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PREFACE

Since 1906 the author has delivered a yearly course

of lectures at New York University on the Teaching of

Mathematics in Secondary Schools. These lectures

consisted largely of a concrete discussion of the prob-

lems that arise in actual teaching. This book was

planned on similar lines, but the pressure of profes-

sional duties, coupled with ill health, made it impossible

to carry out this concrete treatment of the subject

through the entire extent of secondary school work.

The author hopes, however, that all important and fun-

damental topics have been treated in such detail as to

be of real assistance to the inexperienced teacher, to

whom the generalities of abstract pedagogy are not

only useless, but often meaningless.

The chief object of this book is to contribute towards

making mathematical teaching less informational and

more disciplinary. Most teachers admit that mathe-

matical instruction derives its importance from the men-

tal training that it affords, and not from the informa-

tion thanTT»^aefear*^But in spite of these theoretical

views, a great deal of mathematical teaching is still in-

formational. Students still learn demonstrations instead

of learning how to demonstrate. This is partly due to
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VI PREFACE

external conditions over which the teacher has no con-

trol, but partly also to the fact that a number of teach-

ers have had little opportunity to become acquainted

with the details of modern methods of teaching mathe-

matics, and hence largely employ the methods by which

they themselves were taught. There can be no doubt

that the two excellent American books on the teaching

of mathematics— the one by David Eugene Smith, the

other by J. W. A. Young— are of great assistance to

every teacher, but these books cannot answer many con-

crete questions on account of the wide range of subjects

that they treat of. This book covers a much more re-

stricted field, but does it in greater detail. All refer-

ences to elementary school work, to history, to the

description of movements in other countries, to the

material equipment, to mathematical clubs, etc., are

excluded, and the discussion of general methods is

restricted to their fundamental and most useful phases.

This book is modern in the sense that it attempts

to make mathematical instruction less informational

and tries to show how to train students in attacking

mathematical problems instead of merely making them

learn mathematical facts. But it is not modern in the

sense that it advocates certain recent fashions which

aim to replace the true study of mathematics by applica-

tions of doubtful value. While admitting that a certain

amount of applied work is very useful and interesting,

the author does not believe that the true value of

mathematical study lies in its practical utility, and

hence cannot admit that the mensuration of parquet
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floors or the construction of window designs forms the

true end of mathematical study.

In addition to the purely pedagogical discussions, this'

volume contains certain topics in pure mathematics

which, on account of their bearing upon teaching,

should be familiar to every teacher. These topics re-

late principally to the modes of attack (Chapter XV),
but also to the foundations of mathematics (Chapter V),

to the division of the circle (Chapter XVI), and to a

few other subjects. These chapters may be omitted

when a rapid survey of the purely pedagogic matters is

desired.

Like any other pedagogic book, this volume must

necessarily contain a great deal that is obvious and com-

monplace to the experienced teacher. But to write for

the latter only would mean to make this book useless

for the prospective teacher to whom the study of mathe-

matical pedagogy is most important.

The author desires to acknowledge his indebtedness

to Dr. Joseph Kahn and Mr. W. S. Schlauch for the

careful reading of the proofs and for many valuable

suggestions.
ARTHUR SCHULTZE.

New York,

June, 1912.
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THE TEACHING OF MATHEMATICS IN

SECONDARY SCHOOLS

CHAPTER I

CAUSES OF THE INEFFICIENCY OF MATHEMATICAL
TEACHING

LOW EFFICIENCY OF SECONDARY SCHOOLS

The present condition of mathematical teaching.
—

The widespread reform movement for improving the

teaching of mathematics, and the increasing interest of

teachers in the pedagogy of this subject, seem to be

largely due to a general dissatisfaction with the results

of mathematical instruction. For, in spite of our peda-

gogic progress, in spite of the strenuous efforts of

our teachers, these results are in general unsatisfactory.

Although the apparent results as measured by examina- $

tions are often excellent, they are usually not lasting.
#

Students fail to grasp the spirit of the subject, and are ,

often utterly unable to apply their knowledge to ad-
*

vanced work or to practical problems. All who have

had an opportunity to test the true mathematical train-

ing of the average student a short time after his gradua-

tion agree that this training is exceedingly slight.

Remedies proposed.— The conviction that the teach-

ing of mathematics is greatly in need of reform, seems

to be almost general, and only when it comes to a dis-
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cussion of the causes of the evil, and the remedies that

should be applied, does a great diversity of opinion

appear.
" Mathematics has outlived its usefulness as a subject

of secondary school instruction."— "
It is too remote

from life to interest the student."— "There is np such^
tfring as mental discipline,

hence^mathematical,reacmng
has no value," etc. Such are the arguments proposed

by men who dislike mathematics, who possibly never

had a full understanding of the nature of the subject,

.nd who consequently wish to replace it by some of their

pet subjects, such as economics or psychology.
"

It is all the fault of the teachers who do not carry

out the excellent plans of their superiors, and who do

not make students work enough," is an opinion occa-

sionally expressed by school superintendents and prin-

cipals.
" School mathematics must be made more rigorous,"

argues a— fortunately decreasing— group of teachers.

"If the fundamental notions of limits and incommen-

surable numbers were taught in a scientific manner,

and the slipshod method of assuming things that can be

proved were discontinued, then every graduate would

understand mathematics, and we would no longer hear

that V#2 + &2 equals a + b"

But aside from these laymen or hobby-riding enthu-

siasts, nearly all teachers of mathematics try to find

remedies for the present unsatisfactory conditions, and

the cure recommended by most of them is the introduc-

tion and study of the applications, along with the pure
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science. Apply mathematics, they tell us, teach appli-

cations and pure mathematics side by side, make the

pure mathematics grow out of its applications, and elimi-

nate, as far as possible, those parts of algebra and

geometry that have no immediate practical bearing.

Undoubtedly the general recognition of the fact that

the concrete must precede the abstract, and that a great

deal of the time-honored mathematical subject matter

has but small value, means a great advance in mathe-

matical pedagogy.* It seems doubtful, however, whether

this one principle, even if it could be carried out com-

pletely, would be sufficient to improve matters thor-

oughly. It is even doubtful whether under the present

conditions any change in the subject matter taught could

produce a considerable betterment
;
for the inefficiency

of teaching is not confined to mathematics, but appears
in nearly all other subjects. The average student within

a short time forgets so much of his history, physics, or

economics, that it is no exaggeration to say that his per-

manent knowledge falls far short of the amount studied

and the grades attained in examinations. Hence the in-

efficiency of mathematical teaching cannot be due mainly
to the selection of the mathematical subject matter

;
it

must be due to the same general causes that are at

work in the teaching of any subject.

In other words, it seems to the author that we have

to deal here not with a local, but with a constitutional,

disease, and that only an analysis of the general causes

that are responsible for the failure of our schools to

* For further discussion of the movement, see Chapter XVIII.
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attain their highest efficiency can shed any light upon
the problem.

Shortcomings of our schools.— In spite of the undeni-

ably great progress in educational practice during the

past decades, a large and increasing number of facts

seem to indicate that the results obtained in our schools

are not in proportion to the time and labor expended by

pupils and teachers. While theoretical pedagogues

speak with pride of our modern schools, all unprejudiced

persons who have had the opportunity to test the lasting

and true knowledge of graduates are rather skeptical

about the excellence of these schools. Business men

complain that it seems to be harder now than ever to

secure boys who can spell correctly, and who know the

fundamentals of arithmetic. Teachers in high schools

complain that many pupils entering these institutions

know very little about grammar school subjects, in spite

of their former high examination marks. College

teachers are equally dissatisfied with the average results

of high school training. In most comments by the

press there is an undercurrent of dissatisfaction with

the results of our schools.

While many educators try to ridicule such statements

and to brand them as gross exaggerations, nobody who
has come in personal contact with the students and

graduates of our schools can deny that these complaints
are well founded. Most students forget, not only the

minor and unessential facts, but the most fundamental,
the most necessary ones, so completely that the returns

for time and labor spent seem to be wholly inadequate.
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One may suppose that if the knowledge acquired in

our schools is inadequate, possibly the gain in mental

power makes up for this shortcoming. But in this re-

spect also the gain is exceedingly small, and principally

due to the natural growth of the individual, and not to

severe study. Everybody who has had the opportunity

to observe young people in their school work cannot

have failed to notice the very small use they make of

their reasoning power. Not that most students do not

possess the necessary intelligence, but they are disin-

clined to use it, and they do not seem to be aware of

the fact that reasoning is often a better means for

obtaining an answer than is the thoughtless repetition

of words.

The only marked gain is the gain in general cul-

ture and refinement. This is due, however, not to

the hard study and cramming, but to the general at-
j

mosphere of a school
;

for the lazy student will ac-

quire it equally with the hardest worker. Wherever we

search we fail to find a result that entirely justifies

the exceedingly hard work and the intense strain to

which a high school student is subjected for a term of

four years.

For great indeed is the strain to which the young

people— those who are conscientious and do all the

work required
— are subjected, especially in the public

educational institutions of our large cities. It is not at

all exceptional for high school girls, eighteen or nine-

teen years old, after more than five hours daily work

in school, to spend four or five hours in the preparation
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of their home lessons, sitting up late every school night

with practically no out-of-door exercise.*

Considering the lasting results only, and not the mis-

leading examination results, it can hardly be maintained

that an average secondary school is an efficient machine.

It is no exaggeration to say that a fairly intelligent

student could get as much culture and true education as

a high school graduate by working with' an efficient in-

structor two or three hours daily for a term of four years;

although it must be admitted that such a student might

not be able to attain spectacular examination results, f

CAUSES OF THE INEFFICIENCY OF OUR SCHOOLS

The overrating of spectacular results.— Unquestion-

ably there are a large number of causes for the ineffi-

ciency of our schools. Paramount among these causes,

however, seems to be the fact that schools are fre-

quently conducted on the spectacular plan. True

results are not sufficiently appreciated ;
it is

" show "

and appearance that often are principally aimed at.

Undue striving for examination results, crowded courses

of study, unnatural and faulty modes of study, promotion
of absolutely unfit students, slight appreciation of good

* Every teacher knows that there are a great many pupils who do

not work hard because they do not do the required amount of study.
There are pupils who, relying upon luck, the help of others, cheating,

etc., manage to make their way through school. This unfortunate fact,

however, can hardly be used in defense of present conditions.

t This inefficiency of the high schools seems to be fully equaled, if not

surpassed, by that of the last years of grammar school, while the work
in the more elementary classes appears to be more efficient.
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teaching, are all caused by this desire to produce measur-

able results that impress the outside world.

Examinations. — So much has been written on the ill

effects of giving too much weight to examinations, that

it is hardly necessary to discuss this point in minute

detail. Suffice it to say that we all admit that some

examinations are necessary, but that ill effects will arise

as soon as examinations become the central fact inp

school life, and especially when they assume a competi-

tive character. As gauges of the work done, as indica-

tors of the efficiency of a particular school, they are

unreliable. While exceedingly low examination results

may indicate defects, an unusually high average does

not at all indicate efficiency of a school, but more often""

the opposite. Such high examination percentages fre-

quently indicate the employment of wrong methods of

teaching and the abuse of both pupil and teacher. The

fact that examinations are not proper gauges of the

quality of a school has long been recognized in nearly all

civilized countries, and hence most of them have at-

tempted to diminish the importance of examinations.

Even China has followed their lead and reduced the

large number of its examinations. In the United States

the teachers as a class are also opposed to the abuse of

examinations, but unfortunately those in power fre-

quently think otherwise, and consequently the examina-

tion evil has been growing.

Congested courses of study.
— It is characteristic of

our times that most people consume far more mental

food than they can assimilate. It is nothing unusual
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for an educated person to read four novels and many

magazines a month, to see a play every week, to make

frequent visits to concerts, lectures, and art exhibitions,

and to devote hours every day to newspaper reading.

Everything is done in a hurry, and nothing leaves a last-

ing impression. Rome is
" done

"
in a day, the Louvre

in two hours. There is no time to think, no time to

meditate about any of these matters, and general super-

ficiality and mental flabbiness are the result.

One would expect the schools to exert a wholesome

influence in opposition to this ever growing shallowness.

But far from it
; they are the worst offenders. In their

anxiety to secure spectacular results, they compel their

pupils to do an enormous amount of work in a given

time
;
so much, indeed, that haste and superficiality must

result. There are schools that finish the whole of

plane geometry in six months, and are proud of this feat.

There is more taught in many high schools during four

years than the average human mind can assimilate in

eight.

It is not at all exceptional that a high school student

has to master in one evening ten to fifteen pages of

history, four pages of geometry, and equally long lessons

in two or three other subjects ;
and this cramming pro-

cess goes on day after day, year after year. Can any
human mind properly assimilate all this material ? And
do students really accumulate "mental fat," as Spencer

claims, or is not the result in 90 per cent of all cases

chronic mental indigestion, i.e., utter inability to assimi-

late any mental food properly ? For frequently this
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work is done quite mechanically without bringing into

play any of the higher powers of the mind. Students

simply memorize and usually do not even know that

there are other ways than memorizing for acquiring

knowledge.

Two ways of studying.
— There are two ways of

studying new facts. One person who wishes to study
a new topic will read over the text again and again,

until the words cling to his mind and he can readily

repeat any part of the subject involved. Another person
will read little, but will meditate upon the subject. He
will try to associate the unknown with the known; will

attempt to solve, as far as possible unaided, all problems

involved, and hence he will look at the subject from all

sides. Such a judicious mode of studying is a far

slower process than memorizing, but it leads to lasting

and full understanding and true knowledge of the sub-

ject. The first method, memorizing, is a perfectly

proper method for the most elementary things, but leads

to absolutely no results in the more advanced subjects.

The multiplication table, words of a foreign language,

spelling of words, etc., can be fully mastered by
mechanical memorizing, but it is absurd to study

geometry, physics, or philosophical subjects in the

same manner.

Most students are familiar only with the first method.

They never go through the transition from childish

memorizing to judicious study. However, by their abil-

ity to repeat words, they often deceive others and them-

selves into the belief that they have mastered their
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studies. The deceptive character of knowledge thus

acquired is demonstrated by the rapidity with which it

is lost. In a very short time everything studied, essen-

tial and unessential, utterly fades away. On the other

hand, the person who studies judiciously receives such

a strong impression of the essentials, that he rarely

forgets, and even if he does, he can frequently recon-

struct the missing data. His previous thinking has

given him a strong framework of facts, upon which

all minor data are readily assembled.

Schools encourage memorizing and neglect reasoning.

— In the preceding paragraph it was pointed out that

mechanical memorizing is a perfectly proper method of

studying the most elementary, the most fundamental

facts, which are of frequent application.* This is possi-

bly the reason why the teaching is far more effective in

the lower grades than later on. In more advanced work

the very nature of the subjects makes mere memorizing
ineffective.

Our high schools, however, not only encourage mem-

Iorizing,

but sometimes almost force the student to adopt
this as the only mode of study, for only by memorizing
can he hope to satisfy the immediate demands of the

school.

The daily rations of mental food that the student has

to swallow give him no choice; there is no time for

* Such subjects, however, must be made so familiar to students by
frequent repetition that forgetting becomes almost impossible. In many
schools, topics of this kind, however, are treated just as hastily as every-

thing else; hence memorizing even in its legitimate place is rendered

ineffective.
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thought, for meditation, for judicious study; he must

memorize. Moreover, the character of the studies leads

him to mechanical work, for in spite of the vigorous

denials of our pedagogues, the greater part of the

curriculum is informational. It is knowledge and not

power that is emphasized in most of the studies, and

even subjects which by their very nature should be

mastered by thinking are often made informational.

n For the informational method produces much quicker

I and more spectacular results than the slow judicious

|
mode of study. What a fine display of learning

^students can make if they have been cramming con-

scientiously ! How high the percentage they can

secure in examinations ! True, the after effects are sad,

but who cares? As long as the boy can talk glibly

about complex economic problems in terms which he

does not understand, we are satisfied. What does it

matter, that a year later he has not the remotest inkling

of the subject, that he cannot discuss intelligently the

simplest new problem that may arise !

Can we wonder that under such conditions the

student never breaks away from his mechanical way of

studying that he acquired in the elementary school?

And can we wonder, too, that the results of our teach-

ing become inferior in the higher grades of the gram-

mar school, and especially so in the high school ?

This excessive use of memorizing, and the neglect of

the cultivation of the reasoning power, are possibly the

worst effects of the spectacular idea upon which our

schools are largely built.
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Star students. — It must be admitted that there is a

small group of students who possess memories of extraor-

dinary retentive power, who can memorize and retain

anything from geometry to metaphysics. Notwithstand-

ing the " mental fat
M
that such students accumulate, they

ought to be pitied, for they rarely cultivate their higher

mental powers. To them memory is such a convenient

tool, that it is used almost exclusively, while the other

faculties of the mind atrophy. Such people rarely be-

come thinkers, they are without originality, they do not

produce, but only re-produce, ideas. In school, however,

pupils of this class excel
; they are the star students, the

pride of their teachers and parents.

Perhaps this is the reason why star students so seldom

fulfill the expectations of their friends. They hardly
ever excel in the ordinary pursuits of life, or become

able scholars. Frequently, however, their apparent suc-

cess in studying leads them into the teaching profession,

and they then expect every individual to possess the

same freakish memory which they have. Such men,

especially if they reach the higher positions, usually do

all in their power to intensify the cramming conditions

of our schools.

On the other hand, students of great ability have

sometimes poor memories for words and are therefore

regarded as hopeless dunces by their teachers. There
is no lack of examples of great men who were considered

very dull boys by their teachers, simply because they
did not possess that parrot quality which is so highly

appreciated in school.
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The absurdity of making the memory the chief stand-

ard for measuring a student's ability cannot be over-

emphasized. Which is more useful to a person in life,

the knowledge of a great many facts, or mental power?

the ability to repeat other people's thoughts, or the abil-

ity to think for himself ?

EFFECTS OF THE GENERAL CONDITIONS UPON
MATHEMATICAL TEACHING

In view of the conditions in many primary and second-

ary schools, it is not surprising that mathematical teach-

ing produces poor results. The entire atmosphere of

some schools is so opposed to the true mathematical

spirit that true teaching and true studying of the subject

are almost impossible. In many schools good mathe-

matical teaching is not understood, not appreciated, not

wanted by the authorities
;
while the fictitious but showy

results of the drillmaster are highly commended. Take,

in addition, the lack of time, the preparation for difficult

examinations, the poor preparation of the students, their

firmly rooted habits of memorizing, and their mental in-

ertia due to years of mechanical work, and we cannot

be surprised that teachers — against their better knowl-

edge— use faulty methods of teaching. Instead of real

mathematical work, a cramming process is employed that

is not only useless, but positively harmful to the
#
students

;

for mathematics taught as an informational subject is

exceedingly tiresome and injurious to the mind.
1 No other subject suffers so much and becomes so

valueless as mathematics, when treated by mechanical
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modes of study; and, on the other hand, no other second-

ary school subject is so admirably adapted to a judicious

mode of study as mathematics. In fact, this characteris-

tic constitutes one of the chief values of this study, and

must be constantly considered when we wish to deter-

mine the aims and methods of mathematical teaching.



CHAPTER II

THE VALUE AND THE AIMS OF MATHEMATICAL
TEACHING

THE PRACTICAL VALUE tDF MATHEMATICS

Classification of the advantages af mathematical teach-

ing.
— In order tjBietermine with precision the meth-

ods of teaching art^ subject, it is necessary to arrive at

a clear understanding of the reasons for teaching it.

This inquiry is particularly important in mathematics,)

since the aims and pedagogical advantages of this study

differ widely from those of most other subjects.

The many reasons that may be given for teaching

mathematics are usually classified under two heads, viz.:

those based upon (i) the practical value of mathe-

matics, or (2) the culture it imparts.

The practical value of mathematics is very great. It

is indeed no exaggeration to assert that our whole

modern civilization owes its peculiar stamp indirectly to

mathematics. Modern thought and modern life owe

their character to the great progress of the exact sciences,

and to the wonderful development of the technical arts.

These two in turn are closely connected with, and based

upon, mathematics.

Importance of mathematics in science.— A science

becomes exact, when it advances from the formation

of mere qualitative relations to quantitative laws, and

15
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thereby becomes accessible to mathematical investiga-

tions. Hence Kant said, "A science is exact only in

so far as it employs mathematics." The knowledge of

the deflection of a ray of light entering from one

medium into another of different density was of small

value until the quantitative law of refraction was dis-

covered. Thereby all oroblems of dioptrics became

mathematical problems, and the entire art o^ making

optical instruments was put upon an exact scientific

basis.
^

Similarly the discovery of the laws of motion and the

law of gravitation transformed all problems of celestial

mechanics into problems of mathematics, and, owing to

the exactness of mathematics, this branch of astronomy
in a short time reached an amazing degree of perfection.

Astronomy and physics are the most exact sciences,

and hence are the best illustrations of the usefulness of

mathematics. But chemistry and geology, economics and

physiology, all use mathematics. Even psychology, if

it accepts the Weber-Fechner law, cannot dispense with

the help of mathematics.

Mathematical knowledge is indispensable for the un-

derstanding of the phenomena of nature, and no one

without mathematical scholarship can hope to advance

far as an investigator in most of the exact sciences.*

* The most useful of all mathematical devices are differential equa-

tions, since almost any branch of physical science leads to these. The
state of a physical system is the absolute consequence of the state

immediately preceding it, a relation that necessarily leads to a differen-

tial equation. The symbolism of differential equations is better adapted
to represent the fundamental phenomena of nature than is any other
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Influence of mathematics upon life. — This is the age

of machines. The production and distribution of every

necessity or luxury partly depend upon the technical

sciences which owe their perfection to their exact mathe-

matical basis.
" Our entire present civilization," says

Professor Voss,
" as far as it depends upon the intellec-

tual penetration and utilization of nature, has its real

foundation in the mathematical sciences." Engineer-

ing, architecture, navigation, railroad building, and

surveying are more or less based upon mathematical

foundations.

Moreover, this influence of the exact sciences, and

hence of mathematics, is increasing so rapidly that a

nation which would base its industries upon purely

empirical rules, to the exclusion of scientific methods,

would be hopelessly handicapped, and left behind in

the struggle for commercial and industrial supremacy.

Value of mathematical knowledge to the individual.

— It would be an error to infer, from the great useful-

ness of mathematics to our civilization, an equal practi-

means. These symbols not only enable us to state laws which otherwise

could not be stated at all, but they often make it possible to express

relations between physical quantities whose true inward nature is en-

tirely unknown. FreSftel's theory of light, which attributes light to

movements of the ether, leads to differential equations which give a

satisfactory explanation of most optical phenomena. To-day most

physicists accept Maxwell's electro-magnetic theory of light. But while

this theory has changed our notions of the physical nature of light, it

has left Fresnel's differential equation unaltered. Mechanical explana-

tions of the phenomena change, but the differential equations remain

unaltered. Differential equations are such powerful instruments for

exact physical investigations, that we can understand Riemann's saying :

"Exact science exists since the discovery of differential equations."
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cal usefulness to every individual. The percentage of

students who are likely to have practical use for mathe-

matics, after leaving school or college, is certainly small.

The majority of business or professional callings require

no algebra, geometry, or trigonometry, and even the

professions which use these subjects do so to a much

smaller extent than is generally supposed. There are

navigators, surveyors, and engineers who make their

calculations in an almost mechanical manner, without

having perfectly clear notions of the underlying mathe-

matical principles. Only for those few men who be-

come original designers and investigators is true

mathematical skill and knowledge indispensable. Still,

mathematics has some practical value for all students,

and even to an extent greater than many other high

school subjects.

If mathematics, however, had no value as a mental

discipline, its teaching in the secondary schools could

hardly be justified solely on grounds of its bread-and-

butter value.

THE DISCIPLINARY VALUE OF MATHEMATICS

General remarks.— The principal value of mathemat-

ical study arises from the fact that it exercises the rea-

soning power more, and claims from the memory less,

than any other secondary school subject. The study of

mathematics should result in the development of power,

rather than in the acquisition of facts. Not he who

knows a great many mathematical facts is a good mathe-

matician, but he who can apply these facts intelligently,
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who can discover facts that are new to him, and who

can reconstruct those which he has forgotten.

It is power and not knowledge that furnishes the

true test of mathematical ability, and if the power is ac-

quired, then— and only then— will the knowledge fol-

low as a natural consequence. Mathematical instruc-

tion in a secondary school is— or rather should °be—
principally a systematic training in reasoning, and not

an imparting of information.

Of course similar claims are made for nearly all other

subjects, but a closer inquiry will show that for math-

ematics they are really justified. The reasoning in

mathematical work is of a peculiar kind, possessing

characteristics that make it especially fitted for training

the minds of the students. Some of these characteristics

are the following :

1 . Simplicity.

2. Accuracy.

3. Certainty of results.

4. Originality.

5. Similarity to the reasoning of life.

6. Amount of reasoning.

Simplicity.
— It is a well-known principle of physical

training that too severe exercises are not only useless,

but often harmful to the beginners. Similarly, simple

mental exercises are much better adapted to the training

of the mind of the young, than very hard ones. Math-

ematics allows an almost perfect grading, commencing
with exceedingly simple work, and leading the student
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by degrees to harder and harder problems. It is diffi-

cult, for instance, to imagine anything easier than the

simplest exercises in geometry. To prove, let us say,

the equality of two triangles, the student has to examine

six pairs of homologous parts, and to try to find reasons

for the equality of three of them. And how simple

these reasons are: The hypothesis, an axiom, or one of

of the 4 or 5 preceding theorems. How perfectly definite

the given facts, the method, and the required result !

How few given data the student has to keep in mind,

and how few facts he has to know in order to discover

the reasons ! Contrast with this the reasoning necessary

for writing an argument in English,
—

multiplicity of

known facts, indefinite character of the given data and

methods to be used, uncertainty of results.

Accuracy.
— Every teacher knows how many students

lack precision of thought and expression, how many
are unable, or do not try, to understand the precise

meaning of a question, how many speak before even

attempting to think. While it seems that students can

get along fairly well in other subjects with such methods,

they cannot do so in mathematics. In this subject,

the mere repetition of words or phrases will not hide

the ignorance of the pupil. The student must think

accurately, he has to speak accurately, to master mathe-

matics.

Certainty of results.— Any piece of mathematical'

work is either right or wrong, and it is usually a very

simple matter to find out whether or not it is right.

Certainly there can be no difference of opinion between
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student and teacher as to the final result. A student

who has discovered a geometric original, or has solved

an algebraic problem, and verified his answer, knows

that he is right, and therefore is conscious of having ac-

complished something. 'This sensation of having defi-

nitely overcome a difficulty is to the normal pupil a

source of pleasure, a pleasure which increases with the

conquered difficulty. Compare with this the reasoning

a student has to do in a philosophical, political, or eco-

nomic subject. After the expenditure of much time and

labor, there follows uncertainty of result, possible differ-

ence of opinion between teacher and pupil, perhaps even

a disagreement of the accepted authorities.

Originality.
— Mathematical reasoning done by stu-

dents is entirely original thinking, and not the repro-

duction of ideas previously heard or read. This cannot

be said of other school subjects that claim to appeal

mainly to the student's reasoning power. Thus, a

student may apparently reason ably in working out an

economic problem, whnVactually the bulk of his answer

is taken — consciously or unconsciously
— from his

memory. Topics of such general character are dis-

cussed so frequently in daily papers, magazines, books,

and in the family circle, that he who has most opportuni-

ties in this direction, or he who has the best memory, is

often considered a good thinker, although he may be a

dull-witted person.

Similarity to the reasoning of daily life.— While no-

body questions the value of mathematical training for

scientific work and rigid logical deductions, it is often
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asserted that mathematical thinking is of an entirely dif-

ferent order from the kind used in human affairs, and

that consequently mathematical training has no practical

value.

It is undoubtedly true that the mental qualities cul-

tivated by mathematical study alone are not sufficient to

insure ability for solving practical problems ;
but on the

other hand, it is evident that without these qualities one

can hardly hope for success in the affairs of life. Clear-

ness and exactness of thinking are just as necessary in

daily life as in mathematical study.

The person who undertakes an industrial or com-

mercial venture must possess a clear idea of the exist-

ing conditions and of his aims, — in other words, he

must have a firm grasp on the situation
; just as a student

in mathematics has to recognize the hypothesis and the

conclusion. Then— precisely as the student of geom-

etry
— the business man has to consider the various

means at his disposal; he has to examine each, to

eliminate those that are unfit, and to weigh and to

compare the others. In all steps he must have a clear

notion of the situation, of the means to be r

adopted, of

the end to be reached. Confusing the data and

random guessing will produce in business no better re-

sults than in mathematics.* More than one business

man has testified that he owes his success in life to the

habits of exact thinking which he formed when study-

ing mathematics.

* For an elaborate presentation of this point see Young's Teaching
of Mathematics.
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Bulk of mathematical work is reasoning.
— Mathe-

matics appeals more to the reasoning powej, and less to

the memory than any other high school subject. This

is particularly true of geometry. Here— if the subject

is properly taught— nearly everything is reasoning.

The few facts to be known are so palpable as to require

no special memorizing. The equality of vertical angles,

the equality of equidistant chords, etc., are facts that

can be remembered without cramming. Even more

complex propositions, by constant application, soon be-

come familiar to the student.

The rest is— or should be— reasoning. After proper

training in exercise work, the regular propositions soon

become natural consequences of general methods— not

to be memorized, but to be discovered, and to be re-

constructed when forgotten.

Algebra does not make cfuite so good a showing
as geometry. But if its purely formal, manipulative

features are not extended farther than necessary for

future work, very few facts have to be remembered in

algebra,
—

incomparably fewer than in Latin, history,

or French. Moreover, these facts are connected logi-

cally and can be reconstructed if forgotten,
— a thing

generally impossible in a language or other informa-

tional subject.

While it must be admitted that some of the thinking

of elementary algebra is of the same inferior order as

that used in the study of Latin or Greek, namely, the

mechanical application of a known rule, this is not true

of all the work. There is a large field for good original
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thinking in the work on reading problems and in formal
work of mG*e advanced character.

Every normal youth can study mathematics. — Under

fair conditions every normal pupil can easily compre-
hend the simple reasoning of mathematics, provided

the subject is presented properly, and provided his

mind has not been thoroughly dulled by an excess of

mechanical study. The small minority that really can-

not understand mathematics under any condition does

not consist of able pupils, and it is not likely that such

students— as is sometimes asserted
— excel in other

studies. How can a pupil excel in English or econom-

ics who frequently uses his conclusion for his proof,

demonstrates his hypothesis, jumps at conclusions with-

out plan or reason, and cannot concentrate his mind

upon anything, however simple ? J

Elementary mathematics requires nothing but the

plainest common sense
;
and the ^ftory of the special

brains needed for mathematics, as far as elementary
work is concerned, is a myth.

Denial of all mental discipline.
— §ome psychologists

claim that there is no such thing as general mental dis-

cipline, that the disciplinary value pertains only to the

subject studied, or to one of similar content, and that

consequently mathematical study increases the reason-

ing power for mathematics only.

It cannot be denied that there is a little truth in the

first part of this assertion, and that this theory has pro-

duced some reaction against the practice of defending

any pedagogical absurdity on grounds of " mental dis-
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cipline." But on the other hand there is a tendency

among the sensational pedagogues to exaggerate and

to generalize too sweepingly. Pedagogy and psy-

chology are not exact sciences. Their results are only

approximately true, and cannot be applied in the same

rigorous fashion as those of mathematics or physics. If

we attempt to apply them to complex problems, the

limits of error are likely to become so large as to in-

validate the entire results. Conclusions reached by such

methods need constant verification, and must be modified

if found to be contradictory to experience.

Precisely this thing happens in this widely advertised

discipline theory, when we apply it to mathematical

teaching. Every mathematical teacher of experience

has seen cases which disprove this theory. It is a

common experience to see a pupil in the upper grades

suddenly wake up to the meaning of mathematics, and

thereby change his attitude towards study in general.

Pupils who were indifferent and apparently without

ability become active and intelligent students, interested

and capable, not only in mathematics but in other

studies. (These studies, however, it must be admitted,

are sciences, not languages.) The question is similar

to that of the value of physical training
— although it is

no longer the fashion to use this parallel
— for the pur-

suit of some physical labor. Baseball playing may not

be a direct preparation for a particular physical labor such

as hod-carrying. Still a man who has strengthened his

body by ball playing would be in a better position to take

up such a task, than he who has never exercised at all.
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Then we have the negative evidence. If this doctrine

were true, the harm done by unpedagogic training

would not extend beyond the subject or subjects that

caused it. But every day we see that the results caused

by bad training are general. The dullness acquired in

some of our schools is absolutely general; it relates to

any subject, old or new. In other words, one or several

subjects may disqualify the student for the study of all

subjects.

If we should accept the theory that the general

mental caliber of the students is not improved by

study, it would undoubtedly be best to close all schools

after the fourth or fifth year of the grammar school,

since the knowledge gained afterwards is not worth the

trouble.*

MINOR FUNCTIONS OF MATHEMATICAL STUDY

Some of the minor advantages of mathematical study

may be briefly stated as follows :

i. Development of the power of concentration.— Very
few young people seem to be able to concentrate their

minds for even a few minutes upon one idea. This is a

faculty, however, which can be acquired, and mathe-

matical study is admirably adapted to develop it.

* This theory of mental discipline is closely related to the physiologi-

cal theory of the localization of mental functions. The latter theory

assumes that the mind consists of a number of independent
"
faculties,"

each of which has a definite localization in a region of the brain. These

views form the basis of phrenology, but they have been generally

abandoned by physiologists. (See Loeb, Physiology of the B'-ain,

pp. 259-263.)



VALUE AND AIM 27

2. Development of the constructive imagination or the

inventive faculty.
— Far from being a dry science re-

quiring pedantic accuracy and little imagination, true

mathematical work consists in inventing, in finding some-

thing that is unknown to the worker; and in this, suc-

cess is impossible without the use of the creative powers

of the mind. Solving a geometric problem and making
an invention are very similar processes, the chief point

of difference being usually the greater simplicity of the

geometric problem. To the student, the solving of a

difficult problem is a discovery ;
and consistent training

in such work develops those faculties that lead to dis-

covery and invention.

3. Growth of mental self-reliance. — Young students,

as a rule, rely too much upon facts taken from books

or some other authority, and too little upon their own

faculties, a trait which shows that they have no confidence

in their own mental powers. Their former training has

led them to believe utterly in authority, and especially

to think that all knowledge depends upon authority.

/""Some people retain through life the habit of placing

\authority above common sense and reason. Especially

in educationaj circles is this affliction very common.

4. Development of character.— Mathematical study

trains the students in systematic and orderly habits, and

the pleasure connected with the successful conquering

of a difficulty stimulates the will power. It has also

been claimed that dealing with a subject that is abso-

lutely true, that rejects and shows up any error, is bound

to increase respect for truthfulness and honesty.
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5. Increased ability to use English correctly.
— The

difficulties which many students have in attempting to

express their own ideas in their mother tongue are quite

apparent in geometry, and on the other hand few sub-

jects are so well suited as geometry for curing this evil

Geometric work possesses three qualities which are nee

essary for such work, viz. originality of the idea, sim

plicity of the terminology, and comparative ease witl

which precision of expression can be reached. The

ability to understand English, especially of the rathe:

difficult kind used in scientific or philosophical discussion

is also greatly improved by the study of mathematica

texts.

6. Increase in general culture. —An acquaintance

with the fundamental facts and methods of mathematics

seems to be necessary for general culture. A science

that is closely interwoven with most mental achieve

ments of the race, that is found in all civilizations, thai

represents the most finished types of exact thinking

cannot be ignored by the man of culture.

A person unfamiliar with the elements of mathe-

matics cannot fully comprehend the simplest facts of

astronomy, he is not able to read and .to grasp the

accounts of the wonderful discoveries and inventions of

our time.

Summary.— If the student becomes properly initiated

into the spirit of mathematical work, and pursues his

studies with interest, some of the principal results may
be briefly stated as follows : He will be led to an intelli-

gent use of his reasoning faculties, and will recognize
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that thinking is more effective in study than is memoriz-

ing. He will be led to a judicious mode of study in

general, and acquire mental self-reliance and independ-

ence. He will take more interest in, and thereby derive

more pleasure from, his studies than ever before.

It is needless to say that in most cases these results

are not obtained. As pointed out before, however, this

is not due to the nature of the subject, but to the per-

version of its true spirit by those who control our

schools, and who frequently have no understanding of

the peculiarities of mathematics.

The fundamental principle of mathematical teaching.

— The acceptance of the foregoing views on the pur-

pose of mathematical teaching must more or less influ-

ence all principles of mathematical pedagogy. Among
the numerous consequences, one is of such great im-

portance, that it is no exaggeration to call it the funda-

mental principle of mathematical teaching, viz. :

Mathematics is primarily taught on accoicnt of the

mental training it affords, and only secondarily on

account of the knowledge offacts it imparts. [
The trice

end of mathematical teaching ispower and not knowledge.



CHAPTER III

METHODS OF TEACHING MATHEMATICS

CLASSIFICATION OF METHODS

No attempt will be made to give in this book an ex-

haustive discussion of all methods that have any bearing

upon mathematical teaching.* The essential methods,

however,— those which have a substantial bearing upon
the work of the teacher,— will be discussed rather fully.

They are the following :

i. The Synthetic and the Analytic Methods.

2. The Inductive and the Deductive Methods.

3. The Dogmatic and the Psychological Methods.

4. The Lecture and the Heuristic Methods.

5. The Laboratory Method.

Each of these methods refers to a different phase of

presentation of the subject, and consequently they do

not exclude one another.

THE SYNTHETIC AND THE ANALYTIC METHODS

Description of the two methods. — Synthetic methods

lead from the known to the unknown, while analytic

methods proceed from the unknown to the known. In

geometry a synthetic proof starts from the hypothesis

and ends with the conclusion, while an analysis leads

from the conclusion to the hypothesis. In a synthesis

* For greater detail the reader is referred to Young's Teaching of

Mathematics.

30
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we say : A is true, therefore B is true, and therefore C
is true. In an analysis we reason : C is true if B is true,

and B is true if A is true. But A is true, hence C is true.

The demonstrations given in the textbooks of geome-

try are nearly all synthetic, while analytic proofs, in

most textbooks, are entirely omitted.

Examples.— The true character of the terms analytic

and synthetic, as used in elementary mathematics, will

possibly be best explained by a number of concrete

examples.*

Ex. 1. If a : b=£.\dt

then ac.+ 2 &2 ;fc == c2 + 2 {>d: dc.

Synthetic Proof.

-zb

Adding —-to each member,

a 2b _c 2.b

be d c

c- vc - ac + 2 b2 c2 + 2 bd
Simplifying,

——
. = t_Z—fifr

. q.e.d.
be dc

Analytic Proof. The identity

ac + 2 b2 _ c2 + 2 bd

be- dc

would be true if (ac + 2 b2
)dc = (c

2 + 2 bd)bc.

This would be true if

ac2d + 2 b2cd = be* + 2 b2cd
y

or if
'

ac2d = bc\

or if ad - be.

But ad = be; (Hyp.)

Therefore, ac + 2 b2 :bc = c2 + 2 bd: dc.

* For additional examples see Chapter XI.
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The synthetic proof is shorter, more elegant, but one

2 b
does not see why — was added to each member, al-

though this operation is justified by the result. The

analytic proof is lengthy and almost awkward, but there

is no doubt why this sequence of steps was taken. The

synthetic proof is a special device, the analytic is based

upon a general method. If the student should forget,

it would be much easier for him to reconstruct the

analysis than the synthesis.

Ex. 2. The line that joins the vertices of two isosceles

triangles having a common base is perpendicular to the

common base.

The synthesis of the proposition is the proof commonly given in

the textbooks. We prove first the equality of the triangles ABE
and ACE

:
then the equality of triangles ABD and ACD. From the

resulting equality of angles BDA and CDA follows the conclusion.

Analysis, (i) Prove ZBDA —
go°.

To prove that an angle is a right

£le, we usually prove that it is equal to

its supplementary adjacent ones (Chap-
ter VIII, Method IV), therefore we have

to prove :

(2) ZBDA = ZCDA.

The equality of two angles is usually

proved by means of two equal triangles

(Chapter VIII, Method I), therefore we
must prove :

(3) ABDA = ACDA.

Since we cannot find enough equal parts to prove the equality of

the two triangles directly, we select first another pair of triangles
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whose homologous parts will supply the missing equalities (Chapter

VIII, Method III) . Therefore prove :

(4) AABE = A ACE, an equality which is easily established.

The reduction of the conclusion to a simpler or more

easily proved statement is accomplished by an inquiry

into the various means of proving the conclusion. Hence

we do not simply say,
" The lines are perpendicular if

the two triangles are equal," but ask for the means for

proving the perpendicularity of two lines.

Ex. 3. The line joining the mid-points of two sides of

a triangle is parallel to the third side and equal to one

half of it.

The synthesis is the proof commonly given in textbooks.

Analysis. (1) The usual method for proving that one line {ED)
is one half of another (BC) is to double the smaller.* Hence we

produce ED by its own

length to F.

(2) ProveEF= BC,
and EF\\BC.
There are several

methods for proving
the equality of lines,

and several others for

proving parallelism of lines. Only one, however, proves equality

and parallelism simultaneously, viz. the one based upon a parallelo-

gram. Hence we attempt to

(3) Prove that BCEF is a O.

There are again various methods of demonstrating that a figure

is a parallelogram, but since nothing whatever is known in regard to

BC and EF we have to use the sides BF and CE exclusively, i.e.

we have

(4) To prove (a) BF\\ CE and (J) BF= CE.

*
Chapter XI/Method VII.

N
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(a) The fundamental method for demonstrating parallelism of

lines rests upon the equality of a pair of alternate interior angles.

Hence we have to prove

(5) ZA = ZDBF.
The usual method for demonstrating the equality of two angles

makes use of the equal-

ity of triangles, or we
have to prove

(6)

AADE=ADFB.
The equality of these

triangles is easily es-
**

tablished, and hence

the parallelism of BF and CE follows. To prove the equality of

these two lines we have to remember that CE as AE. The equality
ofAE and BF follows easily from the triangles considered in (6) .

This may appear difficult and artificial to a person
not familiar with analyzing in general, and not accus-

tomed to consider the various "means" for demonstrat-

ing certain geometric facts. But it is on the other hand

obvious that this analysis gives a reason for taking each

step, and that a student acquainted with the various
" methods "

will in most cases find this solution. The

synthesis, however, consists of a number of steps, whose

correctness we see, but for whose sequence we have no

reason whatsoever. In the synthesis we do not see why
ED is produced by its own length, why we demonstrate

the equality of triangles FBD and EAD, etc.

Ex. 4. The sum of any two face angles of a triedral

angle is greater than a third face angle.

Analysis. (1) To prove ZAVB + ZBVC>Z CVA.

When we compare the sum of two angles (AVB and BVC) with

a third angle CVA y
we either construct
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(a) The sum of AVB and BVC, or

(J?)
The difference of CVA and AVB. Method (£) leads to the

demonstration that is generally given in textbooks, and is quite

analogous to (a) . Hence only (a) will be analyzed.

In plane BVC draw VD so that ZDVB = Z.AVB, then we have

to prove that

(2) ADVC</.AVC.
There are three fundamental methods for proving the inequality

of angles,* but since the angles lie in different triangles, we must use

the proposition of two triangles that have two sides equal, but the

fliird sides unequal.

Obviously VC is common, and to obtain the other pair of equal

sides we make VD — VA and pass a plane through A, D, and C

intersecting VB in B', then CVA and DVC are two triangles that

have two sides of one equal to two of the other, and it remains to

prove that

(3) CA<DC.
But CA < CB' + B'A, and since CD = CB' + B'D, the theorem

would be proved if we could show that

(4) B'A - B'D.

But this is easily established by means of equal triangles.

* See Chapter X, Unequal Lines and Angles.
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Value of the two methods.—A synthesis shows that

every step is true, but does not explain why this step

was taken. A synthetic proof convinces the reader that

the fact to be demonstrated is true, but does not reveal

to him the real plan of the demonstration, does not tell

him why this sequence of arguments was selected.

Proofs are not discovered by the synthetic methods,

and if forgotten, synthetic demonstrations are most diffi-

cult to reconstruct. But synthetic proofs are usually

short and elegant, and are in place when no pedagogical

conditions need to be considered.

An analysis, on the other hand, is lengthy and not

elegant, but it is the only method that accounts fully

for each step of demonstration. It is the only method

by which students can hope to discover proofs, or to re-

discover them after they are forgotten. Analysis is the

method of discovery, synthesis the method of concise and

elegantpresentation.

Hence, students in secondary schools should be made

to discover demonstrations by analysis, but after this

has been accomplished, the proof may be represented

synthetically. Exclusive synthetic teaching may be ex-

cusable when used with university students, who are

able to analyze for themselves, but even there bad re-

sults will frequently follow.*

* Some authors, e.g. Gauss, are exceedingly difficult to read, because

their demonstrations are frequently very concise syntheses, with no indi-

cations of the analytic steps by which the author arrived at his conclusions.
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THE INDUCTIVE AND THE DEDUCTIVE METHODS

Description of the two methods.— The inductive

method leads from the particular to the general, from

the concrete to the abstract, while the deductive method

derives particular truths from general truths, concrete

facts from abstract facts.

Any syllogism is a good example of deductive reason-

ing, e.g. :

Vertical angles are equal.

Z A and Z B are vertical angles.

Hence, Z.A = Z.B.

On the other hand, any conclusion drawn from expe-

rience, any general law derived from a number of ex-

periments, is obtained by induction, e.g.
" Whenever a

body of gas is compressed, its temperature rises, hence

all gases will become hotter if compressed."

Inductive reasoning is not absolutely conclusive, it

only establishes a certain degree of probability, which

increases with the number of facts observed. Hence it

cannot be used for exact mathematical demonstrations,*

but it can be employed forfinding mathematical facts.

Mathematical facts discovered by induction.— Such

discovery is best illustrated by concrete examples, e.g.

to find the sum of the first n natural numbers, let us

find this sum from n = 1 to 71 = 5, and let us compare

(i.e. divide) these sums with n. We obtain then the

following table :

* On the inductive elements in mathematics see Chapter IV.



38 TEACHING OF MATHEMATICS

n
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Value of the two methods. — The solution of mathe-

matical problems, by previously demonstrated formulae,

is in general a very concise and practical method. It is

much shorter to memorize a formula for the median of

a triangle than to find the numerical value in every con-

crete example by starting from the general median prop-

osition. Hence teachers as well as textbooks frequently

give deductive methods a prominent place, sometimes

almost to the exclusion of all inductive work.

On the other hand, it is very difficult for a beginner to

understand an abstract piece of mathematical work, if

not preceded by a number of concrete instances. Can

students really understand the derivation and the mean-

ing of the formula for the number of permutations of n

things, taking r at a time, if the problem is not preceded

by a number of concrete cases ? Can they even know

what a permutation is without concrete illustrations ?

j
Abstract ideas are the result of concrete experiences, and

'only after a number of concrete cases are understood

can abstract generalizations be successfully attacked.

Moreover, purely deductive methods require a formula

for every type of mathematical problems, and the exten-

sive use of such methods demands the memorizing of a

great many formulae. After forgetting these formulae—
and the forgetting takes places very rapidly

— the student

is utterly helpless. Who remembers Cardan's formula?

Pupils trained to attack problems inductively need not

rely upon this formula
; they can apply Cardan's method

without knowing the formula "
by heart." *

* See the author's Advanced Algebra, p. 495.
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The preceding arguments, however, do not involve the

abandoning of all deductive methods. On the contrary,

for certain types of work, deduction is most important,

although it should always be preceded by induction.

Thus, for all important problems of fundamental char-

acter, formulae should be memorized. For instance, the

formulae for the roots of a quadratic equation, the for-

mulae for progressions, the binomial theorem, etc., should

be thoroughly memorized and applied. Hence we can-

not use one of these methods to the exclusion of the

other, and we may summarize as follows :

1. Apply inductive methods whenever there is an

opportunity.

2. Use deductive methods also, but only after attack-

ing the subject inductively.

3. Deduction, and the consequent memorizing, should

be restricted to the most important cases.*

THE DOGMATIC AND THE PSYCHOLOGICAL f

METHODS

The dogmatic method.— The dogmatic method makes

rigor the chief desideratum of mathematical study, while

*
Lately there has been a tendency to teach general theorems at a

very early stage of the work. A typical instance of thflRdnd is the factor

theorem. The reasons advanced above make it undesirable to study

general theorems at too early a stage of the work. For, as a rule, the

students do not understand, and hardly ever appreciate, such theorems.

Let the student first become familiar with the use of simple tools, before

we let him use highly refined instruments. No general theorem should

be taught before the student recognizes the necessity for such a proposi-

tion, and before he is aware of the difficulty of the special cases.

t Sometimes called the genetic method, a term which is, however, fre-

quently used in a different sense.
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the psychological method advocates rigor only so far as

the average capacity of young students justifies it. The

dogmatists claim that the value of mathematical teach-

ing rests mainly upon its extreme exactness, that any
deviation from the absolute standard of rigor will defeat

the very purpose of the entire work, and will necessarily

lead to slipshod thinking. Indeed, there are teachers

who lay the inefficiency of mathematical teaching mainly

to insufficient rigor.

