term "perigon" is not so well known,

as the term and the concept " right angle," and because

the definition is redundant, containing more than is

necessary.

It is evident that satisfactory definitions are not always

possible ; for since the number of terms is limited, there

must be at least one that is at least as simple as any

132
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other, and this cannot be described in terms simpler than

itself. Such, for example, is the term " angle." We can

easily explain the meaning of this word, and we can

make the concept clear, but this must be done by a cer-

tain amount of circumlocution and explanation, not by

a concise and perfect definition. Unless a beginner in

geometry knows what an angle is before he reads the

definition in a textbook, he will not know from the defi-

nition. This fact of the impossibility of defining some of

the fundamental concepts will be evident when we come

to consider certain attempts that have been made in this

direction.

It should also be understood in this connection that a

definition makes no assertion as to the existence of the

thing defined. If we say that a tangent to a circle is an

unlimited straight line that touches the circle in one

point, and only one, we do not assert that it is possible

to have such a line ; that is a matter for proof. Not in

all cases, however, can this proof be given, as in the

existence of the simplest concepts. We cannot, for exam-

ple, prove that a point or a straight line exists after we
have defined these concepts. We therefore tacitly or

explicitly assume (postulate) the existence of these

fundamentals of geometry. On the other hand, Ave can

prove that a tangent exists, and this may properly be

considered a legitimate proposition or corollary of ele-

mentary geometry. In relation to geometric proof it is

necessary to bear in mind, therefore, that we are per-

mitted to define any term we please ; for example, "a

seven-edged polyhedron" or Leibnitz's " ten-faced regular

polyhedron," neither of which exists ; but, strictly speak-

ing, we have no right to make use of a definition in a proof

until we have shown or postulated that the thing defined
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has an existence. This is one of the strong features of

Euclid's textbook. Not being able to prove that a point,

a straight line, and a circle exists, he practically postu-

lates these facts ; but he uses no other definition in a

proof without showing that the thing defined exists, and

this is his reason for mingling his problems with his

theorems. At the present time Ave confessedly sacrifice

his logic in this respect for the reason that we teach

geometry to pupils who are too young to appreciate

that logic.

It was pointed out by Aristotle, long before Euclid,

that it is not a satisfactory procedure to define a thing

by means of terms that are strictly not prior to it, as

when we attempt to define something by means of its

opposite. Thus to define a curve as u a line, no part of

which is straight," would be a bad definition unless

" straight " had already been explicitly defined ; and to

define " bad " as " not good " is unsatisfactory for the

reason that "bad" and "good" are concepts that are

evolved simultaneously. But all this is only a detail

under the general principle that a definition must employ

terms that are better understood than the one defined.

It should be understood that some definitions are much

more important than others, considered from the point

of view of the logic of geometry. Those that enter into

geometric proofs are basal ; those that form part of the

conversational language of geometry are not. Euclid

gave twenty-three definitions in Book I, and did not

make use of even all of these terms. Other terms, those

not employed in his proofs, he assumed to be known,

just as he assumed a knowledge of any other words in

his language. Such procedure would not be satisfactory

under modern conditions, but it is of great importance
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that the teacher should recognize that certain definitions

are basal, while others are merely informational.

It is now proposed to consider the basal definitions of

geometry, first, that the teacher may know what ones

are to be emphasized and learned; and second, that he

may know that the idea that the standard definitions can

easily be improved is incorrect. It is hoped that the

result will be the bringing into prominence of the basal

concepts, and the discouraging of attempts to change in

unimportant respects the definitions in the textbook used

by the pupil.

In order to have a systematic basis for work, the defi-

nitions of two books of Euclid will first be considered. 1

1. Point. A point is that which has no part. This

was incorrectly translated by Capella in the fifth century,

" Punctum est cuius pars nihil est " (a point is that

of which a part is nothing), which is as much as to say

that the point itself is nothing. It generally appears,

however, as in the Campanus edition,2 " Punctus est

cuius pars non est," which is substantially Euclid's word-

ing. Aristotle tells of the definitions of point, line, and

surface that prevailed in his time, saying that they all

defined the prior by means of the posterior. 3 Thus a point

was defined as " an extremity of a line," a line as " the

extremity of a surface," and a surface as "the extremity of

1 Free use has been made of W. B. Frankland, "The First Book
of Euclid's ' Elements,' " Cambridge, 1905 ; T. L. Heath, " The Thir-

teen Books of Euclid's 'Elements, 1 " Cambridge, 1908 ; H. Schotten,
" Inhalt und Methode des planimetrischen Unterrichts," Leipzig,

1893 ; M. Simon, " Euclid und die sechs planimetrischen Bucher,"
Leipzig, 1901.

2 For a facsimile of a thirteenth-century MS. containing this defi-

nition, see the author's " Kara Arithmetica," Plate IV, Boston, 1909.
3 Our slang expression "The cart before the horse " is suggestive

of this procedure.
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a solid,"— definitions still in use and not without their

value. For it must not be assumed that scientific priority

is necessarily priority in fact; a child knows of " solid"

before he knows of "point," so that it may be a very good

way to explain, if not to define, by beginning with solid,

passing thence to surface, thence to line, and thence to

point.

The first definition of point of which Proclus could

learn is attributed by him to the Pythagoreans, namely,

" a monad having position," the early form of our pres-

ent popular definition of a point as kk position without

magnitude." Plato defined it as "the beginning of a line,"

thus presupposing the definition of "line"; and, strangely

enough, he anticipated by two thousand years Cavalieri,

the Italian geometer, by speaking of points as "indivisible

lines." To Aristotle, who protested against Plato's defi-

nitions, is due the definition of a point as " something

indivisible but having position."

Euclid's definition is essentially that of Aristotle, and

is followed by most modern textbook writers, except as

to its omission of the reference to position. It has been

criticized as being negative, "which has no part"; but

it is generally admitted that a negative definition is

admissible in the case of the most elementary concepts.

For example, " blind " must be defined in terms of a

negation.

At present not much attention is given to the defini-

tion of " point," since the term is not used as the basis

of a proof, but every effort is made to have the con-

cept clear. It is the custom to start from a small solid,

conceive it to decrease in size, and think of the point as

the limit to which it is approaching, using these terms in

their usual sense without further explanation.
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2. Line. A line is breadthless length This is usually

modified in modern textbooks by saying that " a line is

that which has length without breadth or thickness,"

a statement that is better understood by beginners.

Euclid's definition is thought to be due to Plato, and

is only one of many definitions that have been suggested.

The Pythagoreans having spoken of the point as a

monad naturally were led to speak of the line as dyadic,

or related to two. Proclus speaks of another definition,

"magnitude in one dimension," and he gives an excel-

lent illustration of line as "the edge of a shadow," thus

making it real but not material. Aristotle speaks of a

line as a magnitude " divisible in one way only," as con-

trasted with a surface which is divisible in two ways,

and with a solid which is divisible in three ways. Proclus

also gives another definition as the "flux of a point,"

which is sometimes rendered as the path of a moving

point. Aristotle had suggested the idea when he wrote,

" They say that a line by its motion produces a surface,

and a point by its motion a line."

Euclid did not deem it necessary to attempt a classi-

fication of lines, contenting himself with defining only

a straight line and a circle, and these are really the only

lines needed in elementary geometry. His commenta-

tors, however, made the attempt. For example, Heron

(first century A.D.) probably followed his definition of

line by this classification

:

f Straight

Lines < r Circular circumferences

I Not straight <j Spiral shaped

[Curved (generally)

Proclus relates that both Plato and Aristotle divided

lines into " straight," " circular," and " a mixture of the
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two," a statement which is not quite exact, but which

shows the origin of a classification not infrequently found

in recent textbooks. Geminus (ca. 50 B.C.) is said by

Proclus to have given two classifications, of which one

will suffice for our purposes

:

Lines

Composite (broken line forming an angle)
' Forming a figure, or determinate. (Circle,

ellipse, cissoid.)

Incomposite •* Not forming a figure, or indeterminate and
extending without a limit. (Straight

k line, parabola, hyperbola, conchoid.)

Of course his view of the cissoid, the curve represented

by the equation y
2 (a + x) == (a — x)% is not the modern

view.

3. The extremities of a line are points. This is not

a definition in the sense of its two predecessors. A
modern writer -would put it as a note under the defini-

tion of line. Euclid did not wish to define a point as the

extremity of a line, for Aristotle had asserted that this

was not scientific ; so he defined point and line, and then

added this statement to show the relation of one to the

other. Aristotle had improved upon this by stating that

the " division " of a line, as well as an extremity, is a

point, as is also the intersection of two lines. These

statements, if they had been made by Euclid, would

have avoided the objection made by Proclus, that some

lines have no extremities, as, for example, a circle, and

also a straight line extending infinitely in both directions.

4. Straight Line. A straight line is that which lies

evenly with respect to the points on itself. This is the least

satisfactory of all of the definitions of Euclid, and em-

phasizes the fact that the straight line is the most diffi-

cult to define of the elementary concepts of geometry.
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What is meant by " lies evenly " ? Who would know
what a straight line is, from this definition, if he did not

know in advance ?

The ancients suggested many definitions of straight

line, and it is well to consider a few in order to ap-

preciate the difficulties involved. Plato spoke of it as

"that of which the middle covers the ends," meaning

that if looked at endways, the middle would make it

impossible to see the remote end. This is often modified

to read that " a straight line when looked at endways

appears as a point,"— an idea that involves the postulate

that our line of sight is straight. Archimedes made the

statement that " of all the lines which have the same

extremities, the straight line is the least," and this lias

been modified by later writers into the statement that

" a straight line is the shortest distance between two

points." This is open to two objections as a definition:

(1) a line is not distance, but distance is the lengtli of a

line,— it is measured on a line
; (2) it is merely stating

a property of a straight line to say that " a straight line

is the shortest path between two points,"— a proper pos-

tulate but not a good definition. Equally objectionable is

one of the definitions suggested by both Heron and

Proclus, that "a straight line is a line that is stretched

to its uttermost"; for even then it is reasonable to think

of it as a catenary, although Proclus doubtless had in

mind the Archimedes statement. He also stated that "a

straight line is a line such that if any part of it is in a

plane, the whole of it is in the plane,"— a definition that

runs in a circle, since plane is defined by means of

straight line. Proclus also defines it as "a uniform line,

capable of sliding along itself/" but this is also true of a

circle.
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Of the various definitions two of the best go back to

Heron, about the beginning of our era. Proclus gives

one of them in this form, " That line which, when its

ends remain fixed, itself remains fixed." Heron proposed

to add, " when it is, as it were, turned round in the same

plane." This has been modified into "that which does

not change its position when it is turned about its ex-

tremities as poles," and appears in substantially this

form in the works of Leibnitz and Gauss. The defini-

tion of a straight line as "such a line as, with another

straight line, does not inclose space," is only a modifica-

tion of this one. The other definition of Heron states

that in a straight line " all its parts fit on all in all

ways," and this in its modern form is perhaps the most

satisfactory of all. In this modern form it may be stated,

" A line such that any part, placed with its ends on any

other part, must lie wholly in the line, is called a straight

line," in which the force of the word " must " should be

noted. This whole historical discussion goes to show

how futile it is to attempt to define a straight line.

What is needed is that we should explain what is meant

by a straight line, that Ave should illustrate it, and that

pupils should then read the definition understandingly.

5. SURFACE. A surface is that which has length and

breadth. This is substantially the common definition of

our modern textbooks. As with line, so with surface,

the definition is not entirely satisfactory, and the chief

consideration is that the meaning of the term should be

made clear by explanations and illustrations. The shadow

cast on a table top is a good illustration, since all idea

of thickness is wanting. It adds to the understanding of

the concept to introduce Aristotle's statement that a sur-

face is generated by a moving line, modified by saying
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that it may be so generated, since the line might slide

along its own trace, or, as is commonly said in mathe-
matics, along itself.

6. The extremities of a surface are lines. This is open
to the same explanation and objection as definition 3,

and is not usually given in modern textbooks. Proclns
calls attention to the fact that the statement is hardly
true for a complete spherical surface.

7. Plane. A plane surface is a surface which lies

evenly with the straight lines on itself Euclid here fol-

lows his definition of straight line, with a result that is

equally unsatisfactory. For teaching purposes the trans-

lation from the Greek is not clear to a beginner, since
" lies evenly " is a term not simpler than the one defined.

As with the definition of a straight line, so with that of
a plane, numerous efforts at improvement have been
made. Proclus, following a hint of Heron's, defines it

as " the surface which is stretched to the utmost," and
also, this time influenced by Archimedes's assumption
concerning a straight line, as "the least surface among
all those which have the same extremities." Heron gave
one of the best definitions, "A surface all the parts of
which have the property of fitting on [each other]." The
definition that has met with the widest acceptance, how-
ever, is a modification of one due to Proclus, "A surface
such that a straight line fits on all parts of it." Proclus
elsewhere says, "[A plane surface is] such that the
straight line fits on it all ways," and Heron gives it in this

form, " [A plane surface is] such that, if a straight line

pass through two points on it, the line coincides with it

at every spot, all ways." In modern form this appears as
follows: "A surface such that a straight line joining any
two of its points lies wholly in the surface is called a
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plane," and for teaching purposes we have no better defi-

nition. It is often known as Simson's definition, having

been given by Robert Simson in 1756.

The French mathematician, Fourier, proposed to define

a plane as formed by the aggregate of all the straight

lines which, passing through one point on a straight line

in space, are perpendicular to that line. This is clear,

but it is not so usable for beginners as Simson's defini-

tion. It appears as a theorem in many recent geometries.

The German mathematician, Crelle, defined a plane as

a surface containing all the straight lines (throughout

their whole length) passing through a fixed point and

also intersecting a straight line in space, but of course this

intersected straight line must not pass through the fixed

point. Crelle's definition is occasionally seen in modern

textbooks, but it is not so clear to the pupil as Simson's.

Of the various ultrascientific definitions of a plane that

have been suggested of late it is hardly of use to speak

in a book concerned primarily with practical teaching.

No one of them is adapted to the needs and the com-

prehension of the beginner, and it seems that we are nor

likely to improve upon the so-called Simson form.

8. Plane Angle. A plane angle is the inclination to

each other of ttvo lines in a jjla?ie which meet each other

and do not lie in a straight line. This definition, it will

be noticed, includes curvilinear angles, and the expression

" and do not lie in a straight line " states that the lines

must not be continuous one with the other, that is, that

zero and straight angles are excluded. Since Euclid does

not use the curvilinear angle, and it is only the recti-

linear angle with which we are concerned, we will pass

to the next definition and consider this one in connection

therewith.
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9. Rectilinear Angle. When the lines containing

the angle are straight, the angle is called rectilinear. This

definition, taken with the preceding one, has always

been a subject of criticism. In the first place it expressly

excludes the straight angle, and, indeed, the angles of

Euclid are always less than 180°, contrary to our mod-

ern concept. In the second place it defines angle by

means of the word " inclination," which is itself as diffi-

cult to define as angle. To remedy these defects many
substitutes have been proposed. Apollonius defined

angle as " a contracting of a surface or a solid at one

point under a broken line or surface." Another of the

Greeks defined it as " a quantity, namely, a distance be-

tween the lines or surfaces containing it." Schotten

*

says that the definitions of angle generally fall into

three groups:

a. An angle is the difference of direction between two

lines that meet. This is no better than Euclid's, since

" difference of direction " is as difficult to define as

"inclination."

b. An angle is the amount of turning necessary to

bring one side to the position of the other side.

c. An angle is the portion of the plane included be-

tween its sides.

Of these, b is given by way of explanation in most

modern textbooks. Indeed, we cannot do better than

simply to define an angle as the opening between two

lines which meet, and then explain what is meant by

size, through the bringing in of the idea of rotation.

This is a simple presentation, it is easily understood,

and it is sufficiently accurate for the real purpose in

1 Loc. cit., Vol. II, p. 94.
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mind, namely, the grasping of the concept. We should

frankly acknowledge that the concept of angle is such

a simple one that a satisfactory definition is impossible,

and we should therefore confine our attention to having

the concept understood.

10. When a straight line set up on a straight line makes

the adjacent angles equal to one another^ each of the equal

angles is right, and the straight line standing on the other

is called a 'perpendicular to that on which it stands. We
at present separate these definitions and simplify the

language.

11. An obtuse angle is an angle greater than a right

angle.

12. An acute angle is an angle less than a right angle.

The question sometimes asked as to whether an angle

of 200° is obtuse, and whether a negative angle, say

— 90°, is acute, is answered by saying that Euclid did

not conceive of angles equal to or greater than 180°

and had no notion of negative quantities. Generally to-

day we define an obtuse angle as u greater than one and

less than two right angles." An acute angle is defined

as "an angle less than a right angle," and is considered

as positive under the general understanding that all

geometric magnitudes are positive unless the contrary

is stated.

13. A boundary is that which is an extremity of any-

thing. The definition is not exactly satisfactory, for a

circle is the boundary of the space inclosed, but we
hardly consider it as the extremity of that space. Euclid

wishes the definition before No. 14.

14. A figure is that which is contained by any boundary

or boundaries. The definition is not satisfactory, since

it excludes the unlimited straight line, the angle, an



THE DEFINITIONS OF GEOMETRY 145

assemblage of points, and other combinations of lines

and points which we should now consider as figures.

15. A circle is a plane figure contained by one line such

that all the straight lines falling upon it from one point

among those lying within the figure are equal to one another,

16. And the point is called the center of the circle.

Some commentators add after " one line," definition 15,

the words " which is called the circumference," but these

are not in the oldest manuscripts. The Greek idea of a

circle was usually that of part of a plane which is bounded

by a line called in modern times the circumference,

although Aristotle used " circle " as synonymous with

" the bounding line." With the growth of modern math-

ematics, however, and particularly as a result of the

development of analytic geometry, the word " circle " has

come to mean the bounding line, as it did with Aris-

totle, a century before Euclid's time. This has grown

out of the equations of the various curves, x2+ y
2— r

2

representing the circle-line, a2

y
2+ b

2x2= a2
b
2 representing

the ellipse-///^, and so on. It is natural, therefore, that

circle, ellipse, parabola, and hyperbola should all be

looked upon as lines. Since this is the modern use of

" circle " in English, it has naturally found its way into

elementary geometry, in order that students should not

have to form an entirely different idea of circle on be-

ginning analytic geometry. The general body of Ameri-

can teachers, therefore, at present favors using "circle"

to mean the bounding line and " circumference " to mean

the length of that line. This requires redefining " area

of a circle," and this is done by saying that it is the

area of the plane space inclosed. The matter is not of

greatest consequence, but teachers wall probably prefer

to join in the modern American usage of the term.
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1 7. Diameter. A diameter of the circle is any straight

line drawn through the coder and terminated in both direc-

tions hi/ the circumference of the circle, and snch a straight

line also bisects the circle. The word " diameter" is from

two Greek words meaning a " through measurer," and it

was also used by Euclid for the diagonal of a square,

and more generally for the diagonal of any parallelo-

gram. The word " diagonal " is a later term and means

the " through angle." It will be noticed that Euclid

adds to the usual definition the statement that a diameter

bisects the circle. He does this apparently to justify his

definition (18), of a semicircle (a half circle).

Thales is said to have been the first to prove that a

diameter bisects the circle, this being one of three or

four propositions definitely attributed to him, and it is

sometimes given as a proposition to be proved. As a

proposition, however, it is unsatisfactory, since the proof

of what is so evident usually instills more doubt than

certainty in the minds of beginners.

18. Semicircle. A semicircle is the figure contained

by the diameter and the circumference cut off by it. And
the center of the semicircle is the same as that of the circle.

Proclus remarked that the semicircle is the only plane

figure that has its center on its perimeter. Some writers

object to defining a circle as a line and then speaking

of the area of a circle, showing minds that have at least

one characteristic of that of Proclus. The modern defini-

tion of semicircle is " half of a circle," that is, an arc of

180°, although the term is commonly used to mean both

the arc and the segment.

19. Rectilinear Figures. Rectilinear figures are

those which are contained by straight lines, trilateral figures

being those contained by three, quadrilateral those contained
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by four, and multilateral those contained by more than four,

straight lines.

20. Of trilateral figures, an equilateral triangle is that

ichich has its three sides equal, an isosceles triangle that

which has two of its sides alone equal, and a scalene tri-

angle that which has its three sides unequal.

21. Further, of trilateral figures, a right-angled triangle

is that which has a right angle, an obtuse-angled triangle

that which has an obtuse angle, and an acute-angled tri-

angle that which has its three angles acute.

These three definitions may properly be considered

together. " Rectilinear " is from the Latin translation of

the Greek euthygrammos, and means "right-lined," or

" straight-lined." Euclid's idea of such a figure is that of

the space inclosed, while the modern idea is tending to

become that of the inclosing lines. In elementary geom-

etry, however, the Euclidean idea is still held. " Trilat-

eral " is from the Latin translation of the Greek tripleuros

(three-sided). In elementary geometry the word " tri-

angle " is more commonly used, although " quadrilateral
"

is more common than "quadrangle." The use of these

two different forms is eccentric and is merely a matter

of fashion. Thus we speak of a pentagon but not of a

tetragon or a trigon, although both words are correct in

form. The word " multilateral " (many-sided) is a trans-

lation of the Greek jjolypleuros. Fashion has changed

this to " polygonal " (many-angled), the word *' multi-

lateral " rarely being seen.

Of the triangles, "equilateral" means " equal-sided";

"isosceles" is from the Greek isoskeles, meaning "with

equal legs," and " scalene " from skalenos, possibly from

skazo (to limp), or from skolios (crooked). Euclid's lim-

itation of isosceles to a triangle with two, and only two,
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equal sides would not now be accepted. We are at pres-

ent more given to generalizing than he was, and when
we have proved a proposition relating to the isosceles

triangle, we wish to say that we have thereby proved it

for the equilateral triangle. We therefore say that an

isosceles triangle has two sides equal, leaving it possible

that all three sides should be equal. The expression

" equal legs " is now being discarded on the score of inel-

egance. In place of "right-angled triangle" modern

writers speak of " right triangle/' and so for the obtuse

and acute triangles. The terms are briefer and are as

readily understood. It may add a little interest to the

subject to know that Plutarch tells us that the ancients

thought that -the power of the triangle is expressive of

the nature of Pluto, Bacchus, and Mars." He also states

that the Pythagoreans called " the equilateral triangle

the head-born Minerva and Tritogeneia (born of Triton)

because it may be equally divided by the perpendicular

lines drawn from each of its angles."

22, Of quadrilateral figures a square is that which is both

equilateral and right-angled; an oblong that which is right-

angled hut n<>t equilateral; a rhombus that which is equi-

lateral and u<>t right-angled : and a rhomboid that which

has it* <>j>pnsiti' s'htc* and angles equal to one another, but

is neither equilateral nor right-angled. And Jet all quadrilat-

erals other than these be called trapezia. In this definition

Euclid also specializes in a manner not now generally

approved. Thus we are more apt to-day to omit the oblong

and rhomboid as unnecessary, and to define " rhombus "

in such a manner as to include a square. We use "paral-

lelogram " to cover - rhomboid," " rhombus,** kk oblong,"

and ^square." For "oblong" we use "rectangle," let-

ting it include square. Euclid's definition of kk square
"
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illustrates his freedom in stating more attributes than are

necessary, in order to make sure that the concept is clear

;

for he might have said that it " is that which is equilateral

and has one right angle." We may profit by his method,

sacrificing logic to educational necessity. Euclid does not

use "oblong," " rhombus," "rhomboid," and "trapezium"

(plural, " trapezia ") in his proofs, so that he might well

have omitted the definitions, as we often do.

23. Parallels. Parallel straight lines are straight

Hues which, being in the same plane and being produced in-

definitely in both directions, do not meet one another in

either direction. This definition of parallels, simplified

in its language, is the one commonly used to-day. Other

definitions have been suggested, but none has been so

generally used. Proclus states that Posidonius gave the

definition based upon the lines always being at the same

distance apart. Geminus has the same idea in his defi-

nition. There are, as Schotten has pointed out, three

general types of definitions of parallels, namely:

a. They have no point in common. This may be ex-

pressed by saying that (1) they do not intersect, (2)

they meet at infinity.

b. They are equidistant from one another.

c. They have the same direction.

Of these, the first is Euclid's, the idea of the point

at infinity being suggested by Kepler (1604). The sec-

ond part of this definition is, of course, unusable for

beginners. Dr. (now Sir Thomas) Heath says, " It seems

best, therefore, to leave to higher geometry the concep-

tion of infinitely distant points on a line and of two

straight lines meeting at infinity, like imaginary points of

intersection, and, for the purposes of elementary geom-

etry, to rely on the plain distinction between ' parallel

'
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and 'cutting,' which average human intelligence can

readily grasp."

The direction definition seems to have originated with

Leibnitz. It is open to the serious objection that " direc-

tion " is not easy of definition, and that it is used very

loosely. If two people on different meridians travel due

north, do they travel in the same direction? on paral-

lel lines ? The definition is as objectionable as that of

angle as the "difference of direction" of two intersect-

ing lines.

From these definitions of the first book of Euclid we

see (1) what a small number Euclid considered as basal

;

(2) what a change has taken place in the generalization

of concepts; (3) how the language has varied. Never-

theless we are not to be commended if wr

e adhere to

Euclid's small number, because geometry is now taught

to pupils whose vocabulary is limited. It is necessary to

define more terms, and to scatter the definitions through

the work for use as they are needed, instead of massing

them at the beginning, as in a dictionary. The most

important lesson to be learned from Euclid's definitions

is that only the basal ones, relatively few in number,

need to be learned, and these because they are used as the

foundations upon which proofs are built. It should also

be noticed that Euclid explains nothing in these defini-

tions ; they are hard statements of fact, massed at the

beginning of his treatise. Not always as statements, and

not at all in their arrangement, are they suited to the

needs of our boys and girls at present.

Having considered Euclid's definitions of Book I, it

is proper to turn to some of those terms that have been

added from time to time to his list, and are now usually

incorporated in American textbooks. It will be seen that
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most of these were assumed by Euclid to be known by

his mature readers. They need to be defined for young

people, but most of them are not basal, that is, they are

not used in the proofs of propositions. Some of these

terms, such as magnitudes, curve line, broken line, curvi-

linear figure, bisector, adjacent angles, reflex angles,

oblique angles and lines, and vertical angles, need

merely a word of explanation so that they may be used

intelligently. If they were numerous enough to make it

worth the while, they could be classified in our textbooks

as of minor importance, but such a course would cause

more trouble than it is worth.

Other terms have come into use in modern times that

are not common expressions with which students are

familiar. Such a term is " straight angle," a concept not

used by Euclid, but one that adds so materially to the

interest and value of geometry as now to be generally

recognized. There is also the word "perigon," meaning

the whole angular space about a point. This was excluded

by the Greeks because their idea of angle required it to

be less than a straight angle. The word means " around

angle," and is the best one that has been coined for the

purpose. " Flat angle " and " whole angle " are among
the names suggested for these two modern concepts.

The terms " complement," " supplement," and " conju-

gate," meaning the difference between a given angle and

a right angle, straight angle, and perigon respectively,

have also entered our vocabulary and need defining.

There are also certain terms expressing relationship

which Euclid does not define, and which have been so

changed in recent times as to require careful definition at

present. Chief among these are the words " equal," " con-

gruent," and " equivalent." Euclid used the single word
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" equal " for all three concepts, although some of his

recent editors have changed it to " identically equal

"

in the case of congruence. In modern speech we use the

word "equal" commonly to mean " like-valued," "having

the same measure," as when we say the circumference of

a circle " equals " a straight line whose length is 2 7rr,

although it could not coincide with it. Of late, there-

fore, in Europe and America, and wherever European

influence reaches, the word " congruent " is coming into

use to mean " identically equal " in the sense of super-

posable. We therefore speak of congruent triangles

and congruent parallelograms as being those that are

superposable.

It is a little unfortunate that " equal " has come to

be so loosely used in ordinary conversation that we can-

not keep it to mean "congruent"; but our language will

not permit it, and we are forced to use the newer word.

Whenever it can be used without misunderstanding,

however, it should be retained, as in the case of " equal

straight lines," " equal angles," and " equal arcs of the

same circle." The mathematical and educational world

will never consent to use " congruent straight lines," or

" congruent angles," for the reason that the terms are

unnecessarily long, no misunderstanding being possible

when " equal " is used.

The word " equivalent " was introduced by Legendre

at the close of the eighteenth century to indicate equal-

ity of length, or of area, or of volume. Euclid had said,

" Parallelograms which are on the same base and in the

same parallels are equal to one another," while Legendre

and his followers would modify the wording somewhat

and introduce "equivalent" for "equal." This usage

has been retained. Congruent polygons are therefore
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necessarily equivalent, but equivalent polygons are not in

general congruent. Congruent polygons have mutually

equal sides and mutually equal angles, while equivalent

polygons have no equality save that of area.

In general, as already stated, these and other terms

should be defined just before they are used instead of

at the beginning of geometry. The reason for this, from

the educational standpoint and considering the present

position of geometry in the curriculum, is apparent.

We shall now consider the definitions of Euclid's Book
III, which is usually taken as Book II in America.

1. Equal Circles. Equal circles are those the diam-

eters of ivhich are equal, or the radii of ivhieh are equal.

Manifestly this is a theorem, for it asserts that if the

radii of two circles are equal, the circles may be made to

coincide. In some textbooks a proof is given by super-

position, and the proof is legitimate, but Euclid usually

avoided superposition if possible. Nevertheless he might

as well have proved this as that two triangles are con-

gruent if two sides and the included angle of the one

are respectively equal to the corresponding parts of the

other, and he might as well have postulated the latter

as to have substantially postulated this fact. For in

reality this definition is a postulate, and it was so con-

sidered by the great Italian mathematician Tartaglia

(ca. 1500-m. 1557). The plan usually followed in Amer-

ica to-day is to consider this as one of many unproved

propositions, too evident, indeed, for proof, accepted by

intuition. The result is a loss in the logic of Euclid, but

the method is thought to be better adapted to the mind

of the youthful learner. It is interesting to note in this

connection that the Greeks had no word for " radius,"

and were therefore compelled to use some such phrase as
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" the straight line from the center," or, briefly, " the from

the center," as if " from the center " were one word.

2. Taxgext. A straight line is said to touch a circle

which, meeting the circle and being produced, does not cut

the circle.

Teachers who prefer to use " circumference " instead

of " circle" for the line should notice how often such

phrases as u cut the circle " and " intersecting circle

"

are used,— phrases that signify nothing unless " circle
"

is taken to mean the line. So Aristotle uses an expres-

sion meaning that the locus of a certain point is a circle,

and he speaks of a circle as passing through " all the

angles." Our word " touch " is from the Latin tangere,

from which comes "tangent," and also "tag," an old

touching game.

3. Taxgext Circles. Circles are said to touch one

another which, meeting one another, do not cut one another.

The definition has not been looked upon as entirely

satisfactory, even aside from its unfortunate phraseology.

It is not certain, for instance, whether Euclid meant that

the circles could not cut at some other point than that

of tangency. Furthermore, no distinction is made be-

tween external and internal contact, although both forms

are used in the propositions. Modern textbook makers

find it convenient to define tangent circles as those that

are tangent to the same straight line at the same point,

and to define external and internal tangency by refer-

ence to their position with respect to the line, although

this may be characterized as open to about the same

objection as Euclid's.

4. Distaxce. In a circle straight lines are said to be

equally distant from the center, when the perpendiculars

draivn to them from the center are equal.
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It is now customary to define " distance " from a point

to a line as the length of the perpendicular from the point

to the line, and to do this in Book I. In higher math-

ematics it is found that distance is not a satisfactory

term to use, but the objections to it have no particular

significance in elementary geometry.

