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PREFACE,

This work is not a pure nor an applied mechanics, but a theo-

retical mechanics for students of engineering, and in accordance

with the usage of some German writers, the title "Technical

Mechanics" has been given to it.

On the theoretical side, practically all the subjects treated

have a direct bearing in engineering problems. Little atten-

tion was paid to experimentation, principally because the

author's own students come to him after having completed a

laboratory course in elementary mechanics. In general, the

theory in each chapter has been grouped together and separated
from the applications. The principal equations and formulas

are set in bold-faced type.

On the applied side, no attempt was made to present fully

any one subject, as the analysis of trusses, friction, balancing
of rotating systems, etc., for the object in view was the illus-

tration of the use of principles of mechanics and not treatments

of roof-trusses, friction, balancing, etc. However, a sufficient

number and the proper kind of examples have been included,

it is believed, to give to the student a working knowledge of

the subject.

In Statics, especially, a distinctive feature is the nearly
coextensive use of graphical and algebraic methods. This is

due to the author's opinion that it is unwise to present graphical
and analytical statics as separate courses, at least to beginners.
The treatments of composition and equilibrium of forces are

separate. This arrangement is largely due to the author's

desire to develop the conditions of equilibrium for the different

Hi
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IV PREFACE.

classes of force systems consecutively and to get all the prin-

ciples of equilibrium together. The examples on the applica-
tion of the principles of equilibrium are set off in a separate

chapter, number VI. No attempt was made to arrange them
in accordance with the orders of Chapters II and V. On the

contrary, such an arrangement was avoided, and the entire aim

was to emphasize the fact that there is a general method for

solving the ordinary problems of Statics proper and that it con-

sists principally in
**

applying" conditions of equilibrium.

Kinematics is treated mainly as a preliminary to Kinetics,

but harmonic motion is discussed more fully than usual in

works of this kind.

In Kinetics, D'Alembert's Principle is used considerably. In

spite of the fact that it has been described as clumsy and old-

fashioned, the author believes that the use of the principle in

all but simple cases is decidedly helpful, and besides its use

makes graphical methods possible.

As to "mass and weight," what has been called the physicist's

usage is followed, that is, mass means quantity of matter and

weight the Earth's attraction. The author retains, however,

the familiar equation m = W^g, and as holding not only in

gravitation systems of units but in all systems in which "unit

force gives unit mass unit acceleration." Only such systems
are used herein, and then the familiar equation F=ma always
holds. This of course requires recognition of special units of

mass in gravitation systems. The author has succeeded best

with his classes in this matter by doing more than defining these

units—he has been using a name for one of them, the
"
English

engineers' unit" (equal to 32.2^ pounds). So strongly does

he feel that names are helpful in this instance that he has ven-

tured to put them into print. The names herein used are "gee-

pound" and "
geekilogram," denoting 3 2 . 2 ± pounds and 9 . 81 ±

kilograms respectively. They were adopted for their descrip-

tiveness and as better than "matt" and "ert.," the only other

terms proposed in this connection so far as the author is aware.

For the information of any instructor who may consider

using this book as a text, the following modifications and abridg-

ments are pointed out: Chapters III and IV may follow Chapter
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VI, Chapter V may be taken simultaneously with Chapter II,

and Chapters III, IV, and XV, and parts of all other chapters

may be omitted without serious derangement of the course.

In his work the author consulted especially the books of

Profs. L. M. Hoskins and John Perry. He is especially indebted

to Prof. C. H. Burnside of this University for valuable assistance

on Statics.

Madison, Wis., September, 1903.

PREFACE TO THE SECOND EDITION.

Several additions and changes have been made; the prin-

cipal additions are: appendixes E and F, articles 87 and D 15,

and an explanation of principal symbols, page 409. All errors

detected in the first edition have been eliminated.

September, 1904.
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TECHNICAL MECHANICS.

INTRODUCTION.

1. Nature of the Subject.
—Mechanics, broadly defined, is

the science which treats of motion. It is a natural science, and

not a branch of mathematics as the student is apt to infer from

his observation that mathematics is extensively used in the

subject. Its foundations consist in a few grand generalizations

from experience, such as Newton's Laws of Motion; the super-

structure consists in the deduction of the logical consequences
of those generalizations.

2. Division of the Subject.
—The following divisions may

be made:
, V ,, V . ( Kinematics

r
(I) Mechanics

| (Kinetics
(Dynamics

| g^^^j^^

Kinematics treats of methods for the description of motion.

Dynamics deals with the circumstances of motions, such as their

causes, etc. Kinetics embraces that part of dynamics which

deals with variable motion, and Statics that part dealing with

uniform motion.*

The above classification and order is usually followed in

modem works on pure mechanics, and is no doubt the logical

one.

^

r Rigid Solids

(.) Mechanics of ]^fS°"'^«
f 1^

Gases

The general principles are the same for these latter branches,

but there are special ones and special methods for each branch
;

* In a treatment of mechanics on the plan outhned, it would develop
that the principles relating to bodies at rest are included in Statics.
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thus it is convenient to treat them separately. The present
volume deals with principles commen to all these branches, but

relates especially to the first one. It is the practice in most

American schools to present the mechanics of non-rigid solids,

liquids, and gases in separate courses, the first two under the

titles of Strength of Materials and Hydraulics respectively, and

the last in connection with Thermodynamics.

3. Technical Mechanics.—By this term is meant a presenta-
tion of the general principles of mechanics with special refer-

ence to their application in the fields of engineering.

Although the order of treatment outlined in the first division

of the subject (art. 2) is the logical one, another is followed

herein. This is the historical order: Statics, Kinematics, and

Kinetics. Statics as presented also occupies a more important

part than in the outline above, and is not limited by the pre-

ceding definition; it deals especially with principles and appli-

cations relating to bodies at rest.

Since the logical order is not followed, several principles

appear in the early pages which are not fully explained or justi-

fied until later.

4. Two Methods of Analysis.
—They are called the graphical

and the algebraical, or analytical.

In the first method, the quantities under consideration are

represented by lines and the analysis is wholly by means of

geometrical figures. In calculations by this method leading to

numerical results the figures are accurately drawn to scale.

In the second method the quantities under consideration are

represented by symbols, and the analysis is by ordinary algebra.

Calculations are carried out by arithmetic.

The graphical method finds its best application in statics,

though it is advantageous in the applications of kinematics to

mechanisms. Statics is often treated entirely by one of the

two methods, such a treatment being known as graphical or

analytical statics, as the case may be; in this book both methods

are employed. Some discussions and solutions are given by
both methods by way of comparison, the others by that method

which is the more suitable.



STATICS.

CHAPTER I.

FORCE.

§ I. Preliminary.

5. Force Defined.—Bodies act upon each other in various

ways, producing different kinds of results. Those actions

which influence the motion of bodies are now to be considered.

Definition.
—An action of one body upon another which

changes or which exerted alone would change the state of the

motion of the body acted upon is called a force.

We say that a force is applied to a body, a force is exerted

upon a body, a force acts upon a body, etc. The last expression
is faulty and misleading; for, since force is the name for a cer-

tain kind of an action, the expression might be rendered thus:

an action acts upon a body. Now it is not an action which acts,

but some other body. The expression criticised is, however,
a current one and is used in this book.

Our first notions about force are founded on our experience
with forces exerted by or upon ourselves. From this experi-

ence we have learned that a force has magnitude, direction, and

place of application.

6. Action and Reaction.—When one body exerts a force

upon another, the latter also exerts a force upon the former,

and the two forces are equal in magnitude but opposite in

direction. This fact is often referred to as the principle of

''action and reaction'' the phrase being an abbreviation of

Newton's third law of motion. By "action" is meant one of

the forces, and by "reaction" the other.

7. Force at a Distance and Force by Contact.—This is a

classification for convenience and is probably not based on fact.

Gravitational, electrical, and magnetic forces have been

3



4 FORCE. [Chap. I.

called actions at a distance, the force between the bodies con-

cerned being exerted without their Contact and, as was formerly-

supposed, without any material connection between them. It

is now known that the force between two electrified bodies

depends upon the medium in which they are placed, which is

proof that the medium has to do with the exertion of the force

by one body upon the other. Even gravitation, it is be-

lieved, is not a true action at a distance, and "the earth and
a stone do not strictly draw each other together, but are

pushed together by something which extends from one to the

other." But apparently these forces are actions at a distance,

and they will be so called.

Pressure of the atmosphere upon any object, the force of a

hammer blow upon a nail, etc., are forces by contact. The

place of application of a contact force is the surface of contact

between the bodies concerned.

8. Distributed and Concentrated Forces.—This is a classifi-

cation for convenience and is not in accord with fact.

A distributed force is one whose place of application is a surface

or a solid. For example, the water pressure on a ship, the place

of application being the wetted surface; the attraction of the

earth upon a stone, the place of application being the solid

defined by the stone; etc. All forces are really distributed

forces.

A concentrated force is one of finite magnitude whose place

of application is a point. Such a force is imaginary since no

actual (finite) force can be applied at a point, but there are

actual forces whose place of application is very small and which

may be regarded as concentrated forces. The conception is

useful in developing principles relating to actual forces. Thus,
as just stated, many actual forces are practically concentrated

and may be treated as such, and a distributed force is regarded
as consisting of a great number of concentrated forces.

The line of action, or action line, of a concentrated force is a

line parallel to its direction and containing its point of applica-

tion. Note the distinctions between the terms action line,

direction, and sense. To illustrate, imagine a pull exerted upon
a sled by means of a single cord. The action line of the force is
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the line determined by the taut cord, its direction is upward
and to the right 30° with the horizontal, and its sense is upward
and to the right, not downward and to the left.

9. Specification of a Concentrated Force.—A concentrated

force is completely specified by its magnitude, direction, and

application point. It is explained later that the effect of

such a force applied to a rigid body does not depend upon its

application point, but only on its magnitude, action line, and

sense, which are therefore called the essential characteristics of

a force (as regards rigid bodies).

10. Graphical Representation of a Force.— Since a force

has magnitude and direction, it is a vector quantity;* the

magnitude and direction of a force may therefore be represented

by a vector—the length of the vector repre-

senting to some scale the magnitude of the -

force, and the direction of the vector giving

the direction of the force. If the force be
A B

concentrated, the vector may also represent >

the action line, but it is convenient to represent
^^^' ^•

the action line separately. Thus suppose that the irregular

outline in fig. 1 represents a body to which a force is applied
at P horizontally to the right. The vector AB represents
the magnitude and direction of the force, and a horizontal line,

indefinite in length through P, its action line.

If the vector were drawn through P it would serve also to

locate the action line, but representation by two lines is con-

venient especially when many forces applied to the same body
are under consideration. The part of the entire figure in which

the body is represented and the action lines are drawn is called

the space diagram, and the part in which the vectors are drawn
is called the vector diagram.

11. Notation.—In the graphical analysis, each vector and
the corresponding action line will be marked by the same letters

a capital at each end of the vector and the same small letters,

one on each side, at the action line as in fig. i. Reference to a

force in the text will be by capital letters; thus ''the force AB''

* See Appendix A for brief discussion of vectors.
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means one whose magnitude and directicn are represented by
AB and whose action line is ah. *

In the algebraic analysis, a force will be denoted by a capital

letter, which will also stand for the magnitude of the force.

§ II. Measurement of Force; Mass and Weight.

12. Mass.—By mass of a body is meant the quantity of

matter in it. There are several independent units of mass in

use; only two will be described here.

The "British unit" is the quantity of matter in a certain

piece of platinum deposited in the Office of the Exchequer,
London

;
this unit is called a pound.

The "French unit" is the quantity of matter in a certain

piece of platinum deposited in the Palais des Archives, Paris;

this unit is called a kilogram.

Copies, more or less exact, of these standards and multiples

and submultiples of them are in common use especially for the

measurement of quantity of matter in trade.

13. Units of Force.—A gravitation unit of force is a force

equal to the Earth's attraction on a unit mass.

Gravitation units are not constant with regard to place, for

the Earth's attractions on equal masses at different places are,

in general, not equal; in fact, the attractions are in the ratio of

the values of g in the formula

^ = 32.0894 (i +0.0052375 sin2/)(i
—
0.0000000957 ^)

computed for the two places, / denoting latitude and e eleva-

tion above sea level in feet. The extreme variation is between

the attractions at a high elevation on the equator and at the

pole; this variation is but 0.6 per cent, while for points within

the United States the maximum variation is about 0.3 per cent.

Ordinarily no account need be taken of the differences in the

gravitation units of force employed at different places, for errors

introduced into engineering calculations by this variation are

practically always negligible.

It is customary to call any gravitation unit of force and the
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unit mass on which it is based by the same name.* Correspond-

ing to the above-described units of mass we have then

the unit of force called a pound, which is a force equal to

the Earth's attraction on a pound mass, and

the unit of force called a kilogram,^h.\Qh is a force equal

to the Earth's attraction on a kilogram mass.

An absolute unit of force is one whose value is independent
of time or place. Several such units are described later.

14. Measurement of Force.—The lever balance is primarily

a force-measuring device, and it is the one commonly used for

measuring forces. The force to be measured is applied at one

end of a lever or system of levers, and the Earth's attraction on

a body of known mass, m pounds say, at the other, the mass

being such that the two forces balance. If the ratio between

two such forces (determined once for all by the balance-maker)

is w, then the magnitude of the force being measured is nm

pounds. As the reader knows, the balance-maker provides that

the numerical value, nm, may be read off directly. It should be

noticed that a lever balance measures forces in terms of a gravi-

tation unit.

By means of lever balances, engineers measure forces applied
to materials in testing their strength, and usually also, with a

slight indirection, the "brake resistance" when testing engines
and other motors.

The spring balance is another force-measuring device. The
force to be measured is applied to the spring so as to stretch it

merely. The force corresponding to each amount of stretch,

within the range of the spring, having been determined by the

maker, the magnitude of the force being measured may be in-

ferred from the stretch. As the reader well knows, the maker

provides that the numerical value of the force may be read off

directly. In theory at least, forces measured with a spring

* Such usage is apt to confuse the beginner, and, when necessary for

clearness, we shall add an explanatory word; thus, 'pound mass' or

'pound force.' The word ' second' is used in a closely analogous way.
It is the name for two different units, one of angle and the other of time,
and the latter is defined with reference to the first. To be clear, we
often say second of arc or second of time, as the case may be.
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balance are measured in terms of a gravitation unit for the place
at which it was graduatea. For, consider the theory of the

graduation of a spring balance: a body of known mass, a pound
say, is suspended from it, and the position of the pointer on the

spring is scribed on the scale
;
the position is marked one pound

(force), for it corresponds to a stretch due to a pound force;

then other bodies whose masses are multiples or submultiples
of the unit mass are successively hung from the balance and the

scale is marked correspondingly.
For measuring some forces the spring balance is better

adapted than the other. Engineers use it to measure the pres-

sure of the steam in a running engine, the pull of a locomotive,

etc.

15. Weight.—By weight of a body will be meant the Earth's

attraction upon it. Weight as here defined is a force and must
be measured in force units. It is customary to express weights
in gravitation units.

As before stated, the weight of any body changes slightly

with change of its locality. However, if it is expressed in a

gravitation unit the numerical value of the weight remains the

same, for the relative changes in the weight and the unit are

equal. An analogy is the measurement of the length of an iron

rod by a standard of the same material at two different times,

the temperature having changed during the interval. The

length of the rod has changed, but the numerical value as deter-

mined by the iron standard remains constant, for the relative

changes in the lengths of the rod and standard are the same.

If the weight of a body is expressed in an absolute unit, the

numerical value will change just as the weight changes if the

body be transported.

A lever balance, then, will give the same numerical value for

the weight of a body at all places, while a spring balance, if

sufficiently sensitive, will show the true variation in its weight.
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§ III. Force Systems.

1 6. Definitions.—Any number of forces collectively con-

sidered is called a system of forces or a force system.
The forces of a system are called coplanar when their action

lines are in the same plane, and non-coplanar when they are not

in a plane.

The forces of a system are called concurrent when their action

lines intersect at a point, and non-concurrent when they do not

so intersect.

The forces of a system are called parallel when their action

lines are parallel, and non-parallel when they are not parallel.

Force systems may be described in accordance with the above

definitions, thus: concurrent systems, non-coplanar parallel

systems, etc., according as the forces of the system are con-

current, non-coplanar and parallel, etc.

A system of two forces which are equal, parallel, opposite in

sense, and have different action lines is called a couple,

17. Classification of Force Systems.
—A classification may

bemade in various ways. In Chaps. II and V the treatment is

based upon the following classification:

,n . i Parallel
Concurrent

j Non-parallel
Coplanar { ^ r» iT t

( Non-con-current j J,^^^"^^ ,, ,^

( Non-parallel

(
Concurrent

Non-coplanar "{ ^^ f Parpllpl^
( Non-concurrent \ f

^raiiei
^

( Non-parallel



CHAPTER II.

EQUIVALENCE OF FORCE SYSTEMS.

§ I. Preliminary.

1 8. Definitions.—Equivalent force systems are such as may
be substituted for each other without change of effect.

The resultant of a force system is the simplest equivalent

system. The resultant of a system acting upon a rigid body
consists of either one or two forces, as will be shown later. It

follows from the above definitions that two equivalent systems
have the same resultant. The components of a force are any
forces whose resultant is that force.

Composition of a force system is the process of finding a

simpler equivalent system. Finding the resultant of a sy^em
is the most important case of composition. Resolution of a

force system is the process of finding a less simple equivalent

system. Finding components of a force is the most important
case of resolution.

19. Principle of Transmissibility.
— The effect of a force

applied to a rigid body is the same for all application points in

its action line. This follows from the equations of motion of a

rigid body (art, 242)^ for they are independent of the application

points of the applied forces.

This principle may be roughly verified by experiment with

the apparatus represented in fig. 2, which consists of a body
I suspended from two spring balances.

The springs are elongated on account of

the weight of the body, and if a force,

] as F, be applied at A
,
the springs will

If suffer additional elongations which in a

Fig. 2. way are a measure of the effect of the

applied force. If the application point of F be changed to B
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or C, the spring readings will not change, hence the effect of F
has not changed.

20. Graphical Composition of Two Concurrent Forces.—
The Parallelogram Law.—If two forces acting upon a rigid

body be represented by OA and OB, then their resultant is

represented by the diagonal OC of the parallelogram OABC
(see fig. 3).
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opposite to Fy So lay off on the board OA and OB equal (by-

some scale) to F^ and F^, and ^complete the parallelogram
OABC. Then OC should (according to the law) represent the

resultant of F^ and F^, i.e., it should represent a force equal and

opposite to Fg and it will be found that it does.

EXAMPLES.

1. The large square (fig. 6) represents a board 3X3 feet

upon which five forces are applied as shown. Determine com-

pletely the resultant of the 4- and 5-lb. forces.

2. Determine completely the resultant of the 7- and 8-lb.

forces.

Q

8 lbs. '^ 4 lbs.

6 lbs

(a)

Fig. 6.

21. Algebraic Composition of Two Concurrent Forces.—
Let P and Q (fig. 7) be two concurrent forces and a the angle
between their action lines. Of course there are two angles

here; the one taken is that between the parts of the lines

on the sides of their intersection toward which the arrows

point.

The lines AB and 5C represent the magnitude and direction

of P and Q respectively; then AC represents the magnitude and

direction of their resultant. The action line, parallel to ACy is

marked i^ Since the angle C5Z> = a,

and

AC^ =^AB^ + BC^ -^2AB BC cos a.

tan CAD =BC sin a/{AB+BC cos a).
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If R denotes the resultant and 6 the angle between R and P,

then, since AC represents the value of R and the angle CAD
equals 6,

R2 = p2+Q2+2PQ cosa (l)
and

tan ^ = Q sin a:/(P + Q cosa). ... (2)

Special cases: If a = 90°, i^=(P2+g2^i and tan d=Q/P,
Describe the resultant if a=o°; if a = 180°.
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EXAMPLES.

1. Suppose that a force of 9 Ibs/acts at A (fig. 6), perpen-

dicularly to the plane of the board and outward. Determine

the resultant of the 9-, 4-, and 7-lb. forces.

2. Change the sense of the 9-lb. force and solve ex. i.

24. Resolution of a Force into Two Concurrent Components.—It may be performed by applying the triangle or parallelo-

gram law inversely. Thus, let it be required to resolve the

force AB (fig. 9), applied at P. Draw from A and B two lines

which intersect in any point C; then AC and CB represent

the magnitudes and directions of components of AB. The

action lines of the components must intersect on ab, and their

appUcation points must be rigidly connected with P. For, if

the two forces AC and CB be compounded, their resultant will

be found to be AB.

(a) (b)

Fig. 9. Fig. 10.

The problem just solved is indeterminate, for, C being any
point, there are an infinite number of solutions. If conditions

are imposed upon the components, the resolution is more or less

definite; for example, if in the above it had been specified that

the components should be horizontal and vertical, there would

be but one answer.

Rectangular Components, or Resolved Parts.—An important
case of resolution is that in which the angle between the com-

ponents is 90°. Each is called a rectangular component, or

resolved part, of the force. They can always be readily com-

puted. From fig. 10, it is plain that

the rectangular com- "1 fthe cosine of the

ponent or resolved ! _ j the magnitude of ) J acute angle be-

part of a force along f

~"

(
that force ) 1

tween the force

any line J [ and that line.

If the rectangular components of a force F are parallel to

coordinate axes, as x and y, they are called x- and ^/-components
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of F respectively, and will be denoted by Fx and Fy. If the

acute angles between the force and the x and y axes be denoted

by a and /? respectively,

and
Fa; = FC0SQ:

Fy =F cos
/?
= F sin a.

EXAMPLES.

1. Resolve the 5-lb. force of fig. 6, page 12, into two com-

ponents whose action lines are parallel to the 4- and 6-lb.

forces respectively.

2. Resolve the 5-lb. force of fig. 6 into two components

^

whose action lines are parallel to the 8- and 6-lb. forces.

3. Resolve the 8-lb. force of fig. 6 into two components one

of which is horizontal and the other 6.5 lbs. in magnitude.

4. Resolve the 6-lb. force of fig. 6 into two components
whose lines of action are horizontal and vertical respectively.

5. Resolve the 4- and 7-lb. forces of fig. 6 into horizontal and

t

vertical components.

25. Resolution of a Force into Three Non-coplanar Forces,—It

' may be performed by applying the parallelopiped of forces

inversely. Thus, let it be required to resolve the force repre-

sented by OD (fig. 11). Construct a

parallelopiped of which OD is a diag-

onal. The three edges intersecting at

O represent the components of OD; the

application points must be rigidly con-

^nected

to that of the given force.

The problem just solved is indeter-

minate, for any number of such paral-

lelopipeds may be thus drawn. If

conditions are imposed upon the com-

ponents, the resolution is more or less

r definite.

I Rectangular Components.
—An important case of resolution

is that in which the three components are mutually at right

angles. Each is a rectangular component, for the two com-
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ponents of OD (fig. ii), one of which is either OA, OB, or OC,
are at right angles to each other, as*OA and OA'.

If the three components of a force F are parallel respectively
to coordinate axes x, y, and z, they are called %-, y-, and 0-com-

ponents of F, and will be denoted by F^, Fy, and F^ respec-

tively. If the acute angles between the force F and the x, y,

and z axes be denoted by a, /?,
and f respectively,

F;,;
= F cos a, Fy=F cos /?, F^ = F cos

7-.

In some instances, it may be more convenient to determine these

components as follows: First resolve the given force into two

rectangular components one of which is parallel to one of the

axes; the other will be parallel to the plane of .the other two
axes. Then resolve the second component into two forces

w^hich are parallel to these two axes. For example, if OD
(fig. 11) be resolved first along the x axis, the first resolution

gives OA and OA'; the resolution of OA^ gives OB and OC.

Also,

OA =0D cos a, or Fx =F cos a;

OB = 04' cos
/?'
=OD sin a cos

/9',
or Fy =F sin a cos

/?' ;

OC = Oyl' cos
;''
= 0i) sin a cos

;-',
or F^ = i^ sin a cos

7''.

EXAMPLE.

Resolve each force acting on the cube in fig. 3S(c) into its x,

y, and z components.
26. Moment of a Force with Respect to a Point,— The

moment of a force with respect to a point is the product of the

magnitude of the force and the perpendicular distance between

its action line and the point. The perpendicular distance is

called the arm of the force with respect to that point, and the

point is called an origin or a centre of moments.

In the following, the moment of a force will usually be de-

noted by M, and the moment of a force with respect to an origin

by M^.
The moment of a force with respect to a point is a measure

of its tendency to rotate the body upon which it acts about that

point. For, if the body is fixed at that point but free to turn

about it in a given plane, any force in that plane will cause it
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to rotate about the fixed point. The amount of this tendency
is proportional to the magnitude of the force and to its arm with

respect to that point, and hence to the moment of the force with

respect to the point.

The Unit Moment.—From the definition of moment of a

force, it follows that the unit moment is the moment of a unit

force whose arm is a unit length ;
hence there are many units of

moments. We have no short names for any of them, but they
are called a foot-pound, inch-ton, etc., according as the units of

length and force are the foot and pound, or inch and ton, etc.

The Sign of a Moment.—Sign, plus or minus, is given the

moment of force according as it produces or tends to produce
counter-clockwise or clockwise rotation about the origin of

moments. In the following, the rotation is supposed to be

viewed from the reader's side of the printed page.

27. "Varignon*s Theorem."— The algebraic sum of the

moments of two concurrent forces with respect to an origin in

their plane equals the moment of their p
resultant with respect to that origin.

Proof : Suppose that the vectors marked

P and Q and R (fig. 12) represent two

concurrent forces and their resultant

respectively. Call the arms of the three

forces with respect to O, p, q, and r and

the angles between the action lines and a

perpendicular to OA, a, /?,
and respectively,

figure, it is plain that

P cos a+Q cos
/?
= i^ cos 6;

therefore P 0.4 cos a -h Q OA cos
/?
=i? OA cos 6,

Pp + Qq=^Rr.or Q.E.D.

Supply proof when is between P and R, or Q and R.

According to the theorem, the moment of a force equals the

sum of the moments of its x and y components ;
often it is easier

to compute this sum than the moment directly. When one

component passes through the origin, the moment of the other

equals that of the force.
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EXAMPLE.

Compute the moment of the 6-lb. force (fig. 6) about C
directly and from its horizontal and vertical components.

28. Moment of a Force with Respect to a Line.—If a foice

be resolved into components parallel and perpendicular to a

given line, the product of the magnitude of the perpendicular

component and the distance from its action line to the -given

line is called the moment of the force with respect to the line.

The line is called an axis of moments^ and the distance referred

to above is called the arm of the perpendicular component with

respect to that axis. Thus, suppose F (Fig. 13) is a force

acting upon a body, not shown, and AC and AB are its com-

ponents parallel and perpendicular respectively to the moment
axis OY. Then if YL is the perpendicular between 01" and

AB, the moment of F with respect to OY is AB- YL, or F^YL.

. Fig. 13.

The value of the moment does not depend on the point A
selected at which the force is resolved, for obviously the value

of Fj does not depend on A, and neither does the value of YL,

since YL equals the distance between OY and a plane parallel

to it through F, which distance is clearly independent of A .

Some special <:ases: (i) When the force is parallel to the

axis, its moment is zero; (2) when the force intersects the

axis, its moment is zero; (3) when the force is perpendicular
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to the axis, its moment is the product of the force and the

distance between it and the axis.

The moment of a force with respect to a line is a measure of

its tendency to rotate the body on which it acts about that line.

For, if a body is free to turn about the line, OF say, any force,

as AD, acting upon it will cause it to rotate. Now the com-

ponents of AD would produce the same effect upon the body as

does AD, but a component parallel to the axis would produce
no rotation and therefore the rotation effects oi AD and the

perpendicular component, AB, are the same. But the ten-

dency oi AB to produce rotation is proportional to AB and its

arm, hence to their product, or the moment of ^D.
The sign of the moment of a force with respect to a line is

taken as positive or negative according as the force produces
counter-clockwise or clockwise rotation about the axis of mo-
ments. The sign will depend upon the side from which the

rotation is viewed. If the axis is also a coordinate axis, the

rotation is' customarily viewed from its positive end.

A second method to compute the moment of a force with

respect to an axis: Resolve the force into three rectangular

components one of which is parallel to the axis ; then compute
the moments of the other two components with respect to

that axis, and add these moments algebraically; this sum is

the moment of the force itself. Thus, by this method, the moment
of F about OF is F^-Ax— Fz-Az. That this method and
the first give equivalent results can be shown thus : the moment
of the force by the first method F^ • YL is also the moment of

F^ about F, and the moment by the second method is the

algebraic sum of the moments of the components Fx and F^ of

Fj about Y'y hence, by Varignon's theorem,

F,'YL=F^'A^-F,-Az.

EXAMPLE.

Compute the moments of each force of fig. 38 {c) with

respect to the x, y, and z axes, die edges of the cube being 4 ft.

long.

29. Couples.
—

Definitions.
—Two equal and opposite forces

not coUinear are called a couple. By arm of a couple is meant

\
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the distance between the action lines of its forces. The moment

of a couple with respect to a point'in its plane is the algebraic

sum of the moments of its forces with respect to that point.

By the definition, the sign of the moment of a couple must

be the same as the sign of the algebraic sum. of the moments of

its forces. The sign of the sum is the same for all origins (see

proposition below) and can be seen at a glance for an origin
between the forces or on the action line of one of them. The
sense of a couple refers to the sign of its moment. We speak of

positive and negative sense or counter-clockwise

and clockwise senses. By aspect of a couple is

meant the aspect
* of its plane.

^*^ e'i^^'^
*^

Proposition.
—The moment of a couple is the

same for all origins, and it equals the product of

^o'" the magnitude of one of the forces of the couple
Fig. 14. and the arm. Proof: The moments of the couple

of fig. 14 with respect to O', O", and O'" are respectively,

F-0"A+F-0''B =F'AB,

and F'0"'A-'F'0'"B=F'AB.

Since 0', O", and 0'" represent all possible origins in the plane,

the proposition is proved.

30. Graphic Representation of a Couple.
—The moment of a

couple, its aspect, and its sense may be represented by a vector.

The length of the vector is made equal, by some scale, to

the moment of the couple, it is drawn normal to the plane of

the couple, and its arrow is made to correspond with the sense

of the couple. This correspondence depends upon some arbi-

trary rule, such as the following: the arrow on the vector points

toward the place from which the rotation of the couple appears

counter-clockwise. The vector thus representing a couple will

for brevity be called the vector of the couple.

For example, the couple in the upper face of the parallelo-

*
Aspect of a plane refers not to its position, but to its direction; it

is conveniently specified by the direction of a line normal to it.
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Vector scale: 1 in.=100 ft. lbs.

Fig. 15.

piped of fig. 15 is represented by the vector AB or CD. Each
vector also represents any other

couple whose moment, aspect, and

sense are the same as the moment,

aspect, and sense of the upper couple;

the couple in the lower face is such

a one.

It is shown in art. 59 that couples

whose moments, aspects, and senses

are the same are equivalent. It is

therefore consistent to represent by the same vector all couples
whose moments, aspects, and senses are the same. Further, it

follows from art. 242 that the effect of a couple applied to a

rigid body depends only upon 'its moment, aspect, and sense,

which are therefore the essential characteristics of a couple.

Hence we may say that a vector completely represents a couple,

although it does not give the forces or arm of the couple nor the

position of its plane.

31. Resolution of a Force into a Force and a Couple.
—

Proposition.
—^A force may be resolved into a force acting

through any arbitrarily chosen point and a couple.

Proof: Let F (fig. i6a) denote the force to be resolved, and
P the chosen point, a distant from F. Imagine two opposite
forces equal and parallel to F introduced at P (fig. 166). Ob-

viously the three forces of this figure are equivalent to the given

force, i.e., they are components of it. But the three forces may
be grouped into a force at P and a couple.

Observe that the component force has the same magnitude
and direction as the given force, and that the moment of the

component couple is the same as that of the given foi^ce about

the chosen point.
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Since couples whose moments, aspects, and senses are the

same are equivalent, the force F (iig. i6a) is equivalent to F
of Fig. 1 6c and the couple there represented, provided that its

moment equals F-a.

EXAMPLE.

Resolve the 8-lb. force (fig. 6) into one acting at B and a

couple; into one acting at C and a couple.

§ II. CoLLiNEAR Forces.

32. Composition.*
—Let F^, F^, F^, etc. (fig. 17), denote the,

forces to be compounded. From art. 21

f-<i
—
^-^-
—

)> > > it follows that the resultant of those

forces of the system having the same

sense is equal to their sum, that is,

2 ^v / -^i

Fig. 17.

the resultant of F^, F^, F^, etc., or R\ =F^+F^-\-F^+ . . . ,

and

the resultant oi F^, F^, F^, etc., or R",=F^-YF^-^-Fq^- ....

Also, the resultant of the system, or R, equals the difference

between R' and R" . Hence if R be given sign, positive or nega-
tive according as it acts right or left,

R=R'-R'' = ^F,+F,+F,+ ...)-{F,+F,+F,+ ,,.)
=F,-F,+F,-F,+ ..,

The action line of R is of course the same as that of the given
forces.

§ III. CoPLANAR Concurrent Non-parallel Forces.

33. Graphical Composition.
—Let AB, BC, CD, and DE

(fig. 18) be the forces to be compounded. By the triangle

law (art. 20), compound AB and BC and replace them by

* In the following articles on composition it is assumed that the

force systems are applied to rigid bodies.
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their resultant AC; compound AC and CD and replace them

by their resultant AD; finally compound AD and DE and re-

place them by their resultant AE. By successive replacements,

the given system has been reduced to a single force, AE, which

is therefore the resultant sought. Notice that the lines AC, AD,

ac and ad are not necessary in a solution; they are used here

only for demonstration purposes.

34. Force Polygon.
—The figure formed by drawing in suc-

cession lines representing the magnitude and direction of the

forces of any system is called a force polygon for those forces,

or for the system. In fig. 18, ABCDE is a force polygon for

the given system. Several force polygons can be drawn for any

system, one for each possible order of drawing the lines; thus,

for the system compounded in the preceding article twenty-four

polygons can be drawn, no two alike.

Proposition.
—The algebraic sum of the components of any

system of coplanar forces along any line equals the component

along that line of a force whose magnitude and direction are

represented by the line drawn from the begin-

ning to the end of the polygon for the system.
Proof: Let ABCDE (fig. 19) be the polygon

for the system. The components of the forces

along the line A'C are, in magnitude and direc-

tion, A'B', B'C\ C'D\ D'E\ and that of a force

whose magnitude and direction are AE is repre-
sented by A'E'. From the figure, it is plain
that A'E' equals the algebraic sum of A'B', B'C\ C'D\ and
D'E'.

E' B' D'

Fig. 190
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35. Rule jor Composition.
—Draw a force polygon for the

forces; then a line from the beginrang w the end of it.' That
line represents the magnitude and direction of the resultant;

its action line passes through the common point of the action

lines of the given forces.

Examining fig. 18, it will be seen that the vector sum of the

given forces represents the magnitude and direction of the

resultant.

EXAMPLES.

^i. Determine the resultant of the forces represented in

fig. 6.

2. Solve the preceding example, taking the forces in a differ-

ent order in the force polygon.

36. Algebraic Composition.
— Let fig. 20(a) represent the

forces to be compounded and the body to which they are applied.

Resolve each force at the origin into its x- and ^-components,
and replace it by them; the resulting system is represented in

y

(a) (b) (c)

Fig. 20.

fig. 20(6). Next compound all the ^-components and replace

them by their resultant, ^Fx, and compound the ;y-components
and replace them by their resultant, -TF^; the resulting system
is represented in fig. 20(c). Now these three systems are equiva-

lent and have, therefore, the same resultant. If R denotes the

resultant and d its direction angle, from fig. 2o(<i) it is plain

that

cos d = IFx/R and sin ^ = JF^/R,

and the action line of R contains the common point of those of

the given forces.



§IV.] COPLANAR NON-CONCURRENT PARALLEL FORCES. 25

Referring to the figure, or to prop., art. 34, it is plain that

the resolved part of R along any line ^f^ p,

equals the algebraic sum of resolved parts

of its components along the same line, that

is,

Rcos^ = 2'F;,.

EXAMPLES.

1. Solve ex. i of the preceding article

algebraically.

2. Let Fj, F2, etc., fig. 21, equal 8, 4, /^'
^^'

6, 12, 7, and 5 lbs. respectively, and compute their resultant.

1 \



26 EQUIVALENCE OF FORCE SYSTEMS. [Chap. IL

It is therefore possible to choose the action Hnes of the com-

ponents so that those of OB and Bp, OC and CO, and OD and
DO coincide. Having so taken them, it is plain that OB and
BO, OC and CO, OD and DO, balance; therefore the system
of components reduces to ^O and OE. Finally, the resultant

of AO and OE is AE (art. 20), which is also the resultant of

the given system.

38. Funicular Polygon, etc.—The point O (fig. 22) is called

the pole of the force polygon. Lines OA, OB, OC, etc., from
the pole to the vertexes of the force polygon are called rays.

Lines oa,oh,oc, etc., are called strings, which, considered collect-

ively, are called a string, or funicular polygon.
If the notation for graphical statics (art. 11) be used, the

following rules for drawing the funicular polygon will be found

helpful, but the beginner should not depend entirely on them.

(a) The two strings intersecting on the action line of any
force are parallel to the rays drawn to the ends of the vector

corresponding to that force; or, the strings intersecting on mn
are om and on.

(b) A string joining points in the action lines of two forces is-

parallel to the ray drawn to the common point of the vectors

corresponding to those forces; or, the string joining points on
Im and mn is parallel to OM.

39. Rule for Composition.
—Draw a force and a funicular

polygon for the forces
;
then a line from the beginning to the end

of the force polygon, and a parallel one through the intersection

of the first and last strings of the string polygon. The first line

represents the magnitude and direction of the resultant, and

the second its action line. (The first and last strings are those

corresponding to the rays drawn to the beginning and end of the

force polygon.)
It is plain from fig. 22 that the vector sum of the given

forces represents the magnitude and direction of the resultant.

EXAMPLES.

Fig. 23 represents a board upon which several parallel forces

are applied. In each e?cample below determine completely the

resultant.
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1. The magnitudes of F^, F^, etc., are 40, 10, 30, 20, 50, and

15 lbs. respectively. Solve twice, drawing two funicular poly-

gons, starting them at different points.

2. The magnitudes of F^, F^, etc., are 20, 10, 30, 30, 10,

and o lbs. respectively. Solve twice, drawing two funicular

polygons using different poles.

40. The Resultant when the Force Polygon Closes.—In that

case, the beginning and end of the force polygon {A and E^

<
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the forces 67.9 lbs., hence the moment of the couple is 175.2
ft.-lbs. The sense is clockwise.

2. Solve the preceding example, taking the forces in a

different order in the force polygon.

41. The Principle of Moments.—The algebraic sum of the

moments of any number of coplanar parallel forces with respect

o

b b

b..

F
A —

^«-4

V\,
~1 d

o
~

\ .X --
—— o

Scale: lin.= 4ft.

^._ (a)

~~-~r^^^ o

^^^ Scale: lin.= 40U)8.

--^^ (b)

Fig. 24.

to any origin in their plane equals the moment of their resultant

with respect to the same origin.

Proof: Let the system be that represented in fig. 22. Re-

membering

that AO and OB are concurrent components oi AB,
" BO ' OC " " " "

BC, etc.,

and recalling also Varignon's theorem, we may write

moment of AB = moment of ylO + nioment of OB;
moment of -BC = moment of BO +moment of OC;
moment of CD = moment of CO +moment of OD;
moment of Z)£=moment of DO +moment of OE.

Therefore

2'(moments of AB, BC, CD, and DE)
= ^(moments of AO, OB, BO, OC, CO, OD, DO, and OE).



§IV.] COPLAN/lR NCN-CCNCURRENT PARALLEL FORCES. 29

But the moments of OB and BO, of OC and CO, etc., are equal
and opposite, hence

^(moments of A5, ^C, CZ), and Z)£)
=moment of ^O +moment of OE,

If the resultant is a single force,

moment oi A0 +moment of OE = moment oi AE\
if the resultant is a couple,

moment of AO + 0-E = moment of the couple (see art. 29).

Therefore, in either case, the sum of the moments oi AB, BC^
CD, and DE = th.e moment of their resultant. Proof may
readily be extended to a system of more than four forces.

42. Algebraic Composition.
—I. // the algebraic sum of the

forces is not zero, the force polygon does not close (art. 34);

hence the resultant is a force (art. 37). li F^, F^, etc., denote

the forces and R their resultant,

R= i'F,

and the sense of R is given by the sign of IF.
The action line may be determined by means of the prin-

ciple of moments; thus, if IMq denotes the algebraic sum of

the moments of the forces with respect to any origin O, and

a the corresponding arm of their resultant Rt

2'Mo
= Ra, or a = i'Mo/R.

iThe resultant must act on that side of O which will make the

sign of its moment the same as that of IMq.
II. // the algebraic sum of the forces is zero, the force poly-

gon closes (art. 34); hence the resultant is a couple (art. 40).

According to the principle of moments, the moment of this

couple equals the algebraic sum of the moments of the given

forces about any point.

EXAMPLES.

1. Solve ex. i, art. 39, three times, using each time a new

origin of moments.

2. Solve ex. 2, art. 39-, twice, using different origins of

moments.

3. Solve ex. i, art. 40.
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43. Two Unequal Parallel
Forages.

—This is a common case to
which the following special methods may be applied. Let P
and Q denote the forces, P the larger, and R their resultant.

^ o

Jr p ^^-^
'(a) (b)

Fig. 25.

When P and Q are alike in sense (see fig. 25a),

R =P + Q.

the sense of R is the same as that of the given forces,

X= Qc/R and y= Pc/R .

When P and Q are unlike in sense (see fig. 256),

R =P-Q,

the sense of R is the same as that of the larger force,

x= Qc/R and y= Pc/R.*

The student should prove the expressions for x and y and show
that R is correctly represented in the figure, i.e., that its action

line is between the forces in (a) ,
but beyond the larger force

in (6).

The following relations are sometimes convenient:

From either figure Px = Qy, therefore

PAC = QBC, or

AC/BC = Q/P;

hence the action line of the resultant of two parallel forces

divides any secant intersecting their action lines into two seg-

* It is plain from these equations that the smaller R is (P and Q
nearly equal) the greater x and y are. As P and Q approach equality,

they become more nearly equivalent to a couple; also R approaches zero,

and its arm with respect to any origin in the body to which P and Q
axe applied approaches 00

. Hence we arrive at the conception that a couple

is equivalent to a force of zero magnitude with an infinite arm.
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ments which are inversely proportional to the magnitudes of

those forces. Again,

P/BC= Q/AC=^{P + Q)/{BC-{-AC) = {P-Q)/{BC-AC),
or

P/BC^Q/AC^R/AB\
' hence the forces P, Q, and R are proportional to the distances

between the other two.

\
EXAMPLES.

1. Determine the resultant of F^ and F^ of ex. i, art. 39.

2. Determine the resultant of Fg and F^,

§ V. CoPLANAR Non-concurrent Non-parallel Forces.

44. Graphical Composition.
—First method. This consists

in compounding two of the forces, then their resultant and a

third force, that resultant and a fourth, etc., until the simplest

equivalent system has been found. Thus, let AB, BC^ CD,

\

I

Fig. 26.

and DE (fig. 26) be the forces of such a system. According to

art. 20,

the resultant oi AB and BC is AC,
;

" ** " AC '' CD "
AD,

and " '' '' AD *' DE " AE,

Therefore AE is the resultant sought.

It may happen that some of the intersections in the space

diagram which are necessary do not fall within convenient

limits. This is apt to occur when the action lines of the given
forces are nearly parallel. In such cases it is practically im-



32 EQUIVALENCE OF FORCE SYSTEMS. rCHAP. II,

possible to determine the action line of the resultant, and the

following method should be employed.
Second method. This is the same as that for the composi-

tion of coplanar non-concurrent parallel forces explained in

-^V
.——'"

-^^"Z

' (a) (b) E

Fig. 27.

arts. 37, T^'^, and 39, which the student should read in connection

with fig. 27.

EXAMPLES.

I. Let Fj, F2, etc., in fig. 28 equal 8, 4, 6, 7, 12, and 5 lbs.

respectively, and determine their result-

ant.*

2. Solve ex. i, drawing a second fu-

nicular polygon in the same space diagram

beginning it at some other point.

3. Solve ex. i, choosing a new pole

but employing the same space diagram.

45. The Resultant when the Force Poly-

gon Closes.—Just as in the case of parallel

forces, the resultant is a couple. In fact

the explanation in art. 40 may be read in connection with fig. 27.

46. The Principle of Moments.—The algebraic sum of the

moments of any number of coplanar forces with respect to any
origin equals the moment of their resultant with respect to the

same origin.

The proof given in art. 41, read in connecti9n with fig. 27,

applies to this proposition.

47. Algebraic Composition.—I. 7/ the algebraic sum of the

X and y-components of the forces are not both zero, the force

* Use scales not less than i in. =2 ft. and i in. =4 lbs.

Fig. 28.
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polygon for the system does not close (art. 34); hence the re-

sultant is a force (art. 44). Since

Rx = IFx and Ry = IFy,

R=(jF;'+iF;y,
sin d = iTy/R and cos = JF^/R,

6 being the direction angle of R measured from the x axis.

The action line of the resultant may be found by the principle

of moments. If IMq denotes the algebraic sum of the moments

of the forces with respect to any origin ,
and a the correspond-

ing arm of R,

im, = Rai, or a = i'M,/R.

The resultant must act on that side of O which will make the

sign of its moment the same as that of 2Mq.
II. // the algebraic sums of the x and y-components equal

zero, the force polygon for the system closes (art. 34); hence

the resultant is a couple (art. 45). According to the principle

of moments, the moment of the couple equals the algebraic sum
of the moments of the given forces about any origin.

For a system of couples, IF^ and IFy equal zero; hence

their resultant is a couple, and its moment equals the algebraic

sum of the moments of the given couples.

EXAMPLES.

I. Solve ex. i, art. 44, algebraically.

Solution: It will be convenient to tabulate the computation.

F
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The algebraic

-28.23 ft.-lbs.

nents, the ^^-components, and the moments,
sums of these are 3.40 lbs., —7.22 lbs., and

respectively. Hence

(i) i^ = \/3'.4o + 7l22 = 7.98 1bs.;

(2) the sense of R is downward to the right, the angle with the

^-axis being
sin~^ 7.22/7.98

= 64° 47';

(3) the action line of R is to the right of the centre of the board

a distance 28.2^/7.98
=

3.54 ft.

2. Solve the preceding example, choosing
a different origin of moments.

3. Let F^, F2, etc. (fig. 28), be 20, 14.14,

22.36, 15, 25, and o lbs. respectively. Com-

pute their resultant.

4. Let Fi, F2, and F^ (Fig. 29) be 10, 20,

and 30 lbs. respectively. Determine the re-

FiG. 29. sultant. the square being 4 x4 ft.

48. Reduction of a System to a Force and a Couple.
—

Proposition.
—Any system of forces can be compounded into a

force acting through any arbitrarily chosen point and a couple.

Proof: * Each force of the given system may be replaced by
a force acting through the chosen point and a couple (art. 31).

Suppose such a replacement made for each force; the resulting

system consists of a concurrent one and a system of couples.

But the resultant of the concurrent forces is a single force acting

through the chosen point (art. S3 01* 36), and the resultant of the

couples is a single couple (art. 47).

Computation of the force and the couple. Let F (fig. 30)

be one of the forces of the. given system
and O the chosen point. The components
of F are F' (applied at O) and the couple

FF^\ Observe now that the component
of F' along any line is the same in magni-
tude and sense as that of F along the same

line and that the moment of the couple, FF^\ is the same as that '.

__^ ]

'

I

* This proof is for a coplanar system, the chosen point being in the I

plane of the forces. Proof for the general case is given in art. 55. \

Fig. 30.
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of F about O. Hence the algebraic sum of the components of all

the forces of the concurrent system along any line is the same

as that of the components of the given forces along that line, and

the sum of the moments of the couples equals the sum of the

moments of the given forces about 0.

If 7^0 denotes the resultant of the concurrent system^ and C
that of the couples,

sin 6 = 2'F^/R, cos 6 = IF^/R

being the direction angle of the action line of R, and C = i'Fa.

EXAMPLE.

Let Fi, F^, etc. (fig. 28) equal 14, 10, 3, 9, 18, and 11 lbs.

Reduce them to a force at the centre and a couple.

§ VI. NON-COPLANAR CONCURRENT FoRCES.

49. Graphical Composition.
— Imagine a force polygon

ABC , . . N drawn for the forces to be compounded; it is not

of course a plane one. According to the triangle of forces, the

resultant of the first two forces, R', is represented in magnitude
and direction by AC. Likewise the resultant of R' and the

third force, i.e., the resultant of the first three forces, is repre-

sented in magnitude and direction by AD, etc. Finally, the

resultant of all the given forces is represented by the line AN^
joining the beginning and the end of the force polygon.

Hence the magnitude and direction of the resultant is

represented by the vector sum of the given forces, or, other-

wise stated, by the line drawn from the beginning to the end

of the force polygon for the system.

The action line of the resultant, of course, passes through the

common point of the action lines of the given forces.

Since the force polygon is not plane, it is practically neces-

sary to represent it by projections. The line representing the

resultant may then be determined by its projections, in the

projections of the polygon.

EXAMPLES.

I. Suppose three forces F^, F^, and F^ to act at a point as

shown in fig. 31(a). The horizontal and vertical projections
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of O are marked O' and O" respectively, those of the vector

representing F^ are marked F/ and^F/', etc.*

Solution: At any point A we begin to construct the polygon
for the ioTCQS—A'B'CD' is its horizontal and A"B"C"D" is its

vertical projection. Hence the line AD represents the magni-

FlG. 31.

tude and direction of the resultant; the action line passes

through O.

If the horizontal and vertical projections of the vectors

representing the given forces be regarded as force systems, then

obviously A'B'C'D' and A"B"C"D'' are the force polygons for

those systems respectively.

2. Imagine the forces of fig. 38(^7) to act in the directions

indicated but through the corner diagonally opposite O, and

determine their resultant.

50. Algebraic Composition.
—Let F', F", F"', etc., denote

the forces to be compounded. At the common point of

their lines of action, resolve each force into three rectangular

{x, y, and z) components and replace the forces by them. Next,

compound separately all the x, y, and ^-components and re-

place them by their resultants, IF^, ^Fy, and IFg. Now these

three systems, the given one, the system of components, and
the three forces, IF^;, IFy, and IFg, are equivalent; they have,

therefore, the same resultant. If R denotes the resultant, and

* All horizontal and vertical projections are marked by primes and
double primes respectively.
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»

6^, 6^, and 6^ the direction angles of its action line, from the third

system it is plain that

(i) r=(jf;'+if"/+^/)^

(2) cos^i = i'F;,/R, cos02 = IFy/R, cosd^ = I¥,/R,

(3) the action line passes through the common point O.

EXAMPLE.

Solve ex. 2, art. 49, by the method of this article.

§VII. NON-COPLANAR PARALLEL FORCES.

51. Graphical Composition.
—The vectors F^ and F2 (fig. 32)

represent two parallel forces, F/
and F^ their projections on the xz

plane, and F/' and F/' those on the

yz plane. Let R represent the re-

sultant of the two forces, and R' and

i?" the projections of the vector R
upon the plane xz and yz respect-

ively.

If F, and F2' be regarded as

forces, F' represents their resultant

for

FJF, =CB/CA -=C'B'IC'A' -F^fF.!,

i.e., R' divides the line A'B' into segments inversely propor-
tional to F/ and F/; and obviously F'=F/+F2'. Similarly,

if.F/' and F^' be regarded as forces, R'!_ represents their re-

sultant. To find the resultant, then, of two parallel forces,

Project the vectors representing them upon two planes

parallel to the forces, and find the resultants of these pro-

jections regarded as forces. These resultants are projec-

tions of the resultant sought.

This method may obviously be extended to the composition of

more than two forces.

EXAMPLE.

Suppose parallel forces of 14, 12, 16, and 8 lbs. applied to a

body at points whose x and y coordinates are respectively (2,4),
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(3. 5). (4» 2), and (6, 3), all in feet, and suppose that the third

force acts in the negative and the 'others in the positive direc-

tion.

Solution: The vectors representing the forces are projected

-IP

"t'l(3,5)

(2,i)]
o^;;::

Fig. 33.

on the yz and zx planes; thus a'5' and a"5" (fig. 33) are the

projections of the 14-lb. force, 6'c' and ^"c" those of the 12 -lb,

force, etc. Each projected system may be compounded by
the method of art. 37, one force polygon, as ABODE, sufficing

for the two systems. The funicular polygon in the xz plane
determines a^e', and that in the yz plane determines a"^". The
action line of the resultant sought then passes through the point

P in the xy plane. The magnitude and sense of the resultant

are given by ^-E.

52. The Resultant when the Force Polygon Closes is a

couple. For, obviously, the resultant of all the forces of the

system but one is equal and opposite to that one; hence that

resultant and the last force constitute the resultant couple.

The forces and arm of this couple depend on which force of

the system is omitted; accordingly, the system may be reduced
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by this method to as many different couples as there are forces

in the system, but they are equivalent to each other.

Let the system consist of F^, F^, F^, etc., and let R denote

the resultant of F^, F^, etc.
;
then the resultant couple consists

of F^ and R. Imagine the vectors representing the forces to be

projected on two planes and, as above, denote the projections
on one plane by F/, F^ , F^ ,

. . . and R', and those on the

other by F/', F/', F3", . . . and R''. Evidently, the resultants

of the systems F/, F/, F/, etc., and F/', Fj", F3", etc., are

couples, and the resultant of the first is F/, R', and that, of

the second is F/', R'\

It might of course happen that F^ and R coincide. In that

case the resultant of the given system would be zero
;
and since

F/ and R' and F^" and i?" would also coincide, the resultants

of the systems F/, Fj', F3', etc., and F/', Fj", F3", etc.,

would be zero, and the funicular polygons for those systems would

close (art. 40).

EXAMPLE.

Solve exs. i and 2, art. 54, graphically.

53. The Principle of Moments.—The algebraic sum of the

moments of any number of parallel forces v/ith respect to a line

equals the moment of their resultant with respect to that line.

Proof: Let F^ and Fg (fig. 34) be two forces of the system,

Fig. 34.

R' their resultant, and OP the moment axis. OP is regarded
as a s coordinate axis, and the y axis is so taken that the yz

plane is parallel to the forces; A, B, and C are the points
where F^, Fg, and R' respectively pierce the xz plane; and
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i

Aa and Aa' represent the components of F^ parallel and per- \

pendicular respectively to the moment axis, Bh and Bh' those i

of Fj, and Cc and Cc' those of R\ The moments of the three '>

forces are respectively

(F, sina:)AA', {F,sma)BB\ and (R' sin a)CC^. \

1

Evidently, the perpendicular component of R is the resultant
]

of the perpendicular components of Fj and Fj. Then, accord-
|

ing to the principle of moments for coplanar forces,
j

(R' sin a)OC = (F^ sin a)OA + (F^ sin a)OB.

This equation multiplied through by sin (FOB) becomes

(F' sin a)CC' = (F, sin a)AA' + {F^ sin a)BB'.

That is, the moment of F' equals the sum of the moments of

Fi and F^.

If Fj and Fg have unlike senses, a slight change in the proof
is necessary, which the student can make. The extension of

the proof to more than two forces is quite evident.

For the exceptional case in which the resultant is a couple,

the proposition still holds if we define the moment of a couple
with respect to a line to be the algebraic sum of the moments of

its forces with respect to that line.

54. Algebraic Composition.
—I. // tAe algebraic sum of the

forces is not zero, the force polygon for the system does not

close; hence the resultant is a force (art. 51). If F^, F2, etc.,

•denote the forces and R their resultant,

the sense of R being given by the sign of JF.
The action line may be determined by the principle of

moments; thus, if ^M^ and ^My denote the algebraic sums of

the moments of the forces with respect to two axes, x and y,

which are perpendicular to the forces, and ax and ay the corre-

sponding arms of the resultant, R,

IMx = Rax and IMy = Ray,

whence ax = i'M^/R, a.y
=

I'NLy/R.
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The resultant must act on such sides of the x and y axis that

the signs of its moments are the same as those of IM^ and ^My
respectively.

II. // the algebraic sum of the forces is zero, the force poly-

gon closes; hence the resultant is a couple (art. 52). As ex-

plained in the article referred to, the resultant couple is not

determinate. A resultant couple can be readily found by com-

puting the resultant of all the forces of the system but one;

this resultant force and the omitted force constitute a couple,
the resultant of the system.

EXAMPLES.

1. Compute the resultant of five forces of 15, 12, 20, 16, and

21 lbs., the first three acting in the positive z direction and the

last two in the negative, the coordinates of the points in which

they pierce the xy plane being respectively (2, 3), (4, —2),

(2, 4), (3, -I), and (o, o).

2. Include a force of 10 lbs. acting in the negative z direction

at a point whose coordinates are (
—

8, 10), and compound.

§ viii. non-coplanar, non-concurrent, non-parallel
Forces.

55. The Resultant.— Proposition I. A system of non-

coplanar, non-concurrent, non-parallel forces raay be com-

pounded into two forces, the action line of one being in, and

that of the other normal to, any arbitrarily selected plane.

Proof: Let the action lines of the forces of the system be

extended till they pierce the selected plane.* This will be

referred to as the plane 7:. At each of these points resolve the

corresponding force into two components, one in the plane and
the other normal to it. The given system may be regarded as

replaced by two, a coplanar system^ (the components in tc), and
a parallel system (the components normal to tt). In general,
each of these systems compounds into a single force, but aither

* A force whose action line is parallel to the plane should be replaced

by its equivalent, a force in the plane and a couple whose forces are

perpendicular to it. (Art. 31.)
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;

- .-i

or both of them may compound into a couple (arts. 45 and 51). \

But, as shown in art. 42, a couple <nay be regarded as "a zero i

force with an infinite arm," and with this understanding the
\

proposition holds in all cases.

Since the two forces do not usually intersect, it is not
j

possible, in general, to compound them into one force. They ]

may therefore be properly called a resultant of the system. \

For different planes 71 we arrive at different pairs of resultant ^

forces, but since they are equivalent to the same system they i

are equivalent to each other. We will denote the resultant
\

forces in and normal to the plane by Rt and Rn respectively. i

Proposition II. A system of non-coplanar, non-concurrent,
\

non-parallel forces may be compounded into a force acting \

through any arbitrarily selected point and a couple. j

Proof: Each force of the given system may be replaced by \

a force acting through the chosen point and a couple (art. 31). i

Suppose such a replacement made for each force; the result- ^

ing system consists of a concurrent system of forces and a
\

system of couples. But the resultant of the concurrent forces
\

is a single force acting through the chosen point (arts. 49 or I

50), and the resultant of the couples is a single couple (art. \

60). We will denote this force and couple by R and C
respectively.' i

In general, R and C may be compounded into two non-
j

parallel unequal forces. For, C may be replaced by an equiva- i

lent couple one of whose forces intersects R (see art. 59), and
j

that force and R may be compounded into a force; since this i

last force will not be in the same plane with the other force of i

the couple these two forces cannot be compounded, and they
;

may properly be called a resultant of the system.
|

If the plane of C happens to be parallel to R, C and R
\

may be compounded into a single force. For, C may be re- .

placed by an equivalent couple whose plane coincides with
:

R\ and, the forces of that couple and R being coplanar, their
\

resultant is a single force. That force is the resultant of the
\

system. !

In the following three articles, methods are explained for :

determining the resultants above discussed.
;
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56. Graphical Composition.—The graphical method can be

employed to determine Rt and Rn, the method of art. 44 for Rt.

and that of art. 51 for Rn. Some elementary principles of

descriptive geometry are employed for determining the inter-

sections of the lines of action of the forces of the given system
with the plane tz. The method will be illustrated by means
of an

EXAMPLE.

Let there be three forces in the system, the horizontal pro-

jections of the vectors representing them being F/, F^, and F3'

(fig. 35), and the vertical projections F/', F/', and F3".

'//'"'»'" '°'^^ /

Fig. 35.

The plane it is taken to coincide with the xy plane, the

forces piercing it in the points P^,P^, and P^ respectively. The

components of the given forces in the plane tz are represented

by the vectors F/', F^' ,
and F3", while the components normal

to that plane act through the points P^, P.^, and P3, and their

magnitudes are represented by the projections of F/, F^ , and

Fg' upon the z axis.

The resultant of the coplanar system is represented in
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magnitude and direction by A'D\ A'B'CD' being a force poly-

gon for the system, and its action iine is marked Rt^

The resultant of the normal system is represented in magni-
tude and direction hy AD, ABCD being a force polygon for

the system. The funicular polygon for the projection of the

normal system on the xz plane is oa'
, oh', oc'

,
and od\ and Rn

is the projection of Rn on that plane. The funicular polygon
for the projection of the normal system on the yz plane is

oa", oh", oc", and od"
,
and Rn' is the projection of Rn on

that plane. Hence the action line of Rn pierces the plane
at P.

57. Principle of Moments.—The moment of the resultant *

of any system of forces about a line equals the sum of the

moments of the forces.

This follows from the proposition that the sums of the

moments of the forces of equivalent systems about any line

are the same, which we now prove.
Let / denote the line or axis of moments and imagine any

plane containing it as the plane ;:. Each

of the systems may be compounded into a

resultant consisting of two forces, one in

and one normal to the plane n; since the

resultants are identical,! Rt and Rn may
denote the forces of each resultant.

Let F (fig. 36) be one of the forces of

either system. The x axis is taken along
Fig. 36.

the line / and the y axis in the plane n', then the xy and n

* Here "moment of the resultant" means the algebraic sum of the

moments of the forces of the resultant.

t Proof : Suppose that the}'- are not identical, and call the forces of

the resultant of one system Rt' and Rn, and those of the other Rt" and

Rn". Being resultants of equivalent systems, they are equivalent to

each other; hence if the forces of one resultant be reversed, the four

forces would balance, i.e., their resultant would be zero. Now the re-

sultant of -R^'and i?^'' reversed, is in the plane n, so call it Rt"'\ that

of Rn and Rn" reversed is normal to that plane, so call it Rn". But

the resultant of Rt"' and Rn'" cannot be zero unless each is zero, and

that is impossible unless Rt' and Rt" and Rn and Rn" are identical.
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planes coincide. F is shown resolved at A into two compo-
nents {Ft and Fn) in and normal to the plane tt. According

. to art. 28,

the mo^iient of F about / = the moment of Fn about /;

hence

2'(mom. F) = 2{Tnom. Fn).

But Rn is the resultant of all the Fn's, and, according to art. 53,

mom. Rn about / = 2'(mom. F„) =^(mom. F)\

hence the sum of the moments of all the forces of either system

equals that of Rn, that is, the sums of the moments of the

forces of the equivalent systems are equal. q.e.d.

58. Algebraic Composition.
— Determination of Rt and Rn.

Fig. 37 represents one force, F, of a system and its components

Fig. 37.

Fx, Fy, and Fg, also its components Ft and Fn, the plane ;r

being taken coincident with that of the x and y axes. From the

figure, it is plain that Fn equals F^ and that the x- and ;v-com-

ponents of Ft are the same in magnitude and direction as those

of F. It follows that

(i) R, = JF, and R, = (2'F/ + 2'F/)^;

(2) the sense of Rn is given by the sign of ^F^;

(3) the angles which Rt makes with the x and y axes are

cos-^ IFx/Rt and cos-^ IFy/Ru
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The action lines of Rn and Rt are determined by the principle
of moments, thus: *

the arm of Rn with respect to any line in the plane rt equals

(the moment sum of the given forces with respect to that

line)/Rn;
the arm of Rt with respect to any line normal to tz equals

(the moment sum of the given forces with respect to that

line)/i^,.

Determination of R and C. Let F^, F^, F^, etc., denote the

forces to be compounded and O (fig. 38a) the point through
which R is to pass. The components of Fj are the force F/ at

O and the couple (F^, i^/')J the components of F^ are the force

F2' at and the couple (Fj, Fg"); ^^c.

\y

/:

/z
/^

M -a?

(a)
(b)

Fig. 38.

18 lb.
71

^;/ 1

10 I

J.J^15 1b.

(c)

It is plain that the components of F/, F^ , etc., along any
line are the same in magnitude and direction as those oiF^.F^,^ ,

etc., respectively; hence \

R = (2'F, +2'F^ +^F,y,
cos e^

= i'F^/R, cos (^2
= 2'F^/R, cos 6^

=
i'F^^/R,

IFx^ IFy, and IF^ denoting the algebraic sums of the %,- y-,

and 2-components of the given forces, and 6^, d^, and 6^ the direc-

tion angles of i? (art. 50).

Imagine the couple C resolved into three components whose

planes are respectively perpendicular to the x, y, and z axes

(art. 61) and denote them by Cx, Cy, and Cg. Now the given

system and the system R, Cx, Cy, and C^ (fig. 386), have the
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same resultant, -and hence their moment sums with respect to

any axis are equal. But the moment sums of R, Cx, Cy, and C^,

with respect to the x, y, and z axes are Cx, Cy, and C^. Hence,
if IMx, ^My, and IMz denote the moment sums of the given

system with respect to the coordinate axes,

Cx = IMx, Cy = IMy, and Cz = IM,.

Also, by art. 60, C = (IWx\iWj +IW^Y and

cos ^1
= JMx/C, cos ^2

= JMj/ZC, cos ^3
=
i'M2/C,

^1, (f)2,
and ^3 denoting the direction angles of the vector of C.

EXAMPLES.

1. Compound the four forces of fig. 38 (c) into a force at O
and a couple, the edges of the cube being 4 ft. long.

2. Compound the four forces into two whose action lines are

i in and normal to the xy plane.

§ IX. Theory of Couples.

59. Equivalent Couples.
—

Proposition.
—Two couples whose

imoments, aspects, and senses are the same are equivalent; or,

otherwise stated, two couples whose vectors are the same are

equivalent.

Proof: I. The planes of the couples coincide. Let (Pp)*
and (Qq) (fig. 39) be the two couples, F^ (identical with Qj),

F2, F^ . . . a system of which (Pp) is

the resultant. Then the vector sum
of Fi, F^jFs, . . . F„is zero, and their

moment sum about any point equals

It will now be shown that the

couple (Qq) is also the resultant of

:the system F^, F^j F^, ... by show- ^^^- 39-

ing that the system can be compounded into two forces which

are identical with the forces of the couple. One of those two
forces is Fj, and the other one is the resultant of F,, F3, . . .

which call R. Since the vector sum of all the forces of the sys-

* By
"
couple (Pp)

"
is meant one whose forces are P and arm is p.

For convenience of designation, the forces of the couple are sometimes
marked P, and P,; then P, equals P».
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tern is zero, R is equal and opposite to F^, i.e., R is the same in

magnitude and direction as Q^. If a denotes the arm of R with

respect to an origin on Q^, then

i^a = moment sum of F2, F3, . . . (for that origin) =P^ = Q^.

Since R equals Q, a = q, i.e., R and Q^ coincide.

Finally, since (Pp) and (Qq) are the resultants of the same

system, they are equivalent.
II. The planes of the two couples are parallel. Let (Pp)

and (Qq) (fig. 40) be the two couples. According to case I,

the couple (Qq) can be replaced by
any other in its own plane pro-
vided that its moment and sense

are the same as those of (Qq). Let

(Ss) be such a couple, its forces

being parallel to those of (Pp)
a> and one in the y axis. Imagine a

system of parallel forces F^ (iden-

tical with Si), F2, Fs, . . . the re-

sultant of which is the couple (Pp).
The vector sum of the system is

zero, and its moment sums with

respect to the x and z axes equal the moments of its resultant

(Pp) with respect to the same axes, which obviously are zero

and Pp respectively.

It will now be shown that the couple (Ss), and therefore

(Qq), is also the resultant of F^, Fj, Fg, . . . by showing that the

system can be compounded into two forces which are identical

with the forces of (Ss). One of these two forces is Fj, and the

other is the resultant of F^, Fg, ... which call R. Since the

vector sum of all the forces of the system is zero, R is equal

and opposite to Fj, i.e., it is the same in magnitude and direc-

tion as Sj. Let a and c denote the arms of R v/ith respect to

the X and z axes respectively ;
then

i?a =moment sum of F^, Fg, . . . about the x axis = o
|

and
\

Rc= " "
"F2, Fg. ... " '

2
"

=Pp=-SS' \

Hence a = o and c==s\ i.e., R and 52 coincide.
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Finally, since {Pp) and {Qq) are the resultants of the same

system, they are equivalent.

60. Composition of Couples.
—

Proposition I. The resultant

of any number of couples is a couple.

Proof: Let AA'B'B and AA"B"B (fig. 41) be the planes of

two of the couples. Replace the couples by equivalent ones

(F/i) and (F/2) and so that a force of one couple shall "balance"

a force of the other; these balancing forces must lie in AB.
The four forces are equivalent to two, F in A'B' and F in A"B",
which clearly constitute a couple, the resultant of the two given

couples. Similarly, the resultant of this resultant couple and

the third couple is a couple, etc.

The student should supply a proof for the case in which the

planes of the couples are parallel.

Proposition II. The vector of the resultant of any number
of couples is the sum of the vectors of those couples.

Proof: Consider first two couples, those compounded above.

Let CM and CN (fig. 41) be their vectors, then CO is the sum
of CM and CN. (In fig. 416, the planes of the given couples
are represented by their traces CC and CC" with a plane per-

pendicular to AB.) It must be shown that CO is the vector of

the resultant couple {Ff).

By construction, CM/F']^
=CN/Fj^, and the angles CNO

and C'CC" are equal; hence the triangles CON and CC'C" are

similar, and

CO/j=^CM/j,^CN/U, or CO/Ff=^CM/Ff, = CN/Ff^;
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that is, the length of the vector CO represents the moment of

the resultant couple to the same ^cale according to which CM
and CN represent the moments of the given couples. Since

CM is perpendicular to CC
,
CO is perpendicular to C'C"\ i.e.,

the vector CO is normal to the plane of the resultant couple.

From an inspection of the figures, it is plain that the arrow on

the vector OC and the sense of the resultant couple agree in

accordance with the rule of vector representation of couples

(see art. 30). The proof is easily extended to more than two

couples.

Special Cases.—(a) Three couples whose planes are mutually
at right angles. Let the three planes be taken as coordinate

planes and call the couples whose planes are perpendicular to

the X, y^ and z axis Cx, Cy, and Cz respectively, C their re-

sultant, and Vx, Vy, Vg, and v their vectors. Then

^ = (^x^ + ^2/^ + ^2^)^J hence

Also, if ^1, (j)2,
and

(ji^
denote the direction angles of v,

Qos ^^
= Vx/v, cos

(f)2
=
Vy/v, cos

(j)3
=

Vg/v;

hence

cos^i = C^/C, cos
(l)2
= Cy/Cy cos 03

= €2/0.

(b) Couples whose aspects are the same. The resultant is

a couple whose aspect is the same as that of the given couples
and whose moment equals the algebraic sum of the moments of

the couples, a result reached in art. 47 for coplanar couples.

61. Resolution of a Couple.
—It follows from the preceding

article that a couple may be equivalent to two or more couples,

which are therefore components of that couple. Also, to re-

solve a couple we have only to resolve its vector, the component
vectors being the vectors of the component couples.

The resolution of a couple into three components whose

planes are mutually at right angles is an important special

case. Let C be the couple to be resolved and v its vector; and

denote the direction angles of the vector by a, /?, and y, the
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coordinate planes having been taken to coincide with the

planes of the desired component couples. Let C^, Cy, and Cz
denote the component couples which are perpendicular to the

X, y, and z .axes respectively, and v^, Vy, and Vg the correspond-

ing vectors. Then

Vx = 'v cos a, Vy
= v cos 1^, Vg=v cosyi

hence

Cx = C cos a, Cy = C cos /?, C^ = C cos j.

EXAMPLES.

1. Hold this book, opened 150°, before you and imagine two

couples whose moments are 50 and 70 ft .-lbs. to act in the planes
of the right- and left-hand covers respectively, their senses being
clockwise as viewed by yourself. On the supposition that the

book is a rigid body, determine the resultant of the two couples.
2. Imagine two couples whose moments are 40 and 90 ft.-lbs.

to act in the front and right-hand side of the parallelopiped of

fig. 15, their senses being clockwise and counter-clockwise re-

spectively as viewed by yourself. Determine the resultant of

the four couples.
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CENTRE OF GRAVITY AND CENTROID. ]

§ I. Centroid of Parallel Forces. , 1

62. Centroid Defined.—A system of parallel forces having \

fixed application points possesses an important property which I

is now to be investigated. !

First consider a system of two forces, P and Q, with appli- ]

cation points at A and B respectively, fig. 25 (a) or (b). In
\

art. 43 it is shown that BC/AC = P/Q; hence C, determined i

by the equation, is independent of the angle between AB and
|

the action lines of P and Q. Therefore, if the body upon which
\

the forces act be turned in any manner, the direction of the j

forces remaining unchanged, their resultant will always pass I

through the same point of the body. The point C may hence
\

be regarded as the application point of the resultant for all
|

aspects of the body.
j

Consider next a system of more than two forces.
j

Let F', F'\ F"\ etc., denote the forces; \

R' the resultant of F' and F"
,
and C its application point; 1

R" the resultant of R' and F'", and C" its application
^

point; etc. i

If the body be turned, R- always passes through C\ and R"
,

:

which is also the resultant of F'
,
F"

,
and F'", always passes \

through C" . The point C" may therefore be regarded as the i

application point of the resultant of F'
,
F"

,
and F'" for all

\

aspects of the body. Extending this reasoning to the resultant \

of the first four force of the system, then to the resultant of
j

the first five, etc., one arrives at the conclusion that

the resultant of any system of parallel forces having defi- I

52 ^
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nite application points always passes through the same

point of the body, or its extension, irrespective of its aspect.

This point is called the centroid of the system of forces.

63. Determination of the Centroid.—Call the forces F'
,
F"

,

F'"
, etc., those of one sense being given the same sign and those

of the opposite sense the opposite sign. Let {x' , y' ,z'), {%" , y" ,

z"), etc., denote the coordinates of their respective application

points with respect to a set of rectangular axes which is fixed

with reference to the body, and let 'x, y, z denote the coordinates

of the centroid. Now imagine the body upon which the forces

act to be turned so that one of the axes, say that of x, becomes
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In these formulas signs must be given the forces as explained

above, and to the coordinates of*their application points as

customarily. That this is necessary will be seen from an inspec-

tion of the moment equations above and the figure.