It is claimed that the inability of students to under-

stand the utmost refinements of mathematical thinking

may be overcome by making them study
— if necessary,

memorize— perfect models. By learning a great many
models the student is said to acquire, in some unex-

plained manner, understanding of and ability to do

mathematical work.*

The psychological method.— The followers of the psy-

chological method assert that in any subject it is a mis-

take to consider only the scientific aspect of the subject,

and to ignore absolutely the degree of mental develop-

ment of the student. An exactness which is not under-

stood by the student is not exactness so far as he is

concerned. Over-rigorous teaching will not lead to
I w

* The assertion that mathematics can be studied by reading and re-

reading perfect models, without any original thinking on the part of

the student, can be made only by people who either are not capable of

analyzing their own ideas, or who cannot do any mathematical thinking

of their own. For otherwise they would notice the inefficiency of an

occasional bit of study based upon reading alone. Such study does not

lead the reader to observe the characteristic difficulties and the nature

of the critical points of the subject, and hence the knowledge acquired
in this manner is superficial and short-lived.
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rigorous thinking. In most cases the result will be lack

of interest, sometimes even disgust with a subject.

Rigor.
— While exactness in thinking and accuracy in

speaking are among the chief aims of mathematical

teaching, exactness must never be carried to such an

extreme as to make the subject unintelligible to the

student. The objections to extreme rigor may be sum-

marized as follows :
*

1. There is no absolute rigor possible in a secondary
school.

2. The rigor insisted upon in many classrooms is

frequently only an exact adherence to a textbook, which

may, and often does, contain flaws.

3. By studying exact models which he cannot under-

stand, the student will not improve his reasoning power,

for he does not do any exact thinking. He only repeats

exactly somebody else's ideas.

4. Students lose interest in mathematics and acquire

wrong notions of mathematics in general.

5. Students are frequently led to mechanical methods

of study and to memorizing.

6. Students without mathematical ability, but with

good memories, are made to consider themselves good
mathematicians.

THE LECTURE METHOD AND THE HEURISTIC METHOD

The lecture method.— Scarcely any teacher in a

secondary school would present geometry or algebra in

the form of lectures. There are, however, teachers who
* Compare Chapter VI, Preliminary Propositions.
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lecture too much, teachers who are inclined to state

demonstrations or other pieces of work without ques-

tioning the students
;
in other words, teachers who pre-

sent considerable portions of the work in the lecture

form. Hence a brief discussion of the merits and draw-

backs of the lecture method may be justified.

Merits.— i. It allows the presentation of a large

amount of subject matter within a given time.

2. It can be used for large audiences.

3. The logical sequence of ideas is not interrupted.

4. It is comparatively easy for the teacher.

Drawbacks.— 1 . Receiving information is not mathe-

matical study.

2. The attention of the students is likely to wander.

3. The ideas follow one another so rapidly that little

is comprehended during the lecture, and a great deal is

left to home study.

4. In mathematics, the inability to understand one

essential point may make the rest of the lecture unin-

telligible.

5. The teacher is not in contact with his class, and is

unable to determine whetner or not the majority of the

students are able to follow.

In general, lecturing, even to a small extent, is out of

place in a secondary school, but is somewhat justified

for advanced university work.

The heuristic method.*— The heuristic method at-

* The heuristic method is sometimes called the Socratic method,

although the latter is only a special form of the former, viz. the leading

ad absurdum by questions.



METHODS OF TEACHING MATHEMATICS 45

tempts to make students find and discover as much as

possible, and to reduce direct information to a minimum.

Since students of high school age are unable to make

absolutely original discoveries, they must be led, and the

heuristic method does the leading by questions.* Not

only the teaching in the classroom but also the arrange-

ment of textbooks may be based upon the heuristic plan.

Advantages.— 1. Pupils thinkfor themselves and are

not merely listening for information.

2. Students acquire a real understanding of the sub-

ject. A person listening to a lecture quite often does

not grasp all the peculiarities of a demonstration; on

his attempt a few days later to construct such proof,

certain difficulties that were not noticed at the lecture

interfere. A student, however, who discovers the solu-

tion of a problem himself has a full understanding of

its difficulties and can easily reconstruct it.

3. The interest of the students and the resulting

willingness to work are greater when they are taught

heuristically, than when taught by informational

methods. Mathematical instruction cannot be success-

ful if it fails to stimulate the interest
; and, on the other

hand, interest is the most powerful stimulus for work.

A student who is interested has no difficulty in paying

attention, and is, as a rule, successful in his work.

Mathematical study for one deeply interested is a

* When the questions are addressed to the entire class the members of

which are expected to cooperate, when requested, the method has been

called the "genetic." But as this is the mode of procedure of nearly all

heuristic teaching the distinction is somewhat artificial.
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pleasure, and not a drudgery. In general no truer cri-

terion for the success of mathematical instruction exists

than the interest of the students.

4. Teachers are in complete touch with their classes.

5. Home study is not nearly so heavy or tedious as

when informational methods are used.

Disadvantages.
— 1. The heuristic method is slow,

especially in the beginning.

2. It is sometimes difficult to make students discover

certain facts.

3. The method is difficult for the teacher, for he can-

not simply follow a textbook, but must constantly seek

devices for leading students, devices that must be modi-

fied for different pupils and for different classes.

4. The method does not work well in the hands of

every teacher. Some teachers expect too much from

the pupils, and consequently accomplish hardly any-

thing. Others expect too little, making the questions

so easy that students have to answer simply
"
yes

"

or "no." This is the fault of some textbooks that

claim to be heuristic, and lead the students by questions

like the following :

"Compare AB and AC"
"
Compare Z BAD and Z DACr

" What is common to A ABD and ACD ?
"

"
Compare A ABD and A CD."

"What conclusion can you draw with reference to

Z B and Z C ?
"

The ability to ask truly heuristic questions is most

essential for the mathematical teacher.
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THE LABORATORY METHOD

Description of the method.— The general dissatisfac-

tion with the results of the prevailing dogmatic-infor-

mational methods has recently placed in the center of

interest a method that has some similarity to the heu-

ristic method. The laboratory method proposes also to

lead students to the discovery of mathematical facts.

The means of discovery, however, is not the questions

of the teacher, buf experiments performed by the pupil.

By actual weighing and measuring, areas, volumes, lines,

and angles are determined
;
and each particular mathe-

matical relation is found as a consequence of a number

of such experiments.

Thus, to make a student discover the relation between

the area of a circle and its diameter, have him cut out

of cardboard a number of circles, and let him determine

the areas by experiment. These areas may, for instance,

be found by comparing the weights of the cardboard

disks with the weight of the unit of area, cut out of the

same material. By making a list of diameters and

weights, the student may find the relation :

area = 3^ (radius)
2
.

It would lead too far to give extended lists of all the

different schemes and devices proposed by the advocates

of the laboratory method. The wide scope of the work,

however, is indicated by the great variety of materials

that have been used in such work, as drawing instru-

ments, cross-section paper, measuring rods, calipers,
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balances, transit instruments, sextants, steel tapes, ther-

mometers, levers, pulleys, planimeters, etc.

Good features of the laboratory method.— The natural

way of making discoveries, the way the human race has

taken, is from the concrete to the abstract. Laboratory

work is exceedingly concrete and hence interesting and

enjoyable to young students. It emphasizes the doing,

it requires the student to accomplish something that is

within his capacity.

The laboratory method brings the applications of

mathematics into prominence, while students taught

otherwise are notoriously weak in applying their mathe-

matics. Finally it gives the student a clear notion of

the space concepts. A student who has measured many

angles will naturally know what an angle is, a thing not

at all certain in the case of students whose instruction

was purely theoretic.

Weak features of the laboratory method. — i. It is

not at all easy to make students discover mathematical

facts by experiment.

2. It is an exceedingly slow method.

3. It degenerates sometimes into a kind of manual

training.

4. It is based upon the wrong assumption that pupils

cannot comprehend, and do not enjoy, demon strational

mathematics.

5. Laboratory work and induction from experience

are not typical mathematical work, and hence such

methods used exclusively do not give the student any

training in true mathematical thinking. It makes the
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student acquainted with mathematicalfacts; but not with

mathematical reasoning.

Summary. — Laboratory methods form an exceed-

ingly valuable supplement to the teaching of mathe-

matics. Students doing some work of this character

will have more interest in, and understanding of, pure

mathematics. But the laboratory method must not be

pushed to the point of complete abandonment of pure

mathematics.



CHAPTER IV

THE FOUNDATIONS OF MATHEMATICS*

THE AXIOMS OF GEOMETRY

The bases of geometry.
— Every conclusion rests upon

premises which either are self-evident, or which require

demonstrations, i.e. lead to other premises. As this ref-

erence to more fundamental premises cannot be con-

tinued ad infinitum, every deductive science, and

geometry in particular, rests upon a number of non-

provable propositions, considered self-evident and called

axioms. To define an axiom, however, as a self-evident

truth would involve the assumption of an immutable

standard of self-evidence. It will appear from the fol-

lowing section that axioms are sometimes merely con-

ventions without much reference to their common-sense

evidence ;
but in a preliminary sense we may say that

an axiom is a proposition, (i) assumed as self-evident,

(2) not capable of being deduced from other axioms.

Following Euclid, axioms relating to purely geometric

facts, as " Two points determine a straight line," are fre-

quently called postulates.! The entire subject of geom-

* It is impossible to give even an outline of this important subject

within the available space. Here only a few fundamental phases of the

subject, which seem to have philosophic or pedagogic importance, are

discussed.

t The term
"
postulate

"
is used in elementary geometry in a some-

what different sense.

50
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etry rests upon axioms, postulates, and definitions, and

hence these are frequently called the bases of geometry.

The philosophic aspect of the geometric axioms.— The

chief philosophic question in regard to mathematical

axioms is : Does the knowledge of the mathematical

axioms precede experience, or is it the result of

experience ?

The rational doctrine in general asserts that certain

elements of reason must underlie all experience; that

without them experience is impossible. In other

words, the knowledge of certain facts must precede all

experience ;
there is knowledge a priori. The empirical

school, on the other hand, claims that all knowledge is

finally derived from experience, and that there can be

no knowledge a priori.

The mathematical axioms derive a special philosophic

interest from the fact that they played a very impor-

tant r61e in the controversy between these schools.

The rationalists always pointed to geometry as an

obvious example of knowledge independent of experi-

ence,
— knowledge a priori. Geometry, they claimed,

gives us some knowledge of the real world, and is inde-

pendent of experience.

This argument can be met either by contending that

geometry does not give us any knowledge of the real

world, or by claiming that geometric axioms are ex-

perimental facts. While modern mathematics has

made the first assertion very probable, most empiricists

like Hume and Mill attempted to prove the second

point. According to John Stuart Mill, the postulates
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are neither exact nor necessary, and their apparent

certainty is produced by the continuous presence of

spatial impressions. Two diverging lines are always

seen to diverge farther and farther, and this experience,

often repeated and uncontradicted, is the reason why
we cannot conceive the possibility of their meeting

again. But this apparent certainty is only the result

of induction, and does not prove that the opposite is

impossible.

Kant,* on the other hand, considers the axioms as

(synthetic) judgments a priori. He claims that they

possess a universal and necessary certainty which no ex-

perience can give, and that the opposite is unthinkable.

We cannot conceive the existence of a triangle the sum

of whose angles is more than 180 .

Purely philosophical speculations have not advanced

the solution of this problem as much as have the mathe-

matical investigations which we shall briefly discuss in

the next sections.

NON-EUCLIDEAN GEOMETRIES AND THE AXIOMS

Euclid's postulates.— Not considering statements that

obviously can be proved, Euclid's geometry contains

two geometric axioms, viz. :

i. Two points determine a straight line.

* Kant is not a rationalist in the strict sense of the word. He asserts :

There is knowledge a priori, but this knowledge is only about things as

they appear, not about things as they really are. Kant's rationalism

is therefore idealistic, while before him it was realistic, i.e. relating to

the knowledge of the real world.
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2. Two intersecting lines cannot both be parallel to a

third line.*

Tacitly assumed, however, is a third postulate, the

so-called axiom of free mobility :

3. A figure can be moved from place to place with-

out change of form.

The axiom of mobility is of great importance, for all

proofs of equality and all measurements depend upon it,

but up to comparatively recent times its tacit assumption

was not recognized.

As the second axiom, frequently called Euclid's postu-

late, seemed to be capable of proof, innumerable attempts

were made to deduce it from the other axioms, but with-

out success. After centuries of continued failure this

lack of proof was considered such a flaw in the appar-

ently perfect structure of geometry that some mathe-

maticians referred to it as the defect or disgrace of

mathematics.

The geometry of Lobatschewsky.
—

Finally, however,

a method first suggested by Gauss, and carried out by

Bolyai and Lobatschewsky,f showed absolutely that

Euclid's postulate cannot be proved.

This method, which may be called the indirect proof
* These axioms frequently appear in different forms

; e.g. :

(1) (a) Two diverging lines cannot meet again.

(b) Two straight lines cannot inclose a space.

(2) (a) Two lines are parallel if two interior angles on the same side of

a transversal are supplementary.

(b) The sum of the angles of a triangle equals 180 .

t Gauss communicated his results to Bolyai's father, 1795 to 1799,
and Bolyai published his results in 1832. About the originality of

Lobatschewsky's work, however, there is absolutely no doubt.
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on a large scale, assumes that through a point several

parallels to a line can be drawn, and, retaining the other

axioms, draws a great many consequences, in fact builds

up an entire geometry. If this assumption is wrong,—
i.e. if Euclid's postulate is the necessary consequence
of the other axioms,— then sooner or later contradictions

must appear. The surprising result, however, is that

the entire system does not lead to any contradictions.

Lobatschewsky obtained an entirely new geometry,

forming a perfect non-contradictory system that is as

coherent and as logical as Euclid's.* This shows con-

clusively that Euclid's postulate is not a consequence

of the other axioms, and that there is no logical reason

against assuming that two intersecting lines may be

parallel to a line.

Lobatschewsky' s geometry was the first non-Euclidean

geometry, but soon others were to appear.

» The geometry of Riemann.— About twenty-five years

later, Riemann constructed a geometry which is based

upon a much deeper analysis of the axioms and the

nature of space.f By retaining only the axiom of

mobility, but rejecting the two other postulates, Rie-

* The theorems of this geometry differ in many cases from those of

Euclid, and some appear at first rather singular, e.g. :

i. The sum of the angles of a triangle is always less than 180 .

2. The area of a triangle is proportional to the difference between the

sum of its angles and 180 .

3. Two perpendiculars erected at two points of a line diverge.

4. There are no similar figures.

5. Space is finite, but unbounded, etc.

t Riemann, Ueber die Hypothesen die der Geometrie zu Grunde-

Iiegen.
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mann obtains results that show a striking analogy to

those of Lobatschewsky, being in some cases identical,

in others opposite.* Riemann's two-dimensional geom-

etry is identical with Euclid's spherical geometry, while

his solid geometry involves curved space, a notion based

upon certain investigations of Gauss.f

While Lobatschewsky's geometry did not lead to any

*
E.g., i. The sum of the angles of a triangle is always greater than

180 .

2. The area of a triangle is proportional to the sum of its angles di-

minished by 180 .

3. Two perpendiculars erected at two different points on a line con-

verge.

4. There are no similar figures.

5. Space is finite, but unbounded, etc.

t It is frequently attempted to make the notion of curved space

somewhat more plausible by the following considerations: Imagine (if

you can) two-dimensional beings who live on the surface of a huge sphere,

and whose physical constitution does not allow them to perceive any-

thing outside this spherical surface. As long as such beings are ac-

quainted only with a small portion of the sphere, they will consider their

world a plane ;
and if they construct any geometry, it will be the plane

Euclidean geometry. If they should, however, become acquainted with

a comparatively large portion of this sphere, they would recognize that

their world is a sphere, and that their former geometry was not exactly

true. They would construct a spherical geometry and recognize that

what they considered straight lines are really circles
;
that true straight

lines cannot exist
;
that their world is finite and unbounded, etc.

Similarly our notions of three-dimensional space may be due to limited

experience, and an acquaintance with larger portions of the world—
so it is argued— may show that space is curved, a notion which we

cannot imagine, but whose consequences we can draw. In such a space,

apparent planes would be spherical surfaces, lines would be circles, true

straight lines and planes could not exist, such a space would be finite

and unbounded.

This whole explanation is, however, so full of difficulties and impossi-

bilities that it has no scientific value.
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contradictions, there was the possibility that by further

development hidden contradictions might be revealed.

Riemann's two-dimensional geometry, being identical

with the Euclidean spherical geometry, cannot possibly

lead to any contradiction. As the same conclusion can

be generally proved for his solid geometry, Riemann's

work was not open to the only objection that could be

made to Lobatschewsky's.* Thus we have three geom-

etries, all three equally true as far as logic can decide,

although not all three equally convenient for practical

purposes.

Modern view of geometric axioms.— The fact that

different parallel axioms produce perfect logical systems

* Soon afterward, however, Beltrami showed that Lobatschewsky's

two-dimensional geometry is identical with the geometry of figures that

can be drawn on the so-called surfaces of constant negative curvature,

and removed thereby the above-mentioned objection.

A surface of constant negative curvature is either a pseudosphere

or a surface that may be deformed so as to be applied to a pseudosphere.

Similarly, a surface of constant positive curvature is a sphere or any of

its deformations, and a surface of zero curvature is a plane or any develop-

able surface (as cone, cylinder, etc.).

The different two-dimensional geometries may be represented in the

following surface :

Geometry
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proves that we have no logical reason for adopting

Euclid's postulate. Reasoning, unsupported by experi-

ence, would be absolutely unable to make a choice be-

tween the three parallel axioms
;
and hence the view of

the rationalists that the postulates are a priori facts,

the knowledge of which precedes all experience, and the

opposite of which is unthinkable, is hardly tenable. In

regard to the true nature of the axioms we may say

,
that pure geometry selects its axioms in the same way

;

: that it chooses its definitions, viz. by accepting conven-

tions that do not lead to contradictions, without regarding

in the least our physical experiences. Most mathemati-

cians therefore consider geometric axioms as conven-

tions.*

The general acceptance of the Euclidean axiom in

preference to non-Euclidean axioms is due to experi-

ence. Hence, we may say that Euclidean geometry is

partly based upon experience or induction.

Summary of the consequences of non-Euclidean geome-

try.
— The view is not unfrequently expressed that

non-Euclidean geometry
— or Metageometry as it is

sometimes called— is a logical curiosity opposed to all

common sense, and without any mathematical or other

value. As far as any knowledge of the real world is

concerned this may be true, but the study of these sub-

jects has nevertheless distinct advantages, some of

which are the following :

i. It positively demonstrates that Euclid's postulates

* This does not of course relate to the general axioms which have no

geometric character. '
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cannot be derived from the other axioms. Before

Lobatschewsky mathematicians wasted a great deal of

effort in the vain attempt to prove the impossible, while

at present the problem belongs in the same class as the

squaring of the circle, or perpetual motion.

2. The knowledge of the foundations of geometry, and

especially the true nature'of the axioms, has been put on

a much more scientific basis than before.

3. The argument of the rationalists that geometry

gives us an a priori knowledge of the world has been met.

This has been accomplished, however, not by following

Mill's line of argument, but by proving that pure geome-

try cannot give us any knowledge of the real world.

Other geometries.
— Although some geometers were

inclined to consider the three geometries as the only

possible ones, it was soon recognized that other axioms

had been tacitly assumed whose denial led to other sys-

tems. The main tendency of this development* has

been to put Euclidean as well as non-Euclidean geome-
tries upon a stricter logical basis by freeing it from all

elements of sense-perception. Things which we per-

ceive to be obviously true by inspection of the diagram
cannot be admitted without argument, for seeing is not

demonstrating. Thus, if four collinear points, A, B, C, D,

are so located that C lies between A and D, and B be-

tween A and C, then we can see that B lies between A
and D. Such an argument, however, could not be

admitted in the rigorous geometry. It has either to be

* The best-known investigator in this field is possibly Hilbert. See

Hilbert, The Foundations of Geometry, Chicago, 1902.
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demonstrated, or if consistent with the other axioms,

may be admitted as an axiom.

Thus we obtain highly logical geometries, built upon
numerous axioms, and free from empirical elements.

The figures to which they refer, however, have little in

common with the figures with which our senses have

made us familiar
;
and there is no rigorous proof that

the results of such geometries agree with the results

of the geometry that refers to real spatial objects.

In other words, these systems, while highly perfect

from the point of view of logic, are not applicable
— at

least not if we wish to retain our high standard of rigor.

We may almost speak of systems of logical symbols
that have no meaning and that do not lead to any

applications.

THE FUNDAMENTAL LAWS OF ALGEBRA

The laws.— The letters used in elementary algebra

always represent numbers,* and hence this science may
be considered an extension of arithmetic, and its funda-

mental laws must be identical with those of arithmetic.f

It is, however, not easy to recognize that certain laws

are tacitly assumed in all arithmetical operations, and

men added and subtracted for many centuries without

* There exist, however, other, non-numerical algebras.

f A complete outline of this matter cannot of course be given in a few

pages, hence only a few illustrations are given above. The reader is

referred to Encyklopadie der Mathematischen Wissenschaften, Band I,

Schubert, Grundlagen der Arithmetik, Leipzig, or to the French edition

of the same work : Encyclopedic des sciences math6matiques pures et

appliquees, Gauthier Villar, Paris.
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recognizing these laws, until in the first half of the nine-

teenth century the investigations of English and French

mathematicians revealed their existence.

To show the assumption of some of these laws let us

consider a simple example of addition, e.g. 17 4- 8 = 25.

The number 25 is a symbol for 20+5; hence our ex-

ample is 17 + 8 = 20+ 5. To obtain the 20 we must

obviously divide 8 into two parts, 3 and 5, and add 3

to 17. Or, we have:

i7 + 8=i7 + (3 + 5)
= 07 + 3)+5 = 2O + 5;

i.e. we have assumed the associative law :

a + (b + c)
= (a + b) + c.

Similarly, to multiply 8 by 1 3 we have :

8x(io + 3)
= 8x 10 + 8 x 3; (Distributive Law)

or, since we multiply units first :

8xio + 8x3 = 8x3 + 8x 10 (Commutative Law)

= 24 4- 80

m (4+ 20) + 80

m 4 -f- (20 4- 80) (Associative Law)

= 4 + 100

= 1004-4. (Commutative Law)

Some of the most important laws for addition are :

The commutative law, a + b = b + a.

The associative law, a 4- (b + c)
= (a 4- b) 4- c.
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For multiplication :

The commutative law, ab = ba.

The associative law, (ab)c
= a{bc\

The distributive law, a(b + c)
= ab 4- ac*

All arithmetical calculations consist of applications

of these laws and of the multiplication and addition

tables for units. Since these laws underlie all algebra

and ultimately all mathematics, various attempts have

been made to account for them. Some mathemati-

cians have attempted to derive some of these laws

from the remaining ones or from other still simpler

ones.j Others tried to derive them from more general

concepts.^

But all such investigations leave a remainder, for

the explanation of which two theories have been elab-

orated, viz. :

i. The realistic view.

2. The formal view.

/ The realistic view. — According to the realistic view

mathematics refers to, and is capable of giving us in-

formation about, real things. Mathematics is partly

based upon experience, and numbers represent pri-

marily numbers of things. Our knowledge of the fun-

damental laws of algebra is due to sense-perception.

* The above illustrations are sufficient for our purpose, but there are

other laws, e.g. the results of addition and multiplication are one-

valued
; multiplication and addition are always possible.

t Peano, Arithmetices principia nova methodo exposita, Torino, 1889.

X E.g. theory of assemblages. See Dedekind, Was sind und was
sollen die Zahlen, Braunschweig, 1888.
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We can see that 2 + 3 = 3 + 2, if we observe the

annexed diagram :

Similarly, the next diagram shows that 2x3 = 3x2:
• • • • •
• • • • •

Of course we cannot see that 245 x 727 = 727 x 245,

but mathematical induction enables us to prove that

these laws are generally true, if we can establish them

for some numbers. Thus algebra is considered to

have its roots partly in experience ;
it is to some extent

an inductive science.

The formal view.— This assumes the fundamental

laws as the basis of arithmetic and algebra. These

laws are definitions, and algebra is what it is in conse-

quence of these definitions, and not in consequence of

any of its applications. Any particular arithmetic

problem as - + - or - + - is not solved by reference
b b 7 7

to any real things {i.e. what we would obtain if we added

\ and
f-

of a thing), but solely by the fundamental laws.

After the acceptance of the laws, the letters a, b, c, d,

x, etc., are simply symbols which obey these laws, and

their meaning is not in the least determined or restricted

by any possible application ;
in fact, they do not mean

anything.

Thus algebra, like rigorous geometry, becomes an

abstract system of symbols that depends solely upon
the arbitrarily assumed laws, that is independent of
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experience, and that has no connection with the real

world. This system would be perfect if the consistency

of the fundamental laws could be proved, since incon-

sistent principles will lead to contradictions.* But this

proof has not been given, and is not likely to be given.

Comparison of the two views.— The realistic view is

not able to put every element of algebra upon a logical

basis. It must admit that mathematics contains a few

elements of empirical character. While this means the

giving up of logical perfection, it produces on the other

hand an algebra that is applicable.

The formal view of algebra places the subject upon a

more logical basis, but its results cannot be directly ap-

plied. It would be necessary to demonstrate that this

formal algebra is identical with the applicable algebra,

a proof that in all probability cannot be given. For it ;

is clear that a symbolism based upon arbitrarily assumed

laws cannot give any information about real things.

But applications are the life of mathematics. .
With-

out applications it would never have been invented;

without applications it would soon be forgotten. Hence

if we could make algebra an absolutely exact logical

structure, that is not applicable, it would lose its value.

Nobody would care to study a system of symbols which

mean nothing, which are connected by laws that mean

nothing, and which lead to results that mean nothing.

Conclusion. — Thus the tendency of modern investi-

gations has been to split mathematics— geometry as

* The realistic theory does not need such a demonstration, since oper-

ations with real things cannot lead to contradiction.
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well as algebra
— into two parts, viz. the applicable

mathematics and the rigorous formal mathematics.

The latter has been made exceedingly rigid and logical

and has been freed from almost all elements of experi-

ence, but at the expense of its applicability.

Everything in this formal science is built upon arbi-

trary assumptions that are logical, but that have no

relation to real things. Hilbert's planes have very little

in common with real planes; formal numbers are not

numbers of real things. While the rigorous formal part

/has

undoubtedly done a great deal to clear up many

philosophical questions relating to mathematics, it would

have little interest if there were no applicable mathe-

matics.

PEDAGOGIC CONCLUSIONS

None of the facts relating to the foundations of

mathematics has a place in secondary schools. A stu-

dent must become acquainted with quite a number of

mathematical facts and theories before he can under-

stand and appreciate investigations of so difficult a

nature. Hence the attempts of some writers to pre-

sent these matters to high school students cannot be

recommended.

But these facts do influence the teaching of math-

ematics indirectly. The modern investigations of the

foundations of mathematics prove clearly that the sys-

tem of geometry as found in school textbooks is not

the absolutely rigorous system that a few decades ago
it was believed to be. Errors and assumptions have
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been shown to enter into many elements of tjiat sup-

posedly flawless system of logic. A study of the

foundations of mathematics will convince the teacher

who insists upon a repetition of every word of his geo-

metric gospel, that the perfect rigor exists only in his

imagination.

The fundamental laws of algebra have no great value

for beginners; but if they are mentioned at all, they

should be explained by means of concrete arithmetical

examples. In regard to the teaching of axioms in high

schools, an excess of rigor is out of place. Thus we do

not need to strive for absolute completeness when com-

piling lists of axioms. A statement may be considered

an axiom even if it can be deduced from other axioms
;

and a common sense reason may sometimes be given

when technically an axiom should be quoted.



CHAPTER V

DEFINITIONS

LOGICAL ASPECTS OF DEFINITIONS

What is a definition ?— The number of ways of de-

fining the term "definition" is as large as the number of

treatises on logic and the number of dictionaries.* For

the purposes of elementary mathematics, however, the

old scholastic definition, although little used by modern

writers on logic, is exceedingly useful, viz. A definition

is the designation of the proximate genus and the specific

difference. To define a term we must state the proximate

genus, i.e. the nearest class to which it belongs, and the

specific difference, i.e. the particularities that distinguish

it from all others of the same genus, f Thus for a par-

allelopiped the proximate genus is "prism," and the

specific difference is the fact that its base is a parallelo-

* Among the more widely known may be mentioned :

" A definition

is the explaining of a term by means of others, which are more easily

understood" (De Morgan); "A concise account of the essential and

characteristic properties of a thing ;

" "A description or an explana-

tion of a word, thing, or symbol that distinguishes it from all others
"

(Standard Dictionary) ;
etc.

t The view that
"

all definition is classification" (Erdman, Die Axiome

der Mathematick) may not be generally true, but it is certainly useful

in mathematics. Complete classification of a set of terms frequently

facilitates the understanding of their meaning. Thus in defining quad-

rilaterals, it is advisable to represent a complete scheme of classification

on the blackboard in which each kind of figure finds its proper place.

66
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gram. Hence a parallelopiped is a prism whose base is

a parallelogram.

Common errors.— i. Errors in genus. The genus

given in a definition must be the proximate, i.e. the

nearest one. Hence it is wrong to define a pentagon as

a plane figure bounded by five straight lines, for the

nearest genus is the polygon. Similarly, in a definition,

a parallelogram must not be classified as a polygon, nor

a triangle as a portion of a plane, nor an octaedron

as a solid, nor a prism as a polyedron, etc.

2. Errors in the differentia. Redundancy. Neither

more nor fewer differences must be given than are nec-

essary to determine precisely the meaning of the term.

The statement, "An inscribed polygon is a polygon
whose vertices lie in a circumference, and whose sides

are chords," is redundant, since two differences are

given, each of which is the consequence of the other.

If the vertices lie in the circumference, the sides must

necessarily be chords, and vice versa.

Redundancy, however, is particularly objectionable if

the differences which are given are not obviously com-

patible. Such a definition either involves a theorem or

it defines an impossible thing.
" A parallelogram is a

quadrilateral whose opposite sides are equal and par-

allel" involves a theorem; while the statement, "A
spherical square is a spherical quadrilateral whose sides

are equal and whose angles are right angles," gives dif-

ferences that are incompatible, and hence refers to a

figure that cannot exist. Certain time-honored redun-

dancies, however, such as the usual definitions of rhom-



68 TEACHING OF MATHEMATICS »

bus, rectangle, prism, perpendicularity of line and plane,

are justifiable on pedagogic grounds, since they convey
at once to the student a clear notion of the true shape

of the figure, and the slight error made may be easily

corrected when the corresponding theorem is studied.

The definition, "A rectangle is a parallelogram whose

angles are right angles," is redundant, but it gives a

clearer mental image of the figure than does the correct

definition.

It is doubtful whether the redundancies that are

sometimes used in more advanced chapters of the

geometry for the purpose of avoiding difficult proofs,

can be justified. A regular polyedron is nearly al-

ways defined as " a polyedron whose faces are equal

regular polygons, and whose polyedral angles are

equal." The equality of the polyedral angles follows

from the fact that all faces are equal regular polygons.

Difficulties inherent in certain definitions.— Two
classes of terms are most difficult to define, viz. gen-

eral class names, as mathematics, geometry, algebra,

functions, etc., and very fundamental terms, as line,

direction, plane, etc. The former can be formulated

and appreciated only by advanced students who really

know what these terms mean
;
and their importance

for secondary schools is consequently very small. The

latter we shall consider at somewhat greater length.

Just as all theorems rest finally upon a number of

supposedly self-evident propositions or axioms, so all

definitions must ultimately be based upon a few ex-

ceedingly simple ones. Hence there exist a number
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of terms, such as space, boundary, position, direction,

straight line, plane, etc., which are either not capable

of definition or which are hard to define from the "
diffi-

culty of finding ideas more simple and intelligible than

the ones to be defined." Most of these are accepted

without definitions ;
a few, however, are defined in

nearly all textbooks and are taught in most schools.

Line.—A typical example of this kind is represented

by the various definitions of a straight line which

appear in the widely used textbooks, all of which upon

closer analysis prove to be faulty.* Thus the com-

monly given definition, "A line that has the same direc-

tion throughout its length," involves the term direction,

which is not simpler or more self-evident than straight

line. The statement,
" A straight line is the shortest dis-

tance between two points," is not a definition, but a

theorem, and makes use of distance, a term based upon

straight line. The definition,
" A straight line is a line

determined by two points," is possibly the most absurd

of all of them, for it is utterly unintelligible to the be-

ginner, who does not know the technical meaning of the

phrase
" determined by," and who, if the phrase should

have for him any meaning at all, may think of other lines,

e.g. the minimum circle, which is also
" determined

"
by

two points. Similarly all other definitions contain flaws.

* It is often claimed that the well-known definition given by Gauss

is absolutely exact. But asi4e from the fact that scientific objections

have been made, it is one that has no value for secondary school work.

It is based upon the following consideration : If a figure moves (rotates)

while two points in a line remain fixed, the line is a straight one if all its

points are motionless while all the rest of the figure moves.
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They relate to motion and involve the notion of time, or

are vague and almost meaningless statements.* There

exists no flawless definition of straight line which is fit

for school use, and undoubtedly the best policy would be

to accept this term without definition.

Angle.— Similar difficulties are encountered in the

formulation of a definition of angle. Usually the word
"
angle

"
is defined by using terms like inclination, direc-

tion, rotation, etc., whose meaning is either not clearer

than the meaning of angle, or which imply mechanical

notions. Undoubtedly the idea of rotation furnishes a

splendid explanation of what an angle is, but not a

formal definition. Often an angle is defined as the

space between two lines. An infinite space, however,

is a most peculiar idea for a beginner, and the compari-

son of several infinite spaces, e.g. the statement that

one infinity is twice or thrice another infinity, certainly

will lead to difficulties that are beyond the student's

grasp. Moreover, an angle is not a space (it is not

measured in square units), but only the (partial) bound-

ary of such a space.

The incompleteness or faultiness of many definitions

of angles usually becomes apparent when they are

applied to straight angles, reflex angles, or angles

greater than 360 . This test shows the limitations of

the definitions that are based upon inclination, diver-

gence, direction, etc.f »
*

E.g. a straight line is the simplest life possible.

fThe widely advertised definition, "An angle is the figure formed

by two straight lines diverging from a point," has the same drawback.

Moreover, it is most unpedagogical for the reason discussed on page 74.
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Plane.— Similarly no definition of the term plane
exists that is free from objections, and the endeavors of

some of the greatest mathematicians to formulate such

a definition have proved to be futile. The commonly
used definition of a plane is a theorem, and the only

way to justify its acceptance would be to consider it as

a geometric axiom or postulate.
" A plane is the locus of a point equidistant from two

fixed points" involves "
locus," a term that is studied

much later.
" The sum total of all perpendiculars that

can be drawn to a given line at a given point" (Fourier)
makes use of the term perpendicular, which, in turn,

needs plane for its explanation.
" A surface that in its

entire extent has only two dimensions" is vague and

uses dimension. "
If a straight line passing through a

fixed point slides on another straight line, it generates

a plane" uses mechanical ideas and leads to difficulties

when the moving and the fixed line meet at infinity, etc.,

There exists no exact definition of the term plane.

Surface.— A surface is usually defined as the bound-

ary of a solid. No doubt certain surfaces are boundaries

of solids, but there are others

which cannot be considered

such, as for instance the surface

represented in the annexed dia-

gram
*
(Mobius leaf). It would be impossible to make

* This surface is obtained by joining AB and CD, the opposite sides

of a rectangle, so that the lower end of each line touches the upper end
of the other.

A
~

D"
B C
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this surface the boundary of a solid, as becomes ap-

parent if we attempt to color that side of the surface

which is in contact with the

solid, while leaving the other

side white. The surface has

only one side.

Hence if we attempt to be rigorous, we cannot base the

definition of surface upon the boundary notion, but must

consider it the limit of a solid of vanishmg thickness—
a notion that cannot be considered for school work.

. PEDAGOGIC ASPECT OF THE DEFINITION

Pedagogic value of formal definitions.— Indefinite and

variable use of technical terms has been a source of

errors and misunderstandings in many sciences, espe-

cially those of philosophic character, and consequently

the absolute necessity of laying down exact definitions

has frequently been pointed out. In elementary math-

ematics, however, the terms used are so definite that mis-

understandings about their^meaning will scarcely ever

arise on account of lack of good formal definitions. The

difference between a straight line and a curved line,

between a binomial and a trinomial, between a trape-

zoid and a parallelogram, can be fully comprehended

by persons who are not familiar with the formal defini-

tions of these terms.

The great emphasis put upon the teaching of formal

definitions in secondary schools is therefore usually de-

fended, not on account of the importance of knowing
these definitions, but on grounds of the "

logical train-
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ing" it is said to give. While' it must be admitted that

this study could be made such a training in logic, it is

unfortunately very seldom developed in such a way in

our schools. In a large number of cases, the giving of

a definition is simply the verbatim repetition of a number

of words. To be a logical exercise, it would be neces-

sary tb make the students themselves formulate these

definitions. Even assuming that the average student

were able to do this, it is evident that he could do so

only after he had acquired a clear notion of the thing

to be denned. Formal definitions would then form the

end, and not the starting point of the study of a term.

They would be studied, not for the purpose of conveying
to the students the meaning of a word or thing, but

merely for the practice in formal logic which they afford.

Such work would undoubtedly have a certain value;

but we should not forget that not all definitions are fit

for such exercises, and that the matter is really some-

what foreign to and not necessary for the study of

elementary geometry. Hence the study of formal

definitions should not be overdone. To judge from the

prominence given to this topic by most examination

papers set by examination boards and colleges, it seems

that the value of formal definitions is greatly overrated.

A definition is not necessarily an explanation. —A
logical definition is a description that distinguishes a

thing from all others. It enables us to recognize and to

identify a certain thing as such, but it is obvious that

such an identification does not necessarily explain the

true nature and the real character of the thing. We
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may accept the following statement as a definition of an

angle :

" An angle is a figure formed by two rays diverg-

ing from a point." This definition may enable us to

recognize an angle as such, but it would not give us the

slightest notion of what really constitutes an angle. It

would not enable us to apply this concept to further

work. Formal definitions are often purely external,

leading to identification of a thing, but not to an under-

standing of its true character.

Taking this fact in connection with the firmly ac-

quired habit of students of accepting and repeating words

without understanding their meaning, it is not surprising

that students may know a formal definition of a word,

without having a clear notion of its meaning. Hence,

explanations of terms are really more important than

definitions, and every new term should be fully ex-

plained and its meaning illustrated by concrete examples.

Familiarity with technical terms one of the most

essential prerequisites for effective study.
— Small as

the value of formal definitions is, it must not be in-

ferred therefrom that the study of terms in general

may be neglected. On the contrary it is most essential

for further study, and a number of students who can

reason logically fail because they are slow in acquiring

a full and clear understanding of the space-concepts.

Others again have difficulties in retaining such notions

even if they originally understood them. It is a com-

mon experience to find in the upper classes students

whose notions of the term "angle" are— to say the

least— hazy. Such an able mathematician as Professor
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Minchin narrates that he studied six books of Euclid

without knowing the real meaning of the word "angle."

It is a very easy matter to make every student in a

class understand the meaning of the term "similar

polygon
"

;
and yet, a few weeks after, some students

in the same class will believe that mutually equiangular

polygons are similar.

A single explanation of a term will rarely produce that

complete familiarity with terms that is absolutely neces-

sary for placing a student in the most favorable position

for attacking demonstration work. To have only
" one

difficulty at a time," terms must be made so familiar to

the student that he can recognize the nature of a diagram
in any position without any mental effort, and that the

names call up automatically the proper mental images.

The methods for obtaining such familiarity with tech-

nical terms consist principally in the solution of simple

exercises referring to these terms. A few illustrations

of such methods will be given in the following sections.

THE TEACHING OF THE INTRODUCTORY
DEFINITIONS

General remarks. — The attitude of the student to-

ward any new subject is usually one that ought to make

the introductory work in geometry comparatively easy.

He brings with him a considerable amount of curiosity

that produces interest. He is not yet biased against the

subject by previous bad experiences. Do not kill off

the natural interest by emphasizing words, and making
the student repeat phrases which he does not under-



76 TEACHING OF MATHEMATICS

stand. Do not insist upon a verbatim recitation of

every definition. Do not dwell too long upon difficult

terms that are used very little. Use the heuristic

method as far as possible; make the recitation lively

and interesting, and try to avoid the impression that

geometry is a study of words.

The difficulties which were discussed in the preceding

chapter are very pronounced in the study of the intro-

ductory definitions, and a bad start might unfit the stu-

dent for further work.

Surfaces and lines. — It would be a mistake to men-

tion in a secondary school the difficulties that are inhe-

rent in such definitions as surface, plane, line, etc. To

the beginner a surface is a boundary, as the boundary
between a window pane and air, and a line is a bound-

ary of a surface. In particular, point out that in the

diagram of a line (as the annexed one) not the black

line AB, but the boundary
between white and black is

a geometric line
;
that there is a line above the black,

and another one below the black.

Do not define straight line, but assume it as an ulti-

mate term. Point out the distinction between a line of

definite and a line of indefinite length.*

*
Unfortunately the English language has no generally accepted term

for a line of definite length, and the terms used by some authors, e.g.

segment, have serious objections. The A I IB

writer uses a graphic way of pointing

out this difference. Lines of definite @ &

length have ends marked by little cross marks, as AB
;
while lines of

indefinite length have no such marks, as CD.
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Angle. — Explain an angle as a rotation, by using a

material contrivance that actually shows a rotation of

a line. A pair of compasses, or, better, several pairs

of different sizes, the hands of a toy watch, or even a

book may be used effectively to show that an angle is

generated by a rotation, and that the amount of rotation,

and hence the angle, does not depend upon the length

of the sides. Such illustrations will show clearly what

an angle really is, and explain the meaning of straight

angle, reflex angle, etc.

Methods of familiarizing the student with the notion

of angle and related terms.— One of the most essential

prerequisites for further study is the student's familiarity

with technical terms. As pointed out in the preceding

section, such familiarity cannot be obtained by the

study of words, but by actual work involving these

terms. The simplest exercises would consist (a) in

having the student draw the various figures, as an acute

angle, obtuse angle, adjacent angle, etc., and (&) in

requesting him to name various figures which are drawn

at the board. Then should follow exercises of more

complex character. Three classes of exercises are

available at this stage of the work, viz.:

i. Numerical Exercises.

2. Drawing Exercises.

3. Laboratory Exercises.

1. Numerical exercises involving the term "
angle

"
and

related terms.*— Most exercises of the following list

The "originals" found in this book are given principally to assist

the teacher in framing for himself questions of this kind. Hence such
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should be done quickly and orally ;
the teacher drawing

the diagram at the blackboard and assigning numerical

values at random. A teacher who has had no previous

experience should make himself quite familiar with

such questions in order to be able to extemporize such

problems whenever necessary.

A few of the more difficult problems may be assigned

for written home work. It is, of course, usually not

necessary to solve every exercise of the following set
;

and on the other hand, if more should be needed, it is a

very simple matter to enlarge the list.

a. Exercises tofamiliarize the student with the nature

of the angle*

(Request answers in various units, as, degrees, right angles,

straight angles.)

Ex. i. Find the angles formed by the hands of a clock at i p.m.,

4 p.m., 6.30, etc.

Ex. 2. What angle is formed by lines drawn towards north and

northeast; towards S. and S.E.
;

towards N.W. and S.W.
;

to-

wards N.N.E. and N., etc.?

Ex. 3. Over what angle does the large hand of a watch sweep in

10 min., 15 min., 30 min., 45 min., 1 hr., etc.?

Ex. 4. Over an angle of how many degrees does a spoke of a

wheel sweep when the wheel makes \ of a revolution, \ of a revo-

lution, 2 revolutions, etc. ?

Ex. 5. How large is each angle at the center if a pie is divided

into 5, 6, 8, etc., equal parts?

exercises only are given as relate to work generally neglected in text-

books, or such as the teacher is frequently called upon to extemporize

in the class.

* In order not to increase the bulk of this work unduly, many exercises

are stated with the utmost brevity.
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Require the numerical value

of angles in this column.

b. Addition and subtraction of angles ; adjacent angles.

Ex. 6. Read by three letters : Za
f b, b + c,c +d, a + b + c, etc.

Ex. 7. Which angles are adjacent to ZBOC, to /.COD, to

ZAOB, to ZDOE?

Ex. 8.

Assign numerical and literal

values to the angles in this col-

umn
;
as 40 , n°, \ rt. Z, etc.

a, b

b, c

a, b, c

AOC,a
AOD, a, c

AOEj a, by d

AOE, a, d

AOC, BOD, b

AOD, c, COE

Ex. 9. In a similar diagram AOE = 120 and a = b = c — d.

Find a.

Ex. 10. In a similar diagram a = b

Find Zd, etc.

c = 2 d and Z BOD = 8o°.

c. Supplementary angles and straight angles.

Ex. 11. Find the supplement of 6o°, 30 , io°, \ rt. Z, tn°
y

(m + n)°.

D

Ex. 12. In the annexed diagram, if AOF is a straight line,

which angle is the supplement of Za, of ZAOD, of Z {a + b) y
of

Z(a + b + c + d), etc.?
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D P

Ex. 13.

Assign
values to

column :

O A

In a diagram similar to the preceding :

numerical or literal

the angles in this

a, by c, d

a, by c, e

AODyd
AOCy Cy e

AOCy by BOD
Or let a — b — c = d =

<r,

a — b = c = d—2.e
y

etc.

Require the

angles below:

value of the

and require

e

d
e

d
FOD
a

e

etc.

d. Complementary angles and right angles lead to ques-

tions quite similar to the preceding set. (Make /.AOF
= 90 .)

e. All anglesformed at a point,

Ex. 14.

Assign values to
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f. To practice the term " vertical angles" and to make
some more difficult calculations. (The theorem of verti-

cal angles should not be assumed for these questions.)

Ex. 1 6. If AD, BE, and CF are straight lines meeting at O,

A

B

find the vertical angles of each of the following angles : a, c, BOD,
COE, a + b,e+d.

Ex. 17.

Require values

AOE, d, BOD
c,DOF,f
c, d, e,f

b, d, e

b

BOD
(Similarly for 4 or 5 intersecting lines.)

Assign values
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g. To becomefamiliar with the term "bisecting."

Ex. 1 8. Draw the bisectors of a pair of complementary adjacent

angles, assign various numerical values to one of these two angles,

and require the angle formed by the bisectors.

Ex. 19. From the result of Ex. 18 find (by induction) a general
truth about the angles formed by the bisectors of a pair of comple-

mentary adjacent angles.

Ex. 20. By assigning a literal value {e.g. m°) to one of a pair

of adjacent complementary angles, prove that their bisectors always
include an angle of 45 .

Ex. 21. Form three exercises corresponding to Exs. 18, 19, and

20 for a pair of supplementary adjacent angles.

Ex. 22. Form three exercises corresponding to Exs. 18, 19, and

20 for the bisector of an acute angle and the bisector of the reflex

angle formed by its sides.

Ex. 23. Form similar exercises for the bisectors of a pair of

vertical angles.

Ex. 24. Draw two right angles ABD and CBE, each adjacent to

an angle ABC. Assign numerical values to /.ABC and require the

value of DBE.

Ex. 25. Derive (by induction) from the preceding exercise a

general relation between A ABC and DBE.

Ex. 26. Prove the preceding result by making AABC = m°.

Ex. 27. Modify Exs. 24, 25, 26, by drawing one or both perpen-
diculars in a direction opposite to the one assumed in Ex. 24.

2. Drawing exercises. — Although students at this

stage of the work are not acquainted with any prob-

lems of construction, it is an easy matter to show them,

without proof, some simple constructions upon which

drawing exercises may be based. The following exer-

cises are based upon two constructions, (a) the bisec-

tion of an angle, and (b) the construction of an angle

equal to a given angle.
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Ex. 28. Bisect an acute angle, an obtuse angle, a reflex angle, a

straight angle.

Ex. 29. Divide a given angle into (a) 4, (J?) 8 equal parts.

Ex. 30. Construct the supplement of a given ZA.

Ex. 31. Construct one half the supplement of ZA.

Ex. 32. Construct a right angle.

Ex. 33. Construct a perpendicular to a given line at a given point.

Ex. 34. Construct the complement of a given acute angle.

Ex. 35 . Construct one half the complement ofa given acute angle.

Ex. 36. Construct the supplement of the complement of a given
acute angle.

Ex. 37. Construct the complement of the supplement of a given
obtuse angle.

Ex. 38. If A and B are given angles, draw Z (A + B), Z2A,

Z 3 A,Z (180
- A), Z (90 + B), /id, Z

(180
-
d),

Z
(90

+
|)

.

Ex. 39. Draw angles of 90 , 45 ,
22 30', 135 , 270 , 225 ,

67° 30', etc.

Ex. 40. If A and B are given angles, draw angles : 45 + A,

± + B, d + §, d±*, 2A + ?, 3 A + 45 °, 4^-90°,

2 A -
3 B, etc.

Ex. 41 . Draw the supplement of 2 A, of —
,
of A + B> of— +— ,

etc.
2 2 2

A B A
Ex. 42. Draw the complement of —

,
of —

,
of 90 ,

etc.24 2

Ex. 43. Draw the vertical angles of the following angles : A,

dL
y
A + B,d +

#
f
!8o° - A, 360 -

3 A, etc.

3. Laboratory exercises.— Hardly any other work im-

presses upon a student the true meaning of an angle as

well as the actual measurement by means of a protractor

or transit instrument. Since the cost of a protractor is

so small as to make its use possible in every school, this
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instrument only will be discussed. In using a protrac-

tor, however, the teacher cannot be too emphatic in

pointing out that work done with this instrument is not

true geometric work, but merely drawing. Otherwise

students will not see the necessity of using ruler and

compasses for constructing an angle of 1 35°, etc., when

a protractor gives the result so much more easily. In

general, the protractor may be used for two classes of

exercises, viz. those that require :

(a) the construction of some angle.