5. Greater Distance. And that straight line is said

to be at a greater distance on which the greater perpendicular

falls.

Such a definition is not thought essential at the

present time.

6. Segment. A segment of a circle is the figure con-

tained by a straight line and the circumference of a circle.

The word " segment " is from the Latin root sect,

meaning " cut." So we have " sector " (a cutter), " sec-

tion " (a cut), " intersect," and so on. The word is not

limited to a circle ; we have long spoken of a spherical

segment, and it is common to-day to speak of a line seg-

ment, to which some would apply a new name "sect."

There is little confusion in the matter, however, for the

context shows what kind of a segment is to be under-

stood, so that the word " sect " is rather pedantic than

important. It will be noticed that Euclid here uses

" circumference " to mean " arc."

7. Angle of a Segment. An angle of a segment is

that contained by a straight line and a circumference of a

circle.

This term lias entirely dropped out of geometry, and

few teachers would know what it meant if they should

hear it used. Proclus called such angles " mixed."

8. Angle in a Segment. An angle in a segment is

the angle which, when a point is taken on the circumfer-

ence of the segment and straight lines are joined from it to
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the extremities of the straight line which is the base of the

segment, is contained by the straight lines so joined.

Such an involved definition would not be usable to-day.

Moreover, the words " circumference of the segment

"

would not be used.

9. And when the straight line* containing the angle cut

off a circn inference, the angle is said to stand upon that

circumference.

10. Sector. A sector of a chicle is the figure which,

when an angle is constructed at the center of the circle, is

contained by the straight lines containing the angle and the

circumference cut off by them.

There is no reason for such an extended definition,

our modern phraseology being both more exact (as seen

in the above use of "circumference" for u arc") and more

intelligible. The Greek word for " sector " is " knife
"

( tomeus), "sector" being the Latin translation. A sector is

supposed to resemble a shoemaker's knife, and hence the

significance of the term. Euclid followed this by a defi-

nition of similar sectors, a term now generally abandoned

as unnecessary.

It will be noticed that Euclid did not use or define the

word "polygon." He uses "rectilinear figure" instead.

Polygon may be defined to be a bounding line, as a circle

is now defined, or as the space inclosed by a broken line,

or as a figure formed by a broken line, thus including

both the limited plane and its boundary. It is not of

any great consequence geometrically which of these ideas

is adopted, so that the usual definition of a portion of a

plane bounded by a broken line may be taken as suffi-

cient for elementary purposes. It is proper to call atten-

tion, however, to the fact that we may have cross polygons

of various types, and that the line that " bounds " the
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polygon must be continuous, as the definition states.

That is, in the second of these figures the shaded portion

is not considered a polygon. Such

special cases are not liable to arise,

but if questions relating to them are

suggested, the teacher should be

prepared to answer them. If sug-

gested to a class, a note of this

kind should come out only inci-

dentally as a bit of interest, and

should not occupy much time nor

be unduly emphasized.

It may also be mentioned to a class at some convenient

time that the old idea of a polygon was that of a convex
figure, and that the modern idea, which is met in higher

mathematics, leads to a modification of earlier concepts.

For example, here is a D B E
quadrilateral with one

of its diagonals, BD, out-

side the figure. Further- F>

more, if we consider a

quadrilateral as a figure

formed by four intersect- A

mg lines, AC, CF, BE, and FA, it is apparent that this

general quadrilateral lias six vertices, A, B, C, I), F, F,

and three diagonals, AD, BE, and CE. Such broader

ideas of geometry form the basis of what is called

modern elementary geometry.

The other definitions of plane geometry need not be

discussed, since all that have any historical interest have
been considered. On the whole it may be said that our

definitions to-day are not in general so carefully consid-

ered as those of Euclid, who weighed each word with
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greatest skill, but they are more teachable to beginners,

and are, on the whole, more satisfactory from the educa-

tional standpoint. The greatest lesson to be learned from

this discussion is that the number of basal definitions to

be learned for subsequent use is very small.

Since teachers are occasionally disturbed over the form

in which definitions are stated, it is well to say a few

words upon this subject. There are several standard

types that may be used. (1) We may use the diction-

ary form, putting the word defined first, thus: "Right

triangle, A triangle that has one of its angles a right

angle/' This is scientifically correct, but it is not a com-

plete sentence, and hence it is not easily repeated when
it has to be quoted as an authority. (2) We may put

the word defined at the end, thus :

k
- A triangle that has

one of its angles a right angle is called a right triangle."

This is more satisfactory. (3) We may combine (1)

and (2), thus: "Right triangle, A triangle that has one

of its angles a right angle is called a right triangle."

This is still better, for it has the catchword at the

beginning of the paragraph.

There is occasionally some mental agitation over the

trivial things of a definition, such as the use of the words

"is called." It would not be a very serious matter if

they were omitted, but it is better to have them there.

The reason is that they mark the statement at once as a

definition. For example, suppose we say that " a trian-

gle that has one of its angles a right angle is a right

triangle." We have also the fact that " a triangle whose

base is the diameter of a semicircle and whose vertex

lies on the semicircle is a right triangle." The style of

statement is the same, and we have nothing in the phrase-

ology to show that the first is a definition and the second
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a theorem. This may happen with most of the definitions,

and hence the most careful writers have not consented

to omit the distinctive words in question.

Apropos of the definitions of geometry, the great

French philosopher and mathematician, Pascal, set forth

certain rules relating to this subject, as also to the axioms

employed, and these may properly sum up this chapter.

1. Do not attempt to define terms so well known in

themselves that there are no simpler terms by which to

express them.

2. Admit no obscure or equivocal terms without

defining them.

3. Use in the definitions only terms that are perfectly

understood or are there explained.

4. Omit no necessary principles without general agree-

ment, however clear and evident they may be.

5. Set forth in the axioms only those things that are

in themselves perfectly evident.

6. Do not attempt to demonstrate anything that is so

evident in itself that there is nothing more simple by

which to prove it.

7. Prove whatever is in the least obscure, using in the

demonstration only axioms that are perfectly evident

in themselves, or propositions already demonstrated or

allowed.

8. In case of any uncertainty arising from a term em-

ployed, always substitute mentally the definition for the

term itself.

Bibliography. Heath, Euclid, as cited ; Frankland, The First

Book of Euclid, as cited ; Smith, Teaching of Elementary Mathe-

matics, p. 257, New York, 1900 ; Young, Teaching of Mathematics,

p. 189, New York, 1907; Veblen, On Definitions, in the Monist,

1903, p. 303.



CHAPTER XIII

HOW TO ATTACK THE EXERCISES

The old geometry, say of a century ago, usually con-

sisted, as has been stated, of a series of theorems fully

proved and of problems fully solved. During the nine-

teenth century exercises were gradually introduced, thus

developing geometry from a science in which one learned

by seeing things done, into one in which he gained power

by actually doing things. Of the nature of these exer-

cises (" originals," " riders "), and of their gradual

change in the past few years, mention has been made in

Chapter VII. It now remains to consider the methods

of attacking these exercises.

It is evident that there is no single method, and this is

a fortunate fact, since if it were not so, the attack would

be too mechanical to be interesting. There is no one

rule for solving every problem nor even for seeing how
to begin. On the other hand, a pupil is saved some time

by having his attention called to a few rather definite

lines of attack, and he will undoubtedly fare the better

by not wasting his energies over attempts that are in

advance doomed to failure.

There are two general questions to be considered :

first, as to the discovery of new truths, and second, as to

the proof. With the first the pupil will have little to do,

not having as yet arrived at this stage in his progress.

A bright student may take a little interest in seeing what
160
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he can find out that is new (at least to him), and if so, he

may be told that many new propositions have been dis-

covered by the accurate drawing of figures ; that some

have been found by actually weighing pieces of sheet

metal of certain sizes ; and that still others have made

themselves known through paper folding. In all of these

cases, however, the supposed proposition must be proved

before it can be accepted.

As to the proof, the pupil usually wanders about more

or less until he strikes the right line, and then he follows

this to the conclusion. He should not be blamed for

doing this, for he is pursuing the method that the world

followed in the earliest times, and one that has always

been common and always will be. This is the synthetic

method, the building up of the proof from propositions

previously proved. If the proposition is a theorem, it is

usually not difficult to recall propositions that may lead

to the demonstration, and to select the ones that are

really needed. If it is a problem, it is usually easy to

look ahead and see what is necessary for the solution

and to select the preceding propositions accordingly.

But pupils should be told that if they do not rather

easily find the necessary propositions for the construc-

tion or the proof, they should not delay in resorting to

another and more systematic method. This is known as

the method of analysis, and it is applicable both to theo-

rems and to problems. It has several forms, but it is of

little service to a pupil to have these differentiated, and

it suffices that he be given the essential feature of all

these forms, a feature that goes back to Plato and his

school in the fifth century B.C.

For a theorem, the method of analysis consists in

reasoning as follows : " I can prove this proposition if I
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can prove this thing ; I can prove this thing if I can prove

that ; I can prove that if I can prove a third thing/" and

so the reasoning runs until the pupil comes to the point

where he is able to add, " but I can prove that." This

does not prove the proposition, but it enables him to

reverse the process, beginning with the thing lie can

prove and going back, step by step, to the thing that he

is to prove. Analysis is, therefore, his method of dis-

covery of the way in which he may arrange his synthetic

proof. Pupils often wonder how any one ever came to

know how to arrange the proofs of geometry, and this

answers the question. Some one guessed that a statement

was true ; he applied analysis and found that he could

prove it ; he then applied synthesis and did prove it.

For a problem, the method of analysis is much the

same as in the case of a theorem. Two things are in-

volved, however, instead of one, for here we must make

the construction and then prove thai this construction is

correct. The pupil, therefore, first supposes the problem

solved, and sees what results follow. He then reverses

the process and sees if he can attain these results and thus

effect the required construction. If so, he states the proc-

ess and gives the resulting proof. For example:

In a triangle ABC, to draw PQ parallel to the base A B,

cutting the sides in P and Q 7
so that PQ shall equal AP + BQ.

Analysis. Assume the problem solved.

Then AP must equal some part of PQ as

PX. and />(^ must equal QX.

But if AP=PX, what must ZPX 1 equal ?

v PQ is II to AB, what does Z PXA equal ?

Then why must Z BAX = Z XAP ?

Similarly, what about Z QBX and ZXBA ?

Construction. Now reverse the process. What may we do to A A and

B in order to fix! ? Then how shallPQ be drawn ? Now give the proof.
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The third general method of attack applies chiefly to

problems where some point is to be determined. This

is the method of the intersection of loci. Thus, to locate

an electric light at a point eighteen feet
f

from the point of intersection of two

streets and equidistant from them, evi-

dently one locus is a circle with a radius

eighteen feet and the center at the ver-

tex of the angle made by the streets,

and the other locus is the bisector of the

angle. The method is also occasionally

applicable to theorems. For example,

to prove that the perpendicular bisec-

tors of the sides o£ a triangle are concurrent. Here the

locus of points equidistant from A and B is PP\ and

the locus of points equidistant from

B and C is QQ f

. These can easily be

shown to intersect, as at 0. Then 0,

being equidistant from A, B, and C,

is also on the perpendicular bisector

of AC. Therefore these bisectors are concurrent in 0.

These are the chief methods of attack? aiKl ar^ all

that should be given to an average class for practical

use.

Besides the methods of attack, there are a few general

directions that should be given to pupils.

1. In attacking either a theorem or a problem, take

the most general figure possible. Thus, if a proposition

relates to a quadrilateral, take one with unequal sides

and unequal angles rather than a square or even a

rectangle. The simpler figures often deceive a pupil

into feeling that he has a proof, when in reality he has

one only for a special case.
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2. Set forth very exactly the thing that is given, using

letters relating to the figure that has been drawn. Then

set forth with the same exactness the thing that is to be

proved. The neglect to do this is the cause of a large

per cent of the failures. The knowing of exactly what

we have to do and exactly what we have with which to

do it is half the battle.

3. If the proposition seems hazy, the difficulty is prob-

ably with the wording. In this case try substituting the

definition for the name of the thing defined. Thus in-

stead of thinking too long about proving that the median

to the base of an isosceles triangle is perpendicular to

the base, draw the figure and

think that there is given

AC=BC,
AD = BD,

and that there is to be proved that

Z.CDA = ABDC.

Here we have replaced " median," " isosceles," and " per-

pendicular " by statements that express the same idea in

simpler language.

Bibliography. Petersen, Methods and Theories for the Solution

of Geometric Problems of Construction, Copenhagen, 1879, a

curious piece of English and an extreme view of the subject, but

well worth consulting ; Alexandroff, Problemes de geometrie

elementaire, Paris, 1899, with a German translation in 1903
;

Loomis, Original Investigation ; or, How to attack an Exercise

in Geometry, Boston, 1901 ; Sauvage, Les Lieux geom^triques

en geometrie elementaire, Paris, 1893 ; Hadamard, Lecons de

geometrie, p. 261, Paris, 1898 ; Duhamel, Des Methodes dans les

sciences de raisonnement, 3 e £d., Paris, 1885 ;
Henrici and Treut-

lein, Lehrbuch der Elementar-Geometrie, Leipzig, 3. AufL, 1897;

Henrici, Congruent Figures, London, 1879.



CHAPTER XIV

BOOK I AND ITS PROPOSITIONS

Having considered the nature of the geometry that

we have inherited, and some of the opportunities for

improving upon the methods of presenting it, the next

question that arises is the all-important one of the sub-

ject matter, What shall geometry be in detail ? Shall

it be the text or the sequence of Euclid ? Few teachers

have any such idea at the present time. Shall it be a

mere dabbling with forms that are seen in mechanics or

architecture, with no serious logical sequence ? This is an

equally dangerous extreme. Shall it be an entirely new
style of geometry based upon groups of motions ? This

may sometime be developed, but as yet it exists in the

future if it exists at all, since the recent efforts in this

respect are generally quite as ill suited to a young pupil

as is Euclid's " Elements " itself.

No one can deny the truth of M. Bourlet's recent

assertion that " Industry, daughter of the science of the

nineteenth century, reigns to-day the mistress of the

world; she has transformed all ancient methods, and

she has absorbed in herself almost all human activity." x

Neither can one deny the justice of his comparison of

Euclid with a noble piece of Gothic architecture and of

his assertion that as modern life demands another type

of building, so it demands another type of geometry.

1 Address at Brussels, August, 1910.

165
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But what does this mean ? That geometry is to exist

merely as it touches industry, or that bad architecture is

to replace the good ? By no means. A building should

to-day have steam heat and elevators and electric lights,

but it should be constructed of just as enduring materials

as the Parthenon, and it should have lines as pleasing as

those' of a Gothic facade. Architecture should still be

artistic and construction should still be substantial, else

a building can never endure. So geometry must still

exemplify good logic and must still bring to the pupil a

feeling of exaltation, or it will perish and become a mere

relic in the museum of human culture.

What, then, shall the propositions of geometry be, and

in what manner shall they answer to the challenge of the

industrial epoch in which we live ? In reply, they must

be better adapted to young minds and to all young minds

than Euclid ever intended his own propositions to be.

Furthermore, they must have a richness of application

to pure geometry, in the way of carefully chosen exer-

cises, that Euclid never attempted. And finally, they

must have application to this same life of industry of

which we have spoken, whenever this can really be found,

but there must be no sham and pretense about it, else

the very honesty that permeated the ancient geometry

will seem to the pupil to be wanting in the whole subject. 1

Until some geometry on a radically different basis shall

appear, and of this there is no very hopeful sign at pres-

ent, the propositions will be the essential ones of Euclid,

excluding those that may be considered merely intuitive,

and excluding all that are too difficult for the pupil who

1 For a recent discussion of this general subject, see Professor

Hobson on "The Tendencies of Modern Mathematics," in the Educa-

tional Review, New York, 1910, Vol. XL, p. 524.
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to-day takes up their study. The number will be limited

in a reasonable way, and every genuine type of applica-

tion will be placed before the teacher to be used as

necessity requires. But a fair amount of logic will be

retained, and the effort to make of geometry an empty

bauble of a listless mind will be rejected by every worthy

teacher. What the propositions should be is a matter

upon which opinions may justly differ ; but in this

chapter there is set forth a reasonable list for Book I,

arranged in a workable sequence, and this list may fairly

be taken as typical of what the American school will prob-

ably use for many years to come. With the list is given

a set of typical applications, and some of the general in-

formation that will add to the interest in the work and

that should form part of the equipment of the teacher.

An ancient treatise was usually written on a kind of

paper called papyrus, made from the pith of a large reed

formerly common in Egypt, but now growing luxuriantly

only above Khartum in Upper Egypt, and near Syracuse

in Sicily ; or else it was written on parchment, so called

from Pergamos in Asia Minor, where skins were first

prepared in parchment form ; or occasionally they were

written on ordinary leather. In any case they were gen-

erally written on long strips of the material used, and

these were rolled up and tied. Hence we have such an

expression as " keeping the roll " in school, and such

a word as " volume," which has in it the same root as

" involve " (to roll in), and " evolve " (to roll out). Sev-

eral of these rolls were often necessary for a single treat-

ise, in which case each was tied, and all were kept together

in a receptacle resembling a pail, or in a compartment

on a shelf. The Greeks called each of the separate parts

of a treatise biblion (/S^XtW), a word meaning "book."
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Hence we have the books of the Bible, the books of

Homer, and the books of Euclid. From the same root,

indeed, comes Bible, bibliophile (booklover), bibliography

(list of books), and kindred words. Thus the books of

geometry are the large chapters of the subject, " chapter
"

being from the Latin caput (head), a section under a new
heading. There have been efforts to change u books " to

"chapters," but they have not succeeded, and there is

no reason why they should succeed, for the term is clear

and has the sanction of long usage.

Theorem. If two lines intersect, the vertical angles are

equal.

This was Euclid's Proposition 15, being put so late

because he based the proof upon his Proposition 13, now
thought to be best taken without proof, namely, " If a

straight line set upon a straight line makes angles, it will

make either two right angles or angles equal to two right

angles." It is found to be better pedagogy to assume

that this follows from the definition of straight angle,

with reference, if necessary, to the meaning of the sum of

two angles. This proposition on vertical angles is prob-

ably the best one with which to begin geometry, since it

is not so evident as to seem to need no proof, although

some prefer to rank it as semiobvious, while the proof

is so simple as easily to be understood. Eudemus, a

Greek who wrote not long before Euclid, attributed

the discovery of this proposition to Thales of Miletus

(ca. 640-548 B.C.), one of the Seven Wise Men of Greece,

of whom Proclus wrote : " Thales it was who visited

Egypt and first transferred to Hellenic soil this theory

of geometry. He himself, indeed, discovered much, but

still more did he introduce to his successors the prin-

ciples of the science."
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The proposition is the only basal one relating to the

intersection of two lines, and hence there are no others

with which it is necessarily grouped. This is the reason

for placing it by itself, followed by the congruence

theorems.

There are many familiar illustrations of this theorem.

Indeed, any two crossed lines, as in a pair of shears or

the legs of a camp stool, bring it to mind. The word
" straight " is here omitted before " lines " in accordance

witli the modern convention that the word " line " un-

modified means a straight line. Of course in cases of

special emphasis the adjective should be used.

THEOREM. Two triangles are congruent if two sides

and the included angle of the one are equal respectively to

two sides and the included angle of the other.

This is Euclid's Proposition 4, his first three proposi-

tions being problems of construction. This would there-

fore have been his first proposition if he had placed his

problems later, as we do to-day. The words "congruent"

and " equal " are not used as in Euclid, for reasons already

set forth on page 151. There have been many attempts

to rearrange the propositions of Book I, putting in sepa-

rate groups those concerning angles, those concerning

triangles, and those concerning parallels, but they have

all failed, and for the cogent reason that such a scheme

destroys the logical sequence. This proposition may
properly follow the one on vertical angles simply because

the latter is easier and does not involve superposition.

As far as possible, Euclid and all other good geome-

ters avoid the proof by superposition. As a practical

test superposition is valuable, but as a theoretical one it

is open to numerous objections. As Peletier pointed out

in his (1557) edition of Euclid, if the superposition of
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lines and figures could freely be assumed as a method of

demonstration, geometry would be full of such proofs.

There would be no reason, for example, why an angle

should not be constructed equal to a given angle by
superposing the given angle on another part of the plane.

Indeed, it is possible that we might then assume to bisect

an angle by imagining the plane folded like a piece of

paper. Heath (1908) has pointed out a subtle defect in

Euclid's proof, in that it is said that because two lines

are equal, they can be made to coincide. Euclid says,

practically, that if two lines can be made to coincide,

they are equal, but he does not say that if two straight

lines are equal, they can be made to coincide. For the

purposes of elementary geometry the matter is hardly

worth bringing to the attention of a pupil, but it shows

that even Euclid did not cover every point.

Applications of this proposition are easily found, but

they are all very much alike. There are dozens of meas-

urements that can be made by simply constructing a

triangle that shall be congruent to another triangle. It

seems hardly worth the while at this time to do more

than mention a typical and interesting applied prob-

lem x depending upon the theorem given on page 171.

Wishing to measure the distance

across a river, some boys sighted

from A to a point P. They then

turned and measured AB at right

angles to A P. They placed a stake

at 0, halfway from A to B, and

drew a perpendicular to AB at B.

They placed a stake at C, on this

perpendicular, and in line with and P. They then found

the width by measuring BC. Prove that they were right.

1 A more extended list of applications is given later in this work.
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This involves the ranging of a line, and the running

of a line at right angles to a given line, both of which

have been described in Chapter IX. It is also fairly

accurate to run a line at any angle to a given line by

sighting along two pins stuck in a protractor.

Theorem. Two triangles are congruent if two angles

and the included side of the one are equal respectively to

two angles and the included side of the other.

Euclid combines this with his Proposition 26 :

If two triangles have the two angles equal to two angles re-

spectively, and one side equal to one side, namely, either the side

adjoining the equal angles, or that subtending one of the equal

angles, they will also have the remaining sides equal to the re-

maining sides, and the remaining angle to the remaining angle.

He proves this cumbersome statement without super-

position, desiring to avoid this method, as already stated,

whenever possible. The proof by superposition is old,

however, for Al-Nairizi l gives it and ascribes it to some

earlier author whose name he did not know. Proclus

tells us that " Eudemus in his geometrical history refers

this theorem to Thales. For he says that in the method

1 > v which they say that Thales proved the distance of ships

in the sea, it was necessary to make use of this theorem."

How Thales did this is purely a matter of conjecture,

but he might have stood on the top of a tower rising

from the level shore, or of such headlands as abound

near Miletus, and by some simple instrument sighted to

the ship. Then, turning, he might have sighted along

the shore to a point having the same angle of declina-

tion, and then have measured the distance from the tower

1 Abu'l-'Abbas al-Fadl ibn Hatim al-Naiiizi, so called from his

birthplace, Nairiz, was a well-known Arab writer. He died about

922 a.d. He wrote a commentary on Euclid.
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to this point. This seems more reasonable than any of

the various plans suggested, and it is found in so many
practical geometries of the first century of printing that

it seems to have long been a common expedient. The stone

astrolabe from Mesopotamia, now preserved in the Brit-

ish Museum, shows that such instruments for the meas-

uring of angles are very old, and for the purposes of

Sixteenth-Century Mensuration

Belli's " Del Misurar con la Vista," Venice, 1569

Thales even a pair of large compasses would have an-

swered very well. An illustration of the method is seen

in Belli's work of 15(39, as here shown. At the top of

the picture a man is getting the angle by means of the

visor of his cap ; at the bottom of the picture a man is

using a ruler screwed to a staff. 1 The story goes that

1 This illustration, taken from a book in the author's library,

appeared in a valuable monograph by W. E. Stark, " Measuring In-

struments of Long Ago," published in School Science and Mathematics,

Vol. X, pp. 48, 126. With others of the same nature it is here re-

produced by the courtesy of Principal Stark and of the editors of the

journal in which it appeared.
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one of Napoleon's engineers won the imperial favor by

quickly measuring the width of a stream that blocked

the progress of the army, using this very method.

This proposition is the reciprocal or dual of the pre-

ceding one. The relation between the two may be seen

from the following arrangement

:

Two triangles are congruent Two triangles are congruent

if two sides and the included if two angles and the included

angle of the one are equal re- side of the one are equal re-

spectively to two sides and the spectively to two angles and the

included angle of the other. included side of the other.

In general, to every proposition involving points and

lines there is a reciprocal proposition involving lines and

points respectively that is often true,— indeed, that is

always true in a certain line of propositions. This rela-

tion is known as the Principle of Reciprocity or of Dual-

ity. Instead of points and lines we have here angles

(suggested by the vertex points) and lines. It is inter-

esting to a class to have attention called to such rela-

tions, but it is not of sufficient importance in elementary

geometry to justify more than a reference here and there.

There are other dual features that are seen in geometry

besides those given above.

Theorem. In an isosceles triangle the angles opposite

the equal sides are equal.

This is Euclid's Proposition 5, the second of his theo-

rems, but he adds, "and if the equal straight lines be

produced further, the angles under the base will be equal

to one another." Since, however, he does not use this

second part, its genuineness is doubted. He would not

admit the common proof of to-day of supposing the ver-

tical angle bisected, because the problem about bisecting

an angle does not precede this proposition, and therefore
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his proof is much more involved than ours. He makes
CX=CY, and proves AXBC and YAC congruent, 1 and

also A XBA and YAB congruent. Then from Z YA C he-

takes Z YAB, leaving Z BA C, and so on

the other side, leaving Z CBA, these

therefore being equal.

This proposition has long been called

the pons asinorum, or bridge of asses, but

no one knows where or when the name
arose. It is usually stated that it came

from the fact that fools could not cross this bridge, and

it is a fact that in the Middle Ages this was often the

limit of the student's progress in geometry. It has how-

ever been suggested that the name came from Euclid's

figure, which resembles the simplest type of a wooden

truss bridge. The name is applied by the French to

the Pythagorean Theorem.

Proclus attributes the discovery of this proposition to

Thales. He also says that Pappus (third century a.d.),

a Greek commentator on Euclid, proved the proposition

as follows

:

Let ABC be the triangle, with AB = A C. Conceive of this as

two triangles; then AB =AC, AC=AB, and Z A is common;
hence the &ABC and ACB are congruent, and /. B of the one

equals A C of the other.

This is a better plan than that followed by some text-

book writers of imagining A ABC taken up and laid down
on itself. Even to lay it down on its " trace " is more

objectionable than the plan of Pappus.

1 In speaking of two congruent triangles it is somewhat easier to

follow the congruence if the two are read in the same order, even

though the relatively unimportant counterclockwise reading is neg-

lected. No one should be a slave to such a formalism, but should fol-

low the plan when convenient.
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Theorem. Iftwo angles of a triangle are equal, the sides

opposite the equal angles are equal, and the triangle is isosceles.

The statement is, of course, tautological, the last five

words being unnecessary from the mathematical stand-

point, but of value at this stage of the student's progress

as emphasizing the nature of the triangle. Euclid stated

the proposition thus, " If in a triangle two angles be equal

to one another, the sides which subtend the equal angles

will also be equal to one another." He did not define

" subtend," supposing such words to be already under-

stood. This is the first case of a converse proposition

in geometry. Heath distinguishes the logical from the

geometric converse. The logical converse of Euclid I, 5,

would be that "some triangles with two angles equal are

isosceles," while the geometric converse is the propo-

sition as stated. Proclus called attention to two forms

of converse (and in the course of the work, but not

at this time, the teacher may have to do the same) :

(1) the complete converse, in which that which is given

in one becomes that which is to be proved in the other,

and vice versa, as in this and the preceding proposition

;

(2) the partial converse, in which two (or even more)

things may be given, and a certain thing is to be proved,

the converse being that one (or more) of the preceding

things is now given, together with what was to be proved,

and the other given thing is now to be proved. Symbol-

ically, if it is given that a = b and c = d, to prove that

x = y, the partial converse would have given a = b and

x = y, to prove that c = d.

Several proofs for the proposition have been sug-

gested, but a careful examination of all of them shows

that the one given below is, all things considered, the

best one for pupils beginning geometry and following the
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sequence laid down in this chapter. It lias the sanction

of some of the most eminent mathematicians, and while

not as satisfactory in some respects as the reductio ad ab-

surdum, mentioned below, it is more satisfactory in most

particulars. The proof is as follows

:

Given the triangle ABC, with the angle A equal to the angle B.

To prove that AC = BC.

Proof. Suppose the second triangle A'B'C to be an exact re-

production of the given triangle A BC.

Turn the triangle A'B'C over and place it upon ABC so that

B' shall fall on A and A' shall fall on B.

Then B'A' will coincide with AB.

Since Z.A' = jLB', Given

and Z.A=/.A',

.'.ZA=ZB'.

,\B'C will lie along AC.

Hyp.

Similarly, A'C will lie along BC.

Therefore C will fall on both AC and BC, and hence at their

intersection. . n/pr__ a ft

But B'C was made equal to BC.

.'.AC = BC. q.e.d.

If the proposition should be postponed until after the

one on the sum of the angles of a triangle, the proof

would be simpler, but it is advantageous to couple it with

its immediate predecessor. This simpler proof consists
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in bisecting the vertical angle, and then proving the two

triangles congruent. Among the other proofs is that of

the reductio ad absurdum, which the student might now
meet, but which may better be postponed. The phrase

reductio ad absurdum seems likely to continue in spite

of the efforts to find another one that is simpler. Such

a proof is also called an indirect proof, but this term is

not altogether satisfactory. Probably both names should

be used, the Latin to explain the nature of the English.

The Latin name is merely a translation of one of several

Greek names used by Aristotle, a second being in Eng-

lish " proof by the impossible," and a third being " proof

leading to the impossible." If teachers desire to intro-

duce this form of proof here, it must be borne in mind

that only one supposition can be made if such a proof

is to be valid, for if two are made, then an absurd con-

clusion simply shows that either or both must be false,

but we do not know which is false, or if only one is false.

Theorem. Two triangles are congruent if the three sides

of the one are equal respectively to the three sides of the other.

It would be desirable to place this after the fourth

proposition mentioned in this list if it could be done, so

as to get the triangles in a group, but we need the fourth

one for proving this, so that the arrangement cannot be

made, at least with this method of proof.

This proposition is a " partial converse " of the second propo-

sition in this list; for if the triangles arc ABC and A'BfC>
with sides a, b, c and a', //, c', then the second proposition asserts

that if b = V, c = c% and Z A —ZA\ then a — a' and the triangles

are congruent, while this proposition asserts that if a = a', b = //,

and c = c', then ZA — Z A' and the triangles are congruent.

The proposition was known at least as early as Aris-

totle's time. Euclid proved it by inserting a preliminary
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proposition to the effect that it is impossible to have on

the same base AB and the same side of it two different

triangles ABC and ABC\ with AC = AC, and BC =BC f
.

The proof ordinarily given to-day, wherein the two tri-

angles are constructed on opposite sides of the base, is

due to Philo of Byzantium, who lived after Euclid's time

but before the Christian era, and it is also given by Pro-

clus. There are really three cases, if one wishes to be

overparticular, corresponding to the three pairs of equal

sides. But if we are allowed to take the longest side for

the common base, only one case need be considered.

Of the applications of the proposition one of the most

important relates to making a figure rigid by means of

diagonals. For example, how many diagonals must be

drawn in order to make a quadrilateral rigid ? to make

a pentagon rigid ? a hexagon ? a polygon of n sides. In

particular, the following questions may be

asked of a class

:

1. Three iron rods are hinged at the ex-

tremities, as shown in this figure. Is the figure

rigid? Why?
2. Four iron rods are hinged, as shown in

this figure. Is the figure rigid ? If not, where
would you put in the fifth rod to make it rigid ?