// the application points^ of the forces he coplanar, two of the

formulas will suffice, provided that two of the coordinate axes

be taken in the plane of the application points. The graphic
method is easily applied in this case as follows: Imagine the

body to be turned so that the action lines of the forces fall into

the plane of the application points, their directions remaining

unchanged. The force system is then coplanar, and the action

line of its resultant may be readily determined graphically

(art. 39). Now imagine the body to be turned about an axis

which is perpendicular to the plane of the application points

through any angle other than 180 or 360 degrees. The forces

are still coplanar, and the action line of their resultant may be

determined as before. The intersection of the action lines of

the two resultants is the centroid of the system.

EXAMPLES.

1. Forces of 10, 20, 15, and 5 lbs. have the same directions;

the application points are coplanar and their coordinates in feet

are respectively, (5, 3), (2, 4), (i, 5), and (5, 6). Determine the

centroid of the forces. Ans. ^ = 2.6 ft.

2. With the forces of the preceding example, include two of

20 and 30 lbs. whose directions are the same as that of the four

and whose application points are respectively at (5, 4) and

(
—

6, 3). Determine the centroid of the six forces.

Ans. ^= 0.5 ft.

3. Reverse the sense of the thirty-pound force, and deter-

mine the centroid of the six.

§ II. Centre of Gravity of a Body.

64. Definition and General Formulas.—The weights of the

particles of a body constitute a system of practically parallel

forces having fixed application points. Therefore, these forces

have a centroid, that is, the resultant always passes through a

certain point fixed with reference to the body no matter how it
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is turned. It is assumed, of course, that in turning the body,
its form and size are not changed.

Definition.
—The centre of gravity of a body is the centroid

of the weights of all its particles.

Centres of gravity, in the following, will be usually specified

by means of rectangular coordinates and which will then always
be denoted by x, y, and 'z. General values for these may be

deduced as follows: Let {x\ y' , z'), {%" ,y" , 2"), etc., denote the

coordinates of the particles* of a body; w'
,
w"

, etc., their

weights, and W the weight of the body. Then, from the

formulas for centroid of a system of parallel forces,

x = 2'wx/W, y = i'wy/W, z = i'wz/W.

65. Moment of a Weight with Respect to a Plane.—De-fini-

iion.—The moment of the weight of a body with respect to a

plane is the product of the weight and the ordinate of the centre

of gravity of the body from that plane. Ordinates on opposite
sides of the plane are given opposite signs. A moment, there-

fore, has the same sign as the corresponding ordinate.

From the definition it follows that if the moment of the

weight of the body is zero with respect to a plane, its centre of

gravity is in that plane.

Proposition.
—The moment of the weight of a body with

respect to a plane equals the algebraic sum of the moments of

the weights of its parts with respect to the same plane.

Proof: Let W^^, W2, etc., be the weights of the parts and x^.

x^\ etc., be the ic-coordinates of particles of the first part, and

«;/, w/', etc., their weights; x^ , x^\ etc., be coordinates of

particles of the second part, and w^ , w^' , etc., their weights, etc.

Then, according to the formulas above, the :x:-coordinate of the

centre of gravity is

__ (WiV4-w/^^/^+ . . .) + (w2V+7£;/V^+ . . .) + etc.

(w/+«^/'+ . . .) + (w/+2£;2"+ • • O+etc.

* By particle is meant a body whose dimensions are vanishingly small

or negligible in comparison with other distances involved, which, in this

case, are for each particle the distances between it and the coordinate

planes.
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Now the first parenthesis of the numerator equals W^^, the

second parenthesis equals W^^, elc., and the denominator

equals the weight of the entire body. The equation may there-

fore be written

Wx=WiXi-fW2X2+ . . .

Since the plane from which the x's are measured may be taken
at pleasure, the proposition is proved.

EXAMPLES.

I. Suppose that the heavy lines of fig. 43 represent a bent

wire. Determine the coordinates of its centre of gravity.
Ans. 3^= 4.13 in.

\y

bI

Fig. 43- Fig. 44.

2. A piece of tin consists of three parts, square, semicircular,

and equilateral triangular (fig. 44). Determine the centre of

gravity of the piece. (The distances of the centres of gravity
of the semicircular and triangular parts from the base are 4/3;r

times the radius and
-J
times the altitude respectively.)

3. Imagine the triangular and circular parts described in the

preceding example bent forward on the lines BC and AC re-

spectively until their planes are perpendicular to that of the

square. Determine the centre of gravity.

4. Suppose that the triangular part of the preceding example
is bent backward instead of forward. Write the expressions

for the coordinates of the centre of gravity.

5. The weights of four bodies sxe W^, W^, M'V and W^, and

the distance of the centre of gravity of the first from the plane

through the centres of gravity of the other three is h. How far

from that plane is the centre of gravity of the four bodies?

6. The weights of three bodies are 12, 18, and 40 lbs.; the
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distances between the centres of gravity of the first and second,

second and third, third and first, are lo, 14, and 16 inches re-

spectively. How far from the line joining the centres of gravity
of the first and second is the centre of gravity of the three ?

Ans. 7.91 in.

7. Fig. 45 represents a cylindrical body having a cylindrical

hole in the top ;
a part of the body is cast iron

and the remainder (conical) is lead. Determine

the centroid. (Cast iron and lead weigh 450
and 71 1 lbs. per cu. ft. respectively. See art. 80.)

66. Centre of Gravity Determined by Integra-

tion.— Imagine a body divided into an infi-

nitely large number of parts, i.e., elements.

Let dW denote the weight of any element and

X, y, z, the coordinates of its centroid. Accord-

ing to the principle of moments,

Wx=JdW-x, Wy=ydW.y,Wz
=
y*dW.z. (i)

If the body is homogeneous, let w denote its

specific weight
* and V its volume

;
then W=wV and dW =wdV.

Equations (i) reduce to

Vx =
y*dV.x, Vy = ydV.y, Vz==/dV.z. (2)

These formulas may be employed for determining the centre of

gravity of a body which cannot be divided into finite parts whose

weights and centres of gravity are known, provided that its

form and specific weight, if the body is not homogeneous, are

such that the integrations can be performed.

EXAMPLES.

I. Determine the centre of gravity of an octant of a sphere
whose specific weight, varying from point to point, is directly

proportioned to distance from the centre.

Solution: Let th^ plane faces of the octant be taken as

coordinate planes as shown in fig. 46 ;
denote the radius of the

* By specific weight is meant weight per unit volume.
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Sphere by r and the specific weight at any point P by w. If k

is a proper constant and x, y, and z denote the coordinates of P^
w = k{x^+y^+z^)^ and dW= k{x^+y^+z^ji dx dy dz.

Then from (i),

Wx=k/ /
J^ (x^+y^+z^)^dxdydz'X;

hence x = ^r. E vddently , x=y=z.

Fig. 46. ;

2. Determine the centre of gravity of an octant of a homo-
;

geneous sphere.

Solutions: Equation (2) maybe employed. First, selecting

a cubical element as in ex. i, dV= dx dy dz, and eq. (2) becomes ;

Vx= II I dx dy dz'X\ «

hence - x=^r. Evidently, x=y=l.
;j

Second, selecting the parallelopiped AB as elementary
'

volume, dV= dx dy{AB). If x and y denote coordinates of By |

AB = {r^-x^-y^)^, |

and eq. (2) becomes J

hence

Vx=/ 7 ir^-x^''y^)^dxdy'X\

x=ir.
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Third, selecting the volume between two planes parallel to

the yz plane, dx apart as elementary volume, dV ^izDC dxj\.

If X denotes the coordinate of C, DC ^r'^ — x'^, and eq. (2) be-

comes

Vx=— I (r^
—
x^)dx'X]

hence x=ir. .

67. Centre of Gravity Determined Experimentally.
—Some

bodies are so irregular in shape that their centres of gravity can-

not be found by the methods explained above. In such cases,

experimental methods may be resorted to.

The Method of Suspension.
—The body whose centre of

gravity is to be determined is suspended from one point of it and

the direction of the suspending cord is then marked in some way
on the body. The operation is repeated using another point of

suspension. Since the centre of gravity is in each of the lines

so fixed in the body, it is at their intersection.

The Method of Balancing.
—The body whose centre of gravity

is to be determined is balanced upon a straight-edge and the

position of the vertical plane containing the edge marked upon
the body ;

then the operation is repeated for two more balancing

positions of the body. Since the centre of gravity is in each

plane so fixed, it is in the common point of the three.

This method is easily applied to determine the centre of

gravity of a thin plate. The plate is balanced in two positions,

same face down both times, and the lines of contact of the

straight-edge and plate are marked upon the latter. The centre

of gravity is midway between the intersection of those lines and

a point directly opposite on the other face of the plate.

EXERCISE.

Cut from a sheet of stiff paper the
' '

angle section" described

in ex. 4, art. 81, and determine how far the centre of gravity of

the paper is from the edges AC and CB.
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§ III. Centroids of Solids, ^Surfaces, and Lines.

68. Centroid Defined.—The term centre of gravity, applied
to solids,* surfaces, or lines, is inappropriate, for they have no

weight. However, the term is much used in that connection.

Centroid, a more suitable term, is coming into use. Instead of

the terms centroid or centre of gravity of a solid surface or line,

centroid or centre of gravity of a volume area or length, re-

spectively, are often employed.

Definitions.
—The centroid of a solid is that point of it which

coincides with the centre of gravity of a homogeneous body which
is bounded by the surface of the solid. The centroid of a surface
is the limiting position of the centre of gravity of a homogeneous
thin plate one of whose faces coincides with the surface as its

thickness approaches zero. The centroid of a line is the limiting

position of the centre of gravity of a homogeneous slender rod

whose axis coincides with the line as its sectional area approaches
zero.

69. Centroid as Mean Point.—Proposition.
—The ordinate

of the centroid of any solid, surface, or line with reference to any

plane equals the mean ot the ordinates of all the equal elements

of the solid, surface, or line. It must be understood that oppo-
site signs are given to ordinates on opposite sides of the plane.

Proof for lines: Let x^^ x^, x^, etc., denote the ordinates to

the different elementary lengths ds of the line, and nthe num-

ber of elements (infinite). Then

,
rXTj + ^2 I -^3 ' • • •

,

•

the mean ordmate = —^
,n

.

^
. .

^ (X +x,+x,+ ...)ds f^^^
but this equals

^-^^

^
— =—1

—
.

/ denoting the length of the curve. In art. 83 it is shown that the

last expression is that for the ordinate of the centroid, hence the

proposition is proved.

Proof for solids and surfaces is similar to that just given.

* Geometrical and not physical solid is meant.
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70. Moment of a Volume, Area, or Length.
—

Definitions.
—

The moment of the volume of a solid (area of a surface or length

of line) with respect to a plane is the product of the volume

(area or length) and the ordinate of the centroid of the solid

(surface or line) from that plane. Ordinates on opposite sides

of the plane are given opposite signs; hence a moment has the

same sign as the corresponding ordinate.

Proposition.
—The moment of the volume of any number of

solids with respect to a plaiie equals the algebraic sum of the

moments of the volumes of those solids with respect to the same

plane. Similar propositions hold for surfaces and lines.

Proof for volumes: Let V^, V^, etc., denote the volume of the

solids, Wj, U2, etc., the ordinates of their centroids, and w that of

the centroid of the collection of solids with respect to any plane.

Now the ordinates of the centres of gravity of homogeneous
bodies which are bounded by the surfaces of these solids are also

u^, U2, etc., and the ordinate of the centre of gravity of the

collection of bodies is also u. From art. 65, if w denotes the

specific weight of the imagined homogeneous bodies,

{wVi+wV2+ . . .)u
= wV^-u^+wV2'U2-\- • • • >

or

(V1+V2+ . . . )u = ViUi+V2U2+ . . . Q.E.D.

Proof for surfaces: Let A^, A^, etc., denote the areas of the

surfaces, u^,U2, etc., the ordinates of their centroids, and w the

ordinate of the centroid of the group. Imagine now as many
homogeneous thin plates as there are surfaces, and that one face

of each plate coincides with one of the surfaces. Let w/, U2 ,

etc., denote the ordinates of the centres of gravity of the plates,

and u' that of the centre of gravity of the collection. If w
denotes the specific weight of the plates and t their thickness,

their weights are approximately Aj,w, A2tw, etc., the approxi-
mation being closer the smaller / is taken. (Of course, for plane

plates these expressions are correct for all values of ^) From
art. 65,

(.4i+^2+ • • .)twu' =A^tw-u^' -\-A2tW'U2' + . . ., approximately;
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or

(Aj^+A2+ . . .)u'=A^Mi +A2U2*r^. . . , approximately.

Now this approximate equality approaches exact equality as t

approaches zero, i.e.,

lim. [(^1+^2+ . . .)w']=lim. [A^il^' +A2U2' + . . .]

= lim. [/liw/] + lim. [.42^2']+ . . . ,

or

(A1+A2+ . . .)u
= AiUi+A2U2+ . . .

,
Q.E.D.

Proof for lines is very similar to that for areas.

71. Centroidal Plane. — Definition.
—Any plane containing

the centroid of a line, surface, or solid will be- called a centroidal

plane of that line, surface, or solid.*

From the definitions of art. 70 it follows that if the moment
of a length, area, or volume with respect to a plane is zero,

then it is a centroidal plane of the line, surface, or solid.

Proposition.
— If the form of a solid (surface or line) is such

that it can be divided into parts which may be paired off in such

a way that the parts of each pair are equal in volume (area or

length), and that the lines joining the centroids of the parts of

each pair are bisected by a plane, then that plane is a centroidal

one.

Proof: The moments of the volumes (areas or lengths) of the

parts constituting a pair with respect to the bisecting plane are

equal but of opposite sign; hence the moment of the volume

(area or length) of the pair is zero, and the moment of the entire

volume (area or length) is zero
;
therefore that plane is one of zero

moment audit contains the centroid of the solid (surface or line).

Evidently the following are centroidal planes:

for a circular arc, any bisecting plane containing a diameter;

for a sector, any bisecting plane containing a diameter;

for a triangle, any plane cutting it in a median;

for a parallelogram, any plane cutting it in a diagonal;

for a triangular pyramid, any plane containing its vertex and

median of the base.

* Likewise any straight line containing the centroid of a line, surface,

or solid will be called a centroidal axis of the line, surface, or solid.
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72. Centroids of Simple Solids and Surfaces.—The centroids

of such solids and surfaces are determined in the succeed-

ing articles. The general method consists in finding enough

planes or lines containing the centroid to locate its posi-

tion.

73. The Centroid of a Triangle is at the intersection of its

medians.

Proof: As before stated, a plane cutting

a triangle in a median is a centroidal plane.

Since the centroid is in such a plane and in

the plane of the triangle, it is in their inter-

section, i.e., the median line. But there are

three such median lines, hence the centroid is

at their intersection. Further, OA'
, OB', and

OC (fig. 47) equal respectively one-third of AA\ BB\ and

CC
,
from which it follows that

the distance of the centroid of a triangle from any side

equals one-third the altitude measured from that side.

74. The Centroid of a Parallelogram is at the intersection of

its diagonals.

Proof: As before stated, a plane cutting the parallelogram
in a diagonal is a centroidal plane. Since the centroid is in

such a plane and in the plane of the parallelogram, it is in their

intersection, the diagonal; hence, etc.

75. The Centroid of the Surface of a Pyramid is on the axis *

of the surface at a distance from the base equal to one-third of

the altitude.

Proof : Imagine the pyramid cut by numerous planes parallel

to its base; the part of the surface between any two adjacent

planes is a frustum of the surface. Conceive the entire surface

as consisting of elementary frustums; the centroid of any one

of them and those of the perimeters of its bases approach
coincidence. But these perimeters are polygons similar to

the perimeter of the base and the relation between any
one of them and the intersection of its plane with the

* By axis of the surface of a pyramid (or cone) is meant the line join-

ing its apex with the centroid of the perimeter of its base.



64 CENTRE OF CRAyiTY AND CENTROID, [Chap.IIL

axis is precisely similar to that between the perimeter of

the base and its centroid. Henoe the centroid of all the

polygons and the elementary frustums lie upon the axis, and
it follows that the centroid of the surface of the pyramid is on
the axis.

The centroids of all the faces of the pyramid lie in a plane
distant one-third of the pyramid's altitude from the base. It

follows that the plane is a centroidal one, and hence the centroid

of the surface is in that plane.

76. The Centroid of the Surface of a Cone is on the axis of

the surface at a distance from the base equal to one-third the

altitude.

Proof : The surface of a cone may be regarded as the limit of

the surface of a pyramid, the number of whose faces are in-

creased without limit. It follows ihat the limiting position of

the centroid of the pyramid is the centroid of the surface of the

cone, etc.

77. The Centroid of a Prism with Parallel Bases is in the

axis and midway between the bases.

Proof: Conceive the prism as consisting of elementary
laminas whose faces are parallel to the bases. The centroid of

any lamina and the centroids of its faces approach coincidence.

Obviously, the centroids of the faces are on the axis, hence the

centroid of each elementary lamina is also, and it follows that

the centroid of the prism is on the axis. Obviously, a plane

midway between the bases is a centroidal one, hence the centroid

is in that plane.

78. The Centroid of a Pyramid with a Triangular Base is on

the axis * at a distance from the base equal to one-fourth the

altitude (see also next art.).

Proof: As before stated, a plane containing the apex and a

median line of the base is a centroidal one. But there are

three such planes, and since the centroid is in each, it is in their

intersection, the axis. Now each
' *

corner
"
of the pyramid may

be in turn considered as a vertex corresponding to which there

* A line joining the apex of any pyramid or cone with the centroid of 1

the base is the axis. i
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is an axis, and the centroid being on each axis, is at their in-

tersection.

Two axes, AF and BG, are represented in

fig. 48. Since EF = EB/s and EG= EA/s,
GF is parallel to AB and GF= AB/3, and it

follows that the triangles OFG and OAB are

similar. Hence OF = OA/s and 0F =AF/4,
that is, the centroid O is one-fourth the

length of the axis upward from its foot. ^^

Also the distance of the centroid from the

base equals one-fourth the altitude.

79. The Centroid ofAny Pyramid is on the

axis at a distance from the base equal to one-fourth the altitude.

Proof : Conceive the entire pyramid as made up of elementary

frustums; the centroid of any one of them and those of its

faces approach coincidence. But these faces are surfaces

similar to the base, and the relation between any one of them and

its intersection with the axis is precisely similar to the relation

between the base and its centroid. Hence the centroids of all

such surfaces and elementary frustums lie upon the axis, and

it follows that the centroid of the pyramid is in the axis.

Conceive the base divided into triangles, and the entire

pyramid as consisting of pyramids with these triangles as bases.

The centroids of all these component pyramids lie in a plane
distant one-fourth of the pyramid's altitude from the base; it

follows that the plane is a centroidal one for the entire pyramid,
and hence the centroid is in that plane.

80. The Centroid 0} a Cone is in its axis at a distance from
the base equal to one-fourth the altitude.

Proof: A cone may be regarded as the limit of a pyramid,
the number of whose faces are increased without limit. It

follows that the limiting position of the centroid of the pyramid
is the centroid of the cone. Hence, etc.

81. Centroids of Solids and Surfaces Consisting of Simple
Parts.—The solids and surfaces whose centroids are now to be

determined consist of parts whose volumes, or areas, and cen-

troids are known. The solutions are based on the principle of

moments, art. 70.
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EXAMPLE^

I. Determine the centroid of a trapezoid whose altitude is

a and whose minor and major bases are b and B respectively.

Solution: Imagine the trapezoid divided into two triangles.

Their areas are Ba/2 and ba/2, and the distances from the base

B to their centroids are a/^ and 20/3 respectively. The area of

the trapezoid is {B + b)a/2; and if y denotes the distance be-

tween its centroid and the base B,

or

(B + b)a_ Ba a ba 2
^ -y= + a,

2
-" 23 23
_ 2b+B

The centroid can be determined geometrically in this way:
Extend in either direction the major base a distance b, and in

the opposite direction the minor base a distance B. Then the

line joining the ends of the extensions intersects the line joining

the centres of the bases at the centroid of the trapezoid. The
student should supply a proof.

2. Determine the centroid of the "tee section" represented
in fig. 49. Ans. i.oi in. above base.

3. Determine the centroid of the
**
channel section" repre

sented in fig, 49. Ans. 0.79 in. above base.

f0.40

'Tee'

^% i^

31/^

-3K—-
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into which the other diagonal divides it. The intersection of

those two lines is the centroid sought. Prove.

82. Centroids of Solids and Surfaces Considered as Parts of

Other Solids or Surfaces.—The solids and surfaces whose cen-

troids are now to be determined may be conveniently con-

sidered as consisting of a simple solid or surface minus one or

more simple solids or surfaces. It is supposed that the volume
or area and centroid of each of the simple solids or surfaces are

known. The principle of moments slightly modified is em-

ployed thus: Let M^ be the moment of the volume or area in

question, M2 that of the volume or area of which the first is a

part, and M^ that of the remainder; then

for, according to the principle of moments, M2 = M^-\-M^.

EXAMPLES.

I . Determine the centroid of the shaded part of fig. 50.

Solution: The shaded area consists of
^__a/^___^_,a/„ ^

the large square minus the triangle and

quadrant. Its value is

,2

;(l2-7r),

Let the base and left side of the square

respectively be x and y axes, and x and y
the coordinates of the centroid. The co- Fig. 50.

ordinates of the centroid of the triangle and quadrant are

respectively

(a/6, 2a/3) and (a
—

2a/3;r, 2a/3;r). (See ex. 4, art. 83.)

Hence

16

or

—(i2-7r)-^= a}-----~-^{a-2alziz),

_ 8-rx= a.
12

The student should determine "y,

2. Two circles whose diameters are as 2 to 3 are tangent

internally. Locate the centroid of the part of the larger circle

not included in the smaller.
'
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3. Locate the centroid of a surface bounded by a quarter
of a circle and the tangents at its extremities.

Ans. Its distance from either tangent =o.22^r.

4. Suppose that in fig. 49 three comers of the "angle" are

rounded as shown, the radii at /I' and B' being -f^-
in. and that

at C i in. Redetermine the centroid.

5. Locate the centroid of a frustum of a cone whose major
and minor base radii are R and r respectively and whose altitude

^ ''
Ans. Distance from larger base is ''-?^^1^±^.

6. Locate the centroid of the shaded part of fig. 51.

Solution: Since any plane cutting the

figure in Ox is a centroidal plane, the

centroid is on Ox and y = o. To determine

X, consider the shaded part as consisting of

the sector of radius r2 minus the sector of

Fig. 51. radius n, and write the moment equation
with respect to the yz plane. (See ex. 3, art. 83.)

Ans.x^^^rlzi^^ir,^,3(^2-^i)« 2

7. Locate the centroid of a circular segment.
Ans. Its distance from the centre of the circle equals

(base of the segment) V(3-rea of the segment) 12.

83. Centroids Determined by Integration.
—Imagine the solid,

surface, or line divided into elementary parts. Let 'x, y, z

denote the coordinates of the centroid of the solid, surface, or

line.

For a solid, let V denote its volume and x, y, z the coordi-

nates of the centroid of any elementar^^'part. Then, according
to the principle of moments" (art. 70),

Vx =/dVx, Vy = /dV.y,
Vz = /dV.z. . . (i)

For a surface, let A denote its area, and x, y, z the coordi-

nates of the centroid of any elementary part. According to

the principle of moments,

Ax = ydAx, Ay = y*dAy, Az=y'dAz. . . (2)
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For a line, let / denote the length, and x, y, z the coordinates

of the centroid of any elementary part. According to the prin-

ciple of moments,

[
'. lx =

/dlx, ly
=
/dl.y,

lz = /dlz. ... (3)

The limits of integration in the above formulas, applied in

any particular example, must be such that the moments of each

element of the solid (surface or line) are included in the summa-

tions. The formulas may be used for determining the centroid

of a solid (surface or line) provided that the form of it is such

that the integrations can be performed. They are to be em-

ployed when the solid (surface or line) cannot be divided into

parts whose volumes (areas or lengths) and centroids are known.

EXAMPLES.

I. Locate the centroid of a circular arc.

Solution: Evidently the centroid is on OC (fig. 52), i.e.,

y = o. To determined, eq. (3) is used. ^incQ dl^rd6,x = r cos d^

and l = ra.

ra
/a/2

rd(

a/ 2

rdd-r cos d, or
._ 2r . a
x =— sm —

.

a 2

For a semicircular arc, a = 180°, and x = 2r/n = o.6^'jr.

2. Locate the centroid of a circular arc of 90°.

Ans, Distances from OA and OB equal 2r/7r.

3. Locate the centroid of a circular sector.

Solutions: Evidently the centroid is on OC (fig. 53), i.e.,

57
= 0. To determine x, eq. (2) is used,

(i) If the elementary area be chosen so that dA=pdddp, the
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X coordinate of the centroid of the element is p cos 6] and since

\r'^a-x= I I p^ cos ddpdd, or ::k:
= -^ sin — .

Jo ^-a/2 3a 2

(2) If the sector is considered as made up of elementary trian-

gles, so that dA =hr'^ddy the x coordinate of the centroid of any
element is |r cos 6. Eq. (2) becomes

/'a/2

_ Ar a
cos Odd, or x=— sin—.
a/2 3« 2

(3) The student should write the expression for Ic, choosing the

elementary area so that dA = dx dy.

For a semicircular area, «= 180°, and ^ = 4r/37r
=

o.424r.

4. Locate the centroid of a circular quadrant.
Ans. Distance from either straight side is 4^/3^-

5. Show by the integration method that the centroid of a

triangle is one-third the altitude from the base.

(Suggestion: Take the origin of coordinates at the vertex

and consider the triangle as consisting of elementary strips

parallel to the base.)

6. Locate the centroid of a symmetrical parabolic segment
whose altitude is a.

Ans. It is on the axis of the parabola distant fa from the

vertex.

7. Locate the centroids of the halves into which the axis

divides the segment described in the preceding example.

84. Surfaces of Revolution.—General formula (2) of the pre-

ceding article is used; it will be advantageous to select the

elementary area in a certain way, namely, the

area described by an elementary part of the

generating curve. Let the x axis be taken

coincident with the axis of revolution, fig. 54;

then the area described by a part of the gen-

erating curve whose length is ds is 27tyds. The

coordinates x, y, and z of the centroid of this

Fig V-i"""*
^^^^ ^^^ evidently x, o, and respectively;

hence

Ax = 27:
I yds- X, or x=-t- / xyds, and 57

= 2=0.
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A stands for the area of the surface of revolution, and

A = 27:
1 yds.

The limits of integration must be assigned so that each element

ds is represented in the integrations.

EXAMPLES.

I . Locate the centroid of a segment of a spherical surface.

Solution: The segment may be considered as generated by
the revolution of a circular arc, as ^C about OC, fig. 52. Since

x= r cos 6, y= r sin 6, and ds = rdd,

^
/

cos d sin 6 dd

i sin d dd

= - I + cos — ,

2\ 2/

2. Show by the integration method that the centroid of the

surface of a cone is one-third of the altitude from the base.

85. Solids of Revolution.—General formula (i), art. 83, is

used; it will be advantageous to select a

certain elementary volume, namely, that

generated by an elementary part of the gen-

erating plane which is included between two
lines perpendicular to the axis of revolution.

Thus if, in fig. 55, the generating plane is that q

bounded by the solid curve, and the x axis is

taken coincident with the axis of revolution,

dV = ^{y^ — y^)dx.
Now the centroid of this elementary volume* is

in the x axis, and its x coordinate is the ^in

the figure; hence

Vx=7z I {y^-y^)dx'X, or x=^ I {y^-y^)xdx,

V denotes the volume of the solid of revolution, and

The limits of integration are to be assigned so that each dV is

represented in the integrations.

Fig. 55.
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EXAMPLES.
I. Locate the centroid of a segment of a sphere. i

Solution : The segment may be considered as generated by i

the revolution of one-half of a circular segment, as ACD about
\

OC, fig. 56. Since x= r cos d, dx=—r sin 6 dd. Also ^^j
= r'sin; ^ !

and >'i
=

o, therefore,
^ ^

I

x =

a/,

sin^^cos ddd

/:''
sin^ d dd

^^
sin^ a/ 2

* 2— 3 cos a/2+cos^ a/2'

2. Locate the centroid of a paraboloid of revolution whose \

altitude is a.
\

Ans. It is in the axis of revolution distant fa from the '

apex. ]

y ^ y

Fig. 56.

3. Locate the centroid of a frustum of a cone.

Suggestion: The frustum may be considered as generated

by the revolution of the shaded trapezoid (fig. 56) about Ox.

86. Theorems of Pappus and Guldinus.—L The area of the

surface of revolution generated by a plane purve revolved about

an axis in its plane equals the length of the curve times the

circumference of the circle described by its centroid.

Proof: Let A denote the area of the surface, / the length of

the curve, and y the ordinate of its centroid measured from the

axis. Then (see fig. 54)

A

hence

= 27: I yd.s and, from eq. (3), art. S^, y
Lfyds;

K= \'27ty (i)
. I
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? II. The volume of a solid of revolution generated by a plane

figure revolved about an axis in its plane equals the area of the

figure times the circumference of the circle described by its

centroid.

Proof: Let V denote the volume of the solid, A the area of

the plane figure, and y the ordinate of the centroid of A meas-

ured from the axis. Then (see fig. 55)

and, from eq. (2), art. ^t,,

hence
V= A.2;ry . (2)

Equations (i) and (2) are available for con\puting y as well

as ^ or y if all other factors in the equations are known. It

should be remembered that A has different meanings in (i)

and (2),

EXAMPLES.

1. Knowing that the surface of a sphere is 4;rr^, locate the

centroid of a semicircular arc.

2. Knowing that the volume of a sphere is |:rr^, locate the

centroid of a semicircle.

3. A circle of radius r is revolved about a line in its plane

whose distance from the centre is a, a being greater than r.

Deduce expressions for the surface area and volume of the solid

generated.

4. By eqs. (i) and (2), deduce formulas for the surface area

and volume of a cone.

5 . Show that the area of the spherical segment generated by
revolving the arc ACy fig. 53, about Ox is 27rr^(i

—
cosa:/2).

87. Graphical Determination of the Centroid of a Plane

Figure.
—I. The figure can be subdivided into parts whose

areas and centroids are known. Imagine a uniform lamina

shaped like the figure and then determine its centre of gravity

by the method outlined in art. 63, p. 54. As an illustration,
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let it be required to determine the centroid of the shaded part^
of fig- 57(«)- Imagining the figure to represent a uniform

]

lamina, first determine the action line of the resultant of^

Fig. 57a. Fig. s1^'

the weights of the three component parts of the lamina act-

ing through their respective centres of gravity ;
these weights

are proportional to the areas of the component parts of the

figure. First draw a force polygon for the forces, as ABCD,
then a funicular polygon, as oa, oh, oc, od, and extend the

first and last strings oa and od; then a line through their inter-

section parallel to the forces is the action line sought, a(i. Next,
instead of turning the lamina about as suggested in art. 63,

imagine the direction of gravity to be changed so that a'h',

b'c\ and c'J' will represent" the weights of the parts of the lam-

ina; then find the action line of the resultant of these weights.
A second force polygon is unnecessary, for the second funicular

polygon, oV, o'h'
, o'c\ o'd'

,
can be constructed from the first

force polygon, o'a' being perpendicular to OA, o'h' perpendicular
to OB, etc. The intersection of o'a' and o'd' fixes a'd'

, which

is the action line sought, and the intersection of ad and a'd'

is the centroid of the entire figure.
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In this case, the graphical method is not so convenient as

the algebraic, but in the following case it is generally better.

11. The figure cannot be divided into simple parts whose
areas and centroids are known.—The method requires the

use of a planimeter or other device for determming the area

of an irregular figure. Let abba (fig. 57/^) be the figure whose
centroid is to be determined, OX any convenient reference

axis, and P any point on it. (i) Draw O^X^ and O^X^Sit any
convenient distance m from OX. (2) Draw a line aa parallel

to the X axis through the figure and mark its intersections

I with the perimeter a. (3) Project aa on O^X,. (4) Join

I

the ends of the projection with P and mark the intersections

of aa with the joining lines a'. (5) Repeat the construction

I for other lines like da, as bb, thus locating points b' . (6) Draw
a smooth curve through all points, as a'6V, etc. (7) Measure

the area of the two loops
*
(shaded in the figure) and that of

the given figure. (8) Finally, if A denotes the area of the

given figure, ^/ and A^' the areas of the loops on the positive
and negative sides of the x axis, and y the ordinate of the cen-

troid, then

I
y:=m{A,'-A,^)/A.

1 Proof: The moment of the area of the given figure with

•respect to the x axis is

P 'yA = / ydA = / ywdy= / ywdy+ / ywdy,
»/ ^ J —C2 J —C2 Jo

w denoting any width of the figure, as aa or bb. If w' denotes

the width of the loop corresponding to w, i.e., a'a' or b'b'
, then,

from similar triangles in the figure, it follows that

^yjw' =m/w, or yw = ±m'w\

the positive or negative sign to be used according as w and w'

refer to widths above or below the x axis.- Substituting this

value of yw in the last expression for the moment, we have

*'
'yA=m\ —

I w'dy-\- I w'dy .

Now the first integral equals A^Sind. the second ^/ ; hence, etc.

* If the X axis does not cut the given figure, there will be only one loop.



CHAPTER IV.

i

ATTRACTION AND STRESS* -
I

]

§ L Gravitation.
]

Every body in the universe attracts every other body, the '

attraction in each case depending upon the masses of the two ]

bodies and their distance apart. This attraction is called
]

gravity, gravitation, and gravitational attraction.

88. Law of Gravitation.—Every particle attracts every other

particle with a force which is proportional to the product of the
"|

masses of the two particles directly and to the square of their^

distance apart inversely. 1

The law may be stated algebraically thus : let F denote the <

attraction, m' and m" the masses, and r the distance; then

_ m'm" _
,
m'm" j

k being a constant whose value depends, as explained below, i

upon the units used to express force, mass, and distance.
;

Gravitation Constant.—It is shown in art, 97 that two homo- ;

geneous spheres attract each other as though the mass of
s

each were concentrated at its centre, i.e., the attraction is the j

same as that between two particles placed at the centres of the :

spheres, the mass of each being equal to that of the correspond- 1

ing sphere. Hence the formula for the attraction between par- ]

tides applies to that between homogeneous spheres, r denoting :

* The principles of mechanics employed in this chapter are mainly
those relating to composition of forces, and most of the chapter might

'

have been distributed as problems on composition in Chap. II. How- ]

ever, as it all relates to but two subjects, it is convenient to treat the i

matter together. I

74 S
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the distance between their centres
;
and the attraction between

two spheres of unit mass, their centres being unit distance apart,

is k —^ =k.

Therefore, the numerical value of k equals the attraction

between two homogeneous spheres of unit mass whose centres

are unit distance apart.

The numerical value of the gravitation constant, k, hence

depends upon the units employed for expressing force, mass,
and distance. If the pound, pound, and foot respectively be

employed, ^ = 3.31X10"", and for C.G.S. units (see art. 232)
^ = 6.65X io~*. It is possible to choose the units of force, mass,
and length so as to make k=i', two of them may be chosen

arbitrarily, but such a third unit is an uncommon one, and
therefore k will be retained in the formula.

A determination of the gravitation constant involves the

measurement of the attraction between known masses at known
distance apart. If F denotes the measured force, m' and m"
the masses of two homogeneous attracting spheres, and r the

distance between their centres, then

EXAMPLE.

In an early determination of the gravitation constant, the

attracting spheres were of lead, two and twelve inches in diam-

eter. When their centres were nine inches apart, the attraction

was measured. What was its value in pounds ?

89. Density.
—By density of a body is meant its mass per

unit volume. We will denote it by d.

In a homogeneous body ,
the mass of a unit volume is the same

no matter where, in the body, the volume is selected; hence the

density is constant, and its value is found by dividing the mass
of the body by its volume, i.e., if m and V denote mass and
volume of the body respectively,
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In a heterogeneous body, the density is variable and the ex-
j

pression m/V gives the average deajsity; and if Jm denotes thei

mass of a portion whose volume is J F, ^

-TY^
= average density of the portion.

If the small portion, as its volume approaches zero, always :

includes a point P, then
\

Awl
lim.

-Ty.
= density at P,

4

or, if 5 denotes density at P,

dm
j

dV-
\

go. Attraction at a Point or "Strength of Field."—By]
attraction at a point due to any body is meant the attraction!

which it would exert upon a particle of unit mass placed at the
;

point or upon a homogeneous sphere of unit mass whose centre
]

is at the point. This is also known as strength of field, the termj

field being a contraction of "field of force," which means the]

region at all points of which there is an attraction. 1

91. Attractions in Some Simple Cases.— To compute the-

attraction at a point it is necessary to compound the gravita-|

tional forces exerted by all the particles of the attracting bodys

upon a particle of unit mass placed at the point. This system |

of forces is concurrent, and may be coUinear, coplanar or non-^

coplanar; hence to determine the resultant of the system the^

methods of §§ 2, 3, or 6, Chap. II, may be used.
.|

92. Attraction at a Point on the Produced Axis of a Straight

Slender Rod.—Let AB (fig. 58) be the rod and P the point. If
|

P A Q B
I ^ m I

k— X- —->
1 \

•< av ^
^

Fig. 58.

*

]

a denotes the area of the cross-section of the rod, and dm the'

mass of an elementary volume such as that represented at Q,:

then dm = dadx. Such an element may be considered as a par- i



I.]
GRAVITATION. 77

icle, for its dimensions are negligible in comparison with x\

hence the attraction due to it at P is kdadx/x^. Denoting the

attraction of the whole rod by F, then

y^, x^ V^i ^2/ I Vi ^2/

m and / denoting mass and length of the rod respectively.

93. Attraction at any Point Due to a Straight Slender Rod.—
Let AB (fig. 59) be the rod and P the point c

distant from the rod. If a denotes the cross-

sectional area of the rod and dm the mass of

Ian element such as that represented at Q,

|:then dm = dady. Such an element may be

considered as a particle, since its dimensions

are negligible compared with r; hence the

attraction due to it at P is kdady/r"^.

The X- and ;v-components of this attrac-

rtion are respectively Fig. ^9.

/

i

kdady
cos 6 and kdady .

sin d.

It is plain from the figure that r= c/cos d, and y
— c tan 6; hence

4y= cdd/cos^d and the expressions above can be written

kda
cos d dd and

kda
sin 6 dd.

If Fx and Fy denote the x- and :v-components of the attraction

at P,

»nd

_kda n

_kda r»

cos ddd = (sin/?+ sin a),

sin ddd = (cos /?
— cos a).

If F denote the magnitude of the resultant attraction and
(f>

its

wangle with the x axis,

a — 3
tan ^ = F^/Fa; = tan -, or

(j)
= (a—^)/2.
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94. Attraction Due to a Circular Ring at a Point on its AxisJ
—Let the ring be that representefl in fig. 60 and P the point h

distant from its centre. Imagine the;

ring resolved into elements as that

represented at Q, and call the mass of s

one dm. Such an element may be'

treated as a particle, for its dimen-;
sions are negligible compared with PQ. •

The attraction at P due to any ele-!

me'nt is kdm/{r^-{-b^). It is plain'

from the symmetry that the algebraic
sums of the y- and 2-components of|

^^^- ^°- the attractions of all the elements arei

zero, hence the attraction at P due to the ring equals the sumj
of the ^-components. Let ^ denote the angle CPQ, then

i

the :3C-component of the attraction of an element is ?

kdm
, \

and if F denotes the resultant attraction,

^ k . r , km
r^ + b'

cos
(j) I dm

r^ + b'
cos ^,

m denoting the mass of the ring.

95. Attraction Due to a Thin Circular Plate at any Point on

its Axis.—Let AB (fig. 61) be the plate,

a its radius, / its thickness, and P the

point. Imagine the plate as consisting

of rings, or hollow cylinders, whose

inner and outer radii are r and r + dr

respectively. The mass of such a ring

is d27zrdr-t, and the attraction of the

ring at P equals

, d2nrdr-t
,

^
r2j^l,2

cos
<j>

Fig. 61.

(see art. 94).

then

Let F denote the attraction of the whole plate,

F= 27:kdt£'S^lldr.
+b
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Since r= h tan
<j),

dr= bd<j)/cos^<j), and

F= 2nkdt

79

t

I sin^(i0 =
m.

2nkdt{i— cos a) = 27:k-^{i —cos a).

The expression 2;r(i— cos<^) is the value of the solid angle*
subtended by the plate at P\ hence, if oj denote that angle,

77 u*^

For a point very near the plate a is nearly 90°, and

mF = k2n-7ry approximately.

96. Attraction Due to a Spherical Shell at any Point.—Let

ABC (fig. 62) be the shell, represented by a diametral section.

Fig. 62.

and P the point. Imagine the shell resolved into elementary

rings which are cut out from the shell by cones whose common

apex and axis are O and OP respectively. Two of the ring sur-

faces then are conical and two are zones of the outer and inner sur-

* The student is reminded that a solid angle is measured by the ratio

)f the area of that part of a sphere, whose centre is at the apex of the

mgle, which is included within the surface bounding the angle to the

;quare of the radius of the sphere. Thus if for the solid angle sub-

;ended by the plate at P a sphere of radius R be used, the cone bounding
;he angle cuts from the sphere a segment whose area is 2r.R*{i —cos a),

«ee ex. 5, art. 86; hence the soHd angle equals 27r(i —cos a).

OF THE
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faces of the shell. Let dA denote the area of the inner zonej
and / the thickness of the shell;* then the mass of the ring is

ddA'ta.n6.

the attraction of the ring at P = ^-^ qos
(j), \

(see art. 94). Let F denote the attraction of the shell, then 1

F=
kdtp-^dA.r

the limits being chosen so that all rings of the shell are included.]

To integrate, we will express dA and cos
(ji

in terms of rj

From the figure, i

i

dA = 2na sin d ' add= 2710? sin d dd
,

i

and r^= a^-\-b^ — 2abcosd, or rdr= absm6dd; •

hence
,

7 A CL , \

aA = 27: -y-r dr. 1

Since a^=r^+ 6^ — 27*6 cos ^,

cos
(j)
=

{r^ + b^ — a^)/2br.

Finally,

/
The integral equals / dr + {b^ — a^) I — =

The limits of the integration depend on whether the point P\\

is within or without the shell.

(a) When the point is external,

7rfetorr2 + a2-62-i6+a kd^naH km

i^ =-p- / -. dr.

rr^ + a^-6^ ~1^+^_F = '

'" ' ' '"
b^

'

m denoting the mass of the shell. The final expression shows

that the attraction at a point outside of a homogeneous shell is

the same as though its mass were concentrated at its centre.

When the point is on the surface, b = a and F= k^K-^^

A denoting the area of the surface of the shell.

i
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(6) When the point is internal,

rr2 +
a2_52^-|a- = o.

b

97. Attraction at a Point Due to a Sphere.
—If the sphere

may be resolved into homogeneous shells, the results of the

preceding article may be employed.
For exterior points, the attraction due to each shell is the

same as though its mass were concentrated at the centre and

hence the attraction due to the sphere is the same as though its

mass were concentrated at the centre. If m denotes the mass

of the sphere and h the distance of any exterior point from the

centre, the attraction at that point is km/h^, i.e., the attraction

varies inversely as the square of the distance from the centre.

For interior points, the attraction due to each shell which

includes the point is zero, and the attractions of all shells to

which the point is external are the same as though their masses

were concentrated at the centre of the sphere; hence only the

part of the sphere which is nearer the centre than the point is,

exerts an attraction at that point, and it is the same as though
the mass of that part were concentrated at the centre. If mf

denote the mass of that part and h the distance of the point from

the centre, the attraction at that point is km'/h"^.

If the sphere is homogeneous, w' = ^|7r6^; hence the attrac-

tion at the point is k^noh, i.e.. it varies directly as the distance

from the centre.

§ II. Electric and Magnetic Attractions.

Electrified bodies attract or repel each other, and so do

magnetized ones. A study of these forces does not fall within

the scope of this book, but their laws are so similar to that of

gravitation that several important propositions relating to

electric and magnetic attractions can be readily deduced from

the results derived on gravitation.

98. Laws of Electro-Static and Magnetic Forces.—(i) Bodies

similarly electrified or magnetized repel, and those dissimilarly

electrified or magnetized attract, each other.
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\

\
This law points out a difference between electric or mag- \

netic force and gravitation; the latter is always attractive. \

(2) The force, attraction or repulsion, between two bodies
\

electrified or magnetized is proportional directly to the product \

of the quantities of electricity or magnetism and inversely to \

the square of the distance between them. I

In order that the distance between the bodies may be defi- 1

nite their dimensions must be negligible compared with the \

distance between any two points of the bodies.* |

The second law may be stated algebraically; thus, let F\
denote the force, q' and q" the quantities, and r the distance, |

then
I

Fo^if,
or F=

kif. ...... (.) i

k being a constant corresponding to the gravitation constant, j

It is customary to employ units of force, quantity, and dis- i

tance which make k equal to unity; then
|

^ q'q" ^

i

99. Strength of Field.—By strength of field at any point \

due to any quantity of electricity or magnetism is meant the 1

force which that quantity would exert upon a unit quantity |

of electricity or magnetism concentrated at that point. It \

is assumed that the unit quantity would not affect the field. j

100. Analogy between Electrical or Magnetic and Gravita-
\

tional Attractions.—Comparing the equation of art. 87 and (i) ;

of art. 98, it is seen that they are perfectly similar; hence the
\

strength of field due to any distribution of electricity or mag- |

netism may be found by analogy from the gravitational at- -i

traction due to a body the distribution of whose mass is simi- 1

lar to that of the electricity or magnetism. \

10 1. Strengths of Field Due to Some Simple Distributions
j

of Electricity' and Magnetism. — I. Electrified Circular Plate. ^
___ .

_,

* These statements of the laws are somewhat loose, but they serve the
;^

present purpose better than the usual forms. The reader is assumed tc
'''.

have at least an elementary knowledge of the phenomena of these forces. •

.^
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—The electricity resides at the surface, and is nearly uni-

formly distributed, being more "dense" at the edges than

elsewhere on the surface. If we regard it uniformly distributed,

the expression for the strength of field at any point on the

axis of the plate due to the electricity on either face may be

deduced from the expression for the gravitational attraction

due to a homogeneous thin plate at any point of its axis, which

is k-^co (art. 95) For strength of field due to the electricity

on one side, we make k=i, and substitute q for w, q denoting

the quantity of electricity on the side considered. If F de-

notes the strength of field, then

Now q/A is the quantity of electricity per unit area, and is

called the surface density ;
if it be denoted by p,

F= pco • (i)

For a point at the centre of the face, (0 = 211, and

F= 2np (2)

If the plate be very thin, so that its thickness is negligible

icompared to the distance between plate and the point of the

axis considered, the strength due to electricity on both sides

is called strength due to the plate, and its value is qco/A, q

denoting quantity on both faces. For such thin plates q/A,
the quantity of electricity on both sides per unit area of one

side, is called surface density. With this meaning of q/A, or

(0, equations (i) and (2) may be used to compute strengths

due to thin plates.

II. Electrified Sphere.
—The electricity resides at the sur-

face and is uniformly distributed over it; hence the expres-

sion for the strength of field due to an electrified sphere may
be deduced from that for the gravitational attraction due to

a homogeneous spherical shell.
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(a) For external points, the expression is km/h"^ (art. 96).

For strength due to an electrified sphere we make k=i, and

substitute q for m, q denoting the quantity of electricity. Then
if F denote strength,

A denoting area of the surface of the sphere and r its radius.

Now q/A is the surface density; if it be denoted by p,

^==-srp (3)

For a point at the surface b = r, and

F= 4^p (4)

(b) For internal points, the gravitational attraction due

to a shell is zero, and hence the strength of field due to an elec-

trified sphere at an internal point is also zero.

III. Magnetic Shell.—This is a magnetized plate, the mag-
netism on one side being "north-seeking" and that on the

other side "south-seeking." The expression for strength of

field due to the magnetism on one side of a circular plate at a

point on its axis may be deduced from the expression for the

gravitational attraction due to a homogeneous thin circular plate.

That expression is k'.oj (art. 95). For strength of field dueA
to the magnetism on one side we make k = i, and substitute

q for m, q denoting the quantity of magnetism. Then if F
denote strength,

Now q/A is the quantity of magnetism on one side per unit

area, and is called the surface density of m.agnetism; if it is

denoted by ^o,

F=p(o (S)

For a point at the surface of the shell (0= 27:, and

F= 2np. . , , (6)
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§ III. Stress.

102. Stress Defined.—The term stress is variously defined.

Some writers mean by it the forces which any two bodies or

two parts of a body exert upon each other, it being then a

term which refers to any "action" and its "reaction" (art, 6).

For example, such writers designate as a stress the forces which

the earth and sun exert upon each other, the forces which the

upper and lower halves of a monument exert upon each other,

etc.

Most engineers, however, use the term in a narrower sense,

meaning by it the force which one part of a body exerts on an

adjacent part at the surface of contact of the parts. Such

engineers designate as stresses the force which the upper or

lower half of a monument exerts upon the other half, the force

which either half of a stretched string exerts on the other half,

etc.

We will use the term in the engineer's sense slightly ex-

tended and define it thus: Stress is any force whose place of

application is a surface. The force may be exerted between

parts of one body or between two different bodies which are

in contact, a part or all of the contact surface being the place
of application of the force.

103. Units for Expressing Stress.—Since a stress is a force,

it must be expressed in force units, the pound force, the kilo-

gram force, etc.

104. Classification of Stresses.—If the parts of a stress on

all equal small portions of its place of application are equal,

the stress is said to be uniform as to distribution; if otherwise,

non-uniform. If the action lines of the resultant forces on

all the small portions are parallel, the stress is said to be uni-

form as to direction; if otherwise, non-tiniform.

If the action lines of the resultants are all normal or tan-

gential to the surface of application ,
the stress is called simple;

if otherwise, complex. Stresses are, in general, complex, but

it is possible to describe any complex stress in terms of simple
stresses; only such are discussed herein.

Simple stresses may be classified into normal and tangen-
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iial stresses according as the action lines of all the forces

on the small portions of the placef of application are normal

or tangential to the surface to which the stress is applied.

Normal stresses are subdivided into pressures, or compressions,

and tensions according as the force, or stress, acts toward or

away from the place of application. A tangential stress is

also called a shear.

The classification may be presented thus:

(normal... i f^^sure

Simple stresses
]

(
tension

( tangential . . shear

105. Description of a Simple Stress.—This requires a state-

ment as to its kind (pressure, tension, or shear), and as to the

manner of its distribution. The distribution is described by
a statement, for each point of the place of application, of the

value of the

106. Intensity of Stress.—By intensity of stress, or stress

intensity, at any point of the place of application of the stress

is meant the stress per unit area at that point.

If the stress is uniform as to distribution, then the stress

per unit area is the same at all points, and its value is found

by dividing the stress by the area of its place of application.

If Fy A, and p denote the stress, area, and intensity respect-

ively,

P =F/A (I)

If the stress is non-uniform as to distribution, then the

stress per unit area is different at different points, and the

expression F/A gives the value of the average intensity. Also

if AA denotes the area of ajiy part of the place of application

and AF is the value of the stress applied to that part, AF/AA
is the value of the average intensity of that part, AF, of the

whole stress. Now if AA, as it approaches zero, always in-

cludes a point P, then AF/AA approaches, in general, a finite

limit, and the value of that limit is the intensity of stress at

P, or
dF

P =dA (^)
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The tinit of intensity of stress depends on the unit used for

expressing F and A. If, for example, the pound and square

inch are used for these respectively*, then the pound per square
inch is the corresponding unit for stress intensity.

[Note: What is herein called intensity of stress is very

commonly called by engineers "unit stress." Strictly, unit

stress is the general name for the units employed for express-

ing stresses, the pound, kilogram, etc., and the engineer's

usage is avoided in this book as being confusing to the student.

Once thoroughly familiar with the quantities involved, he may
safely adopt the engineer's term.]

107. Graphical Representation of a Simple Stress.*—
(a) Normal Stress.—Let abed, in the xy plane (fig. 63), be

the place of application of the stress, and imagine ordinates

erected at all points of it propor-

tional to the intensities of stress at

the points; thus, if p denote the in-

tensity at P, z the ordinate, and k

any constant (the scale number),

p = kz, or z = p/k.

Then the volume of the solid defined

by those ordinates represents the

stress, for its altitude at any point represents the intensity

there, and the volume represents the value of stress, as can

be shown, thus:

the stress
,
or F= JpdA = kfzdA ,

and the volume, or V= I zdA
;

hence
F= kV, or V= F/k,

If the stress is partly tensile and partly pressural, the ordi-

nates corresponding to tensions and pressures are drawn from

the plane in opposite directions. Then p is regarded as posi-

* In this and the following articles it is assumed that the place of

application of the stress is plane, but some of the results are not restricted

to such cases.
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tive for one kind and negative for the other kind of stress.

(See fig. 64.) r

(b) Tangential Stress.—A tangential stress which is uni-

form as to direction may also be represented by the method
described above.

108. Centre of Stress.—Any stress which is uniform as to

direction can be conceived as a system of parallel forces having
definite application points. Thus imagine the place of applica-

tion of such a stress divided into elementary parts, and let dA
denote the area of any element and p the intensity of stress at

that element; then the stress or force on that element is pdA.
Now all such forces as pdA make up a system of parallel forces

and their application points are definite points of the place

of application of the stress.

Since a system of parallel forces having definite applica-

tion points has a centroid (art. 62), therefore a stress which is

uniform as to direction has a centroid, or a centre as it is more

commonly called.

The centre of stress is in the plane of the place of applica-

tion, and it is where the action line of the resultant of the ele-

mentary forces, pdA, pierces that plane. Formulas for the

position of the centre of stress in the

plane may be deduced from those for

the centroid of a system of parallel

forces (art. 63). Thus, let fig. 64 rep-

resent a stress and Xc and yc the coor-

dinates of the centre of the stress.
'^'

Also, let X and y denote the coor-

dinates of the application point of the force pdA on any

elementary area dA. Then .

I pdA • X J pdA
^c=—t^ and yc

=
•y

F
— -'^ F '

F denoting the value of the stress, or pdA.

Proposition.
—A line drawn through the centroid of the

solid representing a stress and perpendicular to its place of

application passes through the centre of the stress.
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Proof: According to the preceding article, the equations

above can be rewritten thus:

Xr=
fzdA'X

and yc
= JzdA-y

V '

hence

/ dV'X fdV •y

Xc=—y
— and yc=- y

.

fdV'X JdV-yNow t7
— ^^d

y^
— are the expressions for the coordi-

nates of the centroid of the solid whose volume is V (art. 83) ;

hence the corresponding coordinates {x and y) of the centre

of stress and the centroid of the solid representing the stress

are equal. It follows that the line joining those two points

is parallel to the z axis, hence, etc.

109. A Uniformly Varying Normal Stress.-^ By this is

meant one whose intensity at any point is proportional to the

distance of that point from some straight line in the plane of

the place of application of the stress. The straight line is

called a neutral axis, or zero line. A familiar example of such

a stress is the pressure of a liquid which is at rest upon an im-

mersed flat surface which is not horizontal, and an important
case is the

**
fibre stress" on any cross-section of a moderately

loaded beam.

Fig. 65 represents three such stresses; the places of appli-
cation are abed, and the zero lines are coincident with the y
axes. In (a) the stress is part tension, part pressure; in (6)
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and {c) it is all of one kind. In any case, the law of variation

can be expressed thus: '

p = ax,

p being the intensity at a point whose distance from the zero

line is x and a a constant. When the stress consists of a ten-

sion and a pressure, then p in the equation must be regarded
as having sign, its sign being the same as that of x.

When x=i, p = a\ hence the numerical value of a equals
the value of p at points at unit distance from the zero line.

The value of the stress.—The stress on an elementary area
is

dF =pdA=axdA,
hence

F==afxdA (i)

Since JxdA
=xA

,
A being the area of the place of application

of the stress and x the x coordinate of its centroid,

F= axA (2)

Let p denote the intensity of stress at the centroid of the place

of application, then

p = ax and F= pA (3)

Proposition.
—The intensity of a uniformly var}4ng stress

at the centroid of its place of application and the average in-

tensity of the stress are equal.

Proof: From equation (3), p =F/A; since F/A is the value

of the average intensity (art. 106), the proposition is proved

by that equation.

no. Centre of a Uniformly Varying Stress.—Substituting

values of p and F for a uniformly varying stress in the first

expressions for the Xc and yc in art. 108, we have

af(xdA)x Jx^dA

af{xdA)y JxydA
^''^ aAx

""

Ax
'
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Ax is the moment of the area of the place of application of the

stress with respect to the zero line. The integrals in the ex-

pressions for Xc and yc are of great importance and have special

names; they are discussed in App. D, where their values for

many forms of surfaces are deduced.

EXAMPLES.

1. Where is the centre of a stress whose place of applica-

tion is a rectangle, the intensity at any point being propor-

tional to its distance from one side?

2. Where is the centre of a stress whose place of applica-

tion is a semicircle, the intensity at any point being propor*

tional to its distance from the diameter?

111. Moment of a Uniformly Varying. Normal Stress.—The

stress on an element of area dA whose ordinate is x, is axdA,
and its moments with respect to the x and y axes are respect-

ively

{axdA)y and (axdA)yx.

If Mx and My denote the moments of the entire stress about

the X and y axes respectively,

Mx = afxydA

aiid

My^afx^dA.

112. Position of the Neutral Axis when the Stress is Part

Tensile and Part Pressural and the Two Parts are Equal.
—The

algebraic sum of the elementary stresses is zero; hence

axA=o, or x = o,

i.e., the zero line contains the centroid of the surface of appli-

cation of the stress.

In a beam, as ordinarily loaded, there is on each crofs-

section a stress of the kind described in the title to this article,

and the result above deduced is of great practical importance.

It will bear another deduction ;
it differs but slightly from that

given above. Let A^ and A" be the areas of the parts of the
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place of application of the stress which sustains tension and

pressure respectively, and 'x' and *X" the distances (not coor-

dinates) of their centroids from the zero line. Then

the value of the tension is ax'A'\
** *' *' *'

pressure is a3t''A" (art. 1*09).

Since these are equal, x'A' = x"A"
,
that is, the moments of

Iho two parts of the entire area A about the yz plane are equal;
hence that plane contains the centroid of the whole area (art.

71). But the centroid is also in the xy plane, hence it is in

the y axis, or the neutral axis.



CHAPTER V.

GENERAL PRINCIPLES OF EQUILIBRIUM.

§ I. Preliminary.

113. Definitions.—An external force is one exerted on a

body by some other body. An internal force is one exerted

on a part of a body by some other part. The same force may
be classed either as external or internal, depending upon the

point of view. For example, consider a block resting upon a

table; the two bodies exert forces, or pressures upon each

other. If the block and table are considered as one body, then

both of these forces are internal, but if they are considered as

two separate bodies, then each of the forces is an external one.

Again, the upper and lower halves of the block exert forces

upon each other, and with reference to the whole block con-

sidered as one body each is an internal force; but with refer-

ence to either half considered as a body, the force exerted

upon that half is an external one.

A body is said to be in equilibrium if (i) it is at rest or (2)

its state of motion is unchanging. The first is the important
case in this connection.

The system of external forces applied to a body which is in

equilibrium is also said to be in equilibrium.

114. General Condition of Equilibrium for a System of Forces

Applied to a Rigid Body.
—If the system of external forces

applied to a rigid body is in equilibrium, its resultant is nil.

For the system, being in equilibrium, produces no change of

motion, and therefore its resultant would produce none; hence

the resultant must be nil.

Conversely, if the resultant of all the external forces applied
to a rigid body is nil, that system of forces is in equilibrium.

93
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For the resultant, being nil, would produce no motion, there-
!

fore its equivalent, the system, produces none; hence it is in
^

equilibrium. i

The condition fulfilled by a system in equilibrium and the
J

condition to insure the equilibrium of a system are one and i

the same, namely, the resultant is nil; this is called, therefore,!

the general condition of equilibrium. i

115. Equilibrium of a System of Forces Applied to a Non-rigid
'

Body.
—The condition stated in the preceding article for the]

equilibrium of forces applied to a rigid body is, as shown, both 1

necessary and sufficient. For the equilibrium of a deform-
'

able body it is necessary that the resultant of the external '

applied forces be nil, but it is not sufficient. This may be
]

explained by illustration:

Consider the water in a cup; the system of external forces]

applied to it consists of its weight, the pressures exerted by i

the cup, and the air pressure on top. Now if this same sys- i

tem of forces could be applied to the water when frozen, it
;

would certainly be in equilibrium and its resultant would be
\

nil
;
hence the resultant of the external system on the body of

|

water is nil. But any forces applied to the body of ice which
|

with the weight have a zero resultant will maintain its equi- \

librium; thus, a single vertical force equal to the weight and
j

acting through the centre of gravity will answer. The same i

force applied to the body of water will not of course maintain I

its equilibrium, although the resultant of the two applied j

forces is nil. Other conditions than a vanishing resultant \

therefore are necessary. In this case, pressure must be ex- 1

erted on the entire surface of the body of water except the top,
]

and in a certain manner. .
)

Again, consider two similar boards fastened together with
5

one nail as in fig. 66(a) and two fastened with several nails
|

as in fig. 66(6), and suppose their planes vertical. It can be
\

proved experimentally and otherwise that the equilibrium \

of the first two boards can be maintained by two forces such
I

as R^ and i^". Clearly, the same two forces would maintain i

the equilibrium of the second two boards
;
hence the resultant of \

the system R', R'\ W\ and W is zero. But any forces which
'\
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together with W and W' have a zero resultant would main-

tain the equilibrium of the boards in fig. 66(6); thus, a single

vertical force, as R, equal to W and W" will answer. The same

force applied to the first two boards will not of course main-

tain their equilibrium, although the resultant of the applied

R' R"\ R

(«)
(b)

Fig. 66.

forces is zero. Therefore, other conditions than a vanishing
resultant are necessary.

Summing up, if the system of external forces applied to a

deformable body is in equilibrium, the resultant is nil; but

the converse is not necessarily true.

§ II. The Conditions of Equilibrium for the Various
Classes of Force Systems.

ii6. CoUinear Forces.—The algebraic condition of equilib-

rium is, 2¥ = 0f

i.e., the algebraic sum of the forces equals zero.

The graphical condition of equilibrium is that the force

polygon for the forces closes, or, the vector sum of the forces

equals zero.

For if 2F equals zero or the force polygon for the forces

closes, the resultant is nil.

117. Coplanar Concurrent Non-Parallel Forces.—The algebraic

conditions of equilibrium may be expressed in various ways :

W ^F, = o, IFy = o;
,

. (i)

i.e., the algebraic sum of the resolved parts of the forces

along two lines, x and y, equals zero.

b) i'F^ = o, IM =
o; ...... (2)

i.e., the algebraic sum of the resolved parts of the forces

along a line x equals zero and the moment sum for the

forces with respect to a point equals zero. (The direction

f
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X is not to be perpendicular to the line joining the common
intersection of the action lines o*f the forces with the origin
of moments.)

(c) ^Ma=o, l^b= 0', (3)

i.e., the moment sums of the forces for each of two origins

equal zero. (The origins and the common intersection of

the action lines of the forces are not to be coUinear.)

For, in either case the resultant is zero, as may be thus ex-

plained :

(a) According to art. 36, the resultant R of the system, if

there is one, is given by

R = {IFx + I^Fyy; hence, if IF^ and IFy equal zero, R
equals zero.

(b) If IMa is zero, then the resultant, if there is one, must

pass through a as well as through the common point
of the action lines of the forces, O. If the angle between

Oa and the x axis be a, Rx =R cos a = IFx] and since

JFx = o and a is not 90°, R must be zero.

{c) As before, the resultant, if there is one, must pass through
O and a; but if JMi, is also zero, and 0, a, and b are not

|

collinear, R must be zero.
*

i

The graphical condition of equilibrium is that the force j

polygon for the forces closes, i.e., the vector sum of the forces ;

equals zero. For, if the polygon closes, the resultant is zero, i

see art. SS-

118. Special Condition of Equilibrium for Three Forces.—The i

following form of the algebraic conditions
j

is often more convenient of application 1

than .the conditions given in the pre- \

ceding article. j

Fi/sin «!
= Fj/sin a^

= Fg/sin a^ ;
1

i.e., each force is proportional to the sine i

of the angle between the other two (see \

fig. 67). For, from the force polygon for 1

Fig. 67. ^^^ forces, which closes (fig. 676),
j

Fi/sin (i8o-ai)=F2/sin (iSo-a.;) -=FJsm (180-0:3), or
|

FJsin ai
= F2/sm a2

= F^/sm a^.
|

^
I

i
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119. Coplanar Non-Concurrent Parallel Forces.—The alge-

braic conditions of equilibrium may be expressed in several ways :

(a) i'F = o, 2'M = o; (i)

i.e., the sum of the forces and the sum of the moments
of the forces each equal zero.

(b) i'Ma= o, i'Mb= o; (2)

i.e., the moment sums for the system for each of two

origins equal zero, (The line joining the origins is not to

be parallel to the forces.)

For in either case the resultant is zero, as may be thus ex-

plained: In art. 42, it is shown that the resultant of such a

system is either a force or a couple, and if a couple, its moment

equals the algebraic sum of the moments of the given forces

about any point.

(a) If IF equals zero, the resultant is not a force, and

if IM equals zero, the resultant is not a couple; hence the

resultant vanishes.

(6) If IMa equals zero, the resultant is not a couple, and

the resultant force, R, (if there is one,) must pass through
a. But if IMl equals zero, R must equal zero, or pass

through h', but R is parallel to the forces of the system
and cannot therefore pass through a and h. Hence R
equals zero, i.e., the resultant vanishes

The graphical conditions of equilibrium are (i) the force

polygon and (2) the funicular polygon for the forces must close.

For, if the force polygon closes, the resultant is not a force,

and if the funicular polygon closes, it is not a couple (see art. 40) ;

hence the resultant vanishes.

120. Coplanar Non-Concurrent Non-Parallel Forces.— The

algebraic conditions of equilibrium are

(a) i'Fa: = o, 2'Fj,
=

o, .i'M = o; . , . . (t)

i.e., the algebraic sums of the resolved parts of all the

forces along each of two lines and the moment sum of the

forces with respect to any origin equal zero.
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\

(b) IF^ = Oy I^a = Oy 2'M5 = o; .... (2)
I

i.e., the algebraic sum of the resolved parts of all the 1

forces along any line and the moment sums for the system ]

with respect to two origins equal zero. (The direction of i

resolution is not to be perpendicular to the line joining ]

the two moment origins.) \

(c) ^Ma= o, 2'M6 = o, JM.^o; ... (3) j

i.e., the moment sums for the system with respect to
|

three origins equal zero. (The three moment origins are \

not to be coUinear.) \

For, in either case the resultant is nil, which may be proved j

as follows: It is shown in art. 47 that the resultant of a system ;

of this kind is a force or a couple; if a force, its magnitude j

equals {^Fx +^Fy )"^, and if a couple, its moment equals i

2M. -

I

(a) If IFx and IFy equal zero, the resultant is not a force,
|

and if JM equals zero, the resultant is not a couple; hence •

the resultant vanishes.
j

(b) If IM = o, the resultant is not a couple, and the result- '

ant force, R, (if there is one) must pass through a and 1

b in order to make 2!Ma and JM^ equal to zero. If now
;

JFx(=Rx) equals zero, R must equal zero.
j

(c) If IM = o, the resultant if there is one, is not a couple, j

but a force. If IMa, 2Mi, and IMc equal zero, this re-
\

sultant force must equal zero, or else pass through a, b, \

and c. Since the latter case is impossible, the resultant \

vanishes. •• i

The graphical conditions of equilibrium are (i) the force
\

polygon and (2) the funicular polygon must close. For, if the \

force polygon closes, the resultant is not a force, and if the I

funicular polygon closes, it is not a couple; hence the resultant I

vanishes (see art. 45). ;

121. Condition of Equilibrium for Four Forces.—The re-
\

sultant of either pair balances that of the other pair. This
\
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special condition may often be advantageously employed in

graphical solution^, of problems.
122. Non-Coplanar Concurrent Forces.—The algebraic con-

ditions of equilibrium are:

2'F^ = o, IFy = o, I¥, = o;

i.e., the algebraic sums of the resolved parts of all the forces

along three directions, not coplanar, equal zero. For, in art. 50
it is shown that the resultant R of this kind of a system is given

2
— 2 2 1

by R = {IFx +^Fy -{-IFg )*; hence if the conditions be ful-

filled, R must equal zero.

The graphical conditions of equilibrium are that the force

polygons for two projections of the vectors representing the

given forces, regarded as force systems, must close. For,

the closing lines of such polygons are the projections of the

resultant of the given forces, and if the force polygons

close, the projections vanish and the 'resultant is zero (seo

art. 49).

123. Non-Coplanar Non-Concurrent Parallel Forces.—The

algebraic conditions of equilibrium are :

i'F = o, 2111^ = 0, IMy = o;

i.e., the algebraic sum of the forces and their moment sums

with r,espect to two axes equal zero. (Neither of the axes

is to be parallel to the forces.) For, in art. 54 it is shown

that the resultant, if there is one, is a force or a couple. If

JF is zero, the resultant is not a force, and if 2Mx and ^My
equal zero, the resultant is not a couple; hence the resultant

vanishes.

The graphical conditions of equilibrium are (i) the force

polygon for the forces and (2) the funicular polygons for the

projections of the vectors representing the given forces, regarded
as forces, on two planes must close. For, the resultant of the

system, if there is one, is a force or a couple; if the force poly-

gon closes, the resultant is not a force, and if the funicular

polygons close, it is not a couple; hence the resultant vanishes

(see art. 52).
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;

124. Non-Coplanar Non-Concurrent Non-Parallel Forces.— \

The algebraic conditions of equilibrium are:

i'F:, = o, i'F^
=

o, i'F, = o, i'M^ = o, i'Mj,
=

o, i'M, = o; 1

i.e., the algebraic sums of the resolved parts of the forces;

along three lines and the moment sums for the system with ]

respect to three axes equal zero. (The three lines must not be ]

coplanar, nor the three axes.) \

For, in art. 55 it is shown that the resultant of such a system ^

is a force and a couple, and in art. 58 that the magnitude of
^

the force is {JF^ + IFy + IT^^)^ ,
and the moment of the

I

couple is {IM^ + ^^y + ^M^)^ ; hence, if the conditions are :

fulfilled, the resultant vanishes. \

The graphical conditions may be expressed thus : If the
\

system be resolved into two component systems, one coplanar :

and one parallel, the forces of the latter being perpendicular
|

to the plane of the former, then the following polygons must
\

close :
;

the force polygon for the coplanar system, \

* *

funicular polygon for the coplanar system, \

"
force polygon for the non-coplanar system,

•* funicular polygons for the projections of the vec-
;

tors representing the parallel system on each of I

two non-parallel planes. \

For, if these conditions are fulfilled, the resultants of the compo- \

nent systems are zero (see arts. 45 and 52), and hence the re- i

suitant of the system itself vanishes. i

125. Special Condition of Equilibrium and Summary.—
Proposition.

—If three forces are in equilibrium, they must
|

be coplanar and concurrent or parallel. 1

Proof: The resultant of the first two forces must be a single \

force, since it must balance a force, the third one. Since the
j

two forces ai^ their resultant are coplanar and the resultant \

and the third force are coUinear, the three given forces are co-
\

planar. If the first two forces are parallel, their resultant is
;

parallel to them, and hence the third force is also; if the first
]

two forces intersect, their resultant passes through their inter-
\

section, and hence the third force does also. )
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Algebraic Conditions of Equilibrium.

Coplanar Systems :

Collinear IF = o.

Concurrent Non-parallel IF^ =IFy = o,

IF:, =IM = o, or

IMa-IMb= o.

Non-concurrent Parallel IF ==IM = o, or

IMa= IMb= o,

Non-concurrent Non-parallel IF^ =IFy =IM= o,

IF^ =IMa= IMi,= o, or

IMa= IMb==IMc = o.

Non-coplanar Systems :

Concurrent. 2'Fx = IFy = IF^ = o.

Non-concurrent Parallel IF =IMx = IMy = o.

Non-concurrent Non-parallel . IF^ = IFy= IFg = o and

IM^ =IMy= IM, = o.

Graphical Conditions of Equilibrium.

Coplanar Systems:

Concurrent The force polygon closes.

Non-concurrent.. .The force and funicular polygons close.

Non-coplanar Systems :

Concurrent The polygons for the projections of the

vectors representing the system on any
two non-parallel planes close.

Non-concurrent

Parallel The force polygon closes and the funicular

polygons for the projections of the vec-

tors representing the system on two non-

parallel planes close.

Non-concurrent

Non-parallel. . ..If the system be resolved into component
systems, one coplanar and one parallel,

the forces of the latter being normal to

the plane of the former, then the appro-

priate conditions stated above apply to

each component system.



CHAPTER VI.

APPLICATIONS OF THE PRINCIPLES OF EQUILIBRIUM.

§ I. Preliminary.

126. Nature of the Problems.—The problems involved in

the application of the principles of equilibrium are usually of

this kind: a system of forces is in equilibrium and some of

them are partly or wholly unknown ;
it is required to determine

the unknown elements. The required elements may be the

magnitudes, directions, or action lines of forces.

127. General Method of Solution.—These problems can be

solved by two methods, the algebraic and the graphical. The

algebraic method is to write the appropriate equations of equi-

librium for the kind of a force system under consideration, and

then to solve them for the unknown quantities. This process

is called applying the algebraic conditions of equilibrium. The

graphical method is to apply the appropriate graphical condi-

tions of equilibrium for the kind of a force system under con-

sideration. How these conditions are applied is explained in

the solution of some of the following examples.
Often the force system in equilibrium of which the partly

or wholly unknown forces are a part, and to which the condi-

tions of equilibrium are to be applied, is not specified. In such

cases the system may be recognized by directing one's attention

to a body which is in equilibrium and with reference to which

some or all the unknown forces are external. All the external

forces applied to that body constitute a system in equilibrium.

