

CAN YOU FIND EVIDENCES OF "TERRIBLE OUTRAGES"?
A fair sample of the scene at any dock on the arrival of any liner. U. S. customs officers
inspecting baggage.
"Makimg the Touryst Howest." -) 3

THE TECHNICAL WORLD MAGAZINE

VOL. XV

MARCH

BAILEY MILLARD

GIVE an American a few toms of dywamite and a mountain to bore through in a month and he is happey." said an efficiency engineer to me the o sther day. "Americans have to do big thinge in a great hurry. They despise small things. A structural shop orders the supplies from a rolling mill. The big beams are promptly shipped. The angles and smaller pieces to not come for weeks or months. The superintendent of the tructural shop pleads for permission to hegin work immediately on material not deliveralle for three months. If permitted to do the work ahead of time he clamers for permission to ship it. He is always ahead on big work, always behind on small work, and this means a great waste of time and energy."

But we are coming to the day when the smaller things will be recognized as of as much importance in the problem of profuction as the larger, the day when the man beside the machine and his. capacity for work and wage will be more closely considered. In fact, in certain centers where the big activities hold sway there is alrearly a mighty and successful effort toward right plaming. right cxecition and right reward for the toiler. In these places such marvels of economy are being wrought by bright
master minds as to stagger the imagination of the men of the whe school of waters wheme motho wats "iet there." and who recked mot of the cost.
I'es, the science of business and indhustrial efficiency, senffed at by the healhug egoists who thought they were doing big things in the best way, lout often were only misdoing and wasting. has been tried out and may be definitely and demonstrably declared to have won.

The science of efficicncy! Here is a new, big: vital and tremendously important subject that is engaging the lest minds in some of the great industrial plants of the country, ant has been taken up by some of the railroads which are emulating the luminous example of the Santa Fé, a railroall company that has done wonders in conserving its own forces. saving millions of money and inganizing its workmen on a system that is nothing thore of altruistic.

Who conceived this principle of efficiency, the thing that is now so intensively engaging the master minds of industry? Well. of course the idea of economy in production has ahways been insisted upon by the heads of great plants, but time has shown that it has not always been intelligent and successful economy, and as for humane dealing, with employees, they rarely have been considered in the scale. But think of

COPYAIGHT BY CLHEDNETT
In Entiftislastic Advocate of Efficiency.
The celebrated lawyer, Louis D. Brandeis, who told the railways how to save a million a day.
an economy both intelligent and successful and in which the idea of the fair cleal is always mpermost: for without the fair deal there can be no economy and no efficiency. Let us give credit where credit is duc. Nfter a careful study of the genesis of this great movement I find that to Frederick W. Taylor, formerly chief engineer of the Midvale Steel Works, belongs the honor of introducing scientific efficiency in. this country. Some of the men who are doing things in his line call him "the Father of Efficiency," and he deserves the title.

Scientific labor management had its first successful demonstration at the Midvale Works in the latter eighties,
but it is only of recent years that it has received its great impetus. Taylor introduced a differential rate system for the employees by which those that could do a certain amount of work in a day received a certain amount for each piece, while those that were not capable of reaching the standard were given a smaller rate. Under the okl piece work plan, a man that had been turning out five pieces a day received $\$ 2.50$. Under the new system when they turn out ten they receive $\$ 3.50$. Thus the total cost of a piece was reduced from $\$ 1.17$ to 69 cents while the daily pay of the man was $\$ 1$ more.

Then Taylor introduced into the same plant a method of dividing the work of tire-turning into a number of short operations, fixing a certain time and pay for each. This new system increased the output from the tire department fully thirty-three per cent.

So successful was Taylor at Midvale with his new ideas of indlustrial economy that other manufacturers employed him to improve conditions in their shops and factorics. He worked quietly and nearly always made marked improvements. Meantime he devoted himself to the study of efficiency, both for the benefit of employer and employee. Other men, followers of his, have gone farther in this line and made more famous successes, but such distinguished students of efficiency as Louis 1). Brandeis. Frank B. Gilbreth, Ilarrington Emerson, and H. L. Gantt acknowledge themselves as disciples of Frederick WV. Taylor.

It lias taken a grood many years to get the irlea of scientific efficiency into the minds of our captains of industry. A large proportion of them still adhere to the old methods and are not willing to
let the "theorists" run their shops. But where those "theorists" have been given full sway, as they have in some places during the past few years they have confounded the scoffers. For one thing they have obliterated from the toiler's list of maxims the first and most obnoxious one from the master's point of view-"The least service for the most pay." If the theorists had done nothing more than that they would be entitled to wear wreaths and halos. But they have done much more.

Take as a luminous example, the work of Ilarrington Emerson in bettering conditions on the Santa Fé system. There had been a disastrous strike in the shops, and when Mr. Emerson was set to work to straighten out conditions most of the employees were very hostile to the management. No one could have gone to work to carry out the principles of scientific efficiency under more tunfavorable, or, indeed, denoralizing conditions than those that confronted Mr. Emerson when he faced the sitnation. It was a man's game and it was played by men. llere were twenty shops, large and small, scattered along nine thousand miles of railroad in twelve different States, with twelve thousand disgrmintled mechanical employees to deal with and fifteen himdred locomotives and fifty thousand cars to care for and keep rumning.

President Ripley, a man of clear vision, who had come to have full confidence in Emerson and his theories. after several interviews with him, made him consulting engineer to study conditions and advise betterments, and VicePresident Kendrick rolled up his sleeves and went to work with him.

The crying need was to get the equipment in shape. Emerson did not begin to megaphone orders to everybody. He went quietly into the main shop at Topeka and began to study mechanical conditions. The first thing he found out was that something was wrong with the belts that carried the power to the machines. Now belting is an insignificant item in railroad operation, but much turns upon it, literally as well as figuratively. In the Santa Fé shops belting was nobody's care. The only official who showed any interest in it was the claim agent who on one occasion had induced
the shop men to take a lot of singed and water-soaked belts from a wreck after they had been refused by a consignee. The belts were constantly breaking and every break entailed a loss of time to machine and mechanic, and what was more important, held locomotives in the shops, preventing the movement of trains and decreased reventue. Under the old system a preminn-overtimehad been offered on breakdowns. New belts of the best quality were put in and the cost for belt repairs was reduced in one year from $\$ 12,000$ to $\$ 630$, while the saving in time and increase in reventue from that source alone was many times the original sum.

But the belt amonstration was only the razor edge of the entering wedge. The system was extended to the maintenance of all shop machinery and tools. In the year 1903-t. which included only a month or so of the Emerson efficiency

E. P. Ripley, President of the Santa Fl. He is fully alive to needed improvements in railroad management.
work, what is known as the unit cost of the maintenance was $\$ 10.31$. By June. 1907 , this cost was reduced to $\$ 4.89$ and in 1909-10 it dropped to $\$ 3.24$. With a 60 per cent. increase of work, maintenance costs dropped 51.4 per cent.

Ileantime improventents were going on in other directions all along the linethe revision of grades, new designs for locomotives and cars, water purification. welfare work that decreased and finally climinated the hostility of the workman 10 the company, and most humane of all. a peraion system for womont employees.
like all men of hrual vision. Emerson has faith in men. He believes in their heart-in-heart geotness and he knows that the main catse of their bostility to their employers is mismanagrement. It was his belief in the men of the Santa Fé, from (op) to bottom, that more than anything. has resulted in his great victory over bad conditions on that sy:tem. Ten thousand pamplatets convering the principles of standard practice instruction were distributed among the employees of the road. The mottues were: "Faimess, not favoritism: efficiency not drudgery: individuality, not subserviency:" The senerous attitude of the company is set forth in the following "pening sentences of this booklet:
"The employee wants as high wages as he can get. The employer wants his output to be as cheap as that of his competitors. Both desires are reasomable and the problem is 10 reconcile them without injustice to cither party.
"An absolutely clear understanding of the problem by both parties is necessary.
"The worker cannot be expected in work for one employer for less pay than is patid moler similar conditions for the satme work bey another employer. The wage payer will not pay higher wages
than the current rate or than the business conditions permit. There may be. however, quite a gap between the wages paisl by competitors and the higher wages the employer would be willing to pay if it can be proved to him that it is to his advantage to do this. Wages above current rate shoukl result from individual effort."

The men liked the ring of these words and all the competent ones were pleased by the individual appeal that was afterward made to them. For example, instead] of "pooling" locomotives the Santa I'é assigned each engine to a regular and competent crew. By this system the engincer was made to feel an individual interest in his machine and an individual responsil)ility and anxiety for its condition and repair. Engine "failures" were thus reduced from 11.880 in 1907 to 6.932 in 1908 . On the Santa Fé an engine failure means any trouble with a locomotive that causes a delay of five minutes or more to a train, aur every failwre is followed by an investigation. Twenty-five per cent. of the power was fommerly out of service, but this percentage was reduced to thirtecn.

Not alone to individual responsibility. but more to efficiency reward does the Santa Fé owe the great success oi its experiment. Each man is employed at a definite and equitable hourly rate of wage, paid to him without regard to his efficiency. Definite time unit equivalents are stated in adsance for each operation assigned. by which the man mnst give a fair hour's work for a fair hour's pay: This fair hour's work for a fair hour's pay is called 100 per cent. efficiency, and if he attains this efficiency the worker is paid a bonns of 20 per cent. As efficiency diminishes the bonns diminishes. It 90 per cent. efficiency the bonns paid

 Santa Fe railway yards, Los Angeles.
is 10 per cent., while at 67 per cent. efficuency the bonus stops. Foremen are pail a bonts: on the basis of the average efficiency of their men, and superintendents are similarly rewarded on the basis of the foremen's efficiency:

The results of this bonus plan were at once seen in the increased interest of the men and the greater amount of work they turned out. Last year the Santa Fé employees received the sum of $\$ 1,250$,-

000 in these premiums on their lalor.
Has it paid to expend this large amount in this unusual way? Yes, it has paid and it has paid well. For not only have there been no strikes on the Santa Fé since its introduction-and strikes cost money-but the net cost of locomotive repairs for a year has been reduced from five and one-half millions to four and one-half. In a period of three years, during which from $\$ 200,000$ to over a

NEW METHOD OF OILING TRUCKS ON THE SANTA FE RAILWAY, LOS ANGELES.
Time required: five minutes per car for two men.

TIIE WRONG WAY OF LAIING OUT THE RRICK FOR THE WORKMEN'S USE.
million was paid ont in bontuses, the entire system made net savings of over $\$ 5,000,000$, or nearly $\$ 2,000,000$ a year.

Unler the olfl method one man at $\$ 3.50$ a day finished one pair of tank wheels on the machine lathe a day. Linder the new method one man handles two pairs of tank wheels and a pair of trailers in a rlay.

Besides increased pay the men are provided with reading and recreation
rooms all along the line, and there is a model hospital system to care for then when they are ill or injured. (on retirement at the age of sixty-five pensions of $\$ 20$ to $\$ 75$ a month are granterl them, according to their former wage and length of service. Altogether the men of the Santa Fé feel they are laving a fair deal, and they are satisfied with their treatment. A strike on that system is now considered impossible.

TIF: RIGHT W゙AーIMPROVED METIOD OF IIAVING TIE BRICKS ON PACKETS AND THE BOXES PROPERLY SPACED FOR THE GREATEST SPEED WHLN

When on Narcl 20, 1905, efficiency work was begun in the matter of locomotive repairs an enmmeration was made of all locomotives and the sum of their detentions in the Topeka shop, a total of 1,735 days for fifty-six locomotives. A year later, by applying rigid rules of efficiency the sum of detentions luad sunk to 25 d days and a larger number of locomotives had been repaired.

In some instances greater economies were effected than were attempted. When Mr. Kendrick called Mr. Emerson's attention to the ligh average of locomotive repair cost it was seen that in 1904-5 it amonnted to $\$ 4.165$ for each engine. Mr. Kendrick wanted the cost reduced to $\$ 3,165$ for each engime. Mr. Emerson cut it down to $\$ 3,037$. The miles rum between locomotive failures on a difficult division was increased from 4.377 in 1902 to 20,000 in 1909.

In the matter of car repairs the introduction of efficiency principles has worked wonders of economy. Simpler processes for doing things have been devised. For example, the oiling of trucks has been simplified by the use of a compressed air machine. By the old hand method it took a man an hour to oil the trucks of a car: now it takes two men only five minutes.

Such men as Louis D. Brandeis, H. L. Gantt, and Charles B. Going, who have closely observed the methods pursued by Mr. Emerson in his efficiency work on the Santa Fé, are enthusiastic in its praise. It was the study of this work that led Mr. Brandeis to make the offer to the railroads that were threatening rate advances that he would save them a million a day and charge nothing for the service. Mr. Brandeis' intention was to employ Mr. Emerson as the head of a general school of efficiency that would save the roads the sum mentioned every

The Father of Efficiency in Businfss Aff.tirs. Frederick W. Taylor.
day of the year. Some of the companies are willing that the plan should be tried, but others demur, sticking to old methods, though they are only staving off the inevitable.

Un a lesser seale than that of the Santa lé. efficiency work has been iried on the Southern and Chion I'acific, and has shown excellent results. It will not be long before all the lines of the great Harriman system will introduce these metloods, but the objections of wise old master mechanics will first have to be overcome.

Lnder its progressive president, Mr. L. FF. Lowe, the Delaware and Hudson system has made marked improvements by the introduction of efficiency methods. The Erie systen, which had been mruch run down, has also tried the plan, particularly in the matter of coal consumption. On a certain watched locomotive it was found possible to cut down the fuel bill over sixty per cent. An effort is being made to standardize this performance, and though it may not be successful a big saving is bomd to result.

The advanced mechanical practices of the Union Pacific have resulted in considerable savings, and so have those of the Northern Pacific, the New Iork Central, the New York, New Haven and Hartford and the Boston and Maine. But Mr. Brandeis, the most enthusiastic of all the disciples of Taylor, the "Father of Efficiency," will never rest content until he has induced all the railroads of the country to try the improved methods. Brandeis is not doing this so much for the railroads as he is for the people, for whom he has made many a good figlit. He believes with H. L. Gantt that with increased freight rates come increased prices, that with increased prices come higher cost of living; with ligher cost of living comes a demand for

Sbcured Efriciency in a Mostile Shop
Harrington Emerson. whose ability was promptly recognized by President Ripley of the Santa Fé.
higher wages and with higher wages comes higher cost of production, involvins another increase of prices, and the cycle thas repeats itself.

This same Gantt. whose economic philasophy I have boiled down into the foregoing language, is in himself a walking cyclopedia of efficiency methods. Not long ago he was engaged by the president of a cotton mill company to solve the problem of making its labur more efficient. He put in trained observers with stop watches to stand by the most skillful weavers and stuly all their montions in detail, a practice recommended by Taylor. The observer learned just how the skilled weaver started and stopped his loom, how he removed the
empty bobbin from the shuttle and put in a new one and how he tied the knot. This study resulted in fixing as a standard task the number of picks a loom shonld throw, eliminating all unnecessary delays. A sulbstantial bonns was offered for the accomplishment of this. number on each loom. This stimulated individual activity. Those weavers who conled not make a good showing were faught by the best operaturs, and in a short time there was an average increase of output from the looms of eighty jer cent! The average wages were increased forty per cent., while the actual wage cost for each piece of cloth produced was only sixty jer cent, of the former wage cost.

In a pillow case factory where Gantt introduced his methods of efficiency and his bonus plan, similar results were obtained and, better still. it was found that in twenty-eight cases of goods furmisherd before efficiency work was begun the average number of imperfections to each case was $47 \frac{1}{2}$. In eleven cases after the efficiency work was started the average number of imperfections found in each case was less than one! This great improvement was made in a few week's after Gantt went into the factory:

Like results. were ubtained by this mater of efficiency in a packing-bux factory, in a bleachery and in other inlustrial plants.

Going back to Taylor and his steel work, let me quote a few paragraph:from a report of Assistant Superintendent R. J. Snyder of the Bethlehem Stee] Company:
"One of the best remults has lueen the moral effect upon the men. They have had it placed in their power to carn a very substantial increase in wages by a corresponding increase in their production capacity, and this has given them the feeling that the company is quite willing to reward the increased effort. They display a willingness to work right ul, to their capracity, with the knowledge that they are not given impossibilities to perform.
"The percentage of errors in machinery has been rery materially reduced. which is tuncurestionably due to the fact that in orler to earn his buntes a mans must utilize his brains and faculties to
the fullest extent. He has thus no time for dreaming, which was no doubt, the catuse of many errors.
"Breakdowns are less fregtuent. The men work in' to their capacity and now obtain from the machines the product they are capable of turning out."

In the matter of yard labor Mr. Taylor saved the Bethlehem Company fifty per cent. of the cost of the removal of material and made many other savings.

Frank B. Gilbreth is now considered one of New York's foremest efficiency experts. He takes comtracts for the construction of bridges and other structures and produces marvelous results from his methods of labor management, bassed on what he calls his "motion studies," made in his own actual experience in various tratles he has learned and also from accurate observations of the work of others. Mr. Gilbreth uses stereoscopic views of various operations showing the men how the work slounld be lone. Pesile these he lias books of details for them to study.
"On one oceasion," he says, "I had to drive a lot of piles in cuicksand. I wanted to get the work done as rapidly as possible. I raised the pay of all the men 25 cents a day, from $\$ 1.75$ to $\$ 2$, with the understanding that in return they were to do the work in the manner 1 described to them. Then I employed a boy at \$1I a week to stand on the bank with a stop watch and a pencil to keep a record of the work done by each gang. W'here the work bad previously required 4.28 minutes for each trip of the bucket out of the hole, after I had standardized the method in this manner, it required only: 2.21 minutes, or a reduction of almiost one-halt.
"The study which has been given t"

- Man Wha Does Not Pelevil In Wiating Human Energy.

1. F. Lowe, President of the lolaware and IIudson Kailway
seientific efficiency has demonstrated many things. lior instance, it has been found that in one kind of labor in order to be most efficient a man must lave 27 tinits of rest for every J 00 that he works. 1 tell my men when there is nothing for them to do, to sit down and rest. It has been fommel that the most efficient load for a shovel is $211 / 2$ pounds. and that in carrying weights. 92 pounds is the proper amount. This was the weight which I set for brick carriers to handle and had "packets" designerl to carry this weight
"In wall work I nse What I call nom-stomり)ing seaffolds for the bricklayers. I find that a man will do better and of incker work where he is not compelled to strop (wer 10 lay lrick. Also f have my brick "packet" placed in a hansly position by a chaap man. sothat the bricklayer meed waste no time. I have tanglit men how to pick up lrick and mortar with both hands at the same time instead of using one at a time as most of them formerly did.
"The care of the health of men has been anc of my studies. 1 don't helieve in the old driving and sweating system. I believe in the new non-perspiring way, arvocated by Taylor, of whom I am a close disciple. The drive or military system is going out. Instead of that we are introlucing the more humane, the more practical and the more economical method of rewarding a man for goorl work and not naking a shirking, cringing tine-server of him. Yes, men must be well-fed and wellrested. I find it cheaper to feed them free rather than to let them eat at board-ing-houses."

Mr. Gilbreth stimulates the ambition of his men in varions wats. Once he had a lot of Swedes, Russians. Irish and

Tue Best Methon, Up tu D.ate, for llanding Prick. This barrow hohls 216 bricks as aganst the usual 60.

The Improned Barrow Is Easily Pushed. Too
others working on a big bridge. The work was going slowly, so he told the foreman that the flag of the nationality making the best record would be floated from the highest part of the structure. The Swedes put forth their best efforts and soon their pride of country was gratified by the flying of the Swedish flag above the workers. The Russians then bent to the work and soon their flag displaced that of the Swelles. For some time the record of the Irishmen was low, but, with dogged determination, they set to work to raise it and finally did so;
and when their big green banner, with its harp emblem, floated high above the bridge their foreman swelled out his chest and broke forth in this piece of Irish sumburstry:
" Ah, me b'ys! There's the flag of Erin. Keep up yer licks and don't let onny domned Protestant pull it down!"

And they didn't.
Mr. Gilbreth uses the flag system in gang work on houses. Where several houses are being built at once a flag is raised on one to show that the gang on that house made the best record on the previous day. He offers prizes to his men for suggestions as to the best manner of doing a given job.

Efficiency experts declare that in their scheme of standardizing and subdividing the work after carefully planning it out the responsibility does not rest merely upon the man in clarge. but in the same ratio clown to the poorest paid worker. They say that the planning should be done by the highest intelligence, and that the workmen should not only be provided with every facility for actual production, but that he should be made to think, too. They keep a' sharp lookout all the while to see that the man fits the job in each case. In a textile plant where efficiency methods were being introduced the expert found that the output of the room in which repairs were made to faulty bolts of cloth was altogether too small. He discovered that a trucker named O'Brien was paid $\$ 1.10$ a day for gathering up the bolts needing such repairs and taking them to the repair room. O'Brien was in the liabit of tumbling these bolts upon the floor in a heap, after which he would go daydreaming about the place. When a gir]

METIOD OF HFATING COMPLETE SET OF TIRES IT ONE TIME WITH CRUDE OIL BURNER.
This is the new method. Formerly a piece of red hot gas pipe was placed around the tire to expand it. It was a sluwer proci-ss.
ran out of work she had to go to the pile and pull over the bolts until she found one of the kind upon which she was operating. All the girls did this and it wasted their time.
"I want a five-dollar man to take the place of Trucker O'Brien," sail the efficiency man to the superintendent.
"What!" eried that official, agliast at the request. "A five dollar man to do trucking?"
"That's exactly what I want," said the expert, in a matter-of-fact way. "The intelligence of everybody in the room is subjected to the O'Brien intelligence. We need a fivedollar intelligence that can sort out the bolts and de-
liver them quickly and properly to the girls."

The five-lollar man was put in the place and the change resulted in a great saving to the factory.

Pitting the Foreigners Against One Another. The gang that has the highest score or lowest unit of cost in bricklaying flies its country's flag.

IMPRUVED AIPARATUS, FOR REMOYING AND KEYLACING LUCUAOIIVE TIRES. SET LP EOR USE
"I think I have found the reason for the very great inefficieney that exists in American plants," sais llarrington Emerson, who since leaving the Santa Fé has heen working to reduce cost and improve lator comelitions in several industrial concerns. "It is the commative effect of small inefficiencies on an end

Masons Finishing a Waid on a NonStooping Scafrold.
result. For instance, you have a printing press and a puor uperator on it on black work turning out 800 grod sheets ont of a possible thousand and the other 200 are spoilet. Now if you had a poor press capahle of turning out only 800 sheets and that man was working on it, the combination of pour man and poor machine would run the result down to 600 good sheets. Then if you should invite in a scientific manager he would say: 'You have to improve your press and train that man so that he will know how to operate it, and get '000 georl sheets out of his thousand." After you have done this. say that you put your press on color work and have to print each sheet fonn times to get four colors. Vou get 90 per ecult. good sheets out of each impression and the
end result is that you have only 640 sheets out of the thousand. So that while the individual element for each impression represented by that ninety per cent. is very ligh the end wonld be only sixty-four per cent."

Mr. Emersmon's point was that in this case the efficiency of the man and the mathine shompd be still further increased.

Prejudice against innovation, the fixed habit and desire of master minds in do the same thing in the same old way, is the greatest obstacle to the introluction of efficiency. Charles B. Going, who gave such valuable testimony before the Interstate Commerce Commission at its rate hearing, pointerl this nut when he refered to the testimony of Joseph Ramsey, Jr., justifying the extremely low averase made by freight cars in the United States-

Non-Stooping Scaffolid with Bricks Sythmatically Sft up is a Corner.
twenty-one and a half miles a day. To "prove" his point Mr. Ramsey quoted as a typical case the coal shipments passing through St. Louis, in which it regularly thok thirteen days to move a car seventyfive miles-promf, one would think, of appallingly wasteful methorls.

APPARATUS USING CRUDE OIL IN PLACING AND REMIOVING TIRES.
Note how the hot flame is directly applied to the tire.

The Non-Stooping Scaffold.
The low-pricert man lifts the bricks wo feet, so that the high-priced man thes not have to waste time in bending to pick them up.
"入r Ramsey's argument," said Mr. fining," was, that as it took this time this time was necessary. The argument of the
efficiency engineer would be if it took this time something must be wrong." And of course something was wrong. But railroad men of settled views are hard to convince and so are the hearls of many industrial plants. They see nothing in the new system but "themry" and are against it because of that and because it rloes not provide a means for driving men. And the old-timer who thinks he is sufficiently successful is nearly always a man-driver.

But these hard heads are being won over and every day adds to the list of big activities in which the new science of business and industrial efficiency is being introduced.

When In Disgrace

When in disgrace with fortune and men's eyes, 1 all alone beweep my outcast state, And trouble deaf heaven with my bootless cries, And look upon myself and curse my fate,
Wishing me like to one more rich in hope, Featur'd like him, like him with friends possess'd,
Desiring this man's art and that man's scope,
With what I most enjoy contented least ;
Yet in these thoughts myself almost despising,
Haply I think on thee and then my state,
Like to the lark at break of day arising,
From sullen earth, sings hymns at heaven's gate;
For thy sweet love remember'd such wealth brings
That then I scorn to change $m y$ state with kings.

Abstract

Are you always sure of your own identity? What is one"s self. anyway? Everybody has two personalities. -a first and second in command. so to speak. In our waking hours. the first is on watch: the second appears only in our dreams, or, in abnormal states, the result of disease or injury. There are individuals who even in their waking hours, are influenced by this "second personality." which. in reality. has hecome the first in command. The instances here shown are dramatic pictures of this elusive condition., Johns Hopkins Medical School. of Baltimore has recently established a department for the study and treatment of such cases.

|NQUIRY failed to throw any light on his history. Nobody seemed to eare whether he had one. Yet he seemed to fill in with the ebb and flow of the daily shifting life of the tidewater city of Seattle. It was not very long after the first rush of the gold-seekers to the Klondyke, and he was looked upon by the old-timers of the eity as a strange atom in the flotsam and jetsam which the back-flow had left stranded on the lonely shore of failure. To the new-comer, his story carried the conviction of reality: and even the experienced did not doubt that he had at least been to the North in that mad rush for the metal which represents the world's standard. The one element of justifiable doubt was his own admission that he couldn't remember the exact location of his discovery, the richness of which, if his story conld be believed, wonld place the possessor beyond the wildest dreams of avarice, at a time and place when dreams, especially golden ones, requiresl something very substantial to satisfy: With his Irish humor and dashing spirit of marrative, he would hold his anditors spell-boumd. It was only after questioning him that they imagined they had been victimized to the extent of the price of a frink. Finally, like all oft-repeated tales, this one became so boresome that all who met him set him down in their minds as a monomaniac, whose reason had become un-
balanced as the result of hardship and the stupendons stories of gold-disensery which made the sole topic of convers:tion. There was an uncanny glint of mystery in his eyes, an elnsive something in his own inability to place his name and identity, which caused many to shudder at his approach. Who was he? The question, one of idle curiosity to most, was soon to find a curious answer.

He was talking excitedly one night in a certain hotel-lobby, to a group of Eastern men fascinated with the glowing accounts of the new country. One of the party, who happened to be a surgeon, became especially interested, and after some moments' thought, asked permission to feel of the other's hearl; then passing his fingers over the unknown's skull, like a phrenologist feeling fur bumps, the doctor turned to the others with a jubilant smile, and tokd them he had discovered something. The gromp was interested ; a talk was held amongst them, with the result that they agreed then and there to do what they conld to help him. As a conserpence, the monknown was taken to an arljoining town, placed in a hospital, and operated on for an old fracture of the skull, due, in all probability, to some unknown injury. When he recovered conscionsness, he seemed to be an entirely different personality. llis memory returned sound and clear ; and he was able, for the first

Fig l: Luoking Through Brain from the RE\&R.
A. Normal identaty of a normal man. B: "Ser and sell ${ }^{+}$- uncon-scious-in anor. mal man.
time, to say just who he was. Then he told his story, straightforward and comnected. He was an Irishman, it - eemms. who lradt come to this cosuntry with a little money in his posisession. Shortly before the Klondyke (liscoveries. I laving mothing in particular to do but seek las fortume, he latel left for the Alaska comntry sn hearing of the wonderful "ppontminties there. Like others, he had suffered hardships, but continued on with the determination of finding gold. if any was to lee found. Alone, he had wanclered in his quest from the main trail, with its scattered horde of seekers: and alone he liad come upon fortume and mis fortume together. In swingins ins pick, while prospecting, into anne loose rock beneath an overhanging leater, he lad struck a lucky find at a moment when least expecterl, at the same time fonsening a mall boukler above lim just emongte to bring it bombling down mon him. It hat struck his hearl. laying him monseious with wealth within his grasp, and fracturing his skull, as was later discovered. The wromerful part of his tory is, that after the operation he succeedet in making his way back to the very spot of his discovery, fombl things just as they were at first, filed his clam, and afterwames sold ont for many thousands of chollars. He is livines tolay, and enjoying in comfort the fruit. wf his terrible, but curious and interesting experience.

This illantration from real life shmos woly one of the many interesting phase uf lost-identily. This condition, which naty come sudkenly into the life of ans (me, witen prenents chardeteristies mone promatumeal, but selfoms, if ever, more dramatic. Thmble peramatity, that peen liar state of mind during which smith may think he is hrown, or some entirely mbeard of imlisithal, ant in which role he enacts mose naturally: and logically the mewly assumed personality, forgetting that he ever was Smith, is now and
then present as an after-effect of braininjury, or as the result of disease. The manifestation of changeel iclentity, in most instances. shows itself not so much as a deterioration of intellect, aof character and morals. A person who. previous to such a misfortume, may have been a model of virtue in bis commmoty. wften beeomes the most puarrelsome of mortals, a dissrace to himself and to all near and dear to him. Nany are known to have changed their beliefs on the most vital sulbjects, leveloping eriminal traits, and turning to thievery or worse, only to end in jail or in serviny a long imprisomment.

U'p in Alberta, that wide domain but recently subdued to the plow, lived an ald Scotchman, wielely known by his given name of Alec, whos kept a general store, ansl had a reptitation for lomesty amd shrewdness over a wite range of territory. He was the last man in the world to he suspected of doing the least thins contrary to the accepted standard of a desirable citizen. He had prospered in husmess, had no enmmies, and was respected and happy. One day he started out alone on horse-lack, to be gone some clays on a honting-trip. The following day the borse returned alone, rickerless. Evidently something serious had happened. A searching party was gotem together at once, and legan to scour the country for miles around. That same

1Fに. 2: Tatz Ciolu Strkzk's ('ase.
Light and dark portions now equal. Sis alternating per sonality, firat I then I; predominating. In almor mal condition.

Figure 1 Shated line represents seat of higher faculties. Figure 2 lujury at A causen lome of mumbry; at 1 , of speech; at C, of identity Figure 3 , A represents "seat" of the "prelsonataty" in interior of the brain; B, "second-helf," existing in all brains - note relative size of the two personalities. When it injureal or "submerger,"

I; assumes command, showing a different "identity."
night Alec turned up at his home. apparently sound and well, and spoke of the incident as nothing more than a sort of joke, with himself as victim. He had been riding down a steep and narrow bridle-path, he said, whistling and unconcerned, when a bear from an adjoinmg thicket suddenly bounded into the path ahead, frightening his horse before its rider had time to realize the reason. He was thrown suddenly from the saddle, alighting on his head some fifteen feet below the side of the path. He felt all right; he looked all right, and there the story ended. But before a week had passed, those who knew him best began to note a strange change in his mamer toward them. He became irritable and quarrelsome without the slightest provocation. Just about the time these changes in his disposition were becoming a topic of common conversation. Alec mysteriously disappeared. So far as could be learned, he had taken absolutely nothing with him: everything in his store, and in the living-roms above, was in perfect order. Weeks went by. and mo word or knowledge came. Search was mate in all conceivable fuarters, but with no success nor slightest trace of him. He had disappeared as completely as if swatlowed by some terrible cataclysm. All hope of ever seeing him again was at last sadly abandoned. Some months later, news spread like wild-fire over the regions of western Montana and northern Jdaho, of the appearance there of one of the most daring loandits that wild
comntry had ever known. He woukt appear and demand fond at some ranch one day, and then suddenly show up. an the same quest, at another ranch some thirty mifes distant the day following. Such wide leaps seemed impossible fur a man on foot, but the various descriptions: of him tallied exactly. These strange raids continued day after day, and though he was said to be heavily armed. no one had been hurt in any way, nor had any one the courage to resist him. Hardened frontiersmen seemed awed by his presence. and wholly incapable of coping with his subtle tactics. He would calmly walk up to a group of campers, demand food or ammunition. or whatever else he needed, keeping his finger on the rifle-trigger all the white, and then solemmly warn them to disconrage from following him the numerous posses which were in hot pursuit, saying he was prepared to fight to the death. There was something in his look which ahways cansed a shiver when he told them this. Aten whw had joined in man-hunting lefore a gladly as if they were ruming a fox to earth, one hy one droppert from the pursuit. There was a something in his elusiveness which bordered on the meanny. Who the was none could guess. He became the mysterions terror of a vast wilderness. But he had harmed mokoty. Ahout the time the hunt was given up, there happened to be a hunting party from across the Canalian border encamped in western Montana. They were seated around the fire one morn-
ing, enjoying their breakfast bacon, when they became sudtenly aware of the presence of a stranger who had stepped from the shadow of the surrounding pines. Emaciated, unkempt, in rags, he presented a pitiful sight. Startled to their feet by his ghastly appearance, and with thoughts of the terrorizing bandit uppermost in mind, they began a widd scurry for their fire-arms, when who shond one of the party recognize in the mexpecter vision, but the long-lost Alec. The members of the party discovered very quickly that something was wromg with hime mentally, for even m his weakenerl condition, he was cross and very irritable, muttering revenge on all civilization, with no recollection of the principal events of his past and home. They broke camp at once, and started with him acruss the border. In the course of a few days he was taken to a well known hospital in eastern Canala, where it was divencred that he liand suffered from a fracture of the skull. He was operated on without delay, and successfutly. Ilis story had a happy ending, for before he left the hospital, his mind had recovered its own proper personality, and Alec became himself again, as shrewd as before, and as honest. Thins, by the surgeon's hand, wo interesting mysteries were solved, and a desirable citizen saved for days of further usefulnes.

Fine guestions of law and right shade into one another with a meety difficult to muravel, in certain phases of donblepersonality: Smith, say, was considered a perfectly sane man up to a year ago. He deserts a wife, and all trace of him is lost until ten years later. An old friend discovers him in a remote part of the comtry, married again, with a family. He is prosperons and respected 111 his new enviromment, and is as sane as any man in the conmmmity. He has changed little in the ten years in physical appearance, but absolutely fails to recosnize his old friend, or any incident in his own former life as Smith, for his mame is now lifown, and he is just as much another sane individuality, as if he had litcrally been born agan. What is his standing legatly? Wrould it be right to punish the present Rown, when it was the former Smith who was suilty of
wife desertion? Is Brown guilty of ligamy? Should Brown be compelled to go back to the former wife, Mrs. Smith, a woman who wonld be as strange to him under his second personality, just as much as to any stranger? Who is Rrown, anyway,-in law, in justice, and in fact? Outwardly he is certainly Smith, but in his heart has never, in all truth, heard of him. Such a problem actually eame up before a California court some years ago. The case was of a kind to make any thinking person ask hiniself "Who, indleed, am I." and leave the question unanswered. A person is accustomed to believe that if anything exists in this miverse, it is surely himself, lerhaps a recital of the instance just referred to, may give that person room for doubt.
John Anderson was a fairly prosperous farmer, who rented some eiglity acres in one of the corn-belt states. He had a wife and family, with whom he lived in perfect accord, as well as with his neighbors. He was hard-working. prudent and saving, and as sound in intellect as you or 1. Owing to the delieate lealth of one of the children, and for reasons of ambition, he conceived the dea of going to sonthern California to buy an orange grove, to have a home of his own, and live in peace and quiet with his family for the rest of his days. Itis frugal halits and continuons toil had provided enough for this purpose, so he went on alone, with the intention of sending for lis fanily as soon as he conld find the kind of place he wanted. For some time letters were received at frequent intervals: everything seemed to be progressing favorably with him, and then no more letters came, and all trace of him was lost. Months of waiting went by, and years. The mother and children were verging on poverty, and hat lonse siven up the father as dead. One day surprising news was brought by a newhbor, who lat just returned from the West, and hat known Anderson in former days. Ite had met Anderson face to face in California: hat found him living in most prosperous circumstances with a new wife and family. But he hat failed to reeognize the old friend, who lad grown u] with him from hoyhood, and scemed su changed in thought,
actions, and everything but his external appearance, that the old neighbor was beginning to wonder whether or not lie himself was losing his own proper identity. This news of Anderson resultal in a purse being made up for the longabandoned woman, and the neighor and Mrs. Anderson went to Califnrmia to take legal steps to enforce her rights. and bring her husband back, if possible. The meeting between the two was pitiful. All who witnessed it were impressed with the man's imocence, and actually took sides against the woman for bringing trouble and notoriety to such a solid member of the community. But the wife held her ground. llis eyes, hair, gait, manner of speech, all were the same she had known so long. As che recited these various facts, and the many little familiar incidents known only to themselves, of their many years together, Anderson appeared sincercly dumfounded, and first with tears in his eyes, and then in anger, flatly told her she was mistaken; that he had never heard of the man Anderson, and that his name was Arnoll,-George Amold. The matter got into court. All were conrinced that the man was Arnold. lint on hearing the other side, became equally convinced that he must be Anderson. No sladow of doubt was thrown on the man's sanity. The court was at a loss. Then Anderson, or Arnold, was taken ill with pneumonia, and in the course of a week was dead, solving the problem so far as he was concerned. Then all parties agreed that the case was one of double-personality. What the court's decision would have been had the man lived, is of course unknown.

It is not always an easy matter to trace the cause of these cases of lost-identity. Many occur without any sign or history of brain-injury. The cases in which we
are unable to assign a physieal cause are most haffling, leadinge to speculation intn unknown regions of the psychic world. Untoutherlly further research will throw much light on this sery interesting subject. A few years ago, a man in high professional standing, residing in one of the W'isconsin towns on Lake Michigan, disappeared without any reasmable cause whatsoever. A wide search was instituted for handreds of miles aroumd. but in vain. At the end of some weeks all hope was abandoned. at least of ever finling him alive. Then rumor: from varions farmers just beyond the Mississippi began to come in. One farmer had hired a vagrant farm-hand for a couple of lays, who, after putting in several days of hard labor. suddenly 1 is appeared without pay. Another farmer hat, he thought, employed the same man under the same circumstances. Then another report, and another, of similar import, came flashing over the wires. All the descriptions fitted exactly that of the missing lawyer. Devoted friends hurried to that part of the country from which the rumors came. with the hope of finding the wanderer. They were able to trace him from farm to farm, and then from one village to another. In a certain town on the river was a factory for the manufacture of buttons. Sime one said that a man answering the description of their friend was employed there. They hurried on, and there, in the garb of the commonest of workmen, was their cultured, learned friend. engaged in the useful. but lowly occupation of making pearl-buttons from clam-shells. He was happy, and seemed to enjoy his work immensely, and couldn't umlerstand why they should want him to go lack to home and friends, now totally forgotten. lle was another identity entirely, who had returned to the simple life with a ven-
geance. In the course of a few days, he was restoret to home and his former personality, and said in explanation that a compelling craving for a simple life had cansed the tronble. It wond seem from this instance, that mental labor alone is not sufficient for the needs of many brain-workers. and that if those Who employ their mentality only, would rewor taily to some simple manual work, Xature wouth not make such violent demands whan these meeds are ignored. Hannal work is the essence of the simple life, aml the bran-worker, of any, can leath afforl to uverlouk this fact.

The incirlents or accidents learling up to Inoublepersonality, canse the manifestation by "letting loose" the secondego, or "other self." which lies sleeping in all of us. To all intents and purposes, this secomel persmality is as sane and healthy as the first, lut-it is entirely different. Intellectually, this secontpersomality is often keener; morally, it is on a lower plane.

Within the past year, the son of a merchant was thrown from a wagon, owing to the horses rumning away: He was only sisteen years old. a handsome and manly young fellow, as promising a son in every way as any one could wish. He lay at home for weeks, hovering between life and death, as a result of his injuries. In the course of some months he had apparently fully recovered, and was physically as robust as ever. Mentally he was exceedingly brilliant, and astonished his parents and friends with his scintillations of wit and depth of philosophical
thought. II is parents, particularly, felt a strangeness while in his presence they had never felt before. And then strange stories reached their ears of petty thefts. committer by him: of carousals beyoud their comprehension: of waywardness and delinguencies which seemed wholly foreign to his former character and habits. Finally a daring burglary was committed, and the youth apprehended as the offenter. It was the fimal blow to the sorrowing parents. Extenuating circumstances were set forth, and the case never came to trial. Instead, the sem was taken to a hospital, an opening wats made in the skull, and a piece of bone. which had been causing pressure on the brain, removerl. He was soon ont again, and up to his newly-acquired offenses. The operation had proved a failure. Not long after, in the miclst of a clrunken revel, he punt an end to himself with a common poison. This pitiful tragedy of a young life was due to an injury of the head, an injury not considered, as to its learing on the future, at the time it iscurred.

Tolay, through a better understanding of these unfortumates, and other rictims of delinquency, many of them are cared for in pischic institutions, where they properly belong; and, thanks to Victor Horsley, of London, whomade the first experiments in brain surgery on monkeys, many of these saddest of cases in the ammals of the curiosities of lost-identity, can be completely cured loy operative interference as practiced by the skilful hands of skilful surgeons.

AN゙ OBJFCT LESSON OF THE UNITED STATES OFFICE OF PUBLIC ROADS, NV MONROF, $1 . A$. The old highway to the left, and the new.

$\$ 250,000,000$ HIGHWAY ROBBERY

B y

CHARLES FREDERICK CARTER

FORTY million dollars were wasted on the public roarls of the United States through ignorance. incompetence. and indifference in 190t. As the same amount was wasted in the same way in 1910, the American people would seem to be holding their own nobly.

But these statistics present only half a truth which, like other half truths, is misleading. In 1904 the expenditures on public highways aggregated \$79.000.000. while in 1910 they hat increased to $\$ 100,000,000$. That is to say, instead of wasting laalf the hard earned money devoted to road improvement we have become so enlightened that we only waste forty cents out of every dollar. Truly, we may plitme ourselves on such a record.

Still, this is but the preface to that great National joke, the public road : for the direct waste which may be charged to the lack of suitable highways, according to Logan Waller Page. Director of the United States Office of Public Roads,
foots up the neat little sum of $\$ 290,000$.000 . The way Mr. Page figures it ont. the anmual losis due to incorrect and inadequate methods in the construction. maintenance. and administration of pulblic roats may be set down at $\$ 40,000,000$. while the burden imposed through excessive cost of transportation from the farm to the railroad station reaches the inpressive sum of $\$ 250,000,000$.

The latter item is based upon statis. tics gathered by the Government, which show that the aggregate weight of crops haulerl to market amulually is more than two hundred and fifty million tons. The average haul is 9.4 miles, and the average cost 23 cents per ton per mile. This makes the total cost amount to $\$ 540$,500,000 . In Europe, where good roarls are the rule rather than the exception, the cost of hauling is much less than half what it is here. Hanling on the famous highways of France, for exanple, cost, hot 10 cents per ton per mile: in England, the same: while lielgimm reduces this low rate half a cent, and (iermany

AS IT WAS.
caps the climax with an average rate of $x . \overline{5}$ cents per tom per mile for tramsportation un her fine highways. It seems reasomable to assume, therefore, that with the same class of highways here the cost of hatuling the crops to market might well be redtuced one-half, at least.

This \$200,000,000 wasted outright through the lack of suitable roads is
erguivalent to five per cent interest on $\$ 5,800,000,000$, which would pay for the construction of $1,160,000$ miles of modern highways at $\$ 5,000$ a mile. As excellent roads are built in some localities for half that sum, or even less, and since the total of 1 mimproved roads rloes not much exceed two million miles, it is probable that this sum would come

AL IT IS.
Road at Paintsville. Ky.
pretty near to supplying the whole nat tion with adequate roads.

It would be a most profitable modertakinse to borrow the money on bomes fur bus. ing highways, for the whole indictment against bad rouls has non yet been recited.

Still another way in which American roads waste money is in the unnecessary amount of ground they oceupy. The average highway here is four rods, or sisty-sis feet wide. Th the mildle W'estern States mol of the ground given 1 , to highways is worth a hundred dollars an acre. Only a small part of this space is actwally needed for a roadway, the rest being devoted to weed cultir re. These weeds furnish an inexhanstible supply of seeds with which arljacent farms are stocked without effort on the part of their owners, calnsing either a heavy ontlay for labor to keep the weeds down or a still greater loss from Clamaged crops. In Europe they think too much of their land to waste it so foolishly. They find there that a roadway from twenty to thirty feet wide is ample for traffic a humdred fold heavier than traverses the lonely highways of the prairie States. Robert J. Thompson, U. S. Consul at Hanover, who has been investigating the subject, estimates that in thirteen of the agricultural States of the middle West there are seven humdred thousand miles of country roads. By reducing their width from sixty-six to thirty-six feet, 2,500,000 acres of generally tillable land wonld be restored to cultivation, which, valued at $\$ 100$ an acre. would foot up the staggering total of $\$ 250,000,000$. When so many thrifty farmers are giving up their homes in these States to seek lands in Canada, it does seem as if a form of waste equivalent to furnishing 15,625 of them with a

A Small Two by Two Concrett Culvert Would Obviate This Iery Commox Dhgrace.
fuarter section caclı might be worth a litlle earnest consideration.

Even this is mot all the story, by any means. Back of it all are the still greater losses of the farmers who are unable on account of had roards to hanl their crops to market when prices are highest. In a paper read before the - American Roal Ibuilders Association atlndianapolis last December, Mr. Page braised the poeket nerves of every farmer in Indiana ly reminding them that in 1909 prices of wheat in Chicagn ranged from '以路, cents to \$1.00 per bunshel, the lowent price being reached in. Angust when the roads were at their best, while the tol prices were attained when the ruarls were practically impassable; that the state's wheat crop that year being 33.124,000 bushels, every adrance of one cent per bushel meant a gain in the value of the crop, of $\$ 331$.240, while an aldvance of one cent a bushel on the corn crop aggregated $\$ 1,96,200$. Thus they conld see what they lost by not having roads upon which they could haul a load to market at any time.

Indeed, if all the indirect losses were comnted in, it is not molikely that the grand total properly chargeable to a lack of suitable roads womk be somewhere near a half billion dollars a year. Nor is this all. Asile from any question of money is the isolation imposed by bad roals. Churches, entertamments. and agreeable neighbors come for nanght if one is scparated from them by a mile or two of impassable mudholes. Good roads mean more to the children than to the grown members of the farmer's family, for they may spell the difference between an education and the lack of one. It has been found that in communities provided with gool roads the average school attentance the year

A school building and a country road that any community should BE ASHAMED OF.
round is over eighty per cent, while with bad roads the attendance rarely exceeds seventy per cent, while it may be as low as thirty per cent. The best schools are always situated on good roads, the worst schools on bad roads.

But letter things are now in sight. Energetic efforts are everywhere being made to still further increase the amual expenditure for roads, and more especially to reduce the percentage of waste.

As an earnest that the first purpose will be accomplished there are now thirty-two States which have adopted some form of State aid or supervision for road eonstruction and maintenance. New York led the yan with an expenditure from State funds in 1910 of $\$ 2,500$.000 , while T'ennsylvania was second with an outlay of $\$ 1,000,000$. Massachusetts spent $\$ 750.000$ of State money on her roads, Maryland, $\$ 350,000$, New Hampshire. New Jorsey, and Rhode Island $\$ 300.000$ each. W'ashington $\$ 375,000$. Vermont \$175.000, \irginia \$250,000. U'est Virginia \$120,000, and other States varions amounts. California, which at the last election ratified a proposal to
issue bonds for $\$ 18.000,000$ to construct a trunk highway system, will soon rank next to New York in the extent of her useful roads. In the South they are not spending so much in eash but they are getting good roads by employing convicts to build them. Of the fifteen thonsand miles of highways built in the twelve southeastern States between 1904 and 1910 the greater part was accomplished by the use of convict labor. Georgia keeps 4,500 convicts at work on her public roads the year around.

Indeed, no fewer than thirty-three States have laws favorable to the employment of convicts in road building. Unfortunately, though, the laws in many cases are vague, and in still others narrow: so that the plan is actually followed in but cighteen States, thongh in several others convicts are employed in fuarrying, cutting, and crushing stone for use in rod buiding. It has been found that a convict will do practically as much work in a day as a free laborer and that the cost of guarding and mantenance on the highways is actually less than the cost of maintenance and gruarding in jail.

GOOD SCHOOLS AND GOOD ROMDS LSUALLY GO TOGETHER.

Besides the outdoor work is better for the prisoners.

The highly important task of reducing the waste of money actually raised for highway construction is being accomplished throngh various agencies in adldition to the State highway departments alreally referred to. Foremost of these ontside agencies is the United States Office of Pulbic Roads. Organized in 1803 with an appropriation of $\$ 14,000$ with offices in two attic rooms, this bureau has increaserl in usefulness antil now it occupies a four-story building of its own, which includes within its walls physical, chemical, petrographic, and photographic laboratories, and a machine shop, and has at its disposal an appropriation of $\$ 116,000$. A staff of twentyfour engineers and superintendents of road construction are employed to teach the art of road building to any community that will take the tronble to ask for their services and provide the material and labor. A favorite feature of the burean is the "Object Lesson Road Project." This consists in assigning an engineer to supervise the construction of
a short section of road to demonstrate proper methods and instruct local builders. Up to July 1, 1909. $26+$ object lesson roads had been built in thirty-five States, demonstrating the proper methods of using crushed stone, gravel. sand-clay. shell. earth. bituminous materials and brick. Besides this, the engineers of the lurean give special advice, deliver technical lectures. introduce morlel systems of construction, maintenance, and administration in comnties and study and report on practical methods for a series of years.

Beside the Govermment burean there are several national organizations, such as the American! Iighway League, which held a convention at Chicago last May. Nembership in this League is limited to representatives of State highway departments. Its purposes are to provide a means of effective co-operation between States and to study methods of construction and maintenance.

An organization which is expected to accomplish a good deal is the American Association for Highway 1 mprovement , organized at Washington last November.

A Fine Statf Road in Massachusftts.
This is the sort of hichway that delights automobilist and farmer alike. Other sections could we?]! follow New England's example.

Its Poard of Directors includes James McCrea, I'resident of the Pennsylvania Railroad: W. C. Brown, President of the New York Central; Louis Hill, I'resident of the Great Northern; W. W. Finley, I'resident of the Sonthern Railway: B. F. Yoaknm, Chairman of the Frisco Lines: Alfred Noble, Past President of the American Sucicty of Civil Engineers: Dr. E. J. Tames, President of the University of Illinois: Lee MeClung, Treasurer of the United States: John Goodell, Editor of the Engineering Record; Robbert L^{\prime}. Loojer. I'resident of the American Automobile Association: U. S. Senator lafayette Young, and L. IV. 'age, Director U. S. Office of Public Roarls. The objects of this association are to correlate and harmonize the efforts of all organizations working for road improvencent ; to stimulate sentiment for road improvement ; to work for equitable and miform road legislation in all States: to promote efficient road administration in the States and the correlation of all road construction so that the inportant roads of each county shall connect with those of adjoining counties and the important roads of each State with those of arljoining States. The founders hope to make the association a sort of clearing

AN 【NIDRANED "HIGHWNY" IN TENNFSSEF.
Cumpare with illustration opposite.
house through which all road improvement organizations may give to each other the benefit of their experience, their ability, and all the facilities at their command.

When to all these influences are added the efforts of the railroad industrial departments, practically all of which do what they can to further the movement for improved highways, and some of which even run "good roads trains" for the enlightemment of their patrons, and the propaganda carried on by such organizations as the American Automobile Association, the Touring Club of America, and the Association of Aitomobile Alanufacturers, it may be seen that the outlook for better roads is distinctly brighter. It would be brighter yet if there were many such public spirited citizens as Sam Hill, of the State of IV ashington.

Mr. Hill went to Governor Hay and offered to give a year of his time wholly to further the movement for better roads. Finding his offer so heartily appreciated he not only spent the year but several thousand dollars of his good money in the cause. One of the things he did was to pay the expenses of one of the best highway ensineers in England to go to Seattle to deliver an adIress on the subject of roads. Another thing was to pay the expenses of the city engineer of Seattle and of a professor from the University of Washington on a three months' trip to England to study road construction. Hisefforts are already beginning to bear fruit; for while there were seventeen appropriations for the innprovement of State roads in 1909, none of which were connected and therefore were of comparatively limited use, there is now a project under consideration, backed by Governor

Hay, for a State trunk line 1,100 miles long, ruming from Bellingham on Puget Sound down through Seattle and the sonthern part of the State to Spokane and back by a more northern route to Seattle, which would accommoflate three-fourths of the people in the State.

The present mparionable waste of forty per cent of the money actually raised for road construction is simply due to the fact that many people do not know what a road is, and, furthermore. they would not know how to buikd one even if they did know what it should look like. Witness lowa, which now spends $\$ 5,000,000$ a year on roads, yet scarcely has a road to her name. Indiana is a close second with an equal expenditure, but a trifle more to show for it. In the latter State waste is made easy by dividing responsibility for road

Mhles uf this Tipe of Drain Ohght to Be Bullt ilung Our Highuays.
Layme side drains at Westiveld. Mass.

AUTOMOBILES TEAR TO PIECES RO.ADS LIKE THIS.
. macadam road in (inorkia.
work among local authorities in a hopeless sort of maze so that no one has any power or money to do anything effectively: Maryland, up to 1909 , extended the same absurdity to State supervision by dividing antliority for construction between the State Geological Survey and the State Highway Commission.
By way of contrast Wisconsin, having adopted the war cry. "A dollar's worth of road for every dollar of tax," is showing how to make money work miracles. In 1907 as much as $\$ 10,000$ was appropriatet for the us of the State Geological Survey in experimental road building and in advising local road anthorities. As there are fifteen hundred of these local road bodies, the contract was rather a large one. But the Survey engineers did the best they could by addressing public meetings and distributing pamphlets, and by establishing a correspondence schonl for road builders. 1n order to make every dollar count they managed to induce some localities to build roads graded to a width of twentyfour feet with a stone surface only nine feet wide. Everybudy knew that such a narrow roadway would not answer at all, but after they had tried them they wanted no other kind. These mine-foot roadways answer the purposes of light traffic and they cost but $\$ 1.800$ to $\$ 3.500$ per mile, while the $1+$-foot stone surface, which allows two teams to pass and which is used for heavier traffic, costs from $\$ 3,000$ to $\$ 5.000$ per mile.

Every community which reaches the point of deterninining to have real roads
and raises the money to pay for them does not get what it wants. Some comties in California paid for good roads, or thought they did, but the work was so badly done that the good roads movement received a setback. On the other hand there was Pike County, Alabama. which raised money to pay for gravel and macadan roads, but wisely sent to the U.. S. Office of Public Roads for an engineer to brild them. He found sandclay roads, costing one-fifth of what macalam would cost, better suited to the locality. In Kansas sand-clay roads cost from $\$ 707$ to $\$ 1.183$ per mile. which seems to bring them well within the limit required to interest the average farmer in highway improvennent, according to the opinion of the Good Roads Convention which met at Cleveland in 1909.

This does not prove that sand-clay roads should be built everywhere under all conditions. The true moral to be drawn from the experience of Pike County is always and under all circumstances to employ a highway engineer to direct operations. Road building is, an art that calls for something more than good intentions.

An interesting feature of the highway situation is the passing of macadam construction, for many years regarded as the highest type of road. But the advent of the automobile has utterly destroyed the reputation of the macalam road. It has been found by contly expericnce that no ordinary water botme macalam is capable of withatanding for :my length of time the action of excessive attomo-
bile traffic, and in Massachusetts actual count shows that automotiles make up forty-two per cent. of the traffic on the highways of the State. The speeding rubber tires whirl away the rock dust. thus destroving the bond of the wearing surface, then ravel out the larger fragments of stone. Sume sort of linder that will hold material. butly fine and coarse, together is alsolutely necessary. The question is so important that the American society of (ivil Engineers has appointed a special committee to investigate. Varions combinations of tar, asphalt, and crude petrolemm have been tried in various localities with different degrees of success. It is already evident that a bituminons binder that will work well under one set of conditions will not answer at all under other conditions. The difficulty is to suit the binder to the reguirements of the traffic and the climate.

Some other points which should be possessed by a good road according to the concensus of opinion of the world's foremost highway engineers, as formulated in the conclusions of the First International Road Congress, held at Paris in October, 1908, and of the second Congress hell at Brussels in August, 1910, are as follows:
The minimum widtl2 of roadway should be 19 feet 8 inches.
The camber should be the least that will allow the proper run-off of rain water.
Grades should be moderate, with as little difference as possible between minimum and maximum.
Curves should lave as great a radius as possible, but not less than 164 feet. Curves should be connected with tangents by parabolic curves. Curves should be slightly raised at the outside, but not enough to interfere with ordinary vehicles. The view at curves should not be obsiructed.

Road crossings should be visible and well opened out. Railroad and tramway crossings at grade should be avoided if it is possible to do so; otherwise they
shoukt be signalled night and day.
Wherever possible tracks shoukt be provided for bicyclists and paths for horsemen.
The sides of roads should be defined by trees wherever possible.
liinding material sluouk be used in the construction of metalled (broken stone) roadways. special attention being given to determining the character of the binder best suited to local conditions.

Superficial tarring may be considered as definitely accepted in practice.

Emulsions of tar, oil, or hydroscopic salts have a real but not a lasting efficiency. Therefore, their use should be limited to special cases such as race courses.

Cross and longitudinal sections of roads and gutters should facilitate the flow of trickling water and prevent infiltration.

That maintenance is quite as important as construction is well understood in Europe where fourteen nations spend $\$ 160,000,000$ amually for the maintenance of $99+000$ miles of road which cost $\$ 5,000,000,000$ to build. In the United States, unfortunately, the importance of constant care has not been realized as clearly as it should have been. But in this particular, too, marked improvement is noticeable. New York, which leads the Nation in the magnitude and comprehensiveness of its highway improvement programme, has copied the patrol system that has made the roads of France so famons. The road patrolmen in New York furnish their own horse, cart, and tools and keep the highways in first-class condition at a cost of $\$ / 5$ per mile per year for labor and $\$ 25$ per mile for material. Oil is successfully used to lay the dust, the plague due chiefly to the automobiles, at a cust of $\$+22$ per mile of sixteen-foot roadway per year.

To sum up the situation in a sentence, there are so many hopeful signs of improvement everywhere that it seems safe to predict that within ten years the administration of the public roads will be established upon a satisfactory basis.

MANY TALK ON ONE WIRE

B y

RENÉBACHE

HELLO! Is this New York?" "Yes."
"This is Flonoluln, in the |fawaiian 1slands. Give me the Flatiron Inuilding."
That is the sort of long-distance telephoning we shall soon be able to do. Inked, there is every prospect that within a short time people will talk from Chicago to London over a wire. IVe may even send a whisper direct from bositon to I'eking. China. or actually transmit a spoken message around the world!

N11 of this an the result of an invention just patented by Major George (9.

[^0]Squier, of the Signal Corps, Uniter States Army. He has made a free gift of it, however, to the American people, and anybody is at liberty to use it without paying a cent for the privilege.
The invention does not merely promise to provide a means whereby one may telephone for a distance almost indefinite. It also makes practicable the employment of a single wire for the simultaneous sending of a number of messages. whether by the voice or by the telegraph.

Brielly described, the method adopted is one whereby wireless messages are sent over a wire-a sort of "wire wireless." as Major Squier calls it. A paralox, one might say. But the matter will be better maderstood when it is explained that the messages travel not through the wire itself, but through a thin layer of ether surromding the wire. All that the wire does is to act as a guite.

Everybody is familiar with the enormonsly tall poles erected for wireless telegraphy. Such an "antenna," as it is called, sends ont electro-magnctic vibrations which expand like the circles matle by a stone which a small boy throws into a prond. It follows, of cotirse, that their effect at any particular dintant place is relatively infinitesimal. R,nt, if all of these vibrations were bunche! tor gether and sent in a single direction, it is obvious that they could be rendered a milliom times more efficient, so far as the earrying of vibrations to a given point is concerned.

Now, this is exactly what is accomplished by the invention here describe 1 Which, by the way, does not reguire the use of any new apparatus whaterer. The ordinary telephonic outfit, as it exists torlay, may be used, withont the addition of a single instrument. What dajor Squier hat patented is merely a new

WHFRE THE EXPERIMENIS WITH THE MULTIPLEN TELEPHONE WERE CON』CCIEJ, Sisnal Utrice Research Laboratory at the Bureau of standards, Washington.
method, by which it is practicable to send extra conversations by the wire.

At the botton of the ikea mpon which the invention is based lies the fact that the electro-magnetic rays which pass over a telephone wire are audible only within definite limits of frequency. If the vilbations are fewer than sixteen to the second, they transmit no impression to the human ear. On the other hand, if they number more than 20,000 to the $\mathrm{sec}-$ ond, the human auditory apparatus is mable to respond to them, and so perceives nothing. In other words, our ears are leaf to vibrations above 20,000 per second, and below sixteen vibrations.

To carry his messages, Major Syuier employs high-frecpuency waves, far above the limit of human hearing. Obtaining them from a dynamo, he tumes them to varions pitches, so that each conversation carried on over the wise is based upon a separate and particular number of vibrations per second. Inasmuch as the talks are on different electrical tunes, they do not interfere with one another in the least.

It will be understood, then, that high-
frequency waves, suitably tumed, are traveling aloner the telephone wires-not in the wire itself, but in a layer of ether surrounding it. They cannot be called sound waves, because they are too rapill to produce an impression upon the hunman ear. Major Squier calls them "ultra-smunt vibrations." Nevertheless, each voice that speaks into the transmitter affects these waves differently. and every spoken word is faitlifully carried by them. When, therefore, at the other end of the line, they are retranslated back into sound waves, the message becomes audible to the listener.

Instead of an ordinary direct current through the wire itself, impulses are sent along it in the shape of high-frequency waves which, as the inventor says, "don't get iuto the wire at all." If it be asked how many "extra conversations" can be put on the conductor, the omly passible answer is "several," because the number must depend upon the diameter of the wire and other conditions.

As the frequency of the electro-magnetic waves increases, their energy appears to have a steady growing tendency

UNE HUNDRED THOTSANDCVCLE GENERATOR FOR ELECTRIC WATES USED BY N.AJOK SUUIER 1N゙ HIS FXPERIMENTS.
to get nut of the wire itself. The ordinary battery telephonic current is largely a conduction current through metal, and the olmic resistance of the wire is one (if the principal obstacles to long-distance telephoning. On the other hand, in wireless telegraphy, frequencies from 100,000 up to several millions per second are used, and the energy is chiefly radiated into the ether of space.
There is, however, an intermediate range, in which the vibrations are from 20,000 to 100,600 per second, and wherein the electro-magnetic energy is still sufficiently linke! to the wire to prevent excessive radiation into the ether. The wire, while earrying but a small part of the energy, nevertheless acts as an efficient guide for the high-frefurncy waves. Accordingly, mse is mate of these stered ether waves as a velicle to carry telephomic or telegraphic messages.

It will thus be seen that the new invention combsines the principles of wireless telegraphy and telephony with thene of telegraphy and telephony hy wire. Major Soluier, in other worls, has taken the apparatus and methorls now used in wireless communication, and has appliced them to the transmission of electro-magnetic waves along metal conductors, this accomplishing an enormons improvement in efficiency over the plan of employing antennie at transmitting and re-
ceiving stations, which is the ordinary custom.
The circuits are ordinary telephonic circuits, such as are now utilized in wire telephony and telegraphy. "In fact," says the inventor, "the regular twistedpair paper-insulated lead-covered telephone cable serves the purpose very well, the energy being conveyed principally in the minute layer of ether separating the two metallic conductors. By this means a most efficient system of high-frequency telcphony or telegraphy is maintainel. and, at the same time. any interferences between neiglaboring circuit. (1) erated by the system are eliminatel. so that many such circuits may be brought to the same switchloard without interfering effects."
The inventor further says: "Since a plurality of high-frepuency waves of different irefuencies may be impressed on the same line. and since these may be selectively separated from each other by suitally tumed circuits, it is obvions that multiplex telephony is practicable. Also, it has been found that these high-frequency waves may exist on the same line with ordinary battery telephonic currents without in any way affecting them; and thus the system may be applied to the usual telephonic eircuit without "cross talk' or other disturbances."

Major Syuier calls attention to the
fact that it is almost impossible to make an ordinary telephonic system work satisfactorily over any circuit that is connected with the ground. Lines with such circuits are strbject to serious difficulties, chief among which are the strange noises heard in the receiving instruments. The cause of these moises, by the way, is not very well mnderstood. But the new plan makes it practicable to comnect a telephone circuit with the earth at both ends without inviting the slightest suggestion of such disturbances-a very important feature of the invention, in Major Squier's own opinion.
The high-frequency telephonic messages and the local battery messages may exist on the line simultaneously without a trace of any "cross-talk" or disturbing noises from other external sources. Earth or ground connections form a part of the tuned circuit, and no noises from the earth are permitter to pass, because all such ground connections are tuned to frequencies far above the human auditory limit.

Very essential is the fact that the condensers used are of a capacity so small as to be measured in terms of thousandtlis of a microfarad, and they block all currents of such low frequencies as the ordinary telephonic currents, or those which bring disturbing noises from external sources.

The whole range of electro-magnetic vibrations is viewed by Major Squier as a spectrum extending from the ultraviolet. which is a region of high frequencies, to the exceedingly slow oscillations of the infra-red, such as are used on long-distance submarine cables. One might say that these are terms of light ; and so, indeed, they are. But, as the inventor explains, light and electricity are the same thing. \ilorations within certain limits of frequency, as already stated, can be heard over a wire. Above 20,000 a second they become inaudible to the human ear. When they have got up to $700,000,000,000,000$ to the second,
they become visible to the eye. Whe could actually see telegraphic messages, instead of hearing them, if our eyes were suitably constructed.
The waves used by Major Squier belong to the great unexplored region which lies above the limit of audibility and below the limit of visibility. They can be neither heard nor seen; yet they are utilized for purposes of wireless telegraphy. and those of them which are relatively low down in the scale of frequency can be employed to carry messages.
All the vibrations being bunched together and guided by the wire in a single direction, they can be sent to an chormously greater distance. Hence, the likelihood that long-distance telephones operated on the new principle will be able to carry messages across the ocean and even, if desired, aromb the world.
Such, briefly described, is the novel idea which seems destined to revolutionize telegraply as well as telephony; for it is as applicalle to the former as to the latter. It ought greatly to cheapen both. But Major Squier seems to think that one of the most important advantages of his discovery lies in the fact that it can be utilized and applicd with the apparatus already in common employment. Its application does not demand a single instrument that camot be purchased for a moderate price in the open marketfor which reason it is at the service not merely of the telephone and telephone companies, but of any private citizen. It is the property of the people.

All of the experiments with the multiplex telephone up to date have been conducted over a single circuit, which connects the research laboratory of the Signal Corps-at the Purean of Standards -with the construction laboratory of the Signal Corps, on Penmsylvania Avente. close by the War Department, in Washington. The distance between the two points is about five miles. Over this line the new system is now in operation.

HERE I 'JHE KUTHLESS FNAMINATION" THAT NEWSPAPERS OF A CERTAIN CLASS
SHRIEK ABOUT.

MAKING THE TOURIST HONEST

B y

CHESTER CARTON

CONSPICUOUS in the throng upon the decks of the Kaiser IV'ilhelm 11 . while she was being laboriously warped into her berth at Hoboken one day last September were fifteen dignified matrons. It least they tried to look dignified, but realizing that they were conspicuous, and being still more distressingly aware of the reason therefor, they made rather a poor fist of it. For all the fifteen were swathed in obstreperonsly new Persian lamb coats which would have been admirable garments
for an Arctic winter excursion, and yet it was a grilling hot day. The seasons keep fashionably late hours in New lork, spring lingering into summer and summer lapping over into autumn.

At the imminent risk of sumstroke the fifteen kept their new fur coats closely buttoned throughout the wearisone time that it takes to moor a big steaner. Perspiration streamed from their red faces as they staggered down the gang plank, and listributing themselves among the lettered sectuons of the torrid dock, began the vigil of their baggage. By
the time her trunks were all assembled rearly for the customs examination the lucky first one was on the point of collapse. When asked to acknowledge her signature on her declaration, she could only gasp and nod her head. The inspector to whom the document was handed glanced at it, then at the new I'ersian Jamb coat.
"That is a handsome coat you have on, madame," he remarked. seemingly bent on making conversation.
"Yes. I think it is rather fetching." murmured the melting one, finding her roice again, for no woman is ever too far gone to rise to a neatly turned compliment.
"It has the real Parisian cut. You must have purchased it abroad."
"Oh, yes! You cawn't get such furs at home."
"I see you forgot to include it in your declaration."
"Why J'm wearing it. Don't you see? I'm wearing it."
"That makes no difference whatever.

Iou will observe that the law distinctly says that only one humded dollars worth of goods purchased abroad may be admitted duty free. If you will kindly step, to the desk, madame, I think you will be allowed to amend your declaration."

No thermometer would have recorded that matron's temperature when she realized that she had sweltered in vain. and that she must pay $\$ 130$ in duty before she could take her prize away. Her impotent rage was scarcely assuaged by the knowledge that each of the other fourteen were making the same discovery in other parts of the dock. There are times when misery is too muth engrossed with its own mhappiness to care whether it has company or not.

Not until weeks afterward did' a nebulous suspicion in the minds of the fifteen crystallize into a conviction that he whom they had thought such an agreeable young man on the ship coming home was a fiend in human shape, an abandoned wretch with a perverted sense of humor, who had played what he was

COPYRIGHT, TOO UNDERWCOD \& UMDERWOCO, W, Y
GETTING THE FIRST CLASS BAGGAGE OUT OF THE IIOLD.

Customs inspectors Chfcking the Dhclarations in the Dining SALOON II HILE THE STEANFR HALTS AT OUtARANTTNF,
contagion from the Atlantic to the Pacific, from the Soo to the Rio Grande. Ninetynine out of every hundred trans - Atlantic passengers believe it with their whole sonl on their first trip. They believe it just as implicitly as they believe that anything offered for sale in Earope must necessarily be a wonderful bargain. So they spend laalf their time abroad shopping and the other half wearing their purchases in order to escape the tariff which in the abstract is a hearenly beatitude, provided it is only high enough, but which becomes an unjust.tyranmical, oppressive burden to be evaded by any artifice the moment it is brought liome to the individual.

On every west bound liner that crosses the Atlantic may be seen a few women suffering from the tariff delusion. They can always be i '.entified by the preposterously inappropriate costumes they wear on shipboard. They suffer the pangs of martyrdom, for they know all the other women are talking about them, and they perjure their sotls with false explanations and apologies to hide what everybody knows, which is that they are suffering merely to trick the United States Govermment ont of the money it so desperately needs to pay pensions. The shrewder tourists on their first trip take their purchases to a sechuded spot in Switzerland where they wear then each for an hour, then sew in old labets they prudently brought from home. After the first trip they know better.

Some even think jewels purchased abroad are not dutiable if they take the precantion to wear them on going ashore. Thtis, a tourist who shall be namelcss here, returning on the George Washington. October 10, 1910, wore a new diamond ring and pin, his wife wore a cliamond and sapplure ring and carried a silver mesh bas. None of these things were inclucled in their declaration, set they readily admitted they had been pur-
chased abroad. Asked why he did not declare the jewels, the tourist trimmplantly called attention to the fact that be and his wife were wearing then. He was overwhelmed when the trinkets were seized and he was obliged to redeem them by paying their full value plus 60 per cent duty with a fine on top of that for good measure.

Yet it is difficult to work up any sympathy for the victims of the tariff deltusion when they are forced to pay three times what it would have cost then to be honest. Smuggling is merely a form of stealing, which is expressly forbidden in the decalogue. No one can make any
mistake about the tariff law unless he does it wilfully. Early in the west bound royage, so there will be plenty of time to examine it at leisure, the purser or his minions liands to eacli passenger a blank declaration on which to sclredule his baggage. including foreign purchases, and a little blue folder. The declaration, which is mumbered and has a coupon with a corresponding number attached, bears the most explicit directions for filling it out. But for fear the plain and simple langnage may be misunderstood, the little blue folder, which is hearled "Notice to Passengers," begins by quoting paragraph 709 appearing in the free

list of the present tarifi act governing pasisengers baggage, which reads as folluws:
"Wearing apparel, articles of personal adormment, toilet articles, and similar personal effects of persons arriving in the L'nited States: but this exemption shatl only include such articles as actually accompany and are in the use of, and as are necessary and appropriate for the wear and use of sucle persons, for the immediate purposes of the jonrney and present comfort and convenience, and shall not be held to apply to merchandise or articles intended for ither persons or for sale:
l'kovimen, That in case of residents of the United States returning from abroal, all wearing apparel and other persomal effects taken by them out of the Lrinted States to foreign comntries shall be almitted free of duty, without regard to their value, upon their identity being established, under appropriate rules and resulations to be prescribed by the Secretary of the Treasury, but no more than one handred dollars in value of articles purchased aboroad by such residents of the United States shall be admitted free of luty upon their return."
leest this legal phraseology shouk be mismoderstoonl, the little blue folder takes it up phrase by phrase, exponmaling, elucilating, and explaining it until it would seem as if the law and the rules established pursuant thereto must be as plain as a pikestaff is alleged to be even to a rulimentary intellect. It is carcfully pointed ont that the exact number of pieces of baggage must be stated in the declaration; that after the declaration has been prepared and signed the coupon at the bottom must be detached and the declaration given to the purser: that after all his baggage las been landed upon the pier the passenger must present his coupon at the desk where an inspector will be detailed to examine the baggage; that the passenger mast acknowledge in person his signature to the declaration: that all wearing apmarel, jewelry, and other articles, whether used or unused, on thair persons, in their clothing, or in their haggage, which have been obtained abroarl by purchase or otherwise. with the foncign value on cost, must be declared; that all wearing apparel. jewelry,
or other articles taken out of the United States which have been remodeled or improved while abroad so as to increase their value, must be declared, the statement to include the cost of such improvement. l:ut for fear this twice repeated explamation that "wearing" foreign brught articles dues not exempt them, it is explained all over again for the third time in a separate paragraph, in these words:
"Use does not exempt from duty wearing apparel or other articles obtained abroad, but such articles will be appraised at their present value."

All cigars and cigarettes must be declared and are not included in the one hundred dollars exemption. But each passenger over eighteen years of age is entitled to bring in free of thaty and internal reventue tax either fifty cigars or three hundred cigarettes for his or her bona fide personal consumption. Smokers who have had to exist for a few months upon Enropean made cigars will see in this a deliberate attempt on the part of the L'inted States Govermment to affront them, for no one in his right mind would smoke European cigars if he could get any others.

Household goods of persons from forcign countries are admitted free of duty if actually used abroad by them not less than one year and if they are not intended for any other person or for sale.

All articles intended for other persons, for use in business, theatrical apparel, properties and sceneries, must be declared by passengers, whether foreigners or residents. Duties can not be paid loy check or draft lut only in currency. Passengers are also warned that to offer of give gratuities or bribes to customs officials is a violation of law. They are alsn explicitly invited to report any disconrtesy or incivility on the part of the customs officers to the deputy collector or depuly surveyor at the pier; or if that doen't work, to go to the custom house; or if that isn't satisfactory to go straight to the Secretary of the Treasury.

Great care is exercised in the distribution of the declarations and the little blue foldets on shiploard. They are handed to each passenger personally and his attention is directed to them by word of mouth. If he fails to turn in his declara-

THE EXAMINATION HAS NO TERRORS FOR THE HONEST PASSENGER.
tion to the purser as requested, he is reminded of his neglect. The purser must turn over a baggage declaration for every passenger to the customs officers who board the ship at quarantine. Being numbered, every blank, ineluding those accidentally spoiled, has to be accounted for.

All this seems plain enough, doesn't it? Yet a young woman from Chicago who arrived on the Oceanic last October included in her declaration only $\$ 920$ worth of gowns and jewels purchased abroad, while the inspector found a great deal more. She was taken before Deputy Surveyor O'Connor to explain.
"Did you read the printed regulations
for travelers distributed on the ship?" slie was asked.
"Oh, yes! but I didn't pay any attention to them."
"Did you read the warning that failure to declare dutiable artieles rendered the articles liable to seizure and you to arrest, fine, and imprisomment ?"
"Why, yes, I read that, but really I didn't take it seriously."

After the usual exemption had been disallowed and she had been obliged to pay $\$ 1,800$ in duties and penalties it is said the young Chicagoan took the law much more seriously. So, also, did a Brooklyn girl returning from Paris last October. In addition to the regulation
warnings her father had written to her to be careful to inchade everything dutiable in her reclaration. Yet she declared but three gowns at $\$ 364$, omiting seven others worth $\$ 523$. That omission cost her father $\$ 836$. A superior young gentleman from l'hiladelphia who merely wrote "dutiable groods" across his deelaration and then turned it in also took the law serimsly after a very bad quarter of an hour with the depaty surveyor.

The inspectors who board the ship at fuarantine do not make the examinations but merely see that the declarations are cluly. Filled out and turn them over to the supervisor in charge at the pier. Incidentally they sammer through the deserted staterooms collecting empty jewel boxes, labels hastily rijped from foreignmade garments, scraps of paper. and other rubbibis that any ragpicker would scorn, but which very frequently proves to be worth a good many thonsands of dollars to the Government, for such things often turn out to be clues to attempts at smaggling.

Upon disembarking the passenger finds lined up and waiting for duty one inspector for each five first-class, and one for each ten second-class, passengers. There are also a couple of desks for each class in charge of uniformed men. Among those present, but not in aniform, are a number of customs detectives who have ways of their own of finding any dutiable articles that may happen to escape the regular inspectors. At regular intervals along the walls is a letter of the alphabet. The passenger takes up his stand in the space corresponding to the first letter of his name to wait for his baggage. When it is all assemblet he goes to a desk, and presents the m1mmbered conjon he tore from his declaration. The latter is fished from the pile, the inspector at the head of the waiting line is called to escort the passenger to another desk where the latter is shown his declaration and asked if the signature is his own. Then comes the examination.

Such heart-rending pictures have been drawn ly newspapers of a certain type of the "sufferinge" of delicately murtured ladies undergoing the tortures of the examination, allegerl to be aggravated ly the boorishness and brutality of the mi
formed fients who perpetrate it, that it seems a pity to spoil the illusion. But the umpicturesque truth is that all such stories are ordinary lies.

No man who does not know how to conduet himself decently can get a job in the customs service. Furthemore, he can not begin work as an inspector until he has graduated with credit from a two months course in a school of deportment maintained in the enstom house. The first and greatest lesson he is taught there is that he must be a gentleman, not part of the time, but all the time. His next lesson teaches him how to handle costly laces and dainty lingerie. He has to practice on real trumks full of things that travelers ordinarily have in their baggage until he is letter perfect. Then he is permitted to try his hand on immigrants' baggage at Ellis Island. From there he is alvanced to second-class bagsage arriving on the minor lines. Not until he has become proficient is he allowed to examine baggage at the piers of the important lines. There he is closely watehed, and if he does not do his work properly he loses his job. If he shows up with dirty hands or unkempt clothing, maslaven or mutidy, back home he goes, losing his day's pay. If he is impertinent or accepts bribes something unpleasant happens to him.

No, the passenger who makes out his baggage declaration honestly and correctly never has any trouble getting through the custom house." The examination is as brief and simple as is compatible with a proper performance of duty

The inspectors must first of all be alert and intelligent, and intelligent men are not the sort who are either rough or discourteous. Indeed the worst boor could scarce be discourtens to most of the American women who are returning home. Inspectors, after all, are human beings.

There is a reason for the sensational yarns circulaterl about the customs exammation at New Vork, and this reason is best expressed in the fonr lettersI.()El: The explanation is to be fomud in these little tables showing the New Tork Custom llouse before and after taking Wiallian Loeb, Jr., as Collector of the !'ort.

11E.

Fines from prassengers on docks, etc.... 8 Fines from mail importations............ Sale of seizud merchandise, net proceeds Fines, court cases............................. decented offers in compromise. 10.578

PEFORF LOEH 1908
33.162
12.46() 4,604 1.782 2.578 100.412

AFTER LOHB 1910
$\$ 121.31 \mathrm{~s}$
16.542
5.675 13.49 67.400 657.454

The revolutionary clange from a go-as-you-please policy to a strict enforcement of the law as indicated by the foregoing figures naturally caused some commotion, which has by no means been soothed by the discovery of the sugar trust customs frauds that netted

Thi: Stewards Look Afthr the Stfanfr Truné in the State Kooms.
ably they would not have paid duty if hobble skirts load not been in vogue last fall. It is hard enough to walk in a hobble skirt, as any one who has tried it can testify. But when in addlition to hobble skirts one's freedom of movement is still further hampered by a huge muff (Jrawn up over each l-well, the inspectors lined up on the pier actually langher out loud when the Western ladies essayed the passage of the gang plank. The Brutes!

Not to linger over the harrowing details, the two westerners were politely invited back to their staterooms by some women inspectors. When it was all over those muffs harl cost their owners just four times what they conld have been purehased for in the home market.

This unfortmate affair of the sable muffs was not the only attempt on record to evade the payment of duties by guileful passengers. Bless your heart, no! Thyy, in six weeks last fall the customs inspectors sathered in five hundred thousand dollars worth of
the Government three millions, by the indictment of a member of the sacred executive commattee of Tammany Hall, and the arrest and indictment of some of the biggest art dealers on Fifth Avenue. New York, for swindling the Government out of millions in duties, not to mention hosts of smaller smugglers. Lion the whole, there is no wonder the custom house and everybody connected with it is very mpopular just now in certain circles having some degree of skill in vocalizing their unhappiness.

Two ladies from the 1 V est now cherish particularly uncomplimentary opinjons of the New York customs officers. Each bought two splendid sable muff. in Europe last summer, and it disl seem a pity to have to pay duty on them. I'rub-
jewelry from amateur smugglers, more than half of whom were women.

Contemplating the matter calmly it seems incredible that any one shonki try to smuggle since the custom honse has been reorganized. Detection is about as certain as anything can be in this uncettain world, and as those who are caught are always eaught literally with the goorls on, there is nothing for it but to take one's medicine. It is only fair to say, however, that the customs officers are as charitable to the amateur smugglers as is consistent with their duty. When they find a trunk full of dutiable artieles not deelared they generally give the owner a chance to anmend his declaration. Only in the more flagrant eases do they shout the gates of
mercy on the culprit, and, to change the figure, exact the pound of flesh.

Attempts at smuggling secm still more foolish when it is remembered that all important sales of jewelry abroad are registered and that the books are open to the inspection of representatives of this Government. Jewelers in this country, who are naturally affected by smuggling, have their own agents on the lookout and they pay well for information leading to the arrest and conviction of smungrlers. Alded to all this, hosts of lonest Americans seem to find peculiar pleasure in giving information of prospective attenpts at smuggling. Finally, there is a stereotyped list of tricks and schemes outside of which the smuggler never ventures. As the customs officers have these by heart, they never make any mistakes. In nine cases out of ten they know in advance just whom to look out for, and so they go straight for their quarry with merring precision.

In view of all this the kind of people canght in the customs net is certamiy amazing. One of them was a former governor of New Hampshire. When he arrived on the Lusitania last May he declared nothing but one fur coat valued at $\$ 800$. When his baggage was cxamined dutiable articles worth several thousand dollars were found. He was given an opportunity to amend his declaration and thus to escape with only the payment of duties. As he refused he was arrested and inclicted by the Federal Grand Jury. He pleaded guilty When arraigned and was fined \$2,000. Besides this he had to pay $\$ 3,400$ as the foreign value of the goods and on top of all this was piled the regular duty.

Nor was this an exceptional case. A prominent doctor from Chicago whose declaration listed but $\$ 300$ worth of ditiable goods seemed rather bulky for a fashionably dressed man when he arrived on the Kronprinzessin Cecilic last September. Tim Donohtue, a customs sleuth, struck so many knobs and protuberances when he stumbled against the doctor that the latter was invited back to his stateroom. There the searchers
fomm rings, brooches, chains, watelies, at cotcra, enongh to stock a jewelry store. The whole ontfit was seized and sokl.

On the same ship was a wealthy carpet mannfacturer of Yonkers. 1le, at least, should have been familiar with the tariff, becatue it was the tariff that made him rich. And yet he wrote in his declaration that his six trunks contained nothing clutiable. This statement he repeated on the dock. Yet an inspector found two thousand dollars' worth of dutiable articles there. This mistake enst the carpet manufacturer a painful day at the Custom Honse and $\$ 4,960 \mathrm{in}$ cash. Yet he counted himself lucky becanse he escaper criminal prosecution.

Earlier in the year a society matron from Ponghkeepsie, whose husband is a rich manufacturer, arriving from Enrope with hecr danghter and the latter's chaperon declared but $\$ 385$ in dutiable articles in the party's seven trmuks and five pieces of hand baggage. As the customs officers knew she had purchased a very fine necklace in l'aris hey asked her three several times to amend her declaration. When she refused they asked her in plain words for the necklace. Not until she was threatened with arrest did she finally drag it from its hidling place in her hat. She tore up a letter from the jewelers confirming the sale and scattered the pieces on the floor; but the inspectors gathered up the pieces and put then together. Wer husband had a great deal to say about the brutality of the customs examination montil the necklace and the letter were producel. It cost him a fine of $\$ 5,000$ and the value of the necklace plus 60 per cent duty, making a total of \$17,000.

A society leader from a Boston suburb who tried to smuggle in a $\$ 30,000$ neeklace in 1909, was tried and convicted and fined $\$ 5,000$. She also had to pay the government the cost of the necklace with duty adkled, making the total $\$ 39,000$. Adding the original cont of the necklace and lawyers' fees, court costs, and other expenses, that necklace represents a s.rand tutal ontlay of $\$ 75.000$.

AN FNQINFFK MADE KECORDS OF THE TEST FROM THE INTERIOR OF A FIRFBOK CIIANEI 1O A FLAT CAR A SHORT DISI.INCE FKOM IHE BOILER.

BOILER THAT CAN'T BLOW UP

B y

M. M . H U N TING

IT is only within a comparatively short time that the puhlic has been aroused to the fact that the steam boiler is one of the most prolific sources of destruction with which we have to deal. Lack of knowledge on the part of many intrusted with its care. and oftentimes willful neglect are the causes of a large per cent of the aceidents, and because of this fact enginecers have given up warning the pulbic and have set alonot "making the thing foolproof."

One feels that some effort along this line is due when it is realizel that to all intents and purposes. the construction of the common steam boiler is the same today that it was seventy-five years ago.
frolably the most progressive step in this lirection recently taken has been by the officials of the Itchison, Topecta \& Santa Fe katway, who have begun a
series of experiments_with what is known as the Jacobs-Slupert Firebox.

The most common canse for boiler explosion in low water. The ganges may become stopped so that they do not properly indicate the height of the water in the boiler: the proper amonnt of water may not be fed to the boiler because of the clogging of the pipes: or, through neglect, the water is allowed to fall below the level of the roof of the fireloox, or crownsheet, as it is more properly called. When this oceurs with a hot fire bencat! , the crownsheet becomes red hot and consequently soft, and unable to retain the pressure of steam within.

The result is a terrific explosion Which sometimes carries the boiler a long distance from the scene, leaving death and destruction in its wake. The scattered fire is as much a menace to life and property as the tlying debris, and
witl the danger of falling walls added, a more dreadful catastrophe can hardly be imagined.

With the usual form of boiler construction this is almost unavoidable. The crownsheet is usually supported from the roof of the boiler by a large number of iron rods called "stay bolts." riveted on the inside of the firehos where their heads are constantly subjected to the most intense heat. When red heat is attained in the crownshect through lack of water, the heads of the stay bolts are the first parts to be affected, and under pressure from within, pull through and leave the sheets un-

Tuf Firfbux of an Ordinary Boller Iftyr Exploshon from Lack of Watek. The crownsheet has been torn away, leaving the stay bolts. supported and at the mercy of the terrific stored energy.

As far as the external appearance is concerned the Jacobs-Shupert firebos does not differ greatly from others, the unique features being within the boiler itself. One need only to glance at the photographs of the partly constructed fircbor to realize the immensely superior strength it possesses over the old type. The top and sides instead of being made of single sheets as in the old design are constructed in \mathbf{U} shaperl sections a few inches in width, formed to the arch of the box, riveted together and reinforced

Fireens Płrtly Constructad Showing Sfetions and Reinforcing Plates.
by vertical plates rumning in retreat from the fire. The plates are perforated with large holes to permit the free circulation of water and stean.

It is hardly necessary to state that this construction wili withstand much more overheating than the common type of boiler.

What we are all most interested to know is whether our lives will be safer on a train behind an engine erfuipped with such a boiler, and so a brief description of the test to which it was recently subjected may be of interest.

On September 26th last, in the presence of many engineers from various cities and two representatives of the Interstate Commerce Commission, the above mentioned railway nfficials subjected a boiler equipperl with a firebox of this design to a low-water test. This briter was taken from one of the company's highest grade locomotives and set ${ }^{111}$) in a large vacant tract of land in the neighorhoorl of their shops. The firebox was equipperl to burn oil. The boiler was fitted with two stean ganges, one to verify the other, and two water glasses, one to show the height of the water above the crownsheet, the other, the distance it might fall below during the test. A pump was also set up at a distance to supply water during the experiment.

When all was in readiness fire was started under the boiler and the steam pressure allowed to run $u p$ to 225 pounds. At this point three safety valves, with which the boiler was equipped, began blowing off and the water fell lower and lower in the boiler until it reached the top of the crownsheet, the location of which was indicated by a white line painted upon the front of the firebox. The fire was permitted to burn until the water glass indicated that the water had

The interior of thf Firfbox Aftfr thf Experiment. Showing the Effer ts uf the Intinse Hfat TO Which It was SUbjected.
fallen about five inches below the crownsheet and a temperature of 1,125 degrees in the fircbox was recorded by a pyrumeter. In other words, the crownsheet lad attained a goorl working heat. At this point the fire was shat off and cold water tumed in the boiler until the steam pressure was somewhat rednced. In spite of this terrific treatment, and the fact that at the time the crownsheet was red lont, the lomiler withheld a pressure of 230 pounds to the square inch, and showed no ill effects further than a few triffing leaks dhe to expansion of the plates

Near Vify of thf Boilfr iuring thf Tyst.
under the intense heat applied during the test.

The pressure ganges, height of water, and recorts of temperature were observed by an engineer in a steel firebos chained to a flat car a short distance from the boiler. The remainder of the andicnce witnessed the proceedings through a telescope from a safe distance.

Statistics of the test are of little interest, but the trial is the most severe that has ever been given any boiler and one which the common type could not have withstood. It further demonstrates that a boiler so equipped coukl not, under the common conditions which cause explosions, create a disaster such as we so often read of in the daily papers. liecanse of the reinforcement of the firelox. little or no damage could result even if a blowout should take place in one of the sections, as it would be so small as to amount practically to the opering of a valve for the relief of the unusual pressure.

It is greatly to be hoped. if this form of boiler construction solves the explosion problem, that it may be adopted thronghout the world. wherever boilers are in use.

DAMMINGTHE MISSISSIPPI

B y

F. G. MOORHEAD

NOT far from the spot where Jinn IMludsue ran the Prairie Lelle aground and "held her nozzle agin the bank till the last galoot was ashore," a mile-wide dam is being built which will completely change the contour and topography of the Mississippi River and the historic land thereabouts. Incictentally a steamboat canal, nine miles long, built forty years ago at a cost of $\$ 8,000,000$. is to be completely drowned out, with not a stick or a stone left to show where it once made possible the passage of the treacherons Des Moines rapids.

The sons of the men who dammed the Mississippi a generation ago are now busily engaged in clamming it. The work will occupy two years more, but already
a thousand men are working, beaver like, to throw across the mighty river a structure of cement and stone which shall hold the rushing waters in check and subserviently render up to its master 250,000 horse-power with which to run the factories, mills, and workshops of the very heart of the grain belt. Already, on both sides of the Mississippi, the dam has begtun to assume shape. Two gangs of men are throwing out abutments and creeping toward each other across a watery path. Twenty million dollars will be spent before the two gangs meet, but the investment is considered a good one by some of the shrewdest financiers of the country:

For over sixty years Kenkuk has dreamed of harnessing the turbulent

BUNK HOUSES OF THE WORKMFN ON THE IOW 1 :HORF
Above on the high bluths, is the exclusive residener district of Kioh uh, overnokine the dam,

Waters of the Mississippi and making the Des Moines rapids to the work of man. As long ago as 1848 the Mississippi River Improvement Association was formed, with a capital of $\$ 1.000,000$, its objects being to improve navigation and larness the water power that might be developerl in the process. The Civil War passed and still the project remained a dream. The Lnited States government went a long ways toward shattering the drean for all time by building a ninemile canal alongside of the perilous rapids where many a steamboat ancl many a raft had met demolition, establishing three locks for the purpose of raising and lowering craft from one level to another. Flowing through the high, limestone gorges on either side, step by step the solid lime rock of the river's

THF STONE FOR THE ABUTMENTS OF THE MMAENSE D.AM IS TAKFN FROM QUAR RIES CLOSE IT H.NND ON THE ILLINOIS SHORE.
botom drops twenty-four feet to the navisable depths of the open river below Keokuk. At an anmual cost of $\$ 50,000$ the government has maintained this canal for forty years. Within the next two years it will have clisappeared under twenty feet of water. part of the bed of a new inland lake forty miles long and from one to five miles wile. For the drean of two-thirds of a century is being realized at last. Five years ago, after numberless disheartening failures, a bill was passed through Congress granting a franchise and the first glimmerings of a realized dream began to appear.

It was no small task to get both houses of Congress to agree on a franchise which establishes the precedent of building a dam entirely across the country's largest river. But the Keokuk boosters were shrewt. They introduced old river pilots and captains before the committees to testify that the dam would improve navigation rather than hinder it: they

GKNERAL VHFW OF "HHE GKRAT WAM AS IT
enlisted the co-operation of the army engineers and voluntarily agreed to replace the canal and its three locks with a single lock. which would answer every purpose, and the twenty-year old dry lock with a new one, and from now to the end of time to supply the power to operate the new lock and the new dry dock, absolutely free of charge. On January 27, 1905, the lower house passed ihe bill granting the desired franchise. On February 2, it passed the Senate and on February 9, 1905, President Roosevelt signed the bill.

Immediately there began the hunt for capital. The bill required that the work begin within five years and be completed within ten. It was not until a month or two before the five-year limit had expirecl that work actually began. Even then the doubters remained, crying that the limestone cliffs were being uncovered simply to keep the franchise and that the dam would never be built. But as the weeks passed and the gangs of workmen grew, from a few score to several hundred, and the approaches to the dam on the Illinois shore gradually began to show, the scoffers fled and all Keokuk joined in such a jubilation as the old Mississippi \alley has not known since the palmy days of steamboat racing. On January 8. 1910, definite announcement was made that the dam would be built. By the first of February several score of men were at work. The construction was continued uninterrupted from that time, and early in December. 1910, five hundred men started to work on the Iowa shore.

Mr. Hugh L. Cooper, the engineer in charge, has given Keokuk assurances that the work can be completed in thirty montlis. The first year has been one of preparation mainly: but the end of 1911 will find the dam well under way, extending out from both the Iowa and the Illinois shores, and the power house practically completed.

The project gives to the Mississippi Valley the largest water-power development in the entire country, with the single exception of the combined plant. at Niagara Falls, and the largest dam in the world, with the single exception of the Assouan dan aeross the Nile in Egypt. There will be required in the construction 500,000 cubic yards of masonry. 300,000 barrels of cement, and 7.000 tons of steel.

The dam, incluling abutments, will be 4.700 feet long. It will extend from a point a little north of the center of the town of Hamilton, Illinois, due westward across the river to a point near the Iowa shore, under the bluffs at Keokuk, where the power house, 1,400 feet long, will link shore with shore. The mammoth dam will be of solid concrete, thirty-five feet wide on the bottom and about thirty feet high. The upper stream face will be vertical with a rounded top eight feet wide, the lower side ending in a curve connecting with the bottom. so that the water coming over will not fall. but slide down the face and be given a horizontal direction at the buttom of the river. The whole height is thirty-seven feet, the dam being locked into the rock bottom seven feet deep, to prevent any:

WILL APPEAR WHEN COMPLETED IN 1913.
water getting unrlerneath. Outside the power honse there is already considerable depression in the rock, but the plan is to deepen and widen this depression so as to get rid of the water quickly as it passes under the jower house and through the wheels.

The long power house will be divided into alleys forty-five and thirty-seren feet wide, respectively. Forty feet overhead in the alley facing the Keokuk side of the river will be thirty ton cranes, supported on the walls, for the handling of
the main dynanos which are in nse on the job.

Bencath the foor of the power honse will be a series of forty-seven passages conducting the water to the turbines. These passages will be all formed in solid concrete, constructed so as to offer the least obstruction to the water. Each generator and turbine is arranged to be cut off by stecl head-gates, which close the openings for the water, and allow them to be inspected. Heavy sereens, consisting of iron bars, will stand in

BUILHNG A BKIHGE TO THE ILLINOIS SHORE. The beginning of work on the Iowa side.
the heavy machinery. In the alley nearest the river will lee ten ton cranes for lifting the heay sercens gharling the entrances to the turbines and for thee handling of the headgates for shutting off the water. There will be forty-seven immense generators of 4,500 horsepower each, working on a vertical shafi like the generaturs at Niagara. These generators will be twelve feet in diameter. On the same vertical shaft will be three different turbines, one over the other, alout nine feet in diameter, all working together to drive the generator. besides the big +.500 horse-power generatore, provision is mate for threc exciter emerators, which are intembed to furnish current to excite the magnets of
front of each turbine opening, to prevent the entrance of sticks and stones. which wonld injure the blade of the turbines. The maximm head of water on the wheels will be at low water and will amount to thirty feet. At extreme high water the head is expected to be twentyone feet. At high water, therefore, the plan is to use all three turbines to drive the generator, when the head is least, lunt the flow is abundant : at low water, when the head is large, two, or even one, of the turbines in action will be sufficient. The turlines will be marle so they can le diseontimed when not in use.

The dam will impouml the waters motil a lake will be formerl which will overflow the lowlands alons the lowa and dilinois

THIS NINE-MILF CANAL. BUILT AT A COST OF SBMNMO, WILL, WITH ITS LOCKS. BE SUBMFIR(iEI) TWENTY FEET BY THE B.ICK W.ITER OF THE D.IB.
shores for a distance of approximately forty miles above ドeokuk. Immediately arljacent to Keokuk the river is lined with high, limestone bluffs so that there will be little change in the contont thereabonts, the main alteration being the submerging of the narrow lowland shelf now occupied by the tracks of the Burlington railroad and their removal to a lerge of the bluffs or cliffs. On the allinois shore, however, immediately adjacent to Ilamilton, there will be humdreds of acres of lowlands, now ann11ally planted to grain, which will be sul)merged. The Keokuk and Hamilton Water Power Company, which is building the dam, has already purchased thrce-fourths of the property which will be submerged and has options on practically all the rest. It is estimated that approximately $\$ 1,500,000$ has been or will he paid out for riparian rights before the dam is completed.

The initial installation is expected to be 100,000 horse-power. of which 60.000 has already been contracted for by the Union Electric Light and Power, the Laclede Gas, and the United Railway: companies of St. Louis, leaving only 40,000 to be disposed of in and around

Keoknk. When entirely completed the project calls for 250,000 horse-power, althongh it is expected that 200,000 will be nearer the amonnt developed for some years to come. St. Lonis, 167 miles distant, is in the market for a large share of the power, which can be sold there at $\$ 18$ per horse-power per year. Steam power within 250 miles of Keokuk now averages about $\$ 55$ a horse-power per year, so that the saving from the electric power is going to be great.

But Keokuk is not expecting to build this immense engineering project and then transmit the power to other cities. to grow at its expense. Known in the old historic trail and waterways days as the Gate City of the West. Keokuk lies at the convergence of three great states: Iowa-which leads the mation in the production of nats-Illinois-which leads in corn-and Missouri-which leads in hogs. lowa has never figured very prominently as a manufacturing state, being content to rest on its laurels as an agricultural state. The same is true of Missouri and western Lllinois. Put the alvakening las come and now these three states are lowking forward to a time in the near future when their home-grown

THF BFGINXIN: OF THE DMM ON THE ILLINOIS SHORE A FEW MONTH, dGO.
raw materials shall be converted into the finished products of commerce and when they shall dominate the manufacturing world as they long have the agricultural. lowa has mmerous cereal mills, one of the largest being located in Keokuk. But its farmers have been obliged to send to (Shio and Indiana for their implements and machines. With cheap power available in immense quantities and with the IIssissippi flowing unchecked at its feet, furnishing a cheap means of transportation to the north and south and east, Kerkuk looks forward to the day when factories will line the bluffs and the city
become a rival to Niagara Falls in very truth. Already plans are being laid to divert to Keokik the shipments of bauxite, the clay used in the manufacture of aluminum, from Niagara Falls, where it is shipped by rail from Arkansas. Keokuk argues, and with apparent reason, that bauxite might far better come to a cheap water power by a cheap water route. Negotiations are also in progress for the establishment of a factory for the conversion of the limestone, with which the community abounds, into commercial fertilizer by electrolysis.

The man who is building the dam,

Mr. Hugh L. Conper, engincered the work on the wing dam in the llorseshoe rapids of Niagara, building out 800 feet into a milhrace moving seventeen miles an hour and ranging from twenty-two to twenty-six feet in depth. Another feat of Mr. Cooper's was putting in the McCall Ferry dam in the Susquehama river, 3,100 feet long, sixty fect high, and developing 135,000 water-power. The Kenkuk dam presents no new or difficult engineering problems, immense as it is. One of the things which makes the herculean task easier is the fact that the building materials exist in almost limitless quantity right at hand. The Mississippi is lined for more miles than any man knows with bed upon bed of limestone. It is necessary only to uncover the surface strata of dirt and blast the rock into movable chunks for the huge crushers. Sand, also, is there in limitless quantity. Before the work was many montlis under way two rock crush-
ers were at work, each of them capable of crushing 130 tons an hour into threeifich stone. A sand pump brought 15,000 yards of sand from the river bottom every ten hours. The cement fixers fell on this material and fed it into the mixing machines, capable of producing 1,200 cubic yards a day. With the concrete ready for the piers and abutments, the carriers, shovels, and miscellaneons equipment went chugging back and forth over the improvised track and the great dam began to appear ; slowly, it is true, but surely, which is the main thing. Ifter a year's work on the lllinois shore, a new gang of men was brouglit over to the lowa shore. The cement storchouse on the lllinois shore, holding 10,000 barrels, gave up 2,000 barrels of its stock daily. while train loads of new cement kept the stock replenished day after day. During the first year of construction the daily demand was for ten carloads of cement and three carloads of coal.

A Sea Song

Oh, for a soft and gentle wind!
1 heard a fair one cry;
But give to me the snoring breaze And white waves heaving high.
And white waves heaving high, my boys!
The good ship light and free;
The world of waters is our home,
And merry men are we.
There's tempest in yon horned moon, And lightning in yon cloud;
And hark the music, mariners! The wind is piping loud;
The wind is piping loud, my boys, The lightning flashing free
While the hollow oak our palace is

RAILWAY PROBLEM OF TOMORROW

B y

LA URISTONBULLARD

AIIERICNN electrical engineers munst study in the immediate future as vast and vital a railway problem as any which has taxed the albilities of experts in the whole history of the development of the transportation system of the United States. "Electrification is bound (1) come"-that is the well-considered upinion of the president of one of the great railroad systems of the country, a man who in a statesmanlike way is leading the railway develoment of the time. Indeed, electrification is coming and it is coming fast. But the fact that various railways are employing various systems of electrification brings a danger and
with the danger a problem, a danger which the men in control of the roads must very soon consider, and a problem which they must land ower to the bery best engineers for solution.

There are in the world today about 1.300 miles of railroads upon which electricity is used for heary service. Far the greater part of this mileage is in the United States. In addition there are 435 miles of electric elevated and subway lines in the cities of Boston, Chicago, I'hiladelphia, and New York. But the systems of electrification which are used upon these lines are not uniform.

For example, the New York, New Ilaven and Hartford has twenty-one

MUBLE ELECTRIC LOCOMOTIVE TR,IIN OF FOTRTEFA PASSFNGER COACHFL.

ELECTRIC LOCOMOTIVE DRAWING "TWENTIETH CENTURV LIMITEI,"
miles of its main lines, making one hundred miles of single track, electrified by what is called the single-phase system. But the New York Central has thirtythree miles of four-tracked line, or 132 miles of single track, electrified by what is known as the continuous or direct current system. Now these two roads use the same depot in New York City. Iractically all the New England railway service into New York City is over the four tracks of the New Haven line to a point twelve miles out from the Grand Central station, where the trains pass at full speed to the tracks of the New York Central over which they complete their run to the terminal. For the twenty-one miles of the rum on the New IVaven tracks the trains are operated from overhead trolley wires by alternating eurrent taken aboard the locomotive at 11,000 volts. For the twelve miles on the New York Central tracks they are operated from the third rail by direct current at 650 volts. When the New Haven de-
cided to electrify that twenty-one miles of its own lines it was face to face with the restriction imposed by those twelve miles of New York Central lines. Yet it decided in favor of the alternating current in spite of the twelve miles over Which it would have only the direct current available.

The Erie Railway has thirty-four miles of single-phase electrification. The Pennsylvania las seventy-five miles of the direct current system. The West Shore has 106 miles of continuous current electrification, the Long Island Railroad has 125 miles, the West Jersey and Seashore 150 miles, and the Ibaltimore and Ohio seven miles. On the other hand, the Grand Trunk has twelve miles of the other system, the Colorado. Sonthern forty-six miles, and the Baltimore and Amapolis Shortline thirty miles. There is a greater diversity in Enrope. In Italy there is a considerable mileage operated by what is known as the three-phase system. The same

A PENNGYLU'ANIA ELECTRIC LOCOMOTIVE WITH TRAIN OF ALLSTEEL CARS FOR L'SE NX THE HUD) 0 (ON RIVER TUNNEL.

railroads with different systems of electrification are a thousand miles, or a hundred miles, or ten miles apart, it makes no difference whether they have their contact conductors in the same position or whether they use an electric current of the same character. But when they come together it will cost much money and cause manifold delays and rexations if their systems are unlike. It is here that the danger and the problem of the finture emerge.

There was an analogous problem to be solved by the railroads thirty years ago. Its solution entailed financial burdens which lay upon them very heavily for many years. In 1878 in this country there were mo less than twelve different ganges of railroad tracks, the standard gauge of fonr feet eight and one-half inches, and eleven others. by that time it had become evident that uniformity of gange in the United States and Canadla was absolutely necessary. In the carly days of railroading the differences of gange were of no moment. No one dreamed of an interchange of traffic, of using the chgines and cars of one railruad upon the lines of an-
syistem is nsed in the Simplon Tumel ant on the (rergat Santa Fe in Spain. The other two systems are msed extensively in the countries of Europe. The three-phase system is used for a tumel (1) the Great Xorthern line in the Conited states.

Now it is the opinion of those competent to form oprinions wu)(on so diffieutt a subject that what has been done in a small way ly these and other lines will in time loe tone by the railroads thronghout the conntry, and over long reaches of their lines, if not over their entire systems. In time these roads will face each other at mecting points in hundreds of places. Then will come the rub, the inconvenience and the outlay. If
wther. Some men argued that it was an advantage to keep to a gange that would prevent the engines and cars of a connecting line from running on its tracks. I_{11} some cases through passengers were kept in their ears while the trueks under the coaches were changed, and thus they went on to their (lestinations without change, although they ran over tracks of five feet. five feet six inches, and six feet gauges in succession. In time. in spite of the immense expense entailed hy the change of gauge and of equipment, all the lines made their tracks conform to the present standard gauge.

This experience of thirty years ago explains the view of electrification that is held by the far-sighted and broad-
minded railroad men of torlay. They fear that each road will consider its plans with reference only to its own needs, that the road will treat its project as an isolated calse. They desire that the roads shall take into consideration in addition the electrification of railroads in general, thus awoiding at some time in the future an expensive experience analogots to that involved in the gange problem of thirty years ago. The problem of today, in view of the strides electrification is certain to make in the near future, is that involved in the

Itrangempat of Motors Oyer Driving Mixfe.
For the single phase and direct current locomotwe-passernere and freight servic.-on the New Sork. Now Haven and Hartford Railroad.
selection of a general system of electrification, a system which shall be in its domain what the standard gauge has been in another department of railroading. Determine upon a standard system, which will make possible a complete interchange of traffic, and which will admit of the greatest extension of electrification, and in the future vast expense, and delay, and rexations difficulties wil! be avoided.

The three systems of electrification now in tise have their respective advan-

The Pennsylvania's Articulator Lornvotive. for the Xfw York TUNSEI. SFRVICE.
The underframe: motors, and driving mechanism aro hore shown.
which is used in the Cascade tumel by the Great Northern. The alternating current is used with two overhead trolley wires.

The third rail system is now being extensively used for direct current. There are no overhead wires and in place of the trolley a third rail is nsed from which current is collected by a shoe sliding upon it. It present the general practice. except on very short lines, is to produce or generate alternating eurrent at the power house and change this to direct current of proper voltage at sub-stations elistributed along the line. The sulb-station equipment includes transformers. comverters or motor generators, and switehboard apparatus. This system has a large loss in power between the power house and car and the cost of equipment is quite high.
tages. Each has its own method of conreying the power from the generating station to the locomotive, and each has its own type of motor. The three-phase system in successful une in Italy and Switzerland has been before the world for a number of years. The govermment of Italy is at present installing upon a heavy-grade line out of Genoa a service for which thirty-five locomotives rated at 2,000 horse-power are now being built. This is the system

The single-plase system uses an alternating current and a single overhead wire. Just now the eyes of the railroad world are upon the daring imnovation which has been put into use by the New York, New Haven and Hartford, which line has marle the most important instaildtion of this system thus far undertaken.

Each of these three systems has its own type of motor with important differences in speed performances. The directcurrent motor is a sort of automaton,

 Slgnti. Bribif uF biemtrteied fortun of thy New Vork ('rytrat and Hudsors Kubr Rabrboad.
various devices by which lower spects can be secured, all of them involving complications and losses. In no way can the speed be more than a trifle higher with a light load than with a heavy train. The motors are comparatively simple in constraction, and when on a down grade they may return current to the line, a valualle thing among the mountains.
The speed characteristics of the single-phase series motur are similar to those of the direct-current motor. The speed at a given voltage is more or less as the load is lighter or heavier. But this motor has the advantage over others that by a simple controller its speed may be greatly varied according to conditions. Many wiltages hower than
that is, it automatically aljusts its speed to its: loarl. If the weight of the train is jncreased, or the grade becones steeper, the speed slows in proportion. If the load and the grade remain constant the speed will not vary unless the voltage applied to the motor is increased. But the system of current supply implies a fixed voltage. and therefore even in emergencies it woukl be impossible to get a speed much above that for which the motor was constructed. On the other hand, the speced may be cut in half or it may be fuartered. This is dune by connecting the motors in series, dividing the pressure between two or between four moturs, and by the use of electrical resistance. There are other practical objections to this system.

The motor of the three-phase system is inherently a constant-speed machine. With a light load or a heary load it runs at the same rate of speed. L'pgrate or on a level track it makes approximately the same sipeed also. Thut the high power required to climb the grade may be several times that needed on the level. ()n the other hand, however, the motur makes no greater speed on the level track than on an ascent. There are
the normal may be provided for lower speeds and various higher voltages to produce speeds above the normal. The steam locomotive has its throttle lever, and the single-phave electric its control lever, and in both cases the lever may be placed in any one of many notches to keep the required speed. The current comes aborarl the locmotive at a voltage of 11,000 volts on the New Haven lines. But the motors do not use the current at such a high voltage. It is reduced by the transformers which are installed in the locomotives. As will be noted farther on, this means the elimination of the substation, a bold departure, with many advantages. It is the possibility of adjustment, of setting the lever for different speerlo, which is a very valuable feature of this system. The limit of endurance with the rant supply of energy thus made available is determined by the safe temperature of the motor. In the stean locomotive alsility to maintain speed with heary loads depended uphn the cat pacity of the boiler.

When it comes to the expense consideration the differences in these three systems is a mather not of motors primarily of of power-hnoses, but of the transmis-
sion of the power from the latter to the former. In the power-houses almost always the current that is generated is the alternating and at high tension. It is cheaper to transmit it even when for use it has to be converted into direct current.

Each of the systems has a number of links or clements through which the power must pass between the moment of its generation in the power honse and its application in the locomotive.

In the continuous current system using alternating current for transmission there must be a sub-station between the power-house and the locomotive. The current is generated in the power-house, raised by transformers to high voltage, carried by wires to sulb-stations miles away, where transformers or motor generators step it down to a voltage low enough to nse and converters change it from alternating to direct current; it is then carried by wires to the third rail or trolley wire

In the case of the three plase system the current once generated is raised by transformers to high voltages, carried to substations about eight miles apart, and stepped down by transformers to low voltage, or the high voltage current may be carried directly to the two overhead trolley wires. In the latter case the voltage is stepped down by transformers on the locomotive. The low voltage three phase current is then fed directly to the motor. Two overhead wires are userl and this involves a double system of overhead construction, which becomes quite complicated at cross-over switches. The wires have to be kept well separated and insulated from each other at equal heights above the train. The track in this system acts as a third wire or conductor. In the direct current system the return circuit is furnished by the track.

To get the current aboard the locomotive in the single-phase system, it may
be generated in the power-house, raised by transformers to high voltage, carried ly wires to sulb-stations, widely-separated, where it is stepped down to a usable tension, and carried to a single wire strung ower the railroad tracks. The single wire permits a wide range in height as the trolley adjust. itself automatically to the position of the wire. Usually the wire is strung on lines twenty-two feet above the track but passes under bridges at a height of fifteen and one-half fect. Once more the track acts as one side of the circuit.

Bint a remarkable part of the great feat of the New 1 faven was that it abolished the sub-station where the transformers intervened between the locomotive and the power-house. It took the current at high tension aboard the locomotive itself. This it could do because the length of the line on which the service was installed was but twenty-one miles. It was a daring bit of pioneer work to take the high voltage alternating current aboard the locomotive and lower it there to the low voltage current required for the motors, doing aboard the speerling locomotive what hat been lone in the sub-stations scattered along the railroad

FOR LSF N THE HUD) (NN KIVER TUNNEL.
lines. This saved the great expense of direct-current work and it secured a very high degree of efficiency.

If railroads consider electrification they ask of course about such matters as the cost of the respective systems and their commarative losses of power between generatos and locomotives. The first eost of the single-phase installation is much less than either of the others. Although the lecomotives cost a little more, the cost of operation is considerably less in case of the single-phase system.

This outline of the situation indicates what the problems of the electrical railway engineer are going to be. As the crocuses promise the spring so the electrifications already made presage the coming of the vast electric systems of the future. Almost cvery week witnesses some installation. The Michigan Central has jnst started its electric operation in the tumuel under the Detroit River. The very first thing that was done by the president of the New Haven lines When the became the actual president of the Jioston amel Maine was to send an engineer to the Hoosac Tumel to devise plans for the electrification of the miles of underground line at that point.

In a comparatively short time the railroad work of all New England will be done by electricity. New York will soon be linked with Thiladelphia, I'hiladelphia with lialtimore, Baltimore with Washington, by electric railways. Electricity will supersede steam between such cities as Cleveland and Toledo, Cincinnati and Columbus, Chicago and Nlilwankee. Centers of electrification will come into being in varions parts of the conntry. At last some long trunk line will come forward with electric power in use from terminal to terminal. And so, step) by step, the complete, or nearly complete. electrification will arrive. IHow enormonsly desirable that this outcome shall be anticipated and that broad-minded and statesmanlike plans shall be madc.

There are a few words to say about the work done on the New Haven line. O_{11} express trains and trains of great length two locomotives are used. This is mot due, as rumor had it, to any error of design. The locomotives were made to develop eighty per cent. of the power for a maximum tram load. The ordinary train load is not of the maximm weight. T'o have made more powerfnl engines wonld have been to waste them on trains so light as to leave unused a large frac-
tion of their capacity. It is greater economy to double up the locomotives on the comparatively few trains that require that power in excess of what one will derelop. The two may be operated without any additional crew, it must be muderstood.

These locomotives are very interesting. Tender, cab, cylinders, comecting rods, dome, smokestack, have disappeared. They look to be all cab. Only the cowcatcher and the headlight of the old order remain. The engineer and his assistant have about them only a few knobs and handles. The corridor ruming from end to end-for these locomotives have no front and rear ; they are donbleheaders, needing no turntable at the end of the run-these corridors are walled with steel. Behind these walls are muzzled cyclones hard at work.

The conntless millions of electrons rush from the transmission line to the
motors, which are the essence of being of the locomotive. Ifere their energy is wrested from them and they are made to do work in driving the train, after which they return to the line to again complete their cycle.

It is true that direct current and alternating current in combination had been used before for light service on certain mimportant lines. But the enormous weight of the trains, the volume of the traffic, and the character of the service, make the New Hlaven's a real pioneer work. When its experts began to study the problem of electrifying these twentyone miles they were told to keep, in mind the ultimate electrification of the whole Shore Line ronte between New York and Boston. It now seems likely that this railroad thus has made a very valuable contribution to the great railway problem of the future-a uniform system of electrification.

True Liberty

When love with unconfined wings

Hovers within my gates,
And my divine Althea brings
To whisper at my grates;
When I lie tangled in her hair And fettered with her eye,
The birds that wanton in the air Know no such liberty.

When flowing cups pass swiftly round With no allaying Thames,
Our careless heads with roses crowned, Our hearts with loyal flames;

- When thirsty grief with wine we steep,

When health and draughts go free-
Fishes that tipple in the deep Know no such liberty.
-Richter DiNflace.

A MOUNTA[N WHICH LASTED BUT SIXTY IMAYS.
Mc Culloch Peak, photographed by means of long distance lens.

NATURE TURNED SORCERESS

B y

WILLIAMTHORNTON PROSSER

NOll you see it, and now you lon"t." is a sign that Nature might well display over a little group of islands in lering Sea, where the great Nother of the Lniverse plays the part of sorceress. coaxins mountain-tops from the depths of the ncean and making them disappear asran in the twinkling of an eye, amid a demonstration that only a favored few lave witnesserl. The stage that Nature uses for lier works of magic is aprart from the main lanes of ship travel just to the northward of the long string of Alentian islands that swings from America almost to the Isiatic
shore. In tho part of the world do remarkable seismic disturbances more frequently recur than in this isolated spot. So often do these large-scale acts of legerdemain transpire that $n o$ visitor at Nature's black art theatre evèr expects to see the conjured islands in the same form upon a second visit.

It was in Sepotember of this last season that the most recent performance was given at the liogoslofs-for such is the name of the enchanted Bering Sea group. The officers and crew of the revemue catter Tahoma, which had recently returned to Puset Sound from a summer ernise in the vieinity of I'ribilof seal
rookeries, were spectators at the birth of a new mountain peak, and their deseription of the awe-inspiring sight as a steaming mass of lava was raised above the water's surface, sending a pillar of flame and vapor miles into the heavens, while lightning and thunder accompanied the spectacle, proves that every scenic effect was called into play to produce a mighty trimmph of the cosmic forces.

Nor is the volcanic action confined to this one isolated spot in the dreary wastes of Bering Sea: for when Bogoslof plunges into a series of activities the effect as a rule can be felt a thousand miles and more along the Alaskan shore.

Accompanying the last uplieaval of the Bogoslofs. Alaska's most active volcano, Mt. Makushin, near Unalaska, has been in eruption, and vessels plying between Seattle and Nome reported its sides and top covered with chocolate colored effluvia, while smoke and steam arose from its crater.

Originally Bogoslof was a jagged rock nsing out of Bering Sea. With turrets and buttresses it looked like a feudal castle, and after the United States acquired Alaska from Russia it came to be known as Castle Rock. Admiral Bogroslof of the Russian navy had charted the island in 1790. Castle Rock seemed to alter its size and shape between the visits of different ships, and between the seasons of 1886 and 1887 there sprang into being a second island

McCulloch Peak, Smoking and Steaming, at the Side of Perry Peak.
about four miles to the northwest. Castle Rock was about sixty miles to the northwestward of Unalaska.

When the United States revenue cutter Perry approached the islands in 1906, the officers found that a new beak had risen out of the sea between Castle Rock and Fire Island. This was maned l'erry l'eak. Smoking and steaming, it looked like a gigantic new-made pudding. The three islands in the Bogoslof archipelago were estimated to be about 800 feet in height.

It was on the Fourth of July, of the following year, that the revenue cutter McCulloch passed the Bogoslof, and there out of the sea another peak had raised its head, this one right lyy the side of P'erry Island and virtually forming a part of the year-okl mound. This was called MeCulloch Peak. Evidently it had just come into being, for it was formed of soft eartll mingled with great boulders, and from its fissures great clouls of steam constantly arose to heaven.

But this peak was destined for a short life. F'assing the Bogoslofs September 1, 1907, the whater Hermum, of San Francisco, after a season in the Aretic, beheld the disappearance of McCulloch while flame shot up through clouds of steam and smoke, and the super-
stitious sailors foresaw the end of mmtane things. It happened that the LInited states anxiliary cruiner Buffelo, commanted by Capt. Charles F. 1'ond, sent north to investigate the sealing operatims abont the Pribilof Islands. was not far away, and when Captain Pond heard of a shower of ash on the nearby islands he determined to head for the Bogoslofs and see what new act of legerdemain had been worked among those restless islands. When the Buffalo reached the spot Captain Pond found that since the visit of the revenme cutter IfcCulloch, earlier in the season, the strangest alterations had taken place, for the three islands had been merged into une, and the sea was 2,000 feet deep where McCulkech I'eak had stood.

It one end of the new island stood Castle Rock, changed beyond recognition by the latest disturbance, and with its outline softened and smoothed by a coating of volcanic dust and lava. l'erry Peak had been much reduced in height. and a low bar of land connected the three bits of higher ground.
"Fock's as large as a honse were occasionally detached from the sides of Perry Peak," Captain l'ond related, "rolling down with thmmerous noises on the
water's edge. Strange to relate, a colony of sea lions that for several years had made their home south of Castle Rock, were flourishing despite their proximity to the center of activity, and were apparently enjoying the warm waters that surrounded the island."

Abont this time the steamship Pennsylamia arrived at Nome with her decks sprinkled with ash, and reported that analysis of this effluvia showed the presence of gold. Coincident with the disappearance of N1cCulloch Peak earthquake shocks were felt along the coast of Alaska to the eastward and a number of uncharted rocks made their appearance, even in sontheastern Alaska. It was a little later than this that the government cable between Sitka and Vaklez was snapped by the sudden rising of a submarine mountain.

Perry Peak lived a few months longer, but it had disappeared when the United States fisheries cutter Albatross visited the Bogroslof group July 7,1908 . A narrow band of land then joined Castle Rock and Fire Island, but the officers of the - thatross beheld a new manifestation of the restive forces beneath the sea. What seemed to be the surface of the water adjoining the strip of land rose up,

Bogoslof Island and Itc Prakc.
Castlu Rock on the right. Perry Peak in conter, Fure island on left.

Daylight Disclosfo Clouisof Vapor AND FNORMOUS COLI MNS (HF LAY! Spoutinf From the Crater. Bosnslof Island. Alaska.
in a gigantic dome-like swelling, as large as the dome of the capitol at Washington. Then it subsided, only to rise again. Before each subsidence

1 Distant View of The Smoky Iflanin of Bogoslof. there was a tremondous
eseape of gas, like a huge bubble pushing its way through the water.

Following this phenomenon great clouds of smoke and steam issued from the same spot, gradually growing in immensity until the spellbound spectators began to fear they would be engulfed in a terrific cataclysm. The sky was filled with seething elouds of vapor, while fire, smoke and white hot lava streamed from this sea-level volcanic crater. The column that rose heavenward officers of the Albatross declare was three miles in diameter.

The cutter Perry was the next visitor to the islands, and found a new-made
peak om the site of the old Perry Peak. Nembers of the crew led by officers braved the danger and stood upon the shore of logosolof, but the heat was so great they could not long remain.

It was September 10 of this last seasm when the revenue cutter Manning first approached the Bering Sea voleano, and the adventurous spirits insisited on going ashore. Changes were many since the Perry had been upon the scene. Again Perry Peak had become two small momtains. Evidence of terrific heat was plain, not only in the coating of lava, moulten and dust, that covered the island. but in the skeletons of multitudes of sea-
fowl that plainly had been roasted alive in the twinkling of an eye. The bones, scattered by thousands crumbled to fine dust at the tonch.

The Tahoma's men found a crater fifteen hundred feet in diameter, seething with lava, fire, boiling water and steam. They describe it by likening it to a huge colander with streams of boiling water spurting upward through the holes, and a geyser in the center much larger than the rest. On insecure footing of baked mund, which in places gave way under their weight, the situation of the observers was perilous, and the roar of the crater drowned their woices.

Nine days later the Tuhoma was again approaching Bogoslof when, at + oclock in the morning, the lookont reported to Capt. J. H. Ouinan that a terrific thunderstorm, with lightuing of unusual brilliance was raging dearl ahead. The captain issued orders to fix the vessel's lightning rods, and then inquired the exact Incation of the stom center.
"That's Pugoslof in eruption again," he exclaimed, and soon all the revenne cutter's officers and men were on deck to witness the display. which was then abont twenty miles away.

Lieutenant F. E. Bagger gives a detailed acconnt of the Tahoma's remarkable experience at the birth of a new mountain on Bogoslof:
"Whe were on a northeast course, making abont ten knots an hour when the officer of the wateh noticed perhaps twenty-five miles alnead flashes of rivid lightning. Through the gloom we conkl discern a mass of dark and lowering clonds, and as the day dawned one immense clourd hang over the group directly in our path. Flashes of blinding light lit the sea and sky to the horizon. and showed us the rongl ontline of Pogoslof as the center of the (listurl)ance. Every eye was strained to wateh the developments of the awe-inspiring spectacle.
"By six o'dock the Tahoma had drawn within twelve miles of logoslof. With the rays of the rising sum old liore lsfand conld just be distinguished at the edge of heayy clouds of ashes. steam and smoke that completely enveloperl the remainder of the island.
"When the revenue cutter had ap* proached within ten miles of the scene it was planly to be observed that the flames, molten lava, ashes, steam and smoke were issuing from the old crater, which had been partly surrounderl by a salt lagoon. Titanic forces were at work creating a prodigious disturbance, and the heat which was being freed from the center of the earth began to produce an eddying wind that esen from our distance could be plainly felt. As we continued to near the land the force of the increasing wind began to scatter the clouds of smoke which hovered over the northeast end of Bogoslof, and by 6:15 o'clock the land sprang plainly into view.
"Soon the Tahoma had reached a point sufficiently near for the eye of the camera, and we obtained some very fine views of the spectacle. At $6: 30$ we were only six miles distant, and the heat began to be oppressive. The continuons shower of ash and lava dust made it mecessary for us to keep to windward of the island.
". I little before 9 o'clock we were only fonr miles from this belhing, roaring voleano. I column of rel-hot glowing lava was rising to a height of half a mile, through the center of the vapor and clonds. The stean from the crater reared it. hearl as high again into the clonds, in immense billows. Even above the vapor streams of living fire rose and fell in a pyrotechnic shower.
". .ecompanying all this display there was a constant roar while sounds like thunder issued from the cauldrom on the island. Still keeping to leeward to escape the heat, we crept to within a mile of the shore. But we did not long remain there as ashes and sparks lighting on the deck tdfle of our imminent danger, and Captain Quinan turned the Tahoma's prow alout and we headed for the Alent village of Chonofski, near Unalaska. Put as we left we conkl see through the clouds of sapor that a new mountain had been born on Bogoslof, and doubtless it will he known as Tahoma Peak."

Since the Tahoma's return to winter fliarters the const of Naska has been racked by quakes and jars, so that it is more than probable hogoslof has assumed a new shape even since Septemleer.

Sculptor Jakes Up Cements Ry, Poderick Peattic

WITII the cerer increasing cost of lumber, the value of cement as a buidding material is growing more and more apparent. It is, morcover, becoming one of the most prized of materials to the engineer, who uses it for bridges, for retaining walls, for substructure and other purposes. For side walks it is morivalled and has usurped the place of all other materials. Mr. Erlisun comsiders it one of the most pliable, esthet ic and economical of honse materials, and Mr. Lorado Taft, the sculptor, is demonstrating the fact that it is amenable to the purposes of art.

Mr. Taft is callsing to be erected in Ogle Comnty, Illinois, near the delight ful village of Oregon, on the banks of the Rock river, a statue of Black llawk, once chief of the Sac and Fox Indians, who possessed the rich and picturesque comentry of that region. A chieftain at once wise and brave, he is worthy of commendation, and 11 r . Taft has chosen to place his statuc upon a rocky bluff which commands a fine sweep of the river both North and Sonth. Tradition says that this was a favorite retreat of Black Hawk's.

The dimensions of this statue are 48 feet without the jedestal, and being set as it is, upon a bulwark of rock, the effect from the river is one of melancholy and imposing grandeur. Mr. Taft lias not attempted a portrait of Plack Hawk, but has made what might be regarded as a composite face of the Indians of the Middle West.

As is his cuctom, the first figure Mr. Taft designed was but eight inches hiorl; the nest two feet: the third six feet. Thin figure was set in a frame which forms a part of a pointing machine, and by means of a sy:tem cherised by Mr. Taft and his assistant, Mr. John Gottliel, Prasuhn, it has been possible to enlarge this figure seven times, and to preserve accurately every feature of the finely finished, six fout model.

The builders of this huge statue had no precedent by which to work, and the successful development of Mr. Taft's idea is the result of the ingenuity and mathematics of Mr. I'rasulm.

First a central tower of wood was built, and upon this and from it was developerl an edifice which indicated the form of the firure. Small stick were nailed over this at close intervals and numbered. These showed wherever there was to be a curve or a variation, and the extent of that variation. A sketch of the frame work in this condition. with each point numbered was then made on paper, and every proportion was tested with plumb line and square. When all corresponded to the working model-a correspondence which the pointing machine conld prove or disprove by its infallible comparisons, with one end operating from the small morlel, and the other indicating the point at which a seven-fold enlargement was to be made-the whole surface was corered with chicken wire. Mr. Prasuln began at the neck and wrapped this around and around the figure, and then
modeled it carcfully: fastening it with two-pointed tacks to the frame work. Next he draped it in two hundred yards of burlap. fastening this to the frame with nails, and once more modeling it all. The burlap was then sprayed with plaster water to stiffen it, so that the heavy plaster mold which presently was to be put on, should not intrude through the wire, and clay water was sprayed ower the thin coat of plaster to separate it from the plaster mold.

A temporary plaster model of the shoulders and head were then made on the ground. and hoisted into place by means of a linge derrick. It was not absolutely necessary that these should be placed upon the statue, but their presence gave meaning to the work, illustrated to visitors what was to be done and encouraged the men in their labors. It also determined the precise location of the figure, and the whole structure was swung around over a foot after the erection of the head, in order to present a cleaner profile to the road along the bluff. The derrick loy which the great head was liftecl in place was in itself a clever contrivance fashioned with a triangle on a boom, with a rope to each of the four derrick points, and a back suy:

The next thing was to prepare for the
heavy concrete work. Four heavy steel beams each thirty feet in length, were placed on cribbing timbers and bolted together. Scaffolding was then raised, and a mold of common plaster and fiber was put on by hand. Around this scaffolding was finally put hoops of copper wire to prevent spreading, while within the statue was erecting a net work of stratting and cross beams to guard against crushing.

When the plaster mold was completed, the temporary head and shoulders were sawed up and cast to the ground, and everything was removed from within the now hardened mold. This mold was painted within with wall sizing to keep the plaster from absorbing the water in the cement. The solid rock at the bottom of the fourteen foot excavation beneath the statue was pierced and twentyfour rods of steel dipped in brimstone and plaster were anchored in the rock. Into this cement was poured making a solid substructure for the visible pedestal, which was sis feet in height. On this was erected a steel twwer. composed of rods, reinforced, and wrapped about with galvanized wire. A steel dome summonted this, designed for the purpose of supporting the head and shoulders of solid cement.

The difficulties were

Krany suktak imf Hrabl
Ithr Hrafin flacs many, and not the least of these was the securing of the water, of which many thomand gallons were required. A small Erickson air engine was pressed into nse, and made to lift water from the river two lintadred feet below. lut as the power of this engine was not equal to the demand that would be placed $11 p m$ it when the work of mixing the cement began, a reservenir was constructerl and the water stereal. A stam misur capable of preparinse a cubic yard of cement wery sis minthtes Na, then inctallod. This hatel a hopper which hed six batrels of

A Comparison uf Heads
cement for each dumping．and a continuons line of men with bar－ rows was re－ quired．Cement sets in about thirty minutes． and to avoid unevenness，con－ tinuous work was demanderl． Twenty－four h o 11 r s finds cement in a con－ dition to support itself，and a collapsible frame of steel was therefore devised，which could be lifted $u p$ in sections as the concrete hardened．The amount of cement used was about three hundred and fifty bar－ rels，and no less than one hundred and twenty wagon loads of sand were re－ quired to mix the cement for the pedes－ tal alone．

The molds for the shoulders and head were lifted into place，and the cement was poured in the top of the head until
the upper por－ tion of the fig－ wre W：as ane swlid casting．
（）nで○ithe pictures shows the plaster mokl over which the mold was made． being lifted into its temporary position．

The statute has been erected nut only to celebrate Black Hawk，

Piaster Model six Peet HIGH EROM Which THE Statce was Polntrt． but also to leave a sonvenir of Eagle＇s Nest Camp． where for years a group of artists， sc11］ptors，writers and musicians have passed their summers．This is above Ganymede Spring，which the American authoress，Margaret Fuller，named on her visit to the WTest．Beneath the cedars at the crest of the cliff which arises above it，she wrote＂Ganymerle to His Eagle，＂ as the tablet at the spring bears wit－ ness．

On a Punch Bowl

Then fill a fair and honest cup，and bear it straight to me；
The goblet hallows all it holds，whate＇er the liquid be；
And may the cherubs on its face protect me from the \sin ，
That dooms me to those dreadful words－＂My dear， where have you been？＂

OLYMPIC, GREATEST OF STEAMSHIPS

B y

HENRY R.JEVONS

SOM1E day next July a skyseraper will come floating up Ambrose Chamel, the Narrows and the North River to her berth at the new Chelsea doeks in New lork. For they are bnilding sea-going skyscrapers these days and they are doing pretty well at it. considering. This particular skyscraper, the Olympic, the sew White Star Liner, is only eleven stories, to be sure, but measured from the batom of her keel to the top of her fumnels she lacks only twenty-five feet of coming up to the new proposed building height limit in Chicago. Since the Olympic's foundation is salt water which is more unstable, if possible, than the quicksands which vex the buthers in the Lake Miehigan metropolis this must be conceded to be a pretty fair height. Nor are those fummels to be lightly considered in computing the height. They are very much more important than the ormanental lantern sometimes included in
reekoning the height of a building: Though they do not look very big, so expuisitely is the new liner proportioned. they would make a good many suites of offices if they were arranged for that purpose, for there are four of then, each oval in sliape. It feet 6 inehes in diancter the long way and 1^{0} feet wide. Placed end to end they would make a tumnel 640 feet long with ample rom f m two standard gange railroal trains to stand side by side.

Everything else about this latest prodigy of marine architecture is on the same stupendons scale. Unfortmately. descriptive writers of former days exhausted the entire stock of adjectives in describing "leviathans of the decp" that sometines reacher the enormous size of five or six thonsand tons, so that now when they are really needed to convey an idea of a craft of forty-five thousand tons there isn't a superlative left that is fit to be seen in print. The only thing

 (N THE TIT.1 YIC.
that can be dome is to fall lack on comparative statistics, and let it go at that.

As a starter it may be said that the length of the Olympic, 882 feet 6 inches. is 182 feet greater than the height of the Metropolitan tower in New Gork, the tallest structure on the continent, and four times the height of the Bunker Ilill monument: and yet any one who hat toiled m , the stejes to the top of Boston's pronelest landmark will feelingly agree that it is not to be sneezed at. Tho, the length of the olympic and her bister slip), the Titanic. lameleed in Fel)ruary, 1911. in twiee the height of the lome of St. P'eter's in Rome and equals the total (Irop of the famens l'ridal Xeil falls in Yosemite 「alley. Placed end to end beside the Brosklyn Bridge these two ships would completely yan the

East River and extend over the slone one hundred feet on each side. In short the Olympic is ! 9 feet 6 inches longer than the Maurctania and Lusitania, is 1) 2 feet sis inches wide over all, and 9t feet wide over the boat deck. From the boat deck to the bottom of the keel is 1/ feet: from the top of the Captain's house to the bottom of the keel is 105 feet 6 inches, and from the top, of the fummels to the bottom of the keel, 175 feet. There are eleven steel decks and fifteren watertight bulkheads.

The taunching of the Olympic alone cost more than enomgle to buikd a fine steamship. Nowe than sm hundred steers died merely to make her path inter the Water whooth. for twentere twis of tatlons were uerl th greate the ways Dany a lielfant "aternam made a bitalent
little fortune (judged by a lielfast waterman's standard) picking up the lloating tallow after the launch. The tallow, however, was too trivial an item for serious consideration when compared with the rest of the bill.

It cost the Belfast Harbor lBoard, which draws no slate of the Olympic's carnings, \$292,000 to get ready for the lanehing. Of this sum $\$ 146,000$ went to deepen the chamel to 32 feet. Opposite the berth a pit fifty feet deep had to be dredged in the bottom of the harbor to make room for the plunge of the stern before the bow left the ways. Then Harland and Wolff, the builders, had to spend $\$ 48.670$ to strengthen Victoria wharf opposite the berth lest the terrific commotion kicked up, when the monster struck the water should cause the wharf to collapse. Still, that was but a beginning. Three of the largest slips they
had were converted into two for the Olympic and Titanic. Over the berth a domble gantry had to be erected 840 feet long, 105 feet wide and 220 feet high and equipped with travelers and cranes capable of lifting from five to forty toms. Besides this there was a floating crane to be provided at great cost to transfer the boilers to the ships after they were afloat. I'art of the works harl to be enttirely reconstructed, other parts were altered and special equipment provided, making the outlay for the plant for buikling these biggest ships mort than two million dollars.

From the time the keel was laid, December 15, 1908, to October 20, 1910, the date of the launching, a fair sized army was steadily employed on the Olympic. For weeks before the lannehing two thousand five hundred men toiled night and day making preparations

THE OLYMPIC JUST BEFORE THE LAUNCHING.

92 fect long. The after boss arm, a sort of three pronged bracket
for the great event. As the weight at lannching was twenty-seven thousand tons, minth the largest mass of steel ever phe in the water at once, a great deal of careful planning and expert preparation were reguired to make ready for the sixty-fwo scomels uccupied by the Olympic in making the phange. From the time the hydranlic triggers holding the resecl on the ways were released nutil she was stationary in the water less than two minutes elapsed.

Since the Olympic represents an inveatment of $\$ 7,500.000$ it was necessary that in addition to being the largest ship the world has ever seen, a distinction she will retain only matil the Titemic is placed in scrvice late this fall, when she will ho (nie of the largist two, she should also be the heaviest and strongest. Five humdres thousand rivets, weighing $2-0$ tons, were used in the constraction of the domble botwom akne. The largest bive was 1^{1} 'f inches in diameter. This domble buttom is 5 feet 3 inches deep. The lareest shell plates are 30 foet lomg and weigh $t!$ tons. The largest beams are
that tags along to holel up the onter ends of the propellers, weighs $721 / 2$ toms. The rudder, a dainty creation in steel, is 15 feet 3 inches wide with a stock $231 / 2$ inches in diameter and weighs a hundred tons, as much as a good sized loenmotive.
lint seaking of riveting, 3,000,000 rivet weighing twelve hundred tons, are required to hold the Olympic together. All the shell plating up to the turn of the bilge and much of the other work was done by power riveters, which in Belfast are very different things from the little hand tool sprouting from the end of a rubber hose, the blood-curdling, nerve destroying r-r-r-r-r-r-r-at-at-at-at-tat of which is so distressingly familiar to American ears. The Irish riveter is a pmolerous affair weighing seven tons Which has to be manipulated by means of a traveling cranc. lint it does its Wrotk so easily and so silently that it was comsidered quite the thing to invite ladies who visiterl the works during the buideing of the Olympic to step w] and drive a rivet.

In point of power the Olympic, though muth larger than the Lusitumia and Maurctaniz, drops far behind the swift Cunarders. For each knot above twenty per hour added to the speed of a steamship the coal consumption increases in an ever-growing ratio that is ont of all proportion to the advantage gained.
by uo means as yet beeome what might be called commonplace.

The arrangenent of two wing propellers driven by reciprocating engines combined with a center propelter driven by a turbine las been tried ont on the White Star liner Latrontic, plying hetween Liverpool and Montreal, with such

the ladnching of the orimple.

The insury of a speed of 25.5 knots an hour comes so high that all the other steamship companies have enthusiastically agreed to let the Cunard Company monopolize it. So it happens that while the Olympic is a third greater in tonnage than the Maurctania her engines will have only fifty thousand horse power as compared with the Cunarder's seventy thousand horse power, which is only enough to enable her to jog along at iwenty-one knots an hour. Still, a plant of fifty thousand horse power has
gratifying results in cennomy and in eliminating vibration, that it has been adopted for the Olympic. It is alleged by the press agent that this absence of ribration abolishes that terror of the seas, mal de mer ; but don't you believe it. There is but one infallible rule for the prevention of sea-sickness, and that is to stick to dry land. It is much cheaper than crossing the Atlantic, any way.

But to return to the wing propellers, they are each 23 feet 6 inches in diameter, weigh 38 tons each and are affixed to
crank shafts weighing 118 tons each. These ponderous masses of metal are Iriven at a speed of 75 revolutions per minute by triple expansion engines with four cylinders, the high pressure cylinder being 54 inches in diameter, the intermediate $8+$ and the two low pressure $0 /$ inches in diameter. while all have a stroke of 6 feet 3 inches. Each engine bedplate weighs 195 tons.

The center propeller. which is only 16 feet 6 inches in cliameter, has to rum at more than double the spred of the wing propellers, or 165 revolutions per minute. It is driven by the latest type of larsons turbine, the rotor of which is 12 feet in diameter and 13 feet 8 inches
long. From the company's standpoint the most attractive feature of this arrangement is not that it abolished sea sickness, as alleged, but that it keeps the coal bill down. Steam, generated in 20 double ended and 5 single ended Scotch boilers, all 15 feet 9 inches in diameter, the double enders 20 feet and the single 11 feet 9 inches long, is delivered to the reciprocating engines at 215 pounds pressure. The high pressure cylinders get all they can out of the steam, which is then passed on to the intermediate cylinders, which go after the elasticity in that steam like a Paris hotel keeper after a tourist's cash, then dole it out to the low pressure cylinders. Not

Bringing the ". Ifter Boss Arms" Into Position. Onf of the gigantic parts of the O/ympic. Wroight $72_{2}{ }^{2}$ toms.
safety appliances that the ingenuity of man has devised. In this respect the steamship companies are exactly like the railroads. Every so-called safety appliance on a railroad today has been adopted for its economic value, the safety secured thereby being inci-dental-a sort of by-probluct, so to speak. However. when a passenger loy sea on land is zealously guarded from harm it is no part of his business to analyze the motives that insure his safety. If some blundering steamer should run full tilt into the Olympic as the Florida dit into the Republic it is safe to predict that the new giant will not only stay afloat long enousth to transfer all her passengers. but that her bulk-
until every ounce of pressure that a reciprocating engine can get out of it has been extracted from that steam is it allowed to escape to the turbine. Although by this time the steam is so weak it can hardly struggle on, the turbine has become so wonderfully efficient that it contrives to develop a great deal of power out of this exhaust steam. When the turbine gets through with it the steam, which by this time isn't much more effective than hot water, goes to the condenser, and from there back to the boilers to begin the weary round all over again.

Still bearing in mind the outlay of $\$ 7,500,000$. rather than from an inordinate solicitude for prospective passengers, the company has equipped the Olympic with the most elaborate

The Stferisg Quandant of the (hymfz.
heads will be found strong enough to withstand the strain of towing to port. There are the usual doors leetween watertight compartments all closed at once by a touch on an electric button on the lridge, the submarine signaling apparatus that can pick u_{j}, the tones of a warning bell seventeen miles distant and also tell the direction from which the warming comes, the wireless telegraph that will keep the ship in constant tonch with the shore and with other ships and the claborate fire prostection system to be found on all modern liners. In ad(lition to all these the Olympic has a new wrinkle in the arrangenient of the small boats.

To quote from page 156, whume 16 of the Transactions if the Society of Naval Arehitects and Marine Engincers, "It is compulsory to provide a full complement of life boats and other life saving appliances together with darits which can be relied upon to lower the boats in a heavy sea withont the least chance of mishap.

Provided a vessel is not afire and can float, even with a hig hole in her tite she is about the most comfortable and the safent place avalable in mis. itlantic."

The laws of England and the U'nited States do mot require a vessel like the Olympic to carry small boats enough to aceommolate all the passengers and crew, but even the number she does carry
takes up a great deal of room the passengers would rather have devoted to promenades. liy using sixteen sets of Welin double acting quadrant davits. which will swing a boat away from the ship's side and stay put at any angle in any kind of a sea, the Olympic is enabled to stow 32 boats and liave most of the deck room too, for each set of davits handles two boats. This arrangement. which has been approved by the conservative British Board of Trade, not only reduces the cont. saves weight and gives greatly increased deck space, hut also makes it possible to carry more life boats and still have them readily accessible in case of need.

Since there seems to be no limit to the sums otherwise sane Americans are willing to pay to be ferried across the Atlantic, every facility will be afforled the passenger on the Olympic for getting rid of his money. On any of the big molem liners one may pay from $\$ 112.50$ for a single berth in an inside room down in the basement to two thousand dollars for an imperial sulte on an upper deek where the passengers who like to stay ip all night can congregate undet the windows to gabble. Not many pay the minimam rate in the "high season," though: the steamship companies see to that. One of the big new German steamships quotes a minimum rate of $\$ 12.50$ per betth but inquiry reveals the fact that

 (HVWYHC AND HTTANHC,

DELIVERING ONE OF THE FIFTEEN TON ANCHORS.
there are just three two berth rooms on the ship at that rate. The rest of the five hundred and twenty first class passengers pay two hundred to six hundred dollars a head. The distance across the Atlantic is about three times the distance from New Yurk to Chicago. The total cost of a trip between these two cities, including bertlo and meals on the fastest and costliest trains is $\$ 38$. Three times the distance would amonnt to \$114. Put the average rate on the new liners is about three times that amount. The rates on the Olympic have not yet been amounced, but there is no reason to doult that they will be ample.

In return for his money the first class passenger can eat his meals. provided he isn't too sick to think of victuals, in a main dining room seating six humdred persons, the bigrest and most elaborate dining roum aftoat, or in a smaller dining rom. Between meals he can loiter in sumptuous drawing romus, the lounge or smoking rooms or library, or he can take a turn around the decks, counting about four laps to the mile, or he can work up an appetite in the gymmasium, or take a plunge in the swimming pool. If all these attractions pall he may seek relaxation in the ball room, the theater or the skating rink, all of which are combined in a single vast area of glass-
enclosed deck.
Should there be any danger of his maney burning holes in his peckets before he can get to Europe with it, the passenger on the Olympic can find prompt relicif at the verandah cafe, where he can mingle sea-breezes with his liquor: or, if more heroic measures seem called for, he can get rid of his cash in larger wads at the tailor shop or dressmakers' parlors on board, or he can spend it still faster at the jewelry store. In fact there is mothing to prevent the passenger from achieving bankruntey on the outward bound royage so that he may return on the first homeward bound vessel. This will save time and simplify the ammal hegrira.

The Olympic will have accommotations for 2.500 passengers in all. To run the ship and wait upon this great throng will require a crew of 860 which will be commanded by Captain E. J. Smith. now of the Adriatic. The new liner will not lack business. Although sailing lates and rates have not been amounced applications for berths have been coming in ever since last fall at a rate which indicates that some intending passengers may lave to travel on other ships or submit to the perfcetly drealful and scarcely-to-be-thought of alternative of staying at home.

MCKING STRAWBERKIES-IN THE AUTUMN.

STRAWBERRIES FOR THANKSGIVING

B y

H. H. BRINSMADE

AFTEK having their existence enveloped in much mythical uncertainty, fall strawberries have at last becume an accomplished fact.
Ther were first tried sut in lowa. Sfer a preliminary test, Mr. Lawrence 1. Farmer of !nlaski, New V'ork, purchased five hundreel phants. These plants. differ from other varicties only in the single particular that they hossom steatily from June matil Nowember. A large crop, is whandel by pinching off the hemsoms three wecks prior to the time that fruit in desired. If berries are desired by September first this may be seenred if the blxwomin be pinched on ent off in the firat week of tusust.

It hi farm near P'ulaki, New York, Mr. Parmer lant year had a fine crop of berries both fully rije and green. The beds were covered so as to prevent dam-
ase from frost. Three piekings from Mr. Farmer's strawbery bets since August 15 averaged more than foo quarts to the acre. A ready market at twenty-five cents a guart was found.

Ordinary berries produce but one crop in two years. This variety of strawberries profloces a crop in the fall following the spring in which they are planted. The next crop is the following J tune and then again in the antman, or two in one year.

In exhilnit of stramberries in middle Soptember is a mosit umsual sjectacle. Just an the plants may be sech late in spring, rebplembent in their fragrant Dhosmme green fruit amb ripe berries. 4t were they lat fall in Mr. Farmer's gatclen.

Thene wif the chach few who batook of the laxury deelarel that the fruit possessed a flavor fully explual to the berry raised in Junc.

IN READINESS FOR BUSINESS.
Automobiles of land agents which meet incoming homesecker trains in a Tixas town.

COMPETING FOR POPULATION

By

CARLCROW

WHEN the population figures were amounced, Centreville was shown to be larger than Pinctown by about one thousand souls. Centreville papers had a goorl deal to say about it and Centreville citizens with friends in Pinctown sent then postal cards on which the population figures of the two towns were shown together with such cutting messages as they could think of on the spur of the moment. Finetown residents passed the thing off as well as was possible under the circumstances and are absolutely certain that when the next census is taken their town will be leading instead of trailing behind Centreville.

These two towns are only ten miles apart and therefore the competition for population between them is keen. Of course each is distinguished for things entirely apart from population. Centreville is known over the state for its schools and for the fact that it is a beautiful and well plamed city. Pinetown is a railroad and manufacturing center and with only half the population of Centreville would be far allead in business interests. But population figures are the scores in the big game of town and com-
munity and state rivalry and it is as hard to prove superiority in any other way as to prove that the Cubs had the best baseball team after losing the world's championship to the Athletics.

Naturally enough the competition for population comes chiefly from towns, where a close community of interest makes tean work possible and levelops municipal pride. Rival towns result, each one trying to increase its population at the expense of the other. The game goes on all the time. Every ten years the score is called: in one town there is rejoicing: in the other much talk of the inefficiency of the census. liaseball is not the only game in which the ampire always gets the blame.

It is not alone town pride that brings about this competition. There is a new idea in town and city government which is that all residents of a town are joint stockholders in a business enterprise, that enterprise being the town itself. When the town grows the profits of the stockholders grow. The bootblack has more shoes to shine, the banker has larger deposits and more money out at interest. As the scheme of government in American cities does not jrovide for the execution of this new idea, hundreds of com-
mercial clubs ancl similar organizations have come into existence, supplementing the work of the regular city administration. Theoretically, the city alministration provides a gond city in which to live, and the commercial club, corresponding to the sales department of a factory, advertises this fact to the world.

The commission form of government. which has grown rapidly in popularity. is a concession to this new idea. Uncler its provisions a city is governed by a stmall board of commissinners in moch the same way that a bank is managed hy a board of directors. Some people believe that in a hort time the new idea of city partnership, will be further recognized by the addition to the brard of commissioners of a Commissioner of Iromotion, whose duty it shall be to advertise the adrantages of the city to outsiders. In many western towns the mayor now does this work and seeks reelection on a recond of new factory smokestack- borotyht to the town through his efforts.

Anoni; the Remord Simashfre.

The city partnership idea encourages town rivalry and when rivalry begins towns begin to improve. Build a town in the middle of an island where there is no competition from a rival and it will attain a large size before the advantages of parks and paved streets and good water systems are thought of very seriously. Start a rival town and the old one wakes up. It was that way at Smiths Comer, which was the county seat of lrving County. Smitlos Corner had just grown up, acpuired the court house and county jail, built a flour mill and was vastly contented with itself. One day a geologist went jottering around corn fields and creck bottoms and came back with the amonncement that he had discovered coal. A coal mine followed, with a little town twelve miles distant. It was appropriately called Carbondale, because the mine and the town were in a little valley. Smiths Comer folks used to go over to the mine and look at it and carry back symmetrical lumps of coal as sonvenirs and some of the bors went to work in the mines. There was no animosity, no competition. Carbondale was a cual mine. Smiths Corner was a town, with all of the dignity and importance given it by the possession of the court house, the residence of the county officers and the occasional sessions of the circuit court. A governor had made a speech there; a bishop had preached the high school baccalaureate sermon; the richest citizen was known to lave money invested in railroads and lead mines. Carbondale was but a bunch of homses cluttering up) what had been a well ordered com fielel.

This went on for years until one Sunday morning the pastor of the First Eaptist Church of Smiths Corner anmonnced to his flock that he liad been called to the pastorate of the Carbomdale chureh. It was learned that the Carbondale
people, though not much? addicted to religion, had offered him a larger salary. That was the blow that awakened Smiths Corner. The Baptists employed another pastor at a larger salary and filled up the mudhole in front of the church. A Ladies' Civic Leagne was formed for the purpose of inducing residents to keep their front yards mowed and their front gates on hinges. Civic pride rolled up its municipal sleeves and started in to show the young and impurdent Carbondale how a town should be runn. Someone sail Carbondale eyed the brick court house enviously. Smiths Corner began to build sidewalks, pave streets and paint the houses. A wagon factory and a Methodist school were added to the town. Now there are two very prosperous towns in lrving County each one keeping an eye on the population of the other. Neither one dares sleep out of fear that the other may be awake and each one keeps growing.

When the Indians began dying out rapidly in the Southwest, and venturesome capitalists started butlding railroals, new towns were projected so fast that the map makers were always sev-

This City Also Grew.
Main strect of Fort Worth, Texas, whose population increased 173 mer cent. in ten years.
eral years behind. Everyone of these towns, as soon as it achieved a population of two hundred was afflicted with the court house fever. Indeed, for an ambitions town a month old and possessing a population of two hundred wandering and skittish souls, a court house is the surest anchor. It secures not only more permanent location but also an in-

Spur. Texas, with a population of 1,200 enthusiastic citizens.

A PLEA FOR HOME INDUSTRY.
How fort II orth, 'liesas. appeals to lucal pride.
crease in population. Each new town wateled the population of the old county seat and as soon as victory was sure an election was called and the court house moved. Then the old county seat watched its chance and worked to secure the county majority. This accomplished, another election was called and the court house mover again, taking a lot of pepulation with it.

Vagaries of the Texas election law in its definition of a voter aded the fromtier town huiders in their work. One section of the law said that a voter's residence was maintained at the jplace where his wa-ling was done. Kesonrceful town promoters soon saw the opportunity in this, and every lown preparing for a
court house fight became a great laundry center. Cowboys and railroad laborers, who were alike disdainful of the privileges of suffrage and the joys of clean linen, were bribed to give up their soiled shirts and receive clean ones in return and after a primary course in sanitation and politics voted with great skill and frefucney. When the legislature met it always had to waste a good deal of time locating the new comnty seats. One session grew so peevish over it that a law was passed making it a felony, or a misdemeanor, or something of the kind, to move a court house in less than five years after its establishment. Since then competition for population between Texas towns has been compelled to develop in

FLOIT IN FOR W WOKTH PAR.IDE TO IDVERTIGE LOCIT, SHEFT MET: IL INDUSTRY.
other directions, in other worls, the new development is bona fide.

In its early days San Francisco had a distinct advantage over all other American cities. It was founded under a Mexican grant which gave the city, in addition to the site for the city proper, a tract of four square leagues, to be owned by the city and used to provide free homes for its increasing population. With this land, enongh to build a city the size of London, for the benefit of city home-
stealers, any city of the present time woukl soon outgrow its rivals. Little of the San Francisco land went to home builders. Most of it passed rapidly into the hands of private owners in large tracts, and as the city grew anyway, the private owners became rich through lot sales.

This rivalry of the cities in their competition for population has been partly the reason for the vast increase in city population at the expense of the country.

GREII CITLES H.IVE GROWN OUT OF SMALLER BEGINNINGS THAN THIS. Sicua Blanco. Texas, whose citizens expect will grow into a metropolis.

PKFTTY GIRIS ADVERTISE SWEET CANDFS.
in attractive float in a Fort Worth. Tevas, home industry parade.

One humdred years ago a little more than three per cent, of the entire population lived in cities, the others being cuntent to remain on farms in spite of the fact that none had rural telephones or rural mail delivery. During the hundred years the cities have been fighting for pomlation. each one trying to be the biggest in its territory. They have acquired paved strects, libraries, museums, street cars, schools-a hundred now luxuries and conseniences until life in an apartment honse in the molern American city offers the greatest possible amount of comfort at the luast expense of money or care. In the meantime the farmers have securet, sery recently, rural free delivery and a few rural telephomes. To be sure the invention of farm machinery has lightened his labor. At the same time it has made the roal to wealth casier and has sent the farmers scurrsing to town in greater mombers. Every bige crop year marks a correnponding increase in the city or small town population a decrease in the manler living on the farms. Indeed the only way to keep the farmer in the comentry has been to keep himporer. In $4 x, m$ as he can affored it he promptly
sells his farm and as promptly moves to town.

In view of these facts it has seemed to be rather humorous that city dwellers should be preachers of the "loack to the farm" itlea. We go on making our cities more attractive so that they will compete for population with the conntry and then nerge farmers to remain where they are or the city (lwellers to go back to the farm.

Only recently have serious attempts been marle by the states to attract farm fopulation. Colorato now has a state immigration burean, with an annual appropriation of $\$ 30,000$ to be used in inlucing farmers from other states or immigrants from Europe to settle on Colorado land. Missouri has a similar hureau and Kansas lusiness men facing competition of this kind on the east and the West will ask the nest session of the legislature for an immigration burean.
licfore this work was taken up by a fow western states the omly attempts to attract farmer peopulation were mate by real estate and colonization agents with land to sell homeseckers.

Their methoels are the same as those
of Ternando Cortez, who after conquering Mexico, sought to attract poputation from Europe by the enthusiasm of his reports about the richness of the country. The rapidity with which people crossed the ocean to the new land proved that Cortez was equally successful as a promoter and a conqueror. Stephen F. Austin, for whom the capitol of the State of Texas is named, was one of many colonization agents whose names are famous in American history. Austin took the first colony of Anglo-Saxons into Texas, while it was still a part of Mexico, and the literature he sent out descriptive of the country and its wonderful opportunities for farmers. would serve as a model for colonization agents inday:

Competition for population mores in an ever widening circle, reaching fronn town to town, comnty to county, state to state and finally from east to west. Ever since the first colony was formed on the chore of the Atlantic the west and east have heen competing. with the west winning all the time. In 1790 , the center of population was twenty-three miles cast of Raltimore. At the end of the century it was west of that city and it moved Hestward for a hundred years at the rate
of five miles a year. Between 1850 and 1860 the movement was the most rapich, when it jumper from Parkersburg to Chillicothe, Ohio, a distance of eightyone miles. Between 1890 and 1900 the westward movement dropped to fourteen miles but it is still moving. It has been a fight between the factorics of the east and the cheap lands of the west, with the cheap lands winning all the time.

American population has spreal over the map according to the opportunities for business. whether the business be farming or factories but long before towns began looking forward to census returns and boasting of the size the figures indicated, kings and armies decided the fights of rival cities or commtries fon pepulation. Babylon was a strusgling village five thonsand years ago. Then king Hanmurabi, who was a town builder with original ideas, started on hiss campaign of city building. He removerl many rival cities from the landscape and mate other pay big taves for the privilege of existence. Balston real estate adranced rapidly in value and many suburban additions were put on to take care of the increased population. The boom he started contimed for 1,500 years amil Cyrus, the I ersian, captured it and

then the real estate business suffered a sharp decline.

In later days some Levitican cities had a great admantage over their rivals in the fight for population, because of the fact that they were cities of refuge. Three of these were located on each side of the Jordan and to them anyone might flee and thereby escape the vengeance of the relatives of the man he had slanglitered. Bezer, Ramoth, Galan, Kedesh, Shechem and Hebron were the cities favored in this way. As there was a good deal of
ing in transit privileges immediately becomes a grain center. A city with favorable rates becomes a wholesale and jobbing center and all of these advantages bring with them the population increase which marks the prosperous and growing city.