Prove that this would accomplish the result.

Another interesting application relates to the most

ancient form of leveling

instrument known to us.

This kind of level is pic-

tured on very ancient

monuments, and it is still

used in many parts of the

world. Pupils in manual training may make such an in-

strument, and indeed one is easily made out of cardboard.
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If the plumb line passes through the mid-point of the base,

the two triangles are congruent and the plumb line is

then perpendicular to the base. In other words, the base

7 '
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Early Methods of Leveling

Pomodoro's "La geometria prattica," Rome, 1624

is level. With such simple primitive instruments, easily

made by pupils, a good deal of practical mathematical

work can be performed. The interesting old illustration

here given shows how this form of level

was used three hundred years ago.

Teachers who seek for geometric

figures in practical mechanics will

find this proposition illustrated m
the ordinary hoisting apparatus of

the kind here shown. From the study

of such forms and of simple roof

and bridge trusses, a number of the

usual properties of the isosceles triangle may be derived.
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Theorem. The sum of tioo lines drawn from a given

point to the extremities of a given line is greater than

the sum of two other lines similarly drawn, but included

by them.

It should be noted that the words "the extremities

of " are necessary, for it is possible to draw from a cer-

tain point within a certain triangle two lines to the base

such that their sum is greater than the sum of the other

two sides. p

Thus, in the right triangle ABC
draw any line CX from C to the base.

Make XY= A C, and CP = P Y. Then
it is easily shown that PB + PX >
CB + CA.

It is interesting to a class to have a teacher point out that, in

this figure, AP + PB < AC+ CB, and IP' + PB < AP + PB,
and that the nearer P gets to AB,
the shorter AP + PB becomes, the

limit being the line AB. From this

we may infer (although we have not

proved) that " a straight line (AB) is

the shortest path between two points."

Theorem. Only one perpendicular can be drawn to a

given line from a given external point.

Theorem. Two lines drawn from a point in a perpen-

dicular to a given line, cutting off on the given Hue equal

segments from the foot of the perpendicular, are equal and

make equal angles ivitli the perpendicular.

Theorem. Of two lines drawn from the same point in

a perpendicular to a given line, cutting off on the line un-

equal segments from the foot of the perpendicular, the more

remote is the greater.

Theorem. The perpendicular is the shortest line that

can be draivn to a straight line from a given external point.
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These four propositions, while known to the ancients

and incidentally vised, are not explicitly stated by Euclid.

The reason seems to be that he interspersed his problems

with his theorems, and in his Propositions 11 and 12,

which treat of drawing a perpendicular to a line, the

essential features of these theorems are proved. Further

mention will be made of them when we come to consider

the problems in question. Many textbook writers put the

second and third of the four before the first, forgetting

that the first is assumed in the other two, and hence

should precede them.

Theorem. Two right triangles are congruent if the

hypotenuse and a side of the one are equal respectively to

the hypotenuse and a side of the other.

Theorem. Two right triangles are congruent if the

hypotenuse and an adjacent angle of the one are equal re-

spectively to the hypotenuse and an adjacent angle of the

other.

As stated in the notes on the third proposition in this

sequence, Euclid's cumbersome Proposition 26 covers

several cases, and these two among them. Of course this

present proposition could more easily be proved after the

one concerning the sum of the angles of a triangle, but

the proof is so simple that it is better to leave the propo-

sition here in connection with others concerning triangles.

Theorem. Two lines in the same plane perpendicular

to the same line cannot meet., however far they are produced.

This proposition is not in Euclid, and it is introduced

for educational rather than for mathematical reasons.

Euclid introduced the subject by the proposition that, if

alternate angles are equal, the lines are parallel. It is,

however, simpler to begin with this proposition, and

there is some advantage in stating it in such a way as to
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prove that parallels exist before they are defined. The
proposition is properly followed by the definition of

parallels and by the postulate that has been discussed

on page 127.

A good application of this proposition is the one con-

cerning a method of drawing parallel lines by the use of

a carpenter's square. Here two lines are drawn perpen-

dicular to the edge of a board or a ruler, and these are

parallel.

Theorem. If a line is perpendicular to one of two

parallel lines, it is perpendicular to the other also.

This, like the preceding proposition, is a special case

under a later theorem. It simplifies the treatment of

parallels, however, and the beginner finds it easier to

approach the difficulties gradually, through these two

cases of perpendiculars. It should be noticed that this

is an example of a partial converse, as explained on page

175. The preceding proposition may be stated thus: If

a is _L to x and b is _L to x, then a is II to b. This propo-

sition may be stated thus : If a is _L to x and a is II to b,

then b is _L to x. This is, therefore, a partial converse.

These two propositions having been proved, the usual

definitions of the angles made by a transversal of two

parallels may be given. It is unfortunate that Ave have

no name for each of the two groups of four equal angles,

and the name of " transverse angles " has been suggested.

This would simplify the statements of certain other prop-

ositions ; thus : " If two parallel lines are cut by a trans-

versal, the transverse angles are equal," and this includes

two propositions as usually given. There is not as yet,

however, any general sanction for the term.

Theorem. If two parallel lines are cut by a trans-

versal, the alternate-interior angles are equal.
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Euclid gave this as half of his Proposition 29. Indeed,

he gives only four theorems on parallels, as against five

propositions and several corollaries in most of our Amei;

ican textbooks. The reason for increasing the number is

that each proposition may be less involved. Thus, instead

of having one proposition for both exterior and interior

angles, modern authors usually have one for the exterior

and one for the interior, so as to make the difficult sub-

ject of parallels easier for beginners.

Theorem. When two straight lines in the same plane

are cut by a transversal, if the alternate-interior angles are

equal, the two straight lines are parallel.

This is the converse of the preceding theorem, and is

half of Euclid I, 28, his theorem being divided for the

reason above stated. There are several typical pairs of

equal or supplemental angles that would lead to parallel

lines, of which Euclid uses only part, leaving the other

cases to be inferred. This accounts for the number of

corollaries in this connection in later textbooks.

Surveyors make use of this proposition when they

wish, without using a transit instrument, to run one line

parallel to another.

For example, suppose two boys are laying out a tennis court

and they wish to run a line through P parallel to AB. Take a

60-foot tape and swing it around P until the other end rests on

AB, as at M. Put a

stake at 0, 30 feet ^ —%
fromP and M. Then
take any convenient

point N on A B, and

measure ON. Sup-

pose it equals 20 feet.

Then sight from N
through 0, and put a stake at Q just 20 feet from 0. Then P and Q
determine the parallel, according to the proposition just mentioned.
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Theorem. If two parallel lines are cut by a transversal,

the exterior-interior angles are equal.

This is also a part of Euclid I, 29. It is usually fol-

lowed by several corollaries, covering the minor and ob-

vious cases omitted by the older writers. While it would

be possible to dispense with these corollaries, they are

helpful for definite reference in later propositions.

Theorem. The mm of the three angles of a triangle is

equal to two right angles.

Euclid stated this as follows : " In any triangle, if one

of the sides be produced, the exterior angle is equal to the

two interior and opposite angles, and the three interior

angles of the triangle are equal to two rig] it angles." This

states more than is necessary for the basal fact of the prop-

osition, which is the constancy of the sum of the angles.

The theorem is one of the three most important propo-

sitions in plane geometry, the other two being the so-

called Pythagorean Theorem, and a proposition relating

to the proportionality of the sides of two triangles. These

three form the foundation of trigonometry and of the

mensuration of plane figures.

The history of the proposition is extensive. Eutocius

(ca. 510 A.D.), in his commentary on Apollonius, says

that Geminus (first century B.C.) testified that "the

ancients investigated the theorem of the two right

angles in each individual species of triangle, first in the

equilateral, again in the isosceles, and afterwards in the

scalene triangle." This, indeed, was the ancient plan,

to proceed from the particular to the general. It is the

natural order, it is the world's order, and it is well to

follow it in all cases of difficulty in the classroom.

Proclus (410-485 a.d.) tells us that Eudemus, who
lived just before Euclid (or probably about 325 B.C.),
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affirmed tMl the theorem was due to the Pythagoreans,

although this does not necessarily mean to the actual

pupils of Pythagoras. The proof as he gives it consists in

showing that a—a\ b— b\ and

a 1+ c + V = two right angles.

Since the proposition about

the exterior angle of a tri-

angle is attributed to Philip-

pus of Mende (ca. 380 B.C.), the figure given by Eudemus
is probably the one used by the Pythagoreans.

There is also some reason for believing that Thales

(ca. 600 B.C.) knew the theorem, for Diogenes Laertius

(ca. 200 A.D.) quotes Pamphilius (first century a.d.) as

saying that "he, having learned geometry from the

Egyptians, was the first to inscribe a right triangle in

a circle, and sacrificed an ox." The proof of this propo-

sition requires the knowledge that the sum of the angles,

at least in a right triangle, is two right angles. The propo-

sition is frequently referred to by Aristotle.

There have been numerous attempts to prove the

proposition without the use of parallel lines. Of these

a German one, first given by Thibaut in the early part

of the eighteenth century, is among the most interesting.

This, in simplified

form, is as follows:

Suppose an indefi-

nite line XY to lie

on A B. Let it swing

about A, counter-

clockwise, through

ZA, so as to lie on

AC, as XT'. Then
let it swing about C,

through Z C, so as to lie on CB, as X"Y"'. Then let it swing about

B, through Z B> so as to lie on BA, as X!"Y'". It now lies on AB,
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but it is turned over, X'" being where Y was, and Y" where .Y

was. In turning through A A, B, and C it has therefore turned

through two right angles.

One trouble with the proof is that the rotation has

not been about the same point, so that it has never been

looked upon as other than an interesting illustration.

Proclus tried to prove the theorem by saying that, if

we have two perpendiculars to the same line, and sup-

pose them to revolve about their feet so as to make a

triangle, then the amount taken from the right angles

is added to the vertical angle of the triangle, and there-

fore the sum of the angles continues to be two right

angles. But, of course, to prove his statement requires a

perpendicular to be drawn from the vertex to the base,

and the theorem of parallels to be applied.

Pupils will find it interesting to cut off the corners

of a paper triangle and fit the angles together so as to

make a straight angle.

This theorem furnishes an opportunity for many in-

teresting exercises, and in particular for determining the

third angle when two angles of a triangle are given,

or the second acute angle of a right triangle when one

acute angle is given.

Of the simple outdoor applications of the proposition,

one of the best is illustrated in

this figure.

To ascertain the height of a tree or

of the school building, fold a piece of

paper so as to make an angle of 45°.

Then walk back from the tree until the

top is seen at an angle of 45° with the

ground (being therefore careful to have the base of the triangle

level). Then the height A C will equal the base AB, since ABC
is isosceles. A paper protractor may be used for the same purpose.
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Distances can easily be measured by constructing a

large equilateral triangle of heavy pasteboard, and stand-

ing pins at the vertices for the ^
purpose of sighting.

To measure PC, stand at some
convenient point A and sight along

APC and also along AB. Then
walk along AB until a point B is

reached from which BC makes with

BA an angle of the triangle (60°).

Then AC = AB, and since AP can he measured, we can find PC.

Another simple method of measuring a distance AC
iicross a stream is shown in this rio-ure.

Measure the angle CAX,
either in degrees, with a pro-

tractor, or by sighting along a

piece of paper and marking

down the angle. Then go along

XA produced until a point B is

reached from which BC makes

with A an angle equal to half

of anu'le CAX. Then it is easily shown that AB AC

A navigator uses the same principle when lie '-doubles

the anode on the bow" to rind his distance from a lio-ht-

house or other object.

If he is sailing on the course ABC and notes a lighthouse

L when he is at A, and takes

the angle A, and if he notices

when the angle that the light-

house makes with his course

is just twice the angle noted

at A, then BL = AB. He has

A l'> from his log (an instru-

ment that tells how far a ship goes in a given time), so he knows
BL. He has •• doubled the angle on the bow " to get this distance.
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It would have been possible for Thales, if lie knew
this proposition, to have measured the distance of the

ship at sea by some such device as this

:

Make a large isosceles triangle out of wood, and, standing at

T, sight to the ship and along the shore on a line TA
}
using the

vertical angle of the triangle.

Then go along TA until a point

P is reached, from which T and S
can be seen along the sides of a

base angle of the triangle. Then
TP = TS. By measuring TB, BS
can then he found.

Theorem. The sum of two sides of a triatogle is greater

than the third side, and their difference is less than the

third side.

If the postulate is assumed that a straight line is the

shortest path between two points, then the first part of

this, theorem requires no further proof, and the second

part follows at once from the axiom of inequalities. This

seems the better plan for beginners, and the proposition

may be considered as semiobvieus. Euclid proved the

first part, not having assumed the postulate. Proclus tells

us that the Epicureans (the followers of Epicurus, the

Greek philosopher, 842-270 B.C.) used to ridicule this

theorem, saying that even an ass knew it, for if he wished

to get food, he walked in a straight line and not along

two sides of a triangle. Proclus replied that it was one

thing to know the truth and another thing to prove it,

meaning that the value of geometry lay in the proof

rather than in the mere facts, a thing that all who seek

to reform the teaching of geometry would do well to

keep in mind. The theorem might simply appear as a

corollary under the postulate if it were of any importance

to reduce the number of propositions one more.
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If the proposition is postponed until after those con-

cerning the inequalities of angles and sides of a triangle,

there are several good proofs. x
For example, produce AC to X,

making QX = ^
Then ZX = ZXBC.

.'. ZXBA > ZX.

/. AX > AB.

.'.AC + CB > AB.

The above proof is due to

Euclid. Heron of Alexandria (first century A.D.) is

said by Proclus to have given the following:

Let CX bisect Z C.

Then ZBXO ZACX.
.'. ZBXO ZXCB.

.'. CB>XB.
Similarly, AOAX.
Adding, AC+ CB>AB. X B

Theorem. If two sides of a triangle arc unequal, the

angles opposite these sides are unequal, and the angle oppo-

site the greater side is the greater.

Euclid stated this more briefly by saying, "In any tri-

angle the greater side subtends the greater angle." This

is not so satisfactory, for there may be no greater side.

Theorem. If two angles of a triangle are unequal, the

sides opposite these angles are unequal, and the side oppo-

site the greater angle is the greater.

Euclid also stated this more briefly, but less satis-

factorily, thus, " In any triangle the greater angle is

subtended by the greater side." Students should have

their attention called to the fact that these two theorems



190 THE TEACHING OF GEOMETRY

are reciprocal or dual theorems, the words " sides " and

" angles " of the one corresponding to the words "angles"

and " sides " respectively of the other.

It may also be noticed that the proof of this proposition in-

volves what is known as the Law of Converse ; for

(1) if6 = c, then ZB = ZC)
(2) if h > c, then ZB>ZC\
{'•)) iib<c, then ZB <ZC\

therefore the converses must necessarily be true as a matter of

logic ; for

if ZB = ZC, then l> cannot be greater than c without violat-

ing (2), and b cannot be less than c without

violating (3), therefore h = c;

and if ZB>Z(\ then & cannot equal c without violating (1),

and b cannot be less than c without violating

(3), therefore h> c;

similarly, if ZB<Z(\ then h < c.

This Law of Converse may readily be taught to pupils,

and it has several applications in geometry.

THEOREM. If two triangles have two sides of the one

equal respectively to two sides of the otfier, but the included

angle of the first triangle greater than the included angle of

y r

the second^ then the third side of the first is greater than

the third side of the second, and conversely.

In this proposition there are three possible cases

:

the point Y may fall below AB, as here shown, or on
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AB, or above AB. As an exercise for pupils all three

may be considered if desired. Following Euclid and

most early writers, however, only one case really need

be proved, provided that is the most difficult one, and is

typicaL Proclus gave the proofs of the other two cases,

and it is interesting to pupils to work them out for them-

selves. In such work it constantly appears that every

proposition suggests abundant opportunity for originality,

and that the complete form of proof in a textbook is not

a bar to independent thought.

The Law of Converse, mentioned on page 190, may be

applied to the converse case if desired.

Theorem. Two angles ivhose sides are parallel, each to

each, are either equal or supplementary.

This is not an ancient proposition, although the Greeks

were well aware of the principle. It may be stated so as

to include the case of the sides being perpendicular,

each to each, but this is better left as an exercise. It is

possible, by some circumlocution, to so state the theorem

as to tell in what cases the angles are equal and in what

cases supplementary. It cannot be tersely stated, how-

ever, and it seems better to leave this point as a subject

for questioning by the teacher.

Theorem. The opposite sides of a parallelogram are

equal.

Theorem. // the opposite sides of a quadrilateral are

equal, the figure is a

parallelogram.

This proposition is

a very simple test for
j

a parallelogram. It

is the principle involved in the case of the common
folding parallel ruler, an instrument that has long been
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recognized as one of the valuable tools of practical geom-

etry. It will be of some interest to teachers to see one of

the early forms of this

parallel ruler, as shown

in the illustration. 1 If

such an instrument is

not available in the

school, one suitable for

illustrative purposes

can easily be made
from cardboard.

A somewhat more

complicated form of

this instrument may
also be made by pupils in manual training, as is shown in

this illustration from Bion's great treatise. The prin-

ciple involved may be

taken up in class, even

if the instrument is

not used. It is evident

that, unless the work-

manship is unusu-

ally good, this form of

parallel ruler is not as

accurate as the com-

mon one illustrated

above. The principle is sometimes used in iron gates.

Theorem. Two parallelograms are congruent if tivo

sides and the included angle of the one are equal respec-

tively to two sides and the included angle of the other.

This proposition is discussed in connection with the

one that follows.

1 Stark, loc. cit.
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Theorem. If three or more parallels intercept equal

segments on one transversal, they intercept equal segments

on every transversal.

These two propositions are not given in Euclid,

although generally required by American syllabi of the

present time. The last one is particularly useful in sub-

sequent work. Neither one offers any difficulty, and

neither has any interesting history. There are, how-

ever, numerous in-

teresting applica-

tions to the last

one. One that is

used in mechani-

cal drawing is here

illustrated.

If it is desired to

divide a lineAB into

five equal parts, we
may take a piece of

ruled tracing paper

and lay it over the

given line so that line

passes through A,

and line 5 through B. We may then prick through the paper

and thus determine the points on AB. Similarly, we may divide

AB into any other number of equal parts.

Among the applications of these propositions is an in-

teresting one due to the Arab Al-Nahizi (ca. 900 A.D.).

The problem is to divide a line into any number of equal

parts, and he begins with the case of trisecting AB. It

may be given as a case of practical drawing even before

the problems are reached, particularly if some prelimi-

nary work with the compasses and straightedge has been

given.
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Make BQ and .4 Q' perpendicular to A B, and make BP — PQ =
AP/=P/Qr

. Then AXYZ is congruent to A YBP, and also to

A XAP'. Therefore AX = AT= YB. In the same way we might

continue to produce BQ until it is

made up of n — 1 lengths BP, and

so for AQ', and by properly joining

points we could divide AB into n

equal parts. In particular, if we join

P and P\ we bisect the line AB.

Theorem. If two sides of a

quadrilateral are equal and parallel, then the other two sides

are equal and parallel, and the figure is a parallelogram.

This was Euclid's first proposition on parallelograms,

and Proclus speaks of it as the connecting link between

the theory of parallels and that of parallelograms. The

ancients, writing for mature students, did not add the

words " and the figure is a parallelogram," because that

follows at once from the first part and from the defi-

nition of "parallelogram," but it is helpful to younger

students because it emphasizes the fact that here is a

test for this kind of figure.

Theoeem. The diagonals of a parallelogram bisect each

other.

This proposition was not given in Euclid, but it is

usually required in American syllabi. There is often

given in connection with it the exercise in which it is

proved that the diagonals of a rectangle are equal. When
this is taken, it is well to state to the class that carpen-

ters and builders find this one of the best checks in lay-

ing out floors and other rectangles. It is frequently

applied also in laying out tennis courts. If the class is

doing any work in mensuration, such as finding the area

of the school grounds, it is a good plan to check a few

rectangles by this method.
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An interesting outdoor application of the theory of

parallelograms is the following:

Suppose you are on the side of this stream opposite to XY,
and wish to measure the length of XY. Hun a line AB along

the bank. Then take a carpenter's square, or even a large book,

and walk along A B until you reach P, a point from which you

can just see X and B along

two sides of the square. !><>
j£

the same for Y, thus fixing

P and Q. Using the tape,

bisect PQ at M. Then walk

along YM produced until you

reach a point Y/ that is ex-

actly in line with M and Y,

and also with P and X. Then walk along XM produced until

you reach a point X/
that is exactly in line with M and X, and

also with (2 and Y. Then measure Y/X/ and you have the length

of XY. For since YX' is _L to PQ, and A V is also JL to PQ, YX'
is II to A'l". And since PM = MQ, therefore XM = MX' and

Y'M — MY. Therefore Y'X'YX is a parallelogram.

The properties of the parallelogram are often applied

to proving figures of various kinds congruent, or to con-

structing them so r»

that they will be

congruent.

For example, if
Bi

we draw A'B' equal

and parallel to AB,
B'C equal and par- A A'

allel to BC, and so on, it is easily proved that . 1 BCD and A'B'CIf
are congruent. This may be done by ordinary superposition, or

by sliding ABCD along the dotted parallels.

There are many applications of this principle of par-

allel translation in practical construction work. The prin-

ciple is more far-reaching than here intimated, however,

and a few words as to its significance will now be in place.
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The efforts usually made to improve the spirit of

Euclid are trivial. They ordinarily relate to some com-

monplace change of sequence, to some slight change in

language, or to some narrow line of applications. Such

attempts require no particular thought and yield no

very noticeable result. But there is a possibility, remote

though it may be at present, that a geometry will be

developed that will be as serious as Euclid's and as

effective in the education of the thinking individual.

If so, it seems probable that it will not be based upon

the congruence of triangles, by which so many proposi-

tions of Euclid are proved, but upon certain postulates

of motion, of which one is involved in the above illus-

tration,— the postulate of parallel translation. If to this

Ave join the two postulates of rotation about an axis, 1

leading to axial symmetry ; and rotation about a point,2

leading to symmetry with respect to a center, we have a

group of three motions upon which it is possible to base

an extensive and rigid geometry. 3 It will be through

some such effort as this, rather than through the weak-

ening of the Euclid-Legendre style of geometry, that any

improvement is likely to come. At present, in America,

the important work for teachers is to vitalize the geom-

etry they have,— an effort in which there are great

possibilities,— seeing to it that geometry is not reduced

to mere froth, and recognizing the possibility of another

geometry that may sometime replace it,— a geometry

1 Of which so much was made by Professor Glaus Heurici in his

44 Congruent Figures," London, 1879, — a book that every teacher of

geometry should own.
2 Much is made of this in the excellent work by Henrici and Treut-

lein, "Lehrbuch der Geometric," Leipzig, 1881.

3 Meray did much forthis movementinFrance, and the recent works

of Bourlet and Borel have brought it to the front in that country:
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as rigid, as thought-compelling, as logical, and as truly

educational.

Theokem. The sum of the interior angles of a polygon

is equal to two right angles, taken as many times less two

as the figure has sides.

This interesting generalization of the proposition about

the sum of the angles of a triangle is given by Proclus.

There are several proofs, but all are based upon the possi-

bility of dissecting the polygon into triangles. The point

from which lines are drawn to the vertices is usually taken

at a vertex, so that there are n — 2 triangles. It may how-

ever be taken within the figure, making n triangles, from

the sum of the angles of which the four right angles about

the point must be subtracted. The point may even be

taken on one side, or outside the polygon, but the proof

is not so simple. Teachers who desire to do so may sug-

gest to particularly good students the proving of the

theorem for a concave polygon, or even for a cross poly-

gon, although the latter requires negative angles.

Some schools have transit instruments for the use of

their classes in trigonometry. In such a case it is a good
plan to measure the angles in some piece of land so as to

verify the proposition, as well as show the care that must
be taken in reading angles. In the absence of this exer-

cise it is well to take any irregular polygon and measure

the angles by the help of a protractor, and thus accom-

plish the same results.

Theorem. The sum of the exterior angles of a polygon,

made by producing each of its sides in succession, is equal to

four right angles.

This is also a proposition not given by the ancient

writers. We have, however, no more valuable theorem
for the purpose of showing the nature and significance
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of the negative angle ; and teachers may arouse a great

deal of interest in the negative quantity by showing to

a class that when an interior angle becomes 180° the

exterior angle becomes 0, and when the polygon becomes

concave the exterior angle becomes negative, the theo-

rem holding for all these cases. We have few better

illustrations of the significance of the negative quantity,

and few better opportunities to use the knowledge of

this kind of quantity already acquired in algebra.

In the hilly and mountainous parts of America, where

irregular-shaped fields are more common than in the

more level portions, a common
test for a survey is that of find-

ing the exterior angles when the

transit instrument is set at the

corners. In this field these angles

are given, and it will be seen

that the sum is 360°. In the

absence of any outdoor work a

protractor may be used to measure the exterior angles

of a polygon drawn on paper. If there is an irregular

piece of land near the school, the exterior angles can be

fairly well measured by an ordinary paper protractor.

The idea of locus is usually introduced at the end of

Book I. It is too abstract to be introduced successfully

any earlier, although authors repeat the attempt from

time to time, unmindful of the fact that all experience

is opposed to it. The loci propositions are not ancient.

The Greeks used the word " locus " (in Greek, topos),

however. Proclus, for example, says, " I call those locus

theorems in which the same property is found to exist

on the whole of some locus." Teachers should be careful

to have the pupils recognize the necessity for proving
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two things with respect to any locus : (1) that any

point on the supposed locus satisfies the condition
; (2)

that any point outside the supposed locus does not

satisfy the given condition. The first of these is called

the " sufficient condition," and the second the " necessary

condition." Thus in the case of the locus of points in a

plane equidistant from two given points, it is sufficient

that the point be on the perpendicular bisector of the

line joining the given points, and this is the first part of

the proof ; it is also necessary that it be on this line, i.e.

it cannot be outside this line, and this is the second part

of the proof. The proof of loci cases, therefore, involves

a consideration of "the necessary and sufficient condition
"

that is so often spoken of in higher mathematics. This

expression might well be incorporated into elementary

geometry, and when it becomes better understood by

teachers, it probably will be more often used.

In teaching loci it is helpful to call attention to loci in

space (meaning thereby the space of three dimensions),

without stopping to prove the proposition involved.

Indeed, it is desirable all through plane geometry to refer

incidentally to solid geometry. In the mensuration of

plane figures, which may be boundaries of solid figures,

this is particularly true.

It is a great defect in most school courses in geometry that

they are entirely confined to two dimensions. Even if solid geom-

etry in the usual sense is not attempted, every occasion should

be taken to liberate boys' minds from what becomes the tyranny

of paper. Thus the questions : " What is the locus of a point equi-

distant from two given points ; at a constant distance from a given

straight line or from a given point ? " should be extended to space.1

1W. N. Bruce, "Teaching of Geometry and Graphic Algebra in

Secondary Schools, 1
' Board of Education circular (No. 711), p. 8,

London, 1909.
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The two loci problems usually given .at this time,

referring to a point equidistant from the extremities of

a given line, and to a point equidistant from two inter-

secting lines, both permit of an interesting extension to

three dimensions without any formal proof. It is possible

to give other loci at this point, but it is preferable merely

to introduce the subject in Book I, reserving the further

discussion until after the circle has been studied.

It is well, in speaking of loci, to remember that it is

entirely proper to speak of the " locus of a point " or the

" locus of points." Thus the locus of a point so moving

in a plane as constantly to be at a given distance from

a fixed point in the plane is a circle. In analytic geom-

etry we usually speak of the locus of a point, thinking

of the point as being anywhere on the locus. Some
teachers of elementary geometry, however, prefer to

speak of the locus of points, or the locus of all points,

thus tending to make the language of elementary geom-

etry differ from that of analytic geometry. Since it is a

trivial matter of phraseology, it is better to recognize

both forms of expression and to let pupils use the two

interchangeably.



CHAPTER XV

THE LEADING PROPOSITIONS OF BOOK II

Having taken up all of the propositions usually given

in Book I, it seems unnecessary to consider as specifi-

cally all those in subsequent books. It is therefore

proposed to select certain ones that have some special

interest, either from the standpoint of mathematics or

from that of history or application, and to discuss them

as fully as the circumstances seem to warrant.

Theorems. In the same circle or in equal circles equal

central angles intercept equal arcs; and of two unequal

central angles the greater intercepts the greater arc, and

conversely for both of these cases.

Euclid made these the twenty-sixth and twenty-seventh

propositions of his Book III, but he limited them as fol-

lows : " In equal circles equal angles stand on equal cir-

cumferences, whether they stand at the centers or at the

circumferences, and conversely.'' He therefore included

two of our present theorems in one, thus making the

proposition doubly hard for a beginner. After these two

propositions the Law of Converse, already mentioned on

page 190, may properly be introduced.

Theorems. In the same circle or in equal circles, if

two arcs are equal, they are subtended by equal chords ; and

if two arcs are unequal, the greater is subtended by the

greater chord, and conversely.

Euclid dismisses all this with the simple theorem,

" In equal circles equal circumferences are subtended by
201
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equal straight lines." It will therefore be noticed that

he has no special word for " chord " and none for " arc,"

and that the word " circumference," which some teachers

are so anxious to retain, is used to mean both the whole

circle and any arc. It cannot be doubted that later

writers have greatly improved the language of geometry

by the use of these modern terms. The word " arc " is

the same, etymologically, as u arch," each being derived

from the Latin arcus (a bow). " Chord " is from the

Greek, meaning "the string of a musical instrument."

"Subtend" is from the Latin sub (under), and tendere

(to stretch).

It should be noticed that Euclid speaks of "equal

circles," while we speak of " the same circle or equal

circles," confining our proofs to the latter, on the suppo-

sition that this sufficiently covers the former.

Theorem. A line through the center of a circle perpen-

dicular to a chord bisects the chord and the arcs subtended

by it.

This is an improvement on Euclid, III, 3 : "If in a

circle a straight line through the center bisects a straight

line not through the center, it also cuts it at right angles

;

and if it cuts it at right angles, it also bisects it." It is

a very important proposition, theoretically and practi-

cally, for it enables us to find the center of a circle if we

know any part of its arc. A civil engineer, for example,

who wishes to find the center of the circle of which some

curve (like that on a running track, on a railroad, or in

a park) is an arc, takes two chords, say of one hundred

feet each, and erects perpendicular bisectors. It is well

to ask a class why, in practice, it is better to take these

chords some distance apart. Engineers often check their

work by taking three chords, the perpendicular bisectors
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of the three passing through a single point. Illustrations

of this kind of work are given later in this chapter.

Theorem. In the same circle or in equal circles equal

chords are equidistant from the center, and chords equidis-

tant from the center are equal.

This proposition is practically used by engineers in

locating points on an arc of a circle that is too large to be

described by a tape, or that cannot easily be reached from

the center on account of obstructions.

If part of the curve APE is known, take P as the mid-point.

Then stretch the tape from .4 to B and draw PM perpendicular

to it. Then swing the length

AM about P, and PM about B,

until they meet at L, and stretch

the length AB along PL to Q.

This fixes the point Q. In the

same way fix the point C. Points

on the curve can thus be fixed

as near together as we wish. The chords AB, PQ, BC, and so

on, are equal and are equally distant from the center.

Theorem. A line perpendicular to a radius at its

extremity is tangent to the circle.