In all but the simplest of the following examples the student

is strongly urged to make a sketch representing the body con-

sidered and the external forces exerted upon it before apply-

ing the conditions of equilibrium. He will be aided in his

102
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• enumeration of the external forces if he will represent first the

actions through distance * exerted upon the body by other

bodies and then count the number of contacts between the

body under consideration and other bodies; at each place of

contact a force may be exerted upon the body (art. 7).

§ II. Flexible Cords.

128. Definitions.—A perfectly flexible cord is one which

may be bent without resistance. Such a cord is ideal, but
= some cords are practically perfectly flexible; such, for brevity,

will be called flexible, other cords being called stiff. A heavy
flexible cord if unsupported cannot be stretched straight, but

will sag more or less, depending upon the applied pulls. The

lighter the cord, the less the sag; and, if the weight of the cord

be small compared with the pulls, it will be practically straight.

In the following, cords will be assumed without weight except
where otherwise stated.

129. Tension in a Cord.—The phrase tension in a cord refers

to the forces which two parts of a taut cord exert upon each

other. The forces are equal and opposite (see art. 6). By
magnitude of the tension is meant the magnitude of either force.

To illustrate, suppose that AB (fig. 68) is a flexible cord

without weight subjected to equal a c b

pulls at its ends, and imagine a plane p' p"

of separation at any place, C, between Fig- 68.

the ends' of the cord. Since the part AC is in equilibrium, a

force acts upon it at its right end equal and opposite to P';

this force is exerted by the part BC. Similarly, a force acts on

BC at its left end equal and opposite to P"
;
this force is ex-

erted by the part AC These two equal and opposite forces at

C hold the parts AC and BC together. The magnitude of the

tension is P' (or P") no matter where C is taken.

If the pulls P' and P" are unequal, the cord will not be in

equilibrium, and the magnitude of the tension varies with

the section C.

* The only actions through distance considered in this chapter are

the weights of bodies.
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EXAMPLES.

1. A body weighing loo lbs. is suspended by a single cord \

which is deflected from the vertical by a horizontal force of
;

20 lbs. applied to the body. How great are the deflection and '

the tension in the cord? [

Solutions: (i) Algebraic. Considering the forces acting J

upon the body, it is seen that they are three in number, namely, ?

I

its weight, the horizontal force, and the pull of i

^1
the string. The conditions of equilibrium, with I

"•"V'l
axes as in fig. 69, are (art. 125) ?

I IFy= —100 + T cos d = o.
\

100 lbs. Solving these it is found that ]

Fig. 69. \r= 102 lbs. and ^=11° 19'. \

(2) Graphical. The condition of equilibrium is that the force
\

polygon for the three forces must close (art. 125). To construct 1

the polygon, the wholly known forces are represented first; \

thus AB and BC (fig. 70) represent the weight and the hori-
\

zontal pull respectively, scale i in. = 100 lbs.

The closing side CA then represents the

magnitude and direction of the pull of the

string exerted upon the body.
2. In the preceding example, how great

a horizontal force would be required to

deflect the cord 30°, and how great would

the corresponding tension be?

3. The two ends of a cord are fastened to

hooks in the same horizontal line, and at

the middle a second cord is knotted which sustains a freely

hanging body weighing 100 lbs. The distance between the

hooks being such that the first cord makes angles of 20° with

the horizontal, determine the tension in each half of the first

cord. Ans. 146 lbs.

4. Call the angle in the preceding example a and the weight
of the body W. Deduce an expression for the tension.
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first connected by vertical cords to a fixed support below, and
A^ a body kung from the first knot

;
the

cord is then in the required posi-

tion. According to some scale, AB
cK^o represents W^, and according to the

same scale BC, CD, and DE repre-

sent the tensions in the imaginary
vertical cords at the second, third,

and fourth knots respectively. But

these tensions can be supplied by
bodies suspended from the knots.

130. Position Assumed by a Cord

Sustaining Loads.—Let fig. 73 repre-

sent the nth knot on the cord, the load suspended from which

call Wn and the tensions in the cord segments on the left

and right Tn and T^+i respectively. Since

the three forces represented are in equi-

librium, ~^-

„+i CO a^_^i- Tn cos an= o; t^

sin a^_^^
— Tn sin an— Wn = o.

From the first equation, it follows that the

horizontal components of the tensions in the cord segments are

equal; that is, if H denotes the horizontal component in any

segment,
if =r„cos «„== r„+i cos a„+i

= etc. . . . (i)

This equation combined with the second one above gives

ta.n an+i=' tan an -{-W„/H (2)

By means of this equation the direction of each segment may
be computed if, in addition to all the weights, the tension in

and inclination of one segment or the inclinations of two ad-

jacent segments are known.

EXAMPLES.

IF,= T

I. Three bodies weighing 100, 120, and 200 lbs. are sus- ;

pended in the order named from three knots in a cord which is I

so supported that the second segment is horizontal and its I
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tension is 160 lbs. Determine the directions of the other seg-

ments. Ans. 0:1
=

32°.

2. Suppose that the supports in the preceding example are

such that the middle knot is the lowest and that the segments

adjacent to that knot are inclined 30° above the horizontal.

Determine the inclinations of the other segments and all the

tensions.

3. Solve the preceding examples graphically.

131. The Loads are Equal and Uniformly Spaced Horizontally.—The knots are on a parabola; proof follows. Let 0, i, 2 . . . w

(fig. 74) be knots on the cord from

which the loads, W ,
are suspended,

and let x and y axes be taken as in

the figure. Denote the angles which

Oi, 12, 23, etc., make with the axes

hy a^, a2, a^ . . . etc., the horizontal

distance between consecutive loads

by s, and the coordinates of the wth

knot by x and y. Then
x = ns\ (i)

y= s (tan cKj+tan a^-}- . \ .).

From eq. (2), art. 130,

tan a^
= tan a^ +W/H ;

Fig, 74.

Similarly,

lience

tan 0:3
= tan a^ +W/H = tan a^ + 2W/H.

tan a4 = tan a^ + ^W/H, etc.;

y= sJntana^ + in(n-i)W/H] (2)

Combining (i) and (2) and eliminating n, we get

2Hs2 tan a^H —W
W sx W (3)

which is the equation of a parabola.

If the loads are so closely spaced as to constitute a practically
continuous load, the cord is practically parabolic. The equa-
;tion of the parabola referred to vertical and horizontal axes
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though the lowest point on it may be derived from eq. (3), or

independently as follows:

Let (fig. 75) be the lowest point on the cord, Q any other

point, and let w denote the load per
unit horizontal distance

;
then OQ

sustains a load wx. The tension at

call H, and that at Q, T. The
three forces applied to OQ are con-

current, and their equilibrium equa-
tions are

wx
Fig. 75-

IF^= H + Tcosd = o; (i)

wx-\-T sin 6 = (2)

Combining these with tan d = y-^x/2, we get

^Fy=

2
2f/

^ =—y,w (3)

which is the equation sought.
If the points of suspension are at the same level, then (see

fig. 76 and eq. (3)),

d=way2H (4)

EXAMPLES.

1. A cord is supported at two points on the same level 30
ft. apart, and its lowest point is 8 ft. below the level of the

supports. If the load is 20 lbs. per ft., what are the tensions

at the supports and at the lowest point ? Ans. if = 281 J lbs.

2. Suppose that one support is 3 ft. higher than the other

and that the lowest point of the cord is 8 ft. lower than the

lower support. What is the greatest tension in the cord?

132. Position Assumed by a Heavy Flexible Cord Suspended
from Two Points.—The curve assumed by such a cord if uni-

form in weight (and such only are discussed below) is called a.
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common catenary. Let AB (fig. 77) represent such a cord, C
its lowest point, Q any other point, 5 the length CQ ,

H and T

Fig. 77.

the tensions at C and Q respectively, and w the weight of the

cord per unit length. Then the forces on the portion CQ are

if, r, and ws acting as shown in fig. 77(a); hence

JFx= —H + T cos
<j)
= o;

IFy = — W5 + r sin ^ = o.

Prom these, by division, we get

tan
(f)
= ws/H.

Por convenience, let c denote a length of the cord whose weight

equals the tension at C, then H/w = c\ and since tan
(j>
= dy/dx,

%-! (^)

Integration of equation (i) leads to the equation of the

.catenary. Differentiating, we get

.<S =
v-

Since {dsy = (dyy+(,dx)\ ds = dx'^i+{dy/dxy\

Integrating, we get

Now dy/dx= o, where x = o (see fig.), hence C' = o.

hence

or



no /iPPUCATlONS OF THE PRINCIPLES OF EQUILIBRIUM. [Ch. VI.

Solving the equation for dy/dx, we find that

dy
d^

= i(W^-^-V^), (2)

e being the base of the Naperian system of logarithms.

Integrating the last equation, we get

j= _(^^/c+^-^A) _j_(7//^

Since y = c when x = o (see fig.), the constant C" is zero; hencejj
the equation of the catenary referred to the axes of the figure is

\

y= — (^e^/c-^e~^/^). (3)

Several interesting relations may be deduced as follows :
]

From (i) and (2) i

c ^

s = -(e''/c-e-x/c) (4)1
2 i

Combining (3) and (4), we find that J

Also, y+s = ce''/'^, or ^log^
y+s

(5)

(6)

From the equilibrium equations, i

72 = ^2(^2 + ^2); i

hence T=wy (7)

EXAMPLES. ]

I. A measuring-tape 400 ft. long weighing 0.005 lt)s. per ft.
]

y is suspended from two points, A and i

By the supporting pulls there being re- \

spectively 1.6 and 2.0 lbs. Compute I

the horizontal and vertical distances
\

between A and B.

Solution : Let T^ and 7^ denote the
^

pulls at A and B, and
/^ and /j the \

X lengths AC and BC respectively (fig. 78). \

Fig. 78. From eq. (7), I

Tr = wh^y or 61
= 1.6^0.005 = 320 ft., \



§11.] FLEXIBLE CORDS. HI

and T2 = wb2, or 62
= 2.0 -=-0,005 =400 ft.;

hence 62
—

61
= 80 ft.

From eq. (6), a^
= cloge——-,

and -'a^=c \oge
——--

c

To determine a^ and flj values of /j, /j, and c are needed.

Fromeq. (5), b{^
=

li^ + c^= 102 400

and 62^
=

^2^ + ^^ = 1600005

also, /i -I- /a
= 400.

Solution of these three equations shows that

/i=i28, /2
=

272, and ^ = 293+ ft.,

which values if substituted in the expressions for a^ and
flj give

ai=i22.7 and 03
= 242.7 ft.;

hence ai+a,
=
365.4 ft.

2. What is the tension at the lowest point of the tape in

ex. I ?

3. A tape whose length is 100 ft. weighs 0.005 lbs. per ft.

and is subjected to end pulls of 10 lbs., the ends being at the

same level. Compute the distance between the ends and the

"sag." Ans. Distance = 99.996 ft.

Sag = 0.625 ft.

4. A tape is supported at two points on the same level, its

length = 2/, its weight per unit length=w and the end pulls= P.

If 2a and d denote distance between supports and the sag re-

spectively, show that

d=p/w-(pyw'-i')K
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5. Suppose that a chain 200 ft. long is suspended fromj
two points on the same level and 59 ft. apart. Find the sag. \

Solution: This example can be solved by trial only; thus,i

referring to fig. 77, it is seen that for B, ^ = 25 and 5 = 100 ft.;;

hence eq. (4) becomes

=J(^25/(r_^-2S/c)^ I

i

It will be found that c = 7 .65 will nearly satisfy this equation.* ;

Then eq. (5) for B becomes
\

:V^
= 100^ + 72.65, or >'

= ioo.28; \

hence the sag is
\

100.28 — 7.65, or 92.63 ft.

i

6. Determine the length of a chain which sags 20 ft.
if]

suspended from two points on the same level and 80 ft. apart. \

Solution: This example can be solved by trial only; thus,'

referring to fig. 77, it is seen that for By x=^o and y=c + 2o,\
hence eq. (3) becomes

c + 20 =— (^40/c 4- ^
-
40A) ,

i

It will be found that ^=42.7 nearly satisfies this equation;;
hence eq. (5) for B becomes

;

(42.7 + 20)2=52 + 422.7, ]

or 5=45.9. The length of the chain is therefore 91.8 ft.
j

133. Approximate Equations,
—If the points of suspension 1

are at the same level and the sag is small, the length of the cord
]

and distance between supports are nearly equal, and the num-
]

bered equations below are close approximations. They may i

be deduced as follows: \

Since the slope of the cord is everywhere small, the load 1

per horizontal unit length is nearly uniform; hence the catenary ;

* The determination of c in exs. 5 and 6 is much facilitated by use
\

of a table of hyperbolic functions, which gives values of \{ex/c—e-x/c)^ or :

sinh x/c, and ^{ex/c-\-e-*/c), or cosh x/c, for different values of x/c. ;

i
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is very nearly parabolic and the equations deduced in art. 131

must be nearly correct for a flat catenary.

From eq. (4) of that article,

d=wa?l2R (i)

In works on calculus it is shown that the length of a parabolic arc,

as OB (fig. 76), is given by

H
1=w tan aVi +tan2a+log^(tan a: +Vi ^-tan^a) ,

or, developed,
, H/

,

tan^a \
/ =— tan q:H f-. . . .

w\ 6 /

Since, in a parabola, tan a =wa/H, approximately,

l=a{i+w^a^/()P^), (2)

and a=l{i-wH^/(>P^) (3)

EXAMPLES.

1. Solve ex. 3, art. 132, by the approximate equations of

this article. Ans. (i) gives for sag 0.625 ^t.

(3)
" " distance 99.99

**

2. Hard copper wire weighs 3.85A lbs. per foot, A being
the area of its cross-section in square inches. If such a wire

be suspended between two points at the same level 200 ft. apart,

and the maximum pull on it be limited to 20000 lbs. per sq. in.,

what is the proper length of the wire and the sag?
Ans. Sag= 0.96 ft.

3. The rope of a rope drive when not running is observed

to sag I ft., and the distance between the centres of the wheels

is 70 ft. What is the maximum tension in the rope?

§ III. Tackle.

134. The Pulley.
—A wheel with a flat-faced or grooved rim

which can rotate about its axis is often used as a "power
transmission" device; when so used it is called a pulley. It

may rotate freely about an axle or shaft, and is then called a
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loose pulley; or it may be fastened to a shaft which turns in I

bearings with the pulley, when it i& called a fast pulley.
A combination of one or more grooved pulleys and a rope ;

or chain used for raising heavy bodies, is called a tackle. The I

pulley or pul eys rotating on the same axle together with the I

frame supporting the axle is called a block. A pulley is called

movable or fixed according as the block of which it is a part 1

does or does not move while the load is raised or lowered.
\

135- Tension in a Cord on a Pulley.
—

Fig. 80 represents a ;

single pulley, loose or fast, and fixed or mov- :

able, about a part of whose rim a flexible cord ;

\^
or belt is tightly wrapped. We wish to find

\

""" the relation between the tensions in the cord or
;

Fig. 80. "belt on opposite sides of the pulley on the sup-
\

position that the rubbing surfaces at the axle are
' '

smooth.
' '

i

If the rubbing surfaces at the axle are smooth, then the
'

pressure, P, of bearings on the axle (fast pulley) or the pressure \

of the axle on the pulley (loose) is such that its line of action
\

passes through the axis of the pulley (see art. 138). Then of '

the three forces 7', T", and P, the only ones having a moment i

about the axis are T' and 7", and if the cord or belt is flexible
|

their arms are equal; hence T' = T". That is, the tensions in
\

a cord or belt on opposite sides of a pulley which the cord or belt
\

encircles are equal if the cord or belt is flexible and the rubbing \

surfaces at the axle are smooth. ^

In the following examples this relation is made use of, the ;

cords being assumed flexible and the rubbing surfaces smooth.
;

This assumption is far from the truth in actual tackle, and it
|

should be remembered that the results obtained below are for
;

ideal cases. Axle friction and rigidity of cordage are discussed i

later.
;

EXAMPLES.
]

1. In the arrangements shown in 'fig. 81 (a) and (6), regard

F and a as given and compute W and 0.
\

2. Compute the pressure upon the axle (fig. 82), a and W
\

being given. !

3. What is the relation between F and W in the tackle I
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shown in fig. 83, neglecting the weight of the parts? (Consider

the equiHbrium of the part below the dotted W
line.)

4. What is the relation between F and W
in the tackles shown in figs. 84 and 85, the

(a) (b)
Fig. 81.

Fig. 87. Fig. 86.

weight of the parts being neglected? What is the tension in

the cord supporting the tackle of fig. 85?
Ans. For fig. 85, W= ()F.

5. What is the relation between F and W in the tackle

shown in fig. 86? What are the pulls on the hooks at A and jB?

6. Fig. 87 represents, in principle, a Weston differential

tackle. The wheels in the upper block are fastened together,
are of unequal diameters, and their grooves are made so that

the hoisting chain will not slip in them. Determine the rela-

tion between F and W, and the pull at the upper hook.

Solution: Consider the equilibrium of the part of the tackle

above the dotted line. The external forces upon it are four in
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number if its weight be neglected, namely, the upward pull at

the hook, the pull F, the tension iif the chain on the left of the

smaller wheel (W/2), and the tension in the chain to the right

of the larger wheel (W/2). One condition of equilibrium for

these forces is that their moment sum with respect to the axis

of the wheels is zero; hence if r' and r" denote radii of smaller

and larger pulleys,

Fr" + 1^72-1^/72-0,

or W='
r" -r

7. Suppose that in fig. 81(6), a is zero and that a man whose

weight is W sits upon the load and exerts a pull F. How
great must the pull be to raise man and load? Is it greater or

less than Wl

§ IV. Smooth Supports.

136. Definitions.—It is known from experience that to slide

one body over another even at constant speed requires the appli-

cation of more or less -force; also that a moderate "sliding

force
' '

may not cause a body to move. It is inferred that the

second body exerts a force upon the first which is opposed to

the sliding.

More definitely, let fig. 88 represent two bodies whose sur-

face of contact is a horizontal plane, the upper
one being subjected to a horizontal force P. The

;r lower body exerts upon the upper a force such

Fig. 88. ^^ -^' "^^^ horizontal component of which, R^, is

the resistance. to sliding. If the upper body is in

equilibrium, Rx = P. Now it is known that the smoother the

surfaces of contact, the smaller is the force required to cause

sliding and hence the smaller the resistance to sliding. We are

thus led to the conception of a

Perfectly smooth surface, which may be defined as one which

offers no resistance to the sliding of a body upon it. Such a

surface is ideal, but there are surfaces which are nearly perfectly

smooth.
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For simplicity, we will assume the surfaces of contact in

some of the following examples as perfectly smooth. For

brevity, they will be called smooth surfaces, while those whose

resistance to sliding is to be taken into account will be called

rough.*

137. Reaction of a Smooth Surface.—A perfectly smooth

plane surface can exert a force only along a normal to it. For,

by definition, such a surface offers no resistance to the sliding

of a body over it, that is, the reaction which the surface offers

has no component along the surface and hence that reaction

must be directed along the normal. If the surface is not a plane

one, then the resistance exerted by each elementary part of

the surface is directed along the normal to that part.

EXAMPLES.

I. A body weighing 100 lbs. rests upon a smooth plane
inclined at an angle of 30° with the horizon, and is prevented
from slipping by a cord fastened to it which leads off up the

incline and over a smooth pulley at the top and supports a

body which hangs freely from that end. Determine the weight
of the suspended body and the resistance of the plane.

Solutions: Consider the forces applied to the body upon
the inclined plane ; they are three in number, namely, its weight,

the pull of the cord, and the resistance of the incline. The

system is coplanar and concurrent; and the pulley being smooth,
the pull of the string equals the weight of the suspended body.

(i) Algebraical. Let W denote the weight of the sus-

pended body and R the resistance of the plane.

The forces acting upon the body are represented

in fig. 89. For such a system there are two

equilibrium equations (art. 125), and if the x

^and y axes be taken horizontal and vertical re- iooit>s.

spectively,
Fig. 89.

IF J,
= VP^ cos 30° -i? cos 60° = o

;

IFy=W sin 7^0° -\-R sin 60° — 100 = 0.

* Rough surfaces are discussed in § VIII.
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These equations determine W and R. (The student should

select the coordinate axes parallel *and normal to the incline,

write the equilibrium equations and compare the length of

their solution with that of those above.)

(2) Graphical. The condition of equilibrium is that the

polygon for the three forces must
close (art. 125). To construct the

polygon, the wholly known force

(the weight of the body) is repre-
sented first; thus, AB (fig. 90) is

drawn vertically and one inch long.

Next, a line from A (or B) parallel

^ to the incline, and one from B (or
Fig. 90.

A) parallel to the normal to the

plane are drawn, thus determining C. Then BC and CA rep-

resent the magnitudes and directions of the forces sought.
2. Solve ex. (i), supposing that the pulley is so placed that

the cord leads off horizontally from the body upon the inchned

plane. Ans. 1^ = 57 . 7 lbs.

3. Solve ex. (i), supposing that the pulley is so placed that

the cord leads off from the body upon the inclined plane at an

angle of 50° with a horizontal.

4. Two planes which are inclined at angles a and
/? with a

horizontal plane intersect in a horizontal line, and a cylinder

whose weight is W rests between and upon them. Compute
the pressure on each plane.

5. A bar 24 in. long rests in a smooth hemispherical bowl

30 in. in diameter. The centre of gravity of the bar is 10 in.

from the lower end. Determine the position of equilibrium.

Ans. Inclination of bar to horizontal is 12° 32',

[Suggestion: The three forces maintaining the equilibrium of

the bar are coplanar and concurrent. The action lines of two,

the pressures of the bowl on the bar, intersect at the centre of

the bowl and therefore the centre of gravity of the bar must be

vertically below the centre of the bowl. Make a sketch show-

ing this relation, mark the known lengths, and solve trigonomet-

rically for the inclination of the bar.]

6. A uniform bar whose length is 40 in. is supported by a
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smooth vertical wall and a smooth peg whose axis is horizontal,

parallel to the wall, and 15 in. therefrom. Determine the posi-,

tion of equilibrium. Ans. Angle with vertical is 65° 18'.

138. Pin Joint or Hinge.
—In some of the following exam-

ples reference is made to bodies joined by means of a pin hinge.

Such a joint may consist of a cylindrical pin and two cylindri-

cal holes, one in each of the bodies joined, into which the pin is

inserted allowing relative rotation about the pin. Still more

simply, the joint may consist of a pin which is rigidly fastened

to one body and inserted into a hole in the other, allowing

rotation.

If the cylindrical surfaces of the pin and hole are smooth,

the forces exerted upon these surfaces act normally, and their

resultant, therefore, passes through the axis of the pin.

EXAMPLES.

1. The body ABC (fig. 91) is supported by a smooth hinge
at A and a smooth surface at B, and

a horizontal force F is applied at C.

Compute the reactions of the supports,

neglecting the weight of the body.
Ans. Reaction at 5 is Fa//. ,

"^^^^ ^^*

2. Suppose that the support of the bar at B in ex. i is also

a smooth pin hinge in the same horizontal plane with the other

one. Determine the supporting forces.

Solution: The reactions at M and N and the force F to be

in equilibrium can not be parallel, hence they must be con-

current (art. 125); also their

force polygon must close. Any
reactions fulfilling these two con-

ditions will balance F. Many
pairs of reactions can satisfy the

F B conditions—for example, BC and
^^^- 92. CA, or BC and C'A (fig. 92);

hence the problem is not statically determinate.

The vertical components of the reactions are determinate,
which may readily be proved thus: Call the reactions at M
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and A^, R' and i?" respectively, and imagine them resolved

horizontally and vertically. The system F, RJ , Ry , Rx\ Ry^
is coplanar non-concurrent non-parallel, and there are three

algebraic conditions of equilibrium (art. 125). They are

IFx^F+RJ+RJ' = o;

IFy= Ry'+Ry"=0',
IMM =Ry'l-Fa = o.

From the last two equations it follows that

Ry''=^Fa/l and Ry'
= -Fa/l

The indeterminateness, therefore, is really with the horizontal

components; their arithmetic sum or difference equals F, as

may be seen from the first equation or from the force polygon
in fig. 92.

3. A uniform bar weighing 200 lbs. and 10 ft. long leans

against a smooth vertical wall, and its lower end is fastened

to a floor by a smooth pin hinge whose axis is horizontal and

parallel to the wall. The distance of the hinge from the wall

being 8 ft., determine the forces supporting the bar, solving

graphically.

Ans. Force on upper end is horizontal and equals 133J lbs.

§ V. Three Typical Problems on Coplanar Non-concur-
rent Forces.

139. Problem I.—The forces of a parallel system in equi-

librium are completely known except two whose action lines only
are known. It is required to determine completely these two forces.

Algebraic Solution.—There are two conditions of equilibrium

for this system (art. 125), namely,

IF =0 and IM =0,
or IMa=o and IMi,=o.*

Either set of equations furnishes the solution. It is advan-

tageous to select moment origins on the lines of action of the

* Whenever a force whose sense is unknown is to be entered into a

resolution or moment equation, a sense should be assumed for that force

and adhered to in the solution of the equation. The correct sense is

indicated by the sign of the computed value of that force. It is as

assumed or opposite according as the sign is positive or negative.
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unknown forces. Then each moment equation will contain

but one unknown quantity and may be readily solved.

Illustration: Let it be required to determine the magni-
tudes and directions of the two forces

F' and F" (fig. 93), all the forces there

represented being in equilibrium, F^,

F2, and F3 being 700, 300, and 500 lbs.,

and a, b, c, and d i, 3, 5, and 2 ft.

respectively.

If F' and F'' are assumed to act upward and the moment

origin is taken on F",

2'F= —
700 + F' — 3oo + 5oo +F" = o;

JM= +700- II —F'- 10 + 300-7
—
500-2 =0.

From the second equation, F' = 88o lbs., and this value sub-

stituted in the first gives F"=— 380 lbs. The minus sign

means that F" does not act up as assumed, but down.

Employing the second set of equilibrium equations, and

selecting moment origins on F' and F" respectively,

IM = joo-i
—
3oo-3 + 5oo-8 +F"-io = o;

2'M= 700- II —F'- 104-300- 7— 500-2=0.

These solved give the same values as those found above.

Graphical Solution.—The conditions of equilibrium are that

the force and funicular polygons close (art. 125). In the

process of constructing them the unknown quantities will be

determined.

Illustration: Let the data be the same as that in the pre-

ceding illustration. First the force polygon should be drawn
as far as possible; thus, AB, BC, and CD (fig. 94) representing

Fj, F2, and F3 respectively. If either one of the unknown
forces be lettered DE, the other must be EA because the poly-

gon must close. It remains to locate the point F; this is done by
means of the funicular polygon. Before beginning to draw the

polygon, recall what the strings represent (see arts. 37 and 38).

If the polygon be begun on ab, strings oa and ob must be drawn
from that point ;

then oc is drawn from where ob intersects be,

and od from where oc intersects cd. Now oa is the action
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line of one of the components of EA, and should be extended
to ca, thus determining a point / in ihe action line of the other

component, EO. Also, od is the action line of one of the com-

Scale:l ln.= 6 ft. Scale. 1 in.= 100 lbs.

(a) (b)

Fig. 94.

ponents of DE, and should be extended to de, thus deter-

mining a point // in the action line of the other component,
OE. Now, if the funicular polygon is to be closed, the action

lines of EO and OE must coincide (see art. 40) ;
hence there is

but one string oe, and it passes through points / and //. The

ray corresponding to oe may now be drawn, thus determining E.

EXAMPLES.

1. Reverse F^ and F^ (fig. 93) and solve algebraically ,

the

example used for an illustration above.

2. Solve the preceding example graphically.

140. Problem II.—The forces of a non-parallel system in

equilibrium are completely known except two. Of these, the action

line of one and a point in that of the other are known. It is re-

quired to determine completely these two.

Algebraic Solution.—Thdre are three conditions of equi-

librium for a system of this kind (art. 125), namely,

IF:, = o, IFy = o, IM =0;

or, ^Ma = o, IMb= o, IMc = o.

Either set furnishes the solution, the three unknowns being
the magnitude (and sense) of one force, the magnitude (and

sense) and 'nclination of the other.
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Illustration : Suppose a horizontal beam which is supported

at one end by a pin hinge and at the other by an inclined cord

sustains given loads, and that it is required to determine the ten-

sion in the cord and the pin reaction.

Let fig. 05 represent the beam, loading, notation etc.; the

ff /\Hinge D

.-x-:^..:-..2x....^-i.>::^—-2^.—.

TT^
50 lbs. 100 lbs. 25 lbs.

Fig. 95.

I co-lb. force may be the weight of the beam. The unknowns
are denoted by Q, P, and <9.* Employing the first set of equi-

;

librium equations and selecting the x and y axes horizontal and

vertical respectively, and a moment origin at A,

IF^=-P cos d + Q cos 6o° = o; (i)

i'Fj/
=P sin ^-|-Q sin 60° — 50

— 100 — 25=0; . . (2)

2'Ma = Q- 6 sin 60° — 50-2
— 100-3 — 25-5 = 0. • • (3)

These equations furnish the solution. Observe that by select-

ing A as moment origin, two unknowns, P and 6, were elimi-

\ nated from the moment equation.

Usually it is advantageous to replace the force whose

magnitude and direction are unknown by two rectangular

components acting at the known point in the action line of
'

the force. Then the unknowns, instead of P and d of the illus-

vtration, would be Px and Py, and when these latter become

[known, P and 6 are easily computed. Such substitution trans-

f forms the problem to Problem III (art. 141). The example
; employed above as illustration is solved in art. 141 on this plan.

; Graphical Solutions.—(i) The conditions of equilibrium are

that the force and funicular polygons close (art. 125). In the

process of constructing the two polygons the unknowns will

be determined.

* In this example it is evident that the senses of P and Q are as repre-
sented and that ^<9o°. When the senses of P and Q and "quadrant" of

6 are not evident, they should be sketched as they appear to be, and then

the equilibrium equations should be written. The correct senses may
be inferred as explained in the foot-note, p. 120, and the quadrant of 6

will appear from the solution.
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Scale:Iin.= 4ft.

(a) .

A

Scale:lin.=2001bs,

Fig. 96.

Illustration: Let the data be the same as in the preceding
illustration. First, the force poly-

gon is drawn as far as possible;

thus, AB, BC, and CD (fig. 96),

representing the 50, 100, and

25 lb. forces, and then an in-

definite line parallel to the cord

from D (or A). The fourth force,

tension, then is to be lettered

DE, and the remaining one must
be marked EA, since the poly-

gon is to be closed. It remains

to determine E; this is done by
means of the funicular polygon.

If the polygon be begun at

any point of ab, be, cd, or de,

it can not be completed, as is plain from an examination

of the unlettered funicular polygon which was begun from a

point of ab taken at random. The difficulty is in determining
the desired intersection of the string corresponding to OA and

the unknown action line of EA\ this point corresponds to

point / of fig. 94. If the funicular polygon be begun at the

given point of the unknown action line, the difficulty is avoided;

thus, oa is drawn through that point, and then ob, oe, and od.

Now / and // respectively are points in the action lines of the

forces EO and OE, and if the funicular polygon is to be closed,

the lines of action of EO and OE must coincide (art. 45); hence

there is but one string oe, and it passes through points / and

//. The ray corresponding to OE may now be drawn, and thus

the point E is determined..

(2) Find the resultant of the wholly known forces, and

consider the system as consisting of that force and the two

unknown ones. 'Then, making use of the fact that the three

forces are parallel or concurrent (see art. 125), determine the

unknowns.*

* If the resultant of the known forces is a couple, the two unknowns
\

must also constitute a couple. How might one determine graphically 1

the forces of the latter couple? ^
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Illustration: Let the data be the same as that of the pre-

ceding illustration. The resultant of AB, BC, and CD (fig.

Fig. 97.

97) is found to be AD. Extending ad and .de we find

their intersection which is one point in the action line of

the other unknown force; another point in its action line

being given, the centre of the pin, the line is known. The
action lines, ad, de, and ea, of three forces in equilibrium
and the magnitude and sense of one, AD, are now known. To
determine the remaining elements, we have only to draw the

force triangle for the three forces, ADEA. Then Z)£^ represents

the magnitude and sense of the pull of the chord, and EA the

magnitude and sense of the pin pressure.

EXAMPLE.

Suppose that the bar represented in fig. 98 is supported by-

la smooth surface at A (then the reaction there

must be horizontal) and by a pin joint at B.

Determine the supporting forces graphically.

141. Problem III. — The forces of a non^

parallel system in equilibrium are completely known

except three whose lines of action only are known.

It is required to determine completely these three.*

Algebraic Solution.—There are three conditions
^*^' ^

of equilibrium for a system of this kind, as in the preceding
* If the three unknown forces are concurrent or parallel, the problem

is indeterminate.

200 lbs.

100 lbs.
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article. Either set of equations determines the unknowns, the
\

magnitude (and sense) of three fofees.

Illustration: Let the data be the same as that of the illus-
\

tration of the preceding article, but imagine P replaced by its !

components Px and Py as in fig. 99. j

j^_^ 2^ 1—I^-r 2^—-r-1^-4---

60 lbs. 100 lbs. 25 lbs.

Fig. 99.

(a) Employing the first set of equilibrium equations, .

JF^^-Px + Qcosao^^o; (i;^

2'Fj/
= Py + Q sin 60° — 50

— 100 — 25 = 0; . . . {2)\
2"Ma = Q- 6 sin 60° — 50-2

— 100-3 — 25-5=0. • • {Z)\

Equation (3) is just like eq. (3) of the preceding article. The \

value of Q determined from (3), substituted in (i) and (2) j

leaves them with two unknowns, Px and Py. Now it is con- J

siderably easier to solve (i) and (2) for Px and Py than to solve j

(i) and (2) of the last article for P and d, as may be seen by \

trial. The reason lies in the fact that both sin Q and cos
\

appear in those equations, and one really has to solve three
|

equations, the third one being sin^^ + cos^^ = i.
\

(b) Employing the second set of equilibrium equations, j

IFx=-Px + Q cos 6o° = o] ....... (4)
j

2^^ = 0-6 sin 6o°-5o-2-ioo. 3-25-5 = 0; . .

(5)]

i'M5=-Py-6 + 5o-4 + ioo-3 + 25-i=o. . . . (6) i

Equations (5) and (6) contain but one unknown each; no elimi-
\

nation therefore is necessary to obtain Py and Q. The value of
'

Q substituted in (4) leaves but one unknown in that equation.

(c) The third set of equilibrium equations may be written )

for the forces of this example so that but one unknown will j

appear in each equation, and then no elimination is necessary ]

in solving the equations. The student should so write them.
j

Graphical Solutions —(i) If one imagines any two of the;

unknown forces replaced by their resultant, the problem is
\

transformed to Prob. II (art. 140). Thus, let F\ F"
,
and F'"

{
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denote the three unknowns, and R the resultant of any two of

them, F" and F'" say; then in the transformed system there

are two partially unknown forces F' and R. The action line

of F' is known, also one point in that of R, the intersection

of the action lines of F" and F'" . Therefore, by the method

of Prob. II, F' and R may be determined, and then R may be

resolved into two components whose action lines are those of

F" and F'" respectively; these components are F" and F'" .

Illustration: It is required to determine the supporting

forces, "reactions," on the overhanging framework of fig. 100

when loaded as shown. The sup-

ports are such that the reaction

above is directed along the rafter,

and reactions below are horizontal

and vertical. Imagine the lower

two reactions compounded and

call the resultant R', its line of

action is unknown, but it passes

through the lower point of support.
Then the system in equilibrium
consists of R, the upper reaction,

and the loads. The force polygon
for the known forces is ABODE,
and since the direction of the

upper reaction is known, the poly-

gon can be continued by a line

from E parallel to the upper reaction,

of that line is to be marked F, and then the force R will be
FA, since the force polygon is to be closed.

The strings which intersect on af are oa and of (art. 38), and
since one point on af, P, is known arid also OA, the string oa

may be drawn. Continuing the construction, ob is drawn next,
then oc, od, and oe. Now / is a point in of and P is another;
hence* 0/ may be drawn and then the corresponding ray. That

ray determines F, and then EF and FA represent the upper
reaction and R respectively, and the horizontal and vertical

components of FA (EG and GA) represent the supporting
. forces at P.

Fig. 100.

The as yet unknown end



128 APPLICATIONS OF THE PRINCIPLES OF EQUILIBRIUM. [Ch. VI.

Scale: l.in.= 3400lbs.

(2) Find the resultant of the wholly known forces; then

the system in equilibrium may b*e regarded as consisting of

that resultant and the three partially unknown forces. The

special condition of equilibrium for four such forces is that

the resultant of either pair balances that of the other pair

(art. 121).

Illustration : Let the data be the same as that of the pre-

ceding illustration, and let F denote the upper reaction and
H and^ V the lower ones (fig. loi). The resultant of the loads

is a force of 1500 lbs.; its action line

is ah. Let R' denote the resultant of

the pair F, 1500, and R" that of

the pair H, V. Now R^ passes

through Q and R'' through P, and

since they are collinear, PQ is the

action line of each. Since the three

forces F, 1500, and i^" are in equilib-

rium, and since their action lines and

the magnitude and sense of one are

known, their force polygon can be

drawn; it is ABCA, BC representing the magnitude and direc-

tion of F. Since the four forces, 1500, F, H, and V, are in

equilibrium, their polygon must close; hence draw lines from

A and C parpllel to H and V determining D. Then ABCDA
is the force polygon sought, and CD and DA represent the

magnitudes and directions of V and H respectively.

EXAMPLES.

I. Suppose the truss represented in fig. 102 to be supported

8cale:Lln.= 16ft.

Fig.

on a smooth surface at A and to be pinned to the wall at B,

Determine the reactions at A and B due to the loads, by both

methods.



§VL] JOINTED FRAMES. 129

2. Determine the reactions on the crane in fig. 103 due to

the load and weights of members by both methods. (The

W^. of post 0.8 toa

" ""boom .9 "

" " "brace 1.1

Fig. 103.

supporting surfaces are such that the upper reaction is hori-

zontal and below one is horizontal and one vertical.)

§ VI. Jointed Frames.

142. Definitions.—A plane framework is one all members of

which are parallel to a plane ; only such frames are considered

in this section. A jointed frame is one the members of which

are fastened by pin-joints, the pin being perpendicular to the

plane of the frame. It is assumed in the following that the

pins are smooth.

143. The Pin Pressures.—The simplest kind of a member
IS one which is straight and is joined to others at its ends (fig.

104). . Such a member, if sustaining no load, is subjected to

Fig. 104.

three forces, its weight and the pin pressures, W, P', and P"

respectively. Unless the member is vertical, the action lines of
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•I

the pin pressures do not coincide with the axis of the member; for, i

assuming that they do, it is plairw.that P' and P" cannot bal-i

ance W. If the weight of the member is neglected, the twoj
forces P' and P" act along the axis and are equal; but, in\

general, a pin pressure is not directed along the axis of the]

member on which it acts. /

144. General Direction for Solving Examples.—The student
j

should read again art. 127. In the following examples it will^

not always be evident to the beginner which body and which ,

force system to consider for determining any particular forceJ

Often several may be selected in the manner mentioned in the;

article referred to, and it may be that there is but little choice]
between them; but, as a general rule, the body should, if pos-|

sible, be so selected that the number of unknown elements in^

the external system of forces acting upon it shall not exceed]
the number of conditions of equilibrium for that system. i

EXAMPLES.
]

I. Determine the forces upon each member of the crane in]

fig. 103, neglecting their weights and taking x equal to 16 ft.
\

Solutions: (i) Algebraic. Fig. 105 represents the whole?

crane, its members and groups of them, and the corresponding!

external forces. There are four external forces applied to the!

crane, namely, the load, and the reactions X, F, and H (fig.i

105a). The brace (fig. 105^) is subjected to two forces only;j

hence they are collinear, and each acts along AC. The boorrt-

(fig. 105c) is subjected to three forces,
—one at C, one at B;:

and the load; the one at C is the reaction corresponding to the^

pressure on the upper end of the brace, and hence is collinear i

with that pressure. The. force at B is unknown in direction,
J

and is therefore represented by its components Bx and ByS^

The post (fig. io5<i) is subjected to five forces,
—X, F, H, one|

at A
,
and one at B

;
the latter two are reactions

corresponding!
to the forces upon the left ends of the boom and brace respect-]

ively. \

An examination of these systems reveals several orders ofi

procedure. In general, it is advisable to determine the reac-|

tions on the entire frame first, if possible; here it is possible,!
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for the system applied to the entire crane is coplanar non-

concurrent non-parallel with three unknowns. Their deter-

mination is left for the student; the values for X, Y, and H
are 7.1 1, 8, and 7.1 1 tons respectively. System {c) might be

-H

TX
4

(e)

X
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Instead of solving the force system applied to the boom, we

might have solved that applied tg the mast. There are five

forces in that system,
—three wholly known {BC, CD, and DA),

the action line of one, and a point in that of the last. The
resultant of the three wholly known forces is BA (fig. io6c);
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knowns. The polygon is BAEB, AE and KB representing the

fourth and fifth forces.*

2. The weights of the post and jib of the crane represented
in fig. 107 are i and } ton respectively; that of the tie may be

neglected. Take the load as 8 tons and ;i; as 10 feet, and com-

pute all the forces on each member by both methods.

3. The weights of the post and jib represented in fig. 108

are 1200 and 1500 lbs. respectively; that of the tie may be

neglected. For a load of 4 tons compute all the forces upon
each piece by both methods. Disregard

counterweight, shown dotted.

4. Solve the preceding example on

the supposition that the crane has a

counterbalance whose weight is 10 tons,

its centre of gravity being 9 ft. from

the axis of the post.

5. Determine all the forces upon
each member of the crane repre-

sented in fig. 109 due to a load of 3

tons 7 ft. from C. It is impossible to

analyze this crane by the preceding principles. To make it

possible, suppose that the hole in the mast at C is slotted as

shown (then the pressure there is vertical), and that there is no

member AE.
6. Fig. iioa represents a type of hydraulic crane. The

plunger works inside a hollow mast and, pressing against the

Fig. 109.

* The solution of ex. i suggests these general directions for "analyz-

ing" cranes:

(i) Make a sketch of the entire crane, and represent as far as possible
all the external forces acting upon it.

(2) Apply the proper conditions of equilibrium •

(art. 125) to such

external forces and determine as many of the unknown elements as

possible.

(3) Make sketches of members or collections of members of the

crane, and represent as far as possible all the external forces acting

upon them. (In this connection, bear in mind art. 143 and the "law
of action and reaction.")

(4) Inspect the force systems of the sketches, noting especially
the unknown forces in each. Careful inspection will suggest how to deter-

mine the unknowns.
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]

bottom of the boom, raises and lowers the load and boom to- 'I

gether. Compute the forces upon each piece due to a load of
j

lo tons, X feet from the axis of the plunger when the pin A is ^

y feet above the floor.

Solution: Consider first the entire crane (fig. nob), except i

post and plunger. The external forces applied to it consist of \

the load, the post pressure upon the upper roller, R^, the post \

pressures on the lower rollers, R^ each, and the plunger pres- \

sure P. The three unknowns may be determined, for the sys- \

Fig. iio.

tem is coplanar non-concurrent non-parallel. The solution

gives

Ri = i,4$x, R2— 0.JIX, and P= 10 tons.

To continue, we may consider next the pin and roller at B,

The external forces upon this body are five in number, the pres-

sure on the roller i .43^:, the forces exerted on the pin by the two
members AB and the two BC, The four pin pressures are

directed along the axes of corresponding members (fig. hoc).
Solution of the equations of equilibrium of this system gives

F' = o.26^ and F^'^o.S^x tons.

Upon the pin at A there are applied five forces, two by the
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members AB, two by the rollers, and one by the boom; their

magnitudes are respectively 0.26^, 0.71:*:, and i.()']X. The

student should prove the values given.

7. Include the weights of the members in ex. i and solve.

(Notice that the forces applied to the ends of the brace are not

directed along its axis. It will be convenient in an algebraic

solution to replace each unknown force whose direction is un-

known by its horizontal and vertical components.)

8. The frame of fig. 1 1 i(a)

rests upon smooth surfaces at

A and B. Determine the

forces (pin pressures) upon
each member.

Solution : From a conside-

ration of the external forces on

the collection of bars it follows

readily that the forces at A
and B are 446 and 554 lbs. re-

spectively. Fig. Ill {h), (c),

and (d) represents the external

system on each member, each

pin pressure being replaced by
its horizontal and vertical

components. No unknown
of the system (b) or (c) can

be determined from the

equilibrium equations of the system, but the forces

and Ey may be computed from the equations for system (d).

Making use of these values, in (a) and (b), the remaining
unknowns can be determined. The student should make the

determination.

9. The bars of the frame of fig. 112(a) are 'uniform, AC, BC,
and AB weighing 150, 100, and 200 lbs. respectively. Com-
rute the forces upon each bar.

Solution: The forces applied to each member are repre-

sented in fig. 112 {b), {c), and {d), each force whose direction is

unknown being represented by its horizontal and vertical com-

ponents. The senses of the vertical components at C are not

obvious, so they are assumed (see foot-note, p. 120).

From a consideration of the external system on the entire

D.
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frame, R^ and R^ are readily found to be 229 and 221 lbs. re-

spectively. From the system {d), 4 2/
and B y are iornid to he

129 and 121 lbs. respectively. Supplying the value of Ay in

system (6) or By in system (c), the remaining unknowns may
be computed.

Instead of following the order above, one might write the

equilibrium equations for systems (6) and (c) and solve them
for the six unknowns, and lastly determine i^j and R2.

§ VII. Jointed Frames (Continued).

145. Kind of Frames Considered.—The jointed frames con-

sidered in this section differ from those of the preceding section

in construction and in loading. It is assumed that

(a) each member connects ofily two joints,

(b) each load is applied so that its action line passes through the

axis of a joint.

146. "Force or Stress in a Member."—Fig. 113(a) repre-

sents a member of such a frame as described in the preceding

article, under two loads U and U\ The pin pressures are

denoted by P' and P", and the weight of the member is

neglected or not considered. Let the resultants of the forces
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at the left and right ends be denoted by R' and R" respect-

ively; the action line of each passes through the centre of

the corresponding hole. Since/?' and i?" balance, they must

be collinear, and their action lines must coincide with the axis of

the member.

Now any two parts of the member, as M and A/", exert forces

on each other, and the lines of action of those forces coincide

\- \
<f

4-^ M h» -<-r N -^ (b)

^'^' M -K- ->
| N 4-^" fo)

Fig. 113.

with the axis of the member. For, the force which M exerts on

N balances R"
,
therefore its action line must coincide with that

of R"', also the force which N exerts on M balances R\ there-

fore its action line must coincide with that of R' .

Observe carefully the relations in fig. 113 (6) and {c).

In (6), the forces at the section between M and N are pulls,

or the stress is tensile (art. 104), and the member is stretched

by R' and R" .

In (c), the forces at the section between M and N are

pushes, or the stress is pressural (art. 104), and the member
is compressed by R' and R" .

By force or stress in a member is meant either of the forces

which a part of it exerts upon the other. The examples in this

section relate to the determination of the forces in the members
of jointed frames.

147. Method for Determining the Force or Stress in a Member.

(i) Determine the reactions on the frame, or truss.

(2) Imagine the truss separated into two distinct parts
* so

* Such division of a truss is also described as ""passing a section," the

term section referring to the imaginary surface of separation.
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that the member under consideration is one of the members

separated, and so that the unknown»elements in the system of

external forces applied to one part of the truss does not exceed

the number of algebraic conditions of equilibrium for that

system.

(3) Apply the appropriate condition or conditions of equi-
librium necessary to determine the desired force.

The student should bear in mind that the system of external

forces with reference to any part of a truss consists of the loads

and reactions applied to that part and the forces which the

Fig. 114.

other part exerts upon it. These latter forces are exerted upon
the

' '

cut
' '

ends of the members belonging to the part considered

and are exerted along their axes.

Illustration i.—It is required to determine the force in

the member AB of the truss of fig. 1 14(a).

The reactions are supposed to have been determined. If

the section cutting AB be passed as at i . the external system
©neither the upper or the lower part of truss (fig. 1146) includes

four unknown forces, those in the four members cut. Now
the former system is concurrent and since it has only two con-

ditions of equilibrium the unknowns cannot be determined
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from that system. The system on the lower part is non-con-

current, and as it has only three conditions the unknowns can-

not be determined from it.

If the section be passed as at II, the system on each part of

the truss contains only three unknown forces (fig. 114c); and
since each system is non-concurrent, there are three conditions

of equilibrium, and the force desired can be obtained from either

system.
Illustration 2.—It is required to determine the stress in

member BC
, fig. 114(a).

No matter where the section cutting CB is made, the ex-

ternal system on either part will contain more unknown forces

than the number of conditions of equilibrium for the system,
and the desired stress cannot be so directly determined. Thus,
if the section is made as at ///, the system on the left part is as

represented in fig. 114(6^), and there are four unknowns, the

forces in the four cut members. If now the force in CD, BE,
or EF can be determined, its value may be supplied in fig. i i^{d)

and the system can then be solved for the desired force, for there

are three conditions of equilibrium and but three unknowns.
The force in CD can be determined from the system of fig.

114(0.
When the stress in each member of a truss is required, a

certain order of determining them, depending on the case in

hand, is more convenient than others; but in all cases, the sec-

tions are made according to direction (2) as stated above. It

does not fall within the scope of this book to explain fully the

most convenient orders of procedure for the different cases.

A good general method is to make the sections so that the ex-

ternal system on one of the parts of the truss shall be simple,

containing few unknowns and easy to solve. This matter is

partially illustrated in the solution of the first of the following

examples and in arts. 148-151.

EXAMPLES.

I. Determine the force in each member of the frame of

fig- ii5(^) ^iie to the load of 1000 lbs
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Solution : Imagine the truss divided into two distinct parts
as shown in fig. 115 (b) and (c). »The external forces upon
the left part are 400 lbs., F/ and F/; upon the right part 600

lbs., 1000 lbs., F/' andF/' * Each is a system in equilibrium,
and the unknowns may be determined from the equilibrium

equations for either system.

lOOOjlbs.

1000 lbs.

^> ^^ (gr)

f400 lbs.

Fig. 115.

To determine the force in the member BC, the truss should

be imagined as separated into. two parts so that BC is one of

the members cut, for example as in fig. 115 (d) and (e). The ex-

ternal forces on the left part are 400 lbs., 1000 lbs., F/ and F3';

upon the right part 600 lbs., Fg" ^^^ -^3"- Each is a system in

equilibrium, and the equilibrium equations for either determine

the remaining unknown F3.

*F' — F" F ' — F etc.
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In fig. 115 (/) and fe), there are represented the external

systems on the parts of the truss made by cutting members AC
and BC. The equilibrium equations for either determine F^

and F3.

Of course, consideration of all the systems represented is

not necessary for a solution. They are referred to here merely
to show that the solution may be made in several different

ways. One of these ways is by means of the systems of fig.

115 {e) and (/), which may be carried out thus:

Equilibrium equations for system {e) are

2'F, = F/'cos36°52'-i^2'' = o;

IFy= -F/' sin 36° 52' + 6oo = o;
*

hence

F3" = 1 000 and F^' = 800 lbs.

Having determined F/\ F3' is known; it is a push, that is, it

acts upward (fig. 115/) and its value is 1000 lbs. Only one

unknown remains in system (/), and the following equilibrium

equation suffices for its determination:

IFx = F^" cos 26° 34'
— 1000 cos 36° 52^

= 0;

hence F/' = 894. 5 lbs.

Supposing the senses of the unknown forces in the two

systems just considered not apparent, and following the sug-

gestion of the foot-note, the first two equations above become

-F3-cos36°52'-F/' = o;

Fg" sin 36° 52' + 600 = 0;

from which F3" = — 1000 and F^" = + 800 lbs.

* In simple trusses the kind of stress in any member is apparent.
F©r example, in Fig. 115(a), AC and BC are in compression and AB in

tension; then F^ and F3 are pushes and F2 is a pull. When the senses of

the forces are not apparent, we may follow the suggestion in the foot-note,

p. 120, but it is convenient to always assume the force to he a pull. Then,

according to the foot-note, the force is actually a pull or push {and the member
is in tension or co7npression) according as its computed value is positive or

-negative.
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^

Interpreting these signs in accordance with the foot-note, F^"
is a push and F/' a pull, i.e., BC*is in compression and AB in

tension—results agreeing with the first solution.

2. Determine the force in each member of the truss of

fig. 1 1 6. Ans. AF, i6oo lbs. tension.

Fig. ii6. Fig. 117.

3. Determine the force in each

member of the truss of fig. 117.

Ans. AD, 2600 lbs. compression;

AC, 1300 lbs. tension.

4. Determine the force in each

B member of the truss of fig. 118.

5. Determine the force in each

member of the truss of fig. 102, it being

supported as there described.

148. Graphical Method for "Analyzing Trusses."—Graph-
ical methods are especially well adapted for solving problems
like the preceding. As in the algebraic method, the truss is

imagined separated into two parts and then the attention is

directed to the external forces acting upon either part. Graphi-
cal instead of algebraical conditions of equilibrium are then

applied to the system of forces to determine the unknowns.
In making the imaginary separations of the truss, care should

be taken to cut not more than three members, the forces

in which are unknown.* It is advantageous to make the separa-
tion so that not more than two such members are cut. If that

be done, a single force polygon will determine the two unknowns,
while if three be cut, a force polygon and a funicular polygon,
or the equivalent, are necessary to determine the unknowns.

* These members must not meet at the same joint.
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149. Notation.—The. notation described in art. 11 when

applied in the graphical analysis of trusses can be advanta-

geously systemized as follows. Each triangular space in the

truss diagram is marked by a small letter, also the space
between consecutive action lines of the loads and reactions

(see fig. 119) Then the two letters on opposite sides of any
line serve to designate that line, and the same large letters are

used to designate the magnitude of the corresponding force.

This scheme of notation is a great help in graphical analyses of

trusses.

Illustration.—Determine the force in each member of the

truss of fig. 119.

Solution: Evidently the reactions each equal one-half the

load, or 2000 lbs. Imagine the truss separated into two parts, as

\i

.IV

II. t>r ,

-II >C/vS

ft

Fig. 119.

by the arc /. The external forces upon the left part are repre-

sented as far as known in fig. 120(a); since they are in equilib-

rium, their polygon closes, and in constructing it, the unknowns
will be determined. Beginning with the knowns, AB is drawn

to represent 2000 lbs., BC to represent 500 lbs.; and then a

line from A (or C) parallel to the action line of one of the un-

knowns and a line from C {or A) parallel to the other are drawn.

The last two lines determine D (or D'), and the closed polygon
is ABCDA (or ABCD'A)\ hence the forces in the members cd

and ad are represented by CD and DA (3000 and 2600 lbs.)

respectively. From the force polygon, it is seen that CD is a

push, and DA is a pull; hence the members cd and ad are in

compression and tension respectively.

We may next imagine the truss separated into two parts
as by // or //' (fig. 119); in either case, there are but two un-
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known forces in the external system applied to either part. If

we choose the part within //, we,^have the simpler system to

deal with; the forces of it are represented in fig. 120(6) as far

as known. The force polygon may be drawn thus: DC to

represent 3000 lbs., CF to represent 1000 lbs., a line from F
parallel to one of the unknowns and one from D parallel to the

other. The last two lines determine E, and the force polygon

is DCFED
;
hence the forces in the members de and ef are repre-

sented by £Z) and FE (866 and 2500 lbs.) respectively. Both

members are in compression.
We next imagine the truss separated into parts as by ///.

Choosing the part within ///, we have a simple system to deal

with
;
the forces of it are represented as far as known in fig. 1 20(c) .

Their force polygon may be drawn thus: AD to represent 2600

lbs., DE to represent 866 lbs., a line from E parallel to one of

the unknowns, and a line from A parallel to the other. The
last two lines determine G, and the force polygon is ADEGA

;

hence the forces in the members eg and ag are represented by
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EG and GA (866 and 1732 lbs.) respectively. Each member
is in tension.

On account of the symmetry of the truss and loading, the

forces in the remaining raembers are now known.

150. Polygon for a Joint.
—In drawing the force polygon

for all the external forces on the part of a truss included within

a small circle struck from a joint, it will be advantageous to

represent the forces in the order in which they occur about the

joint.

A force polygon so drawn will be called a polygon for the

joint; and for brevity, if the order taken is clockwise, the poly-

gon will be called a clockwise polygon, and if counter-clockwise

it will be called a counter-clockwise polygon. ABCDA (fig.

1 20a') is a clockwise polygon for joint / of fig. 119; ABCD'A
is a force polygon for the "forces at joint /," but it is not a

polygon for the joint, because the forces are not represented in

the polygon in the order in which the forces occur about the joint.

The student should draw the counter-clockwise polygon
for the joint and compare with ABCDA.

151. Stress Diagrams.—If the polygons for all the joints of

a truss are drawn separately as in the illustration in art. 149,

then the stress in each member will have

been represented twice. It is possible

to combine the polygons so that it will

not be necessary to represent the stress

in any member more than once, thus

reducing the number of lines to be

drawn. Such a combination of force

polygons is called a stress diagram.

Figure 121 is a stress diagram for

the truss of fig. 119 loaded as there

shown. Comparing the par.t consisting
of solid lines with figs. 120 (a'), (6'),

and {c'), it is seen to be a combination

of the latter three figures. It will also

be observed that the polygons are all

clockwise polygons, but counter-clockwise polygons could be

combined into a stress diagram.

Fig. 121.
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To construct a stress diagram for a truss under given loads:

(i) Letter the truss diagram as directed in art. 149.

(2) Determine the reactions.

(3) Construct a force polygon for all the external forces applied
to the truss (loads and reactions), representing them in

the order in which their application points occur about

the truss, clockwise or counter-clockwise.*

(4; On the sides of that polygon, construct the polygons for

all the joints. They must be clockwise or counter-clock-

wise ones according as the polygon for the loads and
reactions was drawn clockwise or counter-clockwise.

(The first polygon drawn must be for a joint at which but

two members are fastened; the joints at the supports are

usually such. Next that joint is considered (and its poly-

gon is drawn) at which not more than two stresses are

unknown, that is, of all the members fastened at that

joint the forces in not more than two are unknown. Then
the next joint at which not more than two stresses are

unknown is considered
; etc.f)

These directions are illustrated in the following solutions.

EXAMPLES.

I. Solve ex. 4 of art. 147 by the graphical method.

Solution: Supposing the reactions to have been deter-

mined, we draw the force polygon for the loads and reactions

ABCDEFA (fig. 1226); it is a clockwise polygon. We may
begin by drawing the clockwise polygon for joint I or II

\
for the

former it is FABGF.X Member hg is therefore in compression

* The part of that polygon -representing the loads is called a load line.

t In some trusses, after the polygons for a few joints are drawn, there

remains no joint at which there are but two unknown stresses; fig. 123

represents such a one. The solution of ex. 5 explains several ways of

procedure in such cases.

X The student is urged to make sketches of the bodies (parts of truss)

upon which the forces, whose polygons are being drawn, act. A force

acting upon the "cut" end of a member and toward the joint is a push,

and the stress in the member is compressive; if it acts away from the

joint, it is a pull and the stress is tensile.



iJVlL] JOINTED FRAMES. U7

;and gf in tension. Next we may draw the clockwise polygon

[for joint II
,
III

,
or IV

\
for the first it is CDEHC. Member ch

(b)

lin.= 4000 lbs. Iin.= l6ft.

Fig. 122.

1 in.=4000 lbs.

is in compression and eh in tension. For joint ///, the polygon
is HEFGH and member gh is in tension. If the work has been

correctly and accurately done, the line GH is parallel to gh.

2. Solve ex. 2 of art. 147 graphically.

3. Solve ex. 3 of art. 147 graphically.

4. Solve ex. 5 of art. 147 graphically.

5. Analyze the truss of fig. 123 under the loads shown.

Solution : Evidently each reaction equals one-half the whole

load. ABCDEE'D'C'B'A'FA is a clockwise polygon for the

loads and reactions. The polygon for joint i may be drawn

first; it is FABGF. Next, that for joint 2 may be drawn;

it is GBCHG. Then that for joint 3 may be drawn; it is

FGHIF. The polygons for joints i', 2', and 3' are FA'B'G'F,

G'B'C'H'G\ and FG'HTF respectively.

No joint remains at which there are but two unknown forces,

and no more polygons can be drawn. If in any way the number

of unknown forces at a joint can be reduced to two, the polygon
for that joint can be drawn and the stress diagram can be com-

pleted. There are several ways of making that reduction.

For example, if the force in ij, jm, or mf were known, the poly-

gon for joint 4 could be drawn, then that for 5, 6, 7, and 8.

The force in mf may be determined by
"
passing a section"

as at / and solving the external system on either part of the

truss for the desired force. The system consists of the loads

and reaction on that part and the forces in the members cut.
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The » /stem may of course be solved graphically or algebrai-

cally i but in this truss the algebraic solution is much the sim-

pler. A. moment equation for either system with joint 8 as

Scale: 1 ln.= 5000 lbs.

Fig. 123. I

origin furnishes the value of the force in mf readily; the value
j

is 3420 lbs. and the stress is tensile.
\

This force in fm may now be represented in the proper place j

in the stress diagram determining M, and then the polygon for
j

joint 4 can be drawn; it is MFIJM. The student should pick
j

out the polygons for the remaining joints and determine the \

kind of stress in each member.
\

There are other ways of meeting the difficulty presented in 1

this form of truss, but that here given is the most general ;

and can be applied readily to other forms.

6. Analyae the truss represented in fig. 114(a) under the

loads shown.
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VIIL Rough Supports; Friction.

Fig. 124.

152. Definitions.—It is a fact of experience that when one

body slides or tends to slide over another, the slid-

ing of the first is opposed or resisted by the second.

Thus, suppose that fig. 124 represents a block

which slides or tends to slide over another body
towards the right; the second body exerts some

such force as R upon the block.

The force which one body exerts upon another which slides

or tends to slide over the first is called the total resistance; it

will be denoted by R. The component of the total resistance

along the (plane) surface of contact is called sliding resistance y

or more commonly friction; the component, normal to the

surface is called normal pressure. (If the surface of contact

of the two bodies is not plane, the force exerted at each ele-

mentary part of the surface is the total resistance applied to

that element, and its components in and normal to the element

are the friction and the normal pressure applied to the element.)

Friction is called kinetic or static according as sliding does

or does not take place. Static friction only is here considered

(kinetic friction is discussed later).

Suppose that the block represented in fig. 125 weighs 10 lbs..

that it is subjected to a horizontal pull, P, and the rubbing
surfaces are such that P must exceed 6 lbs. to start the block.

Fig. 125(a), (6), and {c) represent ^the
forces acting upon the

block when P, as it increases, reaches values of 2,4, and 6 lbs.

respectively. Since the block is at rest, the friction at the three

stages equals 2,4, and 6 lbs. and in all stages N equals 10 lbs.

When P reaches 6+ lbs. the block will move and the kinetic
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friction would be something less than 6 lbs., as has been dis-

covered experimentally. For any two bodies then, the fric-

tion may have many values depending on whether slipping

occurs or not, and if not, on how great; the tendency to

slipping is.

The friction corresponding to impending motion is called

limiting friction; it will be denoted by F' . Evidently limiting

friction is the maximum value of the friction corresponding to

any given normal pressure, see fig. 125 (a), (6), and(<:). Limit-

ing friction has been studied experimentally and many impor-
tant results have been thus r'>;duced.

153. The Coefficient of Static Friction for two rubbing sur-

faces is the ratio of any normal pressure between the surfaces

and the corresponding limiting friction; if it is denoted by /,

f
= F'/N, or F' = fN.

154. The Angle of Friction for two rubbing surfaces is the

angle between the directions of the normal pressure and the

total resistance when motion is impending. Denoting it by
cj) (see fig. 125c),

tan
(j>
= F'/N\ hence tan 4>

=
f.

155. Angle of Repose.
—If a block be placed upon an in-

clined plane, the inclination at which slipping would be impend-
l\ ing is called the angle of repose for the two rub-

bing surfaces; it will be denoted by a. From

fig. 126 (representing a body on an incline, the

angle being that of repose), and the equations of

126. equilibrium for the forces,

F' =W sin a and N=W cos a
;

nence tan a = F'/N.

Since F'/N = f
=^ tan

(j),
a =

(j),
and tana=/;

that is, the angle of repose for two surfaces equals their angle of

friction, and the tangent of the angle of repose^equals the coeffi-

cient of friction.
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156. Laws of Friction.—The following laws relate to
''
solid

friction
' '

(friction between solids) and are based entirely on

experiment.
1. The coefficient of friction for two surfaces depends upon

the nature of the surfaces. Thus the coefficient varies with

the materials, with the smoothness of the surfaces, and with

the lubricant, if any is used.

2. The coefficient of friction is independent of the normal

pressure between the two surfaces and of the extent of the

contact. This law is not exactly true; especially for such low

pressures at which a considerable part of the sliding resistance

is due to adhesion, and for high pressures which result in a

change in the character of the surfaces; also when lubrication

is excessive, for then the friction is mixed, being neither "solid"

nor ''fluid."

157. Determination and Values of the Coefficient. — The

coefficient of friction for two surfaces may be determined by
measuring their angle of repose (see fig. 126). The tangent of

the angle is the coefficient sought. Or, the two bodies may
be placed as in fig. 125, and then measuring the pull P neces-

sary to start the block, F' is known since F' equals that pull.

Also, N = W', hence f
= P/W.

In one of these two ways many determinations have been

made, the values of the coefficient for a few materials ranging
as follows:

Wood on wood, soaped 0.22-0. 44
" " "

dry 0.30-0.70
Metal on metal, dry 0.15-0.24

" " "
as in polished and well-lubricated

bearings o . 05
- o . 08

Wood on metal, dry o . 60

Hemp rope on wood o . 50
- o . 80

Sole-leather on wood or cast iron, as in packings, dry o . 40 - o . 60

Leather belting on pulleys 0.25-1. 00

Stone on stone, as in arches o . 40 - o . 60
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EXAMPLES.

1. If the block represented in fig •12 7 weighs 100 lbs., 6 is

p 10°, and the coefficient of friction is 0.2, how

great must P be to start the block?

Solution: Suppose motion to be impending,

then F' = o.2N\ and since the block is at rest,

P cos io° — F' = o and P sin io°+7V— 100 = 0. Solution of these

three equations gives P= 19.62 lbs.

A force slightly greater than this will start the block.

2. Solve ex. i if the sense of P is reversed.

Ans. 21.05 lt)S.

3. If Pin ex. 2 is 15 lbs., how great is the friction?

4. What is the least value of P acting as shown in fig. 127
that will start the block? What is the corresponding value

of l9? Ans. 19 = 11° i8'.6.

5. If the block represented in fig. 128 weighs -fp

100 lbs., /?
= 25°,/= J, and ^ = 0, how great must P

be to start the block? Ans. 72.46+ lbs.

6. To prevent slipping, how great must P be?

7. If Pis 20 lbs., determine the friction. ^Z.
"

T"
* r IG. 125.

Ans. 22.26 lbs.

8. If P is 50 lbs., determine the friction.

9. Take 6=10° in ex. 5, and solve. Ans. 69.51 lbs.

10. Show that P (fig. 128) to start the body up is a mini-

mum if d =tan~^/.
11. Two bodies connected by a cord are placed upon a

plane inclined 12° to the horizontal, the string being taut but

without initial tension and inclined 12° with the level base.

If the bodies weigh 10 and 15 lbs. and the corresponding coeffi-

cients of friction are \ and
J," determine the frictions.

12. In the preceding example, change the coefficient \ to

\ and suppose the lower body to be the lighter one. Solve and

also determine the tension.

13. A bar weighing 100 lbs. rests upon two end supports at

the same level. Suppose a force is applied to it so that the

action line passes through the points of support. If the coeffi-

cients of friction for the rubbing surfaces be 0.2 and 0.25, how
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great must the force be to move the bar? What can you say
about the frictions when the force is 18 lbs. and when it is

20 lbs.?

14. How great must P (fig. 129) be to start the wedge

against the force Q?

*i-r(a)
Fig. 129.

Solution: When the wedge is about to slip, the directions

of the resistances at the rubbing surfaces are known, for the

inclination of each to the normal to the surface on which it acts

equals the corresponding angle of friction. Of the three forces,

Q, R'
,
and R'\ applied upon the upper body, the direction of all

and the magnitude of one, Q, are known. Their force triangle

determines the magnitude and sense of R' and i?" (see "fig. 1296).

Having determined R"
,
P and R'" may be determined by means

of the force triangle for those forces (see fig, 129c).

15. How great must P be to prevent the wedge from

slipping out, the wedge angle being 25°, and all <^'s 10° ?

16. Show that the wedge will not slip out

if its angle is less than (j>" -\-cj)'" when P = o.

1 7 . Fig. 130 represents a jack-screw. How
great a couple whose plane is horizontal must
be applied to the screw to

" overcome "
Q?

Solution: At each point of the lower sur-

faces of the thread on the screw, the nut
exerts a pressure whose normal and tan-

gential components call dN and dF respect-

ively. When the tendency of the screw is
^^^' ^^°*

to rise, dF acts downward. Let C denote the moment of the
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couple, p the pitch angle, and r the average arm of the frictions

and normal pressures with respect Xo the screw axis. From
the conditions of equilibrium (see art. 125),

IFy = -Q-I{dF ^inp)+I{dN cos>P)
=
o;

IMy =C-I{dF cos p-r)
- 1{dN sin p-r)=o]

and, when slipping is impending, dF= fdN. .

-

These three equations make

C = Qr(sin /? + / cos ./?)/(cos /?-/ sin /?).

18. Show that to cause the screw to descend,

C = Qr{f cos /?-sin /?)/(/ sin
/? + cos /?).

19. Show that if P>(j), the screw will descend under the

action of Q alone.

20. Fig. 131 represents a lever supported in a triangular

bearing. How great a force, P, is required to
'' overcome" Q?

Solution: When slipping is about to occur, the reactions

at A and B act in the directions indicated. Since the action

lines of P, Q» -^'» ^^^ F" and the magnitude of Q are known,
the magnitude of P (and of R' and R") may be determined (see

art. 141)-

Fig. 131.

CD=r

CB=rsin(j>

Fig. 132.

158. Friction Circle.—Fig. 132 represents a journal and its

bearing (also a pin joint), the fit being loose so that the con-

tact is along a line practically. Let r denote the radius of the

journal and
<j)

the angle of friction for the rubbing surfaces.

Then a circle concentric with a cross-section of the journal

whose radius equals r sin
(j>

is called the friction circle for the

journal and bearing. It is useful in solving certain problems

involving the friction of a loose-fitting journal and bearing, pin

joint, etc.
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Proposition.
—When slipping is about to occur at a loose

bearing, the action line of the resistance offered by the bearing

is tangent to the friction circle.

• Proof: The resistance is applied at the line of contact, rep-

resented by A, and it makes an angle cj)
with the normal AC

(art. 154). If AB is tangent to the circle, then

sin BAC = r sin (f)/r
= sin ^, or BAC =

cf);

hence the tangent line and the action line of the resistance

coincide.

Remembering that ^he tangential component of the re-

sistance (the friction) opposes the tendency to slip, the student

will have no difficulty to tell which one of the two tangent lines

which may be drawn is the action line of the resistance.

EXAMPLES.

1. Fig. 133 represents a lever supported in a loose cylindri-

cal bearing. How great a force --Vc

Pis required to ''overcome" Q? / \ Z^^^''^
Solution: There being three

>>^^^^^^/^^\X.-^:x^^
forces applied to the lever, P,Q, ^^ ^^ ,'' V L^
and the resistance of the bearing ^^^^k^~'\M
R, their action lines intersect in ^^^P^
a point (art. 125); hence 7^ passes

^^" ^^^'

through D. Since R is also tangent to the friction circle, its

action line is determined, and the system P, Q, R may be solved

for the unknown magnitudes.
2. Let MCN (fig. 133) equal 90°, CM 2 ft., CN 6 in., the

angles CND and CMD 60° and 90° respectively, radius of

axle 2 in., the coefficient of friction h, and Q 1000 lbs. Deter-

mine P and the friction.

3. Determine the largest force P which Q will overcome,
data as in ex. 2.

4. When the lever is straight (iVCM=i8o°) and P and Q
act at right angles to NCM, show that

P(CMTr sin cj))=Q(CN±r sin
(l>),

according as the impending motion is with P or Q.
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Fig. 134.

159. Cone of Friction.—Let P (fig. 134) denote the result-

B A a-nt of all the forces ©applied to the body repre-

sented, not including the resistance of the sup-

porting surface. Then the cone whose apex is

at C, whose axis is the normal through C, and

whose apex angle equals twice the angle of friction

is called a cone of friction. In the figure the cone

is represented by ACB.

Proposition.—If the action line of the resultant of all the

forces applied to a body not including the resistance of the

support falls within the cone of friction, sliding will not occur;

if without, it will occur.

Proof: The force causing or tending to cause sliding is the

horizontal component of P (fig. 134), equal to P sin d. Since

the maximum sliding resistance, or friction, is

F'=tan ^.A/"
= tan <j)'P cos 6,

(sliding force)/F' = tan ^/tan 0. Therefore

a d>^ (P falls without the cone),
the sliding force> limiting friction;

a d<i(j) (P falls within the cone),

the sliding force < limiting friction.

EXAMPLES.

I. In fig. 128 suppose that d and ^= 30°, P = 5o lbs.,/
=

J,

and the body on the incline weighs 100 lbs. Determine whether

the body will slide and the value of the friction graphically.

2. Let P in the preceding example be 10 lbs., and solve.

3. A prismatic block of wood is sawed into two parts so that

the cut is inclined at an angle 6 with the ends. If the two parts

are laid together matching and end pushes are appHed along

the axis, for which values of"^ will slipping not occur?

4. Fig. 135 represents a slider which may slide in the guides

A and B; cjy'
and ^" are the angles of

friction for the rubbing surfaces respect-

ively. Show that any horizontal force

applied above C cannot move the slider.

Solution: Imagine slipping about to

occur at B; then the resistance there

acts along the line BC. To keep the Fig. 135.
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slider at rest, the resistance at A must act through y, and since

the line Ab' is within the cone at A, such resistance is possible,

and equilibrium will be preserved.