(fr) the measurement of angles.

Ex. 44. Construct an angle of 20
, 75 , 88°, 145 , 170 , 250 ,

280
,
etc.

Ex. 45. Draw a triangle having one side equal to I inch and the

two adjacent (nearest) angles equal to 40 and 70 .

Ex. 46. Draw a quadrilateral ABCD having AB = 1 inch,

ZB = 8o°, BC = i£ inches, Z C = ioo°, CD - 1 inch.

Ex. 47. Draw a quadrilateral ABCD having A = 70 ,
AB = 1

inch, Z —B ioo°, BC = 2 inches, AC = 120 .

Ex.48. Draw AABC having AB — 2 inches, ^^ = 50°,

ZB = 70 ,
and measure Z C.

Ex. 49. In triangle ABC measure Z C if Z A = 50 ,
Z B = 70 ,

and AB = (a) 1 inch, (b) i\ inches, {c) i\ inches.

Ex. 50. Draw a quadrilateral ABCD having A = ioo°, B = 90 ,

C = 75 ,
AB = 2 inches, BC = 1 inch, and measure Z D.

Ex. 51. Try to get some general truths from Exs. 48 and 49

(by induction) .

It is possible to solve by drawing many problems that

are usually given in trigonometry, such as the finding of

heights, widths of rivers, etc., although such a detailed
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statement would rather belong to a course in concrete

geometry than to a course in demonstrative geometry.*

FURTHER ILLUSTRATIONS OF TEACHING
DEFINITIONS

Angles formed by parallel lines and a transversal.—
In studying the annexed diagram, the student should of

course be able to recognize quickly

the relations of such pairs of angles

as 1 and 5, 3 and 6, etc. He should

also be able to name quickly the

other angle, if one of a pair of

corresponding, or of a pair of

alternate-interior, angles, etc., is

mentioned.

But to stop here would be insufficient. He should be

able to recognize angles of the same kinds in diagrams

that are incomplete, or that are complicated by addi-

tional lines, special emphasis being placed upon dia-

grams that occur later. Thus a student should recognize

* In some school systems concrete geometry is taught in the grammar
schools as a preparation for the demonstrative courses in the high school.

One of the chief functions of such courses should be the thorough famil-

iarization of students with the geometric concepts. Such a course should

consist of "doing" and not learning facts. Drawing, counting, the mak-

ing of plane and solid models, paper folding, graphic methods, use of

cross-section paper, etc., should make the student thoroughly familiar

with geometric terms, and give him a store of ideas to draw from in

demonstrative work.

Unfortunately, however, a measurable increase of the student's math-

ematical knowledge is sometimes chiefly aimed at, with the resulting

dislike of the student for the subject.
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in the following diagrams the character of angles i and

2, 3 and 4, 5 and 6, etc.

Projections.
— The mere reference to the annexed

diagram is not sufficient. The student should be able

N

M

X Y

to construct projections of various lines, as, e.g., AB,

CD, EFt 677, upon line XY. He should construct the

|G

B

\



DEFINITIONS 87

projections of various sides of an acute triangle ABC
upon the other sides, as AB upon AC, BC upon AC,

A

b - a

AB upon BC
y etc., and construct similar figures in an

obtuse triangle.



*

CHAPTER VI

THE FIRST PROPOSITIONS IN GEOMETRY

PECULIARITIES OF THE PRELIMINARY PROPOSITIONS

The preliminary proposititns.
— The most funda-

mental propositions in geometry, such as "straight

angles are equal
"
or " the complements of equal angles

are equal," are frequently designated preliminary propo-

sitions. These preliminary propositions have certain

peculiarities which make them less adapted to produce

an understanding of geometry than are the theorems

that follow.

In the first place, these propositions state facts which

are so self-evident that the beginner does not see the

necessity of proving them. That right angles are equal,

or that only one perpendicular to a given line can be

drawn at a given point, are facts so obvious that their

certainty does not appear to become greater by demon-

strations of any sort.

In the second place, proofs of exceedingly simple

facts are often difficult, and hence it .is not surprising

that many of the demonstrations given for the prelimi-

nary propositions are not the same simple deductions

that are usually employed in geometry, but rather

artificial devices. To the beginner such proofs fre-

quently appear as unintelligible, complicated statements,

88
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the truth of which is far more doubtful than that of the

theorems to be proved.

Usual mode of presentation.— Although absolute rigor

is utterly unattainable when presenting this subject in

a secondary school, many textbooks sacrifice pedagogic

considerations in the attempt to present the preliminary

propositions rigorously. Whether or not the student

can fully comprehend the presentation seems to be a

matter of minor importance with some authors.
" We

must have rigor, absolute exactness, training in logic

from the first day on, otherwise," so these dogmatists

claim,
" the student will be hopelessly led into the habit

of slipshod thinking from which no further training can

redeem him." This striving for rigor is undoubtedly

responsible for the highly artificial character and the

complexity of the preliminary propositions as given in a

great many textbooks.

In proving, for instance, that the exterior sides (BA
and BD) of supplementary adjacent angles {ABC and

CBD) are in the

same straight line,

some textbooks pro-

duce one of the ex- ^

terior sides {AB)
A a ~~-~D'

through the vertex, and demonstrate that the prolonga-

tion {BD1

) must coincide with the other exterior side

{BD) somewhat as follows : The two angles {ABD and

ABD')y being both straight angles, are equal. Subtract

from these equal angles the angle ABC, and the re-

mainders {CBD and CBD 1

) must be equal. Since
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angles CBD and CBD' are equal and have one side

(BC) common, their other sides (BD and BD') must

coincide, etc.

Such a proof is intended to introduce a student into

the spirit of geometry ! Hundreds, if not thousands, of

students have been obliged to "know" this proof, i.e.

c to know it by heart,

for nobody can com-

prehend it fully.

If the equality of

D the large angles

(ABD and ABD') is admitted at the very start, does

not the coincidence of BD and BD' follow directly

from these angles, in precisely the same way as from

the last pair of angles {CBD and CBD')} What is the

object of obtaining the three equations, and subtracting

equals from equals ? But even this simplification would

not make the proof free from objections. Why is one

of the exterior sides produced at all? Does not the

definition of a straight angle, without any further proof,

establish the fact that the exterior sides lie in a straight

line ?

In a similar spirit many books extend arguments that

could be stated in three lines to a length of a page or

more, but at the same time commit some blunder that

invalidates the entire argument.*
* An instance of this kind, found in a widely used text, is a very long

proof of the theorem: From a point without a line, only one perpendic-'

ular can be drawn upon the line. The proof rests upon the fact that a

certain pair of equal adjacent angles cannot be right angles, and this

again is demonstrated by reference to the diagram in which accidentally
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A slight knowledge of the foundations of geometry I

will convince everybody that it is almost impossible to

avoid minor inaccuracies in this work, and that consid-

erations that seem to be absolutely flawless fail when

scrutinized in the light of modern knowledge. An ex-

ample of this sort is a proof frequently given for the

proposition : One perpendicular can always be erected

upon AB at the point A. To prove this assertion, it is

assumed that AB can be rotated about A until it forms

a straight line with its original position. Simple and

natural as this assumption appears, it cannot be defended

upon purely logical grounds, and a perfectly consistent

geometry has been constructed which rejects this possi-

bility.* Of course many will reply :

" But we can see

that such a rotation is possible." This, however, is just

the point.
"
Seeing

"
is not exact mathematical argument.

Another weakness of these "rigorous" books is the

silent assumption of certain theorems, which are by no

means more self-evident than those upon which so

much time and work are expended. It is inexcusable,

the dogmatists tell us, to assume that at a given point

only one perpendicular can be drawn ; but the same

critics do not hesitate to assume that every angle has

only one bisector— an assumption which includes as

a special case the proposition of the perpendicular just

mentioned.

the prolongation of one exterior side of one of the angles does not coin-

cide with the exterior side of the other angle
— an assumption which is

equivalent to assuming the entire proof.
*
PoincarS, Science and Hypothesis, p. 46.
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In the hands of a judicious teacher, the harm done

by a dogmatic text will be comparatively small, but

unfortunately some teachers try to outdo the textbook,

and often extend this "absolute exactness" to the mode

of reciting. Every minor detail must be given exactly,

and the conventional arrangement must be absolutely

adhered to. As students are usually unable to do this

after one recitation, those demonstrations are repeated

again and again until nearly every student gives a

"perfect" recitation.

It would of course be absurd to speak against exact-

ness of detail in general, but this is not the place where

it should be taught. Exactness in form would be the

result of exactness of thinking ;
and if this latter can be

j attained, the former will follow as a natural consequence.

EFFECT UPON THE STUDENT*

Wrong impressions at the very start.— To appreciate

the difficulties which dogmatic teaching puts into the

way of the beginner, we have to realize that the student

has to deal here with entirely new ideas, and with

methods of reasoning that he never employed before.

It is a difficult task for the student, even if the subject

is presented pedagogically. But when he is compelled

to give an absolutely exact account of logical montrosi-

ties, it becomes practically impossible for him to under-

stand, and his failure here, in the beginning, will often

affect his whole attitude toward the subject and toward

his future work. The student will receive a wrong im-

* Compare Chapter III, The Dogmatic Method.
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pression of what geometry really is. He will not see

jthat it is a field for thinking, for invention, for dis-

1

covery, but he will consider it a system of hair-splitting

devices, invented by pedantic schoolmasters for the

annoyance of unfortunate students.

Loss of interest.— A normal pupil does not care to

study things that he cannot understand, and conse-

quently he will frequently acquire a dislike for the

subject at the very start. And it is the more intelli-

gent to whom such work becomes most distasteful.

Naturally the interest, which he had during the first I

hours on account of the novelty of the subject, will soon

decrease; and in many cases this interest, this prime

stimulus to further good work, will disappear entirely.

Effect upon mode of study.
— The most harmful

effect of an extreme dogmatic presentation of the pre-

liminary theorems will be the effect upon the student's

mode of study. The student, as pointed out above, is

unable to see the meaning and the necessity of this so-

called rigor. All he can see is that his recitation is never

satisfactory unless it is absolutely identical with the

statement in the textbook
; consequently he studies his

demonstrations by heart, and he and his teacher are

satisfied. By studying in this way, the student begins

to form a habit which will prove to be the most formi-

dable barrier to his further understanding of geometry.
He is led to study by using his memory mechanically,

instead of relying upon his reasoning power, and if

such a habit is once formed, it often makes a pupil

unsuccessful in his entire mathematical work.
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Importance of initiating students properly into geom-

etry.
— It is peculiar that in regard to the study of

geometry many students are likely to take extreme

positions. Either they like the subject very much, and

do good geometric work
;
or they dislike it extremely,

and are then usually unable to do the work properly,

although a great deal of memorizing and cramming

may disguise this fact. But there is very little middle

ground. The start in geometrical study quite often

determines these likes and dislikes, and hence every

teacher should try his best to initiate the pupils properly.

After a student once wakes up to the true meaning,

and the beauty and simplicity of mathematics, his

further study is more pleasure than work. But there

are innumerable students who pass through the entire

high school without ever becoming really initiated into

mathematical work. Their studies are painful labors,

that produce no beneficial and lasting results.

RATIONAL METHODS OF PRESENTING THE
PRELIMINARY PROPOSITIONS

Theorems.— If it is impossible to introduce a text-

book that presents the matter simply and briefly, the

teacher should depart from the text, and simplify

matters. If the students are very young and imma-

ture, it is advisable not to give proofs for some of

these simple theorems, but to assume them as axio-

matic.

If we remember that even Euclid assumed that all

right angles are equal, there can certainly be no objec-
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tion to assuming this or a similar theorem in a second-

ary school.

Whenever proofs are given, make them as simple

and short as possible, and do not wrap the ideas under-

lying these proofs in a mass of technicalities.
"
Right

angles, being halves of straight angles, are equal, for

the halves of equals are equal," and similar statements

may not be absolutely accurate, but are sufficient to

the beginner, to whom any greater accuracy is mean-

ingless.

As a rule it is not necessary to insist upon the con-

ventional form in which these matters are represented.

Teach the conventional form later, possibly after the

propositions on equal triangles, and be satisfied if the

students grasp and know the ideas involved in the proofs

of the preliminary propositions.

Do not dwell too long upon these preliminary propOr

sitions. The longer the teacher dwells upon these and

similar simple subjects, the less the class will under-

stand, for many students will after a while suspect diffi-

culties where they do not exist, and will become utterly

confused.

Exercises.— Familiarize the student thoroughly with

the meaning of these theorems and give them as many
applications as possible. It is somewhat difficult in this

connection to form a great many good exercises, but

some can be formed. For instance, to familiarize the

student with the fact that complements of the same

angle or equal angles are equal, the following exercises

may be used.
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Ex. i. If ABC and A'B'C are right angles, and Zi =Z2,
prove that Z 3 = Z 4.

Ex. 2. In the same diagram ABXBC, A'B'±B'C, and
Z 3 = Z 4 ; prove Z 1 = Z 2.

A

B C B't C C B D
Ex's. 1 and 2 Exs. 3 and 4

Ex. 3. If AB±CD and Zi =Z2, prove Z3 = Z4.

Ex. 4. In the same diagram if AB±CD and Z3 = Z4, prove
that Z 1 = Z2.

Ex.5. UZABC
is a right angle, and

AA is the comple-
ment of Z 1, prove
Z^ = Z2.

A

Ex. 6. If Z>£C Ex. s

and ABE are right angles, prove thatZ 1 =Z 2.

Ex. 7. If ABC is a st. Z, Zi =Z2, and

A 3 and 4 are rt. ^, prove that Z5 =Z6.

Ex. 8. If ^45 and CZ? are straight lines and A 2 and 6 are right

angles, prove that Z3 = Z5.

Ex. 6

Ex. 7 Ex. 8



THE FIRST PROPOSITIONS IN GEOMETRY 97

In a similar way exercises for the supplements of

equal angles, etc., can be formed. In particular the

exercise that corresponds to Ex. 6, viz. the supplements

of the same angle formed by producing its sides, leads

to the theorem of vertical angles.



CHAPTER VII

THE ORIGINAL EXERCISE IN GEOMETRY

GENERAL REMARKS

Book proposition or original exercise.— The preced-

ing chapters may be considered as preparatory to the

teaching of demonstrative geometry. Before discuss-

ing the details of such work it becomes necessary to

decide what subject matter must form the bulk of our

instruction if we accept the aims of mathematical

teaching that are laid down in Chapter II. Should

the principal part of the work consist of the study of

textbook propositions or the solution of exercises ?

Should we aim chiefly at the learning of proofs and

constructions, or at the ability to do simple original

thinking ?

Not so very long ago geometric instruction was con-

fined entirely to the former, viz. the learning of text-

book demonstrations, while exercises requiring original

thought were practically excluded. To-day most

schools devote some time to original exercise work,

but the manner in which this is sometimes done can

hardly be said to be consistent with sound pedagogic

principles.

First of all there seems to exist a kind of superstition

that the beginner cannot think for himself until he has

98



THE ORIGINAL EXERCISE IN GEOMETRY 99

mastered a considerable number of formal propositions.

In accordance with this view some " standard
"

text-

books do not give any exercises on the first forty or fifty

pages, and some instructors for several months confine

themselves to textbook information solely. Some go

even farther and recommend first an entire course in

plane geometry without exercises, and then a review

with "originals." Similarly some textbooks state in

their prefaces that all exercises may, or shall, be omitted

on the first reading. Thus quite commonly originals

are considered as a kind of supplement, a useful but

superfluous appendix that has no close connection with

the rest of the work.

It seems to the author that such a view of originals is

entirely erroneous. To make the exercise an unimpor-
tant supplement indicates an absolute lack of understand-

ing of the true function of such work— and we may
almost say of the entire object of mathematical in-

struction.

A course in geometry should be principally a course

in the methods of attacking original exercises; the

regular book demonstrations should follow as by-prod-

ucts of such a course.

REASONS FOR MAKING THE ORIGINAL EXERCISE
THE PRINCIPAL SUBJECT MATTER OF GEOMET-
RIC INSTRUCTION

i. Only original thinking represents true geometric

work. — If we concede that it is power and not knowl-

edge that makes the mathematician, and that thinking
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and not memorizing brings into play the beneficial as-

:

; pects of mathematical study, then the importance of

exercise work and the harmfulness of studying a great

many ready-made proofs must be admitted.

It has often been remarked that nobody would expect

to train a chess player by letting him study the accounts

of a great many games, without ever giving him the

opportunity to play. The study of models would be of

some benefit to the player who has acquired a certain

skill in play, provided he had the chance to put such

lessons to practical application. The same may be said

(of
any human activity, whether it is skating, baseball

playing, or flying. We learn to do by doing.

Only in the study of geometry are students expected

to learn to reason, not by practicing reasoning, but by
« repeating other people's ideas.

2. Exercises form a much better introduction to the

study of geometry than does the study of complex models.

— It is much easier to solve a simple exercise than to

understand a long and complicated proof such as is

frequently given on the first pages of textbooks. Ex-

ercise work gives the beginner a much better idea of

the true character of geometry and prevents him from

using mechanical modes of study. Instead of agreeing

with the old claim that only the study of several scores

of textbook models enables the student to work origi-

nals, the writer believes that the opposite is true. The

solution of a large number of simple exercises will en-

able the student to understand clearly and to appreci-

ate model demonstrations.
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3. Exercises arouse the interest of the student and

prevent him from becoming disgusted with the sub-

ject. For any normal youth likes to "do," likes to

accomplish something. The discovery of a simple

mathematical fact is far more interesting, and far

more satisfactory, than the studying of pages of in-

formation.

4. Exercises can be much better graded than textbook

propositions.
— It is almost impossible to arrange a text-

book geometry so that the easiest proofs always occur

first, and the rest follow in order of difficulty. Logical

sequence must necessarily
— more or less, according to

the views of the author— disturb the pedagogical se-

quence. The order of originals, however, may be based

upon pedagogic considerations solely.

Even the sequence of the regular propositions can be

made smoother by inserting exercises that lead from

one theorem to another, and thus students may be en-

abled to discover demonstrations which otherwise would

be absolutely beyond their capacity.

How many students would discover the proof for the

equality of triangles that are mutually equilateral, if

only textbook propositions were studied ? It is a simple

matter, however, to connect this proposition by a series

of exercises with the one that usually precedes it, viz.

the base angles of an isosceles triangle are equal.

After practicing the demonstration of equal angles by
means of this proposition in general, we may give the

following questions :
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i. If ABC and ADC are two isosceles triangles on the same base,

AC, then ABAD = A BCD.

2. If in quadrilateral ABCD, AB = BC and AD = DC, then

ZA = C.

3. If two triangles ABD and DBC have BD common, AB - BC
and AD = DC, then A A = Z C.

4. If in two triangles ABD and CB'D', AD = CD', AB = SC,
and BD = B'D, then Z A = A C.

5. Two triangles ABD and B'CD' are equal if their sides are

equal respectively.

Similarly the concurrence of the three altitudes of a

triangle may be found from the concurrence of the three

perpendicular bisectors

of a triangle as follows :

After proving the concur-

rence of the perpendicu-

lar bisectors Ff, DH, and

EK of the sides of tri-

angle ABC, draw FD, DE,
and EF, and ask :

1. What kind of lines are Ff, EK, and Dff with reference to tri-

angle FDE ?

2. What therefore can you tell about the three altitudes of tri-

angle FDE ?



THE ORIGINAL EXERCISE IN GEOMETRY 103

3. If any triangle FDE were given, could you construct an-

other triangle so that the altitudes of the original triangle would

be the perpendicular bisectors of the re-

quired triangle ? yx
V -^ D

4. What therefore do you know about

the altitudes of any triangle ?

Quite often it is an easy matter

to discover a proof of a proposi-

tion if it is placed immediately after another, while

logical considerations make such an immediate succes-

sion impossible. The second proposition should then

be given as an original immediately after the first, not-

withstanding that it occurs again later in the book.

Such repetitions are not harmful, but on the contrary

very helpful.

Conclusion.— The most common error of geometric in-

struction is the fact that the knowledge of book demon-

strations is made the chief object of the study.

The study of geometry should be primarily a course

in the solution of originals and general methods of

attack. The regular textbook propositions should be

treated as exercises, with this difference, that the facts

stated by them should be remembered.

Exercises, however, should be studied not in order to

be remembered, but in order that the student may famil-

iarize himself with geometric working methods, which

will enable him to do other and more complex reasoning.

The student's ability and progress in the subject can

be measured only by his ability to solve exercises that

are original to him, and not by his ability to repeat

well-known facts.
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THE TEACHING OF ORIGINAL EXERCISES

Prerequisite on part of the teacher. — If it is granted

that the teaching of original exercises is the main object

of geometric instruction, then it follows that one of the

chief prerequisites for the successful teacher of the sub-

ject is the ability to solve exercises easily and rapidly,

and this again requires a full knowledge of the various

methods of attack.* People whose only mathematical

asset is the knowing of a certain amount of mathematics,

even if this includes a good share of the so-called higher

mathematics, are not fit to be teachers of mathematics.

A man who is not able to discover such simple matters

for himself is certainly not qualified to lead others to

such discoveries.

A teacher should also be able to construct geometric

exercises in order to meet the particular needs of the

moment, or the particular conditions in his classroom.

Especially should he be able to extemporize easy oral

questions. Such ability is acquired by thinking and by

practice, and some concrete directions that are given in

later chapters may prove helpful to the beginner. \

Mode of procedure.
— While it would be presump-

tuous to offer advice in this matter to the experienced

teacher, a few suggestions may be helpful to the be-

ginner. In many instances it will be advisable to

adhere to the following sequence of procedure :

(a) oral exercises, (b) blackboard work, (c) individual

work on paper. Oral exercises may be largely extem-

* See Chapters XI and XV. t See pp. 106, 115, 202.
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porized by the teacher, who, chalk in hand, may often

draw the necessary diagram at the blackboard, and ask

questions in rapid succession. Such oral work is well

adapted to easy topics, and if skillfully handled, will

stimulate interest and arouse competition in the class.

The material for blackboard work, by which is meant

here simultaneous work at the blackboard by a consider-

able number of students, may be taken from the text-

books or from sets of previously prepared cards, each of

which contains an exercise. Such blackboard work en-

ables the class to cover a considerable amount of ground
in a comparatively short time, but it does not produce the

same interest and the same rivalry as oral work. It is,

however, a much more practical way of correcting the

most frequently occurring errors than individual written

work. Individual written work will be made easier and

its results better by previous blackboard work.

Construction of Exercises.— It would be useless to en-

large any further upon the general directions for the

teaching of exercises. Concrete illustrations are far

more serviceable, and the next chapters are almost ex-

clusively devoted to these. Here we shall discuss and

give exercises illustrating only the first regular proposi-

tion,* viz. Vertical angles are equal.

It was shown on page 97 in what manner the pre-

liminary propositions may be used to discover the proof

of the equality of vertical angles. In case this should

be too difficult for some students, it may be made still

* The sequence of propositions assumed here is that of Schultze and
Sevenoak's Geometry.
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easier by means of numerical examples. Assign a

numerical value to one angle of the diagram and let the

student find the values of the other, making, of course,

no use of the equality of vertical angles. After a few

examples of this kind, assign a literal value, e.g. n°, to

one angle and proceed as before, thereby establishing

the equality of a pair of vertical angles.

To construct exercises which illustrate the equality of

vertical angles, take almost any exercise of the preced-

ing pages, and vary it by

introducing in place of one

or of several angles their

vertical angles. v

Thus in the annexed dia-

gram instead of asking,
" Which angle is the sum

of A AOB and BOC?" in-

troduce Z EOD, the vertical angle to BOC, and ask,

"Which angle is the sum of A AOB and DOE}"

Similarly in the same dia-

gram ask for the difference

of AOC and DOE. In the

next diagram let AB ± BC.

Instead of asking for the '

complement of Z i, ask for

the complement of Z 3. In

the next diagram (three straight lines meeting at 0),

instead of asking for the sum of A 1, 2, and 3, intro-

duce Z 5, the vertical angle to 2, and ask for the sum of

angles 1, 5, and 3.

B
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Each of these exercises leads to numerical questions.

So in the last we may
assign numerical values to

angles 1 and 3, and may
require the value of 5.

It is a very simple mat-

ter to construct exercises

of this kind, and the fol-

lowing paragraph contains

a considerable number of originals obtained in this

manner.

EXERCISES

Let three straight lines AD, BE, and CF meet in O,

forming the six angles, a, b, c, d, e, and/.

Ex. 1. UZ& = 40 ,
andZc = 35°, find ZAOE. 0^

Ex. 2. If ZFOB = 130 ,
and Z c = 40°, find Z a.

Ex. 3. If ZEOB = 130 ,

and Z/=38°, find Zd.

Ex. 4. If Zf= 6o°, and

Zb = 25°, find Zd.

Ex. 5. If Ab and / are

complementary, find Z d.

Ex. 6. If ZAOC =140°,
and Z COE= 120

,
find ZBOD.

Ex. 7. If ZAOC= 150 ,

and Z COE -
130 ,

find Za.

Ex. 8. If ZFOB= 140 ,

and ZAOC = 125°, find Zd.

Ex. 9. If ZAOE + ZBOC= 140 ,
and Zc = 40°, findZ*.

Ex. 10. If Z/= Z b, and Zd= ioo°, find Z c.

Ex. 11. If Zb = Zc, and ZAOE= 8o°, find Z/.

Ex. 12. IfZAOC- ZBOD, andZe = 40 ,
find Za.
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Ex. 13. HA a = 2 (Ac), and Ac = 6o°, find Ac.

Ex. 14. IfAAOC = ACOE, and ABOD = ioo°, find A/.

If we bear in mind that in all the problems relating

to the preceding diagram we have two independent

unknown quantities, it is obvious that two equations

connecting independent angles will determine all other

angles in the above diagram. Thus we may increase

the number of exercises

almost without limit, e.g.

Ex. 15. If Aa- Ab = 15 ,

and Ac = Ad, find A c.

Ex. 16. HAa = 2(Ab),znd
Ac + Ae- Ad = 20

,
find Ab.

Ex.17. If Aa-Ab= 10°

and Ad — Ac — 20
,
find A c.

The number of exer-

cises may be still further

increased by noting that

in each of the preceding examples not only the one

required angle, but every angle of the diagram, may
be found. We may also vary the above examples by

expressing the given quantities not in numbers, but in

letters, as m° or n°.

Finally, each of these numerical problems may be

changed into a theorem, thus producing another set of

more difficult exercises. E.g. Exs. 1, 2, 3, 4, 6, and 7

lead to the following theorems :

Ex. 18. Prove that Ab + Ac - AAOE.
Ex. 19. Prove that AFOB -Ac =Aa.

Ex. 20. Prove that AFOB - Af= Ad.

Ex.21. Prove that Af+ Ab + Ad= 180°.
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Ex. 22. Prove that ZAOC + ZBOD + Z COE = 360 .

Ex. 23. Prove that Z COE - Z a = 180° - ZAOC, etc

A few other theorems may follow :

Ex. 24. If Zf- Ze, prove that Zb — Zc.

Ex. 25 . If ZFOB = Z FOD, prove that Zf=Ze.
Ex. 26. If Ztf - Zb = Zd - Zc, prove that Z£ = Z*.

Ex. 27. Prove that Z^0C + Z COE - Z EOA = 2(Za).
Ex.28. Prove that reflex Z AOE + reflex ZBOF+ reflex

Z C04 = 720°.

Similar exercises may be formed if four,* five, or more

lines meet in a point, but the preceding illustrations seem

to make it superfluous to give many additional examples.

Hence only a few will be given, all of them relating

to five lines meeting at a point }
and forming the ten

angles 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.

Ex. 29. Prove that Z 1 +
Z3 + Z5 + Z7 + Zg= 180 .

Ex. 30. Prove that ZAOC
+ Z BOD + Z COE + ZDOF
+ ZEOG = 360°.

Ex.31. Prove that ZAOD
+ ZBOE + Z COF+ ZDOG
+ ZEOH= 540 .

Ex.32. Form a similar prop-
osition for A AOE, BOF, etc.

Ex.33. UZAOC =ZBOD,
prove that Z6 = ZS.

Ex.34. IfZAOC=ZBOD
= Z COE = ZDOF= ZEOG, then all ten angles (1, 2 •••) are equal.

Ex. 35. If ZAOD = ZBOE = ZCOF= ZDOG = ZEOH,
then Zi = Z2 = Z$ = Z$, etc.

* The diagram formed by 4 straight lines contains 3 independent
unknown quantities, hence offers a wide field for practicing the solution

of simultaneous equations involving 3 unknown quantities.
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GRAPHIC METHODS FOR PRESENTING GEOMETRIC
FACTS

To teach students to think, we should in the early stages

remove as far as possible all external difficulties. Students

who can reason logically sometimes forget the hypothe-

sis, or forget preceding parts of the proof, and hence

are unable to continue. To make such forgetfulness

almost impossible graphic methods may be employed.

The hypothesis may be indicated by colors, equal colors

representing equal lines or equal angles, arrows denot-

ing parallel lines, a small colored square indicating a

right angle. Thus, in the

annexed diagram the two

blue lines indicate the equal-

ity of AB and DE, the two

red arcs indicate the equality

of A A and D, the two

colored arrows represent the

parallelism of AB and DE, and the two small squares

show that A .Fand C are right angles.

For the results obtained in the proof we use white

crayon, equality of lines being indicated by equal cross-

marks, equality of angles

by equal number of arcs,

parallelism by arrows, etc.

Thus the marks in the

annexed diagram, which

are supposed to be drawn in white crayon, indicate

that we have proved : AF= CD, BF= CE, ZA = ZD,
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Z.BFE = Z.ECB, BF\CE. If lines

overlap, we use braces. Thus the

marks of the annexed diagram repre-

sent the equality of AC and BC, and

the equality of AE and BD.

If colored crayons are not available,

white cross marks, etc., may also be

used to indicate the hypothesis, but

for the beginner a distinction be-

tween hypothesis and proof is

very helpful.

To point out certain triangles or

polygons to the students, either

shade them or mark their perime-

ters by heavy lines, as A AEB
and KAC in the annexed diagram.

Thus, if we transform one figure

into another, it is advisable to mark the perimeter of the

given area heavy, and to shade the resulting area, as

indicated in the annexed diagrams.

In other constructions given lines may be drawn thin,

lines of construction dotted, and resulting lines heavy.
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In complex constructions various colors may be used to

distinguish among different lines.

It is impossible to mention all such cases, and the

resourceful teacher will have no difficulty in enlarging

and modifying the above directions.



CHAPTER VIII

EQUALITY OF TRIANGLES

THE FIRST TWO PROPOSITIONS OF EQUAL
TRIANGLES

Can superposition be avoided ? — Proofs by superposi-

tion as a rule do not appeal to students, and as they

occur only rarely, the question is sometimes asked

whether it is possible to devise a system of demonstra-

tions without the use of superposition. If we consider,

however, that the first demonstration of equality which

refers to any particular figure can be based upon

nothing but the definition of equality, and that this

definition involves superposition, it becomes evident that

superposition cannot be avoided unless we change the

definition of equality.* Hence the first proposition of

equal triangles, or equal arcs, or equal ellipses, etc.,

must necessarily be based upon superposition.

The study of superposition.— The method of making
the student familiar with the proofs for the equality of

triangles by means of frequent repetition, can hardly
be recommended. Rather impart to him by concrete

* This remark refers to the usual school geometry only. There are

systems of geometry that dispense entirely with the axiom of mobility
and hence superposition. Such systems, however, require additional

axioms, and the first theorem of equal triangles is usually made one of

these axioms.

I 113
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illustrations a knowledge of the fundamental mode of

procedure, viz. the superposition of some parts whose

equality is known, and the successive tracing of the

remaining parts of the figure. This may be accom-

plished by exercises like the following :

In pentagons ABCDE and A'B'C'D'E', let AB =
A'B', BC=B'C', CD=C'D\ DE = D'E\ £B=£B\
Z.C—AC, and Z D = Z D''. Draw one figure, as

ABCDE, in some color, e.g. in yellow, and indicate the

given equalities

E^-H"*
J^*^sv* E'vJf^r^s

>S^ ky cross marks.

C CfoC When the stu-

dent applies AB
to A'B', let him

draw a yellow
line on top of A'B' to indicate real physical superposi-

tion, and so forth for all other parts. After a few ex-

ercises of this type, the student will understand super-

position, and will be able to apply it to the two triangle

propositions (a.s.a. = a.s.a. and s.a.s. = s.a.s.).

It is, however, not advisable to dwell too long upon
these proofs and to make them distasteful to the stu-

dent by frequent repetition and pedantic insistence upon

unimportant detail. Rather pass over this topic hastily,

even if not every student can give a perfect recitation.

THE TEACHING OF ORIGINALS BASED UPON EQUAL
TRIANGLES

General remarks.— After the class understands the

meaning of the first two propositions on equal triangles,
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easy oral exercises should be attacked. The teacher

may draw the diagram on the blackboard, indicating the

hypothesis by colored crayons.* Then the fact should

be brought out that equal triangles may be used to dem-

onstrate the equality of lines and angles, and by a great

many originals this should be made familiar to the stu-

dent. To cover a large number of such exercises simul-

taneous blackboard work is necessary. The main

result of all exercises should be the knowledge of

Method I. The equality of lines and angles is usually

proved by means of equal triangles.

fcke teacher cannot emphasize this principle and its

Bation too much. Its knowledge is far more im-

|fnt than the knowledge of any regular proposition.

Whenever the student is required to prove the equal-

ity of lines or angles, the analysis should be started

by the question
— first asked by the teacher, later by

the student: "What is the usual method of demon-

strating the equality of lines and angles ?
" There are

only a few such principles that deserve the same empha-

sis, e.g. the methods for demonstrating parallelism of

lines, inequality of lines, proportionality of lines, equiva-

lence of areas, and a few others. A full knowledge of

these principles and their applications forms one of the

chief aims of geometric study. It would, however, be

a mistake to base a "method" upon almost every theo-

rem in the textbook.

Method of constructing exercises.— It is a compara-

tively simple matter to construct a great many originals

* See Chapter VII, page no.
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illustrating the application of equal triangles. Select

two triangles in certain relative positions, as ABC and

ABD, and determine by which methods we may obtain

the equality of two sides and the included angle, or the

equality of two angles and the included side.

Angles may be equal by hypothesis, as comple-

ments of equals, as supplements of equals, as verti-

cal angles, as sums of

equals, etc. Lines may
be equal by hypothesis

or by the axioms of t\

sums or differen<

equals, etc.

To obtain an application of the theorem (a.s.a.
=

<

in the preceding diagram, we consider thatAB is common,
hence we have to find various ways of making Z i = Z 2,

and Z CAB = A DBA. Introducing A 7 and 8, the ver-

tical A of 1 and 2, we get the following hypotheses.

1. Z\ = Z2, ZCAB = ZDBA.
2. Zi = Z2, ^3 = ^4.

3. CAJLAB
y DB±Jb, Z\ - Z2.

4. CA±AB, DB±AB, Z 3 = Z 4.

5. CA±AB, DB±AB, Zi =Z3> Z2=Z4.
6. Zi = Z2, Z5 = Z6.

7. Z EAD = Z CBF, Zs=Z4.
8. Z 3 = Z4, Z S

= Z6.

9. Z 1 = Z 8, Z CAB = Z ABD.
10. Zl = ZS, Z$ = Z4.

11. Zy = Z2, Z$ = 6.

12. Z 7 = Z 8, Z CAD = Z CBD.

13. AC±AB, DB±AB, Z7 = Z2.

othesis

of the
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Similarly we may illustrate (s.a.s.
=

s.a.s.) by the fol-

lowing exercises :

14. AC = DB, Z CAB = /.DBA.

15. AC = £>B, Z5 =Z6.

16. AD = BC, Zi =/8.

17. AD = BC, Z7 = ZS.

18. AC = DB, AC±AB, DB±BA.

This list could be considerably extended by introduc-

ing the vertical angles of 3 and 4, or of CAB and DBA.
Still more such exercises may be obtained by varying

the conclusion, thus requiring in one exercise the equality

of A C and D, in another the equality of AC and BD> etc.

Hence one diagram will furnish us with a great many
theorems, and as it is an easy matter to find other such dia-

grams, it mustbe admitted that there is no lack of material.

A few suchMagrams are given below; others may be

found in the nest paragraph.

List of exercises.—As hardly any textbook contains a

sufficient number of exercises of this type, and as the

subject is of utmost importance, the list given below has

been made very extensive.
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It is of course not necessary for each individual to

solve all the exercises, but for simultaneous blackboard

work a large number of questions are needed. As

stated in the preceding chapter, it is sometimes advis-

able to prepare cards, each containing a problem, for

rapid distribution of the questions.*

Examples on equal triangles may be divided into six

classes :

1. Numerical examples.

2. Triangles that do not overlap.

3. Triangles that overlap.

4. Student has to choose between several pairs of

equal triangles.

5. The triangles must be constructed.

6. Several pairs of equal triangles are necessary for

the proof, f

1. Numerical exercises.— If the pupils of a class

are very immature, this subject may be commenced

with numerical exercises. Only a few are given here
;

but if more should be needed, they can be obtained by

substituting equal numerical values for any equal lines

or angles in any of the exercises following. %

* The exercises are grouped according to diagrams, in order to avoid

an unnecessary multiplication of figures. In the classroom, exercises

referring to one figure should not be studied in immediate succession.

t Only five of these six classes are given in the following list
;
for the

last one, see p. 135.

\ In the following list, if the nature of the diagram shows that certain

lines are intended to be straight ones, this fact has— for the sake of

brevity
— not always been stated. The teacher, in using such exercises,

however, had better add this to the hypothesis.
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Ex. 1. If AB = 8 inches, BE = 8 inches, ZA = 8o°, ZE = 86°,

prove A ABC = ABDE.
Ex. 2. If ZDAC = 30 ,

Z CAB = 30 , ZDCE = 130 ,
ZACB

= 50 , prove A ^^C = A ^CZ>.

— E

Ex. 2

Ex. 3. If ZDAC=4o°, ZECE=4o°, ZDCA= $o°, and Z CAB
30 , prove A ABC = AACD.

2. Triangles that do not overlap.
—

5



120 TEACHING OF MATHEMATICS

Ex. 9. If AD = DC, and A 1

Ex. 10. If AD = DC, and A 5

Ex. 11. If Z3 = Z4, and A$ =

Ex. 12. If AB = BC, and Z4

= A 2, prove ^# = BC.
- A 6, prove AA = AC.

A 6, prove AD - DC.

- A 6, prove AD = DC.

Ex. 13. If As = A6, and A7 = AS, prove AA = AC.

Exs. 14-18

Ex. 14.

Ex. 15.

AC=AE.
Ex. 16.

Ex. 17.

Ex. 18.

If ^45 = BD, and #C = BE, prove C4 = £Z>.

If AB - BD, CA ± AB, and ED ± BD, prove

If AB = BD, and Z3 = ^4, prove C,4 = £"£>.

If AE -
DC, and AE = CB, prove Z 1 = A 2.

If ^5 = BD, and Z 1 = A 5, prove ^C = ££".
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Ex. 19.

Ex. 20.

Ex. 21.

Ex. 22.

Ex. 23.

A 7 B

Exs. 19-23

If Z I = Z2, and Z 5
= A6, prove AB = CD.

\iADAB=ABCD, and Zi =Z2, prove AD=BC.
If ^Z> = BC, and Z6 = Z5, prove AB = ZZ?.

If Z5 = Z6, A7 = Z8, prove that AD = BC.

If Z 6 = Z 5, ADAB - ADCBt prove that AB = DC.

C

Ex. 24.

prove that

"\Ex. 25.

Ex. 26.

AE=BF.
Ex. 27.

£>£• = GF.

Ex. 28.

£Z> = FG.

If AB is trisected, Ai=A2,DE± AB, and GF± AB,
DE= GF.

If AE=FB, A i=A2, A3=A4, prove that AD= BG.

If As = A6, A7 = Z8, and AD = Off, prove that

If AD = BG, AF = EB, and A 1 = Z 2, prove that

If v4^= £5, AD = .567, and Z2 = A 9, prove that

D C
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Ex. 29. If AD ± DB, BC ± BD
f
and Z 1 = Z 2, prove that

ZA=ZC.
Ex. 30. If ADJlDB, BC±BD, and DA = BC, prove that

AB = DC.

Ex. 31. If Z 1 = Z2, and Z3 = Z4, prove that DA = CB.

Ex. 32. If Z3 = Z4, and Z5 = Z6, prove that AB = Z>C.

Ex. 33. If Zi = Zj y
and Z$ = Z6, prove that DA = BC.

Exs. 34-38

X Ex. 34. If AD = CE, FD = BC, and Z 1 = Z 2, prove that

Ex. 35. If AD = CE, Z 1 = Z 2, Z 3 = Z 4, prove that AB=FE.
Ex. 36. If AD = C£", .TO = BC, and Z 5

= Z 6, prove that

ZB = ZF.

Ex. 37. If AD = C£", FZ? -L AE, BC± AE, and Z 3 = Z 4, prove

that -TO = £C
Ex. 38. If AD=CE, AB=FE, andZ3=Z4, prove ZB=ZF.

yk b

Exs. 39-42

Ex. 39. U AD=CE, AB=FE, Z3= Z4,vrovetii&t ZB = ZF.

& Ex. 40. If AD= CE, AB=FE,Z$ = Z6, prove that BC=FD.
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-> Ex.41. If AD = CE, FDJLAE, BC±AE, and ^4 = ^5,

prove that AB = FE.

Ex.42. If AD = CE, FD±AE, BC±AE, and FD = BC,

prove that ZB-ZF.
F

5/A B CV
Exs. 43-45

Ex. 43. If FB ± AC, Z 3 = Z 4, B is the mid-point of AC, and

Z 1 = Z 2, prove that ZD = ZE.

\ Ex.44. UFBXAC,Z$ = Z4,AB = BC,3LndZ$ = Z 6, prove
that ^Z> = C^.

Ex.45. If AD±DB, FB±AC, CE±EB, Z^ = Z^, and

BD = BE, prove AB = BC.

3. Triangles that overlap.
— The following examples

contain triangles that overlap, and each diagram con-

tains several equal triangles. The student has to choose

thatpair of triangles which contains the angles or sides

to be proved equal.

D C

A B

Exs. 46-51

Ex. 46. IfAD ± AB, CB _L AB, and AD - BC, then A ABD
= AABC.

. Ex.47. If AD ±AB,CB±AB, and Z$ = Z4, then AC =DB.

\ Ex. 48. If Z 5
= Z 6, and AD = CB, then Z 1 = Z 2.
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Ex. 49. If^5 = Z6, andZi = Z2, then AC = DB.

Ex. 50. If Z 5 = Z 6, and Z 3 = Z 4, then /2C = DB.

Ex.51. If Z5 = Z6, AC bisects ZDABt and #0 bisects

Z/*£C, then /2C=£Z>.
A

C D
Exs. 52-55

\ Ex. 52. IfAB =^ and BC = £Z?, then A ABD = A ^Cis.

Ex. 53. If AB = ^£", and Z 1 = Z 2, then Ci? = £Z?.

Ex. 54. If y4C = AD, and £C = £Z>, then CE = AC>.

Ex. 55. If B is the mid-point of AC, E the mid-point of AD, and

-4^ m AE, then Z /*#£> = Z AEC.

C

A B

Exs. 56-61

If Z 1 = Z 2, and Z 3 = Z 4, then A ADB = A /*£#.

If ZZ?^5 = Z.Efl.4, and Z3 = Z4, then A^Z?.ff =

IfZ5 = Z6, andZi = Z 2, then & ADB = A AEB.

If Z 5 = Z 6, and ,4Z> = AE", then Z 1 = Z 2.

If Z 5
= Z 6, ^ bisects Z DAB, and .&D bisects

Ex. 56.

Ex. 57.

AAEB.
Ex. 58.

Ex. 59.

Ex. 60.

Z ABE, then /*£• = BD.
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Ex. 61. IfAC == BC, D is the mid-point of AC, and E is the mid-

point of BC, then Z 3 = Z 4.

C

A \
Exs. 62, 63

Ex. 62. IfAD = .£#, Z 1 = Z 2, and Z 3 = Z 4, then A AEC ae

AZ>£C

Ex.63. If AD = EB, CD = CE, and Z 3 = Z 4, then A AEC
= ADBC

C F

A D B E

Exs. 64-66

Ex. 64. If AD = BE, Z 1 = Z 2, and Z3 = Z4, then BC = FE.

Ex. 65. If AD = BE, Z$ = Z6, and Z3 = Z4, then AC = DF.

Ex. 66. IfAD = BE, AC=DF, and Z 5 = Z6, then ZC = ZF.

A , E

\

B C D

Exs. 67, 68

Ex. 67. If BCD is a straight line, AB - AC, AD = AE, and

Z 1 = Z 2, then £Z> = CE.

Ex. 68. If Z 1 = Z2, Z3 = Z4, AB = ,4C, and BCD is a

straight line, then AD - AE.
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4. The proper triangles must be found by trial.— In

the following exercises the two parts whose equality is

to be demonstrated may be considered homologous parts

of two different pairs of triangles, and the student has

to determine by trial which pair must be used.

Ex.
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A

Exs. 78-84

Ex. 78. IfZi = Z2, DB±AB, and CE±AE, thenZC=ZD.

Ex. 79. If Z 1 = Z 2, and z 3 = Z4, then EC = #£>.

Ex. 80. If AB = AE, and Z$ = Z6, then £"C = £Z>.

Ex. 81. If Zi =Z2, and Z5 = Z6, then ZC = ZD.

Ex. 82. If AB =^ and £C = ED, then ZC=ZD.
Ex. 83. If Zi = Z2, Z3 = z"5, Z4 = Z6, then BD = EC.

Ex. 84. If Z C=ZD, CB=ED, and AB=AE, then CE =BD.

5. 7$^ triangles must be constructed.— This mode of

procedure may be stated as :

Method II. If the lines or angles whose equality we

wish to demonstrate are not parts of equal triangles, we
have to make them parts of equal triangles by drawing

additional lines.

This is an important principle that is used exten-

sively in succeeding chapters. At this point it is diffi-

cult to form exercises, but after studying parallelism of

lines and the remaining propositions on equal triangles,

it is a very simple matter to form such examples. Of
the four exercises following, only one can be done by
the student at this stage of the work.
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A

Ex. 85. If AB = AC, then /.B = ZC.

Ex. 86. If in quadrilateral ABCD, AB = CD, and BC = DA
y

then AA = AC.

Ex. 87. If in quadrilateral ABCD, A A and C are rt. A, and

^^ = £>C, then BC = DA.

Ex. 88. If AB = CD, and A 1 = Z2, then ^3 = Z4.

Ex. 88

All the preceding exercises give both hypothesis and

conclusion explicitly. By degrees, however, the student

must become trained to understand exercises stated in

more complex form. E.g.
—

Ex. 89. If a diagonal of a quadrilateral bisects the angles whose

vertices it joins, the figure is divided into two equal triangles.

Ex. 90. If, from the ends of the base of an isosceles triangle,

equal distances be laid off on the arras, and from their ends lines be

drawn to the opposite vertices, these lines are equal.
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Importance of the exercises on equal triangles.
— There

is hardly another topic in the study of geometry that

deserves more attention, and that is more important to

the student than the applications of the equality of

triangles. For, first, this method is used more than

any other in the succeeding chapters of plane geometry.

Secondly, there is no other topic that introduces the

student so fully and easily into the true spirit of geo-

metric work.

It is a fact that many students finish courses in

geometry and pass examinations without ever becoming

fully initiated into the real meaning of geometric work.

The present chapter forms a critical point. Here the

student should become fully aware what geometry

really means and what sort of mental activity is neces-

sary for its study.

Hence the teacher should dwell upon this topic, and

not proceed until every student who possesses normal

reasoning powers has fully mastered it.

CONVENTIONAL METHOD OF STATING GEOMETRIC
PROOFS

Since the majority of the preceding examples cannot

be done orally, but must be written, it becomes necessary

to study the various conventional ways of stating geo-

metric proofs.

Symbols or words ?— Although the extensive use of

symbols in geometry is at the present day almost

general, still there remain a few teachers and a few

books that employ hardly any symbols, claiming that
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the teaching of English is one of the chief objects of

geometric instruction.

It is, however, entirely unpedagogical to accumulate

difficulties. The use of symbols makes the study of

geometry easier; hence let us employ them as far as

they have been generally accepted. Our first aim must

be the teaching of geometry, and the effect this teach-

ing has upon the student's linguistic abilities is— while

important
—

only of secondary importance. Success in

the first aim is the absolute prerequisite of success in

the second.*

Symbols of uncertain and varying significance.
— A

remarkable feature of mathematical symbolism is the

fact that it forms an international language that can be

understood by any mathematician, no matter what his

nationality. Unfortunately there is no absolute agree-

ment in regard to a few symbols, the most widely known

examples being the symbols for equality, similarity, and

equivalence. Here not only symbols but even terms

differ. In America the equality of areas is called

equivalence and represented by the symbol 0=, while in

continental Europe it is called equality and denoted

by = . Figures that may be superposed are called in

* Moreover, geometric study does far more for the mastery of the

mother tongue
—

using symbols, or no symbols— than generally

supposed. It does so by virtue of its accuracy and precision, and

by improving in general the student's ability to think. For it is

an undeniable fact that many pupils cannot speak correctly because

they cannot think correctly. They constantly use words and phrases

without having any definite ideas to express. (Compare Chap-
ter II.)
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America equal (
=

),
in the greater part of Europe con-

gruent (=). The symbol for similarity (~)* generally

employed in Europe is used very little in America.