The enunciation of this proposition by Euclid is very

interesting. It is as follows :

The straight line drawn at right angles to the diameter of a

circle at its extremity will fall outside the circle, and into the

space between the straight line and the circumference another

straight line cannot be interposed ; further, the angle of the semi-

circle is greater and the remaining angle less than any acute

rectilineal angle.

The first assertion is practically that of tangency,— "will

fall outside the circle." The second one states, substan-

tially, that there is only one such tangent, or, as we say

in modern mathematics, the tangent is unique. The third

statement relates to the angle formed by the diameter
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and the circumference,— a mixed angle, as Proclus

called it, and a kind of angle no longer used in elemen-

tary geometry. The fourth statement practically asserts

that the angle between the tangent and circumference is

less than any assignable quantity. This gives rise to a

difficulty that seems to have puzzled many of Euclid's

commentators, and that will interest a pupil : As the

circle diminishes this angle apparently increases, while

as the circle increases the angle decreases, and yet the

angle is always stated to be zero. Vieta (1540-1603),

who did much to improve the science of algebra, attempted

to explain away the difficulty by adopting a notion of

circle that was prevalent in his time. He said that a

circle was a polygon of an infinite number of sides

(which it cannot be, by definition), and that a tangent

simply coincided with one of the sides, and therefore

made no angle with it; and this view was also held by

Galileo (1514-1642), the great physicist and mathema-

tician who first stated the law of the pendulum.

Theorem. Parallel lines intercept equal arcs on a circle.

The converse of this proposition has an interesting

application in outdoor

work.

Suppose we wish to run

a line through P parallel

to a given line AB. With
any convenient point as a

center, and OP as a radius,

describe a circle cutting

AB in X and Y. Draw PX.
Then with Y as a center

and PX as a radius draw
an arc cutting the circle in Q. Then run the line from P to Q.

PQ is parallel to AB by the converse of the above theorem, which

is easily shown to be true for this figure.
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Theorem. If two circles are tangent to each other, the

line of centers passes through the point of contact.

There are many illustrations of this theorem in prac-

tical work, as in the case of cogwheels. An interesting

application to engineering is seen in the case of two par-

allel streets or lines of track which are to be connected

by a " reversed ;

curve." A "^\"'

If the lines are j

/'P X^-----/fO'
AB and CD, and i''-~ \V /

j

the connection is \ N
t

to be made, as j _^^J
shown, from B to '

C, we may proceed as follows : Draw BC and bisect it at M. Erect

PO, the perpendicular bisector of BM\ and BO, perpendicular to

AB. Then is one center of curvature. In the same way fix 0'.

Then to check the work apply this theorem, M being in the line

of centers 00'. The curves may now be drawn, and they will be

tangent to AB, to CD, and to each other.

At this point in the American textbooks it is the

custom to insert a brief treatment of measurement, ex-

plaining what is meant by ratio, commensurable and

incommensurable quantities, constant and variable, and

limit, and introducing one or more propositions relating

to limits. The object of this departure from the ancient

sequence, which postponed this subject to the book on

ratio and proportion, is to treat the circle more com-

pletely in Book III. It must be confessed that the treat-

ment is not as scientific as that of Euclid, as will be

explained under Book III, but it is far better suited to

the mind of a boy or girl.

It begins by denning measurement in a practical way,

as the finding of the number of times a quantity of any

kind contains a known quantity of the same kind. Of
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course this gives a number, but this number may be a

surd, like v2. In other words, the magnitude measured

may be incommensurable with the unit of measure, a

seeming paradox. With this difficulty, however, the

pupil should not be called upon to contend at this stage

in his progress. The whole subject of incommensurables

might safely be postponed, although it may be treated in

an elementary fashion at this time. The fact that the

measure of the diagonal of a square, of which a side is

unity, is V2, and that this measure is an incommensu-

rable number, is not so paradoxical as it seems, the

paradox being verbal rather than actual/

It is then customary to define ratio as the quotient of

the numerical measures of two quantities in terms of a

common unit. This brings all ratios to the basis of

numerical fractions, and while it is not scientifically so

satisfactory as the ancient concept which considered the

terms as lines, surfaces, angles, or solids, it is more prac-

tical, and it suffices for the needs of elementary pupils.

" Commensurable," " incommensurable," " constant,"

and " variable " are then defined, and these definitions

are followed by a brief discussion of limit. It simplifies

the treatment of this subject to state at once that there

are two classes of limits,— those which the variable

actually reaches, and those which it can only approach

indefinitely near. We find the one as frequently as we

find the other, although it is the latter that is referred

to in geometry. For example, the superior limit of a

chord is a diameter, and this limit the chord may reach.

The inferior limit is zero, but we do not consider the

chord as reaching this limit. It is also well to call the

attention of pupils to the fact that a quantity may de~

crease towards its limit as Avell as increase towards it.
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Such further definitions as are needed in the theory of

limits are now introduced. Among these is " area of a

circle." It might occur to some pupil that since a circle

is a line (as used in modern mathematics), it can have no

area. This is, however, a mere quibble over words. It

is not pretended that the line has area, but that " area

of a circle " is merely a shortened form of the expression

" area inclosed by a circle."

The Principle of Limits is now usually given as fol-

lows : " If, while approaching their respective limits, two
variables are always equal, their limits are equal." This

was expressed by D'Alembert in the eighteenth century

as "Magnitudes which are the limits of equal magnitudes

are equal," or this in substance. It would easily be pos-

sible to elaborate this theory, proving, for example, that

if x approaches y as its limit, then ax approaches ay as

its limit, and - approaches - as its limit, and so on. Very
a (Xi

much of this theory, however, wearies a pupil so that

the entire meaning f the subject is lost, and at best the

treatment in elementary geometry is not rigorous. It is

another case of having to sacrifice a strictly scientific

treatment to the educational abilities of the pupil. Teach-

ers wishing to find a scientific treatment of the subject

should consult a good work on the calculus.

Theorem. In the same circle or in equal circles two

central angles have the same ratio as their 'intercepted- arcs.

This is usually proved first for the commensurable

case and then for the incommensurable one. The latter

is rarely understood by all of the class, and it may very

properly be required only of those who show some apt-

itude in geometry. It is better to have the others under-

stand fully the commensurable case and see the nature
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of its applications, possibly reading the incommensurable

proof with the teacher, than to stumble about in the dark-

ness of the incommensurable case and never reach the

goal. In Euclid there was no distinction between the

two because his definition of ratio covered both ; but, as

we shall see in Book III, this definition is too difficult

for our pupils. Theon of Alexandria (fourth century

A.D.), the father of the Hypatia who is the heroine of

Kingsley's well-known novel, wrote a commentary on

Euclid, and lie adds that sectors also have the same ratio

as the arcs, a fact very easily proved. In propositions of

this type, referring to the same circle or to equal circles,

it is not worth while to ask pupils to take up both cases,

the proof for either being obviously a proof for the other.

Many writers state this proposition so that it reads

that " central angles are measured by their intercepted

arcs." This, of course, is not literally true, since we can

measure anything only by something of the same kind.

Thus we measure a volume by finding how many times

it contains another volume which we take as a unit, and

we measure a length by taking some other length as a

unit; but Ave cannot measure a given length in quarts nor

a given weight in feet, and it is equally impossible to

measure an arc by an angle, and vice versa. Nevertheless

it is often found convenient to define some brief expres-

sion that has no meaning if taken literally, in such way
that it shall acquire a meaning. Thus Ave define " area of

a circle," even Avhen Ave use " circle " to mean a line

;

and so Ave may define the expression " central angles are

measured by their intercepted arcs " to mean that central

angles haA^e the same numerical measure as these arcs.

This is done by most Avriters, and is legitimate as ex-

plaining an abbreviated expression.
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Theorem. An inscribed angle is measured by half the

intercepted arc.

In Euclid this proposition is combined with the pre-

ceding one in his Book VI, Proposition 83. Such a

procedure is not adapted to the needs of students to-day.

Euclid gave in Book III, however, the proposition (No.

20) that a central angle is twice an inscribed angle stand-

ing on the same arc. Since Euclid never considered an

angle greater than 180°, his inscribed angle was neces-

sarily less than a right angle. The first one who is known
to have given the general case, taking the central angle

as being also greater than 180°, was Heron of Alexan-

dria, probably of the first century A.D. 1 In this he was

followed by various later commentators, including Tar-

taglia and Clavius in the sixteenth century.

One of the many interesting exercises that may be

derived from this theorem is seen in the case of the

" horizontal danger angle" ob-

served by ships.

If sonic dangerous rocks lie off

the shore, and L and // arc two

lighthouses, the angle A is deter-

mined by observation, so that .1

will lie on a circle inclosing the

dangerous area. Angle A is called

the "horizontal danger angle." Ships passing in sight of the two

lighthouses L and L' must keep out far enough so that the angle

L'SL shall be less than angle A.

To this proposition there are several important corol-

laries, including the following :

1. An angle inscribed in a semicircle is a right angle.

This corollary is mentioned by Aristotle and is attributed

1 This is the latest opinion. He is usually assigned to the first

century b.c
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to Thales, being one of the few propositions with which

his name is connected. It enables us to describe a circle

by letting the arms of a carpenter's square slide along

two nails driven in a board, a pencil being held at the

vertex.

A more practical use for it is made by machinists

to determine whether a casting is a true semicircle. Tak-

ing a carpenter's square as here

shown, if the vertex touches the

curve at every point as the square

slides around, it is a true semicircle.

By a similar method a circle may
be described by sliding a drafts-

man's triangle so that two sides touch two tacks driven

in a board.

Another interesting application of this corollary may be seen

by taking an ordinary paper protractor ACB, and fastening a

plumb line at B. If the protractor is so held that the plumb line

cuts the semicircle at C,

then AC is level because

it is perpendicular to the

vertical line BC. Thus, if

a class wishes to deter-

mine the horizontal line

AC, while sighting up a

hill in the direction AB,
this is easily determined

without a spirit level.

It follows from this corollary, as the pupil has already

found, that the mid-point of the hypotenuse of a right

triangle is equidistant from the three vertices. This is

useful in outdoor measuring, forming the basis of one of

the best methods of letting fall a perpendicular from an

external point to a line.
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Suppose X Y to be the edge of a sidewalk, and P a point in the

street from which we wish to lay a gas pipe perpendicular to the

walk. From P swing a cord or

tape, say 60 feet long, until it meets

XY at A. Then take M, the mid-

point of PA, and swing MP about

M, to meet AT at B. Then B is

the foot of the perpendicular, since

/. PBA can be inscribed in a semi-

circle.

2. Angles inscribed in the same

segment are equal.

By driving two nails in a board, at A and B, and taking an
angle P made of rigid material (in particular, as already stated,

a carpenter's square), a pencil placed at P will gen-

erate an arc of a circle if the arms slide along A
and B. This is an interesting exercise for pupils.

Theorem. An angle formed by two chords

intersecting within the circle is measured by

half the sum of the intercepted arcs.

Theorem. An angle formed by a tangent

and a chord drawn from the point of tangency is meas-

ured by half the intercepted arc.

Theorem. An angle formed by two secants, a secant

and a tangent, or two tangents, drawn to a circle from an

external point, is measured by half the difference of the

intercepted arcs.

These three theorems are all special cases of the gen-

eral proposition that the angle included between two

lines that cut (or touch) a circle is measured by half the

sum of the intercepted arcs. If the point passes from

within the circle to the circle itself, one arc becomes zero

and the angle becomes an inscribed angle. If the point

passes outside the circle, the smaller arc becomes negative,

having passed through zero. The point may even " go to
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infinity," as is said in higher mathematics, the lines then

becoming parallel, and the angle becoming zero, being

measured by half the sum of one arc and a negative arc

of the same absolute value. This is one of the best

illustrations of the Principle of Continuity to be found

in geometry.

Problem. To let fall a perpendicular upon a given line

from a given external point.

This is the first problem that a student meets in most

American geometries. The reason for treating the prob-

lems by themselves instead of mingling them with the

theorems has already been discussed. 1 The student now
has a sufficient body of theorems, by which he can prove

that his constructions are correct, and the advantage of

treating these constructions together is greater than that

of following Euclid's plan of introducing them when-

ever needed.

Proclus tells us that " this problem was first investi-

gated by (Enopides,2 who thought it useful for astron-

omy." Proclus speaks of such a line as a gnomon, a

common name for the perpendicular on a sundial,

which casts the shadow by Avliich the time of day is

known. He also speaks of two kinds of perpendicu-

lars, the plane and solid, the former being a line per-

pendicular to a line, and the latter a line perpendicular

to a plane.

It is interesting to notice that the solution tacitly

assumes that a certain arc is going to cut the given line

in two points, and only two. Strictly speaking, why may
it not cut it in only one point, or even in three points ?

We really assume that if a straight line is drawn through

1 See page 54.

2 A Greek philosopher and mathematician of the fifth century b.c.
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a point within a circle, this line must get out of the

circle on each of two sides of the given point, and in

getting out it must cut the circle twice. Proclus

noticed this assumption and endeavored to prove it.

It is better, however, not to raise the question with

beginners, since it seems to them like hair-splitting to

no purpose.

The problem is of much value in surveying, and teach-

ers would do well to ask a class to let fall a perpendic-

ular to the edge of a sidewalk from a point 20 feet from

the walk, using an ordinary 66-foot or 50-foot tape.

Practically, the best plan is to swing 30 feet of the tape

about the point and mark the two points of intersection

with the edge of the walk. Then measure the distance

between the points and take half of this distance, thus

fixing the foot of the perpendicular.

PROBLEM, At a given point in a line, to erect a per-

pendicular to that line.

This might be postponed until after the problem to

bisect an angle, since it merely requires the bisection of

a straight angle ; but considering the immaturity of the

average pupil, it is better given independently. The

usual case considers the point not at the extremity of

the line, and the solution is essentially that of Euclid.

In practice, however, as for example in

surveying, the point may be at the ex-

tremity, and it may not be convenient

to produce the line.

Surveyors sometimes measure PB — 3 ft.,

and then take 9 ft. of tape, the ends being

held at B and P, and the tape being stretched

to A, so that PA = 4 ft. and AB = 5 ft. Then B
P is a right angle by the Pythagorean Theorem. This theorem

not having yet been proved, it cannot be used at this time.
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A solution for the problem of erecting a perpendicular

from the extremity of a line that cannot be produced,

depending, however, on the problem of bisecting an angle,

and therefore to be given after that problem, is attributed

by Al-Nairizi (tenth century a.d.)

to Heron of Alexandria. It is also

given by Proclus.

Required to draw from P a perpen-

dicular to A P. Take X anywhere on

the line and erect XY±to AP in the

usual manner. Bisect ZPXY by the line XM. On XY take

XN = XP, and draw NM± to XY. Then draw PM. The proof

is evident.

These may at the proper time be given as interesting

variants of the usual solution.

Problem. To bisect a given line.

Euclid said " finite straight line," but this wording is

not commonly followed, because it will be inferred that

the line is finite if it is to be bisected, and we use " line
"

alone to mean a straight line. Euclid's plan was to con-

struct an equilateral triangle (by his Proposition 1 of

Book I) on the line as a base, and then to bisect the

vertical angle. Proclus tells us that Apollonius of Perga,

who wrote the first great work on conic sections, used a

plan which is substantially that which is commonly found

in textbooks to-day,— constructing two isosceles tri-

angles upon the line as a common base, and connecting

their vertices.

Problem. To bisect a given angle.

It should be noticed that in the usual solution two

arcs intersect, and the point thus determined is connected

with the vertex. Now these two arcs intersect twice, and

since one of the points of intersection may be the vertex
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itself, the other point of intersection must be taken. It

is not, however, worth while to make much of this matter

with pupils. Proclus calls attention to the possible sug-

gestion that the point of intersection may be imagined

to lie outside the angle, and he proceeds to show the

absurdity ; but here, again, the subjept is not one of value

to beginners. He also contributes to the history of the

trisection of an angle. Any angle is easily trisected by

means of certain higher curves, such as the conchoid of

Nicomedes (ca. 180 B.C.), the quadratrix of Hippias of

Elis (ca. 420 B.C.), or the spiral of Archimedes (ca. 250

B.C.). But since this problem, stated algebraically, re-

quires the solution of a cubic equation, and this involves,

geometrically, finding three points, we cannot solve the

problem by means of straight lines and circles alone. In

other words, the trisection of any angle, by the use of the

straightedge and compasses alone, is impossible. Special

angles may however be trisected. Thus, to trisect an

angle of 90° we need only to construct an angle of 60°,

and this can be done by constructing an equilateral tri-

angle. But while Ave cannot trisect the angle, we may
easily approximate trisection. For since, in the infinite

geometric series \ + \ + -fa ^f T^ -\ , 8 =a -f- (1 — r),

we have s = -|- -*-
-|
=

-|. In other words, if we add 1

of the angle, 1 of the angle, ^ of the angle, and so

on, we approach as a limit | of the angle ; but all

of these fractions can be obtained by repeated bisec-

tions, and hence by bisections we may approximate the

trisection.

The approximate bisection (or any other division) of

an angle may of course be effected by the help of the

protractor and a straightedge. The geometric method is,

however, usually more accurate, and it is advantageous
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to have the pupils try both plans, say for bisecting an

angle of about 49i°.

Applications of this problem are numerous. It may be

desired, for example, to set a lamp-post on a line bisect-

ing the angle formed by two streets that

come together a little unsymmetrically,

as here shown, in which case the bisect-

ing line can easily be run by the use

of a measuring tape, or even of a

stout cord.

A more interesting illustration is,

however, the following:

Let the pupils set a stake, say about 5 feet high, at a point N
on the school grounds about i) a.m., and carefully measure the

length of the shadow, NW, placing a small wooden pin at W.
Then about 3 p.m. let them watch until the shadow

NE is exactly the same length that it was when
W was fixed, and then place a small wooden pin

at E. If the work has been very carefully done,

and they take the tape and bisect the line WE,
thus fixing the line NS, they will have a north

and south line. If this is marked out for a short

distance from N, then when the shadow falls on

NS, it will be noon by sun time (not standard

time) at the school.

Problem. From a given point in a given line, to draw

a line making an angle equal to a given angle.

Proclus says that Eudemus attributed to (Enopides

the discovery of the solution which Euclid gave, and which

is substantially the one now commonly seen in textbooks.

The problem was probablyr solved in some fashion before

the time of (Enopides, however. The object of the prob-

lem is primarily to enable us to draw a line parallel to

a given line.
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Practically, the drawing of one line parallel to another

is usually effected by means of a parallel ruler (see

page 191), or by the use of draftsmen's

triangles, as here shown, or even more

commonly by the use of a T-square,

such as is here seen. This illustration

shows two T-squares used for draw-

ing lines parallel to the sides of a board upon which the

drawing paper is fastened. 1

An ingenious instrument de-

scribed by Baron Dupin is illus-

trated below.

To the bar A is fastened the slid-

ing check B. A movable check D
may be fastened by a screw C. A
sharp point is fixed in B, so that as

D slides along the edge of a board, the point marks a line parallel

to the edge. Moreover, Fand G are two brass arms of equal length

joined by a pointed screw H
that marks a line midway be-

tween B and D. Furthermore,

it is evident that //will draw

a line bisecting any irregular

board if the checks B and D
are kept in contact with the

irregular edges.

Book II offers two general lines of application that

may be introduced to advantage, preferably as additions

to the textbook work. One of these has reference to topo-

graphical drawing and related subjects, and the other

to geometric design. As long as these can be introduced

1 This illustration and the following two are from C. Dupin,
" Mathematics Practically Applied," translated from the French by
G. Birkbeck, Halifax, 1854. This is probably the most scholarly

attempt ever made at constructing a "practical geometry."
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to the pupil with an air of reality, they serve a good pur-

pose, but if made a part of textbook work, they soon

come to have less interest than the exercises of a more

abstract character. If a teacher can relate the problems

in topographical drawing to the pupil's home town, and

can occasionally set some outdoor work of the nature

here suggested, the results are usually salutary ; but if

he reiterates only a half-dozen simple propositions time

after time, with only slight changes in the nature of the

application, then the results

will not lead to a cultiva-

tion of power in geometry,

— a point which the writers

on applied geometry usually

fail to recognize.

One of the simple applica-

tions of this book relates to

the rounding of corners in

laying out streets' in some of our modern towns where

there is a desire to depart from the conventional

square corner. It

is also used in lay-

ing out park walks

and drives.

Q

B

The figure in the

middle of the page
represents two streets,

AP and BQ, that

would, if pro-

longed, intersect

at C. It is re-

quired to con-

struct an arc so that they shall begin to curve at P and Q, where

CP— CQ, and hence the " center of curvature " must be found.
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The problem is a common one in railroad work, only here AP
is usually oblique to BQ if they are produced to meet at C, as in

the second figure on page 218. It is required to construct an

arc so that the tracks shall begin to curve at P and Q, where

CP = CQ.

The problem

becomes a little

more complicated,

and correspond-

ingly more inter-

esting, when we
have to find the

center of curva-

ture for a street

railway track that must turn a corner in such a way

as to allow, say, exactly 5 feet from the point P, on

account of a side-

walk.

The problem

comes still more

ficult if we have

roads of different

widths that we
wish to join on a

curve. Here the

two centers of

curvature are

not the same,

and the one

road narrows to the other on the curve. The solutions

will be understood from a study of the figures.

The number of problems of this kind that can easily

be made is limitless, and it is well to avoid the danger

-V:-

\ /
-¥"'
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PK

of hobby riding on this or any similar topic. Therefore

a single one will suffice to close this group.

If a road AB, on an arc described £ Y
about 0, is to be joined to road

CD, described about 0\ the arc BC
should evidently be internally tan-

gent to AB and externally tangent

to CD. Hence the center is on

BOX and O'CY, and is therefore

at P. The problem becomes more
real if we give some width to the

roads in making the

drawing, and imagine

them in a park that

is being laid out with

drives. j).

It will be noticed

that the above prob-

lems require the erect-

ing of perpendiculars,

the bisecting of angles,

and the application of

the propositions on tan-

gents.

A somewhat differ-

ent line of problems is

that relating to the pass-

ing of a circle through

three given points. It

is very easy to manu-

facture problems of this

kind that have a sem-

blance of reality.

For example, let it be required to plan a driveway from the

gate G to the porch P so as to avoid a mass of rocks R, an arc
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of a circle to be taken. Of course, if we allow pupils to use the

Pythagorean Theorem at this time (and for metrical purposes this

is entirely proper, because they have long been familiar with it),

then we may ask not only for the drawing, but we may, for

example, give the length from G to the point on R (which we
may also call it), and the angle RGO as 60°, to find the radius.

A second general line of exercises adapted to Book II

is a continuation of the geometric drawing recommended

as a preliminary to the work in demonstrative geometry.

The copying or the making of designs requiring the de-

scribing of circles, their inscription in or circumscription

about triangles, and their construction in various posi-

tions of tangency, has some value as applying the vari-

ous problems studied in this book. For a number of

years past, several enthusiastic teachers have made much
of the designs found in Gothic windows, having their

pupils make the outline drawings by the help of com-

passes and straightedge. While such work has its value,

it is liable soon to degenerate into purposeless formal-

ism, and hence to lose interest by taking the vigorous

mind of youth from the strong study of geometry to the

weak manipulation of instruments. Nevertheless its value

should be appreciated and conserved, and a few illustra-

tions of these forms are given in order that the teacher

may have examples from which to select. The best way

of using this material is to offer it as supplementary

work, using much or little, as may seem best, thus giving

to it a freshness and interest that some have trouble in

imparting to the regular book work.

The best plan is to sketch rapidly the outline of a

window on the blackboard, asking the pupils to make a

rough drawing, and to bring in a mathematical drawing

on the following day.
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It might be said, for example, that in planning a Gothic win-

dow this drawing is needed. The arc BC is drawn with A as a

center and AB as a radius. The small arches are described with

A, D, and B as centers and iD as a radius.

The center P is found by taking A and B
as centers and AE as a radius. How may
the points D, E, and F be found ? Draw
the figure. From the study of the recti-

linear figures suggested by such a simple

pattern the properties of the equilateral

triangle may be inferred.

The Gothic window also offers some interesting pos-

sibilities in connection with the study of the square. For

example, the illustration given on page 223 shows a

number of traceries involving the construction of a square,

the bisecting of angles, and the describing of circles. 1

The properties of the square, a figure now easily

constructed by the pupils, are

not numerous. What few

there are may be brought

out through the study of art

forms, if desired. In case these

forms are shown to a class, it

is important that they should

be selected from good de-

signs. We have enough poor

art in the world, so that geom-

etry should not contribute any more. This illustration

is a type of the best medieval Gothic parquetry.2

1 This illustration and others of the same type used in this work
are from the excellent drawings by R. W. Billings, in "The Infinity

of Geometric Design Exemplified," London, 1849.
2 From H. Kolb, " Der Ornamentenschatz . . . aus alien Kunst-

Epochen," Stuttgart, 1883. The original is in the Church of Saint

Anastasia in Verona.
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Even simple designs of a semipuzzling nature have

their advantage in this connection. In the following

example the inner square contains all of the triangles,

the letters showing where they may be fitted. 1

Still more elaborate designs,

based chiefly upon the square

and circle, are shown in the

window traceries on page 225,

and others will be given in

connection with the study of

the regular polygons.

Designs like the figure below

are typical of the simple forms,

based on the square and circle,

that pupils may profitably incorporate in any work in

art design that they may be doing at the time they are

studying the circle and the

problems relating to perpen-

diculars and squares.

Among the applications of

the problem to draw a tan-

gent to a given circle is the

case of the common tangents

to two given circles. Some

authors give this as a basal

problem, although it is more

commonly given as an exercise or a corollary. One of

the most obvious applications of the idea is that relating

to the transmission of circular motion by means of a

band over two wheels,2 A and B, as shown on page 226.

1 From J. Bennett, " The Arcanum ... A Concise Theory of Prac-

ticable Geometry," London, 1838, one of the many books that have

assumed to revolutionize geometry by making it practical.

2 The figures are from Dupin, loc. cit.
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The band maj~ either not be crossed (the case of the two

exterior tangents), or be crossed (the interior tangents),

the latter allowing the wheels to turn in opposite

directions. In case the band is liable to change its length,

on account of stretching or variation in heat or moisture,

a third wheel, £>, is used.

We then have the case of

tangents to three pairs of

circles. Illustrations of this

nature make the exercise

on the drawing of common tangents to two circles assume

an appearance of genuine reality that is of advantage to

the work.



CHAPTER XVI

THE LEADING PROPOSITIONS OF BOOK III

In the American textbooks Book III is usually as-

signed to proportion. It is therefore necessary at the

beginning of this discussion to consider what is meant

by ratio and proportion, and to compare the ancient and

the modern theories. The subject is treated by Euclid

in his Book V, and an anonymous commentator has told

us that it " is the discovery of Eudoxus, the teacher of

Plato." Now proportion had been known long before

the time of Eudoxus (408-355 B.C.), but it was numer-

ical proportion, and as such it had been studied by the

Pythagoreans. They were also the first to study seriously

the incommensurable number, and with this study the

treatment of proportion from the standpoint of rational

numbers lost its scientific position with respect to geom-

etry. It was because of this that Eudoxus worked out

a theory of geometric proportion that was independent

of number as an expression of ratio.

The following four definitions from Euclid are the

basal ones of the ancient theory

:

A ratio is a sort of relation in respect of size between two

magnitudes of the same kind.

Magnitudes are said to have a ratio to one another which are

capable, when multiplied, of exceeding one another.

Magnitudes are said to be in the same ratio, the first to the

second and the third to the fourth, when, if any equimultiples

whatever be taken of the first and third, and any equimultiples

227
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whatever of the second and fourth, the former equimultiples alike

exceed, are alike equal to, or alike fall short of, the latter equi-

multiples respectively taken in corresponding order.

Let magnitudes which have the same ratio be called propor-

tional. 1

Of these, the first is so loose in statement as often to

have been thought to be an interpolation of some later

writer. It was probably, however, put into the original

for the sake of completeness, to have some kind of state-

ment concerning ratio as a preliminary to the important

definition of quantities in the same ratio. Like the defi-

nition of "straight line," it was not intended to be taken

seriously as a mathematical statement.

The second definition is intended to exclude zero and

infinite magnitudes, and to show that incommensurable

magnitudes are included.

The third definition is the essential one of the ancient

theory. It defines what is meant by saying that magni-

tudes are in the same ratio ; in other words, it defines a

proportion. Into the merits of the definition it is not

proposed to enter, for the reason that it is no longer

met in teaching in America, and is practically abandoned

even where the rest of Euclid's work is in use. It should

be said, however, that it is scientifically correct, that it

covers the case of incommensurable magnitudes as well

as that of commensurable ones, and that it is the Greek

forerunner of the modern theories of irrational numbers.

As compared with the above treatment, the one now
given in textbooks is unscientific. We define ratio as "the

quotient of the numerical measures of two quantities of

the same kind," and proportion as "an equality of ratios."

1 For a very full discussion of these four definitions see Heath's

"Euclid," Vol. II, p. 116, and authorities there cited.
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But what do we mean by the quotient, say of V2 by V3 ?

And when we multiply a ratio by V5, what is the mean-

ing of this operation ? If we say that V2 : V3 means a

quotient, what meaning shall we assign to " quotient " ?

If it is the number that shows how many times onejium-

ber is contained in another, how many times is V3 con-

tained in V2 ? If to multiply is to take a number a

certain number of times, how many times do we take it

when we multiply by V5 ? We certainly take it more

than 2 times and less than 3 times, but what meaning

can we assign to V5 times ? It will thus be seen that

our treatment of proportion assumes that we already

know the theory of irrationals and can apply it to geo-

metric magnitudes, while the ancient treatment is inde-

pendent of this theory.

Educationally, however, we are forced to proceed as

we do. Just as Dedekind's theory of numbers is a simple

one for college students, so is the ancient theory of pro-

portion ; but as the former is not suited to pupils in the

high school, so the latter must be relegated to the college

classes. And in this we merely harmonize educational

progress with world progress, for the numerical theory

of proportion long preceded the theory of Eudoxus.

The ancients made much of such terms as duplicate,

triplicate, alternate, and inverse ratio, and also such as

composition, separation, and conversion of ratio. These

entered into such propositions as, "If four magnitudes

are proportional, they will also be proportional alter-

nately." In later works they appear in the form of

"proportion by composition," "by division," and "by

composition and division." None of these is to-day of

much importance, since modern symbolism has greatly

simplified the ancient expressions, and in particular the
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proposition concerning " composition and division " is

no longer a basal theorem in geometry. Indeed, if our

course of study were properly arranged, we might well

relegate the whole theory of proportion to algebra,

allowing this to precede the work in geometry.

We shall now consider a few of the principal propo-

sitions of Book III.

Theorem. If a line is drawn through two sides of a

triangle parallel to the third side, it divides those sides

proportionally.

In addition to the usual proof it is instructive to con-

sider in class the cases in which the parallel is drawn

through the two sides produced, either below the base

or above the vertex, and also in which the parallel is

drawn through the vertex.

Theorem. The bisector of an angle of a triangle divides

the opposite side into segments which are proportional to

the adjacent sides.

The proposition relating to the bisector of an exterior

angle may be considered as a part of this one, but it is

usually treated separately in order that the proof shall

appear less involved, although the two are discussed to-

gether at this time. The proposition relating to the ex-

terior angle was recognized by Pappus of Alexandria.

If ABC is the given triangle, and CPV CP
2
are respectively

the internal and external bisectors, then AB is divided har-

monically by P
1
and P

2
.