In this respect the hustling rival cities of Texas (Dallas, San Antonio, Fort Wrorth and Houston are all hoping to be the metropolis at the next census) work under mique conditions. The Texas State Railroad Commission was formed

OKLAHOMIANS ARE ENTERPRISING.
Ther knew that well pawd and parked resident streets bring an influx of desirable citizens.
slanghtering going on at that time the roads leading to these cities were kept clear and signs marked the way to them. Is an easy means of hailding up deporpulated citien, thin !lan hats been used with success in monern times. Lomis XI made I'aris a sanctury in 1 trob and some have been makne emometh to say that the growth of the eity in population dates from that year.

The rule of the same have chamed considerably since that time. lut the results are accomplinhed in much the same way. (itice which control mannfacturing interest collect taxes from their rivals with much more certainty than was ever acemplished ly royal warrant. When a city secures concensions in raitway rates it already has its rivals crying for mercy. A city which possesses mill-
twenty years ago, with almost antocratic authority over rates. It immediately adopted a policy of building up many centers of city population instead of allowing one or two cities to take all the husiness in sight. With the co-operation of the rathoads a sy'stem of "scaling rates" was worked out. Surrounding each town is a zone in which the rates increase in proportion to the distance. This means that wherever two railroads cross, a jobbing center has springe up, able to compete with its rivals no matler how large they may be.

In one sense the most serions rivals of any town are those located far away: Ǩey Ilcest, with its large production of cigars, is the rival of every town which condel support a lucal cigar factory. Battle Creek, Mlichigan, is the rival of
every town to the extent that its breakfast fools have replaced home grown pork satsage or home grown ham and coggs. Every time a town buys from another anything it could make at home, it is encouraging and supporting a rival, even though the place be a thousand miles distant. Any town which starts in tomorrow to make its own flour. cigars, broons, wagons, and do all of its own printing will immediately begin winning in the fight for population. This is not always possible lnt some cities have profited over their rivals by consistently patronizing home industry.

A few years ago a Home Industry League was formed in a Sonthern town by a few business men, mostly retail merchants. The city had a population of barely a hundred thousand, but members of the league found more than two hiundred manufacturing establishments located there. Many of them consisted only of cigar factories employing one or two men. Other establishments employed several humdred. Nembers of the League called these manufacturers together and ontlined a campaign to in-
erease the home proluction of homemanufactured articles, thereby adding names to the local payrolls. Thousand. of cards were printed bearing a pledge whereby the signer promised to give the preference to articles made at home, and, so far as possible, to buy them to the exclusion of others. The newspapers printed a good deal abont the organization and nearly everyone in town signed the cards. As a climax to the cumblative campaign, a big street parade was given in which everyone of the home factories was represented by a float. The campaign attracted a good deal of attention and helped to increase the sales from local factories and encourage the establishment of others. Now the city observes a home industry week each fall. The merchants loan their show windows to the local factories and goods made at home are displayed in them. The town is decorated, carnival attractions are brought in and the week made a conbination of pleasure and business uniterl. It is a kind of ammal revival for city pride backsliders.

Creed

[^1]
UNCLE SAM'S PROTECTED PIRATE

B y
EDWARD B. CLARK

SHALL it not astonish the gentle minded people of the United States to know that the protecting arm of the Federal govermment has been thrown about a robber and a despoiler, a freebooter and a pirate to whom theft is pleasant and murder joyons?

Shall it not astonish the keepers of the commandments unto the last letter of the tenth of them to know that the winter lome of the brigand and cut-throat is the Capital City of the United States; that man is forbidden by statute to molest him, and that his quarters are watched with jealous official eye lest his goings and comings be hindered, his peace of mind disturbed, and mayhap his life threatened?
"The subject of this sketch," as the biographer wearied with repetition puts it, has been called within the space of two short paragraphs robber, despoiler, freebooter, pirate, cut-throat and brigand. The names are all taken from the dictionary of invection drawn on by Whaslington men for free and expressive nise when they lave found the forces of the govermment between them and him whom they would kill. The list could be made longer and perhaps more dignified by the inclusion of Rob Roy and Captain Kidd, for by use of the names of the Highlander and Sea Rover the milder tempered enemies of the villian have songlit to epitomize the evil of his life.

The robber, despoiler, freebooter and the rest is a bird, and when any one of several names are given him the ornitholosist will know him thereby -Duck Hawk, Peregrine Falcon, Wandering Falcon - the Falco peregrimus anatum of the scientist. Wandering falcon is the name which suits the bird best, for it is a wanderer on the face of the earth. It knows Africa and Asia and Europe and America and the Isles of the Sea. Its flight is typical of the freedom of the fields and in its eye there is the wildness of remote woods.

It was eleven years ago that the falcon chose the gray tower of Uncle Sam's Post Office Department building for his winter aeric. Ilis life has been demanded many times and denial has always come.

One President of the United States, Theodore Roosevelt, made the bird his special charge and gave orders that if anyone were found in an attempt to molest it, "let me be notified at once." Four Doctors of Seience of the Biological Survey have kept watehful eyes on the tower through the years lest some scorner of Federal law should seek the falcon's life. Twice the Police Department of the District of Columbia has interfered to save the bird from the multitude (word used advisedly) elamoring for his life. Twice the Postmaster General of the United States has interposed to prevent the waylaying and the killing of the lawk as it made its way back to its tower home. For eleven years the populace now and again has songlt the falcon's life, and for eleven years it has been safeguarded by Uncle Sam.

This winter the falcon is once more at home in the City of Washington. It goes forth daily on marauding and mutder intent, and before the day is ended it has known desire's fulfillment. The Govermment is solicitous for the welfare of the falcon for several reasons. Unele Sam as represented in Washington, in two departments at least, is both a scientist and a sentimentalist. The Duck Hawk is a rare bird and a true falcon. Its courage is as the courage of ten. - There is no fear in it. Its habit of life arouses a keen interest which is only equaled by the bird's own keenness of sense and flight when in pursuit of its quarry. The harm that it does is held as nothing when weighed in the balance with sentiment and interest. To exterminate the tribe of falcons the bird lover holds would be like cutting down a forest of great oaks beeause their shade interfered with the growing of one row of corn.

Every morning in winter from his gray tower overlooking the life of Pennsylvania Avenue the falcon puts forth to find its breakfast in the marshes of the Potomac. It is the epicure of the bird kind. It disdains mice and barnyard fowls and lives almost wholly upon game. Its delight is in the chase and it easily overtakes the teal in its "mile a minute" flight and seizing it, bears it away for a feast.

Once in a while extreme cold drives
the water fowl of the Potomac marshes far away to the South, and then the faleon unwilling to leave its stone tower which it doubtless believes is a erag raised by nature for its special use, is compelled to turn for food to the hitherto disdained domestic pigeons of the eity.

One day two years ago the wanderer, perhaps because it was not particularly hungry and perhaps in the sheer wantonness of a wild humor, dropped the body of a blue rock pigeon fairly on the head of a passerby on Pennsylvania Avenue. Then trouble for the freebooting baron of the gray tower began.

Complaint was lodged with an underling of the Post Office Department who knew hawks only as hawks, and knew them all as bad. A mann with a shot gun went to the roof of the department building and took station just below the entrance to the tower. The falcon was seen returning, but it spied its enemy afar off and betook itself to sailing in magnificent circles about the tower, always just beyond range. Inviting pieces of raw meat was secured to tempt the bird down. The man with the shot gun did not know the daintiness of appetite of the wandering falcon. While the designing, but rapidly getting hopeless gumner was lying in wait on the roof an immense crowd collected on Pennsylvania Avenue and every man in it called for the life of the pigenn killer.

White the threats of the years had been many the wandering falcon for the first time was hovering near death. Then into the erowd on the streets came one of the bird's friends who knew its history and that its life was of more value than the lives of many pigeons. Call for help messages were sent to the White House, to the Biological Survey and to the Post Office Department. The Post Master General of the United States it happens is an ornithologist. It took about one minute to drive the gunner from the roof and another minute to nail up the door leading to the tower stairway. The falcon came down unmolested to its retreat.

The mere official act of throwing a gunner down a flight of stairs and of nailing up a tower door did not serve to cool the indignation, nor to curb the desires, of several Washington residents
to make Rob Roy pay the penalty of his pigeon appetite. The bird of the tower had one day's rest from persecution and then his life was sought again from points of vantage other than the department roof, by dead-shots who had secured pernission from the Police Department to kill "within the District a murderous bird bent on killing all the Washington pigeons."

Once more the hawk's friends rallied from White IIouse, Post Office Department and Biological Survey. The attention of the I'olice Department was ealled to the fact that under the laws of the District of Columbia it is illegal to shoot any birds of prey "except the two species known as the Cooper and the

Sharp Shinned hawks." The shooting license issued the day before were revoked and several disappointed dead shots put their guns back into their cases. The Federal law had saved the life of the "feathered pirate."

One year later "excitement came. again" on Pemnsylvania Avenue under the shadow of the tower. Word had been passed that "Baron Rob Roy, freebooter and murderer" as the daily press put it,

IN THE TUWER OF JIIE POST OFFICE DEIARTMENT BUILDING, WISIUNGTON, ABOVE THE CLOCK, THE PIRAIE IHAS IIS LAIR.
had been caught in a steel trap while engaged in the degrading pursuit of trying to steal a restaurant keeper's chickens. In a yard within a block of the department building the pirate, confined in a chicken coop iron grated for the occasion, was shown to an exulting and enthusiastic crowd.

Word went forth at once that the Baron's day's of freebooting were over and that while the Federal law said that he neither must be killed nor caught, yet it made an exception in case he was caught red-clawed in the act of murder. Quickly friends went to the scene of the
imprisonment and there they found not the Baron, but an ordinary, rat loving. red shouldered hawk whose caste is ninety-nine degrees lower in the bird family than that of the falerm.

Before the exulling noes knew that their triumph was vain, a sharlow passed over the chicken coop, prison. Looking up the crowd saw liaron Rob Roy going down wind hot-paced to the river for a game dinner. He is still making the same daily journeys. His enemies still wait their chance. Uncle Sam says it will be a long wait and Uncle Sam is probably right.

The Hunting Season

A hunter popped a partridge on a hill;
It made a great to-do and then was still.
It seems (when later on his bag he spied)
It was the guide.

One shot a squirrel in a nearby-by woodA pretty shot, offhand, from where he stood. It wore, they said, a shooting-hat of brown,

And lived in town.

And one dispatched a rabbit for his haul
That later proved to measure six feet tall ;
And, lest you think l'm handing you a myth, It's name was Smith.

Another Nimrod slew the champion fox.
He glimpsed him lurking in among the rocks.
One rapid shot! It never spoke nor moved,
The inquest proved.

A "cautious" man espied a gleam of brown:
Was it a deer-or Jones, a friend from town?
But while he pondered by the river's rim,
Jones potted him.
-Philadelphia Public Ledger.

How Ridiculous

The Frifnt-"Your wife doesn't appear to be in very good humor."

Husbani-"No: she thinks I've invited you to dinner."-Jean Qui Rit.

The Polite Conductor
"Conntctor!" exclaimed an irate woman who carrical many bundles, as she pansed on the platform of the crowded ear. "I thought I told you that I wanted to get off at Fifty second street."
"But, madam-_-" -"
"Don't you say a word! I know all athout your car being very full, and not leing able to rencmber where everybody gets off. I've heard all that before."
"Put, madam, 1-"
"Yon may be sure that I hall report you. -ir: and for your impudenct. Ew口!" ,

She alighterl, the conductor rang his hell and an the car started he eatid politely, ith he enncherl his cap):
"F'm very sorry, mitatim. Ant Fifty-secomal street is half a mile furthor on."-Chico." Rocord-Harhd.

Feline Creatures

Slimm-"Our lamdlatly sitys she likes to sce leer boarders have good appetites."
Smart-"Well, some women are naturally crucl."-Boston Transcript. s

Domestic Bliss

"Do you and your wife agree?",
"Oln, yes, always-at least. I do,"-Clezelond Plain Dealer.

What the Maid Said

Mrs. Dalton had become very tired from shopping, and, slipping on her kimono, prepared herself for a period of rest. Her colored main appeared just at this point and amounced a caller.
"No, Anne," said Mrs. Dalton; "I cannot see him. Please tell him to excuse me as I am in negligee."
When the message was delivered Mrs. Dalton heard her visitor laugh so heartily that it even penetrated to her bedroom.

Calling Anne she asked the maid the eause of the liflarity.
"I dunno, ma'am, I really dunno," answered Anne.
"What dicl you tell him $=$ " asked Mrs. Dalton.
"Why I done tole him to please 'scuse you, as you was naked as a iay.

Many Such

"Katherine Shrewsbury is engaged to be married." "Who is the lucky man?" "Her father!"-Town Torics.

5

Her Memory

I vorng woman who forgets faces very casily and is painfully conscious of so doing, was riding in an open ear one summer day. She felt a hand on her shoulder and heard a wotce saying, "l heg your pardon, but you have forgottern-"
"h, not at all : I remember you very well." hastily interrupted the other, whereat the lady

of the hand at once straightened up and in a most frigid tone said: "I have not the pleasure of your acquaintance, but you have forgotien to button your waist."

And Will Be Again

Frenchman-Pleatant woman, that! Is slo ummarried?
Chmaconx-Yes; twice.-Harper's ll eckly

Worst Fears True

"llow abont this barefoot act you've booked for the opry-house? Some of the leading citi zens are a little worries abont in.
"We have suppressed all the objectionahbe features."
"That's just it. We was afecred you would." -Loniszille Comter-Journal.

$$
4
$$

How About Chain Armor

"Is it to be a street gown, matan??"
"Yes: something suitable for rioting in. I've joined the suffragettes."-K"ansas City Ioumal. 4

As Language Is

"Well. now that you have brought the subject up, Miss Dobbson," said hittle Fribley, "how old are you?"

"Oh, I am as old as I look," smiled Miss Dolibson.
"Really?" said Fribley. "T'm astonished. You really don't look it, you know."-Harper's Weckly.

*

Hard to Please

"What is Bliggin's grievance against the railroad company?" "He has two grievances; one is that some of the trains don't stop at his station, and the other that after he gets on board the train loses time ly stopping at other stations."-IV ashington Slar.

-

Justice at Last

Breathless L'rcuin - "You're - wanted -dahn-onr-conrt-and bring a hamblance."

Policembn-"What do you want the amlmlance for?"

Urchin-"Murver's found the lidy wot pinched our doormat!"-Punch.

Located

One of the Strikers-"I"ve lost me best hat-pin, Lizzie!"

Another-"Where dicl vou leave it last ?"
The First-"l left it sticking in that scab, Rachel Lispinsky !"-Puck.

The Virtuoso on the Farm

New Boarder-"Haverit yous got any fancy dishes here?"

Rural Landlord-"Sure thing! Mame, bring the gentleman that mustache-cup your grandfather used to use!"-Puck.

Her Johnnie No Rose

I voc*gester who was attending a pullic sehool in one of the large eities was sent home by the teacher for being imtidy. The teacher wrote a note to the boy's mother requesting that Johnie be given a bath. The boy returned to school the next day as mutidy as before with a note from his mother to the teacher. The note read as follows:
"My Johnnie is no rose, don't smetl him, learn liim."--National Monthly.

st

We All Know Him

Once there was an old goat that tried to pass himself off for a sheep.

The watchful shepherd at once detected the imposture.

He killed the goat. But he sold the flesh for mutton.-Chicago Tribun:。 4

Usually So

"I have difficulty in satisfying my wife. She has a thousand wants."
"I have diffienlty in satisfying mine, and she has only one want."
"What is it?"
"Noney."-Baltimore American.

The Only Joy There Was In It

He-Let uts keep onr engagement a secret for at least six montho.

She-a sectet? The only reason I got engaged to you was that I thought it would be nice to have my picture on the society page.-

Chicago Record-Herald.
4

Erratic Popular Taste

"Young man," saill the woman at the ticket office, "why don"t you answer me when I ask you whether this is a moral and proper show?"
"Becanse," answered the theater treasurer frankly, "l'm not a good enough judge of human nature to krow which way to answer without losing a customer."-II ashington Star.

HOW TO HOLD AN ALLIGATOR A LLIG.ATOR catching is a strange wecupation. The commercial value of these strange reptiles is, of course, their skins. and for this reason quite a small army of men hunt them regularly not unly in Fluricla but their cousins, the
crocodile, on the banks of the Nile and also along the Ganges. These creatures live to a great age, many in the East being known to be 500 years old, and by the tremendous strength which they can exert when occasion calls for it, one would imagine that the older they live the stronger they grow. Besides an tun-

THIS IS THE PROPER WAY TO HOLD AN ALLIG.ITOR.
usual amount of pluck and resource in handling the alligator, one needs to have a keen eye and a quick hand. To secure your animal you must grip it instantly and then keep its jaws closed. As one alligator catcher remarked, "to hold the same jaws open would be an experience gained too late to be of use." For the alligator in its native land is not, as it appears to be, safely imprisoned at the zoo, a sleepy and slow-moving creature, but very quick and lively in all its movements.

BRICKS FROM VOLCANIC LAVA

A PLANT for the manufacture of bricks to be made of lava is now being erected near Honolulu, Sandwich Islands, under the direction of J. Rice, of San Francisco, Cal., and will be in readiness for active scrvice within less than two months from date.

It is the expectation of the promoters to be able to contract with the [inited States government to furnish lava bricks

FIRING A WEEIPON FROM TIIE MOUCII.
for the construction of military posts at Fort Shafter, Schofield Barracks, and also at Pearl Hlarbor and other points where the govermment is planning extensive buildings.

4

FOOT PADS, LOOK OUT

THE artist, Otto Neumanm, in Perlin, has invented a firearm which can be shot off with the mouth. This peculiar gun can shoot a bullet of the caliber of a
small revolver up to that of an ordinary army rifle. The apparatus is very carefully constructed, and the inventor secures as good results in shooting at the target as a good rifleman. As a matter of course the apparatus has to be used with great care to prevent the powder from exploding inside the mouth. It requires also strong nerves for the detonation is much louder than when a revolver or a rifle is shot off. It seems, however, to work satisfactorily in other respects.

STEEI. FOR COFFERD.IMS TO R IISE TIIF .1H.AMF.
A shipment of 1,400 tons on its way from Buffalo to Plilatelphian

GRAYNELLA PACKER. Wirclass Cpurator of the Molater. Ni"w York to Charleston.

The Secretary Bird in Action.

Four-Foot High SnakeKiller.

CHAMPION SNAKE KILLERS

TWO birds new to the eyes of Americans, are the curions pair of secretary birds, male and female, received at the New York Zoological Park, from South Africa. These stately, long-legged birds, with ashy grey plomage and tail feathers two feet long, are the champion snake killers of the world. The secretary is really a liawk, adapted especially for ground hunting. The male stands four feet high, the greater part of this being made up of legs and neck. The bird gets its odel mame from a crest of long, dark plumes rising from the back of the head, which gives it a fanciful resemblance to a clerk or secretary, having a bunch of quill pens stuck behind his ears. All the food of the secretary must be alive, and two grarter snakes, about a foot or so in length, form a favorite daily meal. When a snake is thrown on the ground for the bird to eat the wiry secretary does not fly upon the prey at once but cantionsly approaches the snake with wings partly outspread so as to be ready to escape any sudden lunge of the enemy. The secretary slowly circles around his antagonist. keeping well out of danger: suddenly like a flash the secretary raises one of his powerful feet, with sharj, talons, and strikes the snake a hammer-like blow fairly on the head.

*

DROPS 100 FEET

THE only remarkable thing about this photograph of a modern skyscraper in Los Angeles is the fact that a structural iron worker recently fell from its topmost girder to the roof of a one-story building, a distance of one hundred feet, and sustained practically no injuries. He went almost through the roof of the small building, but as this was very elastic his fall was broken so that he received only bruises and slight fractures which disabled him but a few days.

A remarkable claim is made that a recent rain had wetted the structure, making it an unusually good conductor of electricity and that contact with a live wire had charged the whole frame. While working on a scaffold the iron worker touched the charged girder and jumped back off the building.

1 Natty New Nufra. iefte Costume.

Armored Auto Bank, Sind tu SE BurGar Proof

Workman Fell from Top ANO LIVED.

Patime Tree Gronwing 'l hruvgit koor. A for-foot curlosity of los Aneseles. that is due to riwner's.s'thtimentalits.

RUBBER ARMOR FOR AIR MEN

RUDYARD KIPLING has designed a costume which he suggests should be worn by aviators as a protection against injury in accidents. "As far as I can make out at present," he says, "men go up with less protection, except against cold, than the catcher of a baseball team, and with less body-guards than a baseball player. A little protection about the hearl and shouklers mimht make all the difference between life and death at the moment of the smash." Mr. Kipling's idea of protection is an air-inflated suit. With a view to protecting the spine and head he suggests a helmet of ruluber inflated on the crown and aromed the back

SOMETHING SOFT FOR ArRONAIUTS. and over the collar-bones. What is needed, he points out, is the protection of the neck against a backward or for- the dome of the head from fracture, the ward wrench. The weight of the padding on the shonklers ought to cushion off the worst of a sideways wrench. To protect the spinal cord from being snapped and rolls ander the chin would have to be made thick so that the head could be driven down on them without too much harm.

ONE OF THE BIGGEST GUNS IN THE WORLD.
This picce of artillery is of the so-called wire design and has been undergoing tests near New York City. It has a new form of disappearing carrage.

CHINESE COFFIN

ACIIINESE coffin is constructed in a very sulbstantial manner. There is about four times as much wood in it as in the average American casket, and it is woorl of a much better quality than is

Th Finne DwElitang of a CHiniman
employed for the cheaper grarles of caskets in this country. The coffins are unusually heavy, and the four outer slabs of which they are made, are from six to eight inches wide. The logs are cut concave inside, as the picture would indicate. and little in the way of decorating or upholstering is done. There is none too manel room inside, and the Chinaman is laid away in crowded guarters just as he lives in his sadly over-populated conntry or in his American "Chinatown."

The poor "heathen Chince" seems destines to be hampered for cllow room. not only in this vale of tears, but in the world beyond-a sad fate, indeed, for the "yellow man."

PIGS REARED ON BOTTLE

OUR photo depicts a litter of pigs recently born in the north of England, and who on account of their mother's death and no foster mother being available, were reared "on the bottle." The ingenious proprictor of the pigs has had a special trough made which holds five oblong bottles from which the pigs feed through teats inserted in the necks.

\star

BLIND GIRL STENOGRAPHER

TOTALLY blind yet heroically rising above her misfortune and pluckily carning her living as an expert stenographer and typist. Miss Mary C. Hays of Pittsburg, Pennsylvania, is a splendiel example of the good results of applied

Triple Lawn Mower for Cutting Grass of Differ. ent Lengths and Its Power."
charity and special education. Niss Hays was educated by the state at the Western Pemnsylvania Institution for the Blind, Bellefield, and all the teachers and officials are justly proud of her. Miss I Hays takes dictation from a phonograph and turns out flawless copy without assistance. She is one of the very few blind girl stenographers in the world, and is the only one, so far as known, who is working from phonographic dictation and turning out such a mass of work.

Here is one of those cases, which every now and then come to light, of a determined soul who simply refuses to be overcome by any handicap that nature or misfortume may put in the path, and Who seems to be placed as an example for the less courageous to follow.

Five Little Pigs "Rused Just Like Itumans." Feeding from the bottle.

PREHISTORIC AVIATOR

COU'LD some subtle influence restore the inhabitants of the animal kingdom of prehistoric ages, and make it pers-

lilind Stenographer Who Takes Dictation from a Phonograpif.
sible for ths to see the living form of the petrified remains shown in our illustra-

This Creaturl "sed to ".'shate." A Pterodactvluc, or flyiner reptile, of brehistoric tames.
tion, we might mistake its flight through the air for some venturesome aviator of the present day. Our illustration shows the petrified remains of what is known as a Pterodactylus, or flying reptile, whose sjecies has been long since extinct. Its elongated fingers lad a flying membrane attached somewhat like a bat, and when in flight must lave resembled the planes of an airship, as it was of colossal proportions, measuring about twenty feet from point to point. Its body measured sometimes as much as four or five yards, while the head was entirely ont of proportion and developed abnormally, its jaws beins almost thirty inches in length. A number of these petrified remains have been discovered in the Smoky Hills of Kansas.

The posterior limbs of this creature reached a development sufficient to carry it over the ground in half running flight. similar to birds, and like birds it coukd

I New Way to Recompense Laterary Meirs. Pruceeds from sale of these stamps will go to Dickens descendants
also lift itself into the air. Its jaws and mouth, although of such huge proportions, were not of powerful build, and authorities tell us that it was considered of feeble strength considering the development of parts of its body.

*

DICKENS TESTIMONIAL STAMPS

THE first of the proof sets of the Dickens testimonial stamp luas been forwarded to the King by his majesty's express desire. Each stamp bears a water mark as a safeguard against forgery. The committee hopes that at least ten millions of these stamps will be sold as a centenary testimonial to the descendants of Dickens. It is not yet decided how the money shall be spent, but it is hoped that a memorial to Dickens may be included in the scheme. Americans ought to have a share in the purchase of these stamps, if only because this favorite English author became amazingly popular here largely without profit to himself, becanse of piratical priblishers. In the old diys, before the chactment of an international copyrisht law. English anthors were at the metey of Smerican publinhers, whon paid thein mot one ernt in royalties.

BATHING SUIT A LIFE PRESERVER

SOMETHIN'G entirely now in the line of a life preserver has been recently discovered by a German scientist. It is made in the form of a lining to bathing suits and possesses the peculiar quality of Hoating the wearer upon the surface of the water. The material and process of manufacture is probably a secret one as no information seems to be available as to its character. It possesses, however, fully as useful qualities as the bullet-proof-cloth that has been much experimented with as a lining for army uniforms. The buoyant qualities do not interfere in any respect with the persons performing all the customary feats of swimming, but should any injury befall the swimmer the material supports the wearer in the water until someone can come to his aid. Bathing suits of this material are also of particular advantage to beginners at swimming schools, it being impossible for them to go under water.

BIG YIELD OF ALFALFA

FARMIERS in the lower Rio Grande Valley of Texas are finding alfalfa a very profitable crop. Near Mercedes, one of the new towns in that rapidly developinc region, is a field of alfalfa that was planted December 20, 1910, and within a period of twelve months after

Batifing Suits as Life Preservers, A new idea that has appeared in Germany.
the seed was sown it yielded nine cuttings. Each cutting averaged one ton per acte or nine tons per acre for the twelve montlis. It is stated that alfalfa always produces a larger yield after the first year. The wonderful results that are being obtained from this and other fields of alfalfa in that section are attributed to the ready manner in which the roots of the plants take hold in the soil and the attention that is given by the farmers in irrigating the growing crops. The success of the alfalfa industry is causing considerable attention to be given to raising hogs by these farmers. It is proven to be an ideal feed for the animals and they quickly fatten on it.

"Will You Walk Into My House?" Says the Man to the Fly.

Neither ${ }^{\text {Muto }}$ Nok Motorcycle.

SCIENTIFIC FLY TRAP

OF late years the honse-fly has been recognized as a carrier of disease. and conseguently any invention which will check its pernicious activities is of importance. The western invention illustrated herewith is a cylindrical trap of wire netting, which is attacherl to a winduw pane by means of a vacuum rubber support. Relow the cylinder is a semicircle of metal arranged in such a way that flies walking on the pane will be led to the entrance of the trap and, once in, they are unable to find their way out. This ingenious little device is really built on scientific principles as the inventor has evidently studied the habit of fles on the glass and has noted the propensity in follow any obstacle they meet instead of turning back.

MECHANICAL FREAK

OCR photograph well depicts to what lengths the London manufacturer will go in search of novelty. The vehicle shown below, which is half motor car ant half cyele, is striving to attain popularity amongst that intermediate clas of peorple who are mot rich enough to buy a moter car, but who want something more than a motor cycle.

2

UNUSUAL PUNCTURE

A UTOMOBILE tires have a way of collecting a great many articles more or less detrimental to the life of the tire. The wit's definition of a puncture-a hole in the tire where all the pleasure of motoring goes out-mast have been felt l,y the owner of the car whose tire picked 1ij) the rather minnsial sonvenir shown in the illustration. Antomobile tires in order to increase their usefuluess and life should not be run when in a soft condition. This was the canse of the rathoad spike attaching itself to the tire in stuch an mutusta! way. It is a well known fact anong the makers of athtomobile tures that a hard tire in able were ret pieking 11p objects along its path muth more readhly than when nut propery inflated.

NEW SUB-IRRIGATION

A\therefore entirely new type of irrigating tile overcomes the difficulties met with in other pipe and tile system of irrigation. It is claimed that it solves the problem of sub-irrigation. This tile is of cement construction. One-half of the tile is cast of pebbles, which have been thinly coated with cement. This leaves that part of the structure porous and permits the water to How freely into the ground. At the same time, the pores or openings through the gravel wind about in such tortuous courses that it is an effective protection against them being obstructed by roots or dirt, it is claimed.

4

GEORGIA WATER POWER

THE southern part of the Lnited States is awakening to the possibilities of water power, and one of the greatest projects along this line is the construction of a power plant near Macon, Ga. The dam is ninety feet high and will hold back approximately a billion gallons of water when the sluice gates are closed.

Electricity will be generated and transmitted to Macon and Atlanta at a pressure of 100,000 volts, the amount of current generated being sufficient to light both cities and run local street and interurban cars as well.

\because

NEW TRAVELING CRANE

THE new traveling crane which is shown by the accompanying plotograph is in operation in a large factory in a suburb of Paris. It is a rolling bridge composed of a large, movable horizontal iron beam placed at a certain height above the ground, which carries the crane proper. This beam turns about a fixed pivot, placed at one extremity. while the other extermity is placed on a rolling circular aerial road supported by posts. The crane, which is operated by an electric motor, can be moved the entire length of the beam.

By the rolling, aerial circular track, material may be carried to any place in the vicinity of the shops, even though they are placed irregularly.

Splee Punctures Autu Tire.

Tile for Sub-Irrigation.

huge Power Playt at Micon, (ia.

Variation in Tramelng Crane.

A Car for Sick People on an Esigilsu Tratn.

WHERE THE CABLE LANDS

IN the accompanying photograpl is depicted the typical sign and cabin which is to be found around the English Coast at such places where submarine cables "come to land." Inside the cabin is contained the transmitter, ete., with spare supplies which can be drawn upon in time of necessity. The cabin shown here stands near Dover, England, and is the sea terminus of one of the Paris-London cables.

s

A GRUESOME CHAMBER

IN some of the churehes and monasteries of Rome there are chambers decorated with human skulls and bones obtained by the monks from the catacombs. The latter are rightly regarded as one of the sights of the world. Although they do not extend beyond three miles from the city walls, the total length of the galleries is estimated to be about 600 miles, and the number of graves at some two million. The galleries are usually about eight fect high and from three to five feet wide, and the graves are niches cut in the walls. It was in the catacombs, too, that the early Christians held services and hid during the time of the persecution. To-

Sea Terminus at Dover, England, of Paris-London Cable.
day nothing is to be seen in the graves, the skulls and bones having been re-

CUTTING A SECTION OF IIENRY CLAY'S MONUMENT IN STONE. Sculptor's model is in background.
moved, but in a number of religious institutions in Italy may be seen chambers full of these skulls of the early Christians as depicted in the accompanying photograph.

A Freak, One-Tinfo fork Bicycle from France.

RESTORING HENRY CLAY MONUMENT

THIE historic monument to Henry Clay standing one hundred and thirty feet high over the tomb of the great Commoner at Lexington, Kentucky; is now undergoing its second restoration, after having been twice struck by lightning. When it was first shattered by the elements about two years ago, the Kentucky legislature appropriated $\$ 10,000$ for its replacement or the execntion of a new statue and this work had been completed only a few months, when lightning again selected the famous memorial for its target and tore a large section out of its side. Sculptor Charles J. Mulligan of Chicago has been again called to the work of restoring it, which it is expected will not necessitate such heroic efforts as did the first course of repairs.

When the appropriation was made for the repairing of the statue after its first stroke, the committee in clarge was in doubt as to whether the historic memorial could be saved at all, and the committee was empowered to contract for a new statue if it was thought advisable. They accordingly instituted a competition among sculptors and architects for suggestions. The plans of Mr. Mtulligan met with the most favor.

Boy Woxher in the (hess World.

NEW BOY WONDER

ABOY chess "plienom" is astonishing the veteran players of Philadelphia. E. M. Edwarts, the new wonder, is a thirteen-y̌ear-ohl schoolboy. He can be seen almost every day playing the cracks of the Mercantile Literary Chess Club, and compelling many of the best players of that ancient organization to admit defeat. Recently Edwards played a simultancous game arainst six opponents at the Norristown Chess Club. Ile played, in all, cleven games, winning six, losing one and drawing four. Toung Erlwards has tried his skill unsuccessfully against Dr. Laskar, the world's champion. Te recently played a gane with Capablanca, the Cuban proxligy, and lost ly a narrow margin. Witlı years le should develop into one of the famous chess players of the world.

Kıptile: A Victim of Rabbit Trap.

SNAKE CAUGHT IN TRAP

$[T$ is selfom indeed that the wily snake is canght in such a homely contrivance as a wire rabbit trap, but this fine specimen of a grass snake was recently caught in a Suffolk-England-field. It is interesting to notice too how completely his body has been enfolded in the trap, in fact his body is bent and caught twice between the teeth of the wires.

A IIom of the Dipk Continfet.

AFRICAN "WEARY WILLY"

AlRR1CA has hor tramp problem just as we lave and the eccentric costume worn by this "son of rest" in Basutoland is one of the picturesque features of the village of Mesari. Is he absolutely refuses to work the villagers feed him and clothe him in the strange assortment of rags and tatters shown in the photograph.

A Shark That Was Caught by an Angler. licious wolf of the sea taken after fierce struggle.

THE HAMMER-HEAD

ONE of the oddest catches on record in southern California is the weird looking sea monster shown herewith, a variety of shark known as the hammerhead. It will be seen that its head is really slaperl like a mallet with one eye at each end, a broad, shovel-like snout and under it a formidable array of teeth. This is one of the fiercest members of the shark family, and its large size makes it a pretty ugly customer to handle, as it often attains to the length of twelve feet or so. This one was caught in Long Beach after a desperate struggle with the angler, who is-and quite properlyvery proud of his catch.

WIRELESS PHONING FROM TRAIN

MR. IIANS yon KR.MIIER is the inventor of a wonderful system of wireless telephoning from a moving train. He has just conducted highly successfnl experiments on the London and lirighton Railway, and the company have decicked to install the system. making a start with the Sonthern Pelle Express. Passengers traveling in the train will be able to send and rocejve messages, no matter at what speed the train is traveling.

BANISHING THE WHEELBARROW

AN invention which seems to do away with the wheelbarrow, at least as far as the laying of brick pavement is concerned, is shown in the illustration. The device, which is known as a roller brick carrier, looks like a long steel ladder laid in an inclined position from the sidewalk to a point near the center of the street. What appears to be the rungs of the ladder are really steel rollers set very closely together and running on ball bearings, upon which the bricks are laid and allowed to rum down to the street by gravity. To keep the bricks from running off the sirles, the rollers are made with flanges at the ends. Among other advantagenus features, the earrier delivers the bricks to the exact point where they are to be used, saving the two handlings which are required when the material is delivered with the wheelbarrow. Such an invention as this makes for speed, profit, and efficiency.

[^2]

ROLEE BRICK CARRIER BANISHES TIE WIIEFLBARROW.

A KEYLESS LOCK

AKEYTLESS lock, recently placed upon the market, resembles in appearance almost any other door lock in a general way, laving a handsome door plate and knob, but at the right side and a little below the knob is a series of four small levers. These operate in various combinations known only to those who are permitted free access to the house, and can be changed to a different combination when necessity demands. The lock can be adjusted so that it will lock on closing or by turning the small button underneath the knob. It is opened by pulling upward one or more times on one or more of the levers at the side. So simple is its operation that a child too small to unlock a door by means of a key can readily gain admittance with the keyless lock. This keyless mechanism can be attached to any standard lock so that the purchase of an entire new lock is not

"Closed in All Around."
An anto that keeps everyone warm, including the chauffeur.

A Keyless Lock That Is Opfraten After the MaNnrer UF A safr Comillintion.
necessary in order to have the advantages of the keyless lock. Arkeyless padlock is also manufactured with 38,005 different combinations.

These are days when more brains than ever must be used if burglars are to carry on their profession jurofitably.

REMARKABLE DAM BEING BUILT ACROSS THE COLORADO RIVER AT MARBLE FALLS, TEAAS.
The flow of water through the concrete chambers will be regulated automatically by means of steel gates.

The ill-starred Moissant in his course around the statue of Liberty. "The ereddess seemed almost to be hoidme her torch for the purpose of lighting the whth to this quodaring avator.

Sculptured Glass.
Beautiful work done in artificial crystal that resem. bles cameos.

SCULPTURED GLASS

AWONDERFUL example of the glassmakers art is that depicted in the accompanying photograph. It is a piece of sculptured glass in the form of a beautiful plaque. It has the appearance, too, of a delightful cameo. This effect is produced by fusing a thin layer of opaque white glass on a thick layer of dark brown glass. The design is carved upon the white surface, and the various depths of the carving allow the dark background to tint the white glass to different shades, exactly as in a real cameo. Naturally, the work has to be done by a skilled artist by hand and it occupies a great deal of time. The plaque shown took eighteen months from start to finish and is valued at several hundred dollars.

A HUGE CLOCK

HALF-W'AY up the 700-foot white tower of the Metropolitan Building, New York City, at the 26 th story, are the four dials of the most remarkable timepiece in the world. The dials are 26 feet 6 inches in diameter, with Arabic mumerals 4 feet ligh and 60 circular minute-marks each 10 inches in diameter. The clock and its no less remarkable auxiliaries, the chimes at the 46 th story and the flashing lantern at the tip-top of the tower, constitute a stupendous advertisement. The time can be read from

Where Wheels Grow Large.
Mighty oxeart used for hauling bulky articles in India.
a long distance, by day or by night, on the dials, and every quarter-hour between sunrise and sunset the chimes peal out in strong, harmonious tones. From sunset to sunrise powerful tlashes of red and white light. streaming from the tower tip and visible on clear nights for fifteen miles, announce the hour.

Inside a Huge Clock.
How one of the figures un the dial of a great timeplece appears at cluse hand.

Mixing the Mortar. The women hilpud from the verw hergirning of the lask.

Putting on Shingles. Here the ladies of the church found more comployment.

CHURCH BUILT IN SEVEN HOURS

JUST to show how expeditionsly a labor of love can be performed, a church was built in Long lieach, Califorma, recently by more than one humdred men and women in the remarkable time of sis hours and forty minutes. This did not include the foundation which has been laid several days in advance in order to allow the mortar to set : but it did include everything else. The building was done loy volunteer labor, sixty members of the local carpenter's union and sixty business mon working together in harmony and at top speed. They were assisted by the women of the congregation who not only furnished a

An laland thim Flomts.

1. utrurdinary formation of lands on water's surface at Lake Sadawga, Vermont.

Peddifnc Puloue.
IVagon that conveys intoxicating liquor abont the strects of Mexican cities.

The Star Performance
Here was the women's triumph when the work was done.

Church Butlt in Seven Huurs.
The finished structure and its builders.
good meal for the laborers at noon but also got out and mixed mortar and nailed shingles like professional builders.

Work began promptly at eight octock on the morning of Labor Day, Sept. 5th, and the work was so well systematized that there was no confusion. The pastor was as industrious as any, clad in overalls and valiantly wielding a hammer, and some of the most prominent women in the church did not scorn to roll up their sleeves and hoe in the mortar bed or risk pounding their thumbs while assisting the shinglers. Other ladies, who were not needed in preparing the bunch, carried bricks to the masons who were building the chimney, and finally when at 3:40 the last nail was driven the women washed all the windows and cleaned out the building so that it was rearly for a service that same evening. Every detail was complete, even to the locks on the doors.

FLOATING ISLAND

IN Whitingham, Vermont. on a small body of water known as Lake Sadawga. one can see the unusual phenomenon of seventy-five acres of unattached soil locally famed as "The Floating Island." This island consists of a vast nexus of roots of reeds and trees which are overspread by a thin layer of carth. Quantities of moss, flags, cat-tails and other vegetation which favors moist localitics, are found in great profusion. The trees are mostly beeclies and firs, some of which are of great age, but they grow to a beight of ouly about twentyfive feet, and at that point the growth is arrested, probably on account of interference with their mutrition. Fishermen cut holes through the soil and fish through them just as one lishes through the ice in winter.

A Pantiler with a Record.
Marauding beast killed on a Texas ranch after much dimage to stock.

DESTRUCTIVE PANTHER

THE panther shown in the accompanying illustration had a record of slaughtering three yearling colts, one three-year old horse, one two-year old mule and a number of calves and sheep upon the ranch of A. B. Collins, near Uvalde, Texas, during the period of six days immediately preceding the final hunt which ended in its death. It was chased for eighteen hours by a pack of hounds and a party of cowboys, led by Mr. Collins, who shot the animal when it was brought to bay by the dogs. The panther weighed 246 pounds and measured seven feet four inches from the root of its tail to the tip of its nose. Panthers, wolves and coyotes are very destructive to the live stock interests of the ranch territory of Texas and other parts of the country. It is estimated that in Texas alone these animal pests destroy annually cattle to the value of more than $\$ 500,000$.

PLACE TO EAT LOBSTERS

PROBABLY the most unique and least known of all the summer establishments at Newport, R. I., is the red frame structure, startling in its simplicity, which is of more than ordinary interest, however, as it is the lobster eating bungalow of Mr. J. Pierpont Morgan. When here the great financier makes it his business to lead the "simple life," and to enjoy the delicious fresh crustaceans especially trapped for him in the near by ocean. These are served broiled in old southern style. The bungalow is picturesquely located on the rocky bhiffs a short distance from Pateman Point, on the famous Ocean Drive. It has wile porches commanding an extensive panorama of the Atlantic. Mr. Morgan's onestory structure stands in marked contrast to the other magnificent mansions.

School's Own Oil Well.
Oklahoma district school owns a valuable bore that produces rivenue.

SCHOOL'S OWN OIL WELL

ONE school district in Oklahoma is not only self-stupporting, but has a surplus in the bank toward building a larger and finer school. It is in the Oklahoma oil district and a well in the school yard pimps enongh oil to pay the expenses and bank a balance. after having paid in addition to that for the present building. The photograph shows the oil pump as it stands in the rear of the schoolhouse.

Lobster Eating Bungierow.
House built at seaside near Newport by I. P. Morgan, for enjoyment of sea-foods.

Interior of Búngilow.
Simple surroundings satisfy, rich connoisseur in pictures and sbell-fish.

Live Dak Stlits Rick.
Growing tree breaks hage boulder in two near losemue.

LIVE OAK SPLITS A ROCí

SOME illea of the force esorted by the roots of a growing tree may be sained from an inspection of the accompanying illustration. The tree is a live

Strangr: Place of Purtal.
I Doorle sonte, whit winduws nailed on the outside choseth by Indian clief for his final resting place.
oak, growing at El Portal, close to the entrance to Yosemite National Park. How the tree happened to start growth in so unfavorable a location is, of course, unknown; but having started, its tiny rootlets forced their way into crevices of the great sandstone boulder upon which it grew, and, as they enlarged, they split the boulder asunder. Residents of the neighborhood can remember when the boulder was only slightly cracked by the roots of a slender sapling. The sapling has grown into a fair-sized tree, and its expanding roots have parted the big rock.

5
 UNIQUE BURIAL HOUSE

THE Makah Indians, living on the northwest coast. have a curious custom of depositing all the effects of a deceased person in the grave with the body: befieving these articles may prove of isse in the happy hunting grounds beyond. Huge canoes are often dragged long distances and left to moukjer by the grave of the departed owner. Recently, when a chief died, his dwelling was torn down, and a new house built over his grave from the pieces. This honse, which is shown in the reproduction, might be said to be hermetically sealed, for no provision whatever is made for ingress or egress. The windows are simply nailed to the outside. One pole has a blanket fluttering from the top; the other a whirligig, to frighten away evil spirits.

Oddity in luesiness Sign.
This ought to be a business getter, and is. It is the sign of a W'estern saw-repairer.

Sxow plowive by Motor.
Device in European city for removing clogging snow from pasements.

SNUG HARBOR

THAT one can be contented in cramped quarters is shown by the accompanying photograph, which pictures the habitation of a man in a IVestern seaport. His house is exactly seven feet by six feet, being the discarded pilot-house of a Puget Sound tugboat. In this miniature house is a bed, store, table, chair, and shelves for books, provisions, etc. The owner, who is a retired seafaring man. declares he has ample space to accommorlate a roomer.

*

ITALIAN MILITARY BALLOON

THE accompanying photograph illustrates the construction of the military dirigible balloon which made its first trip from Bracciano to Rome passing over Lake Lracciano from its shed at \igna Volle. Some most interesting and successful experiments in Aerial Navigation have been undertaken in Italy with a view to their use in the Italian army service.

ORE AT THE GRASS ROOTS

LEAD ore. in paying (fuantities, has been encountered at a depth of two feet beneath the surface of the ground by workmen excavating for the new Lnion depot at Joplin, Mo., the metropolis of the Missouri-Kansas-Oklahoma zinc and lead district. Turn-ins from the shallow mine shown in the accompanying

Home of an Old Sea-Dog.
Pilot house of dismantled steamship utilized as a dwelling.
photograph have amounted in value to more than $\$ 300$ a week, while the aggregate valuation of the finds is in excess of \$2,0C0.

Italian Military Balloon.
The Italians do not make much noise ahout their air thights but they, too, are experimenting.

Lead Ore at the Grass Roots.
Odd discovery on site of new railway station at Joplin, Mo.

Sacked Mountain in Sile.
Curious fancy-work piece picturing the Japanese Fuinyama.

A Thorough Smash.
All that was l.ft of a small oll-fashioned engine, recently strack by a newer giant near Holt, Mo.

A Riddle in Stones.
Symmetrical arrangement of these boulders has puzzled scientists.

Motor-car Minde from Ji'nk.
Autumobile betrilt by Mariposa man, from parts of old well.digging and farm tnachmery.

FUJI-YAMA IN SILK

ONE of Japan's principal industries is that of silk culture, and this is certainly well represented at the White City. By means of models, photographs, and charts every process of scriculture from sweeping the egg-cards to the removing of the woven fabric from the loom is minutely shown. What is claming no little admiration in this section is the wonderfully realistic representation of Fuji-yama, the sacred mountain of Japan, built up of hundreds of thousands of silk cocoons. As the model is 180 feet in length and towers some 18 feet in height it will be seen that it is a mo mean attempt to reproduce this famous monntain.

4

RIDDLE OF THE SOUTHWEST

O$\triangle E$ of the most curions of American archaeological riddles awaits solution in Northern New Mexico, a few miles from the Indian l'ueblo of Taos. Large, rounded cobblestones are unusually abundant for a locality so far from the river, and the cobblestones are distributed with a system and regularity that makes it certain that they were placed by human hands. They are arranged, for the most prart, in rectangles, with here and there a circle, covering an area not less than twenty-five square miles in extent.

It is plain that these were the foundation stones of an adobe city, but nowhere else in America have rums been found of any prehistoric city at all approximating this in size. How long ago it flourished, or ly what sort of people it was inhabited, is a point upon which the myths and traditions of the Southwestern tribes are silent. The Puchlo of Tans is known to have oceupied its present site for at least four hundred years.

4

LIFE-SAVING CARS

LHFE-SA\1N(; cars that are expected to prevent the loss of hundreds of lives anmally in the coal mines of the Cnited States, were put in operation November 1 by the new federal litrean of Nlines. The cars, six in mmber, will occupy stations in the conters of the principal coal mining regions.

MINE RESCUE CAR.
Special coach owned by the United States Bureau of \$lines and used in mining districts for emergency, rescue and hospital work. It is fitted with all hospital arrangements.

MINIATURE FIRE BRIGADE

H ERE is reproducel a photograph of a miniature and complete fire brigade which has just been placed on service in a fire station in one of London's sub-urbs-Beckenham. The miniature fire fighter is a 12 horse-power auto tricycle with two seats and completely equippecl with scaling ladders, extinguishers, fire hose, hand pumps and all the accessories necessary for first aid. It can travel 40 miles an hour and already has done splendid service.
$\stackrel{8}{4}$
NEW SHIPYARD IN ENGLAND

ADESCRIPTION and plan of a new seventy-acre shipyard near New-Castle-on-Tyne are on file in the burean of manufactures. In clearing land and making the river frontage, \$2,500,000 will be spent before the works are begun.

An Artist in Fruits.
Here is the worker making the dishes of fruits which are pretured on the opposite page.

MINLITURE FIRE BRIG.ADE.
Small emergency motor fire apparatus used in Leckenham, a suburb of London, England.

Worlds Maghtiest Ship
The latest leviathan of wean liners after she was successfulty launched.

Lighting Gas by Pistol,
Ingenious arrangement of flint and steel for use of bousekeepers

BACK TO THE FLINT

THE story is told of an olil lady who saved matches by keeping the gas burning all the time, and yet ridiculous as this may sounct, the millions of matches manufactured each year by the numerous mateh factories in this country, bear silent witness to the fact that it is no small item of expense in American life. In urder to eliminate the necessity of carrving the match a versatile inventor has revived the flint and steel of our grandfather's day and placed it upon the market in a new and unipue form. The lighter looks like a pistol and is so constructed that when a trizger is pulled a steel bar, having its surface roughened. fisules for a short distance from the muzzle and in doing so passes across a piece of flint. This protuces a shower of -1 arks sufficient to light any gas jet.

This vescel fepresents all that is newest, best. fastest and mont luxurions, as well as biggest, in ncean greylumats. the is rein fect long and of 48,000 tons harden.

Japanese Tallow Trees.
Bxperimental planting of trees that yield a high grade oil useful in the arts.

JAPANESE TALLOW TREES

ENPERIMENTS marle at the L'inted States govermment's plant testing gardens at Fort lirown, Texas, in growing the Japanese tallow tree have proved so successful that many of these trees have been distributed among the farmers of the lower Rio Crande Valley section and considerable attention is being dewoted to their cultivation. It is stated that the muts of these trees contain an oil which is used in the manufacture of a high grade of varnish and that the product is in great demand in this com11try: The climate and soil of the extreme southern portion of Texas where the trees are being grown seems splendidly adapted to them. The trees, of ormamental appearance, are of quick growth.

Whare Kings dre Meustratmo
tohum in Rowkilde Cathedral. near Conembagen, where the heipht of many sonereigns is tegisteret.

TINY MODEL OF A TROLLEY C.IR.
Made ly Lesier I. Fneeland of Lymn, Mass. It is perfect in mechanism but not even hig enough to hold "little son,"

BUILDISG A CONCRETE BRIDGE IN A D.IY.
Remarkable scene on the Pennsylvania, where a bridge was built in a day at lork, Pa., without delaying trains.

Indan Irrtgation.
Man and wife drawing water to put on the folds with what is known in India as the donkls. 'The most bramitive way to water crops. Labor and life are equally chead.

CONCRETE BRIDGE IN A DAY

P
ROBABLY never hefore in the history of railroading has a permanent bridge been erected as quickly as that recently built by the Pennsylvania Company in the suburbs of York, Pa. It is built of nine large slabs of reinforced conercte, which after being molded to exact dimensions were placed alongside the railroad, convenient to the bridge that was to be replaced. It the appointed time two immense steam cranes. monnted on cars, tore up one-half of the okl bridge bodily, tracks, spans and all. and deposited it on the solid ground. One by one the great blocks of concrete were lifted into place, but so rapidly was the work accomplished that in thirty minutes after the first half of the old bridge was remored the new section was there to take its place, with track all laid ready for the passage of trains.

The other half of the bridge was replaced in much the same manner, and the entire structure was completed in a single day and not a single train delayed on account of the work: and the bridge is located on one of the busiest sections of the road, trains following one another very frequently:

ANCIENT BATH-TUB.
Curious excavation in the rocks near San Diego, California, believed to have been once used for bathing purposes at tine of low tide.

ANCIENT INDIAN BATH

AT a point on the Pacific Coast, a few miles below Delmar, California, there is to be scen in a rocky ledge a peculiar basin which has been cut in the solid rock. It is some six feet by four and of a depth of about five feet. At high tide the basin is filled, but at low tide it and the surrounding rock ledge are exposed. About the basin are gutters which allow the surplus water to run off. It is supposed that the basin was used by the Indians in carly times as a bath, the sea-water being heated by means of hot stones, and that invalid redskins made visits to the scene to seek

HERE'S WHAT THE IGUANODON WAS LIKE.
Curiously resembling the Kangaroo in its general appearance this prehistoric beast was of colossal size and was a dangerous customer. IIe stood twenty-five feet high when upreared.

Me is called the loplodncus and his lack seems strong emongh to carry the epithet.
relief from their skin diseases or ather afflictions. The bath is quite symmetrical amb is convenienty placed for such a

BEASTS OF A BYGONE AGE

AT Mr. Carl I Tagenbeck's famoma animal park at Stellingen, near Jlamhurg, there are now being erected lifesize representations of the great monsters that inhabited this carth millions of year. ago. The ifea of the proprictor is to present to public view faithful and ac-
curate specimens, su far as seience can tell, of the ereat beants that ruaned this globe in the distant past.

It all, some thirty are to be erectect. The work is beine carried ont by Mr. J. Pallemburs, a well known animal sonlp)tor. They are being built around the shores uf a delightful little lake, some three aeres in extent. These weird beasts of alnost comutlens ages ago are being built up of that very handy mbstance. coment, and at the time of writings some fiftem were abteally ont of the lmiklers' hands.

INDIANS OF THE GRE.AT FUR COUNTRY OF THE NORTH.
The aborigines initiated the white men into the mysteries of trapping. and made possible the big fortunes cerived from the fur industry.

THE TECHNICAL WORLD MAGAZINE
 APRIL. 1911
 N O . 2

TO MUZZLE THE FREE PRESS

In the closing hours of the session the "rider" increasing magazine postage was withdrawn and provision was made for the appointment of a committee to investigate the whole subject of second-class mail matter and its cost.

The Technical World Milaga-zine-like every other established standard magazinerepresents an investment of several hundred thonsand dollars. On this large investment the present net return is very modest-less than could be safely secured in other lines of business.
The increase in postal rates from one to four cents a pound on all magazine advertising pages. which the administration attempted to force through Congress, wotld probably wipe out the profit entirely and might leave a deficit.

It is admitted, then, in the first place that this magazine opposes the postal increase for purcly selfish reasons. But if there was nothing more involved than a financial loss to its publishers they would make up the deficit-or go out of busi-ness-and not attempt to bother the rearling public with a statement of the case.

But. with no desire to make rash charges, with every wish to be generous and fair in its judgments of public men, this magazine is forced to the conclusion that there are involved in the postal increase consequences of the gravest import to all the people of the United States.

By way of clearing the way, let it be
said that the Techmical World Magazine does not ask-nor will it knowingly accept-anything in the shape of a subsidy from Congress. I'resident Taft and his advisers may urge the granting of ship subsidies: they may approve in the highest terms the passage of a tariff bill which gives vast subsidies to wool trusts. steel trusts and other dropsical infant industries. This magazine prefers to stand or fall on its own merits. It is not only ready but anxions to pay a fair price for postal service.
But it submits to the fair-minded public that in determining what is a fair price for postal service and in putting any change into force, the following principles, among others, should be followerl:

1. The fair price should be-can bedetermined unly after a full and careful investigation, such as would satisfy any reasonable business man.
Postmaster Gieneral Hitchcock declares that the present postal deficit of $\$ 6,000,000$ is due to the fact that it costs many millions.more to carry second class matter than is paid for the service.
Mr. Hitchcock is an ambitious politician who has been Postmaster General for about two years. His statement is questioned by Senator Boies Penrose of Fennsylvania, the chairman of the great

I'ost Office committee of the United states, who, speaking in the Senate within a year, said:
"It is idle to take up such questions as apportioning the cost for carrying second class mail matter or the proper compensation of railroads for transporting the mails mutil we shall have established business methods in postoffice affairs by a reorganization of the whole postal system."

Senator Carter of Montana, also speaking in the senate, said in Mlarch. 1910:
"I deeply sympathize with the earnest desire of the department of ficials to get rid of the deficiency they are fated to enconter every year. but I submit that the first real movement toward that end must begin with the substitution of a molern, up-tolate business organization for the existing antiquated system."

Senator Carter is also an old member of the Post Office committee and is thoronghly acquainted with its problems.

The total gross receipts of the post office department for the last fiscal year were \$22t,000,000 . The total deficit for the same year was 2.6 per cent. To the man on the street, who knows something of the way politics has entered into the administration of the post office department, it will appear perfectly reasonable to believe that a saving of less than three per cent of the gross receipts of such an enormous and complicated business may casily be made by the adoption of approved business metlods.

In the meantime it iș safe to take the word of Senators Penrose and Carter -both experts in postal matters-that until the post office is put on a nonpolitical and business basis it will be

Postmaster Gevfral Frask H. Hitchcock. Who Anvocates Increasfo Postage Ratrs on Magazives
impossible to make such an investigation as to fairly apportion the cost of transporting and handling any class of mail matter.

Since, however, Postmaster General Hitchcock insists on biaming the magazines, it is to be noted thai in 1870, before second class mail matter was put on the pound basis, at all, the deficit was more than twenty-one per cent of the gross receipts of the department. In 1880 the first year after the pound rate went into effectwhen there was a sudden jump in the amount of second class matter-the deficit was less than ten per cent of the gross receipts.

Five years later-in 1885 - the law was passed which reduced the postal rate on second class matter to one cent a pound. And between 1880 and 1890 the total weight of second class matter had been multiplied by three. Yet in 1890 the postal deficitstaggering as it should have been under this awful burden - dropped to less than nine per cent.

After 1900 the increase in the weight of second class matter was stupendous. And with each year's increase the postal deficit decreased, mutil in 1902 it amounted to only 2.4 per cent of the gross receipts. Deficits since then have been due to the appropriation of millions for free rural delivery - in which the Technical. World Miagazine fully believes. The loss on free rural delivery in 1910 was nearly $\$ 30.000 .000$-the total cleficit of the department was less than \$6.000.000.

It would appear hard indeed to show any connection between magazine aclvertising and deficits in the postal department.
2. The same rate of postage should apply on all varieties of mail matter
falling under the same class, without, at least, unfair discrimination among them.

The gross weight of newspapers mailed yearly in the United States is several. times greater than the gross weight of magazines. Both come under the head of second class matter. Yet Postmaster General Hitchcock says that the increased cost of postage shall apply only to magazines and that newspapers shall be carried at the old rate of one cent per pound. His reason for this discrimination is that the magazines are on the average carricd through the mails for a longer distance than the newspapers. Therefore they should pay more for the service. It costs, says Hitchcock, five cents to transport a pound of magazines and two cents to transport a pound of newspapers.

But the handling and distribution of mail matter costs much more than its mere railroad transportation. The average magazine weighs a pound. It takes
four or five average newspapers to weigh a pound. Therefore there is four or five times more work to be done in hamdling and distributing a pound of newspapers than a pound of magazines.

Mr. Hitcheock's own figures-which we think inaccurate and misleadingmake his argument ridiculous. To haul and handle a pound of magazines, as derived from the figures of the depart-ment-costs $6 . t$ cents ; to haul and handle a pound of newspapers costs 8.55 cents. And the magazines make up-again according to Mr. 1 Iitchock-only about one-third of the total weight of the second class mail.

In other words the department's own figures show a loss in hauling and handling newspapers of more than $\$ 33.000$,000, against a similar loss of $\$ 8,400,000$ in hauling and handling magazines.

Why should this discrimination be shown in favor of the newspapers? A cynic, knowing the tremendous political

Is The postal deficit due To second class mail? These figures sefy Tu DISPROVE THAT CONTENTIGN.
Note that, with one exception-1909-an increase in the quantity of second class mail 1 roduced a decrease in tace deficit: a loss in weight of second class matter-1908-increased blat deficit.

426,223,803
 POUNDS OF NEWSPAPERS
 MAILED IN
 1910

POSTOFFICE LOSSES
ON MAILING and HANDLING
$\$ 33,032,844.73$
WHY RAIME THE KdTE ON MAGAZINES ANI) LET NEWSPAPERS (G) AT THE OLD FIGURE?
power of the newspaper press, might suggest an answer.

Again it may be stated, in passing, that muder the present law all newspapers and other periodicals which are mailed for distribution to actual subscribers in the comnty of their publication are carried absolutely free, provided only that they are not mailed at a letter-carrier office. The object of this exemption is, of course, to provide for the circulation of the small conntry newspapers, chiefly weeklies. And this magazine, for one. thinks it a perfectly proper provision of the law.

Another reason which Mr. Hitchacock gives for putting the whole burclen of the increased cost of postage on the magazines, is the allerged fact that they carry a greater percentage of advertising than the newspapers. This statement is not accurate. A comparison of the volmme of advertising in newspapers and marazines is ubviously hard to make. But, by careful measurements, it apears that the newspapers contain about four per cent more advertising than the magazines, in proportion to the amount of reading matter.

So far as the present business organization of the department is concerned, it is a matter of common knowledge that a large percentage of the postmasters appointed by every successive president are really nothing but the political agents of Congressmen and of other officeholders. In many cases-every man will be able to recall them in his own experience -these political postmasters practically turn over the management and operation of the postoffices to subordinates and devote almost all their own time and attention to their individual business or to political work. Certainly if every postmaster were compelled to give his individual attention to the postoffice, a considerable saving in clerk-hire and other expenses could be made.

Pustmaster General ITitchcock and I'resiflent Taft apparently recognize the fact that this great opportunity for saving exists, for they have recommended that first class postmasters be put under the protection of the civil service law. This will remove them from politics and insure to competent and honest public servants, permanent positions in the postoffice service.

TOTAL CASH
RECEIPTS OF POST-
OFFICE DEPARTMENT
IN
1910
$\$ 2,4,000,000$

TOTAL LOSS ON
RURAL FREE RURAL FREE DELIVERY IN

TOTAL DEFICIT IN 1910

THE PRESENT DEFICIT IS LESS THAN TIIREE PER CENT OF GROSS INCOME. Could not a non-political post office demartmont, ormanized and run on a busmess basis, save that per cent in the expernses of administration alone?

Once this great reform is put into effect it is believed that the present deficit will promptly disappear-unless, indeed, the department decides to make rural free delivery universal or institutes some other public convenience which cannot, and should not be expected to, pay its own way.
3. Any change in postal rates should be made by Congress on its own merits, with plenty of time for diseussion and consideration.

The law increasing the postal rate on advertising pages of magazines was hitched onto the postal appropriation bill as a "rider" in the Senate Committee on Post Office, under the lash of the administration and after the bill hadl passed the house. This method of foreing legislation through a reluctant Congress by attaching it to an absolutely necessary appropriation bill is recognized as so unfair that in some of the states of the Union it is absolutely prohibited.

It is the method frequently adopted by shrewd and determined men, who desire to secure the passage of bills which would have no show if they stood by themselves.

So introduced in the closing days of a crowded and tumultuous session, it was made impossible for the magazines to get a fair statement of their case before Congress or before the public.

To attempt in this indirect and underground way to take "snap judgment" on the magazines is not worthy of a dignified and sincere statesman. It suggests, rather, the peevish and spiteful determination of an angry politician to punish and, possibly silence, certain of his critics.

It is to be noted that the movement to increase the postal rate on magazines did not originate in Congress. It is the pet project of Postmaster General Hitchcock and has been endorsed by President

Taft. And it is exceedingly infortumate that the bill is so worded as to apply almost exclusively to those magazines of large circulation and influence which have taken a leading part in the discussion of pulblic affairs and in criticism of certain policies of the administration.

One of the worst features connected with the increased rate on magazine advertising pages is the tremendous power which it puts in the hands of the Postmaster General. The increase applies only to magazines and not to newspapers. Now what is the difference between a magazine and a newspaper? Is Collier's Weekly, devoted almost entirely to the discussion, illustration and description of current events, a newspaper? Are the magazine sections of the great Sunday newspapers, printed in close imitation of recognized magazines, newspapers or are they magazines? These questionsand a thousand like them-only the Postmaster General is authorized to answer.

No one wishes for a moment to suggest that Postmaster General Hitchcock would be guilty of using such a tremendous power for any ulterior purpose. But suppose a case where a Postmaster General is an unscrupulous politician, devoting most of his attention to political manipulation and wire-pulling?

Suppose he is desirous of stopping adverse criticism of the administration with which he is connected or of recognizing the flattery of some complacent periodical? By, a nod of the head, he might reward his political friends and punish his political enemies.

Are we ready in this country for the appointment of a press censor, with a lash and muzzle in one hand and a fat piece of meat in the other-to say nothing whatever of the absolutely crushing power of the post affice department behind him?

A POTATO AMBASSADOR

B y

ARTHUR CHAPMAN

IN the endeavor to find out why the United States, with its immense area of arable land, cannot always raise enough potatoes to supply the home demand, the Department of Agriculture has had a "potato ambassador" abroad, studying potato conditions in Europe.
E. H. Grubb, of Carbondale, Colorado, known as the "Potato King" of the Centennial State, has been making official investigations for Concle Sam, and he has found that American potato growers have much to learn of foreign farmers before the crop in this country becomes great enongh to supply the demand from year to year. Mr. Grubb has specialized in potato culture for years, though he is also celebrated as a livestock raiser. It was on his suggestion that the government established a carriage horsebreeding station in Colorado, to develop a national type of carriage horse, and he put the need of better potato conditions so convincingly before Secretary of Agriculture Wilson that a scientific investigation of conditions at home and abroad was determined upon and Mr. (irubb was chosen to carry ont the work.

"I have found that the foreign farmers, in the great majority of cases," said Mr. Grubb, on his return, "are far ahead of our tillers of the soil. They are quick to take advantage of every scientific implement, and they put their land to the best use. That is why Lord Rosebery, on soil that has been cultivated for hundreds of years, can grow 2,000 bushels of potatoes to the acre while the best I can do on my irrigated farm in Colorado is 600 bushels. Foreign farmers are specially strong in saring their land, not making it barren by too frequent demands for bumper crops. The potatoes of Great Britain are not as large nor as firm as those grown under irrigation in our own IV est. That encourages me to belicve that, when scientific culture becomes general, especially in the W'est, it will no longer be possible for Germany and Russia, and nearly every foreign country, to outstrip us in potato production. There is no reason why a small country like Germany can raise one-third of the potato crop of the world - nearly $1.700 .000,000$ hunhels. while we can raise only about $300.000,000$ bushcl.
"With cheap potatoes to fall

back on, there will be no cry about the high cost of living in this country. Germany is able to get along with little meat, because potatoes are used as a substitute. The Germans use potatoes to make alcohol for commercial purposes, and also put the tubers to other general uses, but in this country we seem to think the potato's field of usefulness is ended when it figures on the table. We ought to be able to raise potatoes enough in this country to enable us to use denatured alcohol as much as we use gasoline. In Germany potatoes are even dried and used for feed. In fact there is no end to the uses to which the potato can be put-but the first problem is to make the American farmer raise a better and larger potato crop.

For thirty years the consumption of potatoes in this country has been about three and one-half bushels per capita, but the supply has not always kept pace with the demand. It will surprise the average individual to learn that we import about one-quarter of the potatoes used in this country, but such is the fact.

This lagging of the potato crop is one of the chief reasons why living expenses in America have climbed until the average wage-earner stands aghast at his honsehold bills.
"Advancement in knowledge of soils, and how to preserve their richness-that is the solution of the potato problem in this country, and incidentally the solution of the cost of living problem," declares Mr. Grubb. "IVe have been wasteful of our soil, which was the best in the world. First we impoverished the soil of New England, and of late years we have wasted the soil of the West. Now there is no new soil to be taken up, and we are face to face with the problem of making the best use of the old acreage. Europe has faced that problem for centuries, and has solved it, if one is to judge by the immense crops European farmers grow on a restricted acreage. The potato is only one of the many things we must cultivate better-but it is one of the most important."

The govermment's "potato ambassador" is another Luther Burbank in many

respects. His highly developed ranch, at Carbondale, Colorado, under the shadow of Mount Sopris, is the scene of many interesting experiments, carried out by this man who is intensely interested in the problems that confront the American farmer. In the course of his potato experiments he has succeeded in developing potatoes that are of uniform size, consequently being ideal for baking purposes, and that have thin skins and shallow eyes-points that any honsekeeper will appreciate. These potatoes will yield heavily under scientific cultivation. Mr. Crubb has made no secret of his methods, but has carried on an evangelical work in many Western states. Several railroads have engaged him to instruct settlers along their lines in the art of potato growing-for that it is an art
anyone will admit after seeing the results achieved by this Colorado Burbank. A New lork railroad recently engaged him to carry on the work of restoring the abandoned farms along its line. Always Mr. Grubb has given his services and the results of his investigations in a most unselfish spirit, though he could have made himself wealthy by keeping his potato knowledge to himself and supplying the demand that naturally arose for his produtets.

Mr. Grubl's commission to inquire into potato conditions abroad is considered one of the most important steps taken by the Department of Agriculture in recent years, and the final report of the "potato ambassador" will affect every potato raiser and consumer in the country.

A FUR TRADER COMING INTO PRINCE ALBERT.

A CONTINENTAL FUR FARM

By

AGNES C. LAUT

IS the world facing a permanent shortage of fur supplies? Is the oldest industry of man coeval with cave life threatened with extinction?
Three times in the last few months the statement has been made to the public with show of first hand authority that the last chapter of the fur hunt is being written ; that the oldest industry of man coeval with cave life is threatened with extinction; that another twenty years of fur hunting will mark the last of the precious furs: that another half century will witness the utter extinction of fur bearing animals in America.

The statement is a sweeping one, vitally significant to every denizen of
snowy latitudes the world over. Is it true? When 1 was a child in the Canadian Northwest, you could buy a buffalo coat for $\$ 25$ or a beaver from $\$ 70$ to $\$ 100$. You cannot buy a buffalo coat today at any price: and during the closed season established for beaver by the Canadian Govermment these past seven years, it has been almost as impossible to buy a beaver. I remember one summer in the Rockies years ago pricing mink skins from the Stoney Indians. I could have bought them at 80 and 90 cents apiece. Those skins today would cost from $\$ 10$ to $\$ 15$ each. I could have bought the most perfectly marked ermine from 4 to 10 cents a skin. Today those skins would cost from 40 c to $\$ 1$. I

have in my work room as I write a 1 nin skin robe larger than the ordinary floor ruge, for which 1 paid less than $\$ 30$. Fur traders torlay tell me that lymx skin would bring its weight in gold-which is not so costly as it sounds; for lynx is the lightest of furs.

Does all this prove that we have reached the permanent world shortage of furs?

One does not need to prove the extinction of the buffalo. Buffalo. which roamed the prairics between the Missouri and the Saskatchewan so numerous that literally bridges of the dead spanned the rivers in spring where the vast herds
crashed through the ice or over a cliff into an Indian pond-today exist only in half a dozen private and public parks. I have visited all of these parks in the last three years. I do not think the total number of buffalo from Missonri to Saskatchewan today exceeds 1,000 . The largest herd I know does not exceed 400.

The case is almost as bad regarding fur seal. But a few years ago the population of the seal islands was five millions, and the yearly catch 150,000 . Last fall, the greatest atthority on seal fisheries in America today told me he did not believe there were more than 30.000 seals alive in the whole workd : and not a seal would survive the next five years unless pelagic sealing ceased-the indiscriminate shooting outside the pelagic zone by Japanese, Canadian and Russian poachers of male and female and young swimming to the rookeries. The cleath of each female in spring costs besides the mother's life, the umborn pup's and the young seals' ashore which die of starvation when the mother's care is removerl. Still a worse feature of t his pelagic sealing oceurs during fog. When the fog falls over Bering Sea
thick as wool, the poachers venture in ashore to the rookeries. So great is the laste of their bloody work to escape before the fog lifts, that the raiders often skin the seals alive, not stopping to see that the blow of the gaff chub has caused death.

As for sea otter, it has come so near extinction that it may almost be written down as one of the furs no longer obtainable. Four years ago when I made enguiries on the Pacific Coast as to the take of sea otter. I put down the decrease from 150.000 a year in a century to 400 a year: and those figures have been diligently copied ever since. They are no longer correct. The annual take is now nearer 200 than 400 . Of the fur, itself, little need be said except that the pelt is the largest of the sea furs and finer in texture and deptls than either seal or silver fox.

Beaver is today practically extinct in the United States, or almost so. Ten years ago, it became so scarce in Canada that the Dominion Government established a closed season for a term of years. This closed season has now expired: and once more the trapper will wage war on the beautiful rodent of marsh and woods. If he is permitted to wage war with dynamite and on male and female and young indiscriminately, beaver will again become scarce to the point of almost extinction.

Does all this augur the extinction of fur trading, the oldest industry of man, the industry that lured explorers across America in search of the beaver: and Cossacks across
of the sea otter? Have we reached the last chapter in fur?

Frankly and with the deepest respect for the prophets of evil, and from a life time in the Northwest, I do not think so. The oldest industry of mankind, the most heroic and protective against the elements-against Fenris and Loki and all those Spirits of Evil with which Northern myth has personified Collfur hunting, fur trading, will last long as man lasts.

We are entering, not on the extermination of fur, but on a new cycle of smaller furs. In the days when mink went begging at eighty cents, mink was not fashionable. Mink is fashionable today : hence the absurd and fabulous prices of $\$ 900$ and $\$ 1.000$ for a lady's opera cloak. Long ago, when ermine as minevir-the garb of mobility-was fashimable and exchusive, it commanded fabulous prices. Radicalism abolished the exchusive garb of royalty; and ermine fell to four cents a pelt, advanced to twenty-five cents and recently has sold at one dollar. Torlay, mink is the fashion, and the little mink is pursued; but tomorrow fashion will veer with the caprices of the wind. Some other fur will come into favor : and the little mink will have a chance to multiply as the ermine has multiplied.

Be it noted here-buffalo were ex-

DEBRIS BROUGHT DOWN BY FLOOD FROM THE BIG TIMBER COUNTRY.
terminated, not because of the pursuit of the fur-for the pelts rotted unsold in St. Lonis warehonses in the 1830's and 40 's or were used as leather-buffalo were exterminated because the buffalo pasture grounds were cut up into barbwire fenced farms, by the transcontinental railways.

The seal and the sea otter have been reduced almost to extinction-not by the fur hunters: for the true fur hunter never destroys the female or the young -but by the poachers, by the fact that international law was involved and the nations of the United States, Canada, Japan and Russia coukl not sink their other hastilities long enough to come together and regulate fur hinting. The monopolist never destroys the source of his own prosperity. When competing monopolists come together on the same field, they destroy on the principle "if they don't, the other fellows will." Of this, I found a curions example when examining the documents of the Hudson's Bay Company in London five years ago. It was in the early 1820's. Peter Skene Ogden was scouringe suth of the Columbia with fur brigades of 200 men; Ross was leading his hunters on the Upper Missouri. The only section of the Hulson's lay Company's field from Califormia to the Arctic, where instructions were issued to clean ont all beaver irrespective of age, size, sex, was south of
the Saskatchewan: "for if we don't" declared Ogden, "the Americans under General Ashley will." The same spirit was exemplified last year. It was before the Canadian Club of Ottawa, Canada. I had been pointing out the fact that the seal was being exterminated, not by the true fur hunter but by the poacher-the Japanese and Russian and Canadian raider, who swooped down on the umprotected rookeries, or shot the mother seal swimming in and out of the pelagic zone. A man, who had been secretary to one of the sealing commissioners, came up to me after the lecture. "You are wrong." he said, "you are wrong I tell you in blaming Canadians. If Americans hog the whole thing, then I say, let the Canadians go in and kill every blamed cub. I'd shoot every last seal in the sea rather than let them beat us and hog it all."
"Meanwhile," 1 answered, "what becomes of the seal?"
"I don't care," he said. "We'll show them."

This spirit of international jealousyshall 1 call it hoggery?-and not the spirit of the true hunter, is what has brought the seal and the sea otter almost to extermination.

As for the beaver, he is not an Arctic animal. He is a denizen of the temperate marshes. What has become of his marshes? Read the Congressional reports on reclamation and draining. Where beaver dams once

Some. Thirty Thousand Dollars Worth of Gray and Silvfr Fox Skins. lapped to wind and reed west of Lake Michigan, stands the city of Chicago. Like the buffalo, the little beaver has witnessed his habitat cut up into cities and farms; but where city and farm can never gonorth of the Saskatchewan, in Labrallor, down MacKenzic River, on the marshes of the hinterlant of Ontario-the little beaver still plies his furtive calling of damming sluggish streams and converting marshes into meadows.

In spite of the cry of the end of fur, more furs were marketed in the world last year than ever before in the

BRINGING THE FURS TO PRINCE ALBERT IN WINTER.
history of the race-forty million dollars worth; twenty million of which were handled in New York and Chicago and St. Louis and St. Paul; some five millions passing through Edmonton and Winnipeg and Montreal and Quebec, three millions for home consumption, two millions plus for export. Five years ago I went through all the Minutes of the Hudson's Bay Company in London from 1670 to 1824 , and have transeripts of those Minutes now in my library. In not a single year did the fur record exceed half a million dollars wortl. Compare that to the American traffic Loday of twenty millions; or to the three and four hundred thousand dollar cargoes that each of the Huxson's Bay Company and Revillons' ships bears to Europe from Canada yearly. The muskrat marshes of New Jersey and Delaware have been honted diligently for half a century; yet they last year yielded between four and five million pelts of the little water rodent that lines fur coats.

There is another remoter but understandable cause for these cycles of seeming scarcity and higher prices for furs. "Once in seven years, regular as the years come round, from some cause that I have never heard any scientist explain, rabbits die off in the North of pestilence," said the Revillons' chief guide to me, as we canoed down Saskatchewan River two years ago.
"Yes," interjected the Hudson's Bay tripman,
whom we had taken on as paddler for an especially long stretch of rapids. "and when waupoose is scarce, all the other fellows are going to go meat hungry."
"It's like this," explained the head guide. "When rabbits fall off, lynx and wolverine and all the other meat eaters are not going to be in as good fur the nert year-won't likely have as fine litters: and the kits may starve. That means scarce fur for a year. The rabbit plagne is about due now. That means higher prices for the rabbit eaters next year."
"Do they always have this plague every seven years?" I asked.
"Always have since I have come to the country: and that is twenty-fonr years ago."
"And the fur is always better when the animals eat meat?"
"No- $110 t$ of all animals. It is of lynx

Indian Packers Portaging Past a Rapid.

I Trapper of thr North.
and wolverine: but when the marten, or what the Russians call wood sable, eats mice, like a cat it grows pour and lean. You always find the marten in the berry comntry ; and when it eats leerries. it is fat and its fur is fine and beautifully glossy. Its pelt will command all the way from $\$ 8$ to $\$ 32$ according to (puality. I tell you a few of those fellows will make you rich. The fur doenn't reguire any dyeing, just drying and tanning; and it doesn't spoil in sun or rain. We usually catch them in dead falls; and when they are meat hungry, they will eat each uther"s heads off in the traps. Yout
always get the mink and the muskrat best in the small game marsh country; and the marten and the lynx in the wood and berry comntry where rabbit is plentiful. Otter are hard to get because at the season when they are in colonies, the fur is no gool--a trapper won't take them. When the fur is in season, they are off solitary. You look ont for them fishing round ice holes."
"How much can a good Indian humter make in a season?" I asked this becanse in nearly all accounts written about furs, you read a wail of reproach at milady for wearing furs when trapping entails such hardship and poverty on the part of the hunter.
"A good hunter easily earns $\$ 600$ or $\$ 700$ a winter if he will go out and not hang round the minute he gets a little ahead. It takes from $\$ 3,000$ to $\$ 4,000$ to outfit a small free trader to go up North on his own account. This stock, he will turn over three or four times at a profit of one hmulred per cent. on the supplies. For example, $\$ 10$ cash will buy a good black otter up North [1908]. In trade, it will cost from $\$ 12$ to $\$ 15$. On the articles of tracle, the profit will be fifty per cent. The otter will sell down at Edmonton from $\$ 20$ to $\$ 30$. It's the same of muskrat. At the beginning of the season when the kits are plentiful and small, the trarler pays nine cents for them up North, Down at the fur market he will get from twenty-five to sixty cents for them according to size. There were 132,000 muskrat came to one firm of traders alone in Edmonton this year, which they will sell at an advance of fifty per cent."

At the very next fur post, where we stopped-the big game country west of

THE TOWN OF FORT RESOLUTION ON GREAT SLAVE LAKE.
old Fort Pitt-it was easily estimated that the trader took in $\$ 40,000$ of supplies a year, and sent out $\$ 125,000$ of furs; but it is not all so profitable and easy as it sounds. Comes the hard year when the pest sweeps off the rabbits or drought dries out old marshes-which tatter is very seldom owing to the supply of moisture from the winter's heavy snow-and the Indian hunters, who never save, demand advances on credit from the trader. If he refuses, they will never again bring him a pelt. To hold their good will he advances flour, tea and perhaps some clothes. When the good years come again, he finds that the Indian owes a prior debt to some other trader. If the banks will not carry him past this second into a third season, the free trader goes bankrupt. At the first post where we stopped in the swamp or muskrat country north east of the Saskatchewan, we met a free trader, who had bought 32,000 muskrat his first year and cleaned up a tidy profit; but his second year in order to hold trade, he extended too much credit. Winter set in early and lasted late. The muskrat hunt was poor. The Indians could not pay their debts and the trader sold out to The Company -The Company standing for only one firm in the Northwest-the H. B. C, which old-timers irreverently translate.

"Here B. C."

"How much fur comes yearly to Ed-
monton?" I asked. If you look at the map you will see that Edmonton is the jumping off place to three of the greatest fur fields of North America-down MacKenzie River to the Arctic, up Peace River to the mountain hinterland between the Columbia and the Yukon, east through Athabasca Lake to the wild Barren Land inland from Churchill and Hudson Bay.
"Well, we can easily calculate that. I know about how much is brought in to each of the traders there."

I took pencil while he gave me the names. It totalled up to $\$ 600,000$ worth for 1908. When you consider that in its palmiest old days of exclusive monopoly, The Company never sold more than half a million dollars worth of furs a year, $\$ 600,000$ total for Edmonton alone does not sound like a scarcity of furs.

The question may be askel, to not these large figures presage the hunting to extinction of fur bearing animals? I do not think so: and my knowledge of the W'est is not gained from the windows of a Pullman car as much expert knowledge of the Northwest is. Two years ago a very flamboyant article came out accusing a circle of writers on the North-west-myself among the number-of gross misstatement of facts. "Canadian fakirs," was I believe the phrase. Among other questions, it was asked with that mock indignation so comic with sparse

Fur Buyers at Edmonton.
isn't. When you go seventy miles north of Saskatchewan River (barring Peace River in sections) you are in a climate that will grow wheat all rightsplendid wheat, the hardest and finest in the world. That is, twenty hours of sunlight-not day light but sun light-force growth rapidly enough to escape late spring and early fall frosts: but the plain fact of the matter is, wheat land does not exist north of the Saskatchewan except in sections along Peace River. What does exist? Catar-
knowledge, how these writers dare refer to "blood-hounds" in a country where no dog exists but the husky; or call trave] difficult in a land where "fur traders could as easily go from Edmonton to Klondike as a postman could go his daily rounds in an Eastern town." At the time that article appeared. I was camping in the fur country storm stead at Cumberland Lake, and had to hang my boots on my tent post to keep them from being eaten at night not by huskieshuskies have much better manners--but by the mongrel packs locally known as "the string band," half wolf-hound half bloodhound bred by the fur traders for length and speed of limb in the traces, which rove Northern woods in ravening hordes. Ny guile, camped down at the big beached canoe, happened to be the man whom the Government had selected to pilot a path from Edmonton to Klondike. Not a man alive ever went through to the gold field that way. Ile happened to be onc of the men who came back alive. Most of the others didn't. So much for I'ullman car expert knowledge on the West.

Take a map of the Northern fur enuntry. Take a good look at it-not just a Pulhman ear glance. The Canarlian Covernment, to whom I am proud to owe allegiance and have more than once contributed facts for their official publications, have again and again actvertised thousands, hundreds of thousands, millions of acres of free land. Latitudinally, that is perfectly truc. Wheat-wise, it
acts countless-Churchill River is one succession of cataracts; vast rivers; lakes unmapped, links and chains of lakes by which you can go from the Saskatchevian to the Arctic without once lifting your canoe: quaking muskegsareas of amber stagnant water full of what the Indians call mermaid's hair, lined by ridges of moss and sand overgrown with coarse goose grass and "the reed that grows like a tree" muskrat reed, a tasseled corn-like tufted growth sixteen feet high—areas of such mus. keg mile upon mile. I traversed one such region above Cumberland Lake seventy miles wide by three lundred long where you could not find solid ground to camp the size of your foot. What did we do? That is where the uses of a really expert guide came in: moored our canoe among the willows, cut willows enough to keep feet from sinking, spread oil cloth and rugs over this, erected the tents over all, tying the guy ropes to the canoe thwarts and willows as the ground would not hold the tent pegs.

It docsn't sound as if such regions would ever be over-run by settlementdocs it? Now look at your map, scventy miles north of Saskatchewan. From the north-west corner up by Flondike to the sonth-east corner down in Labrador is a distance of more than 3,000 miles. From the South to North is a distance of almost 2,000 miles. I once asked a guide with at truly city air-it might almost have been a llarvard air-if these distances were "as the crow flies." He
gave me a look that I would not like to have a guide give me too often-he might maroon a fool on one of those swamp areas.
"There ain't no distances as the crow flies in this country," he answered. "You got to travel 'cording as the waters collect or the ice goes out."

Well, here is your country, 3,000 by 2,000 miles, a great fur preserve. What exists in it? Very little wood, and that small. Undoubtedly some minerals. I myself saw brought by an Indian from some tunknown mine on Churchill River a piece of pure natural copper the size of a man's hand. What else exists? A very sparse population of Indians, whose census no man knows, for it has never been taken: but when the total Indian population of Canada is only 100,000 . and yout derluct from the total those on reserves and those on the Pacific Coast, it is a pretty safe guess to say there are not 20,000 Indians all told in the North fur country. I put this guess tentatively and should be glad of information from any one in a position to guess closer. I have asked the Hudson’s Bay Company and I have asked Revillons how many white hunters and traders they think are in the fur country of the North. I have never met any one, who placed the number in the North at more than 2.000 . Spread 2,000 white hunters with 10.000 Indians- for of the total Indian population half are women and children-over an area the size of two-thirds of Europe -I ask you frankly, do you think they are
going to exterminate the game very fast ? Remember the climate of the North takes care of her own. White men can stand only so many years of that lonely cold, and they have to come out ; or they dwarf and degenerate.

Take a single section of this great Northern fur preserve-Labrador, which I visited some years ago. In area, Labrador is 530,000 square miles, two and a half times the size of France, twice the size of Germany, twice the size of Aus-tria-Hungary. Statistical books set the population down at 4,000 ; but the Moravian missionaries there told me that including the Eskimo who come down the coast in summer and the fisherman who come up the coast in summer the total population was probably 17,000 . Now Labratlor is one of the finest game preserves in the world. On its rocky hills and watery upper barrens where settlement can never come are to be found silver fox-the finest in the world, so fine that the Revillons have established a fur trading post for silver fox on one of the islands-cross fox almost as fine as silver, black and red fox, the best otter in the world, the finest marten in America, bear of every variety, very fine Norway lynx, fine ermine, rabbit or hare galore, very fine wolverine, fisher, muskrat, coarse harp seal, wolf, cariboo, beaver. a few mink. Is it common sense to think the poptlation of a few thousands can hunt out a fur empire here the size of two Germanies?
(Concluded in May number.)

IMNERSING THE MATCHES IN THE IGNITING COMPOSITION.
White phosphorus renders this occupation a deadly peril.

THE WHITE PHOSPHORUS HORROR

By

P. HARVEY MIDDLETON

"I invite attention to the very serious injury caused to all those who are engaged in the manufacture of phosphorus matches. The diseases incident to this are frightful. and as matches can be made from other materials entirely innocuous. I believe that the injurious manufacture could be disconraged and ought to he discouraged by the imposition of a heavy Federal tax. I recommend the adoption of this method of stamping out a very serious abuse ". - Hilliam Howard Taft. December 6th, 1910.

THESE few lines in the President's message inspired this article. Mr. Taft is conservative. When he uses such words as "frightfin" and "a very serious abnse" you may depend upon it that there is something wrong somewhere. And so the writer investigated, and the result is the startling discovery that several thousands of American men, women, and children are exposed to a loathsome disease-a dis-
ease so repulsive that even experiencerl plysicians turn sick while examining the unhappy creatures who are afflicted with it, and dread the duty that calls them to attend such cases. Leprosy itself is no more horrible than phosphorus necrosis, popularly known as "phossy jaw."

In all American match factories the head of the ordinary parlor match is made by dipping the end of the wooden splint into a paste containing white phos-
phorus,-a most deadly poison. The finmes and particles of phosphorus attack the bones of the workers, but more especially their teeth. If the factory worker happens to have a decayed tooth, the poison enters the cavity, setting up an intlammation which, if not quickly arrested, extends along the jaw, killing the teeth and bones. The gums become swollen and purple, the teeth loosen and drop out, and the jaw-bones slowly decompose and pass away, the horrible product sometimes breaking through the neck in the form of an abscess, or if not almost continually cared for, finding its way to the stomach. Here is the brief history of one case among hundreds:

Nine years ago, at twenty-one years of age. Mary Wilson, tall, strong and full of the joy of life, married Henry Welsh. She had worked for several years as a "packer" in the match factory, and continued to work there after her marriage. But two months later she commenced to have trouble with her teeth. Dr. Afirst treated her, beginning with the first operation November 15th, 1901. He performed a second operation August 11th, 1903. removing several large splinters of bone from her jaw She grew no better, and through Dentist Bshe secured daily treatments at her home.

Finally, as the trouble continued, she went to Doctors C- and D-_ for further medical aid, and is receiving medical attention from them at the present time. Three years ago an abscess opened through the right side of her jaw, and one year ago another opened on the left. Both require constant bandaging. When seen recently she was scarcely able to open her lips enough to speak and could not separate her upper from her six remaining lower teeth. All of her lower teeth except the middle six have come
out, and several inches of the jaw-bone is bare, and in in:lescribably horrible condition.

The physicians, in an effort to preserve the contour of her face and to avoid leaving unsightly scars, attempted to operate on the inside. In this case the dead bone does not form a sequestrum or separated portion which might easily be removed from the living bone beneath. It simply continnes to die and to dispose of itself in the most nauseating and dangerous manner, poisoning the entire system.

The poison first manifested itself eight years ago, shortly after Mary Wilson's marriage. She has a boy six years old, a little girl of four, and a baby but two years old. She says that the two older children are well and strong, but that "the baby seems to have trouble in its blood."
"The doctors say perliaps they could cure me," she says, "by cutting out my

Spliting the Shavings injo Match Sticks.
jaw, but I am young yet, and how would it look? I'd rather be dead, I think!"

The suppurating bone is more horrible than anything that can be imagined. Anyone who has once witnessed the condition of such a sufferer can readily understand why dentists and physicians alike shun patients who are afflicted with "phossy jaw."

Now the case of Mary Wilson is not extraordinary. It is typical of many. There is an old woman in Ohio-a former matchmaker-who, as a result of phosphorus poisoning, for twenty years has had no lower jaw, but masticates her food by pressing it against her upper jaw with her thumb. Then there is George K - - of Portland, Maine, who also had his entire lower jaw removed and for twenty-two years ate no solid food; and William J- of Milwaukee, who lived in abject misery with necrosis of the bones of the ear.

A well-known case was that of Emil $\mathrm{H}-$-, who underwent treatment in Chicago in 1895 for necrosis of the jaw. According to the hospital records, when forty-six years old, and married, he was first admitted to the hospital on June 9th. 1896, and remained ten days. The following appears in the hospital record: "Phosphorus necrosis. Dr. B-_ of Chicago removed both upper and lower maxillae." With both upper and lower jaws entirely removed, and with the poison still continuing its deadly work, this man lived month after month, suffering untold agonies, and taking nourishment through a tube.

Dozens of cases could be quoted of strong vigorous young men and women who have gone to work in our match factories, and in a few years have become terribly disfigured, with teeth gone, and with necrosed bone exposed. When a man has his lower jaw removed he immediately grows a beard, a refuge denied to the women sufferers.

Now, incredible though it may sound, it is an absolutely established fact that this htman misery, this blasting of the lives of men, women, and children, is absolutely unnecessary, and that a harmless substitute for the white phosphorus exists and has been successfully used in this and other countries. In other words, our match manufacturets permit their
workpeople to run the risk of this peril by unnecessarily continuing the use of poisonous phosphorus, because the substitute costs a fraction more!

In order to understand the full meaning of the present situation we must review briefly the match industry as a whole. Know, then, that these insignificant little trifles of wood, paper, or wax, topped with latent flame, wherewith we kindle fires and light the soothing pipe or cigar, represent an industry involving an investment in Eturope and America of hundreds of millions of dollars. The match does its work, and is cast contemptuously aside, yet it is an evolution representative of much htman patience, ingenuity and skill,-one of the best gifts sought out and elaborated by genius for the benefaction of the human race.

In this country alone the largest producer cuts one hundred million feet of timber every year to be converted into match sticks. Every minute of the twenty-four hours throughout the day three million matches are struck. Fifteen hundred billion is the number for an entire year. The importance of the industry is only recognized when the average smoker tries to contemplate his predicament if he had to go back to the time when he had to coax a spark from a tinder box.

In the years succeeding the discovery of the phosphorns match the industry grew prodigiously. In Germany first, then in France, Belgium and England, and successively in all parts of Europe. factories were established, and as there was absolutely no control exercised over the manufacture, the most deplorable conditions prevailed. Matches were being made almost anywhere, in the workmen's cottages, in the homes, in cellars. Phosphorus was found in clothing, in the midst of food, within reach of children, and from this carelessness came fires and hundreds of deaths from poisoning. The workmen, recruited from anywhere, and uncared for, were crowled together in unventilated workrooms, where the atmosphere was stifling. In a brief period the hospital in Viema had one hundred and twentysix sufferers from phosphorus necrosis, and the hospitals of Berlin and Nuremberg were also crowded with cases.

DEATH CERTIFICATE OF ANNA WALTER.
A worker in a Wisconsin factory after the use of the harmless substitute for poison had been discontinued. She died in June, 190s, of "general debility due to phospho-necrosis of left infertor maxillary bonc." Fifteen others in the same factory have lost one or both jaws.

About this time the various governments of Europe began to make rules and regulations for the manufacture of matches. The new industry was driven out of the cellars. Better ventilation and better opportmities for bathing in the factories were insisted on. But so long as white phosphorus continued to be used necrosis could not be eliminated, and so in 1872 Finland gave up attempts at regulation and prohibited the use of white phosphorus in her match factories. Denmark, in 1874, followed suit.

In France, where the manufacture of matches is a state monopoly, the disease spread with great rapidity, and the French Government, called inpon to bear the expense of the many cases of poisoning, offered a reward of $\$ 10,000$ for a substitute for white phosphorus, which was discovered in sesqui-sulphide of phosphorus, and the use of white phosphorus was prohibited in 1897. Switzer-
land decided upon prohibition in 1898 , and the Netherlands in 1901. In 1906, on account of the difficulties of eliminating the use of phosphorus in conntries with an important export trade, the International Association for Labor Legislation secured an International Conference at Berne, which resulted in an international treaty providing for the absolute prohibition of the manufacture, importation, or sale of matches made from white phosphorus. This treaty was signed by France. Denmark, Luxembourg. Italy, Switzerland, the Netherlands, and Germany. On Jannary 1, 1910, Great Britain also signed the Berne treaty. In 1908 the Austrian House of Representatives passed a resolution requesting the Austrian Government to prohibit the use of the poison. Hungary is considering absolute prohibition. Sweden does not permit the use of poisonous matches at home but exports
them to other countries. In 1905 the tax on white phosphorus matches in Russia was doubled.

Thus the learling countries of Europe have gone on recorl as favoring the absolute elimination of this terrible trade disease, and the United States has the unenviable distinction of being the only country that has made no adequate pro-
to the fumes of phosphorus and the dangers of phosphorus poisoning. The women and children were found to be much more exposed than the men, ninety-five per cent. of the women and eighty-three per cent. of the children under sixteen years of age being so exposed. Those fifteen factories, according to statements by the manufacturers,

THE PEYIING OR VENEERING ROOM OF A MATCH FACTORY.
vision for the protection of the health of workers in her match factories, although for over half a century the dangers of working with white phosphorus have been well known

The best harmless substitute for the poisonus phosphorus, i. e.. sesqui-sulphide of phosphorus, would make the manufacturers' cost of matches less than five per cent, more, but they declare that its vohmtary use would place them at too great a disalvantage with business competitors. During 1909 and 1910, however, a quiet investigation was marle of conditions in fifteen American match factories by agents of the Burean of Labor. Their reports show that sixtyfive per cent. of the labor force were working under conditions exposing them
employed 3.591 persons, of whom 2,024 were men and 1,253 were women 16 years of age and over: children under 16 numbered $31+121$ boys and 193 girls.

Notwithstanding the dangers connected with employment in the match factories, 23.26 per cent. of the men are paid less than six dollars a week, and 33.52 per cent. earned ten dollars or more. Of the women, 53.75 per cent. earned under six dollars a week and only 4.47 per cent. earned ten dollars and over. In some instances the employees have been in ignorance of the serious dangers of match-factory employment. In several factories visited not a single notice was posted warning the employees of the peculiar dangers to which they
were exposed by the character of their work.

In some instances the employers also have carried on the mannfacture of matches entirely in ignorance of the dangers involved. The manager of one factory even declared to Dr. John 1\%, Andrews, secretary of the Anerican Association for Labor Legislation-who has made an extensive study of the effects of phosphorus poisoning in the United States-that they had gone on for five years in no way suspecting that there was anything dangerous about the material they were using. Their attention was first called to the dangers of the industry, so they said, by an epidemic of phosphorus necrosis which broke out almost simultaneously among their employees.

Ignorance of the dangers of the industry and of the practice of the most fundamental precautions exists to an extraordinary degree. A physician in one of the towns where a match factory is located had under treatment a very serious case of phosphorus necrosis, and when asked what kind of plosphorus was used in the factory where the disease was contracterl, replied that he "did not know." Several dentists interviewed stated that they had been unable to find anything written on the subject of phosphorus poisoning, and several confessed that they had been "experimenting," and hoping in that way to learn what to do for their patients.

A searching investigation by Dr. Andrews in the homes of the workpeople of three match factories yielded a total of eighty-two cases of phosphorus poisoning. He quickly discovered the records of more than one humdred cases of the disease, though the belief has been fostered by the match manufacturers that the disease has not existed in a serious form for twenty years in this country.

Unfortunately for the investigators, the labor element in match factories is constantly changing, and it is difficult to find among the employees one whose memory goes back over many years to recall cases of mecrosis that may have occurred several years ago. Girls who formerly worked in match factories are difficult to find because of change of
name by marriage, or because of change of occupation and residence. And when finally located these okfer women often. from reasons of social pride, reluctantly admit that they ever worked in a match factory. Dimployees now at work in the match facturies frequently express the greatest alarm, even when met at their homes, lest the giving of information cost them the loss of their miserably pait positions. Sometimes, however, starting with the statement that they never heard of more than one case, they are later able to recall, after some careful thinking. half a dozen or more specific instances, and to give names and even approximate dates, although it is a fact that employees leave the factory immerliately upon learning the nature of their trouble, often without telling their most intimate friends at the bench the true canse of their leaving.

Athough complicated by modern methods of machines, the fundamental processes in the manufacture of matches may be described in a few words. The wooden match splint is prepared, the phosphorus composition for the head of the match is mixed: one end of the splint is dipped into this paste: the "green" match is allowed to dry, and finally it is boxed and wrapped.

The processes which are especially dangerous in this industry are all those which bring the employee within range of the poisonous phosphorus. In the mixing, dipping, drying and packing room the danger from loreathing the poisonous fumes and from contact with the phosphorus is always present, although it may be much diminished by thorough ventilation and by the rigid enforcement of preventive measures. Also, particles of phosphorus become attached to the hands and are later transferred to the month hy the employees.

Two kinds of phosphorus are used in the manufacture of matches. One is the red or amorphous variety contained in the friction surface of safety match boses. This, when pure is entirely harmless. It is made by laking in a closed vessel the poisonouts or white phosphorus-also called yellow phosphorus, because when exposed to the light it tecomes yellowish-and is consequently more expensive. The poison-
ous phosphorns is made from bones, and when sold for commercial purposes is nsually in the form of sticks, in appearance not unlike lemon candy. A very small amome of this poison is sufficient to cause death.

Proadly sjeaking. three kinds of matches are manufactured. One is the "safety" match, which must be struck on a prepared surface on the box. This mateh contains no phosplorns, and is harmles. The igniting composition is painted on the box, and contains red phosphorus. Which. when pure, is nonpoisonous. Although used extensively in Europe, its mannfacture in this country is limited.

The second kind of match can be struck on any ordinary rough surface, and is called the "strike-anywhere" phosphorus match. This is the familiar parlor match. As made in America, the paste for the head of this ordinary match contains poisonous phosphorns, the direct cause of "phossy jaw.,"

The third variety of matel also possesses the desirable duality of striking anywhere, and is at the same time nonpolisonous. This is the strike-anywhere match now manufactured and used in those countrics where public sentiment has been sufficiently aroused to prohibit the use of white plosphorns in matchmaking, and. as we have scen, it is marle of sesqui-sulphide of phosphorus. For twelve years, in France, this substitute has been successfully employed. and its we has been extended to several other comntries. which have absolutely prohibited the manufacture, importation and sale of matches matle from white phoshorus.

Several years ago the Diamond Match Company, the biggest concern of its kind, with giant iactories in Ohio. \1: consin, Mame, Michigan, New York and California, demonstrated the practicability of manufacturing the nonpoisonous "strike-anywhere" match in this country, and put thonsands of boxes npon the market lal eled "These matehes do not contain phosphorus. A new discovery."

It cost a litule more to manufacture, however, and as the public, unaware of the perils of white phosphorns, did mot demand it, it was abandoned. The writer
was shown a box of these matches by Dr. John B. Andrews, who struck several of them on wood and cloth and other objects. Although they were manufactured four or fise years ago they ignited perfectly, completely refuting the statement that has been made that while successful in Europe they cannot be manufactured and used in America "owing to climatic conditions."

Now the Diamond Match Company had acquired the American patent rights from the 1 rench chemists who discorered sesqui-sulphide. When the investigation conducted jointly by Dr. Andrews and the Burean of Labor revealed the shocking nature of the disease caused by the white phosphorus, the American Association for Labor Legislation brought all its influence to bear on the Diamond Natch Company to induce them, in the interests of humanity, to surrender their monopoly in the harmless match. The present president of the company: Mr. Edward R. Stettinius, happens to be an unusual type of trust president, with a distinctly philanthropic turn of mind. During the two years that he has been connected with the match industry he has made every effort to improve the working conditions of the employees.

But the proposition which Dr. Andrews made on behalf of his Association meant the surrendering of rights which it had cost the match company about one hundred thousand dollars to acquire. Nevertheless, Mr. Stettinius laid the matter before his directors, and expressed his. personal approval of the suggention. The board was amazed and inclignant. "What! Present our competitors with a patent worth $\$ 100,000$! You must be crazy;" they said, in effect. Stettinius pointed ont the inemviable position in which the company stood. "Phossy jaw" could no longer be denied, and they possessed the only remedy. To cut a long story short. Stettinius eventually carried the day, and on lanuary Gth, 1911, the patent rights of sesquisulphide of phosphorus were transferred to three trustees,-Frofessor E. R. A. Scligman of Columbia UTniversity, Charles Γ. Neill, Commissioner of the Purean of 1 abor, and Jackson Ralston, Attorney for the American Federation
of Labor. These gentlemen were empowered to permit the the of this patented formula on whaterer terms they might consider just. As even this extraordinary step was not sufficient to satisfy some people. the owners of the patent finally, on Jannary 28th. cancelled their proprietary rights in order that "phossy jaw" might be abolished withont delay.

The only excuse remaining, therefore, for the continuance of white phosphorms and the resultant "phossy jaw" is one of dollars and cents, the match companies using the poison having an unfair advantage over those using the slightly more expensive substitute. However, companies producing in the aggregate over minety per cent. of the total proluct have promised to discontinue the use of the poison as soon as a miform prohibitive regulation can be secured. The next move of the Association for Labor Legislation was therefore to prepare a bill securing national legislation on the

Box of Matches Made at Wisconsin Factory six Yfars Ago.
These matches wote made without poisonous phosphorus. and they strike De"tectly on all roush surfaces. On account of shalit increase" in cost the manufacturess discontinurd usinge the harmliss substituti.
subject, which was introduced in Congress by Representative John Esch of La Crosse, W'isconsin, on December 19th, 1910. This bill now in the hands of the Committec on W'ays and Neans provides for a tax upon all manufacturers of white phosphorus matches of one thousand dollars a year, and a further tax of one cent mpon every humdred White phosphorus matches, which must be put up in special packages bearing Internal Revenue stamps.

The objectionable match would thus be taxed out of existence, and the harmless substitute, costing less than five per

MAKING THE MATCII BONES.
cent. more than the mesent match, would come inte general use.

One match superintendent, the father of a family, spoke feelingly to Dr. Andrews of the possibilities of the harmless match, and expressed great regret that it had been withdrawn. "There was a great satisfaction in. working withont a lot of poison aromel," he said, "and then it was worth a whole lot to know you were putting out a match with a head that a baly might suck and still not die."

And that brings to me to another phase of the poisonous match peril-one that vitally affects every mother and father in the Conited States. While the writer was chatting to Dr. Andrews the matil carrier bronght him a letter. Ile read it and handed it to me. "There are many like it in my desk," he sait, sadly. Here it is:
"I Mr. John l?, Andrews. New hork.

- Dear Sir:

It pleanes me more than I can express mysalf to think someone in this workl has taken an interest in thic most awful match business. I and a grool many others are ignurant of the fact that they are deadly poison, that is. I was mutil my little girl ate them, and also was my hosband and so many people that I have spoken to about them. I do hope and pray that something can be done to prohilhit the using of this deadly poison phosphorus. It seems that they can make matches without and I do hope yon can do something about it. One other case just a few weeks before ours was a Dr. O'Comor's little girl, but I had not heard about it until after our case came up. Ilat I known I hould have called a doctor at once. I was ont calling on Saturlay afternon, She was left with her father and baby sister one year olch and of conrse was playing around the homee, and spied the hobler on the table that had the matches. She ate sis or eight, so far as we can find out. but when she wats taken sick to her stomach at might I did mot think for one mement it was matelies that hard made her sick. I thomght it was hor supper and gave hor something to settle her tomach. She seemed to be all right and slept the reci of the night and played as
lively as could be all Nonday, and slept well Monday might, except towards morning, when she got real fussy, so I took her in bed with me, and it seemed so hard to warm her, she was so cokl, and when I did sncceed in getting her warm I put her in her little bed again.

She then slept till nine Tuesday a. m.] dressed her and sat her on the kitchen table while I fixed her loreakfast, and when I turned to feed her she was asleep again, but I thought nothing of it. Slue kept it up all morning, falling asle ep whenever I left her. so 1 was alarmed and sent for the doctor. She wanted to be on my lap all the time, so I held her. I told the doctor about her eating matelues, but not because I thonght it was they that made her sick, but I just happened to mention it. It was then I was told of the other little one dying from cating them, but it was too late to do anything for our little one, the poison had a deadly hold of her. She got minconscions and slept away. The doctor did all in his power to save her. Netta, who was only two years uld, died at seven on Thursday a. m. We took her to Ame Arbor to bury her.

> Yours truly.

Mrs. J. C. Mlorris.

$$
579 \text { Toledo Avenue, Detroit. }
$$

P. S.-Matches were pink with white tip. 1)r. (0'Comon lives on Dix Avenue. Inetroit, Mich."

So, you see, it isn't only the poorly paid wage carner who must be protected from the deadly white phosphorus matel, for it is also a menace to every American home. Amost slaily the newspapers record the death of some helpless babe who, like little Metta Norris, has been attracted ly the colored tips of the matehes and has died a terrible ileath as a result. The ofommor child referred to in Mrs. Mlorris' pathetic letter was Nargaret E OComor, the twenty-three monthes old danghter of Dr. and Mrs. 11. IV: OComor, of 615 1)ix Arenue. Detroit, who ried in great agony as a result of having eaten the blue and red heak of a mmber of matehes last september. Dr. O'Commor called in Dr. II. A. Harper, a meighbor, and they worked for several lomestrying to save the child's life Nargatel. while m-
watched for a short time, went into a bedrom, where she elimbed upon a bed and reached from a bookcase a tin box contaning the matches.

Then there was John Henry Acker, a boy of fotr, who ate the heads of twenty black Diamond matches at Monroe, Michigan, in Jantuary, 1910, and died two days afterwards; Edwin K. Woods. Jr.. two years old, son of Dr. E.K. IVoods, of 1 ndiana, Pemsylvania, and Raymond 1: NcGuire, eleven months nld, of Depew, New York, who both met a similar fate in May, 1910, followed a week or so afterwards by Carl I. Stone, the two year old son of Frank Stone, 305 Hamblin Avenue, Battle Creek, Michigan, who died through eating the white tips of twenty match hearls. On June 2, 1910. Dorothy Hartle, the two year old danghter of Mrs. Samuel Hartle, died at Fort Wayne, Indiana, throngh eating the heals of more than forty matches. Other cases have since been reported from Birmingham, Alabama: Sidell, Illinois; Bronx, New York: Buffalo,

New York; Livonia, New York; Lndianapolis, ludiana, and many other points.

While it is a decided shock to discover that our faithful friend the matels is capable of causing such tragedies in our homes, it is comforting to realize that we have on hand a strbstitute that is in every way as efficient, and common sense as well as common hmmanity demands that we shothld insist on the banishment from our factories and homes of a poison which has already caused tuntold suffering throngh the efforts of a small body of men to save a few paltry dollars.

And all this applies with equal force to our Canadian friends, who have already gone us one better by putting forward a bill. which will undoubtedly pass the Parliament at Ottawa, absolutcly to prohibit the mantufacture and importation of matclues marle with white phosphorus. This bill harl its first reading on November 24th, 1910, and the Act, by the terms of its framing, will come into force on the first day of Jantary, 1912.

In Reverie

> In the west, the weary Day
> Folds its amber wings and dies;
> Night, the long delaying Night,
> Walks abroad in starry guise.
> Rest more precious than a sleep,
> Silence sweeter than a dream, -
> These enfold me as I float,
> Idle waif on idle stream.
> Fainter, fainter, fainter still,
> By no breath of passion crossed,
> With the tide I drift and glide
> Out to sea-and all is lost.
> -Harriet McEwfin Kimball.

FRESH LOBSTERS FOR THREE CENTS

B y

C. B. ED W ARDS

AFTER ten years of steady and continuos work on the part of the Commissioners of Inland Fisheries of the State of Rhode Island at their Experiment Station at Wickford, Khode Island. as scheme has been devisel and put in peration which promises not only to save the lobster from extinction but to revolutionize the methods employed in its artificial enlture throughont the workl, and lobsters for three cents will be 110 surprising result. The work accomplished, too, at the Wickford Station. gives a firm foundation for the future raising of the lobster from the egg state to maturity on a commercially practicable scale by artificial methuds.

This being the final goal of Superintendent Earnest IV. Barnes, who has been comncted with the station for the past ten years. he revards the work clone as simply a start in the right direction, although what has already been accomplished is without precerlent in this or forcisen comutrics the efforts of hiologints looth abread and in the demestic service of the ["nited Llates lish Commasion failing to bring about anything like the
results accruing from the yatient work of the Wick ford authorities.

Owing to the alarming decrease in the lobster along the . Atlantic Coast, the matter of artificial culture has received much impetus and the fact that the traffic in the lobster fisheries of Rhole Istand is of considerable financial import to the state canced an immediate interest in the work of the Wickford Experiment Station. It is mot generally realized that the lobster requires very delicate handling in the early stages of growth, a pine shaving in a retaining jar. the presence of wire netting over a bottle of larvae. may cause the death of hordes of the young crustacea. In the early stages of develomment the lobster is at the mercy of every current of water and makes easy prey for everu the smallest of fishes. Promably their queatest enemy is in the camilalistic tendency of the larvae, for all periods of life. but especially during the first three stages of life a lobster is eager to seize upon a weaker relative and dewner him.

It in thim apparent that if much result is to be expecterl from the planting of lobster fry they mand be reared to a
point of derelopment which approaches in the nearest degree the property of self defense inherent in the adult crustacea. It is admitted that with the exception of the Wickford Hatchery the state and national lobster hatcheries fall far chort of accomplishing the desired results. Indeed, in the latter mentioned hatcheries it is admitted that not over two per cent. ever live to reach the second larval stage. Furthermore, in the planting of first stage larvae in this helpless state they are poured in a clourd of countless thousands into the water and the fish, attracted by the superabundance of food, proceed to avail themselves of the young lobsters. Authorities state that it is extremely doubtful if one lobster out of every thousand liberated in this mamer cver survives.

In the method employed at 1 ick ford the egg lobsters are purchased in the spring and confined in covered cars, their claws being plugged to prevent fighting and the resultant scraping off of egs clusters which appear on the underside of the female adult. During the following. May the lobsters that will hatch their egrs at approximately the same time are put in compartments together. As soon as the lobsters' egrs reach a point where they will hatch in two or three hours they are transferred to flat crates and allowed to float on this wonden structure in a large canvas bag or, as in the more recent method, the egg lobsters are placed in large wooden boxes which are subsequently used for rearing the larvac. The latched larvae are allowerl thus to roam around the bag or box under nearly natural conditions. When

First Stage Iorster
Several times enlarged.

Fourth StagF Lobster. Lilusize.
a sufficiently large number of eggs are hatched to fill the retaining bag with fry, the egg lobsters are removed to anuther log. The main feature of successful lobster raising as practiced at Wickford is in keeping the hatched fry in constant circulation, thus protecting the fry from the fungous diseases which infest them and minimizing the danger of camibalism. The circulation of water is accomplished by large, two-blatled. pardles, not unlike restaurant fans, which, by slow revolutions in a box or hag, keep the fry separated and at the same time fan the food within easy reach. The bags in which the lnbsters are hatched are provided with sereen windows, allowing the ingress of fresh water and the egress of the foul.

The most peculiar feature of the Wickforl hatchery is the hatchery itself. It has no physical comnection with the ground beneath it and is veritably built On water, for the hatchery looks like nothing so much as a large houseboat. Arouncl it are grouped large raftlike structures supported by barrels. A main haft ruming from the houseboat proper branches and ramifies in all directions
 BEARING THE EGGCLCSTEKS LNDFK THE IML
over the rafts or floats. This system of shafting, deriving its power from a gasoline engine sholtered in the honseboat, transmits through bevel gears, the power necensary to drive the circulation propellers in each of the hatching bags. To conform to the undulating movement of the floats, the shaft from the engine house is connecterl to the floats by a flexible joint and the shafting used on the floats is of such small diameter that the motion of the water bends it withont tearing off shaft hangers or breaking the shafting. Two floats are used, one on each side of the houseboat, and from these are suspended twenty-eight rearing bags ten feet square and four feet deep.

The engine gives a speed of 360 revolutions and this is reduced by belting to forty and finally, through gearing, to twenty and ten, the last named being the revolutions per minute that the "fans" run during the culture of the lobsters. The paddles are painted white, as the young fobsters tend to avoid all white surfaces, and the white sides and bottoms of the hatching receptacles pro-
tect the delicate larvae from injury by being thrown against the container or ventilating paddles. In the making of the ventilating paddles only ly years of study was it possible to arrive at the proper angle for the blades of the paddles to impose against the water, it leing found that an infinitesimal variation in this respect was the cause of total failures. resulting in the death of a large number of fry and poor larvae. The current given by the paddles must be just strong enough to keep the food in motion, prevent cannibalism by constant circulation, and keep the larvae from collecting at the bottom of the bag and rolling over with the food silt and diatoms that have collected there. The strength of current also affects molting. which is the process of growth in the crustacea, the growth being accomplisherl between the time of casting off the ofl shell and the hardening of the new coat

The lobster fry eat ravenously in all stages and the feeding assimes great importance as the young lobsters molt three times in from ten to fourteen days. Under such conditions the feeding is

FEHALE LOBSTER

JAGGEO ANO KE.IDE TO BF PUT B.ACK 1NTO THE W ATER.
constant and regular. Scrambled hen's eggs, liver, and beef are used for food in a finely cut form to allow the gentle current of water to carry it within easy reach of the larvae, and the feeding is attended to every two hours throughout the full twenty-four of each fay and night. To rear a lobster to the fourth stage for planting at the Wickford hatchery requires from ten to twenty-one days, depending mostly on the temperature of the water, and the young "lobsterlings" are planterl after reaching this stage of maturity known as the first "ground" stage because of the fact that during the fourth stage the lobster tales up its abode among the rocks and grass at the bottom for the first time. Is fast as the lobsters reach this latter stage of development they are dipped out, a few at a time, and counted. They are then put in a planting can and are due to be "planted" in the briny deep. To allow the fourth stage fry to take full alvantage of their hiding instinct for protection after planting, they are poured out at the water's edge where an abundance of eel grass and rocks tend to make a natural harboring place for the young lobsters till they attain their full growth.

With this method developed to the fine point it has been at the Wickford Station, it has been accurately calculated, not "estimaterl." that from forty per cent. to seventy per cent. of the eggs yielded by the egs lobster reach the fourth stage of development. As their most precarions period of existence is during the first three stages, the fourth stage lobsters have an infinitely greater chance to surrive against the natural enemies around them than would be possible under any circumstances with the first stage larvac as still liberated by the other state and sovernment establishments.

After hatching is over the female lobsters are again consigned to the waters from which they came and are put back in pre-determined localities with copper tags fastened to them giving a recorded number. The fishermen are requested to return the tag to the station with information as to the lucality of the trap it was caught in. By this method the egg bearing lobsters have furnished valuable data regarding their morements, after their period of usefulness at the station has expired.

The unique plant which this new process of culture has successfully dem-

PLANTING FOUKTI STAGE LOBSTERS.
onstrated cost only $\$ 2,500$ and has a capacity of 500,000 young lobsters each season. Allowing for running expenses and labor the process produces fourth stage lobsters for about $\$ 2.00$ per thousand or five for a cent. During the year
of 1910 over half a million were reared to the fourtl stage, and from one egg lobster 8.000 fourth stage lobsters were produced. The probability of reducing the cost of this highly prized sea-food to a nominal amount is therefore excellent.

METHOH OJF SCIT"TERINO IOBSTER EGGS.
The egks are olaced on the floatang slats of the fan.

FEEDLNG YOUNG LOBSTERS AT THE WICKFORD STATION.

1t is not too much to say then, that the luxuries of the rich and of the well-to-do may soon be served on the workingman's table. Though of course lobster will never be cheap at the best restaurants,
where service as well as actual ingredients must be paid for. That need not trouble us. A good cook in the home -in reality equal to any French chefwill readily obviate that difficulty.

Dreams and Books

Dreams, books, are each a world; and books, we know,
Are a substantial world, both pure and good.
Round these, with tendrils strong as flesh and blood, Our pastime and our happiness will grow.

THE CHAMPION COAL EATER
In engitu of this typu consumed 4.25 tons of coal pur hour in a test run with sewen coaches,
making sistr-five milus per hour.

MACHINES TO FIRE LOCOMOTIVES

B y

CHARLES FREDERICK CARTER

IF official prophecies are entitled to crealence the next great evolution in railroad operation will be the general introxuction of antomatic stokers to relicve locomotive firemen of a tank that has grown beyond the powers of human muscles. For threc consecutive years the standing committee on stokers of the American Kailway Master Meclanics Association has predicted the early advent of the antomatic, or mechanical, stoker: and accorling to popular belief. "three times is the charm."

In 1908 the committee saisl in its report to the anmual convention, "Mechanical stokers used on locomotives in this country up to the present time have at least demonstrated the fact that freight and passenger engines in road service can be successitully fired by mechanical means. Mechanical stoking, however, has not made much progress abroatl."

In its $1^{\prime} 009$ report the committee grew more bold, saying, "Results hokl out great hopes for the future, particularly as the guestion has been taken up) -eriously by a number of railroads.
"It is reasonable to assume that the average tractive power of locomotives will increase. It is within the possibilities, therefore, that the increased fuel con-
sumed per mile will render it advisable to provitle mechanical means for firing locomotives in order that they may develop high sustained tractive effort and render the service attractive to men who possess the qualifications to become successful locomotive engineers. A successful atumatic stoker shonld render locomotive firing more attractive, raise the standard of the service, permit close attention to the economic handling of fuel and the reduction of black smoke, enable firemen to become better acquainted with the general duties of a locomotive engineer and reduce tube and firebos troutbles."
liy the time the 1910 convention had assembled the stoker committee had become fully converted, as may be gathered from its report which contained this declatation: "The committee is convinced that the mechanical stoker is destined to be a very important factor in the operation of heary locomotives in the not very distant future."

Kailroad men have no oceasion to read the memotional reports of the committee to be convinced of the wrent need of a satisfactory automatic stoker: but since it is not the privilege of everybody to be railroad men it may be well to give some
idea of what firing a locomotive means before discussing the subject of stokers. To the comenty boy who sees the fireman bolling on his cushioned seat box while his train stands on the siding wating for the limited, it means a life of indolent ease at good pay with abundant opportunities for long range flirtations with the girls along a stretch of a hundred and filty miles of steel highway. Consequently he loses no time in applying at the nearest division headquarters for a job. He is received with dissembled, but none the less sincere, joy: for the demand for firemen is great, and the best ones are farm bred.

But the "cornfield sailor" who has the strength of mind. character and muscle to struggle through all the preliminaries required to reach the left side of the cal immerliately discovers that in addition to anticipating the coming of the pay car and throwing kisses to the prettiest girls along the road he is also expected to shovel from fourteen to twenty tons, or even more of coal a day: and that this coal shoveling occupies his attention so fully that by the time he gets to the end of his run he doesn't care at hang it he never sees a paymaster or a rural coopuette for the rest of his natural life.

To a husky young man. shoveling twenty tons of coal a day may not somul like a terrific untlertaking: lout that is becanse he fails to appreciate the difference between shoveling that quantity in the course of a ten hour day, standing

The Iranceer of Coal from Tender to Fire Door ls Accomplished by the [̌SF uF A SCREW CONVEYOR. The Crosby Stoker.

 Kalleroal.

SIDE AND END VIEW GF THI STRUESE TOKEK
on a steady footing and pausing for a moment whencer he feels like it to gaze at the scenery or light a cigarette, and trying to keep his balance on a jolting. jerking. plunging steel deck which tries ceaselessly to pitch him head first into the side of the cab, while with legs spread wide apart he humps over a scoop shovel. working with frantic energy to get coal into the firebos fast enough to keep steam up. While the engine is ruming the fireman must be straddled out on the deck working continually to the limit of his strength, for ordinarily he will have to get from two and a half to three

I'h Hayifn Stoker in Use on the Erif Railroad. Tinder conveyor, driving engine, erathsy and trough.

Fire [ooor Open. The Hayden Stoker.
grates that happened to need it most at that instant, every 6.3 seconds from start to finish. This is the most remarkable feat of firing for which authoritative figures are available, and it may also be submitted as a marvelous feat of physical endurance.

But this is not all the story. The heat from the open fire door is so intense that it mot infrequently blisters the fireman's side, while the white hot glare sears his eyes matil seventeen per cent. of firmen are disqualified for further service in the first three years on acconnt of clefective rision.

So much for the firman's side of the stoker problem. For the railroad company the question is even more serious. Already there are many locomotives in service which never do anywhere near what they are capable of ching, for the simple reasor that the man never lived who could keep one of them hot while working at maximum capacity. Take,

[^3]for example, a Mallet articnlated compound locomotive weighing $+45,000$ ponnds and having a grate area of 99.85 sfure fect. In the series of tests on the Lake Shore already referred to, the average consumption of coal was 129.6 pounds of coal per square font of grate area per hour: the maximun, 150 pounds. Some locomotives crowded to the limit have been found capable of burning 200 pounds per square foot of grate area per hour. At the average consumption for the lake Shore test the big Mallet would burn $61 / 2$ tons per hour or one-halif more than the Pacific type locomotive burned. At the maximum for the Lake Shore tests the consumption would be $71 / 2$ tons, while at the highest recorded rate of consumption it would eat up 10 tons of coal per hour. It is hardly necessary to point out the utter mpossibility of any mortal getting even the smallest of these quantities into the firebox in an hour. As a matter of fact a Mallet locomotive of the size mentioned in a test rum in pusher service on the Delaware and Hudson burned 5,781 pounds of coal per hour. This was not the measure of the engine's possibilities but of the fireman's capacity unler the circumstances.

It is not possible for two firemen to work at once because there is barely room for one man 10 swing himself on the narrow deck. The C.. N. O. \& T. Railroad tried the experiment of putting two firemen on one of it. Mallet locomotives on a Kentucky division with heavy grades. The men relieved each other at short intervals, each working with his utmost speed when his turn came, but they could not keep up steam. Besides, the constant blasts of cold air through the open fire door caused the flues to leak so badly that they had to be caulked at the end of every trip. Then the company put on a Hanna mechanical stoker and invited the University of Kentucky to send some of its young men to make a forty days test. The first effect noticed was that the flues did not have to be touched during the forty days. The other results when figured out and tabulated were so faworable that twelve more stokers were ordered.

From all this it may be gathered that the call for an automatic stoker that will

ThF Imscharging Hopper of the Crosby Stuker.

The Crosby Stoker with the Deflfotor. The dethector regulates the fuedmen of cual.
mect the requirements of all the varying conditions of road service in America is urgent. In Europe where the locomotives are small and the trains light the necessity for an antomatic stoker is not so apparent and so practically nothing has been done to develop one.

In the Cnited States a number of automatic stokers have been tried out with varying degrees of success; but witli possibly a single exception none is yet regarded as entirely satisfactory. As in the case of every other important device used on a railroad, there has been a weary road to travel between the first conception of the idea and its practical working out.

Locomotive mechanical stokers are of two general types, the overfeed and the underfeed. Of the former. which was the first developed, the greatest number

have been tried out. Of the latter, hut two have been attempted and but whe of these developeri.

The first automatic stoker was invented a dozen years ago by J. IV. Kincail, an engineer on the Chesapeake and Ohio, where it had heen found next to impossible to keep up steam in the ham-dred-ton lucomotives to enable them tu laal their full tonnage over long divinions. The original stoker was worked by hand at first, then a steam motor was applied. It did very well but was unpopular with the firemen, just as the injector, the air brake, sight feed lubricator and all other improvements were at first.

This original stoker, developed under the name of the " \backslash 'ictor." consisted of a
hopper standing on a frame attached to the boiler head and supported on three wheels. Two conveyor screws in the bottom of this hopper worked the coal forward on to a stoking plate in front of a plunger. This plunger, which was wedge shaped, forced the coal over an upward sloping deflector, thus spreading the coal. liy means of three valves operated in rotation the plunger made a rapid, a medium, and a slow stroke, to throw coal to the forward end of the fircbox. the middle and the back end. The apparatus was worked by a steam engine beneath the lopper.

At first coal was thrown into the hopper by hand so that the only thing it did was to protect the fireman from the heat. and the tlues from the cold draughts.

The Crosby stoker, which originated on the Chicago and Northwestern, had a crew conveyor in a trough in the floor of the temter to convey coal to the firetoor where it droppenl into a small receiving hopper at the bottom of which were steel blades revolving horizontally at high speed forcing the coal through a mozzle into the firebos. This nozzle was jointed so that it distributed coal down the left side of the firelon from front to back, then up the midlle and down the right side, completing the cycle every thirty seconds. The spreader could be stopped anywhere to build up a thin spot in the fire. The stoker was operated by a small steam turhine disk upon which fontr small steam jets impingerl. The other end of the shaft drove the convegn through a cone gear by which the speed could be varied. The attempt to develop the Crosby and the Victor stok-
ers to an efficient working hasis lias been abandomed.

The Strouse stoker has a conveyor to teliver coal from the tember to a hopper above the firethor from whence it is distributed by means of a phunger much like that of the Victor. The firebox door is replaced by a special door hinged at the tup and opening inward which can he taken off and replaced ly the regular door for firing by hand. This seems to be the most adranced of the planger type of stoker, for it is in use on twenty-two loconntives on the Chicago, laurlington and ?(uincy and two on the lowa Central. On one trip on the Burlington a locomotive equipped with a Stronse stoker hauled five hundred tons more than its rated capacity at an average speerl of seventeen miles per hour over the thisism. The steam pressure tid not vary more than four pounts and there

A RECENT AUTOMATIC STOKEK-THE STREET
The coal crusher is located on the tender.
was very little howing off. At the end of the trip the fire was in such good condition that the engine coukl have gone back over the division without having the fire cleanerl.

The Erie Railroad has been experimenting with two stokers, the Black and the llayden. The former delivers coal from the tender by means of a worm conveyor into a hopper above the firebox door from which it falls on a shelf. Two four-hladed wheels rimning at 250 revolutions per minute spray the coal over the fire over a tilting shelf which dircets the spray of coal to any part of the grate.

The Haylen stoker, which has been tricil on six Erie locomotives, is in two separate parts, each driven by its own
engine. The first part is a mechanical coal heaver on the tender which by means of hucket on endless chains elevates the coal from the tender to a trough six fect above the floor. A worm conveyor in this trough delivers the coal into a hopper on the stoker proper. A slide operated by hand lets the coal from the hopper on to a shelf 5 inches wide and 2 feet long inside the firébox. Intermittent steam blasts from five radially directed nozzles blow the coal off the shelf into all parts of the firebox. The intermittent blasts are regulated by twin engines with cylinders 1.5 by 1.5 inches turning a small gear wheel on which is a striking nin with beveled head which strikes the end of a bell crank lever

REAR VHEW OF LOCOMOTIVF WITH HHE STREET STOKER.
This stoher is of the scattor type, in which crushed coal is driven into the firebox by steam jets

NTERIOR UF THE C.IB.
Strect Stoker.

Which lifts an anxiliary valve, which in turn admits stean to a piston valve opening a passage to the nozzles. There is a peephole through which the fireman can watch his fire, and if everything is not going right he can help ont with the scoop. as the stoker does not interfere with the regular fire door. This stoker has often fired eighteen or twenty tons. of coal on a division 140 miles long, though it uses more coal than a good firoman would.

The Street stoker, which has been used experimentally on the Lake Shore since May, 1909. consists of crusher. with swinging jaws to break up the larger lumps of coal, an elevator consisting of a double endless chain with
buckets traveling in pipes and driven by a small engine. The coal falls throush a hopper into three distributors, one in the center and one on each side above the door from which it is blown over the grate by intermittent steam jets. A discharge regulator enalles any part of the fire to be built up at the discretion of the fireman. Complete round trips over a division of a hundred miles have been made without opening the donr.
D. 1. Crawford. Superintendent of Motive Power of the Pemsylvania Lines West of Pittshurg. has develoned an unrlerfeed stoker which promises to prorluce great results when all the minor details have been perfected through tests in service. He started unt with the propo-
sition that the stoker must do all the work all the time, that it must be a part of the locomotive and not an attachment to be thrown aside at will, that it must be saving of coal and that it must produce no smoke. These reguirements scemed to bar all forms of overfeed stokers.

All the varions strles of underfeed stokers for stationary plants were tried and failed. Then, after a series of experiments extending through years, an underfeed stoker that would work on a locomotive was produced. There is nothing in the cab and nothing visible anywhere except a large cylinder bolted to the back end of the frames on the fireman's side, which might be mistaken for a brake cylinder. The apparatus in the tender includes a plunger which breaks up the larger lumps of coal before it clrops into a trongh in the floor of the tender. Two bars on each side of the trough are comected at intervals by cross bars on each of which are six fingers. These longitudinal bars have a reciprocating motion. As they move back they rise so the fingers drag lack over the top of the colal. On the forward stroke they dig into the coal and drag it forward. The coal falls out of the front end of the trough into two troughs 9 inches wike placed 27 inches apart from center to center and at equal distalices on either side of the firelon. These troughs extend the length of the grates, sloping up from a depth of is inches at the back to nothing at the front. In the botom of the troughs are three plungers in succession working in square recesses. The back phunger is the largest, the next is smaller and the front one is the smallest. This arrangement of plangers distributes the coal evenly under the grates. As it is worked forward by the plungers the coal rises and falls over on to the grates, which
occupy the areas between the troughs and between the troughs and the sides of the firebox. A nearly uniform bed is maintained over the whole area and the whole upper surface is kept aglow. As the green coal comes up under the glowing coal the gases are consumed so that the engine is practically smokeless. The whole apparatus is worked by rocker arms and rods driven by the steam cylinder mentioned. Each stroke of the plungers delivers about twenty-eight pounds of coal to the fire. The speed is regulated by a valve so that the fireman has entire control. There is a peep hole protected by blue glass so that he can watch the fire. In a series of 81 trips between Columbus and Denison there were but 18 trips in which the stoker failed to do all the work and but 3 in which it dic] less than 90 per cent of the firing. In case of accident, however, the engine can be immediately fired by hand withont any changes being made, for there is no obstruction in the cab. This experimental stoker has fired 5,200 pounds of coal per hour.

From all this it may be gathered that the automatic stoker is far adranced on the way toward the practicable stage. IVitly the automatic stoker in general use it will be possible to introduce locomotives of the largest type wherever traffic is heavy enough to require them and to work then to the limit of their capacity. liy this means the capacity of existing lines can be very greatly increased, for the big engines working at their maximum power will not only haul much heavier trains, but they will be able to make better speerl. While the fuel bill of the railroads. already $\$ 337.000 .000 \mathrm{a}$ year. will he increased, other economies marle possible will wipe out this increase ant leave a handsome margin of saving besides.

B ATTLE OF THE BUGS

By

J OHNL. COWAN

IT is quite possible that anyone who might happen to be stranded in the canyons of the High Sierras of California, any time between Cluristmas and Easter, might stumble upon two or three young men whose actions in those almost inaccessible solitudes would look very mysterious. He would see them gather up great masses of dearl leaves and rublish in places where the snow had melted, sift the finer material into burlap sacks, throw the leaves and sticks away, and then hasten on to a new location. If he were curious enough to follow the mysterions strangers, he would find that as soon as the hass were filled they were loaded upon the lyack of a patient mule, taken to the nearest railroad station, and shipped to Sacramento.

Inguiry would probably elicit the statement that the young men were from the "State Bug-House,"

but the inference that they were escaped lunatics, if natural under the circumstances, wonk be altogether wrong. The "Bug llouse" is the name commonly applied to the California State Insectary at Sacramento: and the methods described are those employed by the fied agents of the Insectary on expectitions for the collection of ladybird beetles. These breer in the canyons of the Sierras, where they are collected while still dormant in the winter time. Tens of millions of them are shipped to the nnsectary. where they are kept in cold storage until the melon aphis makes its. appearance in the cantaloupe and cucumber fields of the 1 mperial \alley, or untit the peach and apple aphids are reported in the orchards. Then they are shipped to the endangered region, in whatever quantities may be required to meet the emergeney : and when this has been done,
the doom of the aphind pests is considered sealed.

These ladylird eohorts, directed and controlled by the parasitologists of the State Insectary. probably saved the extensive melon growing industry of the Imperial Valley from entire destruction, and have prevented the loss of orchard fruits worth millions of dollars in many widely separated dietricts throughont the State. This, however, is simply an illustration of the sort of work the parasitologists of the lnsectary are doing. As an institution, the State "Ing House." as it is usually callerl-for of course anything in the nature of an insect is a "bug" in the popular mind-is absolutely unique. and withont a peer in the world. Superintendent Carnes, and his coadjutor, Acting Superintembent Jaskew, do not antagonize spraying. dipping. washing, and fumigating as methods of riclding fields, orchards and gardens of insect pests: but they keep, up an unceasing search for something better-in other words for natural checks that will render these makeshift expedients unnecessary. Never since men began to practice agriculture and horticulture have mechanical means bronght umder permanent subjection and control a single pest of this nature. The orchard that has been sprayed or fumigated, and the field that has been treated with l'aris green or wher insecticide, this year, must be similarly treated next seasom, and sn on for all time to come. These operations are expensive, and never result in more than a temporary victory for the horticulturist. The basic idea of the new science of parasitology, then, is to employ bugs to fight bugs: to pit predaceous or parasitic insects against those that destroy the crops, in the absolute certainty that nature never created a pest witlont an efficient check. The Insectary,

A sackfu-and a "Few Extras." ladybirds collected in the Sierras.
then, was established for the purpose of collecting, propagating and distributing beneficial insects in sufficient numbers to be of commercial valuc. It is in charge of scientists of exceptional attaimments, and of more than national reputation, upon whom is laid the task of translating pure science into a commercial commodity, fur the benefit of California agriculturists and horticulturists. It is a sublivision of the State Horticultural Commission, which keeps an explorer in the field, who traverses every comntry on the globe in search of beneficial insects, sending such as he thinks likely to prove serviceable to the Insectary. There they are bred, sturlied and observed, and, if proved to be valuable, an effort is made to breed them in sufficient numbers to meet all leritimate demands. Insects whose sood nffices have been conclusively demonstrated are for free distribution in the State, to persons having need of their services: and demonstrations are given in the orchards, gariens and truck farms, showing the farmer just what sort of help he is justifierl in expecting from his insect allies, and just how he must co-operate with them in order to secure the hest results. "Larger crops of cleaner fruit at a less cost of production," is the slogan of the department. as stated epigrammatically to the writer, by Acting Superintendent Maskew.

One statement made to the writer by Mr. Maskew, at first thought appears startling." It is this: "In all the world there is a permanent surplus of but one thing: that is life itself." So superabundant is life that nature takes almost as elaborate precatutions to insure its destruction as to secure its reproduction: so that for every form of life there is one or more other forms to prey upon it, and prevent it from becoming redundant."

Hy this interminable
serics of natural checks uponn the endless mumber and variety of forms of life, a fairly even balance is maintained. Put man, in providing for the wants of a complex and highly artificial civilization serionsly (listurb) this nattural balanceor equilibrium- 10 his own undoing, unless that equilibrium can be restored. This equilibrimm may be disturbed in varions ways. For example, in the Imperial \alley the natural lifebalance has been upset by irrigation. bringing vegetation to luxuriant growth at a season when the whole region, in a state of mature, was a parched and burning desert. The ladybird beetle is native to the valley, but it issues in January, when the varions aphids indigenous to the same region also issued, when natural conditions prevailed. 13ut by irrigation and cultivation the melon vines are made to grow in April and May, supplying an abundance of food to the aphids, and causing them to multiply with the rapiclity characteristic of that order of insect life, at a season when their natural check in that life-zone is inactive. To restore the equilibrium, ladybirds must be imported from the snowy canyons of the Sierras into the tropic fiekls of the valley.

But a more common, and usually more serious, disturbance of the natural life-equilibrium is due to the importation of foreign insects. A new variety of fruit, for example, is imported from Anstralia, or Japan, or South America: and it is quite likely that the almost microscopic eggs of some insect that thrives unon that fruit are brought along unnoticed. In its natural habitat that particular insect probably did no noticeable damage, because its natural check kept it within bounds; but in its new environment, with an abundant food supply, and with no predaceous or para-

1 Trayfling "Bug Hunter.
(icorge Compere, of California.

E. K. Carnes.

Superintendent of Califorma's State Insectary.

Frederick Maskew. Parastologist of the Califorma state Insectary.
sitic enenies to limit its increase, it propagates with inconceivable rapidity. develops into a pest, and causes widespread (lestruction. When a pest of this kind makes its appearance in California, war is inmentiately begun upon it by means of insecticides, dips, sprays or poisonous gases, in an effort to prevent its spread and to limit its ravages. But while these crude and inefficient mochanical checks are not neglected, the parisitologists of the State Insectary are exhausting every resource at their command to find its natural check, introduce it into the State, breed it in sufficient numbers to be of use, and distribute it where needed. Nature never makes a mistake. and never does things by halves: and it is just as sure as fate that for every insect pest there is a natural check. To put it in another way; the Intelligence that created the universe is quite capable of rumning it, and never gave to any form of life the power to destroy without placing a definite limit upon its powers of destruction. The mistakes in the distribution of insect species that bring widespread destruction are man's mistakes: not nature's. And when man makes a mistake of that kind it is up to him to correct it by finding nature's remedy. That is precisely what the parisitologists of the State Insectary are doing for California.

The inception of California's plan of campaign, to fight bugs with bugs, dates

Vartores Spectas of I.ambitrd and thr paratitea From which ThFy ©ivpo Califorvia:-

$1-+\mathrm{b}$ incluswer remesent ladybirds and larvan: $5-$-b. cotrony cushion scale parasitw: $\overline{7}$. twis mfested with cottony cuthion scall.:
from 1888, the occasion being the ravages of an duntralian pest introluced twenty years before. This was the contomy cushion scale. Which for a time threatened the very existence of the orange growing industry: Groves that were bally infented presenter the appearance of having been exposed to a severe showsomm. From the orange trees the pest spreat to hedges, shate trees, wild shrubbery and forests, until it was feared that vant areas of the State wombl revert to dewert conditions. Shipments of oranges dropped from cight thousand car louls in one year th is humdred the next. Thumands of trees were cut down and wurned, but the peot had been so widely scattered and had obtained so firm a footing mon wild vegetation that attempts to check it ravages. even by these heroic meatures. were hopeless.

Prof. Albert Koebele, of the entomological division of the Federal Department of the Interior-the Bureau of Entomology not yet having been estab-lished-was sent to Australia, to try to find a check for the pest in the country from which it had cone. He discovered a natural foe of the cottony cushion scale in the I'cdaliu curdinulis, a beautiful little red and black ladybird: collected it in guantities, and forwarded it to California, where it was distributed wherever the pest had made its appearance. A little later he introducerl another species, Noains kocbelci; and some time afterwards Mr. Gcorge Compere, explorer for the California State Board of Horticulture. discovered and introduced Notrus bellus and the lhack Vellalia. These ladybirds, like ald others of the mumerons species-numbering perhaps two thousand-of the great family of Coccinclidee are predaceons in their labist. looth the larvie and the matured

 and lary tot, black wale: 5. black smut.
insects pouncing upon and devouring the scale insects and plant lice that form their natural food. Other foes of the cottony cushion scale, also introducerl from Australia, are a dipterous parasite, known as Lestophonus icerya, and a hymenopterous parasite, Ophilosia crazfordi. These deposit their eggs in the grub of the injurious insect; and when the young develop they feed upon the tissues of the host, killing it in embryo. Through the operations of these predaceous ladybirds and internal parasites. the cottony cushion scale was brought under complete subjection. It is mo longer feared as a pest or regarded as a source of danger, so that in describing these species as the "beneficial insectthat saved the citrus fruit industry of Califormia, the State Commission of Horticulture indulges in no hyperbole or exaggeration. If anyone doubts whet her it was worth while, it is sufficient to say that the citrus fruit crop of the State amounts to something like 35,000 carloads amnually, worth $\$ 40,000,000$ in the Eastern markets, or half that when

Four Epfeles of lnsects-1.2.3. And 6-That Subdefed the San Jose Scale-4-and the lellow Scale-5. 1. aspidiotophagus citrinus: 2, aphelinus fuscipennis: 3 . chilocorus bivulnerus: 3a, larva of same:
6. rhizobius lophantha.

The Internal Parasites-1, 2 and 3-That Hold in Check Thf Soft Brown SCale-4-and the
Brown ipricot Scale-5, 6.

1. che ritus thavus: 2. coccophagus lecani:
2. 3a, comys fusca.
packed rearly for shipment to those markets.

The successful fight waged by imported insect allies against this terrible menace to the citrus fruit industry convinced Californians that the scientific methorl of combating insect pests was to pit one form of insect life against an-other-to employ bugs for fighting bugs: and to that end the State Insectary was established. In 1891, the state legislature made its first appropriation of funds for a systematic search for beneficial insects-a search that 11 r . George Compere, explorer for the California State Commission of Ilorticulture and for the entomological department of IVest Australia, has prosechted in every quarter of the globe.

It is conservatively estimated that the minimum tribute annually levied by insect hosts upon American farmers is not less than ten per cent. of everything pro-

BLGG BY THE MILLIONS.

duced from the soil, and that the anmual have wrousht by forest fires is less than the damage to forest growth for which insects are responsible. The checking of insect depredations, then, constitutes a problem in mational conservation of far greater moment than many of the local conservation issues that have occupied the attention of legislators and of the public. Secretary James Wilson, of the 1) perartment of fariculture, estimated the value of the farm crops of the United States for the year 1909 at $\$ 8.876,000,000$. lint before the farmer gathered his harvest, the insect armics exacted a toll that reduced the total by at least $\$ 000.000 .000$!

California's claborate and efficient organization for figloting insect foes is moder the supervision of State Commissimere of llorticulture. I. IV. Jeffrey. It is planly as important to prevent the
introduction of new pests as it is to find means of suppressing the old. So a Quarantine Division is maintained, in charge of Deputy Commissioner Dudley Moulton, with headquarters at San Francisco. Ironclad horticultural quarantine laws require that transportation companies, corporations and individuals bringing fruits, plants or bulbs into the State give motice to the quarantine officials, so that an inspection may be mate. No vesse? is permited to enter any port in the State without laving its cargo. even to the passengers' basgage, rigidly exammed by the horticultural quarantine inspecturs. Every tree. plant, bulb and packase of frnit is taken possession of by these officials and carefully examined. Those fonnd free from the suspicion of insect pests are pomptly passerd, and ohers are cither fumigated or burned, as circumstances malic nocessary. Even
an orange in the hands of a sick baby is likely to be taken from it, and the florat tributes on the casket of a citizen who has died abroad, and is being taken lome for interment, are ruthlessly confiscated and destroyed. Of course occurrences like these do not tend to make the horticultural quarantine officials popular: But California has suffered too much from pests that came in accifentally and monnoticed to run any avoidable risks.

Horticultural regulations in the various comnties are equally strict. Each county has a horticultural board, composed of three members. This board appoints local insjectors to any number that conditions appear to reguire: and has authority to order an inspection of any orchard, nursery, trees, plants, vegetables. fruit. packing house, storehouse. salesroom, or any other place or article that may be suspected of being affecterl with injurious insects, and to take steps to abate any pest found. It is required that all orchards be inspected at least once a year: that all horticultural inspectors shall be versel in entomology, and that they be instructed in the duties of their office by a competent teacher. As Superintendent Cames, of the State Insectary, was conceded by all to be best fitted by temperament and attainments for such a task, he was detached from the Insectary many months ago, by appointment of Governor Gillette, to membership on the lioard of Horticultural Examiners. This made it neeessary for him to devote his time exelusively to the preparation of an extended series of questions for each county, and to conduct a separate examination in each county, of candidates for the position of horticultural inspectors. During his absence the responsible head of the State I_{11} sectary is Frederick Maskew. Icting Superintendent, to whose courtesy the writer is largely indebted for material used in the preparation of this artiele.

Mr. James Lick, of San Jose. California, was a plant lover, and introduced many foreign plants, shrubs and trees for the ornamentation of his grounds. In the early seventies, the pest that beeame known as the San Jose scale, appeared on trees belonging to him, rapidly spreading to other orchards in the neighborhood, and later to all deciduous fruit
regions on the Pacific Coast, proving most injurions to pear. apple and peach trees. $l_{11} 1893$. it made its appearance near Charlotteswille. Virsinia, and inrestigation shmed that Eastern murserymen had scattered it broadeast over the Eastern and southern States, through the sale of plum trees ubtained in the San Jose district.

Before investigation was begun to determine from what conntry the San Jose seale harl been introluced. Mr. Lick dierl. It being impossible to ascertain whence he had secured his plants, extensive explorations were marle by Mr. Marlatt, of the Department of Agriculture, in order to find the matural habitat of the pest, as it was anticipated that its natural check would be discovered there also. Its trine home was at last found, in the meighborhond of l'ekin and Tientsin, China, where its enemy was discovered in the Asiatic ladybird-Chilocorns similis. A mumber of these ladybirds were inmorted, and the species has been bred to a considerable extent for the purpose

A Home for Benfeiciai. INecots.
Interior of glass walled ronm in whichimported destroyers are kept for observation and study.
of clecking, if possible, the pest in the Eastern United States.

However, in Califurnia a native parasitic insect, the Aphelinus fuscipennis, adapted its taste to the San Jose seale; and, finding the food supply so abundant, increased with extraordinary rapidity. so that it has brought the dreaded pest well inder control. It still breaks out from time to time in mexpecterl places, but the shipment of a fell colonies of its parasitic foe from the lnsectary suffices to check it before it becomes a menace, so that it is no longer feared. This is one of the rather rare instances in which a native beneficial insect has adapted its taste to an imported pest.

Among other once serious pests that are now completely controlled by insect checks may be mentioned the soft brown scale on citms fruits and the brown scale of the apricot. of which the natural checks are the two internal parasites, Encyrtus flazus and Comys fuscu. In May of the present year, Mr. Maskew collected in the breeding cases of the Insectary, and shipped to endangered orchards. an average of no less than 12,000 flies of the last named species daily for a considerable period. The black seale that once appeared to threaten the very existence of the olive orchards, and that constituted a serious pest on citrus and many varieties of decidnons fruit trees. is fairly well controlled by an Australian ladybird, and a small internal parasite introduced through Charles P. Lounsbury, from South Africa.

It may be inferred that to import live beneficial insects from China. Iustralia or other remote countries is sometimes a matter of no small difficulty. Sometimes it is necessary to pot small trees infested with a scale pest, box them carefully, and ship them to the distant comutry in which the enemy of the pest is found. There they are unpacked and exposed to the action of the parasite, which deposits its

eggs in those of the scales. Then the trees are bosed up again, conveyed to the seacoast, shippel across the ocean in cold storage, and taken to the State Insectary. There the trees are mobosed and placed in a breeding room, where development is rapid, owing to favorable conditions of light, heat and ventilation. In this mamer the parasite of the purple scale on citrus fruit trees was introduced from the interior of China.

One of the first points for determination at the Insectary. when a new beneficial insect is received from abroa cl, is whether or not it is affected by a secondary parasite. That every form of life has its natural check is just as true of bencticial insects as it is of pests, so that, while there is little poetry, there is a great deal of truth in the sereed:
*hig Heas have little fleas
Upon their backs to bite "em:
And little fleas have lesser fleas,
And so ad infinitum."
It is evident that if a secondary parasite were introduced along with the beneficial insect, to prey upon it and limit is increase, the very object in view in its introduction would be defeated. The breeding of insects in any quantitien desired is a much less difficult undertaking than might be supposed. It is mainly a question of food supply, temperature, light and rentilation.
"It is a conservative estimate," said Mr. Maskew recently. "that one half of all the children now in Califormia will some day be fruit growers, or the wives of fruit growers. If some of these can be given a fair idea of what we are trying to accomplish here, of the , means necessary to the accomplishment of our ends, and of the importance of the work we are trying to do, to the agricultural and horticultural interests of the State, there will be fewer obstacles in the way of the parasitologists who come after us." So. perhaps, wot the least important work of the Insectary is educational.

Kupair parte starting froma atations.

WIRING AN OCEAN
 AND A WILDERNESS

By

EDWARD B. CLARK

Aenlisted man of the Signal Corps of the C'nited States Army. snowshoe shod. is harnessing his dogs to a sled outside a close chinked log hut in the Alaskan wilderness. He is making ready for a hard driving dash to the rescue of a prospector who, native report has it, is starving and freezing to death in a hut in the Valley of the Kimnoko.

The soldier is waiting the order to start, waiting for it to come from Washington, the Capital of the United States, five thousand miles away. Thirty minutes before he had asked the W'ar Department for the word of authority to leave his
post on a humane errand, and now momentarily he expects the reply that will give him permission to risk his own life to save that of another. The word comes and the relief expedition starts.

Thirty minutes to Washington and back. five thousand miles! Ten years ago how hage would the soldier have waited on the edge of the Kimoko Valley for an answer to his hurry-up message sent to the Potomac Talley? Refore it came he would have counterl the clays and the weeks and the months, and in the meantime what would the cold and lounger have dune to the blizzard-besieged prospector in the wilderness hut?

THE SHSTEM UH OCEIN CABLES AND TELEGRIPH AND WIRELESS STATIONS THAT KEEP ALASKA IN COMAUNICATION WIIH THE WORLD.

The picture in part is fancy, for no American soldier would wait thirty minntes or thirty seconds for an onder to save life. It is drawn only to show that today the military anthoritios in IVashington are in telegraphic touch with the remotest points in Alaska, and that arders can be transmitted to Nome with virtually the same rapislity that they can be sent ion Fort Myer, which lies close to Arlington within sight of the Washington Momument.

The Signal Corps of the Liniter States drmy has made this instant commonication possible. There are nuly a few humdred members of the service, but thes have completed in the face of forbidrling conditions a cable and land line system which amy officers of other countries have said, "is uniegue in the amals of telegraphic enginecring." If plotted on the map of the United States this system
would reach from 11 yoming to the 1Bahamas, of the Coast of Floricla. The cables used would reach from Newfoundland to Irelani, and the land lines from Washington to Texas.

This ehievement of General James Allen, Chief Sigual Officer of the Army and the officers and men under his contro!, won the admiration of Consress, and it was to be supposed naturally that in view of it, the lawnakers wonld have leen willing that the Service should be given opportunity to seek results in other fields in 110 way foreign to those in which the corps is employed, and yct for two years there was refusal to give the sisnalmen the morlest sum that they asked in order that they might keep abreast of the armies of the world in the science of aviation. Recently by dint of pleas from the service and from the commtry Congress consented to open its purse.

The United States has bronght south－ eastern Alaska，the Valley of the Yukon and the resion of the Behring Strats into instant commmoneations with the entire civilized world：General Adolphus II．Grecley，formerly Chief Signal Offi－ cer of the Army，not long ago said， ＂There yet lacks to complete the dream of half a century ago of telegraphically miting America and Asia via lehring Strait，a cable to the Asiatic shore and a Russian－line of about 1.500 miles to Niknlaevisk．＂The dream may find realization much more guickly than any man not charged with the ejectric en－ thusiasm can believe．

The main Alaska cable and land lines laid and strung by the men of the Signal Corps run under the sea and through the air from Seattle in the State of Whash－ ington，to St．Michael．From St．Michacl across Norton Sound to Nome the com－ mmination is by wireless．This is the route：Cable，Seattle to Sitka，Sitka to Vaklez， $1.68+$ miles．Main land lines from Valclez to Fairbanks，to Fort Gib－ bon，to St．Michael，1，068 miles．There
are branch cables from Sitka to Junean and to Skagway，and from Valdez to Fort Liscum．Seward and Cape Whit－ shed．Branch land lines run from Gul－ kana to Eagle City，which is on the boun－ dary line between the British and the American Alaskan possessions．

Within a few wecks a wireless station has been put into commission at K゙otlik at the montll of the Yukon River．The new station is eighty miles from Fort St． Michael with which it is intended to com－ municate．The K゙otlik office will be used to exchange messages with vessels cnter－ ing Norton Sound from the sea．（ieneral Alten in his last report says that the operation of the wireless telegraph sta－ tions in Alaska has been of such a char－ acter as to warrant consideration being given ultimately to the abandonment of a portion of the land telegraph lines over the routes now covered by wircless，＂thus relying on these as the sole means of communication instead of as an anxiliary， to the land lines as originally intended．＂

During the past year there have been 213 men of the Signal Corps on duty in

THE CABLE STATION AT CORDOVA，ON TIE COAST DIRECTLY SOUTH OF V＇ALDEZ．

Brig.anffr fifineral, Jamfs Allfn, Chiff of Sigiat

Alaska, enough to make a battalion of infantry of ordinary peace 1 m ene strensth. I fext solliers of the lime, mainly infantrymen, have been detacherl for service with the Signal Corps in the Alackan work. These men in little squads, barely cnough in many cases to complete a set of fours, are stationed at long intervals on the rude roads and the blazed trails: above which the wires of the telegraph are strung. Nine months of winter each year these soldicrs remain cht off from anything save a humming wire to remind them that somewhere men live in cities and go to their work in the companionship of multitudes.

The soldiers of the signal Corps in Alaska must fiyht the elements. For two years during the construction of a part of the land lines a little squad of service men made their headywarters in a loge hut as primitive in buikding fanhon as any ever thrown up by a pioneer forefather when the tide of migration flowed over the Alleghenies in the New West. Two years, eighteen months of winter, working daly with the thermometer marking degrees way below the zero point, these soldiers stayed there, ap-
parently happy with their hardships. They are there today, some of them in \log huts, and others in better (fuarters but with no other change in their surroundings to make lighter the load of isolation which they hear. Danger comes to these men frequently and difficulties daily, and it is theirs to test the truth of byron's line, "There is society where none intrudes.

The calble line from Seattle to Sitha and thence to Valdez, with the branches now entablished, was laid under the direction of General James Allen and Majur Elgar Russel, who were chosen for the work becane of their cable laying experiences in the Ihilippines and of their high knowledge of electric engineering. The cableship, Burnside, was brought from China where it was undergoing repairs. The cable was manufactured in New Jersey and transported around Cape Ilorn, a distance of 12,000 milen. The work of laying was prosecuted in large part under the most unfarorable circmmstances. gales and bad weather generally delaying operations and frequently endangering not only the success of the work but the safety of the

BCOOYN(: THE EN「 OF , BROKFN C.IBLE,
In the upper corner is shown the laymg of the ehere end of the cable at Cordova.
ship and the lives of the men engaged in the duty. Success finally came and Seattle talked to Sitka, and Sitka talked to laldez.

In the service of cable laying a detachment of the Signal Service did the more arduons and technical work "with such success as to reflect new credit on the resourcefulness of the American soldier."

In writing of the cable laying an officer of the Signal Service has sail: "The celerity with which the Valdez-Sitka cable of over five hundred miles in length was put under contract. manufactured, transported, and laid, illustrates American possibilities. Congress appropriated the money on April $2+$, the contract was awarded, the cable was manu-
factured in New Jerey, transpurted by rail and sea, installed between Vaklez and Sitka and thrown open to commercial business in five monthes and twelve days."

The crew of the Burnside was composed of Filipines, and there also was a detaclment of "Little Rrown lirothers" who were used as cablemen. General Allen has commended them "for activity, willingness, thoroughness and reliability," and he has adrlerl, "the previonsly expressed good opinion of the services of the Filipinos as crew and cable men has been strengthened by late experiences."

The cable lines of the Alaskan system are "safe down m11er the water." The
land lines are exposed to the storms of every season, to landslides, to snowslides, to freshets and to forest fires. Over their safety the sentinel chain of Signal Service Corps men keeps watch day and night. Repair parties are ready to start at any moment from any station when word or sign of trouble comes. It is necessary frequently in the heart of the Naskan winter for the men to make long sledge journeys while the mercury in the thermometer keeps company with the buib.

The officers and enlisted men on Alaskan duty keep Washington in touch with Nome, and if commmination is broken experience has told the healquarters authorities that at the first signal of tronble a detachment is starting on its way over the momntain or through the valley or down the ice of the river to make the repairs which will put the Capital once more in tonch with the remotest point of the military line far flung through the wilder-

"Farthist North" Wirelifes Sthtion it Nome.

Stringing a Wire.
there was no butcher shop on the convenient corner. The govermment officials do curious things occasionally. It is hard when stationed on Pemsylvania Avenue to realize that a man cannot get all the food and any kind of food that he wants anywhere in the world. The extra allowance of milk, syrup and butter was allowed, but the condition was made that it should not be issurd at any Alaska post where more than three men were stationed. So it was that where four men were gathered together bent on doing their duty the scurvy wolf was at the door. but where three men were assemWed they sent him humgry away by feeding themselves with the milk and the butter and the syrup which a discriminating government said was good for three, but mot for four.

It was said in one of the opening paragraphs of this article that, "no American soldier would wait thirty minutes or thirty seconds for an order to save life." Congress recently gave to Sergeant Roy F. Cox of the Signal Service a certificate of merit for not waiting on orders to go on an errand of mercy. 1 few worls hidelen away in the army records tell what the Ser-
geant did to secure Congressional recognition. His certificate of merit was granted "for highly meritorious service in traveling thirty miles in a severe blizzard, rescuing a civilian from freezing and dragging him by sled sixty-five miles to Fairbanks."

Word came in to a little detachment of the Signal Corps that a prospector, a man seventy years old, was perishing in his hut at a point thirty miles distant. The cold was as severe as any that the Alaskan winter knows, and a hlizzated was raging. The conditions were such that no one was askel to wolunteer to go to the rescue, for it was thought certain that death awaited the man who would try to hit the trail that day. In fact there was no trail. Sergeant Cox said he was going and he went. He made the thirty miles with a dog sled and found the prospector apparently almost at the point of death. He gave him food and medicine and then knowing that the services of a surgeon were necessary at once if the man's life was to be saved. he started on the journey of sixty-five miles
to Fairbanks. Ile arrived there with the prospector still living and he lives today. altongh it was necessary to amputate both his lags. Sergeant Cox was an inmate of a hospital for a long time, because of illaess due to exposure. but he recovered and the experience in wo wise weakened his love for the service He is a Signal Corps man today and he has his certificate of merit, a thing which is prized above all other things by the American soldier, for it is the equivalent of the Engiish Victoria Cross which is given only "Fur Valor."

Sergeant James E. Hogan did a deed which was almost the conmterpart of that of Sergeant Cox. He also won his certificate of merit. The records of telegraph line construction and maintenance in the Nlaskan territory contain many stories of courage and of self-sacrifice of the officers, commissioned and noncommissioned, and by the privates of the Signal Corps of the United States Army.