The chief trouble arises from the use of the term

"equality" in geometry. The American use is pro-

vincial and illogical, for it gives a meaning to this word

in geometry entirely different from that in the rest of

the mathematical subjects. Equality, thus used, refers

in geometry to form and size, while in arithmetic or

algebra it has no bearing upon form. "
If equals be

added to equals the sums are equal" would be true in an

algebraic sense only, but erroneous when applied to geo-

metric figures. Besides the symbol =0= is a difficult char-

acter to write. A change to the symbols =, ~, and a*,

and the corresponding terms, is certainly most desirable.

Another provincial symbol that should be discarded is

: :
, as used in proportion. The true meaning of this sym-

bol is equality, and hence it should be replaced by = . The
mere fact that it is read "as" does not justify the introduc-

tion of a new symbol. If we should use different sym-
bols whenever the words differ which these symbols repre-

sent, we would have to use at least half a dozen symbols in

place of "minus" (
—

), just as many for "equals" (
=

)etc.

Certain other symbols have different meanings in dif-

ferent parts of mathematics, e.g. the symbol =. In the

theory of numbers it denotes congruence of numbers,

in algebra it is used to represent an identity.

* Leibnitz introduced the symbol ~, and this is the most widely used

form, but some authors use c/) instead in order to connect the symbol
with the first letter of the word (similis).
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The statement of the hypothesis.
— There are two dif-

ferent ways of stating the hypothesis. The American

method describes the given part so that a reader can

understand it without seeing a diagram. He could draw

the diagram from the hypothesis. On the continent of

Europe the diagram plus the written statement consti-

tutes the hypothesis. Things that are absolutely obvi-

ous from the diagram are not written unless they are

the essential conditions of the theorem.

Thus, an American text would say :

Hyp. Two parallel lines AB and

CD are intersected by the transversal

EF respectively in G and H.

While a German book would

state :

Hyp. ABWCD.

The German argument is that

the diagram shows XhaX^EF'is a

transversal, that it meets AB in G and CD in H
t
that it

is not necessary to say AB and CD are straight lines,

since two letters always mean a straight line.

From the viewpoint of science no objection can be

made against the American way, but pedagogically the

European way is preferable, for it frees the student's

mind from a mass of pedantic detail of little value, and

emphasizes the really essential part of the hypothesis.

Thus the student is led to better understanding. It will,

for instance, be much easier for him to form a converse

when the hypothesis is stated in the brief form, than

when in the lengthy form.
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Of course this brevity must not be carried to such an

extreme that doubts may arise. Thus lines cannot be

assumed to be straight or to be perpendicular merely

because they appear so.

Statement of a proof.— The present topic (equal tri-

angles) is very well suited for teaching the conventional

form of writing demonstrations, and both here and later

exactness of form should be insisted upon just as much

as accuracy of thinking.

The form of the following proof may be useful to

those who have had no experience in teaching. This

proof, however, does not belong to our present chapter,

but to a later one.

Theorem. A line drawn through the mid-point of a diagonal of a

parallelogram and terminating in two sides of the parallelogram is

bisected.

Hyp. ABCD is a O.
AC\s bisected at E.

FG is a st. line.

To prove FE — EG.

Proof: In & .4OE and FEC
y

AE=EC. Hyp.
Z EAG = A ECF. Alt. int. A of parallel lines.

Z AEG = /. CEF. Vertical angles.

.\AAGE = A FEC. (a.s.a.
= a.s.a.)

.'. FE = EG. Horn, parts of equal &. Q. e. d.

THE LAST THREE PROPOSITIONS OF EQUAL
TRIANGLES

Remarks about the three theorems.—A method of

making students discover or analyze the proof of

the proposition relating to two mutually equilateral
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triangles (s.s.s.
=

s.s.s.) was discussed in the preceding

chapter.*

The theorem of two triangles that have two angles

and a non-included side equal (s.a.a
—

s.a.d) is omitted

in quite a number of textbooks. If, however, the solv-

ing of exercises is to be made the chief object of geo-

metric study, we cannot dispense with this theorem, and

considering how easily it may be proved, it certainly

should be studied.

The theorem of two triangles that have two sides

and a non-included angle equal respectively is true

only under certain restrictions. As students occa-

sionally apply this theorem as if it were generally

true, we ought to be able to show

them cases in which such a theorem

would obviously lead to wrong results.

For instance, we should obtain that

any line drawn from the vertex of an

isosceles triangle divides the figure

into two equal triangles, or that a

diagonal divides any isosceles trapezoid into two equal

triangles. Similarly in the annexed diagram A ABO
would equal A A CO.

B

See Chapter VII, page 101
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Triangles having two sides and a non-included angle

equal, however, are equal if the other two non-in-

cluded angles are njgt supplementary. A somewhat

simpler condition which, however, does not cover as

many cases makes the equal angles lie opposite the

greater sides.

Most textbooks, however, give only the special case

in which the angles are right angles, i.e. stating that

the hypotenuse and an arm of one triangle equal the

corresponding parts of another. To make students

discover the demonstration of this theorem we had

best start with the exercise: The altitude upon the

base of an isosceles triangle divides the figure into

two equal triangles.

Exercises.— Since the mode of constructing exercises

has been fully explained in the preceding paragraphs,

we shall not give any simple illustrations of the applica-

tions of the present theorems. We shall, however, give

a number of more difficult exercises, specially suited

to the more ambitious student, which illustrate the

following :

Method III. If it is impossible to prove the equality

of the required pair of triangles, prove first the equality

of some other pair, or pairs, whose homologous parts will

enable us to demonstrate the equality of the original

pair.

This principle is very important, and students should

become fully familiar with it.

6. Exerrises requiring the equality of several pairs of

triangles.
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F E D

Ex. 91. If AG = GD, CG = GF, and all lines are straight lines,

then BG = GE.

Ex. 92. If in polygon ABCDEF, AB = DE
}
BC = EF, DC =

FA, and AWB DE, then ZF = AC.

Ex. 93. If AB - AD, and AC = AE
}
then Z BAF = Z DAF.

C

Ex. 94. If Z A = Z B, and AF = BE, then AD = DB.
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Ex.95

Ex. 95. IfAB II CD, then AD = BC.

Ex. 96

Ex. 96. IfAD = AC, DE= CF, GHWABWIK, and AB is a

diameter, then GH = IK.

B B'

Ex.97

Ex. 97. If in quadrilaterals ABCD, and A'B'CD', AB = A'B',
BC = B'C, CD = <7Z?', DA = Z)'^', and ^4C = A'C, then £Z> =
B'D'.
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A few additional diagrams will facilitate the construction of more

exercises of this type.

£ XX^
Method for proving the perpendicularity of two lines.

Method IV. To prove that an angle is a right one

we usually demonstrate that it is equal to its supplemen-

tary adjacent angle.

For instance, to prove that triangle ABC is a right

one if the median CD equals one half of BA we pro-

duce BC by its own length to E and

prove the equality of A ABC and

AEC. This is easily done if we

consider that CD = \AE, since it

joins the mid-points of AB and EB.

This illustration requires a theorem

which the student at this stage of

the work does not know, but his knowledge is sufficient

for the following exercises.
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Ex. 98. The median to the base of an isosceles triangle is per-

pendicular to the base.

Ex. 99. The bisector of the vertical angle in an isosceles triangle

is perpendicular to the base.

Ex. 100. If in quadrilateral ABCD, AB - BC, and AA = Z C,

thenAC±BD.

C

Exs. 101-104

Ex. 101. UAA-AB, andZi = Z2, then CD±AB.
Ex. 102. CD is perpendicular to AB, if AE= BF, and Zi=^2.
Ex. 103. CD is perpendicular to AB, if /LA = Z.B, and AE and

BF are medians.

Ex. 104. CD is perpendicular to AB, if Z 1

BFare altitudes.

Z 2, and AE and



CHAPTER IX

PARALLEL LINES

PROPOSITIONS ESTABLISHING PARALLEL LINES

Definition of parallel lines.— The definition that is

most widely accepted is : Two lines are parallel if, lying

in the same plane, they do not meet, however far pro-

duced. Various attempts, however, have been made to

formulate other definitions which result in simpler proofs

of the theorems. Of these, the two most widely used de-

fine parallels as lines that have the same direction, or lines

that are everywhere equally distant. Both definitions,

while they simplify the proofs of the parallel theorems

greatly, are objectionable from the scientific point of

view. The first employs the objectionable term direc-

tion, the other is so obviously redundant that it has to

be rejected. Still, occasionally, a new defender of one

of these definitions arises, claiming that he has discov-

ered a new definition of parallel which will simplify the

proofs greatly.

Demonstration of the fundamental theorem. — Any
arrangement of propositions that exists and that'is exact

contains one or several difficult proofs. Many Ameri-

can books consider first propositions relating to a per-

pendicular transversal and obtain then comparatively

simple proofs of the general theorems, but the difficulty

140
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is not avoided, it is simply pushed back to the proposi-

tions relating to the perpendicular transversal. More-

over, we obtain an unnecessarily large number of

theorems.

If we insist upon a rigorous^demonstration, it seems

that the Euclidean way has not been improved upon.

It is true that Euclid presupposes the knowledge of a

theorem that is not quite easy to prove, viz. an ex-

terior angle of a triangle is greater than either remote

interior angle. But this theorem is not so difficult, if

we make it one of a series of

originals. Considering two

triangles formed by two lines

AD and CB that bisect each

other, we find Z EBD = Z C.

Drawing now the straight line

ABF, we ask whether Z^or
Z CBF is greater. Erasing the lines AD and BD, we

ask whether Z CBF is still greater than Z C, and finally

draw a new diagram (Z ABC and AB produced) and

require a reconstruction of the entire proof.

After the preceding proposition is firmly impressed

upon the student's mind by numerous applications, the

fact that equal alternate interior angles make lines

parallel can easily be obtained by means of numerical

questions. Let a transversal form the alternate interior

angles a and b
}
with two intersecting lines, and ask

whether or not it is possible that

Za = S0°, Z£ = 6o°;

<& ^-^ or Z a = 50 Z b = 50 .
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Referring to the next diagram, ask whether the pro-

longations of AB and CD {i.e. towards the right side)

can meet if a = 6o°, b = 50 ;

or # = 40°, b — 50 ;

or a = 50 ,
b = 50 .

Discover whether BA and

DC produced {i.e. towards

the left) meet if

a m 6o°, b = 50 ;

or a = 50 ,
b = 50 .

Can the lines meet at all if

or if a = 6o°
f

£ = 6o°?

Hence, the lines are parallel for these particular sets

of numbers, and it is an easy matter to show that this

result is generally true.

Exercises. — The simplest exercises which illustrate

the preceding theorem are of course numerical ones.

Assign numerical values to any two independent angles

of the complete diagram, and ask whether

the lines are parallel. Then request

student to prove the parallelism of the

two lines if certain angles are equal or

supplementary; e.g. Z 2 = Z 6, Z 7=
Z 3, Z 1 = Z 8, Z 7 = Z 3, Z 3 is the supplement of Z 5,

Z 7 is the supplement of Z 4, etc.

In every case the student must try to discover the

equality of a pair of alternate interior angles, and the

principal result of work of this kind should be the

knowledge of
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Method V. Parallelism of lines is usually proved by-

means of equal alternate interior angles.

A knowledge of this principle is most essential, and

the analysis of any theorem stating parallelism of lines

should be commenced with the question: What is the

usual means ofproving two lines parallel ?

Of course sometimes corresponding angles, or angles

on the same side of the transversal, are employed, but

the above principle gives the most important method.

While in the simpler exercises, we use vertical angles,

supplements of equals, sums of equals, etc., to make

alternate interior angles equal, in more complex ex-

amples we accomplish the same by means of equal

triangles. Below are a few diagrams, each of which

may be used for quite a number of originals requiring

the demonstration of parallelism.

13-

\
CONVERSES

General laws.— To discuss the converses of the parallel

theorems, a few remarks about converses in general may
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be helpful. Usually it is said that the exchange of hy-

pothesis and conclusion produces the converse of a

theorem.* Or if the theorem be represented by :

If A is B
y
then a is b,

its converse would be :

If a is b, then A is B.

The converse of a valid theorem is not necessarily true,

a fact illustrated by the converses of the following

propositions :

i. If a polygon is regular, a circle can be circum-

scribed about it.

2. If two parallelograms have equal bases and alti-

tudes, they are equivalent.

3. The diagonals of a rhombus are perpendicular to

each other.

4. If a body of gas is compressed, it becomes hotter.

Relation between converse, opposite, and converse of the

opposite.
— If the theorem be represented by :

If A is B
y then a is b

;

its opposite would be :

If A is not By then a is not b
;

and the converse of the opposite :

If a is not b, then A is not B.

These four theorems are connected in such a way
that the validity of one of them always establishes the

validity of another one. , .

I Theorem ^^ ^ Converse

Opposite y^ ^^ Converse of Opposite

* This is not quite exact, see p. 146.
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In the preceding arrangement the theorems are con-

nected diagonally, i.e. :

If the theorem is true, then the converse of the oppo-

site is true.

If the opposite is true, the converse is true.

If the converse is trup, the opposite is true.

If the converse of the opposite is true, the theorem is

true.*

These connections are easily proved by the indirect

method.

These general matters will become clearer by a con-

crete illustration. Let a and b be two alternate interior

angles formed by two lines AB and CD, and a trans-

versal.
t ^

I. Theorem , II. Converse

UZ.a=Z.b, \14LBWCD,
Then AB II CD. Then Z = Z &

III. Opposite IV. tConverse of
' Opposite

If Z a =£ Z b,\ If AB is not II CD,
Then AB is not II CD. Then Z a =£ < £.

To establish all four theorems, we have to prove only
one of the following pairs : I and II, or I and III, or

II and IV, or III and IV.

Obviously a knowledge of these relations is a great

* Some textbooks state that both the theorem and its opposite must
be proved to establish the converse. This is erroneous

;
the opposite

alone establishes the converse.

t The symbol =?= means "is not equal to."

L
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help in geometric work, e.g. if we find the converse of

a theorem too difficult, we may attack the opposite in-

stead, etc.

Case of several converses.— If the hypothesis of a

theorem consists of several statements, each of them

may be exchanged with the conclusion, thus giving rise

to several converses, that may
be, or may not be, true. For

instance :

If in triangle ABC
1. AB = AC,
2. BD = DC,

3. DE±AB,DF±AC,
then BE = DF.

Each condition of the hypothesis may be exchanged
with the conclusion, thus producing three converses, of

which the first two\re true, while the third is not.

Law of converses. — If the following three theorems

are true, their converses must be true :

1. If A > B, then a > b.

2. If A = B, then a = b.

3. If A < B, then a < b.*

The truth of this assertion can easily be shown by

applying the indirect method. Of course the same

* Or more generally : If A may be A 1 or A 2 or A3 ... An, and this

includes all possibilities, and the following propositions are true :

If A is A\ t
then a is a\ ;

If A is A2, then a is at ;

If A is An, then a is a% ;

then the converses are also true.
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fact holds true of the propositions which we obtain by-

exchanging the first and last conclusion.

Thus, after we prove that equal . chords are equidis-

tant from the center, that a chord becomes smaller if

its distance from the center increases, and that it be-

comes larger if its distance from the center decreases,

— the converses of these propositions can be accepted

as true without further proof.

Pedagogic value of the preceding laws. — While the

general logical notions discussed in the preceding para-

graphs furnish undoubtedly very useful tools for geomet-

ric work and are very valuable to the teacher, it would

be a fatal error to teach general logical propositions before

the concrete theorems. The student does not appre-

ciate these general facts, nor will he as a rule under-

stand the meaning of such abstract theorems until he

is well acquainted with a large riumber of concrete

illustrations. Hence such matters should never come in

the beginning of geometric instruction. They may be

given in a review course, but even then more as sup-

plementary matter than as an integral part of the regular

work.

Converses of the theorems on parallels establish the

equality of angles, if parallel lines are given. The

first proof* of this kind is always rather difficult, and

if the students are immature, it is advisable to teach

the opposite theorem first, viz. : If two alternate interior

angles are unequal, the lines are not parallel. Logically

* It should be noted that these converses depend upon Euclid's pos-

tulate (Chapter IV), while the direct theorems do not require it-
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the converse would then require no proof at all
;
for the

beginner, however, a proof should be given, which, in

this case, is very simple. Such an arrangement re-

moves some difficulties, even though it increases the

number of propositions.

Exercises illustrating the converses of the parallel

line propositions can easily be formed. They may
be classified as follows :

1. Numerical examples are adapted for oral work.

If two parallels intersected by a transversal are given,

assign a numerical or literal value to any angle of the

diagram and require the value of all others. Construct

two transversals intersecting

one of the parallels in a

common point, and assign

values to any two independ-

ent angles and let the stu-

dents find all other angles.*

Introduce two parallel

transversals, bisectors of certain angles, perpendiculars

to a transversal, etc., etc.

2. Simple general examples.
— In diagrams similar

to those of the preceding class, let students prove that

certain angles are equal, others supplementary or com-

plementary, that one angle equals the sum of some

other two. In other words, establish in a general form

the facts which were represented numerically by the

exercises of the preceding section.

* Every exercise on pp. 107 and 108, Chapter VI, may be used as

the basis of a corresponding exercise relating to the above diagram.
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3. Exercises preparing students for later topics.
— The

preceding diagram makes it possible for the student to

find the sum of angles a, b, and c, and may be used to

lead him directly to the theorem of the sum of the

angles of a triangle. Similarly he may find the propo-

sitions relating to the exterior angle of a triangle, to

opposite angles of a parallelogram, to the sum of the

angles of a quadrilateral, etc.

4. Equality of triangles.
— The number of originals

requiring equality of triangles can now be greatly in-

creased, as we have a new means of obtaining equal

angles. The diagrams on pages 117 and 122 maybe
used for the construction of a great many originals, that

assume certain pairs of parallel

lines and require the equality

of certain other lines or angles.

Thus, in the annexed diagram,

we may say :

If AB
|| EF, AB = EF, and EC =

DA, then BC = DF, etc., etc.

5. Combination of the direct parallel propositions and
their converses.— We may use the equality of certain

angles to prove the parallelism of lines and therefrom

again deduce the equality of other lines or angles, or

we may start from parallelism, obtain the equality of

certain angles and triangles, and finally demonstrate

the parallelism of other lines.

The two following exercises illustrate these two

methods :
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A D B E

Ex. 2. MAC
|| DF, AC = DF, and AD = BE, then CB

\\
FE.

Sum of the angles of a triangle.
— Among the various

by-products of the preceding methods of solving exer-

cises are the theorem of the angle-sum of a triangle,

the theorem of the exterior angle of a triangle, the

parallelogram propositions, etc.

Hence students will experience no difficulty when

analyzing the theorem of the angle-sum of a triangle.

The originals based upon this proposition, however,

may deserve a short discussion.

To construct exercises relating to the angles A f B,

and C of triangle ABC, we have to consider that the

three quantities are always connected by one equation,

viz., A + B + C= 180
,
and that consequently two other

(independent) equations will determine the values of

the angles.

Since in the annexed diagram all angles are known

if A, B, and C are given, it follows that the twelve

angles of the diagram can be determined if two equa-

tions connecting independent angles are given.
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Thus to find all twelve angles, we may assign numer-

ical values to any two independent angles of the dia-

gram, or we may make Z A = Z F and

Zf= 22
,
or we may make Z.A— 90

andZ G + Z C= 140 , etc.

For more difficult examples we may
use more complex equations, as

A + 5 B = 240 ,
C- B= 30 ,

or G- A + C= 130 ,
2D- 1= ioo°.

Of course a great many originals of entirely different

character may be based upon this proposition, but it

would lead us too far to discuss them.



CHAPTER X

MISCELLANEOUS TOPICS OF THE FIRST BOOK OF

GEOMETRY

HYPOTHETICAL CONSTRUCTION AND THE ISOSCELES
TRIANGLE

Isosceles triangle.
— Euclid proved the equality of

the base angles of an isosceles triangle by applying the

figure to itself so that each leg coincided with the

other. While this is a very ingenious and short method,

it is not the kind of proof that appeals to young stu-

dents. Moreover, it is always preferable to let students

apply the usual fundamental method, i.e. the method

of equal triangles.

In the prevailing arrangement of propositions, the

only method that leads to two triangles the equality of

which can be proved by the student at this stage, is

based upon the bisection of the vertical angle. As the

student, however, cannot foresee this result, it would be

advisable to let him try to obtain two equal triangles by
means of the median or the altitude, in order that he

may discover for himself why the bisector alone can

be used.

The only point relating to the proof of this proposi-

tion which the student has to remember is the fact that

the bisector of the vertical angle does lead to the two

equal triangles.

152
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Hypothetical construction.— What is a hypothetical

construction ?— In the proof discussed in the preceding

paragraph, use has been made of the bisector of an

angle, and this is done before the method of construct-

ing such a bisection has been established. This intro-

duction of a line or other figure, before it is shown

how it can be constructed, is called a hypothetical con-

struction, Euclid never used hypothetical construc-

tions, while practically all modern books use them,

more or less.

There are, however, many critics who attack the

use of hypothetical constructions. Especially does the

use of the bisector in the isosceles triangle seem to in-

vite the criticism of certain writers, who do not appear
to realize that there are other cases just as glaring in

nearly all textbooks.

Logical aspect ofhypothetical constructions.— Is the use

of hypothetical constructions justified from the logical

point of view ? Is it logical to introduce the bisector of
|

an angle, before we possess an exact method of con-/

structing it? Or are the numerous critics justified in

denouncing such a practice as illogical ?

The answer to these critics is that it does not matter

in the least whether the line drawn is the exact bisector

or not. The proof of a demonstration does not depend

upon the accuracy of its diagram. As soon as we
admit that there is a bisector, we can give an absolutely

exact proof, and the validity of such a proof does

not at all depend upon our ability to draw this line

exactly.
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Such a use of quantities that we cannot accurately

determine is absolutely general in mathematical science.

We form relations between the roots of an equation,

not only before we have determined them, but even in

cases when it is absolutely impossible to determine them.

We refer coordinates to the center of gravity of a

system, before we know the location of this center,

etc. If we excluded any quantity before we had a

method of determining it, we would have no higher

mathematics.

It is true, however, that we assume something in a

hypothetical construction, and this is the existence of the

line or other figure, e.g. the existence of the bisector of

an angle.

But there is an enormous difference between the asser-

tion that we have to show that a bisector is possible, and

the contention that we have to find the entire method

for constructing such a line. Not even the possibility of

the above construction has to be proved, but simply the

fact that somewhere there is a bisector. If, for in-

stance, a demonstration should require seven points

dividing a circumference into seven equal parts, it would

be perfectly logical to use the seven points. For, while

it is impossible to obtain seven such points by an exact

construction, it is a very easy matter to show that such

points do exist, and the logic of the proof does not

depend upon our ability to get an exac^diagram.

Hence the flaw in hypothetical constructions is not of

the kind that most critics claim, and in nearly all cases

of elementary geometry this flaw can be entirely
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removed. In the above theorem, for instance, it would

be a very simple matter to demonstrate that there is

always a bisector, although very few teachers would

think it worth while to introduce such a demonstration.

Pedagogic aspect of hypothetical constructions.— The

logical objections against hypothetical figures are there-

fore not of such a kind that we should exclude this

method. On the other hand, the introduction of hypo-
thetical diagrams undoubtedly simplifies elementary ge-

ometry. The greater simplicity of our modern way of

presenting this science as compared to Euclid's is

largely due to the use of this method, and hence its use

in elementary teaching must be recommended.

It is true, however, that students who have never

drawn a perpendicular, nor a parallel, nor a bisector may
be somewhat confused by the introduction of such lines,

and may ask how these lines can be obtained. The

discussions of the preceding paragraph would in such

a case be of no help to the students, but would rather

confuse them still more. A little time devoted to draw- 1

ing exercises before demonstrative geometry is taken

up will remove all such difficulties.

Applications of the preceding theorem.— Among the

many applications of the isosceles triangle proposition

that are possible, two classes may be mentioned, viz., the

calculation of certain angles and the finding of equal

lines and angles.

Since the three angles of an isosceles triangle are

connected by two equations, any other independent

equation will determine all angles. Hence, by assign-
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ing a value to any of the twelve angles of the com-

plete diagram, we may determine the others. Similarly

any equation as A — C = 20
,

2 A + $ B — C = 120
,

etc., will enable us to find all angles.

The direct proposition and its converse may be used

to prove the equality of lines and angles, and there are

cases which are much more effectively attacked in this

manner than by equal triangles. While logically this

is only a special case of equal triangles, practically it

is a new method. Hence the student had better be-

come familiar with

Method VI. The equality of angles is occasionally

proved by the isosceles triangle proposition.

SIMPLE CONSTRUCTIONS

Straightedge and compasses.— All constructions in

elementary plane geometry have to be carried out by
means of two instruments, viz., the compasses and the

straightedge. Of these, only the compasses deserve

the name of an instrument, as the straightedge is

simply a model of a straight line that enables us to

copy a line which was constructed by some one else.

It is not any more an instrument than a piece of board

that has been given the form of an ellipse or a parabola,

and that may be used to draw such curves at the black-

board. Since the perfect rectilinear motion has a cer-

tain value in mechanics, an instrument accomplishing

this was sought for a long time. Watt's parallelogram,

used on his steam engines, produces an approximately
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rectilinear motion, but Peaucellier's linkage
* was the

first instrument to accomplish this exactly.

It should be borne in mind that the restriction to

rules and compasses is purely conventional, due to the

great simplicity of these instruments, and not to any
intrinsic qualities of geometric figures.

Attempts have been made to effect the constructions

of geometry by means of the compasses alone, or by
means of the straightedge alone. By the last method,

however, only a limited number of problems f can be

* Peaucellier's linkage consists of 7 rigid links, connected by the joints

A, B, C, D, 0, an*! P, of which only two, O and P, have fixed posi-

tions. PO = PA, DO
= BO, AB = BC = CD
= DA. When the in-

strument swings about

O and P, the point A
obviously moves in a circle, and it can be proved that C describes a

straight line.

The proof depends upon the following facts :

1. OAXOC = OD2 - DA 2
,
i.e. a constant.

2. If OA X OC = a constant, and A moves in a circle, then C moves
in a straight line.

t If the unknown quantity, expressed algebraically, is rational, the

ruler alone will effect a construction.
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solved. On the other hand, Mascheroni, in 1797, suc-

ceeded in showing that all constructions that can be

effected by ruler and compasses can also be accom-

plished by the compasses alone. Later on, Poncelet

demonstrated that the same problems can also be solved

by the use of one fixed circle, and the use of the straight-

edge only.

Pedagogic remarks.— It is very desirable that the

simple constructions— i.e. drawing of bisector, perpen-

dicular, parallel, etc.— should occur as early as possible

',
in the course, for this will do away with further "

hypo-
thetical constructions," and besides, these constructions

are of great simplicity and interest to the beginner.

.
Since several of these constructions depend upon the

third proposition of equal triangles (s.s.s.
=

s.s.s.), they

have to be placed later than this proposition. It is,

however, a mistake to place them at the end of Book I,

or even of II, as some authors have done. The theory

of these constructions offers little difficulty, especially

if we give a large number of applications.

One feature that deserves special attention is the

insistence upon accuracy of language and drawing.

While the diagram of a theorem has nothing to do with

the validity of the proposition, the diagram of a prob-

lem is the essential part of the work. Moreover, con-

Itinual

free-hand construction will sometimes lead to

loose thinking. Students will talk glibly about an arc

drawn from O as a center, and will at the same time

draw an arc whose prolongation passes through O.

Accurate drawing makes such matters impossible, and
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hence— in the beginning at least— all constructions

should be effected with ruler and compasses.

Accuracy of expression is most essential for brief and

concise descriptions of the constructions. It may be

easily obtained by making students know exactly the

few typical phrases that occur in such work. " From

A as a center with a radius equal to CD draw an arc."

" On AB lay off AC=MM" " From A drawAB±MN."
"
Through O draw AB II CD," etc., etc.

Insist also upon designating a new line, etc.,
— if it is

going to be designated at all,
— as soon as it is intro-

duced. Do not say :

"
Through A draw a perpendicular

toMN
t
and designate it by AB" but,

"
Through A draw

AB ± MN."
Do not give details of preceding constructions. For

instance, if any construction makes use of the bisecting

of an angle A, it is sufficient to state
"
bisect angle A"

although in the beginning we may require the student

to draw all details of this construction. Or if a con-

struction requires the transformation of a rectangle

ABCD into a square, and this problem has been studied

before, state only : "Transform ABCD into a square."

In complex examples make a graphic distinction be- I

tween given lines, lines of construction, and resulting

lines by using different colors or by drawing one kind

of line thin, the other dotted, and the third heavy.

UNEQUAL LINES AND ANGLES

Proofs of the propositions.
— The first of the proposi-

tions establishing the inequality of lines compares the
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sum of two sides of a triangle with the third one,

and is so simple that it hardly requires any comment.

The second, however, viz., that in a triangle the angle

opposite the greater side is the greater one is difficult

to analyze. The writer employs paper folding for this

purpose, which usually leads Students to the discovery
of a proof.

^
Cut out a piece of paper an'd mark, on both sides of

the paper, the sides whose lengths ty:e assume to be

diAerent. Mark also differ-

ently, on both sides of the

paper, the angles whose rela-

tive size we wish to dis-

cover, and ask the follow-

ing questions :

Which is the only theorem which tells that one angle

is greater than another? Arts. The exterior angle of

a triangle, etc.

*? Who can fold this paper so that B becomes the exterior

angle of a triangle, while A becomes a remote interior ? .

Let all students cut out pieces of paper and try, and

soon some will find the answer that is indicated in the

annexed diagram. Students see now the truth of the

fC c

A D A D B

proposition, and it remains to translate this idea into

geometric terminology. We unfold the paper, find that
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CD is the bisector of £ C, find the position of Bf

,
the

equality of A BDC and B'DC, etc.

The third proposition, which compares two triangles

that have two sides respectively equal but the included

angles unequal, has a great many proofs, all of which

require the superposition of two equal sides. One proof,

for instance, which is not so

very difficult to discover, places

the triangles in the position

indicated in the diagram. If

we wish to prove that AB >
AD, we would naturally inquire

into the relative sizes of angles

ABD and ADB. But as the

base angles of isosceles triangle CDB are equal, the

p*Qfif is easily completed. This proof, however, has a

drawback which is peculiar to many demonstrations of

this proposition, viz., it

has to be modified con-

siderably for different

figures, e.g. for the an-

A B nexed diagram.
The proof which is usually given in textbooks has not

this disadvantage, although its analysis is rather difficult.

It may, however, also be discovered by paper folding.

Cut out a piece

of paper as indi-

cated in diagram

I, and let BC and

DB be the lines
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whose inequality has to be proven. Fold the paper over

as in diagram II, and require now the students to fold

it so that BD forms one side of the triangle, while BC
forms the other two sides. This will lead to figure III

and the entire proof.

The converses of these cases require, according to

the law discussed on page 146, no demonstrations.

While we would not make use of this fact, it is well to

bear in mind that in all such cases the indirect method

will effect a proof.

Simple application of the propositions.
— The analysis

of an original requiring the inequality of lines should be

started by the question :

" What means do we have to

prove the inequality of lines ?
" The only means which

we have so far are the three theorems, to which we shall

refer in the following as (1), (2), and (3) respectively.

Number (1) has to be used when no relation of angles is

given or can be found. Number (2) may be used if the

lines which we wish to compare are sides of one triangle

and some facts relating to angles can be found. Num-

ber (3) has to be used if the two lines whose inequality
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we have to prove lie in different triangles and some

facts relating to angles may be found.

Of course this is not absolutely definite, but this is

one of the peculiarities
— or shall we say charms ?— of

geometry. The work cannot be done without some

thinking, some originality, on the part of the student.

Before actually demonstrating such originals, it is

advisable to let students decide in a large number of

cases which of the above methods is most likely to lead

to a result, although it must be borne in mind that some-

times two or even three methods may be used effectively.

The given data may be indicated graphically, e.g. one

color always representing the larger, another color the

smaller side or angle, as the case may be. A few exer-

cises adapted to such a choosing of the proper means

are the following :

Ex. 1 . If AB and CD are two intersecting lines, AB + CD <
AD + CB.

Ex. 2. In triangle ABC if AB = BC and D lies in AB, prove

thatDO DA.

Ex. 3. If two sides of a parallelogram are unequal, the angles

formed by the diagonals are unequal.

Ex. 4. A point without the perpendicular bisector of a line is

unequally distant from the ends of the line.

The applications of the converses are analogous to

those of the direct propositions and hence hardly require

a discussion.

Difficult originals relating to unequal lines. — The

methods of the present paragraph may be helpful to

the teacher, while in general they are not adapted for
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classroom work in a high school. These methods de-

rive a particular value from the fact that similar ones

are frequently used for attacking problems.* In hard

examples the difficulty is usually due to the circum-

stance that the lines to be compared do not lie together,

i.e. do not form one triangle or two triangles. In such

cases it is necessary to move some parts so as to bring

certain lines or angles together. In geometry such

modes of moving figures are frequently used, and the

most important ones are :

I. Translation.— A figure is subjected to a transla-

tion if all its points describe equal

and parallel lines. Thus AB may
be translated into the position

A fBr
. Of course A'B' would

also be equal and parallel to AB.

A ABC is turned

B b'

2. Turning about an axis.— If

over about the axis xy, it will take

the position A'B'C. ABC is sym-
metric to A'B'C with respect to

the axis xy.

A special case of the preceding B^--

method is

the turn-

ing over a

figure so

A(B') B(A') that one f Y

its lines, e.g. AB, coincides with BA. If we apply AB
to BA so that A occupies the position formerly held by

* See Chapter XV.
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B, and B the position formerly held by A, then the

A ABC will assume the position A'B'C .

Similarly, we may apply an angle ABC to CBA.
The resulting triangle is A'B'C.

C

B

A

3. Rotation about a point.
— In the diagram A ABC

is rotated about A as center through an angle of 6o°.

The use of these methods is

explained by the following out-

lines of four propositions :

1. If in trapezoid ABCD,
DA > CB, then Z.B > /LA.

A to
Translate/?^ into the position CE (i.e. draw CEWDA), then

CE > CB, .-.ZB>Z CEB, .-*ZB>ZA.

2. In A ABC, BC> AC,
and CD bisects Z C.

To prove DB > AD.

Turn A CDB over about CD,
thus taking the position CDB' .

To prove that DB' > AD, we
have to compare A B' and B'AD, or (since B = B') AB and B'AD.

Obviously the latter, being an exterior angle of A ABC, is the

greater one. Hence the proof follows easily.
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B /

If in quadrilateral ABCD, AB
> CD, and BC>DA t prove that

Z.D> Z.B.

Since no two of the unequal sides lie

together, we turn AABC over so that

AC (not drawn in diagram) coincides

with CA, and the triangle takes the

position A'B'C. Drawing now B'D,
we obtain two triangles AB'D and DB'C,

each containing two unequal sides. Adding the unequal angles

obtained herefrom, we get ZD > Z B' or Z D > Z B.

3. If a point D be taken in equi-

lateral triangle such that Z. ABB >
ZADC, then DC > DB.

Rotate AADB about A until it takes

the position AD'C. We have now to

compare CD and CD', which suggests the

drawing of D'D and the comparison of

the angles CD'D and CDD'. As A ADD' is isosceles, the con-

clusion is easily obtained.

EXERCISES

Ex. 1. If AB II CD and DB> CA, then

Z.A>AB.
Ex. 2. If in triangle ABC the median CD

is drawn, and BOCAE, then Z.ACD
> Z BCD. (Rotate A Z?.4C about D through
180

,
or translate CA.)

Ex. 3. If in quadrilateral ABCD, AB
> DC, and AD = BC, then AOZ.A and

Ex. 4. If in quadrilateral ABCD, AB > CZ> and Z B = Z Z?,

then^OZ?^.
Ex. 5. If a point Zi within parallelogram ABCD be joined to the

four vertices, and EA > EC, ED > EB, then Z C£j? > Z £>£^.



MISCELLANEOUS TOPICS 167

Ex. 6. In the same diagram, if EA > EC and ED - EB, then

Z CEB > Z DEA.

Ex. 7. If point E within a square ABCD be joined to A, B, and

C, and AE > C£", then Z BEC> Z #E<4.

Ex. 8. If in the annexed diagram AB = BC, FE = ED, and

DC> EA, then Z 1 > Z 2. (Compare Ex. 4, p. 240.)

POLYGONS

Positive and negative quantities in geometry.
— In

recent years certain writers on mathematical pedagogy
have declared with great emphasis that it was of the

utmost importance that polygons and angles should be

lettered counter-clockwise. The reason for such a usage

is due to modern geometry. Modern geometry con-

siders the algebraic values of geometric quantities, i.e.

it makes use of negative lines, negative angles, and

negative areas, and by this method greatly simplifies

many statements. While elementary Euclidean geome-

try frequently has to modify its statements for different

figures, or in other words has to distinguish between

several "
cases," modern geometry covers all such cases

by one statement. To illustrate by a concrete example,
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let us join any point O to the vertices of a triangle ABC,
and let us discover the relation between A ABC and the

triangles OAB, OBC, and OCA. Elementary geometry
has to discriminate between seven different cases, three

of which are illustrated by the following diagrams.

In these diagrams we have respectively :

I. A ABC *= A OAB + A OBC + A OCA.

II. A ABC= A OAB - A OBC + A OCA.

III. A ABC= A OAB -A OBC-A OCA.

In modern geometry, however, a clockwise sequence

of the letters denoting a triangle represents a negative

area,* hence A OBC in diagrams II and III is a nega-

tive quantity, and similarly A OCA in diagram III.

Hence we have for all possible figures

A ABC= A OAB + A OBC + A OCA.

Similarly, by considering angles read counter-clock-

wise as positive, those read clockwise as negative, we

* The reason for selecting the counter-clockwise sequence as positive

is due to the fact that the determinant,

xi yx i

x2 y2 i

xz y3 i

which gives the area of a triangle whose vertices are xi, yi ; x%, y« ;
and

x3 , yz, is positive if the vertices i, 2, and 3 follow in counter-clockwise

order.
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may in the following diagrams state quite generally,

no matter what the positions of A, B, and C are :

Z AOB + Z BOC= Z AOC.

B vC

Using directed lines, we can assert quite generally

with reference to three points A, B, C lying in a straight

line: AB + BC=AC; A B C

or, AB + BC+CA = o.
'

' '

These statements do not A C b

depend upon the positions B A C

of A, B, and C* ' ' '

The great usefulness of such conventions to advanced

geometry cannot be denied, but this does not decide the

question, whether or not we should insist upon these

matters in a secondary school. Not one high school

student in a thousand will ever study modern geometry,
and the few who do will grasp these ideas in a few min-

utes. Hence the usefulness of these conventions does

not form a sufficient reason for introducing them in our

schools.

"But these matters are so exceedingly simple," we
are told, "that students will learn them without any
extra effort whatsoever." In some cases this is true,

but in others it would mean an additional, and quite

unnecessary, burden put upon the pupil. Take the case

* If we admit imaginary quantities, then AB -f- BC + CA =0,
even if C does not lie on AB.
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of a somewhat complex diagram, e.g. a triangle with its

altitudes and the lines joining the feet of the altitudes,

and force the student, who is reciting a difficult demon-

stration, to read every angle mentioned counter-clock-

wise, and there is no doubt that you add thereby a very
decided difficulty. This difficulty is utterly uncalled for,

as it has nothing whatever to do with the demonstration,

and it distracts the student's mind from the true issue.

Hence it seems absurd to insist upon a rigid applica-

tion of these modern conventions. True, in very simple

examples, as in lettering a triangle or a quadrilateral,

no harm would be done by counter-clockwise notation,

and it may even be recommended in such cases, but

solely for the sake of uniformity.

To sum up the whole situation : Nothing can be said

against the use of counter-clockwise notation in very

simple examples, but the importance of the entire matter

has been greatly overrated by some of our pedagogues.

Remarks on two theorems.— The sum of the angles «f

a polygon, when expressed in right angles, is sometimes

stated in an ambiguous way, that may leave the reader

in doubt, whether this sum is 2 n — 2 or 2 {n — 2) right

angles. The use of straight angles, or of the algebraic

symbols 2 (n — 2) will obviate this difficulty. In giving

the usual demonstration of this proposition, some stu-

dents are inclined to add triangles instead of angles of

these triangles. We may test the real understanding of

the students by joining a point within the polygon to all

the vertices, and finding out whether they will add the

triangles in this case, also.
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The truth of the proposition of the sum of the exterior

angles can be shown in a concrete way by placing a

pencil in the position BX and rotating

it by the amount of Z 1, moving it then

to next vertex, adding a rotation equal

to Z. 2, and so forth. It is obvious

that the pencil when returning to its

original position has rotated through

an angle of 360 ,
i.e. the sum of the exterior angles is

equal to 4 rt. A.

This method can also be applied to exterior angles of

star-shaped polygons, resulting in the first figure in

2 x 360 ,
in the second, in 3 x 360 . It is then an easy

matter to obtain the sum of the interior angles of such

star-shaped polygons.

Exercises referring to polygons.
— Oral exercises are

well adapted for familiarizing students with the simpler

applications of these propositions : Find the sum of

various polygons in right angles, straight angles, and

degrees ;
find the number of sides of polygons, the sums

of whose angles are given in right angles, straight angles,

or degrees ; find each angle of equiangular polygons, etc.
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For more difficult examples, it may be well to point

out that the exterior angle proposition frequently can

be employed to greater advantage than the sum of the

interior angles. To find, for instance, the number of

sides of a polygon each of whose interior angles is 170 ,

it is not advisable to give the algebraic solution based

upon the equation — -^—
,
but to consider thatv H

n 180

each exterior angle is io°, and that hence the number

of such angles, and the number of sides, is 36.



CHAPTER XI

METHODS OF ATTACKING THEOREMS

Typical methods of proving geometric facts.—The fun-

damental idea of the analysis of geometric theorems

was explained in Chapter III. There it was shown that

every analysis starts by examining the various means by
which the proposition may be proved. A knowledge
of the most generally used " means "

of proving certain

geometric facts is therefore of the utmost importance.

Every proposition, axiom, or definition may be used as

such a means, but far more important are the general

typical
"
methods," such as the methods for proving

the equality of lines, the parallelism of lines, etc.

A thorough acquaintance with these "methods" is

indispensable for successful work in attacking problems ;

and it should be one of the chief aims of geometric

instruction to familiarize the students with them.

To the six methods previously given two more may
be added :

*

Method VII. To prove that a line is twice as large

as another we usually double the smaller, and prove that

its double equals the greater, or sometimes we bisect the

greater, and prove that its half equals the smaller. The

same relation between angles is proved in a similar way.
* These eight methods refer to the first book of geometry. For

methods relating to the other books of geometry, see Schultze and

Sevenoak's Geometry.
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Method VIII. To prove that the sum of two lines

a and b equals a third line c, construct the sum of a and

b and prove that it equals c, or construct the difference

between c and a and prove that it equals b.

The question that should always open the attack of a

problem should be : What means have we of establish-

ing this conclusion? In the absence of general

methods, we have to look for propositions, or even

axioms and definitions.

Every proposition in the textbook and every original

should be so attacked, i.e. analyzed. Thus in teaching

the proposition, "If the opposite sides of a quadri-

lateral are equal, the figure is a parallelogram," we
should ask, What is the usual method of demonstrating

the parallelism of lines ? And after the original ques-

tion is in this manner reduced to the equality of two

angles, we should ask for the method of demonstrating

the equality of angles, etc.

Analysis.
— As explained in the preceding paragraph,

the student at this stage of the work should be

thoroughly familiar with the practical use of simple

analysis, even though the teacher may not have found

it necessary to refer explicitly to the term analysis or

to discuss its peculiarities in detail. Before Book I is

completed, however, this should be done. All that was

previously mentioned about this method should be sum-

marized, and its application to more difficult theorems

should be studied.

In making a complete analysis we should study as

far as possible every means that we have at our dis-
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posal. This will reduce the original theorem to a num-

ber of others, any one of which may lead to a solution.

The same method is to be applied to each of the new

questions, and it can easily be seen that in some cases

a great number of proofs may result. In general

some of these proofs are simpler than others, and the

skill of the student will appear in a wise selection

of the means.

At the start, and whenever the original question is re-

duced to another, the student should survey the diagram
and determine all known facts. Thus, he should find
out what angles or lines are equal, what numerical values

of angles are known, etc., and he should represent these

facts graphically in the diagram.

Not every theorem can be analyzed in an absolutely

stereotyped manner; the more difficult require a certain

amount of ingenuity. But a study of such analytic

methods will greatly enlarge the power of the weak as

well as of the strong student.

A few illustrations may be useful.*

I . Theorem. — The median CD to the hypotenuse
AB of a right triangle is one half the

D

hypotenuse.

Analysis.
—

According to one of the above

methods, either (a) double CD, or (3) bisect BA.

(a) Produce CD by its own length to E and

prove that CE - AB.

Survey the diagram: AD = DB, CD = DE,
which shows AEBC is a parallelogram ;

Z. C= 90 , c F A

* For further simple illustrations see Schultze and Sevenoak's

Geometry.
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\ E

ft J \ j

since AEBC is a rectangle. The equality of CE
and AB follows from equal triangles, or from the

proposition relating to the diagonals of a rectangle.

(b) Since D is the midpoint of AB, we have

to prove that CD — DA. The means for proving
the equality of lines is usually a pair of equal tri-

angles, and if there are no triangles, construct a

pair ;
hence draw DF

|| BC, and find equal parts.

2. Theorem.*— If ABC is an equilateral triangle in-

scribed in a circle and P is a point in arc BC, then

PA = PB + PC.

Analysis.
—We have two means of

showing this conclusion, viz., either

I. Draw the sum of PB and PC, or

II. Draw the difference of PA and PC.

I. We may draw the sum of PB
and PC by either

(a) prolonging BP, or

(6) prolonging PB.

(a) Produce BP to E, so that PE =
PC, and prove the equality of BE and

PA. Survey the diagram. The follow-

ing angles are known to be 6o°: A, ACB, ABC, APB, APC, CPE.
PC = PE and hence AE=A ECP =
6o°. Therefore CE = CP.

The equality of lines depends usually

upon a pair of equal triangles. The

triangles are CAP and CBE, and their

equality is easily established.

(3) Produce PB to D, so that

BD = CP, and prove PA = PD.

Here we cannot find equal triangles,

but a careful survey of the diagram
will lead to a solution, which, however,

is more difficult than I, (a) .'^D

This analysis requires a knowledge of Book II.
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Survey the diagram and mark all angles of6o° by one arc. As

AAPD = 6o°, A APD has to be equilateral if the theorem is true.

Hence, if we could prove AD = AP, the theorem would be

established.

The equality of AD and AP follows

from the equality of the triangles ACP
and ABD.

II. The difference between PA and

PC may be constructed by laying off PC
either

(a) on PA, or

(b) on AP.

(a) On PA lay off PF= PC and at-

tempt to prove : AF = PB
Survey the diagram :

£A = £ ABC = ZBCA = Z APC = Z. BPA = 6o°.

Since PC = PF, Z PCF = Z PFC = 6o°, hence CF = CP.

The means for proving AF = PB
are the triangles AFC and BPC, whose

equality is easily established.

(b) On AP lay off AH = CP and

prove HP = PB. Since we have no

equal triangles, containing HP and PB
as homologous parts, we try to show

that PHB is equilateral, or that HB =
PB, a fact that follows from the equal

triangles ABH and CBP.

The indirect method.—A proposition which denies

another one is called its contradictory. Thus, if we

consider the proposition,

If A is B, then a is b
y

its contradictory would be,

If A is B, then a is not b.

Instead of proving that a theorem is true, we may show

that its contradictory is absurd. Such a method of
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demonstration is called " reductio ad absurdum "
or the

indirect method. More concretely we may explain this

method as follows :

If, in general, A must be either B or C, or D, and we

wish to prove that under the particular conditions of

the hypothesis A must be B, we may show this either

directly, or by demonstrating that the conclusions A is

C and A is D lead to contradictions. These may be con-

tradictions of the hypothesis, or of a previously proven

theorem, or of an axiom.

In regard to the application of the indirect method

no general rules can be given. It may be tried by the

students whenever other methods fail. It is frequently

applied for the proofs of converses, and can always be

applied in case of the law of converses that was dis-

cussed in Chapter X.

Attacking a theorem as a problem.— Most theorems

may be attacked as problems.* Thus, instead of prov-

ing the proposition of the square of a side opposite

an acute angle, we may require to find the side of

a triangle opposite an acute angle whose other two

sides are respectively equal to b and c, if the proper

projection is /. In the study of Book I, this may
be applied to theorems that establish relations between

angles.

A concrete illustration may explain this method :

If CE bisects Z C, and CD ± AB, then

ZBCE = i(A-B).
*
Consequently some of the methods for attacking problems (Chapter

XV) may be used.
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In a beginner's class, let

A = m°
f
B = n°.

Hence,
Z.ACB = (180

- m -
n)°.

But

ZACD = (go-m)°.

= i(A-B).

An example which leads to simultaneous equations

follows from the theorem : If O is the point of intersec-

tion of the perpendicular bisectors of the sides of A ABC,
then Z. OBC is the complement of angle A.

Let OBC = x, OBA =y, and

Z OCA = z, then we have

2X+2y + 2Z= 180 .

x+y = B.

y + z = A.

x+ z=C.
Solving these equations, we

C obtain x = 90
— A, or x is the

complement of angle A.