.'.AP
1
:P

1
B = AP

2
:P

2
B.

.'. AP
2

: P
2
B = AP

2
- P,P

2
: P

X
P

2
- P

2
B,

and this is the criterion for the harmonic progression still seen in

many algebras. For, letting AP
2
— a, P

X
P

2
= b, P

2
B ~ c > we nave

a a — b



LEADING PROPOSITIONS OF BOOK III 231

which is also derived from taking the reciprocals of a, b, c, and
placing them in an arithmetical progression, thus :

whence

or

1 1

b a

1 1

c b

a — b b- e

ab be
'

a — b ab a

b — c be c

This is the reason why the line AB is said to be divided har-

monically. The line P
1
P

2
is also called the harmonic mean between

AP
2
and P

2B, and the points A, Pv B, P
2
are said to form an

harmonie range.

It maybe noted thatZP
2
(?P

1 , being made up of halves of

two supplementary angles, is a right angle. Furthermore, if the

ratio CA : CB is given, and AB is given, then P
x
and P

2
are both

fixed. Hence C must lie on a semicircle with P
1
P

2
as a diameter,

and therefore the locus of a point such that its distances from
two given points are in a given ratio is a circle. This fact, Pappus
tells us, was known to Apollonius.

At this point it is customary to define similar poly-

gons as such as have their corresponding angles equal

and their corresponding sides proportional. Aristotle

gave substantially this definition, saying that such fig-

ures have " their sides proportional and their angles
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equal." Euclid improved upon this by saying that they

must "have their angles severally equal and the sides

about the equal angles proportional." Our present

phraseology seems clearer. Instead of "corresponding

angles" we may say "homologous angles," but there

seems to be no reason for using the less familiar word.

It is more general a 2

to proceed by first c±

considering similar

figures instead of

similar polygons,

thus including the

most obviously sim-

ilar of all figures,

— two circles ; but such a procedure is felt to be too

difficult by many teachers. By this plan we first define

similar sets of points, A^ A^ A^ •
, and Bv 2?

2
, 7? , • •

.,

as such that A
±
A

o , B
±
B

2
, C C

,

and A
x
Oi A

2
= B

1
0: Bp

are concurrent in 0,

CJO = • - • Here the

constant ratio A, O : A is called the ratio of similitude.

and is called the center of similitude. Having defined

similar sets of points, we then define similar figures as

those figures whose points form similar sets. Then the

two circles, the four triangles, and the three quadrilaterals
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^0

respectively are similar figures. If the ratio of similitude is

1, the similar figures become symmetric figures, and they

are therefore congruent. All of the propositions relating

to similar figures can be proved from this definition, but

it is customary to use the Greek one instead.

Among the interesting applications of similarity is

the case of a shadow, as here shown, where the light is

the center of simili-

tude. It is also well

known to most high-

school pupils that in q
a camera the lens

reverses the image.

The mathematical

arrangement is here F
shown, the lens inclos-

ing the center of simil-

itude. The proposition

may also be applied to

the enlargement of maps

and working drawings.

The propositions con-

cerning similar figures have no particularly interesting

history, nor do they present any difficulties that call for

discussion. In schools where there is a little time for

trigonometry, teachers sometimes find it helpful to begin

such work at this time, since all of the trigonometric

functions depend upon the properties of similar trian-

gles, and a brief explanation of the simplest trigono-

metric functions may add a little interest to the work.

In the present state of our curriculum we cannot do

more than mention the matter as a topic of general

interest in this connection.
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It is a mistaken idea that geometry is a prerequisite

to trigonometry. We can get along very well in teach-

ing trigonometry if we have three propositions : (1) the

one about the sum of the angles of a triangle
; (2) the

Pythagorean Theorem
; (3) the one that asserts that two

right triangles are similar if an acute angle of the one

equals an acute angle of the other. For teachers who
may care to make a little digression at this time, the

following brief statement of a few of the facts of trigo-

nometry may be of value

:

In the right triangle OAB we shall let AB =-'y, OA = x,

OB = r, thus adopting the letters of higher mathematics. Then,

so long as ZO remains the same, such

ratios as -, -, etc., will remain the same,
x r

whatever is the size of the triangle.

Some of these ratios have special

names. For example, we call

- the sine of 0, and we write sin — -
;

r r

x x
- the cosine of 0, and we write cos = -

;

r r

v y
- the tangent of 0, and we write tan = --

j^ow because

sin -
V

= - , therefore r sin = y ;

and because cos -= - j therefore r cos = x
;

r

and because tan =- -, therefore x tan = y.
x J

Hence, if we knew the values of sin 0, cos 0, and tan for the

various angles, we could find x, y, or r if we knew any one of them.

Now the values of the sine, cosine, and tangent (functions of

the angles, as they are called) have been computed for the various

angles, and some interest may be developed by obtaining them



LEADING PROPOSITIONS OF BOOK III 235

by actual measurement, using the protractor and squared paper.

Some of those needed for such angles as a pupil in geometry is

likely to use are as follows :

Angle Sink Cos INK Tangent Angle Sine Cosine Tangent

5° .087 .990 .087 50° .766 .643 1.192

10° .174 .985 .176 55° .819 .574 1.428

15° .259 .966 .208 00° .866 .500 1.732

20° .342 .940 .364 05° .906 .423 2.145

25° .423 .906 .400 70° .940 .342 2.748

30° .500 .800 .577 75° .966 .259 3.732

35° .574 .819 .700 80° .985 .174 5.671

40° .043 .766 .839 85° .996 .087 11.430

45° .707 .707 1.000 90° 1.00 .000 CO

It will of course be understood that the values are correct only

to the nearest thousandth. Thus the cosine of 5° is 0.99619, and
the sine of 85° is 0.99619. The entire table can be copied by a

class in five minutes if a teacher wishes to introduce this phase

of the work, and the author has frequently assigned the comput-

ing of a simpler table as a class exercise.

Keferring to the figure, if we know that r = 30 and Z.0 = 40°,

then since y = r sin 0, we have y = 30 x 0.643 = 19.29. If we
know that x = 00 and ZO = 35°, then since y = x tan 0, we have

x
y = 00 x 0.7 = 42. We may also find r, for cos O — -, whence

60

cos O 0.819
= 73.26.

Therefore, if we could easily measure Z.0 and could

measure the distance x, we could find the height of a
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building y. In trigonometry we use a transit for meas-
uring angles, but it is easy to measure them with sufficient

accuracy for illustrative purposes by placing an ordinary

paper protractor upon something level, so that the center

comes at the edge, and then sighting along a ruler held

<xi 3

VIATICVM
CERTISS-
ALS. x

I
v

! 3

i

A cv)i aiuiant of tiik Sixteenth Century

Finaeus's " De re e1 praxi geometrica," Paris, 1550

against it, so as to find the angle of elevation of a build-

ing. We may then measure the distance to the building

and apply the formula if = x tan 0.

It should always be understood that expensive appa-

ratus is not necessary for such illustrative work. The
telescope used on the transit is only three hundred years
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old, and the world got along very well with its trigo-

nometry before that was invented. So a little ingenuity

will enable any one to make from cheap protractors about

as satisfactory instruments as the world used before 1600.

A Quadrant of the Seventeenth Century

In order that this may be the more fully appreciated, a

few illustrations are here given, showing the old instru-

ments and methods used in practical surveying before

the eighteenth century.

The illustration on page 236 shows a simple form of

the quadrant, an instrument easily made by a pupil who
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may be interested in outdoor work. It was the common
surveying instrument of the early days. A more elab-

orate example is seen in the illustration, on page 237,

of a seventeenth-century brass specimen in the author's

collection. 1

A Quadrant of the Seventeenth Century

Bartoli's " Del niodo di misurare," Venice, 1689

Another type, easily made by pupils, is shown in the

above illustration from Bartoli, 1689. Such instruments

were usually made of wood, brass, or ivory.2

Instruments for the running of lines perpendicular to

other lines were formerly common, and are easily made.

They suffice, as the following illustration shows, for

surveying an ordinary field.

1 These two and several which follow are from Stark, loc. cit.

2 The author has a beautiful ivory specimen of the sixteenth

century.
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The quadrant was practically used for all sorts of

outdoor measuring. For example, the illustration from

r
Platt£h4 2}<mzi£mt

Surveying Instrument of the Eighteenth Century

N. Bion's " Traite de la construction . . . des instrumens de mathema-
tique," The Hague, 1723

Finaeus, on this page,
f"

shows how it was used

for altitudes, and the

one reproduced on page

2-10 shows how it was

used for measuring

depths.

A similar instru-

ment from the work

of Bettinus is given

on page 241, the dis-

tance of a ship being

found by construct-

ing an isosceles trian-

gle. A more elaborate

form, with a pendu-

lum attachment, is

seen in the illustra-

The Quadrant used for Altitudes

Finaeus's " De re et praxi geometrica,"

Paris, 1556

tion from De Judaeis, which also appears on page 241.
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O R O N T I I F I N E I D E L P H

Exemplum.

Alia eMdem
obferuarionis

dcmonftratio.

Notandum.

Sccundus mo.
dusmetKndi
profunda.prr

quidrinicrru

per 19 p™™ elementorum Eudidis facile manifeftatur . & angulus A b h ,an*

guloAC F eft arqualis ( nam utercp recliis) igitur per 4 fexti eiufdem Eudidis,

fit ficut H B ad B A, ka F C putei latitudoad G A ccmpofitam ex G B cVB A longu

tudinem,fiue profunditatem.

Sit exempli gra'tia B h 20 partium,qualium latus quadrati eft 6o:b e aute me*
tiatur,& fit in exemplum 6 cubitorum,tot etiam cubirorum erit G F:funt enim la

tera perallelogrammi B E FGoppofita,qua?per 34 eiufdem primi funt inuicem

aequalia.Duc igitur 6 in 6o,fient }6o:qux diuidepcr 20, 8t\habebis pro quotie«

re i8.Tot igitur cubitoiv erit A G:

a quafi dempferis A b trium uer*

bi gratia cubitorum, relinqurtur

B G defyderata cV in profundum

depfTa putei logitudo 15 cubitOR?.

IDEM Q.VOQ.VE SIC OB*:

tinebis. Metire H e: fitcp exempli

caufa 5 cubitoru. Deinde multi*

plica 5 per 6o,fient joo:hapc diui

per zo^producentur i^uelut an*

tea.Bina nancp triangula ABHct
HEF funt rurfum a?quiangula.

quoniam angulus A h b angulo

E H f ad ueriicem pofito , per 15

primi Eudidis eft sequalis.ite re*

<ftus qui ad B, recto qui ad E pari

ter aequat. reliquus igitur bah
reliquo H F E per }Z eiufdem pri*

mi eft a?qualis. Vnde per fupe*

rius allcga ca quarta propofitione

fexti,ficut hb ad b A.ica h E ad E F,eidem B G per hypothefim a?qualem.
Cum autem accident pureum rotundam habere figuram,habenda erit cofyefc

ratio diametn puteal.s orificrj,& reb'qua omnia udutiprius abfoluenda.
^IRELIQ.VVMETS

) VT
eandem rerum in profundi! de*
preflfarum, per uulgatu quadra*
tern metiri doceamus altitudine.

Sit itacp puteus circularis E F g
H.cuius diameter fit E F,aut illi

sequalis G H.Adplica igitur qua*
dratem ipfi putei orificio: in hue
modu,ut finis lateris A D ad datu
punctum E conftituatur . Leua
poftmodu,aut deprime quadra*
tem(libero femper demuTo per*
pendiculo)donec radius uifualis
per ambo foramina pinnacidioRt
ad inferiorem 8>C e diam'etrofi-
gnatu rcrminu IJ perducat.Quo
U<fto cV immoto quadrate, uide

in qua

The Quadrant used for Depths

Finaeus's " Prot'inathesis," Paris, 1532
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A Quadrant of the Sixteenth Century
De Judaeis's " Do quadrante geometrico," Niirnberg, 1594

i
:;«

The Quadrant used for Distances

Bettinus's "Apiaria universae philosophiae mathematicae," Bologna, 1645
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The quadrant finally developed into the octant, as

shown in the following illustration from Hoffmann, and

this in turn developed into the sextant, which is now used

by all navigators.

The Octant

Hoffmann's "De Octantis," Jena, 1612

In connection with this general subject the use of

the speculum (mirror) in measuring heights should be

mentioned. The illustration given on page 243 shows

how in early days a simple device was used for this pur-

pose. Two similar triangles are formed in this way, and

we have only to measure the height of the eye above the

ground, and the distances of the mirror from the tower

and the observer, to have three terms of a proportion.

All of these instruments are easily made. The mir-

ror is always at hand, and a paper protractor on a
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t?

piece of board, with a plumb line attached, serves

as a quadrant. For a few cents, and by the expendi-

ture of an hour or so, a school can have almost as

good instruments

as the ordinary

surveyor had be-

fore the nineteenth

century.

A well-known

method of meas-

uring the distance

across a stream

is illustrated in

the figure below,

where the distance

from A to some

pointP is required.

,i» /

<±**A

The Speculum

Finaeus's "De re et praxi geometrica,

'

:

Paris, 1556

Run a line from A to C by standing at C in line with A and P.

Then run two perpendiculars from A and C by any of the meth-

ods already given,— sighting on

a protractor or along the edge of

a book if no better means are at

hand. Then sight from some point

I), on CD, to P, putting a stake

at B. Then run the perpendicular

BE. Since DE : EB = BA : . I P,

and since we can measure DE,
EB, and BA with the tape, we can

compute the distance A P.

There are many variations of this scheme of measuring

distances by means of similar triangles, and pupils may

be encouraged to try some of them. Other figures are

suggested on page 244, and the triangles need not be

confined to those having a right angle.
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A very simple illustration of the use of similar triangles

is found in one of the stories told of Thales. It is re-

lated that he found the height of the pyramids by meas-

uring their shadow at the instant when his own shadow

just equaled his height. He thus had the case of two

similar isosceles triangles. This is an interesting exercise

which may be tried about the time that pupils are leav-

ing school in the afternoon.

Another application of the same principle is seen in a

method often taken for measuring the height of a tree.

The observer has a large right triangle

made of wood. Such a triangle is shown in

the picture, in which AB=B C. He holds AB
level and walks toward the tree until he j ust

sees the top along A C. Then because

AB = BC,

and AB.BC = AD:DE,

the height above D will equal

the distance AD.
Questions like the fol-

lowing may be given

to the class

:

1. What is the

height of the tree

in the picture if the «*U*«*^'*^ «**•&«*

triangle is 5 ft. 4 in. from the ground, and AD is 23 ft. 8 in.?

2. Suppose a triangle is used which has AB = twice BC.
What is the height if AD = 75 ft.?
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There are many variations of this principle. One con-

sists in measuring the. shadows of a tree and a staff at

the same time. The height of the staff being known, the

height of the tree is found by proportion. Another con-

sists in sighting from the ground, across a mark on an

upright staff, to the top of the tree. The height of the

mark being known, and the distances from the eye to

the staff and to the tree being measured, the height of

the tree is found.

An instrument sold by dealers for the measuring of

heights is known as the hypsometer. It is made of brass,

and is of the form here shown.

The base is graduated in equal

divisions, say 50, and the upright

bar is similarly divided. At the

ends of the hinged radius are two

sights. If the observer stands

50 feet from a tree and sights at

the top, so that the hinged radius

cuts the upright bar at 27, then he knows at once that the

tree is 27 feet high. It is easy for a class to make a fairly

good instrument of this kind out of stiff pasteboard.

An interesting application of the theorem relating to

similar triangles is this : Extend your arm and point to a

distant object, closing your left eye and sighting across

your finger tip with your right eye. Now keep the finger

in the same position and sight with your left eye. The
finger will then seem to be pointing to an object some

distance to the right of the one at which you were point-

ing. If you can estimate the distance between these two

objects, which can often be done with a fair degree of

accuracy when there are houses intervening, then you

will be able to tell approximately your distance from the
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objects, for it will be ten times the estimated distance

between them. The finding of the reason for this by

measuring the distance between the pupils of the two

eyes, and the distance from the eye to the finger tip, and

then drawing the figure, is an interesting exercise.

Perhaps some pupil who has read Thoreau's descrip-

tions of outdoor life may be interested in what he says

of his crude mathematics. He writes, " I borrowed the

plane and square, level and dividers, of a carpenter, and

with a shingle contrived a rude sort of a quadrant, with

pins for sights and pivots." With this he measured the

heights of a cliff on the Massachusetts coast, and with

similar home-made or school-made instruments a pupil

in geometry can measure most of the heights and dis-

tances in which he is interested.

Theorem. If in a right triangle a perpendicular is

drawn from the vertex of the right angle to the hypotenuse :

1. The triangles thus formed are similar to the given

triangle, and are similar to each other.

2. The perpendicular is the mean proportional between

the segments of the hypotenuse.

3. Each of the other sides is the mean proportional

beUveen the hypotenuse and the segment of the hypotenuse

adjacent to that side.

To this important proposition there is one corollary of

particular interest, namely, The perpendicular from any

point on a circle to a diameter is the mean proportional

between the segments of the diameter. By means of this

corollary we can easily construct a line whose numerical

value is the square root of any number we please.

Thus we may make A D = 2 in., DB = 3 in., and erect

DC 1. to AB. Then the length of DC will be Vtf in., and we may

find V6 approximately by measuring DC.
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Furthermore, if we introduce negative magnitudes into geom-
etry, and let DB = + 3 and DA ==— 2, then DC will equal V— 6.

In other words, we have a justification for

representing imaginary quantities by lines

perpendicular to the line on which we repre-

sent real quantities, as is done in the graphic

treatment of imaginaries in algebra.

It is an interesting exercise to have a class find, to

one decimal place, by measuring as above, the value of

V2, v3, V5, and V9, the last being integral. If, as is

not usually the case, the class has studied the complex

number, the absolute value of V— 6, V— 7, . .
.

, may be

found in the same way.

A practical illustration of the value of the above

theorem is seen in a method for finding distances that

is frequently described in early printed books. It seems

to have come from the Roman surveyors.

If a carpenter's square is put on top of an upright stick, as here

shown, and an observer sights along the arms to a distant point

B and a point A c
near the stick, then

the two triangles

are similar. Hence

AD:DC=DC:DB.
Hence, if AD and /
DC are measured, /
DB can be found. J) B

The experiment is an interesting and instructive one for a class,

especially as the square can easily be made out of heavy pasteboard.

Theorem. If two chords intersect within a circle, the

product of the segments of the one is equal to the product

of the segments of the other.

Theorem. If from a point without a circle a secant

and a tangent are dratvn, the tangent is the mean propor-

tional between the secant and its external segment.
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Corollary. Iffrom a point without a circle a secant

is drawn, the product of the secant and its external segment

is constant in whatever direction the secant is drawn.

These two propositions and the corollary are all parts

of one general proposition : If through a point a line is

drawn cutting a circle, the p>roduct of the segments of the

line is constant.

If P is within the circle, then xxf— yy''; if P is on the circle,

then x and y become 0, and • x'= • y — ; if P is at P
3 , then

x and y, having passed through 0, may be considered negative if

we wish, although the two p
negative signs would cancel

out in the equation ; if P is

at 73
4 , then y = y', and we

have xx*= z/
2
, or x : y = y : x',

as stated in the proposition.

We thus have an ex-

cellent example of the

Principle of Continuity,

and classes are always interested to consider the result

of letting P assume various positions. Among the pos-

sible cases is the one of two tangents from an exter-

nal point, and the one where P is at the center of the

circle.

Students should frequently be questioned as to the

meaning of " product of lines." The Greeks always used

" rectangle of lines," but it is entirely legitimate to speak

of " product of lines," provided we define the expression

consistently. Most writers do this, saying that by the

product of lines is meant the product of their numerical

values, a subject already discussed at the beginning of

this chapter.

Theorem. The square on the bisector of an angle of a

triangle is equal to the product of the sides of this angle
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diminished by the product of the segments made by the

bisector upon the third side of the triangle.

This proposition enables us to compute the length of a

bisector of a triangle if the lengths of the sides are known.

For, in this figure, let a — 3, b = 5, and c = 6.

Then *
.

' x : y — h : a, and y = 6 — x,

x o
we have = - •

6 — x 3

.-.3 a; = 30- 5*.

By the theorem, ~
2 = a& — xy

= 15-8^ = 6^-

•'• - =v6^. = |V105 = 2.5 + .

TheoPvEM. ira «>i?/ triangle the product of two sides is

equal to the product of the diameter of the circumscribed

circle by the altitude upon the third side.

This enables us, after the Pythagorean Theorem has

been studied, to compute the length of the diameter of

the circumscribed circle in terms of the three sides.

For if we designate the sides by a, b, and c, as usual, and let

CD=d and PB = x, then

CP 2 = a2 -x*

= Ifi -(c- 2')
2

. ^

a- -x2 = b2 -- c 1 + 2cr--z2
.

.*. X =
a2 -b2 +

2c

c2

. CP 2
a2

_/«.--fc
2 + cV

2c
But CPd= ah.

2 dbc

V4 a2c2 - (a2- &2 + c2)'
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This is not available at this time, however, because the

Pythagorean Theorem has not been proved.

These two propositions arc merely special cases of

the following general theorem, which may be given as

an interesting exercise

:

//' ABC is an inscribed triangle, and through C there are

drawn tiro straight Hues CD, meeting All in I), and CP,

meeting the circle in P, with angles ACT) and PCB equal,

then AC X BC will equal CD x CP.

p
Fig. 3 Fig. 4

Fig. 1 is the general case where D falls between A and B. If CP
is a diameter, it reduces to the second figure given on page 249. If

( 'P bisects Z A (11, we have Fig. 3, from which may be proved the

proposition given at the foot of page 248. If D lies on BA pro-

duced, we have Fig. 2. If 1> lies on A B produced, we have Fig. 4.

This general proposition is proved by showing that &ADC
and PBC are similar, exactly as in the second proposition given

on page 249.

These theorems are usually followed by problems of

construction, of which only one has great interest, namely,

To divide a given line in extreme and mean ratio.

The purpose of this problem is to prepare for the con-

struction of the regular decagon and pentagon. The

division of a line in extreme and mean ratio is called

k*the golden section/* and is probably "the section"

mentioned by Proclus when he says that Eudoxus

"greatly added to the number of the theorems which
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Plato originated regarding the section." The expression

"golden section" is not old, however, and its origin is

uncertain.

If a line >!/>' is divided in golden section ai P, ire ha

ABx PB .1/'

Therefore, it AB — (1, Kll'i AP — x, we b

(I ((/ -- <)

or x2 + ox --a 2 0:

whence 1

(1 (I fZ- - 1

2 2

= a(l.U8-0.
= 0.618 a,

:
>J

the other root representing the external point.

That is, ar = about 0.6a, and a — * = about 0.4a, and a La

therefore divided in about tin- ratio of 'J : 3.

There lias been a great deal written npon the aesthetic

features of the golden section. It is claimed that a line

is most harmoniously divided when it is either bisected

or divided in extreme and mean ratio. A painting

the strong feature in the center, or more often at a

point about 0.4 of the distance from one side, that is,

the golden section of the width of the picture. It is said

that in nature this same harmony is found, as in the

division of the veins of such leav< be ivy and fern-



CHAPTER XVII

THE LEADING PROPOSITIONS OF BOOK IV

Book IV treats of the area of polygons, and offers a

large number of practical applications. Since the number

of applications to the measuring of areas of various kinds

of polygons is unlimited, while in the first three books

these applications are not so obvious, less effort is made

in this chapter to suggest practical problems to the teach-

ers. The survey of the school grounds or of vacant lots

in the vicinity offers all the outdoor work that is needed

to make Book IV seem very important.

Theorem. Two rectangles having equal altitudes are to

each other as their bases.

Euclid's statement (Book VI, Proposition 1) was as

follows: Triangles and 'parallelograms which are under the

same height are to one another as their bases. Our plan of

treating the two figures separately is manifestly better

from the educational standpoint.

In the modern treatment by limits the proof is divided

into two parts: first, for commensurable bases; and sec-

ond, for incommensurable ones. Of these the second may

well be omitted, or merely be read over by the teacher

and class and the reasons explained. In general, it is

doubtful if the majority of an American class in geom-

etry get much out of the incommensurable case. Of

course, with a bright class a teacher may well afford to

take it as it is given in the textbook, but the important

252
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thing is that the commensurable case should be proved

and the incommensurable one recognized.

Euclid's treatment of proportion was so rigorous that

no special treatment of the incommensurable was neces-

sary. The French geometer, Legendre, gave a rigorous

proof by reductio ad abmrdum. In America the pupils

are hardly ready for these proofs, and so our treatment

by limits is less rigorous than these earlier ones.

THEOREM. The area of a rectangle is equal to the

product of its base by its altitude.

The easiest way to introduce this is to mark a rec-

tangle, with commensurable sides, on squared paper, and

count up the squares ; or, what is more convenient, to

draw the rectangle and mark the area off in squares.

It is interesting and valuable to a class to have its

attention called to the fact that the perimeter of a rec-

tangle is no criterion as to the area. Thus, if a rectan-

gle has an area of 1 square foot and is only ^L of an

inch high, the perimeter is over 2 miles. The story of

how Indians were induced to sell their land by measur-

ing the perimeter is a very old one. Proclus speaks of

travelers who described the size of cities by the perim-

eters, and of men who cheated others by pretending to

give them as much land as they themselves had, when
really they made only the perimeters equal. Thucydides

estimated the size of Sicily by the time it took to sail

round it. Pupils will be interested to know in this con-

nection that of polygons having the same perimeter and

the same number of sides, the one having equal sides

and equal angles is the greatest, and that of plane fig-

ures having the same perimeter, the circle is the greatest.

These facts were known to the Greek writers, Zenodorus

(ca. 150 B.C.) and Proclus (410-485 A.D.).
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The surfaces of rectangular solids may now be found,

there being an advantage in thus incidentally connecting

plane and solid geometry wherever it is natural to do so.

Theorem. The area of a parallelogram is equal to the

product of its base by its altitude.

The best way to introduce this theorem is to cut a

parallelogram from paper, and then, with the class, sep-

arate it into two parts by a cut perpendicular to the

base. The two parts may then be fitted together to make

a rectangle. In particular, it' we cut off a triangle from

one end and fit it on the other, we have the basis for the

proof of the textbooks. The use of squared paper for

such a proposition is not wise, since it makes the meas-

urement appear to be merely an approximation. The cut-

ting of the paper is in every way more satisfactory.

THEOREM. The area of a triangle is equal to half the

l>r<><hi<'t of it* base by it* altitude.

Of course, the Greeks would never have used the

wording of either of these two propositions. Euclid, for

example, gives this one as follows: If a parallelogram

have the same base with a triangle and be in the same par-

allels, the parallelogram is <lnu1>l<> of the triangle. As to the

parallelogram, he simply says it is equal to a parallel-

ogram of equal base and "in the same parallels/' which

makes it equal to a rectangle of the same base and the

same altitude.

The number of applications of these two theorems is

so great that the teacher will not be at a loss to find

genuine ones that appeal to the class. Teachers may
now introduce pyramids, requiring the areas of the tri-

angular faces to be found.

The Ahmes papyrus (ca. 1700 b.c) gives the area of

an isosceles triangle as \bs, where s is one of the equal
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sides, thus taking s for the altitude. This shows the

primitive state of geometry at that time.

Theorem. The area of a trapezoid is equal to half the

sum of its bases multiplied by the altitude.

An interesting variation of the ordinary proof is made by
placing a trapezoid T", congruent to T, in the position here

shown. The parallelogram *'
^

formed equals a(b + //),

and therefore
/ T a \ T '

b V
The proposition should be discussed for the case b = b', when

it reduces to the one about the area of a parallelogram. If b'= 0,

the trapezoid reduces to a triangle, and T = a • - •

This proposition is the basis of the theory of land sur-

veying, a piece of land being, for purposes of measure-

ment, divided into trapezoids and triangles, the latter

being, as we have seen, a kind of special trapezoid.

The proposition is not in Euclid, but is given by

Proclus in the fifth century.

The term "isosceles trapezoid" is used to mean a

trapezoid with two opposite sides equal, but not parallel.

The area of such a figure was incorrectly given by the

Ahmes papyrus as ^(b + J')s, where s is one of the equal

sides. This amounts to taking s = a.

The proposition is particularly important in the sur-

veying of an irregular field such as is found in hilly

districts. It is customary to consider the field as a poly-

gon, and to draw a meridian line, letting fall perpendic-

ulars upon it from the vertices, thus forming triangles

and trapezoids that can easily be measured. An older

plan, but one better suited to the use of pupils who may
be working only with the tape, is given on page 99.



256 THE TEACHING OF GEOMETRY

Theorem. The areas of two triangles which have at}

angle of the one equal to an angle of the oilier are to each

other as the product* of the sides including the equal angles.

This proposition may be omitted as far as its use in

plane geometry is concerned, for we can prove the next

proposition here given without using it. In solid geom-

etry it is used only in a proposition relating to the

volumes of two triangular pyramids having a common
trihedral angle, and this is usually omitted. But the theo-

rem is so simple that it takes but little time, and it adds

greatly to the student's appreciation of similar triangles.

It not only simplifies the next one here given, but teachers

can at once deduce the latter from it as a special case by

asking to what it reduces if a second angle of one tri-

angle is also equal to a second angle of the other triangle.

It is helpful to give numerical values to the sides of

a few triangles having such equal angles, and to find the

numerical ratio of the areas.

Theorem. The areas of two similar triangles are to

each other as the squares on any two corresponding sides.

This may be proved independently of the preceding proposition

by drawing the altitudes/* and //. Then ~

&ABC cp

HA'B'C c'p

But - P

by similar triangles.

AABC c2

' kA'BC -~c*

and so for other sides. A! B'

This proof is unnecessarily Long, however, because of the

introduction of the altitudes.
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In this and several other propositions in Book IV
occurs the expression "the square on a line.** We have,

in our departure from Euclid, treated a line either as a

geometric figure or as a number (the length of the line),

as was the more convenient. Of course if we are speak-

ing of a line, the preferable expression is "square an the

line,** whereas if we speak of a number, we say " square

of'the number." In the case oi' a rectangle of two lines

we have come to speak of the "product of the lines,"

meaning the product of their numerical values. We are

therefore not as accurate in our phraseology as Enclid,

and we do not pretend to he, for reasons already given.

l>nt when it comes to "square <>n a line'' or "square <>/

a line,'* the former is the one demanding no explanation

or apology, and it is even better understood than the

latter.

Theorem. The areas of two similarpolygons are to each

other ax the squares on any two corresponding sides.

This is a proposition of great importance, and in due

time the pupil sees that it applies to circles, with the nec-

essary change oi' the word " sides " to " lines." It is well

to ask a few questions like the following : If one square

is twice as high as another, how do the areas compare?

If the side of one equilateral triangle is three times as

long as that of another, how do the perimeters compare ?

how do the areas compare? If the area o\' one square is

twenty-five times the area of another square, the side of

the first is how many times as long as the side of the

second? If a photograph is enlarged so that a tree is

four times as high as it was before, what is the ratio of

corresponding dimensions ? The area of the enlarged

photograph is how many times as great as the area of

the original ?
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Theorem. The square oh the hypotenuse of a right tri-

angle is equivalent to the sum of the squares on the other

two sides.

Of all the propositions of geometry this is the most
famous and perhaps the most valuable. Trigonometry is

based chiefly upon two facts of plane geometry : ( 1 ) in

similar triangles the corresponding sides are proportional,

and (2) this proposition. In mensuration, in general, this

proposition enters more often than any others, except

those on the measuring of the rectangle and triangle. It

is proposed, therefore, to devote considerable space to

speaking of the history of the theorem, and to certain

proofs that may profitably be suggested from time to

time to different classes for the purpose of adding in-

terest to the work.