In appreciation of the service in Alaska of the men of the Signal Corps of the United States Army it does not

THE CABLE SHIP BLRNSIDR APPRO\CHING THE PORI (HF VALDEZ.

TYYICAL ALASKA TELEGRAFI STITIOA AND SHCNA. CORPS DETMCHMRN゙T OU.ARTFRS,

seen that one can fo better than to use the worls of an official "who has seen and who knows." He says:
"These soldliers stand ready at all times "to hit the trail' the instant that a wire goes down or a call for help comes. They are willing. They risk life and
limb, asking no questions and doubting nothing. The extreme comelitions of the service am the necessity of the continned maintenance of commonication have demonstrated the spirit of the American soldier who has sacrificed himself to the work."

Decision

Once to every man and nation comes the moment to decide,
In the strife of Truth with Falsehood, for the good or evil side;
Some great cause, God's new Messiah, offering each the bloom or bligh ,
Parts the goats upon the left hand, and the sheep upon the right;
And the choice goes by forever, 'twixt that darkness and that light.
-Lowfil.

CENSUS OF THESALMON

B y

RENÉBACHE

TO count the salmon in Alaskan rivers would seem to be a task not merely stupendous but impossible. Iet it is being accomplished in a very systematic way by the govermment Fisheries Burean, and for a purpose of ntmost practical importance to the future of the commercial salmon fishery in that part of the world.

So far is this true, indeed, that the cost of taking the salmon census is being defrayed, up to date, by two of the biggest camning companies-the Fisheries Bureau having no funds to meet the expense involverl, which amotnts to about $\$ 6.000$ a year. This, however, it shothri be unclerstood, covers the cost only of counting of salmon in one large river, which was picked out for an initial ex-
periment to determine the possibility and merit of the plan.

The strean in question is the Woonl River, which, for the purpose of censustaking, was closed for the time being to the commercial fishery. There was no trouble about arranging this, because the Fisheries Burean. under authority bestowed upon it by Congress, has absolute control over all the salmon streams of Alaska. It tells the canming concerns where and when they may catel fish, and when and where they will not be allowed to catch them. If it chose, it could suspend the salmon fishery alogether for an indefinite period in Uncle Sam's Arctic province.

What it wants to do, however, is to keep the fishery going, and to make sure that the supply of salmon shall be main-

LOOKING DOWN ON THE GATES THROLGGH WHICH THE SALMON PASS TO BF COUNTFI.

RACK ACROSS WOUI KVIER. TO ASSET IN COUNTING TUE SALMON.
tained. Hence the undertaking here dencribed. which, as will presently be seen. has a direct bearing upon the commercial problem. Thus, fur example, now that it has been ascertained how many salmon rum up Wood River to spawn, the experts are able to julge with accuracy of the number of fish required to maintain the supply in that particular stream.

Suppose that the requirement for Wood River is 500,000 spawning salmon per anmom. The Fisheries Bureat, then, will prohibit fishing in that stream each season until the necessary half million have passed up the river to the spawning grounds-this matter being easily determined by extending a species of barricadc, called a "rack," across the stream, allowing the fishes to pass only through narrow gates, and counting them as they go by. When the 500,000 breeding salmon are thus assured of safety, the canning companies will be told to go ahead and catch all the salmon they choose in the waters below the "rack."

The rack and gate methox] is the one that has been employed hy the governnent agents to connt the salmon in Wood River. Tally was kept of them as they passed through with the aid of an automatic click comiter, held in the hand. Such contrivances are sometimes uad nowatlays to make a record of the number of people who visit a musemm or other public building. On July $1+$ over

402,000 salmon went through the gates, on their way up, and the total count for the season was 2,603,651. Reckoning was only made, however, of the red, or "suckeye" salmon, this being by far the most important species commercially.

Now, it shonld be explained that each salmon river has what is called a "value" of so many fish per ammm-which means simply that it can produce just abont that number, and no more. The number is always limiterl, cach stream having a definite capacity, which depends upon its area of suitable spawning grounds and the amount of food available for the young "fry."

To make this clear, it is necessary to explain that no river produces salmon muless it takes its rise in lakes. For the fish go up to the lakes to lay their eggs -though. as a matter of fact, they do not deposit their spawn in the lakes, but in small streans flowing into the latter. When they are big enongh to take care of themselves, the young fishes find their way into the lakes. But, if there are too many young ones, there will not be emongh food to go around, ansl they will perisli in multitudes.

It will be seen that in this way the mumber of salmon in any river regulates itself-or did so hefore greedy man appeared on the scene, to interfere with things. Recent sturly of the subject has proved that salmon, though their proper
home is the sea, never-white in the ocean-go far away from the month of the strean in which they were hatched. At four years of age, or thereabont, they go up the river of their birth to spawn. Accordingly, the number of intending parents thas returning to the old spawning grounds in any given season is directly proportionate to the number of
intending parents-latcherl originally from the first salmon's egrs-enter the river from the sea four years later. This applies to all salmon streams. But no two rivers are alike in respect to the conditions governing their amual fish ontput; sn that it is necessary to make a special investigation of each one. Speaking generally, however, it may be said,

PART OF THE RACK, OR BARRIER, CLOSE TO THE GATES THROUGH WHICH THE SALMON PASS.
"fry" that survived out of the brood of four years previous.

The government experts say that there is no longer any danger that the supply of salmon in Alaska will be exhausted, or even seriously diminished. So long as the Bureau is allowed to continue in control, and to prevent destructive methods of fishing, it can maintain the output to the end of time, withont curtailing the commercial fishery, and without artificial hatching, except in places where fishing is extraordinarily active, or where the area of spawning grounds is ctirtailed by such sammon-killing agencies as sawmills, mining industries, etc.

A very painstaking and comprehensive study of the whole subject las been made, and one of the conclusions drawn is that for every sahmon which reaches the spawning grounds, from two to five
on the basis of the above figutes, that from fifty to eiglity per cent. of the total number of salnon may be taken amually withont injuring the fishery.

Controlling the matter so absolutely as it now does, the Fisheries Bureau will be able not only to keep as many salmon in the Alaskan rivers as there are now, but to restore the fisli in multitudes to many streams which have been depleted by reckless commercial operations - the most destructive of these consisting in putting up dams, or streteling nets across the streams, in such a way as to make it impossible for any fish to reach the spawning grounds. Obvionsly, the adoption of a plan of this kind meant that the river, however productive at the start, would cease to contain any salmon after four ur five years.

It seems ankzing that any himana
being gifted with ordinary intelligence should adopt so short-sighted a policy. But experience has shown that people gencrally, when they have a chance to mak money rapidly by exploiting a great natural resuirce, have not the slightest hesitation in destroying it utterly and for all time to come. It has been the practice of the canning companies. when they had wiped ont all the salmon in one river, simply to move the scene of their operations to another stream: and, if this had been allowed to go on, the salmon fishery of Alaska. which yields $\$ 10,000,000$ worth of prodnets per anmum. would have ceased to exist within a gencration.

Under present circumstances. fortumately, it is not a very difficult matter to repopulate with salmon the depleted rivers. Unlimited numbers of eggs of the finest and most desirable species are easily obtained. and these are already being hatched by the humlreds of millions at tw (stations which the Fisheries Burean las established for the purpose. One of these hatcheries is at Yes lay, in motheast Alaska, and the other is on Afognak lsland, sontly of the Aleutian Chain. The island is a govermment preserve, on which 110 ganne or fish is allowed to be killed or taken. Natural conditions make it one of the best localities in all dlaska for salmon-culture and the shamine grounds are so situated an to be at all times under ohservation and control.

Last season there were hatched at these two stations $96,3^{317}, 000$ salmon exgs, mainly of the rerlfish, or "suckeye." So special difficulty is involved in the work, althonesh salmon eggs require an extramdinarily lomg time, eight or mine months, for their incubation.

When the salmon reach their spawning grounds, they pair off, and excavate nests in the bottom by plowing up the sand and gravel with their noses and suecping it ont with their tails, until at length a bowl-shaped hollow is dug. perbatis three feet in diameter and from a font to a foot and a half decp. In this the femate bay, her egess, which are carefinlly cosered inp. It then remains for the parents 10 stand be the mest and fight off enemies, among the worst of which
are the Dolly Varden and "cutthroat" trout. These trout follow the salmon to the spawning beds for no other purpose than to steal their eggs, of whech they devour immense numbers.

While thas defending their nests, the parent salmon become thimer and thinner until at length they die. Not one out of all the multitudes that have reacherl the spawning beds survives to go back to the sea. Sometimes the streams that flow into headwater lakes are literally choked with their decaying borlies-a pitiful sight to see. Thus. however, it will be inderstood how and why it is that the maintenance of the supply of fish in any given river depends upon the annual crop of young "fry."

Early in the following spring these can be found on the spawning grounds by taking up handfuls of gravel from the buttom. They are not yet able to swim, but, when released, wriggle away and burrow into the bottom again, hictmas themselves. Aleanwhile they derive what sustenance they need from yolksacs attacherl to their bellies. When they are able to look out for themselves. they pass out of the affluent streams into the lakes. and remain there, feeding, until they are four or five inches long. The call of the sea now summons them, and they wend their way down the river to the ocean, where they dwell in deep water off the coast until, at the end of about four years, they are ready to swim (i]) the river, to spawn, and in their turn to give ip their lives for the perpetuation of their species.

During the fishing season of 1909-10 there were taken in Alaskan rivers $3+602,608$ salmon. or a total of $175,028,-$ 504 penturds. The ammal pack is about 2,500.000 cases of forty-eight one-pound cans each: but the eatch varies a good deal from jear to year, and every fourth year it is relatively inge. Thus the catch for the season of 1908-9 was 43.304 .979 salmon, with a total weight of $213,378.570$ pomuds.

It is interestins to reflect that during the last ten years . Dlaska has proflueed, in salmon alone fourteen times as much money as Mr. Seward paic] for the territory when he benght it from Russia half a century ago.

1HE ROWFIS POTTER TRAN STOP—ONE OF THE TNO IPPROVFI KY THF
GOVEKN入ENT BOAKD.
The allustrations respectively show the signals set fot safety, the track trip mechanism. and the shatal sit fur dunter.

MECHANICAL BRAINS SAVE LIVES

B y

R OBERT FRANKLIN

TOO many railroad wrecks! How shall they be made less freguent?

During the last fiscal year, in this country, no fewer than nine hundred and thirty-two people were killed, and fourteen thousand, three hunthed and seven persons maimed or otherwse seriously hurt, by smashups on the rail. It was a frightful carnage. A considerable battle, indced, might have been fought without greater loss. But there is good reason for supposing that the number of slain and wounded in the present year will be at least as great, and so on for every subsequent twelvemonth.

That is to say unless something is done to alter radically the conditions which give rise to mishaps of the kind.

It is a very serions problem, and the govermment is trying hard to find at least a partial solution for it. Congress, not long ago, handed the matter oser to the Interstate Commerce Commission, with anthority to appoint a board to investigate the whole subject.

This board, in a report newly prepared. declares that the fundamental canse of the trouble is to be found in the American tendency to hurry: People in this conntry are so anxious to do things quickly that, to a great extent, they ignore caution. Here is the principal reason why railroal wrecks, which are rare occurrences in England and on the continent of Europe, are so frightfully frequent in the United States. Nevertheless, taking conditions as they are, much

Conract Kill. Which Touts the Whistle of the Passing Locomotive Whan Danger Ihreatens.
may be done to lessen the number of such accidents by the adoption of certain mechanical measures of precautionmost important of all, the automatic train-stop.

Such a stop provides for automatic train control. It is a device to prevent the over-ruming of stop signals by trainmen. Often it happens that the engineer of a locomotive fails to notice the fact that a signal is set for danger. It warns him to bring his train to a halt ; but, failing to recognize it, he runs past. and in many instances a disaster is the consefluence.

The ingenuity of inventors has been taxed to devise a means by which this
sort of mistake may be aroided. They have contrived a number of expedients by which an over-run danger signal gives warning in the cab of the locomotive, automatically. These, which are called "calb signals" are already in use to a considerable extent abroad. Other devices, which not only give warning, but actually stop the train, are still more effective, reducurg the human

Thr. Irvich for Contact with the Rall, Carried Benesth thf Locomotive.
factor in the railroad equation to a minimitum.

Many such automatic train-stops have been to a greater or less extent perfected. In most instances they are electrical contrivances, and operate by setting the brakes of the train. Thus, for example, one of them-already tried with some

J. E. PAGE. OF KANSAS CITY. AND IIS PATENT COACH.

This car has an anti-telescoping device the stev floor at eachend formmating at an ande. so that cars in collision may slide by mach other.
 top of the motorman's box. In case he does not see, or neglects to obey, the warning. the breaking of the tube opens the air-brake valve and sets the brakes.

Up to the present date, no fewer than

The Old and Dingerous Method of Golng Bftwffn Cars to Uncouple Them.
Compare with cut in zext column.
nime hundred and thirty-seven devices of various kinds, to promote the safety of railway operation, have been submitted to the board, and a majority of these lave been examined and reported upon. In all, one hundred and forty-nine automatic train-stop inventions have been inspected, and of this number sisteen have appeared to possess sufficient merit to warrant formal tests. Two of these sixteen have already undergone such tests, and having been found to work

This.COUPLER Kfvidrss It L'verfssary fu Go Betwifa the C.ars.
I contrivance that saves hundreds of lives annually.
satisfactorily have received the final approval of the boart.

These two, which have been tested under actual traffic conditions, are both of the mechanical trip type. One of them, known as the Rowell-Potter trainstop, is an arrangement by which a bar lying parallel and close to one of the rails of the track is lifted a short distance above the rail whenever the ristual signal is set for danger. LTnder such circumstances, the bar, coming into contact with

THF: S. H. Harrington Mfehanical Trap duth-stop.
Onc of the two approved by the government board.
of passing trains on levers fixed close to the rails, these levers serving to wind ip a coil spring.

The other atutomatic stop approved by the board is the invention of S. II. Harrington, and has been in experimental and successful the for over two years on the Northern Railroasl of Xew Jersey. It works "overhead"-tlat is to say, the device fixed at the roadside is suspended, fifteen
ant air-lurake ralse, suspended from one of the frucks of the tender, opens the valve an! applies the brake.

Bars at the side of the track are provided in duplicate at each signal point. onte of then 180 feet in adrance of the uther, so that, if the first one shoukl hy any accident fail to operate, the second would bring the train to a halt. Power to (rperate the stop. as well as to work the semaphore signals of the system, is derived from the pressure of the wheels
feet abore the track, in such a way as to come into contact with a projecting am of an air-hatae value on the top of the cab in the locomotive, the opening of which valve applies the brake. The roalside contrivance consists of a weight susperneled on the end of a chain, which. langing free, operates the engine valve by its mere mertia, When it strikes. . It the same time, it has the great advantage of failing to work when a train is going very slowly-say, five miles an hour or
less. Under such circumstances-when a precaution of the kind is not wantedthe weight simply drags over the operatmog rod on the locomotive, producing no effect.

It will be observed that the automatic stop does not 11 any way insure the correctuess of signals. Its only function is to correct the error of the engineman who runs past a danger warning. This, however, is of utmost importance, inasmuch ats many bad accidents are cansed by the failure of locomotive engincers to observe, malerstand, and obey sigials. Pailure to observe them may be due to fog, soow, extinction of signal lights, or smoke from other trains. The engineman may fail to understand siguals because of their complexity, or for the reason that his attention is distracted. Intentional failure to obey them is rare. The antomatic stop, however, climinates almost entirely the element of human fallibility. Furthermore. experience has shown that engineers are much more careful to heed danger signals when it is certain that disobedience of such signals will be detected.

The board confidently expects that the antomatic stop will be developed to a point where. like the block signal, the car-coupler, and the train-brake, it will be available to railroads generally, and will greatly contribute to the safety of train operation. Already such contrivances are in actual use to some extent-for example, on the Boston Elevated, the New York City Subway, the Philadelphia Subway, and the underground lines in London, England. Mechanical trip train-stops of similar design, worked by electric motors, are also in use in the tumnels under the I Iurlson River between New lork and Hoboken. Officers of these roats are innanimons in testifying to their satisfactory operation, and
on a mumber of occasions they have been the means of preventing collisions.

The board has likewise offered to make practical tests of two kinds of cal, signals, to which an antomatic train-stop can be attached if desired. One of these is the invention of E. Fi. Clement, of Philadelphia. The other is owned by the Railway Aullible Signal Company, of London, and is now in use on the Great W'estern Railroall in England. Its essential feature is a short contact rail in the middle of the track at the signal point. This rail engages with a device beneath the engine, slowing a danger signal in the cal ansl blowing the whistle of the locomotive.

The board has found itself called upon to give a good deal of consideration to the question of locomotive headlights. ln scren States of the Union, Mrkansas, Montana, North Carolina, Oklainoma,

 When the signal is set for danker, a metal rod emanhes a ghase tube on top of the car. and thus sets the brakes.

Sい1t h「akota Texats, and W:ashington, headlights of 1,500 candlepower or over are required by law. The State railroad commission of $\mathrm{I}_{11}-$ diana compels the use of equatly puwerful headlights, and in (jeorgia the law demands electric headlights of great luminous efficiency, with reflectors twenty - three inches in diameter.

The trouble with the ordinary oilhmrning headlight, Coln monly emplayed on locomotives is that it is seldom powerful chough to make it more than a marker to indicate to persons at stations or railways crossings, or to trains on other tracks, that an engine is approaching. For discowering or identifying distant oljjects on the track ahead, it is of almost no use at all. I lence the argumest in favor of the high-power learllight, gas or electric, by which persons or obstructions may be seen at a sufficient distance to enable the train to be stopped before reaching them.

On the other hand, there are some serious objections to the high-power headlight, chief among which is the fact that its rays are so intense as fairly to blind, for the moment, persons who may lowk into the beam. This effect, when experienced by enginemen of trains running in an ofposite direction on parallel tracks, is likely to give rise to accidents. l'urthemure, it is often difficnith to read the colors of sigmal lamps correctly in the heam of an electric headlight, the suoctrum of the are being very rich in blue and green rays and containing a

Trappris Thus, Many A Person Has Bhen Kildfi by Trains.
All 1 rogs are now reguired to be blocked with matal or woend.
relatively stiall proportion of the red and yellow. On this account particularly the railroads have made strenuous objection to such headlights.

On double-track roads, and particularly on roads having three or four tracks and. equipped with signals placed at frequent intervals, the prevailing opinion scems to be that electric headlights are not only unnecessary, but are likely to cause serious errors on the part of engineers in reading colored signal lights.

An incidental problem which the board is trying to solve is that of the headlight which shall continute to throw its beam upon the track while the engine is rounding a curve. Inasmuch as such lights are usually fixed in position, their rays are projected in the direction of the axis of the locomotive, and hence on curves do not illuminate the track aheal. Varions devices have been sulmitted for imparting to the headlight, while the engine is rounding a curve, such motion as will turn the bean so as to make it fall on the track. Most of these contrivances, however, are very crude, attempting to use the slewing of the front truck of the engine tor rotate the headlight, and not one of them has been found satisfactery.

The board strongly recommends that railroats all over the country be compelled by law to adopt and maintain the block systen for running their trains. At the juesent time only alout sixty-six thousand miles of railtoads, out of a
total of approximately two humdred and forty thousand miles in this country, are operated under this system, notwithstanding a superabundance of evidence that. wherever used, it luas added in1measurably to safety of transportation. The situation is not unlike that which existed at the time when the adoption of car couplers and power brakes was compelled by Federal enactment, against a most determined opposition on the part of the companies, desirous of avoiding the expense involved in the acquisition of such improvements.

As a matter of fact, the adoption of the block system everywhere would cost
the railroads very little money. Not much apparatus is reguired. In July of last year, the Baltimore \& Oliso line from Storr's, Ohio, west to Vincemes, Ind., and from North Vernon, Ind., to New Albany, over one hundred and eighty miles, was equipped with all the necessary outfit for the operation of the simple mannal block system in less than one wcek.

It is the opinion of the board that the compulsory introrluction of the block system on all railway lines will tend greatly to reduce the number of collisions and the incidental mortality record that results therefrom.

Keep Your Grit

Hang on! Cling on! No matter what they say.
Push on! Sing on! Things will come your way.
Sitting down and whining never helps a bit;
Best way to get there is by keeping up your grit.
Don't give up hoping when the ship goes down;
Grab a spar or something - just refuse to drown.
Don't think you're dying just because you're hit.
Smile in face of danger and hang to your grit.
Folks die too easy-they sort of fade away;
Make a little error, and give up in dismay.
Kind of man that's needed is the man of ready wit,
To laugh at pain and trouble and keep his grit.
-L. E. Thayer in . Veze York Times.

Oh, for the good old times!
The frst years of our ash gray century,
Comparable alone to those bright days
Of England's brave Queen Bess,- a man's queen that 1
To thirk that not one hundred years ago
The flush of barbarism yet remained,
A sunset flaunting in a flaming sky
That's twilight now! Had I lived then,
What epics I'd have wrought in blood and firel
What wonder tales, for Wonder was not dead!
Think of the thrill to him who first took flight,
When all the vast familiar continent
Of air was unexplored: the madcap search
To t. nd the axis of our mudball earth.
The Commonplace of now was Wonder then:
The submarine; the word far-flung in air
And caught again, like pigeons shot in flight; The rays that pierce, what men once called opaque, (Today we know there's no such word!) Alas, That I was born a century too late,
There's nothing left to sing of but the past.

And thereupon the minor poet flung
The lever of his Microphonograph
And settled back to hear the record, caught
(You know the late invention of Herr Schulz)
From Homer's lips when centuries had lapsed.

Where one fuluddren persons lost Their lives,
Building concrete sheds to protect from snow slides at Willington, Washington,

GUARDING AGAINST THE AVALANCHE

B y

WILLIAM THORNTON PROSSER

IN Jume 1910 the Tecifincal World Magazine told of one of the most tragic and remarkable railway disasters ever recorded in the United States: how an avalanche swept down the precipitons sides of the Cascade mountains at the little town of Wellingtom, Washington, and carried a (ireat Northern passenger train with almost one hundred passengers aboard, to a terrible fate in the deptins of the canyon bebow. To prevent the recurrence if such a catastrophe was the prollem that confronted the Great Northern's engineers, and spurred on by

James J. Hill. who declared that the tracks must be rendered absolutely safe no matter what the cost, they finally determined upon the erection of reinforced concrete snowsheds protecting all the Wellington danger zonc. These have just been finished at a cost of $\$ 500,000$.

Construction of these solid masonry structures for a distance of 3,300 feet is regarded as a great accomplishment in the engineering world. for they are not merely coverings built over the tracksthey are indestructible hoods set into the mountain side. Future avalanches may thunder into the canyon, far below, all

MIXING GRAVEL ANH CEMENT FOR THE CONCRETE SNOWSHEDS IN TIIE CASCADE MOUNTAINS.

SETTING THE FRAMES TO SHAPE THE CONCRETE COVERING.

The Steel Kodse Kifay for I＇heir Concrete （いがRING：
they pleasc，but they will slide right wer the concrete tubes，and trains may pass back and forth within them as safely as passenger traffic is carried on beneath the Judson river in the McAdoo tumnels，or beneath the Detroit river．

It was a west buund passenger train stalled at Wellington by snow－blockades that was swept to destruction at the be－ gimning of last March，together with four electric locmotives used in the Cascade tmmel，which had been recently electri－ fied，and a part of the town of Welling－ ton．For weeks and weeks workingmen continned to take out the bodies of the victims，some burical under fifty feet of snow and debris．Sonn after traffic was resumed Mr．Will，chairman of the Creat Northern board of directors，with L．W． Ihll，his son，president of the roarl，L．C． （iilman，assistant to the president，and 1．II．Jugeland，chef engineer of the bytun．visited the momntain division． and sudnel the problem trom all angles．

Observation convenced the officials that
the only way to render the tracks immune from such disaster was to set the rails back into the mountain，and erect cov－ erings that no avalanche could budge．
＂W＇e must make the mountain district impregnable against snowslides，even if an ontlay of millions of dollars is neces－ sary．＂cleclared Mr．Hill emphatically， and aside from the concrete sheds the railway magnate ordered more than $\$ 1,000,000$ spent in an effort to prevent blockades and delays to through trains during the winter months．Two miles of the main line near Berne，east of Wel－ lington，are in process of rebuilding，new buildings were erected at Wellington，a water supp！y system is being installed between Weilington and Scenic，and at Wellington a rendezvous has been made for the scores of men that each winter fight the snow king in the Cascades． From this point men may be rushed down the west side of the momntains or through the Cascade tumel to the eastern slope．

Not before in the world have rein－ forced concrete snowsheds been con－ structed to protect a long stretch of track， as in the Cascalles．Preparatory to the buidding of them and the erection of some wooden sheds the Cireat Northern placed orders for $11,000,000$ feet of lim－ ber．In the concrete work 30,000 barrels of cement were ased，with 2,400 tons of steel as reinforcement．Relays of men worked night and day rushing the con－ struction，as haste was necessary if the great task was to be completed before the winter snows again brought danger．

The mountain side of solid rock was excavated for fifty feet back from the old tracks．For most of the 3.300 feet the concrete construction rests against the monntain wall．The concrete roof． ten inches thick and sloping one foot in five，is twenty－two feet above the double tracks of the main line．Rein－ forced concrete pillars set ten feet apart in the walls give additional support．

Great Northern engineers declare that these so－called sheds will last for all time to come，and that danger is virtually eliminated．Each year snows and block－ ades made traffic extremely difficult to maintain through the Cascade district． but next winter with the improvements． that have been mave the operating offi－ cials expect less trouble than ever before．

ROLLER COTTON GIN AT LAST

B y

C. E. HAYES

FOR years all cotton men, whether growers, gimers or manufacturers, have recognized that a radical improvement was necessary in the present method of gimning cotton. The enormous loss in wasteful ginning methods, estimated as amounting to $\$ 40,000$,000 on each year's crop, could be saved for the mills of this country, with the use of a perfect gin. Roller gins have heen recognized for years as the proper gins to we, delivering the cotton fiber in its full length, uncut and unbroken, while
the saw gins materially damage the fiber. But the roller gins in use, working by reciprocating motion, have a very small capacity, about 40 to 50 pounds per houi as compared with the saw gins which turn out from 400 to 500 pounds of lint per hour. Also the roller gins in use have only been adapted to the giming of the very longest varieties of cotton, like Sea Island and Egyptians, and not much success was achieved with them in the gimning of short staple or upland cotton which comprises ninety-nine per cent. of the cotton crop in this country.

MagNififd Cuttun Fibfrs Showing Cuts AND INJURYFRGM ごい（INNING。
for years inventors have been work－ ing to improve the capacity of the roller gin，knowing that when the quantity of output would equal the saw gin，the lat－ ter would die out．

Some years ago Charles I．McI＇her－ son of South Framingham．Mass．，be－ came interested in the improvement of cotton ginning and as a result of his experiments invented what he calls the rotary comb roller gin．This gin will soon be in the market in competition with the saw gin．

The new gin uses a rotary process which gives it a rapid giming action and a great capacity，turning out from 400 to 300 pounds of short staple cotton per hour while the fiber is uninjured and the quality of the lint perfect．Nany points of superiority are claimed for this new gin over the saw gin．Among them is the saring in fire losses which now occur in saw gimneries through the action of the rapidly rewolving saws en－ conntering pebbles or small particles of hard metals which are frequently brought to the gimeries in the seed cotton． $S_{p a r k s}$ are flashed as a result and fires ensue，thus causing insurance rates on gimeries to be very high．The action of the rolls in the rotary gin is to smother the fire should one start in the gin．Ke－ peated test．having been made to demon－ strate this fact．There is no danger whatever to operators of the new roller gin．Thonsands of employes in Southern gimeries are mained or less serionsly in－ jured each year by saw gins．

The new gin has gimed wet cotton
perfectly and no saw gin will do it with－ out mangling and tearing the lint．In competition with saw gins in the South it saved from twenty to twenty－five pounds of waste per laale，as it delivered the line full length from the seed．Per－ feet lint to the manufacturer means a

Perfect Cotton Fibfrs from Rulifr Gin．
great saving to him in the preliminary processes in the mill，besides making a stronger yarn．As a restult roller gin cotton sells from one－half to three cents per pound more than saw gin cotton．

The gin consists of two sets of double rolls，the rolls of each set revolving in op－ posite directions．One of these is a gin－ ning roll，and is covered with some soft material having a gentle friction－usually walrus hide－which will thus not only not injure the filoer，but likewise should be free from the danger of heating ex－ cessively．The other moll is a combing roll and consists of a shaft on which are set spirally two pointed soft metal disks． The lint on the seed is caught by the ginning roll and drawn inside a polished steel plate or blade against which the siming roll revolves．This action holds the seed firmly against the dull edge of the blade and it is combed from the lint by the points of the rapidly revolving disks．Aiter being detached by the comb roll．the seeds are forced through a grate molerneath by the rotary action of the comb roll，and the lint，now free，is blown by means of a suction fan to a condenser in the rear of the gin．The simplicity and efficiency of the process are apparent at a glance．

T W O ELEVATORS IN ONE SHAFT

B y
H. G . HUNTING

IF yon have ridden up and down in the elevators of the big buiklings of Chicago, you are more likely to feel that too little, rather than too much, space is given to elevators. Usually they are used to capacity. With this fact perfectly clear in his view, however, Jarvis Hunt, designer of big buildings, has marle the astonishing amonncement that twice too much space is used by the lifts, because-now, don't laugh-because two elevators can just as well run in one shaft as not.

A few days ago, a group of Chicago capitalists pail $\$ 85.000$ a front foot for a piece of State Street real estate. That means that, for a strip of ground one font wide and running back one hundred feet to the alley, they gave cheerfully, not to say with alacrity, a sum that would make a sung little competence, at least, for most men.

Of course, they did not buy one strip alone. They bought several, side by side. Then they dug still deeper into their capacions pockets and brought forth a million or so and put utp a building of magnitude and figured the value of floor-space as a basis for rental. And the floor-space was valuable. It was worth enough to pay up-keep, interest and purofit on that $\$ 85,000$ per front foot and on the million or so invested in the building.

Floor space in that building rents for about five dollars a square foot per month, or say eighty dollars for an office twelve by sixteen feet. With twenty foors, cach one hundred by one hundred feet inside measure, such a building would have two hundred thousand feet of floor space. And two hundred thousand feet at five dollars a foot per month, would make a very pretty income on investment. But

The space doesn't all rent. There must be halls and walls. There must be stairways. There must be closets, janitors' rooms, rooms for control-stations for various apparatus. washrooms. There must be a light-shaft.

There must be air spaces and space for pipings for water and sewer and steam, and wiring for electric service. Lastly-but not least, by any means-there must be space for elevators.

When you come to count it all 111 , it is costly space that is given to all these things. It keeps the profits down-somewhat, though it is still popularly believed to be a profitable investment, this buidding and renting of bis skyscrapers. But suppose that each elevator in such a building takes a space six by seven fect, inchuding its running space. That's fortytwo splate feet out of each flome for each elevator. Suppose it regtures ten elevators in serve the buiding. Ten clevators would subtract tell times forte-two feet for each of twenty floms, or R. $f(0)$ spuare feet, in all, from the rentable flow space of the buiding. It five dollar:-wh. well, it is easy enongh to figure it. That's $550+000$ a year in floor space given 11 to elevators. That's suite a sum.

The builders of the hig skystaper on State Strect are giving up $\$ 50+, 000$ every year for the purpose of lifting people in and out of the rentable floor-space. You may be quite sure that they have figured rather carefully alont the necessities of the case before they have consenterl to any such thing. But a certain Cheago architect has come forward and proclams that they are throwing away just onehalf of that big sum. Literally they are throwing it away-for it isn't going to anybodyit isn't doing anylrody any good. It simply isn't coming in when it should be. Why? liecause too much space is given to elevators.

Two elevators in one shaft! Ilow? Well, of course, they can't be side by side, so they must be one over the other. And the plan is "so simple that it's a wonder nobody thought of it before," just as is every other useful ilea that crops into man's hearl after years of blundering blindness.

There are two types of clevators in common use now in the great buidings. One is the kind that is lifted by cables-the other is the nort that is putshed up by a plunger. Mr. Itimet means to put a cable-lift elevator in the shaft, to start at the first flowr and rum "express," withont a stop below the tenth floor, serving the floors above the latter point. lieneath that elevator, he will put another to start at the hasement and be pushed up by its plunger and ran "local" to the tenth floor and back, serving all hoors below the tentla. Between the two cars he pats a safety device to prevent posihility of collision and-there you are. It is simple to arrange the schedule so that the two

cars can serve their respective floors without interfering with each other.

While the cable-lifted car is rising from the first to the tenth floor, the plunger car will be taking on its load for the floors below the tenth. While the plunger car is delivering and receiving passengers between the first and the tenth floors. the cable car will be doing its work between the tenth and twentieth. It requires just about as much time to serve one floor as another, and in all well regulated buildings a perfect schedule is adhered to, so that there will be nothing new in this requirement. There is every reason to believe that the new plan will work and work well-to the saving of about half of that $\$ 504.000$ in the State Street building, and considerably more than that amount in some of the Chicago buildings where fifteen or twenty elevators are required to serve twenty floors.

Suppose there are twenty buiddings in Chicago that can save as much as that. by such a change of elevator methorls-suppose there are twenty cities that have ten buildings each that follow suit-suppose there are a hundred more that have from two to five-and suppose that half the lower buildings. to say nothing of the higher ones can adopt adaptations of the plan? That leaves nothing at all to suppose about the restults in sarings, lower rents and greater profits, does it? And it's one more proof that we haven't been half so clever as we thought we were in the matter of economies. If all the inventors were to turn their attention to showing us where we Americans are wasters, as the efficiency engineers are showing the railroads. our much inflated conceit would look like a toy-balloon that is busted.

Fll, 1. SUCCESSIVE MOVFMFNTS OF A GULL, MADE BY AN OBSERVEK FOLLOWING THE LINE OF ITS FLIGHT.

BIRDSASAVIATORS'MODELS

'TRANSLATED FROM LA NATURE'
B y

MRS. F. M. C. HOLLEY

ANONG the unexplained things of nature that man has been fretting lis brain over to little purpose as yet, is the fact that some birds have the power to holks themselves in the air without being dependent moon the beating of their wings. Direct observation of birds and the character of their flight has established the fact that birds of a certain size do not fly exclusively by beating their wings: they soar in the air. It may be said that this kind of movement is general with birds alove the weight of four and one-half pounds, as if nature had not known how to enable large birds to use the same kind of flight as small omes.
llow: mader these conditions can we bupe that man, surpassing nature, should be able to make a beating of wings that will lift not merely four and one-half pumuls but his own weight?

Works on the flight of birds, undertaken during the past few years are very numerous, and it is becoming difficult to find one's way amidst the contradictions, mecrtanties and obscurities which one meets. Ilowever a certain number of facts bave within this time been ascertaned by the experimental method which bave often been cortoborated by careful calculations.

The sparrow gives the impression of a living force which raises itself quickly and flies with rapid beatings of the wings to traverse only a few yards or to raise itself to a slight elevation. The pigeon rises with the same facility, but its beatings are less rapid and are produced with much more regularity: its flight, more ample than that of the sparrow, gives the impression that it belongs to a more powerful bird, capable of sustaining its course a longer time.

But a new element appears in the pigeon's flight-the facility, of which it frequently makes use, of suspending the beating of its wings in order to glide through the air. In ordinary weather with a moderate wind it holds itself thus when from a high point it wishes to descend to the eartl: it half foldis back its wings and lets itself fall in a concave curve which may become ascending. This practice is frequently followed by swallows, swifts and hawks, which use the momentum gained during the fall in order to mount again. During this fall and this automatic ascension, there is no expenditure of force necessary on the part of the bird, which benefits by this rest in order longer to continue its flight. It is in this way that swallows succeed in ploughing through the air, almost wathout stopping, from mormang until evening.

The kite, the sparrow and the buzzard paractice the kind of flight called the sailing flight, but the true kings of the air are the eagles, the vultures and the condors which travel through space without a single beating of the wings like living aeroplanes, capable eten of remaining immovable, as though fastened in the sky.

Even superficial observation enables one to ascertain that the same bird may have different modes of flight and that the different species fly in different ways.

Two kinds of flying are in fact atmitted; that obtained exclusively by the beating of the wings, the flight by rowing. as it may be called, and the soaring. Hight, during which the bird keeps its wings extended in the course of its progress through the air. There are two different modes of soaring flight : soaring flight properly so called, which is only

the wind for theit movement. Simple observation permits 11 to establish among birls some clearly defined classes:

First, hirds exclusively rowers ; second, birds practicing the rowing flight and soaring flight: third, birds practicing rowing and sailing: fourth, birds practicing only sailing flight.

Are these distinctions, which are lased only on the different variety of methods for accomplishing the action of flying, dependent upon the construction of the wing, and are there found in the wings of a bird such modifications that we may without hesitation attribute to them the special character of the flight? Observers have always replied in the affirmative, after having proved that the form of the wings is essentially variable and adapted to the kind of flying ; but it is modern researeh which has scientifically established this dependence.

There exist two well defined types of wings among which, evidently, all the gradations are observed, but the distinction is easy. It is sufficient indeed, to glance at the two figures five and six in order to discover that the hawk's wing is stretched to a point, while the eagle's is romulerl. This is due to the length of the quili feathers which diminishes from the first one to the last in
temporary and accessory to rowing flight. and sailing flight. which is the normal mode of locomotion for large birds capable of remaining entire days in the air by utilizing the action of
the hawk's wing, while in the eagle's wing the longest feather is the sixth. liesides, the rowing wing is homogeneous on its posteriur sile, whilst the sailing wing is jagged. This last peculiarity is due to the special conformation of the primary feathers which, instead of presenting the form of a knife as do the rowing feathers, become narrow at the middle of their length while the quill loses some of its rigidity. There results a certain suppleness of the edge of the sailing wing which, during flight, becomes convex and appears indented by reason of the divergence and the bendines of the feathers. This attitule is striking in figure ten, and it is precisely this lack of rigidity which renders sailing birds unfit for rowing flight.

Besides thene characteristics, based for the most part on the structure of the wing, one may again examine the relation of the two dimensions, length and lorealth. According to the French Mouillard, who was one of the most careful obserwers, the rowers all have short

Fig. 5. THF Kowsixg VViNg (1F A Fialcus.

Fig. 4. Appfarance of a Bird That Soars Sluwly. The point of the wing carried forward.
have a more ample flight, possess narrower wings which, in addition, facilitate their veerings. The wing stretches in proportion as the bird, from being a rower, becomes a sailer. But here again one finds some broad and some narrow wings. The latter, provided for work in riolent winds, belong to sea birds, such as the petrel and frigate birds; the others have been given to the great birds of prey in order that they may take advantage of the least breath of wind and may cover enough space to find their prey.
Now, how does the birl use its wings in order to keep itself up and to proceed through the air? Flying always comprises three phases or periods: the departure. the flight, properly so called, and lastly the alighting. We are going to study these three plases in each one of the groups of birds that we have described: rowers, half sailers, and sailers.

The average species of small size, belonging to the rowing group, take their start after a hop made by the relaxation of their legs accompanied by a rigorous leating of the wings which raises them from the ground at an angle of about forty-five degrees. The sparrow, the guail, the partridge. sallinacerns birds. and pigeons rise in this way. Certain aquatic species with short wings do not need to hop in orter to release their wings: for some ducks it is sufficient to straishten their borlics vertically so

Fig. 6. Thr salrivg Wing Of in Fagle.
as to permit at the first a Happing of wings. When these birds rest on an elevated support, it is sufficient fur them to let themselves fall in order to acquire the start or indispensable spring for the action of the wings.

The necessary effort for flight is considerable, but it diminishes rapidly in proportion as the speed of the bird approaches the normal condition. One gains an understanding of this by appreciating the speed and amplitude of the flapping of the wings: in the sea gull the amplitude attains one hundred to one hundred and ten degrees at the departure and lowers from thirty degrees to forty degrees in normal flying: in the partridge the expenditure of force is so depressing that the little cries that this bird makes at the moment of its flight are attributed to fatigue.

During the flight the raising of the wing is obtained only by the action of the middle pectoral minsele which has no other function and acts intermittently : but this would be insufficient if nature did not aid by an artifice to reduce the resistance of the air to its lowest value. It has been disenered, in short, that, durine the first flappings, the wings are like the slats of open Venetian blinds. The feathers meet the air edgewise. This arrangement, which offers a minimum of resistance to the passage through the air, is cansed by an antomatic pivoting of the feathers, due to a very complicated disposition of their elastic ligaments. In proportion as the bird gains speed the raising of the wing is caused by an incteasingly weaker action of the middle pectoral muscle, and it becomes entirely passive when the motion is normal. It is inreed, the relative wind produced by the speed of the bird which acts on the convex face of the wing. Here again we find two

Fig. 8. Appearance of a Bird That Gilidfa RAPIDLY。
The point of the wing is carried backward.
components-the vertical and the horizontal ; the first serving to raise the wing and the other, directed with a contrary motion, consequently slackens the speed of the bird. When to the relative wind there is added the absolute wind,- that is, when the bird flies against the wind, -the result is still more defined, and this explains why many rowing birds try ahways to take their flight with the beak toward the wind.

All authors are agreed in clefining soaring as a word which signifies that kind of flight which a bird executes without flapping the wings, and with the wings more or less extented. Soaring thus understood comprises two different forms: soaring flight properly so called, for which the bird utilizes the speed acquired during a course of beating the wings or by a fall from an elevated point, and sailing flight, in which the bird has essential need of the assistance of the wind.

The bird that soars may be compared to a kite that one draws behind him while ruming and which rises and keeps itself up if the air is calm. Alf the rowers of medium size, herons, storks, buzzards, sea grills and hawks, practice this kind of flying. and it is ahways easy to observe the periods during which they suspend the flapping of their wings, and continue their conrse, holl-

possible from an elevated starting point, it is necessary to fall me yard in order to traverse eight vards. A bird which would soar to the height of 1,000 yards would thus be able to land withont fatigue at a distance of 8,000 yards.

Among soaring birds the sustaining qualities commence to gain on the propelling qualities; the concavity of the wing becoming no longer necessary except at the moment of the flappings, is assured only
ing their wings extended almost without losing any speed; then a few vigorons strokes of the wings will quickly start them again on their way. Such flying is a gliding over the air, and the great force aeguired during the period of the beating of the wings is utilized by the bird for taking support on the air and for continuing its course either while rising, remaining at the same height, or descending. Accorrling as its passage follows the one or the other of these directions the speed diminishes rapidly, slowly, or increases. The bird which presents most frequently these different morles of flying is the falcon in hunting. When from a great height it perceives its prey, it lets itself fall almost vertically in such a manner as to return and attack its victim from beneath; if it fails, it sets its wings and its body with the purpose of utilizing the enomons force acquired during the fall to momst again to a height when it commences again this manoeuve and contimues these duckings. without interruption, and consequently without fatigue, until the prey is captured.

The pigeon also offers us frequent examples of soaring. When, perched on a rouf, it wishes to descend to the ground. it lets itself fall vertically then, renlucing its speed by flapping its wings or, if it has some space before it, it lets itself gride following a parabolic curve which places it gently on the ground.

By ubservation of different soaring lirds and by experiments performed with soaring machines it has been shown that. for the bird wishing to land ats far as
by the elasticity of the last quill feathers opposed to the rigidity of the first; besides, the surface of the wing is reduced and the tip gains a considerable development. Thus there is produced a narrow wing with a convex edge which is at once an excellent organ of propulsion and a very good soarer, qualities indispensable for assuring to these birds their busy existence in the pursuit of very fugutive prey.

Clearly then this condition, pushed to the extreme, will lead to flight by sailing. practiced only by birds which are no longerl rowers and which borrow the necessary encrgy for their movement from another source than their muscles. Among the large sailing bitels only the sustaining qualities exist; 110 more concavity of the wing, no more convexity or predominance of the tip, but large flat wings provided with extremely supple feathers with slight spread of the tip. The form of the wing itself is morlified: the enlargement of the surface is obtained not by increasing the span, which wonkl he incomsenient for the start, but by filling up the angle at the end of the wing which from being pointed becomes rectangular.

These are actual observations, and although denied by authors who have never witnessed this kind of tlying, flight by sailing, are torlay definitely admitted. aik no longer boes any one deny that. in the large bird, the propelling and sustaining powers are olstanet. simply by the reaction of the air in motion, by the wind alome. The agrement ceases when there is a question of explaming the
mechanism of the flight by sailing and in particular this paradoxical fact that the bird can rise and make headway against the wind.

Many explanations have been proposed, some fantastic, others the disenssion of which leads to such absurd deductions as the realization of perpetual motion; others again, true perhaps in certain particular cases, could not be embraced in a general theory. To this last class belong the hypotheses based on the utilization of the ascendant eurrents and on the variations of the velucity of the wind. It is certain that the bircl gains in the ascending elurrents of the air: but there have been noted also many sailing flights with the wind horizontal or even deseending; so that if the theory of the ascendant wind suits very we 11 certain cases, as also that which utilizes the variations of velocity and direction of the wind, there remains to be found a general theory which may be applied to all these different cases.

The sailing bircl, having only the aid of the wind to suri)port it in the air, must be built for utilizing the slightest eurrent of air from whatever direction it comes. It is necessary also that its organs be delicate enough to adapt it without delay to the changes of the direction of the wind which are almost always very sudden. These results are assured by the suppleness of the wings themselves and by that of the feathers, since the position of the plane to the air has to be modified. In fact each change of direction of the wind requires, if the wings are not sufficiently supple, an oscillation of the borly and of the wings all together. Thus is what is produced in the semn-sailing birds with the wings relatively rigid, the tips of which are convex and predominant as in the case of the sea gull and swallow.

There results in these birds a sort of balancing very clearly noticeable to observers. This lalancing is very much diminshed in large sailing birds with supple wings; the shifting of the wings comes into play and as the total mass of the body and of the wings requires much greater energy in order to be displaced from its equilibrium, it is the wings alone that feel the effect of the changes of the direction of the wind. And when the variations of the wind are very slight, the feathers alone, the respective independence of which makes them like so many small wings for independent shifting, receive the puff of air and absorlb its energy.

The large sailing birds having to count only upon the wind are necessarily constructed so as to utilize the lightest breath of air ; everything with them tends to this result, from the sensitiveness of the feathers and the suppleness of the wing, to the ability of spreading the wing like a fan when, if they wish to rise, they have need to increase their sail. This explains the different positions reproduced in our figures 4 and 8 , the first corresponding to a light wind for the ntilization of which it is necessary to set full sail, the other becoming necessary when the wind freshens and there is need of taking a reef. Between these two extreme cases, there is an infinity of intermediate situations that the shifting of the feathers, or that of the wings, if it is necessary. suffice to regulate. The quill-feathers, in fact, constitute an automatic shifting device which assures the longiturlinal and lateral equitibritum in normal conditions; the assistance of the wing, and of the entire body, are used only in extremely violent strokes. This antomatic shiftung is inclispensable io birds that practice flight by salling, and those which are not provided with it, the
semi-sailers, are mot as gool flyers m high winds, unless they spread their wings like a fan as the stork in figure nine, in order to give a little independence to the extremities of the feathers. But this slight defect is not sufficient to destroy the brilliant qualities of flight which these birds present; powerful rowers, they are masters of the air, not being, like the large sailing birls, at the mercy of a deal calm, which is alway: possible and many render them powerleas. In short, the latter have taken their qualities from the two extreme groups: the rowers and the sailers in order to
utilize them according to circumstances. It is then the semi-sailers much more than the sailers that practice the most perfect flight, and man's imitation, which is often a criterion, gives actual proof of this. The acroplane as it is conceivel today, is only a semi-sailer with its screw propelter which allows it to take flight and sustain itself in the air, with its supporting and shifting planes, and its rudfer which directs it. This gives us a hope that the day is not distant when antomatic action will enable the machine tu practice the true sailing flight withont the and of any motor whaterer.

On a Bust of Dante

The lips as Cumae's cavern close, The cheeks with fast and sorrow thin, The rigid front, almost morose. Dut for the patient hope within, Declare a life whose course hath been
Unsullied still, though still severe; Which through the wavering days of sin,
Kept itself icy - chaste and clear.
Peace dwells not here this rugged face Betrays no spirit of repose;
The sullen warrior sole we trace.
The marble man of many woes.
Such was his mien when first arose
The thought of that strange tale divine,
When hell he peopled with his foes,
The scourge of many a guilty line.
-T. W. P'aksons.

THE MACIINE FOR POLLENIZING CLOVER.
Note the "fuzzy fingers" which the stooping man is touching.

MACHINE POLLINATES CLOVER

B y

RICHARD C. BENTON

THE bumblebee is to be rendered almost superfluous in nature by a machine newly patented by an Indliana in-rentor-James M. Dennis, of Cambrilge City:

This, at all events, so far as concerns clover and alfalfa plants, which have lepended almost wholly upon the bumblebee for their production of seed. Where there are no bumblebees there is neither elover nor alfalfa. Which is why our govermment. not long ago, sent several batches of these useful insects to Australia. a bumblebecess and cloverless country.

Up to date, it does not appear that the experiment has "panned out" as well as
was expected. But this is a matter of no importance if the "fecmulating machine," as the inventor calls it. works as well as he claims it does. One such machine, he asserts, is equal for fertilizing purposes to a whole swarm of lumblebees.

The enntrivance is a two-wheele 1 skeleton cart, and is intended to be driven by a man over a elover field. In the rear of the axle is a horizontal frame extending almost the entire width of the vehicle. This frame is interlaced with numerous wires in such fashion as to divide it up into an arrangement of square meshes.

It will be understood, then, that the interlacing wires join each other at right

View from Above of Na^{\prime} hine fur Pollenizing PlaNts.
angles. From every joining there hangs downwarl a pair of spring-shaped wire fingers wrapped with sone fuzzy stuff, such as lint or fibrous down. The fuzzy fingers thus prepared are made waterproof by dipping them in a thin solution of rubler. This is highly important, because they are the business members, so to speak, of the machine.

As the latter is driven slowly over the clover or alfalfa field, the horizontal frame, by an arrangement of cams, is made to move a few inches up and down. Four times during each revolution of the

Side l"ifw. Showing the "Fingers" of Machine for Fecundation of Plants.
cart wheels, they are lifted gently and dropped suddenly: This keeps the frame continually agitated: likewise the fuzzy fingers, which brush the blossoms, take up their pollen, and deposit it upon other blossoms.

In order that clover or alfalfa shall produce good seed, it is necessary that the blossoms shall be cross-pollinated. In other words, the pollen of one blossom must fertilize another. This is a task satisfactorily accomplished by the bumblebee; but Mr . Dennis claims that his machine does it equally well, and that it can be relied upon to fertilize practically all the blossoms in any patch.

A smaller machine is also being made now for similar use among strawberry plants.

On a Grecian Urn

O, Attic shape! Fair attitude! with brede Of marble men and maidens overwrought,
With forest branches and the trodden weed.
Thou silent form, dost tease us out of thought
As does eternity: Cold pastoral!
When old age shall this generation waste
Thou shalt remain in midst of other woe
Than ours, a friend to man to whom thou say'st,
"Beauty is truth, truth beauty" - that is all
Ye know on earth, truth, and all ye need to know.

NOVELSCHOOL LIGHTING

By

WILLIAM LEWIS NIDA

TIIE chief purpose of a school building is to render children comfortable and to protect their health while they are being taught. This protection to health should be brought abont with the minimum of attention from the teacher who is likely to be absorbed in the process of instruction.

In the building of the Elm Street School at River Forest, Illinois, the board of education has adopted an entirely new method of lighting and with such success that it has already been taken up by surrounding towns.

While the problems of heating and ventilating schoolrooms have been fairly well solved, the science of lighting lias as yet recenved little consideration, thougl1 it has been bronght to our attention again and again that a greater percentage of school children are suffering from eye-strain than from any other trouble. Many eye diseases, headaches and nervous disorders are directly attributable to the use of the eyes under improper conditions.

When we consider that the eye, whose loss is more deplorable than that of any other sense organ, is subjected to con-

CONTRARY TO THE PREVAILING IDEA, ONE-STORY BUILDINGS COST NO MURE FFR RUMM THAN TWO-STORY STRUCTURES.
This four-room school building at River Forest, 1linois. cost $\$ 19.0 \mathrm{Km}$.

PHOTOGRAPHERS CALI. THIS A POOR PICTURE.

stant anil serious abuse-and this, too, among children who have no means of self-protection-we do not wonder that the percentage of spectacled people is increasing so alarmingly.

It is common experience that strong light, shining (lirectly into the eyes soon produces cxhaustion and sleepiness. Yet there is scarcely one schoolroom in all this broad land in which a large proportion of the children are not forced to endure this strain. On the other hand a soft, stearly and well-diffused light from overhead enables one to continue risual effort for a great length of time without fatigue. The explanation is simple. The pupil of the eye soon adjusts itself to this steady, well-distributed Fight, and not realjustment is necessary as the hearl is turned from side to side. Consequently vision is perfect, the retina protected and nervous energy conserved. 1n like manner. When one is out of doors the field of vision is illuminated by a steady, perfectly-diffused light and the pupil of the eye adapts itself to this unchanging intensity once for all and no harm done.

That the adjustment of the pupil of the eve to changing intensities of light is not instantaneous, is well known. In rooms lighted by side windows there are marked differences of light-intensity since the walls, absorbing much, reflect a soft light. while the glare from the side windows is mabated. As the head turns from side to side and the eye is met by widely varying light intensities, the slow-arljusting pupil is hopelessly umable to protect the sensitive retina. Vision is therefore obscured and nervous energy needlessly and harmfully wasted.

One of our illustrations shows a modern schoolroom-one that has alway: been considered well-lighted. The camera shows that part of the children are suffering from too little light and the others from too much, that the room is very unevenly lighted and that nearly all are subjected to severe eye-strain because of the great volume of rays bursting upon the faces of the children. Nature's provision-lleep eye-suckets. eye-brows and eye-lashes-prove totally inadequate protection against this overwhelming light in front.

THE ON゙IV WAV TO SECURE A WELL-DISTRIBUTED LIGHT IS FRUM UYERHEAD.
Thmillustration shows a foom in the now skv lighted school in River Forest.

Nothing reveals the exact lighting of a room so perfectly as a camera. By placing the instrument in various positions in order to take the four walls of the room, a fine test is made. The camera is as delicately sensitive to light as is the human eye, after which it is patterned.

When the writer asked his photographer to place the camera in the position required the latter demurred, declaring that it would spoil the picture. Photographers well know that the camera requires an even light, that it cannot work well amid two different intensities at the same time. But this is exactly the position in which the school children are placed five hours each day.

If the health of our children is of primal importance, as we all admit, then it is high time the educational world should be considering the question of light.

The only way to secure a well-distributed light is from overhead. For thorough diffusion it should pass through ribbed or prism glass. The walls of a room should always be of a light color
as a further aid in diffusion. One illustration shows a room in the new skylighted school in River Forest. This picture was taken on a cloudy day in December with all side winclow shades closely drawn. The regular practice here is to keep all shades drawn to the horizontal line, thus ensuring entrance of light from above only.

The pupils and teachers in this building report better spirits and less weariness when the day is over than they ever experienced before. Here is a soft, thoroughly diffused and perfectly distributed light; no dark corners. glaring windows nor squinting eyes. Irtificial light is never needed in this sky-lighted building even on the darkest winter days.

To illuminate school rooms by means of skylights necessitates one-story buildings with flat roofs. Flat roofs of tar and gravel cost far less than the high gable roof even after inclurling the expense of the skylights.

One-story sehools may be made quite acceptable in the hands of competent architects. It is necessary to extend the parapet walls a few feet higher in order

'IHE SAW-TOOTHED SKYLIGHTS WHICH ARE PARALLEL RIDGES RUNNING EAST AND WEST. The suuth slope is covered with tin, the north is of remforced ribbed glass. Thus a steady north light is assured.
to mask the lights. The four-room Elm Street School of River Forest, Illinois, was completed in November, 1910, at a cost of $\$ 19,000$. It is strictly modern, having, besides top-lighting, a superior rentilating system of a novel type.

Still another of our illustrations shows the saw-tooth skylights, which are parallel ridges running east and west, the south slope of which is covered with tin so as to exclucle sun-rays, while the north slope is of reinforcel ribbed glass. Thus is assured a steady north light with no interference from sunshine. The ceiling glass of the classrooms is also of ribbed glass which has proved to be the best light diffuser.

Contrary to the prevailing idea, onestory butildings cost no more per room than two-story structures! The large halls required to make room for the stairways in the latter and to accommodate the numbers using the same exit,
necessitate the enlargement of the ground plan of the entire building, which adds enormonsly to the cost without corresponding increase in the number of classrooms. The costly stairways, the heavier walls and foundations needed for a two-story structure, overbalance the added cost for excavation and roofing of one-story buildings. Moreover, in the latter, the partition walls need not be of brick.

One-story schools require much more space, however, and where land values are very high such construction may be impossible. But for smaller cities, villages and suburbs there are no obstacles to this novel type of school architecture. Boards of education ought to consider well before burdening future generations with ill-lighted school buildings that may have to be torn down to make room for an intelligent progress based on scientific investigation.

Mpeca Railway - a Provistonal Station in the Desi:Rt.

One of the Belgian Locomutivfs U'sed in fhe Construction Work.

TO MECCA B Y A IL

By H.J. SHEPSTONE

THE decision of the Turkish govermment to extend the famous Hedjaz Railroad by carrying the metals of this line across the desert from Neclina to Mecca calls attention to what is undoubtedly one of the most daring railroad enterprises of the age.

This railroad is mique in its claim of being the only railroad built for the purpose of carrying pilgrims. Indeed, known as "The Railroad of the Pilgrims," it is being used for the transportation of Mohammedan pilgrims to Medina, the burial place of their propluct. Starting from Damascus it rums almost due south through wild and sterile country for more than 820 miles to Medina. A short distance from the terminus is Daraa, now (luite an imposing and important station, where the line joins that coming up from Ilaifa round the southern shores of the Sea of Galilee.

From Daraa the line gradually ascends the undulating slopes of a plateau as far as Zerka, where it drops into a deep valley, and climbs out again by a winding belt. As the line proceeds southwards, signs of civilization become fewer and fewer, and the sense of desolation more pronounced. Pursuing a course
parallel to the River Jordan, and almost identical with the old caravan route, the railroad traverses a district as full of interest for the Christian as for the Nohammedan. Decayed ruins of past civilizations and silent monuments of lengdeparted prosperity are visible on all sides.

So the journey continues until El Ula is reached, 609 miles from Damascus and 210 from Medina. Deyond El Ula none but Nohammedans may go, even the engineer-in-chief, who is a German, had to relegate to a Nohammerlan assistant the carrying of the metals into Medina. The railroad is now to be extended to Mecca, the birthplace of Mohammed, but to accomplish this, 285 miles of track luas yet to be laid across the descrt. This is now being rapitly done and construction trains carrying the necessary material have proceeded south from Damascus with Turkish soldiers who will build the line under the direction of a Mohammedan engineer. It is interesting here to note that when the Bagdad Railroad has progressed another 200 miles and the Bosphorus is spanned by a bridge, the sacred city of Necca will be in direct railroad communication with Constantinople.

Why, of Course!

Miss Chatterton (gushingly) -"What a magnificunt great Dane! And, of course, his mame is Hamlet?"

Mr. Guety (the owner) - "Not exactly; you see. I-er-couldn't consistently use that name. The lest 1 could do was to call her Ophelia!' - New Orleans Picayme.

*

His Quletus

Mrs. Cobr-"Was the grocer's boy impudent to you again when you telephoned your order this morning?"

Man-" "'cs, Mrs. Cobb, he was that : but ! fixed him this time. I sez, 'Who the bell do you think you're talkin' to? This is Mrs. Cobs.' "-Life.

4

Maybe the Printer Knew

"AY pigmy enmerpart," the poet wrote
()f his (lear chidd, the darling of his heart: Then longed to chatch the stupid printer's throat
That set it up, "My pig, my connterpart." -Harper's ITcokly.

\because

The Mouse and the Cat

The: TAncok-" ${ }^{\text {Dlarricd or single?" }}$
The Customer-"Marricd. Why?"
The Tahor-"Then let me recommend my patent safcty-deposit pocket. It contains a most ingenious little contrivance that feels exactly like a live mousc."-Chicago New's.

Anticipation

The new maid seemed eminently satisfactory, but the mistress of the house thought it few words of advice would be just is well. "And remember," she concluded. "that 1 expeet you to be very reticent about what you hear when you are waiting at table." "Certainly, madam, certainly," replied the treasure. But then her face lit up with an innocent curiosity. "May I ask, madam, if there will be much to be reticent about?"

$\%$

Candor in the Home

"Your sister's a long time alout making her appearance," sliggested the caller. "Well," said the little brother, "she"d be a sight if she canme down withont making it."-Clerelund Leuder.

4
 Hard to Please

Mrs. Nagleigh-"I suppose you are satisfier! now that you made a mistake when you married me?"

Nagleigh-"I made a mistake, all right, but I'm not satisfied."-Boston Transcript.

st
 More Homelike

Hospital Physician-"Which ward do you wish to be taken to? A pay ward or a--"

Maloney-"Iny of thim, Doc, thot's safely Dimocratic."-Puck.

Any New Methods?

"Ain't it strange, th' way Kelly locats his wife?"
"l danno. How does he do it 2"-Chorelund Louder.

Too True

He-"l'es, it's very true, a man doesn't learn what happiness is until he's married!'

Sinf-"I'm glad you've discovered that at last!"

He-"l'cs. and when he's married it's too late! "- horfbarbier.

Good Government

"Wilat's the trouble in Plunkville?"
"W'e've tried a mayor and we've tried a commission."
"Well?"
"Now we're thinking of offering the management of nur eity to some good magazine." -Louistille Courier-Journal.

$\stackrel{4}{4}$

His Opinion

"Do rou believe there really is any such thing as platonic affection, Henpeck ?" queried i)obson.
"Well," said Henpeck. scratching his head

reflectively, "I believe that after five or six -tremuous years of married life one can acquire it."-Harper's IV cekly.

s:

Right Again

Singleton-"Do you believe in the old adage about marrying in haste and repenting at leist:re?"
Wempriy-" ${ }^{\text {No }}$, I don't. After a man marries he has no leisure."-Smart Set.

$*$

A Fair Sponger

She-"Y"es, I like Ted: he is so extravagant."
HF-"That is hardly the best quality for a husband. is it こ"

She-"Of course not; I am not going to marry him."-Boston Ifcrald.

\&

Nothing Much

"I Dos't know whether I ought to recognize him here in the city or not. Our aequaintance at the seashore was very slight."
"You promised to marry him, didn't you?"
"Yes, but that was all."-Louisville CourierJournal.

Wild Oats for Him

Little Waler was always carefully guarded against germs. The telephone was sprayed, the drinking utensils sterilized, and public conveyances and places were forbidden him.
"Father," he said one night, in a tone of desperation, "do you know what I ann going to do when I grow up?"
"What?" asked the father, preparing for the worst.
"I am going to eat a germ."

One Thing at a Time

"How is the new filing system? Success?" asked the agent of the merchant to whom he had sold a "system" a few days before.
"Great!" said the merchant.
"Good!" said the agent, rubbing his hands. "And how is business?"
"Pusiness?" echoed the merchant. "Oh, we have stopped business to attend to the filing system."-San Francisco Star.

Her Choice

A fashionably dressed young woman en tered the postoffice in a large W cstern city. hesitated a moment, and steppecl up to the stamp window. The stamp elerk looked up expectantly, and she asked: "Do you sell stamps here?" The clerk politely answered.

"Yes." "I would like to see some, please," was the unusual request. The clerk dazedly handed out a large sheet of the two-cent variety, which the young woman carefully examined. Pointing to one near the center, she said, "I will take this one, please."

HIS FIRST AEROPLANE

IT is harl for "grown-ups" to realize that to our children the art of Aying is accepted quite as a matter of course. just as we accepted roller skating or swimming. This photosraph shows a child of the twentieth contury, a six-ycar-olil, at work on his first airship, a monoplane with propeller in front. The youngster watched the aviators skimming throuch
the air at the Los. Angeles aviation meet and has been experimenting with flying machines ever since. You and I were trying to construct a top schooner or a coaster at that age but none of us ever dreamed of building monoplanes. The generation to which this small chap belongs will probably perfect the new science, simply becanse they will regard Aying as a matter of fact instead of as a startling novelty.

KING ALPHONSO OF SPAIN. ON HIS RECENT VISIT TU MOROCCO. TKAJELFD FOR LONG IHSTANCES ON A CAMEL.

NEW AID TO FIGHT FIRE

THE illustration on the next page shows the unusual construction and use of a deluge water pipe for putting out fires in basements, elevator shafts and under roofs of buildings.

Basement fires are said to be the most difficult fires that a fire chief has to contend with. The fire may be 100 or more feet from the front of the building and impossible to reach from windows or deadlights. It is very seldom so bad on the first floor that a
man cannot get in long enough to chop a hole in the floor so as to set in the pipe. When the pipe is set down in the hole it is in a position which sends an inch and a quarter stream directly up to the side of the opening, driving away the heat and smoke. The operator by turning the wheel in his right hand a quarter of turn changes the pipe from one position to another in less than a second, covering about 300 feet and all the ceiling.

If conditions are such that a man can-

New Aid to Fight Fire. An unusual trpe of deluge pipe.
not get in on the first floor to chop a hole he can break the basement windows and get the pipe through.

The amount of water from an inch and a quarter nozzle, with 150 pounds of pressure behind it makes this the coolest part of the building, as it drives away the heat and smoke. A half turn of the wheel on top will send this powerful stream ower 150 feet either way: Each pipe has a set of spikes to hold it to the flomer in case it is desirable to use 200 pomds pressure. A set of hooks are
employed to break the deadlights, to hook the pipe to them, so that if the wall looks bad the men can leave the pipe and still have a powerful stream in any direction they wish to leave it.

HAVANA'S NOTABLE FLOODS

AIURRICANE which also did great damage along the . Atlantic seaboard of the United States flooded the streets of Havana, making boats the only safe method of transportation. People were rescued from their houses by patrol wagons and then, when this became impossible, in boats. The financial loss in Havana alone as a result of this flood was more than one million dollars. The coal docks were wrecked. customs houses and wharves flooded and lighters and barges sunk in the harbor and valuable househokl effects in houses in the submerged districts ruined. For several days communication by Havana with the interior was cut off so great was the floorl and the destroyed telegraph and telephone system. While the damage to property in Havana was so great fortunately only two lives were lost, two men being drowned in the harbor.

The group in the picture seem to be posing as contenterly as if standing on dry land.

HAVANA'G FLOOD VICTIMS RFIXG RFSCLED BS POLICE I'ITROL.

HAULING GUAYULE. SHRUBS TO MAKKET IN TFXAS.

GUAYULE SHRUBS IN TEXAS

SINCE the discovery was made that the guayule shrub contains ingredients from which a high grade of crude rubber mav be manufactured, the industry of gathering and baling the slirulss has become very important in the upper Ris, Grande border region of Texas where it grows in more or less profusion. This desert shrul) was considered more than worthless a few years ago. The ranchmen despised it becanse it was unfit as forage for their cattle, and it was a menace to the raisers of sheep and goats for the reason that these animals would eat the branches of the shrub and die from indigestible balls of rubber that formed in their stomachs. It grows only upon the poorest land, being found cliefly upon the limestone ridges. With the establishment of a rubber factory at Nlarathon, Texas, in the heart of the guayule shrub territory, a large demand for the shrub was created. Many men are employed in cutting, baling and hauling the shrub to the factory. Large shipments of the shrub are also made to other factories. Land that was formerly non-productive. even of grass, is now bringing in a handsome revenue from the shrub which it produces.
The diseovery of the virtues of the guayule shrub is merely another addition
to the long list of plants, which, formerly, men dill their lest to destroy, but later found them to be of great commercial value.

Removing a Swake's Fangs.
The photograph depicts a physician enkaged upon the delicate operation of extracting poison from the fangs of a snake. This operation 1s, of course. one fraught with considerable danger. and natur* ally can only be performed-and then with great care-by an expert.

PARISIAN ACTRESSES, WHO, IN THE PARKS MADE MERRY BY THIS BLRLESQUE OF THE HOBBLE SKILT.

BULL DOG PLAYIN゙G B.\SEB.ULL
This sturdy beast fearlessly merets the sphere "head on."

MASONIC TABLE JADE IN A MJCHRGAN TUWN
There are 3447.3 pieces of wood in this plece of furniture, gathered from wrory state in the Union.

BIGGEST OF MARBLE MONOLITHS.
This columa cut from stove quarried at Pittsford Valley. Vermont. wirghs thirty-three tons.

Mexican sindum

SUNDIALS IN MEXICO

IN many of the smaller towns as well as in some of the larger cities of Mexico sundials are still in general use. The general adoption of clocks and watches for time-keepers has not done away with the pulbic sundial which is usually marked upon a stone pedestal in plain view of the populace. Upon the great central platean of Mexico there are few days during the year that the sun does not shine.

4

AIR BY THE NICKEL'S WORTH

A N enterprising inventor in Pasadena, California, has gone into the business of retailing compressed air for bicycles and motor-cycles on the principle of "drop a nickel in the slot" to get value receiverl. His device is a cast iron pump about half as large as a U. S. mail box, which is attached to telegraph poles along the streets most frequented by cyclists. It is provided with a crank which is easier to operate than the small hand pump carried in the tool kits.

*

WHERE"S THE THREAD?

HERE is an idea for the housewife during sewing time. Instead of keeping the spools of thread in an open basket and fishing for thenn as wanted from a mass of other material, make one of these spool holders by driving a series of nails in a piece of wood. The spools ean be slipped on over the nail, through the hole in the center of the spool, and can be readily picked out as wanted.

AIR RY THE Nicklis"s W'ORTH.
Hure the ovelist mavintlate. his tires.

S.llD TO BE THE ONLI VESSEL OF ITS KIND.

The ("urrey, an Imerican craft, built to carry shipments of molasses, petroleum, or meneral froikht.

STATUF GE DANCING
MAORI-N゙FW \%FalandIVARRIOR. IN THE MI FHM of NATURAL History. N. Y

Zebras-Extrabrdinary Example of the New Plastic 'Taxidekmy
l'he figure is first cast in clay, and the skin is then fitted over.

HENS IN THE PILLORY

A CL'RE which must be as painful as it is beneficial is shown in the accompanving photograph of live hens un-

A Photo Thit Explaing Itself.
dergoing fumigation. This remarkable invention is in the shape of a flat box large enough to hold the bodies of five hens, and supilied with openings just of a size to take the necks of the victims without chokitas them. The fowl are thus held like a culprit in an ancient pillory, the heads being exposed while

Safety Helmet for iviators.
The "Marie." Testing an aero jacket safety bullone
the bodies are enclosed in the box which is placed on a barrel, and in the latter sulphur is burned. The sulphur fumes rise through perforations in the bottom of the box and destroy the parasites which prey upon the hens and keep them
from doing their duty in the way of laying eggs.

From the viewpoint of the hens, however, cloubtless the treatment may be regarded as being far worse than the disease.

Whirls of Eiectric Light.

WHIRLS OF LIGHT

MR. GEORGE IV. PATTERSON: has devised a means of swinging clec-trically-lighted clubs in such a way as to produce startling yet beautiful effects. He hit upon the iflea entirely by accident. At one of his gymnastic performances the lights suddenly went out, and the electrician declared that he was helpless.

Mr. Patterson happened to have in his dressing room a number of electric torches. He attached them to the clubs, lighted them, and swung then round until the electrician had got his wires working again. Apart from saving the situation, the lighted clubs were very popular, and he determined to see whether it would not be possible to fix electric lights to the clubs.

The first thing was to design a special club. The ones now in use are made in two parts, the split being lengthwise. A flexible cable of five wires leards into the club handles through a rubber tube, the wiring of course being concealed. Three series of eight three candle-power miniature lamps are set in small, speciallyturned brass sockets the length of the club, so the lamps stand out at right angles to its surface. As the little globes are colored, there are no fewer than six series of different colored lights when the current is turned on. But these clubs could only be used in halls or houses wired for electrical illumination. To overcome this difficulty Mr. Patterson carries a battery about with him.

MONUMENT TO FATHER OF BASEBALL

NEW YORK "fans" have erected in Greenwood cemetery, Brooklyn, New York, this monmment to the "Father of Haseball," Henry Chadwick, for many years editor of Spalding's Baseball ciuide, and a leading baseball writer of New lork. It is surmomed by a large facsimile of a regulation ball executed in granite, with the threads and leather

In Honor of Henry Chadwick, Father c.e Riseball

Tracklfes Trolifi in the C Iflfornia Mountains.
surface cleverly imitated. Fastened to the sides of the shaft are bronze decorations in the form of bronze crossed bats. a catcher's mitt and mask, and a tablet bearing the inscription. The monnment was erectel by private contributions from admirers of the game and the man.
$:$

TRACKLESS TROLLEY IN THE MOUNTAINS

THIS electric trackless trolley is traveling over a winding path cut ont of the sitle of the monntain to an average width of twenty-five feet. It has a high bank on one side of the road and a
mountain brook on the other. The average grade is about eight per cent. and the maximum grade is twelve per cent.
This is a regnlar trackless line in California. This highway is also largely used loy automobiles and other velhicles and experience shows that the trackless trolley cars are able to turn out for any passing velicle or any obstruction. and still have a safe clearance.

During the early part of the operation of this system

T'HF P'HGTOGRAPHEK AT NORK—WITH lír sult Below. it was necessary to operate over a portion of road which was being plowed up. This made it necessary to drive fle cars across deen furrows.

NEW YORK ("\}? IDE DOMN.

NEW RAPID FIRE GUN RECENTLY TRIED OUT IN TIIE ARMY. It slaonts (x) shots of . 30 caliber. per minute.

UNKNOWN HOBGOBLINS

SOME of nature's most grotesque little individuals have just made their bow to the public. These midgets of remarkable slape are known as "tree-lioppers." They have just been portrayed in a number of large wax models at the Museum of Natural Mistory, New York, executed by Nr. Ignac Matansch, of the Department of Invertebrate Zoology. These droll hobgoblin-like insects are of special interest, for nothing of this character on so large a scale has hitherto been attemped in entomological work.

The "tree-hon-

A llump Backif Chkonn Thangomin

[^4] pers" have sucking moutlipieces and live on the jutice or sap of small trees and plants, which they extract from the stems loy means of their sharp beaks. consisting of several bristles enclosert in a fleshy joined sheath. The tropical types are gorgeously colored in many hues. They have four eyes - two large and protruding mes, and two below, partly developed. Their two large eyes have a keen, droll look. and the line that separates the head. in some instances,
gives them the appearance of wearing spectacles. They have four wings. Some are clumsy in flight, and use their wings mostly as a parachute. The himd pair of legs is longer than the front ones, and is employed in leaping and jumping to considerable distances. which has given to these insects their common name of "tree-loppers." They are especially interesting on account of the peculiar development of the thorax. which, in grown specimens, is provided with singular horns or protuberances. These horns are often so freakish and extravagantly shaper that entomologists have hitherto been mable to account for their development and form. They remind one of some of the highly specialized horns and tusks of fossil reptiles and mammals. It is difficult to conceive of their being used by the insect in any way. This peculiar fevelopment is not so clearly seen in tree-hoppers of temperate regions as in the species from South and Central America, where they are often most surprisingly shaperl. Many have mountain-like humps on their backs: the prothorax is prolonged back-

[^5]

Henry Barrington, an Finglishmax Playing Popu* lak Melodife with his Eyes Covered.

 MI NT. PIAYING IN A COMEWHAT linusuar Pusituon.

Panama Canal. lump Car as It Appears Loadfd.
ward, like a roof, over the body, often quite covering the entire insect. In some instances, the prothorax is an elevated nightcap. in others it is shaped like a Tam O'Shanter; and sometimes it has long horns, one on each side. Some possess a wonderful sword or blade-like appendage, having ball-like projections, which are oftentimes several long hairs. The little tree-hoppers are practically harmless and are not usually found in sufficiently large numbers to constitute a pest. Nearly all the best and most curious specimens are obtained from various tropical parts of South and Central America, and India. The construction of the wax models requires most patient and delicate modeling and painting, in orter to bring out the hundreds of indentures, cavities, and lines.

*

NEW STYLE OF DUMP CAR

T$11 E$ style of dump car which has fomml favor with L'nele Sam in the excavation of the P'anama Canal is shown in the accompanying illustrations. A large number of these cars are being used in work upon that project.

The dumping of the cars is controlled by compressed air from the engine, the cars being equipped with an extra set of pipes and comecting hose, which extends to a special value in the engine cab. With air from the same supply used for brakes, the mechanism of the cars is worked, and is under such perfect control that the entire train may be chmped at the same time, or one car at a time, part of the load on one side and part on the other, as the work may require.

By another movenent of the valve in the engine cab the cars are restored to normal position and are ready to receive another load.

SAILING SHIP "COMES BACK"

W
HILE the cyes of the world have been focused on the progress in shipbuilding in the steamer class there has been prepared for sea, almost unnoticed, a woorlen ressel that far surpasses in capacity any ship of its class that ever put to sea. It is a six masted schooner named the IV yoming. The gross register of this great sailing craft is 3,730 tons or twenty-two tons more than the steel hull six masted schooner W'illiam L. Douglas of Boston.

American ambition refused to stop short at six masts. It was thotght that one more could be added and the experiment was made with the Thomas W. Latison, a photograph of the model of which ill fated monster is shown on this page. It is still argued that the seven master could be made to stay afloat, the Lawson having been built too narrow and too light below the water line for the safety of the ship. As the Lau'son turned turtle ship butiklers who predict a great future for the sailing ship are content to leave a seven masted schooner out of their calculations. It is also asserted that the six masted schooner is a more profitable sailing craft than a seven master could possible be, so that the factor of commercial gain will probably settle the limit at six masts.

*

HUGE FLORAL CORNUCOPIA

THE accompanying photograph depicts a remarkable cornucopia that was prepared by a well known floral artist for use in one of the lig West End London churches during a festival. This cormucopia stood over six feet high and contained besides the fruit over one thousand blossoms, which had been arranged

Stx Mastad Model of H'yoming.
This seems to he the limit of size compatible with safety.

The Latfest in French Fashions. Handhay for those who may care to travel in a dirigibl- balloun.

half-Ton Floral Cornucopia, Thos was displayed in a West Fnd London church during a fustival.

Model of the lle-Fated Sfvfn Mastfr, Thomas Lawson.

A MEXICAN (ARB OF Ol.D.
to form the horn of the cornucopia. The mouth of "this horn of plenty" brimmerl over with many kinds of choice fruits. The weight of the whole structure was nearly half a ton. After it had served its use, the fruit and flowers were distributed among the London hospitals.

A NOVEL FLY TRAP

MODERN science is waging relentless war upon the house fly, now commonly referred to as the "typhoid fly," and one of the ingenious devices recently patented is a trap which stands more than two feet high and which is designed for use about stables, butcher shops and other places where flies are thickest. It is an upright cylinder of wire screen mounted on a woden frame and elevated an inch or two above the ground so that the flies can get underneath to a can of "bait." Above this bait can is the entrance to the trap in the shape of a cone with a small hole at the top. The flies that are attracterl by the bait climb the cone and once inside the cylinder cannot find their way out. The trap shown in the photograph has accumulated thousands of flies which are easily disposed of by shaking the deat ones out of the bottom.

. V Vover I 1.8 \%rqu.

DFCANTER M1.AIF: OF FLPPHANT:S FOUT- Califormia Noyflty.

inver misinc.

Digging Tila Ditch to Reclams Land.

BUGGY ON THE ROOF

ANOVEL method of calling attention to his place of business hats been adopted by a western blacksmith and earriage builder who placed a superammated buggy on the ventilator which forms the highest part of his work-shop roof. The oddlity of a buggy balanced forty feet above ground attracts much comment and makes a very conspicuous sign. Most people regard it as a halloween prank or the trick of some of the college boys, but as a matter of fact it is a cold husiness proposition.

4

TAKING WATER OFF LAND

Tl1E Reclamation Service, having managed to put water onto the arid lands of the West is now busy with another great problem, that of taking it off again. The greater part of all the lands under irrigation in the West and particnlarly in the Sonthwest is alkalied. It may not show when the land is first put under cultivation but after a few years. the water gradually floats the alkali to the top and ruins the crops.

Cositeveting New RaciNG "HELL" FOR HAR. VARD CNIVERSITY'S Buat Crew.

SAILORS OF U. S. BATTLESHIP CONNECTICUT GOING ASHORE AT SOUTHSEA. ENGLAND.

THE LATE KING CHULALONGKORN OF SIAM AND ELEVEN OF HIS SONS.
Thas monarch had erihty wives and seventy children in all.

This makes it necessary to wash the land free from the deadly white crystals by means of tile ditches and flooding. liy means of this machine a diteh eight feet deep can be dugg and the tile laid in it at one operation. The total cost of tiling and filling in costs about six dollars an acre. Lants that were not worth fencing are made extremely valuable by the diteher and a little water. In the Pecos Valley there are a number of farms that are almost worthless because of the alkali on them. These are being tiled
and washed and next spring will be worth from $\$ 300$ an acre up.

4

INDIAN PLOUGHING SCENE

THE picture below depicts a spring scene in India, and shows the natives ploughing the flooded rice fields of the East with their open-yoked ploughs. As will be observed this space of ground is artificially flondes. The restlt is that two and sometimes three crops of rice are obtained in a single year.

PLOWING THE RICE FIELDS OF INDIA.

L.S'C WORI FROM MINERS WHO DIED [N TIIE PIT

In the Wellington Colliery. Whatehaven. England. 136 men lost their lives.

DINING AKOUND THE FACE OF A CLOCK, AT LFICESTER, ENGLANL. The dial of thas huge timupiece is twenty-five fect in danoler.

BLOWING UP A CARGO OF DYNAMITE OFF YARMOUTH, ENGLAND.
The dynamite had become saturated with water, and bence was "tricky."

FRENCH WEAPONS FOR PROTECTION AG.MNST HOLD UPS.
 dh. Prowber ..Ind dismer withims stick.

MUSIC AND SERPENTS

MR. BARN: $\backslash R D$, who has been making a study of serpents, especially the cobra, in Ceylon as well as in the London Zoo, has arrived at the conclusion that their love of music is a pure and simple myth without any foundation whatsoever.

According to Mr. Barnard the cobra
is not sensitive to music, but simply to noise, musical or not if on a sufficiently high key; on the other hand it pays no attention to the low notes either on the Hute or the drum. He affirms also that it will be necessary to place among fables the pretendel power of fascination exercised by serpents over birds as his wbervations show there is no foundation for this belief.

 It is construcud by I. F. Coolnv. Kuchesters. N. V.

-HE MMHINE WITHOUT ITS COVER.

AFFORDS PROTECTION AGAINST WIND AND WEATHER.
A pneumatic system aids the aviator in controlling the machine.

- CONTRAST OF TWO Kに, M.DKKABLE KNVENTON:

A Ballony iv Use iv the Chinese tray for Milbtary Observations.

NATURE AS A BOX-MAKER

FTEUV people have any notion that Brazil nuts grow in spherical boxes somewhat resembling cocoanuts in shape and size. Such a box, contrived by nature, as it hangs on the tree, will contain a considerable number of the threecornered nuts, packed so skillfully that if once removed nobody can ever get them back again into the receptacle. The substance of which the latter is made resembles wood, and is so lard that it can scarce be cut with the sharpest knife.

An Historical Stamp.
The new stamp commenorating the Union of Sonth Africa.

But the specimen shown in the photograpl has had part of its rough outer coat removed in a lathe.

*

SAFEGUARDING A RAILROAD

 TO prevent the possibility of old mining drifts caving in beneath the tracks of the St. Louis \& San Francisco Railtoad, west of Joplin, Missouri, and endangering the lives of train crews, and passengers, the railroad company resorted to a decidedly unique method of

How Brazil Nuts Grow. The nut-held in the band-grew in the "box."

RECREITS CHARGING DUMMIES AT THE CAVAIRY TRA1NING C(HOOL
AT NETHERAVON FNGLAND.
filling the okl. abandoned mine workings. More than 16,000 cubic yards of waste sravel, or tailing, from a nearby zinc and lead mine, were forced througli four eight-inch drill holes sunk squarely in the center of the track at intervals of alout twenty feet apart.

Former mine development was con-

Reads to Be Moved at Full Speed.
ducted beneath the railroal right of way at a lepth of 140 fect. Ore poclects of mammoth dinnensions were mine? out, leaving vast, gloomy caverns, the crust of earth between the drifts and the railroad tracks above being, in some instances, so thin that there was possibility of the ground caving, and, at intervals. several disastrous cave-ins actually resulted, the track being left sagging like a limp string across the dizzy opening of the sloadowy pit. Where the ground caved in thousands of cublic yards of dirt were dmmperl in and eventually the yaming opening was fillerl, but in the mammoth caverns yet untonci.ed anl which, it would seem, could not be reached without shooting in the surface earth, there was a lurking danger that threatened at any moment to leave the track suspended in a most disastrous position inleed in 11 id-air.

AN ATMOMOBILE DESIGNED TO CONVEY A WHEELED GUN FOR GREAT IDSTANCES AT HIGII Sl'FED.
How the gun is run up on two grooved lines to its place on the car.

GERMANY'S REMARKABLE SPEAKING DOG. DON.
Miss Martha Ebers, his master's daughter, out with the "celebrity" for a walk through the park at Hambure. Don's residence in the city is of but temporary duration.

THETECHNICAL WORLD MAGAZINE

DOG TALKS GERMAN

By

DR.ALFRED GRADENWITZ

HAMBURG, the old sea-faring town of German merchants, has for some weeks been the temporary home of Don, the greatest celebrity in the animal kingdom, a prodigy partaking, it would seem, of the nature both of man and animals, the "speaking" dog that is puzzling alike the scientific world and the general public.

When a few months ago faint rumors about a dog endowed with the gift of speech, first reported by German papers, gradually spread to America, most people skeptically shook their heads, believing it an open mystification or an effect of self-delusion. When, however, the most distinguished men of science showed their interest in that wondrous dog by a thorough investigation of his capacities, doubt was no longer permissible and the veracity of the report had to be conceded. As so frequently happens in such cases, those who in the beginning had been the most perfect skeptics now went to the extremity of asserting that after all, there was nothing wonderful in the matter, cases of speaking dogs having been on record for nearly 2,000 years and that Pliny, the famous naturalist of Roman antiquity, and, in more recent times, the philosopher Leibniz Perty, a distinguished philologist, had all referred
to the ability of dogs to imitate their master's speech. Nay, even among the canine contemporaries of Don, there were not a few possessed of the sane capacities, no less than twenty to thirty rival dogs being quoted, while one lady in a letter to the director of the Hamburg Zoological Gardens even attributed to her cat not only the ability to pronounce whole sentences, but even to sing the most popular songs. Again, according to others, seals, walruses and even stags would sometimes prove speakers of more or less talent.

These exaggeraterl statements loubtless were quite as wrong as the utter skepticism shown in the beginning. Don's case is both authentic and unique and whatever reports on other "speaking" dogs may be current should be put down to effects of imagination. There may be other dogs capable of imitating one or two words, very much in the fashion of parrots, as a purely mechanical repetition of sounds to which no meaning is attacherl. Don, however does speak, and is the only anmal so far proved to do so.

Speech to him is the expression of an inward impulse to communicate with his master and other persons, showing them his affection or requesting the fulfillment of some wish. When quite young, he

DON SHOWS CUSTOMARY CANINE GRAVITY WHEN "SHAKING HANDS."
already gave evidence of exceptional intelligence and a number of remarkable feats are told of these early days. Ile never underwent any training, apart from his hunting drill. Speech like his other accomplishments developed quite spontancously and without any outward compulsion. In fact, everything about this marvelous dog is spontaneous. When in good spirits, he may begin talking of his own acenrd: should there he, however, the slightest reas on for dissatis faction, he will mot utter a word and nothing will make him show his speaking capacities.

It the age of six months, very much earlier than a human baby, he for the first time howed his extraordinary gift by pronouncing the first articulate word. Ile was standing near the table, looking with begring eyes at his master and when the latter happenet to ask him: "Would you like to have somethinge" he clearly replied: "Itaben" ("have"). After this startling performance, he obvimsly became the object of untusual in-
terest. It may be remarked, in passing, that the worl "haben" is one of the first accuired by German infants, thanks to the instinct of imitation innate in man. All the dog-wonder learned in after-life he did under the impulse of the same instinct, training being only resorted to from time to time. This is why the dog produces that wonderful impression of a strong individuality, doing everything out of his own free will and, it secms, without any outside compulsion.
H His ways and manners, by-the-bye, have always been remarkably independent. In his mastor's house at Theerhitte, in the midst of the royal hunting groumels, he would lead a life of nearly absolute lib)erty. apart from his professional duties as setter-hound. Exery fay he would set out for a solitary morning walk, strolling through the heath and woods, and payinse an uecasimal call th one or other of hio mater's friends. Dfter opening the door himself. drawing back the lateh in strictly human fashion, he would walk
in, lie down comfortably at the fire-side and. if in good spirits, lave a little talk with the immates of the house. School children met on the road he would accost, requesting a share in their breakfast by the words "hunger" or "kuchen haben" ("have cake"). It is told of him that on once meeting an old woman from the neighboring village on her way to the market, he quietly stepped towards her. distinctly pronouncing the worls: "Don hunger, kuchen liaben." The poor woman was so frightened that she took to a speedy flight, leaving her basket behind ler, in the firm belief that the dog was possessed of the evil one.

Don's master, royal gamekeeper Hermann Ebers, was at first quite averse to any idea of parting with his dog and agreeing to his exhibition before strangers. In fact. during the first seven years of Don's life, no rumor of his extraordinary eapacities ever reached the world at large. and but for Mr. Haberland, a journalist who is to be Mr. Ebers' son-in-law, the dog might have finished his days quietly in that out-of-the-way place, without ever knowing the joys of celebrity. The most wonderful thing about him is his talking with strangers quite as freely as with his own master. When therefore Dr. Pfungst, the wellknown expert in the psychology of animals, and Dr. V'osseler. Director of the Hamburg Zoological Cardens, wished to submit Don to scientific tests, they had no difficulty whatever in making him pronomnce every word of his repertoire. The phonographic records made on this occasion prove beyond doubt the identity of Don's speech with that of homan beings. There are, it is true, some slight differences in pronunciation due to differences in the structure of the laryms, but these in no way detract from the distinctness of the words. A strange impression is produced by comparison between phonographic records of human and canine speech; as in fact the dog speaks so very much louder than man, the two voices seem to have exchanged their respective roles.

After the authenticity of the speaking dog had thus been certified by some of the foremost scientific experts, many tempting offers were made to the fortunate master by those desirous of
exhibiting the dog in public. In order to protect him against the many amateurs who soon found their way to Theerhïtte, the dog had for some time to be kept in perfect seclusion. Mr. Ebers having eventually aecepted the offer of an enterprising firm of Hamburg merchants to finance the dog and to prepare him for public exhinition, Don was then taken to Hlamburg where his old friend Dr. Vosseler gladly received him in his house. However, the absolute change in his morle of life at first exerted an unfavorable influence on Don, who seemed to have lost his admirable powers, so that a few weeks lad to go by before the animal was acclimatized to his new surroundings. But very soon he not only recovered his old capacities but even showed his ability of extending his knowledge by acquiring a few more words; he is in the best of health and well prepared to start for his artistic touméc. So far from exhibiting his art at the ordinary music halls, he will however be shown in more select surroundings, namely at the zoological gardens of the varions towns.

As soon as the American daily papers published the first report about Don, the editors of the Technical World MagaZINE manifested their desire to place before their readers the first authentic illustrated story on the dog by entrusting the present writer with the honorable mission of going to Ilamburg and interviewing, as it were, the dog wonler. However, bad luck would have it that there was no end of obstacles, the financial representatives of Don being intent upon keeping him aloof from any publicity and even preventing the reproduction of any picture so long as the critical transitory stage just referred to was not concluded. As moreover Drs. Pfungst and Vosseler had not yet announced the results of their work, no information could be obtained from those quarters. I was near giving up any hope of ever succeeding in the task when an unexpected invitation to the first exhibition before a limited circle of Hamburg journalists at Dr. Vosseler's house reached me. As this performance was to take place the following day, no time was to be lost and I at once took the Itamburg express. It being interesting to ascer-

tain how far the knowledge of Don's capacities had penetrated among the general public, I whiled away the dullness of the railway journey by suggesting to some of my fellow-travelers the subject of the speaking dog and was only half-surprined on discovering that nobody ever seemed to have heard of such a prodigy, my account being received with interest mingled with a slight dose of sareastic skepticism.

Once arrived at Ilambury I had barely time to amomee my visit by telephone and to take a cal, to the Zoological farclens. In fact. when reaching the director's house. I found that the séance had just begun. Dr. Vosseler having sad the first introductory words of an interesting lecture in which the speaking problem in animals generally and in dogs more particularly was treated from a scientifie point of view. He drew attention to the fact that some birds, such as parrots and the species belonging to the ratuen family, possess a remarkable
ability to imitate homan speech, some of them singing even songs with words, in spite of the absolute diversity of their larynx from the hmman organ of speech.

In the case of mammalia, this ability is no doubt an absolute exception, though the larynx and other acoustic organs are so very much more elosely related to those of men. In fact, the organization of a dor's larynx in some respects is even more favorable than that of man. As it is, Don is an absolute prodigy and the first case on record of a dog not only pronouncing some words, but even attaching a meaning to them and making a frequent use of his powers in satisfying lis daily wants and showing his attachment to persons of his surroundings. lie is more or less talkative according to circumstances. If in low spirits, as after a punishment, he absolutely refuses to speak and the same effect is produced by bodily inclisposition. In had weather he is less inclined to speak than in good weather. Moreover, it is readily seen
that speaking involves a considerable fatigue to the dog who after some repeated exercises always is tired to some extent. Thoug the formation of vowels and consonants does not always occur according to the same principles as in the human organ of speech, his promunciation is quite clear and even to unskilled ears, frequently of an absolutely human distinctness.

While the doctor thus was delivering his learned discourse, the dog did not scem to attach any particular interest to liis words. The guests were seated to the right and left of the door, the interval being reserved for the dog and his mistress, Mr. Ebers' daughter, a slender young lady who all the time seemed busy keeping up Don's good spirits.

When I entered the room and took my seat in one of the front rows, Don immediately rose from his place at Miss Ebers' feet and came to welcome me, nestling himself up to my knees and wagging his tail as though he wished to show his appreciation of and gratitude for the honor lone him in coming all the way from Berlin with no other purpose than making his accuaintance. I was not a little proud of this token of sympathy, though I soon found out that I had to share the distinetion with some other gentlemen with whom the dog tried to make friends. His extraordinarily determined and self-confident nature also asserted itself in the independent way he strolled about the room, stopping here and there with some congenial person and then returning to his mistress' feet.

Don is a beatiful brown hound of strong build and remarkably intelligent eyes. In fact, there is something almost human in his look, and his movements and manners also remind, in some respects, of his apparently intermediate position between dog and man.

When Dr. Vosseler had ended his speech, there began the performance to which all those present had looked forward with eager expectation. A platewith some meat-all dainty bits are "kuchen" (cake) to Don-was produced. He was first asked his mane, to which he promptly replied, "Don," with a clear, deep voice and a characteristic inflection of the word.

The next question was: "What is it you have?" which the dog answered with the word: "Hunger," the second syllable lagging somewhat behind the first, though with a distinct articulation of the "r." After having mext been asked: "Do you want anything?" he most eagerly shouted, "Haben, liaben," which word, like some htumans, he apparently prefers to all others. On being then shown a piece of meat, he spontaneously pronouncerl the word: "Kuchen," the difficult letters k and the guttural ch being clearly aurlible. To certain questions he also replies "ja" and "nein" ("yes" and "no") and his most recent acquisition of which he secms to be especially proud is the trisyllabic word "Haberland," the name of Miss Ebers" fiancé, to whom he is indebted for his present celebrity.

There seems to be no (Irill in Don's demeanor, a free son of the heath he is and will remain all his life. There are still many years of a promising artistic career before him during which he will no doubt perfect his present knowledge of the German language by acpuiring a number of new words. But never will he become like the trained dogs shown in music halls which, under the absolute suggestion of their masters, will completely lose their own personality, doing everything at command and mechanically. With him all is conscious; he seems to know the meaning of his words and the effect they are to produce on his human fellow-beings and he obviously is glad of their sympathy and applause. There is something good-natured about hims which immediately wins the hearts of those he comes in contact with and lie leaves in everybody the impressiun of a superior intelligence.

Though Don's vocabulary so fat only comprises nine words, this does not compare unfavorably with the 150 words mastered by the natives of Australia and the 200 words a person of the most elementary education is saill generally to use even in the most civilized countries.

If the gift of speech in that dog conld be driven so far as even to become an expression of his feelings, what interesting things would he not be able to tell concerning his views on man?

UHAT A THOUSAND TONS OF POWDER AND DYNAMITE CAN DO.
This is where the powder mill stood.

AN ARTIFICIALEARTHQUAKE

B y

HENRYM. HYDE

A$8: 20$ o'clack on the evening of February 9th. a farmer living on the prairic near Kenosha, Wisconsin. went down into the basement of his honse to inspect his incubators, which held 1,000 eggs. Suddenly the iron covers of the heaters rose up on end and the man was thrown forward into the midst of the eggs.

A moment later a huge pane of plate glass leaped out from the thircl story window of a skyscraper in Chicagofifty miles away-and shattered itself (1) the pavement.

It almost the same instant, at Michigan City, Indiana,-fifty miles still farther away-more than a inndred convicts dropped down on their knees and prayed that God would spare them.
tud over at Elgin. [1l., thirty miles
west of Chicago, fifteen young women working over-time in a book-binclery, manimously fainted and fell over in a long, unconscious row.

For a few seconds the equilibrium of five states was disturbed. A whole village was wiped out of existence ; chimneys were overturned and thousands of panes of glass were broken over a section a hundred miles in diameter. In Chicago and a score of smaller cities the police were called out and fire companies rushed madly around the streets searching for unlocated and non-existent explosions. The emergency exits in a hundred theatres were blown open by the same suclden blast and in one or two instances frightened men attempted to save themselves by leaping from the windows.

At least half a million terrified people
rushed out of their houses into the streets, crying, with white lips, that an earthquake was upon them.

It was not an earthquake. It was mercly the explosion of a powder mill at Pleasant Prairie, W'is., fifty-five miles north of Chicago, one of the many scattered plants for the manufacture of high explosives, which are owned by the Dupont Powder Company.

But as an explosion it appears to have been vastly the greatest and most far-reaching 'in its effect, since gunpowder was first invented. It was perhaps the nearest man lad ever come to rivalling the resistless and elemental forces of nature. As an artificial cyclone and earthquake in combination, there has never been anything like it. Cities across the Mississippi River in Iowa felt the force of the shock, while the seismograph in the observatory of Saint Ignatius College at Clevcland, Ohio, three hundred and fifty miles away from the scene of the blast, recorded for nearly half an hour the tremors of the stricken earth.

The largest amount of explosives ever intentionally discharged at one time seems to have been 120 tons of blasting powder, backerl by twenty tons of dynamite, used in the destruction of the Great

Hell Gate reef, which, until 1876, made East River, New York, a terror to shipping. But that was a mere baby's firecracker when compared with the more than a thousand tons of giant powder and the 35 tons of dynamite which-exploded by some mysterious and forever hidden accident-dug holes in the carth a hundred feet deep, by three liundred feet square, and threw half the population of the middle West into a spasm of fear.

As in most powder explosions, the exact cause of the disaster will always remain a mystery. The first explosion occurred in and utterly destroyed the glazing mill. It is in this room that the granules of blasting powder, after being moulded, are glazed with a thin coating of graphite, to prevent the absorption of moisture which will ruin unglazed powder in a short time. For the purpose of glazing, the powder is put into stcel cylinders containing graphite. There were two men in the glazing room when the explosion occurred, E. S. Thompson and Edward Hilliard. Thompson was one of the oldest and most experienced men in the plant. He was instantly killed by the blast and his mangled body was found some distance away. Hilliard was blown through the roof of the glaz-

A HEATY BOX CAR JARRED TO PIECES ONE-HALF MILE FROM THE EXPLOSION.

AS THOUGH IT HAD BEEN STRUCK BY THE LUOSE END OF A TORNADO. A dwelling three-fourths of a mile distant from Pleasant Prarie.
ing mill, but escaped mhurt. Even more remarkable was the escape of half a dozen men working in the soda mill some distance away. When the soda
mill went up-following the glazing mill blast-they were blown up into the air and alighted on another building, which, in its turn, then exploded. The second

\&゙I:ANIMNG ONE: HAIF MILE AWAS. BUT SHATTERF: BV THE EXPLOSION.

THE ALMOST INCREDIBLE POWER OF THE EXPLOSIVE. A bole onc bundred fect deep dug in the earth.
explosion deposited the *men on the ground at the side of a third building, which, as they fled for safety, rose it? into the air and dropped tons of ma-
chinery and debris on the spot which they had just left. Nothing could better illustrate the whimsical and mysterious action of ligh explosives than the fact

THIS BARN. NEAR PLEASANT PRAIRIE. CRUMPLED AS IF BUILT OI CARDBOARD.
that these human missles went unscathed through a series of tremendous blasts which broke a thousand windows and shook great skyscrapers more than fifty miles away.

The first result of the explosion was the instant liberation of billious of cubic feet of gas, which swept out from the common center with almost incalculable violence. It was this first bammer blow of the gaseous wave, seeking room for expansion, which shook butdings and overturned brick chimneys. It was followed an instant later by the return of the compressed air about the circumference of the circle, rushing in toward the center, where something like a vacuum had been created. This rebound of the great air wave greatly lowered the pressure outside the bouses and other buildings, leaving the pressure inside much higher and more nearly normal. It was this higher pressure on the inside that caused the destruction of window glass, every pane, so far reported, having fallen out, as if struck a heavy blow from within. The pressure from without, in the first instance, was undoubtedly as strong as the reaction which followed it. That it was not as effective in destroying the glass may have been at least partially due to the fact that a win-dow-pane is supported against outside pressure by the whole strength of the heavy window frame, while against pressure from within, there is no protection but the putty.

In addition to the air waves, earth waves of great intensity and duration were set up by the explosion. Much comment was caused by the fact that while at a distance of more than 300 miles in certain directions the earth vibrations were strongly felt, in other
directions and at a distance of only fifty miles they passed unnoticed. Over a large portion of the South side of Chicago, for instance, there was no recognition of the explosion, while in Cleveland, Ohio, the seismograph vibrated violently. The great difference is due to the varying constitution of the crust of the earth. In directions where continuous strata of solid rock ran away from the center of the disturbance earth waves were transmitted quickly and with slowly diminishing violence, while when such strata gave way to great deposits of sand and gravel the shock was poorly transmitted and quickly absorbed. The fact that a terminal moraine of loosely packed sand and detritus underlies much of Chicago accounts for the escape of certain parts of the city from any very noticeable effects of the earth waves.

The after effects of the explosion have been varied. In two or three cases the deaths of people who were seriously ill at the time have been ascribed to the shock. The Dupont Company has come forward and ${ }^{\circ}$ voluntarily offered to pay all damages caused by the blast. And in both Wisconsin and Illinois bills have been introduced in the State legislatures looking towards the more strict regulation and control of powder mills and other places where great quantities of high explosives are stored.

What seems to be needed is a lawbacked by competent and honest inspec-tion-which will prevent the accumulation and storage in a single location of any such tremendous amount of blasting powder as a thonsand tons.

As well live on the crest of a live volcano as within fifty miles of such a potential and ever-ready earthquake!

JUST A FARMER

B y

HARRY F. KOHR

WHEN "Jim" Fike drew up a pair of jaded ponies hitched to a dilapidated wagon and faced the setting sun on the lonely prairie in Thomas County, Kansas, twenty-five years ago, he didn't have $\$ 25$ to his name. Now that same "Jim" Fike spends that much every week for gasoline alone and the most of the prairie he saw by the light of that setting sun is his own and on it is the largest wheat farm in the world.

Twenty-five years ago there were not ten carloads of wheat raised in Thomas County. "Jim" Fike requires that mueh now to seed his one farm. To do the work on that farm requires the services of more men than there were in Thomas County when "Jim" Fike went there.

When James Fike arrived in Thomas County he took up a quarter section of one hundred and sixty acres. He stuck to it through fat years and lean, through the grass-

James M. Fike.
The farmer who manages his farm as a merchant does his business.
hoppers and the drought, until Fortune began to smile. He picked up a few more acres at a time until he became among his neighbors what they call in Kansas a "prominent farmer." He was the kind of man who wins popularity easily and his neighbors called him"Jim." He was appointed registrar of the land office under President Cleveland's second administration and after his term expired he was elected a railroad commissioner. Then Jim Fike quit polities and went back to farming.

By that time the farmers in western Kansas had begun to learn to grow wheat. Fike started in with sixteen hundred acres and he gradually increased his holdings until in 1909 he sowed ten thousand aeres. From that area he harvested 120.000 bushels and made a profit of $\$ 60,000$. Last year he had twelve thousand acres in winter wheat and harvested 600 actes more in spring wheat. His profits last year probably were at least $\$ 75,000$. Every

"jim" Fike in the Field. Not "too successful" to derect personally.
pound of his winter wheat last year graded No. 2 hard, Turkey red. Most of it went directly to Kansas mills, the balance selling in the market for $\$ 1.04$ a bushel.

Jim Fike manages his wheat farm on exactly the same principle that the merchant or the manufacturer in the city does his. The leaks that cost the average farmer half his yearly income are absent from the Fike farm. II has his business office and his bookkeeper and a strict account is kept of everything that is lought, sold and issued to be wad. He knows just what he lias all the time and just where it is. IJe employs 250 men and five hundred horses in the harrest season and he is always the first man awake and the last man to bed. He
drives over his farm in a forty-horse power motor-car and directs the operations like the field marshal of an army.

After the harvesting is finished, four threshing machines are kept busy for a month, threshing the grain. The granaries on the farm make a small village in themselves. Immediately after the harvesting is finished, the big plows are put to work, hauled by steam or gasoline tractors, and the ground is thoronghly stirred to a depth of from eighteen to twenty-four inches. In this way the moisture that comes in the fall and winter gets a chance to permeate to a great depth and the effect of the occasional drought is minimized.

In Colby, the county scat, Mr. Fike has a large machine-shop where all his repair and matufacturing work is done. There, through the winter, his machinery is overhauled and made ready for the spring and summer, and between times new machinery is built. The surplus product is sold to neighboring farmers, who prefer the home-made machine to the factory-made because it embodies Fike's irleas and their own of what it slomuld he. Last year Fike employed six steam-plow outfits. Now he is changing them all to gasoline power because of the expense of lauling fuel and water to make steam.

Ten years ago when Fike began his extensive operations his neighbors warned him to "stop before you go broke." Now they look upon him as an oracle. His incone is said to be greater than any other man's in Kansas, but he is still "Jim" Fike and not to be distinguished among his neighbors by any extraordinary exterior mark. They call him the wheat king, but he says he is just a farmer. That's the secret of it. He is "just a farmer," and nothing else. He's a specialist. So wherever men grow wheat or sell it he is known and no man's advice is more eagerly sought in the wheat region or on the board of trade.

Ilis motto is plow deep and plow early. "When you plow early you kill the weeds," Fike says, "and when you plow deep yon conserve the moisture. Most farmers sow too much seed. I sow from half a bushel to three pecks to the acre."

CAN OF CONDENSED POWER

By

BENJAMINBROOKS

F$A R$ out on the southwest cuast of the comntry-almost on the beach, in fact-as if taking a last desperate stand against an advancing conqueror, stand three giant engines. The man who placed them there received a small fortune in bonuses over his contract price on account of their high efficiencywhich shows that they are among the very most efficient engines in the world. Rut still they are not good enough. Notwithstanding faithful turning out of 20,000 horse-power for twenty hours a day so that the people of Los Angeles can enjoy trolley riles, they now find
themselies coldly resarded as moly hasbeens.
beside them in the same engine room now stands a new engine. Nobody would stspect it of being an engine, for it seems to be nothing but a round steel tower having the appearance of a young light-house. This new giant came on sixteen freight cars and is known as a Curtis Vertical Turbine. On the 20th of last December he began to spin and to roar, and ever since has stood ont in wonderful contrast to the three old-time siants. While they are able to turn out 20,000 horse-power tosether, the new-comer-although not a bit bigger-can

THE SMALLER IS THE MORE EFFICIENT.

[^6]do it single handed. While they occupy a space one hundred and forty feet by seventy-six fect, he works comfortably in a comer fifty-six by thirty-eight. The okl timers, grinding out a hundred turns a minute, shake the eartlo so it can be seen in the bubble of a surveyor's level hmolreds of feet away: but the new boy turns 750 times a minute and never quivers. All the beantifully seientific cams and levers on the old timers that lave been perfected and refined to such exactness since the time of James Watt -these the new giant dispenses with altogether. Ile is a most deceiving individual, and were it not for his trick of blowing your hat off when you come into the hot draft from his whirling magnets, you might never suspect him of moving at all.

There's the beanty of your turbine. As an exponent of the simple life he is not to be excelled. He just spins. There's nothing to him. Anybody can understand him. We could make a small one ourselves in an hour out of a tin can. Let us choose one of those tall round cans such as ginger cookies come packed in, and begin by melting the bottom out of it. Next we will procure a dozen of those little brass wind-mill ventilators such as are sometimes put into office windows to whirl around and distribute the incoming air. Six of these must be just the right size to fit tightly in the can; the other six must be a trifle smaller so as to go loosely into the can. The first six must be cut to whirl to the right ; the others to whirl to the left. Now we start with a tight one and fasten it near the loottom of the can. Through the little hole in its center we put a smooth round rod for a revolving shaft. The next windmill is opposite in direction, loose enongh to whirl in the can but tight on the little shaft. The third is right handed again, firmly fixed in the can and loose on the shaft-and sor on till the can is futl. Now we take a long loreath and blow down throngl the can. The wind, hitting the first wheel, starts it spiming; but, in passing through it, is itself spmon in the opposite direction. No somer is it past the first wheel, lowever, than it strikes the secomed whed of opposite direction and stuck fast in the can. This
wheel reverses the air again to its original direction. It is then ready to give the second moving wheel a push. The second tight wheel again directs it for the third revolving one. And so it finds its way down through the can and away, giving each of the six little wheels a kick as it goes.

A turbine is nothing more. The great steel tower which encloses it is the cracker can. The alternate discs are very much like the little ventilators, being alternately spinning and stationary. They have many thonsand little vanes, are some fourteen feet in diameter and run over six miles a minnte. The central spindle is a massive shaft as thick as a policeman and weighs as much as a switch engine. Instead of our long breath of air, the turbine has a perpetual blast of superheated steam roaring through it, starting at nearly 200 pounds pressure and graduaily expanding larger and larget and dropping down in pressure till it blows out anderneath into the cool condenser at only about one thirtieth the pressure of the air one breathes. This extraordinary transition from 175 pounds steam at a frightful heat to cool fog at almost no pressure at all occurs in the space of ten feet and takes place in a small fraction of a second ; yet there are no valves intervening and a ten penny nail conld be dropped from the top down to the bottom through the little ports without interruption. If the noise of this continnons explosion of steam could get out of the steel jacket it would probably be heard for five or ten miles.

Now all this mass of metal-the dises, the shaft, the great electric "field" on its upper end, weighing altogether about 100 tons, or as much as a powerful locomotive, revolves twelve and a half turns every second: and if the sliaft shonld ever rest its weight on even the smoothest possible bearing it would melt it in a mighty few minntes. This entire 100 tons, however, rests on no bearing at all, but floats-floats on a little pool of oil no bigger than a wash basin; and two strong pumps see to it that the oil in the little pool never drops below a pressure of 900 pounds per square inch.

The beantiful case with which this lage top spins was impressed upon the

Writer on last N゙ew Year’s Day. A careless or ill-informed mechanic, working near it, accidentally short circuited about a third of its total current through the handle of a monkey wrench and into a steel column. Instantly there was a noise like an explosion, followed by a gorgeons copper-colored fire that burned with a roar like a hundred rolling drums. The tremendons jolt thrown back by this flaming are upon the power-house threw the three old giants all out of step so that their pulsations of current interfered
and stopped all the trolley cars in the whole city ; but the turbine spun serencly on: and. after they had pulled the switches and shut off the stean, continued to spin by its own momentum for three hours.

Before this article shall have time to appear, the turbine will have a twin brother spimning beside it in the opposite corner : so that a power company on the same land and in the same buikling (save for extra boiler room) has increased an okl plant to three times its original capacity:

THROWING DEATH OFF THE TRAIL

A SEQUELTO '•HAUNTED HOUSESOF DEATH"

By
F. C. WALSH. M. D.

THE cure of "consumption" is a medical problem; its prevention a social one,-not from choice. but rather from nccessity. If the available figures be made to conform with facts instead of meeting the requirements of optimistic theory, it must be admitted that tuberculosis is on the increase, regardless of all statements to the contrary. In questions of public policy, plysicians are poor executives, and weak in militant, harmonious organization. As regards the prevention of tuberculosis, they have had their hour of opportunity, and failed: it is becoming a necessity that this phase of the problem be turned over to a properly informed public. If the medical men cannot or will not act except as isolated individuals, then the people themselves must take some collective action on their own initiative. The public cannot do this without some information as to a proper method. Unfortunately, any information which happens to be practical, is usually buried out of sight of the people in the purely technical pages of the medical journals, ending then and there any possible career of usefulness. It would appear from this
that the popular magazines, if given the opportunity, will continue to to more for the future. in the way of disseminating practical information, than all other methods combined. Even now they are performing a function properly the duty of good government.

There is no cure for tuberculosis, and probably never will be-accepting the word "cure" in the sense of some special medicine. From many points of view this very hope of a cute has had its bad effects. For one thing, it has taken both the public and merlical mind two much away from the important necessity and practical benefits of prevention. A disease prevented is better than cured. for no one is so well off physically or financially after any illness, and particularly does this truth apply to tuberculosis.

All disease is undesirable, except for those who live by it. Furthermore, the successful prevention of a disease does away with any need for its "cure." This is well exemplified in the case of yellowfever. We have never succeeded in finding a cure for that former scourge of the South, but we have done far better. We have wiperl out the disease hodlily, bag and baggage, by simple, preventive

POKCHES WHERE TUBERCULOSIS PATIENTS ARE KEPT SHOULD BE DISINFECTED OFTEN. Outdoor slecping will not alone suffice to cure.
methods. We no longer need a cure for that which has practically ceased to exist. Why can't we to the same with tuberculosis? We can. Why don't we?

Consmmptives are being bred hourly, more rapidly than they can be cared for, much less cured, by any present arrangements of any kind whatsocver. Special hospitals and sanitaria can not be built fast enough to meet the essential reduirements, now or for the future. Even were it possible to make the demand for hospitals equal to the supply of patients, the economic drain on the public purse could not long be borne. The load would prove greater than any community could sustain. For economic, as well as for practical sanitary reasons, we shall have to change the policies devised for the immediate future, and adopt instead some method of checking, at the very source, the increasing ammal crop of consumptives. Those afflicted must, of course, be cared for: but an increase in the number of hospitals will not stamp out the disease. W'e reap what we sow: let us cease to sow the seeds of consumption, and there will be no harvest to store, in sickly human form, in the numerons and expensively projected, special hospitals. We must reconsider our plans, for they are built on sands, and devote more of our time and at-
tention to stamping out the disease at its source, by methods that have hitherto never been considered.

Optimists who claim to know, are forever making the assertion, in vague, undefined ways, that tuberculosis will be stamped out completely within ten years. And it should be. But not one of them seems to think it necessary to take the public into his confidence long enough to so much as hint at any definite method by which this much desired consummation is to be accomplished. Most of them du go so far, however, as to be loud in their continuous demands for more money. It would be a pleasure, and perhaps a revelation to those who are accustomed to contribute, to know exactly, by itemization, what these medical prophets do, and intend to do, with the many munificent contributions. But, any money is useless for the purpose intenled. unless some sane, definite. logical methol lx presented, with the sole wject of combating the disease at its very foumtain-head. Who of the great public has ever heard of such a plan? One man, at the head of the health elepartment of one of our foremost cities, thinks that an appropriation by the city, of about $\$ 22,000,000$, would be about the riglit amount as a beginning in the extermination of the disease, to be
followed, by appropriations of like amonnt for the next fifteen years. This makes a total of $\$ 330,000,000$. Rather big figures for a modest health-officer to deal with! Yet he presents no definite plan of campaign, nor states in any detail whatever how this huge sum is to be expended. These figures apply to his one city alone. With the present lack-of-method style of campaign against the disease, ten times that, or any other sum, would be useless. However, if the expenditure suggested should bring the result predicted, the price paid would not be too ligh. But why follow vague prophecies, when the desired end should be attained by an expenditure of $\$ 100$,000 , or less, ammally, in the instance cited, by adopting a practicable, com-mon-sense method, with the probability of completely exterminating the disease in less than five years?

It is generally concederl that if consumption can be "caught early," discovered at the begimning and "taken in time," the consumptive stands a very good chance of being cured. This statement should pass unchallenged. But there are two great difficulties in the way of discovering the clisease "at the very beginning." The first pertains to the physician. Not one physician in ten can diagnose the disease in its earliest stages. This is no reflection on the average medical man, for even the eleventh physician, who is probably an "expert," is sometimes mistaken. The other difficulty is "in the very nature of things," and pertains to the patient himself. Not one person in fifty so much as even thinks of consulting a plysician, until the disease becomes troublesome to himself, and fairly apparent to his friends. As a result of these two difficulties, pertaining alike to physician
and patient, the disease is usually pretty well established by the time it is discovered, and often past the stage of probable cure.

But granted that the disease is discovered in time, what then? Brown, for instance, having been told that he has tuberculosis, takes a sensible view of the situation, and packs off at once for Arizona, where he pitches a tent in the desert, as a more or less permanent abode. One would imagine the conditions muder which he lives to be ideal for his purpose. The air is dry and warm ; the sky always blue, and the only time he spends in his tent is during the heat of mid-day, and when he retires to his blanket for the night. For a time he improves, and makes no change in

No Harm, But Much Good Will Be Accomplishfy Ry Sleeping Out Like This. In the Grand Canyon of the Colorado. Arizona.
the location of his tent for months. Then as time rolls on, he takes a turn for the worse, and in less than a year is dead. Why? Jones is another victim of the disease. who also makes up his mind to go to Arizona. He has an idea of his own that he can get along withont any tent, and sleeps with only the stars above, rolled up in his blanket. Having no tent as a fixed abole, he naturally moves from place to place each day, sleeping on new and different ground each night. That is an important point. Jones ends by being cured. Why? Just one more instance, after which these "whys" will be explained. Smith has the disease, and goes to the West. He makes a rapirl gain from the start, and feels and looks in perfect health long before a year is gone. lle returns home, satisfied that he is cured. His friends congratulate him, and life looks sweeter than ever before. In less than four months he is once more in the tenacions clutches of the disease. It is time to consider, at this point, some reason for these different terminations, as an explanation of these three instances will throw much needed light on the cure and prevention of tuberculosis.

In any discussion of tuberculosis, one important fact mnst be constantly kept in mind: consumption is contagions. It is useless to dodge this statement. Yet it is the most difficult fact to drive into the public mind. Owing to the slow development of the disease, it is difficult for its victims to understand how or where they contracted it. This slow development is unfortmate. If tuberculosis developed its symptoms in a few days, like cholera or yellow-fever, it wonk have been stamped ont in all communities long since. Further, it is seldom, or never, "caught" on the highways or by-ways, from some consmmptive passer-by: nor from occasional travel on railways or street-cars: nor from the casual wind or dust of the streets. One loes not have to go so far from home to find the real source of the contagion. It is safe to say tlat nine persons ont of ten who have the disase. contracted it in their owis homes, or, more specifically, in the very rooms in which they are accustomed to live and breathe. In short, tuberenlosis is first,
last and all the time, a "house" disease. A realization of the vast importance of this one fact, simplifies the problem of the prevention and cure of tuberculosis to such an extent, that the mind of a child should be able to solve it. Any physician who has had any experience worth considering, can call to memory innumerable instances of houses which he knows to be nothing less than veritable breeding-places for tuberculosis.honses in which family after family, healthy enough when they moved into one of these plague-ridden Jwellings, has sacrificed victim after victim, too often in the mame of heredity, to the devastating ravages of this most treacherons of plagues.

With this hint as a key to the problem, let us try to answer the three "whys" which arose in the typical instances of Brown, Jones and Smith. In the first place, not one of these three should ever have contracted the disease. Secondly, the three of them could have been cured at home, and Brown should never have died. Let us explain.

Before Brown had contracted the disease, he had moved in the month of May. into a honse in another part of the town where he had always lived. By fall, he had contracted tuberculosis. It was discovered later, that several different families, who hatl oceupied this same house in succession. had lost in turn several members from tuberculosis. Niu attempt lad ever been made to disinfect the honse. As alrealy stated. Brown went to Arizona. pitched liis tent on a certain spot, and never made any change from that one spot milil his death. Note that fact. As a result, the soil over which he slept, night after night, became saturated with the accumulated germs which he expelled in coughing, so that he was continually, at night, re-breathing into his system, the very "seeds" which canse the disease. He was re-poisoning himself nightly, and didn't know it. Flis system wonld have been able to throw off the original "gorm-poison" which it contracterl, but it was not strong enough to withatand a new dase of the poison every might. I Tad he clanged the location of his tent daily, he cond have slopt each night in an atmosphere practically germ-free. There is a new lesson

AN OUTDOOR SLEFPING AKRANGEMENT AT HOME.
in this. The open-air treatment is all right, but it must be carried out by right methods. All early cases of consumption which have failed to recover by outdoor treatment, must lay the blame to fanlty, incomplete methods in carrying out the details of the treatment. Jones, who recovered, you will remember, did change his location every day, having no tent to bother him, and in doing so, avoided the fatal mistake of brown. How about Smith? The case of Smith is of the greatest importance. He had recovered, yout will remember, and returned to his home feeling fine,-back to what? To the very same plagueridden room in which he had first contracted the disease,-a room reeking with tubercular germ-life, ant which had been occupied, it was learned later, by five different consumptives at various times. The disease got a hold on him a second time, for the simple reason that he came back to the original source of his disease. He should have sought new fuarters: or else the house, and particularly the room he occupied, should have
been disinfected, before being occupied by him or any one else. These three cases cited are but typical instances. There are thousands upon thousands of Browns, and Joneses, and Smiths, living and dying this very day, whose story, if told in its true light, would match exactly the simple, but pathetic history, of these three men.

Before taking up the important matter of prevention and cure, the temptation is strong to give some detailed criticism as to what has been thus far accomplished as a result of legislative enactment in its specific hearing on tuberculosis. Much could be said on the mooted question of the "tuberculin test" of dairy herds, but lack of space forliils. Aside from that, any legislation enacted, or even so much as suggested. has pertained almost exclusively to the "spitting motisance," and the use of the public drinking cup. These crusades are certainly harmless enough, and do good in the way of inculcating good manners and etiquette, but how about their utility as regards actual results?

THF CONSUMPTYVE SHOULD NOT PITCII HIS TENT FOR MORE THAN A NIGHT OR TWO IN ONE SPOT.
Permanent quarters like this militate against recovery.

Any one, after a moment's thought, can answer that questim, but we wish to consider it in the light of information derived from existing conditions in other conntries. In the cities of the most enlightened of European countries, antispitting ordinances are unnecessary, because the people there are not addicted to the habit. This is trite of 1 omdon. Paris. Derlin and Viema. Inother thing, no European in the cities mentioned ever thinks of tising any hut his own drinking cup. This is not said for the purpose of praising Enropeans at the expense of our own belittlement, but merely as a prelude to the statement that the European mortality from tuberculosis is as great ats ours, and in some instances, greater. The conclusion drawn is, if all legislation thas far enacted against the spread of tuberculosis were stringently enforced to the very letter, we would note little or no dimintition in the ravages of the disease.

The simpler the methorl for the prevention or cure of a disease, the better,but the more difficult it is to secure its
artoption. The extreme simplicity of a method is often against it. People are so accustomed to "taking something" for all ills of the flesh, that it is not easy for then to change their habits of thought on the subject. Besides, the public is so used to having something mysteriously complicated thrust at it, at so masch per "thrust," that it is almost impossible to bring this same public to the realization that any one is sufficiently interested in the welfare of the people, to offer them something for nothing. And too often they are quite riglit. Fortmately, the iclea here presented offers no opportunity for any material gain.

No one would move into a house which hat not been disinfected, in which the very last occupants had just gone through a sicge of small-pox. It is important to bear this in mind, whenever one moves into new quarters. Did the last (xenpants have consumption, or did they not? Nobody knows, or takes the tronble to learn. It is of vast importance to the family about on move in. The onlly way for the latter to be on the
safe side is to act just the same as if the house were reeking with the germs of consumption. What is one to do as a safe-guard? Simply this: Fumigate every room in the house with the vapor given off by heating formaldehyde ; wash all floors, windows and wood-work with mild solutions of corrosive sublimate and water. Only after such a chemical cleansing, can the new quarters be considered safe for human habitation.

Is there anything new that can be done for those already afflicted with the discase? By all means. Let these poor sufferers ask themselves, What are the real benefits of "fresh air"? Ideal "fresh air" is that which has its proper proportion of oxygen, and is germ-frce. If one afflicted with consumption can possibly have air of this kind in his own home. there is not the shadow of an excuse for leaving it in search of "climate." Let us illustrate. Suppose a man is overcome by illuminating gas, while in his room. The very first thing for his rescuers to do, is to take him ont of the room, or let out all the gas. Bearing in mind this comparison and applying it to the constumptive in his own home. there are just two things to do: Either take the consumptive away from the germ-ridden air of his room, or let out the germs. Unfortunately, the latter refuse to go. Sleeping with open windows will not suffice; the air which comes in is not sufficient to drive them from their lodgings on the floors, walls and carpets, not to mention the bed-coverings ; nor are the germs kind enough to take

A Portable Tent of This Sort Makes a New Daily Camping Ground Exceedingly Practicable.
a hint and leave by the open window. In order to make the air of such a room germ-free, there remains just one thing to do: kill the germs by frequent fumigation. How often should this fumigation be done? Daily, if possible, but at least once or twice a week. A very good plan for a consumptive to follow is that of living in alternate rooms on alternate days. By so doing, eacln room can be fumigated and rendered germ-free on alternate days, as a result of which the consumptive will have the benefits of an absolutely pure air both day and might. Such a course, followed in conjunction with what is already known in the way of good nutrition and hygiene, should afford a home cure for every case of consumption that can be so treated from its carliest discovery. There is no individual who cannot act on the two suggestions here given,-first for prevention, and second for cure.

GREAT attention is being paid at the present time to the erection of thoroughly sanitary and fire-proof residences, railway stations and other lruildings and it is maintained that such buildings may be constructed at less cost than with wood; concrete is used as the material and a
ington, D. C. A remarkable feature of this house is that a hose may be used for cleaning, after the furniture, pictures and rugs have been removed, a stream of water being applied to the walls, ceilings and composition floors, which are drained to tile sponts discharging on the lawn. All fixtures are of concrete material, bracketed from number of houses are cast from one set of molds.

An accompanying illustration shows the design and construction of a small concrete house built along the lines of the motel home, which reccived the first gold merlal at the International Congress on Tubereulosis held in Wash-

A House That Rfceived a Gold Medal. An admiral estyle of concrete dwelling.
the wall, for convenience in sweeping the floors.

There is no wood to shirink or rot, no shelter for vermin or insects, no corners for dirt, all corners being rounded. There is no insurance to pay, no painting required and little or no expense for repairs.

The building is so constructed that the waste heat from the cook-ing-range is utilized in winter for warming the house. There is no landiing of coal or ashes. The coal is hoisted lyy a simple chain block and dimped through a coal hole on the roof into a large pocket. It is then fed automatically by gravity to the stove which combines, in one concrete fixture, the range, house heater, gas stove and hot water heater. The ashes drop from the fire box into cans which are removed from the outside.

The ice box is arranged for use as a fresh air closet, using no ice in cold weather and designed also to flush out with hose. The garbage system, too, is unique, a cast iron chamber being provided in the
smoke flue, where the waste is dried, then dunnped by the use of a damper into the fire box, its fuel value being saved.

The windows are unit size cast iron, of casement type, with transoms over them to regulate ventilation easily. The walls are hollow to prevent dampness, and there are air circulation openings under the ronf slal. Fire places are provided in all the rooms and the flues connect around the smoke pipe for natural ventilation.

In this concrete building. construction standard unit collapsible steel forms are used, which are designed to allow change of arrangement and variety in plants, and the entire honse is cast. with walls, floor and partitions, of reinforced concrete. The molds may also be used for any number of duplications of the original building that may be desired

In the Rosemont railway station, shown at the head of the article, an interesting treatment has been made by the inlay of small marble blocks.

A PRETTY-AND SANITARI-CONCRETE RESIDENCE OF FIREPROOF CONSTRUCTION.

NIGHT CAMP OF TRAPPERS IN SOUTHERN LABRADOR.

A CONTINENTAL FUR FARM

(PARTII-CONCLUSION)

B y

AGNES C.LAUT

REMEMLEER it was not the hunter who exterminated the buffalo and the beaver and the seal and the otter. The poacher destroyed one group of sea furs, the railway and the farm supplanted the other. West of Nackenzie River north of British Columbia is a game region almost similar to Labrador in its furred labitat, with the exception that the Western preserve is warmer and more wooded. Nortlward from Ontario is another hinterland which from its sery mature must always
be a great humting ground. Minerals exist-as the old French traders well knew and the latter day discoveries of Cobalt prove-and there is also heavy timber : but north of the Great Clay Belt, between the Clay Belt and the Bay lies the impenetrable and-I think-indestructible game ground. Swamp and rock will prevent agricultural settlement, but will provide an ideal fur preserve similar in climate to Labrador.

Traveling with Indian guides, it is always a matter of marvel and admiration to me how the Company have bred
int the rery blood for generations the careful murture of all game. St one place we heard of a luge black bear that had been molesting some new ranches. "No take now," satid the ludian. "Him fur no grood now." Though we might camp on bare rocks and the fire lay dead ash, it was the extra Indian paddler who invariably went back to spatter it out. You know the white's imate love for a roaring log fire in front of the camp at night? The Indian calls that "a-no-good-whiteman-fire-scarc-away-game."

Now take another look at the map. Where the Saskatchewan takes a great bend 300 miles northeast of I'rince A1bert, it is no longer a river-it is a vast muskeg of comitless still amber water chamels not twice the width of your canoe and quaking silt islands of sand and goose grass-ideal hidden and almost impenetrable for small gane. Aways muskeg marks the limit of big game and the beginning of the ground of the little fellows-waupoos the rabbit and musquash the muskrat and sakwasew the mink and nukik the otter and wuchak or pekan the fisher. It is a safe wager that the profits on the millions upon millions of little pelts-humdreds of thousands of muskrat are taken out of this muskeg alone-exceed by a hundred fold the profits on the larger furs of beaver and silver fox and bear antl wolf and cross fox and marten.

Look at the map again. North of Cumberland lake to the next fur post is
atrilling rum of 250 to 300 miles by dog train to lac du lirochet or Reindeer Lake-more muskers ent hy limestonc and gramite ridses. Ilere yoit can measure 400 miles east or west ankl not get out of the muskeg till yon reach . Dtatabasca on the West and Ihutson's Iaty on the East. North of Lac du lirochet is a straight stretch of 1.000 milesnothing but rocks and cataracts and stunted woods, "little sticks" the Indians. call them-and sky colored waters in links and chains and lakes with the quaking muskess gouse grass and muskrat reed, cut and chiselled and trenchend by the amber water ways.

If you think there is any danger of setthement ever encroaching in the muskegs and barrens, come with me on a trip of some weeks to the sontli and of this field.

We had been pulling against slack water all day. water so slack you conkd dip your hand down and fail to tell which way the current ran. Where the high banks dropped suddenly to such a dank tangle of reeds, brush wood, windfall and timbers drifted 1,500 miles down from the forests of the Rocky Momntains -such a tangle as I have never seen in any swamp of the South-the skeleton of a moose, come to its death by a jump anong the wind fall, marked the eastern limit of big game; and presently the river was lost-not in a lake-but in a swamp. A resl fox came scurrying through the goose grass, snifferl the air, looked at us and ran along abreast of our canoe for about a mile, eviclently scent-

A SUMMER CAMP OF BIG GAME HUNTERS NORTH OF THE SASKATCHEWAN.

FEEDING THE FAITHFUL PACK DOGS-A SCENE ON ATHABASCA LAKE.
ing the bacon of the tin "grub box." Muskrats feed on the bulb of the tufted "reed like a tree," 16 feet ligh on each side: and again antl again little kits came out and swan in the ripple of our canoe. Once an old duck performed the acrobatic feat over which the nature and anti-nature writers have been giving each other the lie. Wre had come out of one long amber channel to be confronted by three openings exactly alike, not much wider than the length of our Klondike canoe, all lined by the high tufted reed. MacKenzie, the half-breed rapids man, had been telling us the endless Cree legends of W'a-sa-kee-chaulk, the Cree Hiawatha, and his Indian lore of stagnant waters now lured him into steering us to one of the side chamnels. We were not expected. An old mother duck was flirectly across our path teaching some twenty-two little black bobbling downy babies how to swim. With a cry that shrieked "leg it-leg it" plain as a quack could speak and which sent the little fellows senttling, half swim, half run, the ofld mother flung herself ower on her back not a paddle's length ahead of us, dipped, dived, came up again just at our
bow and flopperl broken-winged over the water ahead of its near enough almost to be caught by hand; but when you stretched ont your hand, the crafty lady dipped and dived and came up broken-winged again.
"You ofd fool," said Sexsmith, our head man, "your wing is no more broken than mine is. We're not going to hurt your babies. Shut up there and stop that lying."

Spite of which the old duck kept up her pantomime of deceit for more than a mile: when she suddenly sailed up over our heads back to her hidden babies, a very Boadicea of an old duck girl. When we drew in for nooning, wild geese honked over our heads near enough to be hit by the butt of a gun. Drift chips, lodged in the goose grass, kindled fire for kettle: but oilcloth had to be spread before youl could get footing ashore. I begran to wonder what happened as to repairs when canoes ripped over a snag in this kind of region : and that brought up the story of a fur trader's wife in another muskeg region north of Lac La Ronge up towards Churchill River, who was in a canoe

A TYPICAL BAKE OVEN USED BY THE HUDSON'S BAY COMPANY AT THE NORTHERN POSTS.
that ripped a clean hole the size of a man's fist. Quick as a flash, the head man was into the tin grub box and had planked on a cake of butter. The cold water hardened it: and that repair carried them along to the first birch tree afforling a new strip of bark.

Where an occasional ridge of limestone cut the swamp, we could hear the langhter and the glee of the Indian eliildren playing "wild goose" among the trembling black poplars and whispering birches: and where we landed at the Indian camps we found the missionaries out with the hunters. In fact, even the nuns go haying and moose hunting with the Indian families to prevent lapses to barbarism. On one of these moose hunts for pemmican supply in the rock region north of this muskeg, the Revil-
lons' manager succeeded in snap-shotting a sister rifle in hand. The good lady was panicky at thought of this representation of a peaceful missionary going out to the world. "Oh, by Gar. Sister," consoled one of the hunters, "you convert us all lot faster-me, I t'ink-wit' y'r ritle than y 'r beads."

Again and again we passed eached canoes, provisions stuck up on sticks above the reach of animal marauderstestimony to the honesty of the passing Indian hunters, which the best policed civilized Eastern city cannot boast of its denizens.
"I've gone to the Rockies by way of Peace River dozens of times," declared the Revillon man, "and left $\$ 500$ worth of provisions cached in trees to feed us on our way out, and when we came that

T"he Ifomp of the Fur-Bfarers.
North of the shoded line they are most abundant.
came on. The wind was against the direction the dogs had taken and the man hollooed himself hoarse withont an answering sound. It was two oclock in the morning before the wind sank and the trader found his dogs: and by that time between sweat and cold, his shirt had frozen to a board.

Such a thing as an out and out pagan hardly exists among the Indlians of the North. They are all more or less Christian with a curious mingling of pagan superstition with the new faitl. The Indian voyageurs may laugh but they
same way six months afterwards we never found one poind stolen, though I remember one winter when the Indians who were passing and repassing under the food in those trees were starving owing to the rabbit famine."

In winter, this rewion is traversed by dog train along the ice-a matter of 500 miles to Lac dut Brochet and back, or 1,00 to Prince Albert and back. "Oh, no, we're not far," said a lonely faced Cambriage graduate fur trader to me. "When my little boy took sick last winter, I had to wo only 55 miles. There happened to be a doctor in the lumber camp, lack on the Ridge."

But even winter travel is not all casy in a 50 below zero climate where you can't find sticks any larger than your finger to kindle night fire. I know the story of one fint trater, who was ruming atong behind his dog sleigh in this section. He had become over-heaterl rumings. and had thrown his coat and cap acrose the sleigh, wearing only flamel shirt, fur sanmalds, corduroy tronsers and moceasins. It a leond in the icoll clamed the came on a pack of mangy cosones. liefore he had thonght, he hat sickeal the dows on at them. With a yell they were off ont of sight amid the gonse grans and rects. Those recels, remember, are sixtech feet high, stiff an loroxm corm and hard on moceasins ats atabble womid be on bare fect. Ton make matters worse, a heavy snow storm
all do it-make offerings of tobacco to the Granny Gorldess of the River before setting out. In vain we threw biscuit and orange peel and muts to the perverse tempered deity supposed to preside at the bottom of those amber waters. The winds were contrary-the water slack. sluggish, dead, no responsive gurgle and flap of laughter and life to the slow keel.

One chamel but opened on another. Even the limestone ridges had vanisherl far to rear; and the stillness of might fell with such a flond of sumset light as Turner never dreamed in his wildest intoxications. There would be the wedge shaped line of the wild geese against a flaming sky-a far honkthen stillness. Then the flackering quacking call of a covey of ducks with a hum of wings right over our shoulders -then 130 sound but the dip of our paddles and the (rip and ripple of the dead waters among the reeds. Suddenly, there lifted against the lonely red sunset sky-a lob stick-a dark evergreen stripued below the tip to mark some Inclian camping place, or vow, or sacred memory: We stecred for it. A little flutter of leaves like a clapping of hands marked land enongh to support black poplars: and we rounded a crimbly sand bank just in time to see the sevenbanded hirch canoe of a little old hanter -Sam Batiste Buck-S0 years old he was-squatting in the bottom of the
birch canoc, ragged almost to nakedness, bare of feet, gray headed, nearly toothless but happier than an emperorthe first living being we had seen for a week in the muskegs. We camped together that night on the sand bars -trading Sam Ba'tiste flour and matches for a couple of ducks. He lat been storm stead camped in the goose grass for three days. Do yon think he was to be pitied? Don't! Three days hunting will lay up enough meat for Sam for the winter. In the winter, he will snare some small game, mink, and otter and muskrat : and these will earn him flour and clothes from the fur trader. Each of Sam's sons is earning $\$ 700$ a year hunting big game on the rock ridge farther northmore than illiterate, unskilled men earn net in Eastern lands. Then in spring, Sam will emerge from his cabin -wood is free-and build another birch canoe, and paddle away in freedom and peace to the duck and wild geese haunts. When we paddled off in the morning. Sam still camped on the sand bank. He sat squat whittling away at kin-a-kin-ic, or the bark of the red willow, the hunter's free tobacco. In town. Sam would be poverty stricken, hungry, a beggar. Here, he is a lord of his lonely watery domain, more independent and care-free than you are-peace to his aged bones!

Another night coming through the muskegs, we lost ourselves. We had left our Indian at the fur post and trusted to follow southwest 200 miles to the next fur post by the sum; but there was no sun, only heavy lead-colored clouds with a rolling wind that whipped the amber waters to froth and flooded the sand banks. If there was any current, it was reversed by the wind. We should have thwarted the main muskeg by a long narrow channel, but mistook our way thinking to follow the main river by taking the broadest opening. It led us into a lake seven miles across;

The Traveling Dress of A Missionary's Wife.
Mrs. Bompas, wife of Archbishop Bompas.
not deep, for every paddle stroke tangled into the long water weed known as mermaid's hair but deep enough for trouble when you consider the width of the lake. the lack of dry footing the width of one's hand, and the fact that you can't offer the gun'l of a canoe to the broadside of a big wave. We scattered our dunnage and all three squatten in the hottom to prevent the rocking of the big canoe. Then we thwarted and tacked and quartered to the billows for a half day.

Nightfall found us back in the chamel again scudding before thunder and hurricane wind looking for camping place. It had been a back-breaking pace all day. We had tried to find relief by the $\ln d i a n$'s choppy strokes changing every third dip from side to side; and we had tried the white man's deep long pulling strokes: and at seven in the evening with the thunder rolling behind and not a spot of dry land visible the size of one's foot, backs began to feel as if they might break in the middle. Our canoe and dnmage weighed close on 700 pouncls. Sutdenly we shot ont of the amber channel into a shallow lagoon lined on each side by the high tufted reeds; but the reeds were so thin we could see through them to lakes on each side. A whirr above our heads and a flock of teal ahnost touched us. with their wings. Simultaneonsly, all three dropped paddles-all three were speechless. The air was full of voices. You could not hear yourself think. We lapper the canoe close in hiding to the thin lining of reeds.
"Sexsmith," I asked, "have those little sticks drifted down 1500 miles to this lagoon of dead water?"
"Sticks," he repeated, "it isn"t sticks _it isn't drifts-it's birds-it's duck and geese-I have never seen anything like it-I have lived West more than twenty years and I never heard tell of anything-of anything like it."

Anything like it? I had lived all my

CIME OF A CHAMPION BIG GAMF HUNTER OF THE NOKTHWEST.
life in the West and I had never heard or dreamed any oldest timer tell anything like it! For seven miles, you could not have laid your paddle on the water withont disturbing coveys of geese and duck, geese and duck of such variety as I have never seen classified or
named in any book on birds. We sat very still behind the hiding of reed and watehed and watched. We couldn't talk. We had lost ourselves in one of the secluded breeding places of wild fowl in the North. I counted dozens and dozens of moult nests where the duck had con-
gregated before their long flight south. That was the night we could find camping ground only by building a foundation of reeds and willows, then spreading oil cloth on top; and all night our big tent rocked to the wind; for we had roped it to the thwarts of the canoe. How the guide held his tant, I don't know. Next day when we reached the fur post, the chief trader told us any good hunter could fill his canoe-the big white banded gray canoe of The Company, not the little seven banded birch craft-with birds to the gm'l in two hours' shooting on that lake.

That muskeg is only one of hundreds of thousands, when yon go seventy miles north of the Saskatchewan, sixty miles east of Athabasca Lake. That muskeg and its like, covering an area two-thirds of all Europe, is the home of all the little furs-mink and muskrat and fisher and otter and rabbit and ermine, the furs that clothe-not princes and millionaire, who buy silver fox and sea otter-but you and me and the rest of us, whose object is to keep warm, not to show how much we can spend. Out of that one muskeg, hundreds of thousands of little pelts have been taken since $175+$ when Anthony Hendry, the smmggler, first led the fur trader inland from the Bay. Yet the game-save in the year of the unexplained rabbit pest-shows no sign of diminishing.

Does it sound very much to you like a region where the settler would ultimately drive ont the fur trade? What would he settle on? That is the point. Nature has taken good care that climate and swamp shall erect an everlasting barrier to encroaclument on her game preserves.

To be sure, if you ask a firr trader. "how are furs?" he will an-swer"poorpoorer every year." So would you if yout were a fur

Nuns. Aided by Indiang. Shot Thfse Moosf
trader and wanted to keep ont rivals. I have never known a fur trader who did not make that answer.

To be sure, seal and sea otter, beaver and buffalo have been almost exterminated: but the extermination in one case las been the poacher, in the other the farm. Even today if the governments of the world, especially Canada and the United States would pass a law prohibiting the killing of a single buffalo or beaver, seal or sea otter for fifty years -these species would replenish themselves.
"The last chapter of the fur trade has been written?" Never! The oldest industry of mankind will last as long as mankind lasts.

I read also that "the last chapter of the fur romance has been written." That is the point of view of the man who spends fifty weeks in town and two weeks in the wilds. It is not the point of view of the man who spends two Weeks in town and fifty in the wilds: of the man who goes out beyond the reach of law into strange realms the size of Russia with no law but his own right arm, no defense but his own wit. Though I have written an 800 page history of the JIudson's Bay Company straight from their own Ninttes in Hudson's Bay House, London. I could write more of the romance of the fur trate right in the year 1911 than has ever been penned of the Company since it was establisher away back in the year 1670.

Space permits nnly two examples. Yon recall the Cambridge man, who thought it a short distance to go only fifty-five miles by dog train for a doctor. A more cultured, scholarly, perfect gentleman I have never met in London or New York. I'et when I met his wife, I found her a shy little, part-Indian girl, who harl almost to be dragged in to

LABRADOR INDIANS BUILDING A BARK CANOE.
mect us. That spiritual face-such a face as you might see among the preachers of Westminster or Oxford-and the little shy Indian girl-wife and the children, plainly a throw-back to their red-skin ancestors, not to the Cambridge paternity. What was the explanation? Where was the story of heartache and tragedy -I asked myself, as we stood in our tent door watching the York boat come in with provisions for the year under a sky of such diaplanous northern lights as leave you dumb before their beauty and their splendor? How often he must have stood beneath those northern lights thinking ont the heartbreak that has no end.

I did not learn the story till I had come on down to civilization and town again. That Cambridge man had come ont from England flusln with the zeal of the saint to work among the Indians. In the Indian schonl where he taught he had met his Fate-the thing he probably scouted-that fragile type of Indian beauty almost fawn-like in its elusiveness, pure spirit from the very prosaic fact that the seeds of mortal disease are already smapping the ties to life. It is a type you never see near the fur posts. S゙on have to go to the far outer encampments, where white viecs have not pol-
luted the very air. He fell in love. What was he to do? If he left her to her fate, she would go back to the inclement roughness of tepee life mated to some Indian hunter, or fall victim to the brutal admiration of some of those white sots, who ever seek hiding in the far wildermess. He married her, and had of course to resign his position as teacher in the school. He took a position with The Company and lived no doubt in such happiness as only such a spiritual nature conld know; but the seeds of the disease which gave her such unearthly beanty. ripened. She died. What was to become of the children? If he sent them back to England, they would be wretched and their presence would be misunderstood. If he left them with her relatives, they would grow up Indians. If he kept them he must have a mother for them, so he married another trader's daughter - the little half-breed girl-and chained himself to his rock of Fate as fast as ever martyr was bound in Grecian myth; and there he lives today. The mail comes in only once in three months in summer, only once in six in winter. He is the only white man on a watery island 200 miles from anywhere except when the lumbermen come to the Ridge, or the In-
dian agent arrives with the treaty money once a year.

And "the last chapter of the fur romance has been written?"
"The last chapter of the fur romance" will not have been written as long as frost and muskeg provide a habitat for furtive game, and strong men set forth to traverse lone places with no defence but their own valiant spirit.

Space permits only one more example, and it is of a man known to every fur buyer of St. Louis and Chicago and St. Paul-Mr. Hall. the chief commissioner of furs for the Hudson's Ray Company. I wish I coutd give it in Mr. Hall's own words-in the slow quiet recital of the man who has spent his life amid the great silent verities, up next to primordial facts, not theorizing and professionalizing and discretionizing and generally darkening counsel by words without knowledge. He was a youth somewhere around his early twenties: and he was serving The Company at Stuart Lake in British Columbia-a sort of American Trossachs on a colossal scale. He had been sent with a party to bring some furs across from MacLeod Lake east in the most heavily wooded mountains. It was mid winter. Fort MacLeod was short of provisions. On their way back, travel proved very heavy and slow. Snow buried the beaten trail; and travel aside plunged men and horses through snow crust into a criss cross tangle of underbrush and windfall. The party ran ont of food. It was thought if Hall, the youngest and lightest, could push ahead on snowshoes to Stuart Lake, he could bring out a rescue party with food.

He set off without horse or gun and only a lump of tallow in his pocket as food. The distance was seventy-five miles. At first he ran on winged feetfeet winged with hunger: but it began to snow heavily with a wind that beat in his face and blew great gusts of snow pack down from the evergreen branches overhead; and even feet winged with hunger and snowshoes clog from soft snow and catch derelict branches sticking up through the drifts. By the time you have run half a day beating against the wind, reversing your own tracks to find the chipped mark on the bark of the trees to keep you on the blazed trail
-you are hungry. Ilall legan to mibble at his tallow as he ran and to snateh handfuls of snow to guench his thirst. At night he kindled a roaring big white-man-fire against the wolves, dried out the thawed snow from his back and front, dozed between times, sang to keep the loneliness off. heard the muffled echo come back to him in smothered voice, and at first streak of dawn ran on and on and on.

By the second night. Hall had eaten all his tallow. Ile had also reefed in his belt so that his stomach and spine seemed to be camping together. The show continued to fall. The trees swam past him as he ran. And the snow drifts lifted and fell as he jogged heavily forward. Of course, he was not dizzy. It was the snow blindhess or the drifts. He was well aware the second night that if he would have let himself, he would have dug down a sleeping hole in the snow and wrapped himself in a snow blanket and slept and slept ; but he thrashed himself awake, and set out again, dead heavy with sleep, weak from fatigue, staggering from hunger: and the wings on his feet had become weighted with lead.

He knew it was all up with him when he fell. He knew if he conld get only a half hour's sleep, it would freshen him up so he could go on. Lots of winter travelers have known that in the North ; and they have taken the half hour's sleep: and another half hour"s; and have never wakened. Anyway, something wakenerl Hall. He hear! the crackle of a branch. That was nothing. Branches break to every storm: but this was like branches breaking under a moccasin. It was untbelievable: there was unt the slightest odor of smoke. minless the tream oflor of his own delirious humger ; but not twenty paces ahead crackled an Indlian fire, sutrrounded by buckskin tepees, Indians warming themselves by the fire.

With an unspeakable revulsion of hope and hunger. Hall flung to his feet and dashed into the middle of the encampment. Then a tingling went over his body like the wakening from death, of frost to life-blind stabbing terror obsessed his body and sonl: for the fire was smokeless, the figures were speechless, transparent, unaware of his pres-
ence, very terribly still. His first thought was that he had come on some camp hopeless from the disaster of massacre or starvation. Then he knew this was no earthly camp. He could not tell how the figures were clothed or what they were. Only he knew they were not men. He did not even think of ghosts. All he knew was it was a death fire, a death silence, death tepees, death
flectively on the memories of that night.
"I'm not much on romance and that kind of thing! I don't believe in ghosts. I don't know what it was. All I know is it seared me so it saved my life ; and it saved the lives of the rest, too; for the relief party got out in time, though they didn't see a sign of any Indian camp. I don't know what to make of it, unless years ago some Indian camp had been

INDIANS IN SUMMER CAMP NORTH OF PRINCE ALBERT.
figures. He fled through the woods knowing only death was behind himrumning and rumning, and never stopping till he dropped exhansted across the fort doorstep at two in the morning. He blurted out why he had come. Then he lapsed mensicious. They filled him with rum. It was twenty-four hours before he could speak.
"•] flon't know these modern theories about hallucination and delusions and things." concluded Mr. Hall gazing re-
starved or massacred there, and owing to my unusual condition I got into some clairvoyant comection with that past. However, there it is: and it would take a pretty strong argument to persuade me I didn't see anything. All the other things I thought I saw on that trip certainly existed: and it would be a queer thing if the one thing which saved my life did not exist. That's all I know; and you can make anything you like of it."

COAL HEATERS WHICH SAVED A CROP OF PEARS FROM A TEMPERATURE OF TWENTY DEGREES ON THE DAY FOLIOWING THE TAKING OF THIS PHOTOGRAPH.

IN THE TIN PAN TROPICS

By

OMAR H. SAMPLE

WITHIN the past two years another and a greater triumph of scientific horticulture has arrived; another natural enemy of the things that grow and bring forth fruit has been vanquished. Jack Frost, long King of the Fruit Crop, has been dethroned. Fruit growers have literally built millions of fires under him, and burned him out.

Scientific orchard heating has made it possible to raise the temperature of a two hundred acre orchard ten to fifteen degrees with as much certainty as the
janitor can heat the city man's flat. It takes somewhat more labor than the last mentioned process, but the satisfaction and the profits of "heating all outdoors"
are surpassingly greater. Frost insurance for the fruit crop is now just as practicable, just as certain, and vastly nore profitable for the money expended than either fire or life insurance.

Insurance by fire for the fruit grower makes vastly greater profits at a much smaller expense than insurance against fire does for the merchant or manufacturer. The little outdoor oil stoves and coal furnaces that have been sold by the
 plans, and all his business arrangements contingent on the hope that the frost would miss him. And be-

What Create the "Tropics."
From left to right. row one" 1. graduated burner type of oll heater; ? singlo burner type of oil heater, with center draft: 3. Tescrvoir heater that may be set to burn any duser donkth of time. Row two: 1, the original Cahfornia oil hoatur that started orchard beatıme: 2, an orchard coal beatur. 3, pan type of reservoir beater, the size of the flame being regulated by closing the holes.
millions to orchard owners in the last year and a half have banished from the fruit grower that annual early spring nervous prostration from fear of frost; that periodic, paralyzing fear that he may go to bed at night and awaken to find his whole year's labor chilled to death by a sudden frost. The cumulative despair of losing three or four fruit crops in succession that has put fruit growers out of business and made them dependent on charity or day labor is past. An orchard with a reasonably industrions and provident owner can be made to vichl an average crop every season so far as the frost is concerned. Scientific frost fighting with fire is as much a fact as seed testing, irrigation, fertilizing, spraying or pruning. It is the last and greatest advance in systematic horticulture and las placed the fruit grower aloreast o the scientific farmer.

Since the beginning of commercial horticulture, the iruit sower has been at the mercy of the elements. He made
fore the development of orchard heating the chances against him were getting worse and worse in the frost belt. In the modern commercial orchard, the land, machinery, labor, spraving equipment and cultivation total as heavy an investment as many manufacturing enterprises. And when two or three crops in succession were wiped ont by frost, the average grower was completely bankrupt.

It was in the nature of a revelation when in 1908 some experimenting growers in Colorado began what was characterized as a theoretical attempt to heat all out-doors. There was much jesting and skepticism abont the ridiculous idea of warming up a whole orchard with little fire-pots, but the experimenters were not to be discouraged. The frost came, one of the worst in the history of the state, and the only crops produced were those on the small experimental areas that had been heated. There was an immediate rush to get on the "smudging wagon." All through the West, in Oregon, California, IIontana, Iowa, Missouri, and Florida, heaters are being shipperl as fast as they can be manufactured. Frost fighting has been developer into a gentuine insurance. Heating a large part of the outdoors of a
community has been proved eminently practical. The advanced fruit grower now knows that even a heavy freeze such as destroyed millions in fruit, cotton, grain and other growing things can be neutralized so as to insure practically full crops every year. The fruit growers of the Grand River Valley tearned their lesson after the loss of millions in successive frost attacks, but they learned it well. The twenty-five hundred carloads of fruit that went out of Mesa County alone last fall testify to the thoroughness with which they operated this gigantic system of crop protection in one of the severest of late springs. It is estimated by government authorities that from $\$ 75,000,000$ to $\$ 100,000,000$ has been lost annually to the fruit growers by reason of frost and freezing weather. Careful and methodical orchard heating has saved a large percentage of this in the fruit areas where heating has been generally adopted. The orchard heating committee of the Colorado fruit growers estimates that $\$ 4,000,000$ was saved to the growers of that state alone in 1909. For as many as five years in succession in many fruit growing communities the crop has been either totally or partially destroyed.

Smudging, or the formation of a dense blanket of smoke over the orchard, had been practiced with varying degrees of success in some parts of Europe. Orchard heating proper, was first used in California, and the original California smudge pot is still successfully used in many orchards. In the spring of 1908 several growers in the Grand Valley of Colorado experimented with the burning of oil in simple pots of the "lard pail" type, with the result that they saved their entire crop on the heated areas and lost it on the unheated tracts. The spring of 1909 saw the adoption of smudge pots in every fruit section of the state, and they reached the experimental stage in several other states. In the spring of 1910 there was not a fruit growing state withoutt them, and many sections of several states were as fully equipped as Colorado.

The thrilling and successful frost fights in Colorado were an inspiring object lesson to the growers. At Canon City they organized and appointed an
orchard leating committee, the first in existence. With an appropriation of $\$ 1,000$, its members set zealously to work on a series of experiments to determine just what could be accomplished in raising the temperature of entire orchards, and what the cost and the conditions of work would be. For six months they worked with every kind of fuel and all the various devices for producing fires. At the end of this time they unanimously recommended oil as the most practicable fuel owing to the ease and rapidity with which heat could be generated. The experiments of the orchard heating committee had showed that the temperature of an orchard conld be raised fourteen degrees with one hundred small oil pots to the acre. The record of that historic spring fight of 1909 fully bore out this conclusion. The last night of April the temperature in the Canon City district fell to seventeen degrees above zero. The orchardists with heaters kept the temperature up to twenty-eight or thirty degrees, which they considered the safety point. On the preceding night there was a terrific blizzard. The wind blew a gale and there was a snow fall of over eight inches, weather that made very trying conditions for the free burning of oil. In spite of this unusually severe test, the temperature was kept up to the safety point for over five hours. As an experiment, several acres of the test orchard were left unprotected. On the heated part there was a banner crop, more than 15,000 boxes, while on the several acres not heated, with one handred ten year old trees in full bearing condition, there was not a box of apples.

Frost fighting is not an easy job. It is necessary to have a force of men, industrious, careful, and observing to the last degree. And it is no pleasant task to rush out into the still, cold darkness to drudge the better part of the night to save your own or your neighbor's orchard. In the early days of orchard heating, a man was detailed to watch the tested thermometers that were hung in different parts of the orchard and at the farm house some distance away from the fruit trees. If the temperature was not sinking fast, perhaps the rancher went to bed for a brief nap, setting lis alarm
clock to wake him at intervals throngh the night. Nowadays he can go to bed with a feeling of security, leaving the frost alarm thermometer to watch for him. This electric watchman has for its business end in the orchard a specially made thermometer, with a fine platimm wire fused into the mercury at the freezing point or at whatever is considered the danger point. As soon as the mercury sinks below this wire, the circuit is broken and the alarm at the head of the orchard boss' bed rings out its warning. Any interruption of the current causes the bell to ring so that if the apparatus should be out of order it automatically tells on itself.

But the orchardist is usually forewarned, even before he goes to bed, and makes ready for the fray. Late in the afternoon he notices great fleecy clouds hurying from the northwest, chased by a bitter wind which seems to have been intended for Jamary rather than this April night. lle goes to the post office for the day's mail and in every window sees the warning of the diligent local govermment weather forecast: "Freezing temperature tonight." Ioy seven o'clock the government thermometer is at thirty-seven and falling fast. At seven-thirty he telephones the weather man and gets the reply: "Bitter cold all over the country; temperature is already down to twenty-seven in many parts of the valley and will drop to twenty degrees on the Western Slope of Colorato tonight." By eight o'clock it has fallen to thirty-two, his alarm begins to ring, and he knows that King Frost with his icy-fingered warriors is marching on the camp. Stean whistles are beginning to shriek all through the Valley to warn the growers of the all-night siege. Farm wagons laden with coal and oil rattle past. giving evidence that the laggards who have been hoping to the last, are begiming to get their leating machinery into action. Already the early ones are firing heavily. Clouds of smoke hang low over the trees, and the little spots of fire beneath punctuate the blackness with rays of hope.

The orchard firemen dash for the trees, a torch in one hand, and a gasoline can to aid in quick lighting in the other. Dashing a few drops of gasoline on the
oil, they apply the torch, and the blaze is at work. The lighting is done as fast as the men can walk through the orchard, leaving a trail of smoke and fire behind them. In fifteen minutes each man lias his tract of orchard transformed into a sea of flame under a cloud of smoke.

Then comes the first period of rest. The men gather in the packing house or barn. for lunch or smoke, making occasional trips to the thermometers to see that the fire is doing its work. By ninethirty the thermometers outside the orchard register twenty-eight, and those in the area of heat show a comfortable thirty-seven. Then the frost fighters know that the battle is half won, for keeping up the temperature is a good deal easier than raising it when it has once reached the limit. The rest is a matter of vigilance. If the heater is of the regulated type, with enough fuel to burn through the night or longer, a few men are left to watch and open the burners wider if a later sudden fall of temperature shows that more fire is needed. It the heaters are of the uniform single burner type, they may need to be refilled when they are nearly burned out, if the frost battalion should come back for another charge. The outside thermometers drop to twenty-four. and those in the orchards stand at thirty, the danger mark of the orchard frost fighter. The leaters aie opened wider, or refilled if burning low, and the mercury shonts up to thirty-three. The eigh: degrees of frost has been driven away, and if the oil supply is plentiful. and the labor unflagging, the orchardist may now consider the battle won. When the sun has shed his rays over the trees long enough to make the ontside temperature more nearly that of the orchard, the heaters are slut off by merely putting on the covers.

Heating in the spring of 1910 was much easier than that of the year before. and proved more conclusively than ever the effectiveness of the fires. The crop in the Colorado fruit area for 1910 areraged about fifty-five per cent. The muheated orchards yiekled from twenty to seventy-five per cent of a cron, while the yield of the protected orchards was from ninety-five to a hundred per cent,

"HEATING ALL OUT-OFDOORS" IN THE GRAND RIVER VALLEY OF COLORADO.
Panoramic night photograph overlooking an expanse of fifty square miles. wherein was waked a most spectacular
battle arainst frost.
so heavy that thinning was necessary in many of them.