CHAPTER XII

THE CIRCLE*

REGULAR PROPOSITIONS

Circle or circumference.— Most elementary textbooks,

when giving the definitions relating to circle, insist upon
a sharp distinction between the terms " circumference

"

and "circle," denoting by the first the line, by the sec-

ond the area. While such a distinction is very desirable

from the logical point of view, it is not adhered to out-

side of elementary geometry. In daily life as well as

in advanced mathematics, the line is generally denoted

by the term "
circle," and even the usual elementary text-

book soon drops the distinction, and speaks of a circle

that passes through three points, or of the intersection

of two circles, etc.

While no great harm is done by this differentiation

if it is carried out consistently, it is on the other hand

distinctly against usage. Since linguistic matters are

decided by usage and not by logic, it would possibly be

best to denote the line by circle, and to reserve the

term "circumference" for the length of this line.

If, however, the elementary distinction is accepted,

then it would be logical to define a circumference

* Further discussion of topics relating to the circle may be found in

Chapters XIII and XVI.

1 80
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first, and a circle as an area bounded by a circum-

ference.

First propositions.
— The first propositions on the cir-

cle, viz., all circles are equal, the diameter bisects the

circumference, etc., offer, on account of their simplicity,

peculiar difficulties similar to those of the preliminary

propositions which were discussed in Chapter V. The

remarks that were made there may be repeated here,

but it may suffice to mention two points : Do not dwell

too long upon these theorems, and reduce their number

to the most essential ones.

A proposition, for instance, that is confusing on ac-

count of the obviousness of its conclusion and the impos-

sibility of drawing a .correct diagram is the following :

"A straight line cannot intersect a circumference in

more than two points." Many books make this the

first proposition, and give a complicated indirect proof,

whereas it is far more advantageous to defer it, and to

make it a corollary of the theorem, "A circle can be

drawn through any three points not in a straight line."

From this proposition it follows easily that a circle can-

not be drawn through three points in a straight line,

and hence that a straight line cannot meet a circle in

more than two points.

Several of the fundamental propositions relating to

the circle have to be based upon superposition, and the

necessity of using this method becomes clear, if we

remember that for each new type of figure superposi-

tion is the only means for proving equality, as was

shown in Chapter VIII. The student will have no



182
f

TEACHING OF MATHEMATICS

difficulty in finding such proofs if he bears in mind that

the parts given as equal must be superposed. Thus to

prove that equal central angles intercept equal arcs,

we have to superpose the central angles, etc.

Analysis of some theorems.— If the student has mas-

tered the fundamental ideas of analysis as applied in

Book I, and if the teacher emphasizes the new typical

methods of demonstrating the equality of arcs, chords,

etc.,* nearly all demonstrations relating to the circle will

be discovered without difficulty. A few examples, how-

ever, may be given here. In most cases the students

should be able to give not only the answers, but also

to propose the questions, and the sequence of the

questions.

i. In equal circles the greater chords subtend the

greater (minor) arc.

Query.
— What is the only means that we know to prove the in-

equality of arcs ?

Answer.— Unequal central angles.

Query.
— What therefore must we prove ?

Answer.— ZO>ZO'.
Query.

— What methods do we know for demonstrating the in-

equality of angles ?

* See next section.

I
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Answer.—The exterior angle proposition, the proposition relating

to one triangle having two sides unequal, and the proposition relat-

ing to two triangles.

Query.
— Which method alone can we use here, and why ?

Answer.— The last method, because the angles lie in different tri-

angles.

Query.
— Hence what must we show about triangles OAB and

O'A'B' ?

It is easily seen that the triangles satisfy the conditions.

2. To prove that an inscribed angle is measured by one

half the intercepted arc, it is better not to propose the

general proposition at first, but merely the case in which

one side of the angle is a diameter. Usually students

find this without help ;
if not, we may ask as follows :

Query.
— Which angle is measured by

arc AB ?

Answer.— Z. AOB.

Query. — What relation between angles

C and AOB must we therefore prove ?

Answer.— AC=\Z. AOB.
The proof is then easily established.

3. If students find it difficult to discover the proposi-

tions relating to the measurement of angles by certain

arcs, propose at first numerical

questions; e.g. If arc AD = 40

and arc CB = 50 ,
find Z AED.

After a *few such examples,

students as a rule will discover

the general propositions.

4. In the annexed diagram, which relates to a tangent,

students find it sometimes peculiar that we prove that
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/

O

D lies without the circle. "We can see that D is

g without, why should it be proved ?
"

Of course, quite in general,
"
see-

ing
"

is not proving, but it can be

easily shown in this example that

"seeing" will fail to decide the

question under certain circum-

stances. Let the radius be very

great, say, several miles, and AD
very small, say, one inch. Then

nobody could decide by seeing

whether or not D is without, while

the demonstration shows it beyond
a doubt*

Generalizations of certain theorems. — The theorems

relating to the measurement of angles by arcs can be

generalized as follows. Let A
be such an angle, and let it be

generated by a counter-clockwise

rotation of ABt from the initial

position AB to the terminal posi-

tion AD; then the point of in-

tersection of moving line and

circle would sweep over arc BD
counter-clockwise, and over arc

EC clockwise. If we consider

all arcs as positive if the mov-

ing point travels over them counter-clockwise, and as

* The theorem, The central angle is measured by the intercepted

arc, will be analyzed in the chapter on limits (XIII).



THE CIRCLE 185

negative if the moving point travels over them clock-

wise,* we may summarize all theorems relating to angles

as follows: An angle is measured by one half the

algebraic sum of the intercepted arcs.

Thus the notion of positive and negative geometric

quantities, that is so widely used in modern geometry,

enables us to merge into one proposition a number of

different theorems which are illustrated in the annexed

diagrams.

The proposition indicated by the fifth diagram is

generally not given in textbooks
;
the last diagram indi-

cates that if the angle is zero, i.e. if the lines are

parallel, the algebraic sum of the arcs is zero.

If we widen our defini-

tion by admitting imaginary

arcs, the proposition is true

even if one or both sides of

the angle do not meet the circumference at all. Thus

if the vertex of an angle moves over the entire plane

and its sides rotate in any manner, the proposition

* For a somewhat simpler, but less logical, distinction between posi-

tive and negative arcs, see Schultze and Sevenoak's Geometry.
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always remains true. It does not change abruptly

at any particular point, but is continuous all over the

plane. The principle implied here is often referred

to as the principle of continuity.

EXERCISES

The general methods of Book II should be practiced

until they become quite familiar to the students. Some
of the most important are :

1. The equality of arcs is usually demonstrated by
means of

{a) equal central angles,

(b) equal chords.

2. The equality of chords is usually demonstrated by
means of

(a) equal arcs,

(5) equal distances from the center.

3. The inequality of arcs and chords is proved in

an analogous way.
The teacher should take up each of such methods

separately and illustrate it by many theorems, and

sometimes by problems. This matter, however, is too

simple to require further detail.

The theorems on the measurement of angles by arcs

should be illustrated by many numerical exercises.

Simple exercises of this sort are easily constructed by

considering certain figures, as, for instance, an inscribed

quadrilateral, a circumscribed triangle, an inscribed

pentagon, and assigning numerical values to certain
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angles and arcs, and requiring the numerical values

of other angles or arcs.

For certain difficult exercises of Book II it is some-

times necessary to prove that four points are concyclic,

i.e. that a circumference can be drawn through them.

Two theorems may be used for this purpose. The

vertices of quadrilateral ABCD are concyclic if

(a) ZADB = ZACB,ov
(b) Z A is the supplement of Z C.

Each theorem may be proved

by the indirect method.

Some originals that may be

easily proved by means of con-

cyclic points, which are other-

wise exceedingly difficult, are the

following :

1. If in quadrilatral ABCD (see above diagram)
Z ADB = Z ACB, then Z DCA = Z DBA.

2. In the same diagram, if

ZB + ZD= 180
, then Z BAC = Z BDC.

3. Each angle formed by joining the
r

'feet of the three altitudes of a triangle

is bisected by the corresponding altitude.

4. If from any point in the circum-

ference of a circle perpendiculars be

dropped upon the sides of an inscribed triangle (pro-

duced if necessary), the feet of the perpendiculars are in

a straight line.



CHAPTER XIII

LIMITS

DOGMATIC TREATMENT OF LIMITS

No part of elementary geometry has aroused such

an extensive and heated controversy as the theory of

limits. It is the favorite topic of those who lay all

the poor, results of geometric teaching to lack of rigor,

and wlfo* uAtil recently controlled the situation to such

an extent that hardly anybody dared to express an

opposite opinion.

The theorems that are involved in this controversy

belong to two groups :

i. Those containing the so-called incommensurable

case.

2. The determination of the circumference and the

area of a circle. (In solid geometry the surface and

volume of cone, cylinder, and sphere.)

The first group involves the idea of incommensurable

number, which was put on a scientific basis only in the

nineteenth century. The other involves the measure-

ment of a curved line, a problem for which our usual

method of measuring {i.e. laying off the unit of length)

utterly fails, and which leads to other, almost meta-

physical, difficulties.

There exists no rigorous treatment of these matters

that is suitable for secondary schools, and the belief

188
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that the treatment given in
"
rigorous

"
school text-

books is really rigorous is a delusion. The influence

of the dogmatists, however, and their argument that

only ignorance prevented teachers from using rigorous

methods, were powerful enough to make teachers and

authors vie with each other in making the treatment

of limits more and more complex.

Often highly artificial definitions were given, which

conveyed no meaning to the students, to be followed by

eight or ten abstract theorems relating to the product,

the quotient, etc., of variables, and finally a complex,

non-conclusive proof for the equality of the limits of

equal variables.

In this rigorous fashion the subject was treated

throughout the entire course. True enough, certain

students could repeat the words, but not one in a hun-

dred had a clear notion of what he was really doing.

The absolute inefficiency of this way of teaching this

subject is attested by nearly all college teachers who

have occasion to make use of limits in advanced

courses.

Fortunately the pendulum is commencing to swing
the other way, and the conviction is gaining ground
more and more that it is a mistake to treat this subject

in the way in which it has been treated.

RATIONAL TREATMENT OF LIMITS

The incommensurable case.— There can be no doubt

that under the conditions that prevail to-day in our

schools, it would be better to omit all proofs relating to
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limits, than to attempt to give the customary "rigorous"

demonstrations.

It is possible, however, to give to the student a fair

understanding of the nature of the problem and its

difficulties by treating the subject very concretely. To

illustrate by a definite example, let us consider the first

proposition, which under the customary arrangement re-

quires limits, viz. : "A central angle is measured by the

intercepted arc.
"

Usually this proposition is given as a

corollary of the theorem establishing the proportionality

of central angles and intercepted arcs. But as the

main theorem is never applied, we may omit it, and

at once attack the corollary in the following manner :

Since equal central angles intercept equal arcs, each

central angle of i° intercepts ^^ of the circumference.

Hence, we make a circumference equal to 360 and we

obtain :

An angle of i° intercepts an arc of i°.

.*. an angle of (J^)° intercepts an arc of (2V) .

.*. an angle of (f£)° intercepts an arc of (f $)°.

Or more generally,

An angle of f
—

J intercepts an arc of f —
).

an angle of
(
—

) intercepts an arc of
(
—

).
\m) \m)

Therefore all central angles that can be expressed as

common fractions— proper or improper— are measured

by their intercepted arcs.

The question whether this demonstration was quite

general, i.e. if any central was measured by the inter-
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cepted arc, would very likely be answered by the

student in the affirmative. This would lead naturally

to the subject of incommensurable number. The

student easily sees that certain numbers, e.g. V2, cannot

be fractions, for if V2 were equal to — (where — is in
n n

its lowest terms), then 2 =
,
which is impossible

n ' n

since m and n have no common factor.

It could be pointed out then that there are other

numbers that cannot equal common fractions, as V7,

^5, 3.I4I59"- or 7r, and the term "incommensurable

number" could be introduced.

If the question whether our geometric theorem of

the central angle was proved for all cases, were now re-

peated, we would quite likely receive a negative reply.

We may then either tell the students that the theorem

can be proved for incommensurable numbers also, but

that this proof is too difficult for school work
; or, we

may attempt to make the incommensurable case more

plausible by considering approximations of one of these

numbers, for instance, the following approximations of

V2 = 1.4, 1.41, 1.414, 1.4142, etc. Obviously the theo-

rem is true for all approximations, hence the two num-

bers— the numerical measure of the angle, and the

numerical measure of the arc— cannot differ respec-

tively by .1, .01, .001, .0001, etc. Or the error cannot

be as large as any number, however small, which we

may assign.

We have thus proved that there can be no finite dif-



192 TEACHING OF MATHEMATICS

ference between the numerical measurements of angle
and arc, and this is really all that the so-called rigorous

proofs with their complete machinery accomplish.

16 we have a craving for rigor, and consider the above

method less exact than the customary way, we could

make it fully as rigorous as any one of the usual books,

by introducing the following definition of equality of

incommensurable numbers : Two incommensurable num-

bers are equal if all their approximations are equal.

This would practically do away with the incommensu-

rable cases.

The essential character of the above method is the

fact that it approaches the idea of incommensurable

from the purely arithmetic side, and that it dispenses

with limit, commensurable and incommensurable lines,

etc. This is not as truly geometric as the customary

mode, but since we placed the entire theory of ratio and

proportion upon an arithmetical basis,* there can be no

sound reason against doing the same for these special

and difficult cases of ratio. The purely geometric idea of

incommensurable is so difficult to the student because

he never before treated these matters geometrically.

He has not found geometrically the common measure of

two lines, he has no geometric evidence that there are

lines that have no common measure, etc.

To illustrate the use of this arithmetical plan further

let us consider the theorem, A line parallel to one side

of a triangle divides the other two proportionally.

Suppose in the annexed diagram that AD = f AB, i.e.

* See Chapter XIV, Ratio.
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if AB is divided into five equal parts, then AD equals

two of these parts. If through the points of division

the parallels to BC are drawn, A

then obviously AE is f of AC. /
S

\.

^ -r AD 2 DA -\E°rlf
AB=S' ZlZZ\

then #-• r -XxAC 5 i ^
Therefore the theorem is proved if AD can be ex-

pressed in the form —AB
}
when — is a common fraction.

m m
And again we point out that only rational numbers

can appear in the form —
,
and treat the incommensu-

m
rable case as before.

Of course the commensurable case thus treated is

slightly more complex than in the customary way, but it

does away with the bugbear
" common measure." For

the incommensurable case, however, this method is un-

doubtedly preferable, since it does away with commen-

surable and incommensurable lines, variables, limits, etc.*

Length of a curve.— While the theorems considered

in the preceding section can very well be taught with-

* If external conditions compel the teacher to use the customary

mode of proving the incommensurable case, he may first teach one or two

propositions in the arithmetical manner and then lead over to the
"
geo-

metric-rigorous
"
way. He may introduce commensurable and incom-

mensurable lines as lines whose ratios are commensurable or incommen-

surable numbers, derive therefrom the fact that for two commensurable

lines there always exists a third line, which is contained in each without

remainder, etc.
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out any reference to "limit" and similar terms, the

length of curves cannot dispense with the notion of

limit. Here, however, lies the solution of the peda-

gogic difficulty in a secondary school in the abandoning
of the demonstration.

Thus, it would be better that the proposition, The
circumference is the limit of an inscribed polygon, etc.,

were not proved at all, for to the mind not used to mathe-

matical subtleties this appears to be axiomatic. Indeed,

it requires a good deal of training to recognize that we
have to deal here with a difficult proposition which needs

a proof. Not one student in a hundred will acquire a

clearer understanding of this theorem by studying the

proof, or rather the series of proofs that is required

for this proposition. The fact that a circle is the limit

of a polygon, etc., appears to be so plain that it forms

one of the best illustrations of the notion of limit, at

the time when this definition is first studied.

It is an old experience that many problems appear as

problems only after considerable advance in their study

has been made. To the unsophisticated savage objects

are "
heavy "; this is a fundamental fact not requiring

explanation, and only after considerable progress has

been made do we recognize that we have to deal here

with the problem of gravitation that requires solution.

To the layman there is no difficulty in explaining why
some particular house appears to be red. The house

is red, he will tell us, and only considerable reflection

will show him that he has to deal with the mystery of

sensation. In all such cases, we must first teach the
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student that there is a problem, and only after this has

been accomplished may we try to give a solution of the

problem. It is precisely the same thing with the length

of curved lines. The young student in imagining the

length of a curve thinks of the length of a curved string

that can be straightened. There is nothing difficult to

him about this problem, and only considerable study will

show to him that there is a problem, and a difficult one.

In solid geometry, it is the usual practice to assume

that surfaces are limits— although here too some dog-

matists have tried to display their learning by objecting.

Why not use it for plane geometry, also? It is, how«

ever, advisable in all such cases to explain to the stu-

dents that this plan involves a distinct assumption.

General suggestions.
— If teachers are compelled to

teach limits and all general matters connected with this

notion, the following suggestions may be helpful :

1. Give the definition of limit in an algebraic form,

making the variable equal to x, the constant equal to

some other letter.

2. Be satisfied with an approximate definition. The

student is not familiar with the idea of a function

and two interdependent variables. It is difficult enough
for him to imagine one variable. Do not reject a

definition because it does not cover all the cases which

the student will meet in his college work. College

teachers may be inconvenienced by this, but it is far

more important for them to get students who think well,

than those who know exact definitions. It is a very

common experience in mathematics, that certain defini-
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tions must be given at first in a preliminary form. Give

the definition which is best for your own purpose, i.e.

the teaching of elementary geometry, and let college

teachers revise these later on. If, for instance, a

teacher should feel that the clause, "A variable can-

not reach its limit," is helpful to his work, he should

accept it. All limits considered in elementary geometry
have this peculiarity, and it may be advantageous to

point it out in the beginning. Certainly the fact that

there are other limits, outside of school geometry, that

have not this peculiarity, should have no weight in the

decision.

3. Illustrate the nature of a limit by a large number

of concrete cases. Recurring decimals, as .999...;

infinite series, as I + £ -j- 1
•••

; algebraic functions, as

(
—

jnioo ; etc., offer good examples.

Also motion examples, the fact that circumference

and area of a circle are respectively limits of perimeter

and area of certain polygons may be used.

4. Do not attempt to teach in the beginning the

general theorems relating to products of variables, quo-

tients of constants and variables., quotients of variables,

etc.

5. Do not teach the geometric proof that is usually

given for the theorem,
"
If two variables that have limits

are always equal, their limits are equal." The proof is

not conclusive and is rarely understood by students.

6. Do not dwell too long upon these topics. The

longer you do, the more confused will students become.



CHAPTER XIV

THE THIRD BOOK OF GEOMETRY

THEOREMS RELATING TO PROPORTIONS

Ratio and proportion.
— The modern school book

defines a ratio as a fraction. The finding of a ratio and

the determination of a quotient are identical problems.

This, however, in many examples involves the notion of

irrational numbers, and we can understand that, at a

time when only rational numbers were recognized and

irrational numbers were considered as impossible, the

definition of a ratio as a quotient was considered in-

complete. Thus Euclid and the other ancient geome-
ters did not use the arithmetical definition of a ratio.

Even to-day some authors reject it, because it is non-

geometric, it
"
constitutes a break in the logic of the

geometry," it leads to multiplying lines, etc.

But even admitting that the arithmetical definition is

less scientific, its pedagogic advantages are so great

that there can be no question as to whether or not it

should be used in our secondary schools. One has only
to read Euclid's definition * to be convinced that it is

utterly unfit for young students.

* "The first of four magnitudes is said to have the same ratio to the

second, which the third has to the fourth, when any equimultiples what-

soever of the first and third being taken, and any equimultiples whatso-

ever of the second and fourth
;

if the multiple of the first be less than that

197
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The fact that the arithmetical view of ratio leads to

a product of two lines is no serious objection, since

all difficulties may be removed by denning the product

of two lines as the product of their numerical measures.

It would lead us too far to discuss the teaching of ratio

and proportion in detail; here only one remark may
find place. The students should understand that a

ratio involves a comparison of two quantities, e.g. the

statement a:b= J : 1 means a is 7 times b. As students

are inclined to use ratio and proportion in an utterly

mechanical fashion, it happens sometimes that they for-

get what a proportion really is. Frequent numerical

illustrations will diminish this difficulty. Thus after

we prove that AB:BC=AD:DE
f
we should ask,

If AB = 3 (BC), what is the relation between AD and

DE ? This should of course not be restricted to a case

as simple as the one presented here, but every proposition

relating to proportion should be illustrated numerically.

Remarks on certain theorems.— 1. The proposition

relating to the segments made by a line parallel to one

side of a triangle is of fundamental importance. Its

proof, like any proof that establishes proportionality of

a new type of figure, necessarily leads to the incom-

mensurable case,* although this may be avoided if pro-

portional areas are studied before.

of the second, the multiple of the third is also less than that of the fourth :

or, if the multiple of the first be equal to that of the second, the multiple

of the third is also equal to that of the fourth
; or, if the multiple of the

first be greater than that of the second, the multiple of the third is also

greater than that of the fourth."

* For discussion of this proof see Chapter XIII.
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It is worth noticing that this theorem is true whether

the parallel meets the sides or their prolongations. In

the former case we have in-

ternal, in the latter external,

division.

2. In demonstrating the

converse of the preceding

proposition, usually a line par-

allel to CE is drawn through

B. The proof, however, be-

comes simpler if a parallel to BD is drawn through C

(see annexed diagram).

3. In analyzing the proposition of the bisector of an

angle of a triangle, i.e. m:n = &:c, it appears difficult

to make students discover the

construction of the line parallel

to the bisector. The matter,

however, becomes simple, if we

make it a problem by requiring

the construction of the fourth

proportional to m
y n, and b. This produces the construc-

tion of the necessary lines, and it remains only to demon-

strate the equality of x and c, which is not at all difficult.

4. The corresponding proposition of the bisector of

the exterior angle is of no great importance unless har-

monic division is studied. If it is taught, however,

students can be led to the discovery of the proof by the

absolute analogy of this proposition with the preceding

one. With proper lettering one proof may be written

that fits both theorems.

n



200 TEACHING OF MATHEMATICS

5. For proving some theorems on similarity of tri-

angles, a new method for establishing the equality of

lines is frequently applied, viz., the two lines are made

corresponding terms of two proportions whose other

terms are respectively equal. Thus if

a : b = x : c,

and a\b = y;c>

then x = y.

If this method is emphasized and practiced, some

theorems lose a great deal of their difficulty, e.g. the

proposition, Two triangles are similar if their homolo-

gous sides are proportional.

6. In regard to the propositions relating to segments
which we obtain if we draw two intersecting chords, or

two bisecting secants, or a secant and a tangent, it may
be well to point out that the second and third propositions

are only special cases of the first. The secants may be

considered as chords that are divided externally, and

the tangent represents that limiting case of a secant, for

which secant and external segment become identical.

EXERCISES RELATING TO PROPORTIONAL LINES

Simple exercises. — Similar triangles are of the same

fundamental importance in proving the proportionality

of lines, as equal triangles are in proving the equality of

lines. Hence, we may say, The proportionality of lines

is in most cases proved by means of similar triangles.

Since the greater part of Book III refers to propor-

tional lines, and since most numerical calculations of
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the lengths of lines depend upon proportional lines, the

matter is of great importance. The details of the mode

of procedure may be described as follows :

1. Let the student mark the four lines forming the

proportion. A brace is a very practical symbol for

pointing out each line, and two such braces should be

drawn if a line occurs twice in the proportion. Thus

to prove PA:PB = PB: PC
we should use the annexed

marks.

2. Select two triangles so

that each contains two of the

given lines. In a few cases,

this can be accomplished in

several ways, and it may
happen that the student selects the wrong pair of tri-

angles. In such a case the impossibility of demonstrat-

ing the similarity of the triangles should cause the

student to select another pair.* Such cases, however,

are very rare. In the above diagram, the triangles are

obviously PAB and PBC.

3. Prove the similarity of the two triangles. In

most cases this is accomplished by means of equal angles.

The equal angles should be marked as indicated in the

above diagram.

4. Write the proportion, choosing as first term the

* The maximum number of triangle pairs which can be formed from

the lines a, b, c, and d is three, viz. {a, b) and (c, d) ; {a, c) and (b, d) \

(a, d) and (b, c). Of these three pairs two can be used for the proof,

and the third pair cannot be used.
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first term of the conclusion. Even then the sequence
of terms in the resulting proposition may not be identi-

cal with that of the conclusion, but alternations will

easily remedy this defect. To obtain the homologous

sides, we should pay attention to the marks of the angles.

Thus, in the above diagram PA is included by the two

marked angles of the large triangle, hence PB, which

lies analogously in the small triangle, is the homologous
side. PB in the large triangle, and PC in the small one,

are homologous because they are opposite the angles

marked by two marks.

5. Ifwe have to prove that the product of two lines

equals the product of two other lines, the mode of pro-

cedure is precisely as above, only we have to equate the

product of the means and the product of the extremes

of the resulting proportion.

Construction of originals.
— A great many exercises

of this type should be solved until every student is fully

acquainted with this method. If textbooks do not give

a sufficient number of these originals, it is an easy

matter to construct them.

First, a great many regular book proportions that

follow later are theorems of this type, and it is expe-

dient to solve nearly all of them to illustrate our method.

To avoid the student's referring to the text, it is pos-

sibly best to use them as illustrations for oral work

when the method is first explained. Such propositions

are those of intersecting chords, of intersecting secants,

of a tangent and a chord, of the right triangle, of the

product of altitude and diameter of circumcircle.
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Secondly, the study of a type figure and the de-

termination of all possible proportions in such figure

produces a great many exercises.

For instance, if, in the annexed

diagram, the altitudes AD and

CE meet in F, we have four simi-

lar triangles in the diagram, viz.,

AFE, ABD, CBE, and CFD.

Taking all possible combinations,
A

we obtain 6 pairs of similar triangles ( 1 ~ 2, 1 ~ 3, 1 ~ 4,

2 ~ 3, 2 ~ 4, and 3
~

4), and

since each pair of triangles

produces 3 proportions, we

have 18 proportions in this

diagram, and of course 18

products of lines equal to 18

other products of lines.

Similarly, if in the annexed

diagram Z ACD = Z ECB,
we obtain 3 similar triangles (A CD, EBDy and ECB),
and consequently 9 proportions. In the annexed dia-

gram, if Z EBC = Z
ABD

f then three tri-

angles are similar (EBC,

EDA, and DBA), and

there are consequently
nine proportions.

The altitude drawn

upon the hypotenuse of a right triangle produces a fig-

ure in which nine proportions may be proved, etc.
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Difficult exercises. — In the more difficult exercises

relating to the proportionality of four lines, it is impossi-

ble to find two similar triangles so that each contains

two of the given lines. In such cases we have to find a

third ratio which may be proved to be equal to each of

the given ratios. In other

words, these theorems are re-

solved into two of the preced-

ing kind. Thus, if AB \\ A'B',

and it has to be proved that

AB BC , ., ,

aw =
~bc?

our resular method

obviously fails, since there exist

But it is

OB

A B CD
no triangles which contain two of these lines,

easy to prove that each of the given ratios equal OB1

Or if ABCD is a parallelogram and we have to prove

BE
ED

D C

FF FA= ——
, we have again the same difficultyEA EG

But

can easily be proved, by means of the regular method,

to be equal to each of the given two ratios.

Numerical examples.— Each regular proposition relat-

ing to proportionality of lines should be illustrated by

numerical examples. By such work we familiarize the

student with the facts stated in each proposition, we

make sure that he understands the meaning of such
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propositions, and we obtain an abundance of simple and

concrete exercise material, that frequently can be used

for applied problems (see Chapter XVIII).

Each of the originals on proportional lines may be

accompanied by a numerical question to show the useful-

ness of proportions. Thus, after you prove that the diago-

nals of a trapezoid divide each other proportionally, assign

numerical values to three of the segments and require the

fourth, or assign values to the second and third terms, and

let the fourth be twice the first, and require the first.

Exercises of this type are not difficult, if the propor-

tion upon which they are based is given ; they become

somewhat harder if they have to

be solved without such proportion.

E.g. two sides of a triangle are

ten and twelve, the altitude upon
ten equals eight, find the altitude

upon twelve. Here the student

has to discover the proportion.

Still more

difficult are

the exercises, if one or both of

the necessary triangles have to

be constructed. E.g. if DC=3,
EC= 5, EA = 6,EDL DB, and

AB is a diameter, find AB. Or

still more difficult: If AC is

a tangent, BC ± AE, AC =4,
AB —

6, find the diameter of

the circle.

m
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METRICAL RELATIONS BETWEEN LINES

Propositions establishing metrical relations between

lines.— Before we studied proportions we could establish

only the equality or inequality of lines. The introduc-

tion of proportions makes possible the calculation of the

numerical values of lines. As this leads to a number

of applied examples, such as the finding of heights and

distances, the subject is not without interest.

Theorems of this type are all those that establish an

equation involving the lengths of lines, in particular the

Pythagorean theorem, the median proposition, the angle-

bisector theorem, etc., etc. To the ancients all such prop-

ositions meant relations between the areas of rectangles

and squares, while to us they represent algebraic equa-

tions between the numerical measures of lines. Thus /
2

= ab —pq meant to Euclid that a square is equal to the

difference of two rectangles, while modern writers are

not afraid to apply algebra to geometry, and to consider

the above statement as a simple algebraic equation involv-

ing five numbers, /, a, b, q, and^-.

The Pythagorean theorem. — The best-known example
of this type is the theorem which connects the lengths of

the three sides of a right triangle (a
2 + b2 — (?) that was

proved by Pythagoras about 550 b.c. This proposi-

tion is probably the most widely applied theorem of the

entire geometry ;
in fact, it seems to be the only theorem

that is frequently applied. Its great importance has

always been recognized, and it is not surprising that

many people have attempted to discover new proofs of
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this proposition, so that at present more than 100 are

known.

For the beginner the algebraic treatment is possibly

the best. Prove that each arm is a mean proportional,

and derive therefrom the value of the square of each

arm, etc.

Euclid's proof, which is of course purely geometrical,

depends upon the equality of two triangles and is—
chiefly on account of its historic interest— still given

in many textbooks. Very interesting are the proofs

which cut the squares on the arms into parts -which

properly united produce the square on the hypotenuse.

A proof which deserves mentioning on account of its

brevity, although it does not fit into the arrangement
of most textbooks, is the following one :

If AABC^Kc2
,

then AABC =0= Kb2
,

and A BCD =0= Ka\
Hence obviously,

Ka2 + Kb2 = Kc2
,

or + b2 = c2.

Analysis of theorems of this type.
— The inductive

sequence makes it a very simple matter to discover

theorems of this type and their proofs. To discover,

for instance, the theorem of the square of a side of a

triangle opposite an acute angle, let us form a series of

numerical and algebraic exercises, starting with appli-

cations of the Pythagorean theorem and ending with

the required theorem. This may be done as follows :
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i. Give numerical or literal values to two sides of a right triangle

and require the value of the third side.

2. Give numerical or literal values to the base and an arm of an

isosceles triangle, and require the altitude.

3. Assume altitude and one side of an isosceles triangle and

require the remaining side.

4. Find the altitude of an equilateral triangle whose side is given.

5. Find the side of an equilateral triangle whose altitude is given.

6. If in the annexed diagram h J_ c,

b — 10, h = 8, and a — 17, find c.

7. In the same diagram, if b = 10, h =

8, c = 14, find a.

8. In the same diagram, express a in

terms of b, h, and c.

9. In the same diagram, if a — 20, b =

37, ?= 16, find/.

10. In the same diagram, express p in terms of a, b, and q.

11. In the same diagram, if b = 15, p =
9, and c — 25, find a.

12. In the same diagram, express a in terms of b, c, and/.

Thus the student arrives at the required proposition,

and has in addition acquired some facility in attacking

such propositions in general,
— a matter far more im-

portant than the knowledge of a single demonstration.

Work of this kind is greatly facilitated by the use of

simple notation. We should, as far as possible, desig-

nate lines by a single letter, denoting the three sides of

a triangle by a
y
b

y c\ the altitudes by ka ,
/z6 ,

hc ;
the

medians by ma) mhy mc . For the notation of triangles,

if quite a number occur in a proof, do not use two let-

ters, but Roman numbers, as I, II, III, etc.

Use of directed lines.— The proposition of the square

of the side of a triangle furnishes another example,
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showing how, by the use of directed lines, we may, by
one statement, cover several cases which otherwise

would appear as a number of different propositions.

If we consider the projection/ of the side b upon the

side c as positive if it lies in the same direction as c,

otherwise as negative, then the square of any side a of

a triangle may be expressed by the formula :

a2 = P + c2 - 2 cp.

If the angle opposite a is 90 ,
then the third term

of the formula vanishes; if the angle opposite a is

obtuse, then p becomes negative, and the third term

positive.

The advantage of such a general formula is especially

obvious in all examples in which the character of

the angle is not known. Thus, the finding of / when

the three sides are given would without the general

formula require a special investigation into the char-

acter of a certain angle, before we could decide which

formula may be applied. The general formula, how-

ever, may always be applied, and the resulting value

of p will inform us whether the angle opposite a is

acute, right, or obtuse.

Use of formulae. — Students should be thoroughly

familiarized with the fact that a formula may be used,

not only to find the quantity which it expresses ex-

plicitly, but also for the purpose of finding any one

of the quantities involved when the others are known.

Thus the formula :

a*=p + c*-2cp (1)

p
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should be used, not only for the finding of a, but also

for finding b and c, and in particular for the finding

of / when a, b, and c are given. Some teachers derive

a corollary expressed by the formula

then let students memorize (2), and solve all examples

by means of this formula. But such a course can

hardly be recommended. It is practically just as

simple to find a numerical value of p by means of

(1) as by means of (2). Hence there is absolutely no

reason why the student's memory should be burdened

with an unnecessary formula. But, furthermore, by
such practice the student is led to believe that the

application of a formula is restricted to the finding

of the quantity which it expresses explicitly, a belief

that may form quite a hindrance in more advanced

work. That such a belief is not uncommon among

students, we may observe quite frequently. Propose,

for instance, to students in solid geometry who have

just derived the formula for the altitude of a regular

tetraedron //"in terms of the edge a> fi7=-V6), the

opposite problem, viz., to find the edge in terms of the

altitude, and a great many students will start an

independent geometric investigation instead of using

the formula just found. The defect of such a method

is particularly obvious when the opposite problem is

very difficult, as the finding of the edge of a regular

tetraedron whose volume equals V.
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The student should become aware that all such prob-

lems can be solved algebraically, if we succeed in estab-

lishing any algebraic relation between the two quantities

involved, and that hence the two problems, viz., the

rinding of the edge if the volume is given, and the find-

ing of the volume if the edge is given, are geometrically

alike.

Unnecessary corollaries.— The reasons advanced in

the preceding paragraph apply with equal force to all

succeeding propositions, such as the median theorem,

the proposition of the bisector of an angle of a triangle,

etc. The practice of deriving and memorizing corol-

laries that give explicit formulae for median, angle-

bisector, etc., cannot be recommended. In all such

cases the student should memorize only one formula

which expresses the fundamental theorem, and solve all

numerical examples by substituting the given values

in this formula. Thus, for the median proposition and

all its applications we need only one formula, viz. :

2 a2 + 2 b2 = 4 m 2 + c2
,

and similarly for other theorems.

An exception to this rule, however, is the altitude

formula :

hc
= - Vs(s

—
a){s

—
A)(s

—
c).

Here, also, we may, in a concrete numerical example,

find the numerical value of the projection^ and then of

k
y but the numerical difficulties of such a procedure are

often considerable, while the application of the formula

is quite simple. Moreover, the altitude is so often
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needed in more advanced work that the memorizing of

the formula seems to be justified.

Projections.
— Numerical examples based upon the

above propositions derive a certain interest from the

fact that they may be applied to practical examples.

A great many of these make use of the "
projections,"

but it seems that the great usefulness of this concept is

not generally recognized by teachers. It is sometimes

believed that certain problems require trigonometry for

their solution, while they can be easily solved by pure

geometry, if only the proper use of projections is made.

If, for instance, in the annexed diagram two lines DB
and EC meet in A, and the values of AB, BC, CA, AE,

and AD are given, and BE
is required, then trigonom-

etry would give us Z BA C,

which equals DAE, and

again trigonometry would

give us DE or x from

A ADE. In geometry we
do not need to find the,

angle itself, but the projection of a segment of one side

of the angle upon the other side. Thus in the above

diagram we find AF, the projection of AC upon AB.

Similar right triangles give us the corresponding projec-

tion AG in A ADE, and hence we easily find DE or x.

Whenever an angle is found by a trigonometrical

solution as an intermediate result only, to be used again

for the calculation of lines, the same work can usually

be accomplished with the aid of pure geometry by in-
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troducing projections. Such a projection takes the

place of the angle (or rather its trigonometric function).

To illustrate further : If the three sides of a triangle

ABC, and the distances BE and BD are given, and DE
is required, we would proceed q

trigonometrically by first solving

A ABC, obtaining thus Z. B, and

then obtain BE by solving j

A DBE. Angle B would be an /
intermediate result only. In plane A / A \ \
geometry we introduce the pro-

^ F G

jection FB instead of (the trigonometric function of)

angle B, find by similar right triangles the correspond-

ing projection GB, and finally obtain DE from A DEB.
This method may be used for some of the regular

propositions, e.g. the median proposition. To find mc

in terms of a, b, and c, determine first p in the projec-

tion of b upon c, and then from A(b,m, -
)
determine m.

Obviously we could find by this method the length of

a line m that does not bisect c
t but that divides it in any

given ratio. If m divides c in the ratio k : /, then it is

not difficult to prove that

2 ka* 4-m klc2

k + i (£+*)
2

Relation between angle and projection.
— In most cases

the value of a line and its projection will not lead to the

numerical value of the included angle ;
and vice versa,

the value of the angle will not enable us to calculate the
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projection. The few exceptional cases, however, should

be known to the teacher. For the secondary school

student, it is sufficient to know how to find the projec-

tion of one line upon another if the included angle is

30 , 45 ,
or 6o°, and their respective supplements. It

is, however, possible to calculate the projections for all

angles which equal the central angles of regular poly-

gons that can be constructed with rules and compasses,

e& l 5°> 24°> l %°> 22°> 3°°» etc.* Angles the number

of whose degrees is integral make such calculations pos-

sible, if they are multiples of 3 ,
as 6°, 9 ,

12
,
etc.

Among the easiest ones to derive is the projection /
of a line a> if p and a include an angle of 22 30', viz.,

Construction of exercises. — To construct exercises of

this type we may assign numerical values at random to

certain lines, e.g. the sides of a triangle, and require

the numerical value of other lines, as the median angle-

bisector, etc. The only difficulty that may arise is the

complexity of the numerical work, and for obtaining

simpler, especially rational, results the following formulae

may be useful.

Right triangle.
— If m and n are positive integers,

which are relatively prime, if m > n, then rational

values of three sides of a right triangle may be obtained

by the formulas : f

* See Chapter XVI.

t If we wish to obtain values that have no common factor, m and n

should not both be odd.
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a —w — nr.

b = 2 mn.

c = m2 + n2.

Thus, the values 3, 4, 5 ; 5, 12, 13; 15, 8, 17; 7, 24,

25 ; 21, 20, 29, etc., may be obtained.

The values 5, 4, and 3 are well known and may be

used to construct a right angle. If we have a right

triangle the ratio of two of whose sides conforms with

these numbers, it is easy to find the third. Thus, if

c = 55, a = 44, then without further calculation it follows

that £=33-

Triangle containing an angle of 6o°.— If in A ABC,
Z A = 6o° and a lies opposite A, then the following

formulae produce rational sides :

b — m2 — n2
.

£ = (2 m —
n)n.

a = m2 — mn + n2 .

Thus, we find 5, 8, 7; 3, 8, 7; 8, 15, 13; 9, 24, 21;

11, 35, 3i, etc.

If A = 120
,
we change b to m(2 n— m), but leave

a and £ unaltered.

Median.— If m
y «, p, and ^ are positive integers, and

a, b, and c the sides of a triangle, then the following

formulae produce triangles with a rational mc :

x — mp + (2 w + «)?.

z = np+ 2{m + #)£.

Similarly formulae may be given for triangles that
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have two or three rational medians, rational altitudes,

bisectors, or areas, or pyramids having rational volumes,

etc.

Readers wishing information on this subject may con-

sult the chapter on indeterminate equations in the text-

books on higher algebra.
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CHAPTER XV

METHODS OF ATTACKING PROBLEMS

LOCI

Scientific aspect of loci.— Definition.
— The two con-

ditions that must be satisfied to make a line the locus of

a point are usually stated as follows :

i. Every point in the line must satisfy the given con-

dition.

2. No point without the line must satisfy this condi-

tion.

The second part is not a pedantic, unnecessary clause

without a practical value, but an absolutely essential

part of the definition. If we omitted it, we would in

some cases be led to consider a part of a locus as a

complete locus, while in others we would obtain a locus

when there is none. The following two examples illus-

trate these points :

i. If we denote the distances of a point X from two fixed points

A and B by m and n respectively, and the projections of m and n

upon AB by p and q, then every point in

the perpendicular bisector of AB satisfies

the condition m2 :n2 = p : q. Hence, if we
did not examine points without we would

consider the perpendicular bisector the

locus of the point Xy
which satisfies the

above condition (m2
: n2 = p : q), and we

would not obtain the other and more inter-

esting part of the locus, viz., the circle whose diameter is AB.

217
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2. Every point X in line DE which joins
the midpoints of two sides of an equilateral

A ABC satisfies the following condition:

The sum of the perpendiculars dropped from

X upon the three sides is equal to the alti-

tude of the triangle. Hence, if we did not

examine the points without DE, we would

consider DE as a locus, while actually it

is no locus at all, since every point within

the triangle ABC satisfies the above condition. If we admit nega-
tive distances, then every point in the entire plane satisfies the above

condition.

Another way of proving a locus would be to show

that:

i. Every point that satisfies the condition lies in the

line.

2. The line contains no points which do not satisfy

the condition.

Again the second part must not be omitted, since the

line may contain all points satisfying the condition, and

others that do not. Hence we may
be led to consider a line as locus, only

a part of which is really a locus.

If, for instance, A and B are two fixed

points, every point X which satisfies the

condition Z AXB = 45 lies in one of the

two circles AXB and AXB. But it would

be erroneous to say the locus consists of the

two circles, since there are points in the two

circles which do not satisfy the condition,

viz., all points in the minor arcs.

Hence— unless we consider a line

as consisting of an infinite number
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of points, and define a locus as the sum total of all

points satisfying a condition— every proof of a locus

involves the proofs of two theorems, and these two

theorems stand in the relation of theorem and converse,

or theorem and opposite. A concrete example will

make this clearer. The fact that the perpendicular

bisector of a line is the locus of a point equidistant from

the ends of the line implies four theorems :

I. Theorem II. Converse

Every point in the line Every point that is equi-

is equidistant. distant lies in the line.

III. Opposite IV. Converse of Oppo-

site

Every point without is Every point unequally

unequally distant. distant is without the line.

A locus is true if all four theorems are true, and vice

versa. But we saw in a preceding chapter
* that these

four theorems must be true, if any two adjacent ones

are true, i.e. the locus is proved if we demonstrate I and

II, or I and III, or II and IV, or III and IV. The

first two combinations were discussed above, the last

two are hardly ever used.

It is easy to see that the above facts are quite gen-

eral. If we discard the two last combinations, we may

say that each locus can be demonstrated in two differ-

ent ways, and it is worth noticing that these two ways

vary in difficulty for different exercises. To make a

* Chapter DC.,
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wise choice between the two methods we do not need to

consider the first part of each combination, for they are

identical, but we have to consider whether the converse

or the opposite is easier to prove.

To demonstrate, for instance, that the bisector of an angle is the

locus of a point equidistant from the sides of the angle, we have to

prove either, that every point equidistant from the sides lies in the

bisector, or that every point without the bisector is unequally distant

from the sides. The first way, i.e. the proof of the converse, is

easier in this case.

On the other.hand, for proving that the locus of the vertex of a

triangle whose base is a fixed line, and whose vertical angle equals a

given angle, is a segment of a circle, the opposite leads to the result

more easily than the converse.

Proofs simplified by the use of loci. — If a locus is

proved, four theorems are established, and this fact is

sometimes useful for proving theorems. Suppose we

have proved the locus :

" A plane perpendicular to a line

at its midpoint is the locus of a point equidistant from

the ends of a line," and we wish to demonstrate the

theorem :

" Three points not in a straight line, each

equidistant from the end of a line, determine a perpen-

dicular bisecting plane of the line." As a rule students

will start an independent investigation for this theorem,

and not see the connection between it and the preceding

locus. Obviously each of the three points must lie on

the perpendicular bisecting plane, according to the pre-

ceding locus, and since only one plane can be passed

through the three points, this plane is the perpendicular

bisecting plane.

Some difficult loci.— The most widely used loci are

given in nearly all textbooks
;
others can be easily con-
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structed, especially those that relate to the centers of

circles which satisfy certain conditions, e.g. circles which

touch a line at a given point, touch a circle at a given

point, touch a circle and have a given radius, etc. Also

proportional division of lines that radiate from a certain

point and terminate in other lines yields many loci.*

A few difficult loci, which are valuable in solving diffi-

cult exercises, may not be without interest.

Let A and B be two fixed points, and x and y their respective

distances from a third point X.

i. If x2 +y2 is a constant, the locus ofX is a circle whose center

is the midpoint of AB (proof by the median proposition) .

2. If x2 — y2 is a constant, the locus of ^T is a straight line ± AB,

meeting AB at a point C so that AC2 - CB2 = x2 -y2
.

%t If - is a constant, the locus of X is a circle. The ends of a

diameter of this circle are obtained by dividing AB internally

and externally in the ratio x to /.

Let M and n be the perpendiculars dropped from a point X upon
the sides of an angle ABC.

4. If ?n + n is a constant, the locus of X is the perimeter of a

rectangle ;
if m — n is a constant, the locus consists of the

prolongations of the sides of the same rectangle.

5. If — is a constant, the locus of X is a straight line passing

through B.

Pedagogic aspect of loci.— When to teach loci.— A
great deal has been said and written about the impor-

tance of loci, and the insuffiency of the treatment of this

topic in schools. The importance of loci in advanced

mathematics appears to have influenced some writers,

* See page 247.
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who seem to consider loci the most important subject in

the geometry course, and wish to have this subject

taught in a rigorous fashion at the very beginning of

the work.

Important the subject undoubtedly is, still one ought

not to go to the extreme of neglecting other topics on

this account, and of introducing it at a time when the

student's mind is not ready for it.

To give an exact presentation of the subject at the

beginning of the first book can hardly be recommended,

although the term "locus" may be mentioned in a pro-

visional form when the theorem of the perpendicular

bisector of a line, or of the bisector of an angle, is

studied. It may then simply be stated that the locus is

the "
place," i.e. the line, in which a certain point must

lie. An exact formal study it is probably better to post-

pone to the end of the second book. Scientifically, of

course, some of the simplest problems, such as the con-

struction of a triangle whose sides are given, depend

upon loci, but such problems may be treated in the be-

ginning quite satisfactorily without any reference to loci.

The teaching of the term "
locus."— A formal defini-

tion of locus will of course not convey as clear a notion

to the student as an explanation based upon numerous

illustrations. Easy examples taken from mechanics

show that under certain conditions a point must move

or lie, in a certain line, or in a certain surface. Thus

we may ask :

"Where must the center of a wheel lie, while the

wheel moves on a straight track ?
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"If the locus is the place, or the line, in which a

point must lie, what is the locus of the center of the

wheel in the preceding question ?

" What is the locus of one end of a stretched string,

if the other end is fixed, and both ends are on the sur-

face of a table ? if only the moving end is on the table?"

Similarly, we may find the locus of a corner of a

book when the book is opened, of a point of an elevator

car while it moves, of a point of a locomotive while it

is turned on a turntable, etc.*

Another class of exercises that may be used to give

to the student a clear idea what a locus really is are

drawing exercises. Let the stu-

dent—perfectly empirically
—draw

exactly a large number of points

satisfying a certain condition,

and by joining these points find

the locus. Thus he may draw

empirically the locus of the mid-

points of a set of parallel chords

in any closed curve. Practically

all loci relating to elementary

geometry may be treated this

way.

A few additional illustrations suitable for empirical drawing work

are the following :

The locus of the ends of all tangents of a given length drawn to a

given circle.

* The idea that a locus is generated by a moving point, or is the place

where one point must lie, finds its expression in the phrase "locus of a

point," which is possibly more widely used than "locus of points."
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A W

The locus of the feet of all perpendiculars drawn from one fixed

point A, upon lines drawn through another fixed point B.

The locus of the centers of all circles of given radius touching a

given circle.

The locus of the midpoints
of all lines parallel to a given
line and terminating in the

perimeter of a given polygon,

e.g. a parallelogram.
The locus of a point lying within a square (2x2 inches), and

having a distance of \ inch from the perimeter, etc.

To discover loci, we use practically the same method

as in the preceding paragraph. Of course the mere

drawing is then no longer sufficient. The student has

to determine what kind of a line the locus is, and has

to prove his result. But the drawing will lead him in

most cases to the result. If a few points are not suffi-

cient to make the pupil discover the character of the

locus, let him increase the number of these points, and

if his drawing is exact, he will hardly fail to see what

kind of a line the required locus is.

In addition to the six or seven which practically all

textbooks contain, and which the student is expected to

remember, a considerable number of others should be

given merely for the purpose of giving the student

facility in such work.