5. A boy climbs a ladder which rests on a horizontal floor

and against a vertical wall. Determine graphically how far

he can ascend without causing the ladder to slip. Suppose
that the length of the ladder is 20 ft., its centre of gravity is

8 ft. from the foot, its inclination is 45°, its weight and that of

the boy are equal, and the coefficients of friction for the sur-

faces at the top and bottom are 0.4 and 0.6 respectively.

Ans. About 19 ft.

6. A uniform ladder rests with one end against a rough
horizontal, the other against an equally rough vertical plane.
Determine the least coefficient of friction that will allow the

ladder to rest in all positions.

Ans. I.

7. Fig. 136 represents a bar AB resting in a horizontal

position upon two inclined planes,

0' and (j>" being the angles of fric-

tion at A and B respectively. Show
that if the weight of the bar is neg-

lected, any body suspended from a

point betweenm and n will not cause

it to slide, but that if suspended

beyond m ov nit will cause sliding.

1
dF,

\ P^^ I

y

137-

8. The front of a drawer is 4 ft.,

_j: and its sides 10 in. long. If the

angle of friction for the rubbing
siy-faces at the sides is 22°, and the

drawer handles are 3 ft. apart, show
that the drawer cannot be opened
by a forward pull at one handle.

160. Belt Friction.—Fig. 137(a)

represents a cylinder about a part
of which a belt (or cord) is wrapped.
If the cylinder is not smooth, the

pulls Ti and T^ may be quite Un-

equal without causing slipping of

the belt, as may easily be verified by trial.
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The forces acting upon the part of the belt in contact with

the cyhnder consist of the tensions T^ and T^, the normal

pressure and the friction (see fig. 1376). Let p denote the nor-

mal pressure per unit length of arc
;
then the normal pressure

on any part whose length is ds (fig. 137c) is pds. The friction

on that part may be called dF and the tensions T and T + dT.

Since the portion is in equilibrium,

pds = 2T sin — = Tdd
;

hence p = T/r; (i)

that is, the normal pressure per unit length at any point of the

contact equals the belt tension there divided by the radius of

the cylinder.

When slipping is impending, dF= f-pds, and since dF = dT,

dT==f-ds, or % = i~=fdd.'
r 1 r

'

Integration gives log,, T
"" =

j\
\ (see fig. 137a);

hence log^ r2-log^ Ti=//?, (2)

or . T,= T,ef^ (3)

The angle ^ must be expressed in radians; e is the base of the

Naperian system of logarithms, 2.718. The formulas apply
also when

/?
is greater than 271, that is, when the cord more than

encircles the cylinder.

For a given value of T^, T^ increases very rapidly with ^
as shown by fig. 138 which represents the locus of equation (3).

T^ and
/?

are the variables and e, f, and

T^ constants, / being taken as J and

T^ = OA. To the scale 0^ =
7^, OB rep-

resents T2 when
j3
= A0B.

EXAMPLES.

I. Compute the ratio between T^ and

7^2, when / is ^ and the cord is wrapped
twice around the cylinder.

2. Plot in fig. 138 the locus of equation (3) when / is J
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§ IX. Forces in Space and Miscellaneous.

161. Examples Involving Non-Parallel Non-Coplanar Forces.

—The principles for solving such examples are stated in art. 125.

Sometimes in simple cases the example can be resolved into

others the forces in which are coplanar. Such separation is

usually a simplification; ex. 3 is an illustration.

EXAMPLES.

I I . Determine the relation between P and W of the windlass

represented in fig. 139 and the reactions of the bearings in terms

Fig. 139.

of P. Take P always at right angles to the crank as shown,
and neglect friction.

Solution: The forces acting on the windlass are P, W, and
the reactions of the bearings, A and B\ the weight of the wind-

lass is neglected. Let R' and R^' denote the reactions at

A and B respectively, and a the angle which the crank makes
vith the X axis; then

i'F^= -Psina:+i^:^+i?x"= o,

IFy= P cos a +Rl-\-Rl'-'W= o,

IM^= -Pcosa'b-Wx+Ria= o,

IMy= -Psma'b-RJa= o,

IM,= Pc-Wr=o,

r being the distance from the axis of the rope to that of the

windlass.

The 2-resolution equation vanishes since none of the force?

have z components. Solving the equations, we find that
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W= Pc/r,

R^= -P sin a-h/a, R^ =P{b cos a +cx/r)/a,

R%^ Psma(i+6/a), Ri'= P(i~x/a)c/r-P cosa(i+b/a).

2. Fig. 140(a) represents a derrick consisting of a post (AB),
boom (AC), two "stiff legs" (BD and BE), and hoisting cables

which are not shown in detail. Determine the forces on the

parts of the derrick due to the load W, assuming for simplicity
that B and C are merely connected by a cable, that the load is

R COS AS'

Fig. 140.

suspended from C, and that the boom is connected to the post
at its lower end practically.

Solution: The external forces on the whcie derrick are W
and the reactions at A, D, and E. The directions of these reac-

tions will depend on the nature of the supports at A, D, and E',

we will assume that these are such that the reaction at A is d

single force acting through A, and that those at D and E act

along DB and EB respectively.

We first resolve this system into two component systems,

one coplanar (its plane being that of the ground) and one par-

allel (its forces being vertical). Let the reactions at D and E
be called R^ and i?" respectively; then the components of the

R' are

R'

R'
cos 45° acting in the line AD,
sin 45°

"
vertically at J9,

and the components of R" are

i?" cos 45° acting in the line >IE,

R" sin 45° verticallv at E.
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Let the reaction at A be called R"\ and imagine it resolved into

X, jy and z components at A . The coplanar component system
consists of forces as shown in fig. 140(6), and the parallel com-

ponent system consists of four vertical forces, R' sin 45° at D,
R" sin 45° at E, R^/' at A, and W at C (all not shown).

'Each of the component systems being in equilibrium, we

may write the appropriate equations of equilibrium for each;

thus for the first (concurrent)

IF^= -R' cos 45° cos 45°-^" cos 45° cos 45°+i?x'"= o,

IF,= -R' cos 45° sin 45°+^" cos 45° sin 45°+i?r'.
= o;

and for the second

IFy=Rl"-W-R' sin 45°-i^" sin 45°
= o,

IMx=Wb cos ^ sind-R' sin 45° -a cos 45°

+ 7?" sin 45°
• a cos 45®

= o,

2^/,= -Wb cos ^ cosd+R' sin 45° -a cos 45°

+ i^" sin 45° -a cos 45^=0.

These equations determine the five unknown forces R\ i?",

i?^", Ry\ and R^'\ The solution is left to the student.

The tension in the cable BC and the pressure between the

post and the boom may be determined from a consideration of

the forces acting on the boom. As these forces are coplanar

their determination is left to the student.

3. Fig. 141(a) represents a "shear-legs crane." It consists

of two posts, CD and CE, hinged together at the top and hinged

J

Fig. 141.

at their bases so that they can rotate about the line joining D
and E. The stay AC may be a cable or a "stiff leg"; if stiff,

AC is constant in length and the load is swung in or out (the
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posts rotating about DE) by moving the lower end of A along the \

track AB. Determine the forces oifthe parts due to the load W.l
Solution: Imagine. that the two posts are replaced by a sin-]

gle one CB, and determine the tension in the stay and the com- 1

pression {R) in CB from a consideration of the forces applied I

(see fig. 1 416). Then resolve this compression R into two]
components whose action lines coincide with the axes of thej
posts (see fig. 141c). \

4. In fig. 141 take AC=<,o feet, BD =BE=io feet, <9 = 6o°, ]

T^=io tons, and solve the preceding example graphically. ;

5. Fig. 142 represents a small dipper dredge, the side eleva-
j

tion (a) representing a position for filling the dipper, and theJ

Scale, ljn«20 ffe

Fig. 142. I

front elevation (6) a position for emptying. The boom swings ]

about a vertical axis at its lower end, a ratchet on the lower f

side of the dipper handle engages a pinion on the boom by
means of which the effective length of the handle can be changed, i

and the two back stays BC are fastened at points 10 feet apart, i

36 feet to the left of D. In (a) assume that the dipper is stuck, ;

the pull in the chain being 5000 lbs., and in (6) that the dipper \

load is 1000 lbs. Neglect the weights of all parts and deter-
^i

mine in each case the tensions in the stays AB and BC, the
j

compressions in the posts of the "A frame," the reaction at
j

the pivot at the base of the boom, and the pressure on the
;

ratchet. Solve graphically.

6. Fig. 143(a) represents a giant wharf-crane. The struc- \

ture consists of a rigid framework, T-shaped, and a rigid tripod, i
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The stem of the T stands within the tripod and rests against

the tripod head and on rollers at the base. Determine the reac-

tions at the base of the tripod legs, as far as possible, due to a

load P of 150 tons at the position shown in the figure. When
the cross-piece of the T is represented in plan by Aa, the short

arm being on the side A
,
what are the reactions ?

70^

Fig. 143.

7 . The crane of the preceding example is revolved by means

of a circular rack* on the tripod head and two pinions at oppo-
site ends of a diameter of the rack. It is estimated that when
the crane is being turned against a maximum resistance (due
to friction, inertia, and wind-pressure), the reaction on the rack

is a horizontal couple of 112,000 foot-pounds. The diameter

of the rack being 22 feet compute the^reactions at the base of

the tripod legs due to the reaction mentioned.

162. Miscellaneous.—The principles for the solution of the

following examples are given in art. 125. Similar examples
have been worked in the first part of this chapter, and the stu-

dent should have no difficulty in solving the following set.

EXAMPLES.

I. Fig. 144(a) represents a platform scale which consists

o£ a frame FF with five knife-edges, one at K^, two at K^, and
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two at Ky The platform rests on three levers which bear upon
the four knife-edges at K^ and K^. Xhe short levers are also sup-
ported by the long one at 5, and the long one is connected by

|«—
e—

^a>|<
—

Fig. 144(a).

a vertical rod to the "scale-beam" PK^. Determine the rela-

tion between the weight of the poise (P) and that of the body
(W) on the platform, and show that it is independent of the

position of the body.
2 . Assume that the steam-pressure P just balances the load

W on the hoisting-engine (fig. 144^). If P = iooo lbs. and the

angle BCA is 60°, compute the compression in the connecting-

rod, the pressure against the cross-head guide, the tangential

component of the crank-pin pressure, and W.

wQ w
Fig i44(&). Fig. 144(c)-

3. Fig. 144(0 represents a "crab hook." The lengths AB
and EC are 12 and 21 in. respectively, the angle ABC is 100°,

CD = 12", and BB' = ^ ft. Determine the stresses in CD and
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BB' if T1^=iooo lbs. and AA' = i2>'\ the weight of the parts

being neglected.

4. Fig. i44(c^) represents a simple elevator-car. What are

the pressures of the wheels on the rails due to the load VF?

Fig. i44(^. Fig. i44(^).

5. Fig. i44(^) represents a hand-press, consisting of a lever

ACP and two 'short links BC pinned to a cross-head at their

lower ends; AC=^BC=i$". Compute the pressure on the bale

in the press and the pin-pressures when AB = 2 ft., and the arm
of P with respect to ^ is 5 ft., P being 100 lbs.





KINEMATICS.

CHAPTER VII.

RECTILINEAR MOTION OF A PARTICLE.

§ I. Velocity and Acceleration.

163. Specification of Position.—The position of a point in a

given line can be specified by a single quantity, namely, the

abscissa of the point with respect to any other point in the line

assumed as "origin." Thus if the abscissas of points to the

right of the origin O (fig. 145) be given ^, ,

the plus sign and those of points to the -" •
:

^
left the minus sign, then P' is specified

^^^- ^45-

by the abscissa J inch and P" by —
J inch. Position abscissas

will be denoted by x.

164. Space-Time Curves.—A rectilinear motion of a point
can be well represented by means of a line called the space-time
curve for the motion. This is a line the ordinate and abscissa

to any point of which represent the position abscissa and corre-

sponding value of the time respect-

yj |\ ively. To construct this curve plot
/ }«?!

[

\ T corresponding values of x and the time

tj-^
j

\ along vertical and horizontal axes as

f|— \ shown in fig. 146, and join all such

plotted points; the connecting line is

Fig. 146. \;\^Q space-time curve.

Evidently the space-time curve for a motion gives the posi-

tion of the moving point at each instant, and it is therefore a

complete record of the niotion.

165. Displacement.
—If x^ denotes the abscissa of a moving

point at the instant
t^, and x^ that at a later instant

t^,
then the

167
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displacement for the interval
t^
—

t^
is defined as x^—x^ Evi-

dently a displacement {x^
—x^ may* be positive or negative;

hence, two displacements must agree in sign as well as in mag-
nitude to be equal.

166. Kinds of Rectilinear Motion.—If the displacements of

a point in equal intervals of time (large or small) are equal, the

motion is called uniform; and if the displacements are not equal,

the motion is called non-uniform. Non-uniform motions are

further classified as explained in art. 172.

The space-time curve for a uniform motion is obviously an

inclined straight line, and the space-time curve for a non-uni-

form motion is a curved line.

QUESTIONS.
'

I. What is the difference between the motions represented
in fig. 147 (a) and (6)?

2. What can you tell of the motion whose space-time curve

is that in fig. i47(0?

3. Are horizontal and vertical space-time curves possible?

167. Velocity.
—The velocity of a moving point is the rate

with respect to time at which it changes position, or at which

its displacement occurs. Still otherwise stated, it is the time-

rate of (change of) the position abscissa of the moving point.

Let X and t denote position abscissa and time respectively;

then, as shown in works on calculus (and in Appendix B), the

time-rate of ^ is (i:^/(ir, hence, if ^' denotes velocity,

v= dx/dt. , (i)

This gives the value of z; at any instant t\ its value at a particu-

lar instant equals the value of dx/dt for that instant.

If the motion is uniform^ x changes uniformly, and the time-
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rate of x is Ax/At, Ax denoting the displacement which occurs

in any interval At. Hence

v = ix/Jt, (2)

and plainly the velocity is constant.

Since Ax/At is the average time-rate of the displacement,

equation (2) gives also the average velocity when applied to

non-uniform motions. •

Since the space-time curve is the "locus" or "graph" of the

equation between x and t, dx/dt is the general expression for the

slope or gradient of that curve. Hence the velocity correspond-

ing to any point on a space-time curve is represented by the

slope of the curve at that point. We say "is represented by"
instead of equals, because, while the velocity at a certain instant

is definite, the slope depends on the scale used in plotting the

space-time curve. The slopes must therefore be interpreted by
scale or be computed in a certain way, as explained in ex. i,

art. 169.

168. Unit Velocity.
—The expressions for velocity in eqs. (i)

and (2) of the preceding article imply a certain unit of velocity,

namely, the velocity of a point moving uniformly and so that

it describes unit distance in unit time. Specific units of velocity
are one foot-per-second, one mile-per-hour, etc. There are no
short names for these units except for the nautical mile-per-

hour, which is called a knot.

The term per is conveniently replaced by the solidus, /; foot-

per-second, mile-per-hour, etc., are abbreviated thus: ft./sec,

mi./hr., etc.*

169. Sign of a Velocity.
—The expressions dx/dt and Ax/At

may be positive or negative; therefore v must be regarded as

having the same sign as that of dx/dt or Ax/At (see eqs. (i) and

(2), art. 167). When the point is moving in the positive direc-

tion, dx/dt and Ax/At are positive, and when it is moving in the

negative direction they are negative (see fig. 147); hence

the sign of the velocity of a moving point at any instant is

the same as that of the direction in which it is then moving.

* For dimensions of a unit velocity see Appendix C.
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EXAMPLES.

1. What is the velocity when ^ = 2f6ecs. in the motion whose

space-time curve is shown in fig. 148?

Solution : We find first the point P of the curve correspond-

ing to ^ = 2 sees., and then draw a tangent

yj^
to the curve at that point. Next we take

/
j

any point Q in the tangent line, and from

/
I

it draw a perpendicular to the horizontal

p>^____^tv^,^ through P. Then we measure by scale

^\
^

^^ the lines QR and PR, and take their ratio

as measured. We find that QR = s$ ft.

X scale :iin.=6o ft. ^nd PR = 4 sccs.
; hence

Tecale-.lin.-SBec.

Fig. 148. ^' = 3 5/4 = 8-1 ft.-per-sec.

2. A point moves so that x = ct^, c being a constant. Show
that its velocity at any time t is sct^.

3. Let c in the preceding ex. be lo, x being in ft. and / in

sees. When / = 3 sees., where in its path is the moving point,

and what is its velocity? Ans. '^ = 270 ft./sec.

4. A point moves so that x = ioot, x and t being in ft. and

sees, respectively. What is its velocity?

Solution: Here x varies uniformly; hence v = Jx/Jt. From
the law of the motion, J^ = iooJ^, or z; = ioo ft./sec. (Can the

value of V be deduced from eq. (i), art. 167?)

5. A body falls in a vacuum according to the relation x =
16. 1/2, X and / being in ft. and sees, respectively. What is the

formula for the velocity ?

6. Draw a space-time curve for the motion of a falling body.

7. A point moves so that x = iot — t^, x and / being in ft. and

sees, respectively. What is its velocity when t = 6 sees.?

8. A point moves so that ^ = ccos {kt), c and k being con-

stants. Deduce an expression for its velocity at any time /.

Also let c=2, k = $, and x, t, and kt be in ft., sees., and radians

respectively; compute the vel(5city when t = 4 sees,

9. A sprint of 100 yards being accomplished in 10 sees., what

was the sprinter's average velocity in ft.-per-sec. ? In mi.-

per-hr.?
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10. In a certain motion v = ^f, v and t being expressed in

ft.-per-sec. and sees, respectively. Determine the displacement
in the interval from the second to the fourth sec.

Solution: Since v = ^t^
=
dx/dt,

dx = 7,Pdt, or x= t^ + C,

C being a constant of integration whose value depends on the

mode of reckoning x and t, not specified.* Let x^ and x^ denote

the values of x when t = 2 and 4 sees, respectively; then

x^
= A^ + C = 6^ + C, and x^

= 2'' + C=^^+C,
Hence rc^

-
^2
= 64 — 8 = 56 ft.

Instead of introducing a constant of integration we might

integrate between limits; thus, from dx = $t^dt,

£yx=^sfU^dt,
or ^4-^2 =

3[y]]
= 56ft.

11. In a certain motion 2; = 3/^ + 4, v and / being expressed
in ft.-per-sec. and sees, respectively. If the moving particle is

6 ft. to the right of the origin at the instant from which t is

reckoned, determine the position at any time t and draw the

space-time curve for the motion.

170. Velocity-Time Curve.—The way in which the velocity of

a moving point changes with respect to time can be represented

graphically by a line called the velocity-time curve for the motion.

This is a line the ordinate and abscissa of any point of which

represent the velocity and the corresponding value of the time

respectively.

To construct this curve plot corresponding values of velocity

(v) and time (t) along vertical and horizontal axes respect-

* N'ote on the Determination of Constants of Integration.
—The student

is reminded that to determine a constant of integration he has only to

substitute for the variables in an equation containing the constant any
simultaneous values of them and then solve for -the constant. Thus in

the case above, suppose it had been stated that x is measured from the

place occupied by the moving particle at the instant from which / is

reckoned; then when t was zero x was also zero, i.e., simultaneous values

of X and t ^re x=o and t=o. These substituted in the equation con-

taining C make it

o=o'4-C; hence C =0.
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ively, as shown in fig. 149, and join all such plotted points.

The connecting line is the velocity-time curve.

171. Velocity Increment.—If 7;i*denotes the velocity of a

point at an instant t^, and v^ that at a

later instant t^, then v^
—

v^ (not v^—v^) is

the velocity increment for the interval

/j
—

^1- Evidently a velocity increment

maybe positive or negative; hence, two

velocity increments must agree in sign
^^^- ^49- as well as in magnitude to be equal.

172. Kinds of Non-Uniform Motion.—A non-uniform motion
whose velocity increments for equal intervals (large or small)
are equal is called uniformly varying; one whose velocity incre-

ments are unequal is called non-uniformly varying.

Evidently the velocity-time curve for a uniformly varying

(6)

Fig. 150.

motion is a straight line (fig. 150 a and b) and that for a non-

uniformly varying one is a curved line (fig. 150c).

QUESTIONS.

1. What is the difference in the motions whose velocity-

time curves are shown in fig. 150 (a) and (6)?

2. What can you say of the motion whose velocity-time

curve is shown in fig. 150(c)?

3. Are horizontal or vertical velocity-time curves possible?

173. Acceleration.—By acceleration of a moving point is

meant the rate at which its velocity changes with respect to

time, or simply the time-rate of (change of) its velocity.

Let V and t denote velocity and time respectively; then, as

shown in works on calculus (and in Appendix B), the time-rate

of V is dv/dt\ hence if a denotes acceleration,

a=dv/dt-dVdt' (i)
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Equation (i) gives the value of a at any instant t\ its value at

a particular instant equals the value of dv/dt or dH/df for that

instant.

// the motion is uniformly varying, v changes uniformly and

the time-rate of v is Jv/Jt, Jv denoting the velocity increment

for any interval Jt. Hence in this case *

a= iv/it, . (2)

and plainly the acceleration is constant.

Since Jv/Jt is the average time-rate of the velocity, equa-

tion (2) gives also the average acceleration when applied to

;

non-uniform motions non-uniformly varying.

Since the velocity-time curve is the locus or graph of the

equation between v and /, dv/dt is the general expression for

i the slope or gradient of that curve. Hence the acceleration

corresponding to any point on a velocity-time curve is repre-

sented by the slope of the curve at that point. The slopes

must be interpreted by a scale, or be computed in a certain way
as explained in ex. i, art. 175.

174. Unit Acceleration.—The expressions for acceleration in

eqs. (i) and (2) art. 173 imply a certain unit of acceleration,

I namely, the acceleration of a point whose velocity varies uni-

; formly and so that it changes by a unit in each unit time.

Specific units of acceleration are

one knot-per-hour (one nautical mile-per-hour-per-hour)
one foot-per-second-per-second, etc.

Abbreviating the term per as before, the above-named units are

written thus: knot/hr. (mi./hr./hr.), ft./sec./sec; or still more

briefly, mi./hr^, ft. /sec.
^ *

- 175* Sign of an Acceleration.—The expressions dv/dt and

Av/At may be positive or negative; therefore a must be regarded
as having the same sign as that of dv/dt or Av/At (see eqs. (i)

and (2), art. 173). Now when the velocity increases alge-

braically, dv/dt and Av/At are positive, and when it decreases

algebraically, dv/dt and Av/At are negative (see fig. 150c);

hence

* For dimensions of a unit acceleration see Appendix C.
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the sign of the acceleration of a point at any in-

stant is positive or negative^ according as the ve-

locity is then increasing or decreasing (algebraically).

EXAMPLES. * \

I. What is the acceleration when / = 3 sees, in the motion \

whose velocity-time curve is represented in fig. 151?

^ Solution: First we find the point I

^^.^^'^] P on the curve corresponding to ^ = 3 '\

^^"^^ sees., and then draw a tangent to the i

^,^.^f\^^<C
' curve at that point. Next we take

\

/
I \^^ any point Q on the tangent and draw

i

!
\ I from it a perpendicular to the hori-

\

V scale: 1 in.»i6 ft. per sec.
zontal line through p. Then we meas-

T scale: iin.=8 sec. urc by scale the lines QR and PR and ^

^^^' ^51- take their ratio as so measured. We
:

find that QR = 7 ft.-per-sec. and PR = 8 sees.
;
hence

j

= 7/8 = 0.875 ft.-per-sec.-per-sec. i

2. In a certain experiment on "getting up speed" of electric ^

trains the speeds recorded at 5-minute intervals were as follows :

'

o, 19, 30, 35, 38, and 40.5 mi.-per-hr. Draw the velocity-time \

curve for the motion and determine the accelerations at the
^

beginning and end of the period. \

3. The motion of a point being according to the equation i

x— ct^^ c being a constant, show that the acceleration equals tct.
\

4. Let c in the preceding example be 10, ric: being in ft. and / i

in sees. What is the value of the acceleration when ^ = 3 sees.? I

5. A point moves so that z; = 50/, v and t being in ft.-per-sec. j

and sees, respectively. What is its acceleration?

Solution: Since v varies uniformly, a = Av/At. From the
j

law of the motion Av = 50J/; hence = 50 ft.-per-sec.^ (Can the )

value of a be deduced from eq. (i ) ,
art. 1 73 ?) \

6. A body falls in a vacuum according to the law x=i6.it^, \

X and t being in feet and seconds respectively. What is the
j

value of the acceleration? i
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7. Draw a velocity-time curve for a body falling in vacuum,
and compare with the curve drawn in your solution of ex. 6,

art. 169.

8. A point moves so that x=i.ot—t'^, x and t being in ft.

and sees, respectively. What is its acceleration when 1 = 6

sees. ?

9. A point moves so that x= ccos (kt), c and k being con-

stants. Deduce an expression for its acceleration at any time /.

Also let r=2, ^ = 3, and x, t, and kt be in ft., sees., and radians

respectively; compute the acceleration when ^ = 4 sees.

10. The "acceleration due to gravity" is about 32.2 ft.-per-

sec.-per-sec. Express the same in yard-minute units.

11. The law of a motion is a=iot (ft .-sec. units), and the

velocity is 10 ft.-per-sec. when / is 4 sees. Determine the veloc-

ity at any instant.

Solution : Since a = dv/dt
— lot^dv^iotdt,

and v=ioJt dt = $t^ + C,

Now 7; = 10 and / = 4 being simultaneous values of v and /, they

satisfy the last equation; hence

10 = 5X4^ + ^, or C*=~7o,
and v = $i^

—
'jo.

12. If the law of a motion is a= 10/ + 5 (ft.-sec. units) and x,

V, and / are simultaneously zero, determine the values of v and x

at any time.

176. "Acceleration-Time" and Other Curves.—If simulta-

neous values of the acceleration and the time of a motion be

plotted on two rectangular axes, then all such plotted points
determine a curve called the acceleration-time curve for the

motion. Evidently it is a graphical representation of the way
in which the acceleration varies with the time.

Other curves descriptive of a motion can be drawn. Thus
values of the velocity {v) and the position-abscissa (x) of a

moving point if plotted make a
"
velocity-space curve," and

values of a and x if plotted make an "acceleration-space
. curve."



176 RECTILINEAR MOTION OF A PARTICLE. [Chap. VII^

§ II. Important Special Motions.

177. Uniform Motion.—The velocity is constant, and there-^

fore the acceleration is zero and the displacement (^2~'^i) ^
any interval (^2

—
^1) given by

V denoting the velocity. \

178. Uniformly Accelerated Motion.—^The acceleration
isj

constant, and the velocity increment {v^—v^ in any interval

(^2-^1) is given by

(^2-^i)=cf(i2-y. (i|

a denoting the acceleration. According to this equation thd

velocity varies uniformly; hence the average velocity for thd

interval {t^
—
t^ is i(^2+ ^i), ^^^ "^^^ displacement {oc^—x^ in thd

interval is given by , \

(^-^i)=ife+ ^i)fe-^i) •

(2^

Let Xq, Vq, and be simultaneous values of x, v, and t. Since i

a = dv/dt, dv = adt, or v==at+ Cj^. j

Substituting simultaneous values of v and / in the last equation,!

we find that Ci = Vq] hence
I

I

v = at+VQ (3)1

Since v= dx/dt, dx= at dt+v^dt; and hence
j

x==iat^+VQt + C2. ^ ;

Substituting simultaneous values of x and / in the last equation^
we find that Cz^Xq; hence ^

x==iat^+VQt+XQ. ....... (4)1

EXAMPLES.
]

A body moving near the earth under the influence of its!

attraction would have a constant acceleration were it not for^

air resistance. In the following examples neglect this resist*

ance and denote the acceleration by g and the distance (meas-]
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ured positively downward) of the moving body from the start-

ing-point by X.

I. If a body falls from rest, show that

v= gi, x==^gi^, and v^= 2gx.

I 2. If a body is projected down with a velocity v^^ show that

I
v = gt + VQ, x^lgf^ + v^t, and v^ = 2gx+VQ^.

3. If a body is projected up with a velocity z'q, show that

[
v = gt-VQ, x = }gP-VQt, and v^ = 2gx+ v,\

^ 179. Simple Harmonic Motion.—This may be defined as a

rectilinear motion in which the acceleration of the moving point
is proportional to its distance from an origin in the path and is

always directed from the point to the origin. It may also be

defined thus : If a point travels in a circle describing equal dis-

tances in all equal intervals of time, then thje motion of the pro-

jection of the point on any diameter of the circle is a simple har-

monic one. We will choose the latter definition and show in the

sequel that it is in accord with the former.

Imagine P (fig. 152a) to start from Pq and move uniformly
in the circle in the counter-clockwise direction. The motion of

the projection of P on O^F is harmonic and will now be discussed.

Let £ denote the angle XO^Pq, the lead (fag if negative);

id+e)
" " "

XO^P, the pftase angle at timet;

y
** "

ordinate O^ ,
tht displacement;

T ** **
time of one revolution of P, the period;

n " " number of revolutions per unit time, the fre-

quency;
r

" "
radius of the circle, the amplitude;

V
** "

velocity of the projection (F) of P;
t

" **
time elapsed after starting.

If 6 is expressed in radians, it is plain that

27T

6'^^t='27rnt
=

wt,

CD being an abbreviation for 27r/T and 2;rw; oj may be defined
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also as the angle described by O^P per unit time. From the hg-
ure it will be seen that

y= r sin {cot + s:), (i)

and since v = dy/dt,

v = ojr cos {wt+ e)
= (jjr sin (a>^+e + 7r/2)

= cox =^
w{r'^

—
y^)^ .

Since a = dv/dt,

}•

a= — co\ sin {cot -{£)
= co^r sin {cot

= —
co'^y.

+ £ + 7r)
)

(2)

(3)

Equation {i) is represented in fig. 152(6). The curve is a
5

sinusoid, and since the ordinates and abscissas denote "dis-
\

placement" and time respectively, it is a displacement-time,
or a space-time curve. The curve may be constructed as fol- \

lows: Having drawn the "circle of reference" (fig. 152a) and
|

having fixed the initial position of P, divide the circumference \

into a number of equal parts (16 is convenient) beginning with i

pQ, and number that point o and the others successively in the
j

I
I
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direction of the motion of P, i, 2, etc., 16 coinciding with o.

Then on the t axis
(fig. 1526) lay off any convenient length to

represent the period, divide it in 16 equal parts, and erect ordi-

nates at the points of division. Number these beginning with

O'y, o, I, 2, 3, etc., the last being 16. Then project points o,

1
, 2, etc., of the circumference of the circle upon the correspond-

ing ordinates. The curve through the projections is the dis-

placement-time curve.

Equations {2) are represented in fig. 152 {c) and (J), {c) rep-

resenting v = cox and {d) the other one. The equation v = ajx

shows that the velocity at any displacement y equals co times

the corresponding value of x. Hence to construct the curve in

{c) lay off O2V equal to O^V in (a) and make Vv equal to loO^H^

laying it off up or down according as O^H {x) is positive or nega-
tive. Repeat this construction for several positions of P and

thus determine the curve.

The curve in {d) is the velocity-time curve for the harmonic

motion and may be constructed in various ways: for instance,

lay off 0"i6 to represent the period, divide it into sixteen equal

parts, and number the points of division beginning with 0", o,

1,2, etc. At these points erect values of the velocity which may
be obtained from {c) by obvious methods.

It is worth noting that the eq\xait\on v = ojr sin {ojt + s -\- n/2)
is very similar to y=r sin {iijt-\-s), v,. cor, and e-|-;r/2 in the first

replacing y, r, and s in the second. Hence the variation in v

is simply harmonic and can be represented by a harmonic motion
whose period, phase, and amplitude are respectively equal to,

90° ahead of, and oj times the period, phase, and amplitude of

the given motion. .

, Since (b) and (d) are y-t and v-t curves respectively and
v = dy/dt, any ordinate in the latter figure should be equal (by

scale) to the slope of the tangent to the curve in the former at

the corresponding point. Thus the ordinate Vv in (d) should

equal the slope of the tangent at V in (b).

Equations (j) are represented in fig. 152 (e) and (/), (e) rep-

resenting a= —co^y and (/) the other one. Equation a= —co^y
shows that the acceleration is proportional to the displacement

(y) and that it is always opposite to the displacement in sign, i.e.,
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it is always directed from the moving point toward the middle

of the path. Hence the two definitions of simple harmonic
motion previously given agree. .

To construct the curve in [e), lay off O^V equal to y and make
Va equal to (j?y, laying it off down or up according as y is posi-

tive or negative. Repeat this construction for a number of

positions of P and thus determine the line O^a.

The curve in (/) is the acceleration-time curve for the har-

monic motion and may be constructed in various ways: For

instance, lay off 0"'i() to represent the period, divide it into i6

equal parts, and number the points of division, beginning with

0"'y o, I, 2, etc. At these points draw ordinates to represent
the corresponding values of the acceleration which may be ob-

tained from {e) by obvious methods.

The equation a = aPrsin {iDt-\-s,-\-7i) is the same in form as

y= r?,m {cot + s), a, aPr, and (s + tt) in the first replacing y, r,

and £ in the second. Hence the variation of a is analogous to

that of y\ in fact the variation in a is simply harmonic and

it can be represented by a harmonic motion whose period,

phase, and amplitude are respectively equal to, t8o° ahead of,

and 0/ times the period, phase ,
and amplitude of the given motion.

Since {d) and (/) are v-t and a-t curves respectively and

a = dv/dty any ordinate in the latter figure equals (by scale) the

slope of the tangent to the curve in the former at the corre-

sponding point. Thus the ordinate Va in (/) equals the slope

of the tangent at v in (J).

180. Mechanism for Producing a Simple
J L Harmonic Motion.—The mechanism repre-

sented in fig. 153 consists of a crank and a

slotted slider, the pin of the crank fitting

the slot of the slider. As the crank is

rotated the slider moves up or down, and

plainly if the crank rotates uniformly every

point of the slider executes a simple har-

monic motion. '

„ The space-time curve for the motion of

the slotted slider can be automatically

drawn as follows: Fasten a pencil to the slider so that it will

I ^

V
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mark on a plane surface as the slider moves, and then cause a

sheet of paper to move uniformly over the surface in a direction

at right angles to that of the motion of the pencil; the line

traced on the paper is the space-time curve. If the mechanism

for moving the paper is connected with the crank-shaft, then

the curve traced by the pencil is a space-time curve for a har-

monic motion whether the mechanism is driven uniformly or

not.

i8i. Motion of the Piston of a Steam-engine.
—Let OP (fig.

154) represent the crank and the connecting-rod of a steam-

engine slider-crank mechanism, and suppose
that the crank turns uniformly.

Let n denote number of revolutions of the

crank per unit time
;

c
"

length of crank
;

r
" '* "

connecting-rod;

y
"

the distance of C from
;

t
** "

time required to describe

the angle PoOP.

Then d = 2nnt = ojt, co being an abbreviation

for 27rw, and

y= {r^
— c^ cos^ ajt)i + c sin cot (i)

Hence the velocity of the piston is

dy
dt'

ecu I cos ajt +
sm 2 cot

2(r^/c^
— cos^ cot)i

and its acceleration is

d^y

df
= —CCO'' I sin Cb / +

cos^ (xjt
—

{r^Ic^') cos 2(xji

(7-2/^2 -COS^O^O^

(2)

(3)

Close approximate values of the velocity and acceleration can

be found as follows : Since approximately

^(i-pcos^o^^j =r^i_l_cos2c^^j,

^=
('--?.)- 4r

sin (2a>/ + ;r/2) +^ sin wt^ very nearly. (4)
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Hence, approximately, the velocity of the piston is

dy~ =
ca^cos ojt — {c/2r) Q,os{2(ijt-\-7:/2)\^ , . . (5)

and the acceleration is

--7^=
—cco^ [sin wt— (^c/r) sin {2a)t-\- 71/2)], , . (6)

If the connecting-rod were infinitely long, c/r would be zero

and the second term of eq. (3) would vanish; hence the motion

of the piston would be simply harmonic. The smaller the ratio

c/r the more nearly is the motion of an actual mechanism sim-

ply harmonic.

EXAMPLE.

Take r/c equal to four and compute the values of the accel-

eration in terms of co? from equations (3) and (6), when d= o°,

±30°, ±60°, and ±90° (see fig. 154). Plot these values on the

same base, draw the a-6 curves and compare. Draw also on

the same base the curve a= — cap' sin ix)t.



CHAPTER VIII.

CURVILINEAR MOTION.

§ I. Velocity and Acceleration.

182. Specification of Position.—It is usually convenient here-

in to specify the position of a point in space by Cartesian coor-

dinates, but for the purpose of this section it is more convenient

to specify position by means of a vector. The vector drawn
from a fixed origin of reference to the point to be located is called

the position-vector of the point. For, if the vector is known the

position of the point with reference

to the origin is also known. Thus,
the direction of the vector OP (fig.

155) fixes the direction of P from the

origin O, the length of the vector fixes

the distance of P from O, and thus the ^ ^
position of P is determined.

The position of a point in a given
^^^- ^55-

line can be specified by a single quantity : Thus if A is an origin
of reference in the line AP, the ab^issa s measured from A along
the line fixes P, it being understood that 5 is positive for points
on one side of A and negative for those on the other.

183. Space-Time Curve.—A curvilinear motion can be rep-
resented in part by means of a line, the space-time curve for the

motion. The ordinate and abscissa of each point of it repre-
sent respectively simultaneous values of the position abscissa 5

of the moving point and of the time t. It is analogous to the

space-time curve for a rectilinear motion (art. 164) and is simi-

larly constructed.

This curve must not be confounded with the path; the latter

may be tortuous, but the former is always a plane curve.

184. Displacement.
—The displacement of a point during an

interval in which it moves from A to B is defined to be the vec-

183
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tor AB, The term therefore does not refer to the path actually

described between A and B, but simply to the straight path
between A and B. Observe that if O is any point of reference,

vectorially

AB =OB-OA.

Two displacements must agree in direction as well as in magni-
tude in order to be equal.

185. Kinds of Motion.—The definitions under this title given
in art. 166 refer to rectilinear motion

; those following are general.

If the displacements of a moving point in equal intervals of

time (large or small) are equal, its motion is called uniform; and
if unequal, the motion is called non-uniform.

In order that all displacements may be equal, the path must
be straight; hence a uniform motion as here defined must be

rectilinear.

186. Velocity.
—By velocity of a point is meant the rate with

respect to time at which it changes position or at which its dis-

placement occurs. Still otherwise stated, velocity is the time-

rate (of change) of its position-vector.

Let P(fig. 1 56) be a point moving in the path APB, and O
and 0' points of reference

;
then OP is the

position-vector of P, and 5 its position-ab-

scissa. Now in general the rate of the vec-

tor OP, i.e., the velocity, changes with the

time as shown in Appendix B
,
and when the

moving point is at P the rate is a vector

whose direction is that of the tangent at P,

whose magnitude equals the time-rate of

(change of) s.

If the magnitude of the velocity* be denoted by v, then

v = ds/dt;
^

. . (i)

and if s varies uniformly, ds/dt is constant and

v = is/Jt (2)

* The word "speed" has been set apart by several recent writers to

denote magnitude of a velocity. Such usage is very convenient and will

be followed herein.
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Observe that our definitions lead to the result that the veloC'

ity in a curvilinear motion cannot be constant, for although its

magnitude might be constant its direction continually changes.
This result is in accord with the definitions of uniform and non-

uniform motion (art. 185).

EXAMPLE.

The point P (fig. 157) describes the circle in such a way that

s = 2t'^, s and t being in ft. and sees, respect-

ively, (a) Deduce an expression for the

speed at any time t. (6) What are the

magnitude and direction of the velocity

when t = 2 sees.?

Solution: (a) Since the speed {v)

equals ds/dt, from the equation of the

motion, v = 6t'^. Fig. 157.

187. Speed-Time Curve and Hodograph.
—The way in which

the speed of a moving point varies can be represented by a line

called the speed-time curve for the motion. The ordinate and

abscissa of each point of it represent simultaneous values of the

speed and the time respectively. It is analogous to the veloc-

ity-time curve for a rectilinear motion (art. 170) and is similarly

constructed.

If from any point vectors be drawn which represent the

velocities of a moving point and the free ends of all such vectors

be joined, the joining line is called the hodograph for the motion.

Thus let Pi, P4 (fig. 158) be the path of a moving point, and let

its velocities at the points Pj, Pj, etc., be as represented by
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Pi^i, ^2^2» etc. The hodograph is P,!P^', O'P^ being equal and

parallel to P^v^, O'P^ parallel and equ^l to P^v^, etc.

A hodograph may be plane or tortuous, but a speed-time
curve is always plane. The latter curve corresponding to fig.

158 (a) and (6) is shown at (c).

EXAMPLES.

1. Suppose that P (fig. 157) describes the circle with a con-
stant speed of 10 ft.-per-sec. Draw a hodograph and a speed-
time curve for the motion from A to B.

2. Draw a hodograph and a speed-time curve for a motion
from A to B (fig. 157) according to the law stated in the ex. of

art. 186, determining at least four points on the hodograph.
188. Acceleration.—By acceleration of a point is meant the

time-rate (of change) of its velocity.
In deducing the expression for this rate it must be remem-

bered that velocity is a vector

quantity. According to Appen-
dix B the rate is a vector, and if

A'P' (fig. 159) is a hodograph
and O'P' represents the velocity
at any instant t, then the accel-

^^^- ^ 59- eration at that instant is a vector

whose direction is that of the tangent to the hodograph at P',

whose magnitude is the time-rate of 5',

5' being the distance of P' from any fixed point on the hodo-

graph as origin.*

If a be used to denote the magnitude of the acceleration,

a= dsVdt; (i)

and if a varies uniformly,

a= JsV^t (2)

Observe carefully that the tangents to the hodograph and to

the path at corresponding points P and P' are not parallel or in

* As explained in the appendix referred to, the fixed point A' from

which s' is measured is to be taken so that P' moves in the positive 5'

direction and the arrow on the tangent (giving the sense of the vector)

points in the same direction.
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any way related as to direction, but the vector representing the

acceleration always points from P toward the side of the tan-

gent on which the path lies.

EXAMPLE.

I. What is the acceleration of a point describing a circle of

radius r with constant speed vt

Solution: Let AB (fig. 160) be the circular path and P the

position of the moving point at any instant. When P is dX A

Fig. 160.

the velocity is represented by the vector 0'A\ when at P by 0'P\
when at B by O'B'

,
etc. Hence the hodograph is the circular

arc A'P'B', its radius being v. Now the angles PGA and P'O'A'

are equal, and since the former equals s/r and the latter s'/Vy

Hence

s/r = s'/Vy or s'^sv/r.

ds'/dt
= {ds/dt)v/r=vyr.

a = v^/r.

Since ds'ldt
= a^

The direction of the acceleration of P is that of the tangent
to the hodograph at P' . Since this tangent is parallel to the

normal to the path at P,

the acceleration of a point describing a circle with

constant speed is directed along the radius of the

circle drawn to the moving point, and its value

equals the speed squared divided by the length of

the radius.
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§ II. Resolutions of Velocities and Accelerations.

189. Components and Resultant of Velocities or Accelerations

Defined.—Velocities and accelerations are, as defined in arts.

186 and 188, vector quantities; they may therefore be resolved

and compounded. The velocity (or acceleration) represented

by the sum of the vectors representing any number of velocities

(or accelerations) is called the resultant of those velocities (or

accelerations). The velocities (or accelerations) represented by
the components of a vector representing any velocity (or accel-

eration) are called the components of that velocity (or accelera-

tion) .

*

190. Axial Components of a Velocity.
—These components are

parallel to three rectangular axes
(it, y, and 2), and will be de-

noted by Vx, Vy, and Vg respectively.

Let V denote a velocity, its direction angles with the x, y,

and z axes being a, /5,
and y respectively. Then the x, y,

and z components equal respectively v cos a, v cos /?,
and v cos y.

Since v = ds/dt, cos a=dx/ds, cos l^
= dy/ds, and cos y = dz/ds,

Vx = dx/dt, Vj,
=
dy/dt, v. = dz/dt. . . . (i)

These equations show that the x, y, and z velocity components
of a moving point are respectively the time-rates at which its

distances from the yz, zx, and xy planes change, and that they

-equal respectively the velocities of the projections of the moving

point on the axes x, y, and z.

191. Tangential and Normal Components of Velocity.
—These

•components are parallel to the tangent and normal to the path
at the point where the velocity is resolved. They will be de-

noted by Vf. and Vn respectively. Since the velocity at any point

in the path is directed along the tangent to the path at that

point,

Yt
= v and v„ = o. ..... (i)

192. Axial Components of Acceleration.—These components
are parallel to three coordinate axes (x, y, and z) ,

and will be de-

noted by a^, ay, and a^ respectively. For simplicity, the deduc-

tion of the expressions for the components is limited to the case
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of plane paths with the coordinate axes in the plane of the path,
but the discussion can be extended to the general case (resolu-

tion of the acceleration of a point along three axes, the path

being tortuous).
Let PQ (fig. 161) be the path of a moving point and P'Q' the

hodograph of the motion, P and P' being any two corresponding

(a) (6)

Fig. 161.

points on the path and hodograph respectively. Also let v and
a denote the magnitude of the velocity at P and its angle with

the X axis respectively. Then the polar coordinates of P' are

V and a, and its rectangular coordinates are v cos a and v sin a,

or Vx and Vy', hence the coordinate axes in fig. 161(6) are marked

O'V^ and O'Vy instead of OX and OY.
As shown in art. 188, the acceleration at P is directed along

the tangent to the hodograph at P'\ hence P'a may represent

the acceleration. Now if a, a^, and ay denote the acceleration

and its x and y components respectively, it follows from the

figure that

ar, = a cos a' and a sm a'

and from the analogy between the two parts of the figure,

cos a^ = dvx/ds^ and sin a' = dvy/ds\

ds' being the length of the infinitesimal arc on the hodograph at

P'. Also, from art. 188, a = ds'/dt\ hence

a^ = {ds'/dt){dv^/ds') =dvjdt,

and ay
=

(ds'/dt) {dvy/ds')
=

dvy/dt.

In the general case (resolution into three components) it can be



ipo CURyiLlhlEAR MOTION. [Chap. VIII.
|

shown that the z component of the acceleration (a^) equals i

dvz/dt\ hence ^ j

ax = dVx/dt= dVdt^
)

\

aj,
=

dvj,/dt
= dVdt'; V (i) i

' a, = dv,/dt = dVdtl ) .
\

The equations state that the x, y, and z components of the«;

acceleration of a moving point P equal the time-rates of the
|

X, y, and z components of its velocity; also that they equal j

the accelerations of the projections of the point on the x, y^ \

and z axes respectively. ^
j

193. Tangential and Normal Components of Acceleration.—
\

These are components whose directions are parallel to the '\

tangent and normal to the path at the point where the accel- i

eration is resolved; they will be denoted by a^ and a„ re- \

spectively. For simplicity, the deduction below is limited

to the case of a plane path, but it i

might be extended to the general i

case. Let a denote the acceleration
;

of a moving point when it arrives at 1

P (fig. 162). Since the values of the i

tangential and normal components ]

^^^' ^^^- of the acceleration are independent '

of the axes of reference,* these may be chosen parallel to the
\

tangent and normal at P. This is done solely for simplicity in
;

the deduction of the values of at and a^. With axes thus chosen, ]

it is plain that the tangential and x components and the normal •

and y components are equal, or \

at
=

aj,
=

dv:,/dt, an=ay=d^y/dt^. ]

Also d^y/dt^
=

{d^y/dx^){dxydt^) ={d^y/dx^)v^^; and d^y/dx^
\

equals the curvature of the path at P. Denoting the radius of
j

curvature at P by p, and since Vx = Vt
=

v, 1

a,
= dv/dt = dVdt', and a„=vV^. . . . (i)

* This independence may be explained thus: From fig. 161 it is plain

that at = a cos (a
—

a') and an=a sin (a
—

a'). Now both a and (a
—

a')

are independent of the coordinate axes and hence at and an are also.
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These equations state that the tangential and normal accelera-

tions at P (any point in the path) equal respectively the time-

rate (of change) of the speed at P and the square of the speed
divided by the radius of curvature at P,

If the moving point travels in a circle of radius r and with

a constant speed v, then dv/dt = o and

vVr. (2)

EXAMPLES.

I. A point P (fig. 163a) starts from a point X and moves in

a circle of 20 ft. radius and so that the distance described (in

feet) equals twice the cube of the time (in seconds) after start-

er)

Fig. 163.

ing. Compute the value of v, v^, v^, v^, Vy, a, a^, a„, a^^, and a^,

I- when t
= 2 sees.

I Solution: From the equation of motion, 5 = 2/';

^
.'.ds/dt

= 6t^ = v, dh/dt^=i2t = at; also, an = s6t*/20,

i Hence, when t= 2 sees.,

1; = 24 ft./sec, 2;/
= 24 ft. /sec, Vn = o,

I a^
= 24 ft./sec.2, and a„ = 28.8 ft./sec^.

Since ^=20 cos d and y=2o sin d,

dx/dt = - 20 sin (9 dd/dt = v^,, dy/dt = 20 cos d dd/dt=-Vy,
dH/dt''^ -20 sin d d''d/dt''-2o{dd/dtY cos ^ = a^,

and

d'^y/dt''
= 20 cos 6 d^'O/df

-
2o{dd/dty sin 6 = ay.

Since d = s/2o = o.it^, d6/dt = o.;^t^, and d^d/dt^ = o.6t. By means
of these values and the expressions for Vx,Vy, a^, and Gy, we find

that when / = 2 sees..
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Vx= —11.21 and Vy= 16.7 ft./sec,

<^x=— 37-2 and a2,= -*-.3.9 ft./sec.^.

The determination of the magnitude and direction of a is left to

the student; he should also plot to scale, in the figure, all the

computed values.

2. Discuss the motion of the centre of gravity of a projectile

neglecting the resistance of the air if the velocity and angle of

projection are v' and e respectively (see fig. 1636).

Solution: It is shown in art. 240 that the acceleration of the

centre of gravity at each instant is just like that of a freely fall-

ing body, i.e., equal to g and vertically downward; hence

a^ = o and ay=-g (i)

Since d'^x/dt'^
= o,Vx = C^ and x = C^t-]rC2, C^ and C^ being con-

stants of integration. Since i'^ is constant during the entire

motion, it is equal to its initial value, i.e., C^ = v' cos s, and since

x = o when / = o, C2 = o
; hence

Vx = v' cos £ and :\[:
= z/'cos e-t (2)

Since d^y/dt^ = —g, "^j/
= —

^^ +Q and y= —
igt^ + C^t + C4,

C3 and C4 being constants of integration determinable like C^
and C2 from

* *

initial conditions .

' '

These are y= o and Vy = 'i/ sin e

when / = o
; hencp Q = v' sin e and C^ = o, and therefore

Vy= —gt + v' sin e and y= —^gt'^-{-v' s\n e-t, . (3)

3. Show that the path is parabolic and that its equation is

y= x tan £—gx'^/2{i/ cos £f.

4. Deduce expressions for the range and greatest height

reached, and show what values of e make them a maximum.

§ III. Relativity of Motion.

194. Path, Displacement, Velocity, and Acceleration of a

Point Relative to a Body.—Position of a point can be specified

only by means of a set of reference axes or some other equiva-

lent base. When we speak of the position of a point with

respect to a body we would specify that position relative to

some reference base in the body; thus to specify the position

of a bug on a drawing-board, say, we might describe it as being
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on the upper surface of the board, two feet above the lower edge
and three feet from the left edge. The fact that specification of

position is necessarily relative makes the path, displacement,

velocity, and acceleration of a moving point also relative, as

can be shown clearly by illustration.

Imagine a drawing-board with a sheet of paper lying upon it,

and a bug upon the paper. Suppose that the paper is slid over the

board and that the bug walks about on the paper and punches
holes rapidly through the paper into the board. The succes-

sions of holes in the paper and board mark out his paths rela-

tive to the paper and board respectively. Evidently these

paths would, in general, be very dissimilar.

Let Pj and B^ denote the holes punched into the paper
and board at any instant, and P2 and B^ those punched at a

later instant. Then the vectors P^B^ and P^B^ are the dis-

placements of the bug relative to the paper and the board

respectively for the interval of time. Evidently these two

displacements would, in general, be- very dissimilar. The
rates at which the displacements relative to the paper and

the board occur are the velocities of the bug relative to the

paper and the board respectively. Since these displacements for

any interval of time are, in general, unlike, the velocities at any
instant are also unlike. Furthermore, the changes or incre-

ments in the velocities for any interval are unlike also.

The rates at which the velocities relative to the paper and
the board change are the accelerations of the bug relative

to the paper and the' board respectively. Since the changes
in the velocities for any interval of time are, in general, unlike;

the accelerations at any instant are also unlike.

195. Path, Displacement, Velocity, and Acceleration of a

Point Relative to Another Point.—By path, displacement, ve-

locity, and acceleration of a point relative to a second point is

meant the path, displacement, velocity, and acceleration of the

point relative to a set of axes having fixed directions through the

second point.

If a bug walks about on a sheet of paper whose edges are

kept fixed in direction, then its motions relative to the paper
and any point of the same are alike; but if the edges are not

kept fixed in direction, then those motions are unlike. Thus

imagine two sheets of paper pivoted together at some point O,
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that they are slid over a flat surface in any way except that

the edges of the lower sheet remain fixed in direction, and that

a punching bug walks about on the upper sheet. The holes

punched into the lower sheet mark the path of the bug relative

to that sheet and to any point of the sheet. The holes punched
in the upper sheet mark the path relative to that sheet; this

path would in general be unlike the first, which is the path of

the bug relative to the point O of the upper sheet.

196. Relation between the Velocities and the Accelerations

of (a) Two Points and (b) Three Points.—(a) Proposition.
—

The velocities and the accelerations of two points relative to

each other are equal and opposite.

Proof for uniplanar motion of the points: Imagine two

sheets of paper being shifted about on a flat surface, their

edges remaining fixed in direction. Also imagine punching bugs
fixed at the middles of the sheets and call the one on the upper

sheet A and the other B
;
then the suc-

cessions of holes punched by A and B
(into the lower and upper sheets re-

spectively) mark the paths of A relative

to B and B relative to A. Let (a) and (6)

(fig. 164) represent the positions of the

sheets at the beginning and end of any
motion; then A^ and B\ are the first

positions of the bugs A and B, and A.^

and B2 are their last positions. If

A^A^B^B' and B^B^A^A' are parallelo-

grams, then B' and .4' are the final posi-

tions of the first holes punched into the
Fig. 164. upper and lower sheets respectively,

and hence the displacements of A relative to B and B relative

to A are the vectors A'A^ and B'B.^. Since the sides A.^B'

and B^A' of the quadrilateral ^g^'-^z-^' are equal and parallel,

the mentioned vectors (and displacements) are equal; plainly

they are opposite.

It follows that the displacements per unit time, and hence

the velocities, of the two points are equal and opposite. The
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velocities being at each instant equal and opposite, it follows

that the changes in those velocities for any interval and the

velocity changes per unit time (hence the accelerations also)

must be equal and opposite.

(6) Proposition.
—The velocity (and acceleration) of A rela-

tive to B plus that of B relative to C equals that of A relative

to C.

Proof for uniplanar motion of the three points: Imagine a

sheet of paper slid about on a drawing-board which is also

slid about on a fiat surface, the edges of the paper and board

being fixed in direction. Imagine also

a punching bug walking about on the

paper; let it be A, a corner of the

paper B, and a corner of the board C.

Suppose that at the beginning of some

interval the board, paper, and bug are at

CjCj, B^h^y and A^ (fig. 165) respectively,

and at the end of that interval they
are at C^c^, BJD^y ^^^ ^2- I^ C^C^BJB^

B'B,A^A\ and B^B'A'A'' are parallelo-

grams, it follows respectively that B'B^
is the displacement of B relative to C;
that A' is the final position of the first

hole punched in the board, and hence the displacement of A
relative to C is A'A

2',
and that ^" is the final position of the

first hole punched in the paper, and hence A^'A2 is the dis-

placement of A relative to B. It is plain from the figure that

vectoHally A'^A^ + B'B^^A^A^, i.e., the displacement of A
relative to B plus that of B relative to C equals that of A rela-

tive to C.

It follows that the displacement per unit time, and hence the

velocities, are similarly related. The velocities at each instant

being thus related, it follows that the changes in those velocities

in any interval and the velocity changes per unit time (hence
the accelerations also) are so related.

197. Meaning of Composition of Motions.—According to the

preceding article the displacement of the bug (of the first illustra-

FiG. 165.



196 CURVILINEAR MOTION, [Chap. VIII.

tion of art. 194) with respect to a point C on the board may be

found by compounding its displacen;ent with respect to a point
B on the paper and that of B with respect to C. Hence we say
that the motion of a point A with respect to a point C may be

regarded as consisting of the motion of A with respect to B and

that of B with respect to C.

EXAMPLES.

1. A man rows a boat in a stream whose velocity is 3 miles

per hour, so that his velocity relative to a floating chip is 5 mi.-

per-hr. "straight across" the stream. Determine his absolute

velocity.*

2. Two locomotives run at speeds of 40 and 50 mi.-per-hr. on

two different tracks, that of the first locomotive being east and

west and the other northeast and southwest. If both locomotives

run eastward, what is the velocity of each relative to the other?

§ IV. Composition of Simple Harmonic Motions.

198. Mechanism for Compounding Simple Harmonic Motions>

—
Fig. 166(a) represents two cranks with their slotted sliders,

the crank-shaft of one turning in a bearing fixed upon the slider

of the second. If both cranks be turned uniformly, the lower

Fig. 166.

slider S' executes a s.h.m. relative to the support of the mechan-

ism, the upper shder S" executes a s.h.m. relative to the lower

* Motion referred to points on the earth is often called for convenience
" absolute motion," and the corresponding velocities and acceleration are

also, called absolute.
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slider, and its mbtion relative to the fixed support is compounded
of these two harmonic motions. In theory at least, a third crank

and slider could be mounted on the second slider, a fourth crank

and slider on the third slider, etc. Then if all cranks were turned

uniformly, the motion of the last slider would be compounded
of the simple harmonic motions executed by the several sliders

relative to the supports of their cranks.

When the sliders are in line the s.h.m.'s are described as
*

'along the same line" or "collinear," and when the sliders are

inclined to each other the s.h.m.'s may be described as "oblique
"

or "
non-parallel."

199. Composition of Two CoUinear Simple Harmonic Motions

of the Same Period.*—Let fig. 166 represent the position of the

mechanism at any time t of the motion. We will consider the

motion of the projection of C2 on OF, i.e., V.

From draw vectors OP' and OP" to represent the cranks

as shown, and complete the parallelogram OP'P"P\ then OP is

the sum of the vectors representing the cranks. It is plain from

the figure that V is also the projection of P on the line OY.
Since the periods of the two s.h.m.'s are the same, the angle

P'OP" remains constant during the motion; hence OP is con-

stant in length and turns uniformly, i.e., describes a circle at a

uniform rate. Therefore the motion of V is simply harmonic.

The amplitude of the motion of Y is OP, the phase is XOP,
the period is the same as that of the given s.h.m.'s. The epoch
can be found from the figure as follows : Turn the parallelogram
back to its position when ^ = o

;
let Pq be the corresponding posi-

tion of P, then XOPq is the desired epoch.
Values of the amplitude and epoch can be computed from the

figure ;
thus let

a^ denote the amplitude of the first s.h.m..

a^
"
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and 2 ;r/6; their common period;

then y^
= a^sm{ojt+z^ and % =

a^ sin {cot \- ^2) .

Since the motion of V is simply harmonic, period equal to

27z/oj, its displacement is given by

y= a svn {wt -\- e) ,

1 and e being the amplitude and epoch respectively. It can be
shown from the figure that

and tan e = (a^ sin s^ + a^ sin e2)/(«i cos s^ + ag cos £2) •

200. Resolution of a Simple Harmonic Motion into Two Com-

ponents CoUinear with it.
—Let OP (fig. 166) represent the crank

of any s.h.m. in the line OY
,
and let OP' and OP" be the cranks

of two others in the same line. According to the preceding ar-

ticle the resultant of the second two gives the first and the latter

are therefore called components of the first.

Obviously a s.h.m. may be resolved into many pairs of com-

ponents, for many parallelograms, as OP'P"P, can be drawn on

the same diagonal OP, and the sides OP' and OP" of each rep-

resent the cranks of a pair of components.

Special Case.—Resolution into two components which differ

90° in phase, the epoch of one being zero. Let OP (fig. 167)

represent the crank of the s.h.m. to be

resolved when / = o; then XOP is the

epoch of that motion and OP' and OP"

X are the cranks of the component motions

when ^ = o
;
the epoch of one component

Fig. 167. (crank OP') is zero and that of the other

is 90°. Also if OP= a and XOP=--e, the equation of the given
s.h.m. is

y= a sin (ojt+e),

and those of the first and second components are

y'
= a cos £-sin cot,

and y" = a sin £(sin cot 4-90°) = a sin e • cos (ot.
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201. Composition of Many Collinear Simple Harmonic Motions

of Equal Periods.—It follows from art. 199 that the resultant of

three or raore collinear s.h.m.'s of equal period is simply har-

monic and of that period. For the first two can be replaced by a

single s.h.m., and in. turn this one and the third can be replaced

by a single s.h.m., etc.

To obtain the "crank" of the resultant motion, add the vec-

tors representing the several cranks in their positions at any
instant

;
the sum represents the crank of the resultant motion

in its corresponding position. Thus, let 0P\ P'P", P"P'", etc.

(fig. 168), represent the cranks in their simultaneous positions;

Fig. 168.

then OP represents the length and direction of the crank of the

resultant motion at the same instant.

The epoch can be determined by turning the polygon about

until P' falls into its position when / was zero. Let Pq be the

corresponding position of P; then XOP^ is the epoch sought.

EXAMPLES.

1. Compound two collinear s.h.m.'s whose amplitudes and

periods are equal, their phases differing (a) by 90°, (6) by 180*^,

(c) by 270°.

2. Resolve the s.h.m. whose equation is y= 4 sin {27rt + ^o°)

into two collinear with it, their phase difference being 45° and
the epoch of one being zero.

3. Compound three collinear s.h.m.'s whose amplitudes and

periods are equal, their phases differing by 120°.
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202. Composition of Two Simple Harmonic Motions in Lines
at Right Angles.

—
Imagine the two sliders of fig. i66 turned at

right angles as represented in fig. 169;
then if the absolute motion of the
lower one is simply harmonic and the

motion of the upper one relative to

the lower is also simply harmonic, the

absolute motion of the upper is com-

pounded of two s.h.m.'s at right

angles.

For simplicity, we choose the ori-

gin of time so that the epoch of the

first s.h.m. is zero and consider the

motion of a point P at the middle of

the slot of the second slider. With
Fig. 169. notation and axes as in the figure, the

X and y coordinates of P are

x= a^s>mo)t and ;y
=

a2 sin (0;/ + ^). . . . (i)

The equation of the path of P is found from these by eliminating

/; thus we find that

2 cos y
^:^+—2=sm

02
(2)

the motion has beenThis represents an ellipse and hence

called **

elliptic harmonic motion."

The path of a point whose motion is the resultant of two
s.h.m.'s in lines at right angles (or inclined) can be traced

graphically by plotting on the two lines simultaneous values of

the displacements due to the component motions and then fix-

ing the position of the point from the displacements. Thus let

the circles of fig. 170 be the circles of reference of the two com-

ponent s.h.m.'s, and let VOa^ be the epoch of the horizontal

and XOh^ that of the vertical component motion
;
then the dis-

placements in the two motions when ^ = are respectively Ox^
and Oy^, and the position of the point describing the elliptic

motion is Cq. The constructions for the other points on the

ellipse should be obvious from the figure.

Special Cases.—(i) If the phases of the component motions
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are the same or differ by i8o°, sin ^ = o; hence according to

eq. (2) the path is a straight line. The resultant motion is a

I
s.h.m., its period equals that of the given motions, its phase is

r

Y

4

Fig. 170.

the same as that of one or both of the given motions, and its

amplitude equals (Gti* + a2^)*- Prove.

(2) If the amplitudes of the component motions are equal
and they differ in phase by 90°, a^

=
a2, cos^ = o, and sin ^ = 1;

hence according to eq. (2) the path is a circle whose radius

equals a^^a^. The circular motion is "uniform," of a period

equal to that of the component motions. Prove.

203. Resolution of a S.H.M. in.to Two Components at Right

Angles to Each Other.—Let OZ (fig. 171) be the path of the

motion to be resolved, O being the centre, and
let the displacement, amplitude, period, and

epoch be 0, a, 2tzJ uj, and e respectively; then

2 = a sin (a;/+e).

The % and y components of this displacement
are (see the figure),

% = {a cos a) sin (wZ + e)

and :V
= («sina:) sin (a>/H-e); Fig 171

hence the periods and epochs of the components are the same
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as of the given motion, and their ampHtudes are respectively
a cos a and a sin a. ,

204. Composition of More than Two S.H.M.*s Not Collinear.—
According to the preceding article each s.h.m. may be resolved and

replaced by two components along two axes x and y. Accord-

ing to art. 201 all the components in the x axis can be com-

pounded into a single s.h.m.
,
and those in the y axis also. Accord-

ing to art. 202 these two s.h.m. 's compound, in general, into an

elliptic harmonic motion.

Special Case.—Three s.h.m. 's in lines inclined 120° to each

other of equal amplitudes and periods but differing 120° in

phase, compound into a uniform circular motion.

Proof : Let z'z" and z'" denote simultaneous displacements in

the component motions and a and 27r/a; their common amplitude
and period; then

z' = a sin cot,

z" = a sin (o;/-f- 120°),

z'" = a sin (o;/ + 240°).

Let OA, 05, and OC (fig. 172) be

the paths of the component mo-

tions, being the centre of each,

%'
,
x"

,
and x'" the x components

of the displacements, and y' , y" y

and y'" their y components. Then,,

according to the preceding article,.Fig. 172.

x' ^a sin (to/),

x" ==a cos 1 20° -sin (<w/ + i2o°).

y =0,

y" = a sin 120° -sin {cut -\- 120°),
'" — a sin 240° • sin {wt-\- 240°) ;

hence the sums of the x and y components (which call x and y)

are

x-^^asm (x)t, and
;v
=
|a cos a;/ = f sin (0^^ + 90°) .

These two equations show that the given motions are equivalent

to two s.h.m.'s in the coordinate axes, equal as to amplitudes and

periods but differing 90° in phase. According to special case (2 ) ,

art. 202, these two motions are equivalent to a uniform motion

in a circle of radius |a, its period being equal to that of the

given motions.

= a cos 240° -sin (a>/ -1-240°), y'
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MOTION OF A RIGID BODY.

§ I. Translation.

205. Translation Defined.—A translation is a motion in which

each straight line of the moving body remains fixed in direction.

Thus the motions of the coupling-rods of a locomotive which runs

on a straight
- track are translations

;
also the motions of those

on a locomotive which runs on a transfer-table.

206. Motions of all Points of a Body in Translation are Alike.

—Let A and B be any two points of a body having a translatory

motion, A^ and 5' their positions at a given instant, and A'' and

5" those at another instant. By definition, the lines A'B^ and

A"B" are parallel, and, since they are also equal in length, the

figure A'B'A"B" is a parallelogram and A'A" and B'B" are

equal and parallel. Hence the displacements of all points of

the moving body for the same interval of time (long or short)

are equal in magnitude and the same in direction. It follows

that at each instant the velocities, and hence the accelerations,

of all points of the moving body are exactly alike.

207. Velocity and Acceleration of the Body.
—By velocity

and acceleration of a body having a translatory motion is meant

the velocity and the acceleration respectively of any one of its

points.

§ II. Rotation.

208. Rotation Defined.—A rotation is a motion in which one

line of the moving body or of its extension remains fixed. The

fixed line is called the axis of the rotation.

Obviously all points of the moving body must describe cir-

cles whose centres lie on the axis unless the axis cuts the body;
in this case all points of the body on that line are at rest, the

others describing circles. The planes of the circles are perpen-
203
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dicular to the axis, and any plane perpendicular to the axis may
be called the plane of rotation. All ^points of the body on any
line parallel to the axis move alike; hence the motion of the pro-

jection of the line on the plane of rotation represents that of

all the points, and the motion of the body itself is represented by
the motion of its projection.

209. Angular Displacement.
—By angular displacement of a

rotating body during any time interval is meant the angle de-

scribed during that interval by any line of the body perpendicular
to the axis. Obviously all such lines describe equal angles in the

same interval, and we select a line which cuts the axis. For con-

venience, angular displacements are given sign
—

positive if dur-

ing the interval the body has turned counter-clockwise, and

negative if clockwise.

Let the irregular outline (fig. 173) represent a rotating body,
the plane of rotation being that of the

paper, and O the intersection of the

axis with that plane. Let P be any

point and 6 the angle XOP, OX being

any fixed line of reference. As custom-

arily, 6 is regarded as positive or nega-
tive according as OX when turned

about O toward OP moves counter-
^^' ^^^* clockwise or clockwise. If d^ and ^2

denote initial and final values of 6 corresponding to any rota-

tion, then the

angular displacement = ^2
~~

^1
= ^^'

210. Angular Velocity.
—The angular velocity of a rotating

body is the time-rate at which its angular displacement occurs
;

or, otherwise stated, it is the time-rate at which any line of the

body perpendicular to the axis describes angle.

The time-rate at which OP (fig. 173) describes angle or the

time-rate (of change) of ^ is, as shown in works on calculus and

in Appendix B, dd/dt. Hence if cj denotes angular velocity,

co = dd/dt (i)

If the body turns uniformly, 6 is a uniform variable, and its time-
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rate is Ad/At, Ad denoting the angular displacement occurring in

the interval At. Hence

oj = Ad/At, (2)

and the angular velocity is constant.

211. Units of Angular Velocity.
—The formulas of the pre-

ceding article imply as unit an angular velocity corresponding
to a unit angular displacement in each unit time, the velocity

being constant. There are several such units
; thus, one revolu-

tion-per-second, one degree-per-hour, one radian-per-second, etc.

The last is the one usually used herein.*

212. Sign of Angular Velocity.
—An angular velocity must be

regarded as having sign, the same as that of dO/dt (and of Ad/At
if the angular velocity is constant). Now dO/dt and Ad/At are

positive or negative according as d increases or decreases alge-

braically ; hence

. The angular velocity of a rotating body at any in-

stant is positive or negative according a.s it is

turning in the counter-clockwise or clockwise

direction at that time.

213. Angular Acceleration.—The angular acceleration of a

rotating body is the time-rate (of change) of its angular velocity.

If, as in the preceding, o) denotes the angular velocity, then

the general expression for the time-rate of the angular velocity
is dco/dt\ hence if a denotes the angular acceleration,

a = &co/6X = &W/6X\ ...... (i)

// the angular velocity changes uniformly, its time-rate is

A CO/At, A CO denoting the increment in the velocity for any inter-

val At; hence

a = Aoj/At (2)

and the angular acceleration is constant.

2 14. Units of Angular Acceleration.—The formulas of the pre-

ceding article imply as unit an angular acceleration correspond-

ing to a unit angular velocity change in each unit time, the angu-
lar acceleration being constant. One revolution-per-second-

* For dimensions of a unit angular velocity, see Appendix C.
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per-second, one radian-per-second-per-second, etc., are such

units.*

215. Sign of Angular Acceleration.—An angular acceleration

must be regarded as having sign
—the same as that of dco/dt

(and of A CO/At if the angular velocity changes uniformly). Now
dw/dt and Aoj/At are positive or negative according as oj in-

creases or decreases algebraically; hence

An angular acceleration is positive or negative ac-

cording as the angular velocity is increasing or de-

creasing (algebraically).

216. Velocity and Acceleration of Any Point of a Rotating

Body.
—Let P (fig. 173) be any point of the rotating body there

represented, let r denote its distance from the axis and 5 the

length of the arc PqP. Then if d is expressed in radians, s=^rd;
hence

ds/dt = rdd/dt and dh/dt^ = r dW/di\

Now ds/dt is the velocity of P (art. 186) and d^s/dt^ is its tan-

gential acceleration (art. 193); hence, if as heretofore the veloc-

ity, the acceleration, and its tangential and normal com-

ponents be denoted hy v, a, a^, and a„ respectively,

y = Toj, (i)

a^
= ra, a.n

=
Tco^y (2)

and a= rVa^ + a;^; . (3)

OJ and a denoting respectively the angular velocity atid acceler-

ation of the body. These equations show that the velocity
and acceleration of a point in a rotating body are proportional
to its distance from the axis.

EXAMPLES.

I. Write in the proper place belov/ the signs of the angular

velocity and acceleration of a body which rotates as follows :

(a) Clockwise,

( 1 ) when *

'getting up speed ,'

'

sign of 6; is .."'., oi a . t . ;

(2)
"

"slowing down,"
" " " "

. .-.,

" "
.^. . ;

* For dimensions of an angular acceleration, see Appendix C
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(h) Counter-clockwise,

(i ) when "getting up speed," sign oiujv& . ~. . , of a ... ;

(2)
"

"slowing down,"
"

"""..., ""....

2. Express an angular velocity of n rev.-per-sec. in rad.-per-

sec. ;^^v

3. If the angular velocity of a wheel changes from 100 to 120

rev.-per-min. in one-half a min., what is its average angular
acceleration? ^-^^ /r-^ c^c

"^

4. A wheel is set rotating in such a manner that the num-
ber of turns made after starting equals the square of the time (in

minutes) after starting. Deduce expressions for the angular

velocity and the acceleration at any time.

Solution: The law of the motion, if d and t denote the num-
ber of turns and the time, is ^ = ^^; hence

dd/dt = 2t = aj (turns-per-min.) ,

and dW/df = 2 = a (turns-per-min.-per-min.).

5. Compute the velocity and the acceleration of a point on
the rim of a wheel whose diameter is six feet, if its angular

velocity is 4 rev.-per-sec.