Proclus, the old Greek commentator on Euclid, has

this to say of the history: " It we listen to those who
wish to recount ancient history, we may find some of

them referring this theorem to Pythagoras and saying

that lie sacrificed an ox in honor of his discovery. But
for my part, while I admire those who first observed the

truth of this theorem, I marvel more at the writer of the

'Elements' (Euclid), not only because he made it fast

by a most lucid demonstration, but because he compelled

assent to the still more general theorem by the irrefra-

gable arguments of science in Book VI. For in that

book he proves, generally, that in right triangles the

figure on the side subtending the right angle is equal to

the similar and similarly placed figures described on the

sides about the right angle." Now it appears from this

that Proclus, in the fifth century A.D., thought that

INthagoras discovered the proposition in the sixth cen-

tury B.C., that the usual proof, as given in most of our
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American textbooks, was due to Euclid, and that the

generalized form was also due to the latter. For it should

be made known to students that the proposition is true

not only for squares, but for any similar figures, such as

equilateral triangles, parallelograms, semicircles, and

irregular figures, provided they are similarly placed on

the three sides of the right triangle.

Besides Proclus, Plutarch testifies to the fact that

Pythagoras was the discoverer, saying that "Pythag-

oras sacrificed an ox on the strength of his proposi-

tion as Apollodotus says," but saving that there were

two possible propositions to which this refers. This

Apollodotus was probably Apollodorus, surnamed Lo-

gisticus (the Calculator), whose date is quite uncertain,

and who speaks in some verses of a "famous proposi-

tion" discovered by Pythagoras, and all tradition makes

this the one. Cicero, who comments upon these verses,

does not question the discovery, but doubts the story of

the sacrifice of the ox. Of other early writers, Diogenes

Laertius, whose date is entirely uncertain (perhaps the

second century A.p.), and Athemeus (third century A.D.)

may be mentioned as attributing the theorem to Pythag-

oras, while Heron (first century A.i>.) says that he

gave a rule for forming right triangles with rational in-

tegers for the sides, like 3, -1, 5, where 32 + 42 = 52
. It

should be said, however, that the Pythagorean origin has

been doubted, notably in an article by IT. Vogt, pub-

lished in the Bibliotheca Mathematics in 1908 (Vol. IX

(3), p. 15), entitled "Die Geometrie des Pythagoras,"

and by G. Junge, in his work entitled "Wann haben

die Griechen das Irrationale entdeckt?" (Halle, 1907).

These writers claim that all the authorities attributing

the proposition to Pythagoras are centuries later than
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his time, and are open to grave suspicion. Nevertheless

it is hardly possible that such a general tradition, and

one so universally accepted, should have arisen without

good foundation. The evidence has been carefully

studied by Heath in his " Euclid," who concludes with

these words : " On the whole, therefore, I see no suffi-

cient reason to question the tradition that, so far as

Greek geometry is concerned . . . , Pythagoras was the

first to introduce the theorem . . . and to give a general

proof of it." That the fact was known earlier, probably

without the general proof, is recognized by all modern

writers.

Pythagoras had studied in Egypt and possibly in the

East before he established his school at Crotona, in south-

ern Italy. In Egypt, at any rate, he could easily have

found that a triangle with the sides 3, 4, 5, is a right

triangle, and Vitruvius (first century B.C.) tells us that

he taught this fact. The Egyptian liarpedonaptae (rope

stretchers) stretched ropes about pegs so as to make

such a triangle for the purpose of laying

out a right angle in their surveying, just

as our surveyors do to-day. The great

pyramids have an angle of slope such as

is given by this triangle. Indeed, a papy-

rus of the twelfth dynasty, lately discov-

ered at Kahun, in Egypt, refers to four of

these triangles, such as l
2 + (f)

2 = (l^) 2
.
B

This property seems to have been a matter of common
knowledge long before Pythagoras, even as far east as

China. He was, therefore, naturally led to attempt to

prove the general property which had already been

recognized for special cases, and in particular for the

isosceles right triangle.
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How Pythagoras proved the proposition is not known.

It has been thought that he used a proof by proportion,

because Proclus says that Euclid gave a new style of

proof, and Euclid does not use proportion for this pur-

pose, while the subject, in incomplete form, was highly

esteemed by the Pythagoreans. Heath suggests that

this is among the possibilities:

IkABC and APC are similar.

,\AB x AP = AC\

Similarly, AB x PB = BC\

.'. AB(AP + PB) = AC 2+ BC 2

,

or AB 2=AC 2 + BC 2
.
A

Others have thought that Pythagoras derived his

proof from dissecting a square and showing that the

square on the hypotenuse must equal the sum of the

squares on the other two sides, in some such manner

as this:

^-<^ b'

a-

Fig. 1 Fig. 2

Here Fig. 1 is evidently h2 + 4 A.

Fig. 2 is evidently a2 + b2+ 4 A.

h2 + 4 A = a2 + b2 + 4 A, the A all being congruent.

.*. h2 =a2 + b2 .
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The great Hindu mathematician, Bhaskara (born 1114

A.D.), proceeds in a somewhat similar manner. He draws

this figure, but gives no proof. It is evi-

dent that he had in mind this relation

:

lr
4-f + P af = a2 + b2 .

\3

l\

1
wm<

A somewhat similar proof can be

based upon the following figure

:

If the four triangles, 1 + 2 + 3 + 4, are taken

away, there remains the square on the hypote-

nuse. But if we take away the two shaded rec-

tangles, which equal the four triangles, there

remain the squares on the two sides. Therefore

the square on the hypotenuse must equal the

sum of these two squares.

It has long been thought that the truth of the prop-

osition was first observed by seeing the tiles on the

floors of ancient temples. If they

were arranged as here shown, the

proposition would be evident for

the special case of an isosceles

right triangle.

The Hindus knew the proposition

long before Bhaskara, however,

and possibly before Pythagoras.

It is referred to in the old religious

poems of the Brahmans, the " Sulvasutras," but the date

of these poems is so uncertain that it is impossible to

state that they preceded the sixth century B.C., 1 in which

Pythagoras lived. The "Sulvasutra" of Apastamba has

!See, for example, G. B. Kaye, "The Source of Hindu Mathe-

matics," in the Journal of the Royal Asiatic Society, July, 1910.
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a collection of rules, without proofs, for constructing

various figures. Among these is one for constructing

right angles by stretching cords of the following lengths

:

3, 4, 5 ; 12, 16, 20 ; 15, 20, 25 (the two latter being mul-

tiples of the first) ; 5, 12, 13 ; 15, 36, 39 ; 8, 15, 17 ; 12,

35, 37. Whatever the elate of these " Sulvasutras," there

is no evidence that the Indians had a definite proof of

the theorem, even though they, like the early Egyptians,

recognized the general fact.

It is always interesting to a class to see more than

one proof of a famous theorem, and many teachers find

it profitable to ask their pupils to work out proofs that

are (to them) original, often suggesting the figure. Two
of the best known historic proofs are here given.

The first makes the Pythagorean Theorem a special

case of a proposition due to Pappus (fourth century

A.D.), relating to any kind of a triangle.

Somewhat simplified, this proposition asserts that if ABC is

any kind of triangle, and MC, NC are parallelograms on A C, BC,
the opposite sides

being produced to

meet at P ; and

if PC is produced

making QR = PCj
and if the parallel-

ogram A T is con-

structed, thenAT—
MC + NC. R T

For MC = AP = AR, having equal bases and equal altitudes.

Similarly, NC = QT.

Adding, MC + NC = AT.

If, now, ABC is a right triangle, and if MC and NC are

squares, it is easy to show that AT is a square, and the proposi-

tion reduces to the Pythagorean Theorem.
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r'\

The Arab writer, Al- Xairrzl (died about 922 A.D.),

attributes to Tlmbit ben Qurra (826—901 a.i>. > a proof

substantially as follows:

Th<; four triangles T can be proved congruent. Then if we
take from the whole figure 7' and 7". we have Left the squares on

the two sides of the right angle. If we take

away the other two triangles instead, we have

left the square on the hypotenuse. Therefore

the former is equivalent to the latter.

A proof attributed to the great art-

ist, Leonardo da Vinci (1452-1519),

is as follows:

The construction of the following figure is evident. It is

easily shown that the four quadrilaterals A BMX, XNCA, SB( '/',

and SRQP are con-

gruent.

..ABMXNCA
equals SBCPQRS
I iiit is not congru-

ent to it, the congru-

ent quadrilaterals

being differently

arranged.

Subtract the con-

gruent triangles

MXN,ABC,RAQ,
and the proposi-

tion is proved.1

The following is an interesting proof of the propo-

sition :

Let ABC be the original triangle, with AB < BC. Turn the

triangle about B, through 90°, until it comes into the position

1 An interesting Japanese proof of this general character may be

seen in Y. Mikami, "Mathematical Papers from the Far East,"

p. 127, Leipzig, 1910.
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A'BC. Then because it has been turned through 90 . CA'P
will be perpendicular to AC. Then

±ab 2 = A.i/;.r,

and ±BC''
2 = tBC'C,

because BC = B( "

.

.'. iCiTi
2+JK'2

) = AABA' + £J',r'
/

r\

FmAABA'+AW'A'-i-tA'r ,

'C1a

the second member of both equations.)

= £4'C ^4P

+ £A'C- PC
= iA'CAC

AB 2+BC 2

\AC\
AC*.

The Pythagorean Theorem, as it is generally called,

has had other names. It is not uncommonly called

the pons asinorum (see page 174) in France. The Arab

writers called it the Figure of the Bride, although the

son for this name is unknown: possibly two being

joined in one has something to do with it. It lias also

i called the Bride's Chair, and the shape of the

Euclid figure is not unlike the chair that a slave carries

on his back, in which the Eastern bride is sometimes

transported to the weddiiig ceremony. Schopenhauer,

the German philosopher, referring to the figure, speaks

of it it- "a proof walking on stilts." and as " a mouse-

trap proof."

An interesting theory suggested by the proposition is

that of computing the sides of right triangles so that they

shall be represented by rational numbers. Pythagoras

os to have been the first to take up this theory,

although such numbers were applied to the right triangle
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before his time, and Proclus tells us that Plato also con-

tributed to it. The rule of Pythagoras, put in modern

symbols, was as follows:

the sides being n, -
,
and - -It' for n we put :>, we have

o, 4, 5. If we take the various <n\d numbers, we have

ra = 1, 3, 5, 7, 9, •••,

^^ = 0, 1, 12,24,40,..-,

5-±l =1,5, 13, 25,41,.. -.

Of course n may be even, giving fractional values.

Thus, for n=2 we have for the three sides, 2, l.\, 2\.

Other formulas arc also known. Plato's, for example, is

as follows

:

(2n)2 + (n2 -l)2 = (n2 + l)*.

If 2n =2, Hi. 8, 10,...,

then n'
1 -1 = 0,3, 8, 15, 24, •••,

and r»
2 + l = 2,5,10,17,26,...

This formula evidently comes from that ^ Pythagoras

by doubling the sides of the squares.1

Theorem. In any triangle the square of the side oppo-

site an acute angle is equal to the sum of the squares of the

other two sides diminished by twice the product of one of

those sides by the projection of the other upon that side.

Theorem. A similar statement for tin' obtuse triangle.

i Special recognition of indebtedness to II. A. Naber's "Das

Theorem des Pythagoras" (Haarlem. 1908), Heath's- Euclid," Gow's

"History of Greek Mathematics," and Cantor's .^Geschichte
,,

is due

in connection with the Pythagorean Theorem.
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These two propositions are usually proved by the

help of the Pythagorean Theorem. Some writers, how-

ever, actually construct the squares and give a proof

similar to the one in that proposition. 'Phis plan goes

hack at least to Gregoire de St. Vincent (1647).

It should be observed that

a2 = //-+ c2 -2b'c.

If ZA = 90 . then &'=0, and this

becomes
"- = ''-+<-

a r b
It' /. A is obtuse, then // passes through and becomes nega-

tive, and <r= b2 -f ca + 2 AV.

Thus we have three propositions in one.

At the close of Book I V many geometries give as

an exercise, and some give as a regular proposition, the

celebrated problem that hears the name of Heron of

Alexandria, namely, to compute the area of a triangle

in terms of its sides. 'The result

is the important formula

A rea = Vs
([g —a ) (s — !>) (s — e),

where a, 6, and c are tl

and s is the semiper

eter^(a+ J+ <?). As;

practical ap-

plication the

(dass may be

able to find

a triangular piece of land, as here shown, and to meas-

ure the sides. It* the piece is (dear, the result may be

checked by measuring the altitude and applying the

formula a = I hh.

It may be stated to the (dass that Heron's formula is

only a special case of the more general one developed
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about 640 A.D., by a famous Hindu mathematician, Brah-

magupta. This formula gives the area of an inscribed

quadrilateral as V"(s — a) (s — ft) (s — c) (s — <i), where

a, ft, <?, and 6? are the sides and s is the semiperimeter.

If d = 0, the quadrilateral becomes a triangle and we
have Heron's formula. 1

At the close of Book IV, also, the geometric equiva-

lents of the algebraic formulas for (a + ft)
2

,
(a — ft)

2
, and

(a + ft) (a — ft) are given. The class may like to know
that Euclid had no algebra and was compelled to prove

such relations as these by geometry, while we do it now
much more easily by algebraic multiplication.

1 The rule was so ill understood that Bhaskara (twelfth century)

said that Brahmagupta was a "blundering devil" for giving it

("Lilavati," § 172).



CHAPTER XVIII

THE LEADING PROPOSITIONS OF BOOK V

Book V treats of regular polygons and circles, and

includes the computation of the approximate value of ir.

It opens with a definition of a regular polygon as one

that is both equilateral and equiangular. While in ele-

mentary geometry the only regular polygons studied are

convex, it is interesting to a class to see that

there are also regular cross polygons. Indeed,

the regular cross pentagon was the badge of the

Pythagoreans, as Lucian (ca. 100 A.D.) and an

unknown commentator on Aristophanes (ca. 400 B.C.)

tell us. At the vertices of this polygon the Pythago-

reans placed the Greek letters signifying " health."

Euclid was not interested in the measure of the circle,

and there is nothing in his "Elements" on the value of ir.

Indeed, he expressly avoided numerical measures of all

kinds in his geometry, wishing the science to be kept

distinct from that form of arithmetic known to the

Greeks as logistic, or calculation. His Book IV is de-

voted to the construction of certain regular polygons,

and his propositions on this subject are now embodied

in Book V as it is usually taught in America.

If we consider Book V as a whole, we are struck

by three features. Of these the first is the pure geom-

etry involved, and this is the essential feature to be

emphasized. The second is the mensuration of the circle,

a relatively unimportant piece of theory in view of the

269
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fact that the pupil is not ready for incommensurables,

and a feature that imparts no information that the pupil

did not find in arithmetic. The third is the somewhat

interesting but mathematically unimportant application

of the regular polygons to geometric design.

As to the mensuration of the circle it is well for us to

take a broad view before coming down to details. There

are only four leading propositions necessary for the men-

suration of the circle and the determination of the value

of 7r. These are as follows: (1) The inscribing of a reg-

ular hexagon, or any other regular polygon of which the

side is easily computed in terms of the radius. We may
start with a square, for example, but this is not so good

as the hexagon because its side is incommensurable with

the radius, and its perimeter is not as near the circumfer-

ence. (2) The perimeters of similar regular polygons are

proportional to their radii, and their areas to the squares

of the radii. It is now necessary to state, in the form of

a postulate if desired, that the circle is the limit of regu-

lar inscribed and circumscribed polygons as the number

of sides increases indefinitely, and hence that (2) holds

for circles. (3) The proposition relating to the area of a

regular polygon, and the resulting proposition relating

to the circle. (4) Given the side of a regular inscribed

polygon, to find the side of a regular inscribed polygon

of double the number of sides. It will thus be seen that

if we were merely desirous of approximating the value

of 7r, and of finding the two formulas c—^lirr and a — Trr2
,

we should need only four propositions in this book upon

which to base our work. It is also apparent that even if

the incommensurable cases are generally omitted, the

notion of limit is needed at this time, and that it must

briefly be reviewed before proceeding further.
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There is, however, a much more worthy interest than

the mere mensuration of the circle, namely, the construc-

tion of such polygons as can readily be formed by the use

of compasses and straightedge alone. The pleasure of con-

structing such figures and of proving that the construc-

tion is correct is of itself sufficient justification for the

work. As to the use of such figures in geometric design,

some discussion will be offered at the close of this chapter.

The first few propositions include those that lead up

to the mensuration of the circle. After they are proved

it is assumed that the circle is the limit of the regular

inscribed and circumscribed polygons as the number of

sides increases indefinitely. This may often be proved

with some approach to rigor by a few members of an

elementary class, but it is the experience of teachers that

the proof is too difficult for most beginners, and so the

assumption is usually made in the form of an unproved

theorem.

The following are some of the leading propositions of

this book

:

Theorem. Two circumferences have the same ratio as

their radii.

This leads to defining the ratio of the circumference

to the diameter as it. Although this is a Greek letter,

it was not used by the Greeks to represent this ratio.

Indeed, it was not until 170G that an English writer,

William Jones, in his " Synopsis Palmariorum Math-

eseos," used it in this way, it being the initial letter of

the Greek word for "periphery." After establishing the

properties that c = 2 7rr, and a = 7rr2, the textbooks fol-

low the Greek custom and proceed to show how to

inscribe and circumscribe various regular polygons, the

purpose being to use these in computing the approximate
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numerical value of tt. Of these regular polygons two

are of special interest, and these will now be considered.

Pkoblem. To inscribe a regular hexagon in a circle.

That the side of a regular inscribed hexagon equals

the radius must have been recognized very early. The
common divisions of the circle in ancient art are into

four, six, and eight equal parts. No draftsman could

have worked with a pair of compasses without quickly

learning how to effect these divisions, and that compasses

were early used is attested by the specimens of these

instruments often seen in museums. There is a tradition

that the ancient Babylonians considered the circle of the

year as made up of 360 days, whence they took the circle

as composed of 360 steps or grades (degrees). This tradi-

tion is without historic foundation, however, there being

no authority in the inscriptions for this assumption of the

360-division by the Babylonians, who seem rather to have

preferred 8, 12, 120, 240, and 480 as their division num-

bers. The story of 360° in the Babylonian circle seems to

start with Achilles Tatius, an Alexandrian grammarian

of the second or third century A.D. It is possible, how-

ever, that the Babylonians got their favorite number 60

(as in 60 seconds make a minute, 60 minutes make an

hour or degree) from the hexagon in a circle (J of

360°= 60°), although the probabilities seem to be that

there is no such connection. 1

The applications of this problem to mensuration are

numerous. The fact that we may use for tiles on a

floor three regular polygons— the triangle, square, and

hexagon— is noteworthy, a fact that Proclus tells us

was recognized by Pythagoras. The measurement of

1 Bosanquet and Sayre, "The Babylonian Astronomy," Monthly

Notices of the Royal Asiatic Society, Vol. XL, p. 108.
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the regular hexagon, given one side, may be used in

computing sections of hexagonal columns, in finding

areas of flower beds, and in other similar cases.

This review of the names of the polygons offers an

opportunity to impress their etymology again on the

mind. In this case, for example, we have " hexagon "

from the Greek words for " six " and " angle."

Problem. To inscribe a regular decagon in a given circle.

Euclid states the problem thus: To construct an isos-

celes triangle having each of the angles at the base double

of the remaining one. This makes each base angle 72° and

the vertical angle 36°, the latter being the central angle

of a regular decagon,— essentially our present method.

This proposition seems undoubtedly due to the Py-

thagoreans, as tradition has always asserted. Proclus

tells us that Pythagoras discovered " the construction of

the cosmic figures," or the five regular polyhedrons, and

one of these (the dodecahedron) involves the construc-

tion of the regular pentagon.

Iamblichus (ca. 325 a.d.) tells us that Hippasus, a

Pythagorean, was said to have been drowned for daring

to claim credit for the construction of the regular dodec-

ahedron, when by the rules of the brotherhood all credit

should have been assigned to Pythagoras.

If a regular polygon of s sides can be inscribed, we may
bisect the central angles, and therefore inscribe one of 2 s

sides, and then of 4 s sides, and then of 8 s sides, and in

general of 2n
s sides. This includes the case of s = 2 and

n = 0, for we can inscribe a regular polygon of two sides,

2(2 — 2)
the angles being, by the usual formula, -= 0,

although, of course, we never think of two equal and

coincident lines as forming what we might call a digon.
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We therefore have the following regular polygons

:

From the equilateral triangle, regular polygons

of 2* -3 sides;

From the square, regular polygons of 2U
sides

;

From the regular pentagon, regular polygons of

2n
• 5 sides

;

From the regular pentedecagon, regular polygons

of 2" 15 sides.

This gives us, for successive values of n, the following

regular polygons of less than 100 sides:

From 2" -3, 3, 6, 12, 24, 48, 96;

From 2% 2, 4, 8, 16, 32, 64;

From 2" -5, 5, 10, 20, 40, 80;

From 2* -15, 15, 30, 60.

Gauss (1777-1855), a celebrated German mathemati-

cian, proved (in 1796) that it is possible also to inscribe a

regular polygon of 17 sides, and

hence polygons of 2n
• 17 sides,

or 17, 34, 68, • • •, sides, and also

3-17=51 and 5-17=85 sides,

by the use of the compasses

and straightedge, but the proof

is not adapted to elementary

geometry.

In connection with the study

of the regular polygons some

interest attaches to the refer-

ence to various forms of deco-

rative design. The mosaic floor,

parquetry, Gothic windows, and patterns of various

kinds often involve the regular figures. If the teacher

Roman Mosaic found at

Pompeii
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•.V-'JMr'J,**,*'..
Mosaic from Damascus

uses such materia], care should be taken to exemplify

good art. For example, the equilateral triangle and its

relation to the regular hex-

agon is shown in the pic-

ture of an ancient Roman
mosaic floor on page 274. 1

In the next illustration

some characteristic Moor-

ish mosaic work appears,

in which it will be seen

that the basal figure is

the square, although at

first sight this would not seem to be the case.2 This is

followed by a beautiful

Byzantine mosaic, the

original of which was

in five colors of marble.

Here it will be seen

that the equilateral tri-

angle and the regular

hexagon are the basal

figures, and a few of the

properties of these poly-

gons might be derived

from the study of such

a design. In the Ara-

bic pattern on page 276

the dodecagon appears

as the basis, and the re-

markable powers of the Arab designer are shown in the
use of symmetry without employing regular figures.

1 This and the three illustrations following are from Kolb, loc. cit.
2 This was in five colors of marble.

AA I AA * AA
T A VT. I AA

VA^a\ T AA Ti i i i
A w A w A «r AaaTaa aaTaa

mm WmTV A WW A VT AA AA A
kA ft i m
A VA V ± -A
aaJaaXaa, T AA

A A A"
Mosaic fkom an Ancient

Byzantine Church
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Problem. Given the side and the radius of a regular

inscribed polygon, to find the side of the regular inscribed

polygon of double the number of sides.

The object of this proposition is, of course, to prepare

the way for finding the perimeter of a polygon of 2 n

sides, knowing that of n

sides. The Greek plan was

generally to use both an

inscribed and a circum-

scribed polygon, thus ap-

proaching the circle as a

limit both from without

and within. This is more

conclusive from the ultra-

scientific point of view, but

it is, if anything, less con-

clusive to a beginner, be-

cause he does not so readily

follow the proof. The plan of using the two polygons was

carried out by Archimedes of Syracuse (287-212 B.C.)

in his famous method of approximating the value of 7r,

although before him Antiphon (fifth century B.C.) had

inscribed a square (or equilateral triangle) as a basis for

the work, and Bryson (his contemporary) had attacked

the problem by circumscribing as well as inscribing a

regular polygon.

Problem. To find the numerical value of the ratio of

the circumference of a circle to its diameter.

As already stated, the usual plan of the textbooks

is in part the method followed by Archimedes. It is

possible to start with any regular polygon of which

the side can conveniently be found in terms of the

radius. In particular we might begin with an inscribed

Arabic Pattern
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square instead of a regular hexagon. In this case we
should have

* = 1.414 •
•

4

jth of Side Perimeter

1.41 5.66

0.72 5.76V2 - V4 - 1.4142

a

and so on.

It is a little easier to start with the hexagon, how-

ever, for we are already nearer the circle, and the side

and perimeter are both commensurable with the radius.

It is not, of course, intended that pupils should make

the long numerical calculations. They may be required

to compute s
12

and possibly s
24

, but aside from this they

are expected merely to know the process.

If it were possible to find the value of it exactly, we
could find the circumference exactly in terms of the

radius, since c = 2 irr. If we could find the circumfer-

ence exactly, we could find the area exactly, since a = ttt2.

If we could find the area exactly in this form, it times a

square, we should have a rectangle, and it is easy to con-

struct a square equivalent to any rectangle. Therefore, if

we could find the value of it exactly, we could construct a

square with area equivalent to the area of the circle ; in

other words, we could "square the circle." We could also,

as already stated, construct a straight line equivalent to

the circumference ; in other words, we could "rectify the

circumference." These two problems have attracted the

attention of the world for over two thousand years, .but

on account of their interrelation they are usually spoken

of as a single problem, " to square the circle."

Since we can construct Va by means of the straight-

edge and compasses, it would be possible for us to square

the circle if we could express it by a finite number of

square roots. Conversely, every geometric construction
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reduces to the intersection of two straight lines, of

a straight line and a circle, or of two circles, and is

therefore equivalent to a rational operation or to the

extracting of a square root. Hence a geometric con-

struction cannot be effected by the straightedge and

compasses unless it is equivalent to a series of rational

operations or to the extracting of a finite number of

square roots. It wras proved by a German professor,

Lindemann, in 1882, that it cannot be expressed as an

algebraic number, that is, as the root of an equation

with rational coefficients, and hence it cannot be found

by the above operations, and, furthermore, that the solu-

tion of this famous problem is impossible by elementary

geometry. 1

It should also be pointed out to the student that for

many practical purposes one of the limits of it stated

by Archimedes, namely, 3i, is sufficient. For more

accurate work 3.1416 is usually a satisfactory approxi-

mation. Indeed, the late Professor Newcomb stated that

"ten decimal places are sufficient to give the circum-

ference of the earth to the fraction of an inch, and thirty

decimal places would give the circumference of the

whole visible universe to a quantity imperceptible with

the most powerful microscope."

Probably the earliest approximation of the value of

7r was 3. This appears very commonly in antiquity, as

in 1 Kings vii, 23, and 2 Chronicles iv, 2. In the Ahmes
papyrus (ra. 1700 B.C.) there is a rule for finding the

area of the circle, expressed in modern symbols as (|)
2

c?
2
,

which makes it == -2
g
5
y
6
-, or 3.1604

1 The proof is too involved to be given here. The writer has set it

forth in a chapter on the transcendency of tt in a work soon to be pub-

lished by Professor Young of The University of Chicago.
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Archimedes, using a plan somewhat similar to ours, found

that 7r lay between 3| and 31£. Ptolemy, the great Greek

astronomer, expressed the value as Sj^q, or 3.14166

The fact that Ptolemy divided his diameter into 120 units

and his circumference into 360 units probably shows, how-

ever, the influence of the ancient value 3.

In India an approximate value appears in a certain poem
written before the Christian era, but the date is uncertain.

About 500 A.D. Aryabhatta (or possibly a later writer of

the same name) gave the value ||-|||, or 3.1416. Brah-

magupta, another Hindu (born 598 A.D.), gave VlO, and

this also appears in the writings of the Chinese mathema-

tician Chang Heng (78-139 A.D.). A little later in China,

Wang Fan (229-267) gave 142-45, or 3.1555 • • •; and

one of his contemporaries, Lui Hui, gave 157 -f- 50, or

3.14. In the fifth century Ch'ung-chih gave as the limits

of 7T, 3.1415927 and 3.1415926, from which he inferred

that ?
y
2
- and ||| wrere good approximations, although he

does not state how he came to this conclusion.

In the Middle Ages the greatest mathematician of

Italy, Leonardo Fibonacci, or Leonardo of Pisa (about

1200 A.D.), found as limits 3.1427 • and 3.1410 •••.

About 1600 the Chinese value -||| was rediscovered by

Adriaen Anthonisz (1527-1607), being published by his

son, who is known as Metius (1571-1635), in the year

1625. About the same period the French mathematician

Vieta (1540-1603) found the value of tt to 9 decimal

places, and Adriaen van Rooman (1561-1615) carried

it to 17 decimal places, and Ludolph van Ceulen (1540-

1610) to 35 decimal places. It was carried to 140 decimal

places by Georg Vega (died in 1793), to 200 by Zacharias

Dase (died in 1844), to 500 by Richter (died in 1854),

and more recently by Shanks to 707 decimal places.
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There have been many interesting formulas for 77-,

among them being the following:

tt_2 2 4 4 6 6 8 8

2~1 V3V5V7 V"'

7T 2 + 9

(Wallis, 1616-1703)

2 + 25

2 +49
2 + • • -. (Brouncker, 1620-1684)

| = 1-| + | — |+- - (Gregory, 1638-1675)

1- /i

6
" \3

IT

2

it _ log i

(Bernoulli)

1 +i-i+i--U 1

2V3 5 7 11 13 17 19 '

thus connecting the primes.

16 22 3 2 4 2 52 62 7 2 8 2 9 2

4 4 2-3-4 4-5-6 6-7-8

; 7r
3~

\1 • 3
+

3 • 6
+

6 • 10
+ " 7

'

= 2»\2- \2 +

Students of elementary geometry are not prepared

to appreciate it, but teachers will be interested in the

remarkable formula discovered by Euler (1707-1783),

the great Swiss mathematician, namely, 1 + e
iir = 0. In

this relation are included the five most interesting quan-

tities in mathematics,— zero, the unit, the base of the

so-called Napierian logarithms, i = V— 1, and it. It was

by means of this relation that the transcendence of
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e was proved by the French mathematician Hermite,

and the transcendence of it by the German Lindemann.

There should be introduced

at this time, if it has not al-

ready been done, the proposi-

tion of the lunes of Hippocrates

(ca. 470 B.C.), who proved a

theorem that asserts, in some-

what more general form, that if three semicircles be

described on the sides of a right triangle as diame-

ters, as shown, the lunes L + l! are

together equivalent to the triangle T.

In the use of the circle in design

one of the simplest forms suggested by

Book V is the trefoil (three-leaf), as

here shown, with the necessary con-

struction lines. This is a very common
ornament in architecture, both with rounded ends and

with the ends slightly pointed.

The trefoil is closely connected with hexagonal de-

signs, since the regular hexagon is formed from the

inscribed equilateral triangle by doubling the number of

sides. The following are designs that are easily made:

It is not very profitable, because it is manifestly un-

real, to measure the parts of such figures, but it offers

plenty of practice in numerical work.
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Choir of Lincoln Cathedral

thedrals. For example, this

picture of the noble win-

dow in the choir of Lincoln

Cathedral shows the use of

the square, hexagon, and

pentagon. In the porch of

the same cathedral, shown

in the next illustration, the

architect has made use of the

triangle, square, and penta-

gon in planning his orna-

mental stonework. It is

possible to add to the work

in pure geometry some work

in the mensuration of the

curvilinear figures shown in

these designs. This form of

mensuration is not of much
value, however, since it

In the illustrations of

the Gothic windows given

in Chapter XV only the

square and circle were gen-

erally involved. Teachers

who feel it necessary or

advisable to go outside the

regular work of geometry

for the purpose of increas-

ing the pupil's interest or

of training his hand in the

drawing of figures will find

plenty of designs given in

any pictures of Gothic ca-

Porch of Lincoln Cathedral



LEADING PROPOSITIONS OF BOOK V 283

Gothic Designs employing Circles and Bisected Angles

places before the pupil a problem that he sees at once

is fictitious, and that has no human interest.
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Gothic Designs employing Circles and Squares

The designs given on page 283 involve chiefly the

square as a basis, but it will be seen from one of the
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Gothic Designs employing Circles and the Equilateral
Triangle

figures that the equilateral triangle and the hexagon also

enter. The possibilities of endless variation of a single de-

sign are shown in the illustration on page 284, the basis
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Gothic Designs employing Circles and the Regular Hexagon

iii this case being the square. The variations in the use

of the triangle and hexagon have been the object of

study of many designers of Gothic windows, and some
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examples of these forms are shown on page 285. In more

simple form this ringing of the changes on elementary

figures is shown on page 286. Some teachers have used

color work with such designs for the purpose of increas-

ing the interest of their pu-

pils, but the danger of thus

using the time with no se-

rious end in view will be

apparent.