Application of loci. — Loci are used to find points

which satisfy two conditions (in solid geometry some-

times three), and the great advantage of the locus

method is that it enables us to consider each condi-

tion separately without paying any attention to the

others.
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Thus to find a point X, equidistant from two given

lines M and JV, and at a given distance d from a fixed

point A, we have to consider the following two

conditions :

1. J£"is equidistant from M and N.

2. The distance of X from A equals d.

Each condition leads to a locus, and it is advisable

to distinguish these loci from each other, and from the

other lines of the dia-

gram, by some graphic

distinction. Thus we

may draw the lines

that constitute the

first locus in one color,

and the second locus

in a different color.

Or if no colored crayon is available, long-dotted

and short-dotted lines may be employed. The two

colors will diminish the danger of confusion in de-

termining the points of intersection of the two loci.

In most cases a "discussion" of the problem should be

given, i.e., we should determine the condition that would

lead to no solution, or to one or to more solutions.

IN-

PUTTING GIVEN PARTS TOGETHER WITHOUT
ANALYSIS

General remarks.— The simplest constructions of fig-

ures are those that can be accomplished by a simple

putting together of the given parts without any previ-

Q
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ously devised plan.* To construct a triangle having
two sides and the included angle is such a simple mat-

ter that no special analysis is necessary ;
we simply

draw one given part, place the next one in its required

position, etc. There is no difficulty in constructions of

this type if attention is paid to one point, viz. : The diffi-

culty of the construction usually depends upon the choice

of the part that is drawn first.

It is easier to draw a right triangle having given the

hypotenuse and an arm, by drawing at first the right

angle or the arm, than by starting with the hypotenuse.

To construct a quadrilateral having given the four sides

and an angle, is a very simple matter if we commence

with the angle or with one of the adjacent sides, but it

becomes very difficult if we start with one of the other

sides. In constructing a triangle having given two

sides and the angle opposite one of them, we should

begin with the angle or the adjacent side, but not with

the opposite side, etc.

Fundamental constructions of triangle.
—

Typical illus-

trations of the method discussed in the preceding para-

graphs are the fundamental constructions of triangles

that may be referred to by the symbols s.s.s., s.a.s.
t

s.s.a., s.a.a.y a.s.a.
f
and hy. arm.f They derive a par-

ticular importance from the fact that a large percentage

of problems finally depend upon the construction of

triangles, and thereby upon one of these six problems.

* It was pointed out in one of the preceding paragraphs that the

simple constructions of this type are, strictly speaking, based upon loci,

but that a knowledge of loci is not necessary for understanding them.

t Hy. arm is of course only a special case of s.s.a.
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It is very convenient to use for all triangle construc-

tions a notation to which reference has been made

before,* namely, that of designating the parts of a tri-

angle as follows :

The sides by a, b
y
c

The opposite vertices by A, £, C
The corresponding angles by a, /3, 7 f

The corresponding medians by ma) mhy mc

The corresponding altitudes by ka,
kh} hQ

The corresponding angle-bisectors by tai 4, tc

The radius of circumcircle by R
The radius of incircle by r

The area of the triangle by F
One half the perimeter by s

It is worth noticing that a triangle is determined if

three independent parts are given. Thus a triangle can

be constructed if the three sides, or two sides and an

included angle, or the three medians are given, for these

parts are independent parts. But a triangle is not

determined if the three angles are given, for the three

angles are dependent, and really represent only two

independent parts. Hence an infinite number of tri-

angles exist which contain the given angles. A few

other illustrations of dependent parts are the following :

b
y
ka , C; a, A, R; A, s — a, r.

Similarly a quadrilateral is determined by 5, a polygon

* See page 208.

t If Greek letters are objected to, we may use the letters A, B, C,

although this sometimes leads to ambiguities.
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of n sides by 2 n — 3, independent parts. It should be

borne in mind, however, that a problem is not called

indeterminate because it has several solutions. A
problem is indeterminate if it has an infinite number of

solutions, determinate if the number of its solutions is

finite. Thus a problem that has four different solu-

tions is a determinate problem.

A problem that has no solution is an impossible

problem. All problems that are indeterminate on

account of the dependence of the given parts become

impossible if the given parts do not conform to the

relation of dependence. Thus no triangle can be drawn

containing three given angles if the sum of these angles

is not equal to 180 .

GEOMETRIC ANALYSIS OF SIMPLE PROBLEMS

General description.
— All problems that cannot be

solved by a direct putting together of given parts or

by means of loci should be attacked by analysis.

Many different general presentations of the mode of

analyzing a problem have been given, but most of them

are too abstract to be of great service to the beginner.

The author has attempted to give, in the following, a

description of an analysis as elementary and concrete as

possible, although it loses thereby some of its generality.

1. Make a diagram resembling the one required but

not necessarily having the same dimensions.

2. Determine (a) all lines, (b) all angles, that are

directly given, or that can be easily found from the given

parts, and mark all these parts.
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3. Examine all the triangles of the diagram until

you discover one that can be constructed.

4. Make this triangle the basis of the construction,

and try to determine successively all other points of

the figure.

5. In case no triangle can be found that can be

constructed directly, draw additional lines which will

enable you to obtain such a triangle.

A concrete illustration. — To obtain a clearer under-

standing of the meaning and scope of these rules let

us consider a concrete example, viz. : To construct a

triangle having given /3, hai and mc .

1. To obtain a figure resembling the required one,

we draw any triangle ABC> AD the altitude from A,

and CE the median from C.

2. If triangle ABC were the

required one, we should know :

0) AD (= ka\ and CE (= mc).

(b) Zi?( = /3), Z ADC (
=

90°),

and ADB (= 90 ).

3. If we examine the various triangles, we find that

ADB contains one known side and two known angles,

and hence can be constructed.

4. After this triangle ADB is constructed, we can

determine E, the midpoint of AB, and then C, for

the length of CE is given.

Discussion of the parts of an analysis.

I. Drawing of diagram resembling the required one.

—
Obviously, the average student, in attacking a com-
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plex problem, has no clear conception of the given

parts, of the required parts, and of their relations to each

other, until he sees a diagram representing all these

things. Every architect or engineer, in solving a practi-

cal problem, will make at first a rough sketch that will

enable him to see clearly the relation of the various

points to be considered, and only after the problem is

solved, will he make an exact diagram of the proper

dimensions. Similarly the student of geometry needs

a sketch to make clear to him the real nature of the

problem. Of course such a sketch will not necessarily

have the same dimensions as the required figure, and it

would be foolish even to attempt to draw it so.

2. Determination of known parts.
— Let the student

systematically examine all lines and all angles of the

diagram, and let him determine those that are known.

In doing so he may include a few that are not necessary

for the construction. But, as a rule, it is advisable for

the beginner to be systematic in this work, since his

chances for finding a solution are increased thereby.

The determination of the parts that are not given

directly, but that can be found, is a matter of great impor-

tance, but as this subject is rather complex it will be dis-

cussed in a special section.*

3. Discovery of a triangle that can be constructed.—
To look for a triangle as the basis of a construction is, of

course, an arbitrary limitation, as it may be a point, or

a square, or a circle, or other figure that can be drawn

first. In most cases, however, it is a triangle that can

* See page 233.
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be used as the formation of the construction. A sys-

tematic survey of all triangles of the diagram can hardly

fail to make the student discover the proper triangle.

4. Make the triangle the basis of the construction.—
After the initial triangle is constructed, it is usually a

simple matter to find the rest of the figure. A few sug-

gestions may prove helpful in complex cases.

(a) Place the diagram of the construction, as far as

possible, in a position similar to the diagram of the

analysis ;
much confusion is thereby avoided.

(&) Use the same letters for designating the con-

struction as for the analysis. As students only rarely

hand to the teacher a written account of an analysis, no

misunderstanding can arise from such a practice. If

you expect your students to write out the analysis, then

use A\ B\ C, etc., for A, B, C, etc.

(c) In many examples the student has a choice of

several ways for completing the construction. In such

a case select the construction that is easiest of proof.

Suppose, for instance, the student, in constructing a

triangle having given ma ,
m b,

and mCi has constructed

A OAB so that OA = } mm and

OB = § m bt and OE =
J mc .

He may then complete the fig-

ure either by producing EO
by twice its length and join- A

ing, or by producing AO and E

BO, by one half their lengths and joining to A and B
respectively.* The first way, however, gives a much

* There are, of course, still other ways of completing the figure.
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simpler proof than the second, hence it should be

selected.

5. Drawing additional lines.— In case we cannot

find any triangle that can be constructed, we have to

draw additional lines which produce such triangles.

The general principles that underlie this procedure

are rather complicated, and will be treated in the sec-

tion on difficult analysis.* Here only a few compara-

tively simple illustrations may find place.

To construct a triangle having given a, b, and mc . If ABC
were the required A, we should know CB (=#), CA(=b), and

CD(=me). Hence, no triangle can be

constructed. But if we produce CD by
its own length to E and draw EB, we can

construct A CEB, for we know its three

sides.

Or we may bisect CB, and join its mid-

pointF to Z>,then we can constructA CDF,

/ S for CD = me, CF=-, and DF= -•

Js'
2 2

Or we may produce AC by its own

length to G and draw GB. Then A BCG can be constructed,

since CG = b, CB = a, and BG - 2 me .

If a sum or difference of two lines (or angles) is

given, it is usually necessary to construct that sum or

difference in the analysis ; thus if a + b is given, pro-

duce a by the length b or b by the length a. If a —b
is given, lay off b on a, or a on b.

Thus, to construct an equilateral triangle, having given the differ-

ence of side and altitude, we may on CA lay off CE— CD and

* See page 239.
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draw DE. Then A AED can be con- C

structed, since we know one side (EA)
and all angles. *

Or we may on CD lay off CH'= CA /
and draw AH. Then l\ADH can be /
constructed. /

For further illustrations of the preced- £ /
ing methods, and exercises based upon a 4^
them, the reader is referred to Schultze

"""

?">*J
\\

and Sevenoak's Geometry.

GEOMETRIC ANALYSIS OF DIFFICULT PROBLEMS

The principles of the preceding section are sufficient

to solve the large majority of the problems that occur

in secondary schools, and hence they constitute all that is

necessary for such schools. For the teacher, however,

it is of great importance to obtain a more complete

mastery of the subject, and hence additional methods

will be given here. They consist of further elaboration

of parts two and five of the analysis as given above, viz. :

(a) Method for determining lines and angles of the

diagram, and

(5) Methods for drawing additional lines, which will

lead to triangles that can be constructed.*

Methods for determining the known parts of a dia-

gram.— To discover in an analysis all parts of the dia-

gram that are not given directly, but that may be

found indirectly, the student has to be acquainted with

regular propositions of geometry. Thus, he has to know

that the diagonals of a parallelogram bisect each other,

* The most important book on methods of attack is the work of Peter-

sen, Methods and Theories, Kopenhagen, originally written in Danish,
but translated into German (Kopenhagen) and French.
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that the sum of the angles of a triangle is 180
,
that the

opposite angles of an inscribed quadrilateral are supple-

mentary, that the diagonals of a rhombus are perpen-

dicular to each other, etc. If, for instance, in a triangle

a -f yQ is given, 7 can be determined. If in an isosceles

triangle one interior or exterior angle is known, all other

interior or exterior angles may be determined, etc.

But in addition to these well-known geometric facts,

a number of relations that exist in certain diagrams are

of great importance for successful analyzing. Some of

the most important ones are the following :

1. If in A ABC, AC is produced to D so that CD =
CB, then in A ABD:

AB = c.

AD = a + b.

ZA = a.

2

Z ABD = 90 + /3-«
A B

The altitude from B = hh .

Hence, if of the parts c, a + b, a, 7, y£
—

a, and hh any
three independent

* ones are known, A ABD can be con-

structed and the remaining three parts can be determined.

In some analyses involving a + b it would be better

to produce BC by the length CA, thus making a triangle

£ 7
> i

2
that contains : a + b, c, fi, 90 + -

,
and ha .

* Of the twenty possible combinations, only twoj give dependent

parts, viz., c, a, h, and a, 7, £ — a.
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EXERCISES

Construct A ABC, having given :

1. a + b, a, y. 6. a + b, /?, y.

2. a + b, c, a. 7. a + b, a, hb .

3. a + b, c, y. 8. a + b, y,
a -

/J.

4. a + b
y c, hh . 9. a + b, y, hb .

5. a + b, c, a - ft. 10. hh,
a -

/?, y.

11. a + b, a- f$,ha .

2. If in A ABC on CB we lay off C£ = CA, then in

AB = c.

BE = a-b.

ABAE = ^-@-
2

^AEB = 90° + y.
2

The altitude from A == ^a .

Hence, if of the parts c, a — b, fi, a — 0, 7, and ha

any three independent parts are known, the AAEB
and the other three parts may be constructed.

c If we produce CA to F, so that

ACF=
CB, then triangle ABF is

determined by any combination of

three independent elements that

can be formed from the elements :

B
c, a— b, a, a — ft, y, and hh .

Exercises relating to this diagram

may be obtained by substituting minus signs for plus

signs in the preceding set of exercises.
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3. If in A ABC, the

altitude CD or hc1 the

angle-bisector CE or tct

and the radius of the

circumcircle CO or R be

drawn, then

ZDCE = ZECO = ^@-'
2

Triangle CDE can be

constructed if there are

given hc and tm or kc and a — j3, or tc and a — fi.

It is worth remembering that the perpendicular

bisector of AB passes through O and bisects arc AB
in F, and that CE produced also passes through F.

EXERCISES

Construct A ABC, if there are given :

12. /t^a-^a.
13. >*«,«-/?,/?.

14. h^a-frm,.
15. tcy a-^b.
16. t„a-p, y .

17. tc,a-p,R.
18. /c,

a - ft w..

19. /^tf.
20. A, ^ a.

22. hc,
tc1 mc .

4. In triangle ABC let

£7Z> or hc be the altitude upon ct

BD or « be the projection of a upon c,

AD ox v be the projection of h upon £,

and make DH=AD.
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Then in triangle BCH,
BC= a, HB=u-v y CH=b,
ZB=/3,Z CHB m i8o°-«,
Z /fCB = a-j3, and the

altitude from C— hc. Hence,

if of the parts a, b, u — v, v D

kci a, /3, a — y&, any independent three are known,
A CAB can be constructed.

EXERCISES

Construct A ABC, if there are given :

23. a — ft a, b. 25. a - ft # — v, hc.

24. a — ft u — v
f
a, 26. a, ft u — v.

5. If in triangle ABC,
CB is produced to F so

that BF= b, and FG is

drawn perpendicular to

CA, then in A CFG, CF
= a + b

f
FG = ka + khy

Z Cm.% and Z CGF
= 90°.

Similarly, a right triangle can be obtained that con-

tains a — b, Ab
— ka,

and A C.

EXERCISES

Construct A ABC, having given :
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A few additional cases may be mentioned briefly.

C

A D B

6. If O 1
is the incenter of A ABC, D a point of con-

tact, then O'D = r
y
AD = s-a, and O 1AD = -•

7. If O is the circumcenter of A ABC, and OE±AB,

then AE = -, ZAOE = y, and OE = R.
2

8. If a median CD of A ABC
is produced by its own length

to E, then in A CEBy CB —a,
BE =

b, CE = 2 m ci Z C££ =
180 —

7, the altitudes from

E and C equal respectively

£ ^a and hh .
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EXERCISES

Construct A ABC if there are given :

31. mc,a,y. 33. b + c, a> r.

32. s - a, a, £. 34. R, a, ma .

35. mcy a,hb .

Methods for drawing additional lines.— The fact

that in certain problems no triangle can be found that

can be constructed directly, is usually due to the cir-

cumstance that the known parts do not lie together.

Consequently, we have to bring them together, and any
method that will accomplish this may be employed.
There are three methods of moving figures that are

most useful. These methods, already mentioned in the

chapter on inequalities,* are the following ones :

I. Translation.

II. Rotation about a point.

III. Rotation about a line.

The application of these methods is best explained by
concrete examples.

I. Translation.
A n

1. To construct a quadrilateral y
ABCD, having given its four angles /
(a > ft y, 8) and two opposite sides V m

j
(AB = m,CD = n). / J

Analysis.
— li ABCD were the ^*»s. E\

required quadrilateral, we should ^^^^^x^^ \

know its four angles, and the sides
^s"s^^

AB and CD. As no triangle can be

constructed, we translate AB into the

position DE, i.e. we make DE equal and parallel to AB. Since

^ ADE = 180 — a, we know in A DEC two sides and the included

* See page 164.
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(i8o°-«) =a + S

M B

N

angle, viz., ED -
m, DC = n, and Z EDC = 8

— 180 . Hence, A EDC can be constructed.

2. To construct a rectangle so that each side passes through one

n of four given fixed points A, B, C, and

D, and that one side of the rectangle

equals a given line n.

Analysis.
— If MNPQ were the re-

quired rectangle we should know MQ
( = ri) and all lines joining any two of

the given points. But no triangles, ex-

cept those formed by A, B, C, and D,
can be constructed. Hence, translate MQ into the position ECy

then EC (=«), Z.AEC (=90°), and AC are known. Hence
AACE can be constructed.

3. On the base AB of A ABC to con-

struct a parallelogram ABDE so that CE
and CD equal two given lines.

Analysis.
— If ABDE were the required

parallelogram, we could construct A ECD
since we know its three sides. But we can-

not place it in the correct position. Hence,
translate A ECD into the position ABE.
Here it can be constructed, and by making
AE and BD parallel to EC we may translate

it into the required position.

4. To construct a quadrilateral having given its four sides, and

the line joining the mid-points of two opposite sides.

Analysis. — If ABCD were the required quadrilateral, we should

know AB, BE, EC, CD, DE, EA,
and EE. Since the parts do not

form triangles, draw EG equal and

parallel to AB, and EH equal and

parallel to DC. Since triangles

BGF and CHE are equal, GEH
is a straight line and GE = EH.

Hence, A GEH can be constructed,

having given two sides and the

median to the third side.
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5. To draw a [line equal and parallel to a given line MN which

has one end in the curve C, the other in the curve C.

Translate the curve C
by the distanceMN into C M ~

the position C". Then

any line drawn from a

point in C" parallel to

MAT and terminating in

C will be equal to MN.
The required line XY
is drawn from V, the

point of intersection of

C and C.

Since in place of the

curves we may have

straight lines, the pe-

rimeter of triangles or

other figures, circumferences, etc., a large

cases are covered by this example.

number of concrete

EXERCISES

1. To construct a trapezoid, having given its four sides.

2. To construct a trapezoid, having given the two diagonals and

the two parallel sides.

3. To construct a quadrilateral, having its four sides and the

angle formed by the prolongations of two opposite sides.

4. To construct a quadrilateral, having given two opposite sides,

the diagonals, and the angle formed by the diagonals.

5. To construct a quadrilateral ABCD, having given the angles

A and B, the diagonals AC and B£>, and the angle formed by the

diagonals.

II. Rotation about a point.

1 . To construct a square ABCD, having given the distances of a

point P within from the vertices A, B, and C.

I
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Analysis.
— If ABCD were the required p/

square, we should know PA, PB, and PC, /^
x

«

and the angles A, B, C, and D. Rotate /
A BPC about B through an angle of 90 °.

Then /.FBP = 90 and BP' = BP. Hence

ABP'P can be constructed, and since FA =

PC, APPA can also be drawn, etc.

2. To construct an isosceles A ABC so

that the vertical angle A equals a given

angle a, that A has a fixed position, and

that B and C lie respectively on two given curves* M and N.

Solution.— Rotate curve M about

A through an angle equal to a. By
this rotation any line from A to M, as

AD', takes a position AD' which forms

with AD an angle equal to a. Or any
two lines drawn from A, including an

angle equal to a, and ending in M and

M' respectively are equal. If X is the

intersection of M' and N, then draw

AX and AY so that Z. XAV= a, and

A AXY is the required triangle.

A combination of translation

and rotation is used in the

following problem.

3. To construct a square MNPQ
so that two opposite sides pass through
two given points A and B, and the

other two opposite sides pass through
the given points C and D.

Analysis.— Since no triangle can

be constructed, rotate AB, AN, and

BP about A through an angle of 90 .

* For the sake of brevity the term
"
curves

"
is used here and on the

following pages, when curves, straight lines, broken lines, in fact all

kinds of lines, are meant.
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If B' is the new position of B, our problem would be to draw

four parallel lines through A, B', C, and D, so that the distance of

the first pair equals the distance of the second pair. This is done

by translating AB' into the position CE.* Our two pairs of paral-

lels become then identical. Hence we can draw A CED.

EXERCISES

1 . To construct a regular hexagon ABCDEF, having given the

distances of a point within from A, B> and C.

2. Compute the area of a square ABCD if the distances from a

point within from A, B, and C are respectively two, three, and four.

(Rotate two A.)

3. Construct a right isosceles triangle so that the vertex of the

right angle takes a fixed position and the other vertices lie in two

given circumferences.

4. To construct an equilateral triangle so that its vertices lie

respectively in three given parallel lines.

5. To construct an equilateral triangle so that its vertices lie in

three given concentric circumferences.

6. Given quadrilateral ABCD and isosceles A MNP, with MP
= NP. To construct a A EFG «- PMN so that E coincides with

A, F lies in BC, and G lies in CD.

III. Rotation
about a line (turn

about an axis).

1. Given two circles

C and C on the same

side of a line MN. Re-

quired a point X in MN
so that the two (inner)

tangents, drawn from X
to C and C respectively,

form equal angles with

MN.
* A second solution results if B is applied to C.
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Solution.— Turn the

figure about MN as an

axis so that C takes the

position E. Draw a

common interior tangent
to C and E. This

tangent intersects MN
in X.

A special case of this

rotation about a line is

the turning of a figure

so that the ends of a

line are interchanged,

i.e. A, one end of a line,

is put in the position formerly occupied by B, and B in the position

formerly occupied by A. (Similarly for angles.)

2. In a given circle to inscribe a quadrilateral, having given two

opposite sides AB and CD (or a

and c) and the sum of the other

two sides (AD + BC or s). Sup-

pose ABCD were the required

quadrilateral. Since no two known

sides lie together, we turn A DCA
so that A and C exchange posi-

tions, and D takes the position D' .

Then A D'AB can be easily con-

structed, and afterward A D'BC
can be found, having given the

base D'B, the opposite angle, and

the sum of the other two sides.

Having thus obtained ABCD', we find it a very simple matter to

construct ABDC.

EXERCISES

i. Construct quadrilateral ABCD if the four sides are given and

ZADB = ZCDB.
2. Given two points /'and Q on the same side of a straight line

MN. Required a point X in MN so that PX + QX is a minimum.



METHODS OF ATTACKING PROBLEMS 245

3. To construct a square so that two opposite vertices lie in two

given circumferences, and the other two vertices lie in a given

straight line.

4. In a given circle to inscribe a quadrilateral so that one side

equals twice its opposite side and the two other opposite sides equal

given lines.

SPECIAL DEVICES

Method of similarity.
— If a required figure contains

only one given line, we may at first discard this line,

and construct a figure which is similar to the required

one, and then change the

dimensions of the figure

so as to contain the given

line.*

1. To construct a triangle,

having given the angles and the

upper segment of ha.
*

Construction.—Construct any

triangle ABC containing the'

given angles, and draw its alti-

tudes. Produce OA to A } so that OA' equals the given upper

segment, and then build up the required &.A'B'C by means of

several similar triangles.

Frequently this method enables us to solve a problem,

if we can solve the opposite one. Thus, we can inscribe

in a given semicircle a square, if we can circumscribe a

semicircle about the square ;
we can transform a square

into an equilateral triangle, if we can transform an equi-

lateral triangle into a square, etc.

* The method may be extended to many cases containing two given

lines. Construct then at first a figure in which the two lines have an

arbitrary length, but the correct ratio, and then change the dimensions.
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o

m

2. To transform a square into

a regular pentagon.
Construction. — Construct any

regular pentagon and transform it

into a square. Let a be the side

of the pentagon, b the side of the

equivalent square, m the side of

the given square, and x the side of

the required pentagon.

Obviously b2 :m2 = a2
: x2.

Or b:m = a:x.

I.e., x is the fourth proportional to 3, m, and a.

3. To construct a triangle,

having given its three altitudes

Solution .
— Sinee aha

— bhh

= chc ,
we can easily find three

lines that are proportional to

a, by and c. From any point P
draw three secants PA, PB,
and PC respectively equal to

ha,
hh,

and hc . Then the ex-

terior segments of these secants

PA', PB', PC are proportional

to a, b, and c.

Hence, a triangle A"B"C", whose sides are equal respectively to

PA', PB', and PC, is similar to the required one. If the altitude

from A" is produced to D so that A"D=ha,
and MN is drawn

parallel to B"C", then A A"MJVis the required one.
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EXERCISES

Construct a triangle, having given :

1. a, ft,
ma .

2. a, /3,
b - ha.

3. a, p, mh
- hh .

4. Construct a triangle, having given the angles and the distance

of circumcenter from incenter.

5. Transform a square into an equilateral triangle.

6. Transform a square into a triangle similar to a given triangle.

7. In a given quadrilateral ABCD to inscribe a rhombus whose

sides are parallel to the diagonals of ABCD.

8. Inscribe a square into a semicircle.

9. In a given circle to inscribe a rectangle similar to a given

rectangle.

10. In a given triangle to inscribe a parallelogram similar to a

given parallelogram.

Multiplication of curves.

Definitions.
— If from a point P a straight line is

drawn to a point A in the curve

C, and A' divides PA in a

given ratio, then the locus of

A !

is a curve C, which is simi-

lar to C. The curves C and C
are said to be radially situated

with respect to P, P is the center

PA'
of similitude, and the ratio

PA
is called the ratio of similitude.

If the point A' lies in the prolongation of AP, the

result is similar to the one above. The ratio of simili-
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tude, however, is negative, e.g., in the annexed diagram
PA' 1——- = In general, if the ratio of similitude is nega-PA 2

tive, P lies between the two curves.

The construction of the curve C when the ratio of

similitude is —
,
and the center of similitude is P, is

n

sometimes referred to as multiplying C by
— with
n

respect to P.

Thus, in the first diagram C is multiplied by f,
in the

second the circle is multiplied by —
\ with respect to P.

This multiplication may be also applied to straight

lines, broken lines, in part to any figures whatsoever,

and some of the results obtained are the following :

1. If a straight line L is multiplied by
—

,
the result

ti

is another straight line L'
y
and L and L' are parallel.

To construct L' it is necessary to find one point of L' .

2. If any figure is multiplied by
—

,
we obtain a simi-
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lar figure. Homologous angles are equal, and the ratio

of any two homologous lines is equal to
m

m
3. If a circumference is multiplied by — , the result

is again a circumference. If O and O r are respectively

the centers, and r and r1 the respective radii, then

POL = ™ and tL^HL. Hence
PO n r n

the required circle can easily

be constructed by first finding

its center, and then its radius.

Applications.
— The multipli-

cation of curves solves the

general problem :

" From a

fixed point P to draw a line

so that the segments made on it by two given lines

mB and C shall bear a given ratio —

m
Multiply C by

— and

let the resulting line

intersect B in X. Then

PX produced is the re-

quired line.

Thus, draw a line XY
from a circumference C to a

line L, passing through a

point P, so that XP.PY
= 2:3, multiply L by — f

*
I.e., curved, straight, broken, etc., lines.
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with respect to P
f

* and let the resulting line intersect C in X and X' .'

XP and X'P produced are the required lines.

From a point P without a circle C to draw a secant which shall

be to its external segment as 4:3, multiply C by f with respect to

P
f
and let the resulting circle C intersect C in X and X'. PX and

PX' are secants required.

To draw a line XV through P and terminating in two circumfer-

ences C and B
f
so that XP = PY.

Multiply C by — 1 with respect to P
y
and let the resulting circle

C intersect B in X. XP produced is the required line.

EXERCISES

1. Multiply a line C by -
f, by 2.

2. Multiply a circle by — 2 if P lies in the circumference.

3. Multiply a circle by f if P is within.

* This is easily done by drawing AP, producing it by f of its length

to A', and drawing A'X II L.
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4. Multiply a circle by — ,
if m and n are two given lines.

n

5. From a point P within an angle draw a line meeting the side

of the angle in X and Y so that PX : PY =3:2.
6. From a point without an angle draw a line meeting the sides

PX
of the angle in X and Kso that = 1:2.

7. A point P and a circumference C lie on opposite sides of a

straight line L. Through P to draw a line that meets L in X and

Cin Kso that— = -.
PY 3

8. From a point P without a hexagon to draw a line that meets

the perimeter in X and Y so that PX: PY= 2 : 3.

9. To draw a line terminated by two circumferences and bisected

by a given point P.

10. Through a point within a circle to draw a chord whose seg-

ment shall be as m to «, when m and n are two given lines.

11. Through a point of intersection of two circles to draw a line

so that the chords formed are as 2:3.

12. A point P lies in the minor arc made by a chord AB. From
P to draw a chord PQ intersecting AB in R so that PR : RQ = 2:1.

13. Given a quadrilateral ABCD and a point /* within. To con-

struct a parallelogram whose center is P and whose vertices lie re-

spectively in the sides of ABCD.

14. To construct (by the above method) a triangle, having given

a, b, mc .

15. Construct a triangle, having given a, a, mb.

16. Construct a triangle, having given ma,
m

by y.

Multiplication and rotation.— If a curve C is rotated

about a point P through an angle equal to a given

angle Qf then any two lines PA and PA r which include

an angle equal to Q and which terminate in C and O
are equal. If we now multiply C by — with respect

n
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to P and denote the resulting line by C", then any two

lines PA" and PA, which include an angle equal to Q
C

\

-o"

A" X /

and terminate in C" and C, have the ratio m : n. Or all

the triangles PAA" that have A in C, A" in C", and

Z APA" = Z(3 are similar. Hence, we may consider

C" the locus of the third

vertex of a triangle that has

one vertex in C, another in

P, and that is similar to a

given triangle QRS.
These considerations enable us to solve the problem :

To construct a triangle

similar to a given A mnq t

having one vertex in a

given point P, another

in a line* C, and a third

in a line D.

Solution. — Rotate C about O through an angle equal

to Q, and multiply the resulting line by — .

n

* The term
"
line

"
refers to any line, i.e., a line that is straight, or not

straight.
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The intersection of the line C\ thus obtained, with D
gives X, one vertex of the required triangle. By mak-

ing Z XPY= Z Q we obtain the third vertex Y.

Note. — The line C can often be obtained without constructing
C. Thus, in the above diagram, we could obtain O" by making
A OPO" - A AfPJ\T, and r" equal to the fourth proportional to n,

m, and r.

EXERCISES

To construct a triangle similar to a given triangle MJVQ, having
the vertex corresponding to Q at a fixed point P, and the other two

vertices respectively in

1. Two parallel lines.

2. Two intersecting lines.

3. A line and a circle.

4. The perimeter of triangle and a line.

5. Two concentric circles. *

6. Two excentric circles.

7. To construct a triangle whose sides are as 3:4:5 and whose

vertices lie in three concentric circles.

8. To construct a triangle whose sides are as 4:5:6 and whose

vertices lie in three parallel lines.
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ALGEBRAIC ANALYSIS

Algebraic analysis.
— Most problems of geometry can

be solved by means of algebra, but this mode of attack

in elementary work is not as interesting as the purely

geometric ones, since it requires very little originality,

and since the constructions thus obtained frequently

lack elegance and clearness. For the teacher, however,

who sometimes is obliged to get a solution of a difficult

problem in a very short time, it is a useful tool.

In an algebraic analysis the solution is usually made

to depend upon the length of some particular unknown

line or lines. The relations of this line or these lines

with the known quantities are expressed by equations,

whose solutions express algebraically the unknown line

in terms of known quantities. The construction of this

expression leads to the solution.

To apply this method the student has of course to be

familiar with the construction of certain fundamental

algebraic expressions, e.g.,

y,
VeP + &9 Vol, a Vj, V^r#* etc,

where a, b, e
y
are known lines.

Many complex algebraic expressions can be reduced

to fundamental ones, e.g.,

be
a • -—

abc __ d_

de e

ab 4- cd_ ab cd
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i/a> + P = \ayja* + (^j,
etc.

The general character of the method will be illus-

trated by two examples only, and the reader who wishes

further details is referred to Schultze and Sevenoak's

Geometry.

1. To divide a line AB in extreme and mean ratio.

Let AB = a, and the greater part of the divided line = x.

Then a : x = x : a — x. U.

x*+ax= a 2
, w J^<L-^- 9

**-*er-*(Sf
d^-

1 v.

To construct this expression we draw CB ±AB and equal to -,
2

then AC=^a* + (-Y.

On C4 lay off CD = CB
(or -)

•

Then ^=V-2 +
(f)

2

"f'

Therefore, on AB lay offAF = AD.

or^r.
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2. In a given equilateral triangle to in-

scribe another equilateral triangle whose

area is equal to one half the given area.

Let ABC be the given equilateral tri-

angle. If we lay off on the three sides the

equal distances AD, BE, and CF, then

/\DFE is equilateral. To discover the

B length of AD, let AB = a, AD = x, and

FD =y. Then the relation of the areas gives

= 2:1, or y* = (0

Sincey in AADF lies opposite an angle of 6o°, we have

y* = x* + (a
_ xy_ X (a

_ xyt

3ax+ a2
.3*J

a a ,/l

To construct this expression draw the

altitude CF. On FC lay off FH = Z-
6

Through Zfdraw IK± CB, then AI = x.

<»)



CHAPTER XVI

IMPOSSIBLE CONSTRUCTIONS — REGULAR POLYGONS*

IMPOSSIBLE CONSTRUCTIONS

General principles.
— Not every problem that may be

proposed can be solved by means of ruler and com-

passes, and it is frequently of interest to determine

whether or not a certain problem can be solved in this

manner. While in some cases the answer to this ques-

tion is exceedingly difficult, in others several general

theorems make it a comparatively simple matter. Pure

geometric investigations, however, cannot decide the

matter
;
we have to employ the algebraic mode of attack

that was discussed in the preceding paragraph.

Whether or not an algebraic expression resulting from

such analysis can be constructed appears from the fol-

lowing proposition :

All rational expressions, and all expressions which con-

tain square roots only {or can be reduced to such form),

can be constructed. No others can be constructed.

Thus a-f/2 — va(aV2) can be constructed.

But y/abc cannot be constructed.

As the unknown quantity is always the root of an

equation, it is desirable to determine what kind of equa-

tions have such roots, i.e., roots that can be constructed.

* See F. Klein's Famous Problems of Elementary Geometry. Trans-

lated by Beman and Smith. Ginn and Co., N. Y., 1897.

s 257
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The roots of quadratic equations can always be con-

structed, and with one notable exception the roots of irre-

ducible *
equations of higher degree ca7inot be constructed.

This exception embraces certain equations of degree
2n which can be constructed and which will be discussed

in the following section.

Thus, the roots of irreducible equations of the third

or the seventh degree cannot be constructed. The

application of these theorems will be shown in the

next paragraph.

Three famous problems.— The three famous problems
of antiquity that cannot be solved by means of ruler

and compasses are :

1. The duplication of tlie cube (the so-called Delian

problem).

2. The trisection of an arbitrary angle.

3. The quadratttre of the circle, i.e., the construction

of a square equivalent to a circle (or the finding of
77-)

.

1. The Delian problem leads to the equation :

^ — 2 = 0.

This equation is irreducible f and not of the degree

2n
,
hence its roots cannot be constructed, i.e., the Delian

problem cannot be solved by ruler and compasses.

* An equation <t>{x)
= o is called irreducible if <f>(x) cannot be resolved

into rational factors.

t If this equation were reducible, it would have at least one factor

of the first degree, and hence at least one rational root. But re
3 — 2 = o

cannot have fractional roots, since the coefficient of x3
is unity ;

it cannot

have integral roots, since the factors of — 2 do not satisfy the equation,

i.e., the equation cannot have rational roots.
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2. The trisection of an arbitrary angle may be treated

as follows : If B is the angle to be trisected, ABD or a

is i of B, AB = unity, AC
B

(or a) ± AB, then we can

construct Z a, if AD or x can

be constructed.

tan£Obviously a,

and
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rational coefficients whose root is tt* Hence no at-

tempt will be made here to prove this case, and the reader

is again referred to Klein's book.f Since tt is a tran-

scendental, and not simply an algebraic irrational number

it cannot be constructed, even if we admit, besides circle

and straight line, the use of other algebraic curves.

All three problems, however, can be effected by means

of instruments other than straightedge and compasses.

The mechanical squaring of the circle by means of

the so-called integraph has been accomplished rather

recently by a Russian engineer, Abdant Abakanowicz.

Approximate constructions of it. — Approximate val-

ues of 7r, however, can be found by means of ruler and

compasses only. The best known of these, which was

given in 1685 by the Jesuit Kochanski, results in a

value of 7r equal to 3. 141 533. That is, the resulting

error is much smaller than

average error due to un-

avoidable inaccuracy of

drawing.J The construc-

tion is as follows : Draw

diameter AB, and at B the

tangent CD. Make ZBOC= 30°, and CE = 3 (OB),

then EA equals approximately the semicircumference.

* A number which does not satisfy any algebraic equations with

rational coefficients is called a transcendental number.

t This proof for the impossibility of constructing ir was first given

by Lindeman in 1882. The demonstration was greatly simplified by

Hilbert (Mathematische Annalen, Vol. 43).

% Still more exact is a construction given by G. Peirce. Bulletin of

the American Math. Soc, January, 1907.
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REGULAR POLYGONS

Division of a circumference. — The problem of dividing

a circumference into n equal parts, if n is prime, was

solved by the ancients for n — 2, 3, and 5 ;
and no

progress was made until in 1796 Gauss— then nineteen

years of age— discovered the solution for n= 17, and

demonstrated that the problem can be solved if n is

of the form 2* 4- 1 and prime, and that it can be solved

in no other case.

Gauss' discovery aroused the greatest interest among
the mathematicians of his time, not only because he

made an advance in a subject that had remained station-

ary for two thousand years, but also because he showed

the connection between a geometric problem and an

algebraic problem, viz., the equation zn = 1.*

To make 2k + 1 prime, k must be a power of 2, e.g.,

2*. Hence all prime numbers that represent constructi-

ve polygons must be of the form 22
'

+ 1 = n. If / = 5,

6, 7, n is composite; if /=8, or greater than 8, it is

not known whether or not n is prime. Hence as far

* If z is a complex number, then the roots of the equation z
n — 1 = o,

represented in the customary graphical manner, determine the vertices

of a regular polygon of n sides.

Since unity is a root of this equation, we may divide the left number by
z — 1, and obtain :

sn-l + zn-2 _j_ 2n-3 _ . _f_ z _|_ z = 0>

Gauss showed that the roots of equations of this type can be con-

structed if n — 1 is a power of 2 and n is prime. In fact these equations

represent the exceptional cases of higher equations with constructible

roots, to which reference was made in the section on the possibility of

solutions.
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as known, all constructible polygons, the number of

whose sides is prime, are represented by the cases t= o,

i, 2, 3, 4. The corresponding number of sides of the

polygons are: 3, 5, 17, 257, 65537.

Of this series only the first two have any practical

value. The construction of the polygon of seventeen

sides is already so complex that even with the most

accurate methods of construction, the unavoidable in-

accuracies in drawing make the result valueless for

practical ends. The last two constructions have never

been completed, although one mathematician devoted

ten years of his life to the study of the last one.

In regard to composite values of n, Gauss showed

that a polygon can be constructed if n is equal to the

product of two or more different numbers of the series

3, 5, 17, 257, and 65537, but cannot be constructed for

any power of these numbers. To divide a circle into

skty-five parts, we simply have to solve the indeter-

minate equation

I __x y
*5~5 17'

Since ;r= 3 and y= 10 are roots of this equation,

we have <^
= f

-
^f,

i.e.
y
we may construct Wg- of the circumference by sub-

tracting \§ from £.

Similarly to get a polygon of 3x5x17* or 195 sides,

we solve the equation

1 _*_y_
195

~
3 65'
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The solution gives

T*s = f-M.etc.

Since an arc can be bisected, the construction can

also be effected if the values of n obtained above are

multiplied by any power of 2, as 2n. Thus we obtain

for n <; 20 constructible polygons if n — 2, 3, 4, 5, 6, 8,

10, 12, 15, 16, 17, 20, while the regular polygon cannot

be constructed if n — 7, 9, 11, 13, 14, 18, 19.

Concrete examples. — To show more concretely the

connection between the construction of regular poly-

gons and the solution of binomial equations, let us con-

sider two problems.*

1. To inscribe a regular pentagon in the unit circle. Let XX be

the axis of real numbers, YY' the axis of imaginary, O the unit

circle, and R
lf
R2 , J?3 ,

R
4 ,
Rs

the vertices of the required
Y

p

pentagon.

Using the customary method

for representing imaginary
numbers graphically, it can

easily be seen that OR
x , OR2

•••

are the roots of the equation :

2-6-1=0. (1)

Since ORi =
i, we divide (1)

by z — 1 and obtain

z* + zs + z2 + z + 1 = o. (2)

Equation (2) is a standard reciprocal equation, hence divide by z2
,

Z2 +Z+I +1 + L-Q,

* A knowledge of the graphic representation of imaginary numbers

and kindred topics is necessary for these examples. See Advanced

Algebra, p. 376.
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and let z +

Thus we obtain after a few simplifications,

x2 + x = 1.

* = -i±Vi + G) 2
.f

R 2

Therefore

But x or z + - can be inter-
z

preted geometrically.

Uz = OR2f
- = - = z* = ORy
z z

But graphic addition shows

that the real part of OR2y or

ODj is equal to

UOR2 +OR5),

x
2

°* =;K) =

Similarly it follows that if s = ORs ,
then OE-
Therefore the two values

of -
represent the real parts

(the abscissas) of the four

required points.

But

=war+ Qr-i
Hence we have the following

construction :

On OX' lay off OF'= \.

On OY lay off OG = \.

From F with radius FG draw

a circle, meeting ^TJf
'

in E and Z>. The perpendiculars erected at

E and D determine the vertices of the required pentagon.

* Advanced Algebra, p. 498.

t For geometric constructions, expressions such as the above should

not be simplified further.
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2. To construct a regular polygon of seven sides.

In the same manner as in the preceding example we obtain

z7 -i=o. (1)

z* + z*+z* + z* + z2 + z + i=o.

a» + *a + * + i+I + l + JL = . (2)z z z

Substituting x = z + -, we arrive at the cubic

xs + x2 - 2 x - 1 = o. (3)

If this equation were reducible, it would have at least one factor of

the first degree, and hence at least one rational root. But (3) can-

not have fractional roots, since the coefficient of Xs is unity ;
it cannot

have integral roots, since neither + 1 nor — 1 satisfy it. Hence (3)

is irreducible, and its roots and therefore the roots of (1) cannot be

constructed with ruler and compasses.
It is therefore impossible to construct a regular heptagon with

ruler and compasses.

Constructible angles.
— The discussions of the preced-

ing sections also answer the question as to the angles

which can be constructed by ruler and compasses only.

Every central angle corresponding to one of the above

polygons can be constructed, and of course their sums

and differences. Thus n = 9 produces an angle a — 40 ,

n = 15, an angle a = 24°, etc. It is sometimes useful to

know that the smallest constructible angle that can be

expressed in an integral number of degrees is 3 ,
and

that hence an angle which contains degrees only is

constructible if it is a multiple of 3, and not constructible

if it is not a multiple of 3. Thus 27 , 39 , 54 ,
and 8f

can be constructed. 1 1°, 25 , 37 ,
cannot be constructed.

The angle of 3 is easily obtained by repeated bisection

of 24 .



CHAPTER XVII

SOME REMARKS ON SOLID GEOMETRY

PURPOSE AND DIFFICULTIES OF THE STUDY

Peculiarities of solid geometry.
— Under the condi-

tions that prevail in our secondary schools, and with the

time usually allowed for the subject, it seems that solid

geometry cannot be made a subject of discovery and a

discipline for training the mind to quite the same extent

as plane geometry. Exercises in solid geometry of

purely demonstrative character are comparatively hard

to construct and often more difficult to solve than

those in plane geometry ;
the amount of book matter to

be studied is relatively large, and the danger of making
students learn by heart many proofs which they would

never discover themselves, is greater than in plane

geometry.

On the other hand, numerical examples of great sim-

plicity can be given almost throughout the course. It is

easier to find practical applications of the theory, and

algebraic work that gives to the student practice in the

various uses of a formula can be frequently introduced.

Moreover, the study of solid geometry strengthens the

student's space imagination and his power to image

space configurations, and it gives him an understanding

for drawings that represent spatial objects.

266
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Altogether it seems that the utilitarian advantages are

somewhat greater, but the purely cultural advantages

somewhat smaller, than in plane geometry. In accord-

ance with this view, textbooks devote a large part of

their space, and schools a large part of their time, to

mensuration and to theorems that, directly or indirectly,

lead to mensuration. Such an arrangement seems to

be perfectly justified under present conditions, and

in many cases it may be recommended to cut down

the number of theorems even further, to omit the diffi-

cult ones that are not absolutely needed, as, e.g., the

one about the common perpendicular of two lines, and

not to insist upon a knowledge of the proofs of the

most difficult ones that cannot be dispensed with, as,

e.g., the theorem of the equivalence of triangular

pyramids.*

Difficulties.— With such restrictions the study of

solid geometry will not offer great difficulty to the

student. It may require a little more time and a little

more study, but it does not require more intelligence

than does plane geometry.

One difficulty, however, against which we must guard
and which we must overcome at the very start is the

inability of some students to understand diagrams of

solids. There are students who are able to reason log-

ically, but who cannot imagine clearly the spatial forms

* Various attempts have been made to demonstrate this theorem

by dividing the two pyramids into parts which are respectively con-

gruent and thus to avoid limits. Recently, however, it was proved that

this is impossible.
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which the diagrams represent. There are two ways of

overcoming this difficulty, namely, the use of models

and rational methods of drawing.

MODELS

The function of the model is to help the student in

the beginning to an understanding of solid figures in

general, and to make clear to him, later on, difficult

drawings which otherwise he would not understand.

The model should, however, not be used to supplant
the drawing. As soon as the student is able to under-

stand the drawings, the models should be discarded or

reserved for the most difficult cases only. Otherwise

the student will lose one of the main benefits of the

study, viz., the development of his space imagination

and of his faculty to understand diagrams of solids.

Matters difficult to depict, however, such as the regular

polyedrons, the distinction between right and rectan-

gular parallelopiped, etc., should be explained by the

use of models.*

Kind of models needed.— As a rule the simple, inex-

pensive model made of paper, strings, wire, etc., serves

its purpose just as well as the most expensive one. A
triangular prism, cut out of a potato, and divided into

three equivalent pyramids is just as instructive as the

most expensive model. Many of the propositions relat-

* Another reason why models should be used only'sparingly is that, as

a rule, they cannot be shown to a large class as readily as a blackboard

diagram, but must be explained to the students individually or to small

groups of students, thus sacrificing a great deal of time.
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ing to lines and planes may be illustrated by a couple

of pencils, a book, a piece of paper.

The only expensive piece that is quite useful is a

spherical blackboard, although even here some substi-

tute, e.g., a football, may be found.

As far as the making of models by students is con-

cerned, there can be no doubt that in many cases the

student's understanding will be improved thereby. A
student who makes a regular icosaedron, or dodecae-

dron out of cardboard has undoubtedly a much clearer

notion of these solids than he had before.

On the other hand, it is doubtful whether the expen-

diture of a great deal of the student's time for the

making of many or elaborate models is justified. The

time may be well invested as far as manual training is

concerned, but not as far as it relates to mathematical

reasoning. Especially the custom of exhibiting mathe-

matical work and models made by students must

be strongly condemned. Such exhibitions not only

raise an utterly wrong standard for the measurement

of the result of mathematical work, but they are often

like many educational exhibits — deceptive and mis-

leading.

DRAWINGS

Photos or drawings ?— Some textbooks are equipped

with photos of models, which by their clearness almost

equal models. But to the continuous use of such photo-

graphs the same objections may be raised as to the con-

tinuous use of models. Hence shaded diagrams, which

can be made very perspicuous and which the student
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can redraw, are as a rule preferable. Photographs,

however, will be very serviceable if used for a few

exceedingly difficult cases only.

Perspective or projection?
— It is impossible to give

within the limits of this textbook a full explanation of

perspective and projection.*

Perspective produces a picture as the eye sees the

object, or as a photo depicts it, as illustrated by the

<:w
annexed perspective C of a cube. All vertical edges

appear as vertical lines; all other parallel edges con-

verge towards a point.

An orthographic projection of an object is a picture

:=_-.rj^giHI

*We obtain an image of the point A upon the plane PP as viewed from

point E, by joining E (the eye of the observer) to A . Then a, the inter-

section of AE and PP, is

the required image. Thus

abed is an image of the

pyramid of ABCD upon
the plane PP.

If the eye (E) is at a

finite distance, the draw-

ing is a perspective; if E
is at an infinite (or very large) distance, so that the rays EA, EB, EC,

etc., are all parallel, it is called a projection. According as the rays

EA, EB, etc., are perpendicular or oblique to PP, we obtain either an

orthographic or an oblique projection.
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as the eye would see it if it were very far off, or if the

object were comparatively small (C). Parallel edges

have parallel projections, and the length of

parallel lines is proportional to their projec-

tions. Hence projection allows a measure-

ment of the three dimensions of a solid, a

problem that is very difficult for perspective.

While a superficial view of this matter may lead to

preference of perspective for the drawings of solid

geometry, the consensus of opinion of all who have

given serious thought to the subject is in favor of pro-

jections, principally on account of the following reasons:

1. The alleged superiority of perspective views—
being views as the eye sees the object

— is imaginary,

as the true views of small models seen by a student

from a distance of about 10 feet differ so little from

projections that the eye would not notice the difference.