Solution: w = 4 X6.283 = 25.13 rad./sec. u; '--^X

According to eq. (i), v = ^w =^$.4 ft./sec, and '- ^

"eq.(2), a„ = 'z;V3
=

i895ft./sec.2

Since the angular velocity is constant, the angular acceleration

is zero; hence, see eqs. (2) and (3), a^
= o and a = a„. The direc-

tion of a is from the point on the rim to the centre of the wheel.

§ III. Plane Motion.

217. Plane Motion Defined.—A plane motion is one in which

each ppint of the moving body remains at a constant distance

from a fixed plane. The fixed plane (or any plane parallel to it)

is called the plane of the motion.

The wheel of a car running on a straight track has plane

motion; so also has a book sliding about on a table. A trans-

lation may or may not be a plane motion (see illustrations, art.

205), but a rotation is always a plane motion.

As in a rotation, all points on any line of the moving body
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which is perpendicular to the plane of the motion move alike,

hence the motion of the projection^of the line on the plane of

the motion represents that of all the points, and the motion of'

the body Itself is completely represented by that of its projec-
tion on the plane of the motion,

218. Angular Displacement.—By angular displacement of a

body whose rriotion is plane is meant (as in rotations) the angle
described by any line of the body which is parallel to the^

plane of the motion. Obviously all such lines describe equah
angles in the same time interval. As in rotations also, displace-
ments are regarded as positive or negative according as they
are due to counter-clockwise or clockwise turning of the body.

Let the irregular outline (fig. 174) represent the projection
of the moving body on the plane of the.

motion, AB a fixed line of the projection,:

OX a fixed reference line, and let d denote

the angle XOA ,
it being regarded as posi-

tive or negative according as OX, when,
turned about toward AB, turns counter-^

clockwise or clockwise. If 6^ and ^2denote ]

initial and final values of corresponding to

Fig. 174. any motion of the body, then the

angular displacement = 62
—

6^
= Ad.

•

219. Angular Velocity and Angular Acceleration.—If a body
has a plane motion, its angular velocity is the time-rate at which '

its displacement occurs, and its angular acceleration is the time- '

rate at which its angular velocity changes. 1

These definitions are precisely similar to those of the angular
j

velocity and acceleration of a rotation (arts. 210 and 213) ;
hence

\

the expressions, units, and rules of signs given in those articles
j

and the following hold for any plane motion. Rewriting the
;

expressions, \

o;= d^/dt, and a = dw/dt = d^^/dt^ \

CO and a denoting angular velocity and acceleration of the mov-
:

ing body respectively.
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EXAMPLES.

I. Determine the angular velocity and acceleration of the

connecting-rod of a steam-engine, assuming the angular veloc-

ity of the crank to be constant.

Solution: Let OP and CP (fig. 175) be the crank and con-

necting-rod respectively, their lengths being c and r, and let the

Fig. 175.

angles XOP and XCP be denoted by 6 and ^ (measured from

the horizontal line and counter-clockwise positive) ;
then for all

positions

/^Gi
- r sin ^ = c sin ^,- or ^ = sin~M -sin ^

J.

Let CO and a denote the angular velocity and acceleration of the

rod respectively, and (Oc the angular velocity of the crank. Then,
since

(jj = d^/dt, a = d^(f)/df, (Oc
=

dd/dt, and d^d/dt^^o, Coj/>i

cos d , .

(rV^^
— sm^ d)^

and a= — .0/2 •
2 /)n? ^c (2)

2. Take r/c equal to 4 and compute the values of the coeffi-

cients of ojc and oj^ in eqs. (i) and (2) of the preceding solution,

when ^ = 0°, 30°, 60°, 90°, 120°, 150°, and 180°. Plot those

values, thus showing how oj and a vary during a stroke.

220. Velocity and Acceleration of any Point of the Body.—
Let P and P' (fig. 176) be two points of the moving body and

a point without, the three being in a plane parallel to that of the

motion. According to art. 196 the velocity of P relative to

equals the vector sum of the velocities of P relative to P' and P'

relative to 0. Let the last velocity be v' directed as shown, and
let r denote the distance PP' and oj the angular velocity of the
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body at the instant considered. Since the motion of P relative

to P' is circular, the velocity of P relative to P' equals rco (art.

216), and its direction is perpendicular to PP' as shown. The

velocity of P relative to O then is the vector sum of v' and roj.

(a) (6)

Fig. 176.

Similarly, the acceleration of P relative to O equals the vec-

tor sum of the accelerations of P relative to P' and P' relative

to 0. Let the last acceleration be a' directed as shown, and let

a denote the angular acceleration of the body at the instant con-

sidered. The path of P relative to P' being a circle, the tan-

gential and normal components of the acceleration of P relative

to P' are respectively ra and roJ^ (art. 216) directed as shown,
and the acceleration of P relative to O is the vector sum of a',

ra, and roj^.

Proposition.
—The components of the velocities of any two

points of a body having a plane motion *
along the line join-

ing them are equal and agree in sense.

Proof: Let P and P' (fig. 176a) be two points in the plane of

the motion. Since the velocity of P (v) is the resultant of rco

and ^-'and rco is perpendicular to PP\ the component of v along

PP' is the same as that of v^ along that line
; but v^ is the veloc-

ity of P', hence, etc.

It will be noticed that the proof is not general, the points

being in the plane of the motion; this vj the case to which the

proposition is applied later.

* Really true i,n any motion of a rigid body.
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EXAMPLES.

1 . A wheel rolls uniformly and makes one turn every second.

What is its angular velocity?

Solution: Any line of the body parallel to the plane of the

wheel describes an angle of 360° each second; hence the angular

velocity is 360 deg.-per-sec.

2. Determine the velocity of any point on the rim of a wheel

of radius r whose angular velocity is (o rad.-per-unit time.

Solution: We use the foregoing principles, choosing the

centre of the wheel as P'. Let d denote the angle described by
the radius PP' after any origin of time

;
.

p
then the distance (5) travelled by P' in

'^^^'^^^^^'-^^r^S^^-A ^^^

that time is given by 5 = rd. Hence /^ \ ^^'^^^
ds/dt==r dd/dt, or the velocity of P' at / rw ^/A
any instant equals r times the angular / ^^^ \

velocity of the wheel at that instant (see I "^rw

fig- 177)- Relative to P', the selected \

point P on the rim describes a circle and \
the velocity of that point relative to P' ^^^
is roj (art. 216), its direction being that j^mmmMimw
of the tangent to the circle at P. Hence Fig. 177.

the absolute velocity of P (v) is represented by the diagonal Pp
of the parallelogram on the two velocities roj.

3. From the result of the preceding solution, determine the

velocities of the highest and lowest points on the rim of the

wheel. ' ^^^ --> ^

221. Plane Motion Regarded as a Combined Translation and

Rotation.—Imagine the velocity of each point, P^, P^, etc., of

the moving body to be resolved into two components, one of

which is the same as the velocity of any particular point P' of

the body (fig. 178a). It follows from the preceding article that

the other component is perpendicular to the line joining the

point with P' and is equal to the product of the length of the

line and the angular velocity of the body.
Also imagine the acceleration of each point resolved into two

components, one of which is the same as the acceleration of P'

(fig. 1786). It follows from the preceding article that the other
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component can be resolved into two components directed along
and perpendicular to the line joiniijg the point with P\ they

being equal to the products of the length of the line and the

square of the angular velocity and angular acceleration respec-

tively.

Fig. 178. ,

Now if the points of the body had the first^sets of component
velocities and accelerations only, the motion of the body would

be a translation, the velocity and acceleration of which would be

like those of the chosen point P' . And if the particles had the

second sets of component velocities and accelerations only, the

motion of the body would be a rotation about the line through
the chosen point and perpendicular to the plane of the motion,

the angular velocity and acceleration of the rotation equal-

ing respectively the angular velocity and acceleration of the

actual motion. The two motions are hence regarded as compo-
nents of the actual motion.

222. Instantaneous Axis (of no Velocity).
—

Proposition.
—If

a body has a plane motion which

is not translatory, then at each

instant there is a line in it or in

its extension all points of which

have no velocity.

Proof: Let P and P' (fig. 179)

be any two points in the plane
of the motion, and draw lines

PO and P'O perpendicular to the directions of the velocities of
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P and P' respectively. The velocities of points on PO and P'O

have no components along those lines respectively (prop., art.

220), and since O is on both lines its velocity has no components

along PO and P'O, and hence that velocity must be zero. All

points on the line through O perpendicular to the plane of the

motion have the same velocity as that of 0, i.e., zero.

If the motion is translatory, the velocities of P and P' have

the same direction and the point O is
*'
at infinity," but no points

of a finite extension of the body have a zero velocity.

Definitions.
—The line of a moving body, all points of which

have at a certain instant no velocity, is called the instantaneous

axis of the motion at that instant. The intersection of the

instantaneous axis with the plane of the motion is called the

instantaneous centre.

In general the instantaneous centre moves about in the body
and in space. Its path in the body (i.e., the path relative to

axes fixed in the body) is called body centrode^ and its path in

space (i.e., that relative to axes fixed in space, or in the earth)

is called space centrode.

It follows from the solution of exs. 2 and 3, art. 220, that the

velocity of the lowest point of a rolling wheel is zero
;
hence that

point is the instantaneous centre. The body centrode is the

circumference of the wheel, and the space centrode is the line on

the plane surface along which the wheel rolls.

223. Instantaneous Rotation.—Let P and Q denote two

points of a body in a plane of motion, the latter being such

that at some instant during the motion it is an instantaneous

centre. At all times the motion of P relative to Q is circular

and its velocity relative to Q at any instant equals the product
of the distance between P and Q (r) and the angular velocity of

the body at that instant.

Consider now the state of the motion when Q is the instan-

taneous centre, calling the angular velocity of the body at that

instant co. Since the absolute velocity of Q is zero, the absolute

velocity of P (v) equals its velocity relative to Q, or

Y = TOJ (l)

Hence the absolute velocity of any point of a mov-

3^W^^^
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ing body at any instant equals the product of the

distance of the point from the» instantaneous axis

and the angular velocity of the body at that in-

stant.

Since in a rotation about a fixed axis the velocity of any

point of the body is also proportional to its distance from the

axis of rotation, the state of a plane motion at any instant is

described as an instantaneous rotation about the instantaneous

axis.

EXAMPLES.

1. Show how to find the instantaneous centre of the connect-

ing-rod of a steam-engine in any position.

Solution: The directions of the velocities of the ends of the

rod are known for all positions; that of C (fig. i8o) is DC and

that of P is the same as that of the tangent to the crank-pin
circle at P. Hence to find the instantaneous centre, draw per-

pendiculars to the directions of these velocities atil and P re-

spectively ; their intersection is the instantaneous centre of the

rod for the position represented.

2. Where is the instantaneous centre when the crank is hor-

izontal? When vertical? What can you say about the state

of the motion of the rod in these cases ?

3. Show how to find the angular velocity of the connecting-

FiG. 180.

rod and the velocity of the cross-head C (fig. 180) in terms of

the velocity of the crank-pin P for any position.
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Solution: Let c denote the length of the crank;

v^,
** '*

velocity of the crank-pin ;

V2,
" ** ** *' "

cross-head;

(D,
" "

angular velocity of the connecting
-

rod.

According to eq. (i), (o =vJlP and

If it is desired to draw a velocity-space curve for the motion

of the cross-head (as the dotted curve of the figure) when the

crank-pin velocity is constant, the following simple construc-

tions may be employed : Draw a vertical diameter of the crank-

pin circle and mark its intersection with the connecting-rod

(extended if necessary) C'\ then to the same scale by which OP
represents the crank-pin velocity OC represents the cross-head

velocity. For, from the figure,

IC/rP = OC'/c, hence vJv,=^OC'/c.

4. A sheet of paper is caused to slide on a draughting-board

so that two points (P and Q) of the paper move along two lines

{OX and OY) on the board. Show how to find the instanta-

neous centre of the motion for any position of the paper.

5. The velocity of one point of the paper of the preceding

example being given, show how to find the velocity of any other

point.

EXERCISE.

Take a sheet of paper and move it as described in ex. 4, the

lines OX and OY being taken at right angles to each other, and

determine the instantaneous centre for several positions of the

paper. As each instantaneous centre is determined, mark it by

pricking a hole through the paper and into the board, and join

the holes in the paper and those in the board by smooth

curves. These curves are the body and space centrodes

respectively.

Now cut the paper along the centrode and replace it on the
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board in one of its positions (P and Q falling on OX and OY
respectively). Then move the paper^so that the body centrode

rolls on the space centrode. If carefully done (a template fitted

to the space centrode helps to get the rolling motion), it will be

noticed that P and Q move along OX and 0Y\ hence the actual

motion is a rolling of the body centrode over the space centrode.

It can be shown that any plane motion is equivalent to such a

rolling.



KINETICS,

CHAPTER X.

MOTION OF A PARTICLE (RESUMED) AND OF A SYSTEM OF
PARTICLES.

§ I. Mass and Mass-Centre.

224. Quantity of Matter.—It must be confessed that the

usual definition of mass (art. 12) needs explanation. The ques-

tion at once arises, How shall matter be measured? If this is

answered, then the meaning of "quantity of matter" is clear.

"As long as we have to do with bodies of the same exact kind,

there is no difficulty in understanding how the quantity of mat-

ter is to be measured. If equal quantities of the substance

produce equal effects of any kind, we may employ these effects

as measures of the quantity of the substance.

"For instance, if we are dealing with sulphuric acid of uni-

form strength, we may estimate the quantity of a given portion
of it in several ways. We may weigh it, we may pour it into a

graduated vessel and so measure its volume, or we may ascertain

how much of a standard solution of potash it will neutralize.

"We might use the same methods to estimate a quantity of

nitric acid if we were dealing only with nitric acid; but if we
wished to compare a quantity of nitric acid with a quantity of

sulphuric acid we should obtain different results by weighing, by
measuring, and by testing with an alkaline solution." *

Now these methods are not equally appropriate, and indeed

that of titration cannot be applied to all bodies, that of measur-

ing would lead us to say that the amount of gas in a tight rubber

bag could be changed by simply squeezing (changing the volume

* Quoted from Maxwell's "Matter and Motion."

217
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of the bag), which is absurd. It will be shown that the method
of weighing is an appropriate one. ,

Any appropriate method must be based on a common prop- i

erty of matter. Now all matter is inert, i.e., force must be

applied to any body to change its velocity, and this property

(inertia) is the basis of the fundamental method of determining i

quantity of matter. Not only is this method (explained in de-

tail later) employed in mechanics, but also sometimes in ordi- \

nary affairs. Thus, suppose that we wish to ascertain whether

a barrel lying upon a floor is full or empty ;
we push it and con-

clude that it is full or empty according as a large or small force

is required to roll it, i.e., to "overcome the inertia."

Along this line we can determine the relative amounts of i

matter in two bodies if we have a means of measuring forces. ^

Thus, calling the two bodies A and B, place each upon a light
;

and easy-running carriage (fig. 1 8 1 ) and connect these by means
]

Fig. i8i.

of cords to spring-balances which rest upon and are fastened to

a third carriage as shown. If this last carriage is pulled to the

right, the others follow and the spring-balances measure the pulls

required to move the smaller carriages and their loads. Clearly

it will be in accord with the crude test applied to the barrels to

say that the quantities of matter in A and B (neglecting that in

the carriages) are as the forces applied to them, as read from

the spring-balances. It will also be in accord with a comparison
of quantities of matter in bodies of the same kind by the method

of volumes ; for suppose that A and B are of the same kind and

that the volume of ^4 is w times that of J5, we would say at once

that there is n times as much matter in ^ as in 5. The same
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ratio would be arrived at by the inertia method, i.e., from the

readings of the spring-balances.

We now make definite our notions about quantity of matter

as just expressed by means of the following

Definition.
—The quantities of matter in bodies are propor-

tional to the forces required to give them equal accelerations.

If we should adopt as a standard, or unit, ^the amount of

matter in any particular body, we could determine the quantity
in any other body in terms of this unit (ideally at least) by plac-

ing it and the standard body on the two smaller carriages and

then measuring the forces required to give them the equal accel-

erations. If the force on the body in question is n times that

on the standard, the quantity of matter in the body would be n.

Of course this scheme of measurement is not put forth as a

practical one, but rather as a help to understand the meaning of

mass. The practical method of measuring quantity of matter is

by weighing, which is (as explained in art. 226) precisely similar

in principle to that just described.

225. Mass.—Definition (repeated from art. 12).
—By mass of

a body is meant the quantity of matter in it. The word is

merely an abbreviation for
"
quantity of matter."

Units of Mass.—There are many units of mass in use; they

may be grouped into two classes:

(a) Absolute Units; so called to express the fact that their

magnitudes are independent of locality. Two of these, the

pound and the kilogram, are described in art. 12. Their rela-

tion is as follows:

I pound = 0.4536 kilograms,

or I kilogram = 2.205 pounds.

(6) Gravitation Units; so called because their magnitudes

vary with locality precisely as acceleration due to gravity varies.

Two of these units are described in art. 233.

226. Practical Determination of Mass.—As is well known,
bodies falling at the same place in vacuum move with equal

accelerations, i.e., the forces of gravity upon bodies (their weights)
at the same place accelerate them equally. It follows from this

fact and the definitions of arts. 224 and 225 that
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\

the masses of bodies are proportional
to their weights at the same place.

Hence to determine the mass of a body, i.e., to determine the :

ratio of its mass to that of a standard (pound for example) ,
we ,

determine the ratio of the weights of the body and the standard. :

If this latter ratio is n, then the former is n also, and the mass '

of the body is n times that of the standard (or n pounds). J

227. Moment of Mass.—The product of the mass of a particle ;

and its ordinate with respect to any plane is called the moment
of the mass of the particle with respect to that plane. An ordi- i

nate is regarded as positive or negative according as the parti- ^

cle is on one side of the plane or the other
;
hence a moment has

\

the same sign as the corresponding ordinate.
\

By moment of the mass of a system of particles is meant the
\

algebraic sum of the moments of the masses of its particles. 1

Thus, let the particles of a system be referred to a set of rect-
;

angular axes, and denote the coordinates of the particles by ;

(Xj, ^1, z^, (x^, ^2* ^2)' ^"tc, and their masses by m^, m^, etc. Then
;

the moments of the mass of the system with respect to the y-z, ]

z-x, and x-y planes are respectively

m^x^-\-m2X2-\- , . . ^Imx; i

Wi>/i+W2>'2+ • • • =^niy', 1

miZi+m2Z2 + . . .
= Imz,

'

\

'1

228. Mass-Centre Defined.—It is obvious that the mass of a \

system may be multiplied by some distance (positive or nega- \

tive) such that the product equals the moment of the mass with
\

respect to a given plane. Thus, let M be the mass of a system j

and x,y, and z such multipliers that
\

Mx = Imx, My = Jmy, Mz = Imz. . . . (i)

The point whose coordinates are x, y, and z is called the mass-
;

centre of the system. The formulas for the coordinates of the '

mass-centre are therefore

, Jnix , _ Jmy -Jniz . . ^^~ M * y~ M ' ^~~W ^^^
i

1

i

I

\

J
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229. Relation Between Mass-Centre and Centre of Gravity.
—

Since the masses of the particles of a system are proportional

to their weights, we may substitute for the mass terms in the

equations (2) the corresponding weights, i.e.,

_ _ Iw'x _ _ Iwy _ _ Iwz
^^~W' ^^1V~' ^~~W'

w denoting the weight of any particle whose coordinates are x, y,

and z, and W the weight of the system. But these values of x,

y, and z are identical with those for the x, y, and z coordinates

of the centre of gravity of the system (see art. 64) ; hence the

mass-centre and centre of gravity of a system of particles (as

herein defined) are coincident.

§ II. Motion of a Particle.

230. Laws of Motion.—(i) When no force is exerted upon a

particle it remains at rest or continues to move uniformly in a

straight line.

(2) When a force is exerted upon a particle it is accelerated;

the direction of the acceleration is the same as that of the force,

and its magnitude is proportional to the force directly and to the

mass of the particle inversely. £^ ^ ^^

(3) When one particle exerts a force upon another the latter

exerts one on the former, and the two forces are equal, coUinear,

and opposite.*

These laws are inductions from observation and experiment,
made not of course on particles, but on bodies of ordinary size.

We do not attempt a full discussion of the experience leading to

the laws, but limit ourselves to a brief statement. Really the

best evidence of the correctness of the laws are the many agree-

ments noted between observed results and those calculated from

the laws, and the fact that the laws are not known to be in dis-

agreement with any phenomenon.

(i) We know of no body which is free from the influence of

* These are essentially Newton's Laws of Motion. The form of state-

ment here given, however, differs from that in which they were originally

announced (1687),
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all others, i.e., a body not acted upon by force, and so no direct

observation or experiment leads to this law. But all have per-

haps noticed that a small body, if projected along a sheet of ice,

moves in a straight path and continues to move for a consider-

able period; also that the smoother the ice the longer will the

body move, i.e., the smaller is its retardation or the more nearly
is its motion uniform. The retardation is rightly ascribed to the

frictional resistance offered by the ice
;
and it is a fair inference

that if that resistance were zero, the retardation would also be
zero and the motion would be uniform.

(2) The second law may be roughly verified by the means of

the apparatus represented in fig. 181. Thus place a body whose
mass is known on one of the small carriages and another on the

hook C. Then let the system move, measure the acceleration of

A and the pull recorded by the spring-balance. If this is re-

peated with other bodies on (7, it will be found that the acceler-

ations are roughly proportional to the pulls. Also place bodies

of unequal mass successively on A and cause the carriages to

roll so that the spring-balance reading is the same for the differ-

ent bodies, measuring the acceleration of each motion. It will

be found that the accelerations are roughly inversely propor-
tional to the masses of the bodies. The lack of exact propor-

tionality may properly be ascribed to the neglect of friction and

the mass of the carriage A, and to unavoidable experimental
errors involved in such an apparatus.

(3) It is well known that a magnet exerts a force on a piece

of soft iron in its proximity ; that the iron also exerts a force on

the magnet, may be proven as follows: Place the magnet and

piece of iron in small vessels
;
then float them so loaded in water.

If they are not too far apart they will be observed to move
toward each other; hence not only does the magnet attract the

soft iron, but the iron attracts (exerts a force) on the magnet.
If two spring-balances be laid on a table, the hook of one

engaging the hook* of the other, and then they be pulled apart

by their rings, each will register the pull exerted upon it by the

other. If the balances are accurate, it will be found that the

amounts registered are equal; hence the forces exerted by the

hooks on each other are equal. /^ ^
f^
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231. Quantitative Expression of the Second Law of Motion.—
Let m' and m" denote the masses of two particles and a' and a"

the accelerations given them by two forces F'and F" respectively.

The second law of motion asserts that

a' : a" : : F'/m' :F"/m" ,
or F'/m'a' = F"lm"a".

It follows from this equation that the ratio of the force acting
on a particle to the product of the mass and the acceleration cf

the particle produced by the force is constant, i.e., in the form

of an equation,

F/ma = k, or F = kma, (i)

h being the value of the constant ratio.

The numerical value of k depends upon the units used for

expressing value of force, mass, and acceleration. It is con-

venient, but not necessary, so to choose these units that k

becomes i. A system of units so chosen is called a kinetic

system.

232. Kinetic System of Units.—It follows from the last equa-
tion that in any kinetic system the unit force acting upon the

unit mass produces unit acceleration (i.e., unit velocity in unit

time). Evidently any three of the units involved in a kinetic

system (units of force, mass, length, and time) may be chosen

arbitrarily, but the fourth must be such as to satisfy the re-

quirement just stated. The unit of force or of mass is the one
selected as the derived or fourth unit. There are two classes of

kinetic systems.

(a) Absolute Kinetic Systems.—Units of length, mass, and
time are arbitrarily selected, the unit of force being derived.

Centimetre-Gram-Second (cg.s.) System.— The units of

length, mass, and time are the centimetre, the gram (one-thou-
sandth of a kilogram, see art. 12), and the second respectively.
The corresponding unit of force, i.e., the force which acting on
a gram mass for one second gives it a velocity of one centimetre

per second, is called a dyne. This is the system now univer-

sally used in scientific work and literature.

Foot-Pound-Second (f.p.s.) System.—The units of length,
mass, and time are the foot, the pound (see art. 12), and



224 MOTION OF A PARTICLE. [Chap. X.

the second respectively. The corresponding unit of force, i.e.
,
the

force which acting on a pound mass for one second gives it a

velocity of one foot per second, is called a poundal. This sys-

tem has never met with favor; accordingly, it is not used herein,

but is mentioned and explained because of the relations which

it bears to other important systems.

(6) Gravitation Kinetic Systems (also called Engineers' Sys-

tems).
—Units of length, force, and time are arbitrarily selected

and the unit of mass is derived. The units of force in these

systems are weights of absolute units of mass, i.e., they depend

upon the force of gravity and are gravitation units (see art. 13)

The units of length and time being independent of place, the units

of mass in these systems must vary just as the units of force

vary, and are hence properly called gravitation units of mass.

Foot-Pound (force) -Second System.
—The units of length,

force, and time are the foot, the pound (see art, 13), and the

second respectively. The corresponding unit of mass, i.e., one in

which a pound force would produce in one second a velocity

of one foot-per-second, is called herein a geepound. ^

Metre-Kilogram (force) -Second System.
—The units of length,

force, and time are the metre, the kilogram (see art. 13), and the

second respectively. The corresponding unit of mass, i.e., one

in which a kilogram force would produce in one second a veloc-

ity of one metre-per-second, is called herein a geekilogram.*

233. Relations Between Force Units and Between Mass Units.

—The dyne and the poundal might ideally at least be "preserved
"

as follows: Place one gram (or one pound) on one of the small

carriages of fig. 181, and then make the large carriage move to

the right with an acceleration of one cm.-per-sec.-per-sec. (or

one ft.-per-sec.-per-sec.) and note the reading of the spring-

balance. Assuming the mass of the small carriage compared to

* This is a new term, and the student should remember that fact, for

it is not now and perhaps never will be current. The unit is usually
called "engineers' unit of mass," an appellation which is on a par with

"wood-choppers' unit of volume" (the cord). Other terms have been

proposed, but they have never been adopted. The author is confident

that names for gravitation units of mass are convenient and that their use

tends to clearness.
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that of its load, and its frictional resistance compared with the

balance reading to be negligible, the force causing the stretch of

the spring is one dyne (or one poundal).

Instead of employing the foregoing method, we make use of

measurements made on the acceleration due to gravity, thus

comparing the dyne and poundal with standards or units of

weight. A force equal to the weight of a gram (or a pound) act-

ing on one gram (or one pound), as in a falling body, produces

an acceleration of approximately 981 cm.-per-sec.-per-sec. (or

32.2 ft.-per-sec.-per-sec.) ;
hence a force equal to 1/981 of the

weight of a gram (or 1/32.2 of the weight of a pound) would

produce in one gram (or one pound) an acceleration of one cm.-

per-sec.-per-sec. (or one ft.-per-sec.-per-sec). Now by defini-

tion the forces producing in one gram and in one pound acceler-

ations of one cm.-per-sec.-per-sec. and one ft.-per-sec.-per-sec.

are the dyne and poundal respectively; therefore

. one dyne = 1/981 ± gram (force),

one poundal = 1/32.2 ± pound (force).*

The "geepound'' and the "geekilogram'' might also be deter*

mined by means of the apparatus represented in fig. 181. Thus

adjust a load on the smaller carriage so that the spring-balance

will read one pound (or one kilogram) when the larger carriage

is drawn to the right with an acceleration of one ft.-per-sec.-per-

sec. (or one m.-per-sec.-per-sec). If the mass and frictional

resistance of the small carriage are negligible, the mass of the

load is one geepound (or one geekilogram).
A better determination of these units of mass can be made

by means of experiments on the acceleration due to gravity. A
one-pound (or a one-kilogram) force produces in a one-pound

(or a one-kilogram) mass an acceleration of approximately 32.2

ft.-per-sec.-per-sec. (or 9.81 m.-per-sec.-per-sec); hence a one-

pound (or a one-kilogram) force would produce in 32.2 pounds
(or 9.81 kilograms) mass an acceleration of i ft.-per-sec per-sec

(or one m.-per-sec.-per-sec). Now by definition, two masses

which under the action of forces of one pound and one kilogram

* One gram and one pound (force) being the weight of one gram and
one pound (mass) respectively.
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receive accelerations of one ft.-per-sec.-per-sec. and one m.-per-

sec.-per-sec. are tl;ie geepound and Idpie geekilogram respectively.
Therefore

I geepound = 3 2. 2 ± pounds,
I geekilogram = 9.81 ± kilograms.

234. Relation Between the Mass and the Weight of a Body.—
This relation is implicitly given in the preceding article; we will

now state it definitely. Let W denote the weight of a body,
m its mass, and g its acceleration due to gravity, ike three quan-
tities being expressed in units of any one kinetic system. When
this body falls, its acceleration {g) is due to its weight iW);
hence the equation of the motion is (see art. 231)

W = mg, or m = W/g,

and this gives the relation between the weight and the mass of

any body when they {W, m, and g) are expressed in units of any
one kinetic system. Thus for any body

W (in dynes) =w (in grams) X981 ± ,

W (in poundals) =m (in pounds) X 3 2 . 2 ± ,

m (in geepounds) =W (in pounds) ^ 3 2 . 2 i ,

m (in geekilograms) =W (in kilograms) -^ 9.81 ±

The weight and mass of a body are also numerically the .

same if expressed in certain units, more definitely if the unit

weight is the weight of the unit mass (see art. 15). Thus the

weight of a barrel of flour is 196 pounds and its mass is also 196

pounds.
EXAMPLE.

Express the mass of a cubic foot of water in pounds, gee-

pounds, kilograms, and geekilograrns.

235. Acceleration of a Particle Acted Upon by Several Forces.

—The acceleration of a particle acted upon by several forces

may be determined in several ways :

(a) By the methods of
' *

Statics
' '

determine the resultant of

the forces and then compute the acceleration due to this resultant.

This acceleration is identical with that due to the actual forces

applied to the particle, for by definition the resultant of any
number of forces is equivalent to them in producing motion.
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(6) Compute the acceleration of the particle due to each

force acting alone and add these accelerations vectorially. The

vector sum 'represents the actual acceleration due to the com-

"bined action of the forces. The correctness of this method may
be proved from the first; we give the proof for the case of two

fcices: Let m be the mass of the particle, Fj an^. Fj the applied

forces, a the acceleration due to their combined action, R their

resultant, and a^ and a^ the accelerations due to F^ and F^ acting

singly. Let AO and BO (fig. 182) represent Fj and Fj respect-

ively; then the diagonal of the parallelogram OABC repre-

sents R (art. 20), and the continuation Oc of that diagonal

represents a if Oc_^R/m (art. 231). Also, Oa and Ob represent

a^ and a2 respectively if

Oa =FJm and Ob =FJm.
It remains to show that Oc is the vector sum of Oa and Ob. To
do this, join a and c and b and c, and show that Oabc is a par-

allelogram.

236. Equations of Motion of a Particle.—Let m, a, and R de-

note the mass and acceleration of a particle and the resultant of

the forces applied to it respectively. Then, as explained in the

preceding article,

R = ma, . . *. (i)

and a and R have the same direction.

Let F', F" , etc., denote the forces applied to the particle and

a, /?,
and y the angles which R and a make with a set of coordi-

nate axes X, y, and z. Also let ^F^, IFy, and IF^ denote the

algebraic sums of the x, y, and z components of F', F", etc., and

ax, ay, and a^ the x, y, and z components of a. Now
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\

\

R COS a=ma cos a, Rcos ^ =ma cos ^, and i^ cos
;-
=wa cos ^ ;

\

and since -R cos a = IF^, R cos ^ = ^Fy, Rcos
j'
= IFg,

and acosa = aa;, acos/? = ay, acos;' = a2, {

IF^^msi^, IFy = ma,y, IF^=msi^. ... (2)

Let
(J)

denote the angle between the action line of R and the

tangent to the path of the particle. Then
j

R cos
(l)
=ma cos

(j)
and R sin

(f)
=ma sin ^, ;

or IFi= meLi and i'F„=man (3)

JFt and IFn denoting the algebraic sums of the tangential and 1

normal components of the forces, and at and an the tangential
.j

and normal acceleration of the particle.
1

§ III. Motion of a System of Particles.
l

237. Definitions.—Any number of particles collectively con-

sidered are called a system of particles. If the distances between

the particles remain invariable, the system is called a rigid one
\

or a rigid body.

Among the forces exerted upon the system of particles, some

may be exerted by particles not belonging to the system. Such
]

forces have already been named external forces (art. 113), and all -

such forces the external system. A force exerted by a particle \

upon another of the same system has been named an internal

force (art. 113), and all such forces the internal system. \

According to the third law of motion (art. 230) ,
if one particle

of a system exerts a force upon another, the second also exerts ;

one upon the first, and these two forces are equal, opposite, and i

collinear. Hence the internal forces of a system of particles \

occur in pairs, the forces of each pair being equal, opposite, and
;

collinear.

By effective force for a particle of a system is meant i

the resultant of all the forces acting on that particle. The i

effective forces for all the particles of a system are called
\

the effective system. If m and a denote the mass and ac- ,



§111]. MOTION OF A SYSTEM OF PARTICLES, 229

celeration of any particle of a system, then (art. 236) for that

particle the

effective force = ma.

238. D*Alembert*s Principle.
—Since the effective system con-

sists of the external and the internal forces acting upon the par-

ticles of a system, the resultant of the effective forces is identical

with that of the external and the internal forces. Now the

resultant of the internal forces is zero since they occur in pairs,

the forces of each being equal, opposite, and collinear; hence

Proposition L—For any system of particles the resultants

of the effective and the external forces are identical. Obviously
this proposition is equivalent to

Proposition II.—For any system of particles the effective

forces reversed * and the external forces together are in equilib-

rium. This proposition is known as D'Alembert's Principle.

after him who first announced it (1742) for rigid bodies.

These propositions are not fundamental, being deducible

from the laws of motion (art. 230), but they express an impor-
tant relation in convenient forms.

239. Component of an Effective System Along Any Line.—
Let the line be taken as an x axis, and as before let m^, m^, etc.,

denote the masses of the particles and a/, a/', etc., the x com-

ponents of their accelerations. Then the algebraic sum of the

X components of the effective forces for the particles is

Wia^' + mjax" + . . .

This sum equals the product of the mass of the system (Im) and
the X component of the acceleration of its mass-centre (a^).

For, according to art. 228,

m^x^-\-m2X2+ . . . =Jm'X, (i)

hence m^dxJdt-^-m^dxJdt^- . . . =Im'dx/dt, . . . (2)

and m^d'^xJdt'^-\-m2(PxJdt'^-\- . . .
=

Im-d'^x/dt'^^ . . (3)

or m^aj ^m^ax" \ ... ^Im-a^ (4)

240. Motion of the Mass-Centre of any System of Particles.—
According to Prop. I, art. 238, the algebraic sums of the com-

* Often called the "reversed effective system."
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ponents of the external and effective forces for any system of

particles along any line are equal. Jtlence, if IFx, ^Fy, and

IFz denote the sums of the components of the external forces

along an x, y, and z axis respectively,

i'F<,
= 2'm-aa:, lYy^Imsiy, i'F^ = i'm•a^. . (i)

These equations show that the acceleration of the mass-centre

depends only on the values of the components of the external

forces and that

The acceleration of the mass-centre of a system is

just like that of a particle, whose mass equals
that of the system, acted on by forces equal and

parallel to the external forces which are applied
to the system.

EXAMPLES.

I. Show that if the air resistance were zero the acceleration

of the mass-centre of any body thrown into the air in any way
would equal g and be directed vertically downward.

Solution: Let W denote the weight of the body, and refer

the motion to a set of axes fixed in the earth, the y axis being

vertical, its positive end being up. Then since the only force

acting on the body during the motion is its weight,

2F,^o = {W/g)a,, IFy=-W=^{W/g)ay, IF, = o = iW/g)a,,

or ax = ag = o, and ay=— g; hence a=—^.

*2. The mass-centre of a "stationary" steam-engine when

running is in general not a fixed point. Show that the reac-

tion of its supports is not constant in amount.

Solution : Let m and W denote the mass and weight respect-

ively of the engine, and a the acceleration of its mass-centre.

Also let Rxy Ry, and Rz denote the x, y, and z components of

the reaction of the supports, the y axis being taken vertical.

Then eqs. (i) become

Rx^niGx, Ry=+W -{-mdy, Rz = mag,
'^

3. What is the greatest acceleration which a locomotive can

give a train ?
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Solution: When the locomotive is pulling, the drivers tend

to slip on the rails and the latter therefore exert on the former

frictional forces directed forward. (These may be regarded as

the forces which directly make the train move.) The rails exert

on the other wheels of the train forces directed backward
;

call

the sum of their horizontal components R\ and the resistance

of the air R''. If F denotes the sum of the frictional forces, m
the mass of the train, and a its acceleration,

F-R'-R" = ma, or a = {F-R' -R")/m.

F is maximum when the drivers are about to slip, R" de-

pends on the velocity, and is least when the velocity is zero,

and R^ does probably not depend much on the velocity and

is practically independent of the acceleration. Hence the

acceleration is greatest at low speeds if the drivers are about to

slip.

4. What can you say of the forces which a travelling crane,

moving with an acceleration, exerts on its track?

241. Moment of the Effective System About Any Axis.—Let

the moment axis be taken as an x coordinate axis, and call the

mass of any particle m, its acceleration a, its coordinates x, y,

and z. The effective force for the particle is ma, and its x, y,

and z components are max, may, and maz respectively, and the

moment of the force about the x axis equals the sum of the

moments of its components (Prop. I, art. 28), i.e.,

ma^ ' y— may • z.

The moment of the entire system about the x axis equals the

sum of all such expressions as the above, or

I{mazy — mayZ).

242.
"
Angular Motion" of a System of Particles.—According

to Prop. I, art. 238, the moment sums of the external and effect-

ive force systems about any axis are equal. Hence if IMx,
IMy, and IMg denote the moment sums of the external forces

about the x, y, and z coordinate axes respectively,
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JM^ = 2(ma^y- ma^^z) ,

lUy = i'Cma^z - ma,x) , ^ ^,^

2'Mg = 2'(ma^x
—
ma-cy) .

It can be shown that these and eqs. (i) art. 240 completely
determine the effect of a force acting upon a rigid body. Since

the components and the moments of a force do not depend on its

application point, the equations also do not
;
hence the effect of a

force on the motion of a rigid body does not depend on its appli-

cation point. This is called the
"
principle of transmissibility."



CHAPTER XI.

TRANSLATION OF A RIGID BODY (RESUMED).

§ I. General Principles.

243. Equations of Motion.—Let m denote the mass of a

body, a its acceleration, and ax, ay, and a^ the x, y, and z com-

ponents of a. Then, from the equations of motion of the mass-

centre of any system having any motion (art. 240),

IFx=m8Lxy IFy^msLy, IFg=mgLg. . . . (i)

^Fx, 2Fyj and IFg denoting the algebraic sums of the x, y,

and z components of the external forces. It is advantageous
to select the coordinate axes in a certain way in special cases ;

thus if the motion is a plane one, two axes should be taken in

the plane of the motion, for then the equations reduce to two in

number; and if the motion is rectilinear, one of the axes should

be taken parallel to the direction of the motion, for then the

number of equations reduces to one.

It is shown in the next article that the resultant of the effect-

ive forces for the particles of a translating body is a single force

acting through the mass-centre in the direction of the accelera-

tion, its magnitude' being equal to the product of the mass of

the body and its acceleration. According to D'Alembert's

Principle, the resultants of the external and effective systems
are identical; hence if the resultant of the external forces is

denoted by R,
R=ma (2)

and it acts through the mass-centre in the direction of the accel-

eration.

244. Resultant of the Effective System.—In a translation,

the accelerations of all the particles of the moving body at each

instant are alike in magnitude and in direction. Hence the

effective system consists of forces having the same direction,

233
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and they are proportional to the masses of the corresponding

particles; therefore the resultant of the effective system is a

single force.

Obviously the direction of the resultant at each instant is

the same as that of the acceleration. The magnitude equals the

sum of the separate effective forces, i.e.,

{dm)^a^ + {dm)2a2 + . . .
= a

J dm
= ma,

(c?m)i, (dm)^, etc., denoting the masses of the particles. The
action line of the resultant passes through the mass-centre, as

can be shown thus: The effective forces constitute a system of

parallel forces with fixed application points ; hence they have a

centre or centroid (art. 62). Let x, y, and z denote the coordi-

nates of any particle with reference to a set of fixed axes, x^, y^,

and Zq the coordinates of the centroid of the effective forces, and

Xy y, and Z the coordinates of the mass-centre. Then (see art. 63)

/ (dm ' a)x I dm - x

Xq= = = x (see art. 228).^ ma m '

Similarly it can be shown that y^^^y and Zq
=

z\ hence the cen-

troid of the effective forces coincides with the mass-centre, and
the resultant of the effective forces passes through the mass-

centre as stated.

§ II. Applications.

245. General Method of Procedure.—In the following prob-
lems the forces applied to a body are wholly or partially given
and it is required to determine the acceleration, or else the

acceleration is given and one or more forces are required. Such

problems are solved by writing the equations of motion (or as

many as necessary) and then solving them for the unknowns.

If it is required to determine the motion completely, i.e., to

compute the acceleration, velocity, and position at each instant

of the motion, the acceleration is found first as just indicated

and then the velocity and position may be found by methods

explained in Chapters VII and VIII.
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EXAMPLES.

I. If the "body represented in fig. 183(a) weighs 50 lbs., the

f)uii P is 40 lbs., the angle ^ is o, and the supporting surface is

:.p lbs.

40 lbs.

"PR

(6)

Fig. 183.

smooth, compute the acceleration and the reaction of the sup-

port.

Solution : Let R denote the reaction of the plane ;
then the

external forces acting on the body are as represented in fig.

183(6). The mass of the body is 50/32.2 = 1.553 geepounds.
Hence

i'F^ = 4o = i.553aa;,

IFy^R-So = i.ssiay,

2*^^ = = I ;553a^.

From the third equation 0^ = 0, and from the first a^^ 25.76

ft./sec.
^

Obviously ay
=

o, hence the acceleration of the body
is 25.76 ft./sec.

^ in the plus x direction. Since ay equals zero,

the second equation shows that R = So lbs.

^ 2. Suppose that at a certain instant the mass-centre of the

body of ex. i is at the origin, its velocity being 30 ft.-per-sec. in

the plus X direction. Compute the velocity and position of the

mass-centre two seconds later.

, 3. Suppose that at a certain instant the mass-centre of the

body of ex. i is at the origin and that the velocity of the body
at that instant is 30 ft.-per-sec. in the plus z direction. Deter-

mine the velocity and the position of the mass-centre two seconds

later.

^ 4. Solve ex. i, supposing that 6 equals 20°.

Ans. a = 24.2 ft./sec/sec.

5. Suppose that P= 40 lbs. and ^ = (fig. 183), that the sup-

porting surface is rough, the frictional resistance being 10 lbs.,
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and that at a certain instant the body is at rest. Determine the
\

subsequent motion.
^.

i

6. Suppose that at a certain instant the body of ex. 5 is
\

moving in the minus x direction with a velocity of 30 ft.-per- \

sec. Determine the subsequent motion. \ -'^^

7. Suppose that the inclined plane (fig. 184a) is smooth, that
j

the body upon it weighs 50 lbs., and that
:

P equals 40 lbs. Determine the acceler-

ation and the reaction of the plane. i

(^) Solution: Let i? denote the reaction '

of the plane; then the external forces

acting on the body are as shown in Hg. \

184(6). Taking coordinate axes as shown, j

the mass being 1.553 geepounds, ^
i'i^a:= -40 + 50 cos 60° =1.5 53a;c, :

2'Fy=i?-5osin6o° = i.553aj„ i

i'F^ = o = i.553a;5. ]

From the first and third respectively.
Fig. 184.

—
9 .66 , ag = o, and obviously a^

= o
;

hence = 9.66 ft./sec.
^ in the negative x direction.

From the second equation it follows that i^ = 43.3 ^bs.

.
8. Suppose that the plane in fig. 184(a) is rough and that the

frictional resistance is 10 lbs. If at a given instant the velocity
of the body is zero, determine the Subsequent motion. \

--- •

9. Suppose that at the instant mentioned in the preceding

example the velocity is 40 ft.-per-sec. down the plane. Deter-

mine the subsequent motion.

10. Fig. 185(a) represents an open box on a horizontal sur-

face, the box containing a stone and subjected to a force P. Let

the weights of the box and stone be 90 and 70 lbs. respectively,
P 100 lbs., and suppose that the supporting surfaces are smooth.

Compute the pressure between the stone and the rear end of the

box.

Solution: The external forces applied to box and stone

together consist of the pull, the reaction of the horizontal sup-

port and the weights (see fig. 1856). The masses of the two
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bodies are 70/32.2 and 90/32.2, or 2.17 and 2.80 geepounds re-

spectively. Evidently the acceleration a is in the direction of

the loo-lb. force and its value is given by

100 = 4. 97a, or 20.1 ft./sec./sec.

The external forces acting on the box and stone respectively are

shown in (c) and {d) ,
P' and R^ denoting pressures between the

stone and the end and bottom of the box respectively. Know-

(a)

H~'
Tr

(0)

100 lbs. h£(e).

Fig. 185.

ing the acceleration of each body, the forces can be determined

from the equations of motion of either; thus for the stone,

P' = 2.i7 X20.1 =43.62 lbs.

t^ II . Four bodies are connected by cords as shown in fig. i85(^)

and are pulled along on a horizontal plane by a force P of 200

lbs. Supposing the frictional resistance on each body to equal
one-fourth its weight, compute the tension in each cord.

I 12. In an elevator there are two boxes weighing 610 and 1000

lbs. respectively, the lighter being on top of the other. What
are the pressures on the bottoms of the boxes if (a) the elevator

is started up with an acceleration of 4 ft./sec./sec? (b) If

started down with the same acceleration?

Ans. (a) 18 10 lbs. on the bottom of the lower box.

13. If the elevator of the preceding example weighs 1600

lbs.
, compute the tensions in the hoisting cable in the two cases

mentioned, -ai ?60f.6^ i^j X'^'c^

14. Fig. 186(a) represents two bodies, A and B, suspended
from the ends of a cord which passes over a "smooth pulley" 6'.

Let the weights of A and B be W^ and W^ iyV^ being the greater).
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Assume that the cord and pulley are practically without

mass and that the axle friction is zerp; then the tension is the

same at all sections of the cord. Compute the acceleration of

the bodies and the tension.

^^f^

(h)
<b

Fig. i86.

Solution : Let T denote the tension
; then the external forces

applied to each body are as represented. Assuming the string

to be inextensible, the accelerations of the two bodies are equal;
we will denote them by a. Evidently the accelerations of A
and B are respectively upward and downward; hence the re-

sultant forces on A and B act up and down respectively, i.e.,

W^KTkW^. The masses of A and B being WJg and WJg
respectively, the equations of motion for these bodies are

g
and W,-T= ^^a

g

Solving these equations for T and a, we find that

a = W,-W, and T= 2W,W,

(/ 15. Fig. 186(6) represents two bodies, A and B, connected

by a cord passmg over a smooth pulley, one hanging freely and
the other supported by a horizontal surface. Let the weights
of A and B be Wj^ and W^ respectively, and assume the surface

to be smooth and that the tensions at different sections of the

cord are equal. Compute the acceleration of the bodies and the

tension. •

/ins. a = g. T=

I 16. Solve the preceding ex., supposing that the T^i-=64 lbs.,

1^2
= 96 lbs., and that the horizontal surface is so rough that its

frictional resistance on the body is 19.2 lbs. (Take g = 32.)

7
'
ff<ipr ^ ^

. r.fS^^^'
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? 17. Suppose that a stone weighing 100 lbs. is placed on a

rough horizontal board, the coefficient of static friction for the

stone and board being 1/4. If the board is moved horizontally

with an acceleration of 4 ft./sec./sec, will the stone remain on

the board?
'^ 18. Suppose that the stone of the preceding example is square
in cross-section, i by i ft., and 8 ft. high, and that it stands so

that two of its sides are parallel to the direction of the motion.

How large an acceleration of the board will cause the stone to

tip, supposing that the friction between the board and stone to

be large enough to prevent slipping.

246. Kinetic Reactions.— When a body rests upon a hori-

zontal support, the reaction between the support and body

equals the weight, but if the body is in motion, the reaction in

general does not equal the weight. Thus, as seen in ex. 12, art.

245, when an elevator moves with an acceleration a, the pres-

sure which it exerts upon a body and its floor equals W±ma
(W, m, and a denoting the weight, mass, and acceleration of the

body respectively), the plus or minus sign being used according
as the acceleration is up or down. The reactions of the cranks

on a coupling-rod of a locomotive when it is at rest each equal
one-half the weight of the rod, but when it is in motion they
have a different value. The difference depends in part on the

acceleration as is shown below.

The components of a force acting on a body which depend
upon acceleration are said to be "due to acceleration" and
**due to inertia," and such are often called inertia forces. Some-
times it is desirable to determine the components of a reaction

which are dependent and independent of acceleration. To dis-

tinguish them we shall call the former and latter kinetic and
static reactions respectively. No new principles are necessary
for the computation of these.

EXAMPLES.

I. Suppose that the mass of the slider represented in fig. 187
is m, the length of the crank c, and the number of revolutions

per unit time n. Compute the crank-pin pressure at several
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points of the stroke and plot curves showing how it varies with

the displacement and the time.
»^

Solution : Neglecting friction the only horizontal force on the

slider is the crank-pin pressure. Hence, denoting that pressure

by_Q and the acceleration of the slider bv a,

the positive direction being taken the same for Q and a.

Since a= —^itVc sin d= —47tVx (see eq. 3, art. 179),

Q= —nt^nVc sin d= —m47tVx;

and the maximum value of Q is given by

Q^=-ni47tVc.

Fig. 187 (6) and (c) shows graphically how Q varies with the dis-

placement and the time.

/
/
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(2) Graphical and employing D'Alembert's Principle. Since

P, Qy and the reversed effective force for the slider are at all

times in equilibrium (art. 238), Q is equal and opposite to the

resultant of P and the reversed effective force.

Let aV (fig. 188) represent the length of the stroke, and the

Fig. 188.

ordinates from a'a" to the curve c'c" the values of the steam

pressure, P. From a' to a the pressure is forward and from a

to a" backward. The effective force for the slider at each instant

equals the product of its mass and acceleration
;

it varies there-

fore with the acceleration, and the ordinates from a'a'' to the

straight line h'h" may represent the effective forces. During
the first part of a stroke the acceleration is forward (in the direc-

tion of the motion) and in the second part backward ; hence the

reversed effective force in the first part of the stroke is backward
and in the second forward.

The directions of the steam pressure and reversed effective

force from a' to h are opposite, from 6 to a the same, and from

a to a" opposite again. Hence the resultants of the two forces

from a' to h and from a to a" are represented by the differences

between the ordinates to the two curves, and from 6 to a by their

sum, i.e., by the ordinates of the shaded area. Obviously from
a' to c the direction of the horizontal pin pressure is opposite to

the direction of the motion and from c to a" in that direction.

4. Compute the kinetic reactions on a coupling or side rod

of a locomotive running at a constant speed.
Solution : Let the notation be as follows :

r, radius of the crank-pin circles, v, speed of the locomotive,

R,
" ** '*

drivers, m, mass of the rod.

Since (by supposition) the acceleration of the locomotive is zero,
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the absolute acceleration of the rod is the same as its accel-

eration relative to the locomotive (s^e Prop., art. 196). Now
the motion of each point of the rod is just like that of the

centre of a crank-pin, and relative to the locomotive that motion
y is circular, the speed being rv/R.^ When a point travels in a

circle with a constant speed, its acceleration equals the speed

squared divided by the radius of the circle and its direction is

along the radius toward the centre (art. 193). Hence the accel-

eration of the rod equals rv^/R^, and its direction at each instant

is parallel to the crank.

The effective force therefore equals mrv^/R^, and if the mass-

centre is at the middle of the rod each kinetic reaction equals

mrv'^/2R'^, its direction being from the corresponding crank-pin
to the centre of the wheel.

The total crank-pin pressure depends also on the weight of

the rod and on the train resistance which is being "overcome."

*^'* 5. Assume that the weight of one side rod is 275 lbs., crank

radius i ft., wheel diameter 5^ ft., and the speed 60 mi.-per-hr.

Compute the crank-pin reactions due to acceleration and weight
of the rod when it is at its lowest, highest, and middle posi-

tions.

247. Vibrations.—A study of vibrations furnishes applica-

tions of equations of motion in which the force is variable. As

illustrations, we choose vibrations caused by open coil-springs in

various circumstances. If such a spring hangs vertically from

one end and supports a body at the other, and the body is dis-

placed vertically from its position of rest and then released, it

will oscillate or vibrate up and down, the vibration enduring for

a time and then ceasing. This is called a natural vibration, and
in general a natural vibration is one executed by a body or sys-

tem which has been displaced or distorted, then released and
left to itself.

If the support of the coil-spring is not fixed, but has a periodic

up and down motion, the motions of the spring and suspended

body are called forced vibrations. In general if a body or system
executes a natural vibration and is then subjected to a periodic

influence on its motion, the resulting vibration is called a forced

one.
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The dying out of a vibration is ascribed to forces of the nature

of friction
;
thus in the preceding illustrations the forces are the

resistance of the air upon the moving bodies and the internal or

molecular friction in the spring. This effect (dying out) is

known as damping, and vibrations in which damping occurs are

called damped vibrations. For simplicity we will assume that

there are springs without internal friction, and hence that such

a spring and a suspended body might execute an undamped
(or "simple") vibration.

If an open coil-spring is elongated or compressed (not exces-

sively), the elongating or compressing force is proportional to

the elongation or compression of the spring. Strictly, this is true

only when the act of elongation or compression is slow
;
we will

3,ssume it to be true for a vibrating spring. No important error

results if the mass of the suspended body is considerable as com^

pared with that of the spring. Then if e and e' denote the elon-

gations or compressions of a spring caused by forces T and T'

respectively,

T/T=e/e' or T= {T'le')e.

248. Undamped Natural Vibration.—We use the following
notation (see fig. 189):

/ = natural length of the spring;
W^= weight of the suspended body;
m = mass " " " '*

^' = elongation caused by W\
k = W/e'\

y= displacement of the body from its position of rest ;

a= acceleration
'* ** "

at the displacement >/;

T= force exerted upon the body by the spring at the

displacement y.

We choose the downward direction as positive for

forces and displacements.
The elongation (or contraction) of the spring for

all positions of the body is {y-\-e') ; the spring is elon-

gated or compressed according as {y-\-e') is positive
or negative. Also

Fig. 189.

T=-iyV/e'){y-\-e') = -{W/e)y''W,
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and the resultant force on the body in any position is

W+T==-{W/e')yrr-ky (i)
Hence the equation of motion is

— ky= ma, or a= —{k/m)y, .... (2)

i.e., the acceleration is proportional to y (displacement) and is

always directed toward a fixed point (from which y is measured)
in the path; therefore the motion is simply harmonic (see art.

179) and its period is 27r/\/k/m.

EXAMPLE.

Suppose that PF= 5 lbs.
,
^' = 3 in.

,
and that the body is released

from a position 10 in. below that of rest. Describe the motion.

249. Damped Natural Vibration.—The laws of the damping
forces are various, depending upon the circumstances of the

motion. If the vibrating system is like that represented in fig.

189, the suspended body being a thin vertical plate immersed in a

viscous liquid, then (neglecting the internal friction in the spring)
the damping force consists of the fluid friction at the sides of

the plate. If the velocity of the plate is small, this friction is ap-

proximately proportional to the velocity. We choose this law

of damping because the corresponding motion is analogous to an

important electrical phenomenon.
Let V and v' denote any two velocities of the immersed plate

and F and F' the corresponding frictions
;
then

F/F' = v/v' or F={F'/v')v = cv,

c being an abbreviation for F'jv' . If F be regarded as positive

or negative according as it acts down or up on the plate, then

because v = dy/dt (see the preceding article), F = cdyjdt, and

the resulting force on the plat.e is

W + T +F=-ky-cdy/dt (i)

The equation of motion of the plate becomes, instead of eq. (2)

art. 248,

dy d^y— ky— c-fj-
=m

dt dt

.. ,

- dy kd^y c dy
dt^ m dt

(2)
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For brevity, let p = c/m and q = Vk/m ;
then the solution of eq.

(2) gives the following:

I (a) li\p'<q\

y^Ar^'^'sm {Vq'^-pyA ^+£), .... (3)

f £ being the "Naperian base" and A and s constants of integra-

tion depending upon "initial conditions." Thus let / = o and

dy/dt = VQ when y= o, then substituting these in eq. (3) and in

the expression for dy/dt, we find that

£ = and A=vJ\/q'^—p'^//^,

I {h)li\p'>q\

y^Ar'^'+Br^', (4)

a and /? being abbreviations ioT—p/2 ± V'^V4— g^ respectively
and yl and B constants of integration depending on initial con

ditions. If as under (a), t = o and dy/dt = VQ when y= Oy then

substituting these in eq. (4) and in the expression for dy/dt^
we find that

A=v,/{p-a) and B==vJ(a-J3),

EXAMPLE.

Letg = 4 rad.-per-sec. and z^o^^^ ft.-per-sec. Plot on the

,
same axes,

I (1) Equation (4), p being 9 rad.-per-sec.

(2) Equation (3), ^ being 2 rad.-per-sec.

(3) Equation {3), p being zero.

P 250. Undamped Forced Vibration.—Imagine the support of

the spring in fig. 189 to oscillate up and down and call its dis-

placement from the position shown x, regarding x as positive or

negative, according as the displacement is down or up. The

elongation of the spring at any instant is not y+e^ as in art. 248,

huty+e^—x; hence

I
T=-(W/e^Xy + e^-x),

T and the resultant force on the suspended body is

W+T=^kiy-x) (i)
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The equation of motion is

or (Py/dt'' + {k/m){y-x)=o]
^^^

Now let the motion of the support be simply harmonic, its

amplitude, period, and epoch being A, 27:/ lo, and o respectively;
then eq. (2) becomes

dH
^ + q^y= q^A sin (ot, (3)

q being an abbreviation for \^k/m, as in art. 249. The solution

of the last equation is

y^
l-tyq^

'"'"'' • (4)

This shows that the forced vibration of the suspended body is

simply harmonic, its period and epoch being the same as of the

motion of the support, and its amplitude 1/(1— a>V'7^) times

that of the support. Notice that co/q is the ratio of the fre-

quency of the motion of the support to that of the natural vibra-

tion of the spring.

EXAMPLE.

Let A =
i, and plot a curve showing how the amplitude of

the forced vibration varies for different values of cu/q, between

i/io and 10.

251. Damped Forced Vibration.—Imagine that the suspended

body of the preceding article is a vertical thin plate immersed in

a viscous liquid. Then in addition to the forces acting on the

body as described in the preceding article, there is the frictional

resistance F-^ —cdy/dt (see art. 249). Hence the equation of

motion is

d^y c dy ^

J^ dy k . .

dv m dt m at m

d^y dy , t a •

or d^^^di^^^
^ ^ ^^^ ^^'

(I)

p and q, being abbreviations as in art. 249. The solution of

this equation is

y=' A sva.ia)t — e)t (2) 1
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£ being an abbreviation defined by

tan £ = (jup(q^
—

co^).

This equation shows that the motion of the suspended body is

simply harmonic, its period and amplitude being respectively

the same as and {q^ sin £)/ajp times that of the motion of the

support and lagging behind the latter an amount equal to s.

EXAMPLE.

Assume that q= io rad.-per-sec. and that (o varies from 7

to 13 rad.-per-sec. Draw curves showing (a) how the lag e

varies with (o for values of p equal to 2, i, 1/2, and i/io, and

(b) how the amplitude varies with co for the four values of p
just given.

252. Kinetic Friction.—Definitions. The friction between

two bodies which move relative to each other is called kinetic

friction, and the ratio of the kinetic friction to the normal

pressure between the bodies is called their coefficient of kinetic

friction. If / denotes the coefficient and F and N the friction

and normal pressure respectively,

f
=F/N or F= /A/' (i)

Laws of Friction for Dry Surfaces.
—

(i) The coefficient de-

pends on the nature of the rubbing surfaces.

(2) The coefficient is approximately independent of the in-

tensity of the normal pressure. Strictly it falls off slightly as

the intensity increases up to a point when "seizing" is about to

occur; then it increases rapidly.

(3) The coefficient decreases as the velocity increases—not

directly, but rapidly as the velocity increases from o to +
and then less rapidly with increasing velocity.

(4) The coefficient decreases with the lapse of time during
the motion.

These laws are qualitative; their reduction to a quantita-
tive form has not been effected, but in some cases we know

quite accurately how the coefficient varies, especially with

velocity. Thus in certain experiments on the braking of va^^-
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way trains, the following values of the coefficient for the brake-

shoe (cast iron) and the wheel (steel>were determined:

Velocity in mi.-per-hr. . 17 21 27 31 37 47
Coefficient 0.16 0.15 0.13 o.ii o.io 0.08

These coefficients were taken five seconds after the brakes were

set; fifteen seconds after setting, the coefficients were about

0.04 less than those given above.

EXAMPLES.

^.
I. Fig. 190(a) represents a body resting on a plank, which in

turn rests on rollers. If f is the coefficient of static friction for

u^iumtim»MaJMv/jJi3mug/u/jMXUi^^

Fig. 190.

the body and plank, how large an acceleration can be given to

the plank without causing slipping between it and the body ?

Ans. fg.
V 2. Suppose that the body is slipping on the plank, and let

f denote the coefficient of kinetic friction assuming it to be

independent of velocity. How long {t) and how far {s) will the

body slide in coming to rest from a velocity v under the influence

of friction? Ans. t = vlf'g and s = v^/2f'g.

3 . Suppose that the plank is caused to oscillate on the rollers

by a force P, so that the acceleration-time curve for the motion

is represented by fig. 190(6). Draw the velocity-time and space-
time curves for the motion of the plank; also for the body, tak-

ing f = 0.5, j"
=

0.2, and g
=
32 ft./sec.

^ Where on the plank is

the body at the end of one second?

Ans. It has slid forward on the plank 25?^ ft.



CHAPTER XII.

ROTATION (RESUMED).

i I. Second Moments of Mass (Moment op Inertia, btc).

253. Occurrence of Second Moments.—In a study of the rota-

tion of a body, certain quantities are met with which are ex-

pressed by integrals of the kind and form / dm-u^ and / dm-uv,

m denoting mass and u and v distances. Such quantities have

been called
"
second moments of mass," the term being in line with

"first moment of mass," which is applied to quantities expressed

by integrals like / dm-x (see arts. 227 and 228). We distinguish

between second moments of mass employing special names for

the kinds.

254. Moment of Inertia.—The moment of inertia of a body
with respect to any axis is the sum of the products obtained by
multiplying each elementary mass of the body by the square of

its distance from the axis. The axis will often be called "inertia-

axis" to distinguish it from other axes, coordinate, geometri-

cal, etc.

[Euler introduced the term "moment of inertia," and he explained its

appropriateness somewhat as follows ("Thoria Motus Corporum Soli-

dorum," p. 167) : The choice of the name, moment of inertia (Ger. tragheits-

moment) is based on analogies in the equations of motion for translations

and rotations. In a translation, the acceleration is proportional directly
to the "accelerating force" and inversely to the mass, or "inertia," of

the moving body, and in a rotation the acceleration (angular) is propor-
tional directly to the moment of the accelerating force and inversely to a

; quantity, jr^dm, depending on the mass, or inertia; this quantity, to

; complete a similarity, we may call moment of inertia. Then we have—
for translations, acceleration = (force) /(inertia, or mass) ;

for rotations, acceleration = (moment of force) /(moment of inertia)].

249



250 ROTATION. [Chap. XIL

Expression for Moment of Inertia.—Let / * denote the moment
of inertia of a body with respect to an^ axis, dm the mass of any
elementary portion all points of which are equidistant from the

axis, and p that distance. Then the definition states that

/dm p' (I)

the limits of integration being such that all the elementary parts
of the body are included in the integration.

If the body is homogeneous, d denoting its density and dV
the volume of the elementary mass, dm = ddV\ hence

=sfdy-p^ . (2)

Units of Moment of Inertia.—From eq. (i) it is plain that

the units involved in a moment of inertia are those of mass
and length, and hence the unit of moment of inertia will de-

pend upon the units of mass and length employed. No names
are in use for the different units of moment of inertia, but each

unit is described by stating the corresponding units of mass and

length. Thus a moment of inertia computed by using the pound
and foot is said to be expressed in a pound-foot unit. The unit

corresponding to the geepound and foot may be called the engi-

neers' unit of moment of inertia or the geepound-foot unit.f

255. Radius of Gyration.
—Since a moment of inertia is one

dimension in mass and two in length, it can be expressed as the

product of a mass and a length squared; it is sometimes con-

venient to so express it. »

Definition.
—The radius of gyration of a body with respect to

an axis is such a length whose square multiplied by the mass of

the body equals the moment gf inertia of the body with respect

to that axis. That is, if ^ and / denote the radius of gyration
and moment of inertia of the body with respect to any axis and

m its mass,

k2m==I or k = Vl7m.

* A subscript affixed to the symbol refers to the inertia-axis; thus Ix

stands for moment of inertia with respect to an x axis.

t For dimensions of a unit moment of inertia, see Appendix C.
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The square of the radius of gyration of a homogeneous body
with respect to any axis is the- mean of the squares of the dis-

tances of all the equal elementary parts of the body from that

axis. For let p^, p^, etc., be the distances from the elements,

dm, to the axis, and let n denote their number (infinite). Then
the mean of the squares is

{pi^+p2^+ . . . )/n = (pj^dm+p2^dm+ . . . )/n dm=I/m,

But I/m is the square of the radius of gyration, hence, etc.

EXAMPLES.

1. Show that the moment of inertia and radius of gyration
of a homogeneous right circular cylinder with respect to its geo-
metric axis are respectively

^mr"^ and r\/i/2,'

m denoting its mass and r the radius of its base.

Solution : Let a denote the altitude and imagine the cylinder
to consist of elementary prisms parallel to the

axis and extending from base to base. If dA
denotes the area of the cross-section of any
element, then dV = adA, and if p denotes the

distance of the element from the axis,

•

I = dJadA'p\
For convenience, select the prisms as indi-

cated in fig. 191; then dA=pdp-dd, and

/=
adf^£

"

p^dp
. dO = adiTzr^

= ^mr\

Since k^ = I/m, k = r\/i/2.

2. Show that the moment of inertia and radius of gyration
of a homogeneous parallelopiped with respect to one of its geomet-
rical axes are respectively

w(a2 + 62)/i2 and V(a^^+b^j/l2 ,

m being the mass and a and b the lengths of the edges which are

perpendicular to the inertia-axis.
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3. Show that the moment of inertia and radius of gyration
of a homogeneous sphere with respect, to a diameter are respec-

tively

and rV2/5.mr

m being its mass and r its radius.

Solution: Let fig. 192 represent a diametrical section of the

sphere and Y the inertia-axis . Imagine
the sphere to consist of elementary 1am-

inas perpendicular to OF; then the mass
of the lamina is given by-

dm = dK{r^ —y^)dy.

Now according to ex. i
,
the moment of

inertia of the lamina with respect to its

Fig. 192. geometrical axis (OY) is ^dm(r^—y^),
or -h^7r{r^—y^ydy. Therefore the moment of inertia of all the

laminas, or of the sphere, is the sum of all such moments, i.e.,

/=
^d7zf^^\r^

- y^ydy= j\d7:r'
= tmr\

^
4. Show that the moment of inertia and radius of gyration of

a homogeneous right circular cone with respect to its geometrical
axis are respectively

.2mr^ and rV3/io,

m being its mass and r the radius of the base.

5 . Show that the moment of inertia of a circular lamina with

respect to a diameter of either base is approximately iwr^,

m and r being its mass and the radius of the bases respectively.

Solution : Let / denote the thickness of the lamina. Imagine
it to consist of elementary prisms whose

bases coincide with those of the lamina,

their cross-sections being as shown in fig.

193. The volume of each elementary

prism is given by tpdd-dp. Now all parts

of each elementary prism are not equally

distant from the inertia-axis, but they are „

nearly so, except in the case of prisms near

the axis. These prisms, however, contribute little to the mo-
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ment of inertia of the lamina and the error made in assuming the

parts of such near prisms as equally distant from the axis is

small. For any prism the distance is
|0
sin ^; therefore approx-

imately
*

/= td£
"

j[
sin^ e dO ' pHp = inrHd.

Hence, etc.

I
^^ 6. Show that the radius of gyration of a thin elliptic plate
with respect to either of its axes is ^a, 2a being the length of the

other axis.

256. Relations Between Moments of Inertia and Between
Radii of Gyration with Respect to Parallel Axes.—Proposition.

—
The moment of inertia (/) with respect to any axis equals the

moment of inertia (/) with respect to a parallel central axis plus
the product of the mass (m) and the square of the distance (d)

between the axes, that is,

I=I+md' (i)

Proof: Let fig. 194 represent
a section of the body perpen-
dicular to the inertia-axis. Let O
and C be the points where that

axis and the parallel central axis

respectively pierce the section.

Then (see the figure) Fig. 194.

I=jdm'p^, and since p^=y^-\-{x-\-dy,

I= fdm(y^ +x^ + 2xd+ d^)

=
J dm{x'^-\-y^)-{-2d idm-x + d'^ jdm.

'Now J dm{x^+y^)= I] jdm-x
=mx = o\ and

y Jm=w; hence,

etc.

or

Corollary: Dividing the sides of eq. (i) by m we get

I/m = I/m+d'^,

k2=P-fd2. (t)

* The approximation is the closer the less the thickness.

\
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k denoting radius of gyration of a body with respect to any axis,
k that with respect to a parallel cefntral axis, and d the dis-

tance between the axes.

Equations (i) and (2) show that the moment of inertia and
radius of gyration of a body with respect to a central axis are

less than for any other parallel axis, and that approximately ,

when k is small compared to d,k = d and I =md?

EXAMPLES.

^ I . Determine the moment of inertia of a homogeneous par-

allelopiped, the lengths of its edges being a, 6, and c and its mass

tw, with respect to the third edge. Ans. m{d^ + h^)/7,.

V 2. Determine the radius of gyration of a homogeneous sphere
with respect to a line whose distance from the centre is x.

, 3. Determine the radius of gyration of a right circular cylin-

der with respect to a line parallel to its axis distant 10 ins. there,

from, the radius of the base being 4 ins.

\. 4. Compute the radius of gyration of a rod 24 ins. long and

iX I in. in cross-section with respect to a line parallel to a i-in.

edge and 12 ins. from the centre of the rod.

^^ 5 . Show that the moment of inertia of a right circular cylinder

with respect to a central axis parallel to the bases is w(rV4+
a^/12), m denoting mass, a altitude, and r radius of the base.

Solution: Imagine the cylinder to consist of elementary cir-

cular laminas. Call the distance of any one of them from the

inertia-axis x, then its thickness is dx and its volume is nr'^dx.

According to ex. 5, art. 255, the moment of inertia of a lamina

with respect to its central axis which is parallel to the inertia-

axis is ic/mr^, and according to eq. (i), its moment of inertia

with respect to the inertia-axis of the cylinder is

\dm • r^ +dm • x^ = \d7:r^dx + dnrH'^dx.

Therefore the moment of inertia of all the laminas, or of the

cylinder, is given by (if a denotes the altitude),

<=23j!r\ir'a + ^'-ja^); etc.
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6. Show that the moment of inertia of a right elliptic cylinder
with respect to a central axis parallel to either axis of the base is

'

m(aV4+ ^Vi2), 2a being the length of the other axis of the base

and m and h the mass and altitude of the cylinder respectively.

^ 7. Show that the moment of inertia and radius of gyration of

a hollow right circular cylinder with respect to its geometrical
axis are respectively o

)

hm{r,^+r^^) and \/{r^^ + r^^)/2,

m being its mass and r^ and rg the inner and outer radii of its

bases.

257. Composite Bodies.—We refer now to bodies which can

be divided into simple component parts; thus, a flywheel con-

sists of hub, spokes, and rim whose forms are usually simple.
The moment of inertia of such a body with respect to any axis

can be computed by adding the moments of inertia of the com-

ponent parts taken with respect to that same axis.

EXAMPLE.

Compute the moment of inertia and radius of gyration of the

cast-iron flywheel (weight 450 Ibs.-per-cu. ft.) represented in fig.

195, the spokes being four in number and elliptic in cross-section.

<—2^^->k- -KH

Fig. 195.

258. Experimental Determination of Moment of Inertia.—
There are a number of methods; we give two.

Pendulum Methods.—(i) Suspend the body from an axis

coinciding with or parallel to the inertia-axis. Let it oscillate

like a pendulum noting the
'

'time
"
of an oscillation ( T) ,

and deter-

mine the distance (a) from the axis of suspension to the centre of

gravity of the body. Then substitute these values in the equation

r = 7r\/F7^* or k = {T/7r)Vg'/^
^

* This is the formula for the time of oscillation of a pendulum (see

art. 267).
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{g denoting the acceleration due to gravity) , and solve for k. This

is the radius of gyration of the body»with respect to the axis of

suspension, and from which the methods of art. 256 the

desired moment of inertia can be computed.
*

(2) From the same axis about which the suspended body
swings, suspend by means of a cord a body whose dimensions

are small compared with the length of the cord. Adjust the

length of the cord so that the times of oscillation of the two sus-

pended bodies are equal. Then measure the distance (/) from
the axis of suspension to the centre of gravity of the small body
and solve for k in the equation

kya^l or k = Var*

k and a having the same meanings as in (i).

Torsion-Balance Method.—There are many variations of the

method here given. The balance for the present purpose may
be arranged as follows: Suspend an elastic wire vertically, mak-

ing the connection between the wire and support rigid, and fasten

a flat plate in a horizontal position rigidly to the lower end of

the wire—the form of the plate to be such that its moment of

inertia with respect to the wire can be computed.
Place the body whose moment of inertia is desired and a

second body on the plate so that they
"
balance," i.e., leave the

plate horizontal. The first body is to be so placed also that the

wire is parallel to the axis with respect to the inertia-axis and

the form of the second body is to be such that its :pioment of

inertia with respect to the wire can be computed. Now, cause

the loaded balance to oscillate and note the time (T) of one oscil-

lation
;
then remove the two bodies and cause the empty balance

to oscillate, noting the time (Tj).