In the matter of the mensu-

ration of the circle the annexed

design has some interest. The

figure is not uncommon in

decoration, and it is interest-

ing to show, as a matter of pure geometry, that the area

of the circle is divided into three equal portions by means

of the four interior semicircles.

An important application of the formula a = irr
1

is

seen in the area of the annulus, or ring, the formula be-

ing a = irr
2— irr

n = it (r
2— r

/2

) = it (r + /•') (r — r'). It is

used in finding the area of the cross section

of pipes, and this is needed when we Avish to

compute the volume of the iron used.

Another excellent application is that of

finding the area of the surface of a cylinder,

there being no reason why such simple cases from solid

geometry should not furnish working material for plane

geometry, particularly as they have already been met

by the pupils in arithmetic.

A little problem that always has some interest for

pupils is one that Napoleon is said to have suggested to

his staff on his voyage to Egypt: To divide a circle into

four equal parts by the use of circles alone.
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Here the circles B are tangent to the circle A at the points of

division. Furthermore, considering areas, and taking r as the

radius of A, we have A = wr2, and

B = 7r(-
)

. Hence B = \A, or the

sum of the areas of the four circles

B equals the area of A. Hence the

four D's must equal the four C"s,

and D = C. The rest of the argu-

ment is evident. The problem has

some interest to pupils aside from

the original question suggested by

Napoleon.

At the close of plane geom-

etry teachers may find it helpful to have the class make

a list of the propositions that are actually used in proving

other propositions, and to have it appear what ones are

proved by them. This forms a kind of genealogical tree

that serves to fix the parent propositions in mind. Such

a work may also be carried on at the close of each book,

if desired. It should be understood, however, that certain

propositions are used in the exercises, even though they

are not referred to in subsequent propositions, so that

their omission must not be construed to mean that they

are not important.

An exercise of distinctly less value is the classification

of the definitions. For example, the classification of poly-

gons or of quadrilaterals, once so popular in textbook

making, has generally been abandoned as tending to

create or perpetuate unnecessary terms. Such work is

therefore not recommended.



CHAPTER XIX

THE LEADING PROPOSITIONS OF BOOK VI

There have been numerous suggestions with respect

to solid geometry, to the effect that it should be more

closely connected with plane geometry. The attempt

has been made, notably by Meray in France and de Paolis

in Italy, to treat the corresponding propositions of plane

and solid geometry together; as, for example, those re-

lating to parallelograms and parallelepipeds, and those

relating to plane and spherical triangles. Whatever the

merits of this plan, it is not feasible in America at present,

partly because of the nature of the college-entrance re-

quirements. While it is true that to a boy or girl a solid

is more concrete than a plane, it is not true that a geo-

metric solid is more concrete than a geometric plane.

Just as the world developed its solid geometry, as a

science, long after it had developed its plane geometry,

so the human mind grasps the ideas of plane figures

earlier than those of the geometric solid.

There is, however, every reason for referring to the

corresponding proposition of plane geometry when any

given proposition of solid geometry is under considera-

tion, and frequent references of this kind will be made
in speaking of the propositions in this and the two suc-

ceeding chapters. Such reference has value in the

apperception of the various laws of solid geometry, and

it also adds an interest to the subject and creates some
289
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approach to power in the discovery of new facts in rela-

tion to figures of three dimensions.

The introduction to solid geometry should be made
slowly. The pupil has been accustomed to seeing only

plane figures, and therefore the drawing of a solid figure

in the flat is confusing. The best Avay for the teacher to

anticipate this difficulty is to have a few pieces of card-

board, a few knitting needles filed to sharp points, a

pine board about a foot square, and some small corks.

With the cardboard he can illustrate planes, whether

alone, intersecting obliquely or at right angles, or parallel,

and he can easily illustrate the figures given in the text-

book in use. There are models of this kind for sale, but

the simple ones made in a few seconds by the teacher or

the pupil have much more meaning. The knitting needles

may be stuck in the board to illustrate perpendicular or

oblique lines, and if two or more are to meet in a point,

they may be held together by sticking them in one of

the small corks. Such homely apparatus, costing almost

nothing, to be put together in class, seems much more

real and is much more satisfactory than the German
models. 1

An extensive use of models is, however, unwise. The

pupil must learn very early how to visualize a solid from

the flat outline picture, just as a builder or a mechanic

learns to read his working drawings. To have a model

for each proposition, or even to have a photograph or a

stereoscopic picture, is a very poor educational policy.

A textbook may properly illustrate a few propositions by

photographic aids, but after that the pupil should use

1 These may be purchased through the Leipziger Lehrmittelan-

stalt, Leipzig, Germany, which will send catalogues to intending

buyers.
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the kind of figures that he must meet in his mathematical

work. A child should not be kept in a perambulator all

his life,— he must learn to walk if he is to be strong and

grow to maturity ; and it is so with a pupil in the use of

models hi solid geometry. 1

The case is somewhat similar with respect to colored

crayons. They have their value and their proper place,

but they also have their strict limitations. It is difficult

to keep their use within bounds
;
pupils come to use them

to make pleasing pictures, and teachers unconsciously fall

into the same habit. The value of colored crayons is two-

fold : (1) they sometimes make two planes stand out

more clearly, or they serve to differentiate some line that

is under consideration from others that are not
; (2) they

enable a class to follow a demonstration more easily by

hearing of " the red plane perpendicular to the blue one,"

instead of "the plane MNperpendicular to the plane PQ"
l>ut it should always be borne in mind that in practical

work we do not have colored ink or colored pencils com-

monly at hand, nor do we generally have colored crayons.

Pupils should therefore become accustomed to the pen-

cil and the white crayon as the regulation tools, and in

general they should use them. The figures may not be

as striking, but they are more quickly made and they

are more practical.

The definition of "plane" has already been discussed

in Chapter XII, and the other definitions of Book VI are

not of enough interest to call for special remark. The
axioms are the same as in plane geometry, but there is

1 An excellent set of stereoscopic views of the figures of solid

geometry, prepared by E. M. Langley of Bedford, England, is pub-
lished by Underwood & Underwood, New York. Such a set may
properly have place in a school library or in a classroom in geometry,

to be used when it seems advantageous.
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at least one postulate that needs to be added, although

it would be possible to state various analogues of the

postulates of plane geometry if we cared unnecessarily

to enlarge the number.

The most important postulate of solid geometry is as

follows : One plane, and only one, can be j)assed through

two intersecting straight lines. This is easily illustrated,

as in most textbooks, as also are three important corol-

laries derived from it:

1. A straight line and a point not in the line deter-

mine a plane. Of course this may be made the postulate,

as may also the next one, the postulate being placed

among the corollaries, but the arrangement here adopted

is probably the most satisfactory for educational purposes.

2. Three points not in a straight line determine a plane.

The common question as to why a three-legged stool

stands firmly, while a four-legged table often does not,

will add some interest at this point.

3. Two parallel lines determine a plane. This requires

a slight but informal proof to show that it properly fol-

lows as a corollary from the postulate, but a single sen-

tence suffices.

While studying this book questions of the following

nature may arise with an advanced class, or may be

suggested to those who have had higher algebra:

How many straight lines are in general (that is, at the

most) determined by n points in space ? Two points

determine 1 line, a third point adds (in general, in

all these cases) 2 more, a fourth point adds 3 more,

and an nt\\ point n — 1 more. Hence the maximum is

l + 2 + 3 + ...+(^-l), or
n(jl"7 V>

, which the pupil

will understand if he has studied arithmetical progression.
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The maximum number of intersection points of n straight

71 (it — 1^)

lines in the same plane is also v -•

How many straight lines are in general determined by

n planes ? The answer is the same, ^ —- •

How many planes are in general determined by n

points in space? Here the answer is 1 + 3 + 6 + 10 +
0-2)0-1) n(n-l)(n-2) m .

... + ^ 4r- — ' or —^ ^—^—"• The same
2 1x2x3

number of points is determined by n planes.

Theorem. If two planes cut each other, their inter-

section is a straight line.

Among the simple illustrations are the back edges of

the pages of a book, the corners of the room, and the

simple test as to whether the edge of a card is straight

by testing it on a plane. It is well to call attention to

the fact that if two intersecting straight lines move
parallel to their original position, and so that their inter-

section rests on a straight line not in the plane of those

lines, the figure generated will be that of this proposi-

tion. In general, if we cut through any figure of solid

geometry in some particular way, we are liable to get

the figure of a proposition in plane geometry, as will

frequently be seen.

Theorem. If a straight line is perpendicular to each

of two other straight lines at their point of intersection, it

is perpendicular to the plane of the two lines.

If students have trouble in visualizing the figure in

three dimensions, some knitting needles through a piece

of cardboard will make it clear. Teachers should call

attention to the simple device for determining if a rod is

perpendicular to a board (or a pipe to a floor, ceiling, or
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wall), by testing it twice, only, with a carpenter's square.

Similarly, it may be asked of a class, How shall we test

to see if the corner (line) of a room is perpendicular to

the floor, or if the edge of a box is perpendicular to one

of the sides ?

In some elementary and in most higher geometries the

perpendicular is called a normal to the plane.

THEOREM. All the perpendiculars that can be draivn to

a straight Vine at a given point lie in a plane tvhich is

perpendicular to the line at the given point.

Thus the hands of a clock pass through a plane as the

hands revolve, if they are, as is usual, perpendicular to

the axis ; and the same is true of the spokes of a wheel,

and of a string with a stone attached, swung as rapidly as

possible about a boy's arm as an axis. A clock pendulum

too swings in a plane, as does the lever in a pair of scales.

Theorem. Through a given point within or without a

plane there can be one perpendicular to a given plane, and

only one.

This theorem is better stated to a class as two

theorems.

Tims a plumb line hanging from a point in the ceil-

ing, without swinging, determines one definite point in

the floor ; and, conversely, if it touches a given point in

the floor, it must hang from one definite point in the ceil-

ing. It should be noticed that if we cut through this

figure, on the perpendicular line, Ave shall have the fig-

ure of the corresponding proposition in plane geometry,

namely, that there can be, under similar circumstances,

only one perpendicular to a line.

Theorem. Oblique lines draivn from a point to a plane,

meeting the plane at equal distances from the foot of the

perpe7i(h'r/</<(r, are equal, etc.
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There is no objection to speaking of a right circular

cone in connection with this proposition, and saying

that the slant height is thus proved to be constant. The
usual corollary, that if the obliques are equal they meet
the plane in a circle, offers a new plan of drawing a

circle. A plumb line that is a little too long to reach

the floor will, if swung so as just to touch the floor,

describe a circle. A 10-foot pole standing in a 9-foot

room will, if it moves so as to touch constantly a fixed

point on either the floor or the ceiling, describe a circle

on the ceiling or floor respectively.

One of the corollaries states that the locus of points

in space equidistant from the extremities of a straight

line is the plane perpendicular to this line at its middle

point. This has been taken by some writers as the defi-

nition of a plane, but it is too abstract to be usable. It

is advisable to cut through the figure along the given

straight line, and see that we come back to the corre-

sponding proposition in plane

geometry.

A good many ships have

been saved from being wrecked

by the principle involved in

this proposition.

If a dangerous shoal A is near

a headland //, the angle HAX is

measured and is put down upon
the charts as the " vertical danger angle." Ships coining near the

headland are careful to keep far enough away, say at S, so that
the angle HSX shall be less than this danger angle. They are

then sure that they will avoid the dangerous shoal.

Related to this proposition is the problem of sup-

porting a tall iron smokestack by wire stays. Evidently
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three stays are needed, and they are preferably placed

at the vertices of an equilateral triangle, the smoke-

stack being in the center. The practical problem may
be given of locating the vertices of the triangle and of

finding the length of each stay.

Theorem. Two straight lines perpendicular to the same

plane are parallel.

Here again we may cut through the figure by the plane

of the two parallels, and we get the figure of plane geom-

etry relating to lines that are perpendicular to the same

line. The proposition shows that the opposite corners of a

room are parallel, and that therefore they lie in the same

plane, or are coplanar, as is said in higher geometry.

It is interesting to a class to have attention called

to the corollary that if two straight lines are parallel to

a third straight line, they are parallel to each other ; and

to have the question asked why it is necessary to prove

this when the same thing was proved in plane geometry.

In case the reason is not clear, let some student try to

apply the proof used in plane geometry.

Theorem. Tivo planes perpendicular to the same

straight line are parallel.

Besides calling attention to the corresponding propo-

sition of plane geometry, it is well now to speak of the

fact that in propositions involving planes and lines we
may often interchange these words. For example, using

" line " for " straight line," for brevity, we have :

One line does not determine One plane does not deter-

a plane. mine a line.

Two intersecting lines deter- Two intersecting planes de-

mine a plane. termine a line.

Two lines perpendicular to Two planes perpendicular to

a plane are parallel. a line are parallel.
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If one of two parallel lines If one of two parallel planes

is perpendicular to a plane, the is perpendicular to a line, the

other is also perpendicular to other is also perpendicular to

the plane. the line.

If two lines are parallel, every If two planes are parallel,

plane containing one of the lines every line in one of the plants

is parallel to the other line. is parallel to the other plane.

Theorem. The intersections of two parallel planes by

a third plane are parallel lines.

Thus one of the edges of a box is parallel to the next

succeeding edge if the opposite faces are parallel, and

in sawing diagonally through an ordinary board (with

rectangular cross section) the section is a parallelogram.

THEOREM. A straight line perpendicular to one of tivo

parallel planes is perpendicular to the other also.

Notice (1) the corresponding proposition in plane

geometry
; (2) the proposition that results from inter-

changing " plane " and (straight) " line."

Theorem. If two intersecting straight lines are each

parallel to a jilane, the plane of these lines is parallel to

that plane.

Interchanging "plane" and (straight) " line," we have :

If two intersecting planes are each parallel to a line, the

line of (intersection of) these planes is parallel to that

line. Is this true ?

THEOREM. If two angles not in the same plane have

their sides respectively parallel and lying on the same side

of the straight line joining their vertices, they are equal

and their planes are parallel.

Questions like the following may be asked in con-

nection with the proposition : What is the correspond-

ing proposition in plane geometry ? Why do we need

another proof here ? Try the plane-geometry proof here.
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Theorem. If two straight lines are cut by three parallel

planes, their corresponding segments are proportional.

Here, again, it is desirable to ask for the correspond-

ing proposition of plane geometry, and to ask why the

proof of that proposition will not suffice for this one.

The usual figure may be varied in an interesting manner

by having the two lines meet on one of the planes, or

outside the planes, or by having them parallel, in which

cases the proof of the plane-geometry proposition holds

here. This proposition is not of great importance from

the practical standpoint, and it is omitted from some of

the standard syllabi at present, although included in

certain others. It is easy, however, to frame some inter-

esting questions depending upon it for their answers,

such as the following : In a gymnasium swimming tank

the water is 4 feet deep and the ceiling is 8 feet above

the surface of the water. A pole 15 feet long touches the

ceiling and the bottom of the tank. Required to know
what length of the pole is in the water.

At this point in Book VI it is customary to introduce

the dihedral angle. The word " dihedral " is from the

Greek, di- meaning " two," and hedra meaning " seat."

We have the root hedra also in " trihedral " (three-

seated), " polyhedral" (many-seated), and " cathedral"

(a church having a bishop's seat). The word is also, but

less properly, spelled without the A, " diedral," a spell-

ing not favored by modern usage. It is not necessary

to dwell at length upon the dihedral angle, except to

show the analogy between it and the plane angle. A
few illustrations, as of an open book, the wall and floor

of a room, and a swinging door, serve to make the con-

cept clear, while a plane at right angles to the edge

shows the measuring plane angle. So manifest is this
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relationship between the dihedral angle and its measur-

ing plane angle that some teachers omit the proposition

that two dihedral angles have the same ratio as their

plane angles.

Theorem. If two planes are perpendicular to each

other, a straight line drawn in one of them perpendicular

to their intersection is perpendicular to the other.

This and the related propositions allow of numerous

illustrations taken from the schoolroom, as of door edges

being perpendicular to the floor. The pretended appli-

cations of these propositions are usually fictitious, and

the propositions are of value chiefly for their own inter-

est and because they are needed in subsequent proofs.

Theorem. The locus of a point equidistant from the

faces of a dihedral angle is the plane bisecting the angle.

By changing " plane " to " line," and by making other

obvious changes to correspond, this reduces to the anal-

ogous proposition of plane geometry. The figure formed

by the plane perpendicular to the edge is also the figure

of that analogous proposition. This at once suggests that

there are two planes in the locus, provided the planes of

the dihedral angle are taken as indefinite in extent, and

that these planes are perpendicular to each other. It

may interest some of the pupils to draw this general

figure, analogous to the one in plane geometry.

Theorem. The projection of a straight line not perpen-

dicular to a plane upon that plane is a straight line.

In higher mathematics it would simply be said that

the projection is a straight line, the special case of the

projection of a perpendicular being considered as a

line-segment of zero length. There is no advantage,

however, of bringing in zero and infinity in the course

in elementary geometry. The legitimate reason for the
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modern use of these terms is seldom understood by

beginners.

This subject of projection (Latin pro-, " forth," and

jacere, "to throw") is extensively used in modern mathe-

matics and also in the elementary work of the draftsman,

and it will be referred to a little later. At this time, how-

ever, it is well to call attention to the fact that the projec-

tion of a straight line on a plane is a straight line or a

point ; the projection of a curve may be a curve or it may
be straight ; the projection of a point is a point ; and the

projection of a plane (which is easily understood with-

out defining it) may be a surface or it may be a straight

line. An artisan represents a solid by drawing its pro-

jection upon two planes at right angles to each other,

and a map maker (cartographer) represents the surface

of the earth by projecting it upon a plane. A photo-

graph of the class is merely the projection of the class

upon a photographic plate (plane), and when we draw a

figure in solid geometry, we merely project the solid upon

the plane of the paper.

There are other projections than those formed by lines

that are perpendicular to the plane. The lines may be

oblique to the plane, and this is the case with most

projections. A photograph, for example, is not formed

by lines perpendicular to a plane, for they all converge

in the camera. If the lines of projection are all per-

pendicular to the plane, the projection is said to be ortho-

graphic, from the Greek ortho- (straight) and graphein

(to draw). A good example of orthographic projection

may be seen in the shadow cast by an object upon a piece

of paper that is held perpendicular to the sun's rays. A
good example of oblique projection is a shadow on the

floor of the schoolroom.
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Theorem. Between two straight lines not in the same

plane there can be one common perpendicular, and only

one.

The usual corollary states that this perpendicular is

the shortest line joining them. It is interesting to com-

pare this with the case of two lines in the same plane.

If they are parallel, there may be any number of common
perpendiculars. If they intersect, there is still a common
perpendicular, but this can hardly be said to be between

them, except for its zero segment.

There are many simple illustrations of this case. For

example, what is the shortest line between any given

edge of the ceiling and the various edges of the floor of

the schoolroom ? If two galleries in a mine are to be

connected by an air shaft, how shall it be planned so as

to save labor ? Make a drawing of the plan.

At this point the polyhedral angle is introduced. The

word is from the Greek polys (many) and hedra (seat).

Students have more difficulty in grasping the meaning

of the size of a polyhedral angle than is the case with

dihedral and plane angles. For this reason it is not good

policy to dwell much upon this subject unless the ques-

tion arises, since it is better understood when the re-

lation of the polyhedral angle and the spherical poly-

gon is met. Teachers will naturally see that just as we
may measure the plane angle by taking the ratio of

an arc to the whole circle, and of a dihedral angle by

taking the ratio of that part of the cylindric surface

that is cut out by the planes to the whole surface, so we
may measure a polyhedral angle by taking the ratio of

the spherical polygon to the whole spherical surface. It

should also be observed that just as we may have cross

polygons in a plane, so we may have spherical polygons
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that are similarly tangled, and that to these will corre-

spond polyhedral angles that are also cross, their repre-

sentation by drawings being too complicated for class

use.

The idea of symmetric solids may be illustrated by a

pair of gloves, all their parts being mutually equal but

arranged in opposite order. Our hands, feet, and ears

afford other illustrations of symmetric solids.

Theorem. The sum of the face angles of any convex

polyhedral angle is less than four right angles.

There are several interesting points of discussion in

connection with this proposition. For example, suppose

the vertex V to approach the plane that cuts the edges

in A, B, C, D, . . . , the edges continuing to pass through

these as fixed points. The sum of the angles about V
approaches what limit? On the other hand, suppose V
recedes indefinitely ; then the sum approaches what

limit ? Then what are the two limits of this sum ?

Suppose the polyhedral angle were concave, why would

the proof not hold ?



CHAPTER XX

THE LEADING PROPOSITIONS OF BOOK VII

Book VII relates to polyhedrons, cylinders, and cones.

It opens with the necessary definitions relating to poly-

hedrons, the etymology of the terms often proving

interesting and valuable when brought into the work

incidentally by the teacher. " Polyhedron " is from the

Greek polys (many) and hedra (seat). The Greek

plural, polyhedra, is used in early English works, but

" polyhedrons " is the form now more commonly seen in

America. " Prism " is from the Greek prisma (something

sawed, like a piece of wood sawed from a beam).

"Lateral" is from the Latin latus (side). "Parallele-

piped" is from the Greek parallelos (parallel) and

epipedon (a plane surface), from epi (on) and 2)e^on

(ground). By analogy to "parallelogram" the word
is often spelled " parallelopiped," but the best mathe-

matical works now adopt the etymological spelling

above given. " Truncate " is from the Latin truncare

(to cut off).

A few of the leading propositions are now considered.

Theorem. The lateral area of a prism is equal to the

product of a lateral edge by the perimeter of the right

section.

It should be noted that although some syllabi do not

give the proposition that parallel sections are congruent,

this is necessary for this proposition, because it shows
303
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that the right sections are all congruent and hence that

any one of them may be taken.

It is, of course, possible to construct a prism so oblique

and so low that a right section, that is, a section cutting

all the lateral edges at right angles, is impossible. In

this case the lateral faces must be extended, thus forming

what is called a prismatic space. This term may or may
not be introduced, depending upon the nature of the class.

This proposition is one of the most important in Book
VII, because it is the basis of the mensuration of the

cylinder as well as the prism. Practical applications are

easily suggested in connection with beams, corridors, and

prismatic columns, such as are often seen in school build-

ings. Most geometries supply sufficient material in this

line, however.

Theorem. An oblique prism is equivalent to a right

prism whose base is equal to a right section of the oblique

prism, and whose altitude is equal to a lateral edge of the

oblique prism.

This is a fundamental theorem leading up to the

mensuration of the prism. Attention should be called

to the analogous proposition in plane geometry relating

to the area of the parallelogram and rectangle, and to

the fact that if we cut through the solid figure by a

plane parallel to one of the lateral edges, the resulting

figure will be that of the proposition mentioned. As in

the preceding proposition, so in this case, there may be

a question raised that will make it helpful to introduce

the idea of prismatic space.

Theorem. The opposite lateralfaces of a parallelepiped

are congruent and parallel.

It is desirable to refer to the corresponding case in

plane geometry, and to note again that the figure is
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obtained by passing a plane through the parallelepiped

parallel to a lateral edge. The same may be said for the

proposition about the diagonal plane of a parallelepiped.

These two propositions are fundamental in the mensura-

tion of the prism.

Theorem. Tivo rectangular parallelepipeds are to each

other as the products of their three dimensions.

This leads at once to the corollary that the volume of

a rectangular parallelepiped equals the product of its

three dimensions, the fundamental law in the mensura-

tion of all solids. It is preceded by the proposition

asserting that rectangular parallelepipeds having con-

gruent bases are proportional to their altitudes. This

includes the incommensurable case, but this case may
be omitted.

The number of simple applications of this proposition

is practically unlimited. In all such cases it is advisable

to take a considerable number of numerical exercises in

order to fix in mind the real nature of the proposition.

Any good geometry furnishes a certain number of these

exercises.

The following is an interesting property of the rec-

tangular parallelepiped, often called the rectangular solid:

If the edges are a, b, and c, and the diagonal is d, then

(-) +(-) +(-) = 1- This property is easily proved by theW W W «2 + J2 +t.2

Pythagorean Theorem, for d2 = a2 +h2 + c2, whence = 1.

In case c = 0, this reduces to the Pythagorean Theorem. The
property is the fundamental one of solid analytic geometry.

Theorem. The volume of any parallelepiped is equal

to the product of its base by its altitude.

This is one of the few propositions in Book VII where

a model is of any advantage. It is easy to make one
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out of pasteboard, or to cut one from wood. If a wooden

one is made, it is advisable to take an oblique parallele-

piped and, by properly sawing it, to transform it into a

rectangular one instead of using three different solids.

On account of its awkward form, this figure is some-

times called the Devil's Coffin, but it is a name that it

would be well not to perpetuate.

Theorem. The volume of any prism is equal to the

product of its base by its altitude.

This is also one of the basal propositions of solid

geometry, and it has many applications in practical

mensuration. A first-class textbook will give a suf-

ficient list of problems involving numerical measure-

ment, to fix the law in mind. For outdoor work, involving

measurements near the school or within the knowledge

of the pupils, the following problem is a type

:

If this represents the cross section of a railway embankment
that is I feet long, h feet high, b feet wide at the bottom, and

b' feet wide at the top, find the number of

cubic feet in the embankment. Find the vol-

ume if I = 300, h = 8, b = 60, and b' = 28.

The mensuration of the volume of the

prism, including the rectangular paral-

lelepiped and cube, was known to the ancients. Euclid

was not concerned with practical measurement, so that

none of this part of geometry appears in his "Elements."

We find, however, in the papyrus of Ahmes, directions for

the measuring of bins, and the Egyptian builders, long

before his time, must have known the mensuration of

the rectangular parallelepiped. Among the Hindus, long

before the Christian era, rules were known for the con-

struction of altars, and among the Greeks the problem

of constructing a cube with twice the volume of a given



LEADING PROPOSITIONS OF BOOK VII 307

cube (the " duplication of the cube ") was attacked by

many mathematicians. The solution of this problem is

impossible by elementary geometry.

If e equals the edge of the given cube, then e3 is its volume

and 2 e3 is the volume of the required cube. Therefore the edge

of the required cube is e v2. Now if e is given, it is not possible

with the straightedge and compasses to construct a line equal to

e ^2, although it is easy to construct one equal to e v 2.

The study of the pyramid begins at this point. In

practical measurement we usually meet the regular

pyramid. It is, however, a simple matter to consider

the oblique pyramid as well, and in measuring volumes

we sometimes find these forms.

Theorem. The lateral area of a regular pyramid is

equal to half the product of its slant height by the perimeter

of its base.

This leads to the corollary concerning the lateral area

of the frustum of a regular pyramid. It should be

noticed that the regular pyramid may be considered as

a frustum with the upper base zero, and the proposition

as a special case under the corollary. It is also possible,

if we choose, to let the upper base of the frustum pass

through the vertex and cut the lateral edges above that

point, although this is too complicated for most pupils.

If this case is considered, it is well to bring in the gen-

eral idea of pyramidal space, the infinite space bounded

on several sides by the lateral faces of the pyramid.

This pyramidal space is double, extending on two sides

of the vertex.

Theorem. If a pyramid is cut by a plane parallel to

the base

:

1. The edges and altitude are divided proportionally.

2. The section is a polygon similar to the base.



308 THE TEACHING OF GEOMETRY

To get the analogous proposition of plane geometry,

pass a plane through the vertex so as to cut the base.

We shall then have the sides and altitude of the tri-

angle divided proportionally, and of course the section

will merely be a line-segment, and therefore it is similar

to the base line.

The cutting plane may pass through the vertex, or it

may cut the pyramidal space above the vertex. In either

case the proof is essentially the same.

Theorem. The volume of a triangularpyramid is equal

to one third of the product of its base by its altitude, and

this is also true of any pyramid.

This is stated as two theorems in all textbooks, and

properly so. It is explained to children who are study-

ing arithmetic by means of a hollow pyramid and a hol-

low prism of equal base and equal altitude. The pyramid

is filled with sand or grain, and the contents is poured

into the prism. This is repeated, and again repeated,

showing that the volume of the prism is three times the

volume of the pyramid. It sometimes varies the work
to show this to a class in geometry.

This proposition was first proved, so Archimedes as-

serts, by Eudoxus of Cnidus, famous as an astronomer,

geometer, physician, and lawgiver, born in humble cir-

cumstances about 407 B.C. He studied at Athens and in

Egypt, and founded a famous school of geometry at

Cyzicus. His discovery also extended to the volume of

the cone, and it was his work that gave the beginning

to the science of stereometry, the mensuration part of

solid geometry.

Theorem. The volume of the frustum of any pyramid

is equal to the sum of the volumes of three pyramids whose

common altitude is the altitude of the frustum, and whose
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bases are the lower base, the upper base, and the mean pro-

portional between the bases of the frustum.

Attention should be called to the fact that this formula

v = 1 a(b + b
r+ Vbb r

) applies to the pyramid by letting

b
f= 0, to the prism by letting b =? b

1

, and also to the paral-

lelepiped and cube, these being special forms of the prism.

This formula is, therefore, a very general one, relating to

all the polyhedrons that are commonlymet in mensuration.

Theorem. There cannot be more than five regular con-

vex polyhedrons.

Eudemus of Rhodes, one of the principal pupils of

Aristotle, in his history of geometry of which Proclus

preserves some fragments, tells us that Pythagoras

discovered the construction of the "mundane figures,"

meaning the five regular polyhedrons. Iamblichus speaks

of the discovery of the dodecahedron in these words

:

As to Hippasus, who was a Pythagorean, they say that he

perished in the sea on account of his impiety, inasmuch as he

boasted that he first divulged the knowledge of the sphere with

the twelve pentagons. Hippasus assumed the glory of the dis-

covery to himself, whereas everything belongs to Him, for thus

they designate Pythagoras, and do not call Him by name.

Iamblichus here refers to the dodecahedron inscribed

in the sphere. The Pythagoreans looked upon these five

solids as fundamental forms in the structure of the uni-

verse. In particular Plato tells us that they asserted

that the four elements of the real world were the tetra-

hedron, octahedron, icosahedron, and cube, and Plutarch

ascribes this doctrine to Pythagoras himself. Philolaus,

who lived in the fifth century B.C., held that the ele-

mentary nature of bodies depended on their form. The
tetrahedron was assigned to fire, the octahedron to air,

the icosahedron to water, and the cube to earth, it being
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asserted that the smallest constituent part of each of

these substances had the form here assigned to it.