Individual testimony to the efficiency of orchard heating in every fruit growing state could be multiplied indefinitely. Fruit crops valued at $\$ 250$ to $\$ 750$ an acre were frequently saved at a cost of seven to ten dollars an acre. A few striking examples are typical of general results. A Colorado grower with fifty heaters to the acre raised the temperature of his forty-acre orchard from eighteen to twenty-eight degrees and produced forty-one carloads of apples.

Another one in the Grand River Valley, who was one of the pioneer orchard heaters, holds some world's records for heavy apple production. He produced this season 4,150 boxes of apples from 2.6 acres, an average of 1,600 boxes an acre, valued at one dollar a box. A block of two-thirds of an acre in this orchard produced at the rate of 2,200 boxes an acre, the largest yield on record. This orchard was carefully pruned, heated, sprayed and thinned and proves
what can be done with care and cultivation. The entire orchard this year gave the largest crop in its history, while adjoining tracts, not heated, got only thirty-five per cent of a crop.

An lowa grower who had lost several crops from frost, came to the conclusion that he must do something to save his crop or go out of business. By experimenting with the burning of brush, he saved a peach crop of 6,000 bushels, and was induced to go into the heating business in earnest. In his orchard of 900 bearing trees he placed 1,000 of the small single burning oil pots. The temperature was held to thirty-three degrees in the orchard while it was twenty-three outside, and accompanied by the most adverse weather conditions that could be experienced. The wind was blowing so hard that it was difficult to pour oil into the pots. It was snowing heavily, cansing the oil to sputter and pop from the pots, wasting a good part of the fuel supply. He fired up nine nights during the season. He harvested this fall a full

GETTING READY FOR A NIGHT FIGHT WITH FROST.
Fruit growirs filling wagon tanks and barrels. from oil cars, with thr spason's full supply for the heaters.
crop of apples, the only one in the state, at a cost of only seven cents a bushel for heating. This figure includes the storage tank, wagons, and all necessary equipment, including labor. With the plant established, his next season's expense will, of course, be much smaller.

There is seldom necessity for firing more than two or three nights in a season. A grower in the Rogue River Valley of Oregon, saved ten acres of apples valued at $\$ 0,000$, at a cost of $\$ 6$ an acre. where one freeze on May 5 of the previous year had destroyed his entire crop. In a neighboring apple orchard which has yielded as high as $\$ 1,000$ an acre, a full crop was saved at abont the same cost. Many acres of crops in this territory valued at $\$ 500$ to $\$ 1,000$ an acre were saved at a total expense for the season's firing of $\$ 15$ to $\$ 20$ an acre. There were frequent object lessons of unheated orcharls, with the entire crop killed, adjoining heated tracts that had full yields.

One of the most remarkable stories of heater successes comes from Missouri. A 240 acre orchard located in a deep valley had suffered severely from frost every year and had not produced a full (rop) for fourteen years. Against the advice of all the wise-acres, two brothers from Kansas City bonght it, and equipped it with 5,000 heaters of the controlled or graduated fire type. With thirty-five or forty pots to the acre, the firing was done for four nights at the time the apples were in bloom. . They harvested a crop of 15,000 barrels, valued at $\$+5,000$, and it was the only crop in that fruit growing territory. The net profit on each acre approximated $\$ 200$. This valley is an excellent fruit growing country, but on account of regular frost damage for many years the industry has almost died. Land has depreciated in value till good orchard tracts are often sold at $\$ 40$ to $\$ 100$ an acre. The successful experience of this one orchard will revive a whole fruit growing community.

Modern orchard warming is the effective combination of smudging and actua! heating. The principle of air dramage inderlies successful frost fighting. Cold air settles, and hot air rises. Heating warms the air: smudg-
ing prevents the warmed air from rising, and keeps out the cold currents from above. Frost injury is greatest where there is poor air drainage and the radiation is consequently uninterrupted by clouds or moisture. This is why fruit growers located in valleys had much harder fights against the common enemy in the early history of smudging than their neighbors on higher ground. The colld air settled in the valleys and chilled the life out of their fruit for many years luefore they discovered the reason.

The definite system of building a multitude of small fires and actually heating "all ontdoors" was a long time developing, but when once the idea was bon its growtl was like a forest fire. When it finally seemed inevitable that the fruit grower must build a fire big enough to heat his orchard, naturally the first fuel thought of was wood, as a result of the burning of smudging materials. It is still successfully used in some sections of the West where cord wood is cheap. The labor of handling it, however, and of keeping the fires going, with the added uncertainty of getting quick enough action to get ahead of the frost, has militated against the general use of wood for large orchards and for all sections of the country. The sticks of cord wood are usnally piled along the sides of the orchard at odd times during the winter months when little else could be done. One Oregon grower saved seven acres of Bartlett pears two years in succession by burning old fence rails. Fires of about six pieces of good cord-wood last four or five hours. Constant attention is necessary, for the sticks must be moved forward into the crater of the flame to keep the fire going. With wood plentiful and labor cheap, the cost of maintaining forty fires on an acre may be as low as two to four dollars a night.

Coal was the second fuel to be used, and is still employed with success in the little coal furnaces on stilts or the conical, perforated coal pails. Here again, however, difficulty of firing and handling the coal operate against its use in severe weather. Where the supply is plentiful, and prices low, where the orehard is small and laloor easy to get, coal makes a very successful heat if amazing zeal is

THE TWO BUSINESS ENDS OF THE FROST ALARM.
When the thermometer drops to the danger mark, a bell rings at the orchardist's bedside.
used in handling it. It has certain advantages that appeal to many users, in spite of the trouble of handling it. Next to wood it is the commonest and best known fuel, and every one understands its action in combustion. It requires less expensive storage equipment, and the cost of the first outfit is less than for an oil burning plant. The little sheet iron coal furnaces hold about twentyfive or thirty pounds of coal and will burn four to six hours. The cost of heating an acre with about sixty furnaces of this description will average five or six dollars, including labor, interest on the cost of the pots and about 250 pounds of coal.

The little outdoor oil stove has come to be recognized as the dreadnaught of all heaters when it comes to making fires easily and quickly with a minimum of labor and the greatest economy of material. The oil pots can be lighted as tast as a man can walk through the orchard, can be regulated to burn any length of time or any quantity of fuel and at any strength demanded by the weather. When the necessity of fire is past, they can be extinguished and the rest of the fuel saved.

The development of the machinery of orchard heating has been an amazing industrial growth. It has sprung within three years from nothing to an industry employing a score of firms that supply fruit growers with upwards of a million
heaters a year. The manufacturers estimate that some two million are now in use. and the next few years will see millions more installed. The value of the heaters now in use is estimated at $\$ 300,000$. The two leading factories alone have put out in the neighborhoorl of a million. One of them has a capacity of 10,000 a day and has turned out a half million heaters. There are now some two thousand orchards equipperl with these small furnaces. It must be understood that these figures represent an industry that is but in its infancy. When orchard heating has been as generally adopted as spraying they will be many times multiplied.

The first cost of installing an oil heating plant is higher than for a coal or wood outfit, but the results in time saved and efficiency gained have made it the most popular fuel. Oil can be obtained in quantity at prices ranging from four to six and a half cents a gallon, and it makes a quick, strong and easily controlled heat. One man can care for from three to five acres of orchard for four or five hours and this is about as long as it will be necessary to burn under ordinary frost conditions. The prices of the oil heaters range from twelve cents for a simple "lard pail" type to forty-five cents for one of the controlled fire area type, holding three gallons and burning at full capacity for ten or twelve hours, or even longer if
reyulated for a smaller blaze. Heaters with larger reservoir attachments holding a supply of oil that will burn from thirty-six to fifty-six hours are also manufactured this season, and will be tested out in next spring's frosts.

The complete oil heating plant includes a storage tank holding from a thonsand to three thousand gallons, and one or two tank wagons from which the heaters are filled. The best of these storage tanks are built of concrete, and are ustally placed on a hillside so that the entire handling of the oil is accomplished by gravity. The wagon gets the oil from the tank cars on the nearest side track hy gravity, and delivers it through a hose to an opening in the top of the storage tank. An opening on the down hill side of the tank lets it rmont into the wagon again when ready for use, and a hose carries it from the wagon tank to the heaters as the wagon is driven through the orchard. A good estimate of the average cost of installing an ontfit on an orchard of ten acres is as follows:

cat	250
One 3.000 gallon cement	70 to
200 yallon tank for wagon.	20 to
Four gasoline lighting cans	6 to
Three goud thermometers..	3 to
Frost alarm thermometer.	20 to

Total
 $\$ 319$ to $\$ 381$

The cost of labor and other items of maintenance and the quantity of on incident to the operation of the plant will of course vary with the severity of the weather and the number of nights it is necessary to kecp up the fires. Generally, however. not more than a few days or a week of lighting is necessary.

The time of greatest danger to the fruit is when the buds are opening and the process of blossoming is under way. Peaches especially have a foolish way of blooming before the leaves come out to protect the tender blossoms. Usually they are in bloom in the last days of March, and our late spring last season would have been particularly disastrous if it had not been for the protection of orchard heating. There are four stages in the life of the fruit bud when the crop may be lost by injury from the cold. The first is that of the fully dormant buds as we find them in early winter. At this time they may safely stand a temperature of eight or nine degrees below zero. Fahrenheit, though there might even be injury at nine degrees if maintained long enough. The second stage is when the growth of the huds begins until they are fully open. This is a very critical period and the buds are even more tender than when fully dormant. The third stage is the time between the opening of the flowers and the falling of the petals. This is the time of the late frosts, and the danger point lies somewhere between twenty-six and thirty degrees above zero. The fourth and last stage begins after the fruit has set and lasts till all danger of cold weather is past. Just after the fruit has formed. When the calyx is beginning to fall, the young fruit can safely endure thirty-two degrees. Beyond this stage the larger the peaches are the less cold they can withstand.

Growers are firm and manimous in the belief that orchatd heating is the greatest advance ever made in battling with the natural elements. By heating all out-doors in the fruit belt, scientific horticulture takes its place abreast of scientific agriculture.

A STARL[NG WITH ITS FOOT WEDGED IN A CRACK.

TRAGEDIES OF THE BIRD WORLD

By
PAUL GRISWOLD HOWES
Curator of Ornithology and Entomology at the Maplewood Museum of Natural Science, Stamford, Connecticut.

```
PHOTOGRAPHS BY THE AUTHOR
```

LTTLE do we realize how many tragedies take place among the birds, for in summer they are hillden from our sight, happily enough, by one or another of nature"s kindly screens. But later when the leaves are dropping with that sad rustle of autumn; when the whole country side seems querulous of approaching winter, then if we carcfully search among the trees, an occasional victim of the summer's death roll may be found, swaying to and fro with the oranches and harmonizing, to be sure,
with the sadness of summer's aftermath.

During the early part of last September. during a tramp through the country, I stumbled across a lifeless starling which was langing from a gate-post with one of its legs tightly held in a large deep crack. The unfortunate bird had evidently alighted upon the rounded top of the post and its foot liad slipped into the crevice. Panic-stricken it had made vain efforts to free itself, succeeding only in wedging its limb more firmly into the crack. Here it perished more

CAUGHT BY A KITE STRING.
The untoward end of a purple grackle.
from exhaustion than its internal injuries.

While removing this bird from its death trap, a drop of opaque greenish liquid dropped from its mouth to the gromind. Fortunately it landed upon a leaf below and I was thus enabled to remove it to the laboratory for closer examination. Tiny black lots had already been noticed within the greenish Hluid, and when placed under the microscope these proved to be great numbers of minute living creatures! Among them a tiny form of water insect, named Cyclops, was recognized which had often been found inhabiting Algae, a slimy fresh water plant. It was evident then, that as the bird had been found close to a small pond, the Cyclops insects had probably been obtained there. A small amount of Algae from the above mentioned pond was immediately collected, and upon examination the same tiny creatures that dropped from the m-
fortunate starling's month were found in it. These facts led to the recovery of the bird which had already been buried. The stomach was carefully taken out, cut open and the entire cavity found to lse filled with partly digested vegetable matter which proved to be Algae when placed under the microscope! Why this particular bird chose a vegetable diet at a season when its natural food was so abundant is one of nature"s deepest mysteries. Whether or not this had anything to do with the starling's death is left to the imagination of the reader.

Many of our feathered friends accidentally hang themselves while carrying bits of string, horse-hair and sometimes even wire to their nests. As the bird flies into the nesting tree, the string or wire becomes entangled among the branches and in its wild efforts to free the coveted article, the bird is also caught by the foot or sometimes by the
neck. In this position it soon expires, perhaps within sight of its own nest, either from exhaustion and lack of food or from strangulation.

A pitiful case of a slow and torturous bird death is shown in the illustration of the purple grackle who canglit its foot in the string of a kite, which in its descent had unfortunately landed within a few inches of the bird's nest. Perhaps on coming to its home among the branches, the nnsuspecting grackle placed its foot upon the fatefill cord which became looped about its leg unnoticed by the bird. Terrified out of its senses at finding itself in the grip of some anknown, invisible power, the bird was soon overcome by exhatstion from its frantic struggles for freedom. Hanging thus in a helpless position, the poor grackle was turned round and round by the wind, each circuit binding its toes more firmly together, and each turn wrenching harder upon the victim's muscles until finally its leg was torn, flesh and bone, from the strained and battered socket. Once a shining, glossy blackbird, but now a twitching mass of clotted blood and feathers, it hung, still alive and writhing; perhaps for days, hidden from us only by the "peaceful" foliage of the countryside in May!

Small birds who occasionally vary their insect diet by eating, a certain amount of grain are not infrequently choked to death in attempting to swallow morsels too large for their throats. A starling killed in this manner came to my notice one autumn not many years ago. The bird was found suspended by the neck in a large sycamore, from a crotch some forty feet above the ground. From all appearances, the slight resistance on the part of the bird would have set it free as the neck was not firmly wedged into the crotch and for this reason it did not seem probable that the
bird could have perished simply froms hanging. However, other causes for its death were songht in vain until as a final effort to clear up the mystery, the bird was recovered and dissected. Upon opening the throat, two large kernels of corn were found, lodged in such a manner as to have shut off the entire air supply to the lungs. After attempting to swallow the corn, the bird may have flown to any branch in the tree, then in its death fall, it might have been caught in a hundred different ways. In this case, only the neck became wedged, giving it the appearance of having been canght and killed in this manner.

Hundreds of thousands of birds lose their lives when the first warm days of spring send them hurrying homeward from the Southland, when the "Storm of Wings" is at its height. For our own safety at least, we have dotted our coast lines and river mouths with tall stone towers and in the top of each we have placed a light which sends its blinding rays, friendly to mankind, but hostile to the bird world, in great sweeping gestures into the right. During migrations, birds follow the coast, commencing their inland journeys from the

The Fatfo of a Starling. Chokfd to Death by Field Corn

Always must birds be on the alert, for danger is ever hovering near. Their lives are filled with horrors which we cannot realize. Tn spring and summer there are a thousand enemies to be reckoned with. Snakes and animals prey upon their eggs and young, cattle trample mpon their nests. men destroy their chosen latunts, and even the elements play their part in bird destruction, when heary rains flood the fields and swamps in which so many build their homes.

The dangers which winter brings are few, but the (leatlis that oceur at this season are merciless. December brings the murderous butcher-bird from the north to spend a part of his worthless life in killing and feeding upon other winter hirds. An hour of sunsinme after a night of snow brings the partridge from his shelter among the cediars. Off he starts to search for food, leaving the sheltering trees far behind and paying little heed to
mouths of the larger river valleys, and as they travel for the most part by night, these land marks are reached only at times when the light-louses are sending their warning beacons to sea. These vivid flashes have an irresistible attraction for the feathered travelers of the air. Following up the rays of light they go crashing lieadlong into the walls of stone. With skulls crushed and bones broken they flutter down, either to the kindly water which soon ends their misery,or to the land where they fall perhaps upon the tortured victims of another honr.

Here they lie, these imocent liords, mained and wounded in pitiful little heaps. gazing at you from their big clear eyes, seldom nttering a cry: never giving up: but hoping, always hoping, perliaps to be back in their old haunts among the trees and meadows which they will never see again.
the fresh snow clouds which are moving rapidly towards the sun. Soon the sky is grey again, the branches sway angrily as if startled by the suddemess of the wind: sleet begins to fall and the partridge is now in danger. Driven by instinct of ages he burrows deep into the snow for shelter. All day and all night the storm rages througl the whining trees, twigs and bark come rattling down, then a large dead branch mable to stand the strain any longer, suaps at its base. As it hurtles to earth it blocks the entrance of the partridge's burrow. By morning the bird is trapped: the sleet has frozen and upon the surface of the sheltering snow a hard erust has formed. If a south wind should come bearing a long melting rain, perhaps all would be well, but seldom does a thing come when most needed and the partridge dies a lingering death.

TRACING THE CANCER GERM

B y

RENÉBACHE

Aall events, it is the germ of plant cancer. So much is absolutely certain, and the discovery is of great scientific and practical value. liut the chief importance of the "find" lies in the hope that it will point the way to a solution of the dreadful problem of cancer in human beings.

Plant cancer is the disease commonly known as "root tumor," "black knot," or "crown gall"-the last of these names referring to the fact that the morbid growths concerned often appear at the top, or crown, of the root. But they frequently occur on the stems, above gromul, or even on the leaves.

The malady attacks many kinds of plants. It does a great deal of damage to fruits and vegetables, and has long
been known to be highly infections-so much so, indeed, as to be readily communicable to a healthy plant by the simple process of binding a scrap of tumor tissule upon a fresh wound. Hence it was to be inferred that a specific germ must be accountable for the mischief. But, if so, what kind of germ? That was the puzzle. For a long time all efforts to discover the organism were unsuccessful, and the experts almost made up their minds that none such existed.

This was the state of affairs when, in February, 190t, a New Jerscy florist, engaged in growing daisies on a large scale, sent to the Department of Agriculture, for examination, a number of plants of hothouse daisies, both yellow and white varieties. All of them bore

PHOTOMICROGRAPH OF SECTION SHOWING A RAPID SPREADING OF CANCER ON TOBICCO,

The Hothousf Dalsy: Which Gaye thf First Chle tu the Plant Cancer Mystery.
tumor-like growths on one part or another of the stems and leaves. The smaller tumors were green in color, rather smooth, and soft and spongy in texture. Is they becane older and bigger, they darkened to brown, and grew hard, rough, and corky

Some of the plants, at the Department, were set out in the "pathologic hothousc" - a surt of vegetalle hospital, in which the potted patients, are inoculated with varinus diseases and watched for symptoms-and, while under observation, many new tumors appeared on them. It was decided that the morbid growths combld not be due to injury by insects: and there was no sign of any fungus enemy: It seemed reasonable. then. to infer that some kind of bacterial germ was responsible for the trouble.

Accordingly, in the hope of finding such an organism, fresh daisy tumors were crushed in beef broth, and small quantities of the latter were used for making gelatin "cultures." The gelatin (poured into glass sancers) afforded a suitable food for bacteria to grow upon, and, as a result, colonies of four different species developed. Three of these were yellow in color, and one was white. The next thing to find out was whether one of these was the tumor-making microbe.

To decide this all-important point, healthy daisy plants were separately inoculated with each one of the four kinds of bacteria. In each case part of the stem was first sterilized (i. e., made germ-free) by washing it with a mild solution of corrosive sublimate. Then the tumor-germs stuff was smeared upon it with a sterile platimum needle, and was thereupon pricked into the tissues with a sterile sewing needle. As a result. nothing happened to any of the plants

fino Inffections of Ciose Inentity.

1. occurs in hothouses suppused. at first, to be crown gall: 2. crowngall infoction of roung rose.

One Form of Daisy Cancer Germ.

Another Form of the Daisy Cancer Germ.
inoculated from the yellow colonies, but those treated with the white culture promptly showed signs of infection. In less than three weeks knotty growths appeared at every point where a white-culture puncture had been made.
Thus it was that the discovery of the germ of the disease which causes tumors in plants was finally made. It was afterwards confirmed by a long series of experiments, the results of which will be summed up later on. Incidentally it was proved that the organism in questioncalled by the finders, Dr. Erwin F. Smith and Dr. C. O. Townsend, Bacterium tumefaciens-is the same for all plants which the malady attacks. But, in the meantime, it is appropriate to ask why the tumors are called cancers, and what relation they lave to the malignant growths so designated in human beings and the lower animals.
Well, in the first place, the plant tumor is in structure so like a cancer

Cultures of the Cancer Gfrm.
A. on daisy four days old: b. on daisy eight days old c, peach-gall; d. hard-gall of apple at end of five days, after being used for inoculation: e, same as a; f, daisy organism after a number of days; g. old tube of sterile milk: b simila tube inoculated for two months with the daisy cancer.
that there is really not very much differentice between the two. In both cases there is the same enormous proliferation of cellular tissue, often forming nestlike masses. Under normal conditions, in plant or animal, cells of each class have their own particular work to dothe making of secretions, or what notbut in a cancer, or a plant tumor, they are no longer attending to their business, and seem actually to have gone crazy. Even when viewed under the microscope, the structure of a plant tumor is found to differ in no important respect from cancer in a human being.

Just as the tumor disease attacks plants of many species, so does cancer

SUGAR BEETS INOCULATED WITH DAISY CANCER.
Time, four months.
assail ail kinds of animals-even fishes. Some plants are exceptionally liable to the malady- the beets, for instancewhile others, such as the onion, appear to be immune. It is the same way with animals, and even with families of
human beings, some of which develop cases of cancer generation after generation.

Plant tumors, after being removed by excision, have a marked tendency to return. So likewise have cancers in

CANCER CULTURE F゙KOM THE HOP ON SUGAR BEETS.
Time, two months.
human beings, when they have been cut out. Another, and even more striking, phenomenon is the appearance of later and secondary tumors in plants, some distance away from the first scat of in-fection-such secondary growths being produced seemingly by the migration of cells from the part originally diseased to other portions of the structure. They are probably carried by the water current flowing through the tissues of the plant. In the same way, cancer cells in man travel through the blood vessels and lymph chamels, and start fresh growths in the vital organs-this being the last, and soon fatal, stage of the malarly.

In either case the trouble is a malignant overgrowth, tue to a vastly rapict multiplication of cells. This growth, in the plant, proliferates indefinitely, and, asstming a parasitic character-just as in man-becomes a wasting disease. It does not seem to be able to obtain enough water and nourishment to carry it beyond a certain stage of development, and portions of the morbid tissue soon slough off, necrosis-death of the part affected-following.

The knowledge, gained as long ago as 1900, that healthy plants conth be inoculated with the tumor disease by grafting

Two Examples of Transferred Culture. 1. daisy on sugar beet: time, 10 months. 2. peach on sugar beret: time, 54 days.

Infection from Peach on Gfranitm. Time of development, three months.
tumor tissue upon them, placed the regetable pathologists ten years ago in exactly the same position, in relation to plant cancer, as the animal pathologists find themselves in today with regard to cancer of human beings and other animals. The animal pathologists are able, at the present time, to produce cancer artificially in mice and other animals by introducing pieces of cancer tissue beneath the skin of healthy individuals. Fiut this is as far as they go: they don't know the reason why.

Less than ten years ago the vegetable pathologists imagined that there was no germ of plant cancer, because they could not find it. Today most of the animal pathologists assert that there is no microbe of animal cancer. for exactly the same reason. Yet, it is now known, at last, that there is a specific serm of plant cancer, and the responsible bacterium itself is at this moment imprisoned in bottles at the Department of Agriculture. Does it not, then, seem likely that sooner or later an organism responsible for human cancer will be successfully isolated and identified?

PHOTONICROGRAPH OF CROSS SECTION OF A DAISY STEM SHOWING CANCERUUS GKOWTH.

Taking into view the extraordinary similarity between human cancer and plant cancer, the proved discovery of a microbe accountable for the latter is
reasonably good evidence of the existence of an animal cancer organism, even though songht, as yet, in vain.

The germ of plant cancer escaped

PEACH CULTURE ON DAISY.

1. time of inoculation. 5 months. 12 days: 2 , time of inoculation 4 months

A: Limb of Spitzenburg Ipple fron Oregon Attacked by Hard Gall.: B: Destructive Galls on Blackberry.
X. y. blighting areas covered by the bacterial exudate.
recognition for so long because, as now fully understood, it is not abundant, and often even rare, in the affected tissues. It is extremely minute, and always hard to see. It multiplies only inside of living cells, which are stimulated by its presence to divide-thereby multiplying -with great rapidity. When attempts are made to breed it, on gelatin or in some other culture medium, it is liable to elute observation, owing to the fact that other species of germs get ahead of it in forming colonies, its own development being remarkably slow.

The Bacterium tumefaciens, or microbe of plant cancer, is described by Drs. Smith and Townsend as a small rod-shaped organism which multiplies by a process of dividing or splitting. Ry reason of this latter habit, it is technically known as a "schizomycete." It has power of movement, thanks to an appendage called a "flagellum," which it can wiggle.

Cancer by Nfedle Prick.
Willow gall was introduced into salix babylonica-at leftby this method of transferriog gerous. Galled quince stem at right.

Dr. Smith is inclined to think that perhaps there may be several races of the plant cancer germ, varying in virulence and in adaptability to different hosts. Sometimes it forms soft, rapidlydeveloping. spongy excrescences: in other cases, hard and slow-growing tumors. But, apparently, the organism is always one and the same. The microbe of daisy tumor is not different in species from that which attacks the grape, the rose, the carnation, or the carrot. By inoculation with soft tumor of the peach, Dr. Smith was able to produce hard tumors on the apple.

In young, soft, and sensitive plant tissues the effect of artificial infection makes itself manifest almost immediately, and can be seen as a slight swelling about the punctures-made with the inoculating needle-as early as the fourth or fifth day. A few days later small, but well developed, tumors are recognizable.

By the use of infection material from the hothouse daisy, Dr. Smith in nearly every instance produced tumors on the ficld daisy, the tomato, the chrysanthemum, the potato, the peach, the almont. the oleander, the raspberry, the cabbage, the carnation, the sugar beet, the hop. the grape, clover, alfalfa, and tobacco.

Most important. however, were his experiments of a mixed kincl, to show that the organism concerned was always the same organism. This he proved by using tumor cultures from all sorts of plants for inoculating other plants with the malady, in liseriminately, as it were. Having infecterl the potato with cancer from the daicy, he successfully employed the resulting potato tumors to reproduce the disease in healthy daisy plants. He infected healthy grapevines from sick grapevines, and utilized peach tumors for inoculating the peach, the daisy, the red raspletry, the black raspberry, the sugar beet, the hop, and the rose. Again. he inoculated healtliy tomatoes from afflicted hop vines, and. in like manner, imposed the complaint of the rose upon the daisy.

The losses caused by plant cancer are in the aggregate very large. In California, almond orchards are sometimes ruinet by the disease, and trees of the so-called English walnut suffer severely. It is also a deadly enemy of grapevines, destroying many a vineyard. In Mississippi, Alabama, and Georgia it does great damage to praches. On roots of roses grown in hothouses it is prevalent. dwarfing the plants and relucing the number of flowers lorne. Peet tumors are sometimes as big as the hearl of a child. weighing as much as two or three pounds.

Says Dr. Smith: "The best methorl rif dealing with the trouble is the old one of strict inspection of nursery stock. and ecmedemation of all trees and shrubs found diseased. The murseryman's remenly lies in careful methods and the
prompt abandonment of infected soils."
This is merely the plant end of the problem. But its human interest, obviously, lies mainly in the prospect that this new discovery may lead to a solution of the cancer mystery. Cancer, at the present time, is the only disease that is increasing. It is increasing not only in this country, but all over the world, at a rate which may well canse consternation. After the age of thirty-five, one man out of every seventeen, and one woman out of nine, dies of this dreadful malarly, which, if no means be found to check it, bids fair to wipe out those human beings that tuberculosis and pheumonia seem to have overlooked.

Observation seems to show, almost mmistakably, that certain places are infected with cancer. Certain districts, such as the township of Brookfield, close to the center of New York State, are veritable hotbeds of the malady. Certain towns, such as Luckan, in Germany, are similarly afflicted. Certain dwellings have earned for themselves the name of "cancer houses" beeause of the number of cancer victims they have furnished. These, as well as many other circumstances, point to the existence of a specific cancer germ. If it cloes exist, the finding of it is a life-and-death problen for humanity.

Most important light upon the matter seems to be shed by the proved discovery of the germ of plant cancer. So much having been accomplished, it seems to be a reasonable expectation that before very long the organism accomtable for cancer in men and animals will be identified. Then the cure for this most Ireadful of human maladies will soon arrive; for, once secured, the abominable microbe will surely he compelled. through the employment of means already well understood by medical science, to furnish an agent, in the shape of a serum or a "vaccine," for its own destruction.

DUMPING THE PICKED-OVER DEBRIS OF A DIAMOND MINE.

PLANTED DIAMONDS

By

R OBERT FRANKLIN

|N all the history of mining there has been no attempt at "salting" so bold, so ingenious, or so picturesque as the celebrated diamond swindle of 1872, which was exposed by the late Clarence King, at that time in charge of the great geological exploration known as the Fortieth Parallel Survey.

Early in that year reports began to get abroad in regard to a wonderful discovery of diamonds and other precious stones sonewhere in the far Westpublic curiosity on the subject being whetted by concealment of the precise locality. It was understood, however, to be in Arizona. Considerable quantities
of the gems, already obtained from the new "field," were exhibited, some of them cut, and others in the rough, in New York City, where certain capitalists were induced to advance large sums of money toward the purchase of the area so rich in a glittering promise of wealth.

In order that every reasonable precaution might be taken, the services of a mining engineer of distinction and undoubted probity were engaged, to visit the new diamond field and make a thorough examination of it. His favorable report, supplemented by the statements of other less-qualified experts, all endorsing the highest estimates of the
values of the discovery, seemed to clinch the matter.

Indeed, only the fixing of the exact locality was needel to precipitate a rush of prospectors and adventurers such as might have been comparable to that of the great gold excitement of California in 1849 and 1850. Capital in unlinited amounts was only too ready to embark in so attractive an enterprise, which was of such a character as to appeal strongly to the imagination of the public at large.

Naturally, Mr. Clarence King was in a better position than almost anyborly else to obtain definite information on the subject, and it soon came to his knowlerlge that the wonderful new gem-bearing area was located not in Arizona at all, but in Wyoming, at and about a somewhat conspicuous bluff which, appropriately enough, had been named the Dianond Mesa.

This was within the limits of the transcontinental belt covered by the Forticth Parallel Survey, which at that time had been practically finished. Accordingly. Mr. King made up his mind to look over the "diamond field"-not with the slightest notion that there was anything wrong about the business, but simply with the idea that a discovery likely to add so importantly to the national wealth was deserving of carcful study close at hand. Without delayfortunately, as it afterward proved-he took two or three of his assistants, and started for the scene.

This was in October, 1872. IIe left the Union Pacific Railroad at Bridger. IVyoming, and started out on the trail for Diamond Mesa. Arriving there on the second day of November, he began ly making a superficial inspection, the result of which was so favorable that afterwards, in his report, he said, "Had our critical work ended with the close of this one day, we should have left the ground confident believers in the genuineness and value of the fiek!." In fact, he and his assistants picked up a very considerable number of gems of moquestionable genuineness, and at the heal of a water-worn chamel. called Ruly Gulch, which drained the bluff, he gathered from one sieveful of gravel no fewer than forty-two rubies.

On the second morning, however, he
began to be suspicions-the circumstances most adversely suggestive being that the diamonds and rubies were all found on the surface of hard rock or hard soil, none of them being procurable from deeper sources. Wherever they occurred in crevices, there seemed always to be signs of recent disturbance, as if by human agency. The most productive gem-bearing area was on and abont a place designated as Table Rock, which was literally strewn with precions stones, mostly small. A portion of this area having been marked out, the surface layer of gravel was carefully shoveled off to the depth of an inch, and the material beneath was examined by passing it through sieves and washing it in pans, down to bed rock. Thirty such tests were made without bringing to light a single ruby or diamond.

The head of Ruby Gulch, near Table Rock, was extremely rich in rubies. It was to be expected, then, that they would occur in still greater numbers further down : but examination showed that there were none at all. Four pits were sunk down the gulch at intervals, a couple of tons of material being excavated, and not a diamond nor a ruby was disclosed to view. In the crevices of Table Rock rulies and small diamonds were plentifully found. but invariably with evidence of tampering. Apparently. the gems had been sprinkled upon and about the Rock, with a subsequent smoothing over to disguise the artificial treatment.

The attention of Mr. King was particularly called to certain ant-hills in the ravines on the sides of the mesa, which, interestingly enough, bore rubies. Holes. which had seemingly been punched with a small stick, penetrated these hillseasily distinguishable from the natural avenines made by the insects-and near the opening of each such hole were one or more gems-in some cases diamonds. This was quite remarkable: but it was notices that in the immediate neighborhood of such ant-hills there were traces of hmman footprints. There were many other ant-hills which showed no footprints, nor artificial holes, nor precious stones.

On and about Table Rock Mr. King found three small emeralds, four distinct
types of diamonds, and quite a number of Oriental rubies, garnets, spinels, sapphires and amethysts-"an association of minerals which"-he said in his subsequent rejort-"I believe of impossible occurrence in nature."

Having thus satisfied himself that Table Rock and its vicinity had been "salterl"-a term familiar in the lexicon of mining frauls-the geologist proceeded to make a series of outside prospects, which were carried out all over the mesa and flanking catlyons, mutil the absolute valuelessness of the property was finally demonstrated.

It was undoubtedly the cleverest and most elaborate swindle of the kind ever attempted. Mr. King, in his report, said: "This was the work of no common swindler. The selection of the geological situation was astonishingly well considered, and the 'salting' itself was most cunning and artful." Indeed, no pains were spared by the organizers of the fraud to make it conrincing, and it must have cost them a good many thousands of dollars. Evidence afterwards obtained showed that the diamonds, rubies, and other stones used had been bought in large quantities in London and Paris during the preceding winter. The cheat all but proved an immense success. Har it remained undiscovered until the following spring, great sums would lave been wasted in the purchase of the supposed gembearing field, and in fruitless prospecting

Ciarence King, Who Exposey une of the Most Sencational Diamond Swindees on Rfcord.
by a small army of disappointed fortmehunters.

One of the cleverest features of the whole affair was the successful deception of the engineer already mentioned, Mr. Henry Janin, who, by the adoption of certain ingenious experlients, was prevented, while on the ground, from carrying out his cxamination of the "diamond field" with the thoroughness he desired. Another man, named Roberts, who hat math to do with setting the fratululent enterprise on foot, though himself honestly persuaded of its genuineness, was an old and well-known Californian, one of the earliest gold seekers, and a mining operator of long experience. Curiously enough, he, who blew the bubble, and King, who punctured it, died on the same day and at nearly the same hour, twenty - nine years later. Their death announcements. with obituary notices. will be found side by side, in parallel and adiciting columns of the New York Times of Wednesday, Christmas Day, 1901.

The whole business reflected the greatest credit upon Mr. King. Those who engineered the swindle-their identity was never positively ascertained-knew his character too well to try to bribe him. An agent of theirs, however, did approach him with an offer of $\$ 1,000,000$ to hold back his report on the subject for two days-a proposition which. needless to say, he indignantly rejected.

WASHING LAND TO
 MAKE NEW FARMS

B y

LEONARD McKEE

IT sounds queer to say that a drainage engineer is needer down in the Southwest country of these United States where they have to drink the water from the cactus plants, but there is where be is proving the most useful.

These engineers were put on the govermment payroll along in 1901 when Unele Sam decided to drain the Florida Everglades. Then Fhorida thought that she could to the job herself and proceeded to hire about half of the government engineers. About this time somebody decided that a whole lot of land in Arkansas would be good farming country if the water could be drained from it, so the remaining engineers were sent there. Then the irrisation farmers of Colorato discovered that while a little water is a blessing, too much is otherwise, and in their enthusiasm they had been a little lavish with their manufactured rain, so an engineer was sent to them. He made a discovery and several more men were sent to help him experiment. The discovery was simply this: That the great river bottoms. and lowlands of the Wrest. which had hitherto been regarded as worth less than nothing on aceount of the alkali in them conld be reclaimed, and that by the very simple process of washing them. The farmers, or ranchmen, for any land

This Welr. Spouts Out 1.5 sin Gailong A Minutie. An excellent source of supply for washong alkali ofl land.
is a ranch West of the Colorado-Kansas line, langhed and hooted at the idea of ever farming these alkalied flats. They would admit that a man could even farm without water but for a man to try to farm any of that salt-grass cotmtrythat was a joke. Nevertheless the engineers persuaded some men at Fort Collins, Colorado, to try it and the experiment was successful. In two weeks the land was washed clear of the deadly white chemical and now raises its crops the same as the land higher up.

The drainage engineer comes when he is called and not before. If a district sends for him he groes and gives his arlvice and supervision freely, but he does not go of his own free will and try to induce men to use him. Wle is too busy now. New Mexico and Arizona are alkalied over practically their entire area, but as there is water only in the river bottoms and artesian belts, the washing has progressed very slowly as yet. The Rio Grande Valley has thousancls of acres of land that was farmed for hundreds of years but is now sinowy white with the alkali. The Pecos Valley, New Mexico's great artesian helt, has miles and miles of alkali flats, which until recently were fit only for duck - hunting. Mnch of the land along the Rio Grande is held by big land grants but the land on the

Row of Trefs Dead from Alkali. The others are healthy.

Pecos is owned by individuals and is therefore becoming rapidly developerl. There is a dramage engineer on the ground there and lie is doing much to aid in the development of this district. A brief description of his work will be of interest.

Many men who have bought land in the irrigated portions of the Southwest now wonder why their crops are dying where last year they grew nicely. In desperation they water them, but the more water they get the faster they die. In the midtlle of a cornfield is a spot that will not bear. yet the land all around is heavily cropped. One row of trees in an orchard may die for apparently no reason while the trees all about it are perfectly healthy. One side of an alfalfa field may be scraggly and poor while the other bears a heary stand.

It is alkali. In the fall after the land has been allowerl to become thoroughly dry, these spots will be covered with a fine white crust, which will gradually dry and distintegrate and be blown here and there by the wind. About that time the ewner of the fietd will

Waiting for the Water to Drain Away.
A bad cave-in one of the difficulties in digging trenches for !and washung.
seek the drainage engineer for advice. and he will get it. He will be told that alkali may be calcium sulphate, calcium cholorite-occasionally-and even plain Epsom salts. It is taken from its mative state far down in the earth and carried in solution by the water that passes over the deposit. In the dry parts of this country the water is being continually drawn toward the surface of the earth by the constant evaporation of the surface water. Now when this alkaline solution reaches the surface of the earth the water is carried off by evaporation, leaving the alkali in its raw state as a crust on the surface. As more water comes up and is carried off more of the white crust is deposited until there may be so much of it that the land will appear to be covered as with snow. Then a rain comes and dissolves a certain amount of the chemical into solution again. Part of this solution is carried away, by the natural drainage facilities, to the nearest stream and so passes out of our story. That which remains sinks into the earth temporarily but

Side View of the Ditcher at Work.

Side View of the Ditcher as It Stanis Idle.
reach the roots of the crops. Rut in these bottom lands the constant water level is sometimes only a few inches from the top of the ground, which is usually a thick white crust, because of the constant deposit of alkali from below.

A flat like this is meat for the drainage engineer. Any man can buy, or at least he could do it a few montlis ago, this land for next to nothing. He takes out the laundryman, as we may call the drainage man, and has an estimate of cost of washing and the plans for it made. The engineer, clad in khaki and high-top boots runs levels here and there across the land and decides on the most economical plan of washing. The ditehing machine is sent for and the ditch is dug and the tile laid. If the ground is very hard it is roughed up with a disk harrow so that the water will not run over the surface, but will sink in. Then the water is turned on and the landering begins. The whole area is thoroughly flooded until the water
is gradually drawn ont again by the sun. Now in an irrigated country no alkali may show on the surface for many years. Indeed, the nature of the soil may be such that the water from the surface is carried away by a natural system of subsurface drainase, lut in most sections the constant irrigation gradually fills the land tr] with moisture until the alkalied water coming up meets the surface water coming down and the whole is innpregnated with the deadly chemical. The solution at first is weak, but gradually the water from below brings up so much of the alkali that at last the whole is nothinge less than a strong solution of calcium sulpilate. Even now it may not do any !arm, becanse the natural iranage facilities may be such that the water flow is from alove and the alkali may never
stands on the surface. It is then left to drain. When the flow of water from the outlet of the tile indicates that the land is drained it is flooded again and again. Then it is planted to some shal-low-rooted crop such as milo maize for the first year. An orchard may be set out at once but it is the better plan to wait a year. After the first crop the land may be said to be rid of alkali sufficiently for all practical purposes. This land is now worth whatever gool irrisated land is worth in that commonity. The plan is so chiddishly simple, and yet there are thousanls of acres lying along the river valleys of the Sonthwest that may yet be reclained.

The ditching machine rosed in the Southwest is a momstrons affair weighing over twenty tons. It is an immense
traction engine carrying behind ant arm, from which is suspended a wheel. Attached to this wheel are buckets. As the wheel rotates, each bucket takes a little earth from the ditch, and when the bucket arrives at its highest point the contents are deposited on a belt conveyor and carried to one side. Directly behind the wheel and slightly under it is the shoe in which the tilelayer stands at his work. The machine will dig a diteh eight feet deep at the rate of a thousand feet an hour if everything runs smoothly. On acconnt of the nature of the ground in which it generally works the machine seldon makes over three thonsand feet a day. The tile is laid as the machine progresses to prevent the delay that would be occasioned by the continual cave-ins in the wet ground. One or more shovelers follow closely behind the machine and keep the tile well covered so that if the sides of the ditch do cave in the tile will not be displaced. In ground where the constant water level is very close to the surface the tile layer will sometimes be forced to leave the shoe becanse of the rapid rise of water in it. Operations must then be suspended until the surplus water is carried off by the tile already laid. The total cost per foot of laying tile with this machine is from eighteen to twenty-five cents. The cost of operating the machine is from four to tell cents per linear foot. The total cost of ditching a field amounts to from six to ten dollars an acre as a rule, althongh on some work it will run as high as thirty and forty dollars per acre.

A few years ago a man bought a section of salt-grass land on the Pecos River. He ditched and tiled it by hand and bored a shallow artesian well. People called him foolish to try to do anything with that land but he spent one summer washing it and today has the most beantiful place in the valley. The land next adjoining his is a barren alkali flat while his farm is a paradise of green trees and alfalfa fields.

Another man, a land speculator, bought eighty acres of creek bottom, heavily alkalied and with the water level but six inches from the surface. It required 8,500 feet of six and eight inch tile to drain it and the ditching company charged him twenty-five cents a foot for

" Like Digging in Soup." Showing how the sides will cave in now and then.

A Barren Alkali Flat Suitable for Washing.

Destitute of Vegetation. An alkalied spot in the middle of a cornficld.
the work because of the treacherous nature of the earth which caved in continually. It was like digging in thick soup, and the tilelayer was forced from the shoe many times a day while the whole crew waited for the water to drain away. The cost was over $\$ 2,500$ but the job was a success. The land cost the speculator a little over a thousand dollars and, planted to milo maize, it sold for $\$ 15,500$.

As is usual with anything new, the legitimate farmers who really need the benefit of his knowledge seldom apply to the engincer. The greater part of his work has been done for men like this speculator, who are harvesting the dol-
lars while they may. Now, however, that some one else has shown the way, the land owners are beginning to realize what a big proposition they have. Their alkalied flats and salt-grass bottoms are likely to make them rich. At no cost to the ranchman the government will show him how to raise crops where he thought crops wonld never grow, and more than that the government will detail a competent man to boss the job and see that the washing is properly and thoroughly done. And the ranchman forgets about state"s rights and public domain and shouts for "new nationalism" and the development of our natural resources. His point of view is changed.

Poor Richard's Philosophy

Light Purse, Heavy Heart.
Ne'er take a wife till thou hast a house (and a fire) to put her in.
He's gone and forgot nothing but to say farewell to his creditors.
Great Talkers, Little Doers.
Fools make feasts, and wise men eat them.
To lengthen thy life, lessen thy meals.
Many estates are spent in the getting.
He that lieth down with dogs, shall nse up with fleas.
Tongue double, brings trouble.

MYSTERY OF THE GLACIER

B y

EDWIN WALTERS

WHY is the glacier?

It is a question that has been asked ever since men first stood at the face of one of the great ice-fields, that claws its irresistible furrow across the earth's tortured surface, and wondered. Most overwhelming of the agents that change the face of things terrestrial from age to age, it has been least understood by humans because its secrets have lain hidden beneath the immensity of Nature's own endless patience, and our observation has been unable to grasp them from the centuryslow signs that have come to the surface.

What causes glacial epochs or ice ages? How often do they occur? What sets a glacier in motion? What causes a glacier to cease to move? What causes a glacier to travel up an incline? What are the relations of glaciers to ice-bergs
in a glaciated area? What are the relations of glaciers to stationary ice-fields? How is loess deposited? Why the irregular distribution of bowlders or "lost rocks"? Why are these bowlders more abundant along certain lines?

These and scores of similar questions oceur to the inquiring mind. And the answers to some of these questions are not to be found in any text-book, cncyclopedia or other publication.

The writer has spent weeks on the glaciers-and months in the ice-ficldsof Alaska. Observations were made in that country that will enable us to adkl a few facts to the world's stock of information on these and kindred subjects.

The cause of glacial epochs is undoubtedly the change in the inclination of the axis of the eartl to the plane of its ecliptic. or pathway through space. At the end of an astronomical year the

AN ICEBERG IN TAKU INLET ALASKIN WUTERS.
center of the earth is at the same point in space that it occupied at the end of each preceding year. But the angle described by the earth's axis and its ecliptic has increased in one hemisphere and decreased in the other. This change in the direction described by the earth's axis brings one hemisphere towards the sum. and gives it a warmer climate. This change also turns the opposite hemisphere away from the sum, and causes it to have a colder climate-to become more or less glaciated. Thus one hemisphere is constantly passing through a glacial epoch, or ice age. At the present time the Sonthern hemisphere is much more highly glaciated than is the Northern hemisphere. But let it be remembered that there is always at least some ice near the poles-inside the Arctic and Antarctic Circles.

During these glacial epochs the ice travels about one-half of the way from the poles to the equator-in some instances sixtenths of the distance. or to the thirtysixth parallel of north and south latitude. How often do glacial epochs occur?

Astronomers have calculated the annual change of the inclination of the earth's axis to be a little less than threetenths of one second, circular measure.

This change of inclination continttes until the described angle increases to twenty-three and one-half degrees-or to the Arctic and Antarctic Circles-and then the change is in the opposite direction. Twenty-three and one-half degrees equal $8+, 600$ seconds. And 84,600 divided by three-tenths equal 282,000. The glacial epochs, on this hypothesis, can not be closer together than 282,000 years. The last glacial epoch in the Northern hemisphere commenced about $2+1,000$ years ago-and ended about 80,000 years ago, an estimated cycle of about 321,000 years.

The change in this angle of inclination is sufficient to change the location of the poles between thirty and thirty-
one feet in one year. There is a corresponding change in the location of the equator and the other great circles of the earth.

What sets a glacier in motion?
Snow under pressure becomes ice. A mountain of ice accumulates bulk and height until the pressure at its bottom generates heat. Calculating ice at eighttenths the weight of water, the pressures at the bottoms of glaciers would be as follows: a glacier 2,000 feet high, 695 pounds to the square inch; 3.000 feet high, 1,043 pounds: 4,000 feet high, 1,390 pounds, and 5,000 feet higln, 1,738 pounds to the square inch.

Whenever a mountain becomes high enough, from the accumulation of snow on its top, to cause the pressure at its base to generate heat sufficient to raise the temperature to the melting point, water then commences to accumulate beneatly the huge mass.

This water must escape-have vent. How? Where? On the side next the sun-for the opposite side is much colder, and is closed by frosts.

A number of small streams originate moler an ice-mountain. But they gradmally merge, and form one large stream. The erosion of the outflowing water on the sumny side of an ice-mountain lowers the surface of the earth on that side. The mountain topples in that direction. Naturally the melting on the sumy side is much more rapid than on the opposite side. So the melting assists in inclining the momntain in that direction. Finally it commences to move down this eroded incline, and becomes an active glacier.

As soon as motion is set up the earth on the sides bulges or buckles up, from the immense pressure and momentun, and forms lateral moraines, or longitudinal ridges, that are outside of the base of the glacier and that parallel its axis. These lateral moraines form a trough which confines the water moder the slacier in a continuous stream that

LOOKING ACROSS GLACIER BAI. ALASKA.
Mur Glacier in the distance.
flows in the direction towards which the slacier travels.

Once in motion a glacier will continne to travel until conditions change. Of course if it travels down an incline, its motion may be largely from force of gravity. It is probable that all of the glaciers of Europe, at the present time, are gravity glaciers.

What causes a glacier to cease its motion?

There are at least three causes: (a) the underflowing stream may break through a lateral moraine and escape at one side instead of in front of the glacier. This change in the underflowing stream will leave the glacier "dlead"; (b) the glacier may encounter a mountain wail or other obstacle that it can not surmount nor break down, or (c) the immense weight of the glacier, with the rapid lowering in front, as already described, may catuse its nose to plow into the earth deep enongh to prevent motion. When this last cause operates, motion is usually but temporarily arrested: for the underflowing stream may erode the terminal, or front, moraine until the glacier is enabled to pursue its original course.

When the underflowing stream breaks
through a lateral moraine, and the glacier above ceases to move, the erosion ceases in front and increases under the body of the glacier. This under erosion will finally cause the glacier to break in two. By this time the escaping stream has eroded an incline on the side of the glacier down which one piece, or section, of the glacier may take motion at an angle of from forty to ninety degrees from the original line of motion.

What canses a glacier to move up an incline?

Glaciers have traveled from the far North to near the thirty-sixth parallel of North Latitude. They have crossed hills -cven mountains. Sometimes they have plowed through mountain ranges, as has the Muir glacier in Alaska. It has cut through a monntain that is at least 3.000 feet high.

Leaving out of consideration a discussion of the explanation of gravity, we may regard the phenomenon from the side of effects only. And so far as effects are concerned, the motion. or cause of motion, of a gravity glacier is easily understoorl. But what causes operate to propel a glacier up an incline?

When water is at a temperature of
about thirty-nine degrees above zero, Fahrenheit, it is at "its greatest densityoccupies the least space. The higher it is heated the more it expands; and a piece of ice is much larger at a temperature of 60 degrees below zero than is a piece of the same weight at a temperature of thirty degrees above zero.

The bases of all active glaciers lave a temperature of about thirty-four de-grees-or two degrees above the freezing point. This is why there is always an underflowing stream. With a temperature of thirty-four degrees above zero at the base and sixty degrees lelow zero on top, there would be a difference in temperature of ninety-four degreesunfficient to cause a top expansion of fonrteen per cent, or 280 feet in a glacier 2.000 feet high: 420 feet in a glacier 3,000 feet high : 560 in one 4.000 feet high, and 700 feet in a glacier 5.000 feet high. It is evident that a face of ice will not stand at this angle of projection: so a large, prismatic, or rhomboidal, section breaks off and falls forward.

The underflowing stream is confined by the lateral moraines on the siles, by the glacier above and the earth beneath it. When the rear end of the glacier is higher than the front this stream works m'mer hydraulic pressure. Put, at all times, the action of hydrostatic pressure is persistently driving the water forward
with great force-from beneath the glacier.

When the water rushes from beneath a glacier it encounters the detritus of ice that has fallen from its front face. The pressure forces the water forward and upward between the face of the glacier and the detached pieces. Thus is the lower front of the glacier altered by three processes: by the attrition of the outrushing water: by melting which is caused by the higher temperature created by the water, and by the absorption of water which raises the temperature, and thus contracts the mass-reduces the size - of all the ice penetrated by this extrancons moisture. So these three processes augment the force of expansion in the work of cansing the front face of a glacier to project forward.

When a large section of ice falls forward, as already described, it is quickly submerged-or partly submerged-by the nutrushing water. The portion mander water rises in temperature while the portion in the air remains much colder. This difference in temperature canses a secondary breaking and falling forwarl of pieces that constituted the original, large detached section. These secondary fragments freeze together at, and immediately below, the water line. So when a piece drops forward it draws or drags the piece immediately behind it until the frozen bond at the water line is severed. This constant

 Scarboro Clitfs, near Turonto. Canada, dropping for ward, and dragging of pieces from behind, enables a glacier to move piecemeal up an incline. As soon as a glacier. that has thus reached a summit, starts down an incline again the immonse pressure from behind soon unites the parts into a connparatively solicl mass once more.

Of course the element of expansion is indirectly attributable to the sun-the source of all terrestrial leat. Lint a second canse of motion in glaciers is the direct force of the sun. blace a piece of jce on a hort stove or sheet of hot

A RECORD OF THE COMING AND PASSING OF GLACIERS.
Scarboro Clifts, showing glacial and interglacial strata.
metal. The center of beat is the highest point on the metal: but free the ice and it will start and travel to that high point. Why? (a) The ice will melt much more rapidly on the side next the center of heat, and thus cause the ice to topple in that direction. (b) There is a current of air-a regular upward draft-from the center of heat. The steam generated under the ice "kicks" backward beneath the mass. rebonnds against the colder air. rises along the rear side of the ice and immediately presses forward toward the center of heat. This pressing forward of the escaped steam assists in propelling the pire of ice forward.

This first causc-more rapid melting on the sumn side-has a tendency to topple and propel glaciers to that side.

Another cause of motion is capillary attraction. The melting on the equatorial side frees much moisture. Capillary attraction carries this moisture into the body of the glacier. This raises the temperature of the ice on that side, and thus contracts all that portion of it throurh which the moisture percolates. This contraction on the side next the
sun also assists in toppling the glacier in that direction.

Let the diagram represent the front of a glacier. A B C will represent the face. A 1 : indicates the angle of expan-sion-abont foutteen per cent from a vertical plane. B C represents the angle caused by attrition, melting and absorption. Now a fracture occurs along the vertical line $C \quad D$, and the section $A B$ C D drops forward. After a time C D is altered to D E F. Then comes a break along the line F C_{i} and D E F G drops forward. So the succeeding sections are modified, broken loose and fall forward.

What are the relations of glaciers to ice-bergs in a glaciated area?

Sometimes glaciers are in series. The first series moves toward the equator in the manner already described. Some. or all, of the causes herein mentioned reduce thase glaciers to stationary icefields. A second series, humdreds or thousands of years later, follow over the same lines. Finally the secondaries plow into the ice-fields-the remmants of the first glaciers. They cannot climh over
the ice because ice is not plastic enough to form moraines. So the immense masses constituting these second glaciers are added to the remnants of the first ones. Now the ice-field is an immense barrier or dam behind which water accumulates and forms a large lake or inland sea. A third, fourth, or still later, series starts for the equator. When these reach the margin of the lake their sections float in the water and become newly-born ice-bergs. In the last glacial epoch, or Ice Age, such a barrier seems to have extended from somewhere in the vicinity of Sioux Falls, South Dakota, into south central lowa; thence cast northeasterly to a point a few miles south of Chicago, and thence to the Catskill Mountains in New York.

North of this barrier floated thousands of ice-bergs. Many of them ran aground. When the water subsided the final resting Hace of each ice-berg became a lake. It is a well-known fact that there are hundreds of such lakes in Minnesota, Wisconsin and northern Iowa. These lakes have moraines around their margins except on the side where the iceberg plowed in-usually on the northwest side.

Extending southward from this barrier was, for thousands of years, an icefield which was formed from the remnants of okfer glaciers-i. e., older than those that formed the ice barrier.

The Missouri River, from the month of the Platte to the junction of the Mis-
souri and Mississippi rivers, ran under the south edge of this ice-field.

There were numerous ice-streams on this ice-field.

One very important stream seems to have headed in the great inland sea back of the barrier-probably near the location of Indianola, Iowa. This stream flowed southerly to a point near Kansas City.

Along this latter stream were numerous holes through the ice shect into which water poured. The water, falling from such great heights, bored deep holes in the earth below. One hole at Chillicothe, Missouri, is more than 1.100 feet deep. It reaches from the middle of carboniferous rocks, on the surface, down through the lower carboniferous, the Devonian and probably reaches the Niagara limestone-a member of the upper Silurian. This hole is, of course, now filled with glacial materials. Dcep borings around the town prove that the strata are elsewhere undisturbed.

Such holes are not uncommon in what were once glaciated fields.

A stream of water falling through a hole in a moving glacier cuts a slotted or elongated hole, or pit, that may be scores of miles long. But if the iceficld is stationary the water will fall in one spot and make a very dcep hole in the earth. I saw a stream that flowed about 40,000 gallons per mimute falling through a hole in the Valdez glacier in Alaska, where the ice is about 4,000 fect

FAIRWEATHER RANGE FROM GLACIER BAY. MLASKA.

THE FACE OF DAVIDSON GLACIEK, ALASKA.
This is really only a tongue of the Muir Glacier.
t'hick. This waterfall would generate a out 41,000 horse-power! And this cirgy was expended on a few square yards at the base of the glacier! Would it not bore a hole at a terrific rate?

How is loess or bluff formation formed and deposited?

Probably you have seen the thick deposits of loess along the bluffs of the upper Mississippi, the entire length of the Ohio and Missomri rivers, as well as in other parts of the United States north of the thirty-eighth parallel of north latitude. In Manchuria and other parts of north China this formation is said to be, in some localities, 2,000 feet thick!

To the ordinary observer these deposits appear to be of sandy clay of a yellowish or brownish yellow color. But they are not of clay. A face or escarpment of loess will stand for generations at an angle of from five to eight degrees from a vertical plane, while clay will weather down to an angle of about sixty degrees from that plane. Another peculiarity of loess is its manner of weathering. Its exposed faces weather into semi-cylindrical buttresses that simnlate the pipes of an immense pipe organ. These deposits in the United States vary from a few feet to 300 or 400 feet in thickness. It is well known that these deposits were laid down at about the close of the last Ice Age or Glacial Epoch. But what are their relations to glaciers?

There has been much discussion on the subject of loess. Some authors tell us that loess deposits were formed by the agency of wind-as are sand dunes. But there are several objections to the wind theory. One is that shells, pieces of wool, large fragments of rock and other large substances are found in them. These could not have been deposited by the wind. Another objection is the manner in which the grains and particles that compose loess are placedlaid down. The particles that compose a wind deposit are arranged in vortices -each large group forms a vortex or spiral. Now the particles that compose loess are not so arranged; but their large ends are usually all pointing in one direction. This condition indicates the agency of water. But the objections to the water theory have been (a) that they show no regular lines of deposition. and (b) deposits in one place vary much in elevation from other deposits in the same vicinity. It is evident that loess deposits were not laid down in water exactly as were ordinary flood plains.

Loess forms at the mouths of streams that flow across large glaciers or icefields. Take the Valdez glacier in Alaska. There are several streams on top, and rushing down the sides of it. As these streams pour off the sides of the glacier they cut deep canyons in the ice. At the mouth of each long stream is a deposit of loess. Sometimes the
mouths of these canyons and streams vary several hundred feet in elevation. This explains why loess is found at so many different elevations in the same vicinity. But in order to grind the ma-terials-the earthy and organic matterin an ice strean to a sufficient fineness to form loess the stream must be long. Short streams that flow down steep ice canyons form deposits of gravel, sand and bowlders-such as are found throughout the United States north of the thirty-eighth parallel. The irregular distribution of bowlders and other glacial deposits is caused by the irregularity of the occurrence of ice streams and crevasses that extended through the ice sheets to the earth below them.

But why are bowlders sometimes more abundant along certain lines? Let us imagine an immense ice sheet scores or humireds of miles in extent. It is not in motion: but it has an occasional crevasse that reaches to the earth below. It is melting on top-i. e., in the summer seasons. Many streams flow across it and carry bowlders. gravel, sand and other detritus into these crevasses. When these materials fall to the earth the water beneath the ice carries all of the precipitated matter away-all except the heary bowlders. If the ice above never moves enough to disturb them, but finally melts away, the bowlders will lie on the surface in such lines, or zones. as will describe the location of the erevasse that once existed above them.

The Valdez glacier-near Cook's Inlet, Alaska-is probably the largest glacier in the world. It is seventeen miles wide, one mile high and of unknown length.

The writer spent seventeen dlays at one time, and four days at another, on this glacier.

A study of the Valdez, Mutir, Taku and other glaciers affords data for the following conclusions, with reference to formation, movement, etc.:

1. A borly of ice must be very thick before it can become a glacier. It must be so thick, or high, that the pressure at the base of it will generate enough heat to melt ice. Probably not less than 1,500 fect in height wotld be necessary to create the required pressure.
2. When a glacier, from melting or other canses, becomes too thin to generate sufficient heat at its base to melt ice it ceases to move, and becomes a stationary ice-field.
3. A gravity glacier may be an exception to the two foregoing conclusions.
4. A stream of considerable length on a glacier or ice-field, lleposits earthy matter at its month. If the eartlyy materials gathered by the stream are of suitable composition, the matter deposited at the mouth of the stream will be loess.
5. The elevation of a bed of loess corresponds to the elevation of the month of the stream or canyon aromed which it was deposited.

EAN PEDRO. DESPITE ITS HARBOR. DID NOT SECURE LOS ANGELES' LOW TERMINAL RATES UNTIL THE TWO CITIES WERE CONSOLIDATED.

SQUEEZINGTHELITTLE TOWNS
 B y

WALTER V. WOEHLKE

THE eating of an apple without losing possession of the fruit is said to be a very difficult feat. To enjoy the flavor and taste of an apple which the eater does not have at all seems to be even more difficult, except under hypnotic influence. That it can be done. that a diet of non-existent apples can increase the girth and cause the body to grow mightily, was demonstrated by the city of Los Angeles.

Until very recently Las Angeles neither touched the ocean nor the bank of a navigable stream. It was iandlocked, twenty miles from tidewater; it
had no harbor, and yet it was given low terminal rates on goods shipped from Eastern manufacturing centers, building up a thriving jobbing business by virtue of these low freight rates. Los Angeles was given terminal rates because San Pedro, a little town on the ocean twenty miles south, had a harbor and water competition, but San Pedro did not enjoy the benefit of its own harbor and had to get along without terminal rates. Los Angeles paid less freight on shipments from the East than Tucson or Phoenix, five hundred miles nearer Chicago, because of the water competition at San Perlro, but San Pedro itcelf had to pay:

A Town That Got Justice.
But for a strong and active traffic bureau, Stockton could not have us.d its water compertition to force a reduction of its freight lates into the san Joaquin valley.
the place ceased to be a border cow town twentyfive years ago and attracted the hordes of climate-seekers, jobbing houses started up, but when they attempted to make connection with the trade in the Southwest, they ran full tilt into the ancient and honorable rate advantages enjoyed by San Francisco. Thongh Yuma, Phoenix, Tucson and other places were 500 miles nearer Los Angeles, San Francisco wholesalers paid no more freight than the firms of the smaller city and in some cases even less, despite a longer hanl.

It is useless and of no purpose to blame the rail-
the full rate to Los Angeles plus the high local rate from Los Angeles to San l'edro. Pig Los Angeles picked and ate the fruit from San Pedro's tree, and little San Pedro, unable to shin up, had to be satisfied with a windfall now and then. Not until San Pedro gave up its individuality and became a part of the larger city did Los Angeles step aside, and allow San Pedro to taste of its own fruit and obtain terminal rates.
"U'nto everyone which hath, shall be given: from him that hath not shall be taken even that which he hath." Were these words aimed at Vested Rights, at the fate of the small towns and their freight rates? Surely, they fit the condition. Throughout the country the largest centers of trade and manufacturing, made large by natural advantages of location and artificially stimulated in their growth by arbitrary concessions in the toll levied upon freight going to or coming from them, are preying incessantly upon the freight rates of their smatler rivals. These secondary centers. in turn, prey upon the still smaller ones, the greatest gain accruing to those communities which have equipped themselves with traffic bureans, with the weapons necessary to defend and enlarge the freight-rate advantages which lie at the bottom of their prosperity.

Take the case of Los Angeles. When
roads for all the ills the luman body, physical and social, is heir of. Like the shippers and the consumers, the railroads are the victims of the radically individualistic, fiercely competitive method by which the freight-rate structure of the country was built years ago. Always the railroads tried to get as much and the shippers to pay as little as possible. Naturally the shipper with the biggest tonnage, taking advantage of competition anong the carriers, was able to get his particular rate down to rock bottom and often below. Nowhere else in the world do railroads undertake to move bulk freight, coal, iron ore, pig iron, cotton, lumber, as cheaply as do the American lines. In fact, abroad it is considered economic waste to move ore, coal and other bulk freight by rail when water will carry the burden at one-third the cost. But the Trusts had the big tomage the railroads wanted, and to get it the carriers had to pare the freight rates down to the bone.

Like the big corporations, so the big cities, having much freight to offer competing lines, obtained for themselves rate concessions that were denied the smaller towns. The law of competition ordained that always the big shipper and the big center should get the first reduction, that the small shipper and the small town, being the least able to resist,

IERMINAL CHARGES IN THE BIG CITIES ARE COSTLJ.
Freight yards along the water front of Chicago, the railroad center
of America.
should be the first to see their rates go up. For many years the big Trusts and the traffic associations of the big cities have been employing "rate-sharks," freight rate experts, to see that the railroads came through with all the reductions lying around loose in the general offices, but it is only within the last year or two that the smaller towns have begun to fight the devil of high freight rates with the fire of expert advice. How important this self-help is in the development of any community was shown by the long fight of the Los Angeles jobbers through their traffic burean for a share of the San Joaquin Valley wholesale trade. practically monopolized in San Francisco's hands through lower freight rates.
The San Joaquin Valley lies between San Francisco and Los Angeles, the latter city maintaining that, on account of
a shorter haul, it was entitled to lower rates than San Francisco into the valley's southern end. But San Francisco claimed the trade of the entire valley for its own -and made good through lower freight rates. From Los Angeles to Tulare, for instance, the distance is 231 miles: from San Francisco it is 240 miles. On a ton of sugar to Tulare, Los Angeles had to pay \$12.80: San Francisco, with a slightly longer haul, got off with a charge of $\$ 11$. Therefore it could tu1derbid Los Angeles nearly two dollars a ton. The same handicap against Los Angeles prevailed right through the list. from hats, shoes and clothing to hardware and groceries, thus insuring San Francisco's control of the valley's trade.

For ten years the traffic bureau of the Los Angeles jobbers fought for an equalization. In 1907 victory at last was in sight. Like Barkis, the railroads were
willin'. They made the changes, lowered the rates out of Los Angeles and had the new tariffs printed when the watehful traffic men of the San Francisco wholesalers got wind of the action. Immediately they somind the tocsin, the shippers put the screws on the railroads. protested vociferously, threatened reprisals and-presto, the railroads yielded to the pressure and suspended the proposed new tariffs. San francisco remained master of the situation.

In 1910 the traffic burean of the Los Angeles jobbers brought suit before the State Railroad Commission to force the carriers to grant the desired reduction. Despite San Francisco’s desperate resistance Los Angeles won ont. Freight rates into the valley were readjusted on a mileage basis, giving Los Angeles an alvantage of forty cents on a ton of sugar into Tulare, midway between the warring cities, similar reductions applying to all other classes of freight to points south of Tulare. Though the reductions amonnted to only a few cents per hundred pounds, they were of sufficient influence upon jobbers' profits to make Los Angeles firms paramount in a territory with a trade estimated at fifteen millions a year.

In the great rate game Los Angeles, like every up-start center eager for business, had to fight its older and larger rival for every inch of territory: In turn, Los Angeles did its best to absorb, the wholesale trade of the smaller towns in its vicinity by mobtrusive rate juggling. One instance will be sufficient to show the method of benevolently assimilating smaller towns' trade, a methor? in favor among large cities the country over.

Since the days when the town was a station on the overland stage line, San Bernardino, sixty miles inland from Los Angeles, had been doing a modest wiolesale business with the irrigated and mining distriets surrounding it. San Bernardino had no terminal rates. It had to pay the full transcontinental rate to Los Angeles plus the local rate from Los Angeles to San Bernardino. On iron pipe, for example, Los Angeles paid 65 cents a hundred from Eastern mills. San Bernardino, sisty miles nearer to the mills but cighty miles from tidewater,
paid 85 cents, the Los Angeles rate plus the local rate of 20 cents for the imaginary back-haul. Nevertheless, within narrow limits San Bernardino could compete with Los Angeles because it had a local rate to nearby points 20 cents cheaper than the rate out of Los Angeles to these points.

A few years ago a fuel dealer who had built up a nice little wholesale busjness in blacksmitli's coal with the mining towns on the desert fifty to a hundred and fifty miles east, suddenly saw the trade slip from his fingers. No matter how close to actual cost he offered his coal, Los Angeles dealers always underbid him. Hunting for the canse of this fierce and successful competition, the dealer stumbled upon a new tariff issued by the railroads, and this tariff furnished the reason.

To Daggett, ninety miles from San Bernardino, the dealer had been paying 57 cents a hundred pounds on blacksmith's coal: under the old tariff Los Angeles had been paying 80 cents for a hand sixt, miles longer. The new tariff "equalized" the two rivals by raising San Permardino's rate to the Los Angeles charge. 80 cents. Outbound local rates being equal, the San Bernardino dealer was frozen out of the field by the inbound through-rate from the East, having to pay $\$ 4.60$ per ton more than his Los Angeles competitors. Los Angeles, its freight rate expert smiling contentedly, fell heir to the small town's jobbing trade, the "equalization" having been general all along the line.

The sudden withdrawal of anything, be it a baby's rattle, a chair about to be occupied or a favorable freight rate, has an irritating effect upon the temper of the loser. Thougl it seems barely believable, the railroad men who make the freight rates are almost human. Like the general run of lumanity, they resent cussing and roasting if they can afford resentment, and the liarder the little fellow's kicks, the less they feel inelined to accede to the demands of the kicker. The hotter the protests of the individual San Pernardino merchants, the less satisfaction they received. Finally they turned to the State Railroad Commission for relief. but the Commission, findings state and interstate matters mixed in
the complaint, refersed the plaintiffs back to the railroads and advised them to hire a rate expert to straighten ont their troubles.

Never before had a small town of only 10,000 inlabitants attempted to maintain ar fully equipped traffic burean, but the San Bernardino Merchants' Protective Association, seeing no other way ont, plunged boldly into the venture, hired
reduction of the fucl oil rate from $\$ 1.70$ to 80 cents per ton. Redlands, ten miles from San Bernardino, is still paying $\$ 1.60$ per ton on its fuel oil, not having an expert traffic man to play in the rate game.

The value of the frcight-rate expert to the larger citics is conceded. Few of the big bisiness centers get along without a traffic organization and several of

SEATTLE IS ADYANTAGEOUSLY SITUATED FOR WORLD-WIDE COMMERCE. Water competition ordinarily compels the railroads to give a city so located more favorable rates
an experienced traffic man of long railroad service and set him to work. The maintenance of the traffic bureau cost abont $\$+, 000$ a year. Did it pay? In less than a year the expert, without costly law suits or expensive hearings before the Commission, without threats or bluster, had checkmated the aggression of Los Angeles, had regained and in a few cases increased San Bernardino's advantage over the larger city in out-bond local class rates on all three railroads, had obtained favorable readjustment of a score of commodity rates affecting the budding industries of the town and had saved the fuel users of the city $\$ 25.000$ a year by bringing about a
them, like St. Louis, consider traffic 1)ureaus of such advantage that they naintain two full-fledged ones. A traffic burean pays, in increased trade as well as in increased harmony between the railroads and the shippers. Having had experience on both sides of the fence, the rate expert acts as a buffer between the contending parties, moderating and deflecting the shocks coming from either side. And if expert knowledge in traffic matters is of value to the favored large. center, it is of still greater benefit to theaspiring small city. Being continually on, the defensive against the aggression of its grown-up, greedy rivals, the small city needs all the technical rate knowl-

THE FREIGHT YARDS AND SHIPPING OF SAN PEDRO.
edge it can get to hold its own, to make the most of its resources and opportunities.

It was a strong and active traffic burean that enabled Stockton, a city of 30,000 inhabitants seventy miles inland of San Francisco on the San Joaquin river, to take advantage of the opening left by San Francisco and Los Angeles in their squabble over the San Joaquin Valley trade. Stockton was nearer to the valley than either of the contending parties. On the broad and deep San Ioaquin there was water competition. but without a traffic burean to play the trumps in the hand of Stockton it would have been left out in the cold while the two big cities divided the spoils. By intervening in the quarrel, by making its wice heard and by cleverly leading its high cards, Stockton pulied out an adrantage. a differential over San Francisco that it could mot have obtained had it relied upon the individual jobbers to take expensive action. In the meantime the light of the big cities-and the success of the small ones in gaining rate andrantages-stimulated Fresno and Bakerafiell, the two largest towns in the valley into actiom. Both of them have organizel traffic bureans and are preparing
to use the new weapon in carving out a slice of the trade for themselves.
The railroad world is deeply troubled these stirring days. (ireat, radical changes are impending in the complicated structure of the eighty billions of separate rates that clutter the tariffs of the carriers. During the past twenty years the primary object of governmental supervision has been the prevention of discrimination between shippers. an attempt to protect the small shipper against deviations from the published rates in favor of his more powerful competitor. In a measure, this object has been attained, at least so far as it is possible of accomplishment under present conditions. Just now a second era of regulation is legimning, an attempt to remedy some of the most glaring examples of discrimination between communities rather than between individual shippers.
This new problem in regulation presents ten times the difficulties of the old rebate question, but it must be solved. Already the uprising of the communities discriminated against is begiming, especially in the West, from the Canarlian line to Mexico. The traffic bureans, all of them organized but recently; of half a
dozen inland cities, of Reno, Spokane, Tucson, Ploenix, Boise, are busy following up the advantage gained by the reduction of freight rates ordered by the Interstate Commerce Commission in favor of Sjokane. All of these cities, all the commnnities of the vast territory between the Rocky Mountains and the Pacific, have to pay higher freight charges for a shorter haul than the Coast cities whose terminal rates are lowered by water competition. The Coast cities, of course, are fighting against the reduction in favor of inland towns, fighting hard on the side of the railroads. They are fighting for their vested right, for a low freight rate, long contimed, becomes a vested right. Upon it factories and warehouses are built. Shift it to some other point, and the factory or the warehouse is badly crippled.

Upon the Pacific Coast a sharp struggle between capital and labor is in progress, a struggle gaining in intensity and spreading from Mexico to Canada. At the bottom of this struggle lies the freight rate, or rather the readjustment of freight rates in favor of the smaller inland cities of the West. So long as the Coast cities enjoyed comparatively low freight rates caused by nominal water competition while the interior points were smothered by back-hanl differentials, the Coast cities transacted a vast and lucrative wholesale business in goods manufactured in the East. Now this rate supremacy is vanishing. They begin to realize that a large share of the distributing business is bound to go to interior points, sooner or later, and they are preparing to regain the lost ground by shifting from the jobbing to the manufacturing business.

Hitherto the West has been too busy mining, grazing, felling timber, producing the raw material, to pay much attention to the manufacture of the goods, of the finished products it consumes. The market for these finished products is growing rapidly and the wholesalers of the Coast cities are preparing to supply this market with goods made at home instead of hauling the goods across the continent. What raw material cannot be had from the mountains, forests and plains, the Panama canal will furnish at low rates. But cheap raw matcrial is
only one factor in manufacturing. To compete successfully with goods sent from the East via the canal, the labor cost must be reduced. Through the Panama canal a flood of cleap European labor is expected, but to be sure of taking advantage of this floorl, capital is c11gaged in a struggle with labor to assett its supremacy against the hour when ten times the present supply of labor will be needed.

It will be impossible to eradicate all the flagrant discrimination in freight rates between communities. An attempt to introduce a tariff based solely upon distances would ruin the industries of New England and of Pittsburg, wonld be a remedy worse than the evil it is to cure. But a readjustment withinn certain limits is coming, and this readjustment will be in favor of the smaller towns. Already the Texas Railroad Commission has been weeding out discrimination against small towns whenever brought to its attention, and many of the little Texas commmitios have taken advantage of the opportunity to attract new industries and enterprises. In Kansas, likewise, Governor W. R. Stubbs is championing the cause of the small town. As population follows the low freight rate, he is anxious to stimulate the growth of the commonwealth evenly, as opposed to the development of one or two large cities.

There is still another factor working in favor of decentralization, in favor of the smaller jobbing and manufacturing centers. In the large centers land values are increasing by leaps and bounds. Every year more room for terminal facilities, both freight and passenger, is needed, and every year it becomes more costly and more difficult to provide this additional room. The freight congestion in the yards of Pittsburg and other centers during the height of prosperity in 1906 gave warning. Every year the terminal charges at the big centers are growing, are eating a larger hole into the carriers' revenues. A point will be reached-and in some cities has almost been reached-where terminal costs will become prohibitive, forcing the carriers in self-defense to divert some of the business to smaller places where terminal charges are less expensive.

STAFF OFFICER-AT LEFT-ON AN AMERICAN BATTLESHIP SENDING A W'IRELESS MESSAGE. His assistant is receiving a message.

WORLD'S DEBT TO WIRELESS

B y

CHARLES FREDERICK CARTER

BY the law of the land no vessel carrying fifty or more persons, including passengers and crew, may leave any port in the United States on a voyage of more than two hundred miles after July 1, unless it is equipped with wireless telegraph apparatus capable of transmitting and receiving messages over a distance of at least one hundred miles, day or night, in charge of a competent operator.

No sleek and stealtly lobby, dispensing cigars, champagne and sophistries with lavish hand, accelerated the passage of this law. The statute was enacted because it provided a safeguard for trav-
elers by sea so efficient and so obviously needed that even a congressman conld not fail to perceive the wisclom of voting for it.

Even without the strong enconragement of the law, without any influence whatever beyond the colld logie of achievement, the world's installation of wireless telegraph apparatus had grown to a grand total of 1,520 stations on ship and shore, exclusive of foreign warships and amateur outfits, up to October 1, 1910, according to a directory compiled by the United States Navy Department. Of this total, 821 stations were on steamships, yachts and tugs throughout the world. Of the shore stations the United

States had 206, of which eighty-eight were on the Atlantic and Gulf coasts, forty-eight were on the Great Lakes, fifty-one on the Pacific coast, sixtcen in Alaska, and three in the interior. The United States Navy had $3+4$ ship and forty-seven shore stations, the army thirty shore and sixteen ship stations.

In 1909 the Marconi Company transmitted between ship and shore messages aggregating 519,000 words. The transAtlantic business ranges from 50,000 to 75,000 words a week. The Britisl Postoffice Department reported that in the three months ending October 1, 1910, twice as many wircless messages were sent and received as in any other corresponding period. As the first step toward establishing a ring of wireless stations completely encircling the United Kingdom, the govermment has purchased the stations already in operation. The New Zealand govermment recently asked for bids for erecting five wireless stations, while fifteen new wireless stations now being constructed along the Amazon and Paraguay rivers in Brazil will be in operation before the end of the year.

This staid and perfunctory catalogue by no means includes all the activities of the radio-telegraph. 1t is now used for such strange and widely different purposes as keeping trawlers in the North Sea posted on the state of the fish market and for giving the correct time to vessels within three thousand miles of the Eiffel Tower in Paris. On May 24, 1910, the French government began sending out time signals at midnight, at two minutes and again at four minutes past the hour. These time signals are expected to be of value to navigators by enabling them to correct daily any possible variations in their

Wireless Service on an Express Train. An experiment that was made on the Lake Shore Railway.

GERMAN POKTABLE WRELESS TELEGRAPH SYSTEM FOR MILITARY USE.
there las been added an extraordinary list of spectacular achievements in effecting the rescue of persons on sinking ships. It would probably be nearer the truth than such sweeping generalizations usually are to assert that within the ten years of its commercial career the wireless telcgraph has saved more lives and more property than any other invention ever has in the same leugth of time; but to support the allegation by official statistics is out of the question for the sufficient reason that no one has ever thought it worth while to keep a record of the instances in which the wireless telegraph has played a part in rescuing disabled vessels or those on board of them from the merciless action of the seas.

All the government publications, yearbooks and almanacs, which are so overwhelmingly and minutely informative concerning things that no one really wants to know, are totally silent regarding the very important rescue work of the radio-telegraph. Ask any of the men in Londens or New York who ought to be primer? with statistics on the subject and the best your can get is a guess. One such guess, which has received the indorsement of several men prominently iflentified with marine interests and which may, therefore, be given for what it is worth, was hazarded by Chief Engineer Frederick M. Sammis, of the Mareoni Wireless Telegraph (company of America, who es-

Guglielmo Marcont.
llis pirfected anparatus madr long distance wircless possible.
timated the value of ships and their cargoes in all cases up to December 1, 1910 . in which the wireless telegraph was used to summon assistance to vessels in distress, at one hundred million dollars, and the number of lives involved, which may thus be said to have been saved, at approximately ten thousand.

But there is one source which, while far from complete or satisfactory in many of the details we should like to know, is specific as far as it goes: and that is the daily newspaper file. From this source it is possible to learn that during the year 1909 at least twentyfour steamships, after accidents of various kinds, sent out appeals by wireless telegraph which bronght assistance with admirable promptness. Taking the more conservative estimates, the aggregate value of the vessels and their cargoes saved from probable, and in some instances certain, loss was in the neighborhoorl of $\$ 11.775,000$. I11cluding six other cases in which the vessels were lost but their passengers and crews, or most of them, were rescued, no fewer than 5,215 persons may be said to owe their lives to the wireless telegraph in the year 1909. Here is the list so far as it is ascertainable, as explained above. with the estimated value of ship and cargo and the number of persons on board who may be sairl in all truth, to have heen saved through the direct agency of this modern marvel, wircless:

VESSEL	$\begin{gathered} \text { Yalue } \\ \text { of Shle And } \\ \text { Cargo } \end{gathered}$	$\begin{aligned} & \text { Lives } \\ & \text { Saved } \end{aligned}$
Colorado	\$ 500,000	100
City of Racine	750,000	200
Walcott	60,000	*10
South Haven	750,000	100
Hamilton	600,000	150
Slavonia	1,500,000	*500
Frederick	350,000	90
Mackinaw	600,000	200
Henry S. Crosley	125,000	*15
The Helen	300,000	* 70
Arapahoe	550,000	240
Carib. ..	400,000	100
Antilles	1,000,000	165
City of Attanta	250,000	*175
Zeaburg	290,000	*30
1 roquois	550,000	100
Excelsior	75,000	*30
Algonquin	650,000	*200
Arizona	300,000	40
Nucces	350,000	100
Puritan	500,000	150
Herida	750,00)	150
Bertha	500,000	225
Scotland Lightship	75,000	25
Republic		1,650
Ohio		70
Ocean Queen		250
Crown		23
George L. Drake		7
Horatio Hall .		50
Totals	\$11,775,000	5,215

*Estimated.

It may be that some folk whose knowledge of the sea and its perils is limited to what may be gleaned in the course of an annual voyage to Europe on a big modern liner may think shipwreck a rare thing, and the foregoing estimates of the service rendered by the radio-telegraph. therefore, exaggerated. To such skeptics it may be said that Lloyd's Register of British and Forcign Shipping, an unimpeachable authority, reports 557 steam and sailing vessels of one hundred tons: or more totally lost during 1909. This gives a wreck at an average interval of fifteen hours and forty-three minutes throughout the year. The aggregate tonnage of these vessels was 588,053 tons. Valuations are not given in Lloyd's Register, but it may be ascertained that in 1909 contracts were taken by britishs shipyards to build good sized, well fitted tramp steamships at $\$ 24.58$ per ton of dead weight capacity. The value of the Republic, lost in Jannary of that year, figures out at $\$ 100$ a ton. A fair average for the miscellancous lot of vessels lost, therefore, would probably be $\$ 50$ a ton, which would give a total loss of $\$ 29,403,000$ for the ships exclusive of

cargo, and excluding vessels lost in the Great Lakes. It may be seen, therefore, that there is no lack of opportunities for the radio-telegraph to avert or mitigate disasters.

If it is not possible to quote authoritative totals in appraising the benefits conferred upon commerce by the radiotelegraph there is no lack of individual instances which may be cited to prove its worth. Perhaps, after all, that may be the better way of arriving at a true conception of the service the wireless telegraph has rendered to the world.

At the very outset of its career the wireless telegraph demonstrated its usefulness. An experimental outfit placed on the East Goorwin Lightship in the English Channel in December, 1898, was the means of saving several vessels and a number of lives. In the case of one steamer which went ashore on the Goodwin sands evidence introduced in an Admiralty court proved that by means of one short wireless message property worth $\$ 260,000$ was saved.

One of the earliest merchant ships to be equipped with the Mareoni apparatus was the Belgian Royal Mail steamship Princess Clemontine, plying between Ostend and Dover, which received her installation in November, 1900. At the same time a land station was established at La Pamne, near Ostend. On New Year's day, 1901, the Princess Clementinc discovered the bark Medora stranded on the Ratel bank. A message was at once sent to La Pame, and before proceeding the Prinocss Clemontine was able to tell the shipwrecked sailors that help was on the way. On the same trip, the Roytengen Lightship, fifteen miles from Dunkirk, signalled the Princess Clomontine that the lighting apparatus was out of order. A wireless message from the Clementine to La Panne enabled the lighthouse department to semel ont to the lightship and make repairs in time to have the lights in service that night.

From this promising begiming a steadily growing record of practical usefulness led up to a spectacular climax at 4 o'clock on the morning of Jamary 23. 1909, when the Italian Steamshij) Florida, blundering through the fog sixty-five miles sontheast of Nantucket.
crashed into the White Star liner Rcpublic. In a few minutes Operator Jack Bimns had sent out from the Republic the "C. Q. D." eall which has attracted more attention from the general public than all the other thrilling incidents in the history of the wireless telegraph combined. What was more to the purpose, it also attracted the attention of no fewer than five big liners within a comparatively short , listance, not to mention two revenne eutters, all of which hastened to the rescue, arriving in time to take off the passengers and crew of the Republic and the passengers of the Florida, aggregating 1,650 souls. In this case the wireless telegraph not only gave the alarm but it played a vital part in guiling the rescuers through the fog. which was so dense that the Bultic had to grope alout in circles for twelve hours before the Republic was finally reached. For thirty conseentive hours limns sat with the telephone receivers which form part of the receiving apparatus strapped to his ears, keeping up communication with Siasconset Station and with other ships almost up to the time the Republic went down.

That was a fine exhibition of courage and devotion to duty, but Jack Binns has been surpassed in this respect by more than one wireless operator on sinking ships. When the steamer Ohio struck on a submerged rock in that marine graveyard off the Alaskan coast August 27, 1909. Operator George E. Eceles immerliately began sending ont signals of distress. He stuck to his key until the ship went down and he was drowned, thongh the steamships Humboldt and Rupert City, responding to his calls arrived in time to pick 11 , the one handred and forty passcngers and most of the erew before the small boats were swamped.

Another operator who stuck to his key trying to hurry help to a sinking ship until the waters closed over him was S. C. Sczepanek, of Car Ferry No. 18. This large steel transfer steamer belonging to the Flint and Pere Marquette Railroad, was bound diagonally across Lake Michigan from Ludington to Milwankee on the night of September 9, 1910, when from some cause unknown she foundered in mid-lake. The first
intimation of trouble came at dawn in this message from Sczepanek:
"S. O. S. 18 sinking off Sheboygan."
For the next ten minutes the message was repeated together with more accurate details of the vessel's location, then all was silence. Two hours later when
flag at half mast were the details of the tragedy known. The compression of the air between decks when No. 18 went down had blown off the hurricane deck, the fragments of which had served to keep thirty-three survivors afloat until they could be picked up by No. 17.

METHOD OF STRINGING WIRES FOR LONG DISTANCE TRINSMISION.
The Italian battleship Carlo Alberto.

No. 17, a sister ship, reached the spot from which these appeals had come, to which she had hurried as fast as her engines could drive her the moment the first call was heard, her operator announced the fate of No. 18 in this laconic message:
"No. 18 gone."
Not until No. 17 steamed into Ludington at 6 o'clock that evening with

Twenty-eight men, including all the officers and Operator Sczepanek, went down with the ship; and all hands surely would have perished had not help been summoned by wireless, for the water was icy cold.

The wireless telegraph is doing a great deal to lessen the perils of the Great Lakes. There was a fine chance for a disaster when the cylinder heads on the
steamer Arizona blew out while the steamer was being crowded to make sineed in the teetl of a gale while bound from Chicago to Muskegon January 7, 1909. The wireless operator, who was asteep at the time, bounded out of bed and as soon as he learned what was wrong, sent out a call for help. Two fours and a half later the steamer $I n-$ diand was alongside. The City of South Haien. with a hundred passengers on board lost her rudder while crossing Lake Michigan June 26, 1909, leaving her floundering helplessly in the waves with the passengers in a panic. A call for help, was sent out by wireless and within ten minutes two tugs were on their way from Chicago to the assistance of the City of South Hazen. Two days later the City of Racine, bound from Chicago to Milwaukee in rough weather lost her propeller. A call for help by wireless brought two steamers to the rescue, one of which took off the two

Apparatug for Sending-Rfproducing-Picturfs by Wireless 'I'he transmiting machıne is at right. receiver at left of the inventor. Hans haudsen,
hundred passengers while the other towed the disabled vessel to port. The wireless telegraph also brought help to the steamer Georgia in time to save her from going to the bottom when she lost her propeller in a storm on Lake Michigan on October 12, 1909.

It was a narrow escape that the passengers and crew of the Norwegian steamship Occan Quccu hat in the lonely Pacific on September 16, 1909. Her engines broke down while the Occan Qucon was between Tahiti and Makatea. While thus helpless she was driven on a reef. The steamer Mariposa heard her call for help and arrived just in time to take off all hands before the Occon Quccu slid off the rocks and sank immediately in deep water.

The Princess Irene was one hundred and eighty miles away when, on June 12. 1909, her operator heard a call for help from the Slazonia which, with fonr hundred passengers on board, had gone on the rocks off Flores Island in the Azores. Changing her course immediately and hurrying to the scene under full steam the Princess Irche arrived in time to take off all hands in safety.

Seven men bound from Seattle to Taldez, Alaska, had the remarkable experience in December, 1910, of being twice rescued from sinking ships, through the intervention of the radiotelegraph, in ten days. They sailed from Seattle December 1 on the steamer Jorthriestern which struck a reef and sunk a few hours later in False liay. Steamers summoned ly wireless conveyed them to Seattle from whence they took passage on the steamer Olymfia. After calling at Cordosa the Olympia ran into a fierce storm which drove her on a reef at the southeastern end of Bligh Island, four miles from shore. After striking the rock the Olympia slid down upon it tearing a large hole in her
side. The weather was intensely cold and the sea, driven by the terrific gale, was so high that the officers dared not launch a lifeboat. The sea battered the steamer so violently that it was feared she would not hold together until help could come ; but Operator Hayes managed to send out an alarm before the engine room was flooded, rendering the wireless useless. Two steamers responded to the call in time to take off the one hundred and sev-enty-seven passengers and crew before the Olympia went to pieces. At any moment the call for help is likely to come floating through the ether to the ear of the operator who, in the vernacular, is "listening on the job." This call may be the "C. Q. D." made famous by Jack Binns, an abbreviation for "Come Quick, Danger," devised by the Marconi Company but never officially recognized, or it may be "S. O. S." -Stop Other Service-the signal of clistress formally adopted by the International Wireless Convention at Berlin in 1906. The ship that first hears the appeal may be too far away to be of any assistance herself, unless, perhaps, to pass the message along to some other craft that can lend a hand, for it is a curious thing, for which no satisfactory explanation has yet been found, that a ship may often be unable to communicate with another near by, yet readily keep in touch with distant stations. Sometimes apparatus with a normal range of two hundred miles is able to commmicate with stations twelve hundred miles away. A notable instance of this peculiarity was the experience of the steamship Caronia in 1908. The Caronia while off the coast of Sicily was totally unable to pick up any of the Italian stations, but had no difficulty in communicating with England and Holland.

The steamship Charles Nelson, of San Francisco, which went ashore a few miles north of Point Arena, California, in a thick fog October 28, 1910, was a sufferer from this eccentricity of the

Lee Deforest and His Wireless Phone.
wireless telegraph. Fortunately there were enough other vessels at the proper distances to pass her messages along like a bucket brigade at a fire until she was rescued from her predicament.

The first intimation that anything was wrong came to Operator C. F. Fing, of the steamship Carlos, who while standing in the door of the wireless room with the receivers on his ears talking to some passengers heard a station working. Suddenly King realized that the stranger said something about a ship being ashore. He listened for a moment after the message was finished, but the government stations around San Francisco were working and had not heard the message.
"I immediately sent out a long general call," said King, "and asked Mare Island if he had heard the message of distress, and told him to keep the stations in the vicinity of San Francisco quiet. Nare Island had heard no message of distress, but told everybody else to keep out. There was a short silence, after which came a message saying:
"'Nelson ashore about fifteen miles northwest Point Reyes. Send help at once.
"'Hanson."
"I copied this message as did the operator on the Farallone Islands and the San Francisco operator also gave his o. k. For quite awhile the Velson operator continued to send out his distress message, not knowing that it had gone through. I gave him a number of calls, telling lim the message was in all
right but could not make him hear me. We started at once to look for the Nelson but I was unable to make her operator hear me although I called him a great many times. About $8: 30 \mathrm{p}$. m. the operator on the steamer Quecn came on duty. the Queen then being near Point Arena, and much to my surprise made the Nelson hear him right away."

Thereupon King gave the Quecn a message he had just received from San Francisco for the Nelson. Thereafter the Carlos took messages from San Francisco which were passed on to the Queen which in turn handed them on to the Nelson and transmitted messages from the latter to the Carlos, relayed them to San Francisco until the distressed vessel was definitely located and assured that help would reach her promptly.

Not the least wonderful thing about the radio-telegraph is the distance its messages are conveycd. Last summer the wireless station near Hamburg kept up constant communication with a steamer all the way from Hamburg to Kamerun, German West Africa, a distance of four thousand miles. To reach their destination the wireless waves had to pass over the Alps, the Algerian tableland and the Adlamana mountains. An exchange of messages between Key W'est and Norfolk November 22. 1910, was orerheard at Mare Island Navy Yard, near San Francisco, a distance of 3,889 miles. On the thirteenth of the same month Marconi himself succeeded in establishing commmication between Coltano, Italy, and Glace Bay, Nova Scotia, 4,500 miles distant. Early in Octoher Alarconi received messages at the wircless station at Punta del Este, near Buenos Ayres, from Glace Bay and from Clifflen, Ireland, distances of approximately 5.600 miles. These long distance tests were preliminary to the opening of the great wireless station at Coltano, through which commmeation is to be maintained with Bnenos Ayres, a distance of more than six thousand miles. This great distance has been bridsed at an ontlay of $\$ 500,000$ for two wircless stations, which is but a fifth of what a cable between the same points woutd cost.

The usefulness of the wircless tele-
graph is still limited by some strange idiosyncrasies. One of these is recognized by the U. S. statute which requires that wireless telegraph apparatus on shipboard shall be capable of sending and receiving messages over a distance of at least a hundred miles by day as well as by night, for the radio-telegraph seems to be as fond of darkness as evil deeds are alleged to be. Only half as much power is required to send a message on the Atlantic after dark as is required during daylight hours. while on the Pacific only a fourth as much power is used in sending a night message as is needed while the sun is shining. This strange diference between atmospheric conditions on the two oceans is very marked, for it takes five kilowatts to do on the Atlantic that for which two kilowatts will suffice on the Pacific. Morning and evening are times that try the patience of the wireless operators. for when darkness extends only part way across the ocean it is sometimes impossible to get signals through at all.

Marconi explains the greater difficulty of telegraphing in daylight by saying that the electric waves are absorbed by the ionization of the gaseous molecules of the air by the ultra-violet rays which emanate from the sun and which are largely absorbed in the upper atmosphere. He thinks it probable that this atmosphere, which is facing the sun. contains more electrons than the portion in the dark, and therefore the illumined? and ionized air absorbs some of the energy of the electric waves. Apparently the length of the waves and the amplitude of the electric oscillations have much to do with this phenomenon, long waves and small amplitudes being less influenced by daylight than short waves and larger amplitudes. For comparatively short waves, such as are used for ship telegraphs, clear sunlight and bluc skies act as a kind of fog to these electric waves. Mountains are no impediment to the radio-telegraph at night, but in the day time they greatly reduce the range of communication.

It is unfortunate that so valuable an invention as the wireless telegraph should be adopted by the unscrupulous as a new lure in the world-old process of separating the fool and his mones:

At the end of 1909, there were no fewer than thirty-six wireless telegraph companies with the preposterous capitalization of $\$ 132,560,000$. The greater part of this rast issue of stock, much of which is worth no more than the prevailing rate for waste paper, has been exchanged for the hard earned savings of small investors. So successful were the operations of promoters of this kind of stocks that the postoffice department was obliged to interfere. One raid last November was upon the offices of a wireless combination capitalized at \$14,000,000 . The assets of the concern were so trifling that the stock of one constituent company was turned into the treasury at 20 cents a share. Yet this same stock was unloaded on the gullible at $\$ 10$ a share. Within a radius of five hundred miles of Cincinnati half a million dollars had been invested in this kind of stock before the raid.

In this particular the wireless telegraph is but repeating the history of the
railroad. Abont seventy years ago, after the railroad had given some indications of its capacity for future usefulness. England went stark, staring mad over speculation in railroad shares. Flundreds of wildly impracticable schemes together witl quite as many downright frauds, were floated as fast as the printing presses could turn out the stocks. It seemed as if the savings of the entire nation were poured into these schemes. Certainly a great many million dollars were thus thrown away. Then the bubble burst and the ruined dupes went to work again to earn more money for the next plausible swindler that came along.

It is not likely that the operations of the dishonest will do any more real harm to the wircless telegraph than they did to the railroad. Put at least the exposures of last summer should serve as a warning to all who long for sudden wealth to exercise self-denial in the purchase of temptingly offered wireless telegraph stock.

Song on May Morning

Now the bright morning star, day's harbinger, Comes dancing from the East, and leads with her The flowery May, who from her green lap throws
The yellow cowslip and the pale primrose.
Hail, bounteous May, that doth inspire
Mirth and youth and warm desire;
Woods and groves are of thy dressing,
Hill and dale doth boast thy blessing;
Thus we salute thee with our early song,
And welcome thee, and wish thee long.

REBUILDING QUEBEC'S
 FALLEN BRIDGE

By

CHESTER CARTON

CANADA is bent upon having the world's biggest bridge, no matter if it does come high. The Quebec bridge across the St. Lawrence, which collapsed when half completed, on August 28, 1907, carrying seventy-four of the eighty-six men on it down to death, cost the Dominion $\$ 7,154,987$. Just as soon as the weary round of official investigations had been finished an international board of engineers was assembled and tokl to try to design a bridge that could stand alone, to be erected on the site of the failure. This board, consisting of H. Vautelet, of Montreal, Ralph Modjeski, of Chicago,
and M. Fitzmaurice, of London, with Alfred Noble, of New York, and H. Holgate, of Montreal, as consulting engineers to help untangle the knotty problems, advanced far enough with their plans to allow preliminary work to be commenced a year ago on a structure which, when completed, is expected to cost somewhere near eleven million dollars, thus bringing the total outlay for a means of getting the trains of the new transcontinental railroad across the St. Lawrence, up to eighteen million dollars.

Still, it will be worth the money; for the Canadians will be able to boast the possession of a bridge the main span of which will be 48 feet longer than the

NINE, THOUSIND TONS OF STEEL, BENT AND TWISTFD INTO INDESCRIBABLY CONFUSION. WHICH HAD TU BE CLEAREL AWAK.

THE QUEBEC BRIDGE AS IT LOOKED A MONTII BEFORE IT FEIL.
The new bridg, will be quite similar in appearance.
cantilever spans of the famous Firth of Forth bridge, and 162 feet longer than the Brooklyn bridge. Let them make the most of it, for when New York gets around to bridging the Hudson the Quebec affair will look like a mere culvert by comparison. Indeed. New York City already has bridges that cost a great deal more than the Quebec structure, thanks to the highly developed Tammany art of making three dollars do the work of one. In miere height above the water, too, the Quel or lre is far excelled by a number of bridges scattered over the world. One of these is the St. Giustina bridge in the Tyrol, which is 460 feet above the water: that is, from the surface of the water to the top of the rail, as compared with a beggarly 150 feet at Quebec. The Fades bridge in France is 435 feet above the water, the Garabit bridge in France 406 feet, the Zambesi bridge in South Africa 420 feet, not to mention a number of others that are more than three hundred feet high. Mere height above the water and cost, or rather expenditure, however, do not count in bridges; it is the length of the span that confers distinction.

The new Quebee bridge is to be only 3,232 feet long over all as compared with a total length of $S, 296$ feet of the Firth of Forth bridge ; but its central cantilever
span is to be 1,758 feet long as compared with 1,710 feet, the length of each of the two cantilever spans of the Scotch bridge. Lest the Canadians should become unduly puffed up over this prodigions span they should remember that that is nothing at all to what the engineers could do if they wanted to, according to their own story. A commission of army engineers appointed by the Secretary of War in $189+$ to investigate the practicability of bridging the Hndson at New York City with a span of 3,100 feet, reported that under certain conditions the practicable limit of length in a bridge span was 4,335 feet. Not to be outdone. Gustav Lindenthal, ant American engineer who had not been consulted about it. in commenting upon this report declared in a magazine article, under his own signature, his firm conviction that a bridge with a span of 6,000 feet long could be built on which trains could run with safety at express speed. So far no one has ventured to outtalk Mr. Lindenthal on bridge building.

However, the Quebec structure will be a very fair sort of bridge, considering. The tops of the main posts will be $4+8$ feet above the water as compared with 361 feet in the Forth bridge. The latter only carries two railroad tracks, while the Quebec loridge will have two railroad tracks, two street railway tracks,

SIDE VIEW OF THE BRIDGE TITAT FELI. TAKEN FROM CHAUDIERE IIRIDGE. ONE MIIE DISTANT.
two horse and motor roadways and, finally, two sidewalks.

The new Qucbec bridge is proportioned for a loall twice as great as the one which collapsed was designed to carry, while its bottom chords will have five times the strength of those in the old one. Designed for a load 2.98 times that of the Forth bridge, or 13,340 pounds per lineal foot as compared to t. 480 pounds, it will weigh 2.3 times as much per lineal foot. The heaviest bottom chord will weigh 160 tons, the pedestals, upon which the main posts will rest will be 19 feet high and weigh

500 tons each, while the posts themselves will weigh 900 tons each. The total weight of the britlge according to the official plans, will be $1+5,000,000$ potinds as compared with the Forth bridge's weight of $114,000,000$ pounds.

One of the difficulties confronting the board of engineers was that the actual strength of steel members of great size is unknown. Such definite knowledge of steel as is available has been obtained by testing small pieces. Calculations for larger sections were based on these known facts. But evidently there is a big difference between the theoretical

IHAGK, OH OF THE BRIDCE WHHCH (OLI, DPSED IEG; 28, 1007.

THE PIFR. AND A IURTION OF 'IHE BRIDGE ON "THE NORTH SHORE-OUY(SIIE. This was the bridge that foll.
and the actual strength of large members, for otherwise the original structure would not have collapsed.

In order to afford the engineers a more substantial basis of facts upon which to build their calculations Parliament appropriated $\$ 30,000$ to pay for a series of tests of models of columns and girders. These models, some of which weighed as much as 6,850 pounds, were placed in a testing machine, having a capacity of $2,800,000$ pounds, at Phoenixville, Pennsylvania, in which they were slowly crushed while a squad of engineers looked on, tonk measurements and made notes. Armed with the data thus obtained the Board of Engineers worked out its design with some assurance that it would stand the test of time. The official plans call for a cantilever structure; but the contractors who submit bids are invited to offer suggestions for any changes they think will be improvements. If they meet the approval of the engineers the changes in the official plans can be made, but the contractors must take all the risks. Prospective bidders
were warned that they must clearly understand that they must be prepared to undertake the entire responsibility, not only for the materials and construction, but also for the design, calculations, plans and specifications and for the sufficiency of the bridge for the loads specified.

It was a strange task which confronted the contractor who undertook to remove the wreckage of the collapsed bridge. Nine thousand tons of steel, bent and twisted into indescribable confusion, lay between the shore and deep water. There was no place to begin, for there were no loose ends. So- well had the steel makers done their work that but a single eyebar was broken in the collapse. Starting in Janluary, 1910, the contractor was allowed until May 1, 1911, a period of less than sixteen months, in which to clear away the wreckage, including all that showed in the river at low water.

Two months were spent in experimenting, trying to find a vulnerable spot in the wreck and some efficient method of cutting up the ponderous members of
the bridge into bits that could be handled. These experiments brought out the fact that there were just two means at hand, one being dynamite, the other the oxy-acetylene flame. Each was peculiarly adapted to certain conditions, so that each supplemented the other. Together they have performed feats not matched in the annals of engineering.

Dynamite worked particularly well under water. One stick of the explosive would break a plate half an inch thick, while to break a plate an inch thick two sticks were required. In order to cut one of the great girders, sticks of dynamite were placed end to end across it, usually tied to a stick of wood or placed in a piece of cheap rubber hose. If the cut was to be done on the water the explosive was placed in position at low tide. Then the workmen waited until the tide rose, thus affording a water tamping. Above high water the charge was covered with a few inches of earth. Extra precautions had to be taken in seeking shelter when a charge was to be fired, for pieces of steel were thrown great distances. One piece was thrown across the river. Twelve tons of dynamite were used in breaking up the south anchor arm.

Oxy-acetylene gave remarkable results. It was used to greatest advantage in cutting the heavy chords and posts into pieces. The flame cut very rapidly, leaving a narrow, sharply defined slot not wider than a saw wonld make. A square inch of steel could be cut through in $55 / \mathrm{s}$ seconds with 0.4 of a foot of gas costing 1.2 cents. An eyebar 2 inches thick and 10 inches wide was cut through in one minute and fifty seconds with the flame. This method proved very convenient, for as the torch weighs but a few prounds it could be carried around anywhere. When ten of the sixteen months hard elapsed but half the wreckage had been removed. The contractor, who gets $\$ 45,000$ and the scrap, doubtless feels that he is earning his money.

As the new bridge is to be wider, shorter and heavier than the old, the original piers could not be used, although the masonry was mharmed. The foundation of the old south main pier, however, was all right so far as it went. So the masonry was stripped off down to
the caisson, a solid block of concrete 150 feet long, 49 feet wide and 25 feet deep. This is to be pieced out by an L-shaped extension to be formed of two caissons, one 25 by 31 feet, the other 31 by 85 feet, which are to be sunk to the same depth as the old one this spring. On top of the extended foundation a third caisson 180 by 79 feet and 27 feet high, to be of solicl concrete strongly reinforced with steel, will be built, upon which the masonry will be erected.

As the river span is to be shortened forty-two feet, the north main pier will be nearer the river and entirely clear of the old. For the foundation of this pier a caisson of unusual size was built. Some idea of the magnitude of the undertaking may be gathered from the fact that two hundred thousand dollars were expended on a plant for building the great caisson and the smaller ones for the south pier. The north caisson, 180 by 55 feet, was built of timbers 12 inches square and solidly braced by dividing the interior into eighteen working chambers, each 20 by 25 feet, with heavy timber walls. By the time the outer walls had been luilt up to a height of 21 feet 9 inches and the total weight was 1,700 tons it was deemed rearly for launching. The remainder of its 68 feet in height was to be built up as sinking proceeded. The lameling took place July 7,1910 , and the big box was towed three miles up the river to the bridge site. Unfortumately it sprmg a leak after the work of sinking had begum and the pumps breaking down, it filled and sank on the big boulders in the river bottom in such a position that it was strained. So it had to be laboriously floated and towed to a dry dock for repairs. To gain time a hole twenty feet deep was dredged on the pier site, leaving just that much less excavating to be done under compressed air in the caisson. A bonler plant of six hundred horse-power was required to furnish stean to run the compressors in sinking this caisson.

If everything goes as it has been plamed the masonry work on the piers will be finished by November 1, so that the erection of the superstructure may begin as snon as the weather will permit in the spring of 1912. By 1915 trains will be crossing, it is hoped.

Native and European Horse Shofs and Cattle Shofs Used in Palestine.

Shoeing an Ox for Plowing.

HORSESHOEINGIN PALESTINE

By H.J. SHEPSTONE

IN Palestine the native horseshoer, known as a "betar," not only shoes but also treats sick animals, corresponding in this latter respect to our veterinary surgeon. His shop is invariably a very small concern, unlike anything found in the Occident. In the first place, there is no blacksmith work done of any kind, hence, no fire or forge. Two methods of shoeing are followed, one known as the native and the other as the European. The native shoes are solid plates, covering the entire hoof, with a small air-hole in the middle, and curving outwards at the back. Those known as European are very similar to our American shoes.

The assistant holds the animal's leg up when the farrier, or shoer, in a halfkneeling position, removes the old shoes with a pair of large pincers, the jaws of which are very dull. The trimming or cutting of the hoof is done with a draw knife, the blade of which is six inches long and four inches wide, very sharp and thin.

The shoes are fitted cold, and as soon as they are placed upon the feet, a curious little wooden block is brought into play. Upon this the animal is made to place one foot at a time while the farrier drives home the nails. These
latter protrude about half an inch or a little more. The inside ones are cut off, turned over and clinched into the hoof. while the outside ones are curled around and around by being lightly tapped with a hammer.

In a dry and stony country like I'alestine native shoes have these advantages over European ones: stones cannot get into them. while the loof being practically entirely covered keeps moist and much softer, making the liability of cracked hoofs quite remote.

The native shoes are made from thick sheet iron and also from wrought iron. They are finished very roughly and reguire a good deal of hammering before they are ready for use.

The European shoes are finisherl ready tor be put on. In Jerusalem there are only two European hacksmith shops doing Eurnpean shoeing. One is rum by Cermans and the other by an Armenian, who learned the trade from the Germans. They are mostly patronized by foreigners. The natives have a prejudice against burning the hoofs with the shoe. Less than half a century ago European-shaped shoes were entirely unknown in Palestine. The first horse shod in this manner was that belonging to the Russian consul some thirty-nine years ago.

Why He Stopped

They had been engaged only a week. He had kissed her fully forty times that evening. When he stopped the tears came into her eyes, and she said:

"Dearest, you have ceased to love me."
"No, I haven't," he replied, "but l must breathe."-Ladies" Home formal.

4

Of Such Stuff Are Herocs

"Now then, men," cried the gallant captain, "fight like heroes till your powder is done, then run for your lives. I'm a little lame, so I'll start now."-II asp.

4

Minute Specialization

A roung medical student was being quizzed by one of his teachers: "]n what will you specialize?" he was asked. "Diseases of the nostril," replied the stument. "Good," said the professor. enthusiastically. "WVhich nostril?" -Sucioss.

4

Up Against It

She-"Lizzic's bloke calls 'er 'is peach and the apple of 'is eye. Why can't you call me things like that ?"
He--"Yus, that's all very well : but 'és in the vegetable business. I'm in the fish trade, re-member."-Punch.

Domestic Wrappers

"Yout friend is rather indelicate," remarked Mrs. Wombat. "Says he gave her husband some panatellas for Christmas."
"What's wrong with that?"
"I wouldn't think of mentioning sleepinggarments in public."-Louisville CouriorJournal.

*

Not Boastful

"] Was in a Missouri town two ycats ago," said a local dramatic producer, "trying to get up a show. The landlord of the chief and only hotel seemed half-way intelligent, and I interviewed him, as a preliminary. 'Your town boasts a band, does it not?' I asked. 'Well, no, stranger,' he responded. 'IVe've got a band, but we don't boast of it. We jest endure it." "-Boston Traveler.

A Crusher

Gerald-"My dog knows as much as I do." Geraldine-"Why don't you get an intelligent dog?"-Chicago Record-Herald.

$*$
 Fruitless Struggle

"I UNDERSTAND that, after waiting twenty years, she married a struggling man,"
"Yes, poor chap. He straggled the best he knew how, but she landed him,"-Brooklyn Lifi.

Filling Her Program

"Ah say, Miz Mandy, am yo" program full ?"
"Lordee, no, Mr. Lumley. It takes mo' an a sanwich an' two olives to fill mah program. "-The' Coyote.

$*$

His Object

"I Notice," said the young man's employer, "that you are always about the first in the office in the mornings."
"Thank you, sir."
"Why do you thank me?"
"For noticing it."

Reassuring

Nervous Party-"The train seems to be traveling at a fearful pace, ma'am."

Elderly Female-"Yus; ain't it? My Bill's a-drivin' of the ingin, an' 'e can make 'er go when 'e's got a drop o' drink in 'im."-TitBits.

s

A Wise One

"Do you think I am really your affinity?" asked Solomon's 985 th wife, coquettishly.
"My dear," said the Wisest Guy, "yon are one in a thousand."

He got away with it, too.-Toledo Blade.

Why He Mourned

O'Toole-"An" why are yez wearin' mournin', Muldoon?"

Muldoon-"Shure an" Oi hov t". Th’ iditor ov a magazine Oi 've been takin' wrote me yisterd'y an' sed thot me subscripshun hod exphired."-Judge.

Desperate

"Father, do lawyers tell the truth?"
"Yes, my boy," the father answered. "Lawyers will do anything to win a case." -ll'ashington Star.

Rear View Exhibit

Doctor-"You must put a porous plaster on the small of your lack."

Lady-"That's impossible, doctor. l'm going to the opera tonight-how would I look?" - Milataker Nerses.

*

A Literalist

She (as they encounter a vicious bulldog) "Go on, Percy, yon know you said yon would face death for me."
He-"But he isn't dead."-Tatter.
$\%$

One as Good as Another

Professor (returning home from visit)"Aha! Your absent-minded husband didn't forget to bring home lis mulbella this time. See!'

11rs Wife-"But, I Henry, when you left home you didn't take an umbrella."-Boston Transcript.

$*$

Truth Will Out

The Candidate (having quoted the words of an eminent statesman in support of an argument) - "And, mind yon, these are not my words. This is not merely my opinion. These are words of a man who knows what he's talking abont."-London Sketch.
\star

Hair-Raising Performance

"The baby likes to play with my hair."
"But aren"t you afraid he"ll muss it, dragging it all over the floor?"-II ashington Horald.

TO TEACH BOYS KNOTS

A NEIT educational idea-teaching boys to tie knots scientifically-has been adopterl in a Philatlelphia sehool. A case of specimen knots has been set up in the classroom and the boys are required to memorize the mames of these and then learn how to tie them. It is
not easy to learn how to tie a knot when it is tied in a way that differs from the twist we have been accustomed to give our knots, but once learned it is never forgotten. For that reason it will pay one to study the kmots illustrated on this page and learn how they are manipulated, for in this art the landsman can learn much from the sailor.

THE KNOT CLASS IN SESSION,

Acrobat Thomsk Drop ping fron a Hot Air Balloon.

For "Hanging" Nervous Patients.
Apparatus in use at National Hospital. Blooms bury. England. The pa tients are "hanged" for a few seconds each day.

Armored Autos in the Austrian Army.
They are equipped with rapid fire guns.

UP IN A HOT - AIR BALLOON

TIIE photograph at the left shows acrobat Thomik of Berlin, rising in the air in a hot-air balloon. He arose to a leight of approximately two thousand feet and fortunately dropped safely to the ground in a parachute.

Almost every other day the newspapers call our attention to some remarkable feat of daring, performed by some person either for money, notoriety or the mere hazard of the thing.

Most of us are astounded at the risk these persons take and while, if we get the opportunity, there is a certain fascination in watching, we usually conclude that it is very foolish.

8

A LESSON IN TREE CLIMBING

WHENEVER it becomes necessary to trim the foliage from the "living flag pole" in Los Angeles, a linesman is sent up, scaling the slender sisty-foot trunk without any difficulty by means of his climbing spurs. The main difficulty would appear to be in keeping the swaying stem erect and steady enough to bear his weight, for anyone seeing the tree as it sways in the wind would as soon think of climbing a fish pole, as to tackle it.

As the picture shows, however, the feat can be accomplished and a secret is very simple when you know how. As the linesman ascends the smooth and pol-

"A Living Flag Polr." The daring climber has a novel method of ascent.

FASTEST WAR VESSEL IN THE WORLD.
The destroyer Pazilding. United States Navy; speed. 34.85 knots an hour.

STAMPS BY THE ROLL.
A clever device of the English postal authorities.
ished stem, he pushes ahead of him a small hoop or ring which encircles the trunk and to which are attached four long wires. These lengths of wire are paid out by four men, who steady the tree in four directions, so that the man with the pruning knife can go clear to
the topmost tuft of foliage without danger.

The tree is a twelwe-year-old specimen of Eucalyptus Citriodora, which is growing in the center of Los Angcles and is used as a flagpole on holidays and similar occasions.

STAMPS BY THE ROLL

I^{7}T is not often that the English postal authorities are guilty of innovations but recently the postmaster general has concerned himself in popularizing the postal service throughout the United Kinglom. The little novelty seen here is a case in point. Any one who desires. to buy five shillings worth- $\$ 1.20$-of penny-two-cent-stamps may now purchase them in the very neat contrivance shown in our picture which holds cxactly sixty stamps, each one of which may be easily detached in the manner shown. Apart from the cost of the stamps there is of course no clarge made for the roll carrier. The device really appears superior to the stamp books in use in the United States.

WこRLD'S BIGGEST BALLOON SHELTER

AT Konigsberg. Germany, there has been erected a big building capable of accommodating two airships of such gigantic proportions as Count Zeppelin’s. It is 540 feet long, 180 fect wide, and 120 feet higl. The cntire building is rendered fireproof by a covering of asbestos.

To admit light, there are windows in the side, front and roof, of twenty-five square yards each. The doors are almost incredibly heary affairs, each weighing 50 tons. with dimensions of 90 by 120 feet. They open and shut by means of wheels which roll on iron rails.

The structure is built on so substantial a basis to protect against three things: fire, wind and predatory persons. Where hundreds of thousands of dollars are inrested in a single balloon, it is well worth while, the Germans think. to protect adequately so big an investment.

\star

TRAINING A STIFF-NECKED HORSE

THE accompanying photograph shows a real "cow-punclicr" subduing a real bronco accordiry to a well known method on the range. The horse had just been broken to the saddle but he was self-willed and refused to answer to the bridle, or as the cowboys express it, "he was stiff-necked."

Breaking a Horse to Answer to the Bridle.

In order to correct that the rider first constructed a rope bridle known as a "hackamore," which exerts a painful pressure on the horse's nose and when even this failed to produce the desired effect he took a lariat and a sloort length of rope and effected a cure in this way: the short piece of rope was fastened in the hair of the horse's tail so as to form a loop and the end of the riata was attached to the bridle and the other enel passed through the loop so that when the free end of the lariat was pulled the horse's head and tail would be drawn together. Naturally the bronco resented this. but as the cowboy was at the other end of the forty-foot rope his kicking

ARCHITECTURE KEEPS PACE WITI AERONAUTICS.
Huge building of special design to accommodate German dirigible balloons.

Aeroplane Propeller on a Sled. An ice-vebicle driven by a motor.

The Most Northern Tramway in the World. In the Spitzbergen Isles, oft Norway, within the Arctic Circle.

Practice Target in the British Navy.
The plates, of thin steel, easily replaced. may be penetrated without mjuring the general structure.
and pawing did little good. When the bronco began to quiet down he tried to ease the strain on the neck by turning round and round slowly, and the horse breaker allowed him to do this, merely flipping the rope over his back so that he would not get tangled in it.

This was exhausting work for the bronco, and sweat began pouring from him but his master was not satisfied until the operation had been repeated, turning his head the other way. After about an hour of this treatment the bronco was thoroughly tired out and the muscles of his neck were so painful that he was willing to obey the slightest pull of the bridle. It was a lesson that did not have to be repeated, and while it was unpleasant for the animal did not injure it in the least.

CARNIVAL PAGEANT AT PHILADELPHIA.
It took twelve months to make thic highly rmbroidered robe to be worn by the chief mummer.

A "Jug" in Name and Fact.

This city jail-of concrete-at Mansfield. Mo.. is. however seldom used.

QUICK OIL TESTER

AWESTERN firm has recently perfected a centrifuge for testing oil, which will be of great value to producers as it will determine the proportion of sediment, water and oil within a few minutes instead of the forty-eight hours or so required by the gravity test. The new device may be briefly described as follows: four glass flasks are set in aluminum cases which are adjusted about a vertical shaft in such a manner that they revolve with it, the centrifugal force, causing the flasks to stand out in a horizontal position and rapidly precipitating those elements which are heavier than oil. The improved type is driven by a motor.

This centrifuge is now being modified for the use of mining men for the testing of slimes.

Analyzes Oil in Minutes. Not Hours. Motor-driven device supersedes gravity test.

Life Saving Helmet for Use of Crfiws in British Submarines.
Escape is made from the sunken vessel-as shown-by coming up through the conning to wer.

CASTING A TATTERED BATTLE FLAG IN BRONZE.
One of the most difficult feats in the work of making statuary.

KULLING DAM IN MEXICO, ONE STEEL CYLINDER LOWERED. THE OTHER RAISED.

DAMS OF STEEL

IN the irrigated Laguna district of the Nazas River valley of Mexico, steel cylinders are being used for dams where the construction of water storage reservoirs and the control of the flood of water in the large irrigation canals are necessary. This type of dam is said to be

For Cutting Metal with Gas,
A tine spray of oxygon cuts like a knife through the heatud suhstance-an English invention.
specially adapted for use in streams which are given to sudden rises, as the cylinders may be raised and lowered.

The first of these rolling dams, as they are called, to be erected in Mexico was located on the San Marcos plantation, near Torreon. The dam is composed of two cylinders, each sixty feet long and eight feet in diameter. The cylinders form a water-tight reservoir when in place.

A second dam of larger size, the cylinder being ninety fect long and twelve feet in diameter, has been constructed in the same district, at a cost of about $\$ 250,000$. The cylinders are easily operated by electric power. They are raised or lowered on heavy racks, set in masonry abutments. Each cylinder is operated as an independent dam. The power equipment is placed on a masonry pier in the center of river or canal.

COACI-ITSELF INTACT-SPLITS ANOTHER IN TWAIN.
A must extraordinary railroad wreck that occurred at Clayton, Kansas.

A MODEL TOY MOTOR BOAT AS IT TOOK PART IN A "REGATTA" IN VICTORIA PARK. LONDON.

MOVING TRUNKS BY ELECTRICITY

ANYONE who has watched the baggage men at our railway stations tugging the great truck load of trunks about can not help feeling that a partial relief at least from their strenuous labor is due them if some invention will make it possible.

That this fecling has been shared by railroad officials is demonstrated by the development of a motor driven baggage truck shown in the illustration.

Two styles have been designed, one much resembling the flat truck we are accustomed to seeing on station platforms, the other having a drop frame as shown in the picture.

The latter style is for use at stations where the platforms are on a level with
the steps of the coaches, the other where the platform is on a level with the track.

Both styles are arranged to be driven from either end, thus saving the necessity of turning. All the wheels are connected with the steering gear so that the truck

An Electric Baggage Truck.

UNUSUAL TYPE OF BORING MACHINE IN USE IN SOUTH AFRICA.
The machine is compact and comparatıvely small, and yet has tremendous power.

A New Mountain Gun in Our Armi. It is light and compact.
is extremely sensitive to every touch of the steering lever, making it possible to handle it well in congested surroundings.

The capacity of the drop frame truck is slightly more than that of the other, being from 20 to 28 trunks, the weight

Stamese Actress of the Bettfr Class. Her costume is studded with precious stones.

The Equipment for this Gun Can Be Carried on a Horse
likewise also being somewhat greater. All bearings run on balls or rollers and the wheels are equipped with solid rubber tires.

The battery equipment consists of 12 cells and is so attached to the truck that it can be instantly removed and a freshly charged set attached.

The truck can be run at a speed of six miles an hour and is also supplied with a pedal brake at each end capable of stopping it in one-half its length when running at full speed.

Nhison's Flagship l'ictony. in Portsmouth Harbor. England. os a Gala Day.

Device for Testing the Heat of Flame.

HOW HOT IS FIRE?

HOU hot is fire may at first sound like one of the old catch questions such as, how colld is twice zero? and similar conundrums. As a matter of fact, however, this particular question is not asked merely to exercise the mental faculties, but because it is a serious scientific idea. the solution of which has been most practical in certain manufacturing industries.

In the manufacture of iron and steel as

Monument to Bismarck in the Town of Bismarck It is the custom in Germany to name small cities after famous Germans.

The New French Vedoyell Multiplanf. Its pilot is protected against wind and rain by a closed hood of mica.
well as in the chemical processes requiring great heat, it is often necessary to asccrtain the exact temperature of the product within the furnace. No ordinary instrument can be used for this purpose. Other devices have also been used but with only fairly accurate results, until the

New Radium Institute of London.
This is the world's center of sctentific research regarding the properties of this wonderful mineral.

ROLIFR SKATE RACE FOR THE CHAMPIONSHIP OF BERLIN,
The winner-No. 1-"running the round of honor."
invention of what is called the radiation pyrometer, an instrument which measures, with the greatest accuracy possible, the temperature of the interior of a furnace, although located on the outside and at a distance of several feet from the source of the heat. If two different metals are joined together and their junction heated, there will be an electric eurrent developed which will flow in a circuit, if one is provided. The more the point of junction is heated, the more current is produced. When we introduce into this circuit an instrument for meas-
uring the amount of electricity generated, and instead of marking the scale to read in volts or amperes, we arrange it to indicate degrees of heat, then we have a heat measuring instrument which may be near or far from the heat source, and yet secure the same accurate result. With the instrument shown in the illistration. p. 249, the temperature of a stream of molten iron is being taken, although the instrument is some distance from the furnace. In like manner the temperature of a steel billet may be taken as it passes between the rollswhich form it into a rail.

A FLORAL SUNDIAL. CHEAPLY AND EASILY MADE.

Mule That Lost His Mead.

SUDDEN DEATH FOR THE MULE

NOT long ago there was a mule at the Arsenal Barracks in Washington which had survived the period of its usefulness. In its day it was a pretty good mule, but it had become superamuated. The question was, what to do with it. Something sudden and merciful seemed desirable.

A young lieutenant suggested dynamite, of which there was plenty on hand. It was quicker, he said, than gunpowder. The idea seemed a good one, and a stick of giant powder with a fuse was attached about the neck of the mule, who indifferently awaited his fate, with all the calmness of a veteran.

It certainly was very sudden. A snapshot photograph taken of the animal when the dynamite went off showed it still standing on its four legs, but lacking a head. What became of the head nobody ever found out; but this much was tolerably certain: the mule was no longer alive.

$\$$

A TEST THAT TESTS

THE manufacturers of an improved steel window sash have devised a unique test to show the strength of the ventilator frame.

The combined weight of eight men was placed upon the frame, as shown in the illustration, in such a manner as to balance each other. In spite of this unusual strain the frame showed no tendency to break nor was it even sprung sufficiently to crack any of the panes of glass.

This unusual strength is due, it is
claimed, to the metliod of construction, the frames being formed from heavy sheet steel by means of dies muder tremendous pressure. The glass is loeld in place by small steel clips and a very small amount of putty. This method of glazing requires less time and trouble than the use of iron pins, ordinarily used in such frames, and fifty per cent. less putty.

It is also claimed that in case of breakage, glass can be replaced without the removal of putty from the surrounding lights as is required when iron pins are used to hold the glass in place.

The ventilator has a peculiarly designed outside frame at top and bottom, insuring an absolute weatherproof condition when ciosed.

A Window Frame That's Really Strong.

Novfi. Diversion for Athletic Club Members.

Mission Style Car on a California Tourist Rallofod

Boy Fills Sack as liasily as a Man.

SHOOT-THE-CHUTES IN A CLUB HOUSE

ATHLETIC clubs are up to the minute of progress in the installation of modern appliances and novelties for the physical well-being and entertainment of their members.

A famous athletic club of California recently installed in their tank in the gymnasium a shoot-the-chtites, which is a long track-like affair extending from the ceiling into the tank. It takes three seconds to make the trip down the slide, and a considerable bump has been erected in the center, which increases the pleasure and the speed during the second part of the slide.

4

SACK THAT'S PLAY TO FILL

" S° easy that a child can work it" is more often than not the misleading description ajplied to certain inventions which from time to time find their way on the market, but in the case of a new type of sack loader and lifter recently patented in England by a Salisbury agricultural engineer, the description would alpear to be fully justified. Tests have shown that one man or a fairly strong boy can raise sacks of corn, grain, manure, coke, etc., into wagons with ease, thus doing the work of three men and often saving the necessity of having to stop the lifting machine usually employed and all hands each time the wagon is to be loaded. The Andrews' patent sack elevator, as it is called, has a unique method of gearing and this reduces the expenditure of energy required to a minimum. The sacks are lifted by means of endless chains, with the result that the carriers do not lave to return for the next sack, either one of the steel carriers taking hold of the sacks as they come arouncl. The sacks are securely gripped and camot possibly slip off in transit ; the apparatus is nevertheless free from danger by the use of hooks, etc. The accompanying illustration shows a lad of nine years loading at wagon by means of the Andrews elevator. In this instance he loaded five sacks in two minutes. The elevator is strongly made of pitch pine, stecl, malleable iron and endless chain belting.

LAND AND SEA AUTO

THE amphibions boat herewith shown is owned by Rear Admiral Howell and he has developed a sccond model which he has been testing with a twentyhorse power marine motor. This remarkable boat after finishing its cruise on the water propelled itself with neatness and despatch up on the beach at Atlantic City, N. J., as easily as an automobile would travel upon the sand.

st
 A GIANT CACTUS

THE cactus known as "bisnaga-the water barrel-of the desert," is believed by the Indians of the Mexican plains to be the gift of the rain gots. Within its huge hollow cylindrical fronds the rain water collects and remains there fresh for weeks. Another water-containing cactus has its giant fronds sliaped like a luge candelabrum. This cactus also bears an edible fruit much the color of th pomegranate. The natives often make a preserve of it, which looks like raspberry jam. Other cactus fruits are eaten raw or boiled like vegetables.

The photograph is of a giant cactus growing near Lake Chapala-the highest navigable body of water on our continent -in the State of Jalisco, Mexico. This cactus growth is upwards of sixty-five feet in height and over one hundred in girth. It is of the variety known as the organ cactus because of the resemblance of its columnar-like fronds to the pipes of an organ.

QUEER KOREAN GAME

THE Koreans prefer stone figliting or throwing to any other game. Travelers soon learn of the art acquired by stone fighters, though there is but one day in the year given over to it. If any one offend a Korean, he answers with a stone. During the war between China and Japan, the latter found their greatest difficulty in dodging missiles from roof tops and trees. All classes indulge in the habit. It is said of a Korean woman she never fails to throw a stone straight. Within bounds she is as expert as a man.

On stone-throwing day, however, mere woman is restricted to curfew time for

Alitu That lravels Over Both Land anis Sea.

A Gift of the Gods.
So seems this water-bearing cactus to the tbirsty Indian.

Koreans Preparing for Thetr National Stone Throwing Game

A NEW STYLE OF MERRY-GO-ROUND, AS SEEN IN BERLIN.
The people sitting on the turntable are furnished with aeroplane wings, which they wave in a uniform direction until the table begins to turn slowly. As soon as it has started, it is easy to make it revolve quickly by waving the wings rapidly.
her pleasure as mpon other days. In the Land of the Norning Calm women are allowed on the strects only during curfew time, between wilight and early

l'maing Dhaboio with a Ifuman Being.
Mme, kenwe Furice, a young l'arisian woman, nithtly draws a larse andorner at the Nonveru Cirque. The spool In which she is carried. rolls along the wire cable, and finally lands in the net.
forenoon. During the day they are in seclusion.

In preparing for the fete, towns and villages put aside a goodly sum of money for the wounded, and to buy prizes for the champions. Queer bands, composed of strange instrmments, mostly drums and moon fiddles, amonnce the opening of the festival. The participants are drawn up in two sides like an army in battle. At the signal, stone throwing begins, and soon the rules are laid aside, and the game becomes hot and furions. Game is called by some member of the squirenoble class, a village elder or a court official.

1)owny Nestifg of the Fisi Iferon.

These little fellows might, at first glance, be taken for some weird little monsters. "They certainly bear very slight resemblance to their long-limbed, long billed. lung necked parents.

COMBINATION HOSE AND CHEMICAL AUTO USED BY THE SPRINGFIELD, MASS.. FIRE DEPARTMENT.

AN ELECTRIC FIRE DEPARTMENT

SPRIN゙GFIELD, Mass., has the first conplete electric fire department in the United States. While gasoline electric fire fighting equipment is used in many places in the conntry the manufacture of efficient electric propelled vehicles for such work was not possible until recent improvements were made in the storage battery. Electricity is much more dependable than gasoline and as the storage batteries are constantly connected to the charging mains while the apparatus is in the engine house there is no danger of the cells being discharged, as they have a capacity of about forty miles, which could hardly be exceeded on any

A Common Spectacle in Lapland.
The deer is used as we employ the horse, in the snowy country of the far North.
one trip, unless there was a call for assistance from afar.

Two pieces of the new electrical fire apparatus are in use at the present time, one a hook and ladder truck laving a maximum speed of twenty miles an hour and eighty cells of battery, and the

Picking Up the Mall.
An apparatus for use on exprens trains that do not stow at small towns. It is the invention of a swedish engineer.

A New Aeroplane Sleigh.
This is the invention of a Girman. The sleigh is drivith over the snow, as an acroplane ts through the atmosphere, by means of the propeller.
other a combination hose wagon and chemical engine, having a maximum speed of thirty miles per hour and the same number of storage cells. In the accompanying photograph the wheels look peculiar to anyone accustomed to see the open spoked wheels usually employed on such fire apparatus. The wheels are simply electric motors with the tires placed on the rim over the field magnets and the armature serving as the axle.

A Rattlesnake's Business Tomas.
These fangs show, by front and side view, the form of the se poison injecting weapons. The poison is scupezed through the slit in the fangs.

This does away with all gearing, differentials, etc., usually employed on automobiles, and applies the power directly, without any transmission loss; to the ground where it is wanted.

ENORMOUS YIELD OF GRAIN

REMARKABLE results in the way of enormous yields of Egyptian wheat have been obtained in the lower Rio Grande Valley, on the American side. according to authorized statements made ly the Texas state department of agriculture. This grain belongs to the same family as kaffir corn and milo maize. Upon the rich lands of the valley of the Rio Grande it is grown by means of irrigation, and produces two to three crops per year upon the same land from one planting of the seed. The second and third crops spring up from the stubble and give yields equally as abundant as the first crop. In several instances these yields amounted to 100 bushels of grain for each crop, or a total of 300 bushels per acre for the three crops, all harvested within a period of nine months. The grain is used chiefly for feed for live stock, although a wholesome flour may be made from it and used for bread. The stalks and foliage of this Egyptian wheat are more delicate than that of either kaffir corn or milo maize and the yield per acre of this forage is very large.

Such a heavy yield of grain is, of course, me of the most remarkalle ever recorded.

Third Crop of Lgyptian Wheat from One Planting.
The total yield on this Texan land was 300 bushels to the acre.

CRANE LAYS RAILROAD TRACK

TIIIS picture shows a novel methot of taking up or relaying railroad track with a regular wrecking erane.

This was done in comection with the building of the second main track and grade revision of the present main line on the Northern Pacific Railway between Staples and Phitbrook, Minnesota, in 1910. The track on the left is the second main and on the right the present main line, the grade of which is to be raised. The track in the center is the contractor's narrow gange road used for hanling material into the fill.

The sections of track were laid temporarily on the left shoulder of the fill and hater were relaid to proper alignment when the right side was built up to grade. About one mile of track was raised in this manner in six working hours.

SETTING NATURE RIGHT

I[N an attempt to rectify a mistake of Nature a minue experiment is being tried at the Cincinnati Zoological Garden upon a two months old baby llama. The little fellow was born knock-kneed and to save the career of the valuable animal a set of mustal braces were made to straighten the crooked forelimbs. Varions experiments were tried to rectify the mistake but not until the braces were secured was success apparently assured.

Taking Upa Section of Rallroad Track with a Wrecking Crane.
Ingenious civil engineers often create unusual and unexpected short cuts.

TryiNg to Straighten the Lfgs of a Little KNOCK-KNEED LLAMA. The little fellow was born at the Cincinnati Zoological Gardens.

Wearing his steel supports, the little valuable animal is able to walk around without his weak knees bothering him. This is the first time such an experiment was ever attempted upon a wild animal, and it is to be hoped it will prove a success, to offset the shabby trick that Nature has so unkindly played him.

Not the Model of a Gigantic Foot. But a Net For Wiarring on Mosquitues.
They are fighting the draded malaria in the Island of Mauritius, by thus trapping the winged pests.

A FRENCII AEROPLANE THAT CAN FLY IN THE AIR AND RUN OVER LAND OR WATER. When traveling along the ground or through the water, the planes are detached.

"TEAMING" A BOILER

THE difficulties of heavy freighting in the Southwest are indicated in this photograph which was taken in the mountains of southern Arizona near the Mexican boundary. Sixteen draft horses are required to haul the boiler over the steep grades to a mine. One of the great difficulties lay in the fact that there were a number of "hairpin" and "horseshoe" bends in the road. Along a good part of the way the cliffs dropped straight down for two hundred feet or so below the roarl, so that any fright on
the part of the horses or lack of control by the teamsters would have caused very serious results.

Even these hardships are slight compared with the conditions of two years ago when pack burrows were used, as there were no roads at that time. It was then necessary to take all machinery apart so that each piece could be hauled by one or two burros. A bed plate which was too heavy to transport otherwise was sawed in two, hung on an axle between two wheels and worked after prolonged exertion ly a gang of Mexicans over the mountains.

G.IS WELL ON FIRE NEAR HAMBURG. GERMANY.

The outburst could not be checked, and had to be fired to purify the atmosphere.

REMARKABLE OUTBURST OF UNDERGROUND GAS

W HILE workmen were boring for water during the begiming of last November near Hamburg, gas suddenly came out of the boring pipes, expending itself as three gigantic flames. The bore hole was 600 feet deep. There was an enormous heat, the engine in front of the fire getting red hot. Owing to the gas coming out of the narrow pipes with such pressure, however, so much heat was absorbed that the top hole was temporarily covered and finally entirely shut up by ice.

No use has yet been made of the gas,
but in the beginning of December it was extinguished and covered with a huge iron bell. The gas escaping, however, poisoned the air, so that it lad to be lighted again and was burning with a bigger blaze than ever at the end of December. This phenomenon attracted huge crowds of people from all directions. On a bank holiday about 120,000 people went to the place, sixty special trains rumning from Hamburg and five special trains from Lerlin, which is about 200 miles away. Along the road from the railway station to the blaze there were hundreds of tents for beer and sausages, and roundabouts. Good business was done ly men selling balls of cotton wool

A Bold Woman Moun TAIN CIIMRER.
On the Schoaporn peak, in the Swiss ADPs,

A Slets Similair To A BICYCLE.
It is propelled by a rod near the center.

A Clfypr Intention of a Cieyfr hmprifat.
A. L. Wilaman and his auto sid.d.
to be put into the ears as the noise caused by the exploding gas was tremendous.

\&
 COMMEMORATES BALLOON FALL

ABOUT four miles from Ware, in Herefordshire, England, may be seen a stone, depicted here, marking the spot where the first English balloon fell or lander.

It bears the following odd inscription: "Let Posterity Know And Knowing be Astonished That On the 15th Day of September $178+$ Vincent Lunardi of Lucca in Tuscanny The 1st Aerial Traveller in Britain Nounting From the Artillery Ground in London and Traversing the Regions of the Air For Two Ilours And Fifteen Minutes In this spot Revisited the Earth On this Rude Monument For Ages be Recorded That Wonderous Enterprise Successfully Achieved By power of Chemistry And the Fortitude of Man That Inprovement in Science Whitls The Great Author of all Knowlenge Patronizing hy Itis Providence The Invention of Mankind llath Graciously Permitted To Their Benedit And To His Own Etcrual Clory.

Where the First English Balloon Fell.

A Belfeyer in Feminine Dress Reform.
A familiar figure on the Paris boulevards.

The Strange Way in Which Cocoa Pods Grow on the Trfe.
They project from the trunk in odd protuberances.

An Oil. Dfrrick of Nfw DFSIGN in USE in Penisylvania.

A Ram with Four Horns from the Cedar Mountaliss in South Africa.
A curiosity that aroused interest in Capetown.
 planf: in Flight.

NEW TYPE OIL DERRICK

ON this page is shown a plotograph of a new type of oil derrick recently put into use in some of the oil fields of the eastern states. This rig is found to be fully as serviceable as the old standard plank rig and can be built at a fraction of the cost of the old style derrick. In fact to the scarcity and high price of lumber is due the introduction of this modern type of rig. The derrick shown in the picture is in operation in the Pemnsylvania oil fields and is 61 feet high. The legs, spliced near the center, are held together by clamps, having been put together on the ground and raised with the drilling machine.

*

ELECTRIC RECORDING COMPASS

THROUGH the agency of delicate contacts on a compass, and the communication of the corresponding electric currents to a recording stylus controlled by two magnets, an electric recording compass has been perfected loy a Western inventor which promises to become indispensable to the mariner. The compass proper makes the observations automatically and communicates them through two conductors to the recording mechanism enclosed in a cabinet in the pilot house or elsewhere. The device is

The Etrich Monoplane on the Earth. It seems to rest like a huge bird.

Church Bells on a Tree.
This was a scune in Santiaco after the imerican bombardment. The church being destroyed. the undaunted priest found a place for his bells.

Eifctric Compass with ReCorder, CONnEcted FOR USE.

The Negro as He Is Today.
so designed as to produce a contimous record of the direction of the ship with relation to time; so that the direction in which a ship was moving at any hour and minute can be determined at a glance by the officers in charge at any time thereafter from an inspection of the records produced.

The clock movement which controls the chart in the recording mechanism allows it to pass by the recording point $21 / 2$ inches every hour. The clock is wound by electricity automatically and requires no attention whatever on the part of any human being, the mechanical laws of Nature carrying out the essential work
as Nature only can. An ingenious feature of the instrument is the circuit changer, which automatically throws the instrument on a set of batteries if the dynamo current for any reason should give out, and again switches the dynamo current in when it is again in operation. Each chart lasts 31 days and the time and date is printed thereon, the time being graduated to five minute spaces, so that it is the easiest thing in the world for any one acquainted with the work to ascertain whenever it may be so desired, the time down to the fraction of a minute.

The Solthern Nfgro in Ante-Bellum Days.

TIE MATERIAL EVOLUTION OF THE NEGRO RACE.
Models made by a well-known sculptor who keens his adentite secret. This photo shows the landing in America of the first negro slaves.

NO WONDER THE WEALTH OF THE NATION CENTERED IN THE CITHES!"

THE TECHNICAL WORLD MAGAZINE

VOL. X V

JUNE, 1911
N O . 4

FROM FARM TO TABLE-THE ROAD OF A HUNDRED PROFITS

By

A GNES C. LAUT

There is a national pickpocket who snatches 75 per cent. of the farmer"s profit and 80 per cent of the city man's income. He exacts a toll both going and coming, and his operations furnish one cogent reasun why men are driven from farm to factory and country to counting house, and why the country man cannot make and the town man cannot save. This article suggests a remedy for the national pest.

AMAN and his wife had given mp farming in one of the lest fruit regions of New Yock State for what they thought a more lucrative position in town. As they were taking the train away, children came selling grapes around the station at 2 cents a box.
"Don't let us open the suit case! We can buy these grapes just as well in New York," demmred the man.
"But the express charges," suggested his wife.
"Won't be more than a cent a box for those! I should know! J've shipped enough of them."

But on arrival in the city, what was the man's amazement to find he could not buy that 2 -cent box of grapes under 40 cents.

Forty cents! The ex-fruit farmer rubbed his eyes. That was an advance of 2,000 per cent. on the price the buyers used to pay him. How in the world was the price made up? Express was only 1 cent. That brought the cost to 3 cents as the box reached New York. Allow 1 cent more for risk and handling: + cents. Now 20 to 40 per cent. advance is a high profit for a wholesaler ; at most, so far only 6 cents. Add the retailer's profit
of another 20 to 40 per cent. At most, the grapes should not be marked to exceed 10 cents. What unseen hand had jnggled prices up to 40 cents- 75 per cont. too high for the man who eats; 2,000 per cent. too low for the man who grows?

The city man had not added 1 cent to the value of the grapes. He had mot paid for the labor and the forethought and the care and the first outlay of growing them. All that hat to come out of the 2 cents paid the grower. Give the wholesaler and retailer each a profit of 100 per cent. That would bring the grapes to only 16 cents, not 40 . Was it a skin game both going and coming? Did it skin the man who profluced the food; and then skin the man who consumed the food?

And who got the big increment? That was the question. If the grapes had paid the grower a flat 10 cents, he could have made his fortune on the farm and put away 80 per cent. profit on investment. All these farm-improvement evangelists -railroad men, chambers of commerce, pink-gloved professors - could stop shouting themselves black in the face preaching "loack-to-the-land." If farmers could put away 80 per cent. profit a ycar,

IS THE COMMISSION MARKETS. WHERE TIE PRICES OF FARM COMMODITIES BEGIN TO SHOOT SKYWARD.
chains and wild horses and regiments of rifles could not keep them off the land. If the farmers were putting away 80 per cent. of the first cost of their land a year, there would be such a rush from factory back to farm as would outsprint speed laws. If farmers conld earn even 50 per cent. on capital insested, there would not be a banker in the United States. from Iletty Greenc to I'ierpont Morgan, who would not turn farmer quicker than a motor car turns turtle. And after all, aren't the farmers the bank of the nation? And what per cent. do they make on their investment? This man knew when he had to let grapes rot, or sell for 2 cents, he was not making 1 per cent. on his investment. He was not breaking even. II had to quit.

Why, he could have afforded to pay the freight, to pay the New York end of the handling, to pay a man to look after the sales, and still have put away 50 per cent. profit on his grapes. Then, he wanted to knock his head against something: for wasn't that exactly what he had leen doing, though he did not know it? Paying for the freight-that is, his
price had been knocked down so buyers could pay for the freight out of what should have been his profits, leaving their own profits intact. Paying for the New lork end of the handling-that is, knocking his prices so low it left them margin to pay that liandling. Paying the risk whether there was loss or not. Paying the wages of the salesman out of what shond have been the farmer's margin. Paying the New York extortionate gromed-floor rents-the big grocery, where the ex-farmer made his first inquiry, was on Broadway and paid a rental of $\$ 12,000$ a year. And then over and bevond these preliminary charges against the grapes, paying a clear dividend of about 500 per cent. each to commission man, wholesaler, retailer.

No wonder the wealth of the nation centered in the citics! No wonder the boys and girls broke away from the farm to pursue that wealth! This sort of game made the farmer's nine-billion-a-year crop a sort of sluice box for depositing gold in city vaults. When the farmer, however, wanted a loan, he had to come on his knees to those bank vaults for it.

They might yell "stop-stop" till they were hoarse, that farmimprovement crowd, at the exodtus from country to city. If they really wanted to turn back the human flood, they would have to turn back some portion of the big moncy sluicing into those city vaults. Long as the gold flowed to town, so would the boys and girls; though you might preach your head off at the folly.

But, perliaps the grapes were an exception owing to their perishable nature. Your ex-farmer continued his firstland investigations of the things he used to grow for the city man to eat. The more he investigated the hotter he grew. This is the record his accounts showed at the end of a month:

Potatocs, price paid the farmer 35c; cost to the city man $\$ 1.50$; advance 300 per cent., of which only 30 per cent. went for freight and handling in the case he investigated.

Asparagus, price paid the

If the Farmer Thinks Me Gfts a Good Price for Eggs, Hf should see the Huusewife's Bill.

On the Tables of Hothls. Strawbfrries Retailf at Twenty-five Cents a Dish, ur One Dullar a Quart-

Eggs, country price 20c to 48 c a dozen, or 2 c to 4 c an exg ; cost in hotels 30c for two or 15 c an egg; advance 400 to 800 per cent.

Apples, price paid grower $\$ 2$ for a 10 -dozen box, best grade, or 20c a dozen ; cost to city man \$1 to $\$ 1.50$ a dozen ; advance 500 to 700 per cent.

Oats, price paid farmer lc a pound: cost of oatmeal 7 c to 10 c ; advance 700 to 1,000 per cent.

Cabbage, price paid

30 c to 40 c ; a neat little advance of 400 per cent.

Wilk, price paid the farmer to : cost to the city man Sc ; advance 100 per cent.

Pork, price paid the farmer 4 c to 6 c ; cost to the city man 20 c to 30 c ; advance 500 per cent.

Hood. $\$ 3$ a cord ; city price $\$ 8$; cost of cutting $\$ 2$; alvance 100 per cent.

Strauberrics, 10 c a quart or 2c for a quarter dish: cost in city hotels 25 c a dish or $\$ 1$ a quart-an advance of 1,000 per cent. No wonder there were milliondollar eating-places and twelve-milliondollar hotels.
farmer $\$ 1$ per 50 cabbages, or 2c each: cost to city man 10c each; advance 500 per cent.

Tomatocs, $\$ 2$ for 24 -pound crate, or 8 c per pound; cost in town 25 c per pound : advance 300 per cent.

Becf, per steer $\$ 50$ to $\$ 60$ to the farmer ; cost to city man figured out on the basis of prices paid in the Senate Restaurant $\$ 2,000$; advance 3,000 per cent.

Wheat, $\$ 1$ per 60 pounds; breakfast cereal 15 c a pouncl, or $\$ 9$ per 60 pounds.

Bread, Sc to 10 c per pound; advance 800 to 2,000 per cent.

WHILE THE FAKMER WAS PAIt BUT TEN CENTS A QUART.

$\begin{aligned} & \text { WHAT'S TIIE REASON FOR THIS? THE FARMER GOT TIIRTY-FIVE CENTS A BUSHEL } \\ & \text { FOR POTATOES- }\end{aligned}$

Now our farmer-man hat not gone far in his investigations before he became convinced of several things. Railway charges did not account for the difference between the price on the field and the price on the city market. The farmer alone created the wealth: but lie didn't create it for himself : and he didn't create it for the consumer. He created it for the man who came between the producer and the consumer: in a word, the middleman. A sort of colossus, or giant, that middleman appeared, as you thought about him, with one hand picking the farmer's pocket and the other hand digging into the city man's coat tails: with one foot ont on the farmer's back and the other foot solidly planted on the consumer's stomach. But as our farmerman was not a Sir Galaharl to knock his head against stone walls or a Don Quixote to tilt wind-mill theories, he accepted the gospel of things-as-theyare, and came to a still more pertinent and personal conclusion. The town was the place to make big money. The town was the place to come to: and so the farmer comes and comes and comes in spite of the cry "back-to-the-land"; comes with Dick Whittington's hopes in his heart to make good, and save money, and get in on this game that skins both going and coming; or know the reason why.

Before many weeks passed, he knows the reason why making goorl as a city man is still harder than making good as a country man. It is that matter of sazing before you can get in on the game. Your farmer-man does not begrudge the railway its freight-even for dividends on watered stock. He does not begrudge the wholesaler and retailer their 20 or 40 per cent.; or the milk people their $\$ 8,000,000$ surplus; or the pork packers their 500 per cent.; or the mill men their 1,000 per cent. He would make all that for himself, if he could. It is, that having been skimned off the land and forced to come to town, the high cost of living now skins him out of that margin he was going to save. The town salary that looked so big when he was out on the

But the City Consumer Paid One Dollar Fifty a BUSHEL.

For Whfat, the Farmfr Got One Dollar fok -IXTY POUNDS-
farm has a surprising way of melting to nothing at the end of the week when bills are pail. He is no longer a proalacer. He is a consumer. He is the man who is paying 75 per cent. too much for those grapes that ought not to have cost more than 10 cents.

If those potatoes could have bcen sold direct from the farmer to the city man for 75 cents, it would have netted the farmer 100 per cent. profit and saved the city man 100 per cent. cost.

If that asparagus could have gone straight from the producer to the consumer at 15 cents, it would have netted the farmer 100 per cent. profit and saved the city man 100 per cent. cost.

If that milk could go direct from farm to table, at the present cost of producing milk, the farmer could make 66 per cent. profit and the city man save 33 per cont.

Pork at 12 cents to the farmer would give him 200 per cent. profit and save the city man 100 per cent. cost.

And so on down the list as supply and demand determined natural values, with the undue depression of the middleman's foot removed from the farmer's back and from the consumer's stomach.

If this farmer-man were a story-book hero, he would rise from his figures fired with a great purpose to bring producer and consmmer together: but he isn't a story-book hero. He is just a plain ordinary person, one of the million and million who have gone from country to
town to find the same insidious and unseen hand picking the same old stupid pocket.

If you want to know whether his figures are based on fact or fiction, just consider a few well-known cases that are on record.

A farmer in New Jersey sold two hogs on the local meat market at the current prices for live squealers. Before going home, he asked the butcher to keep a couple of hams for him. A week later, he came around for the hams and asked for the balance of the money coming to him. The meat man presented him with a bill for $\$ 2.85$ over and above the credit due for the live hogs. A like case is on record of a similar dicker in lamb. Why did the farmer sell at the low price of 4 to 6 cents, and buy at the high price of 25 cents? Because your middlemen are so leagued together, the prices are-one camot say "fixed"-but uniform; and the clealer breaking those uniform prices will have to look out for independent means to supply himself with meat.

There was a great scarcity of turkeys one Thanksgiving. Vermont farmers supplying the Boston market could not understand why in a scarce year prices ruled uniformly 12 cents a pound lower than beef or bacon. A written agrecment in restraint of prices would, of course. have been unlawful; but the fact remained, not a commission agent offered prices above 12 cents. The Vermont farmers picked and dressed their turkeys.

Anu Bread Sold at Eight to Ten Cents a Pound.

Then they pushed a tiny letter inside those turkeys, amidships, telling the unknown city buyer what price was paid in Vermont and asking him to write back from Boston and report what price was charged there. The letters came back. Boston had paid 36 cents a pound for its turkey--an advance of 300 per cent.
Or go West! A rancher in Washington found it hard to make ends meet. He could not sell wood at any price. His beef brought only 4 cents, his pork 8 cents. He went in one winter to Spokane. Wood was selling at $\$ 8$ a cord, beef at 30 cents, ham at 35 cents.

A Michigan fruit man sent a specially fine lot of grapes by water-freight to Detroit. He realized only 10 cents a basket. He traced up that fruit. It had sold for 20 cents to the city people. One of the big potato growers of Maine sent a car load to a Mlassachusetts city. The commission agent credited him at 35 cents a bushel. Deductions of freight and commission left only 19 cents a bushel. Those potatoes sold in Springfield at $\$ 1$. Another Maine man sold his at 36 cents. They sold in Boston at SI.15. A North Carolina trucker sent a half barrel of beans to New York. Deducting express and commission, they netted him only 78 cents. They sold in New York at \$4.

Secretary Wilson says the farmer gets but 55 per cent. of the consumer's price. Mr. Yoakun says the middleman gets 60 per cent. of the city man's price: and whichever is right, the fact remains that the farmer is not getting market value for what he sells, and the city man is not getting farm value for what he buys. The same unseen hand is guilty of the underpay on one side and the overcharge on the other. And the hand that picks

Between the Field and thf Table. Tomatofs Managed to Advance Three Hundred Per Cent.
the pockets is not the hand that toils. The middleman has not added one cent's value to the farm proditce. He has been the drone of the commercial beehive.

We scorn mediacval legends of vampire monsters devastating whole country sides. No stuch old wives tales for us, thank you! Yet the high cost of living had reached such a point that in one city alone last winter-Brook-lyn-more than three thousand clildren had to be taken out of school because parents could not afford to supply them with breakfast; and these youngsters were put to work on the industrial tread mills : whether the mills of the gods, that grind so slow and so exceedingly sure, I don't know. They may have been.

We have nothing but the most scornful pity for the people of middle-age Europe, who permitted monopolists to grind them down to destitution. Italy, France, Spain-all passed through that era when country districts were literally depopulated by the advent of the tax collector. So extortionate were the demands on the tiller of the land, that the tiller literally deserted his land; and vast tracts of it fell into the hands of the very monopolists who had fattened on the farmer's poverty. Why did the people supinely permit their own ruin? They were in the majority against their oppressors a thousand to one: but the monopolists were organized, a unit, in a word, an army. In Rome, free citizens actually sold themselves into slavery to pay their debts. Does history repeat itself under protean form? Herbert Spencer declares industrial pressure may develop greater hardship and destitution than the slavery of feudalism. Calamity howlers are at a discount in optimistic America ; but isn't it worth while looking at a few facts, showing a little nerve in the
matter, without blinking or side-stepjing?

In one state alone, New York, 400,000 people have deserted the farm for the city. Why? In another state-V ermont -rural population has gone back in many places 10 per cent. in ten years. Last year, the Russell Sage Foundation experts investigated what it cost in New York and Pittsburg at the lowest possible figure to sustain a family of five. Twist figures which way they might, those experts could not force the total lower than $\$ 600$ for a year. Now the average wages of the average unskilled worker in the United States are not $\$ 600$ a year. They are under $\$ 500$. What is the restult? Did men sell themselves to pay their rebts? Not at all! The experts found whenever the price of meat went ${ }^{11}$). these people did without it. As the prices of food mounted the ascending scale of the last five years, the number of people renting dark inside windowless tenements increased. That is the way the game that skins at both ends works when you follow it off the market into the homes of the poor.

There is no use shouting vaguely in the air against "trust-trusts." If you bring a bill of indictment against the trusts, they are going to say "prove it."

And there's less use telling men living is high because lots of gold is coming down from Alaska. More gold has gone to England from South Africa than has come to the United States from Alaska; and prices have not gone up correspondingly in Englant. American meat sells cheaper in England than in the United States: and last year eggs were being imported to the Ltinted States from England because the price was cheaper. It is not convincing to tell a man hard up from high prices that his pocket book is empty becanse there is a lot of gold. IIe wants to know where that lot of gold goes.

And there is no use lecturing the farmer about his dutics to stay on the land and feed the city. He is going to answer "show me"; and if you can show him more jorofit on the farm than in the factory, chains won't keep him in town.

Nur is it logieal to scold at the midelleman! He sees his chance for 500 per cent. profit, and he takes it, just as you
or I would take it in similar circumstances. If you accuse him of high priccs, he goes into elaborate explanations of risk and loss on perishable products and the expense of big storage plants in congested centers, though that hardly explains why it paid the cold-storage men this last year to clump millions of dozens of eges in the sea rather than break 50 cent prices. White eggs were costing f and 5 cents each in New York and Chicago last winter, and were being imported in shiploads from Europe and Asia, colt-storage men were talking scareity; but no sooner did half a dozen states prepare to pass laws forbidding the storage of food products for longer than a year, than those same cold-storage men who had talked scarcity began fumping old eggs by millions of dozens into the sea. Prices dropped from 50 and 60 cents a dozen to 8 cents; and the stored eggs could not find purchasers. The storage men explained the egrs had been dumped into the sea because they hat spoiled. The public that had been paying 60 cents a dozen wanted to know why those eggs had been held so long they had spoiled. Butter tumbled from 40 cents to 30 , the lowest in ten ycars, thongh the number of cows had not increased; neither had the butter eaters decreased. And the drop in perishable foorls within a week reacted on canned goods because people stopped buying canned regetables when they could buy the fresh cheaper. In fact, for a family of three, the differences in prices from the time cold-storage laws forballe longtime keeping of food would run from 25 cents to $\$ 1$ a day in food purchases.

But this sudken glat of the market from sudden release of stored foods can hardly prove other than temporary, like the (Iron) in Wall Street values when certain court decisions have compelled speculators to sell. Long as the middleman plies his shuttle-like trade between prolucer and consumer, he will regulate prices. And can government regulations put him out of business? Would Supreme Court decisions sustain such regulations? It is so easy to hoist on the shoulders of goternment the duty that each man can and ought to fo at first hand. The first people in the United States to wipe out the middleman have been the irrigation
farmers of the IVest.

How? By getting together.

Why? Because the excessive cost of irrigation compelled the farmers to work together and pull in the same dirction. When a valley of, say 20,000 people, all dip into the same well for water, all draw prosperity or failure from the same ditch-there has to be harmony: In the East, each man is still dipping in his own little individual mud puddle. While Abram's herders quarreled with Lot's, the bandits stampeded the profits-same old problem as in scriptural days, isn't it? If irrigation never accomplished anything more than compelling co-operation, than peinting the way to elimination of the middleman, it would mark a new era in national life. In teaching commmities how to use the same water; how to fight frosts and insects together : how to incorporate so they can borrow at lnwest rates- 2 per cent. instead of 6 per cent.: how to buy all supplies wholesale : how to keep their own agents on the big world's markets; how to provide coldstorage warehonses and cars for their own perishable produce - irrigation has pointed to the one and only effective way to eliminate the middleman, a way that avoids costly long-drawn-out appeals to the Supreme Court.

You may think the remedy snunds too easy to be true. Don't flatter yourself! Try it, if you think it casy ! Last year, when city people on salaries were feeling the increased cost

The Farmer Sells Mis Pork at from Four to Six Cents a Pound-
of living almost uncodurable, a group of railroad men in a Pemsylvania city arranged to send one of their number to the country to lay direct from the farmer and save the swindle that cut the farmer 50 per cent. and jacked the buyer's price up 50 per cent. The office man hired a rig and drove out. At the first farm where he stopped he found the farmer busy in the barn.
"Good day," saluted Mr. Office Man. Mr. Farmer returned a gruff grunt with the cordiality ordinarily accorded a burglar: Undaunted. the city man launched his evangel. The farmer straightened up and listened. Wheat was selling at 60 cents in the country, butter at 22 cents, apples at $\$ 1$ a barrel, ete. The city people purposed paying an advance of 20 to 40 per cent. on these prices if they could induce the farmers to guarantee definite supplies for the year.
"But the prices might go higher."
"But we are guaranteeing you 20 per cent. higher than you have ever got."