Let 7i, /j, and / denote the moments of inertia with respect

to the wire of the plate, of the second body, and of the one

whose moment of inertia is desired respectively; then, as shown

in art. 268,

T:T,::Vl,+I,+I:Vr„
or I^IjyT^'-{I,+h),

* Proved in art. 267.
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259. Product of Inertia.—Definition.
—The product of inertia

of a body with respect to two coordinate planes is the sum of

the products obtained by multiplying each elementary mass of

the body by its ordinates from those planes.

Expression for Product of Inertia.—Let / denote the product
of inertia of a body with respect to any two planes, as the yz
and zx coordinate planes, dm the mass of any

**
third order

"
ele-

mentary volume, and x, y, and z its three coordinates; then the

definition states that j

J =/dm xy,

the limits of integration being so assigned that all the elementary

parts of the body are represented in thef integration.

Since x and y have signs, the product dm-xy may be positive
or negative, and hence a product of inertia may be (unlike a

moment of inertia) negative or zero.

260. Principal Axes.—It can be proved that through any
point of a body there are three mutually rectangular axes with

respect to two of which the moments of inertia are greater and
less than with respect to any other axis through the point. The
three axes are called the principal axes of the body at that point.

The condition that a line may be a principal axis of a body

at some point of its length is that / dm-xz and / dnt-yz equal

zero, the line being regarded as a 2 axis and the point as origin.

(Proof must be omitted.) It follows from the foregoing that

( 1 ) An axis of symmetry of a homogeneous body is a princi-

pal axis at every point of it.

(2) Any line perpendicular to a plane of symmetry of a homo-

geneous body is a principal axis at the point where it pierces that

plane.

§11. General Principles.

261. The Effective Forces.—Each particle of a rotating body
revolves in a circle whose plane is perpendicular to the axis of

rotation; therefore the acceleration of, and hence the effective

force for, each particle has no component along the axis.
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Let the irregular outline (fig. 196) represent a rotating

body, the axis of rotation beiiig perpendicular to the plane
bf the figure at 0, and P any par-

ticle; also let

dm denote the mass of P
;

r its distance from the axis
;

a
"

acceleration;

a the angular acceleration of the

Fig. 196. body;
oj its angular velocity.

Then the effective force for P is dm -a, its direction being the

same as that of a and the tangential and radial components of

the force are respectively (since at = ra and an = rco'^, art. 216)

dm-ro: and Am-rco^.

262. Moment of the Effective System.—Of the two compo-
nents of the effective force for any particle, only the tangential
one has a moment about the axis

; hence the sum of the moments
of the effective forces is

/ {dm 'ra)r= a
I
dm -r^ = la^

I being the moment of inertia of the body with respect to the

axis of rotation.

263. Equations of Motion.—According to D'Alembert's prin-

ciple, the sums of the moments of the external and effective forces

are equal. Hence if IM denotes the sum of the moments of the

external forces about the axis for any instant,

i'M = Ia, (i)

a being the angular acceleration of the body at that instant .

This is the equation of motion of the body.
As shown in art. 239 the sum of the components of the effec-

tive forces along any line equals the product of the mass of the

body and the component of the acceleration of the mass-centre

along that line. We wish this sum for three lines, the tangent,

the normal to the path of the mass-centre at the mass-cen-

tre, and the axis. These sums are respectively

mat = mra, mdn= mraj^, and o,
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wherein m denotes the mass of the body;
at the tangential accel 3ration of the mass-centre

;

a„
" normal acceleration of the mass-centre;

r
"

distance from the mass-centre to the axis.

If 2T, IN, and I-A denote the algebraic sums of the compo-
nents of the external forces along the tangent, normal and axis

respectively, then according to D'Alembert's Principle,

i'T = mra:, i'N = mra;^ i'A = o. . . . . (2)

These equations may be called the equations of motion of the

mass-centre, since they involve terms depending on its motion.

However, they are useful not to determine motion but especially

to determine forces when the motion is known.

264. Resultant of the Effective System.—It is assumed in this

article that the rotating body is homogeneous and that it has a

plane of symmetry perpendicular to the axis of rotation. Then
the axis of rotation is a principal axis of the body where it pierces

the Diane of symmetry (art. 260).

Imagine the body divided into elementary rods parallel to

the axis of rotation and then one of these rods into elementary

portions of equal length. These portions have at any instant

the same acceleration, and hence the effective forces for them are

equal and have the same direction. It follows that the resultant

of these effective forces is a single force whose action line is in the

plane of symmetry. The effective forces for all the rods there-

fore constitute a» coplanar system, its plane being the plane of

symmetry. The resultant of a coplanar system of forces is in

general a force, and in special cases a couple (arts. 44 and 45);
we proceed to determine these.

Let fig. 197(a) represent the plane of symmetry of a body
perpendicular to the axis of rotation, the intersection of the

axis and the plane, and C the mass-centre. Also in addition to

the preceding notation let

k be the radius of gyration of the body with respect to the axis;

athe acceleration of the mass-centre;

R denote the resultant effective force;

Rt its tangential component (_L to OC) ;

Rn
" normal component (||

to 0C)\
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According to art. 263 the sums of the components of the effec-

tive forces along and perpendicular to OC equal respectively

fnan= mrio^ and mat = mra. Therefore the components of the

resultant effective force and the force itself are given by

R< = mra:, R„= mfit>2^ R = ma,

and the direction of R is the same as that of the acceleration of

the mass-centre (a).

The action line of the resultant cuts the line OC at a point Q
whose distance from is k^/r. This may be proved as follows :

Imagine th^ resultant force to be resolved into its two compo-
nents {nira and mrop) at Q. The moment of the force about O
equals {mra)q. But the moment of the force equals the sum
of the moments of its components, and this was shown in art.

262 to be Ia\ hence mraq = Ia, or

q = k^/f.

Three Special Cases.—(a) The angular velocity is constant,

a = o. The resultant effective force equals mrco^, acts toward

the axis and through the mass-centre (see fig. 1976).

(b) The axis of rotation contains the mass-centre, ? = 0. The
resultant force equals zero, but g=» , i.e., the resultant is a couple
and its moment is la (see fig. 197c).

(c) The axis contains the mass-centre and the angular accel-

eration is zero. The resultant vanishes completely.*

* It can be shown that the resultant of the effective system is a force

or a couple whenever the axis of rotation is a principal axis of the rotat-
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265. Centripetal and Centrifugal Force.—When the resultant

of the effective system is a single force, that of the external sys-

tem is also a single force, and these resultants are identical;

hence if C denotes the component of the latter resultant along
the line joining the centres of rotation and mass,

C=mfw2=mv2/r.

The component C of the external forces acting on the rotat

ing body is called centripetal force and the reaction correspond-

ing to it is called centrifugal force. Observe that the first is

exerted on the rotating body by other bodies and the second hy
the rotating body on the others, and that the centripetal force

acts from the mass-centre towards the axis of rotation and the

centrifugal in the opposite direction.

§ III. Applications.

266. Determination of the Motion.—If all the external forces

which have a moment about the axis of rotation are given for

any instant during the motion, the angular acceleration of the

body at that instant can be computed from the equation of

motion (art. 263). If the acceleration can be thus determined

for each instant and the initial conditions of the motion (i.e., the

angular velocity and the position of the body for any one instant)

are also given, the motion can be completely determined.

EXAMPLES.

I. A body whose moment of inertia is I is made to rotate

about an axis through the mass-centre by a constant force P
applied to a cord wrapped about a cylindrical portion of the

ing body at some point of the axis, and that, in this case, all the results

of art. 264 hold if fig. 197 represents a section of the rotating body
perpendicular to the axis of rotation, O the point where the axis is prin-

cipal, and C the projection of the mass-centre on the section.
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body, as shown in fig. 198. Determine the motion, neglecting

^^^^^^^
axle friction and* supposing that the angu-

X ^^N lar velocity and the position of the body at a

/ / ^ I certain instant are known.
/ I o

-ji

\ Solution : The external forces on the body
\ \^^^ J are P

,
its weight, and the reactions of the

^•^^-^--'''^ supports on the axle. Of these only P has

a moment about the axis, hence the equa-
^* ^^ '

tion of motion becomes

Pr= Ia or a=Pr/I (i)

This equation shows that the angular acceleration is constant,

and for a given "turning moment" (Pr) applied to different

bodies, their angular accelerations are inversely proportional to

their moments of inertia with respect to the axes of rotation.

Let the position of the body be specified by means of the

angle which a fixed line of it makes with a fixed reference line

as in art. 209, and suppose that when P begins to act the angle

is zero and the angular velocity {oj) is also zero. Since a=dio/dt,

dco = {Pr/I)dt or oj = {Pr/I)t+C,.

If time is reckoned from the instant when P begins to act, aj = o,

when /= o. Substituting these values in the last equation we get

= + Ci, or Ci = o,

and hence aj = {Pr/I)t (2)

Since co = dd/dt,

dd = {Pr/I)tdt, or d = h{Pr/I)t^-\-C^.

Now d = o when t = o, and these values substituted in the last

equation give
= + C2, or ^2 = 0,

and hence d = i{Pr/I)P (3)

'-'- 2. Suppose that the body in ex. i is a right circular cylinder

of cast iron (weight 450 Ibs.-per-cu.-ft.) 4 in. thick and 2 ft. in

diameter, and that P is applied at the rim, its value being 6 lbs.

Determine the acceleration. Ans. 0.82 rad./sec.^

3. Suppose that at a certain instant the wheel of ex. 2 is

rotating at 20 rev.-per-sec. in the counter-clockwise direction.
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What is its velocity 10 sees, later, P acting upon the wheel dur-

ing that time?

4. Solve ex. i, supposing that a body whose weight is T^ is

suspended from the cord wrapped around the drum.

Solution: Let T represent the tension in the cord. This is

the force replacing P of ex. i, and the equation of motion for the

rotating body is

Tr^Ia . . . (i)

This contains two unknowns T and a; to determine them we
write next the equation of motion for the suspended body. The
external forces on it are T and W, and as its acceleration is

downward the resultant force on it is down, i.e., W is larger

than Ti hence

W-T = (W/g)a . (2)

a being the acceleration of the suspended body. These two

equations contain three unknowns, T, a, and a, but we have

the following additional relation :

a = ^« , • (3)

From these three equations we find that

Wg Wg/r^
W+mgk'/r'

^^"^ ""

W+mgk'/r^'

m denoting the mass of the rotating body and k its radius of

gyration with respect to the axis of rotation. The equations
also determine the value of the tension

;
thus

T = W-W'/(W-\-mgk'/r^).

5. Suppose that a wheel rotates about a horizontal axis "out

of centre" as represented in fig. 199, and that the only external

forces on the wheel are its own weight and
the reaction of the supports •(no friction). y^ "'^^^
The angular velocity when C is directly to / /^\
the right of O being given as coq counter-

[ -^^ \q \

clockwise, determine the angular velocity of \ o
'—

/
—

the wheel in any position. \ ,
/

Solution: The equation of motion is
'^

-M^cos d = Ia=Id'd/dt\
^'''- '99.
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and integration of it gives

from which oj can be computed for any value of d.

7 6. Solve ex. 14 art. 245 taking into account the mass of

the pulley (then the tensions on opposite sides of the pulley are

unequal) ,
its radius of gyration with respect to the axis of rota-

tion being k, its radius r, and its weight W .

Ans a = ^=— ^

Wk^-^iW^ +W^y
7. Solve ex. 15 art. 245 taking into account the mass of

the pulley, its radius of gyration with respect to the axis being k,

its radius r, and its weight W.
8. Solve ex. 16 art. 245 supposing that ^ = V7/9 ft., r=i\

ft., 1^=144 lbs., and ^ = 32.

9. Fig. 200 represents a tub floating upside down. Two
cords are wrapped about the tub in opposite directions and lead

off in parallel directions over pulleys as shown, and sustain

hodies W and W. Discuss the motion of the tub under the

influence of the suspended bodies and the fluid frictional resist-

ance which assume to be proportional to the velocity.

flwl
Fig. 200.

Solution : Let 6 denote the angular distance described by the

tub in any time t after starting, oj the angular velocity, and a

the angular acceleration. Let F denote the frictional resistance

at any instant; then since it varies as the velocity, F^cco, c

being a constant depending on the liquid, diameter of tub and

extent of the wetted surface. Let T denote the tensions in the

cords, evidently the same at any instant, but not constant in

time. Also let / denote the moment of inertia of the tub with

respect to the axis of rotation, 2r its diameter, m and W the

mass and weight of the suspended bodies, and a their accelerq

tion.
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The equations of motion for each suspended body and the

tub are

W—T=ma and 2Tr— 2Fr= Ia.

Combining these with a = ra, we get

{I -\-2mr'^)a-\-2rcaj
= 2Wr,

and abbreviating, we have as the equation of motion

^w+^-=^ (')

The first integration of this gives

=By~^~/' (^^

C
B

(O

and the next

= ~U+b' b)
(3)

10. Plot a curve showing how the angular velocity changes,

taking A, B, and C as 2, 5, and 10 respectively.
11. Suppose that there are no cords and suspended weights

and that the tub is given an angular velocity co^. Discuss the

motion of the tub under the influence of fluid friction.

AnS. (0 = COnS
-bt

(b being equal to 2 re//).

267. Pendulums.—A body which rotates about a horizontal

axis under the influence of its

weight and the reaction of the

support is called a compound
or physical pendulum. Let fig.

201 represent a section of such a

pendulum perpendicular to the

"axis of suspension" and through
the mass-centre C. Let O be the

intersection of the axis of suspen-
sion and the section, and let

a denote the distance OC
;

k the radius of gyration with re-

spect to the axis of sus-

pension ;

T ** time of one oscillation (from one extreme position to the

other) ;
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e the angle XOC;
6
1

** maximum value of ^;

W ''

weight of the petidulum ;

m its mass.

We regard the counter-clockwise direction as positive and as-

sume that the support is frictionless, or has no moment about

the axis of suspension. Then the equation of motion becomes

'^Wasmd=mk^a=mkWd/dt\

or d^d/dP=-(ag/k^) ^ind (i)

The complete integration of eq. (i) is expressible by an infinite

series, but it is not here given because we wish the value in a,

special case which admits of a simple approximate integration.

We will assume that the amplitude of the oscillations (d^) is

so small that practically sin d = d; then eq. (i) becomes

d'd/dt'=-{ag/k')d, (2)

the first integration of which gives

{dd/dty= -{ag/k^)d^ + C^.

Now when 6 = 6^, dd/dt = o\ therefore substituting these values

in the last equation we find that

o==-{ag/k^)d^ + C,, or C, = {ag/k')d,\

and (dd/dt)=±(ag/ky{d^-d')K .... (3)

The plus or minus sign is to be used according as dd/dt is posi-

tive or negative, i.e., according as the pendulum is swinging in the

positive or negative direction. The integration of eq. (3) gives

sin-^ (d/d,)
= ±(ag/kyt + C,.

Now if we reckon time from, the instant when the pendulum

passes through its lowest position, i.e., ^ = when ^ = 0, the last

equation becomes for these values

sin~^ (o)=o + C2; hence 6*2
= 0.

If when t=o the pendulum is moving in the positive direction,

or e=e,sm{V^^i) )

"^
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This equation is analogous to that for a simple harmonic motion

(see art. 179), iand hence the motion of a pendulum is often

called "a simple harmonic oscillation."

The time of an oscillation can be found from eq. (4). Let

/j and ^2 denote the values of t when the pendulum is in its high-

est positions on the right and left respectively. Then when
i =

tj^,
d = di, and when t =

t2, it can be shown that d= —0^, hence

t^
= \/k^/ag sin~^ I ==i7:Vk^/ag,

and ^2
= ^k^/ag sin" ^(

— i )
=
j7t\/k^/ag,

or T^Wk^ag* (5)

This expression for T being independent of d, shows that the

time of oscillation of a pendulum is the same for all values of ^^ ,

provided that it is so small that sin 0^ practically equals 0^.

The point Q (in OC) whose distance from O equals k^/a

is called the centre of oscillation and the line through it parallel

to the axis of suspension is called the axis of oscillation . The

following is a simple geometrical construction for locating the

centre of oscillation: Let O (fig. 202) be the centre

of suspension and C the mass-centre
;
then OC = a.

Let k denote the radius of gyration of the pendu-
lum with respect to a central axis parallel to the

axis of suspension and lay off CK equal to k; join

O and K and draw KQ perpendicular to 0K\ then

Q is the centre of oscillation. For

CK^^OC-CQ, or CQ = kya,

hence 6Q = a +kya = {a'' ^k^)/a = kya

(seeeq. (2), art. 256).

Fig. 202.

*
Experimental Proof that the Masses of Bodies are Proportional to their

Weights at the Same Place.—The expression for the time of oscillation of

a pendulum was deduced on the assumption that mass is proportional to

weight, for we substituted g for W/m in deducing eq. i. If this substi-

tution is not made eq. (5) becomes T=Tik\/m/aW.
Now take two pendulums, each consisting of a sphere suspended by

means of a light cord, the lengths of the cords being the same; also, to

make the air resistances the same, the spheres should be equal in size.

Next, compare their times of oscillation; it will be found that they are

equal. Call this time 7', and the weights and masses of the pendulums
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By length of a compound pendulum for any given axis of sus-

pension is meant the distance from that axis to the centre of

oscillation. It is shown in the next paragraph that this is the

length of an equivalent "simple pendulum."
A simple or mathematical pendulum is an ideal one consisting

of a particle suspended by means of a massless cord. Evidently
this is a special form of the physical pendulum, and the preced-

ing discussion applies. Let / equal the length of the cord, then

for the simple pendulum
k = a = l, or k^/a= lf

hence T=WI/g (6)

EXAMPLES.

I. A "seconds pendulum" (one whose time of oscillation is

one second) is found to be 39.12 in. long at a certain place.

What is the value of g at that place ?

u 2. Show that the "axes of suspension and oscillation are in-

terchangeable," i.e., that the times of oscillation are the same
whether a pendulum oscillates about or about Q.

3. Show that on any line OCQ there are four points or axes

about which the pendulum will oscillate with the same time T.

4. According to the law of gravitation (art. 87) the attrac-

tion of the earth and hence the acceleration due to it varies in-

versely as the square of the distance from the earth's centre.

Or if gj and gj denote the accelerations at two points whose dis-

tances from the centre are r and r+e respectively,

gi/g2
=

ir+ ey/r\

Show that if T^ and Tj are the times of oscillation of a pendulum
at the two places respectively, approximately

? TJTz^i-e/r, and e = r{i~TJT^),

Wj and Wj, and m^ and m^, respectively. Evidently k has the same
value for the two pendulums; also o. Hence the equation above be-

comes for the two pendulums

T=-7zkVmJaWi and T ^nk'VmJaW^
or Wi/w2 = Wi/T^2-

This is practically the method employed by Newton; he used hollow-

wooden spheres containing gold, silver, lead, glass, sand, common salt,

wood, water, and wheat.
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268. Torsion Balance.—When a torsion balance (see art. 258)
is displaced through a small angle (the "pan" being rotated

about the wire), the moment of the couple required to produce
the displacement is proportional to the displacement. Thus if

M and M' denote two values of the displacing couple and
and d' the corresponding displacements

M/M'_=^d/d', or M= Cd,

C being an abbreviation for M'/O'.

The wire exerts upon the pan in any displaced position a

couple whose moment is equal but opposite in sign to that of

the displacing couple.

Imagine the pan displaced an amount 6^, and then released;

it will oscillate under the influence of the couple which the wire

exerts upon it. If / denote the moment of inertia of the pan
(and its contents if any) with respect to the axis of the wire,

then the equation of the motion is

-Cd = Ia, or dW/dt^-={-C/I)d (i)

This is analogous to eq. (i) art. 267, therefore its solution is

left to the student. He should find that the time of oscillation

{T) is given by
r= 7rN/77C. . . . . ^ . (2)

269. Conical Pendulum.—A conical pendulum consists of a

body suspended from a fixed point by a cord and so that it can

be made to rotate about the vertical axis

through the fixed point (see fig. 203). The
motion might be caused and maintained by
means of a vertical board rotating about

the axis and pressing laterally against the

suspended body. We wish to determine

the relation between the angular velocity

{oj) of the body when constant and the
**

height" Qi) of the pendulum.

Let P. denote the tension in the string; Fig. 203.

W the weight of the body;
m its mass;

\ R the pressure of the board against the body;
n the revolutions per unit time.
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Then neglecting air resistance, eqs. (2) art. 263, become

IT=R = o

IN=P sincj)
= mroj^ =ml sin ^'aj\ • ,

J'^=P cos ^-1^= ,

(I)

(2)

(3)

Hence h=g/(o^
=

g/47i^n^, and cos ^=g//a;^=g//47rV.*

EXAMPLE.

Suppose that the weight of the rotating body (fig. 203) is

10 lbs., that it makes 100 rev.-per-min. and / is 15 in. What
are the values of h and P?

270. Weighted Conical Pendulum Governor.—This consists

of three heavy bodies, A, B, and C (fig. 204), connected by light

links as shown, the whole system

being supported at D and revolv-

ing about a vertical axis AD. We
wish to determine the height {h)

for a given angular velocity (co).

Let Pj denote the force exerted on

B by BD;
P3 the force exerted onBhyBA :

W "
weights of B and C;

Wi
"

weight of ^.

Then the forces exerted upon A
and B are as shown in fig. 204(6).

Eqs. (2) art. 263 for A become

lA = 2P2 cos ^-Wi^o, (i)

and for B,
Fig. 204.

IN= Pi sin ^ + P2 sin <^
= (W/g)l sin ^ •

co^,

Hence

IA=PiCOs<f)

h-

P2 cos
(l)

—W= o.

(2)

(3)

2(W+Wi)g/W(o^ (4)

EXAMPLE.

Let W, = 10 and W = 8 lbs., and draw a curve showing how h

varies with the number of rev.-per-min.

*For any deflected position of the cord, cos 0<i; hence o)>y/^l
and n>y/g/l/27t. If w<\/g/l, or n<\/g/ljzn, the pendulum will not

remain in any deflected position however small. The time of one rotation

at the critical speed, n=\/g///2;r, is the same as the time of one complete
vibration of the bob as a simple pendulum (see page 268).



§nL] APPLICATIONS. 271

271. Kinetic Reactions.—Definition (repeated from art. 246).

—By the kinetic reactions upon any body is meant such com-

ponents of the forces acting upon it which depend upon its

acceleration. The determination of kinetic reactions of rotat-

ing bodies is illustrated in the solution of some of the follow-

ing

EXAMPLES.

I. A cubical box, into which a sphere just fits without pres-

sure, is made to rotate about a ver- W|

tical axis, as shown in fig. 205.

Determine the kinetic reactions on

the sphere when the angular ve-

locity and acceleration are a> and

a respectively.

I

Solution: Let Ri denote the ILJx
%

pressure of the bottom of the box,

R^ that of the outer side, and R^ Fig. 205.

the third one. Evidently the latter acts as shown if the accel-

eration is counter-clockwise. Equations (2) art. 263 become,
if W and m denote the weight and mass of the sphere respec-

tively, and V the velocity of the mass-centre,

IT=R3 = inra,

2N= i?2
= ^ro)'^ = mlP/r,

IA=R,-'W= o, or R, = W.

These show that R2 and R^ are entirely kinetic and that R^ is

static.

• 2. Let r= 15 ins., W=io lbs., and suppose that the angular

velocity increases every second by 2 rev.-per-sec. Determine

the kinetic reactions when the angular velocity is 10 rev.-per-
min.

3. A body rests upon the floor of a car which moves in a

horizontal circular curve of radius r with a constant speed v.

Determine (i) the kinetic reaction on the body and (2) the

direction of the resultant pressure of the body on the floor.

Ans. (2) Inclination to the vertical, tan~^(z;V^^).
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4. A body is suspended by means of a cord from the ceiling

of a car which moves in a horizontal circular curve of radius r

with a constant speed v. Determine the direction of the sus-

taining cord and the tension in it.

5, Fig. 206 represents a car on a tilted track. Suppose that

the track is a horizontal circular curve of radius r and that the

car moves with a constant speed v. Deter-

mine the kinetic reaction on the car and

the angle of tilt which makes the resul-

tant of the flange pressures
* zero.

Solution : Imagine each wheel pressure

resolved into three components, one par-

allel to the rails, one parallel to the ties,

and one perpendicular to the first two.

Call the sums of these components R\
R^'

,
and R'" respectively, and the resul-

tant of R'' and R''' R; also let P' and P" denote the pulls at

the front and rear of the car respectively, which assume to be

practically parallel.

Since the velocity of the car is constant, a==o and (see eqs.

(2) art. 263),

IT =P'-P"-R' = o,

IN==R" cos (l>^-R'" sin (j)=mv^/r,

IA=R"' cos 4>-R" sin ^^-1^= 0.

These equations show that R' =P'-P"
and that R = {m^v'/r^ + W^)^.

If i^" (the sum of the flange pressures) equals zero

IN = i?'" sin ^ = mv^/r and IA = R"' cos^-W=o\

hence, combining tan (^
= 7;Vgr.t

*.By flange pressure is here meant the component of the pressure on

a wheel parallel to a tie of the track.

t This relation makes the sum of the flange pressures, but not each one

necessarily, equal to zero. It has been discovered experimentally that if

the wheels are coupled together in fours as usual, the front outer wheel

always experiences a flange pressure.



III.] APPLICATIONS. 273

These results can be reached graphically a little more simply
as follows: Since R'

,
P'

,
and P" are in equilibrium, R and W are

equivalent to the effective force for the car, i.e., the resultant

of R and W is identical with the resultant effective force. So

draw from C a line Cc to represent the resultant effective force

mroj^= niv'^/r, a line Cw to represent W^ and complete the par-

allelogram Cwcr. Then Cr represents R, and from the figure it

is seen that R equals the value given in the foregoing. In order

that R may have no component along the tie, i.e., R" = o^

the angle Crc must equal 0, or

tan ^ = Cc/cr = {mv^/r)/W,

272. Weight of a Body as Influenced by the Earth*s Rotation.—
Let fig. 207 represent a meridional section of the earth, ON being
the polar axis. Imagine a body resting on

the surface at A or suspended by means
of a cord. The forces acting upon the

body are two in number, the attraction of

the earth (P) ,
and the reaction of the sup-

port or the pull of the cord (Q). P is

directed somewhat as shown; let its mag-
nitude be represented hy AB. Q is not

collinear with P (except at the equator or

pole) because the resultant of P and Q
must be directed the same as the resultant

effective force for the body; the direction

of this is AD fthe radius of the path oi A).
Let R denote the resultant effective force (also the resultant

of P and Q), m the mass of the body, a> the angular velocity of

the earth, and r the radius of the path of .4
;
then

R = mr(o^,

and if AD represents R, the side ^C of the parallelogram drawn
on ABD represents Q. It follows from the figure that

Fig. 207.

or,

P^ = Q^+R^ + 2QR cos
(j),

Q = P\/i-sin2 ct>{R/Py-R cos
<1>. (I)
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It is shown in ex. i below that R/Pis less than 1/289; hence,

approximately ,

Q =P—R cos
(l)
= P—mroji cos

(j) (2)

Q or its opposite is the force which we actually measure by
spring- or beam-balance and call the weight of the body. It

may be called "apparent weight" to distinguish it from the

attraction P, or "real weight." Eq. (2) shows that the apparent

weight is always less than the real, and that the difference de-

pends on r cos 0.

Notice that
<j)

is the latitude at A , since it is the angle made

by the plumb line at A with the equatorial plane. Since R
(==mrco^) is equal to the centrifugal force of the body, the rela-

tionship in eq. (2) is sometimes expressed thus: "The weight
of a body is diminished by the product of its centrifugal force

and the cosine of the latitude."

EXAMPLES.

1. Show that at the equator the difference between the real

and apparent weights of a body is about 1/289 of the apparent

weight.

Solution: From eq. (i), since sin ^ = at the equator

(P-Q)/Q =R/Q = ntr,coyQ,

Tq denoting the equatorial radius. Now ni/Q = i/g, g denoting
the acceleration due to gravity at the equator as measured ex-

perimentally, i.e., g is also "apparent"; hence

{P-Q)/Q = r,a>yg.

Now oj = 27:/t, where / denotes the time of one revolution of the

earth; and since / = 86,i64 sec, ro
= 20,920,000 ft., and 0^

= 32.09

ft./sec. ^, r(ja>Vg
= 0.003467 = 1/289.

2. Show that if the earth rotated 17 times as fast as it does»

then the apparent weight of a body at the equator would be

practically zero.

273. Centrifugal Hoop Tension.—Imagine a hoop to lie upon
a horizontal table which rotates about a vertical axis through
the centre of the hoop. The tension which exists at each cross

section of the hoop is called "centrifugal hoop tension"; we
now deduce an expression for it.
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Fig. 20

Let fig. 208 represent one half of the hoop. The forces act-

ing on this half consist of its weight, the reac-

tion of the table, and the forces exerted by the

other half, i.e., the hoop tensions at the two

sections. Since the first two forces balance

each other, the resultant of the remaining two

must equal the resultant effective force. Hence

if m denotes the mass of one half of the hoop,
r the distance from the axis to its mass-centre,

oj its angular velocity, and P the hoop tension,

2P = mroj^, or P=-^mraj^.

EXAMPLE.

Let r denote the radius of the hoop and w its specific weight.

Regard the tension at a section as uniform (practically true

when the thickness is small compared to the radius), and show
that the intensity of the hoop tension equals wr^o//g.

274. Hinge Reactions.—Rotating bodies often turn (a) about
a fixed shaft or (b) with a shaft in fixed bearings. The force

exerted by the shaft on the body in the first case and those

exerted by the bearings on the shaft in the second will be called

hinge reactions. Determination of hinge reactions in the fol-

lowing is limited to cases in which the rotating body has a plane
of symmetry perpendicular to the axis. Then the resultant of

the effective system for the body consists of a single force (see

art. 264).

Case I. Rotation about a Fixed Shaft.
—We assume that the

applied forces are such that the hinge reaction is equivalent to

a single force which call R. Let fig. 209 represent a section of

the rotating body through the

mass-centre (C) and perpendic-
ular to the axis (O). Imagine
R resolved into three compo-
nents, one parallel to OC* one

parallel to the axis, and one per-

pendicular to OC and the axis,

and denote them by Rn, Ra (not shown), and Rt respectively.
* If the mass-centre is in the axis the direction of OC may be taken

any way perpendicular to the axis.

Fig. 209.
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Let IFn, ^Fay and IFt denote the algebraic sums of the com-

ponents of all applied forces (^'.^., all the external forces except the

hinge reaction), parallel to Rn, Ra, and Rt respectively. The

components of the resultant effective forces parallel to these

same directions are mrcu^, o, and mray acting as shown in fig. 209.

Since the external forces and the reversed effective forces are

in equilibrium (art. 238),

or Rt =mra — JFt,

or Rn = nirw^ — IFny
or Ra=— 2Fa.

These equations show that Ra has no kinetic component, and

that the kinetic components of Rt and Rn equal zero if r = o,

i.e., if the mass-centre is in the axis and if, as was assumed at

the outset, the body has a plane of symmetry perpendicular

to the axis.

Case II. The Body Rotates about a Shaft in Bearings.
—We

assume that there are two bear-

ings whose reactions call R' and
R". Let A and B (fig. 210) be

the bearings, and the parallelo-

gram the plane of symmetry of

the body.

Imagine R' and R" (like R,
Case I) resolved into three com-

ponents, and extend the nota-

tion of that case to the present

one. Also let IMt and IMn
denote the moment sums of the

applied forces {all the external

forces not including R' and R") with respect to the lines marked

Ot and On respectively. Then as all the external forces and

the reversed resultant effective force are in equilibrium,

R/+Rt" + IFt = mra,

Rn'+Rn' + ^Fn = mraj\

Ra'+Ra'' + ^F, = 0,

Rn"V'-Rv!l'-\-IMt = o,

Rt'V-Rt"V' +IMn = o.

Fig. 210.

These follow also from eqs. (2), art. 263.
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From these equations we find that

R/l = {mra - IFtW - ^Mn,
Rn'l = (wra>2

- IFn)l" + ^Mu
R/n = {m?a - IFt)V + IMn.

. Rn''l=-(m?co^-IFn)l'-IMty
R f^R " ^ -IF .

These equations show that the kinetic components of the hinge

reactions are zero if r =0, i.e., if the mass-centre is in the axis,

and if, as was assumed at the outset, the rotating body has a

plane of symmetry perpendicular to the axis of rotation. An
axis of a body for which the kinetic components of the hinge

reactions are zero is called a "free axis." It can be shown that

the three central principal axes of any body are free axes.

EXAMPLES.*

I. Suppose that in ex. 5 art. 266, W=ioo lbs., /=io (gee-

pound-foot units), ? = i/2 ft., and coq
= 4 rad.-per-sec. Compute

the hinge reaction when C is directly to the right of O.

Solution: According to the solution of ex. ^—
5, the angular acceleration in the position un- /^

j

\.

der consideration is —
5 rad.-per-sec.-per-sec. ( ^ S

Hence (see fig. 211) r
—^

i?f -100= —(100/32. 2)-^-5, or Rt = g2.2 lbs. \

i?n = (ioo/32.2)-^- 16 = 24.8 lbs. \,

I 2. Determine the hinge reactions in ex. i,
•^^^- ^^'^^

when C is vertically above 0, below O, and to the left of O.

V, 3. Suppose that the wheel of the preceding example revolves

about a vertical axis with a constant angular velocity of 4 rad.-

per-sec. Determine the hinge reaction in any position of the

wheel, AO and OB (see fig. 210) being 5 inches. -^^^ -. ;:
c

-

* The student is advised not to use the foregoing formulas, but to

proceed as follows: (i) Determine the resultant effective force for the

rotating body in the position under consideration, remembering that the

normal component acts from the mass-centre toward the axis and the

tangential component in the direction of the tangential component of

the acceleration of the mass-centre. (2) Write the conditions of equi-

librium for the force system consisting of that resultant reversed and all

the external forces (including the hinge reactions) . (3) Solve.



278 ROTATION. [Chap. XII.

4. Determine the hinge reaction on the rotating body de-

scribed in ex. 2, art. 266. "^i ^ P a> - -

5. Imagine the rotating body of*fig. 210 to be a parallelo-

piped whose weight is 90 lbs., and

whose radius of gyration with

respect to a central axis parallel
to the axis of rotation is 7.84 in.,

that /' = /" = 18 in., and OC=i in.

Suppose that the body is rotated

by means of a couple applied to a

thin disk (mass negligible), as

shown in fig. 212. Determine the

hinge reactions when the motion is

about to begin {10
=

0).

Solution: The masses of the

suspended and rotating bodies are

respectively

90/3 2.2 = 2.79 geepounds.

The moment of inertia of the rotating body about the axis of

rotation is

Fig. 212.

48/32.2 = 1.49 and

2.79 (7.84/12)2 + 2.79 (1/12)2 = 1.21 (geepound-foot units).

Hence the equations of motion of the suspended and rotating
bodies are respectively, T denoting tension in the cord,

48 — r=i.49a, T- 1.21a

and since here a = a/2, we find from the equations that a.-^ tj^.^

rad.-per-sec.-per-sec.

The components of the resultant effective force are

w7a = 2.79 XtV"X 24.5
=

5-68 and o,

and act as shown in the figure. Since the reversed resultant

effective force and the external forces are in equilibrium, we
next write as many conditions of equilibrium for that system
as are necessary to determine the unknowns. Thus, for the

action line of R/' as moment axis.

i^n'- 3— 90-1/12 = 0, or i?„' = 2.5 lbs.,
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for the action line of Rn" as moment axis,

7?/. 3-5.68-14 = or i^/ = 2.84lbs.;

and since i?/+i^/' = 5.68 and i?„'+i?n" = o,

i^/' = 2.84 and 7^,/'= -2.5 lbs.

From the
"
axis resolution equation"

RJ'-go = o, or /?/' = 9olbs.

6. Determine the hinge reactions when the body has rotated

through 90°, 180°, 270°, and 360", and record your results in a

tabular form as follows:
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In the following we consider only rotation at constant speed

(a = o), and rotating systems consisting of one or more bodies

which have planes of symmetry perpendicular to the axis. Then
the resultant effective force for each rotating body is a force

whose action line is in that plane and passes through the mass-

centre and the axis, and whose magnitude is mroj^ {m denoting
mass of the body, r the distance of its mass-centre from the axis,

and oj the angular velocity of the system).
Since the centrifugal force which each rotating body exeits

upon the shaft is equal and opposite to the resultant effective

force for the body, balance is effected if the centrifugal forces

(or the reversed effective forces) for all the rotating bodies are

in equilibrium. This is the usual view of balancing and we shall

follow it.

For convenience we will write r instead of r and will often

say
"
body" instead of

"
mass-centre of a body." We will also

denote both a body and its mass by m.

276. Balancing Bodies whose Mass-centres rotate in the Same
Plane.—Let m^, Wo, and m^ (fig.

213) represent three bodies whose
common centre of rotation is O.

^^ Their centrifugal forces equal

respectively

m^r^oj^, m^r^cx)^, m^r^uj^y

' ^^^' their directions being from O to

the mass-centre of the rotating body in each case.

Let AB, BC, and CD represent the magnitudes and directions

of the three centrifugal forces. Then a fourth force acting

through O, which would close the force polygon ABCD, would

balance the three centrifugal forces. This fourth or balancing
force can be supplied by adding to the system of rotating bodies

a fourth one whose centre of rotation is 0, whose mass-centre is

in the direction DA from 0, and whose distance from the axis

(r) and mass (m) are such that

wra>^ = Z).4 (by scale), or mr = DA/oj^.

It will be noticed that a; is a common term in the forces rep-
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resented by the lines of the force polygon. Hence, if the poly-

gon for the centrifugal forces closes, it will also close for forces

parallel to them of magnitudes m^r^, Wjrj, etc.; so that \i ABy
BC, and CD are drawn parallel to the first three centrifugal

forces respectively but equal (by scale) to w^rj, ^2^3, m^r^, then

DA represents mr to that same scale.

277. Balancing Bodies whose Mass-centres Rotate in Different

Planes.—In general such bodies cannot be balanced by adding
to the rotating system a single body. It will now be shown

that any rotating system can be balanced by adding two bodies

which rotate in any selected planes.
A Single Rotating Body.—Let m denote the mass of the

given body, r the distance from its mass-centre to the axis, co

the angular velocity, and O (fig. 214a) its centre of rotation.

1^-

4m { 4m

1 bI _£
't^ -ir p^far ^u ^

Fig. 214a.

Also let A and B be the selected centres of rotation of the two

balancing bodies, m' and m" their masses, and r' and r" the

distances from their mass-centres to the axis as shown.

The centrifugal forces of m, w', and m" are mro?, m'r'u?^

and m"r"u? respectively. In order that they may be in equi-

librium,

(i) The plane of the mass-centres of the three bodies must

contain the axis of rotation, and

(2) The algebraic sum of the moments of the three forces

about any point in their plane must equal zero
;
hence

m'r' = mrhlc and m"r" = mra/c.

(Notice that it is not necessary to use units of a kinetic

system in these equations ; any unit of length and unit of mass

may be used. Generally the foot and pound, or inch and

pound, will be most convenient.)



2^2
"

ROTATION. [Chap. XII.

From these two equations we can compute m'r' and m"r" in

terms of the given quantities, m, r, a, b, and c; we may arbi-

trarily select either of the factors in w'V and m^V" and then com -

pute the remaining two.

Two cases may be distinguished: (a) the balancing bodies

are on opposite sides of the given body; (6) they are on the

same side of it. Condition (2) requires in each case that the

middle one of the three bodies (w, m', and m") shall be alone

upon one side of the axis and the outer ones together on the

opposite side of the axis.

Any Number of Rotating Bodies.—Let m^, Wj, m^, etc.,

denote the masses of the given rotating bodies, and let the

centres of rotation of the balancing bodies be denoted by A and B.

By the method just explained, determine two bodies, m^' and m/'
rotating about A and B respectively which will balance m^;
likewise two bodies W2' and m^' rotating about A and B re-

spectively which will balance ^2, etc. Then the given bodies

together with m/, m^^ . . . m/', mj", . . . would be "in balance."

Next compound the centrifugal forces of w/, mj', . . . and

determine a single body m' whose centrifugal force is equiva-
lent to that resultant; likewise compound the centrifugal

forces of w/', m/', . . . and determine a single body w" whose

centrifugal force is equivalent to that resultant. Then m'

and m'' are the two bodies sought.

EXAMPLES.

I. In the left-hand part of fig. 214(a), let w = 20 lbs.,

r=i^^ a = 6, and 6= 14 in. Determine the balancing bodies

w' and m'\

Solution: According to the equation under (2), page 281,

mV = (20 'IS* 14)720 = 210 lb. -in.

and
m'V" = (20-is-6)/2o= 90 lb. -in.*

If r' and r" are taken as 6 and 8 in. respectively, then

w' = 2io/6 = 35 and w" = 9o/8 = 11.25 lbs.

* It should be noticed that products like mr are moments of mass,
see arts. 227 and 228.
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^ 2. Solve the preceding example, but let the data refer to

the right-hand part of fig. 214 (a).

3. Let mi, w„ and m^ (fig. 2146) be three bodies on the

k—6^—H< -8^-

Potygon for /
forces at A /

/

/

)^

I

—5^

I M¥\J \

Fig. 214/J.

shaft AB, and determine two bodies rotating about A and B
which will balance them.

Solution: The data are arranged in the first five columns

f of the adjoining tabulation, 6 denoting the angles which the

"radii" of the different rotating bodies make with the vertical

plane through the axis of rotation, and a and b having the

I same meanings as in fig. 214 (a). The quantities in columns

6 to 12 were determined by the methods explained in the fore-

going text.

:
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rotating about B are 150;^, 36.4<w2, and 43.20;^; a"h"c"d'' is

their force polygon, and hence a"d" represent their resul;ant.

The angle which a^'d" makes with Vhe vjitical is 328° 40', and

the mass-moment represented by a"d" is 20.4 lb. -in.; hence a

single body of 3.4 lbs. fixed to the shaft with a radius of 6 ins.

in the position m" is the other one of the required balancing
bodies.

4. Move A of fig. 214 (6) to a point midway between 0^
and O2, and move S to a point 4 in. to the right of 0^\ then solve

the preceding example.

278. Pivot and Journal Friction.—Flat Pivot.—Let fig. 215(a)

represent the flat end of a shaft which is pressed or "thrust"

against a flat bearing and rotates. Let r denote the radius

of the end, N the thrust or normal pressure, and / the coeffi-

cient of friction for the rubbing surfaces.

Regarding the normal pressure as uniform, its value per unit

area is N/nr'^, and the normal pressure on any elementary
area as that indicated in fig. 215(a) is (N/nr^)pdOdp while the

friction on that area is / times that elementary pressure. The

moment of the elementary frictional force about the axis of

In 4p

(a)
-

C6)

Fig. 215.

the shaft is p times the force, and the sum of all such moments
Is

f(N/7:r')£ J"'p'dpde
= fNii

The resultant friction is not a force but a couple, and hence we ;

may regard the actual frictional resistance as a couple whose l

forces equal fN and whose arm is |r. J
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Conical Pivot.—Let fig. 215(6) represent a rotating conical

pivot which is pressed into its step by a thrust P directed along
the axis. let r denote the radius of the step, cj)

the angle shown,
and p the normal pressure per unit area regarded as constant.

The normal pressure on an elementary area dA of the bear-

ing is pdA and its vertical component is (pdA) sin ^. Since

the friction has no vertical component the sum of all the ver-

tical components of the normal pressure must equal P, hence

P = p sin (f)fdA =p sin ^'A= pnr^ ,
or

/?
= P/nr^.

Note that the normal pressure per unit area is independent of ^.
The frictional force on each element of area dA is j{P/nr'^)dA ,

and its moment with respect to the'axis is p times the force (see

the figure) ; hence the entire frictional moment equals

KP/Kr')fdA-p.

For simplicity take dA of such form that its horizontal projec-
tion equals pdpdd (see the figure), i.e., that (dA) sin <f>^pdpdd.

Then the above expression can be written

KPUr')csc4>fJ"p^dpde
=
f£-^'jr.

.

Journal Friction.—-In general it is not known how the nor-

mal pressure (and hence the friction) varies over the surface of

a journal. It is customary to compute the "axle" or "journal
friction

' ' from

F= f'R,

in which F denotes the value of a single resistance applied to

the surface of the journal whose moment about the axis is the

same as that of the actual frictional resistance, R the resultant

pressure between journal and bearing, and /' a coefficient of

journal friction.

The coefficient /' is determined from f = F/R, R and F hav-

ing been experimentally measured. The values of f and of /

(for pivots) depend on circumstances, as described below. They
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range from about 0.004 in the most favorable cases to about 0.08

in ordinary lubrication.

Friction of Lubricated Surfaces."^
—"

The laws which appear to

express the behavior of well-lubricated surfaces are almost the

reverse of those of dry surfaces." Thus the frictional resistance

(i) is almost independent of the pressure with bath lubrica-

tion . . .
;

(2) varies directly as the speed for low pressures . . .
;

(3) depends more upon the temperature than on any other

condition . . . ;

(4) with flooded bearings , depends but slightlyupon the nature

of the material of which the surfaces are composed...;

(5) of rest is enormously greater than the friction of motion... ;

(6) is least at first, and rapidly increases with the time after

the two surfaces are brought together. . . .

EXAMPLES.

v/ I. Show that the value of the frictional moment on a hollow

flat pivot is ^jN{r2^
—

r^^)/{r^
—

r^), r^ and fj denoting the inner

and outer radii respectively of the pivot.

2. Deduce an expression for the frictional moment on a

pivot formed of a frustrum of a cone, there being no pressure

on. the lower base of the frustrum. Use notation of fig. 215(6)

and call the radius of the step r^ and that of the end of the

pivot fi.

* Abridged and quoted from Goodman's "Mechanics Applied to En-

gineering." Chap. VII of that work is an extensive discussion of the

subject of Friction.



CHAPTER XIII.

ANY PLANE MOTION OF A RIGID BODY (RESUMED).

§ I. General Principles.

279. The Effective Forces.—Let fig. 216 be a section of the

moving body parallel to the plane of the motion, and P and P'

any two points of the body in that section.

Let a' denote the acceleration of P'
;

a the angular acceleration of the

body ;

(^ its angular velocity ;

r the distance P'P;
dm "

mass of the particle at P.

According to art. 220, the acceleration of P ^^^ ,

can be resolved into three components as

shown in the figure, one being the same as the acceleration of

P' and the other two being components of the acceleration of

P relative to P'. Therefore the effective force for the particle
at P can be resolved into three components whose directions are

the same as those of the three component accelerations, their

values being

dm -a', dm-ra, and dm-rw^.

In accordance with art. 221, all components like dm-a^ may be

called the translational effective forces and all those like dm-ra
and dm-rco^ may be called the rotational effective forces.

280. Moment of the Effective System.—The moment axis is

taken perpendicular to the plane of the motion and through any
point of the body. Let P' (fig. 217) be the point and P'X and
P'Y be two axes parallel to the plane of the motion and fixed in

direction. Now the moment of the effective force for the par-
,ticle at P equals the sum of the moments of its components ; the

287
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moment of dm-roj^ is zero, that of dm-ra is {dm'ra)r^ and that

of dm • a' equals the sum of the moments of its x and y compo-
nents {dm-ax and dm -ay) or —{dm-ax)y and (dm'ay)x re-

spectively. Hence the moment of the effective force equals

(dm •

ra)r-\-{dm
• ay)x

— {dm •

aj)y,

and the sum of all such moments (for all the particles of the

body) is

aJ dm
' r^+ ay'J dm

• x—
dx^J dm'y^

or la +may'x
—
max'y^

I being the moment of inertia of the body with respect to the

moment axis, x and y the coordinates of the mass-centre at the

instant for which the moment is computed.

Fig. 217.

This expression for moment simplifies considerably for two

special moment axes, as follows:

(a) If the moment axis contains the mass-centre, x and y are

zero, and the expression for moment reduces to la, I denoting
the moment of inertia with respect to that axis.

(6) If the moment axis coincides with the instantaneous axis

of no acceleration (the line all points of which have at the instant

no acceleration), a/ and ay are zero, and the expression for

moment reduces to la, I denoting the moment of inertia of the

body with respect to that axis.

281. Equations of Motion.—Let the motion of the mass-cen-

tre be referred to a set of fixed axes, x, y, and z, the last being

perpendicular to the plane of the motion ;
also let
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a^ denote the x acceleration of the mass-centre ;

ay the y acceleration of the mass-centre
;

IFx
" sum of the x components of the external forces;

IFy
" •* ** •'

y
*' " " " "

J:M " " ** " moments " " " "
about

an axis through the mass-centre and perpendicular to

the plane of the motion.

As shown in art. 240

i'F;c=Diaj, I¥y=msLy] also 2111=10:, . . (i)

since, according to D'Alembert's principle, the sums of the mo-
ments of the external and effective forces about any line are

equal.

282. Resultant of the Effective System in Important Special

Cases.—It is assumed in this article that the body is homogene-
ous and has a plane of symmetry which is parallel to the plane
of the motion. Imagine the body divided into elementary rods

perpendicular to the plane of the motion. As explained in art.

264, the effective force for each of these is one whose action line

is in the plane of symmetry; hence the effective forces for all

the rods constitute a coplaner system, its plane being the plane
of symmetry.

We proceed to determine the resultants of the effective forces

corresponding to translational and rotational components of

the motion. In general, the resultant of each set is a single

force. Let fig. 218(a) represent the section of symmetry of the

body, C the mass-centre and P' any other point of the section.

In addition to the notation of the foregoing articles, let

r denote the distance from C to P'
;

a' the acceleration of C relative to P', i.e., its acceleration in the

rotational component;
k the radius of gyration of the body with respect to the

axis through P' perpendicular to the plane of the motion.

(a) Regarding the motion as resolved into a rotation about

the axis through P' and the corresponding translation.—Accord-

ing to art. 244, the resultant of the translational effective forces

equals ma' and acts in the direction of a' through the mass-
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centre as shown. According to art. 262, the resultant of the
rotational effective forces equals ma' and acts in the direction

of a' through a point Q in the line'p'C such that P'Q equals

k^/r. This last force may be resolved into two components nifa

and mrii?, as represented, fig. 218(a).

(6) Regarding the motion as resolved into a rotation about
the axis through the mass-centre and the corresponding trans-

lation {P' coincides with C).
—The resultant of the translational

effective forces is a force equal to wid and acts in the direction of

a through the mass-centre as shown in fig. 218(6). Accord-

ing to art. 262, the resultant of the rotational forces is a couple
whose moment is /a.

(a) C6)

Fig. 218.

If the acceleration of the mass-centre and the angular accel-

eration of the body are both zero, the resultant of the effective

forces vanishes.

§ II. Applications.

283. Determination of the Motion.—The general method

consists in writing the equations of motion for the case in

hand and deducing from thern the value of the angular accelera-

tion of the body and that of the acceleration of a point of it.

The method is further explained in the solution of some of the

following

EXAMPLES.

I. A homogeneous cylinder rolls without slipping down an

inclined plane. Determine the motion.
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Solution: Let W denote the weight of the cylinder, and m
its mass

;
also let F and A^ denote the com-

ponents of the reaction of the plane along
and perpendicular to its surface (fig. 219).*

The external forces acting on the cyl-

inder are F, N, and W; hence with coor-

dinate axes as shown, eqs. (i), art. 281 be-

con^e Fig. 219.

IFx ='-hW sin (j)—F = ma^, IFy =N—W cos
(})
= mdy,

IM = Fr = Ta.

Evidently dy
= o, hence a = ax. . Now v = rw (see ex. 2, art. 220);

hence a = ra. This equation and the first and third above deter-

mine a" and a. We find that (since I = ^mr^)

a=^{g sin ^)/r,

a=Jgsin0.

We may also determine the reaction of the plane; from the

first equation

F=^W sin
(j>

and from the second, N=W cos <^.

^ 2. Show that there will be slipping between the cylinder

and plane if i tan
(j)

is greater than the coefficient of static

friction.

3. If in ex. I ^ = 30° and the coefficients of static and kinetic

friction kre respectively 0.25 and 0.2, determine the angular
acceleration of the cylinder and the linear acceleration of its

mass-centre.

4. A homogeneous cylinder rests on a smooth horizontal

plane, and a horizontal force P is applied by means of a string

wrapped about it (see fig. 220). Determine the angular
acceleration of the cylinder and the acceleration of its mass-

centre.

* We assume in this and the following examples on rolling that the

rolling body and the surface on which it rolls do not distort each other,

thus leaving a point or line of contact; then there is no "rolling resist-

ance" (art. 285).
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Solution : The external forces acting on the cylinder are P,

weight {W), and the resistance {N) of the surface. Equations

(i) of art. 281 become (see fig. 220),'

IFx= P=nidxy IFy = o = may, IM = Pr= Ia,

From the last equation, a=Pr/I, and from the first ax= P/ni,

Since ay
= o, a = ax = P/m.

^
5. Solve ex. 4, supposing that the plane is rough, its coeffi-

cient of kinetic friction being /.
^ ' "

^
6. Fig. 221 represents a wheel rolling on a horizontal sur-

face. If the distance of its centre of gravity
from the centre is c, and its radius of gyration
with respect to an axis through its centre and

perpendicular to the plane of the motion is k,

show that
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EXAMPLES.

I. A wheel whose mass-centre is not in its geometrical axis

is rolled along a horizontal roadway at a constant speed by means
of a horizontal force (P) applied at its centre. Determine the

value of P and the reaction of the roadway for any position of

the wheel.

Solutions: (i) By use of the equations of art. 281. Let fig.

222 represent the wheel, P' being its centre and C its mass-cen-

tre, and let F and N denote the hori-

zontal and vertical components of the

reaction of the roadway. The exter-

nal forces acting on the wheel are W,
P, F, and N; hence eqs. (i), art. 281,

become

IF, =P-F
IFy=N

max,

W = ma,

(I)

(2)

(3)

IM = F{r+c sin d) -Nc cos d
—Pc sin ^ = 0. . '. .

Now the acceleration of C (a) equals the vector sum of the accel-

eration of P' and that of C relative to P' (art. 196). Since the

wheel rolls uniformly, the acceleration of P' is zero and that

of C relative to P' is coj^ in the direction CP'
; hence

a = C(i? directed along CP' .

Also a^;
= co;^ cos <9 and a^

= — co;^ sin ^,

and eqs. (i), (2), and (3) may be written

F =P — mcco^ co?,d, N^W— mcio^sXnd, and

{P— mcco'^co^d){r-\-cs,m.d)
— {W— mcco'^ sin d)c cos O—Pc s,m.d— o.

From these we find that

and

P = {Wc/r-\-mcco'^) cos ^,

F= W{c/r) cos d,

N^W— mcoj^ sin 6.

(2) The three components of the resultant effective force as

described in art. 282, case (a), are wa', mra, and mrto^. P'
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(fig. 2 1 8a) being chosen at the centre of the wheel, a' is zero;

and since a is zero, the resultant effective force is inraj^ = mcoj^

directed from C to P'. Now by D'Alembert's principle F, A^,

P, and W are equivalent to mcco^, or they are in equilibrium with

mcco^ reversed. Hence

IMa =Pr— Wc cos 6 — mcco^r cos ^ = o,

IMp, =Fr-Wc cos d=^o,

IFy =N -W-\- mco)'' sin d = o.

From these (without elimination) we get the same values for P,

Fj and N as were found in ( i ) .

The kinetic reaction (on the wheel) is vertical and equals
mcoj^ sin d

;
it acts downwards for values of 6 between o° and

i8o° {C is above P') and upwards for values of 6 between i8o°

and 360° {C is below P')- Otherwise stated, when C is above

P', N is less than W, and when C is below P', N is greater than

W. The kinetic component of the reaction A^ is called
" ham-

mer blow" in locomotive parlance.

2. Show that the wheel of ex. i lifts from the roadway in a

certain position if the speed of the centre of the wheel is greater

than rVg/c.

3. In which position of C is A/" a maximum, and what is that

value if the velocity is slightly less than r\^g/c.

4. A steam-engine connecting-rod with no piston-rod attached

is drawn by the crank. It is required to determine the kinetic

reactions at the ends of the rod in any position.

Solution: Let AB and P'B (fig. 223) be the crank and rod

respectively, C being the mass-centre of the latter. Let r de-

note the length CP', a the acceleration of P', m the mass of the

rod, a and co its angular acceleration and velocity respectively,

and k the radius of gyration of "the rod with respect to a line per-

pendicular to the plane of the motion at P'.

We first determine the resultant effective force {R) for the

rod. Its three components as given by art. 282 are

ma, nira, and mroj^,

acting as shown in the figure, the distance of Q from P' bein;^
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k'^/r. Supposing these to have been computed, R can be readily
found graphically (the construction is not shown).

Let V and P denote the reactions on the rod at P' and B
respectively; the "guide-rods" being supposed frictionless, V

Fig. 223.

is vertical. Since F, P, and R reversed are in equilibrium, their

action lines intersect in a point. So produce R to intersect V
and join that intersection with B\ this line is the action line

of P. To determine the values of V and P, we draw a force

triangle for V, P, and R reversed. Thus, lay off MN to repre-

sent the magnitude of R, and fromN draw a vertical line to inter-

sect the action line of P, marking that point O; NO and OM
respectively represent the magnitudes and directions of V and P.

5. Let r and c denote the lengths of the connecting-rod and
crank respectively, and co^ the angular velocity of the crank

assumed constant. Take r/c= 4, F= r/2 ,
^^= r"^/^ ,

and compute
the values of V and P when 6 (see fig. 223) equals 0°, 30°,

60°, 90°, 120°, 150°, and 180°. Also plot the values of V at the

corresponding positions of P' and represent each P, scaling it

from the corresponding position of B\ then draw smooth

curves, joining the ends of the vectors representing V and P
thus drawn. I

(For a method of computing a, a, and a), see art. 181 and

ex. I, art. 219. Notice that of fig. 154 ^equals ^ — 90° of figs.

175 and 223.)

285. Rolling Resistance.—Let fig. 224 represent a wheel or

cylinder rolling upon a horizontal surface or roadway at con-

stant speed. Let W denote its weight, P, applied as shown,
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the force required to maintain the constant speed, and R
the resultant reaction of the roadway. Since the accelera-

^ ...^^^
tion of the mass-cen^e and the angular accel-

/ \ eration of the wheel are zero, the resultant
/ w \
/ \ effective force for the wheel is zero (art. 282);
L___r ^ ^ 1

hence the external forces W, P, and R are inpi
/ equilibrium, and R must act through the cen-

/ tre and be inclined as shown.

^^ The horizontal component of the reaction

of the roadway is called
"
rolling resistance,"

_^"''"~ also
"
rolling friction." The three forces being

^^^'
in equilibrium, the horizontal component of R

equals P, and hence an expression for P is also a value of the

rolling resistance. If a denotes the distance from the vertical

through the centre to the intersection of the action line of R and
the circumference of the wheel, and if a is small (as it is except
on soft roadways), then approximately

Pr= Wa, or P = {a/r)W.

From this equation the rolling resistance in a given case can be

computed if a is known.

Like the coefficients of friction, a is determined from exper-
iment. Thus, suppose that the force P for a given wheel and

roadway has been measured; that value and the weight and

radius of the wheel substituted in either preceding equation
determine a for the case in hand. The distance a is sometimes

called the "coefficient of rolling resistance." Observe that it is

not an abstract number like the coefficients of friction, but a

length.

Practically no general facts or laws are known concerning

the coefficient of rolling resistance. The coefficient is usually

regarded as independent of the weight (if moderate so that no

permanent deformation of roller or roadway occurs), but there

is disagreement as to the relation between it and the radius—
it being held, for example, that a is independent of r, also that

a varies as V^.

The following values are given to afford a notion of the values

of a in a few cases.
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Rollers of elm on an oak track (Coulomb) 0.032 in.
\

Iron or steel wheels on iron or steel rails 0.007-0.020
"

J

" •' " " "wood 0.06-0.10 "
\

\

EXAMPLE.

If 3everal rollers are used for rolling a heavy body along a \

horizontal roadway, show that their rolling resistance is given \

by W{a' + a")/2r, W denoting the weight of the body, r the \

radii of the rollers, and a' and a" their "coefficients of rolling 1

resistance" for the surfaces at which the rolling occurs. I



CHAPTER XIV.

WORK AND ENERGY.

§ I. Work.

286. Work Defined.—Work is said to be done upon a body

by a force when the application point is displaced so that the

displacement has a component along the action line of the force.

If the force is constant in direction, the projection of the

displacement on the action line of the force is called effective

displacement. If the force changes its direction during a displace-
ment of its application point, then the projection of the dis-

placement which occurs during an element of time on the

corresponding action line of the force is called the effective

displacement for that elementary interval.

287. Expressions for Work Done by a Force.—I. The force is

constant in magnitude and direction. The
amount of work done is measured by the

product of the force and the effective dis-

placement. Thus, if AB (fig. 225) is a dis-

placement of the application point of a force

F, and if
cj)

denotes the angle between AB
and F, and w the work done by F, then

Fig. 225. w = F(AB cos
cl))
= (F cos <j))AB. . (i)

li
<j)
= o,w =F AB] a

(j)
= go°,w = o.

Observe that in the last form of ( i ) ,
the expression for work

is the product of the component of the force along the displace-
ment and the displacement.

II. The force varies in magnitude or direction or both. Let

AB (fig. 226) be a portion of the path of the application point of

the force F, P being any intermediate position, <j)
the angle be-

tween F and the tangent to the path at P, and 5 the distance

of P from some fixed origin in the path, it being measured posi-

298
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lively in the direction of the motion. Then if dw denotes the

work done by the force while its applica-

tion point describes an elementary portion

of the path ds including P,

dw =F ds cos
(j) ;

and if w denotes the work done by F dur-

ing the displacement AB in which s

changes from s' to 5",

w = r" F ds cos
(l>
=
£" Ftds (2)

li
<j)
= o,Ft = F\ a

(j)
=

go°, Ft = and w = o.

288. Sign of a Work.—It is convenient to give sign to the

work done by a force. The rule is as follows: A work is re-

garded as positive or negative according as the effective dis-

placement agrees with or is opposed to the force in sense. It

must be remembered that a displacement, and hence its pro-

jection also, is a vector quantity.

If the angle (j)
is always taken as in figs. 225 and 226, i.e., be-

tween the portions of the lines representing the force and the

displacement toward which the arrows point, then the expres-
sions for w in the preceding article give the correct sign of the

work.

289. Unit of Work.—Equations (i) and (2), art. 287, imply
as unit the work done by a unit iorce

"
acting through

"
unit dis-

tance. The value of the unit hence depends on the units used

for force and distance. Thus we have, corresponding to the

pound and foot, the foot-pound unit of work, to the kilogram
and meter, the meter-kilogram, to the dyne and centimeter, the

dyne-centimeter, etc. The last-named unit has also a special

name, erg*

290. Work Diagram.— If values of Fi and 5 be plotted, on tv/o

rectangular axes (see fig. 227) for all positions of the application

point of the force F, the curve joining the plotted points might
be called a "tangential force-space (or FfS) curve." The por-

* For dimensions of a unit work, see Appendix C
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tion of the figure between the curve, the 5 axis, and any two
ordinates is called a work diagram.

Proposition.
—The area of a work diagram represents the work

done by the force during the displace-

ment corresponding to the bounding
ordinates.

Proof: According to eq. (2), art. 287,

^
Ftds. Since Ff and 5 also denote

coordinates of points on the Ft-s curve

Fig. 227. (fig. 227), the area of the work diagram

IS / Ftdsy as is shown in works on calculus. Hence the area

(according to some scale) equals w. Obviously the scale accord-

ing to which the area of a work diagram is to be interpreted

depends on the scales used in representing Ft and s. Thus if

one-inch ordinates and abscissas represent 100 lbs. and 10 ft.,

respectively, one square inch of area represents 1000 ft.-lbs. of

work.

Since the area of a work diagram equals the product of the

average ordinate and the base, the work done by a force equals
the average value of the tangential component and the length
of the path described by the application point. If the Ft-s curve

is straight, the average value of Ft is the mean of the initial and
final values and the computation of the work is simple.

EXAMPLES.

I. Fig.. 228 represents a body on a horizontal surface to which
two forces (P and Q) are applied as shown. Compute the work

—
•>,

^w
p= 100 lbs.

a! °:^rhg
//MW/M/M/W//'^^^^^^^^^^

Fig. 228.

5=0
^ r s=5ffi^

done by these forces, the weight, and the resistance of the

surface while the body moves from A to S (5 ft.), Q being a vari-

able force so that Q (in lbs.) = 25 (in ft.) and the friction 30 lbs.

Solution: Since the displacements of the application points
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of W and A^ are normal to the action lines of the forces, W and

N do no work. Since F and P are constant in magnitude and

direction, we use eq. (i) art. 287 for computing the work done by
them; for P, cj)

is zero and for F, <j>
is 180°, hence

the work done by P = 100 -5 cos = 500 ft. -lbs., and
" " " " F= 30-5 cos 180°== —150 ft.-lbs.

Since Q varies in magnitude we use eq. (2) art. 287, and

being 180°, the expression for work done b}'' Q is

J] Q cos 180° ds= - r 25 ds=-2$ ft.-lbs.

This value can be readily computed from the average value of

Q which is, since Q varies uniformly with s, the mean of ite

initial and final values; these are o and 10 lbs. respectively »

Hence the average value of Q is 5 lbs., and as it acts through

5 ft., the amount of work done by Q equals 5X5 = 25 ft. -lbs.

The sign of the work is negative because the senses of the force

and displacemxent are opposite.

2. Fig. 229 represents a body upon an inclined plane to

which two forces (P and Q) are applied as shown. Compute
the works done by them, the weight, and the reaction o£ the

plane while the body moves from A to B (10 ft.), the frictional

resistance of the plane and the weight being 10 and 100 lbs.

respectively. Ans. Total work done= —26.8 ft.-lbs.

Fig. 229.

Scales: Horizontal, 1=^'; Vertical, 1= 600,000 lbs.

Fig. 230.

3. In punching a hole (2 in. diameter) in a certain iron plate

(ij in. thick), the pressure (P) between punch and plate varied

as the ordinates to the curve of fig. 230 (the initial values of P
are at the left). Estimate the area of the work diagram and
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the amount of work done by the punch on the plate in the oper-
ation. Also compute the work from the average value of the

force. »

^/' 4. One end of an elastic cord whose natural length is 10 ft.

is fastened to a body on a horizontal surface and the other end

to a fixed point in the surface 20 ft. from the body. The ten-

sion in the cord is observed to be 30 lbs. When the body is

released it moves toward the fixed point. Draw the work dia-

gram for the tension in the cord and determine how much work

is done by the tension in the first and second 5 feet of the dis-

placement.
N 5. Suppose that a gas expands behind a piston in a cylinder

according to the law pv^C, C being a constant, p the gas pres-

sure per unit area, and v the volume of the gas. Show that. the

work done by the gas on the piston in an expansion from a

volume v^ to a volume v^ equals C ^og£{vJv^.

V 6. Show that the work of a central force (one always directed

toward a fixed point) in any displacement of its application

point equals
—
j^Pdr, in which P denotes the general value of

the force, i.e., its value when its application point is any dis-

tance r from the fixed point and r^ and rj denote the values

of r at the beginning and end of the displacement respect-

ively.

Solution: Let C, fig. 231, be the fixed point toward which P
acts and OAB the path of the

application point of P. The
value of the work done by P is

given by eq. (2) art. 287. Since

(see the figure) dr= —ds cos <^,

the value of the work as given

by*e(i. (2) reduces to that

given above.

V 7. Suppose that the body
described in ex. 4 is moved (after

the cord is attached to it as described) so that the point of ap-

plication of the cord moves in the circumference of a circle

whose diameter is the cord in its first position. Compute the
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work done by the tension while the application point describes

the first quarter circle.

u 8. How much work is done by the cord up to the instant

when it resumes its natural length?

291. Work Done by Gravity Upon a Body in Any Motion.—
Proposition.

—The work done by gravity upon a body in an^^

motion equals the product of its weight and the vertical distance

described by the centre of gravity, and the work is positive or

negative according as the centre of gravity has descended or

ascended.

Proof: Let Wj, w^, etc., denote the weights of the particles

of the body, ;y/, y^ y etc., their distances ^^,^"

above some datum plane (below which „/ ^^^^
'

the body does not descend) at the begin- } l\ / ^,4,

ning of the motion, and y/', y^'', etc.,
y'l ^15'/ |"

their distances above that plane at the 1
y'] j^i"

end of the motion (see fig. 232 where

1/;

a'a'' is the path of the first particle,
^^^' ^32-

b'b'^ that of the second, etc.). Also let W denote the weight
of the body and y and y'' the initial and final heights of its

centre of gravity above the plane. Then the sum of the works

done by gravity on all the particles is

'i^iiyi -yi')+'i^2(y2 -y2')+ • • • =i'^'iyi+'^2y2+ • • •)

-(i£/i:v/'+w2:v/'+ . . .)

According to art. 64,

w^y/' +iV2y2' + . . =Wy'' and (w^yi +W2y2' + . . . )
= Wy;

hence the sum of the works done on all the particles equals

Wy'-Wy'' = W(y-y''). q.e.d-

292. Work Done by Concurrent Forces and by Their Result-

ant.—Proposition.
—The work done by any number of concur-

rent forces in a displacement of their application point equals
that done by their resultant in that displacement.*

Proof: Let F^, F^, etc., denote the forces, R their resultant,

and ^1, (f)2, etc., and ^ respectively the angles which the forces

* It is assumed that the forces and their resultant have a common
application point.
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and their resultant make with the tangent to the path of the

application point (taken as explained in art. 288). Then ac-

cording to art. 36,

R cos
(j>
= F^ cos 01+^2 cos 9^2+ • • • •

Therefore, R cos (j)'ds
= F^ cos ^^

• J5 + F2 cos <f)2-ds-\- . . . ,

and / R cos ^'ds = J F^ cos (f)^'ds+ j F^ cqs 9S2
• <i5 + ... ;

hence, etc.

293. Work Done by a Pair of Equal, Opposite, and CoUinear

Forces.—Suppose that A and B (fig. 233) are the application

Fig. 233.

points of the forces at any instant during the motion and let P
denote the value of the forces then. Also let x' and y' denote

the coordinates of A and ^" and y^' those of B, and suppose that

A moves from A
^
to A 2 and B from B^to B^/^.Q.j assume for sim-

plicity that the displacements are coplanar. The discussion can

be easily extended to include non-coplanar displacements.
The work done by each force equals the sum of the works

done by its x and y components; for the force P acting on A
these are

-fp cos d'dxr and -fPsmd-dy^

and for the force P acting on B they are

JPcosd'dx" and fPsind-dy.
The work done by both forces equals

/P[cos d . (dx^'-dx') +sin d-idy^-d/M

It is plain from the figure that

r2=(:^"-A;')'+(y'-y)^
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hence r dr^{x'' -x'){dx'' -dx')-V{y' -y){dy' -dy),

or dr = cos6' {dx" -dx')+ sin 6 - {dy - dy) .

Substituting according to this relation in the expression for

total work we find that the latter becomes

iP dr (when the force P on A acts from B to .4), but
Jri

—
/ ^P dr (when the force P on ^ acts from A to B),
Jrx

as will be seen by changing the arrows on P in the figure and

making the necessary changes in the discussion.

If the distance between the application points of the forces

does not change during the displacement, dr = o, and the work

done by the pair of forces equals zero. If P depends only on r,

then the work done by P depends only on the initial and final

values of r and not at all on the way in which r changes during
the displacement.

EXAMPLE.

How much work is done by the steam in one cylinder of a

locomotive during one stroke of the piston ?

Solution : Consider a forward stroke of the piston and let P
denote the pressure on the piston when its distance from the

rear end of the cylinder is r. Then the work done by the pres-

sures on the piston and rear end of the cylinder in one stroke

equals

rPdr= Pa(r,-r,) = P,s,

Tj and rg denoting the values of r at the beginning and end of the

stroke, Pa the average value of the steam pressure, and ^ the

length of stroke.

This value of the work might also be obtained by computing
the work done by each pressure separately. Thus let R denote

the radius of the driving-wheels, then the distance through which

the locomotive moves in one stroke equals tiR, and supposing
that the locomotive is running forward, the work done by the

steam on the rear end of the cylinder equals —PaTrR, and that

done on the piston equals PairtR+s); hence the work done by
both pressures equals Pa s.
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294. Work Done by a Body Against a Force.—It is con

venient to use the expression "work, done by a body against a

force" applied to it; we mean by it the negative of the work
done upon the body by the force. Thus if a body weighing 10

lbs. is made to rise 5 ft., gravity does —50 ft.-lbs. of work upor
it and the body does +50 ft. -lbs. of work against gravity.

In accordance with the above, when the sense of a force and

that of effective displacement of its application point are oppo-
site, the work done by the body is positive ; when they are the

same, the work done by the body is negative.

§ 11. Energy.

295. Energy Defined.—When the state or condition of a body
is such that it can do work against forces applied to it, the body
is said to possess energy. A stretched spring can do work against

forces applied to it if they are such that it may contract
;
a body

in motion can do work against an applied force which tends to

stop it. The spring and the body therefore possess energy.
The amount of energy possessed by a body at any instant is

the amount of work which it could do against applied forces

while its state or condition changes from that of the instant to

an assumed standard state or condition. The meaning of the

standard condition is explained in subsequent articles.

The unit of energy must, in accordance with the above, be

the same as the unit of work.

296. Kinetic Energy Defined.— Energy is classified into

kinds depending on the state or condition of the body in virtue

of which it has energy. Kinetic energy of a body is energy
which it has by virtue of its velocity.

297. Kinetic Energy of a Particle.—The amount of kinetic

energy possessed by a particle at any instant is the work which

it could do while the velocity changes from its value at that in-

stant to some other value taken as a standard. It is customary
to take zero velocity as the standard one; this being understood,

we may say that the amount of kinetic energy possessed by a

particle is the work which it can do in
"
giving up its velocity."