Although Eudemus attributes all five to Pythagoras, it

is certain that the tetrahedron, cube, and octahedron

were known to the Egyptians, since they appear in their

architectural decorations. These solids were studied so

extensively in the school of Plato that Proclus also

speaks of them as the Platonic bodies, saying that

Euclid "proposed to himself the construction of the

so-called Platonic bodies as the final aim of his arrange-

ment of the 'Elements." Aristaeus, probably a little

older than Euclid, wrote a book upon these solids.

As an interesting amplification of this proposition, the

centers of the faces (squares) of a cube may be con-

nected, an inscribed octahedron being thereby formed.

Furthermore, if the vertices of the cube are A, B, C, D,

A, 1 B, f
C,

f
I)', then by drawing AC, CD', B'A, B lB\ B'A,

and B'Cj a regular tetrahedron will be formed. Since the

construction of the cube is a simple matter, this shows

how three of the five regular solids may be constructed.

The actual construction of the solids is not suited to

elementary geometry. 1

It is not difficult for a class to find the relative areas of

the cube and the inscribed tetrahedron and octahedron.

If s is the side of the cube, these areas are 6s2
, J^V^,

and s
2 v3 ; that is, the area of the octahedron is twice

that of the tetrahedron inscribed in the cube.

Somewhat related to the preceding paragraph is the fact

that the edges of the five regular solids are incommensur-

able with the radius of the circumscribed sphere. This

fact seems to have been known to the Greeks, perhaps

1 The actual construction of these solids is given by Pappus. See

his " Mathernaticae Collectiones," p. 48, Bologna, 1660.
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to Thesetetus (ca. 400 B.C.) and Aristaeus (ca. 300 B.C.),

both of whom wrote on incommensurables.

Just as we may produce the sides of a regular poly-

gon and form a regular cross polygon or stellar polygon,

so we may have stellar polyhedrons. Kepler, the great

astronomer, constructed some of these solids in 1619,

and Poinsot, a French mathematician, carried the con-

structions so far in 1801 that several of these stellar

polyhedrons are known as Poinsot solids. There is a

very extensive literature upon this subject.

The following table may be of some service in assign-

ing problems in mensuration in connection with the reg-

ular polyhedrons, although some of the formulas are too

difficult for beginners to prove. In the table e = edge of

the polyhedron, r = radius of circumscribed sphere, r
f=

radius of inscribed sphere, a = total area, v = volume.

Number
of Faces

4 G 8 12 20

-4 2 •4 |V5(V£+i)r
* 8

\2I

e

2 '4

2e2V3

r' e /25 + 11V5
2^ 10

eV§
(V5 + 3)

12
V

e2 V3 6e2a 3c2V6(5 + 2V5) 5e2 V3

V ^V2
12

e3

3
^(15 + 7V5) ^(V5+3)

12
v

Some interest is added to the study of polyhedrons by

calling attention to their occurrence in nature, in the

form of crystals. The computation of the surfaces and

volumes of these forms offers an opportunity for applying
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the rules of mensuration, and the construction of the

solids by paper folding or by the cutting of crayon or

some other substance often arouses a considerable inter-

est. The following are forms of crystals that are occa-

sionally found

:

They show how the cube is modified by having its

corners cut off. A cube may be inscribed in an octahe-

dron, its vertices being at the centers of the faces of

the octahedron. If we think of the cube as expanding,

the faces of the octahedron will cut off the corners of the

cube as seen in the first figure, leaving the cube as shown

in the second figure. If the corners are cut off still more,

we have the third figure.

Similarly, an octahedron may be inscribed in a cube,

and by letting it expand a little, the faces of the cube

will cut off the corners of the octahedron. This is seen

in the following figures

:

This is a form that is found in crystals, and the com-

putation of the surface and volume is an interesting
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exercise. The quartz crystal, an hexagonal pyramid on

an hexagonal prism, is found in many parts of the

country, or is to be seen in the school museum, and

this also forms an interesting object of study in this

connection.

The properties of the cylinder are next studied. The

word is from the Greek kylindros, from kyliein (to roll),

[n ancient mathematics circular cylinders were the only

ones studied, but since some of the properties are as

easily proved for the case of a noncircular directrix, it is

not now customary to limit them in this way. It is con-

venient to begin by a study of the cylindric surface, and

a piece of paper may be curved or rolled up to illus-

trate this concept. If the paper is brought around so

that the edges meet, whatever curve may form a cross

section the surface is said to inclose a cylindric space.

This concept is sometimes convenient, but it need be

introduced only as necessity for using it arises. The

other definitions concerning the cylinder are so simple

as to require no comment.

The mensuration of the volume of a cylinder de-

pends upon the assumption that the cylinder is the limit

of a certain inscribed or circumscribed prism as the

number of sides of the base is indefinitely increased. It

is possible to give a fairly satisfactory and simple proof

of this fact, but for pupils of the age of beginners in

geometry in America it is better to make the assump-

tion outright. This is one of several cases in geometry

where a proof is less convincing than the assumed

statement.

Theorem. The lateral area of a circular cylinder is

equal to the product of the perimeter of a right section of

the cylinder by an element.
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For practical purposes the cylinder of revolution

(right circular cylinder) is the one most frequently

used, and the important formula is therefore 1 = 2 irrh

where I = the lateral area, r = the radius, and h = the

altitude. Applications of this formula are easily found.

Theorem. The volume of a circular cylinder is equal

to the jtroduct of its base by its altitude.

Here again the important case is that of the cylinder

of revolution, where v = irr
2
h.

The number of applications of this proposition is, of

course, very great. In architecture and in mechanics

the cylinder is constantly seen, and the mensuration of

the surface and the volume is important. A single illus-

tration of this type of problem will suffice.

A machinist is making a crank pin (a kind of bolt) for an

engine, according to this drawing. He considers it as weighing

the same as three steel cylinders having the diameters and lengths

in inches as here shown, where. 7f"
means 7| inches. He has this for- *f

to
±_

inula for the weight (w) of a steel

cylinder where d is the diameter and

I is the length : w=0.07 irdPl. Taking
7T = 3i, find the weight of the pin. I*~ _7^~ ->H^4X->j<ifc^

The most elaborate study of the cylinder, cone, and

sphere (the " three round bodies ") in the Greek litera-

ture is that of Archimedes of Syracuse (on the island of

Sicily), who lived in the third century B.C. Archimedes

tells us, however, that Eudoxus (born ca. 407 B.C.) discov-

ered that any cone is one third of a cylinder of the same

base and the same altitude. Tradition says that Archi-

medes requested that a sphere and a cylinder be carved

upon his tomb, and that this was done. Cicero relates

that he discovered the tomb by means of these symbols.

The tomb now shown to visitors in ancient Syracuse as
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that of Archimedes cannot be his, for it bears no such

figures, and is not " outside the gate of Agrigentum,"

as Cicero describes.

The cone is now introduced. A conic surface is easily

illustrated to a class by taking a piece of paper and roll-

ing it up into a cornucopia, the space inclosed being a

conic space, a term that is sometimes convenient. The

generation of a conic surface may be shown by taking a

blackboard pointer and swinging it around by its tip so

that the other end moves in a curve. If we consider a

straight line as the limit of a curve, then the pointer may
swing in a plane, and so a plane is the limit of a conic

surface. If we swing the pointer about a point in the

middle, we shall generate the two nappes of the cone,

the conic space now being double.

In practice the right circular cone, or cone of revolu-

tion, is the important type, and special attention should

be given to this form.

Theorem. Every section of a cone made by a plane

passing through its vertex is a triangle.

At this time, or in speaking of the preliminary defini-

tions, reference should be made to the conic sections.

Of these there are three great types : (1) the ellipse,

where the cutting plane intersects all the elements on

one side of the vertex ; a circle is a special form of the

ellipse
; (2) the parabola, where the plane is parallel to

an element
; (3) the hyperbola, where the plane cuts

some of the elements on one side of the vertex, and the

rest on the other side ; that is, where it cuts both nappes.

It is to be observed that the ellipse may vary greatly in

shape, from a circle to a very long ellipse, as the cutting

plane changes from being perpendicular to the axis to

being nearly parallel to an element. The instant it
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becomes parallel to an element the ellipse changes sud-

denly to a parabola. If the plane tips the slightest

amount more, the section becomes an hyperbola.

While these conic sections are not studied in elemen-

tary geometry, the terms should be known for general

information, particularly the ellipse and parabola. The

study of the conic sections forms a large part of the

work of analytic geometry, a subject in which the fig-

ures resemble the graphic work in algebra, this having

been taken from " analytics," as the higher subject is

commonly called. The planets move about the sun in

elliptic orbits, and Halley's comet that returned to view

in 1909-1910 has for its path an enormous ellipse.

Most comets seem to move in parabolas, and a body

thrown into the air would take a parabolic path if it

were not for the resistance of the atmosphere. Two of

the sides of the triangle in this proposition constitute a

special form of the hyperbola.

The study of conic sections was brought to a high

state by the Greeks. They were not known to the Py-

thagoreans, but were discovered by Mena^chmus in the

fourth century B.C. This discovery is mentioned by

Proclus, who says, " Further, as to these sections, the

conies were conceived by Memechmus."

Since if the cutting plane is perpendicular to the axis

the section is a circle, and if oblique it is an ellipse, a

parabola, or an hyperbola, it follows that if light pro-

ceeds from a point, the shadow of a circle is a circle,

an ellipse, a parabola, or an hyperbola, depending on

the position of the plane on which the shadow falls.

It is interesting and instructive to a class to see these

shadows, but of course not much time can be allowed

for such work. At this point the chief thing is to have
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the names " ellipse " and " parabola," so often met in

reading, understood.

It is also of interest to pupils to see at this time the

method of drawing an ellipse by means of a pencil

stretching a string band that moves about two pins

fastened in the paper. This is a practical method, and

is familiar to all teachers who have studied analytic

geometry. In designing elliptic arches, however, three

circular arcs are often joined, as here shown, the result

being approximately an

elliptic arc.

Here is the center of

arc BC, M of arc AB, andN
of arc CD. Since XY is per-

pendicular to BM and BO, it

is tangent to arcs AB and BC,

so there is no abrupt turning

at B, and similarly for C.1

Theorem. The volume of a circular cone is equal to

one third the product of its base by its altitude.

It is easy to prove this for noncircular cones as well,

but since they are not met commonly in practice, they

may be omitted in elementary geometry. The important

formula at this time is v .= \ irrh. As already stated,

this proposition was discovered by Eudoxus of Cnidus

(born ca. 407 B.C., died ca. 354 B.C.), a man who, as

already stated, was born poor, but who became one of

the most illustrious and most highly esteemed of all

the Greeks of his time.

Theorem. The lateral area of a frustum of a cone of

revolution is equal to half the sum of the circumferences of

its bases multiplied by the slant height

1 The illustration is from Dupin, loc. cit.
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An interesting case for a class to notice is that in which

the upper base becomes zero and the frustum becomes a

cone, the proposition being still true. If the upper base

is equal to the lower base, the frustum becomes a cylin-

der, and still the proposition remains true. The proposi-

tion thus offers an excellent illustration of the elementary

Principle of Continuity.

Then follows, in most textbooks, a theorem relating

to the volume of a frustum.

In the case of a cone of revolution v = i -nil (r2 + r"2 + rr).

Here if r — 0, we have v = ^irrVi, the volume of a cone. If /= r,

we have v — \ irh (r2 + r2 + r2) = irhr2, the volume of a cylinder.

If one needs examples in mensuration beyond those

given in a first-class textbook, they are easily found.

The monument to Sir Christopher Wren, the professor

of geometry in Cambridge University, who became the

great architect of St. Paul's Cathedral in London, has a

Latin inscription which means, "Reader, if you would

see his monument, look about you." So it is with prac-

tical examples in Book VII.

Appended to this Book, or more often to the course

in solid geometry, is frequently found a proposition

known as Euler's Theorem. This is often considered too

difficult for the average pupil and is therefore omitted.

On account of its importance, however, in the theory of

polyhedrons, some reference to it at this time may be

helpful to the teacher. The theorem asserts that in any

convex polyhedron the number of edges increased by

two is equal to the number of vertices increased by the

number of faces. In other words, that e -f- 2 = v +/.
On account of its importance a proof will be given that

differs from the one ordinarily found in textbooks.
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Let sv s2 ,
• - -

, sn be the number of sides of the various faces,

and / the number of faces. Now since the sum of the angles

of a polygon of s sides is (s — 2) 180°, therefore the sum of the

angles of all the faces is (s
t
+ s

2 + s3 + • • • + sn
— 'If) 180°.

But s
t
+ s

2 + s
s + • • • + sn is twice the number of edges, be-

cause each edge belongs to two faces.

.*. the sum of the angles of all the faces is

(2 e - 2f) 180°, or (e - f) 360°.

Since the polyhedron is convex, it is possible to find some
outside point of view, 1\ from which some face, as ABCDE,
covers up the whole figure, as in this illustration. If we think

of all the vertices projected on ABCDE, by lines through P,

the sum of the angles of all the faces will be the same as the

sum of the angles of all their projections on ABCDE. Calling

ABODE sv and think- D
ing of the projections as

traced by dotted lines

on the opposite side of

8V this sum is evidently

equal to

(1) the sum of the

angles in sv or (s
x
— 2)

180°, plus

(2) the sum of the

angles on the other side

ofs
1
,or(5

1-2)180°,plus

(3) the sum of the angles about the various points shown as

inside of sp of which there are v — s
x
points, about each of which

the sum of the angles is 360°, making (v — s
x)

360° in all.

Adding, we have

(s
1
-2)180 +(s

1
-2)180°+(v-5

1) 360°=[(5i-2)+ (t;
-si)]

3600

:=(>;- 2) 360°.

Equating the two sums already found, we have

(e-/) 360°= (i,--2)360°,

or 6 _/=i,_2,
or e + 2 = r +f.
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This proof is too abstract for most pupils in the high

school, but it is more scientific than those found in any

of the elementary textbooks, and teachers will find it of

service in relieving their own minds of any question as

to the legitimacy of the theorem.

Although this proposition is generally attributed to

Euler, and was, indeed, rediscovered by him and pub-

lished in 1752, it was known to the great French

geometer Descartes, a fact that Leibnitz mentions. 1

This theorem has a very practical application in the

study of crystals, since it offers a convenient check on the

count of faces, edges, and vertices. Some use of crys-

tals, or even of polyhedrons cut from a piece of crayon,

is desirable when studying Euler's proposition. The

following illustrations of common forms of crystals may
be used in this connection

:

The first represents two truncated pyramids placed

base to base. Here £ = 20, f=103
v = 12, so that

e + 2 =/+ v. The second represents a crystal formed

by replacing each edge of a cube by a plane, with the

result that e = 40,/= 18, and v = 24. The third repre-

sents a crystal formed by replacing each edge of an

octahedron by a plane, it being easy to see that Euler's

law still holds true.

1 For the historical bibliography consult G. Holzmiiller, Elemente

der Stereometrie, Vol. I, p. 181, Leipzig, 1900.



CHAPTER XXI

THE LEADING PROPOSITIONS OF BOOK VIII

Book VIII treats of the sphere. Just as the circle

may be defined either as a plane surface or as the bound-

ing line which is the locus of a point in a plane at a given

distance from a fixed point, so a sphere may be defined

either as a solid or as the bounding surface which is the

locus of a point in space at a given distance from a fixed

point. In higher mathematics the circle is defined as the

bounding line and the sphere as the bounding surface

;

that is, each is defined as a locus. This view of the circle

as a line is becoming quite general in elementary geom-

etry, it being the desire that students may not have to

change definitions in passing from elementary to higher

mathematics. The sphere is less frequently looked upon

in geometry as a surface, and in popular usage it is always

taken as a solid.

Analogous to the postulate that a circle may be de-

scribed with any given point as a center and any given

line as a radius, is the postulate for constructing a sphere

with any given center and any given radius. This pos-

tulate is not so essential, however, as the one about the

circle, because we are not so concerned with constructions

here as we are in plane geometry.

A good opportunity is offered for illustrating several

of the definitions connected with the study of the

sphere, such as great circle, axis, small circle, and pole,

321
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by referring to geography. Indeed, the first three prop-

ositions usually given in Book VIII have a direct bear-

ing upon the study of the earth.

Theorem. A plane perpendicular to a radius at its

extremity is tangent to the sphere.

The student should always have his attention called

to the analogue in plane geometry, where there is one.

If here we pass a plane through the radius in question,

the figure formed on the plane will be that of a line

tangent to a circle. If we revolve this about the line of

the radius in question, as an axis, the circle will generate

the sphere again, and the tangent line will generate the

tangent plane.

Theorem. A sphere may be inscribed in any given

tetrahedron.

Here again we may form a corresponding proposition

of plane geometry by passing a plane through any three

points of contact of the sphere and the tetrahedron. We
shall then form the figure of a circle inscribed in a tri-

angle. And just as in the case of the triangle we may
have escribed circles by producing the sides, so in the

case of the tetrahedron we may have escribed spheres

by producing the planes indefinitely and proceeding in

the same way as for the inscribed sphere. The figure is

difficult to draw, but it is not difficult to understand,

particularly if we construct the tetrahedron out of

pasteboard.

Theorem. A sphere may be circumscribed about any

given tetrahedron.

By producing one of the faces indefinitely it will cut

the sphere in a circle, and the resulting figure, on the

plane, will be that of the analogous proposition of plane

geometry, the circle circumscribed about a triangle. It
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is easily proved from the proposition that the four per-

pendiculars erected at the centers of the faces of a tetra-

hedron meet in a point (are concurrent), the analogue

of the proposition about the perpendicular bisectors of

the sides of a triangle.

Theorem. The intersection of two spherical surfaces is

a circle ivhose plane is perpendicular to the line joining the

centers of the surfaces and ivhose center is in that line.

The figure suggests the case of two circles in plane

geometry. In the case of two circles that do not inter-

sect or touch, one not being within the other, there are

four common tangents. If the circles touch, two close up

into one. If one circle is wholly within the other, this

last tangent disappears. The same thing exists in rela-

tion to two spheres, and the analogous cases are formed

by revolving the circles and tangents about the line

through their centers.

In plane geometry it is easily proved that if two circles

intersect, the tangents from any point on their common
chord produced are equal. For if the common chord is

AB and the point P is taken on AB produced, then the

square on any tangent from P is equal to PB x PA.

The line PBA is sometimes called the radical axis.

Similarly in this proposition concerning spheres, if

from any point in the plane of the circle formed by the

intersection of the two spherical surfaces lines are drawn

tangent to either sphere, these tangents are equal. For

it is easily proved that all tangents to the same sphere

from an external point are equal, and it can be proved

as in plane geometry that two tangents to the two

spheres are equal.

Among the interesting analogies between plane and

solid geometry is the one relating to the four common
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tangents to two circles. If the figure be revolved about

the line of centers, the circles generate spheres and the

tangents generate conical suriaces. To study this case

for various sizes and positions of the two spheres is one

of the most interesting generalizations of solid geometry.

An application of the proposition is seen in the case of an

eclipse, where the sphere O' represents the moon, the earth, and
S the sun. It is also seen in the case of the full moon, when S

is on the other side of the earth. In this case the part MIX is

fully illuminated by the moon, but the zone ABNM is only partly

illuminated, as the figure shows.1

Theorem. The sum of the sides of a spherical poly-

gon is less than 360°.

In all such cases the relation to the polyhedral angle

should be made clear. This is done in the proofs usually

given in the textbooks. It is easily seen that this is true

only with the limitation set forth in most textbooks,

that the spherical polygons considered are convex. Thus

we might have a spherical triangle that is concave, with

its base 359°, and its other two sides each 90°, the sum

of the sides being 539°.

Theorem. The sum of the angles of a spherical triangle

is greater than 180° and less than 540°.

1 The illustration is from Dupin, loc. cit.
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It is for the purpose of proving this important fact

that polar triangles are introduced. This proposition

shows the relation of the spherical to the plane triangle.

If our planes were in reality slightly curved, being small

portions of enormous spherical surfaces, then the sum of

the angles of a triangle would not be exactly 180°, but

would exceed 180° by some amount depending on the

curvature of the surface. Just as a being may be imag-

ined as having only two dimensions, and living always

on a plane surface (in a space of two dimensions), and

having no conception of a space of three dimensions, so

we may think of ourselves as living in a space of three

dimensions but surrounded by a space of four dimen-

sions. The flat being could not point to a third dimen-

sion because he could not get out of his plane, and we
cannot point to the fourth dimension because we cannot

get out of our space. Now what the flat being thinks is

his plane may be the surface of an enormous sphere in

our three dimensions ; in other words, the space he lives

in may curve through some higher space without his be-

ing conscious of it. So our space may also curve through

some higher space without our being conscious of it. If

our planes have really some curvature, then the sum of the

angles of our triangles has a slight excess over 180°. All

this is mere speculation, but it may interest some student

to know that the idea of fourth and higher dimensions

enters largely into mathematical investigation to-day.

Theorem. Two symmetric splierical triangles are

equivalent.

While it is not a subject that has any place in a school,

save perhaps for incidental conversation with some group

of enthusiastic students, it may interest the teacher to

consider this proposition in connection with the fourth
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dimension just mentioned. Consider these triangles,

where Z-A = A A \ AB = A f
B', AC = A'C We prove them

congruent by superposition, turning one over and plac-

ing it upon the other. But sup-
c c'

pose we were beings in Flatland,

beings with only two dimensions

and without the power to point

in any direction except in the

plane we lived in. We should

then be unable to turn AAfBfCr

over so that it could coincide with A ABC, and we should

have to prove these triangles equivalent in some other

way, probably by dividing them into isosceles triangles

that could be superposed.

Now it is the same thing

with symmetric spherical tri-

angles ; we cannot superpose

them. But might it not be

possible to do so if we could

turn them through the fourth

dimension exactly as we turn

the Flatlander's triangle through our third dimension?

It is interesting to think about this possibility even

though we carry it no further, and in these side lights

on mathematics lies much of the fascination of the

subject.

THEOREM. The shortest Hue that can he drawn on the

surface of a sphere between two points is the minor arc of

a (jreat circle join hi <j the two points.

It is always interesting to a class to apply this prac-

tically. By taking a terrestrial globe and drawing a

great circle between the southern point of Ireland and

New York City, we represent the shortest route for ships
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crossing to England. Now if we notice where this great-

circle arc cuts the various meridians and mark this on

an ordinary Mercator's projection map, such as is found

in any schoolroom, we shall find that the path of the

ship does not make a straight line. Passengers at sea

often do not understand why the ship's course on the

map is not a straight line ; but the chief reason is that

the ship is taking a great-circle arc, and this is not, in

general, a straight line on a Mercator projection. The

small circles of latitude are straight lines, and so are

the meridians and the equator, but other great circles

are represented by curved lines.

Theorem. The area of the surface of a sphere is equal

to the product of its diameter by the circumference of a great

circle.

This leads to the remarkable formula, a = 4 irr
2

. That

the area of the sphere, a curved surface, should exactly

equal the sum of the areas of four great circles, plane

surfaces, is the remarkable feature. This was one of the

greatest discoveries of Archimedes (ca. 287-212 B.C.),

who gives it as the thirty-fifth proposition of his treatise

on the " Sphere and the Cylinder," and who mentions

it specially in a letter to his friend Dositheus, a mathe-

matician of some prominence. Archimedes also states

that the surface of a sphere is two thirds that of the

circumscribed cylinder, or the same as the curved sur-

face of this cylinder. This is evident, since the cylin-

clric surface of the cylinder is 2 irr x 2 r, or 4 7rr
2
, and

the two bases have an area irr
1+ 7rr

2
, making the total

area 6 irr
2
.

Theorem. The area of a spherical triangle is equal to

the area of a lune whose angle is half the triangle s spheri-

cal excess.
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This theorem, so important in finding areas on the

earth's surface, should be followed by a considerable

amount of computation of triangular areas, else it will

be rather meaningless. Students tend to memorize a

proof of this character, and in order to have the prop-

osition mean what it should to them, they should at

once apply it. The same is true of the following prop-

osition on the area of a spherical polygon. It is prob-

able that neither of these propositions is very old ; at

any rate, they do not seem to have been known to the

writers on elementary mathematics among the Greeks.

Theorem. The volume of a sphere is equal to the prod-

net of the area of its surface by one third of its radius.

This gives the formula v = | 7rr
3
. This is one of the

greatest discoveries of Archimedes. He also found as a

result that the volume of a sphere is two thirds the

volume of the circumscribed cylinder. This is easily

seen, since the volume of the cylinder is irr
2 x 2 r, or

2 7rr
3
, and | irr

z
is | of 2 7rr

3
. It was because of these

discoveries on the sphere and cylinder that Archimedes

wished these figures engraved upon his tomb, as has

already been stated. The Roman general Marcellus con-

quered Syracuse in 212 B.C., and at the sack of the city

Archimedes was killed by an ignorant soldier. Marcel-

lus carried out the wishes of Archimedes with respect to

the figures on his tomb.

The volume of a sphere can also be very elegantly

found by means of a proposition known as Cavalieri's

Theorem. This asserts that if two solids lie between

parallel planes, and are such that the two sections made

by any plane parallel to the given planes are equal in

area, the solids are themselves equal in volume. Thus,

if these solids have the same altitude, a, and if S and S r
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are equal sections made by a plane parallel to MN,
then the solids have the same volume. The proof is sim-

ple, since prisms

of the same alti-

tude, say --> and
n

on the basest and

Sf are equivalent,

and the sums of

n such prisms are

the given solids ; m
and as n increases, the sums of the prisms approach the

solids as their limits; hence the volumes are equal.

This proposition, which will now be applied to find-

ing the volume of the sphere, was discovered by Bona-

ventura Cavalieri (1591 or 1598-1647). He was a

Jesuit professor in the University of Bologna, and his

best known work is his " Geometria Indivisibilibus," which

he wrote in 1626, at least in part, and published in 1635

(second edition, 1647). By means of the proposition it is

also possible to prove several other theorems, as that the

volumes of triangular pyramids of equivalent bases and

equal altitudes are equal.

To find the volume of a sphere,

take the quadrant OPQ, in the

square OPRQ. Then if this fig-

ure is revolved about OP, OPQ
will generate a hemisphere, OPR
will generate a cone of volume

A \^g
B\/

Q

D

R
i 7rr3, and OPR Q will generate a cylinder of volume 7rr3 . Hence
the figure generated by OR Q will have a volume 7rr3 — ± 7rr3, or

§ 7rr3, which we will call x.

Now OA = AB, and OC = AD ; also~0C
2 -OA 2 = AC 2

, so that

AD-AB AC
and ttAD

2 -ttAB 2 = ttAC
2

.
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But irAD — ttAB is the area of the ring generated by BD,
a section of x, and ttAC is the corresponding section of the

hemisphere. Hence, by Cavalieri's Theorem,

1 7T?'
3 = the volume of the hemisphere.

.*. 1 7rr
3 = the volume of the sphere.

Ill connection with the sphere some easy work in

quadratics may be introduced even if the class has had

only a year in algebra.

For example, suppose a cube is inscribed in a hemisphere

of radius r and we wish to find its edge, and thereby its surface

and its volume.

If x = the edge of the cube, the diagonal of the base must be

x V k

2, and the projection of r (drawn from the center of the base

to one of the vertices) on the base is half of this diagonal,

xV2
or

2

Hence, by the Pythagorean Theorem,

r2 = -+(*£)-

i
2

and the total surface is (i x3 = 4 r2
,

and the volume is
2 . t

xs = -r8 -\|-

- xz
.

•J
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In the Valley of Youth, through which all wayfarers

must pass on their journey from the Land of Mystery to

the Land of the Infinite, there is a village where the pil-

grim rests and indulges in various excursions for which

the valley is celebrated. There also gather many guides

in this spot, some of whom show the stranger all the

various points of common interest, and others of whom
take visitors to special points from which the views are

of peculiar significance. As time has gone on new paths

have opened, and new resting places have been made

from which these views are best obtained. Some of the

mountain peaks have been neglected in the past, but of

late they too have been scaled, and paths have been

hewn out that approach the summits, and many pilgrims

ascend them and find that the result is abundantly worth

the effort and the time.

The effect of these several improvements has been a

natural and usually friendly rivalry in the body of guides

that show the way. The mountains have not changed,

and the views are what they have always been. But

there are not wanting those who say, " My mountain

may not be as lofty as yours, but it is easier to ascend ";

or " There are quarries on my peak, and points of view

from which a building may be seen in process of erec-

tion, or a mill in operation, or a canal, while your moun-

tain shows only a stretch of hills and valleys, and thus

you will see that mine is the more profitable to visit."
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Then there are guides who are themselves often weak
of limb, and who are attached to numerous sand dunes,

and these say to the weaker pilgrims, " Why tire your-

selves climbing a rocky mountain when here are peaks

whose summits you can reach with ease and from which

the view is just as good as that from the most famous

precipice ? " The result is not wholly disadvantageous,

for many who pass through the valley are able to approach

the summits of the sand dunes only, and would make

progress with greatest difficulty should they attempt to

scale a real mountain, although even for them it would

be better to climb a little way where it is really worth

the effort instead of spending all their efforts on the

dunes.

Then, too, there have of late come guides who have

shown much ingenuity by digging tunnels into some of

the greatest mountains. These they have paved with

smooth concrete, and have arranged for rubber-tired cars

that run without jar to the heart of some mountain.

Arrived there the pilgrim has a glance, as the car swiftly

turns in a blaze of electric light, at a roughly painted

panorama of the view from the summit, and he is assured

by the guide that he has accomplished all that he would

have done, had he laboriously climbed the peak itself.

In the midst of all the advocacy of sand-dune climb-

ing, and of rubber-tired cars to see a painted view, the

great body of guides still climb their mountains with

their little groups of followers, and the vigor of the

ascent and the magnificence of the view still attract all

who are strong and earnest, during their sojourn in the

Valley of Youth. Among the mountains that have for

ages attracted the pilgrims is Mons Latinus, usually

called in the valley by the more pleasing name Latina.
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Mathematica, and Rhetoriea, and Grammatica are also

among the best known. A group known as Montes

Naturales comprises Physica, Biologica, and Chemica,

and one great peak with minor peaks about it is called

by the people Philosophia. There are those who claim

that these great masses of rock are too old to be climbed,

as if that affected the view ; while others claim that the

ascent is too difficult and that all who do not favor the

sand dunes are reactionary. But this affects only a few

who belong to the real mountains, and the others labor

diligently to improve the paths and to lessen unnecessary

toil, but they seek not to tear off the summits nor do

they attend to the amusing attempts of those who sit

by the hillocks and throw pebbles at the rocky sides of

the mountains upon which they work.

Geometry is a mountain. Vigor is needed for its

ascent. The views all along the paths are magnificent.

The effort of climbing is stimulating. A guide who
points out the beauties, the grandeur, and the special

places of interest commands the admiration of his group

of pilgrims. One who fails to do this, who does not

know the paths, who puts unnecessary burdens upon

the pilgrim, or who blindfolds him in his progress, is

unworthy of his position. The pretended guide who
says that the painted panorama, seen from the rubber-

tired car, is as good as the view from the summit is

simply a fakir and is generally recognized as such. The
mountain will stand ; it will not be used as a mere com-

mercial quarry for building stone ; it will not be affected

by pellets thrown from the little hillocks about ; but its

paths will be freed from unnecessary flints, they will be
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straightened where this can advantageously be done, and

new paths on entirely novel plans will be made as time

goes on, but these paths will be hewed out of rock, not

made out of the dreams of a day. Every worthy guide

will assist in all these efforts at betterment, and will

urge the pilgrim at least to ascend a little way because

of the fact that the same view cannot be obtained from

other peaks ; but he will not take seriously the efforts of

the fakir, nor will he listen with more than passing

interest to him who proclaims the sand heap to be a

Matterhorn.
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