2. Perspective views are far more difficult to draw

than projections, and hence students as a rule draw

exceedingly inferior pictures if they use perspective.

Usually they exaggerate the convergence of parallel

lines. If students really constructed their diagrams in

solid geometry, this would not happen, but there is no

time to study such constructions. The diagrams are

simply drawn according to the artistic intuition of the

student and according to his ability to redraw pictures

that he has seen.

3. Lines that are parallel have parallel projections.

This is a great help for drawing, and also avoids con-

fusion in proofs.
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4. The length of parallel lines is proportional to

their projections.

5. Projections are used almost exclusively for tech-

nical and engineering purposes.

Oblique projection.
— To construct an oblique projec-

tion of a cube whose edge equals one inch, draw the

• square ABCD, whose edge is one

inch, and draw all edges which are

perpendicular to face ABCD, as AE>

equal to a certain assumed fraction e

(
= \ or f) of one inch, and inclined a

certain assumed angle a (about 30 )

to the horizontal line AB*
Oblique projections are easier to draw than ortho-

graphic projections, but give badly distorted views, while

the orthographic projections (see diagrams on pp. 274

and 276) are approximately views as the eye sees them.

For very complex drawings, oblique projection is

to be preferred ;
for simple drawings, however, such as

a plane, a cube, a sphere, f orthographic projection is

surely better. One should attempt to carry on ortho-

graphic projection
— the drawing method of the en-

gineer
— as far as possible, and textbooks should give,

as a rule, orthographic projections.

Use of cross-section paper.
— The drawing of oblique

projections is greatly facilitated by the use of ordinary

* The shadow of a wire frame of a cube resting with one face upon the

paper is an oblique projection.

t The orthographic projection of a sphere is a circle, while the oblique

projection and the perspective are ellipses.
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rectangular cross-section paper, as illustrated by the

annexed diagrams of a cube and an octaedron. (Here

we assume a = tan-1 J,
e= JV5O

1

,1



274 TEACHING OF MATHEMATICS

IT n 1 1 1 ^TTTrTliTrH1

-!-!!*!
7

The second drawing represents a regular octaedron

whose axes equal one (£) inch. (Draw the three axes

AA f

, BB\ CO equal to four units and bisecting each

other.)
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The third diagram is the projection of a regular

icosaedron whose axes, AA'
y
BBf

,
and CC, equal two

inches. The edges aa r

,
bb ]

',
and cc

f are parallel to the

corresponding axes, and equal to f
* of these axes, f

Minor rules for drawing.— i. In representing a plane

draw a material plane that has thickness, as I and II.

While the two projections have equal outlines, I is seen

from above, II from below.

2. Lines in a plane are represented by projections

which terminate within the boundaries of the plane, as

AB. The projections of lines which intersect the plane

*
f is an approximation of the ratio which the greater part of a line

that is divided in extreme and mean ratio bears to the entire line.

These approximations are convergents of the continued fraction:

1

1 . . .

For most purposes | (error about 2 %) is sufficient. More exact are f

and 3^.

t This outline of the construction of the regular icosaedron is intended

only for students who are familiar with the general principles of construct-

ing projection of regular solids. For details of such constructions see

the excellent German book on Solid Geometry : Holzmuller, Stereo-

metrie, Band I, Leipzig, 1900. This book is a regular treasury of in-

formation in regard to many of the most interesting questions of

Solid Geometry.
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extend beyond the boundaries of the plane, as CD.

Lines perpendicular to plane I are perpendicular to the

lower edge of the paper, as EF.

3. Lines that cannot be seen omit or draw dotted.

(See No. 1 and No. 4.)

4. Intersecting planes sometimes appear clearer if

they lie so that their line of intersection, AB, does not

extend to the margin of one of the planes.

5. Lines near to the eye draw heavier than the

remoter ones.
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6. Point out the difference in the position of different

planes by shading (the light is usually assumed to come

from the left side).

7. To draw complex figures containing several diedral

angles draw first the corresponding plane figure and

then make each

side a plane. Thus

to draw two ad-

jacent supplemen-

tary diedral angles

and their bisectors
4

draw first the cor-

responding plane figure OABCDE. Then draw an

arbitrary (short) line 00' and make AA', BB'
y CC,

etc., equal and parallel to 00'.
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8. Some drawings become clearer by the introduction

of the surface of a table upon which the solid rests, and

the shadow cast upon the table.

In the annexed diagram TV is supposed to be the

table line.



CHAPTER XVIII

APPLIED PROBLEMS

Practical and scientific application of elementary mathe-

matics.— The greater part of all that is written and

uttered to-day on the subject of the reform of mathe-

matical teaching is connected with the introduction of

applied mathematics into our secondary school courses.

It is claimed that real problems relating to daily life or

to technical and scientific matters will redeem mathe-

matical study in secondary schools from its inefficiency.

The failure of the mathematical instruction to arouse

and to hold the interest of the students, the absolute

forgetting of all that has been studied, and the inability

of pupils to apply what is known, are said to be due,

solely or principally, to the fact that the pupil does not

see any practical value in either algebra or geometry.

While it is somewhat unfortunate that nearly all re-

formers concentrate their efforts upon this one point,

to the neglect of other more important points, it cannot

be denied that this tendency in itself is a good one, pro-

vided it is confined to its proper limits. Mathematics

owes its very existence to its applications, and it would

never be taught in a school if it were a mere collection

of symbols that are logically coherent, but with no re-

lation whatsoever to the real world. There are, how-

279
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ever, different degrees to which these ideas may be

carried, and the extreme ends of this scale of views

are so far apart that the practical results will be utterly

different according as we accept the moderate or the

extreme view of this movement.

Moderate views.— Elementary mathematics has not

very many genuine applications, but still it has some.

The study of these applications will undoubtedly in-

crease the interest in the subject; frequently it will also

lead to a better understanding of the subject; and occa-

sionally it may be of practical value to some student.

On the other hand, we must not forget that the principal

value of mathematical study lies in the mental training

it affords, and hence we should not give up any of the

essentials of the subject because they have no immedi-

ate applications. We must not, in order to obtain practi-

cal value, deprive the subject of its peculiar character

of being a subject of reasoning. But other things being

equal, that topic deserves preference that can be applied

or that will ultimately lead to applications. Other things

being equal, the practical problem deserves precedence

over the purely academic problem.

Thus we shall not give up the theory of exponents, or

the analysis of geometric problems, simply because they

have no immediate practical value. But when we have

to choose between several topics, each of which is not ab-

solutely essential for the whole theory, we should be

guided by their applicability and should not merely

follow tradition. Thus we may very well dispense with

some of the complex
" cases

"
of factoring, and study
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instead graphical methods, which have a greater practi-

cal value than any other chapter of elementary mathe-

matics. We may give up the finding of the H. C. F. by

the Euclidean method, and introduce instead proportion,

which is necessary in physics and geometry. Instead

of going very deeply into goniometry, it would be better

to devote our time to the trigonometric methods for find-

ing heights and distances. Instead of substituting

numbers in expressions formed at random, let us study

numerical substitution in formulae of practical value,

etc., etc.

The extreme view sees the chief value of mathemati-

cal instruction in its utility, and considers its disciplinary

value as quite small. The present inefficiency of mathe-

matical instruction is said to be due to the very nature

of pure mathematics, which cannot be understood fully

by young students, and which cannot possibly interest

them. Only topics the practical value of which is ap-

parent are said to interest young people, and hence it is

proposed to make the applied problem the principal, if

not the only, object of instruction. Purely academic

problems and theorems are to be admitted only as far as

they are absolutely necessary for the solution of practi-

cal problems.

The only criterion by which any particular problem

or theory is judged is its applicability. Thus the prob-

lem, "To construct a triangle, having given the perim-

eter, one angle, and the altitude from the vertex of the

given angle," is considered poor, because of its
"
having

at best remote connection with any uses of geometry
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within reach of the ordinary high school pupil."
* No

other reason for using the above problem is therefore

admitted
;
there is only one, viz., its applicability.

Reasons against making mathematics a utilitarian

subject.
—

Obviously the matter of applying problems
can be carried too far, and among the many reasons

that may be given against the extreme views stated in the

preceding paragraph, the following may be mentioned :

1. The assumption that students cannot successfully

study pure mathematics, and never take any interest in

purely academic problems and theorems, is erroneous.

Students of average ability, properly prepared, taught

by proper methods under favorable conditions, not

only understand mathematics easily, but take great

interest in the subject. That the conditions in many
schools are such that good teaching is almost impossible,

should make us attempt to change these conditions, but

not reject one of the best and most interesting subjects.

2. If all secondary school mathematics had genuine

applications, the proposed changes would not so much

interfere with the teaching of the essentials of geometry
and algebra. But the field of application of these sub-

jects is limited, and a great many of the so-called appli-

cations are not genuine applications. To replace in a

time-honored algebraic problem the number of Henry's
marbles by the height of Chimborazo, or A's age by the

number of babies born annually in Chicago, does not

lead to a genuine application of algebra, since nobody

* Provisional Report of the National Committee of Fifteen on Geom-

etry Syllabus, School Science and Mathematics, May, 191 1.
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would find the height of Chimborazo or the number of

babies born in Chicago by such a method.*

Genuine applications of algebra may often be taken

\ from physics, but unfortunately the average pupil's

knowledge of physics is so small that an extensive use

of such problems involves as a rule the teaching of

physics by the teacher of algebra.

Still more restricted is the field of true application in

geometry. Examples relating to Gothic windows and

parquet floors are sometimes interesting, but they relate

only to a very small fraction of the geometry, and they

are rarely genuine, since the draftsman, the glazier, or

the carpenter who has to deal with these forms will as

a rule solve all problems involved empirically.

Thus, while the applied problem does increase the

^interest, it is too limited in scope to be made the funda-

mental principle of the teaching of mathematics.

3. While a certain proportion of applied work will

stimulate the interest, an accumulation of a large num-

ber of applied theorems of a similar kind proves tiresome

in the end. To get a few statistical facts is interest-

ing; to hear of endless numbers of such facts is like

reading the World's statistical almanac. A few ex-

amples relating to parquet floors are attractive, but

pages of them void of interest.

4. To put the utility of mathematics above its culture

value is decidedly based upon a misconception of the

educational value of the subject.

* In addition, on account of the large numbers involved, arithmetical

difficulties appear that are utterly foreign to our purpose.
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5. To make the applicability of a problem or other

topic the only criterion by which to judge it means

utterly to ignore other reasons that exist for introduc-

ing such matters. A problem is given to illustrate a

new idea, a new method, and that problem which best

illustrates these methods is the best. If we wish to

illustrate the analysis of problems, we may very well

use the problem of constructing a triangle having

given the perimeter, one angle, and one altitude, to

which reference was made in the preceding section. It

is certainly better than a problem that does not teach

analysis, even if it should relate to "baby ribbons,"

"6-inch bias ruffles,"* and other "practical matters."

6. If we make mathematics a practical subject with

little regard to its disciplinary value, it will not only

lose a great deal of its beauty and dignity, but it will

be very difficult to defend the teaching of the subject

against the numerous attacks of its enemies, and its

early disappearance from the curricula of our schools

will not be unlikely.

Conclusion.— Practical problems, introduced ration-

ally and without destroying the essentials of geometry
and algebra, will improve the teaching of mathematics.

But we must not expect too much from this movement,

for it is not a panacea that will cure all ills. There is

even a danger that a fanatical pushing of this idea may
do serious harm to the cause.

Sources of applied problems.
— In many textbooks and

magazine articles there may be found a large number

* These terms are found in some recent textbooks.
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of practical problems, relating to engineering, physics,

commercial life, etc. Bibliographies relating to such

sources are found in School Science and Mathematics,

Vol. VIII and Vol. XL* Some of the most useful and

most numerous examples belong to the following types :

I. Geometric constructions.— Most applied problems

relate to architectural forms and ornamental designs

such as found in parquet floors, linoleums, Gothic win-

dows, etc. Thus the first of the annexed diagrams

requires the drawing of three equilateral gothic arches,

and the construction of a circle touching these arches
;

the second diagram contains sev-

eral similar problems.

Similarly it may be required to

construct the annexed linoleum

pattern so that the black parts may
be squares, and the white parts

regular octagons, etc.

* Vol. VIII, No. 8, November, 1908, pp. 641-644; Vol. XI, No. 5,

May, 191 1, pp. 458-460 (Report of Fifteen).
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Maps may also be used to applied constructions. We
may require the construction of the site of a school-

house that is equidistant from three towns A, B, and C,

or the location of a railway station to be equidistant

from two towns A and B.

Problems of subdividing areas, such as fields, belong
also to this class of applied problems.

2. Geometric computations.
— The forms considered

in the preceding class give rise to many numerical

problems, e.g., the finding of the edge of the octagon in

the linoleum pattern, the calculation of the radius and

circumference of the circle in the gothic window. A
large number of exercises can be based upon the calcu-

lation of areas and volumes of forms met in engineering

and architecture, as pipes, boilers, tanks, arches, etc.

Problems relating to heights and distances similar to

those given in trigonometry can be solved if the given

angles are 30 , 45 , 6o°, 90 , 120
, 135 , and 150 .

(Theoretically if they are multiples of 3 and their

halves, quarters, etc.) Thus the simplest mode of

finding a distance would be by means of an equilateral

triangle obtained by measuring two angles equal to 6o°.

Then we may consider right triangles, containing one

angle, equal to 30 , or 45 ,
etc. We may introduce

angles of elevation and depression, angular distances,

nautical notions, precisely as in trigonometry, although

the more complex examples of this kind will prove too

difficult for the average student.

Thus we may ask for the height of a tower standing

on a horizontal plane, if at a certain point on the plane



APPLIED PROBLEMS 287

the angle of elevation of the top of the tower is 30 ,
and

at a point 80 feet nearer the angle is 45 .

3. Algebraic problems are in general better known,
and found in most textbooks of algebra. Physical and

commercial problems form one source, the old-fashioned

marble problems clothed with a new garb by statistical

data furnish another. Graphic methods are particularly

fertile in producing applied problems.*

* See also Chap. XIX, p. 299, and Chap. XX, p. 335.



CHAPTER XIX

THE CURRICULUM IN ALGEBRA

INTRODUCTORY REMARKS

The educational value of algebra as compared with

geometry.
— The selection of the subject matter for

courses in elementary algebra must largely depend

upon the educational advantages of the subject, which

are not absolutely identical with those of geometry.

Algebra requires the same accuracy of thinking, and

the same, or possibly greater, accuracy of detail than

geometry. It may be graded as perfectly, and its

introductory chapters may be made even simpler than

those of geometry. The definiteness of the task given

to the student, the certainty of the results, and the

applicability of many of its topics to scientific or other

problems are precisely the same as in geometry.

On the other hand, algebra does not require as much

reasoning, and this reasoning is not always of the same

high order as geometry.* The amount of information

cannot be reduced quite as much as in geometry, and

some topics in algebra require a certain amount of

mechanical drill. Hence ingenuity and originality of

thinking do not play quite the same role, and the

knowledge of facts is somewhat more important than

* Compare Chap. II, p. 23.

288
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in geometry. Moreover, algebra lends itself rather

readily to a purely mechanical treatment. Students

may add exponents, transpose terms, and perform other

manipulations without having a clear notion of the

meaning of these operations, and the symbols involved.

Thus, while possessing most of the advantages of

other mathematical branches, algebra has certain draw-

backs, and the courses of study should be so arranged

as to eliminate or to minimize these disadvantages.

When should algebra be studied?— In most schools

in the United States algebra is studied before geome-

try,* but lately this plan has been frequently assailed
;

sometimes it has even been considered one of the chief

causes of the inefficiency of mathematical teaching.

?While some reformers wish to place geometry before

algebra, mostjrf^then^^
of the two subjects. f

The feasibility of the first plan under certain condi-

tions is proved by the experience of a number of schools

in various countries. In regard to the second plan, it

should be emphasized that it does not mean the teaching

of 3 hours of algebra and 2 hours of geometry during

the first two years of high school, but a complete merg-

ing of the two subjects. Any new method, whether it

*
Usually algebra during the ninth, geometry during the tenth, school

year.

t The three most widely advocated reforms of mathematical study

are :

1. The Use of Laboratory Methods.

2. The Teaching of Applied Problems. 1

3. Simultaneous Teaching of Algebra and Geometry.

u
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relates to geometry or algebra, should, according to this

plan, be studied whenever the necessity for it arises,

and not before. Thus, square roots should be taught in

connection with the Pythagorean theorem, similar tri-

angles with proportion, etc. All algebraic facts should

as far as possible be illustrated geometrically, and vice

^ersa.

This scheme, which has been advocated not only in

the United States, but also in other countries, especially

in Italy and Germany, has undoubtedly a number of ad-

vantages. It may arouse more interest than the cus-

tomary mode, it may at some stages of the work show

the student the necessity of studying certain topics, it

may train the student better to apply his knowledge, and

it may prevent the rapid forgetting of algebra during the

time when geometry alone is studied.

On the other hand, there are weighty reasons against

the introduction of simultaneous teaching of algebra

and geometry in every school. First of all, such a com-

plete merging of the two subjects may not be at all

possible. The courses of study of this new type, which

have been proposed, are still in the experimental stage,

and, as a rule, lack detail. The textbooks that pretend

to carry out this idea, usually do the merging for one or

two topics, otherwise they simply alternate between al-

gebraic and geometric topics.* Moreover, there exist

* Of course, there can be no difference of opinion about the wisdom

of introducing algebraic illustrations into geometry, and vice versa,

whenever feasible. But theijf is a wide difference between such a pro-

cedure and complete merging.
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a large number of high schools in which the first year

students are not capable of attacking geometry as suc-

cessfully as algebra. Trained principally in mechanical

modes of study, such students find the transition from

arithmetic to geometry too difficult, while they attack al-

gebra
—which resembles arithmetic— quite successfully.

Hence it seems doubtful whether the simultaneous

teaching,of algebra and geometry would produce such

a radical improvement as the advocates of this plan

claim. Still the plan is worth trying, and schools that

are in a position to make experiments should give this

matter a thorough and impartial trial.

WHAT ALGEBRA SHOULD BE STUDIED

General remarks.— There can be no discussion

about the adoption of a large number of topics in courses

in elementary algebra ; namely, of all those which are

absolutely needed for further work. There are, how-

ever, a number of other topics that may be dispensed

with, and, in regard to these, until a few years ago

there was no accepted criterion for introduction other

than tradition.*

Lately, however, there is noticeable an almost

J

universal tendency to eliminate traditional subjects

I and to put in their place those having pedagogical or

* In some of these cases it was claimed that future applications de-

pended upon them, but these applications were as superfluous as the

original methods. Thus the teaching of certain complex cases in factor-

ing was defended because the solution of certain equations depended upon

them, but a closer inquiry showed that the applications were as super-

fluous as'the factoring method.
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practical value. The general tendency of these pro-

posed changes may be briefly characterized as follows :

1. Reduction of all information to a minimum:

elimination of all superfluous, abstract, and merely
technical matter.

2. Emphasis on all algebraic topics that require

original thinking.

3. Emphasis on all topics that are frequently ap-

plied in geometry, physics, engineering, commercial

problems, etc.

Reduction of the amount of purely formal work. —
Algebra cannot be mastered without the study of a

number of formal operations and without acquiring a

certain amount of manipulative skill. In order to attack

successfully the more advanced chapters of algebra,

the student has to be familiar with the four funda-

mental operations; he has to possess a certain skill

in factoring, in solving equations, etc. But, on the

other hand, these matters can be, and have been, carried

too far. Until recently there was a tendency to

overemphasize this manipulative phase of the work,

and to increase it from year to year. The authors of

textbooks vied with each other in their attempts to

put everything into their books that possibly could

be taught.*

The cause for this tendency was a twofold one.

In the first place, algebra was taught largely for the

* Some authors stated with great self-satisfaction in their prefaces

that they had increased the number of cases, e.g., added a fourteenth case

of factoring to the thirteen commonly taught.
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sake of preparing students for examinations, and

hence it was attempted to make, as far as possible,

every example a special case of a memorized method,

thus reducing the study almost to a mechanical appli-

cation of memorized rules. Second, it was claimed

that the study of such formal methods, as, for

instance, the extraction of the cube root of a polyno-

mial, possessed great disciplinary value, and hence that

the acquirement of manipulative skill should be the aim,

or at least one of the principal aims, of algebraic study.

Any one, however, who is familiar with our schools

knows that these formal matters are studied in a way
that makes their disciplinary value small. Thus, even

if the teacher should at first emphasize the reasoning

that underlies the extraction of a cube root of a poly-

nomial, very soon the students will perform this manipu-
lation in a purely mechanical manner. They simply

know the process by heart, and are utterly unable to

reconstruct the same, if they should forget it. More-

over, there is so much purely formal work in algebra

that its reduction by one third or one half will not sensi-

bly diminish the educational benefits that may be derived

from it.

Fortunately the mathematical public commences to

recognize the uselessness of overemphasizing the study

of mere manipulative work. In the United States,* in
-1-1 _jx-

* The requirements of the College Entrance Examination Board—
which are based upon a committee report of the American Mathemati-

cal Society of
^the year 1902

— eliminate several of the time-honored

methods. Later reports, essays, and textbooks show a marked tendency
in the same direction.
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France, in Germany, in England, there are marked tend-

encies to reduce the purely technical side of algebraic

study.

It is impossible to make rules in this respect that fit

every kind of school, but among the topics that may be

omitted— and in many cases should be omitted— may
be mentioned :

i.
*
Complex cases of the removal of parentheses.

(One parenthesis within another is sufficient.)

2. Multiplication and division of powers with literal

exponents (when this topic is first studied).

3. Complex cases of multiplication and division of

polynomials by polynomials.

4. The Euclidean method for finding the H. C. F.

In elementary algebra this method is needed only for

the reduction of a fraction to lowest terms. But no

practical example leads to fractions whose terms are

of the third or fourth degree.

5. The analogous method for L. C. M. is needed only

for the addition of fractions, but fractions whose de-

nominators are cubic functions have no value in ele-

mentary algebra.

6. The addition of fractions with quadratic or cubic

denominators.

7.
* The greater part of factoring.

— 8. Complicated complex fractions.

9. The method of comparison for solving simultane-

ous linear equations.

*
Topics marked by an asterisk (*) will be discussed in detail in Chap-

ter XX.
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10. Cubes and higher powers of polynomials.

11. Cube roots of polynomials.

12. Cube roots of numbers.

13. Difficult simultaneous quadratics, especially those

solved by devices which the jtudent cannot discover

himself (e.g. } symmetric equations),

14. Nearly all so-called short cuts and special devices.

15. The greater part oi*the theory of algebra^-

In the more advanced chapters we may omit:

16. Recurring series.

1 7. The greater part of inequalities.

18. Sturm's Theorem.

19. Multiple roots.

The reduction of the formal work in algebra must

not, however, be interpreted as involving a less thor-

ough study of the topics that are retained. Rather the

contrary. The fundamental algebraic operations should

be studie^thoroughly_and should be made familiar to

the^student by jrsquent repetition. Mathematics is a

simple study for one who never attacks a new topic

until he is thoroughly familiar wrfa thejpreceding stages

of the work, while lack of this familiarity makes further

progress very difficult, if not impossible.

Reduction of theory.
— All parts of the theory which

are beyond the comprehension of the student or which

are logicallyunsound should- be omitted, Every prac-

tical teacher knows how few students understand

and appreciate the more difficult parts of the theory,

as the proofs of the fundamental laws relating to

negative or_ fractional exponents^ etc. Even matters
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as simple as the multiplication and division of frac-

tions (
- x — =—

,
and - -s- - =—

)
are usually not fully

\b d bd b d be J

comprehended by the pupils.

Moreover, some of the proofs offered in the textbooks

are logically unsound, as the "
proof

"
for the law of

signs in multiplication, and the proofs of the binomial

theorem for negative or fractional exponents.

Elimination of short cuts and special devices. — One

of the most interesting problems for the exceptionally

able student is the discovery of simple and short solu-

tions of problems which, treated by the general methods,

lead to lengthy or awkward solutions. It would be very

difficult to solve by the regular method the equation

x — 1 x — 2 _x — 4 x— 5

x—2 x — $ x—$ x—6
A series of special devices, however, can effect a very,

simple solution.

If we represent each fraction as a mixed number,

e.g., ^4=' +X—2 X — 2

the equation is easily reduced to

1 1 1

x — 2 x —
3 x — 5 x — 6

Instead of clearing the equations of fractions, we simplify each mem-

ber. Thus we obtain

- 1 _ - 1 1

^a - 5J+6 X* — 1 1 JT + 30

Or x*~ $x+ 6 = x*- 11 x+ 30.

Therefore x = 4.
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The preceding method is an example of a very simple^

and obvious device, but many of those used in elemen-

tary algebra are far more complex, and their use is

justified only by the result. Of such a kind are the sub-

stitutions used sometimes in the solution of simultaneous

equations ;
as the substitution :

x = vy, or x = u 4- v, y = u — v, etc.

A good example of a short cut is the following transformation of

a radical into an infinite continued fraction. The regular method

applied to the finding of V22 is as follows :

V22 — 4 _ u y-

= I +

V22 = 4 +
If

V22
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The short cut, however, gives the integral number (first value

of A) and the successive denominators (C) as follows :

A
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and mental benefit from the discovery of the method,

but not from the knowledge of the same.

Such methods are introduced in schools, usually in

order to make the student pass more readily some ex-

amination, without consideration of the pedagogic harm

done by such an introduction.

Emphasize topics that cultivate the reasoning power.—
As pointed out in the beginning of this chapter, there

is a certain danger that the study of elementary algebra

may become too mechanica l. Hence we should attempt

to treat every topic so as to encourage reasoning, and

to emphasize those topics that require original thinking.

The most important of these is undoubtedly the reading

problem, but almost any other topic gives some oppor-

tunity to make the students think. The omission of

some " cases
"

will also give the student an opportunity

to discover by means of his own ingenuity the solutions

of problems that are usually solved by a method. This

may be done in factoring, and in the solution of simul-

taneous quadratics.

Emphasize applicable topics.
— While large portions

of the old-fashioned curriculum in algebra were deter-

mined without any guiding principle, most reformers

in America and Europe propose in all doubtful cases,

to make the applicability of a topic the chief criterion

of its importance. If this principle is not carried so

far as to sacrifice the serious study of algebra to applica-

tions of doubtful value, it certainly deserves approval.

Among the topics which thus deserve special em-

phasis may be mentioned :
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1. Numerical substitution.

2. Equations and problems.

3. Graphs.

4. Proportion.

5. Logarithms.

6. All subjects that lead to the idea of functionality.

The idea of functionality, which is so much empha-
sized by European writers, has not received the same

attention in the United States, partly because here

graphic methods have only quite recently been adopted.

General maxims for teaching algebra.— While the

preceding discussion relates principally to the curriculum

as it finds expression in the textbooks, it has of course

a bearing also upon the work of the teacher in the class-

room. The principles following from the preceding

sections, and a few others, may be summarized as fol-

lows : f

1. Emphasize all parts of the work requiring original

thinking.

2. Emphasize all topics that can be applied, or that

lead indirectly to applications ;
but do not sacrifice the

true study of algebra to sham application̂

3. Eliminate as far as possible all merely technical

matter that is not necessary for more advancebT'work.

Omit all short cuts and special devices.

4. Omit all theory which is beyond the comprehen-

sion of the pupils, or which is logically unsound. If

necessary, infer such matters from particular cases, al-

though it will then be necessary to point out to the

students that an assumptiorfhas beeiTmade.
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5. By repetition and a certain amount of practical

drill, make familiar to the student methods which are of

fundamental importance or which are frequently ap-

plied.

6. Emphasize the inductive method. Introduce as

far as possible every general method by concrete, i.e.,

numerical, examples. Thus before considering am x an
,

find 23 25
j before discovering the relations of the roots

of a xn + a
x
xn~x + ••• an = o, find the same relation for

x* — 4^r
2 + 5 x — 7 = 0.

7. Examples that are not of fundamental importance

should as far as possible be solved by reasoning and not

by memorized methods.



CHAPTER XX

TYPICAL PARTS OF ALGEBRA

INTRODUCTORY SUBJECTS

The first lessons in algebra.
— The method formerly

so prevalent, of beginning algebra with a long list of

definitions which had to be memorized, is fortunately

disappearing. To-day it is quite generally attempted to

offer to the students in the first lessons a topic that

rouses their interest and that makes them think, as, e.g.,

applied problems or negative numbers. Simple problems

undoubtedly form a good starting topic, although we

should bear in mind that this subject is taught here solely

for the purpose of justifying the use of letters in place

of numbers, and hence we should restrict the work to

fairly simple examples. Equally as good a start may
be made with negative numbers, a topic that on ac-

count of its novelty and simplicity interests students

greatly.

Negative numbers. — Negative numbers are usually

defined as numbers smaller than zero, and this definition

is quite satisfactory from the pedagogical viewpoint,

although logically it is objectionable. For th'e term
" smaller than

"
is usually defined by the statement :

a is smaller than 3, if a — b is negative. Hence the

term "
negative

"
is based upon

" smaller than," which

in turn rests upon
"
negative," an obvious circle.

302
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Students have no difficulty in grasping the concept of

negative number if the subject is presented concretely

on the basis of practical examples. While it is impos-

sible to diminish a group of 5 objects by 7, a temperature
of 5 may decrease 7 .

;

If we deal with cardinal numbers,

it is impossible to subtract a greater number from a

smaller
;
but when a number is used for measurement,

and the quantities considered allow measurement in

opposite directions, subtraction is always possible.

Quantities of this kind are: gain and loss, latitude,

longitude, years a.d. and years B.C., upward and down-

ward motion, opposing forces, temperature, etc.

The most important illustration for further work is

the number scale, represented in the annexed diagram.

x
» r

i 1 1—1 1 1 1 1 1 1—^
_ 6 _ 5 _ 4 -3 -2 -\ +1 +2 f3 *4 +5 +6

Practice with a number of examples of these types

will not only give to the student a clear understanding

of negative number, but will also enable him to perform

addition of any two numbers, the subtraction of a posi-

tive number from any number, etc., without having

studied the laws upon which these examples are based.

The introduction of a special symbol for negative

number, as "4, in order to discriminate between the sign

of quality and the sign of operation, can hardly be

recommended. The distinction between the two signs

is somewhat artificial, and in some instances it is quite

difficult to decide which kind of symbol we have to deal

with. Students find this distinction rather difficult and
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tedious, and hardly any of the teachers or textbooks

that emphasize this matter in the beginning retain it in

more advanced work.

Numerical substitutions.— Numerical substitution is

one of the most important topics of beginners' algebra.

It is the natural link between arithmetic and algebra

and insures understanding of algebraic symbols in more

advanced work. A student unable to evaluate an alge-

braic expression for given values of the letters involved

cannot possibly possess an understanding of the opera-

tions of algebra. On the other hand a student who has

learned numerical substitution only has— aside from the

purely algebraic gain
— acquired an understanding of the

meaning and of the use of formulae, a knowledge which

has a distinct practical value.

Numerical substitution should not only be practiced

in the beginning, but be applied throughout the course,

whenever possible. Students rather easily lose sight of

the true meaning of symbols, and make mistakes which

they would not make if they realized that these letters

represent numbers.*

Hence if a student says -+^ =— , let him find
a a 2 a

J + f, and if he then should answer f, request the

sum of \ of a dollar and | of a dollar. Many stu-

* "
Pupils say

-
-f

- = —^—
,
who would never say

- + - = - •"

a a + b 3 5 8

(Lodge.)

Unfortunately, however, there are high school students who do say
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, . X-\- I I -\- I u 100+ 1
dents who say =

, would not say !— = 2,x 1 100

others who say V#2 + b2 = a-\- b> would not say V9+ 1

= 3 + 1, etc. Numerical substitution is thus the best

means of illustrating emphatically to the students the

absurdities of some of their mistakes.

Sometimes, however, the student answers the alge-

braic question correctly, but makes mistakes when nu-

merical examples of the same type are proposed. Thus

a student who knows that a? x <z
4 = a7

, may say 23 x 2*

m 4
7

. Such errors show that the pupil has no true

insight into the meaning of the algebraic symbols which

he uses
;
in other words, he is manipulating mechani-

cally symbols which he does not understand.

Numerical substitution examples are so important

that their practice can hardly be overdone. If the text-

book should not contain enough material, the teacher

can readily construct examples, whose answers are obvi-

ous to him, by using a formula which at this stage of

the work is unknown to the pupil. Thus each pupil

may substitute different numbers in the expression

cfi— 3 a2b + 3 ab2 — bs
,
and the teacher can check the

results instantly since the answer equals (a
—

frf. It is

a very simple matter to construct formulae of this type ;

a few instances are the following :

cfi - 8 a*b + 24 a2b2 - 32 ab* + 16 34= (*- 2 b)\

^ + £3 + ^ + 3^ + 3^2 ^ |
^

a2 + b2 + c2 -f 2 ab — ac — be

V
<?

.+ - £_=*+*+,.
(a
- b\a -c) (b- c)(J> -a) (c

- d%c - b)

x
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The student should also practice here the substitu-

tion of numerical values in formulae. Such formulae

may be taken from physics, geometry, or commercial

branches. Some very simple formulae may also be

constructed by the pupil, e.g., a formula for the total

area of the walls of a room whose dimensions are given.

Checks.— Numerical substitution forms the most

widely used and the most convenient means for verify-

ing the answers to algebraic examples. Results of

algebraic manipulations cannot be correct unless ques-

tions and answers give equal results for all numerical

values of the letters involved
;
and on the other hand, if

numerical substitution results in equal values of ques-

tion and answer, the latter is probably correct.*

As a rule, we select small numbers, but avoid substi-

tutions that lead to forms like - or 4 . If we make all
o o

letters involved equal to unity, we often obtain a very

simple test, but since all powers of unity are equal, this

method does not check the exponents. Thus to check

the multiplication

(2 a
2 -

3 ab ~ 2 £»)(2 a
-

3 b) =4 az- 12 a2b+ $ab
2+6 b s

,

we let a = b= 1,

and obtain -
3 x - 1 = + 3.

Hence the multiplication is probably correct.

* A single numerical substitution is no absolute test. To make it

such several substitutions are necessary, and their number depends upon
the nature of the example. Thus if only one letter is involved and the

identity p(x) = ^(x) is of the nth
degree, n + 1 numerical substitutions

constitute an absolute test.
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Numerical substitution does not merely indicate

whether or not a result is correct, but it may, in case of

a wrong answer, also be used to locate the error, as

illustrated by the following fallacy:

Check : Let x =y = 2.

Let x=y. 2 = 2.

Then 17^=17^, 34=34-

and 13^=137. 26 = 26.

.'. ij x — \^x= \Jy— \^y. 8 = 8.

Or, \yx— i7y= i$x — \$y. = 0.

I7(x-y)=i3(x-y). = 0.

.•.17=13., 17=13.

Hence the step from the line before the last to the last

is erroneous.

A few other methods of verifying algebraic results

may be briefly mentioned. Any operation may be

checked by the inverse one. Thus, subtraction may be

verified by addition, multiplication by division, factoring

by multiplication, etc.

The fact that the products, quotients, powers, roots

of homogeneous expressions are again homogeneous,

and the corresponding fact for symmetric expressions,

frequently may be used for checks.

Equations are checked by substituting the roots in

both members of the given equation or equations.

ADDITION AND SUBTRACTION

Addition.— The problem of adding positive and nega-

tive, or negative and negative, numbers involves a
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widening of the definition of addition. Hence the law

of addition is really a definition, and not a theorem.

For secondary school purposes it is perfectly legiti-

mate to derive this law from a number of concrete

examples, although this is of course no scientific

method.*

Subtraction. — Scientifically subtraction is the inverse

of addition, or we may define a — b by the equation :

(a- b)+ b = a.\

To the young student, however, subtracting means

the taking away of certain things from a group of

things, and hence it is advisable to start from this

notion and later on lead over to the scientific definition.

The taking away of positive numbers from others, that

are either positive or negative, is readily explained by

gain and loss, northerly and southerly motion, the geo-

metric illustration of the number-scale, etc. To illus-

trate the subtraction of negative numbers, for instance

(
—

5)
—

(
—

3), represent —5 by writing 5 negative units,

-1,-1,-1,-1,-1,
and request the pupil to take away (with the eraser)

—
3,

i.e., three negative units. The result is obviously
—

2,

or(- 5)-(-3)= -2.

Similarly the total value of the following numbers

is 2.

* Compare the Law of No Exception, p. 312.

t All inverse operations can be denned by equations, e.g. :

Division:
l^]b

= a.

Evolution: (tya)"
= a.
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+ I

+ I

4- 1

+ 1

+ 1

Taking away —
2, the result is 4, or

2 — (
—

2)
= 4, etc.

Signs of aggregation.
— It should be pointed out to

the pupil that the first examples relating to the removal

of parentheses are merely additions and subtractions in a

new form. Whether we subtract 3a — 5 b from 6a + 2 b

by placing the former under the latter, or by writing

(6 a + 2 b)— (3 a — 5 b), is simply a matter of arrange-

ment.

It is a waste -of time to solve very complex examples

of this type. One parenthesis within another is all the

student of elementary algebra will have to use in

physics, geometry, or trigonometry. Whether we should

commence the removal of parentheses from within or

from without is a question of no great importance.

The latter does not necessitate as many changes of sign

as the former, but leads more readily to mistakes. The

study of short cuts for the simultaneous removal of

several parentheses has no value whatsoever.

MULTIPLICATION

Rule of signs for multiplication.
— The multiplication

of a negative number by a positive integer follows

directly from the definition which considers such a mul-
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tiplication a repeated addition. This definition, how-

ever, becomes meaningless for a negative multiplier, for,

to add a number —
7 times is just as meaningless as to

read a book — 7 times. Hence, the attempts frequently

made in the older textbooks to prove that a x — b = —
ab,

without defining the multiplication by a negative multi-

plier, were necessarily futile. A proof of this kind is

the following :

Since (
— 4)x3 = — 12,*

and ab = ba,

3x(-4) = (-4)x3 = -
12,

i.e., to multiply by a negative number, multiply by its

absolute value, and change the sign of the result. But

the terms "positive" and "negative" are purely relative. f

Hence, we may consider 3 as negative, and 12 as posi-

tive, or (-3)x(-4) = i2.

This "proof" assumes that 4x(— 3)
= (— 3)X4, i.e.,

it assumes the law of commutation for an operation

which has not even been defined. Another "
proof

"

that has occasionally been given is the following :

(-5)x(- 4)
= (-5)-(3-7)
= (-5)-3-(-5)(7)
= -i5-(-35)
= 20.

\
* The symbol X stands here for "multiplied by." If read "times"

the sequence of factors should be altered.

t This becomes obvious if we consider the equation 3 N. X (— 4)
=

12 S. If we consider N. as positive, we have 3X— 4 = — i2;ifwe
consider N. as negative, the equation means (

—
3) (

—
4) = 12.
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Again it is assumed that products containing negative

multipliers are subject to the same law (distribution) as

those containing positive multipliers.

The more rigorous books introduce the following

definition of multiplication : Multiplication is the opera-

tion of finding a number that has the same relation

to one factor (multiplicand) as the other factor (multi-

plier) has to unity. But, aside from the vagueness

of the term "relation," this definition is too difficult

for beginners.

Peda^ogficaHy..it seems best to attack at first practical

problems, and then to introduce a definition that agrees

with the results of the concrete examples. Thus we

may consider a ship sailing north at the rate of 2° per

day, and crossing the equator to-day ; 5 days hence the

ship will be at io° N., or 2 x 5
= 10. 5 days ago the ship

was at io° S., or 2 x(— 5) = — 10. A ship sailing south

under the same conditions leads to (
— 2)x5 = io and

(-2)x(-5)=io.
Or we may consider the (opposing) forces produced

by adding and taking away of a number of equal weights

at the two sides of a balance. We may consider the

changes in the lifting power of a balloon produced by

increasing or decreasing the quantity of gas or the

ballast We may consider the changes in the income

of a town by the arrival and departure of taxpayers and

alms receivers, the former paying, the latter receiving,

$100 annually.

It appears from such examples that it is convenient

to define multiplication by a negative multiplier as a
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repeated subtraction, or (— 4)x(— 3)=— (— 4)
—

(- 4)- (- 4>

Having adopted this definition, the pedagogy of the

subject of multiplication offers no more difficulty.

Law of No Exception.— In the preceding paragraph it

was shown that a multiplication by a negative multiplier

requires a widening of the original definition. Such

modifications of definitions occur a number of times in

algebra. While for school purposes it is legitimate to

derive such matters from applications, we should bear

in mind that scientifically, algebra is what it is, not in

virtue of its applications, but in virtue of certain funda-

mental laws. Hence applications cannot demonstrate

anything in algebra.

The scientific principle that guides us in such gen-

eralizations, and that has been called the Law of No

Exception, or the Principle of the Permanence of Equiv-

alent Forms may be stated as follows :

" In the construction of arithmetic, every combina-.

tion of two previously defined numbers by a sign for

a previously defined operation (+ ,

—
, x, etc.) shall

be invested with a meaning, even where the original

definition of the operation excludes such a combi-

nation, and the meaning imparted is to be such

that the old laws of reckoning shall still hold good."

(Schubert.)

Thus the definition of multiplication must be widened

in such a way that we may operate with negative num-

bers in precisely the same way as with positive num-

bers, or in other words : A calculation involving a> b, c
y
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etc., shall be just the same whether a, b, c, etc., repre-

sent positive or negative numbers. This is accom-

plished by determining the definition so that it con-

forms to the fundamental laws of multiplication, viz.,

the commutative, the associative, and the distributive

law.

Similarly the widening of any definition of any opera-

tion must conform to the fundamental laws of this

operation. This may be further illustrated by consider-

ing the definition of power.

The original definition of an
,
when n is a positive

integer, becomes absolutely meaningless when n is

negative or fractional. Hence, it is impossible to prove

that a? = Vtf. We have to widen the definition, and

there is nothing in the original definition that compels

us to take a definite course. It would not be illogical

to define an by —,
but it would be very inconvenient, for

n

this would lead to entirely different laws for fractional

than for integral exponents. Hence, we could never

perform a calculation involving exponents unless we

knew whether n were integral or fractional. To avoid

this we have to determine which definition of fractional

exponents leads to fundamental laws that are identical

with those of positive integral exponents. (These laws

are : an • an = am+n
,
am -f- an = am

~n
, (a

m
)
n = amn

, {ab)
m

= ambm
.)

Thus we are led to the definitions: <z«= VtfTO and
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FACTORING

When to study factoring.
— Since each mode of fac-

toring is based upon a method of multiplication, students

will most readily discover a method of factoring at the

time when the corresponding multiplication is studied.

Thus after studying multiplication examples of the type

(x -f d){x -f b)y pupils will easily discover the factors of

a2+$a— 10. It is therefore advisable to attach to

most sets of multiplication examples some factoring

questions. This, however, does not imply that the

methods of factoring should afterwards not be collected,

and presented connectedly. *W second and connected

presentation of all cases in factoring will impress these

important facts firmly upon the student's mind, it will

lead to a comparison of the various methods, to proper

notions about the selection of a method for a certain

purpose, and it will make reviews easier. Hence, it

seems to the writer that the plan of connecting factoring

and multiplication should not be carried out to the ex-

clusion of a formal and systematic presentation of the

subject later on.*

* The idea that every algebraic topic should be taught in connection

with the subjects with which it is logically connected cannot be carried

out in practice, since the number of such connections is too large. Thus

the multiplication a (b + c)
= ab + ac is connected with the factoring

example ab + ac = a (b -f c), but also with the division
a ~*~ ac = b + c,

a

and this again leads to addition of fractions :
— + — =—±-££. . But
a a a

obviously all these topics cannot be taught with a (b + c).
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Which cases of factoring should be studied ?— For most

students factoring forms one of the most difficult chap-

ters of elementary algebra. The study of factoring

sometimes discourages pupils so much that they lose

all interest in the subject, and become indifferent and

inefficient students of algebra in general. Hence we
should try to represent factoring as simply as possible,

and to exclude all cases that are not necessary for future

work.

Until quite recently the policy of most textbook

writers, and of most schools, however, has been to work

in exactly the opposite directions. Instead of present-

ing a few cases and practicing them thoroughly, every

case that possibly could be dragged in was taught.

Through extended mechanical drill and memorizing

students were enabled to work quite difficult examples

at the time when the subject was studied. But a short

time afterward all was forgotten, and since the students

were unable to reconstruct any method, their knowledge

of factoring was very small in spite of the long-continued

drill.

The cases which are absolutely necessary are of the

following types :

1. ax+ay + az.

2. ax2 + bx + c, and the special cases

a2 ± 2 ab -f- b
2

,
and

x2 +px + q.

3. a2 -P.
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At a later stage of the work these may be studied :

4. az ±b3
.

5. Grouping terms.

6. The Remainder Theorems.

Superfluous cases.— The superfluity of other methods

may be illustrated by a discussion of the five cases

which relate to an -f bn, and which are sometimes stated

as follows :

1. an — bn is divisible by a — b, if n is even.

2. an — bn is divisible by a + b, if n is even.

3. an + bn is not divisible by a + b, if n is even.

4. #n — £n is divisible by a — b, if n is odd.

5. an + £n is divisible by a + b, if n is odd.

Now, first of all, we never use the factors a + b or

a — b directly in examples of the type an ± bn
,
unless n

is prime.

We do not factor

** + £* = (a + *)(*
14 - ...

),

cF-P = (a-b){cfi+ -.
),

But we let :

a* + b15 = O5
)
3
+(£

6
)
3 = (a

5 + b*)(a
10 -

...),

rt
6 _ £6 = (^3)2

_
(£3)2

= (08
_

£3)^3 +^
In other words we try to represent the two given

powers first as two squares, then as two cubes, then as

two fifth powers, etc.; i.e., we consider only powers whose

exponents are prime.

But the only even prime number is 2, hence all we
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need to know about even powers is contained in the

two well-known facts :

a*-b2 = (a-b)(a + b). (1)

a2 + b2 is prime. (2)

Hence the first three rules are absolutely superfluous.

But they are worse than that: they are misleading.

To select a — b as a factor of a12 — IP
2

is the worst thing

the student could do. If n is even, an — bn should always

be considered the difference of two squares. Thus

aU-b12 = (aS-b
Q
)(a

Q + bS)

and not (a-b)(a
u

-{-
•••

).

Similar considerations for odd powers show us that

these formulae should not be us&d except for prime

values of n, i.e.:

a*±b*,

a*±b*,

J ± b\

a11 ± b11
,
etc.

Of these a? ± bs is usually studied independently, and

before an ± bn is considered. But as hardly anybody ad-

vocates the factoring of a 1 ± b7 or higher powers, the

student has to study five complex— and, on account of

their similarity, very confusing
—

rules, for the noble

purpose of factoring a5 ± b5 *

* Of course higher powers are sometimes used in advanced mathe-

matics, as, e.g., in the study of binomial equations, and the connected

topics of constructing regular polygons. To construct a regular polygon
of seventeen sides we have to factor x17 — 1. But how many pupils

in beginners' classes will ever study the construction of the regular poly-

gon of seventeen sides !
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The instructor who wishes to teach all examples relat-

ing to the binomial an ± bn has to teach no other formula

than a5 ± b5
,
which should be done concretely and not

by having memorized the above five rules.

Factoring ax*+bx+c.—One rather indispensable case,

about whose presentation a wide diversity of opinion

exists, is the factoring of the quadratic trinomial ax2
-f

bx + c. At a more advanced stage of the work it is

shown that ax2 + bx+ c = a(x — r^)(x
— r2), where r

x
and r2

are the roots of the equation ax2
-f bx + c = o. For be-

ginners this method may be represented by a concrete

example as follows :

^-3^-4 = ^2 -3^ + (|)
2
-(4 + |)

= (^-!)
2
-(l)

2

= (*-f + f)(*-f-f)

-(*+l)(r-4>
But even in this form most examples are too difficult for

the beginner.

Another method makes every quadratic trinomial

a special case of ^2
+/-^ + 9, as illustrated by the fol-

lowing example :

3^-io^+3 = 9^" 3°^+9
3

= (3;tr)
2
-I0(3.ar)+9

3

=(l£±9Xl£ZLi) etc

3

This method, however, requires fractions which are not

known to the students at this stage of the work. Since
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it also leads to very large numbers, it is not surprising

that it does not work well in most classes.

Another method which has been praised a great deal

by some pedagogues splits the coefficient of x into two

numbers, thus, that their product equals ac. E.g., to

factor 6x* — 95 x -f 75,

find two numbers whose sum is — 95 and whose product

is 450. These numbers are — 5 and —
90.

6x2 - 95* + 75 = 6x2 - 90*- 5* + 75

= 6x(x- 15)- 5(*- 15)

= (6x -5)0- 15).

There are two objections to this method. The num-

bers become sometimes exceedingly large, and the

student is unable to understand the reasons for the

procedure.

The most natural way, and also the way that produces

the best results in most classes,* considers the opera-

tions the reverse of the corresponding multiplication.

This method, usually called cross-product method, has

been frequently attacked by writers who called it a

method of guessing, but who seem to forget that the

other methods are also based upon guessing.

The cross-product method becomes comparatively

simple if we free the given expression from monomial

* Since the above was written, Mr. Fiske Allen has reported on some

experiments which tested the three different methods in different classes

(Mathematics Teacher, September, 191 1). According to these tests the

cross-product method was by far the most effective.
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factors, and bear in mind that each of the resulting

binomial factors cannot then contain a monomial factor.

Thus to factor

72 x* — 145 x + 72.