The farmer hummerl and hawed and rolled the sug-

W'hen Laid on the Consumer's Tarlef in thy Form of Chops. It Has Gune Le Fivi. Hundred Per Cent. gestion backward and forward for an hour looking suspiciously for some graft. Then he found a loop-hole of escape from the convictions t hat had been forced on lim. "It was like this, you see. His three boys were not home-c ouldn’t induce them to stay on the farm. Queer -wasn't it? One was getting \$40 a montly as a street car conductor, another $\$ 30$ in a fac-

Two Cents + Hfad on the Farm-
tory; and so on. Who was going to do the extra liauling? He hadn't time."

In vain, the city man pointed out that when city people sold goods, they also delivered them. Well, Mr. Farmer was not going to, so there-He didn't think much of the idea anyway. That office man went back withont any supplies. If Ar. Farmer had had an annual water tax of from $\$ 1$ to $\$ 6$ an acre. and would have had his water shut off if he didn't pay,

Ten Cents a Head in the City. And the farmer doesn't get the profit.
it is a safe wager he would have given different consideration to that plan of co-operation.

But all efforts to wipe out the midrlleman have not failed in the East. Wherever the compulsion has been acute enough to compel union, the middleman has had to go.

In Erie, Pemnsylvania, in December, 1899, sixty dairy men decided that milk rates did not yield a living wage. For each dairy man to become an independent peddler would send prices still lower by competition. The sixty men signed a five years contract to do no individual peddling but to act only as members of the Erie County Association. Ter wagons were cut down to two. A threcstory cold-storage milk plant was put up at a cost of $\$ 26,000$, witll $\$ 13,000$ equipment, the expense being met by the members buying shares, though they paid only a percentage down for the shares, paying the balance in their milk deliveries. All milk was certified sanitary. All unsolel product was utilized in ice cream, etc. Today, that dairy association has fifty-five employees, twenty-three drivers, twenty-two office men. The first year, returns amounted to $\$ 100,000$. In 1909, sales totaled \$225,000. Deducting wages, the net returns can be estimated. Of course, it was not all easy. Independents, big and little, fought them bitterly for two years, and caused diminished returns. The milk was delivered to the factory on a contract of muder + cents a quart, or about the same price paid by the big companies: but in this case, the profits went to the farmer, not to city shareholders. It is impossible to put the returns in terms of net profits to the farmer: for in each case, the profit would depend on the quality and cost of the cow.

The point is-by co-operation, the farmers got all the returns the big buyers would have paid them, plus their share of profits, which would otherwise have gone to the middleman. This scheme is practicable only in proximity to a city;

Bossy Dofsn't Know How Highly Her Product Is Valufd-

Exchange has realized 10 cents higher a bushel than by the former haphazard sales. Profits for two seasons amonnted to $\$ 200,000$--profits not for the middleman but back to the farmer.

In Monmonth, New Jersey, the farmers of a co-operative association made 29 per cent profit in one year on a milliondollar business. Truck and fruit were shipped to one-hum-dred-and-thirty-six cities and twenty-three states. Fertilizer and seed were sold at wholesale to 800 members.

In Norfolk. Virginia, is a union of 400 truckers who have made 100 per cent on their capital stock, and saved ten times over the face value of their stock in wholesale purchase of seed and fertilizer.

In Mercer County, New Jersey, owing to a slack market, farmers found they were losing on small vegetables. Tomatoes rotted before they could be sold. In 1892, a canning factory was organized in a town of a thousand. Stock was sold at $\$ 50$ a share. The plant put up cost almost $\$ 6,000$. Land here yields 6 tons of tomatoes an acre, for which the fac-
but it is worth noting that seventeen counties in the Eastern States have dairymen's leagues aiming at such elimination of the middleman.

Over in Long Island, farming has become trucking for city supplies; and the l'armers' Exchange of Riverhead with a capital of $\$ 12,460$ has done in 1910 a business of almost half a million. Each member's fee amounts to about $\$ 20 \mathrm{a}$ year. The shares to make up the original capital were valued at $\$ 5$. If yout divide the gross returns by the number of share-hokders-600-you can figure out that the members of the Farmers' Exchange reaped ample return for the annual fee of $\$ 20$. Produce is shipped by boat. The salaried manager resides in New York and handles the stuff exactly as a commission agent, only the commission goes back to the farmer ; and the full city price goes to the farmer instead of a dozen city middlemen.

In Eastern Long Island, a Potato Exchange was organized by the growers. This exchange performs the same functions as the fruit associations of the West. Only the best seed is bought, never culls, and it is planted by machines. By wholesale purchase, the Exchange saves its members 8 cents a pound on insecticides and $\$ 2$ a ton on fertilizer. The saving on fertilizer was $\$ 20,000$ in a single year. In prices, the

The Darryman Delivers His Milk at Four. the Mindleman at Eight Cents.

Thf Farmer Sells Wood at Five Dollars a CordIt costs two dollars to cut it.

The Cunsumer Must Pay Eight Dollars A Cord.

But how is your isolated up-state farmer, living amid such mon-progressives as sent the office man home unsupplied-how is he to wipe out the middleman and remedy conditions? For him, there is only one way, loy hook or crook, by some such ingenuity as the Vermont turkey raisers tried, to get in direct touch with the city buyer. Up in Maine, a farmer and his wife excelled in fancy cheese: but how to get a price for it? They began exlibiting at county and town fairs with name, address and price displayed. It took just five years to work up more orders than they could fill.

In Demmark, 162,000 cooperative farmers sell \$78.000,000 of dairy produce a year, an average of more than $\$ 1,000$ a momber. In Russia are 800 en-(ヶ) erative milk factories using the product of 700,000 cows. In Germany, there are 19,000 similar socicties.
tory pays its shareholders $\$ 9$ a ton. In addition, all profits from factory go to the farmers who are shareholders. Up in Livingstone County-the most prosperous county in New York-the farmers have organized weekly exchanges where produce can be sold as on a city grain exchange.

Down in Berkeley County. West Virginia, the frnit growers not only have an association similar to those in the West, but they are holding apple shows, apple carnivals, and festivals to promote the spirit of mion and progress. "l'shaw," says your practical man,"I'll take all this sentiment in cash." All right, here is the way their sentiment casherl down. When the mitdlemen came buying apples in Berkeley County, they couldin't possibly offer higlier than $\$ 2.50$ a barrel. The growers had had "a gentlemanly understanding." They got $\$ 3$ for 100,000 barrels inside of forty-eight hours: $\$ 50.000$ extra cash for their spirit of anion.

Why does America lag at the foot of the list in her farmers'co-operative societies?

But all this, you say, remedies matters only for the country man. How about the town buyer? Wouldint the truly cooperative association embrace consumer as well as producer? I am not adrocating socialism. I never real a book on socialism or attended a meeting on it in my life. The point is to get that middleman's heavy foot off the city man's stomach; to keep that unseen hand of higher cost of living from picking your pockets and mine.

As long as the consumer does nothing lut grumble, he will continue to have his pockets picked: and the middleman may sleep easy. For the consumer, there is only one way out, and it is the way that irrigation has taught-buyers must get together. That is what the consumers' co-operative leagues of England have done. They buy direct from the producer. Only 2 per cent. covers the ex-
pense of distribution. Compare that with the 2,000 per cent extortion on the basket of grapes. And the co-operative leagnes of England yearly feed $8,000,000$ people. That is a cutting out of middlemen, isn't it? Feeding twice as many people as live in New Tork! Englands co-operative leagues began sisty-five years ago among some twenty-eight poor weavers who succeeded in saving $\$ 5$ each in one year, pooled their capital and did a total business of $\$ 3.550$ the first year. The second year they made profits equal to their original capital. Today, those leagues employ 18,000 people. have 150 telegraphic addresses on their books, sell to members close on to six-hundred-million dollars' worth of produce, and pay back to their shareholders not the extortionate 2,000 per cent. but something over three million dollars. less than half of one per cent. on business done. This, of course, does not show the saving in price to the purchaser.

Mr. Wilson says there will be no bridging of the chasm between grower and eater, producer and consumer, till starva-
tion drives men back to the land. Mr. Hill's prophetic vision foresces only one door of hope-also starvation, compelling higher yields on the land. Nany thinkers agree with both big men. Are they right? Will America wait for starvation? She never has yet. She has taken time by the forelock always, and averted the evil. Will she do it in this case? Will some great co-operative organization bridge the chasm between producer and consumer? Reciprocity may bring an era of lower prices: but so long as farmers are flocking from the farm, the relief can be only temporary. Seven million people-Canada's populationcannot make material difference in the cost of feeding $100,000,000$ people. Is the giant to be left standing with one foot on the city man's stomach and one foot on the farmer's back, filching from both sides: his warehouses literal'y bursting with food stored and held back to force prices yet higher; stored and held back till it rots and has to be dinmped into the sea? It is for the people to give the answer.

CHAMPION MARBLE PLAYERS

BLUE SPRINGS, Mo., boasts of possessing the world's champion marble players. For nearly three years it has been the fad there for the men to play marbles in spare time instead of croquet or horseshoe quoits. The result is an accuracy in shooting that is as marvelous as the shots of an expert billiard player. Withal, Blue Springs doesn't take the game too seriously. The joke is tokl that the town has men so good that they can't defeat one another : and a favorite story relates that Uncle Dan Stanley, who is seventy-four years old. and Uncle Tom Halloway, who is seventy-five, "lagged from taw for two days" without either contestant winning the alvantage of a sixteenth of an inch in the struggle to gain the privilege of claiming the first shot, so the contest had to be declared a draw even before it began.

In this photograph four champions appear: Uncle Dan Stanley, with the gray
beard: at his left, with the derby, Captain George Webl, the undertaker: George Binger, farmer-champion, is shooting: next on the right is Lynn Pryor, the blacksmith, whose shop is headquarters and clubrooms for the world's champions.

The Champions in a Competition.
$\mathrm{A}_{\substack{\mathrm{Ccorg} \\ \mathrm{L} \\ \mathrm{G} \text { to }}}$ the California state hoard of forestry there were seven hundred and twenty fires in that state last season and they burned over one-half million acres of land-nearly half of which was timber land-and destroyed two hundred and forty million feet of timber.

This represents a loss to the owners of the timber, asstming an average stumpase value of two and one-balf dollars per thousand, of about six hundred

Trapping a

thonsand dollars. The loss to the public. however, is much greater forthe reason that if this timber, instead of being destroyed, had been manufactured it would put nearly two and one-laalf million flollars into circulation.

The direct loss, therefore, to the citizens of California was something over three million dollars, to say nothing of the loss dlue to destruction to watershed cover. The average fire covered 703 acres and took sisty men ten hours to extinguish it.

ABOUT TO DYNAMITE A BURNING "SNAG."
United States regulars fighting a forest fire".

As a rule, forest fires are catused by gross carelessness: a Mexican will throw away his half-burned cigarette inte the tinder-like grass: a camper will neglect to extinguish the fire over which he broils his bacon, or will foolishly huild it against a fallen trunk, rotten to the core, which may smoulder for weeks, like punk, and then start a blaze. Sometimes the fires are caused by sparks from engines used in logging camps or from a passing locomotive, and cases have been recorded where a fragment of a whiskey flask thrown along the trail has acted as a burning lens, starting destructive grass fires.

It is comparatively seldom that these forest and brush fires are wilfully ignited, yet there are people who are so shortsighted and selfish or so crimfinally inclined that they will turn a fire demon loose upon the

Thf: Beginnings uf a Conflagration in the Brush. country, which may destroy much property and many human lives before it can be checked.

This is a true story of one such "fire bug," a man who displayed remarkable cleverness in violating the law, but was finally met by the superior cleverness of the men who protect society from his sort.

The forest rangers in San Diego County, California, had long been perplexed by a series of fires of mysterious origin. The conntry thereabouts is well settled and the Forest Reserves consist mainly of hills covered with brush, of no value for timber but very valuable for conserving the rainfall.

Now some of the ranchers in that vicinity did not understand how the brushy growth could be of any use to anyone at all ; it sheltered the rablits and quail that preyed upon their crops, a nuisance and sonrce of loss, and inasmuch as fresh feed would spring up on the burned-over fields to the advantage of their flocks and
herds, they showed no great enthusiasm in co-operating with the fire wardens. Of course, when summoned to help fight a fire they would pitch in and work hard with shovels and axes-at the rate of twenty-five cents an hour-but when it came to helping the forest rangers by taking out the necessary permits whenever they burned off their own land, or being willing to testify against those who were careless with fire, they showed themselves indifferent if not hostile to the Forest Service.

Among the most persistent of these offenders was a young rancher who alpears to have been the victim of what Kipling calls "an exaggerated ego," or as they express it in the Southwest, he was one of those fellows that you can't tell anything. The fact that a regulation existed irritated him so that he would go out of his way to defy it. Several times he had been reprimanded for failure to observe the simple precautions

Lens. or "Burning Glass." Focused Over Matchrs.
required by law when burning the brush on his place, and his answers had always been defiant.

Welsster-his name was not Daniel Webster, but it will serve excellently to identify lim-was finally threatened with prosecution by the forest supervisor, but he did not cease violating the regulations. These were so simple and easily followed that there seemed no excuse for hisignoring them. He was required to get a permit from the fire warden to burn off his land at a certain time and a fewmen must be on land to see that the fire was kept under control. Instead of having four men to look after one fire, it was reported that Welister ladi sometimes had as many as four fires burning on his place with only one man, himself, to keep them from speading. He was cornered once and asked why he ran the risk of getting into trouble with the attthorities in such a foolish manner.
"()h, I'll take the chances," he said, "they won't fine me more than $\$ 50$ if they do catch me, and the feed is worth more than that. Besiles I am not goins to pay a lot of men to stand aromel like fence posts and watch a fire!" Which trend of thought slowed that Webster considered this Western country the land of the free in its broadest and most minestricted sense.
llowever, when the threats of prosecution reached him from headmarters, he apparently ceased his depredations. True, the fires continued in the neighborlood of Jannul Post Office and the fire wardens were kept busy. One con-
flagration injured a neighbor's olive orchard and another got loose on the forest reserve and burned over one thousand acres of land before checked by the rangers. But by the time the authorities began to watch him, Daniel Webster was invariably ready to prove an alibi that covered each fire. He would be seen riding across the country on his grey stallion or at work some miles from the origin of the blaze at the time it started, and could bring witnesses to prove it. Sometimes he would be among his friends at the store when attention would be called to a little puff of smoke that meant the begiming of more tronble for the rangers. His alibi was perfect, yet from his previous reputation the fire wardens believed that Webster had something to do with these conflagrations.

One trifling misdemeanor he clid admit. not to the authorities but to his neighbor, an old man by the name of Dale, who woke up one morning to find his fence posts blazing from a grass fire. Webster was trying to beat the flames out and when the two of them finally succeederl, the young man said he was sorry the fire had got out of his control and offered to replace the bunnt posts.

A few days after that, Forest Ranger John B. Simmons was riding in the neighborhood of Jamul Post Office, and

This 1s Onf of the Photos That Convicted the Firebug.
Note the twisted wirus, lens and burnt matches.
looking across the country a mile or so saw a small fire on the Curtiss ranch leased by Webster, and rode over to investigate and hepp put it out. Noborly seemed to know how it had started and after the ranchers had gone Ranger Simmons carefully went over the burned area but found nothing more suspicious than the prints of a horse's hoofs in an out-of-the-way place. These were not old prints but had evirlently been made before the fire, as burned grass filled the depressions. The keen eye of the ranger noted a

Campers Are Not Always Careful About Putting Out Their Fires. slight malformation, a nick, in one of the hoof prints, and he made a mental note of it.

The next day, the mineteenth of October, 1909. Ranger Simmons once more saw smoke in the same neighborhood just about noon and again rode over in that direction, but was met by Fire Warden Steimeyer who said there was no hurry as the fire was already under control, being handled by Daniel Webster, Ranger Sears and a couple of ranchers.

It seems that Ranger Sears had seen the fire first and immerliately rode out with Fire Warden Steimeyer to get a

This Is What Warden Steinmeyer, Who Trapped the Firebug. First Saw.
force of men to fight ii. They went first to Webster's ranch house and found him busily dixging and apparently maware of the clour of smoke just over the ridge behind him. He expressed great surprise but said he was ready to help and mounted his grey stallion to ride over, first taking a pair of pliers out of his hip pocket and throwing them on the ground. Steinmeyer and Webster then hurried toward the fire while Sears rode over to get help from the Strong brothers who lived near by. After summoning them the took a short cut across the ridge and presently saw Steinmeyer and Webster ahead of him, the latter lagging beliud and afoot, as he had tied the stallion in a safe place. Evidently Weloster was not expecting any observation from the rear, for while he kept his eye on Warden Steinmeyer he would occasionally stop, strike a match and start a small blaze in the dry grass as he walked along.

Sears put his horse to the sallop and took the "fire bug" by surprise, but the round man had a ready excuse: he said he was starting back fires. As the fire had passed on a full half mile to the east, however, and there was a westerly wind blowing, this seemed a rather flimsy pretext to the ranger and he decided to keep a strict watch on the incendiary.

Presently the fire was under control and Steinmeyer rode lack and met Ranger Simmons near the point where

Webster had tied his momnt. The two men discussed the problem of how the blaze had started and the mystery surrounding the recent outbreaks and the too periectalibi brought up by Webster in each instance. As this was near the point where the fire on the previons day had originated. Rancer Simmons. thought it would be a good idea to make a thorough examination. He spoke of having gone over the ground and finding the hoof prints, those of an unshod horse with a pectuliar nick in its riglat fore foot. Then he noticed the stallion near by, which he knew to be Webster's, and the two men went over. raised the stallion's hoofs and found that they corresponded with the prints, being unshod and having the peculiar nick in one hoof. This looked suspicious but it was not evidence. The men went over hee ground on their hands and knees and presently Steinmeyer sang out excitedly, "Look licre what l've found!"

It was a find indeed. It consisted of a piece of ordinary double strand fence wite, about a foot long, twisted together. One end was spread. forming a twotined fork which held the lens of a pair of spectacles. The lower end was stuck firmly into the ground and just where the lens would focus the sun's rays upon them, were the half-charred stumps of several parlor matchics. The device was a striking cxampie of perverted ingenuity, and the two men could see at a glance how casy it would be to set this inconspicuous object in an obscure place among the grass and weeds,

Hunters Sometimfs Start Fires to Drive Out the Game.
Note the bear on the hillside.
along a trail, first experimenting and adjusting the lens so that at high noon precisely, the plane of the lens being at right angles to the south, the focus would be upon the matches. Then the addition of a little dry grass and leaves would be sufficient to start a destructive blaze. At the hour set for the infernal machine to ignite. the man who made it could be miles and miles away. In fact by setting the device on a certain day after the sum had passed the meridian, by even a few minutes, it would be ignited on the following day almost a full twenty-four hours later.

Simmons and Steinmeyer decided to leave the little device where ther had found it and try to entrap the guilty man.

As they were about to leave, they found a couple of short lengths of twisted wire which had been cut with a pair of pliers, and tl.e noticeable point was that the cut had not been made at one stroke, but each wire had been cut scparately. Now, there are various kinds of pliers, some of which would sever the two strands at one stroke and others which are so small that they would reduire two cuts, as in this case, and the men stored up the facts in their minds for future reference.

They rode back to the fire fighters, found that the blaze was completely extinguished, and the whole party returned along the trail by which they had come. Simmons made a sign to the other two forest officers to let Wehster take the lead, and the rest followed in Indian file at his heels. Presently Webster started off
the trail to make a detour through the burned brush, but the others did not follow as he had hoped. Instead of that, Simmons called him back. "Why are you going that roundabout way?" he asked. Webster made some non-committal reply, and Simmons pointed to the bit of wire and lens on the other side of the trail.
"Dan," he said, "what do you suppose that thing is?"

The young man immediately stooped and brushed aside the stump) of matches and uprooted the twisted wire. "The fellow that put that there was on to his job all right," he chuckled. "He was as clever as the chap that put candle and matches in the rat's nest."

No one had suggested to him that this inconspicuous bit of baling wire and its fragment of glass was a firebug's device, and the fact that he grasped the significance of it at once had its weight with the jury later on at the trial.

Webster saw his mistake and tried to divert suspicion by calling attention to a speck on the lens. "This has been here so long that it is fly-specked," he re-
marked, casually. Then he added, "1 guess I'll just keep this as a souvenir," and tried to slip the glass into his pocket: but Ranger Simmons was collecting souvenirs himself at that time, and the bits of wire, burnt matches and lens were turned over to Forest Supervisor Marshall, who had seen the fire from his office in San Diego, nineteen miles away. and hastened out, arriving that evening.

Now, the Forest Supervisor at San Diego is a man who has a genins for details, and his preparation of the case. built up on circumstantial evilence, was a matter of trifling details skilfully pieced together.

He adroitly questioned Webster before witnesses, and one of the first things he did was to destroy that gentleman's reptitation for veracity in an apparently offhand manner.
"How about that grass fire the other day," he asked, "the one that burned Mr. Dale's fence posts? Have you any idea who started that little blaze?"
"No, indeed," answered Webster, "I couldn't say who started it, but I was one of the men who helped put it out.

and if it hadn't been for me, Mr. Dale would have lost all his fence."

Then Rancler Dale was called in and questioned. "Have you any illea. Mr. Dale, who started that fire which burned your fence posts?"
"I certainly have," replied Dale. "Daniel Webster started it ; he told me so himself and offered to pay for the burned posts.

Then Webster was suddenly asked what he had been doing in that distant part of the ranch the day before the fire broke out. lle denied having been in that ricinity for wreks, and when confronted with the evidence of the nick in the fresh hoof prints that corresponded with that of his grey stallion, he relapsed into mere defiance ans! suggested that the forest supervisor might ask the horse if he wanted to know anything further.

Finally, the slight incident of the rancher throwing away a pair of pliers before starting to the fire was bronght 11 p and the tool was profuced. It was found that these pliers were of the type
that would require two strokes to sever the twisted strands of wire, just as the picces of the "infernal machine" had been severed.

Such was the evidence that went before the jury in the Federal court when the case came to trial. On careful search of the ground where the fire had originated, a second igniting device was found about four hundred feet from the first, and this exactly corresponded with it. This was photographer just as it stood ind enlargements to natural size were made and placed before the jury, with a speedy conviction as a result.

The sentence was comparatively light, only four months in jail, but the legal expenses practically stripped the ingenious Mr. Webster so that in the long run he would probably have found it more economical to have secured a burning permit and hired three or four men to watch the fire.

Much credit is due the forest officials who prosecuted this ease in the face of adverse criticism by the very persons

STOCK MEN BURN THE BRUSH TO "IMPROVE THE RANGE."

READY FOR A FOREST FIRE-ONE OF INNUMERABLE INSTANCES OF CRIMINIL CARELESSNESS.
Logged district on private land where the brush is not piled, but is left recklessly scattered.
who hal the best reason for co-operating to punish the incendiary, the ranchers in that vicinity. In forest fire cases it is exceedingly difficult to secure convictions, as the trouble usually starts in thimly-settled parts of the country, and moreover, the rangers and fire wardens who see a blaze cannot stop to gather evidence ; their main business is to put out the fire. Hence. out of 307 fires suspected of being set in violation of the laws in California during the year 1909 only cighteen convictions resulted, and fines amounting to $\$ 385.00$ were distributed among seventeen offenders, while one of these enemies of society got a minety-day sentence.

Such leniency causes trouble for the fire fighters, as even a careless or malic-
ions man would hesitate to violate the law if he were sure of speedy punishment.
Campers seem to be the worst offenders, and this includes sportsmen, prospectors and travelers. In the California Forest Fire report of 1909 they are blaned for one hundred and fourteen fires. Hunters, who intentionally set fires to drive ont game, are made responsille for twenty-one such conillagrations. The report sums up the attitude of most of these people with the following pat remark: "Nlost of them would call themselves nature lovers, but their love of nature is not strong enough to prompt them to be sure that their camp-fires are out, or to be careful of their matches and tobacco."

The WORKERS

88 By Margaret Ashmun 2

Some speak today of labor as it were
A grievous wrong, mysteriously sent,
Whereby mankind must suffer: they would stir
In honest hearts, dissensions, discontent,
Wrath, quiek and fierce, destroying where it may.
And rash rebellion, envious to slay.
O brothers! toilers with the hand and brain,
To seorn your task will make you men distraught!
Wherefore your strength, if not for greater gain
Of all your race, through what your strength has wrought?
Though mean your might or pitiful your wage.
You are the chosen servants of the age.
So much the world has need of, it were meet
That every man should count himself a part
Of all that lifts and labors, deeming sweet
His right to yield of muscle, mind, and heart
His manly share, nor let his gift be small-
For life is stern and all are kin to all.
Then curse not work. It is and still must be
The gracious way that each free soul must find
Who lives not to himself; and bless'd is he
Whose days are spent for profit of his kind.
O brothers! toilers! spare not of your worth,
But serve the world in gladness and in mirth.

THE SIMPLEST MOTION PICTURE SYSTEM
But three photos produce the desired effect.

Motion Pictures for Stereopticons

by Robert H. Moulton

TEN years ago the highest development of the "magic lantern," or stereopticon slide was the photographic trans-parency-usually plain black and white, but sometimes tinted to show the natural colors of the object represented. When a lecturer could show a series of such colored views of unusual subjects, he had reached the than existing limit in the field of projected pictures. Then came the moving picture machine, with its long roll of revolving film impressions, by means of which people, animals and other objects in motion could be reproduced with wonderful fidelity to nature. Since that time numerous inventors have exercised their ingenuity to perfect a device that would enable one to reproduce the same effect of motion with a single stationary slide. A recent invention called the genre
motion slide seems destined to fulfill the demand for such an article. In particular it will be welcomed by the many amateur owners of stereopticons who find the expensive moving picture films beyond their reach, while as a means for advertising it will no doubt prove as valuable as the moving electric sign. Not only is this slide cheaper for the average user than the film rolls, but it also costs the maker considerably less, inasmuch as it does away with the necessity of employing a large company of people to act out before the camera scenes and plays such as are commonly shown at the moving picture theaters.

The public has become so educated to the moving picture idea that the motionless views of a few years ago now create but little interest. Since it has been shown that people can be made to pass in review before us on a screcn and do

HOW THE NEW CINEMATOGRAPH IS OPERATED.
Th. composite picture is math. from the three photorraphs shown on the procoding pase. A vertically ruled elass, placeduver the plate comainum the composite: rhotograph, and manipulated from side to side. products the motion pactur. ${ }^{\circ}$.ftict.
almost everything that they do in real life except talk aloud, no one cares any longer to see mere representations of "still life." Action and speed are as much expected and demanded today in the amusement line as in any other. Just as the bieycle has been superserled within the last few years by the swifter motor car. so has the old fashioned lantern slide given way to the quickly moving rolls of film with their constantly changing and lifelike action.
The moring electric light signs such as are commonly usad in front of theaters, restaurants and stores furnish another illustration of the fact that any object which is shown in motion will catch the eye quicker and hold the attention closer than the same thing when shown in repose. The first electric advertising signs attracted so much attention and were such a great improvement over the ordinary painted sign that they som came into general use. But their value as an advertising medium was increased many times over when a way was discovered to sive the liglits an appearance of motion. This is lome, not by makinger the lights actually move. but by switching the current from one set of slobes to another in such a way that they seem to do so. Some of these signs are
really quite wonderful examples of realism.
The cost of a moving picture machine is very little more than that of a first class stereopticon for motimless vicws. and they are quite as easily handled: but the price of the film rolls, due to the elaborate processes employed in their manufacture, confines their use principally to theaters and professional lecturers. In the case of the theaters a single roll of film may serve to entertan hundreds of audiences in as many different housses. Coming from a central depot or manufacturing establishment they travel from one theater to another, from city to city and from state to state until they are fiterally worn out, or become ton antiquated in subject to appeal to even a provincial audience. Thus the original cost of the film is divided up among many users.

The genre motion slide is a medium between the ordinary lantern slide and the moving picture film. That is, it is a single statiomary slide which not only slows a picture of an oljject, but by means of a very simple contrivance, enables the operator to give the picture perfect motions. That such an effect could be promuced with a single slide seems increvilile. But it has been done;
and while the new slide offers opportunity for further improvement, it is already sufficiently developed to meet all ordinary requirements.

The common form of lantern slide. which shows a single picture of an object, consists of a glass plate on which is printed a photographic positive. In the case of a building or landscape only one view, of course, is necessary. lout to show the successive attitudes accompanying the movements of a man or an animal it is necessary that a series of pictures be taken, the different exposures on the revolving film occupying less that a thousandth part of a second each. It is manifestly impossible that the impressions of all these negatives could be printed in the ordinary way on a single plate and show anything else than a dreadful tangle of lines and curves. The result of doing so would be like a photographer's "double exposure." only very much worse. The only way to show separately each of the indlividual pictures printed on such a plate would be to blot out all save one at a time. And this is exactly what the new motion slide does. The secret, uf course, lies in the manner of printing.

Three negatives are first made, but insteal of printing from them in the ordinary way, each one is first ruled with a series of very fine vertical lines. A composite plate is then made from the ruled negatives. This plate somewhat resembles a mosaic in appearance, only instead of being broken up into small irregular particles it is composed of even and paralle sections. A second perfectly plain plate is then ruled like the composite plate, the lines being placed at such a distance apart that they will cover at one time two of the sections of the latter, leaving the third section visible. By moving the second plate from one side to the other, first one then another of the pictures on the composite plate is revealed, and if this is done quickly the subject is given

The Carrifr is Fitten with an Eccentric. By means of this. the ruled olate is moved to right and h.ft.
a perfectly lifelike appearance of motion. Of course, the mumber of postures of a subject that may be shown on one of these slides is limited. No effort has yet been made to combine more than three, but it is not too much to expect that a way will yet be found to do so. Three positions, however, if judicionsly selected will impart to the picture the same natural movements that occur in the lons rolls of revolving film. The omly difference is that the motions are repeated in the case of the slide. For instance, the picture of a baby can be made to smile. langh and cry by turns, one expression changing to another with perfect naturalness; a small boy is shown going through a series of gymmastics, playing at marbles, or representing George Washington in his immortal act of cutting down the cherry tree: and the antics of a clown at the circus are reproduced accurately. In fact, any subject that lends itself to the moving picture films may be shown on the motion shisles.

Another feature of these slides that will commend itself is the fact that the pictures used on them do mot necessarily call for the services of living morlets, but may be made from a series of drawings in which the subject is represented in various attitudes. The effect is just as natural, and may be made even more amusing than where living subjects are employect. To see a Teffly bear turning cart wheels, or a monkey engased in the act of pulling a suffering lim's tooth is something that mo moving picture machine conld ever reproduce. liat on the motion slide such secmes are limited only by the artist's imagination.

The only thing necessary to show the motion slikes in an ordinary lantern is a special carrier. This is fitterl with an attachment in the shape of a small eccentric which is rased to move the plainly ruled plate evenly and with the reguired degree of sueed.

KNOWLEDGE IS "RUN• IIERE ON BUSINFSS PRINCIPLES. Administration Bulding. Carnegle anstitution. City of Washington.

$\$ 25,000,000$ BRIBE FOR NATURE'S SECRETS

B y

CHARLES FREDERICK CARTER

HOWT does a young loggerhead turtle, thrown upon its own resources in a selfish world from the moment it leaves the egg-shell, know where to go to take up the struggle for existence with any prospect of success?

Davenport Ilooker has found out the answer to this conundrum. Equipped with a quantity of glass of different colors he went to the Dry Tortugas where he put in a lot of time placing the glass in front of young turtles. When they saw the ocean through red, yellow or green glass they would not move towarl the water; but when they saw it through blue glass, or when they saw the blue glass or even blue paper, they crawled toward it with evident excitement. Hence, Mr. Hooker concludes, the turtle's sense of color guides it to its
natural element. Imagine the predicament of a color-blind turtle!

On these islets in the Gulf of Mexico, abont seventy miles from Key West, where the United States Government entertained a large party of Sonthern gentlemen nearly fifty years ago, the Carnegie Institution of Washington now keeps open house for scientific gentlemen from various parts of the world. Here the scientists eat canned goods while they study original problems in marine biology, or else they study marine biology while they eat canned goods, I have forgotten which. Anyhow, it is one way or the other.

Many sensational disclosures have emanated from those glistening white sands since the biological station was establisherd. It is now known that not only are loggerhead turtles possessed of
a sense of color but that the gray snapper is similarly equipped. The scientific squad played a mean trick on the gray snappers which the Society for the I'revention of Cruelty to Animals would do well to look into. The snappers were tempted into developing a taste for sardines dyed red. When this lad been accomplished some sardines were loaded by placing tentacles of the medusa in their mouths.
"Stung again," exclaimed the smappers as they dropped the loaded sardines. Thereafter the shappers would not touch a red sardine. no matter how hungry they were, thus showing that they knew a thing or two.

On the other hand, all colors look alike to the ghost crab, though it readily perceives moving objects and is sensitive to large differences in the intensity of light. But it is deaf as a post, its so-called "anditory organs" being in reality organs of equilibration. In spite of its handicaps the ghost crab has memory and, like the gray snapper, can profit by experience, which is more than some people can do.

Prof. John B. Watson, making his headquarters at the marine biological station, was able to pry into the domestic affairs of the noddy and sooty tern on Bird Key. He reared the young birds and fomd that they conld learn to find their way through a maze to their food.

The adults could also learn to overcome obstacles in secking to sit upon the egg. The noddy builds its nest in bushes, and in doing so is quite shy: but if an egrg be placed in the nest it loses all shyness and sits upon the egg as if it were its own. Both male and female build the nest, but the male alone procures food for both during this periorl, the female constantly guarding the nest. After the egg is laid male and female fly away to fish, taking their turns at brooding the eges at intervals of alout two hours. The egrg hatches after thirty-two to thirty-five days of incubation. The nodily docs not recognize its own egg but will cheerfully incubate anything that looks somewhat like an egg. It recognizes the locality of its nest and returns to the old locality if the nest be moved, but it will accept an artificial nest placed in the old locality without hesitation. The sooty tern nests upon the gromm and recognizes the exact locality of its nest : if the nest be raised vertically, the bird readily alights upon it ; then if, after an interval, the nest is lowered the bird attempts to alight in the air in the place where the nest was formerly. A slight horizontal movement of the nest canses great confusion to the bird.

Lirds taken from Rird Key to Cape Hatteras, eight hundred and fifty miles

AT THIS PLACE WAS ANSWERED THE QUESTION: "HOW DOES A NFW•BORN TURTLE KNOW゙ WHERE TO GO!"
Laboratory of the Department of Marine Biojogy. Toltucas, Filorida.
away, and liberated, returned in five days, althoush it is belicerel that they Hew along shore and not by an air line, which would make the distance at least a thonsand and eighty-one miles.

A number of other sojourners at Tortugas station have found ont various things which they have set forth at length in the publications of the Carnegie Institution, mot one of which has yet appeared in the list of the six best sellers. However, what the publications of the Carnegie Institution lack in popularity they more than make up) in (quantity. Athough the Institution was organized only nine years ago its pululications in book form alreally aggregate 167 volmones, having more than forty thousand pages. or upwarsls of twenty million words of printed matter, while twentyfive volumes more are already in press. not to mention some twelve humdred articles a year contributed to scicntific periorlicals.

In the presence of such an inky deluge it does seem as if the wilderness of interrogation marks in which mankind has loen wandering since the other deluge must inevitably be swept away: No
doubt it will be, unless the truth itself should also be submerged.

But anyhow the spectacular quest of knowledge so prodigally endowed by Andrew Carnegie is worth the watching, for there was never anything like it in the history of the world. Until last Jannary when the fonnder added \$10,000,000 to his previous endowment of $\$ 15.000,000$ the Carnegie Institution had an income of more than six hundred thousand dollars a year. Its permanent plant already inclutes a handsome administration building in Washington and fifty-cight other lmildings. including two astronomical observatories and five laboratories, thirteen parcels of land and a fleet of ten vessels. Upwards of twelve hundred individuals have contributed in one way or another to the promotion of the researches and the publications mondertaken by the Institution, while during each of the past five years about five hundred individuals have thus collaborated. With such an ontfit and such an army of workers investigations have been carried on during the past year in more than thirty different fields of research, extending to more than forty dif-

A SHIP HCDLT WITHOU'T A SINGLE SCKAP OF IRON.
"The Carneste". used in the magnetic surves. Conper and brass were the only metals employed in her conetraction.

THE DOME FOR THE GHNCH REFLECTOR, MUUNT WILSON SOLAR ORSERVATORY, PASADENA, CALIFORNIA.
Dr. Hale, the director of this abservatory, has found ways to reveal to. (mo new worlds.
ferent countries scattered over every continent, not to mention the oceans and interstellar space.

Ten independent departments of researeh, together with divisions of administration and publication, each with its staff and assistants, have been organized and established within the Institution itself. In addition to these larger departments of work, numerous special researches, in aid of which upwards of seven hundred grants of money have been made. have been carried on by research associates and other individual investigators.

It is not to be understood from the
foregoing that the Carnegie Institution is in a hurry to find out all there is to know; for l'resident Woodward has suggested that in estimating the work of departments the decade instead of the year should be the unit of time. Indeed, the peculiar worth of the Institution lies in its ability to pursue with absolute thoroughness, regardless of time or expense. whatever it undertakes. Yet while workingr for posterity quite as much as for the present generation the Carnegie Institution is accomplishing practical results of immediate importance.

For example, the Department of Terrestrial Magnetism was organized to
find, if possible, the answer to the questions, what is magnetism, and why is the earth magnetic? This is a pretty big contract. for the carrying out of which the largest, most comprehensive, and perlhaps most expensive investigation ever mudertaken in the name of science was begru. The first step was to organize a magnetic survey of the whole world, by sea and by land. This survey has been going on ever since 1905 . While its ultimate object is the solution of a scientific problem the practical benefits of which can better be determined after it has been accomplished, results of the utmost immediate importance are being achieved while the work goes on.

Frequent magnetic surveys are necessary to keep tab on the compass, which is the main reliance of the navigator. The compass is popularly supposed to point straight to the place where Dr.Cook didn't go, with an maltering fidelity that las become proverbial ; but as a matter of fact the compass is as flighty and uncertain as a girl with two beanx. For instance, the compass on a liner leaving New York for Europe points ten degrees west of north: in mid-ocean the needle yaws thirty degrees west of where it should be. while at Southampton it is only seventeen degrees west of its proper place.

The north magnetic pole, by the way, is a different thing from the gengraphic north pole, for it is situated in latitude seventy degrees north and longitude minety-seven degrees west, while the sontl magnetic pole is approximately in latitude seventy-three degrees south and

The Nutrition"t.aboratory, at Boston, Massachusetts.

> 1. This Building Scientists Are Trving to Find Out how the World Was Made. Geophysical Laboratory, Washington, D. C.
longitude 156 degrees east. A straight line drawn through the earth from one magnetic pole to the other would pass about seven humdred and fifty miles to one side of the center.

It would be bad enough if the compass varied from place to place ; but. not satisfied with that, it must also vary from time to time. Just when you think you have the compass it is most likely that you haven't, as many an unfortunate mariner has found too late to keep his ship off the rocks. In order to make such an eccentric instrument available for navigation it is necessary that the amount of variation at any given point should be known so that any given compass reading may be corrected to give the true direction. Compass variations are checked up from time to time by magnetic surveys made by various governments, the results of which are plotted on charts for the guidance of the navigator.

The Carnegic Institution began its magnetic survey of the Pacific Ocean in August. 1905, with the Galilee, a wooden brigantine of six hundred tons, from which as much iron and steel as possible had been removed to render the vessel as nearly non-magnetic as practicable. The Galile covered sixty-five thousand miles of salt water in a course which. as plotted on the chart, looks as if it might have been laid out by a beetle with the blind staggers, for the Galitee crossed her own trail whenever practicable to check up observations. The results were important, for errors of one to threc degrees were found on existing charts between San Francisco and Honolulu
and errors of from three to five degrees elsewhere.

In order to attain a still greater degree of accuracy a non-magnetic ship which was christened the Carnogie was launched in June, 1909, at a cost of $\$ 115.000$, to be used in the magnetic survey. On the very first voyage from Long Island Sound by way of St. Johns to Falmonth. England, errors of importance to navigators were found. In one instance the amount of compass variation at a certain spot in the ocean was given differently by each of the three standard charts published by the British Admiralty, the German Admiralty and the United States Hydrographic Office, and the Carnegie proved that all of them were wrong. Along the track followed by the Atlantic liners from England to a point off Newfoundland the present magnetic charts show too large a westerly declination by nearly a degree. From there to Long Island the charts give too small a westerly declination by about a degree and a half. The effect of these errors is always to set a vessel toward Sable Island or Newfomndland, where the facilities for a first-class shipwreck are unequaled. Cruising around the

Azores the Carncgic gathered proof that the Sluzoniu, which was wrecked on a reef in 1909, though the four hundred persons on board were rescued through the help of the wireless telegraph, was in her proper course according to the Admiralty charts, but that there was an error in the charts of between two and three degrees or about a hundred and fifty miles.

The Carncgic is now at sea on a three years' cruise that will take her around the work. While the ocean survey is going on, field parties are busy with the magnetic survey in British North America, Central America, West Indies, Colombia, Ecuarlor, British, French, and Dutch Guiana, Africa, Persia, Turkey, Asia Minor, Smothern Asiatic Russia, and China. All these parties send their observations to headquarters at Washington where they are reduced and prepared for publication.
No Chicago packer works up his byproducts more carefully than the Carnegie Institution. The main purpose of the Department of Terrestrial Magnetism. as already indicated. is a magnetic survey of the earth. But it has been found that with a very small additional

WINGLESS CHICKENS HAVE BEEN PRODUCED HERE.
This is not done as a pastime, but as a most surious effort to perp into the mysteries of the Darwinian theory. Station for Experimental Evolution. Cold Spring Harbor. New lork.

88

A ST.ition for plant study in the desert,

Department of Butanical Rescarch, at Tucson, Arizena.
expenditure of effort a by-product investigation of the relation between solar and terrestrial magnetism can be prosecuterl. It has already been found that an increase in solar activity is apparently associated with an effect on the earth's magnetism equivalent to a decrease in the mean intensity of magnetism. To reduce this discovery to every-day terms it means that having learned how the activity of sun-spots, which are great electric vortices sweeping across the face of the sum, affect the eartli's atmosphere, present theories may be so revised as to make weather predictions an exact science.

Two separate departments are studying the heavens. One of these, the Department of Meridian Astrometry, is established in observatories at Albany, N. I'., and San Luis. Argentina, on the castern platean of the Andes. The observers at San Luis are hard at work making accurate measurements of the position of the fixed stars visible in the southern hemisphere to be compared with corresponding measurements in the northern hemisphere, in the preparation of a complete catalogue of precision of all stars from the highest down to those of the seventh magnitude. inclusive. for the entire celestial phere. The San Luis observatory is breaking all records in
stellar studies, having attainct a score of fifty-six thousath observations in a year.

The solar observatory on the summit of Mount IVilson, near P'asarlena, Cali fornia. has a most elaborate equipment for studying the stun. This includes the Snow horizontal rullecting telescope purchased from the Yerkes observatory, a tower vertical telescope one hundred and fifty feet high, and another sixty feet high, and a reflecting telescope sixty inches in diameter mounted equatorially: These telescopes are supplied with various spectugraphic, photographic and other devices for studying the sun and stars. In Dr. George Ellery Hale, Director of the Observatory, the Institution has found one of the geninses it was created to discover. By introducing entirely new processes in photograply and in other details Dr. Hale has been able to reveal sixty thousand new worlds, never before seem by man, some of which are ten times as large as our sum. Most of the work, though, consists in studying the sum, photos of which are made every clear day, and the spectra of the stars, the results being added to those accomplished by other olservatories in working out arious problems.

Rut to get back to earth again; the Geophysical Laboratory, which is lo-
cater in the outskirts of WVashington, has molertaken a novel line of researeh, for it is trying to find out low the world was mate by manufacturing rocks experimentally out of the raw material by intating the processes of Nature as closely as pussible in everything except length of time required. While at the present writing there seems little loope that the information thus oftaned can be utilizerl in the creation of a new earth in case we shothd all be driven off the present one by the ever-increasing cust of living, the investigation is, nevertheless, interesting.

Experiments in the creation of rocks are conducted by placing the raw materials in steel bombs capable of withstanding pressures of seventeen thonsamd atmospheres, which are then placed in clectric furnaces where they can be subjected to the action of interse heat for weeks and even months. Temperatures as high as two thousand one homelred degrees, centigrade, or more than three humdred elegrees above the melting point of platinum, have been attained in these furnaces.

It seems to be generally agreed that diamonds are prorluced by extreme heat at enormons pressure in the earth. The Carnesie Institution is better equipped for experimenting in the mannfacture of diamonds than any one else ever has been; but instead of andertaking to find a way to place diamond neeklaces within the reach of all it has elected to devote its time to such commonplace things as calcium oxide and silica, two constituents most frequently found in rock, which also happen to be the essential materials in Portland cement. The reophysical Laboratory has demonstrated that these two things could combine only in certain ways and in certain proportions, and mot in the way assumed by cement manufacturers. This being understool, the cement maker now has a scientific basis upon which to prepare his product instead of following a rule of thumb. Now that the formula has been discovered it is possible to produce cement anywhere that the necessary elements are to be found insteat of in
certain rare spots where deposits of materials in the right propertions exist. Is chormons quantities of cement are used anmually this discovery is of great importance.

The (ieophysical 1 aboratory is also engaged in the study of ore deposits. Once the fundamental comlitions muder Which ores are formed are morderstome the range of practical genlogy will be widely extended and the quantity of ores awailable will be increased.

Some strange things are being learned abont animals, birds. fish, insects, and plants by the Department of Experimental Exolution, all of which are to be applied for the practical benefit of mankind. Since Darwin's day the problem of the origin of species has taken on an entirely new form. It is now recognized that the whole problem of evolntion lies in the origin, nature and relations of characteristics. The pronluction of a new "species" is the develnpment of a new characteristic not necessarily new to wature, but in a new combination. Since the Department got its hand in, it has been able to probluce some curious variations on stock of well known perligree. such as poultry with short mandibles. with mo comb, With one the missing on each foxst, with an extra thenail to each toe, with one wing missing, and with luth wings missing. It is hard for an unscientific mind to understand whe the Institution should fritter away its time on wingless chickens when any bardinghouse landlaty conld have told it that if it really desired to fill a want long felt at commical tables it shouk try tir produce a chicken composed exelunively of wings. Professor Tower, an associate of the I eprartment, has heen very successful in controlling new characterintics in the Colorado potato bectle, varying the colors and increasing the mumber of erenerations in the reproxuction cycle. No farmer's bow who has hat to break his back throughout a lomes, hot summer day "bugsin" pertaters" will thank Professor Tower for that, though. Colorado potato bectles cance along quite fast enough mater the akd schertule.

THE American nstrich farmer. like his neighbor the alligator farmer, is distinctly a new species. A few years ago he coaxed an exotic lusiness into his back yard and set about quietly to acquaint it with its new enviromments. The young intustry look readily to its alien home. which resembled its native labitat, Plourished from the mutset, andas they say in Arizona, referring to the time when hat and edifice alike were of earth construction-soon outgrew the cramped quarters of its adobe days. Less than fifteen summers old, it now ranges freely over thousands of the Lord's fenced acres.

The ostrich, taken at a commercial rating, is the biggest dividend-producer in the kingdom of birds. Appraised from any angle, he yiehs to none save the emblematic stork. His earning capacity, aided and abetted by feminine inclination to self-adormment, has become so marked that today, after laving been persecuted for his plumage from the dawn of history, he finds himself pampered, made much of, and scientifically propagatedstill for his plumage.

The crux of the movement to make the ostrich over is that her every wish must be gratified,

withont thought of cost or reckoning. And she, ably attended by the handmaid of fashion, reigns in every clime and zone. So it has come about that because her imperious tastes have decreed ostrich plumes a prime necessity rather than a rare luxury in her millinery wardrobe, she has stimulated a drooping occupation in the Eastern hemisphere and founded a new industry in the Whesterl.

Ostriches have been captured for their feathers since earliest antiquity. The fleet hird, which "scorneth the horse and his rider," was lured into snare or pitfall. This mode of obtaining plumes was in vogue for centuries, and until ostrich farming was started. After the bird was captured, the feathers were either plucked or the skin and feathers were removed together and used in making robes.

Ranking close to the first sartorial incident of Eden is the theory of philosophers that modern dress had its genesis in the habit of certain ancient gentlemen, who lived, laughed, and loved before the sphinses were butt, of dazzling pretty maidens by sticking ostrich plames in their lair and parading themselves before their almirers. Scientists hold to the belief that these capering persons,
in their affaircs d'amour. were simply carrying ont the natural law which says the male slall be more showily equipped for his life bluff than his mate.

However that may be, certain it is that the whims of civilization recognize no such rule. Instance is witnessed in the change modern enlightenment has Wrought in the primitive custom of the ancient peoples. The twentieth century citizen, whose tastes are simple, not only neglects to adorn his locks with feathers, but what is quite the opposite, leads chivalrous chase after ostrich plumes to the end that her newest headgear may be ormately decorated a la mode.

In response to his thought-and hers -for her attractiveness, ostrich farming has been established in the United States. The industry is carried on to a limited extent in Florida and Arkansas, more extensively in Southern California, and on a still broader scale in the Salt River Valley, in Arizona.

As regards size and scientific propagation, the flower of the industry are the farms of Arizona; and, unlike those of Florida, Arkansas, and some of the California aviaries, they are conducted rather for the revenues from the sale of feathers than for show purposes. There are twelve farms in the Salt River Valley: The Pan-American ranch, located thir-
teen miles west of Phoenix, is the largest ostrich farm in the world under an inclosure, not excepting the farms of Cape Colony. It is now stocked with 3.200 birds, or three-fifths of the ostriches raised in the valley, and has an area of 1,100 acres.

This part of the Southwest, though one of the oldest sections of the ['nited States, having been trod by the Spanish padres from Mexico as early as the middle of the sixteenth century, has been slow of development owing to its aridity and isolation: and while ostriches have been raised with indifferent success in the United States for nearly forty years, the inclustry was not established in Arizona intil the late nineties.

The climatic conditions here are very similar to those of Southern Asia and Africa-the native home of the ostrich. It is claimed, for instance, that the crucifixion flower is found nowhere outsirle of the Holy Land except in Arizona. On account of the dryness of the atmosphere, the scant rainfall, and the absence of fog, this is believed to be the best adapted region in the Western hemisphere for the propagation of the majestic birds of the desert.

The importance of the industry to the world's wealth and commerce is reflected in the jealous way in which England

A CROWD ALWVYS ASSEMBLES AT FEEDING TIME.
guards her ostrich possessions in South Africa. Ostriches have been tamed for centuries, yet it is only since the early sisties that and organized effort has been made to domesticate them with the idea of supplying the world's demand for feathers. In $1^{\prime} 900$ it was estimated there were between 350,000 and 400,000 ostriches in captivity in Cape Colony. England, foreseeing the golden future of ostrich loreeding and desiring to corral the inclustry in her own possessions, saw to it that laws were passed absolutely prohibiting the exportation of either hirds or exiss and imprising drastic punishment, in the form of fine and imprisonment, mon any person consicted of violating the statute. The prohilition now applies to all Pritish colonies in Arrica.

But far-sighter] Yankees had stolen a march on the liritish sovernment before its fences were completed. As early as 1892 a shipment of ostriches to the [nited States from South . frica had been mate. Four years later the shipment from which fully 80 per cent of the lirits in America are descumlerl, consisting of about fifty ostriches, was negotiaterl loy Mr. Edwin Caw:on. of Pasallena. C'al., after he had overome many

of which was the opposition manifested by the South Sfrican govermment. The last ostriches imported came from Nubia for the I'an-American exposition at Bniffalo in 1901. The Nubians of today have come largely from this shipment.

The progenitors of most of the ustriches in America are still to be seen at the Cawston Ostrich farm, at South Pasadena, near Los Angeles. This is the best equipped farm in the United States. with its rare plants, colblestome ditches and paths, and beautiful terraces, and is visited ammally by thousands of tonrists, who delight in observing the interesting hahits of the ostriches. The climatic conditions here are congenial, but it is claimed that the clrier climate of Arizona is better suited to the raising of these alien birds.

The - tmerican farmer has approached the ontrich from the angle of science, and therein lies the basis of the revolntionized industry. Thongh scientific methods of hatching, feeding and breeding have been in use only three or four years, the results have been little short of astonishing. Evidence of this is seen in the fact that Arizona culturists are able to raise to maturity $\%$ per cent of their hatch, as against an average of 15 per cent which stands to the creclit of African ostrich raisers.

The problem of feeding at first gave them no little concern. Originally the ostriches were allowed to bring forth in their own sweet way: Of recent years, however, incubation on the most progressive farms has been dome by artificial means. The eggs, each weighing between three and four pounds, and of sufficient size to afford a meal for six hungry mens, are turned in the incubators twice a day until at the end of six weeks the young chicks are hatched. The PanAmerican farm alone has meubation facilities for 1,800 eges-a sizable "clutch" indecel-and contd hatch 7,000 or 8,000 birds a year.

After the chicks are released from the shells they recelve the fostering care of experienced ostrich men until they are large enough to fond for themselves. A prominent drizona farmer explained that they "reguire ats much attention as baber." Xen mand their cots in the fields and spend the nights with the
chicks, giving them such attention as occasion demands. As each chick is estimated to be worth twenty-five dollars. the reason for the special privileges accorded it is obvious.

The question of the best food for the ostrich, which baffled the farmers for a time, has been effectually solved. A balanced ration, consisting of choppect alfalfa and wheat, supplemented by a digestive diet of broken (puartz, groumd bone and other solid material, meets the food requirements of the birds. Alfalfa is grown on irrigated land in the valley the year romol. Initially the birds were permitted to graze. but now they rum at large in bare fields and are fed from wagons, each consuming from sis to ten pounds of alfalfa per day.

Most important, and most complex, is the problem of inbreeding and crossbreeding. The solntion of this problem has not been reacherl. Put such progress has been made in the past three years that the farmers are sanguine of getting the results they desire through careful miscegenation of species.

Success has attender the experiments in crossing the South African and Nubian species, both of which are raised in the United States. The resultant bird not only is larger and more hardy, but its feathers are of a better quality than those of either parent. The plumes of the Sonth African bird are typically long and broal. Those of the Nubians are heavier, finer and glossier. The feathers of the mixed ostrich possess the distinguishing characteristics of both species, and neither loses by the process of crossing.
lint the application of Burbank methouls to ostrich life is not to end here. A hope cherisherl by the scientific ostrich raiser is to be able to produce a white ostrich. Here is a parallel with the paradox of the white blackbird. Ostrich breeders believe it would be easier to hatch a white ostrich than a white blackbird, and that the problem is merely one of selective breeding. Greater wonders have been wronght-but then the ostrich growers consider this not a wonder but a scientific possibility.

The object? It is this-a higher standard of graded stock. Until they are a year old all ostriches, both male and female, are identical in color-a dull

Drownish gray-and are hardly distinguishable one from the other. The color of the female does not change, but after twelve months the plumage of the male turns black, and black and white. But the main layer of feathers on the wings of both sexes is white. This is the most valuable row, and is cut, not plucked, from the bircl, being userl chiefly in the manufacture of willow plumes. If the Arizona farmers succeed in producing a white ostrich, clearly the color line will nut be drawn in the grading process.

The values of the individual birds vary according to the stock. Yearlings as a rule sell for abont $\$ 150$ each: two-yearolds from $\$ 200$ to $\$ 250$, and three-yearolds from $\$ 300$ to $\$ 350$. Breeders are sold frequently for $\$ 1,000$ a pair. Still more giddy heights are reached, as is shown by the statement of Mr. Willian Cross, manager of the Pan-American farm and a "progressive," that "ten thonsand dollars wouldn't begin to touch that bird"-meaning "Doc. Cook," a fine specimen of Nublian enck

ability of plucking the breeders, which as a rule command the highest prices, is a question upon which the ostrich men are not agreed : but it is conceded by all that the feathers of the family birds are not of so high a quality as are those of birds untroubled by household cares. Some of the farmers "unfeather" the parent ostriches. while others do not.

The value of the annual yield of feathers per bird ranges from $\$ 30$ to $\$ 75$. The ostrich generally advances to a ripe old age, often passing the three-score-and-ten mark. Its plumage does not begin to deteriorate until it is about fifty vears old. As it yields its first placking at the age of six months and is deprived of its feathers every eight months thereafter, meanwhile eating only about onefourth as much as the average steer, little wonder that it sometimes-using a phrase that trips easily-is worth almost its weight in gold.

What is the future of the industry ? is a cfuestion that naturally confronts the ostrich farmer. In order that the testimony may not seem e.r parte it is only fair to state that the grower has certain problems to deal with more elementary than those of scientific breeding.

Pernaps that of raising the chicks presents the biggest obstacle. In spite of the precautions that are taken, about 25 per cent of the young birls die; and, as has been stated, this rate of mortality is considered abnormally low. The adult ostriches run at large, yet if the best results are obtained they must be given close attention. Then there is the danger of the bird's impairing the value of its feathers through accident-though, of course, this danger is somewhat remote. Or. as is sometimes the case, the birl, no matter how valuable, may die in its prime. And the greater its value the greater the loss to the owner.

On the other hand, the owner of any kind of livestock runs risks essentially the same as those just recounted. The fact is, as has been pointed out, the ostrich as a revenue producer holds decided advantages over the ordinary livestock, especially in the issue of food and repeated returns. Nloreover, on the point of sustained attention, the same may be said of any animal on hoofs: and so far as the question of the bird's meeting an untimely end is concerned, this-when I visited the J'an-American farm, containing 3,200 birds, less than a dozen were

TIIE OSTRICH. NO LONGEK IJUNTED DOWN AND SHOT. IIAS EXCIIANGED LIBERTY FOR SAFETY.
confined in "hospital" pens for sickness or injury by accident.

The Arizona ostrich farmer, though conservative in his statements. sces a vista filled with potential opportunities. The farms are growing in number and the herds are increasing. At present practically all the feathers are shipped to
creasing demand for all sorts of luxuries -it is constantly monnting higher.

The ostrich ought to feel highly indebted to the fair sex of our land, whose demands have stimulated the enterprising ostrich farmers to bring these huge birds to the United States. As a result, he is no longer hunted down on horseback, or New York factories, but the tendency is toward "home industry." The Arizona and the Salt River Valley Ostrich Companies maintain small factories of their own, and the PanAmerican Company is preparing to make an additional investment of $\$ 200$,000 on its farm, notably in the erection of a modern factory.

Certain it is that the industry is a likely "infant," full of promise in the health-giving climate of Arizona. When it is considered that there are hundreds of thousands of arid acres suited to ostrich raising. and that there is imported into this country annually in the neighborhood of $\$ 4.000,000$ worth of feathers produced in Africa, the future of the ostrich business in the United States seems assured. For her demand for ostrich plumes wherewith to decorate her lat and fan and stole is not diminishing, with the in-

[^7]

ARIZON. 1 OSTRICH FARMERS ARE ABLE TO RALSE SEVENTY-FIVE PER CENT OF THEIR HATCH. African growers rear only fifteen per cent.
slot from ambush: though, in exchange, he has bartered his liberty for his safety.

The great disadvantage of his comfortable captivity is the rather painful indignity to which he is submitted every eight montlis, of having his sight blinded
with a hood and his body stripped of his feathers. But everyone that enjoys the benefits of civilization must pay a price for it, and why should an exception be marle of the ostrich? Besides, think of the women!

MENACE OF THE MONGOOSE

TTlERE is just one animal of which Uncle sam is afraid. It is the mon-goose-a small mammal native to southern Asia, which is especially famous as a snake-killer. Also, it is death on rats.

Becatse of this latter fact it was imported into Jamaica thirty odd years ago. " But, unfortunately, the rats took to the trees, and the mongooses proceeded to feed upon other kinds of game -particularly chickens. They have also killed nearly all of the gromel-nesting
wild birds on the island. and sucking pigs are not disdained by them.

Many attempts have heen made to introduce it into the United States, but unsuccessfully as yet, because the government authorities are always on the watch, and anxiously exclude any specimens that arrive at our seaports on shipboard.

The mongoose multiplies at a fabulous rate, ancl. if it once established itself in this country, it might easily do $\$ 50,000$,000 worth of damage per ammum.

CHEAPEST WAY TO REMOVE STUMPS

By
H. S. GRAY

O\therefore thousants of ranches in our once wooled west the owners have cleared only ten or twenty acres out of one hundred and sixty during a long period of ownership: where the stand of timber was heary and the stumps are three to six feet in diameter, only four or five acres: and development has been retarded. Pulling a big molar, whether dental or terrestrial, is usually a painful and difficult ordeal-and that is the difficulty: The stump is the thing!

The char-pit process, a new adaptation of an old principle in removing stumps. is at present attracting great attention in Oregon and Washington, where thou-
sands of acres of logged-off lands have for years lain ille because the task of clearing them has heretofore been so formidable buth physically and financially. I'rof. 11. II. Sparks of the State Agricultural College at Inllman, Washington, about a year and a half ago hecgan to experiment with a new burning process. Since then he has heen employed to teach the method at farm institutes and elsewhere in the Northwest.

I recently attended a stump burning demonstration at Vancouver, Washington, when the Development League of sonthwestern Wrashington held a convention there. Professor Sparks first removed the bark all around for abont

THE OPERATION OF STUMP•BURNING CAN BE PERFORNED INTELLIGENTLY BY BOYS.

SMALL ONES MAY BE TORN OUT WITH HORSE AND CAPSTAN.
The cable is wound thll cither stump of capstan must yicld, and usually it's the stump that yrelds
twelve or fifteen inches up from the ground. This is absolutely necessary, as bark is porous and a non-conductor of heat. If the stump is green, chop through the sapwood at that point where the fire is to be lighted. As it was rainy weather and he wanted to make sure the fire would burn, he dug a little trench around

When the Smoke is Whitf, You know Thit the stusp Is Burving as It Should.
the tree and put some sawdust in the trench to absorb the oil he afterwards applied. Then he put on kindling wood. Over this he poured several quarts of fuel oil. Then he put on wood. Both wood and kindling he obtained from material lying around on the ground near the stump. The fuel extended to a height of twelve to fifteen inches. At the top of the bank of earth close against the stump he laid bits of rotten wood and bark to keep dirt from sifting down between the fire and the stump. With a soil that does not break up much, this would not be necessary. Then with a spade he laid clods of soil on the fuel all around the stump, making a covering about three or four inches thick, leaving an opening to start the fire on that side exposed to the wind. He laid each spadeful on carefully. If the covering is miform, it settles down uniformly as the fire eats into the stamp. After the fire was lighted, within fifteen minutes or a half hour it had got a good start and
he covered over with clock the opening he had left.

This method has been tried on various kinds of soils. The soil that is the most porous is the best mon-conductor of heat and reflects the heat back on the stmmp. Sand is a coneluctor of heat. With sandy soil, an artificial covering of clay as a binder or coal cinclers can be used.

By the color of the smoke one can tell clear across a field which stumps need immediate attention. White smoke indicates that the fire is burning as it should. Blue smoke usually means that the fire needs more covering. If the fire is kept burning fast enough by allowing enough
less than two feet in diameter, from sixteen acres and did his farm work besides. Large numbers of small stumps less than twelve to fifteen inches in dianeter can be removed more quickly with horse and capstan. In the worst red sand soil, with two assistants and a team, Professor Sparks fired eighteen stumps in one day. Of these eighteen fifteen were burning the next morning. The others had been put out by a heavy rain. Of one hundred he fired in September in shot clay soil in dry weather, only three bat to be refired.

He attended to one landred stumps in half an hour, after they had been fired. air to reach it, there will be no large fuantity of charcoal left ; nearly all of it will be consumed. Close covering means less air and slower burning and therefore more charcoal. If covered too much, the fire will be smothered.

It is not necessary to use oil in dry weather. If it is used, the kind used on locomotives and steamboats can be obtained at the rate of ninety cents per barrel. if bought in large quantities by a grange or commercial club. Kerosene oil should not be used, as it burns too rapidly.

Fire burns out the stump for the same reason that air circulates throngl a tumnel. If the air outside is cooler than in the tumnel, it goes in at the bottom and circulates through it. In burning stumps the air enters at the bottom. When heated, it rises and filters out at the top through the covering.

Chehalis reports stumps eighteen to forty-eight inches in diameter destroyed in from five to fifteen days. One man, with the help of two boys, in nine weeks took out 603 stumps that averaged not

The Fuel in Place, Keady for Firing.

So one person could attend to several humdred or more in a day. Stumps should be fired in the morning. They should be inspected twice a day, morning and evening, ant the covering replenished when necessary. In direct contact with the air, the coals soon break into flame and a large amount of heat is lost. The tops of the stumps finally fall over and are then gathered into heaps and burned. The attendant must keep putting earth around the tops so that when they fall over, the fire will not be exposerl. Roots that are above ground must also be covcred to a depth of several inches. The fire will follow alomg them unterground way below plowing depth and destroy them.

Two alvantages this methol has over other methods: there is no big hole left to be filled up nor remmants of roots tu be grubberl out, as is the case when powder is used: and the char-pit process fertilizes the soil. The places where stumps formerly stood are indicated in a fielt of grass or orain by a heavier yield that is apparent at a glance.

Near Chehalis Professor Sparks and an assistant took ont one hundred stumps that averaged forty-six inches in diameter for something like forty cents apiece. They kept accomnt of the time they spent at the work and charged twenty-five cents an hour. Mr. Yount at Woodland took out some of average size for thirty-five cents apiece with the same charge of twenty-five cents an hour made for his time. In one case at Woodland where the prevailing wind favored the work a man removed the stumps from a field at a cost of twenty-five cents apiece. Mr. J. IV. MeCutcheon, at Adna, near Chehalis. paid two dollars a day for labor and removed two hturdred stumps at a cost of thirty-five cents apiece.

Where stumps are numerous and of average size, it has heretofore in the Northwest cost $\$ 100$ to $\$ 125$ per acre to clear the land, and, where the stumps are three and one-lialf to six feet in diameter. even more. To remove stumps of average size ly the char-pit method costs $\$ 1+$ to $\$ 20$ an acre and occasionally even less.

CONCRETE VIADUCT FOR EIGHTY DOLLARS

ACREEK on a farm at Lawn Rilge. Il1., was a constant sulurce of trouble and expense. Wooden bridges were all the time rotting out, so the owner deciled to put in one of concrete. He could get gravel for nothing by hauling it sin miles. and did so paying for

[^8] .tt Liwn Ruger. lalinols.
the hauling. The arch for the water to pass through is + feet 2 inches in the clear in wilth and 5 feet + inches high. 12 inches thick, and rests on a solid base of concrete 6 feet 6 inches wide and 18 inches deep, all below the bell of the stream. The wings extend straight to the banks at right angles with the arch, making a rodway it feet wide, on a level with the strean's banks. The wings are 8 inches thick and are 3 ? feet long at the top, sloping in somewhat as they reach the level of the base, and go down to the level of the bottom of the base. The space between, and covering, the arch is filled with elirt, well surfaced with a coat of fine gravel. Thirty-four tons of gravel were used and mixed with it were 66 sacks of cement of 100 pounds each. A machine mixer for two days with two hands cost $\$ 16.00$. Other help cost $\$ 18.00$: lamage to lumber used, $\$ 5$. The total cost was $\$ 80$.

GREFNHOLTSE AND OTHER BUTLDINGS HEATED AND LIGHTED WITH STEAM AND ELECTRICITY GENFKITE1) FKOM THE BLTRNINイ OF G.ARB.1GE.

SOLVING THE GARBAGE NUISANCE

By
KATHERINE LOUISE SMITH

MINNEAPOLIS is blazing a new trail. She has found out that no city that wants to be a clean city can neglect its garbage handling, and she has gone to work to set a pace for the rest of us. The real beauty of it, too, is that she has solved the garbage prob-lem-or more nearly solved it than has anybody else, up to date. She may be said to stand first in the list of cities in America in the solution of the sanitary disposal of refuse and other towns are sending delegations to inspect this garbage system. Wimnipeg has already patterned after it.

The present method of collecting and disposing of garbage is due to the efforts of Dr. P. M. Hall, Commissioner of Health. Dr. Hall realized that popular methods in vogue in varions places, such as dumping in land or water, pig feeding, and even incineration, did not entirely solve the problem of a clean garbage can or the utilization of the product. The handling of garbage should be a sanitary
operation through its various transfers from the dining room table to the kitchen sink and the garbage can and incinerator. Minneapolis thinks it has solved this problem in part by adopting a way so that the can in the alley will for once fail the fly as a free lunch counter, and it has also planned up-to-date measures in the final disposal of waste matter.

Nearly four years ago this campaign to handle garbage without muisance was started and today it is pronounced an tunqualified success. No more are there foul, maggoty garbage cans and all because a city ordinance provicles that every housewife shall drain the grarbage of all moisture and wrap it in a paper before putting it in the can. This not only insures a clean can but the spaces between the paper allow the air to circulate and keep the garbage from freezing and adhering to the can in cold seasons. In other words, heat, moisture, and the fly are all eliminated. Any kind of paper can be used but as a rule there is plenty of wrapping paper that comes
aromed packages from the grocer and butcher, as well as old newspapers, that the housewife is gland to get rid of. That all this may be done properly the Board of Health issues a printed card of directions for the housewife and advises that it be hung in her kitchen.
lout this is only an important introduction to the story of the garbage system which is being adopted by a large city as a unit. When the garbage man comes around to collect his quota he finds a clean can, he is not faced with wet and dripping refuse, and in cold weather he does not take a piek and batter the can in order to lift the frozen material. He merely loads the prepared garbage into a large steel box, somewhat resembling a bati tub, and which has one hundred feet capacity. He hatuls this to a central transfer station, where the tanks are lifted off the wagon truck by means

The Incmprators That Rechive the Fuel to Be: Turned Latfr Into Electric Power

The Crfattory Bullding asd Stefi Runway for Bringing Up the Garbage
of an electric hoist and placed upon flat cars which convey them to the crematory or disposal plant. A train of several cars soon reaches the crematory just outside the city, where the boxes are lifted from the cars by an electric hoist and dumped directly into the fire. In other words, from the time the garbage is rolled in paper by the housewife until the ashes are taken from the fire of the disposal plant there is no necessity for the refuse to be handled by hand. As the paper nsed to wrap the packages is, as a rule, waste material, this, too, is disposed of and the sanitary condition of the cans and recluction in bulk of the waste, because drained, make the necessity for collection less irequent-a saving in money to the city:

Of course all ashes and rubbish that will not burn are placed in another can or barrel, and this with the garbage can takes care of all the waste material of the average houschold. But the package system is only a part of the garbage solution. for through the burning of this refuse enough steam is generated to operate all tire machinery, and to heat and light the group of workhouse buildings, the superintendent's home, a tuberculosis hospital and two greenhouses. This service of heat and light is furnished to the city at a cost of eight mills per horse-power-equivalent to thirty pounds of water evaporated-for heat. and three cents per kilowatt for light. The cost of collection and disposal has been low, averaging less than twenty cents per capita to each citizen. This includes cost of collecting and handling

DyNimofor Generating Electricity from Garbagk.
wives as a rule adhere faithfully to the first three of the following which have been prepared by Dr. H1311:

The Ten Commandments for Handling Garbage IVIthout Nuisance.
Drain Out Moisture: Use letachable sinkstrainer.

Wrap in Paper: Keeps garbage from heat and flies, prevents freezing and sticking to cans in winter.

Use Metallic Cans: Noncorrosive metal, over-lap self-locking cover, and free from holes.

Use Painted Steel Wagon Poxes: Constructed water-tight and to be mechanically dumped.

No Dumping on Floors: Box mechanically elevated,
ashes and represents the gross cost without deducting anything for heat and light. It is the intention of the city to put near the crematory all hospitals for infections diseases-one has already been started-that they may be heated and lighted in this way. The time will soon come when with additional equipment part of the street lighting will be done with the same plant.

In fact, the approved methorls for collecting garbage in Minneapolis are no longer looked upon as a fad and house-
and contents emptied into incinerator hopper without nuisance.

In-Draught at Hopper: Prevents escaping smoke and odors.

Mechanically Charged Incinerators: Eliminates the nuisance of exposed garbage and the emanation of foul odors.

Good Draught: Creates rapid combustion and high temperature, burning everything of obnoxions nature.

No Residuc Left Over: Nothing to make a nuisance around the plantnothing left but ashes.

IOP'EWEL TUBERCULUSIS HOSPITAL, IEATED AND LIGHTED BY THE CREMATORY PLANT,

CENTRAL TRANSFER STATION FOR GARBAGE. WHERE THE STEEL WAGON-BOXES ARE LIFTED FROM WAGON TRUCKS.
An eloctric hoist is used for this purpose, which loads the boxes into flat cars, to be hauled to the incineratung plant.

Generate Steam: For self-operation and sell surplus heat, light and power to make plant self-sustaining.

So in earnest is the Health Department that if a collector finds garbage not properly drained and wrapped in paper, he can refuse further service until the rule is complied with, and if this is not sufficient the householder can be brought into court and fined. It has been demonstrated that a twenty gallon can will suffice for the average househokd, and this size is easily handled by the collector. Of course it is essential that all cans must be water tight and some have an afpliance on the cover which makes them self locking. This is quite a consideration when there are dogs in the neighborhood. No obligatory rulcs are laid down as to the location of the can.

By this system the loack yard can be made to look as clean as the front, and the saving in cost to the city can be largely diminished. Offensive odors are
avoiled and waste is turned into productive conergy. The same package system can be employed by housewives in small towns where there is no collection of garbage, for in such places there is usually a coal stove which can be used to burn the drained and rolled garbage. It took some time to educate the housewives of Minneapolis so that they saw the benefits to be derived from this plan.

We talk much of late about the fly as a discase carricr, but so far as known, never before has there been a systematic attempt to prepare garbage so it will not act as a tly brceder. In letters received from hundreds of cities in the United States and Canada, the questions of receptacles-whether covered or handled -size. material, location and frequency of collection were dilated upon, but not one city semed to think of the part the housewife can play in preparing the refuse from her table so it will be sanitary before reaching the can.

PLICE allec same ?"

A deeply-wrinkled. sly. brown face appeared in the half-open door. Upon noiseless felt soles the Chinaman stole into the aromatic office, pungent with the odor of fresh hops.

The man at the desk did not look around.
"Give you sixteen and a quarter. John." He flung the answer carelessly over his shoulder. Keeping close to the
wall and chuckling without a sounsl, the Chinaman pattered to the bulletin borarl, attentively scaming the market quotations and the weather and crop reports from the European hop districts. With another inaudible, half-malicious chuckle directed at the hop buyer's broad back he sidled back to the door. Feet and body vanished out of the room, but the wrinkled face stayed.
"Me got t"lee hundled bales. Me takee eighteen."

A BATTERY OF HOP PICKING MACHINES
"Come around again when you're willing to sell for sixteen and a half, John. By-by, bless your yellow soul."

The hop dealer swung around as the soft footsteps died away:
"They're wise ones, these Chinks are," he grumbled. "Day before yesterday I could 've had the old devil's three hmodred bales for fifteen, but like a fool I didn't take ‘em. He knows I got to have his hops to fill my contracts, and he'll squeeze me for eighteen, at least."

A bale of hops contains approximately
two hundred pounds. By matching his knowledge of the hop market against the guessing ability of the white trader, this Chinese hop grower of Salem, the political and hop capital of Oregon, profited to the extent of three cents a pound or eighteen hundred dollars in a few days. A few months after this episode, not at all uncommon in the hop districts, one of the largest hop firms in the Pacific Northwest, driven into a corner by the rampant hop bulls, was squeezed bodily through the wall into the hands of a re-

THE ARMY THYT M TCHINEKY HIS KOLTED.
An encampment of hop pickiss.

ON A RANCH AT゙ WHFATLIND. CALIFORNIA.
ceiver. This firm hat expected to see the usual slump in hop prices and hat agreed to deliver 4.000 bales at about fifteen cents a pound, without, however, having the hops to fulfill the contracts. When delivery time came around, a flood destroyed a portion of the firm's storage, and the end came when it was discovered that only 1,700 bales of hops were left in the growers' hands on the Pacific Coast, whereupon the owners put the price out of sight.

In the fall of 1909 the man who would be the hop king of Oregon fell into a similar trap of his own digging. Relying upon his knowledge of market conditions, he bought 1,200 bales around 25 cents, expecting to unload at 30 or 35 cents a pound. Unfortunately the hop price took one of its sudden tumbles, sagged to fifteen cents, and the would-be hop king wound up with debts aggregating $\$ 90,000$.

Growing hops is like a poker game. The hope of a big killing keeps the producer at it through the numerous years of low prices, and all the while, high prices or low, the kitty, in this instance the cost of picking the crop, takes its fixed rake-off. Whether the market price be five or twenty-five cents a pound, the cost of producing, picking, and curing the crop of the Pacific Coast never varies from nine or ten cents a pound. Should the price go too high, many brewers turn from the expensive natural ingredient of beer to cheap chemical substitntes"dope," the growers say-and at all times the brewmasters, the rotund beer
experts of German extraction, are willing to pay, for some occult reason, three times the prevailing price of Pacific Coast hops for the imported product of the Fatherland.
With all these factors glawing greedily at their pocketbooks, the Pacific Coast growers producing annually 90,000 bales of hops have been trying for years to reduce the cost, especially the expense of picking. Hops must be pickerl in a hurry, as soon as the crop reaches maturity. If the crop is allowed to stay on the vines too long, it loses in flavor and value. Late in the summer, when the call for harvest hands is loud and insistent everywhere, the country is scoured for hop pickers. Armies of them are needed. The railroads put on special trains to move the regiments from the big cities into the hop yards, vast encampments spring up, camps filled with men, women and chikdren who receive a cent a pound for the green hops picked by them off the thorny vines. Since everybody having two hands with which to pick is pressed into service, the efficiency of the average picker is low. Now and then an industrions schoolmarm runs up to four and five dollars a day, but the average daily output does not go far above a hundred pounds, to the dismay of the grower who would rather see his crop harvested in hali the time.

For years attempts were made to find a substitute for the army of pickers, to use mechanical appliances in garnering the crop, but all attempts failed because the hop growers insisted upon an

in Calfornil the hor vines grow almost as Tall as trees.
apparatus that conkl be taken into the fielts. Only when E. Clemens Horst, the largest hoo grower in the work. owning some ten thousand acres in hops along the Pacific Coast. decided to follow Nabonet's example and go to the mountain, did success reward the efforts. Tlie problem of mechanical hop picking was solved by taking the hop-laten vines to
the machine instead of trying to work the machine between the rows of tall vines.

Under the old system hundreds of pickers invaled the hop yards. swarming among the vines in each other's way until the stalks were bare. Under the new system three men cut off the vines close to the sermmal. load them upon wagons and take them to the battery of machines

CARTING THE HARTESTED MNES TO THE HCKNG MACHINES.
erected close to the dry-kiln and storage houses. The vines are placed upon carriers which run them between revolving drums studded with I-shaped projections or picking fingers which tear the hops and many leaves off the vines, dropping them upon a conveyor which deposits them in a revolving cylinder. Through numerous small openings the hops and small leaves fall upon a belt traveling upward at an angle of but four or five degrees. The light leaves travel up with the belt, but the heavier hops roll down the slight incline, thus separating themselves from all trash.

According to Dr. IV. WV. Stockberger, the hop authority of the Bureau of Plant Industry, the machine-picked hops are cleaner even than the product of trained pickers employed by the day in order to pick exceptionally clean hops for experimental purposes. These trained pickers will average 200 pounds a day. With the aid of a machine five or six men pick
a minimum of 20.000 pounds a day, and the quality is higher than the product of the best hand pickers.

Twenty-four machines have been built and successfully operated upon the 10. 000 acres of the Horst Company scattered through California, Oregon, Washington and British Columbia. At the IV heatland ranch, in California, one hundred men, with the aid of the machines, in the fall of 1910 gathered the crop of an area which in former years required the services of an army of two thousand hop pickers. By concentrating the machines upon the districts farthest south and moving then north with the maturing crops, the grower is enabled to get the hops off the vines at the precise moment when they are ripe. By reducing the time and the cost of harvesting and ly enhancing the quality of the product. the mechanical hop picker should prove of very great benefit to all hop growers throughout the world.

AN ENTERPKISING BOV'S FIRST GREENHOUSE ANI HIS SECOND.
The new building is 140 feet long.

BOY WITH A PAYING IDEA

By

CHARLES DILLON

THIS is the story of a boy with a $\$ 2,000$ idea-and perhajs more. He was seventeen and just out of the Manual Training fligh School in Kansas City when the great thought came to him.

There was no especial necessity for his going to work immediately; he might have gone on with his studies, or found a place in someone's store, or he might have loitered around home for a year or two. His father didn't care to force him into any set plan at the time. But S. Bryson Ayres had his mind fairly well made up about the future when he left school ; and the influence that created this condition was peculiar. Bryson had noticed that the florists evidently made money rapilly. He reached this opinion after luying flowers for a few select yomg friends. The experience gave him the idea.
"] shall grow sweet peas for the city florists," he told his astonished parents, "there's money in that business."

Happily for Bryson's idea his father owned several acres of munsed land ten miles from the city and in close tonch with rapid transportation. Pryson borrowed about 100 feet of it, got enough money from the bank-backed by his father-to build the necessary greenhouse so that winter should not interfere with his work, and buy seed and tools. This seed he bought from the best florists in California. He did most of the work himself because, you see, he had learned carpentry in the manual training school; and he studied at night every catalogue and all the botanical books he could get. It took some nerve at this period to go ahead because the boy's school friends and a few of the neighbors laughed at. his project. When they learned that he had cleared \$100 and had paid back some
of his borrowed capital they quit langliing.

One hundred dollars was a mighty pile in liryson's opinion, that fall. He hard learned something valuable about the dignity of labor and also he had a few pertinent ideas about money: Ile learned that with a good reputation one had good credit and with credit he could do many things. Therefore he rented more land from his father, borrowed a little more money. signed up a few more customers and went to work more eagerly than ever. At the end of the year-the second -he had paid his last note and hadd $\$ 400$ to his own account. By this time he had two people working for him. Incilentally, Bryson's father was willing by this time to back him in anything. The boy cleared $\$ 800$ the third year.

A year ago last spring the young florist rented more land-two acres in all-from his father, enlarged his greenhouses and made them thoronghly modern, employed more help and bought a large delivery wagon and a first class pair of horses.

This boy, now twenty-one, has not given all his time to sweet peas, but these were his principal product. He
grew violets and lilies-of-the-valley also. but sweet peas were by far the most successful flowers on the little place. He sold and still sells his products almost exclusively to city dealers in wholesale luts. He received prices ransing from $\$ 25$ a thousand at Christimas to $\$ 5$ a thousand for his sweet peas in the summer midseason. Early in the spring, before the snows' harl gone, he got $\$ 7.50$ to $\$ 10$ a thousand and sold from five to ten thousand a day. The sweet peas were arranged twenty-five to the bunch. Liryson has from ten to fifteen girls for the picking and employs six or seven laborers and gardeners for the setting out and care of beds.

It wasn't boy's play, this sweet pea idea. It required something more than front yard cultivation. The seed had to be right: the largest blooms had to be saved to reproduce and the earth had to be fertilized properly and brought to a rich, loamy condition. The peas were planted in rows four feet apart and brush was plentifully used to "stick" the plants after they were a foot and a half high. Wood, he learned. disl not heat the tendrils as wire had done.

HOT SPRING MAKES LAND VALUABLE

QUESTION has arisen as to the title to a barren island in the Rio Grande. situated about forty miles south of Sierra Blanca, Texas. Whether the little isolated, rocky possession belongs to Mexico or is a part of the public domain of the state of Texas is yet to be determined. The island's only claim to value and distinction is that there is located thercon a famous hot spring which is sairl to have remarkable medicinal properties for the cure of certain kinds of disease. The hot water flows in a bold stream from the spring, and, notwithstanding the long and rough overland road that must be traveled to reach the spot it is patronized by throngs of healtl1-seekers. These pilgrims live in tents or sleep upon the bare ground with the broad canopy of heaven for a covering. The fact that title to the island and
spring is uncertain has prevented any attempt being made for the accommortation of the people who visit the spot. At this particular time the main chamel of the international boundary stream is on the Mexican side of the island, but any big rise in the river may shift the channel to the American side.

Is This Texas or Mexican Soll?

SUSIE UHENS THE LIDS OF BUNES OF VARIUCS COLORS. SELECTING THOSE DK. G.JRNER N.1MES.

EDUCATINGACHIMPANZEE

B y

J. PRESTON

Y() ${ }^{(}$haven't forgotten Susie. the little Chimpanzee that l'rofessur Garner brought from Africa with the avowed purpose of endeavoring to make the little lady as accomplished as any child of the same ase! Well, Susie's erlucation has been going on steadily at the University of lemnsylvania, where she has a room to herself and ewery attention and it is time now to report progress.

Susie now wears rompers. As she romps every moment of her waking time, when not busy with her studies. it is appropriate that she should wear rompers, but it was not without patient persistence that this first step in her erlucation was accomplished. Susie objected strenuously to the rompers. Now she not only wears them from the time she gets up in the morning until she retires to her own special little couch at night, but she insists on wearing them and puts them

A~1)urecten by Her Master. Shf Wili. Hanis A CUBE OR A BALL TO THE ฟ゙ISITOR.
on and takes them off herself like any other well regulated little girl of her mature age.

Susie was rather a wild little girl when she first came to the miniversity. Now she sits in a chair and eats her dimer with a fork, opens and closes doors when she walks around her little domain, says good-bye with a shake of her little paw in the conventional child way and advances to greet visitors with her hand extended in the most lady like manner imaginable. Susie is now over thirteen months old, with the intelligence, alertness and sense of a child of twice that
age. The monkey in comparison with man develops fast.

The seuse of color distinction of the little chimpanzee has improved with her education, so that now she never makes a mistake when told to open the red, the blue or the white lid of a row of varicolored boxes. She will hand with unerring accuracy a cube, a ball or a square to the visitor, when told to by her owner. She will take the lid off her little box of "jacks," spread these out before her and select one, two or three, and gravely hand them over as told to.

The favored children of the neighborhood who have been permitted to come in and play with Susie are delighted with her and Susic is no less delighted with them. She plays their games with wonderful intelligence. Hide and seek came naturally to Susie. She plays this game with perfect regard for the rules and will play it tirelessly as long as a child remains with her. She will chase them round and round, run and dare them to follow and in a word has every attribute of the "kid" in her antics and her mannerisms. Only one thing seems to puzzle Susie. She cannot understand why the children are unable to climb the posts up which she darts, to slide quickly to the bottom. She tries to pull a playmate by the hand and when she has got the child near the posts endeavors to drag him or her up by main force. Then she will climb rapidly to the top, slide down, repeat the operation a few times and again try to drag the child playmate up the post. She evidently thinks the youngsters clumsy rompers, far inferior to a chimpanzee in athletic accomplishments.

NEW WEALTH FROM WASTE

IT California, "pressed wood" is a new fuel that is rapidly becoming popular. Fuel for domestic purposes has always commanded exorbitant prices in southern California, bituminous coal selling at retail at from twelve to fourteen dollars per ton, and wood cut to stove lengths at about the same figures per cord. In the high price of fuel, some one perceived the opportunity to win wealth from waste by utilizing a part of the
enormons quantity of shavings and sawdust that is annually wasted, or at best used to poor advantage, in sawmills, planing mills and similar establishments. So he patented a machine for pressing shavings, and sawdust into molds. A string through the center of the mold helps hold the material together, and the heavy pressure to which it is subjected is all that is necessary to accomplish the rest.

TO FREEZE BOILING WATER

B y

BENJAMIN H. BROWN

WHEN steam is pouring out of the spout of a teakettle of boiling water, it may be noticed that for an inch or two beyond the opening of the spout, the stean is invisible. The reason for this is that, in the invisible fortion, the water las been scattered by the heat into such very small particles that the individual pieces camnot be seen. When the steam has become slightly cooled, by coming into contact with the air. the particles begin to gather together again and form drops large enough to be visible.

A drop of water consists of a great number of these tiny particles, called "molecules," which have an attraction for one another. These molecules of water are always in rapid motion, vibrating like little bells, only many times more rapilly than sound bells, and each one probably hits its neighbors many millions of times every second. There is a great contest going on all the time among the moleculcs, the attractive forces tending to draw them together, and their motions tending to carry them further apart. When water is being heated, the molecules are being made to move faster and faster. If, under ordinary conditions. the molecules are heated to a temperature of about 212 degrees, by the kitchen thermometer, they will be moving rapidly about and humping one another with such force that their attractions can no longer hohl then together, and some of them will fly off ont of the tea-kettle as invisible steam.

Whater is made to boil becanse the hottest molecules, going away in such hurry. canse a lig commotion among those left behind, and sometimes they even push some of the slower ones out of the kettle. i. e., the kettle boils never. It is not the loiling of the water that makes the
steam, but rather it is the escaping steam that causes the water to boil.

The water molecules are bumping one another promiscuously on all sides and it must happen that sometimes a molecule will be struck by several others in succession in such a manner that it will move faster than any of its neighbors. This molecule will be hotter than the others, and while the water as a whole is still cool enough to quietly remain in the kettle, this particularly active one may be able to pull away from the others and go off into the air by itself. This is exactly what happens on every dry day when water stands in a ressel which is open to the air. The hottest molecules are getting away at the rate of many millions every second from each square inch of water surface. The water would evaporate more rapidly still were it not for the fact that the air presses down upon the water and helps the attractions to hold the molecules together. Thus, there are two forces holding the water together, the natural attractions of the molecules, and the air pressure. It is impossible to interfere with the attractions, but it is comparatively easy to remove the air pressure from the water. The fourteen pounds per square inch of air pressure has much to to in keeping the general balance of things on the earth, and it will be interesting to note what happens when water is relieved from this weight. Wre will now undertake the experiment.

Take a glass vessel shaped like that in the illustration. Fill the top bullb half full of water, comnect the tube with an air pump, sec that all the joints are airtight, and start the pump. As the pump removes the air, the air presses less and less upon the water. The hottest molecules, that is, those that have the greatest motion, begin to force themselves out of
the mass of the water in greater and greater numbers, and so the water evaporates faster and faster till the vacant spaces of the vessel contain multitudes of water molecules flying about with tremendous velocities.

If this were all, the evaporation would soon cease, for the evaporated molecules would become so numerous that, moving about as they are with great speed and knocking one another in every direction, they would push down on the water with sufficient force to hold in the remainder of the water, just as the air did at the beginning of the experiment. If a few more molecules should happen to get free from the rest of the water, they would force some of those already out back into the water and the process of evaporation would be again brought to a standstill. But, happily, by some forethought the lower bulb has been filled with sulphuric acid which will absorb the water as fast as it may come down into the bulb and strike the surface of the acid, and so in the presence of this acid evaporation may continue for some time, or until the acid has all the water it can readily holl.

By the time that the air is about $991 / 2$ per cent removed, there are a great number of molecules scattered throughout the water which are active enough to tear themselves away from their neighbors and the water is so agitated by the eseaping molecules that it "boils." The acit recenving the hot molecules becomes warmed, and the water, always losing its hottest molecules, becomes on the average, cooler with the loss of each one. As the boiling proceeds. the water grows cooler and cooler until it reaches the freezing point and begins to turn to ice. Often, as the ice is forming, the water boils so violently that great drops of the liquid and small pieces of ice are scattered all over the inside of the vessel by the miniature but savage explosions. And thus water may be made to boil and

Dlagram Illustrating How Water May Frebze and Boil at the Same Time. The text explains the drawing.
frecze at the same time and in the same dish, simuly by relieving it of the pressure of the air.

The molecules of the ice, though locked tightly in the crystals of the solid ice, are still in very rapid motion, and some of them are able to break away from the solid mass, even at a temperature far below zero. Under these circumstances, when the pressture of the air and of the vapor of the water is maintained sufficiently light, the solid ice evaporates rapidly, the ice changing to vapor without stopping to be liquid water at all. The erfuipment, as clescriberl, is really an ice manufacturing plant on a small seale.

HOUSEHOLD ELECTRICITY METER

B y

J OSEPH B . B A K ER

THE private consumer of electricity often feels at a loss to know lwow much "juice" his lamps or motors or electric heating, devices are taking. He does not know how to read the meter which records it, and the bill that comes in at the end of the month seems to him like an arlitrary tax. variable but always high, levied by the electric light company without any understanding of it on his part.

If he complains that his bills are exorbitant the company will obligingly send and test his meter and then give him an imposing official rejort on its accuracy; hut he finds little satisfaction in being convinced against his will that his honsehold or his office or factory really did
constume so many dollars' and cents ${ }^{\text {s }}$ worth of electricity during the month last past. The compaiy assures him that the energy was delivered and nsed, and he is not in a position to gainsay it. If he could only have some means of checking. at the time, the amount taken by a toolavish illumination, or due to the careless waste of light by members of his family or his employces, he would have the same "line" on this item of consumption that he has on lis milk or coal in the home or raw material at the factory.

The little device shown in the accompanying illustrations sis a recent English invention designel to supply this genuine necel. by registering the quantity of electricity taken during any interval of time as plainly as an ordinary thermometer shows the temperature of the room in which it langs. Indeed, the household electricity meter looks like a thermometer - or perlaps still more like the electric thermostats that are installed in modern buildings to regulate the heating. It consists of a little glass reservoir of mercury and a chemical solution, forming an electrolytic cell, connected in the electric wiring.

In operation, it is simple and ingenions. When a single lamp is turned on, for example, the current passing through deposits a little of the mercury constituting one electrode of the cell, on the other electrode, a platinum wire. lint mercury will not amalgamate with platimum, so the deposit as it takes place

Thes is done by the rise of a column of mercury in a sraduated klass tabe. The meter is ordmarily sealed, and read through the stass.

 lilartricht CoNsumbo.
does not "stick," but falls-by infinitesimal globules-into the bulbed lower end of a graduated glass tube or column. If two lamps are turned on, this deposit of mercury takes place twice as fast, for by the law of electrolysis the amount of a metal thus transferred is strictly pros portional to the quantity of electricity passing. The mercury representing the flow of current thas accumulates in the graduated column, its level rising gradually in proportion to the number of lamps turned on and the length of time they are left burning : so that a glance at the column at any time shows how much electricity las been consumed.

We will suppose the electricity meter to be installed in an apartment. where the head of the family pays for his electric light separately from the rent just as he does for gas used in cooking. Wishing to keep tab on the current consumption day by day, he consults the meter every morning before going to his business. afterward re-setting it for another twenty-four hours' use. The height of the column of mercury, on its scale of lamp-hours, tells at a glance whether there has been any waste. For instance. if the mercury stood at thirty-six lamphours, notwithstanding that the family hat been out all the evening before, he could safely surmise that the servants had kept the two lamps in the kitchen and the four in the dining-room-or their equivalent elsewhere in the bouse-burning for six hours. Thus by claily observations he could get at the facts, and be able not only to call a 'ralt on waste but check his bill from the electric light company when it came in.

The re-setting of the electricity meter is as simple as reading it. The mercury reservoir, with the graduated column and the bulls below, are mounted on a vertical plate which is hinger at the top. By unlatching the plate at the bottom it may be tipped upside down so that the mercury which has accummater in the column will run back into the reservoir. The latter is formed like the well-known "non-spillable" inkstand's, that is with an annular cavity into which the mercury runs when the column is tipped up but from which it cannot run back when the latter is lowered into place. It is a moment's work, after reading the meter, to

Recktting the Eifetricity Metier by Tipping Lt the Mercleq Ture
This allows the deposited mercury to run back into the resurvore at the top of the tube
reset it in this way ready to begin again recording the consumption of energy.

Many persons are deterred from putting in the electric light by fear of its excessive cost. This little electricity meter, easily installed by the consumer to be a watchful guardian against waste of current, is likely to overcome this stumbling block and boom the use of electricity by many families who now feel that they camot afford it. It is probable that electric heating devices, also, would be used far more generally than they are at present if their consumption of current conld be watched and regulated more directly. The convenience and safety of these ilevices could then have real consileration by the people at large. The "electric kitchen." equipped with the great variety of cookers, toasters, broilers and ovens which may now be bought, would have a separate electricity meter connected in its main wiring, and the housckeeper could tell just how much current it took to cook a meal, or to run the kitchen for a day or mrse, as easily as she can now tell how much fuel she burns in her coal range.

EGGS-15. 335 UF THEN BY ACTUAL COUNT - ALL L.AID BI' ONE "TOAD.

TOADS AS INSECT DESTROYERS

By

RENÉ BACHE

SCIENCE offers a new solution for the bug problem. It is to employ, in its professional capacity, so to speak, the toadthe ordinary hoptoad of the field and garden-as an insect fighter.

In this business the humble batrachian is unequalled by any other living animat. He is the greatest bug fighter in the world. It is entirely practicable to utilize his services on an extensive scale, employing him systematically as an ally, to keep in check the insects which levy an annual tax of over $\$ 800,000,000$ upon our agricultural resources.

With this idea in view. Dr. Newton Miller, of Clark University, comes forward with the suggestion that toads be regularly bred for the purpose in question. He thinks it would pay to establish
toad-hatching plants. somewhat on the pattern of the govermment fish hatcheries, and possibly in connection with the latter. Nothing could be easier, inasmuch as toads can be bred as readily as any kind of fish.

There is no reason, however, why the farmers of the eountry should not hatch and rear their own supply of toads, for local service. With a pond or even a small pool insured against drying up during late spring. the ereatures will breed of their own accord in any desired numbers, up to the limit of the food supply available in the shape of insects. But one thing absolutely essential is that they shall be protected against their natural enemies-on which point something will be said more definitely later on.

Dr. Niller says that probably there is
not a farm in all the lonited States which. thongh suffering from insect pests, makes any provision for the breeding of toads-even to the extent of encouraging their natural propagation by forbearing, with this end in view, to drain the ponds to which they resort at mating time. In fact, reports on the subject from various districts in the Middle West seem to indicate that this part of the country is almost entirely destitute of toads.

To meet requirements satisfactorily as an ally of the farmer in the bug fighting business, an animal should be one which man can breed in any desired numbers, and which, when it is desired to check a sudden plague of insects, can be multiplied with great rapidity. It must also be one which, no matter how large its numbers, is absolutely harmless. These specifications are perfectly met by the toad, which, while an active and even voracions feeder in times of abundance. is a patient faster during periods of scarcity. Anything it comes across in the shape of bug, worm, or slug suits its appetite.

It is estimated that an average toad is worth to the farmer five dollars a year for the cutworms alone which it destroys. but this is only one item. The amount a toad will eat is astonishing. A large specimen has been known to devour 100 rose beetles at a single meal. In the stomach of one toad seventy-seven myriapods-the common household "cen-tipede"-were found: in another, fiftyfive army worms; and in yet another, sixty-five gypsy-moth caterpillars. A post-mortem in still another instance

Toans Killed at the Edge of a Pond-the SUNDAY SPORT OF BOYS.
showed that the batrachian, of only medimm size, had just luncherl upon thirtyseven ants, nineteen sowbugs, three spiders, one caterpillar, and ten plantlice. One toad was seen to eat thirty-five large and finll-grown celery worms in three hours, while another accepted eighty-six flies, fed to him, in less than ten minutes.

It is a common thing, when the oceupants of an ants' nest are swarming, and the insects are emerging in large numbers, to see an enterprising toad sit at the entrance of the burrow and s:ap up every ant that comes out. The slaughter he accomplishes under such circumstances is frightful. But, of course, most ants are not reckoned as insects injurious to man; and the toad muquestionably destroys some species which are beneficial to the farmer. But, on the whole, as proved by a painstaking study of the contents of thousands of stomachs, the batrachian is immensely useful, devouring countless numbers of the very worst bug foes of the crops.

Toarls are less numerous in the rural districts, unfortumately, than in the neighborhood of towns. Pasturing and tillage kills a great many of them, and the drainage incidental to agriculture deprives them of lreeding places. No ponds, no toads. The

ToAD 11 ATCHING AT AX ANT HODF He snaph up exry ant ats it comes out.
humble batrachian is a land animal, but the female munt lay her eggs in water, because her offspring during the early days of their existence are aquatic-tadpoles, in short, much resembling those of frogs. At the same time, and again unluckily, the towns destroy immense numbers of toads, though accidentally, by trapling them in sewers. Sewer-cleaners. in the regular course of their business, collect dead ones by the bushel, especially in fall and spring, and an examination of the manholes in Worcester (Mass.), by Dr. Miller, in the montly of May. showed an average of four toads in each. At this rate, 24,000 had been caught. Dr. Miller says that, in a city, more toads are killed by this means than by all others combined.

During the summer the toad leads a solitary life, and in the daytime seeks concealment in damp and sheltered places. At night, and on rainy days, he comes out and forages. Every few days he changes his clothes, being a cleanly animal by instinct, and takes off his skin as if it were a shirt, over his head. No wash-basket being conveniently at hand, he swallows the cast-off garment. The whole performance is accomplished in a couple of minutes. But, when winter arrives, he digs a hole in the ground, and buries himself below frost-lince, where the cold cannot get it him.

The first warm days of spring bring out the toads from their winter quarters,
and soon a peculiar trilling sound is heard from the near-by ponds. It is the song of the males, which are summoning the females to attend to the most innportant business of life-that is to say, the reproduction and perpetuation of their species. Toads, as will presently be seen, are no advocates of race suicide. The females soon respond, and before long spawning begins, the egrs being lain when practicable in a place well out in the pont, where deall grass or weeds come to within three or four inches of the surface of the water, forming a sort of overflowed bed of vegetation suitable for the reception of the ova.

Only the males trill, by the way, or make any kind of somnd audible to the human ear. Dr. Miller says that the he-toad, while trilling, keeps his mouth and nostrils tightly closed, but the pouch under his throat is much inflated. The note he utters-that of the spring love-song-is high-pitehed and tremulous. All of us have heard it many a time, though not knowing whence it came.

The female lays her eggs in long strings. If there be no place available such as that above described, a shallow spot near the edge of the pond will serve -the important point being that there shall be weeds or grass, overflowed by water not more than four inches deep. The egrgs are encased in a continuous, crlindrical, gelatimous strand-the jellylike covering being adked while they are passing through the oriduct in the proc-

Tanjoifs lifething on a l'iece of Meat.
ess of laying. This is for protection. The gelatinous substance, absorbing water, swells greatly, and thus the string of eggs will weigh perlaps five times as much as the toad which laid them.

Such a string may contain anywhere from 4.000 to more- than 15.000 eggs, and may be as much as 124
feet in length. They develop rapilly, and the tadpoles emerge from them in from two to six days, depending upon the temperature of the water. Odd creatures they are at this stage of their being, without a mouth, but having on the under side of the head two small sucking disks, by which they attach themselves to objects. The month appears within three to seven days, and they begin to feed voracionsly -largely upon the slime (containing a good deal of organic matter) on the bottom of the pond and on the surface of sticks and plants. Meat. fresh or putrid, if it happens to be supplied. they cagerly devour.

IThen the tadpoles are about twenty days old, their legs-which are to be-begin to appear as small knobs or buds. Both pairs are fully formed in ten days. Meanwhile the tail has shrunk to almost nothing: the eyes have become enlarged; the mouth broadens; the "gill-slits" close, and the lungs mature. The creature is metamorphosed from the likeness of a fish into an air-breathing terrestrial quadruped. It has become, in a word, a toad, the whole process of change, from the egg to the finished batrachian, occupying about thirty-two days.

One thing the baby toads cannot endure is hot sunshine. After emerging

Young Toad. Two Days Out of the,
often fairly alive with young toads migrating from the water. Dr. Nliller says that such migrations at rainy periorls have given rise to the widespread popular belief in the notion that toads, at times, "rain down" from the skies.

When any kind of animal under normal conditions produces great numbers of young, one may take it for granted that it has many natural enemies-this being Nature's method of providing for the perpetuation of the species, despite obstacles. It might be assumed. then, that toads have mmerous foes: and such, when the matter is investigated, is found to be the case.

From the moment when the little talpoles wriggle out of the protective gelatinous sheath, they are a prey to fishes, newts, crayfish, and the aquatic larvae of certain insects, such as the dragonfly. Chickens. ducks, and various wild birds pick them (if) greedily: Crows are extremely fond of young toads. Hawks eat the adults: so likewise do skunks and raccoons. Many snakes, inclutling garter snakes and the common water snakes, gobble the toads and tadpoles. And by no means. least destructive of the many enemies of these valuable batrachians are small boys, who, as a matter of mere halit, slay toads whenever they get a chance.

A VINE WhiCH PRODUCES TEN TONS OF GRAPES ANNUALly.

LONGEVITY OF THE GRAPEVINE

B y

H. F. S T O LL

ALTHOUGH the people of the Pacific slope began the planting of grapes hundreds and humdreds of years after the vine had been brought to a high state of cultivation in foreign lands, California lays claim not only to as fine a quality of grapes as are produced in other conntries. but to the most remarkable individual vines in the world.

In Carpinteria Valley, about ten miles soutl of Santa Barbara, is "La Yina Grande," a viticultural marvel that stands in a class by itself. Its location is somewhat secluded and as a result, the exact whereabonts of the largest grapevine in the world is known to but few outside of the residents in the
vicinity. The massive trunk of the vine is nine feet seven inches in circumference and suggests an oak rather than a grapevine. Its branches, some of which measure four feet in circumference, are trained over a ponderous frame covering a space of ten thousand square feet. It is still in a goorl, healthy condition and would undoubtedly attain much greater dimensions if it were not cut back every year. The frame over which the vine is spread is very strongly built, as it is required to support the tremendous weight of grapes which La Vina Grande anmually yields. Sixty strong posts uphokl the frame which supports the fruitladen branches. In 1895, ont of sheer curiosity, a secord was kept of the
amount of grapes yielded by this widespreading vine and it was a real surprise to find that the grand total was a fraction over ten tons. This did not include almost inmumerable clusters carried away by sightseers and neighbors. The estimate of the whole crop was aiout twelve tons.

This remarkable Carpinteria grapebearer is of the $M 1$ ission variety and is twice as large as the famons vine in the conservatory at Hampton Court, England. which has been regarded as one of the horticultural wonders of the world and is clamed by many to be the largest in existence. During the Work's Fair Exposition, at Chicago, a large sum was offered for La Tina Grande and an offer of $\$ 1.000$ from the San Francisco MidWinter Fair was also received, but both were declined.

In 1842, seven years before the discovery of gold brought people from every section of the globe to California, the
vine was planter by a Spanish woman named Joaquina Lugodi Ayala. Under her care the little Mission grape cutting flourished and grew to munsual proportions, altnough it wels cut back year after year. She retained ownership until 1877, when she sold it. Joaduina Letgodi Ayala died at the age of eighty-four years and to the last took great interest in La Vina Grande.

Beneath the heavy branches of this wonderful vine, seven or eight hundred persons can gather and find protection from the sun's heat. I'icnic parties make this their place of rendezrous and eat lunch under the welcome shatle. Years ago it was used for public mectings and on several occasions served as an election booth. In fact, it is claimed, the first clection in Santa Barbara Comnty was held beneath its ripening fruit. À journey to La Vina Grande during the summer months, when it is covered with leaves and fruit, will repay any one, for

A VINE OVER A CENTURY OLD.
Photo taken in the spring, just as vine was getting its leaves.
its present owner, I. R. Peterson, takes a special pricle in pointing ont the unique points of his monstrous vine to visitors.

In the patio of an adobe hotel, near the San Gabriel Mission, is another remarkable vine. considerably older than La Vina Grande. It covers nearly five thousand square feet, is over five feet in circumference and its roots extend more than two hundred feet in every direction. It is composed of one stalk and three branches, and was in early days known as "El f'aron de la Trinity"-Trinity Vine. It never received irrigation or cultivation. Owing to these facts and its dense foliage, the grapes are small, but the crop is abundant. The leaves, some of which meastre twelve inches. are used by natives for fevers and headaches. It was said by Semor Pico. father of 1)nn Pi , Pico, the last governor of Califomia under Xexican rule, to have been an exccerlingly large vine as far back a 1800 . Trinity Vine is only a few minutes' car ride from Los Angeles and is visiterl by thousands of tourists annually:

San liernardino County, the cradle of the viticultural industry of the Pacific Slope, boasts of one of the oldest bearing wine-grape vineyards in California. At Cucamonga, there is a stretch of Mission vines that were planted more than three generations ago. These sturdy veterans still yiedd valuable crops each year. The trunks will reach the chin of the average man and are at least three feet in circumference.

Despite the fact that the vineyards in Central and Northern California have been sadly ravaged by the destructive phylloxera, there are many vineyards that have escaperl the dreaded scourge. In Sonoma County, where the greatest difficulties have been encountered. there is a fifty-year-old vineyard owned by Darcelin Gaye, which is a marvel of beauty in the stmmer months when the luxuriant vines are covered with a wealth of dense foliage and luscious berries.

These oll-timers are of the Mission and Rose of Peru varieties, some of them being twelve inches in diameter and standing four and a lialf feet high.

THREE QU.IRTERS OF A CFATURY OLD.

They are planted from ten to twelve feet apart, in sandy land with a clay sulbsoil, are today free from phylloxera or other diseases, and promise to live long after we have passed away.

The hill at Sebastopol, on which these aged vines are growing, commands an entrancing view of the beautiful Sonoma Valley. Looking northeast for a distance of abont twenty-five miles, one's eyes rest on majestic Mt. St. Helena, in Napa County: which, before the advent of the phylloxera, was surrounded by thriving vineyards which contained thousands of these Giant Mission vines. They were introduced into California by the Franciscan Fathers, who established the first civilization on the Pacific Coast in 1769. The origin of the variety of grapes planted hy the padres of old around their adobe houses of worship, which has since come to be known as the Mission Grape, has been lost, but it is supposed to have come from Spain.

It is difficult to estimate accurately the age of vines by the usual method of counting the rings, because the yearly growth is not rlistinctly marked. Some atuthors state that the vine equals, and even surpasses, the oak in point of age.

I liny mentions a vine six hundred years old. Niller tells us that some of the vineyards of Italy held good three hundred years, and that vines one limudred years ode were accomnted as young. I'rofessor Bose states that some of the vines of lburgundy were four hundred years old and more. The famous Ilampton Court vine is nearing the century and a half mark and Lord Lreaddalbane's immense vine in Scotland is over seventy years old.

In America we have been unable to ascertain the age that planted vines will attain and the time that has elapsed since the coming of Christopher Columbus would not be sufficient had the experiment been begun the day he landed, in 1492. There is a wild grapevine upon the shores of Mobile Bay, about one mile north of Daphne. Alabama, that is commonly known as the "General Jackson Vine." from the fact that General Jackson pitched his tent uncler it during his campaign against the hostile Seminole Indlians. This vine in June, 1897, was reported to have a circhmference of six feet one inch at its base. Its age was estimated at that time to exceed one hundred years.

A MODEL-M.IKER'S BIT OF CLEVER ART.

NEW ART OF MODEL-MAKING

B y

HENRYR.JEVONS

HAltNG discovered models at last. America is taking very kindly to them. In view of their usefulness, the popularity of models is not surprising, but considering their expensiveness it is, for a fine model may cost as much as a comfortable house. Perhaps the most astonishing thing about the matter is our tardiness in adopting an idea the value of which was demonstraterl in Eturope long ago, for it is only in the iast few years that they have been used here at all.
"Model" being a word comprehending such a great variety of things, it should he explained that the particular kinds of models herein referred to are the reproductions in miniature of structures designed by architects of both the landlubber and the marine varieties. In any case these scale models, so-callerl from their being proportioned in some esact ratio to the real structure, serve the same purpose that the sculptor's clay study does: that is, they emborly ideas in concrete form, thus revealing faults which may the more readily be corrected before
work on the actual structure is undertaken.

Morlel-making for the marine architect and for his land-going colleague are handicrafts as widely different as are the elements on which ships and houses rest. The marine model-maker works in woorl and metal, while the architectural modelmaker employs such mussy materials as clay, plaster, and gelatine. Both require an equally high degree of skill, delicacy of tonch, and minute accuracs, but neither could do the work of the other.

Of architectural morlels there are two kinds: the scale models in which a building or any part thereof is reproduced on a small scale, and the full-sized models made for the guidance of the stone-cutter or the wood-carver in work of the higher grate. Both are made of the same material, plaster of l'aris, clirect from the architect's drawings.

The biggest jol, of architectural modeling on record was that in connection with the buitding of the New York Pub. lic Library, now approaching completion. Mortelers have been at work on this great task most of the time for the last eleven

TYPES OF MOTOR•BOAT MOHELS.
years, while at some periods as many as twenty of them have been engaged at once. Altogether $\$ 125,000$ was spent on models for this ten-minllion-dollar structure. First of all, a model of the entire building on a scale of one-eighth of an inch to the foot was made by three men who worked four months to do it. Next a larger model on a scale of three-fourths of an inch to the foot was made. After the outer shell had been disposed of each detail of the interior was worked out in a small scale model. When it had been developed to the satisfaction of the architects, Carrere and Hastings, a fullsized model of each panel or capital or whatever it was, had to be made for the stone- or wood-carvers.

In planning the New Theater in New York. Carrere and Hastings called in Neuman and Even, a firm of famous modelers, to construct the interior of the proposed theater in miniature. In this model, which is about three feet in diameter, the stage was amputated just back of the proscenium arch leaving an opening the full size of the curtain through which the observer could look into the auditorium, every detail of

Thf Perfect House Model.
The roof lifts off to show each floor separately. Fvery part is complete to the smallest detail of lighting and plumbing.

The moclel of the New Theater was made for the enlightenment of a building committee quite as much as for the convenience of the architects. Indeed, ten minutes with a model will explain more to a client than ten days of oratory over a set of drawings. for the non-professional eye can get but little satisfaction from an architect's drawings. In an undertaking of sufficient importance to warrant the expense, therefore, a model is useful to all concerned.

In order to make clear the arrangement of the grand stairway in the Edwin Gould mansion, just completed on Fifth Avenue, New York, Carrere and Hastings had a model of a section of the interior, including the stairs, made. It not only served the purpose of enlightening the client. but it also gave two young Italians, the Menconi Brothers, a start. The two brothers worked together on the model in a tumble-down shed on West

Carving a Model for an arch to Serve at King grorge: V's Coronation.

Twenty-fourth street. They did their work so well that it brought them more orders. Now they have spread their workshops out through three buildings and employ thirty skilled workmen.

Other models of notable buildings made in New York were those of the Brooklyn Institute, of which McKim, Mead and White were the architects, and the Connecticut State Library by Donn Barber. It is hardly worth while to model a sky-scraper. for the principal thing required in erecting such a building is a hoisting engine powerfu! enough to transport material to the top: but in the case of important public buildings or the more elaborate bank structures, where the directors are anxions to get rid of some of the surplus, a model is necessary. The model of the Toronto bank, which was about three feet by two feet, cost $\$ 1.000$. The Cleveland Trust Company's new building was another of the few business structures considered of sufficient importance to be reproduced in miniature.

The architectural modelmaker first works out the architect's idea in clay, 11 sing his fingers to daub so much of the clay as he cannot contrive to smear on his clothes or drop on the floor, upon a board. By patting, pinching and pulling he works the clay into slape, occasionally using a fell carving tools or a loop of wire to finish off with. Usually his instructions are to make a rather free interpretation of the ornamental
features, and even of some other details, for the original drawings are likely to be more suggestive than specific. To a limited extent, therefore, the modeler does creative work. Indeed, the higher class modelers regard themselves as artists rather than craftsmen. The heads of the firm make annual trips to Europe to brush up their artistic ideas and they are very particular about those fron whom they accept orders. Some of them will tell you that there are only about fifteen architects in New lork for whom they care to work. One architect with a big contract on his hands wanted some scale models made, but when the firm to which he applied had seen his plans he was invited to go elsewhere as the modelers did not care to do that grade of work.

After the clay study has been approved by the architect it is treated to a coat of shellac, then to a light coat of grease. It is then encased in a rough plaster form so that a melterl preparation of gelatinte. or "glue" as the modelers call it, may be poured upon the face. When cold this glue is as elastic as rubber, so that it may be pulled from the irregular face of the model without injury. After being face-hardened with alum this glue impression serves as a mold into which plaster of Paris mixed to a thin paste is poured. Burlap or jute fiber is scattered over the wet plaster to hold the brittle stuff together, after which another coating of plaster is poured on. In making scale models wires or strips of metal may be used as reenforcement. Whenever a detail, such as a column, or a capital or a window or a decorative detail is repeated the modeler makes a mold for a single unit and then casts as many pieces as are required. These are then assembled and cemented in place with fresh

This model ls Displated in a Window as a Bustness Firm's Way of Advertising Its New Structure.
plaster. The sections are then assembled and the model is finished by "pointing up," or dressing down the rough parts and filling up imperfections.

Architectural model-makers are among the highest paid of craftsmen for they get $\$ 50$ or $\$ 60$ a week. They have things pretty much their own way, for there are barely two hundred of them in America, nearly all being in New York City.

In the art of making marine morlels we are as far ahead of England as that nation is ahearl of us in building full-grown ships. In mere quantity of output, to be sure. England is as far in the learl as in turning out real ships. One reason is that marine model-making has become such an extensive industry over there that some concerns make a specialty of

A PORTION OF TIE UNIVERSITY OF WVISCONSIN CAMPUS.
The smooth surface at the right is water.

MODEL OF THE NEW YORK YUBLIC LIBRARY.
Altogether $\$ 125 .(\mathrm{Kn})$ was spent on models for this $\$ 10.006,(\mathrm{NNO}$ structure.
turning out parts for models, which are assembler by the various makers. This use of stock parts is deceptive, for they often differ from the originals they are supposed to represent. In Great Britain, too, model-making is a mere trade in which one man generally makes the complete model from beginning to end, except for the stock parts which he buys ready made. Thus the work is slow and
costly and when it is done is not always a faithful reproduction of the original.

But in America, on the other hand, model-making has become an art in which brains, machinery and specialists are all employed to produce a mathematically exact copy in every detail of the original at reduced cost. A striking example of this difference is afforded by the model of the White Star Liner Olym-

EXACT MODEL OF THE CURTISS AEROPLANE—SIX FFET ACROSS.

MINIATURE REPRODUCTION OF THE SEl'ERN. THE SCHOOLSHIP FOR UNITED States Naval cadets.
pic, now on exhibition in New York. This, the largest model ever built, is eighteen feet six inches long and cost $\$ 12,500$ in England. The foremost American maker of marine morlels offered to build a model of the same ship of the same size for three-fourths of this stam. Some idea of the character of such an undertaking may be gathered from the American's estimate that it
would take twenty men six months to build a miniature Olympic.

Lest anyone should underestimate the importance of the marine model it should be explained that they perform many usefnl services. For one thing marine models have played an important part in making England mistress of the seas. Marine museums, the principal features of which are models of ships, are nu1-
merous in England. Landlubbers there have abundant opportunities to become familiar with the appearance of vessels of all kinds before they ever smell salt water, and this familiarity inspires a determination to follow the sea for a livelilood. America, on the other hand, lias no marine musemms. The nearest we ever came to having one was three years ago when Senator Heyburn introduced a bill to present a model of each ship in the United States navy named after a city or a state to such cities and states. Rint the bill was quietly smothered in committee and our first marine museum is yet to be establisherl. American hoys who might grow up into seafaring men and do their slare in rehabilitating our merchant marine are thus cheated out of their careers, since they never have an opportunity of seeing what a ship looks like. Still, we can boast that the finest collection of marine molels in the world, that of the New

York Yacht Club, is to be found on American soil, even if it isn't open to the public.

Models are also often uscful to the man who has decided to build a ship or a yacht but is not sure about the details. To the unpracticed eye the blue prints of the naval architect convey but little meaning. In such a case the modelmaker is called in to construct the vessel in miniature from the architect's drawings. Then the prospective owner can see his future craft just as it would look if viewed through a reducing glass. With the concrete object before his eyes lie can have changes made to suit his ideas, thus making sure that he will not be disappointed in the vessel itself.

Models, too, play an important part in admiralty suits sometimes, though this happens oftener in England than in America. Nlodels of the splendid new trans-Atlantic liners also do effective work in drumming up trade for the steamship companies. The White Star Line and the Cunard Line have each more than a hundred thonsand dollars invested in models of their crack ships, which are kejt going the rounds of the more innportant cities. They wear nut in the course of their dry land voyages and have to go into dry dock just like their full-grown counterparts, particularly if they happen to be English built.

Lastly, marine models make attractive collections for those in search of novelty: Henry A. Morss, a Boston yaclitsman, has recognized the opportunity by gathering a fune private collection.

I marine model may be of any dimensions required from life-size down. Visitors at the Chicago World's Fair in 1893 will recall the life-sized model of the battleslip Illinois, done in wool and staff. in one of the Jagoons in Jackson Park. At the St. Lours

World's Fair in 1904, a lifesized model of the forward third of a typical cruiser was constructed in the Government building. This full-sized model was surrounded by a most interesting collection of warship models of conventional size from the Navy Department. that is, a quarter of an inch to the foot. The entire collection. including the fultsized model, was the work of 11. E. Poucher, of New York, the world's foremost marine model-maker.

Mr. Boucher was employed as a naval architect at the Brooklyn Navy Yard for a number of years. Parmum and Bailey, the circus men who had secured permission from the Government to make models of eleven warships for exhibition, engaged Mr. Boucher to superintend the construction of the models after hours. The models were so fine that they won the admiration of Naval Constructor Bowles, who secured the transfer of Mr. Boncher to the Navy Department's model shop at Washington. Boucher reorganized the shop, put it on an efficient basis and reduced the cost of model-making onethird.

When the time came he was assigned to the task of building the big model at the St. Lonis Exposition. At the Seattle Exposition in 1909, he built for the War Department a model to show harbor dcfense by submarine mines. In a little bay filled with real water and commanded by fortifications complete in every detail, were a number of submarine mines so disposed as to protect the entrance. A tiny ship steaming about the harbor came in contact with one of the mines at regular intervals, catrsing a light to glow in the mine to attract the spectators' attention. At the same instant there was an explosion accompanied by a puff of property smoke. Then the mofortunate ship sailed on to meet her doom again.

One notable piece of work by Mr.

Boucher was to epitomize the history of the United States Navy in a series of twenty half models for the New York Yacht Club. The series began with Paul Jones' ship, the famous Bonhomme Richard, and included the Constitution, the Powhattan, the first sidewheel man of war, the corvette Kearsarge, the Maine and the Oregon, and concluded with the Connccticut. As all were on the same scale the increase in size as well as progress in other features could be comprehended at a glance. The collection was regarded as so important that the maker was requested to duplicate it for the Navy Department. Six years ago Mr. Boucher resigned from the Navy Department and set 11 b business for himself as a model-maker in a little shop in Maiden Lane, New York, with two as.sistants. Soon he was obliged to move to larger quarters. Now he employs thirty-two expert mechanics and is looking for still larger shop space.

Some of the most interesting marine models turned out by Mr. Boucher are

UNITED STATES NAVY DEPARTMENT'S MINIATURE OF FORWARD PART

OF A BATTLESHIP.

A GFIPM ENGINE IOOX IN DET:II-AN EXCELLENT PIECE OF FNGINEERING WORK.
those slowing interiors of vessels. A model of the transport Sherman seen from one side shows the ordinary exterior view. The other side shows the interior on the center line of the ship. Every detail is there and everything is carefully made to scale, from the chart room and the cabins to the bunks for the troops, the coal in the bunkers, the machinery, cargo, and the quarters of beef in the cold storage room.

Models of the Iolanda, Mortimer F. Plant's yacht, and the I'anadis, owned by C. K. G. Billings, show the exterior on the port side, while on the starboard sile the shell plating is removed to show the interior, from the luxurious furnishings in the cabin to the boilers and engines. The quadruple expansion en-
not to be had whenever needed; they have to be trained to the work. As the demand for models fluctuates and as it would not do to lay off these trained specialists lest they might not be found when needed, general machine work of the higher grade is taken in to keep the plant going.
Unless it is desired to show the details of its construction the hull of the marine morlel is carved out of a solid mass of wood. This is not one piece as it grew in the tree, for that would warp and check and be utterly worthless, but a builtup block of one-inch or half-inch boards accurately fitted and glued together. The exterior is first shaped up to the proper lines, then the interior is hollowed out as much as may be required. Finally

SHOWING THE CAPITALIST F.IRMER HOW TO LAY OUT HIS ACRES.
gines of the I'anadis, which, of course. are accurately built to scale, are five inches long by four inches high. Every bolt head, oil cup and other detail is there in its proper proportions and the whole is beautifully finished. It took one man six weeks to build the engines.
Some of the details of a marine model are very small. Just to give an idea of them it may be said that they include turubuckles with right and left hand threads that work just as well as the fullsized ones, yet are only half an inch long over ail. Cleats three-eighths of an inch long and blocks one-sixteenth of an inch long may be found. For cordage Japanese grass line, which is not only extremely strong but is twisted in exact imitation of ordinary rope, is used.

Watchmaker's work seems crude when compared with the delicate nicety of skill required in the model-maker. Men competent to build the tiny engines and do the other metal work get from $\$+.50$ to $\$+.75$ a day, while ordinary machinists are glad to get $\$ 3$ a day. The woodworkers are equally well paid. Mordel-makers are
the superstructure and top hamper are pirt on. For the superstructure, the English model-makers use thin strips from a single board. This material will not stand rough usage nor changes of climate but soon warps and splits so that the morels find their way to Mr. Boucher's dry docks where the worthless material is replacest lyy sheets of wood built up by gluing half-inch strips together. This built-up lumber never warps nor checks and it will stand remarkably rough usage for such frail material.

When the model is intended to show the structure of the hull a section, usually amidship, will generally suffice. In this case bits of metal and woond finishen exactly to scale are put together precisely as the larger pieces go in the full-sized ship. The work is done directly from the naval architect's drawings, which are on a scale of a quarter of an inch to the foot. If a craft is alreally in existence a model may be made from photographs of it. The scale is obtained from the photographs by laying a number of rods divided into inches alternatcly black and

A DAINTY STRUCTURE IN PLASTER WITH A FRONTAGE OF SIX FEEL. Model of the Cleveland Trust Compans's mew buildine at Cleveland. Ohio.
white. wherever measurements are required. No matter how the camera may be placed the correct measures show in the photograph.

Marine models are costly huxuries. A model of a fifty-foot slon!, if made to the conventional scale, would cost $\$ 300$. The model of the lolanda, seven feet long, cost $\$ 5.000$.

Mr. Boucher has views on the sulbject of models and education that are worth hearing. "My bent for model-making," said he. "may be due in some degree to the fact that my father never would give me any tors. But as he willingly supplied me with tools and materials I' never lacked playthings. I have often thought it would be a great blessing if other boys were treated the same way. Girls are well provided for. They are given toy honses, all sorts of toy furniture, dolls.
dolls' clothing, needles and thread and everything else that will familiarize them with honsework from their carliest infancy. l'ut the poor boy is given a ball and bat and turned out into the street. Balls and bats may be very well in their way, but they certainly are not prolific in ideas. Beoys should be tanght to shift for themselves in the matter of amusement as soon as they are able to handle tools.
"We need a mantical muscum, or rather a good many of them. We used to be considered a maritime mation. Whether we ever were or not, we have gotten bravely over it uow. The greater part of our population is tow far from salt water to know anything about maritime commerce, and not knowing. they care nothing about it. They never can be educated up, to at due appreciation of our

marine interests and opportunities through the newspapers nor by pictures. They must see the ships, either by journeying to the ocean, or by sending the ships in miniature to them. A good model discounts everything else as a means of instruction."

Although architects on land and sea are the principal users of models they by no means exhanst the list. A recently developed use for morlels, which is rapidly extending, is in selling goods. Some manufacturers of special machinery employ no salesmen. When an inquiry for a machine is received a working model is sent. This tells its own story more convincingly than the most eloquent words. The inquirer returns the model with his order, whereupon it goes to the next prospective customer. Express charges on the "silent salesman" are cheaper than railroad fares for the more loquacious kind, and there are no hotel bills to pay.

Often, thongh, the silent salesman goes along with the ordinary kind to help him out. The salesmen's models cover a curionsly wide range. Perhaps the model may be nothing more than the working part of a rock crusher about the size of an ordinary fruit cake cut in half to show some special feature, which can be carried in a grip or a sample case. Or it may be a working sectional model
of a valve movement the size of a postal card and a fuarter of an inch thick, incluting the glass cover. which can be carried in the pocket. Mr. Boucher has made several working models of boilers of glass with alcohol lamps in the futnaces, in which the whole process of generating steam may be seen. These glass boilers will safely carry a pressure of twenty pounds to the square inch.

Real estate salesmen in England not infrequently use models of properties to effect sales. This is too expensive a method, though, except in the case of costly mansions. But one instance is known in which an American real estate man used a model. In this case the interior as well as the exterior was shown, the top being removable. Enterprising manufacturers who support city salesrooms sometimes have models of their plants made for exhibition in the show windows. This class of models, together with relief maps such as are shown at expositions, is regarded as "cheap work" and as such is rather looked down upon by the leading modelers.

Models of street corners, roadways, bridges, buildings and the like are often used in litigation in English courts, for they make clear to a jury as nothing else can the locale of an accident or a crime. But in American courts models have rarely been used.

ONE OF THE COUNTRY RESIDENCES OF GENFRAL LUIS TERRAZAS.

WEALTHIEST MAN IN MEXICO

By
W. D. HORNADAY

GENERAL LUlS TERR:IZAS, who is said to lee the wealthiest man in Mexico, rules over a princely domain. While his land and livestock interests form a considerable part of his fortune he also possesses much other property. Jlis wealth has been estimated as high as $\$ 150,000,000$ golk, but it is probably very much less than that sum. He orvos many millions of acres of land in the state of Chihuahua, upon which alnost comotless munbers of cattle, horses, sheep an! other livestock contentedly graze. His several ranches are cut up into large pastures some of which are of themselves from one hundred thousand to two humdred thousand acres in area. It has been stated that General Terrazas owns twothirets of the buiddings in the city of Chihuahua. lle has enormous investments in banks, in railroads, in manufacturing establishments and various other profitmaking inclustries.

While General Terrazas' business in-
terests are varied and widely scattered they are all under his personal control. in spite of the fact that he is eighty years old. Ile takes the keenest pleasure in looking after his ranches and farms. For many years he has been the foremost man in Mexico in improving the breed of his cattle and other livestock. I le has imported many thoroughbred animals from the United States and placed them upon his ranches. Of late years he has also given considerable attention to scientific farming. His ranches are situated in an arid part of the country and irrigation is necessary in order to raise crops with much degree of success.

This remarkable man is essentially self-made. Ile was born in the city of Chihualua where he has made his home during his whole lifetime. In spite of his childhood poverty and disadrantages he managed to obtain a fair education. From the early days of his youth he has held to the helief that education was the great uplifting power of the people of Nexico. So strongly was he imbued
with this idea that he devoted his spare time when a young man to teaching night school in his native city in order that the poor youths might be given a start towards bettering their condition.

In the days of General Terrazas' young manhood and up to the time that General Porfirio Diaz ascended to the presidency and established permanent peace, Mexico was the scene of wars and disorders. While Gencral Terrazas entered upon a mercantile cáreer he found it necessary to frequently respond to the military call of duty. On one occasion the city of Chihuahua was captured by a force of several hundred bandits. The governor fled to Juarez. Terrazas organized a volunteer force of men and recaptured the city of which he was at that time the jefe politico or mayor. In recognition of this service he was made governor of the state. He served several terms in that capacity and when he fimally decided to retire to private life the reins of government were turned over to his son-in-law. Enrique C. Creel, who afterwards became Mexican ambassador to the United States and is now minister of foreign affairs of Mexico.

General Terrazas lives in unpretentious style. He has a large and comfortable residence upon one of his rancles where he spends part of his time. He has traveled extensively in the United States and Mexico. He has always been active in the development of the natural resources of his native state and welcomed the advent of American capital.

Mfxico's Wfalthifes Citizfn.
General Luis Terrazas, who owns vast astates in our turbulent neishboring republic.

It was largely through his efforts that the educational system of the state was placed upon a high plane. Strict saloon regulations and anti-gambling measures are also in effect.

FACE PAINT FOR THE COMPLEXION

THE native women of the Portuguese province of Mozambique, in Africa, paint their faces with a peculiar paste, made by grinding a certain kind of wood on a wetted stone. It is most refreshing, according to the account of those who use this odd cosmetic, and greatly improves the complexion, removing wrinkles, and keeping the skin free from eruptive blemishes. When dry it turns a dazzling white, so as to give to a woman decorated with it the effect of wearing a ghastly mask.

Some of the wood from which the paste is made has been sent by our con-
sul at Mozambique to the Bureau of Manufactures at Washington, which will furnish samples of it gratis to any chemist wishing to investigate its properties.

Such a material placed onthe American market might be popular as a wrinkle-remover only.

A Mask of White Paint.

AN UNATTENDED LIGHTHOUSE

By

F. A. A. TALBOT

ANOVEL and interesting lighthouse, the main feature of which is that it requires no manual attention, has recently been completed in the English Channel. The situation is off the coast of Guernsey, Channel Islands, and some sort of warning has long been considered necessary by shipping circles. These islands are very rockbound, and scattered submerged reefs and masses of rocks extend for some distance from the mainland. Under these cireumstances the entrance to St. Peter Port, which has only one navigable channel, and that somewhat narrow, is extremely difficult in rough and foggy weather, and mumerous disasters have occurred in the vicinity of the entrance.

The problem, however, offered trementous difficulties. The only possible situation for a lighthouse was an isolated detached rock known as the Platte Fougère, about a mile seawards, which marks the entrance to the channel, but the prevailing conditions were such that a lighthouse of the conventional type at this point rendered it impossible for lighthouse-keepers to live in the tower. Nor could an automatic beacon
or whistling buoy meet the requirements. for the site is very exposed and subjeeted to the full fury of the Atlantic. To assist in their task of solving the problem, the authorities sought the assistance and experience of Messrs. D. and C. Stevenson, the well-known lighthouse engineers of Edinburgh, who have been associated with many of the most important lightlonses on the exposed parts of the Scottish coast. These consulting engineers as a result of their surveys proposed the novel structure which is illustrated herewith.

The lighthouse erected on the rock comprises a tower, carrying a light, and a powerful siren for use in foggy weather. The siren is driven by compressed air, and the electrical power is transmitted from a station on the mainland. So far as marine requirements are concerned the siren for foggy weather was most particularly desired by eaptains so as to enable them to pick up the entrance to the narrow channel which leads to St. Peter Port, and under these circumstances the light is in reality a secondary consideration, though it has. since it was inaugurated, proved highly serviceable to navigation.

The rock selected is one of a large scattered group and is particularly dangerous for the reason that it lies very low in the water, and is completely submerged at high tide.

Under these eircumstances the engineers evolved the novel solution illustrated herewith. Which is probably the only lighthouse installation of its tyle that las yet been carried out. It was found that a tower of small di-

Thl Diplicate Siren on thf Shore Station. One Mile from the Unattended Lighthuush.
ameter wonld have to be erected, and under these circumstances an irregular octagonal structure to conform with the fommdation surface available had to be built. The lowest portion is of Portland cement placed inside of wrought-iron molds. The tower is fixed to the rock by heavy iron hars driven into the granite to secure a firm foundation, and steel beams are built in at frequent points to consolidate the structure and to sccure greater rigidity where tension is most likely to be imposed upon the fabric. The upper part of the tower is wrought in concrete.

At the height of 46 feet above low water the tower is entered by a door. Up to this level the structure is solid, and the entrance is gained by a ladler up the side of which the cable is carried.

'haf UNattended L.ighrhoesf at Low Watfr.

SPIDERS THAT FLY

B y

D R . W. H. A L B R I GH T

FLYTNG spiders is the name given to a number of species of spiders that use their web as an aerovehicle to convey them to other feeding grounds.
Their webs are seen during the warm autumn days floating in countless numbers through the air, and even then we see but a small per cent of the real number as those we see represent only the failures of attempts to get into the air, the webs having caught on some obstruction. It is estimated that on uncultivated grass land there are upwards of fifty million of these spiders to the square mile, and they represent ninetenths of all the spiders found in the temperate zone.

There are many varieties of spiders, but their numbers are few compared with the numbers of flying spiders.

I have studied the habits of these spiders for upwards of twenty years and the accompanying ploto silhouettes rep-

" Found from Maine to the Rockies."
resent, as far as I have been able to determine, nearly all the spiders that migrate, and only three of these are especially good fliers; the other one, a "Lycosid" or "wolf" spider-the largest of the four-enjoys a trip occasionally but is not in it with the other three.

The family of "Thomisid" or "crab" is an ugly specimen looking as much like a louse or tick as a spider. It can travel backward, sidewise. or diagonally with equal facility, which is lecidedly suaillike; but he is a good aviator and I have seen full-size spiders of this variety take flight with apparent ease. It is understood that, as a rule. only the smallest of spiders. seldom larger than a pin, are fliers, and to see these fat, ugly gourmands enjoy such a sport makes us think that we as beings of super intelligence, are unquestionably slow.

Tibellus oblongus, and Pardosa, are found in nearly

The Wolf Spider。
equal numbers from Maine to the Rockies. They are both very active and excellent fliers even to the youngest specimens. Full-grown ones, however, are seldom, if ever, found in flight.

When we know that, were it not for s]iders, hardly a blade of grass or a tree leaf coukl survive the onslaught of the larval horde that would sweep over the earth, it should be the aim of agriculturists to handle their work in a manner to preserve these creatures. We believe that subsoiling and surface work could take the place of deep plowing with better results both in crops and in the destruction of pests. it is foumd that many crops like onions are grown more successfully without the annual plowing, and as we cannot domesticate spilers and raise them in hatcheries we should make some provision for allowing them to escape the plow. We know that a larse part of the United States is now under the plow and that there are com-

"An Ugly Spfcimen."
paratively few spiders found on cultivated soil; the plow, no doubt, has a great deal to do with this by covering the young so deeply that they cannot liberate themselves.

Remembering that these photos are greatly magnified, if the reader will consider that the Parkosa is smaller than the head of a pin, that he is bright, active, and wary, that his airship might land him on the ocean 300 miles from land, as he has been found, the interest in him will be specially keen.

OLD METHOI OF TRANSPORTING COAL-BY CAMEL.
Picturesque. but slow and expensive.

REMARKABLE CHINESE CABLEWAY

B y

DR.ALFRED GRADENWITZ

TO the west of Pekin there extends for some distance a monntain range rising to ever greater heights, and which in the Liao-ou-tai Chan reaches to approximately 10,000 feet.

In these mountains are found many ancient monuments and temples, as well as Imperial castles inhabited only in summer, and these heights afford a welcome refuge to European residents of Pekin, anxious to escape the heat and dust of the plains in order to enjoy some fresh air, at least in the evenings. The Pekin-Han-Kevu Railway, with a branch line to To-li at the foot of the mountains and on the banks of the Liou-li-Ho, leads in this direction. The Lion-li-Ho comes from the western part of these mountains traversing a valley full of the most variegated landscapes, cut deeply into the
high mountain range. This valley is worth coming far to see.

The horseman proceeding uphill will meet on his way thousants of camels, mules and donkeys carrying heavy loads of coal sacks from the coal mines to the railway station of To-li. The narrow path is taken up by an endless file of beasts of burden among which the camels stalking majestically behind one another produce an especially odr! impression. Each camel driver guides six to ten camels, the front one being connected for simplicity's sake by ropes with the noses of those following behind so that the driver may confine his attention to the first camel. This in conjunction with the mud and dust, and the swarms of flies attracted by the enormous heat, makes the transport of coal a torture to those poor beasts.

THE NEW METHOD OF TRANSPORTING COAL.
Cabloway through the Chang-Fin Chan Mountams. China.

THE TERMINAL OF THE CARIEWAY IT NANTZIOU.

This pitiable state of affairs will, however, som disappear, as the Chinese coal miners and merchants have united with a view to increasing their production and sales at Pekin by the aid of improsed means of transport, and the cableway recently constructed will do away with all pretious drawbacks. As the narrow valley with its many simosities did not allow of the installation of any ordinary railway, a cableway freely suspended above valleys and heights curiously was the only solution of the problem.

About six hours ride up the monntains commences the coal district, where many villages are spread over the more or less precipitous valleys. The coal mining is carried out on a system quite novel to western travelers. Whereas in U'estern comntries large mining companies are formed which, in order to get at the veins, have to sink expensive shafts hundreds of feet deep, keeping an army of miners at work below gromed, the anthracite in the rocky valley of the I, ion-li-Ho cones to the surface, so that
eaclu peasant is able to carry on his mining separately with the assistance of his sons, by furrowing tiny mole-like galleries into the mountains. The coal is mined in a most primitive manner without any working funds or machinery, being taken to the surface on sledges with woolen rumers. As a rule, four to eight men are found working alternately in the same gallery, the coal being accmmulated in large heaps, whence formerly were loaded the camels and mules transporting it to the railway station. Here now begins the cableway which extends down to the valley city.

While the means of transport have now become thoroughly modernized it will be long before any up-to-date methods may be introduced into the exploitation of these coal mines as foreigners are not so far allowed any share in the mining business of the interior of China. The fact that European engineers have at last, for the first time, been admitterl into these secluded districts is significant of the new spirit in China.

Jlı• arruval at Nantzau.

LOCUSTS AND THEIR PUPA SHELLS.

Seventeen Year Lccust Back Again URING the coming made careful stuldies of the

Dsummer the Atlantic seaboard, from Connecticut to North Carolina, will suffer from the visitation of the seventeen-year locust. In countless millions the cicada will sing their shrill song and devour young fruit trees. The locust swarms, though appearing at happily long intervals, may be depended upon to arrive on schedule time. In Connecticut they have been regularly reported every seventeen years since 1724 , and in New Juscy since 1775 . Tlie last appearance was in the vear 189t, when scientists

Emmett Campbell Hall

 insect.The appearance of the cicada in great numbers naturally causes considerable alarm for the safety of shade trees and orchards. The actual damage done in the past, however, has been comparatively slight. except in the case of young orchards, and even then, by vigorons pruning after the insects have disappeared, much of the injury caused by the egg punctures can be obviated.

Ordinary repellent substances, such as kerosene emulsion or carbolic acid solutions, seem to have little effect in pre-

A M.LGNHFRD HHOTO OF THE SEVENTEEN JEAR LOCLST.
venting the oviposition of these insects. Recent experiences seem to indicate that trees thoroughly sprayed with Bordeaux mixture or lime wash are apt to be avoided by the cicada, especially if there are other trees in the neighborhood on which they can oviposit. The best
method of protecting murseries and young orchards is to collect the insects in bags in early morning and late evening, when they are somewhat torpid. Such collections should begin with the appearance of the locust and continue until the swarms have disappeared.

CUBA'S FRENZIED GAMBLING GAME. JAI ALAI

JAI ALAI, the great gambling game of Cuba, is unique among all other gambling contests in, that it calls for as high a degree of bodily skill as mental. One who has seen the game describes it as "a superb display of human agility and high training." The successful Jai Alai contestant must accustom himself to sustain a strain of contimuous violent exercise. "The Jai .tlai player," says the same authority quotel above, "dies young."

In Havana, the contests are scheduled for every Tuesday and Thursday nights and Sunday afternoons. Thousands of spectators, the most of whom are there to gamble, often witness the gane at one time. The prices of admittance fange from $\$ 2.50$. each person, down to $\$ 1.00$, according to the fame of the contestants. High walls of stone enclose the Jai Alai court on three sides: the floor also being paved with stone. Metal markers against the wall designate the limits within which the ball must strike. The hall nsed is one of melia rubher covered with leather, and weighs
about one-quarter of a pound. The ball is thrown to the wall from a small curved basket attached to the wrist of the player, and is canght again in the rebound by means of the basket. A failure to catch the ball on the rebound, or the throwing of it outside the proscribed limits is counted a miss, and scores one for the opposing side. The scores, as fast as made, are registered in sight of the spectators. The score rums to thirty. When it is nearing completion, the spectators go into a frenzy of excitement. Some have gone insane on the spot from losses: others have committed suicide. It is now played under police restrictions, but still many scenes of horror occur. The more morally inclined $\mathrm{Cu}-$ bans have made frequent attempts to have the game suppressed by law. In a specch in the Cuban Senate some time ago, Senator Sanguilly scathingly pronounced Jai Alai "a social cancer, whose results are the ruin of many persons, the cause of commercial failures, and of the suiciles of fathers of families and of youths of brilliant promise."

THE BROOKE MOTOR FITTED WITH A PROPELIER FOR DRIVING AN AEROPLANE.

TO STOP A EROPLANE AND AUTO ACCIDENTS

By

HENRY M. HYDE

WHAT makes an automobile skid? What is the cause of the terrible accidents to machines rumning at high speed, occurring chiefly on the curves of race tracks?

Why is it that most of the fatal acci-
dents in aeronatitics have occurred just as the aeroplanes were turned into the horizontal plane. after a long sweep down from the heights on a sharply inclined plane?

In all these cases the aciilents are most frequent and most dangerous just
at the moment when the direction is suddenly changed. What is the nature and the canse of the force which tends so strongly to resist this change of dircction that, often, the whole fabric is upset or cven torn to pieces in the conflict?

Studying this problem, Thomas Preston Prooke, the well-known musician and band-master, has been led to certain radical conclusions. In defense of these conclusions Mr. Brooke has prepared certain experimental apparatus which scems to demonstrate the truth of his contentions. He has also invented and built an eighty horse-power motor, for use in antomobiles and aeroplanes, in which the danger of such accidents isin the opinion of the inventor, at leastentirely eliminated.

In bricf, then, Mr. Brooke claims that a majority of antomobile and acroplane accidents of the destructive type are due to the syroseopic force exerted by the revolving fly-wheels and clntches of their motors. When, in obedience to the steering whecl, the direction of a fast-moving car or flying machine is suddenly altered, the gyroscopic force of the fly-wheels and clutches continnes to be exerted in the old direction. Hence the whole machine skids or even turns a somersanlt.

For the purpose of demonstration, Mr. Prooke has mounted a couple of gyroscopic tops on a small-wheeled framework, which may represent the chassis of an antomobile. The two tops are set to spinning on their axles in a plane at right angles to the direction of the little car. The slightest attempt to change the direction of the car invariably results in its rearing up on its hind wheels like a bucking broncho. So strong is the force exerterl by this upward leap that it takes a pressure of twelve or fifteen pounds to put the front whecls back on the ground.

I Iow, Mr. Irooke asked himself, would it be possible to nentralize this destructive force of the necessary fly-wheel and clutches?

In the course of his experiments he one day set the two tops mounted on their small framework spinning in opposite directions-one from right to left, the wther in the opposite direction. To his surprise the problem-from an experimental standpoint, at least-scemed
to be thus simply solved. With the tops spinning in opposition it became at once possible to alter the direction of the machine as suddenly as one wished without developing the slightest inclination to skid or somersault. The gyroscopic force exerted by each of the spinning tops was exactly balanced by that of the other.

In his effort to prove the practical force of this discovery Mr. Brooke made many experiments and built a large number of models. He has finally constructed a large motor on this principle, which develops about eighty horse-power and which, in actual operation, seems to give the final proof of the correctuess of his theory.

In the Brooke "non-gyro" motor there are ten cylinders. They are mounted in sets of five on two circular bases, which revolve in opposite directions when the motor is in operation. The essential point in this motor, wherein it differs from all other revolving cylinder motors, is the fact that the bases carrying the cylinders revolve in opposite directions, the gyroscopic force developed by each being thms exactly neutralized by that of the other. In this way, while the fly-wheel of the ordinary motor is entirely climinated and all the advantages of the revolving cylinder type retaincd, there is absolutely no danger from what Brooke calls the destructive action of gyroscopic force.

The Brooke motor, which is now apparently perfected, develops about cighty horse-power when all the ten cylinders are in operation. But, at the will of the operator, cither half-containing five cylinders-may be discomected, the remaining section developing forty horsepower, which is quite sufficient for the ordinary aeroplane or motor car. It is to be noted that when the gasoline is cut off from one section it still continues to revolve, thus still serving to neutralize the gyroscopic force of the other. At the same time the disused section is being thoronghly cooled. thus eliminating the danger of overheating and furnishing a motor which should be almost ideal for long-distance flights or rums.

As an engine for airships, especially, Mr. Brooke makes many other important claims for his new motor. It is said to be the lightest motor ever constructed in

MAKING A TEST UF THE BKOOKE NOTOR.
proportion to the horse-power developerl and to be stronger, at the same time, than any of its rivals. It is also fitted with new devices for delivering gasoline under an absolutely constant pressure and through a straining mechanism which insures the perfect cleanliness of the fluid. The carburetor, electric and lubrication systems also contain many movel features, as was recognized by the l'atent Office at Washington, when twenty-two broad claims were allowed in go to patent, without a single existing patent being cited against them.

Mr. Brooke's career has been picturespue and interesting. When a boy he ran away from home and joined a circus. Connected with the show was one of the old-fashioned aeronatts, who after ascending to a considerable height in a balloon, daily thrilled the natives by cutting loose from his support and dropping back to eartl with the aid of a
parachute. lieing of a daring and reckless disposition Mr. Brooke occasionally took the place of the aeronant and did the parachute leap on his own account. Thus early did he get an interest and some practical experience in the problems of aeronatutics.

In later years he turned his attention to music and for fifteen years he was the conductor of a well known band and orchestra in Chicago. During this periorl, also, he composed the music of a couple of comic operas and more than a handred quick-steps and waltzes. But all the time he retained his interest in mechanics as applied to rapid transportation. When the internal-combustion engine was invented, bringing in its train the aeroplane and antomobile, more and more of his attention was given to the resulting problems. Finally, with a number of profitable contracts in sight, he (deliberately gave up his career as a band
conductor and has since then spent every energy in the perfecting of his "nongyro" motor.

Mr. Brooke's theories and discoveries as to the dangers of gyroscopic force in aeroplanes and antomobiles do not conflict at all with the views held by Brennan, inventor of the famous mono-rail gyroscopic railroad system. Mr. Brooke points out that there is a great difference between a vehicle running free in the air or on the road and in one which is anchored in one plane by the grip of its wheels on the rail.

That there has been a widespread popular delusion about the almost mirac-
nlons effect of the gyroscope as a safety appliance in vehicles of all descriptions there can be no doubt. Mr. Brooke's views as to the dangers of this popular superstition have recently received high endorsement by M. Bouchaud-Praecig, an eminent lrench engineer, who in recent lectures and magazine articles has taken exactly the same position.

Mr. Brooke has invented and is now completing the construction of a new aeroplane, which will be fitted with his "non-gyro" engine and in which he hopes and, in fact, expects, to fully demonstrate the correctness of his radical views in mechanics.

TELESCOPE BUILT BY PRINTER

AMATEUR astronomers thrive in Pasadena, Cal. Inspired in most cases by the new five-foot reflecting telescope of the Carnegie Solar Observatnry on Mt. Wilson, which was constructed in the observatory office in

ONE UF FASAUENA'S ENTERTRISING ASIRONOMFRS and HIS Instrumint.

Pasadena, a number of Pasadenans have made eight-inch replicas of the great sky searchers, and with them are doing much research work. An organization with a membership of about a dozen has been formed.
E. H. Morse, a linotype operator, whose telescope is pietured herewith, made a complete set of machincry, with the aid of which his eight-inch mirror was ground to a degree of perfection in a few months. His experience seemed to disprove the contention of a colleague, Wendell P. lloge, a railroad man, that it is impossible to construct a machine which will not, in the course of grinding a mirror, repeat the same motions at intervals, thats working the inch-thick plate of glass into zones which would destroy the efficiency of the mirror. Mr. Hoge began his mirror a dozen years ago in the East and completed it entirely by hand, placing the glass on an upturned barrel and walking around and around it as he rubber the glass with fine emery and jeweler's rouge, to secure the desired parabolic surface.

Other small telescopic mirrors are now in process of construction, while Prof. G. W. Ritchey, expert of the solar observatory, who directed work on the fivefoot mirror from which results were secured, said by scientists to be the best yet recorderl, has made a nine-inch reflecting teleseope for the students of the Pasadena I ligh School.

The "Nature Man" Cultivitiva $1 H F$ Cocoanut Pala.

Thr "Naterr VAN" ("1.NDBN: a Japaw.

THE NATURE MAN IN TAHITI

SAN FRANCISCO and Los Angeles still remember vividly the physiognomy and prophetic pose of W. Ernest Darling, the little-clad advocate of the simplest life, uncooked food and most simplified spelling, whom unceasing troubles with the police courts forced to leave the continent in search of a more suiting climate and less sophisticated enviromments. But the same prejudice which Darling found in his own home. in the university he attended for a time. and in the communities where he preached his "sermons on the Nount," awaited him in Hawaii and gave him in the end the choice of a jail sentence in Honolulu or of leaving the islands of his own "free will." The Nature Man took the offer of a leave, and crossed the line in his search of Eden, finding it in Tahiti, the main island of the Society Group, near the capital of French Oceania, Papeete. The booklets of the steamship
companies abound, to be sure, with pictures of almost nutle natives; but Darling found, to his sorrow, that even if there are people still to be seen in Tahiti, clad only in "pareus," Papecte"s decorum requires as rigoronsly the antiquated pants as the old-fashioned shirt. Aiter a short stand, the Nature Man had to give in; and so, on his way from the plantation to the town, he is wont to gradually acquire such articles of attire as the law imposes on him. He has his pants-limit, his shirt-limit, his bicycle station: and the said articles are deposited, in the reverse order, on the same places whenever he is returning, the bicycle having served only as a beast of burden for his bananas and mummy apples. High above civilization, out of the sight of the curious, on his premises, the Nature Man comes to his own and disembarrasses himself of all, if he is alone, and keeps the mative pareu around his loins, if he happens to have visitors.

Prompt Action

Marie-"When you spoke to papa did you tell him you had $\$ 500$ in the bank?"

Tom-"1 did."
Marie-"And what did he say?"
Tom-"Ile borrowed it."
et

Foolishness

Condector to Passexger-"We ran over a cat down the line.

Passenger-" W Vats the cat on the line?"
Conntetor-"Why, of course not. Whe chased up an alley after her."-Chiougo Daily Soculist.

*

Taking No Chances

"If you were to live abroad, where would you settle?"
"In Sicily, on account of the mee people there."
"What makes you think there are only nite people in Sicily ?"
"The other sort have all emigrated to America."-Toledo Blade.
\pm

A Mining Fraud

"I THink you sutid, 'Rastus, that you had a brother in the mining husiness in the IVest?"
"Y'ch, boss, that's right."
"IVhat kind of mining-golt mining, silver mining, copper mining?*
"No, sah, none o' those : kalsomming."-Eercrobody's Magazinc.

Righteous Indignation

"So rou want at clivorce, do you?" said the lawyer, peering over his glasses at the worried little matn in front of him.
"Yes, sir. I've stood just abont all I can. My wife's turned suffragette and she is never at home."
"It is a pretty serious thing to break up a family, yon know. Don't you think you had hetter try to make the best of it for a while? Perhaps it is only a passing fad."
"That's what I have been doing, but there are some things a man can't stand. I don't mind the cooking and I haven't kicked on washing the dishes, but I do draw the line at running pink ribons in my nightshirt to try to fool the children."-Success.

4
 Poor Papa

"Ano what did papa say when you asked him for my hand?
"I'd gladly tell you, but I'm afraid you'd never respect his opinion any more."-Clezeland Plain Dealer.

$*$

Like all of Us

Hagas-"Are you not indulging in a good many luxuries for one in your position, old man?"

Pigos-"Yes, hut, Great Scott! the necessities are all so thmodering high."
\&

A Mean Reply

"TALK about man!" exclamed the suffragist. "What has matn ever done for woman?" "He"s furnished her with a model she's trying durned hart to imitate," came a voice from the rear of the hall-Boston Transcript.

Two Souls With But a Single Income

"I'm thinking of getting married."
"Then you will be. Congratulations."
"But how much will it cost us to live?"
"That's simple. Add about $\$ 5$ a week to what you get."-Cleiclond Leader.

*

If Wishings Were Havings

Shop Assistant (to purchaser of widow's bonnet) - "Wonld you like to try it on before the glass, madam?

Customer-"No, thank you, miss: it ain't for me. 1 wish it was."-Stray Stories.

$*$

Her Bashful Beau

Ax intensely bashfnl young man was driving one evening with a young lady whom he had been calling on for some time previous. The stillness of the evening and the beauty of the scene around him inspired his courage, and, sitting stifly erect and with his face forward, he asked suddenly, "May 1 hiss you ?"

"Surely," she coyly replied.
"Aw," he said, his face scarlet, and larruping his horses to a run-"aw, I was only foolin'."-Lippincoft's.

$*$
 Explicit

At the Brooklyn Bridge-"Madam, do you want to go to Brooklyn?"
"No. I have to."-Lifc.

$*$

The Top of the Medical Ladder

"Has the doctor a large practice?"
"So large that when people have nothing the matter with them he tells them so."Pattsburg Post.

$\mathscr{*}$

Utterly Useless

"Pa, what is a futile remark?"
"The one a man makes for the purpose of changing the subject when his wife complains becanse he has forgotten their wedding anni-versary."-Chucago Record-Herald.

Unanimous

Modest Seitor-"I am going to marry your sister, Jimmy, but 1 know I am not good enough for her."
Candid Little Brothfr-"That's what Sis says, but ma's been telling her she can't do any better."-Bultimore Amerian.

His Training

" My husband is just awful when he wants to find anything. Yon never saw a man throw clothes around the way he does."
"Where did he learn to be so untidy?"
"Why, he was in the New York custom house for four years."-Clezeldand Plain Dialer.

\star

A Connoisseur in Guile

Mr. Bennes (in art museum)-"I didn't know you were such an admirer of curios, Mrs. Blunderby."

Mrs. Blunderby-"Oh, yes, indeed. I just delight in iniquities."-Boston Transcript.

$\%$

Would Be Reported As It Was

"Officer," demanded the horrified lady, on leholding a curions mob following up a pretly girl, "if you don't arrest that woman 111 that disgraceful harem skirt I'll report you at headquarters!"
"Begorry, Oill be reported as it 1s," replied the gaping officer, abruptly turming back. "Be following wid th' crowd, Oive strayed five blocks away from me beat."-The IV idoze.

MACHINE MEASURES INTELLIGENCE

MOST of the methods of measuring intelligence at present in vogut are personal estimates by teachers or others who are acquainted by long experience with the mental character of the person to be tested. Tliese methorls liave been found to be only very rougl approximations, as there is by no means good agreement between the results obtained by different observers.

Mr. John Gray of the Anthroponetric Bureau, Londron, las recently invented a remarkable apparatus which is capable

MFACURING INTFDIGGENGF HV A SuCCESGON OF Fiashes of Colokrol IGHr
of measuring the value of the human brain in an interesting manner by means of a rapid succession of flashes of colored light before the eye.

This persistence of a color sensation after the stimulus has stopped is identical, or very closely related to, a quality of mind which the psychologists call perseveration. The amount of this perseveration is probably inherited from our ancestors. The growth of the mental character of an individual as he passes from childhood to maturity is greatly influenced by the amount of his perseveration. Persons therefore with high perseveration would form new associations with great difficulty, and persons with low perseveration would form them witl great ease and rapility.
At the center of the scale we have the average amount of perseveration, which is associated with the practical common sense of the average man. When the perseveration is helow the average the speed with which ideas flow through the mind is quickened, and the readiness with which the mind receives external impressions is also increased. The first category below the average, therefore, contains persons with witty, brilliant, and suggestive minds, persons of great tact. presence of mind, and daring; all of which imply quick response to external influences. To this class would belong

REMARKABLE GYMNAST WHO IS ASTONISHING GERMANY゙
Berhardt drohr jumpneg over a row of twenty soldurs.
the majority of persons who are popularly considered to be geniuses.

MARK TWAIN CALF

ON April 21, 1910, at practically the identical moment when Mark Twain died at Redding, Conn., there was born, on the farm of W. F. Walker near Alburtis, Penn., an Alderney-Holstein calf on whose side there appears the profile bust of the great humorist. The color of the calf is snow white and medium dark brown. As the months have passed the Twain bust has become more and more distinct, until today it stands out so plainly that the most casual, fleeting glance reveals it beyond all doubt of identification. Because of the striking resemblance the calf-now a cow-was named Mark Twain. The marking is
quite umusual, also, because of the fact that the white on the calf forms an almost perfect map of the L'inted States.

The Proflee of Mark Twain on 1he White: Barkgrouvd Is Platinly Visible.

A MONUMENT TO THE TROPIC OF CANCER.
Thes is the "visible" line of demarkaton butween the 'Temperate and Torrid zones, on the plains of Mexico.

THE TROPIC OF CANCER

IN our study of Geography most of us have learned that the Tropic of Cancer is an imaginary line that makes a business of running round and round the earth $23!2$ degrees morth of the equator. picture is in the while the rear coach is still partly in the

What A Hat FOR THF Matinee 1
A snaphbot of Pridect daushter of Lady borothy D'()yls Carte of England. tropics-an musual experience for the traveler.

4

BURRO'S QUEER LOAD

THE overloaded and cruelly abused little burro is still one of the common sights of the streets of Mexican towns. He is not only the one freighter of the poorer class, but many of the buibling firms are yet making use of the donkey in preference to regular teams for the transporting of their buikling supplies. Surefooted, patient, of a dogged perseverance. he can bear his burden to points wholly inaccessible to a wheeled conveyance.