Proposition.
—The kinetic energy of a particle whose mass

and velocity are m and v respectively equals ^Jiv^,
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Proof : Let R denote the resultant of all the forces acting on

the particle while it "gives up its velocity." Let A and B de-

note the beginning and end of the path, and s' its length. Then,

according to arts. 292 and 287, the Vork {w) done by all the

forces on the particle in the motion from ^ to B is given by

w=/>*
Hence the work done 'oj

^he particle against the forces, or the

kinetic energy {E) of the particle, is given by

E=-f'Rtds,

Now Rt= mat = m dv/dt (see art. 236) ;

hence E= — jmv dv = ^mv*, Q.B.D.

298. Kinetic Energy of any System of Particles.—The kinetic

energy of a system of particles equals the sum of the kinetic

energies of the separate particles. If m and v denote the mass

and velocity respectively of any particle of a s)cstem, and E the

kinetic energy of the system,

E = ii'mv» • . (i)

I. Translating Body.—In this case all particles have at each

instant equal velocities, hence

or, if M denote the mass of the body, the kinetic energy E is

given by
E=iMv». (2)

II. Rotating Body.—In this case the velocity of any particle

of the body equals the product of its distance from the axis of

rotation and the angular velocity of the body (art. 216). Let r

denote the distance of any particle from the axis and cu the

angular velocity of the body; then the vaVrte"of the kinetic

energy is

Now Imr^ is the moment of inertia of the rotating body with
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respect to the axis of rotation; if / be used to denote this quan-

tity, the kinetic energy is given by ,

.E =iW (3)

III. Body having any Plane Motion.—In this case the state

of the motion at any instant may be regarded as rotational (see

arts. 2 22 and 223). As shown in art. 223, the velocity of any
particle of the body at any instant equals the product of its dis-

tance from the line which is the axis of rotation at that instant

(instantaneous axis) and the angular velocity of the body. The

reasoning in Case II applies here if the word **
instantaneous

"
is

inserted before the word "
axis

"
;
then ^loj^ is the expression for

the kinetic energy of a body having any plane motion, / being
the moment of inertia with respect to the instantaneous axis.

Since the instantaneous axis in general moves about in the

moving body, the expression above is not always convenient to

apply, and another, though not so simple in form, is simpler in

its application. This expression may be deduced as follows:

In addition to the notation employed in the preceding, let /

denote the moment of inertia of the body with respect to a cen-

tral axis perpendicular to the plane of the motion, v the velocity
of the mass-centre at the instant considered, r the distance be-

tween the mass-centre and the instantaneous axis, and M the

mass of the body. Then

I = T-i-AIr^ (art. 256) and v^roj;

hence ^Ioj^^^Foj^' +^MT^w^
or E = iIa>2 + ^Mv2 (4)

Now ^Ico^ is the kinetic energy which the body would have if

rotating about a fixed axis through its mass-centre with an angu-
lar velocity oj, and ^Mv^ is the kinetic energy which it would
have if translating with a velocity v. Hence the kinetic energy
of a body having any plane motion is regarded as consisting
of two parts, and they are called rotational and translational.

EXAMPLES.

I. Express the kinetic energy of a body weighing 1.5 tons

and moving at a speed of 60 mi.-per-hr. in ft.-lbs.
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2. Express the kinetic energy of a cylindrical disk weighing

3225 lbs. and rotating at an angular velocity of 300 rev.-per-min.,

the diameter of the disk being 4 ft.

. 3. Show that the kinetic energy of a rotating body equals

^Myk"^, M denoting the mass of the body and v^ the velocity

of a point of it whose distance from the axis of rotation equals
the radius of gyration of the body with respect to that axis.

4. What is the kinetic energy of a homogeneous right cir-

cular cylinder which rolls so that the speed of its mass-centre

is V, its mass being M? Ans. ^Mv"^.

299. Potential Energy Defined.—A body may possess energy
which is not due to velocity. Thus two mutually attracting
bodies can do work against forces applied to either or both if

allowed to move so that they approach each other; and as

mentioned in art. 295, a compressed or stretched spring can do

work against applied forces if permitted to resume its natural

length. The "change of condit^'on or state" in the first case is

a change in configuration, i.e., a change in the positions of the

bodies relative to each other, and in the second case, if we con-

ceive of the spring as consisting of discrete particles, the change
is also one in configuration.

Energy of a system of particles dependent on configuration
of the system is called energy of configuration and, more commonly,
potential energy.

300. The Amount of Potential Energy possessed by a system
in any configuration is the work which it can do in passing from

that configuration to any other taken as a standard, it being
understood that no other change of condition takes place. The
standard configuration maybe chosen at pleasure, but it is con-

venient to so select it that in all other configurations considered

the potential energy is positive.

Proposition.
—The potential energy of a system in any con-

figuration equals the amount of work done by the internal forces

during the change to the standard configuration.

Proof : To determine the potential energy we are to compute
the work done against the external forces while the system

passes to the standard configuration, no other change of con-

dition (as velocity) of the particles taking place so that in the

passage to the standard configuration there is no change in the
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kinetic energy of the system. It is shown in art. 306 that the

sum of the works done bv the internal and the external forces

during any change of configuration equals the increment in the

kinetic energy of the system. Since in the case in hand there

is no change in kinetic energy, the sum of the works done by
the internal and external forces equals zero. Denoting the

internal and external works by Wi and w^ respectively,

Wi-\-w^
= o, or Wi = w^

Now —w^ is the work done by the system against the external

forces during the passage to the standard condition, i.e., the

potential energy of the system in its initial configuration ;
hence

the last equation asserts the truth of the proposition.

301. Potential Energy of a System Not Always a Definite

Quantity.
—The amount of work done by the internal forces dur-

ing a change of configuration (and hence the potential energy

Fig. 234.

of the system) may or may not depend upon the way in which

the change of configuration takes place. This is known to be

true from direct experience, but it can also be proved. Thus,
let A,B, and C (fig. 234) represent three bodies which may sUde

about on a table ; imagine them connected by elastic cords as

shown, and consider the three bodies, the table, and the earth

as a system. The cords are introduced merely as a means of

applying certain forces to the bodies, but the forces are to be

thought of as exerted by one body directly upon another. Let

Aq, Bq, and Cq represent a selected standard configuration of the
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bodies and A, 5, and Csome other one; also, let F^.Fj, and Fgbe
such external forces acting upon them that the passage to the

standard position is without change of velocity.

Now the only internal forces in the system which do work

during the motion are the pulls exerted by the bodies upon each

other and the frictions (if any) between them and the table.

As shown in art. 293, the work done by the pulls exerted by any
two of the bodies on each other does not depend on how the

final positions are reached. The work done by the frictions,

however, does depend on the manner of the motion; thus, if we

suppose the friction on any body to be constant in value, the

work done by that force equals the negative product of the force

and the length of the path described by that body. Hence, in

the system of bodies under consideration, the total work done by
the internal forces depends on the way in which the change of

configuration takes place and the potential energy is not a

definite quantity. If, however, there is no friction, the work
done by the internal forces is independent of the way in which

the configuration takes place, and the potential energy is a

definite quantity.

302. Conservative Systems.
—If the work done by the internal

forces of a system during any change of configuration is inde-

pendent of the way in which the change is made, the system is

called conservative, and those internal force-pairs (action and

reaction) whose work does not depend upon the way in which

the change takes place are also called conservative. The poten-
tial energy of such a system in any definite configuration is a

definite quantity.

It is characteristic of conservative forces that they are inde-

pendent of the velocity of the particles on which they act. We
consider only conservative forces which act along the line join-

ing the particles between which they act and whose magnitudes

depend on the distance between the particles. That such forces

are conservative forces follows from art. 293.

303. Non-Conservative Systems.
—If the total work done by

the internal forces depends on the manner of the change of con-

figuration, the system is called non-conservative and those inter-

nal force-pairs whose work depends on the manner of the change
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are also called non-conservative. The potential energy of a

non-conservative system in any definite configuration is not a

definite quantity.

It is a characteristic of non-conservative forces that their

magnitudes or directions (or both) depend upon the velocity of

the particles to which they are applied. Friction is the only
one of this class herein considered.

304. Localization of Potential Energy.—Unlike the kinetic

energy, the potential energy of a system cannot always be

localized in detail, i.e., we cannot in all cases assign to parts of

the system certain definite parts of its potential energy. As an

example, consider two bodies A and B of the illustration in art.

301, and, for simplicity, neglect friction. As previously ex-

plained, the bodies can do a definite amount of work against

external forces in passing to their standard positions, A^B^ (fig.

234), but the amount of work which each can do depends upon
the way in which the passage is made. Thus, suppose that they
move to their standard positions successively and that in one

passage A moves first and in th6 other B moves first. Now the

work which A can do in each case equals the work which the

internal force acting on A does, and this work has different

values in the two passages. For, let P denote the internal force

acting on A (for simplicity assumed constant) ; then (see ex. 6, art.

290) the work done by P in the first case equals ± P{Af^B—AB),
and in the second case it equals ±P{AqBq — AB^); these values

are in general unequal.

If, however, one of the bodies is always in its standard posi-

tion, the potential energy of the system is rightly ascribed to the

other. Thus, a magnet and a piece of soft iron attracting each

other possess potential energy if separated, and if the magnet is

regarded as fixed the energy is possessed by the iron. Simi-

larly, the earth and an elevated body considered as a system

possess potential energy, but it is practically necessary to regard

the earth as fixed and hence to ascribe the energy to the elevated

body.

305. Other Forms of Energy.
—Kinetic and potential energies

are often called mechanical energy. It is the opinion of some

that all energy is mechanical, and some think that it is all
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kinetic. Whether either of these views be correct, it is practi-

cally necessary to recognize other forms. A mere enumeration

of these with brief remarks is sufficient for the present purpose,
since we shall deal mostly with energy known to be mechanical.

Thermal Energy.
—A hot body may do work under favorable

conditions; thus, if such a one is placed in a boiler containing

water, the water will be heated and a part may be converted

into steam which may drive a steam-engine, i.e., do work. By
giving up its heat the hot body has done work, and hence by
definition (art. 295) it possessed energy in its heated state. Not

only is this fact well known, but also the fact that a given quan-

tity of heat represents a definite amount of energy ;
the relation

may be expressed thus :

one British unit of heat * = 778-h ft. -lbs.

Based on the molecular hypothesis, the common theory is

that heat is due to the vibratory motion of molecules, i.e., that

thermal energy is kinetic.

Chemical Energy.
—Many substances combine chemically and

their combination gives evidence that they possessed energy.

Thus, coal and oxygen combine and produce heat which, as "we

have seen, is a form of energy. We rightly say, therefore, the

coal and oxygen before combination possessed energy.

Based on the molecular hypothesis, the theory of chemical

energy in cases where heat is generated in the chemical com-

bination is that internal (molecular) forces of the substances

do work during the combination, and hence (see art. 306) in-

crease the kinetic energy of the molecules. According to this

explanation the energy before combination is potential and after

kinetic.

Electrical Energy.
—If a storage battery charged with elec-

tricity is connected with a motor, work may be done by the

latter. As the work is done, the electrical condition of the bat-

tery changes and we therefore ascribe the energy to the battery.

The energy is called electrical because it is due to a change of

electrical condition.

* The amount of heat required to raise the temperature of one pound
of water one degree Fahrenheit.
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The nature of electrical energy is even less understood than

that of thermal energy, and no commonly accepted explanation
of it has yet been made. »,

§ III. Principles of Work and Energy.

306. Principle of Work and Kinetic Energy.—I. For a Par-

ticle.—The work done in any displacement of a particle by all

the forces applied to it equals the increment in its kinetic energy

during that displacement, or

W = iE;k (l)

w denoting the work done by the forces and JE^ the increment

in the kinetic energy. The increment is positive or negative

(and there is a gain or loss of kinetic energy) according as the final

velocity is greater or less than the initial.

Proof : Let R denote the resultant of the forces acting on the

particle, w the work done by them in the displacement, v^ and

V2 the velocities of the particle at the beginning and end of the

displacement respectively. Then, as shown in art. 292,

IV= r^Rtds,

where 5 is the distance of the moving particle from, some fixed

point in the path and s^ and ^2 are the values of 5 at the begin-

ning and end of the displacement. Since

Rt= mat =m dv/dt,

w=m
I

ds dv/dt =ml v dv = imv2^
—

h^Vj^,

Since ^mVj^ and ^mv^^ are the values of the kinetic energy of

the particle at the beginning and end of the displacement re-

spectively, the right-hand member above is the increment in

the kinetic energy of the particle.

II. For Any System of Particles.—The work done by all the

external and the internal fdrces in any displacement of a system
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of particles equals the increment in its kinetic energy during the

displacement, or

w,+Wi= JEjfc, (2)

w^ and Wi denoting the "external" and the "internal" works

respectively.

Proof: According to the principle of work and energy for a

particle the total work done on a particle in any displacement

equals the increment in its kinetic energy during that displace-

ment. Hence the work done on all the particles of a system

during any displacement equals the sum of the increments in

their kinetic energies, i.e., the increment in the kinetic energy
of the system.

III. For a Rigid Body.—The work done upon a rigid body
by the external forces in any displacement equals the increment

in its kinetic energy during that displacement, or

w, = iE, (3)

Proof: It is shown in art. 293 that the work done by two

equal, opposite, and collinear forces is zero for any displacement
of their application points if the distance between those points

remains constant. As previously explained, the internal forces

of any system of particles occur in pairs of equal, opposite,

and collinear forces, and since in a rigid body the distances

between the application points of the internal forces remain con-

stant, the work done by the internal forces in any displacement
of the body is zero

;
hence the work done by the external forces

equals the increment in the kinetic energy (see II).

307. Principle of Work and Energy for Conservative Systems.—The work done upon a conservative system by external forces

during any displacement equals the sum of the increments of

its kinetic and potential energies, or

w^
= JEfc + iE^, (i)

AEp denoting increment of potential energy.

Proof: Let C^ and Co be the initial and final and Cq the

standard configuration of the system. Also let Ep and Ep'
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denote the potential energies in the configuration C^ and C3

respectively. The work done by the internal forces in the

displacement from C^ to Co would ha.E/, and that from C^ to

Cq would be Ep" ; hence in the actual displacement {C^ to C^)

the work done by the internal forces equals EJ ~Ep'. Ac-

cording to the preceding article,

w,-^{EJ-E^')=^AEk, or w^^AE^-\-{EJ'-Ep').

Now Ep" —Ep is the increment in the potential energy of the

system during the displacement ;
hence the principle is proved.

If the work done by the external forces is positive (that done

by the system against the .forces is negative), the system

gains energy, and if their work is negative (that done by the

system against them is positive), the system loses energy.
The statement that a certain amount of positive work is done

upon (or by) a system is equivalent to the statement that the

system has gained (or lost) the same amount of energy.

308: Conservation pf Energy.—In any change of condition

of a material system which is isolated so that it neither receives

nor gives out energy, its total energy (all forms included) re-

mains constant in amount; or, as is sometimes stated, "energy
is indestructible."

This principle is a generalization based on physical experi-

ence. It cannot be deduced in the general case from the laws

of motion, at least not in the present state of knowledge regard-

ing the constitution of matter and the nature of non-mechanical

energy. For conservative systems the principle can be proved;

thus, the system being isolated, there is no external work and

equation (i), art. 307, becomes

JE;fc + iE^ = 0, (i)

i.e., the sum of the increments of kinetic and potential energies

in any change of condition equals zero; hence the sum of the

kinetic and potential energies is constant.

If a system not isolated receives or loses energy, some other

system must lose or receive an equal amount. For, let A be

the first system and B the one from which A receives or to which
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it gives energy. If necessary, imagine B extended so that A
and B together are an isolated system; then the total energy
of A and B being constant, if A receives or loses energy, B must
lose or receive an equal amount.

309. Principle of Energy for Machines.—The function of a

machine is to transfer energy from a body or system of bodies

{A) to another (J5). The energy transferred may or may not

have been transformed in the process. Thus, a dynamo re-

ceives mechanical and delivers electrical energy, while a water

motor receives and delivers mechanical energy.

The energy received by the machine from A is called input
and that delivered by it to B is called output. The amount of

energy possessed by the machine at any instant is called its

stored energy at that instant. It is a fact of experience that

some of the energy miscarries, as it were, between ^4 and B, and
is delivered to other bodies than B; that energy is therefore

called lost energy or simply the loss. This energy is lost prin-

cipally as heat which is generated wherever there is a transfor-

mation or transference of energy.

Let Ei denote the input for any period,

£^^ the output.

El
"

loss,

AEg
"

increment in the stored energy;

then, since energy is indestructible,

Ei-{E, + Ei)==AE,,

or E»= E, + E,+ iE« (i)

If the stored energy remains constant, or if at the beginning and

end of the period the stored energies are equal (as at the begin-

ning and end of a cycle through which the machine works), AE,

equals zero, and the equation of energy becomes

E.= E,+E; (2)

310. Efficiency.
—The efficiency of a machine is the ratio of

the output to input for a period at the beginning and end of
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which the stored energy is the same. Thus, if e denotes effi-

ciency,

e = E,/E^/ (i)

Since the input is always larger than the output, the efficiency
of every machine is less than one.

311. Power or Activity.
—The rate at which a machine or any

"agent" does work is called its power or activity.

If the work is done uniformly, the power is constant; and if

Jw denotes the work done in any period Jt and P the power,

P = Jw/Jt (i)

If the work is not done uniformly, the power is variable and the

formula above gives the average value of the power ; the actual

value at any instant is the limit of Jw/Jt, or

P = dw/dt •
. . . (2)

Units ^pf Power.—Equations (i) and (2) imply as units of

power a rate corresponding to unit work done in a unit time.

Thus one foot-pound-per-second, one meter-kilogram-per-second,
one erg-per-second, etc., are such units of power. These units

are small for some purposes; the following are often more con-

venient : .

the horse-power =550 foot-pounds-per-second ;

the force de cheval= 75 meter-kilograms-per-second;

the watt = 10^ ergs-per-second.*

EXAMPLES.

1-. Show that the rate at which steam does work in any

engine is given hy p I an, the notation being:

p, average steam-pressure per unit area during a stroke;

/, length of stroke
;

a, area of piston ;

w, number of strokes per unit time.

* For dimensions of a unit of power see Appendix C.
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2, Show that the rate at which steam does work in a loco-

motive who^e velocity is v and drivers' diameter is d equals

4plav/7id. , -^tv-' '^"//jl/j.-

§ IV. Applications.

312. Computation of Velocity and Distance.—The equa-
tions expressing the principles of work and kinetic energy, (2)

and (3), art. 306, contain "work terms" on one side and "kinetic

energy terms" on the other. The factors in the work terms are

force and distance, and those in the kinetic energy terms are

mass and velocity. If all the factors except one are known,
that one may be computed from the equation. In the follow-

ing examples the unknown quantity is a velocity or a distance,

and it can be most readily determined by the principle of work

and kinetic energy.

EXAMPLES.

1. Suppose that in ex. i, art. 290, the velocity of the body
5\^hen at ^ is 2 ft.-per-sec. What is its velocity when it reaches

B if the body weighs 160 lbs.?

Solution: The total work done by all the external forces in

the motion from A to B was found to be 325 ft.-lbs. (see solu-

tion of ex. i). The initial kinetic energy of the body (i.e., at

A) is

iw2;i^
= i 4.97X2^ = 9.94 ft.-lbs.;

hence eq. (3), art. 306, becomes

325 = i4.97i;2^- 9.94, or v^
= \\.(i\ ft./sec.

2. Suppose that in ex. 2, art. 290, the velocity of the body
when at A is 5 ft.-per-sec. What is its velocity when it reaches

Bt

3. Suppose that in ex. 4, art. 290, the body weighs 10 lbs.

and that the horizontal surface is smooth. What is its velocity
after having moved 10 ft. ?

4. Solve the preceding example if the horizontal surface is

rough, the coefficient of kinetic friction being one-fourth.

5. How far will the body of ex. 4 move supposing that after
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the cord slackens the body moves under the influence of fric-

tion alone ?

6. Suppose that in ex. 4, art. 266, the angular velocity of

the rotating body is co^ at a certain instant. Determine its

angular velocity when the suspended body has descended a dis-

tance h after that instant.

Solution: The e"x:ternal forces acting on the cord and rotat-

ing and suspended bodies considered as a system are the weights
of the bodies and the "hinge reaction." Supposing the last to

be frictionless, it does no work; neither does the weight of the

rotating body, but the work done by that of the suspended

body is Wh. The work done by forces internal to the two

rigid bodies and that by the reactions between the cord and

the two bodies is zero. The work of the forces internal to the

cord is not zero, but it is small (see art. 315) and is negligible in

this instance.

The initial kinetic energy of the system (neglecting the mass
of the cord) is

I W
^ s

and if co^ denotes the final angular velocity, eq. (2), art. 3061

becomes, since a>,
= o,

from which (O2 can be computed.
•

7. Suppose that the disk of ex. 2, art. 298, is rotating on a

shaft 4 in. in diameter and that the axle friction is 30 lbs. In

how many turns would the frictional resistance stop it ?

8. Let h denote the height of the centre of gravity of a pen-
dulum when the velocity is zero above its lowest position. Show
that the angular velocity of the pendulum when it reaches its

lowest position is {i/k)\^2gh, k denoting the radius of gyration
of the pendulum with respect to the axis of suspension.

9. A body is suspended by two parallel cords of equal length
and is allowed to swing in the plane of the cords under the in-

fluence of gravity. Show that the height (h) to which the cen-

tre of gravity rises above its lowest position and the velocity (v)

in the lowest position are related as follows : v"^ = 2(i}i.
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313. Train Resistance.—The resistance to motion experi-

enced by a train moving on a track consists of rolling resistance,

journal friction (at the car and locomotive axles), air resistance,

and the frictional resistance at the working parts of the loco-

motive. For simplicity we may imagine these replaced by a

single horizontal resistance equivalent to them all so far as the

motion of the train is concerned. This single equivalent resist-

ance is often called train resistance^ but sometimes the term is

intended not to include the locomotive and tender resistance.

It is customary to express train resistance as so many pounds
for each ton of weight of train. Many experiments have been

made to determine train resistance, and a number of formu-

las have been deduced to express its value. We give but three

as illustrations and to furnish data for a few examples; the

notation is as follows:

R, train resistance in Ibs.-per-ton;

F, velocity in mi.-per-hour;

r, weight of train in tons (2000 lbs.).

Engineering News : R = V/^-\-2 (i)

This includes all resistances except the internal friction

of the locomotive. For the higher velocities it was deduced

from experiments on a fast passenger-train.

Crawford: R = Vy26% + 2.s (2)

This does not include resistance of locomotive and tender.

It was deduced from experiments on passenger-trains.

Lundie: i^ = 4 + VT0.2 + 14/(35 + 7^)] (3)

This was deduced from experiments on electric elevated

street-railway trains and includes all resistances.

It will be noticed that only (3) contains T. The first two

apply only to trains of approximately the same kind and

weight as those experimented on.
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EXAMPLES.

V I. Plot the curves represented by the preceding equations,

assuming T in the third to be one ton.

%^ 2. What is the relation between the "draw-bar pull" be-

tween tender and first car when the velocity of the train is con-

stant ?

Solution: The only forces doing work on the train are the

draw-bar pull and the train resistance. Since the velocity of

the train is constant, its kinetic energy remains constant and
the total work done by the two forces must be equal to zero

(see eq. (2), art. 306), i.e., the works done by them must be

equal but of opposite sign. Since the forces act through equal
distances in any motion of the train, the forces must be equal
in amount.

Train resistance (for the cars) is determined by measuring
the draw-bar pull in front of the first car when the velocity is

constant.

3. Assume the train resistance for cars to be constant (as it

is roughly below 10 mi.-per-hr., according to Crawford's for-

mula) and that it equals 2.6 Ibs.-per-ton. If the cars with load

weigh 1000 tons, how much work does the engine do upon the

cars to bring up the velocity of the train from o to 10 mi.-per-hr.,

if it is done in a distance of one mile on a level track ?

{- 4. Solve the preceding example supposing that the train

runs up a
"
one-per-cent grade."

*

5. Supposing that the speed in ex. 3 is increased uni-

formly, i.e., the acceleration is constant, what is the value of

the draw-bar pull?

6. Express the rate at which the engine does work on the

train in the preceding example in horse-powers when the train

is starting and when its velocity is 10 mi.-per-hr.

^ 7. Show that if P denotes the rate at which work is done by
the steam in a locomotive, i.e., the rate at which energy is sup-

plied to the engine, R the total train resistance, and v the speed,

when V is constant, P= Rv.

* One ft. rise for every 100 ft. along the track.
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Solution: The speed being constant, there is no change in

the kinetic energy of the train
; therefore the work done on the

engine by the steam equals the work done by the train against
the resistance during any period. If w denotes the first work

during which the train moves any distance s, in a time t,

w = Rs, or w/t^Rs/t.

Now w/t is the rate at which work is done on the engine, and

s/t is the velocity of the train; hence P = Rv.

8. If the Engineering News formula is correct at all speeds
and gives practically the whole train resistance, show that the

cylinder steam-pressure per unit area (average for one stroke)

required to maintain any constant speed in a train on a level

track is a linear function of the speed. (See ex. 2, art. 311.)

9. Show that when the speed of a train is changing, P =
Rv-\-mva, m and a denoting the mass and acceleration of the

train respectively and P, R, and v having meanings as in ex. 7.

(The equation neglects the "rotational" component of the

kinetic energy of the wheels, which is small compared to the

kinetic energy of the train.)

314. Friction Brakes.—Fig. 235 represents a form of friction

brake often used to measure the power of ^ ^
small motors. It consists essentially of a fiat- f \
faced pulley rigidly fastened to the shaft of

[ c<-—-r-

the motor, a strap or rope partly encircling the K J
pulley, one end of it being fastened to a fli^^^__^^
spring-balance and the other sustaining a freely m LJ

hanging body. z£7 ^

When the pulley rotates it drags the strap Fig. 235.

around with it a small distance and the spring tension (T) is

greater or less than W according as the rotation is clockwise or

counter-clockwise. Assuming it to be clockwise, the frictional

resistance at the rim of the wheel equals T —W and the work
done by the motor against friction in one revolution of the

wheel is {T — W)27tr. Hence, if the wheel makes n revolutions

per unit time and all of the work done by the motor is thus
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expended against friction, the power of the motor equals

{T — W)27:rn.

Fig. 236 represents a form of brake sometimes used on hoist-

ing-drums for stopping the same.

It consists essentially of a strap

partially encircling the drum or a

wheel fastened to the drum, one

end being fastened to a fixed sup-

port, as A, and the other end to a

lever, as CD. A force (P) applied
as shown brings a frictional resist-

ance to bear upon the drum at the

strap and so controls the speed. We
wish to find the relation between

the pressure P and the weight of the descending load when its

velocity is constant.

Let Ti and Tj denote the tensions in the strap at A and B

respectively, F the frictional resistance at the brake-strap, / the

coefficient of friction, F' the axle friction, and /' the coefficient

of axle friction. Since the kinetic energy of the moving system
is constant,

W2nr= F2na-^F'27tc (i)

Fig. 236.

A-S shown in art. r6o,

T^ef^ (2)

Considering the forces on the lever, it is seen that

Also,

and

T^d= Pb. . . .

F' = r(W + T, + T,)

F=f^-T^. . . .

(3)

(4)

(5)

These five equations determine all the unknown quairtities P,

Ti, r„ F, and F'.

315. Efficiency of Tackle.—Fig. 237 represents a fixed pul-

ley. Let a denote its radius, r that of the axle, and d the diam-

eter of the rope ;
also let P and Q denote the tensions on the two

sides as shown.
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Consider the pulley and as much of the rope as is shown

together as a machine. In any motion, the external works are

those done by P, Q, and the axle friction; the internal work is

done by friction between the rope fibres where the rope winds

on and off. In one revolution of the wheel the works done by
P and Q respectively are Pina and —

Q27ra,

and that done by the axle friction is—j'Rinr,

/' denoting the coefficient of axle friction and
R the resultant axle pressure. Considering
that numerical values of /' are uncertain, we

may write R = 2Q; then the work of axle

friction is approximately —j'Q^nr. It has

been found experimentally that the work
"due to rigidity" of the rope is proportional
to Q, i.e., to the tension on the following

side; hence we may write for this work in

one revolution —cQ27cr, c being an experimental coefficient.

The equation of work and energy is (for one revolution)

Fig. 237.

or

P27:a— Q2na—fQ^nr—Q27tcr= o,

(I)

k being an abbreviation for (i+cr/a+2/V/a), sometimes called
**
coefficient of resistance

"
for the pulley.

With equation (i) we can compute the relation between the

load and the necessarj^ pull to raise or lower it, and the efficiency

of the tackle (see ex. 1). The value of the coefficient c has been
found to vary directly as the square of the diameter of the rope

{d) and inversely as the radius of the pulley. One formula

(Eytelwein's) is

d and a being expressed in inches.

f = 0.1, the values of k are as follows:

If a= 4C?, r—d/2, and

d=
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EXAMPLES.

1. Determine the relation between F and W (fig. 83) and
the efficiency when the load is being raised.

Solution : Call the tensions in the sections made by the hori-

zontal line beginning at the left 5i, Sg, Sg, etc. Then S2= kSir

S^ = k^Si, S^^k^Si, etc., and since

l^= 5i +52+53+ etc.,

Also F= kSQ= k^Si',

hence F^^Wk'^/ii+k + k^+k^+k^+k^).

During an ascent of the load equal to s, the point of appli-

cation of F descends a distance 65. Hence for that motion the

output and input are respectively

Ws and 6Fs,

anu the efficiency equals

W/6F=(i+k+k^-\- . . . k^)/6k\

2. Solve the preceding example supposing that the load is

being lowered.

316. Efficiency of a Mine-hoist.—Fig. 238(a) represents a

balanced vertical mine-hoist, consisting of an endless cable,

two cages ,
a hoisting-drum above, and a pulley below. Ordinates

from Ot to the various lines- in fig. 238(6) represent various

quantities involved in a power computation which is now to be

made. Thus, ordinates to aa represent a frictional resistance

(2 tons) applied to the surface of the drum equivalent to all the

actual frictional resistances in the hoist; ordinates to bb repre-

sent the weight of the load (6 tons) ;
and ordinates to cc repre-

sent the velocities of the cages. The assumed law of motion is

(i) that the acceleration is greatest at the beginning of the
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motion and decreases to zero uniformly and so that the velocity

acquired in 30 sees, is 60 ft.-per-sec, (2) then the velocity re-

mains constant for 60 sees., (3) then a retardation follows which

increases just as the acceleration decreased, i.e., uniformly and

so that the cages are brought to rest in 30 sees.

When the speed of the cages is constant the pull (F) of the

hoisting-engine (assumed for simplicity as applied to the sur-

face of the drum) just equals the sum of the load and the

100 ft. per sec.

(6)

Fig. 238.

frict^'on, but in the first 30 sees, the pull is increased by the

"inertia force,'* and in the last 30 sees, it is decreased by
the

"
inertia force." This inertia force depends upon the

mass of the cable, load, and cages, the moment of inertia

of the drum, and the acceleration or retardation. We
suppose that these are such that the ordinates to dd' and
to d''d represent the values of the force as applied to the

surface of the drum and that its maximum value is 12 tons.

The total force then to be exerted by the engine on the drum at

any instant is represented by the sum of the ordinates to the

three lines aa, bb, and dd for that instant. Ordinates to the

line ee represent all such sums.

The power of the engine P at the instant when the velocity

is V and the work done by it if in a distance 5 or a time t from

starting are given by

P= Fv, w= r Fds, w= f^ Pdt.
Jo Jo
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EXAMPLES.

1. Draw a curve showing how the •power changes with the

time.

2. Determine the entire work done by the engine in a single

hoist, and also the efficiency of the hoist.



CHAPTER XV.

IMPULSE AND MOMENTUM.

§ I. Impulse.

317. Impulse of a Force whose Direction is Constant.—If

the magnitude of the force is constant, the impulse of the force

for any interval is the product of the force and the length of the

interval, i.e., if F and {t"
—

t') denote the force and the interval

respectively, the impulse equals F(t" — t').

If the magnitude of the force varies, the impulse for any ele-

ment of time equals the product of the value of the force at any
instant of the element and the length of the element, i.e., Fdt\

and the impulse for any finite interval t" — t' equals /
^
Fdt.

The unit of impulse depends on the units used to express force

and time. If C.G.S. units be used, the unit of impulse is called

a dyne-second; if the pound and second are used as units of force

and time respectively, the unit of impulse is called a pound-
second.*

318. Impulse of a Force whose Direction Varies.—An impulse
should be regarded as a vector quantity, its direction being the

same as that of the force if that is constant.

The meaning of impulse of a force whose direction varies may
be explained as follows : Imagine a force to change its direction

and magnitude five times in a certain interval, and that the

values of the force and the corresponding portions of the inter-

val are F', F"
, etc., and {M)' , {At)", etc., respectively. Then

the impulses of the force for these portions are F'{At)\ F"{Jty\
etc. Now if Aa, ah, etc. (fig. 239), represent these impulses, the

impulse of the force for the entire interval is the vector sum of

Aa, ah, etc., or AB.

* For dimensions of a unit impulse see Appendix C.

329
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If the force changes by small amounts and many times in

the interval, its variation may resemble that of a continuously

varying force. By impulse of a conti!iuously varying force is

meant the limit toward which the impulse of a suddenly varying
c force tends as the manner of varia-

tion of the latter approaches that of

X B the former.

j Employing the language of the

I

infinitesimal calculus again, we state

j

that the impulse of a force for an ele-

j^
ment of time equals F-dtii F de-

notes the value of the force at any
^ ^ instant of the element, and its direc-

tion is that of the force. The im-

pulse of the force for a finite interval is / Fdt, the integration

being not ordinary but vectorial.*

319. Component of an Impulse.—Since an impulse is a vector

quantity it can be resolved; thus let AB (fig. 239) represent an

impulse and OX an x axis
; then the x component of the im-

pulse is represented by AC.

Proposition.
—The component of the impulse of a force along

any line equals the impulse of the component of the force along"

that line.

Proof: Let F denote the value of the force at any instant and

a its angle with the line (the x axis, say). Then for any element

of time {dt) including the instant, the x component of the im-

pulse of the force is {Fdt) cos a. Evidently the x component of

the impulse for a finite interval t" — f equals the sum of the x

Gompotients of the elementary impulses, i.e., / Fdt-co^ a. But

f Fdt- cos a= f Fa-dt,

Fx denoting the x component of F. Since the second integral

* While the student may not be able to compute the impulse of a

force in this way, it is desirable that he should understand the principle

of the method as above given.
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is the impulse of the x component of the force for the interval,

the proposition is proved.

320. Moment of the Impulse of a Force.—We regard the im-

pulse of a force as having not only magnitude and direction, but

also "position." If the action line of the force is fixed, then

that line is also the position line of the impulse. If the action

line changes, then the position line of the impulse for an element

of time coincides with the action line of the force at any instant

of the interval.

I. The Force is Constant and its Action Line is Fixed.—Let

ah (fig. 240) represent such a force (F) and OX an axis of mo-

ments. The impulse of the force for a

period t" — t' is F{t" — t'), its position line

being ab.

The moment of the force about OX is

defined in art. 28 as the product of the

component of the force which is perpen-
dicular to OX (the other being parallel to

OX) and the distance between the perpen-
dicular component and the axis. That is, if M denotes the

moment and p the distance,

M= {F sin a)p
^

. (i)

In an analogous way we define the moment of the impulse of

the force (or the angular impulse of the force, as it is also called)

to be the product of that component of the impulse which is

perpendicular to the axis and the distance between that com-

ponent and the axis. If ab is taken to represent the impulse,
ac represents the perpendicular component, and the angular im-

pulse equals

F(t"-tOsina-p = M(t"-t'), .... (2)

i.e., for any period the moment of the impulse about any axis

of a constant force whose action line is fixed equals the product
of the moment of the force about that line and the length of

the period.

II. The Force Varies in Any Way.—The moment of the im-

pulse about any line for an element of time is the product of the
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value of the moment of the force about that line at any instant

of the element and the element, i.e., Mdt. The moment of the

impulse for a finite interval t" — t' is the sum of the angular im-

Xt", Mdt.

The Unit of an Angular Impulse is the angular impulse
of a force whose impulse is such that its component perpendic-
ular to a moment axis equals a unit impulse and has an arm of

unit length. There are no names in use for these units. To
describe the unit of any numerical value of an angular impulse,
or moment of an impulse, we name the units of impulse and

length used in the computation.
The rule of signs for moments of impulses is like that for

moments of forces (see art. 28), i.e., we give the same sign to the

moment of an impulse of a force with respect to an axis as we

give to the moment of the force with respect to that axis.

§ II. Momentum.

321. Momentum of a Particle.—The momentum of a particle

is the product of the mass (m) and the velocity {v) of a particle.

Unit of Momentum.—The definition implies as unit the mo-
mentum of a particle of unit mass moving with unit velocity.

The magnitude of the unit hence depends upon the units of mass

and velocity employed. No single words have been generally

accepted as names for any units of momentum. It is shown in

Appendix C that the dimensions of a unit momentum are the

same as those of a unit impulse; hence it is not inappropriate
to call these units by the same name. Thus in the C.G.S. sys-

tem the unit of momentum is called a dyne-second, in the

English engineers' system it is called a pound (force)-second, etc.

322. Components of a Momentum.—Momentum should be

regarded as a vector quantity, its direction being the same as

that of the velocity of the particle. Like any other vector quan-

tity, a momentum may be r-esolved; thus if od (fig. 241a) rep-

resents the velocity of a particle, to some scale it also represents

the momentum {mv), and oa and oa' represent two components
of the momentum, their values being mv cos a and rnvsina
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respectively. Also oa, ob, and oc sue the x, y, and z compo-
nents of the momentum, and their values are

mv cos a = mv^, mv cos ^= mv^, mv cos
;-
= mv^.

323. Moment of Momentum.—Momentum should be regarded
as having not only magnitude and direction, but also "position.*

a
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moment of momentum is like that of the moment of that force.

Thus, in the preceding illustration, the angular momentum
about the x axis is positive.

*

Proposition.
—If the momentum of a particle be resolved into

three rectang-ular components, the moment of momentum with

respect to a line parallel to one of the components equals the

sum of the moments of the other two components with respect
to that line. (Compare Prop. I, art. 28.)

Proof: Let od (fig. 241) represent the momentum, OX, OK,
and OZ directions of resolution, and OX the moment axis. As

explained in the foregoing, the moment of momentum with

respect to that axis is

oa^Xp = (mv sin a)p.

From fig. 241(6), which represents the lines in the plane boc in

their true relations, it is plain that

p = y cos f'
— z sin

;-' ;

hence the moment of momentum equals

mv sin a {y cos f —z sin
;-'),

or {mvz)y— {'mvy)z.

324. Momentum of a System of Particles.—By momentum of

a system of particles is meant the resultant * of the momenta
of the particles. We shall not need a general expression for this

resultant, but will deduce the value of its component along any
line and the value of the resultant in special cases (art. 326),

Just as in a system of forces, the component of the resultant

of any number of momenta, along a line equals the algebraic

sum of the components of the momenta along that line. Thus

the X component of the resultant equals, if m', w", etc., denote

the masses of the particles and ^'^ v", etc., their velocities,

wW +w'W'+ • . . =ImVx=Mvg (see eq. (2), art. 239),

Computed according to the methods for compounding forces as

given in Chap. II.
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M being the mass of the system and v the velocity of its mass-

centre. That is, the component of the momentum of a system
of particles along any line is the same as if the entire mass were

concentrated at the mass-centre.

325. Moment of the Momentum of a System of Particles.—
By moment of momentum of any system of particles about any
line is meant the algebraic sum of the moments of the momenta
of the particles about that line.

As explained in art. 323, the moment of the momentum of a

particle whose mass, velocity, and coordinates are m', v'
,

{x\ y, z') about the x axis is

{m'v/y' —fn'VyZ)\

hence the moment of momentum of the system about the x axis

is

^(mv^y-mVj/Z).

326. Momentum of a Rigid Body in Special Cases.—I. A
Translating Body.—The velocities of all particles being the same

in magnitude and direction, the momentum equals, if v denotes

the common velocity, (dm)^, {dni)^, etc., the masses of the par-

ticles, and m the mass of the body,

(dm)iV + (dm)2V + . . • =vi'dm = mv,

and the direction of the momentum is the same as that of the

velocity.

The position line of the momentum contains the mass-centre,

as can be shown by a method similar to that employed in art.

244. Hence the moment of the

momentum about any line is the

same as if the entire mass were con-

centrated at the mass-centre.

11. A Rotating Body.
—We assume

as in art. 262 that the rotating body
is homogeneous and has a plane of

symmetry perpendicular to the axis
c . ^' J . n . Fig. 242.

of rotation. Let fig. 242 represent

that section of symmetry, C the mass-centre, and the centre of

rotation. As in art. 242, imagine the body divided into ele-

I
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mentary rods parallel to the axis of rotation. Evidently the

position line of the momentum of each rod is in the plane of

symmetry ;
hence that of the momeiltum of all the rods (or the

body) must be in that plane. Since the components of the

momentum of the body parallel to the x and y axis equal mvx.

and niuy respectively (see art. 324), the resultant momentum
equals

{{mVx)
^ + {'yii^y) ^]

=^^— mroj

{oj denoting the angular velocity of the body), and its direction

is the same as that of the velocity of the mass-centre. The posi-

tion line of the momentum passes through a point Q in the line

OC, whose distance {q) from the axis of rotation is given by

k being the radius of gyration of the body with respect to the

axis of rotation. This fact can readily be proved from the

result of the remainder of this article.

The moment of the momentum about the axis of rotation

might be computed from art. 325, but the following method is

as simple and preferable: Let P(fig. 242) represent any particle,

dm its mass, and r its distance from the axis of rotation; then

the momentum of that particle is dmrco, its position line as

shown, and the moment of its momentum equals {dmroj)r.

Hence the moment of the momentum of the body equals

/ dmr'^oj =
ajj

dm • r^ = Icu,

I denoting the moment of inertia of the body with respect to

the axis of rotation. This resultant is independent of the as-

sumption made in the first paragraph.

§ III. Principles of Impulse and Momentum.

327. Principles for a Particle.—Let a, v, and {x, y, z) denote

the acceleration, velocity, and coordinates at any instant of a

particle whose mass is m, and let R denote the resultant of all

the forces applied to it. Then, according to art. 236,

Rx = ma^ = mdvg/dt,

or Rfdi = mdvx.
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Let v' and v" denote values of the velocity at times t[ and t'[

respectively, then

jr/Vdt=mv/'-mv/ (i)

The integral is the x component of the impulse of the resultant

for the interval (/"
—

/'), and the right-handmember is the incre-

ment in the momentum of the particle along the x axis during
that interval. Now the component along any line of the im-

pulse of the resultant of any number of forces applied to a par-

ticle equals the algebraic sum of the components of the impulses
of the forces along the same line ;* hence

The algebraic sum of the components along any
line of the impulses of the forces applied to a

particle equals the increment in the component of

the momentum of the particle along that line.

From art. 236 we have also

Ry=mdvy/dt and Rz=mdvg/dt;

hence RyZ = mzdvy/dt, R^y= mydvg/dt,

and (Rgy
—
RyZ)

= (mydvz
—
mzdvy)/dt.

Now the left-hand member is the moment of the resultant about

the X axis, and we will replace it by M^. The right-hand member

equals d{mVgy — mVyZ)/dt, i.e., the time-rate of increase of the

moment of momentum about the x axis (see art. 323), and for

convenience we will denote this moment by U. Then

M^ = dUldt, or MJt = dU,

and
j^''M^dt

= U''-U' (2)

The left-hand member equals the moment of the impulse of the

'resultant about the x axis (equals also the sum of the moments
of the impulses of the forces acting on the particle), and the

right-hand member is the increment in the moment of the mo-
mentum of the particle about the x axis. Hence

"^
'^he proof can be supplied by the reader (see art. 310)
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The algebraic sum of the moments of the impulses
of the forces applied to a particle about any line

equals the increment in the moment of the mo-
mentum of the particle about that line.

328. Principles for a System of Particles.—The internal forces

in a system of particles occur in pairs, the forces of each being
at each instant equal, opposite, and collinear. Therefore the

impulses of each pair of forces for any interval are equal and

opposite; also the moments of the impulses of each pair about

any line are equal and opposite. It follows that the internal

forces contribute nothing to any change in the momentum or

moment of momentum of a system of particles, and it can be

readily shown from the results reached regarding a single par-

ticle that

A. For any period the algebraic sum of the components of

the impulses of the external forces acting on a system along any
line equals the increment in the component of the momentum
of the system along that line.

B. For any period the sum of the moments of the impulses
of the external forces acting on any system about any line

equals the increment in the moment of the momentum about

that line.

Special Case: No External Forces Applied to the System.—
It follows from the foregoing that

(a) The component of the momentum of the system along

any line remains constant; this principle is called that of "con-

servation of linear momentum."

(h) The moment of the momentum of the system with re-

spect to any line remains constant
;
this principle is called that

of "conservation of angular momentum."

§ IV. Applications.

329. Computation of Velocity and Time.—The equations

expressing the principles of impulse and momentum (^4 and i?,

art. 328) contain impulse (or moment of impulse) terms on one

side and momentum (or moment of momentum) terms on the

other. The factors in the impulse or moment of impulse terms
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are time and force or moment of force, and those in the momen-
tum or moment of momentum terms are velocity and mass or

moment of mass. If all the factors except one in one of the

equations are known, that one may be computed. In the fol-

lowing examples the unknown quantity is a velocity or a time,

and the^examples can^be most readily solved by the principles of

impulse and momentum.

EXAMPLES.

1. A body weighing 80 lbs. is moved along a horizontal sur-

face by a horizontal pull of 100 lbs. If the frictional resistance

is 20 lbs., how much velocity does the body acquire in 10 seconds ?

Solution : There are three external forces acting upon the

body, the pull, the weight, and the reaction of the surface. The

components of the impulses of these along the path are respect-

ively

100X10, o, and —20X10 Ib.-secs.

Calling the velocity of the body at the beginning of the lo-sec.

period v^, and that at the end of it v^, the equation of impulse
and momentum for the period is

1000 — 200 = 2.4 5Z'2
—

2.457/1,

2.45 being the mass of the body in geepounds. Hence the in-

crement of the velocity is

z^2— ^1
= 800/2.45 = 3^6.5 ft.-per-sec.

2. Solve ex. i
, supposing that v^

= o, and that the pull instead

of being constant equals 20 + 10^ {t being time in sees, after the

instant of starting).

3. Supposing that v^ in ex. i is 300 ft.-per-sec, determine

how long the body would slide after the tenth second, the ^
motion taking place under the influence of friction alone. Q '' - ^

4. Suppose that the disk of ex. 2, art. 298, is rotating en a

shaft 4 in. in diameter, and that the axle friction is 30 lbs. In

how many seconds would the frictional resistance stop it ? (Use
B, art. 328.)

5. Two pulleys are mounted on the same shaft, one being
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"
fast

" and the other
"
loose." Suppose that the shaft (and the

fast pulley) to be turning at a certain instant with an angular

velocity oj, and that the loose pulley is quickly made fast so that

it also turns with the shaft. If the shaft turns in smooth bear-

ings, determine the subsequent angular velocity of the pulleys
and shaft. •

Solution: Under the supposition there are no external forces

acting on the rotating system having moments about the axis

of the shaft. Then the moment of momentum of the three

bodies about the axis of the shaft remains constant.

Let / denote the moment of inertia of the shaft and the fast

pulley, r that of the loose pulley, and CO2 the final velocity. Be-

fore and after the loose pulley is made fast, the moments of

momentum of the three bodies about the axis are respectively

Ico^ + o and 10)2+ 1'
(02',

and since these are equal as above explained,

co2=IwJ{I-\-r).

6. Two spheres whose masses and radii equal m and r respect-

ively rotate on a light frame about a vertical axis as shown in

fig. 243 with an angular velocity 10^. Suppose that, in some way

K- a-—- * »"— Jm m
Pig. 243.

without interfering directly with the motion, the distances a

are increased to h. Determine the angular velocity after the

change.

330. Pressures Due to Jets.
—Pressure due to a jet of liquid

can often be most readily determined by the principles of im-

pulse and momentum. How this is done is explained in the

solution of some of the following

EXAMPLES.

I. Fig. 244(a) represents a jet impinging on a flat surface so

that the direction of the jet is changed 90®. If W is the weight
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(of water) impinging per unit time and v the impinging velocity,

show that the pressure of the water on the plate is Wv/g.
Solution: Consider the motion of the amount of water rep-

resented in the figure for a small period dt, during which it moves

DJI^

^ X

(a)

into the position indicated by the dotted lines. Let MJ and

Mx" denote the initial and final momentums in the x direction

of the water whose motion is being considered, then

Mx = the
*

'x momentum "
of 5 + (Wdt/g)v ;

also Mx" = the
'

'x momentum' '

of -B
,

because C and D have no x momentum. Hence the change in

the X momentum of the body of water is

Mx'-Mx" = (Wdt/g)v.

The impulse of the force producing this change (the pressure of

the surface on the water, which call F) is Fdt\ hence

Fdt = (Wdt/g)v,

or F = Wv/g.

2. Fig. 244(6) represents a jet impinging on an inclined sur-

face. If W is the weight of the water impinging per unit timcj

and V the impinging velocity, show that the normal pressure on

the jet equals (Wv/g) cos
(j>.

Solution: Consider the motion of the body of water repre-

sented for a small period during which it moves into the position

indicated by the dotted lines. With notation as in the preced*

ing solution,

Mx =x momentum oiB + (Wdt/g)v cos
(f)

and Mx" = x momentum of B.
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Ji-

oo' oo

Hence the change in the x momentum of the body of water is

M^' -MJ' = (Wdt/g)v cos i>.

CaUing the normal pressure of the surface on the water F^, the

impulse of Fr, is Fndt, and

Fndt = {Wdt/g)v cos
(j>,

or F„, = (Wv/g) cos
((>.

3. Fig. 244(c) represents a jet impinging on a guide or vane
which suppose smooth, so that the speed of the water is not

changed. Determine the x and y components of the pressure
of the jet. Ans. The x component is Wv{i —cos ^)/g.

4. Fig. 245 represents in plan and elevation a simple reaction-

wheel. Water is poured in at the top
and escapes through two orifices O and
O in a horizontal direction. Such a

wheel is caused to revolve by the "re-

action" of the jets. It is required to

determine the moment of these reactions.

Solution : Let W denote the weight
of the water escaping and entering per
unit time, and v the velocity of the

escaping water relative to the orifices.

Then if co denotes the angular velocity

of the wheel, the absolute velocity of the
^'-'^^

jets is roj—v. Consider the motion, for

Fig. 245. a short period, of the water in the wheel

and the amount about to flow in for that period (Wdt); that

water is represented in the elevation fig. 245. At the end of

the period the entering water is all in the" wheel and an amount
Wdt has escaped, as vshown in the plan. Let Af and Af denote

the moment of momentum of the bod}^ of water being consid-

ered about the axis at the beginning and end of the period di

Then supposing that the water enters vertically or so that the

iet is bisected by the axis of rotation,

M'= the moment of momentum of B
and M"= " '• " "

''B-{-(Wdt/g)(r(o-v)r;

the change of moment of momentum hence equals

iWdt/g){rco-v)r.

ELEVATION
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Let Ma denote the moment (about the axis) of the pressure of

the wheel on the water; then the moment of the impulse of

the pressure is Madt and

Madt^{Wdt/g){roj-v)r,

or Ma-={W/g){rco-v)r,

and the moment of the *water-pressure (turning the wheel) is

{W/g){v — roj)r.

5. Show that when water issues from an orifxe in a vessel at

rest, the water exerts on the vessel a force equal to {W/g)v
in a direction opposite to that of the velocity of the jet. {W de-

notes the weight of water escaping per unit time, and v its

velocity.)

331, Sudden Impulses.—The impulse of a force which acts

for a very short time is called a sudden impulse.
If a body is subjected to a blow and to an ordinary or steady

force at the same time, the impulse of the latter during the blow

is often negligible compared with the sudden impulse. Thus in

the case of a ball thrown against a wall there are two forces

acting on the former during the impact, namely, the weight of

the ball and the reaction of the v/all. Supposing the ball to be

thrown horizontally, the reaction of the wall is horizontal, and

its impulse equals the change in the horizontal component of

the momentum of the ball. The impulse of the weight equals
the change in the vertical component of the momentum. Now
this latter change, as we see from observation, is practically zero

compared to the first change ;
hence the impulse of the weight

is also practically zero compared to the impulse of the blow.

The principles of impulse and momentum are especially

adapted to questions involving sudden changes of motion, and

the remainder of this chapter relates to changes of this kind.

332. Force of a Blow and Recoil of a Gun.—When one body
strikes another we name the act "a blow," and by force of the

blow we mean the pressure between the bodies during the blow.

This pressure is variable, changing from zero to a maximum and
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back to zero. If t denotes the duration of the blow andF the

variable value of the force, the impulse is / Fdt. By average

force of the blow * is meant a constant force which, acting for

a time equal to the duration of the blow, has an impulse equal
to that of the actual force. Thus if Fa denotes the average
force of the blow,

Fat=jydt.
When a gun is fired, the powder-gases exert a backward force

on the gun as well as a forward one on the shot. If the mass of

the powder were negligible, the two forces at each instant and

their impulses would be equal. Thus let m^ and m^ denote

masses of the shot and gun respectively, and v^ and v^ their

velocities just after the shot leaves the barrel. Then, since the

impulses producing the velocities are equal, the momenta of

shot and gun must be equal, i.e.,

If a gun is suspended in a horizontal position by means of

two parallel cords of equal length, the velocity of recoil {v^) and

the height (h) to which the gun rises during the recoil are related

thus: v^ = 2gk (see ex. 9, art. 312); hence

mjV^ = m2\/2gh, or v^
= {m2/ni^\/2gh.

EXAMPLES.

1. A body whose weight is W is dropped twice from a height

k, once striking on a pile of hay and once upon the ground. If

the times of the impacts are f and t"
, compute the average force

of the blow in each case.

2. If a 2-oz. lead bullet strikes a plate with a velocity of 1000

ft.-per-sec, and is "flattened out" in i/ioo sec, what is the

average force of the blow ?

333. Collision or Impact.—Consider two bodies in a collision

such that the only sudden impulses involved are those of the

pressures which they exert upon each other. Then the impulse

of other forces (as gravity) which may act on the bodies during

* This average, it should b^ noted, is a time-average, and the average

force of the chapter on Work and Energy (XIV) is a space-average.
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collision are negligible and the principles of conservation apply.
In such a collision there is no change in the momentum or mo-
ment of momentum of both bodies together.

Definitions : If the mass-centres of two bodies before collision

move aloi.g the same straight line, the impact is called direct.

If the forms of bodies are such that the pressures which they
exert upon each oth^r are directed along the line joining their

mass-centres, the impact is called central.

334. Direct Central Impact.
—Let the common path of the

mass-centres be taken as an x axis, then the momentum of each

body has no y ov z component. Since the impulses due to Ihe

collision are directed along the x axis, the increment in the

momentum of each body due to the collision is directed along
the X axis and the momenta of the bodies after the collision have

no y ov z components, i.e., the mass-centres of the bodies move

along the x axis after the impact.
The moment of the impulse of the force exerted upon either

body about any axis through its mass-centre is zero
;
hence the

moment of momentum of each body about any axis through its

mass-centre is unchanged in the collision. In particular, if the

motion of either body before collision is translatory it will be

so after collision.

Let A and B be two translating bodies in collision and let

m^ and Wj denote the masses of A and B
;

t'l
and i/j #

*' **
velocities of ^ and 5 before impact;

v^' and V2
*' " ** " A and B after impact.

The velocities should be regarded as having sign, those in one

direction being positive and those in the other negative. As

previously explained, the total momentum of the two bodies is

not changed by the impact ;
hence

m{i\ + m2V2 = m{Vi +m2V2^ (i)

It has been determined experimentally that when two spheres

collide directly and centrally the velocity of either relative to

the other is reversed by the impact and diminished, and that the

diminution depends only on the materials. That is,

(i\-v^)^-e{v,'-v./), (2)

e being a common fraction and called "coefficient of restitution."
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We assume that relative velocities of any two bodies before and
after a direct and central impact are related as in the case of

spheres. *

Equations (i) and (2) determine the final velocities of two col-

liding bodies in terms of their masses, initial velocities, and their

coefficient of restitution. Thus we find from the equations that

V='^l-(l +^)(^l -'^2)^2/(^1 +^2)» • • • (3)

v^'
= v^-{i+e){y^-v^)mjim^+m^). ... (4)

The value of the impulse equals the change in the momentum
of either body. This change is

m{u^'-m^v^= -(i -\-e){Vy^-v^)m^mJ{m^-^m^). . (5)

During a collision each body is first compressed, and after

full compression has been reached it begins to recover its natu-

ral form unless the body is perfectly inelastic. The time occu-

pied by the compression is called the period of compression, and

it is assumed to be alike for both bodies. The remainder of the

time of an impact is called the period of restitution. When the

compression ends and restitution begins the velocities of the

mass-centres are the same; let v denote this common velocity.

Then, from the principle of conservation,

hence 7;=-^-^-—— = —'-^
(6)

For the case of a body (mj impinging on a fixed one (Wj),

we substitute for Wj and V2 respectively 00 and o; then

v^'=-ev^ (7)

335. Loss of Energy in an Impact.
—There is always a loss of

kinetic energy in an impact (unless e = i), its value being found

as follows: The kinetic energy before and after impact equals

^m{U{^ + iw2^'2^ and ^n^u^
^ + hm^v^ ^.

Subtracting the latter from the former and substituting for v^
and V2 their values from (3) and (4), we have as the loss
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^
EXAMPLES.*

I . Show that if two bodies of equal mass and perfectly elastic

(^
=

i) collide, they exchange velocities.

2. If a ball falls from a height h upon a horizontal plane,
show that the height of rebound equals e^h.

3. Two bodies of unequal mass with momenta numerically

equal meet. Show that their momenta after impact are still

numerically equal.

I t 4. A body whose mass is 10 lbs., moving with a velocity of
''

87 ft.-per-sec, overtakes a body whose mass is 40 lbs., moving
with a velocity of 6 ft.-per-second. The coefficient of restitu-

tion being 3/4, compute the final velocity of each and the im-

pulse of the forces due to impact. Ans. v^'
=

6.^] ft./sec.

|.'7 5. Suppose that in ex. 4 the bodies meet and collide;' then

solve.

6. Suppose that in ex. 4 the bodies are inelastic, and solve.

7. Deduce values of the impulses for the periods of com-

pression and restitution, and show that the former is independ-
ent of the coefficient of restitution.

336. Ballistic Pendulum and Centre of Percussion.—Fig.

246 represents a ballistic pendulum (for determining the ve-

locity of a projectile); let M denote its mass, k its

radius of gyration with respect to its axis of rota-

tion, m the mass of the shot, v its striking velocity,

and oj the angular velocity produced in the pendu-
lum by the impact. The velocity of the shot just

after it is imbedded and has come to rest relative

to the pendulum equals rco. Since the time of the

impact (during which the angular velocity is gen-

erated) is very short, the angular displacement of

the pendulum during that time is practically zero,
^'^^- ^46.

and the direction of the velocity of the shot just after imbedding
is practically horizontal. Hence the impulse exerted on the

shot by the pendulum and that exerted on the pendulum by th<

shot equal
m{v — r(tj).

F

J-

* Direct central impact is implied in all the examples.
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The moment of the impulse of the shot on the pendulum with

respect to the axis is m(v — roj)r, and the change in the moment
of momentum of the pendulum (witR respect to the axis) dur-

ing the time of the impulse equals Mk^w (see art. 326). Ac-

cording to B, art. 328,

m{v — roj)r
= Mk'^oj, or v = {Mk^+mr^)cu/mr.

If h is the height to which the centre of gravity of the penduluHi

rises, co=^{i/k)V2gh (see ex. 8, art. 312); hence

Mk^+mr'' /—,

V= r— V 2m,mrk

and from this equation v may be computed, the quantities on

the right side being readily measured in any actual c se.

Centre of Percussion .
—Let R^ and R^' denote the average

values of the vertical and horizontal components f the hinge
reaction on the ballistic pendulum during an impcxt, P the aver-

age value of the force of the blow, and t the duration of the blow

which is assumed to be so short that the displacement of the

pendulum for the time t is practically zero.

The momentum of the pendulum after the blow is Mrco and
its direction is horizontal, and the moment of its momentum
about the axis is Mk^oj (see art. 326); hence, according to the

principles of impulse and momentum (see fig. 246),

R't-Wt = o,

Pt-R"t==Mroj,

(Pt)r= Mk'oj.

From these, R' =W and R" = Moj{kyr-r)/U
Observe that R' is independent of the blow and that i?"

-equals zero if the blow is applied at a distance equal to k^/r

below the axis. The point in OC produced, whose distance

from equals k"^/?, is called centre of percussion; it coincides with

the centre of oscillation of the pendulum (see art. 267), and the

methods given in art. 267 may be employed to locate the centre

of percussion of a ballistic pendulum.
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VECTORS.

A I. Scalar and Vector Quantities.
—A quantity which has magni-

tude or magnitude and sign only is called a scalar quantity. An
amount of money, a volume, etc., are examples of scalar quantities.

A quantity which has magnitude and direction is called a vector

quantity. A step, a force, and a velocity are examples of vector

quantities.

The methods of ordinary algebra are sufficient for purposes of

analysis in mechanics when only scalar quantities are concerned,

but insufficient in general for dealing with vector quantities. For

example, the algebraic sum of two forces is in general meaningles?
or at any rate without mechanical significance, but their vectorial

sum (to be explained) has a very important significance. There is

a branch of mathematics sometimes called Vector Algebra, the

methods of which are especially adapted for dealing with vector

quantities. We proceed to a brief explanation of Addition and

Subtraction by those methods.

A 2. Vector Defined.—A straight line of definite length and

direction is called a vector. The word direction here refers not

only to the inclination (or "clinure") of the line, but also to its

(a) (b)

Fig. A i.

"
('* right- or Isft-ness

"
or

**

up- or down-ness "
along the line).

The sense is usually indicated by an arrow-head placed on the line.

The lines of fig. A i are vectors.

Two vectors in order to be equal must be equal in length and

of the same direction. The first and second vectors of fig. A i (a)

(counting downwards) are equal because they agree in length and

349
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direction, but the third is not equal to either of the others because

its direction is different from theirs.

A 3. Addition of Vectors.—Definition.
—The sum of the vectors

AB and BC is the vector AC (fig. A i 6). Notice that this defini-

tion does not conflict (as at first sight it may appear) with the

proposition of geometry which states that the length of any side

of a triangle is less than the sum of the lengths of the other two.

To add more than two vectors we proceed as in the ordinary

algebra, i.e., we add any two, then to that sum another vector, and
so on until all have been combined. As in the addition of scalars,

the sum of several vectors does not depend on the order in which

they are added; thus the sum of the four vectors a, 6, c, and d (fig.

A 2) is found to be AB by adding them in a certain order and CD

Fig. a 2.

by adding in another order, and AB and CD are found to agree in

length and direction. If they are added in any other order, the

sum will be found to be equal \o AB or CD.

EXAMPLE.

Reverse the arrows on vectors c and d (fig. A 2) and add the

four vectors in at least two ways.

A 4. Negative of a Vector.—In ordinary algebra, the negative of

a quantity is one which added to the quantity gives a sum equal
to zero. So, too, the negative of a vector is one which added to

the vector gives a sum equal to zero. Now the sum of two vectors

which are equal in length, parallel, and opposite in sense equals
zero

;
hence either is the negative of the other.

A 5. Subtraction of Vectors.—In ordinary algebra, a quantity is

subtracted from another by adding its negative. So, too, to sub-

tract a vector from another we add the negative of the former to

the latter.

EXAMPLES.

1. Subtract vector a (fig. A 2) from vector 6.

2. Subtract vector h from vector a.
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RATES.*

The term rate is in common use, but usuallym an inexact sense

In the following a precise meaning is given to it which, it will be

observed, does not conflict with the -popvlax notions in so far as

they are exact.

B I. Kinds of Variable Quantities.
—Let X and y be two quanti-

ties which are related to each other, a change in x producing a

change in y. If all equal changes in x (large or small) produce

equal changes in y, y is said to vary uniformly with respect to x
and it is called a uniform -variable. If equal changes in x produce

unequal changes in
;v, it is said to vary non-uniformly with respect

to x, and it is called a non-uniform variable.

B 2. Rate of a Uniform Scalar.—If y is a uniform variable, then

the locus representing the relation between x and ^ is a straight

line, for in such a locus equal changes in x

produce equal changes in y.

In this simple case, the popular meaning
of "the rate of y" is definite, it being the

change in y per unit change in x. If Jx,

x^—Xi (see fig. B i), denotes any change in x,

and Jy, y2—yi, the corresponding change in

y, then the change in y per unit change in x
is 'dy/Jx, or (y2—yi)/{x2—x^). Hence if r

denotes rate,

T = Jj/Jx (i)

Evidently r is the same for all values of ^x, i.e., the rate of a uni-

form variable is constant.

B 3. Rate of a Non-Uniform Scalar.—If y denotes a non-uniform

variable, then the locus representing the relation between x and y
obviously must be curved.

According to popular notions, the rate of a non-uniform vari-

* This appendix is intended for students who do not associate the

idea of rate with dy/dx, but do understand that dy/dx is a "limit."

35^-
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Fig. B I.
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able is not constant and has a definite value at each value of the

variable, but these definite values of the rate are not clearly dis-

cerned in the popular mind.

Average Rate Defined.—Let Ay denote the change in y due to a

change 4oc in x (see fig. B 2 a). Evidently the rate of a uniform vari-

able, also depending on x, might be
such that the change in that variable

due to a change Ax in x equals Ay.
The average rate of the non-uniform
variable for the range X2 —x^ is de-

fined as the rate of such a uniform
variable as just mentioned. Now
the rate of the uniform variable is

Ay/Ax; hence if ra denotes average
rate of the non-uniform variable,

To

/y^^y
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It is shown in w

hence

orks on calciilus that the area ABB^A^ equals / ^rdx,

y\ X2 —Xi

Ay
Ix

Thus we find that th ordinary method of computing averages leads

to a r -^ult identical with tha given by eq. (2).

The definition of
"
instantaneous rate

"
further agrees with popu-

lar notions, as may be explained thus: Let y and z denote uniform
and non-uniform variables respectively, both depending on x, and

suppose that their relations to x are represented by the straight and
curved loci of fig. B 3. From the figure it is plain that for any
change Ax between A andB (at -4, the tan-

gent to the curve is parallel to the straight

line) the change, or increment, in z is

smaller than that in y, and that they be-

come more nearly equal the nearer B is

to A. Also for any change Ax between A
and C the change in z is greater than that

in y, and they become more nearly equal
the nearer C is to ^. Popularly stated : up
to A

,
the rate of z is less than the rate of y,

beyond A the rate of z is greater than that

of y, and at A they are equal. Now our formulas for rate should

agree with this popular expression, and it is readily shown that

they do. Thus the rates of and ^ are fi2r/(i^ and J^z/J^; and it will

be seen from the figure that for values of x less than x' the former
is the lesser, for values of x greater than x' the former is the greater,

and for x = x' they are equal.
B 4. Sign of a Rate.—Both Ay/Ax and dy/dx may be negative as

well as positive; hence in order that equations (i), (2), and (3) may
be true as to sign, it is necessary to regard a rate as having sign
and the sign must be the same as that of the expression for the rate

{Ay/Ax or dy/dx). Now Ay /Ax (for a uniform variable) and dy/dx
are positive when y increases as x increases, and they are negative
when y decreases as x increases.*

Hence the rate of y with respect to x at any particular
value of y is positive or negative according as y in-

creases or decreases at that value as x increases.

*
Algebraic increase and decrease are meant.
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Thus in fig. B i (a) the rate of y is positive, in fig. B i (6) it is neg-
ative, and in fig. B 2 (a) the rate has different signs at different

values of rj; or 3;, it being positive from mto n, negative from n to o.

B 5. Unit of Rates.—The expressions for rates in eqs. (i), (2),

and (3) imply a certain unit, namely, the rate of a uniform variable

y which changes a unit in amount for a unit change in x. Thus if

y denotes volume and x distance, the unit rate might be one cubic

foot per foot, one gallon per inch, etc.
;

if y denotes distance and x

time, the unit rate might be one foot per second, one mile per hour,

etc., etc.

B 6. Rate of a Uniform Vector.—Let y denote a vector which is

related to x and let Oa, Oh, Oc, etc. (fig. B 4), represent y at values of

X equal to x^, x.^, x^, etc., the dif-

ferences between successive values

of X being equal (riTj ""^i^^s ~^2'

etc.). Now if ab=bc = cd etc.,

y is a uniform variable, for the

changes (or increments) in y (vec-

tors) for equal changes in x are

equal.

-piQ B . By rate of a uniform vector y
is meant its change per unit change

in x; hence the rate equals any change in y (a vector) divided by
the corresponding change in x, as (vector ac) /{x^ —^1). If OA and
OB represent y for any values oi x as x and x + Jx respectively, then

the rate oi y is

(vector AB)/Jx.

Let P be a fixed point in ad in the direction BA from A
,
and let

5 denote the variable distance PA. The increment of 5 due to a

change Jx in x equals AB as shown, and since y is a uniform vari-

able, ^ evidently is also; hence the rate of 5 is As/Ax. Finally,

since As = length AB, the rate of y is a vector

whose direction ic that of the increment of y and
whose magnitude equals ds/dx.

B 7. Rate of a Non-Uniform Vector.—Let Oa, Oh, Oc, etc. (fig. B 5),

represent a vector ;y at values of x equal to x^, x^^, x^, etc., the

successive differences in x being equal. The changes in y corre-

sponding to changes x^—x^, x^—x^, etc., are the vectors ah, he, etc.

Then if, in fig. B 5 (a), ah, he, etc., are unequal and if, in Fig. B 5 (6),

ah, he, etc., are equal or unequal, >' is a non-uniform variable; for
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the changes, or increments, in y due to equal changes in x are not

equal.*

Average Rate Defined.
—Jhe average rate of a vector y for any

range dx in x is defined as the rate of a uniform vector whose change,

for the same range in x, equals that of y. Thus if OA and OB repre-

sent y for values x and x + Jx, the change in y for the range dx

is the vector AB. Now the rate of a uniform vector whose change
is also AB for the range Jx is (vector AB)/Jx, and this, by the

definition, is the average rate of y during the change Jx, i.e.,

the average rate is a vector whose direction is AB and
whose magnitude equals (length AB) / Jx.

Actual or Instantaneous Rate Defined.
—The value of the average

rate of y is different in magnitude and in direction for different

values of Jx. The average rate approaches a definite direction and
a definite magnitude as Jx approaches zero. The rate of the

variable y at the value y =OA is defined as the limit of the average
rate of 3/

as Jx approaches zero (B approaches A). The limiting
direction of the average rate is the limiting direction oi AB, which
is the direction of the tangent at A. The limiting value of the

average rate is the limit of (chord AB)/Jx, which is the same as

the limit of (arc AB)/Jx. Now let P be any fixed point on the

curve AB in the direction BA from A, and 5 the distance from P
to A

;
then the change in s, Js, due to a change Jx in x is the arc

AB, and
,. arc AB ,. -. Js ds
lim = limit— =

-r--
JX Jx dx

Finally, the rate of y at the value y =OA is a vector

whose direction is that of the tangent at A
, and

whose magnitude =ds/dx.

* Equal vectors are equal in length and the same in direction.
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It is implied that the fixed point from which 5 is measured is

so taken that Js is positive. The arrow on the tangent, giving the

sense of the rate, points in the positive § direction.

B 8. Descriptive Terms.—A variable y may depend on several

quantities. If so, it has as many rates, and we say for brevity the
" X rate oiy" to distinguish the rate of y with respect to x from its

other rates. The rate dy/dx is often described by naming the kind

of a quantity represented by x\ thus if x denotes distance, dy/dx is

called a "space rate" ot y\ ii x denotes time, dy/dx is called a
"
time rate "of y. The time rate of y is sometimes indicated

thus, y.

If y and x denote certain quantities, the rate is given a single

name; thus if y and x denote distance and time respectively, dy/dx
is called velocity; if y denotes mass and x volume, dy/dx is called

density.
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DIMENSIONS OF UNITS.

C I. Magnitude of a Quantity.
—The magnitude of a quantity is

expressed by stating how many times larger it is than a standard

quantity of the same kind and naming the standard. Thus, we

say that a certain distance is" lo miles, meaning that the distance is

lo times as great as the standard distance, the mile.

The number expressing the relation between the magnitude of

the quantity and the standard (the number lo in the illustration)

is called the numeric (or numerical value) of the quantity, and the

standard is called the unit.

C 2. Fundamental and Derived Units.—A unit for measuring any
kind of quantity may be selected arbitrarily, but it must of course

be a quantity of the same kind as the quantity to be measured

(e.g., a unit for measuring lengths must be a length). Thus, as

unit of velocity we might select the velocity of light, as unit of area

the area of one face of a silver dollar, etc. Many units in use are

arbitrarily chosen, i.e., without reference to another unit (e.g., the

bushel and the degree), but it is convenient practically to define

them with reference to each other. All mechanical and nearly all

physical quantities can be defined in terms of three arbitrarily

selected units, i.e., ones not dependent on any other units. These

are called fundamental units, and the others, defined with reference

to them, derived units. It is customary in works on theoretical

mechanics and physics to choose as fundamental the units of

length, mass, and time,

but it is sometimes more convenient to take as fundamental the

units of

length, force, and time.

In the following article we give a discussion of derived units with

reference to each of these sets of fundamentals, and on pages 360 and

361 there appear summaries in which the absolute units are re-

ferred to the first set of fundamentals and the gravitational units

to the second set. But either set might serve as fundamentals for

all absolute and gravitational units.

357
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C 3.
" Dimensions " of Units.—A statement of the way in which

a dsrived unit depends on the fundamental ones is called a state-

ment of its dimensions.

Obviously an area depends only on the tinit of length, definitely

as the square of the unit of length. Thus

(one sq. yd.) /(one &q. ft.) =(one yd. or three ft.) '/(one ft.)
' =

9.

This relation is expressed in the form of a "
dimensional "

equation,

thus

(unit area) = (unit length) ',

and briefly a unit area is said to be "two dimensions in length."

Similarly a unit volume is said to be three dimensions in length.