We may factor 72 x in many different ways, but obvi-

ously these two factors must not have a common factor,

since otherwise we would obtain a monomial factor

in one of the binomials. Hence we have to try only

72 x • x and 9 x • 8 x. Excluding all numbers that pro-

duce monomial factors, the last term can be factored

only 1 • 72 and 8 •

9.

Hence we have only two possibilities :

72^—1 9x^8
x—72 8^—9

The first combination obviously gives too large a

middle term, while the second produces — 145 x.

Therefore

72 x2 —
145 x + 72 = (9 x — 8){8 x — 9).

A few difficult cases.— While it is unpedagogic to

crowd the pupil with too many methods, the teacher

should be acquainted with all the more important

methods in order to be equal to any emergency. A
method that is very interesting and that solves many

examples which otherwise would be exceedingly diffi-

cult, is based upon symmetry and cyclo-symmetry.

A function is symmetric with respect to x and y if an

exchange of these letters does not change the function,

e-g-i 3*?— S xy + 3y2
* A function is symmetric with
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respect to x, y y
and z, if it is symmetric with respect to

any two of these letters, e.g.,

x2 +f + z2
f
a2b + ab2 + b2c + be2 + At + ca2.

A function is cyclo-symmetric with respect to x, y t

and z
y
if by replacing x by y, y by z, and # by x, we

obtain an identical equal function, e.g.,

{x-y)
2+(y-z)2 +{z-xf
a2b + b2c + A.

Every symmetric function is cyclo-symmetric, but

not vice versa.

The symmetric functions of the first three degrees

are

(1) a(x+j> + z).

(2) a(x
2 + y2 + z2)+ b(xy + yz + zx).

V(3) a(x*+f + z*)+ b(x
2y + xy

2 + y2z +yz2 +A
+ xz2

) -f ^r^^.

The factoring of symmetric and cyclo-symmetric

expressions is illustrated by the following examples :

Ex. 1 . Factor x\y— z)+ y\z — x) -f- z\x — y).

Since the substitution x =y reduces the function to

zero, the function is divisible by x — y t But the

function is cyclo-symmetric, hence it is also divisible by

y — z and z — x. Since the given function is homo-

geneous and of the third degree, the factors (x — y),

(y — z)}
and (z

—
x) are all its literal factors, but there

may be an unknown numerical factor. If k be this

numerical factor, we have

x\y-z)^y\z-x)-\-z\x-y)^k{x-y\y-z\z-y).
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Substituting numerical values for x, y> and #, e.g.

x = 2, y m i, # = o; 4 — 2 + o = k(— 2), or k = — 1.*

Hence

x\y-z)+ yXz-x)+z\x-y)=-{x- y\y- z\z-x).

Ex. 2. Factor x(y — .c)
3
-fX^ ~ *T + -K*

—
j)

3
-

If ;r =
j/, the function vanishes, hence it is exactly

divisible by x—y. Since the function is cyclo-symmetric,

y — z and z — x are also factors of the function.

Since the given function is homogeneous and of the

fourth degree, there must be another factor of the first

degree which is cyclic and homogeneous. Such factors

are of the form k(x +y + z). Hence

x(y — zf +y(z — xf X z(x —yf
= K*-yty - *l?

- *X* +y + *>

Making x = 2, y = i, z = o,

2 — 8 + 0= k(—6), or k= i.

Hence

x(y - zf +y(z-xf + z(x -yf
=(x-yXy-*X*- x\x +y + z\

Ex. 3. Factor (x -yf+ (y - zf+(z-xf.

In like manner as in the preceding examples we

obtain the factor (x—y\y — z\z —x). The remaining

* The value of k may also be formed by comparing the coefficients of

similar terms in both members. Thus z?y
= — kx2

y, i.e., k = — 1.
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factor must be of the second degree and cyclo-symmet-

ric, i.e., it must be of the form

k(x
2 +y2 + z2)+ l(xy +yz + zx\

where k and / are unknown numbers. Hence

O -yf +O - 5+ - xf
=(x-y\y-z^z-x\k{x*+f+z*)+l(xy+yz+zx)\

Making x = 2, y = 1, z = o, we obtain :

5£ + 2/=i5. (1)

Making ^ = 1, y = o, z = —
1, we obtain :

2 k— I= 15. (2)

Solving (1) and (2),

£=5, /= — 5. Hence

I(*-7)

6-K^-*)5 +(*-*)6

—
5 (*

~~^X^ — ^X^ ~"
^X-^

2
+j^

2 + z% — xy —yz ~ zx
)>

The following list contains a few examples of this

type with their answers
;
others may be found in any of

the larger treatises on algebra.

1. (x- yY+(y-zf+(z - xf=3(x -y\y - z)(z-x).

2. (x+y + zf-x8-yi-zs
=3(x+y)(y + zXz + x).

3. xy(x—y)+yz(y— z)+zx(z-x)
= -(*-yXy- zX2 - x

)'

4. x\y — z)+y\z— x)+ z\x —y)
= -{x -y\y - z%z - x\x+y + *).

5. x\y2 -z2
)+y\z2 -x2

)-{-z\x
2 -y2

)

=
{x ^yXx-yXy+zXy-zXz+x\z-x).
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6. x*(y — z)+ y*(z
—

x)-\-z^{x
—
y)

= —(x —y)(y—z)(z—x)(x
2
+y* + z2 — xy—yz — zx).

7. (x +y + zf — x5 —y5 — z5

=
5 (** +y)U + z)(z + x)(x

2 +y2 + z2 + xy+yz+ zx).

8. (x+y)(y+z)(z+x)+xyz=(x+y + z)(xy+yjs+zx).

EQUATIONS AND PROBLEMS

Identities and equations of condition.— There is

obviously a great difference between the statements

a + a = 2 a> and a + 7 = 2 a. The former, called an

identity\ is true for all values of a
;
the latter, called an

equation, is true only for a certain value of a, viz., 7.

An identity, sometimes also called an identical equation,

states a demonstrable mathematical fact
;

it is a theorem.

An equation (or equation of condition) requires the find-

ing of the root or roots, hence it is a problem. Equa-
tions must be solved

;
identities must be proved.

It is not always possible to decide by inspection

whether an equality is an identity or an equation of

condition, but this fact appears if we apply the usual

method for solving equations. If all terms cancel, *.*.,

if the equality reduces to the form = 0, it is an iden-

tity. Thus, to decide whether the following statement

is an identity or an equation we proceed as follows :

I_£±J =£±J_I.
x 6x 6x 3

Clearing of fractions, 6 — ^—3 = ^+3—^
Transposing, —x —x+2x=— 6+3 + 3,

or = 0.
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The result indicates that the given statement is an iden-

tity, and the above deduction is a proof of the identity.

If not every term cancels, the equality is an equation.

It may happen, however, that an equation is not satisfied

by any finite value of the unknown quantity, e.g.,

x+$=x + 4.

Since oo -|- 3 = 00 + 4, we may say the root ;tr= 00.

If in an equation all terms containing the unknown

quantity cancel, while the remaining terms do not cancel,

the root is infinity. In case of an applied problem,

however, the root infinity indicates that the problem
has no solution.

Similar remarks may be made about two equations

involving two letters, e.g., x and^. If we eliminate one

of the two quantities, the resulting equality (called the

eliminant) may be an identity. In such a case each of

the given equations is a consequence of the other.

The equations are dependent, and any value whatsoever

may be assigned to one of the unknown quantities.

Thus, if we eliminate y by comparison from the follow-

ing system :

f
— 2x + 3 x+ 1 ,

\y{x
2 -2x-3) = x+2, (2)

we obtain :

2X+3
j

X+I = X+2 . v

Xs —
7 x — 6 x2 — x — 6 x2 — 2x — 3

The solution of (3) leads to the result = 0. Hence

equations (1) and (2) are dependent.
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If the eliminant leads to an equality of the form

o • x = a> no finite values of the unknown quantities

satisfy the equations. Such equations are called

inconsistent. A system obviously inconsistent is the

following :

$x + 6y = 7,

3x + 6jy = 8*

The preceding topics have little value for the pupil

in a secondary school, but the teacher should be ac-

quainted with them, since occasionally questions of this

type will arise in the classroom.

Equivalent equations.
— Suppose in the following

equation we should not recognize the L. C. D., and

multiply both members by 2{x — i)(x+ 1), we should

obtain the following solution :

X — I 2X — 2

8(*+i)=(3* + 2)(* + 1),

or 8;r+8=3;r2 +5* + 2. (2)

Hence 3^-3^-6 = 0. (3)

x2, — x — 2 = o. (4)

Therefore, x = —
1, x— 2. (5)

But only one of these roots, viz., x — 2
y

satisfies (1),

and the question arises what error produced the answer

*= — I.

Quite often equations are treated as if the given

equation (1) was true and we had to prove that each

*
Graphic methods explain most lucidly the nature of inconsistent,

consistent, independent, and dependent equations.
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successive equation (2, 3, 4, etc.) was true. As each

of these statements follows from the preceding one by
a certain axiom, no error could thus be found in the

above example. However, we do not have to prove a

theorem, but to find a root that satisfies (1); i.e., we
must show that (1) is true, if (5) is true, or we have to

examine the steps from (5) to (4), from (4) to (3), etc.

The step from (2) to (1) is justified by the axiom: If

equals be divided by equals, the quotients are equal.

This axiom, however, is not true for zero divisors.

Hence this step is not justified if

2(x + i)(*— i)
= o, i.e., x = —

1, or x = + 1.

Hence the value x** — I, which satisfies equation (2),

does not need to (and this example does not) satisfy

equation (1).

Multiplying both members of an equation byjin ex-

pression involving the unknown quantity usually intro-

duces a new root (called an extraneous root).

Thus x — 3 = 4 has one root, x = 7.

(x
—

$)(x
—

5)
= 4(x — 5) has two roots,

x= 7 and x= 5.

Equations which have the same roots are called

equivalent equations. In the solution of an equation

it is necessary to prove that every equation is equiva-

lent to the preceding one. In elementary algebra,

however, the solutions of equations lead only very

rarely to equations that are not equivalent to the given
one. Two cases of this kind are the following :
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Multiplying the members of a fractional equation by
a multiple of the denominators, which is not the lowest,

introduces extraneous roots.

Squaring both members of equations usually intro-

duces extraneous roots
; e.g.,

If *-4=2, (1)

then ^-8^+16 =
4. (2)

Equation (1) has only one root, viz., x = 6, while equa-

tion (2) has two roots, x = 2 and x = 6.

Consequently the solutions of radical equations often

lead to extraneous roots,* and all roots of radical equa-

tions require checking.

Quadratic equations.
— The most important method

for solving quadratics is the one based upon the

formula. The method based on completing the square

is necessary for obtaining this formula and for recon-

structing it, if the student should forget. Completing

the square, however, is not well adapted to the solution

of more complex numerical or of literal
_equations.

and

it involves in any example a good deal of unnecessary

labor. Hence while this method deserves some practice,

it should not be extended too far, and certainly not to

the study of several methods for completing the square.

Since the formula for the roots of the equation

x2 +px+q = leads to complex fractions in case the

coefficient of x2
is not unity, it is better to study the

* This happens, however, only if we restrict the values of the radicals

to their prefixed signs.
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formula for the roots of the equation ax2 + bx + c = o,

viz.:

— b ± V^ 2— Aacx— *=- =1

2a

This formula should be thoroughly memorized and

applied to many numerical and literal examples.

The third method which deserves serious attention is

the solution by factoring. Many writers recommend

this method, on account of its simplicity, as the first

method to be studied. If factoring could be used for

the solution of every equation, and the formula could

thus be entirely excluded, this would undoubtedly be

the best plan. But students in order to solve all exam-

ples must study the formula, and if this is done after

equations have been solved by factoring, such work is.

usually considered very tiresome and unnecessary. On.

the other hand, students who first study the completing

#
of the square usually take great interest and pleasure in

the study of the factoring method. It is a revelation to

them that examples which formerly required so much

work can be done so simply and so quickly. Moreover,

we must not forget that in practical examples the coeffi-

cients depend upon measurement, and hence practically

never lead to equations that can be factored.

Besides simplicity, the method based on factoring has

two advantages, viz., it can be applied to equations of

higher degree, and it produces all roots of an equation

more readily than the other methods.

In solving x6 — 9^+8=0 by the formula, the

student obtains x3 = 8 and x3 = 1. Hence he is likely
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to conclude: x—2, x=i. But the factoring method

readily leads to six roots because

x*- 9
3 + 8 =(*- 2)(*

2 + 2x + 4)(x- i)(x
2 +x + i).

The factoring method also shows us that dividing both

members of an equation by an expression involving x
removes one or more roots. Thus, when dividing both

members of the equation x2 — a2 m (x — a)(a + b — x) by
x — a, we should note that one root is obtained by

making x — a = o, while the other follows from

x + a = a + b —x*

Applied problems.— Applied problems, or, as they are

often called, reading problems, form possibly the most

important topic of elementary algebra. Unfortunately,

* Among the mechanical devices for solving quadratics, there may be

mentioned a slide rule which the author has constructed.

It consists of a rule bearing the scale B, which slides in another rule

bearing scales A and C. The scale B is the natural scale of positive and

negative numbers, the numbers on the scale C are the doubles of the*

corresponding ones on B, and the numbers on A are the squares of those
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many students find problem work exceedingly difficult

and consequently loathe this subject. The ability to

solve problems requires two things, viz., the ability to

think, and a knowledge of the technique of such work.

Many students who can reason logically fail because

they have "not grasped the technique of the subject.

Hence we should try to introduce students systemati-

cally and slowly into the methods of attacking such

work.

Every problem presupposes the ability to translate

an English sentence into algebraic shorthand, and a

systematic study of such translations should form the

starting point for the study of problems. At first the

student should write in algebraic symbols expressions

like the following :

The sum of the squares of a and b.

The product of the cubes of a and b.

The cube of the difference of m and n.

Then should follow translations that have a bearing

upon problems, as :

By how much does a exceed 10?

Write three consecutive numbers whose smallest is x.

A is 20 years old. How old will he be in x years

hence ?

Finder % of 700.*

As far as possible, all quantities that later on occur

in problems and their relations should be considered

here. The next step is writing equations without at-

* If such questions should be too difficult, propose the corresponding

arithmetic questions ; i.e., By how.much does 12 exceed 10? etc
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tempting to solve them. The first equations should be so

simple that they can be translated, word after word, e.g.,

The double of a equals 10.

2 x a = 10.

Which number is 5 % of 450 ?

* = To* x 450.

After a fairly good amount of practice, reading

problems may be attacked, — at first only such as refer

to one unknown number and as can be translated

directly ;
then those which involve two unknown quan-

tities, where one sentence is used to express one un-

known quantity in terms of the other, while the other

sentence produces the equation.

In a similar way we should in all following chapters

on problems attempt a complete classification of the

examples and avoid the accumulation of several diffi-

culties. The details of such a method can, however, be

fully explained only in a textbook.*

It is true that by no means every problem can be

made a special case of a certain type. But by studying

simple problems arranged according to a certain system,

the student acquires a familiarity with the technique of

the subject which in many cases will help in the solu-

tion of problems that require real original thinking.

GRAPHS

Reasons for teaching graphs. — The reasons that have

led to the introduction of graphs into our secondary

school courses may be summarized as follows :

* See the authoiis Algebra.
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1. The study of graphs is very concrete and henc

counteracts somewhat the tendency of school algebra to

become a mechanical application of known rules.

2. Graphic representations are at present so widely

used in daily papers, magazines, and books, that a cer-

tain familiarity with these devices is a part of general

culture.

3. This mode of representing variables is used a

great deal in other sciences. To study successfully

physics, mechanics, chemistry, meteorology, economics,

etc., the student has to be acquainted with graphs.

4. By graphs many mathematical facts become visi-

ble to the eye, which otherwise would remain obscure,

e.g., the number of roots of various equations, the nature

of inconsistent equations, of independent equations, etc.

5. The study of graphs enables the student to solve

many examples which he could otherwise not solve at

all; as, the solution of higher equations, the solution of

transcendental equations, etc.

6. The student acquires a clear notion of one of the

most important notions of advanced mathematics, viz.,

functionality.

7. Graphs interest students and are easily under-

stood.

Introductory examples.— The teaching of the funda-

mental ideas of graphs is so simple, and the material

for such work so abundant, that only a few points need

be mentioned here :

>. 1.. Classify the work as follows :

a. Graphic representation of a given numerical

%
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* table; as, graphs of temperature, population,

etc. (See U. S. Statistical Abstract, or the

World Almanac.)
b. Graphs of numerical tables which the student

has to calculate
; e.g., the cost of iron from

o lb. to 6 lb.

c. Graphs of physical and geometric formulae;

as, C=^R.
d. Algebraic graphs.

e. Graphic solution of problems.
•

2. It is not sufficient to construct graphs ; they should

also be interpreted. Thus in a temperature graph, the

student should find the temperature at a given time, the

time corresponding to a given temperature, maxima

and minima, the time of most rapid increase of temper-

ature, etc.

3. Students should learn that the graph is a straight

line through the origin if the two quantities involved

are proportional; and should derive therefrom a quick

method for constructing such graphs.

4. To obtain fairly good results it is necessary to

use cross-section paper. An ordinary ruled sheet

can also be used to advantage. For blackboard

work a system of squares may be scratched into the

board by a triangular file (make side equal to about

2 inches).

5. Do not spend too much time in constructing statis-

tical graphs.

Graphs of functions. — It is not sufficient that sludents

construct the graphs of functions, and thereby solve
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equations; they should use these diagrams to solv

many other problems relating to functions and equa-

tions. Thus students should find maxima and minima ;

they should recognize that the same drawing may be

used to solve /(;r).= o
f
and f(x) = 5 ; they should see

why Xs — 6x2 + 11 ;rV6.= has three roots, while

x3 —6x2 + 1 1 x tt
§ = 49 has only one root, etc.

In the discussion of* simultaneous equations, graphs

may be used to show why simultaneous linear equations

nave only one set of roots, while^-thcrsg
"
oi higher

degree have several sets. l!ifa]±>hs make clear to tne

student why inconsistent linear equations have no nniFg

root, and Wily dependent equations have an infinite

number 01 roots.

Graphic solution of problems,
— Problems are usually

solved in algebra by expressing the conditions of the

problems in the form of equations. By using the

graphic method, however, many problems can be solved

directly, without obtaining equations.

The fact mentioned above, that the graph of two pro-

portional variables is a straight line, is often useful.

Thus, if x and y are the coordinates of a point, the fol-

lowing variables are represented by straight lines : x =

time, y — distance covered by body moving uniformly ;

x = time, y = work done by a person ;
x = volume, y =

weight of a body ;
x = time, y = quantity of water flow-

ing through a pipe at a uniform rate, etc.

To represent graphically the motion of a person trav-

eling 3 miles per hour, it is only necessary to locate

one point, e.g.> (1, 3) or A, and to connect this point to

4
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Ex. 2. A stone is dropped into a well, and the sound"V

of its impact upon the water is heard at the top of the
'4^-

well 5 seconds later. If the velocity of sound is assumed

as 360 meters per second, and

g—\o meters, how deep is the

well ?

(A body falls in t seconds

-ft meters.)
2 J

Construct the graph ODA of the falling body, making the dis-

tances negative, to indicate the downward motion.* Since the mo-

^on of the sound is an upward motion, its graph CB is obtained by

^kiing (4,
-

360) and (5, o). The ordinate of the point of inter-

section D is the required number.

Hence depth of well =110 meters.

Ex. 3. Six ounces of gold quartz lose 1^ ounces

when weighed in water. If quartz loses \ of its weight,

and gold -fa of its

weight when placed

in water, how many
ounces of gold are in

the six ounces ?

Let OA represent the weight of the body, and AB the loss of

weight in wajer. Through O draw OC, ascending at the rate of

^ 0'.*?., joining O and (19, 1), or O and (5, y\)). Through B draw

DB, ascending at the rate o'f £. The abscissa of P, the point of

intersection of OC and BD, represents the required amount of gold

(if ounces).

Ex. 4. Find the amount of $5 for 4 years at 20%

compound interest.*

* The high rate of interest is taken in order to produce a small

diagram.

i

2
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Represent the year by the unit of abscissas and the dollar by the

unit of the ordinates, and let OA represent $ 5.00. On OX' lay off

T OO TOO
OA' = =— =

5. Draw A'A and produce it to B, then the
rate 20 * r

ordinate of B represents the amount after one year. Draw B'B and

r
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graphic, since it requires considerable arithmetical work,

viz., the calculation of the values of the ordinates. These

values, however, may be found by constructions, and

thus the work made purely graphic. The construction

of values of a rational integral function may be illus-

trated by constructing the value of the cubic function

ax* 4- bx2 + ex + d for a given value of x.

On 0K lay off OE = d, EF=c, FG = b, GH=a,
and make OA = x

t QB — i. Draw AC and BI parallel

to OY.
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Draw GQ and FS parallel to 0X
} meeting AC re-

spectively in R and T. Since QI= a,

Y

A
H I

>*X

ax. A^t^s
^

Hence

Since

or

RK:a=x: i, or i?Ar

SX = £ -}- ax.

TM:SL=x:i, TM= x(LS)t

TM= ax2 + for, etc.

For certain fundamental functions the preceding con-

struction becomes very simple. Thus if y = x2
,
we may

construct y (or AF) if ^r or

((X4) is given, as follows :

Make OB and ,#Z> equal

to unity (different scales

may be used for abscissas

and ordinates), and let the

prolongation of OD meet

^^in^. Draw CE
|| OX,

then the prolongation of

OE meets AK in the re-
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quired point F (This may be proved also by the pro-

portion OB : BE = OA : AF or 1 : x = x :y.)

The preceding methods for finding/^) are practical

if only a few values of the function have to be found,

otherwise the multiplicity of lines will confuse the

student.

Another method, which is simpler when many values

of the ordinate are required, depends upon the use of

certain standard curves, each of which may be used to

solve any quadratic, or any cubic, etc. Thus every

quadratic equation may be solved by means of the pa-

rabola y = x2 and a straight line.* The curve y = x2
is

the same, no matter what quadratic we wish to solve,

hence it may be printed or mimeographed.
The principle underlying these methods may be illus-

trated by two examples :

To solve ax*+ bx+c = o. (1)

Let y = x*A (2)

Then ay -f bx + c = o.
J (3)

The solution of (2) and (3) for x produces the re-

quired root of (1). But (2) is our standard curve, while

(3) is a straight line.

Thus, to solve the equation :

II;tr
2
-f 10X— 165 = 0. (i)

We let y = x*. (2)

Then
% 117 + 30*- 165 = o. (3)

*
Theoretically a quadratic may be solved by any conic section and a

straight line, practical solutions are obtained from the curves : y =»
**,

y = -, and y = a3
.

x
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Y-;
35

T\ Ml
A7j

\

ss
25

3
^v

20
.^
4 °^:s:

f=i:

jsa:!

i

s ;;

:z:

22

& ^
-a

=: ^
1^2

In (3), if x = o, then y = 15 ;
if 7=0, then ;r= 5 J.

The straight line joining the points (o, 15) and (5|, o)

is the graph of (3), which intersects the graph of (2) in

P and P !
. By measuring the abscissas of P and P',

we have x = 2.7, or x = — 5.5.

Similarly, to solve the equation :

$x
2 — 14^ — 65 =0.

Let y = x2
. (1)

Then 57-14^-65 = 0. (2)

Measuring the abscissas of Q and Q', we obtain

* = 5-3, or^r= -2.5.

The construction of the graph of ax2 + bx + c by a

similar method is shown in the next diagram. Draw the

standard curve y — x2{DOB) and the line ay+bx + c.

(In the diagram, a = 3, b — — 8, c = — 3.)
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YA16 [

/
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Draw a new ^r-axis XXQ
r and make the value at the

new y-axis a times (3 times) as large as originally.

Make CD' = CD, E'F'= EF, G'H'= GH, M,NT=MN,
etc., then D'E'H'N' *•• is the required graph.

In a similar manner, incomplete and complete cubics

maybe solved, and their graphs be constructed by means

of the cubic parabola y = x? and straight lines, or by

y s=x2 and circles. It is possible by these methods to

solve biquadratics, and to construct their graphs, to find

the imaginary roots of quadratics, cubics, biquadratics,

'etc. For further detail, the reader is referred to the

author's Graphic Algebra.* 1

IRRATIONAL AND COMPLEX NUMBERS

What are irrational numbers?— The first numbers

ever used in arithmetic were undoubtedly the so-called

natural numbers, 1, 2, 3, . . .
, and they were then con-

sidered as cardinal numbers, i.e., symbols that represent

the number of things in a certain group. Using such

numbers only, addition and multiplication are opera-

tions that are always possible. In order to make division

an operation that is always possible, fractions had to be

invented, and to accomplish the same for subtraction,

negative numbers had to be introduced.!

If we wish to make evolution an operation that is

* The Macmillan Co., New York, 1908.

t The introduction of negative numbers makes it necessary to adopt

the ordinal view of numbers, i.e., the view that numbers are merely marks

of order. The use of fractions enables us,to use number to indicate the

results of measurement, such as the length of a line, the area of a

rectangle, etc.
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always possible, irrational numbers have to be intro-

duced. Using rational numbers only, V2 is an impos-

sible number. For if V2 = —
, where m and n have no

n

common factor, then 2 =
-^,*a

result that is evidently

impossible. Hence, there was a time when irrational

numbers were considered impossible numbers.

The fact that irrational numbers are just as real as ra-

tional numbers is made clear by geometric considerations.

Every rational number can be represented by a point in

the geometric illustration of the number scale, but not

every point in that line represents a rational number.

Thus if OB equals the hypotenuse of a right triangle . f\

whose other sides equal t %'. •&' CxA-vi* X L
unity, then point B rep- -3 -2-1 I f/ i 3

resents an irrational number. Hence, irr|£r6nal numbers

are real numbers. *

Definition of irrational numbers.— If we defined an

irrational number, as V2, by the equation

V2 x V2 = 2,

we would make the mistake of using the symbol X with-

out defining its meaning. For the symbol of multiplica-

tion has thus far been invested with a meaning only if

the factors are real, and its meaning when connecting

two irrational numbers cannot be defined until irrational

numbers are defined.

ie definition which is now most widely accepted, but

h cannot be fully explained here, is due to the
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mathematicians of the Berlin school. It considers an

irrational number as a symbol of the division of all_

rational^ numbers into {wo classes, each number of one

class being distinguished from each number oFthe other

class by a characteristic property.*

It is obviously impossible to teach these matters in

a secondary school, and even the method which shows

that the V2 is the mark of division between two sets of

concrete numbers, viz.,

1 1.4 1.41 1.414 ... .

and 2 1.5 1.42 1.415 . . .

and similar discussions have no value, since the student

does not understand the reasons that make us search for
§

a definition of irrational which is based upon rational

numbers dnly.

We may, however, point out to him some of the

assumptions that have been made in writing :

V2 xV3=V6-
Imaginary numbers. In order to make evolution an

operation that is always possible, the introduction of

*We may divide all rational numbers into two classes so that all

numbers of one class 04) are greater or equal to 2, while all numbers of

the other class (B) are less than 2. Then 2 is the mark which divides

the two classes. Every number in A is greater than every number in B.

In class A there is one number which is smallest, viz., 2, but it is impossible

to assign a number in B which is greatest.

Similarly V2 divides all rational numbers into two classes A and B.

The class A contains all rational numbers whose square is greater than 2,

class B contains all rational numbers whose square is less than 2.

however, impossible to assign a smallest number in,^, or a g
number in B.
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irrational numbers is necessary, but not sufficient. To

invest V— i or V— 4 with a meaning, imaginary num-

bers must be introHiiPP.r^ Imaginary nnmherg w^tv>

considered impossible numbers long after negative

and irrational numbers had been acceptepl. This was

mainly due to the fact that a problem has no solution

if it leads to a , quadratic with imaginary roots . If all

algebra were limited to quadratic equations, there would

be no practical reason for introducing imaginaries.

In solving rnhjrs by f!ardan> merrin^ however, the

answers appear in an imaginary form if all roots are

real (irreducible case). Thus the problem, already

mentioned, by Archimedes :

" To cut off from a sphere

one third of its volume by a plans," leads to a cubic

whose roots appear in imaginary form. Hence to

obtain the real answer we must be able to operate with

imaginaries.

Imaginary numbers are just as real as other numbers,

and the view formerly so prevalent that imaginary

numbers are impossible is erroneous. The reality of

imaginary numbers appears from many topics of higher

mathematics. The best elementary illustration is based

upon the geometric representation of the number

scale. It can easily be shown *, that

imaginary and complex numbers are
B .. 3i q

represented by points without the

line OX.

Thus point § (or line OB) repre-

sents 3 t, OC represents 4+3 *.

* See Advanced Algebra, p. Z7"Lm>
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It can be proved that all operations of algebra are

always possible, if we use rational, irrational, and com-

plex numbers. Hence no other kind of number has

to be introduced into algebra, unless we change the

fundamental laws upon which the whole science rests.

The teaching of imaginaries.— Beginners sometimes

expect that (V— l)
2 should equal ± i, for they claim

that: (V^i)2=:V(- i)2
= Vi\=± i. But obviously

(V— i)
2
equals

— i only, since roots are defined by the

equation (tya)
n = a. The erroneous answer + i is in-

troduced by a careless application of the law {-Va)
m

= y/am% which, even in the domain of real number, is

true only in regard to the absolute values of the num-

bers. Thus (V5)
2
=5, and only 5, but the above law

would give (V5)
2 = V25= ± 5, the answer —

5 being

evidently wrong. Similarly (Vi)
8 = i

2 =
-f- 1, while the

above law would produce the wrong answers ± I, and

A similar difficulty occurs in multiplying imaginaries,

e&>
V— 2 x V— 3 = *V2 x tVj, m i*V6 = —v&

Here the student is inclined to proceed as follows :

V^~3 x V^~2 = V(-2)(-3) = VS.

The difficulty is caused by the arbitrary restriction of

signs. If V— 3 were taken in its true meaning, viz*,

±V— 3, and similarly V— 2 as ±V— 2, their product

would equal ±V— 6. The arbitrary restriction of the
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original signs involves the restriction of the answer to

— V6, and it is worth emphasizing that this result can

be obtained only by writing V— a in the form V— 1V a,

or iVa. The form a -f bi is called the typical form of

complex numbers. If the student is aware that all

imaginary numbers must be reduced to their typical

form before they can be added, subtracted, multiplied,

etc., he knows practically all that is needed for opera-

tions with complex numbers.

LOGARITHMS

The teaching of the theory.
— Since logarithms are

introduced into our school curriculum mainly on ac-

count of their practical value, it seems to be advisable

not to carry study of the theory too far. If thus re-

stricted to the most fundamental propositions, the

theory of logarithms becomes very simple, because all

propositions are the direct consequences of the defini-

tion, which states that x = log6 «, if bx = n. Thus any

problem or theorem that may be proposed should be

written in the exponential form. For instance, to find

log 1, we haye to translate the equation x = log6 1 into

the form bx —\, and the answer is obvious.

To prove that \ogb(mn) =x +y, if x=\ogb m t
and

y = l g& «, we have to write hypothesis and conclusion

in the exponential form and the proof is evident ; viz.,

Hyp. x = logb m, i.e., bx = m.

y=logb n, i.e., by = n.

Con. x+y = logb ntn, i.e., bx+v =^m • n.
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Similarly, to express log3 5 by common logarithm,

we write the equation x = log3 5 in the form 3* = 5.

This exponential equation solved by the usual method

produces the value x = °^ •*
•

log 3

If still greater simplicity should be required, we may
consider the above theorems concretely. Thus,

log 2 = .30103, i.e., io-
30103 = 2.

log 3 = 47712, i.e., io 47712 =
3.

. I0.77815 = 6)

or log 6 =.778 1 5.

Logarithmic calculations. — Although the increasing

use of calculating machines has somewhat diminished

the practical importance of logarithms, the subject is

still the most useful one in elementary algebra. Hence

it is necessary to make the student so familiar with the

practical use of logarithms that he can do the work ac-

curately and quickly.

We must not, however, carry numerical accuracy to

an extreme. Four-place tables are sufficient for many
practical purposes, although there are occasions when

five-place tables are needed. But tables containing six

or more places should not be used in school, since they

are needed only in very exceptional cases.

In using any table we ought to take care not to carry

the accuracy of the numerical results farther than the

table justifies. This does not refer so much to such ob-

vious absurdities as the finding of six places by means

of a five-place table, but mainly to using a table as if all
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places given were absolutely exact. But limiting a

logarithm to five places means neglecting the following

places, M, it involves an error that may equal \ a unit

of the last place. Adding or subtracting logarithms

produces a possible error equal to the sum of all errors.

Multiplying a logarithm by six means multiplying the

error by six, etc. Thus to find the logarithm of

x= I414 X 2f
.072 • S/W

we have the following possible errors.

Possible Error

log 1414 \ unit of last place.

5 log 27 J unit of last place.

log .072 \ unit of last place.

\ log 102 ........ \ unit of last place.

.*. log^r 3 1 unit of last place.

But even if we do not add and subtract at all, the use

of the table involves errors, e.g., let

log;r= 1. 591 20.

A five-place table gives the answer

x— 39.oiT
2
T or 39.0118.

But the numerator (2) is subject to an error of J,
while

the denominator, which is the difference of two loga-

rithms, may contain an error of §.
Hence the true

2 t I c

value of the fraction T
2
T may be — = .21, or -^ = .15.11 J

12 10

Consequently the last place of x (8) has no value, and

even the preceding place (1) is only an approximation.
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If, however, as in the first example, the value of log*

may contain an error of several units of the last place,

it is useless to attempt to obtain more than 4 significant

figures for the value of x.

Slide Rule.— The slide rule is a very simple instru-

ment which calculates mechanically products, quotients,

powers, roots, etc. Its principle is based upon the

properties of logarithms, which are most lucidly illus-

trated by means of this instrument. No teacher who

is able to secure some slide rules should neglect to

explain to his students the principle and the use of this

wonderful little machine.



CHAPTER XXI

THE TEACHING OF TRIGONOMETRY

GENERAL REMARKS

Peculiarities of the subject.
— The advantages and

disadvantages of the study of trigonometry, as compared
with that of other branches of school mathematics, may
be briefly summarized as follows :

Advantages,

i. The practical utility of the subject is very great.

In fact, of all the branches of secondary school mathe-

matics, trigonometry has by far the largest number of

genuine and interesting applications. This applicability

is not restricted to school work only. Trigonometry is

so widely used in all exact sciences, that it has been

called the backbone of applied mathematics. " Not only

is it indispensable to the surveyor, to the navigator, to

the ophthalmologist, to the mechanical and electrical

engineer, but on account of the flexibility of its forms,

it is the best school of preparation for the future

analyst." (Simon.)

2. The study of trigonometry offers a good field for

the training of the students in accuracy and in exact-

ness. In particular it may be used to familiarize the

student with a topic which, in spite of its practical

importance, is usually neglected, viz., the methods of

numerical calculation.

2 a 353
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3. The subject is comparatively easy, and contains

much that is of interest to young students.

Disadvantages.

1. The disciplinary value of trigonometry is compara-

tively small.

2. Trigonometry requires more memorizing than

geometry or algebra.

Courses in trigonometry. — It is evident that the pecul-

iarities which were mentioned in the preceding

paragraph must form the guiding principles for the

selection of the subject matter for courses in geometry.
In particular we should :

1. Emphasize all parts of trigonometry which are

applicable to practical problems or which lead indirectly

to such applications.

2. Reduce, as far as possible, all topics which require

memorizing, or which cannot be applied by the second-

ary school student.

From the first principle follows the importance of

the solution of the right triangle, of the solution of the

general triangle, of the calculation of heights and dis-

tances, etc. From the second maxim follows that the

number of formulae to be memorized should be re-

duced to a minimum, and that large portions of certain

topics should be omitted. For example, the functions

of versed sine and coversed sine should never be men-

tioned, and the secant and cosecant should be used

only rarely. The latter two functions should be omitted

entirely, if unfortunately it were not true that so many
American textbooks on advanced mathematics make ex-
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tensive use of them.* On the continent of Europe the

secant and cosecant are almost entirely excluded from

school use, tables hardly ever contain them, and text-

books on advanced mathematics use them only spar-

ingly. Some German writers even condemn the use of

the cotangent.

If the secant, the cosecant, and the cotangent are

studied, it is only necessary to know that these functions

are reciprocals of the other three functions. Thus

to find cot (A -h B), find first tan {A + B) ;
to express

A A
sec — in terms of cos A, express first cos — in terms of

2 2

cos Ay etc. No explicit formula relating to secant,

cosecant, and cotangent should be studied.

Among other topics that may be greatly reduced

in volume is the treatment of angles greater than 90 .

Angles greater than 360 have practically no value

to the secondary school student and even those be-

tween 180 and 360 are only very rarely applied.

Hence it seems to be absurd to make the student

memorize six or more formulae for the reduction of

functions greater than 90 to those of angles less than

90 .

Also the proofs of trigonometric identities and the

* Textbooks often use the secant and cosecant in order to avoid

fractions. Thus instead of writing sin A -~^, some books state
sin c

sin A = sin a esc c. But this not only introduces a function which is

not found in the tables, but it also destroys the analogy with plane trig-

onometry ( sin A = -
J

.
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solution of trigonomtric equations is frequently carried

farther than the values of these subjects justify.

If there is more time at the disposal of the teacher

than is needed for the more practical phase of the

work, it would be better invested in studying Moivre's

theorem and its connection with the geometric repre-

sentation of complex numbers, than in proving identities

like:

sin (x+2 y)-2 sin (*+/) + sin x = tan
,

+
.

cos (x -f 2j/)
— 2 cos {x+y) + cos x

TYPICAL PARTS OF TRIGONOMETRY

Definitions of the trigonometric functions.—The func-

tions are usually defined by one of the following three

methods :

1. As quotients of positive and negative coordinates.

2. By means of line values.

3. As quotients of the sides of a right triangle.

The first method is quite general, i.e., it refers to

angles in all quadrants, and hence it is frequently given

in the opening chapters of textbooks. But, on the

other hand, the notion of positive and negative lines, of

coordinates, etc., brings into the subject a number of

difficulties which may at first be avoided, and hence this

method can hardly be recommended as a starting method.

The functions of the first quadrant are by far the most

important for the high school student, and hence no

harm is done in restricting the opening chapters to

acute angles.

The method of representing the functions by single
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lines is also general, and admirably adapted to an ex-

amination of the changes of the functions when the

angle changes; but the same objection as was made in

the first case makes these definitions unfit for a start.

For the solution of the right triangle, which may be

considered the backbone of practical trigonometry, the

definitions of the functions as quotients of the sides of a

right triangle are fully sufficient, and as this method is ex-

ceedingly simple, it seems to be best suited for the begin-

ner. After the student has applied this knowledge to

many problems, and has acquired a thorough familiarity

with these ratios, general definitions may be introduced.

The practice of studying two sets of definitions si-

multaneously is decidedly unpedagogic.

Solution of the right triangle.
— This is probably the

most important chapter in the entire elementary trigo-

nometry, and a thorough knowledge of the same will

enable the student to solve the greater part of all prac-

tical problems that occur in secondary school courses.*

It is advisable to take up this subject early in the course.

It is, of course, absurd to subdivide the solution of

the right triangle into five cases, since all cases are

solved by the same method, viz., the writing and solv-

ing of the equation which connects the two given parts

and the required part. Thus, if we employ the usual

notation, and let Z C= 90 ,
we would find b in terms of

* A student who can devote only 8 or 10 lessons to the study of trigo-

nometry may acquire in this time a fair knowledge of the most practical

parts of the subject, if it is largely devoted to the study of the right tri-

angle and its applications.
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A and c, by writing the equation which connects b
y c,

and A, viz. :

cos A = -
. . \ b = c cos A.

Such triangles should at first be solved without the use

of logarithms, in order to overcome only one difficulty

at a time, and to avoid the misconception that trigo-

nometric work is absolutely connected with logarithms.

At present, when the use of calculating machines is so

general, the solution of triangles without logarithms is

more important than formerly.

After the solution of right triangles is thoroughly

mastered, this method should be applied to practical

problems, as the finding of heights, distances, etc. It

should also be applied to the solution of figures, which

can be decomposed into right triangles, as the isosceles

triangle, the regular polygon, the oblique triangle, etc.

Quite complex figures may thus be attacked, if we bear

in mind that in these cases a series of right triangles

has to be formed such that the solution of each makes

possible the solution of the next.

For instance, if in oblique triangle ABC,
AB or c, Z A, and Z. B are given, and the alti-

tude CD is required, the first right triangle

must necessarily contain the side c and one

adjacent angle, e.g., A A. Hence dropBE±AC
and solve A ABE. Thus we find BE = c sin A,

which enables us to solve the adjacent AECB.
Since C = 180 - (A + B), it follows that

n£ _ BE c sin A
sin C sin (180

- A - B)
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Finally we can solve A CDB, resulting in the required value,

CD = 2?Csin B = ^in^sini^
sin {A + B)

Similarly we may solve by means of right triangles the problem
of finding the height CD of an object C above two points A and B,

if A, By and C lie in a verti-

cal plane and angles A and

B and distance AB are

known.

The first right triangle

must necessarily containAB
and A A. Hence draw AE
JLBC, and find AE = AB sin B. Since /.ECA = /.A- /IB, we

are now able to solve AAEC, and we find

AC= AE AB sin B
sin (A - B)~ sin (A - B)'

Finally AACD produces

CD = ACsmB = ABs[nAsinB .

(sinA- B)

In problems of the preceding kind it is advisable to

determine the final answer at first in algebraic form,

and if numerical values are required to substitute num-

bers in the general answer. The substitution of num-

bers at the very beginning is not only awkward, since

the writing of 20 4' 16" is more complex than the

writing of £, but it frequently involves unnecessary

calculations. Thus, in the preceding problem the find-

ing of the numerical values of AE and AC is unneces-

sary.

Another illustration of the method of solving complex figures by

means of a chain of right triangles is the analysis of the addition

theorem :

sin (x + y) = sin x cos y + cos x sin y.
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To find sin (x + y) we may represent this quantity by a line, /.*.,

we may make OC —
i, and draw CD 1.0A, then CD represents the

unknown line, while OC is the only given line. In regard to the

angles we must bear in mind that

we are dealing not with given angles

themselves, but with angles whose

functions are given.

The first triangle must contain

OC and the only adjacent angle
whose functions are known, viz., y.

Hence, drop CE JL OB. The right

triangle OCE produces the values

CE — sin_y, and OE = cosy. Before

proceeding, we have to survey the

diagram and determine all angles whose functions are known (com-

pare Chapter XI). Such angles are CFB = OFD — 90 — x, and

Z FCE = 90
- Z CFB = x.

To construct a right triangle which contains CE, we must associ-

ate this line with Z FCE, which is the only adjacent angle. Hence,
draw EH 1. CD and find the values CH — cos x sin y and EH =
sin x cos /. Similarly the line OE must be associated with Z.x,

i.e., we drop EG±OA, and determine the values of OG and EG.

Obviously the required line CD equals CH + EG, which leads to

the required equation.*

* A very short proof of the addi-

tion theorem may be based upon the

fact that the sides of A ABC may
be represented in the form BC =

d sin A, CA = d sin B, and AB =

d sin C = d sin {A + B).

Drawing CD ± AB, we have :

AB = BD + DA,

or d sin (A -\- B) = d sin A cos B

+ d cos A sin B.

:. sin (A + B) = sin A cos B +
cos A sin B.

In a similar manner the next dia-

gram produces sin (A — B).
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Expressing one function in terms of another.— While

this is frequently done by means of the fundamental

formulae which connect the functions, a more practical

way is based upon the right triangle, as illustrated in

the following examples. It is true that the results thus

obtained relate directly only to angles less than 90 ,
but

the proper modification of the sign makes the results

applicable to all quadrants.

Ex. 1. Given sin A —
f, required all other functions of A.

If in right triangle ABC, we make BC = 3, and_
AB - 4, then A

equals the given angle. Obviously AC = Vj*

Therefore, all functions can be determined by inspec-

tion of the diagram.

Ex. 2. Given tany4 = 2, required all other func-

tions of A.

Here we make BC = 2, and AC = 1 . Then AB
= V5, and all functions can be read from the diagram.

Ex. 3. Given sec A = —
,
find the other functions of A.

Here AB = m, AC
' = n, and hence BC = vW2 - «2

.

Ex. 4. Given esc A = m, required cos A. Make AB = m,

V;«2 - 1

BC = 1. Hence AC = Vm2 -
i, and cos A

B

COT A

Ex. 5. Express all functions in terms of cot A,

Let AC = cot A and BC = 1. Then AB = Vcot2 A + i
t
and

all other functions may be determined by inspection.
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Methods for proving identities.— The simplest method

for demonstrating trigonometric identities involving only

one angle reduces them to identities involving the three

sides of a right triangle, which latter identities . are

proved by the usual algebraic method. This method

is often lengthy, but quite easy for the beginner.

Thus to prove that

sin A .1 +'cos/? .

H —.
—-— = 2 esc A,

1 + cos A sin A
we express the functions involved as quotients of lines, i.e. :

- '+"
cc

, f = 2 - . This is true if

.+* i
a

c c

-£-+£±i»££. This is true if

c + b a a

a2 + c*+ 2cb + 62 = 2c2 + icb. This is true if

a2 + P = c2.

But the last equation is true, hence the given identity is proved.

All fundamental formulae which connect trigono-

metric functions, as sin2 A + cos2 A =
1,

- = tan^4,
cos A

etc., may be proved by this method.

The preceding method may be simplified by making
one of the sides of the right triangle equal to unity,

usually that one which occurs frequently in the denom-

inator.

Thus in the preceding example we would make c — i. Then the

identity would mean
a 1 4- a _ 2

1 + b a
~
a

which easily reduces to
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A method which usually leads to much shorter proofs,

but which requires a little more skill, expresses all func-

tions involved in terms of two functions (usually sine

and cosine). If this does not lead to a demonstration,

all functions are expressed in terms of one function.

In the above example, this method produces :

sin A 1 + cos A _ 2

1 + cos A smA sin^'

or sin2 A + (1 + cos A) 2 = 2 (1 + cos A) t

or sin2A + cos2A = 1 .

If the functions involved are not all functions of the

A
same angle A, but some are functions of —

,
or 2 A, or

2

3^4, etc., all functions have at first to be reduced to

functions of one angle.

Thus to prove

2 sin* + sin 2x = 2 sm *
,

I — COS X

sin 2 x must be expressed in terms of functions of x
y

i.e., we must substitute 2 sinx cosx for sin 2 x
t thereby

reducing the problem to one of the preceding kind.

Similarly to prove that

tan - + cot - = 2 esc x,22 *

X X
we must either express esc* in terms of -, or tan - and

cot - in terms of x.
2

Functions of angles greater than 90 .
— To express

the functions of angles greater than 90 in terms of
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functions of angles less than 90 , usually a large num-

ber of formulae are memorized.

If we remember that an angle AOB is usually sup-

posed to be generated by a counter-clockwise rotation,

and that hence OB is the terminal radius, and if we

X'

POSITIVE FUNCTIONS

denote XX\ i.e.
y
the produced initial radius, as ^r-axis,

we may reduce all functions by the following theorem :

A function of any angle = ± the same function of the

acute angle formed by terminal radius and x-axis.

The sign ± here does not indicate that both signs

are true, but that either + or — has to be selected. The

selection of the sign is made

according to the annexed diagram,

which gives the positive functions

for each quadrant. All other

functions are negative. Since the

positive functions of each quad-

rant are reciprocals of each other,

it is only necessary to remember

that the following functions are

positive: in quadrant II, the sine; in quadrant III,

the tangent; and in quadrant IV, the cosine.*

* Even these three parts need not be memorized if the student has a

clear conception of the representation of functions by single lines.
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Thus to reduce cos 245°, we consider that an angle of 245 lies in

quadrant III, and that hence the cosine is negative. Since the acute

angle formed by terminal radius and ar-axis is 65 ,
it follows that

cos 245
° = — cos 65 °.

Inverse trigonometric functions. Inverse trigonometric

functions are of comparatively small importance to the

students of secondary schools. The understanding of

the meaning and the use of symbols like sin-1m
i
tan" 1 n*

etc., is increased by reading them always as "
angles."

Thus read

sin-1 J as "the angle whose sine *=»
£."

tan_1 ^r as " the angle whose tangent mxi
%

This will enable the student to solve many of the sim-

pler problems without any special method, e.g. y
the find-

ing of the following expressions : sin"1
\% cos" 1

\V3,
sin (tan

-1
1), sec (tan"

1
ti), etc.

For more complex cases, it is advisable to introduce

a symbol for the angle whose function is represented.

Thus to find

tan (2 tan"1
«), (1)

let tan"1 n =» A, (2)

then tan A — n.

Therefore tan (2 tan"1
ri) m tan 2 A

2 tan A
"
i-tanM

2 n

i-n*

The symbol sin"1™ is rather unfortunate, since it may mean

(sin m)~l
.
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Line (2) is typical for the substitutions that have to

be made in such examples.

To illustrate examples involving two angles, let us find

tan ( sin'
1—= + tan" 1 -

).

\ V< 3/V5

Let sin"1 —- = A, then sin A =—-,

V5 V5

and tan"1 - = B, then tan B = l.

3 3

tan (sin"
1

-^ + tan
- 1-

)
= tan (A + B)

\ V5 3/

tan A + tan B
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metric functions, take the tangent (or other function) of

both members. Thus to prove

tan"1 2 + tan" 1 3 = E + tan"1^
4 5 4 19

take the tangent of both members, or prove that

tan f tan
_12 + tan" 1^

]
= tan (- + tan"1—

).

Both members simplified produce the result \\. Hence

the identity is true.

^-"V
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