It may, therefore, be considerable of a surprise for travelers speeding down through Nexico to come mexpectedly upon an imposing monument labeled "Tropic of Cancer" rising in the midst of a dreary treeless plain. The cngine as shown in this th Temperate zone ,

Tricycle Toffd in the Trupics.
It has a tont-like cover to protect the rider against the sun's rays.

THE MENICAN BE゙RRO IS MADE TO CARRY EVERYTHING.
It is not often. however. that be is seen burdened thus.

-wMFTHING NEW FOK THE lSaby-INO Chairs Is Ose.

A Chinese Printing OFFICE.
Chine-se script is complicat.d and consists of 1,000 .: oro different characters.

TWO CIIAIRS IN ONE

A $\mathrm{CHIC} \backslash \mathrm{CO}$ inventor has perfected a novelty in the form of a double chair which will serve grown-ups and children equally well, and can be changed into a child's high chair, or zife zersa, in a moment.

The seat, which is hinged, is so constructed that when lifted it rises from its base on a pair of "lazytongs" and folds against the back of the chair, at the same time bringing witl it a secondary seat, which is fastened on a transverse bar supported by the lazytongs. Nbove the secondary seat is a tray similar to that found on the ordinary baby high chair.

The chief advantage of this article, ontside of the fact that it can be used cither by adults or children, is that as a high chair the tongs form a barrier over which a chilel cannot pass and at the same time they have ennugh spring in them to absorb small shocks such as would overturn the ordinary high chair.

BERLIN BOYS MARINE SCHOOL

MOST marine schools take their exercise in oar and sailing boats on water, but the boys of the Rerlin public schools have erected a large man-of-war. with rigged masts, with battery, etc., on the land and they have messes for the officers and the crew, with compasses, with cutters and, in short, with all the

Reffing in the Sills. Part of the drill of Marine school for boys.

GERM.AN BOY SAILORS M.ARCHING BEFORE A "HIGHER OFFICER."
The Teutons, with characteristic thorouxhness. have takern to drilling the boys in the art of naval warfare. May they not have in mind their neighburs across the North Sea?

GROWING CAMPHOR PLANTS IN TEXAS.
The annual profits of the industry are said to range from *ixg to $\$ 50$ an acre.
arrangements of a true man-of-war. At real German marine-officers and the crew present there are in Fiorlin three such hase sailor sarments and caps bearing immovable men-of-war and our pictures the name of the ship. Althongh the show the exercise of the garrison of the Iltis is lying at some distance from Berlin Iltis, which consists of 120 boys and their officers. On several days of the week, exercises are held, which consist of maneuvers with sails and cannons, drills, etc. The captain and warrant officers Berlin, between the villas of the Gruncziold there are many spectators at the regular exercises. His Excellency, Herr Knorr, and many other important German marine officers
 Natural History. Nicw hork.

MONOPLANE USED TO OUTFLV ANB HUNT DOWN DUCKS 1N MJDAR.

HUNTING BY AERO

A NEW pace has been set by the startling feat of Hubert Latlam in shooting wild ducks in flight from his monoplane. In response to the invitation of

Hubert Latham Starting on His Aerial Hunt.
to ainl and fire. It is claimerl that the Antoinette is the only airship which can be left without control of the aviator's hands for that purpose.

\star
 AUTO CLIPS HORSE

the Bolsa Chica Club members, Latham took his gun with him in his Antoinctto monoplane. In a few minutes he was flying over the game preserves when he sighted a flock of ducks about a mile over the ocean. Instantly he turned his air craft seaward and started in pursuit. The ducks flew their best, the flock dividing into two parts. Latham, however, was able to outAly them, to fly all around them in fact, and succeeded in bringing down one of the birds. The remarkable part of this feat is that the airship had to be guided without hands for the moment necessary

THE application of the power of a motor car to horse-clipping is one of the unusual uses to which this pleasure vehicle has been put at Portland, Oregon.

The quadruped was clipped in a very short time and in a most satisfactory manner. The motive power of this same automobile has been utilized to advantage for sawing wood and other similar service.

The horse apparently shows no resentment at the familiarity of his successor in thus trimming his hair.

CLIPPED BY HIS RIVAL - THE CROWNING INDIGNITY FOR THE HORSE.

MECHANICIL STRFET-PAVING FILE-DRIVER-TIIE NEWFST INTENTION FOR THE ROAD. This device does five umes the work of a hand pile-driver.

EOU'IL TO SIX TEAMS OF HORSES.
 the uscs to whath thas pleasure mathane may be put.

F wglish (irntto Linfo with Seas Sifeits supposed to have beell the temb of on' if the Sorthern seadines, The work was everdently how out and executed with the most painstoknge care The work is intistic ernough to sirse as at chaniber for a hivine. imstead of a krave for a dead. monarch.

GROTTO ADORNED WITH SEA SHELLS

JUST beyond the popular English watering resort of Margate there is a cave, the walls of the inner chambers of which are adorned with thousands upon thousands of sea shells. This grotto or cave was discovered a few years ago by accident and it is clear that access was gainel to it from the sea shore. The -hells are arranged in beautiful patterns. No one kthows who carried them there of the artists who worked them into such artistic designs. Some have declared it is the work of the ancient Druids, while others are of the opinion that the cave is the resting place of some old hero of the Northern Sea Kings.

AUTO JACK FOR ROAD SERVICE

AN anto jack has been devised which appeals to the overland driver who has been sunk in the mud or sand and has worked under an automobile with an ordinary jack to raise and plank under a wheel. The legs of the jack are adjustable as to length and the device may be used under the axle to change a tire on a pavement or good road if desired by dropping the lower leg and removing the lub band, the operation being the same as with an ordinary jack.

New Way to Get Autos Out of the Men. A friend indeed to the touring autoist.

HOW THE GERMANS MAP PARKS.
The array of little buildings. appearing, on firat sight. like some child's wooden play-village, is that of Max A. Brunner. the civil engineer of Borlin, whose project for the future king's Square at Berlin, so shown. has just befn acceptrd.

COTTON MILLS AT ORIZABA. MEXICO-AMONG THE LARGEST IN THE WORLD. About 140,000 bales of cotton are used annually for manufacturiog purposes throughout Mexico.

CHRISIMA , N゙D CHAKITY STAMPS JAKEN FROM A COLLECTION MADE UP EXC1.CSNEL. OF THIS SURT

The legs of this jack may be extended to any length desired withim their limits. and the car easily raised.

(ilant GQuid in the Smithsonian Institution. Wishington.
This monster sometimes attains a length of 100 feet. When swimming it proceeds backwards.

CURIOUS STAMP COLLECTION

THE most curious collection of stamps in the world is in the possession of a Philadelphian, Percy McGraw Mann, of 17088 th Street. It is made up entirely of Christmas and charity stamps. They make one of the prettiest as well as the most interesting collections of the kind in existence, as a glance at the accompanying photograph will show. In the collection are stamps bearing inscriptions in many foreign languages, all with a history that associates them with a philanthropic effort to raise money: The most expensive stamp is the one sold at Stratford-on-Avon to provide funds for the care of the birthplace of Shakespeare. This stamp sells for one shilling or ahout 25 cents. Every stamp in this collection has a story:

VESSEL ALL STERN AND BOW

FOREIGN ship manufacturers are getting the hurry-up idea in building for their trade. One of the most curious of recent constructions is the ferry-boat, Skyros, now in dock at Breslau, Germany. This craft has meither bow nor stern, or it may be said to be all bow and stern. As a matter of fact it has a propeller at each end, so that all necessity of turning the ship about is obviated. The craft will be nsed at some Turkish port.
*

FOR CIGARETTE SMOKERS

A N enterprising tobacco merchant in the West End of London has hit upon a decided novelty for the cigarette smoker. This is a cigarette which can be lit upon the box much in the same manner as an ordinary match. The box is provided with a strip of the necessary material for producing the light when it comes in contact with the prepared end

Boat That Has Propeller at Each End.
of the cigarette. The preparation in no way impairs the delicacy of the tobacco. The idea is one that has commended itself to motorists, aviators and the like and the jeuncsse doree of London to a man have adopted the new idea in odd and "correct" smoking material.

CIGARETTE THAT STRIKES LPON THE BOX LIKE A MATCH,
A curious London novelty.

Silent Caller for a "I'axi."

Remains of Iceberg. off the Norwfgian Coast. That Took thf Form of a l'alr of beautiful White Lilifs.

How They Clean the Sewfer of Paris,
Letting down a hollow ball. six fect in diameter which is sent through the sewers to keep the garbage in motion and remove any obstackes that may have lodged.

Putting Together thf Hollow Wooden Ball for Cleaning Paris' Sewers.

CAB CALL THAT'S NOISELESS

ALTHOLGH London boasts of being the quietest city in the world, such is of course far from being the trath. There are many anti-street noise societies who try to make it so and one of the latest ifleas is the sign which has just been erected by the Carlton Hotel. Instead of hailing visitors' cabs with a shrill blast on a whistle as is usually the case an electrical device now shows "H" if a hansom is required. "T" a taxicab and "F" for a "four-wheeler." The expectant cabby has his eye on the sign and directly his initial is displayed he races to the hotel for his fare.

It is a neat idea that does away not only with noise, but with much confusion as well.

French Collapstbli Buat in Usf

Taking apart the Folding Boat.

BOAT THAT FITS INTO VALISE

HERE is a boat, the invention of a Frenchman, that every traveler on the water, especially if he can not swim, should carry with him. It is one of the most ingenious contrivances in the natutical line that has ever been devised. The idea is based on the pneumatic principle. The chief parts are a pair of cigar-shaped air containers, and a very light, but stout wooden frame. The air containers, when collapsed, of course take up very little room, and are easily stored away with the rest of the necessary apparatus in a valise or suit case. Two air containers are used in order that the boat may be in equilibrium. The air compartments are pumped up througlı a valve in the middle of each. An ordinary antomobile pneumatic pump is used for the purpose. The whole affair may be put together or taken apart in a very

How's This for a Valve?
Said to be the hugest of electric valves-manufactured at Springfield, Massachuserts.

Nfin York Apartment Buiding for 175 Families. Lach flat contains from nine to twelver rooms. It is considured the larsest structure of its kind in the world. It is also musual in the fact that it has play grounds for children. The total cost was $\$ 3,(0) 0,0 \mathrm{k})$.

Photo of Huge Elfctric Spark.
This was formod bs the discharge of 325 , 4 wh volts.
few minutes. The entire equipment, including paddles and seat, all find some place in the valise. Such a device as this would be invaluable in saving lives on a steamer that was sinking in a calm sca, or on a river craft imperiled through fire.

$*$

GIGANTIC ELECTRIC VOLT

THE curious photograph printed herewith has puzzled many expert clectricians. Few have correctly guessed what it represents. It is not a smapshot of freak lightning nor is it part of a Chinese tree. It is the image of one of the greatest electric sparks ever generated, formed by disclarge of 325,000 volts at Schenectady, New York.

This remarkalle discharge was obtained by connecting in series two higlipotential alternating-current transformers giving 60 alternations per seconcl, the photograph having been taken with an exposure of one-ninetieth of a seenul. The electrodes were placed 19 inches apart, with two half-inch sheets of plate glass, 36 inches square and two inches
apart, set up between the electrodes on a polished plate of ebonite. It is interesting that most of the discharge passed down the surfaces of one of the glass sheets, around the bottom edgcs, and up the outside faces of the opposite sheet, although a part of the discharge doubled around the right-hand side of the plates. The lines of contact with the surface of the ebonite plate at the bottom can be seen in faint reflections. This spark was of almost blinding brilliancy, and crackled like. a dischatge of musketry

FASHION'S LATEST FREAK

W EARING a watch on the ankle is the latest fad among fashionable women in London and the smart set in the English provinces, a style far more striking than most of the importations from Paris. The watch on the wrist, as a bracelet, has been in use for some time but some society leader with an exceptimally slim ankle evidently thought that a time piece encircling it would attract still more attention and the photograph shows the result.

WATCH FOR THI dNKLE.
A new way to keep tab on time.

THE FARE-HEIGHT MARK

HERETOFORE the wisdom of Solomon was required of all street car conductors many times a day when the question of a child's age arose. If the child in question was under five it was supposed to ride free, otherwise the conductor was required to collect regular fare. But who was to decide the question of age? If the fond mamma stated that a big husky youngster who looked to be seven was really only four years and eleven months old, what proof could. the harassed conductor produce? This delicate problem has just been solved by the Cincinnati Car Company in a manner that would make the author of the Book of Proverbs look to his laurels as a shrewd judge. By careful computation it was ascertained that the average height of five-year-okls is 41 inches and accordingly a mark was painted at that height from the floor in their cars. Hereafter there can be no insinuations regarding the veracity of parents who desire to save that nickel. If dispute arises, the youngster is marched up to the fare-height mark and the answer is obvious.

How High Is the Child?
A new wav to prevent leminine equivocation, and, incidentally, trouble for the car conductor.

Electric Light for Eyfry Occashos. A simple method of regulating the lensith of the cord.

THE TAPE MEASURE LIGHT

THIS new extension elcctric light is very much on the principle of a carpenter's tape line.

A cord fifteen feet long is contained in the case, having a mechanism for rewinding on one side and an incanrlescent lamp socket upon the other. When light is desired at some distance from the regular fixtures, a plug on the end of the cord is screwed into the regular socket and the cord drawn out to the required distance. A catch hoids the cord from unwinding at any desired point, so that the lamp may be suspended a few inches below the fixture if one desires. It is also provided with a leather strap by which it may be hung up.

Many uses for such an extension light are easily found. If carried as a part of the traveling equipment it is not necessary to carry a lamp, as the socket and plug are of standard size and will fit any fixtures in conmon use.

Egg of the Extinct mua Giant haung Birles.

Boat That Rohes Over the Watir-a Curots CRaFt a shota City lowa.

The Engine Thut fops and stirts is M11] Alr -the livention of a kistonen of Los Angrles.

Califormia.

BIGGEST BIRD THAT EVER LIVED

THE moa, a species peculiar to New Zealand. is supposed to have been the bigsest bird that ever lived on the earth. Probably it was $n o$ taller than the giant ostrich of Marlagascar (the original of the fabled "roc"), but it was much heavier, a full-grown specimen weighing as much as 1,000 pounds.

The moa was extremely stupid, and very slow and clumsy in its movements. its legs being enormously heary and bulky. Not only wats it incapable of thight. but it could not even rum fast.

Apparently, the species was wholly wiped out, about 500 years aro. by an extraordinarily cold winter. The birds gathered abont hot springs in tlocks, for warmath, but perished in great numbersthe result being, that at the present time. their bones are dug up by the ton in some places, particularly swamps.
if few of the eggs of this remarkable bird-not more than half-a-dozenexist today. One of them, in the Nuseum of N'attral History in New York, actually contains the bones of an unhatched moa. It is as bis as six ostrich escss. and a silk hat would just abont make a suitable esco-cup to hold its contents.

STARTS MOTOR IN MID-AIR

ARESIDENT of Los Angeles, Cal., is the inventor of a new style of engine for acroplanes. The engine is a true rotary: In the case of the cinome -French-engine, generally known as a rotary, the cylinders simply revolve around the shaft. In this new invention the engine including the shaft, revolves. Also the cylinders, instead of being placed at right angles are parallel to the shaft : therefore, the centrifugal motion tends to distribute the lubricant, rather than to concentrate it in the end of the cytinder where the explosion will crystallize and foul the plugs.

Another innosation is a variable length of stroke, giving variable compression. This feature makes it possible for the operator to stop and start his motor in misl air.

MORNING GLORIES COVER A HOUSE

ADIVELLING so completely covered by a morning glory vine as to be entircly hidden. stands as a demonstration of what California vegetation will do if it is given a chance.

The morning glories were planted by previous occupants of the property, presumably to give a touch of color to the bare walls, but as the growth was not checked they rapidly spread until the walls and even the roof were enveloped in a mass of foliage and flowers. Before the tenants moved out, enough pruning was done to keep the place looking like a house but after they abandoned it, the morning glories had things their own way mutil even the outlines as well as the doors and windows have disappeared.

$*$

NEW INSTRUMENT FOR LOCATING STARS

AFEVV years ago Clatule and Driencourt invented a prismatic altitude and azimuth instrument, to which some improvements have now been added by its constructor, Jobin. This instrument is employed in connection with a chronometer, for observing the instant at which the apparent altitude of a star attains a fixed value, approximately erpual to 60 degrees. From such obscrvations it is possible to determine the momentary position of the zenith and the celestial sphere, by reference to the pasitions of stars whose co-ordinates are known, or conversely, to determine the position of an unknown star from the known position of the zenith. In the former case, the observation gives the sidereal time and the latitude of the place; in the latter, they furnish data from which the right ascension and declination of the star can be computed. The instrument is designed especially for observation of equal altitudes of the same star, east and west of the meridian, from which it is possible to deduce (according to the known data) the time of meridian passage, the error of the clock, the geographical position of the local meridian, etc., and for observations of the equal altitudes of three accurately known stars,

Hou a Converted Into Morning Glory Bower at Long Beach. California

The Spinf of a Whale.
The remnants of an unfortunate cast up on the coast of Norway.

Improved Apparatuc for Marking Positions OF THE STARS.

l'he New Astronomical Instrument in Use.

IV ATER TOWER OF COX CRETE, SINGEN•HいH FNTWFEL, GERMANY.

[^9]from which the latitude of the place, the time, or the error of the clock, and the precise value of the constant altitude employed can be calculated by methods which cannot be explained here. The construction and operation of the prismatic instrument are greatly facilitated by making this constant altitude equal to sixty degrees.

REINFORCED CONCRETE WATER TOWER

THE illustration at the left shows an unusual form of water tower of reinforced concrete construction as installed at a food products works at Singen-Hohentweel, Germany. This tower is momited on reinforced concrete rectangular uprights with four landings and a spiral stairway. The total height is about 148 feet. The reservoir has a capacity of about 9,000 cubic feet. It is surmounted by a dome and surrounded by a gallery. While the whole tower is plain it is artistic in design and construction.

4

FIREMEN'S CLIMBING CONTEST

THE one thing, next to implicit obedience, that a French municipal fireman must learn is to climb-and not only to climb by ladder, but by rope, timber, pipe, or any other thing that will aid him in swarming upward. Indeed, a part of the equipment of most stations is a tower devised for this very purpose. where frequent drills are held. Quite a bit of rivalry is stirred up.

The illustration shows one of these drills in operation. It is an unusual occasion, for no less a personage than the Mayor of Vienna. on a visit to the French capital, is being entertained and instructed, by witnessing a climbing race. Each man must look out for limself. No aid is given to their less fortunate comrades by those who, more active or stronger, are the first to achieve the topmost porch. Such a drill has a double advantage: it keeps the firemen in excellent practice for their work, and it also maintains the n in good physical condition, which is just as important.

Were the Norsfmen in Minnesuta?
Stone with ancient Scandinavian writing discovirn d by a farmer near Kensing. ton, Minnesota.

How Frlench Firemen DRILL。

Tower Takes Place of SOLAR EClipse. A new way to photograph sun spots.

Water Findfr on A Scifntific Bisis. This supplants the hazel twig.

THE SOLAR TOWER

IN connection with the observatory on Mount Wilson, Califormia, a one hunIred and fifty foot tower has been erected which is of great interest to astronomers. It is to be used with the spectro-heliograph, to photograph sun spots without waiting for an eclipse. When it is installed at the base of the 150 -foot tower on Monnt Wilson the sun will be photographed by means of reflections from the top of the tower.
"The elements of light reflected into the spectrograph are diffused through prisms. A spectrum of the sun's spots is taken and the plates are compared to ascertain by scientific means the relative amonnt of gases or other substances contained in the elements photographerl. Each streak or spot on the plate, according to its prominence, furnishes data for scientific dednctions according to known formulas."

*

AUTOMATIC WATER FINDER

THE hazel twig as a water finder bas been supplanted by a remarkable invention consisting of a simple apparatus. The principle on which the instrument works is the measuring of the strength of the air currents which flow between the earth and the atmosphere. These are always strongest in the vicinity of subterranean water courses, the flowing waters of which are charged with electricity to a certain degree. The apparatus takes the form of a box-shaped instrument fixed on a tripod, with a dial on which a needle is used to indicate the presence of water. If the needle remains stationary it may be taken for granted that no subterranean spring exists: the spot where the greatest movement of the needle is obtained is that where well-boring operations should be made. The water finder is an English invention and is manufactured in Liverpool.

SAFETY BALANCE FOR AEROS

THE many accidents to aeroplanes have pointed to the fact that the safety problem will have to be attacked

No Nefd to Go Ifome IN THF DARK.
Germany's small cities are not illuminated, but electric light may be secured frompoint to point by droppang 5 -pfennig pieces in slots provided for the purpose.

d Large acin Small Blader of the Safety Baiance
from entirely new lines, and at present, the "gyropter," the invention of Mr. Davidson, an Englislman, is nearing completion. This new flying machine has two gyropters which are declared to secure absolute safety in balance, and the complete machine will excel in speed the present system of aviation.

One was tried in America, with a diameter of 27 feet, to lift 3 tons at 55 revolutions per minute. It worked quite successfully.

The gyropter now nearing completion is worked by a Stanley engine. On either side of the engine room is a gyropter-wheel-containing 60 large biades- 10 feet long-and 60 small blades-5 feet long-and each gyropter will make 60 revolutions per minute and

Making a "Gyropter," or Safety Balance fur Aeroplanis.
the ends of the blades are held together by a kind of band-which is braced into position.

The machine, when completed, will weigh 6 tons with a lifting capacity of 10 tons. The shed in which the new flying machine is building is arranged. in halves. When the machine is finished for trial. the two halves of the shed, being on wheels can travel apart and the machine, which is of large dimensions. can then be taken in and out quite easily.

If Mr. Davidson's device shonld work successfully it would be of the greatest service in the field of aeronautics, obviating the majority, if not all, of fatal accidents of the sort that stirred the world the past year.

Private Car for Afroplanes.
Flying machines are exclusive; they require special quarters of their own for transport-a car used in Germany.

RUN゙TIXG COPPER URE UN I GIGANTIC SC.ILE AT JEROME, ARIZONA.

ROAS'TING COPPER ORE

THE burning mountain shown in this photograph is the outdoor "roaster" at Jerome, Arizona, where one of the world's largest copper mines is operated. The ores contain a great excess of sulphur and before they can be economically smelted it is necessary to burn out the greater part of the sulphur. This is called heap roasting, the ore being heaperl with cord wood and allowed to burn from five to nine weeks. About 500 tons of ore form a heap, so that the enomons quantity shown in the photograpl may be estimated. The ore for roasting is trammed through a tumnel 1.300 feet in length, which leads from the 500 foot level of the shaft, and when roasted and ready for the smelter it is sent back into the mine and hoisted to the mouth of the shaft, as the country is so rugged that there is no other way of reaching the smelter.

Owing to the exceeding richness of sulphur, 15 to 32 per cent., there is great dancer of mine fires from spontanenus combustion. One very serious fire was
checked by means of carbonic acid gas which was made on the surface by comlining sulphuric acid and crushed limestone, then the gas was conveyed to the mouth of the shaft where its own weight caused it to sink and displace the air in the mine, thus extinguishing the fire.

[^10]

HI PHOTO WAS TAKEN BY THE RAYS OF AN INTERURBAN ELECTRIC CAR LIGHT. The arc lamp is about fiftern inches in diameter and nine inches in depth. It illuminates for five hundred yards.

THE LATEST SURPRISE IN BERLINーTIIE FRUIT PEDDLER USING AN AUTO.

CATS AS ACROBATS,
Cats are exceedingly difficult to train, having an unusually developed ayersion to doing things they don't like. yet bere is a photograph of three of them doing "stunts", on a horizontal bar. "These pets are owned and trained by a California photographer who finds much amusement and some profit also in taking their pictures in strange poses.

Huge Pulley Makfs man a Pigmy.
An odd comparison of tiny man and his creation.

THE GIANT OF EUROPE

THE giant floating steam crane which is shown is the identical crane which was itsed a little time ago in the salving operations on the submarine $U 3$, which sank near Keil. The German nation boasts of some of the most remarkable floating cranes in the world, and the one shown here is probably the most powerful in Europe. The gigantic size of the hooks and pulleys-capable of receiving 200 tons-shown in one of the illustrations, may be realized by comparing them with the man at their side. The arm of the crane is pivoted on its base, and the counter-balance weights are controlled by machinery. A monster of such power may well be regarded as one of the modern wonders of the mechanical world.

The Crane on the
Water.
This monster is capable of lifting two hundred tons.

VANADIUM IN STEEL

VANADIUM, first diseovered in 1801. is a mineral which in late years has been applied with remarkable results in the steel industry. The reason it was not used sooner in the manufacturing arts was because of its scarcity. Large and exceptionally rich deposits of vanadium ores were discovered in the Peruvian Andes several years ago. It is to this source that vanadium steels hold their present conmercial status.

Scientists in the employ of the French govermment first settled the question, "Does vanadium improve the quality of steel?" They proved that the addition of a small percentage of vanadimmnever above three-quarters of one per cent-gives to stee] a renarkable increase in strength withont impairing its
ductility-a result that camot be secured from any other element used in the composition of steel. Carbon, for example, increases the strength up to a certain point but causes brittleness, and even fails to strengthen when employed in large amounts, the result of further additions prochucing ordinary pig iron.

Pittsburg manufacturers who have used vanadium in their steel products report extraordinary results. It is claimed that a two years' test of vanadium against ordinary steel shows an actual saving of $\$ 761.59$ on a single item-a flue cutter weighing three ounces. In one year, 1,049 carbon steel cutters were used to cut $145,4+4$ flues. In the next year 60 vanadium steel cutters ent 152.578 flues. The average number of tubes eut with the earbon steel tool was 139; the average for the vanadium steel, 2,24t. The cost of the earbon steel cutter per hundred flues was $\$.5+$ compared with one and six-tenths cents per hundred, with the vanadium steel tool.

'IHE GHRLS' BOB-SLED CKEW.
Winter sport at Huntington. Long 1sland.

OR naught stirs the blood like the crackle of the blaze When the smoke of your fire hangs low. And the moon hides her head in the mid-summer haze And the yellow flames climb and grow:
For a charm is in the touch of the camp-fire's rays
That sets congenial hearts aglow.

THE TECHNICAL WORLD MAGAZINE
 VOL. XV
 J U L Y , 1911
 NO. 5

A GRICULTURAL HIGHWAYMEN

By

HARRY F. KOHR

AIowa farm of something more than eighty acres passed into the hands of a city man on a mortgage. He rented it and, for the first two or three years, the returns were satisfactory. Then he found the dwellings and outbuildings needed repairs which took back some of the profit. He held the land uine years and in that time had six tenants, the last of which harvested a crop of corn that barely was enough to feed his team and pay his own family expenses for the year.

The land was in a community where values ranged around $\$ 125$ an acre but it cost the owner only about $\$ 5,000$ under the mortgage. As near as he could estimate his income from the land for the nine years was about $\$+, 000$, from which was deducted repairs, taxes, new fencing and other incidentals aggregating about $\$ 1,200$. This left him a net income of about $\$ 2.800$. Then he tried to sell the land. Many buyers looked but none lought. They wanted no "corned out" land, they said. Finally along came a young farmer who took it off his hands for $\$ 4,000$. That left the first man a net income of $\$ 800$ on his $\$ 6,000$ investment for nine years.

A northeast ドansas farm was homesteaded forty-six years ago and worked
by the original awner for thirty-four years, until he died. His son rented the land to two brothers. They planted wheat for seven years until the yield became ton small to be profitable. In the next year another tenant planted corn and he "corned" the land for five years. No recorll was kept of the wheat yields, but the corn yields averaged only twentyeight hushels an acre, the first crop being thirty-five bushels and the last crop twenty-three, an average value on the farm of eleven dollars an acre. Ilis ninety acres of corn metted him $\$+45$. The owner got the same and his profit was approximately seven per cent. The first year of his tenancy the tenant's return was abont $\$ 525$, while the landlord made about eight per cent. The latter rate has been about the average profit, not deducting for deterioration of farm plant and soil. Increasing land valtes, however, have compensated for that.

In an eastern Missouri county, the Canadian fever and the Texas fever struck the farmers in one section about the same time. As a result pretty nearly three whole townships were depopulaterl. The land largely passed into the hands of city investors and then into the hands of tenants. Among the farms in that section was one of 220 acres operated

HIS FENCES FALLING DONNN.
The roads go unrepaired in the tenant farmer's country.
lyy father and two sons. The sons took the Camand fever, and with them went so many of his neighbors that the father lecame discouraged and decided to rent his farm and move to St. Louls. It was the average type of goorl Missouri farm with comfortable dwellings, good barns, modern machinery always. kept in good repair, the crops being rotated and the soil kept up. Plant and land, estimating by other neighborhond sales, easily were worth $\$ 30,000$. Of the first tenants, one remained three years, two others remained two years and one is still there. Last fall the two soms tired of Canada, sold their holdings and went back to the okl farm. Nlost of the machinery reguired extensive repairs, the buiklings were in bad repair and the land had been skimed, with the exception of that still held by the tenant. This tenant was a young man, a gradnate of the Missouri Agricultural College, and he faithfully carried out his contract. Ile hatl taken the 63 -acre tract previously held by the tenant who farmed it three years. He planted only corn last year but, loy proper seed selection, raised, in
spite of the three years of skinning that the land had been subjected to, a larger crop than liarl ever been raised upon it. By hauling manure from other nearly farms he got enongh to cover the fick thoronglyly with manure last fall. This year he will login on a crop rotation program, having pleased the owner so well with his results last year that he was given a five-year lease with option of renewal.

In previons years this farm had paid a net profit of about 6 per cent. on $\$ 30,000$. Balancing the receipts for four years against interest on the investment and the estimated cost of restoring the land and plant to its original condition the net profit was about 1.4 per cent. on a valuation of $\$ 30,000$. But that is not all. Peopled largely now ly a shifting population of tenant farmers the old community spirit has died out, the roads have deterinated, the bank deposits in the county seat town have decreased and land values in the whole section are estimated to have decreased ten per cent. in the last four years.

The greatest agricultural evil of the
present day is the tenant farmer. This statement is made by President Henry J. Waters of the Kansas State Agricultural College. The tenant farmer, he declares, is the highwayman of the soil; collectively, a vandal horde that has marched from Maine to the Missouri, laying waste an agricultural empire with the fire of its greed and the sword of its ignorance. His advance guard already is thrown beyond the Big Muddy. Give him time and he will overwhelm the West as he has the East.

The tenant farmer, President Waters says, is the ruination of the country and the menace of the city. He has left in his wake impoverished land, abandoned farms and a train of economic evils that must soon be remedied or grave consequences will follow. The tenant farmer is the man who is chiefly responsible for the increased cost of living, he is the man who has catused American exports to fall off 200 million dollars in three years. He is the man who has reduced our farming area, forced the price of productive land to an abnormal height, and sent droves of sturdy young farmers beyond our borders to the north.

President Whaters has been investigating the tenant farmer for a long time and he knows his subject but nothing good of him. He speaks now of the tenant who doesn't farm but merely skins the soil, not the real temant farmer-the small ten per cent or so of hustling, ambitious young men, long on industry

Orcharns Gu U'intrimmed and Wefds Spring Up.
and short on cash, who rent only until they have saved enough to buy a farm of their own. He speaks of the other ninety per cent., the migratory agricultural vagabonds who follow in the wake of the homeseeker and the homemaker, leaving blight and desolation wherever they tarry.

The nation's greatest source of wealth is in its land, and its farms should be

JUST AS THE LAST TENANT LEFT IT.
able for many years to supply you and me with all we need and leave enough over to sell to the fellow across the water who produces things that we do not. The extent of land area now muler cultivation in the United States is easily capable of producing twice the quantity of foodstuffs that is now gathered. In Germany, where conditions are more nearly similar to that of the United States than any other European country, the yield per acre of wheat is more than twice that of the United States, the yield of rye nearly twice as large, and harley and oats one-third larger. Germany's lands have been farmed for a thousand years, most of ours less than a hundred and millions of acres less than fifty years. There is no reason why our yield per acre should not excecd Germany's, but it is not likely to until we rid the farms of shiftless, land-skinning tenants.

The welfare of the nation requires the scientific and effective usage of the soil. the rotation of crops and fertilization. It is only by such methods that its enduring productivity can be maintained. Put the temant farmer neither fertilizes nor rotates. He is an exploiter. He sows the same crops year after year, taking always but giving nothing in return. He squeezes the fertility from the soil and robs it of its power to produce. For every $\$ 25$

Cillis the TeNANT FARMFR "HIGHWAJMAX OF THE SOLL."
worth of grain that he grows lue takes from the soil a measure of fertility that would cost $\$ 12$ to replace in the form of commercial fertilizer. Average land will stand such treatment about ten years. Ten years and the tenant farmer has made a portion of the nation's agriculture area a barren waste!

One doesn't need to go into the field of higher mathematics or perform any extraordinary feats of mental gymnastics to trace the increased cost of living to such conditions. The farm no longer contributes its share to the nation's supply of beef, pork, mutton, butter, milk, cream and breadstıffs. Every acre of land laid waste adds an artificial value to land that is still productive, lessens the productive area and consequently com-pels-both by the law of supply and demand and the necessity for an adequate return from the land that still produces - a higher price for food products. The law of supply is as immutable as the law of gravitation. When supply does not meet demand prices rise.

Farming as an occupation is steadily growing more profitable, because the number of consumers of foodstuffs and the rate of consumption per capita are increasing more rapidly than production. Right here let it be milerstiod that this does not mean that

MACHANEF ON I TENANY FAKB LEFT IN THE OPEN TO KUST FOK THE WINTER

BUT THERE IRE WELL-MN.MGED TENANT FARMS, IND THIS IS ONE OF THEM.
there is a call to the city man to go back to the farm. There are enough farmers already. The call is for better farmers and better farming. For several years past the yield per acre of agricultural products in this comutry has remained practically stationary, whereas with the revolutionary improvements in farming machinery and farning methods and the wider dissemination of agriciltural knowledge, our yield per acre should have increased at least fifteen per cent. That the average yield per acre has not shown an actual decline. is due to the fact that much worn out land has been abandoned while vast areas of rirgin land have been opened in the West and Northwest, and great areas and swamp and timber lands in the East have been drained or cleared off and planted.

But we are approaching closely now the limit of our cultivable land. When we reach that limit-and the day is not many years away-either farming methods must undergo a radical change or our yield per acre gradually will decline. If we are to preserve the fertility of the
land, the land skimer must be put out of business.

As a nation we are still the greatest meat eaters in the world, but year by year our per capita consumption of meat lessens while the per capita consumption of grain and vegetables grows. The per capita of wheat consumption in the United States in 1885 was four and twothirds bushels, while in 1909 it had risen to five and one-half buslels.s. The exports of breadstuffs, meats, live stock and dairy products fell from 413 million dollars in 1907 to 213 million dolars in 1910. The average farm price of wheat from 1896 to 1900 was 66.4 cents a bushel and from 1906 to 1909 it was 86.5 cents. Corn showed a similar advance. When exports fall off and prices rise at home in the face of a total proluction of farm crops never exceeded in our history, there can be only one conclusionthat the demand is growing at home faster than the supply. The natural result is that the cost of living goes up.
"It was." as Prof. W. J. Spillman of the Department of Agriculture stated in

Tenant Farm in New York That Is Properly Looked After.

Abandoned Farm Buildings in New York.

Thr Iverage Farm Tenant Makes No Repairs.
a mulletin on soil conservation, "the abundance and cheapness of food that made possible the marvelous progress in this conntry in the last century. The production of abundant crops was accomplished at little expense and with a little knowledge of the principles of the conservation of soil fertility. This period of exploitive farming is past. Whether the era of comparatively cheap and abundant food is past depends upon our ability as a people to develop cheaper and better means of prodiuction than now prevail. Future increase in production must come from better methods of farming. Whether we, as a nation shall attain these improved methods after a long period of depression, accompanied by
slow adjustment to new conditions, as has been the case in older countries," depends, he says, on how soon we supplant the landskinning tenant and the ignorant, shiftless owner with efficient farmers.

It is a grave economic problems with which the tenant farmer has brought us face to face through his robbery of the soil, and it was tersely stated in a recent speech of Senator Elihu Root of New York, discussing the ship subsidy bill in the Senate. He said:
"We have reached a point in our development where we can see the time when we cannot maintain our balance of trade by exporting food products. We will soon consume all the food products we produce. Where then shall we turn to pay for our purchases abroad? By exporting our own manufactured articles? But where shall we sell. them?"

We may or may not agree with Senator Root's stand on the ship subsidy bill but we camot ignore the fact that unless the land is made to produce as it should produce and is capable of producing, we must become a manufacturing nation in order to keep our balance of trade. Our manufacturers must compete with the manufacturers of the world, our workmen must compete with the cheap labor of the world. Can we maintain against that cheap labor our present standard of wages and living? Or must we come down to the level of our competitors? If our population goes on increasing, is it undoubtedly will, while our food production remains stationary, it will not be many years until. of necessity, we must begin to import foodstuffs to meet the increasing demand. To pay for our fondstuffs imported we must then export manufactures. Is there any reason to

THIS IS NOT A TENANT FARM.
believe that when we arrive at the necessity for importing food that the cost of living will not further increase while to mect the competition of cheap labor abroad there must be a decrease in manufacturing cost-wages, in other words? Not anv. It is up to us to rid our agricultural system of the tenant farming evil. the tenant farmer if we can, and along with him the shiftless, ignorant farm owner.

It has been ascertained by exhaustive incuiry that more than four of every ten farms in the United States are occupied by tenant farmers. As a rule tenant farms are smaller than farms tilled by the owner, but it probably is safe to say that one-third the cnltivated area is occupied by tenants. The greater part of this tenant cultivated area is east of the Mississippi River, but the corn belt of the Middle West is feeling him as a growing affliction and he is beginning to obtain a foothold in the wheat country. Oklahoma, the Ozark regions of Missouri and Arkansas, Northern and Western Texas and the more western states are a little too new for him yet, but ultimately he will invade them. West of the Mississippi he is most numerous in Sowa, where he numbers about forty per cent. of the farmers and in Missouri where he numbers thirty per cent. In Illinois he numbers forty-one per cent. In Kansas and Nebraska the tenants make up from ten to forty-six per cent. of the farmers, a general average of thirty-six per cent. in the former state
and in both the percentage is growing. In the more eastern states the percentage jumps from thirty per cent. in Missouri and forty-one per cent. in Illinois, to fifty and, in some sections as high as seventyfive per cent. in Indiana, Ohio, and the states south of the Ohio River.
In a recent bulletin of the Department of Agriculture it was stated that the list of tenants in one county in Ohio who were moving in the spring from one farm to another filled a newspaper page in small type. The paper said it was the custom in that county for renters to remain only one year on a farm. Just recently a daily paper, recording the fact that nearly every voter in Adams County. Ohio, had been disfranchised for selling votes in elections said:
"It is a county of tenant farmers * * * * a county of rutty. unkempt roads, ramshackle farm buildings and corrupt people."
In the Eastern and New England states the tenant population drops as low as ten per cent. in some sections, where the tenant has long since skimmed the cream of the snil and moved to greener fields, leaving behind him a worn-out, cropweary earth which must lie fallow for many years until Nature's laboratory restores again some measure of its fertility. Between 1880 and 1890 the improved farm area of the New England state decreased 38.1 per cent. As he has done in New England, the tenant farmer is doing in Ohio, in Nichigan, in Indiana and in Illinois, so will he do in Minne-
sota, Inwa, Missouri, Kansas, Nebraska, and the Dakotas. He farms for today. tomorrow is the landlord's risk. It is, as in law, cazeat emptor,-let the owner look out for himself. That's what the tenant farmer is doing.
Every spring the devastating army of tenants prepares to descend upon new ficks. The great moving tlay in the country is Marcl 1, the day on which the temant farmer invalles the farms he is to ravish for the season. Nine times out of ten he finds the land just as it was when the previons tenant harrested his crops-the ground unbroken, not an conce of fertilizer applied, the dwelling and outhouses in need of repairs, the fences falling to pieces. In a word the whole plant is run down. Sometimes the tenant pays a cash rent, so much per acre. If he works on shares lie pays from one-third to one-half the crop, according to what goes with the land. Either system is an evil and between the two there doesn't appear to be much choice. Some owners prefer the cash rent system as the surest in the long rum. Other landowners, prefer the crop-sharing plan as loringing the largest returns. Either way the landlord usually gets a better return on his investment than the tenant gets for lis labor and investment. At least minety per cent of the tenant leases are for a year, and from that very fact the tenant system has grown to be the evil it is. The tenant has no assurance that he will be permitted to occupy the place the next year and, naturally, he has no interest in the farm other than to get all he can out of it. Why shouth he spend any time maintaining the fertility of the soil or making repairs for the lenefit of the landlord and the next temam? Ite the just as his preflecessor did. He gets all he can while the getting is gomel.
Three canses contribute largely to the
tenant evil. One is the purchase by city men of farm land as an investment. Another is the death of the farmer and the descent of property to heirs who live in town or to wilows who cannot or will not carry on the business. A third cause is the desire of farmers who have made comfortable fortunes at farming and who wish to retire and yet hold their land as an investment. The city offers him ease and anusement or less arduous business cares or duties for his oll age! He considers increasing land values so much money earned and he fancies that the value will go on increasing with the years so he doesn't worry if the Wld place runs down a little and his share of the crops is not as large as it miglit be.
A large number of the farms in the Niddle West that are passing into the hands of tenants have been stock farms or dairy farms or both-farms where practically all of the crops were fed at home and in due course returned to the soil in the form of manmre. The temant farmer is not going to raise stock. First of all he has not the capital and secondly he ish1t temperamentally equipped for the work-in other words he is too shiftless. The third reason is that. properly to raise stock he must he assured of a longer lease than one year. Therefore he proluces only the crops easiest of cultivation and surest of ready sale-which always happen to le the crops that take most fertility from the suil. He tries no experiments. He adds nothing to the sum of agricultural knowledge except the lesson to leware of him. He burns his straw and his soil-renewing mannere. rots against the side of his barn. The fruit trees and the hedge go untrimmed. the weeds run riot and the farm implements rust in the spot where the last joh was fimished. He is too lnisy skinning the soil to repair the honse, the barn
or the fences. His live stock is nondeseript stuff out of which he gets the maximum of work at the minimum of cost.
lhe has 110 commumity interests. He is here today and there tomorrow. He las nothing in common with his neighbors. Home is where he hangs his lat. The farm is both a factory and a home and it has a value peculiar to each. When, as the temporary abiding place of the tenant farmer it ceases to be a home it has lost part of its value and it lowers the value of its particular neighborhood at the same time. Mississippi, Georgia, Aabama and 1 donisiana lands, far richer than lands in Kansas. Nebraska, Missouri or Towa, sell for $\$ 25$ an acre. From 58 to 62 per cent. of the farmers in these states are tenants, a large proportion negroes. Farmed by white owners these lands would be worth $\$ 100$ to $\$ 200$ an acte. That is the value of conmunity interest.

Conditions in the South, are, of course, extreme. but look about you in the northern states and you will find that land in the districts largely farmed by tenants is disproportionately lower in the value than in districts where the owners till their land. The lesser value is not wholly traceable to the difference in the usage of the soil. Part of it is due to the lack
of community spirit, the smaller part, of course. The larger percentage of difference in value is due to the fact that the tenant is robbing the soil that he works while the owning farmer is continually doctoring his land to keep it at the highest stage of fertility.

Now the question is: What's to be done about it?

The prices of all farm products are going up, exports are falling off and home consumption is approaching perilously close to our profluction. It is a situation that will give economists plenty to think about in the next few years. One-third of our agricultural area is being eropped into barrenness by tenants. "In most parts of the conntry," a Department of Agriculture report says, "the land has been farmed so long without attention to fertility that it will no longer produce crops by the slipshod methods formerly in logie."

But the tenant alone is not to blame. He shares the responsibility with two other classes-the landlord and the shiftless land-owning farmer. The same department bulletin says:
"Many experienced farmers loday are not making a good living for the simple reason that they do not possess the knowledge of the principles involved in their business, and mfortmately only

A (OLNIRY KOAD IN THE L.AND UF THE RENTERS.
too often the farmer is not aware of his lack of knowledge."

It is dloubtful whether tenant farming can be done away with entirely. l'ractically all of the arable government land is taken up and the tendency now is toward the enlargement of individual holdings rather than toward the division of holdings into smaller bodies, which would be far the most desirable condition from an economic standpoint. Land valnes continually are rising so that the tenant's chances for becoming a landowner are growing more remote. Take Illinois and Missouri as typical states. The last census gives the average value of farm land in 1910 in llinois as $\$ 94.90$ an acre against $\$+6.17$ in 1900: in Missouri as $\$+9.56$ an acre in 1910 as against $\$ 24.82$ in 1900. an increase in each state of more than 100 ner cent. The average farm area in lllinois is 129 acres as against 124 acres in 1900. and in Missouri it is 125 acres against 119 in 1900. 1t is an muritten law in most farming communities in the Middle West that when a farmer (lesires to sell out he must first offer to his neighbors, the result being to keep ont strangers, and enlarge the average farm area, as well as to cut down the rural population. An exhaustive investigation showed that this "unwritten law" was largely responsible for Missouri's loss in population outside of its large cities.

Getting down to the solving of the tenant problem, the ideal solution of course, wonk be to turn the tenant into an owner. Possession stimulates pride. Make the tenant an owner and, where he is not entirely shiftless he begins to take pride in his ownership and starts off on the road to regeneration. No man with a modicum of sense is going to rob himself if he knows it, or rob the land that he nwos.

But the chances for the tenant becoming a landlord are growing more remote. Next to ownership, undoubtedly the best solution of the tenant problem would be the indeterminate lease system, assuring the tenant possession so long as his behavior and usage of the land warrants it. The tenant, under such conditions, has an interest in keeping up the fertility of the snil-in fact, that should be one of the conditions of his lease-and he
willingly will learn how he may do better than he has done.

But the real foundation of any remedy for the tenant problem, says President Waters, is education. Governor Eberhardt of Minnesota, who also has been sturlying the question, says the same thing.
"In Minnesota." Governor Eberhardt said. "many farmers have been mining the soil instead of tilling it. The presence or the prospect of the abandoned farm is a subject of interest in ahmost cvery state. We must get the soil back to where it was, for it should rield from fifty to 100 per cent. more than it does. We must educate the farmers and we must begin at the beginning-the children. In Minnesota we are doing this by buikling up consolidated schools where the vocational and industrial training so freely offered in the cities is brought within the reach of the farm child. We teach in the consolidaterl schools practical agriculture, manual training and home cconomies, and we bring to them the elders of the commmnity for their cooperative meetings, lectures on agricultural topics and social purposes. Ultimately we shall accomplish much in stopping the reckless waste of our fertility and in increasing our production."
"Edncate both the tenant and the landlord," President Wraters says. "The landlord is, unconsciously, the tenant's accomplice. W'e must edheate him to the evils of the short lease system and we must educate him to give closer attention both to his tenant and to his land. So long as the system of short leases prevails and the tenant is allowed to skin the land the faults of tenant farming will not decrease.
"Next we must take the tenant by the neck, if necessary, and force into him a little knowletge of real farming. First we must assure him long tenancy, conditioned, of course, upon good behavior. We must teach him soil conservation to maintain the productivity of his land, we must teach him seed selection to increase his yield. we must teach him diversified farming to lessen the chance of loss, we must teach hims the value of good roads and we must pump into him a sense of pride in appearance and achievement and top it off by inculeating a little public
spirit. The first thing we know we will have a land owner who will always be referred to as 'So and So, a prosperons farmer of the lligh Creek neighborhood.' $"$

Europe has tackled the tenant farmer problem with success. Denmark not many years ago was tenant ridden to such an extent that the government finally was compelled to act. Agricultural schools were established, public funds were used to expropriate lands and sell them to the tenants on easy terms. Sixty-five per cent. of the population lived on farms and a large majority of them were tenants. Now only one farm in ten is rented and every acre of land under cultivation prorluces an annual surplus of products worth $\$ 9$. There are twenty-nine agricultural colleges and 6.000 students. Ireland is undergoing the same transformation through the expropriation of large estate and the sale of the land to the tenants on easy terms. Great Britain and Germany, France and other countries are struggling with the problem.
"Demmark," President Waters said. "is becoming the most prosperous country in Europe, and that is due to the work of its agricultural colleges. The value of the work our own agricultural colleges are doing is incalculable, but we

"We Must leducate the Farmfr and We Must Begin at the. Bhginving: - thf (hllidrfx."
do not yet cover the field. Our seed and soil trains, our dairy trains, onr 'pork chop, specials,' our farmers' institutes and our extension lectures are bringing fine results but they do not go deep enough. They do not reach the men we most desire to reach-the tenant farmer and the shiftless farmer. The tenant farmer feels himself more or less of an outlander in the community or he is prejudiced against new fangled notions, as are a large proportion of the "shiftless" farmers. We must get into his home, we must educate his wife anul children. He must be taught his part of the work, the wife hers. We must teach her domestic economy, sewing, cooking, hygiene and the proper rearing of the children. The children are the hope of the farm and the farmer is the foundation of all our prosperity.

In Kinsas. Where the Tenant Has Not Ifet Arrived.
"It must be remembered that the majority of farm chidren never get as far as the college, many never pass the high school and some never reach beyond the rudiments of edncation. Especially is this true of the tenant farmer's children, many of whom, under the conditions as they now exist, will become tenant farmers in their turn. We must begin with these children in the primary grades to teach them that there is something more to agriculture than scratching of the soil."

A FENDER THAT FENDS

By

M. M. HUNTING

MR. A. D. McWHORTER, the inventor of a street-car fender having a record of saving the lives of fifty-seven people in the four years of its existence, refuses to take out a patent upon his invention, preferring to let lumanity reap the benefit.

The fender was first adopted by the Memphis Street Railway Company after nearly every other form of fender upon the market had been tried and in most cases fonnd wanting in certain important details. It consists of a cradle-like arrangement anderneath the car in front of its wheels. This in turn is connected to a trigger-like attachment located directly underneath the front end of the car.

Any object eight inches or more in height and causing a pressure of five pounds upon the trigger will trip the cradle, allowing it to be dropped upon the rails and to pick up whatever is

fremer in Normal Posttion.
before it. In one case two persons were picked up at the same time, without injury, except for a few bruises of 110 importance.

So successful has the fender proved as a life-saver that a number of other Sonthern cities have adopted it and it is now being tested with a view to adoption by the New York Street Railway systems.

No royalty is asked by the inventor if a city desires to equip its cars with his fender. In order to protect the invention, however, from falling into unscrupulous hands the Memphis Street Railway Company have taken a patent upon the device but will cheerfully furnish plans and specifications to any other roads wishing to adopt it.

The annual death harvest of persons caught beneath the wheels of strect cars is too large not to receive the most earnest attention on the part of the authorities.

Finder in Position to Pick L'pa Person.

SEATTLE'S HARBOR AT SUNDOWN.
In the foreground is a section of the frontage owned by private corporations.

TO GRAB THE TRADE THROUGH PANAMA

B y

FRANK C. DOIG

WE want the trarle through「'anama!"

It is almost a slogan of the ports on the Pacific Coast. But how much they mean of what they say is shown in the figures on the records of capitalization back of the new engineering enterprises they are pushing to make their port facilities adequate to take care of big slices of the expected business. Los Angeles is planning to
spend ten millions of cold, hard dollars on its port-San I'edro. She has already roted a bond issue of three millions, and Uncle Sam has spent three millions more in building a record breaking breakwater for her. Oakland has two and a half millions ready to put into wharves and docks and dredging, and has more than ten times that amount to spend when her plans are ripe. San Francisco has taken the limit off-or hasn't put one on, her appropriations and is spending millions

HUW PUGET SOUND LUMRER IS LOADED ABOARD SALING VESSELS FOR ALL PARTS OF THE WORLD
and getting more ready to spend at a rapid rate. Portland and Seattle are making no noise about what they intend to do but they, too, have plans-and big ones.

Every harbor on the Pacific Coast is the largest in the world and has more miles of water frontage than any other, if the assertions of the folks in each seaport are taken at their face value.

Millions on millions of dellars have been appropriated for commercial shelters and yet these westerners are not satisfied. Now they see the l'anama Canal opening and its wealth of commerce cbbing and flowing from one ocean to another and they are planning to accommodate it and incidently grab their share of the benefits. There isn't a seaport on the western coast that is not preparing to handle the shipping of the world within its harbor as soon as the big ditch is completed.

True some of these harbors need little fixing so far as natural advantages are concerned, but vast sums of money must be spent in docking and handling facilities. In all, it is estimated that at least one hundred millions of dollars will be spent on Pacific Coast harbors before the

Grain Ships Arong Tacoma's Water Front. Tacoma's harlor is sodecp that the docks ar- built parallel with the shore line. canal is ready for ships.

The greater part of this enomoun, amount is available already, having been roted in bond issues. So great is the western enthusiasm over the future that as soon as the money now ready is spent, other sums likely will be raised for more improvements.

Instead of leaving the important guestion of water frontage to private concerns, the cities and states lave taken a hand in the game and althougl, corporations have made, and are making, extensive improvements, the majority of the undertakings are backed by the public's money and controlled by public officials. The cities have seen the folly of allowing their natural resources to fall into the hands of the corporations, and municipal docks and warehouses are the big issues in almost every political campaign.

Railroads have spent fortunes in attempting to stem this tide of western enthusiasm for municipally owned shipping facilities but without avail. You can't tell the westerncr anything about
water frontage. Hess an expert on this subject and the railroads are not going to have his pet schemes in their grip if he can help it. Besides the railroads are not enthusiastic over the Panama Canal opening, as it means competition and cheaper freight rates. But that's just what the westerner has been fighting for, for years, and now is his chance to get even. And he's going to do it with a vengeance. He's tired of having his cost of living boosted for the benefit of the eastern corporations. He's going to show Wall Street just how well and how thoroughly he can whip it if he tries.

The westerner sces in the Panama Canal a means by which he can throw off the yoke of railroad centrol and besides become a factor in the commerce of the world. In the words of one of these western enthusiasts:
"With the opening of the Panama Canal the history of man passes to its final phase. The Occidental half of the world meets in the Pacific Ocean the other, and hitherto ignored half-the

SIN FRINCISCO'S HARBOR IS IN CONTROL OF A STATE BOARD.
I his body is comsuructing concrete and steel piers and a sea wall, in proparation for handling the Panama business when the canal is onened.

Orient. That is the supreme meaning of the event."

That's the way they talk about it out (on the western cuast line. The canal is expected to open new trade rontes and steamers will be compelled to call at ports now enjoring little commerce. So the westerners have resolved to get their share of the Oriental trade as well as to hit the railroads a mighty swat and reduce the cost of living. The railroads. however, are not sleeping and at every l'acific Coast seaport they are making preparations to handle greatly increased business when the canal is opened.

If you haven't a harbor of your own, reach out and get one, that's the policy of these progressive westerners. The thriving city of Los Angeles found it had built up a great center of trale in pite of the fact that it was not a seaport. Put not satisfied with this it cast longing eyes toward the Pacific, fourteen miles to the westward. So what does it do but annex this strip of land-inclutl-
ing several thrifty little towns-to the sea coast. Now Los Angeles has a harbor that it claims is one of the best on the western coast, at what formerly was San P'edro.

It a conservative estimate ten millions of dollars will have been spent on this harbor when the plans now contemplaterl are carried out. The city itself has just roted a bond issue of $\$ 3,000,000$ for mminicipal wharves and fills. The Feleral government has spent $\$ 3,000,000$ more in lmilding one of the longest breakwaters in the country to protect what is known as the onter harbor.

This breakwater has been the making of San Pelro harbor. It is 9,250 feet in length and on the outer end a lighthonse shows the mariner the way to refuge. Petween the concrete wall and the shore is a trestle 1,800 feet long and this space will be filled for docking purposes. With this protective wall a harbor of 375 acres las been made. With the channels and the inmer harbor 200

O.IK゙.AND HARBOR. KECENTLG WRESTED FKOM CORPOR.ITE CONTTROL.

The city will spend $\$ 25 .(n n)$ onn) in improving this.
acres more of harbor space has been made available with a depth at low water of thirty feet.

With these improvements the Los - Angeles harbor will have twenty miles of water front, which can be doubled by the construction of piers without disturbing the present harbor system.

In addition to the public improvements on the Los Angeles harbor the great private corporations are preparing to increase theit facilities for handling the l'anama Canal trade. Abont 250 acres of land will be made by filling at a cost of $\$ 3.000 .000$ by private concerns. The Southern Pacific railroad has completed What is claimed to be the longest slip in the United States. It is 2.100 feet long and 250 feet wide.

As for Los Angeles grip on the I'anama business, the southern Californians figure this way: is for an entrance into a harbor what better conkl be asked than a space 4,000 feet wile with a depth of from thirty-eight to forty-cight feet and no rocks or sandbars? But the most important of all is the fact that Los Angeles is seventy miles from the great circle ronte between Panama and the Orient. By going a little more than one hundred miles ont of their course. the vessels traveling between Atlantic ports and the Far East can deliver and receive freight in the richest section of the south.

The Los Angeles people say there are two benefits their city should derive from these facts. First, the direct all-water connection between the Pacific and Atlantic seaboards, in which all ports on the Pacific Coast should participate, but Los Angeles most of all. Second, Los Angeles should be the port of call of all vessels coming through the canal and crossing the Pacific.

Then as to the swat that these westerners expect to take at the railroads. Los Angeles is taken as an example of how it is figured on the Pacific Coast that the overland transportation lines will be liit. It is expected that goods may be sent from New Tork to the Pacific Coast for $\$ 6$ a ton by way of the canal. The present rail rate on oranges for instance from Los Angeles to New York is $\$ 23$ a ton. Therefore products may be shipped by water at about one-fourth the present
tariff. Freight also may be sent to Europe at correspondingly lower rates.

Accorling to the figures of the seaport cities, the inland region shoukd be able to take advantage of the all-water route. Salt Lake, for instance, should be able to transport freight. yia Los Angeles and the canal to New York at a saving of $\$ 14$ a ton on the present schedule. Parts of Arizona could save $\$ 19$ a ton.

Put as said before Los Angeles is not the only Pacific Coast seaport that c.:pects to benefit by the I'anama Canal.

After a fight against the Southern Pacific railroad for the control of its water front, which has been waged for more than thirty years. Oakland has won and now is preparing to spend millions of dollars in the establishment of municipal docks and terminals to equip properly this port for handling ocean commerce now existing and the great trade expected to develop with the opening of the canal.

The people of Oakland recently voted $\$ 2.500 .000$ in bonds to begin the work, but the plans of the harbor commission call for an ultimate expenditure of $\$ 25,000,000$. For years it las been the chicf ambition of the Oakland people to (wn their own wharves and control their shipping facilities. This has been the political issue on which elections have been won and lost. And it was the power of the Southern Pacific against which the people had to battle.

All this muss was caused by the little hamlet of Oakland giving Horace IV. Carpentier a fifty-year grant to the water front in exchange for a frame schoolhouse twenty by thirty feet. Carpentier sold this grant to the Central Pacific Railroad and its allied corporations and from that day until the grant expired, recently, the water front of Oakland has been in the control of the Southern Pacific.

But now Oakland is free. It has thrown off the yoke of the corporation and is prepared to hit back with a rengeance. When the Sotuthern Pacific was compelled to accept a franchise, last October, permitting the corporation to use a portion of the water front for wharves, docks and other terminal facilittes, the long battle had at last been
ended with the city of Oakland the victor.

In the inner harbor of Oakland, for the dredging of which the Federal govermment recently appropriated an additional million and a half dollars, the first lig municipal work is to be done. A concrete quay 2,900 feet long will be built along the north shore and the space between this and beach will be fillecl. On this fill warehouses will be constructed and a belt line railroad will be operated on the edge of the quay.

Along this quay the city will expend almost the entire $\$ 2,500,000$. The only other work to be undertaken with this appropriation will be on what is known as the Key Route basin and the southwest front, between the Southern Pacific and Western Pacific railroad moles. A bulkhead will be constructed on the Key Ronte basin and the land behind this fillecl, giving 300 acres of land available for warehouses, streets and terminal facilities. The land will be made by the silt taken up by the dredger in front of the bulkheal in order to make the rleep, water channel in which wharves can be constr ucterl.

When the present plans of the city have been finished, there will be in use along the Oakland water front proper. eight and one-lati miles of wharves. And even then. Oakland has not exhausted its resources and many more miles of water front can be made available for handling commerce. In all, the Oaklanders declare they will have twenty-six miles of water frontage when the plans are carried out.

Oaklanders, like all good Pacific Coasters, are exccedingly sensitive on all matters pertaining to their harbor. The statement by the commissioner of corporations in his report to the secretary of commerce and labor, "that the three transcontinental railroads will have virtual control of all practical water front except that owned by individuals." stirred up a hornets' nest in the California city: The statement was challenged inmerliately and figures submitted to show the commissioner did not know what he was talking about. And this is the way the Oaklanders figured out their control of the water front: railroads and privately owned frontage,
9.750 feet: municipally owned. 21.730 feet; disputed, but likely to go to the city, 8,000 feet.

But even with the Oakland city govermment buidding municipal wharves and shipping facilities, the railroads also are preparing for the Panama Canal trade. The IVestern l'acific is under contract to expend five millions of dollars; the Key Route railroad and the big wharf and dock concern of which F. M. Smith, the "borax king" is the head, will spend five millions more, each: and the Southern Pacific will spend $\$ 4,000,000$ to $\$ 5,000$,000 on improvements to its already big docking facilities.

With the amounts shipyard concerns and others are spending it is estimated fifty millions of dollars will be expended in Oakland harbor in the next five years. The municipal wharves will be equipped with the latest improvements for handling freight, including electric cranes. And this feature is one of the strong arguments to be adranced by Oaklanders in favor of their harbor. They declare that even though rival ports charge less for docking facilities, the Oakland wharves will be the cheapest in the end for vessels because of the speed and cheapness with which cargoes may be handles.

Aeross the bay from Oakland, the big city of San Francisco is preparing to retain its hold on the Oriental commerce and also is setting ready to bid for its share of the Panama Canal trade. Already a bond appropriation of two million dollars has been expended. No sooner did the people of the bay city find that this money had gone into docking facilities than another appropriation of nine millions of dollars was voted. This is the fund with which the work will he continued.

The improvements in San Francisen's harbor consist in butilding a concrete seawall parallel with the shore line and filling in the space between, making a large area of seawall lots. From the seawall, piers have been built and others are being constructed, at right angles to the wall. These piers are the most modern known to engineers. They are constructerl of concrete and steel. Not even woolen piling is used, but steel cylinders are sunk and the cement placed in them.

LUS ANGELES CLAIMS TO BE ONE OF THE GREATEST LUMBFR RECEIVING PORTS IN IHE いURLD.
View looking seaward toward the outer harbor.

A belt line railroad is operated in connection with these other facilities. All these are under the supervision of the state board of harbor commissioners.
The warehouses, piers, belt line railroad, etc., are the property of the state and are operated by the state board so as to return a profit on the investment.

The water front line under jurisdiction of the state board at present is eight miles long and five miles of berth space is available. When the plans now contemplated are carried out with piers 250 feet wide and 800 feet long, the contour will be more than thirty-six miles in length.

It Portland, the metropolis of Oregon, elaborate preparations are under
way for the increase of trade expected when the P'anama Canal is opened. Portlanders consider their city to be a seaport and practically speaking it is, but theoretically it is a river port. But notwithstanding the fact that it is located far up the Columbia and Willamette rivers, it bills for a big share of the western slope trade. l'ortland's chief clain on commerce is through its immense grain and lumber trade. At Portland's doors the railroads dump their loads of grain from the interior and Portland las ships waiting to receive the cargoes.
Portlanders expect when the canal opens that they will get a large slice of the trade from the eastern coast for dis-

LOS ANGELES' BREAKWATER, WHHCH COST $\$ 3.000 .000$ TO BUILD.
It is over 9.000 feet long, with open trestle 1.804 feet long.

GRAIN VESSELS WIITING, OFF POKTLAND. FOR CARGOES OF WHEAT.
tribution. That's the reason they voted to expend two and one-half millions of dollars in harbor improvements immediately. They also have passed an ordinance that places all wharves and doeking facilities within the city limits under supervision of the city goverument. I'rivate curpurations also plan to expend something more than two millious in reclaining land along the river front at forthand.

Farther north, on the shores of Puget Sonnt, the young commercial giant of the Northwest, Seattle, is struggling to free itself from the galling yoke of the corporations. To strike the railroads a mighty blow and also to reach out for its share of the I'anama Canal trade is the amhition of Seatle. And when this ambition is realized Seattle will have the most minique harbor in the world.

Seattleites have fonnd that the narrow strip of level land along their water fromt, facing the Sound, has been gobbled up by the railroals and other corprotations. So what do these Seattleites d. but decide to make a great fresh water harbor in the very heart of the eity and leave the salt water to the private concerns, at least for a while.

The Lake Washington Canal project
is the weapon with which Seattle will hit the railroads and bid for the commerce of the world. The Federal govermment has been coaved into appropriating a couple of million dollars to construct the locks necessary and the local government has enongh money available to do its share of the digging. The plan is to dig a waterway from Salmon Bay-which is a long arm reaching landward from Puget Sound-to Lake Union and then to comnect Lake Union with Lake Washington. These two lakes are separated by a narrow strip of land, or were until recently when the last mud harrier was blasted away and the two boties of water united.

It a recent election Seatte voted a bund issue of $\$ 1,750,000$ for the improvements to its harbor, including the Lake Washington Canal project. When the canal is completed, which will be in less than three years, Seattle's present water frontage of ten miles will be increased to more than one hundred miles of available space fronting on deep, navigable water.

Another project that will be unclertaken with the bonds is that of filling in more tide flats and dredging the Duwamish waterway, whieh empties into the
southern end of the salt water harbor. This will add another twenty-four miles to Seattle's water frontage.

But this isn't all that Seattle proposes to do to the corporations. It is propased to bring the entire harbor under the control of a laarbor commission, consisting of perhaps three members. This board will be a government within itself and will have absolute charge of the water frontage, docks, warehouses and cverything that is connected with the commerce of the port. Uitimately it is proposed to establish a belt line railroad under control of this harbor board. At this time Seattle has no municipal or state piers or docking facilities.

No true Seattleite admits that his harbor will not be the largest and best in the world when completed. If you ask a Seattle man how he figures his port will capture the lion's share of the Oriental commerce, he immediately will lead you to a globe. He cannot figure out his arguments on a flat map of the world's surface. After carefully leading yon up to the globe he will prove to you that as the earth is smaller around as you go north, the path across the northern Pacific Ocean from Puget Sound to the Japanese ports is at least 1.000 miles shorter than it is from California. He also will tell you that boats sailing to the Orient from the southern part of the coast go almost directly north until about opposite Puget Sound and then take a westerly course out past the end of the Aleutian Islands. I thousand miles is
some trip for a big vessel, he will fell you and therefore, the future trade of the Orient will be handled through the port of Seattle.

As to the I'anama Canal trade he will point out arguments similar to those of other cities, with the additional point in Seattle's favor of a fresh water liarbor and closeness to the markets of the Pacific northwest.

To the landlubber the real value of a fresh water harbor is not apparcht. One advantage is that salt water anmal life camnot live in fresh water. An examplo of what this means to shipping is shown by the fact that six hundred tons of barnacles were scraped froms the bottum of the armored crniser South Dakota before it made a recent boyage to the Orient. It is necessary to dock and scrape ocean going vessels at frequent periorls in order that the sea growth and foulness may be removel. By entering fresh water this growth is removed without the aid of man. With a fresh water harbor thousands of dollars would be saved anmally by the shipping interests of the l'acific.

Tacoma, on Puget Sound, has voted a bond issue of half a million for a municipal pier and harbor improvements and is preparing to take the first step in throwing off the yoke of the railroads. This port with its closeness to the grain growing regions is one of the big wheat handling ports of the coast and expects to participate in the benefits of the Panama Canal. Tacoma harlor has

SEATTLES SALT W゙ATERFRONT. NOW IN THE HANDS OF PRIVITE CORPORITIUNS.

HOWV SEAJILE 14 STRIKIN(AT THE RAILROAJS FOR OCEAN TRADE.
The corporations hoving dobbled up the salt water frontage. Soattle is putting through a frosh water canal. Liakes Washington and Union are links in this canal.
plenty of deep water, but its citizens feel they must be un and doing in order to handle the increased shipping expected.

To the ordinary individual the grigantic proportions of the Panama trade are not apparent. Lint when it is known that cighty-two million dollars' worth of merchantise, originating in the United States crossed the lsthmuses of Fanama and Tehuantepec last year, some idea of the enormons trade that will loe opened by the canal may be gained. Most of this merchandise was moved across the inthmuses for the mere purpose of transferring it from one section of the TVited States to another: from the eastern to the western coast or from the western coast and Pacific islands to the Atlantic seaboard. Fifty million dollars' worth of this total originated on the eastern coast and moved westwardly across the isthmuses, four-fifths of it then passing northward to the Pacific Coast of the United States, the other fifth being distributed along the conast of Mexico, Central and Soutlı America.

Thirty-1wo million dollars worth of goods went eastwardly, two-thirds of it orisinating in Ifawaii and the remainder along the western coast of the United States. The Itawaiian sugar which formerly went around the Horn. now passes over the istlmus ly railroad and is transferred to boats and taken to the refineries of Philadelphia and New York. The
returning steamships carry merchandise for the western cuast.

Figuring even on the present commercial conditions of the section of conntry surrounding Los Angeles only, \$20,000,000 in freight rates on non-perishable goods alone will be saved in a year when the canal is completed. It is estimated conservatively that a million tors of non-perishable freight moves between the eastern states and the Los . Ingeles territory: The present rate is $\$ 26$ a ton, While the all-water route will make the rate less than $\$ 6$, thus effecting the enormons saving. I saring of $\$ 6,000,000$ to the orange growers of southern California will be made.

When the canal is finished Pacific ports will be within twelse to fourteen days of New York in eighteen-knot vessels. This is figuring that it takes twelve hours to get through the canal. Between the I acific Coast and European ports the trip should be made in three weeks in eighteen-knot ships. This is a comparatively short trip for the modern ressel. So the Pacific Coast folks do mot feel that they with be extravagant in spending one hundred millions of dollars in improving their harbors. They figure that with the canal trade in full swing the humdred million could be saved in a year or so, in the reluction of freight rates. Piesifles, it's wortlo it to get this hearty swipe at the railroads.

LIKE PARENT LIKE CHILD

B y

RALPH BERGENGREN

IN the basement of a large stone building at Forest Hills. Massachusetts, there are several thousand mice and rats. Fortunately for the other occupants of the building they are all in wire cages. Ltnlike ordinary rats and mice in ordinary basements, they are cheerfully fed and nicely taken care of. And to complete this extraordinary situation the same basement contains several hundred rabbits and guinea pigs.

The stone building is the lussey Institution, the headquarters of the agricultural department of Harvard University, and the basement is occupied by the animals used by Dr. William Ernest Castle, of the Harvard Zoological Department, as material for a continuous series of important scientific experiments. Without going so far as to consider this host of guinea pigs, rabbits, rats, and mice literal representatives of the human race they nevertheless pass their lives in affording material for the study of phenomena upon which the contimuance of the human race, at its progressively highest level, is obviously dependent. The problems in which they are the living factors in the equation are those of heredity-the transmission of traits from parents to offspring and the possibility of determining in advance the characteristics that will appear from the mating of individuals with whose own characteristies the investigator is already familiar. Despite the occasional startling announcements of sensational journalism, however, men of science generally admit that human beings are more complicated than grimea pigs: and stwlents of heredity in the lower animals turn their practical attention rather to improving live stock than to improving its owners.

Granting all this, and at the same time remembering Mr. Gilbert Chesterton's remark that the first thing the perfect
race of men produced by scientific marriage would do would be to smash the system of scientific marriage, it is fair to argue that the fundamental principles of heredity reveated in the color of a flower or of a gumea pig exist also in the more complicated cases of human inheritance. If study of guinea pigs can throw light on human inheritance, knowledge of the mysterions world we live in is advanced in proportion. The "reversion to type," for example, that every now and then produces a human being surprisingly unlike either of his parents has its analogy when a yellow rabbit is mated with a black rabbit and the result is just such a little gray rabbit as runs wild in the woods. Black rabbit or yellow, each parent contained a different element of the ancestral gray condition from which they had descenderl. And the combination of these two elements reproduced the gray color of the little rablit. just as oxysen and hydrogen when brought together produce water. And this, moreover, happenerl in accordance with a wellestablisher law of heredity. The law was discovered fifty years ago by an Austrian monk studying the flowers in his eloister garden; and it has been proved just as true of animals as of plants by such experiments as those of Dr. Castle with his scientific menagerie in the Bussey Institute basement.

Mendel's Law of Heredity, as this principle is known to scientists, was the result of a series of experiments in the cultivation of garden flowers. The good monk, (iregor Mendel, having leisure, chriosity, and a scientific mind, erossed different varicties of ordinary garden peas and carefully noted what happened. Long continned experiment showed that mader certain conditions certain results wonk follow with sufficient uniformity to establish a law. If a pea with yellow

Alfino Female Guinfa Pig Whose leescendants Would Normally Be White:

Albino Male Guinea Pig with Whom the Aebino Guinea Pig llas Mated.

The ovaries of the black suinea big were" transplanted into the bridy of the albino.
cotyledons-as botanists call the seed leaves of young jeas-was crossed with one having green cotyledons all the peas that srew from this crossing would have yellow cotylellons. Apparently what had happened was the extinction of the green characteristic, and if these peas were crossed with other peas that hat yellow seed leaves, yellow was still the characteristic seed leaf color in the immediate descendants. But if the peas descemled from the first crossing were self-pollinated, or crossed with each other, the result was an average of one sreen seeded pea for every three yellow ones: and if these green sceded peas were separated and self-pollinated the resulting peas were all green seederl.

In other words, each of these little peas hat inherited a characteristic-the green color of the seed leaf-from the first

Black Femalf Guinea Pig Three Weers Old. Her discendants would normally bu black.
crossing, but this color characteristic did not become visible until two of the peas in which it was latent were brought together; and in every four descendants from this second crossing only one individual showed the inherited grecn seed leaf color. Yellow, in short. was dominant, in that it was most likely to perpetuate itself and green was recessize because it could be expected to appear visibly only in a minority of the peas that inherited it. But when it did appear visibly, the result of a union between two of these peas was a continuation of the characteristic green color in the whole family of descendants.

Mentel's Law of Heredity divides tramsmissible characteristics into these two kinds-dominant and recessive. A recessive characteristic will be invisible in all descendants of the first generation, but will reappear, ustally in the propor-

THE DESCENDANTS OF THE TWO AI.RINO GUINEA PIGS.
'The black color of these' little" pigs shows that black was the duminant color characteristic and was contributed by tha transplanted ovaries of the black guine phe. In other words, althourh botn of abbino guinea pis No. 2 . these little suineal bits art apparontly the descendants of black bis Nu. I and albino pig No. 3.
tion of one to three, whenever the offspring of this first generation are mated logether ; and the recessive characteristic will then breed true or perpetuate only itself. The definite proportion of one to three is said by those scientists who devote themselves to heredity to be "as fundamental to a right unterstancling of hererlity as the law of rlefinite proportions in chemistry." It applies to gunnea pigs, mice, rats, antl rabbits as uniformly as it applies to the garden flowers. And one of the results of scientific obserbation of the revelopment of hereditary traits in these little animals points to an explanation which would moloubtedly have deeply interested the Anstrian pioncer in his flower garden. The characteristic of color, green or yellow, in the peas with which he was experimenting was resident not in the flowers themselves but in the germinal material which formed the seed leaves of these flowers; and the germinal material of a yellow seed leaf, conlr] it liave been transplanted into the body of a Hower whose seed leaves were normally green, might have gone on proulncing yellow seed leaves in its descendants just as if it had never been transplanted. In the case of the animals at the liussey lustitute it has been shown that a surgical operation ean make a white grinea piys capable of bearing black offspring.

To say that science watches and records the developnent of hereditary peculiarities in these lower animals has perlaps already set the reader wondering how these claracteristics can be letected. To most of us one gumea pis or rabbit looks very much like another, and one mouse or rat very much like another mouse or rat. Fortunately for science,

Skuifs of Thrfe Rabrits.
Size nsually expresses itself as a blending of maternal and paturnal characteristics. The maternal skulls ate on the right: the patemal on th. l.ft. The skulls of the descendants are the intermediate ones, in the midule.
there are a considerable number of useful lifferences. There are albino guinea pigs: black guinea pigs; guinea pigs that are only part albino; guinea pigs with long hair like an angora kitten; and yet other guinea pigs that are "rosetted"-a word that describes them when their hair grows in such fashion that they look as if they were always out in windy weather and the wind blowing from eiery point of the compass. Rablits have been so long bred as pets that the fanciers have leveloped many characteristics that are immediately useful in tracing heredity. Rats and mice in hewildering variety have also been produced by the hit-or-

Black Female Guinea Pig and Her Young.
miss methods of fancy breeding. and England has "mice clubs" whose members, just for the fun of it, have long been interested in obtaining fancy house mice with pink eyes and varionsly colored overcoats instead of the uniform gray costume of the usual victim of the domestic mouse trap.

All these differences, secured apparently by chance but really, it now appears, in obedience to a law of heredity, are of direct value in still further testing the uniformity of the law and in getting new lines on the problems of inheritance. In this scientific menagerie the guinea pigs, rabbits, rats, and mice include specimens of practically all the varieties yet produced by experimental breeding. Each has a pedigree, so far back as it can be traced, neatly recorded in a card catalogue, and, as the experiments inspire 110 fear or distrust of their keepers, they are most of them tame and easy to handle. The rabbits in particular belave very much like those that inhabit little Jolinny"s coop, in a suburban back yard.

A typical working out of the Mendelian law of heredity may be seen in the mating of an albino and a black guinea pig. If a pure bred black guinea pis is mated with a white one all the young guinea pigs in the first litter are black. These haby piss are apparently the offspring of black parents, although, as a matter of fact, the white parent has contributed sonething of her own color characteristic and the contribution is unseen because the black color characteristic is dominant and conceals it. According to the Mendelian law the white colur characteristic, being recessive, can appear visibly only from the union of two germe cells in both of which this characteristic predminates-and that is exactly what happens when the black children of this black gutinea pig with an
albino partner are in turn mated. Two black guinea pigs are presumably as surprised as a hen that has hatched ducklings by the appearance of one white guinea pig for about every three black ones in the family circle. The original cross had brought together two characteristics, B (black) and W (white), to make a single individual. E IV, which showed only the dominant black characteristic. When these individual E W's formed germ cells for the continuation of their species there was a return to original conditions; B became the sole characteristic of some of these germ cells and IV the sole characteristic of others. When these germ cells united to create a new individual there were necessarily three possible combinations- $\mathrm{B} \mathrm{P}, \mathrm{B}, \mathrm{IV}$. and $W W$, the combination $\mathrm{B} \backslash \mathrm{V}$ evidently occurring twice as often as either of the

Albino Father of Black Guinea Pigs.
The youngsters are black be'cause this is thet dominant color characteristic. contributed by the mother. In the first generation all the little plas show this culor.
others. And. as any individlual containing the dominant characteristic B would be black in color it follows that the combination ${ }^{W}$ II would alone produce a white individual and would be likely to occur on an average of about once in four offspring. Evidently, too, in the case of individuals represented by $\mathrm{B} \quad \mathrm{B}$ and if IV * one characteristic harl been donbled and the other eliminated.

By applying the Menclelian law in scientific breeding new combinations of individuals or races can be obtained in the course of a few generations. Thus when a gulnea pior with a dark and smooth coat is mated with one whose coat is smooth and white, the young will exhibit a wholly new combination, dark and

Two of the Grown [’p Descendants of the Black Mothler Gulnea Pig and the Aebino fibther.
rongl: and if these dark and rough grinea pigs are bred together a fourth combination will appear in the grandchidenen of the original couple. Some of these grandehildren will be white and smooth while others will represent the combinations seen respectively in the parents and grandparents. By proper selection of parents any one of these combinations may be established as a pure race of guinea pigs in which the children will invariably resemble their father and mother. Often also a new combination of characteristics obtained through experimental crosses will coincide with some long lost racial combination. The yellow rabbit mated with a black one may produce a certain proportion of little rabbits with the characteristic gray color of the wild progenitors of both father and mother. In the same way occur presumably those occasional surprising cases in human families when a son or danghter developes racial pecnliarities not visible in either parent. If their genealogies could be carried back far enough each parent would probably be found to possess an ancestor of the race to which the child had revertedso, at any rate, we may deduce from the guinea pig.

A case of such reversion, for example, has resulted in Dr. Castle's laboratory in the evolution of a race of four-toed guinea pigs. The laboratory some years ago came into possession of a male guinea pig whose four-toed feet made him unique among all the guinea pigs in the collection. There was no other like him. And yet the four-toed guinea pig one day surprised observers by becoming the father of a four-toed descendant. The mother was apparently normal. The only explanation, therefore, was that she had inherited what might be called the four-toed tendency from some distant
ancestor; that this tendency was recessive: and that it could only be perpetuated by union with another recessive tendency of the same kind, supplied in this case by the visibly four-toed father. Selective breeding among the descendants has since "fixerl" the type so that it breeds true and adds yet another striking characteristic for the study of inheritance.

There are some characteristics, however, in which so far the Mendelian law does not altogether coincide with the observed results of scientific breedling, although it is now believed that further investigation will discover another application of the same principle. Size is the most important of these exceptions. Whereas color characteristics have been proved to vary with predicable minformity, size is apparently a permanent blend

Produced by Mating Dfscrendants of Black and Albino Pigs.
In their second generation the white color characturistic contributed bygrandfather pig appears in the estimated proportion.
of inheritances. In a typical rabbit family the size of the offspring is intermediate between that of the parents and none of the descendants revert to the extreme proportions of either grandparent. The practical result of this condition is that scientifie breeding may produce at will a race of rabbits of any desired size between the known limits of size in rabbits, and with any conceivable combination of color characteristics. The variation in size is apparently continuous and depends upon blending or striking a compromise between the sizes of the parent rabbits. The variation in color depends upon the scientific selection of parent rabbits in which the desired color characteristic is not counteracted by any other.

These transmitted characteristics, it
will be seen, are invariably associaterl with the parent at birth and are never "acquired" by the necessities of individnal existence and then transmitterd to offopring. Dr. Castle's experiments, like those of many modern stulents of hiolosy, tend to disprove the theory that acquired characteristics can be transmitted. Rather they confirm the conclusions of IWcismam, which for twenty years have been the battle groume of hiological opininn, that the germ plasm, or reproductive cells on which the continnity of all organic life depends, is independent of the borly contaning it, and that it is not influenced by the characteristics acyuired by that borly during the space of a single lifetime. This theory of inheritance casts an interesting and hopeful light on the statistics that are every now and then published to show that the physical condition of the average city-hrei imlividual of toxlay is inferior to that of his immediate ancestors. It would seem to indicate that such retrogression is ant the result of inheritance hut of enviromment, and that healthier living conditions in the large cities, tugether with a wider distribution of population back to the country, would connteract the tendency and produce a corresponding physical improvement. But it is also true, julging by these lower animals, that the statiotics indicate breeding from inferior family and racial stocks as a serintis factor in the retrugression of a startling number of inclividuals.

It is still a far jumbey from grtimea bis. monse, rat or rabhit to a human
being, and the thoughtful observer naturally wonders about subtler inheritances than those of size and color. There is the question of inherited intelligence and disposition-and this, in fact, is the next step in the study of the lower animals. Work is now in progress in Dr. Castle's laboratory to investigate the effects of a minion between wild and tame animals: the wild rat, for example, mated with a rat that has been domesticated by several generations of captivity. These experiments are recent, but, so far as they have gone, they seem to indicate that the strength and ferocity of the widel creature is the dominant characteristic accordiner to the Mendelian law. The offspring of the wild and the tame rat are in the first generation all apparently as wikl as if they had been born of two wild parents, but when the offipring are mated the characteristics of the wild rat appear in modified form in some of the descendants while others seem to lack it entirely. These qualities are readily recugnizable and the work of the peychologists with the various kinds of apparatus they have invented for the study of intelligence in the lower animals fortunately offers a means of cxamination for mental characteristics that are mote difficult to determine. The psychological sturly of individual animals and the psychokicical examination of their offspring and descendants for inherited traits of intelligence is the next step to be taken by these trained searchers in the insestigation of heredity by scientific breeding.

An Apricot as Smooth as a Nectarine from Geok-Trpe, Turkestan. While smooth apricots are not entirely unknown, this, the "slew-abrikose." is believed to have superior qualities.

PLANTHUNTER IN THE WILDS

By

EDWARD B. CLARK

C
APTAIN MAYNE REID, whose books have made naturalists of more than one American boy, once wrote a story called, "The Plant Its title was not particularly alluring to the lads of the generation who
looked to their favorite for tales of pure looked to enture, bit before they had read long they knew that they were to get excitement with their botany.

The heroes, there were three of them in the Captain's book, if memory's long shadow does not obscure the facts, were on a plant hunting expedition in a valley of the Himalaya Mountains. The scene of action was laid largely in wikd places virtually geographically identical with those which are being searched totay for species of plant life by Frank N. Meyer. an American field explorer working under commission of the Iurean of Ilant Industry of the Department of Agricul-
ture. Some of Mr. Meyer's experiences are akin to those of the three hunter naturalists whom Captain Reid represented as having been sent out on like errand by the authorities of the Kew Gardens of Lonton.

The adventurons botanists of the oln tale were seeking specimens to be dried and preserved for museum 1 urposes. The adventurous botanist of the present tale cares nothing for the cut and dried. Ilis is what David Fairchild of Washington, the Agricultural Explorer in Charge of Foreign Seed and I lant Introduction, calls "a living work."

It is the duty of the man now in a great desert of the Himalayan region to secure seeds or cuttings of plants, shrubs and trees which he considers worthy of introduction into the Cnited States, and to get them quickly to Washington where the work of propagation almost instantly is started.

Highly Recommentof as A S̈hde Trfe in the Arid Reglons of UUR WETARN =TATES.
I drought-rusistant species of poplar in Krasnawodsk, Turkestan.
to hide some design on the peace of the government or the community. The specimen bag must hold some strange instrument of destruction, the more deadly because it is unknown. The experiences of botanists in the Eastern mountains, though with an added element of real danger, are like those of the peaceful opera glass ornithologist whose sanity is doubted and whose arrest is threatened by the country folk because he prefers to study the living bird rather than to kill it, fill it with cott m and arsenic, and to pierce it with wires for mounting in painful and grotesque attitude.

Admittedly the expres-

Explorer Aleyer is today in a lonely land and before his mission is ended he will pass through still lonelier lands. His collecting journey began at St. Petersburg and it will end at some sea coast port of Eastern China. His trip already has been successful enough to make it worth much more than the money it has cost. He has frozen and melted alternately as the altitudes have changerl: he has encomtered wild beasts and men nearly as wild: he has scaled glaciers and crossed chasms of dizzying depths: he has been the subject of the always alert suspicions of government officials and of strange peoples jealous of intrusions into their land-but he has found what he was sent for.

A plant hunter! Official and peasant are accustomed to the coming of hunters of wild beasts. They understand the lust of killing and the desire for danget which make men take long journeys into strange places. But a plant humter!-It seems to them the thimest pretense

A Wild Gracs, Apparentiy a Species of kivf. in the Mountains Nefr Bacharden. Turkfstan.
of much of the land which is under search torlay for plant treasures is stony and forbidding, places apparently for the thistle and the thorn, and it would appear that he who looks for fruitage there must be one who thinks "yea" the answer to the question of Scripture, and that grapes may be gathered of thorns and figs of thistles.

The explorer now in the Himalaya Nountains carries in his head a botanical chart of the United States. He finds a species of plant useful or ornamental, or a varicty of a species, and by reference to the mental map he knows instantly in what part of the United States it has a chance to flourish and to prove a blessing. He gathers with full knowledge of the locality in which one day Americans may sit under the shade of a Ilimalaya tree or gather fruit from a Himalayan vine.

In the plant hunter's head there is also a weather map. He knows the sections of the United States where long periods of drought would wither quickly any form of introduced vegetation whose life is moisture. He knows the places where the rainfall is apt to be excessive and he knows where there are shadow and sunshine in about equal parts. His is a work of selection, and it can be said that in

An Avenue of the Karakatch Tree. A Specifs of Elm. Eminently fitted as a shade tree for the hot and arid. but irrigated sections of the United States.

Frank M. Mfyer. the Explorer. in the Mimalaya Mountains.
large part the julgment of the plant finder has been justified by results.

Americans in the dry conntry of the Southwest before long may pick from the dooryard trees cherries whose flavor and juiciness will make them forget the yearnings which they have had in the June time for the fruit of the tree which shatowed the New England home. Explorer Meyer found a wild species of cherry (Frumus microcorpa) growing and thriving on the dry mountain sides of Southern Chinese Turkestan. Perhaps in truth it must be called a bush rather than a tree for it is bush shaped and its height is not over ten feet. This cherry soon will be introduced into America.

In passing through the villages along the line of his journey it is Mr. Neyer's habit to visit the fruit and vegetable stalls of the market places. While

A Specifs of Wild Cherry-Pratmus microcorfa-Capable of Resisting Grat Impought.
wild grass, apparently a species of wild rye, and when under the gentle min-istrations-plant lovers are always gentle handed and gentle hearted - of the Capital botanists the promise of the rye reaches fulfilment the work of distribution will be begun, and it may be that through it some of the country's waste places will come to a green redemption.

Travelers agree, Mr. Fairchild says, that the most beautiful tree in Turkestan and perhaps one of the most beatiful in the world is the Karakatch. It is a species of elm, the Ulmus campestris umbraculifera, the shatle bearer. Word has come from Mr.
in Geok-Tepe. Turkestan, he foumd a smonth skinned apricost on sale. It is as smoth as the nectarine amb its color is a pale yellow. It is a juicy, delicions fruit known locally as the Slew-abrikose. Smonth apricots from the American grower's foint of view, are things much to be desired, and this particular fruit the explorer found to possess superior qualities of flavor. He fomad out where it grew and today muler care of the experts in Washington the apricot is unter "process of propasation" and ultimately it will be sent to the American apricot lands where the hope is it will flourish and yield abundantly.

The history of the introduction of new kinds of alfalfa into the United States with a view to proper selection and distribution, so that the proverbial henefaction of making two blades of grass grow where me grew hefore may be outfone, has been written again and again in agricultural history, but the search is never over. Explorer Meyer is looking for new kinds of alfalfa, kinds which may prove to be better allapted to the suil of some parts of the C'nited States than those which already have been tried.

No grass and mo grain is ton lumble to escape the plant limeter's attention. To Washington from the mountains near bacharden, Turkestan, has been sent a

Neyer that this tree eminently is fitted for planting in large numbers in the hot, irrigated sections of the L'nited States. This introduction will be pushed in regions where trees of aderpuate shade are desired, hut where experiment has shown in the past that many species have failed to respond to irrigation.

From the foothills of the Himalayas has come a drought resisting species of poplar. In the arid and semi-arid regions of the western states where irrigation is not possible, or as yet has not been accomplished, there is a demand for shade trees for home yards and parks. Attempts have been made frequently to find a promising subject. Explorer Meyer thinks that in this poplar, the Poputus pruinosa, he has frumul something which will grow and give grateful shade to the families living in try regions where the cold of winter is not too severe.

Sceds and cuttings of scores of species of plant life have come out of the country already traversed by the American plant explorer. I'erhaps if one in twenty of the disaneries upon introduction into this country proves to be of lasting value the results will be worth the labor, the disregard of danger, the personal derotion to duty of the hunter, and the money spent hy the government which commissioned him to the search.

The explorer of the cleserts must be a botanist, but he must do much more than is done by the ordinary botanist of the field. He must know what many men who are botanists only do not know, how to get his material with the germ of life stillactive across deserts, countries, continents and occans. He camot be sure always that his collections will stand the long jonrney to Washington from the point of gathering. In this case frefuently he must send them ahead of him to the coast town from which ultimately he intenuls to take his departure, there to be planted and to grow until he can regather them from the soil to make them his jealously watched companions on the last stage of his journey.

As soon as consigmments of cuttings or seeds are received in Washington by David Fairchild they are thrned over to the entomologist who examines them carefully for insect pests. Then fuickly they are given to a pathologist who examines them for discases and then if all is well with the importations they are put into alien but kindly soil "and started to growing."

The Rurean of Plant Industry for several years has been at work introlucing new and promising species of vegetation into the United States. What has it done? Improved alfalfa, thick growing, and enriching fields to which the plant was a stranger, are one answer to the question. Alfalfas have been brought to

David Fabrchild, the Agricultural Fxidorer in Charge of Foreign Shrin and Plant Introductiun, Burfiu of Plant Industry.
this country from the Andes, the llimalayas, the Gobi Desert and from Anstralia, in all perhaps seventyfive kinds. Experiments in interbreeding have been succensful and the American alfalfa range rapidly is being extenderl.

From Southern California and from \rizona recently there have been sent to market five tons of dates, the fruit of palms introduced and grown successfully by the exploring scientists. In Floricla the mango industry is torlay upon a commercial fonting. Explorer Meyer now in the Ilimalaya Monntains. some years ago found in China a puckerless and secdless persimmon. He sent cuttings to Washington where they ware grown successfully. Then they were shipped to places in the Sonthern United States where it was believed they could be cultivated. Today ten acres of puckerless, scedless persimmons are mader cultivation in Georgia by one of the largest fruit growers in America, a man who has faith in the word of the plant finders.

Out of China recently the government's explorers hought a new cherry. which was sent to Southem Califormia where it took kindly to soil and climate and gave return for the work expended by a crop of fine, marketalle fruit which was ready for the picking two weeks in advance of any species of cherry known to the state. I rell currant, the Ribes petraeum, brought from the Altai Mountains has proved in St. Petersburg to be
a thrifty grower, and a producer holding promise of a successful American future.

Cuttings of ten forms of olives of the hardiest kind known, have been sent from the far east to the gardens of the American Capital. It has been proved that these olive trees will stand a temperature of -2° Fahrenheit which kills American olives down to the ground. Apples, pomegranates, wild peas and hardy oranges are other introductions, some of them already acclimated, bearing juicy fruit, fine flavored and grateful to the eves of the market man and the buyer.

Disappointment comes frequently and always painfully to the men of the Explorer's Division of the Bureau of Plant lodustry. Time after time attempts to bring to this country living seeds and living shoots from places far distant have failed, but the rleath of the plant does not bring death of hope. Five times attempts were made to secure from

Chili the seeds of a plant relative of the Alligator pear with the germ of life still in them, and five times failure came. Finally the explorer has planned to swing a cradle of moss underneath the fruit of the tree to catch it as it falls ripened from the stem, knowing that in this way he can be certain of an absolutely fresh seed supply.

The work of David Fairchild and his fellow scientists is one of propagation and distribution. The aim is to put new forms of plant life into the hands of the agriculturists of the country. It is the development of a new type of field work. It is experimental of course, but no experiment is tried withont previous study to make certain that kindred conditions of soil and climate exist between the place of the species' origin and the place where it is to start life anew in an enviromment which, the anxious plant lover's constant prayer is, it will not find uncongenial.

LIGHT-PRODUCING ALLOYS

LONG before the modern process of using chemical preparations, fire was kindled by the use of flint stones which by concussion emit sparks.

This method of lighting inflammable materials has heen restored by the use of other metals producing, under the action of a shock, sparks hotter than those obtained with the ordinary steel and flint. Metallic uranium will ignite a mixture of air and fire-rlamp; scientists have discovered that this mixture must remain a certain length of time in contact with the manimm before igniting. The phenomenon is its delay to take fire: this tlelay of 10 seconds at the temperature of 650 degrees, diminishes in proportion as the temperature increases, for a delay of only one scond the temperature must be increased to 1,000 degrees.

The temperature of the sparks from uranitum is then above 1,000 degrees.

Sparks forced from iron whether by an ordinary steel and flint or by the stroke of a miner's tool will not ignite the misture of air and fire-damp.

Sparks from uranium readily ignite
cotton wicks saturated with alcohol or benzine. It was decided that this metal could be utilized for making very simple lighters, by placing a piece of uranium in a movable support pressed by a spring against a steel surface covered with points arranged in such a way that the sparks produced would be projected into the gas jet or on the wick to be lighted.

This very ingenious idea which was not applied because of the high price of uranium is now gring to be realized because of the recent utilizing of the substance cerimm.

In 1906 Dr. Auter of France attracted attention to cerinm by a patent concerning an alloy of cerique metals with iron ; by this alloy small pyrophoric sticks nuder slight shocks will emit very hot sparks.

A new alloy, the Kunheim alloy, is composed of cerique metals with the addition of iron and magnesia. It ignites more readily than the preceding alloy. and may be utilized for lighting gas jets, while the Aner metal is especially adapted to pocket lighters.

SUBSTITUTE FOR SHORTHAND

By

R OBERT H. MOULTON

AFEW years ago an important law-suit was being tried in a court of one of our large cities. A dozen witnesses, representing each side of the case, had been heard and their testimony duly recorded. The most important witness, however, and the one upon whom the defense chiefly relied to support its contentions, was reserved until the last. When he finally took the stand, judge, lawyers and the other court attaches leaned eagerly forward in order not to miss a word of what might be said, and the official court stenographer prepared to take down his testimony. The examination began, and the witness proved to be such a rapid talker that the stenographer, one of the most expert in his line, was forced to exert limself to the utmost to keel pace with the questions and answers that were plied back and fortll.
When the examination finally was concluded, the stenographer leaned back with a sigh and congratulated himself that he had made a record for speed and -accuracy? Well, he had passed successfully through similar experiences before and there was no reason why he should feel that he had made any errors in this instance, or doubt his ability to correctly transcribe the queer assortment of hieroglyphics that covered page after page of his note book. Besides, if there was any dloubt in his mind, he could easily

The Machine Which Does Away with the Sthnog rapher's Pad And Pencil.
communicate his perplexity to the judge. who would re-examine the witness and -but just then a dramatic incident occurred. The witness was seen to swav in the chair and then topple forward, dead-a victim of heart failure.

This incident so mmerved the stenographer that when he set to work a few hours later to transcribe his motes he found more than the usual difficulty in deciphering them. Still he finished his work with the consciousness that he harl performed his task well. The half dozen or so of words about which he had been in doubt could not affect the result of the trial materially anyway-at least that is what the stenographer thought. But when a few weeks later the case was decided by the judge, it went, very much to the surprise of all concerned, against the defense. In reading his decision the judge dwelt with sone emploasis upon certain words in the testimony of the chief witness and which, he declared, harl led him to arrive at his conclusions. The stenographer recognized in these particular words the very ones about which he was in (loult when transeril)ing his notes, and he was troubled. If he had been absolutely sure of himself, might not the whole case have been decided differently? But now it was too late to do anything in the matter.

This is only one of many instances wherein the inability of stenographers to read their shorthand notes correctly has re-

The New Stinographic Come And Its Key. EU iquals 1: l'fíquals M (instial): l'B requals N (final): BGequals K (final); final T equals ' I or I) (conte:t invariahly distrogushes): S rquals Is of A s-in phrasers intalat or final): "TPH "quais N (onitial): 'TP' "quals F" (initial). "The Iollowing l-itters, when appearing on the same line with ast.risk beconafigures mstead, as: S with the asterisk equals 1: 'T with the asterisk cruals 2: P with the astorisk 'equals 3: II with the ast.risk couals 4. E with the asturisk conals 5: Fi with the asterisk conals 6: 'P with the asterisk 'euuals 7: L with the asterisk rquals 8 : I with the asterisk equals 9 : () with the asterisk "quals 0.
sulted in much trouble and confusion. This defeet in a marvelous system of taking down the words of a speaker verbatim is one which numerous inventors have labored to correct. Nechanical aid of some sort seemed the only solution of the problem, because there are limits beyond which even the swiftest hand and the keenest and most accurate mind cannot go. So these inventors set to work to perfect a device that would replace shorthand. But none of the many machines on which patents were claimed secmerl capable of fulfilling all the requirements that would be exacterl of them.

There has recently been put upon the market, however, a dictating machine, ealled the Stenotype, which its inventor clams will do for shorthand what the typewriter hats dome for loughand. It is not intended to replace the typewriter, but to be a companion machine to ii. It is said to eliminate the greater part of brain work in taking dictation, and to make this work a matter of practice rather than mental strain. This claim certainly makes it look rosy for those who have heretofore found the stenographic pace too fast. Instead of learning stenograply the student will only need to learn to operate the dictating machine.

Shorthand is difficult to master and many students of it never become proficient, while those who maty be termed experts are comparatively few. This is proved by the number of those who fail in taking the Civil Service examinations for Unele Sam. The speed required to pass is only eighty worls per minute, which probably defines the speed limit of the average experienced stenographer. The trouble is that in shorthand there are ton many mental operations to be performed-six for every word, in fact. It is claimed that the dictating machine will cut this in two.

The training and practice necessary io be able to make all the
claracters in any system of shorthandthe dots and lashes, big and little circles, long and short characters, the curved and straight lines, and the light and shaded lines-accurately and while going at any speed requires months and often years. And then there is the serious (puestion, already referred to, of legibility in transcribing these characters after they are once made; for often the same character will mean different things when above, below or on a line, different things when shaderd, and still other things when lengthened or shortened.

The dictating machine is said to do away with this guestion of legibility entircly, since it writes in plain type-letters, so that no matter how fast one writes the letters are ahways properly executed. For this reason one person can read what another has written just as easily as he can his own work, a thing which is practically impossible in shorthand. It also leaves a permanent record, which can loe transcribed at any time; and this is another advantage over shorthand, for every stenographer knows that the longer the time that elapses between the taking of shorthand dictation and its tramscription, the more difficult the task becomes.

It is possible for an expert user of the typewriter to take slow dictation directly on the machine, the average speed in this connection being about sixty words per minte, which means that the typewriter is given about four hundred strokes, including spacing. in this length of time. As the new dictating machine is designed to write over a word a stroke, the spacing being done automatically, it will be seen that even if it is struck only half the number of times that is required in ordinary use on the typewriter, it will

The Ribbon Rewinder.

The Copy Holifer, from Whach the Tyhlet Realos Her Machise Made Notes.
still be writing almost four times as many words as the latter, and more than twice as many as the average stenosrapher can take down in shorthand in the same length of time.

The most remarkable feature of this machine is the keyboard, which contains only twenty keys. $11 l$ of the missing letters on the keyboard are sectured by combining certain other letters. These combinations form what is called a corle, and it comprises the entire brain work in connection with the machine. The code is so small-there are only eight combinations for letters and ten for figures-that it can be memorized in a couple of hours. It has been figured, however, that the average boy or girl, just out of school, can memorize it and read fluently in a week or two any matter that may be written on the machine.

The keys are built to fit the fingers. and as each finger has lut two keys to operate, the keyboard is always under immediate control. At the top of the machine is a bar, which may be struck in comjunction with the top row of letters and with any finger. This is called the figure lar and prints an asterisk in the centre of the piece of paper on which the writing is done. The corle tells that whenever any of the top row of letters
are printed on the same line with the asterisk, they become figures instead of letters.

Another interesting feature of the machine is the rewinder, which atomatically rewinds the paper as fast as it leaves the keys. The power generatel by striking the keys, or any set of keys, is also the power that operates the rewinder. The paper is wound upon a spool, which is removable for the jurpose of placing in the copy holder. The copy holder is a separate contrivance designed to facilitate the transcription of notes. By pressing a key on one side of the copy holder the paper is fed forward page loy page, so to speak, as fast as may be lesired.

In business offices where speed is an essential factor the dictating machine should result in a great saving of time. One person can transcribe while another
is taking dictation, thus having mail ready for the dictator to sign almost as fast as the dictation is finished. It has been figured that four operators on the dictating machine can do the work of five in shorthand-a clear saving of twenty per cent. And time is money. Consider what this would mean in offices Where from twenty to a hunlred, and sometimes even as many as three hundred stenographers are employed.

The dictating machine should also be the means of reducing the cost of tuition to students of shorthand very materially. Probably a quarter of a million of new students are turned out by the shorthand schools of this country each year. As the time required to learn to use the dictating machine should not exceed two weeks, while a course in shorthand may run anywhere from as many months to a year-well, figure it out for yourself.

MOVING-PICTURE PEOPLE TO TALK

HEREAFTER the phonographic dises of popular songs will be accompanier loy picture-dises to illustrate them, when the device of a California inventor is placed on the market. The song illustrator is a very ingenious device which can be attached to an ordinary talking machine and its principles may be briefly explained as follows: a dise abont the size of a song record contains sixteen lantern slides which are set in small circular openings near the circumference. This picture-tise is allousted so that the motor of the phonograpll causes it to rewolve, a comple of inches or so at a time, stopping for a brief interval as cach picture is bronght hefore the lens. The lens and light which are designeal on the principle of the sterepticon, can le adjusted to the ordinary type of horn, and electricity, gats or kerosanc may be useal to project the pic-

Talking Macmene Which Will Accompany Moving Pictures.
ture upon the screen. The latter is a hoop of about 16 -inch diameter over which a piece of thin, white cloth is drawn tant. It is attached to the flare of the horn by an adjustable bracket so that the screen hangs in front of the large opening.

The machine shown in the accompanying illustration is equipped with a 16 candle-power electric light and is designed for parlor entertaimment, but by using a more powerful light the pictures can be projected on a much larger screen at a distance, thus serving for use in a hall or autlitorium. By using a larger song-lise, fifty or more slides can be set at the circumference, and it would serve for advertising purposes. This ingenions device is the invention of a cleck in a Los Angeles music store, Mr. Harry Clubb, who las spent two years in perfecting his invention.

AUTO COMPETES WITH RAILROAD

B y
LEONARD McKEE

THE West is supposed to look to the East for new ideas, but occasionally the coldly practical minds of Westerners evolve an idea far ahead of what is considered within the range of possibilities to the Eastern minds. For instance, five years ago, the East dit] not consider the attomobile a practical utility, yet away down in the Southwest a little. grey-eyed man sank all of his available funds in machines and established an auto route to compete with one of the greatest railroad systems on earth. His line was a success and now he not only carries passengers but holds the mail contract as well.

It was in the summer of 1905 when a doctor brought the first auto into the Pecos Valley. At Roswell, a hotel man, J. IV. Stockard, became interested in the possibilities of the machines and bought one. After rumning it around some, he conceived the idea of an auto line between Roswell and Torrance, New Mexico. At that time, in order to get from Albuquerque to Roswell, you had to go north to Trinidad, Colorado, then to Amarilla, Texas, and there you could get a train into Roswell. But by driving overland to Torrance, a hyundred and five miles, you could male far better connections. Stockard figured he could make money with a regular auto between the two points, Roswell and Torrance. Instead of taking the regular wagon road he set ont one day with a compass and a camping outfit and staked a new path across the rolling
prairie. Along this path he scraped two bare streaks, and that completed his road.

From the beginning the line was a success. Traveling people saved both money and time as well as having one of the oddest trips to be hat in this country. Nine hours were consumed in making the hundred mile run and the machines never broke down. Finally an agitation was started for the ronte to carry the mail. It took as long for a letter to go to Kansas City as for one to go to Albuquerque, and the daily papers were two days coming through. The railroad naturally opposed the move, but in the fall of 1905 the mail contract was taken from the Santa Fe and given to the Roswell Auto Company. As the line connected at Torrance with the Rock Island and the Santa Fe Central this brought the mail from the East as well as from the West.

In July, 1910, the Santa Fe finished

At the Halfwaf House, Where Nfw Drivfr and Car Enter for THE RACE AGAINST STEAM.
their great lielen Cutoff between Belen and Clovis, and to facilitate hamelling mail the ronte was changed to Vangho where the Santa Fe crosses the Rock Island. The distance was about the same but Stockard had to build an entirely new road. This was easy, for by this time his inventive mind hat evolved a patent road drag which broke, smoothed and rolled a new road all in one operation.

The cars which were bought when the line started were two-cylinder chain-drive cars of abont twenty horse power, and were used continnously on the line till this fall when three new cars of the same make but far more powerful, four cylinder, and carrying seven passengers were bought and pot into operation. The old cars had each run a little over 130.000 miles on the line, and are still in use around Roswell, one being the "ambulance" car at the garage.

With the change to Vanghn came an increase in the amonnt of mail, in fact so great a duantity had to be carried as to necessitate the use of an extra car on many occasions. When no extra was run there was no room for passengers. So Stockard retired to think and in due course the "dingle" wagon was built. This is a little rubber-tired canvas covered wagon which is hitched to the lack of the motor car with a patent connection (to make it track) and in which the mail and baggage is carrienl. The big machines have no trouble hauling this car when it carries un' to a thousand pounds of mail, and can easily make the whole trip on the high gear.

As there is something like $\$ 9,000.00$ a year paid for the hauling of the mail, the railroad again tried to get the contract which expired a short while back.

One of the Spechal Auto Bringes in the lifsert.

They can make the trip between Vaughn and Koswell in nine hours if nceessary, and said so. Stockard said he conld beat nine hours so the Government did a little figuring and called on him to make the trip in five hours flat, if he wanted the new contract. He ran one of the cars through and set four and a half hours as the new schedule time. This means an average of between twentyfive and thirty miles an hour, counting out the time necessarily consumed in the slow driving in town and on bad places. However, the cars have no trouble making it though it is hard on the drivers as the strain is so constant. The automail driver cannot loll back occasionally as can his brother in the en-gine-cab, for one second's relaxation might mean a bad "smash." So the drivers and cars are changed at a lonely ranch in the midille of the desert, thus each driver makes the romed trip every three days. This plan too, prevents any possibility of a passenger having to "lay out" all night in case of accident for if a car becomes overdue at any point on the line the reserve car goes ont to get it. No passenger has ever had to lay ont, but there have been uccasions when the mail could not get through on account of the deep snow. A storm which tics 11] the auto line also blocks the railroal and often a storm which blocks the railruad does not bother the autos moln for cars are rumning lack and forth all the time and the road is kept fairly clear.
ln the narrow washes or "arroyos" the snow will occasionally pile up and then a big home made car called the "Yellow Kid" is used to buck the drifts till a way is broken throngh. Last winter one of the drivers rammed the Kid into a drift and it took two weeks to pull it out.

HOW THE CONCRETE IS SET.
I'he south entrance to the diversion tunnel of the great irrigation project in southern Idabo.

IDAHO’S HUGE "MAGIC DAM"

B y

DAY ALLEN WILLEY

PAST volcanic eruptions have resulted in a very large area of southern Idaho being covered with a deposit of what is known as volcanic ash. This material is known for its richness when properly irrigated, as is shown in the Hood River valley in Oregon, lying between the extinct volcanoes of Mount Baker and Mount Hood. Here orchards produce some of the finest fruit grown in America, especially apples.

The portion of Idaho covered with volcanic ash caused plans to be considered with a view to irrigating a part of it from what are known as the Bigwood River and Littlewood River which rise in the ranges of the Smoke and Sawtooth Mountains. The water shed serving these rivers is estimated as sufficient to irrigate fully 150,000 acres which are
located in four sections of the state, the largest tract aggregating 55,000 acres.

To conserve the water necessary to insure permanent and adequate irrigation it was necessary to form a barrier across a gorge through which the main river flows. The formation at this point is of such a character that it would be impossible to crect a masonry dam. The distance from the nearest railway transportation, twenty-five miles, also entered into the problem. The natural course of the river is over a bottom which is composed of sand, some clay and strewn with bolders and rock fragments which have fallen from the canyon sides, and have been washed down by flond currents. The depth of this material has been found to be as great as sixty feet lying above the foundation of hard rock. On each side of the canyon the forma-

A PORTION OF THE EMBANKMENT.
The fill and the intake tower serving the diversion canal are here shown.
tions are largely granite, but on the west side this deposit is covered with a mass of loose material, such as volcanic ash, to varying depths. By damming the gorge, this would be under water.

An examination of the proposed site and surroundings convinced the engineers that the only practical method of creating a reservoir was to make an earth fill embankment protected at each end with a reinforcement of rock, also
auxiliary work to prevent leakage or undermining at the bottom or where the ends of the embankment were set into the canyon sides. The varying volume of water in the river and the great difference in the current at flood height were factors in the problem. One of the mountain water courses nä̈ng a channel of rapid descent, and as stated carrying down yearly much debris in the flood season, the flow of the Bigwood as meas-

GENERAL VIEW OF THE BIGHOOD EMBANKMENT, LOOKING UPSTREAM.
The south and the north enclosures, the earth and rock formation. the rock-filled toes. and the enormous arra filled with earth are shown. At the left can be seen the rock deposits used in making a part of the fill.
ured for a series of years at the site of the dam ranges from two hundred cubic feet per second in the dry season to 6,000 cubic feet in Mlay and June, when it is filled with the waters from the melting snow of the momitains. The work must be strong enough to resist the enormous force of the flood currents also planned to divert the surplus water in an emergency and thus aid in relieving the pressure.

This is why the embankment forming the reservoir, when completed will be by far the largest yet planned in this country and the greatest in the world for restraining and conserving a river. The figures give an ildea of its dimensions. At the center it is no less than 789 feet in thickness, rising to a maximum height of 140 feet above the natural bottom of the river, while the length of the main dam is 623 feet. To this, however, is added an earth dike 2119 feet long extending from the west side, forming a barrier to hold back the overflow of the flood where it has but little current. Simply speaking. the work is an enormous fill. Compared with the great Roosevelt dam its base is nearly five times as great in width. It has what might
be called a "back bone" oi steel but this is the only material in it that is not rock, sand, gravel and ordinary earth.

In creating the "Magric Dam," as it has been called, some very interesting preliminary work had to be performed. The engineers found they could economize time, labor and material by first preparing the sides of the gorge where they joined the barrier. Chambers were dug into each side to a distance of forty feet, all of the loose material such as sand, loose stone and fissured rock being cleared away, so that the ends of the dam would rest against the solid rock. A curious feature of this work was that the material removed was used for building up the "toes" of the two barriers which inclose the embankment-known as the up stream and down stream dams. Much of the composition of these dams was taken from the excavation in the canyon sides and the balance needed from quarries. The type of the dams is the rock fill and they were constructed from each side by dumping the rock and finer "spoil" from cars on tram roads reaching to the excavations. Portable derricks placed in position the larger rocks. By the plan an opening was left

THE EXCAVATION WORK IN THE HILLSIDE. WHERE. LATER. ROCK WAS SET INTO ROCK. View of the gorge at the dam site.

THE CONCRETE APPROACHES TO THE NORTH PORTAL OF THE DIVERSION TUNNEL, UNDER CONSTRUC゙TION.
for the river channel and the work was but slightly interfered with during high water. In July, 1909, the dams were so far advanced that advantage was taken of the low stage of the river to close them.

The first work done on the project, however, was the buiking of the diversion tumnel, cut through the west wall of the gorge, a distance of 591 fect, and lined with concrete. This tumel is large enongh to convey half of the river flow at floorl and was built first in order to divert the river current at high water and minimize the pressure on the uncompleted works. It will be utilized permanently to serve the irrigating system. The mothod of receiving and distributing the water is by means of an intake tower. This is composed of concrete, is one hundred and thirty-seven feet above the foundation of the dam, and is designed in actagon form, to offer the least resistance to water pressure. The water from the reservoir enters the tower through several openings to minimize the pressure within, and is thus carried into the tumel. The water reaches the tumnel through two water gates, five fect in eliameter, which are operated by hand. This minue water distribution is connected with the embankment by a steel bridge of two spans each one humdred and fifty-threc fect in length. When the engineers were ready to close the dams, this tumel carried away most of the
river flow and the Bigwoorl was barred in July, 1909, as stated.

With the ends of the embankment completes the river chamel between them became a pond which drained muder the down stream barrier as an aperture had been made for letting it escape. Operations were now legun in bnilding the "back bone" already referred to. A trench thirty fect wide and ten feet deep was dug along the axis of the embankment connceting with the excavations made in the side walls of the gorge. Into the trench for its entire length, was driven a row of steel shect piling, down to solid rock, the top of the piling extending to a height of scveral feet above the top of the trench and ten feet upstream from the axis. This work was done to prevent any possible seepage of water through the embanknents and is also intended as a reinforcement to the earth work.

The system employed is notable for its conomy, and capacity, contrasted with what it accomplishes. The material is readily taken out by steam shovels moving on tracks. Such is their capacity that the shovels excavate 90,000 cubic yards a month with their autmmatic filling and emptying buckets. The spoil is dumped by the buckets into tram cars on railway tracks rumning to the material pits. then hather to the edge of the fill where it is to be deposited or at some pint up stream from the place it is to fill.

Then it is forced into the embankment by hydraulic jets-literally washed into position as the gold of the placer mines is extracted by the strean of water. One advantage of this method is that the filling is done more compactly and firmly than it could be formed by throwing in the material and grading it with the shovel or otherwise. As fast as the dump cars are emptied through their hopper bottoms, a stream of water is turned on the pile from the nearest pipe comnection thus forcing it into the fill without the necessity of any human labor in grading or distribution. The drainage is such that the water leaves the newly made formation in a few hours.

As to the formation of the dans or borders of the work, the down stream structure was composed of large rock on the face, its inter slope being of smaller material workerl into the crevices between the rock. In making the upstream face the finer filling material forms the exterior, the rock work thus being protected from the eldies and currents, and not directly exposed to the river. Thins in flood season the currents and eddies cannot work into the filling between the rocks beneath. In addition to the diversion mentioned, further protection against flood currents is an emergency spillway on the embankment. This is to be four loundred feet long and extend to a depth of four feet below the crest. A concrete weir has also been constructed, 1,600 feet in length to carry away surplus water. These works were only built after studying the river stages for a period of years and getting the depth of

In Flood Timf.
Looking northward, toward the dam, showing the rockfilled toes.

Bfginning of Work Upon the Tower for Recfiv ing and Distributing the Contfnes of THE RESERVOIR.
the river at the highest point recorded by instruments. In all about six hundred miles of distributing canal reaching the part of Idaho described, will be served ly this reservoir which will cover an area of 3,300 acres.

INVENTOR FAWKES WITH HIS FAMILY in THE "AERIAL TROLLEY."

AN AERIAL TROLLEY

By

CHARLES ELDERS

Aaerial trolley car, driven by a propeller and with a carrying capacity of fifty-six passengers, is in actual operation on a short stretch of track in one of the suburbs of Los Angeles, Califormia. It is the invention of $\mathrm{J} . \mathrm{IV}$. Fawkes, who has made a fortune from varions jatents.

The car has a length of fifty fect, is six feet wide and seven-and-a-half feet high. It is of a torpedo or cigar shape. with a propeller at one end, and is built of angle steel and aluminum.

It is suspended on an overliead rail of irm, three-and-a-half inches broad, and this is scientifically trussed with iron rods which are kept tant by a system of turn buckles. Trolleys above and below hold the car firmly to the rail. The track is suspended from twelve-inch wooden posts with iron bars, and these posts rest
on a firm foundation in the earth and are securely braced.

It is proposed to construct a double track system, one on each side of the central poles, so as to equalize the pull in both directions.

Probably the most remarkable feature of this acrial trolley is the propeller which drives it along the track. It is a radical departure from the type of propeller in use on aeroplanes, having two huge fan-shaped blades, which, the inventor clams, add greatly to the force of the thrust. The construction of the fanshaped blates is unique. They are of sheet iron, supported by frame work of seamless steel tubing. Each of these tules is welifed into a disk of aluminum. an inch in thickness and six inches $1 n$ diameter, and the driving shaft runs through this series of fifteen aluminum lisks like a core.

A FUll-Length view of the car.

The propcher has a diameter of six feet and is driven by a twenty-six horsepower automobile engine. It is estimated that the engine can drive the propeller at the rate of 1,500 revolutions per minute and by actual test it has produced one thousand revolutions a minute. Although the one-hundred-and-fifty-foot track has made it impossible to test the car for speed, it is believed it will be capable of one hundred miles an hour and as work is progressing on a large circular track the speed capacity of the new invention will soon be known.

By an ingenious device for raising and lowering the car, the inventor expects to take on passengers or freight from any level, thus doing away with the necessity of elevated stations. He claims that there are many advantages in this system of transportation. It wouk! do away with grade crossings, as the cars could run through the country fifteen of twenty feet above the ground. If used in the cities, it would not disfigure the streets as does an ordinary elevated roarl ; in fact, its appearance wonld not differ greatly from the ordinary trolley poles and wires and would not shut out sunlight nor drop oil or clinkers on the street, as do elevated steam roads.

The danger from collisions would be minimized, and yet it would be possible to attain greater speed than on an ordinary surface road. As the inventor's theory is, that the great momentum would lessen the weight of the car as it flew through space, a system of tilting planes under the car is arranged for. These planes would be adjusted by the
engineer so as to get the benefit of the lifting power of the atmosphere, like the planes of an air craft.

It is estimated that this system can be operated very comomically and that its construction cost would be low, about $\$ 2,000$ per mile to build while the cars could be built for about $\$ 1.500$ each.

When completed, the car will have a propeller at each end and will be furnished with a removable cover or sheaf of aluminum, with celluloid windows. In experimental runs, about forty poople have been carried at one time without any accident. The carrying capacity is estimated at ten tons.

It has been suggested that the aerial trolley be thoroughly tried out at some pleasure resort, and with the practical knowledge thus gained, it coull be perfected for transportation purposes on an extensive scale.

A View of the Propeller in Detail

THE GREAT OLIVE ORCHARD AT SYLMAR. CALIFORNIA.
Over $15(1,0(x)$ trees grow on $2 .(x)$ acres.

WORLD'S LARGEST OLIVE ORCHARD

By

J. MAYNE BALTIMORE

CALIFORNIA boasts of possessing the largest olive groves in all the world, and this immense property belongs to the Los Angeles Olive Growers' Association whose headquarters are located in Los Angeles.

One so associates the growth of the olive with the south of Europe and Oriental lands, that it comes as a curious surprise to find the greatest olive grove in the workl is located at Sylmar in the Golden State.

Out in the San Fernando Valley, twenty-three miles north from las ingeles, stretching wer a broad expanse at the base of the towering Sierra Madre

Mountains, is the famous Sylmar Olive Ranch, comprising 2.000 acres, planted to over 150.000 trees. This beatiful little valley is sheltered by the lofty range-serving as a climate barrier, and also as a picturesque background.

The Sicily olive trees obtain the height that elms usually do in England, and there are many quite one hundred feet high, and measuring twenty feet in circumference at the base. Ilowever, the trees at the Symar grove do not present such formidable dimensions and the vast groves of the Los Angeles Olive Growers' Association, throngh scientific proming and careful cultivation, are of the convenient and uniform height of about
twenty fect. Thus science makes convenient the harvesting of the olives.

The olives are plucked at the Sylmar groves late in the summer and early in the fall months-weeks being required to complete the work of harvesting. The gathering is done in a very systematic manner-the many gangs of pickers being under the personal supervision of busses-and so the work progresses rapidly.

Much care is olserved in gathering the fruit from which the oil is to be extracted. A canvas is placed beneath a tree and with two pickers to a tree, one mounted on a ladder, and one standing on the ground, the fruit is stripped from the branches, being allowed to drop from the hands of the piekers to the canvas.

In boxes the olives are carried to the factory, and, after being weighed and run through a fanning machine, to free them from leaves and dust that are always necessarily present, they are dumped into crushers where huge wheels
quickly reduce the fruit to a purple mass.

The pulp thus whained is next subjected to the power of hydranlic presses. l'assing throngh the canvas-cosered layers of pulp, the oil, mixerl with the water of the olives, runs down from the press in dark-colored, shuggish streams; the water and sediment sette, leaving the turbid oil to be drawn off and filtered through cotton and gravel, after which it is turned into glass-lined cement tanks. where it is left to settle and mature.

A final filtering leaves the oil clear and brilliant for bottling. Within two months from the time the olives are gathered, the oil extracted therefrom is fit for table use ; however, the oil improves, like wine, with age, and may be kept for almost any reasonable length of time, if hermetically sealed and stored in a very cool place.

From three hundred to five hundred gallons of pure olive oil, per day, are extracted at the great Sylmar Ranch factory during the active harvest season.

INSIDE THE FACTORI WHERE THE OLIVE OIL IS MADE. SHOWING THE M.ACHINERY, PRESSES. ETC.

ANOTHER VHEW OF THE LARGEST OLIVE ORCHARD IN THE WORLD.
The oil and preserving factory mav be seen in the distance.

As to irrigation, these immense San Fernando Valley groves receive no other irrigation than the winter rains since they were planted some years ago. The soil of the ranch is composed of the wash of the Sierra Mladres, and is of exhaustless richmess and fertility. Evidently the
olive trees are not thirsty souls, as, during some seasons, rains do not fall once in three months. Yet the thrifty condition of the trees and the yield of fruit are not noticeably affected by dry weather. The climatic and soil conditions of San Fernando Valley are peculiarly favorable to success of the olive industry.

San Fernando is the center of the great olive industry of California, though there are many large olive orchards in other sections of the state. There are the oldest olive trees in California, having been planted by the Spanish padres more than a century agro.

The olive industry has been, and is constantly increasing in California since its first introduction loy the carly Spanish mission fathers: and the olive culture can never be overdone in that state since the olive can be produced only in central and southern Cali-

Olive Trel: Laden with Fruit. Showing a l'ickfr at Work.
fornia, New Mexico and Arizona, with profitable success.

The olive wood is also very highly prized by cabinet workers as the grain is exceedingly fine and hard and susceptible of receiving an elegant finish.

Italian olive orchardists look upon an olive ranch as a jerpetual source of wealth, as the older the trees grow, the greater bearers they become. The trees are supposed to attain a great age-as high as 4,000 years. In the sacred
groves of the Mount of Olives in the Holy Land, near Jerusalem, there are olive trees still flourishing that scientists declare are not less than 3,000 years old.

The Los Angeles Olive Growers' Association have found their investment a decidedly profitable one-constantly increasing. The quality of the output of the Sylmar groves are equal to any in the Odd World, and have won the grand prizes at more than one world's exposition.

HOUSE MOVED IN TWO PIECES

OYE of the most singular ideas ever involved in the moving of houses was recently put into practice in West Somerville, Massachusetts, where a large three-story dwelling was cut in two and moved from an enininence ten feet above the street level and set up a mile distant from its former resting place. It was found impossible to move the house in its entirety. The cut was made squarely through the center and as the house was built in a very symmetrical manner each part was an exact counterpart of the other.

After bracing the house, first one section and then another was moved to the new location with jackscrews and rollers. On bringing the two reunited divorced portions together they dovetailed into such a perfect fit that the separating cut was impossible to discern. As each of the sections was 35 by 20 feet at the base and almost forty feet in height, they were liable to topple over. This was prevented by tearing down the chimneys and foundations and loading the first floor of each section to a considerable depth with brick.

Making Ready to Nove the Last Section to the New Location.

First Half of the "Sectionai." Hotise After Being Movel.

CHICKEN FARMING IN A NUTSHELL

B y

CHARLES DILLON

IIIS is the story of a wirl who made money from hens. It is not an advertising plot, although the girl's father is in the poultry business, but just thefacts showing What she did. how she dict it, and the figures to prove the result. Not every girl can (to so well but the example is wortli trying to emulate and ought to encourage some who have not been so successful.

In September last Niss Grace Kellerstrasse of Kansas City chose thirty prizewinning hens from her father's flocks and put them in a wire netted yard forty
by twenty-four fect, in the rear of the house. The yard was subdivifed into threc pens of ten hens and one cock each, the space allowed each family being forty by eight feet. At the north end of these yards, facing south, were the coops built with every regard to cconomy. Any man handy with tools could duplicate them with a few boards, nails, tar paper and muslin. The whole cost was less than thirty dollars, and they were far better at that than was required.

June twentieth was then fixed as the limit of the test. The chickens were fed three times a day on table scraps only, with occasionally a little hot meal mash in winter. In cold weather they had warm water morning and night and precautions were taken to sce that this water never froze over. This was regarded as an important point. The bottoms of the coops were kept filled with clean straw or hay, a pretext for much exercise on cold or stormy days.

A FINE BROOD THAT KEEP CLFAN AND HEAYTHY WTTH SUNSHINE AND GRAYEL.

Miss Kellerstrass's principal idea wals to promote the laying of fertile eages in cold weather and this was accomplished by means of the table scraps which contained bits of meat, and the warmth of the coops. In the summer chickens get hugs and other insects which are a stimulus to egre prorluction, but in the winter when this supply is cut off the meat, raw or cooked, is the best possible substitnte.

Now for the figures: In the test term Niss Kellerstrass's hens-thirty in mmo ber-laid $4,033 \mathrm{cggs}$, or about 140 cggs to the bird. Of these 1,02t were sold in. settings. In addition, 418 chickens were hatched from some remaining egss and soled. There were others but they were used on the farm and were not included in the record. Miss Kellerstrass reccived a fancy price for her settingsthirty dollars, or about two dollars an egg, with a total income from this source of $\$ 2,048$. The +18 chickens hatched under the lens and sold brought an average of five dollars apiece as pullets and cockerels. They were, of course, sold to fanciers. This netted Miss Ǩclerstrass another $\$ 2,090$. The total income was, thereforc, $\$+138$. From this sum the girl had to deduct ronghly $\$ 518$ for coops, yards, grain feet, advertising, shipping charges, etc., leaving a profit of $\$ 3,600$ from thirty hens in ten monthis.

But, says the amateur-and Miss Kellerstrass is an amateur, too-few could do so well. Very good. Consiler the eggs in another way. If produced by ordinary chickens in the fall, winter and spring the 4.033 eggs would have brought an average market price of thirty cents a dozen. At that figure the $3251 / 4$ dozens would have brought $\$ 100.571 / 2$. Suppose the producer hat sold only onehalf his cggs, or fifty dollars' worth, and had raised 500 chickens from the remaining two thousand cggs. Even the grcenest chicken man ought to rear that many to marketable agc. If sold at only thirty cents each-and you can't get them that cheaply-these chickens would have netted $\$ 150$, making a total profit of $\$ 200$ from chickens and eggs. And he would still have his original thirty hens and the surplus stock reserved from the latchings of late eggs. Also he would have his coops and other fixings. Count-

Counting Chickens After Thfy're Hatched.
ing $\$ 50$ off from the total receipts for feed and deterioration the earning capacity of a hen would still remain at about $\$ 5$ for ten months.

Almost everyone who owns a home with a back yard has the chicken fever at one time or another, or his wife or children have it. Many and many a family has tried it only to fail, but in every instance the failure has been proved to have been the inevitable result of $n o$ system or of carelessness, and either will kill pretty nearly any business arlventure. To these two irawbacks should be added ignorance. Two kinds of persons fail in the chicken business: The man who buys a few chickens at the corner grocery or gets a setting of ordinary eggs from some nondescript brood in the neighlorhood: and the city man with a little money and a suburban place. This last named man usually goes into the chicken business on a grand scale the first year, builds an expensive plant from designs taken from someone's manual. buys many expensive birds and high-priced eggs and at the end of the season has nothing except experience. He failed because lie knew nothing about chickens. He would fail as quickly in Wall Strcet if he knew as little about stocks or bonds.

Another thing: The average amateur doesn't know that fresh store eggs are

A Cummon shnsf. Samitary, and Chfap Chicken House.

It won't cost much to make the yard tight and it will save scenes witl the neighbors.

Be certain you know the source of the eggs you buy. Don't buy cheap eggs; you'll regret it. Any grood setting will cost from five dollars up to twenty or thirty dollars-usually the five dollar kind are good enough : buy a good brood hen or a pen of the best chickens you can afford.

Feed your chickens three
seldom gond for hatching purposes. People in the business of egg producing for market do not keep roosters: the chanticler isn't needed in that hennery: just as many eggs are laid without his presence and they are better eggs-for market purposes.

It will pay, too, to remember that people to not send hens to market nowadays that are any good as layers; so don't buy such poultry expecting to start a chicken ranch. If you feel that life will be a blank mnless you have hens and raise chicks and good eggs and get into the game generally put down these fundanental rules:

Clean out the old shed or barn and make it vermin-proof with tin, stone or cement.

Fence the yard with chicken netting.
times a day, a well-ordered ration and change it from time to time. Keep clean, fresh water always at hand. Be sure the food is clean. Keep the yard dry and drained. Dampness causes nine-ty-nine per cent of all chicken maladies.

Give your chickens a chance to dust for mites and lice. Mix in a box abont one-half its capacity of road dust and six otuces of powdered sulphur and six ounces of maphithaline. If your chickens are white substitute flour for road dust. Keep this box where it will be dry and where the chickens can always use it.

Give the chickens plenty of air and exercise. Never shut them up in a tight barn. Cut windows and cover them with netting. Keep the chicks warm and away from dampness. Make all chickens scratch for their food.

ELECTRIC A UTOAS
 WIRELESS STATION

By CHARLES GLEASON

Ainteresting experiment in wireless telegraphy was tried recently in Los Angeles when an electric automobile was used to supply power for Hashing messages from a portable wireless station. The little car was run up the steep grade of Lookout Monntain in the outskirts of the city, and a thirty-foot steel mast was speedily erected and rigged with the necessary guys and wires. Then the operator took his place at the keyboard and sent out a call which brought responses from amateur stations in various parts of the city and from Point Loma station more than one hundred miles away. These answers were disregarded, however, as operator Ryan was trying for the United Wireless station in the center of the city, which answered within a short time. Then the following message directed to Mayor Alexander of Los Angeles was flashed: "Have pleasure of sending you the first message ever transmitted by portable wireless station using electrie automobile via United Wireless from Lookont Monntain."

Getting the Apphratus Ready.

This feat is of more than passing interest as it demonstrated the possibility of rapid communication by wireless from an electric motor equipped with portable mast, etc.

The experiment was planned and carried out by Mr. W. B. ドerrick, an electric engineer, who wished to clinch his argument that your could run most anywhere in an electric car and still keep in touch with hone by wircless.

SENDLNG THE MFSS.IGE.

Thf Inewer Recpived.

TWO UNSPRAYED ELBERTA PEACHES AFFECTED WITH SCAB.
The black spots and cracks have been produced by the disease.

CURBING THE DREADED PEACH ROT

By

R. A. SANBORN

MR. J. H. HALE of Georgia and Connecticut, the greatest grower of peaches in the world. commanding over 1.000 acres of orchard, pail his respects to the brown-rot in the following terms: "The brownrot is so great a factor for evil in the raising of peaches for the market that in a few years more it would have accomplished the complete failure of my orchard plant in the state of Georgia. We can master or control every other cnemy of the peach by up-to-date methods and precautions but until now we have had no weapon that wonk touch the brown-rot fungus." And then he continued to say that, "The use of the self-boiled lime-sulphur spray, as a foliage treatment for the peach-tree, recently discovered by Mr. W. M. Scott of the U. S. Department of Agriculture, alone would swing the future status of my fortune from failure to success."

In the spring of 1909 Mr . Hale offered the orchart of the I Iale Georgia Orchard Co. at liort Valley, Ga., as a demonstration and proving ground of this spray
misture of the usefulness of which Mr. Scott was then pretty well convinced. Experiments on small plats had been made in 1907 and 1908 . While the great plant of the Hale company had had the best of care and was otherwise in good condition, it had in recent years become so infected with brown-rot that in 1908 the crop was largely lost.

Two other enemies of the peach were allied with the rot to encompass the ruin of the orchard, namely, the scab and the phum curculio. The former is also a fungus but of not so malignant a type as the brown-rot. It serves as an accomplice to the latter by cracking and spotting the fruit thus giving the deadlier fungus an easy entrance. The curculio beetle damages the peach by puncturing the fruit for the purpose of laying its eggs within the skin. It is a troublesome creature but its rate of speed as a worker of lestruction is to that of the brownrot as a slow-match to a prairie fire. lts worst crime is in making the punctures that give the rot free entree.

Mr. Scott and his chief assistant. Mr. Willard Ayres. conducted the spraying
in large blocks of different warieties comprising over 5,000 trees, while Mr. Hale's force sprayed abont 7,000 trees in their orchard mader the supervision of the two scientists. Plats of trees were selected, trees counted and sprayed while next a sprayed plat another was left tumsprayed. Two applications of spray were made, one about a month after the petals dropped and again three weeks before the fruit ripened. At picking time the entire crop including dropped fruit was counted on five average trees in each plat. On the sprayed plat it was fomd that 17% was affected with brown-rot, and that in 93% of the rotting fruit infection had been admitted by curculio punctures. The scab was, from the commercial point of view completely controllecl. On the unsprayed plat 49.5% of the fruit
was affected with rot, and 91.5 with scab. Sle, of the rot infection had happener through curculio punctures. The figures themselves were very satisfactory to Mr. Hale but there was another cause for gratification in the increased size and color and generally better metchantable condition of the sprayed fruit. The commercial restults of the spraying were determined by counting the marketable fruit on 500 trees from each plat. The sprayed plat yieleled 170 crates, the unsprayed but 80 . Thus was nearly a quietus given to the brown-rot. The curculio was the factor that held the door open.

To offset curculio injury some experiments were made in cooperation with Mr. A. L. Quaintance of the Burean of Entomology of first spraying with

DIFFERENCE IN BROWN-ROT DEVELOPED IN SPRAYED AND UNSPRAYED PEACIIES.
Two crates of Elberta peaches after six days in refrigerator car and a day in express car. The fruit on the left had been sprayed: that on the right had not.

Gum Exudationg on sonng Peachfs from Curctho PlNCTURES.
It is these wounds that give entrance to the brown rot.
arscmate of lead just as the calyces were sherding, and again in about three weeks with self-boiled lime-sulphur phus lead arsenate. The success was brilliant. Only 4.5% of the fruit showed brownrot, 6.5% had slight traces of scab, amd about 27.5% were curculio punctured. On the unsprayed plat 63% was rotted. 99\%; scabby, and $9 \frac{1}{7} \%$ was wormy from curcuio. The sprayed block yielded 327 crates of first class fruit while the unsprayed block yielded but 33 crates, all of which were poor in cuality. In the New York market the sprayed fruit brought fifty cents more per crate than the minsprayed, and all of it was sold before the other, showing the impression made upon the buyers by the difference in the appearance of the two classes.

The principal reason why, until Mr. Scott's discovery, the disease had enjoyed immmity was that, so far as was known, there existel no spray that could be safely applied to the peach tree while in full leaf. All the peach-grower could do toward controlling the fungus was to gather the dropped infected fruit and burn them. As it was quite impossible to do this cleanly and as a few of these "mummies" overlooked was enough to infect ant orchard, the langh was generally with the "mummy."

The self-builed lime stiphour spray in which the mixture was boiled by the slaking of the lime was a discredited spray for San Jose scale treatment. Mr. Scott after trying about all the combinations of lime and smplur finally reached the conclusion that the excess of the
caustic sulplides in the boiled mixture caused the scalding of the peach leaf and lie turned as a last resort to the expedient of self-boiling as bringing into solution a minimum percentage of sulphur.

The theory about the action of this new spray is that the free lime serves as a matrix to hold all the other elements together, that there are enough of the sticky sulphides to bind the solid materials to the fruit, branches and leaves, and that the finely divided sulphur deals personally and correctively with the bad fungus.

While brown-rot does its worst in humid regions such as the early peach belt of Georgia, it is to be feared in every peach section of the country, with the exception of the arid irrigated localities of the west. As a general thing the disease does not fall to work until the fruit is nearly mature.

A typical and singularly complete case of rot destruction occurred near Dublin, Georgia, a few years ago. It was the year of the first full crop the orchard had borne and all went fairly until harvest time. Figuring on his masses of large handsome fruit the owner ordered crates for 40 carloads. Then came days of muggy air and drizzling rain, and with them a spontaneous combustion of brown-rot. Out sprang the brown spots wearing their beards of white sporebearing threads. The pickers were hurried to cull the best of what was left but it was too late. The disease continued to develop in transit and an entire crop

Aduit Curculfo beftles on a Young preloh.
that was easily worth $\$ 20,000$ was a trotal failure and the owner was in delt. The carcer of this disease had practically doomed the early peach belt of Georgiat to extinction when Mr. Scott intervened.

The annual loss to the peach crop due to the ravages of brown-rot is estimated at $\$ 5,000,000$. The normal output of the state of Georgia is not less than 5.000 carloarls, worth about $\$ 2,500,000$. lı1 1900 the brown-rot burned up between $\$ 500,000$ and $\$ 700,000$ of the peach profits of that state. A conservative estimate of the amnual damage in Georgia in recent years is $\$ 1,000,000$. It is good to know that the peach grower now has the whip-hand of so expensive a disease.

houng Plums Attacken by Curculio. Showng crescent shaped egg-laying punctures

CHEMICAL WATCHMAN

TO a bank eashier with a taste for chemistry is due the credit of a simple yet highly efficient cash protector and cracksman tamer. Several years ago Cashier George Clark of the Corona

Safe tiat Rlowfre Flef from in Treror.

State Bank, South Dakota, hit upon the idea that if he could place a bottle of some strong chemical between the onter and inner doors of the vault its fumes might retard the work of safe breakers or perhaps frighten them away. A quart bottle of formaldehyde was immediately given a position as a silent might watchman between the doors of the vault.

For about five years the "yegg doctor" kept umobtrusive guard. Finally early in November, 1910, the test came. A couple of professional cracksmen entered the town. Two charges of mitro-slycerine were used on Cashier Clark's safe that night. The first one did little damage but the second wrecked both the outer and imner doors, tore the latter from their hinges and threw them out into the vanlt and against the small safe and safety rleposit boxes. The "yeggmen" did not wait to wreck the imer safe, however, for at the same moment the "yegge cloctor" responded to a hurry call and the fumes of a full quart of formaldehycle filled the room. Choking and gasping, with tears streaming from their cyes, the criminals scrambled ont the way they had come in and left tracks down the peaceful country highway that fairly sizzled. For days after the explosion the fumes of formaldehyde were so strong that a persun could not breathe in the vault.

PUTTING LANDSCAPES UNDER GLASS

B y

WARREN H. MILLER

HOW do they reproduce the plants, the tree leaves and wild-flowers with suth marvelous exactitude?

We look at them in the muscum cases in wonder. Here are the familiar fields brought to your eye just as you recall them in life-myriads of grasses, dozens of daisies: every leaf, every petal and stamen as perfect as if living. One usually dismisses conjecture with the thought that, no doubt, they picked these things in the field, and preserved or petrified them just as they were by some mysterious process.

Here is the case of the duck hawk or peregrine falcon for instance. Yourmay recall it-a section of rock cliff nearly fills the case and sets off, as it were, the habitat of the falcon. In a cleft of the rock there is a tuft of grasses, and in the midst of it grows a fairy-like columbine in frll blossom. How did they get it there?

If they picked that delicate plant and dipped it in a preservative that petrified
it just as it grew that would be wonderful indeed. But the way they actually do it is still more wonderful. Every one of those flowers; every leaf; the stalk, and its branches-is the work of man's hand!

Think of the skill, the close observation of Nature, rerpuired to do this and yet not make an obvious imitation!

And yet, the basis of the process is simple enough. It is all done from life casts of the component parts. In the laboratory you will find large tables covered with boxes of various green shades of the finest thin sheet wax, rolls of fine oiled muslin de soic, and short lengths of cotton-wrapped steel wire. The simplest thing that the laboratory turns out is a leaf. Suppose that the group to be mounted requires for one of the "accessories" a branch of white oak. The first thing done is to secure representative specimens of white oak leaves of various ages, including buds. These are picked from the tree and brought into the laboratory:

The Curator's assistant takes modeling clay from a stand and makes an oblong dish of it slightly larger than the oak leaf. This he fills with wet plaster of I'aris and lays the leaf face downward, stem and all, on the wet plaster. It soon hardens and the leaf is stripped off, leaving a perfect impression on the plaster.

Now, a sheet of wax is selected, matching perfectly the color of the leaf, and is pressed down into the form. One, two, or more strands of the covered wire are then laid down the midrib and veins of the leaf, and a piece of the oiled muslin placed over it and kneaded down onto the was sheet in the form. A gentle heat is next applied, which fuses the whole together and makes the wax so plastic that it takes the impressions of every least vein and membrane of the leaf. The edges are trimmed with scissors and the axil of the stem moulded in was to fit the form. In the case of leaves
with serrate edges the monld itself is trimmed away sharp from the edges with a small gronge, so as to give a sharp, clear outline to the was leaf. The face side only is cast, as the oiled silk imitates the reverse of all leaves except a few requiring treatment on the under side.

The leaf is now complete, and any quantity of them can be turned ont from a single mould with great rapidity. If the underside is downy or fuzzy, fine chopped camel's hair is strewed on while it is hot and sticky. If the face of the leaf is glossy, a few drops of poppy oil produce the desirerl effect. If dull, talcum powder, of the proper shade of color, is sprayed on.

The colored leaves of autumn reguire a still further process. It would of course be hopeless to reproduce the endless shadings and coloring of Nature with anything so gross and coarse as a brush, so a process was invented to matcli Na ture's.

A (iROUF UF REAUTIFULLF MADE ORCHIDS.

Assuming that a silver maple leat, of which the prevailing antumn color is yellow, is to be made, the leaf is first cast in the proper shade of yellow wax. Then it goes to the painting roonl, where the delicate mottlings and colorings of the real leaf are copied with marvelous ficlelity by what is known as the air brush. This instrument is essentially an atomizer, connected by hose to a reservoir into which air is pumped by a small, hand air pump.

The cup of the atomizer is filled with the color to be used, and it is blown on in a fine spray. This spray can be modified from the veriest breath of color to heavy coarse stipplings, and the wonderful colorings of Nature are reprorluced by it with absolute accuracy and great speed.

The colors used are the ustual artists' tubes, diluted so as to make them atomize freely. All the artist's old friends are there excepting that great mainstay, the fat tube of cremmitz white.

This cannot be used as a dilutent and general modifier becanse the leaf colors must be transparent or clear. The addition of white immediately turns the mixture into what is technically known as "mud." All the lakes are barred for the reason that they are not permanent enough. Before a year passes, anything colored with a lake is several shades off the origina! hue. The madders are much used. Also cobalt blue, emerald green and many of the anilines.

Before leaving the subject of leaves, another question comes up. How about specimens picked on the Pacific Coast or elsewhere, when several weeks are required for shipment to the Museum? Of course, succulent plants must be cast fresh on the spot, but the majority of trees and shrub branches may be expressed east and put to soak in large

BraNCH OF Safal, U'sed tr Roosfvflt Elk fruvep.

Marshmallow MadF py Clevfr Hands,
a slender curved brown stalk. It looks hopeless to attempt to reproduce this delicate fairy thing with its five, incurving, red tines, cach capped with a yellow knob. If cast entire in a wasen bullet it would be horrible, leaden. To make it, each lole, which is virtually a petal tightly eurled, is opened out flat, and a cast taken of it. A thin white wax sheet is now worked into the mould and cut a sisteenth of an inch larger than size along one edge. A steel rod is prepared by pointing it to exactly fit inside one of the tines and the wax petal is then cursed around it as a form. The extra six-teenth-inch laps over and is burnished down with a smooth, warmed rod. The little knob at the end is worked up with the fingers. The five lobes are colored with the air brush, the stamens put in and the flower assembled complete around the stem. In most of the flowers there are so many colors that white was is usually selected as the color to form the parts with.

All the grasses, including the canes. are simple and easy to momnt. Nost of them are simply dried and then re-colored with the air lrush. If the leaf is broad, like the cat-tail, it is cast and made up from wax sheets. In large stemmed Hesly plants like the sagittaria water lilies- the ones with the flowers in a close hlue spike and spear-head leaves-the stems are cast from life and molten wax
poured around a stout steel wire. The leaf is made separately as described before and secured to the stem.

The preparation of tree and plant fruits presents a range of problens, varying in difficulty from the easily reproduced fruit of the pawpaw, to the well-nigh impossible catkin of the white willow. The laboratory is still wrestling with this latter, after many flat failures.

Reginning with the large. smooth fruit of the pawnaw-with which may also be classed the persimmon and wild plumthe first step is to beat out a flat ribbon of clay about an inch wide and mould it edgewise around the fruit, resembling the rings of Saturn. Thick plaster of Paris is poured over the fruit, the ring acting as a stop, and followed up with a paste of the plaster, moulding it with the hand as it sets. The clay is then peeled off, and any fins of plaster that may lave crept up under it are trimmed with a sharp knife.

This same process is repeaterl by dividing the remaining half of the fruit into two sections and plaster-monlling them one at a time, the final result being a three-piece mould around the fruit. It is then drilled at one end and poured full of wax, giving a cast of the pawpaw. which is forthwith colored to life with the air brush.

Any fruit treated this way must be first coated with beeswas thimed out in kerosene. While not thick enough to fill any detail, it still is greasy enough to part the plaster from the fruit.

A second method of preparing tree fruits is to actually preserve them by saturating with glycerine on the osmotic principle. Acorns, winged ash and maple reeds, and the tiny green flowerets that

Lfaf and l'ftal. Casts for Marshmallow.
are the blossoms of so many trees, are all treated in this way. Glycerine has a very strong affinity for water, thoush it must be first diluted with it to enter any vegetable tissuc. Besides this, the solution must be an insecticide and germproof, so formaldelyyde and arsenate are added. The acorn or maple seed is soaked in a bath of this solution. Gradually the fluid enters the pulpy interior, forcing the water from the cells, entirely replacing it with non-shrinkable, deliquescent glycerine. The seed will not hohl its color, turning brown in a few months, so the air brush is used to enlor it to match a green fruit.
Still another method, applicable to hard dry seeds like the chestnut and sweet-gum burrs, is to dry them out and recolor with the air brush. Many of the berries, sueh as the red sumach drupes, are also treated this way.

Hardest of all are the catkins. Being full of interstices, it is impossible to cast them in wax, they are too perishable for the glyeerine process, and, unless accommorlating enough to dry in slape like the eatkins of the birch fanily, the last resort is usually to make them laboriously by hand. And if, in addition to countless tiny berries, the catkin further adorns itself with fine downy fuzz, colored looth black and white, the ingenuity of the eurator is well-nigh overtaxed to reproduce Nature's landiwork.

To prevent branches and twigs from shriveling, there are large vats of glycerine and formaldelyde solution in the laboratory, in which they are put to soak. Heavy branches, and tree trunks with smooth sappy bark, are simply painterl with the same solution, as it is only

Osage Orange Cast in Mould Shown in Another Рhotografh.

Orchid in Parts and Assembled.
Six suparate casts were required for this flower.
neeessary to impregnate through the sap woorl.

The preparation of such a panorama as that of the bird life of the Arizona deserts, for instance. involves an immense deal of close Nature oloservation, study by life photographs, and skill in mounting the birds and plants. The expedition sent ont for this group consisted of two curators, a munseum artist, and some helpers hired on the spot. Camp was pitched near the Carnegie Laboratory, a short distance from Tucson, and the work begum of collecting specimens and photographing the birls in all comceivable postures of life action. The eameras were concealed in blinds near nests, and thus characteristic postures were photographed from which the birds would later be monnterl. The scientists then selected the most typical scene for the proposed groug), and decided what must be included and what left out. A strip of ground on which might be several desirable bushes holding nests, was marked off and photographed from different positions. Then every stick and stone in the strip was gathered up and color-sketches of all objects made on the spot. If a characteristic bush or eactus grew just outside the strip, but no goorl specimen on it, it was taken in place of non-essential plants. When the gronp was finallv complete, every last foot of it was packed up in sections and expressed in boxes to the Musemm-
ground, stones, sticks, plants, slırubs, and trees.

The nests were tied in place and packed tight with excelsior, and the trees sawed up and marked branch by branch. It made no difference which tree the nest happened to be on; that was the one the lird chose: that one must come up, root and branch, and be shipped to the Museum. finally, the artist sat him fown and painterl the large canvas panorama that forms the present background of the group, in the Nuseum.

Arrived at home the collection was monacked and made up according to the photographs. The cacti all had to be cast from plaster life moulds, first cutting off the clusters of thorns. That big prickly pear on the right of the group, for example, has all the ofd was (lrippings of a gemeration of laboratory work in its interior. The casts were then colored with the air brush and the clusters of thorns replaced. Some of the hard thorny bushes gave worlds of trouble as it was exceedingly difficult to drive out their sap with glycerine. The bush in the center of the group-the one with a nest on it-is still alive today and grows a few leaves every spring! This, though the branches lave been sawn in sections fastened with iron dowels. Its present roots are also iron dowels, driven into a block of wood in the bottom framing, but the bush does not seem to mind the loss of the real ones.

To secure a smooth curved surface for the canvas background, a light sturt frame is first built, and on it wire mesh is fastened for a furring. It is then plastered with hair-felt plaster bond, upon which is applied a smonth finish coat. much as in lath-andplaster work in house muilding. On this surface is sized canvas, giving a horizon around the scene, except at the window, through which the observer looks.

Mould of an (Osage Obange. A wirs difficult one to mak".

It is astonishing how much the canvas has to be retouched to match the actuality of the foregrombl. The effects of lights and shades on objects, as the artist sees them, are often glaringly at variance with the appearance of the real foreground, especially at the junction of canvas with reality. Of course the painting has to be worked over until the most fastidions eye can scarcely point out where they shade into each other.

A still further matter must be looked to, to secure the wonderful reproduction of the actual scene that these panoramas give. It is the effect of shadlows on the groups. The real objects in the foreground must have either no shadows at all, or else they must agree with those on the canvas. The former methorl has proved the best. The light is thrown directly down on the group by concealed reflectors which receive their light from the adjoining windows. $1 n$ some cases this is further reinforceal by ontside reflectors which throw in the light of the zenith.

The Musemm has at present twelve of these panoramas on exhibition in the Bird]lall. It is worthy of appreciative consideration to reflect that each one cost an expensive experlition by scientists and artists of the Musenm Staff, months of laboratory work in mounting the birds from photographs and preparing the accessions, so as to reproduce the actual plants and trees precisely as found. The expense of this work is all borne by a coterie of public-spirited private citizens of New York. The result of it all, is to take the observer into the heart of typical American wild scenery which he could never otherwise see, and to fill the study of wild birds with interest and instruction that never by any possible circumstance could be gotten from the otd-fashiomed stuffed bird on a varnished wooden pedestal.

LOGGED-OFF LAND IN THE STATE OF WASHINGTON.

WHAT SHALL WE DO WITH STUMP LANDS?

B y

FRED C. DAYTON

THE greatest problem that confronts the people of the Pa cific Coast states, is what to do with the vast areas of land left barren by the woodsman's ax and saw. Millions of acres of giant timber have been cut-over and the great stumps and tangles of underbrush left to menace standing timber through fire and to bar the way of the agriculturist.

In eighteen counties in the state of Washington, west of the Cascade Mountains there are $8,700,000$ acres of assessed land. Of this, $5.03+.000$ acres are covered with merchantable timber ; $+29,000$ acres are under cultivation ; and 2,352,000 acres have had the timber cut off and consist of what is called "logged-off" land. In Oregon the logged-off area is about equal to that in Washington. In British Columbia, on the Canadian side of the line, another million acres of logged-off
land lie iflle, of no use whatever to mankind.

The big lumber companies of the West have hewed and slashed ruthlessly into the virgin timber of the Northwest. The standing trees are of such huge size, that the average tree is cut ten or twelve feet above the ground, leaving an enormous stump from ten to sixteen feet in diameter. Only the long straight knotless trunk of the tree is used and the tangle of branches is left where it falls. No attempt is made by the timber hewers to remove anything from the land except the choicest timber. In fact so little do the lumber barons care for the land after they get the timber off, that in most cases they allow it to revert to the county for taxes.

The survey made last summer by Professor Landes, Dr. Benson, and Dr. Fry of the Washington State University and

TANGLE OF BRUSH AND STUMPS LEFT BY THE LOGGERS.
It certandy is a puzze to know wlat to do with this.

Prof. W. J. Mchiee, of the federal Department of Agriculture was to determine how best to utilize these vast logged-off areas. One of the most important lessons growing out of this investigation was that the cut-over lanls should be protected from fire. It is more important, aceording to these men, to keep the fire ont of these areas than out of the stanting timber.
On the logged-off lands the great accumulation of waste becomes dry and highly inflammable. In aldition, this land is heavily covered with moss, which by the expmone to the sun becomes like tinder. This waste, including the pitchloaded stmups, burns freely and with great heat. The thick moss quickly carries the flames to the nearby timber, as well as ignites the heavy rich mulch, with which the suil is corered, beneath the moss. This reluces the soil to a harren widderness. Thus all the constructive work of nature for ages reverts (t) the desert.

One lige lumber company in Washingtom has seen the folly of this enormons
waste and is now experimenting with a view to converting it into dollars. The spectacle of this concern taking up the dairy business and the production of prime beef is now engaging the attention of Western economists. The members of this company, on whom the final success or failure of the conservation idea is conceded to rest. announce that never since the conservation policies were first urged, has there been a departure of such vital bearing on the immediate future of the I'acific slope.

Two humlred and fifty aeres of this concern's logged-off land have been set aside for the experiment. This land has heen seeded to orchid grass and clover. Several carloads of young stock were turncel loose to graze as soon as the crop was well rooted. In a few weeks additional stuck will be added. The experiment so far is declared to be successful and of far more value than the timber wealth, will be the agriculture worth after the wroods have disappeared.
The fincest dairying comentry in the world eventually will be found where the

CUTTING TIIE VIRGIN TIMBER
Incalculable damase to the future for profit in the present.
timber now stands. Anything that will grow in the western climate will grow on logged-off lands.

But the success of the conservation movement depends largely on the owners of the vast timber tracts. In the last few years small land holders have demonstrated the value of these lands for agricultural purposes, but these few pioncers are scarcely a drop in the bucket when the enormous area of land is considered.

Dr. Rudolph S. Hoague is preparing to demonstrate the value of these lands by establishing a colony in Washington. Already the county in which this colony will be formed, has shipped 350 carloads of choice prumes this season. While not all this land is suitable for general cultivation, it is often ideal for fruit and poultry. The stumps often are left in
the ground and only the underbrush cleared away. In other cases the land is cleared away and luxuriant growths. of clover and grasses provide forage for cows to 'transform into milk. One man on twenty acres last year sold $\$ 3,000$ worth of prodlucts. He had six Jersey cows, ten young cattle, forty chickens and sold becf, veal, potatoes, apples, garden truck, cherries, plums, butter, cream, milk, eggs and poultry.

Thus it will be seen that the real conservation problem, in regard to the timber, does not rest entirely on leaving the trees standing, but on the ultimate utilization of the land. In the place of vast areas of blackened stumps, there should be seen waving fields of grasses, blossoming orchards, lowing herds, and flocks of well-kept poultry to delight the eye.

THE government reclamation service is putting through a very picturesque job by rather novel means on the Strawberry Valley Project, in Utah. It is an engineering problem, the most important feature of which is the boring of a tumnel four miles in length throngh a range of mountains, the boring being done with the help of electricity generated for the purpose by a stream.

In the Utah Valley, sixty miles south of Salt Lake City, are sixty thousand acres of land which need water to make them fruitful. This valley is separated from the Strawberry Valley by the lofty Wasatch Mountain range. On the other side of that range, in the Strawberry Valley, is the Strawberry River, which. to furnish the requisite water, is to be brought through the great rocky barrier by the tumnel aforementioned.

The Strawberry River now flows into the Colorado River, its waters thus finding their way eventually into the Gulf of

California. But, in obedience to the mighty power of engineering, it will be obliged in future to turn its current through the four-mile tumel into the adjoining Utah Valley, where it will be diverted into canals for irrigating purposes. By means of a dam forty-five feet high, its waters will be impounded, so as to form an immense lake for storage.

Thus a very striking change will be made in the physical geography of the region. But the unique part of the business, from an enginecring standpoint, is the taking of a small strean in the Utah Valley, diverting it by a dam into a cement-lined canal, passing it several miles along the side of a hill, and dropping its water through a pressure pipe upon turbines in a power house, generating electric power which is transmitted to the tunnel camp far up in the mountains, where it is used in boring the great hole.

This small stream is called Spanish Fork. Its water, after being utilized for
the prodnction of electric power in the manner described, is turned into the canals for irrigation, thus serving a double purpose. Incidentally, the surplus electricity las been leased to the town of Spanish Fork-which claims four thousand inhabitants--for illumination and other purposes.

The construction of the Strawberry Tumnel, a mile and a half above sea level, is perhaps the most beantiful piece of engineering work the Reclamation Service has ever undertaken. In magnitude it is second only to the huge bore now completed, in Colorado, to carry the Gunuison River through a mountain range. In summer time the work of digging the tunnel is carried on without much difficulty, but in winter at that altitude the storms are frightful. and show accumulates to almost unbelievable depth. During the winter of 1908 the snow-fall on the watershed. as shown by the weather bureau's snow-boxes, was nearly twentythree feet.

The tumel is concrete-lined and about sixty square feet in area of section-that is to say, six and a half feet high and seven and a half fect wide, with arched roof. It will carry five hundred cubic feet a second. But it will not be finished for about three years. The Ltah Valley has no outlet to the sea, and the water fetched through the mountains from the Strawberry Valley, after all of it is used that can be used for irrigation, will find its way into the Great Salt Lake.

The Utald Valley is one of the oldest settled parts of the West. I'ioneer farmers established themselves there as early as 1850 . I'eaches, apples. cherries, plums, alfalfa, all kinds of vegetables. and likewise the cereals, grow there most luxuriantly and profitably. There has been irrigation from the first. But the water supply is insufficient, and this is why the govermment is going to bring more water, and plenty of it, through the heart of the mountains.