Velocity.
—According to the definition of velocity (art. 167), a

unit velocity is directly proportional to the unit length and in-

versely to the unit time; hence if V, L, end T denote units of veloc-

ity, length, and time respectively, the dimensional equation is

V=L/T=LT-S
and a unit velocity is one dimension in length and minus one in time.

Acceleration.—According to the definition of acceleration (art.

173), a unit acceleration is proportional directly to the unit veloc-

ity and inversely to the unit of time ;
hence if A denotes unit accel-

eration, the dimensional equation is

A = V/T=L/T2=LT-»,

and a unit acceleration is one dimension in length and minus two
in time.

Angular Velocity.
—According to the definition of angular veloc-

ity (art. 210), a unit angular velocity is proportional directly to

the unit of angle and inversely to the unit of time
;
hence if (o and

denote units of angular velocity and angle respectively, the dimen-

sional equation is

(o = 6/T, or (o = T-\

since units of angle, (degree, radian, etc.) are independent of the

fundamental units. A unit angular velocity is therefore minus one

dimension in time.

Angular Acceleration.—According to the definition of angular

velocity (art. 213), a unit angular acceleration is proportional

directly to the unit angular velocity and inversely to the unit time;
hence if a denotes unit angular acceleration, the dimensional equa-
ion is

a = w/T = T-',

and a unit angular acceleration is minus two dimensions in time.
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Force.-—In accordance with the equation of motion of a particle

(art. 236), R=ma, or

"
force = mass X acceleration ",

i.e., the unitforce is directly proportional to the units of mass and

acceleration; hence if F and M denote units of force and mass

respectively, the dimensional equation is

F=MA = LMT-',

and a unit force is one dimension in length, one in mass, and minus
two in time.

Mass.—If we regard length, force, and time as fundamental

units, then the last equation written as follows is the dimensional

equation for a unit mass :

M=FT2A = L-^FT^

and a unit mass is minus one dimension in length, one in force, and
two in time.

Work.—According to the definition of work (art. 2^6), the unit

of work is directly proportional to the units of force and length;
hence if W denotes unit work, the dimensional equation is

W=LF=L2MT-2,

and a unit work is one dimension in length, one in force, or two in

length, one in mass, and minus two in time.

Power.—According to the definition of power (art. 311), a unit

of power is proportional directly to the unit of work and inversely
to the unit of time

;
hence if P denotes unit of power, the dimen-

sional equation is

p =w/T =LFT-^ =L2MT-^

and a unit power is one dimension in length and force and minus one

in time, or two in length, one in mass, and minus three in time.*

C 4. Applications of the Theory of Dimensions.—A knowledge of

the theory of dimensions is probably of most value to the beginner
as a help to a clear understanding of the different mechanical quan-
tities and the relations between them.' The theory is useful prac-

tically in other ways, two of which we mention."

(i) As a test,of ike accuracy of equations between mechanical quan-
tities.—Such an equation if rationally and correctly deduced must
be homogeneous, i.e., the terms in it must be the same in kind. To

* Determination of the dimensions of the other units mentioned in the

following tables is left to the student.
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ABSOLUTE SYSTEMS ("SCIENTIFIC").

Names of Quantities.
Dimen-
sional

Formulas.

Names of Units.

C.G.S. P.P.S.

Length ,

Mass ,

Time
Velocity
Acceleration

Angular Velocity
Angular Acceleration. . . .

Force

Weight
Moment of Mass
Moment of Inertia (Body)
Moment of Force
Work ,

Energy ,

Power ,

Impulse ,

Momentum
Density
Specific Weight
Moment of Area
Moment of Inertia (Area)
Stress ,

Stress Intensity

L
M
T

LT-'
LT-'
7-1

LMT-
LMT-
LM
UM
UMT-
L^MT-
L^MT-
L^MT-
LMT-
LMT-
L-'M

L-HiT-
IJ
L*

LMT-
L-'MT-

centimeter (cm)
gram (gr)

second (sec)
cm/sec ("kine")

cm/sec^ ("spoud")
rad/sec
rad/sec^
dyne
dyne
gr-cm
gr-cm
cm-dyne

cm-dyne ("erg")
cm-dyne ("erg")

erg/sec
dyne-sec ("bole")
dyne-sec ("bole")

gr/cm^
dyne/cm^

cm^
cm*
dyne

dyne/cm''

foot (ft)

pound (lb)
second (sec)

ft /sec

ft/sec2

rad/sec
rad/sec^

poundal (pdl)

pdl
Ib-ft

Ib-ft

ft-pdl

ft-pdl

ft-pdl
ft-pdl/sec

pdl-sec
pdl-sec
lb/ft3

pdl/ft3
ft3

ft*

pdl
pdl/ft2

ascertain whether terms are the same in kind we write the dimen-

sional form of the equation, reduce the tenns to their simplest

forms and compare; if they are alike, the terms are the same in

kind. To illustrate, consider eq. (i), art. 250,

dt' ^,,^r q^A sin cot, ..... (i)

in which y and A denote lengths, t and x/p time, and q and o) angu-
lar velocity. Then d'^y/dP is an acceleration and dy/dt a velocity,

and the dimensional equation is

LT-' + {T-')(LT-')+(T-'yiL) = {T-'yL.

An abstract number, as the sine of an angle, is independent of all

units and hence does not affect a dimensional equation. Reducing

the terms in the last equation we get

LT-2 -hLT-' +LT-2 =LT-«;

i.e., the terms are alike and the original equation is homogeneous.

Showing that the equation is homogeneous does not prove that
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GRAVITATION SYSTEMS ("ENGINEERS'").

Names of Quantities.
Dimen-
sional

Formulas.

Names of Units.

F.P. (force) S. M.K. (force) 3.

Length. .

Force. . . . ,

Time
Velocity.
Acceleration

Angular Velocity. . . .

Angular Acceleration.
Mass
Weight
Moment of Mass. ...
Moment of Inertia. . .

Moment of a Force. .

Work ,

Energy ,

Power
Impulse
Momentum
Density ,

Specific Weight ,

Moment of Area. . . . ,

Moment of Inertia. . . .

Stress
^

,

Stress Intensity ,

L
F
T

LT--"
LT-^

L-'FT^
F

LFT^
LF
LF
LF

LFT-'
FT
FT

L'FT^
L-W
L'
L*
F

L-'F

foot (ft)

pound (lb)

second (sec)
ft /sec
ft/sec2

rad/sec
rad/sec^

'geepound" (gib)
lb

glb-ft

glb-ft2
ft-lb

ft-lb

ft-lb

ft-lb /sec
lb-sec

lb-sec

glb/ft'
Ib/ft^
ft^

ft*

lb

lb/ft2

meter (m)
kilogram (kg)
second (sec)

m/sec
m/sec^
rad/sec
rad/sec^

'geekilogram" (gkg)

kg
gkg-m
gkg-m^
m-kg
m-kg
m-kg

m-kg/sec
kg-sec
kg-sec
gkg/m*
kg/m»
m'
m*
kg

kg/m»

it is correct, but that it may be correct
; showing that an equation is

non-homogeneous shows it to be incorrect. Since abstract num-
bers do not appear in the dimensional form of an equation, the test

for homogeneity does not discover errors in numerical coefficients

and terms, nor of course errors in signs.

As another illustration consider eq. (2), art. 250,

A sin (cot + e) (2)

It was deduced from eq. (i) by two integrations. If we find that

(2) is non-homogeneous, we may be sure that a mistake was made in

the deduction from (i) to (2). The dimensional form of (2) is

(T-^)(T-^)
*

i.e., the equation is homogeneous and it may be correct.

Not only must rational mechanical equations be homogeneous,

but every factor or expression in it which is the sum of several terms

must also be homogeneous. For example, in eq. (2) the expression
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{(ot+e) must be homogeneous, and since e denotes an angle, it is

readily seen to be so.

(2) To express a magnitude in different units.—Obviously the

numerical value of a given quantity changes inversely as the mag-
nitude of the unit used

;
thus a certain distance may be expressed as

10 mi., 17,600 yds., and 52,800 ft.,

and plainly the numerics are respectively as i, 1760, and 5280, while

the corresponding units are as 5280, 1760, and i.

Let q^ be the known numerical value of a quantity when ex-

pressed in the unit Q^, and q^ the numeric (to be found) of the

same quantity expressed in the unit Q^ ;
then

qi /^j
== Q2 /Qi ^

or q,= q^Q, /Q,.

The ratio Q1/Q2 can be easily computed by substituting for Q^ and

Q2 their equivalents in terms of fundamental units
;
thus if a, 6, and

c are the dimensions of Q^ (and Q2),

Q,^k,mM\n) and Q2 = UKM\r,),

wheie Lj, M^, and T^ are the particular fundamentals for Qi. -^2> ^^zy

and 7^2 those for Q2. and k^ and k^ numerical coefficients (very often

unity). Finally,

As an example, let us determine how many watts in 10 horse-

power. Since Q^ (horse-power) =550 ft.-lb.-sec.~^ and Qj (watt) =»

10' ergs per sec. = 10^ cm.-dyne-sec.~S

550 ft. lb. sec~^ 550, _. . . 5x/ X

^'
-

'°x-f^ 3Si: d^ iiFT
=
'°ft^

(30.48) (4.45 X io^)(r)
= 7640.

(3) To ascertain the unit of the result of a numerical calculation—
Substitute for the quantities the names of the units in which they
are expressed, and then repeat the calculation, treating the names
as though they were algebraic quantities. The reduced answer

is the name of the tmit of the numerical answer. Thus in the

formula for the elongation of a rod due to a pull at each end, Pl/AE,
wherein P denotes pull, / length of the rod, A area of cross-section,

and E Young's modulus for the material, suppose that P= 10,000

lbs., /= 5o in., ^ = 0.5 in.^, £^= 30,000,000 Ibs./in.^; the calculations

for elongation *id name of unit are

10,000X50 _-„ „_^
lbs. X in. _ lbs. X in. X in.'_ .

0.5X30,000,000
•^^'

in.^Xlbs./in.^ in.^Xlbs.
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SECOND MOMENTS OF AREAS (MOMENT OF INERTIA, ETC.).*

In the subject of strength of materials especially, the student of

engineering meets with quantities expressed by integrals of the kind

and form / dA-x^ and / dA -xy, A denoting area and x and y dis-

tance. Such quantities have been called "moments of area of the

second order," or briefly
"
second moments of area," the terms being

in line with "
first moments of area," which term is applied to quan-

tities expressed by integrals like J dA'X (see art. 83). We distin-

guish between second moments of area employing special names
for the kinds.

§ I. Moment of Inertia.

D I. Moment of Inertia Defined.— The moment of inertia of a

plane area with respect to any axis is the sum of the products
obtained by multiplying each elementary part of the area by the

square of its distance from the axis.

The axis of reference will often be called "inertia-axis" to dis-

tinguish it from other axes, coordinate, geometrical, etc. We con-

sider only moments of inertia with respect to axes in or normal to

the plane area; the latter are called polar moments of inertia, and
the corresponding axes polar axes.

Expression for Moment of Inertia.—Let dA^, dA^, dA^, etc., de-

note elementary parts of an area and p^, p^, p^, etc., respectively

their distances from some axis; then according to the definition,

the moment of inertia of the area with respect to that axis is

{dA,)p^ + {dA,)p-^ + ..,

Or, if 7 1 denotes the moment of inertia, dA any elementary por-

* Writers on Strength of Materials usually refer to works on

Mechanics for a treatment of these second moments, and for that reason

this appendix is herein included.

t A subscript affixed to the symbol refers to the inertia-axis; thiis7a

stands for moment of inertia with respect to the x axis.
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tion of the area all points of which are equally distant from the

axis, and p that distance,

fdA'p\

[The term moment of inertia of an area is unfortunate because

beginners are prone to seek reasons for its appropriateness which
do not exist. - They should recognize at the outset that an area

has no inertia and hence, in the ordinary sense of the words, no
moment of inertia. The reason why this second moment of an
area was so called lies in the fact that the moment is closely"analo-

gous to another quantity (a second moment of mass, see art. 254)
which had previously been called moment of inertia of a body.]

D 2. Units of Moment of Inertia.—Each term in the preceding series

is the product of four lengths ; hence a moment of inertia of an area

is four
"
dimensions

"
in length. The numerical value of a moment

of inertia of an area is usually computed with the inch as unit

length, and the corresponding unit moment of inertia is called a

"biquadratic inch," abbreviated thus: in.*

D 3. Radius of Gyration.
—Since any moment of inertia of an

area is four "dimensions" in length, it can be expressed as the

product of an area and a length squared. It is sometimes con-

venient to so express it.

Definition.
—The radius of gyration of an area with respect to

an axis is such a length whose square multiplied by the area equals
the moment of inertia with respect to that axis. That is, if k and
/ denote the radius of gyration and moment of inertia of an area A
with respect to the same axis,

k2A=I, or k = V'l7A.

The square of the radius of gyration of an area with respect to

an axis i*^ the mean of the squares of the distances of all the equal

elementary parts of the area from that axis. For let p^, p^, etc.,

be the distances from the elements {dA) to the axis, and let n de-

note their number (infinite) ; then the mean of the squares is

W-^Pz'^Pi^ ...)/n = {p;'dA+p,'dA+ ,,.)/ndA=I/A.

But I/A is the square of the radius of gyration, hence, etc.

[Like moment of inertia, the term radius of gyration when ap-

plied to areas is strictly inappropriate. Its use in 'this connection

is justified by analogy, the quantity k being closely analogous to

another quantity which had been previously called radius of gyra-
tion (art. 255).]
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EXAMPLES.

1. Show that the moment of inertia and radius of gyration of a

rectangle with respect to a central axis parallel to the base are respect-

ively

iV^a' and aVi/12,

b and a denoting the base and altitude respectively.

Solution: We will take a horizontal strip as

elementary area (see fig. D i) ;
then dA =bdy, and

/x= / bdy-y'^
=

^^ba^.
t/— a/2

Also, A=bay therefore ^* = -^60 V^ct, or fe =a\/i/i 2.

2. Show that the moment of inertia and radius

of gyration of a triangle with respect to a central

axis parallel to the base are respectively

i-^bd^ and aVi/iS,

b and a denoting the base and the altitude respectively.

Solution: We will take a horizontal strip as elementary area

(fig. D 2), calling the length of any strip u, then

dA =udy\ also,

br\
—^-—

Fig. D I.

t^_la—y.

Fig. D2.

b

Hence

therefore dA^{2/^—y/a)bdy.

,2a/3

f (2/s-y/a)bdyy*^Ma*.
J-a/3

Also, since A =^ba, k^ '^Ma'/hba or k =a^i/iS.

3. Show that the moment of inertia and radius of gyration of a
circle with respect to a diameter are respectively

^Tir* and ^r,

r denoting radius of the circle.

Solution: We will take a horizontal strip as elementary area

(see fig. D 3 a) ; then if u denotes the length of any strip,

2V?dA =udy y^dy.

Hence

and since A
Vr^ —y^dy'y^ = l7ir*;

nr'

k^
=

\7zr*/r.r'^, or kx^h'f-

4. Show that the moment of inertia and radius of gyration of a
circle with respect to a central polar axis are respectively

i;rr* and rVi/a.
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Solution: We choose as elementary area one as represented in

fig. D 3 (6) ; then dA = pdMpy and

/«= /"" ripdd'dp)p^^i7:r\ etc.
Jo V o

In the preceding examples, the inertia-axes are central, but mo-
ments of inertia of such areas can be readily computed by integra-

FiG. D 3.

tion for any axes which are simply situated with reference to a
line of the figtire. Such cases are rectangle and triangle with inertia-

axis parallel to a side, circle with inertia-axis parallel to a diam-

eter, etc. In the next article it is shown how to determine moments
of inertia without integration in these and similar cases, but, to test

his understanding of the integration method, the student should

determine the moment of inertia of

(o) a rectangle with respect to a side ;

(6)
"
triangle

" " " " "
;

(c)
"

circle
" " " "

tangent.

D 4. Relations between Moments of Inertia and between Radii of Gyra-
tion with Respect to (a) Two Parallel Axes, (b) Three Rectangular Axes.—
Proposition I.—The moment of inertia (/) of an area with respect
to any axis equals its moment of inertia (/) with respect to a parallel

centroidal axis plus the product of its area {A) and the square of

the distance {d) between the axes, or, symbolically,

I=I+Ad2 ". . . . (i)

Proof: (a) The inertia-axis is in the plane area. Let the area

be that represented in fig. D 4 (a), U being the inertia axis and C
the centroid. Then

I =
JdA'v'

=
fdA(y +dy

=fdA y' +2dfdA'y +d^fdA,

But fdA'y^-=I, jdA'y=Ay=-o, and fdA^A\ hence, etc.



SECOND MOMENTS OF AREAS. 367

(6) The inertia-axis is normal to the area. Let the area be that

represented in fig. D 4 (6), O the point where the inertia-axis pierces
the plane of the area, and C the centroid. Then

I = fdAiy' +^^')
=f dA(y^ +x') +2d fdA'X +d'fdA.

Now

fdA(y^+x^)=T, fdA'X=Ax = o, and jdA=-A\ hence, etc.

Corollary: Dividing both sides of eq. (i) by A, we have

/M=7M+d^ or k2 = k'+d2 (2)

h denoting the radius of gyration of the area with respect to any axis,

and k that with respect to a parallel centroidal axis.

Y

(a) (6)

Fig. D4.

Equations (i) and (2) show that the moment of inertia and
radius of gyration of an area with respect to a centroidal axis are

respectively less than those for any other parallel axis. Also, that

with respect to any axis the radius of gyration {k) is always greater
than the ordinate {d) from that axis to the centroid, but if k is small

compared to d^

k=d and I = Ad^, approximately.

Proposition II.—A polar moment of inertia of an area (J^ equals
the sum of its moments of inertia {Ix and ly) with respect to

any rectangular axes in the area which intersect the polar axis, or

Iz=Ix+Iy (3)

Proof: In accordance with the notation above, the inertia-axes

in the plane of the area must be called x and y coordinate axes and
the polar one the z axis. Then the distance of any point of the

area from the z axis is \/x^+y^, and therefore

Iz = fdA(x^ +y') = fdA'x' +fdA'y\

But jdA 'X^=Iv and I dA'y^ = Ix\ hence, etc.
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Corollary.
—

Dividing both sides of eq. (3) hy A, we get

h/A=Iz/A+Iy/A, or kj=ki+kj, ... (4)

ke denoting the radius of gyration with respect to the polar axis,

kx and ky those with respect to any rectangular axes in the plane of

the area cutting the polar one.

Equations (3) and (4) show that the sums Ix+Iy and kl+kl
are the same for all directions of the axis x (and y). Hence if we

imagine the x and y axes (90° apart) to turn about the polar axis,

when Ix and kx reach a maximum or minimum value, ly and ky are

a minimum or maximum.

EXAMPLES.

1. Show without integration that the moment of inertia and
radius of gyration of a rectangle with respect to its base are respect-

ively

^ba^ and aVTJ^,

6 and a denoting the base and altitude (see ex. i, art. D 3).

2. Show that the moment of inertia and radius of gyration of a

triangle with respect to its base are respectively

yV6a^ and aVi/6,

h and a denoting base and altitude respectively (see ex. 2, art. D 3).

3. Show that the moment of inertia and radius of gyration of a

square with respect to a central polar axis are respectively

|6* and bVTj6,

b denoting the length of its sides.

4. From the result of ex. 3, art. D 3, deduce the expression for

the moment of inertia of a circle with respect to a central polar axis.

5. Show that the moments of inertia of a square with respect to

a diagonal and a central axis parallel to any side are equal.
6. Compute the moments of inertia and radii of gyration of a

rectangle i X 12 in. with respect to axes 7 inches from the centre and

parallel to the sides. Compare the radii of gyration with the dis-

tance from the axes to the centre. Ans. Greater /== 732 in.*

D 5. Composite Areas.—We refer now to areas which can be

divided into simple component parts; e.g., a trapezoid divisible into

two triangles, a circular annulus, consisting of a circle minus a

smaller one, etc. The moment of inertia of such an area with

respect to any axis can be computed by adding algebraically the
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moments of inertia of its parts with respect to the same axis, the
moments of inertia of the

"
negative component parts

"
being given

the minus sign.

EXAMPLES.

I. Show that the moment of inertia and radius of gyration of a
circular annulus with respect to a

diameter (fig. D 5 a) are respect-

ively

i7r(r,* -r/) and ^Vr^TV.
Solution : The moment of iner-

•>—6r->

I

-i-
I

I—itia of the larger circle is ^nr^''

(see ex. 3, art. D 3) and that -of
"" ^ * bi

—>

the smaller is i^rr^*. Hence the ^^^ (&)

moment of inertia of the annulus Fig. D 5.

is i7r(rj*— r^*), etc.

2. Show that the radius of gyration of a circular annulus with

respect to a central polar axis is "^{r^ -\-r^^) /i.

3. Show that the moment of inertia and radius of gyration of a
hollow rectangle with respect to a central axis parallel to the base (fig.

D 5 6) are respectively

Tif(^2«2' -^i^i') and {{b^a^^ -b^a^^) /i2{b^a., -b^a^)yt.

4. Compute the moments of inertia of the "angle" section of fig.

D 6 with respect to the x and y axes respectively.
Solution: Consider that the section consists of the rectangle

ABCD minus the rectangle A'B'C'D. The moments of inertia of

these with respect to the line CD are (see ex. i, art. D 4)

i 3-5 X7^ = 40o.i6 and ^ 2.5 X6' = 180 in.*

Hence the moment of inertia of the section with respect to CD is

400.16—180 = 220.16, The area of the section being 9.5 in.*, the

moment of inertia sought is (see eq. (i), art. D 4),

220.16 -9.5(7 -2.71)2 = 45.32 in.*

5. Show that for the Z section of fig. D 6

I^ = ^^Xha' -{b-t){a-2tyi

6. Deduce an expression for the moment of inertia of the T
section of fig. D 6 with respect to a central axis parallel to the

base.
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7. Compute the moment of inertia of the area represented in

fig. D 7 (a section of a "
built-up

"
steel beam) consisting of a

"web plate," two "side plates," an(i four Z bars) with respect

i'
c

I

I <^-K-i-

1°

^ajrt?

^i.

(a) (6)

Fig. D6.

Y
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8. The moment of inertia of one Z section (fig. D 7) with

respect to its vertical central axis being 19.18 in.*, compute
the moment of inertia of the composite area with respect to the

y axis.

9. The radii of gyration of the "angle" of fig. D 6 with re-

spect to its horizontal and vertical central axes are 2.19 and

0.89 in. respectively. Compute the radii of gyration of a pair
of such sections with respect to their horizontal and vertical central

axes, they being placed so that AB is an axis of symmetry for the

pair,

§ II. Product of Inertia.

D 6. Product of Inertia Defined.—The product of Inertia of a

plane area with respect to a pair of coordinate axes in the plane is

the sum of all the products obtained by multiplying each ele-

mentary area by its coordinates.

Expression for Product of Inertia.—Let dA^, dA^, dA^, etc., de-

note elementary parts of an area and {xi, y^), (x^, ^'2). etc., their

coordinates respectively ; then, according to the definition, the prod-
uct of inertia of the area with respect to the coordinate axes is

{dA,)x,y^ + (dA,)x,y, +etc.,

or, if / * denotes the product of inertia, dA any element of the area

(dA must be of the second order, as dx dy) , and x and y its coordi-

nates, then

J = /dA.xy,

the limits of integration ^being assigned so that the products dAxy
for all elements are included in the integration.

D 7. Units of Product of Inertia.—It is plain from the definition

and expression of the preceding article that a unit product of inertia

is four
" dimensions" in length. Like moments of inertia we will

express products of inertia in biquadratic inches.

EXAMPLES.

I. Deduce an expression for the product of inertia of the rect-

angle (fig. D 8) with respect to the coordinate axes.

Solution: J =JdA'Xy= f J^'idx dy)xy =Wa' = iA\

* When it is necessary to specify the axes with respect to which the

product of inertia is taken, they are indicated by subscripts thus: Jxy.
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/m=/x cos^a +/y sin^a —/xy sin 2 a (i)

and Juv
= h{Ix—Iy) svcv 2a +Jxy cos 2a (2)

With these equations it is possible to find the moment of inertia

with respect to any axis through any point and the product of iner-

tia with respect to any pair of axes through that point, if the mo-
ments and the product of inertia of the area with respect to two

rectangular axes through the point are known.

EX/^MPLES.

1. Take u and v axes through in fig. D 6 (a) inclined at 45°
and 135° to the x axis, and compute luSind Juv, it being given that

Ix, ly, and Jzy equal 45.37, 7.53, and —9.67 in.* respectively.

Solution: Substituting in eqs. (i) and (2), we find that

- /u = 45-37 cos' 45° +7-53 sin' 45° +9-67 sin 90° = 36.12 in.*

and /«v
= i(45-37 —7-53) sin 90° —9.67 cos 90° = 18.92 in.*

2. Consider a rectangle whose base and altitude equal 4 and 6

in. respectively, and compute its moment of inertia with respect to

a line perpendicular to either diagonal at its end; also its product
of inertia with respect to that line and the diagonal.

D 12. Geometrical Constructions.—Equations (i) and (2) of the pre-

ceding article can be solved graphically. There are two graphical

methods; in one a certain ellipse, the
"
inertia-ellipse," is employed,

and in the other a certain circle, which will herein be called
"
inertia-

circle." The former possesses more elegance and is probably more

powerful, but the latter is as much simpler to apply as is the draw-

ing of a circle compared to that of an ellipse. Only a brief discus-

sion of the inertia-circle method can be given herein.*

D 13. Inertia-Circle.—Let it be required to ascertain the moments
and product of inertia of the area of fig. D 1 2 with reference to any
coordinate axes u and v through the point O. Let Ox and Oy be

two axes with respect to which the moments and product of inertia

of the area are known. Then lay off

OX = Ix, OY =
fy, and YA=Jxy,

OX and OF along the positive x axis and YA in the positive or nega-
tive y direction according as Jxy is positive or negative. The circle

* The invention of the inertia-circle is due to Prof. Culmann. For^a

full treatment see his
"
Graphische Statik" or that of Muller-Breslau, or

a paper by Prof. L. J. Johnson in the Jour. Assoc. Eng. Soc, No. 5, Vol.

xxvin.
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whose centre is midway between X and Y (the point C) and passing

through A is the inertia-circle for the area corresponding to the

axes X and y.

(G) (d)

Fig. D 12.

To determine /« and Juv-
—From A draw a secant parallel to the

u axis, thus determining a point B, and from 5 drop a perpendicular

to the X axis, thus determining a point U. Then

OU = Iu and UB=Juv

to the scale used in laying ofT OX, OY, and F^.* /«t, is positive or

* Proof: In part, fig. D 1 3 is a reproduction of a portion of fig. D 1 2 (a) ;

XA' is made equal to YA, hence A'Bb

is perpendicular to AB and to the u

axis. The construction of the other

dotted lines is obvious, they being

either parallel or perpendicular to the

uor X axis.

Equation (i), art. D 11 can be

written thus:

lu = {Ix cos oc—Jxy sin a) cos a

+ (Iy sin a —Jxy cos a) sin a.
Fig. D 13.

and this expression for /« can be readily evaluated from the figure,

is plain that since OX =Ix and XA' =Jxy,

Ix cos a =0a, Jxy sin a =-ab, Ix cos a- Jxy sin a ^Ob,

and (Ix cos a— Jxy sin a) cos a=0c;

It
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negative according as UB is along the positive or negative y direc-

tion. If it should happen that Jxy equals zero, the construction

would simplify ;
for in that case A coincides with Y, and hence XY

is a diameter of the inertia-circle,

EXAMPLES.

I. Solve ex. i, art. D ii by means of the inertia-circle.

Solution: Lay off on the x axis (fig. D 14) OX, OY, and YA to

Fig. D 14. Fig. D 15.

represent Ix, ly, and Jxy (scale i in. =30 in.*). Then draw a circle

with centre at C and radius equal to CA ; this is the inertia-circle

corresponding to the axis Ox and Oy. Next draw a line through A
parallel to the u axis, mark its intersection with the circle B, and

drop the perpendicular BU] then OU (1.2 in.) and UB (0.62 in.)

represent the moment of inertia and product of inertia sought.
2. Solve ex. 2, art. D 11 by means of the inertia-circle.

also that, since Oy=Iy and YA =Jxy,

ly sin a = Yd, Jxy cos a = Ye, ly sin a— Jxy cos a =de =Bh^
and {ly sin a —Jxy cos a) sin a=Bf =cU.

Hence Iu=Oc + cU =0U. q.e.d.

Equation (2) ,
art. D 1 1 can be written thus :

Juv = {Ix cos a —Jxy sin a) sin a — {ly sin a— Jxy cos a) cos a,

and this expression for Juv can be readily evaluated from the figure. As

already explained,

Iz cos a —Jxy sin a—Ob,
hence {Ix cos ol— Jxy sin a) sin a =hc\

and since, as explained, ly sin a— Jxy cos a=Bh,

{Ix sin a —Jxy cos a) cos a =bf.

Hence Jxy=bc — bf =fc=BU. q.e.d.
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D 14. Principal Axes and Principal Moments of Inertia.—As the angle a

(fig. D 12) increases from o to 360°, the point U moves along the x

axis, its extreme positions being P^ and P^, and for these two posi-

tions UB equals zero. Hence

(a) the maximum and minimum values of /« are given by OPx
and OP2;

(6) the corresponding inertia-axes are parallel to AP^ and AP.^

(therefore rectangular) ;

{c) the product of inertia with respect to those axes equals zero.

If Ix equals ly and Jxy
=

o, the inertia-circle vanishes, and hence

lu is constant and Juv equals zero for all values of a.

Definitions.—The two axes through a point with respect to

which the moments of inertia of an area are greater and less than

for any other axes through that point are called the principal axes of

the figure at that point, and the corresponding moments of inertia

and radii of gyration are called the principal moments of inertia and
radii of gyration of the area at that point. We will denote these

maximum and minimum moments of inertia and radii of gyration

by /j, Jj, k^, and ^2 respectively, and will mark the corresponding
inertia-axes (i) and (2) (see fig. D 12).

According to the above the product of inertia of an area with

respect to the principal axes at a point equals zero. This proposi-
tion leads at once to an algebraic method for finding principal axes

and moments of inertia. Thus let oc' denote the value of a which

makes Juv zero, then (see eq. (2), art. D 11)

i(/z —ly) sin 2a' +Jxy cos 2a' = o,

or tan 2a' = 2Jxy/ily—lx) (i)

By means of this equation we may locate the principal axes at a

point (i.e., determine a'), and then determine the principal moments

by substituting the two values of a' given by that equation in eq.

(i), art. D II.

EXAMPLES.

I. Determine the central principal axes of the angle section of

fig. D 6 and the corresponding moments of inertia, Ix, ly, and Jxy,

being 45.37, 7.53, and —9.67 in.* respectively.

Solutions: (i) Graphical. Fig. D 15 is the inertia-circle for the

area corresponding to the axis Ox and Oy (constructed as explained
in the solution of ex. i, art. D 13). 0(i) and 0(2), parallel to AP^
and AP2, are the principal axes at 0, and OP^ and OP^ represent

(by the scale used) the greater and lesser principal moments re-

spectively.
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(2) Algebraic, Substituting in equation (i), we find that

tan 2a' = 2( -9-67)/(7-53 -45-32) =0.5118,

i.e., 2a' = 27° 6' or 207° 6'; hence a' = i3°*33' or 103° 33'.

Substituting these two values successively in eq. (i), art. D 11,

we find as the two values of /«

/, =47. 70 in.* and 7,
= 5.20 in.*

2. In fig. D 6 (6) let a, b, and t equal 6, 3^, and | in. respectively;

then -

/x = 25.32, /y = 9.ii, and 7^^= -11.54 in.*

Determine the central principal axes and the corresponding mo-

ments of inertia.

3. In fig. D6(a) let AB=BC=^sm., AA' =CC ^\ m., then

the centroid is 0.84 in. from AB and BC and /i = /y = i.24 in.*

Determine the central principal axes and the corresponding radii

of gyration. Ans. ^3
=
0.59 in.

D 15. Graphical Determination of Moment of Inertia of a Plane

Figure.*
—Let ahha (fig. D 16) be the given figure whose mo-

ment of inertia with respect to OX, say, is required, (i) Draw

OjXj and O^X^ at any convenient distance m from OX, and

through any convenient point P draw a y axis, marking its inter-

section with O^X^ and O^X^ M and TV respectively. (2) Draw a

line aa cutting the figure and parallel to the x axis, marking its

intersections with the perimeter a, and that with the y axis or,

(3) Lay off Ma' equal to Pa, and determine the intersections of

the lines aa'with OjX,, marking them a'. (4) Determine the inter-

sections of the lines Pa' with aa, marking them a". (5) Repeat the

construction for other lines like aa, as hh, thus locating points h' .

(6) Draw a smooth curve through all points a", 6", c", etc. (7)

Measure the area of the loops t (shaded in the figure) ;
if A" denotes

that area, then the desired moment of inertia equals A'^m^.

Proof: The moment of inertia is given by

i= fdA'y^= f Vwdy,

w denoting any width of the figure, as aa or hh. Let w' and «;"

* Logically this article should appear in section i of this appendix,

f If the inertia axis does not cut the plane figure, then there will be

only one loop.
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respectively denote the lengths a'a' and a"a" (or 6'6' and h"h")\
then from the geometry of the figtire

±,y/'uif =m/w\ and :ty/w^= fn/w,

the positive or negative sign being taken according as the ze;'s

Oj "/ \Sl Ik

hf

o
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EXAMPLE.

Draw in succession three circular arcs of 30° each, 3, 2, and i in.

in radius respectively, and tangent to each other so that they form

approximately an elliptical quadrantal arc. Compute the moment
of inertia of the elliptic quadrant with respect to the major axis

of the ellipse. [Suggestion: Take the point P at the centre of the

ellipse.]
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VIRTUAL WORK.

E I. Definitions.—Any imaginary displacement of a point is

called a virtual displacement of that point. The work which a

force would do in a real displacement of its application point like

some particular virtual displacement is called the virtual work
of that force for that virtual displacement.

The virtual work of a force may be computed by the methods

explained in arts. 287 and 288 for computing real work.

E 2. Principle of Virtual Work for a Particle.—If a particle is in

equilibrium, then the algebraic sum of the virtual works of all the

forces acting upon it for any infinitesimal virtual displacement

equals zero.*

Proof: It follows from art. 292 that the algebraic sum of the

virtual works of the forces equals the virtual work of their resultant.

In an infinitesimal displacement, the work of each force would

generally be an infinitesimal of the first order if the displacement
is regarded as of that order; and since the magnitude of the resultant

would not become finite in such a displacement, the work of the

resultant wouM be an infinitesimal of the second order. Hence,

according to the theory of infinitesimals, the algebraic sum of

the virtual works of the forces acting on the particle may be written

equal to zero.

Equations of virtual work for forces acting on a particle in

equilibrium are easily reduced to equations of equilibrium and
therefore are not specially useful. They are here explained as, a

preliminary to other practically useful methods.

EXAMPLES.

I. A bead A (fig. E i) is to be supported on a smooth circular

wire (plane vertical) in the position shown by means of a horizontal

force. Compute the value of the force.

* This principle holds also for finite displacements if the forces are

in equilibrium at all stages of the displacement, as is evident from the

first statement in the proof above.
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work of each pair O- internal forces constituting an action and
reaction equals zero (see art. 293), and hence the virtual work for

all pairs, or all the internal forces, equals zero. It follows there-

fore that the algebraic sum of the virtual works of all the external

forces equals zero.

In applying this principle, the virtual displacements should be
chosen so as to make the virtual work of the unknown forces not
desired equal to zero, thus eliminating those unknown forces from
the equation of virtual work.

EXAMPLES.

I. A heavy bar rests against a smooth wall and on a smooth
floor as shown in fig. E 2, and is prevented from slipping by a
horizontal cord tied to its lower end and to the foot of the wall.

The inclination of the bar being a, its weight W, and its centre of

gravity at the middle, compute the tension

in the cord by the principle of virtual

work.

Solution : The external forces acting on

the bar consist of the pull of the string P,
the weight of the bar W, and the reactions

of the wall and floor, horizontal and ver-

tical respectively. If a displacement of

the bar to the position represented by the

dotted line is asstmied, then the virtual

work of each reaction will equal zero. If

the new inclination of the bar be called

a-\-da and the length 2/, then the virtual yig E 2.

work of the pull will be

P[2/cosq:— 2/cos {a-\-da)]= —P2I dcosa,

and the virtual work of W will be

— W[l sin (a+ da) — / sin a]= — Wl d sin a.

The equat'on of virtual work is therefore

—P2I d cos a— Wl ds\Tia= o\

hence

P=\W cot a.

2. Solve ex. 6, art. 137, by the principle of virtual work.

3. Determine W of ex. 2, art. 162, by the principle of virtual

work.
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Solution: Consider the forces acting on the collection of bodies

(fig. 1446) consisting of the cross-head, connecting-rod, crank-

axle and drum, hoisting-chain, and th», suspended load. The
f(?rces external to this s^^stem consist of P, the weights of the

parts, the reactions of the cross-head guides, and those of the axle

bearings. The internal forces consist of the mutual pressures at

the pins A and B, those between the links of the chain, and the

forces "within" each rigid body. Now if all rubbing surfaces

are regarded smooth, then the only forces whose virtual work is

not zero for a slight displacement of the cross-head forward are

P and the weights of the parts. If the displacement of the cross-

head be called ds, then that of the suspended body is 2. ids, as

can be shown by the trigonometry of the figure. Disregarding
the weights of the connecting-rod and the chain, the equation
of virtual work becomes

1000^5— 1^2.1^5 or 1^=1000/2.1=476 lbs.

E 4. Application of the Principle of Virtual Work to Statically

Indeterminate Problems.—By a statically indeterminate problem is

meant one relating o a system of forces in equilibrium which can-

not be solved by the principles of statics alone. Ex. 2, art. 138,

is of this class; the determination of the reactions on a beam

supported at three points is another. Trusses with superfluous
or redundant members or supports are also statically indeterminate

(see art. F ii, Appendix F). The statically indeterminate forces

in the cases just mentioned depend upon the way in which the

beam or truss or their supports deform, and the additional princi-

ples needed relate to the elasticity of materials. For a fuller

treatment of this subject the student is referred to works on

"Strength of Materials" and "Bridges." The solution to a simple

example only is given here to satisfy the ciiriosity of the student

who has wondered over these cases.

EXAMPLES.

I. A square board is suspended in a horizontal position by
means of vertical wires fastened at its corners; then a heavy body
is p'aced on the board at its centre. It is required to determine

the tensions in the wires supposing that the body weighs 100 lbs.,

and that the wires fastened at A, B, C, and D (fig. E 3) are o.oi,

0.02, 0.03, and 0.4 sq. in. in cross-section respectively.

Solution: The forces acting on the board are the weight and
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the pulls of the four wires. If any one of these four were known,
the other three could be obtained from the three conditions of

Fig. E 3.

equilibrium for such a system, parallel non-coplanar. Call the

pull first determined the statically indeterminate one and denote

it by X, and the others by P^, P^, and P^ (fig. E 3a). Then, by
the conditions of equilibrium (art. 125), it is easy to show that

P2=X, and Pi=P3-5oo-X

Now instead of applying the principle of virtual work to the

five forces acting on the board, take the force X applied at D
and three other vertical forces at A, B, and C, which togethe:

with X would constitute a system in equilibrium ;
that system is

represented in fig. E 36. Assume a virtual displacement like the

displacement which the board actually underwent when the body
was placed upon it. This displacement was permitted by the

elongations of the wires, and it is now necessary to compute those

elongations. The elongation of a wire, not strained beyond its

**
elastic limit" (assumed to be the case here), is given by the

expression Pl/AE, in which P denotes pull, / length, A area of

cross-section, and E Young's modulus for the material of the

wire. Hence the elongations are as recorded below:

Wires.
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we get the expressions recorded in the last column of the tabula-

tion. The equation of virtual work after cancellation and reduc-

tion becomes

(500— X)(l/o.OI + 1/0.03)= X(l/0.02 + 1/0.04);

hence X=40o lbs., and, according to the foregoing,

P2 = ^=400, P^=P^= 100 lbs.



APPENDIX F.

SUPPLEMENT TO STATICS.

Arts. I to 1 1 of this appendix relate to analysis of Roof Trusses,
and arts. 12 to 16 deal with some important properties of the

funicular polygon, useful in various lines of applied mechanics.

F I. Truss Loads.—Roof- and bridge-truss loads may be classi-

fied into permanent, or dead, and temporary, or live. A permanent
or dead load is one always on the truss, while a temporary or

live load is one not always on the truss.

A roof-truss commonly sustains dead loads only, as its own
weight and that of the roof covering; weight of snow and wind

pressure are live loads.

A bridge truss sustains both dead and live loads ; he first

consists of the weights of the truss, floor, etc., and the second of

the weights of passing crowds, cars, and wagons, snow, wind pres-

sure, etc.

F 2. Weight of Roofing.
—The weight of this can be closely

estimated for any kind of covering. The following are weights of

some roofing materials in pounds per square foot of roof surface.

Shingling: tin, i
; wood shingles, 2 to 3 ; corrugated iron, i to 3 ;

slate, 8 to 10; tiles, 10 to 25.

Sheathing: Boards, 3 to 5.

Rafters: Wood, 1.5 to 3.

Purlins: Wood, i to 3; steel, 2 to 4.

Rafters and purlins are beams whose loads in a given case are

approximately known, hence their necessary size and weight can

be fairly accurately computed.
F 3. Weight of Trusses.—The actual weight of a truss can be

determined only after it is designed. Its probable weight must
be known for the analysis, and this is estimated from the weights
of similar existing trusses or computed from a formula derived from

the actual weights of existing trusses. The following is such a

formula for the weights of steel trusses:*

W= al(i + 1/2S),

* From " Modem Framed Structures," Johnson, Bryan, and Tumeaure.

387
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W denoting the weight of a truss in pounds, a the distance between

adjacent trusses, and / the span, both in feet.

The probable weight of a wooden trus^ is about three-fourths

of that given by the above formula.

F 4. Weight of Snow.—The probable weight of snow which

may have to be borne by a roof- russ depends, of course, on loca-

tion. In that part of the United States where it is necessary to

allow for a snow load the assumed weight varies from 10 to 30 lbs.

per sq. ft. of area covered b}^ the roof.

F 5. Wind Pressure.—The intensity of the pressure of a wind

blowing normally against a plane surface is approximately propor-
tional to the square of the velocity of the wind; it may be com-

puted from the formula

p= o.oosv^,

p denoting intensity in Ibs./ft.^, and v velocity in mi./hr.

An intensity of 30 lbs./ ft.
^
corresponds by this formula to a

velocity of 77.5 mi./hr.
The intensity of the pressure of a wind blowing obliquely

against a surface depends on the inclination as well as the velocity.

The following formula for intensity on plane surfaces is generally

regarded as reliable:

pi
= p sin i/ (i +sin^ i) ;

« denoting inclination of the surface to the wind,

pi intensity on the inclined surface, and

p intensity on a surface normal to the wind.

For an intensity on a normal surface (p) of 30 lbs. per sq. ft.,

the intensities on oblique surfaces according to the foregoing
formula are as follows:

i=io, 20, 3.0, 40, 50, 60-90 degrees

pi= 10, 18, 24, 27, 29, 30 lbs./ ft.
^

The direction of the pressure of a wind blowing obliquely

against an inclined plane surface is practically normal to the

surface. In computing wind pressures on roofs, the wind is sup-

posed to blow horizontally and at right angles to the axis of the

building.
F 6. Computation of "Apex Loads."— The weight of the roof

covering, including rafters and purlins, comes upon the trusses

at the points where they support the purlins ;
likewise the pressure

due to wind and snow. Sometimes all the purlins are supported
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at the joints of the trusses: in such cases the loads mentioned
act upon the trusses at their joints. However, the roof, snow, and
wind loads are always assumed to be applied to the truss at its

upper joints. This assumption is equivalent to neglecting the

bending effect due to the pressure of those purlins which are not

supported at joints ;
this effect can be computed separately.

The weight of the truss itself is assumed to come upon the truss

at its upper joints; this, of course, is not exactly correct. Most
of the weight does come upon the upper joints, for the upper mem-
bers are much heavier than the lower, and the assumption is

sufficiently correct in most cases.

EXAMPLE.

It is required to compute the apex loads for the truss of fig. F i

due to dead load, snow, and wind. Assume that the truss is a

steel one, total roofing weighs 15 lbs./ ft. ^, snow weight is 10 Ibs./ft.^,

horizontal, and the normal wind pressure is 30 Vos./it?

Solution: The formula (art. F 3) gives for the probable weight
of truss (see fig. F i for dimensions)

13X42(1+ 42/25), or 1463 lbs.

The area of roofing sustained by one truss is about 48^X13, or

630^ ft.^; hence the weight of it is 630^X15, or 9457 lbs. The

permanent or dead load therefore equals

1463+9457, or 11,920 lbs.

The area covered by the roofing supported by one truss is
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42 X13, or 546 ft.^; hence the snow load borne by one truss equals

546X10, or 5460 lbs.

The angle which the wind, directed as assumed in art. F 5,

makes with the roof is 30°; hence the intensity of wind pressure
on the roof is 24 lbs./ ft.

^
(see art. F 5), and the total wind pressure

borne by one truss is

(24^X13)24, or 7566 lbs.

The dead load is proportioned among the five upper joints,

but :oints (i) and (5) sustain only one-half as much as the others.

Hence for joints (i) and (5) the apex load is one-eighth, and
for joints (2), (3),* and (4) one-fourth of the total load.

The snow load is proportioned among the joints just like the

dead, i.e. one-eighth at joints (i) and (5) and one-fourth at

joints (2), (3), and (4).

The wind load coming upon one-half of the roof only, the left

half, say, is proportioned among joints (i), (2), and (3); one-fourth

at joints (i) and (3), and one-half at joint (2).

F 7. Determination of Reactions.— To analyze a truss, it is

generally necessary to determine the reactions due to the dead

and wind loads separately, and sometimes those due to the snow
load. Each ofthese load systems together with the reactions

due to it consmutes a system of forces in equilibrium, and the

unknowns in the system (the reactions) can be determined by
the principles of statics in all ordinary cases. The determination

usually falls under arts. 139, 140, or 141. Two cases, however

(arts. F 8 and F 9), need further explanation.
F 8. Reactions on a Rigid Truss due to Wind Pressure.—(a) If

one end of the truss rests on rollers * and one end is fixed, the

reactions are statically determinate. The one at the roller end

is practically vertical, the direction of the other is unknown at

the outset; the reactions may be completely determined by
methods of art. 140.

(6) If both ends of the truss are fixed, the reactions are statically

indeterminate, for the magnitude and direction of each are unknown
and there are but three conditions of equilibrium available. Usu-

ally one of the following assumptions is made to determine the

reactions :

* Rollers are usually placed under one end of a long truss to allow

it to expand and contract freely.
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(i) They are parallel to. the resultant wind pressure on the roof.

(2) Their horizontal components each equal one-half of the total

horizontal wind pressure, or, otherwise stated, each support
takes one-half of the horizontal thrust of the wind.

Once the first assumption is made, the problem of determining
the reactions is reduced to that of art. 139. When the second

assumption is made, the total horizontal wind pressiu-e or thinist

should be computed first—easily done from the force polygon
for the wind loads; then imagine each reaction resolved into its

horizontal and vertical components, and noting that the horizontal

components equal one-half of the thrust, there remain but two
unknown forces in the wind system, namely, the vertical compo-
nents of the reactions. Their determination also falls under

art. 139.

Obviously the first of these two assumptions is wrong if the

resultant wind pressure is horizontal and does not pass through
the supports, for then the two reactions (both horizontal) could

IXIXIXIXIXIXM

Fig. F 2.

not possibly balance the resultant. In such cases and in approxi-
mations thereto the second assumption is made; examples are

a "bent" of a mill building and a framed tower (fig. F 2).

Fig. F 3.

F 9. Reactions on a Three-hinged Arch.—A three-hinged arch

consists of two rigid trusses pinned together and each to a support ;

see fig. F 3, pins at a, b, and c. The reactions at the supports are
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unknown at the outset, in magnitude and direction, even for

vertical loads. At first thought this appears to be like case (6) of

the preceding article, but the third hijige really makes the reac-

tions statically determinate.

There are many solutions of this problem—two are here given;
each may be carried out graphically or algebraically, but they
are respectively adapted to graphic and algebraic methods.

(i) Determine the reactions due to the loads on each half of

the arch separately, and then combine these partial reactions.

Let A and B denote the total reactions at a and h respectively,

Ar and Br the reactions at those points due to the loads on {R),

and Ai and Bi those due to loads on (L).

Supposing first that only {R) is loaded, the part (L) is under

the action of two forces only, Ar and the pressure at c, these two

being in equilibrium must be collincar, and hence they act along ac.

The external forces on the entire arch now (loads on {R) only)
are all known except two, Ar and Br, but the action line of ^r
and the application point of Br are known

;
these unknown forces

may hence be determined by methods of art. 140.

Similarly it can be shown that Bi acts along he, and hence Bi

and A I may be determined like Br and Ar. Finally > composition
of ^r and Ai and of Br and Bi gives A and B

The pressures exerted by {R) and (L) upon each other can be

easily obtained from the component .reactions at a and h. The

pressure which {R) exerts on (L) is identical with the resultant

oi Ar reversed and Bl, and the pressure which (L) exerts on {R)

is identical with the resultant of Bi reversed and Ar', these pres-

sures are of course equal, opposite, and col linear.

(2) Imagine the total reactions at a and h resolved into two

components one of which acts along the line ah
; these components

may readily be computed and then compounded to get the actual

reactions. Thus, call the components acting along ah, A^ and 5^
respectively, and the others Ay and By. "Taking moments" of

all the forces on the arch with origin at a and h gives Ay and By.
Taking moments for all the forces on the part {R) with origin

at c gives B ^,
and for all the forces on (L) with origin at c gives A^.

If the loads are vertical, and Ay and By are taken vertical, then

A^ and B ^ are equal and opposite.
The pressures at c can now be readily determined by considera-

tion of all the forces acting on either {R) or (L).

F 10. Maximum Stresses.— The complete analysis of a truss
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should include a determination of the stress in each member due
to (a) the dead load, {b) the snow load, {c) wind pressure right, and

{d) wind pressure left.

When all the snow apex loads are the same fractional part of

the dead apex loads, the "snow stress' in any member equals
that same fractional part of the permanent stress in that member;
no stress diagram for snow loads is therefore needed, but the snow
stresses are readily computed from the permanent stresses, con-

veniently by slide-rule.

If the truss is symmetrical and fastened at both ends, then

the stress in any member when the wind blows from the left is

just like that in the symmetrical member when the wind blows

from the right; only one stress diagram is therefore necessary,
"wind left stresses" being obtainable from a "wind right stress

diagram." But when one end of the truss rests on rollers and
one end is fixed, then separate analyses for wind right and left are

necessary.
A record of the stresses should be made as fast as they are

determined, the kind of stress being indicated as well as the amount.
The following is a convenient form:
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5800 lbs., and the combination of D.L. and W.R. produces the

greatest tension, 800 lbs.

Some assume that great snow and wind loads will not come

upon the truss at the same time, and they exclude combinations

5 and 6 in a computation for maximum stresses.

Fii. A Classification of Frames.—A frame may be either (a)

complete, (b) incomplete, or (c) redundant. In the following defini-

tions, it is assumed that the frame is pin-connected ;
a riveted frame

is classified as though it were pin-connected.

(a) A complete frame is one which would not maintain its

shape under all conditions of loading with any member removed,

i.e., it is indeformable and without superfluous or redundant

members. See fig. F 4(a) for an example. Trusses of this class

C6) (c)

Fig. F 4.

are statically determinate.

(6) An incomplete frame is one which might maintain its

shape under certain conditions of loads, but to do so for all condi-

tions would require one or more additional members, i.e., it is

generally deformable. See fig. F 4(6) for an example. This truss

would maintain its shape for symmetrical loading, but not for

any other distribution. Incomplete frames loaded so that they
will maintain their shape are s'atically determinate.

(c) A redundant frame is one which maintains its shape under

all conditions of loads and would do so with fewer members, i.e.,

it is indeformable, but has superfluous or redundant members.*
See fig. F 4{c) for an example: removal of either diagonal of the

rectangle would still enable the truss to sustain any load. Trusses

of this kind are always statically indeterminate.

Criteria for Classification of a Frame.—Let m denote the num
ber of members in the frame and / the number of joints ;

then for

a frame which is

complete, w= 2/
—

3 ;

inc mplete, w<2y— 3;

redundant, m>2J— ^.

* These members are, or ought to be, structurally useful, but are so

named because the frame is indeformable without them.
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These criteria assume (see proof below) that every member of

the truss can sustain bo h tension or compression. If the truss

has members which can sustain only tension or compression and
if any one of those members has a counter,* then both the main
member and its counter should not be included in ni.

Proo : Evidently the simplest complete frame is a triangle;

it has three joints and three members. It can be extended so as

to remain complete only by the addition of two members for

each new joint; thus, if m' and ;' denote the number of new mem-
bers and joints respectively,

m'= 2/'.

Also, m'+ 3
= 2;'+ 3

= 2(y'+ Z)-^,

or m=2] — ^.

This being the relation for a complete frame, those already given
for incomplete and redundant frames follow.

F 12. Moments of Forces Determined Graphically.
—Let ab (fig.

F 5) be the action line of a force, AB the magnitude and

direction, and P a moment origin. From any convenient pole O

1 ini=xit. 1 in=y1bB,

Fig. F 5.

draw the rays OA and OB, and then from any point on ab the corre-

sponding strings oa and ob. Next draw a line parallel to ab

* A counter is a member whose main function is to relieve another

member from a stress of a kind for which the latter was not designed.

Thus, if both diagonal members in the quadrilateral of fig. ¥4(0) con-

sist of rods, neither can sustain a compression, and any load which tends

to put a compression on one will put tension on the other; hence either

member may be regarded as a counter to the other, but the one which

would be stressed under the permanent load would be called the main

member, and the other the counter.
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through P, and note its intersections M and N with the strings

oa and oh. Then measure the intercept M.N by the scale of the

space diagram and the perpendicular* OC from the pole to AB
by the scale of the vector diagram; so measured, their product

equals the moment of the force. For, by definition, the moment
of the force equals

(the force) X (the Sirm) = {AB-y){PQ-x),

and from the similar triangles OAB and LMN,

AB/OC=MN/PQ, or {MN){OC) = iAB){PQ) ;

hence

(MN-x){OC-y) = iAB-y){PQ-x).

OC is called the pole distance of the force AB, and if we call MN
the intercept of the force with respect to P, then we may state

that the moment of a force with respect to a point equals the prod-
uct of its intercept with respect to that point and its pole dis-

tance, it being understood that the intercept and pole distance

are properly scaled as explained.
F 13. Sum of the Moments of any Number of Forces.—This is

most conveniently computed graphically by determining its equal,

the moment of their resultant. Thus, to find the sum of the

moments of the four forces represented in fig. F 6(a) with respect

Tig. F 6.

to P, first determine the resultant {AE and ae) and then the
**
inter-

cept" {MN) and the "pole distance" {OK) of the resultant.

The product of the intercept and pole distance is the moment

sought. Notice that the intercept is that cut off on the line through

the moment origin parallel to the resultant by the strings
**
corre-

sponding" to the resultant. It is unnecessary to actually draw

the action line of the resultant, but its approximate position and
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the sense of the resultant must be known in order to fix the sign
of the moment, here negative.

When once a force and a funicular polygon for any system
of forces have been constructed, then the algebraic sum of the

moments of any number of them which are represented consecu-

tively in the force polygon can be computed as just explained.
F 14. Parallel Forces in Equilibrium.

—The algebraic sum of

the moments of all the forces on either side of any moment origin
can be easily read from any funicular polygon of the system pro-
vided that these same forces occur consecutively in the corre-

sponding force polygon.*
Thus let the loads and reactions on the beam represented in

fig. F 7 be the system considered; ABCDEA is a force polygon

Fig. F 7.

satisfying the requirement specified, and oa, oh, oc, od, and oe a

funicular polygon. The resultant of the forces to the left of P^ is

EB, and according to the preceding article the algebraic sum of

the moments of those two forces with respect to P equals the

intercept cut off by the strings oe and ob on the vertical line through
P multiplied by the pole distance OK.

Since this pole distande is the same for all resultants of groups
of the forces, the algebraic sums of the moments of the forces to

the left or right of different moment origins are proportional to

the intercepts, or ordinates, in the funicular polygon immediately
below the origins; the figtire formed by the funicular polygon

* The property of the funicular polygon here being described is

utilized mostly in connection with beam problems—loads and reactions

vertical. If the loads and reactions are represented in the force polygon
in the order in which their application points occur around the beam,
then the forces appear consecutively as above described.
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is therefore called a "moment diagram." If the scale of the

space diagram is i in. = ic ft. and the pbie distance scales z lbs.,

then the scale of the moment diagram is i m. = xz ft. -lbs. Select-

ing the scale and the pole so as to make x and z "round numbers,"
then the scale of the moment diagram will be simple, and by it

moments may be read directly from the diagram.

EXAMPLES.

1. Compute graphically the moment of each force of ex. i,

art. 45, and also the moment of their resultant. Compare the

last with the algebraic sum of the moments of the forces.

2. A beam 20 ft. long rests on end supports and sustains loads

of 8000, 6000, and 10,000 lbs. 2, 8, and 18 ft. respectively from

the left end. Construct a moment diagram for all the forces

acting on the beam; state its scale and give the algebraic sum
of the moments of all the forces on the left half with respect to the

middle.

3. Solve ex. 2 supposing that the supports are 3 ft. from the

ends.

F 15. To "
Pass " a Funicular Polygon through Three Points.—

By this is meant the construction of a funicular polygon for a

given system of forces so that three specified strings shall pass

through three given points, a construction often made, especially

in the design of a masonry arch.

It will first be shown how to pass a funicular polygon through
two points. Let ab, be, cd, and de (fig. F 8) be four forces; re-

FiG. F 8.

quired to construct a funicular polygon so that the strings oa and

od shall pass through p^ and p^ respectively. Imagine the forces

included within the rays OA and OD in the force polygon to act
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upon a beam supported at p^ and p^, the supports being such

that the reactions are statically determinate. For simplicity

imagine that the supports are such that the reactions are parallel

to each other and therefore to the resultant of the loads applied to

the beam; then determine the magnitudes of those reactions.

Thus, having drawn the force polygon, join A and D to get the direc-

tion of the reactions; then draw their action lines, parallel to AD.
Next construct a funicular polygon and note the intersections

of the first and last strings, oa and od, with the action lines of

the reactions through p^ and p^ respectively. Join these intersec-

tions—the line is the closing string (see art. 139)
—and draw a

ray parallel to that line, noting its intersection Q with AD; then

QA and DQ denote the reactions at p^ and p^ respectively. Next
choose a new pole O' anywhere on a line through Q parallel to p^p^,

and construct a corresponding funicular polygon beginning at

P\ or p2 ;
this new polygon will pass through both points.

Proof: The three loads AB, BC, and CD and the reactions are in

equ librium, and every funicular polygon for those forces must close.

Hence if p^p2 is t aken as the string o'q of a new funicular polygon

(and hence a new pole O' on the line through Q parallel to pip-^

and then the strings o'a, o'h, etc., be drawn, o'd must pass through

/?2 to close the polygon.
To pass a funicular polygon through three points: By the

method explained in the foregoing, determine a ray Q'O', the funicu-

lar polygon corresponding to which will pass through any pair of

the three points as prescribed ;
then determine another ray Q"0'\

the funicular polygon corresponding to which will pass through
another pair of the three points as prescribed. Then with the inter-

section of Q'O' and Q"0" as a pole, construct a funicular polygon

drawing one of ^ the specified strings through its specified point ;

it will be found that the polygon passes as required through the

other two points.

As an illustration, take five parallel forces, ah, be, ed, de, and df

(fig. F 9), the requirement being to make oa, od, and of pass through

p^, p2, and p3 respectively.*

* This is the form in which the practical problem appears, i.e., the

forces are parallel, two of the points embrace all the forces and the

third is somewhere between
;
the first and last strings are to pass through

the first two points, and that string is to pass through the third point
which extends between the action lines of the two forces adjacent to

that point.
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The first, or preliminary funicular polygon, is the upper one,

corresponding to the pole O^] its strings o^a, o^d, and oj with

Fig. F 9.

the verticals through p^, p^, and p^ respectively determine the

closing strings o^q' and o^q". Lines parallel to these through O^
determine Q' and Q", and lines through these points parallel to

p^p2 and p2pz respectively determine the pole O, the funicular

polygon corresponding to which if started at p^, p^, or p^, as pre-

scribed, will pass through the other two points.

Before beginning the construction of the final funicular polygon,
it may be well to check the location of the pole by means of the

third closing line 13 ;
this line serves to locate Q"' {FQ'" and Q"'A

being reactions on the imaginary beam supported at p-^ and p^

and sustaining all the forces as loads) ;
a line through Q'" parallel

to p^p^ will pass through O if no error has been made.

EXAMPLE.

Assume completely six parallel forces and select three points

in the space diagram not in the same straight line, and then con-

struct a funicular polygon so tljat three of its strings will pass

throuj^h the points.
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F 16. Relation between Two Funicular Polygons for a Given Force

System Drawn from Different Poles.—The intersections of correspond-
ing strings of such polygons lie on a straight line parallel to the
line joining the two poles.

Proof: Let ah, be, and cd (fig. F 10) be three forces, oa, oh, oc.

Fig. F id.

and od being their funicular polygon for the pole O, and o'a, o'h,

o'c, and o'd their funicular polygon for the pole 0'
',
£he intersec-

tions of corresponding strings of these polygons are m^, m^, w,,

and m^.
The forces BO and OC are equivalent to BC; so also are BO'

and O'C* Therefore BO, OC, O'B, and CO' are in equilibrium,
and the resultant of any pair of these four balances the resultant

of the other pair. Now the resultant of O'B and BO acts through

Wj, and thfe resultant of OC and CO' acts througn m^', since these

resultants balance, they must coincide, i.e., each acts through
w, and W3. The direction of the resultant of the first pair is O'O

(and that of the second is 00'), and since the action line of a force

is parallel to its direction, mjWg is parallel to 00'.

In a similar manner it might be shown that m^m^ and m^m^ are

parallel to 00'
;
thus the proposition is proved.

By means of the property discussed in the foregoing, a string

may readily be drawn to an inaccessible intersection, e.g., one

which falls beyond the limits of a drawing. Thus, let ah, he, and
cd (fig. F 11) be three forces, oa and oh two strings of a ^unicular

* The sequence of these letters indicates the sense of the force desig-

nated.
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polygon which it is desired to complete. The string oc ordinarily
would be drawn parallel to OC through the intersection of ob and be

Fig. F II.

here beyond the limits of the drawing.* Choose a new pole O'
;
from

any point n in be, draw the strings o'b and o^c, and note the inter-

section m' of o'b and ob
;
draw through ni' a parallel to OO^, and

note its intersection w" with oV; finally draw through w" a line

parallel to OC. This is the desired string oc.

Notice that it will always be possible to choose O' and n so

that the points m' and w" will fall upon the drawing.
F 17. To Close a Gauche f Polygon with Three Sides whose Directions

are Given.—This is a geometrical construction used in the graphical
solution of the following problem: A system of concurrent non-

coplanar forces is in equilibrium and all the forces are known

except three, whose action lines only are known; required to

determine their magnitude and senses.

Let there be four forces in the system, F being the wholly
known force and F^, F^, and F3 the partially known ones, and
let their action lines be as represented in fig. F 1 2 (a) .t The polygon

* In such a case a draughtsman usually tacks a sheet of paper to his

board which will take the intersection desired; often, however, such

an intersection is very acute—therefore indefinite—and this special

construction is advantageous.

t A gauche polygon is one whose sides are non-coplanar.

X See art. 49 for notation and scheme of representing concurrent

non-coplanar forces.
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for the system closes, so let it be called ABCDA, AB, BC, CD,
and DA representing the magnitudes and directions of F, F^, Fj,

Fig. F 12.

and F, respectively, and let A'B'C'D'A' and A"B''C"D''A'' be

its horizontal and vertical projections
—their construction will

be explained presently.
The point J' (of any polygon such as c'c"d"d\ similar to

C'C"D"D'), the point Q (construction for which is apparent),
and the point D' are in the same straight line, for regard A"D" ,

B"C'\ and B'C (indefinite in length) as the action lines of three

forces such that D'D"C"C'D' and d'd"c"c'd' are funicular polygons
for them. The action line of the resultant of those forces passes

through D' and d\ the intersections respectively of the extreme

strings of those polygons; it also passes through Q because that

point is the limiting position of the extreme strings of d'd"c"c'd'

as c" or d" is taken nearer and nearer to P. Hence the three

points are on a straight line, which fact leads to the following
construction for the projections of the force polygon:

First draw the projections A'B' and A"B" (of F) and the

indefinite projections B'C and B"C" (of FJ and A'D' and A"D"
of (F3) ; then guess at the position of C, as at c', c" ,

and supposing
the guess to be correct, draw the projections c"d" and c'd' of F^\
next prolong A"d" and B"c" to their intersection P, through
which draw a vertical and note its intersection Q with B'C ; finally

draw Q'd' ,
and note its intersection with A'D' (indefinite in length)—

this is the required point D' from which the projection D'C may
be drawn and then D"C",
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Acceleration, 17a, 186

angular, 205, 208

resolution of, 188-X92

Acceleration, time curves, 175

Action and reaction, 3, 221

Activity, 318

Amplitude, 177

Analysis, methods of, 2

Angle of repose, 150

Angular acceleration, 205, 208

displacement, 204, 208

impulse, 331

momentum, 333, 334

velocity, 204, 208

Attraction, electric, 81-84

gravitational, 74<-8t

magnetic, 81-84

Balancing, 279-283

Blow, force of a, 343, 344

Catenary, 109

Centrifugal force, 261

Centripetal force, 261

Centre of gravity, defined, 54
determination of, 55-59

Centre of mass, 220, 221

of percussion, 347, 348
of stress, 88

Centrode, 213

Centroid, defined, 52, 60

determination of, 53, 60-73

Collision, 344-347

Components of a force, 10-12, 14, 15

j Composition of couples, 49
of forces, 22-46
of forces, defined, 10

of harmonic motions, 196-
202

Compression, 86

Conservation of energy, 316
Cords, flexible, 103- 113

Couple, defined, 9, 19

graphical representation d, 20

moment of, 19

resolution of, 50

Couples, theory of^ 47-51

D'AIeml^rt's principle, 229

Density, 75

Dimensions of units, 357-362

Displacement, 167, 177, 183

angular, 204, 208

defective, 298

Dynamics, defined, i

Dyne, 223, 226

Effective force, 228

Efficiency, 317

of tackle, 324-326
of a mine-hoist, 326, 32^

Energy, 306-313
conservation of, 316

kinetic, 306-308

mechanical, 312

potential, 309-312

principle of, for machines, 317

Equilibrium, conditions of, 93, 95-101

defined, 93
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Field, strength of, 76, 82

Force at a distance, 3

centrifugal, 261

centripetal, 261

components of, IO-12, 14, 15

concentrated, 4

contact, 3

defined, 3

distributed, 4

effective, 228

external, 93

graphical representation of, 5

internal, 93

line of action of, 4

moment of, 16, 17

of a blow, 343

parallelogram, II

polygon, 23

. resolution of, defined, lO

systems, 9

transmissibility of, lO

triangle, il

units of, 6, 223

Forces, composition of, 22-46

composition of, defined, lO

concvurent, defined, 9

conservative, 311

coplanar, defined, 9

non-concurrent, defined, 9

non-conservative, 311

non-coplanar, defined, 9

resultant of, defined, 10

Frequency, 177

Friction, 149-158, 247, 248

angle of, 150

belt, 157

brake, 323

circle, 154

coefficient of, 150, 151, 247

cone, 156

journal, 285, 286

kinetic, 247, 248

laws of, 151, 247, 285

pivot, 283

rolling, 295-297

Friction, static, defined, 149

Funicular polygon, 26, 398, 401

Geekilogram, 224-226

Geepound, 224-226

Graphical analysis, 2

Gravitation constant, 74
law of, 74

Harmonic motion, composition of, 196-

202

resolution of, 198, 201

simple, 177-180 ; ,

Hinge reactions, 275 , j .

Hodograph, 185

Hoop tension, 274

Horse-power, 318

Impact, 344-347

Impulse, 329, 331

angular, 33 1

moment of, 331

sudden, 343

Inertia circle, 374-37^

ellipse, 374

Instantaneous axis, 212

centre^ 213

rotation, 213

Jet, pressure due to a, 340, 34I

Kilogram, 6, 7

Kinematics, 167

defined, i

,
Kinetic energy, 306-308

friction, 247, 248

reactions, 239, 271, 292

units, 223

Kinetics, 217

defined, i

Laws of motion, 221, 223

Lag, 177

Lead, 177

Numbers refer to pages.
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Mass, defined, 6, 219
moment of, 220, 249-257
units of, 6, 223-226

centre, 220, 221

Mechanics, lefined, i, 2

subdivisions of, I

Moment of a couple, 19

of a force, 16, 17, 395

of a length, 61

of a mass, 220, 249-257
of a momentum, 333, 334
of a volume, 61

of a weight, 55

of an area, 61, 363-378
of an impulse, 331

of inertia, 249-257, 363-378
of inertia, experimental deter-

mination of, 255

of inertia, principal, 377, 378

Moments, principal of, 28, 32, 39, 44.

Momentum, 332-336

angular, 333, 334
moment of, 333, 334

Motion, curvilinear, 183-202
laws of, 221, 223

non-uniform, 168, 172, 184

of a particle, 231-228

of a rigid body, 203-2 16, 233-

297

of a system of particles, 228-

232

plane, 207-216, 287-297

rectilinear, 167-182

relativity of, 192-196

uniform, 168, 176, 184

uniformly accelerated, 176

Neutral axis, 89

Pappus and Guldinius, theorem o^ 72

Parallelogram of forces, 1 1

Parallelepiped of forces, 13

Pendulum, ballistic, 347

conical, 269

Pendulums, 265-268, 269, 270

Percussion, centre of, 347

Period, 177

Phase, 177
Potential energy, 309-312

Pound, 6, 7

Poundal, 224-226

Power, 318

Principal axes, 257, 377
Product of inertia, 257, 371-373

Pulley, 113, 114, 325

Radius of gyration, 250, 364

principal, 377

Rates, 351-356

Repose, angle of, 150
Resolution of acceleration, 188-192

of a couple, 50
of a force, defined, 10

ofharmonic motion, 198, 20I

Resultant of forces, defined, 10

Rigid body, defined, 228

Rolling resistance, 295-297

Rotation, 203-207, 249-286

Scalar, 349

Shear, 86

Space diagram, 5

Space-time curve, 167, 183

Speed-time curve, 185

Statics, 3

defined, I

Stress, 85-92
centre of, 88

diagram, 145

intensity of, 86

Tackle, 115, 116

efficiency of, 324-326
-

Tension, 86

Torsion balance, 269

Train-resistance, 321

Translation, 203, 233-248

Transmissibility of force, lO

Triangle of forces, 11

Trusses, analysis of, 136-148

Numbers refer to pages.



4o8 INDEX.

Units, absolute, 7, 223

derived, 357
dimensions of, 357-362

fundamental, 357

gravitational, 6, 224

kinetic, 223

Varignon's theorem, 17

Vectors, 349, 350
Vector diagram, 5

Velocity, 168, 184

angular, 204, 208

resolution of, 188- 192

Velocity-time curve, 171

Vibrations, 242-247
Virtual work, 381-386

Watt, 318

Weight, apparent, 274

defined, 8

of roofing, 387

of snow, 388
of trusses, 387

Wind pressure, 388

Work, 298-305
and energy, 314, 32S

diagram, 299

Numbers refer to pages.



EXPLANATION OF PRINCIPAL SYMBOLS.

(The numbers refer to pages, where additional explanation may be found.)

/ . . . .length,

M . . . moment of a force

A . . .area.

a . . . . arm of a force
;

linear accel-

eration.

ax. . .arm with respect to x axis;

X component of an accelera-

tion.

a. . . .acceleration of mass-centre.

On. . .normal component of accel-

eration.

at. . .tangential component of ac-

celeration.

a. ...angular acceleration (205);

angle of repose (150).
C. .. .couple.

Cx. . . component of C perpendicular
to an X axis (46).

d. . . .density.

E.. . . energy.

Ek. . . kinetic energy.

Ep. . . potential energy.
e. . . .efficiency (317).
e. ...lead, lag, epoch, or epoch

angle (177, 197).
F. . . . force

; friction.

F«. ..X component of a force (15).
F' ... limiting friction (150).

<f>. .. .angle of friction (150).

/.. . .moment of inertia (250, 263).

Ix- . .1 with respect to x axis.

/. . . ./ with respect to a centroidal

axis (253, 366).

/. . ..product of inertia (257, 371).

Jxy. .J with respect to x and y axes.

/. . . ./ with respect to central axes

(372).

k. . . .radius of gyration (250, 364);

gravitation constant (74).

kx. . .k with respect to x axis.

k. . . .k with respect to a centroidal

axis.

sometimes
mass.

Mq . .M with respect to O.

m . . .mass.

N. . .normal pressure (149).
n. . ..frequency (177).
P.. . .force; power (318).

p. . ..intensity of stress (86).

Q. .. .force.

R. . . .resultant; reaction.

Rn. ..normal component of i? (42,

275)-

i?<. . .tangential component of R
(42, 275).

r. . ..radius to mass-centre (275).

p. . . .radius of curvature; surface

density (83).
5. . . . force.

s. . . .length of arc.

r. .. .tension; period (177).
t. . . .time.

6. ...angular displacement (204);

angle.
U. . .moment of momentum (337).
V . . .volume.

V. . . . linear velocity.

Vx. . .X component of v.

V. . . .velocity of mass-centre.

W . . . weight.
IV. .. .work; sometimes weight.
(o. .. .angular velocity (204); solid

angle (79).

X coordinate of centroid.

y
" " "

z. ...
'

Xc . . . coordinate of centre of stress

(88).

yc . . .coordinate of centre of stress

(88).
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