The Reclamation Service says that the

WATERMELONS AND CANTALOUPES GROWN IN THE STRAWBERRI VALLEV. UTAH

THE UPPER PHOTO SHOWS WHERE THE WATERS OF Sl'ANISH FORK FLOW DOWN THROUGH A IPPE, TO FURNISH POWER. THE LOWER PHOTO SHOWS THIS POWER HOUSE.

THE UPPER PHOTOS SHOW THE POWER CANAL AND TUNNEI, WHICH CARRY THE WATERS OF SPANISH FORK: THE LOWER. THE MOUNTAIN THROUGH WHICH THIS TUNNEL IS BORED.
opportunities now offered to secure raluable farms in the Utah Valley, at merely nominal prices, are the most attractive to be found anywhere in the United States. Land at present obtainable there for a few dollars an acre is quite as desirable in all respects as areas in the Grand Valley, of Colorado, which have been sold for nearly $\$ 5,000$ an acre
-the highest price ever paid for agricultural land. All it needs is water, which will soon be supplied.

It is a beantiful country. The Utah Talley is like a level floor, walled on either side by ranges of gigantic mountains. Nothing more picturesque can be imagined. A veritable paradise in the midst of the desert.

WOMAN HAS FINEST ROOF-GARDEN

WH.DT is declared to the the finest roof-garden in the world is that owned and managed by a lady, Mrs. Blackwell, of Seattle, Waslington. It occupies a space of twelve thousand spuare fect, amsl, in addition to well-laidont grass lawns, flower-beds with beatiful blooms, slirubs, trees, and climbing vines, there is a charming tea-louse and a pagoda. The whole of the work in this aerial garden is done by Mrs. Blackwell and her two daughters. In addition to fruit trees, there are a number of ash and birch trees, six holly bushes, four
hawthorns, a few evergreens, two laburmums, and several Arabia trees, together with one small apple tree, which bears emormously large fruit. Besides this there are large shrubs, like the lilac. and quantities of roses, there being three hundred or more bushes. The elimbers, which add softness and grace and give the flowing lines needed to complete the picture, are jasmine, Virginia creeper grape, three varieties of clematis, wistaria, ivy and climbing roses. The photograph herewith shown gives a good idea of the beanty of this unique garden.

REMAKKABLE ROOF-GARDFN O1 MRS, BLACKWTIL, OF SEATTLE. WASHINGTON, I: occuplus a space of 12 (MN) square foct.

DATES FROM OUR OWN DESERT

By
CHARLTON LAWRENCE EDHOLM

OU'R Southwestern desert is developing a new industry which will add a delicions fruit to our native food supply, the fresh date of high quality, which will replace the low grade imported product, the sticky dried dates from the Persian Gulf. The Deglet Noor date grown in southern California and Arizona is as much more appetizing than the messy lump of dried, crushed and unclean dates that the grocer pries off the ordinary cube, as a sound, sweet, rosy-cheeked apple is superior to the leathery slice of the same fruit which the clerk scoops out of the dried apple barrel.

Within a few years we may see the Eastern market supplied with the fancy fresh dates from our
licions fruit is sold in Los Angeles, though the output is quite limited.

For some years the U. S. Covermment has conducted experiments in date growing with shoots brought from famons orchards in Persia, Tunis and Egypt. These tests and the results of planting by ranchers in sonthern California and Arizona have demonstrated that the date can be profitably cultivated within our own borders. and various companies are now being formed to go into the business on a large scale. Just what this industry may mean in the Sonthwest can only be guessed at but its possibilities seem very great for there is not only the food value of the fruit to be considered 1)nt also the various by - products of a date orchard which make the paln in its native land a sort of universal provider.
own desert, for already this de-

Three Yfar Old Tref in thf Coace flla Valdfy

Tinjfarold
Date paim Ream for ihe harvest.

OFF-KHOOTS IBANKED SO AS TO FORM Independent kouts.

A PLANTATION UF VOUNG ЮATE TREES AND OFF-SHOOTS.

The leaves furnish a long fibre which is excellent for cordage, mats, baskets and so forth. The pulpy part of the leaf and stem can be made into paper which is sais to be of a superior quality: while sugar, alcohol, wax, stareh and dyeing material form other loy-prorlucts of the date palm, to say nothing of the wine matle from sap of the old trees. In its African home the palm is also used for building and furniture making and in fact enough beautiful pieces of furniture have been made by amateurs in this comntry from the palnn stems to suggest another by-product. Thus in the cultivation of a lesert plant we may find a partial solution to the problem of reclaiming omr own arid wastes.

The conditions for successful date growing are stated in the Arab proverb

Clusifrs of goldid Swfftass.
that "the palm should have its feet in the water and its head in the fire." An abundance of water at the roots, but the least possible humidity in the atmosphere are the chief requisites, and these are found in varions parts of Arizona and sonthern California, notably the Salton Rasin. Here the water is brought up from wells at a depth of about one hunIred feet. while artesian water is found at about five hundred feet. The desert heat is intensified in this basin by the bare slopes of the mountains near by, which throw back the rays of the sun into the centre of the valley, producing an exceedingly dry and hot atmosphere.

A large acreage has been set out in date palms near Indio on the Salton liasin and until these young trees are producing there will be good profits from raising alfalfa which is planted between the trees, this doubling up of the crops being advantageous to both. Even more valuable than the alfalfa as a secondary crop is the cotton which is now being produced in the Coachella and Imperial valleys and which flourishes minder like conditions with the date. This can be planted between the thirty-foot rows of trees without damage to either eror. Experiments have shown that the area adapted to date growing in Califormia is also suitable for the raising of the long-fibred Egyptian cotton, an expensive rariety which we import to the cxtent of sixteen million dollars every year. One of the companies which is going into the date busimess extensively has lunilt a cotton gin and warehouse
preparatory to raising these two crops on the same ground.

The date palms produce fruit in their third year and bear generously from the fifth year on and unlike most fruit trees do not deteriorate with age. Some of the historic palms in the Orient are said to be a couple of thousand years old and leear from 400 to 600 pounds per tree every year.

A source of revenue aside from the fruit is the sale of the off-sloots from the mature trees which are banked up so as to allow the shoot to form a root of its own. These may be cut away and used for extending the date orchard, or they have a ready market. This method of propagating by shoots is more satisfactory than that of planting the seeds even though the cost is greater, for the date has its peculiarities, one of which is that a seed of one variety may produce a tree of an entirely different nature and you never can tell whether you are going to get a superior or an inferior sort. Mr. W'. F. Stevens, one of the pioneer date growers of the Salton Lasin, states that one may expect at least one hundred plants of the best quality of dates from the one thousand seeds planted to the acre.

After the young trees come to flower it is possible to determine which are the fruit-bearing, or female plants, and then almost all of the male plants, perhaps half of the total number of seedlings, are taken up. But these are not a total loss as there is a good market for them in the cities for ornamental trees, and

Ripe California Datfe. Compare these with the dirty. messy "corner grocers" varicty.
when the industry is conducted on a larger scale such trees would have a value as raw materials for cordage and other manufacturing products.

On the other hand the propragation by off-shoots scems to be a matter of certainty even though much more expensive, as the female tree of a given high grade date will produce nothing but female, or fruit-bearing, off-shoots of the same grade. Experiments show that on an average the grower can take off one shoot a year from a tree after its third year up until its tenth year, althongh cases have been known of off-shoots being produced up to the twentieth year.

The method of planting seedlings is to set the trees in rows thirty feet apart

DATE PALMS GROWING IN THE CALIFORNIA DESERT.

ĐMTEG IND SMYRNA FBGR GROW WEI.1. TOGETHER.
and about cighteen inches between seeds in the row. In this way it is possible to plant about one thousand seeds to an acre. As the trees develop they are thimed out until finally there is a space of thirty feet between the trees in both directions. In setting out shoots there is the same space of thirty feet allowed between the rows, of course, but the shoots in the row are not placed so close together. When the trees are mature the long fronds will intertwine cven at that distance, forming vistas of graceful arches and siedding a delightfully cool shade for the desert dweller. There is probably no tree in the world which is more beatiful than the date palm with its long curving leaves and its huge clusters of goklen fruit from eighty to one hundred and thirty pounds to the tree.

A Department of Agriculture bulletin gives this statement:
"There exists already a large market for a date of sumerior quality, suitable for household uses, and for employment in confectionery, while demand for the finest grade of Saharan Desplet Noor dates far exceeds the supply even when they are sold for more than selected Smyrna figs. American orders for a quarter million pommds have been refused by the Agerian profucers becanse the supply harely sufficed the European demaml.
"It is clear from what has preceded in this bulletin that the Salton Basin is not only the most promising region in the United States for the culture of the best sort of dates, but it is actually better adapted for the profitable culture than those parts of the Saharan Desert where the best export dates are produced.

There can be no doubt that the Deglet Noor date will ripen fully in the Salton Dasin, even when the season is exceptionally cool. The importance of this demonstration can hardly be overestimated, since it renders it possible to establish in America the culture of this cloice date, the most expensive of dried fruits, with certainty of success."

The foregoing bulletin states that at a comservative estimate 4,500 pombls of dates can be profluced per acre.

This is not mere theory but conclusions from actual tests in Arizona and the Salton Basin, where the govermment has an experimental fruit station with ninety different kinds of date pahms. In addition to this there are several ranchers in the valley who are producing marketable fruit on a small scale.

The market price of these dates ranges from thirty-five to fifty cents and even to a dollar a pound for the fancy grades. No expensive artificial process is refuired to prepare the date for shipment: its own sugar is a natural preservative.

LINDING FOR SMALLER CRAFT AT TAMPICO. A SEAPORT ON THE PANUCO KINER.

NAVIGABLE WATERWAYS OF MEXICO

B y

W. D. HORNADAY

TIIE Mexican goverument began the development of the inland waterways of that country several years ago. There are a number of navigable rivers which have been cleared of obstructions and opened for traffic, and the work is still in progress on some of the streans. Some of these rivers reach far into the interior and are the arteries of trade for large scopes of territory. The Panuco River, which is used as a deep water harbor at Tampico. situated a few miles from its moutl, is navigable for a distance of 160 miles for boats of considerable size. Regular lines of steamers and smaller craft ply
up and down its course, bringing to the market at Tampico for export and local consumption enormous quantities of products which are raised upon the rich plantations that extend back from its banks for many miles. The Soto la Marina kiver which empties into the Gulf of Mexicu about 150 miles north of Tampico, is broad and deep at its mouth. It is navigable for river boats for a distance of seventy-five miles. The government recently awarded the contract for removing the bar at the mouth of this stream by means of dredging. This is the first step towards the establishment of a new deef, water port. The town of Soto la Marina is situated about

ON THE SHORES OF LAKE TAMIAHUA.
This is a lagoon, one hundred miles long, immediately south of Tampico.
thirty-five miles up the stream, and it will be marle the future deep water port, according to present plans. The Soto la Marma, like most of the rivers of Mexico, is short and decp. It carries a large flow of water the year around, due to the heavy rains in the mountains where it has its source.

The Rio Grande, which forms the international boundary line for more than one thousand miles betwcen Mexico and the United States, empties into the gulf abont two hundred miles north of the Soto la Marina. The two streams are totally unlike in appearance. The Rio Grande water is muddy at all times, while the water of the Soto la Marina as well as the other streams of Mexico is clear as the blue sky which shines overhearl. Below Tampico a little more than one hmolred miles is the Tuxpan River which empties into the gulf at the town of Thxpan. It is also navigable for a considerable distance, having a depth of more than thirty feet. But for the fact that the water over the bar at its month is only six and one-half feet deep ocean-groing vessels would be alle to tie up at the wharses at Tuxpan and it would become
a deepwater harbor. The Papaloapan River which empties into the Gulf of Mexico, near liera Cruz, has been dredged and made navigable. Its principal tributary, the Santo Domingo, has been treated in a like manner. The opening of these rivers for boat traffic has proved of great benefit to the many towns and plantations which are situated in the interior. A direct outlet for their products is now afforded. The Coatzacoalcos River, on the isthmus of Tehuantepec, is a stream of considerable importance from a traffic standpoint.

Far down in the tropics and emptying into the Gulf of Campeche at lirontera is the Grijalva River. It is one of the broadest and most imposing streams in Mexico. Large boats ply regularly up this stream to San Juan Batista, a distance of about seventy-five miles. The smaller boats go much farther, the boat traffic extending into the mountains where the strean has its source. The Usumacinta River is the principal tributary of the Grijalva. It is navigable far beyond the Guatemala line in which country it has its source.

On the Pacific side of Mexico are several rivers which are of navigable size. The Balsas is a large stream, but rapids along its upper course interfere with the operation of larger boats. The Rio Grande de Santiago which empties into the Pacific about midway between

the ports of Manzanillo and Mazatlan is mavigable for some distance from its moutly and affords an outlet for an extensive territory that is without railroad transportation facilities. The Mayo and Yaqui rivers are navigable streams, but

on account of the undeveloperl state of their rich valleys and tributary country they are used but little by boats.

Is an arljunct to the navigable streams and deepwater ports of the eastern region of Mexico the government is building an intercoastal canal. This waterway is of the same character that is proposed along the gulf coast of Lomisiana and Mexico to connect with the Mississippi and Rio Grancle rivers, the importance of an intercoastal canal system was recognized by the Mexican govermment and the first step towards constructing the waterway was taken ten years ago. The canal now under contract will be one hundred and four miles long. It will connect the ports of Tampico and Tuxpan. The first section of sixty-sic miles is finished and in operation. The canal will not be finished until abont 1914. It took five years to build the first sixty-six miles, and the amount of dredging and excavation to be done on the second section is greater than on the portion already completed. This intercuastal waterway has a width of seventy-five feet and a miform depth of ten and one-half feet. It connects with the Panuco River about four miles below the city of Tampico. At the point where it joins the Panuco the water in the latter stream is fifty feet deep. On the upposite bank of the river are government wharves and the docks of large private concerns where the ocean-going ressels loard and tischarge their cargoes. The canal is of a willh and depth sufficient for the ordinary lake boats and river craft. The natives use long and narrow lonats which are made with the view of carrying the largest possible cargoves. These boats are propelled by means of loug poles, mless the wind should be farorable, in which case sails are hoisterl. The opening of the first section of the canal quickly developer a great traffic and humelreds of these small boats are now constantly traversmes the new waterway, bringing the prolucts of the plantations and ranches. (o) market and taking back with them supplies of various kinds.

I trip by small boat between Tampico and Tuxpan by way of the gulf is tant gerous on accomint of the gales that fre(fuently come tup unexpectedly. The bar
at the mouth of the Tuxpan River makes it impossible for the larger boats to enter that port, and these adverse conditions were a constant menace to the traffic between the two ports. The greatest incentive, however, that led to the determination on the part of the government to build the intercoastal canal was the fact that the country extending back from the coast is teeming in natural richness and was only awaiting an outlet for its product to start it on the road to wonderful development. Although the first section of sixty-six miles of the canal has been opened but a short time an enormous traffic through it has been developed and the tributary country has taken on new life and is pouring its tropical and other products into the market at Tampico. A large number of Americans have gone into the region and have acquired plantations which they are working by modern methods with splendid results. Pineapples, bananas, coffee, corn, sugar cane and many other products are grown with wonderful success.

It is claimed that when the eanal reaches Tuxpan a country of still greater richness and possibilities will be opened up. The valley of the Tuxpan River is one of the choicest agricultural parts of Mexico. It has no railroad outlet and the little traffic that is done is through the undeveloped port of Tuxpan. No market is available for the tropical fruits which grow abundantly there, and the territory with its great natural resources is literally bottled up. The intercoastal canal will remove the barrier that has always existed to the development of the region, and it is expected that a marvelons change will guickly follow the completion of the waterway. There are good indlications of oil at many places in the territory adjacent to the route of the canal. One American company has developed its oil land holdings on a considerable scale, having a mmber of producing wells and an oil refinery which is in regular operation. Many humdreds of thousands of acres of prospective oil land have been acquired by Americans in that region and prospect wells are being bored at many puints. Several producing wells have been brought in at Furbero, fifty miles

ONE OF MEXICO'S NAVigAble RIVERS.
from Tuxpan. Oil has been struck in paying quantities at other places in that territory.

No great engineering difficulties are to be encountered in the building of the Tampico-Tuxpan intercoastal canal. Captain Charles Shillaber of Chicago has been connected with the enterprise since its inception. In fact, he suggested the idea for building the waterway to the government. This was in 1898. He spent nearly five years in making surveys and perfecting the plans for the work. He was given the contract for the first division of sixty-six miles and began the
excavation work on the Tampien ent on March 12, 1903. He has the contract for building the second livision. A. I'. Hitchman is the chief engineer.

Lying about midway between Tampico and Tuxpan is Lake Tamiahua. This lake is seventy-nine miles long and from five to twenty miles wide. It has a connection with the Gulf of Mexico through the Tanguijo River which flows from its. extreme lower end and runs parallel with the coast for about eighteen miles, emptying into the gulf a few miles north of Tuxpan. This is a sluggish strean, and the salt water from the gulf enters

THE DEEP WATER HARBOR AT TAMPICO.

a stretcil of the tampicotuxpan canal through lake tamiahua.
through it and makes the water of the lake or lagoon briny. The project of lamming this river at the point where it leaves the lake is ander consideration. liy doing this the current of the stream would be thrown into the canal and diverted into the Tuxpan River. The lake is fed by five rivers which have theit source in the adjacent momntains.

There is a chain of small lakes or lagoons comnecting with Lake Tamiahna on the north for several miles. The water in Lake Tamiahua has a depth ranging from three to fifteen fect. The channel through the lake was onened by means of atredges. The bottom of the lake is a shell bank and the hard material when thrown mon the sides of the waterway rises above the surface of the water in places. Wherever banks are fromed in this manner wild tule plants have been set ont and are growing nicely. These aquatic plants make a beatiful border to the canal. It is also planeed to line the banks of the waterway with frees, and a start in this direction las been made already by the planting of young cork trees at regular intervals along the banks of the canal.

The excavation on the upper end of the canal was heavy. At one place, known as Medano cut, the banks rise fifteen or twenty feet above the surface
of the water. The formation at this point was rock and the material had to be loosened by blasting. It is estimated that the removal of alout $2,300,000$ cubic meters of material is involved in the construction of the second division of thirty-four miles. The hardest work will be in solid sand and oyster shell reefs. The canal will traverse the length of Lake Tampamachoco, just to the noth of the Tuxpan River. This lake is about three miles long and two miles wide. It is only two and one-half to three feet deep. To reach the Tuxpan River from this lake a channel will have to be cut through a strip of land about one and one-half miles wide. The cut throngh this strip will be from five to fifteen feet above the water level.

The dredges used in the construction of this canal were all built at Tampico muder the direction of Captain Shillaber. Four dredses are now in use. Three of then are small orange-peel dipper machines. each having a capacity of 8,000 cubic meters of earth per montl, inchuding hard and soft work. The average cost of the work done by the small dredges is abont twenty cents. Mexican money, per culnic yard, which is equivalent to ten cents gold. The large dredge now in mise has a capacity of about 20,000 cubic meters of carth per month at the
rate of fifteen hours per day. This dredge is used in the heaviest stretches of work. It can handle any material except the solicl rock. The cost of excavation per cubic meter by this dredge is much greater than by the smaller dredges. Another large dredge is being constructed for work on the lower end of the canal.

It is estimated that the canal will have cost when completed about $\$ 5,000,000$ Mexican money, or $\$ 2,500,000$ gold.

The completed portion of the canal has had one beneficial effect which was not expected when the plans for its construction were under consideration. It has served as a drainage way for a large territory which was formerly covered with a few inches of water, making the land unavailable for agricultural purposes. This land is now perfectly drained and is being placed in cultivation in many places. It is believed that when the canal is finished through to the Tuxpan River it will serve to carry off the surplus water from a still greater territory and that many thousands of acres of land will be in this manner reclaimed.

There are many beautiful vistas along the canal. The shores of the lagoons and lakes are lined with plantations of pincapples, bananas and other products. 1 'retty homes, with expanse of verdant lawns, slope down to the water's edge. An endless stream of boats, each manned with a picturesque crew, pass up and down the canal. Whole families of natives occupy some of these boats. They
carry their cooking utensils with them and make their homes on hoard the frail craft day and might. There are places where the shore is lined with tropical forests, and in the waning hours of the afternoon flocks of brilliant-hned parrots fly from place to place and awaken the echoes with their cries.

The building of this intercoastal canal between Tampico and Tuxpan will be followed by the construction of a similar waterway to connect Tampico with the Rio Grande, where comection will also be made with the proposed intercoastal canal that the United States govermment is to construct through the lagoons bordering the Louisiana and Texas coasts. The distance between Tampico and the mouth of the Rio Grande is about three hundred miles. A series of salt water lagoons lie along the coast for a part of the distance, but much more excavation work will have to be done on the lipper canal than is encountered on the Tam-pico-Tuxpan waterway. The territory extending back from the coast for 150 miles, between Tampico and the Rio Grande, is susceptible of high agricultural development. Like the TampicoTuxpan region it is attracting many Americans who have purchased large botlies of land and are doing a successful business in farming and raising live stock. They are handicapperl, however, by the lack of trampportation facilities. The building of the canal will secure for them a direct outlet for their products.

PEARL DIVING PROHIBITED

THE steamship Maraposa, recently arrived at San Francisco from the far away island of Tahiti, under French dominion, in the South Pacific, brings the first news that the French govermment has lately prohibited the use of diving apparatus in carrying on the valuable pearl fishing industry.

This action was taken to save one of the most profitable enterprises of the colonies from destruction.

The commission which investigated the matter, found that the native divers who plied their trade without any diving ap-
paratus and gathered up these valuable shells only as fast as they naturally increased harl been supplanted by Europeans in diving gear who were in the employ of large corporations, and who gathered these shells in such quantities that a great many of the pearl shell beds had been exhansted.

To keep temptation out of the way of the pearl hunters, all of the diving outfits, gear, etc., were gathered together by the French anthorities and shipperl away from Tahiti and the other islands.

A PRINT IN BLUE AND GREEN, MADE BY NATIVES OF JAVA.

CLEVER FINGERS M AKE BEAUTIFUL FABRICS

By

J. HARTLEY KNIGHT AND
 MABELTUKE PRIESTMAN

T() the deft fingers of the darkeyed sentoritas of the Canary lilands, off the northwest corner of the African continent, is due a very considerable share of the properity of that portion of the King of Spain's dominions. Altugether. some 12.000 women and sirls are chegaged in the infustry, for so it can how be called, the majority of them residling at Teneriffe- famous the world over for its wonderful

Batik Hingings Ehown At thif Arts Fxhabition at the Hague.
mountain peak, a fascinating landmark to those who "go down to the sea in ships" between Europe and South Africa.

Calado is the local word for handdrawn threadwork, the great merit of which lies in its beatty of design and simplicity of execution. The raw material consists of linen, Which is imported in large quantities from Ireland, which still holds her own in the linen industry, notwithsianding the fierce competition of Germany and
other European countries. Calado work is indigenous to the Canaries and has been carried on there for local use for generations. Its origin, however, is "wropt in mistry." It is suppposed that it was introduced by some political refngees who settled in Teneriffe, but this is by no means certain. Originally the work was of the poorest deseription, so far as the pattern was concerned and the materials employed. Of late years-thanks to careful organization and the introduction of superior qualities of linen-Calado work has vastly improved and is now in great vogue, whilst the peasaut women engaged in it have made great strides as regards skill and manipulation. But not all the threadwork produced in the Canary Islands today is of uniform quality. Much of it is, indeed, of a very shoddy characterthe product of unskilful workers who are only too ready to trade on the reputation of their cleverer sisters. Not infrequently visitors to these beautiful islands are offered bad work which the would-be
sellers know only too well would not be looked at by the regular exporters, and thus the industry as such suffers considerable harm.

As an article of export the history of Calado work is rpuite modern. Less than twenty years ago an obscrvant young Englishman, Mr. I. Audley Sparrow, went out to Tencriffe for the benefit of his health and iwas so impressed by the possibilities of the drawn-thread work and the skill and industry of the workers that he set to work to reorganize the whole thing and put the product on a business basis as an article of export. At first he found that "the trade" in England regarded the Calado work with no very great favor. Ile worked to such good purpose that he was ultimately able to arrange for a regular export of Calado goods to London and, subserpuently, to other parts of the continent and America. Mr. Osbert Ward in his book on "The Vale of Orotava," relates in detail how Mr. Sparrow was first attracterl to Calado work and foresaw its great possi-

SPECIMEN OF CAL.ADO WOORK.

F,UPIOYFE-IN I CILAIO FACIORY, ON TENERIFFF. UNE OF THE CINARY ISLANDS.
bilities as a revenue producer. "He procured books of designs." says Mr. Ward, "of drawn work from other countries, vigorously set to work and organized the proper development of the indlustry."

Needless to say, Mr. Sparrow's example was duly emulated, and today the local Calado trate is in the hands of two British and two German firms, the lion's

[^11]share, it is believed, falling to the former. The Teneriffe peasants are adepts at work of the kind-especially drawnthread work and cushion lace work. The former is that open work embroidery in which some of the threads of the linen material are drawn out, the remaining threads being stitched into lace patterns. The resultant effects appear to be that which is technically known as "an insertion," but as a matter of fact the pattern is an integral part of the material itself.

The lace work-rueda, as it is calledconsists of wheels or medallions, made hy winding thread round pins on a cuslion and then with a needle completing the desired design by knotting and darning. Some of the Calado work is of exguisite design and workmanship and of considerable value. Especially was this the case with the bed set of drawn-thread and lace work which was specially made ly the loyal islanders and given as a wedding present to King Alfonso of Spain and his queen, Victoria. Even fuer was the cliristening robe presented as a gift on
the occasion of the birth of the heir to the royal couple. Tlie robe was cut on the latest P'aris model and was certainly one of the handsomest of the many superb gifts presented to the proud young Quteen of Spain.

Latik making is one of the oldest arts in the world, having been done by the native Javanese women and children for many generations. For some years past several artists in Holland have tried to follow the Javanese methods in ornamenting fabrics but the honor of really developing Batik making into a beattiful craft is due to the energy of a woman. Mrs. Wegerif Granestein has not confined her work to cotton fabrics, like the Javanese, but has worked on parchment, leather, silk, and velvet, giving a wide and varied scope to the uses of her craft. She has worked in conjunction with well known architects, and has introduced Batik into original decorative schemes that have made her work recognized in Europe. So successful has she been, that many orders have come to her, and she now employs thirty craft workers in her studio who do this work under her supervision. These beautiful hangings can be seen at most of the Arts and Crafts exhibitions in Europe and within the last year the knowledge of the work has spread to England and beatiful langings can now be obtained from private studios in London.

As this has proved a lucrative employment to those who have taken it up, it is to be hoped that we will not be behindhand in developing Patik to the best of our ability.

The bold barbaric designs made by the natives of Java have usually been adhered to, but there is no reason why other motifs should not be developerl. Mrs. Wegerif Granestein makes many of her designs after the art nonvean, this style being still so popular in some countries in Europe. In this country it would seem more appropriate to develop it along Indian lines. The rather crude designs of the latter would lend them-

A Famliy That, Working Outsine the Factury: Criatfs Fabrics at Hume.
selves well to the technigite of this interesting art.

The actual process of Batik making is primitive in the extreme. It is merely the protection of certain parts of the material by the application of hot wax. The material is emersed in dye which does not color the parts protected by the wax.

In Java the batik makers do not draw the design dircetly onto the material but auply the wax by means of an instrument called a tjanting onto the cloth. It is not necessary to use a tjanting to get the desired results, as this can be accom-

Chair Coverbd with Volour Desigmp in Batik of Dark Culor.

Curistening Robe of thf Heir to rhf Sphnish Throne.
This was woven at Teneritfe and presented to the Royal couple.
plished by means of a stencil, or by using a confectioner's tool for covering cakes with sugar. This enables batik to be made without drawing it first, a plan to be recommended when the worker is an artist, but for a woman who is only capable with her hands the stencil would be much more practical. If the confectioner's tool is used, however, the hot wax is put in the reservoir, which is refilled from a pan of boiling wax as it empties itself onto the material.

When the design is covered by the wax. the material is dipped in a dye bath Which must not be above the heat of sixty degrees or it will melt the wax, and the batik will be spoiled. When several colors are used repeated applicatims of wax and several dippings in the dye are required to get the desired results. As this is somewhat a terlious process batik is usually done in one color, while the natural color of the ground is left to form the design.

A Piece of Batik Tihat Has a Place in One of the Famous Studios at Apeldooin. Holland. This bit of art work is highly prized by the Dutch.

When a dark design on a light ground is planned the wax is applied on the background and the design formed by dyeing the uncovered parts. It is needless to say that this takes considerably more time than the other. The wax cracks when applied in large masses, and fissures of color appear through the materal giving the appearance of veined marble, and adds no little to the interesting qualities of the work. It will be moticed that most of our illustrations are all clone with a dark pattern on a light ground. I have seen quite a number of batiks with a light pattern on a dark ground and they are just as beautiful as those in the accompanying illustrations.

In cutting a stencil for a dark pattern on a light ground it will be necessary to cut out the background of the design.

Batik is particularly beautiful when used for ornamenting leather. Crinkled sheep skin is well adapted to this interesting form of decoration.

Figure: 1. speaking Through the New W゙ireless IFLEPHONE

Figure 2. Rlfflying the Mrscage Uyer the Wirelrss Telefhone

WIRELESS TELEPHONY B Y L U MINOUS R AYS

IN wireless telegraphy eithor clectricity or rays of light connect the microphone of the transmitting station to the telephone of the receiving station.
Ruhmur invented wireless telephony by luminous rays. At the focus of a parabolic mirror installed at the transmitting station he placed the positive carbon of an arc lamp, the latter forming part of the primary of a transformator, the secondary of which comprises a battery of accumulators and the microphone. When one speaks before the microphone the secondary current varies in intensity and modifies by induction the primary current, consequently the brilliancy of the are lamp changes every instant, and the luminons reflective rays, varying in intensity, are concentrated at the focus of a parabolic mirror placed at the receiving station. These differences of brilliancy modify the electric resistance of a conductor of sclenium which is connected with an accumulator and a telephone reproducing the words pronounced at the transmitting station. The German inventor imprisoned the cylinder in a glass bottle deprived of air. as its electric resistance diminishes in the open air.

W'ireless telephonic machines recently invented by L. Ancel work on the same principle. At the transmitting post
shown by Fig. 1 a speaking trumpet receives the sonorous vibrations and carries them to the vibrating membranc of a manometric capsule 80 millimeters in diameter through which a stream of acetylene flows. The movements of the vibrating walls modify the rapidity of the current of gas; consequently the flame of the acetylene burner, placed at a little distance, presents variations of intensity in harmony with the vibrations of the voice. The parabolic mirror, at the focus of which is placed the burner. sends a ray of light parallel to the mirror of the receiving station. At the receiving station this parabolic mirror like the precerling one collects the luminons rays rendered vibratory by the voice, concentrates them on a selenium cell placed at its focus attached to an accumulator and to a telcphone. Thus the variations of the luminous intensity of light is translated on the selenium receiver by corresponding variations in the resistance of the selenium cell, and in the current which flows through the telephone.

Unfortunately even with these latest improvements by M. Ancel, communications by wireless telephony can be made only when the stations arc visible the one to the other. They will, however, render useful services as models of demonstration in the course of physics in the laboratory.

Correct Usage

A TEAChFR asked her scholars to give a sentence 1 sing the worl disarrange. An Italian boy sulmitted this: "Ny mudder she gotta da coal range. Ny fadder get up in da morning, make da fire he say, 'Damma dis a range!'"

Pretty Quick

He-"But conldn't you learn to love me, Amua?

SHE-"I don't think I conld. Ilarry."
11e (reaching for his hat)-"lt is as I feared-you are too old to learn.-Harper's Bazar.

4
 Reassuring

11E-"Cmodinight, dear. We must not kiss or you woult! take my coll.".

She-"Nerer mind-l can pass it on."London Opinian.
e^{4}

The Greater Tragedy

The man whose danghter had just been united to the husband of her choice looked a little satl.
"1 tell you, squire," he said to one of the wedding guests, a man of his own age, and himself the father of a number of ummarried girls, "I tell you, it is a solemn thing for us wher our dimghters marry and go away."

The oquire asscnted, not altogether licartily.
"I sunpuse it is," he conceded: "but I tell yon, it is more solemm when they don't."Joulh's Companion.

Why Didn't He Say So?

The motorist emerged from beneath the car and struggled for breath. His helpful friend, holding the oil can, beamed upon him.
"I've just given the cylinder a thorough oiling, Dick, old man," said the helpful friend.
"Cylinder!" said the motorist, heatedly, "that wasn't the cylinder; it was my ear!"

s
 All in One Class

Wafe-- ${ }^{\circ} \mathrm{Can}$ you remember the first cigar yur ever smoked, John?"

Ht'sbann-"Y'es, love; also my first sea royage and our wedding day."

4

For All Time

Mrs. Higitup-"The judge decreed that they should be separated, never to see each other "gain."

Mrs. Blase-"Are they?"
Mrs. Highup-"Yes. They are living next door to each other in a New lork apartment l:onse now."-Puck.

8

A Good Name Forever

"WV:'ve just bought a Rembrandt." "llow many cylinders?"-hoston Transcrift.
\&

Could Locate the Fluid

"How do you find the chicken soup tonight, Mr. Newcomb?" inquired the hoarding house lamellady.
"I have no difficulty in finding the soup, Mrs. llasher," he replied, "but I am inclined to think the chicken will be able to prove an "llibi."

Wonderfully Gallant

Sine--"Du yon prefor an ugly woman with brains or a pretty woman withont brains?" He-" Mitdame, ! prefer present company to either."-St. Lotis Mirror.

\star
 Even a Funeral

"How can you be so cold to me? I wonld die for you," subbed his wife.
"I know it," he answered cruelly. "You'd do anything to put me to expense."-Life.

4

Circumstances Alter Cases

"WHy, Tommy," exclaimed the Sunday school teacher, "don't you say your prayers every night before you go to bed?"

"Not any more," replied Tommy: "l uster when I slept in a folding bed, thongh."-Philadetphia Record.

His New Password

"I WANT to change my password." said the man who had for two years rented a safetydeposit box.
"Very well," replied the man in charge. "What is the old one?"
"Gladys."
-. And what do you wish the new one to he?"
"Nabel. Gladys hats gone to Reno."-Itdge.

4

No Frenzied Financier

"Do you assimilate you food, annty?"
"No, I doesn't. sah. I huys it open an" honest, sah."-Baltimore American.

A Bad Egg

"He ahwas was a bacl egg, but nobody seemed to motice it while he was rich."
"Yes, he was all right mutil he was broke." Sacred Meart Reaber.

Prodigious
"Patty," said Grandma, "I think it about time you stopped playing with boys. Little girls ought not to care In play with boys, when they're as large as you."
'Oh, that's all right, Gramdma. Why, the higger we get, the better we like 'em!"-Lippincott's Magetzine.

$*$
 The Question

DrEmer-"Disl you ever think what you would do if you had Rockefeller's income?"

Mugley--"Yes: and l've often wondered what he'd do if he had mine."-Catholic Standard and Times.

$*$
 Caution

"A verdict for $\$ 10,000$ isn't su bad." said the junior partner. "How much shall we allow our client?"
"Ol, give him $\$ 50, "$ answered the senior partner.
"But hold!"
"Well?"
"Don't be hasty. Promise to give him $\$ 50$."
Louisailli Courirr-Iournal.

4

Not As Easy As He Thought

A TRAMP went to a farmlouse, and sitting lown in the front yard began to eat the grass.

The honsewife's heart went nut to him: "Poor man, you must indeed be linngry. Come around to the back."

The tramp beamed and winked at the hired man.
"There," said the housewife, when the tramp hove in sight, pointing to as circle of green grass, "iry that: you will find that grass (1) much longer."-Ezerybody's.

The Hint That Failed

Visforor (waiting an invitation to lunch)"Two bicluck! I fear I'm keeping you from your dimner."
Hustrss-"No: but I fear we are kecping you from yours!"-Meggendorfer Blacter.

$\&$

Ladies First

Two miners were returning from a lecture at the village Institute, when one of them after a thoughtful pause remarked:
"Say liill, I don't see the necessity of bringing chaps from the East to teach us alout manners in the home. We ain't so had as that fellow mate out."
"Of course we ain"t,", replied Bill.
"Not by a long shot." went on the first. "1 never swears hefore my wife -"
"No more do 1," put in Bill. "I always says "Ladies first'-that's me."

4

Another One on Mother

Tommy-"The loctor brought the lalyy."
Fremp-"It hooks just like ma's been shopping by telephone again."

A Cook in Need

Husband-"Did the cook you hired show ${ }^{19}$?"
Wife-"No. Wasn't it fortumate? Another one rang our bell ly mistake lonking for Mrs. Gillet next door, and l've kept her in-stead-Marper's Buzur.

Not Unusual

"I was surprised when 1 heard that Grabrox had joined the church." "I wasn't. I happened to be present when he and his business partner shook dice to see which member of the firm should join."-Indianupolis Journal.

\approx

Oh, l Say, Now

Sutior-"I would like to see the photo of the lady with the $\$ 500,000$ dowry."

Matrimonial Agent - "We don't show photos with the large dowrics."-Flicgende Blacter.

Looking Ahead

"My dear," says the lusband, as his wife comes to join him for a walk, attired in her hoblle skirt, basket hat, and other things of the present mode, "I want you to come to the photngrapher's and have your picture made just as you are."
"Why, do you like me so well in this costume?" she beams.
"Well, my idea is that two years from now I can show you the picture, and you will say the things about it that I would like to say about your appearance just now." ${ }^{-L i f c \text {. }}$

$*$
 She Knew

1hoctor-"Well, Mrs. Jones, did you test your hushand's temperature, as 1 told you?"

Mrs. Jones-"Yes, loctor. I put the barometer on his chest, and it went round to "very "dry," so 1 gave him a pint of beer, and he's been to work this morning."

Odds in Hex Favor

Aniry Mother.-"You've got an awful nerve to ask me to give you lack your ball when you nearly killed one of my children with it."
liny-"ivell, mum, yon've got ten children, and we've only got one ball."-Short Stories.

Would Make Him Care

Juggns.-"Who was it that said if he could make the songs of the people he wouldnit care who made the laws?"

Muggrs-"Don't know. But if he's the chap who's making the songs of the people nowadays I'd just like to have the making of the laws a little while! That's all!"-Red Hen.

Room for More

"Come, lVillie," said his mother, "don't be so selfish. Let your little brother play with your marbles a while."
"But," protested Willie, "he means to keep them always."

"Oh, I guess not."
${ }^{\text {"I guess yes! 'Canse lie's swallowed two o' }}$ them already."-Catholic Standard and Times.

4

His Money's Worth

"Sintane shilluns a da' did they charrge me for my room at the hotel in Lunnon!" roared Sandy, indignantly, on his return to Croburgh Burghs from a sight-seeing expedition.
"Ou, aye, it wasna cheap." agreed his fatlier; "but ye must 'a' had a gey fine time seein' the sichts."
"Sein' the sichts!" roared Sandy. "I didna see a sicht a the time I was in Lumon. Mon, mon, ye dinna suppose 1 was going to be stuck that much for a room, an' then no get the proper use o't!"-Tit-Bits.

$\stackrel{4}{4}$

A Hint

He-"Do you think that your fatlice would offer me personal violence if 1 were to ask him for you?"
She-"No, but I think he will if you don't pretty soon."-The If atchman.

\star

Imprudent

"SAy, old man, did I ever tell you about the awful fright I got on my wedding day?"
"S-s-s-h", no man should speak that way about his wife."

She Was AII Set

The minister was shaking hands with a new member of bis congregation, a girl fresh from Sweden, and said, cordially: "i would like to know your address, so I can call on yon."
"Oh," said the girl, imocently, "J haf a mim."
\because

Knew the Effect

Teachse-"Tommy, do you know, "How doth the little busy hee?',
Tommy-"No; I only know he doth it!"

A Noble Spirit

Husband - "You are quite comfortable, dear?"
Wife-"Yes, love."
"The cushions are easy and soft?"
"Yes, darling."
"Youl don't feel any jolts?"
"No, sweetest."
"And there is wo draft on my lamb, is there?"
"No, my ownest own."
"Then clange seats with me."-Idras.
$\&$

A Clever Ruse

Wife-"Please match this piece of silk for me before you come home."
Husband-"At the commer where the sweet little blonde works? The one with the soulful eyes and-"
Wife-"-No. Fonise too tired to shop for me when your day's work is done, dear. On second thought, I won't bother you."-Dctroit Nous.

ONCE DEATH TO EAT THIS FISH
A NONG the reefs that skirt the shores A of the IIawaiian Islands are to be found, at certain seasons, great numbers of a little white fish which is exceedingly
grood to cat. It is called the "moa." So great a delicacy is it, in truth, that in carlier days the fish was declared "tabu" to the commonalty, only the great chiefs being allowed to eat it, under penalty of death. But nowadays, hap-

Side View of Model of New Type of Subsarine.
pily, anybody is permitted to eatch and eat the "moa," which is taken by means of a circular net twelve feet in diameter, weighted around the circumference with bits of lead, and thrown from the reef in such a way as to fall upon a school of the finny tillbits and enclose themWhereupon they are pullerl ashore. The manner of easting the net is rather strikingly illustrated by the accompanying photograph.

©

SUBMARINE OF A NEW TYPE

ASLBMIARINE craft which embodies new primciples has been invented by a Los Angeles man, and a ten foot morlel of his device was recently given a test in the waters of a small bay near that city. The features which differentiate this model from all other submarine vessels is the use of propellers near the prow instead of at the stern, thus pulling the boat through the water instead of driving it. These propellers are enclosed in short tubes, or wells, and when the water is forced through them by the rapidly revolving blades the boat travels at remarkable speed. On her experimental trv-out the model almost ran away from the lannch which was following and made a speed that was estimated at more than menty knots. The lines of this new model are very slender and graceful. At the prow is an upright blade or nose which cuts the water and has a tendency to prevent rolling. From there the lines taper gradually to the stern, where are located the two sets of rudders, vertical and horizontal, and these resemble the rudders of the Antrinette monoplane. directing it right or left and up) or down.

Front View. Showing the Propflers tix the Tubrs

Power for this ten foot model was supplied by a gasoline engine on the launch, equipped with a generator, and transmitterl by a length of cable to the motor within the summarine. The rudders were also operated from the boat, the wires directing the steering gear being bound together with the power cable.

The operator was able to sink the craft and raise it at will, either with the rudders or by filling the ballast tanks with water and emptying them by means of compressed air. At all times she was under perfect control and would phange into the deeps or rise to the surface with a leap like a flying fish in obedience to the guidling hand.

It is proposed to start work immediately on a fifty foot boat of this type and great things are expected of it. It is clamed that the danger of rumning submarines at a high speed is minimized by the device of placing the propellers in front. as most of the accirlents to these craft have been the result of their diving

Thf Submarinf Coming to the Sureate.

Last Aid Treatmpest as in Use in a Lovdon Huspital.

Fling Diachinf Looks Like a Bird.

California Rosf Vini Coyers Housf.
"The Suther kese of the" Santa Clara Vallew." plantud fifts years ago. lowers above two story dwelleng.
at too abrupt an ansle when trying to make speed below the surface and thus losing their balance and getting quite out of control.

TO AID THE DYING

AMONG the few quite reliable devices for rendering last aid to the dying is the instrument depicted in the accompanying photograph which is the outcome of many years close study and observation on the part of the inventor, Mr. Leonard Itill of the London Hospital, Whitechapel. The device, as will be seen, is very compact and easily transportable. The tube containing the vapor of oxygen is placed against an upright standard, and a tap which is seen being actuated by Mr. Hill regulates the supply of oxygen into the small mixing chamber seen on the right of the supporting standard. In this chamber the oxygen is mixed automatically with alcohol and water and this mixture is conveyed in the connecting tube to the frame of the device seen being held over a patient's face. The mixture which is released is breathed direct to the lungs and heart and has proved to be of incalculable use in cases of drowning and the like where the action of the heart has practically ceased, or in other cases where the patient is in most imminent danger of deatl. The device is equipped with a partial head covering which prerents the escape of the gas chring inhalation.

MONOPLANE LIKE HUGE BIRD

Itheir search for a flying machine that combines stability, buoyancy, and ease of guidance, acroplanists are making many departures from the type of machine with which the Wright brothers liave made 11 most familiar. At the recent meet at Ivisy. France, the monoplane Diupason, piloted by M. Schreck, was one of the novelties that attracted a very general attention. Besides imparting an unusual equilibrium to the machine, the peculiar structure atds a rigidlity and strength far above the average.
M. Schreck declares himself as more than satisfied with this departure from the conventional type of monoplane.

ROSES TO MOLD SAND BANKS.
lardy spereies along railroad track betwern New Jork and Roston to prevent the blowing about of the loose sand.

FUMIGATING BY AUTO

AY antomolile. drawing a disinfecting box on wheels, is being used in the varions cities of France, by the health officers, to ward off all possible results from contagious diseases. It is especially important that bedding which the patient has used should be thoroughly fumigated. For this purpose vapors of formic aldehyde are becoming recognized as best. It is not required to detach the box from the automobile for using it, but it is run out upon rails and rests upon a support. According to the ideas of the inventor. Dr. Charles Ott, the best way is not to introduce the fumigating box into the contaminated bed-room, as this would require a special disinfection of the room itself, after the box had been removed. Besides this, people object to having materials brought into their home from places where other contagious maladies prevail. The sanitary antomobile is therefore stationed outside while the employes are proceeding with their work inside the building, the infected elothing, etc., being treated in the fumigating box at the same time.

$*$

NO TRACK: NO TROLLEY

THE efficiency of the storage battery street car is now fully recognized by engineers throughout the world. It is not surprising, therefore, that its invention should be soon followed by a new application in the form of a motor buss or "a trackless, trolleyless" street car.

A "lracklfss, Trolley less" Street Car.

Disinffeting Box Useitin Francf. This shows the nuthod of fumigatins bedelothes, etc.

The omnibus, as shown in the illustration, has a seating capacity of 30 passengers and is built to operate within a radins of 50 to 75 miles on a single clarging. It is 22 feet long. about seven feet wide, and weighs four tons.

The car itself is of the lightest possible construction consistent with adequate strength. Twenty per cent of its total weight is that of the storage cells. The mechanical equipment consists of two motors driving the rear wheels through noiseless steel clain gearing.

HOAES RUTNED BY A DESTRUCTIVE FLOOD IN THE V.\ILEY OF AOSTA, ITAIY.

WrRFSTEERS FRUM lolelanio.
Their style iscatch as catcoll can, but with a harnuss.

Crude Mfthods of Hin du Carlenters.

SAVES BOATS FROM SHOCKS

WIIAT, in the illustration, appears to be a huge bale of wire is in reality a bale of specially woven reed, used as a buffer for boats at one of Germany's sca ports. It is a great protection to the wharf, and a great improvement over those heretofore constructed of wood. Owing to the elasticity of the reed, not only the dock is safe from injury, but the boat is also relieved of sudden shock from landing, and this buffer might really be called a shock-absorlber.

Some idea of the massiveness of the arrangement may be obtained from comparison in size between the man scated upon it and the bale itself. Its length is about eight fect. diameter six feet, and weight something over 110 pounds. The ordinary life of a buffer made from reed is five or six years.

\because

WHY INDIA DOES NOT PROGRESS

THR()LGIOLTT the provinces of Yndia the laborer, be he agriculturist or otherwise, still clings to the ways and customs of his forefathers. In our photograph a native carpenter is seen plying his trade. lie uses a saw of peculiar construction and his assistant. as will be seen, helps the downward stroke of this strange implement to give it force.

Wrfstlar Iafting His Opponent br Mfans いF THEH BRNE: Thas cortainly is a distinct novely.

BuFFER of WOVEN Kerds FOK VESSELS.

You Can't Fall Off This Car.
The fate protects you.

SUPPLANTS THF lluods. MAN WITH HIS AXE.

PASSENGERS CAN'T FALL OFF
STREET cars arranged with a separate entrance and exit do not alway save passengers from disastrous falls, 110 matter how carefully the street car company employes may guard against starting the car too soon. A gate has recently been brought out that afforls the most adequate protection possible. In this device the human equation is practically eliminated, inasmuch as the gates are open only when the car comes to a stop. Hence no one can be injured either by falling off or jumping from the car. The mechanism is quite simple in construction, cannot casily get out of order, and is antomatic in action.
\%

MACHINE SPLITS FIREWOOD

TO split ordinary knotty and crooked wood economically into chips by machinery process was a problem which bristled with difficulties, and the efficiency of a new English machine used for this purpose is unquestionably very remarkable, as knots several inches in length can be cleanly cut into sticks, such as must otherwise either be thrown aside as umsuitable for splitting, or mashed 1up and wasted by less efficient machinery.

There always has been a little difficulty if the wood happened to be wider at one end than the other or badly sawed, be-

Shooting vaf thr GUN CAMERA.
Can be set to expose from 1 to 10 seconds.

As Largf as 7 he Human Hand.
A cacao pod from which the breakfaster gets his cocoa. The oily kernels are roasted for this purpose:

The cacao also yields cacao butter.
The tree is native to tronmal 1 merica.

Photo Tahfn by Gun Camera One Second After Being Firen.
It is caught in a net when it comes down.

The blade at leff, is finished: that at reglit, incomplete. It will be observed that several pieces of wood go into a single propeller.
cause having to be ferl by spiked rollers at each end, if both rollers clid not grip the wood almost simultaneously, the end gripped first would be fed forward first, so that in the new splitting machine special means were provided for counteracting these difficulties.

All such difficulties are now obviated. as the wood, of whatever size or shape. is carried along bodily in vertical posi-

"The Wihttlang, Parson"-Rfy. George S. Gassner. OF Phidathelphta. He in carvins an acoroname propellem.
tion, being supporterl both in front and rear by other pieces of wood. so even the smallest pieces of wood cannot now fall over or be improperly cut by the knives.

The photograph shows how readily the metal box belt may be filled with every variety and shape of wood.

PARSON MAKES PROPELLERS

AMINISTER in Philadelphia has taken up the making of propellers for airships. The photo shows the Rev. George S. Gassner of Philadelphia. whittling out a morlel of a propeller, and some of the propellers he has made, for which he is becoming nationally famous. These are not carved from one piece of wood, as some may suppose, but are made by carefully overlaying several separate pieces of wood, carved scientifically, as shown in the pictures of finished propellers, in which the separate portions of woorl can be seen. It is not likely that the woorl for the propeller will cost more than a few dollars, but so important is it that the propeller shall be made as souncl as art can make it that as much as a humdred dollars is paid for one of the kind that the Rev. Mr. Gassner carves.

Waste Material Put to Good Use.
Boards being scarce, an unterprising Californian makes dwolling out of odds and inds of tin.

BARGES AS BASIS FOR FACTORY SITE.
A string of worn-out craft that an enterprising contractor is usiag.

OLD BARGES MAKE NEW LAND

AN original method of reclaiming land is now being carried out on the Hudson River where the inlet of Kingsland Cove is being filled for use as a factory site. A string of barges, twentyseven in all, will extend across the inlet end to end and be held in place by piles. The basin is now being filled and when the work is completed the chain of barges will form a bulwark which is said to be unique.
*

MODEL HOME OF CONCRETE

IN arranging for the elimination of the slum district in Los Angeles the "City Planning Conference" recently held in

Expert in Fire-Proof Construction.
Thomas Fellows. designer of "model home." that city considered the building of concrete houses for the poor, which are to be sanitary, artistic and so economical in construction as to rent for a low price. In Los Angeles the tenement situation is quite different from that in Eastern cities, as the poor are housed in "courts" rather than in large structures, which makes
it much easier to do away with the insanitary and antiquated frame buildings and to put up model structures on their site.

Produces a Forty Car Train Load of Crushed Rock Every Hour. Giant stone-breaker at Biwabik. Minnesota.

CONCRETE DWELLING FOR TAE MAN OF SMALL MEANS.
An artintic model that attracted attention at the Los Angeles, California, "City Planning Confer"ncu:"

The small model shown in this illustration was designed by an architect and former building inspector of the city, Mr. Thomas Fellows, who is an expert in cement and other fireproof construction and whose official advice on such matters is sought far and wide. His concrete house has added new laurels to his professimal reputation.
As the design shows, the appearance

Rations of a Jap Soldier in the Fifld.
Three inttle baws of rice. and a bunch of drind veretables form a day's food supply. Each soldier cooks his own food.
of the house is artistic, being reminiscent of the flat roofed dwellings of Palestine. It is also a matter of economy ancl health to have a flat roof, available for sleeping purposes in the warm weather and as a play ground for the children. Nr. FelJows house is somewhat different from the ordinary concrete structure in appearance as the exterior of the house is treated with a preparation which gives it a very close resemblance to unpolisheri granite.

The cost of building a four room dwelling on this model is estimated at $\$ 750$, the house to contain toilet, bath and combination wash basin and wash tub, a gas heater for water, a small fireplace and plenty of windows with a specially designed system of ventilation. The dimensions of the honse are to be twenty-four feet square and it is to be absolutely fireproof.
Mr. Fellows design has attracted widespread attention. The combination of modern conveniences with the extraordinary low cost of construction has thoronghly aroused the enthuniasm of city planners.

MACHINE PRINTS TICKETS

Iview of the ever increasing volume of railway traffic and the serious diffieulties experienced in a rapid dispatching of travelers at the ticket offices, especially those of the more important termini, attempts have been made from time to time to design a machine, which, by automatically printing all the various sorts of tickets, would simplify to an enormous extent the mechanism of such offices. Apart from reducing to a minimum the most troublesome accomnting work, the apparatus described in the following allows the sales to be checked with absolute safety, thus protecting the railway officials against any chance of mistake or false suspicion.

The apparatus, a German invention, shown herewith, enables tickets to be printed with any text desired at a moment's notice and with a far less expenditure of trouble, time and personnel than according to the methods so far in use in dealing with the traveling public. At the same time it prints clecking tapes, the number and value of which correspond to the sales of tickets, so that a surprisingly simple, rapid and reliable checking and accounting are warranted.

Ticket Seller for f German R bilroad Printing His Own Hastrboards.

In commencing his duties the operator at first prints a checking ticket on which lis name as well as the date and hour of commencing work are filled in. This checking ticket is marked with a current number-like the remaining

FIFTY CENTS FOR A THREE•HOCRS' RIDE.
Steing the City." Victoria, B, C. An cnjoyable and unique trip for the tourist. Stop-overs of twenty minntes are made at various points of special interest.

Lonks Like a Chinfsf Invfntion, But It's One of thie Latrst of French Aeroplanes.

"Fxcfeding the Spefd Linit." Auto for juveniles making fiftern miles an hour.

Thf I'oungeter is Proud of His lhome Made Machive.
tickets to be printerl-and is kept by the official as proof of the tickets-from a given number-having been printed by him.

4

THE NEW PAULHAN
 AEROPLANE

AT the second salon of Aerial Locomotion in Paris the Paullan machine attracted considerable attention. It is a liplane constructed of timber built wings with rod ribs. It has superimposed surfaces joined by vertical bars. Two long rigid beams, parallel, carry at the rear a stalilizer and at the front an equilibrator.

The car with its motor occupies the central part of this frame. The screw propeller turns in the rear of the carrying planes. The vertical rudder is in the center of the stabilizer and carries a cramp arm break. All rests on a combination of two landing slides, each one provided with two launching wheels. One of the claracteristics of the Paulhan machine is the supple joining of all the parts. A solid semi-metallic strap of leather which confines the heads of the parts to be joined. renders wedging and ruptures impossible.

The equilibrator is controlled by a rigid connecting rod with a turning joint which gives more security than the control by cables.

The car, suspended by cables between the two large planes, is covered with a weatherboard of aluminum and canvas terminating in a pointed arch, to make it a slelter for the pilots. It has two seats side by side.

One fly wheel controls the equilibrator, the rudder and warping of the wings.

BOY'S HOME-MADE MOTOR CAR

USING bicycle wheels and an air cooled motor for supplying the necessary power, an ingenious youth has constructed this juvenile automobile, said to be able to travel at a speed of 15 to 20 miles per hour. The gasoline engine has a rating of $11 / 2$ horse power. The enthusiastic contriver of this machine lives at Greenville, Ohio.

ELECTRIC SCRUBRER AND POLISHER

THE accompanying illustration shows an electric driven machine for scrubbing and polishing hardwood floors. There have been many contrivances devised from time to time for the purpose of renovating floors by machinery, and this device seems to be one of the most efficacious. In large structures the building manager is well aware that a monthly saving can be made if he can secure a properly constructed machine for this work.

This machine weighs less than fifty pounds and can be attached to any electric light fixture. It is extremely simple in construction. All the working parts are packed in grease and enclosed within a dust- and water-proof case.

There are no belts, no chains, no moving parts exposed to break furniture, damage woodwork or maim the operator. Owing to peculiarity of construction, it will scrub the inequalities of the floor as well as the high places. It is under absolute control at all times.

For ordinary scrubbing of wood, marble or composition floors, a stiff scrub brush is attached by a clamp to the rebolving disk; a bucket of hot water containing soap powder is poured into the tank. The water is fed through a hose into a tube, which sprays it on the revolving brush. The handle is kept slightly below the working position, allowing the entire weight of the machine to rest on its casters.

This machine is also a great laborsaving device for removing varnish, paint, stain, etc., by the use of a steel brush and chemicals, and any unsightly floor can be cleaned down to the white wood, then sandpapered smooth for finishing, and finally waxed and polished. All of these operations may be accomplished with the same machine by applying the different brushes or disks.

LARGE AND SMALL

THERE were on exhibition in a Berlin, Germany, muscum recently two curios that have attracted a great deal of attention, the largest and the smallest man in the world.

Easy Work for the Mald and a Fine Polish FOR THE ILOOR.

Gant of Giants, and Pygmy of Pygmies.
A queer exhibit in a Brorlin Muscum.

Xt Work on the Gidtun D.tM. fodsimat
Pacine the concrete that forms hage monohthe walls for the dam).

Where the Ten Commandments Were Given,
Stone chapel on Mount Sinai, said to mark the spot where Moses saw the Glory of God pass by.

Josepl Dussorc, the giant, is a native of France and is 26 years of age. His height is 8 feet 5.6 inches, while his weight is 348.3 pounds. He wears a number 63 shoe and a number 16 glove. To make him a suit of clothes his tailor requires over 8 yards of material. He is the oldest son of a family remarkable for their stature, and who are all of a powerful buik. The youngest girl, a chilk of but 12 years of age, has a height of 5 feet 9 inches.

Joseph finds it a very difficult matter to use any of the furniture it a room furnished for people of the usual height. When he travels a specially constructed berl acemmpanies him which is 9 fect 10 inches in length. Before being exhibited in the different musemms of Europe, Mr. Dussore was engaged in tilling the soil.
"I rince Atom," the smallest man in the world, travels with the giant. He is 16 years of age and weighs but 20.9 pounds, and has a height of but 2 feet 3.6 inches. His parents are of normal stature and his three sisters are also of about the usual height.

Daring Swefp in Burmah's Famous Bridge. It the curve is a silver bolt which was the last bolt used in the work.

BURMAH'S FAMOUS BRIDGE

DISTANT from Mandalay. Burmah, 83 miles, stands one of the most remarkable railway bridges in the world. It is 2.260 feet in length and at the fourteenth trestle has a height of 820 feet. It was built by an American firm in eighteen montlis, nearly 5.000 tons of steel being employed in its construction. Not only for its extreme height is it remarkable, but also for its daring curve, two distinct sharp bends being taken by the rails as they cross the valley.

$*$

GAS WELL MAKES TROPICS IN WINTER

FOURTEEN years ago a party of oil diggers made a bore at Pelican, on the Athabasca River, Canada. They were working under the Geological Survey of Canada, and their instructions were to find if the reported existence of petroleum in the Western North was a fact. An oil-boring outfit was an in-

Party of Belatfi Survfyors Who Slfpt, on a Cold Jancary Night. in Comfort Close: to Burning Gias Well.

Band stand on the Way to a Concert.
Minncapolis has solved the problem of music in the small parhs.

Odn Expermaxtal Flying Marhine. the Work of A Fernch lintrytor.
The maker is striving for a sumi-kite ettoct.
novation in the wiklerness, but it was finally gotten in, set up, and started at work. When the drill had reached a depth of 820 feet it struck gas. There was so much of it that an iron ball wonld not go down the hole when the gas was coming out, and the noise it made in escaping could be heard three miles away. The flow did not lessen any, and after varions attempts to renew work, the men were at length compelled to quit the job.

After they went, some one came along

It Does Not Take Long to Sft in Place. Costs but $\$ 300$; answors the purpose of a $\$ 5.0 \times 0$ structure.
and lighterl the jet, probably in a spirit of mischief. It is still burning. Local report has it that it has been burning contimonsly since, but it is more than likely to lave been extinguished now and then during the past fontteen years and re-lighted by settlers and passers-by: That the gas flow is undiminished, however, is quite certain, for the accompanying photograph, on page 599, taken a few months ago, shows a flame nearly fifty feet high and of very substantial circumference. In January a party of returning surveyors camped, on a bitterly coll might, at the gas well, whose cheerful flame so warmed the winter atmosphere for a radins of many yards aronind that they slept in the open, after the hardohips of the clay, as comfortably as if they were in a well-heated hotel or in their uwn home.

This Arroflane Is Drawn Throngh the Mr by ROyts.
A member of the San Franciseo Acro Club in "towed thent." 2(k) feet above the ground.

WHERE THREE TRAINS CRISHED INTO ONE ANOTHER. Remarkable triple wreck on a Frinch ralroad.

TRIPLE RAILROAD WRECK

ARECENT railroad wreck in France was one of the most remarkable that have ever occurred in that country or elsewhere, for that matter. The I'aris to Brest express, while running at a speed of fifty miles an hour, ran into a waiting freight train at Courville. Just as the two trains collided, a third tranna freight-pulling out from the station of Courville, plunged into the mix-up. The wreckage took fire, and when the rescuers had completed their work, it was found that ten persons were dead and one hundred and fifty injured.

In spite of the greater number of passengers carried in the United States, according to statistics recently issued, the casualties in Enrope are greater proportionately, than in this country. This is

Wherf Sfe Prevalls Beyond the Graye,
In this Turkish crometery the tombstone with turban top in the foreground marks the burying place of a man: that in the background, of a woman.

One of the Last of the W'ooden Trfstes. This is over a small stream on California. Stect is rapidly replacing such bridges as thes
said to be due to the difference in character of the coaches employed, those in the United States being heavier and more substantial, and hence affording the passengers better protection in the event of collision or derailment.

PASSING OF THE WOODEN TRESTLE

OUR photograph' depicts the erection of a trestle bridge over Strawberry Creek in California. It is over one hundresl feet from the ground and has a length of 1,200 feet.

lorfnch Auto U'sed for Trañsporting Gun to Be Usen Ag.anst Airships.

 MENTS How, IS MORF EFFECTIVE IGAINST AN Ifirciplane than a lield Gun.

Water Lilifs Growing in An Artificially Hfated Pond in Winter
An experiment that a clever Swiss proved a success. Heated pipes do the work.

Steel is now displacing timber because the latter, although less costly at first, requires frequent examination and renewal. The first of the large metal trestle structures was built over thirty years ago, and some of these have a height of 300 feet above river-level and are made to carry on one span the concentrated load of two locomotives each of 130 -ton weight. The factor of safety is less than in the wooden structure, but it is sufficient.

America is the home of the trestle bridge. When a census was taken some few years ago it was found that there were 150,000 wooden trestle bridges extending in the aggregate to 2,400 miles for single-line railroads. These had 730,000 spans. The average of such bridges was 100 feet per mile of railroad. But of the total spans 95 per cent were of less than 50 feet, although 1.150 were over 200 feet. Many of these trestle bridges of wood were of great length; the longest over Lake Pontchartrain measured twentr-two miles. In 188 t there was built the Intercolonial Railroad bridge at Halifax, 2,050 feet loug with trestle and a swing span over the river. In the Selkirk range of the Rocky Monntains the Canarlian Pacific Railroat was carried over Mtonntain Creek on a trentle bridge 152 feet high, the longest span being $1+4$ feet and the total length 1.071 feet. Probably one of the highest wooden trestles is on the St. Paul, Minneapolis and Manitoba: it is 211 feet high.

GUARDING A HALF BILLION

WIEN congress passed the AldrichVreeland currency bill in 1908 providing that the comptroller of the currency should have printed and canse to be kept on hand at all times, 50% of the total capital stock of the national banks of the country, few had cause to realize what the passage of the bill meant more than the Comptroller himself. Briefly, it meant the printing and storing of half a billion dollars of printed currency, aggregating the designated fifty per cent of the total resources of the seven thousand national banks of the United States.

The new vaults have recently been completed and the negotiable currency contained therein amounts to slightly over $\$ 510,000,000$ at this writing, this amount having been said to be the largest amount of money ever kept in a single vault in the United States. The burglar protective system alone cost $\$ 9,000$ aud

A Half-billion dollaks goes into This vallt.
How the big vault door looks from the inside. The glass door. swung aside, is filled with electric wires in meshes as an alarm in case a single wire is broken.

YOUTHFCL FRENCII BEAUTY AND OLDFASIIIONED AMERICA-A CONTRAST IN COSTUMES.
Miss Fowler-the Iady at the right-of Vineland. New Jersey, has worn a costume of this sort for forty years, when the bloomer movement first started. She would probably disapprove of the harem skirt as immodest.
in the system are 17 miles of wire. It is tested every 15 minutes day and night, by means of telegraph sounders.

Nordinl, tha Australian Ithlite, Stolpfing the Beating of His Hfart.

MAN STOPS HIS OWN HEART

NORDINI, an Anstralian athlete who recently gave public exhibitions in London, England, has such extraordinary control of all the muscles of his body, including those of the heart, that he can stop the beating of the latter organ for as long a period as twenty seconds. Moreover he can retard or accelerate his pulse at will.

Many men have, by exercise, developed enormons museles, but they have always been visible and remained firm to the tonch, even when relaverl. Nordini can relax his to such an extent that by shaking his arm he can make the triceps quiver like reeds shaken by the wind, and, by a simple effort of will, without even clenching his hand, can make his upper arm as hard as iron while the forearm remains perfectly soft.

The Roosevflt Hunting Trophes That Mave been Mounted.
Though a numher of men are engaged, the work goes for ward slowly, owing to the skill and care required.

TEACHING BOYS TO BUILD AIR-SHIPS

AVIATION is bound to develop rapidly as long as it possesses its fascination for boys and young men. Innagination is a quality of youth and when applied to things mechanical it spells progress. This was shown in a recent air-ship contest at the Los Angeles Manual Training school, where many original models were shown, together with others built upon well-known lines. This helicopter with four circular planes and twelve vanes, or propeller blades, is operated by a spring mechanism. It was designed by one of the students, who is shown ready to launch it.

Thf Entrance to the Private Domain of a Former Mormon Chiff.

GATEWAY TO A HAREM

THE Eagle Gateway, which spans State Strect, Salt Lake City, was built under the personal direction of Brigham Young, and marks the entrance to what was once the Prophet's private domain. To the left of the gateway are the Bcehive and Lion Houses, the connected residences where he lived with several of his many wives and variously assorted families. Across the street is the Gardo Hlouse, formerly "Amelia Palace." It was built as a reception place. It was never used for this but was given as a residence to Young's favorite wife, Amelia.

The Beehive House is now the office of the First President, while the Lion Honse is occupied by departments of the Mormon University.

CURIOSITIES CAUGHT BY TIIE CAMERA.

Flying machine madi by an enthusiastic manual training school student under the direction of his teacher.

[^12]This little girl fell into a tub of wator. Hur mother being too busy to put her into other clothes, hung her out on the clothes line to dry out.

SPEAR HEAD EDGED WITH SHARKS TEETH.
A wicked-looking weapon in use in Polynesia.

A Shark-Tuoth Stabbing knife.

SHARK'S TEETH FOR WEAPONS

SHARKS' teeth are largely used in Polynesia for the making of weapons. Stabbing-knives edged with rows of them are extremely formidable, while spearheads similarly ornamented are capable of inflicting dreadful wounds-the object of this sort of contrivance being to cut up the adversary as much as possible at a single blow. Once thrust into the flesh, such an instrument could hardly be withdrawn except by cutting it out, so jagged are the edges. It is certainly a cruel weapon.

COLD AIR TREATMENT THAT REQUIRES A HARDY CONSTITUTION. Taking a snow bath in Norway.

Lighthouse on the West Coast of Heilgoland.

GERMANY'S GIBRALTAR

TWENTY years ago Germany and England made an exchange of Zanzibar and Heligoland. Lord Salisbury thought he had done very well in getting rid of the little island in the North Sca. At the time, the Kaiser was langhed at. Heligoland was splitting up bodily. Great scientists agreed that its doom was certain, and that it was not structurally strong enough to stand the strain of being fortified. But the German Enrperor saw further than the British statesmen. "The island is destined to be a bulwark toward the sea," he declared, "to offer protection to German fisherięs, or

Vifw. from the Hfights, of Lowfr Heligol.tni) AND THE DORK.
support for German warships, a strong place in the German Sea against every enemy who may show himself there." So the Kaiser began on a scheme of rebuilding the little island. Since 1890 he has practically reconstructed the island. He has spent, on an average, $\$ 1,250,000$ a year in providing Heligoland with granite buttresses on all sides, sixteen feet thick and eiclity yards and a half high. The numberless cracks and fissures, caused by each winter's frost in the higher parts of the wasting cliffs, he has filled up and bound together with thousands of tons of ferro-concrete. Tirelessly by day and night, this work has been going on for twenty years. At the

A YOUNG SEA ELEPHANT IN CARL IIAGENBECK'S HAMBURG ANIMAL PARK.
The first of these creatures in captivity, the youngster, a year old, is a great curiosity.

A Pony in a Drawing Kiom.
present day the island is wholly incased with a cemented belt of armor three miles in circumference, which has cost $\$ 30$,000,000 . Thus strengthenerl, the island has been fortified, at a further cost of $\$ 7,500,000$ during the last three years. Heligoland is only twenty-six miles from the mouths of the Eider, the Elbe and the Wheser, and it is a defense for all three rivers. The Kaiser has also fortified the chain of jslands which lies to the north and south of Heligoland. This chain of forts has made it possible for the Kaiser to transfer his naval base from the Baltic
to the open sea. Under pretense of erecting breakwaters, to protect Heligoland from erosion, he has spent large sums on harbor construction on the north and south sides of the island, in addition, the east coast has a roadstead with fortyeight fathoms of water. Here can be accommodated the entire German fleet, which is thus brought one hundred miles nearer England. The Kaiser has spent the cost of five or six super Dreadnoughts on IIeligoland alone. It is the key to a maneuvering base one hundred miles in length, from any point on which mosquito craft can dart between the island fortresses. In naval circles it is agreed that this long base doubles the fighting value of the German fleet.

4

WALTER WINANS AND HIS PET PONY

OU'R photo, taken at Surrenden Park, Kent, England, Mr. Walter Winans' beautiful Kentish home, shows this famous sportsman with one of his "pet" ponies, which is a diminutive little quadruped, and which follows him about like the domestic dog. It is seen in his drawing-room being petterl by his master who has just given it a nibble of sugar in order to tempt it to pose for the photographer.

TIE SORT OF ARMV CHINA COULD NOW CALL INTO THE FIELD.
Foreige drill officers have accomplished wonders.

SENDING TIE NON-SINKABLE LIFE-BOAT OUT THROUGH THE SURF. It will bold eight passengers.

NEW TYPE OF LIFE CAR

RECENTLY there was received at the Nahant, Mass., life saving station a new type of non-sinkable life car. It is the only one on the entire Atlantic Coast. It consists of an egg-shaped boat built of steel, accommorlating eight people. The frame-work is of steel and it is decked over so that the hatch
through which the rescued party enters the boat can be battened down, after which the boat is hauled ashore by the life-savers. It is so light that it can be hatuled on a handeart, or carried on the shoulders of four men, and it can be launched by floating it out through the surf. A line is attached to the ordinary life line which is shot from a gun by the life-savers over the rigging of the

MILITARY MOTOR CAR COLLIDES WITH A FREIGHT TRAIN. After this curious mishap. which occurred in Germany. the auto was able to continue its course under its own power to the repair station.

King anl, (YuFex of Spaln Skating at Mantid During the Past Winter.
This photo was taku'n varly in the year at therr privat. lake at La Casa de Campo.

[^13]wrecked vessel. It is then hauled out by the people aboard the vessel and then hauled ashore by the life-savers by means of another line attached to the shore end of the car. After the hatches are battened down there is enough air to last for several hours when the complement of eight passengers are enclosed in it. Its non-sinkable character is due to its lightness of construction and shape. When fully loaded it rides steadily, but when less than four people are in it, it has a tendency to bol about somewhat like a fishing float or bob.

$+$

MONSTROUS MEXICAN TREE

O
NE of the largest trees in the world is found in the village of Tule in southern Mexico. It is larger in circumference than the famous redwood trees of Califormia, but is not nearly so high as those monsters of the forest. It equals the largest reported specimen of the gigantic baobabs of Africa which have been regarded as the largest specimens of trees existing anywhere. This immense tree. which is of great antiquity and still growing, is 154 feet in circumference six feet above the ground. Twenty-eight people with their hands outstretched and tonching their fingertips can just encircle it. The height is alout 100 feet and the diameter of the spreading branches. 140 feet. It is claimed that these spreading branches once sheltered the army of Cortez while he was subduing this region after the conquest of the Valley of Mexion and. on heholding the monster, one can credit the statement.

i Itrfe larger Than the Califurnta Redwoud, Keputed to have sheltered the arms of Cortez, nearly four centurics ago.

Electric .luto Mearse, Chicagu. Said to be the first ever turned out of an auto factory in this country

HOT-AIR AS MEDICINE

THE machines now in use for producing hot air for the treatment of diseases present many inconveniences. The alcohol machines utilize the gas produced by the combustion of alcolol which is impure air saturated with steam.

Hot air shoukd be pure and dry, as loumid air prevents the cutaneous evaporation, and electric machines unfortumately do not admit of sufficient temperature: besides they are difficult to regulate.

There is a question then of finding an alcohol machine which admits of attaining a high temperature that may be regulated: also that it be portable and capable of furnishing pure, dry air.

Two machines have recently been constructed which appear to realize this desideratum. One serves for the application of douches of hot air, the other for local baths. The common principle of these two machines is that they do not employ air which has serverl for the combustion. Our photograph gives a view of the latter-named machine. The alcohol flame of a liunsen burner heats with intensity a tube through which the air passes. In the machine for donches, the air is brought by a powerful hand ventilator. In the one for local baths the tube is fed with the exterior air, and the draught is produced by the difference of density between the exterior air and the air heated by the machine.

Physician Giving Local Medical Trehtmfnt with Hot lir-d lirficil DFvicf.

[^14]

MODEL MOTOR BOAT REGATTA IN LONDON.
Participants, and their various craft, who took part in recent races of miniature vessels at lictoria Park, inaugurating a new sport.

BABY゙ ELEPIIANT FEEDS FROM ROTTLE.
Scene in German East Africa. The elephant is a pet of an officer and has been "raiserl," so far, literally on the bottle.

WHICH IS CHEAPER - HORSE OR AUTO?
A scientific u'st seems to answer this question.

HORSE VS. MOTOR

AN interesting test of the comparative cost of operating a four cylinder antomobile and driving a horse and buggy has just been completed by a New York manufacturer of motor cars, with results that explode the old theory that the automobile is a "rich man's toy" while the horse is the poor man's friend. A six-day test took the experimenters

THIS AUTO ROAD. NEAR ST. GIRONS, IN THE PYRENEES, FOLLOWS A STREAM

A French Schoonfr Ioriven Clean Ashori hy a Gale un the Cornish Coast, Englant. It is soldom a vessel so waverpounded holds tugether.
arong the way at the average retail price, just as the feed for the horse was purchased at livery stables en route. For depreciation an allowance was made of $\$ 8.24$, making a total cost of $\$ 14.44$ or per passenger-mile an average of $\$.0157$.

The horse and buggy in the same time, and muder as nearly possible similar conditions, marle the following recorl: They covered 197.3 miles at a cost of $\$ 5.80$ for the distance, no charge being made for repairs. Depreciation was allowed for at $\$ 1.47$, making a total cost of $\$ 7.27$, or per passenger-mile a cost of $\$.018 t$.

Tluns it will be seen that the expense of operating a rumabout is a trifle less per mile than that of driving a horse and bongey, but as the test was for only six days and as mo charges for repairs oceur in the case of neither automohile mor huggy, this item of mp-keep rematns to le compared if a fair estimate is to be made.

The judges assumed that the cost of shoeing, bedding and axle grease for the horse and buggy will offset the omission of grease charges in the operating cost of the antomblile. In order to get a fair decision, disinterested observers were appointed to keep the records of the test and also, as a matter of fairness, the automobile was kept locked up while not in use so that no repairs could possibly be made withont their being charged up against it.

Of cuurse the fact that the automobile coverel three times the ilistance in a given time should be taken into consideration for, as the business man or the traveling man on a salary knows quite well, "time is money" in a very literal sense indeed.

Further tests of a nature similar to the one outlined will probably show like results.

GAG FOR Gussips.
I bridfe that intectually shut the mouth of a woman sold in the good old days in England.

Barbis Nist Wharis Is Uset for Sold.
' 1 lue nests of the salanuani, in Java, arivestowned a great delncacy by Chinese, Japs, and French.

EXPOSITION OF AERIAL LOCOMOTION

AT the international acrial locomotion exposition in l'aris, the biplane Coanda was without doubt the principal attraction. It is built of wool, incluting the wings ; the interior frane work is of steel, two uprights only. uniting the lower planes ; and passive resistance is very greatly diminished. It secms by its stricture to be capable of greater speed than the monoplane. The efforts in the biplane are about the same from one end of the wing to the other. The greater part of the carrying surfaces are reinforced toward the forward part ame taper toward the rear. The slemler end has a certain suppleness, and consequently under the effort of propulsion the extremity of the wing will inflect upward like that of a bird's wing. This effect has

World's Largest and Most Powerful. Orgin Kiyboarid.
Just installeed in the new cathedral. St. John's the Divince. Now York-this instrument has 109 stops: the ordinary organ has but 25 . It cost \$75,(M).

A Flfet Of Alr-Ships Maneuvering. Various types at the international exhibition, in Paris.

Trsting an Automatic Parachutf for Aviators, at Vinchnes, France.
A guinea pig is being tied to the model for an exprerment on a small scale.
been accentuated in the Coanda biplane. This machine presents another remarkable peculiarity: the screw propeller is replaced by a turbine, drawing in the air at the front and rejecting it at the rear. When ready for flight the Coanda weighs about 925 pounds.

The many improvements in the construction of this biplane may very well place it on an equality with its competitors.
$*$

MULTIPLE TELEGRAPHY IN ITALY

R^{t}ECENTLY a demonstration was held at Florence, Italy, in the presence of scientific authorities, of a new auparatus for multiple telegraphing. This was invented by Cerrade Andrini. It was given the finishing touches by the engineer, Luis Maino, Chief of the techmical department of the Italian Government Telegraph Service.

LUIS MAINO CONSTRUCTOR, BUT NOT THE INVENTOR, OF THE MULTIPLE TELEGRAPHA REMARKABLE CONTRIBUTION TO COMMEFCIAL SCIENCE,

Soaring Above the duthfnte Sicplentherma A WOODEN EAGLE.
A berman actress amusme the crowd ma Burlin the ator. 0.6

This invention is used for transmitting and receiving the Morse system. It can send ten telegrams at the same time. Each touch puts in movement a vibration which sents over the line ultimate currents of high potentiality with unvarying and established periods. These currents are received at the station to which they are sent by a special mechanism and based on the different Morse Telegraph apparatus.

W'ith the Andrini system it is possible to send from ten to fifteen telegrams at the same time and on the same circuit. This makes it possible to transmit from 300 to 600 telegrams an hour, the orixinal line being able to handle only from 30 to 40 . The invention needs only a simple amd inexpensive installation and does not interfere with, but rather sup)plements the telegrapla system already in use. The remarkable value of this is easily understood, especially with its relation to the newspapers, etc.; which above everything else require a prompt transmissim of long messages with the least possible delay inaginable.

REMARKABLE POWER OF AUTOMOBILE

PROBABLY no more remarkable feat has been recently performed by an attomobile than that shown in the accompanying illustration below. The local agent of a well known car in Las Angeles, Cal., gave a demonstration of the pulling strength of his machine by attaching it, ly means of a rope rumning from the rear axle of the car to the pilot of a 110 -ton locomotive, and drawing the locomotive along the track.

The start was made from a dead standstill and it was at first thought impossible to move the great mass of iron and steel as the wheels of the auto slipped badly and the locomotive seemed to be gltued to the track. After weighting the car with six gool-sized men, however, the tires took a firmer hold and after a long, steady strain the wheels of the engine began to slowly revolve.

The accomplishment of the task is testified to by a number of witnesses who at first declared it impossible and looked for the breaking of the rear axle or the pulling out of the entire end of the car. The engine was gotten under way, however, and drawn for some distance down the track without injury to the antomobile in any way.

A Juyfnile Seat for Autoing.

AUTOMOBILE SEAT FOR THE CHILD

ACONVENIENT seat for a child can be adjusted in an automobile as shown in this photograph, and it has the advantage of being easily removable as it rests upon an iron rod which is bolted to the bed of the car. This small seat is arranged so that it can revolve, making it possible for the child to face either the front or the rear of the car, and it has this great advantage over the extra seat placed behind, that the parents can wateh the little passenger and steady the child at rough places in the roat. This is an inexpensive and convenient device which will be appreciated ly parents who are fond of antomobiling.

MOTOR CAR DRAIVING 110 TON LOCOMOTIVE.
The start was made from a dead standstall.

The Colt Kfvolyer,

Thf Mausfr Automatic.

The: Steyk Rfiolver.

The Wfbley Pistol
\EW VAKIETIES, AMERICAN AND FOREIGN OF THE REVOLVER.

ENORMOUS BALL BEARINGS

THE accompanying ilfustration shows the construction of an enormous center ball bearing made at Norfolk, England, for the Breydon Swing Bridge, at Yarmouth, for a railway:

As this bridge turns about 400 times every month, after several years' service the " $\$ "" grooves of the original bearing were found to be much worn, mostly due
to not having been properly hardened. The original bearing consisted of two rings having " $\backslash^{\text {" }}$ grooves in which there were 69 balls 2 inches in diameter, the largest made at the time the bridge was installed.

The new center ball bearings have a diameter of $31 / 2$ inches. They are arranged to run in segmental grooves, the radlus of which is $21 / 4$ inches. There are 22 balls.

HUGE BALL BEARINGS MADE Bl AN ENGLISH FIRM.

NEW YFHICLE KNOWN AS THE "MUZONOBILE."
Freak device of an army officer for fun-making at a carnival recently helr! at Manila.

CARNIVAL IN THE PHILIPPINES

THE Pliilippine carnival, originater by Americans in Manila, is one of the biggest and most entertaining amual shows in the Orient. Interesting exhibits from all over the archipelago, from China, Japan, Siam, Singapore, the Fedcrated Nalay States, the Straits Settlements, and other surrounding countries. are shown, while magnificent land and water parades, athletic tommaments and field sports. add to the amusement of the visiting throngs. The accompanying photos of certain features of the carnival are typical of the islands' festival of fun. The first shows Captain George T. Langhorne, U. S. A., one of the original pro-
moters of the carnival, in his ingeninusly contrived "mulomobile," where it cannot be said the cart is before the horse. The decoraterl, grotesque-appearing lameh shown in the second illustration is the creation of one of the foreign colonies of Manila, and was designed to take part in the water parade, which was one of the striking features of the carnival. The giant head surmounting the boat's awning was placel immediately over the smoke-stack, the cap having an opening in the top for the smoke to pass ont. The effect was of conse very curious and the vessel quite naturally attracted its full share of attention as it took its part proudly in the pompons pageant.

LAUNCII OF THE GIANT'S HEAD.
Odd decoration of a boat at the carnival held recently in the Philippine capital. The head is a colossal imitation of the clown's and the top of its cap is the steamer's smokestack.

A PRISON ON THE WATER
Comfortable quarters for law-breakers at flanover. Germany.

A FLOATING PRISON

AN object of curiosity to tourists who happen to visit Hanover, Germany, is the floating prison "Lemeburg." This boat resembles the freight boats used on the Great Lakes in this country.

The prisoners are put to work on the canal and other work of a like nature. They seem tir enjoy their detention. There are twenty-six prisoners. The cells are directly underneath the deck and ate musinally well ventilated.

INCUBATOR FOR OSTRICH EGGS

AT Mr. Carl Hagenbeck's ostrich farm at Hamburg. Germany, the most northernly institution of its kind in the world, ostrich eggs are now placed in special incubators. The average period of incubation is sixty days. So far over sixty eggs have been hatched and ninety per cent of the birds are alive and healthy. The farm occupies nine acres of ground and contains nearly 200 birds

Railroad Train Colliding with an Auto,
The audience little susperts that such scenes are all in miniature:

Battle Between Sea and Air Forces.
Fortresses may be seen on "ither side, and the "aeroplan." -in the center-will drop bombs. The fan produces waves on the water.

This Is the Way the Burglar Climbs Up thf Side of a House.
He is rually crawling on a parnted canvas, that looks like a house, in a studio,

The Way a Cup of Coffee "Pours Itself." In the: film, the man and the string are painted out but when the picture is thrown on the screen, it looks as if maric had a part.

HOW MOVING PICTURE SCENES ARE PRODUCED.

MAGNETISM AND SOLAR SPOTS

BY means of the spectroscope, spectroheliograph, polarizing and magnetic apparatus, it has been satisfactorily proved that sun spots are clearly of a cyclonic nature; some photographs
taken in June, 1908, were particularly convincing of this fact. At that time it was observed that a great Aloculi of dark hydrogen apparently advanced towards the whirling mass in the spot at the average speed of 60 miles per second, as if it were attracted by it, and being engulfed in its center. This suggested to

IHOTUS IIJKFN OF THE SUN SPOTS. WHICH PROXE THESE SFOTS ARE OF CVCLONIC ORIGIN.

Naw Way to Serve Lobstir.
The photograph depicts a deana recently rateuted by an English chef who won a prize for his skill in creating and "arcuting this idea for servine lobster. The dish is Fomard ia ha Dreact the lettering of which is done with the" "mes from the lobster. The creature is mounted on a carrage. what the ontspread wings sive a distuct idea of a flving manlunc. The idra ctated quito it sunsation When the herst lobistere so decorated were herst surved at a hanquit. Ibe ettect is certamly very unusual.

I'rof. Ilale, the director af the Mit. Wilson ubservatory, that solar cyctones create magnetic fields, for if sufficient ruantity of electrified atoms were ammated with cyelonic movements in the spots a magnetic space must result.

Experiments have demonstrated that the distance of two components is in proportion to the intensity of the magnetic field and to the spuare of the length of wave. In fine that which distinguishes, these duplicates from the donble lines produced by other known phenomena is. that the lights from the components are polarized in a circle. but in an inverse sense, consequently if we meet in the -pectrom uf any substance, a duplicate which appears to come from a magnetic field, this orisin will be revealed he the circular and inverse polarization.

These deductions applied to the solar spots have been crowned with success and l'rif. llale has proved that magnetic fiekls exist and ate cansed by territic whirling manse of electrified atoms.

Artificial Suk Sefn CiNder a Magnifyixg GiAns

MAN-MADE SILKS

THERE is now being manufactured in an artificial silk factory in the morth of France ganze or tulle which has the remarkable brilliancy of synthetic silks. But by careful examination with a magnifying glass one can discern a singular peculiarity of the material: it is found to be composed of an even mass instead of elementary intersecting fibers. It each angle of the hexagonal meshes, the threads composing the sections are joined, forming a single thread, each one of the same size. It is very evident after such an examination that the product is indeed an artificial fabric.

The net work which forms the gauze is moukled by a metal'ic cylinder which is finely engrossed with intersecting lines. This roller turns parallel with the receiver which contains the cellulosic solution in such a way that the mould engraved on the surface becomes filied with the mixture, rollers and scrapers clean perfectly the cylindrical surface, so that the grooves alone retain the paste. The cylinder-mould meets afterward a sort of belt on the surface of which, under the influence of the pressure, a transfer of the tracing is produced. The net work of the cellulosic fibers is detached from the principal cylinder and adheres to the cloth. The phenomenon is. however, quite clifficult to obtain, the nature of the receiving surface plays a certain role and the mesh or net work

Where this Shok Jhreads Unite. They do not cross but merse into one abother.

World's LargFst Ditch DIGGER.
In use in the Imperial Valley. Mexico.
must be carefully detached from the cylinder, as the gatze is extremely fragile. It is finally solidified by immersing in a coagulating bath. However satisfactory the results obtained may be, the utility of these fabrics is very limiterl and the usual processes of spinning and weaving are therefore not seriously menacerl.

It would be practically impossible to imitate a closely woven fabric by this methorl.

The manufacture of artificial silks has developed rapidly and possibly artificial cloths may some time be successfully produced by means of solidifiable solutions without tissues. That day, however, is probably not close at hand.

Primitive: Warriors of the Reindfer Tribes of Northeastern Siberia.
These nomadic people live by breeding and sellines thr* reindeer. They fight hostile tribes with bow and arrows. They use an arrow of metal and a shield of walrus hide.

A Warm Luvch for the Bahy.
This peculiar fature of the efoctric hatar onght to apmal strongly to the cuthusastic youne mother for what is of mote mimortance than the baby?

The New Campayilf of Vfettf.
The famous suare of st. Marks is besinmeng to assume 1ts wonted appearame" after the collapse of the old tower in tg / o.

Shathg Water in a Jimy.

ELECTRIC HEATER AS FAMIL.Y FRIEND

A electric heating device not much bigger than a tablespoon and easily slipped into the pocket or suit case, might be termed the friend of the whole family, as it will warm the haby's milk in a jiffy, bring the big brother's shaving water to the proper temperature while he dresses, heat a bowl full of water for sinter's hair washing while she waits, is ready for instant use in a sick room where hot water is needed in a hurry and (not forgetting father) will heat up the cold coffee in the "dimer pail with a cupola."

If father happens to be a doctor or dentist, he will find it useful for sterilizing his instruments. If a barber, it will provide him with hot water withont the necessity of keeping the gas going unde: the boiler.

This handy little invention is only six inches long and is supplied with a length of wire and a plug which can be screwed into any electric light socket. Then all that is necessary is to put the heater into any liquid that is to be heated and turn on the switch. A glass of water or milk is brought to the boiling point in a few seconds and moreover, the glass will not break from the heat.

The Latest parkian Ninelity-the " Spiber Wfr" Ye.il.

SPIDER WEB VEIL

Γ^{1}T may be through lack of charm, overweening vanity to display such charm as she may possess, or only mere desire for nowelty and excitement that produces the type of woman who parades in the sheath gown, the harem skirt, or-as shown in the illustration-the spider web veil. And like the other freak garls just referred to, this newest covering for the face has its origin in the French capital. The sheath gown wasn't a "go" because it attracted too much attention, its rather daring wearers thought: the harem skirt, American fashionables declare, makes one look old. What will be the verdict for the spider web veil?

In its way the veil is artistic-artistic at least in the sense that it reproduces faithfully the feeling of repulsion, tinged with curiosity, that the real spider in his wel arouses in the normal observer. The center of the web is placed across the forehearl, and the reproduction of a spider rests on the cheek between eye and ear. The effect at first glance is distinctly startling, and may earn for women of a certain type the appellation "spider" instead of "cat" or "vampire."

PARACHUTE THAT MAN CAN GUIDE

HRRE is a new type of parachute, the invention of a Frenchman, which has a very distinct advantage over all others. If obliged to make use of the device to escape a downward plunge in his disabled machine, the aeronaut may guide this parachute in various directions by pulling on corresponding cords. It thus overcomes the very serious objection to the average parachute that no choice can be made as to the place of descent, it being impossible to avoid either church spire, or lake, should misfortune so guide the ill-fated aeronaut.

The illustration shows a recent test of the apparatus that was made from the first floor platform of the lofty Eiffel Tower. The parachute, which has its trapeze directly in front of the aviator's head, and which folds up like an umbrella, can be easily released. The fall, of course, was from a stationary body. Just how effective any parachute would be if suddenly launched from an aeroplane shooting through the air, remains yet to be seen. In the test the parachute descended at a moderate speed, and under most satisfactory guidance of the cords.

Leaping from the Elffel Tower in a Parachute,

A HIPPOPOTAMUS COSTING $\sin (n)$, STAR BOARDER IN AN ELEPH INT HOL'SE,
The new elephant housi at the New York Zoolopical park, is the largest and finest buildine of its kind in the world. It is high, well liufted and is entered at the center of each side, instead of at eachend. The main roof is of sreen tiles. and has a lofty dome covered with glazed tiles laid in an elaborate color pattern of browns and sreens.

llarky lif (OOF Jmazivg the Berlinlers by A Vrfy UNublal Balancing Je.t.
Thas Duarican's extraordinary tricks have kept aspap for the tume herng, the mouths of Kasser

Wilbelm's subjects.

AMERICAN'S EXTRAORDINARY FEAT

IF Berliners do not take kindly to American cocktails, they are nevertheless deeply interesterl in the extraordinary feats of an American, Harry De Coe, performed with the aid of a glass and a bottle. The Germans do not, as a rule, take up sueh untustal tricks for public exhibition purpmes, their genius apparently not running in that direction, leaving such work to their French neighbors in particular. Wint Harry De Cone's feats have seldom been equalled even by the ubicuitous Firench acrobats. Hls performances at the Theatre Pasage. which inchude the extraordinary actthat is shown in the illustration-have attracted capacity houses nightly for the (iermans know when a performance is goocl and patronize it with enthusiasm accordingly. Ilarry be Coe's name will kny be remembered in the Cerman capital.

\square
THE HIDDEN HANDICAP OF OUR SCHOOL CHILDREN.
Whout seventy per cent in groups such as this were found to have imperf ect
teeth. "The unfortunate result of lack of early treatment may range all the way from digestive disorders to actual
malformation of the jaw."
"Free Dentistry for Poor Children." - P. 667 .

[^15]
THETECHNICAL WORLD MAGAZINE

N O . 6

REJUVENATINGTHE EAST

B y
AGNES C. LAUT

SPITE of the cry "back-to-theland," the last census shows that the trend is still from farm to factory, from country to town. In one section of New York State alone more than 400,000 people have abandoned the country for city life. Perhaps, that word "abandoned" is a misleader. The farms are still owned, but their owners are trying in vain to sell them: just as the farms were deserted in the first place because the owners tried in vain to make a living from them.

If you gathered up all the intenanted farms of the United States and laid them in an oblong block, they would cover an area twice the size of Massachusetts, four times the size of Connecticnt, fifteen times bigger than Rbode Island, half as large as the State of Olio; or if you stretched them out on a straight line ten miles broad, they would cover from Maine to Florida-16,000 square milesliterally a world more tenantless than when Christopher Columbus discovered America; for when Columbus came. at least Indians were getting a living from this wilderness of waste land.

What is the matter? Is it a case of wanted-a-new-discoverer-of-Down-East? Look at the facts; then look at them again! Where does the most of that
abandoned farm area lie? Within a hundred mile radius of the biggest cities it, America. The two largest areas of unworked farms are in the southeast and in New England-within commuting distance of the liggest markets in the world. The city and commuting population of New York is estimaterl at 6,800.000; and one-third of the abandoned farms in America lie within a hundred mile radius of that market.
"You can today buy hundreds of thousands of acres of land in Indiana, and Ohio and Kentucky and Temnessee and Pemnsylvania for $\$ 10$ an acre. which twenty-five years ago brought prices of $\$ 100$ and $\$ 55$ an acre," declared a soil expert of the Mississippi Valley: In one section of New York-from Pennsy]vania northward-there is said to be a section seventy miles wivle where you can practically buy a farm for nothing. That is-you pay a bargain counter price for the buildings, and get the land free.

What is the matter? Where is our Christopher Columbus to explore a way through this sea of waste?

When you come to examine the average yearly incomes in these abandoned farm areas, the thing is still more hopeless. The average yearly income in the abrandoned farm area of the South is not $\$ 75$ a year-a figure that would put a

THF (OLORXOO WHY (OF PICKNG WND PACKING APPLES.
Thar East hats berol whiged to turn to Werstran methods.
peon of Mexico, or a shepherd of Egypt. or a serf of Kussia to the blusill. The average yearly income of the farmer in the abandoned farm areas of New York and New England runs from $\$ 300$ to St00 a year-less than half an Italian ditch digeser earns, about the same anmut as a little girl in one of the sweatshop shirt factorics can earn.

Igain, what is the matter? Are we land-sick, or man-sick, or gone to punkyheadedness from dry-rot in our methons? This dwes not mean that there are not thonsand of splendicl modern paying farms Down Eat. There are: but they are so far ontumbered by the degenerate farm that the averages are reduces 1 to these miserable figures.

It custs $\$ 150$ all acre to clear fruit lanls in Waslungton: and when those lanls are set out in fruit, they earn ten per cent. on a valuation of $\$ 500$ an acre -earn it casily. 1 know one frnit ranch that yieded 200 per cent. on a valuation of $\$ 500$ an acte. Lin can luy fruit land in the last and Middle Wees for moth-
ing, with fine buildings thrown in at ahout ten cents on the dollar, with okd orchards only waiting the pruning shears and spray wagm to do their bestest, and -take a breath and look at it-the owners can't sell those lanls at any price.

What is the matter?
You look wise and talk vagnely about "the labor question." Prices for produce have increased only twenty-five per cent., and the midclleman gets most of that: while the cost of laloor has increased one-hundred-and-fifty per cent. Very true; but if that is not su much piffle, why dues it not apply to the West as well as (1) the East? You have to pay $\$ 2$ a lay for a good orchard man or wheat harvester in the TVest; and love or money camot keep him longer than six month: for he is determined to own his own land and hire his own labor. In the East, you can get an orclard man or harvester for $\$ 25$ at most $\$ 40$ a montli; and I give yon my word of honor from a varicty of experiences, his enterprising spirit will never rise to the heights of owning his

ELECTKIC R.MLWAY BUILY BY THE ORCHARDISTS OF GRAND VALIEY. COLORADO. TO CARRY IHEIR PRODUCE TO THE SHIPPING POINT.
own land and labor. The labor question is a difficulty impartial as the dews of heaven. It falls alike East and West : only in the West, you pay higher for the difficulty.

You say the soil of these Eastern areas is exhausted: but that is as vague an explantion as the talk about labor. The greatest soil expert in the world--Sir John Lawe of England-declares that when you come to analyze the chemical constituents of soil, the difference in farming areas is not so much in chemical composition as condition of tilth—or how the soil is kept; and that brings you down to the rock-bottom of your explanations -methods. You talk of the great wheat yield from the plains of the West; but do you know that the special wheat sections of Massachusetts and New York can raise wheat crops that make the thirty bushel yields of the West look small? I say-can raise, not do raise. That is-a few men raise them like a specialist, who got $11 p$ in the fifties and sixties per acre in Massachusetts last vear The rest
don't: and again your explanation resolves itself not into soil, but the man and his methods. Or take the apple soils! Apples don't want liumus. They want sandy loam and upland and light and drainage and air. Haven't the hilly plateaus of New England such uplanils good as Colorado's mesas? Yes-but the orchards have too often been planted down in the chill of the ralley: or else like Topsy have "just grow"d." though Eastern apples can boast a brilliant coloring and fine flavor not possible in warm irrigated areas. Why hasn't New England, then, such fabulous apple records as W'ashington and Oregon and Colorado? Becanse nrchard farming has not been the custom: and there your soil explanation is, again, back to the rock bottom fact of man and methods.

When you cone to discuss market, the advantages are all with the East. The market is practically at the back duor of this whoie almandoned farm area. Yet the West is beating ont the East in farm values and profits

J'ou say the East is a dairy country; and with the increased cost of labor on one side and the city authorities forbidding an increase in the price of milkthere is no longer any profit from a dairy farm. You guote the story of that appalling New Hampshire cow. Some expert figured up the yearly average returns from the dairies of New Hampshire - they dieln't exceed \$4) a year for a cow; and it cost $\$ 42$ to keep nne - leavming a mate:n uf $\$ 7$ for labor and proiit: lut what if the New If ampshire cow yielled $\$ 65$ or $\$ 85$ as many good Givernsey and Jersey and Ayrshire ladies do?

This girayfl-Strfan Lanit at Canawangus sells FOR FROM \$ $\$$
On it big crups of what. corn, beans, etc., can be raised.
by the mountains on both sides, and at least a mile from the nearest house, evidently on the principle that land could not be spared from the farm for the school, so it was dumped in this back water ditch with the result that a generation of such schooling produces such an exodus to town that the schools can't spare the youngsters any more for 70 the land. In twenty years' life in the West - when the West was frontier-I neversaw anything remotely equal to the absolate badness of the backroad schools of the Eastern States. Again, the school argument brings you back not to the fault of the land lout to the fault of the methods.

William Alien White once wakened a state by asking: "What's the matter with Kansas?" We need a William Allen White with a trumpet loud as Gabriel's to waken the Rip Van Winkles of Down East with a similar slogan.

If any one wants proof that something very leadly vital is the matter, he has only to begin farm hunting on the spot in the East. Two years ago, I entered on that joyous crusade of back to the land by inserting an advertisement in a lige daily, and following up the leaders that seemed to promise anything. I think the answers came at the rate of abont eighty a day. It took a month to sort ont the impossibles-the stone piles on 1op of momatains where you could sit drinking in scenery at $\$ 30,000$ a grulp; heal sites for "them millionaires" of which the bred-out New Englander sits dreaming till he stagnates of dry rot with the cffortless patience of a tombstone and the big hopes of an Arizona mining promoter looking for a sucker.

PE.JCH TRFE HE.JIEI LOW TO FACILITJTE SPRAYING ANI YlCKING.
Orchard at firand Valley, Colorado.

It need not lee explained here that "an abandoned farm" is not one on which any comer may squat and take possession. It is just exactly what the word
connotates-alandoned by its owner and for sale at pretty nearly any price.

Here are some typical answers that came to me, and no investigation proved

†YPIC.AI. FARM IN゙ "DSUSED" AREA. CLINTON COUNTY, NEW YOKK.
Ni.w uwners in this region have proved that scanty crops in the past were duc. not to poor land, hut to mproper methods of cultivation.
exactly as they had been represented:
400 acres upland meadow, 300 level as a floor, fenced in 40 acre fields, five acre orchard in perfect condition just coming on to bear, 125 acres heavy growth oak and chestnut, two fairly good barns, house gone to wreck from disuse, eighty miles from New York, six express trains a day, one mile and a half to station. \$5,000.

If that land had been in Colorado or the Footenay, it would be called a mesa. The orchard part would be valued at $\$ 500$ an acre, the clear fields at $\$ 150$, the timber at not less than $\$ 40$, in all $\$ 40,000$.

160 acres, 60 acres timbered hilly, 100 acres clear level meadow, fine brick house, 800 apple trees, good barns, brook, eight miles to train. The agent apologized for the exorbitant asking price of $\$ 3,000$.

This is in Vermont: and Vermont does not raise apples enough for home consumption.

This land is located in a peculiarly goose orehard belt Feven eight miles
from the railroad, in Washington, the cleared land would command $\$ 150$ an acre, the timber $\$ 30$, the apple orchard $\$ 500$ an acre, in all not less than $\$ 20,000$.

200 acres, twenty miles south of Albany, fine view of lludson, modern house, barn burned, 60 acres timber, 10 acres apples, 100 level, fine tilth, one mile to railroad. \$2,000.

If this land were in the Canadian Northwest, twenty miles from Wimmipers or Calgary, it would command $\$ 40$ an acre: if in Soutl Dakota $\$ 50$ or $\$ 75$. Two years ago I hunted for a ranch in South Dakota. Forty miles from a railroad, semi-arid lands were commanding $\$ 17$ and $\$ 14$ an acre without any house. and judging from the parched appearance of things at least forty miles on the vertical from any water.

From New Hampshire, Massachusetts, Connecticut and Maine came literally myriads of answers, the average 260 acre farm not more than three miles from the railroad with good house and barns seldom being listed higher than $\$ 4.500$ and outside the three mile radins from the railway, were hundreds at $\$ 2.000$ and $\$ 3.000$

NEW YORK PRODUCES MAGNIFICENT CROPS UF CELERY.

What is the matter? Kismet! Is it the will of God? We have such a habit of ascribing the results of our own blockheadedness to the will of God; but is it?
"Tell you what it is," publicly declared an Eastern farmer not long ago, "those Western fellows have us beaten to a frazzle the way they co-operate. They have their own sellers. That wipes out the mildleman. They have their own freight agent. That gets prompt attention from the railroads-best terms for shipping. Then, they hang together and pull together and boom and advertise for all they are worth. We tried that in our district: but in three months they had raked up all the old family quarrels, Aunt Sara's Uncle John's fourth nephew by marriage and all that. till they hat busted our association. These folks would rather lose a dollar than see another man make two. We'd rather be skinned alive by an outsider, than pull together and see each other prosper." And the very day I read that farmer's explanation, came a letter to me from the Fruit Growers' Association of Grand Valley, Colorado. On the letter head was the motto-"All Togetiner."

Is that motto the key that mulocks the secret of the whole situation?

Did you ever know of the people of an abandoned farm area getting together to advertise?

Did you ever know of the people of an abandoned farm area forming a cooperative association to buy machinery for common use. such as an orchard sprayer or motor truck to carry produce to market?

Did you ever know of an abandoned farm area appointing a head packer to prevent cheating in the apple barrelputting first grades on ton and cider culls in the middle? At one of the last apple shows in Baltimore, New York apples were ruled out because of dishonesty in the packing, though on the authority of President Brown of the New York Central, three shipping points of New York State each ship more apples than Washington and Oregron and Cularado conbined.

Did you ever hear of an abandoned farm area using oil heaters in spring to prevent the frost killing of the early bloom : or of a whole Eastern citv going out in wagon loads on a cold opring night to help keep the kerosene burners going and to fight the frost, as they do in Colorado and California?

I was once deluded into helping to form a village improvement in a Down East lamlet. I don't know vet whether the experience is to be recorded as comic opera or "bluggy" tragedy: It had elements of both It lasterl there monthis.

HERE IS AN ABANDONED FARM THAT ITS NEW CULTIVATOR MADE PAY FOK ITSELF IN THO YEARS

I dihn't! llaving something else in life to do than chase over back-yard fences (ryines to stop) the spites and age-old jealonsies and family feuds and brood of lies of a century, I dropped it quicker than I ever Iropperl measles or whooping comgh or any other form of spiritual growing pains to help perple who don't want to be helped. They raised money, raised it royally, most generonsly, and hat lights and sidewalks within those threce monthe: lint the dead scandal of Sunt Sara's ('ncle lohn's fourth nephew by marriage was a simple rule of sulbfraction and multiplication-especially multiplication-compared to the binomian gemmetric progression of all-fired cussalness that fowed from that innocent village imporement. "They ain't goin" (1) run n!!" "Them new-comers has jus" come in here aml stirred up things and malle all thic trouble!" "We always have fit here, and 1 guess we always will fit, it's been fittin' and fittin always here." "What's giool enough for us all these veats, I gues is good enomgh for anyborly". So it is-far too good; but that spit-cat policy of trying a claw on everythins new that comes your way, has driven progres and prosperity just three thonsan! miles from the legenerate secdions of Xew England; but as the Eastemner sad: "Whe"d rather be skimed alive loy the ontsider, than pull begether athe see cowh other proper."

Of contres. it in only at matter of time
when degeneracy cures itself. The third mortgage, like the curse to the third and fourth generation and other sick-untodeath maladies, works its own most excellent and undodgable cure: and that is the door of hope for Down East today. It recognizes its own condition. This "what's-good-enough-for-us" policy has somelrow left its progress at the tail end of the long procession. While other commminties have prospered, Down East has grown poorer and poorer. When a house that would have sold for $\$ 8,000$ or $\$ 10,000$ twenty years ago now fails to find a lonyer at $\$ 1,000$ or a farm drops in value from $\$ 150$ an acre to $\$ 10$. the owner feets as if he hat butted his thick head against a fairly hard fact. That is the time he comes awake with a jounce to fecl how big the bump is. It is the turning point, and a mighty good place to turn at.

Says the New York Agricultural Society: "We have reached the turning point." Says the New York State Department of Agriculture: "Whe are floonded with inquiries from the West for land in the East." Don't smile, but these Down East values that 1 have given are one-third higher than they were eight years ago when I came from the West. I liver through that same perion in the West when having reached the collapse of the first boom, the conntry gradially rishled itself and came up) on the great ground swel! of the last ten years prosperity. It is risk plating proplact: but
it is not propliecy if you put your car to the gromud and hear the same grommd swell coming East.
"It cannot be denied." declared Dr. Schurman to the New lork State Fruit Growers. "farm orchards in New England are melancholy testimony to decline. We have at out doors the great markets. Why is it we are stationary? Why is the IVest forging ahead? It is their mptmism, their enterprise, their confidence: they expect to succeed and they use the means to succeerl. The West is alteat of us in methoth."

W'estem methorls-that is the slogan for the new day Down Eas!
Two years ago. not a single orchard heater was used in the East to fight spring frosts. Today, in the Southeast alone at latest report 90,000 are in use: East and l'est, 3,000.000 are in use.

Two years ago, you could drive through county after county of the apple growing sections of New England and never encounter a spraying outfit at work, unless some suecial pest happened 10 have got to work first. Today, they don't wait for the curse to come. They avert it. They spray before bloom and they spray after bloom and they spray all through the summer-that is-the. few, who are begiming to adopt Westerm methorls so spray. I am sorry to say you can still see humdreds of thousands of wild blighted distorted orchards where neither spraying nozzle nor pruning shears have ever come. The most successful orchard men are even beginning to nip ont the inferior fruit soon

One of the Unoccupifn Farms. Albany County. N. Y.

after bloom to permit the best to come to perfection.

You hear in K゙ootenay and Washington of apples cominer to bear four years after planting. It is perfectly true. I have eaten apples in Kontenay orcharils grown from the seed four years after planting. Formerly, it was thought trees must grow in the East for fifteen years before bearing: but by following the quick clean culture methods of the W'est fruit is being brought to bear in New York State four and five years from planting the whip tree. How? By cultivating and cultivating and yet cultivating again-not permitting a blade of grass or weed the size of a match to grow maler the trees, but keeping the soil harrowed and rolled soft as flour. Any one who wants details of such orchards can get them from the Wadsworth Fruit Varms.

Orchards are no longer being planted in the chill wet valleys as a sort of shaded hog run, but on the well dramerl uplands. Low headed trees are used to facilitate spraying and avoit bruising the fruit at picking time.
l'erhaps the greatest reform reluctantly adopted from the West and having to fight its way for adoption has been in the matter of packing. It is to the dishonest packer that the East chiefly owes her maligned reputation as to fruit. A bushel box of Colorado or Washington apples sells in New York for from $\$ 3$ to $\$ 5$. A three bushel barrel of Down East apples on the very same market sells for the same or less. Why? Examine the differences. The box is
graded and uniform, large size two and a half inch apples, three or four layers to a box, each apple wrapped in separate paper, the name of the grower and number of apples stamped on the outside of the box and on the wrapping paper. Not a wormy apple in the box-every apple without a flaw, and all on packed that by (o)ening either end the buyer can see the quality of what he buys. You see that policy what s-goollenough-for-us inn't packerl in a Western apple box. The barrel, on the other hand, has grave me apples packed three deep at each end. lictween the two good ends are cider culls, worms and rots. Nor is this the fault of the grower. The apples are bought on the tree, grade one price for srade one. cider cull price of a fow cents a bushel for the fallen and brused: but the packer so manipulates his packing that he sells his whole barrel at grade one price to the consumer: and as neither name nor grade is guaranteed, there is no redress.

When your Western co-operative assonciation finds one of its members has slipped culls among the good anes, he is fined and expelled. Is a matter of fact, "lishomest packing is impossible: for the association does its own packing. Likewise, in some of the Canadian apple sections, misgrading lays the dealer open to action in the courts. Lack of such care was what ruled New York apples out of the Baltimore show. When Virginia began to work for orchard upliftthousands of acres being set out to trees -one of the first moves was to send to Oregon for a manager to oversee the packing. Senator Lupton has been the leader of this reform. His own apple orchard is one of three hundred and fifty acres: and there is one orchardist in the East with an orchard of two thousand acres, which yielded $\$+5,000$, apples sold on the trees in 1910. Western grading is done by means of a board with two and a half inch holes through it. Apples dropping through the holes do not class first grade. Printing, paper, packing. boxes-cost in all 18 cents a box and work is paid by piece work, women and girls long fifty meses each a day for 5 cents a box. "Small packages," declares (1)r. Schuman, "are the means to prevent fratul" it max he said that the

Niagara District of New York has just declared publicly for the reform methods of packing.

When it comes to marketing, sales agents, advertising and apple shows to arouse public enthusiasm Down East has not yet begun. Nor has the Central West.
"hat fammers ansociation do yon know east of the Mississippi that pays its Eastern manager $\$ 5,000$ a year io camp on the market, kecp tal) of price and push prompt delivery? Until the big railway men and New York Chamber of Commerce united in a farm improvement association, what farm organization of the Eaht do you know that knocked down cash payments for a campaign of public awakening? Sugar beet men. in the West. apple men. citru growers. shetp men, cattle men, irrigation farmers-all have their special organization of propaganda, management. marketing and new method. What groups do the same work in the East? I know of one dairy organization that is calling and calling in vain for union and work. I know of a grange that meets anmually and amually fights. or as the lady in the village improvement said "fits and fits." But I don't hear of the Easterncrs getting anywhere with their organization.

I know of one Nova Scotian who not only wiped out the middleman by doing atl the marketing himself, but accompanied his three hundred barrels to London, England. and on this specially fine lot netted \$15 a barrel. Experts say there is practically a difference in returns of 90 per cent. for the farmer between ohl style and new style methods of marketing. Alone, the individual farmer is helpless against middlemen and railroad and market. United in solid counties and blocks of counties, he is absolute dictator of the situation, commanding favored terms from the railroad, giving a cheaper product of better quality to the consumer, and getting 60 per cent. higher price for himself.

I personally visited the banner orchard of Grand Valles: Colorado. It is a twenty acre block of apples. ten acres on each side of the entrance d-ive. The first year Mr. Hamilton or ned this orchasd, he was umable to get lahor to atfend seientifically to both fiell.: so he
left one to itself after Eastern fash－ ion and concentrated his care on the other． spraying almost weekly，clipping ont the culls before they had robbed strength by growth，keeping the floor of the or－ chard clean of weeds and grass．Results． mo returns from the ten acres treated 1）own East fashion， for the association would not pack such culls：net profits from the ten acres treated scientifically －two men at $\$ 60$ a month working con－ stantly－\＄7，500．

The game is worth the candle－isn＇t it？

Wherever similar methorls have been used in the East， similar rewards have been won with the advantage that the East does not ordi－ narily need to irri－ gate and can begin by rejuvenating an old orchard．If space permitted dozens of examples could be given．There were the fifty－four old trees in a worn out Michigan orchard， some of them half a century old and fifty feet broad on a sandy field of about an acre and a half． The buyer in a spirit of pure dare set ont to see what he could do．He cut back the wild horns 12 feet，the pruming slanted to keep out wet，and every wound paraffined or waxcl．He sprayed and sprayed and sprayed yet again，keeping the floor a clean mulch．Results－$\$ 6,000$ in ten years，from old trees，which， please to note．is higher record per acre than Colorado＇s banner orchard．

Nor is the new evangel confinet to

Burbank Mlums－Rfeltets of Mfestern Culture．
Two weeks after blonm，the small and imperfect frut was clipped off．
irnit．In wo line of 1）own East farm life is the slogan more needed than in dairying． ＂We have been tied to a cow＇s tail for forty years and it has been the mis－ chief，＂said one of the largest dairymen of Duchess Connty to mee．who takes in $\$ 6,000$ a year but pays out $\$ 5,000$ in labor and feed and depreciation．What are $\$ 49$ yearly aver－ age cows doing in any white man＇s herd？With profits of $\$ 65$ a cow，your farmer can prosper． With profits of only \＄7．farm and farmer are on a greasel plank slanted for a sheriff sale．Y＇our Down East farmer tells with piride of his tom and a half an acre of lay：If you tell him of five tons an acre from alfalfa， he shakes his hearl at the big Western yarn．Five years ago，they told you it woukhnt grow Down East．Torday，they show you specimens that got in their clover seed by mis－ take and refuted their inertness by com－ ing up persistent and strong．Ten years ago，one North Carolina farmer was getting five bushels of corn from an acre．That did not pay horse hire，let alone man help．That man was up against a fact，and the bump awakened him．He turned on the new methods－ Iowa methods this time；and today he grows 226 bushels on that land．New methods have increased Pemsylvania land values 20 per cent．New Jersey， from its necessities for truck gardens． was，perhaps，the first of the Eastern

States to adopt the new intensive methods: and New Jersey has become the fruit sarden for New York.

As I said before, the East still lacks cu-operative organizations for marketing and advertising: but the gromd swell is conning. The next boom is due not thest but East. Ten years ago, we saw it coming in the West: and those who trimmed their sails rode into port with fortunes. Those, who didnt, who hed back and yapped and guessed goodenongh was good-enough-are inday just where they were-stranderl, stuck in the mund, but-please to mote-still growling. And now the ground swell
is coming East. I wonder if we shall be ready for it : or will we let those Westerners head back East, and repeat their success? Colorarlo's motto is all together. Down East's motto should be get together and do it quick; or the third mortgage, like the curse to the third generation, will work its remerly and wipe you out, for other workers to come in better worthy of your heritage. I write this as a life-long Westerner now living in the East, but as one whose ancestors homesteaded and peoplerd one county of New York's most hilly region, and wrested fortume from those hills before they joined the migration westward.

THE HUGEST STEAMER IN SERVICE. THE (H,HPVC. OF TIIE WHITE STAR LINE. BFING ESCORTED BY サCGG BO.JTS IN'O NEW YORK H.ARBOR.
She sailed from southampton June 14. on lex maiden vovage, and reached Niw Vork June 21. This intial run was made in about 6 days 20 hours. Temporary extensions had to be made to the piers to berth her Jongth of 882 leet

Inside Factso About Baseball

By Barry Cornell

TO the baseball "f ann". the "science of the game" is the generalship exercised by team captains, the strategy employed by players and the skill of the individual in batting, fielding, pitehing and catching. He seldom recognizes that the great national game has an molerlying foundation of exact science, and that everything which happens upon a ball field has an exact scientific reason, or that, quite beside the excite:nent of the play, or the tenseness incident to bases full, two men out in the ninth inning, and two runs needed to tie the score, there is a deep interest attaching to the mere physics of the ball, the bat, the running man, and to the mental equipment and thonght processes of players and managers.

Ask any "fan". how fast an average "groumder" travels during its first hundred feet from the bat, and his answer will be anywhere from twenty to two hundred miles an hour. Split second watches and careful timing of many ground balls have established the fact that the average speed of ground balls-that is. those struck by the bat of the batsman from a fair pitched ball, which strike the infield before they land in a fielder's hands-go at the rate

Hil Chasf, the darvfines Fiflding, teft-Handed. Firet Bateman of New Iork Highlanders.
Thu. photo shows him "dumping" the hall froms his mitt to his left hand for a cross diamond throw.
of almost exactly sixty miles an hour, faster than the fastest mail trains.

Sixty miles an hour is eighty-eight feet per seconcl. The bases are ninety: feet apart. A man who can run a hundred yards in eleven seconds, which is fast running for any one, butt particularly so for a man with bascball shoes and tuniform on, can run ninety feet in 3.3 seconds. Is it any wonder that a ball which is fielded in its first humdred feet of travel usually reaches first base just a fraction of a second before or after the rmmer sets foot upon it?

Every fan knows that the many close decisions at first base form one of the fascinations of the game. The speed of a batter ball, the speed at which a fiekler can travel from his position to the point where he can meet and field the batted ball, the speed with which he can stop the ball. pick it up, set himself for the throw, make the throw, the speed of the ball across the diamond from his throw, and the speed of the traveling rmmer, are so nicely balanced that it is always a question of whether or not the runner will get there in time for the crowd to see the mupire's hands go down, or whether he will face a thomb, wer a shoulder indicating that he is out.

Baseball players all
recognize certain spots on the playing fiehl an "growes." places where batted. balls will, in all probability, go "safe" and be recorted as "hits." Two of these are narrow paths between the foul lines and a space something less than two feet wite just inside the foul lines at the bases, two of these are spaces be-
mile a mintute and weighing five nunces. but it is always at the risk of certain injury to his hands or borly that he does so. The risk is not in the speed of the ball or the force in it, so much as in the fact that, in the fraction of a second between the crack of the bat and the landing of the ball, the pitcher must see the ball, calculate where

 the Philadelphit Impricaios.
It wats dure to his "has ball hrains" that the" "A thletics" beat the greatest inside ball tam" history has aver known. the Chicage Cuhs, out of the world's championship. in 1910. it will go, and get his hands there. And this brings tike reader right up against one of the psychics of the game - nervons reaction time, of which more in a moment.
but to return to the infield gronves-the average width of all the grooves is approximately 25 feet. There are 180 feet of territory to be defended. Logic and science would argue then that ont of every 180 balls latter through the infield, 25 onght to be safe hits. Recorils show that to every 180 batted balls throngh the infield, only cleven and a quarter are "hits." It is this fact which is the despati of the scientist when he applies mules of mathematics to a game like baseball. At team is not a collection of antomatons. Opposed to the scientist and his rules is a thing called "inside baseball." It is the generalship) which places infielders in certain positions with reference to certain batters and certain pitched balls.
tween first and second laseman, and Ghort stop and third haseman, which represent territory to which neither fielder can wet fast enough to fielrl a ball batted in or over them, and the fiftlo "groove" in the infield is directly over secomd base. representing monsered territory. Theory says the pitcher shoukl Stop balls batted down this gronse unless they be over his heal, and to his credit be it sail he not infregnently does put out his hands and, at a distance of sixty feet, stop a ball traveling more than a

I man "at bat" who is knomen to hit mine balls ont of ten between first and second base when the pitch in fair over the center of the plate and waist high, will find the third laseman jlaying shortstop. the shortstop, hovering over second base. and second baseman crowding the guardian of first base. There will be an "infield groove" forty feet wide between third lase and the nearest fielder-there isn't an inch of mouarded territory for hime to put his hit through where he ustally hits it. Lut just as be and you
and the scientist have decided he must. according to the laws of logic, be "out," the pitcher slips up on his delivery, the ball "floats" to the plate, the batter steps aromul it and whangs it down the third base fonl line for a bome rum.

Ask any hall player which ball he can hit the hardest, a fast, straight pitch
trom the bat. You can argue that, were the pitcher infinitely powerful, he could pitch a ball the forward momentum of which woukd equal the momentum of the bat, and that, therefore, were the pitcher powerful enough, he could so graduate his delivery that the forward motion of the ball, just efual to the motion of the

MT*SCI.ES MUST RESPOND IN A FLASH.
Io the illustration to the bilt, the man wasn't quack wough to jump and the hall got by. In
 a wild onn: His hrain must have ordered bis muscles to
open that hand 1 10th of a second before.
or a slow "floater." and he will tell you the former. There are two lines of argument you can employ on this question, each seemingly incontrovertible. You can say that the force of the pitched hall must be subtracted from the force behind the bat, since the momentum of the bat must first overcome the force of the pitch, stop the ball dead and reverse it: hence, that the harder a ball is pitched, the less distance it should travel
bat, would neutralize it, and the ball drop "dead."

On the other hand, you can argue this way. If you toss a baseball at a brick wall. it rebounds. The harder you throw it, the harder it rebounds. The harder a ball is pitclied to a batsman. the further he can lit it. because the force of the pitch acting in the rebound, must be adderl to the force of momentum in the bat.

1 BALJ. THROUV ACRUSS THE DIAMOND FROM FIRST TO THIRD BASE TRAVELS THE 120 FEET IN THO SECONDS.
In this picture the ball has a distance of one font or 1 whth of a second. to ko. Milan outhelder of Washington, has bis foot on the hak. Moriarty-Detrolt-is ruming across the bag to make the catch. Malan is safe of course, hut thank of the instant's judyment nereessarv to make the play, and for the umpire to decide it!

The latter is the correct theory, evidennly, since it is a fact that the longest hits are male off the swiftest pitching. The fact that few long hits are made off swift pitching is mo argument, for all such questions depend upon the condition of the batter meeting the baseloall fair, when, as a matter of fact, not olle bascball in a humdred is struck by the bat "on the nose," but always a little alove or a little below the median line of the sphere, therefore knocking it up or down and mot straight ont. Horewer, the varions peculiar curvatures and "jumps:" which the pitcher puts upon a ball have much to do with the length of a fair hit.

What makes a ball curve? Revolution of the ball. What makes a ball "jum," in the air? What makes it drep and wohble, and look big at one time and mall another? Why cant a batter hit a slow easy ball the first time be sees it coming and koock it not of the lot if the pitcher semds two "lloraters" " ${ }^{\prime \prime}$ the plate in succession? Why does a pitcher pitch an absolutcly baffling delivery on one day, and the next day, when the weather is different, fail aboo-
lutely to stop the batsmen? You can answer "revolution" to all those questions.

It is true that the revolution of the ball about some one of its infinity of axes is the cause of its curving in the air. All thrown balls have a natural curve, one imparted to them by the fingers of the thrower. Take a baseball in your hands and hold it as you would, naturally, to throw it. You will see that it will leave your finger tips last. which, dragging against the cover, will impart a motion to it which is, approximately, a motion of revolution from left to right. your left to your right. Such a ball will curve slightly in its flight from your left to your right. or "in" to a batter who bats right handed. Development of the proper grip on the ball, ability to squeeze the ball tightly at the instant of release, and a powerful arm, enables pitchers to increase this curve to such an extent that a hall which appears to the batter to be sure to pass well outsinle of the plate, will, just as it comes near hin, make an inward sweep and go over the plate. counting as a strike, to his disgust and bewiderment. Remembering this, the

SHOWING HOW THE CATCHER HIIES HIS SIGNALS FROM EVERYONE BUT THE PITCHER.
For the batsman to learn whether he will be given a "curve," a "fast onr." a "slow one" or a "spitter" is to increase his chatces of hitting by fifty per cent.
next ball the batter sees, which seems coming directly towards him, he argues, "This will break inward and hit me-I must ste, back." But the ball, instead of breaking inward, breaks outward or from the pitcher's right to the pitcher's left, again goes over the plate, and the umpire calls "Strike tuh!" Dall number three looks good to the batter. He can see the seams. It has no revolution at all, or, at most, but a slow one. It is fast, too: the batter saw the pitcher's great effort in throwing. The batter takes a step, grips his bat, gives a mighty swing, and hits at the ball when the ball is yet ten feet away from him. Why? Because this ball was a "floater," a ball pitched with the same motion as the iast one, but released in a different manner, held in the hand in a different manner, and so controlled that it has no revoltition at all. Remember, the batsman has less than a second to judge the ball, make up his mind what it is going to be, where it is going to travel, and what he intends to do. Seeing the motion for a fast pitch, he calculates his swing. Seeing the ball look large and watching the seams, he knows it is coming straiglt. But he cannot, looking at it coming towards him, judge its speed. And, as
it happened to be a slow one, he struck at it before it got there, and "yercontbatterup" is all the comfort he gets from the umpire.

The revolution of a ball makes it curve in this way. All moving bodies tend to move in a straight line. If a counter force be excrtal on a moving borly, it will strive to get away from that force, or, in other words, take the path of least resistance. The ball revolving in the air masses a billow of air in front of it, which retards its speed. If this air acterl on all parts of the ball at once, the lall would simply lose speed on both sides at once and drop. Sut when a ball is revolving in the air, say from left to right, the friction is greater on the left side of the ball, which is revolving towards and into the billow of air raised by the motion of the ball, and less on the right side. where the balt is revolving away from this billow of air. Hence the ball travels towards the point of least resistance and away from that of greatest resistance, and a curve is the result.

The eurve of a ball to right or left, however, is but one manifestation of the physical laws governing a moving and revolving hall in the air. A "straight fast one," as pitchers call their speedy

THE SPEED OF A BATTED BALL MAY REACH MORE THAN A MH.F A MINUE.
Here the ball is about sevonty feet from the bat and twenty in the nir. Stull the catchor has not taken his hands apart on trenes to catch the ball whech never sot there.
"shoots," usinally possesses a "jump." That is, at some point between the piteleer and the hatter, the massed pillow of air in front of the ball becomes solid enough to offer material resistance. The mumentum of the ball will not be denied. The ball, then. cither climis ove: or drops under the pillow of air, and, as a result, "jumps." It may be a change of direction from its, natural downward course along a level for a few feet, which is misnamed the "up" jump, or it may be a slatper, dhenward shont. in which, of course, the "jump," is ailled by gravity. but it is on the "jump." and the effect of speen on the batters eye and mind, that the epeed ball pitchers depend for their success.

Sarions ways of houlding the lall result in various curves and combinations of curves and shonts. Sometimen a playsical peculiarity will aide in a peculiar "delivery," as in the case of Three-finsered Brown, of the Chicago Cubs, whose hook curve is largely the result of the malformation of his pitching hand. Left handed pitchers, of course, pitch with case all those curves and shonts which are harkent for the right hander. becanse umbatural, and, per contra, pitch all his. (anily hit balls with difficulty.

Patrons of hall parks must often note that some small, light players frequently make sery long hits off certain pitchers. which balls travel low and fast without seeming to drop very much in the first two humdred feet. It is, obvionsly, mot a matter of physical strength, since much higger and stronger men only pop w, little flies or hit grounders off the same pitcher's delivery.

The reason is fonnd in the peculiar combination of a certain pitch with a certain style of batting.

Pitching a "drop" ball makes the ball have a revolution from the pitcher towards the batter. that is, the ball revolves in the direction in which it is traveling. If the ball traveled in the reverse direction, back toward the pitcher. with the same direction of revolution, it would have a tembency to climb up in the air, instead of climbing down. This force is never elongh to raise the ball. but is enongh to connteract, for a time. the action of gravity. Now, certain batters are able to hit just enough "under the pitch" to drive the ball ont, slightly up, without raising it into at Ry. When such a hatter meets a drop pitch just riglit. the revolution of the hall as it connes from the pitcher is increased by

THE VALUE OF ONE-TENTH OF A SECOND.
Davis, of the Philadelphia Ithlotics, sliding into third hase: Conrov. third baseman of Sonators, also sliding into it and touching Divis with the ball.
the bat. which at the same time reverses the ball's direction. The ball then revolves rapidly away from its direction of motion, and "hangs in the air" while it travels, the result being a "hot liner."

The study of the curves imparted to balls by varions twists is much easier made with a temnis ball and racket than a baseball, becanse the temis ball is much lighter, has a surface which can be gripped by the strings of the racket to form a very wide curve, and does not travel so hard nor so far. In the "cut stroke" or "chop," one sees the ball just described travel the whole length of the court with hardly any drop and gratually "fade" to the earth. In the Lawford stroke, one finds a parallel to the pitcher's drop, in which the ball, revolving with its direction of motion, drops very rapidly after it crosses the net, striking well inside the court, to the confusion of the player who had judged it "out." In the right and left twist and reverse twist service, the right and left revolutions of the ball cause it to curve by many feet. instead of inches, due to the revolution of the ball in the air, and the great resistance of the cloth covered sphere to the air, coupled with its light weight and consequent diminution of momentum.

The psychics of a game of baseball are more curious than the physics, since they demand. for comprehension, a knowledge of how a man thinks. An
incilent wil! illustrate this better than a theory. A reporter, anxious to know how much guess work there was between the batter who tries to ontgness the pitcher, and the pitcher, who tries to ontguess the batters, instituted a game of matching pennies on several teams. Invariably, at the end of the game, the best pitcher and the best batter on the team, would be found fighting it out for possession of the pennies. They were betfer guessers than their companionsone reason wiy they were better pitchers and batters.

An amusing exception was noted when Tyrns Cobb, American Leaguc batting champion, played the game. He lost easily. When the idea was explained to lim, he said,
"I don't try to guess what the pitcher is going to pitch to me-I depend on my eye and quickness to hit it after it reveals itself."
Nevertheless, in most cases, the best batter is not only he with the natural prowess of arm, guickness of eye and ability to think, to calculate what is going on in the pitcher's mind and what is likely to be pitched hin next, from what has been pitched him last, but also the man with the fuick nervons reaction time. This expression indicates the interval between thinking about doing anything and doing it. Yon make up your mind to stretels ont your hand and open a door, but a

IF IUU HAD BEEN THE UMPIRE, WHAT WOULD YOU HAVE SAID?
Fred Parent of Chicago White Sox, sliding into thord base with Elberfold of Washington trying to put him out. Silk O'Loughlin called the' runner safe.
distinct interval elapses between your making up your mind to do this and your doing it. When the stimulus for the action comes from without, the time can be measured: thus, if at the instant "Open the door" were shouted at you, a chronograph was mate to record the command, and the instant your hand touched the handle, the chronograph recorded the touch, the interval between the two tonclies would be a measure of your nervons reaction time, and further experiments would prove that this nerwous reaction time was fairly constant for you in responding to exterior stimuli, regardless of how hard you tried to decrease the time. The same thing is true of the batter, and accounts, in a large measure, at least, for the success of some batters against speerly pitching where other batters fail in hitting this kind of delivery. It does take a measurable interval of time for a man to see a certain pitched ball, and make up his mind to hit it, and if he is a little slow in determining that it is a fast batl and making up his mind to hit it, and his nervous reaction time is mot very small, he will hit at the hall after it has gone by-a thing commonly seen on the ball fick. The large number of foul balls made from extremely swift deliveries are accomntef for in the same manner, a foul
ball being often made by the bat hitting the ball too late, thus knocking it to one side or the other instead of ont straight.

In a very small degree, but still to some extent, the pitcher can, in this way, control a batter-if the "hit and run" play is to be tried, for instance, and the pitcher suspects it, and a man is at bat who normally hits to right field-which is the proper place to liit when the "hit and run" is tried-he will very probably find himself being served slow balls, instead of swift ones, in order that, if he hits at all, he will hit too soon, and either foul to left or hit to left field, this destroying the value of the play, which is aimed to put a man on first base around to third hase on a "single" hit, which can hardly he accomplished if the ball is fietded near third base.

The uncanny ability of the human mind to jutdse the course of a fly ball, is not to be explained in terms of distance. speed, height, revolution, wind, drift and drop. The fielder in the far distance sees the ball leave the bat and monnt high in air. From what he knows of the wind and his experience, he runs to the position to which the ball will fall, and gets muler it and catches it. but by what mental process he dhes so, is one of the mysteries of laseball, so common a sight as to cause little comment, yet a

ILLUSTRATIN゙G SW1FT WORK NECESSARV ON PART OF THE CATCHER,
Stephens. St. Louis, just failing to get MeBride, Washmeton, in a desperate slide for the plate.
wonderful example of the powers of ratiocination possessed by the mind without our conscions knowledge, nevertheless.

Still more wonderful is the action of a pitcher or third baseman in ruming to the proper point, putting inp his hands and catching a ball hot from the bat, traveling at sixty. seventy, at times eighty miles an hour. Between the time of the crack of the ball aud the bat, and the time of the catch, may elapse less than three-fourths of a second, yet in that time, the fielder has not only determined the conrse of the ball, its height, direction and speed, hut has made up, his mind what he will do with it when he gets it, where he must throw it, and already "set" his muscles for that particular turn and throw which may "pull off" a double play:

Most mysterions of all in the psychics of baseball is the "jinx," that peculiar "hoodoo" which affiects, at times, a man, at other times a whole team. Let a man begin to think that there is a "jinx" abont, and he is done for for the time being. If a pitcher "has it on" a batter, it means that that pitcher has always been able to fool that batter, or nearly always. The pitcher goes to the box conficlent that he will fool the batter, the batter goes to the box sure that he will be fooled. The chances are he will be
fooled, too, althongh he may hit the deliveries of other, similar pitclers, with perfect ease. When a "jinx" hits a whole team, and the whole nine men have a batting slump together, the reason can only be looked for in that mysterion. region of the hmman mind which is so little understond, since ther are the same men. hitting the same ball moller the same circumstances as they have done all season. Yet, for a time, their "eyes" are in eclipse - they cannot "sce them straight," and from eight, ten and twelve hits a same, they drop to one or two. Some day, something happens. no one knows what, and the "jinx" disappears. . 11 at once the whole tean regains its form. all the men begin to bat ${ }^{11}$) to their normal averages as if nothing had happenerl, and the elmul passes away: lint what sent it, what made it stay just so lims, or why it left, no one has ever been able to find out.

The effect of mind on mind in a ball same is well exemplified in the fact that certain pitchers do hetter work with certain catchers than with others, althongh the faworite catcher may be much less skillful than another. It is, apparently, all a matter of confidence, yet how confidence in the man who will catch the balls you pitch can affect the accuracy of your own delivery of a ball, is something no one can say.

NEW LOCK ON DAM IN MONONGAHFLA RIVER. PITTSBUKG.
The government saved a small fortune by doing thas work itsilf.

CHEAPER THAN CONTRACT WORK

By HARTLEY M. PHELPS

ATYPICAL illustration of what Uncle Sam can save when he acts as his own contractor is shown at l'ittsburg. Pa., where the new Number One lock and dam on the Monongalela river. one mile above its junction with the Ohio, was recently built. The saving on the two lueks alone is $\$ 89,000$. Thele Sam is ahearl the neat sum of $\$ 176,000$ for the whole imporement, the official estimated cont of which was put down at $\$ 491,+37$. This saving is 28 per cent of the cost fogured on the contractor's hasis. By doing his own river and harbor work lincle Sam would save no less than twenty-two millinn dollars on the eighty millions set avile for such work by (ingress.

The old crib or "log-cabin" dam put down in 1840 was used as the substructure for the concrete dam. This crib is sixty feet wide. The crest of the dam is fifteen fect above the river-bed.

The two locks. 360 feet long and 56 and $3+$ feet wide, are of the most modern design permitting the locking of a steamer and fonr coal loats. The old lock: being much smaller, the breaking up of "tows" of conal was therefore greater. The "lift" at the dan varies from two to ten feet: that is, the water mont be raised to that height in the lock chambers to equal the river level above the tam. In lien of opening the lock gates by the obl methox of hand-operated chains womed on drmans the new steel gates work by compressed air.

By
 Robert H. Moulton

IF you should happen to run across a group of men pointing what apparently is the nozzle of a garden lose at the side of a honse, don't jump to the conclusion that they are trying to put out a fire. And if you fail to see any indications of smoke or flame. don't inagine that they are simply directing a stream of water against the sille of the building in order to remove its coating of dust and grime. By observing a little closer you will notice that what issues from the hose is not water at all, but something more nearly resembling whitewash—and as a rule buildings don't need immunity baths. Then if you follow with your eye the line of hose you will discover that the other end is attached, not to a fire-engine, but to something that looks like a combination of locomotive and auto truck. Nso, you will see gathered about it another group of men who are busily engaged with shovels, as if feeding fuel to the engine. But even at a distance you can tell that the substance they are handling is not coal. The mystery deepens. What in the world can it be? The answer is-a cement gum.

As this may not make the matter much clearer, it may be well to state at once that the cement gin is an invention designed to do away with the whitewash and kalsomine brush, the cement and plaster trowel and a few other things of a similar nature. It is the very latest method of applying coatings of cement, lime. sypsum and other plastic materials
to structures in need of repair: and of putting up the original walls of such structures entire if need be. In other words, the cement coater or concrete house of the future seems destined to be literally "shot" from a sun. The idea of shooting a house. not to pieces. but together may sommd absurd, but it is well to remember that this is an age of scientific miracles. whicl come almost as fast ant as thick as the flowers that spring 1!] after an April shower, and we really should not be surprised at anything that happens.

A few years ago Thomas A. Etlison made prblic announcement of a plan worked ont in his factory to pour or cast concrete houses, which, he believer, would revolutionize the cost of buikling dwellings. And not only the cost was to be affected, but the time necessary to erect such a dwelling reduced to a fraction of what was formerly reduired. Mr. Edisun claimed that by his process the exterior portions of a concrete house of morlerate size could be put up in fortyeight lours. That, to use a popular plirase, was certainly going some. Is it too much to expect, then, that hy the use of the cement gim even this rapidity of construction will be considerably increased?

Reference is here made to concrete construction in connection with the cement gun for the reason that concrete is simply cement mixed with gravel, stone, or some other coarse substance, and what is applicable to the one prod-

 M.sy Be Bholght About by the L'se of the Cement GuN.
net may alow be applied to the other, so far as building matters are concerned. It should also be noted that when speaking of thene two products as building materials it is intended to refer to the alpplication of the product itself and not to the erection of the framework or veleton of a building. In vertical construction both cement and concrete must, of course, have some surt of backing or mold to hold them together matil they set or harden.

In the case of the poured concrete house a single eriant mold wonld be reguired, which is equivalent to the older method of first building forms of heavy planks and then filling them with wet concrete. A disalvantage of this method, however, at least with our present knowleage of concrete construction, is, that if the concrete is marle thim enough to pour, gravitation will carry all the heavier matter to the botom before the mixture has time to set: and if not made thin it would not properly fill all the spaces in the mold, which is necessary in order to insure a smonth and reliable finish.

For years much time and money has been spent in the attempt to devise apparatus for the mechanical and pmenmatic handling of cement and other plastic mixtures, but with very little success until the development of the cement grun. This method was first suggented by the pmeumatic vacumm cleaner. It was

Bullding Lp a Section of Cement Pipe on a Wire MFSH SKELETON OR KNWFORCEMEXT.
A cementgun made fence is shown in the background.
argued that if a machine could be built that would remove dinst, dirt and even heavier particles of matter by the power of suction, it ought to be possible to reverse this principle and make it work successfully in the application of cement.

The cement gun consists essentially of a hopper into which the dry cement and saut, or other materials, are placed, a hose comnected to the buttom of the hopper through which the dry mixture is forced by air pressure, and a nozzle at the other end of the hose to which another hose supplying water is aftached for hydrating the cement. The hydration takes place while the materials are all in motion, and, leaving the nozzle, the mixture is "shot" upon surfaces, or into interspaces of any agreregate. As the combination of the elements necessary to produce a plastic product takes place in transit. it will be seen what an adrantage this is in connection with fuick-setting materials. It not only obviates the use of a retardant, thereby increasing the quality of the product, but materially lessens its cost.

Heretofore the most serious criticism that has been made concerning plastic products has been their lack of uniformity, che to the human clement in mixing them and in the methools of application. It is a well-known engincering fact that the instant monsture is brought into contact with plastic materials the initial set. or cryatalization, legeins, and that any

The same Tree Aftfr Beivg "Treated" by Cfmfit Gun. The work was accomplished in a few minutes.
by means of the sum is relluced to a mininlum.

There would seem to be an almost unlimited field for the practical use of the cement gun. Foundation work and waterproofing below grade should be well adapted to this process. As a means of coating steel to prevent rust and corrosion it should prove superion to the or-

[^16]dinary method of painting, for a cement coating will wear much better than one of paint. The pipe line of the New lork aqueduct from the Catskill monntains is now being lined with a two-inels coating of cement and sand in this manmer. The inside diameter of the pipe is eiglit feet, eleven inches, so that a man can easily walk throngh it and perform the spraying process. Smaller pipes can be similarly treated in sections.

Suppose you have old and crumbling walls, fences. sidewalks or leaky roofs that need repairing, or a wooden buikling that you want made fireproof in anticipation of a $v i s i t$ from the fire insitrance examiner. There will he no need of having one's premisen littered up for a week or more with a lot of mortar

Phors oferphams Cobten whe Chmens sand Mortar for prothermen dganst kust OR CORRUSNS:

Apphing Cfment stucco to an Ofd Bulfhig hater Contrivis It with Wire Mesh.
boards and mixers, scaffoldings and similar eye-sores, as in times past. You simply send out a hurry-up call for the cement-gun man, who comes around with his little renovator, and-presto, everything is made spick and span "while you wait." It is something like sending one's clothes to the cleaner, only in this case the cleaner comes to you.

It is probable that a great many people have noticed small railroad stations which had been sprinkled with sand, while newly painted, and then given the matter no further thought except perhaps to note that the buildings formed a convenient place upon which to strike matches. This is an idea that has long been employed to make such structures fireproof and to protect them from wear and tear. But

What May Be lone in Building Out with omf Afrlicaton of the Chament dien.

EXAMPLES OF TREE SURGERY.
Filling holes in trees with cement and mortar hy means of the coment mun.
the process is slow and laborious. Im agine turning a garden hose on the same buideling, and imagine further that instead of water a stream of liquid cement issues from it, and it will be seen how quickly the same job might be finished.

Tree surgery is another thing that. seems destined to undergo a revolution if all that is clamed for the cement gum proves practical. There are hundreds of torn, cracked and decaying trees in the private yards. on the strects, and in the public parks of every city that could have their vears of uscfulness and ormanent doubled if they were given proper attention. The trouble is that it cloesn't pay to go around and patch them up with hand-made cement or plaster, as it might be termed. Besides, this is an instance wherein it is especially necessary that the plastic product should be applied with the least possible delay after mixing on account of its subseguent constant exposure to the elements. With the cement gun this work can be done so fuickly
and cheaply that its use in this conncetion should become very general.

In the case of fences and other similar structures, and the interior and exterior walls of entire buildings, a special design of frame work is reguired. This consists of a wire mesh of the required size. with a wooden backing. The cement is shot upon this and after it has hardened the wooden backing is removed, leaving what is practically a reinforced .cement wall. Such walls are clamed to be as fire-proof as they can be made by any. known method.

In order to demonstrate this, a small luidinge of two-inch by four-inch wood was constructed. Both the inside and nutsicle were covered with building paper and over this was placed a wire mesh reinforcement wit! one inch of cementsand stucco, leaving a four-inch air space between the walls. A scientifically built fire was then allowed to burn in it for fifteen minutes. after which buckets of water were thrown on the inside hot
walls, with the result that only a little of the surface scaled off and not a single crack developed. The onter coating of the rear wall was left off in order to determine whether or not the wooden studding would be affected by the heat, and it was found to be not even charred.

A comparative test to determine the respective breaking strengths of handmarle and cement-gun made loricks, the latter composed of one part cement to three parts sand. was made after both had been exposed to moist air for one day and immersed in water for twelve
days. The hancl-made brick broke at 30.3 pounds, and the cement-gun-made brick at 533 pounds.

The cement gun is, of course, not adapted to the use of concrete or other mixtures in which coarse gravel or stone forms one of the ingredients. But a solution of this problem may be found in the constriction of a "concrete cannon," and future generations may witness the spectacle of whole towns being literally "bombarded" into existence in the same time that it now takes to erect one building of moderate proportions.

For my part, people who do anything finely always inspire me to try. I don't mean that they make me believe that I can do as well as they ... But they make the things seem worthy to be done. -Gerger Eloot.

TROCT EGGS HATCHING.

THE STORY ON A FISH SCALE

By

RENÉBACHE

DR. HUGH M. Sxllitl. liologist and Deputy Fisheries Commissioner. sat at his desk in Washington, holding in his hand a small rectangular piece of glass, upon which was fastened a single scale of one of this year's run of l'otomac shad. He was examining it with a magnifying lens.
"From this scale," he sail, "I have learned more in fifteen minutes about the life history and habits of shat in general than all that I previously knew on the subject put together."

It seemed a remarkable statement. But Dr. Smith went on to explain that back of his remark there lay a most important new discovery, in the light of which it
will henceforth be possible to ascertain with exactuess and certainty the history of any individual fisth. For, as has now come to be known, each fish carries on its body the story of its life, toll in cipher, as one might say, and this story is repeated word for word, so to speak, on every one of its scales.
The language of the fish scale is entirely new to science. but now that hiologists have found out how to real it, there is no further difficulty, inasmuch as it is practically the same for all kinds of fishes. Revealing as it does the details of the life history of various species, the discovery has a most vital bearing upon the interests of the commercial fisheries. to which in the long run it will be worth

Tront Scales showing the "Winter RJNGs' by Which the NumbFe of lears of the Finh's lige - ire Reckoned.

SCALF OF SALMON HOMING "IVINT:K R1NGS."

[^17]untold millions of dollars. Take the shad for example. It has been known hitherto only as a river fish. But, of course, it is really a sea fish, merely rumning up the rivers to spawn. What are its haunts, and what its wanderings, while in the ocean? Science, on this subject, has been obliged to confess an almost total ignorance.
lict it is evident that a thorough acguaintance with the marine hatuts and migrations of the shad would be of utmost practical value to the fishery. And it is of special importance to find ont how fast they grow, how old they are when of different sizes, at what age they spawn for the first time, and how many batches of eggs the average female lays during her lifetime.

All of these facts, and others in addition, are ascertainable by a study of the scales of the shad. And the language is so extremely simple that anybody can learn to read it in a few minutes. Inasmuch as the story for eacl individual fish is repeated on every one of its scales, it is necessary only to select a single scale for observation. The scales all over the creature's body tell exactly the same story, and there are no contradictions.

If a shad scale be examined under a magnifying glass, it will be found to be covered with ever so many ripple-like marks, arranged as if the ripples all proceeded outward from a common center-the latter, obviotsly, being the point from which the scale originally began to develop. What are these marks? The answer is that they merely represent successive stages in the progress of growth. But their more important significance lies in the fact that they mark equivalent stages in the development of the fish; for, as the scale grows, sn does the fish itself.

A slaad, like any other animal, or any plant. does not develop steatily, but by a series of jumps and pauses. Thus a boy, if measured at frequent intervals, will be found to grow by jerks, as it wete, remaining at the same height for a while. and then gaining half an inch in stature. perhaps. within a few dlays. This is the secret of the ripple-marks on the fish scale, each one of which represents a jump in the growth of the fish.

So far, so good. But this does not go on with absolute regularity, for in the winter time the shad becomes sluggish, and eats comparatively little. so that its rate of growth is retarded. Recorl of the fact. indeed, is made on its scales. the growth-ripples being much closer together. for the reason that the fish for the time being is gaining size more slowly.

Hence it comes about that each winter of the shad's life is clearly marked on every one of its scales: and thus, by examining a scale, it is easily. possible to find ont the age of the fish. Let a

DRAWING A SEINE FOR SH.HD.
An expert. by examining the scales of any one of the catch, can tell its age and facts about its lift.
sharl be canght in the Delaware or the Potomac tomorrow, and an expert, by a mere glance at one of its scales. with the help of a magnifying glass, can tell just when the anmal was hatcherl. how many years it has spent in the sea, and many other details of its life history -all of which will presently be made clear by further explanation. He can even determine where the little fish first saw the light, and, if a female, how many times it spawned before being finally captured in the fisherman's net.
Understanding clearly that what is true of the shad in this regard is tikewise true of all other kinds of commercial fishes-the life story of each one being told by its scales-it seems best. before going further, to explain that what originally led up to this new knowledge was the discovery by a German scien-

A Beam Trawl for Taking Fish
tist, Dr. Reibisch, a few years ago, of the fact that the ear-bones of the flounder showed age-rings similar to those found in the trunks of trees or the horns of catthe. Thenceforth it was possible to tell correctly the age of any individual founder.

Recently, however, it was ascertained that exactly the same story was told by the scales of any fish. For the scales, one should realize, are a permanent part of the body structure. They are a sort of natural armor, for protective purposes, arranged in a definite pattern, and remain through life. Their growth keeps pace with that of the fish, and the marks on them give, as already explained, a complete picture of the creature's development.

Scales from the middle of the upper part of the back are chosen by preference for examination because they are the oldest, and, as a preparation for
study, they are carefully cleamed with alcohol. Bint-and here is a very interesting addendum-the fact now comes to light that the scale story is told in the same language, aurl so as to be more easily read, by the fish's check bones. It gills on either side are covered by a large and that bone, quite thin, which, when the skin has been removed from it, is fomme to have exactly the same markings at the scales: but the markings, being spread over a much greater area, are proportionately more legible.

During the last few years no fewer than ten steamers, representing as many countries Relgian, Danish, Duteh, English. Finnish, German, Norse, Kussian. Scotch and Swedishhave been engaged. with a large staff of scientists, in a great comperative enterprise of nceanic research in the waters of nowthern Europe. In the interest of the commercial fisheries, they have made voyases all wer thone seas, from the baltic to the Arctic Ocean, and as far west as leeland, for the purpose of sturlying the life listory of fishes, the minute organisms (10) which they feed, the currents which influence their distribution, and even the chemical composition of the water at various depthes.

In this work the sturly of fish seales is proving enormonsly helpful, enabling the experts mot cmly to tell the age of every conl, haddock, herring, or sprat. But also to ascertain many other details alout their life histury an intividuals. Thus. for instance, it has been learned that the female corl, as a ruke, spawns for the first time in hor fourth year, and, if her activities are bot cut short by capture. may be expected to lay eqgs eleven or fwolve times before she dies.

One of the most interesting studies hats
had reference to the salmon which run up from the sea into the rivers of Norway. It was supposed hitherto that the young, after being hatched on the spawning grounds at the headwaters of those streams, sought the ocean when they were yeatlings. But the scales of the full-grown adults have shown, by the "winter rings" on them, that this species spends the first three years of its life in the rivers, during which periorl it grows very slowly. Then, on going to sea, it increases in size with great rapidity.

Shown herewith is a picture-from a plotograph, much enlarged -of a scale of a Norway salmon which was taken in the river at Kristianso, May 21, 190). The late and place of capture being known, its story rearls as follows:

Flatched in March, 1900, and spent three winters in the river- the same river, of course, becanse these fish alWays return to the stream in which they were batched. The time spent in the river, repesenting the slow-growing youth of the salmon, is shown-under a strong magnifier - by three "winter ring." in the middle part of the scale. where the ripple-marks are very close together.

This salmon left the river in the spring of 1903, spent the next two winters in the ocean, and in the summer of 1905 came back to the river to spawn. Meanwhile, as shown by the scale, jt grew with great rapidity. The fact of its spawning is indicated by the raggedness of the ripple-marks corresponding to this stage in its carcer. For, when the fish runs 111 the river, it ceases to feed, and there is an absurption of all of its tissues, to furnish energy for the making of its eges-om milt, in the case of a male. This absorption affects even the scales,
renlering their elges rasged, and the scar: remain permanently.

This particular salmon, after spawning. went hack to the sea in the spring of 1900 , spent one winter there, and in the summer of 1907 returbed to spawn asain. As further indicated by the record of the scale, it again sought the ocean in the pring of 1908, and, returning once more in the summer of 1909 , was caught.

Thus, one observes, the complete story of the life of this fish is ascertained by reading one of its scales-the approximate date when it was latched, the stages of its growth in detail. the time when it made its first visit to the ocean, the periods it spent there, the dates of its successive returns to the river, the number and dates of its spawnings, and its almost exact age when capturcl. I'ractically mothing is omitterl.

Story Toln by This Salmon scale, Hatched. March. Jeont: Left river in springe. 1046: spernt two winters in sent in 1×65 cande back to river to spawn: Teturned to sea in Trom: spent one wenter there, and went back in 9 \%h to spawn again: returned to the ocean in toons. back in 14n) and was caught.

Nothing, that is to say, except some rather desirable information about what the fish was doing while it was in the sea. It is practically certain, however, that it dial not go far from the month of the river of its birth-such being the habit of samon. Antl, by the way, our own Alaskan salmon, which furnish so important a commercial fishery, are believed to spend only one year in fresh water before secking the ocean. The govermment Fisheries Bureau proposes to obtain exact information on the subject by a study of their seales.

Much picturesqueness attaches to the haunts and wanderings of the various species of food fishes. lnformation on this subject is also of utmost value to the commercial fisheries. For example, it would be worth millions to know what has become of the mackerel.

Make the Best |Good Work 's that in you Lies a thing that never Dies.

A. H. McQuilkin.

The

Said Uncle Sam, " I've got a job for some good man to do." And so he hired an engineer whod done a thing or two: He gave him money, tools and men and told him, " Go ahead! You cut the continent in two, that's all I ask." he said. That engineer he fussed and fumed and finally he quit, And then there came another man who took a whack at it: But still the job was mighty slow-and slower every year. Till Uncle Sam he went and got an Army Engineer.

> Now he didn't start in crying Of the handicaps he met, He just set the dirt to flying And the dirt is flying yet! Handled money by the million (But each dollar counted clear) For he wasn't a civilian But an Army Engineer!

Said Uncle Sam, "I reckon that the boys I teach myself Are something more than ornaments upon the parlor shelf, They may be fond of uniforms when showing on parade But when they've got a job to do they're worth the wages paid. I show an army man the work and let it go at that And when I think of it again the job is finished-pat!
He never asks me questions and he doesn't sniff and sneer But he knows his business proper, does the Army Engineer!"

For he isn't playing double,
And he isn't full of tricks.
And he keeps himself from trouble
And from peanut polities!
There is neither man nor devil
That can throw him out of gear,
.He is strictly on the level
Is the Army Engineer!
Said Unele Sam, "I reckon if I told him he should try
He would build a bridge of moonbeams from the ocean to the sky, He would tie the worlds together in a harness made of light And he wouldn't advertise it-but the job would be all right! I don't want to be a boaster, but this army lad of mine Is about the finest ever in his own peculiar line, He's the kind that you can swear by, he's the kind that you can cheer, He's a quiet peacherino, is the Army Engineer!"

He is keen and he is canny
(Grafters call him quite a snob)
But there's no one's got his nanny
'Cause he's always on the job!
When the others, all defeated,
Say the thing's a failure sheer. Why, we get the job completed By the Army Engineer!

3

Free Dentistry for Por Children

By Ralph Bergengren

NOT long ago there died in Boston a gentleman who, during his last illness, needed the services of a dentist and learned in conversation that many of the trombles with which humanity suffers from its tecth would be obviated if the teeth had been given proper scientific attention during early youth. He learned. also that of the approximately two humdred thousand chikiren in the public schools of Boston, seventy 1 er cent needed such treatment and fully fifty per cent were children of parents who were too poor to pay for it. He learned that children of well-to-do parents are nowalays more and more likely to be sent carly to the dentist, but that to the parents of the great majority lentistry is still a luxury and the first teeth generally but wrongly considered too unimportant to be given much attention. Actually, however, these first teeth determine the character and condition of those that come afterwarl. Thousams and thonsands of children therefore start life frandicapped by imperfect teeth, and the unfortunate result of lack of early treatment may range all the way from digestive disurders that prowluce varions forms of illness to actual malformations of the jaw that make the innocent victim look like the possessor of criminal tendencies. Nor was there any visible signs of an imporoment in this condition. Such free clinics as those of the Harvard and of the Tuft. Dental Schools did indeed take care of a small proportion of children, but the average child was necessarily left uncared for.

The result of this knowledge, coming to at sympathetic and wealtly man in almost the last hone of his life, will soon be seen in the actual erection of the first
building in the workd designed to provide free dentistry for all the poor children of a large city. Before he died Mr. James liemett Forsyth had worked out the broad idea of the institution, and his two surviving brothers, John Hamilton and Thomas Alexander Forsyth, are giving his last wishes tangible expression in a heautiful structure which will soon stand 11 the Back Bay region of Boston, conveniently accessible to the chiklren of the city, and provided with a million dollar endowment in order that its good work may so on indefinitely. The Forsyth Dental Infirmary for Children, recently incorporated by special act of the Nlassachnsetts leegislature, will thus set an example that other public-spirited men in other cities will be almost certain sooner or later to follow. Coming at almost the moment when the attention of thought ful people was centered wn the "Child Welfare Exhibition" in New York, and its appeal to the public to save the children from the evils of heredity and environment to which they are necessarily exposed in our congested cities, the amouncement of the first institution for free lentistry for the children of the poor seems like a practical answer to a need that every student of modern civilization is coming more and more to realize.

This new foundation, moreover, is not regardcel by the founders in the light of a charity. Consecrated to the memory of two brothers. James hemett and (ieorge llenry forsth, the monmmental marble structure which will soon add a new leanty to the architecture of boston's famons leack Bay smply carries a 1)it further the "right of every child to develop, mentally at the public expense." Granting the right of every

Thos. 1. Forsyth.
John H. Forsyth.
Founders of the first instatution in the werld establisherd to provide exclusively free dontal treatment for children.

Geo. II. Forsyth.
Forsyth
In whose onemory the Foreyth I Dental Infirmary for children is bume erected.
child to a public school education, it is a logrical amendment to add that every child has an equal right to be started in life in proper plyysical condition. The Forsyth Infirmary hopes not only to relieve individual suffering and prevent future individual suffering, but it hopes to exercise an important influence in "making for a better looking, more per-
fectly developed human race." The physical betterment of the individual child, when such betterment is freely offered to all the children of a large city, must, in short, make for the social betterment of the community. What the child becomes is no less important to the community than to the chikd himself, and whatever removes the handicaj of

WHERE THE TEETH OF TEN THOUSAND CHILDREN ARE TREATED YEIRLY
The free clinic of the. Harvard Dental School. Thirty thousand patients are taken care of annually. In the Forsyth Infirmary all the patients will be children.

The Forsyth Dental Infirmary for Chiddren. boston, as It Will Aptear.

This Plan Shows the Main Operating Room with the Arringiement of Chalrs.
ill health from a great body of chiddren is held to be a public benefit more than a private charity.

In appearance the Forsyth Dental Infirmary for Children will be a threestory structure of white marble, built in the Roman Classic style of architecture, and further beautified by ornamental fountains and a small park where in pleasant weather the children may play while awaiting treatment. It is significant of the spirit in which the institution is planned, and will be conducted, that it combines every latest facility for the scientific side of its work with every possible consideration for the state of mind of its juvenile patients. Some of these patients, indeed, will be too young in have any very definite state of mind as regards dentistry. They will come in perambulators, or in their mothers' arms,
long before they are old enough to go to school, in order that their first teeth may be examined and the development of their little jaws started in the right way. The older children, brought from the public schools in charge of the school nurses, will better appreciate Forsyth park. With some 51,000 square feet of land to stand on, the infirmary will be so situated that excellent lighting from all sides will be permanently provided for the operators in the various departments, and at the same time a considerable amount of outdoor space reserved for park purposes. Operations, however, that are likely to inspire dread or nervousness in other patients will be taken care of in rooms apart from the great main hall of the infirmary, and the children who have been treated will then leave the building without coming in contact with any of the youngsters who are still waiting to be examined. Most of the cases are unlikely to be of this painful nature, for the work of the institution will be largely along the lines of prevention of future disorders by stopping them in infancy. In the main hall of the infirmary, where the great majority of the cases will come for treatment, there will be sixty-four chairs when the institution opens, and fortyfour chairs can be added without in any way crowding the operators.

All this, of course, will reguire a large infirmary staff, especially since dentistry, as here considered, will include expert treatment of all incipient disorders of the throat and nose as well as the teeth. The institution will be under the guidance of a consulting staff of experts together with a permanent staff of dental gradwates who will devote their entire time to the children. In addition there will be a visiting staff of dentists who volunteer their services, and the permanent operators will be aided by students of duly authorized Dental Schools under the immediate supervision of competent instructers. There will be provision for post-graduate study as well as for the special research and X-ray work with which no dental institution of the first rank is nowadays mprovided.

WHAT CHANCE HAS THE HORSE

ATOS rush in where horses fear to tread," remarked a New York business man as he stood one slippery morning in front of the Flat Iron building and watched one horse after another fall heavily to the pavement while on every side motor trucks and pleasure cars rolled smoothly by. The toiling teams that managed to keep, their feet tugged at their heavy loads and their drivers looked after the passing trucks with an expression of envy while the business man turned slowly away pondering the object lesson.

For a number of years it has been apparent to thinking men who have made a study of transportation methods that horse drawn vehicles were totally inadequate as a medimm of freight transportation and that its logical successor would the the commercial car with its ability to do more and better work for less money. This fact, accepted at first only ly a few, has been forced upon the general public so that today every up-todate business man admits that the commercial car is here to stay.

Nothing could more strikingly demonstrate the attitude of the business world toward this immovation in our methods of transportation than the fact that practically within a period of five years New York has acquired 2.000 auto trucks. Chicago 900. Boston 450. Philadelphia 400 and Pittsburg 300. Other cities follow in proportion to the number and importance of their industries.

By M.M. Hunting

Amost every branch of the world's business that has heretofore used horses for hauling is now represented by from one to fifty trucks in the great procession of commercial cars. One manufacturer claims to have sold from five to forty trucks to each of sixty-one different lines of husiness while the number of small delivery cars in use by city stores is astonishing. A New York department store recently purchased one hundred light delivery cars in a single order, replacing their entire horse equipment.

That skepticism has been common among business men as to the success of the power wagm is not to be wondered at for the salesman has had little but theory to lack lis assertions until recently. Only a few harl faith enongh in its future to invest their money but fortunately torlay examples of the superiority of the gasoline wagon to old Dobbin are without umber and are far more interesting and convincing than any amount of figures.

A well known safe manufacturer of New York employing a 5 ton truck made an interesting comparison recently. A large safe was !oaded upon a wagon and delivered in the usual way by means of horses. Another safe of equal size and weight was hoisted upon a truck by means of a windlass operated by the truck's engine. The watch was held by impartial judges and the result announced that the safe handled by the truck wa loaled. delivered and set up, in less than $1 / \nmid$ the time reguired by the

A R(JII) TRAJI - THE ONLY ONE IN THE UNITEI STATES-TUKNEI UUT BY A I)ETKOIT AUTOMOBJLE MANUFACTURER.
horse drawn wagon for the same operation.

Another instance even more astonishing is the performance of a gasoline car employed by a stone 'fuarry near Quincy, Mass. In one day of ten hours the machine delivered 12 loads of stone aggregating 106,410 pounds. The smallest load being 7,900 pounds, the largest 11,000 pounds. Approximately 60 miles were traveled, part of the way over rough and steep roads where at least $\&$ horses would have been required to hanl the lnad and yet the expense of the day゚s work including gasoline, lubricating oil and driver's salary was but
$\$ 5.00$. Lest these figures should completely discourage the competitive teamster the owners added $\$ 8.50$ to cover general depreciation and interest upon the investment, but a tremendous balance in favor of the truck still remains.

An interesting example of speed and economy is furnished in the case of the family who engased a motor truck to transport their household goods from Ipsilanti to Detroit, Mich., a distance of 32 miles. The truck made the journey over sandy roads in 3 hours and 5 minutes, the total expense being $\$ 7.50$ rlivided as follows: driver's salary, $\$ 2.75$; helper, $\$ 2.00$; gasoline and lubri-

1-IVETUN TRECCK, LOADED TO CAPACITY, CLIMBING A ROCKY MILL NEAR LEEDS. MISSOURI.

H.ULLINC EJGHT TUNS OF (O.JL IN NEW YOKK CITV
cating oil, $\$ 1.25$: lepreciation and interest upm the investment, $\$ 1.50$. By team it would have taken not less than two days, and the expense would have been three times as great. Ry freight the cost would have heen double, and would have reguired from 5 to 6 days time, not to mention the four handlings of the groods.

In Kansas City, Mo., a motor wagon recently delivered two loads of alfalfa aggregating 11,240 pounds a distance of 21 miles, while a t horse team made a trip of 10 miles with 7,700 pounds.

Trailers are sometimes attached to motor trucks thus multiplying their capacity. A manufacturer in a Weestern city recently hauled $17,21+$ pounds of castings, the loarl being divided between the truck and trailer. With this umusual load a distance of 7 miles was covered over city streets in 55 minutes.

Portland, Oregon. is taking hold of the truck idea with enthusiasm far beyond that shown by many larger cities, and several untisual tests have been made within the past year. The local gas company experimented with a truck for a period of $\&$ months keeping a careful record of its performance during that time. To their surprise they discosered that this 2 ton cat was hanclling double the load of their heaviest wagon in half the time, thus exceeding the capacity of the wagon four fold. Forty-two horses and 20 wagons have
been banished in conserfuence and replaced by eight steel monsters that do not tire out or have to take days off on account of sickness.

An instance of quick delivery that is enough to discourage any horse if he were able to read it is the story told by the President of a large packing house of Portland. "Delay in the delivery of our Portland car from our packing house in Noth Fortland necessitated some quick work and we hired a big auto truck to make a special trip, for us. The truck left l'ortland at 10 o'clock A. 11. covered 7 miles to the packing house. took on 9,500 pounds of meat and had the loarl back in Portland at 1 o'clock. having covered it miles, loaded and unloarled $41 / 2$ tons in a period of 3 homers." Compare this with what the best team of draft horses could do and you will readily understand why this company has decided to adopt gasoline instead of horse flesh in the future.

As all example of what may be accomplished with the light delivery car such as can be used by almost any retail store, the experience of a milling concern in the East is interesting. A record was kept of the performance of one car and a horse and wagon used side by side for eighteen dars, the truck made 418 deliveries in $11+$ hours, 560 miles, at a cost of $\$ 8.76$ cents or an average of 2 cents per delivery: the horse made the sad showing of 132 deliveries in 133 hours,

TK.INSAORTING MHLK $1 N$ LOS ANGEI.E.
Hin fur trips to the dinot. thas vidiche carries daily 11,200 quarts.
covering 110 mites at a cost of $\$ 7.49$ or nearly o cents per delivery. This is a demonstration of superiority and economy in light delivery trucks that admits of no argument, and shows that even our corner grocery can dispense with the services of its horse and wagon with profit.

It is plain that almost any anto truck can do the work of 2 or 3 wagons and there are many cases on record as some of the foregring anecdotes demonstrate where they have done much more, but resorting to figures for a moment let us. see what the actual cost of the motor truck is.

It is obrions, in urder to give the truck a fair showing, we must ansume that the entire delivery equipment is composed of motor vehicles as any item entering into the total expense must be considered. If, therefore any part of the equipment is composed of horsedrawn vehicles the truck's record must suffer in consequence.

Very carefully compiled figures show that 10 gasnline trucks taken as an average equipment all covering to miles per day and operating 300 days each year can be maintained at a cost for each machine of $\$ 9.75$. The items con-
tributing to this average are as follows:
fined charges per yedr on une truck.
luterest at 6% on $\$ 3,000.00$
cost price \$ 180.00
Depreciation at 20%......... 600.00
Insurance, at $1 / 2^{r}$ r. 15.00
Storage, 200 square feet, at 50 cts. $\frac{100.00}{\$ 895.00}$
Add 20\% for two spare ma-
chines
179.00

$$
\text { Total } \$ 1.07+.00
$$

Dividing by 300 the number of working days in the year, this gives $\$ 3.58$ per day.
RUNNING ENPENSES PER DAY FOR TEN TRUCKS.
Wages of 10 drivers at $\$ 2.50$ for ten hours
$\$ 25.00$
Wages of repairman, helper and
washer 7.00
Gasoline, 80 gallons at 12 cts.... 9.60
Lubricants, at 1 cent per mile... 4.00
Maintenance, at 10 a a year. ... 10.00
Superintendence 3.20
Incirlentals, light, heat, tools,
waste, etc.
$\frac{2.87}{\$ 61.67}$

A MOTOR TRUCK EQUTPPED WITII W゙INDLASS FOR KAISING AND LOWERIXG S.SFES.

Average ruming expense ber
truck. $\$ 6.17$ truck.

Total maintenance and operating cost
 \$ 9.75

As compared with this it is clamed that the electric truck of practically the same capacity may be operated at a cost of $\$ 8.76$ per day. the items entering into the cost being the same as that of the gasoline truck except of course that storage batteries are consilered instead of gasoline and a somewhat smaller consumption of lubricating oil. This comparison favors the electric truck but it would be unjust to state positively that either is the most efficient, as the results depend upon local conditions larsely such as facilities for charging the storage batteries of the electric vehicles, the character of the work to which the trucks are subjected and the quality of the road over which they have to travel.

Probably the most marked improvement in service as well as the greatest saving to the public has been affected by the adoption of motor fire apparatus. and the fact of its being largely adopted
proves that its alvantages have not been overlooked.

It is estimated by the National Board of Fire Linderwriters, that our yearls luss by fire amounts to half a billion dollars. The same source of information is responsible for the statement that this would be reduced 4,5 conld the extinguishing apparatus reach the conflasration in half the time usually requirel. Since this sum, $\$+00,000,000$, amounts to $\$ 5.00$ for each man, woman and child in the Lnited States any statment regarding the value of seconds in getting action on the flames is likely to be too consersative.

The ability of the motor fire department to start puickly and maintain their speed indefinitely is a point of superiority which eannot be overestimated. They travel at nearly the same speed in ail kinds of weather and require practically no more care than the common apparatus, while the space to house them is comsiderably less.

It is interesting to note the varied uses of the motor truck, and one is often surprised if not almust shocked, at times to see to what extent the horse has been

THE ROUGH ROAD HAS NO TERRORS FOR TIIE MOTOR TKUCK.
thrust aside to let in his molern rival. The motor patrol and ambulance are now common, but think of a motor street cleaner, a motor sprinkling wagon, a motor oil tank, and even a motor scissor grinder's ontfit.

If the horse is capable of emlarrassment he surely must be nearly overcome when after falling upon the pavement and receiving a serions injury he is carried away in a motor ambulance for disabled animals. Such is the practice in New York.

Those of us who are accustomed to seeing the dignified black team drawing the hearse experience a peculiar sensation as the motor hearse rolls by, yet in spite of prejudice Eastern undertakers are rapilly alonteng it.

The saving in dollars very naturally appeals most strongly to the commercial world but there are other advantages in dispensing with the services of our common beast of burden of equal if not sreater importance. He is a spreader of disease. The presence of the stable, especially in the city, is one of the most prolific sources of infection. Fully 90 per cent of the flies that infest our homes are bred there and carry thousands of germs upon their bodies to be deposited upon everything with which they come in contact. If in banishing the horse we can also dispose of this pest and spreader of disease, the antomobile will have accomplished a great mission even if it proves 110 more efficient than its flesh and blood rival.

THE AUTO FIRE DEPARTMENT.

EFFICIENCY ON•THE FARM
 By F. (a. Moorhead

WHEN David Rankin, the world's largest farmer, was asked to tell the secret of his success (he began by borrowing $\$ 6$ and clied worth $\$ 5,000,000$, all made in farming) he answered promptly: "Success in farming consists in making every minute, every cent and every seed count. A grond workman is cheap at most any price and a shiftless. careless man is lear if he works for nothing."

Not long before he died Mr. Rankin amplified his riews. "To make a profit the farmer. just as any other manufacturer, must reduce the cost of production," he said. "I saw this long ago and When I saved a hand's wages by the use of a new piece of machinery I felt pretty grood; that was making money for me. We farmers must not only keep eternally at reducing the cost of production but plan a way to get the most out of our prorluct. Use your head as well as your hands, for it is the little savings that make up the profits at the end of the year. It takes sharpening of wits all the time."

Mr. Rankin's life was a constant practicing of what he preached. Almost sixty years ago he conceived the idea of putting together two of his double shovel plows so as to plow on both sicles of the row at once. He explained his ideas to the village blacksmith and it was not long before lie was using a straddle-row cultivator, the first one so far as any records go. That day he did away with
one hired man. Ile was learning to make every effort count. "Whonever I can huy an implement that will reduce the labor or perform the work better than the old style machine, it pays me to throw the old one away and get the new one," he explained. "Let me prove this to you. Now, a good steel plow will turn two to three acres of socl per day. Say you use it only thirty days in the year and it lasts fifteen years, then it has turned 1,350 acres and cost about $\$ 13.50$, which was about one cent per acre. A stalk cutter will cut ten to twelve acres of stalks per day and while it costs about $\$ 30$, still you wouldn't try the jols nowadays with a hoe. I use three and four row stalk cutters, also stalkbreaks thirty-two feet iong. A self binder will handle from twelve to fifteen acres of grain in a day and requires an outlay of about ten to fifteen cents per acre, still how much womld it require in addlitional labor to handle the crop? With the single shovel. a man could do a fair piece of scratchins and cover about four acres per day: while with the common single row cultivator he can do a much better job and do eight acres and with the modern tworow cultivator he can as easily do fourteen to sisteen acres. 1 am telling you this to imptess you with the fact that the cost of machinery doesn't amount to anything. The two-row cultivator will do hetter work and cut the cost, too, by lessening the amonnt of labor, of both men and horses."

It may be nrged, however, that Mr.

Kankin farmed on a wholesale plan, he was indced a manufacturer; how is it possible for the average farmer, the man with a quarter section or less, to do away with uscless labor and dispense with unnecessary hands: in other words, to reduce the cost of production and increase the output? Listen to the testimony of an lllinois farm-er-one of the ordinary, sarden - variety sort of every-lay farmers - who quickly learned that one of the first things to do was to abandon the ways of his father, install labor-saving machinery and let George, in the form of a gasoline engine, do it.
" M_{y} father used to feed

The Dairymaid Did All the Milking Yesterday. cattle and he always shelled all the corn he fed, using self-feclers for the cattle. The cobs were used for fucl and they were very nice to start fires with. He tised a two-lole corn sheller and an old eight-horse power, but used only two and four horses on it. On account of old age and not longer being able to run the farm, he retired from farm life and moved to town. The corn sheller and power were left on the old homestead, and I moved onto it and used them. Often when I wished to shell corn the track wonld be very mudly for the horses and the old power would run hard, as it was getting all out of line, and I decided to investigate gasoline engines.
"I was expecting to get about a threc or four-horse power, but I secured prices on different sizes and ordered a sevenhorse power. The factory sent a man to install and start it. I have been runtning the engine ever since, and have never had an expert or anyone else to examine it and it rums just fine. I run a four-hole corn sheller, feed grinder and two pumps; one is sixty rods and the other is 150 feet from the engine, and I can have water for my stock whenever I want it, wind or no wind. I grind it great deal of chicken fect in the spring for my neighbors and at the same time
pump water for the stock, and what I charge for grinding helps pay for the gasoline, and a very small quantity of gasoline is required to do all the work. I would not do without the engine for almost any price if I could not get another.
"In 1905 I had a room built near the dwelling, secuted a small two-horse power engine, and this runs the clarn, washing machine, and the house pump fron the well, which is forty-four feet deep, while I have a double-cylinder force pump and have hose handy, which in case of fire can be attached to the engine. Dy two smaller girls, eight and fourleen years of age, can start the engine, and Monday morning, while the engine is rumning the washing machine, m11 wife can sit and talk over the telcphone. or in the rocking chair and read the news."

What this man accomplished with his gasoline engine, thousands upon thousands of other farmers are duplicating. The gasoline engine has prowed itself one of the greatest factors in making every penny and minute and stroke count. Nor is it a hired man who eats lisis head off, for the fuel cost of rmming one is small, being only abont onc and one-half cents per lorse power per hour,

MACHINERY IS SUPERSEDING THE FAIR MAID WITH THE F.ML.
when gasoline is bought for fifteen cents a gallon.

The gasoline engine has proved its utility : tomorrow bids fair to see the electric motor the farmer's best hired man. Already it is being hitched to a vast number of farm machines, such as feed grinders, root cutters, fodder cutters, fanning mills, grindstones, circular saws, corn shellers, drill presses, silage cutters and elevators, horse clippers, milking machines, grain separators, churns, vacuum cleaners, ice cream freezers, dongh mixers, feed mixers and chicken hatchers.

A good idea of the amount of work a small motor will do on the farm is gained from the following: Six horsepower will drive a grain separator and thresh 2.500 bushels of oats in ten hours. Three horse-power furnishes all power needed to make 6,000 pounds of milk into cheese in one day. Six horse-power will run a feed mill grinding twenty bushels of corn an hour. Five horsepower grinds twenty-five to forty bushels of feed, or ten to twelve bushels of ear corn an hour. Seven horse-power drives an 18 -inch separator, burr mill and corn cob crusher and corn sheller, grinding from twelve to fifteen bushels of good fine meal. Six horse-powet will drive
a 30 -inch circular saw, sawing from fifty to seventy-five corls of stove wood from hard oak in ten hours. Six horsepower saws all the wood four men can pile in cords. Twelve horse-power will rum a 16 -inch cutter and blower, and elevate the ensilage into silo thirty feet high at the rate of seven tons per hout. One horse-power will pump water from a well of ordinary depth in sufficient quantity to supply an ordinary farmhouse and alf the buildings with water for all the ordinary uses.

But the highest efficiency on the farm neither begins nor ends with the gasoline engine or the electric motor. There is also the spreader which takes the refuse of the barnyatd out to the fields and scatters it abont like so many gold dollars. The fertilizer problem is one of the most serious confronting the farmer torlay. Shall he open ${ }^{11}$) his fields to the commercial article or shall he husband his own resources and maintain the fertility of the soil by returning to it the elements of which it was robbed in producing a crop? The answer is simple. A ton of average fresh manure contains ten pounds of nitrogen, five pounds of phosploric acirl, and ten pounds of potash. At the prices which these elements of plant food would cost in commercial fer-

WHERE AN EFFICIENT SYSTEM TREBLES THE CORN AVERAGE.
tilizers the value of manure would be $\$ 2.50$ a ton. This does not take into account the value of the organic matter furnished, which may be greater than that of the plant foorl. That this theoretical valuation is very conservative is shown by the result of many field experiments, by varions experiment stations and by practical farmers. The value as shown by the increased crops has equaled and often exceeded this theoretical valuation.

The Pemsylyania station conducted a series of experiments with manure for twenty-five years. A fonr year rotation of corn, oats, wheat and clover was used and manure applied at the rate of six tons and acre every two years. Its value in the increased yield was $\$ 2.50$ a ton. The bllinois station found the value of manure applied six tons to the acre once in a three year rotation of com, oats and clover to be $\$ 2.70$ a ton. The Ohio station in a series of experiments extending over thirteen years fomed the value of manure to be fromi $\$ 3$ to $\$ t$ a tons. Iahtes, of contres, as every one under-
stands, vary with the character of the soil.

None of these experiments mentioned, however. indicate the full value of the manure since they do not take into consideration its cmmulative effect. The importance of this is shown by experiments at the Rothemstead Station in England. At this station one plot was given regular application of manure for twenty years and then the manuring discontinned for an equal length of time. At the end of the time the plot still gave nearly double the yields obtained from another plot similar in every way except that it had never leen manured.

An experiment conducted in Jasper county. Missouri. resulted in an acre which had been treated with eight tons of manure yielding sisty-five bushels of corn, while an acre immediately adjoin-ing-which had not been treated with natural fertilizer-yielding only twentynine and a half buslocls. Experiments conducted at Columbia, in the same state, resulterl as follows: A tract on which corn had been grown continuously for
twenty years yicldal only three bushels to the acre. Immediately adjoining, a tract planted to corn for twenty years, but which had been liberally manuret, yielded thirty bushels to the acre. Another tract, likewise adjoining, on which corn had been rotated with oats and clover yielded forty-nine bushels to the acre. Still a fourth tract, immerliately adjoining, on which scientific management had been practiced to the extent of
soil continuously than you can take money out of a bank without making deposits."

The farmer who makes use of the barnyard manure must learn first of all to use this fertilizer when it is of the greatest value. Namure exposed for three months in an open barnyard during the winter and early spring loses nearly one-third of its fertilizing value. Such manure in field experiments produced increase to the value of $\$ 2.15$ a ton on a ten-year
average, while the fresh manure gave an average increase of $\$ 2.96$ for the same period, showing a loss in effectiveness of SI cents per ton or 27 per cent. There are seasons of the year, however, when it is impos-
both rotating crops and manuring the field, yiclded sixty bushels to the acre. Even more striking proof of the value of fertilizers and rotation of crops comes from Illinois. Sisty years ago a man bought a farm of 120 acres in that state. It has remained in his possession continuonsly. Fie has farmed it without plan or purpose other than to eke out a
precarions livelihoorl. The land forplan or purpose other than to eke out a
precarions livelihoord. The land formerly yielde! thirty-five bushels of wheat to the acre. It has been planted to wheat, year after year, for half a century. Last year it yielded two bushels to the acre. The last corn crop on that land ran ten bushels to the acre, while in the neighbor"s field the yield averaged forty bushels to the acre. That Illinois farmer is a pitiable reminder of the days when farming was not a science, but was simply an "In God we trust" way of getting from the cradle to the grave. That man never heard or heeded the doctrine preached by James J. Hill: "You can no more take wheat from the
 rom thom a farm of 120 acres in that state
sible or impractical to haul direct to the fielt. In such times it is the farmer who most effectively conserves this important fertilizer who finds his income. and net profits the largest. A Nebraska farmer thus tells how he proceeds: "I have on my farm a building especially constructed for the storing of manure during the winter when I am compelled to hold it for some months. This building is large enough to hold the accumullations for several months, which amount to several tons. It is built a reasomable distance from the barn, so as not to be minandy. I haul manure to

PICTURESQUE. BUT SENTIMENT CANNOT MEET MODERN COMPETITIVE METHODS.
the ficld where I think it is most needed until the ground gets soft, so I am bound to stop, and then I have a carrier track rumning from the barn to my manure house, to save the labor of handling. I run the manure every few days from the stables to the storage house. Which is covered with a good roof to keep the rain and snow out. In hauling direct from the barn I also mix some other fertilizing material, such as rich dirt, hen manure or anything I can gather up around my farm, so as to have a well balanced fertilizer for all crops. I have the storage house built on a slightly rolling place with a reservoir dug in the ground on the lower side to eatch all the liguid mantre that rums out, to keep it from being wasted in washing away. This lifuid is pumper directly back into the heap, thus keeping the heap moist, and in case the liquid is not sufficient to keep the lecap moist. I sprinkle a little water on to keep it so. It is very important that this manure be kept packed firmly all of the time to exclude the air. and in order to do this I have it so arranged that I can turn a bunch of heavy hogs in when I so desire, to gather up any waste grains that may be in the manure and in so doing they pack it very firmly and nicely."

Such labor and thoroughness pay well. Take the state of lowa, for instance, with its ammal approximate production of $340,000,000$ bushels of corn. $140,000,000$ bushels of oats and $6,000,000$ bushels of wheat. Until the past few years the Lowa farmer did not stop to consider that in the prorluction of these crops the soil had given up approximately 650.000 .000 pounds of nitrogen, $10,000,000$ pounds of phosphorus and $3+5,000,000$ pounds of potassium, which if purchased in the commercial form at the current prices would cost about $\$ 130.000 .000$, or in other words practically the ammal value of the entire crop of the state. It is since the Iowa farmer has figured this cut-sometimes. it must be admitted, after a personal loss-that he has taken more extensively to live stock farming, rather than grain farming, and the silo has come to dot the hills and valleys. "If I had to take my choice between a corn crib, a barn or a silo and could have only the one, I would choose the silo," preached the experts on the dairy trains which traversed Iowa and the Missouri Ozarks last spring. When they went on to show that to lutsk corn and bring it into the crib results in only sisty per cent of the feeding value of the corn being secured, leaving forty per

Mowng by Machinery I- the Rule Today.
cent in the field, while using ensilage saves all the feeding valne, their logic became plain. As a result of those trips thousands of silos are being built.

There is every bit as important a lesson in the proper disposition of space so as to insure the maximum of crops at the minimun of labor and expense. It was to teach this lesson that a model farm was exhilited last fall at the Missouri land congress at Springfield, the Missouri state fair at Sedalia and the Industrial land congress at Little Rock, Arkansas. This model was constructed on a scale of three feet to the inch and was built on a table ten feet wide and twenty feet long. It was inspected by thousands of farmers who learthed from it the lesson of conserving space and making every stroke count by minimizing waste of time in moving from one field to another.

On display, the morlel had a south front and the house was located to represent eiglit feet from the front and ninety feet from the east line; the barn one hundred feet from the front and on a line seventy-five feet west of the house. The drive was located to begin forty feet from the east line and was laid on easy curves, passing by the house and leading to the barn. a clump of lilacs in
the center of the driveray answering for a turn around. The drive and the road in front were made of crushed limestone with a sifted dust finish. suggesting good roads and the importance of a driveway. which, by the way, should be the fomulation of any lawn. The driveway conneeted with the steps from the front porch and also the side porch, the barn and the sheds, cellar door and engine house, suggesting conrenience for chores and the saving of time and steps in the day's round on the farm.

In the vegetable garden soutli of the barn were located the hot-bed and cold frame: west of the barn, the barn lot with water trough and north of the barn the pig pen and the pig trough. Both poultry yard and pig pen comected witl? the barin lot and the pasture. North of the pasture and extending across the farm was a field, suggesting a combination of fich crops, planting first corn with cowpeas in the middle of corn rows when the corn is laid by and after cutting the corn, the cowpeas to be pulled or used as pasture. East of the pasture and next to this field was located the apple orchard and a patch of alfalfa. The peach orchard was placed north of the poultry yard, and on the east side of the apple orchard were places consecutively the blackberries, raspleerries. Irish potatoes and sweet corn, sweet potatoes, watermelons, strawberries and asparagus, then blending the horse-radish with peonies, german iris, phlox, hollyhocks, cte, locating the currants and gooseberries in the border of the shrubs ornamenting the lawn.
Taken as a whole the molel suggested to the farmer the importance of a plan for making his ficlds dovetail together. It was a vivid reminder to him that houses are too often merely stuck here and there and that other buildings are located more often than otherwise by chance or guesswork. It illustrated the
arlvantage of using every foot of space to produce something for the comfort, convenience, and profit of the owners. The cherry and apricot trees on the lawn, plum trees in the poultry yard, pear trees at the end of the truck rows, horse-radish in a corner, a clump) of sage tucked in here, a little bunch of mint there, dewherries along the fence, all of these features combined to impress the fact that it is not so much the size of the farm which counts at the end of the season as the proper cultivation of the land itself.

Second only to the im-

These: Haypy-Go Lecky Plowisg IAys Are no More. portance of arranging the crops so as to minimize labor is the inportance of securing the most efficient labor and getting maximum results. In many respects, the labor problem is the most serious one confronting the farmer today. The memployed drift in large numbers to the harvest fields but few have the adaptability or the experience to make good farm hands. The task is to find men who will not merely do but who will prove efficient workers and will remain on the farm. Good wages are paid, varying according to the sections of the country. But even then the farmers are not getting the worth of their money. One of the largest grain growers of the Northwest, Mr. J. H. McCroskey, who has 2,000 acres of Palouse Valley land in wheat, has found this ont by experience. His observations are well worth hearing:
"System is the secret of success and of a balance in black ink instead of red," says Mr. MeCroskey. "It's the little things saved that make the big amounts earned. Just for example. When using a number of binders, it is better to keep all of them at work together in the same field, as one man can oversee it all. The same applies to plowing or other farm operations. When a binder is stopped for repairs, even if only for five minutes. it is better to take it to one side and let the others go oll with their work. It may be only five minutes' stop for the disabled
machine. but it is a loss of fifty minutes if the other nine operating are kept waiting. Moreover, the binter which has been stopped for a few minutes can generally catch up with the others.
"It is better to have a head linder who has the best tean and the best machine. This foreman may not be on his own machine more than half the time. Fle is looking after the others, and if any hitch occurs with some of the other binders, le changes places until things are working smoothly again. In the same way a head shocker will keep a looknot over the field generally, secing that the teams of three men are lined upi and work well together.
"During threshing time, the grower should watch the work. This applies to the quarter section farmer as well as to the bonanza rancher. In this way he can look after and frequently check wastes in the field and at the machine and judge the quality of work. Poor threshing may reduce the price of grain from one to two cents a bushel.
"It is of as much importance as any other thing that the farmer should do his work at the right time, and hire additional horses when needed. It costs but little more to hire than to own, but it loes make a big difference in the crops if they are not put in, harvested and cared for at the right time. "

Mr. McCroskey is a firm believer in

Plowing is Now a Scienct.

Frisen railroad system, in his address at the 1910 meeting of the Farmers Union in St. Louis, when he said: "The Florida farmer receives $\$ 2.50$ for a bushel of ereen beans, the railroad gets fifty cents for the 800 -mile haul to New York and the consumer pays $\$ 6.40$ for this same bushel of beans. There is thirty-five per cent for the grower, cight per cent for the carrier and fifty-seven per cent for the elealer. This: is not a fair division. Thirty cents a dozen was the average price of egos in New York last year, while the farmers of Arkansas and Missouri receiverl fifteen cents. The freight was two cents a duzen. The men who receive the eggs at a freight station in New York and deliver them to the consumer take fifteen cents a dozen profit. The rice farmer of Texas. Lonisiana and Arkansas gets two and one-half cents a pound for the grain, and the consumer in New York pays ten cents
paying good wages and keeping the same gang of men year after year. Ile is making a striking success of his wheat land, which yields him an annual return of 10.6 per cent on a valuation of \$170,000.

Having arranged his land to the best advantage, seen that it is fertilized and cultivated so that the largest possible crops will result and having harvested these crops in the most thorough manner, the problem confronting the farmer is that of marketing. Alone among the learling workers of the world he has no permanent. effective organization. He sells his goods at the prices made by the buyer. And yet this need not be, although most of the plans to prevent it have failed. There is no disputing that the farmer is not receiving his just share of the price which the ultimate consumer pays. This was strikingly illustrated by Mr. B. F. Yoakum, chairman of the
a pound for this rice. The freight is one and one-half cents a pound. If the rice farmer were paid three and onehalf cents-one cent more than he is now getting-and the dealer took one cent profit-which is twenty-five per centthe New York consumer would get twenty pounds of rice for $\$ 1$. instead of ten pounds, as now."

On the platform at that convention was a chart showing the division of profits on a five cent loaf of bread. According to this chart the wheat grower receives one and one-half cents out of each nickel, the baker two cents and the retail dealer one cent. Now what must the farmer do to make his receipts more nearly commensurate with his investment, his work and his risk? L'p to date the most satisfactory plan has been cooperation. Yet the absolutely successful co-operative plan has never yet been worked out. The reason is found in the

The Succeaful Farmer Lives in a Modera. "City-Looking" Dwelling.

Such Farm Homes as This Irf Comparatively Kare Nowadays.
commission men paid approximately the St. Louis market price. Two days after this agreement was entered into, the commission men raised their offer from forty-three to fifty cents per bushel, within two cents of the St. Louis price, and Mr. Miller and his associates accepted the offer and disposed of their 10,000 finshels at an increase of $\$ 700$ for this one instance of the organization.

Mr. Miller confessed. however, that his tentative efforts to better the farmers' condition and to raise the price of corn fell flat becallse of the farmers withdrawing from their agreement. It hat been decided to pool their com again and 15,000 bushels were put into the pool. Before a price for the entire lot could be arranged, however, several of the farmers who hat agreed to stand together individually sold their corn ior fifty and one-quarter cents per bushel, making an increased profit of only twenty-five cents per hundred bushels and disarranging the pool and violating their agreement. Mr. Miller admitted
frailty of human nature. One of the most practical addresses delivered before the St. Loutis convention of the Farmers Union was that of John A. Miller, president of the Missouri State Union, who narrated his experiences in organizing the farmers of his community. He stated that when corn was selling on the St. Louis market at fifty-two cents per bushel, the commission men in his home town offered but forty-three cents per bushel. Mr. Miller believed that if the farmers would co-operate, they could name their own price and materially benefit themselves. To this end he secured the agreement of half a dozen farmers to withhold from the markct 10,000 bnshels of corn until the focal
that all efforts to organize and co-operate would fail as this plan failed if the farn-ers would not resolve to stand by their contracts and to sink or swim together.

All these things, and more. too, are necessary if the highest efficiency possible on the farm is to be achieved. The farmer who fails to realize that he must discard the ways of his fathers, study day and night and adopt every system and scheme for making every penny, every stroke and every seed count is dropping behind in the procession. Mark Twain once declared that he was the only farmer in Connecticut who could make two blades of grass grow where three had grown before. Over against him is the efficient farmer who is mak-

TEACHING THE LESSON OF OBSERVING SPACE AND SYSTEMATIC ARRANGEAENT OF CROPS. A model farm exhibited at the Missouri state fair.
ing three blades of grass, three ears of corn, grow where but one had grown before. Efficiency is the thing that is making the farmer the autombile buyer. modernizing his farm home, sending his son and daughter to college and increasing his bank account. Men may come and men may go but the efficient system
will go on forever. David Rankin passed away, but other men are making fortunes carrying out his plans. These men are the prophets of agricultural efficiency whose works are opening the eyes of the world, with the result that system is supplanting luck and continued prosperity is taking the place of haphazard livelihood.

Dinner Pail Philosophy

(1) He means well-is an obituary.
(I) Greed is the mother of credulity.
(I] Timidity saves a lot of reputátions.
d Most of what passes for morality is hypocrisy.
(4] No really honest man is vain about his honesty.

- Some friends are a lot harder to stand than prosperity.
(1] Nothing else inspires so much confidence as independence.

NEW PICK-UP FOR MAIL POUCHES

By H. M. MERTON

IIf you have ever watched the process of catching the mail by the present methonl at a station in a small town you have probably moticed that the mail clerk on the train has an iron hook fastened to the side of the ear with which he grasps the pouch in passing. If the hook fails to catch the pouch, as it often does, the pouch is gromel to pieces beneath the wheels of the train. A traveling salesman by the name of Albert Hupp has fonnd a better way. He was quite incredulons when the govermment officials told him that improve-

 1月1) (R.AへF
ment was impossible, and has now demonstrated to their satisfaction that his mail exchange system is a success.

The following parts comprise the complete system: Two receiving arms, one On either side of the mail car attached to the side of the door throngh which the mail is received : a truck for carrying the mail, operating between the car doors, so as to deliver its contents on either side of the track: three tripping devices, which start the mechanism as the train approaches the station and leaves it: and station cranes provided with spring clamp arms to hold the pouches.

At the point whare the mail is to be delivered a guard rail twelve inches high is placed along the track to prevent ponches, once dropperl, being drawn by suction beneath the wheels of passing trains.

The mechanism upon the car operates as follows: A worm gear attached to the middle of the axle of the mail car runs a driving shaft which operates a counter shaft provided with a clutch. This clatch throws the mechanism into sear when the car comes intn contact with one of the trips located at the track side. The mechanism makes one revolution and then throws itself ont of gear automatically. The first quarter turn rings a gong in the car to notify the mail clerks that the exchange is abont to be marle, and opens the car soor: the scoond (!uarter turn pusises out the delivery truck until it dumps the mail and opens the receiving arm: the third quarter holds the truck in position, while it dumps. and the receiving arm in position until the station cranes are passed and the mail upon them comlucted into the car: the fourth quarter pulls the delivery truck back into the car, folls the receivinge arms, and closes the dour. This completes the useration and the mechanism remains out of sear matil tripped at an other station.

WINTER CAMP OF THE PIPE BUILDERA. SHOWING TUNNEL ENTRANCE.

THESTRONGESTPIPE IN THE WORLD

By

GLENN MARSTON

IF you ever go to Colorado Springs to see Pike's Peak, you will notice a long yellow scar running from top to bottom of one of the foot hills, and if you have any curiosity as to its cause, you will be told that it contains the strongest steel pipe ever made for the daily conveyance of water. liurther inquiry will develop the information that this pipe contains city water for Colorado Springs, and that the water is used to light the city, operate the street railways. print the newspapers, and perform a hundred other duties before it is finally used to quench the thirst of tourists and common people.

This piece of pipe holds more world's records than any other pipe in the world, antl is the property of the Pike's Peak Hydro Electric Company. It shows not
only the great benefits which result from the development of a water power but also the dangers which attend such an madertaking. The history of the undertaking is a succession of misfortunes which were overcome only by endless perseverance and unlimited confinence in the final success of the enterprise on the part of George IV . Taff, organizer of the company.

The project was conceived in failure and carried ont only after overcoming uncounted legal and engineering obstacles. The fight made for its existence, the attempts to invalidate the franchise, the ludicrous effort on the part of Colorado Springs to force the company to replace its street lamps with obsolete arcs because the franchise specified the old style lamp-these are interesting phases
of the company's development, but they pale into insignificance in comparison with the endless fight against Nature which demanded every resource of the most ingenions engincers of the country.

In the beginning-some eleven or twelve years ago-there was no thought of turning the water which tumbled down the sides of Pike's Peak into power. At that time Colorado Springs found its water supply-fed from the melting snows of the mountains-growing short. The water laws of Colorado are peculiar and are based on the theory of "first come, first served." For example, the great Roby Ranch, just below Colorato Springs, las the oldest water rights in the state, and has a right to its sixty cuhic feet a second before the city can touch the water.

A11 the water rights on the east slope of the mountains were taken up, but on the west side untokl quantities were going to waste. The city secured rights for this water, and then was confronted with the problen of getting it across the f'eak. A tumnel had to be dug through the Peak, and the contract was let to George IV. Jackson and associates, of Chicago.

Then tronble began. Fanous the world wer as a tumnel builder, Jackson had
not had his mettle tried as in this job. No tunnel had ever been built under such circumstances, and it is not surprising that the contract price failed to coser the cost of construction. Long before the tumnel was completed the money for the purpose was used up. Jackson coutd have thrown up his contract, and ended this story right here had he wished. But he was a man to see money in impossibilities. It seemed visionary, it might never amount to any-thing-the chances were that way, and he looked down upon a railroad right of way along the foothills which had never seen a rail, and never would, on account of over ambitious dreaming-but he agreed to complete the tumnel if the city would give him the right to use the water which came through the tumnel for the purpose of generating power.

There was much haggling, and the council dreamed impossibilities too, but finally gave Jackson the right for twentyfive years provided there should be no pollution or waste of water, the city to be the sole judge of both. And so the tumne] was finished.

Starting almost two and a half miles above sea level, the tunnel burrowed a mile and a third through solid granite. There were no roads, so roads-or more properly trails, for there was no room for roadswere built. The only means of transportation was by burro-back. A camp had to be established on the mountain top. The workmen had to be lundled up in fur lined clothes and ear muifis. and their labor therei) (lelayed. The average temperature was four degrees alove zero. Wrater dripped from the tumnel roof and froze on the workmen's clothes. The alternation of hard and soft spots in the granite was to be expected and the broken drills and wrecked compressors Which resulted were merely a part of the day's work.

Then Jackson began to plan for the big power project he had in mind.

ONE OF THE CAMPS OF THE PIPE LAYERS.

He went to the bankers. "Show us" was all they said. He went back to his figuring. Pipe of sufficient strength could be manufactured. but could it be put up? The whole scheme was theoretically possible, but was it practical? Time went on, and Jackson got nowhere with his power scheme. "Let somebody else try it," said the bankers. And so the fran-
chise was sold to the Pikes Peak HydroElectric Company, of which George W. Taff was President and Engincer.

Taff went through, the same heartbreaking experiences which had been suffered by Jackson. But he plamed his project to the minutest detail. He began where Jackson stopped. Jackson had brought the water through the mountain.

Taff's task was to get it down the momntain-to get it down harnessed and rearly for work. Between Jackson's tumnel and Taff's pipe line were reservoirs with a capacity of twentythree and a half billion gallons. Taff's problem was to drop this a straight half mile and not let it get away from him at the bottom.
lle started at the top and worked down, contrary to the usual custom of the successful man. But Taff came so close to being unsuccessful so many times that his inverted plan of action may be forgiven. He devised a method of erecting his pipe line without roals or trails-by using the air instead. He put hand rails and cables where they conkl be grasper by workmen who could not find a footing on the precipitoms mountain side. He showed how a pipe could be constructed that would not fail under twice the pressure to be put upon it, and designed relief valves which would open at 11,000. 12,000, and 13,000 pounds respectively. He planned a cushion against which this tremendous force could beat itself impotently ancl inexpensively when it was not needed to turn his wheels. After he had done all this, he went to the bankers again-and

PIKES PEIK. FROM WHICH COLORIDO SPRINGG DRIWS ITS W.ITER SL'PPLY.
even greater sum to the users of electricity in Colorado Springs.

As before stated, the project came into being through the excessive cost of the tumel, but the difficulties of boring the tumel were only a begimning. The water in the pressure pipe has a head of 2,417 feet at the wheels, giving a pressure of 940 pounds to the square inch. Some idea of the tremendous force of this stream may be gained when it is borne in mind that the ordinary pressure in fire hose is around fifty pounds. A fire hose would easily knock a man down, but not so a stream from this pipe. It wouldn't stop for that. It would simply cut a hole through him. He wouldn't have time to fall down.

The pipe itself is 4, ,h5 feet long and 21 inches in diameter, giving an effective diameter of about twenty inches after making deductions for the retardation caused by rivet heals. It is constructed of $3 / 4$ inch plates of steel, rolled into tubular form. Each section of pipe was tested to a pressure of 2.000 pounds to
the inch before it left the factory. The rivets were driven by a 100 ton hydraulic press.

One of the sareatest difficulties encountered in manufacturing the pipe was that of preventing leaky joints. The pressure is so great that a pin hole leak would soon wear away the elges of the break and wreck the pipe. It was necessary, therefore, to pack the joints so that leakage could not occur. It was originally intended to make the gaskets of lead, but it was found that the pressure was too great, the lead pressing out to a thin film which was of mo value whatever. After weeks of experimentation an alloy of lead and tin was found which served the purpose.

But the factory problems did not end the company's troubles. The pipe had to be laid up a rough mountain side so steep that workmen could not stand on the slope without holding to something, while there was mo road or other means of transpurting the heary sections of pipe to their final pusition. It was first
necessary to prepare a bed for the pipe, which was done by smoothing the surface of the monntain side, removing obstructing boulders, and digging trenches through the more prominent ridges.

An aerial cableway was constructed along the right of way and section after section of the pipe carried through the air to their proper resting places. Not only were the sections of pipe carried upon this tramway but also the workmen themselves. Where the trench for the pipe was cut through rock it was imbedded in concrete made from the decomposed granite taken out of the excavations. Where the pipe is exposed on the momntain side it is guyed to adjacent boulders or rock formations.

Scarcely less interesting than the pipe line is the power house at its foot. Snuggling in a cleft hewn out of solid rock stands a little one story building which looks for all the world like a garage, save that the entrance is a foot or two above ground level. Within you will see three iron shells and hear a roaring and splashing under foot. At one side there is a switchboard on which the attendant occasionally pulls some handle or turus a button. It is the quietest, most peaceful place imaginable, yet you are watching the creation of three thousand horsepower every instant you stand there. Each of the three shapeless heaps on the floor, which look like antomobile wheels caked solis with mud represents a thousand horsepower.

The water wheels are of the wellknown Pelton type, which some tourist said looked like a platter garnished with oyster shells. The "oyster shells" are set at right angles to the dise of the wheel. The water, at 940 pounds pressure, leaps from a nozzle and strikes the oyster shell with tremendous force, which is turned into electricity by a direct connected generator. Ilere again the builders were confronted with a new problem, that of controlling this rush of water so that the wheels would be kept
constantly at 450 revolutions per minute. In the old forms of impulse water wheels the nozzles were provided with needles which regulated the flow of water.

No such method could be used here, for if the load on the generator were suddenly reduced and the flow of water cut off to equalize the lessened power demanded, the shock would burst the pipe line and wreck the whole plant. It is true, the nozzles are fitted with needles, but they are so governed that a nozzle cannot be shut off in less than twenty-five minutes, this reduction being so gradual that it has no serious effect on the pipe line.

But it would be impossible to allow twenty-five minutes to care for the usual fluctuations in electrical load. The solution was absurdly simple. The nozzles themselves were so made that they could be moved up and down. If the load was heavy they were raised so that the full force of the jet was exerted on the "oyster shells," or buckets, on the circumference of the wheel. When the load lightens the nozzle drops so that only a part of the jet strikes the buckets, the remainder passing on unused.

And then came the problem of stop)ping, or "baffling" the gigantic force of the jets. Ordinary masonry or iron would wear out in almost no time. The jets discharge, therefore, into a tank where they strike a water cushion of over forty feet before reaching the specially designed baffles on which their energy is finally expended. The baftles are made of cast iron, having a sharp edge which splits the jet and curves each lalf around so that its final energy is expended on the water in the tank again. Even with the resistance provided by the forty fect of water the baffles wear out frequently and have to be replaced. The jets plow great furrows in the surface of the water which gradually grow deejer until they collapse and a new furrow is started. This cycle goes on continnonsly.

countesy u. 5 fonest service.
. MOUNTMN TOP SMASHFD TO FRAGMENTS BY MANY STROKES OF I.IGHTNING.

WATCHING FOR MOUNTAIN FIRES

By

R OBERT FRANKLIN

IN the vast forest reserves of Montana and other parts of the Rocky Monntains, the most important duty of the Ranger is to watch for fires. Not very far from his cabin-where, very likely, he has a wife and children, with a stream close by to furnish water-there is a lofty eyrie, from which he is able to survey the country in all directions for hundreds of miles.

In that region fierce thunderstorms are frequent. They sweep over the mountains with great fuss and fury, discharging volleys of thunderbolts, which often set the woorls in a flame. In fact, it is in this way that a great majority of the forest fires are started. Major Fenn,

Supervisor of the Clearwater National Reserve, in eastern ! daho, while camping on a trail not many months ago, got up one morning after a storm, and saw five fires in as many different directions, which had been set by lightning. He escaped with his life only by riding as he says he never rode before, nor expects to ride again.

It is a very dry country, and the woods are like so much tinder, which a spark may ignite. The Ranger, from his post of outlook, on the top of a mountain that may be two miles high, locates the fires with the help of a field-glass, and "plots" them on a sketch chart of the surrounding region. Then, descending

to his calin, or in some other station of communication, he telephones to other guards of the forest - it may be over distances of fifty miles or more-and gives them warning of what he has olserverl. Of course, they likewise have been on the watch, and by such means the entire forest is covered by a complete fire alarm system.

The nerves of this intellitence system are the telephone wires which run in all directions throngh the forest-instruments, simply attached to trees, being so distributed that a kanger can always put limelf at brici motice in communication with other guards, to give information or to call for help. It is a matter of no little difficulty to kecp the service always in first-rate ruming order, becanse falling trees, blown idnwin by stoms, are
liable at any time to dislodge or break the wires.

When a fire has been located, the first thing requisite is to get as many men as possible to the spot. to fight it. But they must have food and other supplies, of course, which have to be fetcherl long distances over difficult trails. Formerly this was a very arduons matter, involving long delays, because a week might easily be consumed in transporting the provisions, etc., from the nearest source of supply to the scene of active operations: and meanwhile the fire hurns on. The obstacle has been overcome to a great extent, however, by establishing, in varions parts of the forest, depots, which are drawn upon in any emergency.

The methorl adopted in fighting a fire is msually not to attack it from the front, lut to go at it from both ends, gradually narrowing in this way the width of its path until finally it is extinsuished. For this purpose the most effective tool $\mathrm{cm}-$ ployed is the sparle, by the help of which the flames, ruming throngh dry leaves and unlerbrush, are smothered to death. Sometimes the burning trees are felled. In a serious case, when practicable, resort is had to the experlient of "hack-firing"- that is to say, starting a fire to burning in the dirction of the conflagration that is already raying, and thus clearing a strip over which the flames are mable to pass. Lint it happens occasionally, when the thing is unskillfully done, that back-fires themselves spread with disastrons consegnences.

The Forest Ranger who knows his business is a man of many aptitules. He must lx. to begin with, an experienced monntancer aml woodsman. It is a part of his work to control all grazing on the reservation, and so it is necessary that
he shall be well acquainted with cattle and sheep, and also with forage plants. He must understand lumbering. and must be able to recognize the clifferent species of trees. No tree is allowed to be cut until, with his axe, he has put his brand on it, below the point at which it is to be separated from the stump. The lumber buyer who, by accident or otherwise, cuts a tree that does not bear this brand, is obliged to pay double price for it.

Immense quantities of lumber are sold annually from the national forests. Thus, for instance, a company may obtain permission to cut $50,000,000$ board feet on one of the reserves. It is necessary that the cutting shall be clone in such a way as to do no permanent harm to the forest. So many trees must be left for seed: young trees must not be tonched, and enougl large trees must be left to protect the smaller ones against destruction by wind. These and other matters must be considered by the Ranger when he marks the trees, and upon his skill and carefulness in this work depends the future of the forestthat is to say, the prospect of its reproducing and replacing what has been cut.

The forest trails were originally game trails. Naturally, these followed the

Thf Ranger Kfeps in Touch with Mfangearters by Means uf the Forest Thelefho.je.
lines of least resistance, avoiding the more inaccessible places, ant the Indians. of earlier days used them in lieu of roads, traveling in single file. They are still utilized for the same purpose by the guards of the forest-commonly ruming along the tops of mountains. But it is a part of the business of the Ranger to make other and better trails, in order that all parts of the forest may be easily reached, and in this laborious duty he is often oblised to employ the services of that formidable agent dynamite.

resuscitating by means of the pulmotor.

NEW AID TO SAVE THE DYING

By

M. H. MUNGER

FOR the resuscitation of persons overome by the inhalation of gases, drowning, or electric shock a device called the pulmotor, which enforces the act of breathing, has recently been invented.

A cylinder containing oxysen under a pressure of 125 atmospheres. a blowing and suction valve actuated by two accordion bellows, and a face mask, comnected with the valve by rubber tubes, compose the apparatus.

When the mask is made air-tight on the face, and the oxygen turned on the apparatus works antomatically. Oxygen is forced into the lungs mutil a pressure of four inches. water gange, is reachecl, which gressure is in connection with one of the accortion bellows, and, owing to its clongation, the pressure valve is turned and the oxygen in the lungs released. The suction valve immediately exhansts the longe until a vacuum of four inches of water gauge is reached. This attion elongates the secome accordion bellows changing the pusition of the value and allowing the oxygen again to
be forced into the lungs. A lever is also provided to carry on this operation independently of the automatic device.

In the application of the pulmotor, the patient is placed upon his back and as the tongue naturally falls and with the sof palate closing the back of the throat it is mecessary to srasp and hold the tongue forward with a pair of forceps in order to raise the soft palate and open the larynx.

As soun as the patient has sufficiently recovered to carry on breathing naturally an inhalation device is substituted for the mask and pulmotor. This contains abont two liters of uxysen and is operated by hand.

The suction valve is so arranged that it indicates whether inhalation or exhalation is taking place, and a rubber bas may be attached which is filled or emptied according as the patient is inhaling or exhaling.

This apparatus is beins used in connection with the mine rescte cars recently phacel in service ly the Ferlera! goveriment.

DETAIIS OF I HEAKT STATION. SHUWING GALVANOMETER NNI , TPPAR.ITLG FOK NAKING FIIECTROCARDIAGR.INS

FINDING DISEASES BY TELEPHONE

B y

HENRY HALE

OL'R hearts are the most vital portions of our bodiesthat is why any suspicion that this organ is ailing causes more alarm than trouble with any other organ. Disease of the heart has so often caused death that this is why we fear any quickening or weakening of the pulse which is caused by the heart action literally pumping the blood through the tiny canals in the body called the arteries.

The plysician examines the heart of a patient more often and more carefully than any other part of the body because he wants to make sure if it is healthy or diseased. Usually he makes his "diag-
mosis," as it is called in medical terms. by holding his ear closely to the part of the chest over the heart and listening to the heart action while he feels it. An instrument called a stethoscope is also used. It has an opening somewhat like a mouth piece of the telephone which is placed firmly upon the chest. From the upper end or neck of the mouthpiece extend two insulated rubber tubes which the doctor pushes into his ears. In this way he can get a better idea of heart condition as the movements are noted more plainly than by the ear unaided.

But an invention has at last been perfected by which the ear is no longer needed. This mechanism is so wonder-

Detallfi V'iew of the Gilvanometer.
In the center space is suspended the dulicate string or wire which oscillates by means of the current from the body. Prajecting from the galvanometer is a powerful hens which transmits the vibrations of the streng to the camera film, which revolves in a bos to the right-not shown in the photograph.
fully aceurate that a physician may clearly hear the heart pulsations of a patient though he may be in the hospital ward or in a sick room a mile away. These "heart stations" are now in operation in two cities of the U'nited StatesNew York and Baltimore. The instruments at Johns Hopkins Ilospital in Baltimore are of the very latest design and differ in several features from the New York installation. Such thorough tests have been made of these "heart stations" that it is believed they will revolutionize the ordinary methonds of examining patients to learn the condition of the heart. The system is fat more thorough and gives extremely accurate results as compared with the tests of the human ear unaided or aided only by
the instrument in common une-the stethoscope.

The perfection of the "heart station" is clearly shown by the methods employed. The electric cur-rent-animal as well as artificial-comes into use in diagnosing and determining diseases in unseen organs and especially the heart. Credit shonld be given Einthoven, the noted Dutch physiologist who in 1903 at his Leyden laboratory derised the "string" galvanometer which is the most notable of the instruments installed, in the latest type of this instrument that has been placed in the Baltimore station. In most galvanometers the magnet is the movable part and the current to be measured passes through the stationary coils. In Einthoven's mintrument an opposite arrangement has been made: the magnet is stationary and the current swings through a tiny thread or string - really fine wire. This movable conductor of the current is so minute that it is only $1 / 1250$ of an inch in thickness. Two kinds of threads are usedeither one of quartz, strange to say, coated with silver to make it conductive. or one of platinum. Through his microscopic lens the physician can actually see with the naked eye the oscillations which the thread receives from the heart of the patient actuated by the electric current generated in the human body. The rapidity of the string or thread movements and their extent as well as regularity or irregularity reveal the muscular action of the heart, althongh the patient as stated may be in a distant room.

Such is merely one of many scientific achievements of the heart station. lout the manner in which pulsations are verified and recorded is as remarkable. When the string is oscillating to the currents of the hman heart, only the larger
 camera is used, making a
moving picture. The magnified image of the string is projected by means of a powerful electric light upon a slit in a dark box which contains a moving photographic film. The slit opens and shouts when required by electric signal, and the movement of the film can be begun or stopped at will. Ordinarily a film half the lengtl of an ortinary korlak film will suffice for one observation, bit a recorling apparatus which will permit a photograph 250 feet in length to be taken without intermission, may be installed. Smaller portions of this long film may be used and clipped off for development

How the Patient Is Connecten with the Heart Station.
if lesired. On this film is actually a picture of the movement by a line that extends across it in a zigzag direction. It is like the series of the letter " M " marle in angular form. This means that by the galvanometer and its anxiliaries, the heart conditions can be investigated in three different ways-by the eye, the ear, by the moving camera film, which makes an exact image of the motions, yet as stated the patient may be at a distance. In the examinations thas made the electricity in the body of a patient actually three miles away has revealed his condition to the physicians. These pictures are called by the scientist "electrocardiagrams."

In operation, the connection of the patient with the heart station is naturally of much importance so that the current he generates from the heart movement may be transmitted without loss if possible. The patient places left arm, left foot and right arm in three electrodes, which consist of zine pans filled with normal salt solution eight

Diagram Showing Diseasf of the |entricle of the Heart.

Curve, with tee Patient at Rest

1hfart Presations of a Patient sufferivg from Tachycardia.

Electrocardagram Taken of a Patient Iherivg AN . JtTACK OF DYSPNOEA-DIFFICtLTY Is Breathing.
grams to liter. From each of these, wires are conducted to three switches, by means of which any two of the electrodes can be comnected to the main circuit. They are connected with a wire which is attached to the station galvanometer.

As to the distance that heart observations may be taken, at the present time it can lee calculated but such is the delicacy of the apparatus that eventually a patient twenty miles or more away may thus be examined by the physician. This is not considered impossible by the
experts. Here is where more advantages of the system are to be noted. Many patients are too ill to be removed from a hospital ward to the heart station Again in many instances apparatus can be set up in a physiological laboratory when one is not available in a hospital in the same town. To meet these requirements wires may be laid connecting various wards of the hospital with the heart station which is situated either in the hospital itself or in a physiological laboratory in the same town. Einthoven laid wires between the Leyden Hospital and his laboratory, a distance of one and a half miles, and took tracings in his laboratory from patients in the hospital wards. The main diffienty lies in the prevention of induced currents en route, but that such telecardiagrams-heart pulsation pictures-are feasible has been fully demonstrated.

What this instrmmental investigation signifies in not only diseovering disease but in determining the nature of the disease, is of the utmost importance as an aid to the medical profession. While the galvanometer, the photographic recorter and the anxiliary instruments in this country have given much information in comnection with animals as well as human beings, the work in Germany has been far more extensive since more stations have been established. But the film, in America, las revealed the existence of such diseases as meurasthenia, tachycardia, hemorrhage, poisoning by such compounds as digital, strophantine. even the toxin which is a symptom of diphtheria. These are merely some of the causes which affect the heart current, each producing a different movement depicted on the film, has given a visible proof of disease, possibly unknown before. By filing the electrocardiagrams made of each patient also of animals which have been utilized for experiment. as comparison of the shapes of the zigzag lines or waves produced by the heart electric current has resulted in the discovery made that certain diseases produce certain heart pulsations. Thus a new way of locating and correctly defining physical ailment is opened by these mechanical recorders of the human boody.

TWELYE ACRES PER DAY HARVESTED AT A COST OF LESS THAN ONE DOLLAR AN ACRE.

THE NEW IDAHO HARVESTER

B y

J. W. LIE U A LLEN

WHEN it is remembered that there are millions of acre: of grain harvested each year throughout the world and that it costs from four to six dollars an acre to harvest it with binders, headers and threshers, it is at once apparent what an enormous saving there would be to the grain growing countries of the world, if this cost was reduced to less than one dollar an acre.

Out in Idaho a new machine has been invented for which is claimed the power to accomplish this wonderful revolution. It is neither a binder nor a header, nor a combination of header and threshing machine, but it is distinctly a new harvester, invented and built on principles

Which have not heretofore been applied, but which are now protected by patents.

The inventors, Cornelius Quesnell, a blacksmith, and Andrew M. Anderson, a wagon maker of Moscow, Idaho, within the past five years have perfected eleven distinct inventions which are combined in the construction of this wonderful machine called the "Idaho Harvester," the patents for which are owned by the manufacturing company:

This machine enables a farmer to take six horses and his sixteen-year-old son into his field and with one operation cut. thresh and sack his grain, with no more expense than it has ordinarily cost heretofore for binder twine, under the old methods of harvesting.

The inventors had the same experience

THE NEW HARVESTER AT WORK ON A HILLSIDE.
One of the wonders of this machine is that it does as perfect work on slanteng as on level ground.
that many other inventors of great improvements have had to interest people. When their resources became exhausted in butding models for experimental work, they interested Gainford P. Mlis, a young farmer who had just graduated fron the University of Idaho and who is the present manager of the manufacturing company. State Senator Jerome J. Day, a millionaire and one of the owners of the famons Hercules mine in the Coeur d'Alenes of Idaho and who owns extensive tracts of wheat lands in the Palouse country, afso devoted much time and money to the perfecting of the Idaho Harvester.

Last year twenty-five machines were used all season and were distributerd throughout Idaho. Oregon and Washington, for testing under most trying conditions, with the result that the most slieptical experts pronomeed them to be a success in every way.

The Agriculture College Department of the Cniversity of Idaho gave the "Idaho Harvester" a tryout last fall for
not only threshing wheat, oats and barley but also for threshing field peas and beans and pronounced it a success.

The scarcity and high price of labor at harvest time has always been a serious matter in the great grain producing sections of the West. Much of the trouble about help in harvest time and the enormous expense of threshing crews, twine bills, threshing bills, and the worry over many other expensive things are done away with by the use of the new machine.

The farmer will be as independent in harvest time as at any other period because he can reap what he sows with no increase of his usual force saving, on an average, four dollars an acre in the cost of harvesting.

A farmer who has six head of horses with which to to his plowing, seeding and other farm work, ean afterwards put his grain in the sack with the same help. and no more unless perhaps an extra boy to sew the sacks as they are filled. One man and a boy can go into the field
with an "Idaho" and cut. thresh and sack twelve to sixteen acres per day.

Numerous farmers who used an "Idaho" for the season 1910, say they saverl the cost of a machine in the harvesting of two hindred and fifty acres of wheat, figuring forty bushels to the acre. Besides this they claim to have saved from two to four bushels more grain per acre than it has been possible for them to save by the methods commonly employed.

It will be observed also

Froxt Vien of the New Harvester. The reml. sickle, sickle-drive, bull wheel, the elevator which carries the grain to the re-cleaner over the bull wheel, and the sack-sewer's platform to the right of the bull wheel and discharge pipes are shown. that, in a cost of from seventy-five cents to one dollar per acre to put grain in the sack with an "Idaho," are figured good harvest wages for man, boy and six head of horses: otherwise all expense would be for oil and occasional repairs.

The aggregate of the possible saving, at an averase of $\$ 5$ per acre each year throughout the grain growing countries of the world, will amonnt to many millions of dollars.

The machine in action weighs 3,200 pounds and is constructed almost entirely of steel and iron castings with ball and roller bearings throughout.

The most important of the cleven patented devices. essential to the "Idaho" are: the "butl-whecl," the cylinder and concave, the corrugated teeth, the corru-
sated device preventing grain settling to one side of separator on hill sides, the automatic leveling device of the sickle bar and reel and the sickle drive. The bull-wheel is stoutly built of angle iron with open face, about five feet and ten inches in diameter and 18 inches across the face. It has iron rod spokes bolted into a heavy cast hub, on which is also bolted a large sprocket wheel, the chain on which operates the entire machinery for cutting and cleaning the grain. The outer rim of the bull-wheel has the angle turned outward so as to cut into the ground and prevent slipping on hillsides. The climbing bars of angle iron are bolted across the face of the wheel from rim to rim about ten inches apart. These cut into the ground and prevent

DI HORSES AND A SACK SEWER ARE ALL THAT'S NEEDED TO AD TIE OPERATOR.

The Gpes "Bule Wheez" of the Harvestfr.
slipping but do not injure the ground by packing as some other heavy solicl surface wheels do.

The cylinder and concave are the full length of the sickle bar-a feature never before patented. The cylinder is about nine inches in dianeter, because of the corrugated teeth, with which it is studded. It does good threshing at six humired revolutions and when run at twelve hundired does not crack the grain, making it more desirable for milling purposes as the flour is whiter.

The corrngated teeth are considered indispensable because they enable threshing to be successfully done whether the cylinder is geared to a high or low speed, so that the operation of the entire machine produces the same result at all times. These teeth in the cylinder have four corrugations on each side, giving somewhat the appearance of a washboard, except that the corrngations are deeper than in the humble household
device. There are three corrugations on each tooth in the concave.

The grain pan and sieve are each corrugated like a washboard which prevents the grain from going to the lower side when operating on steep hillsides. The rattle-rake drags down over the pan and delivers the grain equally on the sieve. The sieve being also corrugated the grain is carried straight back, there being no chance for it to flush sidewise. The machine does excellent work on onefourth pitch.

The sickle bar is always level, due to a patent device which operates antomatically when the same is raised or lowered according to the height of the grain being cut. This is done with one movement of a lever by the driver without stopping the machine. The reel at all times: is kept in its same relative position with the sickle bar, whether cutting high or low grain. Every head of grain too short to be bound with ordinary binders is saved by the "Idaho," even if the cutting apparatus has to be tipped down to the ground. The sickle bar remains level and no grain can drop off in front after being cut.

The sickle drive device is a walkingheam operated from an off center sprocket-wheel. It is so arranged that there is produced a steady pull both

 fre Left-Hacd Corner.

FACTORY AT MOSCOW HDAHO WHERE THE NEW HARVESTER IS MANGFACTURED. The buildings are of cencrete. stone and glass.
ways on the sickle A ball-and-socket connection of the walking-beam and the driving-shaft operates to let the sickle bar be raised or lowered automatically:

This machine has a seven foot sickle. a seven foot cylinder and concave, a seven foot rattle-rake and a seven font sieve. This being the width of the harrester. From sickle to cylinder is four fect six inches; from cylinder to rear of rattle-rake is also four feet and six inches. There are twelve and one-fourth square feet of sieve in the separator. The grain is then carried up to the recleaner where it passes through two sieves twenty by twenty-four inches each, making six and two-thirds square feet more of sieve, which gives a total of eightcen and eleven-twelfths square feet of sieve surface in the machine. The discharge pipe from which the grain runs into the sack hangs on the platform beside the separator where the sacksewer sits. W'hen one sack is filled the spout is automatically moved to another sack which fills while the first one is being sewed and rolled off the platform
where it is out of the way of the macline.

Engineers have figured out that, with one revolution of the cylinder in the "Itlaho," there are eight times as many threshing surfaces as in one revolution of the spiked tooth cylinder in an ordinary threshing machine and hence successful threshing at lower speed. The narrow surfaces of the corrugated teeth secure more effective threshing without the necessity of cracking grains as the flat sides of an ordinary spike tooth.

As the grain is cut it falls back onto the draper and is carried back to the cylinder just as evenly as it grows upon the ground. The cylinder being the same length as the sickle, the threshing is accomplished with but slight additional power over what it takes to operate the machine without the grain passing through it. A very different rule obtains in other styles of machines where large quantities of grain and straw must be fed through short cylinders which have to be keyed to high speed to spparate the grain from the straw.

LOWERING A CONCRETE GIRDER.
I slip in work of this sort may procipitate the kreat weright upon pedestrians in the strent below.

WRECKING A MODERN BUILDING

By

J OSEPPH A. MASSAL

UN ABLE to withstand the merciless blows of irresistible pmenmatic hammers ancl drills and powerfully wielded slalges, the old home of The baltimore News, a modern fireproof structure, built entirely of steel and concrete, recently crumbled and was demolisherl. Out of the ruins will rise a fine office building twenty stories high.

The destruction of the old home of The News was of great significance to the engincering and architectural work, because of its being the first building of concrete and steel to be torn down since the present-day methorls of construction
were adopted. Experts have watched closely the wrecking process, and observations were taken constantly upon the pregress of the work.

The solid concrete parts, reinforced with steel and structural iron were cut by puenmatic drills as easily as though they were made of papier mache, and derricks lifted the huge crumbled and twisted portions of iron and concrete and lowered them to wagons which rapidly hauled them away to the scrapheap. For several weeks during the demolition of The News' old home thousands of interested pectators lined the sidewalks on News Square, and so congested the
strects that time and again all traffic had to be abandoned. They gathered there to watch the wreckers-veritable dare-devils-and marsel at the ingennity displayed in rendering into junk what appeared to lee an invilnerable structure.

And. had ordinary methods been ennployed to destroy it, it would have been invilnerable, for the walls, colums and girders were as if carved from solid rock. The whole mass was fillerl, too, with great sinews of steel-heavy rods linked by apparently inseparable bonds.

Experts as well as novices who learneal that the structure was to be destroyed scouted the idea that it would be leveled to the ground within weeks.

The pmematic drill and the blowpipe were called into service, and it was these that triumpled over the intermingled concrete and steel, and attracted the attention and wonder of the big crowds that gathered in the streets below and gazed up at the workers as they steatily mastered the tough old building.

The contract allowed nincty days for the work but after sixty days work the lig job was completed. Fetween seventyfive and one hundred men were engaged in tearing down the structure. Every day it was possible for greater speed to be made, although the beams and supports of the lower floors were heavier than those near the top. Closer to the grommel the men relaxed the rigid precantions necensary near the top, where the slip of a rope or a misstep would have meant death or serious injury. Althongh everyone in the buideling trade recognizes that wrecking work is much more hazardous than even the highest kind of buikling construetion, the work progressed without a single accident.

The new building is actually growing up under the wreck of the old. As a matter of fact the most interesting part of the work was the construction of the new building's foundation piers under the old huilding's foumdation grill. which was partly removed by dynamite blasts.

CUTTING A GIKDER IN TWO WITH A BLOW PIPE.
The workman has a most limited space for footing.

Skfleton of the Old News Bulldng. Baltimorf. This photo was taken ten days after the work of demolitton was begun. The reinforced sirders, uprights and hoors can bueclearly sem.

The new foundations will be distinct from those of the old building and will go much deeper. Tons and tons of steel and concrete basc were blasted ont. Nany men worked all day long preparing for the blasting, which was done between five and seven o'clock in the morning, and between the same honrs in the evening. The old building extended two floors undergromed, with fomdations going down still further. The lowest sub-basement of the new building will be thirty-sis feet below, the superstructure twenty storics above, the strect.

Alany things were going on at once above grond. Every now and then a huge 2,000-pound pile driver was lifted six feet by the derrick and by means of a "snare" in the cable was dropped, with a sound like the crack of doom, on the concrete floors. When it struck it gave the whole building a jolt and made more noise than the dynamite. It was lifted again and again, smashing the crust of the floor at every drop.

A srating of iron reinforcing bars held tugether the floors that were broken nip by the pile driver. Men then got at them with hammers and chisels and
smashed the concrete through, leaving only the iron grating. Other methods were used in dealing with the heavy reinforced upright supports and horizontal beams. These were marked off into sections as big as the wagons could carry, and cut up.

A compressed air (lrill battered away the concrete, leaving the beams to rest on the iron reinforcing bars. Two electric air compressors were kept at work all the time supplying the air-power for these drills. After the concrete had been drilled away, men with "fire machines" got to work on the iron bars. To do this there was brought into operation the blowpipe, a highly developed form of the sometimes crude affair of the same name that youths become acquainted with in the high school laboratorics. The wreckers' type of the blowpipe consists of a rather ordinary looking pipe connected by tubes with tanks of coal gas and oxygen. The gas is constantly flowing from the month of the pipe, and, being ignited, the flame. fanned by a high pressure of air, generates an intense heat.

First a part of the iron bar is heated with the coal-gas blast, and then, when the rod reaches the red heat stage the operator presses a button and, presto! there pours through the pipe and against the heated steel a strong current of oxygen. The effect of oxygen upon redhot metal is to instantaneously burn it, and in almost the twinkling of an eye the stubborn metallic rod that would have defied almost any other means of destruction is worn clear through.

Two hnge derricks were at work all the time, one in the corridor of the new buiding and one in the basement of the old building. The engineer never sees the movements of the derricks. All commmination with him is by means of bells of two tones and by five different rings on each bell. In other words, he can be told several different things-start, stop, faster, slower, a little faster, a little slower, on each bell. These derricks have lifted as much as twenty-five tons. It is tremendously important to place a burden of this magnitude in the right place. Mixing signals might land twentyfive tons in the bed of a street with force enough to grind 111, the car tracks or anything else that might be hit.

SECTIONAL VIEW OF THE NEW GRAND CENTRAL TERMINAL STATION. NEW YORK CITY.

STATION WITHOUT STAIRWAYS

By

RICHARD H. MORRISON

IN building its new terminal station, which is to be the largest in the work, the New York Central Railroad is spending millions of dollars to save minutes of time for travelers moving to and from its trains. It is to be a station without stairways-the first building of its kind ever erected. In place of stairways there will be "ramps" -broad, gently sloping ways along which the rivers of haman traffic will flow quickly and safely. These ramps were decided upon after months of study and the most severely practical tests, in which scores of experimental inclines were built and torn down, and in which all sorts of people, fat and lean, tall and short, old and young, all carrying a maximum of hand baggage, participated. The reports gathered from these experiments showeil that a grade of eight feet in every hundred was scarcely noticeable.

Whenever possible the grades are to be only three or four feet. When the new station is completed a passenger can get off a train at the lowest level and reach the street without mounting a single step.

The new terminal will have four levels where the old one liad one. The gallery on the grade of Forty-second Street will be the top level. The next will be a conconrse. which is on the level of the forty-two tracks that will handle the through trains. This will comect with the subway lines. On the third level will be the twenty-five tracks for the suburban trains, and muderneath these will be subways for landling the inbound and outbound baggage. The terminal, which is to cover seventy acres, will be able to take care of 70,000 people in an hour, and will have a capacity of 1,150 cars. If necessary, as many as 200 trains
an hour, all handled by electricity, can be sent out. The station building proper will be 600 feet on the street level, 300 feet wide and 105 feet high. Below the street level it will be 74.5 feet long, 480 feet wide and 45 feet deep.

The station will possess many other novel features never before incorporated in a building of this kind. For instance, there will be a great many small rooms, to be rented for a nominal sum, in which a man can change his clothes withont hiring a room in a hotel. For women the same facilities are to be offered. Passengers will never need to go to the baggage rooms. When a person buys his ticket he passes on to the next counter, from which check and tickets are sent by puenmatic tube to the baygage room and returned, after checking, by the same means. Another innovation will be the "kissing gallery," a balcony in the incoming station, specially arranged for people who come to meet friends or relatives. It will have a sufficient elevation to give a perfect view of the foors through which travelers arrive. There are to be separate waiting rooms,
ticket offices, entrances and exits for suburban and long-distance passengers so that they need never see each other or mix in coming and going. When trains come in and discharge their passengers, they will not hack out, as they do now, but after being emptied will continue on around a loop and run over to the yards at one side below the street level, where they will be made ready for another trip. Thus all of the main tracks will be given over entirely to incoming and outgoing trains filled with passengers.

Instead of a single structure this new gateway to New York will be a group of magnificent buildings, for it is proposed to improve all of the space now occupied by the road's open yards. The cost of these improvements will approxinate $\$ 180,000,000$. All the machinery of the terminal, the signals, tracks and hundreds of trains, will never be seen from the streets. Perhaps the most wonderful thing about all this is that this work is being carried on without stopping or delaying for a moment the movement of nearly $2,000,000$ passengers a month.

Ode to the Fly

> Most injurious typhoid fly. Drink with you no more will I. When you settle on my cup. I perchance bacteria sup: After what I've seen today. I would have you chased away. I dislike those feet of thine, What they've touched I shall decline. Carrier of germ and spore, Get thee hence! Return no more!

> Spreader of disease, begone!
> Kindly leave my food alone.

SHIP GAME FOR HOME PLAY

By

P. J. PRESTON

DECK RILLIARDS" is a game that has been peculiar to ocean travel, but it may be made a diversion on land also.
The game can be played by two or more persons and is very simple to learn. The players take their stand at either end of a course, which can be the length of any space that is suitable for the purpose. At sea the available deck space usually settles the question of the leugth of the course.

The "court," at either end, is marked in squares, the squares being numbered from one to ten, with four spaces for ciphers. The game is played with flat wooden disks and the "cues" are used to push these disks along the course, the object being to place them on the highest numbers, carefully avoiding the spaces marked with the ciphers. If one player has left his disk snugly ensconced on a high number the opposing player who follows him tries so to shoot as to knock the preceding player's disk from

COUNTING THE SCORE.
The outcome of the game is computed from the figures on which the disks rest.

Shooting" a Difk in a Home Game of Deck Bleliarus.
passes and cutting out the circle with a small saw. After it has been cut to slape, the disk should be sandpapered perfectly smooth on both silles so that it will slide easily and any rough edges left by the saw should be smoutherl out by the same means, so that on sides and edge the rlisk is quite smonth to the touch.

When the disks are finished the "cues" must be fashioned. They are made in varions ways. The handle is a long pole which is taken in both hands, or in one, as the player prefers, and used to sloot the wooden disk along the course.

It is easy to make a set of "cnes." The liandles can be fashioned from old brooms, and if the forked
the space, at the same time doing it so skillfully as to leave his own disk in its place.

It will be found very easy to make the entire outfit for this game and the course can be marked out on any level place, a side path of the house, provided the path is paved, or a room that is long enough to give room for a satisfactory shot. The wooden disks, two for each player, can be made from the lumber of a soap box, or can be cut from any piece of wood that is smootl and firm enough to serve the purpose. It should not be too light or it will not "carry" when shot down the course, and the disks must be of about the same size and weight to make the contest fair to all the players. If no better tools are available the disks can be fashioned by drawing a circle with a pair of com-
ends are too complicated a piece of carpentry for the novice the forks can be omitted altogether and the wooklen block that engages the disk when making a shot can be fastened to the handle by boring a hole and fitting the two together, as the handle of a hammer is fastened to the head.

It will probably be found just as much trouble to do this, however, as to make a forked end to the broon handle by nailing two picees of wood to the end and fastening the wooden block between the forked ends. It can be seen from the photograplis what a very simple matter the outfit is.

There is a deal of exercise in this ganc, the bending and shoulder movements necessary to the shooting being most beneficial, and as botl sexes can play "deck billiards" it will be found

well worth the trouble of making an outfit and marking out a course.

The player's disk in the game of deck billiards is placed on a line three feet from the figure squares, and inside these, as shown in the photos where the player is about to "shoot."

The game can be played by fon persons or two. When four are playing two are partners. opposing the other two. The partners do not take their places side by side at opposite ends, but one at either end. facing each other, so that opposing players shoot from the same side alternately mutil all the disks have been shot over the course. The opposing players at the other end then count the disks for their own partners and amounce the result to the other side, it not being possible to tell accurately where the disks have landed when looking at them from the side from which they were shot.

When the count has been made and anmonnced the disks are removed from the sfuares and the same disks returned to the opposite side by the shooting process. The number of disks used is eight, four to each of the two players who do the shooting. The first man to shoot sends one of his four disks over the course. Then the opponent who, as explained, is playing at the same end, sends his disk along, striving to knock the other man's disk off if it has been placed on a high number. The first player then shoots again and again his competitor, by his side, tries his luck and so on until all the eight disks have been sent over the course.

The partuers of the two players, at the
other end, watch the progress of the disks and comm the total soore. anmoneing it to the others. Then they gather up the disks and repeat the slooting from the opposite direction. The side first scoring fifty points wins the game.

There is no penalty if the disks are driven out of bomds. On shipboard the penalty is sometimes the loss of the disk, for the reason that a disk will occasionally turn on its side, assume the shape of a wheel and climb over the rail into the ocean. On land such a thing would not be possible and a bad shot simply brings its own penalty of no score.

There is mothing to correspond to "putting" on the golf green. The width of the course is the width of the checkered board on which the scoring figures are placed. If the disks are not kept within this space they will of course fail to score. The disks must be shot so as to stop on one of the figures. If they are shot so as to overshoot the figures or are sent wide so as not to pass over the scoring squares at all, olvionsly it is a bad shot and does not score.

An interesting complication is introduced into the game by the marking of one of the squares ten plus and the other ten minus. As both these squares are in line the player who tries to get on the coveted ten plus, which adds ten to the score is more than likely to shoot short and have his disk stop on ten minus. which causes him to lose ten from the score already made; so that when the total score is almost reached the player who accidentally gets on the ten minus. square may be put back so far the other side wins.

O NE HUNDRED MILLIONS FOR CITY ROADS

By

ARTHUR JOHNSON

TIHE vast problem of dealing with the ever growing traffic of London-the need of great transwerse and circular arterjes, the demand for access to existing and future "garden suburbs," the changes due to the motor vehicle and the tramway-is at last receiving the attention of the London Board of Trade atuthorities.

Sir Herbert Jekyll, Assistant Secretary of the Board, has prepared remarkable records and plans, which show that the demand for traveling facilities will sooner or later overtake the supply. Accordingly, it is urged, now is the time to start a great scheme of road improvement in and near London, so that townplanning schemes may be allied with it and the whole work be unified.

It is proposed to at once proceed with

[^18]the building of over 100 miles of new roals, and also to improve over twentyfive miles of existing thoroughfares. In speaking of the expense, Sir Herbert Jekyll says: "It is difficult to see how the cost can be avoided if congestion is to be relieved and proper provision made for the future. Large as the expense may be, the cost of inaction is also heavy. The time lost daily by millions of people through insufficient road accommorlation is alone equivalent to a very large loss of money.
"Every million spent at the present time woukd be a good investment." In fact, the report goes on to set forth in emphatic language how the cost, if the plan is put off for eight years, will be probably double what it is now. It is suggested that a central authority will have to be empowered to carry out the scheme.

There is a covert but powerful appeal to London patriotism. The example of Liverpool, London's greatest rival, is quoted to show both what a great city has done in the way of new roads and how the taxpayers have profited by forethought and central control.

The report anticipates that the great new roads will have a double track of tramway, and that there must be room for three lines of moving traffic om cither side of the tramway. with further room for standing vehicles if there are shops in the road.

Therefore, main arterial roads must be from 100 to

WHAT TIE NEIF CIRCULAR BOUND.ARY-OR "RING" ROAD-WOUILD BE LIKE.

125 feet wide, first-class county roads 75 to 100 , and second-class 50 to 75 . It recommends. too, ornamental planting along parts of the roads and the selection of good sites for public monuments.

On the whole, the report shows conclusively that London is now tackling her traffic problems, so far as conveyances go, with energy and good sense. Twenty-three main roads radiate from Greater London into the surrounding
comntry, including the Dover, the Drighton, the liath, and the Great North roads. The scheme would provide means for making direct-approach roads into London, besides linking up the main routes, both old and new, with subsidiary ones. At the same time there is an official suggestion of a great circular road around London, a quarter of a mile in width and a ten-mile radius from Charing Cross, which wutd link up these radial roals.

GASOLINE FROM NATURAL GAS

B y

F. M. LESTER

ANEW method of producing sasoline has been perfecterl with results that promise to increase greatly the supply of that indispensable fluid in this attomobile age. The process involves the production of gasoline from natural gas. The list of valuable commodities that were rliscovered by accident is a long one and to it must be adrled this kind of gasoline, for the possibilities of natural gas in this direction were learned by chance.

Two or three years ago it began to be noticed that mysterious explosions occurred in ranges and stoves fed by natural gas, particularly in cold weather. It was conjectured that the cause was due to some rapid chemical change in the water often in the line. One day an inguisitive pumper in blowing off a Pennsylvania qas line noticed that the fluid blown out did not louk exactly like water. He managed to gather some of it and discovered that it was a high-grade gasoline.

News of this interesting discovery in two or three days reached the headquarters of natural gas sharps in l'ittsburg and gas eliemists were sent to the scene to investigate. They fouthdthat the

A Gas Well Byfore BeiNg Shut in. Where the flow is very stronge, the gas usually yields hut little gasoline.
regular attendant on the lease had become ill suddenly and departed leaving a couple of high pressure wells flowing into the line. It in turn was cut off from the trunk line by a valve a mile further. The weather had been bitterly cold for a week. The gas line ran part of the way through a marsh, the water in which was frozen, so the line was incased in ice. Here then was gas confined under heavy pressure in a low temperature and these the experts saw were the only conditions nature required to turn out with great rapidity gasoline of a bigher grade than is distilled off in the ordinary refining process.

Natural gas is known in oil country vernacular as "dry" gas and "casing head" gas. The first means gas from a well that produces no oil and it is this kind of natural gas that supplies fuel to humlreds of cities and towns. Nearly all oil wells produce gas in association with oil. Such of it as is necessary is thed to operate gas engines for pumping or to furnish fuel for the boiler. The rest is allowed to escape through the casing heads of the wells. In some cases this waste is very large. As before intimated news travels fast in the wil country. Within two months after
that Pennsylvania pumper blew off his gasoline, oil operators fromi Pennsylvania to Ok1 a 1 c 1 ma knew that the gas they were throwing in the air was capable of being turned into gasoline and money.

Several of the larger manufacturing companies that build macluncry for the oil fields took up the subject. They devised apparatus to produce the low temperature, high pressure and confinement that mature demanded for her condensing proces. In the first plants the gas was run from the well through a compressor which contributed the necessary pressure, into a coil of pipe in a tank of cold water where the other conditions were realized. That with a few frills was about all. The carly plants have been improved on but the principle remains the same and so much simplicity has been introduced that an ordinary pumper can (n)erate the ordinary plant in addition to his regular work.

These little gasoline plants are going up in all the oil fields. They involve the investment of a few thousand dollars only and for the most part are of the capacity of a few barrels of gasoline daily. But some are of pretentious size and more are being adkled to this list. In the Oklahoma field a few weeks ago a company heavily backed by wealthy men was formed to thus utilize waste gas and in the same ficld the special process man has made his appearance.

The characteristics of two wells on the same farm are often cntire-

Obtaining a Sample of Gas.
Gas displacing water in bottle.
 water and immersed neck downward in a pail of water. The rubber tubing is inserted in the neck of the bottle. Immediately the gas forces the water out of it. A cork is put in and, after clipping it in liquil paraffine. the bottle of gas is ready for shipment to a laboratory. Hundreds of bottles are received weekly in the testing rooms around Pittsburg and the chemists are able to tell exactly just what quantity of gasoline per thousand fect a particular gas will produce. It is foumel that Iry gas
yiekls little or no gasoline but that casing head gas coming from oil saturated sands carries a content of from two to two and one-half gallons per thousand feet of gas. This means that a great many lease nwners are garnering very handsome profits. The oil papers which perlatpe of all trade papers follow their sulbject closest, report mumerons little plants. that bring the owners as high as $\$ 50.00$ a day clear profit from a product that for years has been allowed to mix with the atmosphere.

The "gasoline scheme" as oil men call it has alreatly arlvanced sufficiently to develop problems of tran-purtation and storage. ()f cuturse, gasoline camot be kept in the ordinary wonden tank. Nor will the customary iron tank hold the volatile Muid. A suecially buile stcel tank is reguired. For shipment it has been found necessary to use steel Irrums. There is really no difficulty yet in finding quick markets for the demand for gasoline is worldwite and immense.

Last year the production of oil in the Enited States reacherl the stupembous figures of 213.000,000 barrels-the largest in the history of the industry. This means that every day 600,000 barrels of that fluid came out of the ground. Thongh exact statistics are lacking it is known that the prombetion of the Asiatie and Eastern European fields was also enormons although, of course, mothing like that of the Uniterl States, which

Burnini: (ids: Wfli. with Flame 125 Ffft High. Photomgrabh takeon at meht.
maintains, withont danger of loss, the supremacy it assumerl fifty years ago.

The prodigions production of of has developed a peculiar eondition in the market for oil products. There is practically no end to the comsumption of the lubricating oils ponduced from peotrolem and, assail, gamoline moses omt as rapilly as it is marle. These two products represent the two extremes of crude oil, and the space between is made up of burning oils which, owing to the sreat production, have accumulated enormonsly. It is this fact which has enabled the Standard 10 attack successfully oll their own ground the European manmfacturers. for the latter cannot sell kerosene at the price made loy the Standard. A vast propertion of American petroleum does not yield mench gasoline. This is the fact as to the Califormia oils and also as to the oil of the Gulf Coast. Every ounce of gasoline that the other oils can be made to yield is secured in the refining process.

The mannfacturing companies most concermed concede that transportation problems will increase as the business increases. linat they believe these will solve themselves. They examine in their laboratories thousands of samples of gas from the different fields and express their belief that these are the early stases of an industry which bids fair to become second in importance to the production of crule petrolemm.

LP THF ALPA BJ AERIAL TROLIEV.
A mow wan to ascond the Amualle du Madi, a peak of the Munt Blanc Ranate

AERIAL RAILWAY TO MONT BLANC RANGE

By

DR.ALFRED GRADENWITZ

WE are fast approaching a time when all local obstacles having been removed, even the remotest places will have been brought within the reach of modern civilization. In fact, man in his struggle with natural drawbacks has long been intent on encircling the whole surface of the earth in a contmuous network of railways and steamship lines. thus reducing distance to ever more subordinate importance. The last refuge left to lovers of solitule was on the snow-clad peaks of the Alps, which could be confuered only by the chosen few able to vanguish their terrors. However, the iron horse is now invarling even these last ramparts of virgin nature, spreading everywhere on its way, the lustle of morlern life.

It is true that from a less selfish point of view this trimph of human skill is to
be welcomed. Though the moisy products of civilization necessarily impair to some extent the beanty of Apine seenery, it is doubtless a boon to humanty that common mortals should have been allowed their share in so many unknown treasures. Moreover, the very alvance of engineering allows these means of converance to be designed on lines more and more in keeping with the majesty of Alpine scenery. The noisy steam engine with its clourds of smoke has already been superseded by silent and snng electric locomotives and the latest progress in this direction is the advent of suspended cableways, aerial railways as it were, which convey their passengers with the smoothness almost of air travel and hardly any earthly contact, up to the most giddy heights.

This novel means of conveyance, aiter a few slort lines of minor importance, has been put to an interesting applica-

JHF ZFSt of Afrial with the saffty of Land. Travel.
Swinging a carluad of passengers to Alpine bejghts.
tion in connecting the Aiguille du Midi, a peak of the Mont lllane range, with the world-renowned village of Chamonix situated at its foot. In describing this remarkable installation, it should be muderstood that the suspended railway is identical in principle with the cable-way employed from times immemorial in mines and elsewhere for the transport of coal, ore, timber, etc., and that such cableways seem to have been known in China for thousands of years.

All the latest advances of modern engineering had to be resorted to in sulbstituting for the tiny trucks used in the transport of goods, comfortable passenger cars propelled at a convenient speed. Noreover, in case of rupture of a cable or other disturbances, a safety at least equivalent to that of ordinary railways had to be warranted.

Being more independent of the configuration of the soil and adapting themselves more easily than ordinary railways to any caprices of the ground, these cableways show obvious advantages over track railways, the more so as they are incomparably cheaper in installation.

MEASURINGTHESNOWFALL
B y
ARTHUR CHAPMAN

ONE of the most interesting lines of work taken up by the government in recent years is the measurement of the snow-fall in the Rocky Mountains. It is the intention of the weather lureau. with the eo-operation of the forestry service, to establish show boxes and ganges at innumerable points on the Great Divide. Weather burean employes, and forest rangers, will visit these stations as often as conditions will permit, and will file daily or monthly reports showing the amount of sncwfall on the great watershed of the United States-reports that will be most valuable as indicating the likelihood of
floods at the sources of the most important streams in the country.

Through the efforts of Frederick H. Prandenburg, district forecaster of the United States Weather Burean in charge of the Rocky Momntain district, and director of the Colorado weather service, an encouraging start has been made in this new and important work in Colorado. Mr. Brandenburg has established forty-three snow bins and 225 snow scales in Colorado in the last year. These stations are evenly distributed over the mountains and foothills, so that this winter's snowfall in Colorado will be accurately estimated from day to day.

The snow boxes, which have been spe-

Measurements of Snowfall Are Made Dally in this spertally Cosstructed Box.
United States sovernment station at Steamboat Sprosiss. Routt County. Colorado.
evenly that, even when a high wind prevails, there is little variation in the deposit in the receptacle. This simplifies the work of measurement, even at such places as Corona, on the very top of the continental divide, 11.000 feet above sea level, where sixty mile winds often prevail in snow storms."

The snowfall at these measuring stations is measured every twenty-four hours, when storms prevail, the boxes being cleaned out every night. The snow gauges, which have been prosted at points in the mountains inaccessible to the average person, are not visited so often. but, through the co-operation of the forestry service, they are read at least once a month by forest rangers.

In establishing these snow gauges, Mr. Prandenburg first called upon the forestry and geological survey departments and secured their promise of cooperation. There are seventeen national forests in Colorado, most of which extend on both sides of the great divide. covering the very field in which a snowfall measurement is most desired. The snow ganges, which are simply scales, six feet in length and marked in feet and
cially designed for this work, are wooden boxes five feet square, and are set five feet above the ground. The bottom is a trap door, and each day's snowfall is cleaned out, after being measured at a stated time.
"It took considerable experimenting to evolve just the right kind of a box," said Mr. Brandenburg, "but we think we have the correct sort now. We soon found that an ordinary box would not do, for the reason that the high winds which usually prevail during a Rocky Mountain snow storm caused the snow to drift, making it almost impossible to get a correct measurement of the fall. What we wanted was to get a box that would overcome this tendency to drift, and in which the snow would fall in a normal way. After various experiments we have evolved a box which answers these requirements. Around the upper edge of the box, projecting several inches above it, we have placed a coarse wire screen. Then, on the inner walls of the box we fasten boards which slant downward and inward. There are several rows of these boards. The combined effect is to break the air currents above and inside the box, and the snow falls to the bottom so

Whather station at Corona. Coborado. on the Great Divide Eleven Thousand feet tboye sfat Level。
half feet, have been plated momly on these reserves. In establishing these meachring sations. Ar. Sirandenburs usually selected glades in the forests,

Where an aterage snow fall would be secured. The scales are affined to trees in most cases, thongh a number are set ${ }^{11}$) un woolen braces.

PHOTOGRAPHING THE AURORABOREALIS

B y

ALBERT GRANDE

MISTERY has always surrombled the Amrora borealis, but recent insentigations of invisible rays have afforded a nuvel and intercotille theory.

It is known that certain invisible rays ate given ont from an electrical discharge buth such as is userl with X-ray machines. While experimenting on these rays. in 189, l'rofensor lirkeland, of Chrintiania, moticed the peculiar suction effects exerterl mon them by a magnet. When arranging a very strong masnet below the discharge bulb these rays were seen to converge towards this magnet in the same manner as light rays will converge towards the focus of a lens. The similarity between the light thas chained and the Aurora Lorealis sug-
gested the idea that anroras are due to rays given ont from the sum, which, on their way through space, converge towards the magnetic pole of the earth, thus producing a particularly bright light at certain places in the surrounding air. Nature thus organizes on a huge scale the same phenomenon observed in a small compass in the electrical discharge lull.

Birkeland afterwards modertook three voyages of diseavery to polar regions with a view of investigating the Aurora loorealis and any attending magnetic listurbances. lle confirmed his theory by a number of laboratory experiments. frofessor Carl Stömer of Christiania, in a memoir recently submitted to the international congress of mathematicians. established a theory of the phenomenon,

リHOTOGK.IIIS OF THE AUROR.I BOREALI - THE GLORオ OF NORTHERN NGHTS,
showing it to be excellently accounted for on the above supposition. He also took photographs of aurora displays.

It had so far been considered practically impossible, on account of the faint light and great motion of aturoras, to fix the phenomenon on a photographic plate and only once did P'rofessor Brendel succeed in obtaining an aurora photograph with an exposure of seven seconds.

Professor Störmer first endeawred to choose such combinations of objectives and photographic plates as would insure the sensitiveness required for rendering so feeble and fleeting a light. He eventually adopted an objective one inch in diameter and two inches in focal length and used special photographic plates. With this outfit he was successful on a voyage to bossekop, in liebruary and March, 1910, in obtaming a series of 800 aturora photographs, of which onc-half
can be considered satisfactory, exposures varying, according to the brightness of the phenomenon, between a fraction of a second and about twenty secomels.

These photographic views incilentally afforded an excellent means of meanuring the altitule of auroras and ascertaining their accurate position in space by photographing simultaneously from two stations connected by telephone and comparing the position of the aurora relatively to the surrounding stars. The method of calculating, after the clata are found, is practically the same as that employed by the surveyor: using the transit, to calculate the height of any object such as a church-spire or high chimney.

A systematic application of this theory, recently submitted to the French Acarlemy of Sciences, womld matoubtedly sive most interesting results.

ELECTRIC AUTOMATIC MACHINES

B y

Ticket Vender Operathd by ElecTRICITY. -

ARTHUR JOHNSON

A1HOLGill America stands foremost in any output of antomatic machinery, we hear from time to time of devices from England which are not without merit. Such an idea shows an ingenious electric automatic ticketsender, which, the makers clam, is destined to revolutionize the present troublesome and costly process of printing, issuing, and checking ralway tickets. The machine is to substitute the ticketshelves in booking offices where there is a great and contimums demand for tickets to suburban and seaside places. It claims to reduce the cost of tickets to about four cents per thousand, and to consume one-fourth cent's wortly of electricity for printing and issuing a thousand tickets. It contains 10,000 tickets ready for sale, and can print and issute up to fifty tickets by pressing a button once, and setting the indicator according to the number of tickets required. At

The INTERIOR MrCHANIBM OF THE 'T'ICKET Ventier.

intomatic Tifret Printing Machine.
the same time it registers all tickets isstued automatically, the register being visible from the outside and the cash takings ascertained at a glance. It also dates tickets automatically, and does away with all counting and storing of tickets.

Another novel English idea, this time an electric-antomatic ticket vendor, will commend itself to the notice of those to whom time is the essence of all things. This machine is a marvel of mechanical ingenuity. It not only issues tickets on receipt of the proper coin, but it prints, dates and registers them as well: moreover, it reduces the printing of tickets t_{1} a thirel of its present cost. Its principal points and advantages are that it save, time. Being driven by electricity, consequently it does not need to be wound up, and at the same time it does away with all preparatory printing, counting, delivery and storing of tickets. The machine contains 5,000 tickets ready for sale, and effects sales up to ninety a minute. It dates the ticket and registers all sales autonatically, the register being visible on the outside, and the cash takings ascertained at a glance.

Ben Franklin Maxims

T] Three little strokes fell great oaks.
(I) Plough deep while sluggards sleep.
-] Three removes are as bad as a fire.

- There never was a good war nor a bad peace.
[Do not squander time, for that is the stuff life is made of.

ELECIKU FOUNTIIN IT SAN DHEGO THAT IS ATTRACTIVE BY DAY AS WEI.L AS RY NHBMT

BEAUTIFUL FOUNTAIN AT SAN DIEGO

B y

C. L. ED H OLM

TO build an electric fountain which should be an ornament to the San Diego plaza by day as well as by night was the problem which an architect of that city was recently called upon to solve. It is a well known fact that the ordinary electric fonntain, beantiful as it may be while illuminated, is exceedingly unattractive until nightfall, leeing of a purely mechanical appearance, iron pipes and nozzles showing above the surface of a basin. That is because no
architect has heretofore thought of combining beanty of line and surface with the device that produces these artistic fireworks.

In the designing of the San Diego fomtain. however, the problem was unusual. The tiny plaza in the center of the city is laid out as a formal sptuare and is directly opposite one of the finest hotels in the world, an architectural triumph. Thercfore it was necessary to preserve a harmony between the appearance of the fomtain and its surromod-
ings. and the architect was compelled to create something totally different. Ilow well he suceceded is shown in this phongraph of the fountain which is almost as beautiful by day as by night.

The general design of it is taken from classic Cireek models, and even when the water is not flowing the little monmment of granite, marble and bronze is a thing of beanty. The mique features are fombl in the arrangement of the jets of water and the placing of the lights and reflectors. At first sight the dome of the little temple-like structure appears to be formen of spray, seemingly thrown skyward by the needles of water shooting up between the marble columns. This is an illusion, thmeh, as in reality the water which forms the dome is forced ly a panip thrangh the cores of the columns and allowed to guslo nut from maler the bronze latutern on the deme, Which is comstructel of primmatic slass athe a metal grille. The water fowing vimently wer the projections of the grille develops conntless miniature casearles so that the roof is cosered with a foaming matnte. The water between the columns
is in reality not thrown mpward but is a shower. The flow from abose is allowed to drop straight down thrungh a perforated sheet of metal moler the dome. The arrangement of the other jets is harmonions but not monsual.
liy night, of course, the fommtain is at its best. All of the jets and cascades are illmmated in various colors, red, grecn, yellow and purple lights, automatically operated by a flasher. In addition to that, clusters of tungsten lights are placed muder the prismatic glass of the clome causing a diffused glow to shine throngly the foam.

An electric motor of fifteen horsepower was installed below the fonntain and all the mechanical devices are completely hidden. It is estimaterl that five dollars a day covers the fall cost of mp keep, inchuthes lichts, water, and alary of one man, which seems an exceerlingly small outlay.

I San Diego capitalist gave this fountain to the city and also co-mperated with the architect in perfecting some of the original detaih of the mechanism. It was erected at a cost of $\$ 15,000$.

RUNNINGA HOUSEBOAT B Y A UTO POWER

B y

ROGER MASSINGER

ACIIIC.\GO banker has discovered a way to make his antomenile do double duty. Instead of leaving his car at home when he goes on a houselouating crnise he takes it along and makes it serve as a power plant to run the lroat. This is accomplished by fitting spurred sprocket wheels to the hals of the car's rear wheels, and keying similar but larger ones to the paldle whecls of the bat, connection between them being mate by means of link chain belts. Then when the auto is jacked up so that rear wheels are clear of the leck, and the
engine startet, the bat majestically grites away. The automobile is guided on board by means of a couple of grooved rmways which rmo from the shore to the gangplank, and stopped at a place on the aft deck just between the pardlle wheels.

The hoat has two rudders, but it may also be steered by means of the paddle wheels if desired. The paddles are constructed so as to be independent of each other, and when they are connected with the antomolile, the emergency brake of the car is disconnected from one driving wheel and the foot brake from the other.

In this way me of the padtles call be revolved while its opmosite remains stationary, if the port paddle is tumed. While the starboard is held still, the bow of the houseboat is showed around to starboard, and vice versa.

The Driftuood. which is the name of this remarkable craft, has all the conveniences of a modern steam heated apartment, incluciing hot and cold water refrigerator, gas stove, ronf garden, sum parlor, private back porch, hardwook floors, laundry, clothes drier and janitor servee. It aloo carries a ganmaking machine whel supplies gas for illumination
and conking, and a complete water filtering systent.

The houseloat measures serenty-five feet over all, with a width of sixteen feet. five inches. It weighs thirty-six tons and draws sixteen inches of water. The hotse proper is fifty fect long and the full width of the boat, and contains three slepping rooms, a bath room, kitchen and combined living and dining room. Its owner lived on it during the entire past winter. while moored in a lwat yard, and proposes to automobile the craft lown the Illinois and Mississippi rivers some time during the anmmer.

The Motorist at Home

"You hawe a finc lot of children, Binks," sail llawkins, as after a pin through the comentry they returned to the lasuse for dinner. "How many ate there?"
"Seven," sald Binks. proudly
"live "ften womedered," said Hawkins, "whether you people with so many children have any faworites among them."
"Oh, mo," returned Binks, hesitatingly: "that is to say, not consciously, but of course we are more intereste! in a 1911 motel than in the earlier noes."-To-Day's Magazime.

$\stackrel{*}{*}$

Especially if He's an Editor

"What a porir man meeds is a thrifty, economical wife."
"That sommds like magazine advice. What a pone man really needs is a rich, liberal wife."

Modern Politics

"W'н" are they recalling today?"
"Oh, it's the mayor again. Some of the women folks complain that he squints and is buwlegged."-Clereland Plain Dealer.

Deterrents

"Gronge," said her husbantl's wife, "I don't befiewe you have smokel one of those cigars I gaw you on your hiethday,"
"That's right, my dear," replied his wife's huslant: 「'm going to keen them , whtil our Willie wants fo learn tu smoke." - chirago Nous.

Here is an extract from a hotel prospectus in Switzerland:
"Veissbach is the favorite place of resort for those who are fond of solitnde. Persons in search of it are in fact constantly flocking here from the four quarters of the globe."

\&
 An Act of Kindness

Weary Voice from Doorway-"Ny dear sir, I have absolutely no objection to your coming here and sitting up half the mingt with my daughter, nor to you standing on the doorste] for three hours saying good night. But in condileration for the rest of the householl who wish to get tus sleep, will you kindly take your "Abwe off the bell push?"-London Opinion.

©
 Of Course

Tfachfer-"Willie, if yout had five eggs in the basket and laid three on the table, how many would you then have?"

Willie-"Eight."

The Quick and the Dead

Rufe Johnson was heard telling this story: "Yessur, it sure was er ghost, an' 1 run some. De fust mile I made in muffin', den I hurnt de wind for two or free more, an' den 1 sot down on er rail fence to rest, an when I'd bout caught my breff I done looked over mah shoulder, an' dare was dat ghost again an' it sail
'We sure did run, Rufe, didn't we?' An' thenl l say: 'Yes, Mr. Ghost, we sure did; but we didn't run noffin' to what we's gwine t1) 5111.

Couldn't Stand the Insult

1 Scottish boy and an English boy who had been tighting were separated by their respective mothers, the Scottish boy, although the smaller of the two, being by far the more pugnacions.
"Whit garred ye fecht a hig laddie like that?" asked his mother, as she wiped the blood from bis nose.
"And I'll fecht him again," exclaimed the lad, "if he says Scotsmen hiv tae wear kilts because their feet are too big tae get into their troosers '"-The' Continent.

He Missed It

A small boy from town was spending a few days it the country. One morning he heard the grown folks complaining of having been kept awake the night before by a skunk.

Willie burst into tears. "Why, Willie, what's the matter?" the fond mother inquired.
"Why didn't someone wake me up?" he blubbered. "I never smelled a skink in all my life!"-.Metropolitan Magazine.

$*$

Premature

The Fair Purchaser - "Your eggs are very small today, Mr. Jones."
Mr. Jones-"Yes'm, they are: but l'm sure I dont know the reason."
The Far Purchaser-"Oh, I expect you took them out of the nests too soon."-London sketch.

She Knew Them

Dentist (to old latly who wants tooth pulled): "Do you want gas, madam?"
Old Lady-"Well, I should say so. I don't propose to ..stay in the dark with you or any other man."

Au Revoir

If you are feeling downhearted, tell your story to a fat man and get him to crying about it. If the tears rolling down his vast expanse of cheek fail to make you laugh, you know where the river is.-Atchison Globe.

Worse Yet
Blobrs-"Well, poor old 1;jones has joined the silent majority."
Stobss-"Gracious! When did he die?"
Blobrs-"He isn't dead He's married."
-Philadelphia Record.

\approx
 As Usual

"Provson has grole to Europe for his health." "How did he lowe his health ?" "Earning the money to go to Europe."-Boston Transcript.

The Feminine "Touch "

Wife--"Wretch! Show me that letter." Husbano-"What letter?"
Wife-"'Tlat one in your hand. It's from a woman, I can see by the writing, and you turned pale when you saw it."
Hesbavin-"Yes. Here it is. It's your dressmaker's bill."-lou Jork Eacning Mail.
\approx

Altitude Records

Rittchfr-"Twenty-eight cents al pound."
Mrs. Murphy-"That's awful high. I guess that's the aviation meat Oive been reading so mooch about."-Judge.

\star

Would Do Her Duty

Mistress (after the quarrel)- ". Norah, you must stay until] get another girl."

Nor.he-" 'intend to. It's only roight mone wan should tell her the kind of a woman ye are."-Boston Trunscript.

LARGEST EGG IN THE WORLD

TIIE largest egg in the world was recently exhibited in the Museunn of Natural llistory, New York. It is the cos. of the gigantic extinct bird called aepyonis. which formerly lived in considerable mumber on the 1sland of Nadlasacuar. This was a luge wingless creature the largest and most formidalote bird of prey that ever trod the earth. In life it has been variously estimated to have stond from seven to twelve feet in leight, possessing massive and power-
ful limbs. This great bird surpassed the astrich, the king of modern birids, Doth in size, herculean strength and build. The chormons size of the aepyornis eyg may le imagined from the accompanying phintugraph. Ry way of realistic comparion on the right in seen and ordinary hen's egry, on the left is the egg of an motrich. The aeprornis egg is six times larger than that of the ostrich, having a capacity of two gallons, or the capacity of 150 hen eggs. Here are some of the antonishing dimensions of the big earg. The shell is about $1 / 8$ of an inch thick.

 The capacity of the shell 1 s two sallons. (Hn the right is shown a ben's crs: on the lett. an ostrich's ecsi.

Pと'SH BALL PLAYED ON HORSEBACK BY゙ THE OUT WEST RIDING CLUB OF LUS ANGELES CALIFORNIA.
The hall itself is a huge sphere measuring six feet in diameter. but comparatively light for its size: and the opposing toams of plavers mounted on litthe western brenchos endeavor to drive the ball through the opposite goal. their horses deing the actual pushing. The scrimmages are wery "xciting and the horses are often thrown. but still it does not sem to be as daneerous as fontball and at the same time is far more pecturesque.
the lengthwass circumference is two feet cight inches. and two feet two inches romud the middle. Though termed a fossil exge it is not petrified nor turned to hard stone as in the case of dinosaur bones.

MOST ANCIENT MAN ON RECORD

THE Ethologrical Musemm of Berlin has recently been fortmate enough to secure the skeleton found by the Swiss

MOUNDS OF CRUDE S.HLT THHT HAVE FORMED IN THE GREAT SALT LAKE UTAH.
Residents of Ltab. especially those commercially interested are growing alarmed at the persistenery whth which the waters of Great Salt Lake are gradually dwindling away. If they continue at the rate at which they have decreased during the past ten or twedre vears the term "Great" will be a misnomer. This serens to be but bearing out the theory of many scientists, that the lake is but a "shrunken remnant" of a vastly larger hodv of acrid water that at one teme. reached out to the mortherrit and western borders of Utah and doubtless beyond-a veritable inland stal. In trme, it will eatirnly disappear it is belineved.

Only two or three of these egrss have been obtained by Europeans. These were found in the sand beds of torrents.
professor Hansee in the valley of the river lezere, near I'erigord, in southern France. This skeleton has created con-

siderable discussion among scientists as it represents the oldest remains of prehistoric man that have been discovered so far.

The skeleton was found about thirty feet under a projecting rocky ledge called "Le Monstier" and the species to which it belongs received the name of "Homo Monstiesis Houseri." The skeleton is that of a man about five feet six inches high, with crooked legs and an imperfectly developed lower jaw. Sea shells were grouped around it, from which fact the professor concluded that the man either wore ornaments of shells or that the corpse was decorated with them after death. Theskull and the stratum in which the bones were found belong to the midtle "Palaeolithic" form.

The discoverer concluded therefore that the owner of the skeleton had lived and died at least one thonsand years ago. I'rofessor Klaatach of Breshaw, the well known archaeologist, goes even farther than Professor Hansee and claims that the skeleton is fully four thousand years old.

In the Focus of a Powerful. starchlight.

NEW FRENCH MILITARY SEARCHLIGHT'

IN future wars the army as well as the navy will prosecute its grim business both day and night. There will be little sleeping at night as in wars of the past. Automobile searchlights like that shown in one of the photographs reproduced herewith will illuminate the highways for the motor wagon transports, throw light across streams for the placing of pontoon bridges, and greatly facilitate the movement and disposition of artillery.

This machine has recently been deliverel to the French army. The photographas are mot "doctored" in any way but are just as the negatives were taken. The one of the machine itself shows the high-powered beam of lisht thrown while the effect of the light at different ranges is seen by the other.

With each addition to the equipment of modern armies, war becomes more horrible. Fighting in the glare of powerful electric lights seems particularly awful and repellant.

LOCOMOTIVE FOR THE HIMALAYAS

TIIE unique locomotive illustrated in the photograph has recently been constructed in lingland, for service on the Darjeeling Himalaya Railway, which is a narrow sauge line starting from Siliguri, 398 feet above mean sea level, rising to a height of $\overline{7}, 40 \overline{7}$ feet at Ghoom Station, 47 miles distant, and then descending to Darjeeling, another four miles, which terminus is 6,812 feet above sea level. The average ascent for the 40 miles between Sookna and Ghoom is 170 feet per mile, and in this section the orradients vary from one in 129 to one in 137 , while there are many curves of only 70 feet radins. From the foregoing, it will be seen that a rery special locomotive was called for. Instead of the boiler being placest over the wheels. as has hitherto been the practice. it is carried upon a girder frame which is pivoted and supported at its extreme ends on bogies, each of which may be likened to a locomotive without a boiler. These stean bogies with their water tanks and coal bunker together constitute the greater part of the weight of the locomotive and give stability to the rum-

New Motor Hyitoplaye. Coach Ward of the Cowersity of Pennsylvania built this boat to help him train his crews. The craft is capahle of making 25 multes an hour. With this new craft the coach can get much nearer th. shells without making a swell than he can with any other sort of hoat.
ning. Furthermore, the center line of the boiler portion connecting the two bogies forms a chord of the curve on which the engine may be traveling, and the sharper the curve, the ereater will be the projection of the boiler towards the center of the curve. Comparing this with other forms of articulated lucumotives, it will be seen that its novelty lies in the fact that the boiler is placed completely between the two main connecting points of the boiler frame. witlout the boiler frame materially overlianging the connecting points. liy this means, a locomotive is obtained possensins perfect pliability and stability combined witl perfect freedom from restrictions which have hitherto governed locomotive construction.

MAGNET TAKES STEEL FROM EYE

AVERY umusual operation was recently performed in Los Angeles, when a steel sliver more than an eighth of an inch long was removed from a buy's eye with a luge magnet, probably saving him from blindness. The lad was hammering a steel liar when a fragment broke off and struck him in the eye, entering through the pupil. The boy's

REDUCED PHOTO OF TIE HERCULES BEETLE.
This is one of the biggest "burs" in existence, being seven inches long.
sight from that optic was temporarily destroyed, and his parents consulted a regutar physician, who could find no trace of the sliver but a small scar, the metal having gone into the eyeball. A specialist made an X-ray examination and located the bit of steel, and an operation was decided upon. A small T shaped cut was made in the eyeball, and a powerful magnet was used to draw out the fragment of metal. Since that time imporement has been rapid, and it in hoged that after the wound has healed there will be no bad effects.
$\%$

GIANT AMONG BUGS

$W^{\text {HILIE }}$ the study of entomology (science of insects) will lead you to observe many mimute and microscopical objects. all "bugs" are not small, as you will see from the photograph, which is of the Hercules beetle.

In size he is probably one of the larsest bugs in existence, being about seven inches long, including its shout. The metallic-like wing covers are a delicate gray, edged and dotted with black. The snont-like weapon is abo black, decurated with a row of tan-colored hairs along the edge of the largest projection. Jle is a mative of the West molies, where le must look a most formidable foe to the insect world, though his prominent probosecis seems to be used chictly to "lock horms" with the male atversaries of his own order only.

Among insects are fond many instances of structures present in males and wanting in the female of the same species, many of them have enlarged jaws, some with horns, and some antlerlike projections with which to combat their foe, and probably many a desperate battle has been fought in insect life that would be worthy of record by some Ilomeric bard.

[^19]

How Wirfeles Tmifgraphy Smplififs Defense.
Thes shows three Britesh men-ul-war and their wireless apparatus, Every vessel is in wireluse commenication with thi. Admiralty and commander-in-chiof, and world he abla be thos means to intercept any hect of transports that inight descend on England.

Hygateste in a Berlin ilay Nurebry
Evepe child has its pigeon hole containung soap. tooth brush, we... and provided with a number o prevent mistakes.

Royal Chiddren "Up a Tree..
Prince and princesses, children of the King of Italy, enjoying themselves on one of their father's ustates, near Rome.

Style of Strfet Car. With fintrance in Mimmbe 1: GAINING IN POPVLARITY.
space and better ventilation are secured by this arrangement.

bowling on the mproved alley.
The pins are set without the aid ol a pin boy.

BOWLING PINS THAT SET THEMSELVES

A^{T}T last the pin boy in the bowling alley is about to lose his job. When the machine was introduced which accurately sets the pins in position on the polished boards, after being thrown in by the boy, for that purpose, it was felt, and justly, too, that a big step forward in the rapid playing of the game had been made. Moreover, there was a greater accuracy secured in the proper placing of the pins, such as one ceatld

Apparitus for Reshtting Bowling Pins.

Wall Clock as Cham PAGNF ADVERTISEMENT.
A noted French liquor firm's gift to its custom. 1ヶに.
housekeeper could not disregard this comstant reminder that the supply of champagne must not be permitted to run ont, and where it might best be replenished, whenever that catastrophe might menace the gustatory peace of the household.

CHAMPAGNE CLOCK AS AN ADVERTISEMENT

AMERICANS are very enterprising in a business way in giving all manner of honsehold goods, such as mirrors, fans, and odd trinkets. as advertisements, in the way of trade. But the French have even surpassed us in their greater ingenuity in certain forms of advertising, as witness the clock in the illustration.

It is a very modern firm of champagne makers, indeed, who give their patrons clocks constructed almost cntirely out of champagne corks, bottles, and the implements which open the latter. On the dial is the name of the dealer. Even the most careless
 mounted police squad. In the far IVest there are many ex-cowpunchers who have drifted into the city, and there are a number on the regular police force, so it was not difficult to find expert horsemen and lariat throwers in the ranks. The photographs show some of the policemen as they were indulging in rough play

ROPINC: A FELLOW POLICEMAN.
The man on foot has been "noosed" by accident.

a Hat Pin with the Danger lextracteis.
An extratmoad slipped on and fastened by a twist of the" wrist rendors the long hat pin harmless.
during the test. The officer on horseback, a former cowboy, has just ridden by the man on the grommd and while his horse was going at a lope he flippert the

 displacoment of 27 (Kk) to Hs. She will be onle of the

noose back over his shoulder athed roperd his fellow policeman. Amother photosraph shows a hess experienced "onp" struggting to get the bridle on his refracfory mount, indicating that not all the applicants were experts. In fact as one of the local newspaper men described the roping test: "Some of the policemen caught the salloping horse, others canght the rider instead of the horse, and one of then succected in roping himself, but before the test was over each man had canght something."

The equipment of the horse for this new mounterl squad will

Thanen whth purtrat camera at a dostance of four and omenals forer. consist of a regular cattleman"s outfit the saddle having a double cinch and a horn, so that when at runaway is roped by a pursting policeman it can be easily brought to a hatt. The horses, too, are experienced cow ponies, trained to brace thenselves against the rope, so that J os Angeles is likely to have exhibitions of rough riding and rope throwing (n jts main streets at any time. Thus the arts of the frontier will he employed to save the math of the city from the peril of romaway horses.

THE FIRST GL.ISS THEATRE CURTAIN EVER M.ADF. It costs $\$ 1(0), 0 \times 0$. The ordinary theatre curtan costs about $\$ 2 .(\mathrm{kn})$.

THEATRE CURTAIN OF GLASS

THE first glass theater curtain will soon be installed in the National Theatre, which is now nearing completion, in the City of Mexico. It contains more than twenty-five hundred square feet of glass mosaic and weighs twentyseven tons. To insure its safe transportation from the studios in New York City, where it was built, to the City of Mexico it was divided into two hundred panels. containing nearly one million separate pieces, which were inlaid in a concrete composition impervious alike to leat and moisture. A wonderful art pattern has been put upon the glass. It shows the last rays of the setting sun to the right of Popocatepetl, gilding the icy summits of the volcanoes and revealing the prone figure of Ixtaccihuatl, the upper slopes of the mountain, suggesting her streaming, luxuriant hair. Above in the vast expansive sky, the glory of the blue
changes to a deep purple as night approaches. The observer is impremed with the deftness of the artisans who executed this poem in glass. The contpleted curtain illustrates the decorative possibilities of glass mosaic. Its opalescence, iridescence, and the beanty of

Hockfy Match at Richmond, England, Betwhfy ENiolsh and Irloh Wonen Teams.
Ireland etets away with the hall afti-s a "roll in."
its finish lend a tonch of reality to landscape scenes that can not be obtained as effectively throngh other medinms.

ct.

PICKING TOMATOES WITH A STEPLADDER

IIF an orlinary tomato plant in southern Califormia is given all the climbing space it wants, it will clamber over the highest of garten walls ant onto roofs and up to the top of telegraph poles. Next to Jack's bean stalk, a California tomato vine is the most remarkable climber in the world. The illustration here given shows a tomato plant, of the ordinary "beefsteak" variety, which came up voluntarily in the back yard of a Los Angeles home. It made its appearance alove the ground sometime in April and by the end of November hat reached a height of nearly twenty fect. Tu sather the fruit refuired a sis-font step ladder and a six-foot man, ant even then a hoe or a rake was sometimes needed in addition, to get the topmost tomatoes. Contrary to what might he expecterl with such a profuse growth of plant. the tomatoes themselves were not only abundant, but very large: some of them weighing close to two pounds.

The Trff Yiflds Facily tot thf Irresistible Pull."

Justifying the Californa Climate.
A tomato vine: whon top has to be reached with a stap. ladder.

Traction Exgine Pulling up a C'selfsg (Irchard Tref.

NEW

DEPARTURE IN REMOVING ORCHARDS
O. mose of the smaller farms a few acres of the most fertile ground is reserved for an orchard.
In a great many cases the orchards have outgrown their usefulness, and in other cases there has been a gratual awakening to the fact that the ground has enhanced in value and it would be more valuable for agricultural purposes.

In these cases it has been found an expensive thing to remove the old trees.

The discovery was made that an inexpensive morle of removing these old trees could be accomplished by using a traction engine. It is a very simple process. A chain is wound aromed the tree, and the traction engine is attached by means of a eable. It only requires a slight pull, to draw the old tree out.

An old orchard of ten acres was entirely cleaned ont in two days at the small experse of thirty-five dollars.

This departure bids fair to be followed ly a great many others in the near future, as it is done for about one-third of the expense required by the old method.

 An otter of eight handerd dollars for thas amiable latte creature was refused.

RACCOON VALUED AT SMALL FORTUNE

ats it behooves them to use every possible effort to facilitate the transportation of passengers and freight. The photograph above shows the newest and one of the most practical inventions of recent years. It is the new (ierman locomotive engine. This locomotive carries a powerful crane which is attached, and operated by the engine. In the case of a wreck or at other times when a crane is needed the combination eliminates the necessity of the coupling of an extra car. cansing a saving of time and labor.

$*$

CHANGEABLE STAGE SCENERY

I.N every large city the theaters are divided by the building inspection laws into different classes according to the fireproofing qualities of the buikings and the number and accessibility of the exits, only those of the better class being allowed to use drop curtains, which permit of quick changes in the middle of an act, while some are even lebarred from making a change of scenery at the eml of an act.

Managers misht do well to try ont an electrical scenechanging effect which removes a (rog) visually withont moving it bok ily.

The model shown comprised a pano-
til) to toe with pink nose, eyes and toes. The little anmal has been named "Pinkie," and is the property of Mrs. Rose Shaw of the "Aerial Shaws," who recently toured Europe, and left her pet in the zoo to be taken care of. Pinkie is three years ole. The management of the zoo offered Mrs. Shaw $\$ 800$ for Pinkie in order to use her for breeding purposes, but the gentle mistress refused the offer.

*

LOCOMOTIVE CARRIES WRECKING CRANE

RALLRO.IDS are usually decently progressive in the adoption of modern appliances and labor saving machines

German Locomotive Femippen with I'owerful LoADING CRANE.

Dofs the Canera Lie? Well-It sometimes EXAGGERATES.
This photo of orances was taken from an upper window overlonking racks where the fruit was miled. at St. 1'eters hurs. Fla. The camera being at close range, this Ireak was produced.

CEMENT SCENOGRAPH MODEL OF STAGE SCENERY WHICH SHOWS BUILDINGS USED WIIHOUT ANY SHIFTING OR MOVING OF THE WALLS.
ramic view of the butdings, lighted by concealed lamps. In adelition to thus showing the exterior of the plant, the interior of the main buthting was presented every few minntes without any shifting or movmg of the front wall.

This was accomplished by making the front wall of a fine wire ganze, and paintine it in such a manner with dones. windows and trimmings that, when
lighted from the front, it matched the rest of the picture perfectly. liy turning off a part of the lights in front and turning on a row of lamps concealed in the top of the buidding, the light inside the structure woukd be mate so much stronger than the ontside illumination that the interion of the builting wotld be rendered clearly visible throush the gatuze.

commoht, yncencoo a notanoor. N r.
BURNING FALSE WEIGHTS AND MEASURES WHOLESALE IN NEW YORK CITY.
It is stated that the seizures will probably result in Congross taking action to the end of compelling a standardization of socallod barrils and hushels all owor the countrs. is matters stand. the terms are varously interpreted in ditferent sections, and almost invariably to the disadvantaze of the consumer,

Whale Taken Off California Coast with a Plefsurf I.auxch.

PLEASURE BOAT AS A WHALER

THE captain of the Camaguin of Longr Reach, California, a small launch used as a pleasure boat, receutly performed the feat of killing and towing tritmphantly heme a thirty-font whale. It was one of the few whales killed in those waters and this twenty-tom specimen created quite a sensation when it was exhibited alongside the tiny lamels. The gin nsed for killing this sea monster was provided with a harpoon which contaned ant explosive hat was discharged after entering the body. Four shots were fired, all of which took effect.

When the whate's body was being towed to Long lieach its mate followed the lamel at a distance, apparently realizing that some misfortme had overtaken its companion.

Brick Butlding Demolished by A Steel Coal Car. I wooden coal car immediatoly hehind was thrown twenty-five fert from the track and its contents dumped in the back yard of a grocery and butween two buildings as nicely as if such had been intended. This occurred at Troy. Ohio.

'The Camagzin with 'Iharty Foot \hale 1N 10い。

When exposed above the surface of the water the carcass was found to be covered in spots with barnacles, which, the local mariners stated, was a sign of considerable age.

AIRSHIP BUILT LIKE A BOAT

SMIE aermplane buikler take the bird for their momels. whers look with much faver upon the form of constraction used by boat makers in puttines together their eraft. One of the most recent air ships to appear on one of the testing eromuls in lirance belongs to the latter class. Indect, it is quite dissimilar in appearance to most of the acroplanes that have preceded it.

Thin odel eraft is the Gommel Linplane. as it is called. It is abont $2+$ feet in length, 10 in width. "r diameter, and weighs in the neighborhoor of 800

New Boat-like French "Gonnel L'aplane" Ready for a Filight.
It was recently tested.

(hif. Pons. of One Thovsand Barrela That Was Fired Tu Mave a Tows.
pumats complete. The motor is of fifty horse-pwer and contains four cylinders. The photo shows the device all ready to take its flight through the air.

POOL OF OIL BURNED TO SAVE A TOWN

T11E ten inch oil pipe line of a big transportation company near Coalinsa, Cal., sprung a leak which developed into a bad break. Soon the oil was running toward the city in a menacing hack stream and it was feared that the town would be destroyed by fire unless the oil were checked.

Quite a large pool, containing about one thousand barrels of oil, was formed less than a quarter of a mile from the outskirts, and it was decided to ignite this pool rather than allow it to overflow and reach the city. One thousand barrels (ff oil went up) in smoke. In the intense heat the heavy oil became almost as thin as water and streams ran out from the main body in all directions, making long arms of flame. The fire lasted for about three hours, destroying the oil to the last (Iron and leaving a black crust over the surface it had uccupied.

NEW AID FOR THE HOUSEKEEPER

THE latest development in kitchen supplies is an electric cabinet.
The power is transmitted from the motor to the work shelf of the cabinet by means of a vertical shaft and by enclosed gears in a shaft head located in the center of the shelf to which the various devices to be driven are attached. An egg beater, vegetable slicer, coffee grinder, meat chopper, lemon grater. cherry pitter, knife sharpener, knife polisher, bread mixer, cake mixer, and an ice cream freezer are furnished with the outfit, any one or two of which can readily be attached by slipping the driving shaft of the device into one of the sockets on the shaft head. Means are also provided for holding each attachment in place while it is being used and the sockets are so constructed that there are no parts which can catch the clothing or fingers of the housewife or servant while the machine is in operation.

All the attachments are readily packed in the lower part of the cabinet when not in use, leaving the work shelf clear for other tasks that must in the meantime be performed.

The Housemifes New Ally-the Electric Kit chen Cabinet.

ARTIST IN CORK

AFRENCHAMAN, coming from one of the southern provinces of the republic, has recently attracterl much attention in the famous "Latin Quarter" of Paris by his very ingenions, and indeed remarkable carvings in cork. On account of the peculiar texture of the material in which he works, not only must he possess artistic cumning but an nmusual patience and care as well. If you have ever attempted to trim down a piece of cork to serve as a stopper for a bottle you will have some realization of the significance of this statement.

He is very versatile in the character of his work-the sea, the jungle, the great monuments of civilization being equally well represented. Whether carving ship, elephant, or Pantheon, he is invariably successful in his results. As a patriotic Frenchman he is especially prond of his reproduction of the I'antheon, the structure in which the great of the nation find their final resting place. Among the most celebrated men buried here is the realist, Zola, as famous for his championship of the unfortunate Captain Dreyfus, as for his writings.

The artist first lays out his pattern very accurately, giving to this part of the work the ntmost skill and attention, as, of course, all subsequent results depend absolntely upon these initial steps in the work.

Boiling Eggs in a Hot Spring in Mexico.

Reproducing the Paytheny of Paris in Cork.

LIVING CLOSE TO NATURE

IN an isolated part of the upper Rio Grande border region of Mexico is located a remarkable group of thermal springs, the waters of which are said to contain wonderful medicinal properties. Although the springs are visited ly many health-seekers annually there is an entire absence of hotel and living accommodations at the place or within a distance of fifty miles of it. The nearest railroad point is fifty miles away. The visitors must provide their own tents unless they sleep upon the bare ground with the canopy of heaven for a covering, as most of them do. They must all shift for themselves when it comes to cooking and eating. The cooking is done almost exclusively in the hot water that comes from the springs. There are hundreds of the little streams of water trickling from the rock formation and forming pools in the arroyo. The temperature of the water ranges from 75 to 188 degrees Fahrenheit. In the alssence of modern bathing accommodations the water is utilized for that purpose by shoveling out a hollow in the earth and using it for a bath tub. The efficacy of

 がい LAUKilい，ANJ HIS CREATOR．
these themal springs was known to the Indians as far back as there is any his－ worical record of the mper border region． In the early days many of the tribes of the Sinulbwest used the hot water as a remedy for various kinds of physical ills． The nearest town to the springs is Can－ lelaria，six miles distant，on the Texas side of the Rio Grande．

The illustration shows three of these health seekers dipping eges for breakfast into the pot always kept boiling by Nature＇s hand．The free spirit of the open air seenns to prossess them．

MACHINE－MADE MAN TALKS

ABERLIN inventor has，after many years，succeesled in making an arti－ ficial man，＂Occultus，＂who can walk amo make other hmman movements，such as speaking，singing，whistling，langhing． ctc．

Nuy person in public can give this artificial person orders and（）cenltus will follow them out．He obers every word such as＂go，＂＂stop．＂etc．Some other person tells him to turn his eyes toward right and he so does．Another tells him to turn around and he does so．

Occultus can also speak and answer questions，and is able to sing，langh，and whistle．

Occultus is not an illusion or a bokus－ pokus trick．He can be placen in a throng and wherever he stands，on wool， stome or carpets，he can always act．

The secret of Occultuc is with the in－ ventor alome，a Mr．Whitman．

$*$

POWER IN JELLY FORM

T111：photo shows a piece of solidified petrolemm which is described as a perfectly transparent product possessing the same colors as the petrols used for its mamfacture．It is made in the form of a jelly of sufficient consistency to be car－ ried and handled like any other solid bodly．It can easily be cut into pieces and may be conveyed in cardboard boxes without danger．The physical properties are the same as in liquid petrol，evapora－ tion is very easy and with the same heat－ ing power its inflamability and heating power is very intense as also is its car－ maretting power．When ignited it does not melt but burns like wood or coal．

MOUNTING THE ROOSEVELT LIONS

TIll: photngraph below Wats taken the other day in ome of the workrommonf the Natiomal Musemm at Wablingtorn. It slows a (eronp of lims in process of 1 eins monater-the seme to be represented being "Lions at the Drinking Place." I couple of young lions and another lioness will be in the group when it is finished.

These lions were "collected" by the recent Roosevelt honting experlition in the wilds of Africa.

MINIATURE ELECTRIC FOUNTAIN

TIlE imagination can 1atrolly do justice to the charming effect of the fonntain shown in the illustration when used as a centerpiece upon a dinner table. The endless variety of colored flashes emanating from the glass rock in the center set innumerable

 liquid rubies, sapphires, and diamonds dancing in every direction and streams of glistening spray pour

"Lions at the Drinkisc Place."
Specimens collected by Theodore Roosevelt in Africa. in process of being mounted at the National Museum, Washington.
wer the figure of Psyche as she stoops to catch the reflection of her face in the water below. All this is done by simply turning a switch for the fountain is operated by electricity being connected with the lighting fixtures by means of a cord.

A centrifugal pump triven by a small electric motor supplies the water from the basin within to a multiplicity of no\%zles surrounding the figure in the center. After the streans have opent their foree the water returns to the lasin to lee pumped inj again as before. No phumbing is reguired as all the water used is contained within the basin of the fommtain. Electric lights within the glass rock cause it to throw out many colored lights throngh its variegated sides.

As an artistic decoration for a reception room, hall or library the fountain is most attractive and the scenting of the

SWIMMING POOL ON THE POC.INTICO HIILS, ESTATE OF JOHN D. ROCKFFELLER, NEAR TARRYTOWN, NEW YORK.
Stens lead down under the water at one end. Beneath the coping stonts a pipe, piorced at intervals by fan-shaped outlets, is run. This serves to spread the water and throw it toward the center of the pool in a perfect mist. so that when the sun ss shming the pool is filled with a meyriad of rambows.

Intirkior of the Pergola on the Kockeffller Country Estate.
Whon this ruloter was taken the vines intended to cover it had not yot roached the roof. This is an ideal retreat for the hot days and warm nights of summer.
water adds another rare and entertaining feature seldom found in a house decoration of this character but which modern luxury now seems to demand.

As a means of entertainment for a sick person the fountain fulfills a happy mission. while the addition of a mild antiseptic to the water renders the air of the room sterile. It also cools the atmosphere and collects the dust from the air, depositing it in a strainer from which it can easily be removed from time to time as repuired.

The fountain shown in the illustration is 26 inches high with a base 12 by 16 incles. The basin is constructed of bent art glass with a base and figure of bronze with appropriate finishing touches to round wit the design. The whole presents a most pleasing and artistic effect to the eye.

NO MORE CRANKING

TEN one is cranking an anto engine, if the compressed charge in one of the cylinders happens to be ignited before the piston of that cylinder is ready to begin its downward stroke, the result is known as a "back-fire," or in other words the explosion in the eylinder turns the engine for a part of a revolution in the reverse direction. If the man at the crank has a good grip on its handle he is likely to be jerked violently downward and there is danger of his being injured in several ways as a result.

There are numberless cases of sprained and broken wrists resuling from backfiring and not a few of injury to the face from violent collision with the car's radiator.

There is not sufficient space to describe all the devices that have recently been placed upon the market for this purpose, but one is worthy of consideration because of its ingenuity and the near approach to the principle upon which the automobile engine normally operates.

As will be seen by reference to the

The lfakage or "Stray Magnetic Field" of the Most Powerful Magnet Holding Wire Nails in Series.
illustrations on the next page, the apparatus consists of a hand pump attached to the floor of a car within easy reach of the driver and a tube extending from it making connection through small valves with each cylinder of the engine. The opening and closing of the valves is

TIE MOST POWERFUL MAGNET IN THE WORLD STPPOR IING A GLASS BOWL BY MEANS OF THE POWFR OF ITTRACTION EXERTED LPON A SMALL PIECE OF IRON INSIDE THE BOWL.
This magnet is at the United States Government Burcau of Standards, Washington.

"No Cranking" Apparatus Attached to a Motor CAR.
accomplished by means of a push rod extending through the dash in front of the driver.

In raising the piston of the pump, air is drawn in through a carburetor which is also supplied with gasoline from a small tank within the pump's cylinder. This action prepares an explosive mixture similar to that regularly supplied the cylinders of the engine when running. The downward pressure of the pump forces the mixture into the cylinders and two or three such operations supplies adequate compression so that the engine may be started on the spark.

LOCOMOTIVE IN SERVICE SIXTY YEARS

FEW locomotives have remained in service sixty years rumning express trains. This, however, is the distinction of the celebrated engine Cornwall, which was designed by the late Mr. J. Trevithick for the London and Northwestern Railway. Intended for high speed the single driving wheels were
eight feet six inches in diameter, and to keep the center of gravity low the boiler was slung underneath the driving axje. The engine was built at Crewe in I $8+7$ and was named "Cormwall," after Trevithick's native country. As originally constructed the engine ran on eight wheels, the two leading pairs being three feet six inches in diameter and the trailing pair four feet. The weight of the engine was only 27 tons.

The underhing boiler was not found satisfactory and in 1858 the engine was rebuilt to the form shown in the photograph, with the boiler in the usual place above the driving axle. Twice since then the boiler has been renewed and other improvements made.

A Patriarch Among Exgines. A locomotive in service in England for sixty years.

The engine has only recently been withelrawn from service but is still capable of hauling light trains at record speed. It worked regnlarly for many years between Liverpool and Manchester. averaging $31 \frac{1}{2}$ miles in 40 minutes.

This locomotive may well be called a "Patriarch Among Engines," with a record and a length of service like this behind it, such as none other can probably boast.

THIS APPARATUS RENDERS CRINKING OF AUTOS UNNECESSARY
A description of its action is given in the text.

NEW MEDICAL INSTRUMENTS

Br the use of an instrument lately invented, iodine can now be applied in the form of vapor, thus avoiding the secondary effects produced by the tincture of iodine. The secondary effects are dute not to the iodine but to the drying effect of alcohol, its dissolvent.

The raporizer shown by our photograph, is composed of a glass cell attaclied to a cylinder by a metallic binding, at the center of which is a tube which brings the air from a pear-shaped india rubber blowing-apparatus as well as from an electric connector commmicating with the spiral of platinm attached to its extremity. The iodine is vaporized by the current of air from the

Fig. 1-Vaporizer for lodine for Treating lleep Wounds After Operations.
blowing apparatus which, on its way from the thread of platinnm, carries it to an extremely high temperature.

This new way of applying iodine is
 ment represented by figure 2 is the pharyngoscope. It is used for examining the bucco-nasal cavity and the laryns. It is composed of an optic apparatus which assures an angle and very extended vision; it is furnished with a small lamp with metallic thread, an accumulator of 4 volts furnishes the current to feed the lamp.

Points difficult to reach by the laryngoscopic mirror are casily examined by this instrument.

COLLEGE BOYS LIVE IN TENTS
B EGINNING with fomr years ago, the attendance at the Texas Agricultural College barely grazed the 400 mark. With the leaps and bounds with which this great state has grown in intelligence and particularly in agricultural knowledge churing the past four years the entrollment has grown apace till torlay the students number 1,100 . This increase has been housed in tents and the institu-

a Candy bounuet for the matinee girl.
She now provides herself with a dainty boucuet of flowers, real hlossoms, hut candied. They are mounted artistically with stalks and leaves of thon strips of candied citron and tied together with a ribhon. The sweets ate all naturally colored and scented and form a least for the eje and the sense of smell as well as for the sweet tooth.

How They Carry Kings in German East Africa. Tho Sultan Kitgoma fisumbura is riding in the hamper.
tion is thinking serionsly at present of increasing the tent colony to take care of the influx of new students who will appear with the beginning of the new school year in the fall.
"But," is the question not infrequently askerl, "(lo the poor students have to live in those tents all winter through?" "Certainly," is the reply of the sturlent guide as he wends his way throngh the white walled alleys which ramify through
the 243 canvas slcepins aprartments, "and moreover the boss rather enjoy their experience."

To the minitiated the idea of living in a canvas tent all throurgh the nine months which make up the school year and "enjoying it" would hardly seem consistent and yet it is entirely true. Of course there is provision for heat in the tents as well as light and besiules this the tent walls are wainscoted up) to where the roof intersects with the perpendiculats walls. The tents are also floored with tight matched Aooring anul provided with comfortable slepping eots. The heating is accomplished through the use of an ordinary sheet iron stove with the aid of ordinary wood for fuel. There may be more efficient ways of heating louses but not tents, and to say that the students are satisfied with this mode of keeping warm is putting it mildly. With the combination of dry and green wood provided for the use of the students the chill wintry blasts which sweep the show over the Texas prairies have no terrors and when the bugle blows for study hours the pupils bend over their books to the light of hundreds of electric bulbs which illuminate the great expanse of tents so that it may be seen for miles around.

A HOME IN TENIS.
Where bows at thr 'Iexas Agricultural Collax'e cot, slemp and study.

SUMAER IHOUSF OF CONCRETE BUILT in IMITATMN OF A Straw llut.

CONCRETE LOOKS LIKE WOOD

THIS dome, built of concrete, is an imitation of a log and straw hut, but constructed in such an artistic manner that the illusion is most true even after a close examination. In fact, many persons do not believe it to be made of iron frame and concrete but of trunks of trees, with bark and straw.

To make the illusion more complete, in some parts of the timber trunks the artist has imitated the work of the teredo worms and some of the pillars appear to be rotted by the same.

This work of art is a part of the beatutiful gardens which are in one of the sul)urbs of Havana, and has been marle by Mr. Ramon Nagrin̄á, a modes artist, who is in charge of the gardens. This dome is used for pienics and has a seating capacity of 200 jersons. In the center there is the spiral stair leading to the observatory above, from which a magnificent view of the Almenardes river basin is enjoyerl.

MEASURING "AIR WETNESS"

HERETOFORE instruments for measuring this peculiar fuality of the atmosphere have been complicated
devices. With the new instrument shown in the illustration. however, a person unfamiliar with mathematies or the laws governing the qualities of the atmosphere, can readily ascertain whether or not the heahthful amount of moisture is contained in the air we breathe.

A glance at the illustration of this new instrument shows that there are two thermometers in the instrument, one on cither side of the chart. The bulb of the tube on the left, you will mote, has a wick wrapped about it and extending down into a tank in the base containing water. This is called the wet bulb and indicate; a temperature somew hat lower, as a rule. than that of the dry bulb on the opposite sirle, because of the evaporation which takes place from the moistened wick surrombling it. The greater the heat of the room, the greater will be the evaporation and the consequent difference in the temperature recorded by the two thermometers.

If the air of the roon contains much moisture, the wick of the wet bulb will give off but little moisture. consequently there will be but a slight difference in the temperature recorded by the wet and dry bullus.

Upon the index finger is an anluntable

For Ilfatirivic thf Molsturf iv tiff Athospherk. An'winstrument that requmes nospectal houwhedg"to use.

The Airdale Terkiler "Lady."
Famous German police dog. She has taken 17 mur derers and innummable thieses.

This Lineman Has inmost Daylight Brighteres TO W゙ORK BY゙.

MORE LIGHT FOR THE LINE MAN

EMERGENCIES often make it necessary to do certain repair work on electric light wiring at night. This is attended with much difficulty and sometimes danger as well in dark streets becatuse of the inability of the lineman to see what lie is doing. In Dayton, Ohio, of humidity.
pointer which, in taking a reading, is first set to correspond with the degree of temperature recorded by the wet bulb. It is then moved to the right until it intersects the line extending downward from the degree of temperature recorded by the dry bulb. When the adjustable point is at this intersection the index figure will point to the figure at the lower part of the chart indicating the degree

In addition to the above, the dew point, or, in other words, the amount of moisture the atmosphere will contain at the present temperature, may be ascertained by following the curved lines running from left to right. The end of the intersecting line in any case leads to the figure indicating the dew point, while at the other end of the same line the figures indicate the amount of water measured in terms of grains per cubic foot, that the

The instrument is made in a form suitable for hanging upon the wall of a room or for setting upon a shelf. Its convenient size and the ease with which it may be operated recommend it for all places where the information it gives is
$*$
they have solved this problem in a most efficient manner by comnecting an electric automobile headlight to the storage batteries used in driv-

The Police Dog " Bos. coron NfPERIN" ARrEsts - Fugitive. ing the trouble truck and projecting the light upon the top of the pole where the lineman is working.

The photograph shows the light in operation. A 25 candle power Tungsten lamp is used with a parabolic reflector, the lamp having a spiral coil filament which makes a brilliant spot of light and enables the operator to focus it accurately upon the spot where the lineman desires to work.

Most satisfactory results from the light are claimed for it, as it saves much time and the extra help usually required for the usually very troublesome emergency calls of this kint.

Strongest MAN Ever AT IALE.
E. O. Kistler. of Denver. who scored 2.270 points in recent strength test, breaking his predecessor"s record by over $2(0)$ noints.

DOG WALKS TIGHT ROPE

THIS striking picture of a (log on a tight-rope along with his master, shows what a little patience and kindness will do in training a pet. It is pretty evident from his expression that the dog does not feel at ease in his exalted position, but his faith in his human friend is so great that he submits nevertheless. The photograph was taken at the beach near San I Diego, California.

WOODPECKERS' STOREHOUSE

I^{\dagger}T may be true that bircls are guided solely by instinct, but in some cases the dividing line between instinct and reason is so indistinct as to be almost imperceptible. An illustration is supplied by the behavior of a species of woodpecker that abounds in the mountainous regions of California. In the fall, when the acorns are ripe, it pecks numberless holes in the bark of trees, and in each hole inserts an acorn. Every acorn is placed in the same way, with the apex pointing towards the heart of the tree: and all are wedged in so tightly that one can hardly pull them out with the bare fingers.

Anyone seeing the woodpeckers thus putting away acorns might suppose that the birds intended to eat them in the winter months, when other food becomes scarce. That is not the bird"s idea at all. It is providing for a supply of fresh meat for the early spring. When spring comes, a worm develops in each acorn: and when the worm is fat, juicy and fully developed, the woodpecker goes after it, breaking the protruding shell, and devouring its helpless occupant.

HARD WORK FOR THE AUTO

ANEIV state road, between Seattle and Spokane, Washington, is now being built by a methor almost revolutionary in character, in that the crushed stone, from which the road is largely built, is handled entirely by machinery from the time it enters the crusher unti]

Looks Like A Boller Plate Studded with Bolts. It is, however. a tree drilled full of holes in which acorns are placed by woodpeckers for use in the future.

THE PRIZE WINNER IN A CONTEST FOR THE LONGEST HAIR IN BERLIN,
This woman's hair is ten feet long.
it is put into service by being sprearl upon the roadbed.

The stone runs from the crusher directly into self-dumping cars, in which

This Motor Truck Iofs the Work of Thirty six Horses.
il is transported to the contractors' homkers. These bunkers are so loncated that the truck can drive under and receive
a load by merely opening a gate. From this point the truck carries and chmpss the stone upon the roadbed, spreading it by moving ahead upon the plank stringers.

The motor truck doing the work is eonstructed with a steel hopper body and carries about 3% cubic yards of stone, or 8,500 pounds at a trip. This, with the truck's own weight of 1,500 , makes a total of 10.000 pounds carried at each trip. The truck makes 22 round trips every day, or about 18 times the capacity of one team, as it was estimated by the contractors that each team would not be able to make more than one trip daily, as the hauling is up a very steep grade. carrying approximately four cubic yards at a trip. At a cost of $\$ 5.00$ per day for each team and driver. the expense of delivering the truck's capacity of stone would be about $\$ 90.00$, while the truck with two men delivers the same quantity of stome at a cost of $\$ 12$ per day.

SCIIOOM OF THIRTV SEVEN HUGF WHILES C.AST ASHORE ON THE COAST OF T.MSMANAA. 75%

BRIDGE FOR AUTOMOBILES IN SOUTHFRN CALIFORNIA.
The Automobile Club of Southern California is a live organization which is spending thousands of dollars to improve the highays of that section of the country: a good work, the benefit of which all may share, whe the they are thembers or not. One of their few pieces of work which is exclusively for moturists is the bridge of structural iron and concrete shown in this photokraph. It is arranged with a couple of grooves which take the wheels of the auto, but as there is no roadway between them it is impossible to drive a team across

DOUGH UNTOUCHED BY HANDS

INN Muskogee, Oklahoma, an electric bakery is in operation. It is equipped throughout with electric clriven apparatus. The plant has a capacity of 40,000 loaves of bread a day, in addition to the mumerous side lines of cakes, pies, rolls and other pastry and it will be seen that this is a profitable consumer for the electric supply company.

Without doubt this is one of the most modern bakeries in the country. The flour and dough are never tonched by human hands until the loaves come out of the oven ready for delivery to the consumer.

The power installation consists of mumerous small motors from one to five

l'uwfrfile New Searchlight in U'se on a New York Fire Engine.
'l'his greatly facilitates the fire fighters in placing Jadders, ctc.
horse-power in size, each machine being individually driven, the total comected load being thirteen horse-power. There

New Emible Mushrom Jiscoveren by a French Botanist.
This-the plaurotus cornucopioides-is espercially suited to cultivation. It is usually found on the stumps of old elims.

Where Brfat is Kneaded and Baken by Elfc TRICITY:
A modern bakre at Muskoger Oklahoma, which turns out 40,000 loaves of bread a day.

Fig. 1-Takivg (hit Weens by Machinfry.

Fig. 2-Rfplaching the Apparatus in Position
the boat, sometimes with a pole, sometimes with the rukder. while the third man is occupied exclusively with the weeding. The weeds on being cut float to the surface and are picked 11 by a light floating dam, formed of a simple pole with vertical pegs. which is placed obliquely across the canal. The dam is moved along as the mowing machine advances. When meeting a vertical obstacle the cutting bars can be folded backward, as illustrated by Fig. 2. In marsly sections the malarial condition may be avoided by destroying the parasitic resetation.

FIRST SUSPENSION BRIDGE IN AFGHANISTAN

OUR photograph represents the first steel bridge constructed in Afghanistan. It was completed and opened for use last year. The bridge is built over the Caboul river on a level with the gorges of Diroontah. Before this hridge was built communications were assured only ly means of ferry boats operated by cables: this very primitive medinm of transportation became insufficient and it was found

IHE* "AERMOBIIE"-A NONSTER AEROHLANE UNDER CONSTRUCTION IN CALHORNIA.
necessary to replace it by this bridge 1.30 meters in length. The construction of it was extremely difficult because of the steepness of the embankments.

\star
 HUGE "AERMOBILE"

AMONOPLANE of the gigantic dimensions of 105 feet by 60 feet. and with a lifting area of 6,000 square feet has been built recently at Venice, (alifornia, and is now arraiting the installation of its two 100 horse power engines before attempting flight. This is not only the world's largest aeroplane, but is also an absolutely new attempt at the solution of the problem of flight. The aermolite, as it is called, is the work of Captain August E. Mueller, an aeronaut who has had experience with balloons, both spherical and dirigille, for many years in varions parts of the world. He describes hi, machine as "a parachute with a heal and a tail," and as all the weight of engines and passengers is far below the great oval plane, there should be no danger of its turning turtle.
The "aermobile" has six metal propellers, each furmished with three 1,atles. These propellers are well distributed under the plane, two in front, two on the rear and one midway down each side.

DETECTOR FOR "LIVE" WIRES

ELECTRICAL wiremen, im making repairs or adjustments in central stations, need to know whether the current is on the lines and other conductors, so as to avoid risk of shock. But since the presence of the current makes no difference in the appearance of the conductor, there was considerable risk in this work until the invention of the voltage detector illustrated herewith, which announces to the eye whether the conductor is "alive" or not.

This simple contrivance was inventerd by J. B. Taylor, an American, and has obtained a specia! prize in France as an accilent preventer. It consists of a light S-shaped metal vane, pivoted at its center upon a vertical metal stem like a compass neerlle and enclosed in a small glass globe. The lower end of the metal stem is fixed to the conductor which it is desired to safegiard-such, for example, as the disconnecting switch of a highvoltage powertransmission line. The electrostatic charge on the conditctor, when alive, proditces a repulsion at the points of the vane, causing the latter to spin around; and

Monument Marking the Terminus of the Famonis Santa Fe Trail.
It will stand in the Plaza, at Santa Fe. New Mexico.

 Suales and felter press und a century ago by the Amers ocan Fur Company.
the motion is marle more conspicuous by light paper disks attached to the points. One of the detectors monnted on each line reveals to the eye, without fail, the presence of a dangerous voltage in the wires.

MARKING LAST OF SANTA FE TRAIL

Tlle old Santa Fe Trail, the most famous pathway of the pioneers in America, will soon be markerl from beginming to end with the type of granite tablets illustrater here to show the travcler the route of the scout, the Indian, the soltier and the settler. The course through Missouri and Colorado has already been marked with twenty-five or thirty tablets, erected by the Daughters of the American Revolution, and the present tablets are to mark the course of the trail through New Mexico, the last one to be placed in the l'laza in the city of Santa Fe. The first one of the stones in New Mexico will be placerl at Lymn. a few miles below Trinidad just over the border. One will stand at las Vegas. five in the vicinity of Ratom, and the others at intervals till santa lie is reached. The one destined for the Santa Fe l'laza is a little more elaborate than the others. and bears on its polished face a little map of the trail, showing its beginning and end and the courses of both branches. The others bear merely the letterel inscription shown in the photograph. The tablets are of clark gray Colorado granite, at once durable and pleasing to the eye.

ORIGINAL ASTOR SCALES

Tllis illustration shows two pairs of scales and an old-style letter press Which were used by the American Fur Company, of which John Jacob Astor was the heat. This company was organized on Mackinac Island in 1815, and continued in business until 1852. The original building in which the furs were stored is still standing and is med as a hotel. These scales are in the possession of the Cable estate, which also owns the buikling in which the historic relic is housed.

THE FAMOUS PRENTICE PILLAR

AI'LEASANT ride of two hours from Edinburgh will bring the visitor along hawthorn-fringed roadways to an architectural gem, Roslyn Chapel. Nou the least pleasing feature of this fairylike structure is the marvelens. 1 rentice Pillar with its tale of revengeful jealonsy. The story goes that while the chapel was in process of construction, being founded in $1+46$, the master workman went to the Continent for new ideas. When he returned he found that his apprentice had constructed this wonderful pillar. Enrased beyond bounds by this act. which he considered unwarranted audacity, he seized his semptor's mallet and killed his assistant on the spot. Furthermore, when the bishop of St. Andrews, whose diocese included Roslyn Chapel, was in Rome at the time when the chavel was nearing completion, he obtained from the Pope a dispensation to reconcile Roslyn, that is. to cleanse it from the pollution of some deed of violence committed within its precincts. After the publication of "The Lay of the Last Minstrel" Roslyn Chapel became so popular that a coach was started from Edinburgh and a new inn was built, taking the place of the old inn where Boswell and Dr. Johnson dined.

AERO WON"T TURN TURTLE

ARESIDENT of Totowa Borough. New Jersey, has constructed a "non-capsizable" aeroplane, the inventor claiming that, on account of its design, it is impossible for it to turn turtle while in the air. There is no other like it in the country today. Clifford B. Harmon huilt one, but never installed the engine. There are fourteen of similar make in process of construction in France.

The machine is equipped with a 50 -horse-power engine and a nine-foot paragon propeller. This strange-looking bird weighs 620 pounds. The circular construction-shown in the picture-is twenty feet in diameter and has a depth of nine and a half feet. The gasoline tank and radiator are inside the massive circular frame. which is made of naid. a specially prepared linen, made in lre-

Roslyn Chapel. M ade Famout by Sir Walter Scott's "Lay of the Last Minstrel."

The First British Battleship with But One Mast-the Hercules.
Her armament consists of ten 12 -anch kuns with a full broadside. She has a displacencent of over 20.(x) tons.

Somethivg Safer for tile Aleronaut. An aroroplane that ran't turn tursle
land, and coated in this country. The motor is in front of the frame, while the driver sits under and behind the machinery. The whole affair is set upon four aeroplane wheels.

Several flights, none of them very successful, have been made.

4

BEARS RECAPTURED WITH SWEETENED WATER

TIIE manager of a little circus touring the San Joaquin Valley was careless enough to allow three performing bears
serious damage. His main worry was to get them back to their cage. An acquaintance of his who happened along in his automobile hit upon the right idea. This man had seen the bear trio professionally engaged in the show, where they sat around a table and drank huge quantities of sugar and water from beer bottles. The automobile owner loaded up his tonneau with as much of the sweet mixture as he could find, threw in the clutch and sallied forth to the neighborhood where the bears were enjoying their liberty.

Once near enough to them to display

RECAPTUREI) BEARS FORGETTING THEIR ESCAPADE IN A DEBIUCH OF SWEEIENED WATER.
to slip out of their cages and roam about the comntryside a short time ago.

Fortunately the only weapons that happened to be available were shot guns charged with bird shot, so that when the ranchers went forth to do battle with the invaders the Bruin family was only tickled with a few little lead pellets that could not penctrate their tough hides.

Meanwhile the manager appeared and quieted the fears of the populace. explaining that the wild animals were only trick bears and were not likely to do any
his bait there was no further difficulty. The bears recognized the bottles and shuffled forward eagerly. Liberty was sweet but sugared water was swecter. All three of them were enticed into the automobile where they sat up as if the show were on and poured gallons of the delicious beverage down their hairy throats.

It was at this time that the camera man took the pictures and immediately thereafter they were hurried back to their cages.

CINEMATOGRAPH FILMS-"MOVING PICTURES"-TAKEN AT THE RATE OF 5.000 A
THIS ACHIEVEMENT IS DUE IN PART TO THE UE
Figure No. 1 shows the automatic discharge of a used cartridge from a revo. 4 , projectile approaching and enterentering and passing through a ba
ing a lead tube full of small holes.

A Freak Photi.
This curious appearable was hrought about by placme the negative ton near a bot stove in order to dry it quickly, causing the gelatine on the plate to run.

SEA MONSTER CAPTURED BY WOMEN

PROBABLY as weird a monster as was ever hanled from the sea is the gigantic and shapeless fish which was brought to the galf by the thrce fisherwomen shown besirle it. It is a sun fish Weighing 1,600 pounds and is said to be the record catch of that sort. It was captured off Catalina Island. famons all over the world as a piscatorial paradise. This queer creature is almost tailless anrl propels itself by the powerful dorsal and anal fins, the pectoral fins being small and comparatively weak. It has prominent eyes and a small mouth apparently to offset this prominence. with an undivided dental plate somewhat like that of a turtle.

It has no value for food, as the flesh is tough and stringy, but oil is sometimes extracted from the huge carcass. It is stated that the name of the sun fish is

H1pptiNG UOTOR SLEDG: These were for Cantain Scott's intarctic expedition. The upraised arms at either end of the sledge' are lowered when in usi and they are to prevint the vebicle tumhling down crerasses when in the Antarctic. given to this creature from its habit of basking on the surface of the water in of flesh as many of the monsters that bright weather.

It is as shapeless and hideous a lump spend their lives in the depths of the ocean and never come near the surface.

Physical \& Applied Sci. Serials

Technical I:orld ivagazine v.15(1911)
受

[^0]: On Gab llirf.

[^1]: T is not the wide phylactery,
 Nor stubborn fast, not stated prayers,
 That makes us saints; we judge the tree
 By what it bears.

 And when a man can live apart
 From works on theologic trust,
 I know the blood above his heart
 ls dry as dust.

[^2]: Oik, IUNdrens of l"ears Otd, in IIampton Cotrt Park, Londun, Protected by Finglish Government.

[^3]: A MALLET COMPOUND LIKE THIS COULD BURN 1200 TO 5.0% POUNDS OF COAL PER HOUR IF JFFORABLE OR NECJESSBK
 There is no way. however of ecetteng it into the mrebox

[^4]: A Harmless "Monster" frem Brazil.,

[^5]: Claiming part of the lake front of Chicuso ns hus promerty. for a long time "Captan" streeter besiowed in his auto, defied the authorities, but finally villded.

[^6]: A 15.000 kilowatt turbine, occupying 2.128 square feel of floor ipice.

 A 5.000 kilowatt engine. Three such as this occupy 10.640 square feet of tloor soace

[^7]: A single Bird l'iflds from Thirty to Sfyentyfive Dollars' Worth of Feathers a Year.

[^8]: Concrete \imuct Rumt by Fintfrprising farmer

[^9]: Ghast Fich That Be CAME STONE.
 Curious monument at fischbach, Gurnany.

[^10]: This Clevfr Bit of Carving Is froma Pifge of Wom a Littie Larger than a Broomdick in Clequmprimentr

[^11]: An Irt Nouvflu settfg Uphotsterfo in Leather AND ORNAMENHED WITH BATIK DECORATIONS.

[^12]: These lambs. losing their mother. the cow has kindly undertaken the task of rearrng the hapless little orphans.

[^13]: Beat Ligitrad Office Buldideg in that Worid. " Thas is the clam mad for Denver Gas and Electric Company's new huldang.

[^14]: Queenie," the Pet Tortoise of an English Lady. This is the way her mistress takus the Iftle creature nut for the daily "constitutional."

[^15]: 目

[^16]: A Cifitifically Buhit Fire, After Burning for fiftern Minetre. Hid No Effect Upon This structure Bullt with the Cfment Gun.

[^17]: Mumle Part of the Same Scale (Grfatly Enlargenl Rfirpesenting the First Three Years of the Fish's Iffe and Growth.

[^18]: Proposfo Nfw Roads Which Will Relifye the Hfart of London of Its Congestion

[^19]: Golomon Wolte and two other lads-rangme in age from tern to twolv-show what modern wadr-awaki voungslers can acconiplish.

